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"Research is to see what everybody has seen and think what nobody 
has thought." 

Albert Szent-Györgyi (1893-1986) 

Received the Nobel Prize for discovering vitamin C 
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STUDY CONTEXT AND OBJECTIVES 

Food-related health concerns are and have been of major importance all around the world for 

ages. Their repercussions on the global economy are huge and most likely even underestimated. 

They can be caused by various agents, particularly pathogenic microorganisms. 

In addition to viruses and pathogenic bacteria, toxigenic fungi are considered a real threat to 

humans and animals health either due to their presence or to their secretion of highly toxic 

substances called mycotoxins. The latter are widespread at all stages of the food and feed chains.  

As a consequence of their toxicity, regulations have been set to protect consumers from the 

damaging effects of mycotoxins that can contaminate foodstuffs and to ensure the appliance of 

correct practices in the food trade. Levels of mycotoxins harmful for health should not be 

exceeded. While some mycotoxins (e.g. aflatoxins) have been studied intensively since the 

beginning of their discovery, others (e.g. patulin (PAT)) have remained in the shade for a while 

but have been fully studied and recently regulated. For mycotoxins such as HT-2 and T-2, the 

recommendations apply while others are not yet regulated (e.g. Alternaria toxins). 

PAT, the mycotoxin of interest in this study, was first discovered by Waksman et al. (1942) and 

was considered as a promising antibiotic, effective against nasal congestion and colds. It was only 

few years after that it was proven not only toxic to fungi but also to animals and higher plants 

(Moake et al. 2005). From then one, many researchers were particularly interested in PAT to 

determine its physicochemical properties, elucidate its biosynthetic pathway, isolate and 

characterize the fungal producing species, evaluate its toxic potential based on in vitro and in vivo 

studies. Apple juices as well as other food products are sometimes heavily contaminated by PAT, 

exceeding the maximum regulatory limits. Thus, more studies and efforts are needed to minimize 

the contamination of food products by this mycotoxin.  

However, controlling the occurrence of PAT in food products require a better understanding of 

Penicillium expansum, the main producer of this toxin. In addition, elucidation of the biochemical 

and molecular mechanisms that induce PAT production could help regulate its biosynthesis. The 

elucidation of the biosynthetic cluster of PAT by Tannous et al. in 2014 evidenced specific factors 

that regulate its biosynthesis.  

The full understanding of the mechanisms involved in the toxin biosynthesis is complicated and 

the big economic losses that occur due to the food products already contaminated by PAT should 

be taken into account. In this context, many questions arose. 

▪ What are the factors that affect PAT biosynthesis outside the genes of its cluster and more 

generally, what is the impact of global regulators on the secondary metabolism of P. expansum? 
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▪  What are the processing factors that could have an effect on PAT concentration in contaminated 

food products? Are there any degradation products generated and if so, are they less toxic than 

PAT? 

This multidisciplinary research aims to understand the role of the veA gene involved in PAT 

biosynthesis and to determine the role of the chemical agent ascorbic acid (AA), which affects PAT 

(Figure 1). The first objective focuses on the elucidation of the roles of veA and the study of its 

impact on the development, aggressiveness, dissemination and secondary metabolism of  

P. expansum, with emphasis on PAT biosynthesis. A null mutant Pe∆veA strain and a 

complemented Pe∆veA:veA strain were generated using the wild type strain of P. expansum (NRRL 

35695). A morphological study was conducted and pathogenicity on apples was studied. 

Expression of genes belonging to the two corresponding clusters of PAT and citrinin, another 

mycotoxin produced by the fungus, as well as genes that encode backbone enzymes of secondary 

metabolites found in the genome of P. expansum was analysed. 

The second objective of this thesis aims to better understand the fate of PAT during the production 

of cloudy apple juice, more specifically during pressing of apples (using the new spiral filter press 

technique characterized by low-oxygen pressing conditions) and storage. The influence of AA, 

known as vitamin C, was examined throughout the process. At first, optimal conditions of action 

of AA were identified in the presence/absence of oxygen and different storage temperatures. This 

experiment was performed both on pure PAT standard in aqueous solution and on PAT-

contaminated cloudy apple juice (CAJ). An in-house HPLC methodology was optimized leading to 

a good separation and detection of PAT and degradation and reaction products. Then, the 

evaluation of the effect of the antioxidant AA on PAT concentration during cloudy apple juice 

processing and storage was examined (using a VaculIQ 1000 machine). Four conditions of 

processing CAJ were tested. The effect of AA, oxygen and storage on PAT in the CAJ produced were 

evaluated.  

To conclude, the results obtained in this study will result in a deeper knowledge of the regulation 

of the secondary metabolism of P. expansum by veA with a special emphasis on PAT and its fate in 

CAJ when AA is added. They will allow investigating whether veA and AA affect the biosynthesis 

and degradation of this toxin, respectively, leading to possible processing factors affecting the 

presence of PAT in apples and by-products.
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Figure 1 General overview of the PhD thesis 
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BIBLIOGRAPHIC REVIEW 

The bibliographic study carried out during this thesis concerns a critical analysis of the literature 

and highlights the main issues dealt with later on in this manuscript. This bibliographic review is 

structured in three main parts. First, it will consist of an overview of the main filamentous fungi 

and their secondary metabolites with particular interest in mycotoxins and their impact on human 

health. The second and third part addresses the different levels of regulation of secondary 

metabolites in Penicillium sp. with a special focus on P. expansum. In addition, it discusses how the 

secondary metabolites of P. expansum contribute to its virulence and pathogenicity. Finally, it 

exposes the different control treatments applied for P. expansum in order to inhibit its growth, 

decrease diseases incidence and mycotoxin production. In the last part of this bibliographical 

summary, an overview on patulin (PAT) mitigation research performed so far is given. It 

summarizes the current knowledge on PAT detoxification techniques in apple products with a 

special emphasis on ascorbic acid (AA), its stability and how it may influence PAT concentration 

and phenolic compounds, especially in apple juice.  
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A. Moulds and mycotoxins 

Nowadays, food security/safety has become a major concern (Figure 2) particularly since 

numerous contaminants are well known and detected in our environment such as dioxins, 

mycotoxins, heavy metals, pesticides, polycyclic aromatic hydrocarbons, drugs and hormones 

(Barreira et al. 2010). Among them, mycotoxins present in a large part of the food supply pose an 

important health problem. As a result of the increasing interest of thousands of researchers 

around the world, these toxins and their origins, toxicities, stabilities, biosynthetic pathways, 

control strategies, etc. are the subject of intensive studies. In this chapter, a general introduction 

on microscopic fungi, mycotoxins and their impact on human health is presented. More detailed 

information on the filamentous fungus Penicillium expansum and its secondary metabolites (e.g. 

the mycotoxin patulin), will be discussed in the second part of this introduction. 

 

 

Figure 2 Risks impacting food safety and security throughout the business supply chain 

A.1 Fungi: microscopic filamentous fungi 

The general term fungi comprise organisms known as mushrooms, moulds and yeasts. Fungi are 

eukaryotic organisms that traditionally were classified in the plant kingdom. Due to their cell wall 

containing cellulose or glucans (true fungi) and chitin, also found in the animal kingdom (Méheust 

2012), and the absence of chlorophyll (Berger and Guss 2005), these organisms were 

differentiated from plants, and nowadays constitute a separate kingdom, namely that of the 

“fungi”. 

Fungi are one of the largest kingdoms of organisms on earth and play a key role in many 

ecosystems (Mueller and Schmit 2007). The kingdom is characterized by a large diversity 

estimated at more than 1.5 million species, although to date, only about 70,000 species have been 

identified (Paterson 2006). This kingdom includes macroscopic species (macromycetes) and 
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microscopic ones (micromycetes). The latter are not perceptible by the eye unless their 

development becomes pronounced (Tabuc 2007). They are ubiquitous organisms able to 

proliferate in the indoor and outdoor environment (Muro-Cacho et al. 2003) when physico-

chemical conditions such as humidity, temperature, and the presence of organic and inorganic 

substrates allow it (Aydogdu and Gucer 2009). The fungal kingdom is composed of saprophytic 

fungi that decompose the ecosystem and play an essential role in carbon and nitrogen recycling, 

and of others affecting plants, animals and humans, causing plant diseases and mycoses (Lutzoni 

et al. 2004). We also distinguish fungi living symbiotically (e.g., mycorrhizal fungi, lichens, 

endophytes) (Gargas et al. 1995).  

Fungi have a sexual and/or asexual reproduction. The spores, ensuring asexual multiplication, 

may have a role in their dispersion once produced, but may also play a role in the survival of the 

organism when environmental conditions become unfavourable (Madelin 1994). Fungi are 

classified into two broad categories: the unicellular yeast form and the mycelial multicellular form 

formed of hyphae (Redecker 2002). The mycelial form allows the fungus to have significant radial 

growth and to rapidly colonize a medium. In fact, hyphae that consist of heterocaryotic 

(Ascomycota and Basidiomycota) or coenocytic (Zygomycota and Glomeromycota) cells ensure 

the growth of mycelial fungi. Their extension is restricted to the apex. After division, the newly 

formed apical part can separate from the rest of the mycelium by a septum (septal mycelium in 

Ascomycota and Basidiomycota) or not (mycelium siphoned in Zygomycota) (Jennings and Lysek 

1996). This mycelial form thus provides a maximum contact surface and allows search for 

nutrients in all three dimensions (Carlile and Watkinson 1994; Jennings and Lysek 1996).  

 

A.2 Filamentous fungi and their secondary metabolites 

Filamentous fungi are of importance in the human environment, in a beneficial or harmful way 

and have economic consequences. They are involved in different sectors such as the (agri-) food, 

pharmaceutical and cosmetic, as well as in the medical sector. 

In the food industry, certain moulds are used to produce cheeses such as roquefort (Penicillium 

roqueforti) or camembert (Penicillium camembertii) (Ropars et al. 2012). They can also be used 

for the synthesis of organic acids such as citric acid or gluconic acid  

(Aspergillus niger), used as food additives (Karaffa et al. 2001). Some moulds are used for the 

synthesis/production of enzymes such as maltase and dextrinase converting maltose and starch 

into alcohol (Rhizopus oryzae). This process of alcoholic fermentation is of relevance for 

manufacturing rice alcohol in Asia (Lv et al. 2012). In the pharmaceutical industry, certain moulds 

are used for the synthesis of drugs, including antibiotics such as penicillin (Penicillium 

chrysogenum) or cephalosporins (Cephalosporium acremonium). 
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Filamentous fungi are therefore of industrial interest. Nevertheless, they represent a threat for the 

feed and food sector due to contamination of feed and foodstuffs. The proliferation of moulds, 

whether pathogenic or not, deteriorates food and feed (i.e. spoilage) and leads to unfavourable 

changes in dietary and organoleptic characteristics (appearance, texture, smell and flavour). This 

leads to heavy economic losses. Food commodities losses due to mycotoxin contamination 

represent above 25% of all food spoiled (Egmond et al. 2004). 

In addition, the proliferation of moulds may lead to reduced food safety and increased health risks 

for the consumer. The production of toxic secondary metabolites such as mycotoxins (see the 

paragraph 1.3) represents a major risk for human and animal health. A given species of 

microscopic fungus can generate one or several mycotoxins, and the same mycotoxin can be 

produced by several mould species. They can be secreted both at pre- and postharvest stages. 

 

A.3 Mycotoxins and their impact on human health 

a. Historical overview 

The term "mycotoxin" comes from the combination of the Greek word "mycos" referring to 

mushroom, and the Latin word "toxicum" meaning poison (Jouany et al. 2009; Rai et al. 2012). The 

first outbreaks of mycotoxicosis, described in antiquity, were ergotism (Figure 3A) that were 

later named "St. Anthony's fire" (Figure 3B) because of the burning sensation felt by the victims 

(Bennett and Klich 2003; Gravesen 1979). This was at the origin of major epidemics that raged 

across the Old Continent during the Middle Ages, killing hundreds of thousands of people. The 

disease was caused by the consumption of rye flour produced from rye contaminated with fungi 

of the genus Claviceps (Figure 3C). It was only in the 19th century that scientists managed to 

isolate the alkaloids responsible for ergotism and to study their toxicological characteristics. Other 

mycotoxicoses have been described later, such as Trichothecene Toxic Food Aleucie (ATA), which 

occurred in Russia in the 1930s, or the Turkey "X" disease, which occurred in Great Britain in 

1960. The latter caused an unusual veterinary crisis in England, in which nearly 100,000 turkeys 

were decimated with severe hepatic necrosis and biliary hyperplasia (Bennett and Klich 2003; 

Yiannikouris and Jouany 2002; Nesbitt et al. 1962). The cause of this disease has been attributed 

to aflatoxins, secondary metabolites produced by the fungus Aspergillus flavus that have 

proliferated on peanuts contained in the food of these birds (Medeiros et al. 2012; Nesbitt et al. 

1962). After this event, a real "gold rush" of mycotoxins was born and lasted for about fifteen years 

(1960-1975), during which many scientists joined well-funded research programs (Bennett and 

Klich 2003). 
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Figure 3 Art as evidence of mycotoxin contamination. A: Paint exemplifying an ergotism outbreak; 
B: “Saint Anthony’s hallucinations” by Mathias Grünewald (effects of hallucinations associated to 
ergotism); C: rye ear contaminated by Claviceps purpurea. 

b. Definition and characteristics 

Mycotoxins are low molecular weight secondary metabolites (<1,000 Dalton) produced by 

filamentous fungi (Marin et al. 2013). These metabolites are non-essential to the fungus life cycle, 

which means that they are not associated with fungal cell growth and development (Moss 1991). 

Nevertheless, once produced, they may confer some competitive advantages (Fox and Howlett 

2008b).  

To date, 300 to 400 compounds have been recognized as mycotoxins with Aspergillus, Fusarium 

and Penicillium as the main producers, while many remain unknown (CAST 2003; Bryden 2016). 

Other genera such as Alternaria, Byssochlamys and Claviceps are known to produce mycotoxigenic 

compounds as well. The most commonly encountered mycotoxins are aflatoxins produced by 

Aspergillus species, ochratoxins produced by some species of Aspergillus and Penicillium, 

fumonisins, trichothecenes and zearalenone produced by Fusarium species, and patulin produced 

by several species of Aspergillus, Penicillium and Paecilomyces (Marin et al. 2013) (Figure 4). 

Patulin, the mycotoxin of interest in this thesis, is very toxic if ingested by humans and is present 

in fruits especially apples and pears (Moss 2008). Its toxicity and characteristics are described in 

A 

C B 
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the third section of the introduction. Other mycotoxins have gained interest nowadays like for 

example citrinin, enniatins, etc. More studies should be done regarding them to be able to properly 

assess their toxicity and characteristics.  

 

Figure 4 The chemical structures of major mycotoxins 

Their enormous structural diversity, their countless biological effects and their different fungal 

producers make it hard to classify mycotoxins (Bennet and Klich 2003). The mycotoxins were 

classified based on their clinical effect, i.e., hepatotoxic, nephrotoxic, neurotoxic, immunotoxic and 

others, while cell biologists classify them as teratogens, mutagens, carcinogens and allergens. In 

order to prevent these risks, the International Agency for Research on Cancer (IARC) performed 

carcinogenic hazard assessment of some mycotoxins in humans and categorized them (e.g. patulin 

has an IARC of 3, aflatoxins (AFB1, AFB2, AFG1, AFG2 and AFM1) of 1, etc.). Their chemical 

structure (e.g., lactones), biosynthetic origin (e.g., amino acid-derived), illness they cause (e.g., 

aflatoxicosis) or fungal origin (e.g., Penicillium mycotoxins) could also be characteristics based on 

which mycotoxins could be classified (Bennet and Klich 2003). Based on the time point at which 

fungal invasion and mycotoxin formation take place, a distinction can be made between  

pre-harvest and post-harvest mycotoxins, referring to those produced by moulds growing on the 

field (e.g., Fusarium) and those produced by moulds at later stages such as harvest, transport, 

storage, processing, etc... However, this distinction is not always clear-out since post-harvest 

mycotoxins moulds can occur at pre-harvest stages as well. 
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c. Health effects 

When mycotoxins are ingested, or sometimes inhaled, various toxic effects can be caused 

depending on the toxin (combination) and structures, the dose and duration of exposure and the 

person himself as well. They can induce toxicity in different organs and have various cellular and 

molecular mechanisms of action. Mycotoxins can cause acute or chronic toxicity. Even though 

chronic exposure to mycotoxins is considered as the main human and veterinary health burden 

(e.g. kidney toxicity, cancer induction, immune suppression), the best-known mycotoxin incidents 

were due to profound acute effects (e.g., human ergotism, Turkey X disease, 

stachybotryotoxicosis) (Bennet and Klich 2003; Cano et al. 2016). 

The main problem we are facing is that several filamentous fungi capable of producing one or 

numerous mycotoxins could contaminate every raw material. In addition, most of the time, a food 

and feed item is composed of several raw materials. As a result, humans and animals are mostly 

not exposed to only one mycotoxin but more likely to a mixture of mycotoxins. Streit et al. (2013) 

showed that out of 17,316 food samples tested, 38% were contaminated with several mycotoxins 

simultaneously. Several studies indicated that interactions between mycotoxins present at the 

same time in a product might result in significantly higher toxicity than the individual toxicity of 

each mycotoxin (Smith et al. 1997; Speijers and Speijers 2004). In fact, as per Alassane-Kpembi et 

al. (2017), simultaneous exposure could result in synergistic (i.e., interaction resulting in greater 

effect than expected), additive (no interaction, i.e., as expected) or antagonistic (i.e., interaction 

leading to lesser effect than expected) effects. For example, a binary or ternary mixtures of type B 

trichothecenes (DON, NIV, and their acetylated derivatives) revealed synergistic cytotoxicity at 

low mycotoxin concentrations and additive or nearly additive effect at higher concentrations 

(Alassane-Kpembi et al. 2013).  More studies on the interactions between mycotoxins are needed. 

 

d. Regulations 

Regulations exist and maximum levels of contamination by certain mycotoxins in food items have 

been set, but these legislations do not consider multi-contamination situations. In addition, of all 

the mycotoxins described, only thirty have proven toxic effects and less than a third of them are 

regulated. Maximum levels for aflatoxins (AFB1, AFB2, AFG1, AFG2 and AFM1), ochratoxin A 

(OTA), deoxynivalenol (DON), fumonisins (FB1, FB2), T-2 toxin, HT-2 toxin, zearalenone (ZEA) and 

PAT are set by European commission (EC) Regulation No 1881/2006 and amendments. A limited 

number of mycotoxins (namely aflatoxins, deoxynivalenol, zearalenone, fumonisins and 

ochratoxin A) are regularly tested in the feed manufacturing process and are subject to 

regulations/guidance set by Commission Recommendation (EC) 576/2006 and Commission 

https://www.romerlabs.com/en/analytes/mycotoxins/aflatoxin-testing/
https://www.romerlabs.com/en/analytes/mycotoxins/ochratoxin/
https://www.romerlabs.com/en/analytes/mycotoxins/deoxynivalenol/
https://www.romerlabs.com/en/analytes/mycotoxins/fumonisin/
https://www.romerlabs.com/en/analytes/mycotoxins/t-2ht-2/
https://www.romerlabs.com/en/analytes/mycotoxins/t-2ht-2/
https://www.romerlabs.com/en/analytes/mycotoxins/zearalenone/
https://www.romerlabs.com/en/analytes/mycotoxins/patulin/
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Regulation (EU) No 165/2010. Mycotoxins are a very important problem of public health, quality 

and food safety and further research on this topic is still needed. 

In the following sections (part B, C and D) of this introduction, we will be focusing on  

P. expansum and its secondary metabolites/mycotoxins with mean focus on PAT. 
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Abstract 

Penicillium, one of the most common fungi occurring in diverse range of habitats, has a worldwide 

distribution and a large economic impact on human health. Hundreds of the species belonging to 

this genus cause disastrous decays of food crops and are able to produce a varied range of 

secondary metabolites (SM), from which we can distinguish the harmful mycotoxins. Some 

Penicillium species are considered as important producers of patulin and ochratoxin A, two  

well-known mycotoxins. The production of these mycotoxins as well as other SM is controlled and 

regulated by different mechanisms. The aim of this review is to point out the different levels of 

regulation of SM in Penicillium sp. focusing on P. expansum. P. expansum, principal cause of spoilage 

of pome fruits throughout the past centuries, is ubiquitous and can infest a varied range of 

agricultural products during harvest, in storage, or even during processing. Besides, we discuss 

how the SM of the latter contribute to its virulence and pathogenicity and we end with an exposure 

of the different control treatments applied on P. expansum in order to inhibit its growth, decrease 

disease incidence and toxin accumulation. 
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B.1 Introduction 

Studies have estimated the existence of, at least, 1.5 million fungal species on earth from which 

only about 10% have been isolated and described (Hawksworth 1991; 2001). Penicillium, one of 

the most common fungi in a various range of habitats, has a worldwide distribution and a large 

economic impact on human life. This genus is of a great importance in numerous and divert fields 

such as food spoilage, biotechnology, plant pathology and medicine (Cho et al. 2005; Bazioli et al. 

2017) and contains currently 354 accepted species (Visagie et al. 2014). Hundreds of these 

species, classified as pre- and postharvest pathogens, could cause catastrophic decays of food 

crops as described by Frisvad and Samson (2004), Pitt and Hocking (2009) and Samson et al. 

(2010). They could also produce a varied range of secondary metabolites, including several 

harmful mycotoxins (Frisvad et al. 2004), antibacterial (Fleming 1929, Chain et al. 1940, Abraham 

et al. 1941, Thom 1945; Rancic et al. 2006; Lucas et al. 2007) and antifungal compounds (Nicoletti 

et al. 2007), immunosuppressant and cholesterol-lowering agents (Göhrt et al. 1992; Rho et al. 

2002; Kwon et al. 2002). The biosynthesis of several secondary metabolites such as mycotoxins 

depends on several environmental cues like substrate, pH, temperature and water activity and on 

the interactions of these different factors in the natural environment (Geisen 2004; Schmidt-Heydt 

and Geisen 2007; Schmidt-Heydt et al. 2008). For example, the effect of the composition of the 

growth medium on mycotoxin biosynthesis is also influenced by the pH of the medium (Calvo et 

al. 2002). 

Mycotoxins are the final products of enzymatic cascades starting when enzymes such as 

polyketide synthases (PKS), non-ribosomal peptide synthases (NRPS), terpene cyclase (TC) and 

dimethyl allyl transferase (DMAT) catalyse respectively the rearrangement or the condensation 

of simple primary metabolites such as acetyl-CoA, amino acids or terpenes resulting in more 

complex secondary metabolites (Khan et al. 2014). Different metabolic pathways can lead to their 

formation. Mycotoxins are classified into five categories according to their structure and their 

precursor: polyketides (PKS), cyclic terpenes (CT), non-ribosomal cyclic peptides (NRPS), indoles 

alkaloids (DMATS) and hybrids (PKS / NRPS) (Keller et al. 2005) (Figure 5). Other enzymes are 

also needed and interfere in the catalysis of subsequent reactions in the biosynthetic pathways of 

the mycotoxins. In fact, enzymes are activated at the same time and the new synthesized 

intermediate products are consecutively metabolized by the next enzymes. This phenomenon is 

made possible thanks to the cluster organization of genes, in the same chromosomal region, 

encoding for enzymes involved in the biosynthesis. These genes are often co-activated by a specific 

transcription factor located inside clusters (Osbourn 2010). The structural diversity of 

mycotoxins results from the variety of chemical reactions (cyclization, aromatization, 

https://www.jstage.jst.go.jp/search/global/_search/-char/en?item=8&word=AXEL+G%26Ouml%3BHRT
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glycosylation, hydroxylation and epoxidation) involved in their biosynthesis (Boettger and 

Hertweck 2012) and lead to their broad spectrum of activities and functions. 

 

Figure 5 Biosynthetic pathways of secondary metabolites. In blue the groups of secondary 
metabolites. In grey boxes, the main mycotoxins produced by these pathways. In red the enzymes 
associated with each pathway; NRPS: non-ribosomal peptide synthetase, PKS: polyketide 
synthetase, TC: terpene cyclase, DMAT: dimethyl allyl transferase. 

Based on bioinformatics analysis and other studies, it was proven that fungal genomes exhibit 

different and numerous predicted secondary metabolite clusters. In filamentous fungi, the 

activation of specific transcription factor and by consequence the production of fungal secondary 

metabolites is controlled, at a higher hierarchical level, by transcription global factors. 

Understanding the mechanisms underlying the biosynthesis of mycotoxins contributes to 

defining/identifying strategies or mechanisms to regulate them and reduce their production 

(Reverberi et al. 2010). 

Numerous studies focused on regulators impacting the formation of mycotoxins like patulin or 

citrinin in P. expansum (Snini et al. 2015; El Hajj Assaf et al. 2018) and on their biosynthesis 

pathways (Tannous et al. 2014) and few reviews (Macheleidt et al. 2016) exposed the complex 

and multi layered regulation of fungal secondary metabolism. Our review aims to deepen the 

understanding of the regulation of the secondary metabolism of Penicillium and expose all the 

regulation mechanisms that could occur.

https://www.ncbi.nlm.nih.gov/pubmed/?term=Macheleidt%20J%5BAuthor%5D&cauthor=true&cauthor_uid=27732794
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B.2Regulation of secondary metabolism 

As for the synthesis of any secondary metabolite, the regulation of its cluster involves several 

factors acting for its activation or repression. This regulation occurs on different levels. Most 

secondary metabolite clusters have Transcription Factors (TFs) that act directly on all other genes 

located inside cluster. The expression of these internal regulators also depends on other more 

global TFs, encoded by genes unrelated to the biosynthetic gene clusters, and themselves under 

the control of different physiological and/or environmental stimuli. An adaptation to a specific 

environment may also result in the biosynthesis of a certain secondary metabolite. This 

biosynthesis is connected and regulated by different signalling transduction pathways. And 

finally, the epigenetic regulation, including modification of chromatin and nucleosome structure, 

can conduct transcriptional control and impact SM synthesis extensively. In the following section, 

the different regulatory systems studied in Penicillium will be discussed. 

 

a. Specific transcription factors / cluster specific regulators 

Gene clusters involved in mycotoxin biosynthesis often include a gene encoding a transcription 

factor that specifically acts and modulates the expression of the other genes in that cluster (e.g. 

patL and ctnA in PAT and citrinin biosynthetic pathways, respectively). It has a switching role 

within the cluster (Figure 6). The transcription factors regulate gene expression by binding 

specifically to the promoters of the genes involved.  

 

 

Figure 6 Gene clusters of the patulin biosynthesis pathway (the first at the top) (15 genes, 40 kb 
(Tannous et al. 2014)) and the citrinin biosynthesis pathway (the second at the bottom) (9 genes, 
22 kb (Ballester et al. 2015; He and Cox. 2016) in P. expansum. 

Several studies comparing sequences of transcription factors showed that the latter can be 

classified in different families based on the similarities in their protein sequences. We distinguish 

zinc finger proteins, proteins called helix-turn-helix, and leucine zippers (Todd and 

Andrianopoulos 1997). Nevertheless, almost 90% of the potential gene clusters involved in the 
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synthesis of fungal polyketides belong to the family of zinc finger transcription factors (Cys2His2, 

Cys4 ou Cys6) (Todd and Andrianopoulos 1997; Brakhage 2013). Proteins of the Zn2Cys6 family are 

found exclusively in fungi and yeasts (Yin and Keller 2011) and C6 type zinc finger DNA binding 

protein motif (Cys6) is frequently encountered in transcription factors. Since 1997, Cys6 has been 

identified on more than 80 proteins found mainly in fungi (Todd and Andrianopoulos 1997) and 

generally considered as transcriptional activators (Table 1). Only in Saccharomyces cerevisiae, the 

zinc finger proteins (ARGR2, LEU3 and UME6) were activators and repressors (Bechet et al. al 

1970, Messenguy and Dubois 1988, Strich et al 1994, Rubin-Bejerano et al 1996). Since then, the 

number of proteins belonging to the Zn2Cys6 family has increased significantly due to the number 

of fungal genomes that have since been sequenced.
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Protein 
Regulated gene 

cluster 

Regulatory 

mode 
Species References 

AflR AF/ST Positive 

A. nidulans,       

 A. flavus             

A. parasiticus, 

(Brown et al. 1996; Chang 

et al. 1995b; Ehrlich et al. 

1999; Fernandes et al. 

1998; Yu et al. 1996) 

GliZ gliotoxin Positive A. fumigatus (Bok et al. 2006) 

SirZ sirodesmin PL Positive 
Leptosphaeria 

maculans 
(Fox et al. 2008a) 

MlcR compactin Positive 
Penicillium 

citrinum 
(Abe et al. 2002b) 

Bik5 bikaverin Positive 
Fusarium 

fujikuroi 
(Wiemann et al. 2009) 

DEP6 depudecin Positive 
Alternaria 

brassicicola 
(Wight et al. 2009) 

ZFR1 

FUM21 
fumonisin Positive 

Fusarium 

verticillioides 

(Brown et al. 2007; 

Flaherty and Woloshuk 

2004) 

CTB8 cercosporin Positive 
Cercospora 

nicotianae 
(Chen et al. 2007) 

GIP2 aurofusarin Positive Gibberella zeae (Kim et al. 2006) 

CtnA citrinin Positive 
Monascus 

purpureus 
(Shimizu et al. 2007) 

LovE lovastatin Positive A. terreus 
(Huang and Li 2009; 

Kennedy et al. 1999) 

ApdR aspyridone Positive A. nidulans (Bergmann et al. 2007) 

CtnR asperfuranone Positive A. nidulans (Chiang et al. 2009) 

MdpE 
monodictyphenone/ 

emodin analogs 
Positive A. nidulans (Chiang et al. 2010) 
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Cmr1p melanin Positive 
Colletotrichum 

lagenarium 
(Tsuji et al. 2000) 

Pig1p melanin Positive 
Magnaporthe 

grisea 
(Tsuji et al. 2000) 

MokH monacolin K Positive 
Monascus 

pilosus 
(Chen et al. 2010) 

PatL patulin Positive P. expansum (Snini et al. 2016) 

CtnA citrinin Positive P. citrinum (He and Cox 2016) 

Table 1 Examples of identified Zn(II)2Cys6 transcription factors (TFs) involvement in secondary 
metabolism in fungi adapted and updated from Yin and Keller (2011). 

Gliotoxin, a secondary fungal metabolite, belonging to the class of epipolythiodioxopiperazines 

(ETPs) and characterized by the presence of a sulphur-bridged dioxopiperazine ring (Gardiner et 

al. 2005), is produced by some of Aspergillus and Penicillium species (such as  

Penicillium lilacinoechinulatum) (Waring et al. 1987). Within its cluster, a Zn2Cys6 finger 

transcription regulator, GliZ has been identified and was responsible for gliotoxin induction and 

regulation. A mutation of gliZ (∆gliZ) gene in A. fumigatus resulted in loss of gliotoxin production. 

Over-expression of gliZ increased the production of gliotoxin (Bok et al. 2006; Cramer et al. 2006; 

Kwon-Chung et al. 2009; Scharf et al. 2012; Schoberle et al. 2014). The mlcR gene encoding a 

putative 50.2-kDa protein characterized by a Zn(II)(2)Cys(6) DNA-binding domain, has been shown 

to be involved in the regulation and biosynthesis of ML-236B (compactin) in Penicillium citrinum 

(Abe et al. 2002a). Numerous examples of identified Zn(II)2Cys6 transcription factors (TFs) 

involved in the secondary metabolism of fungi genus other than Penicillium have been largely 

described in literature such as AflR (aflatoxins), Bik5 (bikaverin), CtnA (citrinin) in Aspergillus, 

Fusarium and Monascus, respectively (Table 1). Another gene coding for a transcription factor in 

Penicillium expansum patL has been shown to affect patulin production (Snini et al. 2016). The 

protein encoded by this gene had two conserved domains, one of which encoded a Cys6 DNA 

binding site and the other was found in transcription factors of the superfamily of zinc finger 

transcription factors. Orthologous genes of patL involved in the patulin metabolic pathway were 

found in other filamentous fungi genomes such as P. griseofulvum, P. paneum, P. vulpinum,  

P. carneum, P. antarcticum (Nielsen et al. 2017) and A. clavatus (Artigot et al. 2009). Snini et al. 

(2016) showed that a disruption of this gene caused the inability of the fungus to produce patulin 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Kwon-Chung%20KJ%5BAuthor%5D&cauthor=true&cauthor_uid=18608908


BIBLIOGRAPHIC REVIEW Introduction 

 

23 

  

with an important decrease of pat genes. The reincorporation of the gene in the mutated strain 

restored the production of patulin.  

 

b. Global regulators 

In the past paragraph, we have reviewed specific transcription factors described in Penicillium 

and that are cluster specific. However, numerous regulatory elements affected by environmental 

cues, affect the expression of fungal secondary metabolites clusters and do not reside within the 

cluster itself. They are considered as global regulators (Figure 7). Among them, CreA, AreA, Nmc, 

PacC, Skn7, VeA, LaeA, BrlA, PcRFX1, PcFKH1, pcz1, and NsdD are mentioned and discussed in the 

following paragraphs. 

 

Figure 7 Global regulatory proteins involved in the regulation of gene clusters involved in the 
production of various fungal secondary metabolites, adapted scheme from Brakhage (2013). 

Many of these TFs have been identified so far in Penicillium species. For example, the biosynthesis 

of penicillin in P. chrysogenum was shown to be largely regulated by glucose and sucrose and to a 

lower extent by other sugars (maltose, fructose, and galactose). Lactose did not exert, in  

Penicillium chrysogenum (Martin 2000).  Cepeda-García et al. (2014) showed a clear evidence of 

the involvement of the CreA factor in the catabolic repression of penicillin biosynthesis 

suppression of penicillin biosynthesis (Revilla et al. 1984; Martin 2000). Penicillin production was 

positively regulated by the transcription factor CreA, a global carbon catabolite regulator and the 

expression of the pcbAB gene, encoding the first enzyme of the pathway in  

Penicillium chrysogenum. They conducted an RNAi strategy attenuating creA gene expression. 

Transformants expressing small interfering RNAs for creA showed greater production of 

penicillin. A recent study showed that the deletion of creA gene in P. expansum strains did not 
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allow the production of patulin in apples (Tannous et al. 2018). This increase in production was 

even more evident when glucose was used as a carbon source. Among the other regulatory 

proteins, AreA, a regulatory factor in response to nitrogen mediates regulation of penicillin 

biosynthesis in P. chrysogenum (Martin 2000). A concentration of ammonium above 40mM caused 

a repression in the expression of uidA, a promoterless gene for beta-glucuronidase of Escherichia 

coli, when fused to the pcbAB and pcbC promoters in P. chrysogenum (Feng et al. 1994). The 

production of patulin in P. griseofulvum was also affected when ammonium ions were added to 

the culture medium (Ellis 1996). On the other hand, the presence of 30 mM ammonium chloride 

results in the significant decrease of isoepoxydon dehydrogenase (idh) and 6-methylsalicylic 

synthase (6-msas) transcripts, key genes in the pathways of patulin biosynthesis (Fedeshko 1992). 

The latter interact with the nrfA gene, ortholog of the areA gene in P. griseofulvum, through their 

several putative GATA sites. The nmc gene, encoding a global nitrogen regulator, has been 

characterized in Penicillium roqueforti. Nmc has a zinc finger DNA binding domain that is at least 

94% identical to that of the homologous fungal proteins (such as areA in Aspergillus) (Gente et al. 

1999). They showed that nmc expression is induced and up-regulated by nitrogen starvation. PacC 

is another transcriptional factor with three putative Cys2His2 zinc fingers (Tilburn et al. 1995). It 

seems to conduct a pH regulation of gene expression in Penicillium chrysogenum (Suárez and 

Peñalva 1996). In the same study, it was shown that Penicillium pacC transcript levels were higher 

under alkaline than under acidic growth conditions and elevate at late stages of growth. The effect 

of pH on regulation of penicillin biosynthesis was also observed by Martin (2000) who explained 

that PacC negatively regulates penicillin production in Penicillium chrysogenum. Barad et al. 

(2016) also studied the link between ammonia accumulation, activation of pacC and synthesis of 

patulin in P. expansum. They concluded that an accumulation of ammonia during nutritional 

limitation in P. expansum could lead to a modification of the ambient environmental pH, a signal 

for the activation of pacC as well as other alkaline induced genes leading to an accumulation of 

secondary metabolites such as patulin. Oxidative stress is considered as another environmental 

cue to which filamentous fungi should respond to survive. Most of the knowledge comes from the 

yeast Saccharomyces cerevisiae and the fungal genus Aspergillus. Skn7, a transcription factor 

involved in the osmotic and oxidative stress responses in S. cerevisiae (Morgan et al. 1997) has 

been also identified in Penicillium marneffei. The gene skn7 from the latter was used to 

complement a skn7-disrupted strain of S. cerevisiae and seemed to be involved in the oxidative 

stress response in the yeast (Cao et al. 2009). This result indicates the highly conserved nature of 

skn7 between the two organisms. Montibus et al. (2013) suggested that skn7 could be involved in 

the regulation of the fungal secondary metabolism. The development of filamentous fungi and 

their ability to produce secondary metabolites is largely influenced by light as well. A velvet 

http://www.worldcat.org/search?q=au%3AFedeshko%2C+Ronald+W.&qt=hot_author
https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Su%C3%A1rez%2C+Teresa
https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Pe%C3%B1alva%2C+Miguel+Angel
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complex has been described in Aspergillus nidulans and the VeA (velvet A) factor has been largely 

studied and many proteins seem to interact with it such as VelB (velvet-like B), VosA (viability of 

spores A), VelC (velvet-like C) and the non-velvet protein LaeA (loss of aflR expression A), a 

methyltransferase involved in chromatin remodelling (Bayram and Braus 2012). Depending on 

fungal species, VeA is involved in different physiological processes such as development, asexual 

and sexual reproduction, secondary metabolism and virulence. The regulation mediated by this 

factor depends particularly on the light. VeA was first characterized in Aspergillus nidulans and the 

veA gene encodes a protein of 573 amino acids with a conserved domain at the N-terminus 

(Bayram et al. 2008a) and a nuclear localization sequence (NLS) (Stinnett et al 2007). At its C-

terminus, a PEST domain (rich in proline, glutamic acid, serine and threonine) is present (Kim et 

al. 2002). This PEST domain is also found in VeA orthologous proteins in Aspergillus parasiticus, 

Aspergillus fumigatus and Neurospora crassa (Bayram et al. 2008b). 

Stinnett et al. (2007) studied the intracellular localization of VeA. This study demonstrates that 

this location is dependent on light. In the dark, VeA is mainly located in the nucleus whereas in the 

presence of light, VeA is mainly found in the cytoplasm. In the veA1 mutant (Käfer 1965), VeA is 

mostly found in the cytoplasm independently of light. In this mutant, the presence of a mutation 

on the transcription initiation codon led to a truncated protein where the first 36 amino acids 

were missing and therefore did not have a functional nuclear localization sequence (NLS), thus 

explaining the cytoplasmic localization of VeA. In the same study, it is demonstrated that the 

transfer of VeA into the nucleus depends on the importin α KapA and that a functional NLS is 

essential, which allows the interaction of these two proteins.  

In order to identify the proteins interacting with VeA, Bayram et al. (2008a) used the Tandem 

Affinity Purification (TAP) technique from a strain of Aspergillus nidulans expressing a VeA protein 

coupled to a tag TAP-tag at the C-terminus. In the dark, the proteins VelB, LaeA, and importin α 

KapA interact with VeA. Conversely, only VelB interacts with VeA in the presence of light. Using 

the yeast two-hybrid technique, the analyses confirm the VeA-VelB and VeA-LaeA interactions; 

however, no interaction is demonstrated between LaeA and VelB suggesting that VeA acts as a 

bridge between these two proteins. In addition, fluorescence assays showed that the VeA-LaeA 

interaction occurs in the nucleus, while VeA and VelB interact in the nucleus and the cytoplasm. 

LaeA is located in the nucleus, its interaction with VeA is nuclear, VelB must therefore be able to 

enter the nucleus despite the absence of NLS in its sequence. Bayram et al. (2008a) demonstrated 

that VeA assists VelB to enter the nucleus to form the Velvet complex.  

The results obtained in the various studies allowed Bayram et al. (2008a) to propose a mechanism 

(Figure 8) that coordinates the regulation of sexual development and the production of secondary 

metabolites. In the dark, the VeB \ VeA \ LaeA complex controls and induces the epigenetic activity 
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of LaeA which consequently controls the expression of the genes of the clusters responsible for 

the synthesis of the secondary metabolites. In the presence of light, this interaction decreases 

because VeA is retained in the cytoplasm and LaeA has low activity. 

 

Figure 8 Operating model of the velvet complex in Aspergillus nidulans adapted from Bayram et 
al. (2008a). In the presence of light, VeA is retained in the cytoplasm and LaeA has low activity. In 
the dark, VeA coupled to VelB is transported into the nucleus by the importin α KapA and the 
velvet complex is formed with LaeA to activate the production of secondary metabolites and 
sexual development 

Despite its strong conservation among different fungal species, VeA has different roles, reflecting 

the diversity of fungi development patterns. 

Therefore, veA has a role in the regulation of secondary metabolism. The expression of genes 

involved in the synthesis of secondary metabolites is affected by VeA (Kato et al. 2003, Duran et 

al. 2007, Calvo 2008, Cary and Calvo 2008). Kato et al. (2003) demonstrated that in  

Aspergillus nidulans, VeA regulates the expression of genes involved in sterigmatocystin synthesis. 

Indeed, it is necessary for the synthesis of AflR, the transcription factor specific of the biosynthetic 

pathway of this mycotoxin (Chang et al. 1993, Payne et al 1993, Flaherty and Payne 1997). 

Similarly, in Aspergillus parasiticus and Aspergillus flavus, the veA gene is required for the 

transcription of aflR and aflJ, another transcription factor widely recognized in Aspergillus flavus 

(Meyers et al. 1998, Du et al. 2007). Other studies reveal that veA is needed for the synthesis of 

other secondary metabolites such as cyclopiazonic acid and aflatrem in Aspergillus flavus (Duran 
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et al. 2007), penicillin in Aspergillus nidulans (Kato et al. 2003) or Penicillium chrysogenum (Hoff 

et al. 2010) or trichothecenes in Fusarium graminearum (Merhej et al. 2012). In this last study, 

FgVe1 was shown to be a positive regulator of the virulence of Fusarium graminearum. In 

Fusarium verticillioides, FvVE1 is necessary not only for the production of fumonisins but also for 

the infection of corn plants by the fungus (Myung et al. 2012). Recently, it was shown that the 

disruption of veA in P. expansum caused a quasi-inability to produce patulin and citrinin on 

synthetic media (MEA and PDA) with a drastic decrease in the expression of patulin (patA-patO) 

and citrinin (Pexp_005510-Pexp_005590) genes (El Hajj Assaf et al. 2018). Moreover, the null 

mutant was not able to produce patulin when it grew in apples. This study was also extended to 

the whole P. expansum secondary metabolism by the evaluation of the impact on VeA on the 

expression of the backbone genes of secondary metabolites found in the genome of the  

P. expansum d1 strain including PKSs, NRPSs, terpene synthases and DMATSs genes and by a non-

targeted LC-MS analysis. Metabolomic analysis displayed a global impact on secondary 

metabolism whilst gene expression analysis showed a positive or negative regulation of 15/35 

backbone genes and support the hypothesis that P. expansum secondary metabolism is modulated 

by the transcriptional regulator factor VeA. Baba et al. (2012) also showed that a disruption of veA 

and/or laeA in P. citrinum played critical roles in ML-236B production by controlling expression 

of mlcR, the pathway-specific activator gene for ML-236B biosynthesis. 

It was also shown that different components of the velvet complex may have opposite roles in the 

regulation of secondary metabolism. In Penicillium chrysogenum, PcVelC, together with the velvet 

PcVelA (ortholog of VeA in P. chrysogenum), and the methyltransferase PcLaeA, induced penicillin 

production, and in contract, PcVelB acted as a repressor (Kopke et al. 2013). Wolfers et al. (2015) 

also examined genes regulated by light and by PcLaeA and PcVelA. They found that on 148 

regulated genes, six encoded typical fungal transcription factor domains. PcAtfA, a bZIP 

transcription factor, was the only one with characterized homologs in other fungi and was shown 

to control spore germination. Under the conditions tested by Kosalkova et al. (2009), PclaeA gene 

in P. chrysogenum controlled some secondary metabolism gene clusters. Its overexpression 

increased penicillin biosynthesis by 25% and its deletion reduced drastically the expression of 

penicillin biosynthesis genes. However, PcLaeA did not regulate the biosynthesis of roquefortine 

C. The regulation of secondary metabolism of P. expansum by laeA was performed on two culture 

media (Kumar et al. 2017). Of the 54 backbone genes examined, many appeared to be positively 

regulated by laeA such as those involved in the biosynthesis of roquefortine, an ETP-like 

metabolite and patulin. The difference observed between these two studies regarding laeA 

regulation of the gene involved in the biosynthesis of roquefortine C could be due to the species 

used and the medium tested. In P. oxalicum, it has been shown that putative methyltransferase 
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LaeA and the transcription factor CreA control, among other things, the expression of secondary 

metabolic gene clusters (Zhang et al. 2016). Silenced clusters in ΔlaeA, specifically those located 

toward subtelomeric regions of the chromosome, were not observed in ΔlaeAΔcreA. Lack of creA 

activated silent or poorly expressed gene clusters and thus remediated the repression of gene 

cluster in ΔlaeA background. 

According to Calvo (2008), veA is responsible for the activation or repression of several genes such 

as brlA, rosA, etc. The transcription factor RosA (Vienken et al. 2005) and the protein encoded by 

the lsdA gene (Lee et al. 2011) involved in the regulation of sexual development in  

Aspergillus nidulans are under the control of VeA. The gene esdC, dependent on VeA, is expressed 

during the early stages of sexual development in Aspergillus nidulans (Han et al. 2008). Finally, 

VeA is required for the expression of ppo encoding endogenous oxylipins called "psi factors" 

involved in the balance between sexual and asexual development (Tsitsigiannis et al. 2004). Kato 

et al. (2003) demonstrated that VeA plays a role in the expression of the brlA gene encoding a 

transcription factor involved in the asexual development of Aspergillus nidulans.  

Moreover, the deletion of laeA reduced the conidiation in P. oxalicum, and down-regulated the 

expression of brlA (Zhang et al. 2016). Ahmed et al. (2013) showed that the expression of brlA, a 

C2H2-type zinc finger transcription factor that plays the role of a primary regulatory gene in 

asexual development, is controlled by the velvet complex. Its expression was studied in Penicillium 

decumbens by Qin et al. (2013) and the expression level of 7/28 gene clusters of secondary 

metabolites were regulated in a brlA deletion strain. The clusters involved in the biosynthesis of 

the mycotoxins roquefortine C and meleagrin were down-regulated and the expression levels of 

cellulase genes (catalysing the hydrolysis of the β-(1,4) glycosidic bonds of cellulose and encoding 

endoglucanase I and II, cellobiohydrolase I and II, β-glucosidase and amylase) were up-regulated 

in this same strain. In Penicillium chrysogenum, the inactivation of the transcription factor StuA 

involved in the regulation of conidiation, but not BrlA, caused a drastic downregulation of the 

expression of the penicillin biosynthetic gene cluster. In fact, in a brlA deficient strain, the 

production of penicillin V was not affected but a reduction of almost 99% was assessed by HPLC 

analysis and observed during liquid-submerged growth in a stuA deficient strain (Sigl et al. 2011). 

Finally, PcRFX1 is a new TF that has been characterized in Penicillium chrysogenum by 

Domínguez-Santos et al. (2012). It is the ortholog of the regulatory proteins CPCR1 and RFxA in 

Acremonium chrysogenum and Penicillium marneffei respectively. Knock-down and 

overexpression techniques of the Pcrfx1 gene have proven that PcRFX1 regulated pcbAB, pcbC and 

penDE transcription and thereby controls penicillin biosynthesis. PcRFX1 was also suggested to 

be involved in the control of pathways of primary metabolism. PcFKH1, another transcription 

factor of the winged-helix family, also positively regulates penicillin biosynthesis in  
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P. chrysogenum by binding to the pcbC promoter, interacting with the promoter region of the 

penDE gene, and controlling other genes such as phlA and ppt encoding phenylacetyl CoA ligase 

and phosphopantetheinyl transferase (Domínguez-Santos et al. 2015). The pcz1 gene (Penicillium 

C6 zinc domain protein 1) encoding a Zn(II)2Cys6 protein and controling growth and development 

processes of the fungus has also been described in P. roqueforti and has been suggested to 

participate in physiological processes in this fungus and play a key role in regulating its secondary 

metabolism (Gil-Durán et al. 2015; Rojas-Aedo et al. 2018). The silencing of pcz1 in P. roqueforti 

resulted in the downregulation of the genes of the central conidiation pathway brlA, abaA and 

wetA (Gil-Durán et al. 2015). In pcz1 down-regulated strains, the production of the metabolites 

roquefortine C, andrastin A and mycophenolic acid were severely reduced; however, when pcz1 

was overexpressed, only mycophenolic acid was overproduced and levels of roquefortine C and 

andrastin A were decreased (Rojas-Aedo et al. 2018). 

Finally, the PoxNsdD gene of P. oxalicum was characterized by He et al. (2018a). It is an ortholog 

of the nsdD gene encoding a GATA-type zinc finger TF that was proven to be involved in the 

production of secondary metabolites. In the ΔPoxNsdD strain, the 230 differentially expressed 

genes identified covered 69 putative biosynthetic gene clusters 11 of which were predicted to 

produce aspyridone, emericellin, citrinin, leucinostatins, roquefortine C/meleagrin, beauvericin, 

cytochalasin, malbrancheamide, and viridicatumtoxin.  

 

c. Signal transduction pathways 

In general, fungi present very dynamic and a structured cell wall. During the cell cycle, organisms 

need to adapt quickly to changes under environmental conditions and imposed stresses and thus 

regulate the composition and structural organization of their cell wall (Klis et al. 2006; Ruiz-

Herrera et al. 2006; Munro et al. 2007). All this influences the biosynthesis of SM in the fungus. 

Numerous signalling pathways activate and regulate the growth and differentiation of filamentous 

fungi and initiate SM biosynthesis under specific conditions. These signalling pathways sense and 

transduce signals external to TFs that, in turn, activate the expression of genes that could be 

involved in the biosynthesis of certain SM. The cyclic adenosine monophosphate (cAMP)/protein 

kinase A (PKA), the calcineurin/calmodulin, TOR, and mitogen-activated protein kinase (MAPK) 

are considered as the most studied pathways (Macheleidt et al. 2016). The production of many 

secondary metabolites was associated and linked to one of these transduction signals and to 

specific active molecules. Among the different signalling pathways listed, we will focus on those 

that affect only the secondary metabolism of Penicillium and start with the Calcium pathway.  

Calcium salts have been reported to inhibit the postharvest decay of apples caused by P. expansum 

(Wisniewski et al. 1995). In the presence of 25 mM of CaCl2, germination of P. expansum spores 
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was reduced by half and to 10-30% when CaCl2 concentration greater than 50 mM was added. The 

addition of 25 to 175 mM of MgCl2 did not affect the germination of the fungal pathogen spores. 

cAMP pathways. Heterotrimeric G proteins are important components of these signal transduction 

pathways. They can integrate a variety of signals and then transduce them to downstream 

signalling cascades. Most of the filamentous fungi have three Gα proteins belonging to classes I, II 

or III (Bölker 1998). Gα subunits belonging to class I have been involved in many aspects related 

not only to the development of the fungus or its pathogenicity but also its secondary metabolism, 

which is not the case for Gα subunits of classes II and III. The deletion of class II Gα proteins 

showed negligible effects on fungal metabolism (Liu and Dean 1997; Gronover et al. 2001); and 

those of class III have been involved in fungal development and pathogenicity (Chang et al. 2004; 

Doehlemann et al. 2006; Hu et al. 2013). Alterations have been observed in the secondary 

metabolism of different fungi, including Penicillium chrysogenum (García-Rico et al. 2008) and  

P. marneffei (Zuber et al. 2002). The pga1 gene, encoding Gα subunits protein in  

Penicillium chrysogenum showed to affect the production of three SM: penicillin, chrysogenin and 

roquefortine. The deletion of pga1 induces a decrease in the production of roquefortine and 

penicillin by regulating the expression of pcbAB, pcbC and penDE, the three structural biosynthetic 

genes of the penicillin cluster. Chrysogenin biosynthesis is enhanced and roquefortine and 

penicillin biosynthesis is up-regulated by the presence of a dominant activating pga1 (G42R) allele 

or a constitutively active Pga1 (García-Rico et al. 2008). Carrasco‑Navarro et al. (2016) suggested, 

based on a proteomic analysis, that Pga1 signalling affects penicillin biosynthesis by acting on 

primary metabolism pathways that are also involved in cysteine, ATP and NADPH biosynthesis. 

They also propose a model for the Pga1‑mediated signal transduction pathway.  

The osmostress response pathway. Usually, inhibition of the HOG (high osmolarity glycerol) 

signalling pathway negatively affects the production of metabolites, or in other words, challenging 

osmotic conditions activate the cascade of HOG MAP kinase signal, thereby activating several 

osmo-regulated genes or downstream TFs by phosphorylation. In their study, Stoll et al. (2013) 

showed that NaCl induced production of ochratoxin A in correlation with the phosphorylation 

status of the HOG MAP kinase in P. nordicum and P. verrucosum. The activation of HOG 

phosphorylation and ochratoxin A biosynthesis suggests a link between the two processes and 

that this regulation be mediated by the HOG MAP kinase signal transduction pathway. This was 

confirmed by inactivating the hog gene in P. verrucosum, making the fungus unable to produce 

ochratoxin A under high NaCl conditions. The biosynthesis of citrinin, another P. verrucosum toxin, 

was not affected. This could be explained by the subsequent work of Schmidt-Heydt et al. (2015), 

which showed the impact of high oxidative stress conditions on citrinin biosynthesis. Indeed, by 

increasing Cu2+concentrations in a growth medium, P. verrucosum shifts the biosynthesis of its 

https://www.sciencedirect.com/science/article/pii/S1087184598911021?via%3Dihub#!
https://www.ncbi.nlm.nih.gov/pubmed/?term=Gronover%20CS%5BAuthor%5D&cauthor=true&cauthor_uid=11763127
https://www.ncbi.nlm.nih.gov/pubmed/?term=Doehlemann%20G%5BAuthor%5D&cauthor=true&cauthor_uid=16420354
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0058185#pone.0058185-GarcaRico1
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0058185#pone.0058185-GarcaRico1
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secondary metabolism from ochratoxin A to citrinin. Increasing amounts of external cAMP reduce 

citrinin biosynthesis depending on the concentration chosen and suggest that citrinin 

biosynthesis is regulated by a cAMP/PKA signalling pathway.  

Although most of the studies on signal transduction pathways were performed on Aspergillus, 

some were performed on Penicillium and revealed that many pathways are involved in the SM 

biosynthesis. There is still work to be done on other Penicillium species that will reveal new 

information regarding known or unknown SM. 

 

d. Epigenetic regulation 

As previously discussed, Penicillium species, like other fungi, produce a set of bioactive SM that 

are not essential to their survival. Genes for biosynthesis and regulation of SM in fungi are not 

evenly distributed over the genomes and tend to be sub-telomerically located (Strauss and Reyes-

Dominguez 2011). Global epigenetic regulators have contributed to the study of many unknown 

SM and many histone modifications have been associated with the regulation of secondary 

metabolism gene clusters (Bok and Keller 2004; Shwab et al. 2007). Epigenetic phenomena that 

could occur are reversible and many changes in the fungus’ gene expression levels do not alter the 

DNA sequence and can occur throughout the fungus’ life cycle. Fungal epigenetic regulation 

involves mainly histone modifications such as methylation, acetylation and sumoylation. Histone 

proteins are the primary protein components of chromatin and through histone modifications, 

regulation could be limited to a specific region of the chromosome and therefore affect some 

genes. This supports the advantage of having secondary metabolism genes grouped into clusters. 

In Penicillium chrysogenum, hdaA, an ortholog of the histone deacetylase hdaA1 gene of  

S. cerevisiae appears to be a key regulator of the secondary metabolism of the fungus. Deletion of 

hgaA induced a significant effect on the expression of numerous polyketide synthase (PKS) and 

non-ribosomal peptide synthase (NRPS) encoding genes. A downregulation of NRPS encoded gene 

associated with the biosynthetic gene cluster of chrysogine was observed. In parallel, a 

transcriptional activation of the biosynthetic gene cluster of sorbicillinoids occurs, associated with 

the detection of a new compound produced only under these conditions. These results obtained 

by Guzman-Chavez et al. (2018) suggest a crosstalk between biosynthetic gene clusters. By 

culturing Penicillium variabile on a maltose medium in the presence of 5-azacytidine (a DNA 

methyltransferase inhibitor), varitatin A synthesis was induced (He et al. 2015). And by growing 

it on a potato-based medium in the presence of suberoylanilide hydroxamic acid (SAHA, a histone 

deacetylase inhibitor), seven polyketides were induced, including three known 

wortmannilactones: E, F and H and new varilactones (A–B) and wortmannilactones (M–N) (He et 

al. 2018b). In cultures treated with 50 μM of 5-azacytidine (another DNA methyltransferase 
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inhibitor), Penicillium citreonigrum formed exudates, which are droplets rich in primary and 

secondary metabolites, inorganic substances, and proteins/enzymes and known as guttates, 

veryrich in different compounds compared to the control. In fact, 5-azacytidine induced the 

formation of six azaphilones (fungal metabolites with diverse biological activities), pencolide, and 

two new meroterpenes (Wang et al. 2010). The addition of 5-azacytidine to the culture medium 

of Penicillium funiculosum also altered the metabolic profiles of this fungus (Liu et al. 2014). Two 

new prenyleudesmane diterpenoids were extracted from the culture and exhibited cytotoxic and 

antibacterial activities. Eupenicillium sp. LG41, an endophytic fungus, was exposed to an epigenetic 

modulation using nicotinamide, a NAD+-dependent histone deacetylase (HDAC) inhibitor (Li et al. 

2017a). This led to the production of many compounds: eupenicinicols C and D along with 

eujavanicol A and eupenicinicol A. El-Hawary et al. (2018) showed that cultures of  

Penicillium brevicompactum, a marine-derived fungus, exposed to nicotinamide and sodium 

butyrate resulted in an induction of the production of phenolic metabolites. In the presence of 

nicotinamide, many compounds (e.g. p-anisic acid, benzyl anisate, syringic acid, sinapic acid, etc.) 

were isolated and identified. Sodium butyrate also enhanced the production of anthranilic acid 

and ergosterol peroxide.  

The addition of 500 μM of suberoyl bis-hydroxamic acid (SBHA), a Zn(II)-type or NAD+-dependent 

HDAC inhibitor, and 100 μM of nicotinamide (an NAD+-dependent HDAC inhibitor) to a culture of 

Penicillium sp. isolated from leaves of Catharanthus roseus improved the production of 

citreoviripyrone A and citreomontanin. In addition, nicotinamide enhanced the production of  

(-)-citreoviridin (Asai et al. 2013). Xiong et al. (2018) explored the role of High-Mobility Group 

(HMG)-box protein, PoxHmbB, involved in chromatin organization and identified in  

Penicillium oxalicum. They saw that in a mutant strain ΔPoxhmbB, conidiation and hyphae growth 

were delayed. The expression of genes encoding plant biomass degrading enzymes and others 

involved in conidiation were regulated by PoxhmbB.  

In conclusion, chromatin regulation of small molecule gene clusters allows specific control of 

secondary metabolism gene clusters and allows filamentous fungi to modify chemical diversity 

and successfully exploit environmental resources. Epigenetic regulation is considered a promising 

strategy for investigating unknown SM clusters, particularly because, under certain laboratory 

culture conditions, many clusters could remain silent, making it difficult to elucidate their function 

and regulatory mechanisms (Van Den Berg et al. 2008) 

 

B.3Conclusion  

The fungal secondary metabolism is very broad, and this review focused on that regulated in 

Penicillium genus. Given the diversity of SM, their key roles as virulence and pathogenicity factors 
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and their great in the medical and agricultural interest, further research should be conducted on 

them. This review points out how the production of these SM is controlled and regulated. It 

discusses the different levels of regulation of SM, including specific regulators, global TFs, 

transduction signalling pathways and epigenetic regulation as well as the combination of many 

different parameters affecting the biosynthesis pathways of metabolites. Many TFs that affect 

expression of genes involved in the secondary metabolism seem to belong to the zing-binding 

proteins category. LaeA and the velvet complex proteins are considered as global regulators and 

are able to control many clusters at the same time. Although much is known about these global 

transcription factors and their regulatory proteins, more research is needed to explore the details 

that link them to the transcription of genes involved in SM biosynthetic pathways. This would help 

to better understand the molecular mechanism underlying this complex regulatory network.  

In addition, the study of the regulation of SM biosynthesis in Penicillium is much less advanced 

than in Aspergillus and some orthologous genes already studied in Aspergillus (e.g. rtfA, cpsA, rmtA, 

mtfA, etc.) should be investigated in Penicillium. 
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C. Study of the virulence and control of P. expansum 

The generic type Penicillium expansum, introduced first by Link (1809), is a devastating 

pathogen in fruit and is considered as the principal agent of the blue mould disease, leading to 

considerable economical losses during post-harvest handling and storage. P. expansum belongs to 

the subgenus Penicillium and the Penicillium section (Frisvad and Samson 2004). Morphologically, 

this species is characterized by terterticillate conidiophores (with phialides on metulae carried by 

branchs), usually grouped in coremia. Under the microscope, this species is characterized by 

smooth straight stalk (Figure 9 A, C), bulbous to cylindrical elongated phialides, and dull green 

conidia with ellipsoidal shape (Figure 9B) (Frisvad and Samson 2004; Pitt and Hocking 2009).  

P. expansum, like the majority of species belonging to subgenus Penicillium, does not present 

sclerotia (Frisvad and Samson 2004). 

 

Figure 9 Microscopic appearance of conidiophores (A, C) and conidia (B) of Penicillium expansum 
(400 ×) after 7 days of cultures at 25°C in the on (A-B) Potato Dextrose Agar (PDA) and (C) Malt 
Extract Agar (MEA) inoculated with104 spores. (Photos taken under an optical microscope (x 400) 
during our study) 
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Although most of the studies on P. expansum have focused on patulin, its genome is rich in 

predicted secondary metabolite clusters (Table2) that contribute to its aggressiveness and 

pathogenicity. It should be noted that the metabolites listed in this table were collected based on 

a literature study. After sequencing three genomes of P. expansum, it is now known that  

P. expansum is unable to produce cyclopiazonic acid, mycophenolic acid, aflatrem and ochratoxin 

A. In the following, a brief overview of how SM contribute to the virulence, aggressiveness and 

development of P. expansum and how we can control the fungus and its toxins is given. 



Introduction BIBLIOGRAPHIC REVIEW 

 

36 

 

Compounds or 

secondary 

metabolites 

Chemical structure 
Molecular 

formula 

Effects or 

functionalities 
Occurrence IARC group References 

N-acetyltryptamine  

 

C12H14NO2 Serotinin inhibitor  --- 
Kozlovsky et al. 

2002 

Aflatrem 

 

C32H39NO4 Tremorgene  --- 
Russell et al. 

1989 

Agonodepside B 

 

C24H26O7   --- Kim et al. 2016 

AndrastinsA/B/C 

 

C28H38O7 
Antitumoral 

compound 
Blue cheese --- 

Kim et al. 2012; 

Rojas-Aedo et 

al. 2017 
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Aurantioclavine 

 

C15H18N2   --- 

King et al. 1977; 

Frisvad and 

Samson 2004 

Brevianamide A 

 

C21H23N3O3 

Cytotoxic, 

teratogenic, 

insecticide 

 --- 

Paterson et al. 

1987; Bridge et 

al. 1989; Russell 

et al. 1989 

Chaetoglobosin A 

 

C32H36N2O5 

Orally toxic to 2-

days-old cockerels, 

toxic to embryonic 

chickens and toxic 

and teratogenic to 

mice. 

Apples, pears, 

quince, cherries, 

prune, bananas, 

peaches, apricots, 

grapes, cereals, 

silages, 

Blackcurrant, 

strawberry, 

walnuts, roots, 

--- 

Springer et al. 

1976; Bridge et 

al. 1989; 

Frisvad and 

Filtenborg 

1989; Frisvad 

1992; Vesely et 

al. 1995; Larsen 

et al. 1998; 

Andersen et al. 
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brussels, carrots 

and tomatoes. 

2004; Tannous 

et al. 2017a 

Chaetoglobosin C 

 

C32H36N2O5     

Citrinin  

 

C13H14O5 Kidney lesions 

Peanuts, rice, 

grains, corn, barley, 

wheat 

Group 3: Not 

classifiable 

as to its 

carcinogenic

ity to 

humans 

Harwig et al. 

1973; Frisvad 

and Filtenborg 

1983; Paterson 

et al. 1987; 

Abou-Zeid 

2012; Puel 

2007; Andersen 

et al. 2004; 

Tannous et al. 

2017a 
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Clavicipitic acid  

 

C16H18N2O2   --- 

King et al. 1977; 

Frisvad et al. 

2004 

Communesin A 

 

C28H32N4O2 Cytotoxic 

Apples, pears, 

quince, cherries, 

prune, bananas, 

peaches, apricots, 

grapes, cereals, 

silages, 

Blackcurrant, 

strawberry, 

walnuts, roots, 

brussels, carrots, 

tomatoes and 

marine alga. 

--- 

Andersen et al. 

2004; Samson 

et al. 2004 
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Communesin B 

 

C32H36N4O2 

Neurotoxic, cytotoxic 

to lymphocytic 

leukaemia cells 

Apples, pears, 

quince, cherries, 

prune, bananas, 

peaches, apricots, 

grapes, cereals, 

silages, 

Blackcurrant, 

strawberry, 

walnuts, roots, 

brussel, carrots, 

tomatoes and 

marine alga. 

--- 

Numata et al. 

1993; Andersen 

et al. 2004; 

Samson et al. 

2004; Tannous 

et al. 2017a 

Communesin C 

 

C31H34N4O2 Cytotoxic 

Apples, pears, 

quince, cherries, 

prune, bananas, 

peaches, apricots, 

grapes, cereals, 

silages, 

Blackcurrant, 

strawberry, 

walnuts, roots, 

brussel, carrots, 

--- 

Larsen et al. 

1998; Andersen 

et al. 2004; 

Hayashi et al. 

2004; Kerzaon 

et al. 2009 

https://pubchem.ncbi.nlm.nih.gov/compound/44575538
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tomatoes and 

marine alga. 

Communesin D 

 

C32H34N4O3   ---  

Cyclopiazonic acid 

 

C20H20N2O3 

health risk very 

minimal, but in high 

concentrations 

acutely toxic 

cheese, corn, 

ground nut meal, 

peanuts 

--- 
Bridge et al. 

1989 

Cytochalasin 

 

C30H39NO4 Cytotoxic  --- Lugauskas 2005 

N-

ethylaurantioclavine 
Structure not available    --- King et al. 1977 

https://pubchem.ncbi.nlm.nih.gov/compound/44575538
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Expansolides A/B  

 

C17H22O5 

Growth inhibition of 

wheat grain 

coleoptile 

Blackcurrant and 

cherry juice 
--- 

Massias et al. 

1990; Larsen et 

al. 1998; 

Andersen et al. 

2004; Tannous 

et al. 2017a 

Fumaryl-d,l-alanine Structure not available C7H9NO5 Antibiotic  --- 
Birkinshaw et 

al. 1942 

Gentisyl alcohol 

 

C7H8O3   --- 

Bridge et al. 

1989; Andersen 

et al. 2004 

Geosmin 

 

C12H22O   --- 
Mattheis and 

Roberts 1992 
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Griseofulvin 

 

C17H17ClO6 

Antifungal; 

Teratogenic; 

antiproliferative and 

antimitotic activities 

towards cancer cells 

 2B 

Bridge et al. 

1989; Panda et 

al. 2005 

Isorugulosuvine Structure not available C20H19N3O2   --- 
Kozlovsky et al. 

2002 

Meleagrin 

 

C23H23N5O4 

Cytotoxic effects 

against a number of 

tumour cell lines 

 --- 

Kozlovsky et al. 

2002; Wang et 

al. 2015 

Mycophenolic acid 

 

C17H20O6 

antibacterial, 

antifungal, antiviral, 

antitumor activity 

and 

immunosuppressive 

Silage --- 
Bridge et al. 

1989 
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Ochratoxin A 

 

C20H18ClNO6 

immunosuppressive, 

nephrotoxic, possibly 

(human) 

carcinogenic, potent 

teratogenic; 

indications for role in 

Balkan endemic 

nephropathy (BEN) 

barley, cereals, 

coffee beans, corn, 

dried fruits, rye, 

wheat, wine 

2B 

Krivobok et al. 

1987; Paterson 

et al. 1987 

Ochrephilone 

 

C23H26O5   --- Kim et al. 2016 
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Patulin  

 

C7H6O4 

Pulmonary 

haemorrhages 

Degeneration of 

cerebral cortex 

neurons. 

antimicrobial, 

antiprotozoal, 

antiviral, genotoxic, 

immunological and 

neurological gastro-

intestinal effects, 

toxic to both animal 

and plant 

Apples, pears, 

cherries, bananas, 

peaches, apricots, 

grapes, cereals, 

silages 

Group 3: Not 

classifiable 

as to its 

carcinogenic

ity to 

humans 

Frisvad and 

Filtenborg 

1983; Paterson 

et al. 1987; 

Andersen et al. 

2004; Puel 

2007; Fisch 

2013; Tannous 

et al. 2017a; 

Frisvad et al. 

2018 

Penicillic acid 

 

C8H10O4 
Antibiotic; Antiviral; 

Antitumor; Cytotoxic 
 3 

Mintzlaf et al. 

1972; Leistner 

and Pitt 1977 
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Penitrem A 

 

C37H44ClNO6 

Cause tremors or 

similar nervous signs 

when administered 

to or ingested by 

animals 

Cheese, peanuts, 

soil 
--- 

Richard et al. 

1986; Bridge et 

al. 1989 

PR-toxin 

 

C17H20O6 

Great toxicological 

concern, but 

unstable: converted 

into less toxic 

derivatives such as 

PR imine or PR amide 

and/or PR acid 

Cereal, maize, 

forages/grass 

silages, cheese 

--- 

Russell et al. 

1989; O'Brien et 

al. 2006; 

Fernández-

Bodega et al. 

2009; Hymery 

et al. 2014 

Raistrick 

phenols 
Structure not available   

Grains such as 

wheat, rice... 
--- 

Frisvad and 

Filtenborg 

1989 
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Roquefortine C 

 

C22H23N5O2 

bacteriostatic against 

Gram-positive 

bacteria, neurotoxic 

(paralytic) properties 

Roquefort (blue 

cheeses), Wilted 

grass and whole-

crop maize silages, 

apples, pears, 

quince, cherries, 

prune 

--- 

Ohmomo et al. 

1980; Frisvad 

and Filtenborg 

1983; Bridge et 

al. 1989; 

Haggblom 

1990; Auerbach 

et al. 1997; 

Andersen et al. 

2004; Tannous 

et al. 2017a 

Roquefortine D 

 

C22H25N5O2 
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Rotiorin 

 

C23H24O5   --- kim et al. 2016 

Rubratoxin B 

 

C26H30O11 
Lesions liver and 

kidney 
Corn, animals feed --- 

Richmond et al. 

1980; Paterson 

et al. 1987 

Rugulosuvine B 

 

C27H29N3O3 
Antibiotic and 

antitumoral activities 
 --- 

Kozlovsky et al. 

2002 
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Verrucosidin 

 

C24H36O6 

Tremorgenic; 

mycotoxicosis in 

animals 

Cereals --- kim et al. 2016 

Viridicatumtoxin  

 

C30H31NO10 Nephrotoxic  --- 

Hutchison et al. 

1973; De Jesus 

et al. 1982 

Table 2 Secondary metabolites of P. expansum reported in the literature 
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C.1 Effect of SM on virulence of P. expansum 

The role of mycotoxins for their producing fungi is not yet fully elucidated. In order to get a better 

idea of this and to investigate the role of mycotoxins, the gene disruption technique has been used 

in many studies. It consists of blocking the biosynthetic pathway at a certain stage to accumulate 

intermediates (Proctor et al. 1995) or preventing it from the outset so that no intermediates or 

toxins can be formed (Tsai et al. 1998). Many studies have suggested the involvement of 

mycotoxins in the pathogenicity and virulence processes of the fungus against their natural 

substrates. It is important to distinguish pathogenicity from virulence. According to Yoder (1980), 

the pathogenicity of the fungus suggests its ability to induce disease and is considered a qualitative 

term; however, virulence is a more quantitative term and indicates the degree of disease caused 

by the fungus (Figure 10). Virulence factors facilitate the growth of the fungus within the host 

organism and its spread (Hof 2008). Some studies have confirmed the importance of mycotoxins 

in the plant pathogenesis. Patulin, for example, has a role in the aggressiveness of  

Penicillium expansum. Sanzani et al. (2012) have shown that patulin plays a role in the 

development of blue mould decay on apples and may be involved in the virulence of P. expansum 

(Figure 10).  

Figure 10 Macroscopic observations of Penicillium expansum and its rot. A: Colonies of  
P. expansum aggregated in fascicles B: Reverse cultures of P. expansum when 103 spores were 
grown at 25°C in the dark for 7 days on Malt Extract Agar (MEA), Potato Dextrose Agar (PDA), 
Czapek Dox Agar medium (CzA) and Czapek Glucose Agar medium (CGA) (from left to right); C: 
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Aspect of apple contaminated by P. expanusm; D: Coremia on the surface of an apple lesion caused 
by P. expansum; E: Transversal cut of a rotten apple (photos taken during our study) 

Disruption of the gene encoding the enzyme 6-methyl salicylic acid synthase (Pepks) involved in 

the patulin biosynthetic pathway in a mutant strain resulted in a reduction in patulin production 

compared to a wild-type strain (WT) in an in vitro experiment. On apples artificially inoculated 

with the mutants, the incidence and severity of the disease were lower than those inoculated with 

the wild-type strains. The ability to cause disease was restored when patulin was applied 

exogenously and the phenotype of the WT was restored. This work suggests patulin acts as a 

virulence factor. Barad et al. (2014) used RNAi (ribonucleic acid interference) to generate  

idh-RNAi mutants, causing a down regulation of the idh gene, thus reducing patulin production. A 

decrease of the disease incidence and its severity were observed in this study. We could conclude 

from these studies that patulin acts a virulence factor but not as a pathogenicity factor since 

mutants were always able to produce it, even in smaller quantities. Unlike the two previous 

studies, Ballester et al. (2015) discussed the fact that neither patulin nor citrinin were directly 

involved in the pathogenic mechanism of P. expansum on apples. They suggested that nine 

predicted metabolic clusters, specifically expressed during infection, would be involved in the 

pathogenesis of P. expansum. Snini et al. (2016) generated a mutated strain of P. expansum 

deficient in patL, a specific regulatory factor for the patulin biosynthetic pathway, which has 

completely lost its ability to synthesize patulin. In vivo experiments showed that mutant strain 

PeΔpatL could still grow on apples even though patulin was no longer produced and that its 

growth depended on the apple varieties. This also confirmed that patulin acts as a virulence factor. 

Touhami et al. (2018) focused on the importance of citrinin in apple colonization. Mutants of  

P. expansum in which the pksCT gene, encoding the citrinin polyketide synthase, was inactivated, 

showed a drastic decrease in citrinin production and a reduction in the ability to colonize apples. 

The addition of exogenous citrinin restored the capacity of mutants to colonize apples in a manner 

similar to that of the wild type. The pks patK and pksCT genes, belonging respectively to the patulin 

and citrinin gene clusters, were both strongly expressed in the first phase of the apple colonization 

process. 

VeA, the global regulator belonging to the velvet family is involved in the regulation of several 

cellular processes such as the secondary metabolism and sometimes the virulence of the fungus 

(Rauscher et al. 2016). LaeA is a virulence factor of the fungus in apple (Kumar et al. 2017). ∆laeA 

mutants were unable to fully accumulate patulin and colonize apples as WT strains of P. expansum. 

CreA, the global carbon catabolite regulator, has also an impact on virulence and patulin synthesis. 

CreA strains lose their capacity to produce patulin in apples and are almost avirulent (Tannous et 

al. 2018). 
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In addition to the impact of global regulators on the virulence of P. expansum, some studies showed 

that the acidity of the medium also plays in role (Prusky et al. 2004; Hadas et al. 2007). During 

colonization of apples, Penicillium expansum produces and secretes organic acids such as gluconic 

(GLA), citric, fumaric and oxalicacids, with gluconic acid (GLA) being the main acid produced by  

P. expansum, P. digitatum and P. italicum and the main cause of the decrease in the pH of colonized 

apples. Prusky et al. (2004) have shown that the citric and gluconic acids production of  

P. expansum in the decayed tissue reduced the host pH from 0.5 to 1.0 units and promoted the 

development of brown lesions in Fuji apples. Fumaric acid (Vilanova et al. 2014) and 

polygalacturonase (Jurick et al. 2010) have been reported for their contribution to the 

pathogenicity and virulence of the fungus. In fact, the accumulation of GLA, catalysed by glucose 

oxidase (GOX2), has made the host environment more acidic (Barad et al. 2012). In the same study, 

the authors showed that a downregulation of gox2 affected GLA production and thus reduced 

acidification of the medium, apple colonization and patulin production. Barad et al. (2016) have 

shown that the accumulation of ammonia in the host environment due to the pathogen may lead 

to pH acidification and accumulation of SM such as patulin. In addition to the pH of fruits, other 

factors affect the production of patulin by pathogens, such as fruit cultivar and storage conditions, 

etc. (Damoglou and Campbell 1986; Morales et al. 2008; Sant’Ana et al. 2008). Beside SM, there 

are other cues that favour the establishment of the fungus. Some studies describe the effect of 

reactive oxygen species (ROS) on the virulence of P. expansum (Torres et al. 2003; Cerioni et al. 

2013; Buron-Moles et al. 2015). These studies suggested that an increased H2O2 production by the 

infected host is correlated with greater resistance to pathogenic infection and reduces the 

progression of the fungus’ growth. Recently, the mutants ΔPdSUT1 and ΔPdSlt2, generated by 

elimination of P. digitatum genes, showed a reduction in fungal virulence during citrus infection. 

PdSUT1 appears to influence susceptibility to fungicides (Ramón-Carbonell and Sánchez-Torres 

2017a) and PdSlt2 regulates different genes essential for infection and asexual reproduction (de 

Ramón-Carbonell and Sánchez-Torres 2017b). PeΔSte12 mutants have also shown a significant 

decrease in the virulence of P. expansum (Sanchez-Torres et al. 2018).  

To conclude this section, it has been shown that fungal toxins and SM of many mycotoxigenic 

genera act as mediators of pathogenicity or virulence infecting many foods and causing important 

diseases. Although we have focused on Penicillium species, many other fungi have similar 

virulence regulation systems. In order to know whether mycotoxins contribute directly to the 

pathogenic or virulent state of the fungus, the exploration of their molecular regulation remains a 

very important and interesting question with potential economic benefits. 
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C.2 Controls of P. expansum 

During post-harvest storage of fruits, chemical treatments, cold storage or modified atmospheres 

could help control fungal diseases. However, spoilage fungi appear to be resistant to fungicides in 

some cases and do not provide satisfactory results. For example, P. expansum has developed 

resistance to antifungal compounds such as thiabendazol, fudioxonil, or pyrimethanil that are 

currently used after harvest (Errampalli et al. 2006; Li and Xiao 2008; Caiazzo et al. 2014). The 

control of patulin in apples and derived products is therefore not yet achieved. Although new post-

harvest fungicides are being developed, the global trend is to reduce the use of fungicides in fruits 

and vegetables. The high and growing demand for healthy food, free of moulds and mycotoxins, 

has stimulated the search for alternative control techniques. Biological control using microbial 

antagonists to control post-harvest diseases has been extensively investigated. Different yeasts 

and bacteria (the microbiome) have been reported as antagonists and were naturally present on 

the surface of fruits (Droby et al. 2003; Droby 2006). Some of them showed an antagonistic activity 

against P. expansum (Chand-Goyal and Spotts 1997). Recent studies have highlighted the role 

played by Cryptoccoccus laurentii and Rhodotorula glutinis yeasts as agents for the control of  

P. expansum during apple storage and have highlighted the role of ROS during infection (Castoria 

et al. 1997; Castoria et al. 2001; Castoria et al. 2003; Castoria et al. 2005). Apple wounds are 

characterized by the presence of ROS and the production of enzymes such as peroxidases and 

lipoxygenase. The latter strengthen the cell wall of the wounded apples and protect it from 

infections by P. expansum or other pathogens. However, an excess of ROS during this period may 

favour fungal infection and patulin production (Tolaini et al. 2010). Co-infection of P. expansum 

with yeasts such as C. laurentii LS28 and R. glutinis has been shown to reduce apple colonization 

and limit fungal growth. These yeasts, capable of producing high concentrations of superoxide 

dismutase (SOD) and catalase (CAT), can grow in such aggressive environments and could be 

considered as biocontrol agents for post-harvest pathogens (Castoria et al. 2003; Castoria et al. 

2005). Some studies discussed the inability of C. laurentii to provide satisfactory levels of decay 

control when used alone. Tolaini et al. (2010) studied the combined effect of C. laurentii on an 

extract from the basidiomycete Lentinula edodes to improve the biocontrol activity of C. laurentii. 

L. edodes culture filtrates had a positive impact on the growth of C. laurentii and its catalase, 

superoxide dismutase and glutathione peroxidase activities, in vitro. The combination of these two 

microorganisms improved the inhibition of P. expansum growth and patulin production in 

wounded apples compared to C. laurentii alone. These results show promising microbial 

antagonistic activities. Recently, Sun et al. (2018) studied the role of the cell wall of 

Rhodosporidium paludigenum yeast in inducing disease resistance against P. expansum in pears. 

Germination of the latter was reduced in vitro and in fruit wounds accompanied by an increase in 
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defence enzyme activities and gene expression of pathogenesis-related (PR) proteins (produced 

by plants and induced as part of acquired systemic resistance). The biocontrol potential of  

Bacillus subtilis, Agrobacterium tumefaciens and Rhodobacter sphaeroides against P. expansum was 

also evaluated and the ability of these agents to inhibit fungal growth, PAT accumulation in apples 

and removal of PAT by absorption was investigated (Wang et al. 2016). These antagonists reduced 

rot diameter by 38%, 27.6% and 23.7%, respectively, and eliminated PAT production by 98.5%, 

95.0% and 93.7%, respectively. R. glutinis, Rhodotorula mucilaginosa, and two Candida oleophila 

strains (L-06 and L-07) have also been tested for their potential antifungal properties on Golden 

Delicious apples (Guerrero-Prieto et al. 2013). Native strains of C. oleophila (L-06 and L-07) caused 

a 77 and 69% reduction in the severity of lesions caused by P. expansum, respectively and also 

showed great potential for biological control of P. expansum on post-harvest apples. Zheng et al. 

(2017) showed a similar impact on disease incidence caused by P. expansum and patulin 

accumulation using R. mucilaginosa and Rhodotorula kratochvilovae yeasts. 

In addition to the use of yeasts and bacteria, many studies have focused on compounds that could 

control P. expansum and the incidence of blue mould disease. Sanzani et al. (2009) reported the 

effect of several phenolic compounds on the growth of P. expansum and its patulin production. 

Quercetin and umbelliferone appear to be the most effective against attack by this pathogen but 

no correlation has been demonstrated between fungal growth and patulin accumulation. It would 

be interesting to investigate in more detail the effect of phenolic compounds on the patulin 

biosynthesis pathway (Figure 11).  
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Figure 11 Patulin biosynthesis pathway in P. expansum (Tannous et al. 2014). The names in 
white correspond to the intermediates involved in the patulin biosynthesis pathway. Green names 
indicate the genes characterized for their involvement in either stage of biosynthesis. 

Treatment with chlorogenic acid (CGA), an important phenolic compound that reduced the 

diameter of peach fruit lesions after infection with P. expansum (Jiao et al. 2018). CGA induces 

resistance against the fungus by activating the signalling pathway of salicylic acid and activating 

enzymes related to the main defence. Phosphites (Phi), elicitors of resistance to disease of abiotic 

origin, was also evaluated for their activity 2011). The incidence of blue mould has been reduced 

by about three times compared to that observed when Phi was applied on fresh unwounded 

apples. When applied to wounded apples, the incidence of P. expansum disease decreased 

significantly. Treatment with 𝜺-Poly-L-lysine, used against P. expansum, in vitro, and for their 

efficacy against blue mould infections on apple fruits (Amiri and Bompeix in food preservation, 

improved resistance to P. expansum in apple fruits by activating the ROS metabolism, the 

phenylpropanoid pathway and the accumulation of antifungal compounds (Ge et al. 2018). 

Ribes et al. (2016) tested emulsions to preserve and extend the shelf life of strawberry jam. 

Essential oils of cinnamon leaf, clove, mandarin and lemon can reduce, inhibit or retard the growth 

of P. expansum. The antifungal activity of cloves and cinnamon leaf in oil and water emulsions 

against P. expansum was also proved in in vitro and in vivo tests. Cloves and cinnamon leaf, given 

their antifungal properties, should be considered as promising food additives for food 

preservation. The antifungal effect of cinnamon oils has been confirmed by Niu et al. (2018) who 

have shown that the encapsulation of cinnamon essential oil has antimicrobial activity and has a 

high efficacy against Aspergillus niger and Penicillium sp. The combination of cinnamaldehyde and 

citral (Cin/Cit) affected growth, oxidative damage and patulin biosynthesis in P. expansum in a 

dose-dependent manner (Wang et al. 2018). It inhibited its mycelial growth and spore 

germination, induced production of ROS, and down-regulated the genes included in the 

biosynthetic pathway of patulin. Cinnamon and cinnamaldehyde could be considered as potential 

candidates to control P. expansum. The mechanism of tea tree oil (TTO) was also investigated 

against P. expansum and Botrytis cinerea (Li et al. 2017b). Treatment with TTO and TTO vapours 

showed a lower impact on P. expansum compared to B. cinerea and this was due to the reduced 

disruption of the cell membrane caused in this organism. Chitosan, a polymer of N-acetyl-

glucosamine in shellfish, has been studied in apples against P. expansum and its practical use to 

control blue mould has been evaluated (Yu et al. 2007; Darolt et al. 2016). Chitosan did not work 

in a curative way but was able to control and prevent the disease when applied at early stages, 

directly to fruit wounds. Improvements in the physico-chemical properties of this compound are 

needed. Applications of radiofrequency (RF) treatments for pasteurization and gamma irradiation 
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combined with fumigation have been tested to also replace the use of fungicides (Cheon et al. 

2016; Hou et al. 2018). The first treatment affected the development and growth of P. expansum, 

and the second treatment reduced the incidence of blue mould disease. 

Finally, the composition of the atmosphere also has a decisive influence on patulin production. 

Controlled atmosphere conditioning of 3% CO2 and 2% O2 inhibited patulin production at 25°C, 

but the latter was restored under a modified atmosphere of 2% CO2 and 10-20% O2 (Paster et al 

1995). Likewise, no patulin production was reported in apples stored under a controlled 

atmosphere of 2.5% O2 / 3.95% CO2 or 1.5% O2 / 2.5% CO2 at a temperature of 1°C. This 

production was restored after subsequent storage of apples at 20°C (Morales et al. 2007). 

Although different strategies have been discussed in this section and different compounds have 

shown good control of P. expansum growth and patulin accumulation, biological control remains 

one of the most promising alternatives for the control of blue mould on apples after harvest and 

is considered a useful strategy for the control of postharvest disease in other fruits. 

 

C.3 Conclusion 

In conclusion, this section focused on the virulence of P. expansum and how to control it. Many 

mycotoxins appear to contribute directly to the pathogenic or virulent state of the fungus, but 

exploring their molecular basis remains a major issue. Among the control approaches studied so 

far, biological approaches are a very promising tool to increase disease resistance and inhibit 

fungal development. But despite all these preventive measures and control approaches,  

P. expansum continues to cause serious damage, patulin production and economic losses. In the 

following section, we will present research on patulin detoxification and mitigation techniques in 

apple products and focus on ascorbic acid and it influence on patulin concentration. 
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D. Fate of patulin in apple juices with special emphasis on the impact of ascorbic 

acid (review 2) 
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Abstract 

Patulin (PAT) contamination, most commonly encountered in products derived from fruit 

processing, especially apples is mainly caused by Penicillium expansum. This toxin is of a major 

concern and is considered as an important hazard due to its toxicity. Its presence in food is 

regulated and maximum levels of 50 μg/kg for fruit juices, 25 μg/kg for apple purees and 

compotes and 10 μg/kg for food intended for babies and young children have been set by the 

European Union (EU). Still, PAT is found in apple-derived products, sometimes exceeding the 

maximum regulatory limits. This review gives an overview on PAT mitigation research performed, 

more specific, of how the PAT concentration can be affected by factors like storage, handling, 

transport, pasteurization, filtration, as well as other non-thermal processing steps. It summarizes 

knowledge on PAT detoxification techniques in apple products with a special emphasis on 

ascorbic acid (AA), its stability and how AA may influence the PAT concentration and phenolic 

compounds. The data presented in this review sheds a light on a compound that could have a 

major role in PAT degradation in apple products. 
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D.1 Introduction 

The quality and safety of numerous agri-food products has always been threatened by many 

natural toxins, including mycotoxins, or metabolites of low molecular weight (<1000 g/mol) 

produced by filamentous fungi, particularly those belonging to the genera Aspergillus, Fusarium, 

Penicillium, Alternaria and Claviceps (Marin et al. 2013).  

Patulin (PAT) is a mycotoxin produced mainly by the species Penicillium, Aspergillus, Byssochlamys 

and Paecilomyces (Sommer et al. 1974; Puel et al. 2010) and is the main mycotoxin produced by 

Penicillium expansum (Andersen et al. 2004; Tannous et al. 2017a). 

 

Figure 12 Chemical structure of patulin 

PAT (Figure 12) is an unsaturated heterocyclic lactone C7H6O4 with a molecular weight of 

154.121 g/mol, characterized by a melting point of 111°C and a maximal UV absorption at 275 

nm. It is soluble in water and in most organic solvents. This mycotoxin can be produced at all 

temperatures allowing the growth of the fungus being, between 0 and 30°C (Sommer et al. 1974). 

PAT production was proven to be negatively correlated with pH value. PAT is stable in acid 

medium but becomes unstable at high pH and loses its activity in alkaline conditions due to the 

opening of the lactone ring (Cox and Cole 1981; Morales et al. 2008; McCallum et al. 2002). It 

remains unclear whether low pH favours the production of PAT or high pH results in its 

degradation. Its stability at high temperatures implies that food preservation processes such as 

pasteurization between 62 and 80°C are not sufficient to destroy it (Sommer et al. 1974). Alcoholic 

beverages present less problems related to PAT contamination due to the alcoholic fermentation 

process (e.g. apple cider) (Stinson et al. 1978; White et al. 2006). During the fermentation process, 

the mycotoxin is largely degraded into ascladiol by yeasts (Moss and Long 2002), considered to 

be a non-toxic compound (Tannous et al. 2017b; Maidana et al. 2016). The apple variety also 

influences the production of PAT by Penicillium expansum (McCallum et al. 2002). A study of Zong 

et al. (2015) focusing on carbon and nitrogen sources showed that glucose-containing sugars, 

complex N-sources, and acidic conditions favour the production of PAT. Thus, the authors suggest 

a certain link between PAT production/accumulation and carbon sources. However, more 

research needs to be done in order to elucidate this possible linkage. We also have to mention that 
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the infection by P. expansum and thus the production of PAT are largely favoured by injuries of the 

fruit.  

In recent years, several surveys on the level of contamination of apples and by-products by PAT 

have been conducted in various countries around the world. The overall incidence of PAT in 

Belgian apple juice during 2001 was 79%, compared to 86% for apple juice imported from France, 

Germany and Switzerland, with an average contamination of apple juice of 10.3 µg/kg and  

6.4 µg/kg respectively (Tangni et al. 2003). 

Exposure of humans or animals to PAT is associated with immunological, genotoxic and 

neurological disorders (Puel et al. 2010; Assunção et al. 2016; Tannous et al. 2017a). Several in 

vitro studies have shown that PAT inhibits the functions of macrophages and presents 

immunotoxic effects on many immune system cells (Sorenson et al. 1986; Bourdiol et al. 1990). 

De Melo et al. (2012) observed a dose-dependent increase in damage index (DI) in the brain, liver 

and kidney of mice exposed to 2.5 and 3.75 mg/kg of PAT. According to Devaraj and Devaraj 

(1987), repeated doses of PAT cause neurotoxicity leading to tremors and convulsions, as well as 

inhibition of many enzymes in the intestine and brain.  

In 1995, the Joint FAO/WHO Expert Committee on Food Additives (JECFA) re-evaluated the 

Provisional Tolerable Weekly Intake (PTWI) for PAT and changed it into a Provisional Maximum 

Tolerable Daily Intake (PMTDI). This assessment considered that the majority of PAT ingested by 

rats was eliminated within 48 hours and 98% within the 7 following days. According to that, they 

established a PMTDI of 0.4 μg/kg bodyweight (bw)/day based on a No-Observed Effect Level 

(NOEL) of 43 µg/kg bw/day and a safety factor of 100 recalculated from the rat study. Maximum 

intake levels for children and adults are even below the PMTDI, i.e. 0.2 µg/kg bw/day and 0.1 

µg/kg bw/day, respectively. 

Considering the cytotoxicity, genotoxicity and immunosuppressive properties of PAT, the 

European Union (EU) has established a specific regulation to protect consumer health: PAT is set 

at a maximum level of 50 μg/kg for fruit juices and derived products, 25 μg/kg for apple purees 

and compotes and a maximum level of 10 μg/kg in food intended for babies and young children 

(EC Commission Regulation, 2006). 

Apple juices as well as other food products are sometimes heavily contaminated by PAT (Table 

3; Table 4). Therefore, more studies and efforts are needed to minimize the contamination of food 

products by this mycotoxin. 

Numerous review papers on PAT have provided information on its biosynthesis, toxicity, 

prevention, detection and degradation (Moake et al. 2005; Silva et al. 2007; Sant’Ana et al. 2008; 

Puel et al. 2010; Ioi et al. 2017). However, none of these discussed in detail the mitigation of this 

mycotoxin by ascorbic acid (AA) and the factors that affect its stability in the food matrix. The 
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present review aims at giving an overview of PAT mitigation research. More specifically, the 

review summarizes knowledge on PAT detoxification techniques in apple products with special 

focuses on AA, its detection methodology, its stability, and the influence of AA on PAT and phenolic 

(apples) compounds.  

 

D.2 Determination of PAT in apple products 

The high global production and consumption of apples and apple-based commodities led to an 

enormous improvement in the monitoring, controlling, detection and/or quantification of 

unwanted compounds (e.g. PAT) that might be present in these products. PAT and other fungal 

secondary metabolites are not detected by smell or taste. Only physicochemical analysis can 

reveal their presence.  

 

a. Chromatographic methods 

Over the years, different analytical methods have been developed to allow the detection of PAT: 

Thin-Layer Chromatography (TLC), Gas Chromatography-Mass Spectrometry (GC-MS), High 

Performance Liquid Chromatography coupled to UltraViolet detection (HPLC-UV) or tandem Mass 

Spectrometry (HPLC-MS/MS), Capillary Electrophoresis (CE), etc. Each analytical approach has its 

(dis)advantages. These numerous methods cited above were described into detail in the literature 

in the past (Shephard and Leggott 2000; Li et al. 2017).  

Based on a study performed by Scott in 1974, a TLC method for PAT analysis was officially 

approved by the Association of Analytical Communities (AOAC). It consisted of an extraction using 

ethyl acetate, followed by a separation on a chromatographic column with silica gel. The detection 

was conducted by a pulverization of 3-methyl-2-benzothiazolinone hydrazone. This method 

proved to be very efficient and effective for PAT analysis and was used in several studies regarding 

PAT quantification in food (Martins et al. 2002; Welke et al. 2009b). Later, the application of TLC 

methods for PAT determination in apple juice has been proven to be very limited in terms of 

sensitivity and not used frequently anymore nowadays. 

Gas chromatography was also used for the analysis of PAT. The first gas chromatographic/ mass 

spectrometric (GC/MS) method for PAT detection in apple juice goes back to 1977 for PAT acetate 

(Ralls et al. 1977). Since then, numerous GC-MS analyses with electron impact ionization, using 

silylated PAT have been reported (Moukas et al. 2008). This technique also allowed the 

determination of non-derived PAT in apple juice in the negative chemical ionization mode (Roach 

et al. 2000).  

The GC-MS analytical method cited above is still used on a regular base in some laboratories for 

the determination of PAT. But the progress in research led to the appearance of High Performance 
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Liquid Chromatography (HPLC) and many publications followed describing HPLC procedures 

with more complicated clean-up protocols (Stray 1978). 

Reversed phase HPLC coupled to UV detection (absorption of PAT around 276 nm) was 

considered as the most proper method for PAT analysis having a high sensitivity, especially 

because PAT strongly absorbs UV. Macdonald et al. (2000) validated the effectiveness of an HPLC-

UV procedure determining PAT in clear and cloudy apple juice as well as in apple puree. Ethyl 

acetate extraction was applied for clear apple juice, while cloudy apple juice and apple puree were 

first treated with a pectinase enzyme before extraction. This method showed acceptable precision 

and has been considered as an AOAC Official Method. It has become by far the most appropriate 

and frequently used technique for the detection and quantification of PAT in food matrices 

(Murillo-Arbizu et al. 2008, Barreira et al. 2010).  

In later stages, De Clercq et al. (2016) reported a more sensitive HPLC-UV method, based on the 

Association of Analytical Communities (AOAC) Official method 2000. They validated the analysis 

of PAT on apple puree agar medium (APAM) (Baert et al. 2007), cloudy apple juice, and apple 

puree. This method was characterized by a detection limit of 3 – 4 μg/kg and a quantification limit 

of 5 – 8 μg/kg for APAM, apple juice, and puree. 

Interfering compounds such as 5-hydroxy-methylfurfural (HMF), a product generated during 

pasteurization of apple juice and presenting similar chromatographic properties as PAT, make it 

difficult to properly determine the amount of PAT in apple juice due to the overlapping peaks. 

Liquid chromatography coupled with mass spectrometry (HPLC-MS) has been described and used 

in some other studies and opposed to this problem (Bandoh et al. 2009; Christensen et al. 2009). 

LC-MS methods have proven to be more robust and reproducible than the GC-MS methods 

mentioned above. They can be coupled to different ion sources from which we can cite the 

electrospray ionization (ESI) source, often used. In numerous studies concerning the 

determination of PAT in apple juices by means of a solid-phase extraction-liquid chromatography-

mass spectrometry (SPE-LC-MS), a limit of detection that is almost 10 times higher compared to 

an HPLC with a UV detector was attained (Ito et al. 2004). The latter remains the most used 

methodology nowadays for PAT detection and a methodology, resolving the interfering 

compounds problem, has been optimized (see CHAPTER 2_Part 1).  

 

b. Other methods 

In addition to chromatography-based methodologies other innovative approaches, mostly 

methods based on specific (bio) sensors (e.g. immune-sensors based on antibody recognition), 

have been developed and allow determination of PAT. 
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Unlike other mycotoxins, the low molecular weight and electrophilic properties of PAT are two 

factors that make it hard to develop polyclonal antibodies directed against this molecule 

(Boonzaaijer et al. 2005). Nevertheless, a nano-porous silicon (NPS) based immuno-sensor was 

developed in 2013 by Starodub and Slishek to detect PAT. An antibody against PAT is immobilized 

on the NPS and reacts with the toxin. However, the effectiveness of the signal decreased with the 

increase of the PAT concentration making this method only effective for screening purposes. 

Recently, a new biosensor, based on urease inhibition by PAT, was proposed by Soldatkin et al. 

(2017). In fact, in this system, PAT interacts with sulfhydryl groups of the active site of the enzyme 

and inhibits the biological activity. The PAT concentration is quantified by determining the 

inhibitory potency of the enzymatic reaction. This method is characterized by a high sensitivity, 

selectivity and reproducibility. Guo et al. (2017) used, for the first time, the molecularly imprinted 

polymer (MIP) technology, an alternative to antibody-based sorbents and a replacement to 

immunoassays, combined with carbon dots, chitosan and Au (gold) nanoparticles modification for 

an electrochemical detection of PAT.  

Quartz crystal microbalance (QCM) technology was also used for PAT analysis (Funari et al. 2015). 

This technique consisted on tethering the antibodies side-up by means of the Photonics 

Immobilization Technique (PIT). A limit of detection of 140 nM was achieved for PAT using this 

method and the tests done on extract of apple puree showed an excellent specificity for PAT. 

Recently, Bagheri et al. (2018) have developed an Ag (silver) nanoparticle/flake-like Zn-based 

metal organic framework (MOF) nanocomposite (AgNPs@ZnMOF) allowing a selective 

determination of PAT and its measurement with no important interfering effects from other 

similar compounds. 

Further achievements have been made for PAT determination and detection. However, very useful 

methods for quantifying PAT in apple juice are not necessarily good methods in terms of 

sensitivity or specificity in other matrices such as fruit leathers. Hence optimization of methods 

allowing faster screening, higher sensitivity and selectivity in different food items remains needed. 

 

D.3 Techniques decreasing PAT concentration and its degradation products 

PAT is mainly found in mouldy (rotten) apples, although the presence of moulds does not 

necessarily confirm the presence of PAT, it only indicates the risk. PAT can be found in fruit 

showing traces of bruising after harvest or during storage in a controlled atmosphere and 

exposure to ambient conditions, with or without the development of deep rot. Rinsing the fruit or 

removing mouldy tissue prior to pressing does not necessarily remove all the PAT present in the 

fruit as it may have spread to visibly healthy tissue. Internal mould growth may also occur because 
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of intense invasion of apples by insects, which consequently may lead to PAT production in an 

apparently intact fruit.  

Due to the broad spectrum of PAT activities, its toxicity demonstrated by in vivo and in vitro 

studies, and the significant human exposure, different control strategies, that could be applied all 

along the apple juice processing steps have been developed (Figure2). 

A distinction can be made between (1) the strategies applied at early stages, i.e. control of 

pathogen development during harvest or storage of apples, and (2) strategies applied during 

further processing of apple juice.  

 

a. Strategies preventing PAT contamination of the raw material for apple juice  

The presence of PAT can be controlled and reduced not to exceed processing acceptable levels in 

food. Before processing, measures can be applied in the field and this by applying good agricultural 

practices, using insecticides / fungicides, at harvest or during apple storage. In fact, the harvest 

method influences the quality of apples and is the first stage in controlling PAT levels. The 

harvested fruit should be handled as gently as possible and efforts should be made to reduce 

physical damage at all stages of harvesting and transport procedures. Cider produced from seven 

varieties of apples harvested from the tree were PAT free, whereas cider produced from four 

varieties of apples picked up from the ground contained PAT concentrations ranging from 40.2 to 

374 µg/kg (Jackson et al. 2003). Washing and sorting have been considered effective post-harvest 

treatments in controlling fungal contamination and PAT production. Acar et al. (1998) have shown 

that a high-pressure fruit washing technique, eliminating the rotten parts of these fruits, 

significantly reduced the levels of PAT found in apple juice up to 54%. Storage at low temperatures 

combined with controlled atmosphere was shown to be an effective preventive strategy for the 

growth of P. expansum (Sitton and Patterson 1992). 

Chemical control of PAT-producing fungi that can contaminate fruit has been applied for ages. 

Currently, many fungicides have several levels of efficacy. Benzimidazole gives satisfactory results 

in reducing apple rot at a post-harvest stage and thus reducing PAT production. However, the 

massive non-recommended use has led to the emergence of a resistant strain of P. expansum 

(Rosenberger et al. 1991). 

Fludioxonil is another conventional fungicide that has been shown to have an impact on the 

different stages of the life cycle of P. expansum. The study of its activity on decay formation in 

Empire and Gala apple cultivars suggests that this compound could be a good alternative to other 

fungicides in post-harvest control of blue mould of apple (Errampalli 2004). The use of antifungal 

agents of natural origin has given satisfactory results as well. Propolis, a natural honeybee 

product, can be used as a natural antifungal agent for P. expansum. Silici and Karaman (2014) have 
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shown that this natural product can inhibit the growth of the fungus, therefore preventing PAT 

production. 

 

b. Strategies degrading PAT in apple juice 

The methods described above help to prevent rot development in stored apples. They require 

intensive work and are often prone to failure. In addition, a lot of 1,000 apples containing a single 

apple contaminated with P. expansum may be enough to have a PAT concentration exceeding the 

maximum acceptable level (Salomão et al. 2009). The quality of the harvested apples affects the 

overall quality of finished apple products. In this chapter, physical, chemical and biological 

practices that may affect the PAT concentration in apple juice have been categorized. However, 

we should notice that most of these practices are indications from research studies and that 

treatments can have an impact on the nutritional and organoleptic quality of the final product as 

well. 

 

i. Physical treatments 

Clarification or filtration techniques are frequently used in the fruit juice manufacturing 

industries, initially applied to remove solid particles (Acar et al. 1998). However, these also 

potentially reduce the PAT level in liquid apple products. Adsorption on activated charcoal 

followed by filtration is the oldest physical treatment and is known to reduce PAT concentration 

(Huebner et al. 2000). Sands et al. (1976) have shown a reduction of PAT concentration (30 µg/ml) 

that was up to 91.36% in naturally contaminated cider by the addition of 5 mg/mL of activated 

charcoal. Even though this treatment is effective, its use is limited due to its negative effects on the 

organoleptic and physico-chemical properties of the apple juice (color, fumaric acid 

concentration, pH and brix) (Kadakal and Nas 2002). In addition, it remains an expensive process 

that can have a strong impact on the environment and regulatory aspects should be taken into 

account as well. 

The effect of γ-irradiation carried out by Cobalt-60 (Co-60), on the PAT concentration and on the 

chemical composition of apple juice showed a reduction of the mycotoxin in relation to the 

absorbed dose; 0.35 kilogray of γ-radiation resulted in a 50% reduction of the PAT concentration. 

However, irradiation of apple juice samples induced acceleration of non-enzymatic browning 

during storage (Zegota et al. 1988). Other studies aimed to unify methods capable of reducing PAT 

load while maintaining product quality. Germicidal UV irradiation has shown to have some 

efficacy in reducing PAT levels in clarified apple juice (Dong et al. 2010, Assatarakul et al. 2012, 

Zhu et al. 2013, Tikekar et al. 2014). However, it is not practical for unfiltered cider because of the 

high levels of suspended particles (initial turbidity level of 950 Nephelometric Turbidity Units or 
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NTU in unfiltered cider compared with 3 NTU in clear apple juice) that absorb or block the 

radiation before reaching the PAT molecules (Tikekar et al. 2014). UV radiation appeared to be 

effective without significant alterations in the chemical composition (i.e., pH, Brix, and total acids) 

and organoleptic properties of the final product (Dong et al. 2010). 

Other non-thermal methods, e.g. pulsed light and high hydrostatic pressure (HHP) treatments, 

have also been proposed for PAT degradation in food products. PAT reduction by pulsed light in 

McIlvaine buffer (0.1 M citric acid and 0.2 M Na2HPO4; pH 3.5), apple juice and apple puree was 

up to 85-95%, 78% and 51%, respectively (Funes et al. 2013). The degradation level depended on 

the pulsed light dose and the matrix evaluated. HPP showed to have a great potential in producing 

high-quality foods that were free from additives, had a fresh taste, were microbiologically safe and 

for which an extended shelf-life could be obtained (Patterson 2005). Hao et al. (2016) have 

evaluated the degradation of PAT in different juices that were exposed to HHP treatment. The PAT 

degradation level depended on the pressure applied as well as on the processing time and was 

positively correlated with the sulfhydryl group (such as proteins, enzymes and other components 

of cells) concentration of the juice. HHP is considered as a risk management tool controlling PAT 

in apple-based beverages, but the processing conditions and compositions of juice remain the two 

factors that control the amount of mycotoxin degradation. Avsaroglu et al. (2015) have studied 

the effect of pulsed-HHP (p-HHP) compared to HHP on the PAT concentration (5, 50 and 100 

µg/kg) in apple juice. They found that p-HHP was more effective at lower initial PAT 

concentrations, while HHP was more effective at higher initial PAT concentrations. 

 

ii. Chemical treatments 

Some chemical methods have also been found to be effective for PAT detoxification, on a 

laboratory level. 

The degradation of PAT by ammonisation and oxidation by potassium permanganate in acidic and 

basic environment/media were studied by Frémy et al. (1995). In an aqueous standard solution, 

treatments led to a 99.9% degradation of PAT. However, in acidic conditions/media, mutagenic 

residues were generated by the treatment. 

Sulphur compounds have also been used to detoxify food products due to the instability of PAT in 

the presence of these components. A study performed by Ough and Corison (1980) reported a 

50% reduction in PAT levels only 15 minutes after the application of 100 mg/kg of sulphur dioxide 

(SO2.) In contrast, Burroughs (1977) has shown that the affinity of PAT for SO2 is not very 

significant. A concentration of 200 mg/kg of sulphur dioxide (maximum allowed in apple juice and 

cider production) decreased the PAT level by only 12% in 24 hours. Such a contradiction between 

the two studies could be due to the difference between the samples and conditions.  
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Ascorbate (salt of AA) has been shown to accelerate the degradation of PAT in apple juice 

(Brackett and Marth 1979). The addition of AA or vitamin C (5%) to a contaminated apple juice 

(300 µg/kg PAT) reduced the level of contamination close to 80% after 15 days of storage at 4°C 

(Brackett and Marth 1979). More information about AA and its impact on PAT will be elaborated 

in the last part of this review.  

In addition to AA, Yazici and Velioglu (2002) have shown a significant reduction in PAT levels in 

apple juice concentrates treated with pyridoxine hydrochloride, thiamine hydrochloride and 

calcium D-pantothenate. Applying 2,500 mg/kg calcium-D-pantothenate resulted in a 94% 

reduction in PAT level with a good preservation of the quality parameters (such as turbidity, 

colour and clarity) of the product after 6 months at 22°C (Yazici and Velioglu 2002). In contrast, 

only 36% of PAT reduction was observed in the control sample of apple juice concentrates stored 

for 6 months at 4°C. Even if the results seem promising and satisfactory, the long incubation period 

may not be transferable to an industrial level. 

In addition, another chemical detoxification process involves the use of ozone (O3). According to 

McKenzie et al. (1997), the toxicity of PAT, cyclopiazonic acid, ochratoxin A, secalonic acid and 

zearalenone significantly decreased in aqueous equimolar (32 μM) solutions contaminated by this 

toxin following a treatment with O3 after 15 seconds, with no by-products detectable by high 

performance liquid chromatography (HPLC).  

To conclude, the toxicity of all these products cited above has not been fully evaluated and without 

this information their use cannot be considered. 

 

iii. Biological treatments 

Despite the results of the different chemical treatments discussed above, the global trend 

is now to reduce the use of chemicals and to develop alternative methods. A biocontrol step in 

apple juice, using microorganisms such as the yeast Saccharomyces cerevisiae (Guo et al. 2012a; 

Moss and Long 2002) or the gram-negative bacterium Gluconobacter oxydans (Ricelli et al. 2007) 

is one of these alternative methods. These methods generate degradation products such as E-

ascladiol (ASC-E), Z-ascladiol (ASC-Z) and desoxypatulinic acid (DPA) that are less toxic than the 

mycotoxin itself or even non-toxic (Tannous et al. 2017b; Zhu et al. 2015).  

Although biological methods are effective in detoxifying PAT, their use is limited to fermented 

products. During alcoholic fermentation of apple juice, PAT was reduced by 99% compared to only 

10% of reduction in unfermented apple juice (Stinson et al. 1978). In another study conducted by 

Moss and Long (2002) considering three commercial cider strains of S. cerevisiae, 51.4% of PAT 

was metabolized during active fermentative growth compared to 16% in the control, however 
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only under aerobic conditions. Polar degradation products were generated and corresponded to 

the isomers ASC-E and ASC-Z. 

In addition to microorganisms known to degrade PAT, others (e.g. Rhodosporidium paludigenum) 

have been described for their ability to adsorb this mycotoxin through their cell walls without 

degrading it (Hatab et al. 2012b; Zhu et al. 2015).  

Besides yeasts, bacteria can also affect the PAT concentration in juices. The bacterium 

Gluconobacter oxydans, originating from rotted apples containing PAT, caused up to 96% 

degradation of PAT in apple juices contaminated with 800 μg/mL of PAT (Ricelli et al. 2007).  

Some of the lactic acid bacteria (LAB) strains used in food processing are known to degrade PAT. 

These strains are especially favoured as they are considered as food-grade microorganisms. Heat-

inactivated LAB cells were shown to have a role in the adsorption of PAT (Wang et al. 2014; Hatab 

et al. 2012a; Fuchs et al. 2008). Of six LAB strains (Lactobacillus curvatus 21019,  

Lactobacillus rhamnosus 6133, L. rhamnosus 6224, Lactobacillus brevis 20023, Enterococcus 

faecium 20420 and E. faecium 21605) used in the study, the highest cell wall volume and specific 

surface area was attributed to L. brevis 20023 (LB-20023), which had the highest ability to adsorb 

PAT from aqueous solution (Wang et al. 2014). This adsorption capacity is linked to the 

polysaccharides and/ or protein functional compounds (C ̶ O/ OH/ NH functional groups) of cell 

walls (Wang et al. 2014; Guo et al. 2012b; Dalié et al. 2010). Bifidobacterium animalis VM 12 caused 

an 80% PAT reduction in a liquid medium (Fuchs et al. 2008) whereas a PAT reduction of 80.4 

and 64.5% in apple juice was obtained in the presence of L. rhamnosus 6224 and E. faecium 21605, 

respectively (Hatab et al. 2012a). 

 

c. Degradation products of PAT 

Numerous studies observed that PAT is degraded into compounds that are potentially less toxic 

(Castoria et al. 2011; Moss and Long 2002; Tannous et al. 2017b). Biodegradation products of 

mycotoxins are known for many years and they are generally recognized as less toxic than the 

original molecule, or even non-toxic. However, toxicity data are very limited compared to data on 

the toxin itself and hence, more research is needed.  

ASC-E is considered the predominant degradation product and a direct precursor of PAT as well 

(Tannous et al. 2017b). It was considered a mycotoxin because it preserves a quarter of the 

toxicity of PAT (Suzuki et al. 1971). ASC-Z is an isomer of ASC-E that is non-enzymatically 

catalysed by sulfhydryl compounds (Castoria et al. 2011; Sekiguchi et al. 1983).  

Tannous et al. (2017b) investigated the cytotoxic potential of ASC (E and Z isomers) in vitro for 

four human cell lines. Their analysis showed no evidence of the cytotoxicity of ASC at 

concentrations up to 100 µM. On the contrary, PAT tested under the same conditions and with the 
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same concentration altered negatively the proliferation of human cells. Another study done by 

Maidana et al. (2016), showed that high levels of PAT can induce mild toxic effects on intestinal 

mucosa while ASC seemed non-toxic to intestinal tissue. 

Besides ASC, DPA was also considered a degradation product of PAT. DPA was found to be slightly 

toxic for human lymphocytes at concentrations of 50 µM and 100 μM and over a 24-hour 

incubation period. However, 1 μM of PAT concentration was already enough to cause a decrease 

of approximately 30% of viable cells after 24 hours of incubation. The low toxicity of DPA is 

proposed to be a consequence of the hydrolysis of the lactone ring, enabling the molecule to 

interact with thiol groups (Castoria et al. 2011). Although ASC-E was shown to be the most stable 

isomer (Sekiguchi et al. 1983), this cannot be generalized. Sporobolomyces sp. IAM13481 

converted PAT to DPA and ASC. In this case, ASC-E was the transient metabolite, while DPA and 

ASC-Z were the final degradation products (Ianiri et al. 2013; Chen et al. 2017). 

In another study, DPA was found to be the major degradation product and ASC-E/Z were early 

transient ones (Castoria et al. 2011). 

Therefore, it appears that different mechanisms are involved in PAT degradation and that the 

degradation pathway is dependent on the organism used and conditions tested. 

 

D.4 PAT control steps during apple juice processing 

Ready-to-drink pasteurized apple juice can be obtained either by directly processing the fruits or 

by reformulating and diluting a concentrate of the juice to the desired soluble solid contents. 

Figure 13 adapted from Sant'Ana et al. (2008) illustrates the production of both types of apples 

juices. The diagram represents the general process, so some steps may be slightly different from 

one industry to another. The main purpose of this illustration is to be able to identify the possible 

hazards occurring at each step and to specify the critical control points (CCP). CCPs are specific 

steps in the food manufacturing which should be controlled in order to prevent, reduce, or 

eliminate the occurrence of a food safety hazard. Consequently, by defining these CCPs, control 

actions and preventive measures can be established. Some of the control points can be applied 

before industrial processing (e.g. in the field, at harvest, etc.) and are considered as preventive 

actions (see previous paragraph entitled “Strategies degrading PAT in apple juice”); others can be 

applied during or after processing and are considered more control actions as per the Hazard 

Analysis Critical Control Points (HACCP) system. In this section, the latter is specifically addressed. 

The main focus will be on the hazards related to the contamination of PAT. 

http://www.businessdictionary.com/definition/food.html
http://www.businessdictionary.com/definition/control.html
http://www.businessdictionary.com/definition/safety.html
http://www.businessdictionary.com/definition/hazard.html
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Figure 13 Apple juice processing steps adapted from Sant’Ana et al. (2008) 

Based on the flow diagram (Figure 13), five steps are considered as CCPs related to fungal 

contamination and for PAT hazards, during the apple juice production. 

- A first CCP is the post-harvest step in between apple picking and apple transportation. As 

described in the Codex (2003), apples should be properly stored maximum 18 h after 

harvest. During transportation and reception, the risk of increasing PAT contamination 

remains low especially for short distances, but injured apples can be more susceptible to 

fungal development (FAO 2003). A study of Sydenham et al. in 1977, demonstrated that 

PAT levels increased from 90 to 2,445 ppb in apples stored in an open area for an extended 
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period of 33 days before processing. A more recent study of Baert et al. (2012) developing 

a quantitative risk assessment model and evaluating different strategies for the reduction 

of PAT in contaminated apple products, distinguished between the first storage step cited 

and the deck storage step occurring between delivery of apples to the apple juice producer 

and the processing of apples. It indicated that the duration of deck storage should be 

considered as another CCP since different extrinsic and intrinsic parameters (e.g. 

temperature, aw, pH, etc.) affect the growth of moulds and PAT production at this step.  

- A second CCP is the step-in which fruits are selected, sorted and debris is removed. The 

selection step consists of excluding or discarding damaged or rotten apples. Sydenham et 

al. (1995) showed that washing and removal of rotten and damaged fruit by hand before 

processing significantly reduced the concentration of PAT in the juice from 920 to 55 ppb, 

while PAT levels in the rotten/damaged fruit fractions were up to 2,335 ppb. Washing the 

fruits and sorting them reduced the levels of PAT from 90 to 75 and 55 ppb respectively. 

Trimming up to 2 cm around the rotten area is believed to be enough to remove the toxin 

(Rychlik and Schieberle 2001; Marin et al. 2006a; Baert et al. 2012). Still the trimming 

depends on the depth of the rotten area and the size of the apple. 

- A third CCP is filtration. It is a step that consists of the removal of fine, PAT-rich particles 

that are present in suspension in the juice. As described by Acar et al. (1998), conventional 

clarification by means of a rotary vacuum pre-coat filter and ultrafiltration using 

membrane filters resulted in a PAT loss of 39% and 25%, respectively. More studies need 

to be done in order to see if this step could be applicable in the production of cloudy apple 

juices. 

- Pasteurization is considered as another CCP in the apple juice production chain especially 

because it could inhibit fungal growth and destroy spores. Heat treatment is mostly 

applied for the preservation of food (Fellows 2009). As per the FDA, it consists on heating 

the apple juice to a certain temperature (at least 71.1°C) and for a length of time (at least 

6 seconds) allowing the destruction of most of the organisms that might develop. Flash 

pasteurization is a rapid heating technique at a temperature higher than 88°C for 25 to 30 

sec. Heat treatments techniques for apple juices have been described many times before 

(Sant’Ana et al. 2008; Ioi et al. 2017). 

The use of thermal treatments to reduce the risk of PAT has been questioned due to its 

resistance to heat (Ioi et al. 2017). The stability of PAT in pasteurized apple juice was 

evaluated by several researchers (Scott el al. 1968; Kadakal et al. 2002). Results showed a 

PAT reduction that goes up to 50% when spiked clear apple juice was pasteurized for  

20 min at 80°C and a reduction of 13.4% of PAT after pasteurization of clear juice for 10 
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sec at 90°C. Kadakal et al. (2003) showed that the concentration of PAT in the apple juice 

samples decreased when the heating temperature increased. Heating at 90 and 100°C for 

20 min resulted in reductions in PAT concentration of 19 and 26%, respectively. However, 

a study of Kubacki (1986) reported that PAT was stable at 80°C for 30 min in apple juice, 

and a more severe treatment of 120°C for 30 min was required to observe PAT reduction. 

Heat treatment may result in the reduction of the PAT concentration, but it does not 

completely eliminate its presence in contaminated juices. Different parameters affect the 

efficiency of the treatment applied and differ from one study to another. At first, the origin 

of PAT added (e.g. pure PAT standard vs. PAT-contaminated apple mash obtained by 

inoculation by Penicillium expansum) and tested in each research work should be 

considered. Then other parameters such as the temperature applied and time of the 

treatment, the concentration of sugars and pH of the apples, as well as the characteristics 

of the apple product (clear apple juice, cloudy one, apple cider, etc.) could affect the results 

obtained. Some of the molecules present in the apples can interact with PAT and either 

make it unstable or reinforce its stability (Welke et al. 2009a).  

- Cooling and cold storage of apple juices are also considered as CCPs when applied, even 

though they do not seem to have an important effect on the PAT concentration but rather 

on the fungal growth. After pasteurization, some industries tend to cool the juice before 

filling while others go through a hot filling process followed by cold storage. Cross-

contamination by PAT or moulds should be avoided during these filling step. If the cooling 

step is applied, it should be carefully monitored. This step should be performed under 

sterile aseptic conditions and as fast as possible to reduce deterioration by microbial 

growth. No studies show that PAT concentration is affected during this step. In freshly 

extracted, unpasteurized apple juice, cooling should be applied within 18 h at a 

temperature varying between 0 and 4.4°C in order to reduce the possibility of 

fermentation (WFLO, 2008). In pasteurized apple juice, cooling should be performed 

between 2°C and 8°C. When it comes to the storage step, juices should be stored at the 

right temperature (not exceeding 5°C). Even though at this stage the product must be 

sterile, i.e. free of microorganisms, one cannot neglect the fact that heat-resistant fungi 

capable of producing PAT (or other toxins), may have survived the pasteurization (e.g. 

Byssochlamys fulva capable of resisting at temperature of 87°C for 30 min in fruit juices 

are luckily not able to produce PAT (Puel 2007), but other metabolites have been reported 

to be produced by B. fulva such as byssochlamic acid and byssotoxin A (Tournas 1994; 

Sant’Ana et al. 2010b). However, ascospores of Byssochlamys nivea, a PAT producing 

species, are inactivated by temperatures above 60°C (Dombrink-Kurtzman and Engberg 
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2006). When storing pasteurized juices that are ready to be commercialized at room 

temperature, these conditions allow fungus reactivation and multiplication (Sant’Ana et 

al. 2008). 

There are other studies that showed the necessity of proper storage of apple juices and 

apple juice concentrates. Buys et al. (2013) found that the storage time affected the 

stability of PAT in clear apple juice to which PAT was added exogenously showing a 

gradual decrease in the PAT concentration as the storage period progressed. After 28 days 

of storage, PAT appeared to be more stable at 4°C than at ambient or accelerated shelf-life 

temperatures. In another study on apple juice concentrates, PAT was reduced within 

ranges of 45-64% and 66-86%, after 1 month of storage at 22°C and 30°C, respectively, 

and levels of PAT were below detectable limits after 4 months of storage at both 

temperatures (Koca et al. 2005). The PAT reduction depends on storage time and 

temperature, and on its initial concentration in the product (Koca et al. 2005; Buys et al. 

2013).  

  

To conclude, different steps in the production chain may contribute to the reduction of PAT in 

apple juice. However, the reduction is not always enough to completely eliminate the toxin. This 

means that the selection of raw materials for apple juice production is very critical and should 

happen in a proper way in order to obtain apple juices with PAT levels below the detection limit. 

Each step of the HACCP approach should be respected and monitored to obtain the desired food 

item at the end. 

 

 

In the following, focus is put on AA and its effect on PAT because of its presence in fruits and 

vegetables and this compound is already used on an industrial level.  

 

a. Identity of AA 

AA also known as vitamin C (Figure 14) is represented by the molecular formula C6H8O6 and a 

molecular weight of 176.124 g/mol. The most commonly used names assigned to it are as follows: 

vitamin C, L-AA, 3-keto-L-gulofuranolactone, 3-oxo-L-gulofuranolactone and L-threo-hex-2-enoic 

acid gamma lactone. Sodium L-ascorbate and calcium L-ascorbate are, respectively, the sodium 

and calcium salts of L-AA. AA is soluble in water and has the capacity to help the human body 

suppress bacterial infections and form collagen in teeth, bones, etc. This vitamin is found in fruits 

(for example citrus fruits, banana, apples, etc.) and vegetables (such as beetroot, spinach, cabbage, 

D.5 Ascorbic acid 
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etc.), but it cannot be produced nor stored in the human body. AA and its conjugated base 

(ascorbate anion) have long been known for their antioxidant properties (Stadtman 1991). 

 

Figure 14 Chemical structure of ascorbic acid 

To date, AA and its salts are authorized as food additives in the European Union except for 

processed cereal-based foods and baby foods for infants and young children (EFSA NDA Panel, 

2013). 

The FAO/WHO (2004) concluded that 1 g/day of vitamin C is the upper limit of a healthy 

consumption, and higher doses may cause some negative gastrointestinal effects. 

Numerous studies have linked the consumption of large quantities (3 to 4 g/day) of AA with 

adverse health effects e.g. metabolic acidosis, kidney and renal stones, hyperglycemia, 

gastrointestinal disturbances (diarrhea, nausea and abdominal cramps), conditioned need, 

prothrombin, disturbances in serum cholesterol, destruction of vitamin B12 and sterility (Barness 

1975). Nevertheless, all these data cannot deny the need for a sufficient amount of vitamin C in a 

balanced diet to improve human health. 

To conclude, AA, sodium ascorbate and calcium ascorbate are authorized EU food additives 

(Regulation (EC) No 1333/2008), evaluated by JECFA in 1981 (a and b). No indication of genotoxic 

and/or carcinogenic risks was observed for the majority of its degradation products either (EFSA, 

2015). 

 

b. Methods for the detection and determination of AA 

Since 1985, numerous studies have been conducted to determine AA in food or pharmaceutical 

products (Pachla et al. 1985). Most of the methods applied were based on HPLC. A dual detection 

system, after HPLC separation, with direct detection of AA and indirect fluorometric detection of 

dehydroascorbic acid (DHA) after a post-column O-phenylenediamine derivatization, was used to 

assess the amount of vitamin C in food and plasma samples (Kall and Andersen 1999). Later, an 

innovative analytical HPLC technique coupled to a fluorometric detector and determining AA, 

DHA, isoascorbic acid and isodehydroascorbic acid in foods was developed (Bognár and Daood 

2000). Fontannaz et al. (2006) described a HPLC-UV method that quantifies total AA (AA and its 
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oxidized form, DHA) and checks the presence of isoascorbic acid in fortified food products, 

premixes and duomixes. Ullah et al. (2012) have developed and validated a simple and rapid RP-

HPLC method with a UV-VIS detector L-2420 that estimates the actual amount of vitamin C present 

in packaged juices. Their method appeared to be accurate and useful for a variety of beverages. 

 

c. Factors impacting the stability of AA 

Studies have shown that AA can undergo degradation in aqueous environments and that many 

factors, e.g. pH, temperature, light, concentration and matrix composition, are involved in this 

process. Various ways by which we handle fruits or vegetables could also have an impact on the 

concentration of this vitamin: peeling an apple might result in the loss of 8 to 25% of its AA 

concentration and cutting food into pieces could exposure them to air, decreasing by that AA 

retention (Allen et al. 2006; Gil et al. 2006). 

In the presence of oxygen, many degradation products, e.g. threonic, oxalic, glyceric and glyoxylic 

acids, as well as threose, could be identified by Gas Chromatography Mass Spectrometry (GC-MS) 

(Shin and Feather 1990; López and Feather 1992). 

Bode et al. (1990) used HPLC to assess the decomposition of the oxidized form of vitamin C, DHA. 

They showed that the decay of DHA to 2,3-diketogulonic acid was higher at high pH values (7-8) 

than at low ones (3-5), and that it increased with a temperature between 0 to 45°C. 

No indication of genotoxic and/or carcinogenic risk from the scientific literature has been 

described for any of the degradation products. 

 

i. Effect of heating  

The stability of AA has proven to be inversely proportional to temperature. It decreases with 

increasing temperature (Jeney-Nagymate and Fodor 2008) thus presenting a serious problem 

since a big quantity of this vitamin is lost during processing, storage and preparation (Davey et al. 

2000; Jeney-Nagymate and Fodor 2008). 

After heating AA in a model system (filtrate solution obtained from the extraction and 

homogenization of apples), its concentration decreased with increasing temperature. After 5 

hours of heating, AA losses were 7, 83 and 100% at 20°C, 45°C and 60°C, respectively (Chow et al. 

2011). 

Devic et al. (2010) subjected cubed samples of apples to osmotic dehydration and studied the 

effect of temperature on the different components present in it. They found that the ascorbic 

losses were temperature dependent: the loss was 30% after 15 minutes of osmotic dehydration 

of the apple cubes at 45°C, but reached 100% at 60°C. 
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Significant reduction of AA was observed by Radziejewska-Kubzdela and Biegańska-Marecik 

(2015) after heating blended beverages of apple juices and red cabbage (83% apple juice + 17% 

frozen red cabbage/or 17% red cabbage puree; and 98% apple juice + 2% freeze-dried red 

cabbage) at 90°C for 5 minutes. For apple juices to which frozen or freeze-dried red cabbage were 

added, 70 to 75% losses of AA occurred. For the juices and beverages to which red cabbage puree 

was added, the losses ranged from 30 to 40%.  

 
ii. Effect of storage  

Storage temperature, atmosphere and matrix have been shown to be the most important factors 

affecting vitamin C stability in foods and beverages. According to Steskova et al. (2006), higher 

vitamin C preservation was ensured at lower storage temperatures and degradation rate 

constants depended on the matrix. In liquid matrices and at comparable storage temperatures, 

higher degradation rates were found in milk than in fruit juices and drinks. Ajibola et al. (2009) 

also found that AA decreased gradually during storage, especially for temperature above 0°C.  

After storing apples at 1°C, at 1°C under ultra-low oxygen atmospheric conditions (ULO: 0.9% O2; 

1.2% CO2) and at 1°C under ULO after pre-treatment with 1-methylcyclopropene (1-MCP), a 

strong decrease in AA in apples was measured (loss up to ± 80%) (Kevers et al. 2011). In another 

study, Fawbush et al. (2009) showed a decrease in the ascorbic concentration in apples that were 

stored in air for a period between 4.5 and 9 months but no change of AA concentration was 

observed in apples stored under ULO. Fresh apples stored at 20°C, in a normal atmosphere 

simulating domestic storage, showed an ascorbate decrease of 75% after 7 weeks of incubation 

(Kevers et al. 2011). 

Oxygen also has been shown to affect the stability of AA. It is an important reaction partner in the 

intermediate temperature range. AA degradation decelerates in absence of a headspace oxygen 

(Verbeyst et al. 2013). However, the degradation of AA appears to be mainly anaerobic and no 

impact was observed when the oxygen concentration increased from 0.41 to 3.74 mg/L at 36°C 

(Robertson and Samaniego 1986). 

Rojas and Gerschenson (2001) studied the influence of many non-electrolytes (fructose, xylitol, 

glucose/mannitol mixture) and electrolytes (NaCl, KCl) on anaerobic L-AA degradation in an 

aqueous model system. D-fructose, which promotes a fast destruction of L-AA at processing 

temperatures (70, 80, 90°C) seems to enhance its stability at a temperature range of 24-45°C. 

Moreover, the addition of a humectant in the solution leads to a decrease in water activity and to 

a higher stability of vitamin C at storage temperatures. 
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Oey et al. (2006) studied the impact of concentration and concluded that vitamin C stability 

increases with a higher concentration of the vitamin and declines when increasing oxygen 

concentrations. The initial oxygen concentration is an important parameter to determine the 

proportion of aerobic degradation of vitamin C. 

 

d. PAT degradation in presence of AA 

AA has been proven to have an impact on PAT degradation and few studies have shown 

accelerated PAT degradation in the presence of AA (Fremy et al. 1995; Canas and Aranda 1996; 

Alves et al. 2000; Drusch et al. 2007).  

The study of Frémy et al. (1995) showed that no complete disappearance of PAT could be achieved 

after 92 hours of incubation with AA, although in other studies, AA concentrations of up to 100 

mg/kg appeared to reduce the PAT concentration of apple juice to non-detectable level (Canas and 

Aranda 1996). AA (482 mg/kg) was also able to reduce PAT concentration by 70% in an aqueous 

juice-like model system, compared to only 29-32% PAT reduction in samples not treated with AA 

(Drusch et al. 2007).  

Kokkinidou et al. (2014) confirmed previous results on PAT degradation by AA using a 

mathematical model system, namely a Weibull model. It not only described PAT degradation in 

the absence of AA, but also predicted its degradation when AA was added. Further research is 

needed using this model to validate its possible application to apple juice. Thermal 

processing/heat treatment schemes and post-processing/treatment storage conditions could be 

determined based on it, which would minimize PAT levels in apple juice. 

 

D.6 Conclusion 

PAT, a mycotoxin contaminating many food products, poses a food safety problem and represents 

a danger for consumer health. Different treatments, legally allowed to be applied within the food 

processing industry and capable of reducing PAT in food products, should be considered in the 

processing chain in order to increase safety of apple-based products. 

Among several strategies that have been developed so far, post-harvest treatments showed to 

control fungal contamination and PAT production, but these require intensive and laborious work. 

Furthermore, the massive (non-recommended) use of fungicides led to the emergence of resistant 

P. expansum strains. 

Therefore physical, chemical and biological treatments to degrade PAT in apple juice were 

studied. Some of the strategies proved to be very effective but affect the organoleptic and/or 

physico-chemical properties of the juice or negatively impact the environment, such as adsorption 

on activated charcoal. On the other hand, biological control methods using microorganisms 
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showed no significant impact on the juice quality characteristics and may be considered as 

alternative methods for PAT degradation, only that their use is limited to products that are 

fermented. 

The use of chemical agents exclusively for mycotoxin reduction, more specifically PAT reduction 

in apple products, is not allowed; even if some of them showed great impact on PAT degradation. 

Some studies using biological or chemical treatments shed the light on some degradation products 

that have been identified but some remain unknown yet. More data on their toxicity is needed. 

Finally, different steps in the production chain may contribute to the reduction of PAT in apple 

juice and several methods appeared to affect the fungal contamination and the PAT concentration. 

However, the reduction is not always sufficient to completely eliminate the toxin or prevent the 

PAT contamination from the beginning. This means that more control measures and safety checks 

should be applied starting from the field culture, to the harvest step, then to the storage step and 

arriving to the processing and transformation phase.  

More research is needed especially focusing on techniques already applied to decrease PAT 

concentration in food products to an acceptable level. In this respect, the application of AA already 

naturally present in apple juice seems to have particular future and should be evaluated.  
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Country 

Amount of 

samples 

positive/total 

Patulin levels (range) 

in positive samples 

(µg/kg) 

References 

Australia -/- - Sommer et al. 1974 

 -/- 5 - 646 Reddy et al. 2010 

Austria -/- - Moake et al. 2005 

 35/43 3 - 39 Tangni et al. 2003 

Belgium 22/177 6 - 123 Baert et al. 2006 

 32/49 >50 Gillard et al. 2009 

 1/30 17 
de Sylos and Rodriguez-

Amaya 1999  

Brazil 4/100 3 - 7 Iha and Sabino 2008 

 -/16 15 - 46 Welke et al. 2009b 

 -/- - Scott et al. 1972 

Canada -/- - Moake et al. 2005 

 2/25 34 - 39 Zhou et al. 2012 

China 5/6 4 - 28 Vaclavikova et al. 2015 

Czech 

Republic 
21/84 30 - 16400 

Lindroth and Niskanen 

1978 

Finland -/- - Sommer et al. 1974 

France 27/27 <610 Barkai-Golan 2008 

 12/12 6 - 26 
Rychlik and Schieberle 

1999 

Germany 29/29 1 - 12 Moukas et al. 2008 

Greece 1/36 >25 Boonzaaijer et al. 2005 

Holland 10/40 24 - 1839 Saxena et al. 2008 

India 47/65 15 - 285 Cheraghali et al. 2005 

Iran 21/65 ND-285 Cheraghali et al. 2005 

 54/58 11 - 122 Karimi et al. 2008 

 64/72 15 - 151 
Forouzan and Madadlou 

2014 

 17/64 11 - 191 Rahimi and Jeiran 2015 

 6/15 1 - 56 Ritieni 2003 

Italy 28/57 1 - 69 Piemontese et al. 2005 

 25/53 <48 Spadaro et al. 2007 
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Country 

Amount of 

samples 

positive/total 

Patulin levels (range) 

in positive samples 

(µg/kg) 

References 

Italy 12/22 1 - 22 Versari et al. 2007 

 -/- 0 - 1150 Beretta et al. 2000 

 15/76 1 - 46 Ito et al. 2004 

Japan 9/188 6 - 15 
Watanabe and Shimizu 

2005 

 9/30 1 - 15 Kataoka et al. 2009 

 1/13 27 Lee et al. 2014 

Malaysia 28/68 <42 Barreira et al. 2010 

Portugal 5/9 1860 to 45470 Cunha et al. 2014 

 41/50 <102 Oroian et al. 2014 

Romania -/120 57 - 104 Gashlan 2009 

 12/50 0.7–101.9 Oroian et al. 2014 

Saudi Arabia -/- - Brown and Shephard 1999 

Serbia 65/148 <10 Torović et al. 2017 

South Africa 4/17 5 - 45 Legott and Shephard 2001 

 5/22 10 - 45 Moake et al. 2005 

 3/24 3 - 9 Cho et al. 2010 

South Korea 82/100 <170 Prieta et al. 1994 

Spain 5/17 2 - 51 Gonzàlez-Osnaya et al. 2007 

 30/71 <25 Cano-Sancho et al. 2009 

 66/100 1 - 119 Murillo-Arbizu et al. 2009 

 2/28 3 - 6 Marín et al. 2011 

 21/47 <37 Piqué et al. 2013 

 4/12 2 - 25 Marsol-Vall et al. 2014 

 5/39 <50 Thuvander et al. 2001 

Sweden -/- - Moake et al. 2005 

 12/105 15 - 40 Lai et al. 2000 

Taiwan 11/30 0 - 167 Zaied et al. 2013 

Thailand ND/40 
<maximum residue limit 

EU 
Poapolathep et al. 2017 

Tunisia 12/42 4 - 122 Zouaoui et al. 2015 
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Country 

Amount of 

samples 

positive/total 

Patulin levels (range) 

in positive samples 

(µg/kg) 

References 

Tunisia 215/215 7 - 376 Gökmen and Acar 1998 

Turkey -/482 <376 Gökmen and Acar 1998 

 27/45 19 - 733 Yurdun et al. 2001 

 12/30 3.2 - 106.9 Demirci et al. 2003 

 23/40 10 - 350 Brackett and Marth 1979 

USA 8/13 44 - 309 Moake et al. 2005 

  -/- 8.8-2700.4 Harris et al. 2009 

Table 3 Reports regarding worldwide contamination of apple juice by patulin (- = not specified) 
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Fresh or 

processed food 

products 

Country 

Amount of 

positive samples 

(%) 

Patulin levels (range) in positive 

samples 
References 

Apple England -/- - Brian et al. 1956 

 New Zealand -/- - Walker 1969 

 Canada -/- - Harwig et al. 1973 

 Canada 45.9 154 - 136154 µg/kg  Harwig et al. 1973 

 

United States 

(Washington/ California/ 

Michigan) 

-/- 
7-100 mg/kg (in vivo);  

140-800 mg/kg (in vitro) 
Sommer et al. 1974 

 Canada -/- 
80 mg/kg (in vivo);  

660 mg/kg (in vitro) 
Sommer et al. 1974 

 Australia -/- 
7 mg/kg (in vivo);  

660 mg/kg (in vitro) 
Sommer et al. 1974 

 United States -/- - Ware et al. 1974 

 Brazil -/- 150 - 267 µg/kg  de Sylos and Rodriguez-Amaya 1999 

 Egypt 100.0 150000 - 1000000 µg/kg  Hasan 2000 

 Italy 47.6 1 - 44572 µg/kg  Piemontese et al. 2005 

 Spain -/- 0 Marin et al. 2006 

 Brazil 91.4 1010 - 120400 µg/kg  Celli et al. 2009 

 United States 0.4 8.8-417.6 µg/kg  Harris et al. 2009  

 Italy -/- - Beretta et al. 2000 
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Fresh or 

processed food 

products 

Country 

Amount of 

positive samples 

(%) 

Patulin levels (range) in positive 

samples 
References 

 Portugal -/- 1-70.6 µg/kg  Cunha et al. 2014 

 Czech Republic 33.3 415 µg/kg  Vaclavikova et al. 2015 

Apple cider Burlington, Vermont 9.0 <45000 µg/kg  Wilson and Nuovo 1973 

 Georgia -/- 244 - 3993 µg/kg  Wheeler et al. 1987 

 South Africa 25.0 5 - 10 µg/kg  Leggott and Shephard 2001 

 Belgium 42.9 3 - 6 µg/kg  Tangni et al. 2003  

  -/- - Moake et al. 2005 

 Italy 25.0 1 - 4 µg/kg  Piemontese et al. 2005 

 Michigan 18.7 - Harris et al. 2009  

 Czech Republic 100.0 12 - 48 µg/kg  Vaclavikova et al. 2015 

Apple jam Finland 100.0 - Lindroth and Niskanen 1978 

 Argentina 23.1 17 - 39 µg/kg  Funes and Resnik 2009 

 Tunisia 33.3 5 - 554 µg/kg  Zouaoui et al. 2015 

Apple juice    see Table 3 

Apple leather Iran 100.0 7 - 2559 µg/kg  Montaseri et al. 2014 

Apple puree South Africa 35.0 5-20 µg/kg  Legott and Shephard 2001 

 Italy 50.0 16 - 74 µg/kg  Ritieni 2003 

 Valencia, Spain 33.3 8 - 28 µg/kg  Gonzàlez-Osnaya et al. 2007 

 Argentina 50.0 22 - 221 µg/kg  Funes and Resnik 2009 
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Fresh or 

processed food 

products 

Country 

Amount of 

positive samples 

(%) 

Patulin levels (range) in positive 

samples 
References 

 Portugal 7.0 1.2-5.7 µg/kg  Barreira et al. 2010  

 Catalonia, Spain 13.0 6 - 50 µg/kg  Piqué et al. 2013 

 Tunisia 20.0 2 - 77 µg/kg  Zouaoui et al. 2015 

 Italy -/- 1.92 µg/kg  Sarubbi et al. 2016 

 Serbia 16.7 <10 µg/kg  Torović et al. 2017 

Apricot United States (California) -/- 
ND-18 mg/kg (in vivo);  

<10-610 mg/kg (in vitro) 
Sommer et al. 1974 

Apricot juice 

(concentrate) 
Greece 100.0 12 - 15 µg/kg  Moukas et al. 2008 

 Italy 25.9 2 - 32 µg/kg  Spadaro et al. 2008 

 Thailand ND/40 <maximum residue limit EU Poapolathep et al. 2017 

Baby food Spain 0.0 - Prieta et al. 1994 

 South Africa 37.5 5 - 20 µg/kg  Leggott and Shephard 2001 

 Italy 20.0 13 - 18 µg/kg  Ritieni 2003 

 Italy 25.0 1 - 13 µg/kg  Piemontese et al. 2005 

 Greece 100.0 4 - 7 µg/kg  Moukas et al. 2008 

 Catalonia, Spain 33.9 <10 µg/kg  Cano-Sancho et al. 2009  

 Portugal 6.6 3 - 6 µg/kg  Barreira et al. 2010  

 Italy -/- - Beretta et al. 2000 
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Fresh or 

processed food 

products 

Country 

Amount of 

positive samples 

(%) 

Patulin levels (range) in positive 

samples 
References 

 Italy 65.8 3 - 9 µg/kg  Bonerba et al. 2010  

 Tunisia 28.0 0 - 165 µg/kg  Zaied et al. 2013 

 Czech Republic 8.3 2 - 5 µg/kg  Vaclavikova et al. 2015 

 Italy -/- - Sarubbi et al. 2016 

Beer with 35% 

apple concentrate 
Spain 33.3 10 µg/kg  Marsol-Vall et al. 2014 

Bell peppers Belgium 11.4 - Van de Perre et al. 2014 

Blackcurrant jam  -/- - Moake et al. 2005 

Blackcurrant juice Germany 100.0 <1 µg/kg  Rychlik and Schieberle 1999 

Black mulberry Turkey 70.0 6.8–157.4 µg/kg  Demirci et al. 2003 

Blueberry jam  -/- - Moake et al. 2005 

Bread  -/- - Moake et al. 2005 

Cereal based food Portugal 75.0 0-4.5 µg/kg  Assuncao et al. 2016 

Semi hard cheese Italy 28.0 15-460 µg/kg  Pattono et al. 2013 

Cherry Turkey 90.0 5.6–113.3 µg/kg  Demirci et al. 2003 

Cherry juice Germany 100.0 <1 µg/kg  Rychlik and Schieberle 1999 

  -/- - Moake et al. 2005 

Corn  -/- - Moake et al. 2005 
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Fresh or 

processed food 

products 

Country 

Amount of 

positive samples 

(%) 

Patulin levels (range) in positive 

samples 
References 

Dairy products 

(apple-based) 
Valencia, Spain 50.0 4 - 15 µg/kg  Gonzàlez-Osnaya et al. 2007 

Dried figs Turkey -/- 5 - 152 µg/kg  Karaca and Nas 2006 

Dried fruits China 0.5 - Wei et al. 2017 

Figs Turkey -/- 39.3-151.6 µg/kg  Karaca and Nas 2006 

Fruit juices Germany 100.0 1 µg/kg  Rychlik and Schieberle 1999 

 South Africa 33.3 5 µg/kg  Leggott and Shephard 2001  

 Italy 26.8 2 - 55 µg/kg  Spadaro et al. 2007 

 Greece 100.0 3 - 11 µg/kg  Moukas et al. 2008 

 Italy 31.0 2 - 25 µg/kg  Spadaro et al. 2008 

 Tunisia 40.0 0 - 125 µg/kg  Zaied et al. 2013  

 Iran 2.5 5- 190.7 µg/kg  Rahimi and Jeiran 2015 

 Tunisia 50.0 10 - 56 µg/kg  Zouaoui et al. 2015  

Fruit leather 

(apple- or pear-

based) 

USA & China 38.9 4 - 58 µg/kg  Maragos et al. 2015 

Fruit salad Czech Republic 100.0 14 µg/kg  Vaclavikova et al. 2015 

Grape United States (California) -/- 
ND-80 mg/kg (in vivo);  

65-560 mg/kg (in vitro) 
Sommer et al. 1974 
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Fresh or 

processed food 

products 

Country 

Amount of 

positive samples 

(%) 

Patulin levels (range) in positive 

samples 
References 

Grape juice Germany 38.2 - Altmayer et al. 1982 

 Germany 100.0 5 µg/kg  Rychlik and Schieberle 1999 

  -/- - Moake et al. 2005 

 South Korea 16.7 5 - 16 µg/kg  Cho et al. 2010 

 Iran 15.0 5 - 17 µg/kg  Rahimi and Jeiran 2015 

 Thailand ND/40 <maximum residue limit EU Poapolathep et al. 2017 

Hazelnuts Turkey -/- 16.6-92.4 µg/kg  Ekinci et al. 2014 

Hawthorn 

beverages 
China 14.0 20 - 207 µg/kg  Li et al. 2007 

Hawthorn juice China 7.7 12 µg/kg  Zhou et al. 2012 

Kiwi fruits China 42.9 - Wang et al. 2017 

Lychee juice Malaysia 16.7 13 µg/kg  Lee et al. 2014 

Orange juice Germany 100.0 <1 µg/kg  Rychlik and Schieberle 1999 

 Greece 100.0 3 - 11 µg/kg  Moukas et al. 2008 

 South Korea 8.3 10 - 31 µg/kg  Cho et al. 2010 

Passion fruit juice  -/- - Moake et al. 2005 

Peach Brazil -/- 92 - 174 µg/kg  de Sylos and Rodriguez-Amaya 1999 

 Turkey 44.0 4.3–93.2 µg/kg  Demirci et al. 2003 
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Fresh or 

processed food 

products 

Country 

Amount of 

positive samples 

(%) 

Patulin levels (range) in positive 

samples 
References 

Peach juice 

(concentrate) 
Italy 6.7 2 - 5 µg/kg  Spadaro et al. 2008 

 Spain 26.7 9 - 21 µg/kg  Marín et al. 2011 

 Iran 10.0 5 - 35 µg/kg  Rahimi and Jeiran 2015 

 Thailand ND/40 <maximum residue limit EU Poapolathep et al. 2017 

Pear United States (California) -/- 
ND-80 mg/kg (in vivo);  

30-800 mg/kg (in vitro) 
Sommer et al. 1974 

 Brazil -/- 134 - 245 µg/kg  de Sylos and Rodriguez-Amaya 1999 

 Czech Republic 33.3 42 µg/kg  Vaclavikova et al. 2015 

Pear products Argentina 16.7 25 µg/kg  Funes and Resnik 2009 

 Tunisia 43.8 17 - 325 µg/kg  Zouaoui et al. 2015 

 Italy -/- 0.79 µg/kg  Sarubbi et al. 2016 

Pear juice 

(concentrate) 
 -/- - Moake et al. 2005 

 Italy 33.3 1 - 61 µg/kg  Piemontese et al. 2005 

 Italy 64.1 2 - 33 µg/kg  Spadaro et al. 2008  

 Spain 50.0 67 - 74 µg/kg  Marín et al. 2011  

 Iran 13.3 5 - 31 µg/kg  Rahimi and Jeiran 2015 

 Czech Republic 66.7 12 - 39 µg/kg  Vaclavikova et al. 2015  
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Fresh or 

processed food 

products 

Country 

Amount of 

positive samples 

(%) 

Patulin levels (range) in positive 

samples 
References 

 Tunisia 47.6 5 - 231 µg/kg  Zouaoui et al. 2015 

Pineapple juice 

(concentrate) 
 -/- - Moake et al. 2005 

 Greece 100.0 8 µg/kg  Moukas et al. 2008 

 Malaysia 16.7 33 µg/kg  Lee et al. 2014 

 Thailand ND/40 <maximum residue limit EU Poapolathep et al. 2017 

Pomegranate 

juice 
Iran 8.3 8 µg/kg  Rahimi and Jeiran 2015 

Raspberry Turkey 60.0 48–746 µg/kg  Demirci et al. 2003 

Red fruits (soft) Belgium 8.0 - Van de Perre et al. 2014 

Strawberry Turkey 80.0 3.2–572 µg/kg  Demirci et al. 2003 

Strawberry jam  -/- - Moake et al. 2005 

Sweet bell pepper Belgium 11.4 - Van de Perre et al. 2014 

Tomato Belgium 10.8 - Van de Perre et al. 2014 

Tomato products Portugal 35.7 3.22 to 47.72 µg/kg  Cunha et al. 2014 

 Italy -/- 7.15 µg/kg  Sarubbi et al. 2016 

White mulberry Turkey 66.7 32–426 µg/kg  Demirci et al. 2003 

Table 4 Reports regarding patulin occurrence in fresh and processed food products (- = not specified) 
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Summary of the study 

As described in the second section of the introduction, Penicillium expansum, the principal agent 

of the blue mould disease, is a destructive phytopathogen causing decay in apples during post-

harvest handling and storage. It is considered a major concern due to its wide spread occurrence 

and capacity to produce patulin (PAT), a well-known mycotoxin. As other major mycotoxins, PAT 

is the final product of enzymatic cascades where enzymes are activated at the same time and the 

newly synthesized products are metabolized consecutively by the next enzymes. This 

phenomenon is made possible thanks to the cluster organization of genes encoding for enzymes 

involved in the biosynthesis. These genes are often co-activated by a specific transcription factor 

located inside clusters. Although most of the studies on P. expansum have focused on PAT, the 

genome of this fungus exhibits other predicted secondary metabolite clusters (andrastin, 

communesin, chaetoglobosin, etc.), based on bioinformatics analysis and other specific studies. In 

filamentous fungi, the activation of specific transcription factors and by consequence the 

production of fungal secondary metabolites is controlled at a higher hierarchical level by 

transcription global factors encoded by genes not located in gene clusters. These genes regulate 

numerous physiological processes and generally respond to several environmental cues. Among 

them, the VeA factor is a component of the “velvet complex”, a protein complex responding to 

abiotic factors, and more particularly to light. Depending on fungal species, VeA is involved in 

different physiological processes such as development, asexual and sexual reproduction, 

secondary metabolism and virulence. 

How veA affects the virulence of P. expansum on apples and the secondary metabolism with special 

emphasis on the production of important secondary metabolites (PAT and citrinin) is still 

unknown. 

The first part of this experimental work focused on the in vivo and in vitro study and 

characterization of a global transcription factor veA. A null Pe∆veA mutant and a complemented 

Pe∆veA:veA strain were generated in P. expansum. A morphological study was done first indicating 

how veA could affect the development of the fungus. Then pathology studies performed on Golden 

Delicious cultivar indicated the implication of this gene in the virulence of the fungus. An 

expression of genes study also showed how veA could affect the secondary metabolism of  

P. expansum.  
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To conclude, our findings support the hypothesis that P. expansum secondary metabolism is 

modulated by the transcriptional regulator factor VeA contributing in part to the pathogenicity of 

the fungus. 
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SUMMARY 

Penicillium expansum, the causal agent of blue mould disease, 

produces the mycotoxins patulin and citrinin amongst other sec- 

ondary metabolites. Secondary metabolism is associated with 

fungal development, which responds to numerous biotic and abi- 

otic external triggers. The global transcription factor VeA plays a 

key role in the coordination of secondary metabolism and differ- 

entiation processes in many fungal species. The specific role of 

VeA in P. expansum remains unknown. A null mutant PeΔveA 

strain and a complemented PeΔveA:veA strain were generated in 

P. expansum and their pathogenicity on apples was studied. 

Like the wild-type and the complemented strains, the null mutant 

PeΔveA strain was still able to sporulate and to colonize apples, 

but at a lower rate. However, it could not form coremia either 

in vitro or in vivo, thus limiting its dissemination from natural 

substrates. The impact of veA on the expression of genes encod- 

ing proteins involved in the production of patulin, citrinin and 

other secondary metabolites was evaluated. The disruption of 

veA drastically reduced the production of patulin and citrinin on 

synthetic media, associated with a marked down-regulation of 

all genes involved in the biosynthesis of the two mycotoxins. 

Moreover, the null mutant PeΔveA strain was unable to produce 

patulin on apples. The analysis of gene expression revealed a 

global impact on secondary metabolism, as 15 of 35 backbone 

genes showed differential regulation on two different media. 

These findings support the hypothesis that VeA contributes to 

the pathogenicity of P. expansum and modulates its secondary 

metabolism. 

 
Keywords: apples, citrinin, pathogenicity, patulin, Penicillium 

expansum, secondary metabolism, veA. 
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INTRODUCTION 

Penicillium expansum is a ubiquitous fungus of soil origin that can 

be found on the peel of pome and stone fruits. During post- 

harvest processing and storage, this phytopathogen develops on 

wounds inside the fruit provoking maceration and spoilage. 

Penicillium expansum is the primary cause of blue mould and 

decay of apples, making them unfit for consumption and causing 

serious economic losses (Nunes, 2012). In addition, P. expansum 

produces a variety of toxic secondary metabolites, known as 

mycotoxins. Patulin, one of the main products of the secondary 

metabolism of P. expansum, is detected not only in fruits, but also in 

apple-based products. Patulin has several deleterious effects on 

human health (Assunç~ao et al., 2016; Puel et al., 2010; Zouaoui et 

al., 2016). As a result of its toxicity, the maximum permitted 

level of patulin is regulated in most European countries (EC 

Commission Regulation, 2006). 

In addition to patulin, P. expansum produces numerous sec- 

ondary metabolites and mycotoxins in vitro, such as citrinin, which 

has also been found in fruits (Martins et al., 2002). Citrinin has 

nephrotoxic and teratogenic effects on mammals and chickens, 

respectively (Ciegler et al., 1977). In addition to other secondary 

metabolites, P. expansum is able to synthesize roquefortine C 

(Andersen et al., 2004), chaetoglobosins (Andersen et al., 

2004), expansolides (Massias et al., 1990), fumaryl-DL-alanine 

(Birkinshaw et al., 1942), andrastin (Kim et al., 2012) and commu- 

nesins (Andersen et al., 2004). Although the ecological roles of 

secondary metabolites often remain unclear, some are involved in 

virulence during infection, defence against other microorganisms 

and communication (Macheleidt et al., 2016). For instance, patulin 

plays a role in pathogenicity during apple infection as a cultivar- 

dependent aggressiveness factor that promotes the colonization of 

apples (Snini et al., 2016). Genes encoding enzymes and pro- 

teins involved in the biosynthesis of secondary metabolites are 

often grouPeΔ into clusters. The patulin cluster comprises 15 

genes (patA–patO) (Li et al., 2015; Tannous et al., 2014) and the 

putative cluster of citrinin includes nine genes (Pexp_005510– 

Pexp_005590) (Ballester et al., 2015; He and Cox, 2016). A gene 

encoding a specific transcription factor, often located inside the 

cluster, activates all the genes in each cluster: patL (P. expansum) 

(Ballester  et  al.,  2015;  Snini  et  al.,  2016)  and mrl3/ctnA 
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(P. citrinum/P. expansum) (He and Cox, 2016; Li et al., 2017) for 

patulin and citrinin clusters, respectively. Bioinformatics analysis 

has shown that the genome of P. expansum contains other identi- 

fied or predicted clusters of secondary metabolites (Ballester 

et al., 2015; Nielsen et al., 2017). 

Growth, morphological development and the production of 

secondary metabolites are interconnected and controlled by 

global transcription factors encoded by genes located outside 

the biosynthesis gene clusters (Calvo et al., 2002). These genes 

respond to numerous environmental stimuli, including pH, oxi- 

dative stress, temperature, nitrate, carbon source, iron and 

light. Among them, VeA is a phosphoprotein that belongs to 

the Velvet family, which is composed of three other proteins: 

VelB, VosA and VelC. VeA is involved in the regulation of sev- 

eral cellular processes: morphogenesis, response to oxidative 

stress, light-dependent control of sexual or cleistothecial/sclero- 

tial formation, asexual development or conidiation and second- 

ary metabolism, but sometimes also virulence (Kim et al., 2002; 

Rauscher et al., 2016). In the dark, VeA is transported, together 

with VelB, to the nucleus, where they form a heterotrimer in 

association with LaeA, which acts as a positive regulator of sex- 

ual development and secondary metabolism (Kumar et al., 

2017a; Stinett et al., 2007). The disruption of the laeA gene in 

P. expansum leads to a drastic reduction in patulin (Kumar 

et al., 2017a). 

In most cases, VeA acts as a positive regulator of the biosyn- 

thesis of secondary metabolites, such as aflatoxin in Aspergillus 

parasiticus and Aspergillus flavus (Duran et al., 2007), as well as 

cyclopiazonic acid and aflatrem in A. flavus (Calvo and Cary, 

2015), and ochratoxin in Aspergillus carbonarius (Crespo-Sempere et 

al., 2013). 

How veA affects the virulence of P. expansum in apples and its 

secondary metabolism remains unknown. In the present study, a 

null mutant PeΔveA strain and a complemented PeΔveA:veA 

strain were generated in P. expansum. Pathogenicity was studied 

on apples. Special emphasis was placed on patulin and citrinin 

production in vitro. The expression of genes belonging to the two 

corresponding clusters was analysed. The study was then 

extended to the expression of all genes encoding backbone 

enzymes of secondary metabolites found in the genome of 

P. expansum. 
 
 

RESULTS 

A PeΔveA mutant was generated by replacing the veA gene with a 

hygromycin resistance marker (Parts S1 and S2, see Supporting 

Information). This mutant was used to characterize the role of 

VeA, to understand how this protein affects the virulence of 

P. expansum and how it influences the production of several sec- 

ondary metabolites. 

Deletion of veA affects in vitro growth, 

macroscopic and microscopic morphology 

After 7 days of incubation, no difference was observed between 

the radial growth of the wild-type NRRL 35695 (WT), null mutant 

PeΔveA and complemented PeΔveA:veA strains, with colonies of 

42 ± 2, 44 ± 3 and 43 ± 2 mm in diameter on potato dextrose 

agar (PDA) and of 39 ± 2, 37 ± 1 and 38 ± 3 mm on Czapek Dox 

agar (CzA), respectively. The diameters of the colonies of the WT, 

null mutant PeΔveA and complemented PeΔveA:veA strains 

grown on malt extract agar (MEA) were 37 ± 1, 41 ± 2 and 38 

± 1 mm, respectively. The diameter of the null mutant colony was 

thus slightly larger (10%) on this medium. The diameters of the 

colonies of the WT, null mutant and complemented strains were 

50 ± 4, 44 ± 3 and 52 ± 5 mm, respectively, on Czapek glucose 

agar (CGA). The growth of the mutant PeΔveA strain 

decreased by 12%. 

The morphological aspects of the WT and complemented 

strains differed from those of the null mutant strain. Macroscopi- 

cally, all the colonies displayed the usual P. expansum blue–green 

colour in conidial areas. A marked white margin was observed in 

both WT and complemented strains, but was lacking in the null 

mutant strain. A bright yellow ring was observed on the edge of 

the colony on MEA and CzA (Fig. 1A and Part S3, see Supporting 

Information). Radial furrows were also more pronounced and 

complete in the null mutant strain than in the WT strain (Fig. 1A 

and Part S3). With regard to texture, the colonies of the null 

mutant strain presented reduced fasciculation compared with the 

other strains (Fig. 1A and Part S3). The surface of the null mutant 

colony thus appeared planar. The texture was velutinous with 

conidiophores arising from submerged hyphae, but no coremia, 

whereas the surface of the other strains displayed aggregation of 

conidiophores that gave the surface a granular appearance. In col- 

onies of WT and complemented strains, coremia were present on 

all media (Fig. 1A and Part S3). One other particularity of the null 

mutant was its inability to produce exudates whatever the 

medium used (Fig. 1A and Part S3). 

Microscopically, the structures of the strains also presented some 

differences. The WT strain had terverticillate conidiophores with 

branches tied to the main axis (Fig. 1B). The null mutant strain 

frequently presented biverticillated conidiophores with inflated 

metulae (Fig. 1B). The null mutant also showed abnor- mally 

larger conidia that resembled ramoconidia (data not 

shown). 

The macroscopic and microscopic characteristics of the 

complemented strain resembled those of the WT strain (Fig. 1B). 

 
Deletion of veA affects colonization, development 

and dissemination 

To assess the impact of veA deletion, freshly picked Golden 

Delicious apples were inoculated with the WT, PeΔveA and 



Role of veA in Penicillium expansum 

M O L E C U L A R  P L A N T  P A T H O L O G Y  ( 2 0 1 8 )  1 9 ( 8 ) ,  1 9 7 1 –1 9 8 3  V  C  2 0 1 8  B S P P  A N D  J O H N  W I L E Y  &  S O N S  L T D  

 

101  

 
 
 
 

 
 
 
 
 
 
 
 
 
 

 
Fig. 1 Morphological appearance 

of the wild-type NRRL 35695 (WT), 

null mutant PeΔveA and 

complemented PeΔveA:veA 

strains. (A) Macroscopic 

appearance and observations  
under a stereomicroscope (12×) 

of colonies after 10 days of 

culture at 25 °C in the dark on 

potato dextrose agar (PDA) and 

malt extract agar (MEA) 

inoculated with 104 spores. (B) 

Microscopic appearance of 

conidiophores and conidia 

(400×) after 7 days of culture at 25 

°C in the dark on MEA inoculated 

with 104 spores. The white bars 

represent 10 mm. 
 

PeΔveA:veA strains. During the first 4 days post-inoculation (dpi), the 

WT and null mutant strains showed the same development pro- file. 

A decrease in the speed of development of the null mutant strain 

was observed from 5 dpi. The development profile of the 

complemented PeΔveA:veA strain resembled that of the WT strain 

(Fig. 2A). Growth rates calculated from growth curves (Fig. 2B) 

showed that the null mutant PeΔveA strain grew at a rate of 

0.15 cm/day, whereas the WT strain grew at a rate of 0.28 cm/day. 

No significant differences in growth rate were observed between 

the WT and complemented strains. At the end of the incubation 

period, the rot volume was calculated as described previously by 

Baert et al. (2007). The rot volume of apples infected with the null 

mutant PeΔveA strain was 50% smaller than that of apples 

infected with either the WT or the complemented strain (Fig. 2C). 

The implication of veA in the formation of coremia and synne- 

mata was evaluated in the presence or absence of light in vitro 

and in vivo. After 7 days on Czapek yeast extract agar (CYA) and 

MEA, no impact of light or darkness on growth was observed 

(Part S4, see Supporting Information). On MEA, although PeΔveA 

did not produce coremia, this strain was able to sporulate 

(Part S4). Apples were inoculated with spores of the WT and null 

mutant strains and then incubated for 1 month in the light or in 

the dark. In the presence of light, P. expansum appeared to be 

unable to pierce the wall of apples or to emerge from the fruit to 

complete its cycle (Fig. 3A,B). In the dark, the formation of core- 

mia and synnemata was induced in the WT strain (Fig. 3C–E) in 

contrast with the null mutant strain (Fig. 3F–H). The veA gene 

positively regulates the release of the fungus through the forma- 

tion of coremia on apple substrate. 

 

Deletion of veA depresses mycotoxin production 

in vivo and in vitro 

The production of patulin was measured in Golden Delicious 

apples at 14 dpi. Patulin concentrations were 99 ± 20 and 

70 ± 21 mg/g fresh weight in apples infected with the WT and 

complemented strains, respectively (Fig. 4). By contrast, no patulin 

was detected in apples infected with the null mutant strain. 

The capacity of the different strains to produce patulin and 

citrinin was assessed in vitro on two different culture media 

(Fig. 5). After 5 days, large amounts of patulin were detected in 

both the WT (24.3 ± 2 mg/g on MEA and 31.1 ± 2.5 mg/g on 

PDA) and the complemented (29.2 ± 2.4 mg/g on MEA and 

22.2 ± 1.6 mg/g on PDA) strains (Fig. 5A). Citrinin was also 
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Fig. 2 Growth curves of the rotten spots and rot volume in Golden Delicious apples. (A) Diameters of the rotten spots measured every day of the incubation period. 

(B) Lesion development rates based on measurements of the rotten spot diameters on Golden Delicious apples. Measurements were taken every day for 14 days. (C) At 

14 days post-incubation, rot volumes were calculated using the method described by Baert et al. (2007). Apples were inoculated with 10 mL of a 104 conidia/mL 

suspension of the wild-type NRRL 35695 (WT), null mutant PeΔveA or complemented PeΔveA:veA strain. Apples were kept at 25 °C in the dark. Graphs show the 

mean ± standard error of the mean (SEM) from six replicates. Asterisks denote significant differences between the WT, null mutant and complemented 

strains.*P < 0.05; **P < 0.01; ***P < 0.001. 

 
 

detected, but to a lesser extent in both the WT (3.7 ± 0.25 mg/g 

on MEA and 0.6 ± 0.2 mg/g on PDA) and the complemented 

(4.4 ± 0.3 mg/g on MEA and 0.2 ± 0.1 mg/g on PDA) strains 

(Fig. 5B). Neither patulin nor citrinin was detected in PeΔveA 

cultures. 

The expression of the genes involved in the biosynthesis of 

patulin (15 genes) and citrinin (nine genes) was assessed on two 

media (MEA and PDA) and compared in the null mutant, WT and 

complemented strains. The null mutant strain showed marked 

down-regulation of all genes compared with the WT strain (Fig. 

6). The expression of all genes was restored in the complemented 

strain (Part S5, see Supporting Information). Amongst the genes 

that were down-regulated in the null mutant strain, the lowest 

expression was observed on MEA for patK, patJ, patI, patO, patN, 

patM, patA, patB and patC in the patulin biosynthesis cluster 

(Fig. 6A). In the citrinin biosynthesis cluster, citS (Pexp_005520), 

citA (Pexp_005530), citB (Pexp_005540), orf6 (Pexp_005570) and 

citE (Pexp_005580) were the genes most down-regulated on MEA 

(Fig. 6B). However, patL and ctnA genes, encoding the transcrip- 

tion factors of the patulin and citrinin clusters, respectively, were 

only repressed by 40%. The results of the analysis of gene expres- 

sion on PDA were similar (Part S5). 

 
veA modulates secondary metabolite gene 
expression 

According to the results of bioinformatics analysis and other spe- 

cific studies, the genome of P. expansum exhibits other gene clus- 

ters of predicted secondary metabolites. In addition to patulin and 

citrinin, P. expansum produces several secondary metabolites. We 

analysed the effect of veA on the expression of the genes involved in 

the biosynthesis of these metabolites. We assessed the expres- 

sion of 35 gene clusters of the 63 that were identified by the 

antiSMASH 3.0 program from P. expansum T01 (GenBank: 

AYHP00000000.1) and d1 (GenBank: JQFY01000069.1) strain 

genomes. Backbone genes included polyketide synthases (PKSs), 

non-ribosomal peptide synthetases (NRPSs) and dimethylallyl tryp- 

tophan synthases (DMATSs), as categorized by antiSMASH. 

The expression of backbone genes was measured in the WT, 

null mutant PeΔveA and complemented PeΔveA:veA strains on 

two media, MEA and PDA. 
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Fig. 3 Implication of veA in the 

development and dissemination of 

Penicillium expansum on Golden Delicious 

apples. Apples inoculated with the wild- 

type NRRL 35695 (WT) strain (A) and the 

null mutant PeΔveA strain (B) stored at 25 

°C in the light for 1 month. (C) An apple 

inoculated with the WT strain and stored 

at 25 °C in the dark for 1 month. 

(D) A piece of inoculated apple with the WT 

strain placed on potato dextrose agar (PDA) 

and stored for 5 days at 25 °C in the dark. (E) 

Same sample as in (D) taken under a 

stereomicroscope (×12). (F) An apple 

inoculated with the null mutant PeΔveA 

strain and stored at 25 °C in the dark for 1 

month. (G) A piece of apple inoculated 

with the null mutant PeΔveA strain placed 

on PDA and stored for 5 days at 25 °C in the 

dark. (H) Same sample as in (G) taken 

under a stereomicroscope (×12). Golden 

Delicious apples were inoculated with 10 mL 

of a 104 conidia/mL suspension of each 

strain. 

After quantitative reverse transcription-polymerase chain reac- tion 

(RT-qPCR) analysis, 35 backbone genes were expressed in either 

one medium or in both media, and therefore expressed by at 

least one of the strains used. The expression of seven 

backbone genes, Pexp_000130, citS (Pexp_005520), Pexp_008740, 

Pexp_015170, Pexp_028920, Pexp_093210 and patK (Pexp_ 

094460), was altered by the deletion of veA on both media (Fig. 7 

and Part S6, see Supporting Information). Conversely, seven back- 

bone genes, Pexp_000410, Pexp_013580, cnsI (Pexp_030540), 

Pexp_037250, Pexp_078820, Pexp_086670 and Pexp_094810, 

were up-regulated in the null mutant PeΔveA strain on both 

media. Pexp_094810 and Pexp_000410 were shown to be the 

two most down-regulated genes by VeA (Fig. 7 and Part S6). 

Four of these backbone genes, citS (Pexp_005520), cnsI 

(Pexp_030540), Pexp_093210 and patK (Pexp_094460), are 

involved in the biosynthesis of citrinin, communesin, an unchar- 

acterized monodictyphenone-like compound and patulin, 

respectively (Kumar et al., 2017a; Tannous et al., 2018). The 

identity of the other clusters remains unknown. The expression 

of patK (Pexp_094460) was somewhat higher on PDA than on 

MEA, in agreement with the patulin level measured in the two 

media. 

The backbone genes roqA (Pexp_030090), Pexp_047050, 

Pexp_076580, Pexp_095540 and Pexp_096630 showed no differ- 

ence in their expression between the WT and null mutant strains 

regardless of the medium used. Pexp_030090 belongs to the clus- 

ter involved in the biosynthesis of roquefortine, which was thus 

not regulated by veA on either of the media tested. 

Interestingly, regulation by veA appeared to be medium 

dependent in some of the gene clusters. The backbone gene 

Pexp_074060 was not expressed on PDA, whereas it was down- 

regulated in the null mutant strain on MEA. Moreover, the 

 
 

 

Fig. 4  Patulin production on Golden Delicious apples. Patulin production was 

measured by high-performance liquid chromatography with a diode array 

detector (HPLC-DAD) at 277 nm, 14 days post-inoculation on Golden 

Delicious apples as described previously (Snini et al., 2016). Apples were 

inoculated with 10 mL of a 104 conidia/mL suspension of the wild-type NRRL 

35695 (WT), null mutant PeΔveA or complemented PeΔveA:veA strain. 

Apples were kept at 25 °C in the dark. Graphs show the mean ± standard 

error of the mean (SEM) of eight replicates. Asterisks denote significant 

differences between the NRRL35695 (WT), null mutant and complemented 

strains. *P < 0.05; **P < 0.01; ND, not detectable. 
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Fig. 5 Patulin and citrinin production on 

synthetic media by the wild-type NRRL 35695 

(WT), null mutant PeΔveA and complemented 

PeΔveA:veA strains. (A) Production of patulin on 

malt extract agar (MEA) and potato dextrose 

agar (PDA). 

(B) Production of citrinin on malt extract agar 

(MEA) and potato dextrose agar (PDA). Patulin 

and citrinin production was measured by high-

performance liquid chromatography by a diode 

array detector (HPLC-DAD) at 277 and 327 nm, 

respectively, at 5 days post-inoculation at 25 °C 

in the dark (104 spores). Graphs show the 

mean ± standard error of the mean (SEM) of 

eight replicates. *P < 0.05; ***P < 0.001; ND, 

not detectable. 

 
 
 

 

 
 
 

 

Fig 6. Fold change expression of genes belonging 

to the clusters involved in citrinin and patulin 

biosynthesis in the wild-type NRRL 35695 (WT) and 

null mutant PeΔveA strains. (A) Patulin cluster 

(adapted from Tannous et al., 2014). (B) Citrinin cluster 

(adapted from He and Cox, 2016). The 

black line represents the expression level of genes in 

the WT strain. Strains were grown for 5 days at 25 °C 

in the dark on malt extract agar (MEA). Values were 

normalized to b-tubulin as housekeeping gene. Graphs 

show the mean ± standard error of the mean (SEM) 

from eight replicates. Asterisks denote significant 

differences between the WT and null  

mutant PeΔveA strains. ns, no significant changes; 

*P < 0.05; **P < 0.01; ***P < 0.001. 
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Fig. 7 Relative expression of 35 genes encoding backbone enzymes involved in secondary metabolite biosynthesis. Relative expression of polyketide synthases 

(PKSs), non-ribosomal peptide synthetases (NRPSs) and dimethylallyl tryptophan synthases (DMATs) identified on the sequenced genomes of Penicillium expansum T01 

and d1 strains grown on malt extract agar (MEA). Gene expression was evaluated in the wild-type NRRL 35695 (WT), null mutant PeΔveA and complemented 

PeΔveA:veA strains. Primers were designed using Primer Express 2.0 software and tests were carried out using a ViiA7 Real-Time PCR System. Black bars represent 

the combined expression level of genes in the WT and complemented PeΔveA:veA strains after culture in the dark for 5 days at 25 °C. Grey bars represent the level of 

gene expression in the null mutant PeΔveA strain grown under the same conditions. Graphs show the mean ± standard error of the mean (SEM) of eight 

replicates. Asterisks denote significant differences between the WT and null mutant PeΔveA strains. ns, no significant changes; *P < 0.05; **P < 0.01; 

***P < 0.001. 

 
backbone genes Pexp_071900, Pexp_076200 and Pexp_079130 
were up-regulated by VeA on PDA, but not regulated on MEA in 
the WT and null mutant strains. Moreover, four backbone genes 
were up-regulated on MEA, but down-regulated (Pexp_082260), 
not expressed (Pexp_074060) or not regulated (Pexp_024160, 
Pexp_097790) on PDA. 
Pexp_029660, encoding the NRPS of the loline-like biosyn- thetic 

cluster (Ballester et al., 2015), Pexp_055140, Pexp_082260, 

Pexp_085540 and Pexp_107400 were up-regulated in the 

PeΔveA strain on PDA, but not regulated on MEA, except 

Pexp_082260, which was up-regulated on MEA. Likewise, 

Pexp_036220, Pexp_058590 and Pexp_104890, which encodes 

the backbone gene belonging to a siderophore-like cluster 

(Ballester et al., 2015), were down-regulated by VeA on MEA, but 

not regulated by VeA on PDA. The genes in the complemented 

strain were regulated in the same way as those in the WT strain. 

LaeA and velB were expressed in the WT, null mutant PeΔveA and 

complemented PeΔveA:veA strains on the two media tested. 

Expression of velB was not affected by the deletion of veA on 

both media. Expression of laeA was not significantly different in 

the null mutant PeΔveA relative to the WT and complemented 

strains on both media, but increased slightly on MEA (Part S7, see 

Supporting Information). 

DISCUSSION 

The global regulation factor VeA positively or negatively controls a 

large number of secondary metabolite pathways in fungi, includ- ing 

A. nidulans (Bayram and Braus, 2012; Calvo 2008; Rauscher et 

al., 2016) and A. flavus (Cary et al., 2015). VeA positively 

affects the production of fumigaclavine C, fumagillin and gliotoxin in 

the opportunistic human pathogen Aspergillus fumigatus 

(Dhingra et al., 2013). In Fusarium species, VeA orthologues 

are required for the synthesis of fumonisins and fusarins in 

F. verticillioides  (Myung et  al.,  2012), trichothecenes  in 

F. graminearum (Merhej et al., 2012) and gibberellins, fumonisins 

and fusarin C in F. fujikuroi (Wiemann et al., 2010). Conversely, 

VeA represses the production of the dark-coloured pigment bika- 

verin in F. fujikuroi (Wiemann et al., 2010). In Penicillium species, 

VeA activates the production of penicillin in Penicillium chrysoge- 

num (Kopke et al., 2013) and represses the production of ML- 

236B (compactin) in Penicillium citrinum (Baba et al., 2012). Its 

role in P. expansum remains unknown. In this study, the positive 

regulation of patulin and citrinin biosynthesis by VeA was demon- 

strated. Both toxins have been reported to be positively regulated 

by LaeA, another member of the trimeric Velvet complex in 

P. expansum and Monascus ruber, respectively (Kumar et al., 
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2017a; Liu et al., 2016). The lack of veA activity is not caused by 

laeA or velB expression changes. VeA acts at several levels includ- 

ing the Velvet complex. Although veA did not affect laeA and velB 

expression, we cannot rule out veA activity via the Velvet complex 

on patulin biosynthesis. Given the impact of VeA and LaeA on this 

biosynthesis pathway, the evaluation of the DvelB mutant with 

regard to the expression of pat genes will strengthen the hypothe- 

sis that a functional Velvet complex is necessary for the produc- 

tion of this toxin. 

In addition to patulin and citrinin, P. expansum produces sev- eral 

secondary metabolites with different toxic effects (Tannous et al., 

2018). With regard to other known P. expansum secondary 

metabolites, backbone genes that belong to the clusters of roque- 

fortine and a gliotoxin-like compound showed no difference in 

expression between the WT and null mutant strains, suggesting 

that veA does not regulate the synthesis of these metabolites, at 

least under the conditions of the present study. 

Kumar et al. (2017a) compared the expression of P. expansum 

backbone genes when DlaeA and WT strains were grown on 

Czapek yeast extract liquid medium (CY) and the apple-based 

apple puree agar medium (APAM). Among these genes, 32 and 

29 genes that were expressed on MEA and PDA, respectively, 

were identified in the null mutant veA and WT strains. Among 

these common genes, 11 were up-regulated by LaeA, five on both 

media, but only five were also up-regulated by VeA: 

Pexp_028920 and patK (Pexp_094460) were expressed on both 

MEA and PDA, Pexp_074060 was expressed only on MEA, and 

Pexp_071900 and Pexp_079130 were only expressed on PDA. 

Pexp_071900 is the backbone gene of a biosynthetic cluster of a 

putative epipolythiodioxopiperazine-like (ETP-like) compound 

(Ballester et al., 2015). Pexp_107400, which encodes a PKS, was 

down-regulated by VeA on PDA and by LaeA on all media tested 

(Kumar et al., 2017a). Our results showed that VeA regulates 

Pexp_015170 positively on both media, whereas LaeA does not 

regulate it. Pexp_015170 encodes an NRPS displaying 91% iden- 

tity with HcpA, an NRPS responsible for fungisporin synthesis (Ali 

et al., 2014). Although an HcpA orthologous gene exists in the 

genomes of all Penicillium and some Aspergillus species (Klitgaard 

et al., 2015; Nielsen et al., 2017), no physiological role of this pep- 

tide is known. Pexp_000410 was highly down-regulated by the 

veA gene on both media used, whereas it was up-regulated by 

LaeA on CY. In addition, Pexp_094810, which was also strongly 

down-regulated by VeA on both media, was not expressed in 

either the WT or DlaeA strains whatever the medium (Kumar 

et al., 2017a). Among the genes down-regulated by LaeA, 

Pexp_076200, whose expression showed no significant difference 

between the null mutant PeΔveA and the WT strains on MEA, 

was up-regulated by VeA on PDA. Contrary to the observations 

with LaeA, Pexp_008740 was up-regulated by VeA on both 

media. Pexp_029660, Pexp_055140 and Pexp_085540 were 

down-regulated by VeA, but up-regulated by LaeA (Kumar et al., 

2017a). 

The backbone gene of the citrinin (citS/Pexp_005520) cluster was 

down-regulated in the PeΔveA strain, and genes of the com- 

munesin (cnsI/Pexp_030540) cluster and another ETP-like 

(Pexp_058590) cluster were up-regulated in the PeΔveA strain on at 

least one medium tested, whereas none of the three were regu- 

lated by LaeA (Kumar et al., 2017a). Pexp_093210, corresponding 

to the cluster of the monodictyphenone-like compound, was up- 

regulated by VeA on both media, but was not expressed in the 

Dlaea strain or the WT strain on either medium. Pexp_104890, 

the backbone gene involved in siderophore-like biosynthesis 

(Gr€undlinger et al., 2013), was not regulated by LaeA on either 

medium or by VeA on MEA, but was down-regulated by VeA on 

PDA. The expression of most genes differed between the PeΔveA 

and DlaeA strains, but we cannot exclude the possibility that the 

discrepancies originated in the media used. VeA and LaeA, which 

sometimes interact (complex with VelB), also appeared to act 

independently, regulating some secondary metabolite clusters 

differently. 

The null mutant PeΔveA strain develoPeΔ like the WT strain in 

Golden Delicious apples up to 4 dpi, but the rot progression rate 

decreased over the following 10 days. The same behaviour has 

been reported in a PeΔpatL strain, which was unable to produce 

patulin (Snini et al., 2016). In the previous study, patulin was only 

detected from 4 dpi with the WT strain. In the present study, the 

absence of veA completely halted the production of patulin in vivo 

and drastically affected patL expression in vitro. These results rein- 

force the hypothesis that patulin is not indispensable for the initia- 

tion of the disease (Ballester et al., 2015; Li et al., 2015), but 

plays a role as a cultivar-dependent aggressiveness factor (Kumar 

et al., 2017b). 

Based on the behaviour of the null mutant strain in apple, veA is 

not required for the initiation of the disease. Knowledge of the 

pathogenicity determinants that allow the penetration and coloni- 

zation of the fungus in apple pericarp is very limited. The toxins 

constitute only some weapons of the P. expansum arsenal. Some 

secreted elements, such as D-gluconic acid (Hadas et al., 2007; 

Prusky et al., 2004), fumaric acid (Vilanova et al., 2014) and poly- 

galacturonase (Jurick et al., 2010), have been reported to contrib- 

ute to the pathogenicity of P. expansum. Recently, it has been 

found that PeΔSte12 mutants show a significant decrease in 

P. expansum virulence (Sánchez-Torres et al., 2018). A possible 

modulation of one of these virulence factors by the VeA factor has 

yet to be demonstrated. The importance of veA in the virulence of 

some fungal pathogens has already been demonstrated. For 

example, BcVEL1 or BcVeA, orthologous to veA in Botrytis cinerea, is 

required for the full virulence of this species on bean leaves and 

grape berries (Schumacher et al., 2015; Yang et al., 2013). Maize 

plants inoculated at the seed stage with a null mutant DveA strain 
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of F. verticilloides showed no disease symptoms, whereas, under 

the same experimental conditions, plants infected by a WT strain 

exhibited symptoms (Myung et al., 2012). 

VeA is involved in sexual development and is also known to be a 

negative regulator of asexual reproduction. Deletion of the 

corresponding gene was thus expected to stimulate the produc- 

tion of conidia. However, in most species, reduced conidiation 

was observed in the DveA strain compared with the WT strain on 

synthetic media under both light and dark conditions (Calvo et al., 

2004; Crespo-Sempere et al., 2013; Duran et al., 2007; Merhej 

et al., 2012; Wiemann et al., 2010). Increased sporulation of the 

DveA strain compared with the WT strain has been reported less 

frequently (Jiang et al., 2011; Park et al., 2012; Rauscher et al., 

2016) and sometimes no difference has been observed between 

the WT strain and the ΔveA strain (Estiarte et al., 2016). The dif- 

ferent findings, even in the same species, could be partly linked to 

the different media used. For instance, Kato et al. (2003) reported a 

medium-dependent role of veA in conidiation. 

Here, conidiophore structure was affected by veA in 

P. expansum grown on various synthetic media. The biggest dif- 

ference was the absence of coremia in the null mutant strain, 

both in vitro and in vivo. The null mutant PeΔveA strain, grown 

on apples in the dark, was still able to sporulate in vitro but, 

because of a lack of coremia formation, was unable to pierce the 

peel of apples and to emerge from the fruit again to complete its 

life cycle, in contrast with the WT and complemented strains. The 

storage of apples, which is usually in the dark and in ventilated 

cold rooms, favours the development and propagation of fungal 

species. Coremia are relatively rigid structures made up of conidio- 

phores grouped into small columns that are fertile apically. Penicil- 

lium expansum has the ability to produce coremia when the 

fungus is grown on standard laboratory media, but also on natural 

substrates such as apples. The fresh isolates sometimes also pro- 

duce synnemata, another fasciculate structure, which consist of 

appressed fertile hyphae along their entire length. Penicillium 

expansum usually produces conspicuous synnemata in its natural 

habitats, but tends to lose this ability when grown on synthetic 

media (Raper et al., 1968). Little is known about the mechanisms 

that lead to the formation of coremia. Tinnel et al. (1977) showed 

that the presence of manganese is very important for coremia for- 

mation in Penicillium vulpinum (syn. Penicillium claviforme) and 

Penicillium clavigerum, both patulin-producing species. A specific 

manganese requirement for patulin biosynthesis has already been 

demonstrated. Of eight metal ions, only manganese strongly 

influenced patulin production in Penicillium griseofulvum (syn. 

Penicillium urticae) (Scott et al., 1986a). This observation was con- 

firmed in a more recent work (Dombrink-Kurtzman and Blackburn, 

2005). Through the use of actinomycin D and cycloheximide, 

respectively, a transcription and translation inhibitor, manganese, 

has been suggested to have an effect on patulin biosynthesis at 

the transcription level (Scott et al., 1986b). The similarity between 

coremia formation and patulin biosynthesis suggests a common 

regulation. The fact that neither PeΔpatL nor PeΔveA produces 

patulin or coremia renders the hypothesis of a manganese- 

dependent signalling pathway shared by patulin biosynthesis and 

coremia formation plausible. To our knowledge, no relationship 

between manganese and the Velvet complex has been reported to 

date. This hypothesis deserves further attention in future work. 

Generally, secondary metabolism and morphological development 

are intimately associated in fungi, particularly in Aspergillus and 

Penicillium species (Calvo et al., 2002). VeA is a major component 

of the global regulatory mechanisms involved in the formation 

of cleistothecia in homothallic Aspergillus species, such as 

A. nidulans (Bayram et al., 2008), but also in sclerotial morpho- 

genesis in some heterothallic Aspergillus species, such as 

A. flavus (Calvo and Cary, 2015). Sclerotia are considered to be 

vestiges of cleistothecia that have lost their ability to generate 

ascospores. As cleistothecia/sclerotia and coremia/synnemata are 

linked to sexual reproduction and asexual reproduction, respec- 

tively, except for VeA, there is no evidence to support a common 

regulatory mechanism. 

In conclusion, our results shed light on the role of VeA in 

P. expansum and the veA gene. VeA upregulates the production of 

patulin and citrinin. Because of the different media used, our 

results also highlighted the induction or repression of the expres- 

sion of several backbone genes involved in the biosynthesis of 

other secondary metabolites with known or still unknown func- 

tions. From a physiological and ecological point of view, our 

results show that VeA is important in the final step of fungal cycle 

development on natural substrates, enabling the spread of spores 

and hence the colonization of new substrates. 

 

EXPERIMENTAL PROCEDURES 

 
Strains, media and culture conditions 

The P. expansum wild-type strain NRRL 35695 (WT) used in this study 

was originally isolated from grape berries in the Languedoc Roussillon 

region in France. The compositions of the media are detailed in Part S8. 

Unless otherwise specified, the strains used in this study were cultured on 

PDA (Sigma-Aldrich, Saint Quentin Fallavier, France), MEA (Biokar Diag- 

nostics, Allonne, France) and CYA (Sigma-Aldrich) for 5 days at 25 °C in 

the dark. 

For the morphological study, strains were plated on MEA, PDA, CzA 

(Oxo€ıd, Dardilly, France) and CGA (Sigma-Aldrich), and grown for 7 days at 

25 °C in the dark. 

For the preparation of protoplasts, we used 250 mL of yeast extract 

peptone dextrose (YPD) medium (Sigma-Aldrich) inoculated with a 3 

3 107 conidial culture. The culture was grown on an orbital shaker (150 

rpm) set at 25 °C for 12 h. The PeΔveA gene disruption cassette was 

obtained using Saccharomyces cerevisiae FY1679: MATa/MATa ura3–52/ 

ura3–52; trp1D 63/TRP1; leu2D 1/LEU2; his3D 200/HIS3; GAL2/GAL2 by 
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homologous recombination. This strain was grown on solid YPD medium at 

30 °C for 5 days. 

 

 
Construction and molecular  

characterization of the null mutant PeΔveA 

and complemented PeΔveA:veA strains 

In order to characterize the role of the veA gene, to understand how it 

affects the virulence of P. expansum and how it influences the production of 

a wide diversity of important secondary metabolites, a gene deletion 

strategy was applied by replacing the coding region with the hygromycin 

selection marker, as described previously (Snini et al., 2016). A more 

detailed description is available in Part S1. The veA deletion was validated 

by PCR screening and Southern blot as described in Part S2. 

 

 
In vitro growth, macroscopic and 

microscopic morphology 

WT, null mutant and complemented strains were plated on PDA. After 7 

days of incubation, a spore suspension of each strain was prepared 

according to Adjovi et al. (2014). The concentrations of spore suspensions 

were quantified using a Malassez cell. An inoculum of 104 spores was 

plated centrally on MEA, PDA, CzA and CGA, and the plates were incu- 

bated at 25 °C in the dark for 10 days. The experiment was performed in 

triplicate for each strain. After 7 days, colony diameters were measured 

and microscopic characteristics (conidiophore branching pattern, phialide 

and conidia shape, etc.) were observed under an optical microscope 

[Olympus CX41 (3400 and 31000, Rungis, France]. After 10 days, mac- 

roscopic features (colour of conidial areas, colony margin, colony texture, 

pigmentation, exudate, reverse colour, etc.) were studied using a stereo- 

microscope (Olympus SZX9, 312–120). 

 

 
Analysis of patulin production in vivo 

To assess the production of blue mould and patulin on apples in the WT, 

null mutant and complemented strains, an in vivo study was performed 

using Golden Delicious apples. The apples were purchased from a super- 

market in Toulouse (Carrefour, France), and were free of defects or inju- 

ries. The apples were surface sterilized in a 2% sodium hypochlorite 

solution and rinsed with water, as described previously by Sanzani et al. 

(2012). The apples were then wounded with a sterile toothpick. For each 

strain, 10 mL of a suspension at a concentration of 104 conidia/mL were 

deposited into the wounds of apples. Contaminated apples were then 

incubated at 25 °C in the dark for 14 days. The diameters of the rotten 

spots were measured every day during the incubation period to determine 

the growth rate, and the rot volume was calculated using the method 

described previously by Baert et al. (2007). After the incubation period, 

apples were ground using a blender until a homogeneous apple puree 

was obtained, as described previously by MacDonald et al. (2000) and 

detailed by Snini et al. (2016). Patulin production was determined by 

high-performance liquid chromatography with a diode array detector 

(HPLC-DAD) based on a standard calibration curve. Eight biological repli- 

cates were performed for each strain. 

Analysis of secondary metabolism 

The WT, null mutant and complemented strains were grown on two differ- 

ent media: MEA and PDA. A spore suspension of each isolate was pre- 

pared from a previous culture on PDA and incubated at 25 °C in the dark 

for 7 days. Petri dishes containing the medium were overlaid with a sterile 

cellophane layer and inoculated with 10 µL of a 106 spores/mL solution of 

each isolate. 

 
Extraction of secondary metabolites 

After a 5-day incubation period, mycelium was separated from the cello- 

phane layer and split into two equal parts. The first half of the mycelium 

was used for RNA extraction. The second half of the mycelium and the 

agar medium were macerated separately in 50 mL of ethyl acetate on a 

horizontal shaking table at 160 rpm at room temperature for 6   days. 

The organic phase was then filtered through a Whatman filter paper and 

evaporated to dryness using a Zymark TurboVap (McKinley Scientific, 

Sparta, NJ, USA). The dried residue was dissolved in 400 µL of acetoni- 

trile–water (50 : 50, v/v) and filtered through a 0.45-µm syringe filter into 

a clean 2-mL vial. Eight biological replicates were performed for each 

strain. 

 
HPLC-DAD analysis of patulin and citrinin 

The chromatography device used for the quantification of patulin and citri- 

nin was an Ultimate 3000 HPLC system (Dionex/ThermoScientific, Courta- 

boeuf, France). Patulin was analysed as described by Snini et al. (2016). 

Citrinin was quantified using a 150 mm ± 2 mm, Luna®  5  5 mm, C18 col- 

umn (Phenomenex, Le Pecq, France) at 30 °C at a flow rate of 0.2 mL/ 

min. Eluent A was water acidified with 0.05% formic acid and eluent B 

was acetonitrile acidified with 0.05% formic acid. The column was equili- 

brated with a mixture of 80% solvent A and 20% solvent B. Elution condi- 

tions were as follows: a 30-min linear increase in solvent B from 20% to 

50%, a 5-min linear increase of solvent B from 50% to 90%, 90% solvent B 

for 10 min, a 5-min linear decrease of solvent B from 90% to 20%, 20% 

solvent B for 10 min. The presence of citrinin was monitored at a wave- 

length of 327 nm and confirmed by its retention time (min) according to 

the standard. Patulin and citrinin standards were purchased from 

Sigma-Aldrich. 

 
Isolation of fungal RNA and RT-PCR 

At the end of the incubation period, mycelia were separated from the cel- 

lophane, RNAs were extracted and cDNAs were synthesized as described 

by Tannous et al. (2014). The quality of the extracted RNA was verified by 

gel electrophoresis (1.2% agarose) and the concentrations were measured 

using a Dropsense apparatus (Trinean, Proteigene, Saint Marcel, France). 

 
Design and validation of qPCR primers 

Primer pairs corresponding to the different genes of the patulin cluster 

described previously by Tannous et al. (2014) were used. Primer pairs cor- 

responding to the different genes of the citrinin cluster were designed 

(Part S5). Primer pairs corresponding to laeA and velB were designed 

(Part S7). 
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The Antibiotics-Secondary Metabolite Analysis SHell (antiSMASH) pro- gram 

(Weber et al., 2015) was used to identify the different clusters of 

secondary metabolites on the P. expansum genome using the T01 and 

d1 sequenced strains (GenBank: AYHP00000000.1 and GenBank: 

JQFY01000069.1, respectively). Sixty-three clusters were identified. The 

primer pairs of the different PKSs, NRPSs and DMATSs of these clusters 

were designed. Thirty-five backbone genes were expressed under our con- 

ditions (Part S6). The primers were designed and validated as described 

by Caceres et al. (2016). At least two biological replicates of P. expansum 

NRRL 35695 were used to validate the amplification specificity. Negative 

controls (without reverse transcriptase enzyme) were added to control for 

the absence of contamination. 

 
Analysis of the expression of the genes linked to 

the secondary metabolites in P. expansum 

Real-time PCR was used to quantitatively evaluate the expression of the 

gene clusters of patulin and citrinin and to measure the expression of the 

different secondary metabolite genes in each strain. 

Experiments were carried out as detailed previously (Caceres et al., 2016). 

b-Tubulin was used as housekeeping gene. Changes in gene 

expression of qPCR experiments were then analysed using the 2–ΔΔCT 

method (Livak and Schmittgen, 2001). Two separate experiments were 

performed, each including at least eight biological replicates of each 

condition. 

 
Data analysis 

Non-parametric Kruskal–Wallis and Mann–Whitney tests were used to 

analyse the differences in the WT, null mutant and complemented strains 

for each of the analyses of patulin production in vivo, and the gene 

expression of secondary metabolites using the RT-PCR technique. The dif- 

ferences were considered to be statistically significant when the P value 

was below 0.05. The statistical analysis of the data was carried out using 

GraphPad 4 software (GraphPad Software, La Jolla, CA, USA). 
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PART 1. Construction of ΔveA and ΔveA:veA deletion cassette  

  

In order to characterize the role of the veA gene, a Pe∆veA mutant was generated by the 

replacement of veA with a hygromycin resistance marker in the wild type NRRL 35695 (WT) 

strain of P. expansum. Construction of the null mutant Pe∆veA is shown in Fig. S1. Specific primers 

of veA (Pexp_092360) were designed from the P. expansum d1 strain sequence deposited in 

GenBank (JQFY01000122). The primers are listed in Table S1. The cassette ΔveA, carrying an 

hygromycin resistant cassette, and flanked by DNA sequences corresponding to the sequences 

located at 5' (left junction) and 3' (right junction) ends of the veA gene was constructed using the 

homologous recombination strategy in S. cerevisiae as previously described by Merhej et al. 

(2011) modified by Snini et al. (2016) for an application on P. expansum. Fragments required for 

the gene disruption cassette were amplified by PCR, then gathered and assembled into the 

pRS426 plasmid in S. cerevisiae. For the complementation, primers dveAF3/dveAR3 were used to 

generate the DNA fragment from the WT strain to transform protoplasts of PeΔveA strain.  
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(4309 bp) 

 5fdebveAPex hygR 
  

  

Fig. S1. Construction of the null mutant Pe∆veA. Map of the veA wild-type (WT) locus and the replacement construct ΔveA containing a hygromycin 
resistance cassette. The primers used to design a polymerase chain reaction (PCR) strategy to distinguish between WT and locus integrated 
transformants are indicated by arrows. The black bar shows the position of the VeA DNA and the grey bar the Hygromycin (hyg) DNA probes used in 
the Southern blot analysis. BamHI sites are in red.  
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Table S1. Primers used in the construction and the validation of null mutant Pe∆veA and complemented Pe∆veA:veA.   

PRIMER  SEQUENCE 5’→ 3’  

5fdebveAPex1  

debveAPex1Rhygro2  

finveAPex1Fhygro2  

3rfinveAPex1  

GTAACGCCAGGGTTTTCCCAGTCACGACGGGGCAACTCCTGCCAGAAACC  

GAGCCTGTGTGTAGAGATACAAGGGAATTCTTTCGCGGATTGATGTTATTATTCCCC  

GTGTAAGCGCCCACTCCACATCTCCACTCGTAGAATCTGAAATGGCCTCGAACATCTTGC  

GCGGATAACAATTTCACACAGGAAACAGCGTAGATACTGGGCGGTTTCTCGC  

hphF1  

hphR1  

GAATTCCCTTGTATCTCTACACACAGGCTC  

CGAGTGGAGATGTGGAGTGGGCG  

dveA-NestedF  

dveA-NestedR  

GTTGCGGCCGGAACCTTGGAACC  

CCAGAGATGTCTGAGCTCCAATCGC  

dveAF3  

dveAR3  

GAGAACACGCGGTATCGAAGGGTG  

CCACTCACGCTGCGACTCCC  

hygF  

hygR  

ProbePeveAF  

ProbePeveAR  

TCGGAGGGCGAAGAATCTCG  

CCGAACATCGCCTCGCTC  

GTTGACCCACCGCCTGTGGTTG  

GGTGCTGGTCGCTAGGCCAG  
1The underlined sequences were added at the 5' end and were identical to the extremities of the pRS426 cloning vector.  

2The underlined sequences were added at the 5' end and were identical to the extremities of the PCR product generated by primers hphF1/hphR1.  
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PART 2. Molecular characterization of the null mutant PeΔveA and complemented 

PeΔveA:veA strains  

  

The potential Pe∆veA mutants were first screened by polymerase chain reaction (PCR) and the 

mutants that possibly carried a disrupted veA gene were selected. On these mutants, the 

incorporation of the hygromycin cassette in their genome was confirmed by PCR. The expected 

size of the amplicon (584 bp) was obtained (Fig. S2A). The hygF and hygR primers, specific to the 

hygromycin sequence, were used for this purpose. Subsequently, in order to confirm the presence 

of this disruption cassette ∆veA at the veA locus, the primers 5fdebveAPex and hygR were used 

on sort to anneal outside and inside the disruption cassette, respectively and a PCR was 

performed. The expected size of the amplicon (4309 bp) was obtained (Fig. S2B).   

In the following tests, this Pe∆veA mutant was the only kept and used. To verify that the phenotype 

exhibited by the mutant strain resulted from the deletion of veA, a complemented transformant 

Pe∆veA:veA was generated by reintroducing the veA encoding sequence into the veA deleted 

strain. As expected, PCR and sequencing confirmed that the WT gene was detected,  

but not the hygromycin sequence.  

For a subsequent southern blot confirmation, an enzymatic digestion with BamHI was performed 

on the WT, the null mutant and the complemented strains to confirm the presence of the 

disruption cassette at the veA locus in the mutant strain, and its replacement by the WT copy of 

this gene in the complemented one. Southern blot analysis was performed as previously 

described (Snini et al., 2016). The hygromycin (hyg) DNA probe and veA DNA probe were 

generated using the primer pairs hygF/hygR and probe PeveAF/probe PeveAR, respectively. 

Southern blot analysis confirmed the insertion of only one copy of the disruption cassette at the 

veA locus in the Pe∆veA mutant and one copy of the veA gene in the Pe∆veA:veA. Both WT and 

complemented strains did not present the hygromycin disruption cassette in their genome (Fig. 

S3A and B).  

The Pe∆veA deletion mutant showed a null expression of veA compared with the WT and 

complemented strain Pe∆veA:veA when grown on Malt Extract Agar medium (MEA) and Potato 

Dextrose Agar medium (PDA) (Fig. S4).  
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Fig. S2. Polymerase chain reaction (PCR) analyses of genomic DNA of the wild-type NRRL 35695 (WT), null mutant Pe∆veA and complemented 
Pe∆veA:veA strains. A) PCR amplification with hygF and hygR primers. The hygromycin cassette was incorporated in the genome of the null mutant 
Pe∆veA strain with a predicted PCR product of 584 kb. No amplification was observed in the WT or complemented strains. B) PCR amplification with 
5fdebveAPex and hygR primers. The presence of the disruption cassette ∆veA at the veA locus was confirmed with a predicted PCR product of 4309 
kb. No amplification was observed in the WT or complemented strains.   

  

bp 

B 

4309   bp 
2000 

12000 
5000 

1000 
1650 

A 

bp 

650 

2000 
1650 
1000 

500 

850 

400 
584   bp 



Experimental Work CHAPTER 1_Part 1 

 

118 

 

 

  

Fig. S3. Southern blot analyses of genomic DNA of the wild-type NRRL 35695 (WT), null mutant 
Pe∆veA and complemented Pe∆veA:veA strains. A) Southern blot analysis of DNA digested with 
BamHI and hybridized with the VeA probe. The complemented and the WT strains showed a 
fragment of 2.7 kb absent in Pe∆veA:veA strain and which corresponds to the veA gene. B) 
Southern blot analysis of the hybridization of DNA with the hygromycin (hyg) probe after 
digestion with BamHI. Only the null mutant Pe∆veA strain exhibited a unique fragment of 4.7 kb 
consistent with the replacement of the veA gene by the ΔveA cassette. No hybridization was 
observed in either the WT or complemented strains, due to the absence of the ΔveA cassette.   
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Fig. S4. Expression of the veA gene on Malt Extract Agar medium (MEA) and Potato Dextrose Agar 
medium (PDA). Expression of the veA gene was evaluated in the wild-type NRRL 35695 (WT), null 
mutant Pe∆veA and complemented Pe∆veA:veA strains on A) MEA and B) PDA media. Graphs show 
the mean ± standard error of the mean (SEM) of 8 replicates. Asterisks denote significant 
differences between the WT strain and the null mutant Pe∆veA strain. * p-value <  
0.05; ** p-value < 0.01; *** p-value < 0.001.  
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  PART 3. Macroscopic morphology of the null mutant PeΔveA  

 
  

 

Fig. S5. Morphological appearance of the wild-type NRRL 35695 (WT), null mutant Pe∆veA and 
complemented Pe∆veA:veA strains. Strains were grown at 25°C in the dark for 10 days on Czapek 
Dox Agar medium (CzA) and Czapek Glucose Agar medium (CGA) inoculated with 104 spores. 
Macroscopic appearance of the colonies and observations under a stereomicroscope (×12).  
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PART 4. Dissemination of P. expansum  

 

  MEA CYA 

 Wild-type  Wild-type  
 NRRL 35695  Pe∆veA NRRL 35695  Pe∆veA 

 

 

DARK 

LIGHT 

  

Fig. S6. Influence of light on the morphological appearance of the wild-type NRRL 35695 (WT), 
null mutant Pe∆veA and complemented Pe∆veA:veA strains. Strains were grown at 25°C for 7 days 
on Czapek Yeast Extract Agar medium (CYA) and Malt Extract Agar medium (MEA) inoculated 
with 104 spores.   
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Table S2. Primers used to analyze the expression of the citrinin cluster.  

  

gene  PRIMER  SEQUENCE 5’ → 3’  

orf5  Pexp_005510_F1 
Pexp_005510_R1  

GACCACGGTCACTTCCAAAGAG  
AGTGGTCCCACTGCAAAGCC  

citS  Pexp_005520_F1 
Pexp_005520_R1  

ATATGATCCAGAAAGAAAGTCAACGAG  
AACAAGAACGGAAACGTATGCATC  

citA  Pexp_005530_F1 
Pexp_005530_R1  

CGCGCCTTGGCTAAATCC ACGCAAAGCGCCAAGATG  

citB  Pexp_005540_F1 
Pexp_005540_R1  

AAATCATCCTTCTATTTACCGGCTG  
CATCGTTGATTACTTTGCGTGC  

ctnA  Pexp_005550_F1 
Pexp_005550_R1  

GTCAACGAGGGAGCATTAGTGTTAG  
GATGGGCATGAGAGGATGGAC  

citD  Pexp_005560_F1 
Pexp_005560_R1  

GACTCCATTCCCTCAAGGTGC 
GTTGTATTGGTCAACAACTACTTTCGTG  

orf6  Pexp_005570_F1 
Pexp_005570_R1  

GTACCCCCGTAGGGCTTGAG CCATGGTGGAAGTAGCAAAGGTC  

citE  Pexp_005580_F1 
Pexp_005580_R1  

GACCAGATGTAAGCAGCATGGAC  
CACCGGCTTGAGCGAATG  

citC  Pexp_005590_F1 
Pexp_005590_R1  

TGAGAGCATCCCACAGGCTG 
TGGCCGGTTATAAGACATAAAGTTG  
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PART 5. Expression analysis of gene clusters involved in patulin and citrinin biosynthesis  

A B 

 

Fig. S7. Relative gene expression of the A) patulin and B) citrinin biosynthesis genes on Malt Extract Agar medium (MEA). Relative expression values 
are the averages of 8 replicates for the wild-type NRRL 35695 (WT), null mutant Pe∆veA and complemented Pe∆veA:veA strains with standard 
deviations shown as error bars. Asterisks denote significant differences between the WT, null mutant Pe∆veA and complemented Pe∆veA:veA strains.  
* p-value < 0.05; ** p-value < 0.01; *** p-value < 0.001.  
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A B 

 

Fig. S8. Relative gene expression of the A) patulin and B) citrinin biosynthesis genes on Potato Dextrose Agar medium (PDA). Relative expression 
values are the averages of 8 replicates for the wild-type NRRL 35695 (WT), null mutant Pe∆veA and complemented Pe∆veA:veA strains with standard 
deviations shown as error bars. Asterisks denote significant differences between the WT, null mutant Pe∆veA and complemented Pe∆veA:veA strains.  
* p-value < 0.05; ** p-value < 0.01; *** p-value < 0.001.  
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PART 6. Expression analysis of genes encoding backbone enzymes involved in 

secondary metabolite biosynthesis  

  

Table S3. Primers used to analyze the expression of other backbone enzyme genes.  

  

gene  PRIMER  SEQUENCE 5’ → 3’  

  Pexp_015170_F1  
Pexp_015170_R1  

ACTATCTTCATGCTGCGCACATAC  
CATGAAGACGGACTTGGCACTC  

cnsI  Pexp_030540_F2  
Pexp_030540_R2  

ATGTGCGACAGTTCTCAAGGATG  
ATAAAGTGATAAAGAAATCCAAGTCTACGTC  

  
  
  
  
  
  
  
  
  
  

Pexp_095540_F1  
Pexp_095540_R1  

CCTGGAACGTCAGTCAACAATACAC  
CCACGGTTGTACTGCTTTATATTCTG  

Pexp_030090_F2  
Pexp_030090_R2  

GTTTAACACGGTTCTCACAGTGCAG  
AATAGCGACGCAAAGGTCATACTC  

Pexp_076200_F1  
Pexp_076200_R1  

CTGGTGATCCAATTGAGTCAAGC  
ACCACTAGCACCCTCTGTATGGC  

Pexp_013580_F1  
Pexp_013580_R1  

CCTCTTACTCAGGGTGCCTGTATC  
TCAGTTTGAGCCAATTCGCATC  

Pexp_093210_F1  
Pexp_093210_R1  

GGCCCTGGCCGTATCAAC  
GGCTTGGCAGGCGACC  

Pexp_058440_F1  
Pexp_058440_R1  

CGCTTCATCACGCGCTCTAC  
GTACTGGATAAACGGTTTGAACTCG  

Pexp_082260_F2  
Pexp_082260_R2  

GCGGCACGGTAACCGAC  
AAGCATGAGCGGCCATCTG  

Pexp_096630_F1  
Pexp_096630_R1  

GGTGCCTGTCTTACTCCATCGTC  
TTCGCAATAAGTGGCTTAGGGAC  

Pexp_094810_F1  
Pexp_094810_R1  

GAGGCGCTCGAAAATGCTG  
CTCGGATGATTCCCTCTTGGTAG  

Pexp_079130_F1  
Pexp_079130_R1  

AAGCAGCCTTGCCATGGAG  
GAAAATATCGGCCAACAGGCTC  

 Pexp_078820_F1  
Pexp_078220_R1  

GATCTCGCATATCTGATCTACACTTCTG  
TGATTTATCCCATGGCTTGCTG 

 Pexp_104890_F2  
Pexp_104890_R2  

ATCTGAAGAAGCGAAAGATGAAGG  
CCTCGACATGATGATTCACTGTG  

 Pexp_037250_F1  
Pexp_037250_R1  

CCCTGCGTGTTCGCTACATC  
ACAGGCACTGTGTATAAGAACCGAC  

 Pexp_000130_F1  
Pexp_000130_R1  

ACTGTTCGAGTCTTTCCCAACG  
GCACCCTGTGCAACACCAG  

 Pexp_000910_F2  
Pexp_000910_R2  

GACAATGAAAAAGGATATCGGCAC  
CCAATTTCAACATGTCGGCATC  

 Pexp_029660_F1  
Pexp_029660_R1  

CGCCCGGCGATTCTTC  
CAGGCCTCCTTGAGTCGTCTG  

 Pexp_047050_F1  
Pexp_047050_R1  

CGTGTCTTCAAGGATCAGGTGC  
TCGATGCTAGTCATCATGATTGAGTC  
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 Pexp_086670_F1  
Pexp_086670_R1  

GTTCGATGGTGCTTCGTGATATG  
AAATCTAGCGGGGAATTTATCAGC  

 Pexp_107400_F1  
Pexp_107400_R1  

CAATTTGATTTTCAGCCCGAAC  
CTGGGACTTGCCCGTGG  

 Pexp_071900_F4  
Pexp_071900_R4  

ATCTACGCATGGTTTATGCCACAG  
GTGTGAAGGATGTGCAGATAGAACAC  

 Pexp_055140_F2  
Pexp_055140_R2  

AGATATTCTCACCCAGCCTTTGC  
GCCGCTGGTGAATACCACG  

 Pexp_006700_F1  
Pexp_006700_R1  

AGCTTTTCAAAGAGGGTATCCCG  
CAGGGTGTCAATGTGGAAGTCTG  

 Pexp_024160_F2  
Pexp_024160_R2  

AGCCAGCATGCGATATTTCTTC  
ATGCGTGGGCATGACCAG  

 Pexp_028920_F1  
Pexp_028920_R1  

GAATTGATTCATCTACGACCACCG  
GATAGAGGATGCCTTCAGCTATCTCAG  

 Pexp_000410_F1  
Pexp_000410_R1  

TAGCATATGAAGGTCTTGAAAATGCTG  
CTGCAGAAAAAGACCCTACAAAGC  

 Pexp_097790_F2  
Pexp_097790_R2  

CCACCAAGTTGGTCTTTGAAAGAG  
CGATTTGAATGGCGGTCG  

 Pexp_008740_F1  
Pexp_008740_R1  

TCTCGGCCACATACATTTCAGG  
TCTTCGAGTATGATCGCTGTGC  

 Pexp_074060_F1  
Pexp_074060_R1  

GTACGTTGCCAGTGGCACG  
GTCAATGCTGTCAGGGTGACTG  

 Pexp_076580_F2  
Pexp_076580_R2  

GGAATGTAGTTGTCAACGTGTTTAGC  
AGACTTTTTAGAGATGTGGGATCATGG  

 Pexp_058590_F1  
Pexp_058590_R1  

GGTATTGTGGAATGCCTTGTTCTC  
CCGGAAGGTTCTTCGATCTCTG  

 Pexp_036220_F1  
Pexp_036220_R1  

CCTCTCGGGTCACGTTGAAG  
CTACCTCGAATACACTGGAAAAGTGG  

citS  Pexp_005520_F1  
Pexp_005520_R1  

ATATGATCCAGAAAGAAAGTCAACGAG  
AACAAGAACGGAAACGTATGCATC  

patK  Pexp_094460_F1  
Pexp_094460_R1  

ACTCCTGGTACTGAGTACAGTGAATATGAA  
CTCTGGAATCTCACCCACTGC  
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Fig. S9. Relative expression of 35 genes encoding backbone enzymes involved in secondary metabolite biosynthesis. Relative expression of polyketide 
synthases (PKSs), non-ribosomal peptide synthetases (NRPSs) and dimethylallyl tryptophan synthases (DMATs) identified on the sequenced genome 
of Penicillium expansum T01 and d1 strains grown on Potato Dextrose Agar (PDA). Gene expression was evaluated in the wildtype NRRL 35695 (WT), 
null mutant Pe∆veA and complemented Pe∆veA:veA strains. Primers were designed using PrimerExpress 2.0 software and tests were carried out using 
a ViiA7 Real-Time PCR System. Black bars represent combined expression level of genes in the WT and complemented strains after culture at 25°C in 
the dark for 5 days. Grey bars represent gene expression levels in the null mutant strain grown under the same conditions. Graphs show the mean ± 
standard error of the mean (SEM) of 8 replicates. Asterisks denote significant differences between the WT and the null mutant Pe∆veA strains. Inset, 
fold change expression of Pexp_094810. nd = no difference detected, ns = no significant changes. * p-value < 0.05; ** p-value < 0.01; *** p-value < 0.001.  
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A B

PART 7. Expression analysis of laeA and velB   

Table S4. Primers used to analyze the expression of the laeA and velB genes.  

laeA Pexp_laeA_F1 

Pexp_laeA_R1 

CTCCGATTATAATTTCCGATCGCAAGATAC 

GTGAACAGTTTGTGGAATATGTCGAGAC 

velB Pexp_velB_F1 

Pexp_velB_R1 

TCGGGGCCCAACTCGCTAC 

GGGAGTAATGGGTCTCCGGTCC 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. S10. Relative expression of the laeA and velB genes on synthetic media.  

Relative expression of A) laeA and B) velB genes on Malt Extract Agar medium (MEA) and Potato 
Dextrose Agar (PDA). Relative expression values are the averages of replicates for the wild-type 
NRRL 35965 (WT), null mutant PeΔveA and complemented PeΔveA:veA strains with standard 
deviations shown as error bars.  
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PART 8. Composition of the culture media  

  

Culture of the strains used in the study was done on Potato Dextrose Agar medium (PDA) (Sigma-

Aldrich, Saint Quentin Fallavier, France), on Malt Extract Agar medium (MEA) (Biokar Diagnostics, 

Allonne, France) (30 g/L malt extract, 15 g/L agar) and on Czapek Yeast extract Agar medium (CYA) 

(10 mL/L concentrated Czapek (30 g/L NaNO3, 5 g/L MgSO4 7 H2O, 0.1 g/L FeSO4, 5 g/L KCl), 1mg/L 

K2HPO4, 5 g/L yeast extract, 30 g/L saccharose, 15 g/L agar) for 5 days at 25°C in the dark unless 

otherwise specified.  

For the morphological study, strains were plated on MEA, PDA, Czapek Dox Agar medium (CzA) 

(Oxoïd, Dardilly, France) (2 g/L sodium nitrate; 0.5 g/L potassium chloride; 0.5 g/L magnesium 

glycerophosphate; 0.01 g/L ferrous sulphate; 0.35 g/L potassium sulphate; 30 g/L sucrose; 12 g/L 

agar), and Czapek Glucose Agar Medium (CGA) (35 g Czapek Dox broth (Sigma-Aldrich); 8 g/L 

glucose, 15 g/L agar), and grown for 7 days at 25°C in the dark.   

For the protoplast preparation, 250 mL of Yeast extract Peptone Dextrose medium (YPD) (Sigma-

Aldrich) (20 g/L dextrose, 10 g/L yeast extract, and 20 g/L bactopeptone) inoculated by a 3x107 

conidia culture was used. The culture was grown on an orbital shaker (150 rpm) set at 25°C for 12 

hours. The Saccharomyces cerevisiae strain was grown on solid YPD medium (15 g/L agar) at 30°C 

for 5 days.  
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Effect of veA on the metabolome of Penicillium expansum 

 

As we have seen in the previous sections, Penicillium expansum is the causal agent of a common post-

harvest disease known as blue mould rot. Fruit products, apples specifically, are the most affected by 

this pathogen and are considered as the main cause of entry of patulin into the food chain. 

Besides patulin, the main toxin produced by P. expansum, numerous secondary metabolites remain 

unknown and it would be interesting to identify them and to study their toxicity.  

In order to detect new P. expansum compounds and determine their chemical formulas, the fungus 

was grown on labelled wheat grains with stable isotopes (natural grains with 99% 12C; grains 

enriched with 97% of 13C; and grains enriched with 53% of 13C and 97% of 15N) followed by an 

untargeted metabolomic approach. High-performance liquid chromatography coupled with high-

resolution mass spectrometry (HPLC–HRMS) analysis allowed the detection of fungal metabolites 

and the characterization of chemical formulas.  

Then, secondary metabolites produced by the WT strain of P. expansum and its null mutant on a 

synthetic medium were compared to the metabolites produced by the fungus on labelled wheats. 

New compounds were highlighted. This research shed the light on the characterization of veA and its 

involvement in the regulation of secondary metabolites in P. expansum. In addition, they showed the 

difference between what is secreted by the fungus in the medium or apple at earlier stages of 

colonization of his territory and what is secreted in the spores during asexual reproduction. It also 

highlighted the metabolites produced by the WT, veA null mutant and complemented strains in 

infected apples. 

This section provides data on new compounds produced by P. expansum and could serve as a basis 

for further studies on toxins that are potentially more toxic than patulin or on the contrary, with an 

application in the medical or agronomic field. 

 

1.2.1. Background 

The phytopathogenous fungus Penicillium expansum is the causal agent of the blue mould of apples 

and some other fruits, pears, cherries, peaches, and plums, leading to important economic losses in 

orchards worldwide (Morales et al. 2010; Nunes 2012). P. expansum is a psychrophilic and 

necrotrophic fungus that develops during harvesting and post-harvest processes and storage 

through injuries (bruises, puncture wounds) on the surface of the fruit, causing tissue decay. Spores 

or conidia enter the fruit, germinate and then grow as hyphae forming the mycelium (basal 
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metabolism), which gives rise to thousands of spores (airborne metabolism) during asexual 

reproduction.  

P. expansum produces the mycotoxin patulin, the level of which in apple-derived food products is 

regulated in many European countries (EC Commission Regulation 2006) due its toxicity (Puel et al. 

2010; Glaser and Stopper 2012). Patulin acts as a cultivar-dependent aggressiveness factor (Snini et 

al. 2016) concomitantly with tissue acidification (Prusky et al. 2016). In addition, P. expansum is able 

to produce several other secondary metabolites of very diverse structure (Tannous et al. 2017). 

Citrinin has a polyketide (PK) structure like patulin and has antibiotic properties but is nephrotoxic. 

It may have accessory supportive functions during colonization of apples (Touhami et al. 2018). The 

indole alkaloids roquefortin C, weakly neurotoxic, and communesins, which have antiinsectan 

activity, are non-ribosomal peptides (NRPs). The cytotoxic chaetoglobosins A and C, and 

cytochalasins (potential growth tumour inhibitor) are PK-NRP hybrids. Terpenes were also 

identified: geosmin, which is associated with the earthy flavour of the species, expansolides A and B, 

and the meroterpenoids andrastins A, B and C, putative anticancer drugs. Secondary metabolites play 

ecological roles such as intra- and inter-species communication signals and virulence factors for 

human and animal infections (Brakhage 2013; Macheleidt et al. 2016). Fungal metabolites have also 

been developed for medical, agrochemical and cosmetic applications (Bills and Gloer 2017).  

The genes involved in the biosynthesis of secondary metabolites are often grouped into clusters, not 

all of which are expressed under standard conditions. Potential new compounds that are synthesized 

by enzymes encoded by genes of these cryptic clusters remain thus to be discovered (Ballester et al. 

2015; Nielsen et al. 2017). In addition to specific transcription factors involved in secondary 

metabolites biosynthesis, located within the cluster and modulating the expression of the other genes 

in this cluster, there are global transcription factors that are regulated by internal and external cues 

such as pH, light, carbon, nitrogen. VeA is a global transcription factor involved in the regulation of 

many interconnected cellular processes including growth, development, light-dependent secondary 

metabolism, sexual and asexual development, sclerotia formation and conidiogenesis (Bayram et al. 

2008; Calvo 2008). VeA is the founding member of the velvet family, which includes three other 

proteins, VelB, VosA and VelC. In light, VeA is found mainly in the cytoplasm and sexual reproduction 

as well as secondary metabolism are inhibited. In the dark, VeA migrates to the nucleus in association 

with VelB, where they form a heterotrimeric complex with LaeA, the velvet complex, which controls 

development and secondary metabolism. In general, VeA increases the production of secondary 

metabolites, such as penicillin in Penicillium chrysogenum (Kopke et al. 2013) or gliotoxin in 
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Aspergillus fumigatus (Dhingra et al. 2013). Conversely, the biosynthesis of the dark-coloured 

pigment bikaverin in Fusarium fujikoroi (Wiemann et al. 2009) and compactin in Penicillium citrinum 

(Baba et al. 2012) is altered. In P. expansum, VeA affects aggressiveness, conidiation and secondary 

metabolism, for example by upregulating the production of patulin and citrinin or by downregulating 

that of communesins (El Hajj Assaf et al. 2018).  

Except for patulin and citrinin, little information is available on the impact of VeA on the metabolome 

of P. expansum. First, a non-targeted metabolomic study using high-performance liquid 

chromatography coupled with high-resolution mass spectrometry was performed to investigate the 

structure of P. expansum secondary metabolites using carbon 13 (13C) and nitrogen 15 (15N) labelled 

wheats and to detect unknown metabolites produced by the fungus during its development and 

colonization cycle. The production of secondary metabolites was then compared between the wild 

type strain and the null mutant strain PeΔveA strain previously generated in our laboratory on a malt 

extract agar (MEA) synthetic medium and in vivo, on infected apples. 

 

1.2.2. Material and methods 

1.2.2.1. Production of 13C- and 13C/15N labeled wheats 

Triticum aestivum (cv. caphorn) was used to produce isotopic enrichments as previously described 

(Péan et al. 2007) and as detailed (Hautbergue et al. 2017). Briefly, two different enrichments were 

realized with 13C-labeled CO2 and 15N-labeled nitrate and ammonium salts in hermetically sealed 

chambers (750L) for 6 months: the first one consisted on nearly 100% 13C enriched wheat (referred 

to as 13C wheat) and the second one on nearly 50% 13C and 100% 15N wheat (referred to as 13C/15N 

wheat). The isotopic enrichments were then measured with a Delta V Advantage isotope ratio mass 

spectrometer (Thermo Fisher Scientific, Illkirch, France). 

 

1.2.2.2. Fungal strains and growth conditions 

Three strains of Penicillium expansum were used in this study. The wild-type one NRRL 35695 (WT) 

was isolated from grape berries in the Languedoc Roussillon region in France. The null mutant 

PeΔveA and PeΔveA:veA complemented strains were generated as previously described (El Hajj Assaf 

et al. 2018). Culture of the strains used in the study was performed in the dark on a Malt Extract Agar 

medium (MEA) (Biokar Diagnostics, Allonne, France) (30 g/L malt extract, 15 g/L agar) for 5 days at 

25°C. 

 



Experimental Work CHAPTER 1_Part 2 

 

136 

 

As for the natural and labelled wheat grains, they were treated and inoculated as described by 

Hautbergue et al. (2017). Succinctly, wheat grains were soaked in water and autoclaved twice. The 

water activity (aw) of the grains was measured and sterile water was added until obtaining an aw of 

0.98 before inoculation. A total of 4 culture media were prepared into sterile 140 mm diameter Petri 

dishes (Sarstedt, Marnay, France) and contained thirty grams of sterilized labelled 13C wheat grains, 

13C/15N wheat grains, and 12C wheat grains (2 replicates of this culture). Each type of the labelled 

wheat was inoculated with 250 µL of a spore solution (with a concentration of 105 spore/mL) of  

P. expansum from a preculture of the fungus on Potato Dextrose Agar (PDA; Biokar, Allonne, France) 

(7 days at 25°C). The second Petri plate containing 12C labelled wheat grains served as a control and 

was not inoculated with the fungus. The four cultures were incubated for 14 days, at 25°C and in the 

dark.  

 

1.2.2.3. Analysis of secondary metabolite production in vivo 

To assess the production of secondary metabolites on apples by each of our strains, in vivo studies 

were performed on Golden Delicious apples. The latter were purchased from a supermarket in 

Toulouse (Carrefour, France) and were surface sterilized as described previously by Sanzani et al. 

(2012). Apples were then wounded with a sterile toothpick. A first batch of them was inoculated with 

10 µL of a suspension at concentration of 104 conidia/mL and incubated at 25°C in the dark for 14 

days. A second batch of the same apples was inoculated with 20 µL containing 500 spores of each of 

the strains, and were incubated at 25°C for 30 days, in the dark. 

After the incubation period, the apples from the first batch, were grounded as previously described 

by MacDonald et al. (2000) and secondary metabolites were extracted as detailed by Snini et al. 

(2016). 

As with apples in lot 2, spores were recovered using a pump on 0.45 µm membrane filters uptidisc 

nylon 47mm (Interchim, France). The membranes were extracted in 50 mL ethyl acetate on a 

horizontal shaking table at 160 rpm at room temperature. The metabolites were extracted as 

analysed in previous work (El Hajj Assaf et al. 2018). Six biological replicates were performed for 

each strain for each of the experiments. 

 

1.2.2.4. Analysis of secondary metabolite production in vitro 

MEA and PDA were used for the growth of the WT, null mutant and complemented strains and for 

the secondary metabolites analysis. Precultures done on PDA for each of the strains, incubated for 7 
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days at 25°C in the dark, were used to prepare the spore suspension. Petri dishes containing the 

medium and covered with a sterile cellophane film were inoculated with 10 µL containing 106 spores 

of each isolate and were incubated for 5 days at 25°C in the dark. The cellophane film on which the 

fungi has developed was separated from the agar medium and the metabolites were extracted as 

described previously (El Hajj Assaf et al. 2018). 

 

1.2.2.5. Secondary metabolome analysis  

Secondary metabolites were screened by liquid chromatography coupled to high-resolution mass 

spectrometry (HPLC-HRMS). The chromatographic system consisted in a RSLC3000 UHPLC (Thermo 

Scientific, Les Ulis, France) operating with a 125 × 2 mm Luna® C18 5 µm column (Thermo Scientific, 

Les Ulis, France). A gradient program of (A) water acidified with 0.05% formic acid and (B) 

acetonitrile was used at 30°C and a flow rate of 0.2 mL min-1 as follows: 0 min 20% B, 30 min 50% B, 

35 min 90% B, from 35 to 45 min 90% B; 50 min 20% B, from 50 to 60 min 20% B. A volume of 10 

µL of each sample diluted twice with mobile phase A was injected. The mass spectrometer 

corresponded to a LTQ Orbitrap XL (Thermo Scientific, Les Ulis, France) fitted with an Electrospray 

Ionization Source (ESI). ESI parameters for the negative mode were set as follows: spray voltage: 

3.7kV, sheath gas flow rate (N2): 30 arbitrary units (a.u.), auxiliary gas flow rate (N2): 10 a.u., capillary 

temperature: 350°C, capillary voltage: -34V and tube lens offset: -180V. ESI parameters for the 

positive mode were set as follows: spray voltage: 4kV, sheath gas flow rate (N2): 55 arbitrary units 

(a.u.), auxiliary gas flow rate (N2): 10 a.u., capillary temperature: 300°C, capillary voltage: 25V and 

tube lens offset: -100V.High resolution mass spectra were acquired between m/z 80 and 800 at a 

resolution of 30000. The calibration of mass spectrometer was achieved using the calibration 

solution of Thermo Scientific in agreement with their protocol. MS/MS spectra were obtained with 

the collision induced dissociation (CID) mode of the ion trap analyser at low resolution and a 

normalized collision energy of 35%. Three biological replicates were performed for each strain.

 

1.2.2.6. Identification of secondary metabolites 

A mass compare program developed at INRA (Toulouse, Axiom Platform) was used to compare the 

proposed 12C, 13C and 13C15N formulas using a measurement accuracy of 5 ppm. Identified metabolites 

displayed a comparable MS/MS spectrum to the bibliography and were identified as described by 

Hautbergue et al. (2017).  
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1.2.2.7. Metabolome data analysis 

Extraction of data from mass spectrometry acquisition files was carried out using xcms software 

(Smith et al. 2006) with centwave algorithm (Tautenhahn et al. 2008). To avoid variation among 

samples data were then normalized using Probabilistic Quotient Normalization (Dieterle et al. 2006). 

On the resulting normalized data, univariate analysis of variance was used to study the effect of 

deletion of veA on the different molecules intensities. All these data analysis steps were performed 

using workflow4metabolomics, a collaborative portal dedicated to metabolomics data processing 

(Giacomoni et al. 2015). HPLC-HRMS data were analysed with a methodology previously developed 

for exposomics studies (Jamin et al. 2014). 

 

1.2.2.8. Data analysis 

One-way anova coupled to a Bonferroni test was used to analyse the differences between the 

secondary metabolites produced by the WT and null mutant strains in vitro, in the medium tested 

and in the fungal extract after running the samples on a LC-MS. It was also used to compare the 

abundance of metabolites between the different strains in apples. The differences were considered 

to be statistically significant when the p-value was lower than 0.05. The statistical analysis of the data 

was carried out using GraphPad 4 software (GraphPad Software, La Jolla, USA). 

 

1.2.3. Results and discussion 

A PeΔveA mutant was generated by replacing the veA gene with a hygromycin resistance marker in a 

wild type strain of Penicillium expansum. The transformation was described in Chapter 1_Part 1. The 

null mutant was then used to study the influence of VeA on the production of several secondary 

metabolites and to differentiate between the metabolites produced in the medium, on which the 

fungus grew, in the fungus and in the spores. 

 

1.2.3.1. Secondary metabolite production during the fungal cycle 

A huge variety of compounds is produced by countless microorganisms by means of specialized 

biosynthetic pathways. Although secondary metabolites are not crucial for growth and reproduction, 

they could present a bioactive role to the organism that produce them (Keller et al., 2005). They can 

increase the organism’s chances of survival in an hostile environment by adapting them to 

extracellular conditions, ensuring defence, competition, interactions between interspecies, etc. 

(Brachmann et al. 2013; Martinez et al. 2017).  
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P. expansum strains were found to be able to produce, besides patulin, a huge variety of active 

secondary metabolites and mycotoxins such as citrinin (Ciegler et al. 1977; Paterson et al.1987), 

roquefortin C (Andersen et al. 2004), chaetoglobosins (Andersen et al. 2004), expansolides (Massias 

et al. 1990), fumaryl-dl-alanine (Birkinshaw et al. 1942), and communesins (Andersen et al. 2004). 

Among the eight communesins (A–H) identified, communesin B was reported to be the most 

biologically active (Dalsgaard et al. 2005).  

The global regulation factor VeA has been described previously as a positive or negative regulator of 

secondary metabolite biosynthesis in Aspergillus nidulans (Bayram and Braus 2012; Rauscher et al. 

2016), A. flavus (Cary et al. 2015) and Penicillium expansum (EL Hajj Assaf et al. 2018). However, none 

of the studies differentiated between metabolites excreted in the medium and those secreted by the 

fungus. In our experiment, after 5 days of incubation of the WT and its veA null mutant strains on 

malt extract agar (MEA) medium in the dark at 25°C, the film on which the fungus grew was separated 

from the agar medium. The metabolites were extracted separately from the medium and fungi 

(without film) and analysed by HPLC-HRMS. 

First, data generated from the LC-MS spectra were illustrated by Venn diagrams in figure 1, showing 

the number of significant ions obtained that differentiate the null mutant strain from each of the WT 

and ∆veA:veA complemented strains. No significant differences were observed between the WT and 

complemented strains. Differences observed between the WT or complemented strains and the null 

mutant strain were due to the veA disruption, confirming what we have seen in the previous parts of 

chapter 1. There are also differences between the medium, in which the metabolites are excreted, 

and the fungus. These findings show that not all fungal metabolites are released during substrate 

infection, but throughout its development.
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Figure 1 Venn diagrams showing the number of significant ions differentiating the null mutant strain 
from each of the wild type and complemented strains in the medium where the fungus grew and in 
the fungus. Cultures were grown in the dark for 5 days at 25°C. Numbers were obtained after 
screening the samples by LC-MS. Univariate analyses (Wilcoxon and Kruskal and Wallis) were 
conducted and significant ions were considered when p value < 0.05. 

In order to identify secondary metabolites of P. expansum and its null mutant strain present in the 

samples and since many natural products are unavailable as reference compounds to validate their 

identification, an HPLC-HRMS analysis of the three wheat cultures was performed. 

Based on the protocol previously developed and described by Cano et al. (2013), secondary 

metabolites of P. expansum were characterized. The WT strain was grown on 13C wheat and 13C15N 

labelled wheat grains under the conditions described above and a control sample of wheat not 

infected by the fungus was also placed in the same environment. After extraction of the secondary 

metabolites from the samples, they were analysed by HPLC-HRMS. Isotopic patterns were detected 

by positive (ESI+) and negative (ESI−) electrospray ionization modes and a list of secondary 

metabolites is reported in Table 1. For further identification of the detected metabolites, a 

determination of their possible chemical formulas was performed, based on the m/z ratios measured 

in 12C, 13C and 13C15N extracts for each of the detected secondary metabolites, and then MassCompare 

software provided a unique final formula. Numerous of the metabolites present in the different 

samples extracted and analysed after were identified by comparing them to the listed metabolites in 

Table 1. 
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Identifiera 
Molecular 

formulab 

Parent 

ion 
Rt (min) 

12C m/z  

(Da) 
Proposed identification 

Pexp_157.049_2.67 C7H8O4 [M+H]+ 2.67 157.0499 Ascladiol 

Pexp_153.019_3.59 C7H6O4 [M-H]- 3.59 153.01919 Patulin 

Pexp_141.054_3.8 C7H8O3 [M+H]+ 3.80 141.05493 Gentisyl alcohol 

Pexp_143.070_4.52 C7H10O3 [M+H]+ 4.52 143.07061  

Pexp_227.155_6.44 C15H18N2 [M+H]+ 6.44 227.15514 Aurantioclavine 

Pexp_125.060_6.79 C7H8O2 [M+H]+ 6.79 125.05998 m-Hydroxybenzyl alcohol 

Pexp_109.065_7.11 C7H8O [M+H]+ 7.11 109.06509 m-Cresol 

Pexp_271.154_7.62 C16H18N2O2 [M+H]+ 7.62 271.14496 Clavicipitic acid 

Pexp_293.129_13.58 C18H16N2O2 [M+H]+ 13.58 293.12911  

Pexp_295.144_14.61 C18H18N2O2 [M+H]+ 14.61 295.14479  

Pexp_390.193_15.09 C22H23N5O2 [M+H]+ 15.09 390.1939 Roquefortine C 

Pexp_265.144_15.91 C15H20O4 [M+H]+ 15.91 265.14412 Expansolide C/ D 

Pexp_293.129_17.74 C18H16N2O2 [M+H]+ 17.74 293.12915  

Pexp_265.144_18.49 C15H20O4 [M+H]+ 18.49 265.14415 Expansolide C/ D 

Pexp_375.142_22.02 C16H26N2O4S2 [M+H]+ 22.02 375.14202  

Pexp_457.261_23.65 C28H32N4O2 [M+H]+ 23.65 457.26116 Communesin A 

Pexp_423.154_27.01 C23H24N2O6 [M-H]- 27.01 423.15486  

Pexp_425.171_26.05 C23H24N2O6 [M+H]+ 26.05 425.17179  

Pexp_447.153_26.05 C23H24N2O6+Na [M+H]+ 26.05 447.15351  

Pexp_501.247_27.70 C28H38O8 [M-H]- 27.70 501.24792  

Pexp_307.154_27.39 C17H22O5 [M+H]+ 27.39 307.15471 Expansolide A/B 

Pexp_307.155_30.19 C17H22O5 [M+H]+ 30.19 307.15504 Expansolide A/B 

Pexp_529.271_30.53 C32H36N2O5 [M+H]+ 30.53 529.27111 Chaetoglobosin A/B/G 

Pexp_501.247_28.44 C28H38O8 [M-H]- 28.44 501.24792  

Pexp_501.247_29.57 C28H38O8 [M-H]- 29.57 501.24786  

Pexp_487.269_30.58 C28H40O7 [M-H]- 30.58 487.26898 Andrastin B 

Pexp_523.271_31.84 C32H34N4O3 [M+H]+ 31.84 523.27152 Communesin D 

Pexp_305.129_32.50 C19H16N2O2 [M+H]+ 32.50 305.12911  

Pexp_305.129_33.17 C19H16N2O2 [M+H]+ 33.17 305.12933  

Pexp_437.170_33.79 C24H26N2O6 [M-H]- 33.79 437.17091  
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Pexp_529.270_34.05 C32H36N2O5 [M+H]+ 34.05 529.27063 Chaetoglobosin A/B/G 

Pexp_543.248_34.05 C32H36N2O6 [M-H]- 34.05 543.24836  

Pexp_485.254_35.32 C28H38O7 [M-H]- 35.32 485.25405  

Pexp_509.292_36.01 C32H36N4O2 [M+H]+ 36.01 509.29257 Communesin B 

Pexp_485.253_36.26 C28H38O7 [M-H]- 36.26 485.25328 Andrastin A 

Pexp_487.270_36.21 C28H38O7 [M+H]+ 36.21 487.27063 Andrastin A 

Pexp_319.145_36.44 C20H18N2O2 [M+H]+ 36.44 319.14502  

Pexp_361.2582_38.19 C19H38O6 [M-H]- 38.19 361.25819  

Table 1 Secondary metabolites detected from Penicillium expansum after culture on wheat grains and 
their MS/MS fragmentation in higher energy collision dissociation (HCD) mode. aSecondary 
metabolites identifier (Pexp_m/z_RT); bThe chemical formulas were calculated after measuring the 
m/z ratios obtained from the culture of P. expansum in 12C wheat, 97%13C wheat and 53%13C/96%15N 
wheat.

The total ion current chromatograms obtained after HPLC-HRMS in our extracts are shown in figure 

2. The chromatograms and mass spectra obtained showed different profiles for the extracts of MEA 

medium on which the WT and Pe∆veA strains grew (Figure 2 A/C) and of the WT and Pe∆veA strains 

(Figure 2 B/D). 

Figure 2 Total ion current chromatograms obtained from the extracts of malt extract agar (MEA) 
medium on which grew the Pe∆veA (A) and WT (C) strains and Pe∆veA (B) and WT (D) strains. 
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Among the various secreted metabolites, some of them were down-regulated in the null mutant 

strain and detected most in the WT strain such as citrinin, patulin, ascladiol, roquefortin, and 

communesins. Others were up-regulated in the PeΔveA strain such as expansolides (A, B, C and D). 

Some metabolites showed no significant difference between the WT and null mutant strains such as 

andrastin A. Basically, these results confirmed what was measured by HPLC, quantified by Real-Time 

PCR and discussed in the previous section (El Hajj Assaf et al. 2018). 

However, surprisingly, the metabolites found in the medium were not always the same as those found 

in the fungus. According to Calvo et al. (2002), most of the secondary metabolites produced by the 

fungus are secreted once the fungus has completed its initial growth phase. They are produced at a 

stage of development represented by the formation of spores. Secondary metabolites are associated 

into three broad categories) those activating sporulation (e.g. the linoleic acid-derived compounds 

produced by A. nidulans) (Champe and el-Zayat 1989; Mazur et al. 1991; Calvo et al. 2001), ii) those 

required for sporulation structures (e.g. melanins essential for the formation of both sexual and 

asexual spores) (Kawamura et al. 1999), and iii) toxic metabolites produced by growing colonies at 

the time of near sporulation (e.g. biosynthesis of mycotoxins) (Trail et al. 1995; Hicks et al. 1997).  

As shown in figure 3, citrinin and patulin secreted by the WT strain were detected in the agar 

medium. Patulin was also detected in the fungus but at very low concentrations, 17 times lower than 

in the medium. Ascladiol was measured in small amounts in the fungus but was mainly found in the 

medium. On the contrary, roquefortin and communesin A and B, up-regulated by veA, were detected 

in higher amounts in the WT strain. This indicates that during its cycle, the fungus does not release 

all its metabolites at once. It begins by producing metabolites that will allow it to conquer the medium 

and most likely inhibit the development of other microorganisms in the medium. Then during its 

aerial metabolism, other metabolites are released that may be more essential for spore formation 

and dissemination. Expansolides (table 1) appeared to be down-regulated by veA and found in large 

amounts in the medium on which the null mutant strain developed. The deletion of the veA gene 

influenced the production of aurantioclavine in the fungus but its production in the medium was not 

affected. It can be assumed that the production of aurantioclavine, the precursor of communesins 

(Siengalewicz et al. 2008), follows different pathways in the medium and the fungus. Other natural 

products were identified according to their molecular formula, m/z ratios and retention time Rt. The 

metabolite with an m/z ratio of 348 was down-regulated by veA. It is only secreted by the null mutant 

strain and in the medium even if a small amount has been detected in the fungus. Unfortunately, since 

this metabolite was not secreted by the WT strain, we could not assign it a chemical formula. 
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However, this metabolite is of interested because it is the most produced by the null mutant strain 

and in addition, two genes involved in the biosynthesis of secondary metabolites encoding PKSs: 

Pexp_000410 and Pexp_094810 were highly down-regulated by veA on MEA and PDA (Chapter 

1_Part1). Pexp_000410 was up-regulated by laeA on Czapek yeast extract liquid medium (CY) and 

Pexp_094810 was not expressed in either the WT or ΔlaeA strains whatever the medium (Kumar et 

al. 2017a). By combining the results obtained by LC-MS and RT-PCR, a potential PKS could be 

attributed to the unknown metabolite, which would allow the gene clusters of a new secondary 

metabolite to be identified. Patulin and citrinin, the main products of the secondary metabolism of  

P. expansum (Woodhead and Walker 1975), are also two polyketides derived from acetate and whose 

genes are down-regulated by veA on MEA and PDA (El Hajj Assaf et al. 2018).  

The metabolite with an m/z ratio of 374 was medium-specific and its production was not regulated 

by veA. The metabolites with m/z ratios of 425/ 375 and 293 were down-regulated and up-regulated 

by veA, respectively. The metabolite with m/z of 375 is mainly produced in the WT fungus; the one 

with m/z of 293 is mainly produced by the WT strain (in the medium and fungus). Secondary 

metabolites are obviously linked to fungal developmental programs that respond to various external 

abiotic or biotic triggers and VeA, a regulatory protein of the velvet family, plays a key role in 

coordinating this secondary metabolism.
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Figure 3 Graphs showing the relative abundance of metabolites 
produced by the WT strain NRRL 35695 of Penicillium expansum and the 
null mutant PeΔveA strain, in the medium on which the cultures grew 
and in the different strains. Cultures were grown for 5 days in the dark 
at 25°C. Graphs show the mean ± standard error of the mean (SEM) of 
three replicates. Asterisks denote significant differences between WT 
and null mutant PeΔveA strains, in the medium or in the fungus. ns, no 
significant changes; *P < 0.05; **P < 0.01; ***P < 0.001. 
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1.2.3.2. Production of secondary metabolites in vivo and in vitro growth 

After differentiating the metabolites produced in the medium from those produced in the fungus 

during in vitro culture on MEA, we compared the production of metabolites in an in vivo study. 

Secondary metabolites secreted by the WT, null mutant and complemented strains of P. expansum in 

apples inoculated and incubated for 14 days at 25°C in the dark, were analysed and compared with 

the metabolites secreted by P. expansum grown on labelled wheat. In addition to patulin secreted by 

the WT strain in apples, all the results of which were presented in the first part of this chapter (El 

Hajj Assaf et al. 2018), other compounds were identified such as communesin A/B, andrastin A 

(Figure 4). Molecules with m/z ratios of 425 and 447showed very significant differences in 

abundance between the three strains tested. They are down-regulated by veA. The molecule with m/z 

ratio of 425 was also found in the in vitro study and was assigned the chemical formula C23H24N2O6. 

On a synthetic medium, the WT strain was able to produce this compound; however, it was not 

detected in apples. The metabolite with an m/z ratio of 447 was not found in the in vitro study, when 

the fungus was grown on MEA, and same goes for andrastin B. These metabolites could be substrate 

specific. On the contrary, communesins A, B and andrastin A were secreted by the fungus grown on 

synthetic medium with communesins being mainly in the fungus and not secreted in the agar 

medium. From these results, we can conclude that what is observed on a synthetic medium does not 

always reflect what occurs in vivo. Some compounds are substrate specific and many metabolites 

outside patulin are secreted in infected apples. veA has an impact on the biosynthesis pathway of 

secondary metabolites present in apples and need to further investigation. After measuring the 

abundance of metabolites produced in the contaminated apples, the ones in the spores were 

analysed. 
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Figure 4 Graphs showing the relative abundance of metabolites produced by the WT strain NRRL 
35695 of Penicillium expansum, the null mutant PeΔveA and complemented PeΔveA:veA strains, in 
apples inoculated with 10 µL of a suspension at 104 conidia/mL and incubated at 25°C in the dark for 
14 days. The graphs show the mean ± standard error of the mean (SEM) of three replicates. The 
asterisks denote significant differences in metabolite production between the three strains used. ns, 
no significant changes; *P < 0.05; **P < 0.01; ***P < 0.001. 

After inoculating Golden Delicious apples with 104 conidia/mL of the WT strain and incubating them 

at 25°C in the dark for 30 days, spores were recovered and their metabolites were extracted. Several 

studies have shown that compounds excreted by fungi can induce asexual and sexual sporulation in 

other fungi (Hadley et al. 1958; Park and Robinson 1969). In most cases, these compounds have not 

yet been identified but they are expected to be produced as the mycelia ages (Calvo et al. 2002). The 

formation of coremia was missing in the null mutant strain grown in vivo and in vitro In addition, it 
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was unable to pierce the apple peel and emerge from the fruits to complete its life cycle (El Hajj Assaf 

et al. 2018). This explains why the spores recuperated on the apple surface were those of a WT strain.  

In order to identify the molecules present in the spores, we compared them to the molecules secreted 

during the culture of P. expansum on labelled wheat. More molecules were detected in the spores 

than in the apples. Some of them were already known (communesins A/B, clavicipitic acid, 

expansolides A/B and andrastins A/B/C); others were characterized by a molecular formula (for 

example C18H16N2O2and an identifier was assigned to them (Pexp_293_13.58)) (Table 2).

Identifiera 
Molecular 

formulab 

Parent 

ion 
Rt (min) 

Proposed 

identification 

Pexp_271_7.62 C16H18N2O2 [M+H]+ 7.62  Clavicipitic acid 

Pexp_293_13.58 C18H16N2O2 [M+H]+ 13.58   

Pexp_295_14.61 C18H18N2O2 [M+H]+ 14.61   

Pexp_293_17.74 C18H16N2O2 [M+H]+ 17.74   

Pexp_375_22.02 C16H26N2O4S2 [M+H]+ 22.02   

Pexp_457_23.65 C28H32N4O2 [M+H]+ 23.65  Communesin A 

Pexp_423_27.01 C23H24N2O6 [M-H]- 27.01   

Pexp_425_26.92 C23H24N2O6 [M+H]+ 26.92   

Pexp_447_26.92 C23H24N2O6+Na [M+H]+ 26.92   

Pexp_307_27.39 C17H22O5 [M+H]+ 27.39  Expansolide A/B 

Pexp_307_30.19 C17H22O5 [M+H]+ 30.19  Expansolide A/B 

Pexp_501_28.44 C28H38O8 [M-H]- 28.44   

Pexp_501_29.57 C28H38O8 [M-H]- 29.57   

Pexp_487_30.58 C28H40O7 [M-H]- 30.58  Andrastin B 

Pexp_305_32.50 C19H16N2O2 [M+H]+ 32.50   

Pexp_303_32.46 C19H16N2O2  [M-H]- 32.46   

Pexp_305_33.17 C19H16N2O2 [M+H]+ 33.17   

Pexp_303_33.13 C19H16N2O2 [M-H]- 33.13   

Pexp_437_33.79 C24H26N2O6 [M-H]- 33.79   

Pexp_485_35.32 C28H38O7 [M-H]- 35.32   

Pexp_509_36.01 C32H36N4O2 [M+H]+ 36.01  Communesin B 

Pexp_485_36.26 C28H38O7 [M-H]- 36.26  Andrastin A 

Pexp_487_36.21 C28H38O7 [M+H]+ 36.21  Andrastin A 
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Pexp_319_36.44 C20H18N2O2 [M+H]+ 36.44   

Pexp_361_38.19 C19H38O6 [M-H]- 38.19   

Pexp_471_39.84 C28H40O6 [M-H]- 39.84  Andrastin C? 

Table 2 List of the secondary metabolites detected in spores of Penicillium expansum, recovered on 
infected apples. a Secondary metabolites identifier (Pexp_m/z_RT); b The chemical formulas were 
calculated after comparison of the m/z ratios obtained from the culture of Penicillium expansum in 
12C wheat, 97%13C wheat and 53%13C/96%15N wheat to the m/z ratios of the metabolites found in 
the spores of P. expansum after growing on apples.  

The metabolites present in the spores in the in vivo study were expected to be the same as those 

found in the fungus in the in vitro study, unless they are substrate specific. By comparing spores and 

metabolites isolated from fungi, we find that communesins A and B as well as the two molecules with 

m/z ratios equal to 425 and 375 and molecular formulae of C23H24N2O6 and C16H26N2O4S2, 

respectively, were found in both studies and are secreted during asexual reproduction. 

Aurantioclavine and roquefortin were only detected in the fungus in the in vitro study and andrastins 

B and C as well as other molecules listed in table 2 were only detected in the spores in the in vivo 

study. Expansolides were detected in spores and not in apples, but the in vitro experiment has shown 

that these metabolites are mainly present in the medium and are secreted by the basal mycelium of 

the fungus unlike communesins and roquefortin mainly secreted in the fungus (in vitro study). 

Different environmental signals such as availability of nutrients, fungal pheromones, stress 

conditions, oxygen supply, etc. contribute to reaching the developmental competence phase (Bayram 

and Braus 2012). All these signals lead to fungal differentiation of hyphae (including transition to 

asexual spore formation and to sexual fruiting bodies) and changes in secondary metabolism of the 

fungus. This would explain the difference between secondary metabolites that are produced in our 

synthetic medium or in the spores/and fungi. 

 

1.2.4. Conclusion 

Finally, our results highlight the impact of VeA on the metabolome of P. expansum and differentiate 

between secondary metabolites secreted throughout the fungus’ life cycle. Patulin and citrinin were 

specific to the phase when the fungus colonized its medium; roquefortin and communesins A and B 

were present in the fungus. Due to differences between the culture of the fungus on a synthetic 

medium or on apples, some metabolites appeared to be substrate specific and were not detected in 

in vitro and in vivo studies. New metabolites have been identified and raw formulae have been 
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assigned to them. Our results show that VeA affects the secondary metabolism of P. expansum and 

that the release of secondary metabolites does not occur randomly in a fungus but depends on the 

substrate and life cycle. The nature of the signalling involved in the different phases of development 

of the fungal life cycle, the chemical characteristics and possible regulatory effect of the substances 

produced remain unclear and further research should be carried out.  
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In addition to the work carried out in the first part of this chapter on the characterization of the veA gene 

in P. expansum, other experiments were conducted as part of this thesis to improve our knowledge of this 

fungus and its regulation system.  

Since apples are sugar-rich sources (mainly glucose, sucrose and fructose), which affect the secondary 

metabolism of fungal species, in this section, we tested the effect of different concentrations of these three 

sugars on the wild-type strain of P. expansum NRRL 35695, a null mutant PeΔveA strain and a 

complemented PeΔveA:veA strain. The increase in in vitro sugar content favoured fungal development, 

but this was not correlated with the production of PAT. The three fungal strains grown on a medium 

supplemented/enriched with more than 3% sugar showed a significant decrease in their PAT production. 

The null mutant was almost unable to produce PAT, regardless of the percentage of sugar added. These 

findings support the hypothesis that sugar sources affect the secondary metabolism of P. expansum and 

that VeA contributes to the pathogenicity of this fungus. They also suggest that apple varieties and their 

degree of maturity could influence PAT production and apple colonization. 

 

1.3.1. Background  

The phytopathogenous fungus Penicillium expansum, causal agent of blue mould disease on apples and 

some other fruits (e.g. pears, cherries, peaches, and plums), leads to important economic losses in 

orchards worldwide (Morales et al. 2010; Nunes 2012). It is a psychrophilic and necrotrophic fungus that 

develops on the surface of the fruit during harvesting, post-harvest handling and storage through injuries 

(bruises, puncture wounds), thus causing tissue decays. Spores or conidia enter the fruit, germinate and 

then grow as hyphae forming the mycelium (basal metabolism), which gives rise to thousands of spores 

(airborne metabolism) during asexual reproduction, after they leave the fruit.  

P. expansum is generally regarded as the major producer of patulin (PAT), a potent mycotoxin that can 

cause serious health concerns. Apple juices and other derived products produced from apples infected 

by this fungus are the major dietary source of PAT. Due to its broad spectrum of toxicity (Puel et al. 2010; 

Glaser and Stopper 2012), PAT levels in apple-derived food products are regulated in many European 

countries (EC Commission Regulation 2006). However, it is present in food products on the market (Ioi 

et al. 2017; Tannous et al. 2017) and research studies are therefore necessary to prevent accumulation 

of the toxin in fruits and to minimize the risk of contamination of final products with PAT.  

Numerous environmental conditions such as pH, temperature, water activity, nitrogen (N) and carbon 

(C) sources regulate the biosynthesis of mycotoxins in several filamentous fungi (Schmidt-Heydt et al. 

2008; Georgianna and Payne 2009). Among those abiotic factors, the composition of substrates and their 

nutritional conditions have a significant effect on mycotoxin production. Sucrose stimulates the 

production of aflatoxins and trichothecenes in Aspergillus parasiticus and Fusarium graminearum, 

respectively (Davis and Diener 1968; Jiao et al. 2008; Georgianna and Payne 2009). The biosynthesis of 
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fumonisin B1 in Gibberella fujikuroi and the expression of fumonisin biosynthesis genes in  

Fusarium proliferatum were regulated by a mechanism involving nitrogen metabolite (Shim and 

Woloshuk 1999; Kohut et al. 2009). Zong et al. (2015) investigated the effects of different C and N sources 

on the production of PAT in P. expansum. They have shown that a concentration of 10 g/L maltose, 

glucose, fructose, mannose, sucrose, and starch was a favourable source of C for PAT biosynthesis. In the 

same study, when citrus pectin, lactose, malic acid and cellulose were used as C sources in the defined 

media, very low levels of PAT were detected.  

Apples are rich in sugars. The main ones are glucose, sucrose, fructose and sorbitol. All cultivars contain 

more fructose and less glucose (Hecke et al. 2006; Wu et al. 2007). During fruit storage, maturation and 

ripening, the sucrose content decreases and the glucose and fructose contents increase (Chardonnet et 

al. 2003). Despite the importance of sugar content in apple cultivars and for fruit maturity, few studies 

have discussed its relationship with the mechanism activation of PAT biosynthesis.  

The gene cluster responsible for PAT biosynthesis in P. expansum has been recently characterized 

(Tannous et al. 2014; Ballester et al. 2015). PatL, a gene located within the cluster and encoding a specific 

transcription factor, is responsible for the activation of all genes in the cluster. Its expression was 

positively associated with the production of PAT (Snini et al. 2016). Global transcription factors appear 

to be also involved in the regulation of secondary metabolite biosynthesis in fungal species (Kumar et al. 

2017; El Hajj Assaf et al. 2018). In the previous study, we showed that VeA acts as a positive regulator of 

the biosynthesis of different secondary metabolites such as PAT and citrinin (El Hajj Assaf et al. 2018). 

The disruption of the laeA gene in P. expansum has also led to a strong reduction in PAT production 

(Kumar et al. 2017). In the same study, the regulation of laeA expression by sugars was also reported. 

The increase in sucrose content has a negative impact on laeA expression and PAT synthesis, but a 

positive impact on creA gene expression, which is a transcription factor that acts as a global carbon 

catabolite regulator, in vitro. No information is available on the impact of VeA on the development of  

P. expansum and PAT biosynthesis in presence of different sugar sources. 

Although some work was carried out and contributed to a better understanding of the factors modulating 

PAT production and accumulation (Tannous et al. 2015; Ballester et al. 2015; Kumar et al. 2017; El Hajj 

Assaf et al. 2018), more studies should be conducted taking into account host factors (sugar contents, 

acids, pH, etc.). Studies on the mechanism of sugar metabolism by Penicillia are scarce. In this study, we 

showed the impact of the main sugars of apples on the development and PAT production of P. expansum 

wild type and veA null mutant strains. We suggest that apple cultivars and the degree of maturity are 

involved in the production of PAT and fungal development on colonized fruits. 
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1.3.2. Material and methods 

1.2.2.1. Fungal strains and growth conditions 

The NRRL 35695 wild-type strain (WT) of Penicillium expansum used in this study was isolated from 

grape berries in the Languedoc Roussillon region in France. The null mutant and complemented strains 

PeΔveA and PeΔveA:veA, respectively, were generated as previously described (El Hajj Assaf et al. 2018). 

The strains were grown on a Potato Dextrose Agar medium (PDA) (Biokar, Allonne, France), in the dark 

for 7 days at 25°C and then on a basic medium enriched with different concentrations of glucose, sucrose 

and fructose provided by Merck. 

 

1.3.2.2. In vitro growth 

After 7 days of incubation of the WT, null mutant and complemented strains on PDA, a spore suspension 

of each of the three strains was prepared (Adjovi et al. 2014). The concentrations of spore suspensions 

were then quantified using a Malassez cell. A basic medium (15 g/L agar (Merck); 2 g/L yeast extract 

(Fluka); 10 mL/L concentrated Czapek (3 g/L NaNO3, 5 g/L MgSO4 7 H2O, 0.1 g/L FeSO4, 5 g/L KCl)) was 

first prepared; as well as 70% concentrated solutions of glucose (≥99.5%; Merck), sucrose (≥99.0%; 

Fluka) and fructose (≥99.0%; Merck). The sugar solutions were added to the basic medium, separately, 

to obtain media with sugar concentrations that vary between 0% and 8%. 

An inoculum of 106 spores/30µL was plated centrally on the basic media complemented by sugar, and 

the plates were incubated at 25°C in the dark for six days. Four biological replicates were done for each 

strain and each sugar concentration; and each experiment (using glucose, sucrose or fructose) was 

repeated three times. After 7 days, colony diameters were measured.  

 

1.3.2.3. Extraction of PAT 

After a 6-day incubation period at 25°C, the agar medium on which the fungus has developed was 

macerated in 50 mL of ethyl acetate, separately, on a horizontal shaking table at 160 rpm at room 

temperature for eight days. The organic phase was filtered through a Whatman filter paper, and then 

evaporated to dryness using the Zymark TurboVap (McKinley Scientific, Sparta, NJ, USA). The dried 

residue was dissolved in 400 μL of acetonitrile:water (50:50, v/v) and filtered through a 0.45 μm syringe 

filter into a clean vial of two mL. Four biological replicates were done for each of the strains used and the 

three different sugars concentrations tested.

 

1.3.2.4. HPLC-DAD analysis of PAT  

An Ultimate 3000 HPLC system (Dionex/ThermoScientific, Courtaboeuf, France) was the 

chromatography device used for PAT quantification. PAT analysis were performed using a 250 × 4.60 mm 

Gemini 5 µm C6-Phenyl column (Phenomenex, Torrance, CA, USA) at 30°C at a flow rate of 0.9 mL/min. 
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Eluent A was 0.1% acetic acid and eluent B was methanol. Elution conditions were as follows: 0 min 100% 

A, 10 min 90% A, 30 min 50% B, 45 min 90% B, from 45 to 50 min 90% B, from 60 to 65 min 0% B.  

The presence of PAT was monitored at a wavelength of 277 nm and was confirmed by comparing it the 

retention time (min) of a pure standard. PAT was quantified by measuring peak area according to the 

standard curve. 

1.3.2.5. Data analysis 

Statistical analysis of the data obtained was carried out using the Graphpad 4 software (GraphPad 

Software, La Jolla, CA, USA). A two-way ANOVA followed by a post-hoc comparison Bonferroni test was 

conducted to analyse the differences between the WT, null mutant and complemented strains for each of 

the analyses of fungal growth and PAT production in vitro, in presence of different sugars. The differences 

were considered to be statistically significant when the P value was below 0.05.  

 

1.3.3. Results and discussion 

1.3.3.1. Addition of sugars affects fungal growth in vitro 

In fruits, whose sweet taste differs significantly, the main soluble sugars are sucrose, fructose, and glucose 

whilst malic, citric, and tartaric acids are the primary organic acids (Ma et al. 2015). Given the high sugar 

content of apples in particular and the fact that sucrose modulates the accumulation of PAT as a function 

of dose (Barad et al. 2016; Kumar et al. 2016), we wanted to determine the relationships between 

different concentrations of main apple sugars, fungal development, PAT production and effect of the veA 

gene.  

The P. expansum NRL35695 WT, null mutant and complemented strains were grown on basic media with 

increasing concentrations of sugars: glucose (16–389 mM,), sucrose (8–205 mM) and fructose (0–443 

mM) representing 0.3–7% for glucose and sucrose, and 0–8% for fructose. After 6 days of incubation at 

25°C, fungal radial growth were measured and PAT was extracted (Figure 1). All carbon substrates 

supported the growth of the fungus, but in varying proportions. The increase in sugar percentages 

favoured fungal development but not in a linear way. In fact, by adding up to 4% glucose (Figure 1 A–C) 

or fructose (Figure 1 G–I), there is a slight increase in fungal growth. When adding up to 4% sucrose 

(Figure 1 D–F), a decrease in the radial growth was observed. However, when the percentage of the three 

sugars exceeded 4%, the development of the fungus was faster and the radial growth increased. No 

significant differences were observed between the WT, null mutant and complemented strains grown 6 

days on a basic medium to which 7% glucose, sucrose or fructose were added. Radial growths of 4.88 ± 

0.22 cm, 4.86 ± 0.31 cm and 4.88 ± 0.23 cm were measured, respectively (Figure S1 A, B, C). The only 

difference observed between sugars was when 3% to 5% sucrose was added to the medium. A decrease 

in the radial growth of the WT and complemented strains (4.08 ± 0.11 cm) is then observed, followed 

immediately after by an increase when the sucrose content has again increased in the medium (to reach 
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7%). In fact, in the Golden Delicious cultivar, for example, 54% of total sugars are fructose, 29% sucrose 

and the rest glucose (Hecke et al. 2006). A medium enriched with 0.7% sucrose (equivalent to this 29% 

in apple) would have been sufficient to mimic the apple growth medium. Although the carbon catabolite 

repression (CCR) regulating mechanism ensures the use of sugars such as D-glucose and sucrose, which 

are rapidly metabolized compared to other less favourable carbon sources (Dowzer and Kelly 1991; 

Tannous et al. 2018), the fungus has to first adapt to the amount of carbon it receives and this could be 

the cause of the observed radial growth decrease by adding 3% to 5% sucrose. In addition, sucrose, which 

is richer in carbon sources than glucose and fructose, is expected to positively regulate the expression of 

the creA gene. Recently, Kumar et al. (2016) have shown that the increase in sucrose content has a 

positive impact on creA transcription and a negative impact on laeA expression and PAT biosynthesis. In 

our study, it would have been interesting to measure the dry weight of the mycelium and see how it 

evolves, then it would have been interesting to analyse the expression of the creA gene, especially since 

in fungi, this regulator is activated in media with a high sugar content (Bi et al. 2015). The decrease and 

further increase in radial fungal growth could be correlated with the expression of this global carbon 

catabolite regulator.  

 

1.3.3.2. Addition of sugars affects patulin production  

Added sugars affect the virulence of the fungus. After 6 days of incubation of the inoculated plates, PAT 

levels were measured (Figure 1). Similar profiles were obtained for each of the strains when different 

sugars were added: when adding up to 4% sugar (glucose, sucrose or fructose) to the basic medium, the 

fungal development was accompanied by an increase in PAT production. The amount of PAT produced 

was similar for the WT and complemented strains and ranged from 0.15 ± 0.00 mg/mL to  

22.29 ± 1.85 mg/mL, 0.22 ± 0.01 mg/mL to 33.01 ± 4.35 mg/mL, 0.10 ± 0.08 mg/mL to  

19.11 ± 4.28 mg/mL when grown on enriched medium with 0.3% and 4% glucose, fructose and sucrose, 

respectively (Figure S2 A, C). 

The addition of up to 4% sugar also favoured the production of PAT by the null mutant strain, but in lower 

amounts. The maximum of PAT produced by the null mutant strain was 4.91 ± 1.13 mg/mL (Figure 1 B, 

E, H; Figure S2 B). 

Surprisingly, the amount of PAT produced by the three strains decreased with increasing sugar 

concentrations and did not correlate with the radial fungal growth. It reached a minimum of  

18.45 ± 5.15 mg/mL, 28.68 ± 0.27 mg/mL and 6.47 ± 1.56 mg/mL in the medium inoculated by the WT 

and complemented strains and supplemented with 7% glucose, fructose and sucrose, respectively, and a 

minimum production of 2.50 ± 1.21 mg/mL for the null mutant strain. In fact, the greatest decrease in 

PAT concentration was observed when 7% sucrose (or 205 mM) was added to the medium; there was 

66% and 50% less PAT produced in the medium by the WT and null mutant strains, respectively, than 
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when the latter were grown in medium with 4% sucrose. These results of PAT production are similar to 

those observed by Kumar et al. (2016), i.e. a decrease in production at 175 mM for the three sugars tested. 

However, in our experiment, sucrose was the sugar that supported PAT production less than glucose and 

fructose. This discrepancy could be due to differences in the base medium used and enriched with sugars. 

Usually, sugars such as sucrose, glucose and fructose are supposed to suppress secondary metabolism. 

However, Abdollahi and Buchanan (1981) have shown that a glucose-containing medium resulted in 

aflatoxin production by Aspergillus parasiticus. They hypothesized that glucose or a product of its 

metabolism, induces one or more of the enzymes responsible for aflatoxin synthesis, at the 

transcriptional level. Kumar et al. (2016) have proven that an increase in in vitro sucrose content was 

correlated with a decrease in PAT production. The novelty of this work is that it showed that an increase 

in the main sugars in apples caused a decrease in PAT production. It would be interesting to measure the 

level of expression of the genes belonging to the PAT cluster and see at what level the sources of sugar 

act. In addition, the analysis of the effect of each sugar separately on fungal development and PAT 

production should be completed by the analysis of the combined effect of all sugars. The base medium 

should contain all three sugars at the same time with percentages reflecting the reality of an apple 

medium. After all, it is true that a significant decrease in PAT concentration was observed when 7% 

glucose was added to the medium, but this does not mean that all apple varieties contain 7% glucose. The 

high presence of acids in apples and their contribution to the sweetness of the fruit make it interesting to 

see the effect of increasing concentration of malic, citric, and tartaric acids on fungal development and 

PAT production. One last thing we should also point out is that in the presence of increasing 

concentrations of sugars, fungal strains have decreased their production of PAT, but not their growth. 

Thus, the addition of sugar to the medium could reduce the pathogenicity of the fungus. 

  

1.3.3.3. Association of sugar content with PAT synthesis and veA expression 

We noted that the fungal development of the three strains tested was induced by the addition of sugars 

to the medium and that PAT production increased on the sugar-enriched medium by up to 4% and then 

decreased thereafter. However we have still highlighted the significant differences observed between the 

WT and complemented strains on one hand and the null mutant strain on the other hand (Figure 2). In 

fact, up to 7% glucose in the medium, the null mutant strain developed but failed to reach the radial 

growth of the WT strain. The radial growth of the WT and null mutant strains was significantly different, 

4.95 ± 0.08 cm and 4.50 ± 0.10 cm, respectively (Figure 2A). In presence of fructose, the null mutant 

strain developed more slowly than the WT strain at first; but once the amount of fructose in the medium 

reached 3%, the null mutant strain could catch up with the WT strain and no significant difference in 

their growth was observed after. The mutant strains reached a radial growth of 5.06 ± 0.10 cm, close to 

that reached by the WT strain on the sugar-enriched medium (Figure 2B). Remarkably, when less than 
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3% sucrose was added to the base medium, we noticed that the growth of the null mutant strain was 

lower than that of the WT and complemented strains, but above 3% in the medium, the growth of the null 

mutant strain was higher than that of the WT strain. The radial growth of the null mutant strain reached 

5.06 ± 0.05 cm and 4.64 ± 0.07 cm for the WT strain (Figure 2C). Although the different sugars affected 

differently the growth of each of the strains tested and favoured the development of the null mutant 

strain, the situation was different for production of PAT. In fact, whatever the type and percentage of 

sugar added to the base medium, the null mutant strain barely synthesized PAT and the amount produced 

was always significantly lower than that produced by the WT and complemented strains. After adding 

7% glucose, sucrose and fructose, the null mutant strain produced 82%, 77% and 87% less PAT than the 

WT strain, respectively (Figure 2 D, E, F). 

These results pointed out the inability of the null mutant strain to produce PAT and that its development 

was not correlated to the amount of PAT produced.  

Kumar et al. (2016) have shown that the increase in sucrose content in vitro decreased laeA expression, 

therefore they conclude that suppression of PAT production in presence of sucrose is mediated through 

LaeA in P. expansum. Here, we showed that in a veA null mutant strain, only very small amounts of PAT 

were synthesized when increasing sugar concentrations in vitro. And of course, even at optimal sugar 

concentrations (about 3 to 4%), the fungal strain from which veA gene was disrupted could not produce 

the toxin. This made us think about the possibility that veA could induce the expression of genes that 

allow the use of sugar and carbon sources as well as the production of PAT, and the disruption of the veA 

gene does not allow this phenomenon to occur. We also noted that the WT strain could not produce as 

much PAT when 7% sugar was added to the medium.  

 

1.3.4. Conclusion 

Although PAT is a major mycotoxin produced by P. expansum, the genome of this fungus is rich and 

exhibits other predicted secondary metabolite clusters, based on bioinformatics analysis and other 

specific studies (Ballester et al. 2015). It would be interesting to study the impact of sugars at various 

concentrations on the expression of all the backbone genes in the genome of the P. expansum. Moreover, 

it would be interesting to measure the level of expression of the veA and creA genes since increasing 

sucrose concentration affects laeA expression. 

In conclusion, our results highlighted the impact of sugar sources, naturally present in apples, on fungal 

development and PAT production. They also showed the involvement of the veA gene in synthesis of PAT 

and pathogenicity of the fungus. There is still much to study and develop. 
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 Figure 1 Impact of different sugar concentrations on fungal development and PAT production of the WT, null mutant and complemented strains. The blue line 
corresponds to the fungal radial development on the base medium enriched with sugar and incubated for 6 days at 25°C. The red line corresponds to the 
production of PAT by these different strains. Four biological replicates were performed for each strain and each sugar concentration.
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Figure 2 Comparison of the development (A, B, C) and production of PAT (D, E, F) of the WT (NRRL 
35695), null mutant PeΔveA and complemented PeΔveA:veA strains when grown on medium 
supplemented with various percentages of (A, D) glucose, (C, F) fructose and (B, E) sucrose , for 6 days at 
25°C in the dark. Graphs show the mean ± standard error of the mean (SEM) from four replicates. Asterisks 
denote significant differences between the WT, null mutant and complemented strains.*P < 0.05; **P < 
0.01; ***P < 0.001. 
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Figure S1 Development of the WT (NRRL 35695), null mutant PeΔveA and complemented 
PeΔveA:veA strains grown for 6 days at 25°C in the dark, on base medium supplemented with various 
percentages of glucose, fructose and sucrose.
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Figure S2 Concentration of PAT (mg/mL) produced by the WT (NRRL 35695), null mutant PeΔveA 
and complemented PeΔveA:veA strains when grown for 6 days at 25°C in the dark, on base medium 
supplemented with various percentages of glucose, fructose and sucrose. 
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Summary of the study (Article 1_ILVO) 

Access to healthy food is a primary prerequisite for public health. In this respect, risk reduction is a 

crucial element in managing food safety and security, although a total elimination of risk remains a 

chimerical goal. Fungal growth and/or toxin biosynthesis are serious threats to food quality and 

safety occurring at different stages of food production. In recent years, different treatments have 

been extensively studied to reduce the risk of contamination by moulds and avoid toxin presence in 

products designed for humans or animals.  

Patulin (PAT), the mycotoxin of interest within this dissertation, found in apple-derived products 

could be mitigated. Its concentration is affected by different factors like storage, handling, transport, 

pasteurization, filtration, as well as other processing steps. Different techniques affecting PAT in 

apple products and categorised as physical, chemical and biological practices, have been investigated. 

The generation of (less toxic) breakdown products, such as (E/Z)-ascladiol (ASC-E/Z) and 

desoxypatulinic acid (DPA) was described in some cases. 

The purpose of this research was to see whether ascorbic acid, also known as vitamin C, affects the 

PAT concentration in cloudy apple juice. Ascorbic acid, naturally present in fruits and vegetables is 

already used on an industrial level due to its antioxidant properties and for preventing browning 

reactions. Even though some studies have shown that ascorbic acid accelerates the degradation of 

PAT in model systems and clear apple juice, optimal conditions of action of the latter have not been 

elucidated for cloudy apple juice yet. 

We started by optimizing an in-house analytical methodology needed to separate and detect the 

secondary metabolite PAT, and its degradation and reaction products. Then, a study of the impact of 

ascorbic acid on PAT was performed both in aqueous solution artificially contaminated with a pure 

PAT standard and in cloudy apple juice contaminated with PAT-containing apple mash. Different 

concentrations of ascorbic acid were evaluated under different storage temperatures, in presence or 

absence of oxygen. The formation of reaction (HMF, DHA) and degradation (ASC-E/Z, DPA) products 

was examined qualitatively. 

To conclude, the results of this study confirm that ascorbic acid is capable of degrading PAT and allow 

the identification of optimal conditions of action of ascorbic acid on a laboratory scale. These data 

also suggest that ascorbic acid, a food additive improving numerous product qualities, also has an 

effect on PAT thereby generating less toxic compounds. 
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Abstract

Patulin (PAT), a mycotoxin produced by several fungal genera including Aspergillus, Penicillium, 

Byssochlamys and Paecilomyces, is an important contaminant in apples and apple-derived products. 

Due to its toxicity, it implies important consequences for human and animal health. Chemical, 

physical and biological treatments described in literature, can cause degradation of this toxin and the 

generation of (less toxic) breakdown products, such as (E/Z)-ascladiol (ASC-E/Z) and 

desoxypatulinic acid (DPA). Our study focused on the chemical degradation of PAT in presence of 

ascorbic acid (AA). In order to do so, an in-house methodology allowing a good separation of PAT 

from its reaction and breakdown products was optimized first. This methodology was subsequently 

used to evaluate the influence of AA on PAT. Within this framework, different concentrations of AA 

were evaluated, as well as the presence/absence of oxygen and different storage temperatures. The 

experiment was performed both on pure PAT standard in aqueous solution and on PAT-

contaminated cloudy apple juice (CAJ) (obtained via addition of apple mash produced from apples 

inoculated with P. expansum). The analysis showed that the highest PAT reduction (60%) in CAJ was 

achieved after 6 days of incubation at 22°C, in presence of oxygen, with an initial PAT concentration 

of 100 µg/kg and 0.25% (w/v) AA. It was also found that the treatment by AA resulted in the 

generation of degradation products less toxic than PAT (such as (E/Z)-ASC). In conclusion, AA 

approved by European Commission and described as a food additive improving numerous product 

quality aspects (e.g. colour (less browning), nutritional values, etc.), was shown to have an effect on 

PAT degradation generating less toxic compounds in presence of oxygen. 
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Introduction  

Patulin (PAT) is a mycotoxin produced by several Penicillium, Aspergillus and Byssochlamys mould 

species. The main producer is Penicillium expansum causing blue mould decay on apples and pears 

(Moake et al. 2005; Morales et al. 2010). Damaged and bruised apples are the most susceptible to 

contamination by PAT-producing moulds. PAT is most commonly encountered in products derived 

from fruit processing, especially apples (Chen et al. 2004). Many studies report the natural presence 

of PAT in various fruit-based processed products such as juices (Özdemir et al. 2009; Reddy et al. 

2010), apple compotes or jams (Funes and Resnik 2009). Considering its cytotoxic (Liu et al. 2007; 

Riley and Showker 1991), genotoxic (Alves et al. 2000; Liu et al. 2003), teratogenic (Ciegler et al. 

1976) and immunosuppressive properties (Escoula et al. 1988; Puel et al. 2010), PAT in food is 

regulated and maximum levels of 50 μg/kg for fruit juices, 25 μg/kg for apple purees and compotes 

and 10 μg/kg for food intended for babies and young children have been set by the European Union 

(EU) (EC Regulation 1881/2006). However, PAT can still be found in commercial food and/or 

beverage products, sometimes exceeding the maximum limits (Ioi et al. 2017; Tannous et al. 2017a; 

El Hajj Assaf et al. submitted review). Along the food processing chain, PAT concentration may be 

affected by factors like storage (temperature, modified atmosphere) (Johnsonn et al. 1993; Paster et 

al. 1995; Baert et al. 2007a; Morales et al. 2007; Sant’Ana et al. 2008), handling (physical removal of 

fungi and infected tissue, washing, etc.) (Acar et al. 1998; Cole et al. 2003), transport, heat treatment, 

filtration (Kadakal and Nas 2003; Gökmen et al. 2001), fermentation to cider, etc. Additional non-

thermal processing techniques like ultraviolet (UV) radiation (Dong et al. 2010; Assatarakul et al. 

2012; Zhu et al. 2013; Zhu et al. 2014; Tikekar et al. 2014; Koutchma et al. 2016), pulsed light (Funes 

et al. 2013), high hydrostatic pressure (Hao et al. 2016), etc. have shown to have an effect on the PAT 

concentration as well. Methods decreasing or mitigating PAT after its production are categorized as 

chemical, physical and biological practices and mostly concern research studies. Some of these 

treatments can have an impact on the nutritional and organoleptic quality of the end product as well. 

Although biological control methods using microorganisms were considered as alternative methods 

for chemical and physical PAT degradation and showed no significant impact on the juice quality 

characteristics, their use is limited to products that can be fermented. As for chemical treatments, 

their use exclusively for mycotoxin decrease is not allowed in the EU. However, some chemicals have 

shown to have a high impact on PAT degradation. For example, ascorbic acid (AA) often used in the 

food industry and naturally present in fruits and vegetables, is a powerful antioxidant (Stadtman 

1991) resulting in an inhibition of browning reactions caused by oxidation of polyphenols. It is used 

file:///C:/Users/celhajjassaf/Desktop/Christelle_desktop%20ILVO/INRA/thèse%20et%20soutenance/Tannous_Review%20patulin_020916.docx%23_ENREF_70
file:///C:/Users/celhajjassaf/Desktop/Christelle_desktop%20ILVO/INRA/thèse%20et%20soutenance/Tannous_Review%20patulin_020916.docx%23_ENREF_149
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to improve product quality (e.g. colour, palatability) and restore possible nutritional losses that occur 

during processing (Bauernfeind 1982). In addition, AA has been described to act as a nucleophile, 

increasing PAT degradation (Fremy et al. 1995; Canas and Aranda 1996; Alves et al. 2000; Drusch et 

al. 2007). Different studies focused, not only on the degradation of this toxin, but also on the 

generation of breakdown products that are less toxic, such as (E/Z)-ascladiol (ASC-E/Z) and 

desoxypatulinic acid (DPA). ASC-E is the direct precursor in the biosynthetic pathway of PAT by the 

fungus (Sekiguchi et al. 1983; Tannous et al. 2016). ASC-E is also considered as a predominant 

product formed during degradation of PAT by microorganisms such as Saccharomyces cerevisiae 

(Moss and Long 2002) and Gluconobacter oxydans (Ricelli et al. 2007). In another study, DPA and 

ASC-Z were the final degradation products of PAT in presence of Sporobolomyces sp. IAM13481 

(Ianiri et al. 2016). So, depending on the microorganism or chemical, the degradation of PAT would 

vary and the breakdown products generated could be different. As for AA, the breakdown products 

that could be formed when added to a solution containing PAT have yet to be defined. 

The purpose of this research was to investigate whether AA could reduce the concentration of PAT 

in cloudy apple juice (CAJ) and if there is an influence of oxygen and temperature. First, an in-house 

methodology needed optimization in order to allow the detection and quantification of the secondary 

metabolite PAT as well as its degradation and reaction products. Indeed, the UHPLC-UV signal of 

dehydroascorbic acid (DHA) resulting from the oxidation of AA interfered with the one of ASC-E 

(Bode et al. 1990), whereas the one of 5-hydroxymethylfurfural (HMF) formed from sugars during 

thermal processing of apple juice interfered with the signal of PAT (Bandoh et al. 2009; Christensen 

et al. 2009). Subsequently, this optimized methodology was used to study the impact of AA on pure 

PAT standard in aqueous solution on the one hand and on PAT-contaminated apple mash in CAJ on 

the other hand. The addition of different concentrations of AA was evaluated under different storage 

temperatures, and in presence or absence of oxygen. In addition, the formation of reaction (HMF, 

DHA) and degradation (ASC-E/Z, DPA) products was determined qualitatively.
 

Material and methods  

Chemicals and reagents 

PAT standard (≥ 98% purity), HMF (≥99% purity), and DHA were purchased from Sigma-Aldrich (St. 

Louis, MO, France). AA was purchased from Solina group (Eke-Nazareth, Belgium). DPA was provided 

by Prof. Raffaello Castoria (Department of Agricultural, Environmental and Food Sciences, University 

of Molise, Italy) and Prof. Rosa María Durán Patrón (Department of Organic Chemistry, University of 

https://pubs.acs.org/author/BAUERNFEIND%2C+J.+CHRISTOPHER


CHAPTER 2_Part 1 Experimental work 

 

175 

 

Cádiz, Spain); ASC-E/Z standards were provided by Dr. Olivier Puel (Toxalim laboratory, INRA 

Toulouse, France). Analytical grade solvents used for extraction and high-performance liquid 

chromatography (HPLC) were ethyl acetate (AcOEt, Pesti-S), hexane (Pesti-S), acetonitrile (ACN, LC-

grade) and acetic acid (AcA, 99.99%), all supplied by Biosolve BV (Valkenswaard, The Netherlands). 

HPLC-grade water was generated by a Milli-Q-grade purification system (Millipore, Darmstadt, 

Germany) and adjusted to pH 4 with acetic acid. 

 

Strains, media and culture conditions 

The Penicillium expansum wild type strain NRRL 35695 (WT) used in this study was provided by  

Dr. Olivier Puel (Toxalim lab, INRA, France). This strain was cultured on a Potato Dextrose Agar (PDA) 

medium (Biokar, Allonne, France) for 5 days at 25°C in the dark. A spore suspension of the  

P. expansum wild type strain was prepared, according to Adjovi et al. (2014), and quantified using a 

Malassez cell. A concentration of 100 conidia/ml was used to inoculate Golden Delicious apples. 

 

Preparation of PAT-contaminated apple mash 

To assess the PAT degradation level in CAJ in presence of AA, PAT-contaminated starting material 

needed to artificially contaminate blank juices was produced. To do so, Golden Delicious apples free 

of defects or injuries were used. They were surface-sterilized in 2% sodium hypochlorite solution 

and then rinsed with water, as described by Sanzani et al. (2012). Apples were first wounded with a 

sterile toothpick, after which they were inoculated by 10 µl of the spore suspension at concentration 

of 100 conidia/ml, and incubated at 25°C in the dark for 14 days. 

After the incubation period, contaminated apples were heat treated at 88°C for 2 min to inactivate 

the mould and then grounded to obtain a homogenized apple puree (MacDonald et al. 2000). The 

concentration of PAT in the apple mash, serving to inoculate our juice samples, was assessed 

(35 mg/kg) using the protocol of De Clercq et al. (2016) (n=5). Contaminated apple mash was stored 

at -20°C. 

 

Identification of optimal conditions of action of AA 

PAT in aqueous solution 

Ten mL of sterilized water, acidified with acetic acid (pH=4), was inoculated with 100 µg/kg of a pure 

PAT standard. Solutions of 0% and 0.25% AA were filter-sterilized using a 0.22 µm filter unit (Millex 

GS by Merck Millipore, Darmstadt, Germany) and added to the mix. Samples were prepared either on 
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the bench in aerobic conditions or in anaerobic conditions using a Whitley A35 anaerobic 

workstation (Labconsult; Brussels, Belgium) and anaerobic jars to which AnaeroGenTM 3.5L sachets 

(Oxoid N.V.; Aalst, Belgium) were added. Samples were then stored at 4°C or at 22°C for up to 24 days, 

in the dark. After 0, 3, 6, 12, 18 and 24 days of storage, metabolite extraction was conducted as 

described by De Clercq et al. (2016), and the obtained extracts were analysed by means of ultra-high 

performance liquid chromatography (UHPLC) coupled to an UV detector (UHPLC-UV) (see below). 

 

Artificially PAT-contaminated CAJ 

Ten mL of CAJ was inoculated with 100 µg/kg of PAT by addition of contaminated apple mash 

prepared as described above. Different concentrated solutions of AA (0%, 0.25% and 4%) were 

prepared and filtered the same way as cited above and added to the juice mix. The samples were 

prepared either in presence or absence of oxygen and incubated for 6 days at 4°C or 22°C, in dark 

conditions. The metabolite extraction and UHPLC-UV analysis was conducted on samples stored for 

0, 3 and 6 days.

 

UHPLC-UV analysis of PAT, and PAT degradation and reaction products 

The chromatography device used concerns an ACQUITY UPLC® H-Class System equipped with a 

Waters® ACQUITY™ UPLC™ Tunable UV (TUV) detector set at 276 nm. Separation of the compounds 

considered was achieved on an Acquity UPLC® BEH C18 1.7 µm (2.1x150mm) column at 30°C at a flow 

rate of 0.3 mL/min Eluent A was HPLC-grade water acidified with 0.1% acetic acid and eluent B was 

ACN. The column was cleaned with a mixture of 100% solvent B and 0% solvent A. An original in-

house methodology (De Clercq et al. 2016) was optimized based on the chemical properties of our 

compounds of interest in order to improve their separation. Elution conditions were as follows: a 2 

min isocratic passage of solvent B from 0 to 2%, a 7 min gradient increase of solvent B from 2 to 5%, 

a 1 min gradient increase of solvent B from 5 to 100%, 100% solvent B for 6 min, a 1 min direct 

decrease in solvent B from 100 to 0%, and re-equilibration at 0% solvent B for 3 min. The presence 

of PAT was monitored and quantified at a wavelength of 276 nm. For the degradation products (ASC-

E/Z; DPA) and reaction products (DHA; HMF), their presence/absence was verified and compared 

relatively between samples based on the response (area) obtained. 
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Data analysis 

Statistical analysis of the data obtained was carried out using the Statistical Analysis System software 

(SAS, version 9.4, SAS institute Inc., Cary, NC, USA). A linear regression model was applied with PAT, 

DHA, ASC-Z and compound X as dependent variables and day, temperature, oxygen and ascorbic acid 

as independent ones. Appropriate two and three-way interactions were tested for and removed when 

non-significant (P>0.05). Post-hoc comparison was performed with a Tukey test. 

 

Results 

Optimization of metabolite detection methodology 

For the extraction and detection of PAT in cloudy apple juice, the method described by De Clercq et 

al. (2016) was applied. The suitability of this method was explored for the simultaneous detection of 

PAT, its degradation products ascladiol (E and Z isomers) and DPA, and the reaction products DHA 

and HMF. 

 

Figure 1 UHPLC chromatograms showing the interference of the UHPLC-UV signal of the secondary 
metabolites, degradation and reaction products following (A) a gradient method (2% B => 5% B), 
and (B) an isocratic method (0% B). PAT, patulin; DHA, dehydroascorbic acid; HMF,  
5-hydroxymethylfurfural; ASC-E, E-ascladiol; ASC-Z, Z-ascladiol. 

However, preliminary UHPLC-UV analysis showed that some of these compounds suffered from peak 

interference, not allowing correct identification of each of the compounds considered: the signal of 

DHA, which results from the oxidation of AA, interfered with the one of (E)-ASC causing an 

overestimation of the latter (Figure 1A). Since these interferences could lead to misidentification 
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and/or overestimation of the signal of PAT and (E)-ASC, the initial methodology of De Clercq et al. 

(2016) consisting on a gradient passage of solvents was further optimized using pure standard of 

DHA, (E/Z)-ASC, HMF, PAT and DPA in order to allow the analysis of these compounds in CAJ. This 

was done by testing an isocratic chromatographic run. However, when applying this method, the 

chromatographic peak of HMF, which appears in heat-treated juices of apple, interfered with the one 

of PAT causing an overestimation of the concentration of the latter (Figure 1B). Based on the 

chemical properties of the metabolites, the UHPLC conditions were further optimized. Therefore, an 

isocratic elution was combined with a gradient elution using water acidified with 0.1% (v/v) acetic 

acid as mobile phase A and ACN as mobile phase B (see material and methods section for the final 

method). This adjusted methodology allowed a good separation of all the compounds mentioned 

above (Figure 2) and was used in all further experiments. 

 

Figure 2 UHPLC chromatogram of mixture of PAT, its breakdown products (ASC-E/Z; DPA) and 
reaction products (DHA; HMF). PAT, patulin; DHA, dehydroascorbic acid; HMF, 5-
hydroxymethylfurfural; DPA, desoxypatulinic acid; ASC-E, E-ascladiol; ASC-Z, Z-ascladiol. 

Identification of optimal conditions of action of AA

To study the impact of AA on PAT, the addition of different concentrations of AA was evaluated, in 

the presence or absence of oxygen, at different storage temperatures. The experiment was performed 

both with pure PAT standard in aqueous solution and in artificially contaminated CAJ. 
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Impact of different concentrations of AA and of storage temperature 

Different concentrations of AA (0%, 0.25% and 4%) were added to CAJ containing 100 µg/kg of PAT, 

in the dark and in presence of oxygen, at 4°C and 22°C. The results are shown in Figure 3. When no 

AA was added, no significant difference in the concentration of PAT could be observed within 6 days 

of incubation at 4°C, but a statistically significant decrease in PAT concentration was observed at 

22°C between day 0 and day 6 (P<0.0002). On the other hand, the addition of 0.25% or 4% of AA 

significantly decreased the PAT concentration at both temperatures tested with a significant 

difference in PAT concentration observed on day 3 and day 6, when samples were stored at 4°C and 

22°C. It was noticed that whether 0.25 or 4% AA was added, a similar decrease in the PAT 

concentration with no significant differences or the two percentages applied, was observed:  

53.2 ± 5.4, 28.3 ± 1, 19.9 ± 1.6 µg/kg when 0.25% AA was added and 43.2 ± 2.5, 27.1 ± 1.3, 12.0 ± 1.5 

µg/kg for 4% AA, at 22°C for an incubation period of 0, 3 and 6 days, respectively. It seems that a 

percentage of 0.25% AA seems sufficient for PAT degradation for the conditions tested (Figure 3).  

When comparing the PAT concentration measured for the samples stored at 4°C to those stored at 

22°C, in general a higher degradation of PAT at 22°C was observed. Our analyses showed that a lower 

decrease of PAT (68 and 56%) was reached after 6 days of incubation at 4°C, when respectively 

0.25% and 4% (w/v) of AA was added, compared to at 22°C (63 and 78%). The most significant 

difference in PAT concentration between 4°C and 22°C was observed on day 3 when 0.25% AA was 

added (P< 0.0321). It was also noticed, that when 0.25% or 4% AA was added, the most significant 

decreases in PAT concentration occurred between day 3 and day 6 at 4°C (P<0.0001) and between 

day 0 and day 3 at 22°C (P<0.0001; P<0.0341, respectively). 
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Figure 3 Patulin (PAT) concentration of PAT-contaminated (100 µg/kg) cloudy apple juice (CAJ) 
within 6 days of incubation with 0, 0.25 and 4% ascorbic acid (AA) at 4°C and 22°C, in presence of 
oxygen (Ox+), and in the dark. Graphs show the mean ± standard error of the mean (SEM) from three 
replicates.  

Impact of oxygen on AA action 

To identify whether oxygen is required for AA to have an effect on PAT in apple juice, CAJ containing 

100 µg/kg of PAT was separately incubated in presence and absence of oxygen. We noticed in 

samples with 0.25% AA added that in absence of oxygen (Figure 4A), no significant degradation of 

PAT occurred whether the samples were incubated at 4°C or at 22°C (56.3 ± 3.3 µg/kg and 55.4 ± 6.4 

µg/kg of PAT at 4°C on day 0 and 6, respectively, and 56.3 ± 3.3 µg/kg and 59.0 ± 0.8 µg/kg of PAT at 

22°C, respectively, on day 0 and 6).  But when comparing samples incubated in presence of oxygen 

to those incubated in absence of oxygen for 6 days, we noticed that the PAT concentration was 

significantly lower when 0% or 0.25% AA was added (P<0.0003 and P<0.0001, respectively). In 

addition, in presence of oxygen, 6 days post-incubation in presence of 0.25% AA, a significant 

decrease in the PAT concentration was observed, namely a shift from 57.0 ± 5.7 µg/kg to 32.6 ± 1.1 

and 20.5 ± 1.8 µg/kg, at 4°C and 22°C respectively (P<0.0001) (Figure 4B). These data also confirm 

that the highest decrease in PAT concentration in CAJ occurred at room temperature (22°C) 

compared to refrigeration temperature (4°C). More specifically, a 42% decrease could be observed 

compared to a 63% decrease in PAT concentration when the samples were stored at 4°C and 22°C, 

respectively.

In conclusion, the highest degradation of PAT was observed in presence of AA (0.25%) and oxygen 

after 6 days of incubation at 22°C in the dark. 
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Figure 4 Patulin (PAT) concentration in absence (0%) or presence (0.25%) of ascorbic acid (AA) in 
PAT-contaminated (100 µg/kg) cloudy apple juice (CAJ), stored in the dark, at 4°C and 22°C in 
anaerobic (Ox+) (A) and aerobic (Ox-) (B) conditions. Graphs show the mean ± standard error of the 
mean (SEM) from three replicates.  

Degradation products’ formation 

To identify possible degradation products, the experiment was performed in an acidified aqueous 

solution where a decrease in PAT concentration was observed when AA was added, in function of 

time and oxygen. Data obtained from experiments performed in both aqueous solution and in CAJ, a 

more complex matrix, allowed a complemented follow up on the degradation products obtained due 

to the addition to AA. 

The decrease in PAT concentration in the contaminated CAJ or aqueous solution was accompanied 

by the formation of additional compounds. A compound X was formed when 0.25% AA was added to 

an aqueous solution (pH 4), spiked at 100 µg/kg pure PAT standard and in presence and absence of 

oxygen (Figure 5). When 0% AA was added, the peak corresponding to compound X was not 

detectable. Its formation, was studied semi-quantitatively based on chromatographic peak area but 
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not quantitatively like in the case of PAT. On day 0, when 0.25% AA was added, this compound was 

completely absent in our samples incubated under aerobic or anaerobic conditions. Our statistical 

analysis showed that oxygen does not significantly affect the formation of the compound X; and what 

we observe is rather due to a time-temperature effect. Starting from day 3 post-incubation, the 

presence of this compound was observed, with a significantly higher amount at 22°C (1.7 ± 0.0 and 

2.2 ± 0.2 mV in presence and absence of oxygen, respectively) than at 4°C (0.2 ± 0.0 and 0.3 ± 0.0 mV 

in presence and absence of oxygen, respectively). The formation of this compound increased 

gradually during 24 days of incubation. After 24 days at 4°C, the formation of the compound X 

reached a not significantly different chromatographic response of maximum of 0.7 ± 0.0 mV and 1.4 

± 0.0 mV in presence and absence of oxygen, respectively (P>0.05). In contrast, during storage at 

22°C, a chromatographic response for the metabolite X was obtained (40.9 ± 0.3 mV and 38.6 ± 0.5 

mV) in presence and absence of oxygen, respectively (P<0.0001). The peak corresponding to the 

compound X was almost 58 and 28 times higher when samples were incubated for 24 days at 22°C 

then those left at 4°C, with or without oxygen respectively. This formation started to be significantly 

different between 4°C and 22°C from day 6 on (P<0.0001). When comparing this compound to the 

pure standards (see material and methods section), we noticed that compound X shared the same 

retention time as the DPA standard. More analytical studies need to be done in order to confirm the 

identity of this compound. We could conclude that this compound formation is not significantly 

dependent of the presence of oxygen but its presence is rather affected by the presence of AA, the 

incubation temperature and time.
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Figure 5 Compound X formation expressed as peak area (mV) in an aqueous solution (pH 4) 
artificially contaminated with pure patulin (PAT) standard (100 µg/kg). Samples were stored in the 
dark, at 4°C and 22°C, in aerobic (Ox+) and anaerobic (Ox-) conditions. Graphs show the mean ± 
standard error of the mean (SEM) from three replicates.  

One of the compounds found in the contaminated CAJ was identified as ASC-Z. ASC-Z, one of the 

breakdown products of PAT previously described in the literature as being less toxic than the toxin 

itself, appeared to be formed at the highest level 6 days post-incubation at 22°C in presence of 0.25% 

AA and oxygen (Figure 6). At 4°C, minor peak signals corresponding to ASC-Z were identified and by 

that no significant increase of this metabolite concentration was observed within the days of 

incubation (P>1.000). However, at 22°C and in presence of 0.25% AA, a significant difference in 

chromatographic response was observed between day 0 (0.4 ± 0.1 mV) and day 6 (14.3 ± 1.8 mV) 

(P<0.0001). As per the statistical analysis, the formation of this compound and the difference 

detected within the 6 days was due to the time of incubation and temperature. As for ASC-E, the 

formation of this isomer could not be observed in any of the conditions tested. 

 

Figure 6 Ascladiol-Z (ASC-Z) formation in a patulin-contaminated (100 µg/kg) cloudy apple juice 
(CAJ) expressed as peak area (mV). Samples of juice were stored in presence of oxygen (Ox+) and in 
the dark, at 4 and 22°C, with or without addition AA. Graphs show the mean ± standard error of the 
mean (SEM) from three replicates.  

Our study showed that when 0.25% AA was added to a contaminated acidified aqueous solution or 

CAJ, at 22°C, a significant decrease in the PAT concentration followed by a formation of compound X 

and ASC-Z, respectively, was observed. 

 

Reaction products’ formation 

DHA, the oxidized form of AA, is a compound that appeared to be formed during the experiments 

conducted. Its formation was studied qualitatively in the aqueous solution (pH 4) at different 
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temperatures (4°C and 22°C). Statistical analysis showed that formation of DHA is affected by time, 

temperature and oxygen. When no AA was added to the solution, this compound was absent (data 

not shown). In fact, DHA could only be detected in case 0.25% AA was added to the solution (Figure 

7). Still, at 4°C, its presence was barely detectable (whether in Ox + or Ox – conditions) and no 

significant difference in its presence was detected within the 24 days of incubation (P<1.000). The 

highest and most significant increase in the concentration of DHA was between day 3 and day 24, at 

22°C and in presence of oxygen. In fact, the increase started to be significantly different after 6 days 

of incubation at 22°C, in presence of oxygen (P<0.0001). We identified peaks that were 29 and 836 

times higher on day 24 than on day 0 in absence and presence of oxygen, respectively. 

When it comes to HMF, it was only detected in the CAJ with no significant increase during 6 days of 

incubation. 

 

Figure 7 Dehydroascorbic acid (DHA) formation in an aqueous solution (pH 4) artificially 
contaminated with pure patulin (PAT) standard (100 µg/kg). Samples were stored in in the dark, at 
4°C and 22°C, in aerobic (Ox+) and anaerobic (Ox-) conditions. Graphs show the mean ± standard 
error of the mean (SEM) from three replicates. 

Discussion  

In our study, different variables were tested (time, temperature, oxygen, AA). Statistical analysis 

proved that the degradation and formation of compounds were the result of interactions occurring 

between these variables. 

It was shown that the addition of 0.25% or 4% AA has an impact on the PAT concentration (100 

µg/kg) either in cloudy apple juice or in aqueous solution. The degree of PAT breakdown increased 

when 0.25% or 4% AA were added and was higher when compared to control samples. This is in 

agreement with other studies on AA and PAT performed for clear apple juices and different model 
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systems (Brackett and Marth 1979; Fremy et al. 1995; Alves et al. 2000; Drusch et al. 2007). The 

novelty of our work is that it elucidates optimal conditions of action of AA on PAT in CAJ, and 

describes the reaction products obtained as well as the biodegradation products detected. 

Even though increasing concentrations of AA (from 0% to 3%) seemed to accelerate the rate of 

disappearance of PAT (5,000 µg/kg) in buffer solutions (Brackett and Marth 1979), our results 

showed that the addition of 0.25% or 4% AA caused a similar decrease in the PAT concentration in 

CAJ contaminated by 100 µg/kg of this toxin. This doesn’t contradict what has been published before, 

it only indicates that the quantity of AA needed is directly linked to the initial PAT concentration 

present in the contaminated juices or buffers. For 100 µg/kg of PAT, which is twice the maximum 

regulatory limit allowed in Europe, addition of 0.25% AA was sufficient. 

How PAT is specifically affected by AA is a mechanism that remains unknown. Earlier studies done 

by Fliege and Metzler (2000a, b) and Ciegler et al. (1976) focusing on the effects of sulfhydryl 

compounds, showed that the electrophilic properties of PAT make it a suitable target for nucleophilic 

attack. Later on, Kokkinidou et al. (2014) hypothesized that AA increases the rate of PAT degradation 

by acting as a nucleophile using a similar complex mechanism. On the other hand, another 

mechanism already described in literature seems applicable for our results obtained. In fact, in 

presence of oxygen and during the incubation period, the oxidation of AA and formation of DHA could 

have generated singlet oxygen attacking the double bonds of PAT and causing the opening of the 

lactone ring and making PAT unstable (Brackett and Marth 1979; Drusch et al. 2007). The same 

phenomenon was described by Aurand et al. (1977) when explaining the role of singlet oxygen in 

lipid oxidation inhibition. According to Babaali et al. (2017), when AA was completely oxidized by 

oxygen, no more free radicals would be produced and PAT destruction would decrease. The two 

mechanisms described previously and cited above are plausible. Still the presence of AA and oxygen 

in our solutions could have favoured one over the other. This could also be proven by the results 

presented in Figure 4 showing no significant decrease of PAT in CAJ when AA was added to the 

contaminated apple juice, in absence of oxygen. Oxygen turns out to be an important factor in 

affecting the stability of PAT in presence of AA. Other than the addition of AA, the reaction 

temperature significantly (P < 0.001) affected the PAT concentration in CAJ as well. Disappearance 

of AA and the formation of other compounds occurred more profound at 22°C compared to 4°C. Many 

studies done previously discussed the impact of different factors on the decrease in PAT 

concentration in presence of AA such as pH, oxygen, light, clarity of the solution, etc. (Fremy et al. 

1995; Canas and Aranda 1996; Alves et al. 2000; Drusch et al. 2007; Kokkinidou et al. 2014), but none 
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discussed the two storing temperatures mentioned in our study. In fact, 4°C represented chilled 

storage and 22°C represented the most popular storage temperature of apple juices in industries or 

in the supermarkets. This could imply a positive impact in terms of a lower PAT concentration for 

stored apple juices fortified by AA.

Another thing noticed was that the disappearance of PAT was not directly correlated to a detectable 

formation of breakdown products. When AA was added, an immediate decrease of PAT was observed 

within the three first days of incubation with 47% PAT loss and 48% PAT loss when 0.25% and 4% 

AA was added, respectively. However, the appearance of ASC-Z only occurred afterwards (between 

day three and six) and no significant difference was observed between day zero and day three. This 

could be related to the fact that, when the singlet oxygen attacked the bonds of PAT, this latter became 

unstable and inactive in the solution, but it’s just between day 3 and 6 that ASC-Z started to be formed 

and detected. A possible further explanation could be, that in CAJ, the stability of PAT is not easily 

affected and the suspended particles and phenolic compounds present in the juice prevent the 

contact between PAT and AA molecules and make the detection of formed compounds more difficult 

(Baert et al. 2007b). This same phenomenon occurred between PAT molecules and UV waves 

(Tikekar et al. 2014). The compound X, identified and presenting a similar retention time as DPA, was 

formed at later stages of incubation in acidified aqueous solution contaminated by a pure standard 

of PAT. In fact, this compound was not identified when CAJ was contaminated by PAT standard and 

incubated during14 days. It could be that PAT is more stable in cloudy juice than in a buffer (Brackett 

and Marth 1979) and that it might need more time to be formed in such a complex matrix. It could 

also be that it was formed in small quantities, not detectable by HPLC or it was bounded to other 

molecules not detected. 

When it comes to chemical degradation, information regarding breakdown and reaction products is 

still lacking. Breakdown products generated during degradation of PAT in presence of AA are not yet 

elucidated. In our study, two compounds were detected. They were considered as possible 

degradation products of PAT in presence of AA. One of them was ASC-Z in CAJ and the second one, 

compound X in aqueous solution, shared the same retention time as DPA pure standard. ASC-Z was 

expected since it’s the direct precursor in the biosynthetic pathway of PAT but DPA was only detected 

before in case where microorganisms were in contact with PAT. Rhodosporidium kratochvilovae lead 

to the disappearance of PAT and the formation of DPA (Castoria et al. 2011). In fact Moss and Long 

(2002), reported the biological degradation of PAT into ASC-E by Saccharomyces cerevisiae. Ricelli et 

al. (2007) were the first who reported the bacterial degradation of PAT into ASC-E by  
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Gluconobacter oxydans. Candida guilliermondii, an ascomycetous yeast, showed to degrade PAT into 

E-ASC (Chen et al. 2017). 

Toxicity studies on the breakdown products of PAT, namely DPA and ASC have been performed 

previously (Suzuki et al. 1971; Tannous et al. 2017b; Castoria et al. 2011). ASC, isolated from a culture 

of Aspergillus clavatus during an attempt to purify PAT, showed an acute toxicity that was four times 

lower than that of PAT (Suzuki et al. 1971). In a more recent study, it was found a non-toxic 

compound (Tannous et al. 2017b). ASC-E has been reported to be a direct precursor of PAT, and ASC-

Z was the product of a non-enzymatic transformation of ASC-E catalysed by sulfhydryl compounds 

(homocysteine, cysteine, and glutathione or dithiothreitol) (Sekiguchi et al. 1983). DPA was much 

less toxic than PAT to human lymphocytes (Castoria et al. 2011). 

To conclude, CAJ artificially contaminated with 100 µg/kg PAT and to which 0.25% AA was added 

showed a significantly lower PAT concentration after 14 days of incubation at 4°C or 22°C in the 

presence of oxygen, in the dark. These findings indicate that AA has an impact on PAT, and that this 

antioxidant could be of a value in terms of practical applications in food and agro-businesses. 

However, before considering the use of this chemical on an industrial level for detoxification 

purposes, more studies should be performed in order to confirm the structural identities of the 

degradation products by NMR spectroscopy or isotopic carbon module labelling techniques. 

Additionally, the non-reversibility of this reaction between PAT and breakdown products should be 

also studied as well as possible bound forms. 
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Summary of the study (Article 2_ILVO) 

After optimizing the UHPLC-UV methodology for detection and quantification of PAT and the 

detection of its degradation and reaction products by carrying out preliminary laboratory 

experiments defining optimal conditions of action of ascorbic acid on PAT, an experiment pressing 

cloudy apple juice was performed on a semi-industrial scale. 

The aim of this study was to evaluate the effect of the antioxidant ascorbic acid on the PAT 

concentration in artificially contaminated cloudy apple juice produced using a novel spiral-filter 

press technology avoiding juice oxidation, called VaculIQ 1000. PAT-contaminated cloudy apple 

juices were also produced under different conditions, flash-pasteurized, packed in γ-radiated bags 

and stored at 20°C in the dark for 14 days. 

Several qualitative parameters (brix, pH, colour, moisture content) of the different juices produced 

were determined. The decrease in PAT concentration was evaluated quantitatively and possible 

reaction (DHA, HMF) and degradation (ASC-E/Z and DPA) products generated were determined 

qualitatively. 

To conclude, in this part of the thesis, we demonstrated that the addition of ascorbic acid to  

PAT-contaminated cloudy apple juice, produced on a semi-industrial scale using the VaculIQ, 

decreases the PAT concentration without affecting the qualitative parameters of the juice measured. 

Even though chemical agents are not allowed to be used in industries for detoxification purposes, 

ascorbic acid which already is applied for its antioxidant properties and capacity to prevent browning 

reactions, allowed PAT reduction on a semi-industrial scale and should be considered given its 

impact on patulin. 
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Abstract 

Patulin (PAT), a mycotoxin mainly produced by Penicillium expansum, is of high concern regarding 

food safety and human health. Even though its presence in apple-derived products is regulated and 

maximum levels have been set by the European Union (EU), PAT continues to be found at levels 

exceeding the maximum regulatory limits. The aim of this study was to examine the stability of PAT 

in artificially contaminated cloudy apple juice (CAJ) produced using a VaculIQ 1000 machine, an 

innovative technology allowing degassing and pressing under low oxygen conditions. In the 

experiment performed on a semi-industrial scale, the effect of adding 1.1 g ascorbic acid (AA)/kg 

apples and of degassing during the production on the PAT concentration was studied as well as 

possible degradation and reaction products formed. Furthermore, the physicochemical quality of the 

final juice was investigated as well. The highest degradation of PAT (50%) was observed for flash 

pasteurized juice, degassed and packed in γ-radiated bags, in the presence of AA after 14 days of 

storage at 20°C in the dark. Juices produced showed no significant differences in the quality 

parameters measured (pH, brix, colour, moisture content). This work demonstrates that the addition 

of AA to PAT contaminated CAJ, on a semi-industrial scale, decreased the PAT concentration without 

affecting the qualitative parameters of the juice. 
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Introduction 

In recent years, consumers demand for high quality and minimally processed natural products, 

resulted in an increased production and consumption of cloudy apple juice (CAJ) (Beveridge 2002; 

Baron et al. 2006). CAJ is considered as a more valuable source of fibre, natural antioxidants and 

bioactive substances (such as polyphenols) in comparison to clear juice (Gui et al. 2006; Hubert et al. 

2007; Oszmiański et al. 2007; Will et al. 2008; Markowski et al. 2012; Tetik et al. 2013; Teleszko et al. 

2016).  

However, the possible presence of patulin (PAT), a mycotoxin mainly present in rotten/moulded 

apples and apple-based products, implies a food safety issue for apple-based products. In fact, apple 

juice represents the largest source of PAT-intake by humans (Moake et al. 2005). In 2001 in Belgium, 

79% of Belgian apple juices and 86% French/German/Swiss imported apple juices were 

contaminated by PAT with an average contamination ranging between 2.5 and 38.8 µg/kg (µg/kg) 

Tangni et al. (2003). PAT has a broad toxicity spectrum in animals; it was proven to be carcinogenic, 

genotoxic, teratogenic and mutagenic (Dickens and Jones 1961; Mayer and Legator 1969; Ciegler 

1977; Taniwaki et al. 1992; Alves et al. 2000; Liu et al. 2003). Even though the European Commission 

(EC, 2006) has started to monitor the presence of this toxin in apple products and protect public 

health by setting maximum levels of 50 µg/kg in apple juice, 25 μg/kg for apple purees and compotes 

and 10 μg/kg for food intended for babies and young children, PAT continued to be found in food 

products present on the market (Ioi et al. 2017; Tannous et al. 2017; El Hajj Assaf et al. submitted 

review). Control strategies like good agricultural practices (GAP) and good manufacturing practices 

(GMP) are therefore necessary to minimize the risk of contamination of final products by PAT. 

Biological, chemical and physical treatments have shown to particularly affect this toxin and its 

corresponding concentration (Ioi et al. 2017; Babaali et al. 2017; El Hajj Assaf et al. submitted 

review). 

Biologically based methods using inactive yeast for example were able to reduce or even eliminate 

PAT in food products without affecting the quality characteristics (Yue et al. 2011), but their use is 

limited to fermented products. Some of the physically based methods appeared to be very effective 

for PAT such as charcoal (Sands et al. 1976), but their use was limited because of their strong impact 

on the environment and negative effects on the organoleptic and physicochemical properties of the 

juice (colour, pH and brix) (Kadakal and Nas 2002). The use of chemical agents for mycotoxin 

elimination as such is not allowed. Ascorbic acid (AA), commonly known as vitamin C, is already used 

in the food industry for different purposes. It is an essential nutrient for human beings and a natural 

https://onlinelibrary.wiley.com/doi/full/10.1111/jfq.12025#jfq12025-bib-0008
https://onlinelibrary.wiley.com/doi/full/10.1111/jfq.12025#jfq12025-bib-0023
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constituent of apples. AA is present in a range of 3 to 30 mg per 100 g of fresh fruit depending, among 

other parameters, on the apple variety and the storage conditions (Rucker et al. 1998). It has 

antioxidant properties and prevents browning reactions mainly due to the action of 

polyphenoloxidase (PPO) on polyphenols producing quinones, responsible for the developed brown 

colour (Sapers et al. 1989; Stadtman 1991; Rojas-Graü et al. 2006; Ali et al. 2015). In addition, on a 

laboratory scale AA was shown to increase the degradation of PAT whether in buffer solutions, in 

juice-like aqueous model systems or in clear and cloudy apple juices (Brackett and Marth 1979; 

Fremy et al. 1995; Canas and Aranda 1996; Alves et al. 2000; Drusch et al. 2007; El Hajj Assaf et al. 

submitted article). Only limited studies elucidated the breakdown products or the reaction 

products from the degradation of PAT when interacting with AA. In our previous work (El Hajj Assaf 

et al. 2018, submitted article), we defined optimal conditions for action of AA on PAT in CAJ on a 

laboratory scale. In addition, we studied the reaction products (dehydroascorbic acid (DHA) and 5-

hydroxymethylfurfural (HMF)), and the degradation products (Z-ascladiol (ASC-Z), E-ascladiol (ASC-

E) and desoxypatulinic acid (DPA)) generated when AA interacts with PAT, both in an acidified 

aqueous solution and in CAJ. The analysis showed that 60% of PAT reduction was obtained for CAJ 

contaminated with 100 µg/kg of PAT, when adding 0.25% (w/v) AA and incubating the samples for 

6 days at 22°C, in the dark and in presence of oxygen. It also showed that the degradation products 

formed were ASC-Z and a compound sharing the same retention time with DPA in CAJ and in acidified 

aqueous solution, respectively. 

The current study was performed on a semi-industrial scale with the aim to evaluate the effect of the 

antioxidant AA on the PAT concentration during CAJ processing and storage. At first, artificially 

contaminated CAJs were produced under different conditions, using a novel spiral-filter press 

technology avoiding juice oxidation (Siewert et al. 2013; De Paepe et al. 2015a). Flash pasteurized 

juices were packed in γ-radiated bags and stored at 20°C in the dark. In addition to the effect on PAT, 

the effect of AA on the qualitative parameters (brix, pH, colour, moisture concentration) of the juice 

was assessed. Furthermore, the reaction (DHA, HMF) and degradation (ASC-E/Z and DPA) products 

generated were determined qualitatively as well. 

 

Material and methods  

Chemicals and reagents 

Standards of PAT (≥ 98% purity), 5-hydroxymethylfurfural (HMF, ≥99% purity), and DHA were 

purchased from Sigma-Aldrich (St. Louis, MO, France). DPA standard was provided by Prof. Raffaello 
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Castoria (Department of Agricultural, Environmental and Food Sciences, University of Molise, Italy) 

and Prof. Rosa María Durán Patrón (Department of Organic Chemistry, University of Cádiz, Spain), 

and ASC-E/Z standards were provided by Dr. Olivier Puel (Toxalim laboratory, INRA Toulouse, 

France) respectively. AA was obtained from Solina group (Eke-Nazareth, Belgium). Ethyl acetate 

(AcOEt, Pesti-S), hexane (Pesti-S), acetonitrile (ACN, LC-grade) and acetic acid (AcA, 99.99%) 

solvents used for metabolite extraction and ultra-high-performance liquid chromatography (UHPLC) 

analysis were purchased from Biosolve BV (Valkenswaard, The Netherlands). HPLC-grade water 

generated by a Milli-Q-grade purification system (Millipore, Darmstadt, Germany) was adjusted to 

pH 4.0 using acetic acid. 

 

PAT-contaminated apple mash production 

The wild type (WT) strain of Penicillium expansum NRRL 35695 used in this study was provided by 

Dr. Olivier Puel (Toxalim lab, INRA, France). It was used to produce PAT-contaminated starting 

material to artificially contaminate apple juice. After its culturing for 5 days at 25°C in the dark on a 

Potato Dextrose Agar (PDA) medium (Biokar, Allonne, France), a spore suspension with a 

concentration of 100 conidia/ml of this P. expansum strain was prepared, as previously described by 

Adjovi et al. (2014) and using a Malassez cell. Golden Delicious apples free of any defect were surface-

sterilized in a 2% sodium hypochlorite solution and then rinsed with water, as described previously 

by Sanzani et al. (2012). Apples were then wounded with a sterile toothpick, inoculated by 10 µl of 

the spore suspension and incubated at 25°C in the dark for 14 days. After the incubation period, the 

contaminated apples were heat treated at 88°C for 2 min to inactivate the mould and were grounded 

to obtain a homogenized apple puree, as previously described by MacDonald et al. (2000). PAT was 

quantified in this contaminated apple mash (n=5) using the protocol of De Clercq et al. (2016). 

Contaminated apple mash was stored at -20°C. 

 

Experimental setup and pilot scale production of cloudy apple juice 

Apple fruits belonging to the Golden Delicious cultivar were purchased from the Belgian market and 

stored in a cold room (0°C) at normal atmosphere until use. Before CAJ production, apples were 

sorted manually and defected, injured or rotten ones were discarded, after which they were washed 

with high pressure cold water. Apples were pressed by means of a spiral-filter pressed machine 

(VaculIQ 1000, VaculIQ, Hamminkeln, Germany). This innovative technology allows to apply a 

degassing step that consists of pressing under low oxygen levels. The CAJ was prepared as described 
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by De Paepe et al. (2015a). Immediately after preparation, the juices were flash pasteurized for 10 

seconds at 85°C and aliquots of 0.7L of juice were packed in γ-radiated bags of 2L. Packed juices were 

stored at 20°C for 14 days in the dark.  

Conditions 
tested 

PAT concentration in CAJ 
(µg/kg) 

AA in g / kg of 
apples 

Degassing 
step 

Blank - - + 
Cond 1 100 - + 
Cond 2 100 1.1 + 
Cond 3 100 1.1 - 

Table 1 Specification of the four conditions of cloudy apple juice (CAJ) tested. Indication of the final 
patulin (PAT) concentration in the juices and the quantity of ascorbic acid (AA) added (in grams) per 
kilogram of apples. +: applied; -: not applied (degassing) or added (PAT, AA) 

Four conditions of CAJ were considered (Table 1). The first one (blank) concerns a control without 

addition of PAT or AA. Its preparation followed the normal procedure described above with 

application of a degassing step. For the other three conditions, PAT-contaminated starting material 

was added to the vessel containing the clean mashed apples in a way to theoretically obtain 100 

µg/kg in the final product. In condition 1 (cond 1) and 2 (cond 2), the juice was also pressed under 

low oxygen conditions (i.e. a degassing step was applied). In order to obtain about 0.3% AA in the 

final products, as in industrial settings, 1.1 g AA/kg apples was added at the same time as PAT in cond 

2. The juice of condition 3 (cond 3) was obtained under same conditions as cond 2, but without 

applying the degassing step. All four apple juices were produced starting from the same batch of 

apples and on the same day to avoid inter-batch and inter-day variations. 

 

Sampling  

The first one (S1) consisted of sampling from the apple mash vessel after adding PAT-contaminated 

starting material and/or AA. The apple mash corresponds to the mix of juice, pulp, seeds and peel, 

etc. The second step (S2) consisted of sampling from the apple pomace obtained after pressing the 

mash and consists on the dry residue from apples. The third sampling step (S3) consisted of sampling 

just before pasteurization and the last sampling step (S4) concerns the pasteurized and packed apple 

juice. At each sampling step and for every test, three samples were taken and pooled. Brix, pH, colour 

and AA assessments were performed only for the samples of S4 on day 0. Metabolite extraction and 

moisture content measurement were performed for the samples taken from the different sampling 

steps of day 0. Juice samples after 3, 6 and 14 days of storage at 20°C were also analysed. Samples for 

analysing metabolites were stored for maximum four weeks at -20°C before extraction. 
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Analysis of juice quality parameters 

Total soluble solids (TSS) content (°Brix) was measured using a digital refractometry (RM 40). The 

pH was measured using a digital potentiometry (SevenCompact, Mettler Toledo, Greifensee, 

Switzerland). Moisture concentration (MC) of apple mash, pomace and cloudy juice was determined 

by means of a halogen moisture analyser (HB43-S, Mettler Toledo, Schwerzenbach, Switzerland). A 

UV-Vis spectrophotometer (Sensing Unveils CM-5, Konica Minolta Sensing, Osaka, Japan) in 

reflectance (topport) served to measure the CIELAB (1976) colour space coordinates L*, a*, and b* 

in 40 ml of the CAJ produced. L* ranging from 0 to 100 corresponds to the luminance component (L* 

= 100 for perfect white); a* and b* values varying from −120 to +120 are colour coordinates that are 

related to the red/green and yellow/blue spectral ranges respectively. C* represents the chroma or 

colour purity and was calculated as follows: C* = (a*2 +b*2 )1/2; ΔC* referred to the chroma difference 

between the blank and each of the conditions. ΔE* represents the extent of colour difference between 

two samples and was calculated using the following equation: ΔE* = [(ΔL*)2 + (Δa*)2 + (Δb*)2]1/2. The 

AA concentration was determined using a high-performance liquid chromatography method (HPLC) 

(detection limit of 10 mg/kg). All juice quality parameters were performed in (technical) triplicate. 

 

Extraction of PAT and other metabolites  

Patulin and metabolites from mash/pomace and juices samples were extracted following a modified 

protocol of De Clercq et al. (2016) and El Hajj Assaf et al. (submitted article 2018). Patulin and 

metabolites were subsequently analysed by means of ultra-high-performance liquid 

chromatography (UHPLC) coupled to an UV detector (UHPLC-UV). 

 

UHPLC-UV metabolite analysis 

An ACQUITY UPLC® H-Class System equipped with a Waters® ACQUITY™ UPLC™ Tunable UV (TUV) 

detector and an Acquity UPLC® BEH C18 1.7 µm (2.1x150mm) column set at 30°C, was used for 

metabolite detection at a wavelength of 276 nm. Eluent A was HPLC-grade water acidified with 0.1% 

acetic acid and eluent B was ACN. The column was equilibrated with a mixture of 100% solvent B and 

0% solvent A. The flow rate applied was of 0.3 mL.min−1. Elution conditions were as follows: a 2 min 

isocratic passage in solvent B from 0 to 2%, a 7 min gradient increase of solvent B from 2 to 5%, a 1 

min gradient increase of solvent B from 5 to 100%, 100% solvent B for 6 min, a 1 min direct decrease 

to 0% solvent B and re-equilibration at 0% solvent B for 3 min. PAT was quantified using a matrix-

matched standard curve; the formation of biodegradation products (ASC-E/Z; DPA) and reaction 
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products (DHA; HMF) was verified and compared qualitatively between samples based on the peak 

area obtained.  

 

Data analysis 

Statistical analysis of the data obtained was carried out using the Statistical Analysis System software 

(SAS, version 9.4, SAS institute Inc., Cary, NC, USA). A linear regression model was applied with PAT, 

DHA and HMF as dependent variables and day, condition and sampling step as independent ones. 

Appropriate two and three-way interactions were tested for and removed when non-significant 

(P>0.05). Post-hoc comparison was performed with a Tukey test. 

 

Results and discussion  

In our study, different variables were tested (day, condition and sampling step). Statistical analysis 

proved that the degradation of PAT and formation of other compounds were the result of interactions 

occurring between these variables. 

 

Effect of AA on basic juice quality parameters 

CAJs are complex matrices containing pulp particles dispersed in a serum constituted by pectins and 

proteins mostly, and dissolved colloidally in a solution of low-molecular weight compounds such as 

sugars, organic acids, etc. (Wucherpfennig et al. 1987; Mollov et al. 2006). For all four juices 

produced, data of basic analytical juice parameters were obtained (Table 2).  

 

The TSS parameter reflecting the dissolved solid content of the apple juice is a good estimation of the 

sugar concentration especially since sugars make up between 90 and 95% of it. Brix values varied 

between 12.91 ± 0.25 (cond 1) and 13.36 ± 0.14 (cond 3) but were not significantly different. The pH 

of the CAJs was not affected by the addition of AA. No significant differences between the pH of the 

four juices were found. These results indicate that the concentration of AA added did not affect these 

quality parameters of the juices. The values obtained ranged between 3.6 and 3.7. TSS and pH seem 

mainly determined by properties like maturity, storage type, and cultivar of the apple varieties used 

(Markowski et al. 2012).  

Colour is an important quality attribute of CAJs. In the four types of juices produced, the a*, b* and L* 

values did not show any significant differences. A slight difference in colour could be observed 

visually between the juices from cond 2 and 3 and those of cond 1 and the blank, which was confirmed 
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by calculating the colour parameters. In fact, all the juices had a light green colour (ΔL* > 0 and Δa* > 

0). But the juice of cond 1 was more yellow (Δb* > 0) compared to those of cond 2 and cond 3 (Δb* < 

0). This difference could be attributed to the addition of AA to the latter juices. The yellowish colour 

characterizes the freshness of the product (Will et al. 2008). Furthermore, based on the ΔC* values, 

juice of cond 1 (0.54 ± 0.33) could be described as brighter than juices of cond 2 and 3 (-0.75 ± 0.17 

and -0.78 ± 0.18). Based on the study of Mokrzycki and Tatol (2012), ΔE* of each juice was calculated. 

These values were all below 2 for the juices of cond 1, 2 and 3 and presented no statistical significant 

differences. According to Mokrzycki and Tatol (2012), a ΔE* below 2 indicates that only experienced 

observer can notice the difference. We could conclude that addition of AA did not seem to affect 

conditions colours but only slightly the brightness of the juice.  

Addition of AA is a common safe and cheap approach for restricting enzymatic browning in CAJ 

(Komthong et al. 2007). The AA concentration of the blank and cond 1 juices, obtained from Golden 

Delicious cultivar to which no extra AA was added, were 49.40 ± 13.50 and 53.20 ± 12.30 mg/L, 

respectively. The AA concentration of the cond 2 and cond 3 juices, to which AA was added, were 

1376.70 ± 225.00 and 1343.30 ± 281.10 mg/L, respectively. Fruit and vegetables have long been 

regarded as a key source of vitamin C in the daily diet (Cao et al. 1998; Chebrolu et al. 2012). The 

natural concentration of AA in CAJs is variable and rather low, i.e. 8.5 to 46.6 mg/100 ml (Hao et al. 

2016). The variation is attributed to apple variety, sun exposure, climate, harvest, pre- and 

postharvest processing, storage conditions, addition of AA minimizing non-enzymatic browning, etc. 

(Kolniak-Ostek et al. 2013). Even though we added AA enough to obtain 0.3% in the final product, we 

ended up by having the half. This could be explained by the fact that vitamin C concentration may be 

reduced by processing and storage which is probably due to catalytic destruction by enzymes. The 

low concentration of AA naturally present in apple juices indicates addition of vitamin C is favourable. 

The moisture content values of each of the juices did not differ significantly. CAJs, apple mash and 

apple pomace had MC values around 86%, 84% and 70%, respectively. The high moisture content in 

the (semi-)industrial implementation of apple pomace processing is often between 70 and 80% and 

agrees with the findings of Dhillon et al. (2013) and Gassara et al. (2010). 
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Cloudy apple juice 

Blank Cond 1 Cond 2 Cond 3 

TSS (°Brix) 13.08 ± 0.18 12.91 ± 0.25 13.23 ± 0.25 13.36 ± 0.14 

pH  3.69 ± 0.08 3.69 ± 0.11 3.64 ± 0.09 3.62 ± 0.04 

MC apple mash 83.95 ± 0.57 84.34 ± 0.17 83.91 ± 0.35 83.89 ± 0.25 

MC apple pomace 71.16 ± 0.46 71.25 ± 1.10 71.08 ± 0.21 74.08 ± 4.44 

MC non-
pasteurized apple 
juice 

86.54 ± 0.22 86.89 ± 0.25 86.64 ± 0.31 86.62 ± 0.10 

MC pasteurized 
apple juice 

86.84 ± 0.21 87.01 ± 0.34 86.85 ± 0.25 86.67 ± 0.21 

Ascorbic acid 
(mg/L; ppm) 

49.40 ± 13.50 53.20 ± 12.25 
1376.70 ± 

225.00 
1343.30 ± 

281.10 

∆L*   1.06 ± 0.29 0.14 ± 0.06 0.12 ± 0.07 

∆a*   0.10 ± 0.10 0.02 ± 0.05 0.00 ± 0.14 

∆b*   0.55 ± 0.52 -0.97 ± 0.01 -0.78 ± 0.39 

∆C*   0.54 ± 0.33 -0.75 ± 0.17 -0.78 ± 0.18 

∆E*   1.23 ± 0.49 0.98 ± 0.00 0.80 ± 0.39 

Table 2 Juice quality parameters of the four cloudy apple juices (CAJ) produced. Abbreviations: TSS: 
total soluble solids content; MC: moisture content; L*, luminance CIELAB (1976) colour system 
coordinate; a*, red/green CIELAB (1976) colour system coordinate; b*, yellow/blue CIELAB (1976) 
colour system coordinate; Δ, difference between value of condition 1/2 or 3 and blank; ΔL*, 
difference in lightness; Δa*, the difference in redness; Δb*, the difference in yellowness; ΔC* the 
difference in colour purity; ΔE* extent of colour difference 

We could conclude that the addition of 1.1 g AA/kg apples to the CAJ process had no significant impact 

on the brix nor on the pH of the juice. The colour purity and brightness of the juice was slightly 

affected, and the addition of AA made the juice less yellow but, on the other hand, no significant colour 

difference was noticeable and the nutritional value of juices increased especially that apple juices are 

not considered as a big source of vitamin C.  

 

Effect of AA on formation of reaction and PAT degradation products 

During the production process of cloudy apply juices, with/without AA and/or PAT added to the 

apple mash, possible presence of reaction products such as DHA and HMF and biodegradation 

products such as DPA and ASC-E/Z were studied. 
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Effect of AA on PAT concentration 

PAT was measured at all stages of production (from S1 till S4) and analysed till 14 days of storage at 

20°C in the dark (Figure 1; Figure 2). When comparing the PAT-concentration of the final juice 

samples from day 0 (S4), it was noticed that it is significantly higher in cond 1, where no extra AA 

was added, compared to cond 2 (P<0.0001) and cond 3 (P = 0.0002) where AA was added to the apple 

mash. In fact, the addition of AA (cond 2 and cond 3) caused a small but significant and direct decrease 

in the PAT concentration on day 0.  

Significant differences in PAT concentrations were detected between all sampling steps when 

comparing the blank to any of the other conditions (1, 2 or 3) (P<0.0001). In the blank juice, PAT was 

not detected. This was expected because the apples used were sorted and of high quality without 

visual rot while in the three other conditions the non-contaminated starting material was artificially 

contaminated. In PAT-contaminated apple mash, PAT varied between 75.0 ± 0.5, 59.6 ± 2.4 and 56.4 

± 17.9 µg/kg for cond 1, 2 and 3, respectively. In pomace low concentrations of PAT ranging between 

7.7 ± 0.3 and 9.8 ± 0.1 µg/kg were found, due to the water-soluble character of PAT (Ciegler 1977). 

The PAT concentration at S4 were of 94.7 ± 9.1, 66.2 ± 1.0 and 72.6 ± 0.5 µg/kg compared to 73.3 ± 

0.3, 39.2 ± 0.1 and 55.4 ± 0.5 at S3 for juices from cond 1, cond 2 and cond 3, respectively. Although 

the PAT concentration in the pasteurized apple juice samples (S4) were slightly higher than the ones 

from S3 (non-pasteurized apple juices), this was not found to be significantly different.  

 

Figure 1 Monitoring of patulin (PAT) concentration in samples taken at different sampling steps 
along the cloudy apple juice (CAJ) production process, for four conditions considered. S1 for apple 
mash samples; S2 for apple pomace samples; S3 for non-pasteurized cloudy apple juice samples; S4 
for pasteurized CAJ samples from day 0. Graphs show the mean ± standard error of the mean (SEM) 
from three replicates.  
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This slight but non-significant increase in PAT concentration could be due to the flash pasteurization 

process (85°C for 10 seconds) applied. These results contrast with some data already present in the 

literature (Ioi et al. 2017) describing a PAT degradation during heat treatment of liquid food 

products. However, the matrix used, processing temperature and time applied were different than 

the one used in this study. PAT is reduced by 13.4% and 19% at 90°C for 10 seconds in apple juice 

and apple cider, respectively (Kadakal et al. 2002; Wheeler et al. 1987). The flash pasteurization 

applied in our study could probably have contributed to the liberation of PAT molecules from solids 

present in the artificially contaminated CAJ.  

 

The PAT concentration was also monitored during day 0, 3, 6 and 14 of storage of the juices at 20°C 

in the dark (Figure 2). In fact, in cond 1, where no extra AA was added, 20% of PAT decrease occurred 

within the 14 days of storage (going from 94.7 ± 9.1 on day 0 to 75.6 ± 3.2 µg/kg on day 14) and was 

considered as significant between the different days of incubation (0.0001 ≤ P < 0.05). This 20% 

decrease could be due to the naturally present (low) concentration of AA in the CAJ. As for cond 2 

and 3, where AA was exogenously added to the apple mash during production, a higher PAT decrease 

occurred. A reduction of 48% and 34% was observed in the juices from cond 2 and cond 3, 

respectively, after 14 days of incubation. The PAT content of apple juice to which AA was added 

decreased by 70% compared to 30% in an aqueous juice-like model system without added AA after 

34 days of storage (temperature was not indicated) (Drusch et al. 2007). In fact, the PAT 

disappearance was not significant between day 3 and day 6 but increased significantly between day 

6 and day 14 (P = 0.0032 and P = 0.008 for cond 2 and 3, respectively). The spiral-filter press 

technology producing CAJ avoids oxidative degradation and that by applying the degassing step and 

extracting the juice in a low-oxygen extraction cell under vacuum (De Paepe et al. 2015a, 2015b). The 

final concentration of PAT in the CAJs bags of cond 2 and cond 3 where of 34.4 ± 3.5 and 47.3 ± 2.4 

µg/kg. Even though cond 3 consisted of not applying the degassing step when pressing the juice, the 

highest decrease in PAT concentration was not observed in this condition. Instead, when 1.1 g of AA/ 

kg of apples was added to the apple mash during CAJ processing and with the presence of low 

concentration of oxygen (cond2), the PAT degradation was the highest. Statistical analysis indeed 

showed a significant difference in the PAT concentration on day 14 between cond 1 and each of cond 

2 and 3 (P < 0.0001) but did not show any significant difference in the PAT concentration between 

cond 2 and 3 on the same day (P = 0.0126). Thus, suggesting that the quantity of oxygen present when 

pressing the juice did not really influence the PAT degradation rate in a very significant way.  
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Figure 2 Monitoring of patulin (PAT) concentration in γ-radiated bags containing cloudy apple juices 
(CAJ) produced under four processing conditions, within 14 days of storage at 20°C in the dark. 
Graphs show the mean ± standard error of the mean (SEM) from three replicates.  

Many mechanisms have been described to clarify the process by which AA impacts the PAT 

concentration. The electrophilic properties of PAT would made it suitable for nucleophilic attack (e.g. 

AA acting as nucleophile increased PAT degradation). Another hypothesis is that oxidative 

degradation of AA leads to the formation of reactive free radicals attacking the lactone structure of 

PAT and making it unstable (Ciegler et al. 1976; Fliege and Metzier 2000a, 2000b; Kokkinidou et al. 

2014). AA or more correctly DHA can degrade PAT in the presence of oxygen and ferric ions (Brackett 

and Marth 1979; Drusch et al. 2007; Hao et al. 2016; El Hajj Assaf et al. submitted article). In our 

study, cond 2 and 3 were found to decrease the PAT concentration in CAJ, with cond 2 leading to an 

even lower concentration of PAT. The incubation temperature had a significant impact on AA action 

and PAT degradation as well. In fact, the temperature of storage chosen in this study was based on 

previous studies showing that the activity of AA against PAT seems to be highly temperature-

dependent and is low or negligible at refrigerated storage. The highest degradation of PAT was 

obtained at an incubation temperature that is around 20°C representing the most relevant industrial 

storage temperature of apple juices (Amparo et al. 2012; Tikekar et al. 2014; El Hajj Assaf et al. 

submitted article). Important to keep in mind is the fact that in our experiments, CAJ was used and 

not clear juice. Other studies have shown that PAT could be destroyed more easily in clear fruit juice 

than cloudy ones due to suspended particles and phenolic compounds in cloudy juices that interact 

with PAT molecules preventing the contact between PAT molecules and UV waves for example and 

thus their detection (Tikekar et al. 2014). A similar phenomenon could occur in our case slowing 
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down the contact between AA or rather the free radicals from the oxidation of AA with PAT 

molecules. 

 

Formation of degradation products  

The decrease in PAT concentration overlaps with the formation of degradation products. However, 

in our experiment performed on a semi-industrial scale and considering up till day 14 of storage at 

20°C in the dark, it was not possible to make solid conclusions regarding this. In fact, ASC-E, ASC-Z 

and DPA could not be detected in the juices on day 0 but did appear in the samples of cond 1, 2 and 3 

after 3, 6 or 14 days of incubation (data not shown). Till day 14, no statistically significant increase 

of these metabolites was however observed. ASC-E, oxidized to PAT in a one-step enzymatic reaction 

in PAT biosynthesis (Sekiguchi et al. 1983) was supposed to make a reverse enzymatic reaction 

leading to the formation of ASC-E from PAT. In our previous work on a lab scale experiment, the 

conversion of PAT to ASC-Z was observed after 6 day of incubation at 22°C in case AA was added to 

PAT-contaminated CAJ (El Hajj Assaf et al. submitted article). This same study also showed that 

DPA, could be another degradation product. DPA could be formed through the hydrolysis of the α,β-

unsaturated γ-lactone ring and subsequent modifying reaction involving more than a single 

enzymatic step (Ianiri et al. 2013; unpublished data Duran-Patron). The differences between the 

results observed on lab scale and semi-industrial scale emphasises the need for validation on (semi-

)industrial level where the process and products are more complex.  

 

Formation of reaction products  

In addition to the extraction of possible PAT metabolites from the juices stored in γ-radiated bags for 

0, 3, 6 and 14 days, we managed to identify the presence of DHA resulting from the oxidation of AA. 

Its presence was compared relatively to each other. We noticed that after storage of the juice bags 

for 6 days at 20°C in the dark, the DHA peaks on day 0, 3 and 6 were slightly detectable in the four 

conditions tested and no significant difference between conditions and day of storage was detected 

(Figure 3). Between day 6 and 14, DHA started to be formed most explicitly in juices of cond 2 and 

cond 3 and the corresponding peaks were 5 and 3 times higher on day 14 than on day 6, respectively. 

In fact, the biggest formation of DHA and degradation of PAT occurred on the same time, between 

day 6 and 14. A significant difference in the DHA quantity was observed between day 6 and 14 in 

cond 2 and between cond 2 and all other conditions on these same days as well (P < 0.0001). In fact, 

for the juices obtained in cond 2 with a degassing step, the formation of the highest amount of DHA 
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could be observed. The peak was 8 time higher than the one measured in cond 3 (P < 0.0001). In the 

juices from the blank and cond 1, where no extra AA was added to the apple mash, only a minor non-

significant peak corresponding to DHA was detected all along the 14 days of storage. This could be 

due to the low initial concentration of AA in the juice.  

 

Figure 3 Dehydroascorbic acid (DHA) formation in γ-radiated bags containing cloudy apple juices 
(CAJ) produced under four processing conditions, within 14 days of storage at 20°C in the dark. 
Graphs show the mean ± standard error of the mean (SEM) from three replicates.  

Studies have shown that AA gradually decreases during storage, especially at temperatures above 

0°C (Ajibola et al. 2009). Kevers et al. (2011) measured a decrease of 75% of AA after 7 weeks of 

incubation of fresh apples at 20°C. In our earliest findings (El Hajj Assaf et al. submitted article), at 

low temperatures (4°C), AA decreased less than at higher temperature (22°C). Based on these studies 

and on the fact that 20°C correspond to the shelf storage temperature, in the current study, this latter 

temperature was the one applied during storage period. AA catabolism is increased in stressful 

conditions storage and its rate of decrease is accelerated (cond 2 and 3). The percentage of oxygen 

needed to oxidize AA and generate DHA is definitely related to the initial concentration of AA in the 

juice. In our previous study, in complete anaerobic conditions, no oxidation of AA occurred but in 

presence of oxygen and 4% or 0.25% of AA, DHA was formed and the PAT concentration was reduced 

(El Hajj Assaf et al. submitted article). In our conditions tested, the necessity of oxygen was 

confirmed but a low concentration appeared to be enough and induced the highest formation of DHA 

(cond 2) and by that the PAT degradation (Figure 2; Figure 3). 
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Figure 4 5-hydroxymethylfurfural (HMF) formation in samples taken from different sampling steps 
all along the cloudy apple juice (CAJ) process, for four conditions tested. S1 for apple mash samples; 
S2 for apple pomace samples; S3 for non-pasteurized CAJ samples; S4 for pasteurized CAJ samples 
from day 0. Graphs show the mean ± standard error of the mean (SEM) from three replicates.  

Another reaction product formed was HMF. Its formation was independent of the condition tested 

but was more related to the sampling step. As we can see in Figure 4, HMF was almost absent in the 

sampling steps S1, S2 and S3 and was formed when the juice was flash pasteurized (S4). This was 

expected since HMF is absent in fresh food and present in heated products (Babsky et al. 1986; Matić 

et al. 2009). HMF is formed from sugars during thermal processing and is a characteristic flavour 

compound formed during the Maillard reaction (Lee and Nagy 1988; Ramirez-Jimenez et al. 2000; 

Rada-Mendoza et al. 2002). 

The concentration of HMF increases not only during heating but also during storage processes 

(Lansalot-Matras and Moreau 2003; Karatas and Akkaya 2017). It is used as an indicator of apple 

juice quality, since its presence is considered as an indication of quality deterioration and the low pH 

of apple juices seems to be a characteristic of the formation of this compound (Matić et al. 2009). 

HMF formation increased significantly (3 to 5 times) within the 14 days of storage (P < 0.0001) 

(Figure 5) in the juice of pH 3.6.  

 



CHAPTER 2_Part 2 Experimental work 

 

213 

 

 

Figure 5 5-hydroxymethylfurfural (HMF) formation containing cloudy apple juices (CAJ) produced 
under four processing conditions, within 14 days of storage in γ-radiated bags at 20°C in the dark. 
Graphs show the mean ± standard error of the mean (SEM) from three replicates.  

Conclusion 

Even though chemical detoxification of mycotoxin-contaminated matrices intended for commodities 

for human food,  such as PAT in apple juices is not allowed within EU, the addition of AA to low PAT-

contaminated cloudy apple juice in presence of oxygen decreased PAT concentration by half after 14 

days of storage at 20°C. When applying a degassing step with the VacUliq, a more pronounced 

decrease in PAT concentration was observed then when pressing apple juices in presence of high 

concentrations of oxygen. Differences observed when working on CAJ on a lab scale and (semi-

)industrial scale could be related to production process that is more complex for the latter. Other 

factors such as storage temperature and days of storage also affected PAT decrease. Packing material 

used could also influence PAT concentration in CAJ.  These studies show promising results but more 

investigation on (semi-)industrial scale is needed for CAJ. 
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General discussion and perspectives 

Mycotoxins are compounds resulting from the secondary metabolism of moulds and present toxic 

potential regarding humans and animals. Fungal toxins are found as natural contaminants in many 

foods and feeds such as grains, fruits, vegetables, and dairy products. The mycotoxins most studied 

from a food and health point of view are aflatoxins, fumonisins, ochratoxins, ergot alkaloids, 

zearalenone, patulin (PAT) and trichothecenes. These toxins are mainly produced by five genera of 

fungi: Fusarium, Aspergillus, Claviceps, Alternaria and Penicillium. 

The health and economic consequences of mycotoxin-contaminated food have prompted many 

researchers to try to clarify and understand the molecular mechanisms of mycotoxin production by 

filamentous fungi. Indeed, the production of secondary metabolites by moulds can be very variable 

and depends on several biotic and abiotic parameters. The utmost understanding of these 

mechanisms is needed to develop relevant preventive and/or control strategies against these 

contaminants and their producers. 

Among the mycotoxins of high concern cited above, PAT (mainly produced by P. expansum) 

contaminates apples in the field and during storage. Its high stability allows it to be found in products 

resulting from the transformation of contaminated raw material. Biochemical and molecular studies 

conducted over the years have resulted in the identification of the PAT biosynthesis pathway steps 

as well as the identification of the complete gene cluster in P. expansum (Tannous et al. 2014). Once 

elucidated, researchers characterized genes implicated in the PAT biosynthesis pathway as well as 

other genes encoding global regulators (Snini et al. 2015; Kumar et al. 2017).  

In this thesis, we wanted to address the problem of contamination of apples and processed products 

by PAT from a fundamental point of view and also through applied research on the fate of PAT in the 

presence of ascorbic acid (AA). Thus, we focused in the first part on the characterization of the veA 

gene encoding a global transcription factor located outside the PAT biosynthesis gene cluster in  

P. expansum. We gathered more knowledge about virulence and secondary metabolism (with a 

special emphasis on PAT and citrinin (CIT) mycotoxin biosynthesis pathways) of the fungus and its 

regulation when the gene encoding this global transcription factor is disrupted. The impact of 

different sugar sources on the development of P. expansum and PAT production was assessed as well. 

In the second part, we focused on the fate of PAT in cloudy apple juice (CAJ) in presence of AA. 
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This discussion is essentially based on assumptions or hypotheses made and formulated on 

the basis of the work presented in this manuscript and in relation to literature data. Some of the 

topics already addressed in previous chapters will not be included in this section. 

 

How does the veA gene affect the biosynthesis pathways of PAT and CIT? 

Currently, few studies describe an interconnection between two mycotoxin biosynthetic pathways. 

Schmidt-Heydt et al. (2012b) have shown that P. verrucosum is able to direct its secondary 

metabolism towards the production of a mycotoxin at the expense of a second, depending on the 

culture conditions tested. A medium with a high concentration of NaCl promotes ochratoxin A (OTA) 

production at the expense of CIT production. However, in presence of oxidative stress (medium rich 

in Cu2+ or fungus exposed to blue light), P. verrucosum directs its secondary metabolism towards the 

production of CIT (Schmidt-Heydt et al. 2011, 2014; Stoll et al. 2015). This interconnection is 

explained by the fact that these two mycotoxins are polyketides sharing the same precursor, acetyl-

CoA (Larsen et al. 2001). The production of one of them in very large quantities under specific 

conditions depletes the cell stock of acetyl-CoA, thus limiting the production of the other one. 

Hidalgo et al. (2014) have described the interconnection between the biosynthetic pathways of 

mycophenolic acid and PR-toxin in P. roqueforti. They have shown that mutated strains of  

P. roqueforti, unable to synthesize PR-toxin, produce mycophenolic acid in large quantities. The fact 

that mycophenolic acid and PR-toxin belong to different biosynthetic groups (polyketides (Regueira 

et al. 2011) and sesquiterpenes (Wei et al. 1975), respectively) suggest that the pathways of these 

mycotoxins are probably not related. However, the authors hypothesized that the biosynthetic 

pathway of PR-toxin regulates the biosynthetic pathway of mycophenolic acid by using the five-

carbon isopentenyl unit essential for their biosynthesis. 

In P. expansum, cultures of the mutant veA strain did not contain the mycotoxins PAT and CIT. On 

contrast, the wild type strain produced PAT and favoured its biosynthesis in a very large quantity at 

the expense of CIT, produced in smaller amounts on the culture media tested (Malt Extract Agar 

(MEA) and Potato Dextrose Agar (PDA)). It is possible that the synthesis of PAT may be inhibited 

once the medium becomes very toxic and this is when the synthesis of CIT is triggered (Touhami et 

al. 2018).  

The PAT concentration is six to seven times higher than that of CIT on MEA and fifty times higher on 

PDA. Similar observations have been made by Snini et al. (2015) on an apple based medium (APAM). 

CIT and PAT, which share the same precursor, acetyl-CoA, can most likely have interconnected 
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biosynthetic pathways. In fact, since PAT is produced in very large amounts in the wild strain, the 

acetyl-CoA cell stock can be decreased at the expense of CIT production (Larsen et al 2001). After 

comparing the level of expression of the genes encoding each of the polyketide synthases, patK and 

citS, involved in the first step of each of the biosynthetic pathways of PAT and CIT, respectively, in 

the wild type and veA null mutant strains, no difference of expression was measured (see Chapter 

1_Part 1: Figure 7 and Figure S9). This could be explained by a higher enzymatic efficiency of 6-

methylsalicylic acid synthase (first step in PAT biosynthesis pathway (Introduction - Figure11)) 

compared to the polyketide synthase involved in the CIT biosynthetic pathway.  

The global regulation factor VeA positively or negatively controls a large number of secondary 

metabolite pathways in fungi such as fumigaclavine C, fumagillin and gliotoxin in  

Aspergillus fumigatus (Dhingra et al. 2013), fumonisins and fusarins in Fusarium verticillioides 

(Myung et al. 2012), trichothecenes in F. graminearum (Merhej et al. 2012), gibberellins, fumonisins 

and fusarin C in F. fujikuroi (Wiemann et al. 2010), penicillin in P. chrysogenum (Kopke et al. 2013) 

and compactin in P. citrinum (Baba et al. 2012). Here, we elucidated its role in PAT production by  

P. expansum. Mutation of the veA gene in the wild type strain of P. expansum positively regulates, 

among other metabolites, the biosynthesis of PAT and CIT. It leads to the extinction or strong 

decrease of the expression of a majority of the genes belonging to the biosynthetic clusters of PAT 

and CIT (Introduction - Figure 6). The expression of the patA gene encoding an acetate transporter 

was reduced in the mutant strain on the culture media tested. The absence of this carrier was 

accompanied by a high decrease in the expression of the patK gene responsible for the 

transformation of acetyl-CoA into 6-methylsalicylic acid. The latter may justify the absence of PAT in 

the medium and lead us to hypothesize that the transport of acetate for PAT biosynthesis in the 

peroxisome did not occur from the start (Figure 1).  
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Figure 1 Hypothetical diagram of the spatial organization of the patulin biosynthesis pathway within 
the fungal cell (adapted from Snini 2014). 

The acetate present in the cell is taken over by the acetate carrier PATA present in the peroxisome 

membrane and then transformed into acetyl-CoA inside. 6-Methylsalicylic acid synthase supports 

acetyl-CoA to synthesize 6-methylsalicylic acid which is then released into the cytoplasm. It is 

supported by the other enzymes of the patulin biosynthesis pathway. Enzymes without signal 

peptides are certainly localized in the cytoplasm and are active in it. The last steps in patulin synthesis 

appear to be performed in vesicles and by enzymes that present a signal peptide (PATB, PATO, PATF 

and PATE). Patulin is then excreted in the external environment. 

In such case, we think that the stocks of acetate may remain available for CIT biosynthesis in the 

cytoplasm except that CIT was also absent in the media where the veA mutated strain was grown 

(Figure 2). This makes us believe that the biosynthesis of another secondary metabolite, belonging 

to the same family of polyketides, is maybe interconnected with those of PAT and CIT and is down-

regulated by veA. The disruption of veA gene induced the production of five other genes encoding 

polyketide synthases (Pexp_030540; Pexp_037250; Pexp_086670; Pexp_000410 and Pexp_094810). 
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This production could be at the expense of that of PAT and CIT. This was also confirmed by the HPLC 

peaks of certain secondary metabolites produced by the null mutant strain but not by the WT strain 

(see Chapter 1_Part 1). 

 

Figure 2 Chromatograms illustrating the production of patulin (A) and citrinin (B) in a wild type 
strain of Penicillium expansum (NRRL 35695), a null mutant (Pe∆veA) and complemented 
(Pe∆veA:veA) strains. Cultures were grown on malt extract agar (MEA) medium for 5 days at 25°C in 
the dark. 

A further characterization of the genes down-regulated by veA should be established to study the 

possible interconnection with the PAT and CIT biosynthesis pathways. The corresponding 

metabolites should be identified. It is by identifying them and their biosynthetic pathways that their 

interconnection with other mycotoxins could be studied. 

In addition, PAT and CIT have been reported to be also positively regulated by LaeA, another member 

of the trimeric Velvet complex in both P. expansum and Monascus ruber, respectively (Kumar et al. 

2017; Liu et al. 2016). Characterizing the velB gene, the third core member belonging to the Velvet 

family, would be interesting. The evaluation of a ΔvelB mutant and quantification of the expression 
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of PAT and CIT genes will strengthen the hypothesis that a functional Velvet complex is necessary for 

the production of these toxins. 

 

VeA regulates the secondary metabolism 

As mentioned in the section above, VeA regulates the secondary metabolism of many fungus such as 

A. nidulans (Calvo et al. 2008; Bayram et al. 2012; Rauscher et al. 2016), A. flavus (Cary et al. 2015), 

etc. Our results shed the light on its role in P. expansum. Beside PAT and CIT,  

P. expansum is a consistent producer of many secondary metabolites. Therefore, PAT-negative 

samples do not always correspond to fungal metabolite-free sample (Andersen et al. 2004).  

We noticed that different backbone genes were up-regulated by the veA gene like those of CIT and 

PAT while others were down-regulated. Many genes were regulated similarly by veA and laeA 

(Kumar et al. 2017; El Hajj Assaf et al. 2018) but one of them (Pexp_008740) was up-regulated by veA 

in our studies on the media tested and down-regulated by laeA. It would be interesting to focus on 

this backbone gene and investigate whether its expression is not regulated by the velvet complex. To 

do this, the study of the impact of velB on the expression of this gene (Pexp_008740) and the 

production of the corresponding metabolite must first be evaluated.  

We also showed that VeA positively regulated some metabolites that were secreted by the basal 

mycelium in the media, such as PAT and CIT, and negatively other metabolites such as communesins. 

These last metabolites were produced in the aerial parts of the fungi during the so-called competence 

phase (passage to the asexual reproduction). These results suggest that the fungus does not release 

all toxins at the same time during its cycle. It starts by secreting metabolites such as PAT, probably 

toxic to other microorganisms or facilitating colonization of substrates, which allows its 

development. Then, it secretes other toxins for different purposes such as formation of aerial 

mycelium, surviving extrinsic and intrinsic factors in the environment, etc. It could also be interesting 

to perform some toxicity studies on these mycotoxins (e.g. expansolides, communesins, etc.) and 

compare them to the toxicity of PAT. 

 

Link between veA gene and other regulators 

An in silico analysis of the promoter regions of the patulin cluster genes in P. expansum revealed the 

presence of potential binding sites for known transcription factors such as AbaA, BrlA, PacC and NrfA 

(Tannous 2015). The regulatory factors AbaA and BrlA are both implicated in the sporulation. BrlA 
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controls the expression of AbaA, which itself controls the differentiation of phialides (Sewall et al. 

1990). 

In our experiments, we showed that the infection of an apple by P. expansum (or the null mutant 

strain) and its storage in light, inhibited the formation of coremia. However, in the dark, the 

disruption of veA allowed the fungus to sporulate in vitro but it was unable to form coremia, pierce 

the peel of the apple and get out to complete its life cycle, unlike what was observed with the wild 

type (WT) and complemented strains. Kim et al (2002) showed that veA is a negative regulator of 

asexual development in a light-dependent way in A. nidulans, and Rauscher et al. (2016) have 

suggested that VeA regulates the asexual transcription factor BrlA, whose gene is known for 

promoting the asexual program in A. nidulans (Bayram et al. 2014). The question that arises is the 

following: is BrlA essential for the formation of coremia and piercing the apple peel or is it VeA? The 

previous studies made us hypothesize that in P. expansum grown in the dark, the loss of veA affects 

the transcription of brlA negatively and thus prevents the fungus to complete its cycle and form 

coremia and synnemata essential for its dissemination. In order to answer these questions, a 

disruption of the brlA gene in a WT strain of P. expansum should be performed. This null mutant strain 

should be used to inoculate apples and store them under light and dark conditions. If in the dark, the 

fungus still can not form its coremia and pierce the apple peel, then we can conclude that BrlA is 

responsible of this phenomenon. In addition, it would also be interesting to produce a mutant strain 

of P. expansum whose veA and brlA genes are both disrupted. This could give us an idea of the 

regulation of brlA by veA as well. 

In addition, brlA was also shown to act on biosynthetis pathways. Its deletion in A. fumigatus affects 

the production of trypacidine, fumiquinazoline C (Gauthier et al. 2012; Lim et al. 2014) and ergot 

alkaloids (Coyle et al. 2007). Twumasi-Boateng et al. (2009) also proved by a transcriptomic study 

that the cluster, encoding the genes required for the synthesis of the ergot alkaloid fumigaclavine in 

A. fumigatus, is dependent on BrlA for the expression of its genes. Another study revealed that the 

level of expression of 7 gene clusters related to secondary metabolism, including that involved in the 

synthesis of roquefortin C, was strongly regulated by BrlA in Penicillium oxalicum (Qin et al. 2013). 

On the other hand, in aflatoxin producing fungal species, BrlA is involved in the regulation of the pksA 

gene promoter, encoding the polyketide synthase. The latter is involved in the first step of the 

biosynthesis of this mycotoxin (Ehrlich et al. 2002). The disruption of brlA in a WT strain of  

P. expansum would also show enlarge our knowledge on the impact of the BrlA factor on the 

secondary metabolism in this fungus. 
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Fungal development and toxin production 

An increase in the production of secondary metabolites in fungi has been attributed to the presence 

of glucose and other carbohydrates. Wu et al. (2016) have shown that fructose can reprogram the 

metabolome of a P. citrinum strain by enhancing the growth and antifungal activity of this organism 

at once. This exogenously added sugar affects fungal hyphae thickness, biomass production, gene and 

protein expression, enzyme secretion and production of secondary metabolites (Pessoni et al. 2015). 

In P. chrysogenum, glucose and sucrose largely regulated the biosynthesis of penicillin. Other sugars 

such as maltose, fructose and galactose also showed an impact, although more weakly (Revilla et al. 

1984; Martin 2000). 

Our preliminary results showed that the addition of different types of sugars, glucose, sucrose and 

fructose, to in vitro culture media favoured the fungal development not only of the WT strain but also 

of the veA mutant. Fructose contributed to the largest radial development of the fungi. Still, the 

development of the fungi (WT and null mutant strains) was not correlated to the secretion of PAT in 

the media. The WT strain developed better and produced more PAT on the media till a certain 

percentage of fructose added. The null mutant strain of veA was able to develop but almost no PAT 

was secreted in the media, regardless of the percentage of fructose added. 

We can conclude that on different apple varieties, which contain different percentages of sugars, a 

null mutant strain could develop but no PAT production could occur. This strain could be evaluated 

as a potential biological agent competing with the WT strain producing the toxin. A better idea of the 

other toxins that the mutant could produce is still needed because the observance of disease 

incidence on apples is not related to the presence or absence of toxins. These results were also in 

agreement with those of other studies (Ballester et al. 2015; Li et al. 2015), which state that the 

infection of Golden delicious apples by P. expansum does not require the presence of PAT. The 

disruption of the veA gene decreased the severity of apple disease and was essential to obtain a less 

aggressive strain (Van der Plank 1965). 

It is also important to keep in mind that most of these studies were conducted in vitro, on different 

media. It would also be interesting to evaluate the expression of backbone genes and the production 

of metabolites in vivo, on apples for example. The complexity of the matrices and the accompanying 

flora could affect the development and the aggressiveness of the fungus differently. 

 

 

 



 General discussion 

 

231 

 

Effect of ascorbic acid on patulin in cloudy apple juice 

Different strategies controlling P. expansum, responsible for blue mould decay on/in apples and 

causing many economic losses, have been developed. The use of chemical treatments such as 

fungicides as main method of control has led to satisfying results. However, these treatments are 

applied at specific moments before harvest, making sure they are present on the products during 

their storage period. The reason behind this is to prevent mould growth at storage. The massive use 

of these fungicides, such as thiabendazole, has led to the development of resistant P. expansum strains 

(Baraldi et al. 2003). However, seen the negative impact of fungicides on both the environment and 

human health, consumers concern about the presence of poisonous chemical residues in fruits and 

vegetables has increased. Their demand for healthy food that is free from chemical residues but also 

of toxic fungi and mycotoxins has encouraged the (re)search for other alternative control strategies 

that are safer and consumer-friendly to deal with the issue. But even though fungal species can be 

eliminated by some treatments, their absence does not necessarily imply the absence of toxins. 

However, European and global regulations have been implemented, and a big improvement in 

understanding the toxic effects and modes of action of mycotoxins has been achieved so far. All this 

help controlling the mycotoxins presence and fungi proliferation. Indeed, nowadays, mycotoxins 

presence can be controlled and reduced to a certain extend. Levels that are harmful for health should 

be avoided in food products but unfortunately, mycotoxins cannot be completely eliminated from the 

food chain. 

Our research focused on PAT in CAJ. As discussed before, the danger caused by this toxin necessitates 

its control. Techniques and treatments favoured by food industries and agri-food sectors are those 

that are easily applicable, with high efficiency and of low cost. That’s why this study focused on the 

fate of PAT in presence of AA. The problem lies in the fact that, sometimes, part of the harvested 

apples is not suitable for fresh market because of their poor quality. These apples are then designated 

for the production of transformed products such as juices. Most of the time, apples are kept in open 

deck storage for a considerable period of time before industrial processing begins thus in some 

situations accumulating more PAT (Welke et al. 2009). 

AA is generally present in low amounts in apple juices. Therefore, apple juices are often fortified with 

AA because of its antioxidant properties and in order to prevent browning reactions. Its stability is 

affected by oxygen, temperature, humidity and light (Rojas and Gerschenson 2001). Heat treatments 

such as pasteurisation were proven to degrade AA, with higher losses at higher temperatures. In 

acidic products such as fruit juices AA is stable (Robertson and Samaniego-Esguerra 1990). AA 
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minimizes the decreases in organoleptic qualities (such as colour and flavour) of food products that 

may occur during processing. It has been described by Brackett and Marth (1979) for being an 

accelerator of the degradation of PAT in apple juices. However, to the best of our knowledge no 

studies concerning AA in CAJ have been described yet and its mechanism of action is not fully 

understood nor clarified in literature.  

 

 Mechanism of action of ascorbic acid on patulin 

Within the framework of this thesis, the possible need of AA for oxygen to cause PAT degradation 

was investigated on a laboratory and semi-pilot scale. Our results show that in presence of oxygen, 

DHA is formed and PAT concentration is reduced. Based on our own and on previous studies, we 

hypothesize that oxidised AA leads to the formation of DHA and generation of singlet oxygen 

attacking the double bonds of PAT and causing the opening of the lactone ring (Brackett and Marth 

1979; Drusch et al. 2007). Still the (possible) reversibility of this phenomenon needs to be studied 

further. It was shown that DHA could be reduced back to AA in model solutions, under oxidizing and 

reducing conditions (Serpen and Gökmen 2007); nevertheless, in most food systems, DHA is 

irreversibly hydrolysed to 2,3-diketogulonic acid (DKGA) (Davey et al. 2000; Arrigoni and Tullio 

2001; Rojas and Gerschenson 2001). The mechanism of action of DKGA on PAT in CAJ is still unknown 

and it would be interesting to test this and see if it’s formed in CAJ produced with the technology used 

in this PhD study. 

As for incubation or storage temperatures, Kevers et al. (2011) found that apples incubated for 7 

weeks at 20°C presented a decrease of 75% of their natural concentration of AA. Our findings showed 

a disappearance of AA (naturally present and added) and a formation of other compounds that is 

more important at 22°C compared to 4°C in CAJ. This decrease in AA content at 22°C was 

accompanied by an increase in the reduction of the concentration of PAT in CAJ. These results seem 

promising since 22°C represents the most popular ambient storage temperature of apple juices in 

distribution. 

When it comes to the concentration of AA that should be added when producing apple juices, 

different parameters should be considered, like the organoleptic and qualitative ones and the effect 

on PAT concentration. The amount added in our studies did not seem to have significant effects on 

pH, colour or brix of the juice but still managed to reduce the PAT concentration to 50% within two 

weeks of storage. Still, when adding AA, one should always take the quantity of PAT present, the 

quantity of oxygen needed and the nature of the matrix into consideration. For example, the action 
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of AA on PAT in clear apple juices will probably differ from the one in CAJ. Solid present in the CAJ 

can bind to PAT and/or AA and negatively affect the action of AA on PAT. A similar phenomenon was 

observed when UV light was applied. Reduction of PAT in clear fruit juices was easier than in cloudy 

ones due to the suspended particles and phenolic compounds in cloudy juices preventing the contact 

between PAT molecules and UV waves for example (Tikekar et al. 2014). 

In addition, the semi-industrial experiment performed in our study consisted on packing the CAJ 

produced in γ-radiated bags not allowing the light to pass. Another factor that should be considered 

is light and its impact on AA and PAT degradation. Other packaging materials such as polyethylene 

(PE) and glass bottles that are translucent should be tested especially that most of artisanal and fresh 

ones are stored in such bottles.  

 

 Degradation products formed  

When talking about degrading PAT, degradation products should be analysed in order to ensure the 

safety of the product. Toxicity data regarding degradation products are very limited compared to 

those related to the toxin itself. Numerous studies observed that PAT is degraded into compounds 

potentially less toxic (Castoria et al. 2011; Moss and Long 2002; Tannous et al. 2017b). ASC-E, 

considered as the predominant degradation product as well as the direct precursor of PAT was 

considered a mycotoxin itself since it preserves a quarter of the toxic potential of PAT (Suzuki et al. 

1971). However, in their recent work, Tannous et al. (2017b) examined the cytotoxic potential of ASC 

(E and Z isomers) in vitro for four human cell lines and showed no evidence for cytotoxicity of ASC 

till certain concentrations. DPA, another degradation product of PAT was found to be less toxic than 

PAT (Castoria et al. 2011). These degradation products (ASC-E/Z and DPA) were obtained when PAT 

is converted by different yeasts. Still, no research describes till today identifying the degradation 

products generated when AA was added in presence of PAT. In our study, on a laboratory scale, we 

identified ASC-Z and a compound sharing the same retention as DPA in our extracts. However, when 

passing to a semi-industrial scale, these degradation products were not detected in PAT-

contaminated cloudy apple juice. These differences observed between the two experiments highlight 

the need for validation of lab-scale results on (semi-)industrial level. Plus, even though the formation 

of the degradation products was not observed at the same time of the degradation of PAT, it would 

be interesting to follow this decrease on a longer period. It could be that the compounds formed are 

binding to other particles in the CAJ and thus not allowing their detection. According to Berthiller et 

al. (2013), bound mycotoxins, not directly accessible, must be liberated from the matrix before any 
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chemical analysis and that by applying chemical or enzymatic treatments. The differences occurring 

between model systems in labs versus complex CAJ matrixes obtained on both semi- and industrial 

scales show the need for validation of models under real life conditions. The pure standard of PAT 

and the PAT-contaminated apple mash used to inoculate an acidified aqueous solution and CAJ, 

respectively, could affect the degrading pathway of PAT as well. It would also be interesting to repeat 

the same experiment, in the same conditions, on clear apple juice and follow the formation of 

degradation products.  

 

Analytical hurdles and possible pitfalls 

The interference between HMF and PAT has been described previously (Murillo et al. 2008; Ping Lee 

et al. 2014) and many techniques have been developed in order to separate these two compounds 

and correctly quantify PAT (review chapter C of the introduction). (However, none of the studies 

describes a possible signal interference during analysis that could occur between DHA (the oxidized 

form of AA) and ASC-E, a degradation product of PAT.) 

In our research, an in-house methodology separating PAT from the reaction and degradation 

products resulting from the reaction of AA with PAT in CAJ was optimized in order to allow its 

detection and/or quantification. Extraction of metabolites from CAJ was performed using the 

protocol for cloudy apple juice validated by De Clercq et al. (2016). However, PAT is able to bind to 

the solid particles of the juice, particularly the proteins or small peptides containing cysteine, lysine 

or histidine residues (Fliege and Metzler 2000) causing a decrease in PAT recovery and an 

underestimation of the PAT concentration (Baert et al. 2007). That agreed with the research of 

Bissessur et al. (2001) stating that a clarification of PAT-contaminated CAJ could reduce the 

occurrence of the toxin in the juice and lead to solid residues that are enriched with the toxin. In our 

result, we noticed that after applying a flash pasteurisation on the CAJ contaminated by PAT, the 

concentration of PAT increased in the juice. It could be that the heat treatment favoured the 

dissociation of bound molecules and liberated the toxin. Additionally, an analysis for the parent toxin 

and the whole “modified” mycotoxin by means of LC-HRMS could help screen PAT and non-target 

compounds in our extracts and identify novel compounds (Righetti et al. 2016). 

This makes us think about all the mycotoxin-contaminated commodities or modified mycotoxins, 

generated by fungi, food processing or infected host and that could coexist with their free mycotoxins. 

Researchers suggested that these masked toxins could be hydrolysed into their free toxins during 

digestion and threaten animal and human health.  Some of them could also contribute to a higher 

https://www.sciencedirect.com/science/article/pii/S0956713513005410#!
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toxicity (De Boevre et al. 2015; Freire and Sant'Ana 2018). Toxicity data for bound PAT are not 

available yet, the metabolic conjugation of the electrophilic group is commonly considered as an 

inactivation reaction and may lead to a loss of toxicity or biological activity until it is released again 

(Righetti et al. 2016). This still needs to be confirmed.  

 

Beyond mycotoxins … 

After observing how AA impacts the PAT concentration in apple juices, it could also be interesting to 

study its impact in other matrices such as apple puree and apple leather. It could also be useful to see 

if AA could impact the stability of other mycotoxins occurring in food products especially that it is a 

compound largely used in industrial food processing. Shalaby in 2009 studied the opposing effect of 

AA against OTA in the fish Nile tilapia. He evaluated the ability of a minimum level (500 mg/ kg diet) 

of vitamin C to counteract the toxicity of two levels of OTA (400 and 600 µg/kg diet) and showed that 

AA could normalize the total protein content and aspartate aminotransferase activity in the liver, 

which are usually disrupted by the toxin, making them similar to those of the control group where 

no OTA was added. 

Apples are considered as a rich source of phenolic constituents distributed in the peel, core 

and pulp. Their content and composition depend on the apple variety, the area of cultivation, the time 

and the year of harvest (De Paepe et al. 2015; Krajka-Kuèniak et al. 2015). Polyphenolic compounds 

include hydroxycinnamic acids, dihydrochalcones, flavonols, catechins, oligomeric procyanidins, and 

anthocyanins in red apples. Their concentrations are lower in the flesh compared to the peel, except 

for chlorogenic acid (Candrawinata et al. 2012) and a recent study suggests the presence of high 

amounts of polyphenolic compounds in apple seeds (Schieber et al. 2003). CAJ is considered as a 

more valuable source of fibre, natural antioxidants and polyphenolic compounds (Will et al. 2008; 

Teleszko et al. 2016). In our semi-industrial scale experiment, CAJ was obtained and since its rich in 

all these compounds, it would be interesting to analyse the polyphenol content in the juice produced, 

all along the storage period and see how it varies with the decrease of PAT. Polyphenols, just like AA, 

might impact the PAT concentration and favour its reduction. This could also give us an idea on the 

storage conditions that are known to affect quality, polyphenolic compounds and antioxidant 

capacity of CAJ (Kolniak-Ostek et al. 2013). On the other hand, some of the polyphenolic compounds 

(e.g. esculetin, ferulic acid, quercetin, resveratrol, scopoletin, scoparone, and umbelliferone) seemed 

to control the development of P. expansum on Golden Delicious and Granny Smith apples (Ribes et al. 

2017). Dipping apples in quercetin and umbelliferone prevented apples from decaying by 86–92% 
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compared to the control samples. Clear apple juices which undergo clarification, tend to lose their 

phenolic compounds.  

The apple pomace (waste stream) resulting from clear or CAJ processing, supposed to be rich in 

antioxidants and polyphenols. PAT is a water-soluble molecule and will probably pass into the juice 

as observed in our results. The pomace could be used for other purposes such as animals feed and 

PAT should be evaluated in it. They could serve the need to recycle, reuse and recover energy and 

valuable chemicals just like winery waste that are used in order to produce platform chemicals, 

biofuels, heat and energy (Zacharof 2017). Recently, De Gelder et al. (2018) studied the valorisation 

of mycotoxin contaminated waste streams through anaerobic digestion. They showed that this 

organic waste contaminated by mycotoxins can be safely valorised into methane and digestate 

serving as compost. This makes us think of the possibility of undergoing a fermentation on the PAT-

contaminated apple juice waste, test them for toxins residues and reuse them after.  

Other than its impact on PAT, AA appears to have an impact on pesticides as well. Khan and Sinha 

(1994) assessed the modulatory effect of higher doses of vitamin C on the genotoxicity of three 

pesticides (endosulfan, phosphamidon, and mancozeb) in mice. We should note that these pesticides 

may be used on apples. The vitamin administrated in a dose of 20 mg/kg bw/day simultaneously 

with each of the three pesticides, was effective as an anti-mutagen. Later on, the possible attenuation 

of Lambda-cyhalothrin, a synthetic pyrethroid insecticide used worldwide in agriculture (apples 

included), by vitamin C was studied (Fetoui et al. 2010). Co-administration of vitamin C with lambda-

cyhalothrin in rats ameliorated the increase in enzymatic activities and vitamin C was suggested to 

significantly contribute to numerous beneficial effects seen its antioxidant property. These results 

suggest the essential global impact of AA on different factors that could be present in food items and 

harmful to consumers, like the possible effect of AA on pesticide residues in apple-derived products 

or waste products. More investigations are necessary in order to better characterize the role of AA. 

Finally, even though chemical detoxification of mycotoxin-contaminated matrices is not allowed 

within EU for commodities for human food, addition of AA to apple juice could have an additional 

positive effect besides organoleptic and quality effects and this due to its effect on the PAT 

concentration in contaminated juice. After all, consumers would prefer juices PAT-free to those 

containing PAT below regulatory limit. 

More actions towards fungal distribution and toxin contamination are urgently needed. Global 

warming is a widely acknowledged fact. Climate change factors interacting with each other impact 

fungal growth and mycotoxin production (Medina et al. 2017a). It risks affecting not only food 
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security but food and feed safety as well (Medina et al. 2017b). It may also affect the geographical 

distribution of mycotoxigenic fungi. More research on regulated and non-regulated mycotoxins are 

needed and the impact of global warming on mycotoxins worldwide should be studied further.  
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Conclusions … 

To conclude, the fungal secondary metabolism is very diversified and is regulated by different factors. 

In addition, the diversity of secondary metabolites provides them with several roles either positive 

(e.g. in the medical and agricultural sectors) or negative (e.g. virulence and pathogenicity of fungi), 

so it is essential to study them further. Apples are among the most consumed and exported fruits 

worldwide. They are used in several food products designated for infants and young children and can 

be contaminated by PAT secreted by P. expansum. 

In this thesis, we addressed the problem of contamination of apples and apple products with PAT 

from both a fundamental and applied perspective and measures to control this contaminant were 

discussed. We started by focusing on the characterization of a global transcription factor, VeA, and 

studied its impact on the secondary metabolism and metabolome of the fungus on different media. 

Then, we studied the effect of AA on PAT in CAJ on a laboratory and semi-industrial scale and we 

tested some parameters that could affect this action. Within this framework, it should be considered 

that the outcome of these experiments cannot be extrapolated to the (semi-)industrial scale. More 

research and experiments should be performed. 

Mycotoxins and other contaminants have long been a major economic burden and pose severe public 

health risks. Unfortunately, their presence and problems are likely to increase even more with 

climate change. This indicates that the research challenge will also evolve, hence the importance of 

conducting multidisciplinary research (molecular, physiological, toxicological, chemical, etc.) and 

continuing to work on the characterization of (new) stimuli and molecular regulatory mechanisms 

involved in contamination by moulds and mycotoxins. This will help meet consumer demand for 

mycotoxin-free apple juice and agri-food to produce safe and high-quality food. 
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Patulin, main mycotoxin of the apple industry: regulation of its biosynthetic pathway 

and influence of processing factors in cloudy apple juice production 
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Among diseases affecting apples, blue mould caused by Penicillium expansum is a major concern. It 

causes yield and quality losses, as well as food safety issues due to the production of mycotoxins such 

as patulin (PAT) and citrinin (CIT). PAT is the most worrying one and has cytotoxic, genotoxic and 

immunosuppressive properties. The European Union (EU) has established specific regulations to 

protect the consumer’s health and maximum levels of PAT of 50 μg/kg is set for fruit juices and 

derived products, 25 μg/kg for apple purees and compotes and 10 μg/kg for food intended for babies 

and young children. However, PAT is still found in commercial food and/or beverage products, 

sometimes exceeding the maximum limits and more research is needed to minimize contamination 

of food products by this mycotoxin and its fungus. Even though most studies on P. expansum have 

focused on PAT itself, the genome of this fungus exhibits other predicted secondary metabolite (SM) 

clusters, some of which may be associated with potentially toxic metabolites. In order to control the 

synthesis of SMs, the study of global transcription factors regulating their production is essential. In 

a first part, the veA gene, belonging to the velvet family, was characterised and its impact on the 

development of the fungus, its virulence and its secondary metabolism was elucidated. The 

disruption of this gene led to the failure in PAT and CIT production and a decrease in the expression 

of their gene cluster. It also revealed a global impact on the secondary metabolism, as 15 of 35 

backbone genes showed differential regulation on the media tested. In a second part, the influence of 

ascorbic acid (AA) on the concentration of PAT in cloudy apple juice was studied on both lab and 

semi-industrial scale. An analytical methodology separating PAT and other compounds generated 

during the reaction was optimized. Optimal conditions of action of AA on PAT were studied. In 

addition, degradation products less toxic than PAT and resulting from AA treatment were identified. 

To conclude, this thesis is part of the risk management of PAT in the fruit sector; it provides 

significant improvements at both fundamental and practical levels. These advances are mainly 

characterized by the description of a mutated strain of P. expansum that is less toxic than that 

naturally occurring in nature, and the description of a food additive that improves numerous 

products qualities and affects PAT concentration, thus generating less toxic compounds. 
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Patuline, principale mycotoxine dans les produits à base de pomme: régulation de sa voie 

de biosynthèse et influence des facteurs de transformation dans la production de jus de 
pomme trouble 
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Parmi les maladies affectant les pommes, la moisissure bleue causée par Penicillium expansum est 

une préoccupation majeure. Elle cause des pertes de rendement et de qualité dues également à la 

production de mycotoxines telles que la patuline (PAT) et la citrinine (CIT). La PAT est la plus 

alarmante en raison de ses propriétés cytotoxiques, génotoxiques et immunosuppressives. 

L'Union européenne (UE) a établi des réglementations spécifiques pour protéger la santé des 

consommateurs et des niveaux maximaux de 50 μg / kg sont fixés pour les jus de fruits et les 

produits dérivés, 25 μg / kg pour les purées de pommes et les compotes et 10 μg / kg pour les 

aliments destinés aux bébés et aux jeunes enfants. En dépit de ces mesures, la PAT continue à être 
présente dans les aliments et / ou les boissons commerciaux, dépassant parfois les limites 

maximales. Des recherches supplémentaires sont par conséquent nécessaires pour minimiser la 

contamination des produits alimentaires par cette mycotoxine et son champignon producteur. 

Bien que la plupart des études sur P. expansum soient essentiellement centrées sur la PAT, le 

génome de ce champignon présente d'autres clusters de métabolites secondaires (SM) prédits 

dont certains peuvent être associés à des métabolites potentiellement toxiques. Afin de contrôler 

la synthèse de SM, l'étude des facteurs de transcription globaux régulant leur production est 

essentielle. Dans une première partie, le gène veA, appartenant à la famille des protéines du 

complexe velvet, a été caractérisé et son impact sur le développement du champignon, sa 

virulence et son métabolisme secondaire a été élucidé. La délétion de ce gène a conduit à une 

réduction de la production de PAT et de CIT et à une diminution de l'expression de leurs clusters 

de gènes. VeA a également un impact global sur le métabolisme secondaire, puisque 15 des 35 

gènes de structure présentent une régulation différentielle sur les milieux testés. Dans une 

deuxième partie, l’influence de l’acide ascorbique (AA) sur la concentration de PAT dans le jus de 

pomme trouble a été étudiée à la fois en laboratoire et en milieu semi-industriel. Une 

méthodologie analytique séparant la PAT et d'autres composés générés au cours de la réaction a 

été optimisée. Les conditions optimales d'action de l’AA sur la PAT ont été analysées. De plus, nous 

avons identifié des produits de dégradation moins toxiques que la PAT et résultant du traitement 

par l’AA. Pour conclure, cette thèse se rattache à la gestion des risques de la PAT dans le secteur 

des fruits ; elle apporte des connaissances et des améliorations significatives tant sur le plan 

fondamental que sur le plan pratique. Ces avancées résident principalement dans la description 

d'une souche mutée de P. expansum moins toxique que celle naturellement retrouvée dans la 

nature, et décrivant un additif alimentaire améliorant les qualités de nombreux produits 

transformés et diminuant la concentration de PAT en générant des composés moins toxiques. 
 

Mots clés: Penicillium expansum, patuline, acide ascorbique, veA, métabolisme secondaire, jus de pommes trouble, 

produits de dégradation 
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