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Abstract  

This study concerns a new antiretroviral drug named CRS 74. This molecule has a 

limited bioavailability because of its low aqueous solubility, poor water wettability and low 

dissolution rate. In an attempt to improve these properties, CRS 74 was recrystallized by 

using a Liquid Anti-Solvent (LAS) crystallization process. The chosen solvent is the ethanol 

and the anti-solvent the water. So solid-liquid equilibria in binary mixtures ethanol/water 

were measured at 30°C. The obtained solubility data were represented using UNIQUAC-

based model. The experimental and calculated solubilities permitted to estimate the optimal 

ethanol/water mass ratios (25/75 % w/w) in order to maximize the theoretical yield of solid. A 

double-jet with premixing (T-mixer) has been used to mix the two solutions. Particles of 

recrystallized CRS 74 seemed more agglomerated and the dissolution profile was not 

modified compared to the original drug. Furthermore, the study of crystals obtained at the exit 

of the mixer showed that the growth and agglomeration rates of crystals are high.In an 

attempt to improve its dissolution properties, CRS 74 has been recrystallized using different 

additives to optimize process and formulation parameters. Conclusively, produced 

microcrystals exhibited significantly faster dissolution rates than the original CRS 74 crystals. 

The improved dissolution is attributable to the modification of the particle size of drug 

crystals and enhancement of wetting properties due to specific interactions between the drug 

and the additives.  

Keywords: antiretroviral drug, solubility, bioavailability, dissolution rate, Liquid Anti 

Solvent crystallization, additive 



 



 

Résumé 

Cette étude concerne une nouvelle molécule antirétrovirale nommée CRS 74. Cette 

molécule présente une biodisponibilité limitée à cause de sa faible solubilité en phase 

aqueuse, sa mauvaise mouillabilité et sa faible vitesse de dissolution. Afin d’améliorer sa 

biodisponibilité, la molécule CRS 74 a été recristallisée par effet anti-solvant. Le solvant 

choisi est l’éthanol et l’anti-solvant l’eau. L'équilibre solide-liquide dans des mélanges 

binaires éthanol/eau a été mesuré à 30°C. Les solubilités obtenues ont été représentées en 

utilisant le modèle UNIQUAC pour le calcul des coefficients d’activité. Les solubilités 

expérimentales et calculées ont permis d’évaluer le ratio éthanol/eau optimum (25/75 % m/m) 

pour maximiser le rendement théorique en solide. Un mélange double jet avec pré-mélangeur 

type mélangeur en T a été choisi pour réaliser la cristallisation. Le solide cristallisé dans ces 

conditions semble plus aggloméré et son profil de dissolution comparé à celui du solide initial 

est inchangé. De plus, l’étude des cristaux obtenus en sortie de pré-mélangeur a montré que 

les vitesses de croissance et d’agglomération des cristaux sont élevées. Des additifs ont donc 

été utilisés en vue de modifier les propriétés de dissolution des cristaux, et d’optimiser les 

paramètres de formulation et de cristallisation. Les microcristaux produits en présence 

d’additifs présentent des profils de dissolution significativement plus rapides que les cristaux 

de la molécule initiale. Cette modification est attribuable à la modification de taille des 

cristaux et l'amélioration du mouillage en raison des interactions spécifiques entre la surface 

des cristaux et les additifs.  

Mots clés : molécule active antirétrovirale, solubilité, vitesse de dissolution, 

cristallisation par effet anti-solvant, additifs, biodisponibilité 
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INTRODUCTION 

An increasing number of newly developed drugs are poorly soluble in aqueous media. 

Poorly water soluble drugs are specially challenging, as they cannot achieve dissolution and 

therefore they have a very difficult pass through the dissolving fluid to contact the absorbing 

mucosa and to be absorbed. If the dissolution process of the drug molecule is slow, due to the 

physicochemical properties of the drug molecules or formulation factors, then dissolution 

may be the rate-limiting step in absorption and will influence drug bioavailability. This is the 

case of a new compound, (2S, 3S, 5S)-2, -5 bis- [N-[N-[[N- methyl- N-[(2-isopropyl- 4- 

tiazolyl) methyl] amino] carbonyl] vanilyl] amino- 1,6- diphenyl- 3- hydroxyhexane, named 

CRS 74.  

This promising candidate against HIV infections has high biological activity as 

disclosed in PCT documents WO 2005/111006; US 2010/7763733 (BOCKELMANN, M.A. 

et al, 2005; BOCKELMANN, M.A. et al, 2010) but its bioavailability is limited because of its 

low aqueous solubility and dissolution rate. Such properties pose difficulties not only in the 

design of pharmaceutical formulations but may result in biovariability. Moreover, because of 

their low solubility, such drugs require high doses to be administered in order to obtain their 

pharmacological effect, increasing the side effect incidence. 

Drug dissolution is a prerequisite to drug absorption and clinical response for almost all 

drugs given orally. Solid forms that have been investigated for drug dissolution enhancement 

include salts, polymorphs and amorphous, among others. High energy polymorphs and 

amorphous formulations can achieve improved solubility but the system is at serious risk of 

crystallizing the thermodynamically stable form, even in the solid state (YU, 2011; 

RODRIGUEZ-SPONG et al., 2004). Such transformations can compromise the performance 

of the formulation. 

To save time and resources in product development, relatively simple approaches 

should be tried first like crystallization. The Liquid Anti-Solvent (LAS) crystallization 

process is an attractive method. It requires mild conditions (ambient temperature and 

atmospheric pressure) with no requirement for expensive equipment. In LAS process, 

crystallization of solute is achieved by decreasing the solubility of solid in the system. This is 
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done by addition of a non-solvent component for solute called anti-solvent and miscible with 

the solvent. 

This thesis presents efforts to develop and assemble tools required for improving the 

dissolution rate of CRS 74 by LAS crystallization process. It is divided into five chapters.  

Chapter 1 is devoted to review literature themes. Many strategies to increase the 

dissolution rate of poorly soluble drugs and the key determinants of drug bioavailability are 

presented. It also focuses on topics of interest for our work, like properties of drugs 

influencing dissolution behavior. Emphasis was given to the LAS crystallization process.  

The first elements of the understanding of the drug properties are given in Chapter 2. 

The original (as-received) molecule was characterized in terms of its physical properties 

(particle shape and size), crystal structure (crystalline, amorphous) and surface properties 

(wettability), solubility and dissolution properties in aqueous media. The methodology 

utilized and the results obtained are summarized in this Chapter. This characterization study 

was crucial to evaluate possible changes on drug properties after recrystallization by LAS 

process. 

The solvent selection is one of the essential parameters to envisage any crystallization 

process. Therefore, the knowledge of the solubility of a target component in different solvents 

is required. The solubility of CRS 74 in ethanol and ethanol-water binary mixtures was 

measured in the temperature range of 5 -30oC and this study is presented in Chapter 3. 

Moreover, Chapter 3 outlines the experimental apparatus and procedures used for LAS 

crystallization studies. Two high jet velocity devices were tested to provide adequate mixing 

to incorporate the anti-solvent into the bulk solution. Recrystallized solids were compared to 

the original drug crystals in terms of particle size, solid state, thermal and dissolution 

properties. 

Finally, LAS crystallization of CRS 74 in presence of additives is the subject of the 

Chapter 4. The study describes the use of different additives, which were introduced in the 

drug solution or in the anti-solvent or in both phases, to achieve optimum crystal properties of 

CRS 74. The effect of additives on the crystals particle size, dissolution kinetics and drug 

wettability could be investigated and are discussed in this Chapter.  

Chapter 5 summarizes the main results of this research and suggests future work.
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Résumé Chapitre 1- Revue Bibliographique 

Ce chapitre constitue une revue bibliographique sur l’amélioration de la 

biodisponibilité de médicaments peu solubles dans l’eau. 

Un nombre croissant des nouveaux médicaments développés par l’industrie 

pharmaceutique sont peu solubles dans les milieux aqueux. L’industrialisation de ces 

médicaments devient donc un réel défi, du fait de leurs faibles vitesses de dissolution et, par 

conséquent, de leurs difficultés à traverser les membranes corporelles afin d'être absorbés. Si 

le processus de dissolution de la molécule est lent, en raison de ses propriétés physico-

chimiques ou des facteurs de formulation, la dissolution peut être le facteur limitant de 

l'absorption et aura une influence directe sur la biodisponibilité du médicament. 

Le terme médicament faiblement soluble dans l’eau fait généralement référence à un 

médicament dont la solubilité aqueuse est inférieure à 1mg/ml. Des exemples de médicaments 

couramment commercialisés qui sont peu solubles ou insolubles dans l'eau comprennent les 

analgésiques, les cardiovasculaires, les hormones, les antiviraux, les immunosuppresseurs et 

les antibiotiques (BERGESE, 2003). De plus un médicament ayant une meilleure solubilité 

dans l'eau peut être administré à une plus faible dose réduisant ainsi leurs effets secondaires 

systémiques. Ceci est crucial pour les médicaments ayant d'importants effets secondaires, tels 

que les antibiotiques, les antifongiques ou les antirétroviraux. 

Afin d'améliorer la solubilité dans l'eau et la vitesse de dissolution de ces médicaments 

hydrophobes dans le tractus gastro-intestinal et/ou au site d'absorption, plusieurs techniques 

peuvent être utilisées, telles que la formation de sels, la complexation, par exemple avec des 

cyclodextrines, la vectorisation, des modifications chimiques ou encore des modifications 

physiques comme, par exemple, la réduction de taille du solide. En effet, la vitesse de 

dissolution est directement proportionnelle à la surface spécifique (loi de Noyes-Whitney). La 

dissolution peut donc être effectivement augmentée en réduisant la taille des particules. Par 

conséquent, de nombreux efforts ont été consacrés au développement d’opérations faciles, 

économiques et efficaces pour la fabrication de particules plus fines



 

Des micro ou nano-particules peuvent être produites par deux approches différentes. 

La première consiste, à partir d’un matériau massif, à le fractionner afin de réduire sa taille, 

c’est l’approche « top-down ». Par exemple, le broyage est une méthode « top-down » 

traditionnelle de réduction de la taille de matières particulaires (MENG, 2011).  

La seconde au contraire, consiste en l’assemblage d’atomes ou de molécules 

(cristallisation),  c’est l’approche « bottom-up ». La cristallisation par effet anti-solvant est 

considérée comme une opération bottom-up. Cette dernière est une approche efficace pour la 

précipitation de fines particules en solution, en présence d’un anti-solvant. L'introduction d’un 

anti-solvant dans une solution  contenant le principe actif, génère une sursaturation élevée qui 

induit simultanément la nucléation, la croissance et l’agglomération des particules. Le grand 

défi de l’utilisation de cette opération est le contrôle des propriétés du solide cristallisé tels 

que la croissance des cristaux et leur agglomération. 

Ces dernières années, de nombreuses méthodes de production de particules utilisant la 

cristallisation par effet anti-solvant ont été développées. Elles permettent un meilleur contrôle 

de la taille, de la cristallinité et de la morphologie des particules obtenues avec des méthodes 

« bottom up ». Le procédé de cristallisation est applicable à une large gamme de composées 

pharmaceutiques BCS de classes II et IV afin de produire des micro/nanoparticules. La 

diminution de taille des particules augmente la surface spécifique, ce qui augmente la vitesse 

de dissolution de médicaments peu solubles et, par conséquent, leur biodisponibilité 

(LIVERSIDGE et LIVERSIDGE, 2008). 

Deux paramètres opératoires influençant les propriétés du solide formé ont été évalués 

dans ce chapitre : le mélange et l’utilisation d’additifs. Le premier est une étape essentielle 

pour maintenir un niveau constant et homogène de sursaturation dans le cristallisoir, induisant 

une nucléation uniforme et le contrôle de la formation de ces petits cristaux (DOUROUMIS 

et FAHR, 2006). Les additifs utilisés durant une opération de cristallisation peuvent être 

absorbés directement sur les particules formées permettant ainsi de produire des poudres avec 

des propriétés physico-chimiques optimales (ZIMMERMANN et coll., 2009). Il a été montré 

que la présence d'additifs dans la solution peut affecter les différents mécanismes comme la 

nucléation et/ou la croissance et l’agglomération et donc les propriétés du solide, comme sa 

solubilité, le faciès des cristaux le composant (KUBOTA et coll, 2000; GARNIER et coll, 

2002; VETTER et coll., 2011), et la forme cristalline (CHONG et coll, 2002; SONG et 

CÖLFEN, 2011). De plus, l'adsorption des additifs sur la surface des particules peut 



 

provoquer une inhibition de la croissance et de l’agglomération, en occupant des sites 

spécifiques et, par conséquence arrêter ou ralentir ces deux processus. 
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�
1.1. THE BIOAVAILABILITY OF DRUGS 

 Absorption and bioavailability 1.1.1.

The term bioavailability is usually defined as the rate and extent of absorption of a drug 

from its dosage form into the systemic circulation (BLANCHARD and SAWCHUK, 1979). 

By definition, when a medication is administered intravenously, its bioavailability is 

100%. However, when a medication is administered via other routes (such as orally), its 

bioavailability (oral bioavailability) is usually less than 100%, caused by degradation or 

metabolism of the drug prior to absorption, incomplete absorption and first-pass metabolism 

not seen with intravenous administration (OSCIER et al., 2007). 

The therapeutic effect of drugs depends on the drug concentration at the site of action. 

The absorption of the drug into the systemic circulation is a prerequisite to reach the site of 

action for all drugs, except those drugs that are applied at the site of action, or those that are 

intravenously injected.  

When a drug is taken orally administration (gastrointestinal route) it passes through the 

mouth, esophagus, stomach, duodenum, jejunum (small intestine), colon (large intestine) (see 

Figure 1.1) and finally leaves the body if not absorbed. Indeed, it must withstand the effect of 

several physiological fluctuations like a large variation in pH along the gastrointestinal tract 

(Table 1.1), the presence of bile salts, food, enzymes, bacteria and the motility of the gut. 

 
Figure 1.1. Anatomy of digestive tract (Modified from: MARTINEZ et al., 2002). 
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Table 1.1. Transit time and pH conditions along the GI tract (MARTINEZ et al., 2002). 

GI segment Transit time pH 

Stomach 2 h 2.0 ± 1.9 

Duodenum 10 min 6.6 ± 0.5 

Jejunum 2 h 7.4 ± 0.4 

Ileum 1 h 7.5 ± 0.4 

Colon 36-72 h 7.0 ± 0.7 

 

Absorption of drugs after oral administration of pharmaceutical dosage forms (drug 

powder, tablet, capsule…) may occur at the various body sites between the mouth and rectum. 

After oral administration, the pharmaceutical product reaches quickly the stomach passing 

through esophagus. However, the small intestine has the largest surface for drug absorption in 

GI tract (PODCZECK et al. 2007). 

After disintegration of the pharmaceutical dosage form in the gastrointestinal tract, the 

first requirement for absorption is that the drug dissolves. In fact, only drug that is dissolved 

has the ability to permeate the intestinal membrane. The oral bioavailability of a particular 

drug is thus determined by the magnitude of the solubility and/or permeability limitations that 

exist for it within the GI tract, which is an aqueous environment. These two aspects, 

illustrated in Figure 1.2, form the basis of the Biopharmaceutical Classification System 

(BCS), which is incorporated in the guidelines of the Food and Drug Administration (FDA) 

established by AMIDON et al. (1995) and often cited in the literature. According to the BCS, 

four different types of drug absorption regimes are distinguished. They are explained in Table 

1.2. 

According to Biopharmaceutical Classification System (BCS), Class I drugs dissolve 

rapidly in an aqueous environment and are rapidly transported over the absorbing membrane.  

For Class II drugs, the dissolution rate in vivo is usually the rate limiting step in drug 

absorption. Drugs of this group are poorly water soluble. 

Class III drugs dissolve readily, but cannot penetrate biomembranes of GI tract. 
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Class IV drugs are characterized by poor solubility and poor permeability. Oral 

administration is not recommended (LINDENBERG et al., 2004) and, subsequently, Class IV 

drugs are often administered parentally using formulations containing solubility/permeability 

enhancers. 

 

 

Figure 1.2. Parameters limiting absorption of drugs taken orally (Adapted from 

ENGMAN, 2003). 

 

Table 1.2. Biopharmaceutical Classification System according to AMIDON (1995). 

Class 

Solubility in aqueous 

environment 

Permeability over 

(intestinal) membrane 

I High High 

II Low High 

III High Low 

IV Low Low 
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It is clear that, depending on the classification of the drug, different strategies can be 

applied to increase or accelerate the absorption of a drug taken orally, either increasing the 

amount of dissolved drug or increasing the permeability of the dissolved drug through the 

absorbing membrane.  

To sum up, Class I drugs do not need a formulation strategy to increase the absorption. 

The rate of absorption of Class II drugs can be enhanced by accelerating the dissolution. 

This has proven to be effective in many studies (YELLELA, 2010; PATEL et al., 2011; 

VIÇOSA et al., 2012). 

The strategy for Class III drugs is to increase the permeability of the absorbing 

membrane. Numerous studies deal with increasing membrane permeability in the gastro-

intestinal tract (NEELAM et al., 2012; SHAIKH et al., 2012).  

For a Class IV drug, both dissolution as well as permeability must be increased. 

Over 90% of the marketed drugs qualify under Class II and Class IV (GRIFFIN. 2012). 

The oral bioavailability of these drug compounds is limited due to slow drug dissolution in 

the gastrointestinal tract. Therefore, it is desirable to improve the solubility of these drug 

compounds by using various pharmaceutical technologies that will be discussed later in this 

Chapter. 

 Poorly-water soluble drug molecules 1.1.2.

Poorly-water soluble drugs describe a heterogeneous group of drug compounds that 

exhibit poor solubility in water but are typically soluble in various organic solvents. 

The degree of water solubility for drug compounds can be defined as slightly soluble (1-

10mg/mL), very slightly soluble (0.1-1 mg/mL), and practically insoluble (<0.1mg/mL) 

(MENG, 2011) 

The expression poorly-water soluble drug generally refers to a drug whose aqueous 

solubility falls into the range of slightly soluble and below. Examples of commonly marketed 

drugs that are poorly soluble or insoluble in water include analgesics, cardiovasculars, 

hormones, antivirals, immune suppressants and antibiotics (BERGESE, 2003). A drug with 

improved water solubility can be administrated in a lower concentrated dose, with a reduction 
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of local and systemic side-effects. This is crucial for drugs with important side-effect profiles, 

such as antibiotics, antifungals or antiretrovirals. 

The drug we deal with in this thesis belong to the category of insoluble drugs; at the 

best of our knowledge, it is not yet classified according to the BCS classification. 

 

1.2. ENHANCEMENT OF SOLUBILIZATION AND 

BIOAVAILABILITY OF POORLY SOLUBLE DRUGS

 Concept of dissolution 1.2.1.

Drug must first be dissolved in the medium at the absorption site. The process that a 

drug particle dissolves is called dissolution.  

The dissolution of a solid in a solvent is a rather complex process determined by a 

multiplicity of physicochemical properties of solute and solvent. However, a more intuitive 

approach was interestingly proposed by Bergese (2003) to describe the dissolution of a solid, 

regardless of the mechanism by which dissolution occurs, as a consecutive process driven by 

energy changes (Figure 1.3). 

 

Figure 1.3. Energy diagram of the dissolution of a solid phase. Adapted from 

BERGESE, 2003. 
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The first step consists in the contact of the solvent with the solid surface (wetting), 

which leads to the production of a solid-liquid interface. Following the description given by 

Bergese (2003), the break of the molecular bonds of the solid and the molecules passage to 

the solid-liquid interface (solvation) are the second and third step. 

The final step sees the transfer of the solvated molecules from the interfacial region into 

the bulk solution (diffusion). Each stage requires a certain amount of energy to be completed; 

the target of drug activation is to lower the overall dissolution energy.

Solvation and diffusion depend on solid and solvent chemical nature and on the system 

conditions (temperature, mechanical agitation…), while wetting and fusion also depend on 

microstructure of the solid. In the case of a given poorly water-soluble drug that dissolves into 

the gastrointestinal tract it is not possible to modify neither the drug molecules nor the 

dissolution environment (solvent and system conditions). So the efforts in enhancing drug 

dissolution rate are essentially spent (in trying) to tailor the drug microstructure. 

To outline the properties of solids that determine their dissolution rate we start from the 

simplest model for the dissolution of a solid in a solvent, i.e. the Nernst’s film theory (1904), 

considering a single particle dissolving into a large volume of solvent, under agitation (Figure 

1.4). 

  

Figure 1.4. Dissolution of a single particle in a large volume of solvent (Model of 

Nernst). Adapted from BERGESE, 2003. 
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The concentration of the pure molecule at the solid surface, is assumed to be equal to 

the saturation concentration, Ceq; the concentration in the bulk solution will be denoted with 

C. Despite of agitation, it can be assumed that the solid is surrounded by a stagnant film of 

liquid of constant thickness. Solid molecules spontaneously diffuse through this film and 

reach the bulk solution. If we assume steady state conditions, diffusion is described by the 

Fick’s first law: 

 (1.1) 

 

where Ji is the diffusion current (defined as the amount of material i passing per unit time 

perpendicularly through a unit surface area), Ci the molar concentration of molecule i, Di the 

diffusion coefficient of molecule i, and ∂Ci/∂s the concentration gradient through the film.  

In this particular case, ∂Ci/∂s is constant, since in the stagnant film laminar condition 

holds. To sum up, there is a linear concentration gradient from the solid surface to bulk 

solution that can be analytically expressed as ∂Ci/∂s = (Ci,eq –Ci)/h. Using this expression, and 

denoting the volume of the solvent V and the surface area of the dissolving solid A, Equation 

(1.2) becomes: 

 (1.2) 

 

The more familiar form of the dissolution equation (also called Noyes-Whitney 

equation), which describes the increase of the mass of solute dmi in the time dt due to 

dissolution, is obtained rearranging Equation (1.2): 

 (1.3) 

where Mi  is the molar weight of solid. 
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To eliminate the saturation effect of the solvent and increase the ability of the solid to 

dissolve the expected amount of drug, dissolution methods on “sink condition”, have been 

proposed in the literature (GIBALDI and FELDMAN, 1967; ROHRS, 2001, 

GOWTHAMARAJAN and SINGH, 2010). In practice, if the quantity of the medium 

dissolution is sufficiently large, between 3 and 10 times, of the volume needed to completely 

solubilize the drug, it is said that we are on sink-condition (ABDOU, 1989; ROHRS, 2001; 

GOWTHAMARAJAN and SINGH, 2010). When sink condition holds (��<< ����, Equation 

simplifies to: 

 (1.4) 

 

 Dissolution testing for poorly-water soluble drugs 1.2.2.

For a dosage form to produce its effect after oral administration, drug must be released 

and generally should be dissolved in the fluids of the gastrointestinal tract. Drug dissolution 

testing plays an important role as a routine quality control test and to characterize the quality 

of the product (FDA, 1997).  

Dissolution from the dosage form involves mainly two steps: liberation of the drug from 

the formulation matrix (disintegration) followed by the dissolution of the drug (solubilization 

of the drug particles) in the liquid medium. The overall rate of dissolution depends on the 

slower of these two steps. In the first step of dissolution, the cohesive properties of the 

formulated drug play a key role. 

For solid dosage forms, these properties include disintegration and erosion. If the first 

step of dissolution is rate-limiting, then the rate of dissolution is considered disintegration 

controlled. In the second step of dissolution (i.e., solubilization of drug particles), the 

physicochemical properties of the drug such as its chemical form (e.g., salt, free acid, free 

base) and physical form (e.g., amorphous or polymorph and primary particle size) play an 

important role. If this latter step is rate-limiting, then the rate of dissolution is dissolution 

controlled. This is the case for most poorly soluble compounds in immediate-release 
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formulations whose solubility is less than 1–2 mg/L in the pH range of 2–8 

(GOWTHAMARAJAN and SINGH, 2010). 

For poorly soluble compounds, dissolution study is particularly important. Different 

techniques have been used to improve the maximum dissolvable dose in the dissolution 

medium in discriminatory dissolution studies, such as addition of organic solvents to aqueous 

medium (DANIEL et al., 2012), increase of the dissolution medium volume, pH changes 

(TALARI et al., 2009), and addition of surfactants (JINNO et al., 2000; ROHRS, 2001).  

Some dissolution parameters involved in the phase transformation can affect dissolution 

method efficiency. The dissolution of most solids is an endothermic phenomenon, thus 

increases in temperature tend to increase the speed, which the substance dissolves. Because of 

this, the United States Pharmacopeia recommends 37±0.5°C media temperature for 

dissolution tests.  

The dissolution kinetics depends on the local mass transfer coefficient (which in turn is 

a function of suspension state and the local turbulence level). Because of this some authors 

have established a relationship between the intensity of agitation and dissolution rate constant 

(cm.sec-1). Generally, higher stirring rates result in higher dissolution rates and ideally stirring 

conditions must somehow simulate peristalsis physiological. The diffusion rate can decrease 

too, with increasing media viscosity, which implies a decrease of the dissolution rate. Another 

parameter that can influence the dissolution rate of a solid in a liquid is the solid wettability. 

For complete drug dissolution it is necessary that wetting is complete. The ability of wetting 

of a solid by a liquid is expressed by the contact angle. 

Countless are the variables that can modify the results of dissolution tests. All should be 

considered, but some must be strictly monitored to obtain reliable results. Finally, 

construction of in vitro-in vivo correlation provides the most valuable data for selection of the 

most appropriate dissolution method and testing conditions that can be prognostic of in-vivo 

dissolution. 

Micro/nanonization during crystallization (RASENACK and MÜLLER, 2002; 

RASENACK and MÜLLER, 2004; BADAWI et al., 2011; VIÇOSA et al., 2012), surface 

modification (HAN et al., 2011) and crystal structure modification (EERDENBRUGH et al., 

2009) may improve the dissolution rate of poorly water-soluble APIs. 
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Several studies have shown that modification of the crystalline form of the drug , by the 

inclusion of specific additives increases the rate of dissolution of the pharmaceutical form, 

which can strongly affect the physicochemical properties and kinetic of absorption of the drug 

from the final product (SHEKUNOV and YORK, 2000). 

It is known that a substance in crystalline form has a lower solubility, while at the same 

amorphous form has higher solubility and low thermal stability. Formulations where the drug 

is mainly crystalline and amorphous or metastable forms, are much more soluble than the

drug-containing highly crystalline. Drug amorphization can be used to promote a quicker 

therapeutic effect by enhancement of drug absorption rate and dissolution rate. However, 

formulations containing metastable amorphous forms are less stable than those prepared with 

the crystalline forms of the drug. Because there is generally a risk of crystallization during the 

production process and shelf life of the product. Such products are generally very reactive and 

less stable when exposed to heat and mechanical stress, and very susceptible to moisture 

absorption (SINGHAL and CURATOLO, 2004) 

The dissolution rate can be enhanced by size reduction that can be explained by the 

Noyes-Whitney equation (Equation. 1.3). This is possible due to the special features of drug 

size reduction:  

1. Increased surface area A; 

2. Increased  saturation concentration and dissolution pressure (    Ceq; pX ); 

3. Increased adhesiveness to surfaces/cell membranes (see Figure 1.5). 

 

The increased area increases the dissolution rate. Moreover the transfer of particles from 

the macrosize range to the nanodimension changes their physico-chemical properties. This 

strategy also modifies the saturation concentration of the drug in solution (Ci,eq), which means 

an additional increase with increased speed dissolution of particles in this size range. In 

addition, the size reduction can increase the adhesiveness into the skin due to the increase in 

the saturation, leading to a larger concentration gradient and the larger gradient promotes 

penetration (MÜLLER et al., 2011). 

 

(   C
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Figure 1.5. Features of size reduction: 1. Increased dissolution velocity due to increased 

surface area ; 2. Increased saturation solubility due to increased dissolution pressure of 

strongly curved small nanocrystals (upper); 3. Increased adhesiveness of reduced material due 

to increased contact area of small versus large particles. Modified from MÜLLER et al., 2011. 
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 Strategies to increase the amount of dissolved drug at the absorption site 1.2.3.

To enhance the aqueous solubility and the dissolution rate of hydrophobic drugs at the 

absorption site several strategies can be used. These methods (alteration of solvent 

composition, complexation, carrier system, chemical modification and physical modification) 

are shown in Figure 1.6. The following section is a brief review on the state of the art of this 

topic. 

 

Figure 1.6. Strategies to increase the amount of dissolved drug at the absorption site 

(Modified from LAKSHMI et al., 2012). 
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 Salt formation/pH control 1.2.3.1.1.
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diffusion, which varies with pH of the individual regions within the GI tract, pKa of the drug, 

and permeability, that depends of regional pH effects upon drug ionization.  

Poorly water soluble drugs can be protonated (base) or deprotonated (acid) and may 

potentially be dissolved in water by applying a pH change. The presence of salts can act as 

alkalising or acidifying agents, and may increase the solubility of weakly basic or acid drugs. 

After pH adjustment, ionisable compounds are stable and soluble at selected pH. 

Salts of acidic and basic drug have, in general higher solubility values than their 

corresponding acid or basic forms (GRAHAM et al., 1986).  

Generally a salt of a drug is frequently less stable chemically compared to crystalline 

solid. At pH extremes drug is dissolved, which can increase the chance of hydrolysis, catalyze 

or other degradation mechanisms (VENKATESH et al., 1996). Another disadvantage is the 

risk for precipitation upon dilution with aqueous media having a pH at which the compound is 

less soluble. Intravenously this may lead to emboli, orally it may cause variability and toxicity 

(local and systemic) related to the use of non physiological and extreme pH (GIACONA et 

al., 1982). 

 Cosolvency 1.2.3.1.2.

Co-solvent system works by reducing the interfacial tension between the aqueous 

solutions and hydrophobic solute by solvent blending or cosolvency. This method is based on 

the mixing of solvents of different polarities to form a solvent system of optimum polarity to 

dissolve the solute. Co-solvent formulations of poorly soluble drugs can be administered 

orally and parentally (THELLY et al., 2000; BOYLAN, 1987). This type of formulation can 

increase the solubility of poorly soluble compounds several thousand times compared to the 

aqueous solubility of the drug alone. However, these modifications can cause serious side 

effects due to solvents use. 

Yeh (2009) realized a formulation study of tenoxicam, a poorly water-soluble drug, by 

use of a ternary cosolvent system, DMSO/polyethoxylated castor oil/ethanol system, that had 

significantly enhanced the solubility. Additionally, the relative bioavailability was improved. 

This study provided a novel strategy for improving tenoxicam solubility, but also helps 

further scientific knowledge for the development of parenteral formulations. 
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Seedher and Bhatia (2003) investigated that the aqueous solubility of celecoxib, 

rofecoxib and nimesulide could be enhanced significantly by using ethanol as the second 

solvent and PEG-400-ethanol had highest solubilization potentiality among the mixed solvent 

systems.  

Large quantities of organic solvent used in cosolvent formulations may result in the loss 

of solvent capacity of the formulation upon dilution in aqueous media in vivo. For drugs Class 

II and IV, administered orally, the use of cosolvents technique may not increase the 

bioavailability dramatically because the poorly soluble drug can typically uncontrollably 

precipitate into a crystalline or amorphous precipitate. In this case, dissolution of this 

precipitate is required for oral absorption. A major concern for the use of this technique is the 

biocompatibility, tolerability and toxicity of used solvents formulations and the loss of solvent 

capacity in aqueous media in vivo.  

1.2.3.2. Inclusion complexes/complexation 

 Cyclodextrin (CD) 1.2.3.2.1.

Another approach used to improve drug solubilization is based on the formation of 

inclusion complexes between molecular assemblies and drug molecules, like cyclodextrins 

(CD). CDs are cyclic oligosaccharides composed of glucopyranose units and adopt a 

truncated cone structure with hydrophobic cavity (SAENGER, 1980). 

Cyclodextrins and their derivatives have been employed as complexing agents to 

increase water solubility, dissolution rate and bioavailability of lipophilic drugs for parenteral 

or oral delivery (SRIDEVI et al., 2003; MORIWAKI et al., 2008). 

An inclusion complex is produced by inclusion of a non polar molecule or the nonpolar 

region of a molecule (known as the guest) into the nonpolar cavity of another molecule or 

group of molecules (known as the host), as shown in Figure 1.7. When the guest molecule 

enters the host molecule, they are temporarily locked or caged within the host cavity. Giving 

rise to beneficial modifications of guest molecules, as solubility improvement for example. 

Furthermore these complexes have a broad range of utilizations in different applications; they 

are used in the food and cosmetics industries and the pharmaceutical sector (DEL VALLE, 

2004). 
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Figure 1.7. Schematic illustration of the association of free cyclodextrin (CD) and drug 

to form drug–CD complexes  and a truncated cone structure of CD (Modified from: DEL 

VALLE, 2004). 

The three cyclodextrins α-, β-, and γ- (CD) are composed of six, seven, and eight 

glucopyranose units, and are produced in industrial scales (MORIN-CRINI and CRINI, 

2012). These agents have a torus structure with primary and secondary hydroxyl groups 

orientated outwards, as shown in Figure 1.8. 

 

Figure 1.8. Schematic representations of Cds (a) α- CD, (b) β-CD, (c) γ-CD. 

Containing 6,7 and 8 glucopyranoside units, respectively (MORIN-CRINI  and CRINI, 2012). 

For Class IV drugs, the cyclodextrin complexation may not improve their oral 

bioavailability. However, cyclodextrins are able to improve aqueous solubility of some large 

lipophilic molecules leading to increase drug availability at the mucosal surface. This will 

frequently lead to increased oral bioavailability (LOFTSSON et al., 2005). 

Even though CD seems to be ideal carriers, they possess some limitations, related to 

toxicological considerations, formulation and production cost. In general, the complexation 
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efficiency of cyclodextrins is low and thus relatively large amounts of cyclodextrins are 

needed to complex small amounts of drug (LOFTSSON and O’FEE, 2003). 

1.2.3.3. Carrier System 

 Micelles 1.2.3.3.1.

Micelle solution is another formulation strategy to increase drug solubility. According 

to IUPAC (Compendium of Chemical Terminology) (1972) micelle solubilization can be 

defined as colloidal association in a solvent system for solubilization of a component into or 

on micelles. 

Of the above mentioned, for colloidal association, the use of surfactants into the media 

is the most popular method for micelle formation. Various synthetic surfactants can simulate 

the surfactants present in the gastrointestinal fluid, e.g., bile salts, lecithin, cholesterol and its 

esters (YALKOWSKY, 1999). 

Surfactants are molecules with distinct polar and non polar regions. In water, as the 

concentration of surfactant increases above a critical value, its molecules self-associate into 

soluble structures called micelles. The concentration at which they begin to form is called the 

critical micelle concentration (CMC) (FLORENCE and ATTWOOD, 1981 ; MYRDAL and 

YALKOWSKY, 2002 ).  These micelles are normally spherical with the nonpolar regions of 

surfactant molecules gathered in the center (core) and surrounded by a shell of the polar 

region which are in contact with the water. 

Micelle is a nanoparticle structured by one hydrophilic shell and one hydrophobic core 

(Figure 1.9), which are capable of encapsulating drug molecules, resulting in reduction in the 

interfacial tension and improved solubility of the drug in the medium (SUBHASHI et al., 

2009). 

The stability of drug carrier micelles is the biggest challenge for the use of this 

technique. When in aqueous media, in vivo micelles become much diluted by blood (below 

CMC) and may be gradually disintegrated into unimers. In addition, the low drug loading 

efficiency and the difficulty in transporting through cell membranes, has also retarded the 

development of effective micellar drug (KIM et al., 2010). 
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Figure 1.9. Schematic representation of a hydrophobically assembled polymer micelle. 

The hydrophobic core loading lipophilic drugs is protected from the environment by the 

hydrophilic shell (KIM et al., 2010). 

 Micro/Nanoemulsion 1.2.3.3.2.

Microemulsion consists of dispersions of two immiscible or partially miscible liquids 

(water in oil or oil in water) that present droplets ranging from 5-100 nm. They are 

thermodynamically stable and do not require power supply for their formation (ROSSI et al., 

2007). The main difference between microemulsions and nanoemulsions is that 

microemulsions are self-assembling nano-scale emulsions, whereas nanoemulsions are nano-

scale emulsions formed under intense mechanical shear (WHITESIDE and GRZYBOWSKI, 

2002). 

All types of emulsions should be prepared with a certain amount of surfactant. 

Surfactants can promote the formation of emulsion as they reduce the interfacial tension 

between oil and water by attaching to the liquid-liquid interface (SHINODA, 1967). The main 

difference between surfactant micelles and emulsion is the liquid phase. Typically, micelles 

are formed by adding surfactant to a single liquid phase, either oil (reversed micelles) or 

water, whereas emulsions are prepared by adding surfactant to a double liquid phase (oil and 

water) 

Microemulsions are suitable carriers for poorly water soluble drugs, because they can 

be dispersed easily in gastrointestinal juice in microemulsion form. Furthermore, 

microemulsions can enhance the drug absorption due to their small particle size. Also the 

drugs can be stored longer because of the stability of microemulsions (MALMSTEN, 1999). 
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The disadvantage of microemulsions as drug carriers is that the toxicity of the drugs tends to 

increase due to a large amount of the surfactant utilized in microemulsion formulation. 

1.2.3.4. Manipulation of solid state 

 Co-crystals 1.2.3.4.1.

Co-crystals are solids that are crystalline materials composed of two or more molecules 

in the same crystal lattice (FDA, 2011). The formation of pharmaceutical co-crystals has 

gained attention as attractive alternate solid forms for drug development. Their formation 

involves incorporation of a given API with one or more pharmaceutically acceptable molecule 

(Coformers) in the crystal lattice (Figure 1.10), that is a solid under ambient conditions. The 

co-crystals do not affect pharmacological activity of API but can improve physical properties, 

such as solubility, hygroscopicity, compaction behavior (RODRIGUEZ-HORNEDO et al., 

2007 ; ZAWOROTKO, 2008). Of these properties, solubility is the most widely appreciated 

in the literature. 

 

Figure 1.10. Possible solid forms of a drug cocrystal . Modified from  ALHALAWEH, 

2012). 

Poor aqueous solubility can compromise drug performance, and co-crystals are an 

emerging strategy to design materials with desirable properties. Co-crystal solution phase 

behavior was first investigated by Higuchi and Connors (HIGUCHI and CONNORS, 1965).  

Co-crystals are usually prepared by evaporation from a solution containing 

stoichiometric amounts of components (co-crystal formers). However sublimation, blending 

of powders, sonication, growth from melt, slurries and grinding of the components together 

are suitable methodologies (KRISHNAIAH, 2010). 

The major disadvantage of co-crystals technique is the notoriously difficult situation of 

these systems related to their preparation— it has been known to take 6 months to prepare a 

single co-crystal of suitable quality for single X-ray diffraction analysis (PORTALONE and 

 �
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COLAPIETRO, 2004). In addition, for solution co-crystallization, the two components must 

have similar solubility; otherwise the least soluble component will precipitate out exclusively. 

On the other hand, similar solubility of two components alone will not promise success. It has 

been recommended that it possibly useful to consider polymorphic compounds which exist in 

more than one crystalline form as co-crystallising components (BLAGDEN, 2007). 

 Amorphous Solid dispersion 1.2.3.4.2.

In amorphous solid dispersion, drug molecules are dispersed molecularly but irregularly 

within amorphous excipient (biologically inert matrix) (Figure 1.11). Chiou and Riegelman 

(1971) defined the term solid dispersion as ‘‘a dispersion of one or more active ingredient in 

an inert carrier or matrix at solid state prepared by the melting (fusion), solvent or melting-

solvent method’’. This method, involves the formation of eutectic mixtures of drugs with 

water-soluble carriers by the melting of their physical mixtures. 

 

Figure 1.11. Amorphous solid dispersion (From GHASTE et al., 2009). 

There are various reasons for the improvement of solubility of poorly water-soluble 

drug using solid dispersion technology. The reasons for solid dispersion or advantages of 

solid dispersions are as follows: particle size reduction, improved wettability, higher degree 

of porosity, drugs in amorphous state (KUMAR et al., 2011).  

The major disadvantages of solid dispersions are related to their instability. During 

processing (mechanical stress) or storage (temperature and humidity stress) the amorphous 

state may undergo crystallization and dissolution rate decrease with ageing. The effect of 

moisture on the storage stability of amorphous pharmaceuticals is also a significant concern. 

By absorbing moisture, phase separation, crystal growth or a change from metastable 

crystalline form to stable form can take place which leads to the reduction of drug solubility, 

dissolution rate, and consequently a bad in vivo drug performance (WANG et al., 2005). 
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1.2.3.5. Physical Modification 

It has been proven, as expressed by Noyes-Whitney (equation 1.3, section 1.2.1), that 

the dissolution rate is directly proportional to the specific surface area, which can be 

effectively increased by reducing the particle size. Therefore, considerable efforts have gone 

into developing reliable and efficient methods for the manufacture of fine particles. 

Micro- or nano-particles can be produces by two different technology approaches as 

illustrated in Figure 1.12, called “top-down” and “bottom-up” technologies. Top-down 

technologies start with coarse materials and apply forces to break down into micro or nano-

particles, while bottom-up technologies start with the molecules in solution and the molecules 

are aggregated to form the solid particles (RABINOW, 2004). 

 

Figure 1.12 Schematic representation of ‘bottom up’ and top down’ technology 

approaches for ultra-fine particles production (micro- or nanometric scale of particle size). 

Modified from FLORENCE and KONSTANTIN, 2010.
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Milling 1.2.3.5.1.

Milling and homogenization are the traditional top-down methods for size reduction of 

large quantities of particulate materials (MENG, 2011). In the milling operation, the applied 

stress is applied on the material, which causes the breakage of the particle. 

Drug particles can be broken between moving pearls by shear forces and forces of 

impaction generated by a movement of the milling media (MÜLLER and AKKAR, 2004), as 

schematized in Figure 1.13. 

 

Figure 1.13. Particle size reduction by milling of drug particles between moving pearls 

schema. 

This process can reduce drug particle size, depending on the drug hardness and drug 

quantities to be milled. Milling period and speed had critical impact on particle size 

distribution (CHE et al., 2012). However, this method has limited opportunity to control the 

final particle size, shape, morphology, surface properties and electrostatic charge and it is 

difficult to reduce the particle size below 1 μm because of the cohesiveness of the particle 

(BHAKAY et al., 2011). 

There are different milling materials available, traditionally steel, glass, and zircon 

oxide and more recently, special polymers (hard polystyrene) are used. A problem associated 

with the pearl milling technology is the erosion from the milling material during the milling 

process. In general, very few data have been published on contamination of pharmaceutical 

drug suspensions by erosion from the milling material.  Of course it should be noted that the 

extent of erosion depends on the solid concentration of the macrosuspension to be processed, 

Drug particle ticleticle

Moving Pearls 
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the hardness of the drug, and based on this, the required milling time and milling material. 

Apart from the milling material, the erosion from the container also needs to be considered. 

Moreover, disadvantages that have also been reported are potential growth of germs in 

the water phase when milling for a long time, and time and costs associated with the 

separation procedure of the milling material from the drug suspensions (CHE et al., 2012). 

High-pressure homogenization (HPH) has been utilized for many years for production 

of emulsion and suspensions (TIPPETTS and MARTINI, 2009; LOVELYN and ATTAMA, 

2011 ; LACERDA et al., 2011). Piston-gap principle and jet-stream technology are the two 

basic technologies for most homogenizers, illustrated in Figure 1.14. For instance, in the 

piston-gap homogenizer, particles to be milled suspended in a liquid medium coming from 

the sample container are forced to pass through a tiny gap (e.g., 10 mm), and the particle 

diminution is affected by shear force, cavitation and impaction. In jet-stream homogenizers, 

the collision of two high-velocity streams leads to particle diminution mainly by impact 

forces. 

 

Figure 1.14. Basic homogenization principles: piston-gap (left) and jet-stream 

arrangement (right). Adapted from SIVASANKAR and KUMAR, 2010. 

High pressure-homogenization (HPH) has been used to generate nanosuspensions of 

many poorly water soluble drugs such as azithromycin, quercetin and nitrendipine (ZHANG 

et al., 2007; KAKRAN etl., 2012; QUAN et al., 2012).  

Original dispersion Dissipation volume 
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Generally, high-energy input resulting in enormous impact forces produced effective 

size reduction of a suspension (median diameters less than 500 nm have been reported by 

Muller and co-workers (MÜLLER et al., 2001; MÜLLER et al., 2004). However, only fragile 

drug candidates can be broken up into nanoparticulates using this technique (RADZUAN, 

2010). 

In general, the particle size decreases with an increasing number of cycles and 

increasing homogenization pressure and they are mainly influenced by the hardness of the 

drug, the finesse of the starting material (GRAU et al., 2000; SALAZAR et al., 2011). The 

optimum number of homogenization cycles is determined by considering the particulate size 

and polydispersity index of the drug after each cycle.  

During milling, additives such as surfactants and stabilizers have been used for the 

physical stability of the produced drug with reduced particle size (BHAKAY et al., 2011). 

 LAS Crystallization 1.2.3.5.2.

Particle size reduction technologies such as milling or high-pressure homogenization 

have been used over the years. However, controlling of size distribution, morphology, and 

surface properties can be challenging. As many hydrophobic drugs are soluble in various 

water miscible organic solvents, an effective approach is the precipitation of fine particles 

from solution phase while mixing with an anti-solvent.  

 LAS crystallization is considered as a bottom-up process, which means that one starts 

from the molecular level, and goes via molecular association to the formation of a solid 

particle (GASSMANN et al., 1994; RASENACK and MÜLLER, 2003).  

The basic advantage of anti-solvent technique is the use of simple and low cost 

equipment, compared with milling and high-pressure homogenization technique. Typically, 

the drug is first dissolved in an organic solvent and the drug solution is mixed with an anti-

solvent (Figure 1.15). The solvent and the anti-solvent must be miscible at the operating 

conditions.  One of the advantages of the method is to avoid the use of high energy like in 

disintegration technique as used for milling, which prevents denaturation of drug due to high 

energy input (ZHONG et al., 2005). 
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Figure 1.15. Approach for drug particle formation by LAS crystallization. 

The introduction of the drug solution to the anti-solvent generates high supersaturation 

that subsequently induces nucleation and simultaneous growth by condensation and 

coagulation. The whole process is schematized in Figure 1.16. One formidable challenge 

remains to control the properties of the crystallized solid such as crystal growth and 

agglomeration to ensure good further dispersion for dissolution. 

 

Figure 1.16. Schematic representation of the different steps involved in drug particle 

formation by an LAS crystallization process. Adapted from MENG, 2011. 
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The next section reviews in more details some concepts in the crystal engineering field, 

with emphasis on the driving force for crystallization, control of the two key steps (nucleation 

and growth) and of solid properties. 

1.3. CRYSTALLIZATION 

Crystallization is a key process in the manufacturing of most pharmaceutical 

compounds. Over 90% of all pharmaceutical products, such as tablets, aerosols, capsules, 

suspensions and suppositories contain drug in particulate, generally crystalline, form 

(VALDER and MERRIFIELD, 1996). The most common type of crystallization is 

crystallization from solution, in which a material that is a crystalline solid at a temperature of 

interest is dissolved in a solvent while crystallization is induced by changing the state of the 

system in some way that reduces the solubility of the solute. That results in the formation of a 

crystalline or amorphous solid (MYERSON, 1999). 

Crystallization process is considered a two-stage process. Nucleation is the first step in 

which the “birth” of nuclei (a new solid phase) from the supersaturated solution occurs. The 

stable crystal grows in size, going from dissolved drug in solution to solid in suspension.  

The crystallization process is governed mainly by the kinetics of nucleation and crystal 

growth, and these processes depend on the driving force called supersaturation (i.e. the 

concentration of the solute exceeds its equilibrium concentration). This can be achieved in 

several ways − for example by cooling a solution, or by solvent evaporation, or by the 

addition of an anti-solvent, or by changing the solution pH. 

 Thermodynamic background 1.3.1.

For crystallization to occur, the system must be brought into a non-equilibrium state 

where the concentration of the solute exceeds its equilibrium concentration (i.e. the solution is 

supersaturated). This phenomenon is better represented in the phase diagram (Figure 1.17), 

represented by a curve of the equilibrium concentration of solute as a function of temperature 

(solid line). At concentrations below solid line, the solid will dissolve until equilibrium is 

reached. At solid concentrations between the dashed and solid lines, crystals will grow by 

seeding but fresh crystals will not nucleate. This is the "metastable zone", which defines the 

compositions at which spontaneous crystallization occurs and the region bounded by the 
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solubility curve and the metastable limit. Above the dashed line, the solution produces 

crystals spontaneous; in this region the supersaturation is achieved. 

 

Figure 1.17. The solubility / supersolubility phase diagram. Modified from DAVEY 

and GARSIDE, 2000. 

 

 Nucleation 1.3.2.

The nucleation is the stage of solid formation from a supersaturated mother phase 

(DAVEY and GARSIDE, 2000). Supersaturation generated leads to nucleation and 

precipitation. According to equation 1.5, nucleation rate J depends to the supersaturation 

ratio. It is defined as: 

 (1.5) 
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where � � �

���
 is the supersaturation ratio, T the temperature, C the actual concentration of 

API in the solution (mol/L) and Ceq the solubility (mol/L) of API in a mixture of organic 

solvent and water. The ratio of activity coefficient �
���

 is assumed to tend towards 1. 

Unfortunately, the mechanisms of nucleation are very poorly understood which leads to 

significant problems in the design, operation and control of crystallization processes. 

Nucleation is therefore an important issue. Crystal nucleation denotes the formation and 

physical characteristics (i.e. size distribution, habit morphology) of new crystalline solid. It 

involves the aggregation of dissolved molecules in solution, leading to the formation of a 

nucleus.  

In general, nucleation mechanisms can be divided into three main categories: 

homogeneous, heterogeneous, and secondary nucleation (Figure 1.18).  

If a solution contains neither solid foreign particles nor crystals of its own type, nucleus 

can be formed only by homogeneous nucleation. This type of nucleation rarely occurs in 

volumes larger than 100 μl, since “real” solutions tend to contain random impurities which 

may induce nucleation (PEREPEZKO, 1997). If foreign particles are present, nucleation is 

facilitated and the process is know by heterogeneous nucleation.  

On the other hand, secondary nucleation can only happen when crystals of the solute are 

already present or are deliberately added to the solution, as seeds. This nucleation mechanism 

generally occurs at much lower supersaturations than homogeneous or heterogeneous 

nucleation, and it is caused mostly by collisions of crystals with crystallizer and mixer. 

Nucleation processes are of practical importance in production of pharmaceutical 

compounds, for example: A great interest in pharmaceutical research are the concepts of 

heterogeneous nucleation to be applied in the directed nucleation of specific polymorphs 

(WEISSBUCH et al., 1987). These studies provide us with the attractive possibility that “a 

library” of organic seeds can be used to control polymorphism, or to search for unknown 

polymorphs (WARD, 1997). 
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Figure 1.18. Various kinds of nucleation. Modified from MARSMANN et al., 2001. 

 

 Crystal growth 1.3.3.

Once formed, nucleus begins to grow larger through the addition of solute molecules to 

the crystal lattice, and this stage of crystallization process is known as crystal growth. The 

nucleation and growth processes compete for solute molecules in function of their dependence 

on supersaturation, and their relative rates will determine the crystal size distribution 

(RODRIGUEZ-HORNEDO and MURPHY, 1999). The sites to capture arriving growth units 

can be differentiated in kink, ledge and flat faces (Figure 1.19). Growth process occurs by 

diffusion of solute molecules (atoms, molecules, ions) from the bulk solution to the interface 

by diffusion and convection and then integration of the solute molecules into the crystal 

lattice, under supersaturation conditions. The first step is the diffusion of growth units from 

the growth medium to an impingement site (step I) of the crystal to adsorb on the surface. In 

most cases (except rough growth), the growth can migrate to the surface of crystal to a step or 

a growth site (step II). Finally, either the growth unit back in the solution (phase II*), either it 

becomes part of the growth site and incorporate into the crystal lattice. Desolvation of the 

growth unit may take place anywhere in step II or the solvent may be adsorbed with the 

growth unit. The relative importance of each step depends on the surface structure of the 

crystals and the properties of the solution (MEENAN et al., 2002). 
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Figure 1.19. A three-dimensional crystal surface showing three type of growth sites and 

different steps ( I, II and II*) involved in the process of growth to unit cubic. Modified from 

MERSMANN, 2001. 

 

In pharmaceutical field, particles of uniform size in a product are desirable for the 

convenience of selection of filter, washing, uniform time of dissolution and good appearance 

of product. Besides this, caking tendency of crystals during pharmaceutical form storage 

period can be prevented since number of points of contact between crystalline particles is 

significantly less in uniform crystals size. 

 Effect of supersaturation on nucleation and growth 1.3.4.

Supersaturation (see section 1.3.2) is defined as a measure of the deviation of a 

dissolved molecule from its equilibrium value (MYERSON, 1993). 

Supersaturation can have a profound effect on crystal growth, resulting in 

morphological changes in the crystallizing compound over a range of supersaturations 

(YOSHIZAKI et al., 2001; RISTIC, 2002). The variation of the ratio C/Ceq (section 1.2.3) 

enables control of particle size. In general, the number of crystals produced increases with the 

supersaturation, while the size of crystals decreases (GARNIER and COQUEREL, 2002). For 

a very high supersaturated solution, crystals nuclei are formed rapidly and may produce a vast 

quantity of small, elongated crystals over a very short timescale. In the extreme case, when 

the material is completely and fastly precipitated (larger number of nuclei produced per unit 

of time) in the form of primary particles, lacking time sufficient for crystal growth, so that 
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smaller crystals are obtained. If the degree of supersaturation is low, relatively few nuclei are 

formed and the growth rate is low due to the dissolution of the material. In these conditions, a 

few crystals are formed, but perfect. In this case is likely to produce larger, granular-shaped 

crystals over a longer period (HALEBLIAN, 1975). The size and habit of many crystalline 

products are particularly sensitive to degree of supersaturation (RISTIC et al., 2001). 

 Choice of solvent 1.3.5.

The manufacture of pharmaceuticals often involves crystallization from organic 

solvents or mixtures of solvents. Generally, solvents are selected based on the resulting 

solubility, the mode of crystallization and the type of crystals, but the role of solvents in 

different parts of pharmaceutical processes and some of the limitations and difficulties are 

related to their toxicity. 

Solvent can strongly affects the nucleation rate and habit of crystalline materials in 

enhancing or inhibiting crystal growth of each crystal face by its properties in solution (e.g. 

density, viscosity, diffusivity), solubility of the crystallizing species and surface-solvent 

interactions. For example, changing the solvent polarity during crystallization of ibuprofen 

provided crystals with a polyhedral crystal habit for ethanol and methanol and needlelike for 

hexane. Furthermore the results showed that crystal habit modification had a great influence 

on the mechanical properties (compressibility, flow rate, and bulk density) (GAREKANI et 

al., 2001). 

The solvent composition may also influence the aggregation properties, as well as the 

solvent incorporation of the crystals (KLUG, 1993).  

To date, although the role played by the solvent at the molecular level is still not 

completely understood (WEISSBUCH et al., 1995), two theories have been proposed 

regarding the influence of the solvent on nucleation and growth.  

In one theory, favourable interactions between solute and solvent on specific faces may 

lead to a reduction in solid-liquid interface energy. Hence, the activation energy for 

nucleation on the crystal is reduced and the crystal becomes rougher, leading to enhanced 

faster surface growth. In the second one, it has been proposed for solvent molecule interaction 

that can be strongly bound to the crystallizing compound; the preferential adsorption of 

solvent molecules at specific faces may inhibit their growth as removal of bound solvent 
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poses an additional barrier for continued growth. In the latter case, solute−solvent interactions 

at the crystal interfaces could be similar to stereospecific interaction of tailor-made impurities 

(LAHAV and LEISEROWITZ, 2001). 

1.4. LAS CRYSTALLIZATION TO IMPROVE DISSOLUTION 

PROPERTIES AND SOLUBILITY OF POORLY SOLUBLE  

DRUGS 

Considerable research efforts have been made to optimize crystals properties for 

pharmaceutical products. The complexity and variety of crystallization pharmaceutical 

processes can provoke significant changes in the crystal properties, such as their 

granulometry. 

Particle size is one of the physicochemical properties influencing the performance of the 

drug product and its manufacturability. In addition, a very strict control is needed to achieve 

particle size requirements, which is defined depending on the pharmaceutical dosage form 

prepared with the drug crystals and of its administration route (see Table 1.3). 

Table 1.3. Particle size distribution of pharmaceuticals with respect to dosage form and 

route of administration (SHEKUNOV et al., 2007). 

Dosage form or route of administration           Particle size (µm) 

 Min Max 

Oral granules  200 1000 

Oral depot  50 200 

Intraperitoneal 10 50 

Nasal  5 20 

Aerosols 1 5 

Ocular 0.1 2.5 

Intravenous/intramuscular  0.2 2 

Gene delivery  0.2 0.9 

Transdermal 0.06 0.6 

Long-circulating (brain, tumor) 0.06 0.2 

Lymphatic 0.01 0.06 
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In practice, crystal morphology is usually described in terms of length, width and 

thickness. The classifications of crystal shapes adopted by either British Standard (BS 

2955:1993) or the US Pharmacopoeia (monograph 776) (Table 1.4) are commonly used for 

routine microscopically examination of solid pharmaceutical materials. 

 

Table 1.4. Classification of common crystal morphologies for pharmaceutical solids 

accepted by the US Pharmacopoeia

Morphology Description Diagram 

Equant 
Crystal with similar 

length, width, and 
thickness 

 

Flakes Thin, flat crystals of 
similar width and length 

Plates 

Flat, tabular crystals 
with similar width and 
length but thicker than 

flakes 

Laths Elongated, thin and 
blade-like crystals 

Needles 

Acicular, thin and 
highly elongated crystals 
having similar width and 

breadth 

Columnar 
Elongated, prismatic 

crystals with greater width 
and thickness than needles 

 

Particle size control during crystallization is a challenging area, mainly for the synthesis 

of nano/microparticles (CHOW et al., 2007). As already said, the growth rates of the different 

crystal faces are determined by intermolecular interactions between molecules in the crystal 

as well as by a number of external parameters such as solvent, supersaturation, temperature, 

and impurities (MYERSON, 1999). Changes in any of these parameters may lead to 

significant modifications in crystal morphology. This gives rise to crystal habit diversity of a 

chemical entity grown under various crystallization conditions and provides the basis for 

morphological crystal engineering.  
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Besides particle size, other crystal properties can be strongly modified by  

crystallization as summarized in Table 1.5.  

Table 1.5. The most important solid-state characteristics, which are affected by 

crystallization, and the influence of these properties on the stability and downstream 

processing of pharmaceutical materials. Modified from SHEKUNOV and YORK, 2000. 

Crystal properties Effect on drug substance and/or drug product 

Structural  
Crystallinity (existence of amorphous 
and semi-crystalline forms)  
 

•  
• Physical and chemical stability  

Polymorphism 
Polymorphs 
Solvates (hydrates)  
Salts  
Crystal defects 
 

• Solubility profile and dissolution rate  
• All aspects of processing 

Dimensional  

Particle size distribution  
Particle surface structure 

• Processing behavior: bulk density, 
agglomeration, flow, compaction  

• Particle permeability (i.e. particle adsorption)  
• Bioavailability (drug absorption)  

• Consistency and uniformity of the dosage form 
Chemical  

Presence of impurities, residual solvent, 
and decomposition products  
Chiral forms and chiral separation 
 

 

• Toxicity  
• Chemical, physical, and enantiomeric stability 

Mechanical  

Brittle/ductile transitions, fracture stress, 
indentation hardness, stress/strain 
relaxation, Young’s modulus 

 

 

• Milling and tableting behavior 

Electrical  

Electrostatic charge distribution 

• Agglomeration and flow properties 
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The next sections introduce LAS crystallization in the context of process design and 

what role additives currently play in LAS crystallization research. 

Previous works 1.4.1.

In recent years, many methods of particle production using LAS crystallization have 

been developed, as shown in Table 1.6. They allow a better control of the size, crystallinity, 

and morphology of particles that not achieved with top-down methods. The crystallization 

method is applicable for a wide range of pharmaceutical drugs BCS Class II and IV to prepare 

micro/nanoparticles. Decrease in particle size increases the surface area, which increases the 

solubility and dissolution rate of poorly water soluble drugs and hence bioavailability 

(LIVERSIDGE and LIVERSIDGE, 2008), as discussed befeore in the section 1.2.2.  

Table 1.6 reveals that several poorly soluble drugs are crystallized by LAS 

crystallization using different apparatus in laboratory scale like batch reactors, magnetic 

stirring, injection method and sonoreactors. The drug powders obtained in these studies 

presented particle size in a range between 0.010- 20 µm.  

It could be noted from this literature review, that the major crystallization assays were 

realized in presence of additives like surfactants (ionic or non ionic) and polymers or both. 

Since the molecules have a different orientation at the different crystal faces, the additives 

will have different effect on the growth rate of different faces. Each additive can act like a 

stabilization agent through a different mechanism; these mechanisms are a relatively less 

explored area but are important for morphologic, polymorphic and technologic screening of a 

compound during its developmental stage. Any relationship between the chemical structure of 

the stabilization agent and the chemical structure of the drug to be stabilized against growth is 

related in the literature. However the attempt of the use of stabilizers agents is actually turned 

on the changes of drug compound characteristics.  

The majority of the recrystallized drugs investigated is asymmetric drugs and do not 

posses a very large molecular structure, which facilitated the achievement of crystals with a 

reduced size, generally in presence of additives. The different aspects to controlled LAS 

crystallization will be discussed in more detail in the following sections. 
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 Control of process parameters 1.4.2.

Mixing devices  

Mixing between drug solution and anti-solvent is a critical step to maintain a constant 

level of supersaturation throughout the crystallizer, uniform nucleation and control of small 

embryo particles formed in the process (DOUROUMIS and FAHR, 2006). 

The initial contacting between the drug solution and the anti-solvent is an important 

parameter, which will influence the nucleation rate. Two different manners to bring them into 

contact are illustrated in Figure 1.20. 

Single-jet configuration is the simplest manner by which one solution is pumped into 

the stirred vessel containing the other liquid (Fig. 1.20a). Alternatively, two solutions can be 

premixed before entering the tank as a single jet (Fig. 1.20b). The two feeding configurations 

have different temporal and spatial supersaturation profiles. 

  

(a) Single-jet (b) Double-jet with premixing 

Figure 1.20. Feeding configuration for anti-solvent crystallization  
(a) single-jet, (b) double-jet with premixing. 

 

Typically, mixing is divided into three main groups: macromixing, mesomixing and 

micromixing. Macromixing is the mixing occurring on a crystallizer scale, which represents 

the uniformity of the local average of the concentrations of all the species within the entire 

crystallizer. Mesomixing is the mass transfer of a solution, also known as turbulent mixing 

and micromixing comprises the molecular diffusion and engulfment of different solvent 

composition region, which represents molecular scale mixing (BALDYGA and BOURNE, 

1989). 
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Actually, to achieve the rapid mixing the high jet velocity mixing devices have been 

described in the literature. These mixing devices are reported in the literature as static mixer, 

high gravity jet, confined impining jet, multi-inlet vortex mixer (MIVM), Y-shaped 

microchannel reactor, Y and T-mixer, Roughton mixer, as illustrate in Figure 1.21. They 

show advantages when compared to the traditional CSTR (Continuous Stirring Tank 

Reactor), such as small space requirement, low equipment cost, no power required except 

pumps, short residence times and good mixing at low shear rates (THAKUR et al., 2003). 

Because of this they have been extensively related in the literature for LAS crystallization of 

drugs. The details of such mixing devices are reported in Table 1.7. 

   

A- Roughton mixer B- Tee-mixer C- Multi-inlet vortex mixer 

   

D- Static mixer E- Y-mixer F- Confined impining jet 

G- High gravity jet  

Figure 1.21. Schematics of mixing devices used in chemical and pharmaceutical field. 

Modified from THORAT and DALVI, 2012. 
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1.5. ADDITIVES IN CRYSTALLIZATION 

Additives in crystallization processes have gained attention in recent years, 

because they can be adsorbed directly onto drug particles to produce powders with 

optimized physicochemical properties (ZIMMERMANN et al., 2009).  

It has been shown that the presence of additives in solution can affect all 

parameters of crystallization, either the solubility, the nucleation or growth, and hence 

the resulting morphology (KUBOTA et al., 2000; GARNIER et al., 2002; VETTER et 

al., 2011) and polymorphic form (CHONG et al., 2002; SONG and CÖLFEN, 2011) 

Some theories are presented in literature to describe the mechanisms of additive 

influence on crystallization process, which comprises: 

• Inhibition of nucleation by formation of hydrogen bonds between the additive 

and the molecule. This interaction inhibits or retards the formation of nucleus by 

collision and therefore the induction time period is different from that of pure 

systems (TAYLOR and ZOGRAFI, 1997);  

• Adsorbed additives on crystal surface form a mechanical barrier that prevents 

the diffusion of solute molecules from the bulk solution to the crystal surface 

(ZILLER and RUPPRECHT, 1988); 

• Additives do not inhibit nucleation, but just reduce supersaturation of the 

solution by modifying the saturation of solute. Consequently the width of the 

metastable zone is also influenced (RODRIGUEZ-HORNEDO and MURPHY, 

1999; MERSMANN, 2001); 

• Non-adsorbed additive are rejected by the crystal surface and accumulate in the 

boundary region. This creates a greater resistance to drug molecules limiting 

their diffusion through the barrier and leads to growth inhibition, as shown in 

Figure 1.22 (RAGHAVAN et al., 2001). 
 

The adsorption of additives at different sites can cause growth inhibitions, even 

block the growing surface and in consequence stop the growth process. However, the 

adsorbed impurities may simultaneously lead to a reduction in the edge free energy, 
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which results in an increase in crystal growth rate (RAK et al., 2005). For 

pharmaceutical technology, understanding of these mechanisms may help to control the 

quality and purity of raw crystalline substances and, consequently, to improve the 

manufacture and performance of the final dosage forms. 

 

Figure 1.22. Schematic diagram showing the mechanism of growth inhibition 

and habit modification of crystals by polymers. Modified from RAGHAVAN et al., 

2001. 

 Additives in LAS crystallization  1.5.1.

The stabilization and controlled crystal growth mechanism during LAS 

crystallization depend on the strength of adsorption of stabilizer molecules on the drug 

surface. Two main mechanisms have been investigated in additive screening studies on 

drug LAS recrystallization: steric stabilization and electrostatic repulsion (WU et al., 

2011; THORAT and DALVI, 2012), as illustrated in Figure 1.23. 

Each mechanism has its benefits for particulate systems. The stabilization 

mechanisms used in LAS crystallization, described in the literature, are summarized in 

Table 1.6. 

In the case of steric stabilization, non ionic surfactants, polymers and amphiphilic 

block copolymers are usually used (MATTEUCCI et al., 2008; KUMAR et al., 2009; ). 

Drug molecule 
Additive (polymer) 

C
rystal 

Diffusional boundary layer 

Liquid 
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Block copolymers are particularly well suited for steric stabilization, as they can 

provide a high degree of coverage with strong adsorption while still having extended 

tails which interact favorably with the medium (BUDIJONO et al., 2010). 

 

 

Steric stabilization Electrostatic stabilization 

Figure 1.23. Types of colloidal stabilization. Modified from WU et al., 2011. 
 

Stabilization by steric mechanism is achieved by attaching of hydrophobic group 

of the drug and polymer. The resulting polymer layer masks the attractive force and also 

provides a repulsive force. There are several mechanisms proposed in the literature for 

steric stabilization as discussed below: 

• Drug-polymer interaction: The interaction between polymers and particle 

surface has been extensively studied for decades due to its wide application. The 

adsorption properties of stabilizers can be affected by  the nature of stabilizer and drug 

surface, for example molecular weight is an important factor for polymeric 

stabilizers. The chain length should be high enough, so that polymers chain have an 

optimum length to overcome the Van der Waals forces of attraction (PELTONEN and 

HIRVONEN, 2010). Furthermore, another important factor is the size of the polymer. 

The polymer’s chain was divided into three sub-types: trains, loops and tails. (as shown 

in Figure 1.24). Trains are all contacted (adsorbed) with the particle surface. Loops are 
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not in contact with the particle surface, but connect with two trains. Tails are non-

adsorbing chain ends. The portion of polymer chain in solution provides the steric 

protection depending on molecular weight of polymer (NAPPER, 1983). 

 

 
Figure 1.24. Schematic illustration of adsorbed polymer layer. From NYLANDE 

et al., 2006. 

Apart the size and the molecular weight the effect of polymer concentration is an 

important aspect to be considered. For polymer concentration, there is a maximum 

value full coverage of surface, or saturated adsorption (SCHOTT,1980;  

OTSUBO,2003) concentration with free polymer in the dispersion medium, above a 

critical volume fraction of polymer in solution. This phenomenon is called depletion 

flocculation. This one occurs when the distance separating two colloidal particles is too 

small to admit the presence of polymer coils in solution. They are forced out of the 

space in between, resulting in an osmotic pressure difference between the area in 

between the particles and the rest of the bulk solution. As a result, an attractive force is 

generated which pushes the particles together, leading to agglomeration. (OTSUBO, 

2003). 

Another such mechanism is the formation of hydrogen bond between the 

stabilizer molecule and the particle surface. Some functional groups in polymers, such 

as carboxyl, hydroxyl, amine, and ester group play an important role in the steric 

stabilization. These functional groups can interact with the particle surface and act as 

good anchors (SHI, 2002) 

The adsorption of polymer on crystal surface can occur as a result of forces as 

those arising from hydrophobic interactions. It has been observed that these 
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hydrophobic interactions can enhance the stability by occupying the adsorption sites and 

inhibiting the incorporation of drug molecules in solution in crystal lattice 

(RAGHAVAN et al., 2001). 

Actually in the literature there are a lot of reports that describe the use of block 

co-polymers for stabilization of crystals obtained by LAS crystallization. Hydrophobic 

part of block copolymers gets anchored on the hydrophobic drug surface and 

hydrophilic chains extend in solution. Depending on the solvent quality, affinity of the 

chain monomers to the surface and crowding conditions on the surface, the 

conformation of polymer chains on a surface can be rather different. Chain exists as 

isolated free coils in solution, also called the “mushroom” regime (Figure1.25 A). In 

this case, chain will lay almost flat on the surface. When more block copolymer is 

attached the chains will extend perpendicularly to the hydrophobic surface, called “semi 

brush”(Figure 1.25B). When the surface gets more crowded, the chains will start to 

mutually interact, eventually resulting in a stretching of the individual chains away from 

the surface leading to a so-called “brush” formation (Figure 1.25C). This state is the 

result of a balance, where at full equilibrium the free energy of the stretched chain 

balances the interfacial energy of the solvent–particle surface (S.J. BUDIJONO et 

al.,2010). 

(a) (b) (c) 

Figure 1.25. Different conformations of polymers at surfaces: (a) mushrooms 

conformation of a single adsorbed, where chains are non-interacting on the surface and 

achieve a size given by the polymer (b) semi-brush where crowding among chains 

causes extension of the chain from the surface, and (c) brush conformation for high 

grafting densities, leading to extension of the chains away from the surface. Modified 

from J. BUDIJONO et al., 2010. 
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The use of block co-polymers play a key role in both halting particle growth and 

stabilizing particle suspensions during rapid LAS crystallization. Its use as stabilization 

agent has been reported for LAS crystallization of Itraconazole, Odanacatib (KUMAR 

et al., 2009), ß-carotene (JOHNSON and PRUD'HOMME, 2003 ; J. BUDIJONO et 

al.,2010 ; SHEN et al., 2011 ; CAPRETTO et al., 2012). According to these reports, 

with a rapid change in solvent conditions, the drug and polymer precipitate, the polymer 

assembling around the drug. The particle size is controlled by the polymer concentration 

and the mixing time. 

• Solvent-polymer interactions: Solvent-polymer affinity is a very important factor 

in steric stabilization. Choi et al. (2002) have shown that solvent–polymer interaction is 

very important for the effective formation of nanoparticles. Choi et al. (2002) obtained 

PLGA using different solvents (ethyl acetate, methyl ethyl ketone, propylene carbonate, 

and benzyl alcohol). Ethyl acetate solvent formed the smallest nanospheres (approx. 120 

nm in size). In this case, the authors suggest that solvents with low exchange ratio 

between diffusion from solvent to water and vice versa, form small nanoparticles due to 

small supersaturation region produced.  

• Drug-polymer-solvent interaction: The polarity of the solvent can affect the 

relative diffusion rates of polymer and drug molecules towards the solid–liquid 

interface. It has been also reported that slower diffusion of API molecules and relatively 

quick adsorption of stabilizer molecules on particle surface leads to inhibition of growth 

and hence, smaller particle size (THORAT and DALVI, 2012). 

In electrostatic stabilization ionic surfactants and polymers are usually used to 

prevent aggregation and have stable crystalline particles. The ions in solution adsorb 

onto the surface of a particle and the substances acquire surface electrical charges when 

brought in contact with a polar medium. The surface charge influences the spatial 

distribution of ions or molecules in the surrounding solution, attracting ions of opposite 

charge but repelling ions of similar charge from the surface. 

The electrostatic stabilization depends on DLVO theory (DERJAGUIN and 

LANDAU, 1941 ; VERWEY and OVERBEEK in 1948) i.e. repulsive electrostatic 

forces and attractive Van der Waals forces. Therefore, electrostatic stabilization of 

dispersion occurs when the electrostatic repulsive force overcomes the attractive Van 
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der Waals forces between the particles (WU et al., 2011). Due to the charge on particle 

surface, there exists a double layer surrounding the particle surface. This double layer is 

referred as electric double layer (GRAHAME, 1947). There exists a potential difference 

between bulk of solution and the outer layer of double layer which is called zeta 

potential. The magnitude of the zeta potential gives an indication of the potential 

stability of the colloidal system. The zeta potential is a measure of the stabilization 

provided by electrostatic stabilization. If all the particles in suspension have a large 

negative or positive zeta potential (>±±30 mV) then they will tend to repel each other, 

i.e. good suspension stability. 

Surfactants can provide stabilization at concentrations below critical micelle 

concentration (CMC). When concentration is increased above the CMC, the number of 

micelles increases leaving the particles unprotected (WU et al., 2011 ; THORAT and 

DALVI, 2012). In the order hand, some literature reports have focused on beneficial 

effects of additives, which have the capacity to form micelles, above the CMC. For 

example, Santander-Ortega et al., (2006) observed a variety of stabilization mechanisms 

for the Pluronic-coated PLGA nanoparticles. These complexes were completely stable 

by adding poloxamer at concentrations above the CMC, The explanation was the 

formation of surface aggregates that gives a highly enriched polymer layer 

concentration.  

The synergistic effects of a neutral polymer and an ionic surfactant together can 

enhance the stabilization effect. This synergistic behavior is typically brought about by 

the interaction between different types of stabilizing molecules, which provides a 

driving force for the mixtures to form mixed aggregates or structures. However, the 

ability of synergistically stabilizing depends on the pair of stabilizers used. Hu et al. 

(2011) observed the synergistic effect of Sodium dodecyl sulfate (SDS) and 

hydroxylpropyl methyl cellulose (HPMC) E3, such as an effective system to retain the 

particles of fenofibrate within the nanosized range by minimizing particle aggregation. 

Actually both steric and electrostatic stabilizing agent (polyelectrolytes) have been 

studied in the literature (ZHU et al., 2010 ; PATTEKARI et al., 2011 . They form a 
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strong double layer around hydrophobic drug particle and, adsorbs loosely, the 

extending polymer loops provide the steric stabilization, if the polyelectrolyte adsorbs 

on particle surface. Chitosan can be cited as an example. The chitosan is a cationic 

polyelectrolyte of natural origin. Furthermore, chitosan is physiologically safe. It can be 

biodegraded by several human enzymes. It is inexpensive and approved as a safe 

dietary. The properties of chitosan include the ability to adhere to mucosal layers, due to 

the electrostatic interaction with negatively charged mucus. This makes chitosan 

especially useful for poorly water soluble drug delivery and targeting (ZHU et al., 

2010 ). 

Finally, it has been shown that additives can increase their dissolution rate by 

increasing aqueous wettability of LAS recrystallized drugs of (SRITAPUNYA et al., 

2012). This ability of additives will permit the gastrointestinal fluids to wet more 

effectively and to come into more intimate contact with the solid dosage forms, which 

will tend to increase the dissolution and absorption rates of the drugs (BUCH et al., 

2011 ; SAHARAN and CHOUDHURY, 2012). 

It has been reported in the literature, that poloxamer 407 (P-407) has improved 

significantly the dissolution of poorly water soluble drugs (DUMORTIER et al., 2006 ; 

VIKRANT et al., 2009 ; CHOWDARY and ANNAMMA, 2012). P-407 is characterized 

by its highest hydrophilicity and surfactant property, that results in greater wetting and 

increases the surface available to dissolution by reducing interfacial tension between the 

hydrophobic drug and dissolution medium (VIKRANT et al., 2009). 
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1.6. THESIS OVERVIEW 

This Chapter reviewed the literature about the improvement of bioavailability of 

poorly water soluble drugs. It focuses on topics of interest for our work, like properties 

of drugs influencing dissolution behaviour, technologies to enhance dissolution rate and 

solubility of this category of drugs. Emphasis was given to the LAS crystallization 

process.  

An overview of the literature on LAS crystallization summarized the main results 

of previous works. The main points to be highlighted are: 

• Till now, several poorly water soluble drugs have been micronized by 

various particle formation processes for particle size and morphology but the 

main challenges are the control of particle size distribution and particle 

growth.  

• The continuous production of recrystallized drug particles can be achieved 

by using rapid mixing devices such as impinging jets and static mixers, 

among others. Moreover, polymers and surfactants are used in most cases for 

prevent crystal growth and/or agglomeration. However, the selection of 

correct stabilizers for the LAS crystallization of a given drug is of crucial 

importance.  

This chapter concludes with a statement of research objectives:  

LAS crystallization is used for particle formation of a new antiretroviral drug 

named CRS 74. The objective is to enhance dissolution properties by reducing particle 

size of an original (as-received) sample from industry.  

To generate high mixing rates and help in generating rapid and uniform 

supersaturation, rapid mixers are used (T-mixer, Roughton mixer). 

The best conditions for LAS crystallization of this new molecule are defined 

through solubility studies, dissolution method development and screening of LAS 
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crystallization process parameters such as ratio between drug solution and anti-solvent 

and additive screening study. 
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Résumé Chapitre 2- Caractérisation du CRS 74 

Cette étude porte sur un nouveau composé, l'acide (2S, 3S, 5S) -2, -5 bis-[N-[N-

[[N-méthyl-N-[(2-isopropyl-4 - tiazolyl) méthyl] amino] carbonyl ] vanilyl] amino-1,6 - 

diphényl-3 - hydroxyhexane, nommée par la suite CRS 74. Ce principe actif possède 

une activité de l’inhibition du VIH (virus de l'immunodéficience humaine) protéase, une 

enzyme essentielle impliquée dans le processus de réplication du VIH. 

Dans la première partie de notre étude, cette molécule a été caractérisée sous 

forme solide en terme de faciès et de taille de particules, de structure cristalline, de 

mouillabilité, de solubilité en milieu aqueux à 37 ° C. Un test de dissolution a été 

développé en milieu aqueux à 37 °C afin de déterminer les profils de libération de la 

poudre initiale et des poudres synthétisées, car ce test n’existait pas dans le littérature.  

Cette molécule sous forme solide a une solubilité aqueuse limitée (<0.5µg/mL), 

qui peut être expliqué par sa cristallinité, son point de fusion et son enthalpie de fusion 

élevés (188,6 °C et 86,6 J/g). Elle présente aussi un faible taux de dissolution dans l’eau 

pouvant être liée à sa large distribution granulométrique, sa faible solubilité et sa 

mouillabilité très faible (θ = 136,4 ± 0,8 °).  

Afin d’améliorer son taux de dissolution une opération de cristallisation par effet 

anti-solvant a été proposée afin d’augmenter sa surface spécifique et améliorer sa 

mouillabilité. 
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2.1. INTRODUCTION 

In the first part of our study, the selected molecule (as-received) was characterized 

in terms of their physical properties (particle shape and size), crystal structure, surface 

properties (wettability), solubility and dissolution properties in aqueous media at 37°C. 

The methodology used and the results obtained are summarized in this Chapter. 

 The molecule: CRS 74 2.1.1.

This study concerns a new compound, (2S, 3S, 5S)-2, -5 bis- [N-[N-[[N- methyl- 

N-[(2-isopropyl- 4- tiazolyl) methyl] amino] carbonyl] vanilyl] amino- 1,6- diphenyl- 3- 

hydroxyhexane, named CRS 74. Its chemical formula is C46H66N8O5S2 and its 

molecular weight 875.2 g/mol. Its molecular structure is shown in Figure 2.1. It is 

obtained as courtesy from Cristália Ltda (Itapira, SP, Brazil). The drug samples have a 

purity of 99 %. 

 

(a) CRS 74 - (2S, 3S, 5S)-2, -5 bis- [N-[N-[[N- methyl- N-[(2-isopropyl- 4- tiazolyl) 
methyl] amino] carbonyl] vanilyl] amino- 1,6- diphenyl- 3- hydroxyhexane, is disclosed at 
PCT document number WO 20005/111006; US 2010/7763733 (BOCKELMANN et al., 
2005; BOCKELMANN et al., 2010). 

 

(b) RITONAVIR - (2S, 3S, 5S)-5-[N-[N-[[N-methyl-N-[(2- isopropyl-4-thiazolyl) 
methyl] amino] carbonyl] vanilyl] amino- 2- [N [(5-thiazolyl) methoxycarbonyl] amino-1,6-
diphenyl-3-hydroxyhexane, is disclosed at PCT document number WO 94/14436 (KEMPF 
et al., 1994). 

Figure 2.1. Chemical structures of (a) CRS 74 and (b) Ritonavir. 
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This compound can be prepared by methods disclosed in PCT document WO 

111006 and US 7763733 (BOCKELMANN et al., 2005; BOCKELMANN et al., 2010) 

following the scheme shown on Figure 2.2. In a general way, the compound (4) can be 

obtained by coupling the compound (1) and (2), wherein Y can be OH or an activate 

ester group and P is a N-protective group, to the formation of (3) following the N-

deprotection. Finally the compound (4) is coupled to the compound (5) wherein Z can 

be OH or an activate ester group to provide the analogous compound (6). 

 

Figure 2.2. Schematic synthesis of CRS 74 (BOCKELMANN et al., 2005; 

BOCKELMANN et al., 2010). 
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CRS 74 has activity for inhibiting HIV (Human immunodeficiency virus) 

protease, an essential enzyme involved in HIV replication process (see Appendix I). 

Consequently, this new compound can be used for the treatment of HIV infections, 

itself or in combination with other anti-HIV medicines.  

CRS 74 is an analogous compound of Ritonavir, an important antiretroviral drug 

developed and patented by Abbot Laboratories (WO 94/14436; KEMPF et al., 1994.). 

The chemical structure of Ritonavir can be compared to that of CRS 74 in Figure 2.1 

and their physicochemical properties in Table 2.1.�

Table 2.1. Physicochemical properties of Ritonavir and its analogous compound 

CRS 74 . 

Drug identification 

Name of the drug  
 

Ritonavir CRS 74 

Molecular formula 
 

C37H48N6O5S2
1 C46H66N8O5S2

3 

Molecular weight (g/mol) 
 

7211 875.23 

Innovator 
 

Abbot Laboratories (USA) Cristalia Laboratories (BR) 

Therapeutic category HIV protease inhibitor HIV protease inhibitor 
Physicochemical properties 

Melting point (°C) 
 

122-124 2 180-1853 

Polymorphism 
 

Form I and II4 * 

Description 
 
 

white or almost white 
powder1 

white powder3 

Solubility Soluble in ethanol, 
methanol, sparingly soluble 

in acetone R and very 
slightly soluble in 

acetonitrile and insoluble in 
water 1 

* 

*Data not determined 
1-The International Pharmacopoeia. Fourth edition, 2011. 
2-ALENCAR et al., 2006. 
3- Patent WO 2005/111006 and US 7763733 (BOCKELMANN et al, 2005 ; BOCKELMANN et al., 2010)  
4-BAUER et al., 2001 
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To date, there are some ambiguities regarding the BCS of Ritonavir. This 

molecule has been classified as a molecule belonging to Class II (WU and BENET, 

2005; SINHA et al., 2010) or Class IV (HERMAN et al., 1989; WILLIAMS and 

SINKO, 1999;  LINDENBERG et al., 2004; GOYAL and VAVIA, 2012) of the 

Biopharmaceutical Classification System (AMIDON et al., 1995).  

Published data have shown that Ritonavir presents crystalline polymorphism 

(BAUER et al., 2001). Crystalline polymorphism, or the ability of a compound to exist 

in multiple solid-state structures, has significant impact on the physical properties, 

performance, and safety of an active pharmaceutical ingredient (API) and its formulated 

product(s). From the discovery of Ritonavir until the new drug application (NDA) 

filing, only one crystalline form was known to exist (Form I). Attempts to identify other 

possible crystal forms were unsuccessful. Ritonavir is marketed as Norvir. Two years 

after the launch of Norvir to the market, some lots of Norvir capsules failed a 

dissolution specification. Investigation of this phenomenum revealed the existence of a 

crystal form of Ritonavir other than the one already known (Form I). This new crystal 

form was designated as Form II. The two crystal forms are polymorphs and differ 

substantially in their physical properties such as solubility, as given in Table 2.2. 

Table 2.2. Solubility of Ritonavir polymorphs at 5°C in hydroalcoholic solvent 

systems (CHEMBURKAR et al., 2000). 

Ethanol/water (w/w)� 100/0 � 75/25�

Form I (mg/mL)� 90� 170�

Form II (mg/mL)� 19� 30�

 

The key challenge of this antiviral drug present on the Market is still drug 

reformulation to modify its bioavailability and pharmacokinetics. Improving 

bioavailability of Ritonavir (in most case, solubility) is a subject of current interest as 

confirmed by numerous research works in the last decade, among them: 

• Nanonization by wet milling, homogenization or sonication (BALKUNDI et al, 
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2011); 

• Prodrug synthesis (HAMADA et al., 2002). A prodrug is a drug that is 

administered in an inactive (or significantly less active) form. Once 

administered, the prodrug is metabolised in vivo into an active metabolite; 

• Inclusion complexes with cyclodextrins and surfactants (GOYAL and VAVIA, 

2012; CHOWDARY et al., 2012); 

• Solid Dispersions (LAW et al., 2004 ; SINHA et al., 2010; MUSLE, 2012); 

• Micro/nano-encapsulation in polymeric micelles (BORGMANN et al., 2011); 

• Self-emulsifying drug delivery systems (SEEDS) (LEI et al., 2010). 

One of the requirements for a drug to be considered suitable for a therapeutic 

usage is its therapeutic efficacy, so, to achieve such requirement, the drug should 

present adequate characteristics of bio-absorption and bioavailability. CRS 74 has high 

biological activity as disclosed at PCT document WO 111006 and US 7763733 

(BOCKELMANN et al, 2005; BOCKELMANN et al., 2010, respectively) but is 

bioavailability is limited because of its low aqueous solubility and dissolution rate. Such 

properties pose difficulties not only in the design of pharmaceutical formulations but 

may result in bio-variability. 

2.2. CHARACTERIZATION OF CRS 74 

 Methods 2.2.1.

Samples of CRS 74 were characterized as received by using different instrument 

and measurement techniques that will be described in the following.  

2.2.1.1. Particle size measurement 

Mean particle size and particle-size distribution are the most important parameters 

in designing a novel formulation and are routinely the first to be measured.  Particle size 

distribution of the powder samples was determined by laser diffractometry. The 

technique of laser diffraction is based on the principle that particles passing through a 

laser beam will scatter light at an angle that is directly related to their size: large 
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particles scatter at low angles, whereas small particles scatter at high angles. The laser 

diffraction is accurately described by the Fraunhofer approximation and the Mie theory, 

with the assumption of spherical particle morphology.  

The equipment used for the measurements was a MasterSizer 3000 laser 

granulometer (Malvern Instruments, United Kingdom), which has a reading range of 

0.1-3500 μm. All the dry samples were firstly mixed with Tween 20 and then dispersed 

in water until achieve the good obscuration. The laser diffraction data obtained were 

evaluated using the volume distribution diameters dv10%, dv50% and dv90%. The diameter 

values 10% to 90% indicate the percentage of particles possessing a diameter equal or 

lower than the given size value. 

2.2.1.2. Density measurement 

In this work, the true densities of CRS 74 powder sample (0.9282 g) was 

determined using a helium pycnometer (Accupyc 1330, Micromeritics, UK) that was 

operated according to the manufacturer’s recommended procedures. Calibration was 

performed using standard stainless steel spheres of known mass and volume. The 

sample was used as they were received from the supplier. Mean values and standard 

deviations were determined from 25 successive measurements. 

2.2.1.3. Thermal Analysis 

Thermal analysis of the CRS 74 powder was performed to characterize the 

properties of this material as they change with temperature. Two different thermal 

techniques were employed here distinguished by the property which is measured: mass 

loss by thermogravimetric analysis (TGA) and enthalpy of transition (melting, 

crystallization) by differential scanning calorimetry (DSC). 

 Thermogravimetric Analysis (TGA)  2.2.1.3.1.

Thermogravimetric Analysis (TGA) measures the amount and rate of change in 

the weight of a material as a function of temperature or time in a controlled atmosphere. 

The technique can characterize materials that exhibit weight loss or gain due to 

decomposition, oxidation, or desolvatation (dehydration). Measurements were 

conducted here to predict the thermal stability of CRS 74 at temperatures up to 300°C. 
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Thermogravimetric analysis (TGA) of original CRS 74 crystals was performed by a 

thermogravimetric analyser TG-DSC 111 (SETARAM, France). The dynamic 

thermogravimetric curve was recorded with a mass of sample of around 5 mg packed in 

aluminium cell under a dynamic nitrogen atmosphere (50 mL.min-1). The experiments 

were run from 20 to 300˚C at a heating rate of 10˚C /min. 

 Differential scanning calorimetric analysis (DSC) 2.2.1.3.2.

Differential scanning calorimetric (DSC) is based upon the detection of changes 

in the heat content (enthalpy) or the specific heat of a sample at a certain temperature. 

As thermal energy is supplied to the sample, its enthalpy increases and its temperature 

rises by an amount determined for a given energy input by the specific heat of the 

sample. The specific heat of a material changes slowly with temperature in a particular 

physical state, but alters discontinuously at a change of state. As well as increasing the 

sample temperature, the supply of thermal energy may induce physical or chemical 

processes in the sample, e.g. melting or decomposition, accompanied by a change in 

enthalpy, the latent heat of fusion, heat of reaction etc. Such enthalpy changes may be 

detected by thermal analysis and related to the processes occurring in the sample (GILL, 

1984). 

DSC measurements were carried out using a DSC-Q200 thermal analyzer (TA 

Instruments, France) in a temperature range of 20 to 210°C at a heating rate of 

10°C/min under nitrogen atmosphere (50 mL.min-1). The samples (about 3 mg) were 

placed in a hermetically closed aluminium pan. The transition temperature and the 

enthalpy of fusion (ΔHt ) were calculated using the DSC software. 

2.2.1.4. X-Ray Diffraction Analysis (XRD) 

X-ray diffraction is based on constructive interference of monochromatic X-rays 

and a crystalline sample. These X-rays are generated by a cathode ray tube, filtered to 

produce monochromatic radiation, collimated to concentrate, and directed toward the 

sample. The interaction of the incident rays with the sample produces constructive 

interference (and a diffracted ray) when conditions satisfy Bragg's Law (nλ=2d sin θ). 
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These diffracted X-rays are then detected, processed and counted. Conversion of the 

diffraction peaks to d-spacing allows identification of the material. 

X-rays diffraction patterns (diffractograms) can be used to confirm the crystalline 

nature of a sample. Therefore, this information is used to verify whether the substances 

are amorphous, partially amorphous crystalline or fully crystalline (MAULUDIN, 2008) 

as well as the polymorphic form being present. A powder X-ray diffractometer 

(XPERT,Philips) was used here for diffraction studies. X-ray diffraction analysis was 

conducted with CuKα radiation at a scanning rate of 1.228°/min from 5 to 30°, applying 

40 kV at 30 mA. 

2.2.1.5. Scanning electron microscopy analysis (SEM) 

The surface morphology of powder samples was viewed under a scanning 

electron microscope (ESEM, FEG, Philips) operated at an excitation voltage of 20 kV. 

The powder samples were fixed on an SEM stub using double-sided adhesive tape and 

sputter coated with platinum at 50 mA for 6 min using an ion sputter (SC7640, 

Polaron), before analysis. 

The principle of this technique consists in the emission of primary electrons. Once 

they reach the sample surface, they interact with the atoms of the material, giving rise to 

secondary electrons, backscattered electrons and photons. The number of electrons 

emitted varies according to the geometry and other properties of the sample. These 

electrons are collected by a detector, producing image. 

2.2.1.6. Contact angle measurement (sessile drop method) 

Contact angles (θ) of water on drug substrates were measured by the sessile drop 

method using a Contact Angle Measuring Instrument DSA30E (Kruss Instruments, 

France). This method of contact angle measurement uses optics to measure the angle of 

a drop sitting level on a surface. The drop shape is recorded with a high speed framing 

camera, images are then processed by a computer and stored. The camera determines a 

baseline, forms a line around the drop, and calculates the contact angle. The powder 

sample was placed on the sample holder. A 5 µL droplet of the liquid probe (deionized 

water) was placed on the sample surface and the image of the drop was captured by a 
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CCD digital video camera. All measurements were performed in air under ambient 

conditions and the reported values are an average of at least three measurements for 

each experiment. 

2.2.1.7. In Vitro Dissolution Testing 

 Defining the operating conditions for in vitro dissolution 2.2.1.7.1.

To date, there is no published dissolution test for the evaluation of in vitro release 

profiles of CRS 74 from immediate-release solid oral dosage forms (powders for 

example). To study the dissolution properties of the CRS 74 powder sample, this part of 

the work was planned with the following objectives: 

1. To develop and validate a dissolution methodology for this newer 

antiretroviral drug; 

2. To estimate antiretroviral drugs by HPLC method. 

A dissolution tester DT 60 (ERWEKA, Germany) was used in this study. A 

schematic diagram of the type II dissolution apparatus is shown in Figure 2.3, where 

paddle was used as the source of agitation (the paddle method). 

Three different dissolution media (pH 6.8 phosphate buffer, 0.1 M hydrochloric 

acid and deionized water) without additives were tested to find the best conditions to 

evaluate the drug dissolution rate. From preliminary experiments whose results will be 

shown in the section 2.3.6, the selected medium was 0.1 M HCl. 

Three different rotation speeds were tested before setting a rotation speed of 75 

rpm for the CRS 74 dissolution study (no enough powder dispersion in the medium at 

50 rpm; no additional effect on powder dispersion at 100 rpm). In the following, 

experiments were carried out using 30 mg of the reference product (as received CRS 74) 

in 900 g of 0.1 M HCl at 75 rpm and 37.0 ± 0.5°C. Two milliliters samples were 

withdrawn at specific intervals. The samples were filtered through a 0.22 µm filter 

before the injection (20 µL) into the HPLC system (Agilent 1100 Series) for evaluate 
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the amount of CRS 74 dissolved. The sample volume taken was not replaced by fresh 

dissolution medium to prevent any possible interference with the chemical equilibrium. 

 

 

Figure 2.3. Schematic diagram of Apparatus II (Paddle Apparatus):D: vessel diameter; 

h: paddle width, c: distance between the paddle and the vessel bottom, H: liquid height 

into the vessel. 

 

 High Performance Liquid Chromatography (HPLC) to determine the 2.2.1.7.2.

content of the dissolved drug 

Dissolved drug in dissolution media was determined by high performance liquid 

chromatography (HPLC). This technique utilizes different types of stationary phases 

contained in columns, a pump that moves the mobile phase and sample components 

through the column and a detector capable of providing characteristic retention times for 

the sample components and area counts reflecting the amount of each analyte passing 

through a detector (Figure 2.4).  

The HPLC system consists of an Agilent chromatograph (Model 1100 series) 

equipped with a UV-vis detector. There are several parameters that quantitatively 

measure how well a HPLC column separates the components of interest. These 
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parameters will vary based on the dimension of the column, type of column, type of 

mobile phase or stationary phase used, and HPLC instrument. The different HPLC 

conditions tested during our method development were shown in Table 2.3. The mobile 

phase was chosen after several trials with acetonitrile, methanol and phosphate buffer 

pH 4.0 in different volume proportions. Finally, a mobile phase consisting of 

acetonitrile/water (50:50) in an isocratic mode was selected to achieve maximum 

separation. 

 

Figure 2.4. Schematic representation of a High Performance Liquid 

Chromatography system.  

 

Flow rates were arranged between 0.8 and 1.3 mL/min (Table 2.3). A flow rate 

of 1.0 mL/min gave an optimum signal/noise ratio with a reasonable separation time (10 

min) between the analyte peak and dissolution media peak. After comparison between 

the different columns shown in Table 2.3 such as C8 Prontosil 100 mm x 4.6 mm, 5µm, 

C8 Prontosil 250 mm x 4.6 mm, 5 µm and C18 Prontosil 250 mm x 4.6 mm, 5 µm, the 
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best separation efficiency was obtained using ProntoSIL 120-5 C8 SH, 150 x 4.0 mm 

column. 

The retention time, i.e., the time taken for CRS 74 molecule to reach the detector 

once it has been injected into the system, was observed to be 12 min. UV spectrum – of 

CRS 74 showed maximum absorption at 210 nm; therefore, the compounds were 

monitored at this wavelength. In summary the best conditions were set to the HPLC 

analyses: the elution was done using a mobile phase consisting of acetonitrile/water in 

the ratio of 50:50 on HPLC column ProntoSIL 120-5 C8 SH, 150 x 4.0 mm ID, at a 

flow rate of 1.0 mLmin-1 with UV detection at 210 nm. Each experiment was carried out 

in quadruplicate. 

There is no monograph of this drug in any pharmacopoeia. After setting the HPLC 

parameters for analysis, the HPLC quantification method was developed for the 

quantification of CRS 74 concentrations and two validation parameters were tested 

through specificity and linearity.  

Specificity of the method was determined by analyzing the dissolution media with 

and without the standard substance to verify the interference of the eluent in the CRS 74 

concentration measurements. To assess the linearity of the method, seven calibration 

standard solutions of CRS 74 dissolved in 0.1 M HCl were prepared over the 

concentration range of 13- 289 µg/gsolution. The calculation of regression line was carried 

out by plotting the peak area against standard concentration.  
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Table 2.3. Different HPLC parameters tested during the HPLC method 

development. 

Column Mobile phase (volume %) 
Flow rate 
(mL/min) 

Volume 
injection 

(µL) 

C8 PRONTOSIL 
100mmx4.6mm, 

5µm 
 

ACN: 50% ; PB : 40% ; MeOH : 
10% 

1.3  10  

C8 PRONTOSIL 
250mmx4.6mm, 

5µm 
 

ACN : 50% ; PB : 40% ; MeOH : 
10% 

1.0  
10  

0.8  

ACN : 50% ; PB : 50% 
1.0  20  
0.8  

ACN : 30% ; PB: 70% 0.8  20 

ACN: 50%; PB: 40% ; MeOH: 10% 
 

1.0  10 

C18 PRONTOSIL 
250mmx4.6mm, 

5µm 
 

ACN : 50% ; PB: 30% ; MeOH : 
20% 

 
1.0  

 
10  

 
ACN : 60% ; PB: 30% ; MeOH : 

10% 
 

1.3   
10  

1.0 

Prontosil 300-5-
ODSH, 5µm 

ACN : 70 % ; Pure water : 30% 1.0 20 

ProntoSIL 120-5 C8 
SH, 150 x 4.0 mm, 

5µm 
ACN : 50 % ; Pure water : 50% 1.0 20 

ACN: Acetonitrile;  PB: Phosphate buffer ; MeOH: Methanol. 
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The obtained results in HPLC analysis were used to calculate the percentage 

dissolved at each time of dissolution profile. The cumulative percentage of dissolved 

drug was plotted against time, in order to obtain the dissolution profile and to calculate 

the in vitro dissolution data, using the equation (2.1). 

 (2.1) 

 

where Absstd is the absorbance of the standard solution containing the original CRS 74 

100% dissolved, Abssample the absorbance of the sample during the dissolution essay as a 

function of time and StdPurity (%) the purity of the raw material, provided by the 

supplier. 

Drug solubility in dissolution media 2.2.1.7.3.

The solubility of CRS 74 was determined by equilibrating an excess of CRS 74 in 

5g of 0.1 M HCl at 37°C ± 0.5°C in a temperature-controlled bath for 24 h (Figure 2.5). 

 

Figure 2.5. Experimental setup for solubility measurements. 

 

The flasks were sealed for the duration of the tests and the concentration was 

determined by removing the solid phase by filtration (0.22 µm pore size) and injection 

of the filtered solution into the HPLC system to be analyzed at wavelength of 210 nm.  

The HPLC parameters were already presented in the methodology. 

Dissolved  Drug (%) =
Abssample

Absstd

 StdPurity(%)
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2.3. RESULTS AND DISCUSSION 

 Particle size, true density and morphology 2.3.1.

The particle size distribution is shown in Figure 2.6. Laser diffractometry yields 

the volume-weighted diameters. Particle size analysis values of dv90% dv50% and dv10% 

were 515 µm, 101 µm and 4.3 µm, respectively. The broad particle size distribution 

exhibited by the original drug powder is confirmed by the SEM micrographs (Figure 

2.7). 

 

Figure 2.6. Particle size distribution for as-received CRS 74 powder sample.  

 

In addition, the SEM images at a higher magnification showed that the original 

CRS 74 sample consisted of columnar crystals that were several micrometers long 

(Figure 2.7 (b)). SEM images show the presence of agglomerates of small columnar 

crystals (Fig 2.7 (a)) 
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(a) (b) 

Figure 2.7. SEM micrographs of the original CRS 74. 

 

 Density 2.3.2.

The powder had a true density of 1.2295 ± 0.0205 g/cm3 when analyzed using 

helium pycnometry. 

 

 XRD analysis 2.3.3.

XRD analysis was performed to detect the changes in the physical state and 

crystalline phases of the drug, before and after LAS crystallization. Figure 2.8 shows 

the XRD patterns for the as-received powder sample. CRS 74 shows peaks at 

approximately 8.5, 14, 16.9, 18.7, 19.4 and 21.3°, indicating that the drug was a 

crystalline powder.  
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Figure 2.8.  X-Ray diffractograms of the as-received CRS 74 sample. 

 

 TGA and DSC analysis 2.3.4.

Thermogravimetric analysis (TGA) was used in this study to determine the 

thermal stability of CRS 74 by monitoring the weight change that occurred as the 

sample was heated. From TGA data (Figure 2.9) it was observed that the drug becomes 

thermally unstable from 215°C. Mass loss and a large peak were observed respectively 

on the mass loss and on the heat flow at 242oC. This endothermic peak was observed in 

an only one step. It probably characterizes the degradation of the drug. For this reason, 

in the following, DSC analyses were carried out between 20 and 210°C to avoid the 

drug thermal degradation. 
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Figure 2.9. TGA-DSC curve of CRS 74 run in a nitrogen atmosphere and heating 

rate of 10°C/min. 

 

The DSC thermograms of CRS 74 powder, is presented in Figure 2.10. During the 

heating-cooling cycle it was observed a broad endotherm peak at 188.6°C, which may 

correspond to the melting of crystalline product.  

Crystal energy is known to correlate with Tm(Onset) (onset melting point) and ΔHm 

(enthalpy of melting), which refers to the energy a compound must overcome to 

dissolve the drug (VIPPAGUNTA et al., 2007). The onset melting point and fusion 

enthalpy obtained from the DSC study are summarized in Table 2.4. The molecule was 

then characterized by a high melting point (188.6oC) and a high enthalpy of fusion (86.6 

J/g). 
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Figure 2.10. DSC thermograms of as-received CRS 74 sample (first heating), 

which consists of a melting endotherm (peak onset temperature) Tm(Onset) = 188.6oC. 

 

Table 2.4. Melting Temperature (Tm(Onset)), Enthalpy of fusion (ΔHm) for as-

received CRS74 sample. 

Thermal 

parameters 

Cycle 1 

(heating-cooling) 

Tm(Onset)(°C) 188.6 

ΔΔHm (J/g) 86.6 
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 Determination of surface properties 2.3.5.

The surface properties of drug samples were investigated to find a possible 

relation between surface properties and dissolution. Sessile drop contact is most 

commonly measured on compacted powder disc surface. However, compaction of the 

material can alter the particle morphology and surface energy (BUCKTON, 1955). 

Alternatively, some of the authors (AHFAT et al, 2000; HE et al, 2008) have reported 

the use of powder layer adhered to an inert support. The powder layer was adopted for 

the present work as it allows the study of “as is” powder properties. This method gave 

reproducible values. It has been seen that contact angle measurements can vary with 

experimental methodology, however the technique was used for evaluation of the 

surface properties of original drug powder.   

The contact angle of drop deposited on powder surface was plotted as a function 

of time from 0 to 10 s, beyond which there was no significant change in the contact 

angle. With water as the wetting liquid, original drug crystals exhibited a contact angle 

almost unchanged with time from 136.4 ± 0.8° (0 s) to 136.6 ± 0.6°(10 s), as shown in 

Figure 2.11. 

 

Figure 2.11. Contact angle (o) of water as a function of time for original CRS 74. 
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The wetting process with water was quantified for the work of adhesion (Wa), 

calculated using a combination of the Young and Dupré Equations (SCHRADER, 

1995), cohesion (WCL) and the spreading coefficient (λλLS), are calculated by the 

following equations, derived from the Young’s equation (IVESON et al., 2001): 

  (2.2) 

  (2.3) 

  (2.4) 

 

where, γ is the surface free energy and L, S and V refer to the state as being liquid, solid 

and vapor respectively. Equation 2.3 is only valid for θ higher than 0, which is a 

common case for hydrophobic powders. The contact angle made at 0 s was considered 

as the initial contact angle and the surface tension of water was taken from the literature 

(72.8 mN/m; PURI et al., 2010). These values were used to determine Wa, WCL and λLS 

from equations (2.1), (2.2) and (2.3) for the drug powder (Table 2.5). 

 

Table 2.5. Work of adhesion (WA), work of cohesion (WCL) and spreading 

coefficient (λLS) for CRS 74. 

Sample WA (mN/m) WCL (mN/m) λλLS (mN/m) 

CRS 74 20.08 145.6 -125.6 

 

The thermodynamic driving force for each process is indicated by the work value, 

where a negative value denotes the spontaneity of the process (YOUNG and 

BUCKTON, 1990). The positive Wa and WCL obtained for this new antiretroviral drug 

WCL = 2γLV

WA = γSL − γSV +γLV( ) = γLV cosθ +1( )

λLS = WA −WCL
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indicated that the adhesion and the cohesion processes are not spontaneous over the 

original powder sample. Further, a negative spreading coefficient (λLS < 0) means that 

this powder displayed an unfavorable spreading of water (NGUYEN and HAPGOOD et 

al., 2010). 

 Dissolution studies 2.3.6.

 

2.3.6.1. High Performance Liquid Chromatography (HPLC) to determine the 

content of the dissolved drug 

 

Specificity of the HPLC method 

The specificity of a method gives us the guarantee that the result of the method 

only comes from the analyte. Specificity of our method was determined by analysing 

the dissolution media with and without the reference product to verify the interference 

of the eluent in the CRS 74 concentration measurements.  

The specificity of the HPLC quantification method was demonstrated in Figure 

2.12. No interferences from the dissolution medium with the peak of interest were 

observed in the HPLC chromatograms, confirming the selectivity of the method. 
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(a) 

 

(b) 

Figure 2.12. Specific test for CRS 74 in dissolution medium (0.1M HCl); (a) 

HPLC chromatograms of placebo (dissolution medium); (b) HPLC chromatograms of 

the component of interest dissolved in the dissolution medium. Flow rate of 1.0 

mL/min; mobile phase consisted of acetonitrile:water (50:50). 

 

 

HCl peak 

CRS 74 peak 

HCl peak 
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Linearity of the HPLC method 

A linear analytical method indicates that it has the ability to demonstrate 

experimentally that the results obtained are directly proportional to the concentration of 

analyte in the sample within a specified range (FDA, 1997). To assess the linearity of 

the method, seven solutions of CRS 74 dissolved in 0.1M HCl were prepared: 13 

µg/gsolution, 26 µg/gsolution, 34 µg/gsolution, 51 µg/gsolution, 99 µg/gsolution, 213 µg/gsolution and 

289 µg/gsolution. 

The standard curve (Figure 2.13) showed an excellent correlation in the 

concentration range of 13- 289 µg/gsolution (y = 36.2x, r2 = 0.99917, exceeding 0.99, 

which is the minimum recommended by the regulating agencies ICH, 1996 and FDA, 

1997). The limit of quantification (LOQ) of the assay was 0.5 μg/mL. The calculation 

method used is based on the standard deviation (SD) of the y-intercepts of regression 

lines and the slope of the calibration curve (S), according to the formula: LOQ = 

10(SD/S) (ICH, 1996). 

 

Figure 2.13. Standard curve used for the determination of CRS 74 in samples 

produced during dissolution experiments.  
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CRS 74 solubility in dissolution medium and sink conditions 

Sink conditions describe a dissolution system that is sufficiently diluted so that 

dissolution process is not impeded by approach of saturation of compound of interest 

(ROHRS, 2001). The amount of reference product (30 mg) set for our experiments 

assured the presence of sink conditions in the dissolution medium because it 

corresponds to a maximum drug concentration in the acidic medium 33 µg/gsolution, three 

times less the equilibrium concentration of  the drug in this medium, also determined 

experimentally, 102 ± 8 µg/gsolution  at 37°C.  

Any optimal separations and symmetrical chromatographic peaks were observed 

in HPLC chromatograms for CRS 74 in water or phosphate buffer 6.8 (Figures 2.14-a 

and 2.14-b, respectively), reason for which the dissolution method were tested only in 

acidic medium. 

Most drugs are weak acids or weak bases that are present in solution as both the 

ionized and unionized species. The solubility of a weak acid or a weak base is related to 

pH.  Acids ionize in alkaline medium, while bases ionize in acidic medium. The pKa is 

the pH at which concentrations of ionized and un-ionized forms are equal (NEAU, 

2008). 

CRS 74 is a new ritonavir analogous compound (BOCKELMANN et al., 2005; 

BOCKELMANN et al., 2010). Ritonavir is a weak base with two ionisable sites that 

dissociate below pH 3 (BERTZ et al, 2004). The pKa of 2.8 for ritonavir refers to loss of 

a hydrogen from a protonated thiazole group because thiazole itself is a weak base 

(pKBH+, 2.4) (LIDE, 1988). Analogous to Ritonavir, CRS 74 is probably a weak base 

with a pKa close to 3 with similar pH-dependent solubility behaviour. 

According to the literature, Ritonavir is poorly water soluble with a solubility of 

400μg/mL in 0.1M HCl at 37oC, which is reduced to 1 μg/mL at phosphate buffer pH 

6.8 (LAW et al, 2001). In comparison, the solubility of CRS 74 experimentally 

measured in this work was 102 μg/mL in 0.1M HCl and not detected (<0.5 μg/mL) by 

HPLC in phosphate buffer pH 6.8 or water at the same temperature. 
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(a) 

 

(b) 

Figure 2.14. HPLC chromatograms of the component of interest dissolved in (a) 

water and (b) phosphate buffer pH 6.8.  

 

2.3.6.2. In vitro dissolution testing  

Figure 2.15 shows the dissolution profiles of original CRS 74 drug in 0.1 M HCl 

(pH 1.2). It can be seen that the as-received drug did not even reach 20% dissolution 

within 3h, confirming its poor tendency to dissolve in aqueous media. The poor 

dissolution rate measured in this study can be related to the poor surface properties of 

the powder presented in section 2.3.5, such as unfavourable spreading of water (λLS <0) 

Water pH 7.0 

Phosphate buffer pH 6.8 
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and not spontaneous adhesion and the cohesion processes (positives values of Wa and 

WCL). 

 

Figure 2.15. Dissolution profile of CRS 74 in 0.1 M HCl at 37°C (n=4; SD =±2). 

 

The dissolution step seems to be the limiting step of this process of CRS 74 

release in the aqueous medium. The model of Hixson–Crowell (HIXSON and 

CROWELL, 1931) describes the release from dosage forms, which show dissolution 

rate limitation and which do not dramatically change during the release process. The

equation of Hixson–Crowell cube-root kinetic model is given by Equation 2.5. 
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where k is the kinetic constant (min -1), Mt is the mass of the drug dissolved in time t 

and M0 is the initial drug  mass in the dissolution medium. 
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Our dissolution data were then plotted in accordance with Hixson–Crowell cube 

root law (Figure 2.16) (correlation coefficient r2 = 0.984) to determine the dissolution 

rate constant k, as given in Table 2.6. 

  

Figure 2.16. Application of Hixson-Crowell mathematical model on CRS 74 

release profile. 

 

Table 2.6. Values of k and regression equations for the mathematical models of 

Hixson-Crowell applied to the CRS 74 dissolution data. 

Sample Hixson-Crowell 

 k (min -1) Linear equation 

CRS 74 0.0008 y = 0.0008 x - 0.0017** 

k = dissolution rate constant.  

** x = t (min) and y = 1-[(1-%Dissolved/100) 
1/3 ] 
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2.4.CONCLUSIONS 

As-received CRS 74 was characterized by laser diffractometry, powder X-ray 

diffraction (XRD), thermal gravimetric analysis (TG), differential scanning calorimetry 

(DSC), scan electronic microscopy (SEM), surface properties and dissolution testing. 

The results were presented and discussed in this chapter. 

The saturation concentration of this molecule in water and phosphate buffer 6.8 

was not detected by HPLC analysis. The molecule is slightly soluble in acid medium 

(0.1M HCl pH 1.2) : 102 ± 8 µg/gsolution. Its low aqueous solubility can be explained by 

its high crystallinity, its high melting point (188.6oC) and high enthalpy of fusion 

(86.6 J/g).  

The dissolution in vitro test is an important tool in quality control of drugs and it 

becomes more important for drugs with low aqueous solubility such as CRS 74. Some 

characteristics of this drug are not well defined, for instance, its classification in the 

biopharmaceutical classification system. The aim of the dissolution study carried out 

here was to contribute to define CRS 74 dissolution conditions, what can be the focus 

for further studies. To date, there is no published dissolution test for the evaluation of in 

vitro release profiles of CRS 74 from immediate-release solid oral dosage forms. 

Therefore, we developed a dissolution method for CRS 74 to determine its release 

profiles from powder samples. The low dissolution rate presented by this molecule can 

be related to its large particle size (micrometric range, with a broad particle size 

dispersion) and very poor water wettability (θ =136.4 ± 0.8°).  

Physical factors important to drug dissolution include particle size, molecular size, 

hydrophobicity, and crystalline structure. Physical modifications often aim to increase 

the surface area, solubility, and wettability of the powder particles and, therefore, 

typically focus on particle size reduction or generation of amorphous states. This work 

planned to improve the dissolution rate of as-received CRS 74 molecule using a Liquid 

Anti-Solvent crystallization process to increase the surface area and improve its 

wettability. 
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Résumé Chapitre 3- Étude de la solubilité et développement du 

protocole expérimental   

Le choix du solvant est un des paramètres essentiels pour pouvoir envisager une 

opération de cristallisation. La connaissance de la solubilité d'un composant dans 

différents solvants est requise. L’éthanol et l’eau ont été retenus respectivement comme 

solvant et anti-solvant. 

Dans ce chapitre, la solubilité du CRS 74 en mélanges binaires éthanol et éthanol-

eau a été mesurée dans la plage de température de 5 – 30 °C, afin de déterminer le cadre 

expérimental pour permettre la cristallisation par effet anti-solvant. 

Dans un premier temps, les équilibres solide-liquide dans l’éthanol pur et dans des 

mélanges binaires (éthanol/eau) ont été étudiés pour une gamme de température 

comprise entre 5 et 30 °C. Le solide étudié est très soluble dans l'éthanol à 30 °C : 92,6 

mg/g de solution. A 30°C, la solubilité de la molécule diminue quand la quantité d’eau 

dans le mélange augmente. Les solubilités obtenues ont été représentées en utilisant le 

modèle UNIQUAC pour le calcul des coefficients d’activité. Les solubilités 

expérimentales et calculées présentent un bon accord. La solubilité calculée dans des 

mélanges eau-éthanol présente un maximum de 130,20 mg/g de solution pour un ratio 

massique éthanol/eau de 0,83/0,17 (w/w). Les résultats de la modélisation indiquent que 

ce modèle est l'outil approprié pour représenter le comportement de solubilité de CRS 

74 dans des mélanges de solvants (éthanol-eau). Les solubilités expérimentales et 

calculées ont permis d’évaluer le ratio éthanol/eau optimum (25/75 % m/m) pour 

maximiser le rendement théorique en solide. 

Dans un second temps, un mélange double jet avec pré-mélangeur type mélangeur 

en T ou mélangeur Roughton a été choisi pour réaliser la cristallisation. Dans les deux 

cas, des nanoparticules sont créées en sortie du pré-mélangeur. Des expériences 

préliminaires ont montré que le solide présente des vitesses de croissance et 

d’agglomération élevées. Les particules obtenues avec le mélangeur en T semblent 

moins agglomérées.  

Ce type de mélangeur a donc été retenu pour la suite de l’étude. Deux principaux 

résultats ont été obtenus.



 

 

Le solide cristallisé est toujours aggloméré. Son profil de dissolution dans une 

solution acide (0,1M HCl) reste inchangé. À partir de ces résultats, il a été conclu que 

les débits d’entrée des solutions (paramètre opératoire) n'ont pas d'influence sur les 

particules recristallisées. Après avoir défini, les paramètres du processus de 

cristallisation, le produit synthétisé ne présente pas de changements de cristallinité ni de 

changements liés aux propriétés de surface (mouillabilité). Toutefois, une diminution de 

la taille des particules a été observée. Aucun réel impact sur la vitesse de dissolution de 

la poudre synthétisée par effet anti-solvant n’a été observé. 

Le mélangeur se colmate après quelques minutes d’utilisation. Il peut s’agir d’un 

problème d’affinité du solide avec la paroi inox du pré-mélangeur et/ou d’un 

phénomène d’agglomération très rapide. Afin d’améliorer la cinétique de dissolution de 

la poudre recristallisée, il est nécessaire de rendre leur surface plus hydrophile en 

utilisant par exemple des additifs différents afin d'optimiser les paramètres du procédé 

et de formulation. 
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3.1. INTRODUCTION 

Chapter 2 summarizes the crystal properties, which are experimentally 

determined in this work. The poor water solubility, bad wettability and the low 

dissolution rate in acidic medium could be confirmed. In order to modify these 

properties, this work proposed a recrystallization using an Anti-Solvent-Liquid process.  

The solvent selection is one of the essential parameters to envisage any 

crystallization process. Therefore, the knowledge of the solubility of a target component 

in different solvents is required. In this work, the solubility of CRS 74 in ethanol and 

ethanol-water binary mixtures was measured in the temperature range of 5 -30oC. 

Although experimental data on solubility are essential to provide information 

about a system and help to understand its behavior, correlations and prediction models 

are also required for the correct design of crystallization processes. Solid-liquid 

equilibria of ternary mixtures containing ethanol (solvent), water (anti-solvent) and the 

new antiretroviral drug were studied. The solubility data were estimated using 

UNIQUAC-based model.   

After determining the solubility of the active ingredient in ethanol (solvent)- 

water (anti-solvent), an experimental system was developed to study CRS 74 

recrystallization. As mentioned in Chapter 1, crystal properties are influenced by a 

number of operating variables in anti-solvent crystallization, some of which are more 

influential than others.  

The present Chapter is composed of two sections. The first one concerns the 

solubility study and the second one the crystallization process design. The methodology 

and the results obtained are presented. 
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3.2. MATERIALS AND METHODS  

 Materials   3.2.1.

The active pharmaceutical ingredient (CRS 74) with 99% purity was provided as 

courtesy from Cristalia Ltda (Itapira, SP, Brazil), ethanol (EtOH) from Fluka Analytical 

(Sigma–Aldrich, France) and acetonitrile (ACN) high performance liquid 

chromatography (HPLC) grade from Scharlau Chemie (Barcelona, Spain). Ethanol and 

Acetonitrile had purity higher than 99%. All products were used as supplied.  

 Methods for solubilty measurements 3.2.2.

The solubility of CRS 74 was determined by equilibrating an excess of CRS 74 

in 5 g of water, ethanol and different ethanol/water combinations at 30 ± 0.5°C in a 

temperature-controlled bath for 72 h (Figure 2.5). The flasks were sealed for the 

duration of the tests and the concentration was determined by removing the solid phase 

by filtration (0.22 µm pore size) and injection of the filtered solution into the HPLC 

system to be analyzed at wavelength of 210 nm. The HPLC system consisted of an 

Agilent Chromatograph (Model1100 series) equipped with a UV-vis detector, and of an 

HPLC column ProntoSIL 300-5-ODSH 5µm, 250x4 mm ID. The flow rate of mobile 

phase (acetonitrile/water in the ratio of 70:30) is 1.0 mLmin-1.  

 Methods for Liquid Anti-Solvent (LAS) crystallization 3.2.3.

After drug solubility characterization and definition of the best crystallization 

conditions, some process parameters were evaluated. In this part of the study, different 

essays at different operational conditions were realized in order to evaluate the influence 

of the process parameters on the final size and agglomeration state of particles at the 

end of the crystallization process. 

The original CRS 74 crystals were recrystallized by a LAS crystallization 

method. As already discussed in Chapter 1, this method is based on saturation changes, 

when the drug is dissolved into a solvent and then this solution is mixed with an anti-

solvent of solute.  
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Anti-solvent and saturated solutions can be brought into contact in several 

manners: single-jet, double-jet or double-jet with premixing (Chapter 1). 

In the crystallization proceeding for CRS 74 (expensive pharmaceutical drug) 

the use of single jet was not viable due to use of a large amount of drug for each 

experiment. So, a double-jet with premixing has been used. So rapid mixers combined 

with a stirred vessel were used as process configuration. Briefly, the drug was 

recrystallized via the concurrent introduction of the CRS 74 ethanol solution and an 

anti-solvent stream of water in stainless steel mixers specially manufactured for this 

study, on the basis of previous works published in the literature (LINDENBERG et al., 

2008; LINDENBERG, 2009). The experimental setup is shown in Figure 3.1, in which 

the mixing device can be easily changed to test different mixers, which are presented in 

more details hereafter.  

Briefly, a certain amount of original CRS 74 samples was completely dissolved 

in ethanol at 30 ± 0.5°C at definite concentration (90 mgCRS 74/gsolution). The solution was 

filtrated through 0.22 µm pore size membranes to remove the possible particulate 

impurities. To each experiment the solutions were fed into the mixing device by gear 

pumps (mzr-7255-hs-f S, mzr-7205-hs-f S; HNP Mycrosysteme). The freshly formed 

crystals were collected in a vessel under magnetic stirring and then they were filtered 

and dried under vacuum at 50 ± 1°C for 24h. The dried samples produced by this LAS 

crystallization process were characterized by laser diffractometry, differential scanning 

calorimetric analysis, X-ray diffraction analysis, scanning electron microscopy analysis, 

wetting properties and dissolution testing. 

The flow rates of CRS 74 ethanol solution and water were fixed at flow rates of 

11.29 g/min and 33.22 g/min respectively, such after mixing a definite supersaturation 

ratio (S) was calculated from the conditions at the entries of the T-mixer 

(S = C/Ceq = 894). Gear pumps and a digital mass flow meter/controller (M1X, 

Bronkhorst) were used in the experimental process to ensure minimal flow rate 

fluctuations and good mixing. In order to validate the flow of gear pumps the pumps 

were previously calibrated (data shown in Appendix II). 
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Figure 3.1. Schematic of the experimental apparatus used for the LAS 

crystallization experiments. 

 

Mixers  

Two different types of mixers were tested: a T-mixer with two radial entries and 

a two jets vortex mixer also called Roughton mixer. The T-mixer had two radial entries 

with a diameter of 1 mm and its outlet tube had a diameter of 2 mm and a length of 

17.5 mm. The Roughton mixer has a mixing chamber diameter of 3 mm and its outlet 

tube has a diameter of 1.75 mm and a length of 15 mm.  A schematic of both mixers is 

showed in Figures 3.2a and 3.2b. 
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(a) (b) 

Figure 3.2. Sketch of the mixers used: (a) Roughton mixer, (b) T-mixer. 

 

3.2.3.1.Characterization methods for particles in suspension 

Particle size analysis 

The mean size and particle size distribution of the drug particles generated by 

LAS recrystallization were analysed in different phases of the process. 

Firstly, freshly particles were analysed by Photon correlation spectroscopy (PCS) 

using a Zetasizer Nano Zs (Malvern Instruments, United Kingdom) to measure the 

mean size at the exit of the mixer right after the mixing proceeding (from the outlet of 

the mixer), as shown in Figure 3.3. Two measurements are made at 0 and 150 seconds 

(measure time). Before analysis, the suspension was diluted 5 times using a saturated at 

30°C. This saturated solution was composed by water, ethanol and drug, to achieve 

appropriate measurement concentration. It was filtrated through 0.22 µm pore size 

membranes to remove the possible particles. The new supersaturation of solution S’ can 

be calculated by this expression: 
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S’= 5/6 + S/6 (3.1) 

In a second time the drug suspension was analysed by laser granulometry, using 

a MasterSizer 3000 (Malvern Instruments, United Kingdom). The samples were taken 

from the outlet of the mixer (right after the mixing) and immediately diluted with the 

same saturated solution in order to monitor the evolution of crystal size as a function of 

the time in the cell of the granulometer, as shown in Figure 3.3.  

 

 

Figure 3.3. Sketch of particle size analysis for particles in suspension by PCS and 

laser granulometry. 

 

Optical microscopy analysis 

Samples were taken from the final suspension into the vessel and immediately 

analysed by optical microscopy.  

 

Final drug suspension 
in the water-ethanol 

solution 

Sampling 

Dilution  

Measure time (s) 

t0 t150 

Dilution  nDilution

MeasureMeasure time (s) time (s) ( )

t0 t150 

Particle size evolution 
PCS 

n 
l

Particle size evolution 
Laser Granulometry  
 

Sampling 

Dilution  

Measure time (min) 

t0 t10 

Particle size range 0.15nm-10µm 
Particle size range 0.1-3500µm 



Solubility study and experimental design 

 

 

 

135

3.2.3.2. Characterization methods for dried powder 

The dried samples were analysed by laser diffractometry, powder X-ray 

diffraction (XRD), thermal gravimetric analysis (TG), differential scanning calorimetry 

(DSC), scan electronic microscopy (SEM), contact angle measurement and dissolution 

testing, using the same procedure already described in Chapter 2. Furthermore, purity 

and solvent content were determined too. 

Purity  

In order to evaluate the purity of drug solid, approximately 1.5 mg of CRS 74 

was solubilized in approximately 40 g of ethanol. This solution was then assayed by 

HPLC analysis at wavelength of 210 nm to evaluate the amounts of dissolved drug. The 

HPLC system consisted of an Agilent Chromatograph (Model1100 series), equipped 

with a UV-vis detector, column Prontosil 300-5-ODSH 5µm (5 µm, 250x4 mm). The 

flow rate of mobile phase (acetonitrile/water in the ratio of 70:30) is 1.0 mL min-1. All 

experiments were carried out in triplicate. The purity is the ratio between the measured 

concentration of the synthetized powder and the initial concentration of the raw 

material. The purity of the synthesized powders was calculated as shown below. 

 

Purity(%) =
Abssample

AbsCRS 74

× Purity
CRS 74

(%)  (3.2) 

 

where AbsCRS 74 is the absorbance of the standard solution containing the raw material 

100% dissolved, Abssample is the absorbance of the sample containing the synthesized 

material 100% dissolved. And PurityCRS 74 is the purity of the raw material, provided by 

supplier. For all purity results, the standard deviation was not shown, because it was not 

significant. 
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Residual solvent content  

The residual solvent (water+ethanol) content was determined using Infrared 

balance (LJ16, Mettler) at 100°C until constant weight was achieved. 

 

3.3. RESULTS AND DISCUSSION ON SOLUBILITY STUDY 

 Measurement and correlation of solubility of CRS 74 in water-ethanol 3.3.1.

mixtures 

3.3.1.1. Experimental determination  

Solubility data were experimentally measured in the temperature range of 5 to 

30oC for pure ethanol and for a mixed solvent system containing 95%(w/w) water and 

5% (w/w) ethanol. For analytical purposes, the solubility in pure water could not be 

measured. Indeed, the low concentration of a solid in solution, that should lead to 

analytical results unreliable, that can be not quantified due to sensitivity of the 

quantification method.  

Concentration measurements have made as function of time and are shown in 

Tables 3.1 and 3.2. 

The standard deviation obtained (± 5 %), is mainly due to evaporation losses of 

solvent after sampling, but also closely related to systematic error (analytical method), 

like dilution and calibration curve. 

For the two mass ratios, the concentrations measured at 24, 48, 72 h are identical 

(Tables 3.1 and 3.2). Subsequently we have considered, for all solutions, the liquid-solid 

system has reached equilibrium after 24 h of stirring at a controlled temperature ± 

0.5°C. Thereafter, all the experimental results are the average of the three 

concentrations measured respectively at 24, 48 and 72 h (Table 3.1 and Table 3.2).  
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As shown in Table 3.1, the solubility of CRS 74 in pure ethanol was enhanced 

by temperature rise above 15oC, whereas the solubility in the mixed aqueous system 

containing 95% (w/w) water - 5% (w/w) ethanol was not affected by the temperature in 

all studied temperature range. With this last ratio, the solubility of CRS 74 is equal to 

0.0040 ± 0.0001 mg/g solution.  

The solubility of �������in different water-ethanol mixtures at 30oC was listed in 

Table 3.3. 

 

 

Table 3.1. Solubility of CRS 74 in ethanol as function of sample time in 

temperature range (5-30°C). 

T (°C) 
C (mg/g) 

24h 

C (mg/g) 

48h 

C (mg/g) 

72h 

 

(mg/g) 

SD 

(mg/g) 

5 

10 

15 

20 

25 

30 

68.1 

67. 5 

66.4 

72.0 

78.3 

90.6 

65.3 

67.8 

69.7 

74.8 

82.7 

93.0 

73.4 

68.9 

61.4 

77.7 

81.6 

94.3 

68.9 

68.1 

65.8 

74.8 

80.9 

92.6 

4.1 

0.8 

4.1 

2.8 

2.3 

1.9 
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Table 3.2. Solubility of CRS 74 in 95% (w/w) water - 5% (w/w) ethanol mixture 

as function of sample time in temperature range (5-30°C). 

T (°C) 
C (mg/g) 

24h 

C (mg/g) 

48h 

C (mg/g) 

72h 

 

(mg/g) 

SD 

(mg/g) 

5 

10 

15 

20 

25 

30 

0.0042 0.0048 0.0036 0.0042 0.0006 

0.0042 0.0041 0.0038 0.0040 0.0002 

0.0042 0.0041 0.0038 0.0040 0.0002 

0.0036 0.0036 0.0036 0.0036 0.0000 

0.0039 0.0041 0.0039 0.0040 0.0001 

0.0041 0.0041 0.0040 0.0041 0.0001 

 

 

The results revealed that this molecule exhibited a very poor solubility in water 

(not detected by HPLC analysis) and a solubility of 92.6 mg/gsolution in pure ethanol. On 

the one hand, Table 3.3 shows that the addition of ethanol to water at 30°C changed the 

solubility of �����	 and that ethanol could be used as an organic co-solvent to change 

its solubility in aqueous media. It is well-known that the addition of an organic co-

solvent to water can dramatically change the solubility of drugs (YALKOWSKY and 

ROSEMAN, 1981) as observed here for more than 40
(w/w) ����
��. It is reported 

that a solvent is sufficient for pharmaceutical processing when the solubility exceeds 1 

mg/mL (LEE et al., 2006; SMITH et al., 2011).  On the other hand, combinations 

containing more than 60% (w/w) water as an anti-solvent are favourable for further 

crystallization studies.  
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Table 3.3. Solubility of CRS 74 in Ethanol/water mixtures at 30 °C. 

Solvent Mean Solubility (mg/gsolution) ± SD 

Water not detected by HPLC analysis 

95%(w/w) water - 5%(w/w) ethanol 0.004±0.0001 

85%(w/w) water - 15%(w/w) ethanol 0.010±0.0004 

80%(w/w) water - 20%(w/w) ethanol 0.020±0.0020 

75%(w/w) water - 25%(w/w) ethanol 0.030±0.0020 

70%(w/w) water - 30%(w/w) ethanol 0.070±0.0030 

60%(w/w) water - 40%(w/w) ethanol 2.290±0.0900 

50%(w/w) water - 50%(w/w) ethanol 12.300±1.4100 

40%(w/w) water - 60%(w/w) ethanol 60.960±5.2400 

30%(w/w) water - 70%(w/w) ethanol 87.890±4.0000 

Ethanol 92.600±1.9000 

 

 Correlation of solubility data by a UNIQUAC model 3.3.2.

At the liquid-solid equilibrium, the chemical potential of the constituent CRS 74 

in solid phase is equal to the chemical potential of the constituent CRS 74 in liquid-

phase at constant temperature and pressure. From this equality of chemical potential, we 

can show that the activity of the solute CRS 74 in liquid-phase (

) is a function of melting enthalpy of CRS 74, 

∆Hm, melting temperature Tm and solution temperature T (WALAS, 1985): 

 (3.3) 

��������������� �������������� ���������������  

�� �������������� ��������������� � � �
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xCRS 74 solute being the molar fraction of the solute at saturation, γCRS 74 solute the 

activity coefficient of solute.  

The model UNIQUAC (UNIversal QUASI Chemical) is chosen to calculate the 

activity coefficient of solute. 

For a ternary system, twelve parameters are necessary: six parameters 

concerning the geometry of molecules and six binary interaction parameters. The first 

parameters, Rk and Qk, are estimated from the molecular formula of component. The 

second parameters, binary interaction parameter water/CRS 74 and ethanol/CRS 74, 

will be identified from solubilities measurement. Binary interaction parameters 

water/ethanol are available in DIPPR table. 

The volume and surface area parameters Rk and Qk of three components are 

given in Table 3.4.  

Table 3.4. Parameter Rk and Qk. 

Molecule Water (DIPPR) Ethanol (DIPPR) CRS 74 

Rk (cm3/mol) 0.9200 2.1055 37.4015 

Qk (cm3/mol) 1.4000 1.9720 29.4640 

 

The binary interaction parameters of the UNIQUAC model have been identified 

in two steps. Initially, solubility data on the binary ethanol/CRS 74 as function of 

temperature were considered to estimate the two binary interaction parameters 

ethanol/CRS 74 from the activity coefficient of the solute calculated by the equation 

(3.3) (Table 3.5).  

In a second stage, the binary interaction parameters of water/CRS 74 were 

calculated from experimental data over the ternary water/ethanol/CRS 74 with a mass 

ratio ethanol/(ethanol-water) of 5% and variable temperature (Table 3.5). A ternary 

mixture has been chosen because the solubility data in water as a function of 

temperature are not available.  
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In both cases, the minimized function fmin used for parameter estimation is 

calculated the following relation:  

  (3.4) 

Table 3.5. Binary interaction parameters. 

Binary Systems i-j uij (cal/mol) 

Water-CRS 74 1-3 

3-1 

-400.55 

22 132.13 

Ethanol-CRS 74 2-3 

3-2 

-381.47 

23 701.66 

Water-Ethanol 

(database Simulis) 

1-2 

2-1 

-96.4730 + 0.6843 * T(K) 

31.6290 + 0.4759 * T(K) 

  

The experimental and calculated activity coefficients ( ���������������
���

and 

��������������
����

) for the two systems are reported in Table 3.6. The means of standard 

deviation (equation 3.5) for the binary system ethanol/CRS 74 and for the ternary 

system water/ethanol/CRS 74 are respectively 0.123 and 0.196 on the ternary system. 

 

      (3.5) 
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 Table 3.7 gives the solubilities calculated in pure ethanol as a function of 

temperature. The calculated concentrations are in good agreement with experimental 

values for temperatures above 15°C. Below this temperature, the calculated 

concentrations are significantly underestimated.  

Figure 3.4 shows the calculated solubility at 30°C as a function of the ethanol 

mass proportion in the mixture ethanol-water with the identified parameters. The 

calculated data showed good agreement with experimental results and revealed a 

maximum solubility of CRS 74 of 130.20 mg/gsolution for a mass ratio of 17%(w/w) 

water - 83%(w/w) ethanol. The maximum solubility for a solute in a mixed solvent 

system has been observed experimentally for other systems (water/acetone/ketoprofen-

ESPITALIER et al., 1995; water /ethanol /paracetamol and water/dioxane/phenacetin-

RUCKENSTEIN and SHULGIN, 2003; water/ethanol /hydrocortisone- ALI et al., 2009 

and n-heptane/ethanol/eflucimide - TEYCHENE and BISCANS, 2011). Different 

studies on Hidelbrand solubility approach have shown that the location and the height of 

the peaks could be linked with the polariry of the solute (JOUYBAN-GHARAMALEKI 

et al., 2000, PEÑA et al. 2006). Hydroxyl and amine groups of solute give a polar 

character to this molecule that could explain the maximum of solubility calculated for a 

high ratio of ethanol in the mixture. 

 

Figure 3.4. Experimental (characters) and calculated CRS 74 solubilities (__) in 

different ethanol-water mixtures at 30 ± 0.5oC. 
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Table 3.6. Experimental and calculated activity coefficients for ethanol/CRS 74 

and ethanol/water/CRS 74. 

 System ethanol/CRS 74 

SD = 0.123 

System water/ethanol/CRS 74 

Ethanol/(Ethanol+water) = 0.05 

SD = 0.196 

T (°C) ���������������
���  ��������������

����  ���������������
���  

10-4 

��������������
����  

10-4 

5 

10 

15 

20 

25 

30 

0.0957 

0.1765 

0.3261 

0.4965 

0.7829 

1.1373 

0.1842 

0.2562 

0.3475 

0.5200 

0.7449 

1.1081 

0.4165 

0.7947 

1.4161 

2.7487 

4.2884 

6.9886 

1.0533 

1.5338 

2.2045 

3.1296 

4.3908 

6.0919 

 

Table 3.7. Solubility of CRS 74 in pure ethanol at different temperatures. 

T (°C) 
 

(mg/g) 

SD 

(mg/g) 

Ccalc 

(mg/g) 

5 

10 

15 

20 

25 

30 

68.9 

68.1 

65.8 

74.8 

80.9 

92.6 

4.1 

0.8 

4.1 

2.8 

2.3 

1.9 

46.4 

54.6 

63.4 

72.9 

83.1 

93.9 
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Theoritical yield of solid obtained by LAS crystallization 3.3.3.

Measurements and correlation of solubility of CRS 74 in different ethanol/water 

mixtures provided useful data for a better understanding of the solubility phenomenon 

in these media and to estimate the theoretical efficiency of the LAS recrystallization 

process as a function of ethanol/water mass ratios. Theoretical solid efficiency is the 

theoretical solid yield of crystallization based on the drug solubility in the liquid media, 

calculated from the ratio of weight particles obtained by assuming solid-liquid 

equilibrium attained and the initial weight of solute. Figure 3.5 depicts the theoretical 

solid efficiency of the LAS crystallization for the drug. It can also be seen that an 

ethanol concentration up to 50%(w/w) in ethanol/water mixtures is still favorable for 

the crystallization process, resulting in recovery of 82.6% (50 %Ethanol) of CRS 74 

based on the drug solubility in the liquid media. 

In an attempt to improve its dissolution properties, CRS 74 can be recrystallized 

by using a Liquid Anti-solvent (LAS) crystallization process and the data generated 

here can represent a useful tool to define the mass proportion between solvent (ethanol) 

and anti-solvent (water) for LAS crystallization studies. 

 

Figure 3.5. Theoretical yield of CRS 74 in different ethanol/(ethanol-water) mass 

ratios.  
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3.4. RESULTS AND DISCUSSION ON CRYSTALLIZATION 

STUDY 

After determining the solubility of the active ingredient in ethanol (solvent)- 

water (anti-solvent), it was developped an experimental system to study CRS 74 

recrystallization solvent. The crystals of CRS 74 were prepared by LAS crystallization 

from an ethanolic saturated solution at 30 °C (90 mg/gsolution) and water, used like anti-

solvent. The crystals suspension obtained after the crystallization process had a milky 

aspect that changed into a clear solution, after some seconds under magnetic stirring. 

This phenomenon can indicate the growth and the subsequent agglomeration of the 

crystals in solution. That can be observed in the form of long and big macroscopically 

visible agglomerates.  

Two different rapid mixing devices for controlling the properties of CRS 74 

particles produced by LAS crystallization were used. Two process parameters were 

tested: type of mixer and flow rate, which will be discussed here. For all essays at least 

two replicates were realized to evaluate the repeatability of the process and particle size 

measure method. The process conditions are given in the Table 3.8. 

The solid has been characterized after crystallization (still in suspension) and after 

crystallization, filtration and drying. The characterization step concerns the particle size 

measurement at the outlet tube of the mixer and the characterization of dried powder by 

particle size measurement, morphology, crystalline structure and dissolution properties. 
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Table 3.8 Experimental LAS crystallization process conditions 

Experiment Solvent flow 
rate (g/min) 

Antisolvent 
flow rate 
(g/min) 

Total flow 
(g/min) 

Type of 
mixer 

1 11.29 33.22 44.51 Roughton 

2 11.29 33.22 44.51 T 

3 6.77 20.32 27.09 T 

4 17.46 52.1 69.56 T 

 

 Characterization of particles in suspension 3.4.1.

3.4.1.1. Influence of the type of mixer on mixing 

In order to compare the efficiency of both mixers parameters such as residence 

time (τ), Reynolds number (Re) and energy dissipation rate (ED) were calculated for 

each mixer and for each flow rate tested.  

The residence time τ in the mixer is calculated  from V the volume of the mixer 

(mL) and Q the volume flow rate (mL/s): 

 (3.6) 

In our system, the Reynolds number can be calculated as follows (FOX et al., 

2004). 

 (3.7) 

with Re = Reynolds number, � = density of the mixture (kg/m3), u = velocity of the 

mixture (m/s),���= flow rate of the mixture (m3/s), D = diameter of the outlet tube (m), 

µ = viscosity of the mixture (N.s/m2), A = cross sectional area of the outlet tube (m2). 
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It has been described that for Reynolds number above 1600, the mixing process 

is completed in the main mixing chamber. On the other hand, for low Reynolds number, 

this process continues at the outlet tube. Therefore, the larger the Reynolds number, the 

faster the mixing process and, consequently, a uniform composition in the mixer will be 

faster achieved.  

 The energy dissipation is a factor that strongly influences the quality of mixing. 

The purpose of the mechanical energy dissipated by the moving fluid is to homogenize 

fields of concentrations by displacement of fluid portions. The perfect mixing at the 

molecular level is sometimes achieved so late that the solute molecules are already 

chemically transformed or in phase change. The energy dissipated can be calculated as 

follow. 

 (3.8) 

where ED = energy dissipated (W/kg), f = friction factor, V = velocity of the fluid at the 

outlet tube (m/s), D = diameter of the outlet tube (m).  

By generating homogenized fields of concentration in the solution, the energy 

dissipation influences the mean velocity convection, the turbulent diffusion and the 

viscous-convective deformation (LINDENBERG and al, 2008). The improvement of 

these factors means an improved mixing. 

Properties of solvent mixture used, like density (ρ) and viscosity (µ) were 

calculated as shown in Table 3.9. These values were determined for the solvents 

mixture composed by ethanol (25%, w/w) and water (75%, w/w) at 30°C, without 

taking into account the influence of the solid (KHATTAB et al., 2012).  
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Table 3.9 Density (ρ) and viscosity (µ) of ethanol/water mixtures at 30°C 

(KHATTAB et al., 2012). 

ρmixture (kg/m3) µmixture (N.s/m2) 

955.4 0.0017 

 

According to Table 3.10, Reynolds numbers were lower than 1600, so the 

mixing process continues at the outlet tube. Moreover, Roughton mixer shows better 

mixing efficiency when compared to the T-mixer. For the same flow rate, the Roughton 

mixer presents lower mixing time, which is required in order to have a uniform 

concentration distribution in the mixer, wide causes particle size distribution (ZHAO et 

al., 2011). It also shows higher Reynolds numbers and energy dissipation rates. It means 

a greater turbulence in the system that favours a closer contact between the fluid for 

total flow rate higher than 7 g/min and, consequently, results in improved mixing.  

Table 3.10. Calculated mixers parameters for: Roughton mixer (a) and T-mixer 

(b). 

QEtOH (g/min) QH2O (g/min) Qtotal (g/min) τ (s) Re ED (W/Kg) 

6.77 20.32 27 09 0.08 195 0.7 

11.29 33.22 44 .51  0.05 321 2 

17.46 52.1 69.56 0.03 503 4.9 
 

(a) 
QEtOH (g/min) QH2O (g/min) Qtotal (g/min) τ (s) Re ED (W/Kg) 

6.77 20.32 27.09 0.11 171 0.3 

11.29 33.22 44.51 0.07 281 0.9 

17.46 52.1  9.56 0.04 440 2.2 

 

(b) 
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3.4.1.2. Influence of the type of mixer on particle size 

For CRS 74 LAS crystallization the proportion ethanol:water equal to 25%:75% 

(w/w) and total flow rate of 44.51 g/min, were used, as given in Table 3.8. Results 

obtained by PCS and laser granulometry are presented. 

 

PCS results 

In a first time the influence of the type of mixer on particle size (PSD) by PCS 

was evaluated. Different essays using Roughton and T mixers at the same process 

conditions were realized. In order to follow the evolution of particle size and understand 

the influence of each mixer on the size of the final product.  

It was clear observed, that the particle size at 0 s for both mixers is small 

(nanoscale), but they evolved very fast inside the equipment during the measurement 

time (150 s), as shown in Table 3.11. This fast evolution of size could be explained by 

two phenomena: growth or aggregation/agglomeration. A certain variation of size value 

for the same essay was noticed as well. This difference of the measures values can be 

acceptable due to the high growth or agglomeration rates of the particles produced, 

which complicates the measurement accuracy. This variation among the measures was 

noted at 0 and 150 s for both mixers. 

It was noted, that the mean size of particle obtained with Roughton mixer seems 

to be smaller than that obtained with T-mixer at t0 = 0 s. After tf =150 s, none difference 

is observed. This behaviour can be explained by the fact that it provokes a better mixing 

when compared to the T-mixer, as showed before in Table 3.10 of this chapter.   
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Table 3.11. Evolution of crystallized particle size by PCS in different mixers, 

Roughton mixer (a) and T-mixer (b) at total flow rate of 44.51 g/min and ethanol-water 

ratio of 25-75 % (w/w). 

Experiment Size (nm) at t0 = 0 s Size (nm) at tf = 150 s  

1A 224 778 

1B 153 926 

1C 120 655 

Average 166± 54 787± 136 
 

(a) 
 

Experiment Size (nm) at t0 = 0 s Size (nm) at tf = 150s 

2A 269 845 

2B 393 815 

Average 331± 88 830± 21 

(b) 

 

Laser granulometry results 

 

The evolution of the particle size was still followed by laser granulometry, from 

the outlet of the mixer, until size stabilization of crystals during 10 minutes, in which 

each measure lasts around one minute. The first and the last measure of this period of 10 

minutes were shown in Figures 3.6 and 3.7. 

Analysing the results for each mixer separately, it was noted the fast crystal 

growth or agglomeration. During the 10 minutes analysis the particle size increased 30 

times of its initial size of 2 µm, i.e. almost a mean growth rate of 7 µm/min. This 

behaviour is due to tendency of the molecule to grow quickly and/or to form larger 

agglomerates. 
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In figure 3.7 it was noted that T-mixer presents particles with smaller sizes at the 

end of the measure (10 min) when compared with the size particle distribution of the 

particles crystallized in the Roughton mixer (see Figure 3.6).  

Optical microscopy photos can confirm the agglomeration phenomenon in the 

cell of laser granulometer. However, as shown in Table 3.12, the particles obtained 

using the Roughton mixer presented an agglomeration state of particles more 

significant, when compared to the particles obtained using the T-mixer. The presence of 

these agglomerates was observed too in Figure 3.6, where a family of particles was 

noticed at 500 µm.  

Table 3.12. Crystals at tf =10 min in suspension observed by optical microscopy  

Experiment Type of mixer Total Flow rate

 

500 µm 

1A Roughton 44.51 g/min 

 

2A T 44.51 g/min 
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t0 = 0 min 

 

tf = 10 min 

Figure 3.6. Particle size distributions by laser granulometry for Roughton mixer 

at t0 = 0 min and tf = 10 min at total flow rate of 44.51 g/min and ethanol-water ratio of 

25-75 % (w/w). 

 

Experiment D[4;3] (µm) Span 

1A 3 1.8 

1B 1 1.2 
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t0 = 0 s 

 

tf = 10 min 

Figure 3.7. Particle size distribution by laser granulometry for T-mixer at t0 = 0 

min and tf = 10 min at total flow rate of 44.51 g/min and ethanol-water ratio of 25-75 % 

(w/w). 
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3.4.1.3. Influence of flow rate in the T- mixer on particle size 

In this section the influence of the flow rate on particle size was analyzed using 

the T-mixer. Three different experiments varying the flow rate were performed (Table 

3.8) and the particle size was measured with the same experimental procedure.  

 

PCS results 

Analyzing the results for initial size and final size in different flow rates by PCS 

in Table 3.13. It was noted that there is no a great influence of flow rate on the particle 

size.  

Laser granulometry results 

The evolution of the particle size was still followed by laser granulometry during 

10 minutes. Like it was made in previous section. 

For all experiments the quickly grow or agglomeration rates of crystals was 

observed as illustrate in Figures 3.8, 3.9 and 3.10. During the 10 minutes analysis the 

particle size increased between 20 and 30 times of its initial size of 2 and 4 µm, i.e. 

almost a mean growth rate between 9 and 7 µm/min. 

According these results, the particles still continue to grow fast and/or to form 

larger agglomerates, which means that the flow rate does not influence the growth of the 

particle size after the mixing. The average flow (44.51 g/min) was chosen in the 

following essays. 
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Table 3.13. Evolution of crystallized particle growth by PCS in different total 

flow rate: a) 27.09 g/min; b) 44.51 g/min; c) 69.56 g/min and ethanol-water ratio of 25-

75 % (w/w). 

 

 

Experiment Total flow (g/min) Size (nm) at t0 = 0 s Size (nm) at tf = 150 s 

3A 27.09 354 942 

3B 27.09 350 1195 

Average  352 ± 3 1068 ± 179 

(a) 

 

Experiment Total flow (g/min) Size (nm) at t0=0s Size (nm) at tf=150s 

2A 44.51 269 845 

2B 44.51 393 815 

Average  331 ± 88 830 ± 22 

(b) 

 

Experiment Total flow (g/min) Size (nm) at t0 = 0 s Size (nm) at tf = 150 s 

4A 69.56 385  1241 

4B 69.56 257 963 

Average  321 ± 63 1102 ± 197 

(c) 
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t0=0s 

 

tf=10min 

Figure 3.8. Particle size distribution by laser granulometry for T-mixer at total 

flow rate of 27.09 g/min and ethanol-water ratio of 25-75 % (w/w)., at t0 = 0 min and tf 

= 10 min. 
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t0 = 0 s 

 

tf = 10 min 

 

Figure 3.9. Particle size distribution by laser granulometry for T-mixer at total flow rate 

of 44.51 g/min and ethanol-water ratio of 25-75 % (w/w), at t0 = 0 min and tf = 10 min. 
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t0 = 0 s 

 

tf = 10 min 

Figure 3.10. Particle size distribution by laser granulometry for T-mixer at total 

flow rate of 69.56 g/min and ethanol-water ratio of 25-75 % (w/w), at t0 = 0 min and tf = 

10 min. 
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3.4.1.4. Influence of addition time and steady state  

From the previous section, for all experiments the particle size average (PCS) 

presented a nanometric range right after crystallization. But the crystals size has evolved 

quickly until stabilization, i.e. micrometric range.  

In the case of uncontrolled crystallization, the size evolution of crystals can be 

due to growth or agglomeration mechanism. To know which crystallization 

phenomenon control the increase of size crystal, the population balance was proposed. 

For this simple calculation the steady state must be achieved, i.e. particle of size 

constant. 

An experiment over the time under the best crystallization condition was 

realized. The ethanol-water ratio equal to 25-75 % (w/w) and total flow rate of 44.51 

g/min, were chosen, based on previous results.  

The experiment does not last very long, only 6 min. This is due to problems of 

blockage, caused by affixation of solid on the surface of the mixer, as shown in Figure 

3.11. This problem can be caused by the affinity of the molecule with the material, 

which constitutes the surface of the mixer. It precludes the system from reaching the 

steady state and consequently, it prevents to calculate the growth and nucleation rates 

from population balance.  

 

Figure 3.11. Blockage and affixation of CRS 74 crystals on surface of the T-

mixer. 
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The blockage problem can be related to high saturation (S) of the alcoholic 

solution. In order to prevent the blockage problem, a second experiment with a low flow 

rate and a low supersaturation was performed, as shown in Table 3.14. In this 

experiment, different samplings from the outlet of the mixer as a function of time were 

realized. 

 

Table 3.14. Experimental LAS crystallization process conditions 

Experiment 
Total flow 

(g/min) 

ethanol-water ratio 

(w/w) 
S* 

5 44.51 25-75 % 894.0 

6 27.09 25-75 % 15.4 

*S= C /Ceq, - C is concentration after dilution with anti-solvent by assuming no crystallization 

(mg/g) and Ceq is the equilibrium concentration of the pharmaceutical active in the solution water+ethanol 

(mg/g) 

 

Comparing the results of both supersaturations at the same time, it was perceived 

that there is no big difference between the size particles values, as a function of time, as 

given in Table 3.15. It means that the supersaturation does not have a great influence on 

the particle size. It can be noted too, that the particle size for both experiments increases 

as a function of time. It means that, the steady state was not achieved for population 

balance calculus. 
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Table 3.15. Particle size distribution by PCS: S = 894.04 and S = 15.4.  

 S= 894.0 S= 15.4 

t (min) Size (nm) at t0 = 0s Size (nm) at t0 = 0s 

0 438 421 

2 455 491 

4 503 579 

6 688 x 

 

For both experiments, the particle size measurement as a function of time does 

not last very long (t < 6 min) due to problems of blockage. 

The essay with the lower supersaturation and flow rate lasted less than the other 

one, only 4 minutes. In this process condition the residence time of the crystals is 

bigger, as shown in Table 3.10 (0.11 s for 27.09 g/min and 0.07 for 44.51 g/min). It 

means, that the crystals have more time to be in contact with the surface of mixer, 

causing problems of blockage. Furthermore, the particles in nanometric range have a 

high-energy surface; this property can potentiate the high affinity of CRS 74 on the 

surface material. 

Because of this drug behaviour, which precluded the realization of essays over 

time, it was not possible to simply calculate the nucleation and agglomeration rates. In 

addition this drug behaviour prevent the use of this crystallization proceeding in 

industrial applications. 
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 Characterization of solid particles obtained in experimental design 3.4.2.

 

By comparing the SEM photos of raw material and the synthetized powders, a 

decrease of the crystal size (elementary particles and agglomerates) and no shape 

changes can be observed in Table 3.16. This size reduction can indicate an influence of 

the crystallization process on the size particle. On the other hand, the presence of 

powder compact agglomerates was noted. This agglomeration phenomenon may be due 

to the crystallization process (particle surface state) and to the powder recuperation 

process (filtration and drying). 

 

The powder obtained were characterized by purity ranging from 97.00% ± 2.76 

%. This value can prove that the experimental proceeding does not induce the product 

contamination by germs in tubing elements of pump or in mixer device. 
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 Comparative study of original CRS 74 and LAS recrystallized drug with T-3.4.3.

mixer

According to experimental result (see section 3.4.1.2) the T-mixer was chosen for the 

following steps. The original CRS 74 (raw material) and recrystallized powder using T-mixer 

using the best experimental conditions was characterized in order to verify physicochemical 

changes, among the products after recrystallization process. 

3.4.3.1. Particle size and morphology  

Laser diffractometry yields the volume-weighted diameters. The dv10%,dv50% and 

dv90% represent the sizes in which 10%, 50% and 90% of the particles are below the given 

sizes, respectively. From Figure 3.12, it can be seen that the particle size distribution changed 

as follows: the original CRS 74 with 90%, 50% and 10% of the particles smaller than 515 µm, 

101 µm and 4.3 µm were reduced respectively to 138 µm (dv90%), 34 µm (dv50%) and 4.4 µm 

(dv10%) after LAS recrystallization.  

 

Figure 3.12. Particle size (laser diffraction data) of CRS 74, before and after the LAS 

recrystallization process. 
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These results are supported by the powder morphology observed by SEM (Figure 3.13). 

The particles of the original powder were found to be larger and exhibiting a broad particle 

size distribution compared to the LAS recrystallized drug.   

  

(a) (b) 

  

(c) (d) 

Figure 3.13. SEM micrographs of the original (a, b) and LAS recrystallized CRS 74 (c, 

d). 
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3.4.3.2. XRD analysis 

XRD analysis was performed to detect the changes in the physical state and crystalline 

phases of the drug, before and after LAS recrystallization. Figure 3.14 shows the XRD 

patterns for the two studied samples. CRS 74 shows peaks at approximately 8.5, 14, 16.9, 

18.7, 19.4 and 21.3°, indicating that the drug was a crystalline powder. Comparing the DRX 

diffractograms of LAS recrystallized drug to the original CRS 74 it can be seen that the 

crystalline phases were preserved. 

 

 

Figure 3.14.  X-Ray diffractograms of the original and LAS recrystallized drug 

powders. 

3.4.3.3. DSC analysis 

The DSC thermograms of original and LAS recrystallized drug are presented in Figure 

3.15. The onset melting point and fusion enthalpy obtained from the DSC study are 

summarized in Table 3.17. Relative enthalpy is calculated by taking the fusion enthalpy of 

original CRS 74 powder as 100%.  
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From DSC data, it was concluded that LAS recrystallization changed marginally the 

thermal properties of the drug.  

 

(a) 

(b) 

Figure 3.15. a) DSC thermograms of original CRS 74 (first heating), which consists of 

a melting endotherm (peak onset temperature Tm(Onset) = 188.64oC) and LAS recrystallized 

drug, which consists of a melting endotherm (peak onset temperature Tm(Onset) = 187.79oC); b) 

DSC thermograms of original CRS 74 (cooling after first heating), which consists of a 

crystallization exotherm (peak onset temperature Tc(Onset) = 132.12oC) and LAS recrystallized 

drug, which consists of a crystallization exotherm (peak onset temperature Tc(Onset) = 

138.43oC). 
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The observed reduction of the fusion enthalpy (Table 3.17) may be caused by the 

higher surface/volume ratio exhibited by the LAS recrystallized powder, needing lower 

energy for melting. Crystal energy is known to correlate with Tm(Onset) (onset melting point) 

and ∆hf (enthalpy of fusion), which refers to the energy a compound must overcome to 

dissolve (VIPPAGUNTA et al., 2007). 

 

Table 3.17. Melting Temperature (Tm(Onset)), Heat of Fusion (Δhm) for the original and 

LAS recrystallized drug. 

Thermal and dissolution 
parameters 

Original 
CRS 74 

LAS recrystallized 
CRS 74 

Tm(Onset)(°C) 188.6 187.8 

ΔΔhm (J/g) 86.6 79.2 

Relative enthalpy(%) 100 91.5 

 

3.4.3.4. Dissolution studies 

Figure 3.16 shows the dissolution profiles of original and LAS recrystallized CRS 74 

in 0.1 M HCl (pH 1.2). It can be seen from Figure 3.13 that both drug samples did not even 

reach 50% dissolution within 3 h. 

The dissolution profiles were compared through the model-independent simple 

method. The model-independent simple method includes the difference factor (f1) and the 

similarity factor (f2), calculated by using the following equations (3.7) and (3.8) (MOORE 

and FLANNER, 1996; COSTA and LOBO, 2001).  

�� � ���
�� � �����

�����

   (3.9) 

�� � �� ��� ��� ��
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���
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where Rt and Tt are the percentage of drug dissolved at each time point for the reference and 

test products, respectively; n is the number of dissolution sample times and t is the time points 

for collecting dissolution samples. 

The f1 factor measures the percentage of the error between two curves over all time 

points. This percentage is zero when the test and drug reference profiles are identical and 

increases proportionally with the dissimilarity between the two dissolution profiles. The f2 

factor is a logarithmic transformation of the sum-squared error of differences between the test 

and the reference products over all time points. When the two profiles are identical, f2=100. 

An average difference of 10% at all measured time point results in a f2 value of 50. FDA has 

set a public standard of f2 value in the range 50-100 to indicate similarity between two 

dissolution profiles.  

Since original CRS 74 is the reference, the factors f1 and f2 are calculated between this 

product and the LAS recrystallized powder. The results of f1 and f2, 24.8 and 98.8, 

respectively, showed that the profiles of original CRS 74 and LAS recrystallized drug are 

almost similar.  

 

Figure 3.16. Dissolution profiles of CRS 74, before and after LAS recrystallization (in 

0.1 M HCl at 37 °C, n = 4). 

0 

10 

20 

30 

40 

50 

60 

70 

80 

0 20 40 60 80 100 120 140 160 180 200 

D
is

so
lv

el
d 

D
ru

g 
(%

) 

Time (min) 

LAS recrystallized drug 

Original CRS 74 



Solubility study and experimental design 

 

 171 

3.4.3.5. Determination of surface properties  

The surface properties of drug samples were investigated to find a possible relation 

between surface properties and dissolution. Sessile drop contact is most commonly measured 

on compacted powder disc surface. However, compaction of the material can alter the particle 

morphology and surface energy (BUCKTON, 1955). Alternatively, some of the authors 

(AHFAT et al, 2000; HE et al, 2008) have reported the use of powder layer adhered to an 

inert support. The powder layer was adopted for the present work as it allows the study of “as 

is” powder properties. This method gave reproducible values.  It has been seen that contact 

angle measurements can vary with experimental methodology, however the technique was 

used for comparative evaluation between LAS recrystallized samples and the original drug 

powder.  

The contact angle of drop deposited on powder surface was plotted as a function of 

time from 0 to 10 s, beyond which there was no significant change in the contact angle. With 

water as the wetting liquid, original drug crystals exhibited a contact angle almost unchanged 

with time from 136.4 ± 0.8° (0 s) to 136.6 ± 0.6°(10 s), as shown in Figure 3.17. In turn, LAS 

recrystallized drug exhibited an initial contact angle of 133.5 ± 1.8° which changed 

marginally to 132.9 ± 1.7° over the 10 s period.  

The wetting process with water was quantified for the work of adhesion (Wa), 

cohesion (WCL) and the spreading coefficient (λλLS), as already calculated in Chapter 2, 

section 2.3.5.  

The contact angle made at 0 s was considered as the initial contact angle and the surface 

tension of water was taken from the literature (72.8 mN/m; PURI et al., 2010). These values 

were used to determine Wa, WCL and λLS from equations (2.2), (2.3) and (2.4) for the drug 

powders (Table 3.18). 

The thermodynamic driving force for each process is indicated by the work value, 

where a negative value denotes the spontaneity of the process (Young and Buckton, 1990). 

The positive Wa and WCL obtained for both drug powders indicated that the adhesion and the 

cohesion processes are not spontaneous in both cases. Further, a negative spreading 

coefficient (λLS < 0) means that the original CRS 74 displayed an unfavorable spreading of 
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water (NGUYEN and HAPGOOD et al., 2010), characteristic which remained unchangeable 

after LAS recrystallization of the drug. This poor wettability can be related to the poor 

dissolution rates measured. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.17. Contact angle (o) of water as a function of time for: a) original CRS 74; b) 

LAS recrystallized drug.  
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Table 3.18. Work of adhesion (WA), cohesion (WCL) and spreading coefficient (λλLS) 

for CRS 74. 

Sample WA (mN/m) WCL (mN/m) λLS (mN/m) 

CRS 74 20.08 145.6 -125.6 

LAS recrystallized powder 22.69 145.6 -122.9 

 

 

3.5. CONCLUSIONS 

The present chapter had the purpose to determine the solubility of CRS 74 in binary 

solvent mixture (ethanol-water) and to study the influence of operational parameters on the 

synthesis of a pharmaceutical drug. 

The CRS 74 is soluble in ethanol (92.6 mg/gsolution) and seems to present a maximum 

in solubility in ethanol-water mixtures as determined in this study using UNIQUAC-based 

model at 30°C. To the best of our knowledge, there are no published data of the solubility of 

such given solute in ethanol-water mixtures to compare with. 

The synthesis process should result in a powder with small crystal size with the view 

to improve the bioavailability of the drug. 

According to two main parameters tested, type of mixer and flow rate, uncontrolled 

crystal growth and no change on the final product was observed, i.e. the operational 

parameters do not have influence on recrystallized particles. These experiments proved to be 

quite laborious due to the rapid growth and agglomeration of the produced particles and 

problems of blockage of the mixer. Because of this drug behaviour, which precluded the 

realization of essays over time, it was not possible to simply calculate the nucleation and 

agglomeration rates. In addition this drug behaviour prevent the use of this crystallization 

proceeding in industrial applications. 
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After setting process conditions, a solid crystallized by LAS crystallization (operating 

conditions) was compared (or has been compared) to the raw material. After crystallization 

process the synthesized product do not present any crystallinity changes. However, a decrease 

of particle size was observed and consequently a considerable agglomeration of crystals. 

Furthermore, in the case of CRS 74 LAS crystallization does not have a real impact on the 

dissolution rate of synthesized powder. 

In an attempt to improve its dissolution properties, CRS 74 can be recrystallized by 

using a Liquid Anti-solvent (LAS) crystallization process and the data generated here can 

represent a useful tool to define the mass proportion between solvent (ethanol) and anti-

solvent (water) for LAS crystallization studies. However, to improve its dissolution kinetics, 

smaller particles with a more hydrophilic surface need to be produced. This research is going 

on and our specific aims are to consider the feasibility of the LAS crystallization using 

different excipients to optimize process and formulation parameters. 
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Résumé Chapitre 4- Etude de la recristallisation par effet anti-solvant en 

présence d’additifs 

En vue d’améliorer sa dissolution en milieux aqueux, le CRS 74 a été recristallisé en 

utilisant une opération de cristallisation par effet anti-solvant en présence d’additifs.  

Des additifs ont donc été utilisés en vue de modifier les propriétés de dissolution des 

cristaux, et les vitesses de cristallisation (nucléation, agglomération, croissance). 

L'effet des additifs sur la taille des cristaux, la cinétique de dissolution et la 

mouillabilité du solide synthétisé a été étudié.  

Les additifs ont été choisis en accord avec des applications pharmaceutiques futures de 

cette molécule. Ils sont de quatre types 

-des tensio-actifs non ioniques : Tween 20 (ester de sorbitan polyoxyéthylénique) et 

HPMC (Hydroxypropylméthylcellulose) pour une stabilisation stérique, 

- un copolymère à bloc, le poloxamer 407 (P-407) pour une stabilisation stérique, 

-un tensio-actif anionique, le dodécylsulfate de sodium (SDS) pour une répulsion 

électrostatique, 

-un copolymère composé de D-glucosamine et de N-acétyl-D-glucosamine (chitosane) 

pour un effet combiné de stabilisation stérique et répulsion électrostatique. 

Ils ont été introduits dans le solvant (éthanol) ou dans l'anti-solvant (eau), ou dans les 

deux phases.  

Par rapport aux additifs testés, des changements des propriétés de surface ont été 

constatés. Une diminution remarquable de l'angle de contact a été observée pour deux 

formulations, une avec le copolymère  à bloc P-407 (concentration de 0,02 %, > CMC dans la 

phase organique) et l'autre avec ce dernier combiné avec du chitosane (P-407 concentration de 

0.02 %, > CMC dans la phase organique et le chitosane avec une concentration de 0,5 % dans 

la phase aqueuse). De plus, la dissolution a été améliorée de façon très notable : à 20 min de 

dissolution, le pourcentage dissous du principe actif est de 4% avec la poudre initiale et de 

l’ordre 40% pour la poudre recristallisée avec ces deux formulations.



 

 

Dans l'ensemble, les résultats ont montré de façon concluante que la technique de 

cristallisation par effet anti-solvant en présence d'additifs a permis de produire des 

microcristaux présentant des profils de dissolution nettement plus rapide que la poudre 

originale. L’amélioration de la dissolution peut-être due à la réduction de la taille des 

particules des cristaux du principe actif mais aussi à l'amélioration des propriétés de 

mouillage due aux interactions spécifiques entre le principe actif, les additifs et le milieu 

aqueux de dissolution. Il est important de noter qu’aucun colmatage n’a été observé avec la 

formulation combinant les additifs P-407 et chitosane. 
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4.1.INTRODUCTION  

Up to now, we could demonstrate that LAS recrystallization process reduced the mean 

particle size and particle size distribution of the CRS 74 crystals. However, this particle size 

reduction did not change the dissolution rate as it could be expected with the increased 

surface area of the powder. In fact, the powder is characterized by a very high hydrophobicity 

as confirmed experimentally, and the particles once formed in a nanometric size range grew 

up very fast and finally agglomerated, reducing the powder surface area in contact with the 

dissolution medium. In addition, a very strong attraction between the drug particles and the 

metallic surface of the rapid mixers used in the process led to a retention of the solid inside 

the mixers and to the interruption of the continuous process.  

In this last part of the work, we investigated the effect of organic additives in the CRS 

74 recrystallization using the LAS process. Changes in drug-crystal properties were evaluated 

for particle size and shape, crystal structure, surface characteristics such as wettability and 

dissolution rate. The methodology and the results obtained are presented in this Chapter. 

Considerations for selection of stabilizers 

In LAS crystallization, the mixing process and the control of supersaturation are crucial 

factors to control the production of uniform and small solid drug particles. However, as 

already discussed in Chapter 1, the addition of stabilizers  in the process in order to inhibit 

excess crystal growth or particle aggregation has been related by a great number of scientific 

publications (ALI et al., 2011, GHOSH et al., 2011, SU et al., 2011).  

Stabilizers can be added either in solvent or anti-solvent, acting as surface modifiers. 

Polymers are often used for steric stabilization, while surfactants are often used for 

electrostatic stabilization. The suitable stabilization depends on properties of the substance 

that should crystallize. Charge and hydrophilicity are some important properties to consider. 

The stabilizer must of course have sufficient affinity for the particles surface, and it must also 

have a rather high diffusion rate in order to rapidly cover the generated surface. 

Unfortunately, there exists no systematic technique to determine the effectiveness of additives 

a priori. Stabilizing agents are chosen from the list of pharmaceutically acceptable substances, 

with surface active properties capable to provide steric and/or ionic stabilization against 
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growth and agglomeration of drug particles, during LAS crystallization. In this study, 

stabilizers were screened and introduced in the solvent, or in the anti-solvent, or in both 

phases. 

Two main mechanisms of stabilization were tested: steric stabilization and electrostatic 

repulsion. 

For steric stabilization, we used non ionic polymers and amphiphilic block 

copolymers:  

• Polyoxyethylene sorbitan monooleate (Tween 20), a nonionic surfactant.  

If this additive is adsorbed on the surface of a hydrophobic drug like CRS 74, we could 

expect that a mechanical barrier would be formed against crystal growth and agglomeration. 

The additive would occupy the adsorption sites on the surface of freshly formed CRS 74 

crystals during LAS crystallization, and inhibits subsequent growth by inhibiting the 

incorporation of drug molecules from solution into crystal lattices, as already observed for 

other drugs such as Fenofibrate and Acid Folic (WU et al. 2011; PARDEIKE et al., 2011); In 

addition, Tween 20 was selected because it is also very well tolerated in pharmaceutical 

formulations, being accepted even for intravenous injection (FDA, 2007). 

• Hydroxypropylmethylcellulose (HPMC), a neutral polymer. 

It could be expected that this polymer adsorbs on the hydrophobic CRS 74 surface and 

the portions of polymer chain extending in solution provides steric protection. HPMC is a 

stabilizer frequently used in LAS crystallization studies due to its characteristic of good 

solubility in water and not being toxic (DONG et al., 2009). 

• Poloxamer 407 (P-407) copolymer (ethylene oxide and propylene oxide blocks), a 

hydrophilic non-ionic surfactant of the more general class of copolymers known as 

poloxamers.  

Poloxamer-407 can induce the steric stabilization and its use in pharmaceutical 

formulations is approved (oral solutions, ophthalmic solutions, periodontal gels and 

topical emulsions (REHMAN, 2011).  
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For electrostatic repulsion, the anionic surfactant Sodium dodecyl sulfate (SDS) was 

chosen. This surfactant has been used as an electrostatic stabilizer with high affinity to absorb 

onto particle surfaces leading to high zeta potentials. It is a regulatory accepted stabilizer for 

oral dosage forms (e.g. tablets and capsules), and is therefore suitable to be used in 

nanosuspensions (HU et al., 2011). 

For a combined effect of steric stabilization and electrostatic repulsion, we tested 

Chitosan, a copolymer of glucosamine and N-acetyl glucosamine, a polycationic, 

biocompatible and biodegradable polymer.  

Chitosan is a compound which combines the electrostatic stabilization due to its 

positive charge in acidic medium, and the steric stabilization because of its polymeric nature. 

Theoretically, that means that if the polyelectrolyte adsorbs onto the surface of small embryo 

drug particles surface, it should be the ideal stabilizer because it combines electrostatic and 

steric stabilization, it forms a strong double layer around hydrophobic drug particle. In 

addition, the chitosan can increase the drug bioavailability due to mucoadhesion, that is able 

to increase cellular permeability (BOWMAN and LEONG, 2006). 

Concerning surfactants, in aqueous solution, dilute concentrations of surfactant act 

much as normal electrolytes, but at higher concentrations a very different behavior is 

observed. This behavior is explained in terms of formation of organized aggregates of large 

numbers of molecules called micelles, in which the lipophilic parts of the surfactants associate 

in the interior of the aggregate leaving hydrophilic parts to face the aqueous medium. 

The physico-chemical properties of surfactants vary markedly above and below the 

CMC value. As an example, below the CMC value, the physico-chemical properties of ionic 

surfactants like sodium dodecylsulfate, SDS, (e.g., conductivities, electromotive force 

measurements) resemble those of a strong electrolyte. Above the CMC value, these properties 

change dramatically, indicating a highly cooperative association process is taking place, This 

is illustrated in Figure 4.1. ( LAURIER et al., 2003). 

Based on this discussion, the CMC values can be important in our additives study, and 

the additive concentration for the surfactants Tween 20, SDS and Poloxamer 407 were varied 

from below to above their CMC. The CMC is also of interest because at concentrations above 
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this value, the adsorption of surfactant at interfaces usually increases very little. This means 

that the CMC frequently represents the solution concentration of surfactant from which nearly 

maximum adsorption occurs (LAURIER et al., 2003). 

 

Figure 4.1. Variation in physical properties of ������� ������� 	��
��� (or SDS) 

surfactant solutions below and above the CMC value (from Laurier et al, 2003). 

To sum up, Tween 20, SDS, Poloxamer 407, HPMC and Chitosan are the chosen 

additives expected to improve particle size control during the LAS crystallization process of 

CRS 74, and they were introduced in the solvent (Poloxamer 407) or in the anti-solvent (all 

the other ones) in our CRS 74-ethanol-water system. 

 

4.2. Materials and methods 

 Materials 4.2.1.

The additives used are shown in Table 4.1. 

CMCs of Tween 20, SDS and Poloxamer 407 are given in Table 4.2. The CMC values 

for Tween 20 and SDS were found in the literature (Silva and Volpato, 2002).The CMC for P-
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407 was measured in the laboratory, using a tensiometer 3S ILMS (GBX Instruments, 

France).  

Table 4.1. Different additives used in LAS crystallization of CRS 74. 

Additives Chemical structure Supplier 
  

Sodium dodecyl sulfate (SDS) 
M.W. : 288 g/mol  

Fluka, France. 

Polyoxyethylene sorbitan 
monolaurate 
 (Tween 20) 

M.W. : 1228 g/mol 
 

Sigma–Aldrich, France. 

Poloxamer 407 or Pluronic 
F127 M.W. : 8400 g/mol

 

Basf, France. 

Hydroxypropylmethylcellulose 
(HPMC) 

M.W. : 22000 g/mol 

 

Sigma–Aldrich, France. 

Chitosan 
Low molecular weight 
M.W . : 227000 g/mol 

 

Sigma–Aldrich, France. 

M.W.: Molecular weight 

 

A maximum concentration was fixed for all additives to give a mass ratio of 1:4 

(additive:drug). This corresponds to 0.5%w/w for HPMC, Chitosan, Tween 20 and SDS in 

water and 0.02% (w/w) for P-407 in ethanol. 

  

H3C O O
SO3Na 
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Table 4.2. Critical micelle concentration of additives used in LAS crystallization at 25°C. 

Addtive CMC value (w/w) Reference 

Tween 20 0.05 % SILVA and VOLPATO, 2002 

SDS 0.1 % SILVA and VOLPATO, 2002 

Poloxamer P-407 0.0008 % Measured experimentally 

 

 Methods  4.2.2.

4.2.2.1. Production of particles by LAS crystallization in presence of additives 

The original CRS 74 crystals were recrystallized by the LAS crystallization method 

already described in Chapter 3, using the same experimental set-up. Briefly, a certain amount 

of original CRS 74 samples was completely dissolved in ethanol at 30 ± 0.5°C at definite 

concentration (90 mgCRS 74/gsolution). The solution was filtrated through 0.22 µm pore size 

membranes to remove the possible particulate impurities. The drug was then recrystallized via 

the concurrent introduction of the CRS 74 ethanol solution and an anti-solvent stream of 

water in the T-mixer. The freshly formed crystals were collected in a vessel under magnetic 

stirring and then filtered and dried under vacuum at 50 ± 1°C for 24 h. The dried samples 

produced in the process were characterized by laser diffractometry, differential scanning 

calorimetric analysis, X-ray diffraction analysis, scanning electron microscopy analysis, 

sessile drop method and dissolution testing. 

The experimental conditions are summarized in Table 4.3. The studied parameters were:  

1. Phase for incorporation of the additive (organic solution, aqueous solution or both 

solutions); 

2. Additive concentration  (above and below CMC); 

3. Drug concentration in the organic phase; 

4. Re-structured organic phase containing P-407: Poloxamer 407 was introduced in a 

dilute ethanol solution (concentration below its CMC), before the drug. The resulting 

solution was then heated under controlled conditions (rotoevaporator) to promote a 

partial evaporation of the solvent and concentrate the solution to a surfactant 

concentration above its CMC. 
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Table 4.3. Experimental conditions for LAS crystallization in presence of additives. 

Experiment 
 

AdditiveOrganic phase 
 

 
Ratioaddit.org.:drug 

 
AdditiveAqueous phase 

 
Ratioaddit.aqu.:drug 

  
S 

(S=C/Ceq) 
1 X X X X 894.04 

Additive in the aqueous phase  
2 X X HPMC 0.5% w/w 1:6 445.63 

3 X X 
SDS < CMC 

(0.008% w/w) 1:4000 391.85 
4 X X SDS 0.5% w/w 1:6 150.51 

5 X X 
Tween 20 < CMC 

(0.008% w/w) 1:4000 541.13 

6 X 
X Tween 20 

0.5% w/w 1:6 398.72 

7 X 
X Chitosan  

0.5% w/w 1:6 * 
Additive in the organic phase 

8 
P-407 < CMC 
(0.0003%w/w) 1:8000 X X 901.97 

9 
P-407> CMC 
(0.02% w/w) 1:4 X X 673.40 

Additive in both, organic and aqueous phases 

10 
P-407 < CMC 
(0.0003%w/w) 

1 :10000 SDS  
0.5% w/w 1:6 217.11 

11 
P-407> CMC 
(0.02% w/w) 

1:4 SDS  
0.5% w/w 1:6 194.93 

12 
P-407 < CMC 

(0.0003% w/w) 
1 :10000 Chitosan  

0.5% w/w 1:6 * 

13 

P-407 > CMC 
(0.02% w/w) 

1:4 
Chitosan  

0.5% w/w 
1:6 * 

Drug concentration in the organic phase 

14 
P-407 > CMC 
(0.02% w/w) 

1:4 X X 374.51 

15 
P-407 > CMC 
(0.02% w/w) 

1:4 X X 156.41 

16 
P-407 > CMC 
(0.02% w/w) 

1:4 SDS 0.5% w/w 1:3 104.50 

17 
P-407 > CMC 
(0.02% w/w) 

1:4 SDS 0.5% w/w 1:1.5 43.25 

18 
P-407 > CMC 
(0.02% w/w) 

1:4 Chitosan 0.5% w/w 1:3 * 

19 
P-407 > CMC 
(0.02% w/w) 

1:4 Chitosan 0.5% w/w 1:1.5 * 
Reorganized organic phase containing P-407 

20 
P-407 < CMC 

(0.0003% w/w) 
1:4 X X 77.59 

21 
P-407 < CMC 

(0.0003% w/w) 
1:4 Chitosan 0.5% w/w X * 

*Data not determined  
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4.2.2.2. Determination of solubility in presence of additive 

The equilibrium concentration (Ceq) for the CRS 74-ethanol-water system was 

previously measured and presented in Chapter 3. The presence of additives can modify the 

drug saturation concentration in this system. The solubility of CRS 74 was then determined in 

presence of additives, for a mass proportion of 1 ( 25% solvent) to 3 ( 75% anti-solvent) using 

the same procedure as described previously. The new solubility data were used to estimate the 

theoretical efficiency of the process as a function of the additive used. 

4.2.2.3. Characterization methods  

 Measurements of particle size during the crystallization process 4.2.2.3.1.

Particle size was measured during the crystallization process and at the end of the 

process, after product drying. 

In a first step, at the exit of the T-mixer, the mixed phases were poured into a vessel 

under agitation and a sample was immediately submitted to a particle size analysis in a 

Zetasizer Nano Zs (Malvern Instruments, United Kingdom) to follow the growth of small 

embryo particles in the crystallization medium during 150 seconds. To achieve appropriate 

measurement concentration for analysis, the sample was diluted 5 times using a saturated 

solution composed of water, ethanol, drug and the additive. 

At the end of the process (2 min), the final suspension was filtered and the solids were 

dried under vacuum at 50 ± 1°C for 24h. The dry powder was then analyzed by laser 

granulometry, using a MasterSizer 3000 (Malvern Instruments, United Kingdom). All 

samples were firstly mixed with Tween 20 to increase the powder dispersion in dispersive 

media, and then dispersed in water until achievement of the good obscuration. The sampling 

procedure is schematized in Figure 4.2. 

 

Zeta potential  

The zeta potential was also determined in the Zetasizer Nano Zs (Malvern 

Instruments, United Kingdom) by measuring the electrophoretic mobility of the particles. The 
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measurements were performed on the same sample taken at the exit of the T-mixer 

immediately diluted with the saturated solution. 

 

 

Figure 4.2. Particle size analysis using Zetasizer Nano Zs (particles in suspension) and 

MasterSizer 3000 (dried powders).  

 

Powder physicochemical properties  4.2.2.3.2.

Size distribution, surface properties, morphology, drug purity and dissolution kinetics 

of recrystallized powders were determined as previously described in Chapter 3.   

 

Final drug suspension 
in the water-ethanol 

solution 

Sampling 

Dilution  

Measure time (s) 

�0 �150 

Dilution 

MeasureMeasure time (s) time (s)( )

�0 �150 

Particle size evolution 

�

Tween 20 

��

Tween 20Tween 20 

Particle size distribution 
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4.3. RESULTS AND DISCUSSION 

 CRS 74 solubility in presence of additives 4.3.1.

The results obtained for the solubility of CRS 74 in presence of additives are presented 

in Table 4.4.  Figure 4.3 displays the same data graphically. It can be seen that the effect of 

additives on the drug solubility in the ethanol-water mixture depended on the type and the 

concentration of the additive used. 

Surfactants in solution below their critical micelle concentration (CMC) improve drug 

solubility by providing regions for hydrophobic drug interactions in solution (NARANG et al, 

2007). It can be seen that the presence of the three additives used here in a concentration 

below their CMC (Tween 20, SDS and P-407) improved only modestly the drug solubility in 

the ethanol-water mixture (0.025-0.05 mg/gsolution ). 

Above the CMC, surfactants self-aggregate in defined orientation to form micelles with 

a hydrophobic core and a hydrophilic surface. The hydrophobic core enhances the entrapment 

of drug, thus increasing its solubility (RANGEL-YAGUI et al., 2005), which probably 

happened to CRS 74 but the effect is still marginal with Tween 20 and P-407 (0.025-0.057 

mg/gsolution).  

The extent of CRS 74 solubility in the micelle cores formed with the different additives 

is probably dependent on the compatibility between the drug and the micelle core. In contrast, 

SDS in concentration above its CMC increased the Ceq from 0.025 to 0.151 mg/gsolution. The 

highest solubilization capacity of SDS can be attributed in part to its anionic charge. 

According to the literature, the solubilizing powers of the surfactants is in the order of anionic 

< cationic < nonionic (TOKIWA, 1968). 

Finally, the presence of HPMC did not have a significant influence on the Ceq.   

The solubility of CRS 74 in presence of chitosan could not be measured because any 

drug peak was detected by HPLC analysis. 
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Table 4.4. CRS 74 solubility in ethanol-water mixture with a ratio of 25-75 % (ww) at 

30°C. 

Additive Solubility (mg/gsolution) ±±SD 

No additive (original CRS 74) 0.025±0.000 

No additive (recrystallized CRS 74) 0.025±0.000 

P407< CMC (0.0003%w/w) 0.025±0.000 

P407> CMC (0.02%w/w) 0.033±0.002 

HPMC 0.5%w/w 0.051±0.002 

Tween 20 < CMC (0.008%w/w) 0.042±0.000 

Tween 20 0.5%w/w 0.057±0.001 

SDS<CMC (0.008%w/w) 0.058±0.003 

SDS 0.5%w/w 0.151±0.003 

SDS 0.5% +P407< CMC (0.0003%w/w) 0.106±0.001 

SDS 05%+P407> CMC (0.02%w/w) 0.114±0.003 

 

 

Figure 4.3. CRS 74 solubility in ethanol-water mixture with a ratio of 25-75 % (w/w) at 

30oC, in presence of different additives. 
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 Effect of additives on yields of production of CRS 74 crystals 4.3.2.

The crystals suspension obtained immediately after the crystallization process, in 

absence of additives, had a milky aspect, which changed into a clear solution after several 

minutes. In contrast, for the particles crystallized in presence of additives, this phenomenon 

was not observed. The crystal suspension maintained a milky appearance until the filtration 

step, which could represent a first indication on the additive effect for covering the CRS drug 

crystal surfaces and inducing steric or electrostatic hindrance to prevent crystal growth or/and 

agglomeration.  

Theoretical yield is the maximum amount of recrystallized dry crystals that can be 

created by the given amount of initial mass of raw crystals. The yields of production  were 

calculated as the weight percentage of the crystal powder after drying with respect to the 

initial total amount of drug used for recrystallization. Table 4.5 shows that the percent yield of 

production that was obtained from the LAS crystallization ranged from approximate 50 to 

87%. Tween 20 0.5% was proven to be the most effective stabilizer to improve the percent 

yield of crystals. 

There are some unavoidable errors that prevented the experiments from achieving 

100% yield. Probably the most common error was mass losses in all experiments due to 

operation of solid and liquid transfer. The filtration process may allow some of the product to 

pass through. Also during recovery there was some product lost. For instance, some of the 

product was stuck inside the T-mixer and could not be completely removed.   

The next sections will present and discuss experimental data related to the solid 

properties when additives were placed respectively in the aqueous phase, in the organic phase 

and in both phases. 
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Table 4.5. Theoretical and Practical Yield (%) of CRS 74 crystals obtained by LAS 

crystallization process.  

Experiment Additive 
Theoretical 

Yield (%) 

Yield of 

production 

(%) 

1 X 99.67 79.44 

Additive in aqueous phase 

2 HPMC 0.5% w/w 99.84 50.23 

3 SDS<CMC (0.008%w/w) 99.86 76.61 

4 SDS 0.5% w/w 99.95 75.56 

5 Tween 20<CMC (0.008%w/w) 99.80 47.15 

6 Tween 20 0.5% w/w 99.86 86.77 

7 Chitosan 0.5% w/w * 64.78 

Additive in organic phase 

8 P-407<CMC (0.0003%w/w) 99.67 65.63 

9 P-407>CMC (0.02%w/w) 99.75 70.96 

Additive in both, organic and aqueous phase 

10 P-407<CMC (0.0003%w/w)+ SDS 0.5% w/w 99.92 72.74 

11 P-407>CMC(0.02%w/w)+ SDS 0.5% w/w 99.91 87.83 

12 P-407<CMC(0.0003%w/w)+Chitosan 0.5% w/w * 76.43 

13 P-407>CMC(0.02%w/w)+Chitosan 0.5% w/w * 83.74 

Drug concentration in the organic phase 

14 P-407>CMC (0.0003%w/w) 99.75 52.81 

15 P-407>CMC(0.02%w/w) 99.75 74.55 

16 P-407>CMC(0.02%w/w)+ SDS 0.5% w/w 99.91 72.48 

17 P-407>CMC(0.02%w/w)+ SDS 0.5% w/w 99.91 65.43 

18 P-407>CMC(0.02%w/w)+Chitosan 0.5% w/w * 65.00 

19 P-407>CMC(0.02%w/w)+Chitosan 0.5% w/w * 60.19 

Reorganized organic phase 

20 P-407<CMC(0.0003%w/w)       99.75 57.56 

21 P-407<CMC(0.0003%w/w)+Chitosan 0.5% w/w * 57.92 

*Data not determined     
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Effect of presence of the additive in the aqueous phase on physical and 4.3.3.

surface properties of recrystallized powders 

Table 4.6 summarizes the results related to the particle size evolution of the small 

embryo particles formed at the exit of the T-mixer, when the additive was added in the 

aqueous phase (HPMC, SDS, Tween 20 and Chitosan). As it can be seen, in all studied 

systems, the drug particles presented almost the same size (140 - 240 nm), regardless of the 

type of additive used. However, these particles grew fast reaching in 150 s (t150) almost 2 times 

their initial particle size (t0). 

 

Table 4.6. Initial average particle size (APS) and characteristics of  CRS 74 crystals in 

suspension in presence of different additives in the aqueous phase  

Experiment Additive Time (s) APS(nm) 
Zeta potential 

(mV) 
pH suspension 

1 X 
t0  248 * * 

t150 417 -2.11± 0.28 3.28 

2 HPMC 0.5% w/w 
t0 245 * * 

t150 459 -2.44±0.27 4.88 

3 SDS<CMC(0.008%w/w) 
t0 174 * * 

t150 325 -18.57±0.31 4.48 

4 SDS 0.5% w/w 
t0 161 * * 

t150 358 -38.90±2.12 4.44 

5 
Tween 20<CMC 

(0.008%w/w) 

t0 138 * * 

t150 411 -8.67±1.27 4.53 

6 Tween 20 0.5% w/w 
t0 154 * * 

t150 308 -6.77±1.12 4.45 

7 Chitosan 0.5% w/w 
t0 204 * * 

t150 653 +35.20±1.40 4.44 

 

The particle charge was quantified as the so-called zeta potential, which was measured 

via the electrophoretic mobility of the particles in an electrical field. The zeta potential theory 

is described in very detail in the literature (HUNTER, 1981), here only a brief explanation is 
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given. In general, particles possess a surface charge which occurs due to the dissociation of 

surface functional groups, the so-called Nernst potential. Of course, the degree of dissociation 

of the functional groups depends on the pH of the suspension; therefore the zeta potential is 

pH dependent.  

Table 4.6 shows the changes on the zeta potential of the particles in presence of 

additives. When the crystals were synthesized without additives, they possessed a low 

negative surface charge (-2.1mV). The zeta potential remained almost unchanged when 

nonionic stabilizers, i.e. HPMC (-2.4mV) and Tween 20 (-8.7/-6.8mV) were used.  However, 

charged additives like SDS (negatively charged) and Chitosan (positively charged) adsorbed 

with the charged parts of the respective molecules onto the drug particle surface. The surface 

coverage increased with the increase in SDS concentration, leading subsequently to an 

increase of the zeta potential (-18.6/-38.9mV). The higher particles are equally charged, the 

higher is the electrostatic repulsion between particles.  

As a rule of thumb, suspensions with zeta potential above |30| mV are physically stable. 

Suspensions with a potential above |60| mV show excellent stability. Suspensions below 

|20|mV are of limited stability; below |5| mV they undergo pronounced aggregation (LEE et 

al., 2008; PATEL and AGRAWAL, 2011). Chitosan and SDS 0.5% were proven to be the 

best additives to ensure an electrostatic repulsion between freshly CRS 74 crystal formed in 

the LAS process. 

Table 4.7 summarizes some properties of the dried powder obtained at the end of the 

LAS crystallization process e.g., particle size, SEM images, contact angle and composition 

(drug content and residual solvent). For easier comparaison, the dv10%, dv50% and dv90% for the 

dried powders produced in presence of all additives tested in this study are gathered in Figure 

4.4. The corresponding particle size distributions are graphically presented in Appendix III. 
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Figure 4.4. Particle size of the drug powders synthesized in presence of additives in the 

aqueous phase (laser diffraction data).  

The primary role of stabilizers is to inhibit excessive crystal growth. In a general way, 

Figure 4.4 shows that most CRS 74 crystals produced in presence of additives had a smaller 

particle size compared to original or recrystallized powder without additives. Additives such 

as HPMC and Tween 20 (concentration below CMC) were less effectives to inhibit 

agglomeration, while a higher concentration of Tween 20 (above CMC) had a very positive 

effect on particle size control. 

Concerning particle morphology (see Table 4.7), the SEM images revealed that in the 

case of SDS, Tween 20 and Chitosan there was not particle shape changes on the columnar 

crystals or very little; Contrarily, clusters of thinner (predominantly needle-shaped) primary 

particles forming agglomerates or aggregates were obtained in presence of HPMC. This effect 

can be also confirmed by light microscopy (Appendix V) revealing agglomerates or particle 

assemblies composed of a large number of individual needle-shaped crystals). In this case, a 

possible explanation could be an inappropriate diffusion (too slow) of the solvent toward the 

anti-solvent caused by a high viscosity of the anti-solvent containing 0.5%w/w HPMC. A 

high viscosity could prevent diffusion between solution and anti-solvent and resulted in 

nonuniform supersaturation and agglomeration. 
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XRD analysis was performed to detect the changes in the physical state and crystalline 

phases of the drug due to the presence of additives in the aqueous phase. Figure 4.5 shows the 

XRD patterns for all powder samples. Comparing the DRX diffractograms of recrystallized 

drug in presence of HPMC, Tween 20 (below and above CMC), SDS (below and above 

CMC) and Chitosan, it can be seen that the crystalline phases were preserved (the peaks at 

8.5, 14, 16.9, 18.7, 19.4 and 21.3° detected for the original drug remained unchanged after 

recrystallization in presence of these additives). 

 

(a) (b) 

 

(c) (d) 

Figure 4.5. X-Ray diffractograms of the drug powders synthesized with additives in the 

aqueous phase: a) HPMC 0.5% (w/w); b) Tween 20 <CMC and 0.5% (w/w); c) SDS<CMC 

and 0.5% (w/w); d) Chitosan 0.5% (w/w). 
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The contact angle measurements were employed to describe the effect of the presence 

of additives in the aqueous phase on the wettability of the recrystallized powders compared to 

original CRS 74. The contact angle of drop deposited on all powders surface was plotted as a 

function of time from 0 to 10 s, and the results are given in Appendix IV. Table 4.6 presents 

the initial contact angle made at 0 s for all powders. The original powder and the powder 

recrystallized without additives were strongly hydrophobic (θ >132°) as already discussed in 

Chapter 3. This surface characteristic remains practically unchanged after recrystallization in 

presence of most of additives tested up to here. It can be observed that the powder produced 

in presence of Chitosan possessed a contact angle higher than the contact angle for the 

original drug (θ = 140.9°± 0.4). In fact, the measure is not totally effective as it became 

difficult to measure experimentally liquid contact angles on high charged surfaces. To sum 

up, the unique additive that was able to reduce consistently the contact angle of this drug with 

water to approximately 100° was Tween 20 0.5 % (w/w). 

Finally, Table 4.7 also gives the powder composition in terms of drug content and 

residual solvent. The drug contents of the CRS 74 microcrystals were above 98% for all CRS 

74 recrystallized samples. These results show that almost all of the additives were removed by 

washing. 
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 Effect of the presence of the additive in the organic phase on physical and 4.3.1.

surface properties of recrystallized powders 

 

In the second part of the additive screening study, P-407 was incorporated in the 

organic phase (ethanol + drug + P-407).   

Block co-polymeric surfactants such as P-407, consist of ethyleneglycol and propylene 

glycol, and are very efficient non-ionic stabilizers owing to multiple attachments of 

hydrophobic domains at the drug particle surface (KIPP, 2004; CHO et al, 2010). Because P-

407 has hydrophobic moieties that adsorb onto hydrophobic drug particle surface and two 

hydrophilic blocks, the adsorption of P-407 onto CRS 74 drug particle surface could provide 

an effective steric barrier against crystal growth. From the polymer screening, P-407 was 

selected as an additive for this part of the work. The effect of the polymer concentration was 

investigated by incorporating the additive in ethanol in two different concentrations (Table 

4.4): 0.0003%w/w (<CMC) and 0.02%w/w (> CMC), before the incorporation of the drug. 

Following the same experimental procedure already described, Table 4.8 shows the 

particle size evolution of the small embryo particles formed in presence of P-407 when the 

mixed phases exiting the T-mixer were poured into a vessel and immediately sampling for 

analysis. From the results, it can be observed that nanometric particles were obtained, which 

continued to grow to reach an approximate particle size average of 350 nm at the end of the 

measure time (150 s), independently of the additive concentration. These particles were 

slightly more negative charged (-5.4/-7.5 mV) compared to those of drug suspension without 

additives (-2.1 mV). 
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Table 4.8. Initial particle size average (APS) and characteristics of  CRS 74 crystals in 

suspension in presence of P-407 in the organic phase  

Experiment Additive Time (s) APS (nm) 
Zeta potential 

(mV) 
pH suspension 

1 X 
t0  248 * * 

t150 417 -2.11± 0.28 3.28 

8 P-407<CMC(0.0003%w/w) 
t0 199 * * 

t150 351 -5.43±0.51 4.41 

9 P-407>CMC(0.02%w/w) 
t0 133 * * 

t150 341 -7.52±0.37 5.68 

 

Particle size, SEM micrographs, contact angle, drug content and residual solvent of 

recrystallized particles are given in Table 4.9. Dv10%, dv50% and dv90% for the dried powders 

produced are also presented in Figure 4.6. The corresponding particle size distributions are 

graphically presented in Appendix III. When compared to the original or the recrystallized 

powder without additives (Figure 4.6), a remarkable effect of reduction of particle size (dv50% 

and dv90%) was observed with P-407 at the higher concentration (> CMC). SEM images 

confirmed that the CRS 74 microcrystals crystals were clearly homogeneously distributed. 

Hardly any agglomerated or aggregated particles were found. This result confirmed that the 

microcrystals, which normally aggregate in order to lower the surface energy, could be 

stabilized sterically against crystal growth by a layer of protective polymer. 

The higher concentration of P-407 also modified the surface properties of the 

recrystallized powder (see Table 4.9). Contact angle of the powder with water was reduced 

from 133.5 ± 1.8° (without additive) to 85.3  ± 0.8° (P-407 0.5 %w/w). 

Table 4.9 also shows a drug content of 96 % for the recrystallized sample with the 

higher concentration of P-407. This results shows that all additive was probably not removed 

by washing. The remarkable effect on the contact angle can confirm this finding the additive 

probably remained attached to the hydrophobic drug particle surface lowering the interfacial 

tension. 
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Figure 4.6. Particle size of the drug powders synthesized in presence of P-407 in the 

organic phase.  

Figure 4.7 shows the XRD patterns for the powder samples obtained in presence of P-

407. It can be noted that the crystalline phases were preserved after recrystallization in 

presence of this additive. 

Figure 4.7. X-Ray diffractograms of the drug powders synthesized in presence of P-407 

in the organic phase. 
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 Effect of the presence of the additive in both, aqueous and organic phases   4.3.2.

Additives can be placed either in solvent or anti-solvent. The strength of adsorption of 

additive molecules on the drug surface depends on the nature of the additive and drug surface 

(THORAT and DALVI 2012). Additives are being introduced in the LAS crystallization of 

CRS 74 molecule, firstly, to inhibit particle growth and, subsequently, particle agglomeration. 

Factors controlling the amount of additive adsorbed on the CRS 74 will probably be related to 

the solubility of the additive in liquid phase, to the strength of additive-liquid phase 

interactions and to the strength of additive-drug particle interaction. The later can be complex 

function of parameters such as functional groups and surface energy as suggested by CHOI et 

al (2005).  

Stabilizing agents such as polymer and surfactant can be combined together to enhance 

the stabilization through synergistic effect (THORAT and DALVI 2012). In such cases the 

overall stabilization depends on the pair of the stabilizers used. For instance, synergistic effect 

have been reported in previous works combining ionic and non-ionic stabilizer (WU et al., 

2011) or neutral polymers (HPMC) with anionic surfactant (SDS) (DALVI and DAVE, 

2009).  

Effect of additives on the CRS 74 particles size were analysed by measuring the drug 

particles immediately after LAS crystallization. The same experimental sampling already 

described in previous sections was followed. It was found that the particles at 0 s were 

discrete with a size of approximate two hundred nanometers with SDS, however two times 

bigger with Chitosan (Table 4.10). These particles were also examined 150 s after LAS 

crystallization and found to be 2 times bigger but always in nanometric range of size. At the 

end of the process, after drying, they were examined and found to be several microns as given 

in Table 4.10 and graphically represented in Figure 4.8. Surprisingly, the dry particles 

produced in presence of Chitosan were not bigger than the other ones. Maybe, Chitosan was 

less effective than SDS in arresting the particle growth, but not less effective to prevent 

aggregation (high absolute zeta potential given in Table 4.10). 

Table 4.11 also shows that the association of additives in both aqueous and organic 

phases had a positive effect, reducing the contact angle of the drug powder with water to 

94.1°±4.3 with P-407/Chitosan and to 74.7°± 5 with P-407/SDS, in comparison to the original 
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drug (136.4°± 0.8). The powders were characterized by purity higher than 98.8% and residual 

solvent content ranged from 0.6% to 1.5% (see Table 4.11). 

Table 4.10. Initial particle size average (APS) of CRS 74 crystals in suspension in 

presence of additives in both, aqueous and organic phases.

Experiment Additive Time (s) APS (nm) 
Zeta potential 

(mV) 
pH suspension 

1 X 
t0  248 * * 

t150 417 -2.11± 0.28 3.28 

10 

P407< CMC 

(0.0003%w/w)+ 

SDS 0.5% w/w 

t0 150 * * 

t150 368 -17.53±4.77 4.73 

11 
P407> CMC (0.02%w/w)+  

SDS 0.5% w/w 

t0 234 * * 

t150 440 -3.96±0.17 4.27 

12

P407< CMC 

(0.0003%w/w)+

Chitosan 0.5% w/w 

t0 457 * * 

t150 990 +39.40±3.24 4.60 

13 
P407> CMC (0.02%w/w +

Chitosan 0.5% w/w 

t0 596 * * 

t150 918 +16.33±2.73 4.64 

 

 

Figure 4.8. Particle size (laser diffraction data) of the drug powders synthesized in 

presence of additives in both, organic and aqueous phases.  
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X-ray powder diffraction patterns shown in Figure 4.9 identical to original CRS 74 for 

crystals generated using P-407/Chitosan and P-407/SDS suggested that these additive are not 

within the crystal lattice but only adsorbed on the surface.

(a)

 

(b) 

Figure 4.9. X-Ray diffractograms of drug powders produced with additives in organic 

phase: a) P-407/SDS; b) P-407/Chitosan. 
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 Drug concentration in the organic phase 4.3.3.

At we known, an uniform and extremely high supersaturation is required to produce 

ultra-fine particles by LAS recrystallization. With the aim to improve control on particle size 

of the recrystallized powder, some additional experiments were made to investigate the effect 

of supersaturation on the properties of the drug recrystallized in presence of the pairs of 

stabilizers, P-407/Chitosan and P-407/SDS. Experiments were conducted with reduced initial 

drug concentration in the organic phase. The corresponding supersaturation values are given 

in Table 4.12. No remarkable effect of the supersaturation level was observed on the 

reduction of the drug particle size, as confirmed by Figure 4.10. The ability to achieve high 

particle concentrations without compromising the particle size significantly is of great interest 

for scaling up this process. Furthermore, the utilization of relatively concentrated organic 

solutions to reduce the amount of organic solvent is also beneficial. 

Table 4.12 also shows that drug particles recrystallized in presence of Chitosan were 

always positively charged. Powders presented high purity and low residual solvent content 

(Table  4.13). 

Table 4.12. Initial average particle size (APS) of the CRS 74 crystals in suspension in 

presence of different stabilizing systems into internal phase and external phase in different 

supersaturations.  

Experiment Additive S Time (s) APS (nm) 
Zeta 

potential 
(mV) 

pH 
suspension 

1 X 894.04 
t0  248 * * 

t150 417 -2.11± 0.28 3.28 

14 P-407>CMC(0.02%w/w) 374.51 
t0 199 * * 

t150 290 -9.70±0.85 4.97 

15 P-407>CMC(0.02%w/w) 156.41 
t0 140 * * 

t150 301 * 4.96 

16 
P-407>CMC(0.02%w/w) 

+ SDS 0.5% w/w 
104.50 

t0 186 * * 
t150 404 -6.39±0.04 5.27 

17 
P-407>CMC(0.02%w/w) 

+ SDS0.5% w/w 
43.25 

t0 125 * * 
t150 348 * 5.46 

18 P-407>CMC+ 
Chitosan 0.5% w/w 

* 
t0 489 * * 

t150 971 +23.87±1.07 4.64 

19 
P-407>CMC(0.02%w/w) 

+Chitosan 0.5% w/w 
* 

t0 453 * * 
t150 1649 +23.03±4.11 4.76 

*Data not determined 
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Figure 4.10. Particle size (laser diffraction data) of the drug powders synthesized in 

presence of additives in organic phase and in both (organic and aqueous) at different 

supersaturation degrees. 

 

Moreover, no changes on the powder crystallinity were observed as proved by the X-

ray diffractograms presented in Figure 4.11.  
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(a) (b) 

  

(c) 

Figure 4.11. X-Ray diffractograms of the drug powders synthesized in presence of 
additives in organic phase and in both (organic and aqueous) at different supersaturation 
degrees: a) P-407; b) P-407/SDS 07; c) P-407/Chitosan.  
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 Reorganized organic phase 4.3.4.

In the second part of the additive screening study, P-407 was incorporated into the 

organic phase (ethanol + drug + P-407).  Two concentrations were studied: 0.0003%w/w 

(<CMC) and 0.02%w/w (> CMC), before the incorporation of the drug.  

The results obtained already discussed in the previous section, showed that the higher 

concentration (> CMC) could prevent crystal growth and agglomeration, and modify the 

surface properties of the recrystallized powder. Contact angle of the powder with water was 

reduced from 133.5 ± 1.8° (without additive) to 85.3 ± 0.8° (P-407 0.5%w/w). These results 

were attributed to the probable attachment of the additive to the hydrophobic drug particle 

surface lowering the interfacial tension. However, CRS 74 crystals obtained are always 

micron-sized. 

Due to the molecular characteristics of CRS 74, we hypothesized the possibility of a 

molecular pre-organization of this drug in organic solution favoring uncontrolled growth of 

crystals after nuclei formation. This hypothesis is investigated in this section. 

In fact, a large number of drug molecules are amphiphilic, and self-associate in aqueous 

solution to form small aggregates. The self-assembly and self-organization are natural and 

spontaneous processes, occurring mainly through non-covalent interactions such as Van der 

Waals, hydrogen-bonding, hydrophilic/hydrophobic, electrostatic, donor and acceptor, and 

metal-ligand coordination networks (WHITESIDES and GRZYBOWSKI, 2002). 

Many molecules are amphiphilic, such as phenothiazines, tranquilizers, analgesics, 

peptides, antibiotics, tricyclic antidepressants, and self-associate in surfactant like-manner in 

aqueous environment, above a critical concentration value (ATTWOOD and FLORENCE, 

1983). It is known that the amphiphilic drug molecules in water form aggregates (MOHD et 

al., 2010), but it is described in the literature that the amphiphilic aggregates can be formed on 

nano- or micron-sized in selective solvents, like ethanol (LEE et al., 2008). 

Some amphiphilic drugs are well studied in the literature, among them Promethazine 

hydrochloride (PMT) and Imprimine chloride (IMP), both being used in clinics as 

antidepressant and antipsychotic drugs. These amphiphilic compounds possess a hydrophobic 
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nitrogen-containing heterocyclic bound to a short chain carrying a charged amino group 

(ALAM et al., 2008), as shown in Figure 4.12.  

PMT IMP 

Figure 4.12 Molecular Structure of Promethazine hydrochloride (PMT) and Imprimine 

chloride (IMP). (ALAM et al., 2008). 

 

Regarding the studied molecule CRS 74 (see Figure 4.13), it has the same chemical 

function responsible for the drug self-organization in the refered molecules. It possesses a 

hydrophobic nitrogen-containing heterocyclic bound to a short chain carrying a charged 

amino group, as discussed before for the PMT and IMP. It means that this molecule could 

have the same capacity to self-associate in solution above a critical concentration value. 

 

 

Figure 4.13. Chemical structure of CRS 74. 

S

N

CH3

N
CH3H3C
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Some experiments were then carried out in our study to verify the effect of drug 

concentration in ethanol solution, by dynamic light scattering (PCS) measurements. This 

methodology has proved to be a useful tool in characterizing colloidal systems (MOHD et al., 

2010). The study was realized in order to verify the appearance of micelles depending on the 

concentration of drug in solution. Figure 4.14 confirms the appearance of drug micelles (1.6 – 

1.8 nm) in ethanol at drug concentrations above 0.001 mol/L.  

A micellar organization in solution could be the starting point of all LAS crystallization 

studies conducted up to here, as schematically represented on Figure 4.15. From a pre-

aggregated molecular organization, it could be difficult to stop growth after nucleation, which 

could maybe explain the strong difficulty to stop drug nuclei growth within a nanosize range, 

even in presence of different additives. 

 

Figure 4.14. Diameter of  drug micelles in ethanol as a function of drug concentration 

(PCS measurements). 
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Figure 4.15. Illustration of the effect of increasing concentration of drug in ethanolic 

media leading to a micellar organization. 

Keeping in mind the above hypothesis, complexes molecular aggregates of CRS 74 in 

organic solution can hinder the crystal size control during LAS crystallization. In order to 

perturb this molecular organization, some new experiments were carried out. The aim was to 

introduce the additive P-407 in the organic phase in a dilute system, in order to promote 

interaction between the additive and the CRS 74 molecule in concentrations below the drug 

critical micelle organization (0.001 mol/L), as represented on Figure 4.16. 

 
Figure 4.16. Possible schematic representation of drug self-assembled at molecular level in 

ethanolic solution. 
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The additive was added to ethanol in a concentration below its CMC (0.0002% w/w). In 

the following, the drug was added in a concentration below its critical micellar concentration 

(0.00036 mol/L) to prevent drug self-assembly. The organic phase was then concentrated by 

rotary evaporation under reduced pressure to a final more concentrated drug solution. Table 

4.14 summarizes the results of experiments conducted under the described conditions. A 

combined effect of Chitosan was also investigated as shown in the same table. Table 4.15 

shows SEM images drug and water contents of the powders obtained. Due to low 

supersaturation, the yield of production was too low and the amount of drug powder obtained 

was insufficient for further analysis (dry particle size, surface properties, XRD and DSC 

analysis). 

Compared to the previous experiments for which the drug was in contact with the 

additive in concentrations above its critical micelle concentration, no positive effect in particle 

size control within the first 150s during LAS crystallization was noted. 

  

Table 4.14. Initial average particle size (APS) of CRS 74 nanocrystals during LAS 

crystallization, in presence of P-407 in organic phase, which was concentrated by rotary 

evaporation.  

Experiment Additive S 
Time 

(s) 

APS 

(nm) 

Zeta 

potential 

(mV) 

pH 

suspension 

1 X 
894.0

4 

t0  248 * * 

t150 417 -2.11± 0.28 3.28 

19 
P-407<CMC 

(0.0003%w/w) 

77.59

* 

t0 203 * * 

t150 319 * 4.87 

20 

P407<CMC(0.0003%

w/w)+Chitosan 0.5% 

(w/w) 

* 

t0 687  * 

t150 1237 +19.93±0.25 4.64 

*Data not determined; * Supersaturation calculated after ethanol evaporation   
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 Improving process production  4.3.5.

Most of LAS recrystallizations realized up to here in order to investigate the influence 

of several processes or formulation parameters on the properties of the recrystallized drug 

powder were conducted during a short period of time of approximately 2- 6 min. Experiments 

in absence of additives, as described in Chapter 3, proved to be quite laborious due to the 

rapid growth of the produced particles and problems of blockage of the mixer, which 

precluded the realization of essays over time. This is not interesting for the industrial 

proceeding.  

It seemed that these problems were caused by the affinity of the drug molecule with the 

material which constitutes the surface of the rapid mixer. Furthermore, the nano-sized drug 

crystals, freshly formed, have a high-energy surface; this property can increase the high 

affinity for CRS 74 surface material adsorption reported in Chapter 3.  

To solve this blockage problem and to make the LAS crystallization process industrially 

viable, some studied systems were selected (Table 4.16). The criteria of choice was the 

surface properties of recrystallized drugs: low contact angle values (θ ≈ 90°), that means a 

decrease in surface hydrophobicity, and probably, a decrease in affinity of the molecule with 

the material which constitutes the hydrophobic surface of the mixer (stainless steel). 

Table 4.16. Stabilizing agents studied to solve the T-mixer blockage problem 

Experiment Additive θθ  (°) 

9 P-407>CMC 85.3 

11 P-407>CMC+SDS 0.5% (w/w) 74.7 

13 P-407>CMC+Chitosan 0.5% (w/w) 94.1 

 

As shown in Table 4.16, all the stabilizing systems presented a significant reduction of 

contact angle value compared to recrystallized drug in absence of additives (136o). However, 

the better drug surface characteristics were not enough to prevent the affinity of the molecule 

with the surface material for Experiments 9 and 11 (see Table 4.17). On the contrary, drug 

particles highly negatively charged by SDS 0.5% showed a strong affinity to T-mixer material 

walls (blockage of the mixer operation after 2 min). On the other hand, the combined effect of 
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P-407 placed in the organic phase and Chitosan in the aqueous phase could solve this 

problem, ensuring a continuous process of production through the T-mixer. 

Table 4.17. Initial particle size average (APS) of the nanosuspensions and 
characteristics of CRS 74 nanocrystals in suspension. 

Experiment Additive APS (nm) Zeta potential (mV) pH suspension Blockage 
time (min) 

9 P-407>CMC 169.5 -3,94±0.37 4.51 6 

11 P-407>CMC+SDS 0.5% 
(w/w) 225.3 -5,26±0.35 4.78 2 

13 P-407>CMC+Chitosan 
0.5% (w/w) 706.6 +23,80±±2.12 4.65 No blockage 

 

 

To explain this finding, it was necessary to consider the characteristics of the T-mixer 

material, i.e. stainless steel. Some materials can be ionized on specific pH;  among them, as 

reported in the literature, stainless steels can present different surface charge properties as a 

function of pH. The material surface is positively charged over the pH range of 2.5 to 5.0 

(TAKEHARA and FUKUZAKI, 2002). Because of this, the surface charge of stainless steel 

is believed to act as adsorption sites for negatively charged CRS 74, as schematically 

represented in Figure 4.17. 

 

 
(a) 

 
(b) 

Figure 4.17. The charge interaction between the negatively (a) and positively (b) 
charged CRS 74 nanocrystals and the negatively surface charged stainless steel (pH in the 
range 3-5). 
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In conclusion, the combination of P-407 (organic phase) and Chitosan (aqueous phase) 

represented a key solution to a continuous production of recrystallized CRS 74 through 

stainless steel rapid mixers. 

 

 Dissolution behaviour of recrystallized powders in presence of additives 4.3.6.

In previous sections, it was observed changes on some powders properties, like: 

wettability, powder agglomeration state and size reduction. These properties will probably 

have a direct impact on dissolution profile, which will be verified in this section.  

In order to evaluate the impact of powders on dissolution kinetics, the powders for this 

section were selected according the lower agglomeration state and/or low contact angle value. 

The dissolution of each sample was determined under sink conditions, as discussed in Chapter 

2.  

Additives can change the drug solubility In the dissolution medium. To ensure sink 

conditions (maxium drug concentration << Ceq), the solubility of the recrystallized samples in 

presence of the different additives was firstly measured in 0.1M HCl at 37oC. The same 

experimental procedure described in Chapter 2, was used. The results are given in Table 4.18 

and represented graphically in Figure 4.18. It can be concluded that the probably association 

of additives to the drug in some cases did not change the drug solubility in the dissolution 

medium, or very little (Ceq < 0.2 mg/gsolution in all cases). To sum up, although additives can 

increase the solubility of poorly soluble compounds, the amounts adsorbed onto the CRS 74 

particles crystallized in the presence of additives in our study are probably too small to affect 

the solubility of the drug in bulk solution.  

To assess the differences between original drug and the generated samples, 0.1M HCl 

was chosen as a discriminatory dissolution medium (The dissolution method was developed 

and presented in Chapter 2).  
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Table 4.18. CRS 74 solubility and synthesized powders solubility in HCl 0.1M at 

37°C. 

Stabilizing system Solubility 
(mg/gsolution) ±±SD 

Original CRS 74 0.102±0.008 
No additive (recrystallized CRS 74) 0.134±0.005 

P407> CMC (0.02%w/w) 0.117±0.006 
HPMC 0.5% w/w 0.144±0.008 

Tween>CMC 0.5%w/w 0.091±0.003 
SDS 0.5%/P-407< CMC (0.0003%w/w) 0.094±0.003 
SDS 0.5% /P-407 > CMC (0.02%w/w) 0.110±0.004 

Chitosan 0.5%/ P-407> CMC (0.02%w/w) 0.088±0.004 
P-407<CMC (0.0003%w/w) Reorganized 0.161±0.009 

Chitosan 0.5% / P-407(0.0003%w/w) Reorganized 0.121±0.006 
 

 

Figure 4.18. Solubility of CRS 74 samples in HCl 0.1M at 37°C  (samples 

recrystallized in presence of different additives; original drug also presented for comparison) 
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Figure 4.19 shows the dissolution profiles of CRS 74 crystallized in presence of the 

additives studied in this section. The dissolution profiles of original CRS 74 and the sample 

crystallized in the absence of additive are also included in this Figure. 

 

Figure 4.19. Dissolution profiles using 0.1M HCl as discriminatory dissolution medium 

at 37oC and paddle at 75 rpm. LAS recrystallized drug in presence of additive. Original CRS 

74 also included. 

 

The dissolution profiles of recrystallized samples in presence of additives and original 

CRS 74 were compared by calculating difference factor (f1) and similarity factor (f2) for each 

dissolution profile given in Figure 4.19. Table 4.19 shows the calculated f1 and f2 values. f1 

(>0) and f2 (50<f2 <85) values confirmed significant difference in dissolution profiles of 

recrystallized samples in presence of additives compared to the original drug. 

 

The percentage of drug dissolved within the first 20 min. was used to compare 

dissolution rate of various samples. The values are given in Table 4.20. The data indicates that 

0 

10 

20 

30 

40 

50 

60 

70 

80 

90 

0 50 100 150 200 

D
iss

ol
ve

d 
dr

ug
 (%

) 

Time (min) 

Original CRS 74 

LAS recrystallized drug-No additive 

P-407>CMC 

HPMC 0.5% 

Tween>CMC 

P-407 > CMC+SDS 0.5%  

P-407< CMC+SDS 0.5% / 

 P-407> CMC+Chitosan 0.5% 

P-407<CMC Reorganized 

  P-407<CMCReorganized+Chitosan 0.5% 



Effect of Additives in LAS crystallization 

 

 227 

there is a marked increase in the dissolution rate of CRS 74 from the recrystallized samples in 

presence of additive compared to the original drug. The faster dissolution profile led to 80% 

of drug dissolved in 3 h of against approximate 20% for original drug or even the drug 

recrystallized whitout additives. 

 

Table 4.19. Comparison of dissolution profiles through the difference factor (f1) and the 

similarity factor (f2). Original CRS 74 is the reference product for test. 

    Experiment Additive f1  f2 

Original CRS 74 X * * 

1 No additive 24.8 98.8 

2 HPMC 0.5% w/w 389.92 64.18 

6 Tween 20 0.5% w/w 518.62 58.89 

9 P-407>CMC 749.52 50.50 

10 P-407<CMC+SDS 0.5% w/w 239.86 72.65 

11 P-407>CMC+ SDS 0.5% w/w 296.38 69.89 

13 P-407>CMC+Chitosan 0.5% w/w 659.33 53.54 

19 P-407<CMC Reorganized 130.4 84.49 

20 P-407<CMCReorganized+Chitosan 0.5% w/w 309.13 69.49 

�

Table 4.20. Percentage of drug dissolved within the first 20 min. 

Experiment Additive Percentage of drug 
dissolved in 20 min 

Original CRS 74 X 4.36 ± 0.75 
1 No additive 3.37 ± 1.86 

19 P-407<CMC Reorganized 11.45 ± 2.71 
10 P-407<CMC+SDS 0.5% w/w 12.53 ± 2.88 
11 P P-407>CMC+ SDS 0.5% w/w 16.40 ± 2.01 
2 HPMC 0.5% w/w 22.92 ± 3.79  
6 Tween 20 0.5% w/w 26.66 ± 1.04 

20 P-407<CMCReorganized+Chitosan 0.5% w/w 27.74 ± 0.64 
13 P-407>CMC+Chitosan 0.5% w/w 34.46±1.59 
9 P-407>CMC 39.96 ± 1.98 

 

�
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Drug release kinetics 

In order to describe the kinetics of the release process of drug from the different 

samples, two  equations were used: 

• The first-order equation, which describes the release from systems where dissolution 

rate is dependent on the concentration of the dissolving species (ISHI, 1996; SERRA, 

2007; RATNA et al., 2012): 

 

 (4.1) 

• The Hixson-Crowell cube root law, which describes the release the release from 

dosage forms which show dissolution rate limitation and which do not dramatically 

change during the release process. (HIXSON, 1931):  
 

 (4.2) 

 

The applicability of these two equations was tested for selected dissolution data giving 

the faster drug release rates. The dissolution data were plotted in accordance with the first-

order equation, i.e., the logarithm of the percent remained as a function of time between 10 

and 25 min (Figure 4.20) and were also plotted in accordance with the Hixson-Crowell cube 

root law, i.e., the cube root of the initial concentration minus the cube root of percent 

remained, as a function of time between 0 and 25 min (Figure 4.21). It is evident from Figures 

4.20 and 4.21 that a linear relationship was obtained with r2 values close to unity as shown in 

Table 4.21. 
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Figure 4.20. A linear plot for the dissolution data of CRS 74 powder samples in 

accordance with the first-order model equation. 

 

Figure 4.21. A linear plot for the dissolution data of CRS 74 powder samples in 

accordance with the Hixson-Crowell cube root law.  
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The first order model describes the release systems for which the dissolution rate is 

dependent on the concentration of the drug dissolved in the media, whereas the drug surface 

area remains constant. The Hixson-Crowell model has been used to describe a decrease of the 

drug particle surface as dissolution occurs. Table 4.21 shows that both mathematical models 

fitted well the experimental dissolution data probably because during 25 min the decrease of 

particle surface is very low. 

 

Table 4.21. Release parameters of CRS 74 powder samples recrystallized in presence of 

additives in comparison to original drug sample. 

 

Exp. 

First order Hixson-Crowell 
r2 k (min-1) Linear equation r2 k (min-1) Linear equation 

CRS 74 0.9846 -0.0024 y = -0.0024x + 4.6104 0.9847 0.0008 y = 0.0008x - 0.0017 

1 0.9973 -0.0014 y = -0.0014x + 4.598 0.9974 0.0005 y = 0.0005x + 0.0024 

9 0.9964 -0.0246 y = -0.0246x + 4.5899 0.9939 0.0071 y = 0.0071x + 0.0131 

13 0.9961 -0.0157 y = -0.0157x + 4.502 0.9945 0.0046 y = 0.0046x + 0.0371 

k = dissolution rate constant 
x = t- e y = ln % No dissolved 
** x = t e y = 1-[(1-%Dissolved/100) 

1/3 ] 
 

DSC was performed on the recrystallized drug in presence of additive in the organic 

phase (P-407) and in both organic (P-407) and aqueous phase (Chitosan) in comparison to 

DSC data for original and recrystallized CRS 74 without additives. The DSC curves of 

samples are shown in Figure 4.22. From DSC data summarized in Table 4.22, it was 

concluded that stabilizers did not change the physical state of CRS 74.   

Interestingly, CRS 74 recrystallized in presence of P-407 and Chitosan needs less 

energy for melting when compared to the other samples (ΔHm=74.8 J/g), which could be 

related to a less energy it must overcome to dissolve in according to its faster dissolution rate. 
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Table 4.22. Melting Temperature (Tm(Onset)), Heat of Fusion (ΔHf) for the original and 

LAS recrystallized drug in presence and absence of additives. 

Thermal and 

dissolution 

parameters 

Original 

CRS 74 

LAS 

recrystallized 

CRS 74 

LAS recrystallized 

CRS 74-P-407 

LAS recrystallized 

CRS 74-P-

407+Chitosan 

Tm(Onset)(°C) 188.6 187.8 189.0 186.6 

ΔHm(J/g) 86.6 79.2 87.9 74.8 

Relative enthalpy(%) 100 91.5 101.5 86.37 
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(a) (b) 

 
 

(c) (d) 

 
 

(e) (f) 

Figure 4.22. a) DSC thermograms of original CRS 74 (first heating), which consists of a melting 
endotherm (peak onset temperature Tm(Onset) = 188.64oC) and LAS recrystallized drug, which consists of a 
melting endotherm (peak onset temperature Tm(Onset) = 187.79oC); b) DSC thermograms of original CRS 74 
(cooling after first heating), which consists of a crystallization exotherm (peak onset temperature Tc(Onset) = 
132.12oC) and LAS recrystallized drug, which consists of a crystallization exotherm (peak onset temperature 
Tc(Onset) = 138.43oC). c) DSC thermograms of original CRS 74 (first heating), and LAS recrystallized drug in 
presence of P-407>CMC, which consists of a melting endotherm (peak onset temperature Tm(Onset) = 189.01oC); 
d) DSC thermograms of original CRS 74 (cooling after first heating), and LAS recrystallized drug in presence 
of P-407>CMC, which consists of a crystallization exotherm (peak onset temperature Tc(Onset) = 137.61oC) ; e)
DSC thermograms of original CRS 74 (first heating) and LAS recrystallized drug in presence of P-
407>CMC+Chitosan 0.5% (w/w), which consists of a melting endotherm (peak onset temperature Tm(Onset) = 
186.58oC); f) DSC thermograms of original CRS 74 (cooling after first heating) and LAS recrystallized drug in 
presence of P-407>CMC+Chitosan 0.5% (w/w), which consists of a crystallization exotherm (peak onset 
temperature Tc(Onset) = 136.21oC).  
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4.4. CONCLUSION 

To improve particle size control during the LAS crystallization process of CRS 74, and 

they were introduced in the solvent (P-407) or in the anti-solvent (all the other ones) in our 

CRS 74-ethanol-water system. A maximum concentration was fixed for all additives to give a 

mass ratio of 1:4 (additive:drug). This corresponds to 0.5%w/w for HPMC, Chitosan, Tween 

20 and SDS and 0.02% (w/w) for P-407. 

The first results showed that additives enhanced the drug solubility in the ethanol-water 

mixture, markedly or very little, depending on the additive used. Among them, SDS 0.5% 

presented the higher capacity to solubilize CRS 74 in the binary solvent mixture, which is 

attributed to the better solubilization power of anionic surfactants.   

Chitosan and SDS 0.5% were proven to be the best additives to ensure an electrostatic 

repulsion between freshly CRS 74 crystals formed in the LAS process. The higher particles 

are equally charged, the higher is the electrostatic repulsion between particles. The 

electrostatic repulsion given by Chitosan (crystals positively charged) played a decisive role 

in controlling aggregation of freshly formed crystal drug to the mixer walls, also charged 

positively at pH of the liquid mixture. Contrarily, drug particles highly negatively charged by 

SDS 0.5% showed a strong affinity to T-mixer material walls (blockage of the mixer 

operation in a shorter time). 

The primary role of stabilizers is to inhibit excessive crystal growth. In a general way, 

most CRS 74 crystals produced in presence of additives had a smaller particle size compared 

to original or recrystallized powder without additives. Additives such as HPMC and Tween 

20 (concentration below CMC) modestly inhibited agglomeration, while a higher 

concentration of Tween 20 (above CMC) had a very positive effect on particle size control. 

Agglomerates or aggregates were obtained in presence of HPMC. A possible 

explanation could be an inappropriate diffusion (too slow) of the solvent toward the anti-

solvent caused by a high viscosity of the anti-solvent containing 0.5%w/w HPMC. A high 

viscosity could prevent diffusion between solution and anti-solvent and result in nonuniform 

supersaturation and agglomeration. 
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Concerning surface properties, the unique additive placed in the aqueous phase, which 

was able to reduce consistently the contact angle of this drug with water to approximately 

100°, was Tween 20 0.5%. 

In the second part of the additive screening study, P-407 was incorporated in the organic 

phase (ethanol + drug + P-407). The effect of the polymer concentration was investigated by 

incorporating the additive in ethanol in two different concentrations: 0.0003%w/w (<CMC) 

and 0.02%w/w (> CMC), before the incorporation of the drug. 

These particles were slightly more negative charged (-5.4/-7.5mV) compared to those of 

drug suspension without additives (-2.1mV). 

This result confirmed that the microcrystals, which normally aggregate in order to lower 

the surface energy, could be stabilized sterically against crystal growth by a layer of 

protective polymer. The higher concentration of P-407 also modified the surface properties of 

the recrystallized powder. Contact angle of the powder with water was reduced from 

133.5o±1.8 (without additive) to 85.3 o ±0.8 (P-407 0.5%w/w). The remarkable effect on the 

contact angle can confirm this finding: the additive probably remained attached to the 

hydrophobic drug particle surface lowering the interfacial tension. 

The dry particles produced in presence of Chitosan were not bigger than the other ones. 

Maybe, Chitosan was less effective than SDS in stopping the particle growth, but more 

effective to prevent aggregation (higher absolute zeta potential) 

The association of additives in both aqueous and organic phases had a positive effect, 

reducing the contact angle of the drug powder with water to 94.1°± 4.3 with P-407/Chitosan 

and to 74.7°± 5 with P-407/SDS, in comparison to the original drug (136.4°± 0.8).   

Finally, X-ray powder diffraction patterns confirmed that these additives are not within 

the crystal lattice, but only adsorbed on the surface. 

Dissolution study confirmed the enhancement of the dissolution rate of CRS 74 crystals 

in presence of additives because of an increase of surface area and of a modification of 

surface properties of crystal. 
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Résumé Chapitre 5- Conclusion 

Dans cette étude, la cristallisation par effet anti-solvant a été utilisée pour recristalliser 

un nouveau médicament antirétroviral. L'objectif était d'améliorer ses propriétés de 

dissolution. Pour générer un mélange efficace et une sursaturation rapide et uniforme, des 

mélangeurs spécifiques ont été utilisés (T-mélangeur, mélangeur Roughton). Les meilleures 

conditions de cristallisation de cette nouvelle molécule ont été définies par une étude de 

solubilité, un développement de méthodes de dissolution et un screening des paramètres 

opératoire de la cristallisation et d’additifs. 

Il a été démontré la poudre présente une faible solubilité en phase aqueuse et une vitesse 

de dissolution lente en milieu acide. Ce travail a permis de construire à travers différentes 

caractérisations une monographie préliminaire de ce solide.  

La molécule étudiée est soluble dans l'éthanol (92,6 mg/g de solution) à 30°C. Les 

résultats de la modélisation des équilibres liquide-solide par un modèle à coefficient d’activité 

(UNIQUAC) indiquent que ce modèle est un outil approprié pour représenter le 

comportement de solubilité de ce solide dans des mélanges de solvants (éthanol-eau). Les 

solubilités expérimentales et calculées présentent un bon accord. La modélisation a permis 

d’évaluer un ratio éthanol/eau optimum (25/75 % m/m) pour maximiser le rendement 

théorique en solide. 

Le développement du protocole expérimental de recristallisation a montré que les 

paramètres opératoires (débits d’entrée des solutions, type de pré-mélangeur, concentration) 

n'ont pas d'influence sur les particules recristallisées. De plus, préparer de fines particules de 

ce solide est un véritable défi, en raison de la croissance et l’agglomération très rapides des 

particules produites.  Des problèmes de colmatage des canaux du pré-mélangeur ont aussi été 

constatés.  

Il a été montré que la cristallisation de ce solide donne naissance à des particules de 

tailles nanométriques en sortie de pré-mélangeur. Cependant ces nanoparticules ont une forte 

tendance à croître et à s’agglomérer. Afin de limiter la croissance et l’agglomération des 

cristaux, des additifs ont été sélectionnés et introduits dans les solutions initiales. Chaque 

additif a montré un comportement différent en empêchant la croissance des cristaux. La 

combinaison de deux additifs (P-407 et chitosane) a été la plus efficace : diminution de la 



 

 

croissance des cristaux, amélioration de la mouillabilité des particules formées, 

modification de charge de surface de particules (elle devient positive). Cette modification de 

charge de surface a empêché le colmatage des canaux au cours de la cristallisation (répulsion 

électrostatique avec les parois de mélangeur). Dans l’ensemble, les microcristaux synthétisés 

en présence d'additifs ont montré une vitesse de dissolution nettement plus élevée que les 

cristaux de la poudre initiale. 

L’amélioration de la vitesse de dissolution est principalement due à l'amélioration des 

propriétés de mouillage grâce à des interactions spécifiques entre la poudre et les additifs. Par 

conséquent, les microcristaux synthétisés ont de meilleures propriétés physico-chimiques. 

L’utilisation de cette technique serait donc une alternative pour l’obtention d’une poudre avec 

de meilleures caractéristiques de dissolution et par conséquent une meilleure biodisponibilité.  

Pour continuer ses travaux sur l'amélioration de la biodisponibilité du CRS 74, 

différentes voies peuvent être suggérées en terme de procédé, de compréhension du 

mécanisme de stabilisation, et du potentiel du principe actif.  

En termes de procédé, il serait intéressant d'étudier l'influence des paramètres 

opératoires de la cristallisation (débit, concentration en additifs, température …) pour la 

formulation comprenant les deux additifs (P-407 et chitosane) afin d'optimiser le processus de 

production des cristaux. De plus, la cristallisation par effet anti-solvant pourrait être comparée 

à d'autres technologies « bottom-up » prometteuses pour la préparation de nanocristaux de 

CRS 74, comme par exemple : la préparation de dispersions solides par atomisation ou par 

extrusion à chaud.  

Au cours de cette étude, il était clair que la cristallisation en présence d'additifs peut 

avoir un effet positif sur la vitesse de dissolution. Il est donc nécessaire d'approfondir la 

compréhension du mécanisme d'adsorption de l'additif et de déterminer quel est le niveau 

d'adsorption nécessaire pour obtenir un effet prononcé sur les propriétés de surface des 

particules. Pour comprendre cette propriété, une détermination quantitative de l’adsorption de 

l'excipient devra être effectuée. Il sera intéressant d'étudier différentes hypothèses 

d’attachement à l'échelle moléculaire. L’interaction de l'additif sur la surface cristalline 

pourrait être étudiée, par exemple, par spectroscopie Raman.  

Enfin, la méthodologie de dissolution développée dans cette étude devra être validée 

afin de pouvoir l’utiliser en tant que technique sensible, fiable et reproductible pour les tests 



 

 

de bioéquivalence. De plus l'effet biologique du solide recristallisé par rapport au solide 

d'origine devra être identifié afin d'évaluer les changements de la poudre synthétisée et 

déterminer le réel effet sur l’amélioration de la biodisponibilité. 
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This study concerned a novel antiretroviral promising drug candidate, named CRS 74. 

It could be proven in this study that the original drug powder (as currently produced 

industrially) exhibits poor aqueous solubility and slow dissolution rate. 

 The limited low aqueous solubility at 37 o C (< 0.004 mg/g) can be explained by its 

high crystallinity, its high melting point (188.6oC) and high enthalpy of fusion (86.6 J/g). The 

low dissolution rate is related to its large particle size (micrometric range, with a broad 

particle size dispersion) and very poor water wettability (Θ =136.4 ± 0.8°). 

This molecule is soluble in ethanol (92.6mg/gsolution) and presented a maximum in 

solubility in ethanol-water mixtures as determined in this study using UNIQUAC-based 

model. To the best of our knowledge, there are no published data of the solubility of such 

given solute in ethanol-water mixtures to compare with.  

There is no monograph of this drug in any pharmacopoeia and, from the 

characterization study carried out in this thesis, a monograph proposition is suggested: 

CRS 74 monograph 

Synonym: (2S, 3S, 5S)-2, -5 bis- [N-[N-[[N- methyl- 
N-[(2-isopropyl- 4- tiazolyl) methyl] 
amino] carbonyl] vanilyl] amino- 1,6- 
diphenyl- 3- hydroxyhexane 

Therapeutic category HIV protease inhibitor 

Formula C46H66N8O5S2 

Description white powder 

Molecular weight (g/mol) 875.2 

Melting point (°C) 

Melting enthalpy (J/g) 

187-189 

78-87 

Solubility 

  

0.102 mg/gsolution in 0.1M HCl pH 1.2, 
37oC - Very slightly soluble 

lower than 0.004 mg/g in water at 37 o C – 
Insoluble 

92.6 mg/gsolution in ethanol (solvent) at 
30°C -Very soluble 
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To predict in vitro CRS 74 dissolution behavior, a conventional acid medium was 

chosen. The development of the analytical methodology of quantification and dissolution 

assays is very important. The inexistence of specific method for CRS 74 in official summaries 

highlights the importance of above-cited tests for the definition of specific method for such 

purpose appropriates method to quality control of the drug. The quantification method was 

developed in this work to quantify the drug in acid media (0.1M HCl) or in water-ethanol 

solutions. Both developed methods were linear and specific for the drug.  

Several original data were experimentally obtained concerning the solubility of CRS 74 

in liquid media. They are: 

• Acidic aqueous medium (0.1 M HCl) at 37°C; 

• Acidic aqueous medium in presence of five different additives at 37°C; 

• Hydroalcoholic solutions in different water-ethanol mass proportions at 30°C; 

• Pure ethanol at different temperatures (5, 10, 15, 20, 25 and 30°C) 

• Water (LAS recrystallized drug) at 37°C. 

 

In hydro-alcoholic solutions, the drug solubility increases as the ethanol ratio in ethanol-

water increases, presenting a maximum as determined in this study using UNIQUAC-based 

model. The calculated data showed good agreement with experimental results and revealed a 

maximum solubility of CRS 74 of 130.20 mg/gsolution for a mass ratio of ethanol/water of 

0.83/0.17 (w/w).  

The results of the modeling indicate that this model is the appropriate tool for 

representing the solubility behavior of CRS 74 in ethanol-water solvent mixtures. The 

measurements and correlation of CRS 74 solubility in binary solvent mixtures provided useful 

data to estimate the theoretical efficiency of the LAS recrystallization process as a function of 

ethanol/water mass ratios. An ethanol-water mixture containing 25% (w/w) ethanol was found 

favorable for the crystallization process and was fixed for the LAS crystallization.  

For experimental design to CRS 74 LAS crystallization, two different types of mixers 

were tested: a T-mixer with two radial entries and a two jets vortex mixer also called 

Roughton mixer. It was clearly observed, that nano-sized particles were obtained at the outlet 

of both mixers. However, no remarkable effect of the supersaturation level was observed on 

the reduction of the drug particle size.   



Conclusions and Perspectives  

 

 243 

The T-mixer was chosen for further experiments because it generated less 

agglomerated particles. However to prepare fine particles of CRS 74 without polymer became 

quite a challenge, due to the rapid growth and agglomeration of the produced particles and 

problems of blockage of the mixer.  

Recrystallized solids were compared to the original drug crystals in terms of particle 

size, solid state, physical and dissolution properties. The particles of the original powder were 

found to be larger and exhibited a broad particle size distribution compared to the LAS 

recrystallized drug. In turn, recrystallized solids seemed more agglomerated than the original 

ones. In addition, recrystallization did not modify the dissolution profile compared to the 

original drug. It could be concluded that to improve dissolution kinetics, smaller particles 

with a more hydrophilic surface need to be produced. So the LAS crystallization was then 

carried out in presence of different additives. 

Stabilizers were screened and introduced in the solvent, or in the anti-solvent, or in both 

phases. For steric stabilization, we used nonionic surfactant (Polyoxyethylene sorbitan 

monooleate –Tween 20) polymers (Hydroxypropylmethylcellulose-HPMC) and amphiphilic 

block copolymers (Poloxamer 407-P-407). For electrostatic repulsion, the anionic surfactant 

Sodium Dodecyl Sulfate (SDS) was chosen. For a combined effect of steric stabilization and 

electrostatic repulsion, we tested Chitosan, a copolymer of glucosamine and N-acetyl 

glucosamine. 

The primary role of stabilizers is to inhibit excessive crystal growth. In a general way, 

most CRS 74 crystals produced in presence of additives had a smaller particle size compared 

to the original or recrystallized powder without additives. 

As a result of introduction of additives in the LAS crystallization study, the crystal size, 

agglomeration state, dissolution kinetics and drug wettability varied over a wide range 

depending on the additive involved and its concentration. According to the results, the zeta 

potential remained almost unchanged when nonionic stabilizers were used. In other hand, 

charged additives like SDS (negatively charged) and Chitosan (positively charged) adsorbed 

with the charged parts of the respective molecules onto the drug particle surface.  

Over the additives screened, changes on surface properties were observed. A 

remarkable decrease of contact angle (θ<100°) was observed for two formulations, one with 

P-407 (concentration of 0.02 % in organic phase) and another with P-407 combined with 
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chitosan (P-407 concentration of 0.02 % in organic phase and chitosan concentration equal to 

0.5 % in aqueous phase) at the recrystallized powder in the higher concentration of P- 407, P- 

407 and Chitosan. The enhancement of wetting properties can be attributed to multiple 

attachments of hydrophobic domains of P-407 on the drug particle surface. 

Each additive showed different behavior in preventing crystal growth, but the 

association of P-407 in the organic phase and chitosan in the aqueous phase was most 

effective in preventing crystal growth, improving surface wettability, and providing enough 

electrostatic repulsion due to highly positive charged drug surface.  

When placed in the organic phase, P-407 chains are more available to precipitate drug 

particles upon mixing, since they do not need to diffuse across the interface through the 

volume of the aqueous phase, which exceeded the organic phase volume. This reduction in 

time for diffusion of polymer to the drug surface leads to more rapid stabilization against 

coagulation and condensation. The presence of surfactant at the surface of the clusters may be 

expected to lower the interfacial tension between the solid surface and solvent mixture and 

raise the nucleation rate. 

Drug microcrystals recrystallized in presence of additives showed significantly 

improved dissolution velocity in comparison to microcrystals (raw material and without 

additive). Among the additives tested, P-407 and P-407 + Chitosan gave the best results. They 

enhanced dramatically the drug dissolution rate from 4% to almost 40% drug dissolved at 20 

min. In addition, the presence of chitosan in the crystallization process solved the problem 

related to the process, the blockage, due to charge repulsion between the positively charged 

crystals and surface charge of stainless steel.  

Overall, the results of this research showed conclusively that the liquid anti-solvent 

crystallization technique in presence of additives used in this research produced microcrystals 

that exhibited significantly faster dissolution rates than the original (as-received) CRS 74 

crystals. The improved dissolution is attributable to the modification of the particle size of 

drug crystals and enhancement of wetting properties due to specific interactions between the 

drug and the additives. Therefore, CRS 74 microcrystals yielded better physicochemical 

properties and would be one alternative for better CRS 74 dissolution characteristics and 

thereby bioavailability for commercial purposes. 

To continue the work concerning the improvement of the bioavailability of CRS 74, 
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some strategies are suggested in different fields (process, stabilization mechanism and drug 

potential). 

In term of process, it will be interesting to study the influence of crystallization 

operating conditions with the association of two additives (P-407, Chitosan) on solid 

properties in order to optimize and eventually scale up the process. This process could be 

compared to others promising technologies based on bottom-up preparation of CRS 74 drug 

nanocrystals, like the preparation of solid dispersions by spray drying and hot melt extrusion. 

Still in terms of process, there is a need for further understanding excipient adsorption, e.g., 

what is the level of adsorption needed to provide a pronounced effect on particle properties? 

In order to understand this point, a quantitative determination of excipient adsorption should 

be carried out.  

During this study it was clear that crystallization in the presence of additives can have a 

positive effect on dissolution rate. For instance, some hypotheses about the attachment on 

molecular level of additive on crystal surface were explored. However, a better understanding 

of these interactions should be carried out. The interaction additive crystal-surface could be 

explored by Confocal Raman Spectroscopy. 

The last research field is related to the drug. The dissolution methodology developed in 

this study could be validated and used as a sensitive, reliable, and reproducible for 

bioequivalence testing. Finally, the biological effect of recrystallized solid compared to 

original solid should to investigate in order to assess the changes of the synthesized powder 

and its improved bioavailability. 
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Human Immunodeficiency Virus (HIV) is a retrovirus (constituted by RNA) 

belonging to the Lentivirinae subfamily, capable to sponge human immunologic system 

causing the infectious disease known by the acronym AIDS (Acquired Immuno Deficiency 

Syndrome).

HIV comprises an outer envelope consisting of a lipid bilayer with spikes of 

glycoproteins (gp), gp41 and gp120. These glycoproteins are linked in such a way that gp 120 

protrudes from the surface of the virus. Inside this envelope is a nucleocapsid (p 17), which 

surrounds a central core of protein, p24. Within this core, are two copies of single-stranded 

RNA (the virus genome). Proteins, p7 and p9, are bound to the RNA and are believed to be 

involved in regulation of gene expression. Multiple molecules of the enzyme, reverse 

transcriptase (R T), are also found in the core. This enzyme is responsible for converting the 

viral RNA into proviral DNA (ABBAS, 2000), as shown in the Figure I.1. 

 

Figure I.1. Schematic drawing of the lentivirus HIV (ENKIRCH, 2011) 

 

HIV may only infects certain types of cells. In general, these are cells which carry 

CD4 receptors on their surface. Some cells in the immune system have these receptors, in 

particular, T4-lymphocytes or T-helper cells. Cellular infection occurs when HIV virus binds 

to a cellular receptor, generally the T CD4+, by means of the gp120 protein; then, virus 

merges to the cell membrane and the capsid content is released into the cell cytoplasm. The 

HIV enzyme, reverse transcriptase, catalyses the DNA copy production starting from HIV 

virus RNA. The double helix DNA copy is then transported to the cellular nucleus where a 

second HIV enzyme, the integrase, catalyses the incorporation of viral DNA to the host 

genetic material. Subsequent viral genes expression results in RNA transcription starting from 
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HIV DNA and in translation of viral proteins. However, newly formed viral proteins are 

produced in the form of polyproteins precursors that are long unities consisting of viral 

enzymes and structural proteins added to each other. Polyproteins and viral RNA move to the 

cell surface where they are incorporated to the new viruses that spring from cell membrane 

taking part of it with them to form the external layer of the viruses (figure I.2). Newly formed 

viruses, however, could not be infectious without the action of a third essential HIV enzyme, 

the protease, that turns viral polyproteins in functional and structural proteins and enzymes. 

Proteases are enzymes that cleave others proteins at highly specific sites. HIV protease, an 

aspartyl protease, cleaves viral polyproteins in essential functional proteins during the process 

of maturation of the "virion" (complete viral particle). This process occurs when each new 

"virion" springs to outside of the infected cell membrane and it continues after the release of 

immature virus by the cell. If polyproteins are not cleft, virus formation does not finish and it 

becomes unable to infect a new cell. Protease inhibitors, as this name implicate, are 

substances able to inhibit protease enzyme function. They perform their inhibitory effect 

disabling the enzyme before it cleaves gag/pol polyprotein to form its essential products. It 

means that, blockage of HIV protease leads to the formation of immature non-infectious- PCT 

document number 111006 (BOCKELMANN et al., 2005; BOCKELMANN et al., 2010 ). 

 

 

Figure I.2. Life cycle of HIV (HOGGARD and OWEN, 2003).
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In order to validate the flow of gear pumps (mzr-7255-hs-f S, mzr-7205-hs-f S; HNP 

Mycrosysteme) for the solvent and the anti-solvent system and digital mass flow 

meter/controller (MIX, Bronhorst), the pumps calibration was realized. 

For this purpose, a beaker with the fluid to be pumped was weighed and the software 

was activated, starting the pump. At the end, after all the fluid has being pumped, the beaker 

was weighed and the theoretical mass flow of fluid was calculated with the mass used and the 

time spent in the experiment. Finally, the value of the calculated flow was compared with the 

flow indicated by the software. 

The calibration test was realized for both pumps with water used as the fluid for the 

anti-solvent’s pumps and ethanol to the solvent’s pump. According to the table II.1, the value 

of the calculated flow is in agreement with the flow value indicated by the software. 

 

Table II.1. Data obtained in the pumps calibration 

Pumped liquid Mass (g) Time 
(min) 

Flow rate calculated 
(g/min) 

Flow rate software 
(g/min) 

Error 
(%) 

Ethanol 109.3 15 7.29 7 4.0 

Water 749.5 15 49.97 50.17 0.4 

 

In a second time, to ensure that the pumps were pumping fluids in the correct ratio a 

simple test was performed. Mixtures between ethanol and water in different proportions were 

made without the aid of the pumps and measured up their refractive indices. Later, the same 

mixtures were performed using the pumps and they also had their refractive indices measured. 

Each result is an average of at least 3 replicates. 

No changes of refractive indices were observed, for all different ratio ethanol/water 

using different manners of preparation, as seen in the table II.2. It can be supposed that, the 

pumps can respond correctly to request flow values and they pumped the fluids in the correct 

proportions. It means that pumps are working as it should. 
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Table II.2. Values of the refractive indices measured ±±  standard deviation . 

Proportion 

ethanol/water (w:w) 
Physical mixture Mixture with pumps 

1:1 1.3582 ± 0.0001 1.3592 ± 0.0002 

2:1 1.3523 ± 0.0004 1.3548 ± 0.0001 

3:1 1.3476 ± 0.0004 1.3478 ± 0.0002 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Paticle size distribution 
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LAS crystallization process conditions   

 

• T-Mixer 

• Ratio solvent (ethanol):anti-solvent (water) - 1:3 (25%:75%) ; 

• Presence of additive  

• Temperature of organic and aqueous phases at 30°C  

• Crystals collection: vessel under magnetic stirring  
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Additive in  aqueous phase 

 

 

 

Figure III.1.  Particle size distribution pattern for as HPMC 0.5 % (w/w) 

 

 

Figure III.2.  Particle size distribution pattern for as SDS 0.5 % (w/w) and SDS < 
CMC.   
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Figure III.3.  Particle size distribution pattern for as Tween20 0.5 % (w/w) and 
Tween20 < CMC.   

 

 

 

Figure III.4.  Particle size distribution pattern for as Chitosan 0.5 % (w/w).   
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Addtive in  organic phase  

 

 

 

 

 

 

Figure III.5.  Particle size distribution pattern for as P-407 0.5 % (w/w) and P-407  < 
CMC.   
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Additive in both, organic and aqueous phase 

 

 

 

Figure III.6.  Particle size distribution pattern for as P-407 < CMC + SDS  0.5 %  
(w/w)  and P-407 >  CMC + SDS 0.5 %(w/w).  

 

 

Figure III.7.  Particle size distribution pattern for as P-407 < CMC + Chitosan 0.5 %  
(w/w)  and P-407 >  CMC + Chitosan 0.5 %(w/w).   
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Supersaturation degree 

 

 

 

Figure III.8.  Particle size distribution pattern for as  P-407 0.5 % (w/w) (S =156.41) 
and  P-407 0.5 % (S =374.51)  

 

 

Figure III.9.  Particle size distribution pattern for as P-407 > CMC + SDS 0.5 %  (w/w)  
(S = 43.25)  and P-407 >  CMC + SDS 0.5 % (w/w) (S = 104.5).   
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Figure III.10.  Particle size distribution pattern for as P-407 > CMC + Chitosan 0.5 %  
(w/w)  (20 %)  and P-407 >  CMC + Chitosan 0.5 % (w/w) (50 % ).   



 

 

 

 

 

 

 

 

 

 

 

 



 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Contact angle (θθ°) as a function of time 
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LAS crystallization process conditions   

 

• T-Mixer 

• Ratio solvent (ethanol):anti-solvent (water) - 1:3 (25%:75%) ; 

• Presence of additive  

• Temperature of organic and aqueous phases at 30°C  

• Crystals collection: vessel under magnetic stirring  
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Original CRS 074 

 

 

Figure IV.1 Contact angle (°) as a function of time for as CRS 74. 

 

LAS recrystalized drug 

 

 

Figure IV.2. Contact angle (°) as a function of time for as LAS recrystalized drug . 

 

 

 

 

 



 

 271 

Additive in aqueos phase  

 

 

Figure IV.3. Contact angle (°) as a function of time for as HPMC 0.5 % (w/w). 

 

 

 

Figure IV.4. Contact angle (°) as a function of time for as SDS < CMC. 
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Figure IV.5. Contact angle (°) as a function of time for as SDS 0.5 % (w/w). 

 

 

 

Figure IV.6. Contact angle (°) as a function of time for as Tween 20 < CMC. 
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Figure IV.7. Contact angle (°) as a function of time for as Tween 20  0.5 % (w/w). 

 

 

 

Figure IV.8. Contact angle (°) as a function of time for as Chitosan 0.5 % (w/w). 
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Additif in the organic phase  

 

 

 

Figure IV.9. Contact angle (°) as a function of time for as P-407 < CMC. 

 

 

 

Figure IV.10. Contact angle (°) as a function of time for as P-407 0.5 % (w/w). 
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Additif in both, organic and aqueos phases 

 

 

Figure IV.11. Contact angle (°) as a function of time for as P-407< CMC +  SDS 
0.5%(w/w). 

 

 

 

Figure IV.12. Contact angle (°) as a function of time for as P-407 >CMC +  SDS 
0.5%(w/w). 
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Figure IV.13. Contact angle (°) as a function of time for as P-407< CMC +  Chitosan 
0.5 % (w/w). 

 

 

 

Figure IV.14. Contact angle (°) as a function of time for as P-407 > CMC +  Chitosan 
0.5 % (w/w). 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Morphology of crystals in suspension 
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