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In this thesis, we are interested in singular canonical and special metrics on a family of compact complex possibly non-Kähler varieties.

The first result concerns the existence of "singular" Gauduchon metrics. Under certain assumptions on the singularities, we prove that such a compact singular variety admits a bounded Gauduchon metric in every conformal class of a smooth hermitian metric. This generalizes Gauduchon's theorem to a singular setup. On the other hand, in each conformal class, we also show the uniqueness of bounded Gauduchon metrics up to a positive multiple in each conformal class. Furthermore, we obtain an extension property of the (n -1)-th power of a bounded Gauduchon metric as a positive pluriclosed current on a singular variety.

In the second part, we aim at establishing a uniform L ∞ -estimate of solutions to complex Monge-Ampère equations for a family of hermitian varieties. Then we show a uniform L 1estimate of sup-normalized quasi-plurisubharmonic functions when the family is a smoothing of a hermitian variety that has only isolated singularities. The proof consists of pluripotential theory and uniform control of Gauduchon factors. Furthermore, combining with a uniform L pestimate of the canonical densities, we obtain uniform boundedness of the solutions of families of complex Monge-Ampère equations in such cases.

Résumé

Dans cette thèse, nous nous intéressons aux métriques singulières canoniques et spéciales sur une famille de variétés compactes complexes possiblement non-kählériennes.

Le premier résultat concerne l'existence de métriques de Gauduchon "singulières". Sous certaines hypothèses sur les singularités, nous prouvons qu'une telle variété singulière compacte admet une métrique de Gauduchon bornée dans la classe conforme d'une métrique hermitienne lisse fixée. Ceci généralise le théorème de Gauduchon dans le cas singulier. D'autre part, dans chaque classe conforme, nous montrons également l'unicité des métriques de Gauduchon bornées à une constante multiplicative près. De plus, nous obtenons une propriété d'extension de la (n -1)ème puissance d'une métrique de Gauduchon bornée comme courant plurifermé positif sur une variété singulière.

Dans la deuxième partie, nous cherchons à établir des estimations uniformes pour les solutions d'équations de Monge-Ampère complexes pour une famille de variétés hermitiennes. Ensuite, nous montrons une estimation uniforme L 1 des fonctions quasi-plurisousharmoniques sup-normalisées quand la famille est un lissage d'une variété hermitienne qui n'a que des singularités isolées. La preuve s'appuie sur la théorie du pluripotentiel et un contrôle uniforme des facteurs conformes de Gauduchon. Combinée à l'estimation uniforme L p des densités canoniques, nous obtenons un contrôle uniforme des solutions des familles d'équations de Monge-Ampère complexes dans de tels cas.
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i Chapitre 1

Introduction (en français) 1.1 Motivation

Dans cette thèse, nous étudions des familles de métriques hermitiennes spéciales. La compréhension de l'existence de métriques canoniques et de leur dégénérescence est un sujet de recherche très actif ; il a de nombreuses interactions avec plusieurs branches différentes des mathématiques et de la physique (cf. [KS01, GHJ03, YN10]).

Métriques kählériennes canoniques

En analyse complexe, le concept de métrique canonique apparaît dans le théorème d'uniformisation de Poincaré, qui stipule que toute surface de Riemann simplement connexe est équivalente de manière conforme à la sphère de Riemann, au plan complexe ou au disque unitaire dans le plan complexe. Chaque classe de métrique conforme contient une métrique canonique (métrique à courbure constante) sur les surfaces de Riemann compactes. D'autre part, suivant le théorème de Gauss-Bonnet Σ K g dA g = 2πχ(Σ), le signe de la courbure gaussienne K g d'une métrique canonique g dépend de la topologie (la caractéristique d'Euler) de la surface Σ. Par conséquent, sur les surfaces de Riemann compactes, elles relient des quantités topologiques et géométriques qui semblent sans rapport à première vue.

Il existe plusieurs généralisations possibles des métriques à courbure constante en dimension supérieure. Les métriques de Kähler-Einstein sont des analogues prototypiques de ces métriques canoniques. Sur une variété kählérienne compacte X, une métrique de Kähler-Einstein est une métrique kählérienne ω dont la forme de Ricci est proportionnelle à la forme de Kähler, à savoir Ric(ω) = λω pour un certain λ ∈ R. Quite à dilater ω, on peut toujours supposer que λ ∈ {-1, 0, 1}.

L'existence d'une métrique de Kähler-Einstein impose une forte contrainte cohomologique : la première classe de Chern a un signe, c 1 (X) < 0 (fibré canonique est ample), ou c 1 (X) = 0 (Calabi-Yau), ou encore c 1 (X) > 0 (Fano). Un fibré en droites holomorphe L sur X peut être représenté à isomorphisme près par une classe dans H 1 (X, O * X ), et la première classe de Chern est donnée par l'homomorphisme de connexion c 1 :

H 1 (X, O * X ) → H 2 (X, Z) induit par la suite exacte courte 0 → Z → O X e 2pii•

→ O *

X → 1 de faisceaux. La première classe de Chern c 1 (X) ∈ H 1,1 (X, R) ∩ H 2 (X, Z) d'une variété complexe X est la première classe de Chern du fibré anticanonique K -1 X = n T X , où n est la dimension complexe de X.

Conjecture de Calabi et Conjecture de Yau-Tian-Donaldson

Pour une forme kählérienne fixe ω, sa forme de Ricci Ric(ω), définie localement comme i∂ ∂ log(ω n ), est toujours une forme fermée (1, 1) sur X, dont la classe de cohomologie de de Rham est indépendante de ω: c'est un représentant de la classe 2πc 1 (X). Dans les années 1950, Calabi [START_REF] Calabi | On Kähler manifolds with vanishing canonical class[END_REF] a posé la question inverse :

Conjecture (Conjecture de Calabi). Soit (X, ω) une variété kählérienne compacte. Si l'on considère une forme lisse (1, 1) Ψ ∈ 2πc 1 (X), existe-t-il une métrique kählérienne ω ′ cohomologuée à ω telle que Ric(ω ′ ) = Ψ?

Calabi a montré que ω ′ est unique s'il existe, et a relié l'existence à la résolution d'une EDP non linéaire. La conjecture de Calabi a été prouvée par Yau [START_REF] Yau | On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. I[END_REF] en 1978. En utilisant la méthode de continuité et certaines estimations a priori, Yau a complètement résolu l'EDP non linéaire, l'équation de Monge-Ampère complexe, comme suit

(ω + i∂ ∂φ) n = f ω n (MA)
où φ est l'inconnue, f est une fonction lisse strictement positive dépendant de ω et Ψ, et f satisfait aussi naturellement une condition normalisée X ( f -1)ω n = 0. De même, la recherche d'une métrique de Kähler-Einstein se résume à la résolution d'une équation de Monge-Ampères complexe dont le membre de droite peut dépendre de l'inconnue :

(ω + i∂ ∂φ) n = e -λφ f ω n .

Sur une variété avec fibré canonique ample, Aubin et Yau [START_REF] Aubin | Équations du type Monge-Ampère sur les variétés kählériennes compactes[END_REF][START_REF] Yau | On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. I[END_REF] ont indépendamment montré l'existence d'une unique métrique de Kähler-Einstein dans c 1 (K X ). Dans le cas de Calabi-Yau, par le théorème de Yau, il existe une métrique kählérienne Ricci plate unique dans chaque classe kählérienne. Cependant, si X est Fano, le problème de Kähler-Einstein est plus subtil. Une obstruction à l'existence de métriques de Kähler-Einstein à courbure positive a été découverte par Matsushima [START_REF] Matsushima | Sur la structure du groupe d'homéomorphismes analytiques d'une certaine variété kählérienne[END_REF] : Le groupe d'automorphisme Aut(X) d'une variété de Fano Kähler-Einstein X est réductif. Une autre obstruction, liée aux champs de vecteurs holomorphes, a été trouvée par Futaki [START_REF] Futaki | An obstruction to the existence of Einstein Kähler metrics[END_REF]. En dimension complexe deux, le problème de Kähler-Einstein a été complètement résolu par Tian et Yau [START_REF] Tian | On Kähler-Einstein metrics on certain Kähler manifolds with C 1 (M) > 0[END_REF][START_REF] Tian | Kähler-Einstein metrics on complex surfaces with C 1 > 0[END_REF]. Introduite par Yau et Tian [START_REF]Kähler-Einstein metrics with positive scalar curvature[END_REF] et ensuite affinée par Donaldson [Don02]:

Conjecture (Conjecture de Yau-Tian-Donaldson). Une variété de Fano (X, -K X ) admet une métrique de Kähler-Einstein si et seulement s'il satisfait à une propriété algébrique appelée K-stabilité.

En 2015, Chen, Donaldson et Sun [START_REF] Chen | Kähler-Einstein metrics on Fano manifolds. I, II, III[END_REF] ont résolu la conjecture de Yau-Tian-Donaldson sur les variétés de Fano. Ce résultat fait le pont entre un objet de géométrie différentielle et une notion purement algébro-géométrique. Plusieurs preuves sont apparues par la suite : [DS16, CSW18, BBJ21, Zha21, Li22].

Uniformisation des variétés de Kähler-Einstein

L'inégalité de Chen-Ogiue donne une caractérisation des variétés de Kähler-Einstein, qui ont des courbures constantes en termes de nombres de Chern. Cela donne également un critère d'uniformisation dans les dimensions supérieures:

Théorème [START_REF] Chen | Some characterizations of complex space forms in terms of Chern classes[END_REF]). Si (X, ω) est une variété compacte de Kähler-Einstein de dimension complexe n ≥ 2, alors 2(n + 1)c 2 (X)nc 1 (X) 2 [ω] n-2 ≥ 0.

De plus, l'égalité tient si et seulement si ω a une courbure bissectionnelle holomorphe constante ; et, l'espace de recouvrement universel X de X est isomorphe à CP n , C n , ou B n (selon le signe de la courbure).

Il existe de nombreuses applications géométriques de la métrique de Kähler-Einstein. Nous renvoyons le lecteur à [START_REF]Canonical metrics in Kähler geometry[END_REF] et aux références qui y figurent.

Résolution des équations de Monge-Ampère complexes sur les variétés kählériennes compactes

Comme nous l'avons mentionné dans la section précédente, la résolution d'équations de Monge-Ampère complexes est importante pour comprendre l'existence des métriques de Kähler-Einstein. Dans cette section, nous passons en revue deux stratégies pour résoudre les équations de Monge-Ampère complexes (MA).

Méthode de continuité

Dans [START_REF] Yau | On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. I[END_REF], Yau a résolu (MA) en utilisant une technique d'EDP, appelée la méthode de continuité. La méthode de continuité consiste à résoudre d'abord une équation facile, puis à déformer la solution pour obtenir l'équation souhaitée. Précisément, pour t ∈ [0, 1], on considère la famille d'équations suivante

(ω + i∂ ∂φ t ) n = c t e t log f ω n , ω + i∂ ∂φ t > 0, and sup

X φ t = 0 (MA t )
où c t est une constante de normalisation de sorte que c t X e t log f ω n = X ω n . Désignons par S := {t ∈ [0, 1] | (MA t ) admet une solution lisse} .

La preuve de la méthode de continuité consiste à vérifier trois parties : S est non vide ; S est ouvert dans [0, 1] ; S est fermé dans [0, 1]. Puisque φ 0 ≡ 0 est une solution de (MA t ) à t = 0, S est non vide. L'ouverture peut être obtenue par le théorème des fonctions implicites des espaces de Banach et certains arguments de perturbation. Le principal challenge est de prouver la fermeture. Pour montrer que S est fermé, Yau a établi certaines estimations a priori aux équations (MA t ). La partie la plus cruciale et la plus difficile est une estimation uniforme de L ∞ qui a été surmontée par Yau, en utilisant l'itération de Moser. Soulignons que si l'on applique soigneusement l'approche de Yau, l'estimation de L ∞ ne nécessite qu'un contrôle de L p sur la densité pour un certain p > n.

Preuve pluripotentielle

En 1998, Kołodziej [START_REF] Kołodziej | The complex Monge-Ampère equation[END_REF] a produit une estimation de L ∞ pour les fonctions de densité f qui sont simplement dans L 1+ε pour un certain ε > 0. Au lieu d'utiliser l'itération de Moser, Kołodziej a combiné l'approche classique de De Giorgi et la théorie pluripotentielle. Dans sa méthode, Kołodziej a considéré une fonction définie par la capacité de Monge-Ampère de l'ensemble de niveau g(s) := Cap ω ({φ < -s})

où la capacité d'un ensemble E est définie par

Cap ω (E) := sup

E (ω + i∂ ∂u) n u ∈ PSH(X, ω), -1 ≤ u ≤ 0 .
Ici PSH(X, ω) est l'espace de toutes les fonctions ω-plurisousharmoniques (voir la définition précise dans la section 1.2.2). Par l'approche de De Giorgi, g(s) disparaît pour s ≥ s ∞ ; ceci implique que φ ≥ -s ∞ . De plus, Kołodziej a également montré l'existence d'un potentiel continu unique φ ∈ PSH(X, ω) qui résout l'équation de Monge-Ampère complexe avec densités dans L p . C'est extrêmement utile pour les applications aux milieux singuliers. Eyssidieux, Guedj et Zeriahi [START_REF] Eyssidieux | Singular Kähler-Einstein metrics[END_REF] ont généralisé l'estimation pour permettre à la forme d'arrière-plan ω d'être semi-positive et grande ; les auteurs ont également prouvé le théorème de Calabi-Yau singulier sur les variétés "faiblement" singulières (voir la Section 1.2.1 pour les détails).

Nous allons maintenant mentionner brièvement une approche variationnelle telle que dévelop-pée par [START_REF] Berman | A variational approach to complex Monge-Ampère equations[END_REF], même si elle n'est pas directement liée aux parties principales de cette thèse. La preuve de Kołodziej se réduit finalement par régularisation au cas lisse traité par Yau, mais la méthode variationnelle peut être rendue indépendante de la preuve EDP de Yau. Cependant, elle donne des solutions faibles qui n'ont pas besoin d'être lisses (bien que, en fin de compte, le théorème d'unicité montre que la solution de Yau coïncide avec la solution faible ; elle est donc lisse tant que la densité est lisse et positive). L'idée clé de l'approche variationnelle provient de l'analyse de la convexité de certaines fonctionnelles. Certaines de leurs équations d'Euler-Lagrange sont des équations de Monge-Ampère complexes. Une fonctionnelle importante est appelée la fonctionnelle d'énergie (ou fonctionnelle d'Aubin-Mabuchi), définie comme suit

E(u) = 1 (n + 1)V n ∑ j=0 X
u(ω + i∂ ∂u) j ∧ ω n-j , où V = X ω n . Cette fonctionnelle et ses variantes ont permis de réaliser des progrès impor- tants dans l'étude d'une géométrie métrique de l'espace des potentiels de Kähler et dans la construction d'estimations a priori uniformes (cf. [Dar15, DR17, DG18, BBE + 19, BBJ21]).

Cas hermitiens

Étant donné que les variétés non-kählériennes apparaissent fréquemment dans diverses constructions, l'étude des équations de Monge-Ampère complexes sur les variétés hermitiennes a suscité un intérêt considérable au cours de la dernière décennie. Sur les variétés hermitiennes compactes, l'étude des équations de Monge-Ampère complexes a été entreprise pour la première fois par Cherrier [START_REF]Équations de Monge-Ampère sur les variétés hermitiennes compactes[END_REF] et Hanani [START_REF] Hanani | Équations du type de Monge-Ampère sur les variétés hermitiennes compactes[END_REF]. En 2010, Tosatti et Weinkove [START_REF] Tosatti | The complex Monge-Ampère equation on compact Hermitian manifolds[END_REF] ont résolu une version importante et appropriée du théorème de Yau. Ils ont prouvé que, sur une variété hermitiennes compacte (X, ω), pour tout 0 < f ∈ C ∞ (X), il existe une paire unique (φ, c) avec φ une fonction lisse et c > 0 une constante telle que

(ω + i∂ ∂φ) n = c f ω n , ω + i∂ ∂φ > 0, sup X φ = 0.
En conséquence, ils ont également obtenu que, sur une variété de Calabi-Yau non-kählérienne, il existe toujours une métrique de Chern-Ricci plate en résolvant une équation de Monge-Ampère complexe de densité canonique. Comme dans la preuve originale de Yau, la méthode de [START_REF] Tosatti | The complex Monge-Ampère equation on compact Hermitian manifolds[END_REF] consiste à établir des estimations a priori le long d'un chemin de continuité, et l'estimation la plus délicate s'avère à nouveau être l'estimation a priori de L ∞ . De plus, la nonfermeture de la forme de référence introduit plusieurs nouvelles difficultés : il y a beaucoup de termes supplémentaires à manipuler lors de l'utilisation du théorème de Stokes et il devient non trivial d'obtenir des limites uniformes sur le volume de Monge-Ampère. Le contrôle de la constante de normalisation c devient une question délicate.

La théorie du pluripotentiel a été partiellement étendue par Dinew, Kołodziej, et Nguyen [DK12, KN15, Din16, KN19] pour une densité f simplement dans L p . Récemment, Guedj et Lu [START_REF] Guedj | Quasi-plurisubharmonic envelopes 3: Solving Monge-Ampère equations on hermitian manifolds[END_REF] ont étendu le résultat d'existence de Tosatti et Weinkove aux variétés hermitiennes faiblement singulières. Ceci implique un théorème singulier de Calabi-Yau sur les variétés hermitiennes qui a généralisé le travail fondamental de Eyssidieux-Guedj-Zeriahi [START_REF] Eyssidieux | Singular Kähler-Einstein metrics[END_REF]. Il est intéressant de se demander comment ces métriques hermitiennes aident à mieux comprendre les variétés de Calabi-Yau non-kählériennes.

Pourquoi des singularités ?

Pour classifier les variétés complexes compactes, les singularités apparaissent de manière omniprésente dans plusieurs contextes, notamment dans la théorie des modules et le programme des modèles minimaux (MMP en abrégé, ou programme de Mori).

La MMP vise à classer les variétés algébriques jusqu'à l'équivalence birationnelle (ou biméromorphique). Le but est de trouver dans chaque classe birationnelle une variété qui est plus simple dans un certain sens, puis d'étudier ces "bons" modèles en détail. Un bon modèle est une variété qui satisfait l'une des hypothèses suivantes : K X est nef (par exemple, dans les cas algébriques, K X .C ≥ 0 pour toute courbe irréductible C), ou K X est semi-ample (ce que peut être équivalent à la première hypothèse cf. conjecture d'abondance), ou c'est un espace de fibres de Fano (ou de Mori). En 1975, Ueno [Uen75] a trouvé une classe birationnelle de variétés kählériennes compactes en trois dimensions qui n'admet pas de modèle minimal lisse, alors qu'elle admet un modèle minimal avec des "singularités faibles" (cf. Section 1.2.1).

En théorie des modules, il est nécessaire de traiter les variétés singulières lors de la compactification de l'espace des modules des variétés lisses. Par exemple, en dimension un, le domaine fondamental de l'espace de modules des courbes elliptiques est non compact et les courbes nodales se trouvent sur sa limite. Dans l'étude des modules de Calabi-Yau, une transition géométrique importante, appelée transition conifold, a été introduite par Clemens [START_REF] Clemens | Double solids[END_REF] et Friedman [START_REF] Friedman | Simultaneous resolution of threefold double points[END_REF]. Reid [START_REF] Reid | The moduli space of 3-folds with K = 0 may nevertheless be irreducible[END_REF] a conjecturé que les variétés kählériennes de Calabi-Yau en dimension trois peuvent être connectées par des transitions de conifold. D'autre part, par l'intermédiaire de la transition conifold, de grandes classes de variétés non-kählériennes de Calabi-Yau pourraient apparaître même à partir d'une variété projective Calabi-Yau en dimension trois. Il est donc intéressant d'étudier les métriques canoniques sur les variétés nonkählériennes et leur dégénérescence en familles. Une question très générale est abordée comme suit : Soit π : X → Y une application holomorphe propre, surjective avec des fibres connectées, entre deux variétés. On voudrait relier la géométrie de X à celle de Y et aux fibres X y de π.

Le cadre suivant a été considéré par plusieurs auteurs (cf. [START_REF] Wang | On the incompleteness of the Weil-Petersson metric along degenerations of Calabi-Yau manifolds[END_REF]RZ11,[START_REF]Degenerations of Ricci-flat Calabi-Yau manifolds[END_REF][START_REF] Tosatti | Families of Calabi-Yau manifolds and canonical singularities[END_REF]). Soit π : X → D une famille projective plate de variétés en dimension n sur le disque unitaire D ⊂ C, avec X normale, et le diviseur canonique relatif K X /D trivial. Il s'ensuit que X t = π -1 (t) est une variété de Calabi-Yau pour t ̸ = 0 puisque son fibré canonique est trivial. Fixons un fibré en droites relativement ample L → X et fixons L t = L |X t . D'après le théorème de Yau, pour chaque t ̸ = 0, on peut trouver une unique métrique kählérienne Ricci plate ω t appartenant à c 1 (L t ). Si les singularités de la fibre centrale X 0 sont "douces" (voir Section 1.2.1), un puissant théorème dû à Eyssidieux-Guedj-Zeriahi [START_REF] Eyssidieux | Singular Kähler-Einstein metrics[END_REF] garantit l'existence d'une unique métrique Ricci plate singulière ω 0 dans c 1 (L 0 ). Il est naturel de s'interroger sur le comportement de ω t lorsque t → 0. C'est un problème ouvert fondamental pour mieux comprendre la géométrie de l'espace métrique incomplet (X reg 0 , ω 0 ), le comportement asymptotique de la métrique Ricci plate singulière près de X sing 0 , et le comportement de (X t , ω t ) dans des paramètres plus singuliers. Dans le cadre de Calabi-Yau ci-dessus, Rong et Zhang [START_REF]Degenerations of Ricci-flat Calabi-Yau manifolds[END_REF] ont montré que les espaces métriques (X t , ω t ) convergent au sens de Gromov-Hausdorff vers un espace métrique compact (Z, d Z ) qui est isométrique à la complétion de l'espace métrique (X reg 0 , ω 0 ). De plus, suivant les travaux de Donaldson et Sun [START_REF] Donaldson | Gromov-Hausdorff limits of Kähler manifolds and algebraic geometry[END_REF], Z est homéomorphe à X 0 . D'autre part, une description très précise du comportement asymptotique a été obtenue par Hein et Sun dans [START_REF] Hein | Calabi-Yau manifolds with isolated conical singularities[END_REF] lorsque les singularités sont isolées et de plus isomorphes à un cône de Calabi-Yau lissable fortement régulier. Il est hautement souhaitable d'étendre ces descriptions à des situations plus générales (cf. [START_REF] Chiu | Higher regularity for singular Kähler-Einstein metrics[END_REF]).

Préliminaires

Dans cette partie, nous passons en revue quelques notions que nous rencontrerons tout au long de la thèse.

Un rapide aperçu sur les espaces complexes singuliers

Résolution des singularités

Les espaces analytiques complexes sont des généralisations naturelles des variétés complexes. Une variété complexe lisse est construite en assemblant des parties ouvertes isomorphes à des ensembles ouverts dans un espace de coordonnées complexe. Un espace analytique complexe est obtenu en collant ensemble des parties ouvertes isomorphes à des sous-ensembles analytiques (c-à-d des zéros de fonctions holomorphes dans C N ). Par variété, on entend un espace complexe irréductible, réduit, de dimension pure. Nous désignerons par X reg la variété complexe lisse des points réguliers de X, et l'ensemble X sing := X \ X reg des points singuliers qui est un sous-ensemble analytique de X de codimension complexe ≥ 1. Grâce à Hironaka [START_REF] Hironaka | Resolution of singularities of an algebraic variety over a field of characteristic zero. I, II[END_REF], X admet une résolution de singularités, à savoir qu'il existe une variété complexe lisse Y et une application biméromorphe surjective propre π : Y → X. De plus, on peut supposer que π est un isomorphisme au-dessus de X reg et plus précisément, que π consiste en un nombre fini de blowups avec des centres lisses (situés au-dessus de X sing ). Plus généralement, on peut considérer une paire (X, D) où X est une variété et D est un diviseur de Weil. Une résolution logarithmique de (X, D) est un morphisme birationnel propre π : Y → X tel que Y est lisse, l'ensemble exceptionnel Exc(π) est de codimension un et

D ′ := supp(π -1 (D) + Exc(π)) est un simple croisement normal (i.e. ∀p ∈ Y, il existe des coordonnées locales x 1 , • • • , x n telles que D ′ = (x 1 • • • x k = 0) près de p).

Espaces normaux et de Gorenstein

Un espace analytique complexe X est normal si pour chaque sous-ensemble ouvert U ⊂ X, toute fonction méromorphe dans U qui est holomorphe sur U reg s'étend en une fonction holomorphe sur U. Les espaces normaux sont considérés comme ayant des singularités plus "simples" que les espaces analytiques généraux ; en effet, la normalité implique que le lieu singulier est de codimension au moins deux dans X. Nous renvoyons à [Dem12, Ch. 2, § 7] pour une présentation détaillée du concept.

Sur une variété normale X, le faisceau canonique est défini comme ω X = j * ω X reg où j :

X reg → X est l'inclusion naturelle. Une variété normale X est appelée • 1-Gorenstein si ω X est localement libre; • Q-Gorenstein si, pour tout x ∈ X, il existe q x ∈ N tel que le faisceau pluricanonique ω [q x ] X := j * ω q x
X reg est localement libre près de x;

• m-Gorenstein (m ∈ N) si ω [m] X est localement libre sur X.
Si X est projective, on peut trouver K X reg un diviseur associé au fibré canonique de X reg . Un diviseur canonique de X est un diviseur de Weil obtenu en prenant la fermeture de K X reg dans X. Dans ce cas, si X est 1-Gorenstein (resp. Q-Gorenstein, m-Gorenstein), alors il est équivalent de dire qu'un diviseur canonique K X est de Cartier (resp. Q-Cartier, m-Cartier).

Singularités canoniques

Soient X une variété m-Gorenstein pour m ∈ N et π : X → X une résolution de singularités. La discrépance est une quantité qui porte le plus grand ordre des pôles d'un générateur local de ω

[m]

X sur la désingularisation X. Plus généralement, on peut aussi considérer une résolution logarithmique π : (Y, ∆ ′ ) → (X, ∆). Précisément, la terminologie des singularités "faibles" est la suivante Définition 1.2.1. Soit (X, ∆) une paire où X est une variété normale et ∆ = ∑ a j D j est une somme de diviseurs premiers distincts. Supposons que ω

[m] X ⊗ O X (m∆) soit localement libre pour un certain m ∈ N. Soit π : Y → X une résolution logarithmique de (X, ∆). Soient E i une composante irréductible de Exc(π) et e ∈ E i un point générique de E i . Soit (y 1 , • • • , y n ) un système de coordonnées locales en e ∈ Y tel que E i = (y 1 = 0). Alors localement près de e, π * (générateur local de ω [m] X ⊗ O(m∆) à f (e)) = y c(E i ,X,∆) 1 • (unité) • (dy 1 ∧ • • • ∧ dy n ) ⊗m ⊗ (générateur local de O Y (mπ -1 * (∆)))
pour un entier quelconque c(E i , X, ∆), où π -1 * (∆) est la transformée stricte de ∆. Le nombre rationnel a(E i , X, ∆) := 1 m c(E i , X, ∆) est appelé la discrépance de E i par rapport à (X, ∆). Il est indépendant de m. La discrépance totale est définie comme suit

discrep(X, ∆) = inf i a(E i , X, ∆). Nous disons que (X, ∆) est terminale canonique Kawamata log terminale (klt) purement log terminale (plt) log canonique (lc)                  si discrep(X, ∆)                    > 0, ≥ 0, > -1 et ⌊∆⌋ ≤ 0, > -1, ≥ -1.
Notez que les discrépances peuvent dépendre du choix d'une résolution logarithmique π : Y → X, mais ces notions de singularité ne dépendent pas de π.

De plus, si X est projectif, être terminale (resp. canonique, klt, lc) est équivalent à la description suivante :

K X + π -1 * (∆) ∼ π * (K X + ∆) + ∑ i a i E i avec inf i a i > 0 (resp. ≥ 0, > -1, ≥ -1).

Exemples

Nous rappelons des exemples explicites de singularités A k en dimension deux. Ce type de singularités est donné par le quotient de l'action de

Z k+1 sur C 2 avec 1 • (a, b) = (e 2πi k+1 a, e -2πi k+1 b).
Les monômes {a k+1 , b k+1 , ab} sont des fonctions invariantes

Z k+1 sur C 2 , et ils induisent une application C 2 ∋ (a, b) → (a k+1 , b k+1 , ab) ∈ C 3 qui identifie l'espace quotient C 2 /Z k+1 et l'hypersurface singulière (xy -z k+1 = 0) dans C 3 .
Nous calculons maintenant la discrépance dans le cas k = 1. Par un changement de coordonnées, la singularité A 1 est isomorphe à (x 2 + y 2 + z 2 = 0) =: X dans C 3 , noté f := x 2 + y 2 + z 2 , qui est irréductible. Pour vérifier que X est normale, on considère g ∈ M X,0 un germe de fonction méromorphe à 0 tel que g est holomorphe en dehors de l'origine, et on voudrait montrer que g ∈ O X,0 . Par définition, g = h 1 /h 2 pour certaines fonctions holomorphes (h i ) i=1,2 définies près de l'origine, et h 2 est partout non nulle sur X reg . L'irréductibilité de X implique que (h 2 = 0) ∩ X est soit de dimension un, soit vide ; par conséquent, h 2 est partout non nulle près de l'origine et alors g ∈ O X,0 . Nous prenons les trois atlas suivants qui couvrent X reg :

U 1 := { ∂ f ∂x ̸ = 0}, U 2 = { ∂ f ∂y ̸ = 0} et U 3 = { ∂ f ∂z ̸ = 0}. Considérons Ω =            dy∧dz ∂ f ∂x = dy∧dz 2x sur U 1 = {x ̸ = 0}; dz∧dx ∂ f ∂y = dz∧dx 2y sur U 2 = {y ̸ = 0}; dx∧dy ∂ f ∂z = dx∧dy 2z sur U 3 = {z ̸ = 0}.
On peut voir que Ω est bien définie et partout non nulle sur X reg ; ainsi, Ω est générateur global de ω X reg . Alors nous avons ω X reg ≃ O X reg . Par normalité de X, on peut déduire

ω X := j * ω X reg ≃ j * O X reg ≃ O X où j : X reg → X est l'inclusion naturelle. Ceci implique que X est 1-Gorenstein.
Pour calculer la discrépance de 0 ∈ X, nous tirons en arrière Ω vers une résolution :

X := p -1 * (X) Bl 0 (C 3 ) X = ( f = 0) C 3 p p où Bl 0 (C 3 ) = {(w, [ζ]) ∈ C 3 × CP 2 | w ∈ ζ} est l'éclatement de C 3 à l'origine. Choisissons l'atlas affine V i = {((w 1 , w 2 , w 3 ), [ζ 1 , ζ 2 , ζ 3 ]) ∈ C 3 × CP 2 | ζ i ̸ = 0} pour i ∈ {1, 2, 3}. Sur V 1 , (w 1 , v 2 , v 3 ) forme un système de coordonnées, où v i = ζ i /ζ 1 et w i = w 1 v i . On a X ∩ V 1 = (1 + v 2 2 + v 2 3 = 0) qui est lisse. Nous posons W 1,2 = (w 1 , v 2 , v 3 ) ∈ X ∩ V 1 v 2 ̸ = 0 , et W 1,3 = (w 1 , v 2 , v 3 ) ∈ X ∩ V 1 v 3 ̸ = 0 .

Alors nous avons

p * Ω |W 1,2 = d(w 1 v 3 ) ∧ dw 1 2w 1 v 2 = dv 3 ∧ dw 1 2v 2 et de même p * Ω |W 1,3 = dw 1 ∧dv 2 2v 3
. De façon similaire sur les autres atlas, nous concluons que la discrépance de 0 ∈ X = (x 2 + y 2 + z 2 = 0) est nulle, donc c'est une singularité canonique. 

Un récapitulatif sur les courants positifs et les fonctions plurisousharmoniques

Maintenant, nous rappelons quelques définitions de base concernant les fonctions plurisousharmoniques et les opérateurs de ces fonctions. Pour une présentation exhaustive, nous renvoyons le lecteur à [START_REF]Complex Analytic and Differential Geometry[END_REF][START_REF]Degenerate complex Monge-Ampère equations[END_REF]. Nous définissons l'opérateur réel d c = i 2 ( ∂ -∂) de sorte que dd c = i∂ ∂.

Courants positifs

Un courant T de degré p, sur une variété réelle lisse M de dimension m, est une fonctionnelle linéaire sur l'espace des (mp)-formes lisses à support compact qui est continue par rapport à la semi-norme C ∞ c . Nous désignons par ⟨T, θ⟩ le couplage d'un courant de degré p et d'une (mp)-forme lisse à support compact. Notez qu'un courant de degré p peut être vu comme une forme de degré p avec des coefficients distribution. Le courant dT est le courant de degré (p + 1) défini par ⟨dT, θ⟩ = (-1) m-p+1 ⟨T, dθ⟩ pour toute (p -1)-forme d'essai θ ; on dit que T est fermé si dT = 0.

Maintenant, nous supposons que X est une variété complexe lisse de dimension complexe n. Une k-forme différentielle peut être décomposée en formes de bidegré pur (p, q) avec p + q = k. Une (p, q)-forme s'écrit localement θ comme θ = ∑ |I|=p,|J|=q θ I J dz I ∧ d zJ où

I := {1 ≤ i 1 < • • • < i p ≤ n} (resp. J := {1 ≤ j 1 < • • • < j q ≤ n}) est un multi-index de longueur p (resp. q), et dz I = dz i 1 ∧ • • • ∧ dz i p (resp. d zJ = d zj 1 ∧ • • • ∧ d zj q )
. Alors un courant de bidegré (p, q) est une fonctionnelle linéaire continue sur l'espace des formes de bidegré (np, nq) lisses à support compact.

Un exemple intéressant d'un (p, p)-courant fermé est le courant d'intégration sur un sousensemble analytique A de dimension (np), qui est noté [A] et défini comme ⟨[A], θ⟩ := A reg θ pour toute forme test θ. Lelong [Lel57] a prouvé que le courant [A reg ] sur X \ A sing a une masse finie dans un voisinage de chaque point z 0 ∈ A sing , et son extension triviale [A] est un courant fermé (positif) sur X. Dans la suite, nous nous intéressons particulièrement aux courants de bidegré (1, 1). Localement, un (1, 1)-courant peut être exprimé comme suit T = ∑ 1≤j,k≤n T j kidz j ∧ d zk , où les T i j sont des distributions. Un (1, 1)-courant est dit positif si la distribution ∑ j,k a j āk T j k est positive pour chaque a ∈ C n . Si c'est le cas, pour chaque (j, k), la distribution T j k est une mesure de Radon complexe.

Fonctions plurisousharmoniques

Soit Ω un domaine dans C n . Une fonction semi-continue supérieure u : Ω → R ∪ {-∞} est dite pluriousharmonique (psh en abrégé) si pour chaque x ∈ Ω, La définition peut encore être étendue aux variétés complexes lisses. Une fonction est dite quasi-plurisousharmonique (qpsh) si elle peut être localement écrite comme la somme d'une fonction lisse et d'une fonction psh. Sur une variété complexe lisse X avec une (1, 1)-forme lisse ω, une fonction u est ω-plurisousharmonique (ω-psh) si elle est qpsh et ω + dd c u ≥ 0 au sens des courants. Nous désignons par PSH(X, ω) l'ensemble de toutes les fonctions ω-psh sur la variété complexe lisse X.

pour tout ζ ∈ B 1 (0) ⊂ C n et pour tout r < dist(x, ∂Ω), u(z) ≤ 1 2π 2π 0 u(x + rζe iθ )dθ.

Nombres de Lelong

Un invariant important pour étudier les singularités des fonctions psh est le nombre de Lelong. Soit u une fonction psh sur un domaine Ω ⊂ C n . Le nombre de Lelong de u en un point x ∈ Ω est défini par

ν(u, x) = sup {γ ≥ 0 | u(z) ≤ γ log |z -x| + O(1) près de x} .
En particulier, si u = log | f | pour une certaine fonction holomorphe f , alors le nombre de Lelong ν(u, x) est l'ordre d'annulation de f en x. Il existe également une définition équivalente : Par récurrence, on peut alors montrer que la mesure de Monge-Ampère complexe (dd c u) n a un sens pour les fonctions psh localement bornées dans Ω. Sur une variété kählérienne compacte lisse (X, ω) de dimension n, la notion de courants positifs étant purement local, pour une fonction u bornée de ω-psh, il est naturel de définir sa mesure de Monge-Ampère complexe comme (ω + dd c u) n = (dd c (ρ + u)) n , où ρ est un potentiel local lisse de ω (c-à-d que dd c ρ = ω). Sur une variété hermitienne compacte lisse (X, ω), il est un peu plus compliqué de définir la mesure de Monge-Ampère. Nous fixons d'abord une fonction locale lisse strictement psh ρ qui satisfait 0 < C -1 dd c ρ ≤ ω ≤ Cdd c ρ pour une certaine constante C ≥ 1. Nous définissons ensuite

ν(u, x) = lim r→0 ↓ B r (x) dd c u ∧ (dd c |z| 2 ) n-1 (2πr 2 ) n-
(ω + dd c u) n = ((ω -dd c ρ) + dd c (ρ + u)) n = n ∑ k=0 n k (ω -dd c ρ) n-k ∧ (dd c (ρ + u)) k .
On peut vérifier que cette définition ne dépend pas du choix du potentiel local ρ.

Formes et courants sur des espaces singuliers

Soit X un espace analytique réduit. Notons C k p,q (X) l'espace des (p, q)-formes de classe C k qui sont définies comme suit : supposons que U est un sous-ensemble ouvert de X et que j : U → Ω soit un plongement de U dans un sous-ensemble ouvert Ω ⊂ C N . Nous notons par C k p,q (U) l'image du morphisme de restriction j * : C k p,q (Ω) → C k p,q (U reg ) munie de la topologie quotient. On peut vérifier que cette notion est indépendante du choix du plongement j (voir [Dem85, p. 14]).

Notons par D p,q (X) (resp. D k p,q (X)) l'espace des C ∞ (resp. C k ) formes (p, q) à support compact sur X munie de la topologie induite par les semi-normes. L'espace dual, (D p,q (X)) ′ , est par définition l'espace des courants de bidegré (np, nq) sur X. Précisément, pour tout courant T ∈ (D p,q (X)) ′ et tout plongement local j : U → Ω, il existe un courant j * T ∈ (D p,q (Ω)) ′ avec ⟨j * T, v⟩ = ⟨T, j * v⟩ pour toute forme v ∈ D p,q (Ω) et le support de j * T est contenu dans j(U).

Tous les objets passés en revue dans cette section (fonctions psh, nombres de Lelong, mesures de MA), peuvent être définis sur des espaces complexes. Pour plus de détails et une introduction rapide, nous renvoyons le lecteur à [START_REF]Mesures de Monge-Ampère et caractérisation géométrique des variétés algébriques affines[END_REF] 

Familles de variétés et quelques remarques

Dans cette section, nous passons en revue certains faits généraux concernant les familles de variétés faiblement singulières. Nous considérons habituellement une famille de variétés π : X → D comme dans le cadre suivant : Cadre 1.2.2 (Cadre géométrique). Soit X une variété de dimension (n + 1). Supposons que π : X → D est une application holomorphe surjective propre dont les fibres (schématiques) connectées X t = π -1 (t) sont toujours des variétés (irréductibles, réduites).

Les propriétés suivantes proviennent alors automatiquement du cadre géométrique 1.2.2 : Fait 1.2.4. Supposons que X 0 est normale et que X est 1-Gorenstein (resp. Q-Gorenstein). Si X 0 a des singularités canoniques (resp. klt), par inversion de l'adjonction (cf. [Kol13, Thm. 4.9]), X a des singularités canoniques (resp. klt) près de X 0 . De plus, X t possède des singularités canoniques (resp. klt) pour tout t proche de 0 (cf. [START_REF] Kollár | Singularities of the minimal model program[END_REF]Cor. 4.10]).

⊗ R N 1 → M ⊗ R N 2 → M ⊗ R N
Fait 1.2.5. Supposons que X 0 est Calabi-Yau (c-à-d que ω X 0 est trivial) et que X est Q-Gorenstein. Alors les éléments suivants sont équivalents

• ω X /D (ou ω X ) est trivial jusqu'à la réduction de D ;

• ω X t est trivial pour tout t petit (c-à-d que X t est Calabi-Yau pour t suffisamment proche de 0).

Il en va de même pour Q-Calabi-Yau (c-à-d que ω

[q] X 0 est trivial pour un certain q ∈ N) avec une puissance positive uniforme q. Ceci est une conséquence du théorème de l'image directe de Grauert (voir la preuve comme dans le lemme 4.6.1).

Lissage

Une famille π : X → D est appelée un lissage d'une variété X si la famille π : X → D satisfait • X est lisse sur D \ {0} ;

• la fibre centrale (schématique) X 0 est isomorphe à X.

Si une variété X admet un lissage, alors on l'appelle une variété lissable. Les variétés lissables peuvent être considérées comme des éléments situés sur les limites "bien conformées" d'un espace modulaire de variétés lisses. Nous donnons un exemple simple comme suit :

X = ([z 1 : z 2 : z 3 : z 4 ], t) ∈ CP 3 × D z 2 1 + z 2 2 + z 2 3 = tz 2 4 ⊂ CP 3 × D.
L'application π : X → D est la projection sur D. On peut vérifier que l'espace total X est lisse et que chaque fibre est également lisse, sauf la fibre centrale.

Présentation des résultats 1.3.1 Métriques de Gauduchon singulières

Les métriques de Gauduchon, introduites pour la première fois par Gauduchon [START_REF] Gauduchon | Le théorème de l'excentricité nulle[END_REF], sont des généralisations utiles des métriques kählériennes sur une variété non-kählérienne lisse.

Théorème (Gauduchon [Gau77]). Soit X une variété complexe compacte lisse de dimension n. Fixons une métrique hermitienne ω sur X. Il existe une fonction lisse positive ρ ∈ C ∞ (X) telle que dd c (ρω n-1 ) = 0.

De plus, ρ est unique à un multiple constant positif près.

Une application importante de l'existence des métriques de Gauduchon a été mise en évidence par l'extension de la correspondance Donaldson-Uhlenbeck-Yau (DUY) [Don85, UY86, Don87] aux variétés non-kählériennes lisses. La correspondance de DUY stipule que, sur une variété kählérienne compacte (X, ω), un fibré vectoriel holomorphe E est polystable en pente si et seulement si le fibré E admet une métrique de Hermite-Einstein. Elle peut être considérée comme une généralisation de la métrique de Kähler-Einstein sur le fibré tangent. Grâce à Li et Yau [START_REF] Li | Hermitian-Yang-Mills connection on non-Kähler manifolds[END_REF], la correspondance DUY tient par rapport à une métrique de Gauduchon. La version non-kählérienne de la correspondance DUY est très utile pour classer les surfaces de classe VII avec des méthodes de théorie de la jauge (voir [START_REF] Teleman | Non-Kählerian compact complex surfaces[END_REF] et les références qui s'y rapportent).

Sur la base des considérations des sections précédentes, il est donc intéressant de s'interroger sur la correspondance DUY sur les espaces singuliers et les fibrés vectoriels singuliers. Bando et Siu [START_REF] Bando | Stable sheaves and Einstein-Hermitian metrics[END_REF] ont prouvé que sur les variétés de Kähler compactes, le théorème de DUY est valable non seulement pour les fibrés vectoriels mais aussi pour les faisceaux réflexifs. Très récemment, le théorème de DUY sur les espaces kählériens normaux singuliers a été étudié par de nombreux auteurs (voir [CW21, Ou22, Che22]) dans différents contextes. Il est également naturel de se demander si le théorème de DUY est valable pour les variétés non-kählériennes singulières. Une version singulière de la métrique de Gauduchon est alors nécessaire pour définir la notion de stabilité des fibrés vectoriels ou même des faisceaux réflexifs sur un espace non-kählérien singulier.

Nous présentons ici plusieurs résultats importants qui apparaîtront dans Chapitres 2 et 3. Nous établissons d'abord une inégalité de type Harnack des facteurs de Gauduchon :

Théorème A (= Thm. 2.2.1+3.1.1). Soit (X, ω) une variété hermitienne compacte. Si ρ ∈ C ∞ (X reg ) est une fonction strictement positive avec inf X reg ρ = 1 qui satisfait dd c (ρω n-1 ) = 0 sur X reg , alors il existe une constante uniforme C G (n, ω, X) telle que sup

X reg ρ ≤ C G .
Dans le cas lisse, il n'y a pas d'obstruction géométrique à l'existence des métriques de Gauduchon, sauf la compacité. Nous conjecturons qu'un énoncé similaire pourrait s'appliquer à une variété hermitienne compacte ; à savoir, étant donné une variété hermitienne compacte (X, ω), on peut trouver une métrique de Gauduchon bornée (cf. Definition 2.1.3) qui est conformalement équivalente à ω. Nous proposons quelques classes de variétés pour lesquelles la conjecture tient. Plus précisément, considérons l'hypothèse suivante.

Hypothèse (G).

Nous supposons que la variété singulière compacte X satisfait l'une des conditions suivantes G.1 X est lissable ; G.2 X admet une résolution de singularités µ : X → X qui est donnée par une composition d'un nombre fini d'éclatements de points. En d'autres termes, µ peut être décomposé en

X = X m p m -→ X m-1 p m-1 --→ • • • p 2 -→ X 1 p 1 -→ X 0 = X et pour chaque k ∈ {1, • • • , m}, p k : X k → X k-1 est un éclatement de points dans X sing k-1 .
Remarque 1.3.1. Les cas suivants remplissent la condition G.2 :

(i) X est une surface de Gorenstein Q (dim C X = 2) ;
(ii) Les singularités de X sont des points doubles ordinaires (ODP). En particulier, les singu-

larités sont localement isomorphes à la quadrique Q = z ∈ C n+1 ∑ n+1 j=1 z 2 j = 0 .
En effet, un éclatement avec un centre lisse d'une variété de Gorenstein Q est toujours de Gorenstein Q ; donc en dimension deux, leurs singularités sont juste des points par normalité. D'autre part, les singularités ODP peuvent être résolues en ne prenant qu'un de point.

Sous l'hypothèse (G), nous obtenons la version singulière suivante du théorème de Gauduchon.

Théorème B (= Thm. 2.0.1+3.0.1). Supposons que X est une variété complexe compacte de dimension n. De plus, supposons que X remplit l'hypothèse (G). Soit ω une métrique hermitienne sur X. Alors il existe une fonction bornée ρ ∈ C ∞ (X reg ) avec inf X reg ρ = 1 telle que dd c (ρω n-1 ) = 0. En particulier, sur X reg , ω G := ρ 1 n-1 ω définit une métrique de Gauduchon bornée qui est conformalement équivalente à ω.

Dans le théorème de Gauduchon, à un multiple positif constant près, il existe une unique métriques de Gauduchon dans une classe hermitienne conforme. Nous étendons le résultat de l'unicité aux métriques de Gauduchon bornées conformes équivalentes. Nous montrons également une propriété de l'extension en tant qu'un courant plurifermé (i.e. dd c -fermé).

Théorème C (= Thm. 2.0.2). Supposons que X soit une variété de dimension n dotée d'une métrique de Gauduchon bornée ω G . Nous avons alors les propriétés d'unicité et d'extension suivantes.

(i) Si ω ′

G est une autre métrique de Gauduchon bornée dans la classe conforme de ω G , alors ω ′ G doit être un multiple positif de ω G ;

(ii) Soit T le (n -1, n -1)-courant positif obtenu comme l'extension triviale de ω n-1 G . Alors T est un courant plurifermé.

Familles de métriques de Chern-Ricci plates

Comme mentionné dans la section 1.1.4, il est important d'étudier les métriques canoniques singulières sur les variétés singulières et les familles dégénérées. La solution de la conjecture (singulière) de Calabi [START_REF] Yau | On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. I[END_REF][START_REF] Eyssidieux | Singular Kähler-Einstein metrics[END_REF] fournit un théorème d'existence très puissant pour les métriques de Kähler-Einstein à courbure de Ricci négative ou nulle. Une telle métrique est une véritable métrique de Kähler-Einstein sur le lieu lisse et possède des potentiels "bornés" près des singularités. Sur une variété de Fano singulière, Li [START_REF] Li - | G-uniform stability and Kähler-Einstein metrics on Fano varieties[END_REF] (voir aussi [START_REF] Li | On the Yau-Tian-Donaldson conjecture for singular Fano varieties[END_REF]) a récemment montré que la correspondance de Chen-Donaldson-Sun est toujours valable.

Dans une famille π : X → Y, une situation importante est celle où la fibre X y est dotée d'une métrique de Kähler-Einstein. Pour construire une métrique de Kähler-Einstein (singulière), l'étape la plus cruciale et la plus difficile est d'obtenir une estimation uniforme des solutions aux équations de Monge-Ampère complexes dégénérées. À partir du résultat fondamental de Kołodziej [START_REF] Kołodziej | The complex Monge-Ampère equation[END_REF] sur les équations de Monge-Ampères complexes dégénérées, la théorie du pluripotentiel est devenue un outil puissant pour étudier les métriques de Kähler-Einstein singulières. Pour étudier les familles de métriques de Kähler-Einstein singulières, Di Nezza, Guedj, et Guenancia [START_REF] Nezza | Families of singular Kähler-Einstein metrics[END_REF] ont développé les premiers pas de la théorie du pluripotentiel dans les familles de variétés kählériennes. On peut alors s'intéresser au fait qu'une déclaration similaire s'applique à des familles de variétés qui pourraient être nonkählériennes.

Dans la suite, nous considérons toujours une famille π : X → D qui satisfait le cadre 1.2.2. Soit ω une métrique hermitienne ; elle induit une métrique hermitienne ω t = ω |X t pour chaque t ∈ D. Nous prouvons une estimation uniforme de L ∞ basée sur une conjecture de comparaison sup-L 1 (Conjecture (SL)) qui sera expliquée plus tard.

Théorème D (= Thm. 4.0.1). Soit π : (X , ω) → D une famille de variétés hermitiennes compactes, localement irréductibles et f t ∈ L p (X t , ω n t ) une famille de densités pour un certain p > 1. Supposons que π : (X , ω) → D satisfait la conjecture (SL) et que les ( f t ) t∈D satisfont les bornes intégrales suivantes : il existe des constantes positives c f et C f telles que ∀t ∈ D,

c f < X t f 1 n t ω n t et X t f p t ω n t < C f .
Et que pour chaque t ∈ D, que la paire (φ t , c t ) soit une solution à l'équation de Monge-Ampère complexe

(ω t + dd c t φ t ) n = c t f t ω n t , et sup X t φ t = 0. Il existe alors une constante C MA = C MA (c f , C f , C SL , X , ω) > 0 telle que pour tout t ∈ D 1/2 , c t + c -1 t + ∥φ t ∥ L ∞ (X t ) ≤ C MA .
La conjecture de comparaison sup-L 1 suivante est introduite pour la première fois par Di Nezza, Guedj, et Guenancia [DGG20, Conjecture 3.1] dans le cadre de Kähler. Ici, nous énonçons une analogue hermitienne : Conjecture (SL). Il existe une constante uniforme C SL > 0 telle que pour tout t ∈ D 1/2 et pour tout

ψ t ∈ PSH(X t , ω t ), sup X t ψ t -C SL ≤ 1 V t X t ψ t ω n t ,
où V t est le volume de X t par rapport à la métrique ω t .

Dans [START_REF] Nezza | Families of singular Kähler-Einstein metrics[END_REF], les auteurs ont également fourni de grandes classes de familles d'espaces kählériens où la conjecture tient. Pour traiter les familles projectives et de lissage, ils obtiennent une borne inférieure uniforme des fonctions de Green via une méthode de noyau de chaleur de Cheng et Li [START_REF] Cheng | Heat kernel estimates and lower bound of eigenvalues[END_REF]. Récemment, en établissant des estimations uniformes des noyaux de chaleur sur une variété kählérienne, Ou [START_REF] Ou | Admissible metrics on compact Kähler varieties[END_REF] a résolu la conjecture sur toutes les familles d'espaces kählériens satisfaisant le cadre 1.2.2. On note que l'irréductibilité de chaque fibre est nécessaire ; sinon, il existe un contre-exemple quantitatif donné dans la [DGG20, Example 3.5]. En suivant des idées similaires à celles de [START_REF] Nezza | Families of singular Kähler-Einstein metrics[END_REF], nous démontrons la conjecture (SL) avec quelques hypothèses supplémentaires sur les singularités de la famille π : X → D.

Proposition E (= Prop. 4.0.2). La conjecture (SL) tient dans l'une des conditions suivantes :

• π est localement triviale ;

• X t est lisse pour chaque t ̸ = 0, et X 0 a des singularités isolées.

Nous appliquons ensuite ce résultat aux "bonnes" familles de variétés de Calabi-Yau nonkählériennes et nous demandons comment le contrôle sur les potentiels de Chern-Ricci varie dans les familles :

Théorème F (= Thm. 4.0.3). Supposons que X est normale, K X est trivial, et π : X → D est un lissage de la fibre centrale X 0 dont les singularités sont canoniques et isolées. Soit Ω une trivialisation de

K X /D et Ω t la restriction de Ω sur X t . Pour chaque t ∈ D, soit (φ t , c t ) ∈ (PSH(X t , ω t ) ∩ L ∞ (X t )) × R >0 une paire résolvant l'équation de Monge-Ampère complexe (ω t + dd c t φ t ) n = c t Ω t ∧ Ω t et sup X t φ t = 0. Alors il existe une constante uniforme C MA > 0 telle que pour tout t ∈ D 1/2 , c t + c -1 t + ∥φ t ∥ L ∞ (X t ) ≤ C MA .

Introduction

Let X be an n-dimensional compact complex manifold equipped with a positive-definite smooth (1, 1)-form ω. We also call ω a hermitian metric because such ω corresponds to a hermitian metric. A famous theorem of Gauduchon [START_REF] Gauduchon | Le théorème de l'excentricité nulle[END_REF] says that there exists a metric ω G in the conformal class of ω such that dd c ω n-1 G = 0 and the metric ω G is unique up to a positive multiple. These kind of metrics are since then called Gauduchon metrics. The conformal factor ρ satisfying

ω n-1 G = ρω n-1 is called Gauduchon factor.
In complex geometry, finding canonical metrics on complex manifolds is a central problem.

Two celebrated examples are Yau's solution of the Calabi conjecture [START_REF] Yau | On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. I[END_REF] and Uhlenbeck and Yau's characterization of the existence of hermitian-Einstein metrics on stable vector bundles [START_REF] Uhlenbeck | On the existence of Hermitian-Yang-Mills connections in stable vector bundles[END_REF]. These theorems are established on Kähler manifolds. When the manifold is non-Kähler, the analysis is more difficult because hermitian metrics are no longer closed. In such cases, Gauduchon metrics provide a useful substitute. For instance, Li and Yau [START_REF] Li | Hermitian-Yang-Mills connection on non-Kähler manifolds[END_REF] used Gauduchon metrics to define the slope stability of vector bundles on compact non-Kähler manifolds. As a consequence, they generalized the Uhlenbeck-Yau theorem to non-Kähler setting. For generalized Calabi-Yau type problem in non-Kähler context, Tosatti and Weinkove [START_REF] Tosatti | The complex Monge-Ampère equation on compact Hermitian manifolds[END_REF] showed that for arbitrary representative Ψ ∈ c BC 1 (X) of the first Bott-Chern class of X, there exists a hermitian metric ω such that Ric(ω) = Ψ by solving complex Monge-Ampère equations. In their proof, Gauduchon metrics play an important role to simplify calculations. Furthermore, Székelyhidi, Tosatti and Weinkove [START_REF] Székelyhidi | Gauduchon metrics with prescribed volume form[END_REF] proved that one can even find a Gauduchon metric with prescribed Chern-Ricci curvature. On the other hand, Angella, Calamai and Spotti [START_REF] Angella | On the Chern-Yamabe problem[END_REF] studied the Chern-Yamabe problem (i.e. finding constant Chern scalar curvature metrics in the conformal class of a given metric ω). They used Gauduchon metrics to define a conformal invariant called the Gauduchon degree and showed that if a metric ω has non-positive Gauduchon degree then the Chern-Yamabe problem admits a solution. For more applications and results about Gauduchon metrics, the interested reader is referred to [START_REF] Fino | On generalized Gauduchon metrics[END_REF][START_REF] Fu | Semilinear equations, the γ k function, and generalized Gauduchon metrics[END_REF][START_REF] Li - | On some applications of Gauduchon metrics[END_REF] and the references therein.

From an algebraic point of view, singularities are ubiquitous as they occur in various contexts, notably in the minimal model program and moduli theory. Ueno [Uen75] found a birational class of three-dimensional complex manifolds which does not admit a smooth minimal model. In moduli theory, it is necessary to deal with singular varieties when compactifying moduli spaces of smooth manifolds. Already in dimension one, the fundamental domain of moduli space of elliptic curves is non-compact and nodal curves lie on its boundary. On the other hand, in non-Kähler geometry, investigating singular varieties admitting a non-Kähler smoothing is an essential issue due to close interactions of string theory and mathematics established over the past 40 years. In the 1980s, a large class of non-Kähler Calabi-Yau threefolds was built via conifold transitions introduced by Clemens [Cle83] and Friedman [START_REF] Friedman | Simultaneous resolution of threefold double points[END_REF]. Roughly speaking, the process goes as follows: contracting a collection of disjoint (-1, -1)curves from a Kähler Calabi-Yau threefold X to obtain a singular Calabi-Yau variety X 0 and then smoothing singularities of X 0 , one obtains a family of Calabi-Yau threefolds (X t ) t̸ =0 which are generally non-Kähler. Thus, it is important to understand the geometric structure on X t induced by the original Calabi-Yau manifold X. Experts believe that the Hull-Strominger system [START_REF] Hull | Superstring compactifications with torsion and spacetime supersymmetry[END_REF][START_REF] Strominger | Superstrings with torsion[END_REF] provides a natural candidate. These models attracted a lot of attentions in recent years (cf. [Rei87, Fri91, Tia92, Ros06, FY08, Chu12, FLY12, PPZ18, CPY21] and the references therein).

Given these considerations, it is legitimate to look for canonical metrics or special metrics on singular hermitian varieties. In this note, we focus on Gauduchon metrics. A standard way to give a metric structure on a singular complex space is to restrict an ambient metric in local embeddings (see Definition 2.1.1 for the precise definition). Then we address the following question.

Question. Suppose that X is an irreducible, reduced, compact complex space equipped with a hermitian metric ω. Can one find a Gauduchon metric ω G in the conformal class of ω?

The purpose of this note is to give partial answers in the setup of smoothable singularities. This means that the variety can be approximated by a family of smooth manifolds and the hermitian metric is the restriction of an ambient smooth metric. The precise statements are as follows.

Setup (S).

Let X be an (n + 1)-dimensional, irreducible, reduced, complex analytic space. Suppose that • π : X → D is a proper, surjective, holomorphic map with connected fibres;

• π is smooth over the punctured disk D * ;

• the central fibre X 0 is an n-dimensional, irreducible, reduced, compact complex analytic space.

Let ω be a hermitian metric on X in the sense of Definition 2.1.1. For each t ∈ D, we define the hermitian metric ω t on fibre X t by restriction (i.e. ω t := ω| X t ).

In Setup (S), on each smooth fibre X t , there exists a Gauduchon factor ρ t with respect to ω t by Gauduchon's theorem. We may normalize these Gauduchon factors such that inf X t ρ t = 1. Then we show the existence of a smooth Gauduchon factor on the smooth part of the central fibre.

Theorem 2.0.1 (cf. Corollary 2.2.4 and Theorem 2.3.1). In Setup (S), we have the following properties.

(i) There is a uniform constant C G ≥ 1 such that the normalized Gauduchon factors ρ t are bounded between 1 and C G on each smooth fibre X t for all t ∈ D * 1/2 ;

(ii) There exists a smooth bounded Gauduchon factor ρ of ω 0 on X reg 0 .

Thus, X 0 admits a bounded Gauduchon metric (see Definition 2.1.3) in the conformal class of ω 0 . The idea of proof is to approximate the Gauduchon factor on the singular fibre by the normalized Gauduchon factors on nearby smooth fibres.

Next, we assume that X is a variety endowed with a bounded Gauduchon metric ω G . We show that the trivial extension of the (n -1, n -1)-form ω n-1 G through X sing is a pluriclosed current on X. Moreover, we also prove the analogous uniqueness result of Gauduchon.

Theorem 2.0.2. Suppose that X is an n-dimensional, irreducible, reduced, compact complex space endowed with a bounded Gauduchon metric ω G . Then we have the following uniqueness and extension properties.

(i) If ω ′ G is another bounded Gauduchon metric in the conformal class of ω G , then ω ′ G must be a positive multiple of ω G ; (ii) Let T be the positive (n -1, n -1)-current obtained as the trivial extension of ω n-1 G . Then T is a pluriclosed current.
The main strategy is to use "good" cut-off functions. Complement of proper analytic subsets (eg. X reg = X \ X sing ) admit exhaustion functions with small L 2 -gradient. This enables us to show that the trivial extension of ω n-1 G as a current on X satisfies dd c T = 0 in the sense of currents globally on X. The uniqueness property follows similarly. This note is organized as follows: Section 2.1 provides some backgrounds. Section 2.2 contains sup-estimate of normalized Gauduchon factors in families (the first property in Theorem 2.0.1). In Section 2.3, we show the existence of bounded Gauduchon factors on the central fibre (the second part of Theorem 2.0.1) and give the proof of Theorem 2.0.2.

Preliminaries

In this section, we recall some notation and conventions which will be used in the sequel. We define the twisted exterior derivative by d c = i 2 ( ∂ -∂) and we then have dd c = i∂ ∂. We say that a form is pluriclosed if it is dd c -closed. We denote by:

• D r := {z ∈ C | |z| < r} the open disk of radius r; • D * r := {z ∈ C | 0 < |z| < r} the punctured disk of radius r.
When r = 1, we simply write D := D 1 and D * := D * 1 .

Metrics on singular spaces

Let X be a reduced complex analytic space of pure dimension n ≥ 1. We denote by X reg the complex manifold of regular points of X and X sing := X \ X reg the singular set of X. Now, we give the definition of hermitian metrics on reduced complex analytic space X.

Definition 2.1.1. A hermitian metric ω on X is the data of a hermitian metric ω on X reg such that given any local embedding X -→ loc.

C N , ω extends smoothly to a hermitian metric on C N .

Remark 2.1.2. The notion of smooth forms (and hermitian metrics) as above does not depend on the choice of local embeddings (see [Dem85, page 14]). Hermitian metrics always exist: one can use local embeddings and then glue local data of hermitian metrics by a partition of unity.

Note that in Definition 2.1.1 a hermitian metric on X is more than just a metric on X reg . Now, we define Gauduchon metrics in the following two different concepts.

Definition 2.1.3. We say that a hermitian metric ω G on X reg is

(i) Gauduchon if it satisfies dd c ω n-1 G = 0 on X reg ;
(ii) bounded Gauduchon metric on X if there exist a hermitian metric ω and a positive bounded smooth function ρ defined on

X reg such that ω G = ρ 1 n-1 ω and dd c ω n-1 G = 0 on X reg .
We define the complex Laplacian and the norm of gradients with respect to ω by

∆ ω f := tr ω (dd c f ) = ndd c f ∧ ω n-1 ω n |d f | 2 ω := tr ω (d f ∧ d c f ) = nd f ∧ d c f ∧ ω n-1 ω n .

Currents on singular spaces

Recall that smooth forms on X are defined as restriction of smooth forms in local embeddings. We denote by

• D p,q (X) the space of compactly supported smooth forms of bidegree (p, q);

• D p,p (X) R the space of real smooth (p, p)-forms with compact support.

The notion of currents on X, D ′ p,q (X) and D ′ p,p (X) R , is defined by acting on compactly supported smooth forms on X. The operators d, d c and dd c are well-defined by duality (see [START_REF]Mesures de Monge-Ampère et caractérisation géométrique des variétés algébriques affines[END_REF] for detail arguments).

Example

We give an example of a non-Kähler variety satisfying Setup (S) extracted from [START_REF] Lu | The complex structure on a connected sum of S 3 × S 3 with trivial canonical bundle[END_REF]. The manifold M = (Γ 1 × Γ 2 ) ∩ H ⊂ CP 3 × CP 3 is a simply connected Calabi-Yau threefold with b 2 = 14, where

Γ 1 = {x 3 0 + x 3 1 + x 3 2 + x 3 3 = 0} ⊂ CP 3 , Γ 2 = {y 3 0 + y 3 1 + y 3 2 + y 3 3 = 0} ⊂ CP 3 , H = {x 0 y 0 + x 1 y 1 + x 2 y 2 + x 3 y 3 = 0} ⊂ CP 3 × CP 3 . There exists 15 disjoint rational curves ℓ 1 , • • • , ℓ 15 with normal bundles O CP 1 (-1) ⊕2 , ℓ 1 , • • • , ℓ 14 generate H 2 (M, Z),
and there exists a j ̸ = 0 for j ∈ {1, • • • , 15} such that ∑ 15 j=1 a j [ℓ j ] = 0. Then one can contract these curves and obtain a singular space X 0 with 15 ordinary double points. Moreover, there is a smoothing π : X → D of X 0 such that for all t ̸ = 0, X t is diffeomorphic to a connected sum of S 3 × S 3 . This implies that X t does not admit a Kähler metric since b 2 (X t ) = 0. One can check that X 0 is not Kähler.

Remarks on the family setting

Under Setup (S), we have a smooth hermitian metric ω on X (as in Definition 2.1.1). For each t ∈ D, it induces a smooth hermitain metric ω t := ω |X t on X t . The family of metrics (ω t ) t satisfies the following properties: For all t ∈ D 1/2 , there is a constant

B ≥ 0 independent of t such that -Bω n t ≤ dd c t ω n-1 t ≤ Bω n t (2.1.1)
where d c t is the twisted exterior derivative with respect to the complex structure of X t . Indeed, in a local embedding, we have -Bω n ≤ dd c ω n-1 ≤ Bω n on X ; hence (2.1.1) is just the restriction on each fibre X t . On the other hand, the volume of (X t , ω t ) is comparable to the volume of (X 0 , ω 0 ) for all t ∈ D 1/2 . Namely, we have a uniform constant C V ≥ 1 such that

C -1 V ≤ Vol ω t (X t ) ≤ C V , ∀t ∈ D 1/2 . (2.1.2)
The lower bound is obvious. One can prove the upper bound by the continuity of the total mass of currents (ω n ∧ [X t ]) t∈D 1/2 . The proof goes as follows: the current of integration [X t ] can be written as dd Vol ω 0 (X 0 ). Thus, using the compactness of X 0 , we obtain a uniform upper bound C V of Vol ω t (X t ) for all t ∈ D 1/2 . Finally, we give a remark on non-smoothable singularities: The first non-smoothable example was given by Thom and reproduced by Hartshorne [START_REF] Hartshorne | Topological conditions for smoothing algebraic singularities[END_REF]. They considered a cone in C 6 over the Segre embedding of CP 1 × CP 2 into CP 5 and they proved that the cone does not admit a smoothing because of a topological constraint.

Gauduchon metrics on smooth fibres

The aim of this section is to prove the uniform boundedness of normalized Gauduchon factors ρ t with respect to ω t on smooth fibres X t in Setup (S). First, we fix a compact hermitian manifold (X, ω). Suppose that B ≥ 0 is a constant such that -Bω n ≤ dd c ω n-1 ≤ Bω n . From Gauduchon's theorem [START_REF] Gauduchon | Le théorème de l'excentricité nulle[END_REF], there exists a unique positive smooth function ρ ∈ ker ∆ * ω or, equivalently

dd c (ρω n-1 ) = dd c ρ ∧ ω n-1 + dρ ∧ d c ω n-1 -d c ρ ∧ dω n-1 + ρdd c ω n-1 = 0 such that inf X ρ = 1 and ω G = ρ 1 n-1
ω is a Gauduchon metric. Then we prove that the Gauduchon factor is bounded by geometric quantities.

Theorem 2.2.1. Suppose that (X, ω) is an n-dimensional compact hermitian manifold. If ρ ∈ ker ∆ * ω and inf X ρ = 1, then there is a constant C G depending only on n, B, C S , C P and Vol ω (X) such that

sup X ρ ≤ C G ,
where C S and C P are Sobolev and Poincaré constants.

The proof of Theorem 2.2.1 is inspired by the paper of Tosatti and Weinkove [START_REF] Tosatti | The complex Monge-Ampère equation on compact Hermitian manifolds[END_REF]. We apply Moser's iteration twice to obtain an upper bound of ρ. On the other hand, under Setup (S), the Sobolev and Poincaré constants of the fibres X t are uniformly bounded independently of t. The uniform Sobolev constant in family comes from Wirtinger inequality and Michael and Simon's Sobolev inequality on minimal submanifolds [START_REF] Michael | Sobolev and mean-value inequalities on generalized submanifolds of R n[END_REF]. The study of Poincaré constant in families goes back to Yoshikawa [START_REF] Yoshikawa | Degeneration of algebraic manifolds and the spectrum of Laplacian[END_REF] and Ruan and Zhang [RZ11]. For convenience, the reader is also referred to [DGG20, Proposition 3.8 and 3.10]. Although they only stated the properties on a family of Kähler spaces, the proof does not rely on Kähler structures. Proposition 2.2.2. Suppose that π : (X , ω) → D is a family of compact hermitian varieties in Setup (S). For all t ∈ K ⋐ D, there exists uniform Sobolev and Poincaré constants C S (K) and C P (K)

such that ∀ f ∈ L 2 1 (X reg t ), X t | f | 2n n-1 ω n t n-1 n ≤ C S X t |d f | 2 ω t ω n t + X t | f | 2 ω n t and ∀ f ∈ L 2 1 (X reg t ) and X t f ω n t = 0, X t | f | 2 ω n t ≤ C P X t |d f | 2 ω t ω n t .
Remark 2.2.3. The irreducible condition is crucial in the proof of uniform Poincaré inequality. Assume that X 0 has two irreducible components X ′ 0 and

X ′′ 0 . Consider a function f on X reg 0 defined by        f = 1/ Vol ω t (X ′ 0 ) on (X ′ 0 ) reg f = -1/ Vol ω t (X ′′ 0 ) on (X ′′ 0 ) reg f = 0 otherwise .
Then it is not hard to see that the RHS of Poincaré inequality is zero but the LHS is positive. This yields a contradiction. One can also construct a "quantitative" version of that example. Namely, the Poincaré constant C P,t on each smooth fibre X t blows up when t → 0 (see, eg., [START_REF] Yoshikawa | Degeneration of algebraic manifolds and the spectrum of Laplacian[END_REF][START_REF] Nezza | Families of singular Kähler-Einstein metrics[END_REF]).

Combining Theorem 2.2.1, Proposition 2.2.2, (2.1.1) and (2.1.2), we obtain the following uniform estimate in the family setting.

Corollary 2.2.4. Let π : (X , ω) → D be a family of compact hermitian manifolds as in Setup (S). Then there exists a constant C G > 0 such that sup X t ρ t ≤ C G , and inf

X t ρ t = 1 for all t ∈ D * 1/2
where ρ t is the Gauduchon factor with respect to (X t , ω t ).

Proof of Theorem 2.2.1

In this subsection, we establish two gradient estimates ((2.2.1) and (2.2.3)) and then apply Moser's iteration argument to obtain an upper bound of ρ. In order to check the dependence on each data, we formulate the dependence of given constants. For convenience, we write V := Vol ω (X). We start the proof with a useful formula. Lemma 2.2.5. Suppose that ρ ∈ ker ∆ * ω . Then we have

X F ′ (ρ)dρ ∧ d c ρ ∧ ω n-1 = X G(ρ)dd c ω n-1
where F and G are two real C 1 -functions defined on R >0 which satisfy xF ′ (x) = G ′ (x).

Proof. As ρ ∈ ker ∆ * ω , we have dd c (ρω n-1 ) = 0. From Stokes' theorem, it follows that

0 = X F(ρ)dd c (ρω n-1 ) = - X F ′ (ρ)dρ ∧ d c (ρω n-1 ) = - X F ′ (ρ)dρ ∧ d c ρ ∧ ω n-1 - X F ′ (ρ)ρdρ ∧ d c ω n-1 .
By the assumption xF ′ (x) = G ′ (x), we obtain the desired formula

X F ′ (ρ)dρ ∧ d c ρ ∧ ω n-1 = - X ρF ′ (ρ)dρ ∧ d c ω n-1 = - X dG(ρ) ∧ d c ω n-1 = X G(ρ)dd c ω n-1 . Consider F ′ (x) = np 2 4
x -p-2 and G(x) = -np 4 x -p for p ≥ 1. By Lemma 2.2.5, we have the following inequality

X d ρ -p 2 2 ω ω n = X nd ρ -p 2 ∧ d c ρ -p 2 ∧ ω n-1 = X F ′ (ρ)dρ ∧ d c ρ ∧ ω n-1 = X G(ρ)dd c ω n-1 = np 4 X ρ -p -dd c ω n-1 ≤ p nB 4 X ρ -p ω n .
(2.2.1)

Put β = n n-1 > 1.
Combining Sobolev inequality and (2.2.1), we obtain

X (ρ -1 ) pβ ω n 1 β ≤ C S X d ρ -p 2 2 ω ω n + X ρ -p 2 2 ω n ≤ C S p nB 4 X (ρ -1 ) p ω n + X (ρ -1 ) p ω n ≤ p nB 4 + 1 C S X ρ -p ω n .
For all p ≥ 1, we have

ρ -1 L pβ (X,ω) ≤ p 1 p C 1 p 1 ρ -1 L p (X,ω)
where C 1 is a constant depending only on n, B, C S . Inductively, we obtain

ρ -1 L pβ k (X,ω) ≤ p 1 p ∑ k-1 j=0 1 β j β 1 p ∑ k-1 j=0 j β j C 1 p ∑ k-1 j=0 1 β j 1 ρ -1 L p (X,ω) ≤ p n p β n(n-1) p C n p 1 ρ -1 L p (X,ω)
.

Let p = 1 and k → ∞ and, thus, we obtain

1 = sup X ρ -1 ≤ β n(n-1) C n 1 X ρ -1 ω n .
Therefore, the L 1 -norm of ρ -1 is bounded away from zero by a constant δ which depends only on n, B, C S :

X ρ -1 ω n ≥ 1 β n(n-1) C n 1 =: 2δ.
Choosing sufficiently small δ, we may assume

A := V/δ ≥ 1. Then we have 2δ ≤ {ρ<A} ρ -1 ω n + {ρ≥A} ρ -1 ω n ≤ {ρ<A} ω n + 1 A X ω n .
Hence, the volume of {ρ < A} is bounded away from zero:

{ρ<A} ω n ≥ δ. (2.2.2) Now, we consider F ′ (x) = n(p+1) 2 4 (log x) p-1 x 2 and G(x) = n(p+1) 2 4p
(log x) p for p ≥ 1. From Lemma 2.2.5, we find the following estimate

X d(log ρ) p+1 2 2 ω ω n = n(p + 1) 2 4 X (log ρ) p-1 ρ 2 dρ ∧ d c ρ ∧ ω n-1 = X F ′ (ρ)dρ ∧ d c ρ ∧ ω n-1 = X G(ρ)dd c ω n-1 = n(p + 1) 2 4p X (log ρ) p dd c ω n-1 ≤ pnB X (log ρ) p ω n .
(2.2.3) Again, Sobolev inequality, (2.2.3) and Hölder inequality yield the following inequalities:

X (log ρ) (p+1)β ω n 1 β ≤ C S X d(log ρ) p+1 2 2 ω ω n + X (log ρ) p+1 ω n ≤ C S pnB X (log ρ) p ω n + X (log ρ) p+1 ω n ≤ C S pnBV 1 p+1 X (log ρ) p+1 ω n p p+1 + X (log ρ) p+1 ω n ≤ (p + 1)2nBC S max{V, 1} max X (log ρ) p+1 ω n , 1 . Write q = p + 1 ≥ 2. We have ∥log ρ∥ L qβ (X,ω) ≤ q 1 q C 1 q 2 max ∥log ρ∥ L q (X,ω) , 1
where C 2 > 0 is a constant depending only on n, B, C S , V. Using the similar strategy of Moser's iteration again, we derive sup

X (log ρ) ≤ 2 n 2 β n(n-1) 2 C n 2 2 max{∥log ρ∥ L 2 (X,ω) , 1} ≤ 2 n 2 β n(n-1) 2 C n 2 2 max (sup X log ρ) 1 2 X log ρω n 1 2
, 1 and, thus, sup

X (log ρ) ≤ C 3 max X log ρω n , 1 for some constant C 3 = C 3 (n, B, C S , V).
Now, everything comes down to bounding X log ρω n from above. Using Poincaré inequality and (2.2.3) with p = 1, we obtain

X log ρ -log ρ 2 ω n ≤ C P X |d log ρ| 2 ω ω n ≤ C 4 X log ρω n (2.2.4)
where log ρ = 1 V X log ρω n is the average of log ρ and C 4 = C 4 (n, B, C P ). Then by (2.2.2), we can infer that

δ X log ρω n = Vδlog ρ ≤ V {ρ<A} log ρω n ≤ V {ρ<A} log A -log ρ + log ρ ω n ≤ V X log ρ -log ρ + log A ω n .
(2.2.5)

We use (2.2.4) and (2.2.5) to obtain

X log ρω n ≤ V δ X log ρ -log ρ ω n + V log A ≤ V δ V 1 2 X log ρ -log ρ 2 ω n 1 2 + V log A ≤ V δ V 1 2 C 1 2 4 X log ρω n 1 2 + V log A . Note that if x 2 ≤ ax + b for a, b > 0, then x ≤ a 2 + (b + a 2 4 ) 1 2
. Eventually, we obtain

X log ρω n ≤ C 5 (n, B, C S , C P , V)
and this completes the proof of Theorem 2.2.1.

Gauduchon current on the singular fibre

In this section, we construct a Gauduchon factor ρ 0 on X reg 0 as the limit of the Gauduchon factors on the nearby fibres X t . In particular, we derive that the limit ρ is bounded and, thus, ρ 1 n-1 ω 0 is a bounded Gauduchon metric on X reg 0 . On the other hand, for a fixed irreducible, reduced, compact complex analytic space X, we show that the (n -1)-power of a bounded Gauduchon metric can be extend trivially to a pluriclosed current on whole X and also prove a uniqueness result.

Gauduchon metric on the central fibre

Theorem 2.3.1. Suppose that X 0 is the central fibre in Setup (S). There exists a smooth function

1 ≤ ρ ≤ C G on X reg 0 such that ρ 1 n-1 ω 0 is a bounded Gauduchon metric. Here C G is the constant introduced in Corollary 2.2.4.
Proof. We shall apply standard elliptic theory on some relatively compact subsets of X reg 0 to get a smooth function ρ. This ρ is the limit of (ρ t j ) j∈N defined on the fibre X t j for some sequence t j → 0 when j → +∞. In the sequel, we shall denote by U ⋐ V if the closure of U is a compact subset in V.

Recall that π : X → D is submersive on X reg 0 . By the tubular neighborhood theorem, there is an open neighborhood M of X reg 0 in X reg such that the following statements hold (i) For all U ⋐ X reg 0 , there exists an open set M U ⊂ X reg , a constant δ U > 0, and a diffeo-

morphism ψ U : U × D δ U ∼ -→ M U such that the diagram U × D δ U M U ⊂ M ⊂ X reg D δ U ψ U diffeo.
pr 2 π commutes. In particular, for all t

∈ D δ U , ψ U (•, t) : U → M U is a diffeomorphism onto its image M U,t = ψ U (U, t) = M U ∩ X t . (ii) If U ⋐ V ⋐ X reg 0 , we have δ U ≥ δ V > 0 and ψ U (x, t) = ψ V (x, t) for all x ∈ U and t ∈ D δ V .
Now, we denote by

P t = ∆ * ω t and fix U 1 ⋐ U 2 ⋐ X reg 0
which are connected open subsets. Note that U i can be identified with M U i ,t = ψ U 2 (U i , t) for i ∈ {1, 2} and for all t ∈ D δ U 2 and, hence, P t can act on smooth functions defined on U 2 . In addition, on U 2 , the Riemannian metric g 0 induced by ω 0 is quasi-isometric to g t induced by ω t , and the volume form ω n 0 is comparable with ω n t . In other words, we have a uniform constant C U 2 > 0 such that

C -1 U 2 ⟨•, •⟩ ω 0 ≤ ⟨•, •⟩ ω t ≤ C U 2 ⟨•, •⟩ ω 0 , and C -1 U 2 ω n 0 ≤ ω n t ≤ C U 2 ω n 0 . (2.3.1)
By Gårding inequality, we have

∥u∥ L 2 2 (U 1 ,ω 0 ) ≤ C U 1 ,U 2 ∥P t u∥ L 2 (U 2 ,ω 0 ) + ∥u∥ L 2 (U 2 ,ω 0 )
for all u ∈ C ∞ c (U 2 ). The constant C U 1 ,U 2 can be chosen independent of t because the coefficients of P t move smoothly in t. Choose a cut-off function χ such that supp(χ) ⊂ U 2 and χ ≡ 1 on U 1 . From Gårding inequality, we obtain

∥ρ t ∥ L 2 2 (U 1 ,ω 0 ) ≤ C U 1 ,U 2 ∥P t (χρ t )∥ L 2 (U 2 ,ω 0 ) + ∥χρ t ∥ L 2 (U 2 ,ω 0 ) . (2.3.2)
In (2.3.2), the second term ∥χρ t ∥ L 2 (U 2 ,ω 0 ) is uniformly bounded because of Corollary 2.2.4. Hence, we only need to estimate ∥P t (χρ t )∥ L 2 (U 2 ,ω 0 ) . Note that

P t (χρ t ) = n ω n t dd c t (χρ t ω n-1 t ) = n ω n t 2dρ t ∧ d c t χ ∧ ω n-1 t + χdd c t (ρ t ω n-1 t ) + ρ t dd c (χω n-1 t ) -χρ t dd c t ω n-1 t = 2 ⟨dρ t , dχ⟩ ω t + ρ t P t (χ) -ρ t χ dd c t ω n t ω n t .
(2.3.3)

Obviously, ρ t P t (χ) and ρ t χ

dd c t ω n-1 t ω n t
are uniformly bounded, so we only need to control the L 2 -norm of the first term ⟨dρ t , dχ⟩ ω t :

U 2 ⟨dρ t , dχ⟩ ω t 2 ω n 0 ≤ C 2 U 2 sup U 2 |dχ| 2 ω 0 U 2 |dρ t | 2 ω t ω n t = C 2 U 2 sup U 2 |dχ| 2 ω 0 M U 2 ,t |dρ t | 2 ω t ω n t ≤ C 2 U 2 sup U 2 |dχ| 2 ω 0 X t |dρ t | 2 ω t ω n t ≤ C 2 U 2 sup U 2 |dχ| 2 ω 0 nB 2 X t ρ 2 t ω n t .
Here the first line is by Cauchy-Schwarz inequality and (2.3.1). The fourth line follows from an argument similar to that used in (2.2.1) (just replace -p by p). As 1 ≤ ρ t ≤ C G and Vol ω t (X t ) ≤ C V , we find a uniform bound of ∥P t (χρ t )∥ L 2 (U 2 ,ω 0 ) . Hence, ∥ρ t ∥ L 2 2 (U 1 ,ω 0 ) is uniformly bounded by some uniform constant C(U 1 , U 2 ).

For higher-order estimates, we apply higher-order Gårding inequalities on the fixed domains

U 1 ⋐ U 2 ⋐ X reg 0 : ∥u∥ L 2 s+2 (U 1 ,ω 0 ) ≤ C s,U 1 ,U 2 ∥P t u∥ L 2 s (U 2 ,ω 0 ) + ∥u∥ L 2 (U 2 ,ω 0 )
for all u ∈ C ∞ c (U 2 ). Let U = (U i ) i∈N be a relatively compact exhaustion of X reg 0 . Differentiating (2.3.3) on both sides and using a bootstrapping argument, we obtain ∥ρ t ∥ L 2 s (U 1 ,ω 0 ) < C(s, U ) where C(s, U ) does not depend on t. By Rellich's theorem, there exists a subsequence (ρ t j ) j∈N such that ρ t j converges to ρ in C k (U 1 ) for all k ∈ N when t j → 0. Therefore dd c 0 (ρω n-1 0 ) = lim j→+∞ dd c t j (ρ t j ω n-1 t j ) = 0 on U 1 . Using a diagonal argument, we can infer that there is a smooth function ρ on X reg 0 which is bounded between 1 and C G , and satisfies dd c 0 (ρω n-1 0 ) = 0 on X reg 0 .

Proof of Theorem 2.0.2

In this subsection, we always assume that X is an irreducible reduced compact complex space and ω G is a bounded Gauduchon metric on X. Before proving the uniqueness result and extension property, we recall the existence of cut-off functions with small L 2 -gradients. From a classical property in Riemannian geometry, these cut-off functions do exist on so-called parabolic manifolds (see eg. [START_REF] Glasner | Stokes' theorem and parabolicity of Riemannian manifolds[END_REF][START_REF] Evans | GARIEPY -Measure theory and fine properties of functions[END_REF] and references therein). A Riemannian manifold (M, g) is said to be parabolic if for all compact K ⊂ M and each ε > 0, there exists a smooth cut-off function χ ∈ C ∞ c (M) with 0 ≤ χ ≤ 1, χ ≡ 1 on a neighborhood of K and ∥dχ∥ L 2 (M,g) ≤ ε. In our case, one can easily construct explicit cut-off functions by Hironaka's desingularization and log log-potentials (cf. [Ber12, Lemma 2.2] and [CGP13, Section 9]): Lemma 2.3.2. Suppose that (X, ω) is a compact hermitian variety. There exist cut-off functions (χ ε ) ε>0 ⊂ C ∞ c (X reg ) satisfying the following properties:

(i) χ ε is increasing to the characteristic function of X reg when ε decreases to zero;

(ii) X dd c χ ε ∧ ω n-1 → 0 when ε → 0;

(iii) X dχ ε ∧ d c χ ε ∧ ω n-1 → 0 when ε → 0.
These functions allow us to perform integration by parts as on a compact manifold. Then we argue that the desired results hold when ε tends to zero. Now, we give a proof of Theorem 2.0.2: Proof of Theorem 2.0.2. We divide the proof in two parts.

Part 1: Uniqueness of singular Gauduchon metrics. Assume that ω G and ω ′ G are both bounded Gauduchon metrics in the same conformal class. We write ρ to be the bounded Gauduchon factor satisfying ρ

1 n-1 ω G = ω ′ G .
Let (χ ε ) ε>0 be cut-off functions given in Lemma 2.3.2. From Stokes formula and direct computations, we derive

X reg χ ε |dρ| 2 ω G ω n G = 1 2 X reg ρ 2 dd c χ ε ∧ ω n-1 G . (2.3.4) Indeed, X reg χ ε |dρ| 2 ω G ω n-1 G = X reg χ ε dρ ∧ d c ρ ∧ ω n-1 G = - X reg ρd χ ε d c ρ ∧ ω n-1 G = - X reg ρ dχ ε ∧ d c ρ ∧ ω n-1 G + χ ε dd c ρ ∧ ω n-1 G -χ ε d c ρ ∧ dω n-1 G = - 1 2 X reg dρ 2 ∧ d c χ ε ∧ ω n-1 G + X reg ρχ ε dρ ∧ d c ω n-1 G = 1 2 X reg ρ 2 d d c χ ε ∧ ω n-1 G - 1 2 X reg ρ 2 d χ ε d c ω n-1 G = 1 2 X reg ρ 2 dd c χ ε ∧ ω n-1 G - 1 2 X reg ρ 2 d c χ ε ∧ dω n-1 G - 1 2 X reg ρ 2 dχ ε ∧ d c ω n-1 G = 1 2 X reg ρ 2 dd c χ ε ∧ ω n-1 G .
By Lemma 2.3.2 and the boundedness of ω G , we can see that X |dd c χ ε ∧ ω n-1 G | converges to zero when ε tends to zero. As ρ is bounded, the RHS of (2.3.4) goes to zero and, hence,

X reg |dρ| 2 ω G ω n G = 0.
Because X reg is connected by the irreducible assumption, ρ is a constant.

Part 2: Extension to a pluriclosed current. We already have a smooth pluriclosed bounded positive (n -1, n -1)-form ω n-1 G on X reg . Note that ω n-1 G can extend trivially as a bounded positive (n -1, n -1)-current T on X. If ω n-1 G is closed, so would be T by the Skoda-El Mir extension result [Sko82, El 84]. Some results for plurisubharmonic currents do exist in the literature (see, eg., [START_REF] Alessandrini | Plurisubharmonic currents and their extension across analytic subsets[END_REF][START_REF] Dabbek | Extension of plurisubharmonic currents[END_REF]), but we could not find the one of interest for us here. Therefore, we provide a quick proof.

Again, we are going to use good cut-off functions (χ ε ) ε>0 in Lemma 2.3.2 to prove that T is pluriclosed in the sense of currents. Fix a smooth function f on X. We need to show that

⟨ f , dd c T⟩ := X dd c f ∧ T = 0.
Using the cut-off functions constructed in Lemma 2.3.2, we can write

X dd c f ∧ T = R ε χ ε dd c f ∧ T :=I ε + S ε (1 -χ ε )dd c f ∧ T :=II ε
where R ε is a small open neighborhood of the closure of {χ ε > 0} contained in X reg and similarly S ε is a small neighborhood of the closure of {χ ε < 1}. According to Lemma 2.3.2, as ε → 0, R ε tends to X reg and S ε shrinks to X sing . Therefore, II ε converges to zero when ε goes to zero. We compute the term I ε by the Stokes formula:

I ε = R ε f dd c χ ε ω n-1 G = R ε f dd c χ ε ∧ ω n-1 G + 2dω n-1 G ∧ d c χ ε = - R ε f dd c χ ε ∧ ω n-1 G :=III ε -2 R ε d f ∧ d c χ ε ∧ ω n-1 G :=IV ε .
By Cauchy-Schwarz inequality, the term IV ε can be bounded by

|IV ε | ≤ R ε 1 {dχ ε ̸ =0} d f ∧ d c f ∧ ω n-1 G :=V ε + R ε dχ ε ∧ d c χ ε ∧ ω n-1 G :=VI ε .
Using the dominated convergence theorem, V ε converges to zero when ε goes to zero, because the set {dχ ε ̸ = 0} is contained in S ε and S ε shrinks to X sing . Applying Lemma 2.3.2, III ε and VI ε converge to zero as ε tending to zero. These yield that I ε → 0 as ε → 0. All in all, we have X dd c f ∧ T = 0 for all f ∈ C ∞ (X); hence, dd c T = 0 in the sense of currents.

Introduction

Gauduchon metrics, first introduced by Gauduchon [START_REF] Gauduchon | Le théorème de l'excentricité nulle[END_REF], is a generalization of Kähler metrics on non-Kähler manifolds. It is a natural class of hermitian metrics which exist on all compact complex manifolds. A hermitian metric ω G on an n-dimensional compact complex manifold X is called Gauduchon if dd c ω n-1 G = 0, and the classical result of Gauduchon says that every hermitian metrics is conformally equivalent to a Gauduchon metric (uniquely up to scaling when n ≥ 2).

Constructing canonical or special metrics on complex manifolds is a central subject in complex geometry. In Kähler geometry, Yau's celebrated solution of the Calabi conjecture [START_REF] Yau | On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. I[END_REF] and Uhlenbeck-Yau's characterization of the existence of hermitian-Einstein metrics on stable bundles [START_REF] Uhlenbeck | On the existence of Hermitian-Yang-Mills connections in stable vector bundles[END_REF] are landmarks in canonical metrics problems. Much interest has been devoted to study non-Käher Calabi-Yau manifolds, following "Reid's fantasy" [START_REF] Reid | The moduli space of 3-folds with K = 0 may nevertheless be irreducible[END_REF] that all Calabi-Yau threefolds should form connected families provided one allows deformations and singular transitions through non-Kähler Calabi-Yau manifolds. To understand non-Kähler objects, one may ask how much metrical theories carry over from the Kähler to non-Kähler geometry. In these topics, Gauduchon metrics play an important role. For instance, using Gauduchon metrics, Li and Yau [START_REF] Li | Hermitian-Yang-Mills connection on non-Kähler manifolds[END_REF] defined the notion of slope stability on non-Kähler manifolds and then they generalized Uhlenbeck-Yau's theorem in non-Kähler context. Motivated by Yau's theorem, Gauduchon [Gau84, IV.5] posed a Calabi-Yau type question about Gauduchon metrics, which has been solved by Székelyhidi, Tosatti, and Weinkove [START_REF] Székelyhidi | Gauduchon metrics with prescribed volume form[END_REF]. In a different direction, Angella-Calamai-Spotti [START_REF] Angella | On the Chern-Yamabe problem[END_REF] have studied the Chern-Yamabe problem. They use Gaudu-chon metrics to define a conformal invariant called the Gauduchon degree and showed that if a metric ω has a non-positive Gauduchon degree then the Chern-Yamabe problem admits a solution.

From an algebraic perspective, singularities are ubiquitous as they occur in various situations, notably in the Minimal Model Program and moduli theory. Ueno [START_REF] Ueno | Classification theory of algebraic varieties and compact complex spaces[END_REF] found a birational class of 3-dimensional complex manifolds which does not admit a smooth minimal model. In moduli theory, it is necessary to deal with singular varieties when compactifying moduli spaces of smooth manifolds. Already in dimension one, the fundamental domain of moduli space of elliptic curves is non-compact and nodal curves lie on its boundary. Due to these considerations, singular version of canonical metric problems have been intensively studied on Kähler spaces or reflexive sheaves in recent decades. For example, generalizing Yau's theorem, singular Kähler-Einstein metrics on mildly singular Kähler varieties have been constructed in [START_REF] Eyssidieux | Singular Kähler-Einstein metrics[END_REF] and further studied by many authors (see [START_REF]Degenerate complex Monge-Ampère equations[END_REF][START_REF] Boucksom | Variational and non-archimedean aspects of the Yau-Tian-Donaldson conjecture[END_REF][START_REF]Some recent developments in Kähler geometry and exceptional holonomy[END_REF] and the reference therein). On the other hand, Bando-Siu [START_REF] Bando | Stable sheaves and Einstein-Hermitian metrics[END_REF] generalized Uhlenbeck-Yau's theorem to reflexive sheaves over Kähler manifolds. Recently, Uhlenbeck-Yau's theorem was generalized on normal Kähler spaces.

Main result

Due to the above considerations, it is legitimate to look for singular Gauduchon metrics on singular hermitian varieties (irreducible, reduced, complex analytic spaces). This is a continuation of our previous work [START_REF] Pan | Singular Gauduchon metrics[END_REF] in which we raised the following question:

Question. Suppose that X is a compact complex variety equipped with a hermitian metric ω. Can one find a Gauduchon metric ω G in the conformal class of ω?

In [Pan22, Theorem A], we showed the existence of bounded Gauduchon metrics on smoothable hermitian varieties. The purpose of this note is to provide an answer to the problem in full generally based on a conjecture about the existence of uniform Sobolev constant in [Ou22, Conj. 1.2]: Conjecture (SC). Let (V, ω) be an n-dimensional compact hermitian variety. Let p : V → V be a blowup with a smooth center. Fix ω a hermitian metric on V and define

ω ε := p * ω + ε ω for ε ∈ (0, 1].
For all 1 ≤ p < 2n, there is a uniform constant C S,p > 0 such that for all ε ∈ (0, 1] and for all f ∈ L p

1 ( V reg , ω ε ), V | f | 2np 2n-p ω n ε 2n-p 2np ≤ C S,p V |d f | p ω ε ω n ε + V | f | p ω n ε 1 p .
Theorem 3.0.1. Assume that Conjecture (SC) holds. Let (X, ω) be a compact hermitian variety of dimension n ≥ 2. There exists a bounded smooth function ρ on X reg such that dd c (ρω n-1 ) = 0 on X reg and ρ is bounded away from zero (i.e. ρ ≥ c > 0 for some constant c). Such a function ρ is unique up to multiplication by a positive constant and ρ 1 n-1 ω is a Gauduchon metric conformally equivalent to ω on X reg .

In [START_REF] Ou | Admissible metrics on compact Kähler varieties[END_REF]Prop. 4.10], Ou proved that Conjecture (SC) holds when p : V → V is a blowup with one point.

Application in families

Let (X , ω) be an (n + 1)-dimensional hermitian variety and π : X → D be a proper surjective holomorphic map with connected fibres. Suppose that each fibre X t = π -1 (t) is a variety (irreducible, reduced). The metric ω induces a hermitian metric ω t on every fibre X t by restriction. According to Theorem 3.0.1, on each fibre X t , there is a normalized Gauduchon factor ρ t with respect to ω t . We prove that such a function is uniformly bounded in families: Proposition 3.0.2. Let π : (X , ω) → D be a family of hermitian varieties. Assume that (X t , ω t ) admits a bounded Gauduchon factor for all t ∈ D. Then there is a uniform upper bound C G of the normalized Gauduchon factors ρ t on each fibre X t for all t ∈ D 1/2 .

Using the uniform estimate of normalized bounded Gauduchon factors (ρ t ) t in Proposition 3.0.2, we generalize the Sup-L 1 comparison [DGG20, Proposition 3.3] in families of hermitian varieties where all fibres have only isolated singularities: Proposition 3.0.3. Let π : (X , ω) → D be a family of hermitian varieties. Suppose that each fibre X t has only isolated singularities and (X t , ω t ) admits a bounded Gauduchon factor. Then there is a constant C SL > 0 such that for all t ∈ D 1/2 , ∀φ t ∈ PSH(X t , ω t ) sup

X t φ t -C SL ≤ 1 V t X t φ t ω n t ≤ sup X t φ t
where V t is the volume of X t with respect to ω t .

This generalization removes the smoothing assumption in [Pan23, Proposition B], and supports the Sup-L 1 comparison conjecture [DGG20, Conjecture 3.1] in families of hermitian varieties.

Organization

In Section 3.1, we establish a Harnack-type inequality (Theorem 3.1.1) with respect to the elliptic operator ∆ * ω on singular hermitian varieties. In Section 3.2, we keep track of the constants arising in Theorem 3.1.1 under resolution of singularities and show Theorem 3.0.1. In Section 3.3, we consider families of hermitian varieties and prove Proposition 3.0.2 and Proposition 3.0.3.

An a priori estimate

We first recall the notation d c = i 2 ( ∂ -∂) so that dd c = i∂ ∂. We denote by

∆ ω f := ndd c f ∧ ω n-1 ω n , |d f | 2 ω := nd f ∧ d c f ∧ ω n-1
ω n , and

∆ * ω f := ndd c ( f ω n-1 ) ω n .
. Fix a compact hermitian variety (X, ω) of complex dimension n. Let B ≥ 0 be a constant such that -Bω n ≤ dd c ω n-1 ≤ Bω n and V := Vol ω (X). We shall explain a Harnack inequality which generalizes [Pan22, Theorem 2.1]: Theorem 3.1.1. If ρ is a normalized bounded Gauduchon factor (i.e. dd c ρω n-1 = 0 on X reg , ρ ∈ L ∞ (X reg ), and inf X reg ρ = 1), then there is a constant C G depending only on n, B, C S , C P and V such that sup

X reg ρ ≤ C G ,
where C S and C P are Sobolev and Poincaré constants such that

∀ f ∈ L 2 1 (X reg ), X | f | 2n n-1 ω n n-1 n ≤ C S X |d f | 2 ω ω n + X | f | 2 ω n and ∀ f ∈ L 2 1 (X reg ) and X f ω n = 0, X | f | 2 ω n ≤ C P X |d f | 2 ω ω n .

Proof of Theorem Good cut-off functions

First of all, we recall the existence of cut-off functions with small L 2 -gradients. From a classical property in Riemannian geometry, these cut-off functions do exist on so-called parabolic manifolds (see eg. [Gla83, EG92], or page 35 for more information). In our case, one can easily construct explicit cut-off functions by using Hironaka's desingularization and log log-potentials (cf. [Ber12, Lemma 2.2] and [CGP13, Section 9]):

Lemma 3.1.2. Suppose that (X, ω) is a compact hermitian variety. There exist cut-off functions (χ δ ) δ>0 ⊂ C ∞ c (X reg ) satisfying the following properties (i) χ δ is increasing to the characteristic function of X reg when δ decreases to 0;

(ii) X |dd c χ δ ∧ ω n-1 | → 0 when δ → 0; (iii) X dχ δ ∧ d c χ δ ∧ ω n-1 → 0 when δ → 0
These functions allow us to perform integration by parts as on a compact manifold. Using these cut-off functions, we establish a lemma similar to [Pan22, Lemma 2.4] on the regular locus of X: Lemma 3.1.3. Suppose that ρ is a positive smooth function on X reg , ρ is bounded away from zero and infinity, and ρ ∈ ker ∆ * ω , i.e. dd c (ρω n-1 ) = 0. Then we have

X reg F ′ (ρ)dρ ∧ d c ρ ∧ ω n-1 = X reg G(ρ)dd c ω n-1
where F and G are two real C 1 -functions defined on R >0 which satisfy xF ′ (x) = G ′ (x).

Remark 3.1.4. One the LHS, the integration

X reg F ′ (ρ)dρ ∧ d c ρ ∧ ω n-1 is well-defined for F ∈ C 1 (R >0 , R).
The reason is as follows: We should first assume that F ′ (ρ) has a sign. Taking

F ′ (x) = 1 and G(x) = x 2 2 , we have X reg dρ ∧ d c ρ ∧ ω n-1 = 1 2 X reg ρ 2 dd c ω n-1 which is bounded, so one finds dρ ∈ L 2 and thus it is legitimate to define X reg F ′ (ρ)dρ ∧ d c ρ ∧ ω n-1 for F is merely a C 1 -function.
Proof. Since ρ ∈ ker ∆ * ω , we have dd c (ρω n-1 ) = 0. Let χ δ be a cut-off function introduced in Lemma 3.1.2. Using Stokes' theorem, it follows that 0 =

X reg χ δ F(ρ)dd c (ρω n-1 ) = - X reg d (χ δ F(ρ)) d c (ρω n-1 ) = - X reg F(ρ)dχ δ ∧ d c (ρω n-1 ) - X reg χ δ F ′ (ρ)dρ ∧ d c (ρω n-1 ) = - X reg F(ρ)dχ δ ∧ d c ρ ∧ ω n-1 - X reg ρF(ρ)dχ δ ∧ d c ω n-1 - X reg χ δ F ′ (ρ)dρ ∧ d c ρ ∧ ω n-1 - X reg χ δ ρF ′ (ρ)dρ ∧ d c ω n-1 .
By the assumption xF ′ (x) = G ′ (x) and direct computations, we derive

X reg χ δ F ′ (ρ)dρ ∧ d c ρ ∧ ω n-1 = X reg χ δ G(ρ)dd c ω n-1 + X reg (ρF(ρ) -G(ρ)) dd c χ δ ∧ ω n-1 . (3.1.1)
where p k : X k → X k-1 is a blowup with smooth center. Since the exceptional divisor Exc(p k ) is relatively anti-ample for all k, for all hermitian metric ω k-1 on X k-1 , there is a closed (1, 1)form θ k such that p * k ω k-1 + θ k is a hermitian metric on X k . Inductively, we find (1, 1)-forms (θ j ) j∈{1,••• ,m} such that for all k ∈ {1, • • • , m}

ω k := ω + k ∑ j=1 θ j
defines a hermitian metric on X k . By abuse of notation, here and hereafter we denote the geometric objects and their pullback by the same notation very often. One should be aware that ω is merely semi-positive on X k for all k > 0. Let ε(k

) := (ε 1 , • • • , ε k ) ∈ (0, 1] k . For k ∈ {1, • • • , m},
we define inductively a family of hermitian metrics on X k by

ω ε(k) := ω ε(k-1) + ε k ω ε(k-1) + k-1 ∏ j=0 ε j θ k =: ω ε(k-1)
where ω ε(0) := ω and ε 0 := 1. By construction, one can derive that

• ω ε(k) ≥ ε k ω ε(k-1) = ε k ω ε(k-1) + ∏ k-1 j=0 ε j θ k ≥ ∏ k j=0 ε j ω k which is positive on X k so is a hermitian metric on X k ;
• ω ε(k) converges to ω ε(k-1) when ε k tends to 0. We shall prove Theorem 3.0.1 by induction on k. We now focus on the following setup: Setup (G). Let (V, ω V ) be a compact hermitian variety. Consider

• p : V → V a blowup of a smooth center in V sing ;

• ω a hermitian metric on V such that ω = p * ω V + θ where θ is a closed (1, 1)-form.

For ε ∈ (0, 1], we define

ω ε := p * ω V + ε ω
which forms a family of hermitian metrics on V. Proposition 3.2.1. Under Setting (G), suppose that for all ε ∈ (0, 1], there exists a normalized bounded Gauduchon factor ρ ε on V reg with respect to the hermitian metric ω ε . Then there is a uniform constant C G such that for all ε ∈ (0, 1] sup

V reg ρ ε ≤ C G .

Proof of Proposition 3.2.1

Once we find a uniform control on the constants B(ω ε ), Vol ω ε ( V), C S (ω ε ), and C P (ω ε ) for all ε ∈ (0, 1], Proposition 3.2.1 would be a direct consequence of Theorem 3.1.1.

Controlling B(ω ε ) and the volumes Vol

ω ε ( V) On (V, ω V ), there is a constant B ′ > 0 such that -B ′ ω 2 V ≤ dd c ω V ≤ B ′ ω 2 V and -B ′ ω 3 V ≤ dω V ∧ d c ω V ≤ B ′ ω 3 V . (3.2.1)
Using binomial expansions, we obtain

dd c ω n-1 ε = n-1 ∑ j=0 ε j n -1 j dd c ω n-1-j V ∧ ω j =:α j ,
and

ω n ε = n ∑ j=0 ε j n j ω n-j V ∧ ω j =:β j ≥0 . Hence, to search a constant B > 0 satisfying -Bω n ε ≤ dd c ω n-1 ε ≤ Bω n ε , it is enough to prove that for all j ∈ {0, • • • , n -1}, one has -β j ≲ α j ≲ β j . Note that α j = dd c ω n-1-j V ∧ ω j = dd c ω n-1-j V ∧ ω j =:α j,1 + ω n-1-j V ∧ dd c ω j =:α j,2 +2 dω n-1-j V ∧ d c ω j =:α j,3 . Since d ω = dω V , d c ω = d c ω V and dd c ω = dd c ω V , we have α j,1 = (n -1 -j) dd c ω V ∧ ω n-2-j V ∧ ω j + (n -1 -j)(n -2 -j) dω V ∧ d c ω V ∧ ω n-3-j V ∧ ω j α j,2 = j dd c ω V ∧ ω n-1-j V ∧ ω j-1 =:α ′ j,2 + j(j -1) dω V ∧ d c ω V ∧ ω n-1-j V ∧ ω j-2 =:α ′′ j,2 α j,3 = j(n -1 -j) dω V ∧ d c ω V ∧ ω n-2-j V ∧ ω j-1 .
Using (3.2.1), one can deduce that there is a constant D = D(n, B ′ ) such that for all j,

-Dβ j ≤ α j,1 ≤ Dβ j , -Dβ j-2 ≤ α ′ j,2 , α j,3 ≤ Dβ j-2 , -Dβ j-1 ≤ α ′′ j,2 ≤ Dβ j-1
Note that the power of ε in front of α j,1 (resp. α ′ j,2 , resp. α ′′ j,2 , α j,3 ) is less than or equal to the power of ε in front of β j (resp. β j-2 , resp. β j-1 ). Thus, there exists a uniform constant B > 0 which depends only on n, B ′ such that for all ε ∈ (0, 1],

-Bω n ε ≤ dd c ω n-1 ε ≤ Bω n ε . (3.2.2)
Note that ω ≤ ω ε ≤ ω + ω and ω is positive on V \ Exc(p). Thus, one can find a uniform constant

C Vol > 0 satisfying ∀ε ∈ (0, 1], C -1 Vol ≤ Vol ω ε ( V) ≤ C Vol . (3.2.3)

Uniform Sobolev and Poincaré constants

In this section, based on Conjecture (SC), we shall show the existence of uniform Poincaré constants for ( V, ω ε ) ε∈(0,1] .

Then arguing as in [RZ11, Proposition 3.2] and using the irreducibility of V, one can derive uniform Poincaré inequalities: Lemma 3.2.2. Assume that Conjecture (SC) is true. Under Setting (G), there is a uniform constant C P > 0 such that for all ε ∈ (0, 1] and for all f

∈ L 2 1 ( V reg , ω ε ) with V f ω n ε = 0, V | f | 2 ω n ε ≤ C P V |d f | 2 ω ε ω n ε .
Proof. First, we claim that for each ε ∈ (0, 1], there exists such a Poincaré constant C P,ε . Indeed, thanks to [Bei19, Theorem 0.1 (3)], for each ε ∈ (0, 1], the inclusion L 2 1 ( V reg , ω ε ) → L 2 ( V reg , ω ε ) is compact. Then following the standard argument of the Poincaré-Wirtinger inequality (cf. [Eva10, page 290]) and the irreducibility of V, one gets such a constant C P,ε . Now, we closely follow the idea of [RZ11, Proposition 3.2] to show the existence of a uniform Poincaré constant. Suppose that a uniform constant C P does not exist. Namely, there exists a sequence of L 2 1 ( V, ω ε j )-functions (φ j ) j satisfying

V φ j ω n ε j = 0, V |φ j | 2 ω n ε j = 1, and V |dφ j | 2 ω ε j ω n ε j ≤ 1/j.
We want to draw a contradiction. Without loss of generality, we may assume that ε j → 0 as j → +∞. Note that for any compact subset K ⊂ V reg \ Exc(p), the metric ω ε converges smoothly to the metric p * ω V on a neighborhood of K in V reg \ Exc(p); hence for all ε ∈ (0, 1],

ω ε is equivalent to p * ω V on K. Now, we fix a connected compact subset K ⊂ V reg \ Exc(p). The assumptions imply that (φ j ) j is a bounded sequence in L 2 1 (K). By Banach-Alaoglu theorem, there exists a L 2 1 (K)-function φ such that φ j converges to φ weakly in L 2 1 (K). Moreover, φ j converges to φ strongly in L 2 (K) by Rellich theorem.

By lower semi-continuity, we have

0 ≤ ∥dφ∥ L 2 (K) ≤ lim j→∞ dφ j L 2 (K) = 0.
Hence, φ is a locally constant function on K and thus it is a constant by connectedness. Using Hölder inequality, one can derive

V\K φ j ω n ε j ≤ Vol 1 2 ω ε j ( V \ K) φ j L 2 ( V\K) ≤ Vol 1 2 ω ε j ( V \ K). (3.2.4) Note that K φ j ω n ε j = V\K φ j ω n ε j (3.2.5) since V φ j ω n ε j = 0.
Using that φ is constant and applying (3.2.4) and (3.2.5), we obtain

Vol p * ω V (K)|φ| = K φ(p * ω V ) n = lim j→∞ K φ j ω n ε j = lim j→∞ V\K φ j ω n ε j ≤ lim j→∞ Vol 1 2 ω ε j ( V \ K) = Vol 1 2 p * ω V ( V \ K).
(3.2.6)

On the other hand, using Conjecture (SC), it follows that

V φ j 2n n-1 ω n ε j n-1 n ≤ C S V dφ j 2 ω ε j ω n ε j + V |φ j | 2 ω n ε j ≤ C S (1/j + 1) ≤ 2C S .
By Hölder inequality, one can derive

V\K |φ j | 2 ω n ε j ≤ V φ j 2n n-1 ω n ε j n-1 n Vol 1 n ω ε j ( V \ K) ≤ 2C S Vol 1 n ω ε j ( V \ K). (3.2.7) Thus, 1 = lim j→∞ V |φ j | 2 ω n ε j = lim j→∞ V\K |φ j | 2 ω n ε j + lim j→∞ K |φ j | 2 ω n ε j ≤ 2C S Vol 1 n p * ω V ( V \ K) + K |φ| 2 ω n = 2C S Vol 1 n p * ω V ( V \ K) + Vol p * ω V (K)|φ| 2 ≤ 2C S Vol 1 n p * ω V ( V \ K) + Vol p * ω V ( V \ K) Vol p * ω V (K) . (3.2.8)
Here the first inequality comes from (3.2.7) and second inequality is referred to (3.2.6). Since V reg \ Exc(p) is connected by the irreducibility of V, we can choose a sequence of connected compact subset

K j ⊂ V reg \ Exc(p) such that K j ⊂ K j+1 for all j and Vol p * ω V ( V \ K j ) ---→ j→+∞ 0.
Then the RHS of (3.2.8) tends to zero and this yields a contradiction.

Proposition 3.2.1 follows now from Theorem 3.1.1, (3.2.2), (3.2.3), Conjecture (SC) and 3.2.2.

Proof of Theorem 3.0.1

We are now going to construct a bounded Gauduchon factor on X reg by induction. The first step consists in constructing bounded Gauduchon factors when we blow down a variety. We closely follow the strategy in our previous work [Pan22, Theorem 3.1].

Proposition 3.2.3. Under Setting (G) and suppose that for all ε ∈ (0, 1], there exists a normalized bounded Gauduchon factor ρ ε on V reg with respect to the hermitian metric ω ε . Then there is a function

ρ ∈ C ∞ (V reg ) such that 1 ≤ ρ ≤ C G and dd c (ρω n-1 V ) = 0 on V reg .
Proof. We shall apply standard elliptic theory on some relatively compact subsets of V reg \ Exc(p) to get a smooth function ρ. This ρ is the limit of (ρ ε j ) j∈N for a sequence ε j → 0 when j → +∞.

We set

P ε = ∆ * ω ε and fix U 1 ⋐ U 2 ⋐ V reg \ Exc(p)
which are connected open subsets. On U 2 , the Riemannian metric g 0 induced by p * ω V is quasi-isometric to the metric g ε induced by ω ε , and the volume form p * ω n V is comparable with ω n ε . In other words, we have a uniform constant C U 2 > 0 such that for all ε ∈ (0, 1],

C -1 U 2 ⟨•, •⟩ p * ω V ≤ ⟨•, •⟩ ω n ε ≤ C U 2 ⟨•, •⟩ p * ω V , and C -1 U 2 p * ω n V ≤ ω n ε ≤ C U 2 p * ω n V (3.2.9) on U 2 .
By Gårding inequality, we have

∥u∥ L 2 2 (U 1 ,p * ω V ) ≤ C U 1 ,U 2 ∥P ε u∥ L 2 (U 2 ,p * ω V ) + ∥u∥ L 2 (U 2 ,p * ω V )
for all u ∈ C ∞ c (U 2 ). The constant C U 1 ,U 2 can be chosen independent of ε because the coefficients of P ε move smoothly in ε on U 2 . Choose a cut-off function χ such that supp(χ) ⊂ U 2 and χ ≡ 1 on U 1 . From Gårding inequality, it follows that

∥ρ ε ∥ L 2 2 (U 1 ,p * ω V ) ≤ C U 1 ,U 2 ∥P ε (χρ ε )∥ L 2 (U 2 ,p * ω V ) + ∥χρ ε ∥ L 2 (U 2 ,p * ω V ) .
(3.2.10)

In (3.2.10), the second term ∥χρ ε ∥ L 2 (U 2 ,p * ω V )
is uniformly bounded thanks to Proposition 3.2.1. Hence, we only need to estimate ∥P ε (χρ ε )∥ L 2 (U 2 ,p * ω V ) . Note that

P ε (χρ ε ) = n ω n ε dd c (χρ ε ω n-1 ε ) = n ω n ε 2dρ ε ∧ d c χ ∧ ω n-1 ε + χdd c (ρ ε ω n-1 ε ) + ρ ε dd c (χω n-1 ε ) -χρ ε dd c ω n-1 ε = 2 ⟨dρ ε , dχ⟩ ω ε + ρ ε P ε (χ) -ρ ε χ dd c ω n ε ω n ε . (3.2.11)
Obviously, ρ ε P ε (χ) and ρ ε χ dd c ω n-1 ε ω n ε are uniformly bounded, so we only need to control the L 2 -norm of the first term ⟨dρ ε , dχ⟩ ω ε :

U 2 ⟨dρ ε , dχ⟩ ω ε 2 p * ω n V ≤ C 2 U 2 sup U 2 |dχ| 2 p * ω V U 2 |dρ ε | 2 ω ε ω n ε ≤ C 2 U 2 sup U 2 |dχ| 2 p * ω V V |dρ ε | 2 ω ε ω n ε ≤ C 2 U 2 sup U 2 |dχ| 2 p * ω V nB 2 V ρ 2 ε ω n ε .
Here the first line is by Cauchy-Schwarz inequality and (3.2.9). The fourth line follows from Lemma 3.1.3 by taking F ′ (x) = n and G(x) = nx 2 2 . By Proposition 3.2.1 and (3.2.3), we have

1 ≤ ρ ε ≤ C G and Vol ω ε ( V) ≤ C Vol . One can find a uniform bound of ∥P ε (χρ ε )∥ L 2 (U 2 ,p * ω V ) . Hence, ∥ρ ε ∥ L 2 2 (U 1 ,p * ω V )
is uniformly bounded by some uniform constant C(U 1 , U 2 ). For higher order estimates, we apply higher order Gårding inequalities on the fixed domains

U 1 ⋐ U 2 ⋐ V reg \ Exc(p): ∥u∥ L 2 s+2 (U 1 ,p * ω V ) ≤ C s,U 1 ,U 2 ∥P ε u∥ L 2 s (U 2 ,p * ω V ) + ∥u∥ L 2 (U 2 ,p * ω V ) for all u ∈ C ∞ c (U 2 ). Let U = (U i ) i∈N be a relatively compact exhaustion of V reg \ Exc(p)
. Differentiating (3.2.11) on both sides and using a bootstrapping argument, we obtain ∥ρ ε ∥ L 2 s (U 1 ,p * ω V ) < C(s, U ) where C(s, U ) does not depend on ε ∈ (0, 1]. By Rellich's theorem, there exists a subsequence (ρ ε j ) j∈N such that ρ ε j converges to ρ in C l (U 1 ) for all l ∈ N when ε j → 0. Therefore dd c (ρp * ω n-1 V ) = lim j→+∞ dd c (ρ ε j ω n-1 ε j ) = 0 on U 1 . Using a diagonal argument, we infer that there is a smooth function ρ on V reg \ Exc(p) ∼ -→ p V reg which is bounded between 1 and C G , and

satisfies dd c (ρω n-1 V ) = 0 on V reg .
Recall that µ : X → X is a resolution of singularities given by a composition of finitely many blowups with smooth centers,

X = X m p m -→ X m-1 p m-1 --→ • • • p 2 -→ X 1 p 1 -→ X 0 = X where p k : X k → X k-1 is a blowup with non-singular center. By Gauduchon's theorem [Gau77], for each ε(m) = (ε 1 , • • • , ε m ) ∈ (0, 1] m ,
there exists a normalized Gauduchon factor ρ ε(m) on X m with respect to the metric ω ε(m) . Proposition 3.2.3 says that for any fixed

(ε 1 , • • • , ε m-1 ) ∈ (0, 1] m-1 there exists a normalized bounded Gauduchon factor ρ (ε 1 ,••• ,ε m-1 ) on X reg m-1 with respect to ω (ε 1 ,••• ,ε m-1 ) . Again fixing (ε 1 , • • • , ε m-2 ) ∈ (0, 1] m-2 and taking the limit ε m-1 → 0, one gets a normalized bounded Gauduchon factor ρ (ε 1 ,••• ,ε m-2 ) on X reg m-2 with respect to the metric ω (ε 1 ,••• ,ε m-2 ) .
Repeating the argument, we obtain a bounded Gauduchon factor ρ on X reg with respect to ω. The uniqueness of ρ has already been given in [START_REF] Pan | Singular Gauduchon metrics[END_REF]Theorem B]. This completes the proof of Theorem 3.0.1.

Families of singular Gauduchon metrics

In this section, we study families of hermitian varieties and establish a uniform upper bound on the normalized bounded Gauduchon factor on each fibre. We then use the uniform estimate of normalized Gauduchon factors to prove the Sup-L 1 comparison of quasi-plurisubharmonic functions in families of hermitian varieties where all fibres have only isolated singularities.

Setup (F).

Let (X , ω) be an (n + 1)-dimensional hermitian variety. Suppose that π : X → D is a proper, surjective, holomorphic map with connected fibres and for all t ∈ D, the fibre X t := π -1 (t) is a variety. For each t ∈ D, we define a hermitian metric ω t on the fibre X t by restriction (i.e. ω t := ω| X t ).

Uniform estimate of normalized Gauduchon factors in families

By Theorem 3.0.1, one can find a normalized bounded Gauduchon factor ρ t on each fibre (X t , ω t ). Using Theorem 3.1.1, we obtain a uniform estimate in families: Proposition 3.3.1 (=Proposition 3.0.2). In Setting (F), there is a uniform upper bound C G of the normalized Gauduchon factors ρ t on X t for all t ∈ D 1/2 . Sketch of proof of Proposition 3.3.1. To apply Theorem 3.1.1, we need to figure out that the constants B(ω t ), C S (ω t ), C P (ω t ), Vol(X t , ω t ) are uniformly bounded.

In a local embedding, we have -Bω n ≤ dd c ω n-1 ≤ Bω n on X ; hence there is a constant B ≥ 0 independent of t such that

-Bω n t ≤ dd c t ω n-1 t ≤ Bω n t (3.3.1)
for all t ∈ D 1/2 . By the continuity of the total mass of currents (ω n ∧ [X t ]) t∈D 1/2 (cf. [Pan22, Section 1.4] for details), we have a uniform constant C V ≥ 1 such that

C -1 V ≤ Vol ω t (X t ) ≤ C V , ∀t ∈ D 1/2 . (3.3.2)
A uniform Sobolev constant in family can be produced by Wirtinger inequality and Michael-Simon's Sobolev inequality on minimal submanifolds [START_REF] Michael | Sobolev and mean-value inequalities on generalized submanifolds of R n[END_REF]. A uniform Poincaré constant in families was given by Yoshikawa [START_REF] Yoshikawa | Degeneration of algebraic manifolds and the spectrum of Laplacian[END_REF] and Ruan-Zhang [RZ11]. For convenience, the reader is also referred to [DGG20, Proposition 3.8 and 3.10] (the Kähler assumption made by Di Nezza-Guedj-Guenancia being unnecessary for this part of argument). Therefore, for all t ∈ D 1/2 , there exists uniform constants C S and C P such that 

∀ f ∈ L 2 1 (X reg t ), X t | f | 2n n-1 ω n t n-1 n ≤ C S X t |d f | 2 ω t ω n t + X t | f | 2 ω n t (3.3.3) and ∀ f ∈ L 2 1 (X reg t ) and X t f ω n t = 0, X t | f | 2 ω n t ≤ C P X t |d f | 2 ω t ω n t . ( 3 
( ω t + dd c t ψ t,j ) ∧ p * t ω n-1 t ---→ j→+∞ Y t ( ω t + dd c t p * t φ t ) ∧ p * t ω n-1 t . Let ρ t ∈ C ∞ (X reg t ) ∩ L ∞ (X reg 
( ω t + dd c t ψ t,j ) ∧ p * t ω n-1 t ≤ Y t ( ω t + dd c t ψ t,j ) ∧ p * t (ρ t ω n-1 t ) = Y t ω t ∧ p * t (ρ t ω n-1 t ) ≤ Y t C G ω t ∧ p * t ω n-1 t ≤ C G Vol ω t (Y t ).
Therefore, one finds for all t ∈ D 1/2 \ {0}

X t (ω t + dd c t φ t ) ∧ ω n-1 t ≤ C G Vol ω t (Y t ). Similarly to (3.3.2), there is a uniform bound C V,Y > 0 of Vol ω t (Y t ) for all t ∈ D 1/2 .
When t = 0, standard arguments (cf eg. [GZ17, Proposition 8.5]) allow one to find a constant C > 0 such that -C ≤ X 0 (φ 0sup X 0 φ 0 )ω n 0 for all φ 0 ∈ PSH(X 0 , ω 0 ). One can prove that there exists a constant C ′ > 0 such that for all φ 0 ∈ PSH(X 0 , ω 0 ),

X 0 (ω 0 + dd c 0 φ 0 ) ∧ ω n-1 0 ≤ C ′
and we conclude the proof.

Sup-L 1 comparison

Finally, we establish a Sup-L 1 comparison of ω t -psh functions in families of hermitian varieties with isolated singularities. This partially answers the conjecture [DGG20, Conjecture 3.1] and generalizes [Pan23, Proposition 5.2] which showed that Sup-L 1 comparison holds for smoothing families with only isolated singularities.

Proposition 3.3.4 (=Proposition 3.0.3). Under Setting (F), suppose that each fibre X t has only isolated singularities. Then there is a constant C SL > 0 such that for all t ∈ D 1/2

∀φ t ∈ PSH(X t , ω t ) sup X t φ t -C SL ≤ 1 V t X t φ t ω n t ≤ sup X t φ t
where V t is the volume of X t with respect to ω t .

We give a proof of Proposition 3.3.4 closely following [DGG20, Section 3.3]:

Sketch of proof of Proposition 3.3.4. Note that we only need to take care of sequences of supnormalized ω t k -psh functions (φ t k ) k where t k ---→ k→+∞ 0.

Step 1: Choose a good covering and a test function. Let Z be the singular locus of π. Following the same argument as in [DGG20, page 30, Step 2], up to shrinking D, we can find a finite open covering (V i ) i∈I of X such that (i) each point of Z ∩ X 0 belongs to exactly one element of V i of the covering, we denote by J the collection of indices of these open subsets;

(ii) on each V i , we have a smooth strictly psh function g i such that

C -1 g dd c g i ≤ ω ≤ C g dd c g i and 0 ≤ g i ≤ C g
for a uniform constant C g > 0;

(iii) for all i ∈ I, Z ∩ ∂V i = ∅;

(iv) for each i ∈ J, there is a relatively compact open subset W i ⋐ V i with Z ∩ W i ̸ = ∅, Z ∩ ∂W i = ∅ and Z ∩ ∂W = ∅ where W := ∪ i∈J W i .
In particular, up to shrinking D, one can find δ > 0 such that for any t ∈ D,

dist ω (∂W ∩ X t , Z ) ≥ δ.
Let χ i be a cut-off function supported in V i and χ i ≡ 1 in a neighborhood of W i . Set g = ∑ i∈J χ i g i . Obviously, we have ω ≤ C g dd c g on W. Furthermore, we may assume -C g ω ≤ dd c g ≤ C g ω on X by choosing larger C g .

Step 2: Uniform L 1 -estimate away from singularities. Define a set

R := {p ∈ X | dist ω (p, Z ) > δ/2} .
Since R c lies in W, after shrinking D, we can cover R by finitely many open subsets (U i ) i away from the singular locus. We may assume that π is locally trivial on R with respect to (U i ) i because π is a submersion on R.

Following the argument in [DGG20, page 31,

Step 3], one can prove that there is a constant C > 0 and a subsequence of (t k ) k such that sup

R∩X t k φ t k ≥ -C.
Then one can apply the similar method in locally trivial cases (cf. [DGG20, Section 3.2]) to show that

R∩X t k (-φ t k )ω n t k ≤ C R
for some uniform constant C R > 0.

Step 3: Conclusion. Recall that on W we have ω ≤ C g dd c g. Define a smooth (n, n)-form

Ω := ω n -C n g (dd c g) n .
It is easy to see that Ω| W ∩X t ≤ 0 and Ω t := Ω| X t ≤ C Ω ω n t for some uniform constant C Ω > 0. Note that R c ⊂ W. We have

X t k (-φ t k )Ω t k = R∩X t k (-φ t k )Ω t k + R c ∩X t k (-φ t k )Ω t k ≤ C Ω R∩X t k (-φ t k )ω n t k ≤ C R C Ω .
On the other hand, we have

X t k (-φ t k )(dd c t k g) n = X t k -gdd c t k φ t k ∧ (dd c t k g) n-1 = - X t k g(ω t k + dd c t k φ t k ) ∧ (dd c t k g) n-1 + X t k gω t k ∧ (dd c t k g) n-1 ≤ C n g X t k (ω t k + dd c t k φ t k ) ∧ ω n-1 t k + C n g Vol ω t (X t ) ≤ C n g C Lap + C n g Vol ω t (X t ).
The fourth line comes directly from Lemma 3.3.3. All in all, we obtain a uniform L 1 -estimate of sup-normalized ω t k -psh functions:

X t k (-φ t k )ω n t k = C n g X t k (-φ t k )(dd c t k g) n + X t k (-φ t k )Ω t k ≤ C 2n g C Lap + C 2n g C V + C R C Ω .

Uniform Sobolev inequality: Ou's partial result

In this section, we recall Ou's partial solution [START_REF] Ou | Admissible metrics on compact Kähler varieties[END_REF]Prop. 4.10] to Conjecture (SC). Fix k ∈ [0, 2n) and we refine a few estimates in the original proof. In the sequel, we denote by H k the k-dimensional Hausdorff measure.

We first recall a corollary of Stokes formula and Wirtinger inequality (cf. [Dem12, p. 137]):

Lemma 3.4.1. Let (X, ω) be a Kähler manifold and Y ⊂ X be a complex submanifold. Then Y is a minimal submanifold with respect to ω. [START_REF] Ou | Admissible metrics on compact Kähler varieties[END_REF]Lem. 4.12]). Let X ⊂ C N be an n-dimensional analytic subvariety defined around the origin 0 ∈ C N . Then for all k ∈ [0, 2n), there is a constant C 1 (n, k, D) := 2nD 2n-k such that for all ρ > 0,

B ρ (0)∩X |z| -k dH 2n ≤ C 1 ρ 2n-k
where D is a constant so that H 2n (B r (0) ∩ X) ≤ Dr 2n for all r > 0.

Proof. We indicate a slightly simpler variant of Ou's proof. By Lebesgue integral formula, for all non-negative µ-measurable function f , we have

E f dµ = +∞ 0 µ ({ f > s} ∩ E) ds.
From the above formula, we derive

B ρ (0)∩X |z| -k dH 2n = +∞ 0 H 2n {|z| -k > s} ∩ (B ρ (0) ∩ X) ds = +∞ 0 H 2n {|z| < s -1/k } ∩ (B ρ (0) ∩ X) ds = +∞ ρ -k H 2n (B s -1/k (0) ∩ X) ds + ρ -k 0 H 2n (B ρ (0) ∩ X)ds ≤ ρ 0 kt -k-1 H 2n (B t (0) ∩ X) dt + Dρ 2n-k .
Thus, we obtain

B ρ (0)∩X |z| -k dH 2n ≤ 2nD 2n -k ρ 2n-k .
From here on, the proof is identical to Ou's original one [Ou22, Sec. 4.C]. We give more details for the reader's convenience. Lemma 3.4.4 ([Ou22, Lem. 4.14]). For any A > 0, there is a constant ζ > 0 such that for all ε ∈ (0, 1],

B εζ (0) ω n ε ≤ Aε 2n .
Proof. The proof is extracted from [START_REF] Ou | Admissible metrics on compact Kähler varieties[END_REF]Lem. 4.14]. Observe that

ω n ε | X = dd c |z| 2 + ε 2 dd c log |z| 2 n X = (1 -ε 2 )ω 0 + ε 2 ω 1 n X = n-1 ∑ j=0 n j (1 -ε 2 ) n-j ε 2j ω n-j 0 ∧ ω j 1 + ε 2n ω n 1 | X .
Note that

ω 0 ≤ ω 1 ≤ B |z| 2 ω 0 .
Hence, we have

ω n ε | X ≤ n-1 ∑ j=0 n j A j ε 2j |z| 2j ω n 0 | X + ε 2n ω n 1 | X .
By Lemma 3.4.3,

B ερ (0)∩X n-1 ∑ j=0 n j B j ε 2j |z| 2j ω n 0 ≤ n-1 ∑ j=0 A j ε 2j C 1 (n, 2j, D)(ερ) 2(n-j) ≤ C 2 (n, D, B)ε 2n ρ 2 .
On the other hand, one can identify (B ερ (0) \ {0}, ω 1 ) to be a ερ-tubular neighborhood of the exceptional divisor E of the blowup at the origin C N → C N . One can find a constant C 3 such that

B ερ (0)∩X ω n 1 ≤ C 3 (ερ) 2
and thus, we obtain

B ερ (0)∩X ω n ε ≤ C 2 ε 2n ρ 2 + C 3 ε 2n+2 ρ 2 .
We recall a crucial result from Whitney's stratification theorem [START_REF] Whitney | Tangents to an analytic variety[END_REF]Thm. 19.2]:

Lemma 3.4.5 [START_REF] Ou | Admissible metrics on compact Kähler varieties[END_REF]Lem. 4

.15]).

There is an open neighborhood U of 0 in C N and a constant γ > 0 such that for any point x ̸ = 0 of X reg ∩ U, the following inequality holds:

e x , e T x = |e T x | 2 ≥ γ,
where e x is the unit vector pointing from 0 to x and e T x is the orthogonal projection of e x on to T x X reg . Lemma 3.4.6 [START_REF] Ou | Admissible metrics on compact Kähler varieties[END_REF]Lem. 4.16]). With the open neighborhood U in the above lemma, for any ρ > 0 and for any non-negative C 1 -function h supported in the smooth locus of U ∩ X \ {0}, we have

X∩∂B ρ (0) hdσ 0 ≤ 1 γ 1/2 X\B ρ (0) |dh| ω 0 ω n 0
where dσ 0 is the measure induced by ω 0 .

Proof. Set r(x) := |x|. We have

|∇ X r| = |(∇ C N r) T | ≤ |∇ C N r| = 1 and div X (r∇ C n r) = 2n (cf.
[HS74, Eq. (3.6)]). Note that for any smooth function f and for any vector field V :

X reg → TC N , we have div X ( f V) = f div X (V) + V, ∇ X f = f div X (V) + V T , ∇ X f ; hence div X (∇ C N r) = 1 r div X (∇ C N r) -∇ X r 2 ≥ 0.
From [HS74, Eq. (3.2)], we obtain a divergence formula

X\B ρ (0) div X (V)dV X = - X\B ρ (0) ⟨V, H X ⟩ dV X + X∩∂B ρ (0) ⟨V, ν⟩ dV ∂B ρ (0)∩X ,
where H X is the mean curvature of X and ν it the exterior normal vector field to X \ B ρ (0) on X ∩ ∂B ρ (0) (in this case ν = -∇ X r |∇ X r| ). By Wirtinger inequality, we know that H X ≡ 0. Then we get 0 ≤

X\B ρ (0) h div X (∇ C N r)dV X = X\B ρ (0) div X (h∇ C N r) -∇ C N r, ∇ X h dV X = - X∩∂B ρ (0) h ∇ X r dV X∩∂B ρ (0) - X\B ρ (0) ∇ C N r, ∇ X h dV X . Thus, X∩∂B ρ (0) h ∇ X r dV ∂B ρ (0)∩X ≤ X\B ρ (0) ∇ C N r, ∇ X h dV X ≤ X\B ρ (0) ∇ C N r ∇ X h dV X = X\B ρ (0) ∇ X h dV X .
By Lemma 3.4.5, we have |∇ X r| ≥ γ 1/2 ; hence the result follows.

Proposition 3.4.7 ([Ou22, Prop. 4.10]). Let X ⊂ C N be an n-dimensional complex analytic subvariety defined around the origin 0. Let z be a coordinate system of C N . We consider the Kähler forms for 0 < ε ≤ 1,

ω ε = dd c (|z| 2 + ε 2 log |z| 2 ).
Then there is a neighborhood U of 0 in C N and a uniform Sobolev constant C S such that for all ε ∈ (0, 1], for any non-negative C 1 -function h which is compactly supported in U ∩ X reg \ {0},

X hω n ε ≤ C S X |dh| ω ε ω n ε .
Proof. Let U be an open set as in Lemma 3.4.5. Note that one has an isometry as follows:

( C, ω ε ) ( C, ε 2 ω 1 ) z z ′ := z/ε ≃ ∈ ∈ .
Then one can find constants b, R > 0 such that on ( C N , ω ε )

• the sectional curvature of is bounded from above by b 2 ε 2 ;

• the injectivity radius is at least δR.

Let A be a small positive constant such that the following inequality holds

b -1 arcsin b 2A v 2n 1/2n ≤ R 2
where v 2n is the volume of unit ball in R 2n . From Lemma 3.4.4, we find ζ > 0 such that for all ε ∈ (0, 1)

B εζ (0)∩X ω n ε ≤ Aε 2n .
Then by [HS74, Theroem 2.1] and Lemma 3.4.1, there is a constant c > 0 such that for any non-negative C 1 function g supported in X reg ∩ B εζ (0) \ {0}, we have

X∩B δζ (0) g 2n 2n-1 ω n ε 2n-1 2n ≤ c X∩B δζ (0) |dg| ω ε ω n ε . (3.4.1)
Let h be a non-negative C 1 function supported in X reg ∩ U \ {0}. Multiplying smooth cut-offs approximating 1 B εζ (0) , from 3.4.1, we obtain

X∩B εζ (0) h 2n 2n-1 ω n ε 2n-1 2n ≤ c X∩B εζ (0) |dh| ω ε ω n ε + X∩∂B εζ (0) hdσ ε
where dσ ε is the measure on ∂B εζ (0) induced by ω ε .

Recall that ω 0 ≤ ω 1 ≤ B |z| 2 ω 0 . On {|z| ≥ εζ}, we have ω 0 ≤ ω ε ≤ 1 + B ζ 2 ω 0 . Again, multiplying h by smooth cut-offs approximating 1 C N \B εζ (0) and applying Michael-Simon's Sobolev inequality, one finds a uniform constant c ′ = c ′ (n, B, ζ) and

X\B εζ (0) h 2n 2n-1 ω n ε 2n-1 2n ≤ c ′ X\B εζ (0) |dh| ω ε ω n ε + X∩∂B εζ (0) hdσ ε . Note that dσ δ ≤ 1 + B ζ 2
2n-1 dσ 0 . From Lemma 3.4.6, we get

X∩∂B εζ (0) hdσ 0 ≤ 1 γ 1/2 X\B εζ (0) |dh| ω 0 ω n 0 ≤ 1 + B ζ 2 γ 1/2 X\B εζ (0) |dh| ω ε ω n 0 ≤ 1 + B ζ 2 γ 1/2 X\B εζ (0) |dh| ω ε ω n ε .
Thus, we have

X∩B εζ (0) h 2n 2n-1 ω n ε 2n-1 2n ≤ c   1 + 1 + B ζ 2 2n γ 1/2    X∩B εζ (0) |dh| ω ε ω n ε .
and

X\B εζ (0) h 2n 2n-1 ω n ε 2n-1 2n ≤ c ′   1 + 1 + B ζ 2 2n γ 1/2    X\B εζ (0) |dh| ω ε ω n ε .
All in all, we conclude that

X h 2n 2n-1 ω n ε 2n-1 2n ≤ (c + c ′ )   1 + 1 + B ζ 2 2n γ 1/2    X |dh| ω ε ω n ε .

Introduction

Let π : X → D be a family of hermitian varieties (i.e. irreducible, reduced, complex analytic spaces). Recently, Di Nezza-Guedj-Guenancia [START_REF] Nezza | Families of singular Kähler-Einstein metrics[END_REF] developed the first steps of a pluripotential theory in families of Kähler spaces and proved uniform bounds for Kähler-Einstein potentials in several cases. The main purpose of this article is to generalize their theory and establish uniform estimates for complex Monge-Ampère equations in families of hermitian varieties.

The complex Monge-Ampère equation is a powerful tool in complex geometry. Many interesting geometric problems (e.g. the Kähler-Einstein equation) can be reduced to such type of equations. Yau's celebrated resolution of the Calabi conjecture [START_REF] Yau | On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. I[END_REF] and the resolution of Yau-Tian-Donaldson conjecture on the Fano manifolds by Chen-Donaldson-Sun [START_REF] Chen | Kähler-Einstein metrics on Fano manifolds. I, II, III[END_REF] are landmarks in smooth Kähler-Einstein problems.

In recent decades, following the works of Yau [START_REF] Yau | On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. I[END_REF] and Tsuji [START_REF] Tsuji | Existence and degeneration of Kähler-Einstein metrics on minimal algebraic varieties of general type[END_REF], degenerate complex Monge-Ampère equations have been intensively studied. The breakthrough results of Kołodziej [START_REF] Kołodziej | The complex Monge-Ampère equation[END_REF] and Eyssidieux-Guedj-Zeriahi [START_REF] Eyssidieux | Singular Kähler-Einstein metrics[END_REF] led to many important advances. In [EGZ09], Yau's theorem has been generalized to compact Kähler varieties with log terminal singularities. For varieties with ample canonical divisor and semi-log canonical singularities, Berman-Guenancia [START_REF] Berman | GUENANCIA -"Kähler-Einstein metrics on stable varieties and log canonical pairs[END_REF] applied the variational approach developed in [START_REF] Berman | A variational approach to complex Monge-Ampère equations[END_REF] to extend Aubin-Yau's result [START_REF] Aubin | Équations du type Monge-Ampère sur les variétés kählériennes compactes[END_REF][START_REF] Yau | On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. I[END_REF] on stable varieties. On singular Fano varieties, Berman-Boucksom-Jonsson [BBJ21], Li-Tian-Wang [START_REF] Li | On the Yau-Tian-Donaldson conjecture for singular Fano varieties[END_REF], and Li [START_REF] Li - | G-uniform stability and Kähler-Einstein metrics on Fano varieties[END_REF] built a connection between singular Kähler-Einstein metrics and K-stability.

In hermitian contexts, the construction of hermitian Calabi-Yau metrics (i.e. Chern-Ricci flat metrics) is more difficult because the metrics are no longer closed. A Chern-Ricci flat hermitian metric on a complex manifold X can be constructed by solving the complex Monge-Ampère equation

(ω + dd c φ) n = c f dV X , and sup

X φ = 0 where • ω is a smooth (1, 1)-form,
• dV X is a smooth volume form on X,

• f ∈ L p (X, dV X ) with p > 1,
and the pair (φ, It is important to study non-Kähler objects and how special hermitian metrics evolve when complex structures vary. For example, to understand moduli spaces of Calabi-Yau manifolds, a large class of non-Kähler Calabi-Yau threefolds was built via conifold transitions introduced by Clemens and Friedman [START_REF] Clemens | Double solids[END_REF][START_REF] Friedman | Simultaneous resolution of threefold double points[END_REF]. Reid [START_REF] Reid | The moduli space of 3-folds with K = 0 may nevertheless be irreducible[END_REF] speculated that all Calabi-Yau threefolds should form a connected family by conifold transitions. Since then, these models attracted a lot of attention (cf. [Fri91, Tia92, Ros06, RZ11, RZ11, Chu12, FLY12, CPY21] and references therein). This is our motivation to study families of singular Chern-Ricci flat metrics.

c) ∈ (PSH(X, ω) ∩ L ∞ (X)) × R >0 is the unknown. When ω is a

Uniform L ∞ -estimate

Before stating our results, we first fix some geometric setting for families π : X → D.

Geometric setting (GS).

Let X be an (n + 1)-dimensional variety. Suppose that π : X → D is a proper surjective holomorphic map with connected fibres X t := π -1 (t) which are n-dimensional varieties. Let ω be a hermitian metric on X in the sense of Definition 4.1.1. For every t ∈ D, we define a hermitian metric ω t on the fibre X t by restriction (i.e. ω t = ω| X t ).

In the sequel, we always assume that families of hermitian varieties π : (X , ω) → D satisfy the geometric setting (GS). We also impose a sup-L 1 comparison (see Conjecture (SL)). Under such conditions, we establish a uniform bound for solutions to complex Monge-Ampère equations in families of hermitian varieties: Theorem 4.0.1. Let π : (X , ω) → D be a family of compact, locally irreducible, hermitian varieties and 0 ≤ f t ∈ L p (X t , ω n t ) be a family of densities. Assume that π : (X , ω) → D fits into Conjecture (SL) and ( f t ) t∈D satisfies the following integral bounds: there exist constants c f ,

C f > 0 such that for all t ∈ D, c f ≤ X t f 1 n t ω n t and ∥ f t ∥ L p (X t ,ω n t ) ≤ C f . (IB)
For each t ∈ D, let the pair (φ t , c t ) ∈ (PSH(X t , ω t ) ∩ L ∞ (X t )) × R >0 be a solution to the complex Monge-Ampère equation:

(ω t + dd c t φ t ) n = c t f t ω n t , and sup

X t φ t = 0.
Then there exists a constant

C MA = C MA (c f , C f , C SL , X , ω) such that for all t ∈ D 1/2 , c t + c -1 t + ∥φ t ∥ L ∞ ≤ C MA .

Sup-L 1 comparison conjecture

In pluripotential theory, there is a conjecture proposed by Di Nezza-Guedj-Guenancia [DGG20, Conjecture 3.1] which says that if X 0 is irreducible then one has the following sup-L 1 comparison:

Conjecture (SL).

There exists a constant C SL > 0 such that: the inequality

∀φ t ∈ PSH(X t , ω t ), sup X t φ t -C SL ≤ 1 V t X t φ t ω n t ≤ sup X t φ t
holds for all t ∈ D 1/2 , where V t is the volume of X t with respect to the hermitian metric ω t .

In the Kähler setting, Di Nezza-Guedj-Guenancia [DGG20, Proposition 3.3] established Conjecture (SL) in the following cases:

(i) The map π is locally trivial or projective;

(ii) The fibres X t are smooth for t ̸ = 0;

(iii) The fibres X t have only isolated singularities for every t ∈ D.

One should notice that the irreducibility of all the fibres is a necessary condition for the left hand side inequality in Conjecture (SL) (cf. [DGG20, Example 3.5]) and it is the reason why we always assume that the fibres are irreducible in the geometric setting (GS).

To establish Conjecture (SL) in hermitian setting, we impose the following assumptions:

(iii) D p,q (X) (resp. D p,p (X) R ) is the space of compactly supported (resp. real) smooth forms of bidegree (p, q);

(iv) The notion of currents, D ′ p,q (X) (resp. D ′ p,p (X) R ), is defined by acting on (resp. real) smooth forms with compact support.

The operators d, d c and dd c are well-defined by duality (see [START_REF]Mesures de Monge-Ampère et caractérisation géométrique des variétés algébriques affines[END_REF] for details).

Plurisubharmonic functions

Let Ω is an open domain in C n . We say that u is a plurisubharmonic function (psh for short) on Ω if it is upper semicontinuous and satisfies the sub-mean inequality on each complex line through every point x ∈ Ω:

u(x) ≤ 1 2π 2π 0 u(x + ζe iθ )dθ, ∀x ∈ Ω and ∀ζ ∈ C n such that |ζ| < dist(x, ∂Ω).
We denote by PSH(Ω) the space of all psh functions on Ω. Suppose that X is a reduced complex analytic space equipped with a hermitian metric ω.

Definition 4.1.2. Let u : X → [-∞, ∞) be a given function. We say that (i) u is a psh function on X if it is locally the restriction of a psh function under local embeddings of X into C N ;

(ii) u is quasi-plurisubharmonic (qpsh for short) on X if it can be locally written as the sum of a psh and a smooth function;

(iii) PSH(X, ω) is the set of all ω-plurisubharmonic (abbreviated to ω-psh), namely, the set of all qpsh functions u which satisfies ω + dd c u ≥ 0 in the sense of currents.

Remark 4.1.3. There is a weaker notion of (quasi-)plurisubharmonic functions that are defined only as being a locally bounded function on a variety X and its restriction to the complex manifold X reg is (quasi-)plurisubharmonic. On a locally irreducible variety, the stronger notion given above and the weaker notion are equivalent (cf. [Dem85, Théorème 1.7]). In this article, we assume that X also is locally irreducible in some places in order to make sense of the envelope constructions that might not be (quasi-)plurisubharmonic (in the strong sense) on locally reducible complex spaces.

Lelong numbers

Lelong numbers describe the local behavior of currents or psh functions near a point at which it has a log pole. Here we recall a generalized definition given by Demailly:

Definition 4.1.4 ([Dem82, Définition 3]). Let X be a complex analytic space. If T is a closed positive (p, p)-current on X and if x ∈ X is a fixed point, then the Lelong number of T at x is defined as the decreasing limit

ν(T, x) := lim r→0 1 r 2(n-p) {ψ<r} T ∧ (dd c ψ) n-p = {x} T ∧ (dd c log ψ) n-p
where ψ = ∑ i∈I |g i | 2 and (g i ) i∈I is any finite system of generators of the maximum ideal m X,x ⊂ O X,x .

Monge-Ampère capacities

The notion of Monge-Ampère capacities was given by Bedford and Taylor [START_REF]A new capacity for plurisubharmonic functions[END_REF]. Using Monge-Ampère capacities, they proved that the negligible sets are pluripolar.

Definition 4.1.5. Let E ⊂ Ω be a Borel subset. The Bedford-Taylor capacity (or Monge-Ampère capacity) is defined by

Cap(E; Ω) := sup E (dd c u) n u ∈ PSH(Ω) and -1 ≤ u ≤ 0 . Theorem 4.1.6 ([BT82]). A subset E ⊂ Ω is pluripolar if and only if Cap(E; Ω) = 0
For global versions, Kołodziej [START_REF]The Monge-Ampère equation on compact Kähler manifolds[END_REF] first defined the Monge-Ampère capacity on a given compact Kähler manifold (X, ω). The definition is analogous to the local cases:

Definition 4.1.7. Let E ⊂ X be a Borel subset. Define Cap ω (E) := E (ω + dd c u) n u ∈ PSH(X, ω) and -1 ≤ u ≤ 0 .
These definitions can also be extended to non-closed or non-positive form ω and singular complex analytic space X (cf. [Dem85, EGZ09, GZ17, GGZ23]).

Uniform L ∞ -estimate

In this section, we mainly pay attention to L ∞ -estimates of complex Monge-Ampère equations on pseudoconvex domains and compact hermitian varieties. We shall follow the method given by Guedj-Kołodziej-Zeriahi [START_REF] Guedj | Hölder continuous solutions to Monge-Ampére equations[END_REF] and Guedj-Lu [START_REF] Guedj | Quasi-plurisubharmonic envelopes 3: Solving Monge-Ampère equations on hermitian manifolds[END_REF] to produce a priori estimates. We also compute the precise dependence of these L ∞ -estimates on background data.

Local L ∞ -estimate

In this section, our goal is to establish a refined version of Kołodziej's a priori estimate [START_REF] Kołodziej | The complex Monge-Ampère equation[END_REF] of complex Monge-Ampère equation on singular strongly pseudoconvex domain. We recall the definition of a strongly pseudoconvex domain on a Stein space as in [GGZ23, Section 1]. Let S be a singular Stein space which is reduced and locally irreducible, of complex dimension n ≥ 1. There is a proper embedding S → C N for some N large. A domain Ω ⋐ S is strongly pseudoconvex if it admits a negative smooth psh exhaustion, i.e. a function ρ smooth strongly psh in a neighborhood Ω ′ of Ω such that Ω := {x ∈ Ω ′ | ρ(x) < 0}. Fix a hermitian metric β on C N and define a volume form on S by taking dV = β n | S .

First, we note that the following estimate always holds:

Volume-capacity comparison (VC).

For every k > 1, there exists a constant C VC,k > 0 such that

∀K ⋐ Ω, Vol(K) ≤ C VC,k Cap k (K; Ω).
The proof of the volume-capacity comparison will be given in Section 4.4 not only in a fixed pseudoconvex set Ω but also for families.

Fix a density 0 ≤ f ∈ L p (Ω, dV). Suppose that φ ∈ PSH(Ω) ∩ L ∞ (Ω) is the solution to the following Dirichlet problem of complex Monge-Ampère equation

   (dd c φ) n = f dV in Ω, φ = 0 on ∂Ω. (locMA)
In smooth setting, the existence, uniqueness and the L ∞ -estimate of the continuous solution of (locMA) has been constructed by Kołodziej [Koł98]. The existence and uniqueness have been extended by Guedj-Guenancia-Zeriahi [GGZ23, Theorem A] to singular contexts. Now, for singular setup, we prove the following refined version of Kołodziej's L ∞ -estimate:

Theorem 4.2.1 (Kołodziej's L ∞ -estimate). Fix 0 ≤ f ∈ L p (Ω, dV) with p > 1. Suppose that φ ∈ PSH(Ω) ∩ L ∞ (Ω) is the solution to the complex Monge-Ampère equation (locMA). Then

∥φ∥ L ∞ ≤ C Kol,p ∥ f ∥ 1 n L p where C Kol,p := 1 + e 1 -e -1 C 1/qn VC,2q 2 1+ 1 q Vol 1 nq 2 (Ω) n!C ρ ∥ρ∥ n L ∞ 1 nq , 1/p + 1/q = 1, dV ≤ C ρ (dd c ρ) n ,
and C VC,2q > 0 is a constant in the volume-capacity comparison (VC) such that Vol(K) ≤ C VC,2q Cap 2q (K; Ω) for all K ⋐ Ω.

Proof. The idea of proof comes from the work of Guedj-Kołodziej-Zeriahi [GKZ08, Section 1]. We are going to prove the following statement: given ε > 0, we have ∥φ∥ L ∞ (Ω) ≤ M ε where

M ε = ε + e 1 -e -1 C 1/qn VC,2q 2 ε 1+ 1 q ∥ f ∥ 2 n + 1 nq L p Vol 1 nq 2 (Ω) n!C ρ ∥ρ∥ n L ∞ 1 nq .
In particular, when ε = ∥ f ∥ 1 n L p , one get the desired estimate. Before explaining the proof, we recall some useful facts. For simplicity, we denote by Cap(•) = Cap(•; Ω). First, we recall some basic lemmas: Now, we need to control g(0) = Cap 1/n ({φ < -ε}). By Lemma 4.2.2 and Chebyshev inequality for a fixed constant r > 0, we have

ε 2 n Cap φ < - ε 2 - ε 2 ≤ {φ<-ε/2} (dd c φ) n = {φ<-ε/2} f dV ≤ Ω -2φ ε r f dV ≤ ∥ f ∥ L p Ω -2φ ε rq dV 1/q .
Put r = n/q. Note that integration by parts is legitimate in our setting (see [DGG20, Lemma 2.11]). By Błocki's estimate of integration by parts [Bło93, Theorem 2.1] and Hölder inequality, one can derive that

Ω (-φ) n dV ≤ C ρ Ω (-φ) n (dd c ρ) n ≤ n!C ρ ∥ρ∥ n L ∞ Ω (dd c φ) n ≤ n!C ρ ∥ρ∥ n L ∞ Vol 1 q (Ω) ∥ f ∥ L p .
One can infer

g(0) n = Cap({φ < -ε}) ≤ 2 ε n+ n q ∥ f ∥ 1+ 1 q L p Vol 1 q 2 (Ω) n!C ρ ∥ρ∥ n L ∞ 1/q .
All in all, we obtain the desired estimate:

∥φ∥ L ∞ ≤ ε + e 1 -e -1 C 1/qn VC,2q 2 ε 1+ 1 q ∥ f ∥ 2 n + 1 nq L p Vol 1 nq 2 (Ω) n!C ρ ∥ρ∥ n L ∞ 1 nq .

Global L ∞ -estimate

Suppose that (X, ω) is an n-dimensional compact locally irreducible hermitian variety. Fix a function 0 ≤ f ∈ L p (X, ω n ) with p > 1. First, we fix some notations:

(i) Denote the volume of X with respect to ω n by V;

(ii) A constant B ′ > 0 is such that -B ′ ω n ≤ dd c ω n-1 ≤ B ′ ω n ;
(iii) Fix a finite double cover (Ω j := {ρ j < 0}) 1≤j≤N and (Ω ′ j := {ρ j < -c j }) 1≤j≤N of X where for each j, the function ρ j is smooth on X, strictly psh near Ω j , and 0 ≤ ρ j ≤ 1 on X \ Ω j , and c j > 0 is a constant;

(iv) C Kol,p is a constant such that u j L ∞ (Ω j ) ≤ C Kol,p ∥ f ∥ 1 n L p (Ω j ,ω n ) where for each 1 ≤ j ≤ N,

Subsolution estimate

In [GL21, Theorem 2.1], Guedj and Lu constructed a subsolution (ψ, m) to the complex Monge-Ampère equation with a given L p -density g. We follow the same method to get subsolution estimate on singular varieties while also carefully keeping track of the dependence of data. Proposition 4.2.9. For all p > 1, there exist uniform constants m p , M p > 0 such that for every 0 ≤ g ∈ L p (X, ω) with ∥g∥ L p = 1, there is a function ψ ∈ PSH(X, ω) ∩ L ∞ (X) satisfying (ω + dd c ψ) n ≥ m p gω n and osc X ψ ≤ M p .

Precisely, the constants m p and M p can be taken as

m p = c ρ N A ρ C Kol,p + 1 and M p = C Kol,p 1 A ρ + 1 .
Proof. For each j, let the function u j ∈ PSH(Ω j ) ∩ L ∞ (Ω j ) be the unique solution to the following complex Monge-Ampère equation

   (dd c u j ) n = gω n in Ω j , u j = -1 on ∂Ω j .
From Theorem 4.2.1, there is a constant C Kol,p > 0 such that for all j,

u j L ∞ ≤ C Kol,p ∥g∥ 1/n L p (Ω j ,ω n ) + 1 ≤ C Kol,p + 1.
Now, we consider the psh functions (v j ) j defined by v j := max u j , C Kol,p +1 c j ρ j for each j. One can see that the following properties are satisfied

• v j = u j in Ω ′ j and (dd c v j ) n = gω n in Ω ′ j ; • v j = C Kol,p +1 c j
ρ j on X \ Ω j and near the boundary of ∂Ω j .

From the construction, one can check that for every j, A ρ (CKol,p+1) c ρ ω + dd c v j ≥ 0 as well. We define the subsolution ψ as follows

ψ = c ρ N A ρ C Kol,p + 1 N ∑ j=1 v j .
Note that in Ω ′ j , we have

(ω + dd c ψ) n = c ρ N A ρ C Kol,p + 1 N ∑ j=1 A ρ C Kol,p + 1 c ρ ω + dd c v j n ≥ c ρ N A ρ C Kol,p + 1 (dd c u j ) n = c ρ N A ρ C Kol,p + 1 gω n .
Then we derive that

ψ ≤ 1 A ρ and ψ ≥ -C Kol,p -1 =⇒ osc X ψ ≤ 1 A ρ + C Kol,p + 1. L ∞ -estimate
We now prove an a priori L ∞ -estimate following the method in [GL21, Theorem 2.1].

Theorem 4.2.10. Let (X, ω) be a compact hermitian variety with dim C X = n. Fix a density Proof. We consider a twisted function g ′ = e -εφ f for some ε > 0. Fix constants

0 ≤ f ∈ L p (X, ω n ). Assume that c f ≤ X f 1 n ω n for a constant c f > 0. Let the pair (φ, c) ∈ (PSH(X, ω) ∩ L ∞ (X)) × R >0
p ′ = p+1 2 ∈ (1, p) and ε = α(p-1) 2p(p+1) = α(p-p ′ ) 2pp ′ ∈ 0, α(p-p ′ ) pp ′
. One can derive that g ′ ∈ L p ′ . Indeed, by Hölder inequality, we have

g ′ L p ′ ≤ e -εφ L pp ′ p-p ′ ∥ f ∥ L p ≤ A p-p ′ pp ′ α ∥ f ∥ L p .
Put g = g ′ / ∥g ′ ∥ L p ′ . From Proposition 4.2.9, we have a bounded ω-psh function ψ with sup X ψ = 0 such that

(ω + dd c ψ) n ≥ m p ′ gω n = m p ′ e -εφ f ∥g ′ ∥ L p ′ ω n = m p ′ e -εφ c ∥g ′ ∥ L p ′ c f ω n = m p ′ e -εφ c ∥g ′ ∥ L p ′ (ω + dd c φ) n ≥ m p ′ c ∥g ′ ∥ L p ′ (ω + dd c φ) n .
and ∥ψ∥ L ∞ ≤ M p+1

2

. By Lemma 4.2.8, one get

m p ′ c∥g ′ ∥ L p ′ ≤ 1; hence c has a lower bound, c ≥ m p ′ A p-p ′ pp ′ α ∥ f ∥ L p
. Also, we see that

e -εψ (ω + dd c ψ) ≥ m p ′ e -εφ c ∥g ′ ∥ L p ′ (ω + dd c φ) n = exp -ε φ - 1 ε log m p ′ c ∥g ′ ∥ L p ′ (ω + dd c φ) n .
Applying the domination principle again, one can infer

M p ′ ≤ ψ ≤ φ - 1 ε log m p ′ c ∥g ′ ∥ L p ′
Finally, this provides a uniform L ∞ -estimate as follows

∥φ∥ L ∞ ≤ M p ′ - 1 ε log m c ∥g ′ ∥ L p ′ ≤ M p ′ + 1 ε     log A p-p ′ pp ′ α ∥ f ∥ L p C n Lap m(nc f ) n     .

Proof of Theorem 4.0.1

Recall that the constant C MA depends only on n, V, B ′ , N, A ρ , c ρ , α, A α , C Kol , p, c f , C f , and C SL . We shall control these constant to get Theorem 4.0.1. The following data are included in the assumption of Theorem 4.0.1:

• n is fixed in the geometric setting (GS);

• p, c f , C f are data in the integral bounds (IB);

• C SL is given by Conjecture (SL).

Then fixing some choices of background data, we have uniform control of the following constants:

• A ρ , c ρ , N: After shrinking D, we can cover X by finitely many pseudoconvex double cover (U j = {ρ j < 0}) j and (U ′ j = {ρ j < -c j }) j . Then the slices

Ω j := U j ∩ X t = { ρ j X t < 0} and Ω ′ j := U ′ j ∩ X t = { ρ j X t
< -c j } form a pseudoconvex double cover of X t for all t ∈ D 1/2 . Hence, these constants are fixed under such choice of a double covering;

• B ′ : It can be obtained easily by restriction on each fibres;

• V: It follows from continuity of the total mass of the currents (ω n ∧ [X t ]) t∈D 1/2 (cf. [Pan22, Section 1.4]).

The remaining data is the main focus of Sections 4.3 and 4.4:

• α, A α : These would be established in Proposition 4.3.3 assuming Conjecture (SL);

• C Kol,p : A uniform version of the volume-capacity comparison (VC) will be treated by Proposition 4.4.3 and thus using Theorem 4.2.1 and uniform control of ρ j X t for all t ∈ D 1/2 , one can obtain a uniform constant C Kol,p .

These complete the proof of Theorem 4.0.1.

Uniform Skoda's integrability theorem

In this section, we follow the ideas in [START_REF] Zeriahi | Volume and capacity of sublevel sets of a Lelong class of plurisubharmonic functions[END_REF][START_REF] Nezza | Families of singular Kähler-Einstein metrics[END_REF] to establish a local version of uniform Skoda's integrability theorem in families. Then we prove a uniform global version of Skoda's integrability theorem (i.e. geometric constants in (Skoda)) in a family which has a uniform C SL > 0.

Local uniform Skoda's estimate

Recall that π : X → D is a proper surjective holomorphic map and satisfies the geometric setting (GS). Then we fix some notations:

(i) U is a strongly pseudoconvex domain in X and U which is contained in a larger strongly pseudoconvex domain U ⊂ X such that π( U ) ⋐ D;

(ii) ρ (resp. ρ) is a smooth strictly psh function defined in a neighborhood of U (resp. U ) such that U := {ρ < 0} (resp. U := { ρ < 0}) and U c = {ρ < -c} is relatively compact in U for each c > 0;

(iii) Fix a relatively compact subdomain U ′ ⋐ U such that U ′ := {ρ < -c} for some generic c > 0 with dρ non-vanishing on ∂U ′ ;

(iv) Define the slices by Ω t := U ∩ X t , Ω ′ t := U ′ ∩ X t , and Ω t := U ∩ X t , which are strongly pseudoconvex domains in X t .

(v) Fix ω a hermitian metric which comes from a restriction of a hermitian metric in C N . Let dV t = ω n | X t be a smooth volume form defined on Ω t .

Under such setup, we show the following Skoda-type estimate, independently of t.

Theorem 4.3.1. Let F t be a family of negative psh functions defined on Ω t . Fix r > 0 such that D r ⋐ π(U ) ⋐ D. Assume that there is a uniform constant C F > 0 such that for all u t ∈ F t ,

Ω t (-u t )dV t ≤ C F .
Then there exist positive constants α and A α which depend on C F such that for each u t ∈ F t ,

Ω ′ t e -αu t dV t ≤ A α .
for all t ∈ D r .

Remark 4.3.2. We mostly use U and U ′ in the proof. However, in order to approximate a negative psh function by a decreasing sequence of smooth psh functions, we need to shrink the domain in the very beginning of the proof. That is the reason why we choose U lying in a bigger pseudoconvex domain U .

Proof. We proceed in several steps:

Step 0: Good covers. First of all, we may assume that u t are smooth. It follows indeed from a result of Fornaess-Narasimhan [FN80, Theorem 5.5], that one can approximate u t by a decreasing sequence of smooth non-positive psh functions on U ∩ X t . We set

v t := u t + ρ t
where ρ t = ρ| Ω t . Since the masses of β n ∧ [X t ] are continuous in t, Vol(Ω t , dV t ) is uniformly bounded by a constant V ′ > 0 up to shrinking D (cf. [Pan22, Section 1.4]). By adding ∥ρ∥ L ∞ (U ) V ′ to C F , we can also assume that

∀u t ∈ F t , Ω t (-v t )dV t ≤ C F .
Choose a finite collection of balls of radius 2, B C N (p, 2) ⊂ C N , centered at some point p ∈ X 0 . We denote by B R := X ∩ B C N (p, R) ⋐ U for all R ≤ 2. One may assume that the collection of balls of radius 1/2, {B 1/2 }, covers Ω ′ t for all t ∈ D r . For convenience, in this section, we fix constants

C ρ , C ω > 0 satisfying C -1 ρ dd c ρ ≤ dd c |z| 2 ≤ C ρ dd c ρ and C -1 ω ω ≤ dd c |z| 2 ≤ C ω ω on each B 2
Step 1: Poisson-Szeg ő inequality. We first recall the following inequality

v t (x) ≥ B v t (dd c G x ) n ∧ [X t ] = B∩X t v t (dd c G x ) n = B∩X t G x (dd c v t ) ∧ (dd c G x ) n-1 :=I t (x) + ∂B∩X t v t d c G x ∧ (dd c G x ) n-1 :=J t (x)
, where G x (z) := log |Φ x (z)| and Φ x (z) is the automorphism of the unit ball B that sends x to the origin. The reader is referred to [DGG20, page 22-23] for more details.

Step 2: Control J t , I t and Lelong numbers. Following the same proof in [DGG20, middle of page 23], we have |J t | ≤ C F C 1 for some uniform C 1 > 0. Now, we are going to treat the other more singular term

I t (x) = B G x (dd c v t ) ∧ (dd c G x ) n-1 ∧ [X t ].
In global Kähler setting, this part can be controlled by cohomology class of given Kähler metrics but it is not the case here. The spirit goes back to the local strategy in [START_REF] Zeriahi | Volume and capacity of sublevel sets of a Lelong class of plurisubharmonic functions[END_REF] and Chern-Levine-Nirenberg inequality.

Consider the mass of the measure dd

c v t ∧ (dd c G x ) n-1 ∧ [X t ] γ t (x) := B dd c v t ∧ (dd c G x ) n-1 ∧ [X t ] = D(x,r) dd c v t ∧ (dd c G x ) n-1 ∧ [X t ] :=I ′ t (x) + B\D(x,r) dd c v t ∧ (dd c G x ) n-1 ∧ [X t ] :=I ′′ t (x)
where D(x, r)

:= {ζ ∈ B | |Φ x (ζ)| < r} for some r ∈ (0, 1). Note that µ t = 1 γ t dd c v t ∧ (dd c G x ) n-1 ∧ [X t ] is a probability measure.
From the definition of G x (z), direct computation provides that

dd c G x (z) ≤ C 2 dd c |z| 2 |Φ x (z)| 2 (4.3.1)
for some uniform constant C 2 > 0. Choose a cut-off function χ supported in B 2 and satisfying χ ≡ 1 on B and -C 3 dd c |z| 2 ≤ dd c χ ≤ C 3 dd c |z| 2 for some constant C 3 > 0. Then we have

I ′′ t (x) ≤ 1 r 2n-2 B dd c v t ∧ (dd c |z| 2 ) n-1 ∧ [X t ] ≤ 1 r 2n-2 B 2 χdd c v t ∧ (dd c |z| 2 ) n-1 ∧ [X t ] = 1 r 2n-2 B 2 v t dd c χ ∧ (dd c |z| 2 ) n-1 ∧ [X t ] ≤ C 3 r 2n-2 U (-v t )(dd c |z| 2 ) n ∧ [X t ] = C 3 r 2n-2 Ω t (-v t )(dd c |z| 2 ) n ≤ C 3 C F r 2n-2 .
Because |x| < 1/2 in the setting, one may assume D(x, r 0 ) ⊂ B 3/4 for some uniform r 0 > 0 sufficiently small. Hence, one get

I ′′ t (x) ≤ C 3 C F r 2n-2 0 .
Consider cut-offs (χ j ) n j=1 which are compactly supported on B and satisfy: χ 1 ≡ 1 on B 3/4 , supp(χ 1 ) ⋐ B, χ j+1 ≡ 1 on supp(χ i ) for every j ∈ {1, ..., n -1} and -C 4 dd c |z| 2 ≤ dd c χ j ≤ C 4 dd c |z| 2 for some constant C 4 > 0. Using the trick in Chern-Levine-Nirenberg inequality, one can see that

I ′ t (x) ≤ B 3/4 dd c v t ∧ (dd c G x ) n-1 ∧ [X t ] ≤ supp(χ 1 ) χ 1 dd c v t ∧ (dd c G x ) n-1 ∧ [X t ] ≤ supp(χ 1 ) G x dd c v t ∧ dd c χ 1 ∧ (dd c G x ) n-2 ∧ [X t ] ≤ C 4 sup z∈B\B 3/4 |G x (z)| supp(χ 1 ) dd c v t ∧ dd c |z| 2 ∧ (dd c G x ) n-2 ∧ [X t ] ≤ C 4 sup z∈B\B 3/4 |G x (z)| supp(χ 2 ) χ 2 dd c v t ∧ dd c |z| 2 ∧ (dd c G x ) n-2 ∧ [X t ] ≤ • • • ≤ C n-1 4 sup z∈B\B 3/4 |G x (z)| n-1 supp(χ n-1 ) dd c v t ∧ (dd c |z| 2 ) n-1 ∧ [X t ] ≤ C n 4 sup z∈B\B 3/4 |G x (z)| n-1 B (-v t ) ∧ (dd c |z| 2 ) n ∧ [X t ] ≤ C n 4 sup z∈B\B 3/4 |G x (z)| n-1 Ω t (-v t ) ∧ (dd c |z| 2 ) n ≤ C n 4 C F sup z∈B\B 3/4 |G x (z)| n-1 .
Since |x| < 1/2 and Φ x (z) moves smoothly in x and z, there is a uniform constant C 5 such that sup

z∈B\B 3/4 |G x (z)| ≤ C 5 .
Thus, I ′ t is uniformly bounded from above by the constant C n 4 C F C n-1
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Estimates of I ′ and 

I ′′ yield a constant ν = C F C 3 r 2n-2 0 + C F C n 4 C n-1 5 such that γ t (x)
-αγ t (x)G x dµ t ≤ C ρ z∈B dd c v t ∧ (dd c |z| 2 ) n-1 ∧ [X t ] |Φ x (z)| αν+2n-2 .
Integrating x ∈ B 1/2 and using Fubini's theorem, one can infer the following inequality

x∈B 1/2 e -αu t (dd c |x| 2 ) n ∧ [X t ] ≤ x∈B 1/2 e -αv t (dd c |x| 2 ) n ∧ [X t ] ≤ e αC F C 1 C ρ z∈B x∈B 1/2 (dd c |x| 2 ) n ∧ [X t ] |Φ x (z)| αν+2n-2 dd c v t (z) ∧ (dd c |z| 2 ) n-1 ∧ [X t ]
Fix a constant α sufficiently small such that αν < 2 and put β = 2-αν 2n > 0. Following the similar proof of [DGG20, Lemma 2.13], we have

C -1 β (dd c x |Φ x (z)| 2β ) n ≤ (dd c |x| 2 ) n |Φ x (z)| αν+2n-2 ≤ C β (dd c x |Φ x (z)| 2β ) n .
Now, using the same trick in the proof of Chern-Levine-Nirenberg inequality, one has

x∈B 1/2 (dd c |x| 2 ) n ∧ [X t ] |Φ x (z)| αν+2n-2 ≤ C β x∈B 1/2 (dd c x |Φ x (z)| 2β ) n ∧ [X t ] ≤ C β x∈supp(χ 1 ) χ 1 (dd c x |Φ x (z)| 2β ) n ∧ [X t ] ≤ C n 4 C β x∈B (dd c |x| 2 ) n ∧ [X t ] ≤ C n 4 C n ω C β Vol ω t (Ω t ).
Note that in global Kähler cases, the above estimate is controlled by cohomology classes. Finally, we get the estimate on each B 1/2

x∈B 1/2 e -αu t (dd c |x| 2 ) n ∧ [X t ] ≤ e αC F C 1 z∈B C n 4 C n ω C β Vol ω t (Ω t ) dd c v t ∧ (dd c |z| 2 ) n-1 ∧ [X t ] ≤ e αC F C 1 C n 4 C n ω C β Vol ω t (Ω t ) B 2 χdd c v t ∧ (dd c |z| 2 ) ∧ [X t ] ≤ e αC F C 1 C n+1 4 C n ω C β Vol ω t (Ω t ) Ω t (-v t )(dd c |z| 2 ) n ≤ e αC F C 1 C F C n+1 4 C n ω C β Vol ω t (Ω t ).
Note that t → Vol ω t (Ω t ) is continuous. One has a uniform control x∈B 1/2 e -αu t (dd c |x| 2 ) n ∧ [X t ] for all t close to 0. Summing the integration on every B 1/2 in the collection, we obtain the estimate in Theorem 4.3.1 as desired.

Global Skoda's estimate

Now, we assume that there is a uniform constant C SL > 0 such that X t satisfies (SL) for all t ∈ D. Proof. Without loss of generality, we just treat the proof for t in a small neighborhood near 0 ∈ D. Let (U j ) j∈J and (U ′ j ) j∈J be a strongly pseudoconvex finite double cover of π -1 (D r ) for some r > 0 sufficiently small. We write U ′ j := {ρ j < -c j } ⋐ U j = {ρ j < 0} for some c j > 0. For simplicity, we may assume that dd c ρ j ≥ ω for all j ∈ J. Also, we set the slices Ω t,j := X t ∩ U j and Ω ′ t,j := X t ∩ U ′ j . For all u t ∈ PSH(X t , ω t ) with sup X t u t = 0, it is obvious that u t + ρ t,j ∈ PSH(Ω t,j ). Note that for all j ∈ J,

Ω t,j -(u t + ρ t,j )ω n t ≤ X t -u t ω n t + V t ρ j L ∞ (U j ) ≤ C F
for some uniform constant C F . By Theorem 4.3.1, we obtain ∀j ∈ J,

Ω ′ t,j e -α j u t ω n t ≤ Ω ′ t,j
e -α j (u t +ρ t,j ) ω n t ≤ A α j ,j .

Since J is a finite set of indices, one can easily derive the desired estimate.

This ensures that one can find uniform geometric constants (Skoda) in a family which fulfills Conjecture (SL).

Uniform volume-capacity comparison

This section aims to deal with the volume-capacity comparison (VC) in a family π : X → D with locally irreducible fibres. Let U = {ρ < 0} be a strongly pseudoconvex domain in X . We also assume that the closure of U can be contained in a larger strongly pseudoconvex set U = { ρ < 0} in X . Denote the slices by Ω t := U ∩ X t and Ω t := U ∩ X t .

Subextensions and relative extremal functions

We first recall some useful facts in pluripotential theory:

Volume-capacity comparison

Then we explain the volume-capacity comparison in families: Proposition 4.4.3. For every k > 1, there exists a constant C VC,k such that

∀K t ⋐ Ω t , Vol(K t ) ≤ C VC,k Cap k (K t ; Ω t ), for all t ∈ D 1/2
In smooth setting, the proof of the volume-capacity comparison was first given by Kołodziej [START_REF]Equicontinuity of families of plurisubharmonic functions with bounds on their Monge-Ampère masses[END_REF]. For global semi-positive setup, Guedj and Zeriahi [START_REF] Guedj | Intrinsic capacities on compact Kähler manifolds[END_REF] provided a proof simply using Skoda's integrability theorem and the comparison of Bedfor-Taylor and Alexander-Taylor capacities. For local cases, in [GGZ23, Lemma 1.9], Guedj-Guenancia-Zeriahi gave an easy proof for us to chase the depending constants. We also compute explicitly the constant C VC,k to verify that it is independent of t.

Proof. Without loss of generality, we may assume that K t is non-pluripolar. Otherwise, both sides of the inequality are zeros. We define

u K t = h * K t ;Ω t Cap 1/n (K t ; Ω t ) .
According to Proposition 4.4.2, one has u K t ∈ E 0 (Ω t ) and Ω t (dd c u K t ) n = 1. Recall that U = { ρ < 0} is a strongly pseudoconvex neighborhood of U and Ω t = U ∩ X t . Let C ρ > 0 be a constant such that dV ≤ C ρ (dd c ρ) n on U . Consider the subextension of u K t :

u K t = sup u ∈ PSH( Ω t ) ∩ L ∞ ( Ω t ) u| ∂ Ω t ≤ 0 and u ≤ u K t in Ω t . By Lemma 4.4.1, we have u K t ∈ E 0 ( Ω t ), u K t ≤ u K t in Ω t , and Ω t (dd c u K t ) n ≤ Ω t (dd c u K t ) n = 1.
Using the integration by parts and the condition

Ω t (dd c u K t ) n ≤ 1, one can see that ∥ u K t ∥ L 1 ( Ω t ) is uniformly bounded independent of K t . Indeed, Ω t (-u K t )dV ≤ Vol n-1 n ( Ω t ) Ω t (-u K t ) n dV 1/n ≤ Vol n-1 n ( Ω t )C ρ Ω t (-u K t ) n (dd c ρ t ) n 1/n ≤ Vol n-1 n ( Ω t )C ρ ∥ ρ t ∥ L ∞ ( Ω t ) Ω t (dd c u K t ) n 1/n ≤ Vol n-1 n ( Ω t )C ρ ∥ ρ∥ L ∞ ( U ) .
According to Theorem 4.3.1, there exists constants α, A α > 0 such that for all K t ⋐ Ω t nonpluripolar,

Ω t e -α u K t dV ≤ A α .
is bounded between 1 and C G . Then we have

X t (ω t + dd c t φ t ) ∧ ω n-1 t ≤ X t (ω t + dd c t φ t ) ∧ g t ω n-1 t ≤ X t g t ω n t + X t φ t dd c t (g t ω n-1 t ) ≤ C G Vol ω t (X t )
for all t ∈ D * 1/2 . Since (Vol ω t (X t )) t∈D 1/2 is uniformly bounded from above (cf. [Pan22, Section 1.4]), we have a desired estimate for all t ∈ D * 1/2 . On the central fibre X 0 , there always exists a constant C SL,0 > 0 such that

1 Vol ω 0 (X 0 ) X 0 -φ 0 ω n 0 ≤ C SL,0
for all φ 0 ∈ PSH(X 0 , ω 0 ) with sup X 0 φ 0 = 0. For all φ 0 ∈ PSH(X 0 , ω 0 ), we take φ0 = φ 0sup X 0 φ 0 . Then one can use the argument as in Lemma 4.2.7 to find a constant

C ′ Lap > 0 such that X 0 (ω 0 + dd c 0 φ 0 ) ∧ ω n-1 0 ≤ C ′ Lap .
We have thus obtained the desired estimate.

We follow the idea in [DGG20, Section 3.3] to get the proof. Note that we only need to take care of sequences of sup-normalized ω t k -psh functions (φ t k ) k where t k ---→ k→+∞ 0.

Step 1: Choose a good covering and a test function. Following the same argument in [DGG20, page 30, Step 2], up to shrinking D, we can find a finite open covering (V i ) i∈I of X such that (i) each point of Z := X sing = X sing 0 belongs to exactly one element of V i of the covering, we denote by J the collection of indices of these open subsets;

(ii) on each V i , we have a smooth strictly psh function ρ i such that

C -1 ρ dd c ρ i ≤ ω ≤ C ρ dd c ρ i and 0 ≤ ρ i ≤ C ρ for a uniform constant C ρ > 0; (iii) for each i ∈ J, there is a relatively compact open subset W i ⋐ V i with W i ∩ Z ̸ = ∅. Define δ := 1 2 min i∈J dist ω (∂W i , W i ∩ X sing 0 ) > 0.
Let χ i be a cut-off function supported in V i and χ i ≡ 1 in a neighborhood of W i . Set ρ = ∑ i∈I χ i ρ i . Obviously, we have ω ≤ C ρ dd c ρ on W := ∪ i∈I W i . Furthermore, we may assume -C ρ ω ≤ dd c ρ ≤ C ρ ω on X by choosing larger C ρ .

Step 2: Uniform L 1 -estimate away from singularities. Define a set

R := p ∈ X dist ω (p, X sing 0 ) > δ/2 .
Since R c lies in W, after shrinking D, we can cover R by finitely many open subsets (U i ) i away from the singular locus. We may assume that π is locally trivial on R with respect to (U i ) i because π is a submersion on R.

Following the argument in [DGG20, page 31,

Step 3], one can prove that there is a constant C > 0 and a subsequence of (t k ) k such that sup

R∩X t k φ t k ≥ -C.
By the irreducibility of X 0 , R is connected. Then one can use the same proof in locally trivial cases to show that

R∩X t k (-φ t k )ω n t k ≤ C R for some uniform constant C R > 0.
Step 3: Conclusion. Recall that on W we have ω ≤ C ρ dd c ρ. Define a smooth (n, n)-form

Ω := ω n -C n ρ (dd c ρ) n . It is easy to see that Ω| W ∩X t ≤ 0 and Ω t := Ω| X t ≤ C Ω ω n t for some uniform constant C Ω > 0. Note that R c ⊂ W. We have X t k (-φ t k )Ω t k = R∩X t k (-φ t k )Ω t k + R c ∩X t k (-φ t k )Ω t k ≤ C Ω R∩X t k (-φ t k )ω n t k ≤ C R C Ω .
On the other hand, we have

X t k (-φ t k )(dd c ρ) n = X t k -ρdd c φ t k ∧ (dd c ρ) n-1 = - X t k ρ(ω t k + dd c φ t k ) ∧ (dd c ρ) n-1 + X t k ρω t k ∧ (dd c ρ) n-1 ≤ C n ρ X t k (ω t k + dd c φ t k ) ∧ ω n-1 t k + C n ρ Vol ω t k (X t k ) ≤ C n ρ C Lap + C n ρ Vol ω t k (X t k ).
The fourth line comes directly from Lemma 4.5.3. All in all, we obtain a uniform L 1 -estimate of sup-normalized ω t k -psh functions:

X t k (-φ t k )ω n t k = C n ρ X t k (-φ t k )(dd c ρ) n + X t k (-φ t k )Ω t k ≤ C 2n ρ C Lap + C 2n ρ Vol ω t k (X t k ) + C R C Ω .

Families of Calabi-Yau varieties

In this final section, we apply our results to families of Calabi-Yau varieties. By Calabi-Yau variety, we mean a normal variety with canonical singularities and trivial canonical bundle.

According to Theorem 4.0.1, Proposition 4.0.2, and Proposition 4.6.3, there is a uniform constant C MA such that for all t ∈ D 1/2 , one has

c t + c -1 t + ∥φ t ∥ L ∞ ≤ C MA
and this complete the proof of Theorem 4.0.3.

Chapter 5

Projects and open problems

We introduce in the is chapter some problems that we plan to tackle. These are motivated by works of Spotti-Sun-Yao [SSY16], Di Nezza-Guedj-Guenancia [DGG20], and our works presented in previous chapters.

Pluripotential theory in families

Since Kołodziej's breakthrough [START_REF] Kołodziej | The complex Monge-Ampère equation[END_REF] on complex Monge-Ampère equations, pluripotential theory on compact Kähler manifolds has been intensively studied with many geometric applications (see [START_REF]Degenerate complex Monge-Ampère equations[END_REF] and the references therein). Based on pluripotential theory, a variational approach has been developed by Berman, Boucksom, Eyssidieux, Guedj, and Zeriahi [BBGZ13, BBE + 19] for constructing Kähler-Einstein metrics. Kähler-Einstein metrics correspond to critical points of certain functionals acting on the space of Kähler potentials. An important functional in the variational method is the energy functional defined as follows

E(φ) := 1 (n + 1) Vol ω (X) n ∑ j=0 X φ(ω + i∂ ∂φ) j ∧ ω n-j
which is a primitive of the complex Monge-Ampère operator. Guedj and Zeriahi established many important properties of the energy functional on a fixed Kähler manifold (X, ω) (cf. [START_REF]Degenerate complex Monge-Ampère equations[END_REF]).

It is natural to try and understand how pluripotential theory behaves in families of varieties. Major difficulties arise from the changes in complex structures. Recently, Di Nezza, Guedj, and Guenancia [DGG20] established first steps towards pluripotential theory in families of Kähler spaces. They also proved uniform boundedness of Kähler-Einstein potentials in general situations of Calabi-Yau families and families of varieties of general type. Thus, it is natural to ask what happens for K-stable Fano families. 93

Families of K-stable Fano varieties

Fano varieties are central objects in birational geometry. They often have rich geometry as they could have many interesting birational models, and they are also terminal objects in the MMP. From the moduli space point of view, singular Fano varieties naturally appear as degenerations of Fano manifolds. The notion of K-stability plays a central role in recent developments in constructing well-behaved moduli spaces of Fano varieties (cf. [START_REF] Odaka | Compact moduli spaces of Kähler-Einstein Fano varieties[END_REF][START_REF] Spotti | Existence and deformations of Kähler-Einstein metrics on smoothable Q-Fano varieties[END_REF][START_REF] Li | On the proper moduli spaces of smoothable Kähler-Einstein Fano varieties[END_REF]). Being K-stable is an open condition (cf. [START_REF] Blum | Openness of uniform K-stability in families of Q-Fano varieties[END_REF][START_REF] Liu | Finite generation for valuations computing stability thresholds and applications to K-stability[END_REF]); thus if the central fibre of a family is K-stable so are the nearby fibres. Spotti, Sun, and Yao [START_REF] Spotti | Existence and deformations of Kähler-Einstein metrics on smoothable Q-Fano varieties[END_REF] stated that if a family is a smoothing of a K-stable Fano variety, then outside the singular set, the Kähler-Einstein metrics on nearby fibres converge smoothly to the Kähler-Einstein metric on the central fibre. Their approach strongly relies on Donaldson's idea of cone metrics, and it seems difficult to adapt their method to more singular contexts.

The most crucial and challenging part is to achieve an L ∞ -estimate of the Kähler-Einstein potential. In a joint project with Antonio Trusiani (Toulouse, France) [START_REF] Pan | Kähler-Einstein metrics on families of Fano varieties[END_REF], we answered the following problem: Problem 1. Let π : X → D be a family of possibly singular Fano varieties such that -K X /D is relatively ample. Assume that the central fibre X 0 is K-stable. Is it possible to (i) establish a uniform L ∞ -estimate of these Kähler-Einstein potentials on nearby fibres? (ii) show that the Kähler-Einstein metric ω KE,t converges smoothly to ω KE,0 as t → 0 away from the singular locus?

We are developing a pluripotential proof of the problem and are generalizing the result to more singular families. To treat the problem, we are embarking on the convergence properties of quasi-plurisubharmonic functions in families and extending classical results of pluripotential theory into a sense of "convergence in families". We reduced the problem into two smaller pieces that I discuss below.

The first part is to prove the upper semi-continuity property of energy functional along the convergence in a family: Sub-problem A1. Assume that the sequence u k ∈ PSH(X t k , ω t k ) converges to u 0 ∈ PSH(X 0 , ω 0 ) as k → +∞ in the family sense. Does the following semi-continuity property of the energies holds:

lim sup k→+∞ E t k (u k ) ≤ E 0 (u 0 )?
Assume that X → D is a family endowed with an ample Q-line bundle L and ω is a Kähler metric given by a curvature form of L. In [PT23, Prop. C], Trusiani and I used algebraic approximations (cf. [START_REF] Coman | Extension of plurisubharmonic functions with growth control[END_REF][START_REF] Darvas | Quantization in geometric pluripotential theory[END_REF]) induced by sections of L to achieve Sub-problem A1. Difficulties in the family setting are the monotonicity property of the energies between two different fibres and also the varying complex structures. In more general situations, it is not clear at all how to approximate quasi-psh functions on singular spaces.

The second piece is the following Demailly-Kollár type result for E 1 -functions converging in a family: Sub-problem A2. Assume that the sequence u k ∈ E 1 (X t k , ω t k ) converges to u 0 ∈ E 1 (X 0 , ω 0 ) in the family sense. For all γ > 0 fixed, does the following Demailly-Kollár type convergence X t k e -γu k ω n t k -→

X 0 e -γu 0 ω n 0 holds as k → +∞?

Outside the singular locus, the convergence of integrals follows directly from the result of Demailly-Kollár [START_REF] Demailly | Semi-continuity of complex singularity exponents and Kähler-Einstein metrics on Fano orbifolds[END_REF]. Close to the singular set, the problem is reduced to find a uniform Skoda-type estimate for each exponent γ > 0 along the sequence (u k ) k∈N . A uniform Skoda estimate in a family with "small" exponents was already established by Di Nezza, Guedj, and Guenancia. Their method seems available to prove Sub-problem A2. A problem remains to control Demailly-Lelong numbers of E 1 -functions on singular spaces (cf. [BBE + 19, Rmk. A5]). I will discuss more in the following.

Lelong number on singular spaces

There are two different definitions of Lelong numbers. Let X be an n-dimensional, normal, complex space. Here we call it the Demailly-Lelong number of u at x. These two quantities are independent of the choice of ( f i ) i and they coincide on the smooth locus. However, it is no longer the case at a singular point. Precisely, it is known that one has the following inequality (cf. [BBE + 19, Rmk. A.5]) ν(u, x) ≥ mult(X, x)s(u, x). Moreover, the above inequality is strict in general. It is conjectured in loc. cit. that two notions are comparable: Problem 2. Let X be a normal variety. Fix x ∈ X. Is there a constant C > 0 such that, for all psh functions u defined near x, the following inequality holds ν(u, x) ≤ Cs(u, x)?

Let (X, ω) be a compact, normal, Kähler variety of dimension n. Recall that a function in the finite energy class, E (X, ω), is a function in PSH(X, ω) satisfying 

Sup-L 1 comparison of quasi-psh functions in hermitian families

Recently, pluripotential theory on compact hermitian manifolds has been developed by Dinew, Kołodziej, and Nguyen [DK12, [START_REF] Kołodziej | Weak solutions to the complex Monge-Ampère equation on Hermitian manifolds[END_REF][START_REF] Nguyen | The complex Monge-Ampère type equation on compact Hermitian manifolds and applications[END_REF]. In the pluripotential approach, the Sup-L 1 comparison of quasi-plurisubharmonic functions on a fixed variety is an important fact used in many places. However, in hermitian families, it is not clear at all whether a uniform Sup-L 1 comparison stated as follows still holds: Problem 3. Let (X , ω) → D be a family of hermitian varieties. Can one find a uniform constant C > 0 such that the following inequality ∀φ t ∈ PSH(X t , ω t ), sup X t φ t -C ≤ 1 Vol ω t (X t ) X t φ t ω n t holds for all t ∈ D 1/2 ?

This problem is conjectured by Di Nezza, Guedj, and Guenancia in [DGG20, Conj. 3.1]. In Kähler cases, by establishing a uniform lower bound of the Green functions, the problem was solved by combining the results in [START_REF] Nezza | Families of singular Kähler-Einstein metrics[END_REF] and [START_REF] Ou | Admissible metrics on compact Kähler varieties[END_REF]. The situation is more complicated in hermitian cases since the complex Laplacian ∆ ω t is no longer a self-adjoint operator. In Chapter 4, based on a pluripotential method in [START_REF] Nezza | Families of singular Kähler-Einstein metrics[END_REF], I proved Problem 3 if X is a smoothing family of X 0 and the singularities of X 0 are isolated. Handling the quantity C Lap,t := sup X t (ω t + i∂ t ∂t φ t ) ∧ ω n-1 t φ t ∈ PSH(X t , ω t ) is one of the keys to solving Problem 3. In the Kähler setting, C Lap,t is independent of t since it relies only on the cohomology class of ω. However, this is no longer the case in hermitian contexts, since the Green identity for complex Laplacian may not hold for an arbitrary hermitian metric. In hermitian cases, singular Gauduchon metrics that I discuss in the next section might be practical in building an estimate.

Singular Gauduchon metrics and related problems

Donaldson-Uhlenbeck-Yau (DUY) theorem shows that a holomorphic vector bundle E over a compact Kähler manifold X admits a hermitian-Einstein metric if and only if the bundle E is polystable (in the sense of Mumford). Such a theorem helps to generalize Bogomolov-Gieseker's Chern numbers inequality to Kähler manifolds that might not be algebraic. Later on, Bando and Siu [START_REF] Bando | Stable sheaves and Einstein-Hermitian metrics[END_REF] proved the DUY theorem for stable reflexive sheaves, which can be viewed as a generalization of holomorphic vector bundles. Recently, singular DUY theorem on normal Kähler spaces was obtained in [START_REF] Chen | A Donaldson-Uhlenbeck-Yau theorem for normal varieties and semistable bundles on degenerating families[END_REF][START_REF] Ou | Admissible metrics on compact Kähler varieties[END_REF][START_REF] Chen | Donaldson-Uhlenbeck-Yau theorem over normal varieties with multi-Kaehler metrics[END_REF] progressively under different assumptions.

In non-Kähler cases, Li and Yau [START_REF] Li | Hermitian-Yang-Mills connection on non-Kähler manifolds[END_REF] used Gauduchon metrics to define the slope stability of vector bundles on non-Kähler manifolds. As a consequence, they generalized DUY's criterion to the non-Kähler setting. Following the same story in the Kähler setting, it is thus interesting to know whether the DUY correspondence holds on singular non-Kähler varieties.

Problem 4 (Singular DUY correspondence). Suppose that X is a compact normal variety, ω G is a singular Gauduchon metric on X, and E → X is a reflexive sheaf. Can one show the following properties:

• E admits an admissible ω G -hermitian-Einstein metric,

• E is ω G -slope polystable are equivalent? Thus, the first step is to ask if singular Gauduchon metrics always exist on compact singular varieties and if they contribute to defining the notion of stability on non-Kähler varieties. Secondly, one might run the construction of hermitian-Einstein metrics on a resolution of singularities and control the perturbed hermitian-Einstein metrics.

The problem of the existence of singular Gauduchon metrics is already interesting not only in the DUY correspondence but also in the other problems of hermitian geometry. For example, Angella, Calamai, and Spotti [START_REF] Angella | On the Chern-Yamabe problem[END_REF] used Gauduchon metrics to define a conformal invariant called the Gauduchon degree and proved that constant Chern scalar curvature metrics exist if the Gauduchon degree is non-positive. It is also interesting to wonder if one can extend the result in loc. cit. to singular hermitian varieties: Problem 5. Let X be a variety with at most klt singularities (cf. Définition 1.2.1). Suppose that ω G is a singular Gauduchon metric on X. Assume that the Gauduchon degree

Γ(ω G ) := 1 (n -1)! X c BC 1 (X) ∧ ω n-1
G is non-positive. Can one show that Γ(ω G ) is well-defined? Moreover, is it possible to find a metric ω on X reg which is conformally equivalent to ω G and has constant Chern scalar curvature?

We address precisely the existence problem of singular Gauduchon metrics below: Problem 6. Let X be a singular compact variety of pure dimension n ≥ 2. Is it possible to find a Gauduchon metric on X or even only on X reg ? Furthermore, given an arbitrary hermitian metric ω, can one find a bounded function ρ ∈ C ∞ (X reg ) with inf X reg ρ = 1 and ∂ ∂(ρω) n-1 = 0?

One possible strategy to solve the problem is to work on a desingularization of the variety and perturb the pull-back metric on the resolution of singularities. Following a similar strategy as in [START_REF] Pan | Singular Gauduchon metrics[END_REF], the main difficulty appears in building a uniform estimate of Sobolev constants of the perturbed metrics. If the base is smooth, Bando and Siu [START_REF] Bando | Stable sheaves and Einstein-Hermitian metrics[END_REF] achieved a uniform estimate of the perturbed Sobolev constants along a blowup. Recently, Ou [START_REF] Ou | Admissible metrics on compact Kähler varieties[END_REF] confirmed that an estimate can be obtained when blowing-up points on a singular space.

The Chern-Ricci flow

Ricci flow provides an influential tool in differential geometry. It was used to prove the Poincaré conjecture and other geometric classification results. If the Ricci flow starts from a Kähler metric on a complex manifold, the evolving metrics will remain Kähler, and it is called the Kähler-Ricci flow. There have been several different avenues of research involving the Kähler-Ricci flow. There is a so-called Song-Tian program [ST12, ST17] that proposed an analytic version of the MMP by using the Kähler-Ricci flow. In practice, the whole program is still open at the moment.

In hermitian geometry, there are plenty of candidates for geometric flows such as the Chern-Ricci flow, the pluriclosed flow [START_REF] Streets | A parabolic flow of pluriclosed metrics[END_REF], the Anomaly flow [START_REF] Phong | Geometric flows and Strominger systems[END_REF], etc. Personally, I focus on the Chern-Ricci flow which is a generalization of the Kähler-Ricci flow. The Chern-Ricci flow was first considered by Gill [START_REF] Gill | Convergence of the parabolic complex Monge-Ampère equation on compact Hermitian manifolds[END_REF] and its evolution equation is defined as follows:

   ∂ ∂t ω(t) = -Ric(ω(t)) ω(0) = ω 0
where Ric(ω) is the Chern-Ricci form with respect to the metric ω and ω 0 is the initial metric. Such a flow corresponds to a parabolic complex Monge-Ampère equation. Tosatti and Weinkove [START_REF]The Chern-Ricci flow on complex surfaces[END_REF][START_REF]On the evolution of a Hermitian metric by its Chern-Ricci form[END_REF] utilized the Chern-Ricci flow to obtain some results of Kodaira's classification on compact complex surfaces from a metrical perspective.

In a joint project with, Quang-Tuan Dang (Trieste, Italy) and Tat Dat Tô (Paris, France), we are studying the contraction of the exceptional divisor over a blowup of a holomorphic submanifold. Precisely, we consider (Y, ω Y ) a compact hermitian manifold and N ⊂ Y a complex submanifold with codimension ≥ 2. Let π : X → Y be the blowup of Y along N and E be the exceptional divisor. Assume that there is a metric ω 0 on X satisfying ω 0 = T Ric(ω 0 ) + π * ω Y + i∂ ∂ f for some f ∈ C ∞ (X) and T > 0. Then the maximal existence time of the Chern-Ricci flow starting from ω 0 equals T. As t → T -, the metric ω t converges smoothly to a metric ω T on X \ E ≃ Y \ N. On the other hand, a regularizing property of the Chern-Ricci flow was given by Tô [START_REF] Tô | Regularizing properties of complex Monge-Ampère flows II: Hermitian manifolds[END_REF]. He proved that by starting the Chern-Ricci flow from a singular metric whose potential has zero Lelong number, the Chern-Ricci flow can be smoothed out.

We are studying both the forward and the backward convergence: Problem 7. Consider the family of metrics (ω t ) t∈[0,T) given by the Chern-Ricci flow starting from ω 0 . Is it possible to show that (X, ω t ) converges in the Gromov-Hausdorff sense to the metric completion of (Y \ N, ω T ) as t → T -? Let (θ t ) t∈(T,T+ε] be the family of metrics obtained by continuing the flow on Y. Can one prove that (Y, θ t ) converges to the metric completion of (Y \ N, ω T ) as t → T + ? When the submanifold N is just a point, the forward convergence was obtained by Song and Weinkove [START_REF] Song | Contracting exceptional divisors by the Kähler-Ricci flow[END_REF] in the Kähler setting and by Tosatti and Weinkove [START_REF]The Chern-Ricci flow on complex surfaces[END_REF] in the hermitian setting. The backward convergence was given by Tô [START_REF] Tô | Regularizing properties of complex Monge-Ampère flows II: Hermitian manifolds[END_REF] if N is a point. Recently, in Kähler setup, Guo [START_REF] Guo | Kähler-Ricci flow on blowups along submanifolds[END_REF] proved that the forward convergence holds for N with general codimension. We are generalizing both the forward and backward convergence to hermitian contexts with a general N. The main difficulty is to establish a parabolic Schwarz lemma. Torsion terms appear in the parabolic Schwarz lemma of the Chern-Ricci flow. We are trying to deal with these torsion quantities by adding some test functions.

Lemma 3 .

 3 4.2 ([Chi89, Ch 3, Sec. 15, Prop. 1 and 2]). Let A be a pure n-dimensional analytic set of the ball B R in C N containing the origin. The function r → r -2n H 2n (A ∩ B r ) decreases as r → 0 and the limit m(A, 0) = lim r→0 H 2n (A ∩ B r ) π n r 2n /n! is the multiplicity of A at 0. Lemma 3.4.3 ([

  hermitian metric and f is a smooth positive function, Tosatti-Weinkove[START_REF] Tosatti | The complex Monge-Ampère equation on compact Hermitian manifolds[END_REF] first showed the existence and uniqueness of the pair (φ, c) with a smooth φ to the above equation. For L p densities f , Dinew-Kołodziej[START_REF] Dinew | Pluripotential estimates on compact Hermitian manifolds[END_REF] used pluripotential techniques to obtain uniform L ∞ -estimates. The solvability was further established by Kołodziej-Nguyen[START_REF] Kołodziej | Weak solutions to the complex Monge-Ampère equation on Hermitian manifolds[END_REF] via a stability estimate. Recently, Guedj-Lu[START_REF] Guedj | Quasi-plurisubharmonic envelopes 3: Solving Monge-Ampère equations on hermitian manifolds[END_REF] established uniform estimates and proved the existence of solution when the (1, 1)-form ω is merely big. As a consequence, they generalized Tosatti-Weinkove's theorem to hermitian Q-Calabi-Yau varieties.

  be a solution to (MA). Then one has c ≥

  Fix a point x ∈ X and local generators ( f i ) i∈I of the maximal ideal m X,x of O X,x . Denote by ψ := ∑ i∈I | f i | 2 . Let u be a psh function defined near x. Recall from [BBE + 19, Appx. A] that the slope of u at x is defined by s(u, x) := sup {s ≥ 0 | u ≤ s log ψ + O(1)} . On the other hand, in [Dem82, Déf. 3], Demailly introduced another definition of the Lelong number of u at x as the limit ν(u, x) := lim r→0 ↓ {ψ<r} (dd c u) ∧ (dd c log ψ) n-1 .

  j} (ω + dd c max{u, -j}) n = X ω n . In [BBE + 19, Thm. 1.1], the authors proved that functions in the finite energy class always have zero slopes. Tursiani and I have achieved a stronger version in [PT23, Prop. 4.2]. We proved that the Demailly-Lelong numbers of functions in the finite energy class are still zero; thus, Sub-problem A2 can be proved (see [PT23, Prop. D]). However, in general, the comparison (i.e. Problem 2) is still open.

  

  Supposons que S est une surface algébrique normale, p est une singularité isolée. Alors • p est canonique ⇐⇒ près de p, S est localement isomorphe à C 2 /G où G < SL(2, C) est fini ; • p est klt ⇐⇒ près de p, S est localement isomorphe à C 2 /G où G < GL(2, C) est fini. En dimension supérieure, les singularités quotient sont encore klt. Fixons n ≥ 2 et soit H ⊂ CP n+1 une hypersurface lisse de degré d. Le cône affine sur H n'a que des singularités canoniques si et seulement si d ≤ n + 1. En particulier, le point double ordinaire x 2 + y 2 + z 2 + w 2 = 0 a une singularité canonique à l'origine, mais ce n'est pas une singularité quotient. Pour plus d'informations sur les singularités et la MMP, nous recommandons au lecteur de suivre [KM98, Kol13].

	Nous extrayons certains faits de [KM98, Ch. 4] et [Kol13, Ch. 3] (voir aussi [EGZ09]) :
	Fait 1.2.1. Fait 1.2.2.

  En particulier, u est une fonction sousharmonique le long de toute ligne complexe. Notons par PSH(Ω) l'espace des fonctions psh sur Ω qui ne sont pas identiquement -∞. Un exemple prototypique d'une fonction psh est log | f | où f est une fonction holomorphe non nulle sur Ω. Dans ce cas, 1 π dd c log | f | est un (1, 1)-courant positif fermé qui est exactement le courant d'intégration le long de Z f := ( f = 0) par la formule de Poincaré-Lelong.

Opérateurs de Monge-Ampère complexes

  Fixons un domaine Ω ⊂ C n . Soit T un courant positif fermé de bidegré (p, p) et soit u une fonction psh localement bornée sur Ω. Le courant T a des coefficients de mesure, donc uT est un courant bien défini d'ordre zéro ; on définit alors dd c u ∧ T = dd c (uT).

	1 qui est aussi appelée la masse projective. Cette définition permet de généraliser le nombre de Lelong aux courants de bidegré (p, p) positifs et c'est également ce que nous utilisons dans le chapitre 4. Un rôle important dans l'analyse complexe est joué par la théorie de Bedford-Taylor : [BT76, bornées : Théorème (Bedford-Taylor [BT82]). Soit (u j ) j une suite de fonctions psh localement bornées décrois-sante en u ∈ PSH(Ω) ∩ L ∞ loc (Ω). Alors dd c u j ∧ T → dd c u ∧ T dans le sens des courants sur Ω. En particulier, dd c u ∧ T est un courant positif fermé ; par conséquent, BT82]. Le résultat suivant est crucial pour travailler avec des fonctions psh qui ne sont que localement ses coefficients sont également des mesures de Radon complexes (distributions d'ordre zéro) sur Ω.

  et à la section 4.1. Soulignons que les deux définitions du nombre de Lelong (pôle logarithmique et masse projective) ne coïncident pas nécessairement sur un espace complexe singulier (voir [BBE + 19, Rmk. A.5]).

  X → Y est plate si la carte induite sur chaque tige f p : O Y, f (p) → O X,p est une application plate d'anneaux ; autrement dit, O X,p est plat en tant que module O Y, f (p) . Un R-module M est plat si, chaque fois que N 1 → N 2 → N 3 est une suite exacte de R-modules, la séquence M

	• Puisque nous supposons que X est irréductible, nous notons d'abord que X t est de codi-
	mension un (cf. [Dem12, Ch. II, Thm. 6.2]).
	• Puisque π est ouvert (cf. [Dem12, Ch. II, Thm. 5.7]) et que la base D est lisse, la famille
	π : X → D est plate (cf. [BS76, Ch. V, Thm. 2.13]).
	Rappelons qu'une application f :

Fait 1.2.3. D

  'après [Gro66, Thm. 12.2.1 (v)], la normalité est ouverte sur la base D si l'application π est plate ; à savoir, X t est normale pour tous les t suffisamment proches de zéro. D'autre part, si X t est normale pour tout t ∈ D, alors X l'est aussi par [Gro65, Cor. 5.12.7]. Par conséquent, à rétrécissement de D près, X et (X t ) t∈D sont normales.

	3 est exacte sur R. Il est
	difficile d'expliquer l'intuition géométrique de la platitude ; voici une citation de Mumford
	[Mum88, p. 295] : "The concept of flatness is a riddle that comes out of algebra, but which
	technically is the answer to many prayers."
	En ajoutant d'autres hypothèses sur la fibre centrale X 0 et les espaces totaux X , on peut
	obtenir d'autres propriétés :

  when t → 0, log |π -t| converges to log |π| almost everywhere and, thus, log |π -t| → log |π| in L 1 when t → 0 by Hartogs' lemma. Therefore, ω n ∧ [X t ] --→ t→0 ω n ∧ [X 0 ] in the sense of currents and this implies Vol ω t (X t ) --→

	t→0

c log |π -t| by the Poincaré-Lelong formula. As |π -t| converges to |π| uniformly

  .3.4) Now, we fix t ̸ = 0. For all φ t ∈ PSH(X t , ω t ), the pullback function p * t φ t is p * t ω t -psh and thus p * t φ t ∈ PSH(Y t , ω t ). By [BK07, Theorem 1], there is a sequence of smooth ω t -psh functions (ψ t,j ) j decreasing to p * t φ t . Then we have

	Y t

  t ) be the normalized bounded Gauduchon factor with respect to ω t . Applying Lemma 3.3.2 and Proposition 3.3.1, one can derive

	Y t

  is bounded by ν from above. On the other hand, we have the lower bound of γ t ≥ C -1 ρ by similar computation in [DGG20, bottom of page 23]. Therefore, we obtain a two-sided bound of γ t : ∀x ∈ B 1/2 and ∀t ∈ D r , C -1 ρ ≤ γ t (x) ≤ ν.

	(4.3.2)
	Step 3: Conclusion. We closely follow the strategy in [DGG20, page 24-25] to conclude. Com-
	bining (4.3.1), (4.3.2) and Jensen's inequality, we derive
	e -αI

t (x) = exp z∈B

  As a consequence, we have the following uniform global version of Skoda's estimate: Assume that there is a uniform constant C SL > 0 such that for all t ∈ D and for every u t ∈ PSH(X t , ω t ) with sup X t = 0, := Vol ω t (X t ). Then there exists constants α, A α such that for all t ∈ D 1/2 and for all u t ∈ PSH(X t , ω t ) with sup X t u t = 0,

	V t X t Proposition 4.3.3. 1 where V X t e -αu t ω n (-u t )ω n t ≤ C SL t ≤ A α .

t

Remerciements

Chapter 3

Singular Gauduchon metrics, again

We prove a singular version of Gauduchon's theorem on arbitrary compact hermitian varieties by assuming the existence of a uniform Sobolev constant. In particular, we prove a uniform estimate of normalized Gauduchon factors in families of hermitian varieties. Then we use singular Gauduchon metrics to establish a Sup-L 1 comparison of quasi-plurisubharmonic functions in families of hermitian varieties where all fibres have only isolated singularities. Indeed,

Since ρ is bounded from above and away from zero, and F, G are continuous, the function ρF(ρ) -G(ρ) is bounded on X reg . By Lemma 3.1.2, taking the limit of δ → 0 on both sides of (3.1.1), one can conclude the proof.

Harnack inequality

One can now proceed as in the proof of [START_REF] Pan | Singular Gauduchon metrics[END_REF]Theorem 2.1] to establish Theorem 3.1.1. 

Sketch of proof of

Singular Gauduchon metrics

Suppose that (X, ω) is an n-dimensional compact hermitian variety. Using Hironaka's theorem [START_REF] Hironaka | Resolution of singularities of an algebraic variety over a field of characteristic zero. I, II[END_REF], one can find a resolution of singularities µ : X → X which is a composition of finitely many blowups with smooth centers. Namely, we can express µ by 

Applications in families

In this section, we establish a uniform Sup-L 1 comparison in the case where all fibres X t , t ∈ D have only isolated singularities.

Bounded integral of Laplacian

We first recall a useful extension property of the singular Gauduchon metrics. Following the proof of [Pan22, Theorem B], one can establish the following lemma: Lemma 3.3.2. Let (X, ω) be a compact hermitian variety, ρ be a normalized bounded Gauduchon factor with respect to ω, and p : X → X be a resolution of singularities which consists of finitely many blowups. Then the (n -1, n -1)-form p * ρω n-1 on X \ Exc(p) extends to a pluriclosed positive current on X.

Sketch of proof of Lemma 3.3.2. Let ω be a hermitian metric on X such that ω ≥ p * ω. Following the construction in [CGP13, Section 9], one obtains good cut-off functions

• χδ is increasing to the characteristic function of X \ Exc(p) when δ decreases to 0;

Then one can finish the proof by same arguments as in [START_REF] Pan | Singular Gauduchon metrics[END_REF].

Next, we prove that the integral of the Laplacian of ω t -psh functions are uniformly bounded: Lemma 3.3.3. Under Setting (F), there exists a constant C Lap > 0 such that for all t ∈ D 1/2 and for all φ t ∈ PSH(X t , ω t ),

Proof. Let p : Y → X be a resolution of singularities of X . Pick ω a hermitian metric on Y such that ω ≥ p * ω. The induced map µ := π • p : Y → D is surjective. By generic smoothness, it is smooth over a complement of proper analytic subset A ⊂ D. In particular, A is discrete so we can assume that Y t := µ -1 (t) is smooth for all t ̸ = 0 up to shrinking D. We denote by p t the restriction p| Y t : Y t → X t of p to the fibre Y t . For each t ̸ = 0, the map p t : Y t → X t is bimeromorphic, i.e. it is a resolution of singularities of X t .

CHAPTER 4. FAMILIES OF SINGULAR CHERN-RICCI FLAT METRICS

Geometric assumption (GA). Suppose that π : X → D is a family of hermitian varieties which satisfies the geometric setting (GS) and one of the following conditions:

(i) π is locally trivial;

(ii) π : X → D is a smoothing of X 0 and X 0 has only isolated singularities.

Note that both conditions are naturally exclusive unless X 0 is smooth. Also, if X is smooth and π is a submersion, then (i) holds. Thus, the geometric assumption (GA) includes families of smooth hermitian manifolds. Then we prove that, under the geometric assumption (GA), Conjecture (SL) is fulfilled: Proposition 4.0.2. If π : (X , ω) → D is a family of hermitian varieties satisfying the geometric assumption (GA), then there exists a uniform constant C SL such that Conjecture (SL) holds.

Families of Calabi-Yau varieties

A Calabi-Yau variety X is a normal variety with canonical singularities and trivial canonical bundle K X . Reid [START_REF] Reid | The moduli space of 3-folds with K = 0 may nevertheless be irreducible[END_REF] has conjectured that all Calabi-Yau threefolds should form a connected family, provided one allows conifold transitions. Roughly speaking, the construction of a conifold transition goes as follows: contracting a collection of disjoint (-1, -1)-curves from a Kähler Calabi-Yau threefold X to get a singular Calabi-Yau variety X 0 and then smoothing singularities of X 0 , one obtains a family of Calabi-Yau threefolds (X t ) t̸ =0 which are non-Kähler for a general t.

In the model of conifold transitions, the central fibre X 0 has only ordinary double point singularities which are canonical. Based on these geometric models, it is thus legitimate to study a smoothing family of Calabi-Yau varieties where the central fibre has only isolated singularities. Now, we consider a reasonable "good" family of Calabi-Yau varieties and ask how the bound on the Chern-Ricci potentials vary in families. Assume that X is a normal variety, K X is trivial and π : X → D is a smoothing. Moreover, we suppose that X 0 has only isolated canonical singularities. One can find a trivializing section Ω of K X /D . The restriction on each fibre Ω t := Ω| X t defines a trivialization of K X t . Following from [GL21, Theorem E], for each t, there is a bounded solution to the corresponding complex Monge-Ampère equation of canonical density. Then we show a uniform estimate in families: Theorem 4.0.3. Suppose that X is normal, K X is trivial, and π : X → D is a smoothing of a variety X 0 whose singularities are canonical and isolated. For each t ∈ D, let (φ t , c t ) ∈ (PSH(X t , ω t ) ∩ L ∞ (X t )) × R >0 be a pair solving the complex Monge-Ampère equation

Then there is a uniform constant C MA such that for all t ∈ D 1/2

Structure of the article

The paper is organized as follows:

• In Section 4.1, we recall basic notions in pluripotential theory and singular spaces.

• Section 4.2 is a recap on methods to obtain L ∞ -estimates in local and global cases.

• In Section 4.3, we study the local and global uniform Skoda estimates.

• In Section 4.4, we deal with the volume-capacity comparison stated in Section 4.2.

• In Section 4.5, we establish Conjecture (SL) under the geometric assumption (GA).

• In Section 4.6, we focus on families of Calabi-Yau varieties and show Theorem 4.0.3.

Preliminaries

In this section, we recall some definitions, notations, and conventions which will be used in the sequel. We define the twisted exterior derivative by d c = i 2 ( ∂ -∂) and we then have dd c = i∂ ∂. We denote by

When r = 1, we simply write D := D 1 and D * := D * 1 .

Smooth forms and currents on singular spaces

Let X be a reduced complex analytic space of pure dimension n ≥ 1. We denote by X reg the complex manifold of regular points of X and X sing := X \ X reg the singular set of X. Now, we recall definitions of smooth forms and currents on a complex analytic space X: Definition 4.1.1. We say that (i) A smooth form α on X is the data of a smooth form on X reg such that given any local embedding X -→ loc.

C N , α extends smoothly to C N ;

(ii) A smooth hermitian metric ω on X is a smooth (1, 1)-form which locally extends to a hermitian metric on

By definition, for all u ∈ PSH(Ω) ∩ L ∞ (Ω), complex Monge-Ampère measures (dd c u) n put zero mass on Ω sing ; hence we still have the comparison principle on Ω (cf. [GGZ23, Proposition 1.5]). Then one can follow exactly the same argument in [START_REF] Guedj | Hölder continuous solutions to Monge-Ampére equations[END_REF] 

The following classical lemma is due to De Giorgi and the reader is referred to [GKZ08, Lemma 1.5] and [EGZ09, Lemma 2.4] for the proof. Lemma 4.2.4. Let g : R ≥0 → R ≥0 be a decreasing right-continuous function and satisfy lim s→∞ g(s) = 0. Assume that there exists τ > 1, B > 0 such that g satisfies ∀s, t > 0, tg(s + t) ≤ B(g(s)) τ . Then g(s) = 0 for all s ≥ s ∞ , where

By Lemma 4.2.2 and Lemma 4.2.3, we have

where

Let g(s) := Cap 1/n ({φ < -s -ε}). Then we have tg(s + t) ≤ Bg(s) 2 where B = D 1/n 2 . Using Lemma 4.2.4, one obtains Cap({φ < -s -ε}) = 0 for all s ≥ s ∞ = eBg(0)

1-e -1 . This implies that φ ≥ -s ∞ε almost everywhere and thus everywhere by plurisubharmonicity. Therefore, one has sup

the function u j is the solution to the Dirichlet problem

(v) A ρ is a constant such that A ρ ω + dd c ρ j > 0 on X for all 1 ≤ j ≤ N;

(vi) c ρ = min 1≤j≤N c j > 0.

In this section, we fix some geometric constants and impose two integral bounds on the density f :

Geometric constants (SL).

There is a constant C SL > 0 such that the following inequality holds

Geometric constants (Skoda).

There exist α > 0 and

Following the strategy in [START_REF] Guedj | Quasi-plurisubharmonic envelopes 3: Solving Monge-Ampère equations on hermitian manifolds[END_REF], we shall prove an a priori L ∞ -estimate of complex Monge-Ampère equations on hermitian varieties. Theorem 4.2.5. Let (φ, c) ∈ (PSH(X, ω) ∩ L ∞ (X)) × R >0 be a pair solving the complex Monge-Ampère equation

There exists a uniform positive constant C MA > 0 such that

Remark 4.2.6. Suppose that X is a compact normal variety and µ : X → X is a resolution of singularities. Following [GL21, Theorem B], there exists a pair (φ, c) solving the corresponding complex Monge-Ampère equation on X. Let E = Exc(µ) be the exceptional divisor of µ which is analytic and thus pluripolar. Since the complex Monge-Ampère measure (µ * ω + dd c φ) n charges no mass on E, one can descend the solution to X reg . By the extension theorem of Grauert and Remmert [GR56, Satz 4] and normality of X, the µ * φ induces a ω-psh function on X and it solves the complex Monge-Ampère equation.

Upper bound of c

Following the same idea as in [KN15, Lemma 5.9], one can find an upper bound of c simply using the arithmetic-geometric mean inequality: Proof. For all u ∈ PSH(X, ω), we compute

Then applying arithmetic-geometric mean inequality, one can infer that

Rearranging the inequality, we obtain an upper bound of c as desired.

Domination principle

The domination principle has been proved under several setup (cf. [Ngu16, LPT21, GL22, GL21] and references therein). Here we establish the following domination principle on singular varieties:

Lemma 4.2.8 (Domination principle). Let u, v ∈ PSH(X, ω) ∩ L ∞ (X). Then we have the following properties

Sketch of proof. Let µ : X → X be a resolution of singularities. The (1, 1)-form µ * ω is semipositive and big (cf. [GL21, Definition 1.6]). For all functions u ∈ PSH(X, ω) ∩ L ∞ (X), the Monge-Ampère measure (µ * ω + dd c µ * u) n puts no mass on the exceptional divisor E := Exc(µ) since E is a pluripolar set. On the other hand, by definition, (ω + dd c u) n charges no mass on X sing for all u ∈ PSH(X, ω) ∩ L ∞ (X). Hence, one can descend the domination principles in [GL21, Corollary 1.13 and 1.14] to X. Then one can conclude Lemma 4.2.8.

Subextensions

Fix a strongly pseudoconvex domain Ω = {ρ < 0} and a strongly pseudoconvex neighborhood Ω = { ρ < 0} containing Ω. We define

We recall some properties of subextension of the plurisubharmonic functions in E 0 (Ω).

Lemma 4.4.1 ([CZ03, Theorem 2.2] and [GGZ23, Lemma 1.7]). Suppose that φ ∈ E 0 (Ω). The subextension of φ is defined as:

Then the subextension φ satisfies the following properties:

Relative extremal functions

Next, we review the definition and some basic properties of relative extremal functions (cf. [GZ17, Chapter 3]):

Definition and Proposition 4.4.2. Let E be a Borel subset in a strongly pseudoconvex domain Ω.

The relative extremal function with respect to (E, Ω) is defined as follows

Suppose that E is a relatively compact Borel subset in Ω. Then we have the following facts:

(i) The function h * E;Ω is psh in Ω and h * E;Ω = -1 on E off a pluripolar subset;

(ii) The boundary value of h * E;Ω is zero (i.e. lim z→∂Ω h * E;Ω (z) = 0);

(iii) The Monge-Ampère measure (dd c h * E;Ω ) n puts no mass on Ω \ E;

(iv) The capacity can be expressed by the integration of Monge-Ampère measure of the relative extremal function:

Recall that h * K t = -1 on K t almost everywhere. By the definition of u K t and u K t ≤ u K t , we have

where b k is a numerical constant such that exp(-1/x) ≤ b k x kn for all x > 0.

Global volume-capacity comparison

In this section, we show the uniform volume-capacity comparison in a given family of compact hermitian varieties π : (X , ω) → D with locally irreducible fibres. Let (X, ω) be a compact hermitian variety. We define the similar concept of Monge-Ampère capacity with respect to ω-psh functions by

On the other hand, fixing a pseudoconvex finite double cover (Ω j ) j and (Ω ′ j ) j of X such that Ω ′ j ⋐ Ω j , we define the Bedford-Taylor capacity by

To prove the global volume-capacity comparison, we should first compare the Bedford-Taylor capacity and the capacity of ω-psh functions.

Lemma 4.4.4. There exists a constant C BT,ω > 0 such that

Proof. On a fixed compact Kähler manifold, a similar version of Lemma 4.4.4 was provided by Kołodziej [Koł03, Section 1]. The proof of Lemma 4.4.4 is similar to Kołodziej's proof. For the reader's convenience, we include the proof here.

After shrinking D, we may assume that (U j ) j and (U ′ j ) j form a pseudoconvex double cover of X such that U j = {ρ j < 0} for some strictly psh function ρ j and U j = {ρ j < -c j }. Multiplying a positive constant, we may assume that 1 C dd c X ρ j ≤ ω ≤ Cdd c X ρ j . Let C ′ > 0 be a constant so that 0 ≤ ρ j ≤ C ′ for all j.

Write Ω j,t = U j ∩ X t and Ω ′ j,t = U ′ j ∩ X t . Fix u t ∈ PSH(X t , ω t ) with 0 ≤ u t ≤ 1. Let K t be a compact subset of X t and K t,j := K t ∩ Ω ′ j . Then we have

and hence Cap ω t (K t ) ≤ (CC ′ + 1) n Cap BT (K t ).

On the other hand, we shall use the gluing argument to prove the local capacity is bounded by the global capacity. Suppose u t ∈ PSH(Ω j,t ) and 0 ≤ u t ≤ 1. Consider a smooth function χ j defined on U j such that

when z is in a neighborhood of ∂U j .

We can find a small δ j ∈ (0, 1 3 ) such that δ j χ j can be extended to a ω-psh function on X . Now, we us the gluing argument to define a ω t -psh function ψ and it is identically equal to

Obviously, ψ = ψ + 1/3 is a ω t -psh function and 0 ≤ ψ ≤ 1. Then, we obtain

Combining Proposition 4.4.3 and Lemma 4.4.4, we have the global volume-capacity comparison in families: Proposition 4.4.5. Given k > 1, there exists a uniform constant C GVC,k ≥ 1 such that

for all t ∈ D 1/2 .

Sup-L 1 comparison in families

In this section, we pay a special attention to Conjecture (SL). We shall follow the strategy of proof in [DGG20, Section 3]. First of all, we recall the assumption which will be used in this section:

Assumption 4.5.1 (=Geometric assumption (GA)). Suppose that π : X → D is a family of hermitian varieties satisfies the geometric setting (GS) and one of the following conditions:

(a) π is locally trivial;

(b) π : X → D is a smoothing of X 0 and X 0 has only isolated singularities.

Under such assumption, we establish a uniform L 1 -estimate of ω t -psh function:

Proposition 4.5.2 (=Proposition 4.0.2). Suppose that π : X → D satisfies the geometric assumption (GA). Then there exists a uniform constant C > 0 such that for all t ∈ D 1/2

where V t := Vol ω t (X t ).

Proof of Proposition 4.0.2 Locally trivial families

In locally trivial cases, one can follow the similar strategy in [DGG20, Section 3.2] for the proof. The only difference is to replace the local potentials of ω 0 by the local inequalities 0 < C -1 ρ dd c ρ ≤ ω 0 ≤ C ρ dd c ρ for some local psh function ρ and some constant C ρ > 0 on X 0 .

Smoothing of varieties with isolated singularities

Before diving into the main goal, we recall the uniform boundedness of the integral of Laplacian.

Lemma 4.5.3. Suppose that π : (X , ω) → D satisfies the geometric setting (GS) and it is a smoothing of a compact variety X 0 . There is a uniform constant C Lap > 0 such that ∀φ t ∈ PSH(X t , ω t ), 

Canonical singularities

We first recall the notion of canonical singularities. The reader is referred to [EGZ09, Section 5] for more details. Let X be a normal variety. We say that X has canonical singularities if the pluricanonical sheaf K

[N]

X is locally free for some N ∈ N, and for any resolution of singularities p : X → X, for any local generator α of K

[N]

X , the meromorphic pluricanonical form p * α is holomorphic.

Lemma 4.6.1. Suppose that π : X → D is a proper surjective holomorphic map satisfying the geometric setting (GS). In addition, assume that • X is normal and K X (or equivalently K X /D ) is locally free;

• for each t ∈ D, X t has only canonical singularities.

Then the following are equivalent

• K X t is trivial for all t small (i.e. X t is Calabi-Yau for all t small).

Proof. We include some arguments here for the reader's convenience. Suppose that K X /D (or K X ) is trivial. Then we have

When t is close to 0, since X t is normal and K X t is reflexive, we have

where j t : X reg t → X t is the inclusion map for each t. Now, assume that K X t is trivial for all t close to 0. Since (X t ) t∈D are Calabi-Yau varieties, the map t → h 0 (X t , K X t ) is constantly equal to 1. As a direct consequence of Grauert's theorem [START_REF] Grauert | Ein Theorem der analytischen Garbentheorie und die Modulräume komplexer Strukturen[END_REF], the direct image sheaf π * (K X /D ) is locally free and

where k(0) is the residue field at 0. Let Ω 0 be a nowhere vanishing trivialization section of K X 0 on X 0 . By the isomorphism (4.6.1), Ω 0 descends to an element

Since every line bundle over D is trivial, we can extend the vector s 0 ∈ π * (K X /D )| 0 to a non-vanishing section s of π * (K X /D ) after shrinking D. Then s is identified with a section Ω of K X /D which has the relation Ω| X 0 = Ω 0 . Since Ω 0 is nowhere vanishing, the section Ω is nowhere zero on a neighborhood of the central fibre.

Remark 4.6.2. One can prove that under the assumption X 0 has canonical singularities, then X is normal, Q-Gorenstein in a neighborhood of X 0 and moreover X t has canonical singularities for t close to 0. However, we will not use that result.

Families of Calabi-Yau varieties

It is thus legitimate to work in the following setting:

Setup (CY). Let π : (X , ω) → D be a family of compact hermitian varieties satisfying the geometric setting (GS). Suppose that (i) X is normal and K X is trivial;

(ii) for all t ∈ D, X t has only canonical singularities.

From Lemma 4.6.1 and the inversion of adjunction (cf. [KM98, Theorem 5.50]), Setting (CY) implies following properties:

(1) X has canonical singularities;

(2) For all t ∈ D, K X t is trivial.

Let Ω be a trivializing section of K X /D . Define the function γ t on X t by the equation Ω t ∧ Ω t = e -γ t ω n t and γ t also induces a function γ on X near X 0 . From [DGG20, Lemma 4.4], we have the following uniform integrability property: Proposition 4.6.3. Up to shrinking D, there exists p > 1 and C > 0 such that for all t ∈ D, we have X t e -pγ t ω n t < C.

On the other hand, if K ⋐ X reg , then γ ∈ C 0 (K) and it implies that X t e -γ t /n ω n t ≥ e -sup K γ t n K t ω n t > c for some constant c > 0 independent of t close to 0. Therefore the canonical densities satisfy the integral bound (IB) in Theorem 4.0.1.

We are now ready to establish a uniform control of Chern-Ricci flat potentials in a family of Calabi-Yau varieties satisfying Setting (CY) and the geometric assumption (GA).

Proof of Theorem 4.0.3. For all t ∈ D, K X t is trivial and K X t = K X /D | X t as well. Therefore, one can find a non-vanishing section Ω t of K X t satisfying Ω t = Ω| X t . According to a recent work of Guedj and Lu [GL21, Theorem E], for each t ∈ D, there exists a solution (φ t , c t ) ∈ (PSH(X t , ω t ) ∩ L ∞ (X t )) × R >0 which solves the complex Monge-Ampère equation (ω t + dd c t φ t ) n = c t Ω t ∧ Ω t , and sup