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General introduction

Automation have gained a wide interest in the last centuries in various fields such as in-
dustries, medicine, household life, agriculture, space, etc. As its name indicates, automa-
tion aims to automatically carry out processes to increase productivity, improve product
quality, and reduce time and costs. An automatic system uses mechanical, electrical, elec-
tronic, hydraulic, and pneumatic elements to carry out a specific task. Robotic manipu-
lators have been one of the major automated machines capable of being used in multiple
tasks such as welding, packaging, assembly, and quality control. Nowadays, there are two
main types of robot manipulator kinematic architectures: serial manipulators and parallel
manipulators.

Serial manipulators consist of an open kinematic chain powered by actuators located
on or near the joints. Although they have been mostly used in the last centuries thanks to
their large workspace and high dexterity, their architecture is not very suitable for moving
heavy payloads at high speeds due to the high vibrations and link bending. In the last 40
years, the interest in parallel robots also known as Parallel Kinematic Manipulators (PKMs)
has increased thanks to their special features. They consist of multiple kinematic chains
attached to a moving platform also called traveling plate. In contrast to serial manipu-
lators, they offer more stiffness, improved precision, high-speed capabilities, and a higher
payload-to-weight ratio. Thanks to these advantages, PKMs are used in applications where
precision and high-speed are vital. However, they still suffer from some drawbacks such
as limited workspace and complex singularities behavior. In fact, parallel manipulators
are not replacing serial ones, but they offer various advantages for certain applications
that need high accelerations and high accuracy. They have been used in Pick-and-Place
(P&P) tasks, remote surgery, precise positioning, even high-speed machining, and recently
in waste sorting industry.

11
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Parallel manipulators are known for their complex nonlinear dynamics, abundance of
parametric and nonparametric uncertainties, and in some cases, redundant actuation. All
of the aforementioned aspects can be considered as sources of errors (if not taken into
account) that may deteriorate the performance of parallel manipulators. Therefore, it is
necessary to design advanced control schemes that guarantee optimal trajectory tracking
under desired speed requirements and with the best possible accuracy despite the pres-
ence of some or all of the above mentioned issues. In addition to control design, trajectory
planning is considered a crucial aspect from which the dynamic performance of paral-
lel manipulators can be improved. In the motion planning algorithm, various challenges
should be considered, such as the path constraints of avoiding obstacles and singularities.
In addition, generating a smooth and discontinuity-free trajectory respecting the dynamic
constraints of the robotic system is a vital requirement for motion planning. The opti-
mization of certain parameters such as execution time and energy is also a challenge for
different applications.

Objectives of the thesis

In this thesis, we aim to speed up the recycling process and make it as efficient as pos-
sible by using parallel manipulators. For this purpose, the main objective is to perform
throwing tasks in a robust and fast way, by demonstrating the efficiency of a Pick-and-
Throw (P&T) technique compared to a usual P&P process in the context of a waste sorting
application. Two aspects will be addressed within this thesis: (i) the generation of P&T tra-
jectories for the robot and the ballistic trajectories of the objects to be thrown, and (ii) the
synthesis of advanced control schemes to improve the dynamic performance of the paral-
lel manipulators in terms of accuracy and robustness to changing operating conditions.

Main contributions of the thesis

The main contributions of this thesis aim at improving the dynamic performance of
parallel manipulators from trajectory planning and control design point of view. In this
framework, the following contributions are introduced:

1. A time-optimal pick-and-throw S-curve trajectory generation.

2. A new augmented RISE feedback controller that incorporates (i) a dynamic compen-
sation term, (ii) RISE feedback term, and (iii) an nonlinear auxiliary term.

3. A novel robust DCAL with adaptive feedback gains. It consists mainly of (i) a PD
adaptive feedback term, (ii) an adaptive feedforward term, and (iii) a nonlinear ro-
bust term.

4. A new intelligent robust control law developing based on RISE feedback law and
model-free control.
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The proposed contributions have been studied and validated in real-time experiments and
numerical simulations on a parallel manipulator prototype.

Organization of the thesis

The thesis is organized as follows.

Chapter 1 provides the context, problem formulation, and the state of the art of this
thesis. The main differences between serial and parallel manipulators are discussed.
A historical overview of parallel robots as well as some of their potential applications
with their recent incorporation in the waste sorting industry are included. A survey
and classification of existing motion control strategies implemented for parallel ma-
nipulators is included, as well as the state of the art on existing throwing trajectories
and the various methods developed to generate a P&T trajectory. The chapter con-
cludes with the main objectives of the thesis as well as the main contributions.

Chapter 2 provides a detailed explanation of the proposed time-optimal throwing
trajectory and its validation through real-time experiments on parallel robot. In ad-
dition, the description and modeling of the parallel robot prototype used as testbed
to validate the P&T trajectory and the proposed controllers are addressed within this
chapter.

Chapter 3 describes in detail the three proposed control solutions. The contribution
for each adopted control strategy is addressed and explained. Moreover, the stability
analysis for the three proposed control solutions are formulated.

Chapter 4 is devoted to the presentation and discussion of the numerical simulation
of the proposed control solutions. The results for each case study are presented and
discussed in terms of the dynamic performance of the parallel manipulator. The
chapter ends up with a conclusion regarding the proposed control solutions and the
obtained results.

Lastly, the thesis finishes up with a general conclusion containing a summary of the
main contributions as well as some perspectives on future work.
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1.1 Introduction

In this chapter, the concept of robotic manipulator is introduced by distinguishing two
main kinematic structures of manipulators: serial and parallel. The advantages and disad-
vantages of each architecture are highlighted. A historical overview of PKMs is introduced.
The first investigations and prototypes of parallel robots started in the 20th century, in
particular PKMs with the Gough- Stewart platform architecture and those based on the
Delta PKM are presented. Over time, several modifications have been carried out to the
original Delta PKM to improve its capabilities in terms of stiffness, workspace, and ability

15
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to achieve higher accelerations. Some relevant applications in different fields realized by
PKMs are presented with emphasis on the waste sorting application where PKMs are used
as sorting robots.

Many factors converge to enable PKMs to successfully perform general-purpose tasks
such as high-speed pick-and-place motion cycles, precise positioning, and accurate sur-
gical treatments. These factors range from mechanical design and modeling to trajectory
planning and control design. In the literature, several works have been reported related to
improving these aspects to increase the capabilities of parallel robots. As the intended ap-
plication of this thesis is the use of PKMs in a P&T task under different operating conditions
(speed, acceleration and parameters variation), the thesis problem formulation addresses
both, trajectory planning and control design. In the context of trajectory planning, the
generated trajectory must fulfill the requirements of smoothness, continuity and satisfac-
tion of the kinematic and dynamic constraints of the robot. Besides, the motion planning
problem consists in proposing techniques to avoid singularities in the robot workspace or
to generate optimal trajectories in terms of energy consumption or travel time. From a
control point of view, PKMs are known to be highly nonlinear systems with an inherent
presence of uncertainties, parameter variations and, in some cases, actuation redundancy.
Therefore, advanced control strategies should be developed to deal with these challenges
guaranteeing good dynamic and tracking performance of PKMs in task executions.

Furthermore, this chapter presented a general overview of existing control solutions
for PKMs. A brief discussion on each controller is carried out enlightening the positive and
negative points of each strategy. One can distinguish between two types of control strate-
gies of parallel manipulators: kinematic and dynamic control. Because considering the
dynamic model within the control design can greatly enhance the dynamic performance
of parallel manipulators, the majority of the existing control schemes are full or partial dy-
namic control strategies. Some of the controllers compensate for a part of the dynamics
while the others compensate for all the modeled dynamics. Besides, offline and online
dynamic parameter identification techniques exist. In addition, an overview of P&T trajec-
tories and their applications in several domains is provided. Other research works dealing
with throwing trajectory generation techniques are also presented in this chapter.

The main contributions of the thesis consist in generating a time-optimal P&T trajec-
tory and in improving the dynamic performance of parallel robots via control design by
proposing robust control strategies.

1.2 Classification of robotic manipulators

The high demand for introducing new product styles, improving the product quality,
and reducing the manufacturing costs has resulted in greater adoption of robotic equip-
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(a) Robotic arm IRB 2600 (ABB)
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(b) Robotic arm kinematic diagram.

Figure 1.1 – Illustration of a serial manipulator with its kinematic configuration.

ment in various industries. Robots are electromechanical systems composed of mechan-
ical, electrical, and electronic elements controlled by commands generated by a control
system (computer, PLC, microcontroller, etc.). The need of robots has been extended be-
yond industries, nowadays, they are present in space, oceans, agriculture, hospitals, house-
hold life, and schools doing productive or leisure activities. According to the International
Federation of Robotics under standard ISO 8373, a robot is an automatically controlled,

reprogrammable, multipurpose, manipulator, programmable in three or more axes, which

may be either fixed in place or mobile for use in industrial automation applications. Robotic
manipulators are a branch of robotics aiming to perform manipulation and positioning of
objects. In the literature, two main kinematic structures of robotic manipulators can be
distinguished: Serial and parallel. Two other categories of manipulators worth to be men-
tioned: The first is a subclass of parallel manipulators. It is a cable-driven parallel ma-
nipulator in which the links are constructed from such as cables. The other is a hybrid
manipulator that results from the combination of a serial and a parallel structure. Each
kinematic architecture has its own interesting features that makes it attractive for carrying
out particular tasks. The next paragraphs elaborate on each of them.

1.2.1 Serial manipulators

Serial robots are the most commonly used robots in industrial applications. They con-
sist of an open-loop kinematic chain formed by a succession of rigid links connected by
prismatic or revolute joints. Each joint is controlled by an actuator located at the joint
location or on one of the preceding segments. An example of a serial manipulator is the
robotic arm that mimics the parts of the human arm (shoulder, elbow, and wrist). A six-
Degree-Of-Freedom (6-DOF) serial robotic arm with its kinematic chain diagram is shown
in Figure 1.1, where the gray boxes with the letter R symbolize the active revolute joints.
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(a) Hexapod ZONDA from SYMETRIE France
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(b) Hexapod kinematic diagram.

Figure 1.2 – Exemplification of a parallel manipulator with its kinematic configuration.

1.2.2 Parallel manipulators

A generalized definition of PKMs has been given by Merlet in his book "Parallel Robots"

as follows [Merlet, 2005]: "a generalized parallel manipulator is a closed-loop kinematic

chain mechanism whose end-effector is connected to the base by at least two independent

kinematic chains". Parallel robots are known to be precise and are able to handle heavy
loads while maintaining excellent stiffness. According to the mechanisms, the actuators of
these architectures can be either fixed on the base frame or close to it. An exemplification
of a parallel manipulator, consisting of a 6-DOF Hexapod with its kinematic configuration,
is shown in Figure 1.2. The gray boxes with the letter P denote active prismatic joints, while
the white boxes with the letter U represent passive universal joints.

1.2.3 Parallel versus serial manipulators

As mentioned above, the main difference between a serial and a parallel manipulator
appears obviously in their kinematic construction. A serial manipulator has an open kine-
matic structure, whereas a parallel manipulator is a closed kinematic chain. Although it
is often pointed out that parallel manipulators offer several advantages over their serial
counterparts, they are not without their drawbacks. Indeed, each one of them has its own
interesting features that makes it suitable for a particular class of applications. Therefore,
parallel manipulators do not replace serial ones, but they offer various advantages over se-
rial manipulators for certain applications [Patel et al., 2012]. The various advantages and
disadvantages of serial and parallel manipulators are listed below [Krut, 2003; Merlet, 2005;
Shayya, 2015; Taghirad, 2013].

Advantages of serial manipulators

The main appreciated merits of serial robots are:

• Large workspace volume.
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• Good dexterity properties.

Disadvantages of serial manipulators

In contrast to the above features, serial manipulators suffer from the following drawbacks
[Krut, 2003; Shayya, 2015; Taghirad, 2013]:

• Low stiffness, inherently caused by their open kinematic structure.

• Large moving masses, since they have to carry and move the large weight of most of
the actuators.

• Low effective payload capacity.

• Low payload-to-mass ratio.

• Accumulative positioning errors due to the serial configuration.

• Fatigue and wear of the power links supplying the actuators (cables, hoses) or of the
active joints.

Advantages of parallel manipulators

The most notable advantages of PKMs can be summarized as follows [Krut, 2003; Shayya,
2015; Germain, 2013]:

• High mechanical stiffness thanks to the closed-chain structure.

• Significantly higher payload to robot mass ratio.

• High dynamic capabilities owing to low moving mass and inertia.

• Improved tracking accuracy and better precision thanks to the parallel structure,
where the end-effector pose errors are non-cumulative.

• Possibility of placing the actuators directly on the fixed base or very close to it; this
feature allows for the following additional benefits:

— Higher flexibility regarding the choice of motors and/or gearboxes, as their
mass does not influence the mass and inertia of the moving parts.

— Significant simplification of problems arising from cable connections between
the motors, sensors, and controller (more straightforward and more reliable
wiring).

— Ease of cooling of the actuators resulting in reduced precision problems due to
thermal expansions and high potential power.

— Ability to attain high accelerations because all the motors are fixed to the base
frame so that the moving masses have a low total weight.

Disadvantages of parallel manipulators

Compared to serial robots, the main drawbacks of parallel robots can be summarized as
follows:
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Table 1.1 – The main properties of serial and parallel manipulators.

Property Serial manipulators Parallel manipulators

Singularities Inverse kinematics Inverse, forward, and combined
Workspace Large Small

Payload/weight ratio Low High
Actuators’ location On the joints Near or on the fixed base

Stiffness Low High
Dynamic performance Poor Possibly very high

Accuracy Low High

• Limited workspace compared to the total volume of the mechanism.

• Complex forward kinematics (sometimes there is no unique solution).

• Presence of singularities that are critical and may lead to uncontrollable motion of
the mobile platform or the deterioration of the mechanical system. Avoiding such
singularities is a key challenge in the design of a parallel robot.

• The use of many passive links may induce backlash and clearances, making the robot
behavior difficult to model. However, it is necessary to master them to define dan-
gerous zones near the singularities and to improve the robot accuracy.

• Internal force generation that may produce mechanical damages in the case of Re-
dundantly Actuated (RA) PKMs.

In accordance with [Pandilov and Dukovski, 2014; Bennehar, 2015; Saied, 2019], and the
points mentioned above, one can summarize the proprieties of serial and parallel manip-
ulators as reported in Table 1.1.

1.2.4 Cable-driven parallel robots

Cable-Driven Parallel Robots (CDPRs) can be defined as a subclass of PKMs in which
rigid links are replaced by cables [Bruckmann and Pott, 2012]. They mainly consist of a
mobile platform driven by cables, which transmit the forces generated by winches. Conse-
quently, the movement of the platform is managed by controlling the winch motors. CD-
PRs have several advantages compared to classical rigid-link parallel robots. Since a large
length of cable may be wound on the drum of each winch, the mobile platform may be
displaced over a large workspace. Moreover, cables are able to transmit large forces, which
make possible the handling of heavy payloads (i.e. high payload to weight ratio). For in-
stance, CoGiro prototype, shown in Figure 1.3, is capable of transporting a payload of 500
Kg ([Lamaury and Gouttefarde, 2013]). As a subclass of parallel robots, CDPRs typically
present their actuators fixed to the base frame. In addition, the total mass and inertia of the
moving parts may be drastically reduced using cables instead of rigid links allowing high
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Figure 1.3 – Illustration of the CoGiRo (Control of Giant Robots) prototype built in the
framework of a collaborative research project between TECNALIA and LIRMM.

dynamical performances to be achievable. For example, the FALCON robot can generate
13 m/s of maximal velocity and 43 G of maximal acceleration [Kawamura et al., 2000]. Be-
sides, most often the wires can be considered massless and inextensible, which simplifies
their modeling. In contrast to these advantages, CDPRs present some important draw-
backs. In particular, when cables become lengthy, their mass cannot be any more ignored.
Also, when high tension forces exist, the hypothesis of inextensibility is no more justifiable.
All these complicate the modeling of CDPRs, as sagging and deformations are to be nec-
essarily considered. Furthermore, as cables can only pull and not push, the feasibility of a
pose depends not only on cable length limits and mechanical interference avoidance, but
also on the possibility of having static equilibrium. Actually, the problem of tension distri-
bution in CDPRs is a non-trivial issue and one of the key research topics in this field. This
is not to mention the challenges that CDPRs present on the control level. Moreover, the
cable elasticity may introduce undesired vibrations [Weber et al., 2015; Begey et al., 2018;
Baklouti et al., 2019]. Similarly, substantial degradation of the positioning precision may
be obtained when neglecting cable elasticity [Schmidt and Pott, 2017; Paty et al., 2021]. For
more information regarding CDPRs, their state-of-art, applications, and advancements,
the reader may refer to [Lamaury and Gouttefarde, 2013; Baklouti, 2018; Santos, 2020], and
to the articles cited here and therein.

In general, three groups of CDPRs can be distinguished, namely the fully-constrained,
the suspended CDPRs, and the under-constrained ones [Pott, 2018].

In the case of fully-constrained CDPRs (e.g.[Kawamura et al., 2000]), there is at least
one pose in the workspace of the platform such that any wrench can be generated by the
cables by pulling on the platform. This configuration necessarily presents a number of ca-
bles greater than the number of DoF of the mobile platform. This condition is necessary
but not sufficient. A particular geometry and arrangement of cables must also be con-
sidered. The exit points of the cables are located above and below the workspace of the
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(a) A CAD view of Sprint Z3 (DS Technology)
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(b) Sprint Z3 kinematic diagram

Figure 1.4 – Sprint Z3 hybrid manipulator with a serial carrier and a parallel wrist.

platform. In suspended configuration (e.g. [Yao et al., 2009]), every cable force applied on
the platform is directed upwards, this type of CDPR cannot generate a force directed down-
wards. Therefore, suspended CDPRs rely on the gravitational forces in order to constraint
the platform. This configuration requires at least as many cables as the platform DOF. Fi-
nally, under-constrained CDPRs are characterized by having fewer active cables than the
number of DOF of the end effector, such as the Winch-Bot presented in [Cunningham and
Asada, 2009]. In this case, the platform pose cannot be determined geometrically. In ad-
dition to the kinematic model, a static or dynamic model should be considered in order to
determine the platform pose [Abbasnejad and Carricato, 2015].

1.2.5 Hybrid manipulators

A hybrid mechanism is one that results from the combination of a serial and a parallel
structure. Three categories of hybrid manipulators can be distinguished:

1. Mechanisms with a serial carrier and a parallel wrist: In this configuration, the car-
rier mechanism has the serial structure coupled with a parallel wrist responsible for
orienting the end-effector. The Sprint Z3 machine from DS Technologies is an exam-
ple of this category that was developed for aeronautical industrial applications [Chen
et al., 2014]. It consists of a series-structured carrier providing the xymovement by
means of two prismatic actuators. On this carrier, a parallel module is fixed. The
latter provides the wrist motions (two rotations) and the translation motion along
the z-axis. Its design is quite simple, and it has met a real commercial success. This
manipulator is depicted in Figure 1.4, where the white boxes with a letter S represent
passive spherical joints.

2. Mechanisms with a parallel carrier and a serial wrist: In this category of hybrid ma-
nipulators, the parallel mechanism is responsible for positioning, while the serial
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(a) A general view of Tricept 845 (Neos Robotics)
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(b) Tricept kinematic diagram

Figure 1.5 – Tricept hybrid manipulator with a parallel carrier and a serial wrist.

mechanism is used for the end-effector orientation. It is therefore possible to ob-
tain large rotational motion since the wrist is of a totally classical design. The Tri-
cept 845 from Neos, shown in Figure 1.5, is a typical example of such configura-
tion. This machine has three translational movements performed by three universal-
prismatic-spherical kinematic chains and two rotational movements performed by a
serial wrist mechanism. A particularity of this robot is the presence of a passive kine-
matic chain that constrains the platform of the parallel structure [Neumann, 2006].

3. Other hybrid mechanisms: Dumbo is a 3T-2R hybrid machine (one dof carrier + par-
allel module + serial wrist) developed at the IFW at the University of Hannover (Ger-
many). It is shown in Figure 1.6. The carrier is a hybrid mechanism on its own since
a z-axis column supports a parallel mechanism consisting of two hydraulically ac-
tuated extensible links and a passive leg. The serial architecture wrist gives the ma-
chine large angular deflections.

1.3 A historical overview of parallel manipulators

According to [Bonev, 2003], the first patent of a moving platform based on a spherical
parallel mechanism was filed in 1928 by James E. Gwinnett. It is consisted of an amuse-
ment device intended to be used in the entertainment industry (a dynamic cinema) [Gwin-
nett, 1931] (see Figure 1.7). Unfortunately, the designed mechanism was never built be-
cause it was too complex for the industry at that time.

A decade later, Willard L.V. Pollard invented a 5-DOF parallel manipulator for auto-
mated spray painting operations. His invention, shown in Figure 1.8, was later patented
by Willard’s junior in 1942. In the parallel kinematics community, Pollard’s parallel robot
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(a) A view of Dumbo (IFW)
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(b) Dumbo kinematic diagram

Figure 1.6 – Dumbo hybrid manipulator.

Figure 1.7 – The spherical parallel mechanism proposed by James E. Gwinnett [Gwinnett,
1931].

is well known as the first industrial parallel robot. The mechanism design is composed of
three sets of links, where each set is formed by a proximal and a distal arm connected by
universal joints [Pollard, 1942]. Three actuators mounted on the base are responsible for
the positioning of the tool head, while its orientation is controlled by the other two actu-
ators fixed to the base, and transmitting the movement to the tool through flexible rotary
cables. While other spray painting robots have been commercialized, the one of Pollard
was never built.

In 1947, Dr. Eric Gough proposed the first octahedral hexapod type parallel mecha-
nism with variable length sides that allows the positioning and orientation of the moving
platform [Bonev, 2003] (see Figure 1.9). This device was invented to resolve the problems
of air-landing loads and is capable of testing the tyre wear. It was used to check the tires
of Dunlop house under loads applied along different axes. The Gough platform has been
one of the most popular mechanisms in parallel robotics. It has been widely studied in the
literature and often referred to as the first parallel manipulator ever built. The universal
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Figure 1.8 – Illustration of the spray painting 5-DOF PKM proposed by Willard L.V. Pollard
[Pollard, 1942].

Figure 1.9 – View of the original Gough platform in 1954 [Bonev, 2003].

tire-testing machine, or the universal rig, as Dr. Gough called it, was fully operational in
1954 and still used until 2000 (see Figure 1.10).

Many years later, in 1965, Stewart published a paper in which he proposed a 6-DOF
parallel manipulator for use as a flight simulator [Stewart, 1965]. His design was different
from the octahedral hexapod developed by Gough that is, ironically, often referred to as the
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Figure 1.10 – Gough tyre-testing prototype, called universal rig, exhibited in the British
National Museum of Science and Industry in 2000 [Bonev, 2003].

Stewart platform. The Stewart’s paper appeared in the proceedings of the British IMechE,
and Dr. Gough was one of the reviewers who reminded of the existence of his tire-testing
machine. Figure 1.11 depicts the proposed Stewart’s platform. However, Stewart is not
considered the creator of the first flight simulator based-on PKM even though his paper
had a great impact on the subsequent development in the field of parallel robots especially
those of hexapod architectures.

In the mid of 1960s, the US engineer, Klaus Cappel, an employer at the Franklin In-
stitute Research Laboratories in Philadelphia, designed and built the first functional flight
simulator at the request of Sikorsky Aircraft Division of United Technologies for design and
construction of a 6-DOF helicopter flight simulator [Bonev, 2003]. His design was based on
the same octahedral hexapod arrangement proposed years ago by Dr. Gough. The Cappel
patent was filed in 1964, at which time he was unaware of Gough’s invention and Stewart’s
paper which was not yet published. This mechanism, illustrated in Figure 1.12, is referred
to the first-ever flight simulator built based on the octahedral hexapod [Cappel, 1967].

For almost two decades, parallel manipulators have not attracted as much attention
as they did in the early 80s, when Reymond Clavel, a professor at the École Polytechnique
Fédérale de Lausanne (EPFL) in Switzerland, introduced the design of the Delta PKM with
three translational and one rotational degree of freedom [Clavel, 1990]. The key design
feature is the use of parallelograms in the kinematic chains, which restrains completely
the orientation of the traveling-plate, resulting in only three translational movements. A
fourth leg is used to transmit rotary motion from the base to an end-effector mounted on
the mobile platform. The original design of Delta robot is shown in Figure 1.13 [Taghirad,
2013]. The use of base-mounted actuators and lightweight arms allows the mobile plat-
form to achieve very high accelerations (up to 50 G). This ingenious idea makes the Delta
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Figure 1.11 – Illustration of the Stewart platform proposed as a flight simulator [Stewart,
1965].

Figure 1.12 – View of the first flight simulator of Klaus Cappel [Cappel, 1967].

robot a perfect candidate for high-speed pick-and-place operations of lightweight objects.
In 1999, Dr. Clavel was awarded the "Golden Robot Award", sponsored by ABB Flexible
Automation, for his innovative work on the Delta robot [Bonev, 2001]. The Delta robot is
one of the most successful PKMs ever built.

Other variants of Delta PKM over time

The idea of using parallelograms has inspired many new designs where several modifica-
tions have been made to the original Delta robot of Prof. Clavel. Although they often share
many similarities, each prototype usually has its own characteristics, advantages, disad-
vantages and intended applications. For instance, the Star robot of Hervé [Hervé, 1991]
was invented to have the same characteristics as the Delta robot without depending on its
patent. This architecture also has three motors fixed to the base, as well as three identical
kinematic chains composed of spatial parallelograms. The motors drive helicoidal joints
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Figure 1.13 – Technical drawing of the original Delta robot of Reymond Clavel [Clavel,
1990].

in translation. These joints are connected to the mobile platform by means of a π link
and a revolute joint (see the Star robot in Figure 1.14). Even if this robot can theoretically
claim to be able to match the dynamic performance of the Delta, its small working volume
is very penalizing. In [Pierrot et al., 1991], F. Pierrot presents a new design for a 6-DOF
parallel structure, called "Hexa" PKM, as an extension of the 3-DOF Delta robot. In con-
trast to the Delta robot, the Hexa robot can rotate its traveling plate thanks to six kinematic
chains, each of them being actuated by an individual motor. In [Chablat et al., 2000], the
Orthoglide machine tool was developed by the IRCCyN. It has prismatic actuators placed in
such a way that this mechanism has an isotropic configuration at the center of its working
volume. The three spatial parallelograms linking these actuators to the mobile platform
impose on the end-effector translational movements. The prototype developed by the IR-
CCyN was designed for light milling applications. It is capable of accelerations of the order
of 20m/s2 and a speed of 1.2m/s.

In order to avoid the central telescopic leg present in the Delta robot, some mechan-
ical solutions using the concept of articulated traveling plates were proposed. The first
prototype, called H4, has 4-Dof, 3 in translations and 1 in rotation about a given axis [Pier-
rot and Company, 1999]. It uses four actuated kinematic chains instead of three. These
chains are connected to an articulated traveling plate made up of three parts linked by
means of two passive revolute joints. Later, in [Krut, 2003], the traveling plate of H4 was
equipped with an additional gear-based amplification system leading to a large and ad-
justable range of motion in orientation. Notwithstanding, this PKM has some drawbacks
such as the abundance of singularity configurations and the possible internal collisions
because of the architecture of its traveling plate. Thus, the relative positions of the four
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1988

DELTA PKM
• 3 kinematic chains

• One passive fourth leg

• 3 translational DOF

• 1 rotational degree

• Rigid platform

1999

H4 PKM
• 4 kinematic chains

• 4 DOF (3T-1R)

• Articulated platform with passive 

revolute joints

• Abundance of singularities
1991

Hexa PKM
• 6 kinematic chains

• 6 DOF (3T-3R)

• Rigid platform

I4 PKM
• 4 kinematic chains

• 4 DOF (3T-1R)

• Articulated platform with 

passive prismatic joints

2003

2014
2014

T3KR PKM
• 4 kinematic chains

• 5 translational DOF (3T-2R)

• Kinematic redundant PKM 

• Articulated platform with revolute passive joints

• One additional motor fixed on the platform

• 4 kinematic chains

• 3 translational DOF

• Redundantly actuated PKM

• Additional independent serial wrist mechanism (two 

motors, 2R) attached to the nacelle

SPIDER4 PKM

IRSBOT-2 PKM

2011

• 2 active kinematic chains

• 2 translational DOF

• Increased Cartesian space 

• less subject to uncontrolled 

parasitic effects

R4 PKM
• 4 active kinematic chains

• 3 translational DOF 

• Rigid platform

2010

Par2 PKM
• 2 actuated kinematic chains

• 2 coupled passive chains

• 2 translational DOF 

• Rigid platform

2009

2007

2007

Helice PKM

Par4 PKM
• 4 active kinematic chains

• 4 DOF (3T-1R)  

• Traveling-plate is composed of two main parts 

linked by two bars with revolute joints

• Fastest industrial PKM in the world

• 4 active kinematic chains

• 4 DOF (3T-1R)   

• Traveling-plate is divided into two sub-

parts linked via helical joint producing 

vertical axis rotation

Star PKM
• 3 kinematic chains

• 3 translational DOF 

• Motors drive helicoidal joints in 

translation

• Same dynamic performance as Delta

• Small working volume

1991

2000

Orthoglide PKM
• 3 kinematic chains

• 3 DOF (3T)

• Prismatic motors 

• Isotropic configuration at the center 

of its working volume

Figure 1.14 – Timeline of some PKMs based on the Delta robot.



30 CHAPTER 1. CONTEXT, PROBLEM FORMULATION AND STATE OF THE ART

spatial parallelograms must be properly selected to avoid singular cases. To compensate
for the limitations of H4 PKM, the I4 family were proposed by [Krut et al., 2003]. I4 family
has two variants I4L and I4R, which are actuated by linear and rotational actuators, respec-
tively. The basic idea behind I4, as compared with H4, is the replacement of revolute joints
by prismatic ones and gears by rack-and-pinion mechanisms. With this new design of the
traveling plate, the risk of internal collisions (one part of the traveling plate colliding the
other) is drastically reduced and the singularity problem vanishes.

However, the use of prismatic joints in the articulated traveling plate constitutes a main
weak point of I4. As a matter of fact, used at high speed, commercial prismatic joints have
a short service life, due to high acceleration and pressure exerted on balls. Thus, I4 is well
suited for high force/ moderate acceleration application such as machining. To overcome
the drawbacks of I4, a new design of a 4-DOF parallel manipulator, called Par4, was de-
veloped in [Pierrot et al., 2009b]. Its traveling plate, composed of two main parts linked
by two bars with revolute joints, allows the robot to be free of internal singularities and to
achieve high performance. Two amplification systems were proposed in order to obtain a
complete turn: The first utilizes a gear assembly and the other exploits pulleys and belts.
Nowadays, Par4 is commercialized under Omron Quattro’s name, considered the fastest
industrial PKM in the world [Bennehar, 2015]. It is worth noting that this machine is still
over-constraint, so other solutions could be analyzed. A modified version of Par4, called
Heli4, was presented in [Nabat, 2007], with an even simpler design and a more compact
traveling plate. This system is not over-constraint implying that it is away from singular
positions. The innovative feature of Heli4 lies mainly in its traveling-plate which is divided
into two sub-parts linked via helical joint producing vertical axis rotation [Company et al.,
2013]. Each part is connected to two opposite side kinematic chains. This robot has been
later industrialized by Penta Robotics under the name of Veloce. [Shayya, 2015].

In [Baradat et al., 2009], a 2-DOF parallel manipulator producing two translations in
the vertical plane was introduced. This parallel architecture, named Par2, is composed of a
rigid platform, two actuated kinematic chains, and two passive chains built in the transver-
sal plane. The key feature of this robot comes from the passive chains which are coupled
to restrict the platform movement in only one plane. It has been shown in [Pierrot et al.,
2009a] that accelerations higher than 40 G can be achieved with this robot while keeping
a low tracking error. In [Germain et al., 2011], a new 2-DOF translational parallel robot,
named IRSBot-2, was proposed. It has a special architecture composed of only two ac-
tive chains in order to reduce the robot complexity and to increase the size of its Cartesian
workspace. Besides, it is less subject to uncontrolled parasitic effects that may be produced
by the passive chains of Par2. In the literature, there are other prominent PKMs that use
a Redundantly Actuated (RA) configuration. For instance, R4 is a RA-PKM, which has 3-
DOF (translations the along x, y, and z axes) and 4 actuators. It has been reported that
this PKM can reach extreme accelerations up to 100 G in a P&P application [Corbel et al.,
2010b; Natal et al., 2014].
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Figure 1.15 – ABB’s IRB 360 FlexPicker

Figure 1.16 – The high-speed Omron Adept
Quattro robot

SPIDER4 robot is a Delta-like RA-PKM which has 4 actuators fixed on the based al-
lowing three translational movements, and an additional independent serial wrist mech-
anism (two motors) attached to the nacelle offering two more rotational movements for
the machining spindle [Saied, 2019]. It is the first Delta-Like PKM destined for machining
applications [Escorcia-Hernández et al., 2020b]. T3KR is a PKM dedicated to P&P appli-
cations. It shares several similarities with Par4; However, the rotational movement of the
end-effector is performed by an independent actuator located at the traveling plate. More
detailts about this PKM will be presented in Chapter 2. Figure 1.14 presents a timeline with
all the examples presented in this section.

1.4 Main applications of parallel manipulators

Thanks to their potential properties such as high accuracy, improved stiffness, high
dynamics, and high payload-to-weight ratio, parallel manipulators have gained a great in-
terest in several applications where such features play a crucial role [Merlet, 2005; Patel
et al., 2012]. Nowadays, PKMs have become essential for certain applications such as in-
dustrial packaging and motion simulators. Moreover, parallel robots are becoming more
popular in several fields such as food packaging, motion simulators, machining applica-
tions, medical applications, agricultural applications, 3D printing, and haptic technology.

1.4.1 High speed Pick-and-Place tasks

Pick-and-place is the process of taking objects from one location and placing them
in another. This task is essential in assembly lines or packaging production lines where
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precision is required, mainly at the stop points (start and end points). The most popular
robots for P&P operations are the Delta robot and Delta-like robots, owing to their high
dynamic capacity. Delta-like robots were developed based on the original Delta robot with
some modifications to meet the requirements of PKM, such as high load capacity, high ac-
curacy and high dynamic performance. Figure 1.15 shows ABB’s FlexPicker Delta robot,
specially designed for industries with a high need for flexible automation, such as P&P op-
erations and assembly. It is extremely powerful with an acceleration of up to 10 G, and a
handling capacity of up to 8 kg. Omron Adept Quattro, shown in Figure 1.16, is a 4-DOF
Delta-like PKM with a higher maximum acceleration (15 G). This robot was initially de-
signed at LIRMM under the name Par4 [Pierrot et al., 2009b]. The general structure of
Par4 was inspired by the Delta robot with an additional kinematic chain and an articulated
raveling-plate allowing greater stiffness near the limits of the workspace.

1.4.2 Machining applications

Machining, also known as subtractive manufacturing, is a process in which a material
is cut to the desired final shape and size by a controlled process of material removal. In
machining, several operations take place in a planned sequence to achieve the best re-
sults. The most common machining operations are namely turning, drilling and milling.
Various types of materials can be machined using these three methods. Metals, plastics,
composites, and wood are all possible materials for workpieces. These operations are crit-
ical manufacturing processes that require high precision in the positioning of the cutting
tool and the desired cutting path. Parallel robots featuring high precision, high accelera-
tion capabilities due to the light weight of the moving parts and high stiffness due to the
closed-chain structure are progressively being adopted to develop this type of machines in-
stead of the conventional serial manipulators. A machine tool based on a parallel structure
has been proposed in [Toyama et al., 1998] performing improved machining with high stiff-
ness. In [Shayya, 2015], a machining device, ARROW PKM, has been developed at LIRMM
and is capable of executing 5-DOFs in a large workspace. In addition, SPIDER4 is a 5-DOFs
redundantly actuated PKM designed and manufactured within a collaboration between
LIRMM, and TECNALIA for CNC machining tasks of resin materials [Escorcia-Hernández
et al., 2020b]. The mentioned examples are illustrated in Figure 1.17.

1.4.3 Motion simulators

Motion simulators, such as flight, car, ship, and space simulators, are typical examples
of the most relevant applications developed by PKMs. Gough-Stewart platform is the most
widely used prototype for this type of applications because it offers 6-DOF motions, suffi-
cient capacity to handle heavy loads, high stiffness, and fast and accurate motion. In the
aerospace industry, motion simulators plays a crucial role in aircraft design as it allows the
analysis of aircraft dynamics within and beyond the design flight envelope, thereby pre-
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(a) View of SPIDER4 PKM [Escorcia-
Hernández et al., 2020b]

(b) Toyoda HexaM PKM-based ma-
chine tool [Toyama et al., 1998]

(c) CAD view of ARROW PKM

Figure 1.17 – Illustration of three examples of PKMs for machining operations.

venting fatal accidents [Asif, 2012]. Figure 1.18 presents two examples of flight simulators.
In addition to being used as flight simulators, hexapods have also been used as swell sim-
ulators in the naval industry for material resistance testing or in the oil and gas industry
to test the marinization of processes on floating production units. A hexapod developed
by SYMETRIE and used as swell simulators is shown on the left of Figure 1.19. Numerous
research studies have investigated the use of SYMETRIE’s hexapods to emulate the motion
of floating ships [Assima et al., 2015a,b]. In addition, SYMETRIE has developed hexapods
to be used in the study of hydrodynamic effects of swell, sloshing or cavitation phenom-
ena for example [Symetrie, 2017]. This hexapod is illustrated on the right of Figure 1.19.
As it can be seen, it is attached downwards to a carriage that moves along the basin. The
moving platform of the robot moves the ship model to apply on it forces representative of
those generated by the swell for testing purposes.
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(a) Lufthansa flight simulator (b) FRASCA filght simulator

Figure 1.18 – View of two examples of flight simulators.

(a) MISTRAL hexapod swell simulator
at HOPPE Marine

(b) MISTRAL hexapod with a ship
model at the wave basin of Ifermer
Boulogne sur Mer, France

Figure 1.19 – View of two MISTRAL hexapods swell simulators developed by SYMETRIE.
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1.4.4 Medical applications

PKMs hold many advantages, such as high stiffness, load capacity and accuracy, that
make them perfect candidates for some specific medical purposes. For instance, PI M-850
Hexapod is a 6-DOF parallel-kinematics micro-positioning system used to achieve high
safety of micro-surgical procedures and feasibility of micro-therapy [Dalvand and Shir-
inzadeh, 2012]. A Gough-Stewart platform (6-DOF hexapod robot system) has been de-
signed to be used for precision microsurgery in a number of different medical disciplines,
such as neurosurgery, ophthalmology, spine surgery and orthopaedics [Wapler et al., 2003].
The surgiScope is a ceiling mounted robotized tool-holder device developed by the Intel-
ligent Surgical Instruments & Systems company (ISIS) and especially dedicated to micro-
scope, applications in neurosurgery. Its mechanical system, which carries the microscope
is based on a Delta-like structure [Briot et al., 2007]. In [Li and Xu, 2007], a medical Delta-
like parallel robot applicable to chest compression in the process of cardiopulmonary re-
suscitation (CPR) on patients undergoing cardiac arrest has been designed and developed.
Figure 1.20 illustrates the mentioned examples for medical applications.

1.4.5 Agricultural applications

The agricultural industry is one of the most popular and relevant industries today
where robotics is growing due to the use of heavy labor-intensive operations in row crop
cultivation and care. These operations include inter-row processing, which relies on me-
chanical or chemical destruction of weeds [Ovchinnikov et al., 2020]. "The ecoRobotix"
company has recently developed an autonomous robotic system for weeding. It is a four-
wheeled vehicle equipped with two Delta robots that can perform all weeding duties on the
farm strictly on its own (see Figure 1.21). It is equipped with a vision system that allows it
to identify crops and detect the presence of weeds among the crops. Once it recognizes the
presence of weed, the Delta PKMs apply a micro-dose of herbicide to their exact location,
systematically targeting the detected weed without wasting any chemicals. The system
can be remotely controlled via a smartphone applications, in addition to a full solar power
system [ecoRobotix, 2011]. This invention significantly reduces the use of herbicides and
fertilizers, which can be harmful when used in excess.

1.4.6 3D printers

Three-dimensional (3D) printing, or additive manufacturing, involves building a three-
dimensional object from a computer-aided design (CAD) model by adding the material
layer by layer. In recent years, 3D printers have gained popularity because they are able to
manufacture parts at low cost and reduce waste. Currently, this technology is used to man-
ufacture automotive components, aerospace components, custom orthodontics, among
others [Campbell et al., 2011]. A common parallel architecture for 3D printing is given by
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(a) SurgiScope PKM designed by
the ISIS company

(b) Hexapod medical robot for
computer-aided surgery

(c) Conceptual design of a CPR PKM

Figure 1.20 – Illustration of some examples of PKMs for medical applications.

Figure 1.21 – View of ecoRobotix smart weeding robot.
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(a) Delta Go Smart Desktop 3D Printer (b) Monoprice Mini Delta 3D Printer

Figure 1.22 – View of two examples of 3D printers based on PKMs.

the Linear Delta Robot (LDR) that allows three translations of the end-effector in the oper-
ational space. The linear delta architecture makes this robot suitable for 3D printing tasks,
where cyclic operations are required to deposit the material layer by layer [Carabin et al.,
2021]. Figure 1.22 presents some commercial 3D printers based on the linear Delta PKM.

1.4.7 Haptic devices

The word haptics refers to sensing and manipulation through the sense of touch. Hap-
tic devices provide force feedback to the users, allowing them to feel and interact indi-
rectly with an external environment. They are useful for certain tasks where visual infor-
mation is not sufficient and can lead to unacceptable manipulation errors. These mech-
anisms can be found, for example, in game controllers, teleoperation, remote-controlled
surgery, space exploration and neurorehabilitation. For high performance haptic devices,
some mechanical features such as high stiffness, low friction, high dynamic range and
low inertia must be exhibited. These properties can be found naturally in parallel mecha-
nisms. PKMs are therefore especially appropriate for sophisticated haptic interfaces: [Bir-
glen et al., 2002]. Among the PKM-based haptic devices are the Omega.6 from the Swiss
company Force Dimension [Dimension, 2004], which is one of the most advanced force
feedback interfaces providing 3D force feedback with decoupled translations and rotations
[Aggravi et al., 2021], and the sigma.7 model, which is an haptic interface ever designed by
Force Dimension. Featuring a redesigned delta base, this device is the first commercial
haptic interface to offer seven active degrees of freedom, including high precision force
feedback gripping capabilities [Dimension, 2010]. Figure 1.23 shows the two mentioned
examples.



38 CHAPTER 1. CONTEXT, PROBLEM FORMULATION AND STATE OF THE ART

(a) Omega.6 from Force Dimension (b) Sigma.7 from Force Dimension

Figure 1.23 – Illustration of two examples of PKM-based haptic devices.

1.5 Overview on Waste sorting

One area that can be significantly enhanced by modern robotic technology is waste
sorting. In particular, the need for separating recyclables into bins dedicated to different
material types so that they can be used as a second order resource, can be significantly
enhanced by robotic technology. This is the only way to effectively manage the ever in-
creasing volume of waste created by people following the modern life style.

To date, industrial waste sorting is mostly based on the traditional pneumatic sorting
machines. However, the use of these machines comes along with high-cost and large-
volume industrial installations. Moreover, they have great detection capabilities but not
a perfect selectivity. Robots are used along side these machines to remove the undesired
material from the output flows to increase their purity.

Incorporating robots into recycling industry is challenging due to the need of using
tough enough equipment to withstand a beating in harsh recycling environments. Fur-
ther to that, fast and effective gripping of materials without potential slips during trans-
fer, is highly desirable in waste sorting. Vacuum provides particularly powerful gripping
properties [Pham and Yeo, 1991] and has been one of the key enabling technologies that
facilitated the use of robots in recyclable sorting industrial applications. Currently, there
is already a number of commercial AI-driven robots that have been applied in industrial
environments to pick out recyclable materials. Some of the most well known systems are:
Max-AI Autonomous Quality Control (Max-AI AQC) robotic sorter [BHS, 2017], SamurAI -
Machinex sorting robot [Machinex, 2017] (see Figure 1.24), and AMP Cortex Dual-Robot
System (DRS) [AMP, 2019]. Most of the existing systems rely on the particularly fast move-
ment of the Delta robots to achieve a fast transfer of the recyclables from the conveyor belt
to the sorting bin. The benefit of the Delta robot kinematic design is that it reduces the
weight within the arms and therefore provides very high acceleration capability.
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Figure 1.24 – SamurAI is a self-aware sorting robot, presented by "Machinex", that employs
superior artificial intelligence technology to identify materials for a positive product recov-
ery.

Figure 1.25 – A dual-arm robot uses pick-and-throw in selective waste sorting. This robot
was built by "Bulk Handling Systems" to make recycling more efficient.
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Recently, Max-AI in collaboration with Bulk Handling Systems (BHS) released a new
sorting solution that employs two collaborating robotic arms to sort recyclables following
a material tossing approach [BHS, 2019] (see Figure 1.25). This system has been presented
as the main competitor of the commonly used delta-robot approach.

1.6 Trajectory generation and control Problem

formulation

The growing interest in parallel robots in several domains and applications always mo-
tivates the scientific community to study and improve these machines to meet the require-
ments of each corresponding application. There are multiple aspects from which parallel
manipulators can be analyzed, synthesized and improved. These aspects include the me-
chanical design and architecture optimization problem, the kinematic and dynamic mod-
eling, the motion planning problem and, last but not least, the control design.

In this thesis, we aim at successfully developing a P&T task using a parallel manipulator.
Therefore, both aspects, trajectory generation and control design, will be addressed in this
framework. On the one hand, the trajectory planning consists in generating a time-optimal
P&T trajectory satisfying the kinematic and dynamic constraints of the robotic system. On
the other hand, the control design consists in proposing robust control solutions aiming
at improving the dynamic performance of parallel manipulators under different operating
conditions.

1.6.1 Main challenges in trajectory generation for PKMs

Trajectory planning is a major research area in robotics. Research in this area started
in the 1970s. It deals with the problem of finding a collision free path from an initial state
to a final state given a complete description of robot physical limitations, geometry and
environment [Al Homsi, 2016]. To avoid confusion between terms often used as synonyms,
the difference between a path and a trajectory is to be explained. A path denotes the locus
of points in the joint space, or in the operational space, which the manipulator has to follow
in the execution of the assigned motion; a path is then a pure geometric description of
motion. On the other hand, a trajectory is a path on which a timing law is specified, for
instance in terms of velocities and/or accelerations at each point [Siciliano et al., 2009].
The goal of trajectory planning is therefore to generate the reference inputs to the motion
control system which ensures that the manipulator executes the planned trajectories

The techniques for trajectory generation reported in the literature, for both one-
dimensional and multidimensional trajectories, are classified according to whether the
desired motion is defined assuming only initial and final points (point-to-point trajecto-
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ries) or considering a set of intermediate via points (multipoint trajectories, also known as
motion through a sequence of points) [Biagiotti and Melchiorri, 2008].

For the execution of a specific robot task, it is worth considering the main challenges of
motion planning algorithms as follows.

1.6.1.1 Path constraints

Trajectory planning in the operational space naturally allows the presence of path con-
straints to be accounted; these are due to regions of workspace which are forbidden to the
manipulator, e.g., due to the presence of obstacles. Besides, a lot of papers in the literature
mention the motion planning problem proposing some techniques to avoid the singulari-
ties in the workspace of the parallel robots [Dash et al., 2005; Reveles et al., 2016].

1.6.1.2 Continuity constraints

Continuity of trajectories is a crucial constraint since discontinuities in the trajecto-
ries can generate discontinuous control torques and thus, lead to undesired behavior of
the mechanical structure such as vibrations or instabilities [Bennehar et al., 2014]. Con-
sequently, trajectory generation should take into consideration continuity constraints. In
particular, it would be desirable to obtain trajectories with continuous joint accelerations,
so that the absolute value of the jerk (i.e. the derivative of the acceleration) keeps bounded.
Limiting the jerk is very important, because high jerk values can wear out the robot struc-
ture, and heavily excite its resonance frequencies [Gasparetto and Zanotto, 2008]. More-
over, low-jerk trajectories can be executed more rapidly and accurately. Various splines in-
cluding the cubic spline, trigonometric spline, polynomial spline, quintic spline, B-spline
are proposed for jerk-limited motion profiles [Perumaal and Jawahar, 2012]. S-curve mo-
tion is another approach for jerk-limited motion.

1.6.1.3 Dynamic constraints

The minimal requirement for a manipulator is the capability to move from an initial
posture to a final assigned posture. The transition should be characterized by motion laws
requiring the actuators to exert joint generalized forces which do not violate the saturation
limits, do not excite the typically modelled resonant modes of the structure, and thereby
do not exceed the maximum allowable allowable robot velocity and acceleration [Siciliano
et al., 2009; Gasparetto and Zanotto, 2008]. It is then necessary to devise planning algo-
rithms that generate suitably smooth trajectories.

1.6.1.4 Optimal trajectories

The algorithm should generate a trajectory which, in respect to the above general re-
quirements, is also capable of optimizing some performance index along the trajectory.
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The most significant optimality criteria are: (i) minimum execution time, (ii) minimum
energy (or actuator effort) [Zhang and Ming, 2019], and (iii) minimum jerk. Besides the
aforementioned approaches, some hybrid optimality criteria have also been proposed
(e.g. time–energy optimal trajectory planning, time-jerk optimal planning) [Gasparetto
and Zanotto, 2008].

1.6.2 Main challenges in control of PKMs

Control of PKMs is often considered in the literature as a challenging task. Indeed,
PKMs are complex nonlinear systems known for their abundant uncertainties, parameters
variation and actuation redundancy. From a control point of view, the following challenges
should be taken into account in the control design for PKMs in order not to deteriorate
their dynamic performance [Chemori, 2017].

1.6.2.1 Nonlinear complex dynamics

Parallel manipulators are known by their highly nonlinear dynamics mainly emerging
from their closed-loop kinematic structure with the presence of several passive joints. Ac-
cording to [Natal et al., 2014], operating at high accelerations can increase considerably the
effect of nonlinearities in PKMs leading to mechanical vibration issues. These vibrations
may produce mechanical damages and cause significant loss of precision. Furthermore,
their kinematic configuration gives rise to coupled dynamics that require careful control
synchronization between the actuators. Any failure of one of the actuators may affect the
whole structure of the robot. Thus, the conventional linear control approaches may fail to
guarantee the safety and stability of PKMs in such critical operational conditions. Accord-
ingly, the need for advanced nonlinear control strategies arises to minimize the nonlin-
earities effects while fulfilling the requirements of high accuracy under high acceleration
conditions.

1.6.2.2 Structured and unstructured uncertainties

Uncertainties are simply the differences between the formulated dynamic model and
the real system [Saied, 2019]. They can be classified into two categories: structured and un-
structured. The first type can appear in the form of inaccurate knowledge of the dynamic
parameters (e.g, masses and inertia) or parameter variations due to the operating environ-
ment (handled payload in P&P tasks, contact forces with a workpiece in machining opera-
tions, etc.). In contrast, the second type includes uncertainties resulting from wear of the
system components, geometric manufacturing errors, non-modeled phenomena, model-
ing simplifications (i.e., neglecting the actuators’ dynamics or friction), and sensor noise
[Siciliano and Khatib, 2016; Chemori, 2017]. Taking these uncertainties into account dur-
ing the control design phase can ensure high dynamic performance, high accuracy in the
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developed task, and robustness towards changes in dynamic operating conditions such as
high-speed motions and payload variations.

1.6.2.3 Actuation redundancy

The PKM is called redundantly actuated (RA-PKM) when the number of its actuators is
greater than the number of DOFs of its end-effector [Merlet, 2005]. In other words, PKMs
with actuation redundancy (AR) are characterized by the following property [Corbel et al.,
2010a]: "For a given wrench (force and moment) acting on the moving platform and a given

pose, there is an infinite number of corresponding joint forces/torques."

The difference between the number of actuators of the PKM and its number of DOFs
is called the degree of actuation redundancy. An illustrative example of actuation redun-
dancy for a 3-DOFs PKM through adding one more kinematic chain with its respective
actuator is shown in Figure 1.26. In this example, the degree of actuation redundancy is
one (four actuators and three DOFs, (two translational movements along the x and y axes,
and one rotational movement,φ, around the z axis)).

Actuation redundancy, which is a peculiarity of PKMs, offers several advantages for
these manipulators described as follows [Müller, 2009]:

• Elimination of singularities and thus enlarging the usable workspace.

• Increasing the dynamic capabilities of the PKM.

• Increasing the homogeneity of the force transmission and the manipulator stiffness.

• Better load distribution reducing the power consumption of the individual actuators.

However, actuation redundancy allows for internal prestresses, due to the antagonistic
forces of the redundant actuation, without generating end-effector forces (i.e. without af-
fecting the mobility of a parallel manipulator). These internal prestresses can be purpose-
fully exploited for secondary tasks, such as backlash avoidance [Muller, 2005] and manip-
ulator stiffness control within the workspace [Muller, 2006]. According to [Hufnagel and
Muller, 2012], the antagonistic forces can be produced by (i) non-synchronized indepen-
dent control of the actuators, (ii) geometric uncertainties, and (iii) measurement errors.
If not accordingly taken into account in the control design, these generated antagonistic
forces may cause damages to the mechanical structure of the robot. For this reason, the use
of mere position control is no longer possible in presence of actuation redundancy [Wang
and Gosselin, 2004].

1.7 Dynamic modeling of parallel manipulators

Dynamic modeling plays a vital role in the study of parallel manipulators. On the one
hand, it is necessary for simulation purposes to analyse the behavior of the robot under
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(a) Non-redundantly actuated 3-DOF PKM (b) Redundantly actuated 3-DOF PKM

Figure 1.26 – Illustration of actuation redundancy in PKM through additional kinematic
chain.

control; this ensures the stability of the closed-loop and the fulfillment of the physical lim-
itations of the system. The obtained simulation results can help researchers to propose
improvements to PKM in terms of mechanical design or control synthesis. On the other
hand, most modern control strategies require full or partial knowledge of the dynamics
of the PKM to be controlled in order to improve its tracking performance and achieve the
specified control objective.

The dynamic analysis of PKMs has been extensively investigated in the literature with
significant complexity due to the closed-loop nature of these manipulators, involving sev-
eral kinematic chains. Most of the proposed approaches for the dynamic analysis of PKMs
use the following procedure [Merlet, 2005; Taghirad, 2013; Briot et al., 2015]:

1. First, disconnecting the kinematic chains (limbs) from the moving platform; this re-
sults in a tree structure consisting of multiple open-loop chains (see Figure 1.27).
This process corresponds to removing the loop constraints in the system.

2. Second, deriving the dynamics of each limb separately using their local generalized
coordinates (position vector of the limb joints, the Cartesian positions of the center
of mass of the moving platform and its orientation angles).

3. Finally, combining the local models to obtain the final dynamic formulation for the
whole manipulator in terms of its generalized global coordinates.

The main existing methodologies to derive the dynamic model of PKMs are based on (i)
the Newton-Euler formulation [Gosselin, 1996; Dasgupta and Choudhury, 1999; Borchert
et al., 2015], (ii) Euler-Lagrange formulation [Cheng et al., 2003; Ahmadi et al., 2008; Abdel-
latif and Heimann, 2009], and (iii) the third approach is virtual work principle/ D’Alembert
principle [Codourey, 1998; Tsai, 2000; Zhao and Gao, 2009].
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End Effector

Figure 1.27 – Illustration of the loop constraints for a planar 2-DOF redundantly actuated
PKM [Mueller, 2011]

1.7.1 Dynamic modeling representation

Dynamic model establishes the relationship between the generalized forces and
torques of a robotic system and its corresponding positions,and/or orientations, veloci-
ties, and accelerations in the Cartesian and joint spaces. There are two types of dynamic
models [Staicu, 2019]:

• Forward Dynamics: being given the set generalized forces and torques of the robot,
we can compute the resulting motion of the end-effector and joints as a function of
time. The representation of the forward dynamic model in terms of Cartesian space
variables can be written as follows:

Ẍ= f(F,X,Ẋ) (1.1)

where X, Ẋ, and Ẍ ∈R
m are the Cartesian position, velocity, and acceleration vectors

of the end-effector, respectively, while F ∈ R
m is the external forces/torques vector

applied to the end-effector. m is the number of the robot end-effector DOFs.

The forward dynamics expressed in terms of joint variables is presented as below:

q̈= f(Γ,q,q̇) (1.2)

where q, q̇, and q̈ ∈ R
n are the position, velocity, and acceleration vectors of the ac-

tuated joints, respectively, withn being the actuators number. Γ ∈R
m is the actuated

joint force/torque vector.

• Inverse Dynamics: given the position, velocity and acceleration vectors of the end-
effector and actuated joints, we can determine the set of forces/torques that produce
the corresponding motion. This description can be expressed in terms of Cartesian
and joint space coordinates, respectively, by the following formula:

F= f(X,Ẋ,Ẍ) (1.3)
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Γ = f(q,q̇, q̈) (1.4)

The forces/torques applied on the moving platform and those produced by the actuated
joints are related to each other by means of the inverse Jacobian matrix of the manipulator
Jm ∈R

n×m as follows:
F= JTmΓ (1.5)

Hereafter, the inverse dynamic model will be detailed as it plays an essential role in the
synthesis of model-based controllers.

Representation of the inverse dynamic model in joint space

The inverse dynamic formulation of any m-DOF PKM having n actuators (such that
n≥m) can be represented in joint space as follows [Siciliano and Khatib, 2016]:

M(q)q̈+C(q,q̇)q̇+G(q)+Γd(t)= Γ (1.6)

where

• M(q) ∈R
n×n is the total mass and inertia matrix.

• C(q,q̇) ∈R
n×n is the Coriolis/Centrifugal forces matrix,

• G(q) ∈R
n is the gravity vector,

• Γd(t) ∈R
n gives the vector of external disturbances and unmodeled dynamics,

• Γ(t) ∈R
n is the input torque vector.

This formulation is the standard formulation widely used for control design purposes,
since most PKMs do not have sensors to measure the position of the mobile platform di-
rectly in the fixed coordinate system.

Representation of the inverse dynamic model in Cartesian space

The inverse dynamics can also be represented in Cartesian space (operational or task
space) employing the following Jacobian transformations:

q̇= JmẊ

q̈= JmẌ+ J̇mẊ
(1.7)

Substituting (1.5) and (1.7) in (1.6), the inverse dynamics can be expressed in Cartesian
space as follows [Taghirad, 2013]:

MxẌ+CxẊ+Gx+Γd(t)= F (1.8)

where

• Mx= J
−T
m M(q)Jm is the mass and inertia matrix expressed in Cartesian space,
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• Cx = J−Tm M(q)J̇m + J−Tm C(q,q̇)Jm is the Coriolis/Centripetal matrix expressed in
Cartesian space,

• Gx= J−Tm G(q) is the Cartesian gravitational force vector,

• F ∈Rm is the input force vector on the end-effector.

In case of redundant parallel manipulators, the direct Jacobian matrix J can be computed
from the inverse one using the Moore-Penrose pseudoinverse matrix which can be adopted
when a system of equations is under-constrained (infinitely many solutions).

1.7.2 Properties of the dynamic model

As common for robotic manipulators, the inverse dynamic model of PKM (1.6) and
the terms that constitute it, have some properties which are interesting for control design.
These properties are the following [Lewis et al., 2003; Kelly et al., 2006; Taghirad, 2013]:

1.7.2.1 Property of mass and inertia matrix

Property 1.7.1. The mass and inertia matrixM(q) and its inverseM(q)−1 are symmetric,

positive-definite and bounded above and below as follows:

µ1I≤M(q)≤µ2T (1.9)

1

µ2
I≤M(q)−1 ≤

1

µ1
T (1.10)

whereµ1 andµ2 are two positive scalars. µ1 andµ2 can be function of joint vectorq for some

cases (for example if using prismatic joints) [Kelly et al., 2006]. Similarly, the boundedness

property ofM(q) can be expressed as follows:

m1 ≤ ||M(q)||≤m2 (1.11)

where ||.|| is the second norm of matrix. m1 andm2 are two positive scalars.

Furthermore, there exists a positive constant KM such that:

||M(x)z−M(y)z||≤KM ||x−y|| ||z|| ∀ x,y,z ∈R
n (1.12)

Note that this property is only valid for robots with revolute joints [Kelly et al., 2006].

1.7.2.2 Property of Coriolis and centrifugal matrix

Property 1.7.2. Coriolis and centrifugal matrix is bounded as follows:

||C(q,q̇)q̇||≤KC1||q̇||2 (1.13)
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where KC1 is a positive number independant of q and can be function of q in some cases.

While ||.|| is the second norm of a vector or a matrix.

In addition, the matrix S(q,q̇) = Ṁ(q)− 2C(q,q̇) or S(q,q̇) =
1

2
Ṁ(q)−C(q,q̇) is a

skew-symmetric matrix fulfilling:

xTS(q,q̇)x= 0 ∀ x ∈R
n (1.14)

Ṁ(q)=C(q,q̇)+CT (q,q̇) (1.15)

Furthermore, there exist positive numbers KC1 and KC2
such that

||C(x,z)w−C(y,v)w||≤KC1 ||z−v|| ||w||+KC2 ||x−y|| ||w|| ||z|| (1.16)

for all vector x,y,z,w,v ∈R
n

1.7.2.3 Property of gravity vector

Property 1.7.3. A bound on the gravity vector is given as follows:

||G(q)||≤g0 (1.17)

where g0 is a positive constant that can be function of q in some cases (for example if using

prismatic joints).

Moreover, there exists a positive constant KG such that

||G(x)−G(y)||≤KG ||x−y|| ∀ x,y ∈R
n (1.18)

This property is only valid for a robot using revolute joints.

1.7.2.4 Property of the disturbance term

Property 1.7.4. The dynamic equation of PKM (1.6) has a disturbance term Γd(t) which

represents a general class of external disturbances and inaccurately modeled dynamics. We

shall assume that this term is bounded as follows:

||Γd(t)||≤d (1.19)

where d is a scalar constant that be determined.
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1.7.2.5 Linear formulation property of the dynamics

Property 1.7.5. The manipulators’ dynamics is characterized by a fundamental property

that is essential for model-based adaptive controllers. Namely, it is the linearity of the dy-

namics with respect to parameters such as inertia and masses [Craig et al., 1987; Siciliano

and Khatib, 2016]. Consider the standard form of the inverse dynamics of a m-DOF PKM

given by (1.6), all constant parameters in the dynamic model are considered as coefficients

of known functions (linear and nonlinear) of the generalized coordinates. The external dis-

turbances Γd(t) are excluded from the linear reformulation of the dynamics since they are

not modeled and cannot be written in a linear form of the parameters. Therefore, (1.6) can

be expressed in a linear form as follows:

W(q,q̇, q̈)Φ+Γd(t)= Γ(t) (1.20)

whereW(q,q̇, q̈) ∈R
n×p is the matrix of the known functions called regressor, andΦ ∈R

p is

the vector the parameters to be estimated.

It should be noted that not all parameters have to be estimated because of the good

knowledge that one may have about some parameters. Accordingly, two sets of parameters

can be distinguished: the set of known parameters and the other of unknown, uncertain or

time-varying parameters [Ortega and Spong, 1989]. Therefore, the reformulation in (3.54)
can be rewritten in general form as follows:

Wn(q,q̇, q̈)Φn+Wu(q,q̇, q̈)Φu+Γd(t)= Γ(t) (1.21)

where Wn(q,q̇, q̈) ∈ R
n×pn and Wu(q,q̇, q̈) ∈ R

n×pu are partial regression matrices. Φn ∈
R
pn is the set of known parameters, while Φu ∈ R

pu is the set of parameters considered for

real-time estimation.

1.8 Overview on motion control strategies for parallel

robots

In the literature, several control approaches have been proposed for motion control of
parallel robots [Paccot et al., 2009]. Many of them have been taken from control schemes
of serial robots since they share similarities in the dynamics modeling. Control solutions
for robots can be classified into two main sets: kinematic control strategies and dynamic
control strategies [Liu et al., 2001; Shang and Cong, 2010].

In kinematic control strategies, to simplify the control problem, parallel manipulators
are supposed to be decoupled into a group of single-axis systems, so they can be controlled
by a group of individual controllers. This type of control does not require any knowledge
about the controlled system dynamics, so the complex computation of dynamics can be
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Figure 1.28 – Classification of the main proposed control solutions for parallel manipula-
tors in the literature.

avoided and the controller design can be simplified considerably. However, these con-
trollers do not always produce high performance, and there is no guarantee of stability at
high-speed motions.

Dynamic control strategies make use of the whole or some parts of the inverse dynamic
model in their closed-loop design, which compensates for the potentially non-negligible
effects of the nonlinear dynamics of the manipulator. Thus, in most cases, the obtained
tracking performance using dynamic controllers exceeds that of kinematic controllers
[Shang and Cong, 2010; Taghirad, 2013]. Figure 1.28 presents a classification of the most
relevant control schemes proposed in the literature for PKMs. All the listed controllers will
be briefly described in this section except for those based on the Robust Integral of the Sign
of the Error (RISE) and Desired Compensation Adaptive Law (DCAL) control, which will be
described in more detail in Chapter 3.
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1.8.1 Kinematic control strategies

1.8.1.1 PD/PID control

The Proportional-Integral-Derivative (PID) controller [Ziegler et al., 1942] is the most
commonly used control scheme in the industry. This is mainly because of its simplicity
and easy implementation. This model independent control strategy provides a relatively
adequate performance for most industrial applications. However, the performance of this
controller may decrease considerably if the system operates at high accelerations. The
most common way to implement a PID controller on parallel robots is in joint space, since
most of them are equipped only with encoders measuring the joint positions of the actua-
tors. The PID control equation for parallel manipulator with n actuators [Ren et al., 2007]
is expressed in joint space form as follows:

Γ(t)=Kpe(t)+Kdė(t)+Ki

∫ t

t0

e(τ)dτ (1.22)

Where Kp, Kd, and Ki ∈ R
n×n are positive definite diagonal matrices for the proportional,

derivative, and integral actions, respectively. The tracking error in joint space e(t) =qd(t)
- q(t) is defined as the difference between the desired trajectory in joint space qd(t) ∈R

n,
and the measured one q(t) ∈ R

n. ė ∈ R
n denotes the joint velocity errors. Nevertheless,

for the particular case where the pose of the end-effector could be directly measured, a
Cartesian-space controller is often recommended. The expression of a Cartesian-space
PID controller [Natal et al., 2014] can be written as follows:

F(t)=Kpex(t)+Kdėx(t)+Ki

∫ t

t0

ex(τ)dτ (1.23)

Where ex(t) =Xd(t) - X(t) represents the trajectory tracking error in Cartesian space, be-
ing Xd(t) ∈ R

m, the desired trajectory, and X(t) ∈ R
m the measured one, Kp, Kd, and Ki

∈R
m×m are positive definite feedback gains. In this case of Cartesian-space PID, the com-

puted control effort is the force F(t) instead of Γ(t). Thus, the actual control law to be
applied to the actuators should be computed. As shown above in the relationship (??), the
end-effector force vector F(t) and the actuator torques Γ(t) are related to each other by
means of the inverse Jacobian matrix Jm. If the PKM is non-redundantly actuated, Γ(t)
can be obtained by using the inverse of Jm. Otherwise, if it is redundantly actuated, the
pseudoinverse of Jm, denoted by J+m can be used:

Γ(t)= (J+m)
TF(t) (1.24)

where J+m=(JTmJm)
−1JTm is the pseudoinverse of Jm.
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1.8.1.2 Nonlinear PD/PID control

Nonlinear PD/PID (NPD/NPID) controller arise from the need to improve the response
and tracking performance of conventional PID controller. It shares the same structure of
the standard PID with the use of nonlinear time-varying feedback gains instead of fixed
gains [Seraji, 1998]. The control equation of a NPID controller applied to a robotic manip-
ulator can be written in joint space as:

Γ(t)=Kp(.)e(t)+Kd(.)ė(t)+Ki(.)

∫ t

t0

e(τ)dτ (1.25)

WhereKp(.),Kd(.), andKi(.) ∈R
n×n are the nonlinear time-varying feedback gains for the

proportional, derivative, and integral actions, respectively. Those nonlinear gains are au-
tomatically adjusted according to a set of rules; they can be a function of the system errors,
control input, and other parameters. The generated values of the gains can handle the in-
stantaneous operating conditions to reduce the error as much as possible. When the error
between the desired and actual values of the controlled variable is large, the values of the
gains increase to generate a large corrective action to quickly drive the system toward its
goal. As the error decreases, the gains are automatically reduced to avoid excessive oscilla-
tions and large overshoots in the response. Several methodologies have been proposed in
the literature to adjust the nonlinear time-varying feedback gains [Seraji, 1998; Jiang and
Gao, 2001; Ouyang et al., 2002], among others. In [Su et al., 2004], the NPID control was
implemented on a 6-DOF parallel manipulator offering several advantages over the fixed-
gain PID controller. These improvements include guaranteed stability, better tracking per-
formance and improved ability to reject external disturbances. Furthermore, in [Ouyang
et al., 2002], a NPD control design obtained accurate tracking of the desired trajectory for a
2-DOF parallel manipulator compared to a linear PD controller. However, like the classical
PID controller, NPD/NPID is a decentralized control strategy in which neither the nonlin-
ear coupled dynamics nor the closed-chains constraints are considered. Consequently, its
performance deteriorates especially in high-speed tasks due to non-trivial nonlinearities.

1.8.1.3 L1 adaptive control

L1 adaptive control was introduced for the first time in [Cao and Hovakimyan,
2006a,b]. This control scheme is inspired from the Model Reference Adaptive Control
(MRAC) but decoupling the estimation and control loops which enables fast adaptation
while guaranteeing the robustness of the closed-loop system. The first experimental im-
plementation of L1 adaptive control strategy on a PKM was reported in [Bennehar et al.,
2015a]. The control law consists of the combination of two separate terms, a fixed state-
feedback term and an adaptive term that compensates partially for the nonlinearities of
the system, that is

Γ(t)=Amr(t)+Γad(t) (1.26)
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Figure 1.29 – Block diagram of the L1 adaptive control for PKM.

whereAm ∈ R
n×n is a Hurwitz matrix characterizing the transient response of the system,

r(t) ∈R
n is the joint-space combined error, r(t)= ė+Λe, withΛ ∈R

n×n being a symmetric
positive-definite matrix. Γad(t) ∈R

n is the adaptive control signal designed such that

Γad(s)=C(s)η̂(s) (1.27)

where η̂(s) is the Laplace transform of η̂(t) = θ̂(t)||r(t)||L∞
+ σ̂(t) and C(s) is a low-pass

filter. θ̂(t) and σ̂(t) estimates the nonlinear functions θ(t) and σ(t) that represent all the
nonlinearities and disturbances of the system, respectively. The procedure of such estima-
tion is detailed in [Hovakimyan and Cao, 2010; Bennehar et al., 2015a]. Figure 1.29 shows
the general scheme of the L1 adaptive controller implemented on parallel manipulators.
Using projection-based adaptation law, the boundedness of the estimated parameters is
ensured as well as the convergence of r(t) to zero [Bennehar et al., 2015a].
The experimental implementation of this control scheme on a 4-DOF PKM shows better
tracking performance than a classical PD controller thanks to the compensation of the
nonlinearities in the L1 adaptive controller [Bennehar et al., 2015a].

1.8.1.4 Strategies based on artificial neural networks

Artificial Neural Networks (ANNs) are known by their powerful universal approxima-
tion features. They have thus been applied extensively in several robotics fields such as pat-
tern recognition, learning, signal processing, modeling identification, and control [Jiang
et al., 2017]. Thanks to their learning ability, artificial neural networks are mostly used
to approximate the dynamics of the manipulator. Then, the learned dynamics can be in-
cluded in the control scheme to compensate for the uncertainties and disturbances.

Several works can be found in the literature regarding the application of neural net-
works in control of PKMs. One can mention the decentralized Cartesian space PID con-
troller with an artificial neural network term that has been proposed in [Li and Wang, 2009].
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The main motivation of this work is to improve the tracking capabilities of a 2-DOF redun-
dantly actuated parallel manipulator. The provided simulation results demonstrated the
superiority of the augmented controller with respect to the original PID. The maximum er-
rors were significantly reduced since the additional neural network term accounted for the
nonlinear dynamics of the manipulator.

Moreover, in [Escorcia-Hernández et al., 2020a], a RISE (Robust Integral of the Sign Er-
ror) controller with an adaptive feedforward compensation term based on BSNNs was pro-
posed to regulate the positioning of a Delta robot. BSNNs make an online approximation
of the Delta robot dynamics and integrate it into the control loop. The BSNNs’ functions
are bounded according to the extreme values of the desired joint space trajectories that are
the BSNNs’ inputs. In order to evaluate the effectiveness of the proposed control scheme
with respect to the standard RISE controller, numerical simulations for different case stud-
ies under different scenarios were performed. The obtained results confirm that the use
of the BSNNs as a feedforward compensation term is a suitable alternative to improving
the trajectory tracking in PKMs even if the system is dealing with parametric uncertainties
as sudden changes in the payload. Moreover, the dynamic approximation of the BSNNs is
good enough according to the comparison with the nominal Feedforward of a RISE Feed-
forward controller.

1.8.2 Dynamic control strategies

1.8.2.1 Computed torque control

Computed Torque (CT) control, also known in some literature as Inverse Dynamic Con-
trol (IDC) [Taghirad, 2013], is a widespread control strategy for robotic manipulators be-
cause of the fact that it can significantly linearize and decouple dynamic formulation of
the closed-loop error dynamics. The joint-space control law applied to any manipulator
can be expressed as follows [An et al., 1987]:

Γ(t)=M(q)(q̈d+Kpe+Kdė)+C(q,q̇)q̇+G(q) (1.28)

where Kp, Kd ∈ R
n×n are positive definite diagonal feedback gain matrices for the propor-

tional, and derivative control actions, respectively. e(t), ė(t) ∈R
n are the joint position and

velocity tracking errors, respectively. Substituting (1.28) into the dynamics of the manipu-
lator in (1.6) (without considering the external disturbances) leads to the following linear
closed-loop error system equation:

ë+Kdė+Kpe= 0 (1.29)

in which ë represents the acceleration error in joint space. As it can be seen in (1.29),
the stability of the final obtained system can be proven as for classical linear systems.
Moreover, if the feedback gains are chosen appropriately, the tracking error can converge
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Figure 1.30 – Block diagram of the standard computed torque controller in joint space.

quickly towards zero with a suitable steady-state performance. However, note that for a
good tracking performance, an accurate model of the system is required. Furthermore,
this technique is computationally intensive in terms of the online computations needed
to carry out the closed-loop control structure, and the use of measured variables such as
joint positions and velocities may yield noise that can adversely affect the system perfor-
mance. A block diagram illustrating the joint space computed torque controller (1.28) is
shown in Figure 1.30. In [Paccot et al., 2008], a Cartesian space CT control is implemented
and validated on the parallel Orthoglide robot using a fast exteroceptive measure of the
end-effector pose in the feedback loop. The control scheme was reduced to its simplest
expression leading to a better accuracy than the joint space CT control (because of no use
of the kinematic model in Cartesian space control).

1.8.2.2 Augmented PD control

The augmented PD (APD), also known as PD+ controller, is one of the simplest control
schemes that guarantee the control objective globally. It is mainly composed of a PD feed-
back term plus the inverse dynamic model of the controlled system. Unlike the CT control
scheme, the inertia matrix in APD is outside of the PD feedback loop yielding a faster com-
putation process [Paden and Panja, 1988]. The joint-space expression of the APD controller
is established as follows [Zhang et al., 2007]:

Γ(t)=M(q)q̈d+C(q,q̇)q̇d+G(q)+Kpe+Kdė (1.30)

Where Kp, Kd ∈ R
n×n are positive definite diagonal feedback gain matrices and e(t), ė(t)

∈ R
n are the tracking errors of the joint positions and velocities, respectively. One can

clearly observe that the APD controller compensates for the effect of the full nonlinear
dynamics evaluated using the measured and desired trajectories. The feedback PD control
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term guarantees the global asymptotic stability. However, an online computation of the
nonlinear functions of the dynamic model is required for this controller as well as an ac-
curate knowledge of the manipulator dynamic parameters in order to achieve the desired
performance.

1.8.2.3 PD control with computed feedforward

PD control with computed feedforward consists of using the full inverse dynamic
model (similarly to the previous controller) to compensate the effect of nonlinearity but
within an offline-computation mode. In effect, the inverse dynamic model is evaluated
with the desired trajectories instead of the measured and estimated ones since the sensors
used to measure the actual joint variables may incorporate noise into the measurements,
which may impair the robot performance. Moreover, there is no need to develop velocity
and acceleration observers for such control strategy since all the dynamic computations
depend on the desired trajectory. This control technique has been widely applied in the
control of robots owing to its simplicity, asymptotic stability, and easy implementation, as
all nonlinear dynamic terms are calculated before execution of the robot. The joint space
control law can be formulated as follows [Santibañez and Kelly, 2001]:

Γ(t)=M(qd)q̈d+C(qd, q̇d)q̇d+G(qd)+Kpe+Kdė (1.31)

where Kp, Kd ∈ R
n×n are positive definite diagonal feedback gain matrices for the propor-

tional, and derivative control actions, respectively. e(t), ė(t) ∈ R
n are the joint position

and velocity tracking errors, respectively. A modified version of the standard PD control
with computed feedforward named “Dual-Space Control” was developed in [Natal et al.,
2012]. In this controller, the dynamic model part is formulated in both coordinate spaces,
Cartesian and joint and not only in one as in the original formulation. It was implemented
on a RA-PKM called R4, showing a good tracking performance for high-speed pick-and-
place tasks compared to the simple Cartesian PID controller. In [Saied et al., 2018], the PD
control with computed feedforward was augmented by the actuator and friction dynam-
ics evaluated also based on the reference trajectories. The idea behind this modification
is to compensate the effects of the aforementioned dynamics in addition to the high non-
linearities existing in PKMs. It was experimentally implemented on a 4-DOF PKM named
VELOCE. The results validated that model-based controllers relying on more comprehen-
sive dynamics outperform simplified controllers in terms of tracking performance when
operating in real-time conditions.

1.8.2.4 Strategies with time-varying feedback gains

Control strategies with time-varying feedback gains are mainly based on conventional
model-based strategies with the main difference that the linear feedback loop is replaced
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by a nonlinear time-varying one. This proposition is motivated by the advantages of non-
linear gains compared to fixed ones. The nonlinear time-varying gains endow the con-
troller with a better ability to reject external disturbances, making it less sensitive to the
dynamic changes in operating conditions. In a similar manner to the NPD controller pre-
sented above, several dynamic control schemes for parallel manipulators have been im-
proved in the literature.

[Shang et al., 2009] proposed an Augmented Nonlinear PD (ANPD) controller to im-
prove the trajectory tracking accuracy for a redundantly actuated parallel robot. The ANPD
controller is designed based on the conventional APD and the use of nonlinear feedback
gains instead of the usual constant ones. The stability of the parallel manipulator sys-
tem with the proposed ANPD controller is proven using the Lyapunov stability guarantee
asymptotic convergence to zero of both the tracking error and error rate. The superiority
of the ANPD controller over the conventional APD controller is verified through trajectory
tracking experiments of a 2-DOF RA-PKM. In [Shang and Cong, 2009], the conventional
CT controller was revisited with nonlinear feedback gains. The same procedure in [Shang
et al., 2009] was followed to demonstrate the relevance of using nonlinear time-varying
gains instead of fixed ones. The proposed Nonlinear CT (NCT) controller inherits merits
from the conventional CT controller, such as simple structure and clear physical mean-
ing of each control parameter, it also owns the good performances of the NPD algorithm
in elimination of the nonlinear factors such as the modeling error and the nonlinear fric-
tion. Stability proof of the proposed controller based on Lyapunov theory was provided.
Real-time experiments on a 2-DOF RA-PKM show a net superiority of the proposed NCT
controller with respect to the conventional one in terms of tracking performance. How-
ever, this NCT controller inherits from the original CT controller its main drawback. This
is because the dynamic compensation is calculated based on the dynamic model with the
fixed dynamic parameters, but the parameters are variable during the trajectory tracking.
Thus, the dynamic compensation in the NCT controller cannot achieve good compensa-
tion performance.

1.8.2.5 Dynamic adaptive control

Dynamic adaptive controllers arise because, in reality, the dynamic parameters of a
manipulator are often difficult to know precisely, and most of the time, some of these pa-
rameters may vary depending on the assigned task. Many of the control schemes belong-
ing to this subcategory are improvements of dynamic controllers with fixed parameters.
These adaptive control strategies rely on the linear-in-the-parameters property of the in-
verse dynamics of the manipulator, where an adaptation loop is added to the control law to
estimate in real time the unknown, uncertain or time-varying parameters of the manipu-
lator. In 1989, a tutorial on the existing adaptive control schemes for rigid serial manipula-
tors was reported in [Ortega and Spong, 1989] showing the global convergence of the error
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Figure 1.31 – Block diagram of the general adaptive feedforward control law in joint space.

using the adaptation law in the controller, while ensuring boundedness of the estimated
parameter. The parameter adaptation law can be driven by the parameter estimation error
or by the position tracking error.

• Adaptive feedforward control:

For robotic manipulators, the formulation of the Adaptive FeedForward Control (AFFC)
equation in joint space can be expressed as follows:

Γ(t)= Y(qd, q̇d, q̈d)Φ̂+ΓFB (1.32)

where Φ̂ is the vector of the dynamic parameters to be estimated, Y(qd, q̇d, q̈d) is the re-
gressor matrix, and ΓFB is any feedback controller. It should be noted that the AFFC strate-
gies use the desired joint trajectories instead of the measured ones in the regressor matrix
and the parameters adaptation rule, which reduces the computational time and the sensi-
tivity to measurement noise. Figure 1.31 illustrates the general block diagram of the AFFC
scheme. Most of the time, the parameter adaptation law is derived using the output track-
ing error. Several AFFC schemes have been proposed in the literature for the control of par-
allel manipulators. The experimental results ensured the boundedness and convergence of
the estimated parameters to the real values by means of an appropriate adaptation law. It
has been validated that the adaptive control laws outperform the conventional controllers
in terms of accuracy and robustness towards parameters variation. Between the most rel-
evant, one can mention: PD control with adaptive feedforward being successfully imple-
mented in real-time to control the positioning of a 6-DOF PKM called Hexaglide [Honegger
et al., 1997] and recently on VELOCE PKM [Saied et al., 2019b]. Dual-space adaptive feed-
forward control [Natal et al., 2014], augmented L1 adaptive control with adaptive feed-
forward [Bennehar et al., 2015b], Desired Compensation Adaptation Law [Bennehar et al.,
2016], adaptive terminal sliding mode control [Bennehar et al., 2017], and Robust Integral
of the Sign of the Error (RISE)-based adaptive feedforward control [Bennehar et al., 2018].
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Figure 1.32 – Block diagram of adaptive computed torque control in joint space.

• Other dynamic adaptive control

A computed-torque-based adaptive controller was proposed in [Craig et al., 1987] for the
control of serial manipulators. The first step of the control design in this work is to con-
sider a computed torque control law with uncertain parameters. Then, the error equation
resulting from the application of this control law is obtained. Based on a thorough stabil-
ity analysis using the Lyapunov theory, an adaptation law for the parameters’ estimation
is derived. The proposed adaptive controller in conjunction with the adaptation law guar-
antee that the tracking errors vanish and that the estimated parameters converge to their
best steady-state values. The block diagram depicted in Figure 1.32 clarifies the principle
of such control strategy. This control scheme was applied in [Shang et al., 2012] to a 2-DOF
RA-PKM. The obtained performance was compared to a classical CT control. The adaptive
controller shows a net superiority and allows to estimate the system dynamic parameters.
However, like its non-adaptive counterpart, adaptive CT control has the drawback of using
measured velocities and accelerations, which are computationally intensive.

A nonlinear adaptive controller in the task space was developed in [Shang and Cong,
2010] for the trajectory tracking of a 2-DOF redundantly actuated parallel manipulator.
The proposed control law includes an adaptive dynamics compensation term, an adap-
tive friction compensation term and error elimination items. The parameter update law
is derived with the gradient descent algorithm aiming to minimize the performance index
composed of the trajectory tracking error and the error rate. The experiment results show
that the proposed nonlinear adaptive controller can get better trajectory tracking accuracy
of the end-effector, comparing with the APD controller.

In [Natal et al., 2014], a Cartesian space control strategy called Dual-Space Adaptive
Control is proposed to control RA-PKMs. The proposed controller is based on the dual-
space feedforward controller and an adaptive control scheme. The dual-space feedforward
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controller consists basically in a PID in the operational space augmented with a feedfor-
ward of both the desired Cartesian and articular accelerations to improve its tracking per-
formance. The most important characteristic of the proposed dual-space adaptive Control
is its capability of taking into consideration the dynamics of the system and of estimating
its parameters automatically in real time. The proposed controller was experimentally val-
idated on the R4 parallel manipulator. Real-time experiments showed that the proposed
dual-space adaptive controller significantly improves the tracking performance and and
allows the tracking of extremely fast trajectories.

1.8.2.6 Sliding mode control

Sliding mode control (SMC) is a robust nonlinear control strategy that is able to pro-
vide the desired performance of the control system despite the presence of disturbances
and uncertainties [Shtessel et al., 2014]. The design of SMC schemes mainly consists of
two fundamental steps; the first is to ensure the reachability phase and the second is to
drive the system states to the equilibrium point. In the reachability phase, the controller
drives the states to a stable domain called the sliding surface. Then, during the sliding
phase, the controller maintains the states on the surface while sliding to the equilibrium
point. The control law that is designed based on the sliding surface features a sign function
which compensates for the effects of the bounded disturbances. The sliding surface and
the control law of the conventional SMC are expressed as follows [Shtessel et al., 2014]:

s= kx1+x2 (1.33)

u=−sign(s) (1.34)

where s is the sliding surface, x1, x2 are the system states, k is a positive gain, and u is the
control law. However, this standard SMC produces a discontinuous control signal which
is not adequate for real-time implementation. Several techniques have been investigated
in the literature to avoid or reduce these undesirable high-frequency oscillations, called
chattering, such as Quasi-SMC, integration of sign function, continuous high-order SMC
[Shtessel et al., 2014], etc.

Various SMC and SMC-based controllers have been proposed in the literature for par-
allel manipulators owing to their robustness features. [Jafarinasab et al., 2011] proposed
to apply a SMC approach based on the full knowledge of the system dynamic in Cartesian
space for the control of a 6-DOF PKM. To demonstrate the capabilities of the SMC, two
simulation scenarios were conducted. In the first one, the exact parameters of the manip-
ulator were used in the control law. The second scenario considered large uncertainties in
the mass properties of the mobile platform of the parallel manipulator. It was concluded
that SMC provides fast transient response and accurate trajectory tracking.

A cascade-control algorithm, consisting of an inner loop and an outer loop based on
SMC, was proposed to realize the trajectory tracking control of a hydraulically driven 6-
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DOF parallel manipulator [Guo et al., 2008]. This cascade controller is applied to separate
the hydraulic dynamics from the mechanical part so that the designed controller considers
not only the mechanical dynamics but also the hydraulic dynamics of the manipulator.
The experimental results investigate the effectiveness of the proposed approach compared
to a P controller with feedforward compensation.

Besides, a robust SMC approach with an active disturbance compensation was pro-
posed in [Singh and Santhakumar, 2015] for the trajectory tracking control of a 3-DOF
vertical planar PKM in the presence of parameter uncertainties and external distur-
bances. The disturbance vector includes disturbances due to the system dynamic varia-
tions namely payload and parameter variations, frictional effects and other unmodelled
effects. The effectiveness and robustness of the controller is established through extensive
numerical simulations and real-time experiments in the presence of the aforementioned
disturbances.

A model-based super-twisting (ST) SMC strategy relying on the desired trajectory was
proposed for PKMs in [Saied et al., 2021]. The proposed approach includes a feedforward
dynamic compensator, the super-twisting feedback control, and a feedback stabilizing
term. Real-time experiments were conducted on a Spider4, a 5-DOF RA-PKM, showing
better global performances of the proposed controller at low and high dynamic operating
conditions, compared to conventional computed-torque ST-SMC and standard PID with
feedforward controllers.

In the previous SMC-based controllers, the dynamics of the parallel manipulator were
partially or fully included in the closed-loop control, assuming that the system parame-
ters are known and subject to uncertainties. Among these previous controllers, some have
compensated for those uncertainties by designing disturbance observers. [Bennehar et al.,
2017] proposed to extend terminal sliding mode (TSM) control with an adaptive control
loop based on the dynamic model of the manipulator. The adaptive loop estimates in
real time the unknown, uncertain, or time-varying parameters of the model-based con-
trol loop. Real-time experiments, conducted on a 4-DOF PKM, show the effectiveness of
the proposed adaptive TSM controller compared to the standard TSM control in terms of
accuracy and robustness to parameter variations (such as the manipulated payload).

1.9 Overview on Pick-and-Throw motion generation

Throwing is known by its ability to increase the capability of a robotic manipulator as
well as the range of its workspace by throwing objects outside its maximum kinematic
range. Thanks to this potential, throwing robots have been used in several applications.
For instance, in the military field, a throwing robot has been used to displace goods [Frank,
2010], [Frank, 2009]. Furthermore, a throwing robot can be useful to gather information on
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a disaster site for search and rescue operations, such as in [Tsukagoshi et al., 2012] where
a casting device is thrown by a robotic system in an unmanned environment. Fagiolini
et al. [Fagiolini et al., 2011] dealt with casting manipulation, which consists in throwing
the robot end-effector to catch objects located at a relatively large distance from the robot
base. This manipulation is done using forces transmitted through a cable connected to the
end-effector. Recently, the throwing technique has been applied in waste industry. A dual
arm throwing robot has been developed as a collaborative robot (CoBot) working along-
side people to sort waste [BHS, 2019]. In [Raptopoulos et al., 2020], a P&T approach with
a Delta robot is applied for fast waste sorting. Real-time experimental results prove the
improved performance of the throwing procedure, compared to conventional P&P.

Several other research works dealt with throwing. A one-degree-of-freedom direct drive
arm has been developed in [Lynch and Mason, 1996], [Lynch and Mason, 1997] to perform
a variety of dynamic manipulation tasks including throwing. By getting use of the centrifu-
gal and Coriolis forces, the robot can throw the object to a desired target without grasping
it. The authors in [Okada et al., 2015] have made a sensitivity analysis of the landing point
with respect to model uncertainties such as joint friction and uncertainty on the initial
position. They designed an optimal trajectory that minimizes this sensitivity. An offline
motion planning of a throwing robotic arm under kinematic and dynamic constraints has
been proposed in [Sintov and Shapiro, 2015]. In [Hu et al., 2018], the authors aimed to
throw shuttlecocks through rings placed at some height. They designed the throwing tra-
jectory and studied the influence of the initial throwing speed, the throwing angle as well as
the influence of air resistance on the throwing distance. Zeng et al. [Zeng et al., 2020] inves-
tigated the challenge of accurately throwing arbitrary objects. They proposed a framework
for jointly learning grasping and throwing policies from visual observations that enable
TossingBot, a picking robot using a UR5 arm, to pick and throw arbitrary objects outside of
its maximum range.

1.10 Objectives of the thesis

The present PhD thesis is a joint PhD between the Lebanese University and the Univer-
sity of Montpellier. It falls within the framework of a collaborative research project between
the Laboratory of Informatics, Robotics and Microelectronics of Montpellier (LIRMM) and
TECNALIA, a research and innovation organization located in Spain.

As mentioned above, recyclable sorting is a task that has to be done as fast and ac-
curately as possible. Incorporating robots in waste recycling is the only way to effec-
tively manage the ever-increasing volume of waste created by people following the modern
lifestyle. The present research aims to speed up the recycling process and make it as effi-
cient as possible. To this end, the objective within this thesis is to perform P&T tasks in
a robust and fast manner using parallel manipulators (rigid-link and cable-driven parallel
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robots), demonstrating the interest and relevance of a P&T technique compared to a usual
Pick-and-Place approach in the context of a waste sorting application. The scientific issues
addressed will cover the following two aspects:

1. Generation of P&T trajectories for the robot with the ballistic trajectories of objects of
different types (i.e. dynamic parameters of the thrown objects may be known, known
with uncertainties, or possibly unknown).

2. Synthesis of advanced control schemes to improve the tracking performance of par-
allel robots in terms of motion speed, accuracy and robustness. The proposed con-
trol solutions have to take into account system nonlinearities, uncertainties and pa-
rameter variations in order to accurately perform different types of movements (e.g.
low and high acceleration).

The proposed P&T trajectory as well as the proposed control solutions will be validated,
through numerical simulations and real-time experiments, on different available PKM pro-
totypes. The conducted scenarios will be performed in different operating conditions on
a P&T task, to show the effectiveness and robustness of the proposed control solutions in
terms of global performances of the parallel robots.

1.11 Main contributions of the thesis

To fulfill the aforementioned objectives, the main contributions of this thesis can be
listed as follows:

• Contribution 1: A time-optimal Pick-and-Throw S-curve trajectory generation

In suitable robotic applications, throwing an object instead of placing it has the po-
tential of improving the cycle time. In this context, a challenge is to generate time-
optimal pick-and-throw trajectories in order to further increase the robot productiv-
ity. To this end, a methodology to determine a minimum-time throwing motion is
proposed. This methodology consists essentially in determining an optimal release
configuration (i.e. position and velocity) allowing an object to be thrown towards a
desired target while minimizing the travel time of the throwing motion of the robot.
To validate the potential of the proposed P&T approach, a comparison with the stan-
dard pick-and-place process and an existing P&T method is made using a Delta-like
parallel robot under different operating conditions.

• Contribution 2: A new augmented RISE feedback controller

A new control law based on the Robust Integral of the Sign of the Error (RISE) feed-
back law is proposed. It is a revision of the standard RISE control law performed
by augmenting its control loop with a nonlinear dynamic compensation term. This
term is calculated based on a combination of the system dynamic parameters, the
tracking errors, and the measured and desired trajectories. In addition, the resulting
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controller is extended with a nonlinear feedback function to compensate for the er-
rors resulting from using the desired trajectories instead of the measured ones in the
dynamic compensation term. The proposed control contribution can compensate
for the high nonlinearities abundant in PKMs, as well as improve the robustness of
the standard RISE controller. It is relevant when PKMs handle known objects in the
P&T task. It is studied in the Lyapunov stability sense showing that the tracking error
converges asymptotically to zero with time.

• Contribution 3: A novel robust DCAL with adaptive feedback gains

The intended application is the use of PKM for P&T task in selective waste sorting.
In addition to the highly nonlinear dynamic nature of PKMs as well as the abundant
uncertainties, in such an application, the manipulator has to handle different types
of objects that may often be unknown or uncertain. Therefore, the need for model-
based adaptive schemes, which can online adjust the dynamic parameters, arises.
To fulfill this object a new revised Desired Compensation Adaptive Law (DCAL) is
proposed. DCAL is a model-based adaptive control strategy with a linear PD feed-
back term. The proposed contribution consists in amending the original DCAL with
adaptive gain functions of the system errors to counteract perturbations and uncer-
tainties. In addition, the controller has been extended by a nonlinear sliding-based
term to further improve its robustness against external disturbances. The stability
analysis of the proposed control has been investigated in the Lyapunov sense show-
ing a global asymptotic convergence.

• Contribution 4: A new intelligent robust control law

In the context of compensating for unmodeled phenomena and external distur-
bances that are not considered in model-based adaptive schemes, a novel intelligent
robust control (IRC) has been developed. The proposed IRC scheme takes advan-
tage of the RISE control law and model-free control (MFC). The MFC technique is
based on an ultra-local model updated continuously in real time based on the input-
output behavior of the system. This control approach is characterized by its simple
concept and its ability to compensate for the modeled and unmodeled system dy-
namics without incorporating any apriori knowledge about the physical system. The
proposed IRC approach consists in redesigning the original RISE scheme by exploit-
ing an ultra-local model in its control loop. This revision can further improve the
overall tracking performance of RISE control law and reinforce its robustness and
disturbance rejection. A stability analysis of the proposed controller was included to
ensure the asymptotic convergence of the tracking error.
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1.12 Conclusion

The chapter introduce fundamental definitions and a classification of different kine-
matic structures of robotic manipulators, making a comparison of the advantages and
drawbacks of serial and parallel manipulators. The history of PKMs and their wide range
of applications with the recent incorporation of PKMs in the waste sorting industry were
also discussed. Due to the growing interest in PKMs in both industry and academia, sev-
eral PKMs prototypes have been proposed in the literature. Most of these mechanisms are
based on the Gough platform and later on the Delta robot. This chapter presented the
timeline of the different variants of the Delta PKM, which were developed to improve the
overall performance of the Delta robot.

In the literature, there are multiple aspects from which parallel manipulators can be
analyzed, synthesized and improved. The trajectory planning and control design aspects
have been addressed in this chapter with the goal of improving the dynamic performance
of PKMs. For the trajectory planning aspect, the challenge is to develop a continuous
and smooth trajectory in the robot workspace and to meet the dynamic constraints of the
robot. In the context of control design, control of PKMs is considered challenging due to
their highly nonlinear dynamics that increase dramatically at high-speed motions, abun-
dant uncertainties, time-varying parameters, external disturbances, and actuation redun-
dancy in some cases.

This chapter recalled the equations for dynamic modeling of PKMs and how they can
be obtained. Then, it presented the state of the art of existing control strategies for PKMs
by classifying them into two categories: kinematic control and dynamic control. Kinematic
control treats each actuator of the parallel manipulator independently without consider-
ing the dynamics in the control loop, while dynamic control relies mainly on a part of the
robot dynamic model or on the full dynamic model. Unlike kinematic control, dynamic
control compensates for nonlinearities, which improves the overall dynamic performance
of the parallel manipulator, especially under highly dynamic operating conditions. One
family of dynamic control approaches, dynamic adaptive controllers, provides an online
estimate of system parameters and feeds these parameters back into the controller. This
survey of control strategies proposed in the literature allowed us to compare the proposed
solutions with the existing control strategies and built a solid base from where we start the
development of our proposed control schemes. In addition, the state of the art on exist-
ing throwing trajectories and the different methods developed to generate a P&T trajectory
were provided in this chapter.

The main objectives of this thesis have been presented as the generation of a time-
optimal P&T trajectory accomplished by PKMs and the improvement of the dynamic per-
formance of PKMs from a control point of view in terms of motion speed, robustness and
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accuracy. The accomplished contributions of this thesis were listed at the end of this chap-
ter.

The following chapter of the thesis presents the proposed time-optimal P&T trajectory.
Then, the proposed control solutions are explained in Chapter 3. Finally, the validation of
the proposed control solutions through numerical simulations will be demonstrated and
discussed in Chapter 4.
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2.1 Introduction

Throwing has the potential to speed up the displacement of objects and maximize pro-
ductivity of a robotic manipulator. In order to take full advantage of this benefit, a time-
optimal throwing motion should be generated. This can be accomplished by first deter-
mining the appropriate and feasible geometric path and then optimizing the motion time
along this path. This is of great importance for waste sorting since the robot can perform
more picks per minute and thereby a large amount of waste can be processed. To the best
of our knowledge, none of the existing research works address the time-minimization of
a P&T trajectory through the optimization of the throwing parameters. In most of the ex-
isting works, one or two of the initial throwing parameters are fixed, while the others are
determined according to the target position without any optimization. For instance, in
[Raptopoulos et al., 2020], the trajectory is designed as a usual P&P trajectory with the dif-
ference that the object is thrown at a given position on the horizontal path between the
pick and target positions, resulting in a null initial release angle.

67
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Therefore, the main objective is to determine an appropriate geometric path for a P&T
motion and to find along this path the throwing configuration yielding a minimum-time
motion. The P&T motion consists mainly of an acceleration and a deceleration phase.
For each phase, a third-order polynomial S-curve is adopted as a motion profile to obtain
smooth, continuous and fast trajectories. This chapter provides a detailed explanation of
the proposed time-optimal P&T method. It mainly consists in determining an optimal
release configuration (position and velocity) allowing an object to be thrown at a desired
target while minimizing robot motion time. The constraints on the robot workspace, maxi-
mum speed, acceleration and jerk are taken into account. The corresponding optimization
problem is formulated in two different ways. In the first one, the time between the pick po-
sition and the release position is considered as the objective function. The optimization
variables are the release position, velocity and acceleration while constraints induced by
the minimum-time S-curve and by ballistic motion target are taken into account. In the
second method, it is shown that this optimization problem can be simplified as it boils
down to minimizing the distance between the pick position and the release position with
this distance and the release angle as the only variables. The second method requires less
computational time, which is useful for real-time experiments where the optimal release
configuration must be calculated online based on the actual pick and target positions. A
comparison of the proposed P&T approach with standard P&P and with the P&T method
proposed in [Raptopoulos et al., 2020] is conducted through real-time experimental sce-
narios with the parallel robot T3KR, under different operating conditions, to validate its
effectiveness.

2.2 Minimum-time S-curve trajectory

A smooth enough trajectory with a limited jerk is necessary to avoid residual vibrations
of a robot end-effector and thereby improve trajectory tracking accuracy. S-curve trajec-
tories, developed for the first time by Castain et al. [Castain and Paul, 1984], can meet
these requirements by providing high-speed motions with minimum positioning time and
minimum residual vibrations. For instance, S-curve profiles with different jerk values have
been generated and implemented in real-time experiments on robot manipulators [Piazzi
and Visioli, 2000; Macfarlane and Croft, 2003]. An asymmetric S-curve, where the decel-
eration phase is slower than the acceleration phase, has been proposed to reduce residual
vibrations and positioning errors [Rew and Kim, 2009; Li, 2016].

The S-curve profiles proposed in the literature can be based on polynomial, trigono-
metric and sigmoid equations [Nguyen et al., 2008; Fang et al., 2019]. On the one hand,
the trigonometric and sigmoid models are smoother than the polynomial model. How-
ever, there is a trade-off between smoothness and motion time that makes the polynomial
method more suitable for time minimization. On the other hand, the third order polyno-
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mial S-curve (also known as double S trajectories) has a moderate complexity. Accordingly,
it is the method adopted in this thesis. Methods to generate time-optimal S-curve trajec-
tories have been previously proposed. For instance, an algorithm to optimize an objective
function composed of two terms, the execution time and the jerk, has been developed in
[Gasparetto and Zanotto, 2008]. A free-form third order S-curve motion profile, where the
jerk values can be different for all the seven segments of the profile, has been proposed in
[Bai et al., 2018] and applied to a flexible motion system to minimize the total positioning
time and reinforce its robustness. An optimization method for S-curve trajectories, based
on a chain of filters, has been proposed in [Biagiotti and Melchiorri, 2020] to eliminate
residual vibrations under kinematic constraints.

In this section, an original algorithm formulation to compute the maximum velocity
and maximum acceleration corresponding to the minimum-time 3rd order S-curve trajec-
tory is introduced. This formulation is equivalent to the algorithm presented in [Biagiotti
and Melchiorri, 2008]. While this algorithm is well-known, a mathematical proof of the
fact that it yields the minimum-time 3rd order polynomial S-curve trajectory can hardly
be found in the literature. In Appendix A, the proof is made by analyzing in detail the
Karush-Kuhn-Tucker (KKT) conditions of the S-curve time optimization problem. This
mathematical analysis is relatively long but allows us to prove time optimality. This alter-
native formulation can be used to gain insight into the properties of the minimum-time
3rd order S-curve trajectory. Specifically, it is proved in Section 2.2.4 that the total time of
the minimum-time S-curve trajectory is an increasing continuous function of the displace-
ment. Moreover, the maximum velocity can be proved to be a nondecreasing continuous
function of the displacement.

2.2.1 Polynomial S-curve motion profile

The 3rd order polynomial S-curve is considered in this thesis. As shown in Figure 2.1,
the motion profile of the 3rd order polynomial S-curve consists of seven segments, among
which the first three and the last three constitute the acceleration and deceleration phases,
respectively, and the fourth segment constitutes the constant velocity stage. The jerk along
the S-curve trajectory is defined by the following function of time:

j(t)=






J, t0 ≤ t≤ t1,t6 ≤ t≤ t7
0, t1 ≤ t≤ t2,t3 ≤ t≤ t4,t5 ≤ t≤ t6
−J, t2 ≤ t≤ t3,t4 ≤ t≤ t5

(2.1)

where J is the jerk value and the time instants ti are shown in Figure 2.1. The time evolution
of the acceleration, velocity and displacement can be deduced by integration of (2.1) with
appropriate initial and final conditions
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Figure 2.1 – Third order polynomial S-Curve model.

Referring to Figure 2.1, dj= t1−t0 is the time needed to increase the acceleration from
zero to the maximum acceleration A or to decrease the acceleration from the maximum
value A to zero, i.e. it is the time during which the jerk stays constant at the maximum
jerk value J), da = t2− t1 corresponds to the time during which the acceleration profile
remains constant and equal to the maximum accelerationA, and dv= t4−t3 corresponds
to the time during which the velocity profile remains constant and equal to V . Note that
the symmetrical S-curve has been adopted in the present study (i.e. the acceleration and
deceleration phases are symmetrical) and that dj, da and dv are all greater than or equal to
zero. The three time intervals can be written as follows:

dj=
A

J

da=
V

A
−
A

J

dv=
P

V
−
V

A
−
A

J

(2.2)

A and V are the maximum velocity and acceleration achieved for a given displacement
P. Both A and V should be less than or equal to the corresponding maximum actuator
capabilities. The total time to travel a distance P is then expressed as follows:

T = 4dj+2da+dv (2.3)

2.2.2 Minimization problem formulation

Taking into account constraints on the maximum acceleration and velocity (A≤Amax
and V ≤ Vmax), the goal is to minimize the total time T needed to travel the distance P.
This can be achieved by determining the optimal acceleration A and the optimal velocity
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V being given J, P, Amax and Vmax. By substituting the three time intervals (2.2) in the
total displacement time (2.3), the function T to be minimized can be expressed as:

T =
P

V
+
V

A
+
A

J
(2.4)

Let us define x = (x1,x2), where x1 = V , x2 = A, as well as x1max = Vmax and
x2max=Amax. Hence, the objective function is:

f(x)= T =
P

x1
+
x1

x2
+
x2

J
(2.5)

The minimization problem of finding the minimum-time S-curve trajectory is then formu-
lated as follows:

min
x
f(x) subject to






C1(x)=da=
x1

x2
−
x2

J
≥ 0

C2(x)=dv=
P

x1
−
x1

x2
−
x2

J
≥ 0

C3(x)= x1max−x1 ≥ 0
C4(x)= x2max−x2 ≥ 0
C5(x)= x1 > 0
C6(x)= x2 > 0

(2.6)

2.2.3 Algorithm to compute the minimum-time S-curve trajectory

The KKT first-order necessary optimality conditions of the optimization problem (2.6)
yield 11 cases: One case of no active constraint, four cases of two active constraints (C1,
C2,C3 orC4) and six cases of two active constraints (C1=C2= 0,C1=C3= 0, etc.), being
given that the constraintsC5 andC6 are always inactive since V = x1 > 0 andA= x2 > 0. A
detailed analysis of these 11 cases (cf. Appendix A) shows that the following four cases are
impossible at a (local) optimal solution:

• No active constraint

• One active constraintC1= 0

• One active constraintC4= 0

• Two active constraintsC1=C4= 0

It also shows that, at a local optimal solution:

• One active constraintC2= 0⇐⇒ two active constraintsC1=C2= 0

• One active constraintC3= 0⇐⇒ two active constraintsC1=C3= 0

• The case of two active constraintsC2=C3= 0 turns out to be a particular case of the
case of one active constraintC3= 0
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Algorithm 1 Minimum-Time S-Curve Trajectory

Input: P, J, Vmax, Amax
Output: A and V yielding the minimum time
1: if (J2P≤ 2A3max) then
2: if (JP2 ≤ 4V3max) then

3: V =
3

√

JP2

4 and A=
3

√

J2P
2

4: else

5: V =Vmax and A=
p
JVmax

6: end if

7: else

8: if (
p
JVmax ≤Amax) then

9: V =Vmax and A=
p
JVmax

10: else

11: A=Amax

12: V =
−A2

max+
p
A4
max+4J

2PAmax

2J

13: if (V >Vmax) then
14: V =Vmax
15: end if

16: end if

17: end if

Hence, out of the 11 cases, only four of them needs to be considered to determine the
optimal solutions of the optimization problem (2.6):

• One active constraintC2= 0

• One active constraintC3= 0

• Two active constraintsC2=C4= 0

• Two active constraintsC3=C4= 0

As detailed in Appendix A, further analyzing these four cases lead to Algorithm 1 which al-
lows to efficiently determine the values of V and A yielding the minimum-time polynomial
S-curve trajectory.

2.2.4 Time T and velocityV as functions of displacement P

With acceleration A and velocity V computed by Algorithm 1, this section points out
that the total displacement time T given in (2.4) is a continuous increasing function of
the displacement P and also that the maximum velocity V is a continuous nondecreasing
function of P. These two properties of the minimum-time S-curve trajectory will be used
in Section 2.3 to devise a method to generate minimum-time throw motions.
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According to its expression in (2.4), T depends on P, V andA. Referring to Algorithm 1,
either V andA are functions of P, e.g. at line 3, or else they are constant, i.e., independent
of P (e.g. at line 5). When V and A are independent of P, from (2.4), T is directly seen to
be an increasing function of P. On the contrary, when V or A is a function of P, it is not
obvious from (2.4) that T is an increasing function of P. Indeed,V andA appear both at the
numerator and denominator of one of the terms of the sum on the right-hand side of (2.4).

In fact, when P is sufficiently small, V and A are the functions of P given at line 3 of
Algorithm 1 and, when P increases, the conditions on P at lines 1, 2 and 13 will not be
satisfied anymore for large values of P, so thatV andA become constant. Let us look at the
relationship between the conditions on P at lines 1 and 2 of Algorithm 1, namely

P≤
2A3max
J2

and P≤

√

4V3max
J

(2.7)

respectively. In particular, when P increases from zero, line 5 will be executed if and only if

√

4V3max
J

<
2A3max
J2

. (2.8)

which, after some elementary calculations, can be shown to be equivalent to
√

JVmax <Amax. (2.9)

Hence, to analyze the dependency of T andV on P, two cases are distinguished: (2.9) satis-
fied and (2.9) not satisfied. In both cases, as detailed in Appendix B, the function T(P),
obtained with Algorithm 1, can be proved to be a continuous increasing function over
0≤P≤+∞ as illustrated in Figure 2.2 for the case where (2.9) is satisfied.

Moreover, as also detailed in Appendix B, the functionV(P), obtained with Algorithm 1,
is a continuous nondecreasing function of P. Since they will be used in Section 2.3.5, the
different expressions of V(P) are presented below.

Case 1 –
p
JVmax < Amax The continuous nondecreasing function V(P) is com-

posed of two segments: Namely, for 0≤P≤
√

(4V3max)/J, V(P)= 3
√

JP2/4, and for
√

(4V3max)/J<P≤+∞, V(P)=Vmax (see the left side of Figure 2.3).

Case 2 –
p
JVmax ≥Amax As illustrated on the right side of Figure 2.3, the continuous

nondecreasing function V(P) is composed of three segments:

• For 0≤P≤ 2A3max/J2, V(P)= 3
√

JP2/4.

• For 2A3max/J2 ≤P≤
(

JV2max+VmaxA
2
max

)

/(JAmax), V(P) is given by the expression at
line 12 of Algorithm 1.

• For
(

JV2max+VmaxA
2
max

)

/(JAmax)≤P≤+∞, V(P)=Vmax.
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Figure 2.2 – A typical evolution of the increasing function T(P) when
p
JVmax <Amax (left)

and when
p
JVmax ≥Amax (right).

Figure 2.3 – A typical evolution of the nondecreasing function V(P) when
p
JVmax <Amax

(left) and when
p
JVmax >Amax (right).

2.3 Minimum-time throw motion

2.3.1 Problem formulation

A robot moving in 3D environment has to throw an object towards a desired target point
Pf, located inside or outside of its workspace. The main objective is then to search for an
optimal throwing configuration (i.e. position and velocity) in order to increase as much as
possible the number of picks per minute. This configuration should thus allow to throw
the object into the desired target while ensuring a minimum-time robot movement. Refer-
ring to Figure 2.4, the throw motion of the robot end-effector reference point P(t) and the
ballistic motion PB(t) of the object B are defined as follows.
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Figure 2.4 – Illustration of the throwing trajectory of the end-effector of the robot (Solid
line) and the free-flight motion of the object (Dashed line).
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Figure 2.5 – Illustration of the pick and throw motion consisting of T3KR robot motion ac-
celeration and deceleration phases together with the ballistic motion of the thrown object.

Throw motion: The robot trajectory consists of successive acceleration and deceler-
ation phases. At t = 0, the manipulator is at the pick position with zero velocity, i.e.
P(0)=P0 with Ṗ(0)=V0= 0. Once the robot picks the object B, it accelerates to the release
position at time tr. The release configuration is defined by the position Pr and velocity
Ṗ(tr)=Vr ̸= 0. After tossing B instantaneously, the robot has to decelerate back to the next
pick position at time t1 to pick another object at point P1 with velocity Ṗ(t1)=V1= 0.

Ballistic motion: Once released, the object B follows a free-flight motion from the re-
lease point Pr with the velocity Vr to the desired target PB(tf) = Pf reached at time tf.
During the throw motion, the robot must satisfy two sets of constraints. The first set of
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constraints Σ includes the limits of the workspace as well as the maximum velocity, accel-
eration and jerk of the robot’s end-effector. The second set of constraints Ω ensures that
the ballistic trajectory interacts with the desired target position set Γtarget. This last one
includes the target position point Pf and possibly a tolerance for reaching the target. The
target position set can have different forms, if it is a hyper-rectangle, the tolerance can be
expressed as follows: Pmintarget < PB(tf) < Pmaxtarget.

For given pick positions P0 and P1, and target position Pf, the problem addressed in
this work is the determination of the release configuration corresponding to a minimum-
time throw motion, this configuration being characterized by the release position Pr =

[Xr,Yr,Zr] and the corresponding release velocity Vr = [Vxr,Vyr,Vzr]. On the one hand,
this configuration shall ensure that the thrown object will reach the desired target and,
on the other hand, it should guarantee a minimum-time movement for the robot, while
satisfying the sets of constraints Σ and Ω. The geometric path from P0 to Pr is a straight
line lying in the vertical plane containing P0 and Pf, θr denotes the angle between this
straight line and the straight line P0−Pf. Hence, θr is an unknown to be determined along
with the position of Pr along the straight line and the velocity Vr. The description of the
throw motion path will be detailed in Section 2.3.3.

2.3.2 Recall of mathematical modeling of ballistic motion

Considering the ballistic motion of an arbitrary object B in 3D space, we assume that
there is no obstacles and that air resistance is negligible so that the ballistic trajectory is
only affected by gravity. Moreover, the object is considered as a pointwise mass. The bal-
listic motion of the object B is illustrated in Figure 2.5. Applying Newton’s second law
to B gives simply g = a, where g ∈ R

3 is the gravity acceleration vector (g= [0,0,−g]T ,
g= 9.81 m/s2, and a ∈ R

3 is the acceleration of B. By integration of the equation g= a,
the trajectory of B along the x, y and z axes can be expressed as follows:

xB(t)=Vxrt+Xr, yB(t)=Vyrt+Yr (2.10a)

zB(t)=−
1

2
gt2+Vzrt+Zr (2.10b)

As shown in Figure 2.5, Pf= [Xf,Yf,Zf]
T is the target position ofB, reached at the final time

tf (i.e. PB(tf)=Pf). With zB(tf)=Zf, tf can be calculated from (2.10b) as follows:

tf=
Vzr

g
+

√

(

Vzr

g

)2

+2
Zr−Zf

g
(2.11)
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2.3.3 Throw motion geometric path and S-curve motion profile

The geometric path of the throw motion includes four points: The pick position of the
object, P0= [X0,Y0,Z0], the release point, Pr= [Xr,Yr,Zr], the pick position of the second
object, P1 = [X1,Y1,Z1], and the intermediate point, Pint = [X1,Y1,Z1+Zoff]. The overall
throw motion can then be divided into three phases: (i) An acceleration phase along the
straight line from P0 to Pr, (ii) a deceleration phase from Pr to Pint, and (iii) finally, a ver-
tical movement from Pint to P1. Once the robot end-effector reaches the release position
Pr with the release velocity Vr, it throws the object towards the target position and then
moves forwards until the velocity becomes zero. After that, it starts decelerating towards
Pint in a continuous motion. The parallel robot T3KR, used in the experiments (cf. Sec-
tion 2.5), cannot decelerate directly towards P1 because the end-effector must move down
vertically in order to successfully grasp the object. The z coordinate of Pint is then chosen
as Z1+Zoff, with Zoff > 0 being a small vertical offset.

The three phases of the robot throw motion are defined as point-to-point movements.
Besides, the S-curve velocity profile described in Section 2.2 is adopted to generate each
movement, where a minimum-time point-to-point movement is obtained by using Algo-
rithm 1. As mentioned in Section 2.2.1, the motion profile of a S-curve-based point-to-
point movement consists of seven segments (cf. Figure 2.1). For each segment of motion,
the evolution of the variation of the motion profile with time, S(t), is governed by the fol-
lowing equation:

S(t)= Si+Vi(t−ti)+
1

2
Ai(t−ti)

2+
1

6
J(t−ti)

3 (2.12)

where J,Ai,Vi,Si,ti are the initial values of jerk, acceleration, velocity, position and time
corresponding to each segment. The desired Cartesian position of the robot end-effector
is then generated as follows:

Xd(t)=Xi+
S(t)

P
(Xf−Xi) (2.13)

where Xd(t) = [xd(t),yd(t),zd(t)] is the desired Cartesian trajectory, Xi = [xi,yi,zi] and
Xf = [xf,yf,zf] are the initial and final positions of a point-to-point movement, respec-
tively. P= ∥Xf−Xi∥ is the distance to be traveled. By means of equations (2.12) and (2.13)
the synchronization between axes is guaranteed.

Regarding the connection of two consecutive phases (i.e. corner blending), we exploit
an overlap strategy [Khalil and Dombre, 2004] to smooth the trajectory and eliminate dis-
continuities. In brief, each trajectory phase is designed as a point-to-point trajectory. The
duration of the deceleration phase of the first trajectory is compared to the duration of the
acceleration phase of the second trajectory, and a minimum overlap is determined. This
ensures that the first trajectory will smoothly disappear during the second trajectory accel-
eration phase yielding a continuous switching between the two consecutive trajectories.
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2.3.4 Determination of the optimal release configuration

The optimal release configuration is defined as the one leading to a minimum-time
throw motion of the robot. This motion consists of the three phases described in Sec-
tion 2.3.3. Since the third phase is a small vertical movement required to pick the next
object, which is assumed to be located close to P0, the optimal release configuration is the
one that minimizes the time of the first two phases. By design of the deceleration phase,
the smaller the duration of the acceleration phase, the smaller is the duration of the de-
celeration phase. Hence, the minimum-time throw motion is obtained by minimizing the
time of the acceleration phase. The release configuration, including Pr and Vr, allowing to
minimize this time, while allowing the object to reach the target position Pf, is the optimal
one.

As mentioned above, the adopted motion profile along the straight line P0−Pr is a 3rd

order polynomial S-curve. For the object to be thrown at a certain distance (to the target
position Pf), the release velocity Vr = ∥Vr∥ should be relatively high and, according to
Section 2.2, the velocity along the S-curve is maximal (equal toV) at the half of the traveling
distance, i.e. at P/2. Hence, the traveled distance P of the S-curve is defined as being equal
to twice P0Pr, P= 2∥Pr−P0∥. Accordingly, the time tr required to travel the distance from
P0 to Pr is then equal to the half of the time calculated in (2.4). In this way, the release
velocity is equal to the S-curve maximum velocity, i.e. Vr = V . From (2.4), the time tr can
then be expressed as a function of Vr and of the coordinates of Pr as follows:

tr=
1

2

(

2∥Pr−P0∥
Vr

+
Vr

A
+
A

J

)

(2.14)

The optimal release configuration (Pr,Vr) is then the one that minimizes the traveling time
tr in (2.14) while satisfying the two sets of constraints Σ andΩ defined in Section 2.2.

Let us now define x = [x1,x2,x3,x4,x5], where x1 = V = Vr, x2 = A, x3 = Xr, x4 = Yr
and x5 = Zr as well as x1max = Vmax, x2max =Amax, x3max = Xrmax , x4max = Yrmax and
x5max = Zrmax . As illustrated in Figure 2.5, Xrmax , Yrmax and Zrmax are respectively the
x, y and z coordinates of the intersection point between the straight line P0−Pf and the
boundary of the robot workspace. With these notations and being given that the goal is
to minimize tr given in (2.14), the objective function f(x) to be minimized over x can be
defined as:

f(x)=
2
√

(x3−X0)2+(x4−Y0)2+(x5−Z0)2

x1
+
x1

x2
+
x2

J
(2.15)

The optimization problem includes also the following constraints.
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2.3.4.1 Bound constraints

0< x1 ≤ x1max (2.16a)

0< x2 ≤ x2max (2.16b)

X0 ≤ x3 ≤ x3max, Y0 ≤ x4 ≤ x4max (2.17a)

Z0 ≤ x5 ≤ x5max (2.17b)

2.3.4.2 Nonlinear inequality constraints

da=
x1

x2
−
x2

J
≥ 0 (2.18)

dv=
2
√

(x3−X0)2+(x4−Y0)2+(x5−Z0)2

x1
−
x1

x2
−
x2

J
≥ 0 (2.19)

Xf−δ≤ x1 cosθr cos(αxy)tf+x3 ≤Xf+δ (2.20)

Yf−δ≤ x1 cosθr sin(αxy)tf+x4 ≤ Yf+δ (2.21)

wherePf= [Xf,Yf,Zf],αxy= arctan(x4−Y0,x3−X0) is the angle between the x-axis and the

vertical plane containing P0 and Pr, and θr= arctan
(

x5−Z0,
√

(x3−X0)2+(x4−Y0)2
)

is the angle between the horizontal plane and P0−Pr as shown in Figure 2.5. The con-
straints (2.18) and (2.19) are related to the S-curve ensuring that da and dv are nonnega-
tive, while (2.20) and (2.21) ensure that the object B reaches the target horizontal position
[Xf,Yf] with a tolerance of δ (chosen as δ= 0.005m in Section 2.5). Note that the final time
tf in (2.11) is a function of x1 and x5 as follows:

tf=
x1 sinθr
g

+

√

(

x1 sinθr
g

)2

+2
x5−Zf

g
(2.22)

since the release velocity vector is given by Vr= x1[cosθr cosαxy,cosθr sinαxy,sinθr].
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2.3.4.3 Nonlinear equality constraint

αxy−α= 0 (2.23)

whereα= arctan(Yf−Y0,Xf−X0). This constraint guarantees that the release point lies in
the vertical plane containing P0 and Pf.

To sum up, the problem of minimizing f(x) over x subject to the constraints defined
above is a nonlinear constrained optimization problem where the S-curve time minimiza-
tion is coupled with the determination of the ballistic motion release configuration. This
problem can be solved with standard nonlinear programming solvers.

2.3.5 Optimization problem simplification

The nonlinear constrained optimization problem introduced in Section 2.3.4 can be
substantially simplified. First, as shown in Figure 2.5, since both the robot throw motion
acceleration phase and the ballistic motion lie in the vertical plane containing P0, Pr and
Pf, the three-dimensional problem can easily be converted into a planar one (setting the
tolerance zone defined in (2.20) and (2.21) aside). Moreover, the pick position P0 is known.
Hence, without loss of generality, we can choose the reference frame origin as being P0
and its x-axis oriented along the projection of the straight line P0−Pr on the (x,y) plane.
Then, the vertical plane containing the acceleration phase and the ballistic motion is the
(x,z) plane. Accordingly, referring to (2.10a) and 2.10b, yB(t)= 0,∀t and after substituting
the time t calculated from the equation of xB(t) into zB(t), and rearranging the terms, the
following expression is obtained:

zB=−
g

2

(xB−Pr cosθr)2

(Vr cosθr)2
+xB tanθr (2.24)

where, with the chosen reference frame, αxy= 0 and P0= 0 so that Pr = [Xr,Yr,Zr] =

Pr[cosθr,0,sinθr] and Vr=Vr[cosθr,0,sinθr]. By substituting the coordinates of the tar-
get position Pf into (2.24) (xB = Xf and zB = Zf), the release velocity Vr can be expressed
as a function of the distance Pr and the release angle θr as follows:

Vr=
−Pr+(Xf/cosθr)
√

2
g(Xf tanθr−Zf)

(2.25)

with arctan(Zf/Xf)≤ θr ≤π/2. Equation (2.25) is the ballistic motion target constraint that
shall be satisfied for the object to reach the target Pf.

Besides, as explained in Section 2.3.4, we have P = 2Pr and V = Vr where P and V are
the displacement and maximum velocity of the S-curve motion profile used to generate the
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Figure 2.6 – The ballistic motion constraint and the minimum-time S-curve induced con-
straint as functions Vr(Pr). For a given θr, there exists a unique couple (P∗r (θr),V∗

r (θr))
satisfying both constraints.

throw motion acceleration phase. Referring to Section 2.2.4, the S-curve total time T = 2tr
is an increasing function of the distance P and thus of Pr=P/2. Consequently, minimizing
tr, which is f(x)/2 in Section 2.3.4, is equivalent to minimizing Pr, i.e., the minimum-time
throw motion is obtained by minimizing Pr.

The minimization of Pr is subjected to the ballistic motion target constraint in (2.25)
and to a constraint due to the minimum-time S-curve motion profile. Indeed, the latter
imposes a relationship between P and V and thus also between Pr and Vr since P = 2Pr
and V = Vr. As pointed out in Section 2.2.4, this relationship takes the form of Vr being a
continuous nondecreasing function of Pr composed of either two or three segments. For
each of these segments, the expression of Vr(Pr) is known as detailed in Section 2.2.4 for
V(P). It is worth noting that this function Vr(Pr) is nondecreasing while, in (2.25), Vr is a
decreasing linear function of Pr for a given θr. Hence, as illustrated in Figure 2.6, for any
value of θr, arctan(Zf/Xf)≤ θr ≤π/2, there exists a unique couple (P∗r (θr),V∗

r (θr)) satis-
fying both the function Vr(Pr) from the constraint induced by the minimum time S-curve
and the function Vr(Pr) from the ballistic motion target constraint in (2.25). These values
of Pr and Vr depend on θr, and this is the rationale of the notations P∗r (θr) and V∗

r (θr).
Hence, minimizing Pr boils down to finding the value of θr that yields the smallest P∗r (θr).

Based on the above analysis, an efficient method to determine P∗r (θr) can be devised
as follows. First, note that obtaining a closed-form expression of Pr as a function of θr,
i.e. eliminating Vr in (2.25) by means of the expression Vr(Pr) obtained from the S-curve
induced constraint (Section 2.2.4), is difficult except in the case where Vr(Pr)=Vmax. In-
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Figure 2.7 – In the case
p
JVmax <Amax, this figure shows the minimum Pmr =Pr(θ

m
r ) of

the function in (2.26) (case where Pmr <
√

V3max/J) and the optimal release configuration
P∗r , V∗

r and θ∗r .

deed, in this case, (2.25) implies

Pr=(Xf/cosθr)−Vmax
√

2(Xf tanθr−Zf)/g. (2.26)

An analysis of this function shows that it possesses a unique minimum Pmr = Pr(θ
m
r ) for

arctan(Zf/Xf)≤ θr ≤π/2. Moreover, this minimum can be straightforwardly calculated by
solving a univariate nonlinear equation in θr obtained from dPr/dθr = 0. Then, the two
cases defined above in Section 2.2.4 have to be distinguished.

Case 1 –
p
JVmax < Amax. Referring to Figure 2.6, if Pmr ≥

√

V3max/J, the problem is
solved since the optimal release configuration is P∗r =P

m
r andV∗

r =Vmax. Otherwise, as il-
lustrated in Figure 2.7, the S-curve induced constraint is not satisfied atPmr and the optimal
release configuration (P∗r , V∗

r ) lies on the first segment Vr=
3
√

JP2r of this constraint. The
optimal release configuration is obtained by solving the following nonlinear optimization
problem where the nonlinear equation g(Pr,θr) = 0 is obtained by replacing Vr in (2.25)
by 3

√

JP2r .

min
Pr,θr

Pr s.t. g(Pr,θr)= 0 (2.27)

0≤Pr ≤
√

V3max/J

arctan(Zf/Xf)≤ θr ≤π/2
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The solution of this optimization problem is P∗r and θ∗r where P∗r is the smallest value of
Pr allowing to reach the ballistic motion target with the minimum-time S-curve motion
profile for the throw motion acceleration phase. In other words, P∗r , θ∗r and V∗

r =
3
√

JP∗2r
constitute the optimal release configuration. As shown in Figure 2.7, it is worth noting that
the ballistic motion target constraints for θmr and θ∗r are close to each other (this comes
from the fact thatXf/cosθr is an increasing function of θr). Hence, using Pmr and θmr as an
initial estimate of the solution of (2.27) leads to a fast solving of this optimization problem.

Case 2 –
p
JVmax ≥ Amax. Referring to Figure 2.3 and Section 2.2.4, if the point

(Pmr ,Vmax) lies on the third segment of the S-curve induced constraint, i.e.

Pr ≥
(

JV2max+VmaxA
2
max

)

/(2JAmax) (2.28)

then the optimal release configuration is P∗r = P
m
r and V∗

r = Vmax. Otherwise, a closed-
form expression of Pr as a function of θr is obtained by replacing Vr in (2.25) by A2max/J.
Similarly to the case of (2.26) discussed above (with A2max/J in place of Vmax), this func-
tion possesses a unique minimum PMr = Pr(θ

M
r ) which can be easily found by solving a

univariate nonlinear equation. If PMr ≤A3max/J2, then the optimal release configuration
(P∗r , V∗

r ) lies on the first segment of the S-curve induced constraint and can be efficiently
calculated by solving the optimization problem (2.27) with the initial estimate (PMr , θMr ).
Otherwise, the optimal release configuration (P∗r , V∗

r ) lies on the second segment of the
S-curve induced constraint. It can then be obtained by solving an optimization problem
similar to (2.27) but with g(Pr,θr) = 0 obtained from the expression of V(P) at line 12 of
Algorithm 1, and with the initial estimate (PMr , θMr ).

In summary, the optimal release configuration (P∗r , V∗
r ) yielding a minimum-time

throw motion can be efficiently obtained by solving one or two univariate nonlinear equa-
tions and one optimization problem (2.27) having two variables with bound constraints
and one equality constraint. Solving this rather simple optimization problem takes a short
time especially since an initial estimate close to the optimal solution is known. Hence,
compared to the nonlinear constrained optimization problem introduced in Section 2.3.4,
the solving method presented in this section is more efficient. Furthermore, it provides
insight into the nature of the problem of determining the optimal release configuration.
It has notably been pointed out that the corresponding optimization problem possesses a
unique minimum, i.e., as defined in this work, the optimal release configuration is unique.

2.4 T3KR robot: A 5-DOFs PKM

Modeling is a crucial and challenging topic in robotics research. It plays an important
role in the simulation of motion, the analysis of manipulator structures, as well the de-
sign of control algorithms. Kinematic analysis refers to the study or of the geometry of the
robot itself, without considering the forces or torques that generate the motion [Taghirad,
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2013]. Most kinematic models of parallel robots have developed from a geometric analy-
sis of kinematic chains resulting in equations describing the closed-loop kinematic chains
and implying joint and Cartesian variables [Merlet, 2005]. This section provides descrip-
tion of the experimental platform, T3KR PKM, that has been used for the implementation
of the pick-and-throw task. A general description of the mechanical structure is presented,
the inverse and direct kinematic analyses are worked out in detail, and the dynamic model
is mathematically derived and explained. The established dynamic model of T3KR PKM
will be used in the design of some control schemes in Chapter 3.

2.4.1 Description of T3KR PKM

The T3KR robot, is a rigid-link Delta-like parallel robot, developed within the frame-
work of a cooperation between SATT AxLR, TECNALIA and LIRMM in 2015. It was pro-
posed as a new industrial P&P machine with an optimized footprint (i.e. it has an op-
timized mechanical structure) and designed for simple position control. It consists of
a fixed-base support holding four actuators controlling four identical kinematic chains.
Each kinematic chain consists of a revolute actuator, a movable rear-arm and a parallelo-
gram composed of two parallel rods, named forearm. The forearm is linked at one extrem-
ity to the rear-arm and at its second extremity to the mobile platform by means of passive
spherical joints. The mobile platform holds a small end-effector that picks and places ob-
jects by means of a vacuum suction cups. Figure 2.8 provides the main components of
T3KR PKM.

The robot has five DOFs: The parallel structure with the four motors allows the transla-
tion of the mobile platform along x,y and z axes as well as its rotationψ around the z-axis;
The rotation of the platform is a parallelogram mechanism movement, where the tool con-
trol point (TCP) is on the neutral point of this mechanism. Accordingly, a rotationψ of the
moving platform does not induce a motion of the TCP, this is whyψ is kept equal to zero. A
further actuator, integrated on the mobile platform, allows a rotationφ of the end-effector
around the vertical z-axis. Due to its asymmetrical mechanical structure, T3KR has an el-
liptical workspace in top view, as illustrated in Figure 2.9.

In this thesis we are only interested in the control of the four main actuators of the par-
allel structure of T3KR robot. Advanced control solutions were proposed for the trajectory
tracking problem of the mobile platform in the workspace. All the modeling in the sequel
is based only on the parallel structure of the T3KR robot.

2.4.2 Kinematics of T3KR PKM

Consider the vector E = [x,y,z,ψ,φ]T ∈ R
5 as a representation of the end-effector

configuration in the fixed reference frame. The formed angles by the actuated joints
located on the parallel structure and the traveling-plate are represented by the vector
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Figure 2.8 – A schematic view of T3KR parallel robot including 1⃝ : Fixed base, 2⃝: Main
actuator, 3⃝ : Rear-arm, 4⃝: Forearms, 5⃝ : Revolute active joint, 6⃝ : Passive spherical
joints, 7⃝ : Mobile platform, 8⃝ : Integrated actuator on the platform

Figure 2.9 – T3KR workspace limits in the planes (Y,Z) and (X,Y).



86 CHAPTER 2. PROPOSED TIME-OPTIMAL PICK-AND-THROW TRAJECTORY

B
1

B
3

B
4

B
2

C
2

C
1

C
4

C
3

C
12

C
34

C

z
t

x
t

y
t

A
1

C

B
4

P

B
2

B
1

B
3

Q
1

Q
4

Q
2

Q
3

Z

X

Y

O

L
1

l
1

X
α
i

q
i

u
i

v
i

z
i

φ

r
h

B
12

B
34

R
y

R
x

r
y

r
x

r
z

Figure 2.10 – Illustration of the kinematics of the T3KR PKM.

Q= [q1,q2,q3,q4,φ]
T ∈ R

5. It is worth to mention that the variable φ is the same for op-
erational and joint space. Since the actuator on the mobile platform is decoupled from the
others actuators on the fixed base, the kinematics of the parallel structure can be decou-
pled from the rotational movement provided by the actuator integrated on the traveling-
plate. Let us define a vector q= [q1,q2,q3,q4]

T ∈R
4 which involves only the parallel struc-

ture joint variables and X= [x,y,z,ψ]T ∈R
4 as the corresponding Cartesian vector pose.

The kinematics of T3KR is shown in Figure 2.10. LetO be the center of a parallelogram
whose vertices are the actuated joints represented by Qi for i= 1,2,3,4. The fixed refer-
ence frame attached to O is R= {O,ex,ey,ez}, where ex,ey,ez are the corresponding unit
vectors.

LetAi andBi be two virtual points located at the midpoints of each two ball-and-socket
joints connecting one rear-arm to one forearm and one forearm to the traveling-plate, re-
spectively. An auxiliary frame Ri = {Qi,ui,vi,zi} is attached to each actuated joint. The
following transformation matrix T is applied to transform a vector from the fixed frame R
to the auxiliary frame Ri.

T =









cos(αi) −sin(αi) 0 sign(cos(αi))Rx
sin(αi) cos(αi) 0 sign(sin(αi))Ry
0 0 1 0

0 0 0 1









(2.29)
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where α1 =
π

6
, α2 = pi−

π

6
, α3 = pi+

π

6
and α4 = −

π

6
. Rx and Ry are half the lengths

of the edges of the fixed base parallelogram whose vertices are the actuated joints (see
Figure 2.10). sign(.) is the nonlinear signum function. It is clear that the rotation in the
transformation matrix T is performed around z-axis by angle αi. Therefore −→zi =

−→ez . qi is

defined as an angle between −→ui and
−−→
QiAi starting from −→ui in the vertical plane (ui,zi) as

shown in Figure 2.10.

On the left side of Figure 2.10 showing the kinematics of the traveling-plate with points
Ci and Cij are passive revolute joints. Given the kinematics constraints set on points Bi
by the parallelogram structure of the arms, any rotational movement of the points Bi to-
gether with points Ci generates a motion that does not impact the position of point C
and the orientation of bar C12C34. C is the control point of the traveling-plate. Let us
consider the traveling-plate parallelogram of center C and whose vertices are the virtual
points Bi. rx and ry are half the lengths of the edges of this parallelogram. A local frame
Rt= {C,xt,yt,zt} is attached toC.

Let P= [x,y,z]T be the Cartesian position of the end-effector with respect to the refer-
ence frame R. Then, a translation rz along z-axis, where rz is the length of the end-effector,
is performed to obtain the position vector ofC= [x,y,z+rz]

T (see Figure 2.10). Point Bi is
always lying in the horizontal plane (xt,yt). Before proceeding to the development of the
coordinates of points Bi in reference frame R, let us define the following vectors:

CC12= [−rhsin(ψ),rhcos(ψ),0]
T , CC34= [rhsin(ψ),−rhcos(ψ),0]

T (2.30)

C12B12= [0,(ry−rh),0]
T , C34B34= [0,−(ry−rh),0]

T (2.31)

whereψ is the rotational angle of the platform which is kept at zero all times as explained
above and rh is the distance from C to C12 or from C to C34. While B12 and B34 are two
virtual points located at the midpoints of the distances from B1 to B2 and from B3 to B4,
respectively, as shown on the left side of Figure 2.10.

B12B1= [rx,0,0]
T , B12B2= [−rx,0,0]

T (2.32a)

B34B3= [−rx,0,0]
T , B34B4= [rx,0,0]

T (2.32b)

CB1=CC12+C12B12+B12B1, CB2=CC12+C12B12+B12B2 (2.33a)

CB3=CC34+C34B34+B34B3, CB4=CC34+C34B34+B34B4 (2.33b)

Now, the position vector of points Bi in frame R can be obtained as follows:

Bi=C+CBi ∀ i= 1,2,3,4 (2.34)
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Developing the previous equation for i= 1 ... 4, yielding the coordinates of all points Bi as
follows:

B1=C+[rx−rh sin(ψ),ry−rh+rh cos(ψ),0]T

B2=C+[−rx−rh sin(ψ),ry−rh+rh cos(ψ),0]T

B3=C+[−rx+rh sin(ψ),−(ry−rh)−rh cos(ψ),0]T

B4=C+[rx+rh sin(ψ),−(ry−rh)−rh cos(ψ),0]T

(2.35)

As mentioned before,ψ is equal to zero at all times, thus, the coordinates of points Bi can
be simply expressed as follows:

Bi=C+[sign(cos(αi))rx,sign(sinαi)ry,0]
T (2.36)

The actuated points Qi are expressed in the Cartesian reference frame R by the following
vector:

Qi= [sign(cos(αi))Rx,sign(sin(αi))Ry,0]
T (2.37)

For each kinematic chain, the coordinates ofAi in the frame Ri can be calculated from the
given qi as follows:

RiAi= [Licos(qi),0,Lisin(qi)]
T (2.38)

As common for all parallel robots, their arms are rigid enough to have always fixed lengths.
Therefore, the rigidity of the rear-arms and forearms of T3KR robot gives the following
equalities respectively:

∥QiAi∥= Li (2.39)

∥AiBi∥= li (2.40)

2.4.2.1 Inverse Kinematic Model of T3KR PKM

Starting from a known Cartesian pose vector X, one can compute the joint position
vector q using the IKM. Developing (2.39) and (2.40) in the auxiliary frame Ri leads to a
system of two equations as follows:

u2Ai
+z2Ai

= L2i (2.41)

(uBi −uAi
)2+v2Bi +(zBi −zAi

)2= l2i (2.42)

Solving these two equations foruAi
and zAi

in the auxiliary frame Ri gives the intersection
point Ai between the circle of center Qi and radius Li that describes the motion of each
rear-arm (2.41) and the sphere of center Bi and radius li that describes the motion of each
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forearm (2.42). The coordinates of point Bi with respect to the frame Ri is obtained by the
inverse of the transformation matrix T (2.29) as follows:

(

RiBi
1

)

=









cos(αi) −sin(αi) 0 sign(cos(αi))Rx
sin(αi) cos(αi) 0 sign(sin(αi))Ry
0 0 1 0

0 0 0 1









−1

(

RBi
1

)

(2.43)

Thus, the coordinates of the four actuated joints representing the inverse kinematic solu-
tion can be obtained as follows:

qi=atan2(zAi
,uAi

) (2.44)

2.4.2.2 Forward Kinematic Model of T3KR PKM

The FKM of T3KR PKM provides the Cartesian pose vector of the platform starting from
a known configuration of the four actuated joint angles. In Delta-like PKMs, the forearms
are composed of two parallel bars whose purpose is to restrict the orientation of the mov-
ing plate, yielding a relatively straightforward solution for the FKM [Taghirad, 2013]. This
solution lies in finding the intersection of n virtual spheres whose radius is equal to the
length of the forearms. Hereafter, it is explained how the FKM of the T3KR robot can be
obtained.

For each kinematic chain, the coordinates of pointsAi in the reference frame R can be
computed from their coordinates in the auxiliary frame Ri (RiAi) (2.38) using the transfor-
mation matrix T (2.29) as follows:

(

Ai
1

)

=









cos(αi) −sin(αi) 0 sign(cos(αi))Rx
sin(αi) cos(αi) 0 sign(sin(αi))Ry
0 0 1 0

0 0 0 1









(

RiAi
1

)

Ai=Qi+Li[cos(αi)cos(qi),sin(αi)cos(qi),sin(qi)]
T

(2.45)

Now, developing the equality that expresses the constant length of the forearms in
Delta-like parallel robots (2.40) in the reference frame R leads to the following system of
equations:

(xBi −xAi
)2+(yBi −yAi

)2+(zBi −zAi
)2= l2i ∀ i= 1,2,3 (2.46)

These equations are known as the closed-loop equations which involve all geometrical
variables of Delta-like parallel robots. Inserting the coordinates ofBi in the reference frame
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R (2.35) into this equation (2.46) leads to another system of four equations and four un-
knowns, x,y,z andψ, the Cartesian coordinates of P:

(x+rx−rh sin(ψ)−xA1
)2+(y+ry−rh+rh cos(ψ)−yA1

)2+(z+rz−zA1
)2= l21

(x−rx−rh sin(ψ)−xA2
)2+(y+ry−rh+rh cos(ψ)−yA2

)2+(z+rz−zA2
)2= l22

(x−rx+rh sin(ψ)−xA3
)2+(y−ry+rh−rh cos(ψ)−yA3

)2+(z+rz−zA3
)2= l23

(x+rx+rh sin(ψ)−xA4
)2+(y−ry+rh−rh cos(ψ)−yA4

)2+(z+rz−zA4
)2= l24

(2.47)
where l1 = l2 = l3 = l4 = l are the lengths of the forearms. For ψ equal to zero, equation
(2.46) can be simply written as follows:

(x+sign(cos(αi))rx−xAi
)2+(y+sign(sin(αi))ry−yAi

)2+(z+rz−zAi
)2= l2i (2.48)

The numerical solution of (2.47) gives the coordinates of P in the reference frame R
which is represented by the intersection of four spheres of equations shown in (2.47).

2.4.3 Differential Kinematics of T3KR PKM

Differentiating with respect to time the kinematic relationship in (2.46) provides the
relation between the operational velocity vector Ẋ and the joint velocity vector q̇ using
the Jacobian matrix J(X,q). Furthermore, the Jacobian matrix constructs a transformation
that relates the actuator torques and the forces acting on the traveling-plate. The resulting
equality from the differentiation of (2.46) can be written as follows:

(xBi −xAi
)ẋBi+(yBi −yAi

)ẏBi +(zBi −zAi
)żBi

=(xBi −xAi
)ẋAi

+(yBi −yAi
)ẏAi

+(zBi −zAi
)żAi

(2.49)

From (2.35), one can compute the time derivative of the position vectorBi as a function
of the Cartesian velocity vector of the end-effector Ẋ as follows:

ẊB1 = [ẋ−rhψ̇cos(ψ), ẏ−rhψ̇sin(ψ), ż]T = [ẋ, ẏ, ż]T + ψ̇ [−rh cos(ψ),−rh sin(ψ),0]T

ẊB2 = [ẋ−rhψ̇cos(ψ), ẏ−rhψ̇sin(ψ), ż]T = [ẋ, ẏ, ż]T + ψ̇ [−rh cos(ψ),−rh sin(ψ),0]T

ẊB3 = [ẋ+rhψ̇cos(ψ), ẏ+rhψ̇sin(ψ), ż]T = [ẋ, ẏ, ż]T + ψ̇ [rh cos(ψ),rh sin(ψ),0]T

ẊB4 = [ẋ+rhψ̇cos(ψ), ẏ+rhψ̇sin(ψ), ż]T = [ẋ, ẏ, ż]T + ψ̇ [rh cos(ψ),rh sin(ψ),0]T

(2.50)
The Cartesian velocity ofAi can be derived from (2.45) as follows:

ẊAi
= tiq̇i (2.51)
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where ti is the tangent vector at pointAi to the circle of the rear-arm given as follows:

ti= [−Lsin(qi)cos(αi),−Lsin(qi)sin(αi),Lcos(qi)]
T (2.52)

Therefore, (2.49) can be arranged and rewritten in the form below:

JxẊ= Jqq̇ (2.53)

where Jq and Jx are calculated as follows:

Jx=









A1B
T
1 −rh cos(ψ)(xB1 −xA1

)−rh sin(ψ)(yB1 −yA1
)

A1B
T
2 −rh cos(ψ)(xB2 −xA2

)−rh sin(ψ)(yB2 −yA2
)

A1B
T
3 rh cos(ψ)(xB3 −xA3

)+rh sin(ψ)(yB3 −yA3
)

A1B
T
4 rh cos(ψ)(xB4 −xA4

)+rh sin(ψ)(yB4 −yA4
)









(2.54)

Jq=diag{t
T
1A1B1, t

T
2A2B2, t

T
3A3B3, t

T
4A4B4} (2.55)

Finally, the Jacobian matrix is computed as follows:

J= J−1x Jq (2.56)

It is worth to note that for T3KR robot, the Jacobian matrix is square (4x4), thus, the inverse
of Jx always exists as long as the robot follows trajectories away from singularities. The
differential kinematic model of the T3KR robot is given by the following equations:

Ẋ= Jq̇ (2.57)

q̇= JmẊ= J−1Ẋ (2.58)

2.4.4 Dynamics of T3KR PKM

Before proceeding with the development of the dynamic modeling of the T3KR robot,
the following simplifying assumptions, which are common to Delta-like PKMs, must be
considered, to obtain a suitable dynamic model appropriate for real-time implementation
[Pierrot et al., 1990]:

Assumption 2.4.1. Both dry and viscous frictions in all passive and active joints are ne-

glected.

Assumption 2.4.2. The rotational inertia of the forearm is neglected. Nevertheless, its mass

is split up into two point-masses, one is added to the rear-arm mass, and the other one is

joined to the traveling plate mass (see Figure 2.11).

The second simplification is justified only if the ratio between the mass of the forearms
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Figure 2.11 – Illustration of dynamic parameters of T3KR robot arm.

and the mass of the rear-arms is sufficiently small (less than 0.3), as it is established on the
analysis study developed for PKMs with delta-like structure in [Nabat, 2007]. Regarding the
dynamics parameters of T3KR presented in Table. 2.1, the mass of one rear-arm is 3.28 Kg
and the mass of one forearm is 0.8 kg considering the two parallel bars yielding a ratio of
0.2439 which is less than 0.3. Therefore, Assumption 2.4.2 can be considered for the T3KR
dynamic model.

The dynamic model of T3KR robot is established, as in [Saied, 2019], based on the vir-
tual work principle described in [Codourey, 1998]. It can be reduced to analyzing the dy-
namics of mainly two bodies, namely the traveling-plate and the main actuators in con-
junction with their corresponding rear-arms.

Regarding the moving platform dynamics, one can define two kinds of forces acting on
it: the gravitational forceGtp ∈R

4, and the inertial force Ftp ∈R
4.

The gravitational forceGtp can be denoted by the following equation:

Gtp=−MtpG (2.59)

where Mtp = diag{mtp,mtp,mtp,0} being mtp = mn + 4
mf

2
is the total mass of the

traveling-plate. It involves the mass of the nacelle including the mass of the actuator on-
board the platform and the half-masses of the four forearms as shown in Figure 2.11. G ∈R

4

is the gravity vector,G= [0,0,g,0]T .

The inertial force Ftp arising from the mobile platform acceleration is defined as fol-
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lows:
Ftp=MtpẌ (2.60)

where Ẍ ∈ R
4 denotes the acceleration vector. The contributions of the gravitational and

inertial forces to the actuator torques are computed using the Jacobian matrix as follows:

ΓGtp
= JTGtp (2.61)

ΓFtp = J
TFtp (2.62)

Regarding the rear-arms dynamics, we consider three contributing torques. Firstly, the
Firstly, the actuators input torque Γ ∈ R

4. Secondly, the torque produced by the gravita-
tional forces acting on the rear-arms ΓGarm

∈R
4 is given by:

ΓGarm
=−gMrCos(q) (2.63)

Mr=diag{mreq,mreq,mreq,mreq} (2.64)

wheremreq=mrLrG+L
mf

2
,mr is the mass of each rear-arm, lrG is the distance from the

axis of rotation of each rear-arm to its center of gravity, while L is the complete length of
each rear-arm as illustrated in Figure 2.11. mf is the mass of each forearm as shown in
Figure 2.11 andCos(q)≜ [cos(q1),cos(q2),cos(q3),cos(q4)]. Thirdly, the inertial contri-
bution torque due to rear-arms acceleration Γarm ∈R

4 is defined as follows:

Γarm= Iarmq̈ (2.65)

where q̈ ∈ R
4 is the acceleration vector in joint space and Iarm ∈ R

4x4 is a diagonal matrix
whose elements are formed by:

Iarm= Iact+ Ira+
L2mf

2
(2.66)

where Iact and Ira represent the actuators inertia and the reararms inertia, respectively.

The term
L2imf

2
corresponds to the inertial contribution of the forearms taking into con-

sideration the statement of Assumption 2.4.2. All these inertia values are computed with
respect to the actuator rotation axes.

After applying the virtual work principle, stating that the contribution of all non-inertial
forces must be equal to the contribution of all inertial forces, one can formulate the inverse
dynamic model of T3KR PKM as follows:

Γ +ΓGarm
+ΓGtp

= Γarm+ΓFtp

Γ = Iarmq̈+ J
TMtpẌ−ΓGarm

−ΓGtp

(2.67)
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Table 2.1 – Summary of the main geometric and dynamic parameters of T3KR PKM.

Parameter Description Value Parameter Description Value

L Rear-arm length 400 mm mr Rear-arm mass 3.78 kg
l Fore-arm length 900 mm mf Forearm mass 0.8 kg
rz End-effector length 50 mm mn Traveling-plate mass 5.28 kg
Ira Rear-arm inertia 1.737 kg.m2 Iact Actuator inertia 2.732 kg.m2

To express the dynamic model in joint space, we compute the first time derivative of (2.57)
to obtain the relation between joint and Cartesian accelerations as follows:

Ẍ= Jq̈+ J̇q̇ (2.68)

where J̇ is the time derivative of J.

After substituting (2.68) in (2.67) and rearranging the terms, the inverse dynamic model
of T3KR robot can be expressed in terms of the joint coordinates q as follows:

M(q)q̈+C(q,q̇)q̇+G(q)= Γ(t) (2.69)

whereM(q) = Iarm+ JTMtpJ is the total mass and inertia matrix of the robot, C(q,q̇)q̇=
JTMtpJ̇ is the Coriolis and centrifugal forces matrix, G(q) = −ΓGarm

− ΓGtp
is the gravita-

tional forces vector, and Γ(t) is the control input vector. The main geometric and dynamic
parameters of T3KR parallel robot are summarized in Table. 2.1.

2.5 Real-time experimental results

In this section, the obtained experimental results of the proposed P&T method are pre-
sented and compared with the standard P&P method and with an existing P&T approach
from the literature.

2.5.1 Description of the experimental testbed

T3KR parallel robot uses five actuators to perform the mobile platform and the end-
effector movements. Four WITTESTEIN TPMA025S-022M actuators allow translational
motions along x, y and z axes and a rotational motion of the platform around the z axis. A
gearbox of ratio 1:22 is integrated in each actuator, providing a maximum torque of 530 Nm
and a maximum joint rotation speed of 220 rpm. The actuator mounted on the platform
is WITTESTEIN TPM+ dynamic 004 with a gear ratio of 1:16. This actuator is responsi-
ble for the rotation of the end-effector around the z axis and can provide a peak torque
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Figure 2.12 – The experimental testbed: T3KR robot, conveyors, recyclable objects and the
sorting box.

of about 30 Nm and a maximum speed of about 375 rpm. The joint positions are mea-
sured by means of multi-turn absolute encoders. The robot is controlled by an indus-
trial PC (5PC910) equipped with the B&R Automation studio with a sampling frequency
of 2500 Hz (i.e. a sampling time of 0.4 ms). The motors motion control is performed by
a PID controller integrated in ACOPOSmulti B&R drive. The mobile platform can reach
a maximum speed of 6 m/s (i.e. Vmax = 6m/s), a maximum acceleration of 12 G (i.e.
Amax = 12G = 120m/s2) and carry a maximum payload of 5 kg. The mobile platform
has a total mass of about 5.68 kg. The robot is equipped with a Cognex smart camera. The
experimental setup is displayed in Figure 2.12. It includes the T3KR robot, two conveyors,
three objects (recyclables) of different masses, sizes and materials, and a sorting box to
deposit the objects.

2.5.2 Description of P&P and P&T reference trajectories

To validate the efficiency of the proposed P&T technique, i.e., the minimum-time throw
motion introduced in Section 2.3, comparisons with a standard P&P method as the one
used in [Nabat et al., 2005] and with the P&T approach proposed in [Raptopoulos et al.,
2020] are conducted in real-time experiments. The three associated reference trajectories
are described hereafter. All the length units are in meters.

2.5.2.1 Pick-and-Place reference trajectory

The 3D view of the adopted P&P trajectory in Cartesian space is depicted in Fig-
ure 2.13. A standard P&P trajectory consists of a vertical movement, followed by a hori-
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zontal movement and a final vertical movement. The robot moves from the initial position
Pinitial= [0,−0.77,0] to the first pick position Ppick1= [−0.2,−0.25,−0.85] (the conveyor
height is −0.85). After picking the object, it follows the first P&P trajectory (shown in the
red) to place the object at Pplace = [0.3,0.4,−0.85]. Then, the robot follows the second
P&P trajectory (shown in green) to pick the second object at Ppick2= [−0.2,−0.35,−0.85]

and moves back to Pplace. The same movement is repeated for the third object located
at Ppick3= [−0.3,−0.35,−0.85]. After placing the third object, the robot goes back to the
initial position Pinitial.

2.5.2.2 Existing Pick-and-Throw reference trajectory

The P&T trajectory used in [Raptopoulos et al., 2020] is shown in Figure 2.14. This tra-
jectory is similar to a P&P trajectory and can be described as follows: After moving the
end effector from its initial position Pinitial to the first pick position Ppick1, the robot per-
forms a vertical movement followed by a horizontal movement towards the release point.
It throws the object to the target position Pf= [0.3,0.4,−0.85] along the horizontal move-
ment and then makes a U-turn to decelerate towards the next pick position Ppick2. The
same movement is repeated for the third object located at Ppick3. After throwing the third
object, the robot returns back to its initial position. In [Raptopoulos et al., 2020], the path
of the P&T trajectory is presented without describing the release point computation. In the
present experiments, the release points are computed with the methodology proposed in
Section 2.3 where only the horizontal distance to the release position has to be optimized
because, in the P&T trajectory of [Raptopoulos et al., 2020], Zr is fixed, Vzr = 0 m/s and
θr= 0 deg.

2.5.2.3 Proposed Pick-and-Throw reference trajectory

The P&T trajectory proposed in this thesis is depicted in Figure 2.15. The robot fol-
lows the first picking motion from Pinitial to Ppick1 . After picking the object, the optimal
release configuration, including Pthrow1

= Pr1 and Vr1, is calculated as described in Sec-
tion 2.3. The robot accelerates while moving along a straight line towards the calculated
release point Pthrow1

at which it throws the object towards the target Pf. Once released,
the object follows a ballistic trajectory to Pf while the robot decelerates back to pick the
second object. The same cyclic movement is repeated for the second and the third ob-
jects, located at Ppick2 and Ppick3 , respectively. After throwing the third object, the robot
moves back to Pinitial. As a numerical example, in a case study with 30% of the maximum
dynamic performances of the T3KR robot (i.e. 30% of Vmax = 6m/s, Amax = 12m/s2

and J= 3000m/s3) and for a target position inside its workspace, Pf= [0.3,0.4,−0.85], the
following optimal release configurations are calculated with the method proposed in Sec-
tion 2.3: Pthrow1

= [0.09,0.13,−0.75] and Vr1= 1.8m/s, Pthrow2
= [0.15,0.17,−0.75] and

Vr2= 1.8m/s, Pthrow3
= [0.12,0.17,−0.75] and Vr3= 1.8m/s.
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Figure 2.13 – 3D-view of P&P reference trajectory in Cartesian space.

Figure 2.14 – 3D-view of existing P&T reference trajectory [Raptopoulos et al., 2020].

2.5.3 Obtained Experimental Results

The performance of the proposed P&T approach is evaluated through three experimen-
tal scenarios. These scenarios are performed under different operating conditions (accel-
eration, speed, and different types of objects of different sizes, materials and masses, etc.).
The three types of objects considered are: A paper object of 7 g of mass, a metallic can with
a mass of 16 g (∆mass =+128% w.r.t the first object) and a plastic package of 49 g of mass
(∆mass = +600% w.r.t the first object). The demonstration video of the three tested sce-
narios is available at: https://youtu.be/4bRvqKurMJU. These three scenarios are detailed
in the sequel.

2.5.3.1 Scenario 1

It consists in comparing the usual P&P (cf. Section 2.5.2.1) and the proposed P&T
(cf. Section 2.5.2.3) trajectories inside the workspace, i.e., both the pick and the target
positions are located inside the robot workspace. For comparison purposes, we use dif-
ferent percentages of the maximum speed (Vmax = 6m/s) and maximum acceleration
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Figure 2.15 – 3D-view of the proposed P&T reference trajectory.

(Amax = 12G) of T3KR end-effector. These percentages are 15%, 30% and 40%, which
correspond to 0.9 m/s, 1.8 m/s and 2.4 m/s of maximum velocity, respectively and to 1.8 G,
3.6 G and 4.8 G of maximum accelerations, respectively. The desired Cartesian positions,
velocities and accelerations, along the x, y, and z axes, generated using the minimum-time
S-curve motion profile, are shown on the left side of Figures 2.16, 2.17, and 2.18 for the P&P
tasks and on the right side of Figures 2.16, 2.17, and 2.18 for the proposed P&T tasks inside
the workspace.

2.5.3.2 Scenario 2

This scenario consists in comparing, inside the robot workspace, the proposed P&T
method with the existing P&T strategy of [Raptopoulos et al., 2020] (cf. Section 2.5.2.2).
As in the previous scenario, this test is performed under 15%, 30% and 40% of maximum
acceleration and maximum velocity. The desired Cartesian positions, velocities, and accel-
erations of the existing P&T strategy are depicted on the left side of Figures. 2.19.

2.5.3.3 Scenario 3

In this scenario, the proposed P&T method is compared with the existing P&T method
of [Raptopoulos et al., 2020], but with a target position outside the robot workspace. The
generated P&T trajectories are executed with 35%, 40% and 45% of maximum velocity and
maximum acceleration, which corresponds to 2.1 m/s, 2.4 m/s and 2.7 m/s of maximum
velocity, respectively and to 4.2 G, 4.8 G and 5.4 G of maximum acceleration, respectively.
We start with a percentage of 35% in this scenario because, with a lower percentage, the
speed is not sufficient to throw the object towards the desired target located outside the
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workspace, Pf = [0.45,0.65,−0.85]. The evolution of the desired positions, velocities, and
accelerations is depicted on the left side of Figures 2.22, 2.20, 2.21 for the existing P&T
method [Raptopoulos et al., 2020] and on the right side of Figures 2.22, 2.20, 2.21 for the
proposed P&T approach. As it can be seen, with the increase in the operating acceleration,
the calculated release point is closer to the picking position. Therefore, the duration of the
whole trajectory is reduced and the robot can perform more picks per minute.

2.5.4 Results discussion

The obtained experimental results demonstrate the superiority of the proposed P&T
approach over the standard P&P method and the existing P&T method of [Raptopoulos
et al., 2020]. The number of picks per minute obtained by each method in each case study
are summarized in the Table 2.2. Inside the workspace, using the P&P method, the robot
can perform 24 to 51 picks per minute when the acceleration increases from 1.8 G to 4.8 G.
While for the existing P&T method, it can perform 29 to 75 picks/min. However, with the
proposed P&T approach, the obtained number of picks per minute goes from 30 to 120.
Therefore, the proposed P&T method outperforms the two other strategies. At 4.8 G of
maximum acceleration, the existing P&T method increases the number of picks per minute
by up to 32% compared to the P&P approach. The proposed P&T strategy improves the
performance by 57.5% over the standard P&P approach and by 37% over the existing P&T
method, which are significant performance improvements for applications requiring re-
duced processing time and high productivity. Moreover, the improvement brought by the
proposed P&T method over the existing approaches illustrate the relevance of determining
an optimal release configuration. Regarding scenario 3, the P&T is the only candidate to
perform such a task since the P&P method cannot place an object outside the workspace
of the robot. At an acceleration of 5.4 G, the robot can reach 65 picks per minute by adopt-
ing the existing P&T method and 81 picks per minute by using the proposed P&T method.
Therefore, the proposed P&T method largely outperforms the two other methods in all case
studies.
All the presented experimental results confirm clearly the continuity of the proposed P&T
trajectory as well as its time optimality, since the velocities and accelerations along the
three axes, for the three scenarios, reach their corresponding maximum values. To further
clarify this point, we propose to analyze the experimental results of one case study corre-
sponding to the execution of the proposed P&T method for a target position outside the
workspace, with 2.1 m/s of maximum velocity and 4.2 G of maximum acceleration. Fig-
ures 2.25, 2.26, and 2.27 hereafter depict the desired Cartesian positions, velocities, and
accelerations of the robot end-effector along the x, y and z axes of this case study. Fig-
ure 2.28 displays the time evolution of the resulting velocity and acceleration of the robot
end-effector. The proposed trajectory is optimized in a way that the resulting velocity and
acceleration of the end-effector do not exceed their maximum values (i.e. 2.1 m/s for ve-
locity and 4.2 G for acceleration in this case study). The time evolution of the resulting
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Figure 2.16 – Scenario 1: Evolution of the desired robot’s end-effector Cartesian positions
versus time for the P&P task [Nabat et al., 2005] and the proposed P&T task for different
values of the maximum acceleration.

Table 2.2 – Number of picks per minutes versus operating acceleration for the three case
studies.

1.8 G 3.6 G 4.2 G 4.8 G 5.4 G

Inside P&P 24 42 - 51 -
Workspace Existing P&T 29 56 - 75 -

Proposed P&T 30 68 - 120 -
Outside Existing P&T - - 54 60 65

Workspace Proposed P&T - - 62 71 81

velocity Vs(t) and acceleration As(t) of the end-effector can be calculated from the indi-
vidual velocity and acceleration along each axis based on the following relationships:

Vs(t)=

√

Vx(t)2+Vy(t)2+Vz(t)2 (2.70)

As(t)=

√

Ax(t)2+Ay(t)2+Az(t)2 (2.71)

As shown in Figure 2.28, the velocity and acceleration of the end-effector reach their max-
imum constraints (i.e. the maximum of Vs(t) is 2.1 m/s, while the maximum of As(t) is
42 m/s2, equivalent to 4.2 G). Figure 2.29 shows the time of the three-phase movements
(i.e. the acceleration phase, the deceleration phase and the vertical movement) as well as
the time of the two overlaps (the first overlap is between the acceleration and deceleration
phases, while the second one is between the deceleration phase and the vertical move-
ment). The values of these different times are reported in Table 2.3.
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Figure 2.17 – Scenario 1: Evolution of the desired robot’s end-effector Cartesian velocities
versus time for the P&P task [Nabat et al., 2005] and the proposed P&T task for different
values of the maximum acceleration.

Figure 2.18 – Scenario 1: Evolution of the desired robot’s end-effector Cartesian accelera-
tion versus time for the P&P task [Nabat et al., 2005] and the proposed P&T task for different
values of the maximum acceleration.

Table 2.3 – Time of the three phase movements

Acceleration phase Deceleration phase Vertical movement First overlap Second overlap

0.5354 [sec] 0.5604 [sec] 0.1151 [sec] 0.0900 [sec] 0.0575 [sec]
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Figure 2.19 – Scenario 2: Evolution of the desired robot’s end-effector Cartesian positions
versus time for the existing P&T method [Raptopoulos et al., 2020] and the proposed P&T
one for different values of the maximum acceleration.

Figure 2.20 – Scenario 2: Evolution of the desired robot’s end-effector Cartesian velocities
versus time for the existing P&T method [Raptopoulos et al., 2020] and the proposed P&T
one for different values of the maximum acceleration.

2.6 Conclusion

In this chapter, a new approach to generate a time-optimal throwing trajectory has
been proposed. This approach consists in determining an optimal release configuration
resulting in a minimum-time throw motion while ensuring that the released object will
reach the desired target. The corresponding optimization problem has been formulated in
two different ways where the second one allows the optimal release configuration to be ef-
ficiently computed. A comparison between the proposed P&T procedure, an existing P&T
method and the conventional P&P has been conducted through real-time experiments on
the T3KR parallel robot. The obtained experimental results validate the efficiency of the
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Figure 2.21 – Scenario 2: Evolution of the desired robot’s end-effector Cartesian accelera-
tions versus time for the existing P&T method [Raptopoulos et al., 2020] and the proposed
P&T one for different values of the maximum acceleration.

Figure 2.22 – Scenario 3: Evolution of the desired robot’s end-effector Cartesian positions
versus time for the existing P&T method [Raptopoulos et al., 2020] and the proposed P&T
one for different values of the maximum acceleration.

proposed P&T method, over the two other methods, in terms of processing time mini-
mization and, thereby, of productivity maximization.
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Figure 2.23 – Scenario 3: Evolution of the desired robot’s end-effector Cartesian velocities
versus time for the existing P&T method [Raptopoulos et al., 2020] and the proposed P&T
one for different values of the maximum acceleration.

Figure 2.24 – Scenario 3: Evolution of the desired robot’s end-effector Cartesian accelera-
tions versus time for the existing P&T method [Raptopoulos et al., 2020] and the proposed
P&T one for different values of the maximum acceleration.
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Figure 2.25 – Evolution versus time of the desired robot’s end-effector Cartesian positions
for the proposed P&T method outside the robot’s workspace at 2.1 m/s of maximum veloc-
ity and 4.2 G of maximum acceleration.
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Figure 2.26 – Evolution versus time of the desired robot’s end-effector Cartesian velocities
for the proposed P&T method outside the robot’s workspace at 2.1 m/s of maximum veloc-
ity and 4.2 G of maximum acceleration.
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Figure 2.27 – Evolution versus time of the desired robot’s end-effector Cartesian accelera-
tions for the proposed P&T method outside the robot’s workspace at 2.1 m/s of maximum
velocity and 4.2 G of maximum acceleration.
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Figure 2.28 – Evolution versus time of the resulting desired Cartesian velocity and accelera-
tion of the robot’s end-effector for the proposed P&T method outside the robot’s workspace
at 2.1 m/s of maximum velocity and 4.2 G of maximum acceleration.



2.6. CONCLUSION 107

Acceleration time
Deceleration time

Vertical movement time 

Time of first overlap

Time of second overlap

Figure 2.29 – Evolution versus time of the resulting desired Cartesian velocity and accelera-
tion of the robot’s end-effector for the proposed P&T method outside the robot’s workspace
at 2.1m/s of maximum velocity and 4.2 G of maximum acceleration.
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3.1 Introduction

Control design is an important research area of robotics because it determines the
robotic system motion. As mentioned in Chapter 1, the control task of parallel manip-
ulators is considered complicated and challenging due to the presence of different types
of uncertainties, highly nonlinear dynamics, and, in the case of RA-PKMs, the problem of
internal forces generation. To overcome these issues, advanced nonlinear robust control
techniques may be a good solution to obtain improved dynamic performance in terms of
high-speed motions, precision, and robustness. Aware of the importance of designing ad-
vanced control schemes for parallel robots, in this chapter, we will describe in detail three
proposed control solutions for PKMs. The contribution for each adopted control strategy
is addressed and explained. The proposed controllers aim to keep the joint tracking errors
as small as possible under different operating conditions. Although these control schemes
were designed for P&T tasks with PKMs in a selective sorting application, it is also possible
to implement them in any other types of robot manipulators.
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3.2 A new augmented RISE feedback controller

The proposed augmented RISE feedback controller is the second contribution of this
thesis.

3.2.1 Background on RISE feedback control

Consider the dynamic equation of pth order MIMO uncertain nonlinear system as fol-
lows:

M(x,ẋ, ...,x(p−1))x(p)+F(x,ẋ, ...,x(p−1))=U(t) (3.1)

where x(t), ẋ(t), ...,x(p−1)(t) ∈ R
n are the system states. M(x,ẋ, ...,x(p−1)) ∈ R

n×n and
F(x,ẋ, ...,x(p−1)) ∈ R

n being uncertain nonlinear functions, U(t) ∈ R
n is the control input

vector, and n is the number of actuators.

Let’s define the output tracking error as follows:

e1= xd−x (3.2)

where xd(t) ∈ R
n is the desired trajectory. In order to achieve an asymptotic tracking of a

reference trajectory xd(t) (i.e. e1(t)→ 0 as t→∞), the system and the reference trajectory
should have the assumed properties below [Xian et al., 2004].

Property 3.2.1. M(.) is a symmetric positive-definite matrix that satisfies the following in-

equalities for any γ ∈R
n:

m∥γ∥2 ≤γTM(.)γ≤m(x)∥γ∥2

where m ∈ R is a known positive constant and m(x) ∈ R is a positive non-decreasing func-

tion. Notice that ∥.∥ stands for the classical Euclidean norm.

Property 3.2.2. The nonlinear functionsM(.) and F(.) are second-order differentiable and

bounded.

Property 3.2.3. The chosen desired trajectory xd(t) ∈R
n is continuously differentiable with

respect to time until the (p+2)th derivative.

Lets us now consider the following auxiliary error signals before introducing the control
law:

e2(t)= ė1(t)+e1(t)

e3(t)= ė2(t)+e2(t)+e1(t)

e4(t)= ė3(t)+e3(t)+e2(t)

...

ep(t)= ėp−1(t)+ep−1(t)+ep−2(t)

(3.3)



3.2. A NEW AUGMENTED RISE FEEDBACK CONTROLLER 111

Based on the stability analysis developed in [Xian et al., 2004], RISE feedback control
law that can achieve the control objective is expressed as follows:

U(t)= (Ks+ I)ep(t)−(Ks+ I)ep(t0)+

∫ t

t0

[(Ks+ I)Λep(σ)+βsgn(ep(σ))]dσ (3.4)

where Ks,Λ and β ∈ R
n×n are diagonal positive-definite control gain matrices, I ∈ R

n×n is
the identity matrix, t0 is the initial time and sgn(.) represents the standard signum func-
tion. The integral of signum constitutes the robustness term of the RISE control law thanks
to which smooth bounded disturbances can be held. It is worth to note that the second
term of the R.H.S of (3.4) (i.e., (Ks+ I)ep(t0)) is introduced to guarantee a zero control
input at time t= t0 (i.e.,U(t0)= 0).

3.2.2 RISE control of parallel manipulators

For a PKM with m-DOF and n actuators, equation (3.1) may be expressed as:

M(q)q̈+F(q,q̇)= Γ(t) (3.5)

where F(q,q̇) = C(q,q̇)q̇+G(q)+ f(q,q̇)+ Γd, being f(q,q̇) ∈ R
n the vector containing

the friction effects, and Γd ∈ R
n a general nonlinear bounded vector of disturbances (i.e.

external disturbances, interaction with the environment, etc). The nonlinear dynamics
(3.5) is clearly a 2nd order nonlinear system with n-dimensional input vector Γ(t). The
joint tracking error e1(t) ∈ R

n is then defined as the difference between the desired joint
trajectories qd(t) and the measured ones q(t):

e1(t)=qd(t)−q(t) (3.6)

To develop the closed-loop error system equation, the auxiliary tracking errors e2 and
r ∈R

n should be defined as follows:

e2= ė1+Λ1e1 (3.7)

r= ė2+Λ2e2 (3.8)

where Λ1, Λ2 ∈ R
n×n are positive-definite, diagonal gain matrices added to increase the

flexibility of tuning.

At first, one needs to differentiate (3.8) with respect to time, then multiply the right
and left sides of the resulting equation by the nonlinear matrixM(q). After that, using the
dynamic equation of the system (3.5), we obtain the following equation:

M(q)ṙ=M(q)(
...
qd+Λ1ë1+Λ2ė2)+Ṁ(q)q̈+ Ḟ(q,q̇)− Γ̇RISE (3.9)
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in which, ΓRISE(t) = Γ(t). The RISE control law (3.4) for systems whose dynamics are gov-
erned by (3.5) is expressed as follows:

ΓRISE(t)= (Ks+ I)e2(t)−(Ks+ I)e2(t0)+

∫ t

t0

[(Ks+ I)Λ2e2(σ)+βsgn(e2(σ))]dσ. (3.10)

By adding and subtracting
1

2
Ṁ(q)r and e2 to the R.H.S of the previous equation (3.9),

it can be re-expressed as below:

M(q)ṙ=−
1

2
Ṁ(q)r−e2− Γ̇RISE+W(q,q̇, q̈,t) (3.11)

whereW(q,q̇, q̈,t) is a nonlinear auxiliary function defined as follows:

W(.)≡W(q,q̇, q̈,t)=M(q)(
...
qd+Λ1ë1+Λ2ė2)+Ṁ(q)q̈+ Ḟ(q,q̇)+

1

2
Ṁ(q)r+e2

(3.12)

After substituting the first time derivative of the RISE controller (3.10) into (3.11), one
can obtain the following closed-loop error system equation:

M(q)ṙ=−
1

2
Ṁ(q)r−e2−(Ks+ I)r−βsgn(e2)+W(.) (3.13)

Let’s now introduce the auxiliary function, Wd(t) =Wd(qd, q̇d, q̈d,t), defined as fol-
lows:

Wd(t)=M(qd)
...
qd+Ṁ(qd)q̈d+C(qd, q̇d)q̈d+ Ċ(qd, q̇d)q̇d+ Ġ(qd)+ ḟ(qd, q̇d) (3.14)

By adding and subtractingWd(qd, q̇d, q̈d,t) to the R.H.S of (3.13), one can obtain:

M(q)ṙ=−
1

2
Ṁ(q)r−e2−(Ks+ I)r−βsgn(e2)+W̃+Wd (3.15)

where W̃(q,q̇, q̈,t) =W(q,q̇, q̈,t)−Wd(qd, q̇d, q̈d,t). Thanks to above properties 3.2.1,
3.2.2 and 3.2.3, one can deduce that functionsWd and Ẇd ∈L∞ (i.e. exist and bounded).

SinceW(.) is continuous, one can show that W̃(.) can be upper bounded as follows:

∥W̃∥ ≤p(∥z∥)∥z∥ (3.16)

where z(t) = [e1 e2 r]
T and p(.) is a globally invertible nondecreasing function. For the

proof of (3.16), the reader can refer to Lemma1 in the appendix of [Patre et al., 2008].
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Following the same analysis of [Xian et al., 2004], the stability of the RISE feedback law
can be proved, meaning that the tracking error e1(t) and its derivatives are bounded and
converge to zero as time goes to infinity

e
(i)
1 (t)→ 0 as t→∞, for i= 0,1,2 (3.17)

provided that the control design gainsKs is chosen large enough relative to the initial con-
ditions of the system,Λ1,Λ2 > 1/2, and β satisfies the following condition:

β> ∥Wd(t)∥L∞
+
1

Λ2
∥Ẇd(t)∥L∞

(3.18)

where ∥.∥L∞
is the L∞ norm.

3.2.3 Applications of RISE feedback control law

RISE is a robust nonlinear controller dedicated to the control of high-order MIMO non-
linear systems. It is a full-state feedback non-model-based control scheme. RISE was de-
veloped in [Xian et al., 2004] to ensure a semi-global asymptotic tracking of uncertain non-
linear systems under some assumptions on the controlled system and the reference tra-
jectory. It is characterized by a unique feature which is the integral of the sign of the error,
assuring its continuity as well as the rejection of external disturbances.

RISE control strategies known by their robustness and disturbance rejection ability
were successfully implemented in various real-time applications such as direct energy
platform (jitter) [Feemster, 2014], nonlinear teleoperation system [Kawai and Namerikawa,
2013], hard disk drive [Taktak-Meziou et al., 2014], DC motor drive system [Yao et al.,
2014]. Moreover, the high efficiency of RISE control schemes has been proved experi-
mentally on different robotic applications such as Autonomous Underwater Vehicle (AUV)
[Fischer et al., 2011], exoskeleton devices [Sherwani et al., 2020], rigid parallel manipula-
tor [Escorcia-Hernández et al., 2020b]. Recently, in [Hassan et al., 2020], the RISE feed-
back strategy has been applied, for the first time, on a cable-driven parallel robot (CDPR),
showing a high positioning accuracy, despite the significant uncertainties inherent to such
a system. The RISE-based controllers show in the many researches work a high perfor-
mance compared to standard RISE control law. For instance, in [Bennehar et al., 2018], a
RISE-based adaptive control has been proposed as a solution for the control problem of
PKMs. It consists in adding model-based adaptive feedforward term to the control loop
in order to compensate for parameter variations. Another interesting extension of RISE
control was introduced in [Saied et al., 2019a], where some of the constant feedback gains
were replaced by nonlinear time-varying ones endowing the controller with better robust-
ness against external perturbations. In [Escorcia-Hernández et al., 2020a], a RISE feedback
controller has been extended by an adaptive feedforward compensation term based on
B-Spline Neural Networks (BSNNs) to improve tracking performance of PKMs.
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3.2.4 Proposed augmented RISE feedback control

3.2.4.1 Motivation

Parallel manipulators are well known for their unfavorable nonlinearities, abundant
modeling uncertainties, external disturbances, and parameter variations (i.e., payload), es-
pecially in high-speed industrial applications. In order to achieve better output trajectory
tracking despite all of the above challenges, a controller must be robust enough to coun-
teract external disturbances as well as rich in dynamic model knowledge to compensate
for system uncertainties and nonlinearities.

RISE and RISE-based control strategies show, in different applications, significant per-
formance and robustness against disturbances and uncertainties. Therefore, the improve-
ment of this controller is of great interest. The RISE feedback control law is a non-model
based controller that depends only on system states, which may lead to low performance
in the presence of large uncertainties and hard nonlinearities. Enriching the control loop
of the original RISE controller by a compensation term based on the dynamic model and
the system errors has the potential to improve the performance by accommodating more
nonlinearities and variations in the dynamic parameters.

In most industrial applications, non-model based control strategies are applied due
to their simplicity and ease of implementation. However, as mentioned above, PKMs are
often subject to dynamic nonlinearities, uncertainties, parameter variations, external dis-
turbances, etc. Accordingly, non-model-based controllers may lead to poor performance
and even instability when operating at critical conditions (e.g. high speed applications,
payload changes). Enriching a controller with knowledge on the manipulator dynamics
can compensate for nonlinearities and parameter uncertainties, especially for high-order
nonlinear systems [Kelly et al., 2006; Ren et al., 2007]. Several model-based controllers
have already been reported in section 1.8.2, highlighting their improved overall tracking
performance compared to non-model-based controllers.

Motivated by the advantages of enriching the controller with a dynamic compensation
term and the significant performance of the RISE feedback law for different applications,
the revision of the original RISE feedback law is carried out by augmenting its control loop
with a nonlinear dynamic compensation term. This term is computed based on a combi-
nation of the dynamic parameters of the controlled system, which is a PKM in our study, its
state errors, and the measured and desired trajectories. In addition, the resulting controller
is extended by an auxiliary nonlinear feedback term to account for the errors that occur by
replacing the actual trajectories (specifically the actual velocities and accelerations), in the
dynamic compensation term, with the desired trajectories. The proposed control contri-
bution can compensate for PKMs high nonlinearities as well as improve the robustness of
the standard RISE controller.
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3.2.4.2 Control design

In what follows, we recall the general overview of PD control plus compensation. Then,
the proposed control solution is introduced.

General Overview on PD Control plus Compensation

The PD plus compensation control law, called PD+, is one of the model-based con-
trollers that is popular in academia. It is a non-adaptive version of the first adaptive con-
troller proposed in 1987 by Slotine and Li, and it is referred to by the names of its creators:
"Slotine and Li controller" [Slotine and Li, 1987; Slotine and Weiping, 1988]. From a struc-
tural point of view, this controller is composed of a PD feedback term plus a compensation
term based on the full knowledge of the dynamic model combined with the system state
errors. Let us first consider the classical PD control law as follows:

ΓPD=Kpe(t)+Kdė(t) (3.19)

where Kp and Kd ∈ R
+ are constant feedback gains that are tuned to ensure the stability

of the system, and e(t) = qd−q is the tracking error. Enriching this controller explicitly
with the dynamic model of the nonlinear controlled system allows to compensate for sys-
tem nonlinearities, and thereby, enhancing the trajectory tracking accuracy. The following
equation describes the control law of PD plus compensation:

ΓPD+ =M(q)(q̈d+αė(t))+C(q,q̇)(q̇d+αe(t))+G(q)+Kpe(t)+Kdė(t) (3.20)

where α ∈R
+ is defined as follows:

α=K−1
v Kp (3.21)

Proposed Extended RISE Control plus Compensation

RISE is a non-model based controller consisting of two main parts: A linear state feed-
back term similar to a PI controller, depending on the combined tracking error, and a non-
linear robustness term based on the integral of the sign of the combined error. It does
not take advantage of knowledge of the manipulator dynamic model in its control loop.
Thus, the dynamic parameter uncertainties and system nonlinearities are not well com-
pensated for by the standard RISE feedback law, especially under critical operating con-
ditions. These issues may lead to high-gain or high-frequency feedback and poor perfor-
mance in the case of high nonlinearities or in presence of large disturbances. Therefore,
to improve the performance of the original RISE controller, we propose to enrich its con-
trol structure by adding a full dynamic compensation term. As it can be seen from the
equation of PD control plus compensation (3.20), the compensation term consists of the
system dynamic parameters computed online using the measured trajectories and then
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𝐓𝐫𝐚𝐣𝐞𝐜𝐭𝐨𝐫𝐲𝐠𝐞𝐧𝐞𝐫𝐚𝐭𝐢𝐨𝐧 𝑿𝒅, ሶ𝑿𝒅, ሷ𝑿𝒅
Inverse 

Kinematics
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Dynamic Compensation Term 

Figure 3.1 – Block diagram of the proposed extended RISE control plus compensation.

multiplied by the sum of the desired trajectories with the state errors. To overcome the
error resulting from using the desired trajectory signals, RISE control plus compensation
is revised by adding a nonlinear auxiliary term depending on the tracking error e1 and the
combined error e2. The idea of adding this auxiliary term was inspired by the Desired Com-
pensation Adaptive law (DCAL) proposed in [Sadegh and Horowitz, 1990]. In the latter, an
additional nonlinear function was added to the DCAL control law to compensate for the
error emerging from using desired trajectories instead of the measured ones in the adap-
tive feedforward term. The proposed extended RISE control plus compensation, called
ERISE+, is expressed as follows:

ΓERISE+ =M(q)(q̈d+Λ1ė1(t))+C(q,q̇)(q̇d+Λ1e1(t))+G(q)+(Ks+ I)e2(t)

−(Ks(t0)+ I)e2(t0)+

∫ t

t0

∥e2(σ)∥ [δ1e1(σ)+δ2e2(σ)]dσ

+

∫ t

t0

[(Ks0+ I)Λ2e2(σ)+βsgn(e2(σ))]dσ

(3.22)

Figure 3.2 illustrates the block diagram of the proposedERISE+ control scheme for parallel
manipulators.
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3.2.4.3 Closed-loop error dynamics

Following the same previous procedure: differentiating the filtered error r(t), multi-
plying both sides by the matrixM(q), substituting the dynamic model of the system (3.5),
getting use of the derivative of the proposed controller leads to the following equation:

M(q)ṙ=M(q)(
...
qd+Λ1ë1+Λ2ė2)+Ṁ(q)q̈+ Ċ(q,q̇)q̇+C(q,q̇)q̈+ Ġ(q)

+ ḟ(q,q̇)+ Γ̇d(t)−Ṁ(q)(q̈d+Λ1ė1)−M(q)(
...
qd+Λ1ë1)− Ċ(q,q̇)(q̇d+Λ1e1)

−C(q,q̇)(q̈d+Λ1ė1)− Ġ(q)−(Ks+ I)r−β sgn(e2)−∥e2∥(δ1e1+δ2e2)
(3.23)

After arranging the elements of (3.23) , we obtain the simplified equation as follows:

M(q)ṙ=M(q)(Λ2ė2)−Ṁ(q)(q̈d− q̈+Λ1ė1)− Ċ(q,q̇)(q̇d− q̇+Λ1e1)+ ḟ(q,q̇)+ Γ̇d(t)

−C(q,q̇)(q̈d− q̈+Λ1ė1)−(Ks+ I)r−β sgn(e2)−∥e2∥(δ1e1+δ2e2)
(3.24)

Using ė1 = q̇d− q̇ and ë1 = q̈d− q̈, adding and subtracting the two terms
1

2
Ṁ(.)r and

e2 to the R.H.S of (3.24), the closed-loop error of the proposed controller is arranged as:

M(q)ṙ=−
1

2
Ṁ(q)r−e2+M(q)(Λ2ė2)−(ë1+Λ1ė1)(Ṁ(q)+C(q,q̇))+ ḟ(q,q̇)+ Γ̇d(t)

− Ċ(q,q̇)(ė1+Λ1e1)−(Ks+ I)r−β sgn(e2)−∥e2∥(δ1e1+δ2e2)+
1

2
Ṁ(q)r+e2

(3.25)

After adding and subtracting the term
3

2
Ṁ(q)ė2 to the R.H.S of (3.25), and getting use

the skew-symmetric property of
1

2
Ṁ(q)−C(q,q̇), (3.25) can be rewritten as follows

M(q)ṙ=−
1

2
Ṁ(q)r−e2+M(q)(Λ2ė2)−

3

2
Ṁ(q)ė2− Ċ(q,q̇)(e2)+ ḟ(q,q̇)+ Γ̇d(t)

−(Ks+ I)r−β sgn(e2)−∥e2∥(δ1e1+δ2e2)+
1

2
Ṁ(q)r+e2

(3.26)

The new auxiliary function is defined as below:

W(.)=Λ2M(q)ė2+ ḟ(q,q̇)+ Γ̇d(t)+
1

2
Ṁ(q)r+e2 (3.27)
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Another auxiliary function is considered:

Wd(.)= ḟ(qd, q̇d) (3.28)

Let’s consider the additional error resulting from using the desired joint accelerations
and velocities in the dynamic compensation term as follows:

h(.)=−
3

2
Ṁ(q)ė2− Ċ(q,q̇)(e2) (3.29)

Using the definitions of errors, e2 and r, in (3.7) and (3.8), respectively, h(.) can be rewritten
as follows

h(.)=−
3

2
Ṁ(q)(r−Λ2e2)− Ċ(q,q̇d−e2+Λ1e1)(e2) (3.30)

Adding and subtractingWd(.) to the closed-loop error dynamics (3.26), leads to:

M(q)ṙ=−
1

2
Ṁ(q)r−e2−(Ks+ I)r−β sgn(e2)−∥e2∥(δ1e1+δ2e2)+h(.)+W̃(.)+Wd(.)

(3.31)

with W̃(.)=W(.)−Wd(.)

3.2.4.4 Stability analysis

Theorem 3.2.1. The proposed control scheme (3.22) applied to a PKM whose dynamics

model is denoted by (3.5) ensures that the joint position tracking error e1(t) and its deriva-

tives are bounded and converge asymptotically to zero with time going to infinity provided

that the control design gains Λ1 >
1

2
, Λ2, δ1, δ2, and the feedback gain Ks are chosen large

enough and β> ∥Wd(t)∥L∞
+
1

Λ2
∥Ẇd(t)∥L∞

.

Proof. A function L(t) ∈R defined as follows is considered [Xian et al., 2004]:

L(t)= r(Wd(t)−β sgn(e2)) (3.32)

With the use of Lemma 1 in [Xian et al., 2004], one can conclude that if β is chosen satisfy-
ing the following condition:

β> ∥Wd(t)∥L∞
+
1

Λ2
∥Ẇd(t)∥L∞

(3.33)

then the following inequality holds:
∫ t

t0

L(τ)dτ≤β|e2(t0)|−e2(t0)Wd(t0) (3.34)
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Then, an additional function P(t) ∈R needs to be defined as follows:

P(t)=β|e2(t0)|−e2(t0)Wd(t0)−

∫ t

t0

L(τ)dτ (3.35)

knowing that P(t)≥ 0, ∀t≥ 0 is ensured from (3.33) and (3.34).

Now, let us define the following Lyapunov candidate functionV(y,t) :R3n×R≥0×R≥0→
R≥0 being a continuously differentiable positive-definite function as [Xian et al., 2004]:

V(y,t)= eT1e1+
1

2
eT2e2+

1

2
rTM(q)r+P (3.36)

where y = [zT
p
P]T and z(t) is defined previously. Thanks to the property of the mass

matrixM(q) mentioned above and its bounds, the considered functionV(y,t) is bounded
as follows:

ζ1∥y∥2 ≤V(y,t)≤ ζ2(∥y∥)∥y∥2 (3.37)

with ζ1 =
1

2
min{1,m} and ζ2(∥y∥) =max{

1

2
m(∥y∥),1}. Differentiating the Lyapunov can-

didate (3.36) with respect to time and using the equations (3.31), (3.32) and (3.35), the fol-
lowing equation holds:

V̇(y,t)= 2eT1e2−2Λ1e
T
1e1−Λ2e

T
2e2−(Ks+ I)r

Tr+rTW̃+rTh(.)−rT∥e2∥(δ1e1+δ2e2)
(3.38)

Following the same reasoning in [Sadegh and Horowitz, 1990], h(.) can be upper-
bounded as follows

rT∥h(.)∥ ≤ η1∥r∥2+η2∥r∥∥e2∥+η3∥r∥∥e2∥2+η4∥r∥∥e1∥∥e2∥ (3.39)

Considering the fact that for any two vectors, a and b we have aTb ≤ (∥a∥2+ ∥b∥2)/2,
V̇(y,t) is upper bounded as follows:

V̇(y,t)≤ ∥e1∥2+∥e2∥2−2Λ1∥e1∥2−Λ2∥e2∥2−(Ks+1)∥r∥2+∥r∥ρ(∥z∥)∥z∥+η1∥r∥2

+
η2

2
(∥r∥2+∥e2∥2)+η3∥r∥∥e2∥2+η4∥r∥∥e1∥∥e2∥−∥rT∥∥e2∥(δ1∥e1∥+δ2∥e2∥)

(3.40)

By rearranging the terms, the above inequality is rewritten as follows:

V̇(y,t)≤−ξ1∥e1∥2−ξ2∥e2∥2−ξ3∥r∥2−µ∥r∥2+∥r∥ρ(∥z∥)∥z∥

−α1∥r∥∥e1∥∥e2∥−α2∥r∥∥e2∥2
(3.41)
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where ξ1, ξ2, ξ3 , µ, α1 and α2 are positive constants defined as follows:

ξ1=Λ1−
1

2
, ξ2=Λ2−1−

η2

2
, ξ3= 1−η1−

η2

2
, µ=Ks, α1= δ1−η4, α2= δ2−η3 (3.42)

Regarding the above equationsΛ1,Λ2, δ1, and δ2 should be chosen such that

Λ1 >
1

2
(3.43)

Λ2 > 1+
η2

2
(3.44)

δ1 > η4 (3.45)

δ2 > η3 (3.46)

Let us rearrange the equation (3.41) as follows:

V̇ ≤−ζ3∥z∥2−(µ∥r∥2−∥r∥ρ(∥z∥)∥z∥) (3.47)

with ζ3 = min{ξ1,ξ2,ξ3}. Using the mathematical remarkable square identities, the
upper-bound of V̇ is obtained as follows:

V̇ ≤−(ζ3−
ρ2(∥z∥)
4µ

)∥z∥2≜−c∥z∥2 (3.48)

with c is a positive constant ∈ R
+, the following inequality shall hold:

ζ3 >
1

4µ
ρ2(∥z∥) (3.49)

Based on the inequality (3.49), we can introduce the domain D as follows:

D = {y ∈R
3n×R≥0 | ∥y∥ < ρ−1(2

√

ζ3µ)} (3.50)

Let’s define the subset A of D such that the initial condition y(0) ∈A as follows:

A = {y(t) ∈D | c∥z∥2 < ζ1(ρ−1(2
√

ζ3µ))
2} (3.51)

According to [Escorcia-Hernandez et al., 2022], c∥z∥2 is consistently continuous in D .
Thus, based on theorem 8.4 of [Khalil and Grizzle, 2002], we can conclude that

c∥z∥2→ 0 as t→∞, ∀y(0) ∈A (3.52)

Therefore, based on the definition of z(t), we can deduce that

∥e1∥→ 0 as t→∞, ∀y(0) ∈A (3.53)

Hence, the stability of the proposed controller is proven.
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3.3 A novel robust DCAL with adaptive feedback gains

The proposed robust DCAL with adaptive feedback gains is the third contribution of the
thesis. Before presenting the proposed control solution, let us first recall a crucial property
of the dynamics of robot manipulators. As mentioned in Chapter 1, the dynamic model of
the manipulator denoted by (3.5) is characterized by its linearity with respect to dynamic
parameters such as inertia and masses. Except for external disturbances, all constant pa-
rameters of the dynamic model are considered as coefficients of known functions (linear
and nonlinear) of q,q̇, q̈. The linear reformulation of the dynamics can be rewritten as
follows:

M(q)q̈+C(q,q̇)q̇+G(q)+f(q,q̇)+Γd(t)=W(q,q̇, q̈)Φ(t)+f(q,q̇)+Γd(t) (3.54)

where W(q,q̇, q̈) ∈ R
n×p is called the regression matrix and is formed by known non-

linear functions of q,q̇, q̈. The vectorΦ ∈ R
p gathers the geometrical and dynamic param-

eters of the robot. In the sequel, a background on the standard DCAL will be provided.
Afterwards, the proposed control approach will be detailed.

3.3.1 General overview of DCAL control strategy

DCAL is a model-based adaptive control scheme developed for the first time in [Sadegh
and Horowitz, 1990] for the control of serial manipulators. DCAL control technology has
been inspired from the exact compensation adaptation law (ECAL) which consists of a
model-based adaptive term and a PD linear feedback loop. In the latter, the nonlinear
dynamic-based compensation term and the online adaptation law are computed using
the actual joint positions and velocities. Indeed, measuring the system states at each sam-
ple time is a complex and heavy computation task for the real-time applications especially
for the velocities. Most of the time, the velocities cannot be measured, hence, a numerical
estimation from the measured positions is required. As is well known, the measurement
noise is amplified by such an estimation, yielding a deterioration of the performance of
the controller. To handle this issue, DCAL has been formulated such that, both the con-
trol and adaptation laws, are evaluated using the desired quantities while still inherit the
advantages of the original controller. This particular choice leads to off-line compute the
compensation term. Consequently, the amount of online computations is reduced and the
robustness of the controller is enhanced since the measurement noises are eliminated by
using the desired states. The control law of DCAL can be split up into three main parts:
(i) a model-based adaptive feedforward part, (ii) a linear feedback part, and (iii) an ad-
ditional nonlinear feedback function to accommodate for the errors resulting from using
the desired states instead of the measured ones. The joint-space control law of DCAL is
expressed as follows [Sadegh and Horowitz, 1990]:

ΓDCAL=W(qd, q̇d, q̈d)Φ̂(t)+Λp e(t)+Λv ev(t)+σ∥e(t)∥2 ev(t) (3.55)
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where e(t) = qd(t)−q(t) is the joint position tracking error, with qd(t) ∈ R
n is the vector

of desired joint positions andq(t) ∈R
n is the vector of measured ones. ev(t)= ė(t)+λe(t)

is the combined position-velocity tracking error, λ ∈ R
+ is a positive design gain. ΛP, Λv

∈ R
n×n are positive-definite gain matrices, usually chosen diagonal. W(qd, q̇d, q̈d) ∈ R

n×p

is the regressor matrix function depending on desired joint positions, velocities and accel-
erations. Φ̂(t) ∈ R

n×p is an online estimation of the unknown parameters vectorΦ, and σ
∈R

+ is a positive design control parameter.
The time-evolution of the estimated parameters Φ̂(t) in (3.55) is expressed by the following
adaptation law:

˙̂Φ(t)=KWT (qd, q̇d, q̈d)ev(t) (3.56)

where K ∈ R
p×p is a diagonal positive-definite adaptation gain matrix. As it can be

seen, the regressor W in the adaptation law (3.56) is also evaluated based on the desired
trajectories instead of the measurements.

3.3.2 Proposed robust DCAL with adaptive feedback gains

3.3.2.1 Motivation

As mentioned in Chapter 1, the objective is to use PKMs in a selective waste sorting
task. Such an application is considered a difficult task for PKMs, since the manipulator
has to handle different types of objects with different physical parameters, that may often
be unknown or uncertain. Therefore, model-based adaptive schemes, characterized by
dynamic parameter identification in an online algorithm, are the most appropriate control
solutions for such applications. For instance, the aforementioned DCAL may be a good
candidate, thanks to its simple structure easy to implement, its real-time estimation of the
model parameters, and its robustness against measurement noise.

The stability analysis of DCAL demonstrated that it ensures the asymptotic tracking
of reference trajectories as well as the boundedness of the estimated parameters [Sadegh
and Horowitz, 1990]. However, it does not say much about the transient performance of
the closed-loop system. In fact, during transient phase, the estimated parameters may be
away from their best steady-state values or oscillating around them. This means that the
inherent nonlinearities of the manipulator are not properly compensated. Consequently,
the overall control scheme relies mainly on the feedback loop to achieve the control ob-
jective. The PD feedback loop of DCAL will be responsible of both tracking the reference
trajectories and rejecting the time-varying nonlinearities. It is known in control theory that
static feedback control algorithms can provide good performance only in nominal steady
state and when no changes in operating conditions occur. Consequently, it would be inter-
esting to revisit DCAL with a carefully designed feedback loop. It has been shown through
various research works that control methods with adaptive dynamic feedback gains can
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counteract external disturbances and accommodate the variations in dynamic parameters
[Gholami et al., 2009; Tijjani et al., 2020; Escorcia-Hernandez et al., 2022].

With the above in mind, we propose to exploit the advantages of the real-time esti-
mation of the model parameters provided by DCAL and the corrective action produced
by an adequate adaptation law for the feedback gains. In addition, to better counteract
the external disturbances, we propose to extend the resulting controller by a nonlinear
sliding-based term computed from the signum of the system state errors. The addition
of this robustness related term will accommodate for the lack of robustness and may im-
prove the overall tracking performance. In a real-time implementation, the discontinuous
signum function may be replaced by a continuous sigmoid function to avoid chattering.
The adaptive feedback gains of the proposed control solution produce corrective actions
when the tracking errors are considerably increased due to changes in the operating con-
ditions. These gains are adjusted according to a criterion based on the values of the joint
tracking errors. The proposed enhancement to DCAL should preserve all its advantages
while improving the overall closed-loop behavior, with more focus on the tracking perfor-
mance.

3.3.2.2 Control design

Despite the efficiency of the standard DCAL, it exhibits a lack of performance due to
the static linear feedback gains and the potential presence of external disturbances not
compensated by the control law. To significantly improve the overall performance of such
a controller, we first propose to revisit the linear feedback term by adopting an adaptive
one where the gains are adjusted online according to the system state errors. Second, to
further improve its robustness against disturbances, a sliding-based term depending on
the combined error ev is added. The resulting expression of the proposed control law can
be written as follows:

ΓRDCAL−AG=W(qd, q̇d, q̈d)Φ̂(t)+Λp(t) e(t)+Λv(t) ev(t)

+σ∥e(t)∥2 ev(t)+βsgn(ev(t))
(3.57)

where β ∈ R
n×n is a positive-definite diagonal gain matrix used to increase the controller

robustness. Λp(t) andΛv(t) ∈R
n×n are the adaptive gain matrices whose adaptation algo-

rithms are inspired by the concept of the adaptive gains presented in [Plestan et al., 2010].
The adaptive rules for the gain matrices are as follows:

Λp(t)= Λ̄p|ηp|+Λpm (3.58)

Λv(t)= Λ̄v|ηv|+Λvm (3.59)

Where Λ̄p and Λ̄v ∈ R
n×n denote positive-definite constant diagonal matrices used in the

adaptation process of the control feedback gains. Λpm andΛvm ∈R
n×n are other positive-

definite constant diagonal matrices that establish the minimum possible value for each



124
CHAPTER 3. PROPOSED CONTROL SOLUTIONS FOR PICK-&-THROW TASKS WITH

PKMS

adaptive feedback gain. |.| is the modulus vector function used to obtain only positive gain
values, ηp and ηv ∈ R

n are nonlinear functions depending on the tracking error e and the
combined tracking error ev, respectively.

η̇p= tanh(e)−ηp (3.60)

η̇v= tanh(ev)−ηv (3.61)

These two equations (3.60) and (3.61) represent the dynamics of the adaptive gainsΛp(t)
and Λv(t), respectively. A hyperbolic tangent function is used to produce an effect simi-
lar to the signum function, but without generating prominent discontinuities for a better
smoothness.

It is worth to note that when the tracking error increases, the adaptive gains of the pro-
posed control law produce a corrective action to reduce this large tracking error. Once it
decreases, the adopted strategy begins to reduce the control action and adjusts the gains to
avoid oscillations and sufficiently counteract the current uncertainties and disturbances.
When it comes to the estimation of unknown dynamic parameters, the same adaptation
law (3.56) is adopted for the proposed controller. Therefore, this new control technique in-
herits the advantages of the original DCAL in terms of noise measurement reduction and
low computational time. Figure 3.2 illustrates the block diagram of the proposed controller
for parallel manipulators.

It is worth mentioning that, the main difference between this study and the contribu-
tion of [Bennehar et al., 2016] lies in nature of the control schemes. In [Bennehar et al.,
2016] the control solution uses nonlinear time-varying gains, whose variation is based on
predefined fixed nonlinear functions. However, the proposed RDCAL-AG scheme is based
on adaptive feedback gains, whose variation is governed by adaptation laws. Furthermore,
beyond the different kinematics as well as the target application, a sliding-based robust-
ness term is used in the proposed RDCAL-AG to reinforce the controller robustness and
thereby improve the tracking performance.

3.3.2.3 Stability analysis

Theorem 3.3.1. The proposed control law defined by (3.57) and applied to the second-order

nonlinear MIMO dynamic system governed by (3.5) ensures that the joint position and ve-

locity tracking errors converge asymptotically to zero as time goes to infinity, as long as the

lower bounds of the feedback gainsΛpm andΛvm in (3.58) and (3.59), respectively, are cho-

sen sufficiently large.

Proof. In order to study the stability analysis of the system error dynamic in closed loop
with the proposed control solution, let us first rewrite the IDM of PKM (3.5) in terms of
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𝑾 𝒒𝒅, ሶ𝒒𝒅, ሷ𝒒𝒅 𝝓
𝐓𝐫𝐚𝐣𝐞𝐜𝐭𝐨𝐫𝐲𝐠𝐞𝐧𝐞𝐫𝐚𝐭𝐢𝐨𝐧 𝑿𝒅, ሶ𝑿𝒅, ሷ𝑿𝒅

Inverse 

Kinematics

𝒒𝒅, ሶ𝒒𝒅, ሷ𝒒𝒅
𝒆 = 𝒒𝒅 − 𝒒𝒆𝒗(𝒕) = ሶ𝒆(𝒕) + 𝝀 𝒆(𝒕)

ഥꓥ𝒑|𝜼𝒑| + ꓥ𝒑𝒎

𝒒𝒅, ሶ𝒒𝒅 𝝈 ||𝒆(𝒕)||𝟐 𝒆𝒗(𝒕)𝒆, 𝒆𝒗

ꓥ𝒑(𝒕)
ꓥ𝒗(𝒕)ഥꓥ𝒗|𝜼𝒗| + ꓥ𝒗𝒎

𝐭𝐚𝐧𝐡(𝒆) − 𝜼𝒑 න 𝜼𝒑𝒆
𝒆𝒗 𝐭𝐚𝐧𝐡(𝒆𝒗) − 𝜼𝒗 න 𝜼𝒗
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Figure 3.2 – Block diagram of the proposed RDCAL AG control scheme.

e(t), ė(t) and ev(t) as follows

M(q)ėv=M(q)(q̈d+λė)+C(q,q̇)(q̇d+λe)−C(q,q̇)ev+G(q)+f(q,q̇)+Γd(t)−Γ (3.62)

Leth≡h(q,q̇,t)= f(q,q̇)+Γd(t)be the general nonlinear perturbation function including
friction effects. After adding and subtractingW(qd, q̇d, q̈d)Φ to (3.62), the following closed
loop error dynamic is obtained

M(q)ėv=−C(q,q̇)ev+W(qd, q̇d, q̈d)Φ+W̃(.)Φ+h(q,q̇,t)−Γ (3.63)

where W̃(.) is the dynamic error resulting from using the desired joint quantities instead
of the actual ones in both the compensation of the nonlinearities in the dynamic model
and the adaptation law, denoted by

W̃(.)Φ=M(q)(q̈d+λė)+C(q,q̇)(q̇d+λe)+G(q)−W(qd, q̇d, q̈d)Φ (3.64)

By substituting the proposed controller (3.57) into the system error dynamic (3.63), the
resulting equation is

M(q)ėv=−C(q,q̇)ev+W(qd, q̇d, q̈d)Φ̃+W̃(.)Φ+h(q,q̇,t)−Λp(t)e−Λv(t)ev

−σ∥e∥2ev−βsgn(ev)
(3.65)
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where Φ̃ =Φ− Φ̂ represents the vector of the estimation error. Now, to analyse the sta-
bility of the resulting closed loop error dynamic (3.65), the following Lyapunov candidate
function is considered as below [Sadegh and Horowitz, 1990]

V =
1

2
eTvM(q)ev+

1

2
Λpme

Te+
1

2
Φ̃TK−1Φ̃ (3.66)

Differentiating (3.66) with respect to time leads to

V̇ =
1

2
eTvṀ(q)ev+e

T
vM(q)ėv+Λpme

T ė+Φ̃TK−1 ˙̃Φ (3.67)

By considering the above adaptation law (3.56) and the property 1.7.2, expression (3.67)
can be rewritten as follows

V̇ =Λpme
T ė−eTvΛp(t)e−e

T
vΛv(t)ev−σ∥e∥

2∥ev∥2−eTvβsgn(ev)+e
T
vh+e

T
vW̃(.)Φ (3.68)

According to [Sadegh and Horowitz, 1990], the upper limit of the term W̃(.)Φ is given as
follows

∥W̃(.)Φ∥ ≤ ξ1∥e∥+ξ2∥e∥2+ξr∥ev∥+ξ4∥ev∥∥e∥ (3.69)

with ξ1,ξ2,ξ3 and ξ4 are positive bounding constants ∈ R
+. Moreover, assuming that the

general disturbance function h(q,q̇,t) is globally bounded by

∥h∥ ≤µ∥ev∥ (3.70)

with µ is a positive bounding constant ∈ R
+. Let us now consider the lower bounds Λpm

and Λvm of Λp(t) and Λv(t), respectively, together with the bounded expressions (3.69)
and (3.70), the upper bound of the derivative of the Lyapunov function can be expressed
as below

V̇ ≤−λΛpm∥e∥2−Λvm∥ev∥2−σ∥e∥2∥ev∥2−β∥ev∥2+µ∥ev∥2+ξ1∥e∥∥ev∥+ξ2∥e∥2∥ev∥

+ξ3∥ev∥2+ξ4∥ev∥2∥e∥
(3.71)

After rearranging the terms of above equation (3.71) together with using the mathematical
remarkable square identities, we obtain

V̇ ≤−λΛpm∥e∥2−Λvm∥ev∥2−σ∥e∥2∥ev∥2−(β−µ)∥ev∥2+ξ1∥e∥∥ev∥−ξ2∥e∥2
[

1

2
−∥ev∥

]2

−ξ4∥ev∥2
[

1

2
−∥e∥

]2

+(ξ2+ξ4)∥e∥2∥ev∥2+
ξ2

4
∥e∥2+

(

ξ3+
ξ4

4

)

∥ev∥2

(3.72)
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To further simplify more the expression of (3.72), let us gather the common terms as follows

V̇ ≤−

(

λΛpm −
ξ2

4

)

∥e∥2−
(

Λvm −ξ3−
ξ4

4

)

∥ev∥2+ξ1∥e∥∥ev∥−ξ2∥e∥2
[

1

2
−∥ev∥

]2

−ξ4∥ev∥2
[

1

2
−∥e∥

]2

−(σ− ξ2−ξ4)∥e∥2∥ev∥2−(β−µ)∥ev∥2

(3.73)

Regarding the expression of (3.73), β and σ should be chosen such that (β−µ) > 0 and
(σ−ξ2−ξ4)> 0, which leads to the new upper bound of V̇

V̇ ≤−

(

λΛpm −
ξ2

4

)

∥e∥2−
(

Λvm −ξ3−
ξ4

4

)

∥ev∥2+ξ1∥e∥∥ev∥ (3.74)

Then, getting use the conventional inequality for any two vectors a and b, aTb ≤ (∥a∥2+
∥b∥2)/2, the new upper bound of V̇ can rewritten as follows

V̇ ≤−

(

λΛpm −
ξ2

4
−
ξ1

2

)

∥e∥2−
(

Λvm −ξ3−
ξ4

4
−
ξ1

2

)

∥ev∥2 (3.75)

Consequently, V̇ is negative semi-definitive and V is upper bounded, if theΛpm andΛvm
lower limits are tuned in such a way that

Λpm >
ξ2

4λ
+
ξ1

2λ
> 0 (3.76)

Λvm > ξ3+
ξ4

4
+
ξ1

2
> 0 (3.77)

The expression ofV (3.66) show that the combined tracking error and the estimation error,
ev and Φ̃, respectively, are bounded. Given the fact that the inertia matrix M(q) is lower
bounded, it can be noticed that V in (3.66) is lower bounded as well. From the resulting
equation of the system error dynamic (3.65), we conclude that ėv, q̈ and, consequently, V̈
are all bounded. Based on the Lyapunov-like Lemma [Khalil and Grizzle, 2002], the fact
that V̇ is uniformally continuous in time is guaranteed (i.e. V̇ converges to zero as long as
time goes to infinity), since the following three arguments are satisfied:

1. V is lower bounded

2. V̇ is negative semi-definite

3. V̈ is bounded

Consequently, all the closed-loop system state errors (i.e. ev, ė and e) converge very close
to zero with time.

ev→ 0 as t→∞
ė→ 0 as t→∞
e→ 0 as t→∞

(3.78)

The estimated parameter bounds and the proof of stability are thereby established.
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3.4 A new intelligent robust control law

The proposed intelligent robust control shceme is the fourth contribution of this thesis.

3.4.1 Background on Model-Free Control

For several decades, model-based controllers have been considered as good candidates
for the control of uncertain nonlinear systems. They have shown their ability to compen-
sate for the system nonlinearities by introducing an apriori knowledge on the dynamic
model in the control design. However, it is well known that the development of an accu-
rate dynamic model for a complex nonlinear system is almost impossible. On one hand,
unmodeled phenomena cannot be considered into such a model, and on the other hand,
the system parameters are often subject to variations and uncertainties. Therefore, clas-
sical model-based controllers may lead to poor control performance of uncertain nonlin-
ear systems, especially when changes in operating conditions occur or when the system
parameters used in the control design do not match the actual parameters. To address
this problem of parameter variations and uncertainties, model-based adaptive controllers
have been proposed in the literature. As mentioned in Chapter 1, these control schemes in-
clude an adaptive feedforward term responsible for the online estimation of the unknown,
uncertain or time-varying dynamic parameters. Despite the simplicity of the principle of
online parameters estimation, its real-time implementation requires a considerable num-
ber of calculations, which leads to a significant computing time. To deal with these issues,
Fliess and Join proposed a Model-Free Control (MFC) strategy to control uncertain high-
order nonlinear MIMO systems in an intelligent and simple manner [Fliess et al., 2006;
Fliess, 2009]. Typically, model-based control approaches require an accurate knowledge
of the system dynamic model, however, MFC can compensate for structured and unstruc-
tured phenomena without incorporating any knowledge about the system dynamics, in
the control design. The MFC technique, also known as "intelligent control," incorporates,
into the control loop, a numerical model that is computed at each sampling time based
on few online parameters. This numerical model is only valid for a small time interval. In
2008, MFC was implemented for the first time in a real-time numerical experiment [Fliess
and Join, 2008].

The basic principle of MFC is that the input-output behavior of a high-order nonlinear
system, can be represented by an ultra-local model, continuously restructured, as follows:

y(ν)= δ+αU (3.79)

where α ∈ R
n×n is positive-definite diagonal gain matrix, chosen by the designer to ensure

some control performance. y ∈ R
n is the output vector, U ∈ R

n is the control input vector
and δ ∈ R

n is a vector gathering the modeled and unmodeled system dynamics. ν ∈ N

denotes the order of the anticipated model.
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δ can be estimated at each sampling time from the measured output y, and the known
inputU, as follows [Fliess and Join, 2013]:

[δ(k)]e= [y(ν)(k)]e−αU(k−1) (3.80)

where [δ(k)]e is the estimation at the sample k of the function δ (i.e. t= kTs is the sampling
time withk= 0,1, ... and Ts is the sampling period), [y(ν)(k)]e denotes the estimation of the
ν-derivative of y at time k, andU(k−1) is the control input at the previous sample time. It
is worth to note that this estimation is only valid for a short interval of time, and should be
updated frequently and continuously to maintain the system stability with a good tracking
performance.

In general, the model-free control inputU is computed at each iteration, based on the
following expression:

U(k)=−
[δ(k)]e

α
+
y
(ν)
d (k)+Uc(k)

α
(3.81)

where y
(ν)
d is the νth derivative of the desired trajectory, andUc is the feedback control law

that should be selected in a way to guarantee asymptotic convergence of the output signal
to the desired trajectory. If the feedback control term is a conventional PID controller, then
the model-free control is called intelligent PID (iPID).

The designer must choose the value of the order ν, carefully, taking into account the
order of the controlled system and the structure of the feedback control input. Otherwise,
the stability of the system may be deteriorated. In general, ν can be chosen to be 1 or 2. For
instance, intelligent PID is designed with v= 2, while intelligent PI (iPI) is used with v= 1.

In practice, the measured output is often subject to noise, which may be amplified by
the numerical derivative. Regarding this issue, some methods have been proposed in the
literature to compute the vth derivative of noisy signals using an algebraic approach. The
differential algebraic operations are composed of iterated integrals of the noisy signal tak-
ing the form of classical finite impulse response (FIR) digital filters [Fliess and Join, 2013;
Mboup et al., 2009; Gédouin et al., 2011]; while other methods have approximated the
value of δ by exploiting an extended state observer [Wang et al., 2018; Zhang et al., 2020b].

This control method is characterized by its simplicity and ease of implementation.
Moreover, its design parameters can be adjusted in a straightforward manner.

3.4.2 Applications of MFC scheme

Owing to their simple structure and robustness, model-free controllers have been suc-
cessfully implemented in various application fields showing a good tracking performance.
They have been applied to hydroelectric power plants [ROBERT and FLIESS, 2010], dc/dc
converters [Michel et al., 2010], active shape memory alloy spring [Gédouin et al., 2009],
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[Gédouin et al., 2011], underactuated mechanical systems such as the inverted pendulum
flywheel [Andary et al., 2012], active magnetic bearing [De Miras et al., 2013] and quadrotor
vehicle [Al Younes et al., 2014]. Furthermore, a model-free fractional order sliding mode
control (MFFOSTM) based on an extended state observer (ESO) has been proposed and
applied on the active suspension systems of a quarter car [Wang et al., 2018]. Recently,
predictive current control (PCC) has been combined with an ultra-local model to con-
trol a dual-fed induction generator (DFIG) [Zhang et al., 2020a]. In [Zhang et al., 2020b],
the model-free predictive current control (MFPCC) scheme was implemented on a PMSM
drive system based on an extended state observer (ESO).

3.4.3 Proposed intelligent robust control

3.4.3.1 Control design

As previously presented, RISE is a non-model-based controller. This means that the
system nonlinearities and uncertainties are not well compensated by such a controller,
resulting in a degraded tracking performance in critical situations (e.g. high-speed move-
ments, and in the presence of large disturbances). Moreover, the extension of this con-
troller with a classical model-based feedforward term is not an effective idea since it is
almost impossible to obtain an accurate dynamic model of a complex nonlinear system.
This issue becomes considerable in industrial P&P or P&T [Raptopoulos et al., 2020] appli-
cations, where the robot should handle different types of objects with unknown/uncertain
dynamic parameters. The aforementioned MFC scheme has the ability to compensate for
parameter variations, modeled and unmodeled dynamics without considering any knowl-
edge of the system dynamics in the control design. Accordingly, we propose to revise the
standard RISE feedback control law by redesigning its control equation based on an ultra-
local model inspired from MFC scheme. This revision can significantly improve the track-
ing performance of RISE as well as its robustness towards external disturbances, while pre-
serving the simplicity of its scheme. This is highly important because to perform complex
tasks, it is necessary to ensure precise trajectory tracking despite the problems caused by
parameter variations and abrupt speed changes. The resulting controller, called Intelli-
gent Robust Control (IRC), is continuous, robust and easy to implement. The proposed
IRC strategy for second-order MIMO systems such as PKMs can be expressed as follows:

ΓIRC=−
[δ]e

α
+
q̈d+ΓRISE

α
(3.82)

where ΓRISE is the RISE feedback law presented in (3.10). As reported in [Gédouin et al.,
2011], if the order of the controlled system is well known, then the ν order of the numerical
model as given in equation (3.81) will be equal to that of the system. Therefore, in our case,
for a system of second order as PKMs, ν is equal to 2. The block diagram of the proposed
IRC scheme for parallel manipulators is illustrated in Figure 3.3.
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3.4.3.2 Closed-loop error dynamics

In the sequel, the closed-loop error equation of the system represented by (3.5) is de-
rived in order to analyse the stability of the proposed IRC scheme. Following the same
procedure detailed above: Firstly, differentiating the auxiliary error r(t), then multiplying
both sides by the matrix M(q), substituting the system dynamics (3.5) and getting use of
the time derivative of the proposed IRC leads to:

M(q)ṙ=−
1

2
Ṁ(q)r−e2+

[δ̇]e

α
−

...
qd+ Γ̇RISE

α
+M(q)(

...
qd+Λ1ë1+Λ2ė2)

+Ṁ(q)(q̈+
1

2
r)+ Ḟ(q,q̇)+e2

(3.83)

By adding and subtracting the term
δ̇

α
to the R.H.S of the above-obtained equation

(3.83), it can be rewritten as follows:

M(q)ṙ=−
1

2
Ṁ(q)r−e2−

˙̃δ

α
+
δ̇

α
−

...
qd+ Γ̇RISE

α
+M(q)(

...
qd+Λ1ë1+Λ2ė2)

+Ṁ(q)(q̈+
1

2
r)+ Ḟ(q,q̇)+e2

(3.84)

with δ̃= δ−[δ]e is the estimation error of the nonlinear function δ(t). This nonlinear term
δ, its estimated function [δ]e and their first two time derivatives are bounded (i.e., δ, δ̇, δ̈
∈ L∞ as well as [δ]e, [δ̇]e, [δ̈]e ∈ L∞). Accordingly, the estimation error δ̃ and its first two

time derivatives, ˙̃δ and ¨̃δ, are bounded.

The new auxiliary function is introduced as follows:

W(q,q̇, q̈,t)=
δ̇

α
−

...
qd

α
+M(q)(

...
qd+Λ1ë1+Λ2ė2)+Ṁ(q)(q̈+

1

2
r)+ Ḟ(q,q̇)+e2 (3.85)

Another auxiliary function,Wd(.)=Wd(qd, q̇d, q̈d,t) is considered as below:

Wd(.)=−

...
qd

α
+M(qd)

...
qd+Ṁ(qd)q̈d+C(qd, q̇d)q̈d+ Ċ(qd, q̇d)q̇d+ Ġ(qd)+ ḟ(qd, q̇d)

(3.86)

Adding and subtractingWd(.) to the closed-loop error equation (3.84), leads to:

M(q)ṙ=−
1

2
Ṁ(q)r−e2−

˙̃δ

α
−
Γ̇RISE

α
+W̃(.)+Wd(.) (3.87)
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Figure 3.3 – Block diagram of the proposed IRC scheme.

3.4.3.3 Stability analysis

Theorem 3.4.1. The proposed control strategy (3.82) applied to the 2nd order nonlinear un-

certain MIMO system whose dynamics model is denoted by (3.5) guarantees that the tracking

error e1(t) and its derivatives are bounded and go asymptotically to zero as time goes to in-

finity provided that the control parameters are chosen such that Ks is large enough, Λ1 >
1

2
andΛ2 > 1, while the robustness gain β should verify the inequality given by:

β>α∥Wd(t)∥L∞
+
α

Λ2
∥Ẇd(t)∥L∞

(3.88)

Proof. A function L(t) ∈R given by the following equation is considered:

L(t)= r(Wd(t)−
β

α
sgn(e2)) (3.89)

Knowing that the gain β should be chosen to satisfy the above condition (3.88).

Consider the following inequality:
∫ t

t0

L(τ)dτ≤
β

α
|e2(t0)|−e2(t0)Wd(t0) (3.90)
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An additional function P(t) is introduce as follows:

P(t)=
β

α
|e2(t0)|−e2(t0)Wd(t0)−

∫ t

t0

L(τ)dτ (3.91)

According to (3.89) and the condition of the chosen β value, we can conclude that
P(t) ≥ 0, ∀t ≥ 0. A continuously differentiable positive-definite function is considered as
follows [Xian et al., 2004]:

V(y,t)= eT1e1+
1

2
eT2e2+

1

2
rTM(q)r+P (3.92)

where y = [zT
p
P]T and z(t) is defined previously. Thanks to the property of the mass

matrixM(q)mentioned above and its bounds, the considered functionV(y,t) :R3n×R≥0×
R≥0→R≥0 is bounded as below:

η1∥y∥2 ≤V(y,t)≤ η2(∥y∥)∥y∥2 (3.93)

with η1 =
1

2
min{1,m} and η2(∥y∥) =max{

1

2
m(∥y∥),1}. Differentiating the Lyapunov can-

didate (3.92) with respect to time and using the equations (3.87), (3.89) and (3.91), the fol-
lowing equation holds:

V̇(y,t)= 2eT1e2−2Λ1e
T
1e1−Λ2e

T
2e2−

1

α
(Ks+ I)r

Tr+rTW̃−
1

α
rT ˙̃δ (3.94)

Considering the fact that for any tow vectors a and b, aTb≤ (∥a∥2+∥b∥2)/2, the V̇(y,t)
is upper bounded as follows:

V̇(y,t)≤ ∥e1∥2+∥e2∥2−2Λ1∥e1∥2−Λ2∥e2∥2−
1

α
(Ks+1)∥r∥2

+∥r∥ρ(∥z∥)∥z∥−
1

2α
(∥r∥2+∥ ˙̃δ∥2)

(3.95)

By rearranging the terms, the above inequality is rewritten as follows:

V̇(y,t)≤−ζ1∥e1∥2−ζ2∥e2∥2−ζ3∥r∥2−µ∥r∥2+∥r∥ρ(∥z∥)∥z∥−
1

2α
∥ ˙̃δ∥2 (3.96)

where ζ1, ζ2, ζ3 and µ are positive constants given by:

ζ1=Λ1−
1

2
, ζ2=Λ2−1, ζ3=

3

2α
, µ=

Ks

α
(3.97)
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Regarding the above equations Λ1 and Λ2 should be chosen such that Λ1 > 1/2 and
Λ2 > 1. Rearranging the equation (3.96) as follows:

V̇(y,t)≤−η3∥z∥2−(µ∥r∥2−∥r∥ρ(∥z∥)∥z∥) (3.98)

being η3 = min{ζ1,ζ2,ζ3}. Using the mathematical remarkable square identities, the
upper-bound of V̇ is obtained as follows:

V̇(y,t)≤−(η3−
ρ2(∥z∥)
4µ

)∥z∥2≜−ξ∥z∥2 (3.99)

with ξ is a positive constant ∈ R
+, the following inequality stands:

η3 >
1

4µ
ρ2(∥z∥) (3.100)

Based on the inequality (3.100), we can introduce the domain D as follows:

D = {y ∈R
3n×R≥0 | ∥y∥ ≤ ρ−1(2

p
η3µ)} (3.101)

From the equations (3.93) and (3.99), W1(y) ≤ V(y,t) ≤W2(y) and V̇(y,t) ≤−W(y),
respectively, it is clearly observed that V(y,t) ∈ L∞. This can prove that e1, e2, r are
bounded.

W1(y),W2(y) are continuous positive-definite functions∀t≥ 0 and∀y ∈D , andW(y)

is uniformly continuous positive-semidefinite function.

Let’s define the subset A of D such that the initial condition y(0) ∈A as follows:

A = {y(t) ∈D | W2(y)< η1(ρ−1(2
p
η3µ))

2} (3.102)

Regarding the Lemma 2 in [Xian et al., 2004], we can conclude that ∥z∥2 → 0 as t→ 0,
∀ y(0) ∈ A . As a consequence, the tracking error and its derivatives asymptotically go to
zero as time converges to infinity.

e
(i)
1 (t)→ 0 as t→∞ ∀ y(0) ∈A (3.103)

Hence, the proof of the stability of the proposed controller is made.

3.5 Conclusion

In this chapter, the thesis contributions related to the control of PKMs have been pre-
sented. The main objective was to design robust and efficient control strategies able to
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compensate for errors coming from the controller itself, the system nonlinearities, the ex-
ternal disturbances, the measurement noise, etc.

As already mentioned, the intended application of this thesis is the use of PKMs in a se-
lective sorting P&T task under different operating conditions. In such an application, the
robot has to handle different types of objects (known, known with uncertainties, and pos-
sibly unknown). In the case of known objects where no significant variation of the param-
eters is noticed, a robust model-based controller that relies on the system dynamic model
can be a good candidate for trajectory tracking. In this context, a new class of RISE control
strategy applied to PKMs has been proposed. It involves adding a nonlinear model-based
compensation term, inspired by PD control with compensation, to the standard RISE feed-
back control law. The compensation term is composed of dynamic parameters calculated
online from the measured trajectories and then multiplied by the sum of the desired tra-
jectories with the system state errors. To overcome the error resulting from the use of the
desired joint accelerations and velocities, the resulting controller is extended by a nonlin-
ear auxiliary function based on the tracking error.

However, when dealing with uncertain/unknown objects, PKMs are subject to uncer-
tainties and time-varying dynamic parameters that are very complex to be modeled. Thus,
by adopting a model-based control scheme such as the proposed extended RISE control
plus compensation, the system nonlinearities and abundant uncertainties cannot be well
compensated especially at critical operating conditions, which may deteriorate the track-
ing performance. To solve this problem, a model-based adaptive controller based on DCAL
was proposed as a second control solution. We proposed to amend the original DCAL with
adaptive feedback gains according to the system errors to counteract disturbances and un-
certainties. In addition, the controller was extended by a nonlinear sliding-based term to
further improve its robustness against external disturbances. The proposed RDCAL−AG
controller can be a good solution when an online estimation of uncertain and unknown
dynamic parameters is needed, resulting in improved tracking performance.

Even though adaptive controllers such as the proposed robust DCAL with adaptive
gains can overcome the drawbacks of model-based controllers by estimating dynamic pa-
rameters online, their performance is limited to the compensation of modeled dynamics,
while robustness against unmodeled dynamics cannot always be ensured. In addition,
the real-time implementation of parameter identification requires a high computational
burden. To address these issues, an intelligent robust controller dedicated to high order
nonlinear MIMO systems was proposed as a third control solution. It is a new design of
the RISE control scheme consisting in exploiting a model-free term in its control equa-
tion. The extension by an ultra-local model can further empower the original RISE control
with more robustness against disturbances and uncertainties as well as improve its overall
tracking performance. The proposed IRC technique can compensate for modeled and un-
modeled dynamics without requiring any apriori knowledge about the controlled system.
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As a result, if there is no need to estimate the dynamic parameters online, the proposed
IRC scheme may be the appropriate solution when we are looking for a robust and effi-
cient control scheme that is simple to implement in real time.

Moreover, the stability analysis for the three proposed control solutions was formu-
lated. In the next thesis chapter, the numerical simulation results using the proposed con-
trol solutions on T3KR PKM will be presented and discussed.
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4.1 Introduction

In this chapter, the numerical simulation results obtained with the control solutions
proposed in Chapter 3 are demonstrated and discussed. Due to the limitations in the use of
the prototype T3KR, the proposed controllers were tested only via numerical simulations
using the T3KR computed kinematic and dynamic parameters. Indeed, high frequency
torque control is required for the T3KR robot, and standard configurations are not suffi-
cient. A specific drive configuration is required, which only the manufacturer can develop
and deploy. Two scenarios are conducted for each simulation test: Robustness towards
payload changes and robustness towards speed changes. The purpose behind these sce-
narios is to test our proposed controllers at different dynamic operating conditions. The

137
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Figure 4.1 – 3D-view of the P&T reference trajectories of the robot (the red and green lines)
with the ballistic motions of the thrown objects in Cartesian space.

results for each experimental test are plotted, clarified, and discussed in terms of the dy-
namic performance of the parallel manipulator. But first, let us start with the description
of the reference trajectory and the adopted performance evaluation criteria.

4.2 Generation of pick-and-throw reference trajectories

The reference trajectories, illustrated in Figure 4.1, are generated using the method pre-
sented in Chapter 2. These generated trajectories correspond to the scenario where the
robot has to successively throw eight objects of different masses to a target position, Pf,
located outside the robot workspace. First, the robot has to move from the central position
P0 to the first pick position, P1, to grasp the detected object. Then, and according to the
pick and target positions of the corresponding object, a release position Pr1 is calculated.
After finding the appropriate release point, the robot accelerates to this point (i.e., Pr1),
and then throws the object to the desired target Pf. After throwing the object, the robot
decelerates to pick the next object, while the released object follows its free flight ballistic
trajectory from Pr1 to Pf. The same cyclic movement is repeated for the second, the third,
and the fourth objects, located atP2, P3, andP4, respectively. After throwing the fourth ob-
ject, the robot moves to P5, to pick the fifth object. The same throw motion is performed
for the last fourth objects located at P5, P6, P7, and P8, respectively. After throwing the last
object, the robot moves back to P0. Referring to Figure 4.1, the red lines represent the por-
tions of the trajectory where the robot carries the object, while the green lines correspond
to the portions after the release point where the robot is moving without payload.
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4.3 Performance evaluation criteria

To quantify the performance of the proposed control contributions, the Root Mean
Square Error (RMSE) criterion is adopted. It is the most commonly used performance
index for the evaluation of the tracking performance of control algorithms. It allows to
quantify how close the actual trajectory is to the desired one. The RMSEs expressions for
T3KR robot in Cartesian (RMSEx) and joint space (RMSEJ) are given as follows:

RMSEx=

√

√

√

√(
1

N
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2
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2
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2
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with ex, ey and ez denote the Cartesian position tracking errors along the three transla-
tional axes, x, y and z. eq1 , eq2 , eq3 and eq4 are the joint position tracking errors. N is the
total number of samples.

In fact, the control effort is reduced with the compensation of dynamic uncertainties
and system nonlinearities. Therefore, the input-torque-based criterion is adopted to quan-
tify the energy consumption. This evaluation criterion is denoted as follows:

EΓ =

n∑

i=1

N∑

j=1

|Γi(j)| (4.3)

where EΓ is the total summation of the absolute values of the input torques delivered by
the n actuators.

4.3.1 Tuning of the feedback control gains

Using the Trial-and-Error method, the feedback gains of all implemented controllers
are adjusted. It is characterized by trying manually and continuously different sets of con-
trol gains in a real-time framework to get the best tracking performance while avoiding the
saturation of the actuators. Increasing further the gains may amplify the noise effect and
degrade the tracking performance. This method is mostly used when the formulated dy-
namic model does not exactly match the physical system, and thus automatic numerical
closed-loop tuning methods may yield inadequate control gains for real-time experiments.
It should be noted that when tuning the control gains, the desired control performance of
each control law is achieved when the real system trajectory becomes close to desired one.
It means that the minimum possible tracking error is obtained while respecting the actua-
tor limits and avoiding chattering effects and noise amplifications.
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4.4 Proposed numerical simulation scenarios

Numerical simulations were conducted on the T3KR robot in a P&T task to demon-
strate the performance of the proposed controllers. These simulations were established
in Matlab/Simulink environment with a fixed step solver equal to 0.4 ms, using the P&T
reference trajectories illustrated in Figure 4.1. Two main scenarios have been imple-
mented on this validation: 1) scenario 1: Robustness towards payload changes, 2) sce-

nario 2: Robustness towards speed variations. For more realistic simulations, white noise
of 7∗10−7 of variance was added to the output joint positions, coulomb and viscous fric-
tion, Fc = 0.8andFv = 0.5, respectively, were added to the dynamic model of the robot as
well as a 25% of uncertainty on the inertia values including the inertia of the actuators, the
rear arms, and the forearms.

4.4.1 Scenario 1 - Robustness towards payload variations

This scenario has been performed with 4.2 G as maximum acceleration (with a speed
of 2100 mm/s). It is the minimum sufficient value required by T3KR robot to throw an ob-
ject outside of its workspace. The eight objects, used for this demonstration, have different
masses, which allows for evaluating the robustness of the proposed controller towards vari-
ations in the payload. The 1st and 5th objects located at P1 and P5, respectively, are of 50 g
of mass, the 2nd and 6th objects located at P2 and P6, respectively, have a mass of 100 g
(i.e. ∆mass=+100% w.r.t the 1st object), the 3rd and 7th objects at P3 and P7, respectively,
have a mass of 150 g (i.e. ∆mass =+200% w.r.t the 1st object), while the 4th and 8th ones
located at P4 and P8, respectively, have a mass of 200 g (i.e. ∆mass =+300% w.r.t the 1st

object).

4.4.2 Scenario 2 - Robustness towards speed variations

The T3KR robot is intended to be used for high-speed P&T sorting applications. Ac-
cordingly, it is useful to evaluate the tracking performance of the proposed control strate-
gies at high-acceleration conditions, where the nonlinear effects of the parallel manipula-
tor increase substantially. The operating acceleration is increased up to 9 G (with a speed
of 4500 mm/s). In this scenario, the robot performs the same P&T trajectory with the same
manipulated objects as in the previous scenario.



4.5. NUMERICAL SIMULATION RESULTS OF EXTENDED RISE CONTROL PLUS

COMPENSATION 141

Table 4.1 – The control gains of the original RISE, PD plus compensation, and the proposed
extended RISE plus compensation controllers.

RISE PD+ Proposed ERISE+

Λ1 = 674 β = 2.5 Kp = 3400 Λ1 = 180 β = 2.5
Λ2 = 7.2 Kd = 23 Λ2 = 1.3 δ1 = 50
Ks= 22 α = 1.4 Ks= 22 δ2 = 100

4.5 Numerical simulation results of extended RISE control

plus compensation

To demonstrate the performance of the proposed ERISE+ controller, a comparative
study has been performed with the original RISE and the PD control plus compensation,
presented in Chapter 3, through numerical simulations on T3KR robot in a P&T task.

4.5.1 Tuning procedure of the control gains

The control gains of the proposed ERISE+ controller are tuned in the same way of those
of the original RISE controller [Saied, 2019] using the following procedure:

1. SetΛ2 = 0, β = 0, δ1= 0, and δ2= 0.

2. Set Λ1 and Ks as if it was a PD control plus compensation, where Λ1 (Ks + 1) is the
proportional gain and (Ks + 1) is the derivative gain until reaching values closer to
the reference path.

3. Start increasingΛ2 by changing againΛ1 andKs either increasing or decreasing until
obtaining the smallest possible RMSE at each simulation, taking care not to exceed
the actuator capabilities.

4. Increase β gradually to avoid chattering effects, to improve the robustness of the
controller towards disturbances.

5. Increase δ1 and δ2 to improve the overall performance while keeping control input
torques below saturation.

The obtained control gains for the proposed ERISE+, the standard RISE, and PD control
plus compensation are summarized in Table 4.1.

4.5.2 Scenario 1 - Robustness towards payload changes

The Cartesian tracking errors of the three tested controllers are plotted in Figure 4.2.
The obtained results clearly show the superiority of the proposed controller over the other
two ones along all axes. The RMSE performance indices are evaluated for all controllers, in
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both Cartesian and joint spaces, and the obtained results are reported in Table 4.2. Accord-
ing to these indices, the proposed ERISE+ outperforms the standard RISE by 80.9% and
69.6% for the Cartesian and joint spaces, respectively. Compared to the PD control plus
compensation, the proposed ERISE+ improves the tracking performance by up to 45.3%
and 40.0% in the Cartesian and joint spaces, respectively.

For clarification purpose, the plots are zoomed to the interval [5.1, 5.2] seconds as
shown in Figure 4.3. One can notice that the best dynamic performance is obtained by the
proposed ERISE+ controller showing the high impact of extending the robust RISE con-
troller with a dynamic compensation on the global performance of parallel robots.

The evolution of the generated control input torques for all controllers is shown in Fig-
ure 4.4. The control signals show, for all controllers, a good and smooth behavior within
the admissible limits of the actuators of the robot (the maximum torque of T3KR actuators
is 28.9 N.m). In addition, a slight reduction in energy consumption is notified for the pro-
posed ERISE+ controller compared to the standard RISE controller. However, compared to
the the PD+, no significant improvement is observed in terms of energy consumption.

This scenario confirms the effectiveness of the proposed controller compared to the
standard RISE and PD+ controllers. The proposed ERISE+ control scheme is more robust
towards variations in payload, thus, it is more suitable for arbitrary P&T applications such
as waste sorting.

Table 4.2 – Control performance evaluation of the original RISE, the PD plus compensation,
and the proposed extended RISE plus compensation controllers.

Scenario Control RMSEx[mm] RMSEJ[Deg]

Scenario 1
RISE 0.0634 0.0069
PD+ 0.0221 0.0035
ERISE+ 0.0121 0.0021

Improvement w.r.t RISE 80.9 % 69.6 %

Improvement w.r.t PD+ 45.3% 40.0 %

Scenario 2
RISE 0.1332 0.0173
PD+ 0.0342 0.0074
ERISE+ 0.0266 0.0060

Improvement w.r.t RISE 80.0 % 65.3%

Improvement w.r.t PD+ 22.2 % 18.9 %

4.5.3 Scenario 2 - Robustness towards speed variations

In Figure 4.5, one can obviously see the significant improvements obtained by the pro-
posed ERISE+ control scheme along all translational axes. These improvements are quan-
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Figure 4.2 – Scenario 1: Evolution of the Cartesian tracking errors of the original RISE, the
PD plus compensation, and the proposed ERISE+ controllers on T3KR robot.

Figure 4.3 – Scenario 1: Evolution of the Cartesian tracking errors of the original RISE, the
PD plus compensation, and the proposed ERISE+ controllers on T3KR robot within the
interval [5.1, 5.2] sec.
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Figure 4.4 – Scenario 1: Evolution of the control input torques of the original RISE, the PD
plus compensation, and the proposed ERISE+ controllers on T3KR robot.

tified by exploiting the RMSE evaluation criteria in Cartesian and joint spaces. The ob-
tained results, summarized in Table 4.2, show improvements of 80.0% in the Cartesian
space and 65.3% in the joint space compared to the standard RISE controller. In com-
parison to the PD control plus compensation, the tracking performance is improved by up
to 22.2% and 18.9% in the Cartesian and joint spaces, respectively.

For better illustration, the plots are zoomed to the interval [2.14, 2.24] seconds as shown
in Figure 4.6. One can notice the superiority of the ERISE+ controller compared to the
standard RISE and the PD+ controllers in terms of the precision.

The evolution of the control input torques, generated by the three controllers, are de-
picted in Figure 4.7. It can be seen that all the control signals are continuous and evolve
within the admissible range of the actuator capabilities. Moreover, as shown in Figure 4.7,
the proposed controller slightly reduces the power consumption as it generates less input
torques, compared to the standard RISE controller, while there is no noticeable reduction
compared to the PD+ controller.

The overall performance improvement, obtained by the proposed ERISE+ scheme, can
be explained by the good compensation of the system nonlinearities provided by the con-
tribution of the designed compensation dynamic term.
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Figure 4.5 – Scenario 2: Evolution of the Cartesian tracking errors of the original RISE, the
PD plus compensation, and the proposed ERISE+ controllers on T3KR robot.
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Figure 4.6 – Scenario 2: Evolution of the Cartesian tracking errors of the original RISE, the
PD plus compensation, and the proposed ERISE+ controllers on T3KR robot within the
interval [2.14, 2.24] sec.
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Figure 4.7 – Scenario 2: Evolution of the control input torques of the original RISE, the PD
plus compensation, and the proposed ERISE+ controllers on T3KR robot.

4.6 Numerical simulation results of robust DCAL with

adaptive feedback gains

A comparison between the standard DCAL and the proposed robust DCAL with adap-
tive gain controller has been established using the P&T reference trajectories illustrated in
Figure 4.1.

4.6.1 Tuning procedure of the control gains

For the proposed RDCAL-AG controller, we adopt the following procedure:

1. Set a high value for λ and minimum possible values forΛpm andΛvm.

2. Adjust the gains Λ̄p and Λ̄v, either increasing or decreasing, until a good perfor-
mance index is achieved, while being careful to avoid actuator saturation.

3. Increase theK gain, responsible for the parameter estimation, gradually till obtaining
a good convergence of the mass of the platform.

4. Increase the σ gain to improve the overall performance while keeping the control
input values away from saturation.

5. The gain β, responsible for the robustness of the controller, is increased progres-
sively in order to obtain better performance while maintaining low chattering input
signals.

The resulting gains values of the proposed controllers are summarized in Table 4.3.
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Table 4.3 – The control gains of the standard DCAL and the proposed robust DCAL with
adaptive gains.

Standard DCAL Proposed RDCAL-AG

Λp = 3600 σ = 6.8×106 Λpm = 6364 σ= 6.8×106
Λv = 23 K = 200 Λp = 11×107 λ = 200
λ = 200 Λvm = 23 K= 300

Λv = 77 β= 2.5

Table 4.4 – Control performance evaluation of the standard DCAL and the proposed robust
DCAL with adaptive feedback gains.

Scenario Control RMSEx[mm] RMSEJ[deg]

Scenario 1
DCAL 0.0428 0.0062

RDCAL-AG 0.0241 0.0035
Improvement w.r.t DCAL 43.7 % 43.5 %

Scenario 2
DCAL 0.0489 0.0065

RDCAL-AG 0.0293 0.0039
Improvement w.r.t DCAL 40.1 % 40.0%

4.6.2 Scenario 1 - Robustness towards payload changes

The Cartesian tracking errors of the standard DCAL and the proposed robust DCAL
with adaptive feedback gains are plotted in Figure 4.8. It is clearly shown that the pro-
posed controller outperforms the original DCAL especially for z-axis. This can validate the
robustness of the proposed RDCAL-AG controller, towards the effect of gravity, compared
to the original DCAL. The RMSE performance indices, in both Cartesian and joint spaces,
are evaluated for both controllers and the obtained results are summarized in Table 4.4.
These indices show a significant improvement of 43.7% in Cartesian space and 43.5% in
joint space w.r.t to the standard DCAL.

The evolution of the estimated parameter m̂tp, initialized to zero, is displayed in Fig-
ure 4.9. It is worth to note that this mass includes both the mass of the carried payload
and the mobile platform. This explains why the adaptive mass increases or returns to its
nominal value depending on whether the robot is carrying a payload.

Figure 4.10 illustrates the evolution of the adaptive gains,Λp(t) andΛv(t), versus time.
The produced variations of both feedback gains versus time give always strictly positive
bounded values. One can observe, on the left side of Figure 4.10, that the minimum value
of Λp(t) is 6364 as defined in the value of Λpm; similarly, on the right side of Figure 4.10,
the minimum value taken by Λv(t) is the one as established in Λvm. Besides, it can be
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Figure 4.8 – Scenario 1: Evolution of the Cartesian tracking errors of the standard DCAL
and the proposed robust DCAL with adaptive gains on T3KR robot.

seen from this figure that owing to this execution speed, Λp(t) can reach values of up to
11500, whereasΛv(t) can reach 23.5. This special behavior of the adaptive gains produces
corrective actions when an increase in the tracking errors is due to changes in the handled
payload during the P&T task for instance.

The evolution of the control input torques is depicted in Figure 4.11. The control signals
show, for both controllers, a good and smooth behavior within the admissible limits of the
actuators of the robot.

As a result, this scenario demonstrates the superiority of the proposed controller over
the standard DCAL. The RDCAL-AG control scheme is more robust towards variations in
payload thanks to the dynamic behavior of the proposed adaptive feedback gains and the
addition of the sliding-based term. Therefore, the proposed RDCAL-AG strategy is more
suitable for P&T applications.

4.6.3 Scenario 2 - Robustness towards speed variations

The Cartesian tracking errors for both controllers are recorded and depicted in Fig-
ure 4.12. The tracking errors of the both control schemes increased notably on all trans-
lational axes. Nevertheless, the proposed RDCAL-AG controller shows noticeably better
performance, compared to the original DCAL. Table 4.4 summarizes the evaluation of the
RMSE of both controllers in this scenario. It shows an improvement of 40.1% and 40.0% in
Cartesian and joint spaces, respectively, compared to the standard DCAL.

Figure 4.13 shows the evolution of the estimated parameter m̂tp with respect to time.
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Figure 4.9 – Scenario 1: Evolution of the estimated mass of the standard DCAL and the
proposed robust DCAL with adaptive gains on T3KR robot.

Figure 4.10 – Scenario 1: Evolution of the adaptive gains,Λp(t) andΛv(t), of the standard
DCAL and the proposed robust DCAL with adaptive gains on T3KR robot.

The adaptation law adjusts the mass, from an initial zero value, similarly for both con-
trollers. One can clearly observe the oscillations induced by the changes of the payload at
each pick-and-throw cycle as well as by the increasing of the operating acceleration.

The evolution of the adaptive gains, Λp(t) and Λv(t), versus time is depicted in Fig-
ure 4.14. As it can be seen, the behavior of the adaptive gains, Λp(t) and Λv(t), is
slightly modified by the increase in the operating acceleration, while remaining positive
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Figure 4.11 – Scenario 1: Evolution of the control input torques of the standard DCAL and
the proposed robust DCAL with adaptive gains on T3KR robot.

and bounded along the desired trajectory. It is obvious from Figure 4.14 that the mini-
mum values of these gains are those previously established for Λpm and Λvm. However,
the maximum values of these gains are modified; Λp(t) manages to reach values close to
13000, while Λv(t) reaches values up to 23.7. This explains the better performance of the
proposed robust DCAL controller with adaptive gains compared to the original DCAL con-
troller by the dynamic behavior of the feedback gains with the change of the operating
conditions.

The control input signals for the four motors of the robot, for both controllers, are dis-
played in Figure 4.15. As one can see, the control signals of the two control schemes are
within the allowable capacities of the motors. They are continuous and chattering-free
since the sign function in the proposed controller is replaced by a continuous sigmoid
function. Furthermore, it is clear that the values of the generated torques increase with
the operating acceleration.

Besides, it can be noticed that the high nonlinearities and disturbances induced by the
increase in the accelerations are significantly compensated by the proposed RDCAL-AG
controller compared to the original DCAL. This is due to the corrective action produced by
the adaptive gains and the robustness provided by the sliding-based term when the track-
ing errors are considerably increased by the changes in the dynamic operating conditions.
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Figure 4.12 – Scenario 2: Evolution of the Cartesian tracking errors of the standard DCAL
and the proposed robust DCAL with adaptive gains on T3KR robot.
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Figure 4.13 – Scenario 2: Evolution of the estimated mass of the standard DCAL and the
proposed robust DCAL with adaptive gains on T3KR robot.

4.7 Numerical simulation results of intelligent robust

control

In order to evaluate the performance of the proposed intelligent robust controller, a
comparative study has been performed through numerical simulations with two model-
based control schemes developed in the literature.
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Figure 4.14 – Scenario 2: Evolution of the adaptive gains,Λp(t) andΛv(t), of the standard
DCAL and the proposed robust DCAL with adaptive gains on T3KR robot.

0 1 2 3
-10

0

10

20

T
1

 [
N

m
]

DCAL RDCAL-AG

0 1 2 3

-5

0

5

T
2

 [
N

m
]

0 1 2 3

Time [sec]

-5

0

5

T
3

 [
N

m
]

0 1 2 3

Time [sec]

-5

0

5

T
4

 [
N

m
]

2.56 2.562 2.564

0

0.4

Figure 4.15 – Scenario 2: Evolution of the control input torques of the standard DCAL and
the proposed robust DCAL with adaptive gains on T3KR robot.

4.7.1 State-of-the-art control methods for comparison purposes

The model-based feedforward RISE control (FF-RISE) developed in [Escorcia-
Hernández et al., 2020b], and the model-based feedforward super-twisting sliding mode
control (FF-ST-SMC) proposed in [Saied et al., 2021] for the control of PKMs, are also im-
plemented for comparison purposes, since they are both model-based robust controllers.
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Table 4.5 – The control gains of the feedforward RISE control, the feedforward ST-SMC, and
the proposed intelligent robust control.

FF-RISE FF-ST-SMC Proposed IRC

Λ1 = 172 β = 2.5 K1 = 18.2 λ = 150 Λ1 = 150 β = 2.5
Λ2 = 1.4 K2 = 0.23 Λ2 = 1.6 α = 2
Ks= 22 K3 = 2.5 Ks= 22

Their control laws are given as follows:

ΓFF−RISE=M(qd)q̈d+C(qd, q̇d)q̇d+G(qd)+(Ks+ I)e2(t)−(Ks+ I)e2(t0)

+

∫ t

t0

[(Ks+ I)Λe2(σ)+βsgn(e2(σ))]dσ.
(4.4)

ΓFF−ST−SMC=M(qd)q̈d+C(qd, q̇d)q̇d+G(qd)+K1s+K2|s|
1/2sgn(s)+

∫
K3 sgn(s).

(4.5)

where s is the standard sliding surface defined as s = ė1+λe1. K1, K2, and K3 are three
positive definite diagonal gain matrices, and λ is a positive constant gain.

4.7.2 Tuning procedure of the control gains

The gains of the proposed IRC strategy can be adjusted using the following procedure:

1. First, set the values of α andΛ1 large enough to have a small steady-state error.

2. Decrease the value of α until getting a quick oscillatory response of the output.

3. ModifyΛ1 and Ks to stabilize the system with a good tracking performance.

4. Increase Λ2, and at the same time, adjust Λ1 and Ks up or down until tracking per-
formance is improved as much as possible while keeping actuator torques in the safe
range.

5. The robustness of the controller may be improved by increasing the feedback gain β
gradually to avoid chattering in the control signals.

The obtained control gains for all controllers are summarized in Table 4.5 .

4.7.3 Scenario 1 - Robustness towards payload changes

The Cartesian tracking errors of the three controllers are depicted in Figure 4.16. The
obtained results show that the contribution of the ultra-local model improves the perfor-
mance of the conventional FF-RISE controller by 51.6% and 63.3% for the Cartesian and



154CHAPTER 4. PROPOSED CONTROL SOLUTION NUMERICAL SIMULATION RESULTS

joint spaces, respectively (see Table 4.6). Compared to the FF-ST-SMC strategy, the pro-
posed IRC improves the tracking performance by up to 24.8% and 47.6% in the Cartesian
and joint spaces, respectively.

Figure 4.17 represents the evolution of the control input torques generated by all con-
trollers, and clearly shows that the control signals are below the saturation limits of the
actuators (i.e. below 28.9 N.m). Moreover, we can notice from Figure 4.17 that the pro-
posed IRC strategy reduces the power consumption since it generates less input torques,
compared to FF-RISE and FF-ST-SMC schemes.

This scenario confirms the improvement achieved by considering an ultra-local model,
updated in real time, instead of a conventional feedforward dynamic model. According to
the evaluation criteria, reported in Table 4.6, the proposed IRC algorithm shows higher ac-
curacy and better robustness to payload variations than the two other model-based con-
trollers; this is highly relevant for P&T sorting applications where the robot has to deal with
different types of objects.

4.7.4 Scenario 2 - Robustness towards speed variations

In Figure 4.18, we can see the relevant improvements obtained by the proposed control
scheme along all translation axes. These improvements are quantified by exploiting the
RMSE evaluation criteria in Cartesian and joint spaces. The obtained results, summarized
in Table 4.6, show improvements of 31.2% in the Cartesian space and 50.0% in the joint
space relative to the FF-RISE controller. In comparison to the FF-ST-SMC scheme, the

Table 4.6 – Control performance evaluation of the feedforward RISE control, the feedfor-
ward ST-SMC, and the proposed intelligent robust control.

Scenario Control RMSEx[mm] RMSEJ[deg]

Scenario 1
FF-RISE 0.0188 0.0030

FF-ST-SMC 0.0121 0.0021
Proposed IRC 0.0091 0.0011

Improvement w.r.t FF-RISE 51.6 % 63.3 %

Improvement w.r.t FF-ST-SMC 24.8 % 47.6 %

Scenario 2
FF-RISE 0.0292 0.0064

FF-ST-SMC 0.0270 0.0061
Proposed IRC 0.0201 0.0032

Improvement w.r.t FF-RISE 31.2 % 50.0 %

Improvement w.r.t FF-ST-SMC 25.6 % 47.5 %
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Figure 4.16 – Scenario 1: Evolution of the Cartesian tracking errors of the feedforward RISE
control, the feedforward ST-SMC, and the proposed IRC scheme on T3KR robot.

Figure 4.17 – Scenario 1: Evolution of the control input torques of the feedforward RISE
control, the feedforward ST-SMC, and the proposed IRC scheme on T3KR robot.
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Figure 4.18 – Scenario 2: Evolution of the Cartesian tracking errors of the feedforward RISE
control, feedforward ST-SMC, and the proposed IRC scheme on T3KR robot.

tracking performance is improved by up to 25.6% and 47.5% in the Cartesian and joint
spaces, respectively.

The evolution of the control input signals, generated by the three implemented con-
trollers, are displayed in Figure 4.19. Indeed, One can clearly see that all the control signals
evolve within the admissible range of the actuator capabilities. As it can be seen from Fig-
ure 4.19, a slight reduction in energy consumption is notified for the proposed controller
compared to the two other controllers.

The overall performance improvement, obtained by the proposed IRC scheme, can be
explained by the good compensation of the system nonlinearities provided by the contri-
bution of the ultra-local model with the robust RISE feedback law.

4.8 Comparison between the proposed controllers

In this section, the performance of the three proposed controllers is compared using
the same desired trajectory shown in Figure 4.1. Scenarios 1 and 2, described above, are
evaluated in this comparison to conclude which control performance is better in terms of
robustness and accuracy among the three proposed controllers.

4.8.1 Scenario 1 - Robustness towards payload changes

The resulted tracking errors in Cartesian space are displayed in Figure 4.20 for the three
proposed controllers. On the one hand, it is noticeable that the extended RISE control plus



4.8. COMPARISON BETWEEN THE PROPOSED CONTROLLERS 157

Figure 4.19 – Scenario 2: Evolution of the control input torques of the feedforward RISE
control, feedforward ST-SMC, and the proposed IRC scheme on T3KR robot.

compensation provides better tracking performance compared to the robust DCAL with
adaptive feedback gains. According to Table 4.7, when evaluating the RMSE performance
index, the ERISE+ controller outperforms the RDCAL-AG strategy by up to 49.8% and 40%
for Cartesian and join spaces, respectively. On the other hand, a remarkable downsizing in
the magnitudes of the tracking errors is obtained with the intelligent robust control scheme
compared to the robust DCAL with adaptive gains and the extended RISE control plus com-
pensation. A significant improvement of 62.2% in terms of Cartesian space accuracy and
68.6% for the joint space accuracy is noticed w.r.t the RDCAL-AG (see Table 4.7). Compared
to the ERISE+ controller, the IRC strategy improves the tracking precision by up to 24.8%
and 47.6% for both Cartesian and joint spaces, respectively.

Figure 4.21 displays the evolution of the control input torques along the reference tra-
jectory (shown in Figure 4.1) for the three proposed controllers. The three proposed con-
trol schemes, RDCAL-AG, ERISE+, and IRC, guarantee an input signal within the safety
margins of T3KR robot actuators. Nevertheless, it is worth to highlight the reduced input
torques generated by the ERISE+ controller compared to the RDCAL-AG as well as those
generated by the IRC compared to ERISE+ and RDCAL-AG controllers. The energy con-
sumption of the three controllers, calculated using the input-torques based criterion pro-
posed in (4.3), is reported in Table 4.7. An improvement of 2.9% in terms of energy con-
sumption is noticed for the ERISE+ controller compared to the RDCAL-AG. On the other
hand, the IRC strategy reduces energy consumption by 5.2% compared to the ERISE+ con-
troller and by 2.3% compared to the RDCAL-AG.

According to the obtained results, it can be concluded that the proposed IRC scheme
performs better than the other proposed controllers. The IRC strategy has the smallest
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reference tracking error with reduced power consumption, and thus better performance
overall reference trajectory. This is due to the special behavior provided by the ultra-local
model in addition to the robust RISE feedback law in terms of robustness towards payload
changes.

4.8.2 Scenario 2 - Robustness towards speed variations

Following the same reference trajectory shown in Figure 4.1, the Cartesian tracking er-
rors for the three proposed controllers are recorded and plotted in Figure 4.22. A signif-
icant attenuation in the tracking errors, overall the reference trajectory, in all axes, can
be observed for ERISE+ compared to RDCAL-AG and for IRC compared to ERISE+ and
RDCAL-AG controllers. The RMSE performance index is evaluated in both Cartesian and
joint space and is reported in Table 4.7. It shows a 9.2% improvement in terms of tracking
precision in Cartesian space for ERISE+ compared to RDCAL-AG. However, in terms of ac-
curacy in joint space, the RDCAL-AG outperforms the ERISE+ by 35.0%. With regard to the
IRC scheme, its performance exceeds that of RDCAL-AG by 31.4% in Cartesian space and
by 17.9% in joint space. Compared to ERISE+, IRC improves tracking accuracy by 24.4%
and 46.7% in Cartesian and joint space respectively.

The performance in terms of energy consumption is slightly improved from
7.55×104 Nm for the RDCAL-AG to 7.51×104 Nm for the ERISE+ and with a reduction
of 0.5% (see Table 4.7). Similarly, a slight reduction in energy consumption of 0.8% and
0.3% is noticed for the IRC compared to RDCAL-AG and ERISE+, respectively. Note that
the control signals for the three proposed controllers evolve within the safe range of the
actuators capabilities.

Thus, the proposed IRC scheme produces smaller tracking errors at high dynamic
operating conditions (high-speed motions) with manipulated payloads compared to the
ERISE+ and RDCAL-AG controllers. This ensures the robustness of the IRC strategy to-
wards operating condition changes. Thanks to the ultra-local model, the increased ef-
fect of the nonlinear dynamics of parallel manipulators during high-speed motions can
be better compensated by the proposed IRC scheme compared to ERISE+ and RDCAL-AG
controllers, even though no knowledge of the dynamic model is taken into account in the
control loop.

To sum up, on the one hand, the better tracking performance of ERISE+ compared to
RDCAL-AG is explained by three reasons. First, the initial value of the estimated mass in
the RDCAL-AG scheme is zero, therefore during the transition phase of the mass estima-
tion, the initial tracking error of RDCAL-AG is higher than the errors of ERISE+ and IRC.
Second, the robustness term that characterizes the RISE control law can compensate for
a large class of general uncertainties and disturbances. Moreover, the dynamic compen-
sation term used in ERISE+ is close to the one used in the simulation, even though some
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Figure 4.20 – Scenario 1: Evolution of the Cartesian tracking errors of the three proposed
controllers: (i) the extended RISE control plus compensation, (ii) the robust DCAL with
adaptive gains, and (iii) the intelligent robust control on T3KR robot.

Figure 4.21 – Scenario 1: Evolution of the control input torques of the three proposed con-
trollers: (i) the extended RISE control plus compensation, (ii) the robust DCAL with adap-
tive gains, and (iii) the intelligent robust control on T3KR robot.
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Figure 4.22 – Scenario 2: Evolution of the Cartesian tracking errors of the three proposed
controllers: (i) the extended RISE control plus compensation, (ii) the robust DCAL with
adaptive gains, and (iii) the intelligent robust control on T3KR robot.

Figure 4.23 – Scenario 2: Evolution of the control input torques of the three proposed con-
trollers: (i) the extended RISE control plus compensation, (ii) the robust DCAL with adap-
tive gains, and (iii) the intelligent robust control on T3KR robot.
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uncertainties and disturbances were added to the dynamic model. On the other hand, ac-
cording to the obtained results, it can be concluded that the IRC strategy provides the best
tracking performance among the three proposed controllers. It shows higher robustness
towards payload and speed changes compared to the other two controllers. Moreover, the
tracking accuracy obtained by IRC is better than that obtained by ERISE+ and RDCAL-AG.
This can be explained by the fact that with the IRC control structure, uncertainties, non-
linearities, unmodeled phenomena, and parameter variations (i.e. payload changes) can
be compensated for without considering dynamic model knowledge in the control. The
latter confirm the effectiveness of an ultra-local model compared to an augmented dy-
namic compensation term and even compared to an adaptive feedforward term. This is of
great importance for applications requiring high accuracy with an efficient computational
burden. However, an online estimation of the model dynamic parameters (e.g., mass and
inertia) is not offered by the IRC approach. This is because, as previously mentioned, the
IRC scheme is not based on a dynamic model of the system. Indeed, it includes only a
nonlinear function that is estimated at each sampling time and this function gathers the
modeled and unmodeled system dynamics.

4.9 Conclusion

This chapter provided the numerical simulation validation and demonstration of the
three control solutions proposed in this thesis. It began with a brief description of the
trajectory generation, the tuning procedure of the control gains and the adopted perfor-
mance evaluation criteria. All the proposed controllers were tested under two scenar-
ios: Changes in the payload, and speed changes. Numerical simulations of the proposed
extended RISE control plus compensation verified its superiority over the original RISE
control and the PD plus compensation in terms of precision and robustness towards pay-
load and speed variations. It was verified that incorporating more dynamic terms within

Table 4.7 – Control performance evaluation of the three proposed controllers: (i) the ex-
tended RISE control plus compensation, (ii) the robust DCAL with adaptive gains, and (iii)
the intelligent robust control on T3KR robot.

Scenario Control RMSEx[mm] RMSEJ[deg] EΓ [Nm]

Scenario 1
RDCAL-AG 0.0241 0.0035 7.49×104

ERISE+ 0.0121 0.0021 7.27×104

IRC 0.0091 0.0011 7.10×104

Scenario 2
RDCAL-AG 0.0293 0.0039 7.55×104

ERISE+ 0.0266 0.0060 7.51×104

IRC 0.0201 0.0032 7.49×104



162CHAPTER 4. PROPOSED CONTROL SOLUTION NUMERICAL SIMULATION RESULTS

a model-based control strategy can improve the dynamic performance of parallel manip-
ulators in terms of precision, nonlinearities compensation, and robustness towards pay-
load and speed variations. Moreover, simulation results of the proposed robust DCAL with
adaptive feedback gains showed a high dynamic performance in terms of high-speed mo-
tions, precision, and robustness towards payload and speed changes over the standard
DCAL. This is due to the particular behavior of the proposed adaptive feedback gains with
the robustness term. Furthermore, the comparison of the novel intelligent robust control
with the model-based feedforward RISE and feedforward super-twisting SMC exploiting
different performance indices confirms the superiority of the proposed IRC approach. The
proposed IRC technique can compensate for modeled and unmodeled dynamics without
requiring any apriori knowledge about the controlled system. A comparison between the
three proposed controllers was carried out in this chapter. Although there is an improve-
ment of the ERISE+ controller over the RDCAL-AG controller as well as a superiority of
the IRC scheme over ERISE+ and RDCAL-AG, this cannot prevent the use of one of the
proposed controllers. Indeed, each proposed controller is better suited to a specific type of
applications. For instance, the proposed ERISE+ controller is considered a suitable control
solution in the case where the dynamic parameters are known or known with small uncer-
tainties. However, the proposed RDCAL-AG strategy is useful when online estimation of
the dynamic parameters is required. Lastly, the proposed IRC scheme is recommended
when a high accuracy is required, with the emphasis on the simplicity of the control struc-
ture and its implementation in a real-time framework.



General conclusion

The objectives of this thesis were mainly two. The first one was to generate a time-
optimal P&T trajectory for parallel manipulators, and the second one was to propose and
validate different control techniques to improve the dynamic performance of parallel ma-
nipulators. Real-time experiments of the proposed throwing trajectory show its relevance
in terms of cycle time reduction and productivity maximization compared to the conven-
tional P&P technique and an existing P&T method from the literature. Numerical sim-
ulation results of the control solutions corroborated the effectiveness of the new control
proposals in dealing with uncertainties, speed changes and sudden payload changes.

Summary of the work

It was mentioned earlier that the performance of a parallel robot is a function of var-
ious factors, such as mechanical design, mathematical modeling, motion planning, and
control scheme. All of these factors must be well designed in order to get the most out
of the closed-loop architecture of PKMs. This thesis focused on the trajectory generation
and control of PKMs. As described in the first chapter, trajectory generation presents sev-
eral challenges such as kinematic and dynamic constraints, continuity constraints and pa-
rameter optimization. In addition, the control of PKMs involves many challenges, such as
highly nonlinear dynamics, the presence of parametric and non-parametric uncertainties,
and in some cases, redundant actuation. Therefore, the control schemes should take into
account all the above mentioned problems and challenges to ensure good tracking perfor-
mance. In this thesis, the proposed, analyzed and validated contributions can be listed as
follows:

1. A time-optimal Pick-and-Throw S-curve trajectory generation has been developed
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and implemented on T3KR parallel robot with the goal of increasing robot produc-
tivity and reducing cycle time. The proposed technique consists in determining an
optimal release configuration (i.e. position and velocity) allowing an object to be
thrown towards a desired target while minimizing the travel time of the throwing
motion of the robot. The corresponding optimization problem was formulated in
two different ways where the second one is more efficient in terms of reducing com-
putational time and simplicity in real-time implementation. A comparison between
the proposed P&T technique, an existing P&T method and the conventional P&P has
been carried out through real-time experiments on the T3KR parallel robot. The ob-
tained experimental results show the efficiency of the proposed P&T method, over
the two other methods, in terms of processing time minimization and, thereby, of
productivity maximization.

2. A new augmented RISE feedback controller has been proposed and developed. It
consists in revisiting the original RISE control law by incorporating a nonlinear dy-
namic compensation term in its control loop. This term, inspired by the PD control
with compensation, consists of model parameters calculated online from the mea-
sured trajectories and multiplied by the sum of the desired trajectories with state
errors. In addition, we propose to extend the resulting controller with a nonlinear
feedback function to compensate for the errors resulting from using the desired tra-
jectories (accelerations and velocities) instead of the measured ones. The proposed
control contribution can compensate for PKM high nonlinearities as well as improve
the robustness of the standard RISE controller. Numerical simulations were con-
ducted on a T3KR parallel robot in a P&T task under different operating conditions
to confirm the relevance of the proposed control scheme compared to the original
RISE and the PD plus compensation controllers.

3. An extended version of the standard DCAL strategy was proposed and developed in
which the PD linear feedback term was revisited by adopting adaptive gain func-
tions of system errors and the resulting controller was extended by a sliding-based
robustness term. The idea was motivated by the proved effectiveness of adaptive
feedback gains used with different control schemes such as RISE control law and the
robustness provided by a sliding-based term. DCAL is a model-based adaptive con-
trol strategy characterized by online estimation of dynamic parameters and its ro-
bustness towards measurement noise. Thus, the proposed robust DCAL with adap-
tive feedback gains takes the advantages of the adaptive feedback gains, the online
estimation of the DCAL scheme, and the robustness against disturbances provided
by the sliding-based term. The stability of the proposed control solution has been
studied in the sense of Lyapunov stability showing an asymptotic convergence of
the tracking error. The T3KR robot was used to validate the proposed controller in
numerical simulations. The obtained results verified the superiority of the proposed
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robust DCAL with adaptive feedback gains over the original DCAL algorithm in terms
of precision and robustness towards payload and velocity variations.

4. A new robust intelligent control has been proposed and designed with the aim of
taking into account parametric and non-parametric uncertainties and disturbances
that are not compensated for in conventional model-based feedforward schemes
or even in adaptive model-based schemes. The original RISE control law is a non-
model-based controller that does not incorporate any knowledge of the system dy-
namics into its control loop. This can negatively affect the dynamic performance of
the manipulator and reduce the robustness to changing operating conditions, espe-
cially in critical situations. The proposed intelligent robust control consists of revis-
ing the original RISE feedback law by incorporating an ultra-local model inspired by
model-free control into its control equation. This extension can further improve the
overall tracking performance of the original RISE and enhance its robustness against
disturbances. The stability analysis of the proposed control solution has been ad-
dressed in the Lyapunov sense ensuring the asymptotic convergence of the track-
ing error and its derivatives. The T3KR parallel robot prototype was used to validate
the proposed control strategy. Numerical simulations showed the superiority of the
proposed control approach over the feedforward RISE control and the feedforward
super-twisting sliding mode control under different operating conditions (payload
and operating speed changes).

A comparison between the three proposed controllers was performed from a theoreti-
cal point of view in Chapter 3, and by numerical simulations at the end of Chapter 4. This
comparison allows us to analyse the performance of each proposed controller compared
to the others and to conclude the best controller meeting the main objective of this thesis.
As previously stated, the objective is to use a PKM in a P&T sorting application accurately
and efficiently despite challenges such as uncertainties, significant parameter variations,
and high nonlinearities due to high operating acceleration. Therefore, it is recommended
to use a robust controller that provides high precision all along the reference trajectory
and is easy to implement in a real-time framework. Based on the comparison and dis-
cussion presented in the previous chapters, the proposed IRC scheme can meet these re-
quirements. The IRC strategy can provide high accuracy as well as robustness towards
payload and speed changes owing to the special behavior of its control structure. The
ultra-local model with the RISE feedback term can compensate for the aforementioned
challenges without considering any knowledge of the system dynamics in the control loop,
thus achieving good tracking performance with a simple structure. This does not con-
tradict the fact that the other two proposed controllers have effective performance and
robustness, but the IRC scheme is the most suitable for the purpose of the thesis.
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Future works

In this thesis, a time-optimized trajectory has been proposed with three control strate-
gies to improve the dynamic performance of parallel manipulators aiming to efficiently
perform the waste sorting task. Indeed, different possibilities exist to extend the throwing
trajectory and the control solutions proposed in this work and obtain better performances.
The following extension possibilities can be mentioned:

• The optimized Pick-and-Throw trajectory, combined with an AI technique to iden-
tify recyclables, can be applied in real waste recycling industry. Furthermore, this
work may be extended to consider not only the position of the object into the de-
sired target but also its orientation in the target landing position.

• Even if uncertainties were included in simulations, it is well known that real experi-
ments in robots tend to differ from simulations. In particular, model-based methods
can perform really differently in reality than simulations. Also, parameters defined
in simulations might not be achievable in reality without suffering problems (such as
chattering). It would be interesting to compare on a real robot the proposed control
solutions. Therefore, future directions may focus on validating the proposed control
solutions through real-time experiments on a parallel manipulator prototype.

• In general, the dynamic parameters of the manipulator may vary over time or be un-
known, thus, a real-time estimation of these modeled parameters may be considered
to further improve the tracking performance of the extended RISE plus compensa-
tion contribution.

• For the robust DCAL with adaptive feedback gains contribution, the gain of the
sliding-based term was chosen manually. Therefore, theoretical approaches can be
considered to justify how the gain of the sliding-based term can be chosen to maxi-
mize robustness.

• Nonlinear or adaptive gains depending on the system state errors can be adopted
in the feedback control term of the proposed intelligent robust control scheme in-
stead of static gains. The time-varying gains can produce corrective control actions
ensuring the establishment of the desired performance.
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APPENDIX

A
Proof of Algorithm 1

The details of this appendix were written by Dr. Marc Gouttefarde. The KKT first-order
necessary conditions [Nocedal and Wright, 2006] for x∗ =(x∗1 ,x

∗
2) to be a local solution to

the optimization problem (2.6) can be stated as follows.

First-order necessary conditions: There is a Lagrange multiplier vector λ∗, with compo-
nents λ∗i , 1≤ i≤ 6, such that the following conditions are satisfied:

∇xL (x∗,λ∗) = 0 (A.1)

Ci(x
∗) ≥ 0, 1≤ i≤ 6 (A.2)

λ∗i ≥ 0, 1≤ i≤ 6 (A.3)

λ∗iCi(x
∗) = 0, 1≤ i≤ 6 (A.4)

where the constraintsCi(x) are defined in (2.6) and ∇xL (x,λ) is the gradient with respect
to x of the Lagrangian function L (x,λ) defined as:

L (x,λ)= f(x)−

6∑

i=1

λiCi(x) (A.5)

The first-order necessary conditions stated above in (A.1) to (A.4) are valid if the func-
tions f(x) and Ci(x) are continuously differentiable and the so-called Linear Indepen-
dence Constraint Qualification (LICQ) holds at x∗ [Nocedal and Wright, 2006]. According
to the definitions of f(x) and Ci(x), the continuous differentiability condition is true for
problem (2.6). The fact that the LICQ holds is proved in Section A.16.
The well-known method to use the first-order necessary conditions to find local optimal
solutions x∗ consists in distinguishing all the possible cases of sets of active constraints
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which allows the determination of x∗ and of the Lagrange multiplier vector λ∗.
A constraint Ci(x) is defined as being active if Ci(x) = 0. According to (A.4), for a given
i, either Ci(x

∗) is active, i.e. Ci(x) = 0, or λ∗i = 0. Since C5(x) = x1 = V > 0 and
C6(x) = x2 =A > 0, C5(x) and C6(x) are never active, and according to (A.4), λ5 = 0 and
λ6= 0 at a local optimal solution. Then, only four constraints can be active,C1(x) toC4(x),
and the problem (2.6) having two variables, x1 and x2, the following 11 cases of possible ac-
tive constraint sets must be studied:

• No active constraint (one case)

• Four cases of one active constraint

• Six cases of two active constraints

These relatively small number of possible active constraint sets and the rather simple ex-
pressions of the functions f(x) and Ci(x) make the analysis of each of these eleven cases
possible, as detailed in the following subsections.

A.1 Preliminaries: Expressions of the gradients

In (A.1), the gradient with respect to x of the Lagrangian function L (x,λ) in (A.5) is
given by:

∇xL (x,λ)=∇xf(x)−
4∑

i=1

λi∇xCi(x) (A.6)

where the summation is taken for i= 1 to 4 since, as pointed above, λ5= 0 and λ6= 0 at a
local optimal solution. According to (2.5) and (2.6), the gradients in (A.6) are as follows:

∇xf(x)=













∂f

∂x1

∂f

∂x2













=













1

x2
−
P

x21

1

J
−
x1

x22













=













x21−Px2

x21x2

x22− Jx1

Jx22













(A.7)

∇xC1(x)=













∂C1

∂x1

∂C1

∂x2













=













1

x2

−
1

J
−
x1

x22













=













1

x2

−x22− Jx1

Jx22













(A.8)
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∇xC2(x)=













−P

x21
−
1

x2

x1

x22
−
1

J













=













−Px2−x
2
1

x21x2

Jx1−x
2
2

Jx22













(A.9)

∇xC3(x)=
[

−1

0

]

(A.10)

∇xC4(x)=
[

0

−1

]

(A.11)

A.2 Case 1: No active constraint

According to (A.4), λ∗i = 0 for i= 1.. .4 if there is no active constraint at a local optimal
solution x∗. Then, (A.1) yields:

∇xL (x∗,λ∗)=∇xf(x∗)= 0⇐⇒





x∗21 −Px∗2 = 0

x∗22 − Jx∗1 = 0
⇐⇒





x∗31 = JP2

x∗32 = J2P
(A.12)

However, the constraintC2(x) is:

C2(x)=
P

x1
−
x1

x2
−
x2

J
=
J
(

Px2−x
2
1

)

−x1x
2
2

Jx1x2
(A.13)

so that, with (A.12), the fact thatC2(x) is not active leads to:

C2(x
∗)> 0⇐⇒ J

(

Px∗2 −x
∗2
1

)

−x∗1x
∗2
2 > 0⇐⇒−x∗1x

∗2
2 > 0 (A.14)

where the second equivalence comes from Px∗2−x
∗2
1 = 0which is a consequence of (A.12).

The inequality (A.14) is impossible since x∗1 > 0 and x∗2 > 0 according to constraintsC5 and
C6. Consequently, this first case of no active constraint is not feasible and is discarded.

A.3 Case 2: One active constraintC1(x)= 0

According to (A.4), we have λ∗i = 0 for i= 2,. . . ,4. Hence, x∗1 , x∗2 and λ∗1 can be deter-
mined from the following equation system obtained from (A.1) andC1(x

∗)= 0:





∇xL (x∗,λ∗)=∇xf(x∗)−λ∗1∇xC1(x
∗)= 0

C1(x
∗)=

x∗1
x∗2

−
x∗2
J
= 0

(A.15)



188 APPENDIX A. PROOF OF ALGORITHM 1

From (A.7) and (A.8), the system (A.15) is equivalent to:





x∗21 −Px∗2 −λ
∗
1x

∗2
1 = 0

x∗22 − Jx∗1 +λ
∗
1

(

x∗22 + Jx∗1
)

= 0

Jx∗1 −x
∗2
2 = 0

(A.16)

This second equation system yields λ∗1 = 0, x∗31 = JP2 and x∗32 = J2P. From these values
of x∗1 and x∗2 , it follows that, similarly to Case 1 detailed in the previous subsection, the
constraintC2 is not feasible which discards Case 2.

A.4 Case 3: One active constraintC2(x)= 0

When the only active constraint is C2, (A.4) gives λ∗i = 0 for all i ̸= 2, and x∗1 , x∗2 and λ∗2
can then be determined from:






∇xL (x∗,λ∗)=∇xf(x∗)−λ∗2∇xC2(x
∗)= 0

C2(x
∗)=

J
(

Px∗2 −x
∗2
1

)

−x∗1x
∗2
2

Jx∗1x
∗
2

= 0
(A.17)

which, from (A.7) and (A.9), is equivalent to:





x∗21 −Px∗2 +λ
∗
2

(

Px∗2 +x
∗2
1

)

= 0

x∗22 − Jx∗1 −λ
∗
2

(

Jx∗1 −x
∗2
2

)

= 0

J
(

Px∗2 −x
∗2
1

)

−x∗1x
∗2
2 = 0

(A.18)

The second equation of this system can be written
(

x∗22 − Jx∗1
)

(1+λ∗2) = 0 which im-
plies x∗22 = Jx∗1 since λ∗2 ≥ 0 according to (A.3). Then, the third equation of (A.18) gives
x∗32 =

(

J2P
)

/2, which in turn leads to x∗31 =
(

JP2
)

/4 and λ∗2 = 1/2.
Since λ∗2 = 1/2> 0 and λ∗i = 0 for all i ̸= 2, (A.3) is true. For the first order necessary condi-
tions to be all true, it remains to verify that (A.2) is satisfied for i= 1, 2 and 3, i.e.,C1(x

∗)≥ 0,
C3(x

∗)≥ 0 andC4(x
∗)≥ 0.

C1(x
∗) ≥ 0 is equivalent to Jx∗1 − x

∗2
2 ≥ 0 which is true since x∗22 = Jx∗1 . Finally, since

x∗31 =
(

JP2
)

/4 and x∗32 =
(

J2P
)

/2, C3(x
∗)≥ 0 and C4(x

∗)≥ 0 yield the two following con-
ditions on J, P, x1max=Vmax and x2max=Amax:

x∗1 ≤ x1max⇐⇒ JP2 ≤ 4V3max (A.19)

x∗2 ≤ x2max⇐⇒ J2P≤ 2A3max (A.20)
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To conclude this third case, if the two conditions (A.19) and (A.20) are verified, the following
vector is a local minimum candidate:

x∗ =













3

√

JP2

4

3

√

J2P

2













(A.21)

A.5 Case 4: One active constraintC3(x)= 0

When the only active constraint is C3, (A.4) gives λ∗i = 0 for all i ̸= 3 and C3(x
∗) =

x1max−x
∗
1 = 0 gives x∗1 = x1max=Vmax. Moreover, (A.1) is ∇xf(x∗)−λ∗3∇xC3(x

∗)= 0, i.e.:

{
x∗21 −Px∗2 +λ

∗
3x

∗2
1 x2= 0

x∗22 = Jx∗1
(A.22)

With x∗1 =Vmax and the second equation of (A.22), after some calculations, the first equa-
tion of (A.22) leads to:

λ∗3 =
P
p
J−

p
Vmax

3

V2max
p
J

(A.23)

Then, since λ∗3 ≥ 0 according to (A.3), the following condition must hold:

√

Vmax
3
≤P

√

J ⇐⇒ V3max ≤ JP
2 (A.24)

For the first order necessary conditions to be true, it remains to verify that (A.2) is satisfied
for i = 1, 2 and 4, i.e., C1(x

∗) ≥ 0, C2(x
∗) ≥ 0 and C4(x

∗) ≥ 0. First, since x∗22 = Jx∗1 , we
have C1(x

∗) = 0 so that C1(x
∗)≥ 0, and C2(x

∗)≥ 0 is equivalent to x∗31 ≤ JP2/4, i.e., from
x∗1 =Vmax, the following condition is obtained:

V3max ≤
JP2

4
(A.25)

Note that condition (A.25) implies condition (A.24) so that only (A.25) is to be retained.
Finally,C4(x

∗)≥ 0, x∗22 = Jx∗1 and x∗1 =Vmax yields the following condition:
√

JVmax ≤Amax (A.26)

To summarize this fourth case, if the two conditions (A.25) and (A.26) are verified, the fol-
lowing vector is a local minimum candidate:

x∗ =

[

Vmaxp
JVmax

]

(A.27)



190 APPENDIX A. PROOF OF ALGORITHM 1

A.6 Case 5: One active constraintC4(x)= 0

When the only active constraint is C4, (A.4) gives λ∗i = 0 for all i ̸= 4 and C4(x
∗) =

x2max− x
∗
2 = 0 gives x∗2 = x2max = Amax. Moreover, (A.1) is ∇xf(x∗)−λ∗4∇xC4(x

∗) = 0
which is a system of two equations. The first equation of this system yields x∗21 = Px∗2 .
Then, according to (A.13),C2(x

∗)≥ 0 is equivalent to −x∗1x
∗2
2 ≥ 0which is impossible since

x∗1 > 0 and x∗2 > 0. In conclusion, this fifth case is not feasible and is thus discarded.

A.7 Case 6: Two active constraintsC1(x)=C2(x)= 0

When onlyC1 andC2 are active,C3(x
∗)> 0 andC4(x

∗)> 0 imply with (A.4) that λ∗3 = 0
and λ∗4 = 0. Then, x∗1 , x∗2 , λ∗1 and λ∗2 have to be determined. The determination of λ∗1 and
λ∗2 shall be done to verify that (A.3) is satisfied.
First, the x∗1 and x∗2 are calculated from the following system of two equations obtained
fromC1(x

∗)=C2(x
∗)= 0:

{
Jx∗1 −x

∗2
2 = 0

J
(

Px∗2 −x
∗2
1

)

−x∗1x
∗2
2 = 0

(A.28)

whose solution is:

x∗ =













3

√

JP2

4

3

√

J2P

2













(A.29)

Then, Eq. (A.1) with λ∗3 = 0 and λ∗4 = 0 is used to determine λ∗1 and λ∗2 :

∇xf(x∗)−λ∗1∇xC1(x
∗)−λ∗2∇xC2(x

∗)= 0

⇐⇒

{
x∗21 −Px∗2 −λ

∗
1x

∗2
1 +λ∗2

(

Px∗2 +x
∗2
1

)

= 0

x∗22 − Jx∗1 +λ
∗
1

(

x∗22 + Jx∗1
)

−λ∗2
(

Jx∗1 −x
∗2
2

)

= 0

⇐⇒

[

−x∗21 Px∗2 +x
∗2
1

x∗22 + Jx∗1 x∗22 − Jx∗1

][

λ∗1
λ∗2

]

=

[

Px∗2 −x
∗2
1

Jx∗1 −x
∗2
2

]

With the expressions of x∗ in (A.29), the determinant of the matrix in the last equation is
equal to

(

−3J2P2
)

/2. and the equation system possesses a unique solution. Once solved,
e.g. with Cramer’s rule, it yields λ∗1 = 0 and λ∗2 = 1/3which verify (A.3).
It remains to verify (A.2), i.e., C3(x

∗) ≥ 0 and C4(x
∗) ≥ 0 which leads to the two following

conditions:
JP2 ≤ 4V3max and J2P≤ 2A3max (A.30)
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To conclude on this sixth case, if conditions (A.30) are true, x∗ in (A.29) is a local minimum
candidate. Moreover, it appears that Case 6 is equivalent to Case 3 since x∗ in (A.29) is the
same as x∗ in (A.21) and conditions (A.30) are the same as those in (A.19) and (A.20) (which
is a consequence of x∗ being the same).

A.8 Case 7: Two active constraintsC1(x)=C3(x)= 0

C1(x
∗)= 0 andC3(x

∗)= 0 give:

x∗ =

[

Vmaxp
JVmax

]

(A.31)

Moreover, C2(x
∗) > 0 and C4(x

∗) > 0 imply with (A.4) that λ∗2 = 0 and λ∗4 = 0, and (A.1)
yields the following equation system in λ∗1 and λ∗3

∇xf(x∗)−λ∗1∇xC1(x
∗)−λ∗3∇xC3(x

∗)= 0⇐⇒

{
x∗21 −Px∗2 −λ

∗
1x

∗2
1 +λ∗3

(

x∗21 x
∗
2

)

= 0

x∗22 − Jx∗1 +λ
∗
1

(

x∗22 + Jx∗1
)

= 0

With (A.31), the second equation yields λ∗1 = 0 and then the first equation gives λ∗3 =
(

Px∗2 −x
∗2
1

)

/
(

x∗21 x
∗
2

)

. With (A.31), for (A.3) to be true, i.e. λ∗3 ≥ 0, the following condition
must hold:

V3max ≤ JP
2 (A.32)

It remains to verify that (A.2) is satisfied for i= 2 and i= 4, i.e.,C2(x
∗)≥ 0 andC4(x

∗)≥ 0,
which leads to the two following conditions:

V3max ≤
JP2

4
and

√

JVmax ≤Amax (A.33)

where the first condition in (A.33) is stronger than (A.32), i.e., (A.33) implies (A.32).
To conclude on case 7, if conditions (A.33) are true, x∗ in (A.31) is a local minimum candi-
date. Moreover, it turns out that Case 7 is equivalent to Case 4 since x∗ in (A.31) is the same
as x∗ in (A.27) and conditions (A.33) are the same as those in (A.25) and (A.26) (which is a
consequence of x∗ being the same).

A.9 Case 8: Two active constraintsC1(x)=C4(x)= 0

C1(x
∗)= 0 andC4(x

∗)= 0 give:

x∗ =





A2max
J

Amax



 (A.34)
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Moreover, C2(x
∗) > 0 and C3(x

∗) > 0 imply with (A.4) that λ∗2 = 0 and λ∗3 = 0, and (A.1)
yields the following equation system in λ∗1 and λ∗4 :

∇xf(x∗)−λ∗1∇xC1(x
∗)−λ∗4∇xC4(x

∗)= 0⇐⇒

{
x∗21 −Px∗2 −λ

∗
1x

∗2
1 = 0

x∗22 − Jx∗1 +λ
∗
1

(

x∗22 + Jx∗1
)

+λ∗4Jx
∗2
2 = 0

From the first equation and (A.34), we have:

λ∗1 =
x∗21 −Px∗2
x∗21

= 1−
J2P

A3max
(A.35)

and, from the second equation:

λ∗4 =
Jx∗1 −x

∗2
2 −λ∗1

(

x∗22 + Jx∗1
)

Jx∗22
=−

2

J
λ∗1 (A.36)

since, according to (A.34), Jx∗1 −x
∗2
2 = 0 and x∗22 + Jx∗1 = 2x

∗2
2 . Eq. (A.36) and (A.3) imply

that λ∗1 = λ
∗
4 = 0 so that (A.35) gives:

J2P=A3max (A.37)

However,C2(x
∗)≥ 0, which must hold true according to (A.2), leads to:

J
(

Px∗2 −x
∗2
1

)

−x∗1x
∗2
2 ≥ 0 =⇒ JPAmax−2

A4max
J

≥ 0 =⇒
J2P

2
≥A3max

which is impossible in view of (A.37). In conclusion, Case 8 is impossible and thus dis-
carded.

A.10 Case 9: Two active constraintsC2(x)=C3(x)= 0

C3(x
∗) = 0 means that x∗1 = Vmax while C2(x

∗) = 0 yields a second-order polynomial
equation in x∗2 . The latter equation can be solved to obtain two solutions for x∗2 , but it is
better to first consider (A.1). Since, with (A.4),C1(x

∗)> 0 andC4(x
∗)> 0 imply that λ∗1 = 0

and λ∗4 = 0, (A.1) yields:

∇xf(x∗)−λ∗2∇xC2(x
∗)−λ∗3∇xC3(x

∗)= 0

⇐⇒

{
x∗21 −Px∗2 +λ

∗
2

(

x∗21 +Px∗2
)

+λ∗3
(

x∗21 x
∗
2

)

= 0

x∗22 − Jx∗1 +λ
∗
2

(

x∗22 − Jx∗1
)

= 0
(A.38)
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The second equation implies that either x∗22 = Jx∗1 or λ∗2 = −1. Since λ∗2 ≥ 0 according
to (A.3), λ∗2 =−1 is not possible so that x∗22 = Jx∗1 , i.e., x∗2 =

p
JVmax. Then, with x∗1 =Vmax

and x∗2 =
p
JVmax,C2(x

∗)= 0 is equivalent to:

V3max=
JP2

4
(A.39)

Going back to the equation system (A.38), note that in the second equation, since x∗22 =

Jx∗1 , λ∗2 is undetermined so that any λ∗2 ≥ 0 satisfies this equation and (A.3) as well. Now,
let us verify if there exist λ∗2 ≥ 0 and λ∗3 ≥ 0 such that the first equation of (A.38) is verified.
With x∗1 =Vmax and x∗2 =

p
JVmax, this first equation is equivalent to:

λ∗3 =
P
p
JVmax−V

2
max−λ

∗
2

(

P
p
JVmax+V

2
max

)

V2max
p
JVmax

(A.40)

so that λ∗3 ≥ 0 if and only if:

λ∗2 ≤
P
p
JVmax−V

2
max

P
p
JVmax+V2max

(A.41)

Since λ∗2 must be non-negative, (A.41) is possible if and only if:

P
√

JVmax−V
2
max ≥ 0⇐⇒ JP2 ≥V3max (A.42)

which, according to (A.39), is true. Hence, taking λ∗2 equal to the right-hand side of the
inequality (A.41), we have λ∗2 ≥ 0 and λ∗3 in (A.40) is also non-negative which proves that
there exist λ∗2 ≥ 0 and λ∗3 ≥ 0 such that (A.38) is verified.
Finally, the inequalities C1(x

∗) ≥ 0 and C4(x
∗) ≥ 0 should be verified for (A.2) to be true.

First, we haveC1(x
∗)= 0 since x∗22 = Jx∗1 . Second,C4(x

∗)≥ 0 is x∗2 ≤Amax which yields:
√

JVmax ≤Amax (A.43)

To conclude Case 9, if conditions (A.39) and (A.43) are verified, the following vector is a
local minimum candidate:

x∗ =

[

Vmaxp
JVmax

]

(A.44)

Comparing (A.39) with (A.25), (A.43) with (A.26) and (A.44) with (A.27), Case 9 appears to
be a particular case of Case 4 where (A.25) is verified as an equality.

A.11 Case 10: Two active constraintsC2(x)=C4(x)= 0

C4(x
∗)= x2max−x

∗
2 = 0 gives x∗2 = x2max=Amax whileC2(x

∗)= 0 yields the following
quadratic equation in x∗1 :

Jx∗21 +x∗22 x
∗
1 − JPx

∗
2 = 0 (A.45)
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The discriminant of this equation is:

∆= x∗2
(

x∗32 +4J2P
)

> 0 (A.46)

and (A.45) possesses the following two solutions:

x∗1 =
−x∗22 ±

p
∆

2J
(A.47)

Since x∗1 > 0 according to (2.6), the only possible solution is:

x∗1 =
−x∗22 +

p
∆

2J
=

−A2max+
√

A4max+4J
2PAmax

2J
(A.48)

since the other one is negative. Note that x∗1 in (A.48) is positive because −x∗22 +
p
∆ > 0,

i.e., x∗42 <∆which can be deduced from (A.46) and 4J2P> 0.
Now, let us determine the Lagrange multipliers λ∗2 and λ∗4 and establish the conditions for
λ∗2 and λ∗4 to be non-negative and thus to satisfy (A.3). Since, with (A.4), C1(x

∗) > 0 and
C3(x

∗)> 0 imply that λ∗1 = 0 and λ∗3 = 0, (A.1) yields:

∇xf(x∗)−λ∗2∇xC2(x
∗)−λ∗4∇xC4(x

∗)= 0

⇐⇒

{
x∗21 −Px∗2 +λ

∗
2

(

x∗21 +Px∗2
)

= 0

Jx∗1 −x
∗2
2 +λ∗2

(

Jx∗1 −x
∗2
2

)

= λ∗4
(A.49)

Since x∗21 +Px∗2 > 0, we have from the first equation:

λ∗2 =
Px∗2 −x

∗2
1

Px∗2 +x
∗2
1

(A.50)

With the expression of x∗1 in (A.48), one can verify that Px∗2−x
∗2
1 ≥ 0 is equivalent to∆≥ x∗42

which is true according to (A.46) and 4J2P > 0. Consequently, λ∗2 in (A.50) is non-negative.
Besides, from the second equation of (A.49), we have:

λ∗4 =
(

Jx∗1 −x
∗2
2

)

(1+λ∗2) (A.51)

Since λ∗2 ≥ 0, λ∗4 ≥ 0 is equivalent to Jx∗1−x
∗2
2 ≥ 0. With (A.48) and (A.46), the latter inequal-

ity is equivalent to x∗32 ≤
J2P

2
. Hence, λ∗4 ≥ 0 leads to the following condition:

A3max ≤
J2P

2
(A.52)
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Finally, the inequalities C1(x
∗) ≥ 0 and C3(x

∗) ≥ 0 should be verified for (A.2) to be true.
C1(x

∗) ≥ 0 is equivalent to Jx∗1 −x
∗2
2 ≥ 0 i.e. to λ∗4 ≥ 0 which is verified if (A.52) is true.

C3(x
∗)≥ 0 is:

x∗1 =
−A2max+

√

A4max+4J
2PAmax

2J
≤Vmax (A.53)

To conclude Case 10, if conditions (A.52) and (A.53) are verified, the following vector is a
local minimum candidate:

x∗ =





−A2max+
√

A4max+4J
2PAmax

2J
Amax



 (A.54)

A.12 Case 11: Two active constraintsC3(x)=C4(x)= 0

In this last case, the two active constraints C3(x) =C4(x) = 0 yield directly the follow-
ing local minimum candidate:

x∗ =

[

Vmax

Amax

]

(A.55)

Since, with (A.4),C1(x
∗)> 0 andC2(x

∗)> 0 imply that λ∗1 = 0 and λ∗2 = 0, (A.1) gives:

∇xf(x∗)−λ∗3∇xC3(x
∗)−λ∗4∇xC4(x

∗)= 0⇐⇒






λ∗3 =
Px∗2 −x

∗2
1

x∗21 x
∗
2

λ∗4 =
Jx∗1 −x

∗2
2

Jx∗22

so that, with (A.55), the following equality should hold for (A.3) to be true:

λ∗3 ≥ 0⇐⇒Px∗2 −x
∗2
1 ≥ 0⇐⇒PAmax ≥V2max (A.56)

and also:
λ∗4 ≥ 0⇐⇒ Jx∗1 −x

∗2
2 ≥ 0⇐⇒ JVmax ≥A2max (A.57)

Finally, the inequalities C1(x
∗) ≥ 0 and C2(x

∗) ≥ 0 should be verified for (A.2) to hold.
C1(x

∗)≥ 0 is equivalent to Jx∗1 −x
∗2
2 ≥ 0, i.e., to (A.57). C2(x

∗)≥ 0 is equivalent to:

J
(

Px∗2 −x
∗2
1

)

−x∗1x
∗2
2 ≥ 0⇐⇒ JPAmax− JV

2
max ≥VmaxA

2
max (A.58)

In summary, if the inequalities (A.56), (A.57) and (A.58) are satisfied, x∗ in (A.55) is a local
minimum candidate.



196 APPENDIX A. PROOF OF ALGORITHM 1

A.13 Synthesis of the 11 cases and Algorithm 2

Let us now summarize all the 11 cases:

• ases 1, 2, 5 and 8 are impossible in the sense that they do not verify the KKT first-order
necessary conditions.

• Case 6 is equivalent to Case 3 and Case 7 is equivalent to Case 4.

• Case 9 is a particular case of Case 4.

Hence, only four cases, namely Cases 3, 4, 10 and 11, need to be considered to find (local)
solutions x∗ =(x∗1 ,x

∗
2) to the optimization problem (2.6).

In order to ease the analysis of the relationships between these cases, the conditions to be
fulfilled for each one of these four cases are summarized below.

Conditions for Case 3:
JP2 ≤ 4V3max (A.59)

J2P≤ 2A3max (A.60)

Conditions for Case 4:
4V3max ≤ JP

2 (A.61)

JVmax ≤A2max (A.62)

Conditions for Case 10:
2A3max ≤ J

2P (A.63)

JPAmax− JV
2
max ≤VmaxA

2
max (A.64)

where (A.64) is equivalent (A.53) as can be shown with some elementary calculations.
Moreover, again after some calculations, it turns out that (A.63) and (A.64) imply that:

A2max ≤ JVmax (A.65)

Conditions for Case 11:
V2max ≤PAmax (A.66)

A2max ≤ JVmax (A.67)

VmaxA
2
max ≤ JPAmax− JV

2
max (A.68)
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Note that, from (A.67) and (A.68), we have:

2A3max ≤ J
2P (A.69)

Indeed, the sum of (A.69) and (A.67) multiplied by Vmax gives 2VmaxAmax ≤ JP. Using the
latter inequality and multiplying (A.67) by 2Amax lead to (A.69).
Carefully analyzing all these conditions leads to the following relationships between the
four remaining cases (Cases 3, 4, 10 and 11) and in turn to Algorithm 1.
Let us first assume that condition (A.60) of Case 3 is satisfied as a strict inequality. Then,
Cases 10 and 11 are not possible because of (A.63) and (A.69), respectively, and there are
two possibles cases:

• If (A.59) of Case 3 is verified (as a strict inequality), Case 4 is not possible because
of (A.61). The only possible case is Case 3 which means that the sole local minimum
candidate is x∗ in (A.21) which corresponds to line 3 of Algorithm 1.

• If (A.59) of Case 3 is not verified, Case 3 is not possible and condition (A.61) of Case
4 is verified. Case 4 is then the only possible case provided that condition (A.62) is
true. It turns out that (A.60) and (A.61) imply that condition (A.62) is verified. Indeed,
(A.60) is equivalent to:

3

√

J4P2

4
≤A2max (A.70)

(A.61) is equivalent to:

3

√

4

JP2
≤

1

Vmax
(A.71)

and (A.70) and (A.71) imply that:

3
√

J3 ≤
A2max
Vmax

⇐⇒ JVmax ≤A2max (A.72)

which is (A.62). Hence, Case 4 is the only possible case meaning that the sole local
minimum candidate is x∗ in (A.27) which corresponds to line 5 of Algorithm 1.

Let us now assume that condition (A.60) of Case 3 is not satisfied. Case 3 is then not possi-
ble and:

• If (A.62) is satisfied (as a strict inequality), Cases 10 and 11 are not possible because
of (A.65) and (A.67), respectively. Moreover, since (A.60) is not satisfied, we have:

2A3max < J
2P⇐⇒Amax <

3

√

J2P

2
(A.73)

and using the latter in (A.62) (satisfied as a strict inequality) yields:

J<
A2max
Vmax

<
1

Vmax

3

√

J4P2

4
(A.74)



198 APPENDIX A. PROOF OF ALGORITHM 1

which implies that:

Vmax <
3

√

JP2

4
⇐⇒V3max <

JP2

4
(A.75)

i.e. (A.61) is satisfied. The two conditions for Case 4 are then satisfied and Case 4
is the only possible case meaning that the unique local minimum candidate is x∗

in (A.27) which corresponds to line 9 of Algorithm 1.

• If (A.62) is not satisfied, Case 4 is not possible and the only possible cases are Cases
10 and 11. Let us then consider the two following complementary situations:

— If (A.64) is satisfied (as a strict inequality), Case 11 is not possible because
of (A.68). Case 10 is possible since (A.63) is true because (A.60) is not satisfied.
Case 10 is then the only possible case and the unique local minimum candidate
is x∗ in (A.54) which corresponds to lines 11 and 12 of Algorithm 1.

— If (A.64) is not satisfied, Case 10 is not possible but Case 11 is then feasible.
Indeed (A.68) is true since (A.64) is not satisfied, (A.67) is true since (A.62) is not
satisfied, and (A.66) is true since it turns out to be implied by (A.68). The latter
result comes from the fact that (A.68) is equivalent to:

VmaxA
2
max+ JV

2
max ≤ JPAmax (A.76)

which implies that:

JV2max ≤ JPAmax⇐⇒V2max ≤PAmax (A.77)

the latter inequality being (A.66). Hence, Case 11 is the only possible case
and the unique local minimum candidate is x∗ in (A.55) which corresponds to
lines 11 and 14 of Algorithm 1.

Algorithm 2 summarizes the above analysis. It is exactly the same as Algorithm 1
which proves that the latter is correct. Note that line 12 of Algorithm 2 corresponds
to lines 11 and 12 of Algorithm 1 as can be seen from the expression of x∗ in (A.54).
Moreover, line 14 of Algorithm 2 corresponds to lines 11 and 14 of Algorithm 1 since,

with V =
−A2

max+
p
A4
max+4J

2PAmax

2J as calculated at line 12 of Algorithm 1, the condition
V > Vmax at line 13 of Algorithm 1 means that (A.53) is not satisfied. Hence, since (A.53)
and (A.64) are equivalent (as can be shown with some elementary calculations), (A.64) is
also not satisfied which corresponds to the condition for line 14 of Algorithm 2.
It is important to note that, according to the above analysis, Algorithm 1 and Algorithm 2
computes in fact the global minimum of the minimization problem (2.6).

A.14 Particular cases

For the proof to be complete, it remains to be shown that Algorithm 2, and hence Al-
gorithm 1, is correct in a number of particular cases. The latter were overlooked at var-
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Algorithm 2 Minimum-Time S-Curve Trajectory Rewritten

1: if (A.60) then

2: if (A.59) then

3: x∗ in (A.21) {Case 3}
4: else

5: x∗ in (A.27) {Case 4}
6: end if

7: else

8: if (A.62) then

9: x∗ in (A.27) {Case 4}
10: else

11: if (A.64) then

12: x∗ in (A.54) {Case 10}
13: else

14: x∗ in (A.55) {Case 11}
15: end if

16: end if

17: end if

ious places in the proof presented in Section A.13 where conditions (A.59), (A.60), (A.62)
and (A.64) were supposed to be verified as strict inequalities. In fact, the particular cases
to be considered to complete the proof are the following ones:

• (A.60) and (A.59) satisfied as equalities;

• (A.60) satisfied as an equality and (A.59) satisfied as a strict inequality;

• (A.60) satisfied as an equality and (A.59) not satisfied;

• (A.60) not satisfied and (A.62) satisfied as an equality;

• (A.60) and (A.62) not satisfied and (A.64) satisfied as an equality.

First particular case: (A.60) and (A.59) satisfied as equalities

J2P= 2A3max (A.78)

JP2= 4V3max (A.79)
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These two equalities imply that (A.21) (line 3 of Algorithm 2) is:

x∗ =













3

√

JP2

4

3

√

J2P

2













=













Vmax

Amax













(A.80)

Now, let us consider x∗ in (A.27) (line 5 of Algorithm 2):

x∗ =

[

Vmaxp
JVmax

]

=

[

Vmax

Amax

]

(A.81)

To show that the second equality in the previous equation holds, consider P =
2A3max
J2

from (A.78) and P2=
4V3max
J

from (A.79). Then, we have:

4A6max
J4

=
4V3max
J

⇐⇒Amax=
√

JVmax (A.82)

Next, (A.54) (line 12 of Algorithm 2) is:

x∗ =





−A2max+
√

A4max+4J
2PAmax

2J
Amax



=

[

Vmax

Amax

]

(A.83)

since, with J2P= 2A3max in (A.78):

−A2max+
√

A4max+4J
2PAmax

2J
=

−A2max+
√

A4max+8A
4
max

2J

=
−A2max+

√

9A4max
2J

=
A2max
J

=Vmax (A.84)

where the last equality is obtained from (A.82).
Hence, in this first particular case, it turns out that x∗ in (A.21), (A.27) and (A.54) are all
equal to x∗ in (A.55), i.e, all possible local minima are equal. Then, Algorithm 2 necessarily
computes the optimal value x∗ = [Vmax,Amax]

T at line 3.

Second particular case: (A.60) satisfied as an equality and (A.59) satisfied as a strict in-

equality

J2P= 2A3max (A.85)
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JP2 < 4V3max (A.86)

First, note that Case 3 is possible since both (A.60) and (A.59) are satisfied and Case 4 is not
possible since (A.61) is not satisfied. Moreover, Algorithm 2 computes x∗ at line 3 according
to (A.21):

x∗ =











3

√

JP2

4

3

√

J2P

2











=











3

√

JP2

4

Amax











(A.87)

where
3

√

JP2

4
<Vmax since JP2 < 4V3max.

Now, let us check whether or not Cases 10 and 11 are possible and, if they are, verify that
x∗ in (A.87) also corresponds to their minimum.
The first condition for Case 10 to be possible is (A.63). This condition is verified since
J2P= 2A3max. The second condition for Case 10 is (A.64) which can equivalently be written
as:

VmaxA
2
max+ JV

2
max ≥ JPAmax (A.88)

Since Vmax >
3

√

JP2

4
and J2P= 2A3max, one can write:

VmaxA
2
max+ JV

2
max >A

2
max

3

√

JP2

4
+ J

3

√

J2P4

16
=

3

√

J4P2

4

3

√

JP2

4
+ J

3

√

J2P4

16

=
3

√

J5P4

16
+

3

√

J5P4

16
2

3

√

J5P4

16
=

3

√

J5P4

2
= JP

3

√

J2P

2

Hence,VmaxA2max+JV
2
max > JP

3

√

J2P

2
= JPAmax, i.e., (A.88) is verified as a strict inequality

so that (A.64) is also verified as a strict inequality and Case 10 is possible. Furthermore, the
minimum x∗ in Case 10 is given in (A.54):

x∗ =





−A2max+
√

A4max+4J
2PAmax

2J
Amax



=





A2max
J

Amax



 (A.89)

where the second equality is from (A.84). Since J2P= 2A3max, we have:

3

√

JP2

4
=

3

√

J

4

4A6max
J4

=
A2max
J

(A.90)
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so that the minimum x∗ of Case 10 is equal to the minimum x∗ of Case 3 given in (A.87).
Finally, Case 11 is not possible because (A.64) is verified as a strict inequality and, hence,
(A.68) is not verified.
Summarizing, only Cases 3 and 10 are possible, the minimum x∗ of these two cases are
equal and Algorithm 2 indeed computes this x∗ at line 3.

Third particular case: (A.60) satisfied as an equality and (A.59) not satisfied

J2P= 2A3max (A.91)

JP2 > 4V3max (A.92)

In this particular case, Case 3 is not possible since (A.59) is not satisfied and Algorithm 2
computes x∗ at line 5 according to (A.27):

x∗ =

[

Vmaxp
JVmax

]

(A.93)

First, note that Case 4 is possible since (A.61) is true since J2P = 2A3max. Moreover, (A.62)
is also verified since:

J2P= 2A3max⇐⇒A2max=
3

√

J4P2

4
= J

3

√

JP2

4
(A.94)

and:

JP2 > 4V3max⇐⇒Vmax <
3

√

JP2

4
(A.95)

imply that:

JVmax < J
3

√

JP2

4
=A2max (A.96)

Furthermore, let us examine Cases 10 and 11. Case 10 is not feasible since (A.64)
is not verified. Indeed, in the previous paricular case, it was shown that J2P =

2A3max and JP2 < 4V3max leads to (A.64) being verified as a strict inequality, i.e.,
JPAmax− JV

2
max <VmaxA2max. Then, the same reasoning allows to conclude that

J2P = 2A3max and JP2 > 4V3max imply JPAmax− JV2max >VmaxA2max i.e. (A.64) is not veri-
fied in the present particular case. Besides, Case 11 is also not feasible sinceA2max > JVmax
from (A.96) so that (A.67) is not true.
Hence, only Case 4 is possible and the corresponding minimum x∗ is indeed computed at
line 5 of Algorithm 2.
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Fourth particular case: (A.60) not satisfied and (A.62) satisfied as an equality

J2P> 2A3max (A.97)

JVmax=A
2
max (A.98)

First, note that Case 3 is not possible since (A.60) is not satisfied and that Algorithm 2 com-
putes x∗ at line 9 according to (A.27):

x∗ =

[

Vmaxp
JVmax

]

=

[

Vmax

Amax

]

(A.99)

which is also the minimum x∗ of Case 11 as given in (A.55) and where the second equality
in (A.99) comes from (A.98). Then, let us check whether or not Cases 4, 10 and 11 are
possible.
Case 4 is possible since (A.62) is truce according to (A.98). Moreover, (A.97) and (A.98)
imply that:

4V3max= 4
A6max
J3

<
4

J3
J4P2

4
= JP2 (A.100)

so that (A.61) is satisfied.
Case 10 is not possible since (A.64) is not satisfied. Indeed, with (A.98), we have:

VmaxA
2
max+ JV

2
max=

2A4max
J

(A.101)

and (A.97) then implies that:

2A4max
J

< J2P
Amax

J
= JPAmax (A.102)

so that:

VmaxA
2
max+ JV

2
max < JPAmax⇐⇒ JPAmax− JV

2
max >VmaxA

2
max (A.103)

Case 11 turns out to be possible since (A.103) shows that (A.68) is true and (A.67) is satisfied
according to (A.98). Moreover, (A.97) and (A.98) imply that:

V2max=
A4max
J2

<
Amax

J2
J2P

2
=
AmaxP

2
<PAmax (A.104)

i.e. (A.66) is satisfied.
In conclusion of this fourth particular case, only Cases 4 and 11 are possible, their mini-
mum x∗ are equal and indeed computed by Algorithm 2 at line 9.
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Fifth particular case: (A.60) and (A.62) not satisfied and (A.64) satisfied as an equality

J2P> 2A3max (A.105)

JVmax >A2max (A.106)

JPAmax− JV
2
max=VmaxA

2
max (A.107)

Cases 3 and 4 are then not possible since (A.60) and (A.62) are not satisfied, respectively.
Case 10 is possible since (A.105) implies (A.63) and (A.64) is true according to (A.107).
Then, about the feasibility of Case 11, it is not straightforward to verify whether or
not (A.66) is true from (A.105), (A.106) and (A.107). Fortunately, this verification is in fact
not required. Indeed, in the present particular case, Algorithm 2 computes x∗ of Case 10
at line 12 and, as proved below, this x∗ is equal to the one of Case 11, x∗ = [Vmax,Amax]

T .
Hence, if Case 11 is not possible, Algorithm 2 computes x∗ of Case 10 which is the only pos-
sible minimum and, if Case 11 is possible, x∗ of Cases 10 and 11 are equal and Algorithm 2
indeed computes this minimum at line 12.
It remains to prove that the x∗ of Case 10, which according to (A.54) is:

x∗ =





−A2max+
√

A4max+4J
2PAmax

2J
Amax



 (A.108)

is equal to the one of Case 11 which is x∗ = [Vmax,Amax]
T , i.e., to prove that

−A2max+
√

A4max+4J
2PAmax

2J
=Vmax (A.109)

To this end, let us consider (A.107) as a quadratic equation in Vmax:

JV2max+A
2
maxVmax− JPAmax= 0 (A.110)

whose two solutions are:

Vmax=
−A2max±

√

A4max+4J
2PAmax

2J
(A.111)

The only possible solution for Vmax among those two is the following one since the other
one is negative:

Vmax=
−A2max+

√

A4max+4J
2PAmax

2J
(A.112)

which shows that x∗ of Case 10 in (A.108) is equal to x∗ of Case 11.
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A.15 Second-Order Sufficient Conditions

Algorithm 2 (and thus Algorithm 1) is based on the KKT first-order necessary condi-
tions. Hence, the vectors x∗ computed in the various cases in Algorithm 2 are local min-
ima candidates and it remains to be verified that these vectors x∗ are indeed local minima.
To this end, the following second-order sufficient conditions can be used [Nocedal and
Wright, 2006].

Second-Order Sufficient Conditions: Suppose that at some feasible vector x∗, there ex-
ists a Lagrange multiplier vector λ∗ satisfying the KKT conditions and that the Lagrangian
Hessian ∇2xxL (x∗,λ∗) is positive definite. Then, x∗ is a strict local minimum to the opti-
mization problem (2.6).
From (A.6), the Lagrangian Hessian is:

∇2xxL (x,λ)=∇2xxf(x)−
4∑

i=1

λi∇2xxCi(x) (A.113)

The individual Hessian matrices appearing in the above expression of ∇2xxL are obtained
from (A.7) to (A.11) as follows.

∇2xxf(x)=













∂2f

∂x21

∂2f

∂x1∂x2

∂2f

∂x2∂x1

∂2f

∂x22













=













2P

x31
−
1

x22

−
1

x22

2x1

x32













(A.114)

∇2xxC1(x)=













0 −
1

x22

−
1

x22

2x1

x32













(A.115)

∇2xxC2(x)=













2P

x31

1

x22

1

x22
−
2x1

x32













(A.116)

∇2xxC3(x)= 0 (A.117)
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∇2xxC4(x)= 0 (A.118)

Therefore, the Lagrangian Hessian is:

∇2xxL (x,λ)=













(1−λ2)
2P

x31
(λ1−λ2−1)

1

x22

(λ1−λ2−1)
1

x22
(1−λ1+λ2)

2x1

x32













(A.119)

Let us now verify the second-order sufficient conditions at the local minimum candidate
x∗ of Case 3 in (A.21), Case 4 in (A.27), Case 10 in (A.54) and Case 11 in (A.55).
In Case 3, we have λ∗1 = 0, λ∗2 = 1/2, x∗22 = Jx∗1 and:

x∗ =













x∗1

x∗2













=













3

√

JP2

4

3

√

J2P

2













(A.120)

so that:

∇2xxL (x∗,λ∗)=













P

x∗31
−

3

2x∗22

−
3

2x∗22

3x∗1
x∗32













(A.121)

According to Sylvester’s criterion, since
P

x∗31
> 0, the Hessian ∇2xxL (x∗,λ∗) is positive def-

inite if and only if its determinant is strictly positive. Being given that x∗22 = Jx∗1 and
with (A.120), the determinant is:

det
(

∇2xxL (x∗,λ∗)
)

=
3P

x∗21 x
∗3
2

−
9

4x∗42
(A.122)

=
3

x∗42

(

J2P

x∗32
−
3

4

)

(A.123)

=
3

x∗42

(

2J2P

J2P
−
3

4

)

(A.124)

=
3

x∗42

5

4
> 0 (A.125)
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which is positive since x∗2 =
3

√

J2P

2
> 0. Hence, the second-order sufficient conditions are

satisfied and x∗ of Case 3, given in (A.21) and computed at line 3 of Algorithm 2, is indeed
a strict local minimum.
In Case 4, we have λ∗1 = λ

∗
2 = 0, x∗22 = Jx∗1 and:

x∗ =

[

x∗1
x∗2

]

=

[

Vmaxp
JVmax

]

(A.126)

so that:

∇2xxL (x∗,λ∗)=













2P

x∗31
−
1

x∗22

−
1

x∗22

2x∗1
x∗32













(A.127)

whose determinant is:

det
(

∇2xxL (x∗,λ∗)
)

=
4P

x∗21 x
∗3
2

−
1

x∗42
(A.128)

=
4J2P

x∗42 x
∗3
2

−
1

x∗42
(A.129)

=
1

x∗42

(

4J2P

x∗32
−1

)

(A.130)

=
1

x∗42

(

4J2P
√

J3V3max
−1

)

(A.131)

Since x∗2 > 0, this determinant is positive if 4J2P >
√

J3V3max and hence if 16JP2 > V3max.
The latter inequality is true since it is a consequence of (A.61):

JP2 ≥ 4V3max⇐⇒ 16JP2 ≥ 64V3max (A.132)

Hence, det
(

∇2xxL (x∗,λ∗)
)

> 0 and since
2P

x∗31
> 0, Sylvester’s criterion implies that

∇2xxL (x∗,λ∗) is positive definite. The second-order sufficient conditions are thus satis-
fied and x∗ of Case 4, given in (A.27) and computed at lines 5 and 9 of Algorithm 2, is a
strict local minimum.
In Case 10, we have λ∗1 = 0 and:

λ∗2 =
Px∗2 −x

∗2
1

Px∗2 +x
∗2
1

(A.133)
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x∗ =

[

x∗1
x∗2

]

=





−A2max+
√

A4max+4J
2PAmax

2J
Amax



 (A.134)

With λ∗1 = 0, the Hessian in (A.119) becomes:

∇2xxL (x∗,λ∗)=













(1−λ∗2)
2P

x∗31
−(1+λ∗2)

1

x∗22

−(1+λ∗2)
1

x∗22
(1+λ∗2)

2x∗1
x∗32













(A.135)

and with the expression of λ∗2 in (A.133):

∇2xxL (x∗,λ∗)=
1

Px∗2 +x
∗2
1













4P

x∗1
−
2P

x∗2

−
2P

x∗2

4Px∗1
x∗22













(A.136)

Referring to Section A.11, x∗1 > 0 and x∗2 > 0 so that Px∗2 +x
∗2
1 > 0 and

4P

x∗1
> 0 hold. Then,

according to Sylvester’s criterion, ∇2xxL (x∗,λ∗) is positive definite if and only if the deter-
minant of the matrix in (A.136) is positive. This determinant is positive since it is calculated
as follows:

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

4P

x∗1
−
2P

x∗2

−
2P

x∗2

4Px∗1
x∗22

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=
16P2

x∗22
−
4P2

x∗22
(A.137)

=
12P2

x∗22
(A.138)

Hence, the second-order sufficient conditions are satisfied and x∗ of Case 10, given
in (A.54) and computed at line 12 of Algorithm 2, is a strict local minimum.
Finally, in Case 11, we have λ∗1 = 0 and λ∗2 = 0 and:

x∗ =

[

x∗1
x∗2

]

=

[

Vmax

Amax

]

(A.139)
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so that:

∇2xxL (x∗,λ∗)=













2P

x∗31
−
1

x∗22

−
1

x∗22

2x∗1
x∗32













(A.140)

whose determinant is:

det
(

∇2xxL (x∗,λ∗)
)

=
4P

x∗21 x
∗3
2

−
1

x∗42
(A.141)

=
1

x∗32

(

4P

x∗21
−
1

x∗2

)

(A.142)

=
1

A3max

(

4P

V2max
−

1

Amax

)

(A.143)

=
1

A3max

4PAmax−V
2
max

V2maxAmax
(A.144)

This determinant is positive since PAmax ≥V2max according to (A.66). Hence, the second-
order sufficient conditions are satisfied and x∗ of Case 11, given in (A.55) and computed at
line 14 of Algorithm 2, is a strict local minimum.

A.16 LICQ

In the KKT first-order necessary conditions stated at the beginning of Appendix A, the
LICQ should hold. As defined in Definition 12.4 of [Nocedal and Wright, 2006], the LICQ
holds at a given x∗ if the set of active constraint gradients are linearly independent at x∗.
For completeness of the proof of Algorithm 2 (and thus of Algorithm 1), let us verify that the
LICQ holds at the local minimum x∗ of Case 3 in (A.21), Case 4 in (A.27), Case 10 in (A.54)
and Case 11 in (A.55).
For Cases 3 and 4, only one constraint is active, C2(x) = 0 and C3(x) = 0, respectively.
Hence, the LICQ holds at x∗ of Case 3 if ∇xC2(x∗) in (A.9) is nonzero which is necessarily
the case since −Px2−x

2
1 is strictly negative for any x. The LICQ holds at x∗ of Case 4 if

∇xC3(x∗) in (A.10) is nonzero which is always the case.
In Case 10, there are two active constraints, C2(x)=C4(x)= 0. From (A.9) and (A.11),
∇xC2(x) and ∇xC4(x) are easily seen to be linearly independent whatever x so that the
LICQ holds.
Finally, in Case 11, there are two active constraints, C3(x)=C4(x)= 0, and, according
to (A.10) and (A.11), ∇xC3(x) and ∇xC4(x) are trivially linearly independent whatever x
so that the LICQ holds.





APPENDIX

B
Total time T and velocityV as a

functions of displacement P

The details of this appendix were written by Dr. Marc Gouttefarde.

B.1 Total time T as a function of displacement P

In the case of the minimum-time S-curve trajectory, with acceleration A and velocity
V computed by Algorithm 1, this section proves that the total time T given in (2.4) is an
increasing function of the displacement P.

According to the expression of T in (2.4), T depends on P, V and A. Referring to the
different possible cases in Algorithm 1, either V and A are functions of P or else V and A
are independent of P i.e. they are constant. In the latter case, from (2.4), T is directly seen
to be an increasing function of P. On the contrary, when V orA is a function of P, it is not
obvious from (2.4) that T is an increasing function of P.

In fact, when P is sufficiently small, V and A are functions of P as given at line 3 and,
when P increases, the conditions on P at lines 1, 2 and 13 will not be satisfied anymore
for large values of P so that V andA become constant. Let us first look at the relationship
between the conditions on P at lines 1 and 2 of Algorithm 1, i.e.

P≤
2A3max
J2

(B.1)

and

P≤

√

4V3max
J

(B.2)
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Figure B.1 – The increasing function T(P) in Case 1 where
p
JVmax <Amax.

respectively. In particular, when P increases from zero, line 5 will be executed if and only if

√

4V3max
J

<
2A3max
J2

. (B.3)

which, after some elementary calculations, can be shown to be equivalent to

√

JVmax <Amax. (B.4)

To analyze the dependence of the total time T on P, we will thus distinguish two cases:
(B.4) satisfied (Subsection B.1.1) and (B.4) not satisfied (Subsection B.1.2). This analysis will
show that the function T(P) defined by Algorithm 1 is always an increasing and continuous
function of P.

B.1.1 Case 1:
p
JVmax <Amax

For 0 ≤ P ≤

√

4V3max
J

, according to line 3 of Algorithm 1, V =
3

√

JP2

4 and A=
3

√

J2P
2 so

that

T =
P

V
+
V

A
+
A

J
=

P

3

√

JP2

4

+

3

√

JP2

4

3

√

J2P
2

+

3

√

J2P
2

J
=

3

√

4P

J
+

3

√

P

2J
+

3

√

P

2J

=
3

√

4P

J
+2 3

√

P

2J
=

3

√

4P

J
+

3

√

4P

J
= 2 3

√

4P

J
.

Hence, for 0≤P≤

√

4V3max
J

, T is a continuous increasing function of P since T = 2 3

√

4P

J
.
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For

√

4V3max
J

< P ≤
2A3max
J2

, according to line 5 of Algorithm 1, V = Vmax and A =

p
JVmax which implies from (2.4) that

T =
P

V
+
V

A
+
A

J
=

P

Vmax
+

Vmaxp
JVmax

+

p
JVmax

J
=

P

Vmax
+2

√

Vmax

J

so that T is an increasing (affine) function of P.

Note that for P=

√

4V3max
J

, the values of T obtained from (B.5) and (B.5) are both equal

to 4

√

Vmax

J
so that the function T(P) is continuous on 0≤P≤

2A3max
J2

. Indeed, with (B.5)

T = 2
3

√

√

√

√
4

J

√

4V3max
J

= 4
3

√

√

√

√

√

V3max
J3

= 4

√

√

√

√ 3

√

V3max
J3

= 4

√

Vmax

J
(B.5)

and with (B.5)

T =
1

Vmax

√

4V3max
J

+2

√

Vmax

J
=

√

4Vmax

J
+2

√

Vmax

J
= 4

√

Vmax

J
(B.6)

Finally, for
2A3max
J2

<P≤+∞, since
p
JVmax <Amax, according to line 9 of Algorithm 1,

V =Vmax andA=
p
JVmax which is similar to the previous case i.e. T is given by (B.5) and

it is an increasing and continuous function of P.

In summary, when
p
JVmax < Amax, the function T(P) defined by Algorithm 1 is an

increasing and continuous function over 0≤P≤+∞ such as shown in Figure B.1.

B.1.2 Case 2:
p
JVmax ≥Amax

In this second case, since (B.3) is equivalent to (B.4), we have

√

4V3max
J

≥
2A3max
J2

(B.7)

and line 5 of Algorithm 1 is thus never executed. Moreover, line 9 is executed only in the
particular case whereAmax=

p
JVmax.
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For 0≤P≤
2A3max
J2

, according to line 3 of Algorithm 1,V =
3

√

JP2

4 andA=
3

√

J2P
2 so that

T is given by (B.5), i.e. T = 2 3

√

4P

J
, and T(P) is thus a continuous increasing continuous of

P.

Then, in the particular case where
p
JVmax=Amax, for

2A3max
J2

<P≤+∞, line 9 yields

V =Vmax andA=
p
JVmax=Amax. Eq. (2.4) then implies that

T =
P

V
+
V

A
+
A

J
=

P

Vmax
+
Vmax

Amax
+
Amax

J
=

PJ

A2max
+2
Amax

J
. (B.8)

T(P) is thus a continuous increasing function of P on
2A3max
J2

<P≤+∞. Moreover, at

P=
2A3max
J2

, we have

2 3

√

4P

J
= 4

Amax

J
(B.9)

and
PJ

A2max
+2
Amax

J
= 4

Amax

J
(B.10)

so that T(P) is continuous at P=
2A3max
J2

. In summary, in the particular case

Amax=
p
JVmax, T(P) defined by Algorithm 1 is an increasing and continuous function

over 0≤P≤+∞.

Now, it remains to analyze the case where
p
JVmax >Amax and P>

2A3max
J2

. Let us first

consider the condition in the if statement of line 13 of Algorithm 1 which is

V =
−A2max+

√

A4max+4J
2PAmax

2J
>Vmax

⇐⇒
√

A4max+4J
2PAmax > 2JVmax+A2max

⇐⇒ JPAmax > JV2max+VmaxA
2
max

⇐⇒ P>
JV2max+VmaxA

2
max

JAmax
. (B.11)

Since
p
JVmax >Amax⇔Vmax >

A2max
J

, note that

JV2max+VmaxA
2
max

JAmax
>
2A4max
J2Amax

=
2A3max
J2

(B.12)
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which implies that for
2A3max
J2

< P ≤
JV2max+VmaxA

2
max

JAmax
, A and V are given by lines 11

and 12 of Algorithm 1, respectively, while for
JV2max+VmaxA

2
max

JAmax
<P≤+∞, A and V are

given by lines 11 and 14, respectively.

For
2A3max
J2

<P≤
JV2max+VmaxA

2
max

JAmax
,A=Amax andV =

−A2max+
√

A4max+4J
2PAmax

2J
so that T is calculated from (2.4) as follows:

T =
P

V
+
V

A
+
A

J
=

2JP

−A2max+
√

g(P)
+

√

g(P)

2JAmax
+
Amax

2J
(B.13)

with g(P)=A4max+4J
2PAmax. The derivative of T with respect to P is

dT

dP
=

2J
(

−A2max+
√

g(P)
)

−2JP

(

2J2Amax
√

g(P)

)

(

−A2max+
√

g(P)
)2

+
J

√

g(P)

=
2J
(

−A2max
√

g(P)+g(P)−2J2AmaxP
)

(

−A2max+
√

g(P)
)2√

g(P)
+

J
√

g(P)

=
2JAmax

(

−Amax
√

g(P)+A3max+2J
2P

)

(

−A2max+
√

g(P)
)2√

g(P)
+

J
√

g(P)
(B.14)

Hence,
dT

dP
is non-negative, i.e. T(P) is an increasing function, if −Amax

√

g(P)+A3max+

2J2P≥ 0. We have

−Amax
√

g(P)+A3max+2J
2P≥ 0⇐⇒

(

A3max+2J
2P

)2 ≥A2maxg(P)

⇐⇒
(

A3max+2J
2P

)2 ≥A2max
(

A4max+4J
2PAmax

)

⇐⇒ 4J4P2 ≥ 0. (B.15)

Thus, T(P) is an increasing function of P. Moreover, at P=
2A3max
J2

, g(P)= 3A2max and

from (B.13), T is found after some elementary calculations to be equal to 4
Amax

J
. The

latter is equal to the value given by (B.5) for P = 2A3max/J2 (see (B.9)) which implies that
T(P) is continuous at P= 2A3max/J2.

Finally, for
JV2max+VmaxA

2
max

JAmax
<P≤+∞, A and V are given by lines 11 and 14, re-

spectively, i.e. A=Amax and V =Vmax, T(P) is given by

T =
P

V
+
V

A
+
A

J
=

P

Vmax
+
Vmax

Amax
+
Amax

J
(B.16)
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Figure B.2 – The increasing function T(P) in Case 2 where
p
JVmax ≥Amax.

and it is thus a continuous increasing function of P. It only remains to check if T(P) is

continuous at P=
JV2max+VmaxA

2
max

JAmax
. From (B.16), we have

T =
P

Vmax
+
Vmax

Amax
+
Amax

J
=
Vmax

Amax
+
Amax

J
+
Vmax

Amax
+
Amax

J
=
2Vmax

Amax
+
2Amax

J
.

Besides, we have g(P)=
(

A2max+2JVmax
)2

at P=
JV2max+VmaxA

2
max

JAmax
so that from (B.13)

T =
2JP

−A2max+
√

g(P)
+

√

g(P)

2JAmax
+
Amax

2J

=
JV2max+VmaxA

2
max

JVmaxAmax
+
A2max+2JVmax

2JAmax
+
Amax

2J

=
Vmax

Amax
+
Amax

J
+
Amax

2J
+
Vmax

Amax
+
Amax

2J

=
2Vmax

Amax
+
2Amax

J
. (B.17)

which is equal to the value obtained for T in (B.17), i.e., T(P) is continuous at

P=
JV2max+VmaxA

2
max

JAmax
.

In summary, when
p
JVmax ≥ Amax, the function T(P) defined by Algorithm 1 is an

increasing and continuous function over 0≤P≤+∞ such as shown in Figure B.2.

Since this was also the case for
p
JVmax < Amax, the function T(P) defined by Algo-

rithm 1 is always an increasing and continuous function of P.
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Figure B.3 – The nondecreasing function V(P) in Case 1 (
p
JVmax <Amax).

B.2 VelocityV as a function of displacement P

The analysis made in Section B.1 shows that the function T(P) defined by Algorithm 1
is an increasing and continuous function over 0 ≤ P ≤ +∞. From this analysis, one can
directly deduce that the maximum velocity value V of the 3rd order polynomial S-curve
trajectory is a continuous nondecreasing function of the displacementP, as detailed below.

B.2.1 Case 1: V(P) for
p
JVmax <Amax

For 0 ≤ P ≤

√

4V3max
J

, according to line 3 of Algorithm 1, V =
3

√

JP2

4
and, for

√

4V3max
J

< P ≤
2A3max
J2

, according to line 5, V = Vmax. Furthermore, for
2A3max
J2

< P ≤

+∞, since
p
JVmax < Amax, according to line 9 of Algorithm 1, V = Vmax. Besides, at

P=

√

4V3max
J

, V =
3

√

JP2

4
=Vmax so that V(P) is a nondecreasing continuous function of

P such as shown in Figure B.3.

B.2.2 Case 2: V(P) for
p
JVmax ≥Amax

For 0≤P≤
2A3max
J2

, according to line 3 of Algorithm 1, V =
3

√

JP2

4
.

Then, in the particular case where
p
JVmax=Amax, for

2A3max
J2

< P ≤ +∞, line 9 im-

plies that V = Vmax. At P=
2A3max
J2

, since
p
JVmax=Amax, we have V =

3

√

JP2

4
= Vmax.
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Figure B.4 – The nondecreasing function V(P) in Case 2 when
p
JVmax=Amax.

Figure B.5 – The nondecreasing function V(P) in Case 2 when
p
JVmax >Amax.

Hence, when
p
JVmax=Amax,V(P) is a nondecreasing continuous function of P as shown

in Figure B.4.

Now, let us consider the case
p
JVmax >Amax. For

2A3max
J2

<P≤
JV2max+VmaxA

2
max

JAmax
,

we have

V =
−A2max+

√

A4max+4J
2PAmax

2J
(B.18)

while for
JV2max+VmaxA

2
max

JAmax
<P≤+∞, we have V =Vmax.

Moreover, V(P) is continuous at P=
2A3max
J2

since straightforward calculations yield

V =
3

√

JP2

4
=
A2max
J

(B.19)
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and

V =
−A2max+

√

A4max+4J
2PAmax

2J
=
A2max
J

(B.20)

Similarly, V(P) is continuous at P=
JV2max+VmaxA

2
max

JAmax
since

A4max+4J
2PAmax = A4max+4J

2V2max+4JVmaxA
2
max (B.21)

=
(

A2max+2JVmax
)2

so that

V =
−A2max+

√

A4max+4J
2PAmax

2J
=Vmax. (B.22)

In summary, V(P) is a nondecreasing continuous function of P such as shown in Fig-
ure B.5.





Abstract

The popularity of parallel robots has been steadily increasing in recent decades. This
popularity has been strongly stimulated by the many advantages these robots offer over
their serial counterparts, in some industrial applications requiring high acceleration and
very good accuracy. However, in order to fully exploit their potential and make the most
of their capabilities, there is still much to be done. In addition to mechanical design, cali-
bration and structure optimization, the development of efficient control approaches plays
a key role in improving the overall performance of these robots. Besides, selective sorting
consists in sorting and recovering waste according to its nature: metals, paper, glass, or-
ganic, etc, to facilitate its recycling. They are sorted either by those who produce them,
or by specialized organizations in sorting centers. The objective of this thesis is to study
the use of parallel robots for pick-and-throw (P&T) applications in the selective and fast
sorting of waste. The goal is to perform P&T tasks in a robust and fast way using a par-
allel manipulator (made available by TECNALIA under a collaborative research contract),
demonstrating the interest and relevance of a P& T approach compared to a traditional
P&P approach in the context of a selective waste sorting application. In this context, trajec-
tory generation and control design are addressed in this thesis. On the one hand, motion
planning for PKMs is not trivial. Different constraints such as kinematics and dynamics
constraints, continuity, etc., should be taken into account to generate a feasible and appro-
priate trajectory that meets the requirements of a specific application. On the other hand,
the control of PKMs is often considered in the literature as a challenging task due to their
highly nonlinear dynamics, abundant uncertainties, parameter variation, and actuation
redundancy. In this thesis, we aim to generate a fast and accurate P&T task using a par-
allel manipulator. Thus, we first propose a time-optimal P&T trajectory that significantly
reduces the cycle time compared to the usual P&P technique. Real-time experiments have
been conducted for the validation of the proposed P&T method, showing the relevance of
this method with respect to the P&P process and to an existing P&T technique in the liter-
ature. Second, advanced robust control strategies have been proposed, which are exten-
sions of (i) the standard RISE (Robust Integral of the Sign of the Error) feedback control, (ii)
the DCAL (Desired Compensation Adaptive Law), and (iii) the model-free control (MFC).
Lyapunov-based stability analysis is established for all the proposed controllers verifying
the asymptotic convergence of the tracking errors. In order to validate the proposed con-
trollers, numerical simulations are conducted on a parallel robot prototype, called T3KR.
Several simulations are tested including robustness towards payload changes, and robust-
ness towards speed variations. The relevance of the proposed control schemes is proved
through the improvement of the tracking errors at different dynamic operating conditions.

Keywords: Parallel manipulators, Pick-and-Throw, time-optimal trajectory, RISE control,

DCAL strategy, Model-Free Control, stability analysis, real-time experiments, numerical

simulations



Résumé

La popularité des robots parallèles n’a cessé de croître au cours des dernières décen-
nies. Cette popularité a été fortement stimulée par les nombreux avantages que ces robots
offrent par rapport à leurs homologues sériels, dans certaines applications industrielles
nécessitant de fortes accelerations et une très bonne précision. Toutefois, afin d’exploi-
ter pleinement leur potentiel et de tirer le meilleur parti de leurs capacités, il reste en-
core beaucoup à faire. Outre la conception mécanique, la calibration et l’optimisation de
la structure, le développement d’approches de commande efficaces joue un rôle clé dans
l’amélioration des performances globales de ces robots. Par ailleurs, le tri sélectif consiste
à trier et à récupérer les déchets en fonction de leur nature : métaux, papier, verre, orga-
nique, etc, pour faciliter leur recyclage. Ils sont triés soit par ceux qui les produisent, soit
par des organismes spécialisés dans des centres de tri. L’objectif de cette thèse est d’étudier
l’utilisation de robots parallèles pour des applications de "pick-and-throw" (P&T) dans le
tri sélectif et rapide des déchets. L’objectif est de réaliser des tâches de P&T de manière ro-
buste et rapide à l’aide d’un manipulateur parallèle (mis à disposition par Tecnalia dans le
cadre d’un contrat de recherche collaborative), démontrant l’intérêt et la pertinence d’une
approche P&T par rapport à une approche P&P traditionnelle dans le cadre d’une applica-
tion de tri sélectif de déchets. Dans ce contexte, la génération de trajectoires et la concep-
tion de commandes sont abordées dans cette thèse. D’une part, la planification du mou-
vement pour les PKMs n’est pas triviale. Différentes contraintes telles que les contraintes
cinématiques et dynamiques, la continuité, etc., doivent être prises en compte pour gé-
nérer une trajectoire réalisable et appropriée qui répond aux exigences d’une application
spécifique. D’autre part, la commande des PKMs est souvent considérée dans la littéra-
ture comme une tâche difficile en raison de leur dynamique hautement non linéaire, des
incertitudes abondantes, de la variation des paramètres, et de la redondance de l’action-
nement. Dans cette thèse, nous visons à générer une tâche de P&T rapide et précise en
utilisant un manipulateur parallèle. Ainsi, nous proposons d’abord une trajectoire P&T op-
timale en temps qui réduit considérablement le temps de cycle par rapport à la technique
P&P habituelle. Des expérimentations en temps réel ont été menées pour la validation de
la méthode P&T proposée, montrant la pertinence de cette méthode par rapport au pro-
cessus P&P et à une technique P&T existante dans la littérature. Deuxièmement, des stra-
tégies de commande robustes avancées ont été proposées, qui sont des extensions (i) de la
commande RISE (Robust Integral of the Sign of the Error), (ii) de la commande DCAL (De-
sired Compensation Adaptive Law), et (iii) du commande sans modèle (MFC). L’analyse de
stabilité basée de type Lyapunov est établie pour tous les contrôleurs proposés, vérifiant
la convergence asymptotique des erreurs de suivi. Afin de valider les contrôleurs propo-
sés, des simulations numériques sont réalisées sur un prototype de robot parallèle, appelé
T3KR. Plusieurs simulations sont testées, notamment la robustesse aux changements de
charge et la robustesse aux variations de vitesse. La pertinence des schémas de contrôle



proposés est prouvée par l’amélioration des erreurs de suivi dans différentes conditions de
fonctionnement dynamiques.

Mots clefs : Robot manipulateurs parallèles, Pick-and-Throw, trajectoire en temps optimal,

commande RISE, stratégie DCAL, commande sans modèle, analyse de stabilité, expérimen-

tation en temps réel, simulations numériques.
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