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0.2.4 Etude d’un traceur biaisé . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Introduction 33

I Run-and-tumble particle in a crowded environment 37

1 Active particles in complex environments 39
1.1 What are active particles ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
1.2 Context and motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

1.2.1 Tagged particle (tracer) in a crowded environment . . . . . . . . . . . . 40
1.2.2 Surprising effects arise when activity meets crowding . . . . . . . . . . 41

1.3 Microscopic theory for an active tracer in a crowded environment . . . . . . . 42

2 Microscopic lattice model 43
2.1 Definition of the model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.1.1 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.1.2 Master equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.1.3 Detailed balance and activity . . . . . . . . . . . . . . . . . . . . . . . 45

2.2 Observables and evolution equations . . . . . . . . . . . . . . . . . . . . . . . 46
2.2.1 Evolution of the position of the tracer . . . . . . . . . . . . . . . . . . 46
2.2.2 Density and correlation profiles . . . . . . . . . . . . . . . . . . . . . . 48

3 Approximate closure of the hierarchy 49
3.1 Decoupling approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.1.1 Basic principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.1.2 New closed equations for the conditional profiles . . . . . . . . . . . . . 50

3.2 Analytical resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.2.1 Equations in Fourier space . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.2.2 Non driven active tracer . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.2.3 Driven active tracer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3



4 CONTENTS

3.3 Low and high density regimes . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.3.1 Closure of the hierarchy at linear order . . . . . . . . . . . . . . . . . . 55
3.3.2 Low density limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.3.3 High density limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.4 Qualitative argument . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4 Non monotony of the diffusion coefficient 59
4.1 Validation of the decoupling approximations . . . . . . . . . . . . . . . . . . . 59

4.1.1 Diffusion coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.1.2 Density profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2 Non monotonic dependence on the activity parameters . . . . . . . . . . . . . 61
4.2.1 Isolated run-and-tumble tracer . . . . . . . . . . . . . . . . . . . . . . . 61
4.2.2 Effect of crowding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.2.3 Qualitative analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5 Absolute negative mobility 67
5.1 Relation with negative differential mobility . . . . . . . . . . . . . . . . . . . . 67
5.2 Negative mobility for a driven run-and-tumble tracer in a crowded environment 68

5.2.1 Observation of negative mobility . . . . . . . . . . . . . . . . . . . . . . 68
5.2.2 Phase diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.2.3 Results at arbitrary density . . . . . . . . . . . . . . . . . . . . . . . . 71

5.3 Characterising the interplay between activity and crowding . . . . . . . . . . . 72
5.3.1 Density profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.3.2 Generalised Einstein relation . . . . . . . . . . . . . . . . . . . . . . . . 73

II Correlations in single-file diffusion 77

6 Single-file diffusion 79
6.1 Overview and models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.1.1 The singularity of dimension one . . . . . . . . . . . . . . . . . . . . . 80
6.1.2 Classical microscopic models . . . . . . . . . . . . . . . . . . . . . . . . 81

6.2 Hydrodynamic description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.2.1 Macroscopic Fluctuation Theory . . . . . . . . . . . . . . . . . . . . . . 84
6.2.2 The transport coefficients . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.2.3 Stochastic heat equation . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.3 Known results and outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.3.1 The SEP: the road to the tracer’s position distribution . . . . . . . . . 87
6.3.2 More general systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.3.3 Outline: understanding correlations in single-file diffusion . . . . . . . . 88

7 Microscopic study of the Simple Exclusion Process 91
7.1 The generalised density profiles . . . . . . . . . . . . . . . . . . . . . . . . . . 91

7.1.1 Bath-tracer correlations . . . . . . . . . . . . . . . . . . . . . . . . . . 92
7.1.2 Scaling functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
7.1.3 Bath-current correlations . . . . . . . . . . . . . . . . . . . . . . . . . . 94

7.2 Evolution equations and boundary conditions . . . . . . . . . . . . . . . . . . 95
7.2.1 Integrated current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
7.2.2 From integrated current to tracer position . . . . . . . . . . . . . . . . 97



CONTENTS 5

8 Exact closure of the hierarchy 101
8.1 A closed equation ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

8.1.1 Insight from limiting cases . . . . . . . . . . . . . . . . . . . . . . . . . 101
8.1.2 First orders by MFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

8.2 Construction of the closed equation . . . . . . . . . . . . . . . . . . . . . . . . 105
8.2.1 Structure of the sought equation . . . . . . . . . . . . . . . . . . . . . . 106
8.2.2 Closed form for the right-hand side . . . . . . . . . . . . . . . . . . . . 106
8.2.3 Compact form and summary . . . . . . . . . . . . . . . . . . . . . . . . 109

8.3 Results from the closed equation approach . . . . . . . . . . . . . . . . . . . . 111
8.3.1 Solving the Wiener-Hopf equations for the profiles and the cumulants . 111
8.3.2 Expansions in powers of λ . . . . . . . . . . . . . . . . . . . . . . . . . 112
8.3.3 Extensions to other situations and observables in the SEP . . . . . . . 115

9 Extension to more general single-file systems 121
9.1 Mapping single-file systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

9.1.1 The duality relation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
9.1.2 Translation and dilatations . . . . . . . . . . . . . . . . . . . . . . . . . 125
9.1.3 Transformation of observables . . . . . . . . . . . . . . . . . . . . . . . 126

9.2 Mapping the results from the SEP . . . . . . . . . . . . . . . . . . . . . . . . . 127
9.2.1 General quadratic mobility . . . . . . . . . . . . . . . . . . . . . . . . . 128
9.2.2 The Kipnis Marchioro Presutti model . . . . . . . . . . . . . . . . . . . 130
9.2.3 The random average process . . . . . . . . . . . . . . . . . . . . . . . . 131
9.2.4 The double exclusion process . . . . . . . . . . . . . . . . . . . . . . . . 134
9.2.5 The gas of hard rods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
9.2.6 The zero range process . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

10 Biased tracer 139
10.1 Hydrodynamic description for a biased system . . . . . . . . . . . . . . . . . . 140

10.1.1 Bias matching condition . . . . . . . . . . . . . . . . . . . . . . . . . . 140
10.1.2 MFT equations for a biased system . . . . . . . . . . . . . . . . . . . . 142

10.2 Application to a few examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
10.2.1 The KLS model with biased tracer . . . . . . . . . . . . . . . . . . . . 144
10.2.2 An exactly solvable biased tracer model . . . . . . . . . . . . . . . . . . 146
10.2.3 Equilibrium fluctuations in a general system . . . . . . . . . . . . . . . 149

10.3 The simple exclusion process with a biased tracer . . . . . . . . . . . . . . . . 150
10.3.1 Numerical resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
10.3.2 New analytical results . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

A Methods of numerical simulations 159
A.1 Decomposition of exponential laws . . . . . . . . . . . . . . . . . . . . . . . . 159
A.2 Kinetic Monte Carlo algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 161

A.2.1 Rejection-free algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 161
A.2.2 Algorithm with rejection . . . . . . . . . . . . . . . . . . . . . . . . . . 162

A.3 Simulation of the run-and-tumble tracer . . . . . . . . . . . . . . . . . . . . . 163

B Details of calculations of part I 165
B.1 Derivation of evolution equations from the master equation . . . . . . . . . . . 165
B.2 Symmetries of the density and correlation profiles . . . . . . . . . . . . . . . . 167
B.3 Expressions of the matrices for the conditional profiles . . . . . . . . . . . . . 168

B.3.1 Arbitrary density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168



6 CONTENTS

B.3.2 Low and high-density limits . . . . . . . . . . . . . . . . . . . . . . . . 169

C Analysis of the qualitative argument 173
C.1 Minimum of diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
C.2 Maximum of diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
C.3 Analytic criteria for existence of non monotony . . . . . . . . . . . . . . . . . 174

D Hydrodynamic limit and local equilibrium 175
D.1 Stationary measures and macroscopic density . . . . . . . . . . . . . . . . . . 175
D.2 Example of the DEP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

E Complements on Macroscopic Fluctuation Theory 179
E.1 The equilibrium potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
E.2 Relation between the transport coefficients . . . . . . . . . . . . . . . . . . . . 180

F Microscopic equations in the SEP 183
F.1 Evolution equations for microscopic quantities . . . . . . . . . . . . . . . . . . 183
F.2 Long-time limit of the equations . . . . . . . . . . . . . . . . . . . . . . . . . . 185

G Interpretation of the closed equation 187
G.1 Projected dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
G.2 Jump process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

H Discussion on the hydrodynamic duality relations 191
H.1 Characterisation of mappings between 1D diffusive systems . . . . . . . . . . . 191
H.2 Edwards-Wilkinson equation for the fluctuations of position of tracers . . . . . 192

I Supplements on the hydrodynamic description of a biased system 195
I.1 Examples of bias matching conditions . . . . . . . . . . . . . . . . . . . . . . . 195

I.1.1 Vanishing velocity of a biased tracer is not enough . . . . . . . . . . . . 195
I.1.2 Example of the SEP with a biased tracer . . . . . . . . . . . . . . . . . 196

I.2 MFT equations for a biased system . . . . . . . . . . . . . . . . . . . . . . . . 197
I.2.1 Resolution of the optimisation problem . . . . . . . . . . . . . . . . . . 198
I.2.2 New mapping for the MFT equations . . . . . . . . . . . . . . . . . . . 199

I.3 Resolution of the MFT equations . . . . . . . . . . . . . . . . . . . . . . . . . 200
I.3.1 Resolution for simple transport coefficients . . . . . . . . . . . . . . . . 200
I.3.2 First order of MFT equations in the biased case . . . . . . . . . . . . . 201



Remerciements
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Résumé en français

Dans de nombreuses situations d’intérêt biologique (moteurs moléculaires, molécules en
milieu intracellulaire, bactéries...) ou issues de la physico-chimie (particules auto-propulsées,
collöıdes dans une solution de polymères...), les outils classiques d’étude de la diffusion (loi de
Fick, mouvement brownien) n’offrent pas une description adéquate du transport de la matière.
En effet, les milieux biologiques constituent généralement des environnement complexes,
encombrés et parfois géométriquement contraints (pores, membranes, capillaires...). De plus,
dans de nombreux cas, les particules ne sont pas seulement soumises à des fluctuations
thermiques, mais peuvent également convertir localement de l’énergie en travail mécanique,
comme par exemple la bactérie E. Coli qui utilise des flagelles pour se déplacer ; on parle
alors de particules actives.

Ainsi dans ce contexte, à cause des interactions diverses (avec d’autres particules, un champ
électromagnétique externe, ou dues à l’écoulement d’un solvant), de possibles contraintes
géométriques, ou encore de la présence d’activité, le comportement d’une particule marquée,
appelée un traceur, peut se révéler très différent de ce qui serait prédit par la théorie classique
du mouvement brownien. L’objet de cette thèse est l’étude des propriétés statistiques d’un
traceur (actif ou non) évoluant dans un milieu complexe. Nous chercherons également à
caractériser la réponse de l’environnement au déplacement du traceur, et réciproquement.

En première partie, un modèle microscopique, accessible à un traitement analytique, est
proposé pour modéliser le transport et la diffusion d’un traceur actif (de type ”run-and-
tumble”) en présence d’obstacles. Nous montrons ensuite que ce modèle explique l’émergence
de propriétés spécifiques résultant de l’interaction entre la particule active et son environ-
nement : dépendance complexe de la diffusivité en fonction des paramètres contrôlant l’activité
et mobilité négative. Dans une seconde partie, nous traitons le cas où des particules (non
nécessairement actives) diffusent dans une géométrie confinée unidimensionnelle, partic-
ulièrement adaptée pour modéliser par exemple les pores. Dans ce cas, les particules ne
peuvent pas se dépasser ; leurs déplacements sont fortement corrélés. Cela conduit à une
diffusion de traceur anormale. Partant du processus d’exclusion simple, nous chercherons à
caractériser ces corrélations de manière plus générale dans ces systèmes unidimensionnels.

0.1 Particule active persistante en milieu encombré

dynamique

De nombreux modèles théoriques de particules actives ont été introduits et étudiés pour
décrire la dynamique d’un grand nombre de systèmes réels, allant des objets biologiques
(moteurs moléculaires, bactéries, micro-nageurs, algues...) aux particules artificielles auto-
propulsées telles que les collöıdes actifs [1, 2]. Parmi ces modèles, les particules run-and-tumble
et les particules browniennes actives ont suscité beaucoup d’intérêt : dans les deux cas, les
particules s’autopropulsent avec une vitesse fixe, dont l’orientation change aléatoirement.
Pour les particules run-and-tumble, l’orientation change brusquement, pour les particules

9
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Figure 1: Il existe peu de résultats analytiques concernant le comportement individuel d’une
particule active dans un environnement dynamique complexe.

browniennes actives, elle varie continûment. La dynamique des particules actives isolées, ou
sans interaction, a fait l’objet de nombreuses études récentes [3–11].

0.1.1 Motivations : interaction entre une particule active et son
environnement

Au-delà des propriétés à une particule, la dynamique des particules actives lorsqu’elles
interagissent entre elles a reçu beaucoup d’attention. Il a été démontré que des effets
surprenants pouvaient se produire, tels que le mouvement collectif à grande échelle [12, 13],
ou une séparation de phases malgré l’absence d’interactions attractives [1, 14].

Un traceur dans un environnement dynamique

Ici, nous nous intéresserons à l’effet des environnements complexes. Comment le com-
portement d’une particule active marquée, appelé un traceur, est-il affecté par les interaction
entre ce traceur et son environnement complexe ? Cette question se pose par exemple dans le
transport d’objets biologiques, qui s’effectue souvent dans des conditions d’encombrement,
comme les moteurs moléculaires à l’intérieur d’une cellule [15] ou les bactéries dans des milieux
poreux [16]. Jusqu’à présent, c’est principalement le cas d’un environnement désordonné gelé
qui a été étudié, par des expériences (sur des systèmes biologiques [17–21] et synthétiques
[22]) et des approches théoriques (essentiellement numériques) [4, 23–33].

Le cas du désordre dynamique, qui a reçu beaucoup moins d’attention, est pourtant partic-
ulièrement pertinent, puisque les fluctuations thermiques affectent généralement l’environnement
aussi bien que le traceur [34]. Des situations d’intérêt biologique ont ainsi été décrites par des
modèles impliquant des traceurs dans des environnements avec obstacles mobiles [35–37]. La
diffusion d’un traceur passif dans un environnement mobile (auto-diffusion du traceur), a été
étudié sur réseau, avec la théorie de Nakazato et Kitahara [38] (voir également [39, 40]), et
également en espace continu [41].

Le cas d’un traceur actif dans un environnement dynamique (Fig. 1) n’a fait l’objet que
de quelques études théoriques de modèles sur réseau (voir cependant [42] pour une approche
”mode-coupling” récente en espace continu), qui se sont principalement concentrées sur la
limite de basse densité du problème, avec une description en temps discret, un traceur qui
ne saute jamais latéralement par rapport à la direction de propulsion, et une dynamique
spécifique [43]. Il n’existe pas de cadre analytique général qui permettrait de déterminer les
propriétés statistiques de la position d’un traceur actif dans un environnement dynamique



0.1. PARTICULE ACTIVE EN MILIEU ENCOMBRÉ 11

pour une large gamme de paramètres, et en particulier pour une densité arbitraire d’obstacles.

Des effets surprenants résultant de l’activité et l’encombrement

L’élaboration d’une telle théorie est particulièrement intéressante car elle permettrait
de mieux comprendre les caractéristiques atypiques qui peuvent être observées lorsqu’une
particule active diffuse dans un environnement encombré. Par exemple, il a été observé
expérimentalement que le coefficient de diffusion de particules actives peut dépendre de
manière non monotone des paramètres d’activité (tels que le temps moyen de réorientation),
conduisant à une diffusivité optimisée, ou à un piégeage du traceur par son environnement
[16, 18, 20, 44–46].

En outre, la prédiction de la réponse d’un traceur soumis à une force extérieure et évoluant
dans un environnement complexe est un défi central de la physique statistique [47, 48]. La
relation entre la force appliquée au traceur et sa vitesse peut présenter un certain nombre
d’anomalies frappantes, en particulier lorsque le traceur évolue très loin de l’équilibre. L’un
des comportements les plus intrigants est l’apparition d’un courant inverse, qui est opposé à
la force motrice, et qui a été mis en évidence par exemple dans le cadre très simple d’une
particule brownienne évoluant dans un potentiel modulé périodiquement [49]. Dans le contexte
spécifique du transport de particules, cet effet est connu sous le nom de mobilité négative
absolue (MNA). De nombreuses approches théoriques ont été développées pour décrire ce
phénomène : par une persistance effective du traceur [50], via des obstacles fixes anisotropes
périodiques [49, 51–53], des interactions effectives entre le traceur et le bain [54], des forces
thermodynamiques couplées [55], ou des champs de vitesse constants et périodiques [56–58]).
Le cas d’un environnement complexe formé d’obstacles mobiles n’a pas été traité, malgré
l’importance (cf. plus haut 0.1.1) de l’étude des environnements désordonnés dynamiques.

Plan. Dans un premier temps, nous développons une théorie microscopique dans le but
d’étudier le coefficient de diffusion d’une particule active en milieu encombré. Dans un second
temps, nous étendrons cette étude au cas où le traceur est également soumis à une force
extérieure, où notre résultat majeur sera de montrer que la MNA est prédite par notre modèle,
fournissant une description explicite de l’environnement.

0.1.2 Diffusion d’une particule run-and-tumble

Dans cette première partie, nous développons une théorie microscopique pour le coefficient
de diffusion d’un traceur actif dans un environnement encombré sur un réseau, à une densité
et une activité arbitraires. La dynamique du traceur et des obstacles constitue un problème
à plusieurs corps, dont les équations font classiquement intervenir une hiérarchie (de type
BBGKY). Nous recourons alors à une approximation de fermeture, permettant de calculer
le coefficient de diffusion d’un traceur actif en termes des profils de densité du bain et des
fonctions de corrélation entre le traceur et le bain. Notre résultat clé est que l’approximation
proposée, en plus d’être traitable analytiquement (impliquant néanmoins, en général, des
équations implicites), présente une grande précision dans une large gamme de paramètres
(vérifiée via des simulation numériques).

Il est important de noter qu’en plus de la détermination du coefficient de diffusion du
traceur, notre approche nous permet de calculer la perturbation de l’environnement due au
déplacement du traceur actif et les corrélations entre la position du traceur et l’occupation
des différents sites du réseau. Enfin, l’expression analytique du coefficient de diffusion devient
explicite dans les régimes de basse et de haute densité, dans lesquels notre approximation de
fermeture devient exacte (justification en section 3.3.1).
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Figure 2: Schéma du modèle : un traceur actif effectue une marche aléatoire persistante dans
un bain de particules effectuant des marches aléatoires symétriques simples. Le traceur actif
saute préférentiellement dans la direction χ (ici par exemple χ = 1). La direction χ change
aléatoirement, et les événements de réorientation sont représentés par des étoiles. Toutes les
particules interagissent par des interactions de cœur dur.

Modèle

Nous considérons un traceur actif dans un environnement encombré et dynamique (Fig. 2).
Les particules du bain (présentes en densité ρ), et le traceur évoluent sur un réseau cubique à
d ≥ 2 dimensions, de pas unitaire. Le système évolue en temps continu, ce qui est la façon
naturelle et habituelle de décrire les systèmes avec des effets de blocage de site, à la fois
en dimension un, comme dans les processus d’exclusion simple (asymétriques) [59, 60], et
en dimensions supérieures [38–40]. Les particules du bain effectuent des marches aléatoires
symétriques (avec un temps caractéristique τ ∗), et le traceur effectue une marche aléatoire
(avec un temps caractéristique τ) biaisée dans la direction d’une force active dont l’orientation,
notée χ, change de manière aléatoire. La variable χ ∈ {±1, . . . ,±d} sera appelée ”l’état”
du traceur (qui correspond donc la direction actuelle de la force active). Le traceur passe
d’un état χ à un autre état χ′ ≠ χ avec un taux α

2dτ∗
, où α est sans dimension. Le temps

de persistance est alors τα = 2dτ∗

α
. Nous désignons par p

(χ)
µ la probabilité pour le traceur

de sauter dans la direction µ ∈ {±1, . . . ,±d} lorsqu’il est dans l’état χ. Nous choisissons

p
(χ)
µ ∝ exp[FAeχ · eµ/2] avec une normalisation appropriée (où e±1, . . . , e±d sont les vecteurs

de base du réseau et nous utilisons la notation e−µ = −eµ). La force active FA est liée à la

vitesse du traceur en l’absence d’interactions (i.e. ρ = 0)1 v0 = (p
(1)
1 − p(1)−1)/τ . La dynamique

du traceur est une version sur réseau de la dynamique ”run-and-tumble”, qui est un modèle
central dans la théorie de la matière active et qui a été largement utilisé pour décrire le
transport et la diffusion des bactéries, voir par exemple [7]. Enfin, toutes les particules
évoluent sur le réseau avec la restriction qu’il ne peut y avoir qu’une seule particule par site.

L’état du système à l’instant t est décrit par Pχ(R, η; t), qui est la probabilité jointe de
trouver le traceur dans l’état χ, au site R, avec le réseau dans la configuration η = (ηr), où
ηr = 1 si le site r est occupé par une particule de bain et 0 sinon. L’équation mâıtresse à

1v0 est l’analogue de la vitesse de propulsion dans les modèles habituels en espace continu de particules
browniennes actives ou de particules ”run-and-tumble”. Ici, étant donné que la particule évolue sur un réseau,

v0 est limitée par 1/τ . Notons que, compte tenu de notre choix de p
(χ)
µ , la force active F contrôle v0 mais

aussi l’amplitude des fluctuations dans la direction perpendiculaire à F .
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laquelle obéit la probabilité jointe traceur-bain est :

2dτ ∗∂tPχ(R, η; t) = LχPχ − αPχ +
α

2d− 1

∑
χ′ ̸=χ

Pχ′ , (1)

où Lχ l’opérateur d’évolution quand la force active est dans la direction eχ (voir (2.3)),
décrivant le déplacement des particules du bain et du traceur. Les autres termes rendent
compte de la réorientation de la force active.

A t = 0, nous supposons que toutes les directions de la force active sont équiprobables, de
telle sorte que la position moyenne du traceur reste nulle, et qu’à tout moment tous les états
ont la même probabilité 1

2d
. Nous nous intéressons aux fluctuations de la position du traceur

le long d’une direction, par exemple Xt = X t · e1. En multipliant l’équation mâıtresse par
X2
t et en calculant la moyenne, on obtient une expression de la dérivée temporelle de ⟨X2

t ⟩,
où ⟨·⟩ représente la moyenne sur la position du traceur, son état et la configuration du réseau.
Le coefficient de diffusion du traceur, défini comme D ≡ limt→∞

1
2

d
dt
⟨X2

t ⟩, est donné par

D =
1

4dτ

∑
χ

∑
ϵ=±1

{
p(χ)ϵ

[
1− k(χ)ϵ

]
− 2ϵp(χ)ϵ g̃(χ)ϵ

}
+

2d− 1

2d

τ ∗

τ 2α

∑
χ

{∑
ϵ=±1

ϵp(χ)ϵ

[
1− k(χ)ϵ

]}2

.

(2)

Cette expression fait intervenir les profils de densité dans le référentiel du traceur notés
k
(χ)
r = ⟨ηXt+r⟩χ et les fonctions de corrélations traceur-bain g̃

(χ)
r = ⟨ηXt+r(Xt − ⟨Xt⟩χ)⟩χ, où

⟨·⟩χ = 2d
∑

R,η ·Pχ(R, η; t) désigne la moyenne sachant que le traceur est dans l’état χ.

Approximation de découplage

Les équations d’évolution de k
(χ)
r (t) et g̃

(χ)
r (t), obtenues en multipliant l’équation mâıtresse

[Eq. (1)] respectivement par ηXt+r et XtηXt+r, ne sont pas fermées et impliquent des fonctions
de corrélation d’ordre supérieur, dont les équations d’évolution impliquent à leur tour des
fonctions de corrélation d’ordre encore plus élevé, et ainsi de suite. Dans le but de fermer la
hiérarchie infinie d’équations qui en résulte, nous proposons l’approximation de type champ
moyen suivante :

⟨ηrηr′⟩χ ≃ k(χ)r k
(χ)
r′ , (3)

⟨δXtηrηr′⟩χ ≃ k(χ)r g̃
(χ)
r′ + k

(χ)
r′ g̃

(χ)
r , (4)

que l’on obtient en écrivant chaque variable aléatoire sous la forme x = ⟨x⟩ + δx et en
négligeant les termes d’ordre 2 et 3 en les fluctuations. On note que cela va au-delà du champ
moyen trivial, dans lequel l’occupation moyenne des sites du réseau serait supposée uniforme
et égale à ρ. Cette approximation a été appliquée avec succès pour étudier la vitesse [61] et la
diffusivité [62] d’un traceur biaisé (limite de α→ 0) et il a été démontré dans ce cas qu’elle
devenait exacte dans les régimes de basse et de haute densité [63].

De cette approximation de fermeture découlent des équations d’évolution non linéaires
portant sur les quantités h

(χ)
r ≡ k

(χ)
r − ρ (défini de telle sorte que lim|r|→∞ hr = 0) et g̃

(χ)
r (voir

équations (3.5, 3.6)). Ces équations constituent l’élément central de notre résolution : dans le

cadre de notre approximation de fermeture, elles permettent de déterminer les quantités h
(χ)
r

et g̃
(χ)
r , et donc le coefficient de diffusion du traceur par l’intermédiaire de l’Eq. (2), pour tout

choix de paramètres, et en particulier pour une densité arbitraire d’obstacles ρ.
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Figure 3: Coefficient de diffusion d’un traceur actif sur un réseau 2D (a,b), un réseau 3D (c)
et un capillaire 2D de largeur L = 3 (d), en fonction de la densité ρ, pour plusieurs valeurs de
la force active FA et du temps de persistance τα. Symboles : Simulations Monte Carlo (voir
appendice A.3 pour plus de détails sur les simulations numériques). Lignes continues : approche
analytique [equation (2) et section 0.1.2]. Lignes pointillées : développement asymptotique
dans le régime de basse densité. Lignes en tirets : cas d’un traceur passif [38].

Résolution analytique

La résolution analytique des équations issues du découplage repose sur l’invariance par
translation du système, qui nous permet d’utiliser la transformée de Fourier pour inverser
l’opérateur différentiel discret intervenant dans les équations (section 3.2).

Nous résolvons d’abord le cas d’un réseau infini en 2D. Nous calculons les valeurs de h
(χ)
µ

et g̃
(χ)
µ dans l’état stationnaire. On en déduit la valeur du coefficient de diffusion en utilisant

l’Eq. (2). Nous étudions la dépendance de D en la densité de particules sur le réseau ρ,
pour différentes valeurs de τ , τ ∗, τα et FA. La Fig. 3 montre un très bon accord entre les
simulations Monte Carlo et notre approximation de découplage. Comme dans la théorie pour
un traceur passif [38], la précision de notre approximation de découplage s’améliore lorsque
l’environnement est plus mobile (typiquement τ ∗/τ ≲ 10) ou lorsque la dimension du réseau
est plus élevée. Dans le cas où il n’y a pas de propulsion (FA = 0), notre approximation
correspond au résultat de Nakazato et Kitahara [38], qui fournit une expression explicite du
coefficient de diffusion en fonction de la densité. Notre étude peut donc être considéré comme
une généralisation de ce résultat classique sur la diffusion de traceurs dans les gaz sur réseau
au cas d’une particule active. Notons également que dans la limite α→ 0, nous retrouvons
les résultats obtenus précédemment pour la vitesse et le coefficient de diffusion d’un traceur
passif [62].

Ce calcul peut facilement être étendu à d’autres géométries sur réseau, à condition qu’elles
restent invariantes par translation. En particulier, nous considérons le cas d’un réseau 2D en
forme de bande (infini dans une direction et fini de largeur L avec des conditions aux limites
périodiques dans l’autre direction ; une géométrie qui peut modéliser des canaux étroits ou
des systèmes confinés), et celui d’un réseau 3D infini (Fig. 3).

Enfin, nous soulignons que notre approche permet d’aller au-delà de la détermination du
seul coefficient de diffusion du traceur, et donne accès à la dépendance spatiale complète des
profils de densité h

(χ)
r et des fonctions de corrélation g̃

(χ)
r . Ces quantités décrivent l’interaction

entre le déplacement du traceur actif et la réponse de son environnement – un aspect non
couvert par les descriptions précédentes [64]. En particulier, nous observons et quantifions
une accumulation de particules du bain devant le traceur.

Non monotonie en fonction des paramètres contrôlant l’activité

Nous étudions maintenant la dépendance du coefficient de diffusion en le temps de
persistance τα. Les limites asymptotiques τα → 0 et τα → ∞ sont connues : lorsque le



0.1. PARTICULE ACTIVE EN MILIEU ENCOMBRÉ 15
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Figure 4: (a) Profils de densité (sachant que le traceur est dans l’état χ = 1) et (b) fonctions
de corrélation traceur-bain (moyennées sur tous les états) en fonction de la distance au traceur,
sur un réseau 2D. Symboles : simulations Monte Carlo. Lignes : approche analytique 0.1.2.
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Figure 5: Non-monotonie de D en fonction du temps de persistance τα, aux densité ρ = 0, 1
(gauche) et ρ = 0, 99 (milieu). Symboles : simulations de Monte-Carlo. Lignes continues : ap-
proche analytique 0.1.2. Diagramme de phase (droite) : au-dessus des courbes, D est une
fonction non-monotone de τα. Lignes continues : approche analytique 0.1.2. Symboles : Simu-
lations Monte Carlo ; un cercle rempli signifie que la non-monotonie est observée en ce point,
un cercle vide signifie qu’elle ne l’est pas. Lignes pointillées : argument qualitatif 0.1.3.

temps de persistance devient très petit, le coefficient de diffusion est fini et égal à celui d’un
traceur passif [38], tandis que dans la limite d’un traceur infiniment persistant, le coefficient
de diffusion diverge (sauf dans la limite spécifique d’obstacles fixes τ ∗ =∞). Notre analyse
révèle que le coefficient de diffusion peut présenter un comportement non monotone entre ces
deux limites, comme observé précédemment dans la limite de basse densité et de force active
infinie (FA =∞) [43]. Ici, nous allons plus loin, notre modèle nous permettant de considérer
une force active FA et une densité ρ arbitraires. Pour une valeur donnée de ρ et τ ∗/τ , la
non-monotonie du coefficient de diffusion persiste tant que la force active est suffisamment
grande, comme le montre la Fig. 5. Cet effet résulte de la compétition entre les différentes
échelles de temps régissant la diffusion du traceur et peut être analysé à l’aide d’arguments
analytiques simples (voir plus bas 0.1.3).

Conclusion

En conclusion, notre approche s’appuie sur un modèle sur réseau, étudié à l’aide d’une
approximation de découplage, qui se révèle très performante à toute densité (Fig. 3). Cela
nous permet de mettre en lumière la dépendance complexe du coefficient de diffusion d’un
traceur actif en fonction des différents paramètres d’activité et d’encombrement.

Enfin, nos résultats pourraient permettre d’étudier et d’éclairer de récentes observations
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Figure 6: (a) Schéma du système étudié : le tracer (en vert) actif est soumis également à
une force externe. (b) Courbe force-vitesse typique d’un traceur passif avec et sans mobilité
différentielle négative (en violet et orange, respectivement).

expérimentales d’organismes vivants [16] ou de particules auto-propulsée [65] en milieu
encombré. En effet, notre modèle constitue un modèle minimal, possédant les mêmes
caractéristiques qualitatives que ces systèmes (”run-and-tumble”, obstacles).

0.1.3 Réponse à un champ extérieur et mobilité négative

Dans cette section, nous étendons notre modèle au cas où le traceur est soumis à une
force extérieure FE constante en plus de la force active FA (dont la direction χ varie au cours
du temps). Nous obtenons des résultats dans une large gamme de paramètres. Le résultat
principal de cette section est la mise en évidence, dans notre modèle, d’un effet surprenant,
impossible dans le régime de la réponse linéaire : la mobilité négative absolue (MNA), c’est à
dire une vitesse du traceur opposée à la direction de la force externe.

Nous présentons également un argument qualitatif valable à basse densité, qui explique
le mécanisme physique à l’origine de la MNA en termes d’échelles de temps caractéristiques
pertinentes : la MNA émerge d’un phénomène de piégeage du traceur par les obstacles passifs.
Enfin, notre approche clarifie la relation entre la MNA et la mobilité différentielle négative
(une autre caractéristique des systèmes maintenus loin de la réponse linéaire).

Afin de tenir compte de l’effet de la force extérieure, nous modifions la définition des
taux de saut du traceur en posant p

(χ)
µ = exp[(FAeχ+FEe1)·eµ/2]

Z
(voir 0.1.2 pour la définition

du modèle et Fig. 6(a) pour une représentation). En conséquence, pour FE ̸= 0, la vitesse
atteinte par le traceur (le long de la direction 1) dans l’état stationnaire est non nulle. Elle

sera notée V ≡ limt→∞
d⟨Xt⟩
dt

.

Argument simple pour la MNA

Nous présentons tout d’abord un argument expliquant l’émergence de la MNA comme
découlant de la mobilité différentielle négative (MDN). Cette dernière désigne la situation
où un traceur passif (cela correspond, dans notre modèle, à FA = 0 et/ou τα = 0) soumis à
une force extérieure constante FE peut présenter une vitesse qui décrôıt avec l’intensité de la
force, tout en restant positive [61, 63, 66–72].

A titre d’illustration, nous considérons la situation simple où le traceur est soumis à
une force active FA qui ne peut pointer que dans les directions ±e1. Dans la limite où le
temps de persistance τα est supérieur aux autres échelles de temps, la vitesse moyenne du
traceur peut être estimée comme la moyenne des vitesses conditionnées à ces deux états
V ≃ 1

2
[V0(FE +FA)+V0(FE−FA)], où V0(F ) est la vitesse stationnaire d’une particule passive

soumise à une force externe F . Comme illustré sur la Fig. 6(b), V peut être négative pour un
FE positif dès lors que la V0(F ) est non monotone (MDN).
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Figure 7: (a) Vitesse stationnaire du traceur le long de la direction de la force externe FE
sur un réseau 2D. Lignes continues : approximation de découplage [Eq. (5) et section 0.1.2]
; symboles : simulations Monte Carlo ; ligne pointillée : argument qualitatif dans la limite
de persistance infinie (Eq. (7) pour τα =∞). (b) Profils de densité (par rapport à la valeur
de référence ρ) le long de la direction de FE dans le référentiel du traceur, en fonction de la
distance au traceur r. Dans les deux graphiques, ρ = 0, 1, τ ∗ = 30, τ = 1, FA = 12.

Calcul de la vitess du traceur

A partir de l’équation mâıtresse (1), nous pouvons exprimer la vitesse du traceur en

fonction des profils conditionnels de densité k
(χ)
r = ⟨ηXt+r⟩χ :

d ⟨Xt⟩
dt

=
1

2dτ

∑
χ

{
p
(χ)
1

[
1− k(χ)e1

]
− p(χ)−1

[
1− k(χ)e−1

]}
. (5)

A l’aide de la méthode de résolution présentée en section 0.1.2, nous calculons cette vitesse
pour différents choix de paramètres. Nous observons que, pour un temps de persistance
suffisamment grand τα, lorsque la force active est suffisamment grande et que les particules
du bain sont suffisamment lentes par rapport au traceur (τ ∗ ≫ τ), la vitesse peut devenir
une fonction négative de la force externe (Fig. 7(a)), ce qui est la signature de la MNA. Nous
comparons la valeur de la vitesse prédite par notre théorie analytique avec les résultats des
simulations Monte Carlo de la dynamique microscopique, et observons un très bon accord, ce
qui confirme la pertinence de notre approximation de découplage pour étudier la dynamique
d’un traceur actif en présence d’une force externe.

Enfin, nous explorons plus en détail le domaine d’existence de la MNA à l’aide d’un
diagramme de phase (Fig. 8). Nous en déduisons que la MNA peut se produire pour un
nombre de Péclet Pe ∼

√
τατ−1 supérieur à 3 environ (plus ce nombre est grand, plus l’effet

de la propulsion active est grand devant l’effet des fluctuations thermiques). Cette condition
est atteinte par de nombreux systèmes expérimentaux [1].

En outre, notre cadre analytique, qui rend pleinement compte des détails microscopiques
de l’environnement du traceur, nous permet de quantifier la perturbation induite par son
déplacement. En effet, comme sous-produit de notre calcul 0.1.2, nous obtenons les profils
de densité dans le référentiel traceur. Leur dépendance spatiale typique est représentée sur
la Fig. 7(b). On observe que la MNA a une signature sur la réponse de l’environnement :
un petit excès de densité peut se développer derrière le traceur (r < 0) lorsque sa vitesse
moyenne devient négative.
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Figure 8: Diagramme de phase pour la MNA. Au-dessus des lignes, la théorie prévoit une
mobilité négative absolue. Lignes continues : approximation de découplage [Eq. (5) et
section 0.1.2]. Lignes pointillées : argument qualitatif de basse densité [Eq. (7)]. Symboles :
Simulations Monte Carlo ; un cercle rempli signifie que la MNA est observée, un cercle vide
signifie qu’elle ne l’est pas.

Argument qualitatif

Nous donnons enfin une interprétation physique du phénomène, qui éclaire qualitativement
le mécanisme à l’origine de la MNA et de la non monotonie du coefficient de diffusion en
l’absence de force externe (section 0.1.2). A basse densité de particules de bain, on peut
supposer que ces dernières diffusent de manière indépendante. Pour une orientation donnée
de la force active χ, le temps moyen entre deux sauts du traceur est τ + ρτ

(χ)
p , où τ

(χ)
p est

le temps moyen que le traceur passe bloqué derrière une particule du bain. Nous pouvons
évaluer ce temps typique en considérant que, lorsque le traceur se trouve sur un site donné
R et qu’il est bloqué par un obstacle situé sur le site R + e1, le traceur peut avancer si l’un
de ces trois événements indépendants, qui suivent des lois exponentielles, se produit : (i)
l’obstacle se déplace dans une direction transversale avec un temps caractéristique 2dτ∗

(2d−2)
; (ii)

la force active change de direction avec un temps caractéristique τα ; (iii) le traceur se déplace

dans une direction transversale avec un temps caractéristique τ/(1− p(χ)1 − p(χ)−1 ). Le temps
moyen passé piégé par un obstacle suit donc une loi exponentielle de temps caractéristique
τ
(χ)
p donné par

1

τ
(χ)
p

=
(2d− 2)

2dτ ∗
+

1

τα
+

(1− p(χ)1 − p(χ)−1 )

τ
. (6)

La vitesse du traceur est ensuite estimée comme une moyenne sur les directions de la force
active χ :

V ≃ 1

2d

∑
χ

p
(χ)
1 − p(χ)−1

τ + ρτ
(χ)
p

, (7)

et la condition d’existence d’une mobilité négative absolue est donnée par dV
dFE

∣∣∣
FE=0

< 0. Ces

considérations physiques montrent comment, dans la limite de basse densité, les différentes
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échelles de temps du problème s’associent et conduisent, dans certains régimes, à un piégeage
du traceur par les particules du bain pouvant amener à une MNA.

Conclusion

Nous avons montré que la MNA peut être observée dans un modèle minimal d’une particule
active soumise à une force externe constante, en conséquence des interactions avec les autres
particules de son environnement. La description explicite de l’environnement et du traceur
dans notre modèle constitue une nouveauté par rapport aux approches théoriques précédentes
utilisée pour décrire ce phénomène.

Dans cette première partie, les profils de densité et de corrélation k
(χ)
r et g̃

(χ)
r se sont révélés

être des quantités importantes puisqu’ils caractérisent les propriétés de transport du traceur.
Dans la partie suivante, nous verrons que leur généralisation, les profils généralisés, jouent un
rôle encore plus important, car ils se révéleront être des objets centraux pour caractériser le
transport en une dimension.

0.2 Corrélations dans les systèmes diffusifs unidimen-

sionnels

Dans la partie précédente, nous avons étudié le comportement d’une particule marquée
dans un environnement encombré en dimension d ≥ 2. Nous avons pu proposer une fermeture
approximative (mais très précise) que nous avons utilisée pour analyser les propriétés de
transport du traceur. Comme notre approximation repose sur des hypothèses de type champ
moyen, il s’avère qu’elle est moins performante pour décrire le transport unidimensionnel,
aussi appelé transport en ligne ou en file, car ce dernier présente de fortes corrélations.

0.2.1 Motivation et approche de notre étude

Une théorie valable pour le cas unidimensionnel serait néanmoins d’une grande valeur
car cette géométrie intervient dans de nombreux contextes biologiques. En effet, différents
processus reposent sur le transfert d’eau et d’ions à travers les nano-pores des protéines
transmembranaires [73, 74]. En outre, la structure en file unique est celle naturellement
adoptée par les fluides confinés dans des canaux étroits [75], comme cela a été démontré
numériquement [76, 77], et plus récemment expérimentalement [78].

La singularité de la dimension 1

Le transport en file (Fig. 9) correspond à des particules qui diffusent dans des canaux
étroits avec la contrainte qu’elles ne peuvent pas se contourner les unes les autres. Le
fait que l’ordre initial soit maintenu à tout moment conduit au comportement sous-diffusif
⟨X2

t ⟩ ∝
√
t pour la position Xt d’un traceur [79], en contraste avec la diffusion normale

⟨X2
t ⟩ ∝ t. Cette prédiction, qui confère à la diffusion en file un grand intérêt théorique, a

été observée expérimentalement dans les zéolithes et dans des systèmes de collöıdes dans des
canaux étroits [80–82].

Dans cette thèse nous considérons le cas où les particules diffusent sur une ligne infinie (le
cas fini a également fait l’objet d’un grand nombre de travaux [83–89]). Nous considérerons
tout d’abord le cas d’un traceur identique aux autres particules, puis au cas d’un traceur
biaisé (traceur soumis à une force extérieure constante, mais pas les autres particules). Cette
dernière situation se rencontre par exemple en microrhéologie active [90, 91] et constitue un
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modèle unidimensionnel minimal pour le transport hors d’équilibre dans des environnements
confinés et encombrés [63, 67, 89, 92–95].

Figure 9: Particules confinées dans un canal plus étroit que le double de la taille des particules.

Le SEP : un modèle paradigmatique de diffusion en file

Le processus d’exclusion symétrique (SEP) est un modèle fondamental de diffusion en file.
Les particules, présentes à une densité ρ, effectuent des marches aléatoires symétriques en
temps continu sur un réseau infini unidimensionnel avec un taux de saut unitaire, et avec
la contrainte qu’il y a au plus une particule par site (Fig. 10). Le SEP a atteint le statut
de modèle paradigmatique de la physique statistique et a généré un nombre considérable de
travaux dans la littérature mathématique et physique (voir, par exemple, Refs. [96–99]), c’est
pourquoi il prendra une place centrale dans notre étude. Le calcul de la fonction de grande
déviation de la position Xt d’un traceur dans la limite de temps long a constitué une avancée
majeure récente [100, 101]. Elle donne accès à tous les cumulants au temps long de Xt, dont
on constate en particulier qu’ils ont un comportement anormal en

√
t [100, 102]. De même,

il a été montré que les cumulants du courant intégré dans le temps à travers l’origine, Qt,
croissent également comme

√
t, et sa fonction de grandes déviations a été déterminée [99].

Cet ensemble de comportements anormaux dans le SEP et les systèmes en ligne en général,
trouve son origine dans les fortes corrélations spatiales dans la géométrie unidimensionnelle,
ce qui en fait des quantités déterminantes. Même si cela est compris qualitativement depuis
longtemps, jusqu’à présent ces corrélations bain-traceur n’ont été déterminées quantitativement
que dans des cas particuliers, tels que les limites de haute et de basse densité du SEP [103].
En effet, le calcul de ces corrélations constitue en fait un problème ouvert, à plusieurs corps.

Plan. Dans un premier temps, nous centrons notre étude sur le SEP à densité arbitraire.
Notre résultat majeur est la détermination complète des corrélations bain-traceur à l’aide
d’une équation fermée exacte d’une simplicité remarquable. Ensuite, nous montrerons que ce
résultat s’applique à de nombreux autres systèmes au-delà du SEP, grâce à des correspondances
générales dont nous développons la théorie complète dans une description hydrodynamique.
Ainsi, les corrélations bain-traceur apparâıtraient comme des quantités fondamentales et
générales pour analyser la diffusion en file. Enfin, nous présenterons, dans le cas du SEP, les
premiers résultats que nous avons obtenus dans le cas où l’on considère un traceur biaisé.
Un résultat central est l’obtention, de manière analytique, de la première correction de la
variance du traceur au delà de la réponse linéaire, à densité arbitraire.

0.2.2 Fermeture exacte pour les corrélations dans le SEP

Dans le cas du SEP, nous montrons que nous pouvons caractériser, de manière exacte, les
corrélations entre le traceur et son environnement à l’aide d’une équation fermée vérifiée par
des quantités appelées profils de densité généralisés, que nous définissons ci-dessous. Nous
soulignons ensuite le rôle central de cette équation en montrant qu’elle s’applique également à
des situations hors d’équilibre, ainsi qu’à l’étude d’autres observables, telles que le courant
intégré à travers l’origine.
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Figure 10: Le processus d’exclusion simple (SEP). Le traceur est situé à la position Xt. Les
nombres d’occupation des sites sont notés ηr.

Profils de densité généralisés

Nous considérons le SEP, à densité moyenne ρ (chaque site est initialement occupé par
une particule avec probabilité ρ), avec un traceur, de position Xt au temps t, initialement à
l’origine. Les particules du bain sont décrites par l’ensemble des nombres d’occupation ηr(t)
de chaque site r ∈ Z au temps t, avec ηr(t) = 1 si le site est occupé et ηr(t) = 0 sinon (voir
Fig. 10). Le système est entièrement déterminé par sa configuration (X, η). La distribution
statistique de la position du traceur est décrite par la fonction génératrice des cumulants,
dont le développement définit les cumulants κn de la position :

ψ(λ, t) ≡ ln
〈
eλXt

〉
≡

∞∑
n=1

λn

n!
κn(t). (8)

Son équation d’évolution est donnée par :

dψ

dt
=

1

2

[
(eλ − 1)(1− w1) + (e−λ − 1)(1− w−1)

]
, (9)

où la fonction génératrice des profils de densité généralisés (PDG) est définie par

wr(λ, t) ≡ ⟨ηXt+re
λXt⟩/⟨eλXt⟩. (10)

Notons qu’en plus de contrôler l’évolution temporelle de la fonction génératrice des cumulants,
wr (avec ψ) caractérise complètement la fonction génératrice des cumulants joints de (ηXt+r, Xt)
et donc les corrélations bain-traceur [103]. La fonction génératrice des PDG est donc une
quantité clé, et l’étape suivante consisterait à écrire son équation d’évolution à partir de
l’équation mâıtresse décrivant le système. Cependant, de manière semblable à l’Eq. (9),
elle implique des fonctions de corrélations d’ordre supérieur. Tout comme dans la première
partie (0.1), ou dans les systèmes à plusieurs corps en général [85, 100, 104], ces fonctions de
corrélations vérifient une hiérarchie infinie d’équations. Parvenant à fermer cette hiérarchie,
nous donnons ci-dessous une équation fermée qui permet de déterminer la fonction génératrice
des PDG dans la limite hydrodynamique (grand temps, grande distance).

Dans cette limite, la position du traceur satisfait un principe de grande déviation [100, 101,
105], ce qui implique que la fonction génératrice des cumulants se comporte comme ψ ∼ ψ̂

√
2t.

Ce comportement anormal provient de la forme plus générale

wr(λ, t) ∼
t→∞

Φ

(
λ, v =

r√
2t

)
≡

∞∑
n=0

λn

n!
Φn(v) (11)

de la fonction génératrice des PDG, où le coefficient Φn donne la limite hydrodynamique du
cumulant joint ⟨ηXt+rX

n
t ⟩c de la position Xt du traceur et du nombre d’occupation ηXt+r

mesuré dans son référentiel. Dans ce qui suit, nous ne noterons pas l’argument λ de Φ pour
alléger les notations.
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Fermeture exacte

Nous résumons ici les résultats obtenus en chapitres 7 et 8. Les deux fonctions (dérivées
normalisées des profils)

Ω±(v) ≡ ∓2ψ̂
Φ′(v)

Φ′(0±)
définis pour v ≷ 0 (12)

sont entièrement déterminées par les équations intégrales fermées de type Wiener-Hopf [106]
avec un noyau gaussien :

Ω±(v) = ∓ω e−(v+ξ)2+ξ2 − ω
∫

R∓
Ω±(z)e−(v−z+ξ)2+ξ2dz , (13)

où ξ ≡ dψ̂
dλ

et nous avons considéré la continuation analytique de Ω+ pour v < 0 et de Ω−
pour v > 0. Le paramètre ω est déterminé par les conditions aux limites (voir Eq.(12))

Ω+(0) = −Ω−(0) = −2ψ̂, (14)

de sorte que les fonctions Ω±(v) sont paramétrées par ψ̂. A ce stade, l’expression de ψ̂(λ) n’a
pas encore été déterminée explicitement, mais elle peut être obtenue de la manière suivante.
Tout d’abord, Φ est déduit par intégration de Ω±, avec

Φ(±∞) = ρ, (15)

par définition [Eq. (11)] (puisque w|r| →
r→∞

ρ), et les conditions aux limites suivantes, qui

découlent de considérations microscopiques :

Φ′(0±)± 2
ψ̂

e±λ − 1
Φ(0±) = 0. (16)

Le Φ obtenu est à ce stade paramétré par ψ̂ et λ. Ensuite, en utilisant la limite de temps
long de l’Eq.(9),

1− Φ(0−)

1− Φ(0+)
= eλ, (17)

ψ̂ peut être écrit comme une fonction de λ, et nous obtenons finalement la fonction génératrice
des PDG recherchée Φ(λ, v).

Les équations de Wiener-Hopf (13) peuvent être résolues explicitement en termes de
transformées de Fourier [106] :∫

R±
Ω±(v)eikvdv = ± (1− exp[−Z±]) , (18)

où

Z± ≡
1

2

∑
n≥1

(−ω√π e−
1
4
(k+2iξ)2)n

n
erfc

(
±√n

(
ξ − ik

2

))
. (19)

Notre approche permet d’obtenir la fonction génératrice de cumulants ψ̂ (ou, de manière
équivalente, la fonction de grandes déviations de la position du traceur),

ψ̂ = − 1

2
√
π

Li 3
2
(−√πω), Liν(x) ≡

∑
n≥1

xn

nν
, (20)

dont on montre (chapitre 8) qu’elle est identique à l’expression exacte obtenue dans [100, 101]
en utilisant l’arsenal des probabilités intégrables. En outre, nous obtenons une caractérisation
complète des corrélations spatiales bain-traceur via les expressions analytiques des Φn en
utilisant la procédure décrite ci-dessus (voir la Fig. 11 pour la comparaison avec les simulations
numériques).
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Figure 11: SEP. Profils de densité généralisés (PDG) d’ordre (a) n = 1 à la densité ρ = 0.5,
(b) n = 2 aux densités ρ = 0.25, 0.5 et 0.75, et (c) n = 3 à la densité ρ = 0.5. Les lignes
continues correspondent à des simulations du SEP (voir l’annexe A), temps final t = 3000, sur
un réseau de 5000 sites. La moyenne est effectuée sur 108 réalisations. Les lignes en pointillés
correspondent aux prédictions théoriques (18).

Figure 12: Extensions: (a) La situation, hors d’équilibre, d’une marche de densité initiale.
(b) Autre observable, le courant passant par l’origine. Les lignes en pointillés correspondent
aux prédictions obtenues à partir de l’équation centrale (8.47). (a) PDG à l’ordre n = 1 et
n = 2 pour le SEP avec une marche de densité initiale ρ− = 0.7 et ρ+ = 0.2. Simulations à
t = 1500 avec 2000 sites. (b) PDG pour le courrant ⟨ηrQn

t ⟩c dans le SEP pour une densité
ρ = 0.5, simulations à t = 900, pour les ordres n = 1 et n = 3 (le profil pour n = 2 est nul).

Extension à d’autres situations

Il est important de noter que l’Eq. (13) décrit plusieurs autres situations d’importance
physique dans le SEP. D’une part, elle s’applique à la situation hors équilibre d’une marche
initiale de densité ρ+ pour x > 0 et ρ− pour x < 0, avec le traceur initialement à l’origine.
Cette configuration a suscité beaucoup d’intérêt [99–101, 107, 108] car elle reste transitoire
à tout moment et n’atteint jamais un état stationnaire. La fonction génératrice des PDG
Φ est alors obtenue à partir de la solution (18) en suivant la procédure décrite ci-dessus, en
changeant seulement la condition limite (15) en Φ(±∞) = ρ±. Nous retrouvons les résultats
de [100, 101] sur la fonction génératrice du cumulant ψ̂. En outre, nous obtenons la structure
spatiale complète des corrélations bain-traceur (voir Fig. 12(a)).

D’autre part, et de manière frappante, l’Eq. (13) donne également accès aux propriétés
statistiques d’autres observables, comme par exemple le courant intégré à travers l’origine
Qt (voir chapitre 8 pour l’application au courant généralisé, qui est une observable plus
générale), défini comme le flux total de particules entre les sites 0 et 1 pendant un temps t.
Cette quantité a fait l’objet de nombreuses études, à la fois dans le contexte de la physique
statistique [99, 104, 107, 109] et du transport mésoscopique [110, 111], en particulier dans la
situation hors d’équilibre ρ− ̸= ρ+ [99, 107]. Les quantités introduites précédemment (8)-(10)
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sur l’exemple de la position du traceur sont naturellement adaptées en substituant Qt à Xt.
Les profils correspondants ΦQ sont alors obtenus comme un cas particulier de l’Eq. (13) en
fixant ξ = 0, complété par des conditions aux limites modifiées (16,17) obtenues par des
considérations microscopiques (voir chapitre 7). En particulier, l’équation résultante (20)
redonne la fonction génératrice des cumulants exacte de Qt obtenue dans [99] par l’ansatz de
Bethe, puisque dans ce cas, nous trouvons que

ωQ
√
π = ρ−(1− ρ+)(eλ − 1) + ρ+(1− ρ−)(e−λ − 1), (21)

qui cöıncide avec le paramètre réduit impliqué dans [99, 107]. En outre, le ΦQ déterminé ici
fournit la structure spatiale associée (voir Fig. 12(b)). Ces profils ont été introduits et étudiés
numériquement dans [112] pour un système infini (voir aussi [85] pour un système fini entre
deux réservoirs), mais aucune expression analytique n’était disponible jusqu’à présent.

Conclusion

En bref, nous avons déterminé analytiquement les corrélations spatiales dans le SEP, ce
qui nous a permis de quantifier pleinement la réponse du bain à la perturbation induite par
un traceur. En plus d’être de leur intérêt physique, ces corrélations se sont révélées être des
quantités techniques fondamentales, car elles satisfont une équation fermée étonnamment
simple. Cette même équation s’applique à une variété de situations dans le SEP. Dans la
section suivante, nous avançons l’idée que cette équation peut en fait constituer un outil
nouveau et prometteur pour aborder les systèmes de particules en interaction en général,
puisqu’on verra qu’elle s’applique en fait à un grand nombre de systèmes.

0.2.3 Extension à des systèmes diffusifs unidimensionnels plus
généraux

Au-delà du processus d’exclusion simple (SEP), divers modèles microscopiques de systèmes
unidimensionnels ont été étudiés (voir Fig. 13 pour des exemples). Le résultat majeur de
cette section est l’analyse et la caractérisation des relations qui peuvent exister, au niveau
hydrodynamique, entre ces différents modèles, résumées dans le tableau 1.

Par exemple, il est connu que le SEP est lié à un autre modèle de particules sur réseau : le
processus de portée nulle (ZRP, en anglais ”Zero Range Process”, voir les revues [117,
118]). Cette relation s’obtient en considérant la dynamique de l’écart de position entre deux
particules consécutives dans le SEP. Elle a été utilisée explicitement dans plusieurs travaux,
par exemple [119–122].

Nous montrons ici que, dans la limite hydrodynamique, tout système diffusif (i.e. satis-
faisant une loi de Fourier) unidimensionnel peut être mis en correspondance avec d’autres
systèmes reliés, que nous caractérisons. Ces relations de dualité générales nous permettent par
la suite d’obtenir de nouveaux résultats pour différents modèles, en exploitant les solutions
disponibles pour leur dual.

Hydrodynamique fluctuante et théorie macroscopique des fluctuations (MFT)

Nous nous plaçons dans le formalisme de l’hydrodynamique fluctuante [104, 123, 124],
qui offre une description unifiée des systèmes diffusifs (voir chapitre 6). Dans ce cadre, en
dimension un, les systèmes sont décrits par une densité macroscopique ρ qui satisfait une
relation de continuité

∂tρ(x, t) + ∂xj(x, t) = 0 , (22)
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Figure 13: Les différents modèles de systèmes en ligne considérés ici. (a) le processus
d’exclusion simple (SEP). (b) le processus de portée nulle (ZRP) [86, 107], où les particules
peuvent sauter sur un site voisin avec un taux qui ne dépend que du nombre de particules sur
leur site actuelle (d’où le nom de portée zéro, l’interaction se fait entre particules de même
site uniquement). (c) le processus de moyenne aléatoire (RAP) [113, 114]. Les particules, sur
une ligne continue, peuvent sauter à une fraction aléatoire de la distance qui les sépare de la
particule suivante. (d) le modèle de Kipnis Marchioro Presutti (KMP) [115]. Chaque site
héberge une variable continue (une masse). A des moments aléatoires, la masse totale de deux
sites voisins est redistribuée aléatoirement entre eux. (e) le processus de double exclusion [116].
Une particule peut sauter sur un site voisin si le site de destination et le suivant sont vides.
C’est un processus d’exclusion avec des particules qui occupent le volume de deux sites (zone
assombrie sur le schéma). (f) [82] le gaz de bâtonnets durs. Des particules de longueur ℓ
(bâtonnets) effectuent un mouvement brownien, avec la condition que les bâtonnets ne se
chevauchent pas.

où j(x, t) est le courant à la position x au temps t. Le comportement stochastique du modèle
microscopique sous-jacent peut être pris en compte dans la description macroscopique en
supposant que le courant j est aléatoire et prend la forme [123]

j(x, t) = −D(ρ)∂xρ(x, t) +
√
σ(ρ) η(x, t) , (23)

où η est un bruit blanc gaussien en espace et en temps avec une variance unitaire.
La force de cette approche, appelée hydrodynamique fluctuante, est que tous les détails

microscopiques du modèle (déplacement, interaction, ...) sont encodés dans deux coefficients
de transport : le coefficient de diffusion D(ρ) et la mobilité σ(ρ).

En pratique, ces deux coefficients peuvent être difficiles à calculer analytiquement [125].
Néanmoins, ils ont été obtenus pour différents modèles microscopiques (voir par exemple le
tableau 6.1), notamment le SEP, où D(ρ) = D0 et σ(ρ) = 2D0ρ(1− ρ), où D0 est le taux de
saut d’une particule (dans le cas de la Fig. 10, D0 = 1/2). D’après la théorie macroscopique
des fluctuations (MFT) [104, 124], tout système unidimensionnel diffusif (satisfaisant une loi
de Fourier) peut être décrit, dans la limite hydrodynamique (temps long, grandes distances),
par ses deux coefficients de transport.

Relations entres systèmes à l’échelle hydrodynamique

En nous appuyant sur la description hydrodynamique, nous mettons en lumière une
relation de dualité, ainsi que 3 autres transformations, agissant sur les champs ρ et j (solutions
de (22) et (23)), qui, combinées ensemble, génèrent toutes les correspondances possibles entre
les systèmes diffusifs unidimensionnels (ce point est montré en annexe H.1).
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Pour chacune des transformations données ci-dessous, les nouveaux champs (ρ̃, j̃) vérifient
les équations de l’hydrodynamique fluctuante (22, 23) avec de nouveaux coefficients de
transport D̃, σ̃, qui s’exprime en fonction des coefficients originaux D, σ de ρ et j. Les
expressions sont résumées dans le tableau 1.

• Relation de dualité (Du). Cette relation est directement inspirée de la correspondance
SEP-ZRP [117, 118]. Partant du champ de densité macroscopique ρ(x, t), nous pouvons
définir des ”positions de particules” xk(t) (où k est un réel) en s’appuyant sur la
conservation du nombre de particule à droite d’une particule donnée [102] :∫ xk(t)

0

ρ(x, t)dx− k =

∫ ∞

0

(ρ(x, t)− ρ(x, 0))dx . (24)

On définit alors le champs de densité ρ̃(k, t), qui exprime la ”distance moyenne entre la
particule k et ses voisines”, comme simplement l’inverse de la densité :

ρ̃(k, t) =
1

ρ(xk(t), t)
, j̃(k, t) = − j(xk(t), t)

ρ(xk(t), t)
, (25)

où j̃ est le ”courant d’écart entre particules” associé.

• Translation de la densité (T). Cette transformation consiste à décaler la densité
d’une constante c. Nous définissons les nouveaux champs de densité et de courant :

ρ̃(x, t) = ρ(x, t) + c , j̃(x, t) = j(x, t) . (26)

• Dilatation des champs (Di). Cette transformation multiplie les deux champs par
une constante c. Nous définissons

ρ̃(x, t) = c ρ(x, t) , j̃(x, t) = c j(x, t) . (27)

• Changement d’échelle du temps (Rt). La dernière transformation correspond à la
multiplication de l’échelle de temps par une constante τ . Nous introduisons

ρ̃(x, t) = ρ(x, τt) , j̃(x, t) = τ j(x, τt) . (28)

A partir de la densité hydrodynamique ρ(x, t), on peut obtenir les observables de courant
intégré et de position de traceur qui font l’objet de notre étude.

• Le courant intégré à travers un point x, Qt(x), qui compte le nombre total de particules
qui ont traversé x de gauche à droite (moins le nombre de particules de droite à gauche,
et moins le nombre de particules initialement entre 0 et x) jusqu’au temps t,

Qt(x) =

∫ t

0

j(x, t′)dt′ −
∫ x

0

ρ(x′, 0)dx′ =

∫ ∞

x

(ρ(x′, t)− ρ(x′, 0))dx′ −
∫ x

0

ρ(x′, 0)dx′ .

(29)

• La position xk(t) de la k-ième particule (un traceur) (24). Par convention, la 0-ième
particule a été initialement placée à l’origine x0(0) = 0.∫ xk(t)

0

ρ(x, t)dx− k =

∫ ∞

0

(ρ(x, t)− ρ(x, 0))dx . (30)

Les transformations introduites ci-dessus agissent sur ces observables de la manière indiquée
dans le tableau 1, qui constitue le résultat clé de cette section.
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Original Dualité (Du) Dilatation (Di) Translation (T) Temps (Rt)

D(ρ) D̃(ρ) =
1

ρ2
D

(
1

ρ

)
D̃(ρ) = D(ρ/c) D̃(ρ) = D(ρ− c) D̃(ρ) = τ D(ρ)

σ(ρ) σ̃(ρ) = ρ σ

(
1

ρ

)
σ̃(ρ) = c2 σ(ρ/c) σ̃(ρ) = σ(ρ− c) σ̃(ρ) = τ σ(ρ)

ρ ρ̃ =
1

ρ
ρ̃ = c ρ ρ̃ = ρ+ c ρ̃ = ρ

xk(t) x̃k(t) = −Qt(k) x̃k(t) = x k
c
(t) x̃k(t) = xk−cx̃k(t)(t) x̃0(t) = x0(tτ)

Qt(x) Q̃t(k) = −xk(t) Q̃t(x) = c Qt(x) Q̃t(x) = Qt(x)− cx Q̃t(x) = Qtτ (x)

Table 1: Transformation des coefficients de transport D(ρ) et σ(ρ), de la densité moyenne
ρ, et des observables (i) position d’un traceur xk(t) et (ii) courant intégré à travers x, noté
Qt(x), sous l’action de (Du), (Di), (T) et (Rt).

Extension des résultats sur le SEP à d’autre modèles

En chapitre 9, nous montrons que nos résultats pour le SEP peuvent s’appliquer à
l’ensemble des modèles de la Fig. 13. Ici nous nous contentons d’illustrer notre démarche
sur l’exemple du ZRP dual du SEP [117, 118] (voir Fig. 13 pour une description sommaire
du ZRP au niveau microscopique, qu’il n’est pas nécessaire de connâıtre ici, puisque dans la
description hydrodynamique, nous avons uniquement besoin des coefficients de transport).

Nous considérons ici un ZRP spécifique, qui correspond au cas le plus simple, dans lequel
le taux de saut depuis un site est constant, et ne dépend donc ni du site ni du nombre de
particules qui s’y trouvent. Au niveau macroscopique, ce système est décrit par les coefficients
de transport [86, 119] (notez qu’ils sont invariants par (Du))

D(ρ) =
D0

(1 + ρ)2
, σ(ρ) =

2D0ρ

1 + ρ
. (31)

Au niveau hydrodynamique, le SEP peut être obtenu à partir du ZRP en combinant la
translation de densité (T) et la relation de dualité (Du) :

D(ρ) =
D0

(1 + ρ)2
(T)−−→
c=1

D0

ρ2
(Du)−−→ D0 = D̃(ρ) ,

σ(ρ) =
2D0ρ

1 + ρ

(T)−−→
c=1

2D0

ρ
(ρ− 1)

(Du)−−→ 2D0ρ(1− ρ) = σ̃(ρ) .
(32)

Sous ces transformations, les observables (position du traceur x0(t) et courant intégré à travers
l’origine Qt(0)) ainsi que la densité moyenne du systèmes sont transformés comme indiqué
dans le tableau 1, nous permettant de relier les observables du ZRP à une densité donnée aux
observables correspondantes du SEP à la densité associée ρSEP (= 1

ρ+1
ici).

Ainsi, le n-ième cumulant du courant intégré à travers l’origine dans le ZRP à la densité ρ
est égal à celui de la position du traceur dans le SEP à la densité ρSEP multiplié par (−1)n.
Par exemple, de (20), on tire:

〈
Qt(0)2

〉
= 2ρ

√
D0t

π
,

〈
Qt(0)4

〉
c

= 2ρ
12ρ2 + π(1 + 3(2−

√
2)ρ− 3ρ2)

π

√
D0t

π
. (33)
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Au chapitre 9, nous montrons que cette méthode permet également d’obtenir les profils de
densité généralisés, pour d’autres systèmes que le SEP.

Conclusion

En conclusion, nous avons introduit des transformations générales reliant différents systèmes
diffusifs unidimensionnels. Nous utilisons ensuite ces transformations ainsi que nos résultats sur
le SEP pour étudier d’autres systèmes. Cela souligne la portée de notre équation fermée (13)
au-delà du SEP.

De plus, ces transformations décrivent la structure des symétries respectées par les systèmes
unidimensionnels. A ce titre, elles apportent des renseignement précieux pour l’étude générale
de la diffusion en ligne.

0.2.4 Etude d’un traceur biaisé

Au chapitre 10, nous développons une méthode générale pour décrire, à l’échelle hydrody-
namique (en s’appuyant sur l’hydrodynamique fluctuante 0.2.3), les systèmes avec un traceur
biaisé. Ici, nous illustrons cette méthode dans le cas particulier du SEP avec un traceur
biaisé (Fig. 14). Jusqu’ici, les seuls résultats analytiques à densité arbitraire portent sur les
moyennes de la position du traceur et de l’occupation du réseau dans le référentiel du traceur
(c’est-à-dire les profils de densité) [119, 126, 127], qui ont récemment été déterminés également
sur des systèmes périodiques finis [122, 128]. Depuis les travaux pionniers [119, 126, 127] qui
remontent à près de trois décennies, les résultats concernant les cumulants d’ordre supérieur
ont été limités au régime de haute densité [129, 130], et à des situations spécifiques [131]2. A
densité arbitraire, même la détermination de la variance de la position du traceur, qui est
cruciale pour quantifier ses fluctuations, reste un problème entièrement ouvert.

Figure 14: Le processus d’exclusion symétrique (SEP) avec un traceur biaisé (bleu) à la
position Xt. La différence avec le cas du traceur non biaisé (Fig. 10) se situe au niveau des
taux de saut du traceur (et uniquement du traceur), qui sont ici affectés par le biais s.

Nous considérons le SEP avec traceur biaisé (biais s, Fig. (14)) à la densité moyenne ρ.
Nous déterminons la limite de temps long des profils de densité bain-traceur et des cumulants
de la position du traceur à l’ordre linéaire en le biais s et à une densité arbitraire. Nous allons
également au-delà de la réponse linéaire en déterminant le second cumulant de la position
du traceur et le profil de densité correspondant à l’ordre deux en s. Notre résultat majeur
est ainsi l’obtention de la première contribution non triviale du biais s à la variance de la
position du traceur à une densité arbitraire.

2La situation spécifique dans [131] correspond au cas où la force subie par le traceur est compensée par
une marche de densité résultant en une position moyenne nulle
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Description hyrodynamique avec un traceur biaisé

Afin de décrire le SEP avec traceur biaisé dans la limite de temps long, nous nous appuyons
sur l’hydrodynamique fluctuante (section 0.2.3), qui reste valable, excepté au voisinage du
traceur (puisque c’est uniquement au niveau du traceur que la dynamique du système est
altérée par le biais). Le biais introduit deux principales difficultés techniques : (i) la force
subie par le traceur crée une discontinuité du champ de densité ρ(x, t) à l’endroit où se trouve
le traceur, car le traceur ”pousse” les particules, qui s’accumulent devant lui ; (ii) l’endroit où
se trouve cette discontinuité se déplace dans le temps.

Nous contournons la difficulté (ii) en utilisant la relation de dualité (Du) (introduite
en 0.2.3), transposant le problème original sur un problème dual tel que la position du traceur
du problème original Xt correspond au flux à l’origine Q̃t du problème dual (voir les deux
premières colonnes du tableau 1, où Xt et Q̃t correspondent à x0(t) et Q̃t(0) apparaissant
dans le tableau), transformant ainsi la discontinuité mobile en une condition aux limites
statique située en zéro. Une approche similaire a été utilisée dans [114, 132]. Les équations
hydrodynamiques fluctuantes pour le problème dual sont obtenues en appliquant la dualité
(Du) au SEP, dont les coefficients de transport sont D(ρ) = 1/2 et σ(ρ) = ρ(1 − ρ). Les
coefficients de transport du système dual sont donc D̃(ρ̃) = 1/(2ρ̃2) et σ̃(ρ̃) = 1− 1/ρ̃. Nous
notons ρ̃(k, t) le champ de densité macroscopique pour le problème dual. Puisque le biais
du traceur dans le SEP y est traduit en un biais fixe au point k = 0, l’équation suivante est
vérifiée pour k ̸= 0:

∂tρ̃ = ∂k

(
D̃(ρ̃)∂kρ̃+

√
σ̃(ρ̃) η(k, t)

)
, (34)

où η est le bruit blanc gaussien de variance unitaire.
L’élément clé permettant de rendre compte au niveau macroscopique du biais implémenté

dans la dynamique microscopique est une condition aux limites vérifiée par le champ de densité
ρ̃. Cette relation s’obtient en étudiant les mesures stationnaires du système microscopique
biaisé. La méthode est détaillée au chapitre 10. L’idée générale est que la possibilité de définir
une densité macroscopique ρ̃ repose sur l’existence d’équilibres locaux au niveau microscopique,
c’est-à-dire que localement, autour d’un point k et au temps t, le système microscopique est
distribué selon sa mesure stationnaire de densité ρ̃(k, t) (variant lentement avec k). Dans le
cas du système dual du SEP avec traceur biaisé, nous trouvons la condition suivante:

(1 + s)

(
1− 1

ρ̃(0+, t)

)
= (1− s)

(
1− 1

ρ̃(0−, t)

)
. (35)

Les équations (34, 35) peuvent être reformulées, dans la limite de temps long, en un
principe de grandes déviations (les détails de la démarche sont donnés au chapitre 10), qui
permet d’exprimer les profils généralisés Φ (même définition (10, 11)) du SEP avec traceur
biaisé :

Φ

(
v =

y(k)√
2

)
=

1

q̃(k, 1)
, y(k) =

∫ k

0

q̃(k′, 1)dk′ , (36)

en fonction de la solution q̃ d’équations de diffusion couplées, appelées équations de MFT [102,
107]. La condition implémentant le biais (35) donne lieu dans ce formalisme à des conditions
au limites à l’origine, dont nous déterminons la forme générale (voir chapitre 10). A partir de
Φ (36), nous déduisons la fonction génératrice des cumulants de la position du traceur à l’aide
de la formule (16), qui, remarquablement, reste valable dans le cas d’un traceur biaisé [133].

Ces équations caractérisent donc entièrement la dynamique d’un traceur biaisé dans le SEP.
Cependant, leur résolution analytique pour une densité et un biais arbitraires est hors de portée.
Nous proposons deux lignes d’investigation de ces équations : (i) une résolution numérique
pour des ensembles arbitraires de paramètres ; (ii) un développement perturbatif, qui donne
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Figure 15: Profils Φ1 et Φ2 obtenus à partir de la résolution numérique des équations de MFT
(cf. section 0.2.4) (lignes pointillées orange), comparés aux simulations Monte Carlo du SEP
avec un traceur biaisé (lignes continues bleues), au temps final t = 6000, avec 107 simulations
pour (a), (b) et (c) et 9 · 107 pour (d).

des résultats explicites, à densité arbitraire, valables pour les premiers coefficients Φn(v) définis
par le développement de la limite hydrodynamique des profils de densité généralisés (11) :
Φ(v) =

∑∞
n=0

λn

n!
Φn(v).

Résolution numérique

Nous montrons en Fig. 15 les profils à l’ordre 1 et 2 en λ obtenus à partir de la résolution
numérique des équations de MFT (cf. section 0.2.4), qui sont en parfait accord avec les
résultats des simulations Monte Carlo du SEP, pour une large gamme de paramètres. En
particulier, nous considérons des biais importants et des densités qui sont loin des limites
de basse et haute densité. Notons que l’approche peut être étendue au cas important où la
densité initiale de particules forme une marche (ρ = ρ+ devant le traceur et ρ = ρ− derrière le
traceur) [99, 100].

Résolution analytique

Nous remarquons tout d’abord que, pour tout biais, à l’ordre zéro en λ, nous retrouvons
les résultats exacts obtenus précédemment dans [119, 126]. Pour les ordres suivants (Φn avec
n ≥ 1), nous avons recours à un développement en puissances du biais s. Nous définissons
pour chaque ordre n :

Φn(v) =
s→0

Φ(0)
n (v) + sΦ(1)

n (v) + s2Φ(2)
n (v) + . . . (37)

où Φ
(0)
n correspond au cas symétrique connu (section 0.2.2).

Ordre linéaire en s. À l’ordre linéaire en le biais s, on détermine analytiquement Φ
(1)
1 et

Φ
(1)
2 (voir section 10.3.2). Un point essentiel que nous remarquons est que Φ

(1)
2 est une fonction

non analytique de la variable v, présentant une singularité logarithmique à l’origine. Cela
semble être une spécificité du cas biaisé, puisque, dans le cas symétrique, tous les Φn sont des
fonctions analytiques de v (section 0.2.2). Les fonctions Φ

(1)
1 (v) et Φ

(1)
2 (v) sont représentées

sur la Fig. 16 et sont en parfait accord avec la résolution numérique des équations de MFT.
En plus de caractériser entièrement les corrélations entre le bain et le traceur, les profils

de densité généralisés Φn donnent accès aux cumulants de la position du traceur grâce à la
relation (16). Nous obtenons les cumulants normalisés par le temps κ̂n ≡ limt→∞[κn/

√
2t] :

κ̂1 = s
1− ρ

ρ
√
π

+O(s2), κ̂2 =
1− ρ

ρ
√
π

+O(s2), (38)

κ̂3 =
s

π3/2ρ3

[
(1− ρ)

(
12(1− ρ)2 − π

((
8− 3

√
2
)
ρ2 − 3

(
4−
√
2
)
ρ+ 3

))]
+O(s2) . (39)
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Figure 16: À gauche : cumulant κ̂2 en fonction du biais s, obtenu à partir de la résolution
numérique des équations de MFT (cf. section 0.2.4) (courbe bleue), comparé au développement
à petit biais (40) (courbe verte). Les points rouges sont obtenus à partir de simulations
Monte Carlo (15,8 millions de simulations, temps final 100000). Les trois autres graphiques :

profils de densité généralisés Φ
(m)
n (v), à la densité ρ = 0.6, obtenus à partir de la résolution

numérique des équations de MFT (cf. section 0.2.4) (ligne pointillée rouge), comparés aux
expressions analytiques, section 0.1.2 (ligne continue bleue).

Au-delà de la réponse linéaire. Nous allons maintenant plus loin, avec des résultats
analytiques explicites au-delà de la réponse linéaire. On note que, même si nos expressions
précédentes décrivent l’effet du biais s au premier ordre, elles n’apportent pas d’informations
non triviales pour les cumulants pairs, puisque la première correction non nulle par rapport
au cas sans biais intervient en fait à l’ordre s2 pour des raisons de symétrie. Nous calculons
donc le profil Φ1 à l’ordre quadratique en s, Φ

(2)
1 . On retrouve de même le comportement

non-analytique. On obtient l’ordre s2 de κ̂2 = κ̂2|s=0 + s2 ∆κ̂
(2)
2 +O(s3), avec

∆κ̂
(2)
2 =

(1− ρ)2(7− 5ρ− π((
√

2− 3)ρ+ 2))

π3/2ρ3
. (40)

Ce résultat constitue la première détermination de la dépendance en le biais de la variance
d’un traceur biaisé dans le SEP pour une densité arbitraire, un problème qui est resté ouvert
pendant plus de 25 ans.

La fonction Φ
(2)
1 (v) est représentée en Fig. 16. Nous montrons également la dépendance

du second cumulant en fonction du biais pour une valeur donnée de la densité ρ = 0.2. Ce
cumulant présente une variation importante avec le biais (∼ 30%), soulignant l’importance
quantitative de l’étude du problème au-delà de la réponse linéaire (qui prédirait une variation
nulle).

Conclusion

En résumé, nous avons développé une description hydrodynamique pour le SEP avec un
traceur biaisé. Ceci nous a permis de déterminer les premiers cumulants des corrélations
bain-traceur et de la position du traceur à l’ordre linéaire en le biais et à une densité arbitraire
– un régime de paramètres non étudié jusqu’à présent. Nous sommes également allés au-delà
de la réponse linéaire en déterminant, pour la première fois, la dépendance de la variance à
l’ordre 2 en le biais s. Notre approche est générale, nous l’étendons à l’étude d’autres modèles
de transport unidimensionnels au chapitre 10.

En ouverture de cette partie, on peut s’interroger s’il serait possible de trouver une équation
fermée, dans l’esprit de SEP sans biais (13), qui s’appliquerait à un système général (22,
23) ou bien au SEP en présence d’un biais (section 0.2.4. Le comportement non-analytique
que nous avons mis en lumière indique que si une telle équation existe, alors elle devrait
nécessairement faire intervenir d’autres objets que des convolutions, ou bien un autre noyau
que le noyau gaussien (un noyau déjà non analytique par exemple).
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Introduction

The great success at the foundation of statistical physics [134] is the interpretation of all
the laws of thermodynamics in term of properties of the Boltzmann probability distribution,
which is the universal distribution of the microscopic states of matter. Any isolated system,
or subsystem of an isolated system, eventually reaches equilibrium. Equilibrium statistical
physics, whose cornerstone is the Boltzmann distribution, successfully describes the behaviour
of systems which have got the time to reach equilibrium. For instance, it explains the origin
of the different phases of matter, or the way different species coexist together, with the law of
mass action. However, many systems of high significance are maintained out-of-equilibrium.
This is the case for instance of the atmosphere, which is subject to a constant injection of
energy from the sun; waiting for the atmosphere to reach equilibrium would mean waiting
for the death of the solar system. Another example lies in living cells, which are a complex
machinery, continuously consuming energy (in the form of ATP) to survive. Consequently,
the techniques of equilibrium statistical physics are not appropriate to study such systems;
non-equilibrium statistical physics aims at developing new tools adequately describing their
properties.

In this thesis, we will focus on an important physical mechanism, that has been first
identified by Fourier in 1807 in the context of heat conduction and later generalised by Fick
(1855) to solute molecules in a solvent: diffusion. Diffusion usually refers to the spontaneous
process of displacement and homogenisation of matter in a medium. It is involved in a
wide range of phenomena: formation of mixtures of gas or liquids, current of electrons in
semi-conductors, permeation of porous media, osmosis through semi-permeable membranes,
diffusion-controlled reactions (i.e. the reaction’s characteristic time is much smaller than the
characteristic time between encounters of reactants) etc... The theoretical explanation of
diffusion relies on the atomistic view of matter and the kinetic theory of gas: due to thermal
energy, any particle in a media is subject to random collisions with other particles in its
environment. These collisions are at the origin of the random displacement ∆Xt of the particle
over a time t, whose mean square is characterised by the diffusion coefficient D through〈

∆X2
t

〉
= 6Dt, (41)

according to the classical theory by Einstein [135] (also Langevin [136] and Smoluchowski [137]).
This theory is very efficient to describe particles which are free to diffuse in the three dimensions
of space and are at equilibrium with their environment (for example, a molecule in a solvent).
Indeed, under these assumptions, the increments of the particle’s position ∆Xt+dt −∆Xt are
stationary and isotropic, resulting in equation (41).

In this thesis, we will be interested in systems where this property of stationary and
isotropic increments of position is not verified. This concerns, for example, biological transport,
which often takes place in complex, crowded environments [34], with only a fraction of the
space being accessible to the particle. Another important feature of biological environments
is confinement: biological objects may be subject to strong geometrical constraints. For
example, many membranes contain nano-pores (which constitute a confined geometry with
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a longitudinal dimension much longer than the transverse ones) through which proteins
travel [73, 74]. In such complex environments, more sophisticated descriptions (such as
non-Markovian dynamics, effective time-varying potential, explicit description of the solvent
molecules etc...) are necessary to properly model the behaviour of a particle.

Moreover, many biological objects evolve in an out-of-equilibrium context. For example,
bacteria E. Coli [138] are able to propel themselves using flagella, in addition to being subject
to the thermal noise from their environment. Furthermore, such objects may evolve under a
gradient of temperature, of concentration or of other physical quantity. This non-equilibrium
aspect of biological transport is intimately related to the complexity of the environment. We
will see for example in part I that the displacement of a biased or active particle impacts
significantly the structure of its environment, and reciprocally the environment affects the
dynamics of the particle.

The object of this thesis is to investigate how the diffusion and transport properties of a
tagged particle, called a tracer, are affected in an out-of-equilibrium context and in complex
environments. It is mainly the diffusion properties of one particle (the tracer) that will interest
us. The collective motion of matter in a complex medium is also an important aspect of
diffusion, but it will not be the focus of our study (although we will consider this aspect in
part II, in particular with the integrated current in a diffusive system). In order to study the
dynamics of a tracer particle, we will often rely on lattice model descriptions.

Lattice models have proven to be very useful tools in physics, from d’Alembert’s discrete
mass model for vibrating strings to lattice QCD for high-energy particle physics. In statistical
mechanics, Ising’s model for ferromagnetism is the basic model to study phase transitions
and critical phenomena. Lattice models offer a simple framework, where it is relatively
easy to perform analytical computations and numerical simulations. At the same time, they
remain sufficiently rich to capture the most important physical features (phase transitions,
hydrodynamic behaviour...), which can be subsequently generalised to more realistic continuous
descriptions. The lattice models used to describe fluids, called lattice gases, have received
a lot of attention [139–142], and constitute a particularly relevant framework for the study
of diffusion. Notably, they have been employed to compute the diffusion coefficient of a
passive tracer in a crowded environment [38–40]. That is why in this thesis, in order to gain
insight into the basic physics of tracer diffusion, we will most of the time study lattice models.
As an illustration of the generality and relevance of these type of models, in part II, we
will show that some results we obtained for a lattice model, the Simple Exclusion Process
(SEP), can be generalised to other systems in continuous space. The SEP is a minimal model
of interacting particles, where particles evolve on a lattice and interact through hard core
interactions (via an exclusion rule). We will see that the theory we developed for the SEP
applies to systems with various phenomenology, including for instance the hard-sphere gas in
one dimension (also called hard-rod gas), which is a model in continuous space where particles
cannot interpenetrate each other.

Since detailed introductions can be found in the first chapter of each part, we here simply
sketch the outline of the thesis. In the first part, a microscopic lattice model is proposed to
model the transport and diffusion of an active particle (of the ”run-and-tumble” type) in
the presence of mobile obstacles (chapter 2). Resorting to a mean-field-type approximation,
we determine analytically the velocity and diffusion coefficient of the active tracer, and in
addition, we characterise the spatial response of the environment to the displacement of the
tracer (chapter 3). We then show that this model explains the emergence of specific properties
resulting from the interaction between the active particle and its crowded environment, and
we provide a heuristic explanation of the underlying physical mechanisms. In chapter 4,
we highlight the complex, non-monotonic, dependence of the diffusivity on the parameters
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controlling the activity. In chapter 5, we study the response of the active tracer to a drive
imposed by an external force field, and we unveil a striking phenomenon, specific to out-of-
equilibrium systems: absolute negative mobility, namely the fact that the tracer may have a
velocity opposed to the direction of the external force.

In the second part, we deal with the case where the tracer particle (not necessarily active)
diffuse in a one-dimensional confined geometry, under crowded conditions. In this case, the
particles cannot overtake each other; their displacements are strongly correlated. This leads to
anomalous diffusion. Our study first focuses on the Simple Exclusion Process (SEP, chapter 7),
which is a paradigmatic lattice model for one-dimensional diffusion. Contrary to the first part,
where we resort to an approximation, here we manage to provide an exact solution for the
whole probability distribution of position of a tracer particle and fully characterise the response
of its environment (chapter 8); it is striking that, despite its many-body nature, this problem
admits a closed-form analytical solution. In chapter 9, building on a hydrodynamic description
of one-dimensional systems, we determine and classify all possible mappings between such
systems. This enables us to extend our results for the SEP to other models. Finally, in
chapter 10, we develop a procedure to describe, at the hydrodynamic level, one-dimensional
systems of particles with a biased tracer. This leads us to new results, beyond linear response,
on the well-known problem of the SEP with a driven tracer.
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Part I

Run-and-tumble particle in a crowded
environment

This part is based on and adapted from the following articles.

• [143] P. Rizkallah, A. Sarracino, O. Bénichou, and P. Illien, Microscopic
Theory for the Diffusion of an Active Particle in a Crowded Environment.
Physical Review Letters 128, 038001 (2022).

• [144] P. Rizkallah, A. Sarracino, O. Bénichou, and P. Illien, Absolute negative
mobility of an active tracer in a crowded environment.
Physical Review Letters 130, 218201 (2023).
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Chapter 1

Active particles in complex
environments

1.1 What are active particles ?

In 1828, R. Brown [145] observed in a microscope that particles of pollen are subject to
erratic, random, discontinuous and isotropic displacements. Almost a century after that,
Einstein [135] proposed a theoretical model, based on statistical mechanics: particles which
are at equilibrium with their environment perform what is referred to as ”Brownian motion”
as a result of the random collisions they undergo. Since then, Brownian motion has been used
with great success to describe the motion of particles in various contexts: solute molecules,
molecules composing a gas, colloids in suspension... Since these particles move only because
of the collisions with their neighbours, they are called passive.

Active particles are characterised by the fact that, in addition to being subject to random
collisions with particles from their surroundings, they are also able to extract energy from their
environment and transform it into mechanical work. As a consequence, these particles are
subject to a propulsion force that may vary over time, which maintains them out of equilibrium.
Contrary to passive particles, active particles have a non vanishing mean displacement on
short time scales (hence display a speed which can be measured, figure 1.1), whereas Brownian
particles are characterised by their mean squared displacement. Active particles, also known
as micro or nano-swimmers when they have the ability to propel themselves in a (viscous)
fluid environment, are observed at different scales (see figure 1.1) in the biological realm and
in artificial systems.

Many theoretical models of active particles have been introduced and studied during the
past decades. They were proven to be particularly powerful to describe the dynamics of a
large number of real systems, ranging from biological objects (molecular motors, bacteria,
micro-swimmers, algae...) to artificial self-propelled particles such as active colloids [1, 2].
Among these models, run-and-tumble particles and active Brownian particles have attracted a
lot of interest: in both cases, the particles self-propel with a fixed velocity, whose orientation
changes randomly either abruptly or continuously, respectively. The dynamics of isolated or
non-interacting active particles has been the subject of numerous recent studies [3–11].

1.2 Context and motivations

Beyond single-particle properties, the dynamics of active particles when they interact with
each other has attracted a lot of attention, and was shown to display numerous surprising
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Figure 1.1: Figure taken from [1]. Examples of active particles, by size and maximal speed.

effects, such as large-scale collective motion [12, 13], clustering, or phase separation in the
absence of attractive interactions [1, 14].

1.2.1 Tagged particle (tracer) in a crowded environment

Here, we focus on the effects of the interactions between a complex environment and a
tagged active particle, called a tracer. This is relevant for example for the transport of biological
objects, which often takes place under crowded conditions, such as motor proteins inside a cell
[15] or bacteria in porous materials [16]. So far, the case of a frozen disordered environments
was studied through experiments (on living [17–21] and synthetic [22] microswimmers) and
theoretical approaches (essentially numerical) [4, 23–33].

The case of dynamic disorder, which has received much less attention, is however par-
ticularly relevant, since thermal fluctuations generally affect the environment as well as the
tracer [34]. Models involving tracers in environments of mobile obstacles have therefore
been employed to describe situations of biological interest [35–37]. For the case of a passive
tracer, the theory by Nakazato and Kitahara [38] (see also [39, 40]) gives an expression of the
corresponding diffusion coefficient as a function of the density of crowders, in a continuous-
time description on a lattice. Due to the many-body nature of the problem, this expression
is approximate but has been shown to be exact in the low and high density regimes, and
offers very good quantitative estimates for arbitrary density, as soon as the environment is
mobile enough [39, 40]. In continuous space, self-diffusion of passive tracers have also been
investigated analytically in the context of hard sphere gases [41].

The case of an active tracer in a dynamic environment (figure 1.2) has been the subject of
only a few theoretical studies of particles evolving on a lattice (see however [42] for a recent
mode-coupling approach in continuous space), which focused mainly on the low-density limit
of the problem, with a discrete-time description, with a tracer that never jumps sideways from
the direction of propulsion, and with a specific dynamics [43]. Particular interactions between
particles (third-neighbor exclusion) have also been studied through numerical simulations



1.2. CONTEXT AND MOTIVATIONS 41

Collective 
behaviour of 

active 
particles

Tagged 
passive
particle 

(self-diffusion)

Tagged active particle in a complex environment

Figure 1.2: There are still few analytical results for the individual behaviour of an active
particle in a complex, dynamical, environment.

and mean-field approximations [146]. A generic analytical framework, that would allow the
calculation of the diffusivity of an active tracer in a dynamic environment for a wide range of
parameters, and in particular for arbitrary density, is missing.

1.2.2 Surprising effects arise when activity meets crowding

Developing such a theory is of particular interest since it would help gaining insight
into atypical features that can be observed when an active particle diffuses in a crowded
environment. For example, it has been observed experimentally that the diffusion coefficient
of active swimmers can be non-monotonous in the activity parameters (such as the tumbling
rate), leading to optimised diffusivity, or efficient trapping of the tracer [16, 18, 20, 44–46].

Moreover, predicting the response of a tracer particle submitted to an external driving,
and evolving in a complex environment, is a central challenge in statistical physics [47, 48].
The relation between the force applied to the tracer and its velocity can display a number
of striking anomalies, in particular when the tracer evolves very far from equilibrium. One
of the most intriguing behaviors is the onset of an inverse current, which is opposite to the
driving force, and which was evidenced for instance in the very simple setting of a Brownian
particle forced in a periodically modulated potential [49]. In the specific context of particle
transport, this effect is known as absolute negative mobility (ANM). In figure 1.3, we show
an example of an experimental setup where ANM is observed [147].

This intriguing effect actually finds important applications in sorting micrometric particles.
Relying on this counter-intuitive response, microfluidic chips that allow efficient separations of
particles have been successfully designed [147–149], and recent developments may even allow
tunable mass separation [150]. At the theoretical level, understanding ANM is a challenge.
Indeed, this effect emerges from the interactions between the tracer and its environment,
which needs to be modulated in space and/or in time for ANM to emerge. This has motivated
a whole field of research in the past, and different ways to model such an environment have
been explored so far: through an effective persistence of the tracer [50], periodic ratchets
[49, 51–53], effective tracer-bath interactions [54], coupled thermodynamic forces [55], or
steady and periodic velocity fields [56–58]. However, the case of an environment made of
mobile crowders (and the possibility for ANM to emerge in such a setting) has not been
addressed, in spite of its importance in the modeling of transport in biological context, for
instance. This is a particularly difficult theoretical problem, since it requires the treatment of
a many-body problem.
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Figure 1.3: Experimental setting from [147] where a) negatively charged beads are placed
in a 2D environment with fixed obstacles and subject to b) an alternating voltage ±U0 to
which is added an constant voltage UDC. The plot on the right shows that when the average
electric force felt by the beads points towards the right (UDC > 0), their velocity may be in
the opposite direction.

1.3 Microscopic theory for an active tracer in a crowded

environment

The goal of the first part of this thesis is to provide a microscopic theory describing an
active tracer in a dynamical crowded environment on a lattice, at arbitrary density and
activity. We consider an active tracer particle submitted to a variable force, which evolves
in a dynamical environment of mobile hardcore crowders on a lattice, whose dynamics is
accounted for explicitly (chapter 2). Then, we resort to a closure approximation and calculate
the velocity and diffusion coefficient of the active tracer in terms of the bath density profiles,
and of tracer-bath correlation functions. We also present a qualitative argument valid at
low density, which explains the main phenomenons in terms of the relevant characteristic
timescales (chapter 3).

On top of providing an explicit description of the environment of the tracer, which allows
us to characterize the response of the environment to the displacement of the tracer, this
model is analytically tractable, gives accurate results in a wide range of parameters, and
elucidates the conditions under which the surprising effects mentioned earlier are observed
(chapters 4 and 5). In particular, we show how these effects emerge from the trapping of the
tracer particle by the passive crowders.



Chapter 2

Microscopic lattice model

We introduce a lattice model based on the simple exclusion process, which has reached
a paradigmatic status in non-equilibrium physics, both in one dimension [60, 151], and in
higher dimensions [38, 39, 63, 67, 94, 152–154]. We adapt it in order to provide a lattice
representation of the run-and-tumble motion. Then, we define the observables of interest and
derive their evolution equations.

Key results.

• Section 2.1: definition of the model and its parameters.

• Definition of the central quantities: density (2.13) and correlation (2.17) profiles.
Derivation of the expressions of the velocity (2.15) and diffusion coefficient (2.19).

2.1 Definition of the model

We consider an active tracer subject to an internal active force of random direction and
fixed magnitude on a d-dimensional infinite cubic lattice Zd. Possibly, the tracer can also be
subject to an additional external force. In addition, obstacle particles perform symmetric
random walks on the lattice. Particles interact together through hardcore repulsion, meaning
that there can be only one particle per site. The system evolves in continuous time. A sketch
of the model is given in figure 2.1.

2.1.1 Parameters

We denote by (eµ)µ∈J1,dK the vectors of the canonical basis of Zd. We adopt the convention
that if µ ∈ J−d,−1K, then eµ = −e−µ. When nothing is specified, the sums

∑
µ are assumed

to run over µ ∈ {±1, . . . ,±d}. We introduce the following parameters:

• The distance between two sites is denoted σ, and the inverse temperature is denoted
β = 1/(kT ).

• The characteristic time between two jumps of the tracer particle is noted τ , and the one
for the obstacle particles (also called bath particles) is noted τ ∗.

• The intensity of the external force is noted FE. The external force is always along the
horizontal axis: FEe1.
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Figure 2.1: An active tracer performs a persistent random walk in a bath of particles
performing simple symmetric random walks. Here the external force FE is zero, so the active
tracer jumps preferentially in direction χ (here, the case χ = 1 is shown for illustration). The
direction χ changes randomly along time, and the re-orientation events are represented by
stars. All the particles interact via hardcore repulsion.

• The intensity of the active force is FA, and χ ∈ {±1, . . . ,±d} is its current direction,
also called the ”state” of the tracer. The active force in state χ is therefore FAeχ.

• The tracer switches randomly from a state χ to any other state χ′ ̸= χ with rate
α

2dτ ∗
.

The persistence time is therefore τα =
2dτ ∗

α
.

• p
(χ)
µ is the probability for the tracer to jump in direction µ ∈ {±1, . . . ,±d} when it

is in state χ. Given that the active force is in a random direction χ, we choose (see
discussion 2.1.3):

p(χ)µ =
exp [βσ(FAeχ + FEe1) · eµ/2]∑
ν exp [βσ(FAeχ + FEe1) · eν/2]

. (2.1)

• The density of obstacle particles is denoted ρ ∈ [0, 1].

• Pχ(R, η; t) is the probability to find the tracer in state χ, at site R, with the lattice in

configuration η, at time t. The map (ηr) ∈ {0, 1}(Z)d associates each point of the lattice
with 1 if it is occupied by a bath particle, and 0 otherwise.

We will denote by X t the random variable describing the position of the tracer particle at
time t and Xt = X t · e1 its projection along the horizontal axis. The random variable ηr(t)
describes the occupation of site r at time t (ηr(t) = 1 if there is an obstacle, 0 otherwise).

According to (2.1), we can absorb β and σ in FA and FE (up to a re-scaling of X t by σ).
Thus, we will choose most of the time β = σ = 1.

2.1.2 Master equation

The dynamics of the model is described in the following way. Each bath particle (and
the tracer) is equipped with an independent clock ringing at intervals of time drawn from
an exponential distribution of rate 1/τ ∗ (1/τ for the tracer). Each time its clock rings, a

particle chooses a direction µ at random with probability 1/(2d) if it is a bath particle, p
(χ)
µ if
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is the tracer (where χ is the current state). If the corresponding neighbouring site in this
direction is empty, the particle jumps onto it, otherwise, nothing happens. In addition, the
tracer is equipped with a second clock ringing at intervals of time drawn from an exponential
distribution of rate 1/τα. Each time this clock rings, the state χ changes and is redistributed
uniformly among the 2d− 1 other directions.

The corresponding master equation obeyed by the joint tracer-bath probability is:

2dτ ∗∂tPχ(R, η; t) = LχPχ − αPχ +
α

2d− 1

∑
χ′ ̸=χ

Pχ′ , (2.2)

where Lχ is the evolution operator in state χ, accounting for the displacement of the particles:

LχPχ =
d∑

ν=1

∑
r ̸=R−eν ,R

[Pχ(R, ηr,ν ; t)− Pχ(R, η; t)]

+
2dτ ∗

τ

∑
µ

p(χ)µ [(1− ηR)Pχ(R− eµ, η; t)
(
1− ηR+eµ

)
Pχ(R, η; t)]. (2.3)

We denoted by ηr,ν the configuration obtained from η by switching the occupations of sites
r and r + eν . The first term describes the displacements of the obstacle particles, and the
second term the displacements of the tracer. The other terms in equation (2.2) account for
the random reorientation of the active force.

Initially, the tracer is placed on the origin 0, and on every other site, there is a particle
with probability ρ (for each r ∈ Zd \ {0}, ηr(0) follows a Bernoulli law of parameter ρ).
The initial state χ (direction of the active force) is initially uniformly distributed among all
directions. In terms of probability:

Pχ(R, η; 0) =
δR,0
2d

∏
r

ρηr(1− ρ)1−ηr . (2.4)

2.1.3 Detailed balance and activity

Here, we consider the case were there are no obstacles (ρ = 0) and the active force is in a
given direction χ. Before any reorientation of the active force, the tracer therefore evolves in
a potential of the form

U(r) = −(FAeχ + FEe1) · r. (2.5)

In this particular case where the direction χ of the active force is fixed, our choice of jump
rates p

(χ)
µ /τ verifies detailed balance with respect to the Boltzmann measure. If the tracer is

at a position X, the ratios of rates to go to a neighbouring site and rates to come back verify:

p
(χ)
µ

p
(χ)
−µ

=
exp [βσ(FAeχ + FEe1) · eµ/2]

exp [βσ(FAeχ + FEe1) · e−µ/2]
(2.6)

= exp [−β(U(X + σeµ)− U(X))] (2.7)

This means that, when the active force is fixed, the tracer performs an equilibrium dynamics.
Nevertheless, the overall dynamics of our tracer is fundamentally out-of-equilibrium precisely
because the active force changes direction; the potential U(r) varies over time.
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2.2 Observables and evolution equations

We study our model through observables O[R, η, χ] which are functions of the configuration
of the system R, η, χ. An average of an observable at time t is denoted by

⟨Ot⟩ =
∑
R,η,χ

O[R, η, χ]Pχ(R, η; t). (2.8)

The average conditioned to the tracer being in state χ′ is denoted by

⟨Ot⟩χ′ =

∑
R,η,χO[R, η, χ]δχ,χ′Pχ(R, η; t)∑

R,η,χ δχ,χ′Pχ(R, η; t)
= 2d

∑
R,η

O[R, η, χ]Pχ′(R, η; t). (2.9)

We have used the fact that all directions of the active force have the same probability: for
any χ ∈ {±1, ...,±d}, ∑η,R Pχ(R, η; t) = 1/(2d).

To characterise the motion of our run-and-tumble tracer, the observables that will interest
us are the first moments of its position Xt along the horizontal axis. Also, to quantify
the interaction between the tracer and its environment, we will consider the average of the
occupations of obstacles in the reference frame of the tracer (ηXt+r)r and their correlations
with the horizontal displacement of the tracer (g̃r)r where g̃r = ⟨ηXt+r(Xt − ⟨Xt⟩)⟩.

2.2.1 Evolution of the position of the tracer

Velocity of a biased tracer

The mean position of the tracer is defined by

⟨Xt⟩ =
∑
χ,R,η

(R · e1)Pχ(R, η; t). (2.10)

If we take the time derivative of ⟨Xt⟩ and use the master equation (2.2), we get:

d ⟨Xt⟩
dt

=
1

2dτ ∗

∑
χ,R,η

R

(
LχPχ − αPχ +

α

2d− 1

∑
χ′ ̸=χ

Pχ′

)
(R, η; t), (2.11)

where we denote R = (R · e1). Simplifying the right-hand side (see appendix B.1 for details),
we find:

d ⟨Xt⟩
dt

=
∑
χ

∑
µ=±1

1

τ
p(χ)µ µ

∑
η,R

(
1− ηR+eµ

)
Pχ(R, η; t)

=
1

2dτ

∑
χ

∑
µ=±1

p(χ)µ µ
(

1− k(χ)eµ (t)
)
. (2.12)

The mean position of the tracer is therefore controlled by the mean occupations of obstacles
in the vicinity of the tracer conditioned on the different possible directions χ of the active
force:

k(χ)eµ (t) =
〈
ηXt+eµ

〉
χ
. (2.13)

Note the 1/(2d) in the last line of (2.12) which comes from the definition of ⟨•⟩χ and∑
η,R Pχ(R, η; t) = 1/(2d).
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The velocity of the tracer is defined as the long time limit of the derivative of its mean
position:

V = lim
t→∞

d ⟨Xt⟩
dt

(2.14)

If we define k
(χ)
eµ = lim

t→∞
k(χ)eµ (t), we find from the above

V =
1

2dτ

∑
χ

∑
µ=±1

p(χ)µ µ
(

1− k(χ)eµ

)
. (2.15)

The determination of the velocity thus relies on the knowledge of the conditional density
profiles k

(χ)
eµ in the vicinity of the tracer.

Diffusion coefficient of a symmetric tracer

We here consider that the external force is zero: FE = 0. The mean position of the tracer
remains at the origin ⟨X t⟩ = 0, because the active force is in all directions with the same
probability. To characterise the dynamics of the tracer, we look at the variance of its position.
Its evolution equation is derived (in appendix B.1) from the master equation (2.2):

d

dt

〈
Xt

2
〉

=
1

2d

∑
χ

1

τ

{
p
(χ)
1

[
1− k(χ)e1

(t)
]

+ p
(χ)
−1

[
1− k(χ)e−1

(t)
]}
− 2

τ

[
p
(χ)
1 g̃e1(t)− p(χ)−1 g̃e−1(t)

]
+

1

2d

∑
χ

2 ⟨Xt⟩χ
τ

[
p
(χ)
1

(
1− k(χ)e1

(t)
)
− p(χ)−1

(
1− k(χ)e−1

(t)
)]
. (2.16)

We defined the conditional correlation profiles in the reference frame of the tracer, which
appear to control the diffusivity of the tracer:

g̃(χ)r (t) =
〈

(Xt − ⟨Xt⟩χ ηXt+r

〉
χ
. (2.17)

The diffusion coefficient of the symmetric tracer is defined as follows:

D = lim
t→∞

1

2

d ⟨X2
t ⟩

dt
. (2.18)

It involves k
(χ)
r , g̃

(χ)
r = lim

t→∞
g̃(χ)r (t), but also the mean position of the tracer when the active

force is in direction χ, Xχ = lim
t→∞
⟨Xt⟩χ. Its value is determined in appendix B.1. Finally, the

diffusion coefficient of the symmetric (FE = 0) run-and-tumble tracer reads:

D =
1

4dτ

∑
χ

∑
ϵ=±1

{
p(χ)ϵ

[
1− k(χ)eϵ

]
− 2ϵp(χ)ϵ g̃(χ)ϵ

}
+

2d− 1

2d

τ ∗

τ 2α

∑
χ

{∑
ϵ=±1

ϵp(χ)ϵ

[
1− k(χ)eϵ

]}2

.

(2.19)

In addition to the conditional density profiles k
(χ)
eµ , the determination of the diffusion coefficient

also requires the conditional correlation profiles g̃
(χ)
eµ in the vicinity of the tracer.
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2.2.2 Density and correlation profiles

We now determine the evolution equations of the quantities k
(χ)
eµ (t), g̃

(χ)
r (t) introduced

above. The conditional density profiles k
(χ)
eµ (t) =

〈
ηXt+eµ

〉
χ

express how the mean density

at a given distance of the tracer differs from the average density ρ because of the activity of

the tracer. The correlation profiles g̃
(χ)
r (t) =

〈
(Xt − ⟨Xt⟩χ ηXt+r

〉
χ

describe the correlation

between the displacement of the tracer and the density at a given distance of it. Therefore these
quantities naturally characterise the impact of the tracer on its environment. Reciprocally,
the results above show that, in turn, they control the displacement of the tracer. Therefore,
these quantities are central in the study of tracer diffusion. From the master equation, in
the same way as previously, we derive the evolution equation for the profiles (we recall that
ηXt = 0 by convention):

2dτ ∗∂tk
(χ)
r (t) =

∑
µ

(∇µ − δr,eµ∇−µ)k(χ)r (t) +
2dτ ∗

τ

∑
µ

p(χ)µ

〈
(1− ηXt+eµ)∇µηXt+r

〉
χ

+
α

2d− 1

∑
χ′ ̸=χ

k(χ
′)

r (t)− αk(χ)r (t), (2.20)

where ∇µ is the difference operator (∇µf(r) = f(r+eµ)−f(r)) and the one for the correlation
profiles:

2dτ∗∂tg̃
(χ)
r (t) =

∑
µ

(∇µ − δr,eµ∇−µ)g̃
(χ)
r (t) +

2dτ∗

τ

∑
µ

p(χ)µ

〈
(Xt − ⟨Xt⟩χ)(1− ηXt+eµ)∇µηXt+r

〉
χ

+
α

2d− 1

∑
χ′ ̸=χ

[
g̃
(χ′)
r (t)− g̃

(χ)
r (t) + (⟨Xt⟩χ′ − ⟨Xt⟩χ)(k

(χ′)
r (t)− k

(χ)
r (t))

]
+
∑
ϵ=±1

ϵp(χ)ϵ

〈
(1− ηXt+eϵ)

(
ηXt+r+eϵ − k

(χ)
r

)〉
χ
, (2.21)

We adopted the convention k
(χ)
0 (t) = g̃

(χ)
0 (t) = 0. As usual in many-body problems, the

evolution of these one site quantities (kχr (t) and g̃χr (t)) involves two site correlations:〈
(1− ηXt+eµ)∇µηXt+r

〉
χ

and
〈

(Xt − ⟨Xt⟩χ)(1− ηXt+eµ)∇µηXt+r

〉
χ
.

The evolution of these quantities involves in turn three site quantities, etc... This leads to an
infinite hierarchy of equations, similar to the BBGKY hierarchy in the theory of fluids [155].
In the next chapter, we present how we tackle this problem.



Chapter 3

Approximate closure of the hierarchy

In the previous chapter, we derived the expressions of the velocity (equation (2.15)) and
diffusivity (equation (2.19)) of the tracer in terms of the conditional density and correlation
profiles. In order to compute these quantities, we need to circumvent the infinite hierarchy
generated by the many body interactions in our system. In this chapter, we introduce an
approximation, a ”decoupling” scheme, which makes it possible to close the hierarchy. We
then present an analytical solution to the resulting equations.

Finally, we introduce a qualitative argument which is only valid under some hypothesis on
the parameters (low density, strong active force), which is based on a reduction of the problem
onto the free diffusion of an active particle. This argument will be useful to understand
physically how the interplay between the different timescales of the problem, giving rise to
the surprising phenomena that will be discussed in chapters 4 and 5.

Key results.

• Section 3.1: introduction of a decoupling approximation, amenable to an analytical
treatment (section 3.2), which will prove to be very accurate in a broad range of
parameters (chapters 4 and 5).

• Subsection 3.3.1: we argue that our resolution yields the exact linear dependence
on the density ρ in the low and high density limits, which are given explicitly (in
subsection 3.3.2 and 3.3.3).

• Section 3.4: qualitative analysis of the different competing timescales in the model.

3.1 Decoupling approximation

A decoupling approximation was introduced previously in the context of a biased tracer
(no activity, FA = 0 in the present framework) to compute its velocity [156, 157] and diffusion
coefficient [61, 62], on the infinite lattice Zd with d ≥ 2, and also in more general geometries.
It showed a great accuracy in a wide range of parameters, and proved to give predictions
which coincide with exact approaches in specific limits:

• In low-density, its predictions coincide, at linear order in ρ, with those of another
approach in which the diffusion of the tracer is seen as a succession of scattering events
due to interactions with independent obstacle [67, 94].

• In high-density, its predictions coincide, at linear order in 1− ρ, with another approach

49
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in which the diffusion of the tracer is mediated by the diffusion of vacancies, which
explore the lattice independently [129, 158, 159].

In the case of a symmetric passive tracer (FA = FE = 0), the decoupling approxima-
tion gives the same self-diffusion coefficient for the tracer as the theory of Nakazato and
Kitahara [38] which relies on projection operator techniques, and reads:

D =
1

2dτ
(1− ρ)

[
1− 2ρ τ

∗

τ
γ

2d
[
1 + τ∗

τ
(1− ρ)

]
−
[
1 + τ∗

τ
(1− 3ρ)γ

]] . (3.1)

It applies to different geometries (we will see that our present treatment is also adaptable to
different geometries), where the effect of the chosen geometry is encoded in the constant γ:

γ =



4− 8

π
for a 2D infinite lattice,

4

(2π)L

L−1∑
k=0

∫ 2π

0

sin(q)2

2− cos(q)− cos
(
2πk
L

)dq for a 2D stripe-like lattice,

6

(2π)3

∫ 2π

0

∫ 2π

0

∫ 2π

0

sin(q1)
2

3− cos(q1)− cos(q2)− cos(q3)
dq1dq2dq3 for a 3D infinite lattice.

(3.2)

Now, we extend the decoupling approximation in the presence of activity (FA ̸= 0).

3.1.1 Basic principle

The decoupling is a mean-field-type approximation which consists in neglecting the second
order fluctuations of occupation numbers ηr(t) around their conditional average with respect
to the direction χ of the active force. More precisely, in a given state χ, we write an occupation
number ηr(t) = k

(χ)
r (t) + δηr(t), then:

⟨ηr(t)ηe(t)⟩χ =
〈
(k(χ)r (t) + δηr(t))(k(χ)e (t) + δηe)(t)

〉
χ

= k(χ)r (t)k(χ)e (t) + ⟨δηr(t)δηe(t)⟩χ
≃ k(χ)r (t)k(χ)e (t). (3.3)

We used the fact that, by definition, ⟨δηr(t)⟩χ = 0. For the correlations with the tracer’s
position, we get:〈

(Xt − ⟨Xt⟩χ)ηr(t)ηe(t)
〉
χ

=
〈

(Xt − ⟨Xt⟩χ)(k(χ)r (t) + δηr(t))(k(χ)e (t) + δηe)(t)
〉
χ

= g̃(χ)r (t)k(χ)e (t) + k(χ)r (t)g̃(χ)e (t) +
〈

(Xt − ⟨Xt⟩χ)δηr(t)δηe(t)
〉
χ

≃ g̃(χ)r (t)k(χ)e (t) + k(χ)r (t)g̃(χ)e (t). (3.4)

We used the fact that
〈

(Xt − ⟨Xt⟩χ)δηr(t)
〉
χ

=
〈

(Xt − ⟨Xt⟩χ)ηr(t)
〉
χ

= g̃
(χ)
r .

Since this approximation is based on the assumption that we can neglect some correlations,
we expect it to be more accurate as the dimension of the space increases. In this part, we will
focus on dimension d ≥ 2.

3.1.2 New closed equations for the conditional profiles

We then use these assumptions to close equations (2.20, 2.21). This yields nonlinear, but

closed, equations. We introduce the quantity h
(χ)
r = k

(χ)
r − ρ (with the convention h

(χ)
0 = 0),
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Figure 3.1: Resolution of (3.5) with an Euler method and plot of d⟨Xt⟩
dt

using (2.12). We use
a time step equal to min(τ, τ ∗, τα)/100. We observe that the stationary regime is reached for
times t ≳ 100τM where τM = max(τ, τ ∗, τα).

which has the advantage to vanish for large r (this will be useful for the resolution of the
equations). The closed equations read (we omit the dependence on t to lighten notations):

2dτ ∗∂th
(χ)
r =

∑
µ

A(χ)
µ (∇µ+δr,eµ)h(χ)r +ρ

∑
µ

δr,eµ(Aµ−A−µ)−αh(χ)r +
α

2d− 1

∑
χ′ ̸=χ

h(χ
′)

r , (3.5)

where we defined A
(χ)
µ (t) = 1 + 2dτ∗

τ
p
(χ)
µ [1− ρ− h(χ)eµ (t)]. For the correlation profiles:

2dτ∗∂tg̃
(χ)
r =

∑
µ

A(χ)
µ (∇µ + δr,eµ)g̃

(χ)
r +

α

2d− 1

∑
χ′ ̸=χ

[
g̃
(χ′)
r − g̃

(χ)
r + (⟨Xt⟩χ′ − ⟨Xt⟩χ)(h

(χ′)
r − h

(χ)
r )
]

+
∑
µ

δr,eµ

[(
A

(χ)
−µ − 1

)
ρ(eµ · e1)−

2dτ∗

τ

(
p(χ)µ g̃

(χ)
eµ

(
h
(χ)
eµ + ρ

)
− ρp

(χ)
−µg̃

(χ)
e−µ

)]
+

2dτ∗

τ

∑
µ=±1

µp(χ)µ ∇µh(χ)r

(
1− ρ− h

(χ)
eµ

)
− 2dτ∗

τ

∑
µ

p(χ)µ g̃
(χ)
eµ ∇µh(χ)r , (3.6)

These equations can first be solved numerically with an Euler method. To perform this
numerical resolution, we choose a cut-off length L ∈ N, and we consider only the h

(χ)
r (t)

and g̃
(χ)
r (t) such that r has no component greater than L. We add the boundary condition

that h
(χ)
r (t) = g̃

(χ)
r (t) = 0 whenever r has a component equal to L. This choice of boundary

condition is coherent with the fact that h
(χ)
r (t) and g̃

(χ)
r (t) vanish when r goes to infinity. In

figure 3.1, we give an illustration of the evolution of the derivative of the mean position of the
tracer according to this resolution.

In the following, we will only be interested in the long time limits of h and g since we
study the stationary velocity and diffusion coefficient. To get a quick convergence to this final
value in the Euler method, we choose a time step as big as possible while keeping the scheme
stable:

dt =
r

1

τα
+

1

τ
+

1

τ ∗

, (3.7)

where r ≲ 1 is chosen empirically. An important future development would be to study the
features of the transient regime.

In the next section, we derive closed form implicit expressions for the stationary velocity
and diffusion coefficient.
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3.2 Analytical resolution

In the stationary regime, the left-hand-side of equations (3.5, 3.6) vanishes. The long

time limits of h
(χ)
r and g̃

(χ)
r therefore verify a nonlinear system of equations (with an infinite

number of unknowns). We can rephrase this system in terms of a closed nonlinear system

of equation for the quantities h
(χ)
eµ and g̃

(χ)
eµ (profiles and correlations in the vicinity of the

tracer, which are the one involved in the expressions (2.15, 2.19) of the velocity and diffusion
coefficient, and are in finite number) using Fourier transforms:

H(χ)(q) =
∑
r

eiq·rh(χ)r , (3.8)

G(χ)(q) =
∑
r

eiq·rg̃(χ)r . (3.9)

3.2.1 Equations in Fourier space

These Fourier transforms in the stationary regime (t→∞) verify the following equations:

0 =K(χ)H(χ) +K
(χ)
0 − αH(χ) +

α

2d− 1

∑
χ′ ̸=χ

H(χ′) (3.10)

0 =K(χ)G(χ) + J
(χ)
H H(χ) + J

(χ)
0 +

α

2d− 1

∑
χ′ ̸=χ

(Xχ′ −Xχ)
(
H(χ′) −H(χ)

)
− αG(χ) +

α

2d− 1

∑
χ′ ̸=χ

G(χ′). (3.11)

If we denote h
(χ)
µ = h

(χ)
eµ and g̃

(χ)
µ = g̃

(χ)
eµ , the functions involved in the Fourier transform are

(we also denote qµ = q · eµ and e−µ = −eµ):

K(χ)(q) =
∑
µ

(
e−iqµ − 1

)
A(χ)
µ (3.12)

K
(χ)
0 (q) =

∑
µ

(
eiqµ − 1

)
A(χ)
µ h(χ)µ + 2i

d∑
j=1

[
A

(χ)
j − A(χ)

−j

]
sin(qj) (3.13)

J
(χ)
H (q) =

∑
µ=±1

µ
(
A(χ)
µ − 1

) (
e−iqµ − 1

)
− 2dτ ∗

τ

∑
µ

p(χ)µ g̃(χ)µ (e−iqµ − 1) (3.14)

J
(χ)
0 (q) =

∑
µ

(eiqµ − 1)

(
A(χ)
µ −

2dτ ∗

τ
p(χ)µ h(χ)µ

)
g̃(χ)µ − ρ

2dτ ∗

τ
2i

d∑
j=1

sin(qj)(p
(χ)
j g̃

(χ)
j − p(χ)−j g̃

(χ)
−j )

−
∑
µ=±1

µ(A(χ)
µ − 1)

(
ρe−iqµ + h(χ)µ

)
. (3.15)

We introduce the following matrix M (q) indexed by (χ, χ′) ∈ {±1, ...,±d}2, that we will use
to rephrase the above equations in a matrix form:

[M (q)]χ,χ′ =

(
−α +

∑
µ

(
e−iqµ − 1

)
A(χ)
µ )

)
δχ,χ′ +

α

2d− 1
(1− δχ,χ′). (3.16)
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3.2.2 Non driven active tracer

We first study the case where FE = 0. Thanks to symmetries, detailed in appendix B.2,
we have only 3 independent values for h

(χ)
µ and 4 for g̃

(χ)
µ . Therefore, the following vectors

contain all the values of interest:

h =


h
(1)
1

h
(−1)
1

h
(2)
1

h
(−2)
1

 and g =


g̃
(1)
1

g̃
(1)
−1

g̃
(1)
2

g̃
(2)
1

 . (3.17)

Now for simplicity we focus on dimension d = 2. Using symmetries, the matrix equation
verified by H =

(
H(χ)(q)

)
χ∈{±1,±2} can be written in the following form (to lighten notations,

we do not write dependencies on q):

M ·H + Λ · h + S = 0. (3.18)

The different matrices are precised in appendix B.3.1. Finally we can perform the inverse
Fourier transform and get the following nonlinear system of unknowns h

(χ)
µ (we recall that

the unknowns also appear in the definition of M through A
(χ)
µ ):(

1 +

∫
q

e−iq1M−1Λ

)
· h = −

∫
q

e−iq1M−1S , (3.19)

where we use the shorthand notation
∫
q

=
∫
[−π,π]d

dq
(2π)d

for the inverse Fourier transform.

This nonlinear system can be solved numerically. Similarly, the matricial equation on
G =

(
G(χ)(q)

)
χ∈{±1,±2} can be written with matrices defined in appendix B.3.1:

M ·G + ΛG · g + X ·H + E + F = 0. (3.20)

We can perform an inverse Fourier transform of this system, to get the final linear system on
g̃
(χ)
µ :

(1 + L) · g = −B . (3.21)

The matrices involved in equations (3.20, 3.21) are directly obtained from the Fourier trans-
forms (3.10) and (3.11), and are given in appendix B.3.1.

3.2.3 Driven active tracer

In the general case FE ≠ 0, we will be interested only in the mean velocity of the tracer.
That is why we tackle only the density profiles, which are necessary to compute it. In this
case, there are less symmetries, leading to 11 (10 if d = 2) independent values for the h

(χ)
µ (see

below). We explain how to get the non-linear system on these values, but we do not give it
explicitly under a 10× 10 matrix form. Equation (3.10) can be written in the 2d× 2d matrix
form:

M (q)H(q) + SD(q) = 0, (3.22)

with the 2d dimensional vector SD defined by:

SD(q)χ =
∑
µ

(
eiqµ − 1

)
A(χ)
µ h(χ)µ + 2i

d∑
j=1

[
A

(χ)
j − A(χ)

−j

]
sin(qj). (3.23)
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By inverting this matricial equation H(q) = −M−1(q)SD(q), we get an expression of H(χ)

in function of the quantities
(
h
(χ)
µ

)
(µ,χ)∈{±1,...,±d}2

and the parameters of the problem. By

taking the inverse Fourier transform of H(χ) at the point eµ, we get the following equation:

h(χ)µ = −
∫
[−π,π]d

dq

(2π)d
e−iq·eµ [M−1(q)SD(q)]χ (3.24)

This is a non-linear equation (because h
(χ)
µ also appears in A

(χ)
µ ) involving only the densities

in the vicinity of the tracer
(
h
(χ)
µ

)
(µ,χ)∈{±1,...,±d}2

and the parameters of the model. At first

sight, it may seem that we need to perform (2d)2 Fourier integrals in order to get enough

equations to solve for the h
(χ)
µ , but in fact the number of independent unknowns is reduced to

10 for d = 2 and 11 for d ≥ 3 thanks to symmetries, given in appendix B.2.
As a consequence, the following nonlinear system is closed and constitutes the analytical

solution of the equations for the mean density in the vicinity of the tracer in the permanent
regime, within our approximation scheme:

h(χ)µ = −
∫
[−π,π]d

dq

(2π)d
e−iq·eµ [M−1(q)SD(q)]χ, for (χ, µ) ∈ {±1} × {±1, 2} ∪ {2} × {±1,±2, 3} .

(3.25)

Matrices M and SD are defined in (3.16, 3.23).
Finally, note that we can get the whole density profiles once the systems are solved and

the h
(χ)
µ are known. We use H(q) = −M−1(q)SD(q) (the right-hand side only depends on(

h
(χ)
µ

)
(µ,χ)∈{±1,...,±d}2

and the parameters of the problem) from where we can compute any

h
(χ)
r by taking the inverse Fourier transform:

h(χ)r = −
∫
[−π,π]d

dq

(2π)d
e−iq·r[M−1(q)SD(q)]χ. (3.26)

The same method can give h
(χ)
r and g̃

(χ)
r in the symmetric case once h

(χ)
µ and g̃

(χ)
µ are known.

Comparison with the Euler method

In order to get numerical values for the conditional profiles using the implicit solutions
above (3.19, 3.20, 3.25), we must find (numerically) the root of matrix expressions involving
matrix inversion, and inverse Fourier transforms. As a consequence, it is not always more
efficient than the Euler method presented before (in section 3.1.2), even though the latter

method requires the computation of all the h
(χ)
r and g̃

(χ)
r at different time steps (whereas the

implicit solutions directly gives the solution for the profiles in the vicinity of the tracer h
(χ)
µ

and g̃
(χ)
µ which control the velocity and diffusivity of the tracer).

The main interest of these implicit solutions (3.19, 3.20, 3.25) is rather the fact that they
become exact and explicit to leading order in the density ρ at low density and to leading
order in 1− ρ in high density, as we will see in the next section (3.3).

3.3 Low and high density regimes

Here, we argue that our decoupling approach is exact at linear order in the density. Then,
we show how to solve explicitly the equations (3.19) and (3.20) in the low and high-density
regimes.
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3.3.1 Closure of the hierarchy at linear order

If we look at the non closed terms in equations (2.20, 2.21)
〈
(1− ηXt+eµ)ηXt+r

〉
χ

and〈
(Xt − ⟨Xt⟩χ)(1− ηXt+eµ)ηXt+r

〉
χ
, we expect that in the low and high density limits, these

terms become closed at first order. Indeed, let us write at low density:〈
(1− ηXt+eµ)ηXt+r

〉
χ

= k(χ)r −
〈
ηXt+eµηXt+r

〉
χ

= k(χ)r +Oρ→0(ρ
2), (3.27)

and at high density:〈
(1− ηXt+eµ)ηXt+r

〉
χ

= (1− k(χ)eµ )−
〈
(1− ηXt+eµ)(1− ηXt+r

〉
χ
)

= (1− k(χ)eµ ) +Oρ→1((1− ρ)2). (3.28)

We have supposed that the occupation numbers are not too much correlated so that we can
suppose that N site correlations are of order ρN . As a consequence, equations (2.20, 2.21)
become closed and linear to leading order in these regimes. The decoupling approximation
gives the same first order expansion as in (3.27, 3.28), so we expect it to be exact at this
order.

In the following subsections, we show, in the case of a non driven active tracer (FE = 0)
that the analytical solution presented above becomes explicit to leading (linear) order in the
density ρ (i.e. does not require the resolution of an implicit equation).

3.3.2 Low density limit

In the low-density limit, the density profiles h
(χ)
µ and the correlation functions g̃

(χ)
µ are

expanded as h
(χ)
µ =ρ→0ρh

(χ)
0,µ +O(ρ2) and g̃

(χ)
µ =ρ→0ρg̃

(χ)
0,µ +O(ρ2). The diffusion coefficient (2.19)

is expanded as D = D0 + ρD0 +O(ρ2), with

D0 =
1

2dτ
+

2d− 1

d

τ ∗

τ 2α
[p

(1)
1 − p(1)−1]

2, (3.29)

D0 = − 1

4dτ

∑
χ

∑
ϵ=±1

p(χ)ϵ (1 + h
(χ)
0,ϵ ) + 2ϵp(χ)ϵ g̃

(χ)
0,ϵ − 2

2d− 1

d

τ ∗

τ 2α
[p

(1)
1 − p(1)−1]

∑
ϵ=±1

ϵp(1)ϵ (1 + h
(1)
0,ϵ).

(3.30)
In this limit, the linear dependence on ρ of the profiles is contained in:

h0 =


h
(1)
0,1

h
(−1)
0,1

h
(2)
0,1

h
(−2)
0,1

 and g0 =


g̃
(1)
0,1

g̃
(1)
0,−1

g̃
(1)
0,2

g̃
(2)
0,1

 . (3.31)

As for the density profiles, h0 is obtained by solving the following linear system:

Mh,0h0 = xh,0 (3.32)

with Mh,0 ≡ 1 +
∫
q
e−iq1M0

−1Λ0 and xh,0 ≡ −
∫
q
e−iq1M0

−1S0. We denoted M0(q) is the

ρ→ 0 limit of M (q), with off-diagonal coefficients all equal to α/3, and diagonal coefficients

given by [M0(q)]χχ = −α +
∑

µ

(
e−iq·eµ − 1

)
a
(χ)
µ , with a

(χ)
µ = 1 + 4 τ

∗

τ
p
(χ)
µ . We recall the

shorthand notation
∫
q

=
∫
[−π,π]d

dq
(2π)d

for the inverse Fourier transform. The expressions of the
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matrix Λ0 and of the vector S0 are given in appendix B.3.2. Contrary to the arbitrary-density
case, here the matrices are given explicitly in function of the parameters, with no dependence
on the unknown h0.

Similarly, we get the linear dependence on ρ of the correlation profiles by solving the linear
system Mg̃,0g̃0 = xg̃,0 with matrices defined in appendix B.3.2.

The predictions of this low-density expansion for the diffusion coefficient are plotted in
figure 4.1. Even though this result is explicit (it simply requires the resolution of a linear
system), the expressions obtained involve inverse Fourier transforms of complicated rational
functions. In the high-density limit, we will be able to even simplify these inverse Fourier
transforms by expressing them in terms of generating functions of propagators of isolated
random walkers.

3.3.3 High density limit

In the high-density limit ρ→ 1, writing the expansions h
(χ)
µ =ρ→1(1− ρ)h

(χ)
1,µ +O[(1− ρ)2],

g̃
(χ)
µ =ρ→1(1 − ρ)g̃

(χ)
1,µ + O[(1 − ρ)2], and using equation (2.19) yields the asymptotic form of

the diffusion coefficient D=ρ→1(1− ρ)D1 +O[(1− ρ)2] with

D1 =
1

4dτ

∑
χ

∑
ϵ=±1

p(χ)ϵ (1− h(χ)1,ϵ )− 2ϵp(χ)ϵ g̃
(χ)
1,ϵ . (3.33)

We introduce the vectors of the linear dependencies in (1− ρ) for the 3 independent values of

h
(χ)
µ (thanks to symmetries (B.10)) and the 4 of g̃

(χ)
µ (B.11):

h1 =

 h
(1)
1,1

h
(−1)
1,1

h
(2)
1,1

 and g1 =


g̃
(1)
1,1

g̃
(1)
1,−1

g̃
(1)
1,2

g̃
(2)
1,1

 . (3.34)

Interestingly, in the high-density regime, the matrix M(q) (3.16) simplifies even further
than in the low-density regime, and has all off-diagonal coefficients equal to −α/(2d− 1), and
all diagonal coefficients equal to −α + 2d[λ(q)− 1] where λ(q) =

∑
µ

1
2d
e−iqµ is the structure

factor associated to the random walk of an isolated symmetric random walker [160]. The high
density limit of the matrix M (q) can be explicitly reduced for any value of the dimension d
by noticing that its eigenvalues are 2d(λ(q)− 1), associated to the eigenvector (1)i∈J1,2dK and
2d[λ(q)− 1− α/(2d− 1)] associated to the space orthogonal to (1)i∈J1,2dK.

Thanks to this diagonalisation of M(q) at high density, we can derive from (3.10) and
(3.11) linear systems Mh,1h1 = xh,1 and Mg̃,1g̃1 = xg̃,1. These systems are derived in a
generic manner for any dimension d and the matrices involved are given in appendix B.3.2.

Remarkably, these matrices only depend on Q̂(r|0; ζ) =
∫
q
e−iq·r/[1− ζλ(q)], which is the

generating function associated with the propagator of an isolated random walk starting from
0 and arriving at site r on a d-dimensional lattice [160]. The lattice geometry is encoded in
this fundamental quantity, and it is remarkable that the solution to a many-body problem is
expressed in terms of these single-body quantities in the high-density limit.
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Figure 3.2: Illustration of the three possible ways for the tracer to circumvent an obstacle
along the horizontal axis and associated rates in a two dimensional geometry.

Note that the solution of the system Mh,1h1 = xh,1 is surprisingly simple:

h
(1)
±1 =

ρ→1
±(1− ρ)

2dτ ∗

τ
b
(
p
(1)
1 − p(1)−1

)
2dτ ∗

τ
b
(
p
(1)
1 + p

(1)
−1

)
+ 2d− b

+O[(1− ρ)2], (3.35)

h
(1)
±2 =

ρ→1
O[(1− ρ)2], (3.36)

b = ζ[Q̂(0|0; ζ)− Q̂(2e1|0; ζ)].

It is very similar to the formula obtained for a passive driven tracer in [62], where the same
expression is obtained, but with ζ = 1 in the definition of b. Here the activity is taken into
account in the expression through taking ζ < 1.

Finally, we stress the fact that the solutions in low and high-density limits presented here
are explicit, and exact at linear order according to our argument (3.27, 3.28).

3.4 Qualitative argument

In order to better understand physically the mechanisms at work in our model, we present
here a qualitative argument which makes it possible to compute directly the stationary velocity
and diffusion coefficient of the tracer. The major drawbacks of this argument compared to
the decoupling approximation is that (i) it does not give access to the density and correlation
profiles and that (ii) it fails in dense regimes (ρ ≳ 0.1).

At low density, the obstacles can be assumed independent and the probability for the
tracer to find an obstacle at a given site is ρ. For a given orientation of the active force
χ, the average waiting time of the tracer between two jumps is therefore approximated by
τ +ρτ

(χ)
p , where τ

(χ)
p is the mean time that the tracer spends with a bath particles on one of its

neighboring sites along the horizontal axis (since we are interested in velocity and diffusivity
along this axis), and accounts for the trapping effect caused by the passive crowders.

We can evaluate the mean trapping time by considering that the escape from a trap can
be caused by three independent events following exponential laws (see figure 3.2):

• the obstacle moves in a transverse direction (there are 2d − 2 such directions) with
characteristic time 2dτ∗

(2d−2)
,
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• the active force changes direction with characteristic time τα (this makes sense especially
if FA ≫ 1 and τα ≫ τ),

• the tracer moves in a direction transverse to the horizontal axis with characteristic time
τ

(1−p(χ)
1 −p(χ)

−1 )
.

Consequently the mean trapping time follows an exponential law of characteristic time τ
(χ)
p

given by

1

τ
(χ)
p

=
(2d− 2)

2dτ ∗
+

1

τα
+

(1− p(χ)1 − p(χ)−1 )

τ
. (3.37)

Under these hypotheses, the tracer behaves like an isolated tracer (i.e. absence of obstacles)

with a characteristic jump time that depends on the state χ and equal to τ + ρτ
(χ)
p and with

unchanged jump probabilities p
(χ)
µ . For an isolated tracer (ρ = k

(χ)
r = g̃

(χ)
r = 0), formulas for

the velocity (2.15) and diffusion coefficient (2.19) become explicit. The qualitative argument
then yields:

V ≃ 1

2d

∑
χ

p
(χ)
1 − p(χ)−1

τ + ρτ
(χ)
p

, (3.38)

D ≃ 1

4d

∑
χ

p
(χ)
1 + p

(χ)
−1

τ + ρτ
(χ)
p

+
(2d− 1)τα

4d2

∑
χ

{
p
(χ)
1 − p(χ)−1

τ + ρτ
(χ)
p

}2

if FE = 0 (3.39)

We would expect these expressions to only match qualitatively the results obtained by
the other methods, but we will see that in fact this argument become very accurate as the
density goes to zero.

3.5 Summary

In a nutshell, in order to close the infinite hierarchy associated to our many-body problem,
we generalised the decoupling approximation, which was used with success in the case of a
passive trace [61, 62, 156, 157]. It relies on a assumption that reduces the infinite hierarchy
of equations to a finite set of nonlinear equations. We can express their analytical solution in
terms of implicit equations that can be solved numerically at low computational cost. We
argue in section 3.3.1 that our resolution becomes in fact exact in the dense and dilute limits,
in which cases we computed explicitly the observables of interest.

In addition to the decoupling approximation, which provides a complete solution for
the observables of interest (velocity (2.15) and density profiles (2.13), diffusion coefficient
(2.19) and correlation profiles (2.17)), we also introduced a qualitative argument. This
argument relies on several assumptions, being consequently acceptable only in a small range
of parameters of the model. It does not give access to the density and correlation profiles.
However, it makes it possible to get explicit analytical formulas for the velocity (3.38) and
diffusion coefficient (3.39) of the tracer in function of the different timescales of the problem.
This provides insight into the physical mechanisms at work in the interaction between the
tracer and the bath.

Finally, we will also evaluate the observables of interest using Monte Carlo simulations.
This method is computationally heavy (compared to the decoupling approximation), but
needs no assumptions. It is an exact sampling of the master equation (2.2); the simulation
method is presented in appendix A.3. We will use it as a standard for the assessment of the
accuracy of the other methods.



Chapter 4

Non monotony of the diffusion
coefficient

In this chapter we focus on the run-and-tumble tracer in the absence of an external force
(FE = 0). We compute its diffusion coefficient using the different methods presented in
chapter 3 (namely decoupling approximation 3.1, qualitative argument 3.4 and Monte Carlo
simulations) and we compare their results. Then we explore the space of parameters using the
decoupling approximation, which has low computational cost, and, as we proceed to show, a
good accuracy in a broad range of parameters (note that performing an extensive exploration
using Monte Carlo simulations would be too costly computationally).

Importantly, we unveil counter intuitive behaviours of the diffusion coefficient when varying
the activity parameters (intensity of the active force FA and persistence time τα). Finally,
using our qualitative argument, we interpret these phenomena in terms of the competing
timescales of the model.

Key results.

• Section 4.1: check of the good accuracy of the decoupling approximation.

• Section 4.2: analysis and characterisation of the non-monotonic dependence of the
diffusion coefficient on the activity parameters.

4.1 Validation of the decoupling approximations

We verify that our analytical predictions using the decoupling approximation (section 3.1)
are reliable in a certain range of parameters by comparing them to Monte Carlo simulations.

4.1.1 Diffusion coefficient

Comparing Monte Carlo simulations to the decoupling approach (equations (2.19), (3.5),
and (3.6)) on a two-dimensional infinite lattice (figure 4.1 (a) and (b)), the agreement is very
good for all densities ρ for different values of the parameters FA, τ

∗, τα (we take τ = 1, which
fixes the unit of time in our model).

We also extend our resolution to other lattice geometries, provided that they remain
translation-invariant. More specifically, we consider the case of a 2D stripe-like lattice (infinite
in one direction and finite of width L with periodic boundary conditions in the other direction),

59
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Figure 4.1: Diffusion coefficient of an active tracer on a 2D lattice (a,b), a 3D lattice (c) and
a 2D capillary of width L = 3 (d), as a function of the density ρ, for several values of the
active force FA and the persistence time τα. Symbols: Monte-Carlo simulations. Solid lines:
decoupling approach [Eqs. (2.19), (3.5), and (3.6)]. Dotted lines: asymptotic expansion in
the low-density regime (see 3.3.2, equations (3.29, 3.30)). Dashed lines: case of a passive
tracer [38].

which schematically mimics narrow channels and confined systems, and of a 3D infinite lattice
(figure 4.1 (c) and (d)).

Like in the theory for a passive tracer [38], the accuracy of our decoupling approximation
improves when the crowding environment is more mobile (typically τ ∗/τ ≲ 10) or when
the dimension of the lattice is higher, which is what we expect from a mean-field type
approximation.

4.1.2 Density profiles

Furthermore, we emphasize that our decoupling approach allows us to go beyond the
determination of the only diffusion coefficient of the tracer, and gives access to the perturbation
induced by the activity of the tracer on its environment, with good accuracy according to
figure 4.2. The density profiles h

(χ)
r and the correlation profiles g̃

(χ)
r unveil the interplay

between the displacement of the active tracer and the response of its environment, which is
major novelty compared to previous descriptions of a run-and-tumble tracer on a lattice [64].

In particular, we observe and quantify an accumulation of bath particles in front of the
tracer and a depletion behind it. In figure 4.2, the plot (a) shows that when the active force
is in direction +1, we observe an increase of the density of obstacles in this direction and a
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Figure 4.2: (a) Density profiles (conditioned on the activity being in state χ = 1) and (b)
tracer-bath correlation functions (averaged on all the states) as a function of the distance to
the tracer, on a 2D lattice. The values of the forces FA respectively correspond to transition
probabilities p

(1)
1 = 0.39, 0.67 and 0.99. Symbols: Monte-Carlo simulations. Solid lines:

decoupling approach.

decrease in the opposite direction. The plot (b) displays g̃r = ⟨XtηXt+r⟩ = 1
2d

∑
χ g̃

χ
r +Xχk

(χ)
r .

It is the correlation between the displacement of the tracer and the density of obstacles; as
expected, it is positive in front of the tracer, and negative behind (the tracer ”pushes” the
obstacles when it moves). This local anisotropy of the environment of the tracer is a direct
consequence of its activity, and increases when the active force is stronger.

4.2 Non monotonic dependence on the activity param-

eters

Before going into the counter intuitive effects we observe as a result of the interplay
between activity and crowding, we recall what is predicted for an active run-and-tumble tracer
in the absence of crowding.

4.2.1 Isolated run-and-tumble tracer

As already noticed before, the expression for the diffusion coefficient (2.19) (k
(χ)
r = g̃

(χ)
r = 0)

becomes explicit in the absence of obstacles.

Disolated =
1

2dτ
+

2d− 1

2d2
τα
τ 2

(
p
(1)
1 − p(1)−1

)2
(4.1)

The first term corresponds to the diffusion coefficient of a passive tracer (FA = 0) on a lattice.
The second term expresses the effect of activity on the diffusion coefficient, and is always
positive; activity can only lead to an enhanced diffusivity. Moreover, Disolated is an increasing
function of the active force FA and the persistence time τ − α; the more directive the active
tracer, the better it diffuses. We will see that this does not hold anymore in a crowded
environment.

In a recent work [161], the free diffusion of an active tracer is studied extensively in a
similar model.
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Figure 4.3: Non-monotony of D as a function of the persistence time τα, at density ρ = 0.1
and ρ = 0.99. As usual, τ = 1. Symbols: Monte-Carlo simulations. Solid lines: analytical
approach. Dashed lines: passive tracer.

4.2.2 Effect of crowding

Using our decoupling approach, we study the dependence of the diffusion coefficient on the
persistence time τα in the presence of obstacles (ρ > 0). The asymptotic limits τα → 0 and
τα →∞ are known: when the persistence time becomes very small, the diffusion coefficient is
finite and equal to that of a passive tracer [38], while in the limit of an infinitely persistent
tracer, the diffusion coefficient is expected to diverge as the motion of a tracer becomes ballistic
(except in the specific limit of fixed obstacles τ ∗ →∞ and infinite active force FA →∞ where
the tracer remains forever blocked behind an obstacle and the diffusion coefficient goes to
zero).

Our analysis reveals that the diffusion coefficient can exhibit a non monotonic behavior
between these two limits, as previously observed in the low-density limit [43]. This effect
remains when τ ∗/τ <∞, but was only studied in the situation of an infinite active force, i.e.
in the limit where the tracer cannot step sideways from its persistence direction [43]. Here,
we go further and consider the effect of a finite active force, and an arbitrary density. For a
given value of ρ and τ ∗/τ , the non-monotony of the diffusion coefficient persists as long as the
active force is large enough, as shown in Fig. 4.3 (see also 4.2.3). This effect results from the
competition between the different timescales governing the diffusion of the tracer (discussed
in the next section 4.2.3). In some configurations (such as ρ = 0.99 in figure 4.3), the diffusion
coefficient of the active tracer can even become smaller that the one of the passive tracer.

We build a phase diagram (figure 4.4 (a)) which represents the critical value of τ ∗/τ above
which D becomes a non-monotonic function of τα (for given density ρ and force FA). Note
that such a diagram (built by logarithmic dichotomy) would need much more computing
power if built using Monte Carlo simulations.

We also observe a non-monotony of the diffusion coefficient with the active force FA
(figure 4.4 (b)), which is reminiscent of previous observations in the case of an infinitely
persistent tracer [62]. As we can see in this plot (figure 4.4 (b)), the decoupling approximation
is in quantitative agreement with Monte Carlo simulations, whereas the qualitative argument
only qualitatively reproduces the real features of the model. Nevertheless, as we proceed
to show in the next section, the qualitative argument is a valuable tool to understand the
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Figure 4.4: Left (a). Region of the non-monotony of the diffusion coefficient with τα in
the plane (ρ,τ ∗/τ): above the curves, D is a non-monotonic function of τα. At low density
and strong active force, the qualitative argument (equation (3.39)) (dotted lines) and the
decoupling approximation (straight lines) coincide. Symbols: Monte Carlo simulations; filled
circle means non monotony is observed at this point, an empty one means it is not. Right
(b). Non-monotony of the diffusion coefficient as a function of the magnitude of the active
force FA. The symbols represent the results from Monte Carlo simulations, the solid lines
are the results from our decoupling approach. Dotted lines: qualitative argument (3.39), less
accurate as the density increases. Dashed lines: passive tracer.

physical mechanism at the origin of the non-monotonies we observed.

4.2.3 Qualitative analysis

The qualitative argument’s formula for the diffusion coefficient (3.39) can give us meaningful
insights into the behaviour of the tracer as a function of the parameters for any lattice dimension
d ≥ 2. For instance, we can use the formulas derived below to design, in first approach,
an active tracer which will be trapped in certain media and diffuse quickly in others, and
therefore target a specific medium for example. This analysis comes as a complement to the
decoupling approximation approach, which outperforms it since (i) it describe the response of
the environment (figure 4.2) (ii) it remains accurate in denser regimes (see figures 4.4 and 4.1).

Accuracy at very low density

In figure 4.5, we compare the diffusion coefficient computed using the decoupling approx-
imation (equations (2.19), (3.5), and (3.6)) and the qualitative argument (equation (3.39))
with near infinite active force (FA = 104), at low density and for low (τ ∗ = 106) and high
(τ ∗ = 0.1) mobility of obstacles. When the density goes to zero, the qualitative argument
turns out to be quantitatively equivalent to the decoupling approximation, even for arbitrarily
slow obstacles.

Minimum and maximum of diffusion

We consider a fully directive run-and-tumble tracer (FA =∞) in the case where the tracer
can remain trapped for a long time ρτp ≫ τ . For this regime to exist, we need a choice of
parameters such that ρτ ∗ ≫ τ , namely slow obstacles. Precise formulas (with dependence on
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Figure 4.5: Comparison of the diffusion coefficients computed by the two methods: decoupling
approximation 3.1 and qualitative argument [equation (3.39)] in the case of a very large active
force. Remarkably, the agreement is almost perfect at very low density, whatever the mobility
of obstacle (even for large τ ∗). Dashed lines: case of a passive tracer [38] (τα → 0 or FA = 0).

the dimension d) and more details on the methods and hypothesis can be found in appendix
C, here we summarise the results.

In this regime, the diffusion coefficient successively goes through a maximum Dmax and
minimum Dmin before diverging (illustration in figure 4.5 at τ ∗ = 106) as τα increases (except
for fixed obstacles and infinite active force, τ ∗, FA = +∞, in which case the diffusion coefficient
goes to zero). The scalings of Dmax, Dmin and the persistence time for which they are reached
τMα and τmα are given in table 4.1.

Condition Persistence time Diffusion coefficient

Minimum of diffusion ρτ ∗ ≫ τ τmα ∝ τ ∗ Dmin ∝
1

ρ2τ ∗

Maximum of diffusion ρτ ∗ ≫ τ τMα ∝
τ

ρ
Dmax ∝

1

ρτ

Table 4.1: Scalings of the extreme diffusion coefficients as a function of the persistence time
τα.

When the persistence time is close to the time between two jumps of obstacles, tumbling
is useless in escaping obstacles (the obstacle would have moved anyway), so that it simply
prevents the tracer from going forward and exploring new territory. We see that this can lead
to a huge drop of diffusivity in certain media. On the contrary when the persistence time is
smartly adjusted so that it is close to the mean duration the tracer will spend between two
obstacles τ

ρ
, the diffusivity is optimised. By tuning the parameters, one could design an active

tracer which would diffuse quickly in most environments until it reaches a target environment
where its diffusivity will drop drastically (it will be trapped there).
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Analytic criteria for existence of non monotony

In the case of an infinite active force FA →∞, we find the following analytic expression
for the critical timescale of displacement of obstacles τ ∗c (with τ = 1) above which there exists
non monotony of the diffusion coefficient as a function of the persistence time τα:

τ ∗c ≃
(

8− 8

d

)
1

ρ
. (4.2)

Non monotony exists for all lattice dimensions (we always consider d ≥ 2), but requires slower
obstacles as the dimension increases (more escape options in higher dimension).

In the case of a finite active force FA ≫ 1, there is a critical surface defined by an equation
given in appendix C. The most interesting consequence is that under some critical density ρC ,
there cannot be non monotony anymore, whatever the value of τ ∗:

ρC ≃
16(d− 1)

2d− 2 + eFA/2
. (4.3)

It means that if the obstacle are too sparse, the small deviations of the tracer from the
direction of the active force, which are allowed by FA < +∞, will always be enough for the
tracer not to be trapped.

At first sight, the formulas (4.2,4.3) should hold only qualitatively since they are ob-
tained from the qualitative argument 3.4, but, as we can see in figure 4.4 (a), they closely
match the predictions of the decoupling approximation in the low-density limit. Since we
believe the decoupling approximation to be exact in this limit (as argued in section 3.3.1),
equations (4.2,4.3) can be regarded as very accurate in this limit.

Conclusion

In conclusion, we checked that the decoupling approximation is accurate in wide range of
parameters to compute the profiles and diffusion coefficient of a symmetric run-and-tumble
tracer. Relying on this approximation, we explored extensively the space of parameters of the
model, and we characterised the conditions of existence of a counter-intuitive phenomenon: the
diffusion coefficient may decrease when the activity of the tracer increases. This remarkable
feature is the result of the complex interplay between activity and crowding, which our
approach allows to characterise through the density and correlation profiles. The qualitative
argument (part 3.4) displays a remarkable accuracy in low density, and makes it possible to
determine analytically, in the dilute limit, how the diffusion coefficient behaves as a function
of the other parameters of the model.

Figure 4.6: Left: observations of swarms of bacteria E. Coli (performing run-and-tumble
motion) in semisolid agar, from [44]. The size of the swarm is related to the diffusion coefficient
of the bacteria.



66 CHAPTER 4. NON MONOTONY OF THE DIFFUSION COEFFICIENT

Finally, our theoretical model provides a minimal (very schematic) description of experi-
mental settings such as the one in [44]. In this experiments, the authors put bacteria E. Coli
(which would be represented by our active tracer in our model), performing a run-and-tumble
motion, in an agar matrix. Agar is a porous media, it would correspond to fixed obstacles
(τ ∗ → ∞) in our model. Then, the authors observe how a swarm of bacteria diffuses in
the media (figure 4.6). Using chemicals and genetic engineering, they are able to tune the
tumbling rate of the bacteria. In particular, they observe, like in our model, that decreasing
the tumble frequency of bacteria (increasing τα in our model) may lead to smaller swarms
(domain where the diffusion coefficient D is a decreasing function of τα in our model).

Since this first experimental observation of an optimised diffusivity for active particles,
other experiments in different setups have focused on better understanding these features,
including recent studies [16, 18, 20, 45, 46]. Our model may constitute a useful theoretical
basis to understand and explain the feature of the diffusivity of active particles in various
contexts.



Chapter 5

Absolute negative mobility

In the previous chapter, we focused on the case where the tracer is subject only to its
internal active force (and thermal fluctuations). However, in many situations (figure 1.1),
such as a swimmer in a flowing solvent, a massive active particle for which gravity cannot be
neglected, or a charge particle subject to electromagnetic forces, the tracer is also subject to
an external influence, which can modeled by an external force FE ̸= 0 in our framework.

In this case, the average velocity of the run-and-tumble tracer does not vanish anymore. We
compute this velocity within our approximation scheme. One would expect, intuitively, that
the velocity of the tracer should be in the same direction as the external force. Surprisingly, we
predict that for some sets of parameters, the velocity may point in the opposite direction. This
phenomenon, called absolute negative mobility (ANM), is only possible far for equilibrium,
because it is in contradiction with linear response theory.

Key results.

• Overall, we observe that the decoupling approximation (section 3.1) remains accurate
in the presence of an external drive (FE ̸= 0).

• Section 5.2: theoretical prediction of ANM in the context of an active particle in a
complex environment made of mobile crowders described explicitly (the emergence
of ANM in this situation constitutes an novelty compared to previous theoretical
approaches reviewed in the introduction 1.2.2).

5.1 Relation with negative differential mobility

We begin by presenting a simple argument to explain the emergence of ANM in our model,
and its relation to negative differential mobility (NDM). The latter refers to the situation
where a particle submitted to a constant external force FE may display a velocity which
decreases with the intensity of the force while remaining positive [61, 63, 66–72].

For illustration, we consider the simple situation where the tracer is submitted to an active
force FA that may only point in directions ±e1. In the limit where the persistence time is
greater than other timescales, the average velocity of the tracer can therefore be estimated as
the average of the velocities conditioned on these two states V ≃ 1

2
[V0(FE+FA)+V0(FE−FA)],

where V0(F ) is the stationary velocity of a passive particle (i.e. with FA = 0 and/or τα = 0)
submitted to an external force F . We assume that FE > 0, and we first consider the case where
the tracer does not display negative differential mobility. Its velocity is then a monotonic
function of the force undergone by the tracer (see Fig. 5.1 for a sketchy representation of
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velocity V0(F)

force F

FE FE +FA

FE -FA

Figure 5.1: Typical force-velocity curve of a passive tracer with and without negative differen-
tial mobility (in purple and orange, respectively).

the force-velocity curves). In this situation, it is clear that V will be of the sign of FE, and
no absolute negative mobility can be observed. However, when the tracer displays negative
differential mobility, one may observe the situation where |V0(FE − FA)| > |V0(FE + FA)|,
therefore resulting in a situation where average velocity V is negative although FE > 0.

These simple considerations clarify the relationship between ANM and NDM. To summarize,
the velocity of the active tracer can be understood as an average over the velocities conditioned
over the different possible orientations of the active force. If this conditional velocity is a
non-monotonic function of the force (NDM), the average velocity can become negative (ANM)
(necessary but not sufficient condition).

5.2 Negative mobility for a driven run-and-tumble tracer

in a crowded environment

Beyond the simple argument given previously, our approach makes it possible to calculate
the velocity (2.15) of the tracer and quantify the existence of ANM.

5.2.1 Observation of negative mobility

For a given value of the density, when the active force FA is small enough or the bath
particles are mobile enough compared to the tracer (τ ∗ ≲ τ), the average velocity of the
tracer remains positive at all values of the external force FE. However, we observe that, for
a sufficiently large persistence time τα, when the active force is large enough and when the
bath particles are sufficiently slow compared to the tracer (τ ∗ ≫ τ), the velocity can become
a negative function of the external force (figure 5.2), which is the definition of ANM. We
compare the value of the velocity predicted by our decoupling theory (equations (2.15,3.5))
with results from Monte Carlo simulations of the microscopic dynamics, and observe an
excellent agreement, which confirms the relevance of our decoupling approximation to study
the dynamics of an active, driven tracer. Compared to the previous chapter about the
symmetric tracer, we note that here the decoupling approximation is less accurate when
FE ∼ FA.
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Figure 5.2: Stationary velocity of the tracer particle along the direction of the external force
FE on a 2D lattice. Lines: decoupling approximation (equations (2.15,3.5)); symbols: Monte
Carlo simulations; dashed line: qualitative argument in the limite of infinite persistence
(equation (3.38) for τα =∞). As usual, the time unit is fixed by τ = 1.

5.2.2 Phase diagram

Relying on our decoupling approach, which allows for the calculation of the velocity of the
tracer at low computational cost, we explore the space of parameters to determine domains of
existence of ANM.

NDM is needed for ANM to occur

According to previous studies on negative differential mobility (NDM) [61, 69], for a
passive driven tracer (in the present formalism this corresponds to FA = 0 and FE > 0), this
phenomenon occurs when, for a given value of the density, the ratio between the jump time
of the obstacles and that of the tracer τ ∗/τ is sufficiently large (see figure 5.3 (a)). Here, the
emergence of ANM is also determined by the parameters that control the activity of the tracer
(the magnitude of the active force FA and the average persistence time of its orientation τα).
In figure 5.3 (b), we show the critical value of the characteristic jump time of bath particles
τ ∗c (rescaled by τ) above which ANM occurs, as a function of the active force FA for different
values of the persistence time τα and for a fixed value of the density of crowders ρ.

We can verify that the simple argument we put forward in 5.1 is plausible by comparing
5.3 (a) and (b): for large persistence (τα = 1000), as predicted by the argument, ANM appears
for active force FA (on (b) at τ ∗ = 10 and FA = 6 for instance) such that a passive tracer
driven by a constant force of the same intensity (corresponding on (a) to τ ∗ = 10 and FE = 6)
has a velocity which decreases when the intensity of the force increases.

Which swimmer can perform ANM ?

This phase diagram gives an insight into the range of parameters where ANM can be
observed. For instance, for FA ≃ 10 and τ ∗/τ ≃ 10, it shows that ANM is observed as soon as
τα reaches a critical value comprised between 10 and 100. In order to relate these values to real
systems, we can compute a Péclet number for the active tracer as Pe ∼ v0/

√
DTDR, where v0

is the typical propulsion velocity, and DT (resp. DR) is the translational (resp. rotational)
diffusion coefficient of the active particle. In our system of units, where σ is the lattice
spacing, DT ∼ σ2τ−1, v0 ∼ στ−1 (when FA is large enough), and DR ∼ τ−1

α , so that we simply
get Pe ∼

√
τατ−1. In the example above, the condition for ANM to be observed becomes

3 ≲ Pe ≲ 10. Comparing to typical values reported in the experimental literature ([1], figure
1.1), we find that this condition can be easily reached for a wide range of microswimmers.
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Figure 5.3: (a) Velocity of a passive driven tracer as a function of the driving force. (b) Phase diagram for

ANM: above the lines, the theory predicts absolute negative mobility (straight line: decoupling approximation;

dotted lines: qualitative argument condition (5.1)). The filled circles mean that ANM is observed in Monte

Carlo simulations with the corresponding parameters, and the empty circles mean it is not. Each simulation

point on the phase diagram corresponds to one of the curves below, representing the velocity of the tracer as

a function of the external force. The plots (c) and (d) represent the situation where the critical line is crossed

horizontally (by changing the active force). On the plots (e) and (f), the critical line is crossed vertically (by

changing the mobility of the obstacles). On all plots, the obstacle density is ρ = 0.1, and the solid lines are

obtained with the decoupling approximation, the dotted line with the low density argument, and the symbols

with Monte Carlo simulations. In (b),(c),(d),(e),(f), red is τα = 10 and green τα = 100.
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Figure 5.4: Stationary velocity of the tracer particle along the direction of the external force
FE on a 2D lattice. Lines: decoupling approximation; dots: qualitative argument (equation
(3.38). As usual, the time unit is fixed by τ = 1.

Qualitative argument

Finally, the qualitative argument (section 3.4) provides an analytical condition for ANM in
terms of the different timescales of the problem. The condition is given by dV

dFE
(FE = 0) < 0

with V computed from equation (3.38), and reads:

(2d− 2)p2
τ + ρτ ′p

+
p1 + p−1

τ + ρτp
− (p1 − p−1)

2

τ + ρτp

(
1 + ρ

(2d− 2)p2τ
2
p

τ(τ + ρτp)

)
< 0, (5.1)

where we use the following notations pµ = p
(1)
µ (FE = 0) and

1

τp
=

1

τ
(1)
p (FE = 0)

=
(2d− 2)

2dτ ∗
+

1

τα
+

(1− p1 − p−1)

τ
, (5.2)

1

τ ′p
=

1

τ
(2)
p (FE = 0)

=
(2d− 2)

2dτ ∗
+

1

τα
+

(1− 2p2)

τ
. (5.3)

For the second line, we used the fact that when FE = 0, symmetries imply that p
(2)
1 =

p
(2)
−1 = p

(1)
2 = p2. As we can see in figure 5.4, when ρ → 0, the qualitative argument and

the decoupling approximation coincide, so we expect this analytic criteria to become very
accurate in this limit.

5.2.3 Results at arbitrary density

Until now in this chapter, we have focused on results at low density, because in this limit,
our decoupling approximation becomes exact for any values of the other parameters (as argued
in section 3.3.1).

Nevertheless, the decoupling approximation provides results in quantitative agreement
with Monte Carlo simulations at all densities, as long as the mobility of the obstacles is high
enough (empirically τ ∗ ≲ 10τ). As we can see on Fig. 5.5, in this regime, where the density
of bath particles is expected to homogenize quickly on the timescale of displacement of the
tracer, the decoupling approximation constitutes a sensible improvement compared to the
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Figure 5.5: Left and middle. Velocity of the tracer as a function of the external force for
different sets of parameters, calculated with different methods: decoupling approximation (solid
lines), low-density qualitative argument (dotted lines), naive mean field (dashed lines). For
both plots, the active force is FA = 8. Right. Phase diagram from decoupling approximation.
Above the lines, ANM is predicted.

naive mean-field approximation (which consists in supposing k
(χ)
r (t) = ρ for any r, χ, t). As

expected, the low density argument is irrelevant at higher densities.

However, for a higher characteristic time of displacement of the obstacles τ ∗, the predictions
of the decoupling approximation can only match qualitatively those obtained by Monte Carlo
simulations (as opposed to the low density situation where the approximation is accurate even
for large τ ∗). This may be due to the fact that when the environment’s density approaches
the percolation threshold, the correlations neglected by the decoupling approximation become
too strong. In figure 5.5, we show the phase diagram at density ρ = 0.9 predicted by the
decoupling approximation (same aspect as in low density), but it is not in quantitative
agreement agreement with results from Monte Carlo simulations.

5.3 Characterising the interplay between activity and

crowding

Our approach to study tracer diffusion has the important feature to also give us access to
the density profiles k

(χ)
r . This makes it possible to better understand how the activity of the

tracer interacts with its environment, and reciprocally, in the present driven setting (FE ̸= 0).

5.3.1 Density profiles

We compute the global density profiles in the reference frame of the tracer hr = 1
2d

∑
χ h

(χ)
r .

Their typical spatial dependence is plotted in figure 5.6. It suggests that ANM has a signature
on the response of the environment, and that a small density excess may develop behind the
tracer (r < 0) when its average velocity becomes negative, which is coherent with the idea
that the tracer ”pushes” obstacles in front of it (at FA = 12, τ ∗ = 30, τα = 50, this density
excess is observed for FE such that the velocity is negative and not when the velocity is
positive). However this effect is not rigorously specific to ANM as it is also observed when
ANM does not occur (e.g. FA = 6, τ ∗ = 10, τα = 50). The question to characterise entirely
the behaviour of the tracer (ANM or not) only by looking at its environment (global density
profiles hr) remains open, even though our results already provide valuable insight into this
question.

Then density profiles describe how the structure of the crowded environment is affected by
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Figure 5.6: Density profiles (relatively to the reference value ρ) along the direction of FE in
the frame of reference of the tracer, as a function of the distance to the tracer r. In both
plots, the parameters are ρ = 0.1, τ = 1.

the activity of the tracer. Reciprocally, the environment impacts the properties of the active
tracer.

5.3.2 Generalised Einstein relation

The way the crowded environment influences the dynamics of the tracer is illustrated by
the following generalised Einstein relation, which involves density and correlation profiles k

(χ)
µ

(2.13) and g̃
(χ)
µ (2.17). In the absence of activity and crowding (FA = 0 and ρ = 0), we recover

the classical Einstein relation. From equation (2.15), we derive the expression of the mobility
of the tracer in the limit of small external force:

lim
FE→0

V

FE
= D0 −

1

2dτ

[(
p
(1)
1 − p(−1)

1

)
v1 +

2(2d− 1)τ ∗

ατ
v21

+2
∑

ϵ∈{−1,1,2}

p
(ϵ)
1

(
dk

(ϵ)
1

dFE
− g̃(ϵ)1

)
(1 + (2d− 3)δϵ,2)

 , (5.4)

where D0 refers to equation (2.19) (the index 0 is here to recall that in (2.19), FE = 0). We

used the shorthand notation v1 = p
(1)
1

(
1− k(1)1

)
− p(−1)

1

(
1− k(−1)

1

)
. All values are evaluated

at FE = 0.

The first term in equation (5.4) corresponds to the usual Einstein relation between the
mobility of the tracer and its diffusion coefficient. The other term originates from the
correlations between the displacement of the tracer and the dynamics of its environment (the
first line involves the activity parameter α, and the second line involves the environment
through the density and correlation profiles). Importantly, its value controls the emergence of
ANM: if it exceeds D0 in absolute value, the mobility of the tracer becomes negative.

Therefore, our approach also provides an analytical expression for the generalised Einstein
relation [56, 162]; in particular we explicitly state the modified Einstein relation as a function
of the conditional and correlation profiles.
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Conclusion

In this chapter, we considered the case where an active run-and-tumble tracer is subject
to an external drive (FE ≠ 0). Using our decoupling approximation 3.1, which proved to be
in good agreement with Monte Carlo simulations, we explored the space of parameters of the
model.

The emergence of ANM our minimal model for an active particle submitted to a constant
external force as a result of its interactions with the other particles in its environment,
constitutes a novelty compared to previous theoretical approaches. This context of an active
particle in a media filled with mobile obstacles looks quite natural and common, and is striking
that ANM can emerge in such a situation made of simple ingredients (no need of a periodic
potential, of anisotropic obstacle or other structured set-up).

Finally, we determined the conditions for ANM to be observed, and studied the response
of the environment to the non-equilibrium dynamics of the tracer.



Conclusion and open questions

In conclusion, we introduced a lattice model for a run-and-tumble tracer in a crowded
dynamical environment. As a many-body problem, it involves an infinite hierarchy of equations
for the determination of quantities of interest: velocity (2.15) and density profiles (2.13),
diffusion coefficient (2.19) and correlation profiles (2.17). We proposed an approximate closure
of this hierarchy based on a decoupling approximation 3.1. We also developed a qualitative
argument 3.4, which makes it possible to understand the interplay between the different
timescales of the model.

Then, we checked that the decoupling approximation is accurate in a broad range of
parameters by comparing its predictions to results from Monte Carlo simulations. We argued
that it even becomes exact, to leading order, in the dense and dilute limits. This approximation
allowed us to explore extensively, at low computational cost, the space of parameters of the
model and unveil counter-intuitive behaviours, which can arise because the system is far
from equilibrium. Importantly, our approach makes it possible to characterise, through the
density (2.13) and correlation (2.17) profiles, the interaction between the bath and the tracer.
Finally, using our qualitative argument 3.4, we are able to explain the physical mechanisms at
work in terms of the different timescales involved in the dynamics of the tracer (4.2.3, 5.2.2).

Many questions remain open, such as:

• Higher order cumulants. Extend the decoupling approximation to compute the
cumulant generating function of the tracer.

• Transitory regime. Study of the features of the transitory regime.

• Exactness of the qualitative argument. Prove mathematically the concordance
between the decoupling approximation and the qualitative argument at low density.

• Decoupling and mode-coupling. Can the decoupling approximation be rephrased in
a mode-coupling [163, 164] framework?

• Tracer-bath duality. Is there a systematic signature of the counter intuitive behaviour
of the tracer on its environment? In other words, can we determine if the tracer has a non
monotonic diffusion coefficient or negative mobility only by observing the global density
(and correlation in the symmetric case) profiles hr = ⟨ηXt+r⟩ (and g̃r = ⟨XtηXt+r⟩). We
recall that it is the conditional profiles which appear in the definitions of velocity (2.15)
and diffusion coefficient (2.19); the global profiles mentioned here are not enough to
compute them exactly.

In the one-dimensional case (part II), we will use rather different tools and methods, even
though we will focus on the same observables. Addressing the open questions raised above
could be of valuable interest, not only to better understand tracer diffusion in complex
environments in dimension d ≥ 2, but also to bridge the gap with the techniques we will use
in dimension d = 1.
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In this first part, the density and correlation profiles k
(χ)
r and g̃

(χ)
r have proved to be

important quantities since they characterise the transport properties of the tracer. In the
next part, we will see that their generalisation, the generalised profiles, play an even more
important role, as they will turn out to be central objects to characterise transport in one
dimension.
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Chapter 6

Single-file diffusion

Single-file diffusion refers to the situation where particles diffuse on a line, with the
geometrical constraint that they cannot bypass each other. After presenting the general
context and introducing some theoretical models used to describe this situation, we briefly
recall the framework of fluctuating hydrodynamics, which we will use in the following chapters.
Then we discuss what was already known about these models, and introduce our contribution,
which will be detailed in the next chapters.

Key ideas of the chapter.

• Subsection 6.1.1: in one-dimensional systems, tracer position and integrated current
are closely related.

• Section 6.2: we will study diffusive systems (characteristic time and length scales τ
and l related through a diffusion coefficient D = l2/τ), for which there is a unified
description in the long time, large distance (i.e. hydrodynamic) limit.

• Section 6.3: the core of our approach will be to try to characterise the bath-tracer
correlations.

6.1 Overview and models

In part I, we studied the behaviour of a tagged particle in a crowded environment in an
unconstrained geometry (dimension d ≥ 2). We were able to propose an approximate, yet
accurate closure, that we used to unveil the transport properties of the tracer. Because our
approximation relies on mean-field-type assumptions, it turns out that it does not properly
describe one dimensional transport, which displays strong correlations (as argued below 6.1.1).

Nevertheless, a theory valid for the one-dimensional case would be of high value because
single-file transport occurs in numerous biological contexts. Indeed, many processes rely on
the transfer of water and ions through the nano-pores of trans-membrane proteins [73, 74].
Moreover, the single-file structure is the one naturally adopted by fluids confined in narrow
channels [75], as demonstrated numerically [76, 77], and more recently experimentally [78].

In most of this second part (chapters 7, 8, 9), we will consider the simplest case where all
particles are identical; there is no activity and the tracer particle performs the same dynamics
as the other particles. In chapter 10, we will try to extend our study to the case of a biased
tracer: the tracer has a different probability to move to the left than to the right.

We will consider infinite systems, which is relevant in real situations if the observation
time is smaller than the characteristic time taken by the tracer to travel the system’s length.

79
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The situation of interest can be represented schematically as shown in figure 6.1. What is
special about it? How to model it from a theoretical perspective?

Figure 6.1: Particles confined in a channel narrower than twice the size of the particles.

6.1.1 The singularity of dimension one

The main feature of single-file diffusion which makes it of high theoretical interest is that
a tagged particle (called a tracer, in red in figure 6.1) undergoes anomalous diffusion. If Xt

denotes its position: 〈
X2
t

〉
∝
√
t, (6.1)

whereas in higher dimension, we would observe a classical diffusive behavior ⟨X2
t ⟩ ∝ t. Direct

observation of this anomalous scaling has been undertaken in different experimental contexts,
at different scales of matter, from molecules in porous minerals (zeolites) to colloids in narrow
channels (see figure 6.2) [80, 81, 169].

The very reason why 1D transport is anomalous is also the reason why there is a specific
way to study tracer diffusion in this context: because the order of particles is preserved, one
can recover the position of the tracer from the density of particles. For some systems, it will
turn out that the positions of the particles can be computed easily, whereas for other systems,
it is the density of particles which is easier to compute. Thanks to this property of preserved
order, one can choose the most convenient quantity to compute (positions or density), and
get results about the other.

More precisely, let us introduce the two observables (see figure 6.3 for illustration) which
have been the focus of many studies in the context of single-file diffusion [99–103, 107, 165, 170–
172]:

• Position of a tracer xk(t). Position at time t of the k-th particle. The 0-th particle is
initially located at the origin (x0(0) = 0).

• Integrated current through a point Qt(x). The number of particles in ]x,+∞[ at
time t minus the number of particles in ]0,+∞[ at initial time t = 0.

The fundamental relation between these quantities, which is a consequence of the preserved
order of particles, was used in [98] and in recent breakthroughs in the field [100, 101]. It reads

Figure 6.2: Images (A: scanning electron microscope, B: optical microscope) of narrow channels
fabricated by photo-lithography where colloidal particles perform single-file diffusion [81].
They observe anomalous self-diffusion of the tracer.
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Figure 6.3: A single-file system with a tracer (top) initially at 0 (Xt = x0(t)) and the same
system with Qt(x), the integrated current through x. During the evolution of the system,
at fixed x, Qt(x) is incremented by +1 when a particle crosses the green dashed line in
the direction of the arrow and varies of −1 when a particle crosses the line in the opposite
direction. If one fixes t and increases x, Qt(x) decreases by one each time x crosses a particle.
In the single-file geometry, Xt never crosses a particle because of the constraint that particles
cannot bypass each other, so Qt(Xt) remains zero at all time t, and ∀ϵ > 0, Qt(Xt− ϵ) ≥ 1 > 0
because the tracer is in ]Xt − ϵ,+∞[ and not in ]Xt,+∞[ .

(see explanation on figure 6.3):

xk(t) = inf{x ∈ R|Qt(x) + k ≤ 0} (6.2)

The remarkable point is that in order to compute Qt(x), we do not need to follow any
particular particle (lagrangian description in the vocabulary of fluid mechanics), we only
need to know how the density of particles evolves in time (eulerian description). Quite
counter-intuitively, according to (6.2), the knowledge of Qt(x) makes it possible to recover
the position of a given tagged particle.

We stress the fact that this reasoning is specific to the 1D case, and cannot be applied in
higher dimensions: in this latter case, the knowledge of the currents at every points in space is
not enough to recover the trajectory of a tracer, because, the geometry being unconstrained,
the tracer is not forced to follow the current (the current only reflects the average displacement
of all particles). This is why the hydrodynamic framework will be of great use for our study
in one dimension.

Finally, from these considerations, it emerges that correlations between particles are key
quantities in order to understand single-file diffusion: a particle cannot move if it does not
push its neighbours (which is drastically different from other dimensions where particles can
circumvent each other). In the second part of this thesis, we will present first results towards
a general characterisation of these correlations.

6.1.2 Classical microscopic models

Many models have been designed in order to describe single-file diffusion from a theoretical
point of view. We begin by presenting the Simple Exclusion Process, which has reached a
paradigmatic status in the study of single-file diffusion [173]. Then, we introduce several
important models from the literature of interacting particle systems that will fall under the
scope of our analysis. We will always consider these models with annealed initial conditions,
meaning that the system is initially distributed according to an equilibrium measure.

The last two models (KMP 6.1.2 and ZRP 6.1.2) do not directly describe single-file
transport of particles, but we will see in chapter 9 that they are deeply related to respectively
the RAP and the SEP because they describe the dynamics of the gaps between particles in
these latter systems.
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The SEP (Simple Exclusion Process)

Figure 6.4: The Simple Exclusion Process.

The SEP [96, 173, 174] is the one dimensional version of the lattice model studied in part
I. Each particle attempts a jump to a neighbouring site with a rate D0 to the left and same
rate D0 to the right. The jump is performed only if the destination site is empty.

The N-EP (N-Exclusion Process)

Figure 6.5: The DEP (Double Exclusion Process), corresponding to N = 2.

This lattice model [175, 176] is very similar to the SEP. The difference is that particles
occupy N sites instead of 1: a jump is performed only if the N neighbouring sites in the
direction of the jump are empty. It has for instance been considered for applications to
biological systems [116].

The RBM (Reflecting Brownian Motion)

Figure 6.6: Reflecting Brownian particles.

This model [102, 171] in continuous space consists of point-like particles performing
Brownian motion with the constraint that particles cannot bypass each other.

The RAP (Random Average Process)

Figure 6.7: The random average process.

The RAP [113, 170, 177] is a model of point particles on the continuous line. Each particle
performs jumps to the right with rate 1/2 or to the left with rate 1/2. The distance traveled
by a particle which hops is a fraction u ∈ [0, 1] of the distance separating it from the next
particle in that direction. At each jump, u is drawn from an independent random variable U
of a given law taking values in [0, 1] (for example uniform law, or the law which weights a with
probability one where a ∈ [0, 1]). We denote by µ1 and µ2 the first and second moments of U .
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The Hard Rods

Figure 6.8: Hard rods.

This model [82] is the hard sphere gas on the continuous line. Particle have a spatial
extension l > 0 and interact through hard core interactions. They perform Brownian motion.

The KLS (Katz Lebowitz Spohn model)

1-δ 1+δ 1+ε 1-ε

Figure 6.9: Jump rates in the KLS for the blue particle in function of its neighbouring
configuration.

The KLS [178] is a lattice model with exclusion rule (at most one particle per site) featuring
short-range interactions: the jump rates of each particle depend on its near environment in
the way described in figure 6.9. The parameters δ and ϵ are in [−1, 1]. When ϵ < 0, the
particles feel attractive interaction, and when δ > 0, particles are slower in the presence of
neighbours.

The case δ = ϵ = 0 corresponds to the SEP (with jump rates D0 = 1), and if ϵ = 1
(fully repulsive interactions), it corresponds to the double exclusion process with jump rate
D0 = 1 + δ. This model displays a rich phenomenology [175, 176].

The KMP (Kipnis Marchioro Presutti)

Figure 6.10: The KMP model.

This model [179, 180] is not strictly speaking a system of particles, and belongs to the class
of mass transfer models [113, 181]. It is a lattice model where each site bears a mass which is
a positive real number. With rate 1, each site exchanges mass with its right neighbour in the
following way: the masses of the two sites are added up and the right site receives a random
amount of the total mass drawn from a uniform distribution; the left site receives the rest.
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The ZRP (Zero Range Process)

Figure 6.11: The zero range process.

This is a class of lattice models [86, 118] defined by a function g : N∗ −→ R+∗. Sites can be
empty, or occupied by one or more particles. Each site occupied by k ∈ N∗ particles transfers
one particle to its right neighbour with rate g(k)/2 and to its left neighbour with same rate
g(k)/2. The name ”zero range” comes from the fact that the jump rate depends only on the
number of particles on the site of origin (interaction of range 0).

6.2 Hydrodynamic description

Although there is a broad diversity of models, with different features and phenomenology,
there exists a powerful framework, which is recalled in this section, providing a unified
description for all the models.

6.2.1 Macroscopic Fluctuation Theory

The Macroscopic Fluctuation Theory (MFT) takes its roots from a remarkable result of
convergence in the SEP [182]. As it often happens in physics, this is an example where a
simple theoretical model like the SEP was able to give insights leading to a general theory
[124, 183, 184].

The large deviation principle

Relying on results for the SEP and further extensions to other models (notably ”gradient
models”, see [124]), the MFT postulates a large deviation principle for any diffusive system.
Let us first explain what we mean by diffusive system. Consider a system for which we can
define a macroscopic density. If it is a system of particles, it can be defined through the
formula, where N is the scaling parameter:

ρN(x, t) =
1

N

∑
k

δ

(
x− xk(tN

2)

N

)
. (6.3)

If it is a mass system such as the KMP, where each site i ∈ Z bears a mass ηi(t) ∈ R+ which
depends on time t, one can define the rescaled mass:

ρN(x, t) =
1

N

∑
k

ηi(tN
2)δ

(
x− i

N

)
. (6.4)

If it is already a fluctuating field ρ(x, t) such as in the Dean-Kawasaki equation [185, 186], one
can rescale the field ρN (x, t) = ρ(Nx,N2t). The system is said to be diffusive if ρN converges
when N →∞ to the solution ρ of a diffusion equation:

∂tρ(x, t) = ∂x (D(ρ(x, t))∂xρ(x, t)) , (6.5)
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where the diffusion coefficient D(ρ) is a positive function of ρ and depends on the system
considered. In other words, the macroscopic current j = −D(ρ)∂xρ of the system satisfies a
Fourier law. From the microscopic system, j is obtained as the limit of the rescaled current
jN(x, t) defined as:

jN(x, t) = N ∂τQτ (xN)|τ=tN2 . (6.6)

The rescaling we have performed to define ρN , jN is called diffusive (as opposed for instance
to the ballistic scaling where space and time are multiplied by the same factor N); a diffusive
system is a system which yields a non-trivial limit under a diffusive rescaling. Physically, we
expect most non driven systems, only subject to symmetric noise (left/right) to be diffusive.

The MFT goes much beyond by specifying the associated large deviation principle (how
the empirical density can deviate from the deterministic solution to the heat equation). The
rescaled density and current ρN (x, t), jN (x, t) verify ∂tρ

N + ∂xj
N = 0. For any density profile

ρ(x, t) and current j(x, t) on (x, t) ∈ R× [0, 1] such that ∂tρ+ ∂xj = 0, the joint probability
to observe them satisfies:

1

N
ln P

((
ρN , jN

)
∼ (ρ, j)

)
−→
N→∞

−F [ρ(x, 0)]−
∫ 1

0

dt

∫ ∞

−∞
dx

(j(x, t) +D(ρ(x, t))∂xρ(x, t))2

2σ(ρ(x, t))
,

(6.7)

where the mobility σ(ρ) is a positive function which depends on the system considered. We
will see a physical interpretation below 6.2.3. The functional F encodes the probability
distribution on the initial condition. It expression, derived in appendix E.1 reads:

F [ρ(x, 0)] =

∫ +∞

−∞
f(ρ(x, 0))− f(ρ0(x))− f ′(ρ0(x))(ρ(x, 0)− ρ0(x))dx. (6.8)

6.2.2 The transport coefficients

The diffusion coefficient D(ρ) and the mobility σ(ρ) are called the transport coefficients.
They appear at the hydrodynamic level when performing the derivation of the MFT principle
(6.7) from the microscopic dynamics. However, in most cases (notably in the case, of physical
interest, of massive particles interacting through a Lennard-Jones or Coulomb potential), this
derivation is out of reach. Fortunately, these coefficients can be computed or measured by
other means at the microscopic level such as Green-Kubo relations or analysis of the steady
states. Physically, we expect that the transport coefficients computed by different methods are

ρa ρb

Qt	

Figure 6.12: Transfer of matter between two reservoirs.

consistent [123], although in general this is a difficult mathematical problem. The broad scope
of MFT allows one to apply (6.7) to any system for which one has computed or measured
(experimentally or numerically for instance) the transport coefficients.

For theoretical models (such as those of 6.1.2), a convenient way to compute them is
to consider a finite version of length L of the model we want to study, placed between two
reservoirs at density ρa and ρb [125]. The coefficients D(ρ) and σ(ρ) are related to the first
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Model D(ρ) σ(ρ)

Simple exclusion process [86, 107] D0 2D0ρ(1− ρ)

Zero range processes [86]
σ′(ρ)

2
σ(ρ)

Random average process [113, 114]
µ1

2ρ2
1

ρ

µ1µ2

µ1 − µ2

Kipnis-Marchioro-Presutti [115] D0 σ0ρ
2

Hard Brownian particles [187] D0 2D0ρ

Hard rod gas [82]
D0

(1− ℓρ)2
2D0ρ

Double exclusion process [175, 176]
D0

(1− ρ)2
2D0ρ(1− 2ρ)

1− ρ

Table 6.1: Transport coefficients D(ρ) and σ(ρ) for different models (see 6.1.2 for definitions).

two moments of the integrated current Qt leaving the left reservoir (figure 6.12, matter going
to the left reservoir is counted negatively):

lim
t→∞

⟨Qt⟩
t

∼
L→∞

ρa→ρb=ρ

D(ρ)(ρa − ρb)
L

, lim
t→∞

⟨Q2
t ⟩
t

∣∣∣∣∣
ρa=ρb=ρ

∼
L→∞

σ(ρ)

L
. (6.9)

In practice, these two coefficients can be difficult to compute analytically. Nevertheless, they
have been obtained for different microscopic models (see Table 6.1).

Finally, note that since they characterise fluctuations and linear response of the transfer of
matter between the two reservoirs, the transport coefficients are related through equilibrium
quantities (fluctuation-dissipation theorem), here the free energy per unit volume f(ρ) as a
function of the density ρ. This relation [104], proved in appendix E.2 reads:

2D(ρ) = f ′′(ρ)σ(ρ). (6.10)

6.2.3 Stochastic heat equation

We can interpret equation (6.7) by recognising the Feynman measure of a Gaussian white

noise in space and time
√

σ(ρ)
N
× η with variance σ(ρ)

N
. The noise η has unit variance and zero

mean:
⟨η(x, t)η(x′, t′)⟩ = δ(x− x′)δ(t− t′) . (6.11)

Then in the large N limit, the rescaled density and current ρN and jN of a microscopic
diffusive system evolve according to a conservation equation,

∂tρ
N(x, t) + ∂xj

N(x, t) = 0 , (6.12)

and a stochastic Fourier law:

jN(x, t) = −D
(
ρN
)
∂xρ

N(x, t) +

√
σ(ρN)

N
η(x, t) . (6.13)
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This interpretation is referred to as ”fluctuating hydrodynamics”, and can be compared
to the central limit theorem in the sense that the gaussian noise for the current appears
when we sum many weakly correlated microscopic currents (through the rescaling operation).
From a physical point of view, equation (6.13) means that the systems remains locally (on
a characteristic length N , supposed large enough) in the linear response regime, and that
fluctuations can be considered Gaussian (like in Onsager’s theory), with mean and variance
given by the transport coefficients (6.9)).

As a side remark, note that we often encounter equation (6.13) without the N [102, 114].
For practical purpose (in particular in section 9.1), we will also consider such equations with
a non weak noise:

∂tρ(x, t) + ∂xj(x, t) = 0 , (6.14)

associated to a stochastic Fourier law:

j(x, t) = −D(ρ)∂xρ(x, t) +
√
σ(ρ) η(x, t) . (6.15)

This is a convenient way to represent a single-file system with transport coefficients D and
σ. Indeed, whatever the precise definition of equations (6.14, 6.15) (defining such equations
is a difficult mathematical problem), it turns out that the rescaled density and current
ρN(x, t) = ρ(Nx,N2t) and jN(x, t) = Nj(Nx,N2t) verify equations (6.12,6.13), with the
weak noise (∝ 1/

√
N). This is a consequence of the following formula:

η(f(x), g(t))
(law)
=

√
1

f ′(x)g′(t)
η(x, t) , (6.16)

where f and g are monotonous functions. This formula stems from the composition rule
δ(f(x)) = δ(x)

|f ′(x)| .

By essence, because of the hydrodynamic scaling (x, t) 7→ (xN, tN2), the MFT informs us
only about the large scale and long time limit (which is one of the limitations of this theory).
In short, if we care only about this limit, it is equivalent to consider a microscopic model or its
fluctuating hydrodynamic description given by equations (6.14, 6.15) with the corresponding
transport coefficients D(ρ) and σ(ρ).

6.3 Known results and outline

In this thesis, we are interested in systems on the infinite line. Note that there have
been lots of studies about finite-size systems, in particular between two reservoirs [83–89]. A
major difference is that, contrary to infinite systems, finite systems of size L usually reach a
stationary regime after a time of order L2.

Most studies of a tracer’s position and integrated currents in single-file systems on the
infinite line have focused on the SEP, which is a minimal model implementing non-trivial
interactions between particles.

6.3.1 The SEP: the road to the tracer’s position distribution

The first notable result is the analytical computation of an asymptotic equivalent of the
mean-squared displacement of a tagged particle [98]:

〈
x0(t)

2
〉
∼
t→∞

1− ρ
ρ

√
2t

π
. (6.17)
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The next major result is the computation of the cumulant generating function of the integrated
current through the origin [99] (using Bethe Ansatz technique), yielding a surprisingly simple
formula in the long-time limit:

ln
〈
eλQt

〉
= −Li 3

2
(−ω)

√
2t

π
, (6.18)

where ω is a reduced variable combining the parameter λ and the initial densities on Z− and
Z+∗ (”step” initial condition); Li 3

2
refers to the polylogarithm function.

For the tracer, the cumulant generating function ln
〈
eλx0(t)

〉
was then determined in

the dense (ρ → 1) [188] limit, by considering the dynamics of vacancies, and in the dilute
(ρ→ 0) [102, 171] limit, using a mapping to independent particles. Finally, the whole cumlant
generating function at arbitrary density was computed a few years later [100, 101] using Bethe
Ansatz.

In the case of a biased tracer (the tracer, and only the tracer, has a different jump rate
to the right than the one to the left), the only known results at arbitrary density deal with
the mean position of the tracer [119] and its variance in a specific case [131]. The cumulant
generating in the biased case is known only in the dense limit [188].

6.3.2 More general systems

The hydrodynamic description introduced above (6.2) is a central tool in the study of
more general single-file systems. It has been used to generalise the result for the integrated
current in the SEP [99] to the integrated current in any one dimensional system with constant
diffusion coefficient and quadratic mobility (D(ρ) = D0 and σ(ρ) = aρ2 + bρ). This includes
the KMP model 6.1.2.

For arbitrary transport coefficients D(ρ) and σ(ρ), a general theory for tracer diffusion
has been developed [102], based on MFT (equation (6.7)). The authors managed to recover
the general formula for the variance of the tracer’s position [189]. However, it is difficult to
go beyond, because the equations obtained by this method are challenging.

In the context of tracer diffusion, it has been pointed out that the RAP model 6.1.2 is
particularly well adapted because the evolution equations for the positions of the particles
are naturally closed (which is an exceptional fact). We will give some insight into this fact
in chapter 9. In the RAP, correlations between particles and the variance of the position of
a biased tracer have been computed, by microscopic methods [89, 95] and using MFT [114].
Nevertheless, some of the methods employed are specific to the RAP (naturally closed
equations).

6.3.3 Outline: understanding correlations in single-file diffusion

The anomalous scaling in
√
t for all the cumulants of a tracer’s position is ubiquitous in

single-file diffusion. Although it is known that the anomalous scaling in
√
t originates from

the strong correlations between particles (preserved order in the one dimensional geometry),
none of the approaches developed so far fully accounts for the interactions between the tracer
(or the integrated current) and the bath.

In order to bridge the gap, a new approach has been introduced in [103, 133]. It is based
on the introduction of a new observable of great physical significance, the generalised density
profile (a generalisation of the density and correlation profiles studied in the first part), which
precisely characterises the bath-tracer correlations. This approach makes it possible to recover
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easily the known results in the dense and dilute limits, and in addition, to determine the
bath-tracer correlations in these limits. We will extend this approach to an arbitrary density.

We begin in chapter 7 by a microscopic study of the SEP, where we extend the definition
of the generalized density profile to the more general observable of the integrated current. We
derive, from microscopic considerations, non trivial equations relating the density profiles and
the cumulant generating function. Similarly to what we saw in chapter 2, the generalised
density profiles are shown to be involved in a infinite hierarchy of equations resulting from
the many-body nature of the problem.

In chapter 8, we break this infinite hierarchy by providing an exact closure; the availability
of such a closure is very uncommon in many-body problems. We detail the steps that lead us
to determine the closed equation verified by the generalised density profile. We then use this
equation to study different observables, and different situations in the SEP. We stress the fact
that, contrary to the approximate closure we used in the first part I, the closed equation we
put forward in the case of the one dimensional SEP is exact.

The object of chapter 9 is to extend our result for the SEP to other single-file systems.
The core of our approach is the introduction of very general mappings relating different
single-file systems; we argue that these mappings are the only one that can exist relating
different single-file systems at the hydrodynamic level. We use them to show that the results
we obtained for the SEP can be extended to wide class of models of single-file diffusion,
displaying a wide variety of phenomenology (see 6.1.2).

Finally, in chapter 10, we present first results towards an extension of our generalised-
density-profile approach to the case of a biased tracer. We propose a general method to
implement the bias in the hydrodynamic description 6.2, which we validate by comparing its
predictions to Monte Carlo simulations of different models. The culmination of this chapter is
the determination of new analytical results for the variance of the position of a biased tracer
in the SEP, valid at any density.
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Chapter 7

Microscopic study of the Simple
Exclusion Process

We begin with a microscopic study of the SEP. The microscopic point of view gives results
and strong indications which will guide our quest for a closed equation formula in the next
chapter. We begin, in section 7.1, by recalling the definition [103] of the generalised density
profiles and we derive their long-time scalings. The objects introduced here will be at the
core of our study in the following chapters.

Key results.

• Paragraphs 7.2.1 and 7.2.2: boundary conditions verified by the generalised density
profiles, which appear as central quantities to study the cumulant generating function
of the tracer’s position or the integrated current through a point (discussed in 6.1.1).

• Paragraph 7.2.2: application of the relation between integrated current through a
point and tracer position (6.2) to the generalised density profiles.

7.1 The generalised density profiles

We consider the SEP on a 1D infinite lattice. Initially each site is filled independently
with probability ρ ∈ [0, 1] (annealed initial conditions), which is the mean density of the
system, except the origin which is always occupied by a particle, which we call the tracer. We
denote Xt the position of the tracer at time t, with X0 = 0. The other particles are described
by a set of occupation numbers {ηi(t)}i∈Z, with ηi(t) = 1 if site i is occupied at time t and 0
otherwise. Contrary to what we did in part I, here we use the convention1 that ηXt(t) = 1.

Figure 7.1: The SEP with a tracer. We recall the fundamental relation between tracer position
and integrated current Xt = inf{x ∈ R|Qt(x) ≤ 0} (6.2). We chose the jump rate D0 = 1/2

1We make this choice here because we will also consider the integrated current (and we want the tracer to
be counted in the current so we need ηXt

= 1 according to definition of the integrated current (7.15)).

91
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The master equation of the SEP, which describes the time evolution of the probability
Pt(X, η) to observe the configuration {X, η} with a tracer on site X at time t is

∂tPt(X, η) =
1

2

∑
r ̸=X,X−1

[
Pt(X, η

r,+)− Pt(X, η)
]

+
1

2

{
(1− ηX−1)Pt(X − 1, ηX−1,+)− (1− ηX+1)Pt(X, η)

}
+

1

2

{
(1− ηX+1)Pt(X + 1, ηX,+)− (1− ηX−1)Pt(X, η)

}
, (7.1)

where ηr,+ is the configuration obtained from η by exchanging the occupations of sites r and
r+ 1. In (7.1), the terms of the first line corresponds to the jumps of the bath particles, while
the other terms describe the displacement of the tracer.

In this section, we introduce the quantities, first defined in [103], that will be central in our
analysis of the SEP, and we determine their long time limit scaling using the large deviation
principle 6.7.

7.1.1 Bath-tracer correlations

Our main goal is to characterise the position of the tracer particle. Its statistical properties
are encoded in the cumulant generating function

ψ(λ, t) = ln
〈
eλXt

〉
, (7.2)

whose expansion in powers of λ give the cumulants κn(t),

ψ(λ, t) =
∞∑
n=1

λn

n!
κn(t) . (7.3)

The core of our approach to this problem, which will be developed in this section and in
the next chapter, resides in the introduction of a physical observable which fully quantifies
the bath-tracer correlations in the SEP

wr(λ, t) =
⟨ηXt+r(t) eλXt⟩
⟨eλXt⟩ . (7.4)

Far from the tracer, sites do not feel its influence (independence of ηXt+r and Xt), hence the
large |r| limit is equal to the mean density ρ: wr(λ, t) −→

|r|→∞
ρ. We call wr(t) the generalised

density profiles (GDP) generating function, since its expansion in powers of λ yields all the
joint cumulants ⟨Xn

t ηXt+r(t)⟩c between Xt and ηXt+r,

wr(λ, t) =
∞∑
n=0

λn

n!
⟨Xn

t ηXt+r(t)⟩c . (7.5)

At 0-th order we recognise the density profiles kr = ⟨ηXt+r⟩ of part I, and at first order
the correlation profiles g̃r = ⟨(Xt − ⟨Xt⟩)ηXt+r⟩. The other orders are called the generalised
density profiles.
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7.1.2 Scaling functions

In this section, we use a path integral formulation and physical arguments to derive the
scaling forms of the long time limit of the cumulant generating function of the tracer’s position
and integrated current in the SEP from the large deviation principle 6.7. This was done for
example in [102]. A rigorous proof of these scalings is provided in [105].

In the large time limit, we can use the MFT large deviation principle to evaluate
the probability of observing an evolution from time t = 0 to t = T for the occupation
numbers (ηr(t))r∈Z,t∈[0,T ]. Such an evolution corresponds to a macroscopic density (6.4)

(ρ
√
T (x, t))x∈R,t∈[0,1] and associated current (6.6), which probability is given by the MFT large

deviation principle (6.7) in the limit T → ∞ (we chose N =
√
T in (6.7)). Summing over

all possible evolutions (ηr(t))r∈Z,t∈[0,T ], we evaluate the cumulant generating function of the
tracer’s position in the long time limit T →∞:

ln
〈
eλXT

〉
∼

T→∞
ln

∫
D[ρ, j] exp

(
−
√
TU [ρ, j] +

√
Tλξ1[ρ]

)
, (7.6)

where the integral runs over ρ(x, t), j(x, t) verifying ∂tρ + ∂xj = 0 and we expressed the
position of the tracer XT =

√
Tξ1[ρ] as a function of the macroscopic density ρ through the

relation expressing the conservation of the number of particles on the right of the tracer2 [102]:∫ ξ1[ρ]

0

ρ(x, 1)dx =

∫ ∞

0

(ρ(x, 1)− ρ(x, 0))dx . (7.7)

We noted the large deviation functional

U [ρ, j] =

∫ 1

0

dt

∫ ∞

−∞
dx

(
j + 1

2
∂xρ
)2

2ρ(1− ρ)
+ F [ρ(x, 0)]. (7.8)

Using a saddle-point method in the path integral, we find that the following scaling holds:

ψ̂(λ) = lim
T→∞

ψ(λ, T )√
2T

, ψ̂(λ) =
∑
n≥1

κ̂n
λn

n!
, (7.9)

where κ̂n is the nth cumulant of the tracer’s position (rescaled by
√

2t).
As shown in [103], the MFT can also be used to analyse the generalised density profiles.

Here, we determine the large time scaling of the GDP-generating function (7.4). According to
the MFT large deviation principle (identically to previously, taking N =

√
T in equation (6.7)):

〈
ηXT+re

λXT
〉

⟨eλXT ⟩ ∼
T→∞

∫
D[ρ, j]ρ

(
ξ1[ρ] +

r√
T

)
exp

(
−
√
T (U [ρ, j]− λξ1[ρ])

)
∫
D[ρ, j] exp

(
−
√
T (U [ρ, j]− λξ1[ρ])

) , (7.10)

2Here there is a little subtlety. Equation (7.7) defines the position XT of the tracer by saying that
QT (XT ) = 0, where Qt(x) is the integrated current through x (defined in 6.1.1, see (7.15) for the definition in
the case of the SEP). But there can be several x such that Qt(x) = 0 (see figure 6.3); the real position of the
tracer is in fact the minimal x such that Qt(x) = 0 (7.2.2). Nevertheless, although QT (XT ) = 0 does not
uniquely define XT , it does uniquely define ξ1[ρ] =

XT√
T

for large T . Indeed, with high probability, we will

have: diameter{x|QT (x) = 0} = o(
√
T ) (the zone where QT (x) = 0 grows less quickly than

√
T ). This is the

kind of results proved rigorously in [105].
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where we expressed the occupation ηXT+r(T ) as a function of the hydrodynamic density3 at

position XT+r√
T

, ρ
(
ξ1[ρ] + r√

T
, 1
)

. Using the saddle-point method when T →∞ and noticing

that the saddle-point is the same in both path integrals because ρ
(
ξ1[ρ] + r√

T
, 1
)

is not

involved in the exponential term exp(−
√
T (U [ρ, j]− λξ1[ρ])), we find that

wr(λ, T ) ∼
T→∞

ρ∗
(
ξ1[ρ

∗] +
r√
T
, 1

)
, (7.11)

where (ρ∗, j∗) minimises, under the constraint ∂tρ+ ∂xj = 0, the argument of the exponential:∫ 1

0

dt

∫ ∞

−∞
dx

(
j + 1

2
∂xρ
)2

2ρ(1− ρ)
+ F [ρ(x, 0)]− λξ1[ρ]. (7.12)

We finally obtain that:

wr(λ, T ) ∼
T→∞

Φ

(
v =

r√
2T

, λ

)
, Φ(v, λ) =

∑
n≥1

Φn(v)
λn

n!
. (7.13)

We have in particular Φ
(
v = r√

2t
, λ
)

= ρ∗
(
ξ1[ρ

∗] + v
√

2, 1
)
. Hence the GDP-generating

function can be seen as the most probable density observed at a site for the modified
probability distribution Pmod(X, η, t) = P (X, η, t) eλX

⟨eλXt⟩ (for instance, when λ > 0, this

distribution favors configurations where X > 0). Note that the scaling (7.13) implies that
wr(t) never reaches a stationary regime, and that the area of influence of the tracer grows
like
√
t.

As a direct consequence of (7.4),

lim
v→±∞

Φ(v, λ) = ρ . (7.14)

7.1.3 Bath-current correlations

Thanks to (6.2), in order to study tracer diffusion, it is equivalent to consider the integrated
current through a point x, whose microscopic definition in the SEP reads

Qt(x) =
∑
r≥1

(ηr+x(t)− ηr(0)) . (7.15)

Because the long time limit follows a diffusive scaling (see the scaling limit above, e.g.
equation (7.6)), we rather consider Qt(xt) with xt = ⌊ξ

√
2t⌋, for an arbitrary real number ξ.

Its statistical properties are encoded in the cumulant generating function

ψQ(λ, ξ, t) = ln
〈
eλQt(xt)

〉
, (7.16)

The GDP are defined in the same way as the tracer, and they fully account for the correlations
between the density of the bath and the integrated current

wQ;r(λ, t) =
⟨ηxt+r(t) eλQt(xt)⟩
⟨eλQt(xt)⟩ . (7.17)

3The reason why it is legitimate to replace ηXT+r(T ) by ρ
(
ξ1[ρ] +

r√
T
, 1
)
in the large T limit is not obvious

and relies on the existence of local equilibriums in this limit. It is further discussed in appendices D, F.2.
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Thanks to our choice of scaling for xt, we can show from the large deviation principle (6.7),
in the same way as for the tracer, that there exist scaling functions:

ln
〈
eλQt(xt)

〉
∼
t→∞

√
2t ψ̂Q(ξ, λ) , (7.18)

wQ;r(t) ∼
t→∞

ΦQ

(
v =

r√
2t
, ξ, λ

)
. (7.19)

And the scaling function ΦQ is obtained from the (ρ∗, j∗) which minimise, under the constraint
∂tρ+ ∂xj = 0, the following expression arising from the large deviation principle∫ 1

0

dt

∫ ∞

−∞
dx

(
j + 1

2
∂xρ
)2

2ρ(1− ρ)
+ F [ρ(x, 0)]− λQ1(ξ

√
2)[ρ]. (7.20)

The integrated current current through a point x is computed from the hydrodynamics profile
as follows:

Q1(x)[ρ] =

∫ ∞

x

ρ(x, 1)− ρ(x, 0)dx−
∫ x

0

ρ(x, 0)dx. (7.21)

We have the relation ΦQ(v, ξ, λ) = ρ∗(ξ + v
√

2, 1). Also limv→±∞ ΦQ(v, ξ, λ) = ρ.

In the next section, we will derive valuable information about the scaling functions (ψ̂,
ψ̂Q, Φ, ΦQ) from the master equation.

7.2 Evolution equations and boundary conditions

Similarly to our approach in the first part of this thesis, from the master equation (7.1), we
derive evolution equations for the quantities introduced above. We will see that, strikingly, in
the long-time limit, these evolution equations yield non trivial boundary conditions involving
(ψ̂, ψ̂Q, Φ, ΦQ).

7.2.1 Integrated current

We first focus on the integrated current Qt(xt). We fix a (positive for simplicity) value for
ξ, with xt = ⌊ξ

√
2t⌋.

Microscopic evolution equations

The evolution equation for the cumulant generating function is computed in appendix F.1,
it reads:

∂t ln
〈
eλQt(xt)

〉
=

1

2

[
(eλ − 1)

〈
ηxt(1− ηxt+1)e

λQt(xt)
〉

⟨eλQt(xt)⟩ + (e−λ − 1)

〈
ηxt+1(1− ηxt)eλQt(xt)

〉
⟨eλQt(xt)⟩

]
+
∑
n

δ(t− tn) ln[1 + (e−λ − 1)wQ;1(t)] . (7.22)

Note the sum of δ functions, which comes from the fact that xt varies discontinuously at times
tn = (n/ξ)2/2.

As for the evolution of the GDP-generating function ∂twQ;r, it depends if we look in the
bulk (r ̸= 0, 1) or next to the point where the current is measured xt (r = 0, 1). The details
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of computation are given appendix F.1. At the boundary we find for example for r = 0:

∂twQ;0 =
e−λ − (e−λ − 1)wQ;0

e−λ − 1

(
∂t ln

〈
eλQt(xt)

〉
−
∑
n

δ(t− tn) ln[1 + (e−λ − 1)wQ;1(t)]

)

+
wQ;−1 − wQ;0

2
+
∑
n

δ(t− tn)

(
e−λwQ;1

1 + (e−λ − 1)wQ;1

− wQ;0

)
, (7.23)

and in the bulk r ̸= 0, 1:

∂twQ;r =
1

2
∆wQ;r +

〈
ηxt+re

λQt(xt)(eλ − 1)(ηxt − e−ληxt+1 + (e−λ − 1)ηxtηxt+1)
〉

2 ⟨eλQt(xt)⟩

+
∑
n

δ(t− tn)

(〈
ηxt+r+1(1 + (e−λ − 1)ηxt+1)e

λQt(xt)
〉

⟨eλQt(xt)⟩ (1 + (e−λ − 1)wQ;1(t))
− wQ;r(t)

)
. (7.24)

Three major remarks are in order. First, the evolution equation for wQ;r in the bulk is
not closed since it involves higher order correlations between occupation numbers such as〈
ηxt+rηxtηxt+1e

λQt(xt)
〉
. This is classically observed in many body problems, however, in the

next chapter, we will be able to provide an exact closure in the long-time limit. Second, it is
remarkable that, the way we wrote it, equation (7.23) is in fact closed since it only involves the
cumulant generating function ln

〈
eλQt(xt)

〉
and one site correlations wQ;r; it provides a quite

unexpected relation between these quantities. Third, equation (7.22) is not closed because it
involves two site correlations

〈
ηxt+1ηxte

λQt(xt)
〉
, however, it will yield a closed relation (7.25)

in the long-time limit.

Boundary conditions in the long time limit

Now, we take the long-time limit of the equations derived above by injecting the scaling
forms we derived in section 7.1.2, in order to get information about the scaling functions (ψ̂,
ψ̂Q, Φ, ΦQ). The method is detailed in appendix F.2, here we summarise the results. To
lighten notations, we will simply write ΦQ(v), instead of ΦQ(v, ξ, λ).

Because of the scaling of the cumulant generating function (7.19), ∂t ln
〈
eλQt(xt)

〉
−→
t→∞

0,

therefore, from equation (7.22), we deduce:

ΦQ(0+)(1− ΦQ(0−))

ΦQ(0−)(1− ΦQ(0+))
= eλ . (7.25)

In particular, this proves that the long time profile ΦQ(v) is indeed discontinuous in 0 when
λ ̸= 0. This relation expresses the fact that choosing λ > 0 gives more weight to the
configurations where ηxt+1 > ηxt . One can heuristically see λ as a drive to the right imposed
on particles at site xt.

The equation for ∂twQ;0 (7.23), together with the one on ∂twQ;1 (which we did not write,
because it is very similar) yields in the long-time limit:

Φ′
Q(0±) = ∓2Ψ

(
1

1− e∓λ
− ΦQ(0±)

)
, (7.26)

where we have denoted

Ψ = ψ̂Q − ξ ln[1 + (e−λ − 1)ΦQ(0+)]. (7.27)
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The apparition of this quantity Ψ is surprising, but it will make a little bit more sense in
the next subsection in the study of the tracer, with equation (7.40). These relations (7.26)
constitute an unexpected relation between the density profiles and the cumulant generating
function which is difficult to understand from a physical point of view.

Eventually, carrying a careful analysis of the microscopic equations, we have obtained the
three non trivial relations (7.25, 7.26) in the long time limit between the cumulant generating
function and the GDP generating function. This emphasizes the central role played by the
GDP wQ;r.

7.2.2 From integrated current to tracer position

The same microscopic analysis as above can be done for the tracer’s position (e.g. [103, 133])
based on the same arguments (especially making use of the known scaling of the quantities).
Alternatively, we will show here how to derive some of the equations for the tracer observable
from the equations on the integrated current observables.

First boundary condition for the tracer’s position

For the first boundary condition (tracer equivalent of (7.25)), we begin by deriving from
the master equation (7.1) the evolution equation:

∂t ln
〈
eλXt

〉
=

1

2

[
(eλ − 1)(1− w1) + (e−λ − 1)(1− w−1)

]
. (7.28)

In the long time limit, because of the scaling (7.9), the left-hand side vanishes and in a similar
way as previously, we find:

1− Φ(0−)

1− Φ(0+)
= eλ . (7.29)

For the two other equations, we will rely on the following principle.

General principle relating integrated current and tracer observables

The starting point is the relation (6.2). It implies that

P(Xt ≤ x) = P(Qt(x) ≤ 0). (7.30)

We define the large deviation functions (still with xt = ⌊ξ
√

2t⌋)

φ(ξ) =− lim
t→∞

1√
2t

ln P

(
Xt√

2t
= ξ

)
, (7.31)

φQ(ξ, q) =− lim
t→∞

1√
2t

ln P (Qt(xt) = q) . (7.32)

Then, equation (7.30) implies [100, 101, 171]:

φ(ξ) = φQ(ξ, 0). (7.33)

Intuitively, this means that in the long time limit, the position of the tracer Xt, and any point
x̃ where we observe a zero integrated current (Qt(x̃) = 0) will almost always be separated by
a distance negligible compared to

√
t.
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Large deviation functions and cumulant generating functions in the long time limit are
related through Legendre transforms:

φ(ξ) =λξ − ψ̂(λ) with ψ̂′(λ) = ξ, (7.34)

φQ(ξ, q) =λQq − ψ̂Q(ξ, λQ) with ∂λQψ̂Q(ξ, λQ) = q. (7.35)

In particular, if we take q = 0, then whenever ψ̂′(λ) = ξ and ∂λQψ̂Q(ξ, λQ) = 0, we have

λξ − ψ̂(λ) = −ψ̂Q(ξ, λQ). (7.36)

A last important remark is in order. Since in the long time limit, observing Xt√
2t

= ξ is the

same as observing a vanishing integrated current Qt(xt) = 0, the most probable hydrodynamic
profiles (ρ∗, j∗) (7.12, 7.20) leading to these two events are the same. Hence, if ψ̂′(λ) = ξ and
∂λQψ̂Q(ξ, λQ) = 0, then:

Φ(v, λ) = ΦQ(v, ξ, λQ) . (7.37)

Boundary equations for the tracer

Let us chose an arbitrary λ. Then we fix ξ and λQ by demanding that:

ψ̂′(λ) = ξ, ∂λQψ̂Q(ξ, λQ) = 0 (7.38)

In the equations for the integrated current (7.26), the quantity

Ψ = ψ̂Q(ξ, λQ)− ξ ln[1 + (e−λQ − 1)ΦQ(0+, ξ, λQ)], (7.39)

is reminiscent of (7.36) ψ̂Q(ξ, λQ)+λξ = ψ̂(λ). Indeed we show that we have, as a consequence
of (7.38):

λ = − ln[1 + (e−λQ − 1)ΦQ(0+, ξ, λQ)]. (7.40)

More precisely, starting from (7.29) and using Φ(v, λ) = ΦQ(v, ξ, λQ) then replacing ΦQ(0−, ξ, λ)
with (7.25), we get:

eλ =
(
1− ΦQ(0−, ξ, λQ)

) 1

1− ΦQ(0+, ξ, λQ)

=
1− ΦQ(0+, ξ, λQ)

1 + (e−λQ − 1)ΦQ(0+, ξ, λQ)

1

1− ΦQ(0+, ξ, λQ)
, (7.41)

which gives (7.40) by simplifying and taking the logarithm. Hence it is remarkably true that
Ψ = ψ̂(λ). Then to conclude, we start from (7.26):

Φ′
Q(0±, ξλQ) = ∓2Ψ

(
1

1− e∓λQ
− ΦQ(0±, ξλQ)

)
. (7.42)

Then we use identities (7.37), Ψ = ψ̂(λ) and the inverse of (7.40):

e−λQ − 1 =
e−λ − 1

Φ(0+, λ)
,

1− eλQ =
1− eλ

Φ(0−, λ)
. (7.43)

For the second line, we multiplied the first line by eλQ , then used (7.25, 7.29) to simplify the
right-hand side. Finally, we find the two other boundary conditions for the tracer

Φ′(0±)± 2ψ̂

e±λ − 1
Φ(0±) = 0 . (7.44)
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Conclusion

As we can see, the derivation of the boundary conditions (7.25, 7.26, 7.29, 7.44) requires
a quite involved analysis of the microscopic equations. In particular, equation (7.44) (or
(7.26) for the integrated current observable) shows that the knowledge of the density profiles
Φ is enough to recover the cumulant generating function of the tracer’s position. This is a
very strong result, which until now has not been established from the sole hydrodynamic
description (equations of section 6.2 with the transport coefficients of the SEP).
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Chapter 8

Exact closure of the hierarchy

The generalised density profiles (GDP) introduced in the previous chapter 7 are central
physical quantities, since they characterise the full joint distribution of an observable (tracer
position or integrated current) and the occupation numbers in the bath. Strikingly, as we
proceed to show, for the SEP, these quantities also verify a surprisingly simple closed equation.
Focusing on the tracer position observable, we first recall (section 8.1) some results hinting
at the existence of such an equation. Then, in section 8.2 we explain the approach that we
followed to construct it.

Our major result, summarised in paragraph 8.2.3, is the existence of an exact closure for
the infinite hierarchy verified by the GDP, despite the many-body nature of the problem.

In section 8.3, we recover known results thanks to our equation, and go beyond by
fully characterising the bath-tracer correlations. Finally, we illustrate the broad scope of
validity of this closure in the SEP by showing that it applies to different observables and also
out-of-equilibrium settings.

Key result.

• Paragraph 8.2.3: existence of a closed equation for the GDP in the SEP. From this
equation, we can easily derive numerous results for various observables in the SEP
(section 8.3).

8.1 A closed equation ?

The intuition that the GDP-generating function may verify a simple equation originates
from several observations. First, closed form formulas were found to describeN -site correlations
in the SEP [190, 191], but also the cumulant generating function of the integrated current
and tracer position [99–101]. In addition, closed equations were known for the GDP in some
limiting cases [103, 133], which we recall here.

8.1.1 Insight from limiting cases

Here we recall known results from [103, 133]. The following notations for the cumulant
generating function and GDP-generating function introduced in the last chapter (7) will be

101
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extensively used here:

ψ(λ, t) = ln
〈
eλXt

〉
∼
t→∞

ψ̂(λ)
√

2t , ψ̂(λ) =
∑
n≥1

κ̂n
λn

n!
, (8.1)

wr(λ, t) =
⟨ηXt+r(t) eλXt⟩
⟨eλXt⟩ ∼

t→∞
Φ

(
v =

r√
2t
, λ

)
, Φ(v, λ) =

∑
n≥1

Φn(v)
λn

n!
. (8.2)

Correlation profile (order 1 in λ of the GDP)

The correlation profile gr(t) = ⟨ηXt+rXt⟩ converges to the scaling function Φ1(v = r/
√

2t)
(order 1 in λ of Φ). It was shown that the equation for Φ1 is closed, and can be written as

Φ′′
1(v) + 2vΦ′

1(v) = 0 . (8.3)

The solution on the two domains R± is Φ1(v) = a± erfc(±v) for v ≷ 0, where we have used
the condition Φ1(±∞) = 0 deduced from (7.14). We determine the integration constants a±
by using the boundary conditions (7.44) at first order in λ,

Φ′
1(v) + κ̂2ρ = 0⇒ a± = ±

√
π

2
κ̂2ρ . (8.4)

The second cumulant κ̂2 is determined by writing equation (7.29) at first order in λ, from
which we recover the well-known expression [98]

κ̂2 =
1− ρ
ρ
√
π
, (8.5)

and therefore

Φ1(v) = sign(v)
1− ρ

2
erfc(|v|) . (8.6)

High density limit

We now consider the high density limit ρ→ 1. In this case, both the cumulants and the
shifted GDP-generating function Φ(v)− ρ scale as 1− ρ (see for instance (8.5) and (8.6) for
the scaling at lowest order in λ). This leads us to define

Φ̌(v) = lim
ρ→1

Φ(v)− ρ
1− ρ . (8.7)

In this limit, identically to what we argued in 3.3.1, the microscopic equations become closed
at linear order in ρ. In the long time limit (note that the microscopic equations can also be
solved at all time in this case [103]) this yields

Φ̌′′(v) + 2vΦ̌′(v) = 0. (8.8)

Solving this equation on both domains v > 0 and v < 0, combined with the condition
Φ̌(±∞) = 0 deduced from (7.14,8.7), we obtain Φ̌(v) = A± erfc(±v) for v ≷ 0. The
integration constants A± are then determined by the boundary conditions at zero (7.44) in
the limit ρ→ 1,

Φ̌′(0±) =
∓2ψ̂

e±λ − 1
⇒ A± =

√
π

ψ̂

e±λ − 1
. (8.9)
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Finally, using the last condition (7.29), we determine ψ̂ in terms of λ in the dense limit:

ψ̂(λ) =
2(1− ρ)√

π
sinh2

(
λ

2

)
, (8.10)

which coincides with the result obtained from a different approach in [188]. Additionally, we
get the profile [103]

Φ(v) = ρ+ (1− ρ)
1− e∓λ

2
erfc(±v) . (8.11)

Low density limit

In the SEP with a tracer, the low density limit is singular because when the bath particles
are more and more sparse, the tracer recovers a classical diffusive behavior. This makes the
rescaled cumulants diverge (see (8.5)). Therefore, in one dimension, the argument used in
3.3.1 does not hold in this limit.

In order to capture this divergence when ρ → 0, a convenient way is to consider the
limit ρ → 0 with z = ρr and τ = ρ2t fixed. We still have the same scaling variable
v = r/

√
2t = z/

√
2τ . In this limit, the boundary conditions (7.44, 7.29) become

Φ′(0±) +
ψ̂

λ
Φ(0±) = 0 , (8.12)

Φ(0+)− Φ(0−) = λ . (8.13)

Poncet et al. [103, 133], trying to reproduce the results of [171], found that, in this limit,
the scaling function Φ associated to the generalised profiles verify the following instructive
equation

Φ′′(v) + 2(v + ξ)Φ′(v) = 0 , ξ =
dψ̂

dλ
. (8.14)

Solving this equation for v > 0 and v < 0 with the condition Φ(±∞) = ρ, we get Φ(v) =
ρ+A± erfc(±(v+ξ)) for v ≷ 0. The integration constants A± are determined by the boundary
conditions at zero (8.12),

A± =
ρψ̂

±λ e−ξ2√
π
− ψ̂ erfc(±ξ)

. (8.15)

Combined with the relation (8.13), this gives an implicit equation for the cumulant generating

function (because ξ = dψ̂
dλ

),

ρψ̂ erfc(ξ)

λ e−ξ2√
π
− ψ̂ erfc(ξ)

+
ρψ̂ erfc(−ξ)

λ e−ξ2√
π

+ ψ̂ erfc(−ξ)
= λ . (8.16)

Expanding in powers of λ using (7.9), we obtain from (8.16) the cumulants (the odd cumulants
vanish by symmetry)

κ̂2 =
1

ρ
√
π
, κ̂4 =

3(4− π)

ρ3π3/2
, · · · (8.17)

which coincides with those obtained previously [171]. Furthermore, we obtain the profiles
Φn (7.13). The exact expressions can be obtained by expanding (8.16) in powers of λ and
plugging the result into the solution of (8.14).
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8.1.2 First orders by MFT

In order to generalise these closed equations (8.8) and (8.14) valid in some limiting cases
to the case of arbitrary density, we begin by computing the long time limit of the GDP-
generating function Φ at first orders in λ. Thanks to MFT, this can be achieved by solving
the minimisation under linear constraint problem (7.12) on the hydrodynamics fields (ρ, j).
This minimisation problem is usually rephrased using Martin-Siggia-Rose formalism [102, 107]
or by comparing the probability to observe a fluctuation in a non driven system to the most
probable evolution in the same system subject to a weak drive [124] (this latter approach gives
a physical interpretation to the Lagrange multiplier ρ̂(x, t) that we are going to introduce: it
is the driving force that we must apply at point x at time t in order to make a given evolution
(ρ, j) the most probable; this is reminiscent of the Lagrange multipliers giving the constraint
forces in Lagrangian mechanics).

Here we introduce a Lagrangian L(ρ, j, ρ̂), where ρ̂(x, t) is a Lagrange multiplier enforcing
the conservation equation ∂tρ+ ∂xj = 0. We recall that ξ1[ρ] is the position of the tracer at
time t = 1 for the hydrodynamic profile ρ (see equation (7.7)), and that the functional F
encodes the initial condition (6.8). The Lagrangian reads:

L(ρ, j, ρ̂) =

∫ 1

0

∫ ∞

−∞

(
j + 1

2
∂xρ
)2

2ρ(1− ρ)
+ ρ̂(∂tρ+ ∂xj)dxdt+ F [ρ(x, 0)]− λξ1[ρ]

=

∫ 1

0

∫ ∞

−∞

(
j + 1

2
∂xρ
)2

2ρ(1− ρ)
− ρ∂tρ̂− j∂xρ̂dxdt

+

∫ ∞

−∞
ρ̂(x, 1)ρ(x, 1)− ρ̂(x, 0)ρ(x, 0)dx+ F [ρ(x, 0)]− λξ1[ρ]. (8.18)

We performed an integration by parts with respect to t for ρ̂∂tρ and one with respect to x for
ρ̂∂xj. We then differentiate this Laplacian with respect to j(x, t) and ρ(x, t), yielding (after
another space integration by parts for the ρ derivative)

δL
δj(x, t)

=
2j + ∂xρ

2ρ(1− ρ)
− ∂xρ̂, (8.19)

δL
δρ(x, t)

= −∂x
(
j + 1

2
∂xρ

2ρ(1− ρ)

)
−
(
j + 1

2
∂xρ
)2

(1− 2ρ)

2 (ρ(1− ρ))2
− ∂tρ̂. (8.20)

At optimal (ρ, j) = (q, j∗) under the conservation constraint, these two derivatives must
vanish, in particular the first one gives j∗ = −1

2
∂xq+ q(1− q)∂xρ̂. Injected in the conservation

equation, this gives an equation for the corresponding Lagrange multiplier ρ̂ = p ((q, j∗, p)
refer to the fields which are solution of the minimisation problem). Together with the second
vanishing derivative, this yields the MFT equations:

∂tq =
1

2
∂2xq − ∂x (q(1− q)∂xp) , (8.21)

∂tp = −1

2
∂2xp−

1− 2ρ

2
(∂xp)

2. (8.22)

Theses are coupled diffusion and anti-diffusion equations. To solve them, we need boundary
conditions, which are obtained by differentiating the Lagrangian with respect to initial and
final profiles ρ(x, 0) and ρ(x, 1); they read:

p(x, 0) =
λ

q(ξ1[q], 1)
Θ(x) + ln

(
q(x, 0)(1− ρ0(x))

(1− q(x, 0))ρ0(x)

)
, (8.23)

p(x, 1) =
λ

q(ξ1[q], 1)
Θ(x− ξ1[q]), (8.24)



8.2. CONSTRUCTION OF THE CLOSED EQUATION 105

where ρ0(x) is the initial average density near position x, Θ is Heaviside’s function. We will
mainly focus on flat (ρ0(x) = ρ constant) and step (ρ0(x) = ρ− + (ρ+ − ρ−)Θ(x)) initial
conditions.

The procedure to solve these equations and perturbative solution at first orders in λ are
described in [102]. We introduced the new idea that the solution for q has in fact a deep
physical meaning since it corresponds to the long time limit of our GDP-generating function,
as shown in the previous chapter 7.1.2. In addition, Grabsch et al. [165] were able to overcome
many technical difficulties raised by these equations and compute the generalised density
profiles at higher orders. We will give more details on the perturbative resolution of MFT
equations in chapter 10.

In the case of initial flat density ρ, we computed the following expansion for the GDP-
generating function for v > 0 (v < 0 is obtained by the symmetry (v, λ)→ (−v,−λ) which
leaves the system unchanged):

Φ(v) = ρ+ λ
1− ρ

2
erfc(v) + λ2

(
(1− ρ)(1− 2ρ)

4ρ
erfc(v)− 1− ρ

πρ
e−v

2

)
+ λ3

(
(1− ρ)

2(3 + π)ρ2 − (12 + π)ρ+ 6 + πρ(1− ρ)

12πρ2
erfc(v)

+ (1− ρ)2
2(1− ρ)v −√π(1− 2ρ)

2π3/2ρ2
e−v

2 − (1− ρ)2

8ρ
erfc

(
v√
2

)2
)

+O(λ4) , (8.25)

In the case of step density profile (ρ0(x) = ρ− + (ρ+ − ρ−)Θ(x)), we get:

Φ0(v) =
ρ+
2

erfc(−v − κ̂1) +
ρ−
2

erfc(v + κ̂1) ,

Φ1(v > 0) =κ̂2Φ
′
0(v) +

1

Φ0(0)
Φ0(v)(1− Φ0(v))− ρ+(1− ρ+)

2Φ0(0)
erfc(−v − κ̂1)

− (ρ+ − ρ−)2

Φ0(0)

∫ ∞

0

dz

2
√

2π
e−

1
2
(v+2κ̂1+z)2 erfc

( |v − z|√
2

)
. (8.26)

To get the formula for v < 0, we use the symmetry (v, λ, ρ−, ρ+) → (−v,−λ, ρ+, ρ−). We

recall that κ̂n ∼
t→∞

⟨Xn
t ⟩c√
2t

are the rescaled cumulants of the tracer’s position. From the formulas

above, we derive implicit equations for the cumulants using the boundary conditions (7.44).
For instance, we get for the first cumulant, that we will need below:

ρ−

1 +
√
π κ1eκ

2
1 erfc(−κ1)

=
ρ+

1−√π κ1eκ21 erfc(κ1)
, (8.27)

If we now compute the left-hand side of equation 8.14 using these expressions valid at any
density, we get a non zero result (vanishing in the low-density limit). In the next section, we
build a new closed equation verified by these first order expansions.

8.2 Construction of the closed equation

The closures obtained in the limiting cases presented above, and the rich structure of the
SEP [99–101, 190, 191] convey the intuition that a similar closure can be obtained at arbitrary
density. Here we present the approach we followed in order to build such an equation. The
version developed here varies from the original one [165], but the principle is identical. It was
mainly a trial-and-error process, and at each stage, we were mainly guided by the known
exact results that we wanted to recover.
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8.2.1 Structure of the sought equation

From the closed bulk equations we obtained at high density (8.8) and low density (8.14),
we guess that the general equation at arbitrary density takes the form

Φ′′(v) + 2(v + ξ)Φ′(v) = ? , (8.28)

with ? a right-hand side to be determined. For this new equation to be closed, ? should
be expressed in terms of the function Φ(v) only. From our previous results [103] recalled in

section 8.1.1, ? vanishes in both limits ρ→ 0 and ρ→ 1, as well as at first order in λ (because
of (8.3)). For this latter reason, when expanding this equation in powers of λ, we expect

that, at order n, the right-hand side ? will act as a source term in the equation for Φn, by
involving only the profiles Φm at lower orders m < n. Furthermore equation (8.28), combined
with the boundary conditions (7.14,7.29,7.44), has to reproduce the known cumulants of the
position of the tracer [100, 101].

Finally, we have some constraints on how the different parameters (λ, ψ̂, ξ and ρ) should

appear in ? :

(C1) The variable λ is explicitly involved in the microscopic equations and the boundary
conditions of Section 7.2 only through expressions of the form e±λ − 1, so we expect
that only these combinations appear.

(C2) In the low density equation (8.14), ψ̂ does not appear explicitly, only its derivative

ξ = dψ̂
dλ

is involved, so we expect the same to happen at arbitrary density. Similarly,
we do not expect other parameters, such as the density ρ, to appear explicitly in the
equation.

(C3) The equation we write should have a “proper scaling” with time. Indeed, the left-hand
side of equation (8.28) originates from microscopic quantities which scale as 1

t
. For

instance, Φ′′(v) appears as the long time limit of the microscopic quantity

wr+1 + wr−1 − 2wr ∼
t→∞

Φ′′(r/
√

2t)

2t
,

where we recall that v = r/
√

2t. Similarly, vΦ′(v) and ξΦ′(v) originate from t−1 terms,
respectively

∂twr(t) ∼
t→∞
−rΦ

′(r/
√

2t)

2t
√

2t
, and ∂t(∂λψ(λ, t))(wr+1(t)− wr(t)) ∼

t→∞

ψ̂′(λ)√
2t

Φ′(r/
√

2t)√
2t

.

The same scalings should hold for the right-hand side ? .

8.2.2 Closed form for the right-hand side

As a starting point to infer the structure of ? , we use its lowest order in λ. In the case
of flat initial density ρ, we compute the left-hand side of equation (8.28) with the formula for
Φ obtained by solving the MFT equations up to order 3 in λ included (8.25). We get:

? =
2(1− ρ)2

ρ

(
v

4
√

2π
e−

v2

2 erfc

( |v|√
2

)
− sign(v)

e−v
2

4π

)
λ3 +O(λ4) . (8.29)
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Closing the lowest order

The goal is now to rewrite this expression in terms of the lowest orders of Φ, as guessed
above. Using that ∫ ∞

0

dz Φ′
1(v + z)Φ′

1(−z) =
(1− ρ)2√

2π
e−

v2

2 erfc

(
v√
2

)
, (8.30)

we can rewrite the term of (8.29) at order 3 in λ as

? =


−2

λ

ρ

∫ ∞

0

dz zΦ′(−z)Φ′(v + z) +O(λ4) for v > 0 ,

2
λ

ρ

∫ ∞

0

dz zΦ′(z)Φ′(v − z) +O(λ4) for v < 0 .

(8.31)

This rewriting is one of the simplest way we found to express (8.29) as a closed form function
of Φ, which respect the constraint (C3). Indeed, this can be seen as originating from the
following microscopic expression of scaling t−1:

∑
u>0

∂tw−u(t)(wr+u+1(t)− wr+u(t)) ∼
t→∞

∑
u>0

u
Φ′
(

−u√
2t

)
2t
√

2t

Φ′
(
r+u√
2t

)
√

2t

∼
t→∞

∫
u>0

du√
2t

u√
2t

Φ′
(

−u√
2t

)
Φ′
(
v + u√

2t

)
2t

∼
t→∞

1

t

∫
z>0

dz zΦ′ (−z) Φ′ (v + z) . (8.32)

We replaced the sum by an integral since the integrand is slowly varying when t is large then
we performed a change of variable.

The constraint (C2) imposes to rewrite ρ in terms of Φ. Since Φ(v) = ρ+O(λ), we can for
instance replace ρ by Φ(0±). This guess is further confirmed by considering the case of a step
initial condition (corresponding to an initial mean density ρ− for x < 0 and ρ+ for x > 0).
Indeed, using the result (8.26) from the MFT computation at first order in λ in this case and
using the same method as above, we get a similar expression, which takes the form

? = −2
λ

Φ0(0)

∫ ∞

0

dz zΦ′(−z)Φ′(v + z) +O(λ2) , (8.33)

written for v > 0. This equation reduces to (8.31) in the case of a uniform density ρ, since in
that case Φ = ρ+ λΦ1 +O(λ2). Using now the constraint (C1), we can rewrite λ/Φ0(0) as
(eλ − 1)/Φ(0+) or (e−λ − 1)/Φ(0−) at lowest order in λ. Therefore, it leads us to propose an
equation of the form

Φ′′(v) + 2(v + ξ)Φ′(v) =
e−λ − 1

Φ(0−)

∫ ∞

0

dz zΦ′(−z)Φ′(v + z) +O(λ4) , (8.34)

for v > 0. Using this equation in the case of the uniform density, combined with the boundary
conditions (7.29,7.44), we can compute the cumulants predicted by this equation. The first
two cumulants κ̂2 and κ̂4 coincide with the ones computed previously [98, 100, 102], but not
the following one κ̂6. This means that (8.34) must be refined in order to properly account for
term of order λ5 and higher.
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Getting higher cumulants

Having introduced convolutions when going from order 2 to order 3 in λ, we conjectured
that double convolutions would enable to go beyond these orders. After trying several
possibilities, we found that the following equation (valid for v > 0) properly reproduces all
the known cumulant κ̂n for n ≤ 6 [100]:

Φ′′(v) + 2(v + ξ)Φ′(v) =
e−λ − 1

Φ(0−)

∫ ∞

0

dz zΦ′(−z)Φ′(v + z)

− (e−λ − 1)2

Φ(0−)2

∫ ∞

0

dz

∫ ∞

0

dz′ z′Φ′(−z)Φ′(−z′)Φ′(z + z′ + v) +O(λ6).

(8.35)

Using the symmetry (v, λ)→ Φ(−v,−λ) (Φ(v, λ) = Φ(−v,−λ), ξ(λ) = −ξ(−λ)), when v < 0:

Φ′′(v) + 2(v + ξ)Φ′(v) =
eλ − 1

Φ(0+)

∫ ∞

0

dz zΦ′(z)Φ′(v − z)

− (eλ − 1)2

Φ(0+)2

∫ ∞

0

dz

∫ ∞

0

dz′ z′Φ′(z)Φ′(z′)Φ′(v − z − z′) +O(λ6).

(8.36)

The structure of these equations leads us to introduce the two functions

Ω±(v) = ∓e±λ − 1

Φ(0±)
Φ′(v) = 2ψ̂

Φ′(v)

Φ′(0±)
for v ≷ 0 , (8.37)

where we have used the boundary condition (7.44) in the last equality. Equation (8.35) then
takes the more compact form

Ω′
+(v) + 2(v + ξ)Ω+(v) =

∫ ∞

0

dz zΩ−(−z)Ω+(v + z) +O(λ6)

−
∫ ∞

0

dz

∫ ∞

0

dz′ z′Ω−(−z)Ω−(−z′)Ω+(v + z + z′). (8.38)

Now, the key point of our approach is to observe that to go from the convolution to the
double convolution we have applied an operator L− defined by:

L−f(v) =

∫ ∞

0

dz Ω−(−z)f(v + z), (8.39)

allowing us to rewrite equation (8.38) in the form:

Ω′
+(v) + 2(v + ξ)Ω+(v) =(1−L−)

∫ ∞

0

dz zΩ−(−z)Ω+(v + z) +O(λ6). (8.40)

Finally, we conjecture that the closed equation, at all orders in λ, is obtained by applying
repeatedly the operator L− to the right-hand side 1 −L− + L−

2 −L−
3..., which can be

written in the compact form:

Ω′
+(v) + 2(v + ξ)Ω+(v) = (1 + L−)−1

∫ ∞

0

dz zΩ−(−z)Ω+(v + z) . (8.41)
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For v < 0, we define similarly

L+f(v) =

∫ ∞

0

dz Ω+(z)f(v − z), (8.42)

and the closed equation reads:

Ω′
−(v) + 2(v + ξ)Ω−(v) = (1 + L+)−1

∫ ∞

0

dz (−z)Ω+(z)Ω−(v − z) . (8.43)

The original closure we proposed [165] required to identify more complicated operators
L±, which had a matrix form because it coupled the equations on Ω±. We chose to present
this version because it is simpler, allowing for a clearer exposition, while based on the same
ideas and methodology. It also makes it possible to interpret our closure as a decomposition of
the evolution of the density profiles onto a Markovian, linear dynamics, and a non-Markovian
part, as argued in appendix G.1.

8.2.3 Compact form and summary

In fact, equations (8.41,8.43) can be put in a simple form. This was for us a strong
indication that they may be exact.

Wiener-Hopf equations

Remarkably, the closed equations (8.41, 8.43) are in fact equivalent to much simpler
Wiener-Hopf equations (8.45, 8.46). Indeed, if we apply (1 + L−) to equation (8.41):∫ ∞

0

dz zΩ−(−z)Ω+(v + z) =(1 + L−) [(∂v + 2(v + ξ))Ω+(v)]∫ ∞

0

dz zΩ−(−z)Ω+(v + z) =(∂v + 2(v + ξ))Ω+(v)

+

∫ ∞

0

dz Ω−(−z)(∂v + 2(v + z + ξ))Ω+(v + z)

0 =(∂v + 2(v + ξ))

[
Ω+(v) +

∫ ∞

0

dz Ω−(−z)Ω+(v + z)

]
(8.44)

Finally, since the only solutions to the differential equation (∂v + 2(v + ξ))f(v) = 0 are

proportional to e−(v+ξ)2 , there exists an integration constant, which we denote ωeξ
2

√
π

(it will be

convenient later), such that:

Ω+(v) +

∫ ∞

0

Ω+(v + z)Ω−(−z)dz =
ω√
π

e−(v+ξ)2+ξ2 , (8.45)

And identically for Ω−, with the same integration constant as a consequence of definition (8.37)
(which in particular implies Ω+(0) = Ω−(0)):

Ω−(v) +

∫ ∞

0

Ω+(z)Ω−(v − z)dz =
ω√
π

e−(v+ξ)2+ξ2 . (8.46)

These two coupled equations can be mapped onto two independent linear equations, upon
analytic continuation of Ω+ to v < 0 and Ω− to v > 0 [192]. We give a proof of this fact in
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appendix G.2, adapting a remarkable probabilistic argument given in [193] in the case of KPZ
equation with weak noise. This finally gives two Wiener-Hopf integral equations,

Ω+(v) +

∫ 0

−∞
dz K(v − z) Ω+(z) = K(v) , (8.47)

Ω−(v) +

∫ ∞

0

dz K(v − z) Ω−(z) = K(v) , (8.48)

with the Gaussian kernel
K(v) =

ω√
π

e−(v+ξ)2+ξ2 . (8.49)

Summary of the equations

We will see just after that these closed equations, together with the boundary conditions
obtained in the last chapter (7), can be solved to give the full GDP and cumulants of the
tracer’s position in function of ρ and λ. We have finally found that the rescaled derivatives of
the generalised density profiles,

Ω±(v) = 2ψ̂
Φ′(v)

Φ′(0±)
for v ≷ 0 , (8.50)

obey the simple linear equation

Ω±(v) +

∫
R∓

dz K(v − z) Ω±(z) = K(v) , (8.51)

with the kernel
K(v) =

ω√
π

e−(v+ξ)2+ξ2 , (8.52)

where the parameter ω is determined from the boundary condition

Ω+(0) = Ω−(0) = 2ψ̂ , (8.53)

which is a consequence of the definition (8.50). This equation is completed by the boundary
relations, derived above from microscopic considerations (chapter 7),

Φ′(0±)± 2ψ̂

e±λ − 1
Φ(0±) = 0 , (8.54)

lim
v→±∞

Φ(v) = ρ , (8.55)

1− Φ(0−)

1− Φ(0+)
= eλ . (8.56)

In a nutshell, starting from the previously known closed equations for the GDP in the
dense and dilute limits, and on the basis of the first orders in λ we computed at arbitrary
density using MFT, we managed to build a closed equation that correctly accounts for these
first orders. We then conjectured that this equation holds at all orders in λ. Initially [165], we
supported our conjecture by showing that its predictions exactly matches all known results,
in particular the cumulant generating function of the tracer’s position. Since then, the closed
equations (8.45,8.46) were proved by solving exactly the MFT equations (8.21) using the
inverse scattering transform [172].
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8.3 Results from the closed equation approach

First, we describe the resolution procedure, which makes it possible to get analytical
expressions for the cumulants of the position of the tracer and the GDP. Then, we implement
the procedure in the case of a flat initial density. Finally, we extend our results to the case of
initial step density and to the integrated current observable (defined in section 7.1.3).

8.3.1 Solving the Wiener-Hopf equations for the profiles and the
cumulants

The solution of the Wiener-Hopf equations (8.51) can be expressed in terms of the half

Fourier transforms Ω̂
(±)
± of Ω±, defined as

Ω̂
(±)
± (k) =

∫
R±

dv Ω±(v) eikv . (8.57)

The solution of (8.51) is described in [106] and is obtained by solving a Riemann problem. It
reads:

Ω̂
(±)
± (k) = exp

[∫
R±

dx

2π
eikx

∫ ∞

−∞
du e−iux ln(1 + K̂(u))

]
− 1 , (8.58)

where

K̂(k) =

∫ ∞

−∞
K(v)eikvdv = ω e−

1
4
(k+2iξ)2 . (8.59)

Inserting the expression of K̂ (8.59) and expanding in powers of ω, we get∫
R±

dx

2π
eikx

∫ ∞

−∞
du eiux ln(1 + K̂(u)) = −Z±

(
ω, ξ − ik

2

)
, (8.60)

with

Z± (ω, ξ) =
1

2

∑
n≥1

(−ω eξ
2
)n

n
erfc

(
±√n ξ

)
. (8.61)

With the definitions (8.57) of the Fourier transforms, this explicitly gives∫ ∞

0

Ω+(v)eikvdv = exp

[
−Z+

(
ω, ξ − ik

2

)]
− 1 , (8.62)

∫ 0

−∞
Ω−(v)eikvdv = exp

[
−Z−

(
ω, ξ − ik

2

)]
− 1 . (8.63)

These expressions are convenient to get perturbative expansions in powers of λ, as we will
see below. For arbitrary values of λ, the expressions (8.58) are more practical. For instance,
setting k = ±is in (8.58) and letting s→∞, we get

Ω̂
(±)
± (±is) ≃

s→∞

1

2πs

∫ ∞

−∞
ln(1 + K̂(u))du , (8.64)

while on the other hand, from the definition (8.57) we have

Ω̂
(±)
± (±is) ≃

s→∞

1

s
Ω±(0) =

1

s
2ψ̂ , (8.65)
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where we have used that Ω±(0) = 2ψ̂ from the definition of Ω± (8.50). Combining these two
asymptotic results, we get

ψ̂ =
1

4π

∫ ∞

−∞
ln(1 + K̂(u))du . (8.66)

Using the expression of K̂ (8.59) and expanding in powers of ω, this becomes

ψ̂ = − 1

2
√
π

Li 3
2
(−ω) , (8.67)

where Liν(z) =
∑

n≥1 z
n/nν is the polylogarithm function. It relates the parameter ω and the

cumulant generating function ψ̂. Since ξ = dψ̂
dλ

, one can thus think of Ω± as parametrised by

ψ̂. At this stage, the function ψ̂(λ) is not known. It can be determined in the following way:

1. The integration of Ω± on R± with the boundary conditions at infinity (8.55) gives a
relation between Φ(0+) and Φ′(0+), and between Φ(0−) and Φ′(0−). It can be obtained
by setting k = 0 in (8.62,8.63):∫ ∞

0

Ω+ = 2ψ̂
ρ− Φ(0+)

Φ′(0+)
= exp [−Z+(ω, ξ)]− 1 , (8.68)

∫ 0

−∞
Ω− = 2ψ̂

Φ(0−)− ρ
Φ′(0−)

= exp [−Z−(ω, ξ)]− 1 . (8.69)

2. Combining these relations with the boundary conditions (8.54) yield Φ(0+) and Φ(0−),
parametrised by λ and ψ̂ (via ω and ξ):

Φ(0+) = ρ
eλ − 1

eλ − e−Z+(ω,ξ)
, (8.70)

Φ(0−) = ρ
e−λ − 1

e−λ − e−Z−(ω,ξ)
. (8.71)

3. Using finally the relation (8.56) which relates Φ(0+) and Φ(0−), we obtain the cumulant
generating function ψ̂(λ).

We now illustrate how this procedure can be applied to obtain the cumulants and the profiles
Φn at lowest orders in λ.

8.3.2 Expansions in powers of λ

Here we compute the cumulants of the tracer and GDP following the procedure de-
scribed above with initial density ρ, and check that they are in agreement with the known
cumulants [100] and with Monte Carlo simulations of the SEP (figure 8.1).

For the cumulants

Inserting the expansion of ψ̂ in powers of λ (7.9) into equation (8.67), we obtain the
expansion of ω in powers of λ,

ω =
√
πκ̂2λ

2 +

√
π

12
(κ̂4 + 3

√
2πκ̂22)λ

4 + · · · . (8.72)
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Note that the odd order cumulants vanish, as expected. We also have by definition

ξ =
dψ̂

dλ
= κ̂2λ+ κ̂4

λ3

6
+ · · · . (8.73)

Plugging these expansions into the expressions (8.70,8.71) give Φ(0±) in terms of the cumulants.
Inserting these results into the last relation (7.29), we obtain the cumulants

κ̂2 =
1− ρ
ρ
√
π
, (8.74)

κ̂4 =
(1− ρ)

π3/2ρ3

(
12(1− ρ)2 − π(3− 3(4−

√
2)ρ+ (8− 3

√
2)ρ2)

)
. (8.75)

κ̂6 =
(1− ρ)

π5/2ρ5

(
30π

(
2
(

9
√

2− 20
)
ρ2 +

(
60− 18

√
2
)
ρ− 15

)
(1− ρ)2

− π2
(

8
(
−17 + 15

√
2− 5

√
3
)
ρ4 +

(
480− 300

√
2 + 80

√
3
)
ρ3

+5
(
−114 + 45

√
2− 8

√
3
)
ρ2 − 45

(√
2− 6

)
ρ− 45

)
+ 1020(1− ρ)4

)
. (8.76)

These expressions coincide with the cumulants computed by Bethe ansatz in Ref. [100]. This is
expected, since we have constructed our starting equation (8.35) to reproduce these cumulants.
We have computed the next cumulants, up to order 10, by implementing the procedure
described above with Mathematica. These cumulants also coincide with those obtained from
Ref. [100]. This provides a strong nontrivial validation of our integral equations (8.51). We
have thus found an alternative parametrization for the cumulant generating function to the
one obtained in [100]. We will show below that we can actually recover the exact same
parametrization of Ref. [100].

For the generalised profiles

Having obtained the cumulant generating function ψ̂(λ), we can go further than [100]
and obtain the profiles Φn which encode the bath-tracer correlations. Indeed, we have the

expression of ξ = dψ̂
dλ

and ω in terms of λ, via equation (8.67). We thus have Ω±(v) in
terms of λ from the solution of (8.51). We then obtain Φ(v) by integration of Ω±, with the
definition (8.50):

Φ(v > 0) = ρ+
Φ(0+)

eλ − 1

∫ ∞

v

Ω+(z)dz , (8.77)

Φ(v < 0) = ρ+
Φ(0−)

e−λ − 1

∫ v

−∞
Ω−(z)dz , (8.78)

where we have used the boundary conditions at infinity (8.55). Note that we have already
obtained the expressions of Φ(0±), given by (8.70,8.71), in the derivation of the cumulants.
Therefore, expanding (8.77), we get the profiles, for example

Φ0(v > 0) = ρ , (8.79)

Φ1(v > 0) =
1− ρ

2
erfc(v) , (8.80)

Φ2(v > 0) =
(1− ρ)(1− 2ρ)

2ρ
erfc(v)− 2

π

(1− ρ)2

ρ
e−v

2

, (8.81)
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Figure 8.1: SEP. Generalised density profiles (GDP) of order (a) n = 1 at density ρ = 0.5,
(b) n = 2 at densities ρ = 0.25, 0.5 and 0.75, and (c) n = 3 at density ρ = 0.5. The solid
lines correspond to simulations of the SEP (see appendix A), performed at time t = 3000 on
a lattice of 5000 sites. The averaging is performed over 108 realisations. The dashed lines
are the theoretical predictions (8.80,8.81,8.82). (d) GDP-generating function at ρ = 0.5 and
λ = 0.57, obtained from solving numerically the Wiener-Hopf equation (8.51) (dashed line, see
Section 8.3.2), compared to the numerical solution (red solid line) of the MFT equations (8.21)
obtained from the algorithm described in [108].

Φ3(v > 0) =(1− ρ)
2(3 + π)ρ2 − (12 + π)ρ+ 6 + πρ(1− ρ)

2πρ2
erfc(v)

+ 3(1− ρ)2
2(1− ρ)v −√π(1− 2ρ)

π3/2ρ2
e−v

2 − 3(1− ρ)2

4ρ
erfc

(
v√
2

)2

, (8.82)

The first few profiles Φn are represented in figure 8.1, compared to numerical simulations of
the SEP.

The first order profile Φ1(v) gives the long-time asymptotics of the covariance g̃r(t) =
Cov(Xt, ηXt + r) (correlation profile), with v = r/

√
2t. For v > 0, this covariance is positive,

indicating that an increase of Xt (displacement towards the right) is correlated with an
increase of the occupation of the sites in front of the tracer. The profile Φ1 thus provides a
quantitative measurement of the ”jam” that forms in front of the tracer when it moves in a
given direction (see figure 8.1(a)).

Similarly, the second order profile Φ2(v) is the long time limit of Cov(X2
t , ηXt+r). It

measures the correlations between the amplitude of the fluctuations of the tracer, and the
density around it. This function is negative, meaning that these two quantities are anti-
correlated. This can be interpreted in the following way: a decrease of the occupation of
the sites around the tracer gives more space for the tracer to fluctuate and thus increases
its fluctuations. Surprisingly, when the mean density of particles becomes less than 1/2, Φ2

becomes non-monotonic, indicating that this anti-correlation effect is stronger at a given
distance (rescaled by

√
t) from the tracer.

Conservation relation and numerical resolution

Using the expressions above for the profiles, one can check that the conservation relation∫ ∞

0

(Φ(v)− ρ)dv −
∫ 0

−∞
(Φ(v)− ρ)dv = ρξ (8.83)

holds up to O(λ6). We have further checked numerically that this relation holds non-
perturbatively in λ.

This relation is particularly useful to implement a numerical computation of the profile
Φ(v) from the closed Wiener-Hopf equation (8.51). Indeed, we have an explicit analytical
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solution (8.62,8.63) only in Fourier space, and inverting it to real space can be difficult.
Numerically, it is much more stable and faster to solve directly in real space by using the
following procedure:

1. Select an initial ”guess” for the values of ω and ξ;

2. Discretise the Wiener-Hopf equations (8.51) and solve them for Ω±(v);

3. We then need to determine the parameters λ and ρ. They can be deduced from Ω±(v)
from (8.77,8.78), but that introduces two new parameters, Φ(0+) and Φ(0−). One
relation between them is given by the cancellation of the velocity (8.56). In principle,

the last relation needed is ξ = dψ̂
dλ

, since ψ̂ = Ω+(0)/2 is known. However, this relation
is not practical to use because we cannot easy compute the derivative with respect to λ.
This last equation is however conveniently replaced by the conservation relation (8.83),
which can be used straightforwardly;

4. Finally, having determined all the parameters, the profile Φ(v) is obtained from (8.77,8.78).

This procedure can be implemented easily thanks to the conservation relation (8.83). We
have used it to plot the profile Φ(v) for an arbitrary value of λ, as shown in figure 8.1(d).

8.3.3 Extensions to other situations and observables in the SEP

Although we have focused on the example of tracer diffusion in the SEP with a mean
density ρ, our closed equations (8.51) can be applied to various other situations. Here, we
describe explicitly the extension to other situations and observables within the SEP, give
exact expression for the profiles Φ and discuss some of the physical consequences of these
results.

An out-of-equilibrium situation: SEP with an initial step density profile

We consider a SEP with a mean initial step density ρ+ for v > 0 and ρ− for v < 0, which
constitutes a paradigmatic example of a system that remains out-of-equilibrium at all times.
The tracer is initially placed at the origin. The microscopic evolution equations of section 7.2
are unchanged, and so are the boundary relations (8.54,8.56) deriving from them. Only the
boundary condition at infinity (8.55) is changed into

lim
v→±∞

Φ(v) = ρ± (8.84)

to take into account the imbalance of density.
In this case, we found that the closed equations (8.51) still apply. Indeed, by following the

procedure described at the end of section 8.3.1, we obtain the cumulants κ̂n of the position
of the tracer, which coincide with those computed using Bethe ansatz in [100]. In this case,
the left/right symmetry is broken by the difference of density on the two domains x > 0 and
x < 0, so the odd cumulants are now nonzero. For instance, the first cumulant is obtained
from the solution of the equation

ρ−

1 +
√
π κ̂1eκ̂

2
1 erfc(−κ̂1)

=
ρ+

1−√π κ̂1eκ̂21 erfc(κ̂1)
, (8.85)

and the higher order cumulants have explicit expressions in terms of κ̂1. For instance,

κ̂2 = κ̂21

(
2πe2κ̂

2
1κ̂1 erfc

(√
2κ̂1

)
−
√

2π +
4πe2κ̂

2
1κ̂1ρ+

(
ρ2+ − 3ρ−ρ+ + 2ρ−

)
(ρ− − ρ+)3

)
, (8.86)
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Figure 8.2: SEP with an initial step density. Generalised density profiles (GDP) of order
(a) n = 1 and (b) n = 2 for a step of density ρ− = 0.7 and ρ+ = 0.2. Solid lines: result of the
simulations, computed at t = 1500 on a lattice with 2000 sites, with the averaging performed
over 108 realisations. Dashed lines: analytical predictions obtained from the resolution of the
Wiener-Hopf equation (8.51). For instance Φ1(v) is given by (8.88).

in agreement with [100].

Our procedure additionally yields the generalised density profiles, for instance

Φ0(v) =
ρ+
2

erfc(−v − κ̂1) +
ρ−
2

erfc(v + κ̂1) , (8.87)

Φ1(v) =
2
√
πeκ̂

2
1 κ̂1ρ− (1− ρ+)− (ρ−ρ+)

2

2 (ρ− − ρ+)
erfc (κ̂1 + v)

−
e−(κ̂1+v)2

(
4
√
πe2κ̂

2
1 κ̂3

1

(
(ρ− − ρ+)

3
erfc

(√
2κ̂1

)
+ 2ρ+

(
ρ2+ + ρ− (2− 3ρ+)

))
− 2
√
2κ̂2

1 (ρ− − ρ+)
3
)

2 (ρ− − ρ+)
2

+
1

2

√
πeκ̂

2
1 κ̂1 (ρ+ − ρ−)

(
4T

(√
2κ̂1,

κ̂1 + v

κ̂1

)
− 4T

(
2κ̂1 + v,

v

2κ̂1 + v

)
+ erfc

(
2κ̂1 + v√

2

)
− erfc (κ̂1)

)
,

(8.88)

for v > 0 and κ̂1 > 0, and where T is Owen’s T-function defined by [194]

T(h, a) =
1

2π

∫ a

0

e−
h2

2
(1+x2)

1 + x2
dx . (8.89)

Similar expressions can be written for κ̂1 < 0. The values of Φn(v < 0) can be obtained by
the symmetry Φ(−v, λ, ρ+, ρ−) = Φ(v,−λ, ρ−, ρ+). The first two profiles Φn for n = 1 and 2
are represented in Fig. 8.2.

Unlike the case of the flat initial density, the profiles Φn are no longer symmetric or
anti-symmetric, but their physical meaning remains the same. Φ1(v) again measures the
covariance between Xt and ηXt+r at large times. For v > 0 and close to 0, it is still positive,
indicating that a displacement of the tracer towards the right leads to an increase of the
density of particles in front of the tracer. Surprisingly, unlike the case of the flat density,
Φ1(v > 0) changes sign at a given distance (rescaled by

√
t) from the tracer. This indicates

that for v larger than this critical value, the effect is inverted: a displacement of the tracer
towards the right is correlated with a decrease of the density. This unexpected behaviour is
fully quantified by our computation of the generalised profile Φ1, and is stressed by the inset
in Fig. 8.2(a).
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Another observable: the integrated current

We now consider the integrated current through a point Qt(x), that we introduced in the
previous chapter 7, which was studied in [100, 101] and [99, 107, 108] in the case x = 0. We
recall its definition:

Qt(x) =
∑
r≥1

(ηr+x(t)− ηr(0)) . (8.90)

We recall the notations we introduced for the long-time limits of the cumulant generating
function and GDP-generating function, where xt = ⌊ξ

√
2t⌋:

ψQ(λ, ξ, t) = ln
〈
eλQt(xt)

〉
∼
t→∞

ψ̂Q(λ, ξ)
√

2t , (8.91)

wQ;r(λ, ξ, t) =
⟨ηxt+r(t) eλQt(xt)⟩
⟨eλQt(xt)⟩ ∼

t→∞
ΦQ

(
v =

r√
2t
, ξ, λ

)
. (8.92)

As discussed in section 7.2.2, the knowledge of the quantities Qt(x) for all x makes it
possible to recover the position of the tracer. Moreover, we have seen (equation (7.37)) that
the long-time limit Φ of the GDP-generating function for the tracer observable is equal to the
one of the integrated ΦQ provided that we make the good choice of parameters.

As a consequence, the closed equations (8.51) are expected to hold for this observable as
well, provided that we replace the boundary conditions by the one for the integrated current
computed in section 7.2.1. To sum up, we have the following equations (we do not write the
dependencies on λ, ξ ). The boundary equations obtained from microscopic considerations:

ΦQ(0+)(1− ΦQ(0−))

ΦQ(0−)(1− ΦQ(0+))
= eλ , (8.93)

Φ′
Q(0±) = ∓2Ψ

(
1

1− e∓λ
− ΦQ(0±)

)
, (8.94)

which involves the quantity originating from the moving xt = ⌊ξ
√

2t⌋:

Ψ = ψ̂Q − ξ ln[1 + (e−λ − 1)ΦQ(0+)] . (8.95)

We define similarly the rescaled derivatives of the generalised profiles:

Ω±(v) = 2Ψ
Φ′
Q(v)

Φ′
Q(0±)

for v ≷ 0 , (8.96)

still obey the simple linear equation

Ω±(v) +

∫
R∓

dz K(v − z) Ω±(z) = K(v) , (8.97)

with the kernel
K(v) =

ωQ√
π

e−(v+ξ)2+ξ2 , (8.98)

In the case of a step initial density:

lim
v→±∞

ΦQ(v) = ρ± , (8.99)

Then, the boundary conditions (8.94) combined to the solution (8.62,8.63) where the
Fourier variable k is taken equal to zero, yield:

1 +

∫ ∞

0

Ω+ = 1 + 2Ψ
ρ+ − ΦQ(0+)

Φ′
Q(0+)

= 1− ρ+ − ΦQ(0+)
1

1−e−λ − ΦQ(0+)
= exp [−Z+(ω, ξ)] , (8.100)
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1 +

∫ 0

−∞
Ω− = 1 + 2Ψ

ΦQ(0−)− ρ−
Φ′
Q(0−)

= 1 +
ΦQ(0−)− ρ−
1

1−e+λ − ΦQ(0−)
= exp [−Z−(ω, ξ)] . (8.101)

Making the product of these two equations, then simplifying the left-hand side using the
boundary condition (8.93), and the right-hand side using Z+(ω, ξ)+Z−(ω, ξ) = − ln(1+ωQeξ

2
)

(because erfc(ξ
√
n) + erfc(−ξ√n) = 2), we find

ωQeξ
2

= ρ−(1− ρ+)(eλ − 1) + ρ+(1− ρ−)(e−λ − 1) , (8.102)

and thus

ψ̂Q = − 1

2
√
π

Li 3
2
(−ωQ) + ξ ln[1 + (e−λ − 1)ΦQ(0+)] . (8.103)

Combining this expression with the value

(e−λ − 1)ΦQ(0+) = (1 + ρ+(e−λ − 1))eZ+(ωQ,ξ) − 1 (8.104)

obtained from (8.62) at k = 0, we finally get

ψ̂Q(λ, ξ) = ξ ln[1 + (e−λ − 1)ρ+]−
∑
n≥1

(−ωQeξ
2
)n

2n

(
e−nξ

2

√
nπ
− ξ erfc(

√
nξ)

)
. (8.105)

This expression coincides exactly with the result of Ref. [100, 101]. That supports the
exactness of our main equations (8.51), non-perturbatively in λ.

Furthermore, we additionally obtain the profiles ⟨ηxt+r(t)Qt(xt)
n⟩c ≃t→∞

ΦQ;n(v) which

measure the correlations between the current and the density in the hydrodynamic limit. For
instance, in the case ξ = 0 (current through the origin),

ΦQ;1(v) =
ρ(1− ρ)

2
erfc(v) , (8.106a)

ΦQ;2(v) =
ρ(1− ρ)(1− 2ρ)

2
erfc(v) , (8.106b)

ΦQ;3(v) =
ρ(1− ρ)(1− 3ρ+ 3ρ2)

2
erfc(v)− 3

ρ2(1− ρ)2

4
erfc

(
v√
2

)2

. (8.106c)

These profiles are shown in Fig. 8.3, and present similar features to the ones obtained above
for the tracer.

Conclusion

In conclusion, our exact closure provides a simple way to fully characterise, analytically,
the spatial correlations in the SEP. The existence of such a closure is exceptional, since
many-body problems usually involve an infinite hierarchy of equations. As a byproduct, we
recover straightforwardly the cumulant generating function of the tracer’s position and also
the one of the integrated current through the origin. These quantities have been the focus of
recent studies; in [99–101], they are obtained using the arsenal of integrable probabilities.

In addition to that, many recent results obtained by using the inverse scattering method [172,
195–198] can be rephrased into the same Wiener-Hopf equation (8.45), provided that one
modifies the kernel K [168]. These connections hint at the diversity of use cases for the
equation, suggesting that it could be a valuable tool for a more general study of single-file
diffusion.
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Figure 8.3: Current in the SEP. Generalised density profiles (GDP) ΦQ;n(v) describing the
correlations between the density and the current, at orders (a) n = 1 and (b) n = 3, at density
ρ = 0.5, in the case ξ = 0. We do not show the profile n = 2 because it is zero for this density.
Solid lines: GDP computed from the simulations of the SEP, at time t = 900. The averaging
is performed over 108 realisations. Dashed lines: theoretical predictions (8.106a,8.106c).
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Chapter 9

Extension to more general single-file
systems

The SEP is a minimal model for single-file transport, in this sense it is a very simplified
version of more realistic systems, such as molecules in nano-pores [73–75, 78]. However, we
show here how the theory we developed for the SEP can be useful to study other models. The
central result of this chapter (section 9.1) is the construction of a set of very general mappings
between single-file systems at the hydrodynamic level (which, as we argue in appendix H.1,
generate all possible mappings between single-file systems). We also analyse the action of
these mapping on the tracer and integrated current observables. Then (section 9.2), as an
illustration of the usefulness of these mappings, we use them to export results from the SEP
to a wide variety of related systems.

Key results.

• Subsection 9.1.1: a general particles-gaps duality in single-file systems.

• Table 9.1.3: four general transformations that act on single-file systems. Combining
these mappings, we relate many different models of single-file diffusion to the SEP
(section 9.2).

9.1 Mapping single-file systems

In order to study and solve models of single-file diffusion, mappings between different
models have proved to be of a great help in different contexts [89, 95, 96, 113, 114, 120–
122, 177]. For example, it has been used to reduce the study of a biased tracer in the SEP to
the study of the integrated current in another system with a biased site [119]. As we will see
in chapter 10, it is much easier to study the integrated current in a system with a biased site
than to study the position of a biased tracer; indeed, the biased site is at a fixed position,
whereas the biased tracer is moving.

Relying on the fluctuating hydrodynamics description (6.14,6.15)

∂tρ(x, t) + ∂xj(x, t) = 0 , (9.1)

j(x, t) +D(ρ)∂xρ(x, t) =
√
σ(ρ) η(x, t) , (9.2)

we generalise these mappings to all single-file systems. We then go further by characterising
entirely the systems which can be related one another (section 9.1.2 and appendix H.1).

121
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Figure 9.1: Mapping of the simple exclusion process (SEP, top) onto the zero range process
(ZRP, bottom) [96, 117, 118]. The particles of the SEP can hop on neighbouring sites, only if
they are empty. The sites of the ZRP correspond to the particles of the SEP. The number of
particles on a site in the ZRP is the number of empty sites on the right of the corresponding
particle in the SEP. For the SEP, we have represented by two arrows the possible jumps of an
individual particle. We have represented in the ZRP the corresponding dynamics, illustrated
by the two arrows corresponding to the jumps of the SEP particle.

9.1.1 The duality relation

The SEP is well known [96, 117, 118] to be linked to the Zero Range Process (ZRP,
see 6.1.2) with constant hopping rates, by setting the occupations of the sites in the ZRP
to be equal to the number of empty sites between the particles of the SEP (see figure 9.1
and its caption for a detailed description of the SEP-ZRP mapping). Using this same idea
that a system of particles can be related to another system describing the spacing between
the particles, we determine a general mapping from equations (9.1, 9.2) to another set of
equations of the same form.

We start with density and current ρ, j verifying fluctuating hydrodynamics (9.1,9.2) for
given transport coefficients D(ρ) and σ(ρ). Building on the intuition of systems of particles
(see figure 9.2), we can define the ”index” (it will be a real number here, and not an integer
like in the SEP-ZRP microscopic mapping) k(x, t) of particle at position x at time t by writing
the number of particles between 0 and x as

k(x, t)− k(0, t) =

∫ x

0

ρ(x′, t)dx′ . (9.3)

That requires the knowledge of k(0, t), which is the index of the particle located at x = 0. It
can be determined by writing that the variation of k(x, t) during a short time dt corresponds
to the number of particles that crossed x from right to left, i.e. −j(x, t)dt (see figure 9.3 (a)
for the intuition from particle system). Therefore,

∂tk(x, t) = −j(x, t) . (9.4)

Note that this is coherent with definition (9.3) and the continuity relation (9.1). Taking the
convention that at t = 0, the particle located at x = 0 has index k(0, 0) = 0, equations (9.3, 9.4)
fully determine k(x, t) for all x and t.

This definition naturally fixes the position of the ”p-th particle” xp(t) (for any real
number p) by saying that the index of the particle at the position of the p-th particle is p:

k(xp(t), t) = p . (9.5)

In other words, k(·, t) and x(·)(t) are reciprocal functions.
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Figure 9.2: Duality relation between two equivalent descriptions of a particle system: through
the positions of the particles (left) and the through the gaps between the particles (right).
The particle system is described at the macroscopic level by a density field ρ(x, t) and a
current j(x, t), while the dual system (gaps) is described by a density ρ̃(k, t) and a current
j̃(k, t). These two descriptions are equivalent, and related by equations (9.10, 9.11). The
inverse transformation is identical, and written explicitly in equations (9.20, 9.21). These
two sets of fields (ρ, j) and (ρ̃, j̃) obey the equations of fluctuating hydrodynamics (9.1, 9.2),
with transport coefficients respectively given by (D, σ) and (D̃, σ̃), which are related by the
transformation (9.19).

We can now define the field of gaps ρ̃(k, t) (the spacing between particles at the level of
particle k) by saying that at time t, the density of particles at position x must be the inverse
of the spacing between two particles around the index k(x, t):

ρ(x, t) =
1

ρ̃(k(x, t), t)
, (9.6)

The associated current j̃(k, t) corresponds physically to the ”flux of gap” through the particle
k, which is thus given by the motion of this particle (see figure 9.3(b)). This justifies the
definition:

j̃(k, t) = −∂txk(t) . (9.7)

Deriving the definition (9.5) with respect to t, we get:

∂txp(t)∂xk(xp(t), t) + ∂tk(xp(t), t) = 0

∂txp(t)ρ(xp(t), t)− j(xp(t), t) = 0 , (9.8)

the definition (9.7) then yields:

j̃(k(x, t), t) = − j(x, t)
ρ(x, t)

, (9.9)

which can be rewritten using (9.6) as follows. Finally, we have defined ρ̃ and j̃ verifying:

ρ(x, t) =
1

ρ̃(k(x, t), t)
, j(x, t) = − j̃(k(x, t), t)

ρ̃(k(x, t), t)
, (9.10)

where

k(x, t)− k(0, t) =

∫ x

0

ρ(x′, t)dx′ , ∂tk(x, t) = −j(x, t) , (9.11)

The key result is that these new fields ρ̃ and j̃ remarkably also verify fluctuating hydrody-
namics equations (9.1,9.2) with new transport coefficients. Indeed, taking the time derivative



124 CHAPTER 9. EXTENSION TO MORE GENERAL SINGLE-FILE SYSTEMS

of equation (9.6) we get

∂tρ(x, t) = ∂t
1

ρ̃(k, t)
+ ∂tk(x, t) ∂k

1

ρ̃(k, t)

= − 1

ρ̃(k, t)2
(∂tρ̃(k, t)− j(x, t)∂kρ̃(x, t))

= − 1

ρ̃(k, t)2

(
∂tρ̃(k, t) +

j̃(k, t)

ρ̃(k, t)
∂kρ̃(x, t)

)
(9.12)

where we have used (9.4) and (9.10). Similarly,

∂xρ(x, t) = ∂xk(x, t) ∂k
1

ρ̃(k, t)
= − 1

ρ̃(k, t)3
∂kρ̃(k, t) , (9.13)

∂xj(x, t) = − 1

ρ̃(k, t)
∂k
j̃(k, t)

ρ̃(k, t)
= − 1

ρ̃(k, t)2

(
∂kj̃(k, t)− j̃(k, t)

∂kρ̃(k, t)

ρ̃(k, t)

)
. (9.14)

Plugging (9.12,9.14) into the continuity relation (9.1), we obtain a new continuity equation
for the fields ρ̃ and j̃:

∂tρ̃(k, t) + ∂kj̃(k, t) = 0 . (9.15)

Similarly, using (9.13) into the expression of the current (9.2), we obtain

j̃(k, t) +D

(
1

ρ̃

)
1

ρ̃2(k, t)
∂kρ̃(k, t) = −ρ̃(k, t)

√
σ

(
1

ρ̃

)
η(xk(t), t) (9.16)

Using (6.16), η(xk(t), t) is a Gaussian white noise related to the unit variance Gaussian noise
η(k, t):

η(xk(t), t)
(law)
=

√
1

∂kxk(t)
η(k, t) =

1√
ρ̃(k, t)

η(k, t) . (9.17)

We thus get (using η(k, t)
(law)
= −η(k, t)),

j̃(k, t) + D̃(ρ̃)∂kρ̃(k, t) =
√
σ̃(ρ̃) η(k, t) , (9.18)

where we have denoted

D̃(ρ̃) =
1

ρ̃2
D

(
1

ρ̃

)
, σ̃(ρ̃) = ρ̃ σ

(
1

ρ̃

)
. (9.19)

The dual system, which physically describes the dynamics of the gaps, therefore obeys
the equations of fluctuating hydrodynamics (9.15,9.18), with transport coefficients D̃ and
σ̃ which are related to the original coefficients D and σ of the particle system by the
transformations (9.19). The known duality relation between the RAP and the KMP model,
used in Refs. [89, 95, 114] is a special case of the duality relation described here, applied to
the transport coefficients of these models, given in Table 6.1.

A quite unexpected feature of this duality is that it is an involution, meaning that if we
apply it to the dual system (the system of gaps), we recover the initial system. This means
that the inverse transformation of the current and density is identical:

ρ̃(k, t) =
1

ρ(xk(t), t)
, j̃(k, t) = − j(xk(t), t)

ρ(xk(t), t)
, (9.20)
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Figure 9.3: (a) The flux j(x, t) of particles at position x at time t gives the variation of the
index k(x, t) of the closest particle to the left of x, see equation (9.4). (b) The flux j̃(k, t) of
gaps through particle k at time t gives the evolution of the position of this particle (9.7).

with

xk(t)− x0(t) =

∫ k

0

ρ̃(k′, t)dk′ , ∂txk(t) = −j̃(k, t) . (9.21)

Finally, we stress the fact that this particle-gaps duality relation provides a justification
to the use of Edwards-Wilkinson equation [199, 200] to describe the fluctuations of positions
(and two-particles correlations) in a single-file system at equilibrium (flat initial density), see
appendix H.2 for more details.

The duality relation associating (ρ̃, j̃) to (ρ, j) will be referred to as (Du) in the following.

9.1.2 Translation and dilatations

We introduce 3 other transformations, acting on the fields ρ and j. We argue that these
transformations, combined with the duality relation above, give all possible mappings between
two single-file systems. This is shown in Appendix H.1.

• Translation of density (T). The first transformation consists in shifting the density
by a constant c. We define new density and current fields as

ρ̃(x, t) = ρ(x, t) + c , j̃(x, t) = j(x, t) . (9.22)

These two fields still obey the equations of fluctuating hydrodynamics (9.1,9.2), upon
changing the transport coefficients as

D̃(ρ̃) = D(ρ̃− c) , σ̃(ρ̃) = σ(ρ̃− c) . (9.23)

• Dilatation of the fields (Di). This transformation multiplies the two fields by a
constant c. We define

ρ̃(x, t) = c ρ(x, t) , j̃(x, t) = c j(x, t) , (9.24)

which obey the equations of fluctuating hydrodynamics (9.1,9.2), with the transport
coefficients

D̃(ρ̃) = D

(
ρ̃

c

)
, σ̃(ρ̃) = c2 σ

(
ρ̃

c

)
. (9.25)

• Rescaling of time (Rt). The last transformation corresponds to changing the time
scale by a constant τ . We introduce

ρ̃(x, t) = ρ(x, τt) , j̃(x, t) = τ j(x, τt) . (9.26)

Note that j needs to be rescaled by τ in order to satisfy the continuity equation (9.1).
These new fields again obey the equations of fluctuating hydrodynamics (9.1,9.2), with
the transport coefficients

D̃(ρ̃) = τ D(ρ̃) , σ̃(ρ̃) = τ σ(ρ̃) . (9.27)
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9.1.3 Transformation of observables

We now focus on the case of an infinite system, and consider the two observables which
have been the focus of our study:

• The integrated current though a point x, Qt(x), which counts the total number of
particles that crossed x from left to right (minus the number from right to left, and
minus the number of particles initially between 0 and x) up to time t,

Qt(x) =

∫ t

0

j(x, t′)dt′ −
∫ x

0

ρ(x′, 0)dx′ =

∫ ∞

x

(ρ(x′, t)− ρ(x′, 0))dx′ −
∫ x

0

ρ(x′, 0)dx′ .

(9.28)

• The position xk(t) of a the k-th particle (a tracer). We take the convention that the
0-th particle was initially placed at the origin x0(0) = 0. It was defined in (9.5):∫ xk(t)

0

ρ(x, t)dx− k =

∫ ∞

0

(ρ(x, t)− ρ(x, 0))dx . (9.29)

We study how the transformations presented above act on the two observables xk(t) and
Qt(x). As in the previous sections, we consider a model described by the density ρ and current
j, which is mapped to a new single-file system by one of the transformations defined above.
The new system is described by a density ρ̃ and a flux j̃. We also denote x̃k(t) the position of
a tracer in the new system, defined as in (9.29) with ρ replaced by ρ̃, and the flux through
the origin in the new system is denoted Q̃t(x), defined as in (9.28).

• Duality relation (Du). We can express the position of the tracer in terms of the
integrated current of the dual system, using equation (9.21):

xk(t) = xk(0)−
∫ t

0

j̃(k, t′)dt′ = x0(0)+

∫ k

0

ρ̃(k′, t)dk′−
∫ t

0

j̃(k, t′)dt′ = −Q̃t(k) , (9.30)

since x0(0) = 0. The position of a particle is exactly the opposite of the flux through
the index of the particle in the dual model. Applying this relation to the dual system,
we also obtain

x̃k(t) = −Qt(k) . (9.31)

• Translation (T). This transformation conserves the current j, therefore the inte-
grated current is changed by a constant, Q̃t(x) = Qt(x)− cx. For the positions xk(t),
equation (9.29) gives∫ xk(t)

0

(ρ̃(x, t)− c)dx− k =

∫ ∞

0

(ρ̃(x, t)− ρ̃(x, 0))dx =

∫ x̃0(t)

0

ρ̃(x, t)dx− k . (9.32)

This yields the relation ∫ x̃k(t)

xk(t)

ρ̃(x, t)dx = −c xk(t) . (9.33)

Another way to formulate it is x̃k(t) = xk−cx̃k(t)(t).
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Original Duality (Du) Dilatation (Di) Translation (T) Rescaling (Rt)

D(ρ) D̃(ρ) =
1

ρ2
D

(
1

ρ

)
D̃(ρ) = D(ρ/c) D̃(ρ) = D(ρ− c) D̃(ρ) = τ D(ρ)

σ(ρ) σ̃(ρ) = ρ σ

(
1

ρ

)
σ̃(ρ) = c2 σ(ρ/c) σ̃(ρ) = σ(ρ− c) σ̃(ρ) = τ σ(ρ)

ρ ρ̃ =
1

ρ
ρ̃ = c ρ ρ̃ = ρ+ c ρ̃ = ρ

xk(t) x̃k(t) = −Qt(k) x̃k(t) = x k
c
(t) x̃k(t) = xk−cx̃k(t)(t) x̃0(t) = x0(tτ)

Qt(x) Q̃t(k) = −xk(t) Q̃t(x) = c Qt(x) Q̃t(x) = Qt(x)− cx Q̃t(x) = Qtτ (x)

Table 9.1: Transformation of the transport coefficients D(ρ) and σ(ρ), of the mean density ρ,
and of the observables (i) position of a tracer xk(t) (9.29) and (ii) integrated current through
a point x Qt(x) (9.28), under the different transformations ((Du) defined in 9.1.1, the others
in 9.1.2).

• Dilatation (Di). This transformation multiplies both ρ and j by a constant c. Therefore,
the integrated current is also multiplied by c, Q̃t = cQt, while for the positions, equation
(9.29) indicates ∫ x̃k(t)

0

ρ̃(x, t)dx− k =

∫ ∞

0

(ρ̃(x, t)− ρ̃(x, 0))dx (9.34)∫ x̃k(t)

0

ρ(x, t)dx− k

c
=

∫ ∞

0

(ρ(x, t)− ρ(x, 0))dx. (9.35)

Therefore, x̃k(t) = x k
c
(t).

• Rescaling of time (Rt). This transformation only changes the time scale by a factor
τ (and the current accordingly), such that both the integrated current and the positions
of particles are only rescaled in time: Q̃t(x) = Qtτ (x) and x̃k(t) = xk(tτ).

These transformations are summarised in table 9.1.

9.2 Mapping the results from the SEP

We combine the four different transformations identified in part 9.1 in order to construct
mappings from classical models presented in 6.1.2 to the SEP.

For a single-file system which is described at the hydrodynamic level by transport coeffi-
cients D and σ, we will focus on the study of a tracer initially at the origin, whose position is
denoted x0(t) and of the integrated current through the origin Qt = Qt(0). These quantities
are defined from the hydrodynamic profile through equations (9.29, 9.28). As we argued in
section 6.2.3, in the long time limit, according to MFT, they will match the tracer’s position
and integrated current defined from the microscopic system.

Similarly as we did for the SEP 7.1, we can define the generalised density profiles from
the hydrodynamic profile ρ(x, t) verifying fluctuating hydrodynamics (8.83, 9.2) (see 6.2.3 for
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discussion):

wr(λ, t) =

〈
ρ(x0(t) + r, t)eλx0(t)

〉
⟨eλx0(t)⟩ , wQ;r(λ, t) =

〈
ρ(r, t)eλQt

〉
⟨eλQt⟩ . (9.36)

In the long time limit, these profiles will also converge to scaling functions with a diffusive
reduced variable r√

t
.

We give below several examples of models that we map to the SEP. The method is the same
for all of them, but the key point we want to underline is the wide diversity of phenomenology
displayed by these models: point particles (RAP), particles with spatial extension (hard-rods),
many-sites interactions (DEP), mass transfer process (KMP), several particles on a site
(ZRP)... It is striking to see that, thanks to the mappings available in the hydrodynamic
limit, all these models can be studied using our results for the SEP (chapter 8).

9.2.1 General quadratic mobility

The closed equation we have obtained for the SEP, corresponds to D(ρ) = 1
2

and σ(ρ) =
ρ(1− ρ). These results can be extended to any single-file system with D(ρ) = D0 constant
and σ′′(ρ) constant with σ(0) = 0, namely σ(ρ) = 2D0ρ(a − bρ). We consider step initial
density ρ− at the left of the origin, ρ+ at the right.

The mapping from SEP to quadratic mobility system

We build a mapping from the considered system to the SEP by applying the dilatation
(Di) both for this system and its dual, we get the following expressions for the transport
coefficients of the transformed systems:

D0
(Di)−−−−→

c=1/a
D0

(Du)−−−→
D0

ρ2
(Di)−−−−→

c=1/b

D0

b2ρ2
(Du)−−−→

D0

b2
,

2D0ρ(a− bρ)
(Di)−−−−→

c=1/a
2D0ρ(1− bρ)

(Du)−−−→ 2D0

(
1−

b

ρ

)
(Di)−−−−→

c=1/b

2D0

b2

(
1−

1

ρ

)
(Du)−−−→

2D0

b2
ρ(1− ρ) .

(9.37)

Using finally a rescaling of time (Rt), we recover the transport coefficients of the SEP

D0

b2
(Rt)−−−−−−→

τ=b2/(2D0)

1

2
≡ D̃(ρ) ,

2D0

b2
ρ(1− ρ)

(Rt)−−−−−−→
τ=b2/(2D0)

ρ(1− ρ) ≡ σ̃(ρ) ,
(9.38)

Under these transformations, the average initial density of the system becomes

ρ±
(Di)−−−→
c=1/a

ρ±
a

(Du)−−→ a

ρ±

(Di)−−−→
c=1/b

a

bρ±

(Du)−−→ bρ±
a

(Rt)−−−−−−→
τ=b2/(2D0)

bρ±
a
≡ ρSEP,± , (9.39)

and the two observables become (on the first line, the integrated current through the origin of
the transformed system is expressed in terms of the observables Qt and x0(t) of the original
system; on the second line, same for the tracer’s position):

Qt
(Di)−−−−→

c=1/a

Qt

a
(Du) −x0(t)

(Di)−−−−→
c=1/b

−x0(t)

b
(Du)

Qt

a

(Rt)−−−−−→
τ= b2

2D0

Q b2t
2D0

a
≡ Q̃t ,

x0(t)
(Di)−−−−→

c=1/a
x0(t) −Qt

a

(Di)−−−−→
c=1/b

−Qt

a

x0(t)

b

(Rt)−−−−−→
τ= b2

2D0

x0(
b2t
2D0

)

b
≡ x̃0(t).

(9.40)
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The hydrodynamic density ρ(x, t) is expressed in function of the one of the SEP ρ̃(x, t) in
the following way:

ρ(x, t) =
a

b
ρ̃

(
x

b
,
2tD0

b2

)
(9.41)

Using these relations, and results for the SEP (chapter 8), we get the following general
solution for any quadratic mobility single-file system.

For the position of the tracer. At large times, the cumulant generating function of the
position of the tracer behaves as

ln
〈
eλx0(t)

〉
∼
t→∞

ψ̂(λ)
√

4D0t . (9.42)

The generalised profiles (9.36) also have a diffusive scaling

wr(λ, t) ∼
t→∞

Φ

(
v =

r√
4D0t

, λ

)
. (9.43)

We again define the functions

Ω±(v) = 2ψ̂
Φ′(v)

Φ′(0±)
, (9.44)

which now verify the bilinear integral equations

Ω±(v) + b

∫
R∓

Ω±(v ± z)Ω∓(∓z)dz = K(v) , (9.45)

equivalent to the linear ones

Ω±(v) + b

∫
R∓

Ω±(z)K(v − z)dz = K(v) , (9.46)

with the gaussian kernel K(v) = ω√
π

e−(v+ξ)2+ξ2 and ξ = dψ̂
dλ

(λ). The profile Φ can then be
deduced by integration of Ω±, with the boundary conditions

Φ′(0±)± ψ̂2b
Φ(0±)

e±bλ − 1
= 0 , (9.47)

a− bΦ(0+)

a− bΦ(0−)
= e−λ , Φ(±∞) = ρ± . (9.48)

And the solution for the cumulant generating function,

ψ̂ = − 1

2b
√
π

Li 3
2

(−bω) . (9.49)

For the current through the origin. Similarly, we can also obtain the equations for the
integrated current through the origin. The cumulant generating function scales as

ln
〈
eλQt

〉
∼
t→∞

ψ̂Q(λ)
√

4D0t , (9.50)

and the generalised profiles (9.36) as

wQ;r(λ, t) ∼
t→∞

ΦQ

(
v =

r√
4D0t

, λ

)
. (9.51)
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Defining Ω± in the same way, these functions again satisfy the integral equation (9.46), with
the gaussian kernel K(v) (with ξ = 0 because we look at the current through the origin):

K(v) =
ωQ√
π

e−v
2

. (9.52)

This parameter ωQ can be related to ψ̂Q by

ψ̂Q = − 1

2b
√
π

Li 3
2

(−bωQ) . (9.53)

The profiles can again be deduced by integration of the solution Ω± of (9.46), with the
boundary conditions

Φ′
Q(0±) = ∓2ψ̂Q

(
a

1− e∓aλ
− bΦQ(0±)

)
, (9.54)

ΦQ(0+)(a− bΦQ(0−))

ΦQ(0−)(a− bΦQ(0+))
= eaλ . (9.55)

9.2.2 The Kipnis Marchioro Presutti model

As a first application of the generalised equation (9.46), we consider the Kipnis Marchioro
Presutti (KMP) model [179, 201] which is a mass transfer model (6.1.2). This system is
described by the transport coefficients

D(ρ) = D0 , σ(ρ) = σ0ρ
2 , (9.56)

with σ0 = 2aD0 where a is the lattice spacing [115]. It is a model with constant diffusion
and quadratic mobility, so it falls into the category studied above (9.2.1) and we can directly
apply the results obtained there.

Position of a tracer

The KMP model is not a particle model, but one can still define the position of a tracer
using equation (9.29). It represents a fictitious wall that separates the system into two regions
in which the mass is conserved.

Following the procedure described in Section 8.3.1, we obtain the cumulants of the position
of this tracer. For instance, in the case ρ+ = ρ− = ρ,

⟨x0(t)2⟩c√
4D0t

∼
t→∞

κ̂
(KMP)
2 =

σ0
2D0

√
π
, (9.57)

⟨x0(t)4⟩c√
4D0t

∼
t→∞

κ̂
(KMP)
4 =

(
12 +

(
3
√

2− 8
)
π
)
σ3
0

8D3
0π

3/2
. (9.58)

We additionally get the generalised density profiles,

Φ
(KMP)
1 (v) =

ρσ0
4D0

erfc(v) , (9.59)

Φ
(KMP)
2 (v) =

ρσ2
0

4D2
0

(
erfc(v)− 2

π
e−v

2

)
, (9.60)

Φ
(KMP)
3 (v) =

ρσ3
0

32D3
0

(
2

(
1 +

6

π

)
erfc(v)− 24

√
π − v
π3/2

e−v
2

+ 3 erfc

(
v√
2

)2
)
. (9.61)

These profiles are represented in Fig. 9.4.
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Figure 9.4: KMP. Generalised density profiles Φ
(KMP)
n (v)/ρ at orders (a) n = 1, (b) n = 2

and (c) n = 3 (the density ρ plays no role in this model). Solid lines: result of the simulations
of the KMP model (see Appendix A) at time t = 900 on 500 sites. Dashed lines: theoretical
predictions (9.59,9.60,9.61). (d) GDP-generating function at ρ = 1 and λ = 0.7, obtained
from solving numerically the Wiener-Hopf equation (9.46) (dashed line), compared to the
numerical solution (red solid line) of the MFT equations for KMP (similar to section 8.1.2).

Integrated current through the origin

Following an approach similar to section 8.3.3, with ξ = 0 since we look at the current
through the origin, we find that

ωQ =
σ0ρ

2λ2

2D0

, (9.62)

which, combined with (9.53) yields

ψ̂
(KMP)
Q (λ) =

D0√
πσ0

Li 3
2

((
σ0ρλ

2D0

)2
)
. (9.63)

This expression coincides with the one given in [107]. We additionally obtain the profiles

Φ
(KMP)
Q;1 (v) =

ρ2σ0
4D0

erfc(v) , (9.64a)

Φ
(KMP)
Q;2 (v) =

ρ3σ2
0

4D2
0

erfc(v) , (9.64b)

Φ
(KMP)
Q;3 (v) =

3ρ4σ4
0

32D3
0

(
2 erfc(v) + erfc

(
v√
2

)2
)
. (9.64c)

Note that, for this model, σ′(0) = 0, so the boundary condition (9.54) (with a = 0) is
ill-defined. We have used the boundary condition deduced from (9.54) by taking the limit
σ′(0)→ 0,

Φ′
Q(0±) = −2ψ̂Q

(
1

λ
± σ0

4D0

ΦQ(0±)

)
. (9.65)

9.2.3 The random average process

The random average process (RAP) [113, 170, 177] is a system of particles placed on an
infinite line (6.1.2). We consider an initial mean density ρ. At random times, picked from an
exponential distribution with rate 1

2
, a particle can move, either to the left or to the right, to

a random fraction of the distance to the next particle. In the hydrodynamic limit, only the
first two moments µ1 and µ2 of the distribution of this random fraction are relevant. The
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transport coefficients depend on these two parameters only [113, 114]:

D(ρ) =
µ1

2ρ2
, σ(ρ) =

1

ρ

µ1µ2

µ1 − µ2

. (9.66)

Applying the duality relation (Du) (9.19), we obtain that the dual system is described by the
coefficients

D̃(ρ̃) = D0 =
µ1

2
, σ̃(ρ̃) = σ0ρ̃

2 , σ0 =
µ1µ2

µ1 − µ2

, (9.67)

which correspond to the KMP model, with a specific choice of the factors D0 and σ0 in the
coefficients (see Table 6.1). Under this duality (Du), the density field ρ(RAP)(x, t) of the RAP
can be expressed in terms of the one of the KMP ρ(KMP)(k, t) as:

ρ(RAP)(xk(t), t) =
1

ρ(KMP)(k, t)
, (9.68)

with xk(t) the position of the particle with label k at time t, which can be expressed from the
density as

xk(t) = x0(t) +

∫ k

0

ρ(KMP)(k′, t)dk′ , (9.69)

with x0 the position of the tracer, defined from (9.29):

x0(t) =

∫ 0

−∞
(ρ(KMP)(k′, t)− ρ(KMP)(k′, 0))dk′ . (9.70)

As a consequence of this duality, the positions of particles in the RAP xk(t) are expressed
in term of density ρ(KMP)(p, t) in the KMP. Since the density in the KMP evolves according
to a constant diffusion coefficient D0 (as opposed to D(ρ) = D0/ρ

2 in the RAP), this explains
why positions of particles are relatively easy to compute in the RAP.

As seen in section 9.1.3, the tracer’s position in the RAP x0(t) can be expressed in terms

of the integrated current Q
(KMP)
t through the origin in the KMP model,

x0(t) = −Q(KMP)
t . (9.71)

Therefore, one can easily relate the cumulant generating functions since

ψ̂(RAP)(λ) = lim
t→∞

1√
4D(ρ)t

ln
〈
eλx0(t)

〉
=

√
D0

D(ρ)
lim
t→∞

1√
4D0t

ln
〈

e−λQ
(KMP)
t

〉
= ρ ψ̂

(KMP)
Q (−λ) . (9.72)

Note that, due to the relation (9.68), and the RAP having mean density ρ, the KMP model

has mean density 1/ρ. The cumulant generating function ψ̂
(KMP)
Q must thus be evaluated at

this density. From (9.63), this gives

ψ̂(RAP)(λ) =
ρ(µ1 − µ2)

2µ2

√
π

Li 3
2

((
µ2λ

ρ(µ1 − µ2)

)2
)
. (9.73)

In addition to that, the generalised profiles can be obtained from the relation (9.68).
Indeed, in the large time limit, the averages in equations (9.36) are dominated by a single
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Figure 9.5: RAP. Generalised density profiles Φ
(RAP)
n (v)ρn−1 at orders (a) n = 1, (b) n = 2

and (c) n = 3 (the density ρ plays no role in this model). Solid lines: result of the simulations
of the RAP (see appendix A) at time t = 4000 with 5000 particles. Dashed lines: theoretical
predictions (9.77,9.78,9.79). (d) GDP-generating function at ρ = 1 and λ = 0.33, obtained
from solving numerically the Wiener-Hopf equation (9.46) and using the mapping (9.74)
(dashed line), compared to the numerical solution (red solid line) of the MFT equations
(similarly to 8.1.2).

realisation of the field ρ(x, t), the typical realisation (ρ⋆, j⋆) that optimises the MFT functional
(identically as in 7.1.2, equations (7.12, 7.20)). Since all realisations verify (9.68), so does the
typical one, which we denote ρ⋆. Hence,

Φ(RAP)

(
v =

r(k)√
4D(ρ)t

)
≃
t→∞

ρ(RAP)
⋆ (x0(t) + r(k), t)

=
1

ρ
(KMP)
⋆ (k, t)

≃
t→∞

1

Φ
(KMP)
Q (u = k/

√
4D0t)

, (9.74)

where we have defined

r(k) ≡ xk(t)− x0(t) =

∫ k

0

ρ(KMP)
⋆ , (9.75)

which becomes

v(u) =
r(k)√
4D(ρ)t

=

√
D0

D(ρ)

∫ u

0

Φ
(KMP)
Q (u′)du′ . (9.76)

Together with (9.74), expanding this relation in powers of λ, we can compute the profiles
of the RAP from the ones obtained above on the KMP model (9.64), but evaluated at the
density 1/ρ. This gives for instance

Φ
(RAP)
1 (v) =

µ2

2(µ1 − µ2)
erfc(v) , (9.77)

Φ
(RAP)
2 (v) =

µ2
2

2πρ(µ1 − µ2)2

(
π erfc(v)2 − 2e−v

2 − 2π

(
1 + v

e−v
2

√
π

)
erfc(v) + 2e−2v2

)
, (9.78)

Φ
(RAP)
3 (v) =

3

4π2

µ3
1

ρ2(µ1 − µ2)3

(
π2 erfc(v)3 + 2

√
πve−3v2 − π2

(
4 +

2v(3− v2)√
π

e−v
2

)
erfc(v)2

+ (2π2 + 2π(3− 2v2)e−2v2 + 2π(2v2 + 4
√
πv − 3)e−v

2

) erfc(v)

+ 2(4π +
√
πv)e−v

2 − 4(2π +
√
πv)e−2v2

)
. (9.79)
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These profiles are represented in Fig. 9.5. Similarly, one could look at the integrated current
in the RAP using results for the tracer in the KMP.

9.2.4 The double exclusion process

The double exclusion process (DEP) is similar to the SEP, but we consider that particles
occupy two sites: the two neighbouring sites in the direction of a jump must be empty in
order for the jump to occur (6.1.2). The transport coefficients are [175, 176]

D(ρ) =
D0

(1− ρ)2
, σ(ρ) = 2D0

ρ(1− 2ρ)

1− ρ . (9.80)

We consider an initial density ρ ∈ [0, 1/2].
This model can be directly mapped onto the SEP by reducing the size of the particles to

one lattice site. This is naturally done in the dual model (which describes the gaps between
the particles) by removing a constant of 1 site to all the gaps. We can therefore construct
this model by going to the dual of the DEP, translating the density by a constant −1 and
going back to the particles using the duality relation (Du) again:

D(ρ) =
D0

(1− ρ)2
(Du)−−−→ D0

(ρ− 1)2
(T)−−−→

c=−1

D0

ρ2
(Du)−−−→ D0 = D̃(ρ) ,

σ(ρ) = 2D0
ρ(1− 2ρ)

1− ρ

(Du)−−−→ 2D0

(
1− 1

ρ− 1

)
(T)−−−→

c=−1
2D0

(
1− 1

ρ

)
(Du)−−−→ 2D0ρ(1− ρ) = σ̃(ρ) ,

(9.81)

which are indeed the transport coefficients of the SEP (see table 6.1) with jump rate D0.
Note that we can straightforwardly extend this procedure to a system in which particles have
a volume on n sites, by applying a translation of density (T) of n− 1 for the dual. Under
this series of transformations, the position of a tracer becomes (we do not write the action of
(T) on the position of the tracer of the dual system because of its complexity); again, the
first line represents the current in the transformed system in terms of the observables of the
original system; the second line is the expression of the position of the tracer:

Qt (Du) −x0(t)
(T)−−−→
c=−1

−x0(t) (Du) −? ≡ Q̃t ,

x0(t) −Qt
(T)−−−→
c=−1

? x0(t) ≡ x̃0(t) .

(9.82)

In particular, the position of the tracer is the same in both models, and the density fields are
related through

ρ(DEP)(x0(t) + x+ n(x, t), t) =
ρ(SEP)(x0(t) + x, t)

1 + ρ(SEP)(x0(t) + x, t)
, (9.83)

where we defined the number of particles between the tracer and position x in the SEP:

n(x, t) =

∫ x

0

ρ(SEP)(z, t)dz . (9.84)

As a consequence of (9.83), the corresponding initial density in the SEP is ρSEP = ρ
1−ρ . Since

the tracer’s position is the same in both models, its cumulants in the DEP at density ρ are
obtained from the known results in the SEP (8.74) evaluated at density ρSEP:〈

x0(t)
2
〉

=
2(1− 2ρ)

ρ

√
D0t

π
, (9.85)

〈
x0(t)

4
〉
c

=
2(1− 2ρ)

πρ3

(
12(1− 2ρ)2 − π((23− 6

√
2)ρ2 − 3(6−

√
2)ρ+ 3)

)√D0t

π
. (9.86)
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Figure 9.6: Generalised density profiles Φ
(DEP)
n (v) at orders (a) n = 1, (b) n = 2 and (c)

n = 3 at density ρ = 0.25. Solid lines: result of the simulations of the DEP (see appendix A)
at time t = 3000 on 20000 sites. Dashed lines: theoretical predictions (9.88,9.89). (d)
GDP-generating function at ρ = 0.25 and λ = 0.4, obtained from solving numerically the
Wiener-Hopf equation (9.46) and using the mapping (9.87) (dashed line), compared to the
numerical solution (red solid line) of the MFT equations (similarly to 8.1.2).

Similarly as we did for the RAP, the relation (9.83) holds for the optimal profiles denoted
ρ⋆ in the averages defining the GDP (9.36)

Φ(DEP)

(
v =

x+ n(x)√
4D(ρ)t

)
≃
t→∞

ρ(DEP)
⋆ (x0(t) + x+ n(x), t)

=
ρ
(SEP)
⋆ (x0(t) + x, t)

1 + ρ
(SEP)
⋆ (x0(t) + x, t)

≃
t→∞

Φ(SEP)(u = x/
√

4D0t)

1 + Φ(SEP)(u = x/
√

4D0t)
(9.87)

We can expand (9.87) in orders of λ to get the generalized density profiles for the DEP from
those of the SEP given in Section 8.3.2. At lowest orders, we get

Φ
(DEP)
1 (v) =

1

2
(1− ρ)(1− 2ρ)erfc(v) , (9.88)

Φ
(DEP)
2 (v) =

(1− ρ)(1− 2ρ)

4πρ

(
2
√
πρ(1− 2ρ)v e−v

2

erfc(v)− 2ρ(1− 2ρ)e−2v2

−2(1− 2ρ)(2− ρ)e−v
2

+ π erfc(v)((2ρ− 1)ρ erfc(v)− 3ρ+ 1)
)
, (9.89)

The profile Φ
(DEP)
3 can be written similarly, but the expression is lengthy so we do not

reproduce it here. These profiles are represented in Fig. 9.6. Note that if we denote by ηr(t)
the occupation of site r in the DEP and Xt ∈ Z the position of the tracer, we have, for
v = r/

√
4D(ρ) = r(1− ρ)/

√
4D0:

Φ(DEP)(v) ∼
t→∞

〈
ηXt+re

λXt
〉

⟨eλXt⟩ . (9.90)

For the two last models, we will only give the cumulants of the tracer’s position, even
though the profiles can be obtained as well with the same procedure.

9.2.5 The gas of hard rods

We consider a system of rods of length ℓ, which perform a Brownian motion, with the
condition that two rods cannot overlap (6.1.2). The main interest of this model compared to
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the point-like Brownian particles is that the system of hard rods has a maximal density 1/ℓ.
It is the one dimensional version of the hard sphere gas. Its transport coefficients are given
by [82]

D(ρ) =
D0

(1− ℓρ)2
, σ(ρ) = 2D0ρ . (9.91)

We can map the gas of hard rods onto the model of point-like Brownian particles by
decreasing the size of the rods by their length ℓ, in a similar way as for the DEP:

D(ρ) =
D0

(1− ℓρ)2
(Du)−−→ D0

(ρ− ℓ)2
(T)−−−→
c=−ℓ

D0

ρ2
(Du)−−→ D0 = D̃(ρ) ,

σ(ρ) = 2D0ρ
(Du)−−→ 2D0

(T)−−−→
c=−ℓ

2D0
(Du)−−→ 2D0ρ = σ̃(ρ) .

(9.92)

D(ρ) and σ(ρ) are the transport coefficients for the gas of hard rods [82], and this series
of transformation indeed yields the coefficients D̃ and σ̃ of the gas of Brownian particles
(see Table 6.1). Under these transformations (see Table 9.1), the position of the tracer is
unchanged (in each column we give the observables of the current system in terms of the
observables of the original system; the first line corresponds to the integrated current, the
second line is the position of the tracer):

Qt (Du) −x0(t)
(T)−−−→
c=−ℓ

−x0(t) (Du) −? ≡ Q̃t ,

x0(t) −Qt
(T)−−−→
c=−ℓ

? x0(t) ≡ x̃0(t) ,
(9.93)

where we again do not write explicitly the complex transformation (9.33) of the position of
the tracer under the transformation (T). The mean density of the system becomes

ρ
(Du)−−→ 1

ρ

(T)−−−→
c=−ℓ

1

ρ
− ℓ (Du)−−→ ρ

1− ρℓ ≡ ρB . (9.94)

Since the tracer’s position is unchanged by this transformation, its cumulant generating
function in the hard-rods gas at density ρ is equal to the cumulant generating function ψ

(B)
T of

the tracer in the Brownian model (which is the same as the low-density limit of the SEP 8.1.1),
evaluated at the density ρB (9.94). In particular, expanding in powers of λ, we get the first
cumulants:〈

x0(t)
2
〉

=
2(1− ℓρ)

ρ

√
D0t

π
,

〈
x0(t)

4
〉
c

=
6(4− π)

π

(
1− ℓρ
ρ

)3
√
D0t

π
. (9.95)

9.2.6 The zero range process

Here, we consider one specific ZRP, which corresponds to the simplest case, in which the
hopping rate are constant, so they depend neither on the site nor on the number of particles
on it. We denote by nk(t) the number of particles on site k at time t. Note that this ZRP
is different from a system of independent particles, as in this case the hopping rate on site
k would be proportional to nk. At the macroscopic level, this system is described by the
transport coefficients [86, 119]

D(ρ) =
D0

(1 + ρ)2
, σ(ρ) =

2D0ρ

1 + ρ
. (9.96)

This model is remarkable because it is an example of system whose transport coefficients are
left unchanged by the duality transformation (Du). This property will be useful below. This
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model is well-known to be related to the SEP [117, 118], and this relation was used explicitly
in [119]. The mapping is the following: to each site k is associated a particle at position
xk. The occupation of site k in the ZRP is given by the number of empty sites in the SEP
between particles k + 1 and k (see Fig. 9.1). Inversely, the distance between particles k + 1
and k is given by nk + 1. Therefore, the SEP can be obtained from the ZRP by combining
the translation of density (T) and the duality relation (Du):

D(ρ) =
D0

(1 + ρ)2
(T)−−→
c=1

D0

ρ2
(Du)−−→ D0 = D̃(ρ) ,

σ(ρ) =
2D0ρ

1 + ρ

(T)−−→
c=1

2D0

ρ
(ρ− 1)

(Du)−−→ 2D0ρ(1− ρ) = σ̃(ρ) .
(9.97)

Under theses transformations the observables become:

Qt
(T)−−→ Qt (Du) ? ≡ Q̃t ,

x0(t)
(T)−−→ ? −Qt ≡ x̃0(t) .

(9.98)

The mean density of the ZRP is transformed as

ρ
(T)−−→
c=1

ρ+ 1
(Du)−−→ 1

ρ+ 1
= ρSEP . (9.99)

Using (9.98, 9.99), the n-cumulant of the integrated current through the origin in the ZRP at
density ρ is equal to the one of the tracer’s position in the SEP at the density ρSEP multiplied
by (−1)n. For instance (8.74),

〈
Q2
t

〉
= 2ρ

√
D0t

π
,
〈
Q4
t

〉
c

= 2ρ
12ρ2 + π(1 + 3(2−

√
2)ρ− 3ρ2)

π

√
D0t

π
. (9.100)

The ZRP we consider here is an example self dual system:

D(ρ) =
D0

(1 + ρ)2
(Du)−−→ D0

(1 + ρ)2
= D(ρ) ,

σ(ρ) =
2D0ρ

1 + ρ

(Du)−−→ 2D0ρ

1 + ρ
= σ(ρ) .

(9.101)

The corresponding action on the observables is an exchange of integrated current and flux
(with a sign):

Qt (Du) −x0(t) ≡ Q̃t ,

x0(t) −Qt ≡ x̃0(t) ,
(9.102)

and the initial mean density is mapped in the following way:

ρ
(Du)−−→ 1

ρ
= ρ̃ . (9.103)

This mapping thus implies the striking relation:〈
eλQt

〉
ρ

=
〈
e−λx0(t)

〉
ρ−1 , (9.104)

where the first average is taken at initial density ρ and the second one at initial density ρ−1.
For instance, using (9.100),

〈
x0(t)

2
〉

=
2

ρ

√
D0t

π
,
〈
x0(t)

4
〉
c

= 2
12 + π(ρ2 + 3(2−

√
2)ρ− 3)

ρ3π

√
D0t

π
. (9.105)
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Figure 9.7: The transformations (T), (Di), and (Rt) connect a family of observables O ∈
{(xk(t))k, (Qt(x))x} to the same family in a related system, whereas the transformation (Du)
connects a family O to the other family in the dual system (in fact it extchanges the families).
The transformation (L) connects the family of particles positions (xk(t))k to the family of
integrated currents (Qt(x))x in the same system.

Conclusion

In conclusion, we see that the closed equation we found for the SEP in chapter 8 can be
used (thanks to the mappings) to compute the GDP in several other models. This supports
the idea that the GDP are relevant observables to tackle general systems of particles in
interaction, not only from the physical point of view (as they describe the interplay between
a tracer and the bath), but also from a technical point of view, since they verify a closed
equation which applies to several systems, beyond the SEP.

To this point, it has become clear that the observables of position and current are intimately
related in the context of single-file diffusion (summary in figure 9.7):

• There is the well known relation (6.2) between the position of a particle in a system and
the integrated current through different points of this same system. This relation (and
its translation in terms of Legendre transform 7.2.2) is denoted by (L) in figure 9.7.

• Generalising known mappings between some microscopic models, we introduced general
mappings in the hydrodynamic limit in 9.1. We showed that one of these mappings, the
duality (Du) relates positions of particles in a given system to the integrated current
through different points in another, dual system. The other mappings (Di), (T) and
(Rt) relate these observables in different corresponding systems.

These rich relationships not only make it possible to export results on a quantity to compute
many other quantities, but also, most importantly, impose strong symmetries that must be
verified by any general formula characterising single-file diffusion. Using these symmetries
could be a powerful way to study general properties of single-file diffusion.



Chapter 10

Biased tracer

In this chapter, we will study the case where the tracer is submitted to an external driving
force. This situation is encountered for instance in active microrheology, which is a technique
used to probe the properties of living or colloidal systems by forcing the displacement of a
tracer through the medium [90, 91]. More generally, it constitutes a minimal one-dimensional
model for nonequilibrium transport in confined crowded environments, which has received a
growing attention [92, 93] (see also [63, 67, 89, 94, 95] for models combining tracer driving
and bath-induced crowding).

We first propose a general procedure to derive hydrodynamic equations describing single-
file systems with a bias. Then, we test this theory by comparing it to known results and
numerical simulations for some specific models.

Finally, we apply this approach to the SEP with a driven tracer (only the tracer is biased)
to obtain new analytical results. So far, the only analytical results at arbitrary density concern
the means of both the position of the tracer and the lattice occupation numbers in its frame
of reference (i.e. the density profiles) [119, 126, 127], which have recently been determined
also on finite periodic systems [122, 128]. Since the seminal works [119, 126, 127] that date
back to almost three decades, the results concerning higher-order cumulants have been limited
to the high-density limit [129, 130], and to specific situations (equilibrium fluctuations 10.2.3
studied in [131]). At arbitrary density, even the determination of the variance of the position
of the tracer, which is crucial to quantify its fluctuations, remains a fully open problem.1

Key results.

• Section 10.1: general procedure to describe single-file systems with a biased tracer (or
local bias at a fixed point). The next section (10.2) mainly consists in a check of the
validity of the procedure on a few examples.

• Section 10.3: we obtain the first non trivial correction (order 2 in the driving force) to
the variance of a tracer in the SEP when the tracer is subject to a driving force.

1In parallel of our work, similar results appeared in [132]. However, we believe that our treatment is slightly
more general (compare their bias matching condition (41) and ours (10.1), and resulting MFT boundary
conditions (41,45) and ours (10.19)). Moreover, on the application to the SEP, a model of major importance,
the explicit results by Dandekar and Mallick focus on the high-density limit of the problem, while our results
are valid at arbitrary density.

139
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10.1 Hydrodynamic description for a biased system

Our goal is to adapt the MFT in order to take into account at the hydrodynamic level
bias which is added explicitly in the microscopic system, for example, the SEP with a biased
tracer (figure 10.1). According to the duality relation 9.1.1, it is equivalent to consider a
biased tracer in a given system and a biased current through the origin in the dual system.
For example, the SEP with a biased tracer would correspond to a ZRP with biased bond
(coloured arrows in figure 9.1). That is why we will study these two situations.

How to model a microscopic bias in a hydrodynamic description whereas everything is
rescaled (6.2), and we loose all the details of the microscopic dynamics? The bias matching
condition answers this question.

10.1.1 Bias matching condition

We consider an arbitrary one dimensional diffusive system, namely for which we can define
a diffusion coefficient D(ρ) and a mobility σ(ρ). The hydrodynamic description relies on the
existence of local equilibrium in the microscopic system (see appendix D for more detailed
discussion). Local equilibrium means that locally, around a point x, the microscopic system
is distributed according to its stationary measure at mean density ρ(x, t). Therefore, in order
to implement the bias at the macroscopic level, we need to understand the properties of the
stationary measures of the biased system.

Since the number of particles is conserved by the dynamics, there is a family of stationary
measures parameterised by the density of the system (identically to what we argue in
appendix D). In the case where there is a bias, we expect in addition that the mean density is
discontinuous at the location of the bias. For example, a biased tracer will push particles in
front of it, so the density at equilibrium should be higher in front of the tracer than behind it.
Hence, for each stationary measure, we expect a mean density to the left of the bias ρ− different
from the one to the right ρ+. From physical intuition, we expect that the force to which is
subjected the tracer (coming from the bias) can be compensated by a force coming from an
imbalance of density on each side of the tracer, leading to a vanishing mean displacement.
For a given density on the left ρ−, the force from the bias is exactly compensated by one
density on the right ρ+. In other words, stationary ρ−, ρ+ verify a relation

B(ρ−, ρ+) = 0. (10.1)

As a consequence, in order to implement the microscopic bias at the hydrodynamic level,
we impose a boundary condition on the density field at the position of the bias, which is the
one verified by the left and right densities of the stationary measures (10.1). In the case of
the biased tracer the bias is located at the position of the tracer Xt, which can be recovered
from the hydrodynamic density ρ(x, t) by conservation of the number of particles to the right
of the tracer: ∫ Xt

0

ρ(x, t)dx =

∫ ∞

0

ρ(x, t)− ρ(x, 0)dx. (10.2)

The bias matching condition, which involves only hydrodynamic quantities, reads:

BT

(
ρ(X−

t , t), ρ(X+
t , t)

)
= 0 . (10.3)

In the case where the bias is located at a fixed point (usually the origin, see example below of
a biased bond between two sites), the bias matching condition takes a simple form:

B
(
ρ(0−, t), ρ(0+, t)

)
= 0 . (10.4)
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This procedure, which requires to study the stationary measures of the biased system may
seem unnecessarily complicated. One could imagine to find the relation (10.1) simply from
the condition that the velocity of the tracer must vanish, without knowing anything about
the stationary measure (except of course the mean densities ρ−, ρ+). In appendix I.1.1, we
give an example to show that in general, one needs to know more features of the stationary
measures (such as some correlations in addition the the mean densities).

To illustrate the bias relations (10.3, 10.4), we give the example of the SEP with a biased
tracer 10.1.1, and of a mass transfer process with biased bond 10.1.1. The study of the
stationary measures is done in appendix I.1, here we simply give and illustrate the bias
conditions.

Example of the SEP with a biased tracer

Figure 10.1: The Symmetric Exclusion Process (SEP) with a driven tracer (blue) at position Xt.

The master equation for the probability to find, at time t, the tracer at position X and
the bath in configuration (ηr) (ηr = 1 if site r is occupied by a bath particle, 0 otherwise) is:

∂tP (X, η, t) =
1

2

∑
r ̸=X,X−1

[
P (X, ηr,+, t)− P (X, η, t)

]
+
∑
µ=±1

1 + µs

2
{(1− ηX)P (X − µ, η, t)− (1− ηX+µ)P (X, η, t)} . (10.5)

In appendix I.1.2, we show that the explicit writing of the general bias condition (10.3) in
the specific case of the SEP with a biased tracer is

(1 + s)(1− ρ(X+
t , t))− (1− s)(1− ρ(X−

t , t)) = 0 . (10.6)

We can verify that indeed, the mean position of the tracer is constant if the densities in
its vicinity verify this relation. From the master equation, we have:

∂t ⟨Xt⟩ =
1 + s

2
(1− ⟨ηXt+1⟩)−

1− s
2

(1− ⟨ηXt−1⟩). (10.7)

If the mean occupation is equal to the mean density2 ⟨ηXt±1⟩ = ρ(X±
t , t), then indeed,

from (10.6) we have ∂t ⟨Xt⟩ = 0.

Biased bond in a mass transfer process

In fact, a specific bias matching condition was introduced for the first time in [114] in
the particular case of a mass transfer process with a bias. Here we recover this condition by
applying the general procedure described above.

2Saying ⟨ηXt±1⟩ = ρ(X±
t , t) is true in the SEP because the stationary measures are product Bernoulli

measures of density ρ(X±
t , t). We refer to appendix I.1 for further discussion.
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p

q

0 1

Figure 10.2: Mass transfer process with biased bond (0, 1). On each bond (x, x + 1) with
x ≠ 0, site x transfers half its mass to site x+ 1 with rate 1

2
and site x+ 1 transfers half its

mass to site x with rate 1
2
. On the biased bond, site 0 transfers half its mass to site 1 with

rate q and site 1 transfers half its mass to site 0 with rate p. The system is described by the
masses on each site r ∈ Z, denoted ηr ∈ R+.

The master equation for the probability density P (η, t) to find the system in configuration
η at time t is (see [89] for an extensive study of mass transfer processes):

∂tP (η, t) =
1

2

∑
r ̸=0

[2P (ηr, t)− 2P (η, t)] + 2(p+ (q − p)1R+(η1 − η0))P (η0, t)− (p+ q)P (η, t).

(10.8)

The configuration ηr is defined as follows:

• For all x ̸= r, r + 1, ηrx = ηx

• If ηr+1 > ηr, then ηrr = 2ηr and ηrr+1 = ηr+1 − ηr.
• If ηr+1 ≤ ηr, then ηrr+1 = 2ηr+1 and ηrr = ηr − ηr+1.

The explicit writing of the general equation (10.4) in the present system (see appendix I.1.2
for proof) is the bias matching condition used in [114]:

pρ(0+, t)− qρ(0−, t) = 0 . (10.9)

We can verify, similarly to what we did above for the biased tracer, that, this time, the
mean of the integrated current through the bond (0, 1) denoted by Qt is constant if the
densities verify the bias relation. From the master equation:

∂t ⟨Qt⟩ = q
〈η0

2

〉
− p

〈η1
2

〉
. (10.10)

Identifying the mean mass and the density3 ⟨η0⟩ = ρ(0−, t) and ⟨η1⟩ = ρ(0+, t), and us-
ing (10.9), we have ∂t ⟨Qt⟩ = 0.

10.1.2 MFT equations for a biased system

In order to get a macroscopic description of a biased one-dimensional diffusive system
with transport coefficients D(ρ) and σ(ρ), we combine the fluctuating hydrodynamic descrip-
tion (6.2.3), valid at any point where the system follows an unbiased dynamics,

∂tρ+ ∂xj =0, (10.11)

j +D(ρ)∂xρ =
√
σ(ρ)η(x, t), (10.12)

3Here also, it is true according to the known stationary measures, see appendix I.1.2.
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with a bias matching condition derived from the microscopic dynamics according to the
procedure detailed above.

In the case of a system with a biased tracer, the condition must be implemented at the
position of the tracer, which is moving. Thanks to the duality relation (9.1.1), we can map
this moving tracer problem onto the study of the integrated current through the origin (which
is fixed) in a dual model (such that the integrated current through the origin in the dual
system is equal to the position of the tracer in the original system). The bias condition for
the tracer (10.3) can be expressed in terms of the density field ρ̃(x, t) of the dual system:

BT

(
1

ρ̃(0−, t)
,

1

ρ̃(0+, t)

)
= 0. (10.13)

That is why we will focus on the integrated current through the origin in a system with a
bias condition at the origin:

B
(
ρ(0−, t), ρ(0+, t)

)
= 0. (10.14)

Since there cannot be an infinite accumulation of particles at a point, the current j(x, t) must
be continuous at the origin (otherwise an infinite ∂xj would lead to a diverging density at 0):

j(0−, t) = j(0+, t). (10.15)

The integrated current through the origin between initial time and time t will be denoted

Qt[ρ] =

∫ ∞

0

ρ(x, t)− ρ(x, 0)dx. (10.16)

The optimal density and current

Similarly to what we did in section 7.1.2 for the SEP, the long time limit of the cumulant
generating function of the integrated current through the origin ln

〈
eλQt

〉
, and the long time

limit of the associated GDP-generating function
⟨ρ(x,t)eλQt⟩
⟨eλQt⟩ can be computed using a path

integral formulation of MFT (6.7):

ln
〈
eλQt

〉
∼
t→∞

ln

∫
D[ρ, j] exp

(
−
√
t

(∫ 1

0

∫ ∞

−∞

(j +D(ρ)∂xρ)2

2σ(ρ)
dxdt+ F [ρ(x, 0)]− λQ1[ρ]

))
(10.17)

where we integrate over ρ, j verifying (10.11, 10.14, 10.15). The functional F [ρ(x, 0)] encodes
the probability on the annealed initial condition (6.8) with mean density profile ρ0(x). In the
long time limit, the path integral will be dominated by the path of least action (minimising
the argument of the exponential). Like in section 8.1.2, we solve the optimisation problem
under the constraints (10.11, 10.14, 10.15) by introducing a Lagrangian L and a Lagrange
multiplier ρ̂ enforcing the conservation (10.11).

We denote by (q, j∗, p) the solution to the optimisation problem under constraint for
(ρ, j, ρ̂). In appendix I.2.1, show that they verify the classical MFT equations:

∂tq = ∂x(D(q)∂xq)− ∂x (σ(q)∂xp) ,

∂tp = −D(q)∂2xp−
σ′(q)

2
(∂xp)

2,

p(x, 0) = λΘ(x) +

∫ q(x,0)

ρ0(x)

2D(r)

σ(r)
dr,

p(x, 1) = λΘ(x). (10.18)
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In addition to that, the optimal fields are shown to verify the following boundary conditions,
which are specific to the biased case:

B
(
q(0−, t), q(0+, t)

)
= 0,

[D(q)∂xq − σ(q)∂xp(x, t)]
0+

x=0− = 0,

p(0+, t)− p(0−, t) = 0,

∂−BD(q)∂xp(0
+, t) + ∂+BD(q)∂xp(0

−, t) = 0. (10.19)

The derivatives ∂±B are evaluated at (q(0−, t), q(0+, t)).
These equations, based on MFT, are very general, since they only require to know how

the bias affects the density of the bath in the vicinity of the drive in the stationary regime,
through the bias condition (10.14). This condition can be computed analytically for simple
models, but also sampled numerically or experimentally for more realistic systems.

New mapping for the MFT equations

In the case of the SEP with biased tracer, the transport coefficients D(ρ) = 1/2 and
σ(ρ) = ρ(1−ρ) are relatively simple, in particular the diffusion coefficient is constant. However,
the theory presented above is valid for a bias located at the origin. That is why we must
apply it to the dual of the SEP under the duality relation 9.1.1, since this transformation
maps the tracer’s position in the SEP to the integrated current through the origin in the dual
system. Unfortunately, this dual system has more complicated transports coefficients:

D̃(ρ̃) =
1

ρ̃2
D(1/ρ̃) =

1

2ρ̃
, σ̃(ρ̃) = ρ̃σ(1/ρ̃) = 1− 1

ρ̃
. (10.20)

This yields non-linear diffusion equations. In order to circumvent this difficulty, we introduce
a new general mapping directly at the level of MFT equations (10.18). It is inspired by the
duality 9.1.1, but it is not the same since the current j̃ = −D̃(q̃)∂xq̃ + σ(q̃)∂xp̃ is not mapped
accordingly, where we denoted by (q̃, j̃, p̃) the optimal fields for the integrated current cumulant
generating function (10.17) in the dual system. We develop this mapping in appendix I.2.2.

10.2 Application to a few examples

The goal of this section is to test and validate the hydrodynamic equations derived
above with specific examples of models. We compare the predictions from the hydrodynamic
equations with results from Monte Carlo simulations. Our first example is a very rich model,
the KLS. As a second example, we present a model for which the hydrodynamic equations are
exactly solvable. Finally, we give the general solution for the integrated current (and tracer’s
position) and the associated correlation profiles in the case where the initial condition is a
stationary measure (equilibrium fluctuations). We apply to our two last examples, the SEP
with biased tracer (see 10.1.1) and the mass transfer process with biased bond (see 10.1.1).
As we proceed to show, applying the procedure developed in section 10.1 yields results which
exactly match Monte Carlo simulations.

10.2.1 The KLS model with biased tracer

The KLS model is a lattice model, described by occupation numbers (ηr(t)) where ηr(t) = 1
if there is a particle on site r and 0 otherwise. The dynamics is described by jump rates
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Figure 10.3: We simulated the KLS with parameter ϵ = 0.5, δ = −0.3, average initial density
ρ = 0.4 and biased tracer with a = 0.7, b = 1 − a, with final time t = 1000. Left: density
profiles. Middle: correlation profiles. Right: correlation between initial density at site r
and position of the tracer at time t. Blue lines: Monte Carlo simulations (4000 sites, 107

simulations). Dashed lines: numerical resolution of equations (10.18).

which depend on the neighbouring configuration of the particle attempting the jump (see
definition 6.1.2). Here we consider a biased tracer, namely its jump rates to the right are
multiplied by a, and to the left by b. Since this model displays a rich phenomenology, with
interactions inducing non-zero correlations at large distance (although decaying exponentially),
it constitutes a challenging test, validating the robustness of our procedure.

The transport coefficients of the KLS are [176]:

D(ρ) =
1

ν3
ν[1 + δ(1− 2ρ)]− ϵ

√
4ρ(1− ρ)

ρ(1− ρ)
√
(2ρ− 1)2 + 4ρ(1− ρ)e−4β

, σ(ρ) =
2

ν3

(
ν[1 + δ(1− 2ρ)]− ϵ

√
4ρ(1− ρ)

)
,

(10.21)

where ν =
1 +

√
(1− 2ρ)2 + 4ρ(1− ρ)e−4β√

4ρ(1− ρ)
and e−4β =

1− ϵ
1 + ϵ

.

To find the bias condition, we look for the equilibrium measures for τr = ηXt+r, the
occupations in the reference frame of the tracer. If fact, the dynamics of (τr) is reversible
with respect to any Ising measure of the following family [175]:

P(τr) = exp (+β(1− 2τ−1) + β(1− 2τ1))

×
∏
r<0

1

λ−
exp (−β(1− 2τr)(1− 2τr−1)− h−(1− 2τr))

×
∏
r>0

1

λ+
exp (−β(1− 2τr)(1− 2τr+1)− h+(1− 2τr)) , (10.22)

where λ± = e−β coshh± +
√
e−2β sinh2 h+ e2β (it is the largest eigenvalue of the transfer

matrix of the associated Ising measure), e−4β = 1−ϵ
1+ϵ

(this ensures reversibility with respect

to transitions of rate 1± ϵ), and a
(
e−h+

λ+

λ−
e−h−

)
= b (this ensures reversibility with respect to

a displacement of the tracer, which would have the effect of removing a site in front of the
tracer, and adding one behind it).

The parameter h± is related to the average density ρ± = limN→∞

∑±N
r=0⟨τr⟩
N

(we also take

a spacial average because the sites are correlated) through [175] h(ρ) = argsh

[
e−2β |1−2ρ|
2
√
ρ(1−ρ)

]
.

Therefore, the bias condition takes the form:

BT (ρ(X−
t , t), ρ(X+

t , t)) = a
e−h(ρ(X

+
t ,t))

λ(ρ(X+
t , t))

− b e
−h(ρ(X−

t ,t))

λ(ρ(X−
t , t))

= 0. (10.23)
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In order to apply the MFT equations (10.18) to this model, we consider its dual 9.1.1
with corresponding bias relation (10.13). Given the complexity of the transport coefficients
involved, the equations are intractable analytically, so we perform a numerical resolution
of the equations, displayed in figure 10.3. The optimal density field ρ∗(x, t) for the KLS
with a biased tracer is obtained from the one of its dual q(x, t) solution of (10.18) through
relation (9.20):

ρ∗(xk(t), t) =
1

q(k, t)
, xk(t) = x0(t) +

∫ k

0

q(k′, t)dk′. (10.24)

Note that the MFT formalism interestingly also gives access to the correlations between
initial occupation numbers ηr(0) and final position of the tracer (figure 10.3, on the right). If
we denote by ρ∗1 the first order in lambda of ρ∗ = ρ∗0 + λρ∗1 +O(λ2), then we have:

⟨ηr(0)Xt⟩c = ⟨ηr(0)(Xt − ⟨Xt⟩)⟩ ∼
t→∞

ρ∗1

(
r√
t
, t

)
(10.25)

As we can see in figure 10.3, we find an excellent agreement between predictions from our
procedure and Monte Carlo simulation.

10.2.2 An exactly solvable biased tracer model

0 1

2

-1 3

-2

-3

0 1 2-1 3-2-3

Figure 10.4: On the left, an example of realisation of the model. On the right, the corresponding
system of gaps: site r contains ηr(t) = xr+1(t)− xt(t) particles.

We consider a model of particles on the infinite one-dimensional lattice. The positions
of the particles at time t are denoted (xk(t))k∈Z, and the initial position of the tracer is the
origin: x0(0) = 0. The dynamics is described as follows:

• For k ̸= 0, the particle k can jump to site xk(t) + 1 with rate xk+1(t)− xk(t) (namely
the rate is proportional to the distance to the next particle, like harmonic interactions
between particles), and to site xk(t)− 1 with rate xk−1(t)− xk(t).

• The tracer (particle 0) is biased, it can jump to site x0(t) + 1 with rate a(x1(t)− x0(t)),
and to site x0(t)− 1 with rate b(x−1(t)− x0(t)).

We can also consider the gaps between particles ηr(t) = xk+1(t)− xk(t). The dynamics of the
gaps is described by a ZRP 6.1.2, where site r can transfer a particle to site r ± 1 with rate
ηr(t) (for each neighbour), except if the transfer occurs at the biased bond (−1, 0) in which
case the rates are multiplied by a or b according to figure 10.4.

On the hydrodynamic level, this systems of gaps (ηr) is related to the original system of
particles (xk) through the particles-gaps duality 9.1.1. This system of gaps is in fact equivalent
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to the independent walkers model (because a site bearing n particles gives a particle to a
neighbouring site with a rate proportional to n) and its transport coefficients are given by [86]:

D̃(ρ̃) = 1 , σ̃(ρ̃) = 2ρ̃. (10.26)

As a consequence, using duality 9.1.1, the transport coefficients of the original system of
particles are:

D(ρ) =
1

ρ2
, σ(ρ) = 2. (10.27)

Similarly to the example of a biased bond in a mass transfer process 10.1.1, the evolution
equations on the mean gaps ⟨ηr(t)⟩ are closed:

∂t ⟨ηr(t)⟩ =(1− δr,0 − δr,−11) (⟨ηr+1(t)⟩+ ⟨ηr−1(t)⟩ − 2 ⟨ηr(t)⟩)
+ δr,−1 (⟨η−2(t)⟩+ a ⟨η0(t)⟩ − (1 + b) ⟨η−1(t)⟩)
+ δr,0 (⟨η1(t)⟩+ b ⟨η−1(t)⟩ − (1 + a) ⟨η0(t)⟩) . (10.28)

The stationary solutions are ⟨ηr(t)⟩ = ρ−
(
1 +

(
b
a
− 1
)

1N(r)
)
, hence the bias matching condi-

tion for the hydrodynamic profile ρ̃(x, t) of the system of gaps:

B(ρ̃(0−, t), ρ̃(0+, t)) = aρ̃(0+, t)− bρ̃(0−, t) = 0. (10.29)

Resolution of the MFT equations with boundary conditions for the system of
gaps

Since the transport coefficients of system of gaps (10.26) (the dual system) are simple, we
can solve the associated MFT equations (10.18) with boundary conditions (10.19) for the
integrated current through the origin. This is done in appendix I.3.1, for step initial condition
with density ρ− to the left of the origin and ρ+ to the right. Note that this corresponds in
the original system of particles (xk(t)) to an initial density of ρ−1

− to the left of the tracer and
ρ−1
+ to the right.

The long time limit of the generalised density profiles ϕQ(v) = lim
t→∞

〈
η⌊v

√
4t⌋e

λQt

〉
⟨eλQt⟩ (where

Qt is the integrated current through the origin) is obtained by taking the MFT optimal
profile q (solution of (10.18, 10.19)) at time t = 1 (see section 7.1.2). From the resolution in
appendix I.3.1, we get:

ϕQ(v > 0) = ρ+ − erfc(v)
(
−beλρ− + aρ+

)
, (10.30)

ϕQ(v < 0) = ρ− − erfc(−v)
(
bρ− − e−λaρ+

)
. (10.31)

Finally, the long time limit of the cumulant generating function can be easily computed using

the identity
d ln

〈
eλQt

〉
dλ

=

〈
Qte

λQt
〉

⟨eλQt⟩ ∼
t→∞

√
t

∫ ∞

0

q(x, 1)− q(x, 0)dx, since the weighed average〈
•eλQt

〉
⟨eλQt⟩ is dominated by the optimal profile q in the long time limit. This yields:

ln
〈
eλQt

〉
∼
t→∞

√
4t

(
eλ − 1

)
(1− a)ρ− +

(
e−λ − 1

)
aρ+√

π
. (10.32)
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Figure 10.5: The solution to equation (10.37) is expanded up to order 3 in λ (dashed line) and

compared to Monte Carlo simulations (1600 particles, final time t = 4000 for
〈
ηTx0(t)+rx0(t)

3
〉
c

and t = 10000 for the others, 6 × 108 simulations). The initial density is ρ = 1. We
noted Xt = x0(t).

Closed equations for the system of particles with a biased tracer

Finally, we can get back to the original system of particles (xk(t)) using the duality 9.1.1.
The key result for this simple model is that we can show that the long time limit of the
GDP-generating function still verifies a closed equation, very similar to what we had for the
unbiased tracer in the dilute limit of the SEP 8.1.1.

The position of the tracer is the opposite of the integrated current through the origin in
the system of gaps, so x0(t) = −Qt. Thus we find for the cumulant generating function of the
tracer:

ψ̂ = lim
t→∞

ln
〈
eλx0(t)

〉
√

4t
=

(
e−λ − 1

)
(1− a)ρ− +

(
eλ − 1

)
aρ+√

π
. (10.33)

The long time limit Φ of the GDP-generating function is defined by:〈
ηTx0(t)+re

λx0(t)
〉

⟨eλx0(t)⟩ ∼
t→∞

ϕ

(
v =

r√
4t
, λ

)
, (10.34)

where ηTr (t) =
∑

k∈Z δr,xk(t). It is related to the generalised profiles of the dual system
through (9.20):

ϕ(v(k), λ) =
1

ϕQ(k,−λ)
, (10.35)

v(k) =

∫ k

0

ϕQ(k′,−λ)dk′. (10.36)

As a consequence, from the solution (10.31), it follows that ϕ verifies the following closed
equation:

∂v

(
ϕ′

ϕ2

)
+ 2

(
v + ν

ψ̂T
eνλ − 1

)
ϕ′ = 0 , (10.37)

where ν = sign(v), with the boundary conditions:

ϕ(±∞) = ρT±, (10.38)

aϕ(0+)− beλϕ(0−) = 0, (10.39)

ϕ′(0+)

ϕ(0+)3
− 2ψ̂

1− eλ = 0, (10.40)

ϕ′(0−)

ϕ(0−)3
+

2ψ̂

1− e−λ = 0. (10.41)



10.2. APPLICATION TO A FEW EXAMPLES 149

Here we denoted ρT± the initial densities of particles to the left and to the right of the tracer.

The solution to these equations is in perfect agreement with Monte Carlo simulations up
to order 3 in λ (figure 10.5).

The closed equation (10.37) is obtained through the hydrodynamics approach, but it would
be instructive to obtain it directly from the microscopic dynamics of the model.

10.2.3 Equilibrium fluctuations in a general system

When the initial density to the left ρ− and to the right ρ+ of a biased tracer are such
that BT (ρ−, ρ+) = 0, the mean displacement is zero. Intuitively, this means that the step of
density exactly compensates the drive applied to the tracer. In this situation, which has been
studied previously in the SEP [131], the first non-zero cumulant of the tracer’s position is its
mean squared displacement. Strikingly, this quantity can be computed in great generality
from MFT equations (10.18) and boundary conditions (10.19) by expanding these equations
in function of λ and solving them at order 1 (see appendix I.3.2). Here we give the analytical
results, obtained by using a Green function similar to (I.38).

Biased integrated current

We consider a system with transport coefficients D and σ, with a bias at the origin:

B(ρ(0−, t), ρ(0+, t)) = 0. (10.42)

Initially, the system is at equilibrium, namely the initial density ρ− to the left of the origin
and the one ρ+ to the right verify:

B(ρ−, ρ+) = 0. (10.43)

As a consequence, the average density remains constant ρ(x, t) = ρ− + Θ(x)(ρ+ − ρ−). The
first non trivial generalised density profile is therefore the correlation profile:

gx(t) = ⟨ρ(x, t)Qt⟩ ∼
t→∞

Φ1

(
r√
t

)
(10.44)

We denote B± = ∂B(ρ−,ρ+)
∂ρ±

(= ∂±B(ρ−, ρ+) with ∂±B previously defined), D± = D(ρ±) and

σ± = σ(ρ±). We have for v > 0:

Φ1(v) =

π
(
B2

−D+

√
D+

D−
σ− +B2

+D−σ+

)
erfc

(
v

2
√

D+

)
−B−

√
D+

D−
(B−D+σ− +B+D−σ+) Ei

(
− v2

4D+

)
2πD+

(
B+

√
D− −B−

√
D+

)2 .

(10.45)

Note the presence of the exponential integral function Ei, which has a logarithmic divergence
at 0, which seems to be associated with a very slow convergence (figure 10.6). The variance
reads:

〈
Q2
t

〉
∼
t→∞

2
√
t

(
B2

−D+σ−√
D−

+
B2

+D−σ+√
D+

)
√
π
(
B+

√
D− −B−

√
D+

)2 (10.46)
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Figure 10.6: Equilibrium fluctuations of the integrated current through the origin for the mass
transfer process with biased bond 10.1.1 (D = 1/4, σ(ρ) = ρ2/2, q = 1 − p). Lines: Monte
Carlo simulations of duration t. Dashed line: formula (10.45).

Biased tracer

Applying duality 9.1.1, we can extend the previous result for systems with transport
coefficients D and σ and a biased tracer with bias condition:

BT (ρ(X−
t , t), ρ(X+

t , t)) = 0. (10.47)

Initially, the system is at equilibrium, with initial density ρ− to the left of the origin and ρ+
to the right with:

BT (ρ−, ρ+) = 0. (10.48)

The mean position of the tracer remains zero, and we can compute the correlation profile:

gx(t) = ⟨ρ(x, t)Xt⟩ ∼
t→∞

Φ1

(
r√
t

)
(10.49)

We use the same shorthand notations B± = ∂BT (ρ−,ρ+)
∂ρ±

, D± = D(ρ±) and σ± = σ(ρ±). We

have for v > 0:

Φ1(v) =

πρ+

(
B2

−D+

√
D+

D−
σ− +B2

+D−σ+

)
erfc

(
v

2
√

D+

)
−B−

√
D+

D−
(B−D+ρ+σ− +B+D−ρ−σ+) Ei

(
− v2

4D+

)
2πD+

(
B−

√
D+ρ− −B+

√
D−ρ+

)2
. (10.50)

and the variance of the tracer:

〈
X2
t

〉
=

2
(
B2

−ρ
2
−σ−
√
D+ +B2

+ρ
2
+σ+
√
D−
)√

t√
π
(
B2

−
√
D−D+ρ4− −B−B+ρ+ρ− (D−ρ2− +D+ρ2+) +B2

+

√
D−D+ρ4+

) . (10.51)

These results are very general, and, together with the exactly solvable model 10.2.2, they
constitute a first basis in trying to extend the closed equation approach (chapter 8) to the
case of a biased tracer.

10.3 The simple exclusion process with a biased tracer

As we recalled in the introduction of this chapter, the study of the SEP with a biased
tracer 10.3 has turned out to be a difficult problem [119, 126, 131, 188]. Thanks to the method
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Figure 10.7: Equilibrium fluctuations of the tracer’s position in the biased SEP 10.3 (D =
1/2, σ(ρ) = ρ(1 − ρ)), q = 1 − p, p = 0.75). Lines: Monte Carlo simulations of duration
t = 1000. Dashed line: formula (10.50). Note that the exponential integral has a vanishing
pre-factor in this case.

developed in this chapter, based on equations (10.18) with boundary conditions (10.19), we
are able to make progress on this problem. In fact, in this section, we will not used directly
equations (10.18) with boundary conditions (10.19). We will use the equations (I.25, I.26),
which are obtained from them by applying the new mapping we mentioned in paragraph 10.1.2.

We determine the long time limit of the bath-tracer density profiles and cumulants of
the tracer position at linear order in the driving force and at arbitrary density. We also go
beyond linear response by determining the second cumulant of the tracer position and the
corresponding density profile at second order in the driving force. We thus provide the first
non-trivial contribution of the driving force to the variance of the tracer position at arbitrary
density.

We would like to follow an approach similar to what we did for the symmetric tracer (chap-
ters 7, 8), based on the GDP-generation function, defined identically:

wr(t) =

〈
ηXt+re

λXt
〉

⟨eλXt⟩ ∼
t→∞

Φ

(
v =

r√
2t

)
, (10.52)

which is related in the long-time limit to the cumulant generating function

ln
〈
eλXt

〉
∼
t→∞

ψ̂(λ)
√

2t , ψ̂(λ) =
∞∑
n=0

λn

n!
κ̂n (10.53)

through the same boundary equations as in the symmetric case (7.44) [103, 133]:

Φ′(0±)± 2ψ̂

e±λ − 1
Φ(0±) = 0 . (10.54)

As a consequence of the MFT large deviation principle, the GDP-generating function
is related to the optimal density profile (see section 7.1.2) q solution of equations (I.25),
with transport coefficients of the SEP D = 1/2, σ(ρ) = ρ(1 − ρ) and the bias matching
condition (10.6):

Φ(v) = q(v
√

2, 1). (10.55)

Therefore, expanding these equations (I.25) in the variable λ (writing q =
∑
λnqn and

π =
∑
λnπn), we can solve for the first orders in λ: Φ0,Φ1,Φ2.
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Figure 10.8: Profiles Φ1 and Φ2 obtained from the numerical resolution of the MFT equations
(I.25) (orange dashed lines), compared to Monte Carlo simulations (blue solid lines), final
time 6000, 107 simulations for (a), (b) and (c) and 9 · 107 for (d), of the SEP with a driven
tracer, for various values of the bias and the density. The discrepancy at v = 0 on panel
(d) comes from the numerical errors on Φ1 near the discontinuity at the origin, which are
amplified at the second order Φ2.

10.3.1 Numerical resolution

We show in figure 10.8 the profiles at order 1 and 2 in λ obtained from the numerical
resolution of the MFT equations (I.25), which are in perfect agreement with results from
microscopic Monte Carlo simulations, for a broad range of parameters. In particular, we
consider strong biases, and densities which are far from the extreme low- and high-density
limits. Note that the approach can be extended to the paradigmatic case where the initial
density of particles is step-like (ρ = ρ+ in front of the tracer and ρ = ρ− behind the
tracer) [99, 100]. Finally, the plots show that our MFT procedure 10.1 captures non-trivial
dependencies of the correlation profiles on the rescaled distance.

10.3.2 New analytical results

We now turn to the analytical resolution of equations (I.25), perturbatively in the intensity
of the bias s, with flat initial density ρ.

Linear order in s

We first note that, for any bias, at zeroth order in λ, we retrieve the exact results
previously obtained for the mean occupation profiles in the frame of reference of the driven
tracer [119, 126]. However, for the next orders (Φn with n ≥ 1), no explicit analytical solution
of the MFT problem at arbitrary density is available. We then resort to an expansion in
powers of the bias s, and define for each order n:

Φn(v) =
s→0

Φ(0)
n (v) + sΦ(1)

n (v) + s2Φ(2)
n (v) + . . . (10.56)

where Φ
(0)
n corresponds to the known symmetric case (chapter 8). At linear order in the bias

s, we find (we give the expressions for v > 0, as the ones for v < 0 can be deduced from the

symmetry v → −v, λ→ −λ and s→ −s which imposes Φ
(m)
n (−v) = (−1)n+mΦ

(m)
n (v).)

Φ
(1)
1 (v) =

1− ρ
2ρ

(
(2− 3ρ) erfc(v)− (1− ρ)

6

π
e−v

2

)
(10.57)
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Figure 10.9: Generalised density profiles Φ
(1)
n (v) at first order in the bias s, at density ρ = 0.6,

obtained from the numerical resolution of the MFT equations (10.18) (dashed red lined),

compared to the analytical expressions (10.57) and (10.58) (solid blue). Left: profile Φ
(1)
1 .

Right: profile Φ
(1)
2 .

Φ
(1)
2 (v) =

(1− ρ)(1− 2ρ(1− ρ))

2ρ2
erfc(v) +

(1− ρ)2(4− 3ρ)

πρ2
erfc(v)− (1− ρ)2

ρ
erfc

(
v√
2

)2

− (1− ρ)2

2ρ2
G(
√

2 v) +
8(1− ρ)3

π3/2ρ2
v e−v

2 − 4(1− ρ)2(1− 2ρ)

πρ2
e−v

2 − (1− ρ)2

π3/2ρ2
v e−

v2

2 K0

(
v2

2

)
,

(10.58)

where G(x) = 1
π

√
2
π

∫∞
x

e−z
2/4K0

(
z2

4

)
dz, and K0 is a modified Bessel function of zeroth order.

A key point is that, contrary to the first order in λ, Φ
(1)
2 is a non-analytic function of the

rescaled distance v, displaying a logarithmic singularity at the origin. This appears to be a
specificity of the driven case, since, in the symmetric case, all Φn are analytical functions of
the rescaled distance (chapter 10). The functions Φ

(1)
1 (v) and Φ

(1)
2 (v) are plotted in figure 10.9

and display perfect agreement with the numerical resolution of the MFT equations. The
profile Φ1(v) measures the correlation between the density at a rescaled distance v from the

tracer, and the position of the tracer [103]. When there is no driving force, Φ
(0)
1 (v > 0) > 0,

therefore a fluctuation of Xt towards the right is correlated with an increase of the density in
front of the tracer, indicating an accumulation of particles in front of the tracer. Here, we
find that the linear correction to these correlations due to the presence of the drive, Φ

(1)
1 (v), is

negative, indicating that a positive driving force reduces these correlations, while a negative
drive increases them.

In addition to fully characterising the bath-tracer correlations, the generalized density
profiles Φn also lead to the cumulants of the tracer’s position. This is made possible by the
key relation derived above [equation (10.54)]. We get for the rescaled cumulants:

κ̂1 = s
1− ρ
ρ
√
π

+O(s2), κ̂2 =
1− ρ
ρ
√
π

+O(s2), (10.59)

κ̂3 =
s

π3/2ρ3

[
(1− ρ)

(
12(1− ρ)2 − π

((
8− 3

√
2
)
ρ2

−3
(

4−
√

2
)
ρ+ 3

))]
+O(s2) . (10.60)

We notice that, up to order n = 3, κ̂n = s κ̂
(s=0)
n+1 +O(s2), which implies that

ψ(λ, t) ∼
t→∞

ψ(s=0)(λ, t) + s
dψ

dλ

(s=0)

+O(s2, λ4) . (10.61)

On top of that, we checked from the high-density solution obtained in [129, 130] that, when
ρ→ 1, equation (10.61) holds at any order in λ, and at arbitrary time. This points towards
the generality of this relation.
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Figure 10.10: Left: Profile Φ
(2)
1 (v) at ρ = 0.6 (10.62) (solid blue), compared to the numerical

resolution of the MFT equations (10.18) (dashed red). Right: rescaled cumulant κ̂2 as a
function of the bias s, obtained from the numerical resolution of the MFT equations (solid
blue), compared to the small bias expansion (10.63) (solid green line). The points are obtained
from Monte Carlo simulations (15.8 million simulations, final time 100000). Note that the
correction in s2 to κ̂2 is always positive, for all the values of the density ρ.

Beyond linear response

We next show that explicit analytical results can be obtained beyond linear response
which, as we proceed to show, can be quantitatively and even qualitatively significant. In
addition, even if our previous expressions provide the leading order in the bias s, they do not
bring non-trivial information for even cumulants, since the first non-zero correction to the
unbiased case is actually of order s2 for symmetry reasons. We thus compute the profile Φ1

at quadratic order in the bias, and get

Φ
(2)
1 (v) =

(1− 2ρ)(1− ρ)2

2ρ2
erfc(v) +

(3− ρ)(1− ρ)2

πρ2
erfc(v)− (1− ρ)2

2ρ
erfc

(
v√
2

)2

− (1− ρ)2

2ρ2
G(
√

2 v) +
5(1− ρ)3

π3/2ρ2
v e−v

2 − (3− 5ρ)(1− ρ)2

πρ2
e−v

2 − (1− ρ)2

π3/2ρ2
v e−

v2

2 K0

(
v2

2

)
.

(10.62)

Interestingly, we note that, even at order 1 in λ (and not only at order 2 as in the linear
response analysis discussed above), the density profile is in fact non-analytic at the origin.
We stress that this qualitatively different feature emerges beyond linear response.

In addition, the expression of Φ
(2)
1 yields the s2 order of κ̂2 = κ̂2|s=0 + s2 ∆κ̂

(2)
2 +O(s3),

with

∆κ̂
(2)
2 =

(1− ρ)2(7− 5ρ− π((
√

2− 3)ρ+ 2))

π3/2ρ3
. (10.63)

This result constitutes the first determination of the bias-dependence of the variance of a
driven tracer in the SEP for an arbitrary density, a problem which has remained open for
more than 25 years.

The function Φ
(2)
1 (v) is plotted in figure 10.9 and displays very good agreement with the

results obtained from the numerical resolution of equations (10.18). We also display the
dependence of the second cumulant as a function of the bias for a given value of the density
ρ = 0.2, which shows good agreement with both microscopic Monte Carlo simulations and the
numerical resolution as long as the bias is small enough. This cumulant displays an important
variation with the bias (∼ 30%), emphasising the quantitative importance of studying the
problem beyond linear response (which would predict zero variation).
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Conclusion

To conclude, we introduced a general procedure to obtain a macroscopic, hydrodynamic
description for biased systems (either a biased particle or a biased bond). Then we tested
this procedure on different examples, which displayed a perfect agreement with Monte Carlo
simulations. Finally, applying this procedure to the SEP, we obtained the first new analytical
result since more than twenty years for the variance of the position of a biased tracer, beyond
linear response.

In further studies, we would like to extend the closed-equation approach for the symmetric
SEP (chapters 7 and 8) to the case of a biased tracer. The results we obtained here for the
SEP 10.2.3, the general result for the equilibrium fluctuations 10.2.3, the closed equations for
a specific model 10.2.2, and further calculations using the procedure 10.1 constitute a first
basis to this aim.
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Conclusion and open questions

As a conclusion, we sum up the main steps of our approach to the study of tracer diffusion
(and integrated current, which is, as we have shown, a closely related observable) in one
dimension. We started from the observation that, although strong correlations between
particles were known to be the signature of one-dimensional transport compared to higher
dimensions, these correlations had not been characterised precisely. These correlations are at
the origin of the anomalous scaling of the cumulants of the position of the tracer.

We first focused on the case of the SEP, which is paradigmatic model. To characterise
the correlations between a tracer and the bath, we relied on the generalised density profiles,
an observable introduced in previous works [103, 133]. Our major result is the discovery of
a strikingly simple closed equation verified by these quantities (chapter 8), which makes it
possible to close the infinite hierarchy of equations generated by the many-body interactions
in the SEP.

Then, relying on a hydrodynamic description of one dimensional systems, we introduce
mappings which enable us to relate different systems. Using these mappings, we generalised
our results for the SEP to many other systems, displaying varied phenomenology.

Finally, we considered the case of a biased tracer. We introduced a general procedure to
describe, at the hydrodynamic level, single-file systems with a bias. Applying this procedure
to the SEP with a biased tracer, we obtained new analytical results on this model.

To finish with, we here mention some open questions that will be interesting to investigate:

• Physical proof of the closed equation (8.41). For now, this equation has been
obtained by us by inferring a structure we uncovered from perturbative calculations.
Afterwards, it has been found using the inverse scattering transform [172]. Is there a
way to derive it from less analytical and more physical argument?

• General structure of equations for single-file diffusion. In chapter 9, we developed
general mappings between single-file systems. As a consequence, these systems are
related together by a symmetry group. Studying the properties of this group and of
equations left invariant by its action could give valuable information on the structure of
more general equations characterising single-file diffusion.

• Exact solution for biased problems. In chapter 10, we presented a simple model
with a biased tracer which we solved exactly. Can we provide an exact solution for a
system with more complicated transport coefficients, similar to what was obtained for
the SEP with symmetric tracer?
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Appendix A

Methods of numerical simulations

We use kinetic Monte Carlo algorithms in order to simulate a Markov process s(t) in
continuous time on a finite state space. To define the process s(t), one must specify:

• The finite state space E.

• The initial distribution µ on the state space E. The initial state s(0) is drawn from this
distribution.

• For each pair of states (a, b) ∈ E2, a rate rab (homogeneous to an inverse of a time) of
transition from state a to b.

The probability P(a, t) to find the system in state a at time t evolves according to the
Markovian evolution:

dP(a, t)

dt
=
∑
b∈E

rbaP(b, t)− rabP(a, t). (A.1)

The initial condition is P(a, 0) = µ(a). Because of exponential size of the space state, it is
not conceivable to solve this equation. Instead, we sample random variables Xt such that
P(Xt = a) = P(a, t). The goal of this appendix is to explain different ways to build such an
Xt computationally.

A.1 Decomposition of exponential laws

The fundamental result at the basis of the algorithm is the following. Let U0 be a random
variable following distribution µ, define τ0 = 0, and fix a big number M ∈ R. Define a
sequence of random variables (Ua

n , T
a
n )(n,a)∈N∗×E such that for all (n, a) ∈ N∗ × E:

• ran ∈ R+∗ is a maximal jump rate such that M ≥ ran ≥
∑
b ̸=a

rab.

• T an is a random variable following an exponential law of parameter ran.

• Un is a random variable which depends on Un−1 is equal to b ∈ E \ {Un−1} with

probability
rUn−1b

rUn
n

and is equal to Un−1 otherwise (i.e. with probability 1−
∑

b ̸=a rUn−1b

rUn
n

)

Then define for n ∈ N∗, τn =
n∑
k=1

T
Uk−1

k . The choice ran ≤ M ensures that almost surely the

sequence (τn) is not bounded. Build the process S(t) =
∞∑
n=0

Un1[τn,τn+1[(t) (it means S(t)

spends time TUn
n+1 in state Un then goes to Un+1).
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Then, we show that the probability P(S(t) = a) verifies equation (A.1). For any t ∈ R+,
note Nt the random variable such that t ∈ [τNt , τNt+1[ (Nt < +∞ almost surely because we
imposed ran ≤M for all (n, a) ∈ N∗ × E). For t′ > t:

P(S(t′) = a) =P(UNt′
= a)

=P({UNt′
= a,Nt′ = Nt} ∪ {UN ′

t
= a,Nt′ = Nt + 1})

+ P(UNt′
= a|Nt′ ≥ Nt + 2)P(Nt′ ≥ Nt + 2). (A.2)

We have partitioned on the three possible events {Nt′ = Nt}, {Nt′ = Nt+1} and {Nt′ ≥ Nt+2}.
By definition {t < τNt+1} is a certain event (probability one) and τNt+2 ≥ τNt+1 always, so we
have the following relations between events (up to negligible sets)

{Nt′ ≥ Nt + 2} = {τNt+2 ≤ t′}
= {τNt+2 ≤ t′, τNt+1 < t′, t < τNt+1}
⊂{τNt+2 − τNt+1 ≤ t′ − t, τNt+1 < t′, t < τNt+1}
⊂
{
T
UNt+1

Nt+2 ≤ t′ − t
}
∩
{
T
UNt
Nt+1 ≤ t′ − τNt , T

UNt
Nt+1 > t− τNt

}
. (A.3)

Partitioning on all possible values for τNt , UNt and UNt+1 and thanks to the bound M ≥ ran
we imposed ∀(n, a) ∈ N∗ × E, we have the following estimation:

|P (Nt′ ≥ Nt + 2)| ≤
(

1− e−M(t′−t)
)2

= O
(
(t′ − t)2

)
. (A.4)

Basically, we use the crucial property of any exponential law T that P(T > t|T > τ) = P(T >
t− τ) (no aging). We finally evaluate the other term P = P({UNt′

= a,Nt′ = Nt} ∪ {UN ′
t

=
a,Nt′ = Nt + 1}):

P =
∞∑
n=0

P
(
{Nt = n, UNt′

= a, τNt+1 > t′} ∪ {Nt = n, UNt′
= a, τNt+1 ≤ t′ < τNt+2}

)
=

∞∑
n=0

P (Nt = n, Un = a, τn+1 > t′) + P (Nt = n, Un+1 = a, τn+1 ≤ t′ < τn+2)

=
∞∑
n=0

P
(
τn ≤ t < τn + T an+1, Un = a, T an+1 > t′ − τn

)
+
∑
b∈E

P (Nt = n, Un = b, Un+1 = a, τn+1 ≤ t′ < τn+2)

=
∞∑
n=0

P
(
τn ≤ t < τn + T an+1, Un = a

)
P
(
T an+1 > t′ − t

)
+
∑
b∈E

P (Nt = n, Un = b, Un+1 = a)

× P
(
T bn+1 ≤ t′ − t

)
P (t′ < τn+2|Nt = n, Un = b, Un+1 = a, τn+1 ≤ t′)

=
∞∑
n=0

P (Nt = n, Un = a) e−r
a
n+1(t

′−t) +
∑
b∈E

P (Nt = n, Un = b) P (Un+1 = a|Un = b)

× (1− e−rbn+1(t
′−t))P (t′ < τn+2|Nt = n, Un = b, Un+1 = a, τn+1 ≤ t′) . (A.5)

We have:

P (t′ < τn+2|Nt = n, Un = b, Un+1 = a, τn+1 ≤ t′) ≥ P
(
T an+2 > t′ − t

)
P (t′ < τn+2|Nt = n, Un = b, Un+1 = a, τn+1 ≤ t′) = 1 +O(t′ − t) (A.6)
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So when t′ → t (the O are uniform in n, a, b thanks to the choice of M):

P =
∞∑
n=0

P (Nt = n, Un = a)
(
1− ran+1(t

′ − t) +O
(
(t′ − t)2

))
+
∑
b∈E

P (Nt = n, Un = b)

× P (Un+1 = a|Un = b)
(
rbn+1(t

′ − t) +O
(
(t′ − t)2

))
(1 +O(t′ − t))

=
∞∑
n=0

P (Nt = n, Un = a)

(
1− ran+1(t− t′) +

(
1−

∑
b ̸=a rab

ran+1

)
ran+1(t

′ − t)
)

+
∑
b̸=a

P (Nt = n, Un = b)
rba
rbn+1

(
rbn+1(t

′ − t)
)

+O
(
(t′ − t)2

)
=

(
1−

∑
b̸=a

rab(t
′ − t)

)
∞∑
n=0

P (Nt = n, Un = a)

+ rba(t
′ − t)

∞∑
n=0

∑
b ̸=a

P (Nt = n, Un = b) +O
(
(t′ − t)2

)
=

(
1−

∑
b̸=a

rab(t
′ − t)

)
P (S(t) = a) +

∑
b ̸=a

rba(t
′ − t)P (S(t) = b) +O

(
(t′ − t)2

)
(A.7)

We have replaced P (Un+1 = a|Un = b) by its definition (and split the sum on b into b = a and
b ̸= a). Finally, the expression of P(S(t′) = a) (A.2), with the explicit computation of (A.7)
and the estimate (A.4), proves that P(S(t) = a) verifies (A.1). This result constitutes the
core of our methods of simulation.

A.2 Kinetic Monte Carlo algorithm

We show how to use the result above to efficiently sample a Markov process, by simply
drawing sequentially random variables Uk and T

Uk−1
n . An important point is that we are free

to choose ran (the rate at which we leave state a) and this will lead to two different algorithms.

• If ran =
∑

b ̸=a rab, this is a rejection free algorithm. At each step of the simulation the
system changes state.

• If ran >
∑

b ̸=a rab, this is an algorithm with rejection. We authorize the algorithm to
perform a test in order to know if it must leave current state or not.

We illustrate both algorithms with the KLS (see 6.1.2) model on a ring of L sites with N
particles. The current state in the KLS will be represented by two arrays:

• An array of size N , pos[k] ∈ J0, L− 1K indicates the position of particle k.

• An array of size L, occ[x] ∈ J0, 1K indicates if site x is empty (value 0) or occupied
(value 1).

In both algorithms, we start at t = 0 with the system in a state a.

A.2.1 Rejection-free algorithm

Suppose the system is in given state described by arrays pos and occ (corresponding to

a = Un−1 in the theoretical result A.1) at time t (corresponding to T
Un−2

n−1 ).
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• The first step is to build an array r containing the rates of all accessible states. In our
KLS example, for each particle k ∈ J0, N − 1K, depending on the occupation numbers of
its neighbouring sites, we determine its jump rates to the left and to the right among the
possibilities 0 (if the site is occupied), 1± δ, 1± ϵ (see figure 6.9 for the corresponding
configurations). We affect to r[2k] the value of the jump rate to the right and to r[2k+1]
the value of the jump rate to the left. We then compute rtot (which correspond to ran in
the theoretical resultA.1) as the sum of the values in the array r.

• Then we draw a random variable ∆t (corresponding to T an in the theoretical result A.1)
from an exponential law of parameter rtot and increment the current time t by this
quantity (i.e. t← t+ ∆t).

• To known which transition must be performed (Un in A.1), we finally draw a random
variable s from uniform law on [0, rtot]. We find the index i such that s ∈ [r[0]+ ...+r[i−
1], r[0] + ...+ r[i][ (this can be done efficiently by dichotomy). If there is k ∈ J0, N − 1K
such that i = 2k, then particle k moves to the right, and if there is k such that i = 2k+1
then particle k moves to the left (we update pos and occ accordingly).

We repeat this procedure until the desired final time tf is reached (i.e. t ≥ tf ). Note that
in the next step, there is no need to reevaluate the whole array r, only values of the rates
r[2k− 2] to r[2k+ 3] may have changed if k is the index of the last particle which has jumped.

A.2.2 Algorithm with rejection

The difference here is that at each step of the simulation, it is possible to reject a transition,
namely no particle moves. We can use this possibility to get rid of the array r. Here we give
an example of how to proceed, but this algorithm is very flexible so there may be many other
ways.

We fix rtot = 2N ×max{1± δ, 1± ϵ} at the very beginning of the simulation, and we will
not change it. This choice ensure that, whatever the current state, rtot will be higher than
the sum of transition rates (ran ≥

∑
b ̸=a rab in theoretical result A.1).

Suppose the system is in given state described by arrays pos and occ (corresponding to

a = Un−1 in the theoretical result A.1) at time t (corresponding to T
Un−2

n−1 ).

• Here, no need to evaluate the transition rates, the first step is to directly draw a random
variable ∆t (corresponding to T an in the theoretical result A.1) from an exponential law
of parameter rtot and increment the current time t by this quantity (i.e. t← t+ ∆t).

• Next, we chose a particle k ∈ J0, N − 1K at random (uniform law on J0, N − 1K) and
a Bernoulli variable of parameter 1/2, which we denote by d. If d = 0, particle k will
attempt a jump to the left, and if d = 1, to the right. To know if the attempt must be
realised or not, we evaluate, in the current state given by pos and occ, (from the rules
of the KLS, see definition 6.1.2) the jump rate rk,d ∈ {0, 1 ± δ, 1 ± ϵ} of particle k in
direction d. Then we draw s from a uniform law on [0,max{1± δ, 1± ϵ}]. If s ≤ rk,d,
the jump is accepted, otherwise it is rejected.

The procedure is repeated until final time tf is reached.
Why does this correctly simulate the KLS ? With this procedure, for all accessible states,

denoted by (k, d) ((k, 0) refers to the state obtained by moving particle k to the left and (k, 1)
the one obtained by moving it to the right), the probability to accept the transition to state
(k, d) is:

1

N
× 1

2
× rk,d

max{1± δ, 1± ϵ} =
rk,d
rtot

. (A.8)
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According to the theoretical result A.1, this transition probability (A.8) (it corresponds to
rUn−1b

rUn
n

) ensures that the procedure correctly simulate the desired Markov process.

Note that, if we are not interested about the whole time-trajectory, but only the final
state, we can here take advantage of the constant rate rtot. Indeed, the number Nsteps of
times an exponential clock of rate rtot rings during a duration tf is distributed according to a
Poisson law of parameter rtottf . Therefore, instead of drawing an exponential law at each
step, one can just draw once, at the beginning, the number of steps Nsteps from a Poisson law,
and then perform the procedure described above Nsteps times, without having to care about
current time.

As a major difference with the previous algorithm, we evaluate only one transition rate at
each step instead of six. The price to pay is that the total transition rate rtot is always bigger
than the real rate for leaving the current state, meaning that to get to a given final time, it
will take more steps with the algorithm with rejection.

A.3 Simulation of the run-and-tumble tracer

For the simulations of the run-and-tumble particle in dimension 2 or more (part I), we use
a different algorithm. The simulations were performed by Alessandro Sarracino. It relies on
the fact that the continuous time dynamics of the Markov process (A.1) can be approximated
by a discrete time Markov chain.

One chooses a time step dt, which must be small in front of all the transition times:

∀a ̸= b ∈ E, dt≪ 1

rab
(A.9)

At a given time step, if the current state is denoted by a ∈ E, then for each state b ̸= a, we
draw an independent Bernoulli random variable of parameter rabdt. If it is one, then the state
at the next time step will be b, otherwise, it remains a.

Since we have chosen a small time step (A.9), the probability that two transitions occur
at the same step can be made arbitrarily small. Nevertheless, in most cases, it is possible to
deal with simultaneous transitions. For example, in the case of our run-and-tumble tracer in
crowded environment, it is possible to move several particles at the same time, provided that
they don’t interact together (in other words if they are far enough from each other).

Then, if the system arrives in state a at step N , the probability to go to state b after n
steps is (1 − rabdt)n−1rabdt. In the limit where dt is small and ndt is kept equal to a fixed
duration t, this probability is equivalent to rabe

−rabtdt, which is exactly the density of the
exponential law of parameter rab.

As a consequence, the N -th step of this discrete time dynamics approximates the continuous
time dynamics at time Ndt, and the smaller dt, the better the approximation.
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Appendix B

Details of calculations of part I

Here, we precise some methods and analytical expressions involved the analytical resolution,
based on the decoupling approximation 3.1, of our model of run-and-tumble particle on a
lattice with a bath of mobile obstacles (part I).

B.1 Derivation of evolution equations from the master

equation

Mean position of the tracer. The mean position of the tracer is defined by

⟨Xt⟩ =
∑
χ,R,η

(R · e1)Pχ(R, η; t). (B.1)

If we take the time derivative of ⟨Xt⟩ and use the master equation (2.2), we get:

d ⟨Xt⟩
dt

=
1

2dτ ∗

∑
χ,R,η

R

(
LχPχ − αPχ +

α

2d− 1

∑
χ′ ̸=χ

Pχ′

)
(R, η; t)

=
1

2dτ ∗

∑
R,η

R
α

2d− 1

∑
χ

∑
χ′

(Pχ′(R, η; t)− Pχ(R, η; t)) +
1

2dτ ∗

∑
χ

∑
R,η

RLχPχ(R, η; t)

=0 +
1

2dτ ∗

∑
χ

∑
R,η

R

{
d∑

ν=1

∑
r ̸=R−eν ,R

[Pχ(R, ηr,ν ; t)− Pχ(R, η; t)]

+
2dτ ∗

τ

∑
µ

p(χ)µ [(1− ηR)Pχ(R− eµ, η; t)−
(
1− ηR+eµ

)
Pχ(R, η; t)]

}
, (B.2)

where we denote R = (R · e1). The first term will turn out to be zero because for any r,
η −→ ηr,ν is a bijection from the space of configurations to itself, so we can re-parameterise
one of the sums on η. As a consequence, for any R, χ,∑
η

R

d∑
ν=1

∑
r ̸=R

r ̸=R−eν

[Pχ(R, ηr,ν ; t)− Pχ(R, η; t)] =R
d∑

ν=1

∑
r ̸=R

r ̸=R−eν

[∑
η

Pχ(R, ηr,ν ; t)−
∑
η

Pχ(R, η; t)

]

=R
d∑

ν=1

∑
r ̸=R−eν
r ̸=R

[∑
η

Pχ(R, η; t)−
∑
η

Pχ(R, η; t)

]

=0. (B.3)
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For the second term, we re-parameterise the sum on R:

d ⟨Xt⟩
dt

=
∑
χ

∑
η

1

τ

∑
µ

p(χ)µ

{∑
R

R (1− ηR)Pχ(R− eµ, η; t)−
∑
R

R
(
1− ηR+eµ

)
Pχ(R, η; t)

}

=
∑
χ

∑
η

1

τ

∑
µ

p(χ)µ

{∑
R

(R+ eµ · e1)
(
1− ηR+eµ

)
Pχ(R, η; t)−

∑
R

R
(
1− ηR+eµ

)
Pχ(R, η; t)

}

=
∑
χ

∑
η

1

τ

∑
µ

p(χ)µ

{∑
R

(eµ · e1)
(
1− ηR+eµ

)
Pχ(R, η; t)

}

=
∑
χ

∑
µ=±1

1

τ
p(χ)µ µ

∑
η,R

(
1− ηR+eµ

)
Pχ(R, η; t) (B.4)

Mean squared position of a symmetric tracer. We consider the case where there is no
external force: FE = 0. The mean squared position of the tracer is defined by〈

X2
t

〉
=
∑
χ,R,η

(R · e1)
2Pχ(R, η; t). (B.5)

We first compute, from the master equation (2.2), the evolution equation of the mean squared
displacement conditioned to the state χ, where we denote R = R · e1:

d

dt

〈
Xt

2
〉
χ

=2d
∑
R,η

1

2dτ ∗


d∑

µ=1

∑
r ̸=R−eµ,R

R2 [Pχ(R, ηr,µ; t)− Pχ(R, η; t)]

+
2dτ ∗

τ

∑
µ

p(χ)µ R2[(1− ηR)Pχ(R− eµ, η; t)−
(
1− ηR+eµ

)
Pχ(R, η; t)]

−αR2Pχ(R, η; t) +
α

2d− 1

∑
χ′ ̸=χ

R2Pχ′(R, η; t)

}

d

dt

〈
Xt

2
〉
χ

= 0 +
1

τ

∑
µ

p(χ)µ

[〈(
1− ηXt+eµ

)
(X2

t + 2Xt(e1 · eµ) + (e1 · eµ))2
〉
χ

−
〈
X2
t

(
1− ηR+eµ

)〉
χ

]
+
α/(2dτ ∗)

2d− 1

∑
χ′ ̸=χ

(〈
X2
t

〉
χ′ −

〈
X2
t

〉
χ

)
. (B.6)

We average the conditional averages to get the mean squared displacement:

d

dt

〈
Xt

2
〉

=
1

2d

∑
χ

1

τ

{
p
(χ)
1

[
1− k(χ)e1

(t)
]

+ p
(χ)
−1

[
1− k(χ)e−1

(t)
]}
− 2

τ

[
p
(χ)
1 g̃e1(t)− p(χ)−1 g̃e−1(t)

]
+

1

2d

∑
χ

2 ⟨Xt⟩χ
τ

[
p
(χ)
1

(
1− k(χ)e1

(t)
)
− p(χ)−1

(
1− k(χ)e−1

(t)
)]
. (B.7)

We recall the definitions of the conditional density profiles in the reference frame of the
tracer (2.13) k

(χ)
r (t) = ⟨ηXt+r⟩χ and of the conditional correlation profiles (2.17) in the

reference frame of the tracer g̃
(χ)
r (t) =

〈
(Xt − ⟨Xt⟩χ ηXt+r

〉
χ
.
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This equation involves the mean position of the tracer when the active force is in direction
χ, ⟨Xt⟩χ. Its long time limit Xχ = lim

t→∞
⟨Xt⟩χ can be determined by a computation similar to

(B.2). In the long-time limit:

0 =
d

dt
⟨Xt⟩χ =

1

τ

{
p
(χ)
1

[
1− k(χ)e1

]
− p(χ)−1

[
1− k(χ)e−1

]}
+

α

2dτ ∗

(
−Xχ +

1

2d− 1

∑
χ′ ̸=χ

Xχ′

)
.

(B.8)
This gives a linear system of equations, which solutions are Xχ = 0 for χ ̸= ±1 and:

X1 = −X−1 =
(2d− 1)τ ∗

τα

{
p
(χ)
1

[
1− k(χ)e1

]
− p(χ)−1

[
1− k(χ)e−1

]}
. (B.9)

B.2 Symmetries of the density and correlation profiles

Studying the symmetries of the jump rates p
(χ)
µ , we determine the symmetries verified bu the

density profiles h
(χ)
µ = ⟨ηXt+r⟩χ − ρ and the correlation profiles g̃

(χ)
µ =

〈
(Xt − ⟨Xt⟩χ)ηXt+r

〉
χ
.

There are more symmetries in the case FE = 0, since the tracer is then globally isotropic
(note that however this isotropy is broken on short timescales because of the activity of the
tracer).

Absence of external force. In this case (FE = 0), we have many symmetries which
simplify the problem. For any µ and χ /∈ {µ,−µ} :

h(µ)µ = h
(1)
1

h(−µ)µ = h
(1)
−1

h(χ)µ = h
(1)
2 , (B.10)

and for µ, χ /∈ {−1, 1} :

g̃
(−1)
−1 = −g̃(1)1

g̃
(−1)
1 = −g̃(1)−1

g̃(−1)
µ = −g̃(1)µ = −g(1)2

g̃
(−χ)
1 = −g̃(−χ)−1 = g̃

(χ)
1 = −g̃(χ)−1

g̃
(±χ)
±µ = 0. (B.11)

Driven tracer. In the case of a non zero external force (FE ̸= 0), we have the following
symmetries:

h
(1)
2 = h

(1)
−2, (B.12)

h
(−1)
2 = h

(−1)
−2 , (B.13)

h(χ)χ = h
(2)
2 for any χ ̸= ±1, (B.14)

h
(χ)
−χ = h

(2)
−2 for any χ ̸= ±1, (B.15)

h(χ)µ = h(2)µ for any χ ̸= ±1, µ = ±1, (B.16)

h(χ)µ = h
(2)
3 if d ≥ 3 for any χ ̸= ±1, µ ̸= ±1,±χ. (B.17)
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B.3 Expressions of the matrices for the conditional

profiles

In the case of a symmetric tracer FE = 0, we gave an analytical implicit equation verified
by the conditional profiles (3.19, 3.20). The matrices involved in these equations are obtained
from the Fourier transform equations (3.10) and (3.11).

B.3.1 Arbitrary density

The matrices are obtained from the Fourier transforms (3.10) and (3.11).

Density profiles

Λ =


(
eiq1 − 1

)
A

(1)
1

(
e−iq1 − 1

)
A

(1)
−1 2 (cos (q2)− 1)A

(1)
2 0(

e−iq1 − 1
)
A

(1)
1

(
eiq1 − 1

)
A

(1)
−1 2 (cos (q2)− 1)A

(1)
2 0(

eiq2 − 1
)
A

(1)
1

(
e−iq2 − 1

)
A

(1)
−1 2 (cos (q1)− 1)A

(1)
2 0(

e−iq2 − 1
)
A

(1)
1

(
eiq2 − 1

)
A

(1)
−1 2 (cos (q1)− 1)A

(1)
2 0

 , (B.18)

and:

S = 2iρ
2dτ ∗

τ

[
p
(1)
1 (1− ρ− h(1)1 )− p(1)−1(1− ρ− h(−1)

1 )
]

sin(q1)
− sin(q1)
sin(q2)
− sin(q2)

 . (B.19)

Correlation profiles

E =


H(1)

(
(A

(1)
1 − 1)(e−iq1 − 1)− (A

(1)
−1 − 1)(eiq1 − 1)

)
H(−1)

(
(A

(1)
−1 − 1)(e−iq1 − 1)− (A

(1)
1 − 1)(eiq1 − 1)

)
−2i(A

(1)
2 − 1)H(2) sin(q1)

−2i(A
(1)
2 − 1)H(−2) sin(q1)

 (B.20)

X =
α

2d− 1

(
Xχχ = −∑χ′ ̸=χ (Xχ′ −Xχ)

Xχχ′ = Xχ′ −Xχ

)
χχ′

(B.21)

ΛG =−
2dτ∗

τ


H(1)p

(1)
1 (e−iq1 − 1) H(1)p

(1)
−1(e

iq1 − 1) 2H(1)p
(1)
2 (cos(q2)− 1) 0

−H(−1)p
(−1)
−1 (eiq1 − 1) −H(−1)p

(−1)
1 (e−iq1 − 1) −2H(−1)p

(−1)
2 (cos(q2)− 1) 0

0 0 0 2H(2)p
(2)
1 (cos(q1)− 1)

0 0 0 2H(−2)p
(−2)
1 (cos(q1)− 1)



− ρ
2dτ∗

τ
2i


sin(q1)p

(1)
1 − sin(q1)p

(1)
−1 0 0

sin(q1)p
(−1)
−1 − sin(q1)p

(−1)
1 0 0

0 0 0 2 sin(q1)p
(2)
1

0 0 0 2 sin(q1)p
(−2)
1



+


(
eiq1 − 1

)
A

(1)
1

(
e−iq1 − 1

)
A

(1)
−1 2 (cos (q2)− 1)A

(1)
2 0

−
(
e−iq1 − 1

)
A

(1)
1 −

(
eiq1 − 1

)
A

(1)
−1 −2 (cos (q2)− 1)A

(1)
2 0

0 0 0 2iA
(1)
2 sin(q1)

0 0 0 2iA
(1)
2 sin(q1)



−
2dτ∗

τ


(
eiq1 − 1

)
p
(1)
1 h

(1)
1

(
e−iq1 − 1

)
p
(−1)
1 h

(−1)
1 2 (cos (q2)− 1) p

(2)
1 h

(2)
1 0

−
(
e−iq1 − 1

)
p
(1)
1 h

(1)
1 −

(
eiq1 − 1

)
p
(−1)
1 h

(−1)
1 −2 (cos (q2)− 1) p

(2)
1 h

(2)
1 0

0 0 0 2p
(2)
1 h

(2)
1 (cos(q1)− 1)

0 0 0 2p
(2)
1 h

(2)
1 (cos(q1)− 1)

 (B.22)
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F =−


(A

(1)
1 − 1)

(
ρe−iq1 + h

(1)
1

)
− (A

(1)
−1 − 1)

(
ρeiq1 + h

(1)
−1

)
(A

(1)
−1 − 1)

(
ρe−iq1 + h

(−1)
1

)
− (A

(1)
1 − 1)

(
ρeiq1 + h

(−1)
−1

)
(A

(1)
2 − 1)

(
ρe−iq1 + h

(2)
1

)
− (A

(1)
2 − 1)

(
ρeiq1 + h

(2)
−1

)
(A

(1)
2 − 1)

(
ρe−iq1 + h

(−2)
1

)
− (A

(1)
2 − 1)

(
ρeiq1 + h

(−2)
−1

)

 . (B.23)

Then we perform the inverse Fourier transforms (where [·]i means that we take the i-th line):

L =


∫
q
e−iq1

[
M−1ΛG

]
1∫

q
eiq1
[
M−1ΛG

]
1∫

q
e−iq2

[
M−1ΛG

]
1∫

q
e−iq1

[
M−1ΛG

]
3

 and B =


∫
q
e−iq1

[
M−1(X ·H + E + F )

]
1∫

q
eiq1
[
M−1(X ·H + E + F )

]
1∫

q
e−iq2

[
M−1(X ·H + E + F )

]
1∫

q
e−iq1

[
M−1(X ·H + E + F )

]
3

 . (B.24)

B.3.2 Low and high-density limits

The matrices given above simplify at linear order in the density ρ in these limits. This
yields linear systems (as opposed to the non-linear systems obtained before) verified by the
linear dependence in ρ of the conditional density and correlation profiles.

Low density

We linearise at first order in ρ the matrices given above.

Density profiles.

Λ0 =


(
eiq1 − 1

)
a
(1)
1

(
e−iq1 − 1

)
a
(1)
−1 2 (cos q2 − 1) a

(1)
2 0(

e−iq1 − 1
)
a
(1)
1

(
eiq1 − 1

)
a
(1)
−1 2 (cos q2 − 1) a

(1)
2 0(

eiq2 − 1
)
a
(1)
1

(
e−iq2 − 1

)
a
(1)
−1 2 (cos q1 − 1) a

(1)
2 0(

e−iq2 − 1
)
a
(1)
1

(
eiq2 − 1

)
a
(1)
−1 2 (cos q1 − 1) a

(1)
2 0


and:

S0 = 2i
2dτ ∗

τ

[
p
(1)
1 − p(1)−1

]
sin q1
− sin q1
sin q2
− sin q2

 (B.25)

Correlation profiles.

Mg̃,0 = 1 +


∫
q
e−iq1

[
M0

−1ΛG0

]
1∫

q
eiq1
[
M0

−1ΛG0

]
1∫

q
e−iq2

[
M0

−1ΛG0

]
1∫

q
e−iq1

[
M0

−1ΛG0

]
3

 (B.26)

xg̃,0 = −



∫
q
e−iq1

[
M0

−1

(
1

ρ
X ·H + E0 + F0

)]
1∫

q
eiq1
[
M0

−1

(
1

ρ
X ·H + E0 + F0

)]
1∫

q
e−iq2

[
M0

−1

(
1

ρ
X ·H + E0 + F0

)]
1∫

q
e−iq1

[
M0

−1

(
1

ρ
X ·H + E0 + F0

)]
3


(B.27)
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where [·]i means that we take the i-th line, and with

E0 =
1

ρ


H(1)

(
(a

(1)
1 − 1)(e−iq1 − 1)− (a

(1)
−1 − 1)(eiq1 − 1)

)
H(−1)

(
(a

(1)
−1 − 1)(e−iq1 − 1)− (a

(1)
1 − 1)(eiq1 − 1)

)
−2i(a

(1)
2 − 1)H(2) sin(q1)

−2i(a
(1)
2 − 1)H(−2) sin(q1)

 , (B.28)

ΛG0 =


(
eiq1 − 1

)
a
(1)
1

(
e−iq1 − 1

)
a
(1)
−1 2 (cos (q2)− 1) a

(1)
2 0

−
(
e−iq1 − 1

)
a
(1)
1 −

(
eiq1 − 1

)
a
(1)
−1 −2 (cos (q2)− 1) a

(1)
2 0

0 0 0 2ia
(1)
2 sin(q1)

0 0 0 2ia
(1)
2 sin(q1)

 , (B.29)

and

F0 = −



(a
(1)
1 − 1)

(
e−iq1 +

1

ρ
h
(1)
1

)
− (a

(1)
−1 − 1)

(
eiq1 +

1

ρ
h
(1)
−1

)
(a

(1)
−1 − 1)

(
e−iq1 +

1

ρ
h
(−1)
1

)
− (a

(1)
1 − 1)

(
eiq1 +

1

ρ
h
(−1)
−1

)
(a

(1)
2 − 1)

(
e−iq1 +

1

ρ
h
(2)
1

)
− (a

(1)
2 − 1)

(
eiq1 +

1

ρ
h
(2)
−1

)
(a

(1)
2 − 1)

(
e−iq1 +

1

ρ
h
(2)
1

)
− (a

(1)
2 − 1)

(
eiq1 +

1

ρ
h
(2)
−1

)
.


(B.30)

High density

In this case, we do not simply linearise expression from B.3.1. Instead, we diagonalise
the matrix M (q), which can be done easily at high density. This makes it possible to derive
expressions at any density d. The expressions involve the following quantities:

a = ζ[Q̂(0|0; ζ)− Q̂(e1|0; ζ)] (B.31)

b = ζ[Q̂(0|0; ζ)− Q̂(2e1|0; ζ)] (B.32)

b0 = Q̂(0|0; 1)− Q̂(2e1|0; 1) (B.33)

c = ζ
[
Q̂ (0 |0; ζ )− Q̂ (e1 + eµ |0; ζ )

]
(B.34)

β = ζQ̂ (0 |0; ζ ) (B.35)

where ζ = 2d−1
2d−1+α

.

Density profiles.

Mh,1 =

2d− c+ bp1
2dτ∗

τ
b− c− bp−1

2dτ∗

τ
0

b− c− bp1 2dτ
∗

τ
2d− c+ bp−1

2dτ∗

τ
0

1 1 2d− 2

 (B.36)

xh,1 =
2dτ ∗

τ
(p

(1)
1 − p(1)−1)

 b
−b
0

 (B.37)
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Correlation profiles

Mg̃,1 ≡


2d 2d 4d2 − 4d 0

2d− 1 −1 −(2d− 2) 0
−1 2d− 1 −(2d− 2) 0
0 0 0 1

+
2dτ ∗

τ


2p1b0 2p−1b0 (4d− 4)p2b0 0

2d− 2

2d
p1b

2d− 2

2d
p−1b −

4d− 4

2d
p2b 0

2d− 2

2d
p1b

2d− 2

2d
p−1b −

4d− 4

2d
p2b 0

0 0 0 0



−


b0 b0 (2d− 2)b0 0

2da− b
2d

(2d− 1)b− 2da

2d
−b2d− 2

2d
0

(2d− 1)b− 2da

2d

2da− b
2d

−b2d− 2

2d
0

a− c c− a 0 (2d− 2)a− b− (2d− 4)c


(B.38)

xg̃,1 = −2dτ ∗

τ


0

p1(1− h(1)1 )(β − b)− p−1(1 + h
(1)
1 )β

p−1(1 + 2
(1)
1 )(β − b)− p1(1− h(1)1 )β(

p1(1− h(1)1 )− p−1(1 + h
(1)
1 )
)

(β − c)

+
2dτ ∗

τ
(1− (p1 − p−1)h

(1)
1 )


b0

− b

2d

− b

2d
0


(B.39)
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Appendix C

Analysis of the qualitative argument

Thanks to the analytical formula given by the qualitative argument, we can perform
some function analysis and extract scalings for the diffusion coefficient’s dependence on the
parameters of the problem. Here we restrict to the case of a symmetric run-and-tumble tracer
FE = 0.

According to the qualitative argument 3.4, the mean trapping time follows an exponential
law of characteristic time τ

(χ)
p given by

1

τ
(χ)
p

=
(2d− 2)

2dτ ∗
+

1

τα
+

(1− p(χ)1 − p(χ)−1 )

τ
. (C.1)

The diffusion coefficient is approached by:

D ≃ 1

4d

∑
χ

p
(χ)
1 + p

(χ)
−1

τ + ρτ
(χ)
p

+
(2d− 1)τα

4d2

∑
χ

{
p
(χ)
1 − p(χ)−1

τ + ρτ
(χ)
p

}2

. (C.2)

C.1 Minimum of diffusion

We consider a fully directive run-and-tumble tracer FA →∞. The diffusion coefficients
(3.39) takes the simpler form:

1

τp
=

(2d− 2)

2dτ ∗
+

1

τα
, (C.3)

D ≃ 1

2d(τ + ρτp)

(
1 +

(2d− 1)τα
d(τ + ρτp)

)
. (C.4)

To find the minimum, we consider the case where the tracer spends much time trapped
ρτp ≫ τ (for this regime to exist, we need a choice of parameters such that ρτ ∗ ≫ τ), we have
the approximate expression:

D ≃ 1

2dρτp

(
1 +

(2d− 1)τα
dρτp

)
. (C.5)

The minimum of this function is attained in τmα :

τmα = τ ∗
d

d− 1

√
1 +

dρ

2d− 1
, Dmin ≃

4d2 − 6d+ 2

d3ρ2τ ∗
. (C.6)
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C.2 Maximum of diffusion

We still consider FA →∞. For relatively small persistence time τα ≪ τ ∗, the active tracer
may exhibit a maximum of diffusivity (see the shape of the lower left curve on figure 4.5, or
the green curve in the left plot of figure 4.3). In this limit τp ∼ τα, and therefore,

D ≃ 1

2d(τ + ρτα)

(
1 +

(2d− 1)τα
d(τ + ρτα)

)
. (C.7)

The maximum of this function is reached for a value τMα :

τMα = τ
2d− 1− dρ
ρ(2d− 1 + dρ)

, Dmax =
(2d− 1 + dρ)2

8d2(2d− 1)ρτ
. (C.8)

This is valid when τMα ≪ τ , namely ρτ ∗ ≫ τ , which the same condition as for the minimum
of diffusion. The slower the obstacles, the bigger the variations of the diffusion coefficient
(the higher the trapping effects!).

C.3 Analytic criteria for existence of non monotony

In the case of infinite active force FA →∞, a quite involved function analysis of equation
(C.4) leads to the following analytic expression for the critical timescale of displacement of
obstacles τ ∗c (with τ = 1) above which there exists non monotony of the diffusion coefficient
in function of the persistence time τα:

τ ∗c ≃
(

8− 8

d

)
1

ρ
. (C.9)

In the case of a finite active force FA ≫ 1, we can put forward the following argument.
We neglect the effect of a finite FA on the expression of D (C.4), and we only consider the
change in the trapping time:

1

τp
=

(2d− 2)

2dτ ∗
+

1

τα
+

1− p(1)1 − p(1)−1

τ

≃ (2d− 2)

2dτ ∗
+

1

τα
+

2d− 2

(2d− 2 + eFA/2)τ
. (C.10)

With this approach, we find that (2d−2)
2dτ∗

and 2d−2
(2d−2+eFA/2)τ

play equivalent roles. The critical

surface (increase in active force FA or in time τ ∗ or in density ρ implies apparition of non
monotony in function of τα) is therefore the curve of equation:

(2d− 2)ρ

(16d− 16) τ
=

(2d− 2)

2dτ ∗
+

2d− 2

(2d− 2 + eFA/2)τ
. (C.11)

As a direct consequence, under some critical density ρC ≃
16(d− 1)

2d− 2 + eFA/2
, there cannot be

non monotony anymore, whatever the value of τ ∗.



Appendix D

Hydrodynamic limit and local
equilibrium

In this appendix, we give some details about how we can interpret the existence of
hydrodynamic fields (section 6.2.3) in terms of local equilibrium in the microscopic system.
This discussion relies mainly on physical intuitions, because the mathematical formulation of
local equilibrium, and proofs in the general case are very challenging; see [182] (chapter 3),
even in the simplest case where the considered microscopic system is a lattice model admitting
invariant measures which are product of measures on each site, the precise definition of local
equilibrium poses difficulties.

We study a system of particles on the infinite line. To make sense of the notion of
local equilibrium, we first discuss the stationary measures of a finite version of this system
(considering a finite version of the system is possible only if the evolution rules are local).
Then we discuss the meaning of the macroscopic density field ρ(x, t). Finally, we give an
example where the local equilibrium is observed in numerical simulations.

D.1 Stationary measures and macroscopic density

We consider a very big (of size L≫ 1) finite version of the system studied, with periodic
boundary conditions. Initially, we put N = ρL particles on the system. If we wait long
enough, the system will converge to a stationary measure. Since the number of particle is
conserved, the average density remains ρ at all time. Consequently, there is one stationary
measure for any density ρ. We denote by ⟨·⟩ρ the average with respect to the stationary
measure of density ρ.

Now, we look at an infinite system Swhole = R and take the hydrodynamic limit. The
macroscopic density ρ(x, t) corresponds, when the scaling parameter N goes to infinity, to the
density of a mesoscopic system around xN , S = [xN, xN+

√
N ] at time tN2. The existence of

a macroscopic density ρ(x, t) comes from the fact that this mesoscopic system S is distributed,
in the large N limit, according to the stationary measure at density ρ(x, t) of the microscopic
dynamics, whose averages are denoted by ⟨·⟩ρ(x,t).

According to the fluctuating hydrodynamics formulation 6.2.3, this density ρ(x, t) fluctuates
with probabilities specified by the MFT large deviation principle (6.7). Heuristically, this can
be described as ”two levels of stochasticity”:

• The macroscopic stochasticity, which deals with the fluctuations of the macroscopic
density field ρ(x, t).

• For a given realisation of the density ρ(x, t), the microscopic system is not known
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deterministically, but we know that each mesoscopic subsystem S = [xN, xN +
√
N ] is

distributed according to the stationary measure of density ρ(x, t).

It is very unlikely that in the hydrodynamic limit (N →∞), the system is not distributed
locally according to stationary measures (”super-exponential estimates” bounding the proba-
bility that local equilibrium does not exist is a key element of the proofs of hydrodynamic
limits).

This gives a way to compute an average of the form
⟨F (Nx)e

λO
N2t⟩

e
λO

N2t
, where ON2t is an

observable (Xt or Qt in our study) and F (Nx) is a microscopic quantity, which depends on
the state of the system in the vicinity of a point Nx (which scales with N), for example
F (Nξ) = η⌊ξN⌋(N

2t)η⌊ξN⌋+1(N
2t) in the SEP (F.14). Indeed, we know from the saddle-point

method applied to the MFT large deviation principle (see section 7.1.2) that the macroscopic
profile is concentrated around an optimal one ρ∗; in other words, the ”macroscopic stochasticity”
is killed. As a consequence, the only remaining stochasticity is the one on the microscopic
distribution, that is why we can compute F using the stationary measure at density ρ∗(x, t):〈

F (Nx)eλON2t

〉
eλON2t

∼
N→∞

⟨F (0)⟩ρ∗(x,t) . (D.1)

The fact that F (xN) is computed in the mesoscopic system around xN appears only in the
density ρ∗(x, t) of the stationary measure used to compute the average of F (0).

We now illustrate this convergence to local equilibrium with an example of microscopic
model.

D.2 Example of the DEP
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Figure D.1: Generalised profiles for the DEP at density ρ = 0.2. Blue lines: Monte Carlo
simulations (20000 sites, 108 simulations, final time t = 3000). Black dashed lines: hydrody-
namics profiles [equations (9.88, 9.89)]. Dots: microscopic distribution of particles computed
according to the stationary measure [equation (D.3)].

In the DEP (Double Exclusion Process 6.1.2) with a tracer, we denote by ηr(t) the
occupation at site r and Xt the position of the tracer. If we plot the generalised profiles
⟨ηXt+re

λXt⟩
⟨eλXt⟩ =

∑
λn

n!
⟨ηXt+rX

n
t ⟩c (7.5), we see that they oscillate around the hydrodynamic

profile Φ(v = r/
√
t, λ) =

∑
λn

n!
Φn(v) in the vicinity of the tracer (figure D.1).

This is consistent with the local equilibrium. Indeed, the hydrodynamic profile Φ(0+, λ)
expresses the density of the local equilibrium in the vicinity of the tracer particle. The
stationary measures of the DEP are known (limit of the KLS [175, 176] where ϵ = 1), in
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particular, it is not a product measure; knowing that a site is occupied has an influence on
the occupation of neighbouring sites. As argued previously, the system is distributed in the
vicinity of the tracer according to the stationary measure of density Φ(0+, λ). Since the tracer
is always on site ηXt , using equation (D.1), we have:〈

ηXt+re
λXt
〉

⟨eλXt⟩ ∼
t→∞
⟨ηr|η0 = 1⟩Φ(0+,λ) , (D.2)

where ⟨•|η0 = 1⟩Φ(0+,λ) =
⟨• × η0⟩Φ(0+,λ)

⟨η0⟩Φ(0+,λ)

is the average conditioned to site 0 being occupied.

Finally, we have: 〈
ηXt+re

λXt
〉

⟨eλXt⟩ ∼
t→∞

Φ(0+, λ)

[
1−

(
− Φ(0+, λ)

1− Φ(0+, λ)

)r−1
]

(D.3)

This formula developed at first orders in λ is plotted in figure D.1.
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Appendix E

Complements on Macroscopic
Fluctuation Theory

In this appendix we provide compact proofs of different facts that were used in this thesis.
The proofs E.1 and E.2 are based on arguments from [104, 202].

E.1 The equilibrium potential

In this appendix, we derive the large deviation functional F of the macroscopic empirical
density ρ(x, 0) of a system which is initially distributed according to local equilibriums of
density ρ0(x) slowly varying with x. This is what we call the annealed initial condition with
density profile ρ0(x).

We consider that around a position r, any mesoscopic system is at equilibrium with a
reservoir of density ρ0(r/N) (the reservoir is disconnected for t > 0). We call mesoscopic a
system which is infinitely small compared to the scaling parameter N , but which is large on
the microscopic scale, for example Sr = [r, r + L] with 1 ≪ L = N1/4 ≪ N . Since S can
exchange matter with the reservoir, the number of particles it contains, denoted by nS , follows
the grand-canonical distribution (we take kBT = 1 for simplicity)

P(nS = n) =
eµSnZL(n)

ZG
L (µS)

, (E.1)

where the chemical potential µS is such that ⟨nS⟩ = ρ0(r/N)L. We denoted ZL(n) the
partition function for the system of size L with n particles and ZG

L (µS) the associated grand
partition function at chemical potential µS . If we denote F (L, n) the free energy of the system
of size L with n particles, then we have in the thermodynamic limit L→∞:

P(nS = n) =
eµSn−F (L,n)

e−F (L,⟨nS⟩)+µS⟨nS⟩
. (E.2)

For large systems, the free energy is extensive F (L, n) = Lf
(
n
L

)
. The chemical potential is

therefore an intensive quantity:

µS =
d

dn
F (L, n)

= f ′
(n
L

)
(E.3)

The one dimensional line R = ∪k∈ZSkL is split into mesoscopic subsystems. If L is large,
each mesoscopic systems SkL can be considered independent since it communicates with other
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systems at the extremities (2 points), whereas it is supposed in equilibrium with a reservoir
in the bulk (length L≫ 2). Therefore, the probability to observe initially the systems SkL at
densities ρ(r/N, 0) is given by the product of probabilities (E.2):

∏
k∈Z

P(nS = ρ(kL/N, 0)L) = exp

(∑
k∈Z

f ′
(
ρ0

(
kL

N

))
ρ(kL/N, 0)L− Lf

(
ρ

(
kL

N
, 0

))

+ Lf

(
ρ0

(
kL

N

))
− f ′

(
ρ0

(
kL

N

))
ρ0

(
kL

N

)
L

)
.

(E.4)

The sum can be replaced by an integral on k ∈ R by Euler-Maclaurin formula, because the
derivative of the integrand with respect to k is small when N is big. Finally, we perform the
change of variable x = kL

N
, and we get the functional:

F [ρ(x, 0)] =

∫ +∞

−∞
f(ρ(x, 0))− f(ρ0(x))− f ′(ρ0(x))(ρ(x, 0)− ρ0(x))dx. (E.5)

E.2 Relation between the transport coefficients

Since they characterise fluctuations and linear response of the transfer of matter between
the two reservoirs, the transport coefficients are related through equilibrium quantities
(fluctuation-dissipation theorem). This can be seen as a property of the Boltzmann-Gibbs
distribution (which is the equilibrium distribution).

Consider the system (figure 6.12) made of two reservoirs at chemical potential µ and
connected by a line, the total number of particles is very big, and considered constant. We
denote Na(t) the number of particles in the left reservoir at time t. There is a (Markovian)
dynamics invariant under time translations:

P(Na(t) = na) =
∑
n

P(Na(0) = n)p(n→ na; t), (E.6)

which admits the following Gibbs distribution as an invariant measure (F is the free energy):

ν(na) =
eµna−F (na)∑
n e

µn−F (n)
. (E.7)

We denoted by p(n → na; t) the conditional probability that Na(T + t) = na given that
Na(T ) = n.

The integrated current is given by the variation of the number of particles in the left
reservoir Qt = −(Na(t)−Na(0)). We consider the system at equilibrium (averages ⟨·⟩ with
respect to the equilibrium measure ν). Since it is a symmetric system (diffusive), we have
⟨Qt⟩ = 0. Like Brownian motion, the equilibrium dynamics is characterised by the second
moment: 〈

Q2
t

〉
=
〈
Na(t)

2
〉
− 2 ⟨Na(t)Na(0)⟩+

〈
Na(0)2

〉
⟨Q2

t ⟩
t
∼
t→∞
−2
⟨Na(t)Na(0)⟩

t
. (E.8)

We have used the fact that, at equilibrium, ⟨Na(t)
2⟩ is constant.
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Now, we suppose that the system is held in a near equilibrium situation where the chemical
potential of the left reservoir µa ≃ µ is slightly different from the one of the right reservoir
µb = µ. We denote µa = µ+ δµ. The system follows the perturbed measure:

νp(na) =
eµna−F (na)+δµna∑
n e

µn−F (n)+δµn

≃ ν(na)(1 + δµ(na − ⟨Na⟩)), (E.9)

at first order, since δµ is small, where ⟨·⟩ is taken with respect to the equilibrium measure (E.7).
In this perturbed setup, where the left-right symmetry is broken, the stochastic dynamics (E.6)
leads to a nonzero mean current (the mean with respect to the perturbed measure νp is
denoted ⟨·⟩p):

⟨Qt⟩p =
∑
ni,nf

νp(ni)p(ni → nf ; t)(−nf + ni)

=
∑
ni,nf

ν(ni)p(ni → nf ; t)(−nf + ni) + δµ
∑
ni,nf

ν(ni)(ni − ⟨Na⟩)p(ni → nf ; t)(−nf + ni)

= ⟨−Na(t)⟩+ ⟨Na(0)⟩+ δµ
(
−⟨Na(t)Na(0)⟩+

〈
Na(0)2

〉
− ⟨Na⟩ (−⟨Na(t)⟩+ ⟨Na(0)⟩)

)
⟨Qt⟩p
t

∼
t→∞
−δµ⟨Na(t)Na(0)⟩

t
. (E.10)

We used ⟨Na(0)⟩ = ⟨Na(t)⟩ = ⟨Na⟩ (stationary measure). Comparing with (E.8), we get:

2
⟨Qt⟩p
t

∼
t→∞

(µa − µb)
⟨Q2

t ⟩
t

(E.11)

For large systems, the chemical potential is an intensive quantity, therefore µa and µb = µ
depend only on the densities ρa of the left reservoir and ρb = ρ of the right reservoir. Since µa
and µb are very close, we can write µa−µb = dµ

dρ
(ρa−ρb). Combined with the characterisation

of the transport coefficients (6.9) and dµ
dρ

= f ′′(ρ) (E.3) (f is the free energy per unit volume),
this yields the relation:

2D(ρ) = f ′′(ρ)σ(ρ). (E.12)



182 APPENDIX E. COMPLEMENTS ON MFT



Appendix F

Microscopic equations in the SEP

In this appendix we give some details about the derivation of the evolution equations of
the GDP (7.17) of the integrated current. Then we explain how to take the long time limit of
these equations using the scaling forms found in section 7.1.2.

We focus on the integrated current Qt(xt). We fix a (positive for simplicity) value for ξ.
We recall that xt = ⌊ξ

√
2t⌋.

F.1 Evolution equations for microscopic quantities

Because we consider a moving point of observation xt = ⌊ξ
√

2t⌋, the time evolution of the
cumulant generating function is the sum of two contributions:

1. At times tn = (n/ξ)2/2, the increment of xt+n = xt−n + 1 causes a change of Qt(xt),
depending on the occupation ηx

t−n
+1 of the site that is ”leaving” the sum (7.15) at tn.

Therefore, 〈
eλQt(xt+ )

〉
=
〈

e
λQt(xt− )−λη

x−t +1

〉
, for t = tn . (F.1)

Taking the logarithm, and using that ηx = 0 or 1, we get

ln
〈
eλQt(xt)

〉∣∣
t=t+n

= ln
〈
eλQt(xt)

〉∣∣
t=t−n

+ ln(1 + (e−λ − 1)wQ;1(t)) . (F.2)

2. Between two increments of xt, the stochastic dynamics of the SEP, from the master
equation (7.1)

∂t ln
〈
eλQt(xt)

〉
=

1

2

[
(eλ − 1)

〈
ηxt(1− ηxt+1)e

λQt(xt)
〉

⟨eλQt(xt)⟩ + (e−λ − 1)

〈
ηxt+1(1− ηxt)eλQt(xt)

〉
⟨eλQt(xt)⟩

]
,

(F.3)

for t ̸= tn.

Finally we have

∂t ln
〈
eλQt(xt)

〉
=

1

2

[
(eλ − 1)

〈
ηxt(1− ηxt+1)e

λQt(xt)
〉

⟨eλQt(xt)⟩ + (e−λ − 1)

〈
ηxt+1(1− ηxt)eλQt(xt)

〉
⟨eλQt(xt)⟩

]
+
∑
n

δ(t− tn) ln[1 + (e−λ − 1)wQ;1(t)] . (F.4)

Taking into account the two contributions as above, we compute the evolution of the
GDP-generating function ∂twQ;r:
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1. At times tn = (n/ξ)2/2

〈
ηxt+re

λQt(xt)
〉

⟨eλQt(xt)⟩

∣∣∣∣∣
t=t+n

=

〈
ηxt+r+1e

λQt(xt)−ληxt+1
〉〈

eλQt(xt)−ληxt+1
〉 ∣∣∣∣∣

t=t−n

=wQ;r(t
−
n ) +

(〈
ηxt+r+1(1 + (e−λ − 1)ηxt+1)e

λQt(xt)
〉

⟨eλQt(xt)⟩ (1 + (e−λ − 1)wQ;1(t))
− wQ;r(t)

)∣∣∣∣∣
t=t−n

.

(F.5)

2. Between two increments, we use the product rule, for t ̸= tn:

∂t
〈
ηxt+re

λQt(xt)
〉

⟨eλQt(xt)⟩ − wQ;r∂t ln
〈
eλQt(xt)

〉
(F.6)

with for r ̸= 0, 1

∂t
〈
ηxt+re

λQt(xt)
〉

⟨eλQt(xt)⟩ =
1

2
∆wQ;r +

〈
ηxt+re

λQt(xt)(eλ − 1)(ηxt − e−ληxt+1 + (e−λ − 1)ηxtηxt+1)
〉

2 ⟨eλQt(xt)⟩ ,

(F.7)

and for r = 0, 1

∂t
〈
ηxte

λQt(xt)
〉

⟨eλQt(xt)⟩ =
wQ;−1 − wQ;0

2
+
e−λwQ;1 − wQ;0

2
− (e−λ − 1)

〈
ηxtηxt+1e

λQt(xt)
〉

2 ⟨eλQt(xt)⟩ ,

(F.8)

∂t
〈
ηxt+1e

λQt(xt)
〉

⟨eλQt(xt)⟩ =
wQ;2 − wQ;1

2
+
eλwQ;0 − wQ;1

2
− (eλ − 1)

〈
ηxtηxt+1e

λQt(xt)
〉

2 ⟨eλQt(xt)⟩ , (F.9)

Before bringing everything together, it is important to see, because it gives information
about the scalings in time, that (still for t ̸= tn)

∂t
〈
ηxte

λQt(xt)
〉

⟨eλQt(xt)⟩ =
wQ;−1 − wQ;0

2
− ∂t ln

〈
eλQt(xt)

〉
eλ − 1

, (F.10)

∂t
〈
ηxt+1e

λQt(xt)
〉

⟨eλQt(xt)⟩ =
wQ;2 − wQ;1

2
− ∂t ln

〈
eλQt(xt)

〉
e−λ − 1

, (F.11)

Bringing everything together yields for example for r = 0:

∂twQ;0 =
e−λ − (e−λ − 1)wQ;0

e−λ − 1

(
∂t ln

〈
eλQt(xt)

〉
−
∑
n

δ(t− tn) ln[1 + (e−λ − 1)wQ;1(t)]

)

+
wQ;−1 − wQ;0

2
+
∑
n

δ(t− tn)

(
e−λwQ;1

1 + (e−λ − 1)wQ;1

− wQ;0

)
. (F.12)

Remarkably, in the long time limit, equations (7.22, F.10, F.11) give non trivial information
about the hydrodynamic profiles ΦQ and cumulant generating function ψ̂Q.
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F.2 Long-time limit of the equations

Here to lighten notations, we will simply write ΦQ(v), instead of ΦQ(v, ξ, λ).
To take the long-time limit of the evolution equations derived above, we inject the sclaings

obtained in section 7.1.2 from MFT. In addition, there are two important points that we must
understand, and which are tackled in the two following paragraphs.

The first thing we must understand is the long time limit of the cross correlation
⟨ηxtηxt+1eλQt(xt)⟩
⟨eλQt(xt)⟩ . In fact when we apply the large deviation principle (like in (7.10)), we

use the fact that the microscopic system in the vicinity of some site r converges to a local
equilibrium at density ρ∗(r/

√
t, 1) where ρ∗ is the optimal hydrodynamic profile [124], defined

by (7.20) for the integrated current, and which is related to the scaling function ΦQ (further
discussion of local equilibrium in appendix D). As a consequence (already used in (7.19)), we
have the following limits:

wQ;0 −→
t→∞

ΦQ(0−), wQ;1 −→
t→∞

ΦQ(0+), (F.13)

because we will see that the GDP are discontinuous at the point xt. Moreover, in the case
of the SEP, the equilibrium measure at density ρ is the product measure of Bernoulli of

parameter ρ on each site. In particular, the two site correlation
⟨ηxtηxt+1eλQt(xt)⟩
⟨eλQt(xt)⟩ converges

over time to ⟨η0(1− η1)⟩H where ⟨·⟩H is the average with respect to the product measure of
Bernoulli of parameter ΦQ(0−) on sites r ≤ 0 and Bernoulli of parameter ΦQ(0+) on sites
r ≥ 1. Finally this gives: 〈

ηxtηxt+1e
λQt(xt)

〉
⟨eλQt(xt)⟩ = ΦQ(0−)ΦQ(0+). (F.14)

The second important point to understand in order to take the long time limit is that,

due to the scaling wQ;r(t) ∼
t→∞

ΦQ

(
r√
2t

)
, wQ;r(t) varies slowly, namely with a rate O(t−3/2).

On the contrary, the average number of increments of xt in a time window dt is ξ dt√
2t

, which
is much bigger than the variation of ΦQ. This justifies to write:∑

n

δ(t− tn) ln[1 + (e−λ − 1)wQ;1(t)] ∼
t→∞

ξ√
2t

ln[1 + (e−λ − 1)ΦQ(0+)]. (F.15)

More generally, if f(t) varies slowly, we have:∑
n

δ(t− tn)f(t) ∼
t→∞

ξ√
2t
f(t). (F.16)

As a result of these observations, combined with the fact that because of the scaling of the
cumulant generating function (7.19), ∂t ln

〈
eλQt(xt)

〉
−→
t→∞

0, the long time limit of the evolution

equation (7.22) yields:

ΦQ(0+)(1− ΦQ(0−))

ΦQ(0−)(1− ΦQ(0+))
= eλ . (F.17)

This proves that the long time profile ΦQ(v) is indeed discontinuous in 0 when λ ̸= 0.
Now we look at the equation for ∂twQ;0 (7.23). To take the long time limit we need a third

ingredient that we did not discuss yet, which is the following expansion:

wQ;r+1 − wQ;r ≃ ΦQ

(
r + 1√

2t

)
− ΦQ

(
r√
2t

)
≃ 1√

2t
Φ′
Q

(
r√
2t

)
. (F.18)
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Here the long time limit of equation (7.23) is trivial because ∂twQ;r = O(t−3/2), the sum over
increments of xt scales like ξ√

t
because the summand varies slowly (see equation (F.16)), and

wQ;−1 − wQ;0 ∼
t→∞

1√
2t

Φ′
Q (0−) which converges to zero. However, if we look a the order 1√

2t
,

we find

0 =

(
1

1− eλ
− ΦQ(0−)

)
Ψ− Φ′

Q(0−)

2
+ ξ

(
e−λΦQ(0+)

1 + (e−λ − 1)ΦQ(0+)
− ΦQ(0−)

)
, (F.19)

where we have denoted
Ψ = ψ̂Q − ξ ln[1 + (e−λ − 1)ΦQ(0+)]. (F.20)

In fact the last term in (F.19) is zero because of (7.25). Finally, doing the same for ∂twQ;1,
we find two boundary conditions:

Φ′
Q(0±) = ∓2Ψ

(
1

1− e∓λ
− ΦQ(0±)

)
. (F.21)



Appendix G

Interpretation of the closed equation

In this appendix, we give some physical insight into the cloed equations for the generalised
profiles in the SEP (8.41, 8.43).

G.1 Projected dynamics

The closed equation (8.41, 8.43) can be interpreted as the long time limit of a decomposition
of the evolution equation for the GDP-generating function wr(t) into a Markovian and a
non-Markovian evolution. Indeed, let us write the evolution equation under the form:

∂t ⟨w⟩r (t) =
1

2
∆wr(t) + ∂tξ(t)(wr+1(t)− wr(t)) +N(r, t), (G.1)

where ξ(t) =

〈
Xte

λXt
〉

⟨eλXt⟩ and N(r, t) is a non-Markovian dependance (with memory).

In the long time limit, under the scaling v = r/
√

2t, the time deivative ∂t ⟨w⟩r (t), together

with the Markovian part
1

2
∆wr(t) + ∂tξ(t)(wr+1(t) − wr(t)) yield the left-hand side of our

closed equation (8.41, 8.43) Φ′′(v) + 2(v + ξ)Φ′(v). Our closure can therofore be interpreted
as the explicit form of the long time limit of the non-Markovian term, here for v > 0:

N(r, t) ∼
t→∞

∫ ∞

0

dz G (z)
1− eλ

Φ(0+)
Φ′(v)(v + z), (G.2)

with the operator G (z) = zΩ−(−z)(1−L−).
Here we presented the main idea in a schematic way, but it could be investigated further

using a mode-coupling formalism.

G.2 Jump process

We prove that the two linear equations on Ω±(v, ω)

Ω±(v, ω) = ωp(v)− ω
∫

R∓
p(v − z)Ω±(z, ω)dz, (G.3)

where p(v) =
e−v

2

√
π

are equivalent to the two bilinear equations (we do not write anymore the

dependences of Ω± on ω to lighten notations)

Ω±(v) = ωp(v)− ω
∫

R∓
Ω±(v ± z)Ω∓(∓z)dz. (G.4)
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The idea, which comes from [193] consists in noticing that, since
∫

R p(z)dz = 1 and
p(z) ≥ 0, Ω± defined from equation (G.3) can be seen as generating functions of probabilities
in a jump process:

Ω±(v) = −
+∞∑
n=1

(−ω)np±n (v), (G.5)

where p±n are defined from the following process. We consider a particle initially at X0 = 0.
At each step, it performs a jump on distance z distributed according to the probability density
p(z). Its position at step n is denoted by Xn = Y1 + ...+Yn, where Yk are independent random
variables with probability density p(z).

We define p+n (v)dv as the probability that X1, ..., Xn−1 < 0 and Xn ∈ [v, v + dv[ and
p−n (v)dv is the probability X1, ..., Xn−1 > 0 and Xn ∈ [v, dv[. We will denote:

p+n (v) = P(X1 < 0, ...Xn−1 < 0, Xn = v), (G.6)

p−n (v) = P(X1 > 0, ...Xn−1 > 0, Xn = v). (G.7)

Then, developing in powers of ω, we see that the fact that Ω+ verify (G.4) is equivalent to
having:

p+n (v) =

∫ ∞

0

p+n−1(v + z)p−1 (−z) + p+n−2(v + z)p−2 (−z) + ...+ p+1 (v + z)p−n−1(−z)dz (G.8)

As we proceed to show, this equation is true because it results from a partitioning on the step
k for which Xk is the maximum of {X1, ..., Xn−1}.

Let k ∈ J1, n− 1K, we have (because of independence of jumps):∫ ∞

0
p+n−k(v + z)p−k (−z)dz =

∫ ∞

0
dzP(X1 ≤ 0, ..., Xn−k = v + z)P(X1 ≥ 0, ..., Xk−1 ≥ 0, Xk = −z)

= P(X1 ≥ 0, ..., Xk−1 ≥ 0, Xk ≤ 0, Xk+1 ≤ Xk, ...Xn−1 ≤ Xk, Xn = v)

= Pk. (G.9)

Then we rewrite the probabilities in terms of the jumps Yi:

Pk =

∫ ∞

x1,...xk=0

dkxP(Y1 = x1, Y2 = x2 − x1, ..., Yk−1 = xk−1 − xk−2, Yk = −xk−1 − xk,

Yk+1 ≤ 0, ..., Yk+1 + ...+ Yn−1 ≤ 0, Yk+1 + ...+ Yn = v + xk) (G.10)

We use the independence of the jumps to reverse the order of the jumps from 1 to k; this
does not change the probability:

Pk =

∫
x∈(R+)k

dkxP(Y1 = −xk−1 − xk, Y2 = xk−1 − xk−2, ..., Yk−1 = x2 − x1, Yk = x1,

Yk+1 ≤ 0, ..., Yk+1 + ...+ Yn−1 ≤ 0, Yk+1 + ...+ Yn = v + xk)

=

∫
x∈(R+)k

dkxP(X1 = −xk−1 − xk, X2 = −xk−2 − xk, ..., Xk−1 = −x1 − xk, Xk = −xk,

Xk+1 ≤ −xk, ..., Xn−1 ≤ −xk, Xn = v)

=P(X1 ≤ Xk, ..., Xk−1 ≤ Xk, Xk ≤ 0, Xk+1 ≤ Xk, ...Xn−1 ≤ Xk, Xn = v).

In other words:

Pk = P

(
X1 ≤ 0, ..., Xn−1 ≤ 0, Xn = v,Xk = max

i∈J1,n−1K
Xi

)
. (G.11)
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Intuitively, this equality expresses the fact that saying that Xk < 0 is the maximum of the
trajectory up to step n− 1 is the same as saying that Xk+i < Xk for i ∈ J1, n− k − 1K, and

Using the law of total probability we therefore have, as announced:

P (X1 ≤ 0, ..., Xn−1 ≤ 0, Xn = v) =
n−1∑
k=1

Pk, (G.12)

from which we conclude that Ω+ verifies (G.4). The same reasoning give the result for Ω−.
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Appendix H

Discussion on the hydrodynamic
duality relations

This appendix gives complementary information about the results mentioned in chapter
9.1. First, we prove that the mappings introduced in this chapter generate all possible
mappings between single-file systems. Then, using the duality relation (Du), we prove that,
in general, the variance and correlations of positions of particles in a single-file system can be
fully characterised, in the hydrodynamic limit, by the Edwards-Wilkinson equation.

H.1 Characterisation of mappings between 1D diffusive

systems

Here we investigate the possibility of existence of other mappings than the physical ones
we presented ((Du), (Di), (T), (Rt)). We start from fields ρ and j verifying fluctuating
hydrodynamics. We look for transformations of the following general form, linear with respect
to the flux (the case of a non linear transformation of the flux generates difficulties concerning
the random white noise):

ρ̃(k, t) = F (ρ(xt(k), t/τ)) , (H.1)

j̃(k, t) = j(xt(k), t/τ)G(ρ(xt(k), t/τ)) , (H.2)

In order that the new density ρ̃ and flux j̃ verify the conservation equation

∂tρ̃(k, t) + ∂kj̃(k, t) = 0 , (H.3)

it is necessary that

∂kxt(k) =
F ′(ρ(xt(k

′), t/τ))

τG(ρ(xt(k′), t/τ))
, (H.4)

∂txt(k) = −j(xt(k), t/τ)
G′(ρ(xt(k), t/τ))

τG(ρ(xt(k), t/τ))
. (H.5)

Then, from the stochastic Fourier law verified by (j, ρ) (9.2), we get the following stochastic
Fourier law verified by (j̃, ρ̃)

j̃(k, t) + D̃(ρ̃)∂kρ̃(k, t) =
√
σ̃(ρ̃)ηt,k , (H.6)
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where

D̃(x) = τ

(
G2

F ′2D

)
◦ F−1(x) , (H.7)

σ̃(x) = τ 2
( |G|3
F ′ σ

)
◦ F−1(x) . (H.8)

This mapping is not coherent for general F and G because of the compatibility condition
∂t∂kxt(k) = ∂k∂txt(k) which implies(
−jG

′ ◦ ρ
G ◦ ρ ∂xρ+ ∂tρ

)(
F ′′ ◦ ρ
G ◦ ρ −

F ′ ◦ ρG′ ◦ ρ
(G ◦ ρ)2

)
=− F ′ ◦ ρ

(G ◦ ρ)2
(−∂tρG′ ◦ ρ+ j∂xρG

′′ ◦ ρ)

+
(F ′ ◦ ρ)(G′ ◦ ρ)2

(G ◦ ρ)3
j∂xρ . (H.9)

The factors in front of j∂xρ and ∂tρ must vanish, so we get after simplifications,

G′F ′′ = F ′G′′ , (H.10)

2
F ′G′

G
= F ′′ . (H.11)

The only solutions to these equations are parameterised by a, b, c, d ∈ R:

G(x) =
1

a+ bx
, (H.12)

F (x) =

∣∣∣∣∣∣c+
d

a+ bx
if b ̸= 0 ,

c+ dx if b = 0 .
(H.13)

The particular case a = 0, b = −1, c = 0, d = −1, τ = 1 corresponds to the particles/gaps
duality relation (Du). The transformation (T) is recovered by taking a = 1, b = 0, d = 1, τ = 1
and (Di) by taking a = 1/d, b = 0, c = 0, τ = 1. The time rescaling (Rt) is the case
a = τ, b = 0, c = 0, d = 1. Conversely, by composing the four transformations, we can
reconstruct any possible transformation of the form (H.1,H.2,H.4,H.5). For the case b = 0 in
(H.13), one can perform (in this order) (Du), (Di), (Du), (Di), (T), (Rt) and for the other
case, (Di), (Du), (Di), (T), (Du), (T), (Rt) generates all the possibilities.

H.2 Edwards-Wilkinson equation for the fluctuations

of position of tracers

In this appendix, we use the duality 9.1 in order to describe the correlations between the
positions of the particles in the SEP using Edward-Wilkinson equations, similarly to what
is done in [200]. We consider the SEP with flat initial density ρ0, so that the mean density
remains ρ along time.

We define the rescaled macroscopic density in the SEP, where xk(t) are the positions of

particles at time t; ρ(x, t) =
1

N

∑
r δ(x− xk(tN2)/N). Its dual field ρ̃ under transformation

(Du) 9.1 verifies:

∂tρ̃ = ∂k

(
D̃(ρ̃)∂kρ̃

)
+ ∂k(

√
σ̃(ρ̃)N−1 ξk,t), (H.14)
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with D̃(ρ̃) =
1

2ρ̃2
et σ̃(ρ̃) = 1− 1

ρ̃
and mean density ⟨ρ̃(k, t)⟩ = 1/ρ0. Equation (H.14) in fact

expresses the large deviations of the density field ρ̃. From it, we can extract a central limit
theorem for the fluctuations field κ(k, t) defined by:

ρ̃(k, t) =
1

ρ0
+
κ(k, t)√

N
. (H.15)

Injecting definition (H.15) in the large deviation principle (H.14) and considering dominant
order in N (order N−1/2), we get the stochastic linear partial differential equation:

∂tκ = D̃(1/ρ0)∂
2
kκ+ ∂k(

√
σ̃(1/ρ0)ξx,t). (H.16)

According to equation (9.21), we can relate the displacement d(k, t) of particles xkN(tN2) in
the SEP to the dual field ρ̃ and associated current j̃ = −D̃(ρ̃)∂kρ̃−

√
σ̃(ρ̃)N−1 ξk,t.

d(k, t) = xkN(tN2)/N − k/ρ0

= −
∫ t

0

j̃(0, t′)dt′ +

∫ k

0

ρ̃(k′, t)dk′ − k/ρ0

= −
∫ ∞

0

ρ̃(k′, t)− ρ̃(k′, t)dk′ +

∫ k

0

ρ̃(k′, t)dk′ − k/ρ0 (H.17)

On average, ⟨d(k, t)⟩ = 0, and if one looks at the fluctuation field h(k, t) defined by:

d(k, t) = 0 +
h(k, t)√

N
, (H.18)

then, from equations (H.15) and (H.17):

h(k, t) = −
∫ ∞

0

κ(k′, t)− κ(k′, 0)dk′ +

∫ k

0

κ(k′, t)dk′. (H.19)

As a consequence, ∂kh = κ and ∂th = −
∫∞
k
∂tκ(k′, t)dk′. Combined with (H.16) (supposing a

vanishing current at infinity), this yields:

∂th(k, t) =
ρ20
2
∂2kh(k, t) +

√
1− ρ0 ξk,t (H.20)

Finally, k represents the label of particles, we can go back to a spatial parameter by defining
x = k/ρ0, because the mean position of the k-th particle at density ρ0 is indeed k/ρ0.
Performing this change of variable, without forgetting that ξρ0x,t = 1/

√
ρ0 ξx,t:

∂th(x, t) =
1

2
∂2xh(x, t) +

√
1− ρ0
ρ0

ξx,t, (H.21)

which is the equation proposed in [133, 200] based on heuristic arguments.
More generally, the fluctuations of positions of particles in any system of particles with

transport coefficients D and σ, at mean density ρ0, can by characterised by this equation:

∂th(x, t) = D(ρ0)∂
2
xh(x, t) +

√
σ(ρ0)

ρ0
ξx,t , (H.22)

which can be solved both for quenched and anealed initial conditions. If xk(t) is the position
of particle k at time t, with ⟨xk(t)⟩ = k/ρ0, then:〈

xi(τ)− ⟨xi(τ)⟩√
t

xj(τ
′)− ⟨xj(τ ′)⟩√

t

〉
∼
t→∞

〈
h

(
i√
t
,
τ

t

)
h

(
j√
t
,
τ ′

t

)〉
. (H.23)
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Appendix I

Supplements on the hydrodynamic
description of a biased system

In this appendix, we provide additional details and further discussion on points which
where raised in section 10.1.

I.1 Examples of bias matching conditions

We first give an example to show why it is necessary to understand the properties of the
stationary measures. Then we study the stationary measures in the example of the SEP with
a biased tracer and a mass transfer process with a biased bond.

I.1.1 Vanishing velocity of a biased tracer is not enough

In the context of single-file systems with a biased tracer (chapter 10), one may be tempted
to determine the bias matching condition (10.3) using the fact that the velocity of the tracer
at equilibrium must vanish. We show here, with the example of the DEP, that it is necessary
to know the stationnary measure to determine this condition.

We consider the DEP (Double Exclusion Process 6.1.2) with a baised tracer, namely the
tracer attempts a jump to the right with rate p and to the left with rate q, the other particles
remaining symmetric, with the constraint that there must always be one empty site between
two particles. The means position of the tracer ⟨Xt⟩ verifies:

∂t ⟨Xt⟩ = p(1− ⟨ηXt+2⟩)− q(1− ⟨ηXt−2⟩). (I.1)

One may therefore imagine that, if there is a local equilibrium around the tracer, the mean
density in front of and behind the tracer would be ρ(X±

t , t) = ⟨ηXt±2⟩, leading to the bias
condition:

p(1− ρ(X+
t , t))− q(1− ρ(X−

t , t)) = 0. (I.2)

This would be completely wrong since it neglects correlations that may exist between sites
at equilibrium. Indeed, in the present case, the site of the tracer is always occupied, and
since the DEP displays nonzero correlations between sites, ⟨ηXt−2⟩ is in fact equal, like in
equation (D.2), to the conditional average ⟨η2|η0 = 1⟩(ρ−,ρ+) with respect to an equilibrium
measure of density ρ− on negative sites and ρ+ on positive sites.

The only way to compute this conditional average is to know precisely what is the stationary
measure. In the example of the DEP, it can easily be obtained, for example, as the ϵ = 1
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case of the KLS (defined in 6.1.2, bias condition given in 10.2.1). The correct bias relation is
therefore:

p
1− 2ρ(X+

t , t)

1− ρ(X+
t , t)

− q1− 2ρ(X−
t , t)

1− ρ(X−
t , t)

= 0. (I.3)

I.1.2 Example of the SEP with a biased tracer

We recall the master equation for the probability to find, at time t, the tracer at position X
and the bath in configuration (ηr) (ηr = 1 if site r is occupied by a bath particle, 0 otherwise):

∂tP (X, η, t) =
1

2

∑
r ̸=X,X−1

[
P (X, ηr,+, t)− P (X, η, t)

]
+
∑
µ=±1

1 + µs

2
{(1− ηX)P (X − µ, η, t)− (1− ηX+µ)P (X, η, t)} . (I.4)

The occupation numbers in the reference frame of the tracer are denoted by τr = ηXt+r.
They obey the following master equation, where τ = {τr = 0, 1}:

∂tP(τ, t) =
1

2

∑
r ̸=0,−1

[
P(τ r,+, t)− P(τ, t)

]
+
∑
µ=±1

1 + µs

2
{(1− τ−µ)P(T µτ, t)− (1− τµ)P(τ, t)} . (I.5)

We denoted by T µτ the configuration obtained from τ by translating occupation numbers of
−µ for r ̸= µ, namely (T µτ)r = τr−µ, and choosing (T µτ)µ = 0. The first line corresponds to
an event of exchange of occupation numbers of two sites occupied by bath particles, and the
second line to a displacement of the tracer particle. The first term in the right-hand side of
(I.5) will vanish for probabilities of the form

P(τ, t) =
∏
r<0

ρτr− (1− ρ−)1−τr
∏
r>0

ρτr+ (1− ρ+)1−τr . (I.6)

For (T µτ) with µ = ±1, we get:

P(T µτ, t) =
∏
r<0

ρ
τr−µ

− (1− ρ−)1−τr−µ

∏
r>0

ρ
τr−µ

+ (1− ρ+)1−τr−µ = P(τ, t)× 1− ρµ
ρ
τµ
µ (1− ρµ)1−τµ

. (I.7)

In order that the second term vanishes, we therefore need to have for any configuration τ :∑
µ=±1

1 + µs

2

{
(1− τ−µ)

1− ρµ
ρ
τµ
µ (1− ρµ)1−τµ

− (1− τµ)

}
= 0. (I.8)

This implies that (I.6) is a stationary measure if it verifies:∑
µ=±1

1 + µs

2
µ(1− ρµ) = 0. (I.9)

In the hydrodynamic limit, there must exist a local equilibrium around the tracer particle.
Therefore, in a small neighbourhood around the tracer, the occupations in the reference
frame of the tracer follow a stationary measure of the form (I.6). Then, if we compute the

mean densities limN→∞
∑N

r=1
⟨τr⟩
N

= ρ(X+
t , t) and limN→∞

∑N
r=1

⟨τ−r⟩
N

= ρ(X−
t , t) according

to the stationary measure (I.6), we get from (I.9) the matching condition obeyed by the
hydrodynamic density profile:

(1 + s)(1− ρ(X+
t , t))− (1− s)(1− ρ(X−

t , t)) = 0 , (I.10)

which is the explicit writing of the general equation (10.3) in the specific case of the SEP.
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Biased bond in a mass transfer process

Here we recover, by applying the general procedure described in 10.1, the bias condition
which is given in [114] in a particular case.

We recall the master equation for the probability density P (η, t) to find the system in
configuration η at time t is (see [89] for an extensive study of mass transfer processes):

∂tP (η, t) =
1

2

∑
r ̸=0

[2P (ηr, t)− 2P (η, t)] + 2(p+ (q − p)1R+(η1 − η0))P (η0, t)− (p+ q)P (η, t).

(I.11)

The configuration ηr is defined as follows:

• For all x ̸= r, r + 1, ηrx = ηx

• If ηr+1 > ηr, then ηrr = 2ηr and ηrr+1 = ηr+1 − ηr.

• If ηr+1 ≤ ηr, then ηrr+1 = 2ηr+1 and ηrr = ηr − ηr+1.

This process has the remarkable property that moments of the distributions associated to
the probability density P verify closed equations [89]. In particular, for the mean mass, we
find:

∂t ⟨ηr(t)⟩ =(1− δr,0 − δr,1)
1

2

(⟨ηr+1(t)⟩
2

+
⟨ηr−1(t)⟩

2
− 2
⟨ηr(t)⟩

2

)
+ δr,0

(
1

2

⟨η−1(t)⟩
2

+ p
⟨η1(t)⟩

2
−
(

1

2
+ q

) ⟨η0(t)⟩
2

)
+ δr,1

(
1

2

⟨η2(t)⟩
2

+ q
⟨η0(t)⟩

2
−
(

1

2
+ p

) ⟨η1(t)⟩
2

)
. (I.12)

The stationary solutions to this equation are of the form:

⟨ηr(t)⟩ = ρ−

(
1 +

(
q

p
− 1

)
1N∗(r)

)
, (I.13)

for any ρ− > 0. The hydrodynamic density must verify ρ(0−, t) = limN→∞
∑N

r=0
⟨η−r⟩
N

= ρ−

and ρ(0+, t) = limN→∞
∑N

r=1
⟨ηr⟩
N

= q
p
ρ−. This yields the bias matching condition used in

[114]:

pρ(0+, t)− qρ(0−, t) = 0 , (I.14)

which is the explicit writing of the general equation (10.4) in the present system.

I.2 MFT equations for a biased system

Here we discuss the MFT equations (i.e. the deterministic coupled diffusion equa-
tions (10.18)) which can be obtained from the hydrodynamic description with a bias matching
condition (which was absent in the symmetric case (8.21)).
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I.2.1 Resolution of the optimisation problem

To find the path of least action under the constraints (10.11, 10.14, 10.15), we introduce
the Lagrangian L and a Lagrange multiplier ρ̂ enforcing the conservation equation (10.11):

L(ρ, j, ρ̂) =

∫ 1

0

∫ ∞

−∞

(j +D(ρ)∂xρ)2

2σ(ρ)
+ ρ̂(∂tρ+ ∂xj)dxdt+ F [ρ(x, 0)]− λQ1[ρ]

=

∫ 1

0

∫ ∞

−∞

(j +D(ρ)∂xρ)2

2σ(ρ)
− ρ∂tρ̂− j∂xρ̂dxdt+

∫ 1

0

[jρ̂(x, t)]x=0−

x=0+ dt

+

∫ ∞

−∞
ρ̂(x, 1)ρ(x, 1)− ρ̂(x, 0)ρ(x, 0)dx+ F [ρ(x, 0)]− λQ1[ρ]. (I.15)

We performed integration by parts, and we did not suppose ρ̂ continuous at 0. But, since j is
continuous at 0:

δL
δj(0, t)

= ρ̂(0−, t)− ρ̂(0+, t). (I.16)

The main difference with the unbiased case lies in the computation of the ρ derivative of the
term

M[ρ, j] =

∫ 1

0

∫ ∞

−∞

(j +D(ρ)∂xρ)2

2σ(ρ)
dxdt, (I.17)

because of the bias matching condition (10.14) on ρ, which generates boundary terms in the
integration by parts. Indeed, we compute δM =M[ρ+ δρ, j]−M[ρ, j]:

δM =

∫ 1

0

∫ ∞

−∞

2(δρD′(ρ)∂xρ+D(ρ)∂x(δρ)) (j +D(ρ)∂xρ)

2σ(ρ)
− (δρ)σ′(ρ)

(j +D(ρ)∂xρ)2

2 (σ(ρ))2
dxdt

=

∫ 1

0

∫ ∞

−∞
(δρ)

[
2D′(ρ)∂xρ (j +D(ρ)∂xρ)

2σ(ρ)
− σ′(ρ)

(j +D(ρ)∂xρ)2

2 (σ(ρ))2

−∂x
(
D(ρ)

2 (j +D(ρ)∂xρ)

2σ(ρ)

)]
dxdt+

∫ 1

0

[
(δρ)D(ρ)

(j +D(ρ)∂xρ)

σ(ρ)
(x, t)

]0−
x=0+

dt

(I.18)

Because of the bias condition (10.14) verified by ρ and ρ+ δρ (we only consider density fields
verifying this relation), we have:

δρ(0−, t)∂−B(ρ(0−, t), ρ(0+, t)) + δρ(0+, t)∂+B(ρ(0−, t), ρ(0+, t)) = 0, (I.19)

where ∂±B = ∂B(ρ−,ρ+)
∂ρ±

. Therefore:[
(δρ)D(ρ)

(j +D(ρ)∂xρ)

σ(ρ)
(x, t)

]0+
x=0−

= δρ(0+, t)

[
D(ρ) (j +D(ρ)∂xρ)

σ(ρ)
(0+, t)

+
∂+B

∂−B
D(ρ)

(j +D(ρ)∂xρ)

σ(ρ)
(0−, t)

]
. (I.20)

Finally, we denote by (q, j∗, p) the solution to the optimisation problem under constraint
for (ρ, j, ρ̂). The vanishing of δL

δj(x,t)
imposes j∗ = −D(q)∂xq + σ(q)∂xp. Together with the

conservation equation (10.11) and the vanishing of the derivatives δL
δρ(x,t)

, δL
δρ(x,0)

, δL
δρ(x,1)

, this

yields the classical MFT equations given in section 10.1.2 (10.18).
In addition to that, there are boundary conditions, which are specific to the biased

case. They are obtained from the bias condition (10.14), the continuity of current (10.15)
with j∗ = −D(q)∂xq + σ(q)∂xp, the vanishing of δL

δj(0,t)
(I.16), and the vanishing of δL

δρ(0+,t)

(using (I.20)). They are given in section 10.1.2 (10.19).
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I.2.2 New mapping for the MFT equations

We consider a system with transport coefficients D(ρ) and σ(ρ). We denote by (q, j, p)
the optimal fields for the cumulant generating function of the tracer’s position in this system
(equation (10.17) where we replace Q1 by X1 defined in (10.2)).

We denote by (q̃, j̃, p̃) the optimal fields for the integrated current’s cumulant generating
function (10.17) in the dual system under the duality relation (Du) 9.1.1. The tracer’s position
in the original system is equal to the integrated current through the origin in the dual one.
Therefore, the fields (q̃, j̃, p̃) verify MFT equations (10.18) and boundary conditions (10.19),
with the dual transport coefficients D̃ and σ̃ (see table 9.1, (Du), for their expressions in
terms of D, σ). The new mapping begins, identically to the duality 9.1.1, by relating the
densities of the dual system and of the original one:

q(xk(t), t) =
1

q̃(k, t)
, (I.21)

xk(t) = x0(t) +

∫ k

0

q̃(k′, t)dk′, (I.22)

x0(t) = −
∫ t

0

j̃(0, t)dt =

∫ t

0

D̃(q̃)∂kq̃ − σ̃(q̃)∂kq̃(0, t)dt. (I.23)

The difference is that instead of mapping the dual current j̃ to the original one j using the
duality 9.1.1, which would correspond to ∂xp(xk(t), t) = −∂kp̃(k, t), we rather define a new
field:

π(xk(t), t) = −p̃(k, t). (I.24)

The main interest of this new field is that it does not involve derivatives, so there is no
integration constant to fix in order to go from p̃ to π.

These new variables verify the following equations, where we indeed recovered the original
transport coefficients D(ρ) and σ(ρ):

∂tq = ∂x(D(q)∂xq)− ∂x
(
σ(q)

q
∂xπ

)
,

∂tπ = −D(q)∂2xπ + 2
D(q)

q
(∂xπ)(∂xq)−

σ(q) + qσ′(q)

2q2
(∂xπ)2,

π(x, T ) = −λΘ(x),

π(x, 0) = −λΘ(x) +

∫ q(x,0)

ρ0(x)

2rD(r)

σ(r)
dr, (I.25)

and the modified boundary conditions at the position of the tracer in the original system
Xt = x0(t) which can be recovered using equations (10.2):

π(X+
t , t)− π(X−

t , t) = 0,

B(1/q(X+
t , t), 1/q(X

−
t , t)) = 0,[

D(q)∂xq − σ(q)/q(∂xπ)

q
(x, t)

]X+
t

x=X−
t

= 0,

∂−BD(q)q∂xπ(X+
t , t) + ∂+BD(q)q∂xπ(X−

t , t) = 0, (I.26)

where ∂−B, ∂+B are evaluated at
(

1
q(X−

t ,t)
, 1
q(X+

t ,t)

)
. Note that equations (10.2) and (I.25)

imply:
dXt

dt
=
D(q)∂xq − σ(q)/q(∂xπ)

q
(x, t). (I.27)
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These equations will be particularly useful for our study of the SEP 10.3.

I.3 Resolution of the MFT equations

In this section, we first solve the MFT equation (10.18, 10.19) in a particular case. Then, we
solve their expansion at order 1 in λ for arbitrary transport coefficients and bias relation (10.4),
in the case where the system is initially at equilibrium.

I.3.1 Resolution for simple transport coefficients

If we consider transport coefficients D = 1 and σ(ρ) = 2ρ, we can easily solve the associated
MFT equations (10.18) with boundary conditions (10.19) for the integrated current through
the origin when the bias relation is aq(0+, t)− bq(0−, t) = 0. We consider step initial condition
with density ρ− to the left of the origin and ρ+ to the right.

The usual method [102, 107] consists in perfoming a Cole-Hopf transformation by defining
P = ep and Q = qe−p, which then verify decoupled equations:

∂tP + ∂2xP = 0, (I.28)

∂tQ− ∂2xQ = 0, (I.29)

with boundary conditions:

aQ(0+, t) = bQ(0−, t), (I.30)

∂xQ(0+, t)− ∂xQ(0−, t) = 0, (I.31)

a∂xP (0−, t) = b∂xP (0+, t), (I.32)

P (0−, t) = P (0+, t), (I.33)

and initial conditions:

P (x, 1) = exp(λΘ(x)), (I.34)

Q(x, 0) = ρ± exp(−λΘ(x)). (I.35)

Given the form of the equations, we will suppose, in the following, a+ b = 1 without loss of
generality (we can always divide (I.30, I.32) by (a+ b)).

For P , looking for a solution of the form eλ+αerfc
(

x
2
√
1−t

)
for x > 0 and 1+βerfc

(
− x

2
√
1−t

)
for x < 0, we find:

P (x > 0, t) = eλ −
(
eλ − 1

)
a erfc

(
x

2
√

1− t

)
, (I.36)

P (x < 0, t) = 1 +
(
eλ − 1

)
b erfc

(
− x

2
√

1− t

)
. (I.37)

For Q, we use the same Green function as in [114] which enforces the discontinuity (I.30):

G(x, z, t) =
sign(x)(b− a)e−

(|z|+|x|)2
4t

2
√
π
√
t

+
e−

(x−z)2

4t

2
√
π
√
t
. (I.38)

This yields:

Q(x > 0, t) = e−λ
(
ρ+ − erfc

(
x

2
√
t

)(
eλ(a− 1)ρ− + aρ+

))
, (I.39)

Q(x < 0, t) = erfc

(
− x

2
√
t

)(
e−λaρ+ + (a− 1)ρ−

)
+ ρ−. (I.40)
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I.3.2 First order of MFT equations in the biased case

Writing expansions in the parameter λ:

q =q0 + λq1 +O(λ2)2, (I.41)

p =p0 + λp1 +O(λ2)2, (I.42)

and injecting them in MFT equations (10.18) with boundary conditions (10.19), we get at
order 0:

p0 = 0, (I.43)

∂tq0 = ∂x(D(q0)∂xq0), (I.44)

q0(x, 0) = ρ0(x), (I.45)

B
(
q0(0

−, t), q0(0
+, t)

)
= 0, (I.46)

[D(q0)∂xq0(x, t)]
0+

x=0− = 0. (I.47)

At order 1, we have:

∂tq1 = ∂2x(D(q0)q1)− ∂x (σ(q0)∂xp1) , (I.48)

∂tp1 = −D(q0)∂
2
xp1, (I.49)

p1(x, 0) = Θ(x) + q1(x, 0)
2D(ρ0(x))

σ(ρ0(x))
, (I.50)

p1(x, 1) = Θ(x), (I.51)

with boundary conditions:

∂−Bq1(0
−, t) + ∂+Bq1(0

+, t) = 0, (I.52)

[∂x(D(q0)q1)− σ(q0)∂xp1(x, t)]
0+

x=0− = 0, (I.53)

p1(0
+, t)− p1(0−, t) = 0, (I.54)

∂−BD(q0)∂xp1(0
+, t) + ∂+BD(q0)∂xp1(0

−, t) = 0. (I.55)

Here ∂±B are evaluated at (q0(0
−, t), q0(0

+, t)). In the case where the initial density ρ0(x) =
ρ−+(ρ+−ρ−)Θ(x) is an equilibrium measure, namely B(ρ−, ρ+) = 0, then it is straightforward
to see that q0(x, t) = ρ0(x) for all times t. As a consequence, the equations at order 1 simplify:

∂tq1 = D(ρ0(x))∂2x(q1)− σ(ρ0(x)∂2xp1, (I.56)

∂tp1 = −D(ρ0(x))∂2xp1, (I.57)

p1(x, 0) = Θ(x) + q1(x, 0)
2D(ρ0(x))

σ(ρ0(x))
, (I.58)

p1(x, 1) = Θ(x), (I.59)

with boundary conditions:

∂−Bq1(0
−, t) + ∂+Bq1(0

+, t) = 0, (I.60)

[D(ρ0(x))∂xq1 − σ(ρ0(x))∂xp1(x, t)]
0+

x=0− = 0, (I.61)

p1(0
+, t)− p1(0−, t) = 0, (I.62)

∂−BD(q0)∂xp1(0
+, t) + ∂+BD(q0)∂xp1(0

−, t) = 0, (I.63)
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where now ∂±B are evaluated at (ρ−, ρ+), in particular, they are constant, which makes the
resolution much simpler. The analytical resolution of these equations relies on two ingredients,
largely inspired by [114]. First, p1 is found under the form:

p1(x > 0, t) = 1 + a erfc

(
x√

4D(ρ+)(1− t)

)
, (I.64)

p1(x < 0, t) = b erfc

(
−x√

4D(ρ−)(1− t)

)
. (I.65)

Then the equation on q1 is solved using a Green function similar to equation (I.38), also used
in [114]. Here, it is more complicated because of the different diffusion coefficient on R±. The
idea is to find a Green function G(t, x, z) verifying the following properties:

∂tG−D(ρ0(x))∂2xG = δ(t)δ(z − x), (I.66)

∂−BG(0−, t) + ∂+BG(0+, t) = 0, (I.67)

D(ρ+)∂xG(0+, t)−D(ρ−)∂xG(0−, t) = 0. (I.68)

The first condition allows to get a solution to the non-homogeneous diffusion equation with
initial condition and with different diffusion coefficients on R±. The other two conditions
enforce the boundary relation at 0. We solved equations (I.68) to find G using a Laplace
transform in time. This yielded for example for x > 0:

G(t, x > 0, z > 0) =
e
− (x+z)2

4D+t

(
∂+BD−

(
e

xz
D+t − 1

)
− ∂−B

√
D−D+

(
e

xz
D+t + 1

))
2
√
π
√
D−D+t

(
∂+B
√
D− − ∂−B

√
D+

) , (I.69)

G(t, x > 0, z < 0) =
∂−B

√
D+

t
e

xz
2t
√

D−D+
−D−x2+D+z2

4D−D+t

√
π
(
∂−BD+ − ∂+B

√
D−D+

) , (I.70)

where we denoted D± = D(ρ±). Using these two ingredient, we obtain the result given in
section 10.2.3.
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[154] S. Pigeon, K. Fogelmark, B. Söderberg, G. Mukhopadhyay, and T. Ambjörnsson,
Journal of Statistical Mechanics: Theory and Experiment 2017, 123209 (2017).

[155] J.-P. Hansen and I. R. McDonald, Theory of simple liquids: with applications to soft
matter (Academic press, 2013).

[156] O. Bénichou, A. Cazabat, J. De Coninck, M. Moreau, and G. Oshanin, Physical Review
Letters 84, 511 (2000).

[157] O. Bénichou, A. Cazabat, J. De Coninck, M. Moreau, and G. Oshanin, Physical Review
B 63, 235413 (2001).

[158] O. Bénichou, A. Bodrova, D. Chakraborty, P. Illien, A. Law, C. Mej́ıa-Monasterio,
G. Oshanin, and R. Voituriez, Phys. Rev. Lett. 111, 260601 (2013).

[159] P. Illien, O. Bénichou, G. Oshanin, and R. Voituriez, Phys. Rev. Lett. 113, 030603
(2014).

[160] B. D. Hughes, Random Walks and Random Environments: Random walks, Volume 1
(Oxford University Press, Oxford, 1995).

[161] S. Jose, D. Mandal, M. Barma, and K. Ramola, Physical Review E 105, 064103 (2022).

[162] M. Baiesi, C. Maes, and B. Wynants, Proc. R. Soc. A 467, 2792 (2011).
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