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Résumé

L'effet des inclusions sur la turbulence de l'écoulement est un élément clé à comprendre afin de maîtriser le transport de milieux dispersés, dans le domaine du génie pétrolier, environnemental, agroalimentaire, génie de la réaction chimique ou transformation du solide. Les expériences de Matas et al. (PRL, 2003) ont mis en évidence un effet non monotone des particules isodenses (de densité égale à celle du fluide) sur la transition laminaire-turbulent, cet effet dépendant de la taille des particules et de leur concentration dans la suspension. Une petite quantité de particules de taille finie s'est avérée suffisante pour diminuer considérablement le seuil de transition laminaireturbulent. Nous avons utilisé des simulations numériques, basées sur une approche de type "Force Coupling Method" afin de comprendre cet effet. Les domaines de simulations étaient choisis pour accommoder le minimum de structures cohérentes suffisantes pour entretenir la turbulence. Nous avons particulièrement étudié la corrélation entre le comportement instationnaire de l'écoulement et la distribution instantanée de particules, en fonction de la configuration de l'écoulement (Couette plan ou écoulement en canal), de la forme des particules ainsi que leur inertie et concentration.

Dans un écoulement de Couette plan turbulent, la contrainte pariétale est augmentée en présence des particules. Les profiles (dans la direction normale aux parois) de vitesse moyenne et des contraintes de Reynolds ne sont pas significativement modifiés en présence des particules, si la viscosité du fluide est remplacée par la viscosité effective de la suspension dans le calcul du nombre de Reynolds de l'écoulement. Par contre l'analyse temporelle et modale des fluctuations de l'écoulement suggère que les particules modifient légèrement le cycle de régénération de la turbulence, à travers l'augmentation d'énergie à petites échelles. En effet, la forme des streaks et le caractère inter-viii mittent de l'écoulement sont impactés par la présence des particules, surtout quand elles sont inertielles (de densité supérieure à celle du fluide). Ces résultats ont été publiés dans le journal Physical Review F (Wang et al., 2017). En outre, nous avons montré qu'à fraction volumique égale, les propriétés d'écoulement turbulent des suspensions de particules sphéroïdales de rapport de taille compris entre 0.5 et 2, sont similaires à celles des suspensions de particules sphériques. Le transfert de particules entre les différentes structures cohérentes de l'écoulement est analysé à la fin de la thèse.

Nomenclature

In this thesis, horizontal bar 11 stands for ensemble average (spatial average in periodic boundaries and temporal average), and quantities with hat 11 are in frequency domain. Turbulent dimensionless quantities with + are in wall units, y + ≡ yuτ ν , u + ≡ u uτ and t + ≡ tu 2 τ ν . All quantities are dimensionless and Cartesian coordinate is used except for a special declaration. Two abbreviations LSS and LSV stand for Large-Scale Streaks and Large-Scale Vortices. friction velocity [ m.s -1 ] u = (u, v, w) flow velocity [ m.s -1 ] u p = (u p , v p , w p ) particle velocity [ m.s -1 ] U = (U, V, W ) mean flow velocity field [ m.s -1 ] u = (u , v , w ) fluctuation flow velocity [ m.s -1 ] p = (p x , p y , p z ) particle orientation vector X = (x, y, z) position in three-dimension X p = (x p , y p , z p ) particle position in three-dimension 
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Introduction

The effect of particles on turbulence is a key phenomenon in many practical industrial applications encountered in petroleum engineering, chemical reactors and food or solid processing (transport of slurries in pipes, reactive fluidized beds, and pneumatic transport of particles), environmental engineering (such as sand storm and particulate matter (PM) pollution), and biological fluid mechanics (e.g. drug delivery in blood flow and inhaled particles through the respiratory system). Turbulence and multiphase flows are both challenging topics in fluid mechanics. The latest review paper about turbulent two-phase dispersed flow from [START_REF] Balachandar | Turbulent dispersed multiphase flow[END_REF] suggested that "the mechanisms of turbulence modulation (by the dispersed phase) and their parametric dependence are poorly understood and are wide open for fundamental investigation".

In a summary on turbulence modulation, due to solid or liquid particles in gas jet or pipe flows, [START_REF] Gore | Effect of particle size on modulating turbulent intensity[END_REF] showed a clear trend: small particles attenuate turbulence whereas large particles enhance its intensity. The collected data were realized with inertial particles, where the slip due to gravity dominates the fluid-particle interaction. If the size of the particles is large enough compared to the size of energetic eddies in a turbulent flow, the flow modulation by particles is not easy to predict. The rigidity of finite-size particles influences the turbulent kinetic energy budget in two competing ways: they add perturbations that increase shear production of turbulence and simultaneously their presence increases viscous dissipation [Qureshi et al., 2007;Bellani et al., 2012]. Also for large neutrally buoyant particles, the particle volumetric concentration plays a crucial role. Picano et al. [2015] found that the fluctuation intensities are increased by solid particles at low volumetric concentration whereas they are seriously attenuated at higher volumetric concentration (up to 20%). In pressure-driven turbulent flows, the predicted wall friction coefficient is always under-estimated if based on the effective suspension viscosity [Costa et al., 2016], suggesting that particles modify dramatically the flow structures. Loisel et al. [2013]). The channel height-to-particle size ratio is L y /d = 16 and the volumetric concentration is 5%. The friction coefficient is based on the fluid viscosity for +: single phase flow and •: twophase flow. The • symbols are obtained using the suspension viscosity for the calculation of the Reynolds number.

The experiments of Matas et al. [2003] have highlighted a non-monotonous effect of neutrally buoyant particles on the laminar-turbulent flow transition in pressure-driven tube flow, depending on the pipe-to-particle size ratio and on the suspension volumetric concentration. As shown in fig. 1.1(a), a small amount of finite-size particles allowed sustaining turbulence and decreasing the transition threshold significantly, whereas a large amount of small particles increases the transition threshold, in a way that cannot be explained solely by the effective mixture viscosity. The mechanisms related to particleflow interactions are often difficult to elucidate experimentally due to limited access to the flow local properties.

Recent experiments from Majji et al. [2016] have shown that particles do not have a significant impact on the transition path in Taylor-Couette flow, if the particle concentration is low and the particle size is relatively small compared to the Couette gap. With larger particles (8 times smaller than the Couette gap), Linares-Guerrero et al. [2017] have shown that particles do not change the transition threshold of a cylindrical turbulent Couette flow at 10% volumetric concentration.

During the last four decades, direct numerical simulation has proven to be a powerful tool for understanding the features of single phase turbulent flows. Currently, its role is growing in the investigation of suspension flows as well, especially with the development of fictitious domain methods for twophase flows at finite particle Reynolds number. These methods provide a resolved simulation of particles freely suspended in a flow while avoiding the challenges of full arbitrary Lagrangian Eulerian simulations [see the review paper of Maxey, 2017]. With that, [START_REF] Prosperetti | Life and death by boundary conditions[END_REF] announced that we are really at the beginning of a golden age of science in this area.

Almost a decade after the experiments of Matas et al. [2003], particleresolved numerical simulations are now helpful to explain the decrease of the laminar-turbulent transition threshold by the relatively large particles at moderate concentration. Consistent with the experiments, fig. 1.1(b) shows that numerical simulations can predict the shift in the transition threshold using macroscopic quantities. For instance the drop in the friction coefficient, corresponding to the laminar-turbulent transition, shifts to lower Reynolds numbers when particles are added to the channel flow. Loisel et al. [2013]; [START_REF] Yu | Numerical studies of the effects of large neutrally Bibliography[END_REF]; Lashgari et al. [2015]; Yu et al. [2016] provided further proof that particles have a significant impact on the unsteady nature of the flow, an enhancement of ejections, enhancing the transverse turbulent stress components and modifying the flow vortical structures. These studies remained at the stage of showing the modification of the suspension flow profiles with respect to the single phase case above the transition limit. However the mechanism responsible for turbulence enhancement was still not clearly elucidated. The aim of this thesis is to provide better understanding on how the large neutrally-buoyant particles modify the flow features in a way to enhance the turbulence of a wall-bounded flow. For that purpose, we remind first how turbulence is sustained in a wall-bounded flow. The time-space development of wall turbulence consists of a self-sustained process, namely the near-wall regeneration cycle located in the vicinity of the no-slip boundary condition 20 < y + < 60 [Waleffe, 1997]. The regeneration cycle is further observed both experimentally [START_REF] Kitoh | Experimental study on large-scale streak structure in the core region of turbulent plane couette flow[END_REF] and numerically [START_REF] Pirozzoli | Large-scale motions and inner/outer layer interactions in turbulent couette-poiseuille flows[END_REF]. As sketched in fig. 1.2, this cycle consists in three sequential subprocesses: streak formation, streak breakdown and streamwise vortex regeneration. The streaks are generated by a linear process, the so-called lift-up effect, whereas the following two processes are the result of non-linear interactions. The streaks and streamwise independent vortices are both correlated to the concept of "active" and "inactive" motions introduced by [START_REF] Townsend | The structure of turbulent shear flow[END_REF]. An "active" motion has a major contribution to the Reynolds shear stress (-u v ) whereas an "inactive" motion gives no correlation between u and v [see Bradshaw, 1967;Panton, 2001;[START_REF] Tuerke | Simulations of turbulent channels with prescribed velocity profiles[END_REF]. Townsend [1961] refers to "inactive" motion as a meandering or swirling motion made up from attached eddies of large size.... However the "active" motion (near the walls) contains eddies with streamwise characteristic length of the order of 1000 wall units in highly turbulent flows.

In turbulent flows with large particles, the flow inertia is finite even at the micro scale (particle scale). At finite inertia, neutrally buoyant particles embedded in a sheared flow are experiencing lift forces, even in the laminar regime, with a direction that depends on the flow geometry. For example, in Poiseuille flow, the particle is experiencing an inertia-induced lift force due to the shear gradient at the particle scale. This force pushes the particle towards the wall until it reaches a position where the lift is balanced by the viscous repulsion from the walls [START_REF] Segre | Behaviour of macroscopic rigid spheres in poiseuille flow part 2. experimental results and interpretation[END_REF]. In a laminar Couette flow, neutrally buoyant finite-size particles migrate to the gap center [Feng et al., 1994;Halow and Wills, 1970] only due to the hydrodynamic repulsion from the walls. If the flow is turbulent, particles are experiencing, in addition, turbulent dispersion. Therefore particles can be heterogeneously distributed in wall-bounded turbulent flows, and according to their spatial distribution, they can have different feedback on the flow, especially if they are located in the "active" motions of the flow.

To understand flow modulation induced by neutrally buoyant particles, we first considered their effect on the stability of turbulent plane Couette flow. To our knowledge, this has never been carefully explored in the literature, most probably because particles do not modify significantly the turbulent flow or the transition path [START_REF] Brandt | The lift-up effect: The linear mechanism behind transition and turbulence in shear flows[END_REF]. Though, a turbulent Couette flow (at low Reynolds numbers) is an insightful canonical system, with a single shear layer and a pair of streamwise large scale structures that can be easily isolated. Therefore particle interaction with the flow structures can be carefully studied. Second, we considered the pressure-driven suspension flow. Unlike Couette flow, pressure-driven flow has two shear layers. The turbulent term of kinetic energy production (-u v du/dy) has different roles according to the flow configuration. In Couette flow, the fluid is pumped away from one wall to the other one, extracting energy from the mean flow, which leads to enhancing turbulent structures [Papavassiliou and Hanratty, 1997]. However in pressure-driven flow, the shear layers are divided into two regions and the production is of opposite sign in both channel halves, making the turbulent structures relatively independent in each region of the flow. The strong dif-Chapter 1. Introduction ference of particle spatial distribution in Couette and pressure-driven flows was the key element to understand turbulence enhancement by particles in the latter configuration and not in the former one.

Direct numerical simulations of single-phase flows were performed using the so-called "minimal unit" flow configuration, which is the minimal geometric domain that is sufficient to accommodate the self-sustained turbulent flow structures. The particle-flow coupling was based on multipole expansion of momentum source terms added to the flow equations. The manuscript is organized as follows.

In Chapter 2 we briefly introduce the single-phase flow solver (JADIM) and the particle-fluid coupling using the Force Coupling Method. The implementation of neutrally buoyant spherical particles is explained, as well as its extension to non-neutrally buoyant and to ellipsoidal/cylindrical particles. Careful validation tests, realized during this thesis, are commented in this chapter.

In Chapter 3, the effect of finite-size particles on turbulent plane Couette flow is addressed, at moderate concentration. The Reynolds numbers considered are close to the laminar-turbulent transition, such that large-scale rotational structures are well developed and self-sustained. Thereby, interaction of particles with coherent structures are evidenced using two Couette gap-to-particle size ratios (10 and 20), and with particle-to-fluid density ratio ranging from 0 to 5, the gravity force being neglected.

In Chapter 4, the pressure-driven flow configuration is considered, in which case the particles have a more clear effect on the flow turbulence, in the same range of particle size and concentration as in Couette flow. The particle effect on transition is first examined in artificially perturbed flow configurations. For fully turbulent flow, the particle distribution in "inactive" or "active" motion is examined and we have shown the specific response of turbulent structures and the modulation of the fundamental mechanisms composing the regeneration cycle of the near-wall turbulence.

In Chapter 5 we do the comparison of turbulent Couette flow laden with prolate and oblate shapes of spheroidal particles. The spatial distribution the rotational dynamics of spheroids are compared with spheroids in turbulent pressure-driven flow from published literature. The particles transfer of momentum in the large-scale coherent structures is investigated.

The flow velocity field is obtained by fully-resolved Navier-Stokes equations through direct numerical simulation (DNS). Finite-size particles are represented by the Force-Coupling Method (FCM). In this chapter, we will present the numerical schemes used for solving the Navier-Stokes equations of singlephase flows in the code JADIM for an incompressible Newtonian fluid. The FCM was implemented in JADIM for both spherical and ellipsoidal particles.

Single-phase flow solver

Direct numerical simulations of single-phase flows are performed by using the code JADIM (inhouse code of IMFT) for an incompressible Newtonian fluid [START_REF] Calmet | Large-eddy simulation of high-schmidt number mass transfer in a turbulent channel flow[END_REF]. The unsteady 3-D Navier-Stokes equations formulated in velocity-pressure variables are discretized on a staggered grid as illustrated in fig. 2.1 and integrated in space using the finite-volume approach. All terms involved in the balance equations are written in a conservative form and are discretized using second order centered schemes in space. The solution is advanced in time by performing a three-step Runge-Kutta (RK) time-stepping procedure where the nonlinear convective terms N are computed explicitly whereas the linear viscous diffusion terms L are treated using the semi-implicit Crank-Nicolson (CN) algorithm. Finally, the incompress-
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ibility is achieved by correcting the pressure contribution with an auxiliary potential which is solution of the Poisson equation. The fluid velocity u and pressure P fields are solutions of momentum balance (2.1) and continuity (2.2) equations.

∂u i ∂t = -u j ∂u i ∂x j + 1 Re ∂ 2 u i ∂x j ∂x j - 1 ρ ∂P ∂x i , i = 1, 2, 3 (2.1 
)

∂u i ∂x i = 0 (2.
2)

The temporal scheme with three intermediate steps (k = 1, 2, 3) for (2.1) and ( 2.2) can be written as [START_REF] Calmet | Large-eddy simulation of high-schmidt number mass transfer in a turbulent channel flow[END_REF]:

u k i -u k-1 i ∆t = γ k N (u k-1 i ) + ζ k N (u k-2 i ) + (α k + β k ) × L(u k-1 i ) - 1 ρ ∂P n-1/2 ∂x i + β k L(u k i -u k-1 i ) (2.3) 
Where u 0 i and u 3 i are the velocities at time step n and n + 1. Pay attention to the pressure gradient term in (2.3), which is explicitly expressed in JADIM whereas implicitly calculated in [START_REF] Le | An improvement of fractional step methods for the incompressible navier-stokes equations[END_REF] during every RK substeps. The nonlinear convective terms N (u k i ) in the case of non constant viscosity can be expressed as

N (u k i ) = ∂ ∂x j ν ∂u k j ∂x i -ν ∂ 2 u k j ∂x i ∂x j - ∂ ∂x j (u k i u k j ) + u k i ∂u k j ∂x j (2.4)
The linear viscous diffusion terms L(u k i ) are written as

L(u k i ) = ∂ ∂x j ν ∂u k j ∂x i (2.5)
If we consider the incompressibility and ν is constant, (2.4) is simplified as (2.6)

N (u k i ) = - ∂ ∂x j (u k i u k j ) (2.6)
The temporal advancement of (2.4) between t n and t n+1 is third-order accurate for N (u k i ) and second-order accurate for L(u k i ), nonlinear terms N (u k i )
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are advanced explicitly and the linear terms L(u k i ) are advanced implicitly [START_REF] Le | An improvement of fractional step methods for the incompressible navier-stokes equations[END_REF]. The coefficients α k , β k , γ k for k = 1, 2, 3 are given as follows. (2.7)

and the 3 time sub-steps are corresponding to t + 8/15∆t (k = 1), t + 2/3∆t (k = 2) and t + ∆t (k = 3). In the condition of RK/CN scheme, large time steps are allowed (CFL= √ 3) [START_REF] Le | An improvement of fractional step methods for the incompressible navier-stokes equations[END_REF][START_REF] Calmet | Analyse par simulation des grandes échelles des mouvements turbulents et du transfert de masse sous une interface plane[END_REF], the maximum time step between t n and t n+1 can be decided by (2.8) ∆t ≤ √ 3min ∆x∆y∆z u max ∆y∆z + v max ∆x∆z + w max ∆x∆y (2.8) where ∆x, ∆y and ∆z are the grid size in different directions. Comparing the modified scheme of fractional step methods from [START_REF] Le | An improvement of fractional step methods for the incompressible navier-stokes equations[END_REF] with original scheme by [START_REF] Kim | Application of a fractional-step method to incompressible navier-stokes equations[END_REF], the divergence free constraint (2.2) is satisfied with an auxiliary potential φ solution of the Poisson equation (2.9) after the third intermediate time step without loss of temporal accuracy.

∂ 2 φ ∂x i ∂x i = 1 ∆t ∂u k=3 i ∂x i (2.9)
The detailed discretization process can be found in [START_REF] Calmet | Analyse par simulation des grandes échelles des mouvements turbulents et du transfert de masse sous une interface plane[END_REF], but what needs to be emphasized is that even though a temporal second order accuracy is achieved by [START_REF] Le | An improvement of fractional step methods for the incompressible navier-stokes equations[END_REF] while the final pressure is only first order accurate in time. In JADIM, both final pressure and velocity fields can be achieved with second order accuracy in time by using (2.10) and (2.11). From (2.9), we can show that φ is an O(∆t) quantity. P n+1/2 = P n-1/2 + φ (2.10)

u n+1 i = u k=3 i -∆t ∂φ ∂x i (2.11)
Fig. 2.2 illustrates the major difference in temporal advancement between JADIM with [START_REF] Kim | Application of a fractional-step method to incompressible navier-stokes equations[END_REF] and [START_REF] Le | An improvement of fractional step methods for the incompressible navier-stokes equations[END_REF]. The main modification of [START_REF] Le | An improvement of fractional step methods for the incompressible navier-stokes equations[END_REF] in comparison with [START_REF] Kim | Application of a fractional-step method to incompressible navier-stokes equations[END_REF] is that the pressure correction term from Poisson equation as (2.9) is only required at the last sub-step. Comparing JADIM with [START_REF] Le | An improvement of fractional step methods for the incompressible navier-stokes equations[END_REF], the pressure is explicitly considered in (2.3) such as P n-1/2 = P n-3/2 + φ n-1 is used during the calculation of u k=1,2,3 i from u n i . However, the pressure correction term is also considered at the end of the third sub-time step as in (2.11).

Figure 2.2: Combined Runge-Kutta and fractional-step time advancement: scheme of [START_REF] Kim | Application of a fractional-step method to incompressible navier-stokes equations[END_REF]; scheme of [START_REF] Le | An improvement of fractional step methods for the incompressible navier-stokes equations[END_REF]; scheme of JADIM. The pressure correction from u k=3 i to u n+1 i in JADIM is not shown in this figure for clarity.

The Force-Coupling Method

Numerical simulations of particle trajectories and suspension flow dynamics are based on multipole expansion of momentum source terms added to the Navier-Stokes equations namely Force-Coupling Method (FCM) as described in [START_REF] Maxey | Localized force representations for particles sedimenting in stokes flow[END_REF], [START_REF] Lomholt | Force-coupling method for particulate twophase flow: Stokes flow[END_REF] and Climent and Maxey [2009]. Recently reviewed by Maxey [2017], the flow outside the particle that matches the actual flow within a short distance from the surface requires only 6 meshgrids within the particle diameter which provides a minor cost compared to other fully-resolved simulations of particulate turbulence with fictitious domain methods or boundary fitted methods. Flow equations are Chapter 2. Numerical Methods and Validations dynamically coupled to Lagrangian tracking of particles. The fluid velocity and pressure fields are solutions of continuity (2.12) and momentum balance equations (2.13) and (2.14).

∇ • u = 0 (2.12)

ρ Du Dt = -∇p + µ∇ 2 u + f (x, t) (2.13) f i (x, t) = Np n=1 F n i (x -Y n (t)) + G n ij ∂ ∂x j (x -Y n (t)) (2.14)
The body force distribution f (x, t) in the momentum balance equation (2.14) accounts for the presence of particles in the flow. It is written as a multipole expansion truncated at the second order. The first term of the expansion called the monopole represents the force F n that the particle exerts on the fluid, due to particle inertia, external forcing or particle-to-particle contact forces (2.15). The second term, called dipole, is based on a tensor G n sum of two contributions: an anti-symmetric part is related to external torques applied on the particle, and a symmetric part that accounts for the resistance of a rigid particle to deformation by ensuring zero average strain-rate inside the particle volume, (2.16). The rigid finite-size particle is represented by a monopole and a dipole as it can be seen in the schematic figure (2.3).

F n = (m p -m f ) g - dV n dt + F n ext (2.15) S n ij (t) = 1 2 ( ∂u i ∂x j + ∂u j ∂x i ) (x -Y n (t))d 3 x = 0 (2.16)

Basic version for spherical particles

The particle finite-size is accounted for by spreading the momentum source terms around the particle center Y n using a Gaussian spherical envelope, one for the monopole

(x) = (2πσ 2 ) -3/2 e (-|x|/2σ 2 ) (2.17)
and another one for the dipole The widths of the two Gaussian envelopes, σ and σ are set with respect to the particle radius a as in (2.19) and (2.20) such that the settling velocity and the hydrodynamic perturbation generated by a particle in a shear flow are both exactly matched to Stokes solutions for a single isolated particle.

(x) = (2πσ 2 ) -3/2 e (-|x|/2σ 2 ) (2.18)
σ = a/ √ π (2.19) σ = a/(6 √ π) 1/3 (2.20)
The particle translation and rotation velocities are obtained from a local weighted average of the volumetric fluid velocity (resp. rotational velocity) field over the region occupied by the particle (2.21 and 2.22).

V n (t) = u(x, t) (x -Y n (t))d 3 x (2.21) Ω n (t) = 1 2 (∇ × u(x, t)) (x -Y n (t))d 3 x (2.22)
Particle trajectories are then obtained from numerical integration of the equation of translational motion (2.23).

dY n dt = V n (2.23)

Extension to non spherical shape

Ellipsoidal Particles

Assuming the particles are spherical (isotropic shape) works often well for a first prediction of suspension flow behavior. However there are some specific phenomena that take place in a suspension, related to the deviation of the particle shape from sphericity. Considering ellipsoidal particles is a natural evolution, since the surface of an ellipsoid can be described by a continuous function. For an ellipsoidal particle having its principal axes aligned with the coordinate axes and its center found at the reference origin, the implicit equation of the surface is written in the form.

x 2 a 2 + y 2 b 2 + z 2 c 2 = 1
where a, b and c are the lengths of its semi-axes.

In the frame of the Force Coupling Method, the Gaussian envelopes are adapted in order to take into account the particle shape. Therefore, the generalized Gaussian envelopes can be written for the monopole and dipole terms, following [START_REF] Liu | Force-coupling method for flows with ellipsoidal particles[END_REF]:

(x) = (2π) -3/2 (σ 1 σ 2 σ 3 ) -1 exp - 1 2 x 2 σ 1 2 + y 2 σ 2 2 + z 2 σ 3 2 (2.24) (x) = (2π) -3/2 (σ 1 σ 2 σ 3 ) -1 exp - 1 2 x 2 σ 1 2 + y 2 σ 2 2 + z 2 σ 3 2 (2.25)
It was shown by the same authors that the length scales σ i and σ i (i = 1, 2, 3) are related to the semi-axis a, b, c exactly like in (2.19) and (2.20). Therefore:

σ 1 = a/ √ π; σ 2 = b/ √ π; σ 3 = c/ √ π (2.26) σ 1 = a/(6 √ π) 1/3 ; σ 2 = b/(6 √ π) 1/3 ; σ 3 = c/(6 √ π) 1/3 (2.27)
In addition to the update of the particle positions, it is important to update the particle orientation in time, which itself impacts the particle positions. The general orientation of an ellipsoid is determined from the orthogonal unit vectors P 1 , P 2 and P 3 for the ellipsoid principal semi-axes. They should rotate as a rigid body. Therefore, for a particle n, their evolution in time is obtained from the particle rotation velocity Ω n as: .28) The transformation between the fixed coordinate axes and the instantaneous semi-axes of an ellipsoid is specified by the orthogonal matrix Q:

dP n i dt = Ω n × P n i ( 2 
Q = [P 1 T , P 2 T , P 3 T ] (2.29)
The general form of the Gaussian envelop is then written as:

(x) = (2π) -3/2 (σ 1 σ 2 σ 3 ) -1 exp     - 1 2 x T Q T     σ -2 1 0 0 0 σ -2 2 0 0 0 σ -2 3     Qx     (2.30) (x) = (2π) -3/2 (σ 1 σ 2 σ 3 ) -1 exp     - 1 2 x T Q T     σ -2 1 0 0 0 σ -2 2 0 0 0 σ -2 3     Qx    
(2.31) The separate integration of the three particle unit vectors in (2.28) can lead to some inconsistency in the particle angular dynamics. Therefore, following [START_REF] Nikravesh | Euler parameters in computational kinematics and dynamics[END_REF] we replace the time integration of separate unit vectors P i by the time integration of the quaternion q of a unit vector e as in (A.4).

The derivative in time of the quaternion is related to the particle rigid motion as following:

dq n dt = 1 2 (A n ) T × Ω n (2.32)
where A is the matrix in (A.19). The rotation matrix R allows to obtain the projection of a vector M from the particle coordinate system onto the Cartesian frame of reference M using:

M = RM (2.33)
With two perpendicular axes of the same length and a third one shorter (resp. longer), the ellipsoid is called oblate (resp. prolate) spheroid. Only spheroids will be considered in this work, within different flow configurations.

Cylinder of infinite length

Another extension to non-spherical particle shape was considered to simulate flows with cylindrical particles. We were particularly interested in suspension dynamics where the flow is induced by rotating cylinders [START_REF] Hackborn | A theoretical and experimental study of hyperbolic and degenerate mixing regions in a chaotic stokes flow[END_REF]] (see §A.3). In this context, we adapted the widths of the monopole and dipole envelopes to mimic an infinitely long cylinder of radius a. For a cylinder which center is located at the origin of a frame of reference, they are written as following:

(x) = (2πκ 2 σ 2 L z ) -1 exp(- |x| 2 + |y| 2 2κ 2 σ 2 ) (2.34) (x) = (2πκ 2 σ 2 L z ) -1 exp(- |x| 2 + |y| 2 2κ 2 σ 2 ) (2.35)
where the cylinder axis of symmetry is in the z direction, and L z is its length (equal to the domain size if periodic boundary conditions are applied in the z direction). The Gaussian widths σ and σ (for spherical particles) are corrected with coefficients κ and κ respectively, that are determined to match the cylinder settling (resp. rotating) velocities under an imposed force (resp. torque).

Determination of κ

We consider a cylinder submitted to a constant force f d in a still fluid bounded by two walls (as in fig. 2.5). The cylinder would settle with a velocity U c . The settling velocity of the cylinder is a function of the confinement h/a and Reynolds number Re p = aU c /ν. In the limit of low Reynolds number and infinite cylinder length, with the center of the cylinder located in the midplane, the theoretical prediction following [START_REF] Faxén | Forces exerted on a rigid cylinder in a viscous fluid between two parallel fixed planes[END_REF] is: 2.36) where F D = f d /(µU c ) stands for non-dimensional value of the drag per unit length. The coefficients a 0 , a 2 , a 4 , a 6 and a 8 are -0.915689, 1.72438, -1.73019, 2.40564 and -4.59131, respectively. In the frame which origin is located at the cylinder center, this problem is equivalent to move the fluid by imposing a velocity on the 2 walls U w = -U c by the two walls with a velocity U w . If a force f d is applied on the cylinder, opposite to the wall velocity direction and related to it by (2.36), then the cylinder would remain motionless. That's what we imposed in the numerical simulations. Periodic boundary conditions were applied in the settling (x) and cylinder axis (z) directions. If the FCM restitutes the induced flow correctly at low Reynolds number, then the cylinder velocity u p would be negligibly small.

F D = 4π ln h a + a 0 + a 2 a h 2 + a 4 a h 4 + a 6 a h 6 + a 8 a h 8 -1 ( 
We first did domain-dependence tests at Re p = 0.01, by calculating the velocity at which the cylinder would move if it was not held fixed. As shown in the left panel of fig. 2.4, we increased L x /a from 20 to 240 with L z /a = 2, the confinement being h/a = 4 and using κ = 1. The computational domain consists of a regular mesh for the smallest domains, ensuring at least 6 grids in the cylinder diameter. In order to save computational resources with the large domains, a fine regular mesh (blockmesh) is used inside the cylinder and in its vicinity, whereas the mesh is stretched in the other regions. The blockmesh is shown in the right panel of fig. 2.4. We verified that the meshing nature does not have any impact on the result.

At small Re p , the box length in the streamwise direction L x /a has a considerable effect on the cylinder velocity, and the results are almost domainindependent at L x /a ≈ 240. The length of the simulation domain in the cylinder axis direction (z) has no effect on the cylinder velocity when L z /a is increased from 2 to 8, which indicates that the FCM forcing is not dependent on the choice of L z in the definition of the Gaussian envelopes (2.34) and (2.35).

At the same Reynolds number, with L x /a = 240 and L z /a = 2, we gradually decreased the confinement by increasing h/a from 2 to 10. For a given value of h/a, we apply on the cylinder a force estimated from the theoretical value, and wait until the cylinder velocity reaches the steady state u p . Fig. 2.5 shows (1 -|u p /U w |)F D as a function of h/a for different values of κ. As already mentioned, a convenient value of κ is found when the cylinder velocity is close to zero, which is the case when κ is approximately √ 1.5. The effect of the mesh regularity is also tested.

Determination of κ

Landau [START_REF] Landau | Course of theoretical physics[END_REF] have derived the relation between the applied torque (per unit length) and the cylinder angular velocity at negligible Re p (2.37) in an unbounded still fluid, where Re p is defined here as 2ω 0 a 2 /ν. The resistance coefficient per unit length, which is the ratio between the torque (per unit length) and the angular velocity is found to be:

C ∞ = 4πωa 2 (2.37)
The cylinder rotation rate decreases if the cylinder rotates near a wall. In a semi-infinite fluid (one wall close to the cylinder) the friction coefficient, following Jeffery [1922a] becomes:

C = C ∞ f (a/h p ) (2.38)
where f (a/h) = 1/ 1 -(a/h) 2 and h is the distance from the cylinder axis to the single wall. In the presence of two parallel walls, Howland and [START_REF] Howland | Slow rotation of a circular cylinder in a viscous fluid bounded by parallel walls[END_REF] propose the correction of the torque by f (a/h) equal to 1.076, 1.145, and 0.5 for a set of discrete values of a/h = 0.3, 0.4, and 0.5, respectively. [START_REF] Hellou | Etude numérique et expérimentale de l'écoulement à structure cellulaire engendré par la rotation d'un cylindre dans un canal[END_REF] extended the range of calculation to f (a/h p ) = 1.00776, 1.05109, 1.25101, 1.89097, and 3.39572 for a/h = 0.1, 0.25, 0.5, 0.75, and 0.9 respectively. We use these theoretical values to find the suitable κ for the dipole envelope.

Before determining κ , we set it to 1, and tried to find the minimum domain size required to obtained a domain-independent solution. This test was performed at Re p = 0.1 and h/a = 4. We imposed the torque and calculated the particle angular velocity ω z , scaling it with the theoretical value ω 0 at an equivalent confinement value. From the left panel of fig. 2.6, ω z /ω 0 was independent of the domain size when L x /a exceeded 20. Then with a fixed L x /a = 20, we changed the length L z of the domain, which seems to have no significant effect on the cylinder angular velocity.

Then, with L x /a = 20, L z /a = 2 and κ = 1, we calculated the dependence of the cylinder angular velocity on the Reynolds number. Fig. 2.7 shows that the cylinder rotation rate reaches the steady value, which is independent of the Reynolds number up to Re p = 10 in agreement with [START_REF] Champmartin | Flow around a confined rotating cylinder at small reynolds number[END_REF], after a time that scales properly with the diffusion time scale ν/a 2 . Finally, the appropriate value of κ was found such that ω z /ω 0 ≈ 1. Fig. 2.8 shows that κ = 3 1/12 allows to capture the right cylinder angular dynamics.

The cylinder angular velocity was then calculated with this value κ = 3 1/12 , in the case where the cylinder center is not located in the mid-plane. There is analytical solution that can be found for this case. Realized numerical simulations instead, [START_REF] Champmartin | Flow around a confined rotating cylinder at small reynolds number[END_REF] pointed out that the torque correction in this situation is mainly due to the effect of the closest wall in the limit ε → 0 where εa is the minimum distance between the cylinder surface and the closest parallel wall. Fig. 2.9 shows a comparison between FCM results and numerical values from [START_REF] Champmartin | Flow around a confined rotating cylinder at small reynolds number[END_REF] (two-wall bounded flow) as well as the theoretical prediction of (2.38) in semi-infinite fluid. The matching is reasonably good when ε is larger than 0.3. Deviation is observed for a smaller ε, in which case the effect of the wall is strong. 

Collision barrier

The FCM, like many fictitious domain methods, has a limited resolution of the flow dynamics that captures the bulk flow, but cannot resolve the local fluid forces when particles are close. Therefore, particle overlapping is prevented using a collision barrier, i.e. repulsive pairwise forces on very close particles, following [START_REF] Dance | Collision barrier effects on the bulk flow in a random suspension[END_REF] 

Repulsive Force for Spherical Particles

For a pair of neutrally buoyant spherical particles, α and β, a force derived from a repulsive potential is added to the monopole term of both particles (such as (2.15) for particle α) when the distance between particles is smaller than (R ref -2a) and zero otherwise. This force is written in (2.39).

F α,β c = F ref R 2 ref -(r α,β ) 2 R 2 ref -(2a) 2 x α,β 2a (2.39)
F ref is scaled with the Stokes drag force F d = 6πµγa 2 based on characteristic particle relative velocity in a linear flow and γ is the shear rate (related [START_REF] Hellou | Etude numérique et expérimentale de l'écoulement à structure cellulaire engendré par la rotation d'un cylindre dans un canal[END_REF].

to the fact that most of the simulations considered for this work concern shear flow). The value of the force barrier during a collision is set in response to the proximity of the particles. The total force is obtained through a pairwise summation procedure.

The relative trajectories of two colliding particles in laminar Couette flow are shown in fig. 2.10. The particles were placed initially in the flow velocity gradient plane. Their relative initial positions were set outside the area where closed relative trajectories might be observed [see [START_REF] Kulkarni | Suspension properties at finite reynolds number from simulated shear flow[END_REF][START_REF] Haddadi | Microstructure and rheology of finite inertia neutrally buoyant suspensions[END_REF]. A condition for utilizing this simplified model is that there is no elastic or inelastic collisions when contacts between particles happen. As demonstrated in de Motta et al. [2013], a no-rebound situation exists during the collision under the condition of St < 10 where particle impact Stokes number St compares particle inertial effect to viscous effect. All values St (max) used in this work are below this critical value. Fig. 2.10 Figure 2.9: Correction for the torque as a function of the proximity of the cylinder to one of the walls. a/h is fixed to 0.29 and κ is chosen as 3 1/12 . Comparison between FCM and numerical results from [START_REF] Champmartin | Flow around a confined rotating cylinder at small reynolds number[END_REF] in a two-wall bounded fluid. Theoretical prediction from Jeffery [1922a] is obtained in semi-infinite fluid.

shows that particles do not overlap when the repulsive force is activated for either bubbles, neutrally buoyant or inertial particles (gravity is neglected).

At relatively high volume fractions it is necessary to provide a more detailed representation including viscous lubrication forces and solid-body contact forces (possibly including roughness and friction). In principle, viscous lubrication forces will prevent contact of perfectly smooth particles but contact occurs in practice through surface roughness. Tests were made, varying the magnitude of the force F ref and the cut-off distance R ref . In turbulent flow simulations, F ref was chosen such that the number of overlapping particles was found to be less than 1% of the total particle number (F ref /F d = 10) at the largest concentration (Φ = 10 %) used throughout this work. 

ρ p /ρ f =5; • ρ p /ρ f =10; bubble.

Repulsive Force for ellipsoidal particles

The repulsive model is important to take into account for non spherical moving particles because it seriously influences the particle orientation and consequently their interaction with the flow. For a pair of ellipsoids (α) and (β), the collision barrier is activated when the particles are very close. Following [START_REF] Pope | Algorithms for ellipsoids[END_REF] which gives the method for obtaining the nearest point from a fixed point in the surface of one ellipsoid to the surface of the other non overlapping ellipsoid. We obtain the minimum distance between two ellipsoids, or an ellipsoid and a wall by successive approximations detailed in §A.2.

The contact force is added at the points of "contact" A α and A β (which are the closest points between both particle surface) if their distance is less than 0

.1( O α A α + O β A β ).
As shown in fig. 2.11, the repulsive force at the contact point A α is normal to the plane tangent to the self-similar ellipsoid surface at that point. Since the direction of the force does not go through the ellipsoid center, the repulsive force is then decomposed into (F αβ c ), and a torque (T αβ c ), both applied at the center (O α ) of the ellipsoid. Similarly to (2.39), this force and the corresponding torque are written as: 

F αβ c = F ref 1 - A α A β (0.1 O α A α +0.1 O β A β ) 2 A α A β A α A β (2.40) T αβ c = O β A β ⊗ F αβ c ; T βα c = O α A α ⊗ F βα c (2.
O α A α + O β A β ).
Simultaneously, equal and opposite force (F βα c ) and torque (T βα c ) are applied on the other ellipsoid (β) at O β following Newton third law. This force is activated as soon as the two dashed ellipsoidal lines intersect with each other, the expanding factor being 1.1.

We do a test for the repulsive force in (2.40) and the shortest distance detection method of successive approximations in §A.2 before it is added into the flow solver. Fig. 2.12 shows the evolution of the repulsive force 

F ref = 0; F ref = F d ; F ref = 10F d . Trajectories of F ref = F d overlap with F ref = 10F d .
The vector stands for the orientation of the symmetry axis for spheroidal particles during the process of interaction.

FCM coupled to the flow solver

We have described the numerical scheme of single-phase flow solver in §2.1. In this section, the numerical algorithm of FCM coupled to the flow solver in 2.3. FCM coupled to the flow solver 31 JADIM (three sub-steps of RK3/CN scheme) is detailed.

Neutrally buoyant particles

The position of particle p is calculated explicitly by the previous two sub-steps:

Y k n = Y k-1 n + ∆t(γ k V k-1 n + ζ k V k-2 n ) (2.42)
k denotes the time substeps, k = 1, 2, 3. Here the subscript n denotes the particle number. The velocity and rate of rotation of particle n is updated at the current position using the Gaussian envelopes

V k n = u k (x) (x -Y k n )d 3 x Ω k n = 1 2 (∇ × u k (x)) (x -Y k n )d 3 x (2.43)
The monopole force is calculated from the current particle position as well

F k M = (m p -m f )(g - dV k n dt ) + F k ext (2.44)
The first contribution does not cancel only if the particle density is different from the fluid density. Its numerical implementation will be discussed in details in the next subsection. The monopole forcing term F k M is included in the fluid flow equations in an explicit way, at every RK sub-step. The dipole forcing F k D is then calculated implicitly by the following iterative algorithm.

1. The flow intermediate velocity û is first calculated without the dipole forcing, using the non-linear term (N ) and viscous linear term (L) explicitly.

û -u k-1 ∆t =γ k N (u k-1 ) + ζ k N (u k-2 ) + α k L(u k-1 ) -(α k + β k )∇p k-1 + γ k F k-1 M + ζ k F k-2 M (2.45)
2. This intermediate velocity is not divergence free, and lacks the effect of the perturbation due to the dipole forcing. The divergence free velocity u ∞ is then calcuated, using the dipole forcing F ∞ D saved from the pre-
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vious sub-step iteration, and that is included in the calculation of the auxiliary potential p ∞

∇ 2 p ∞ = ∇ • F ∞ D + ∇ • û ∆(α k + β k ) (2.46)
Then the flow velocity u ∞ is caluclated using:

(1 -β k ∆tL)(u ∞ -û) = (α k + β k )∆t[-∇p ∞ + F ∞ D ] + β k ∆tL(u ∞ ) (2.47)
which is the solution of the Navier-Stokes equation assuming that F ∞ D is the correct forcing term. However, the velocity field u ∞ does not satisfy in general the zero strain rate condition inside the particle volume (to ensure the rigid body condition).

3. A correction u p of the velocity field is needed, such that the correct velocity field in the sub-step k, u k = u ∞ +u p , satisifies the condition the strain-free condition in all particles simultaneously. The complementary part to the dipole forcing F p D that allows to obtain the correct u p , is found in an iterative way using the conjugate gradient procedure. The corresponding velocity perturbation is caluclated using only the viscous terms and the pressure generated by this forcing.

∇ 2 p p = ∇ • F p D (1 -β k ∆tL)u p = (α k + β k )∆t[-∇p p + F p D ] (2.48)
So far the total dipole force in the current sub-step becomes

F k D = F ∞ D + F p D 4.
Inside the iterations dedicated to find the convenient values of the dipole forcing, we insure that the fluid velocity corresponding to the total forcing is divergence free by calculating the auxiliary potential corresponding to the additional perturbation

∇ 2 p = ∇ • F k D (2.49)
The total pressure field is therefore

p k = p k-1 + p ∞ + p (2.50)
As developed here, this numerical scheme is suitable for particle Reynolds number less than 10, as it is discussed in the different numerical tests. In principle, it can be used for very low Reynolds numbers. However the stability condition related to the diffusive terms leads to excessively low time steps, making the use of this code impractical.

Non neutrally buoyant particles

If the particle density is different from the fluid density, the excess of particle inertia leads to an additional forcing that should be added to the monopole term, and which will be called F inertia :

F inertia = -(m p -m f )
dV n dt (2.51)

F inertia | 3 it = -(m p -m f ) V | 3 it -V | 2 it δt 3 it × α + V | 3 it-1 -V | 2 it-1 δt 3 it-1 × (1 -α) ∆ M F inertia | 1 it+1 = -(m p -m f ) V | 1 it+1 -V | 3 it δt 1 it+1 × α + V | 1 it -V | 3 it-1 δt 1 it × (1 -α) ∆ M F inertia | 2 it+1 = -(m p -m f ) V | 2 it+1 -V | 1 it+1 δt 2 it+1 × α + V | 2 it -V | 1 it δt 2 it × (1 -α) ∆ M (2.52)
δt k is the sub-time step of every RK step corresponding to δt k=1 = 8/15∆t, δt k=2 = 2/15∆t, δt k=3 = 1/3∆t. α = 3/4 is convenient for the density ratio 0 < ρ p /ρ f < 6 in Taylor-green vortex at Re p = 5, while it ensures stable simulations with 0 < ρ p /ρ f < 10 in turbulent plane Couette flow at Re b = 750.
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This force depends on particle acceleration. It is therefore updated at every sub-step in the time integration scheme, for a better stability. The coefficients that are used for F inertia in the Navier-Stokes equations should obey the RK scheme. The additional velocity, within the Monopole Gaussian envelope, as in (2.45). The inertial forcing is discretized in time with F inertia | k it , where | k it stands for k th sub-step in the it th time step. The particle acceleration in the inertial force is weighted by a relaxation factor α. This is developped as in (2.52).

Validation

For a single neutrally buoyant particle, in the absence of external forces, the coupling between the particle and the carrier flow occurs exclusively from the force dipole term which is mainly related to the local flow strain rate. However, considering an inertial particle, the inertial force as a monopole force is exerted at the particle center additionally. Furthermore, for multiple particles, an external monopole force for spheres whereas an external monopole force and torque for ellipsoids appear due to repulsion to prevent overlapping between particles. Accordingly, in this section, the method has been validated under finite Reynolds number flow configurations for spheroids and ellipsoids at low to moderate concentration.

Spherical Particles

For spherical particles, the dipole tensor computed for a particle in pure shear flow (negligible wall effect in wide-gap pCf) was validated [see Loisel et al., 2013[START_REF] Loisel | Inertia-driven particle migration and mixing in a wall-bounded laminar suspension flow[END_REF] against direct numerical simulation results reported in [START_REF] Mikulencak | Stationary shear flow around fixed and free bodies at finite reynolds number[END_REF]. The comparison revealed that our method captures accurately the hydrodynamic perturbation when particle Reynolds number is below 10. Also the equilibrium position of a particle in laminar pressuredriven flow due to cross-streamline inertial migration (Segré -Silberberg effect) agrees well with theoretical predictions in the same range of particle Reynolds numbers.

Here we show additional validations relevant to particles in Couette flow.

First, the effect of increasing the particle-to-Couette gap size ratio, i.e. particle confined between walls, is studied in the limit of low Re p , where theoretical predictions exist. Second, particle wall-normal velocity is calculated, in a Couette flow, at low but finite flow inertia. Last, the effect of particle inertia is considered to test the unsteady response of a particle in a quiescent fluid experiencing an oscillatory force. In this latter configuration, FCM results are accurate as long as the Stokes layer of the velocity perturbation near the particle surface is not too thin. An additional configuration is reported for Taylor-Green vortex array which mimics to a certain extent the large scale vortices in turbulent pCf.

Effect of Confinement on Particle Stresslet and Rotation in Laminar pCf

The first configuration consists of a single neutrally-buoyant particle, located at the center of a laminar pCf for low Reynolds number. The particle translational velocity remains zero because the flow velocity cancels at the gap center. However, particle rotation due to the flow vorticity converges in time to a steady value that depends on the Couette gap width. In the limit of wide gap, where the wall contribution to hydrodynamic perturbation is negligible, our previous tests have shown that the FCM response is accurate especially when the particle Reynolds number is lower than 10 [see Loisel et al., 2013[START_REF] Loisel | Inertia-driven particle migration and mixing in a wall-bounded laminar suspension flow[END_REF].

In the case of thin gap, short-range particle-wall interaction becomes important. Particle stresslet and rotational velocity are calculated numerically and compared to the theoretical predictions of [START_REF] Sangani | Roles of particle-wall and particleparticle interactions in highly confined suspensions of spherical particles being sheared at low reynolds numbers[END_REF] based on Lamb multipoles (following the work of [START_REF] Ozarkar | A method for determining stokes flow around particles near a wall or in a thin film bounded by a wall and a gas-liquid interface[END_REF]). In their work, the rotational velocity and stresslet are predicted for both asymptotic limits : 0 < a/h 1 and large 0 a/h < 1 particle-to-gap size ratio (where h is half the Couette gap width). Equations (2.53) where c 3 and c 4 are as in (2.54).

G 12 G 0 12 = 1 1 -c 3 a 3 + c 4 a 5 + O(a 7 ) (2.56)
with Ω given by (2.53). As shown in figures 2.14(a, b), the confinement reduces the rotational velocity of the sphere and increases its G 12 stresslet component when compared to its value for unbounded shear flow. The FCM response is accurate up to a/h = 0.8. The deviation observed for stronger confinement would need to be supplemented by adding higher order multipoles or lubrication correction. The largest discrepancy of FCM results compared to theoretical predictions, is ≈ 4% and 10% for rotational velocity and stresslet respectively when the particle size is a/h = 0.8.

Quasi-steady wall-normal particle migration

When a neutrally buoyant particle is not set in the mid-plane of the Couette gap, the asymmetry of the velocity perturbation yields a wall-normal force oriented towards the center of the gap, as long as the particle Reynolds number is not negligibly small (which breaks the flow reversibility argument). This was observed in the experiments of Halow and Wills [1970] in cylindrical Taylor-Couette flow and later in the 2D direct numerical simulation by Feng et al. [1994]. Theoretical predictions were derived by [START_REF] Ho | Inertial migration of rigid spheres in two-dimensional unidirectional flows[END_REF] and [START_REF] Vasseur | The lateral migration of a spherical particle in twodimensional shear flows[END_REF], under quasi-steady state, in the limit of finite particle size and low but finite particle Reynolds number (the wall falls inside the region perturbed by the particle).

We tested the accuracy of the FCM under such conditions, using a Couette (a) (b)

Figure 2.14: (a) Rotational velocity and (b) Stresslet of a neutrally-buoyant sphere located at the center of laminar pCf as a function of the ratio between the particle radius and half of the gap width a/h. The rotational velocity is scaled by the flow shear rate γ, and the stresslet is scaled by its value in unbounded shear flow G 0 12 = 10 3 πµa 3 γ. The stars * are obtained using FCM simulations at Re p = 0.01, and circles • are from simulations of [START_REF] Sangani | Roles of particle-wall and particleparticle interactions in highly confined suspensions of spherical particles being sheared at low reynolds numbers[END_REF] in Stokes flow. The lines correspond to asymptotic limits written in [START_REF] Sangani | Roles of particle-wall and particleparticle interactions in highly confined suspensions of spherical particles being sheared at low reynolds numbers[END_REF]:

a/h 1; 0 a/h < 1;
gap-to-particle diameter size ratio L y /d = 32, and particle Reynolds number Re p ≡ γd 2 4ν = 2.4 × 10 -4 , where γ is the shear-rate and ν is the kinematic viscosity. Fig. 2.15 shows the quasi-steady dimensionless wall-normal migration velocity Vp,y κUwRep where κ = d/L y is the ratio between particle diameter with Couette gap width. The numerical results are obtained after 100 iterations corresponding to tν/a 2 = 1.5, that are required for the convergence of the velocity while the wall-normal migration distance is still insignificant. The simulation results are in very good agreement with the theoretical predictions proposed by [START_REF] Vasseur | The lateral migration of a spherical particle in twodimensional shear flows[END_REF]. Near the wall, the method is less accurate. Higher orders are required in the multipole expansion to capture the lubrication effect. At higher particle Reynolds number, the wall-normal velocity is larger leading to effective particle migration towards the Couette center (the migration velocity scales as O(Re p )).

Transient inertia-induced particle migration

As discussed in the previous section, a particle placed in a wall-bounded shear flow undergoes wall-normal migration. We obtained trajectories of particles Figure 2.15: Quasi-steady wall-normal velocity of a single particle as a function of the particle distance to the wall in laminar pCf. The lines are theoretical predictions from [START_REF] Vasseur | The lateral migration of a spherical particle in twodimensional shear flows[END_REF] (dashed line) and [START_REF] Ho | Inertial migration of rigid spheres in two-dimensional unidirectional flows[END_REF] (solid line); present simulations with κ = d/L y = 1/32, Re p = 2.4 × 10 -4 . migrating in both Couette and pressure-driven laminar flows. The wall-normal velocity is oriented towards the Couette center where it vanishes in Couette flow. However in pressure-driven flow, the particle wall-normal velocity is oriented towards an equilibrium position located between the channel center and the wall, which itself depends on the Reynolds number (the Segré Silberberg effect). Information on particle trajectories can hardly be found in the literature. For this reason, we compared the result of our code to the trajectories obtained by the direct-forcing fictitious domain (DF/FD) method [START_REF] Yu | A direct-forcing fictitious domain method for particulate flows[END_REF], which is a non-Lagrange-multiplier version of the distributed-Lagrange-multiplier/fictitious-domain (DLD/FD) method [START_REF] Glowinski | A distributed lagrange multiplier/fictitious domain method for particulate flows[END_REF]. The work of [START_REF] Yu | A direct-forcing fictitious domain method for particulate flows[END_REF] has demonstrated the accuracy and robustness of the new method, in particular for the case of relatively low Reynolds numbers and neutrally-buoyant particles. The comparison between both methods is shown in fig. 2.16.

The test realized in plane Couette flow consists of a cubic domain of unity dimension, and a particle of radius a = 0.1. The grid resolution is 32 3 or 64 3 in FCM (which correspond respectively to 6 and 12 grid points per particle diameter), and 64 3 in DF/FD. Particle is initially at the position y p = 0.15. Two walls at y = 0 and y = 1 move in opposite directions, with a shear rate set to 1. The Reynolds number based on the shear rate and particle radius is Re p = 1. Fig. 2. 16(a) shows the particle trajectory in a plane Couette flow for different time steps, using the DF/FD method. Below dt = 0.001, the trajectory is not anymore dependent on the time step. We considered dt = 0.005 for the remaining tests since it gives reasonnably accurate results with an acceptable computational time. Fig. 2. 16(b) shows the comparison between FCM and DF/FD. The trajectories match pretty well when 12 grid points are used in both methods. At long times, the difference in the convergence to the equilibrium position can be due to the accuracy of the numerical schemes, knowing that the migration velocity (or hydrodynamic forcing) is very small near the Couette center.

The test realized in Poiseuille flow consists of a domain L x × L y × L z = 0.5 × 1.0 × 0.5, and a particle of radius a = 0.05. The grid resolution is 32 × 64 × 32 in FCM whereas 64 × 128 × 64 in DF/FD. A constant pressure gradient is imposed in the streamwise (x) direction to obtain a parabolic velocity profile with the maximum velocity in the channel center equal to 1.0, and the fluid kinematic viscosity is set to ν = 1. The two walls lay at y = 0 and y = 1, with no-slip boundary condition. The initial particle position is at y p = 0.25. The test is realized with two Reynolds numbers (Re = 100 and 200), based on the channel height and the flow average velocity. The particle trajectories at different Reynolds numbers, and using both numerical methods, are plotted in fig. 2.16(c). The particle migrates faster and its equilibrium position is closer to the channel wall at higher Re, which is already reported in [START_REF] Loisel | Transition à la turbulence des écoulements de suspension: simulations numériques et analyse physique[END_REF]. The agreement between both methods is reasonable for the particle migration velocity and equilibrium position, taking into account the low resolution used in the FCM simulation. Higher resolution leads to a much better agreement. As we can see in fig. 2.17, with the increasing of the aspect ratio, keeping at least 3 grids and 6 grids within the semi-minor axis in FCM and DF/FD, respectively. Compared to Lagrangian points distribution to the particle used in DF/FD, we can find the points inside the particle is dependent on the particle position and its orientation (Ar = 1) in FCM. The Gaussian shape will take account less points in the direction of semi-major axis and the less points within the Gaussian shape the less accurate of FCM theoretically. 

Particle oscillation under an imposed periodic forcing

The results of this thesis focus on particles in turbulent flow. Turbulence has a wide range of length or time scales which exert forcing on particles. Large scale vortices have strong forcing amplitudes but longer time scales whereas small scale vortices may generate higher frequency forcing on particles. As described by [START_REF] Climent | Numerical simulations of random suspensions at finite reynolds numbers[END_REF], FCM framework embeds drag, addedmass, lift and history forces experienced by the particle in F n expressed as (2.15).

In this section, we focus on the ability of FCM to model the unsteady response of a particle experiencing an oscillatory external force without considering gravity. Following Maxey [1999], we consider the motion of a rigid (neutrally buoyant or dense) particle moving into a fluid that is otherwise quiescent. The solution of this problem is equivalent to that of an oscillating fluid obtained in a frame attached to the particle which generates the devel-opment of Stokes layer at the particle surface. Particle oscillation is imposed via temporal evolution of the monopole term F ext (t) = 6πµau 0 sin(ωt), where u 0 is a constant vector. The velocity field induced by the particle is obtained by solving equations (2.12-2.14), and the particle velocity u p is obtained by integration of the local fluid velocity using (2.21). Snapshots of the velocity field are displayed in fig. 2.18, for two values of δ 2 ≡ ωa 2 /ν which is the ratio of the particle radius to the Stokes layer thickness. This figure shows that the flow velocity perturbation representing the Stokes layer thickness shrinks when the oscillation frequency increases. Note that δ 2 (as defined here) is equivalent to the ratio of particle relaxation to fluid characteristic oscillation time scale, and consequently to a Stokes number. The motion of the oscillating particle is written as:

u p (t) = αu 0 sin(ωt + ϕ) (2.57)
where the velocity is proportional to the force amplitude and ϕ is the phase shift.

FCM results are compared to that of Maxey 

/ρ f = 1; ρ p /ρ f = 2; ρ p /ρ f = 5.
Maxey and Riley [1983] which is valid in the limit of low particle Reynolds number. For quiescent fluid far from the particle, the analytical relationship between the amplitude of external oscillatory forcing (written as F (t) = F e iωt ) and particle velocity is:

F = u p (m p + 1 2 m f )iω + 6πµa(1 + δe iπ/4 ) e iϕ (2.58)
The terms on the right hand side of (2.58) correspond to particle inertia, added mass, steady and unsteady drag forces. The Basset history force is important when the particle-to-fluid density ratio is low to moderate. The theoretical prediction of α and ϕ as well as the FCM results (2.58) are displayed in figs. 2.19(a, b) as a function of δ 2 . This figure shows that the modulus is calculated accurately up to δ 2 = 2.5. The under-estimation of the phase lag increases when particle inertia decreases, and the maximum discrepancy with respect to Maxey-Riley's prediction is around 13% for the bubble case when δ 2 = 2.5. The numerical simulations corresponding to turbulent plane Couette flow with the largest particles (L y /d = 10) are only carried out with neutrally buoyant particles, in which case δ 2 is less than 1.25 (7% discrepancy in the test case). As for the error corresponding to the small particle case (L y /d = 20), its maximum value is around 5%, according to the oscillation test for the case of bubbles. For much higher δ 2 , the Stokes layer is too thin to be accurately resolved by FCM. The purely viscous contribution of the hydrodynamic force (in the absence of added mass term) is also plotted in figs. 2.19(a, b) for comparison. Furthermore, the effect of density ratio up to 5 is also investigated. It is clear that FCM predictions become gradually closer to the theoretical prediction while particle density is increased because the relative contribution of unsteady Basset drag reduces.

Effect of Inertia on Particle Dynamics in Taylor-Green Vortex

Prediction of the migration of inertial particles in a vortex is of a major interest for many practical applications which can achieve separation or mixing of two-phase flows, such as centrifugal separators in manufacturing processes and bubbles separation in Hydrocyclones. For bubble dispersed in Couette-Taylor flow patterns, [START_REF] Climent | Numerical simulations of random suspensions at finite reynolds numbers[END_REF] did one-way coupling simulation to evidence that the combination of local pressure gradient, added mass and lift forces induce an accumulation of small bubbles in low-pressure regions of the flow corresponding to vortex cores. The same phenomenon of a small lighter particle in a rigid vortex is also observed from the experiment of by [START_REF] Candelier | On the effect of the boussinesqbasset force on the radial migration of a stokes particle in a vortex[END_REF]. Heavier particle is expelled from the center of a vortex toward high strain rate regions. However, studies focusing on finite-size particles are rare. To test the ability of FCM to predict the correct particle motion across flow streamlines for different particle inertia, we performed numerical simulations using a single finite size particle in a periodic Taylor-Green vortex array.

Comparison with the numerical solution of Maxey-Riley equation

Fig. 2.20 shows the particle trajectory in a Taylor-Green vortex for different particle-to-fluid density ratios and different particle Re p , with a particleto-vortex size ratio d/l e = 0.4/π. The behaviour of light and heavy particles is correctly captured by FCM: bubbles move towards the vortex center while inertial particles are pushed towards the high strain rate regions (not shown here). The motion of bubbles is only illustrated in fig. 2.20 for different Reynolds numbers. The higher the Reynolds number, the faster is the inward spiralling motion. Numerical results were compared to the trajectory of a single particle predicted by the Maxey-Riley equation [START_REF] Maxey | Equation of motion for a small rigid sphere in a nonuniform flow[END_REF] written for point particles (of radius a and mass m p ) at low Reynolds number:

m p du p dt = m f Du f Dt - m f 2 ( du p dt - Du f Dt ) -6πa p ρ f ν(u p -u f ) -6a 2 p ρ f √ πν t t 0 1 √ t -τ ( du p dτ - du f dτ )dτ (2.59)
In (2.59), the Faxén terms due to velocity curvature in the added mass, drag and Basset contributions are neglected. Equation (2.59) was solved using
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Adams-Bashforth multi-step integral method with an explicit scheme for the Basset history force (following Daitche [2013]), the accuracy of this scheme being second order in time. The numerical integration of (2.59) was tested against the analytical solution of [START_REF] Candelier | On the effect of the boussinesqbasset force on the radial migration of a stokes particle in a vortex[END_REF] to calculate particle trajectory in a rigid-body vortex (u(r) =| x | e θ ), the comparison is shown in fig. 2.21. We can see that not only the shape of the trajectory fits the analytical solution, but also the agreement was very good at every integer time unit.

Figure 2.21: The exact trajectory of a particle starting at x 0 = (1, 0) with parameters r p = 0.1 and ν = 0.0111. The blue cross stands for the position at integer time from analytical solution; red circle stands for the position at integer time in numerical simulation; analytical solution; numerical simulation with the same total time units as analytical solution.

The single particle trajectory in a Taylor-Green vortex from FCM simulations is very well predicted by Maxey-Riley equation of motion at Re p = 0.1. At higher Re p , the agreement is good during the first period of rotation. Then discrepancy builds up in following periods. Adding Faxen terms (except for the history contribution) did not have any significant impact on the particle trajectory. Maxey-Riley equation of motion does not contain the lift force due to shear of the undisturbed flow. This force perpendicular to the particle slip velocity is negligible at low Reynolds numbers, and becomes significant when Re p increases. Its analytical expression is somehow complicated to derive in a general flow configuration, because the contribution of convective and unsteady terms to this force are not additive due to non-linearity [START_REF] Candelier | Analytical investigation of the combined effect of fluid inertia and unsteadiness on low-re particle centrifugation[END_REF]. However we can use the model proposed by Saffman [1965] in the limit of low but finite Reynolds number based on the particle slip velocity (u f -u p ) with respect to the unperturbed fluid flow velocity u f .

F L(Sa) = -6.45ρ f νa 2 ν |Ω| 1 2 Ω × (u f -u p ) (2.60)
Ω = ×u f is the flow vorticity. An extension of this lift force can be found in Mei [1992] at finite particle Reynolds number (Re s 40) fitting the numerical results reported in [START_REF] Dandy | A sphere in shear flow at finite reynolds number: effect of shear on particle lift, drag, and heat transfer[END_REF].

F L F L(Sa)
= (1 -0.3314α 0.5 ) exp(-Re s 10 ) + 0.3314α 0.5 (2.61) where Re s is a Reynolds number based on the slip velocity Re S = |u f -up|2a ν and α is a dimensionless shear rate α = |∂u f /∂y|a |u f -up| . Adding the lift force to the Maxey-Riley equation reduces the over-estimate of the theoretical prediction, but it did not match exactly the numerical evolution obtained with FCM.

In fig. 2.22(a), step by step, we first compare two codes for finite-size neutrally buoyant particle and numerical solution of Maxey-Riley equation at Re p = 0.1. In a long time period upto tν/a 2 = 180, we achieve perfect overlap between FCM with DF/FD whereas they move faster than numerical solution of Maxey-Riley equation. Then we increase the density ratio to ρ p /ρ f = 2.0 at Re p = 1 for a long simulation and the result is plotted in fig. 2.22(b) upto tν/a 2 = 100. We obtained very good agreement between FCM with DF/FD. Finally, the case for both a lighter (ρ p /ρ f = 0.6) and a heavier particle (ρ p /ρ f = 2.0) with Re p = 1 is used to do the comparison in fig. 2.22(c, d). The agreement is good as well between FCM with DF/FD. is from FCM, is from DF/FD method and is the numerical solution of Maxey-Riley equation. Different colors in (c) and (d) stand for lighter and heavier particle, respectively.

Ellipsoidal Particle

Settling in a vertical duct

FCM is based on a low-order multipole representation of the particle forcing into the fluid equations. The flow perturbation in the vicinity of the particle surface is not strictly well resolved, compared with other Fictitious Domain Methods, because the no-slip condition is not explicitly imposed. Therefore, it is valuable to compare the hydrodynamic perturbation induced by an ellip-soidal particle with an equivalent one obtained by the aid of direct numerical simulations. We consider particularly the test of a settling ellipsoid with semiaxes a 1 = 1.2a, a 2 = 0.9a, a 3 = 1.5a corresponding to x, y, z directions in a vertical duct, as the test of [START_REF] Liu | Force-coupling method for flows with ellipsoidal particles[END_REF]. The cross-section of the duct in the settling direction is a square with rigid side walls located at x/a = ±3.5 and y/a = ±3.5. Periodic boundary conditions are applied in particle setting direction (z) with the domain length z/a = 16 whereas no-slip boundary condition is set on the walls. The meshgrid is 32 × 32 × 64. The ellipsoid is oriented in z direction. An external force F z = 6π is applied on the ellipsoid in the z direction for a = 1 and µ = 1 and the steady settling velocity of the ellipsoid is V 1 = 0.538. The particle Reynolds number based on the settling velocity is Re p = 2a 3 V 1 /ν = 1.614. The velocity profiles induced by particle settling calculated with our code are compared to the DNS results taken from [START_REF] Liu | Force-coupling method for flows with ellipsoidal particles[END_REF], and which are obtained in the frame of reference of the ellipsoid (side-walls are moving with V 1 ). Figs. 2.23(a, b) show the wall-normal profiles of the fluid velocity v and w in the wall-normal and settling directions respectively. The profiles crossing the particle center (∆z/a = 0), show that the agreement is good outside the region ±1.2a. The profiles plotted at ∆z/a = 1.5 and ∆z/a = 3 show good agreement with the DNS. The dimensionless friction coefficient F z /(µaV 1 ) = 35.02 from FCM is close to the value 34.4 from DNS.

Angular motion of an ellipsoid in shear flow

An ellipsoidal particle rotates with a non-uniform angular velocity in a shear flow, and orbits that depend on the particle aspect ratio, initial particle orientation, and eventually on the Reynolds number. Before validating the FCM results for the spheroidal particle motion, we recall briefly the solution wellknown Jeffery's orbits [Jeffery, 1922a] at low Reynolds number.

Consider a spheroid of aspect ratio Ar in a linear flow u = γy, where γ is the shear rate in the shear-gradient plane (xy). p is the unit vector along the symmetric axis of the spheroid. 

cosθ i = p i , i = x, y, z (2.63)
with the relation cos

2 θ x + cos 2 θ y + cos 2 θ z = 1.
The general differential equation for the particle orientation in a flow composed of a symmetric strain rate E ∞ and antisymmetric rotation rate Ω ∞ is:

dp dt = Ω ∞ .p + β[E ∞ .p -p(p.E ∞ .p)] (2.64)
The solution to the Jeffery equation under the assumption of a dilute suspension (Φ 1) and no inertial effect (Re → 0) yields periodic angular trajectories known as the "Jeffery orbits" [Jeffery, 1922b] where ω = 2π/T, T = 2π(Ar + Ar -1 )/γ is the orbit period, the constants k and C are determined from the initial orientation θ 0 and ϕ 0 . C is known as the orbital constant in p.124 of [START_REF] Kim | Microhydrodynamics: principles and selected applications[END_REF], the value of C (0 ≤ C < ∞) determines orbits that range from the equator to a "degenerate orbit" consisting of a point at the "north pole". The constants k and C are expressed as tank = tanθ 0 (2.66) and

C(t) = Ar -1 tanϕ(t) Ar 2 cos 2 θ(t) + sin 2 θ(t) (2.67)
The rotation rate is expressed as the time derivative of θ and ϕ in (2.68)
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and (2.69).

φ = - Ar 2 -1 Ar 2 + 1 γ 4 sin2ϕsin2θ (2.68) and θ = - γ Ar 2 + 1 (Ar 2 cos 2 θ + sin 2 θ) (2.69)
The first test is realized at relatively low Re p (based on the semi-major axis and the shear rate) and aspect ratio Ar that ranges between 0.5 and 5. p lays in the shear plane (xy) and will stay there (since φ = 0). Fig. 2.25 displays the angular velocity (ω z = dθ/dt) obtained by the FCM with Re p = 0.1 compared to the Jeffery orbit (Stokes flow), and Re p = 0.01 from the work of [START_REF] Daghooghi | The influence of inertia on the rheology of a periodic suspension of neutrally buoyant rigid ellipsoids[END_REF] who used the curvilinear immersed-boundary method (CURVIB). The angular velocity resulting from FCM simulations are close to the theoretical solution in most of the period. For the prolate particle, the largest deviation takes place near the maximum velocity, when the prolate major axis is almost aligned with the shear direction. At the same angular orientation, the simulation from CURVIB shows even a smaller rotation rate at that orientation, especially when the symmetric axis p is perpendicular to the flow direction (e.g. θ is an odd function of π/2).

The second test considers the effect of the Reynolds number on the spheroid angular motion. An oblate (Ar = 0.5) and prolate (Ar = 2) spheroids are considered, with the length of the shortest axis equal to 0.05 in a unit cubic computational domain at two Reynolds numbers. In fig. 2.26(a), the symmetry axis of the prolate particle is initially aligned with the flow direction. When the Reynolds number Re p is varied between 0.1 and 10,the particle angular velocity tends to decrease near the peaks (corresponding to the axis oriented along the shear direction), in agreement with the finding of [START_REF] Daghooghi | The influence of inertia on the rheology of a periodic suspension of neutrally buoyant rigid ellipsoids[END_REF]. The data available from the work of [START_REF] Daghooghi | The influence of inertia on the rheology of a periodic suspension of neutrally buoyant rigid ellipsoids[END_REF] is available only for one period of time, we compared the FCM results with some longer simulations run with the DF/FD method, for Re p = 1.0 and Re p = 4.0. The grid resolution is 64 × 64 × 64 in FCM and 128 × 128 × 128 in DF/FD. The axis of the oblate spheroid is initially oriented in the flow direction whereas the axis of the prolate spheroid is initially aligned in the shear direction. Fig. 2.26(b) shows that the results obtained from both methods agree very well for the oblate spheroid whereas there is a small discrepancy for the prolate spheroid. In general, the FCM overestimates the maximum velocity of the prolate particle (corresponding to the orientation along the shear direction), mainly in relation with the very low resolution near the particle endpoints. Note that the startup of the angular velocity is faster than the value at steady state, which is reached within one period of rotation. Jeffery [1922b] suggested that the particles will tend to adopt that motion which, of all the motions possible under the approximated equations, corresponds to the least dissipation of energy. Therefore the steady state orbit of a prolate spheroidal particles in a shear flow tends toward the spinning motion (particle major axis aligned with the vorticity direction), whereas the oblate spheroidal particles tend toward the tumbling motion (the axis of symmetry rotate in the shear plane). After 3 decades, [START_REF] Saffman | On the motion of small spheroidal particles in a viscous liquid[END_REF] showed that when the flow inertia is finite but small and the deviation from sphericity is small, the orbit at equilibrium is unchanged with respect to the inertialess regime, for both types of spheroids, a finding that was later confirmed by Subramanian and [START_REF] Subramanian | Inertial effects on the orientation of nearly spherical particles in simple shear flow[END_REF]. This was revisited after recent simulations of [START_REF] Qi | Rotational and orientational behaviour of threedimensional spheroidal particles in couette flows[END_REF]; [START_REF] Huang | Rotation of spheroidal particles in couette flows[END_REF]; Rosén et al. [2014] who found the opposite: tumbling is the stable orbit for a prolate spheroid, whereas spinning is the stable one for oblate spheroid using a wide range of aspect ratio 1/3 < Ar < 3 and particle Reynolds number Re p < 15. This was later demonstrated theoretically by Einarsson et al. [2015]. Together with [START_REF] Dabade | The effect of inertia on the orientation dynamics of anisotropic particles in simple shear flow[END_REF] they have shown that for thin oblates (close to disks) with aspect ratios Ar < 1/7.3, both tumbling and spinning are stable orbits, which makes the dilute suspension rheology not uniquely defined in theory.

The third test concerns the orientational dynamics of an ellipsoid which axis of symmetry is initially not in the shear plane neither parallel to the vorticity axis. Neutrally buoyant prolate (Ar = 2) and oblate (Ar = 0.5) particles are considered at Re p = 1 (based on the semi-major axis and the shear rate). The initial orientation is ϕ 0 = π/4 and θ 0 = π/2. The domain size is set equal to L x = L y = L z = 5max(a, b) for both simulations. The orientation orbits obtained with FCM and DF/FD are compared together in fig. 2.28. Directional cosines p x and p z of a prolate and an oblate spheroid are plotted in fig. 2.28(a). The convergence to the equilibrium is a very slow process at low Re p (= 0.125) and tends faster to stable tumbling (resp. spinning) of a prolate (resp. an oblate) spheroid at higher Re p (1.0). The angular trajectories are compared to simulations performed with DF/FD. As in the second test, the angular motion of the particle obtained with both numerical methods is very good for the oblate particle. However for the prolate spheroid, the FCM particle tends slower (at long times) to the stable rotation orbit than in the DF/FD. The orientation vector p is plotted on the unit sphere in fig. 2.28(b). A nearly closed orbit is observed for the prolate spheroid after it drifts to a stable tumbling state whereas the orientation vector p converges to a point for the oblate spheroid (spinning or log-rolling state).

Interception of two spheroids in simple shear flow

This test is dedicated to validate the calculation of the Stresslet of an ellipsoid in a linear flow, and to verify if the collision barrier is suitable to recover the interception of two ellipsoids. The reference case that we use for comparison is obtained from the Boundary Element computation of [START_REF] Pozrikidis | Interception of two spheroidal particles in shear flow[END_REF] for Ar [START_REF] Rosén | Quantitative analysis of the angular dynamics of a single spheroid in simple shear flow at moderate reynolds numbers[END_REF]. Rotation states for a nuetrally buoyant (St = Re p : note that Re p defined in [START_REF] Rosén | Quantitative analysis of the angular dynamics of a single spheroid in simple shear flow at moderate reynolds numbers[END_REF] is four times larger than Re p used in this thesis) spheroid depending on Re p and Ar; T = tumbling; R = rotation; S = steady state; LR = log rolling (spin); the region ( 2) -( 6) in the upper right part refer to R, T, R, T and T, respectively; the theoretical results of Re theory c,oblate and Re theory c,prolate for thin oblate slender prolate spheroids, respectively, as well as the numerical and theoretical values of Re T,oblate are taken from [START_REF] Rosén | Numerical analysis of the angular motion of a neutrally buoyant spheroid in shear flow at small reynolds numbers[END_REF]; the dotted lines are the extrapolated values according to the empirical formulas in [START_REF] Rosén | Quantitative analysis of the angular dynamics of a single spheroid in simple shear flow at moderate reynolds numbers[END_REF]; the dashed lines are only hypothetical to connect numerical results to the theoretical results in [START_REF] Rosén | Numerical analysis of the angular motion of a neutrally buoyant spheroid in shear flow at small reynolds numbers[END_REF]. 
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Stokes flow.

We consider a pair of prolate spheroids in a linear flow. The initial orientation of the particles is ϕ 0 = π/2 and θ 0 = 0 (p is oriented in the flow direction initially). Particle centers are separated in the streamwise direction by a distance ∆x before interception. The two particle axes are positioned and remain in the shear-gradient (xy) plane during the interception. We select particle size as a = 0.1, b = c = 0.05 and domain size

L x × L y × L z = 1.5 × 1 × 0.5 with a grid distribution of 95 × 62 × 32. Re p = 0.1 is used in FCM.
Fig. 2.29 shows a sequence of particle positions and orientations that compare very well with the result of [START_REF] Pozrikidis | Interception of two spheroidal particles in shear flow[END_REF] obtained with the same initial condition. The initial separation is ∆x = -10a, ∆y = 1.5a, ∆z = 0. Snapshots of pair particle positions and orientations are selected at the dimensionless instants γt = 0, 2. [START_REF] Batchelor | An Introduction to Fluid Dynamics[END_REF][START_REF] Batchelor | An Introduction to Fluid Dynamics[END_REF]7.5,[START_REF] Candelier | On the effect of the Boussinesq-Basset force on the radial migration of a Stokes particle in a vortex[END_REF]12.5,15. Fig. 2.30 shows the evolution of the particle angular velocity ω z = dθ/dt and shear Stresslet G 12 together with the corresponding evolution of an isolated particle. The results from FCM agree quantitatively well with [START_REF] Pozrikidis | Interception of two spheroidal particles in shear flow[END_REF] for Stokes flow. As stated by this author, the particle interception has only a mild effect on the effective viscosity and this effect is expected to become stronger when the particles interact in the lubrication flow regime. The lubrication effect is not included neither in FCM nor in the spectral boundaryelement method for Stokes flow. As demonstrated in de Motta et al. [2013], a no-rebound situation exists during the collision under the condition St < 10 where particle impact Stokes number St compares particle inertial effect to viscous effect. In FCM, under the condition of low to moderate concentration and low St < 10, it is reasonable to use a repulsive potential force and torque to prevent particles interaction in the lubrication regime.

Settling of two ellipsoidal particles in a channel

In this section, we consider an example of the dynamics of freely settling ellipsoidal particles under gravity, where a pair of particles interact hydrodynamically as they sediment side by side in a vertical channel. The sedimentation behavior of a single ellipsoid is investigated by [START_REF] Pan | Direct simulation of the motion of a settling ellipsoid in newtonian fluid[END_REF]; [START_REF] Huang | Sedimentation of an ellipsoidal particle in narrow tubes[END_REF]. The settling trajectory and its orientation are function FCM for pair of spheroids during interception; circle stands for an isolated spheroid and asterisks show the results from pair of spheroids in [START_REF] Pozrikidis | Interception of two spheroidal particles in shear flow[END_REF] of the particle initial position, geometry of the domain and the inertia of the ellipsoid. The motion of two ellipsoids settling side by side is intriguing since "periodic" orbits appear for certain initial conditions as stated by [START_REF] Kim | Sedimentation of two arbitrarily oriented spheroids in a viscous fluid[END_REF]. In an unbounded fluid, [START_REF] Claeys | Suspensions of prolate spheroids in stokes flow. part 1. dynamics of a finite number of particles in an unbounded fluid[END_REF] develop a method for low Re p flow problems, where they observed the prolate spheroids with Ar = 2 drifting apart and kissing with continuous rotation. This behavior was observed experimentally by [START_REF] Bai | Direct simulation of the motion of settling ellipsoids in a newtonian fluid[END_REF] and numerical simulation in their work as well. [START_REF] Liu | Force-coupling method for flows with ellipsoidal particles[END_REF] further used FCM coupled to a finite volume flow solver (NEKTAR) to simulate two prolate spheroids with Ar = 2 settling side by side in a vertical channel with periodic boundary conditions set in x and z directions and no-slip boundary condition is set in y direction.

We used FCM to compute the motion of two prolate ellipsoids which semi-axes are a 1 = 1.5a, a 2 = 0.75a and a 3 = a. Ellipsoids will move in x direction and rotate in the xy plane. The dimension of the domain is set to 2.31(c).

L x × L y × L z = 16a × 16a × 8a
the centerline of the channel at y/a = ±2.5 and in the plane z = 0 with the long axis vertical and shortest axis normal to side-walls. In [START_REF] Liu | Force-coupling method for flows with ellipsoidal particles[END_REF], the flow is initialized by computing first the corresponding Stokes flow for a steady state for the two ellipsoids fixed at these positions and orientations. However, in our test, we settle the pair of ellipsoids freely and get the final periodic kissing-drifting period shown in fig. 2.31 to do the comparison with [START_REF] Liu | Force-coupling method for flows with ellipsoidal particles[END_REF]. In fig. 2.31(b, c), particle 1 rotates clockwise (-z) and first drifts away from particle 2 (x/a = 0 -30), then after it rotates an angle of π/2, particles move closely until they rotate to an angle of π (x/a = 30-270), afterwards, particles drift away again (x/a = 270 -300) and repeat forever.

In fig. 2.32(a, b), we show that the agreement between present FCM simulations with [START_REF] Liu | Force-coupling method for flows with ellipsoidal particles[END_REF] when the pair of ellipsoids reaches the steady periodic cycle. The maximum settling velocity (V p ) and rotational rate (Ω z ) happen as soon as the two ellipsoids drift away farthest with each other.

Chapter 3

Modulation of large-scale structures by neutrally buoyant and inertial finite-size particles in turbulent Couette flow
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Modulation of large-scale structures by neutrally buoyant and inertial finite-size particles in turbulent Couette flow

Guiquan Wang, 1,2,3,* Micheline Abbas, 2,3, † and Eric Climent Particle-resolved numerical simulations based on the Force Coupling Method are carried out to study the effect of finite-size particles on turbulent plane Couette flow. The Reynolds number is close to the laminar-turbulent transition, such that large-scale rotational structures are well developed and self-sustained. The study particularly considers the effect of concentration, particle size, and particle-to-fluid density ratio on the mixture flow features. Time-averaged profiles, in the wall-normal direction, of the mean flow and Reynolds stress components reveal that there is no significant difference between single-phase and two-phase flows at equivalent effective Reynolds number, except that the wall shear stress is higher for the two-phase flow. However, temporal and modal analysis of flow fluctuations suggest that besides injecting small-scale perturbation due to their rigidity, particles have an effect on the regeneration cycle of turbulence. Indeed, the shape of the streaks and the intermittent character of the flow (amplitude and period of oscillation of the modal fluctuation energy) are all altered by the particle presence, and especially by the inertial ones. DOI: 10.1103/PhysRevFluids.2.084302

I. INTRODUCTION

Particulate flows are ubiquitous in industrial applications (mixing, transport, fluidization), in engineering like petroleum or chemical processes, food or solid processing, and water treatment. The transport of mixtures is often realized under a turbulent regime, especially at large scales. Under a turbulent regime, it is known that the dispersed phase (particles, bubbles, droplets) modulate transport properties of dispersed flows (see the review by Balachandar and Eaton [START_REF] Balachandar | Turbulent dispersed multiphase flow[END_REF] for turbulent flows laden with solid particles). The mechanisms of turbulence modulation by particles depend on many parameters (flow geometry, particle size, concentration, flow, and particle inertia), and they are still not completely elucidated over the entire parameter space.

Turbulence modulation by inertial particles (typically in gas-solid flows) results from a competition between drag-induced local dissipation and enhanced velocity fluctuations due to wake dynamics and self-induced vortex shedding. In summary, these phenomena depend predominantly on the size ratio between the particle diameter d and characteristic flow length scales, the macroand microscales being set respectively by the flow geometry and bulk Reynolds number. In a review of works carried out between 1971 and 1988, Gore and Crowe [START_REF] Gore | Effect of particle size on modulating turbulent intensity[END_REF] established a qualitative relationship between the flow turbulent intensity and the ratio d/ l e (l e being the flow integral length scale). A critical ratio d/ l e ≈ 0.1 was found above (resp. below) which turbulence enhancement (resp. reduction) occurs. Flow modulation depends on d/η (η being the flow microscale) in a less obvious way. Pan and Banerjee [START_REF] Pan | Numerical simulation of particle interactions with wall turbulence[END_REF] have shown through numerical simulations based on two-way coupling that, at small particle Reynolds numbers, the increase (resp. decrease) of turbulence intensity occurs for d/η > 1 (resp. d/η < 1). However, Burton and Eaton [START_REF] Burton | Fully resolved simulations of particle-turbulence interaction[END_REF] who performed fully resolved simulation of homogeneous isotropic turbulence around a fixed particle with d/η = 2 showed reduction of the turbulence kinetic energy (TKE) within 1.5d of the particle surface but negligible turbulence modification outside a layer of 5d from the particle surface. A large number of works on this subject can be found in the literature, showing that modification of flow fluctuating energy varies with the wavelength compared to the particle size, and can depend on the direction and on the eventual location of the vortical structures with respect to a wall. It is out of the scope of the paper to make an exhaustive review of that, so we reference only few contributions: see Refs. [START_REF] Elghobashi | On the two-way interaction between homogeneous turbulence and dispersed solid particles. I: Turbulence modification[END_REF][START_REF] Kulick | Particle response and turbulence modification in fully developed channel flow[END_REF][START_REF] Rogers | The effect of small particles on fluid turbulence in a flat-plate, turbulent boundary layer in air[END_REF][START_REF] Tanaka | Sub-Kolmogorov resolution partical image velocimetry measurements of particle-laden forced turbulence[END_REF][START_REF] Zhao | Interphasial energy transfer and particle dissipation in particle-laden wall turbulence[END_REF].

The effect of neutrally buoyant particles on turbulent flow is different because there is no mean slip between phases. Dissipation and velocity fluctuations are both increased due to the perturbation of locally strained flow by particle rigidity. Among the few studies realized with neutrally buoyant particles Rashidi et al. [START_REF] Rashidi | Particle-turbulence interaction in a boundary layer[END_REF] made measurements in turbulent channel flow at low concentration, with different particle sizes. They found that large particles increase the number of wall ejections, leading to higher turbulent intensities and Reynolds stress, while the opposite was observed for smaller particles. Recently, with the fast development of computer power and resources, a few studies considered the simulation of turbulent suspension flow with finite-sized particles. In addition to the conclusion of Ref. [START_REF] Rashidi | Particle-turbulence interaction in a boundary layer[END_REF], Shao et al. [61] found a reduction of the intensity of the large-scale streamwise vortices by particles carried inside these structures, whereas other particles not carried by these structures induce small-scale perturbation that hinder the development of the large-scale streamwise vortices. Meanwhile, an increasing number of smaller-scale structures are induced. Their conclusions are done for suspension flows with low concentration up to 7%. Recently, Picano et al. [START_REF] Picano | Turbulent channel flow of dense suspensions of neutrally buoyant spheres[END_REF] performed particle-resolved numerical simulations of turbulent channel flow at higher concentration (up to 30%) and focused on the effect of particles on the overall drag. They showed that when the concentration increases, the friction on the walls is increased, mainly from the increase of particle stress, while turbulent activity is reduced.

Close to laminar-turbulent transition, the presence of particles can advance or delay the transition from one regime to another. The experiments of Matas et al. [START_REF] Matas | Transition to Turbulence in Particulate Pipe Flow[END_REF] revealed that the effect of neutrally buoyant particles on the onset of turbulence in a pipe flow is non monotonous when the particle size and/or concentration is increased. Recent numerical studies [START_REF] Lashgari | Laminar, Turbulent, and Inertial Shear-Thickening Regimes in Channel Flow of Neutrally Buoyant Particle Suspensions[END_REF][START_REF] Loisel | The effect of neutrally buoyant finite-size particles on channel flows in the laminar-turbulent transition regime[END_REF][START_REF] Yu | Numerical studies of the effects of large neutrally buoyant particles on the flow instability and transition to turbulence in pipe flow[END_REF] have shown a significant impact of large particles on the unsteady nature of pressure-driven flows, enhancing transverse turbulent stress components and modifying the flow vortical structures.

While the lifetime and shape of large-scale vortices (LSVs) in pressure-driven flows are strongly unsteady, turbulent plane Couette flow (pCf), close to the transition threshold, offers steady pairs of counter-rotating LSVs, which size is comparable to the Couette gap width. Near the wall, the large vortices generate ejection and sweep flows in the wall-normal direction that constitute the large-scale streaks (LSSs). These two structures permanently exchange energy and play a key role in the self-sustained turbulence process, so-called regeneration cycle [START_REF] Waleffe | On a self-sustaining process in shear flows[END_REF]. In a minimal pCf unit, one can isolate a pair of LSVs, without affecting the regeneration cycle [START_REF] Hamilton | Regeneration mechanisms of near-wall turbulence structures[END_REF]. This allows us to study the impact of particles-vortices interaction on the regeneration cycle and thereby the turbulent flow features. We are interested in the modulation of large-scale structures by finite-sized particles. We consider first neutrally buoyant particles. Studies dedicated to turbulent pCf laden with finite-sized particles are scarce. In addition to being transported by the local fluid flow, neutrally buoyant finite-sized particles are subject to inertial migration (across flow streamlines) at large Reynolds numbers. Therefore its wall-normal motion results from a competition between repulsive turbulent ejection and inertial migration away from the Couette walls, against attractive turbulent sweep towards the wall, and turbulent or shear-induced dispersion. All this leads to possible heterogeneity in the particle distribution. The effect of a particle-to-fluid density mismatch is also interesting from a fundamental point of view (with zero average slip between dispersed and fluid phases, no effect of gravity). It is known that particles denser than the fluid tend naturally to accumulate in low strain rate regions of a vortex, whereas lighter particles have an inward motion towards the vortex center. Klinkenberg et al. [START_REF] Klinkenberg | Numerical study of laminar-turbulent transition in particle-laden channel flow[END_REF] observed that inertial point particles (d/η < 1) induce a significant time delay 084302-2 on the streak breakdown which may cut off the regeneration cycle near the transition threshold. In highly turbulent flows, less inertial point particles collect into low-speed streaks, especially in the small-scale hairpin vortices corresponding to Q2 events [START_REF] Richter | Turbulence modification by inertial particles and its influence on the spectral energy budget in planar Couette flow[END_REF][START_REF] Richter | Momentum transfer in a turbulent, particle-laden Couette flow[END_REF][START_REF] Richter | Modification of near-wall coherent structures by inertial particles[END_REF]. This leads to an increase in the streamwise fluctuating velocity, while spanwise and wall-normal velocity fluctuations are damped. However, heavy particles are confined in the high-speed streak. They reduce near-wall swirling motion, which in turn results in a reduction of the turbulent Reynolds stress.

In this context, we aim at investigating numerically the properties of turbulent pCf laden with finite-size particles. Particles 10 to 20 times smaller than the LSVs are considered. The particle concentration investigated in this work is low to moderate (φ 10%), and the Reynolds number of the Couette flow is relatively low Re b = 500 based on the fluid viscosity. The paper is organized as follows. In Sec. II particular features of the Force-Coupling Method used to simulate the suspension flow dynamics, and some validations are outlined. In Sec. III the effect of neutrally buoyant particles on statistical properties of the turbulent flow (velocity profile, concentration distribution, turbulence intensity, shear stress) are discussed. In Sec. IV we consider the effect of the particle-to-fluid density ratio (ranging from zero to five) on the flow properties. Finally, the effect of particles on the regeneration cycle is discussed, using modal and quadrant analysis and vorticity stretching. The paper ends with a conclusion on the main findings.

II. SIMULATION METHOD AND VALIDATION

Direct numerical simulations of single-phase flows are performed by using the code JADIM for an incompressible Newtonian fluid [START_REF] Calmet | Large-eddy simulation of high-Schmidt number mass transfer in a turbulent channel flow[END_REF]. The unsteady 3D Navier-Stokes equations discretized on a staggered grid are integrated in space using the finite volume method. All terms involved in the balance equations are written in a conservative form and are discretized using second-order centered schemes in space. The solution is advanced in time by a second-order semi-implicit Runge-Kutta combined to Cranck Nicholson time-stepping procedure, and incompressibility is achieved by correcting the pressure contribution, which is a solution of the Poisson equation.

Numerical simulations of particle trajectories and suspension flow dynamics are based on multipole expansion of momentum source terms added to the Navier-Stokes equations [namely, the Force-Coupling Method (FCM) as described in Refs. [START_REF] Climent | The force coupling method: A flexible approach for the simulation of particulate flows[END_REF][START_REF] Lomholt | Force-coupling method for particulate two-phase flow: Stokes flow[END_REF][START_REF] Maxey | Localized force representations for particles sedimenting in Stokes flow[END_REF]], the comparison of FCM with other methods that belong to the class of Fictitious Domain methods can be found in a review by Maxey [42] on the simulation methods for particulate flows. Flow equations are dynamically coupled to Lagrangian tracking of particles. The fluid is assumed to fill the entire simulation domain, including the particle volume. The fluid velocity and pressure fields are a solution of continuity [Eq. ( 1)] and momentum balance [Eq. ( 2) and Eq. ( 3)]:

∇ • u = 0, ( 1 
)
ρ Du Dt = -∇p + μ∇ 2 u + f (x,t), ( 2 
)
f i (x,t) = N p n=1 F n i [x -Y n (t)] + G n ij ∂ ∂x j [x -Y n (t)]. (3) 
The body force distribution f (x,t) in the momentum balance (3) accounts for the presence of particles in the flow. It is written as a multipole expansion truncated after the second term. The first term of the expansion called the monopole represents the force F n that the particle exerts on the fluid, due to particle inertia, external forcing, or particle-to-particle contact forces [Eq. ( 4)]. The second term, called dipole, is based on a tensor G n sum of two contributions: an antisymmetric part is related to external torques applied on the particle, and a symmetric part that accounts for the resistance of a rigid particle to deformation by ensuring zero average strain-rate inside the particle 084302-3 volume [Eq. ( 5)]:

F n = (m p -m f ) g - d V n dt + F n ext , (4) S n ij (t) = 1 2 ∂u i ∂x j + ∂u j ∂x i [x -Y n (t)] d 3 x = 0. ( 5 
)
The particle finite size is accounted for by spreading the momentum source terms around the particle center Y n using a Gaussian spherical envelope, one for the monopole (x) = (2πσ 2 ) -3/2 e (-|x|/2σ 2 ) , and another one for the dipole (x) = (2πσ 2 ) -3/2 e (-|x|/2σ 2 ) . The widths of the Gaussian envelopes, σ and σ , are set with respect to the particle radius a such that the settling velocity and the hydrodynamic perturbation generated by a particle in a shear flow are both exactly matched to Stokes solutions [σ = a/ √ π and σ = a/(6 √ π) 1/3 ] for a single particle. The particle translation and rotation velocities are obtained from a local weighted average of the volumetric fluid velocity (resp. rotational velocity) field over the region occupied by the particle: 6)

V n (t) = u(x,t) [x -Y n (t)] d 3 x = 0, (
n (t) = 1 2 [∇ × u(x,t)] [x -Y n (t)] d 3 x = 0. ( 7 
)
Particle trajectories are then obtained from numerical integration of the equation of motion:

dY n dt = V n . ( 8 
)
This modeling approach allows calculating the hydrodynamic interactions with a moderate computational cost. In order to capture correctly the dynamics of dilute suspension flows, four grid points per particle radius are usually required when the monopole force is not zero, and in the case where only dipole forcing is relevant, three grid points per particle radius are sufficient.

For neutrally buoyant particles, the only contribution to the monopole is F n ext due to rigid body contact forces. For a pair of particles α and β, a force derived from a repulsive potential is added to the monopole term of both particles [such as Eq. ( 4) for particle α] when the distance between particles is smaller than R ref -2a and zero otherwise. Following Abbas et al. [START_REF] Abbas | Dynamics of bidisperse suspensions under Stokes flows: Linear shear flow and sedimentation[END_REF], this force is written as

F α,β ext = F ref R 2 ref -(r α,β ) 2 R 2 ref -(2a) 2 x α,β 2a . ( 9 
)
F ref is scaled with the Stokes drag force F d = 6πμγ a 2 based on characteristic particle relative velocity in shear flow γ a where γ is the shear rate. The value of the force barrier during a collision is set in response to the proximity of the particles. The total force is obtained through a pairwise summation procedure.

The relative trajectories of two colliding particles in laminar Couette flow are shown in Fig. 1. The particles were placed initially in the flow velocity gradient plane. Their relative initial position was set outside the area where closed relative trajectories might be observed (see Refs. [START_REF] Haddadi | Microstructure and rheology of finite inertia neutrally buoyant suspensions[END_REF][START_REF] Kulkarni | Suspension properties at finite Reynolds number from simulated shear flow[END_REF]). A condition for utilizing this simplified model is that there is no elastic or inelastic collisions when contacts between particles happen. As demonstrated in Ref. [START_REF] De Motta | Numerical modeling of finite-size particle collisions in a viscous fluid[END_REF], a no-rebound situation exists during the collision under the condition of St < 10 where the particle impact Stokes number St compares particle inertial effect to viscous effect. All values St (max) (shown in Table II for this work) are below this critical value. Figure 1 shows that particles do not overlap when the repulsive force is activated for either bubbles or neutrally buoyant or inertial particles.

At higher volume fractions it is necessary to provide a more detailed representation including viscous lubrication forces and solid-body contact forces. In principle, viscous lubrication forces 084302-4 FIG. 1. Relative trajectory of a particle pair in laminar Couette flow, in the case of neutrally buoyant or inertial particles and bubbles. The red half sphere represents the reference particle. The semicircle of radius 2a is the limit of particle overlapping. The other semicircle indicates the barrier corresponding to R ref = 2.2a where the repulsion force is enabled. The particle Re p ≡ γ a 2 /ν = 1.0 and St ≡ (2Re p ρ p )/(9νρ f ) varies between 0.2 and 2.

neutrally buoyant particle; ρ p /ρ f = 5; ρ p /ρ f = 10; bubble.

will prevent contact of perfectly smooth particles, but contact occurs in practice through surface roughness. Tests were made, varying the magnitude of the force F ref and the cutoff distance R ref .

In turbulent flow simulations, F ref was chosen such that the number of overlapping particles was found to be less than 1% of the total particle number (F ref /F d = 10) at the largest concentration ( = 10%).

A. Validation of FCM

In the absence of external forces (no gravity effect for neutrally buoyant particles), the coupling between the particles and the carrier flow occurs exclusively from the force dipole term, which is mainly related to the local flow strain rate. Accordingly, the method has been validated under finite Reynolds number flow configurations. The dipole tensor computed for a particle in pure shear flow (negligible wall effect in wide-gap pCf) was validated (in Refs. [START_REF] Loisel | The effect of neutrally buoyant finite-size particles on channel flows in the laminar-turbulent transition regime[END_REF][START_REF] Loisel | Inertia-driven particle migration and mixing in a wall-bounded laminar suspension flow[END_REF]) against direct numerical simulation results reported in Ref. [START_REF] Mikulencak | Stationary shear flow around fixed and free bodies at finite Reynolds number[END_REF]. The comparison revealed that our method captures accurately the hydrodynamic perturbation when the particle Reynolds number is below 10. Also the equilibrium position of a particle in laminar pressure-driven flow due to cross-streamline inertial migration (Segré-Silberberg effect) agrees well with theoretical predictions in the same range of particle Reynolds numbers. In this paper, we show additional validation tests relevant to particles in Couette flow. First, the effect of increasing the particle-to-Couette gap size ratio, i.e., a particle confined between walls, is studied in the limit of low Re p , where theoretical predictions exist. Second, particle wall-normal velocity is calculated, in a Couette flow, at low but finite flow inertia. Last, the effect of particle inertia is considered to test the unsteady response of a particle in a quiescent fluid experiencing an oscillatory force. In this latter configuration, FCM results are accurate as long as the Stokes layer of the velocity perturbation near the particle surface is not too thin. An additional configuration is reported in Appendix A where the Taylor-Green vortex array mimics to a certain extent the large-scale vortices in turbulent pCf.

Effect of confinement on particle stresslet and rotation in laminar pCf

The first configuration consists in a single neutrally buoyant particle, located at the center of a laminar pCf for low Reynolds number. The particle does not have any initial translation or rotational velocity, and its translational velocity remains zero because the flow velocity cancels at the gap center. However, particle rotation due to the shear flow vorticity converges in time to a steady value that depends on the Couette gap width. In the limit of wide gap, where the wall contribution to hydrodynamic perturbation is negligible, our previous tests have shown that the FCM response is accurate especially when the particle Reynolds number is lower than 10 ( [START_REF] Loisel | The effect of neutrally buoyant finite-size particles on channel flows in the laminar-turbulent transition regime[END_REF][START_REF] Loisel | Inertia-driven particle migration and mixing in a wall-bounded laminar suspension flow[END_REF]). In the case of thin gap, short-range particle-wall interaction becomes important. Particle stresslet and rotational velocity are calculated numerically and compared to the theoretical predictions of Sangani et al. [START_REF] Sangani | Roles of particle-wall and particle-particle interactions in highly confined suspensions of spherical particles being sheared at low Reynolds numbers[END_REF] based on Lamb multipoles (following the work of Ozarkar and Sangani [START_REF] Ozarkar | A method for determining Stokes flow around particles near a wall or in a thin film bounded by a wall and a gas-liquid interface[END_REF]). In their work, 084302-5 FIG. 2. (a) Rotational velocity and (b) stresslet of a neutrally buoyant sphere at the center of laminar pCf as a function of the ratio between the particle radius and half of the gap width a/ h. The rotational velocity is scaled by the flow shear rate γ , and the stresslet is scaled by its value in unbounded shear flow G 0 12 = 10 3 πμa 3 γ . The stars * are obtained using FCM simulations at Re p = 0.01, and circles • are from simulations of Sangani et al. [START_REF] Sangani | Roles of particle-wall and particle-particle interactions in highly confined suspensions of spherical particles being sheared at low Reynolds numbers[END_REF] in Stokes flow. The lines are from asymptotic limits written in Ref. [START_REF] Sangani | Roles of particle-wall and particle-particle interactions in highly confined suspensions of spherical particles being sheared at low Reynolds numbers[END_REF]:

a/ h 1; 0 a/ h < 1.
the rotational velocity and stresslet are predicted for both asymptotic limits: 0 < a/h 1 and large 0 a/ h < 1 particle-to-gap size ratio (where h is half the Couette gap width). As shown in Figs. 2(a) and 2(b), the confinement reduces the rotational velocity of the sphere and increases its shear stresslet when compared to its value for unbounded shear flow. The FCM response is accurate up to a/ h = 0.8. The deviation observed for stronger confinement would need to be supplemented by adding higher order multipoles or lubrication correction. The largest discrepancy of FCM results compared to theoretical predictions is ≈ 4% and 10% for rotational velocity and stresslet, respectively, when the particle size is a/ h = 0.8.

Wall-normal particle migration

When a neutrally buoyant particle is not set in the midplane of the Couette gap, the asymmetry of velocity perturbation leads to a wall-normal force oriented towards the center of the gap, as long as the particle Reynolds number is not negligibly small (which breaks the flow reversibility argument). This was observed in the experiments of Ref. [START_REF] Halow | Radial migration of spherical particles in Couette systems[END_REF] in cylindrical Couette flow and later in the 084302-6

Re FIG. 3. Quasisteady wall-normal velocity of a single particle as a function of the particle distance to the wall in laminar pCf. The lines are theoretical predictions from Ref. [START_REF] Vasseur | The lateral migration of a spherical particle in two-dimensional shear flows[END_REF] (dashed line) and Ref. [START_REF] Ho | Inertial migration of rigid spheres in two-dimensional unidirectional flows[END_REF] (solid line); present simulation with κ = d/L y = 1/32, Re p = 2.4 × 10 -4 .

2D direct numerical simulation by Ref. [START_REF] Feng | Direct simulation of initial value problems for the motion of solid bodies in a Newtonian fluid. Part 2. Couette and Poiseuille flows[END_REF]. Theoretical predictions were derived by Refs. [START_REF] Ho | Inertial migration of rigid spheres in two-dimensional unidirectional flows[END_REF][START_REF] Vasseur | The lateral migration of a spherical particle in two-dimensional shear flows[END_REF], under quasisteady state, in the limit of finite particle size and low but finite particle Reynolds number (the wall falls inside the region perturbed by the particle). We tested the accuracy of the FCM under such conditions, using a Couette gap-to-particle diameter size ratio L y /d = 32 and particle Reynolds number Re p ≡ γ d 2 4ν = 2.4 × 10 -4 , where γ is the shear rate and ν is the kinematic viscosity. Figure 3 shows the quasisteady dimensionless wall-normal migration velocity V p,y κU w Re p where κ = d/L y is the ratio between particle diameter with Couette gap width. The numerical results are obtained after 100 iterations corresponding to tν/a 2 = 1.5, which are required for the convergence of the velocity while the wall-normal migration distance is still insignificant. The simulation results are in very good agreement with the theoretical predictions proposed by Ref. [START_REF] Vasseur | The lateral migration of a spherical particle in two-dimensional shear flows[END_REF]. Near the wall, the method is less accurate. Higher orders are required in the multipole expansion to capture the lubrication effect. At higher particle Reynolds number, the wall-normal velocity is larger leading to effective particle migration towards the Couette center [the migration velocity scales as O(Re p )].

Periodic oscillation of a single particle

Turbulence has a wide range of length or time scales which exert forcing on particles. Large-scale vortices have strong forcing amplitudes but longer time scales, whereas small-scale vortices may generate higher frequency forcing on particles. As described by Climent and Maxey [START_REF] Climent | Numerical simulations of random suspensions at finite Reynolds numbers[END_REF], FCM framework embeds drag, added-mass, lift, and history forces experienced by the particle in F n [Eq. ( 4)]. In this section, we focus on the ability of FCM to model the unsteady response of a particle experiencing an oscillatory external force without considering gravity. Following Ref. [START_REF] Maxey | Examples of fluid-particle interactions in dispersed two-phase flow[END_REF], we consider the motion of a rigid (neutrally buoyant or dense) particle moving in a fluid that is otherwise quiescent. The solution of this problem is equivalent to that of an oscillating fluid obtained in a frame attached to the particle which generates the development of Stokes layer at the particle surface. Particle oscillation is imposed via temporal evolution of the monopole term F ext (t) = 6πμau 0 sin(ωt), where u 0 is a constant vector. The velocity field induced by the particle is obtained by solving Eqs. ( 1)-( 3), and the particle velocity u p is obtained by integration of the local fluid velocity using Eq. ( 6). Snapshots of the velocity field are displayed in Fig. 4, for two values of δ 2 ≡ ωa 2 /ν, which is the ratio of the particle radius to the Stokes layer thickness. This figure shows that the flow velocity perturbation representing the Stokes layer thickness shrinks when the 084302-7 oscillation frequency increases. Note that δ 2 (as defined here) is equivalent to the ratio of particle relaxation to fluid characteristic oscillation time scale, and by consequence to a Stokes number.

The motion of the oscillating particle is written as

u p (t) = αu 0 sin(ωt + ϕ), ( 10 
)
where the velocity is proportional to the force amplitude and ϕ is the phase shift. FCM results are compared to that of Maxey-Riley equation [Eq. ( A1)] following Ref. [START_REF] Maxey | Equation of motion for a small rigid sphere in a nonuniform flow[END_REF] which is valid in the limit of low particle Reynolds number. For quiescent fluid far from the particle, the analytical relationship between the amplitude of external oscillatory forcing [written as F (t) = F e iωt ] and particle velocity is

F = u p m p + 1 2 m f iω + 6πμa(1 + δe iπ/4 ) e iϕ . ( 11 
)
The terms on the right-hand side of Eq. ( 11) correspond to particle inertia, added mass, and steady and unsteady drag forces. The Basset history force is important when the particle-to-fluid density ratio is low to moderate. The theoretical prediction of α and ϕ as well as the FCM results [Eq. [START_REF] Climent | Numerical simulations of random suspensions at finite Reynolds numbers[END_REF]] are displayed in Figs. 5(a) and 5(b) as a function of δ 2 . This figure shows that the modulus is calculated accurately up to δ 2 = 2.5. The under-estimation of the phase lag increases when particle inertia decreases, and the maximum discrepancy with respect to Maxey-Riley's prediction is around 13% for the bubble case when δ 2 = 2.5. The numerical simulations corresponding to turbulent plane Couette flow with the largest particles (L y /d = 10) are carried out only with neutrally buoyant particles, in which case δ 2 is less than 1.25 (7% discrepancy in the test case). As for the error corresponding to the small particle case (L y /d = 20), its maximum value is around 5%, according to the oscillation test for the case of bubbles. At higher values of δ 2 , the Stokes layer is too thin to be accurately resolved by FCM. The purely viscous contribution of the hydrodynamic force (in the absence of added mass term) is also plotted in Figs. 5(a) and 5(b) for comparison. Furthermore, the effect of density ratio up to five is also investigated. It is clear that FCM predictions become gradually closer to the theoretical prediction while particle density is increased because the relative contribution of unsteady Basset drag reduces.

III. SIMULATION OF SINGLE-PHASE TURBULENT PLANE COUETTE FLOW

The flow is driven by two infinite parallel plates moving in opposite directions. Periodic boundary conditions are set in streamwise and spanwise directions, and no slip condition is imposed at the 

• ρ p /ρ f = 1; ρ p /ρ f = 2; ρ p /ρ f = 5.
two walls. The domain size and velocity components are noted as L x , L y , L z and u, v, w in the streamwise x, wall-normal y, and spanwise z directions, respectively. The bulk Reynolds number is defined for pCf by Re b = U w h ν where h is half of the Couette gap width while the bulk flow has a zero mean velocity. The domain used for the simulations has the size of the minimal flow unit (or simply Miniunit) as introduced by Jiménez and Moin [START_REF] Jiménez | The minimal flow unit in near-wall turbulence[END_REF] and Hamilton et al. [START_REF] Hamilton | Regeneration mechanisms of near-wall turbulence structures[END_REF]. Table I shows the mesh grid size used for the simulation of the Miniunit, from some selected publications. Three to four grid points inside the laminar sublayer (y + < 5) are required in order to calculate accurately the near-wall flow structures. 084302-9 
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First simulations of single-phase flow in a Couette configuration were intended to test the unsteady development of the fluid flow initially at rest towards a linear flow when the walls of the domain start to move, at t = 0 with velocity +U w and -U w . The theoretical evolution of the flow profile given by Batchelor [START_REF] Batchelor | An Introduction to Fluid Dynamics[END_REF] occurs with a characteristic diffusion time scale h 2 /ν. Figure 6 shows the [0, [START_REF] Abbas | Dynamics of bidisperse suspensions under Stokes flows: Linear shear flow and sedimentation[END_REF][START_REF] Batchelor | An Introduction to Fluid Dynamics[END_REF][START_REF] Candelier | On the effect of the Boussinesq-Basset force on the radial migration of a Stokes particle in a vortex[END_REF] numerical simulation by using case A compared with experiments [START_REF] Reichardt | Über die Geschwindigkeitsverteilung in einer geradlinigen turbulenten Couetteströmung[END_REF][START_REF] Tillmark | Experiments on transition in plane Couette flow[END_REF]. The numerical code used for this study captures accurately the transient evolution of the streamwise velocity. Simulations of single-phase turbulent flow were realized in domains needed later for particle-laden flows, with the constraint of three to four grid points per particle radius that must be respected for FCM. Therefore two simulation domains (cases B and C) with regular mesh grids were designed for two Couette gap-to-particle size ratios L y /d = 10 and L y /d = 20. Simulations of single-phase flow in these domains are compared with the simulation based on stretched mesh grid (case A). In cases B and C, at least three points stand inside the laminar sublayer for Re b = 500. At this Reynolds number, the discrepancy of the mean and rms velocity profiles between simulations using domains A, B, and C is less than 5%.

We also performed simulations of turbulent Couette flow with larger domains in both streamwise and spanwise directions and the comparison with existing experimental data and numerical results from Refs. [START_REF] Bech | An investigation of turbulent plane Couette flow at low Reynolds numbers[END_REF][START_REF] Komminaho | Very large structures in plane turbulent Couette flow[END_REF][START_REF] Tsukahara | DNS of turbulent Couette flow with emphasis on the large-scale structure in the core region[END_REF]. The major effects of increasing the domain size are the following. First, the average velocity gradient is steeper near the walls in larger domains. The nondimensional velocity gradient in the Couette gap near midplane is ψ = h U w du dy | y=0 ≈ 0.18-0.2 in large domains (at low Re b like in Ref. [START_REF] Tsukahara | DNS of turbulent Couette flow with emphasis on the large-scale structure in the core region[END_REF]), whereas it is almost zero in the Miniunit. According to Ref. [START_REF] Tsukahara | DNS of turbulent Couette flow with emphasis on the large-scale structure in the core region[END_REF], the nonzero velocity gradient will lead to a finite production of TKE in the midplane. Second, it is found that the streamwise rms velocity is larger, whereas the wall-normal and spanwise components are smaller in the Miniunit compared to larger domains. However, the turbulent Reynolds stress is nearly unchanged close to the boundary, whereas it is slightly smaller in the core region for larger domain size. Despite these differences, certainly due to the confinement of large-scale vortices in the streamwise direction, the Miniunit is useful because it allows to accommodate a single set of (periodic array of) vortical structures, which are sufficient to reproduce low-order turbulence statistics. In this domain, the turbulence is sustained while the Reynolds number is decreased down to Re b = 330, below which the flow becomes fully laminar. This threshold for flow relaminarization is slightly higher than in larger simulation domains (Re c = 324 ± 1 in Ref. [START_REF] Duguet | Formation of turbulent patterns near the onset of transition in plane Couette flow[END_REF]) which accommodate many longer large-scale structures.

IV. TURBULENT PCF LADEN WITH NEUTRALLY BUOYANT PARTICLES

The dimensionless length and velocity wall units are y + ≡ yu τ ν , and u + ≡ u u τ , where u τ = τ w ρ is the friction velocity based on the wall shear stress. selected for this study. Both bulk and frictional Reynolds numbers Re b and Re τ are based on the fluid viscosity. The effective Reynolds number Re s of the suspension flow is lower than Re b due to the increase of energy dissipation by rigid particles in shear flow and depends on the particle concentration ϕ. Simulations of suspension flows were performed with two particle sizes L y /d = 10 and 20 and at Re s larger than the laminar-turbulent transition threshold. Since one cannot be sure a priori that the suspension will behave like an effective fluid with equivalent properties, we verified a posteriori the flow turbulent nature and statistics. Most of the two-phase flow simulations were carried out at a Reynolds number Re b = 500 and were compared to a reference effective fluid flow, at mixture Reynolds number equal to Re s = U w h ν eff . The effective viscosity ν eff was estimated from an Eilers fit for low Reynolds number suspensions and a posteriori compared to the real suspension viscosity obtained from the shear stress distribution as explained further in this section:

ν eff = ν 1 + 1.25 1 -/0.63 2 .
In the turbulent flow, particles experience turbulent forcing with a characteristic time scale τ + f ∼ L + y / max(v + |w + ) related to large-scale vortices. The characteristic time scale for a particle to relax when submitted to flow forcing is given by

τ + p = 2 9 
ρ p ρ f + 1 2 Re 2 τ d L y 2 . ( 12 
)
The ratio of particle to fluid time scales leads to the definition of a Stokes number St turb = τ + p /τ + f related to the flow turbulence. Referring to the test of one particle oscillating in a steady fluid, this Stokes number can be related to the dimensionless Stokes layer by δ 2 = 9π/(ρ p /ρ f + 1/2)St turb . δ 2 is below 0.5 for L y /d = 20 and reaches its maximum value δ 2 max = 1.25 for L y /d = 10. Therefore the turbulent flow simulations considered for this paper are within the range of validity of FCM. The statistics were performed using ensemble averages over 500 time units (time unit is h/U w ).

A. Velocity profiles

In turbulent single-phase pCf, mean velocity profile is governed by streamwise vortices. The suspension flow profile is very close to single-phase configuration as observed in Fig. 7. The largest discrepancy occurs at the highest concentration = 10% for the highest Reynolds number, Re b = 1000. Since the mean velocity profile is mainly governed by large-scale vortices [START_REF] Hamilton | Regeneration mechanisms of near-wall turbulence structures[END_REF], i.e., here the vortex pair, we can conclude that particles did not modify significantly the large scales.

The evolution in time of the total friction coefficient is displayed in Fig. 8. The friction coefficient is calculated from the sum of shear stress on both walls [C f = 2τ w /(ρU 2 w )]. Both single-phase and particle-laden flows with = 10% are shown. The suspension wall shear stress is slightly larger than for single phase. Consequently the power input from the moving walls per unit time [

L z 0 L x 0 U w τ w (x,z) dx
dz] is larger for suspension flows. This observation is almost independent of the Reynolds number and particle size. In Fig. 8 the amplitude and frequency of wall friction fluctuations are modified by the presence of particles. It is a first indication that the flow intermittency is altered by particles.

B. Spatial distribution of particles

Figure 9 shows the concentration profiles for different Re b , particle sizes, and bulk concentrations. In all cases, the concentration is higher in the core than near the walls, due to particle inertial migration as explained in Sec. II. The profiles of concentration are the result of an equilibrium between several mechanisms. On the one hand the hydrodynamic wall repulsion and turbulent ejection events push the neutrally buoyant particles towards the center of the gap, whereas on the other hand, turbulent sweep events pull the particles towards the walls. Although on average the concentration profiles 084302-12 are relatively flat, snapshots in the wall normal-spanwise plane show strong instantaneous coupling between the spatial distribution of neutrally buoyant particles and flow structures as noted in Fig. 10.

A local maximum can be noticed in the concentration profile near the walls. It is more evident at higher average concentrations ( = 5 and 10%) and higher Re b . Picano et al. [START_REF] Picano | Turbulent channel flow of dense suspensions of neutrally buoyant spheres[END_REF] noted that these peaks are of the same order of magnitude as the bulk concentration, and therefore they are not related to turbophoresis drift typically observed in dilute suspensions when particles are heavier than the fluid. These near-wall layers are the result of excluded volume effects when particles are gathering in the near wall region.

C. Turbulence intensity

Figure 11 shows the normal Reynolds stress components of turbulence agitation for two-phase flows which are compared to single-phase configurations. They are all scaled with u τ , the friction velocity of single-phase flow at the corresponding Reynolds number Re b . The overall turbulent intensity is not much modulated by particles. Close to the walls (y + < 20), u rms slightly decreases, whereas transverse components increase with concentration, especially the wall-normal component v rms . The increase of transverse velocity fluctuations with concentration is even more pronounced with larger particles. It is not necessarily due to the increase of turbulent activity but more likely related to the local peak of concentration observed near the wall (at y + = 8 -10 when Re b = 500) where shear is large and generates frequent particle encounters.

Also velocity fluctuations profiles in all directions are flatter for particle-laden than single-phase flow. This indicates that particles redistribute the fluctuating energy into a more isotropic flow. The trend towards isotropy is more pronounced with larger particles. Such a trend was also observed in pressure-driven flows [START_REF] Picano | Turbulent channel flow of dense suspensions of neutrally buoyant spheres[END_REF] with neutrally buoyant finite-size particles, whereas it is noticeably different for inertial point particles [START_REF] Richter | Momentum transfer in a turbulent, particle-laden Couette flow[END_REF].

D. Energy spectrum

Wall-normal profiles of turbulence intensity did not show significant modification of turbulence features in the Couette flow. These profiles are mainly dominated by large-scale vortices which do not seem to be influenced by the presence of particles (Fig. 11). The size of particles being between the largest and smallest length scales, it is interesting to investigate the influence of particles' energy distribution among various scales of the flow.

Fourier transform of the turbulent kinetic energy (TKE) is calculated in order to analyze the energy cascade. Figure 12 shows the average Fourier transform of the streamwise velocity fluctuations E uu scaled by U 2 w as a function of the streamwise wave number scaled by the inverse of both viscous 084302-14 compared to the two-phase dispersed flows for both particle sizes with an unique scaling of the wave numbers by the same 2π/δ ν based on single-phase flow, all spectra matched at small wave numbers, indicating that the large-scale motions were not modified by the presence of the particles. The energy is increased at the smallest scales because finite-size particles induce perturbations and small-scale vortices near the particle surface especially in the high-flow shear rate regions. This unified scaling shows in addition that the deviation from the single-phase flow spectrum is correlated with the actual size of the particles, as this deviation takes place at smaller wave numbers for the largest particles we investigated. The energy spectra plotted for different particle sizes overlap with each other at large wave numbers, if they are scaled by the respective particle size.

This suggests that finite-size particles promote continuous energy transfer across all scales in the turbulent Couette flow. Actually, finite-size particles add perturbation to the sheared or strained flow, as displayed in Fig. 13 using the λ 2 criterion. The number of small-scale vortices is increased due to local distortion of flow vortices by particles, similarly to what was described in the experiment of Tanaka and Eaton [START_REF] Tanaka | Sub-Kolmogorov resolution partical image velocimetry measurements of particle-laden forced turbulence[END_REF] who measured the flow around a single particle. These perturbations induced by finite-size particles make turbulence in suspension flow more isotropic.

E. Shear stress budget

The streamwise momentum balance of the suspension flow in a Couette geometry yields a constant shear stress τ total across the gap. In single-phase flow, the shear stress is composed of two contributions, namely, viscous and Reynolds stress contributions. In particle-laden flow, additional momentum transfer arises due to particle rigidity, to the forces and torques they apply on the fluid, and to their fluctuating motion with respect to local flow. The decomposition of the shear stress according to Batchelor is given in Appendix B. The increase of stress due to particle rigidity τ s is calculated using the particle-induced stresslet (from the dipole tensors associated to each particle) as follows:

τ s (y) = 1 T L x L z T 0 L z 0 L x 0 dG ij (x,y,z,t) dx dz dt. ( 13 
)
The integral over the streamwise and spanwise directions is calculated in slabs of width dy, and the differential dG ij refers to weighting the stresslet by the percentage of particle volume included into a slab. From τ s (y) one can calculate the increase of mixture viscosity using

ν eff (y) -ν ν = τ s (y) ν (y) , ( 14 
)
where ν eff is the effective suspension viscosity taking into account the presence of particles. It depends on the wall-normal position because the stresslet terms depend on local shear rate. displays the effective viscosity profiles for two particle sizes. They are compared to the Eilers fit (low Reynolds limit) based on the local concentration of particles. As expected from the studies on the effect of finite particle Reynolds number on suspension viscosity [START_REF] Kulkarni | Suspension properties at finite Reynolds number from simulated shear flow[END_REF][START_REF] Subramanian | The influence of the inertially dominated outer region on the rheology of a dilute dispersion of low-Reynolds-number drops or rigid particles[END_REF][START_REF] Yeo | Dynamics and rheology of concentrated, finite-Reynolds-number suspensions in a homogeneous shear flow[END_REF], the suspension viscosity increases [as O(Re 3/2 p ) in the dilute limit]. The ratio of the average effective viscosity in the present simulations and that of Eilers fit is 1.11 for L y /d = 10 and 1.02 for L y /d = 20. Note that the decrease of effective viscosity near the midplane is due to local weak shear rates.

Figure 15 shows the dependence on bulk concentration of all terms in Eq. (B4), for different Reynolds numbers and particle sizes. Our numerical simulations lead to an accurate balance for the shear stress. Only a slight imbalance is obtained near the wall or in the core region at the highest concentration where the residual is ±3%. Particle size (up to L y /d = 10 used in this work) has no significant effect on the shear stress budget contributions. The impact of increasing the bulk concentration on stress components depends on the wall-normal distance. The fluid and particle turbulent stress contributions reach their maximum values at the gap center, where cross-gradient mixing (as defined in Ref. [START_REF] Robinson | A review of vortex structures and associated coherent motions in turbulent boundary layers[END_REF]) is ensured by large-scale structure motion [START_REF] Lee | The structure of turbulence in a simulated plane Couette flow[END_REF]. When concentration increases, turbulent fluid stress is reduced, whereas turbulent particle stress is enhanced. Near the walls, the momentum transfer is governed by the viscous contribution. When the concentration increases, the fluid viscous stress decreases, whereas the rigidity stress significantly increases (it becomes as high as 20% of the total stress), the latter being especially promoted by the high shear rate of the flow near the walls (whereas it is almost zero at the center of the gap).

V. EFFECT OF INERTIAL PARTICLES AND BUBBLES

Before studying the influence of particle density on the turbulent flow statistics, we considered the trajectory of a single particle in turbulent pCf in order to observe if it exhibits preferential position depending on its inertia, like in Taylor-Green vortex (see Appendix A). Figure 16 shows the particle trajectory with unfolded periodic boundary conditions. Like in a Taylor-Green vortex, the lighter particle ρ p /ρ f = 1.2.10 -3 is trapped inside one of the large-scale vortices and can hardly leave it. The neutrally buoyant particle spans the entire domain. Heavier particles ρ p /ρ f = 2.0,5.0 tend slightly to be ejected out of LSVs in the high-speed streak where the fluid is swept towards the wall. These observations suggest that the concentration spatial distribution for two-phase flow laden with denser or lighter particles might be different from the case with neutrally buoyant particles.

Simulations of suspensions with light (ρ p /ρ f = 1.2.10 -3 ) and heavy (ρ p /ρ f = 2.0,5.0) particles are realized with the small particle size, i.e., L y /d = 20 for flow Reynolds number Re b = 500 and concentration = 10%. The Stokes number corresponding to the these density ratios range from 0.0012 to 4.85.

The average concentration contours in the transverse plane is shown in Fig. 17. These contours are averaged over ∼ 400 time units. As it can be expected, bubble concentration is higher inside the core of the flow. Bubbles are not exclusively found inside the vortex cores: they are permanently exchanged between both rolls. For denser particles, the probability of finding them close to the Couette walls increases with the density. Unlike neutrally buoyant particles, they are found in both low-and high-speed streaks (ejection regions). The preferential accumulation found for these finite-size particles correspond to a distance equal to one particle radius from the wall [see 18(b) It is different from what is known on heavy point particles that tend to "stick" near the walls in pCf; see, for instance, Richter and Sullivan [START_REF] Richter | Momentum transfer in a turbulent, particle-laden Couette flow[END_REF]. This phenomenon, called turbophoretic drift, has been already observed in the experiments of Ref. [START_REF] Yung | The role of turbulent bursts in particle re-entrainment in aqueous systems[END_REF], which investigated the interaction between turbulent-burst activity and deposited particles within the viscous sublayer. They suggested that, once particles of diameter less than 1.3 viscous sublayer thickness are trapped in this layer, wall normal flow velocity fluctuations are not efficient anymore for particle re-entrainment in the bulk.

The velocity profiles of pCf laden with light and heavy particles are plotted in 18(a). They are similar to the profiles obtained with neutrally buoyant particles. As discussed earlier in this paper, the mean velocity profile is governed by LSVs in turbulent pCf, which seem to be unaffected by the particle distribution at the average solid volume fraction we considered. The inset in this figure displays τ w /(μU w / h) as a function of the density ratio. The mean wall friction is slightly enhanced when inertia is increased.

Figure 18(c) shows the diagonal components of rms velocity fluctuation tensor scaled by the corresponding wall friction velocity u τ . Turbulence modulation is observed in Refs. the case ρ p /ρ f = 5, in contrast with what is classically observed for heavy point particles [START_REF] Dritselis | Numerical study of educed coherent structures in the near-wall region of a particle-laden channel flow[END_REF][START_REF] Li | Numerical simulation of particle-laden turbulent channel flow[END_REF]. Point particles add energy dissipation through the drag force in the fluid phase momentum balance. Their slip velocity increases with inertia and damped turbulent fluctuations, especially in transverse directions. In the case of heavy finite-size particles as shown in 18(c), u rms decreases across the gap, whereas transverse components are unchanged when the density ratio is increased.

Finally, modification of energy distribution by particles is considered. The question related to the effect of particle inertia on turbulence modulation does not have a unique answer in the literature. Many works were done with very high density ratio (gas-solid), and the conclusions depend upon the flow configuration (see, for example, Refs. [START_REF] Elghobashi | On the two-way interaction between homogeneous turbulence and dispersed solid particles. I: Turbulence modification[END_REF][START_REF] Richter | Turbulence modification by inertial particles and its influence on the spectral energy budget in planar Couette flow[END_REF]). Therefore the impact on the flow energy distribution is different when coupling particle finite size with particle fluid density mismatch. The average streamwise energy spectrum E uu is plotted in 18(d) as a function of both streamwise and spanwise wave numbers, for the cases of light and heavy particles in comparison with the neutrally buoyant case. Inertia does not significantly influences the energy transfer process in the range of parameters we considered.

VI. MODIFICATION OF THE REGENERATION CYCLE

The shape of LSVs can be clearly observed in Fig. 19(a) that displays the streamwise vorticity. As mentioned before, in Miniunit, two spanwise counter-rotating LSVs are filling the entire simulation domain.

As stated by Waleffe [68] and Hamilton et al. [START_REF] Hamilton | Regeneration mechanisms of near-wall turbulence structures[END_REF], turbulence activity in turbulent pCf follows a regeneration cycle with a period of ∼ 100h/U w when Re b = 400. Each cycle consists of three sequential subprocesses: streak formation, streak breakdown, and vortex regeneration. Streak formation is due to an ejection event by two counter-rotating large-scale vortices, which forms a low-speed streak by pumping fluid away from the no-slip boundary. When a streak comes across the region of strong mean shear flow, streak breakdown occurs forming a secondary flow. Finally the vortex is regenerated due to the breakdown of streaks, being governed by a strong nonlinear process. In this part, we consider large-scale streaks (LSSs) and LSVs separately, in view of understanding how finite-size particles are affecting the regeneration cycle. We will observe that the particles reduce the magnitude of ω x only in the core of the LSVs, without changing significantly their shape and size. 
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A. Quadrant analysis

An LSS corresponds to an ejection or sweep event, that can be identified by sampling u -v correlation as shown in Fig. 20 (probability distribution is also shown). This figure is realized in the midplane (xz) along the wall-normal direction. The LSS are identified from events (u < 0,v > 0) and (u > 0,v < 0) in the second and fourth quadrants that are dominant in this plane. In pCf configuration, sweep and ejection events cannot be distinguished because an ejection from one wall which is crossing the midplane corresponds to a sweep on the opposite wall. Figure 20 reports on these events taking place in single-phase flow as well as for two-phase flow with neutrally buoyant particles. The event distribution is stretched from a curved shape to a more straight one, suggesting that the shape of the streak is altered by particles especially for L y /d = 10. The probability density functions of u and v reveal that the interaction between particles and streaks promotes strong streamwise fluctuations with no significant impact on wall-normal fluctuations.

Similar analysis is realized with light and heavy finite-size particles. The shape of streak is clearly altered when heavier particles are added to the flow (see Fig. 21). Particularly in the streamwise direction, the intensity of u is drastically reduced corresponding to the u rms attenuation as in Fig. 18(c). In the present study, both lighter and heavier finite-size particles have damped the turbulence intensity in the midplane compared with neutrally buoyant particles. On the other hand, the maximum of v is decreased due to inertial heavier particles while its rms is almost unchanged as shown in Fig. 18(c).

B. Modal decomposition of velocity fluctuations

To evidence the energy contained in different flow structures, we performed modal analysis of the flow fluctuating energy. The Fourier decomposition of the energy, as introduced by Hamilton et al. [START_REF] Hamilton | Regeneration mechanisms of near-wall turbulence structures[END_REF] in the periodic directions (streamwise and spanwise), is written as

M(k x = mα,k z = nβ) ≡ 1 0 [ u 2 (mα,y,nβ) + v 2 (mα,y,nβ) + w 2 (mα,y,nβ)]dy 1/2 , ( 15 
)
where (m,n) are the integer wave numbers, and (α,β) are the fundamental wave numbers in streamwise and spanwise directions defined as (2π/L x ,2π/L z ). A combination (mα,nβ) represents different characteristic turbulent structures. For instance, (0,nβ),n = 0 is the x-independent structure (e.g., LSS) and (α,nβ),n = 0 is the x-dependent structure (e.g. streaks confined in the streamwise direction).

Figure 22 shows the evolution in time of the finite energy modes, the highest energy content corresponds to the mode (0,β). The energy signals are fluctuating in time with a period of order 100 time units, resulting from flow intermittency. In Fig. 22, M(0,β) and M(α,0) are plotted for two particle sizes and compared with single-phase flow at Re s = 380. The average values of M(0,β) and M(α,0) are nearly unchanged. However, one can note that the intermittent character of the flow is modified by the particle presence, since the amplitude of fluctuations is reduced, and the period is also modified, especially by the large particles. As a conclusion, particles have an effect on the streaks dynamics. However, this modification is not strong enough to destroy the stability of the cycle sustaining shear-driven turbulence.

Figure 23(a) shows the effect of particle inertia on the time evolution of M(0,β) and M(α,0), based on the simulations with small particles (L y /d = 20). In all cases the average energy content is almost unchanged. Inertial particles have the same effect as the neutrally buoyant particles. As for the bubble-laden case, the frequency and amplitude of both modes are very close to single-phase flow configuration, suggesting that bubbles have weak impact on turbulent flow activity.

Hamilton and co-workers [START_REF] Hamilton | Streamwise vortices and transition to turbulence[END_REF][START_REF] Hamilton | Regeneration mechanisms of near-wall turbulence structures[END_REF] stipulated that over one cycle, vortices must have a maximum circulation above a given threshold in order to produce unstable streaks so that turbulence can be sustained. We consider the circulation based on the contour that gives the maximum circulation from among all rectangular contours. The circulation of the streamwise vortices of mode 0 in the streamwise direction (like the streaks), and mode n in the z direction is

k x =0 = ωx (0,y,nβ)dS(n), (16) 
where S(n) is a transverse surface, with y varies from 0 to 1 and z varies from 0 to 2π/(nβ) for n = 0. The maximum circulation corresponds to n = 1. Figure 23(b) shows that, regardless of particle inertia, the dimensionless circulation k x =0 /4U w h is higher than the threshold given by Ref. [START_REF] Hamilton | Regeneration mechanisms of near-wall turbulence structures[END_REF], which is 0.0375. Like the modal energy, the average value of the circulation is maintained, whereas the amplitude of fluctuations around the mean is reduced when particle inertia is increased. We can note that the circulation oscillation has phase shift when compared to M(0,β) (standing for LSS) in Fig. 23(a). The circulation is the highest when the energy of the streaks is the lowest. It can be noted that the flow circulation is in phase with the x-dependent streamwise streaks in Figs. 23(a) and 23(b). Hamilton et al. [START_REF] Hamilton | Regeneration mechanisms of near-wall turbulence structures[END_REF] argued that generation of LSSs is the result of nonlinear interactions of x-dependent streaks. These x-dependent streaks are part of the coherent structures that are the constitutive elements of near-wall turbulence, and they are closely linked to the vorticity stretching (ω x ∂u/∂x, where ω x is the streamwise vorticity) as demonstrated by Schoppa and Hussain [START_REF] Schoppa | Coherent structure generation in near-wall turbulence[END_REF]. Instantaneous snapshots containing contours of both the streamwise velocity fluctuations (that illustrate the streak shape), as well as the vorticity stretching term are displayed in Fig. 24. This figure shows that the high-flow circulation is synchronized with the appearance of x-dependent flow structures. This gives a strong proof that nonlinear processes like streak breakdown, and thereby vortex regeneration, take place in the considered suspension flows like in single-phase flow, regardless of particle inertia.

C. Evolution of Reynolds stress

In turbulent wall shear flows, ejection events are driven by the presence of coherent structures such as hairpin vortices or LSVs. Ejections of fluid and sweeps are always responsible for energy transfer from large-scale flow structures in the bulk to small-scale near-wall structures. During this process, the turbulent fluctuations are enhanced. From the investigation of total energy input and dissipation rate, Kawahara and Kida [START_REF] Kawahara | Periodic motion embedded in plane Couette turbulence: Regeneration cycle and burst[END_REF] evidenced the temporal evolution of spatial structures. They observed 084302-23 that this cyclic sequence is consistent with the regeneration cycle proposed by Hamilton et al. [24]. This quasiperiodicity of the ejection events can be represented by the evolution of Reynolds stress in Fig. 25. We can observe that the maximum of Reynolds stress amplitude occurs in the core region rather than at the walls. The quasiperiodic evolution of Reynolds stress is existing for all single-phase and two-phase configurations. A strong ejection event is followed by a gradual decrease of intensity over a certain time period. The maxima of the temporal evolution of the Reynolds stress occur when dissipation rate is large along the periodic orbit described in Ref. [START_REF] Kawahara | Periodic motion embedded in plane Couette turbulence: Regeneration cycle and burst[END_REF]. This maximum intensity of ejection event is decreasing with heavy particles corresponding to a reduction of the level of turbulent fluctuations as shown in 18(C). The typical period of ejection events occurrence is longer when Re b is lower [see Figs. ] highlighting that enhanced dissipation by the presence of particles is a major effect on the flow. Either larger particle size or higher particle density has a tendency to delay ejection events compared to single-phase flows.

It is interesting to compare this evolution to the minimal turbulent channel flow investigated in Ref. [START_REF] Itano | The dynamics of bursting process in wall turbulence[END_REF]. Although both of them are wall shear turbulence, the configurations of channel flow and pCf lead to different flow dynamics of ejection events due to the interaction between high-and low-speed streaks. As stated by Itano and Toh [START_REF] Itano | The dynamics of bursting process in wall turbulence[END_REF], two walls share one buffer layer and a couple of LSVs in pCf whereas the channel flow contains log-law region and the central region is ruled by the 084302-24 velocity-defect law. In pCf, the existence of the LSVs leads to a strong coupling between the two low-speed streaks generated by the two walls with opposite velocities. The low-speed streak will extend to the other wall acting as the high-speed streak on this wall. These two low-speed streaks promote each other while LSVs are located in the core of pCf. These different coherent structures also determine the different locations and periodicity of ejection events for these two configurations. Comparing Fig. 1 in Ref. [START_REF] Itano | The dynamics of bursting process in wall turbulence[END_REF] to Fig. 25, in channel flow, the intervals between ejection events are distributed intermittently and close to the boundary, whereas they are quasiperiodic and located in the core region for pCf.

VII. CONCLUSION

In this study we addressed the effect of finite-size particles on turbulent plane Couette flow, at moderate concentration. The Reynolds numbers considered were close to the laminar-turbulent transition, such that large-scale rotational structures were well developed and self-sustained. Thereby, interaction of particles with coherent structures could be evidenced using particle-resolved numerical simulations with two Couette gap-to-particle size ratios (10 and 20), and with particle-to-fluid density ratio ranging from 0 to 5. The average settling induced by gravity forces was neglected to focus on the interactions induced by the sheared or strained flow. Careful tests were carried out to verify the numerical method accuracy in the range of particle Reynolds and Stokes numbers up to 10, which corresponds to turbulent suspension flow configuration.

Regarding the distribution of particles, the volumetric concentration profiles (averaged in the homogeneous streamwise and spanwise directions) have shown a homogeneous distribution of particles across the Couette gap, resulting from the balance between hydrodynamic repulsive force from the walls, turbulent mixing, and shear-induced diffusion. In the case of neutrally buoyant particles, 2D snapshots of particle positions revealed higher (resp. lower) presence of particles in the sweep (resp. ejection) regions where they are periodically trapped (resp. expelled). Light particles (ρ p /ρ f < 1) were experiencing, in addition to the above-mentioned flow interactions, an inertia-induced lift force towards the center of large-scale vortices. This led to an increase of the concentration in the Couette center. On the contrary, inertial particles (ρ p /ρ f > 1), were rather moving towards the walls, leading to small localized peaks in the concentration profile in that region.

Time-averaged profiles, in the wall-normal direction, of the mean flow and Reynolds stress components did not reveal significant difference between single-phase and two-phase flows at equivalent effective Reynolds number, except that the wall shear stress is higher for the two-phase flow. However temporal and modal analysis of flow fluctuations, suggested that particles had an effect on the regeneration cycle of turbulence. While the energy of large-scale vortices (LSVs) was unchanged by particles (only the rotation rate inside the vortex core was slightly reduced), the level of kinetic energy was increased over the range of intermediate wave numbers for all considered particle sizes and densities. This is mainly due to flow perturbations induced by the nondeformability of the dispersed phase (finite-size effect). The shape of the streaks was altered by particles, with an increased probability of strong streamwise fluctuations with the largest particles and reduction of the range of streamwise fluctuations by the heaviest ones. The modal analysis of velocity fluctuations revealed that particles had also an effect on the streak dynamics. The intermittent character of the flow was modified by the particle presence: the amplitude of fluctuations was reduced and the period was modified especially by the largest particles. Similarly to the modal energy, the average value of the circulation was kept unchanged, whereas its standard deviation was reduced when particle inertia was increased. helpful discussions on the particle migration, regeneration cycle laden with finite-size particles, and particle suspension dynamics, respectively. Great help from A. Pedrono for technical support on JADIM is also acknowledged.

APPENDIX A: EFFECT OF INERTIA ON PARTICLE DYNAMICS IN TAYLOR-GREEN VORTEX

In rotational flows, particles are known to exhibit preferential concentration in vortices that depends on their inertia: bubbles accumulate in low-pressure regions (center of a vortex), whereas heavy particles are expelled towards high-strain regions. To test the ability of FCM to predict the correct particle motion across flow streamlines for different particle inertia, we performed numerical simulations using a single finite-size particles in a periodic Taylor-Green vortex array. Figure 26 shows the particle trajectory in a Taylor-Green vortex for different particle-to-fluid density ratios and different particle Re p , with a particle-to-vortex size ratio d/ l e = 0.4/π. The behavior of light and heavy particles is correctly captured by FCM: bubbles move towards the vortex center and inertial particles are pushed towards the high-strain rate regions (not shown here). Only the motion of bubbles is illustrated in Fig. 26 for different Reynolds numbers. The higher the Reynolds number, the faster is the inward spiraling motion.

Numerical results were compared to the trajectory of a single particle predicted by the Maxey-Riley equation [START_REF] Maxey | Equation of motion for a small rigid sphere in a nonuniform flow[END_REF] written for point particles (of radius a and mass m p ) at low Reynolds number:

m p d u p dt = m f Du f Dt - m f 2 d u p dt - Du f Dt -6πa p ρ f ν(u p -u f ) -6a 2 p ρ f √ πν t t 0 1 √ t -τ d u p dτ - d u f dτ . (A1)
In Eq. (A1) the Faxén terms due to velocity curvature in the added mass, drag, and Basset contributions are neglected. Equation (A1) was solved using the Adams-Bashforth multistep integral method with an explicit scheme for the Basset history force (following Daitche [START_REF] Daitche | Advection of inertial particles in the presence of the history force: Higher order numerical schemes[END_REF]), the accuracy of this scheme being second order in time. The numerical integration of Eq. (A1) was tested against the 084302-27 analytical solution of Ref. [START_REF] Candelier | On the effect of the Boussinesq-Basset force on the radial migration of a Stokes particle in a vortex[END_REF] to calculate particle trajectory in a rigid-body vortex. The agreement was very good.

The single particle trajectory in a Taylor-Green vortex from FCM simulations is very well predicted by Maxey-Riley equation of motion at Re p = 0.1. At higher Re p , the agreement is good during the first period of rotation. Then discrepancy builds in following periods. Adding Faxen terms (except for the history contribution) did not have any significant impact on particle trajectory.

The Maxey-Riley equation of motion does not contain the lift force due to shear of the undisturbed flow. This force perpendicular to the particle slip velocity is negligible at low Reynolds numbers and becomes significant when Re p increases. Its analytical expression is somehow complicated to derive in a general flow configuration, because the contribution of convective and unsteady terms to this force are not additive due to nonlinearity [9]. However we can use the model proposed in Saffman's work [START_REF] Saffman | The lift on a small sphere in a slow shear flow[END_REF] in the limit of low but finite Reynolds number based on the particle slip velocity (u fu p ) with respect to the unperturbed fluid flow velocity u f :

F L(Sa) = -6.45ρ f νa 2 ν | | 1 2 × (u f -u p ). (A2)
= × u f is the flow vorticity. An extension of this lift force can be found in Mei [START_REF] Mei | An approximate expression for the shear lift force on a spherical particle at finite Reynolds number[END_REF] at finite particle Reynolds number (Re s 40) fitting the numerical results reported in Dandy and Dwyer [START_REF] Dandy | A sphere in shear flow at finite Reynolds number: Effect of shear on particle lift, drag, and heat transfer[END_REF]:

F L F L(Sa) = (1 -0.3314α 0.5 ) exp - Re s 10 + 0.3314α 0.5 , (A3)
where Re s is a Reynolds number based on the slip velocity Re

S = |u f -u p |2a ν and α is a dimensionless shear rate α = |∂u f /∂y|a |u f -u p | .
Adding the lift force to the Maxey-Riley equation reduces the overestimate of the theoretical prediction, but it did not match exactly the numerical evolution obtained with FCM. 
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turbulence. To summarize,the stress budget is

τ total = τ v + τ T f + τ s + τ T p (B3)
similarly to what has been written in Ref. [START_REF] Picano | Turbulent channel flow of dense suspensions of neutrally buoyant spheres[END_REF] following Ref, [START_REF] Zhang | Physics-based analysis of the hydrodynamic stress in a fluid-particle system[END_REF]. When scaled by the wall shear stress τ w , this budget writes

τ + total = 1 = τ + v + τ + T f + τ + s + τ + T p (B4)

APPENDIX C: REYNOLDS STRESS BUDGET

The Reynolds stress budget was obtained starting from the Navier-Stokes equations coupled to particle volume forcing terms derived from the FCM:

ρ ∂u i ∂t + u j ∂u i ∂x j = - ∂p ∂x j + μ ∂ 2 u i ∂x i ∂x j + f m (x i ,t) + f d (x i ,t). (C1)
Here f m and f d correspond to monopole and dipole forces, respectively. Multiplying Eq. (C1) by the fluid velocity and subtracting the mean energy balance equation, one can obtain the balance for the flow velocity fluctuations or Reynolds stress. The Reynolds stress and mean energy balances are written as

ρ ∂ ∂t u i u j + u k ∂ ∂x k u i u j = P ij -ε ij + T ij + ij + D ij + FB ij , (C2) ρ ∂ ∂t 1 2 u i u i + u j ∂ ∂x j 1 2 u i u i = P ij -ε ij + T ij + ij + D ij + FB ij . (C3)
A prime symbol is added to all fluctuating components. The expressions of the contributions on the right-hand side of Eq. (C2) and Eq. ( C3) are written in Table III.

The Reynolds stress budgets allow to obtain the rate of change of both normal and off-diagonal Reynolds stress terms. As stated by Jeong et al. [27], energy is extracted from the mean flow large-scale vortices to u u due to advection. Intercomponent energy transfer (from u u to v v and w w ) occurs by vortex stretching and reorientation of vorticity from the mean flow.

In the feedback term FB ij derived from the source term in Navier-Stokes equations, the main contribution comes from the dipole forcing (stresslets) due to particle rigidity. The monopole term is different from zero only when two particles are close to contact, and its contribution to the balances [Eq. (C2) and Eq. ( C3)] is negligible in the range of concentrations considered in this work. Different contributions to Reynolds stress and mean flow budgets are plotted in Fig. 27. In two-phase flow, the sign of all contributions is not changed with respect to the reference single-phase flow case. It is observed that particles mainly increase the rate of energy dissipation in all directions. Other observations can be summarized as follows:

(1) P 11 is the only term that extracts energy from the mean flow to produce u u . This production term is almost unchanged by particles.

(2) FB 22 injects energy in v v . The feedback term is maximum near the wall where the shear rate is the strongest. It generates the major evident signature of the turbulence modulation by particles.

(3)

Introduction

The experiments of Matas et al. (2003) have shed the light on the non-monotonous effect of particles on laminar-turbulent flow transition, depending on the particle-to-pipe size ratio and on suspension volumetric concentration. A small amount of neutrally buoyant finite-size particles allowed sustaining the turbulent state and decreasing the transition threshold significantly. Almost a decade later, particle-resolved numerical simulations provided some evidences that at moderate concentration, particles have a significant impact on the unsteady nature of the flow, enhancing the transverse turbulent stress components and modifying the flow rotational structures (Loisel et al. 2013;[START_REF] Yu | Numerical studies of the effects of large neutrally Bibliography[END_REF]Lashgari et al. 2015). The effect of particles on the transition of Couette flow is not yet well characterized. Recent experiments from (Majji et al. 2016) have shown that particles do not have a significant impact on the transition path in Taylor-Couette flow, if the particle concentration is low and the particle size is relatively small compared to the Couette gap. With larger particles (8 times smaller than the Couette gap), Linares-Guerrero et al. (2017) have shown that particles do not change the transition threshold of a cylindrical turbulent Couette flow at 10% volumetric concentration. Consistent with this finding, flow statistics performed on moderately concentrated turbulent plane Couette flow (slightly above the transition threshold), have revealed that there is no significant difference between single-and two-phase flows at equivalent effective Reynolds number (Wang et al. 2017).

If the size of the particles is large enough compared to the size of energetic eddies in a turbulent flow, the local flow streamlines are significantly modified (as would not be the case for pointwise particles). The rigid body constraints from finite-size particles influence the turbulent kinetic energy budget in two competing ways: they add perturbations that increase shear production of turbulence and simultaneously increase viscous dissipation (Qureshi et al. 2007;Bellani et al. 2012). The perturbations induced by the particles depend on their locations: their magnitude increases with the local flow strain rate. The spatial distribution of neutrally buoyant particles depends on the flow configuration (turbulent Couette or channel flow). Indeed, in addition to the turbulent dispersion that particles undergo, they are experiencing a lift force due to finite flow inertia at the particle scale. This lift force is normal to the walls, and its orientation depends itself on the flow configuration. Therefore particles are preferentially located either in the active region, i.e. near the walls in pressure-driven channel flow (Loisel et al. 2013), or in the inactive region, i.e. away from the walls in Couette flow (Wang et al. 2017).

Even though the stability in Couette and channel single-phase flows is different, they share at high Reynolds numbers some common turbulence features in the near wall regions. The active motion (near the walls) contains eddies with streamwise characteristic length of the order of 1000 wall units in highly turbulent flows that constitute the essential contribution to the Reynolds shear stress (-u v ). Statistical properties of the active motion are universal functions of the friction velocity u τ whereas the inactive motion (far from the walls) gives no correlation between u and v and it is mainly related to the flow geometry [START_REF] Jiménez | Cascades in wall-bounded turbulence[END_REF]Bradshaw 1967;Panton 2001;[START_REF] Tuerke | Simulations of turbulent channels with prescribed velocity profiles[END_REF]. The essential difference in both flow configurations is due to the mean velocity (u) profile which is anti-symmetric (resp. symmetric) in plane Couette (resp. pressure-driven) flow with respect to the midplane. The production term (-u v du/dy) in the turbulent kinetic energy equation has different roles according to the flow configuration. In Couette flow, the fluid is pumped away from one wall to the other one, extracting energy from the mean flow, leading to the enhancement of turbulent structures (Papavassiliou & Hanratty 1997). However in pressure-driven channel flow, the shear layers are divided into two regions and the production is of opposite sign in both channel halves, making the turbulent structures relatively independent on each wall.

The temporal and spatial development of wall turbulence consists of a self-sustained process, namely the near-wall regeneration cycle (located in the vicinity of the non-slip 1997)). During this complete cycle, coherent large-scale streaks and alternating staggered rotating vortices sustain each other, altogether having impact on the wall friction. This cycle has been demonstrated to be independent of the outer layer: it can survive without any input from the core flow. Indeed [START_REF] Jiménez | The autonomous cycle of near-wall turbulence[END_REF] carried out some simulations after removing all the fluctuations from the velocity field above y + = 60 (in a channel flow), and after hundreds of time units, they observed an almost unchanged turbulent flow compared to the original one. The regeneration cycle consists of three sequential sub-processes sketched in figure 1: streak formation, streak breakdown and streamwise vortex regeneration. The streaks are generated by a linear process, the so-called lift-up effect, whereas the following two processes are the result of non-linear interactions.

In order to understand how particles affect the flow turbulence and the transition from one regime to another, we are concerned in this paper with their impact on the regeneration cycle. [START_REF] Klinkenberg | Numerical study of laminar-turbulent transition in particle-laden channel flow[END_REF] have shown that inertial pointwise particles modify the transition to turbulence not by altering the lift-up effect but rather by modifying the dynamics of the oblique waves necessary for the streaks regeneration and breakdown. In this work, we consider the effect of neutrally buoyant finite-size particles on the regeneration cycle, in turbulent flows slightly above the transition limit of single-phase flows (Reynolds number equal to 500 for Couette and 2600 for channel flows). Numerical simulations are performed in a domain (so-called miniunit) which contains one set of coherent structures sufficient to sustain the flow turbulence. The size of this miniunit is different for both flows and it follows the findings of Jiménez & Moin (1991) and Hamilton et al. (1995). The coupling between the fluid motion and the particle dynamics is taken into account using the Force Coupling Method (Climent & Maxey 2009). Neutrally buoyant particles 20 times smaller than the Couette gap or channel height are considered here at moderate volumetric concentration from 1% up to 10%.

The paper is organized as follows. Section 2 summarizes the numerical configurations in both single-and two-phase flows. In section 3, we show how particles affect the laminarturbulent transition by using specific initial conditions for each flow configuration. Then, we discuss the effect of particles on the flow energy modulation in section 4 and on the different stages of the regeneration cycle in section 5. Both analogies and divergences between Couette and pressure-driven flows are discussed all along the paper before conclusion.

Suspension flow configurations

The coupling of fluid flow and particle dynamics follows the Force Coupling Method (FCM), as described in Wang et al. (2017). The validation tests were carefully detailed. The method is valid to study suspension Couette or pressure-driven channel flows, with particle Reynolds numbers (Re p is defined in Table 1) up to 10 and particle volume fraction less than 20%.

Couette flow was driven by two walls moving at equal and opposite velocities. Pressuredriven channel flow was generated by imposing a global pressure drop in the streamwise direction, that is timely tuned in order to maintain constant flow rate. In both flow configurations, x and z are respectively the streamwise and spanwise flow directions, with periodic boundary conditions (the so-called homogeneous directions) while y stands for the wall-normal or velocity gradient direction. Turbulent flow simulations were performed using a so-called "miniunit" configuration, which is the minimal geometric domain that is sufficient to accommodate the self-sustained flow structures for singlephase turbulence, while allowing reasonable time for the computation of suspension flows with finite-size particles. This minimal simulation domain was carefully examined in Couette flow configuration by Hamilton et al. (1995) and pressure-driven flow by Jiménez & Moin (1991). In both cases, the spanwise length is larger than 100 wall units which corresponds to the spanwise characteristic spacing between two coherent structures. The length and velocity in wall units are y + ≡ yu τ /ν, and u + ≡ u/u τ , where u τ = τ w /ρ is the friction velocity based on the wall shear stress and fluid density.

Table 1 contains a summary of all the parameters selected for this study. Through all the paper, we note C for plane Couette and P for pressure-driven channel flows. The size ratio between the Couette gap or channel height and the particle diameter is L y /d = 20 in most cases. Particles experience turbulent fluctuations, and their inertia can be characterized by the dimensionless Stokes number St turb = τ + p /τ + f , where τ + p is the particle relaxation time scale in response to the turbulent flow forcing which characteristic time scale is τ + f . The latter is considered here as the ratio between the characteristic size of the large scale streamwise vortices L + y in Couette or L + y /2 in channel flow, and the characteristic velocity fluctuation scale max(v + , w + ) in the flow cross-section. The ability of the FCM to capture accurately the particle response to flow fluctuations was tested in Wang et al. (2017), where the motion of a rigid particle submitted to an external oscillating force in a still fluid was considered. The numerical solution of the particle motion was in a good agreement with the theoretical prediction when the ratio of the particle radius to the devoloped Stokes layer thickness δ 2 = ωa 2 /ν was less than 2. This ratio is directly related to the particle Reynolds and Stokes numbers, i.e. δ 2 = 9πSt turb /(ρ p /ρ f + 1/2). In the simulations considered for this work, with neutrally buoyant particles, δ 2 is always below 0.5 in Couette and 1.4 in pressure-driven flows. Couette flow with 1 < St < 4(4 < d + < 8) reported in Wang et al. (2017) were similar to those obtained in the present paper at St ≈ 1(d + ≈ 4).

(C) L y /d = 20, L x × L y × L z = 2.85 × 1.0 × 1.91,N x × N y × N z = 382 × 134 × 256 pressure -driven(P ) L y /d = 20, L x × L y × L z = 1.57 × 1.0 × 0.63,N x × N y × N z = 158 × 106 × 64 Case N p Φ(%) U bulk u τ L + y d + Re b Re τ Re p(max) St (max)

Particle effect on the transition

A theoretical analysis of flow stability in the presence of freely moving finite-size particles is actually impossible, from a mathematical point of view. For this reason we determined the transition threshold from an engineering point of view, by considering a fully-developed turbulent flow experiencing successive reductions of the Reynolds number down to a limit where the flow becomes eventually laminar. Every time the Reynolds number was decreased, the simulation was run for longer than 500 time units. Transition of single-phase flow was observed at Re c C ∼ 320 for Couette and at Re c P ∼ 2200 for pressure-driven flows. It should be kept in mind that, first the value of the critical Reynolds number depends on the simulation domain because periodic boundary conditions influence interactions between large scale vortices. Second, the relaminarization is a process that may occur randomly. Therefore the determination of a "rigourous" laminar-turbulent transition threshold (which is not the main scope of the present paper) would require a large amount of simulations to form statistics. Instead, an indicative threshold is determined in order to assess the impact of the particle presence on the flow features, and to evaluate qualitatively transition delay or not.

In the range of investigated suspension flow parameters (particle size and volumetric concentration), particles are expected to decrease significantly the laminar-turbulent transition threshold in pressure-driven flow based on the experiments of Matas et al. (2003), in opposite to Couette flow where particles seem to not affect the flow stability (see our previous study of Wang et al. (2017)). The wall friction coefficient C f (summed on both walls) was considered as an indicator of current flow regime, C f = 2τ w /(ρU 2 bulk ) for Couette flow and 2τ w /(ρ(Q/L y ) 2 ) for pressure-driven flow. The initial flow configurations were chosen from the single-phase flow simulations at Re b = 500 for Couette and Re b = 2300 for channel flow. The particles were then randomly seeded in the simulation domain, at different volumetric concentrations (Φ = 5 or 10% in Couette and Φ = 1 or 5% in channel flow). The two-phase flow simulations were carried out for several hundreds of time units (typically more than 300), before the Reynolds number was decreased in order to evaluate the transition threshold. The evolution in time of the wall friction coefficient of the suspension flow is shown in figure 2 for different cases, after the Reynolds number was abruptly decreased.

In Couette flow, the Reynolds number was decreased from 500 separately to 470, 455 or 440. At Φ = 10%, the flow became laminar for the two simulations at Re b = 455 and 440. At Φ = 5%, the flow remained turbulent at Re b = 455. When the Reynolds number was progressively decreased as following: 455 → 415 → 390 → 365 → 355, the transition took place only around Re c ≈ 355. This critical Reynolds number is calculated using the pure fluid viscosity. The effective Reynolds number based on the suspension viscosity is lower if additional viscous dissipation introduced by the rigid particles is accounted for, due to an increase of the flow viscosity ν ef f = νη(Φ, Re), with η(Φ, Re) > 1. There are some possibilities to predict η(Φ, 0) from Eiler's fit [START_REF] Stickel | Fluid mechanics and rheology of dense suspensions[END_REF] and the correction at finite Reynolds number η(Φ, Re) at low concentrations (see for example [START_REF] Subramanian | The influence of the inertially dominated outer region on the rheology of a dilute dispersion of low-reynolds-number drops or rigid particles[END_REF]). The simulations with FCM give access to the increase of the suspension viscosity induced by the particles through the second order term of the multipole expansion also called Stresslet (for the definition, see Wang et al. 2017).

Moreover, since the particles are not homogeneously distributed, the increase of the suspension viscosity can be obtained from profiles of ν ef f as shown in figure 5(c). This leads to a critical Reynolds number of the suspension flow Re c,s ≈ 312 for Φ = 5% which is very close to the value of single-phase flow Re c C . The main conclusion of this test is that in a Couette flow with moderate particle concentration, the particles act mainly as a source of energy dissipation in the flow, and that they do not change significantly the transition threshold if the suspension viscosity was taken into account in the Reynolds number definition.

In pressure-driven flow, the initial flow configuration was selected at Re b = 2300. Particles were randomly seeded at concentration 1% or 5%. A small concentration of finite-size particles is enough to decrease the transition threshold (see Matas et al. 2003;Loisel et al. 2013;[START_REF] Yu | Numerical studies of the effects of large neutrally Bibliography[END_REF]Lashgari et al. 2015), keeping in mind that at low to moderate concentration, the threshold decreases when the concentration is increased, in contrast to Couette flow. Figure 2(b) shows the temporal evolution of C f after particles were seeded and the Reynolds number was decreased from 2300 to 2000. For Φ = 1%, the flow is fully laminar at Re b = 2000. However for Φ = 5%, a stable two-sided turbulent flow is sustained at Re b = 2000 while Jiménez & Moin (1991) observed that in the miniunit turbulent flow exists only near one wall in a single-phase flow, even at higher Reynolds number (Re b = 2667). Decreasing Re b from 2300 to 1700 and then to 1500, the flow becomes laminar at Re c = 1500 (which corresponds to Re c,s = 1315 based on Eiler's fit whereas Re c,s = 1150 based on 5(c)). A significant drop of the transition threshold (Re c P ∼ 2200 for single-phase flow) is observed although the effective viscosity has increased.

Influence of particles on the flow stability

As will be further discussed in §4.1, particles tend to accumulate in the large scale vortex regions in Couette flow and in low-speed streak regions in channel flow. In order to understand how particles enhance or reduce the flow stability from their preferential spatial distribution, we performed some simulations with specific flow configurations.

The first test was done in Couette flow and it was inspired from the study of Hamilton et al. (1995). When the streamwise velocity perturbations were removed, while the linear streamwise velocity profile and streamwise vortices were maintained from a fully turbulent simulation, the authors observed that the flow evolved again to the fully turbulent regime. In a similar way, we considered a streaks free turbulent flow as initial configuration, a snapshot from a steady single-phase turbulent Couette flow at Re b = 500, where the amplitude of x-independent streak achieves one of its peaks (maximum of M (0, β) which is the x-independent structure based on modal analysis of the flow fluctuating energy written in (5.1) introduced by Hamilton et al. (1995)).

Then the Reynolds number was abruptly decreased for single-phase flow to 455 and 430 in two separate simulations. The temporal evolution of R.M.S velocity fluctuations shown in figures 3(a, c, e) as well as the mean velocity profile (not shown here) suggest that despite the initial destabilization, the flow recovers its fully turbulent features after 200 time units. Figure 3(g) shows the contours of velocity magnitude for single-phase flow, the left one is taken at t = 0 after removing u and its evolution after 500 time units can be seen in the right figure. The flow field plotted after nearly 5 regeneration cycles cannot be distinguished from the initial fully turbulent flow. Therefore the streamwise vortices, that were initially maintained, were strong enough to generate streaks through the lift-up effect and resumed the regeneration cycle.

The main effect of the presence of particles in the Couette flow was stabilizing in nature. When we added small particles (L y /d = 20) at Φ = 10% and decreased the Reynolds number down to 455, without removing the streamwise velocity perturbations, the flow became laminar. Adding larger particles (L y /d = 10) at Φ = 5% and decreasing the Reynolds number to 430, the flow velocity fluctuations were significantly damped, and the flow became laminar while staying quasi-turbulent for around 6 regeneration cycles. These observations suggest that the particles were mainly enhancing dissipation in the flow.

The test on flow stability for the channel flow configuration has been done using an artificial finite-amplitude low-speed streak that was supplemented to a mean flow profile corresponding to wall-bounded turbulence. We used the same base flow as Schoppa & Hussain (2002) who studied the streak transient growth mechanism in a two-dimensional streak configuration. The base flow is:

u(y, z) = U 0 (y) + (∆u/2)cos(β s z)g(y) (3.1)
in the streamwise direction, and v = w = 0 in the wall-normal and spanwise directions. U 0 (y) is the mean velocity and g(y) is an amplitude function which satisfies the no-slip condition at y = 0 and localizes the streak velocity defect at a single wall. A 'singlesided' turbulent mean velocity profile is imposed, analogous to that observed in minimal channel turbulence (Jiménez & Moin 1991), with a parabolic profile U lam in the laminar top half of the channel, and a turbulent Reichardt profile U turb , that respects the nearwall turbulence statistics, in the bottom half:

U 0 (y) =    U lam = U c [1 -((y/h) -1) 2 ], y m y 2h U turb = u * [2.5ln(1 + 0.4y/δ) + 7.8(1 -e (-y/11δ) -y 11δ e (-y/3δ) )], 0 y < y m (3.2)
The friction velocity u * = τ w /ρ and viscous length scale δ = ν/u * are calculated using a wall shear stress estimated from Dean's empirical correlation (C f ≡ 2τ w /ρu 2 = 0.073Re -0.25 b ) in a fully turbulent channel flow. For a given flow rate Q, this leads the friction velocity to be u * = Q 0.0365(Q/ν) -0.25 /(2h). The two profiles U turb and U lam are matched at a wall normal distance y m in the turbulent half, with y m and U c determined so that the mean flow velocity and vorticity are continuous at the matching point, i.e. U lam (y m ) = U turb (y m ) and dU lam /dy | y=y m = dU turb /dy | y=y m . Consequently, at Re = Q/ν = 2600, y m = 0.918h and U c = 1.2Q/(2h).

The function g(y) ∼ y • e -ηy 2 is accounting for streak velocity defect, it has been normalized to unity with η specified such that the streak velocity defect ∆u and normal vorticity Ω y | max = β s ∆u/2 exhibit a plateau in the range y + = 10 -30, consistent with the observed lifted streaks and ω y,rms statistics. Note that the amplitude function g(y) in (3.1) determines the strength of the local streak upper bound u(y) shear layer (e.g. local maxim of ∂u/∂y) residing on the crest of the lifted streak. Instability growth rates for the dominant sinuous modes are found to be relatively insensitive to the strength of this shear layer and hence to the amplitude function g(y). The value η = 20 was used similarly to Schoppa & Hussain (2002). The streak spanwise wavenumber β s in (3.1) is chosen as 2π/β + s = 100, corresponding to the well-accepted average spanwise spacing of adjacent low-speed streaks observed in many experimental and numerical studies.

Figure 3(h)-left shows the velocity magnitude contours of the flow according to equation 3.1. Schoppa & Hussain (2002) found that this single-phase flow is stable and the energy of the artifical streaky perturbation will vanish in time due to viscous dissipation. It is necessary for growth a spanwise perturbation following a sinuous profile in the flow direction. In the absence of such spanwise initial coherent motion, figures 3(b, d, f) confirm that the perturbation (3.1) is damped over time when the Reynolds number is equal to 2600 (above the transition threshold).

Unlike the Couette flow test, the particles in this particular channel flow were not seeded throughout the entire domain. Of course this would lead the flow to undergo the transition to turbulence. Instead, we seeded a small number of particles only in the low-speed artificial streak region (u(y, z)/U bulk 1.5) keeping the flow Reynolds number Re b = 2600. Two different local concentrations (particles-to-streak volume) were considered (Φ = 0.5 and 0.75% for the case of L y /d = 16 and Φ = 0.5% for the case of L y /d = 20). In all cases, the particle presence triggered the transition to turbulence (this can be evidenced by the level of the R.M.S velocity signals), and the particles were found after ∼ 100 time units spread all over the simulation domain. The figure 3(h)-right shows the contours of velocity magnitude for suspension flow in the case of L y /d = 16 with Φ = 0.75% after 250 time units. We can observe a quasi fully-turbulent state at Re b = 2600 (instead of the one-side wall turbulence observed in single-phase flow noted by Jiménez & Moin (1991)).

The influence of the particles on the transition is also illustrated in figure 4 showing the temporal evolution of the streamwise vorticity generated by the particles. The initial condition is equivalent to figure 3(h), except that 60 particles were initially seeded in a plane parallel to the wall (instead of being located in the artificial streak). At the first instants (figure 4(a)), streamwise vorticity is generated around finite-size particles due to the secondary flows occurring at finite Re p . As time goes on and particles move, this streamwise vorticity is stretched in the streamwise direction as in figure 4 (b). Furthermore, these structures are tilted due to the mean shear through the streamwise vorticity generation term -(∂w/∂x)(∂u/∂y) (explained in §5) which is large near the wall. They further interact with each other to form larger scale streamwise vortical structures as shown in figure 4 (c). Clearly the generated vortical structures are comparable to the near wall vorticity layers induced by large scale vortices, which are the essential ingredients of the regeneration cycle for channel flow. 

Modulation of the turbulent flow energy

In this section, we show that particles modulate the flow energy in a channel more strongly than in a Couette flow. Since flow modulation is partly related to particle spacial distribution, the latter will be first discussed.

Particle dispersion

Figures 5 (a,b) show the average particle distribution over the cross-section plane. The concentration contours are averaged over 80 time units (h/U bulk ) whereas the concentration wall-normal profiles were averaged over 500 time units. The maximum concentration is located in the core region of the Couette flow, whereas two peaks can be observed near the walls of the channel flow. The average concentration profiles are the result of a balance between the lift force on the finite-size particles, which is oriented towards the center in the Couette flow [START_REF] Ho | Inertial migration of rigid spheres in two-dimensional unidirectional flows[END_REF] and towards the walls in the channel flow (Asmolov 1999), the hydrodynamic repulsion from the wall and the shear-induced turbulent diffusion.

The instantaneous spatial distribution of particles is shown together with the streamwise velocity fluctuation contours in the xz plane (figures 5 (d, e)). These figures show a strong correlation between the particle spatial distribution and the flow coherent structures. In Couette flow, particles are pumped away from walls by turbulent ejection and towards the wall by the sweep events. On average, they are more present in the sweep and core regions in Couette flow. In channel flow, the particles are accumulating in the ejection region, near the wall. This can be understood as follows: the inertial lift force and(c, f ) show -u v , u u and v v , respectively. In (g, h), the velocity rms are then split into contributions near the particle surface (a < r < 1.5a in dashed lines), and far from the particle surface (r > 1.5a in dashed dot lines) as sketched in figure (i), as a reference, the velocity rms in single-phase flow (solid lines) is also plotted in both figures. Here the black color corresponds to the ejection and the red to the sweep events. The profiles in (g) are from channel flow and the profiles in (h) from Couette flow.

drives the particles to be preferentially located near the walls, where high and low speed flow regions are encountered. Therefore the particles fall in a transverse shear flow (in the xz plane), where the shear rate is of the same order as the mean shear rate. The transverse migration drives the particles to leave the high speed (sweep) region towards low speed (ejection) region.

Quadrant analysis of velocity rms

The coherent structures are the major contributions to the Reynolds shear stress. They play an essential role in the active motion of wall turbulence. According to the quadrant analysis, the flow fluctuations can be divided into Q1(u > 0, v > 0), Q2(u < 0, v > 0), Q3(u < 0, v < 0) and Q4(u > 0, v > 0). Q2 and Q4 correspond to the ejection and sweep events respectively, Q1 and Q3 contain the outward and inward interactions respectively (see a recent review on quadrant analysis by Wallace (2016)). We give details on the impact of particles on the different Reynolds stress components, by considering separately the different contributions according to the quadrant analysis.

The rms velocity profiles are displayed in figure 6, according to the quadrant analysis, both for single-phase and suspension flow at Φ = 5%. The Reynolds stress components are not significantly influenced when particles are present in Couette flow at 5% (figures 6(a-c)). However in channel flow, profiles of the Reynolds shear stress (figures 6(d)) reveal that the particles enhance significantly the shear stress in the sweep (Q4) part of the logarithmic region, where Q2 and Q4 events are dominant. The streamwise Reynolds stress is decreased by the particles, especially in the ejection regions, whereas the wall-normal Reynolds stress is increased in both sweep and ejection regions. The peak of the profiles are also closer to the wall. These turbulent stress modifications suggest a more isotropic turbulence in a channel flow compared to a single-phase flow (in agreement with previous numerical results obtained using the total profiles of the Reynolds stress components (see Loisel et al. 2013;[START_REF] Shao | Fully resolved numerical simulation of particle-laden turbulent flow in a horizontal channel at a low reynolds number[END_REF]Picano et al. 2015;Yu et al. 2016;[START_REF] Fornari | The effect of particle density in turbulent channel flow laden with finite size particles in semi-dilute conditions[END_REF], the transfer between different directions being promoted by the Reynolds shear stress. A particular attention is drawn here to the reduction of streamwise Reynolds stress component. [START_REF] Fornari | The effect of particle density in turbulent channel flow laden with finite size particles in semi-dilute conditions[END_REF] related this observation to the fluid squeezed between the layer of particles near the wall and the wall itself. [START_REF] Shao | Fully resolved numerical simulation of particle-laden turbulent flow in a horizontal channel at a low reynolds number[END_REF] associated this with the weakening intensity of the large-scale streamwise vortices which phenomena is not observed in Fourier space as shown later in figure 8(d) and figures 7(e, f). In order to understand why the Reynolds streamwise stress is decreased, we calculated the velocity fluctuations in fluid and particle regions separately, as sketched in figure 6(g). u f u f is averaged within the fluid region located at r > 1.5a relatively to each particle center. u p u p is averaged in the neighborhood of the particles a < r < 1.5a. The profiles of u f u f and u p u p are plotted in different quadrants. From figure 6(g) it can be noted that the amplitude of the fluid velocity fluctuations around the particles are smaller than the fluid away from the particles, especially in the sweep region. Particles are lagging the flow both in sweep and ejection regions. Due to an important amount of particles found in the ejection region close to the walls, they reduce the strong streamwise velocity rms of the suspension flow in that region.

Energy spectra

The average streamwise energy spectrum E Φ uu is plotted in figures 7(a, d) as a function of both streamwise and spanwise wavelengths, for both suspension and single-phase flows. One advantage of FCM is that particles are represented in the fluid equations by smooth Gaussian envelope forcing, making this method well suited for spatial Fourier analysis of mixture flow.

Figures 7(a,d) display the energy spectra in both flow configurations and for both streamwise and spanwise wavenumbers averaged over the whole domain. Particles strengthen the energy of the flow structures at intermediate scales especially in the streamwise direction of the channel flow. Moreover, particles hardly affect the energy of the large scale structures of wavelength 3h < λ x < 5.7h in Couette flow whereas particles increase the energy contained in h < λ x < 3.1h for channel flow. Note that the energy of fluctuations at small scales in two-dimension (λ x < d p and λ z < d p ) might be over-estimated by the numerical method. However, the energy contained in these scales obtained from two-dimensional model analysis, is 10 -7 % (resp. 10 -4 %) of the energy of the largest scales in Couette (resp. channel) flow, and therefore the errors introduced from small scales on the analysis of energy spectra can be neglected.

The energy spectra in the streamwise direction are plotted as a function of the wall-normal position in figures 7(b, c, e, f). It is interesting to note in figures 7(b, c) that the most energetic large scale motion in Couette flow is found in the range 20 < y + < 40 which corresponds to the buffer layer region. The extent of the most energetic eddies is slightly shrinked towards the Couette center by the particle presence.

In channel flow the most energetic flow structures (h < λ x < 3h) are located at 10 < y + < 50 as shown in figures 7(e, f). Contrary to Couette flow, finite-size particles in channel flow enhance the strength of moderate streamwise vortices in comparison with single-phase flow. The energy of these streamwise vortical structures subsequently increases the flow velocity gradient near the wall as will be shown in figure 8. The energy modulation near the walls (y + < 20) is due to the interaction of the particles with the streaks rather than their interaction with the large scale vortices. Two indirect evidences may support this conclusion. First, particles in Couette flow do not generate significant modulation near the walls (y + < 20) in figure 7(c) when particles are in large scale vortices. Second, in channel flow we also observe the generation of vortical energetic structures when particles are seeded in the bottom wall only with artificial streaks (as shown in figure 4(c)).

Modification of the regeneration cycle by particles

The period of the regeneration cycle can be identified from the low frequency evolution of the friction coefficient signal or Reynolds shear stress. First the effect of the particles on the intermittency of the flow will be characterized by considering the fluctuation in time of the friction coefficient and Reynolds shear stress. Second their impact on the successive sub-processes of the regeneration cycle will be qualitatively detailed in the following sub-sections, considering (I) the lift-up mechanism yielding streak formation, (II) the modal analysis of flow velocity fluctuations for its indication on the correlation between the x-dependent (m > 0 and n 0) and x-independent (m = 0 and n > 0) streaks and (III) the vorticity stretching and vortex regeneration.

Wall friction coefficient and streamwise vorticity

The friction coefficient is a dimensionless measure of the wall shear stress. The temporal evolution of the friction coefficient is displayed in figure 8. For Couette flow, the average friction coefficient and temporal fluctuations are slightly increased by the presence of particles, whereas for channel flow the increase of the average friction coefficient is more significant, and the fluctuation amplitude is slightly reduced. The increase of friction coefficient cannot be exclusively related to the increase of the suspension effective viscosity, since the ratio of the time averaged friction coefficient of the suspension to single-phase flow is around 1.4, whereas the viscosity enhancement is only 1.14 based on Eilers fit. Recent work from Costa et al. (2016) provided a theoretical prediction of the total suspension drag. Predicted Re τ is 103 based on suspension viscosity from figure 5(c) where Re τ is 109 based on DNS in table 1. Jiménez & Moin (1991) have explicitly shown that the maximum (in time) of the wall shear stress is synchronous with the maximum near-wall vorticity (0 < y + < 10). Using 2D numerical simulations (neglecting the variation in the streamwise direction), Orlandi & Jiménez (1994) showed that the transport of fluid from longitudinal vortices to the high and low speed streaks is the origin of the higher wall friction in turbulent layers, especially in the sweep region where high-speed fluid is transported towards the wall. Therefore large scale streamwise vortical structures control the near-wall velocity gradient. Figures 8(a,c) show simultaneously the evolution of wall friction coefficient and the summation over all the spanwise wavenumbers for x-independent vorticity Sum.ω x (0, nβ) = N z /2 n=1 y + =15 0 ωx (0, nβ)dy. The correlation in time between the variation of the average friction coefficient and the near-wall streamwise vorticity is obvious in all cases.

The spectra of near-wall streamwise vorticity y + =15 0 ωx (0, nβ)dy are shown in figures 8(b, d) for both single-phase and suspension flows. The ratio of the vorticity at small scales (λ z /L y < 0.2) to the largest scale streamwise vortices is much smaller in Couette flow than in channel flow (the ratios are O(0.01) and O(0.1) respectively). For two-phase flows, turbulence becomes more isotropic, mainly because particles inject energy in small scales, which is transferred back to intermediate scales. This is comparable to the work of Elghobashi & Truesdell (1993), even though the origin of momentum is not the same: in their work it is due to the slip between the phases, whereas in our work it is mainly due to the particle finite-size. The streamwise vorticity is enhanced at low spanwise wavelengths (λ z /L y < 0.2 which corresponds to λ z /d p < 4) in both configurations. The enhancement is of one order of magnitude in Couette flow, and of two orders of magnitude in channel flow.

Reynolds shear stress

From the investigation of total energy input and dissipation rate, Kawahara & Kida (2001) evidenced the temporal evolution of spatial structures, in a cyclic sequence consistent with the regeneration cycle proposed by Hamilton et al. (1995). A strong ejection event is followed by a gradual decrease of intensity over a certain period of time. The maximum (in time) of the Reynolds stress occurs when the dissipation rate is large along the periodic orbit. The quasi-periodicity of the turbulent events can be represented by the spatial-temporal evolution of the Reynolds stress -u v (y, t) across the Couette gap or channel height, as shown in figure 9. Note that the period of turbulent events is of O(100) time units in both flows. It characterizes the time needed for the velocity fluctuations to become uncorrelated in time. The particle Stokes number which can be based on this time scale is very small compared to the one related to the shear.

For Couette flow, the maximum of the Reynolds stress is located in the center of the gap. The two walls share one buffer layer and a couple of central large scale vortices, with a strong coupling between the streaks near both walls. The low-speed streak near one wall ejects fluid to the other wall acting there as a high-speed streak. It is revealed by figures 9(a, c) that neutrally buoyant particles have a negligible effect on both the intensity and intermittency of the Reynolds stress in Couette flow configuration (Wang et al. 2017). The channel flow contains log-law region and the central region is ruled by the velocity-defect law. Figure 9(b) shows that the strongest shear stress bursts are located close to the channel walls, and that the frequency of these bursts is of the same order of magnitude as in Couette flow. In the presence of neutrally buoyant particles, the intensity of the Reynolds shear stress is enhanced as shown in figure 9(d), and the frequency of these events is decreased. The increase of Reynolds shear stress is closely correlated with the sweep events as indicated in figure 6(d), making the friction coefficient and Reynolds shear stress fluctuations synchronous.

Streak formation: the lift-up mechanism

The streaks form on both sides of a vortex. Low-speed fluid is lifted-up away from the wall by the vortex into a region of higher-speed fluid, producing a low-speed streak, while on the other side of the vortex, high-speed fluid is pushed towards the wall, creating a high-speed streak. [START_REF] Ellingsen | Stability of linear flow[END_REF] have shown, using a linear stability analysis that the x-independent streamwise perturbations grow linearly in time as -v(du/dy)t (the so-called lift-up effect), making any shear flow u(y) unstable to x-independent (transverse) perturbations. Consequently in shear flows, the main linear mechanism for transient disturbance growth is the lift-up effect that produces high and low speed streaks in the streamwise velocity. [START_REF] Bech | An investigation of turbulent plane couette flow at low reynolds numbers[END_REF] stated that the inner shear layer is formed through the lift-up of low-speed streaks from the viscous sublayer, then the shear layers are coupled to an instantaneous velocity profile with inflectional character and they have been observed to become unstable and break up into chaotic motion, so called 'bursting'. The lift-up effect or advection was identified as a robust mechanism for generation of the streaky motions both in transitional and turbulent flows [START_REF] Ellingsen | Stability of linear flow[END_REF]Hamilton et al. 1995;[START_REF] Del Álamo | Linear energy amplification in turbulent channels[END_REF]. [START_REF] Klinkenberg | Numerical study of laminar-turbulent transition in particle-laden channel flow[END_REF] have shown that small pointwise inertial particles do affect the transition to turbulence not by altering the lift-up effect but rather by modifying the dynamics of the oblique waves necessary for the streaks regeneration and breakdown. In order to show whether finite-size particles modify the lift-up term, the contours of -vdu/dy are displayed in figure 10 together with the isolines of the Reynolds shear stress (from figure 9). The lift-up term is important near the walls in both flow configurations. For Couette flow, the contours are not significantly changed by the presence of the particles. However in channel flow, the particles seem to enhance the lift-up and to let it act continuously within the buffer layer (5 < y + < 30). 

Streak breakdown: Modal decomposition of the fluctuating energy

The subsequent process is the instability of x-independent streaks, the so-called streak breakdown. Hamilton et al. (1995) have shown that it is the instability of the streaks (through a non linear process) which causes breakdown. We investigated the temporal evolution of the energy contained in the dominant flow fluctuation modes, since it can give evidences on the dynamics of the streak breakdown process, and on the particle modulation of this process. Therefore we performed modal analysis of the flow fluctuating energy. The Fourier decomposition of the energy, as introduced by Hamilton et al. (1995) over two periodic directions, streamwise and spanwise, is written as follows:

M (k x = mα, k z = nβ) ≡ { Y 2 Y 1 [ u 2 (mα, y, nβ) + v 2 (mα, y, nβ) + w 2 (mα, y, nβ)]dy} 1/2
(5.1) where Y 1 and Y 2 stand for the integration bounds in wall-normal direction, (α, β) are the fundamental wavenumbers in streamwise and spanwise directions defined as (2π/L x , 2π/L z ), and m and n are integers. Any turbulent structure can be represented by one mode (mα, nβ). For instance, the mode (0, nβ) with n = 0 is an x-independent structure and the mode (mα, nβ) with m = 0 is the x-dependent structure (e.g. streaks confined in the streamwise direction).

The temporal evolution of the most energetic modes is shown in figure 11. In figures 11(a, b), (5.1) is integrated between the two walls (Y 1 = 0 and Y 2 = L y ), whereas in The strongest mode is M (0, β) which corresponds to x-independent streaks. As a general trend, neutrally buoyant particles decrease the amplitude of the fluctuations of this mode, whereas they do not have significant impact on its period, which is related to the regeneration cycle. However in channel flow, it can be noted that both (0, β) mode and (α, 0) mode are of the same strength and period compared between single with two-phase flow.

In Couette flow, one can note the relation of the intermittency of modes (0, β) (xindependent) and (α, 0) (x-dependent), when integrated over the entire gap. The peaks of M (0, β) correspond to instants at which the streaks have the least x-dependence. As the streaks become wavy, M (0, β) decreases, while the energy of M (α, 0) (the fundamental mode in x direction with no spanwise variation) sharply increases. The other (α, nβ), n = 0 modes can hardly be distinguished. Breakdown occurs while M (0, β) reaches a minimum. The amplitude of both mode fluctuations is slightly damped by the particle presence as shown in figure 11(a).

For channel flow, figure 11(b) shows higher frequency fluctuations than in Couette flow, and less correlation between (α, 0) and (0, β) modes, when integrated over the whole domain. This is due to two coexisting shear layers (one at each wall) which are relatively independent of each other (turbulent mixing is weak in the core region between the two shear layers at low Reynolds number). When the modal energy is integrated over half of the channel section shown in figures 11(c, d), one can notice a stronger correlation between (0, β) mode and (α, 0) mode, like in Couette flow, although it is less pronounced in channel flow. The particles do not have a strong effect on the temporal evolution of these modes, suggesting that particles do not significantly alter the breakdown process.

Vortex regeneration: Non linear interaction and vortex stretching

During streak breakdown, a complex set of interactions re-enforces the streamwise vortices, leading to the formation of a new set of streaks, and completing the regeneration cycle. Hamilton et al. (1995) proposed that strengthening the vortices is due to interactions among the α-modes, that grow during the streak breakdown. Schoppa & Hussain (2002) suggested that the vortex formation is inherently three-dimensional, with direct stretching (inherent to streak (x, z)-waviness) of near-wall ω x sheets leading to streamwise vortex collapse. They provided insights into the dynamics of near-wall vortex formation through the equation of inviscid evolution for streamwise vorticity: In fully developed turbulence, the greatest contribution, in magnitude, to the temporal evolution of the vorticity ∂ω x /∂t is related to the tilting term. This is confirmed by our simulations (not shown here). However Schoppa & Hussain (2002) have stated that this term contributes to the thin tail of the near-wall ω x layer, and is not responsible for x-independent streamwise vortex formation ((0, β) mode in miniunit). Instead, vortex formation is dominated by stretching of streamwise vorticity. The local ω x stretching is sustained in time and is mainly responsible for the vortex collapse, whose location coincides with the +ω x ∂u/∂x peak. The meandering of streaks provide the generation of ∂u/∂x. Then direct stretching of positive and negative ω x occurs in regions where ∂u/∂x is generated across the wavy streak flanks during the streak breakdown process. The stretching term is active only during the peaks of the cycle when local threedimensionality is induced after streak breakdown (see Jiménez & Moin 1991).

∂ω x ∂t = -u ∂ω x ∂x -v
Figure 12 shows instantaneous snapshots containing contours of both the streamwise velocity fluctuations (that illustrate the streak shape), as well as the vorticity stretching term. This figure shows that high flow circulation is synchronized with the appearance of x-dependent flow structures. The figure is a clear evidence that non-linear processes like streak breakdown, and thereby vortex regeneration, take place in the suspension flow like in the single-phase flow. In our previous paper (Wang et al. 2017), we have shown that the streak waviness and vorticity stretching are almost unchanged for Couette flow in the presence of neutrally buoyant particles. However, in channel flow, from figures 12(a, b), the vorticity stretching (averaged value is 0.17 (resp 0.11) for P 2600 -1 (resp P 2600 -0)), and the circulation (averaged value is 0.025 (resp 0.02) for P 2600 -1 (resp P 2600 -0)), are enhanced near the channel walls due to the presence of particles. The snapshot shown in figures 12(e, f) corresponding to high vorticity stretching (high flow circulation) shows that the wavy streaks are smaller and more numerous in suspension flow, when compared to the single-phase flow.

Concluding remarks

We have studied turbulent suspension flows in plane Couette and pressure-driven (channel) configurations, slightly above the laminar-turbulent transition. Dilute to moderately concentrated suspensions of neutrally buoyant finite-size spherical particles were considered, the particles diameter being twenty times smaller than the Couette gap or channel height. The simulation domain was chosen to ensure a minimal set of coherent flow structures sufficient to sustain turbulence, in both flow configurations respectively. The effect of particles on transition was first examined, both in fullydeveloped turbulent flow and in artificially perturbed configurations. Particles were found to trigger instability in channel flow whereas they were mainly dissipating energy in the Couette flow configuration due to their finite size.

In the turbulent regime, detailed temporal and spatial analysis, in physical and Fourier spaces, were proposed. Particles did not modify significantly the features of plane Couette flow, whereas they had a clear impact on channel flow. The particle spatial distribution was found to be non-uniform over the cross-section. Particles are more present in the core of the large scale rolls (inactive motion) in Couette flow, and in the ejection (active motion) regions in channel flow. This finding is essentially related to wall-normal inertial lift forces (on finite-size particles) that act in opposite directions depending on the flow configuration.

Contrary to Couette flow, the accumulation of particles in the active region of turbulence regeneration for the channel flow configuration yielded clear modifications of the flow statistics and dynamical response. Particles accumulated at the wall due to Segré-Silberberg effect are ejected by Q2 events. They are populating ejection regions and the low speed streaks. We observed a reduction of streamwise velocity rms and an increase of the wall-normal component. The wall shear stress was also significantly increased because particles had reinforced the activity of larger scale x-independent streamwise vortices near the walls.

The regeneration cycle of wall turbulence has been studied in presence of particles. Despite the universality of wall turbulence, the Couette flow is constituted of a single shear layer whereas channel flow has two shear layers with opposite signs, leading to different flow response to perturbations. The three successive sub-steps of the regeneration cycle were modified by finite-size particles, since they actively contribute to the dynamics of the buffer layer. We observed an enhancement of the lift-up mechanism together with reinforced Reynolds shear stress (although the frequency of burst events was decreased). Vorticity stretching was increased leading to smaller and more numerous wavy streaks for pressure-driven two-phase flow. Thanks to their preferential presence near the walls, particles triggered small scale vortices that were stretched by the shear flow and survived even at Reynolds numbers below the transition limit of single-phase flow. By studying two distinct turbulent flow configurations laden with neutrally buoyant finite-size particles, we were able to show the specific response of turbulent structures and the modulation of the fundamental mechanisms composing the regeneration cycle of near-wall turbulence. 

Introduction

It is now known for a long time that wall-bounded turbulent flows are populated by coherent flow structures that are largely responsible for enhancing heat and mass transfer [START_REF] Robinson | Coherent motions in the turbulent boundary layer[END_REF]. Understanding the particle dynamics in turbulent boundary layers is fundamental to understand and control particle transfer, entrainment and deposition in environmental systems and industrial processes. Moreover, in near-wall regions particles can modulate the flow coherent structures which control the turbulence regeneration cycle, and therefore the flow macroscopic properties.

Particle trajectories and their interaction with the flow are in general significantly dependent on inertial effects. Both particle inertia and fluid inertia are important to predict the suspension response. For spherical particles, inertia depends on the particle-to-fluid density ratio which influences the particle relaxation time scale in response to local fluid velocity perturbations. For non-spherical particles, particle inertia depends in addition on the particle shape in a complex way, since the particle relaxation time depends on the instantaneous particle orientation with respect to local strain of the flow.

It is known that pointwise inertial particles tend to accumulate in high strain rate regions while bubbles tend to move towards vortical regions [START_REF] Balachandar | Turbulent dispersed multiphase flow[END_REF]. Non-spherical particles experience forces and torques that depend on particle orientation as well [START_REF] Voth | Anisotropic particles in turbulence[END_REF]. In a previous work Wang et al. [2017], we have considered in turbulent plane Couette flow the effect of particles which size is comparable to the smallest flow structures (flow inertia is finite at the particle scale) and which density compared to the fluid density was varied from 0 to 5 (without considering the sedimentation due to gravity). In this chapter, we aim to understand the effect of non-sphericity on particle-flow interactions in the same flow configuration, focusing particularly on neutrally buoyant particles.

The orientation dynamics of non-spherical particles depends on their aspect ratio A r . It is coupled to the particle translation motion, leading to cross-streamline motion even in the absence of particle inertia (see Appendix C). In addition, non-spherical particles experience torque from the fluid strain field, which possibly leads to preferential alignment. Because of the rich orientation dynamics, the flow statistics of two-phase flows might depend on the deviation of particles from sphericity, in a non-trivial way. A review on anisotropic particle dynamics in turbulent flows can be found in [START_REF] Voth | Anisotropic particles in turbulence[END_REF].

Most studies on this subject considered mainly the particle transport by fluid, without solving the particle two-way coupling with the fluid flow structures. For non-spherical particles which size is small compared to the smallest turbulent flow structures, many properties of particle motion are similar between different turbulent flows since the fluid strain is dominated by small scales, which have a degree of universality. [START_REF] Zhang | Ellipsoidal particles transport and deposition in turbulent channel flows[END_REF] have shown that prolate ellipsoidal inertial particles accumulate in the viscous sublayer of a dilute turbulent channel flow (in the ejection regions like spherical particles), and the aspect ratio influences their deposition rate. In the same flow configuration, [START_REF] Mortensen | On the orientation of ellipsoidal particles in a turbulent shear flow[END_REF] and [START_REF] Marchioli | Orientation, distribution, and deposition of elongated, inertial fibers in turbulent channel flow[END_REF] observed in addition that prolate particles exhibit preferential orientation in the streamwise direction, especially near the channel walls, the aspect ratio having a negligible effect on particle distribution in the flow. Recently, the particle rotation dynamics was a subject of interest in addition to particle orientation, both being dependent on the particle position: whether near the channel center (similar to homogeneous turbulence) or near the walls where the shear is strong. Zhao et al. [2015b] found that near the channel center, inertiafree spheroids were evenly distributed across the channel, the flattest disks (A r = 0.01) mainly tumbling in the plane normal to the vorticity, whereas the longest (A r = 50) rods spinning in the vorticity direction, as in homogeneous isotropic turbulence studied by [START_REF] Byron | Shape-dependence of particle rotation in isotropic turbulence[END_REF]. Inertia was found to reduce the preferential spinning or tumbling leading to more isotropic rotation. Near the channel walls, Zhao et al. [2015b] stipulate that the preferential orientation of spheroids in the streamwise direction is induced by the coherent flow structures. When the feedback forcing from the particles onto the flow is taken into account, turbulence reduction was observed for the channel flow laden with prolate particles [Zhao et al., 2015a].

Studies on turbulent flows laden with finite-size ellipsoids are scarce. Experiments of [START_REF] Parsa | Rotation rate of rods in turbulent fluid flow[END_REF] in isotropic turbulence with nearly isolated coherent structures neutrally buoyant rod-like particles with the axis being larger than the Kolmogorov scale confirmed the preferential alignment of the particle axis with the local fluid vorticity. Based on numerical simulations they have shown that the particle rms rotation velocity depends strongly on the aspect ratio with an abrupt fall of 80% occurring for A r between 0.5 and 2. Do-Quang et al. [2014] showed that finite-size fibers behavior in turbulent channel flow, is different from pointwise particles. They accumulate in high-speed streaks, staying there due to collisions with the wall. In the channel core, they confirmed that fibers align with the mean flow vorticity direction. Closer to the wall the fibers tumble in the shear plane. Very close to the walls they become aligned in the flow direction. Using oblate particles with A r = 1/3 in turbulent channel flow, Niazi Ardekani et al. [2017] observed a drag reduction due to the absence of a near-wall particle layer, that is otherwise found when particles are spherical. They mainly found that the symmetry axis of the oblate particles tend to be preferentially oriented normal to the channel walls in the near wall region.

We are interested in the transport of finite-size non-spherical particles in wall-bounded turbulent flows. Neutrally-buoyant particles can form particle streaks near the wall where the vortical flow structures create suitable conditions for particle entrainment, and participate to particle deposition by conveying them from the core region to the wall region [START_REF] Kaftori | Particle behavior in the turbulent boundary layer. i. motion, deposition, and entrainment[END_REF]. The sweep and ejection events are effective in transferring pointwise inertial particles toward the wall by the sweeps and toward the core region by the ejections [START_REF] Marchioli | Mechanisms for particle transfer and segregation in a turbulent boundary layer[END_REF]. However the effect of the deviation of particle from sphericity is not yet well investigated in turbulent Couette flow configuration. The results that are discussed in this chapter show that the flow features are not significantly changed with particle volumetric concentration up to 5%. We mainly focus on the particle spatial distribution, their rotational dynamics, their residential time in flow rotational structures and their transfer between the streaks and the large scale vortices. 
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Domain size: L x × L y × L z = 0.88π × 1.0 × 0.6π Case Φ(%) A r ρ r V r L + y Re τ Re p (max) St(max) line type N x × N y × N z = 30 × 86 × 32 Single-phase 81 40.2 + Shape ef f ect: N x × N y × N z = 182 × 66 × 128 C500-5-1-1(l) 5 
≡ Γ(V 1/3 r r p ) 2 /
ν based on local shear rate Γ = |du/dy| and the effective radius evaluated by the particle volume. r p = L y /40 is the radius of the reference sphere and A r is the aspect ratio between symmetry axis with rotation axis. The Stokes number is simply defined as St ≡ ρ p /(3ρ f )Re p which is low near the Couette center and maximum near the walls where the shear rate is the highest. The maximum particle Reynolds and Stokes numbers are based on the shear rate (twice of ω z in figure 5.2(d)) calculated at one particle diameter away from the walls. The statistics are performed over ∼ 500 time units (h/U w ) at steady state.

Suspension flow configurations

The turbulent plane Couette flow investigated throughout this study is generated by two walls moving in opposite directions with equal velocities, the dimensions of the domain being the same as the minimal flow unit (like in Chapter 3). First, statistically steady single phase turbulence is generated. Then spheroids are added to the flow. Table 5.1 shows a summary of all the selected parameters. The length and velocity are scaled in wall units coherent structures y + ≡ yu τ /ν, and u + ≡ u/u τ where u τ = τ w /ρ f , τ w being the wall shear stress, ρ f the fluid density and ν the fluid kinematic viscosity. All the cases of table 5.1 are within the range of the FCM to capture reasonably well the particle response to flow fluctuations [Wang et al., 2017]. We compare the results with non-spherical particles to the results obtained with inertial particles, the parameters of the latter are also added to table 5.1. The size ratio between the Couette gap and the radius of smallest spherical particles r p used for this study is L y /r p = 40. The particle Reynolds number Re p ≡ Γ(V 1/3 r r p ) 2 /ν is based on the effective radius evaluated from the particle volume r ef f ≡ (V r ) 1/3 r p . V r is the ratio of the spheroid particle volume with the reference sphere and depends on the particle dimensions as shown in table 5.1. The Stokes number defined simply by St ≡ ρ p /(3ρ f )Re p takes into consideration the increase of inertia due to particle volume or the density ratio ρ r ≡ ρ p /ρ f . The Stokes number as defined here gives close values to the one based on the particle relaxation time that takes into account A r = 1 (summarized in [START_REF] Voth | Anisotropic particles in turbulence[END_REF]). For example for A r = 2 (resp A r = 0.5), the Stokes number is 1.52 (resp 2.42) larger than the reference particle Stokes number when calculated from [START_REF] Voth | Anisotropic particles in turbulence[END_REF] whereas the increase is 1.587 (resp 2.51) times in the present study. All the simulations with spheroids are realized with the same solid volumetric concentration (equal to 5%). The particle volume being not the same when the aspect ratio is changed, the particle number is consequently adopted in all the simulations.

Results

Particle spatial distribution

The distribution of particles in the flow is related to the turbulence features. In wall-bounded turbulence, ejection events provide the largest contribution to Reynolds shear stress in the region y + 12, while sweep events are dominant in the region closer to the wall [see [START_REF] Kim | Turbulence statistics in fully developed channel flow at low reynolds number[END_REF]Robinson, 1990;Wallace, 2016]. We remind that in quadrant analysis, the ejection region corresponding to u < 0 and v > 0 is noted Q2, and that sweep region with u > 0 and v < 0 is noted Q4. Particles move from the core region to the wall with the sweep events (Q4 corresponding to high speed streak) whereas they move inward to the core region form the wall with the ejection event (Q2 corresponding to the
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low speed streak). Moreover, we have shown the particles are submitted to inertial lift force due to local flow rate of strain, to a hydrodynamic repulsion from the walls and to turbulent dispersion in Wang et al. [2017]. Figures 5.1(a,b) show the spheroidal particle distribution and orientation in the y -z plane. The spheroids, like spheres, tend to rather locate in the center of the vortices, whereas the strong ejection regions are quasi-free from particles. It is observed that at moderate inertia the particle distribution is not influenced by inertia even for spherical particles (the Stokes number of tests C500-5-05-1 and C500-10-1-2 are close). The concentration profiles in the wall-normal direction are shown in figure 5.1(c). Particle distribution is hardly affected by the particle shape, as it was already observed for pointwise inertial particles in channel flow [START_REF] Mortensen | On the orientation of ellipsoidal particles in a turbulent shear flow[END_REF][START_REF] Marchioli | Orientation, distribution, and deposition of elongated, inertial fibers in turbulent channel flow[END_REF].

The increase of the suspension viscosity with respect to the pure fluid viscosity is evaluated as (ν ef f (y)-ν)/ν = τ s (y)/νΓ(y), where τ s (y) is the increase of stress due to particle rigidity calculated in slabs parallel to the walls using the particle induced stresslet [Wang et al., 2017]. Figure 5.1(b) shows the corresponding effective viscosity profile in the range y/h < 0.8 and y/h > 1.2. In the core region (0.8 < y/h < 1.2), the calculation of the particle induced shear stress is not accurate due to local weak shear rate. It was hard to get a smooth profile even though we did averages over ∼ 500 time units, every 2 time units. The average effective viscosity in the range of y/h < 0.8 and y/h > 1.2 linearly increases when both particle inertia increases (from density ratio or shape variations). The value of the suspension viscosity is larger than the Eilers fit based on local concentration (the ratio between the numerical value and Eilers fit is 1.08 for C500-10-1-5).

Rotation dynamics of particles

The rotation dynamics of spheroids in laminar plane Couette flow was already discussed in Chapter 2. As shown by Rosén et al. [2014], tumbling is the stable rotation orbit of a prolate spheroid, whereas spinning is the stable regime for oblate particles. Also in Chapter 2, we have shown that oblate and prolate spheroids both tend to migrate towards the core of a laminar pCf, no matter coherent structures if the initial orientation of their symmetry axis is aligned with the vorticity (along z, the spanwise direction) or in the shear plane (x -y plane).

Consider a spheroid with the unit vector p along the symmetry axis. The projection of p on the Cartesian frame of reference is p x = sin ϕ cos θ, p y = sin ϕ sin θ and p z = cos ϕ, where the angles ϕ and θ are defined in 5.2(b). The particle is mainly tumbling when ϕ is close to 90 • or spinning if ϕ is close to 0. The angle θ indicates if the symmetry axis is rather oriented in the streamwise direction or along the shear direction.

In figure 5.2 (a), we show the inclination angle of the symmetry axis instead of using cosine to avoid confusion in the averages since the cosine function is not linear. For oblate spheroids, both θ and ϕ are relatively high, which means that oblate spheroids tend to move with the symmetry axis almost parallel to the wall-normal direction especially in the near wall region, indicating that oblate particles have more tumbling activity than spinning. This is similar to oblate spheroids with A r = 1/3 in turbulent pressure-driven flow [Niazi Ardekani et al., 2017]. Prolate spheroids tend rather to align their major axis in the flow direction especially close to the wall and to tumble (ϕ is large and θ is small in average). This is consistent with the observations in turbulent pressure-driven flow by Do-Quang et al. [2014].

The three components of particle absolute angular velocity are shown in figures 5.2(b-d). Near the walls, the particles rotate predominantly along the spanwise direction due to the mean shear. In the core region the dominant component is the rotation along the wall-normal direction (ω y ). This is due to the gradient of the streamwise velocity in spanwise direction (∂u/∂z) which coherent structures is formed by the difference of streamwise velocity between low-speed (negative u ) and high-speed streaks (positive u ) in spanwise direction. For both types of spheroids, the particle rotation rate is decreased in the spanwise direction whereas it is increased in the other two directions, when compared to the spherical particle rotation rate. In the core region, the rotation rate in three directions are non-zero, for both prolate and oblate spheroids. This indicates a kayaking type of motion similar to what has been observed for prolate spheroids in turbulent pressure-driven flow by Do-Quang et al. [2014]. For spherical particles, the density ratio and concentration (from 5 to 10%) have both a negligible effect on the rotational rates in three directions.

The kayaking type of rotation in the core region can yield homogeneous collisions in three directions. The three components of the particle collision forces are plotted in figure 5.3(a), where they were averaged in the homogeneous streamwise and spanwise directions. In the core region, the dominant collision force between spherical particles is in streamwise direction which is both due to particle collisions in x-z plane due to high-and low-speed streaks in that plane, and to the mean shear in the x -y plane (which is non-zero at the Couette center). This effect is enhanced by particle inertia as shown in figure 5.3(b). Near the Couette walls, the dominant component is in the wall-normal direction which is due to collisions occurring when particles are swept towards the walls. 
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Residence time of particles in LSVs

It is well accepted that the sweep (Q4) and ejection events (Q2) are effective in transfer [START_REF] Marchioli | Mechanisms for particle transfer and segregation in a turbulent boundary layer[END_REF], entrainment and deposition [START_REF] Kaftori | Particle behavior in the turbulent boundary layer. i. motion, deposition, and entrainment[END_REF][START_REF] Pan | Numerical simulation of particle interactions with wall turbulence[END_REF] of pointwise particles accumulated in the large-scale structures. When the Stokes number is low, particles moving away from the bottom wall are mostly surrounded by fluid within the ejections (ascending fluid) while most of downward moving particles are surrounded by sweeps (descending fluid) for both finite-size particles in turbulent pressure driven flow [Yu et al., 2016] and pointwise particles in turbulent pCf [START_REF] Bernardini | The effect of large-scale turbulent structures on particle dispersion in wall-bounded flows[END_REF]. However due to the longer relaxation times for heavier particles, a significant fraction of ascending particles are found in regions with descending fluid and vice versa [START_REF] Bernardini | The effect of large-scale turbulent structures on particle dispersion in wall-bounded flows[END_REF].

In homogeneous and isotropic turbulence, the time scale of the coherent motion of particles is comparable to the large-eddy turnover time at St = O( 1), whereas a tracer particle (St = O(0)) responds with Kolmogorov time scale [START_REF] Bhatnagar | How long do particles spend in vortical regions in turbulent flows?[END_REF]. The most energetic structures of a turbulent plane Couette flow in the limit of low turbulence, consist of pairs of contra-rotating large scale vortices (LSVs) which size is comparable to the Couette gap and large scale streaks [START_REF] Komminaho | Very large structures in plane turbulent couette flow[END_REF][START_REF] Tsukahara | Dns of turbulent plane couette flow with emphasis on turbulent stripe[END_REF]. The LSVs carry significant fraction of turbulent kinetic energy [START_REF] Lee | The structure of turbulence in a simulated plane couette flow[END_REF][START_REF] Pirozzoli | Turbulence statistics in couette flow at high reynolds number[END_REF]. In Chapter 3, we found that at Re = 500, the lightest particles tend to be trapped in the LSVs whereas heavy particles tend to move outward. The outward motion of particles by centrifugation from the flow coherent vortices influences particle dispersion, leading or not to preferential accumulation [START_REF] Marshall | A model of heavy particle dispersion by organized vortex structures wrapped around a columnar vortex core[END_REF]. We have calculated the particle residence time in a vortex (mainly the large rolls) using the temporal evolution of the wall-normal position. In figure 5.4 (a), the wall-normal position of an oblate and a prolate neutrally buoyant spheroids are plotted over time, in addition to the spherical particle trajectories. The spheroids behave qualitatively like neutrally-buoyant spherical particles, with a clear periodic oscillatory motion between both walls. Two distinct motions can be observed in the particle trajectories: a rotation in a single LSV for instance from i to ii and so on (on the dashed curve of figure 5.4 (a)), and a rotation of a particle in a LSV followed by its transfer to the other counter-rotating LSV from iii to iv. coherent structures 5.1. Set I noted in these figures contains the statistics of particles trapped in one large scale vortex and set II contains particles transferred from one LSV to the other. The criteria used to attribute each particle to set I, set II or neither of the two sets, is based on ∆t min at which the minimum of R yy corresponding to each particle occurs: if ∆t min U w /h < 60, particle belongs to set I; if 60 < ∆t min U w /h < 100, particle belongs to set II. Overall, 10 to 20 percent of the total number particles belong to each set.

In order to have a more precise measure of the residence time in one vortex, we calculated the temporal auto-correlation of the particle wall-normal position as: R yy (∆t) = y p (t) y p (t + ∆t) y 2 p rms

(5.1)
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where y p is the fluctuation of the wall-normal particle position with respect to the average value, which was verified to be h in the simulations (on average, the particles scan all the simulation domain equally). Figures 5.4 (b,c) show the temporal auto-correlation functions. ∆t ranges between 1U w /h and ∼ 400U w /h. The auto-correlation function shows the signature of the particle large scale oscillatory motion. It becomes negative when the particles passes from one half of the Couette gap to the other, then almost zero when the particle leaves the large scale vortex. In figures 5.4 (b,c) there are two sets of statistics. The particles that were trapped in a unique LSV were computed in one set, whereas the particles transferred from one LSV to the other where computed in another set.

The mean characteristic residence time of particles in a single LSV (set I) is ∼ 100U w /h and ∼ 150U w /h for particles that are transferred from one LSV to the other LSV (set II). The smaller and lighter spherical particles have shorter periods in a single LSV whereas they have longer periods when they move from one LSV to the other. The residence time of particles in a single LSV approximately coincides with the period of the regeneration cycle observed by Hamilton et al. [1995], which indicates the strong relation between transport process of finite-size particles and the three sub-steps of the regeneration cycle in turbulent plane Couette flow.

Probability density function of velocity fluctuations

To characterize the particle transport by fluid flow structures, we focus on the buffer layer region, 0.15 < y/L y < 0.5 (10 < y + < 40), where the regeneration cycle governs the flow behavior [START_REF] Jiménez | Near-wall turbulence[END_REF]. The probability density functions (PDF) of particle velocity fluctuations helps to describe if strong and weak fluctuations of particles are similar to that of the fluid. In figures 5.5 (a,b), the PDFs of streamwise and wall-normal velocity fluctuations are shown, for simulations realized with different particle shapes and densities. Every panel compares the PDF of the particle velocity fluctuations with, on one hand, the fluid surrounding the particles in the two-phase simulations (which is not expected to be significantly different from the particle velocity) and the single phase fluid flow fluctuations on the other hand. coherent structures The PDF of the wall-normal velocity fluctuations are almost Gaussian with zero mean and symmetric for all cases reported in figure 5.5. The PDF of the particle velocity fluctuations, and that of the surrounding fluid in the two-phase simulations are very similar to the single phase case, with a slight reduction of the peak at zero. The skewness of this distribution with the wall-normal velocity in the range -0.1 < v /U w < 0.1 is almost zero for single-phase flow (the skewness is equal to 0.034). This indicates that the intensities of wall-normal velocity fluctuations in inward and outward motions are statistically equal in the buffer layer of turbulent pCf.

The PDF of the streamwise velocity fluctuations are bimodal, with one peak at positive velocities and another one at negative velocities related to the ejection events. The intensity of negative u in low-speed streaks is stronger (but with a lower probability) than the positive u in high-speed streaks in the buffer layer, which is similar to what has been observed in turbulent pressuredriven flow [START_REF] Kim | Turbulence statistics in fully developed channel flow at low reynolds number[END_REF]. Particles increase slightly the probability of
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negative fluctuations, and shift the peak of positive velocity fluctuations toward smaller values.

Correlation of particle distribution with flow structures

Studies on suspension flows have shown that the particle transport (entrainment and dispersion) is very much influenced by the ejection (Q2 corresponding to u < 0 and v > 0 ) and sweep (Q4, with u > 0 and v < 0 ) events [START_REF] Kaftori | Particle behavior in the turbulent boundary layer. i. motion, deposition, and entrainment[END_REF][START_REF] Marchioli | Mechanisms for particle transfer and segregation in a turbulent boundary layer[END_REF]. In the present study, we would like to show that these two events are also the most active in transferring the particles from one wall to the other wall during the regeneration cycle, especially the sweep events. Such information is missing in the literature. The Q2 and Q4 are offset by the interaction quadrants, so called Q1 (u > 0 and v > 0 ) and Q3 (u < 0 and v < 0 ) motions corresponding to outward and inward interactions which transport momentum against the shear [START_REF] Jiménez | Near-wall turbulence[END_REF], respectively. From the works of [START_REF] Jeong | Coherent structures near the wall in a turbulent channel flow[END_REF] and Schoppa and Hussain [2002], strong Q2 and Q4 events are located on both sides of the vortex while Q1 and Q3 events take place below and above the vortex. Although Q1 and Q3 contribute less than Q2 and Q4 to the Reynolds shear stress, their spatial distributions are associated with the advection of vortices [START_REF] Jeong | Coherent structures near the wall in a turbulent channel flow[END_REF]. This might have a direct consequence on the transport of especially the neutrally buoyant particles in the LSVs, moving inward and outward within the Q1 and Q3 regions respectively. Each particle is assigned to one of the four quadrants according to the average fluid fluctuating velocity calculated inside the spherical shell between 1.0 and 1.5 times of the particle radius. show the percentage of light particles (with respect to the total number) distributed in each quadrant (case C500-10-1-0). Figure 5.6(a) shows that there are more particles in the sweep than in the ejection regions. The large fluctuations of particle percentage in Q2 (resp Q4) is in opposite phase with the particles in Q1 (resp Q3). As it can be seen in figure 5.6(b), particles are dominantly transferred by the ejection and sweep events (Q2+Q4). The summation of particles in Q1 and Q2 (toward the center) is close to the summation of Q3 and Q4 (toward coherent structures the walls). The difference in particle percentage between Q1 and Q3 regions, shown in figure 5.6(c), indicates that particles moving toward the center by Q1 are more numerous than the ones moving toward the walls by Q3, whereas the percentage of particles moving toward the walls by Q4 is larger than the ones moving inward to the center by Q2. The number of particles belonging to different regions fluctuates in time with the same characteristic period as the regeneration cycle.

Beside the large scale vortices, the x-independent streaks constitute the mode that contains the highest turbulent kinetic energy. The x-independent streaks predominantly consist of Q2 and Q4 regions. The energy of this mode decreases during its breakdown to x-dependent streaks (wavy streaks). The snapshots of particle distribution in the domain shows that the Q2 regions are almost depleted of particles, whereas the sweep regions are significantly laden with particles. We show here that the accumulation of particles in the sweep and ejection regions is correlated to the temporal evolution of the streaks and therefore to the regeneration cycle. For the temporal evolution of the streaky motion, it is represented by the modal analysis of the flow fluctuating energy. The Fourier decomposition of the energy over streamwise and spanwise directions, as introduced by Hamilton et al. [1995], is written as (5.2)

where Y 1 and Y 2 stand for the integration bounds in wall-normal direction, (α, β) are the fundamental wavenumbers in streamwise and spanwise directions defined as (2π/L x , 2π/L z ), and m and n are integers. Any turbulent structure can be represented by one mode (mα, nβ). For instance, the mode (0, nβ) with n = 0 is an x-independent structure and the mode (mα, nβ) with m = 0 is the x-dependent structure (e.g. streaks confined in the streamwise direction). The temporal evolution of the x-independent streaks (mode (0, nβ)) is displayed in blue in figures 5.7 (a-f), for suspension flows with different particle shapes and densities. Moreover, figure 5.7 contains the temporal evolution of the local particle percentage of the total number of particles within the Q2 and Q4 streaky regions of the flow where the Reynolds shear stress is negative. The calculation was realized only in the buffer layers where the sweep and ejection events are strong, i.e. near the bottom wall at 10 < y + < 40 and near the top wall at 40 < y + < 70. The fluctuations in time of particle concentration in the sweep and ejection regions are in-phase with the fluctuation of energy contained in the x-independent streaks. Note that the release of particles from the ejection (resp. sweep) is synchronized with the increase of particles in the Q1 (resp. Q3) region of the flow as shown in figure 5.6(a), which is just like the decrease of energy of x-independent streak (M (0, β)) synchronized with the increase of flow circulation in figures 5.8. This indicates that during the breakdown of x-independent streaks to wavy streaks, the particles tend to escape from the ejection streaky regions, leaving probably to the Q1 region as discussed below. (a, c, e) show the particle shape effect with the cases from top to bottom: C500-5-1-1, C500-5-05-1 and C500-5-2-1. (b, d, f ) show the effect of particle density, using from top to bottom: C500-10-1-0, C500-10-1-2 and C500-10-1-5.

the Reynolds shear stress (only the negative values are taken into account) is plotted as a function of the spanwise direction z in the right panel of figure 5.8(a). The six curves correspond to the six instantaneous slices from b to g. The value of the peak of u v (z) evolves in time like the circulation strength, i.e. the larger the circulation value, the higher is the peak of the negative shear stress. Note that the location in z of the peak of -u v (z) shifts from one vortex to the other one (see the switch between (e) and (g)).

We take advantage of the fact that in turbulent pCf the two moving walls share a single shear layer and promote each other, so that it is easier to show the spatial relationship between vortical structures and the four quadrants. show snapshots of the flow streamlines in the (y, z) plane at six different values of the flow circulation (indicated by points in the left panel of figure 5.8(a)). In addition, the iso-contours of the shear stresses are shown: the negative (resp. positive) shear stress corresponding to Q2 and Q4 (resp. Q1 and Q3) events are plotted in black (resp. blue). It can be observed from The temporal evolution of the circulation (detailed in Wang et al. [2017]) of suspension flow is shown in figure 5.9. Normally, the periodic evolution of the circulation is in phase opposition with the energy of the x-independent streaks (M (0, β)) all along the turbulence regeneration cycle. The particle 5.4. Concluding remarks 149 shape does not have a significant effect on the flow circulation, unlike the particle inertia which seems to reduce the amplitude of strong flow fluctuations and their frequency. The difference of particle percentage between Q1 and Q3 regions, calculated in the buffer layer (10 < y + < 40 and 40 < y + < 70) is also plotted in this figure. The temporal evolution of the percentage difference is in phase with the flow circulation. The advective motion in Q1 triggers particle advection toward the Couette center. The strong value of the percentage difference, which is of the order of the total particle number, occurs at high flow vorticity (peak of circulation). The peak of the percentage difference is the highest for inertia-free particles, which is coherent with the fact that light particles tend to migrate toward the vortex center.

Concluding remarks

In this chapter, the transport of particles in a turbulent plane Couette flow configuration was studied using finite size spheroidal particles. The influence of deviation of particle shape from sphericity (slightly elongated or flattened) was addressed, using spheroids with aspect ratio ranging between 0.5 and 2. The results were compared to results where the inertia of spherical particles was varied considering different particle-to-fluid density ratios. Numerical simulations were realized at low to moderate concentrations, where the particles do not change the main features of the flow.

Up to Stokes numbers are used (St 5), particle motion is strongly related to the fluid motion independently of their shape: most of upward moving particles are located in the ascending fluid and downward moving particles in the descending fluid, and particles hardly affect the velocity fluctuations of the local fluid. Particles exhibit a large scale rotation motion. The residence time of a single particle in a large scale vortex is equal to the characteristic time scale of the turbulence regeneration cycle. At equivalent volume fraction, the particle distribution of spheroids in the flow is not significantly modified by their shapes. Particles are on average more present inside the large scale streamwise vortices, compared to the x-independent streaks. However instantaneous particle distribution depends on the sequence of sub-processes along the turbulence regeneration cycle. The ejection regions are seeded by more Chapter 5. Spheroidal particles flowing in turbulent Couette coherent structures particles during the streak formation stage (when the x-independent structures are energetic) and they lose particles during the streak breakdown stage (when the energy of x-independent structures decreases). During streak formation (resp. breakdown), the flow circulation decreases (resp. increases), and the Q1 region mainly located inside large scale vortices loses (resp. gains) particles, leaving toward (resp. coming from) large scale streaks. The transfer of particles from one region to another in the flow requires deeper analysis to elucidate the underlying mechanism.

Chapter 6

Conclusion and Perspectives

Summary of the thesis

Particle-resolved numerical simulations were carried out to investigate the mechanism(s) responsible of modulation of wall-bounded turbulent flows by finite-size particles. The largest part of this thesis was concerned about neutrally buoyant spherical particles, which size was 10 to 20 times smaller than the distance between the walls, and at solid volumetric concentration less than or equal to 10%. The particle size and concentration were chosen within the range of validity of the numerical method (the Force Coupling Method), which has been extensively discussed in Chapter 2. By studying two distinct turbulent flow configurations laden with finite-size neutrally buoyant particles, we were able to show the specific response of turbulent structures to the presence of the particles and the modulation of the fundamental mechanisms composing the regeneration cycle of near-wall turbulence [Hamilton et al., 1995;Waleffe, 1997]. The two flow configurations were:

• Pressure-driven flow, where the presence of large particles seem to decrease significantly the laminar turbulent-transition threshold [Matas et al., 2003] • Plane Couette flow, where particles seem not to change significantly the turbulent flow features (at least in the low turbulence limit considered in this study [Wang et al., 2017]).

Particles were found to trigger instability in channel flow whereas they were mainly dissipating energy in the Couette flow configuration due to their finite size. We showed that the influence of particles in these two flow configurations is correlated with the particle distribution in the flow. In addition to turbulent dispersion, the particle spatial distribution seems to be influenced by the inertial lift force (on finite size particles) that is oriented toward the gap center in a Couette flow and toward the walls in a pressure-driven flow. Therefore, neutrally buoyant particles were more present in the core of the large scale rolls ("inactive" motion according to [START_REF] Townsend | The structure of turbulent shear flow[END_REF] description) in Couette flow whereas they were rather present near the walls, especially in the region of ejection events ("active" motion) in pressure-driven flow. Consequently, particles did not change significantly the turbulent flow features in the Couette geometry. However, they leaded to a reduction of streamwise velocity rms and an increase of the wall-normal and spanwise components in pressuredriven flow. The wall shear stress was also significantly increased suggesting that particles had reinforced the activity of larger scale x-independent streamwise vortices near to the walls ( [Orlandi and Jiménez, 1994]). We have shown that in pressure-driven flow, the three sub-steps of the turbulence regeneration cycle were modified by finite-size particles, since they actively contributed to the dynamics of the buffer layer. We observed an enhancement of the lift-up mechanism together with reinforced Reynolds shear stress (although the frequency of burst events was decreased). Also vorticity stretching was increased leading to smaller and more numerous wavy streaks for pressure-driven flow.

The effect of particle shape (spheroids) and inertia (particle-to-fluid density ratio different from 1) was also considered, for the same range of volumetric concentration. The inconspicuous modulation of the regeneration cycle of turbulent plane Couette flow, by neither shape nor inertia, offered us a suitable flow configuration to investigate particle transport in the flow coherent structures (large-scale streaks and streamwise vortices). The domain averaged effective suspension viscosity was increased with the Stokes number (up to O( 5)). The wall-normal particle motion (away or toward the walls) was found to be mainly driven by the surrounding fluid. Most of the particles were moved from one wall to the other one by the ejection and sweep (Q2 and Q4) events. The temporal evolution of the number of particles located in these events was synchronous with the energy evolution of large scale streaks. The particle residence time in the large scale vortices was found of the order of the regeneration cycle characteristic time scale (100 time units). As for par-ticle orientation, oblate and prolate spheroids ware preferentially orientated with their major-axis parallel to streamwise direction near the Couette walls, as in turbulent channel flows [Niazi Ardekani et al., 2017;Do-Quang et al., 2014]. The kayaking rotations of spheroids in the core region resulted in homogeneous collisions in three directions. Non-spherical particles reduced the dominant flow rotation in the spanwise direction and enhanced the rotation rates in the other directions.

Perspectives

1. Effect of small particles on laminar-turbulent transition of suspension flow at high concentration.

This work contributed to unravel the mechanisms behind turbulence enhancement by the presence of a small amount of large particles in pressure-driven flows. The diagram of Matas et al. [2003] showing the critical Reynolds number as a function of particle size and concentration is not yet fully understood. Particularly, very small particles at high concentrations seem to delay the transition threshold up to high values of suspension Reynolds numbers, in a way that cannot be simply explained by the increase of dissipation due to particle rigidity (effective viscosity). When the particles are small compared to the small flow structures, the particle Reynolds number is small. On the one hand, two-fluid Eulerian approaches with appropriate modeling may be helpful to predict the two-phase flow features at large scales. On the other hand, the development of particle-resolved methods combined to the explosive growth of supercomputer power could be a suitable way to explore these phenomena.

2. Taylor-Couette suspension flow vs plane Couette suspension flow.

Most of the shear flow apparatus consist in reality of a flow between twoconcentric rotating cylinders, the famous Taylor-Couette device. Circular Couette flow exhibits more complex instability pathways compared to the plane Couette flow, although the main turbulent flow features are similar. Also the particle distribution can be different; for instance in laminar circular Couette flow, the particle equilibrium position in not exactly in the center of the gap. Majji et al. [2016] found that neutrallybuoyant particles (annulus gap to particle diameter ratio is 30.3) tend to trigger instability of the circular Couette flow and reduce the critical Reynolds number. The difference between circular and plane Couette flow needs to be investigated in future works.

In similar context, curved channel flows with pressure-drop are also interesting to study, since they can be used for classification of particles in biomedical applications. In single-phase flow, secondary flows in the channel cross-section take place when the curvature of the channel is increased. [START_REF] Martel | Particle focusing in curved microfluidic channels[END_REF] found that particles exhibit crossstreamline migration either towards or away from the inner wall, depending on the particle size with respect to the channel dimensions, channel Reynolds and Dean numbers (De ≡ Re ro-r i r i , r o and r i stand for the inner and outer radius of the cylinder). In this flow configuration, particles are subject to the drag by the secondary flows, and to a lift force which depends on the shear gradient of the flow velocity profile, which itself depends on the flow curvature. The theoretical prediction of particle motion toward equilibrium is still to be established in such flow configuration.

3. Better modeling of the lift force.

For Lagrangian tracking of pointwise particles, the lift force on a neutrally buoyant particle is not easy to predict: it depends on the local strain, slip and shear particle Reynolds numbers, and awkwardly on the particle position with respect to the wall. The prediction of the lift force on neutrally buoyant finite size particles (finite flow inertia at the particle scale) is still limited to simple unidirectional laminar flow configuration because unfortunately the non-linear terms in the Navier-Stokes equations do not allow simple integration or superposition. Though, most of the flows of interest are not unidirectional (multiple finite components of the strain tensor).

In the absence of imposed slip (like settling due to gravity), simple Lagrangian approaches like the Maxey-Riley equation cannot be reasonably predictive for neutrally buoyant particles, without a suitable dependence of the forces on flow inertia, especially with regard to the lift force (which is responsible of the particle cross-streamline motion). In the Taylor-Green vortex for instance (see §2.4.1), the deviation of the Maxey-Riley solution with respect to the numerical FCM particle trajectory was reduced using the lift force model from Mei [1992], which is an extension of Saffman's work [Saffman, 1965] to finite particle slip Reynolds numbers.

Suspension rheology, with spheroidal particles at low concentration

The difficult point to overcome, in order to predict the rheology of a suspension constituted of spheroidal particles, is the rotation dynamics. The dissipation induced by the particle presence depends on the rotation (spinning or tumbling) of particles. For a single particle, the stable rotation orbit depends on the Reynolds and Stokes number, and on the aspect ratio as summarized by the diagram of Rosén et al. [2014]. More than that, the stable particle orientation of an oblate particle in shear flow depends on the initial condition at low aspect ratio (less than 0.14) as shown by Einarsson et al. [2015], which makes the suspension rheology in this case not uniquely defined. Particle interactions (or thermal fluctuations for sub-micron particles) are expected to influence the particle orientation and therefore the suspension stress. This is an interesting field for future investigation. written generally as in (A.12). In order to use (A.12) for numerical analysis and coding, it should be convenient to do the transformation from quaternion product to matrix vector product using the form of (A.7). Angular velocity (A.12) can be written as q = 1 2 (0, ω)q = 1 2 
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A.3 Appendix C

Particles migration in rotor-driven flow

As already shown throughout all this thesis, finite inertia at the particle scale can lead to particle migration across the streamlines of the flow, and by that to heterogeneous distribution of the particles. We consider in this appendix a particular setup, following the experiments of Atis et al. [2015], which shows that systems operated in the Stokes flow regime, namely here for mixing by chaotic advection, are limited at finite inertia. The setup consists of a laminar viscous flow driven by a rotating cylinder (the rotor) located between long parallel plates. Depending on the rotor position in wall-normal direction, pairs of Moffat eddies [Moffatt, 1964] take place. If one of the plates is oscillated, the device can be used for mixing by chaotic advection. We will limit this appendix to the case where both plates are fixed. As shown in figure 4 of Hackborn [1990], the strength of the vortices depends on their location with respect to the rotor surface: the secondary vortices are weak. The experiments of Atis et al. [2015] show that rod-like neutrally buoyant particles tend .5mm [0.7, 1.3] a = 0.003 1 a = 3.5 ± 0.5mm [1.5, 2.3] a = 0.006 2 a = 5.0 ± 0.5mm [2.6, 3.1] a = 0.009 3 a = 8.0 ± 0.5mm [4.3, 4.9] --tios (Ar = 1, 2, 3) are shown in fig. C.3(a). In every simulations, two particles are initially seeded, one in each vortex. The trajectory of the spherical particles is nearly closed following almost perfectly the flow streamlines (even if we initially place the two spheres much closer to the core of the vortical structures). When the aspect ratio is increased, the prolate spheroids gradually migrate to the core of the secondary flow, the larger the aspect ratio the faster the particle migration is. Note that the trajectories of both particles do not converge toward the vortex center at the same speed, since the right and left vortices are different.

Then we tried to clarify whether the irreversible migration of the ellipsoidal particles toward the vortex center is mainly due to flow-particle interaction or to the simple advection of an elongated particle by the vortical flow. Therefore, we realized numerical simulations where the ellipsoidal particles were simply advected and rotated by the single phase flow, i.e. the particle translation and rotation velocities are obtained from an integration of the local fluid velocities: 3(b). The trajectory of the advected sphere is identical to the one obtained by solving the full (two-way coupling) problem. However the advection of a prolate spheroid of Ar = 3 leads to the oscillation of its center position with respect to the vortex center, with two characteristic time scales. The low frequency oscillation indicates that the particle will be infinitly moving inward and outward across the vortex streamlines. A simple comparison with the fully two-way coupling simulations, indicates that the first stage of the inward motion of an elongated particle is due to the advection-rotation by the flow. Near the vortex center, the particle is trapped by a finite inertia effect, which by itself is an interesting phenomena to explore.
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 11 Figure 1.1: (a) Dependence of the transition critical suspension Reynolds number of a pipe flow as a function of particle volumetric concentration and pipe-to-particle diameter ratio (extracted from Matas et al. [2003]). ×: D/d = 200; •: D/d = 65; •: D/d = 37; : D/d = 27; : D/d = 18; : D/d = 16; : D/d = 10; (b) Wall friction coefficient versus Reynolds number in channel flow (extracted from Loisel et al. [2013]). The channel height-to-particle size ratio is L y /d = 16 and the volumetric concentration is 5%. The friction coefficient is based on the fluid viscosity for +: single phase flow and •: twophase flow. The • symbols are obtained using the suspension viscosity for the calculation of the Reynolds number.
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 12 Figure 1.2: Scheme of the regeneration cycle ingredients
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 21 Figure 2.1: A control volume of the straggered grid for two dimensions.
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 23 Figure 2.3: Schematic sketch of FCM.
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 24 Figure 2.4: Influence of the simulation domain size on the velocity of a cylinder submitted to f d with the walls moving at U w . Re p = 0.01, κ = 1. Left panel: L x /a is increased from 20 to 240. Right panel: L z /a is increased from 2 to 16. The effect of the mesh regularity is also tested.
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 25 Figure 2.5: Determination of the most suitable value of the coefficient κ, using the evolution of (1 -|u p /U w |)F D with the cylinder confinement h/a. The domain size is L x /a = 240 and L z /a = 2, and Re p = 0.01.
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 26 Figure 2.6: Dependence of cylinder angular velocity ω z (resulting from a constant applied torque) on the domain size in two wall bounded fluid. Re p = 0.1, κ = 1 and a/h = 0.25. Left panel: effect of L x /a. Right panel: effect of L z /a.
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 27 Figure 2.7: Influence of the Reynolds number on the cylinder angular velocity ω z scaled by ω 0 . The domain size is L x /a = 20 and L z /a = 2 with a/h = 0.25 and κ = 1 and time is scaled by a 2 /ν.
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 28 Figure 2.8: Cylinder angular velocity ω z as a function of a/h p . The results are obtained with domain size L x /a = 20 and L z /a = 2 at Re p = 0.1. Simulations from FCM with three different κ are compared with theoretical prediction of Hellou [1988].
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 210 Figure 2.10: Relative trajectory of a particle pair in laminar Couette flow, in the case of neutrally buoyant, inertial particles and bubbles. The red half sphere represents the reference particle. The semicircle of radius 2a is the limit of particle overlapping. The other semicircle indicates the barrier corresponding to R ref = 2.2a where the repulsion force is enabled. The particle Re p ≡ γa 2 /ν = 1.0 and St ≡ (2Re p ρ p )/(9νρ f ) varies between 0.2 and 2. Neutrally-buoyant particle; ρ p /ρ f =5; • ρ p /ρ f =10; bubble.

41 )Figure 2 . 11 :

 41211 Figure 2.11: Schematic representation of the repulsive force and torque at the center of a pair of ellipsoids if their surface is closer than a distance of 0.1( O α A α + O β A β ).

Figure 2 . 12 :

 212 Figure 2.12: Repulsive force between (a) an ellipsoid and a wall and (b) two ellipsoids

Figure 2 . 13 :

 213 Figure 2.13: Relative trajectories of a pair of neutrally buoyant prolate particles (blue and red) in laminar Couette flow with Ar = 2 and Re p = 1.F ref = 0; F ref = F d ; F ref = 10F d . Trajectories of F ref = F d overlap with F ref = 10F d .The vector stands for the orientation of the symmetry axis for spheroidal particles during the process of interaction.

Figure 2 . 16 :

 216 Figure 2.16: Particle migration trajectories in wall bounded flow computed by the FCM and DF/FD simulations. (a) shows the effect of the time step in plane Couette flow. The comparison between FCM and DF/FD is shown in (b) in plane Couette flow with Re p = 1, and in (c) using Poiseuille channel with Re = 100 and Re = 200. The two walls are located at y/L y = 0 and y/L y = 1.0.

Figure 2 . 17 :

 217 Figure 2.17: Grids arrangements in cases of (a) fluid points used in FCM and (b) Lagrangian points used in DF/FD. Black shows the oblate spheroid (Ar = 0.5); Blue shows the sphere (Ar = 1.0); Red shows the prolate spheroid (Ar = 2.0). Particles have the same length of semi-minor axis.

Figure 2 . 18 :

 218 Figure 2.18: Velocity field and contours of u/u p when t = 0 + 2kπ/ω (top half: δ 2 = 0.25, and bottom half: δ 2 = 4.0 where δ stands for dimensionless Stokes layer) around an oscillatory particle.

Figure 2 . 20 :

 220 Figure 2.20: Trajectory of a bubble (ρ p /ρ f = 1.257.10 -3 ) in a Taylor-Green vortex at different Re p . (a) trajectory in x -y plane. Re p = 0.1; Re p = 1.0; Re p = 5.0. (b) shows comparison of the FCM results with the numerical solution of (2.59): equation (2.59); equation (2.59) with adding the lift force from (2.61) and (2.60); FCM simulation.

Figure 2 . 22 :

 222 Figure 2.22: Comparison between FCM and DF/FD from Yu and Shao [2007] for finite-size particle in Taylor-Green vortex. (a) Neutrally buoyant particle at Re p = 0.1 in Taylor-Green vortex comparison between FCM, DF/FD and numerical solution of Maxey-Riley equation; (b) ρ p /ρ f = 2 at Re p = 0.1; (c) and (d) for ρ p /ρ f = 2 and ρ p /ρ f = 0.6 at Re p = 1.is from FCM, is from DF/FD method and is the numerical solution of Maxey-Riley equation. Different colors in (c) and (d) stand for lighter and heavier particle, respectively.

Figs. 2 .Figure 2 . 23 :

 2223 Figure 2.23: Fluid velocity profiles comparing DNS and FCM results in y across the duct for settling ellipsoid. Settling velocities are relative to the particle: (a) w; (b) v.

Figure 2 . 24 :

 224 Figure 2.24: Schematic diagram of a spheroid in shear flow: (a) , define φ as the angle between p and the z direction, which is the vorticity direction in shear flow, and θ as the angle between the projection of p on the sheargradient plane (xy) with the x direction; (b) θ x , θ y and θ z as the angle between p and the x, y and z direction, respectively.

Figure 2 . 25 :

 225 Figure 2.25: Instantaneous angular velocity along the vorticity vector in a shear flow for spheroid (oblate Ar = 0.5 and prolate Ar = 2 -5) in a suspension with volume fraction Φ = 0.058. FCM at Re p = 0.1 compared with Stokes solution of Jeffery. Colors distinguish four aspect ratios. Black: Ar = 0.5, blue: Ar = 2, red: Ar = 3 and green: Ar = 4. Symbols are results from Daghooghi and Borazjani [2015] at Re p = 0.01 where •: Ar = 2, : Ar = 3 and : Ar = 5.

Figure 2 . 26 :

 226 Figure 2.26: Effect of the Reynolds number on the instantaneous angular velocity (ω z = dθ/dt). (a): a prolate spheroid (Ar = 2) about the vorticity vector in a shear flow. The volume fraction is Φ = 0.058. Jeffery orbit. FCM: Re p = 0.1, Re p = 1 and Re p = 10. Symbols are results from Daghooghi and Borazjani [2015] where +: Re p = 0.1, * : Re p = 1 and •: Re p = 10; (b) shows the comparison between FCM (solid lines) and DF/FD (dashed lines): the top panel shows the symmetry axis of an oblate spheroid (Ar = 0.5) rotating in the shear plane at two Reynolds numbers. The black lines correspond to Re p = 1 and the red ones to Re p = 4 (Re p is based on the semi-major axis). The bottom panel shows the symmetry axis of a prolate spheroid (Ar = 2) rotating in the shear plane.

Figure 2 . 27 :

 227 Figure 2.27: Figure reprinted from[START_REF] Rosén | Quantitative analysis of the angular dynamics of a single spheroid in simple shear flow at moderate reynolds numbers[END_REF]. Rotation states for a nuetrally buoyant (St = Re p : note that Re p defined in[START_REF] Rosén | Quantitative analysis of the angular dynamics of a single spheroid in simple shear flow at moderate reynolds numbers[END_REF] is four times larger than Re p used in this thesis) spheroid depending on Re p and Ar; T = tumbling; R = rotation; S = steady state; LR = log rolling (spin); the region (2) -(6) in the upper right part refer to R, T, R, T and T, respectively; the theoretical results of Re theory c,oblate and Re theory c,prolate for thin oblate slender prolate spheroids, respectively, as well as the numerical and theoretical values of Re T,oblate are taken from[START_REF] Rosén | Numerical analysis of the angular motion of a neutrally buoyant spheroid in shear flow at small reynolds numbers[END_REF]; the dotted lines are the extrapolated values according to the empirical formulas in[START_REF] Rosén | Quantitative analysis of the angular dynamics of a single spheroid in simple shear flow at moderate reynolds numbers[END_REF]; the dashed lines are only hypothetical to connect numerical results to the theoretical results in[START_REF] Rosén | Numerical analysis of the angular motion of a neutrally buoyant spheroid in shear flow at small reynolds numbers[END_REF].

Figure 2 . 28 :

 228 Figure 2.28: Comparison of FCM and DF/FD: Evolution in time of the orientation vector p of a prolate and an oblate spheroid in simple shear flow, starting from a random orientation, at finite-size Reynolds number (Re p = 1.0). (a) cosθ x (p x ), cosθ z (p z ), red refers to DF/FD and black to FCM results. The top panel is for the oblate spheroid and bottom panel for the prolate particle; (b) shows the same result projected on the surface of a unit sphere. The green dot corresponds to the initial position of particle center, red is for DF/FD and black is for FCM. The top (bottom) panel is for oblate (prolate) spheroid.

Figure 2 . 29 :

 229 Figure 2.29: Time sequence of two moving prolate spheroids with Ar = 2 within the shear-gradient plane for initial orientations ϕ 0 = π/2 and θ 0 = 0. Asterisks show the ellipsoid surface from Pozrikidis [2006], four color and solid line show FCM results.

Figure 2 . 30 :

 230 Figure 2.30: Evolution of rotation rate and the shearing component of the particle stress tensor during particle interception for ϕ 0 = π/2 and θ 0 = 0. (a) the rate of rotation around the z axis; (b) particle stress tensor. FCM for a isolated spheroid;FCM for pair of spheroids during interception; circle stands for an isolated spheroid and asterisks show the results from pair of spheroids in[START_REF] Pozrikidis | Interception of two spheroidal particles in shear flow[END_REF] 
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 231232 Figure 2.31: The sketch of the trajectories and orientations of two ellipsoidal particles settling side by side in a vertical channel. (a) two particles settling freely to a periodic trajectory; (b) particle orientation along the first period; (c) particle orientation along steady period.

FIG. 4 .

 4 FIG. 4. Velocity field and contours of u/u p when t = 0 + 2kπ/ω (top half: δ 2 = 0.25, and bottom half: δ 2 = 4.0 where δ stands for dimensionless Stokes layer) around an oscillatory particle.

FIG. 5 .

 5 FIG. 5. (a) Amplitude and (b) phase shift of 6πaμ ûp / F as a function of the dimensionless frequency (δ 2 ). The lines are obtained from solving the Maxey-Riley equation (A1), with and without the added mass contribution (solid and dashed lines, respectively). The symbols are from present simulation of + bubbles; • ρ p /ρ f = 1; ρ p /ρ f = 2; ρ p /ρ f = 5.

FIG. 6 .

 6 FIG. 6. Streamwise velocity profile in the wall-normal direction starting from fluid at rest. Lines correspond to our simulations: Re b = 365, η = 0.1; Re b = 650, η = 0.1; Re b = 300, η = 1.0; Re b = 345, η = 1.0, where η is the dimensionless time scaled with h 2 /ν. Symbols stand for experimental or direct numerical simulation results. Tillmark and Alfredsson[START_REF] Tillmark | Experiments on transition in plane Couette flow[END_REF], Re b = 365, η = 0.1; Tillmark and Alfredsson[START_REF] Tillmark | Experiments on transition in plane Couette flow[END_REF], Re b = 650, η = 0.1; • Reichardt[START_REF] Reichardt | Über die Geschwindigkeitsverteilung in einer geradlinigen turbulenten Couetteströmung[END_REF], Re b = 300 when flow is fully developed; Tillmark and Alfredsson[START_REF] Tillmark | Experiments on transition in plane Couette flow[END_REF], Re b = 345 when flow is fully developed.

FIG. 7 .FIG. 8 .FIG. 9 . 13 FIG. 10 .

 7891310 FIG. 7. Mean velocity profiles for different Reynolds numbers, particle sizes, and bulk concentrations. (a) Re b = 500, L y /d = 10; (b) Re b = 500, L y /d = 20; (c) Re b = 750, L y /d = 20; (d) Re b = 1000, L y /d = 20. The lines stand for different solid concentration: = 0%; = 1%; = 5%; = 10%. The profiles are symmetric with respect to the Couette center plane. Therefore half of all the profiles are shown between y = 0 (wall) and y = h (center) in this figure and elsewhere.

FIG. 11 .

 11 FIG. 11. Profiles of velocity rms for different Reynolds numbers, particle sizes and bulk concentrations. (a) Re b = 500, L y /d = 20; (b) Re b = 750, L y /d = 20; (c) Re b = 1000, L y /d = 20; (d) Re b = 500, = 5%. Half of the domain is shown because of midplane symmetry. From (a) to (c): = 0; = 1%; = 5%; = 10%. (d) L y /d = 10; L y /d = 20.

FIG. 14 .

 14 FIG. 14. Profiles of relative mixture viscosity across the Couette gap for Re b = 500, = 10% and two particle sizes L y /d = 10,20. Eilers fit ([1 + 1.25 /(1 -/0.63)] 2 -1.0) based on the local concentration [ (y/ h)] for two particle sizes: L y /d = 10; L y /d = 20; Eq. (14) based on the local shear stress: • L y /d = 10; L y /d = 20.

FIG. 15 .FIG. 16 .

 1516 FIG. 15. Profiles of the shear stress budget components for different Reynolds numbers, particle sizes, and bulk concentrations. Plots in (a) to (c) compare single-phase flow results (solid line) to two-phase flow simulations (dashed lines) at = 5% and = 10%. In (d) the shear stress components are compared at = 5% L y /d = 10 and L y /d = 20.

FIG. 17 .

 17 FIG. 17. Contour of particle concentration in the transverse y-z plane averaged over ∼ 400 time units. (a) Bubble; (b) ρ p /ρ f = 1.0; (c) ρ p /ρ f = 2.0; (d) ρ p /ρ f = 5.0.

FIG. 18 . 20 FIG. 19 .

 182019 FIG. 18. Effect of inertia on the turbulent flow statistics. Mean profiles of (a) streamwise flow velocity, (b) concentration, and (c) rms of velocity fluctuations. (d) Contains TKE spectrum as a function of streamwise and spanwise wave numbers (L y /d 20 = 20 and k d = 2π/d 20 ). The line style is the same as in Fig. 16.

FIG. 20 . 21 FIG. 21 .

 202121 FIG. 20. Modification by the neutrally buoyant particles of the quadrant analysis of u and v and of their probability density functions (PDFs) in the Couette center plane. The single-phase plots in solid lines are performed at the effective Reynolds number of the suspension flow (Re s = 380). Other lines are from two-phase simulations at = 10% and Re b = 500. L y /d = 10; L y /d = 20.

FIG. 22 .

 22 FIG. 22. Modal decomposition: M(0,β) and M(α,0). The solid lines are for single-phase flow with effective Reynolds number Re s = 380; The two-phase flow simulations are obtained for neutrally buoyant particles using = 10% and Re b = 500 and L y /d = 10; L y /d = 20.

FIG. 23 .

 23 FIG. 23. Effect of inertia on (a) modal decomposition and (b) flow circulation. The light blue dashed line is for single-phase flow with effective Reynolds number Re s = 380. Other lines correspond to two-phase flow simulations with Re b = 500 and smaller particles L y /d = 20. with bubble; ρ p /ρ f = 1.0; ρ p /ρ f = 2.0; ρ p /ρ f = 5.0.

  25(a) and25(b)]. Moreover, this time interval between strong ejection for particulate flows [Figs.25(c)-25(f)] becomes very similar to single-phase flow associated to effective viscosity [Fig.25(b)

FIG. 24

 24 FIG. 24. (a) Time evolution of Circulation and spacial average of the absolute value of vorticity stretching (| ω x ∂u/∂x | within 0.2 < y/L y < 0.8 where LSVs take place as seen in Fig. 19) in single-phase flow and Re b = 380. (b)-(e) Contours of the streamwise velocity fluctuations u /U w in the Couette central plane (y/L y = 0.5), showing the streak structures. The iso-contour interval is 0.07. stands for u /U w < 0 and stands for u /U w > 0. The color contours indicate the stretching term ω x ∂u/∂x. (a) and (b) are for single-phase flow and Re b = 380, with x-independent flow (at the trough of the vorticity stretching instant tU w /h = 200) and for x-dependent flow (at the peak of the vorticity stretching tU w /h = 235) respectively. The trough and peak instants are noted by dots in (a) at the top of this figure. The contours in (d) and (e) are both x-dependent with bubbles and inertial particles (ρ p /ρ f = 5), respectively.

FIG. 26 .

 26 FIG. 26. Trajectory of a bubble (ρ p /ρ f = 1.257 × 10 -3 ) in a Taylor-Green vortex at different Re p . (a) Trajectory in x-y plane. Re p = 0.1; Re p = 1.0; Re p = 5.0. (b) Comparison of the FCM results with the numerical solution of Eq. (A1):Eq. (A1); Eq. (A1) with adding the lift force from Eq. (A3) and Eq. (A2); present simulation.

FIG. 27 .

 27 FIG. 27. Contributions to the budget of (a) u u , (b) v v , (c) w w , and (d) u u in the case of Re b = 500 and L y /d = 20. Comparison between single-phase and φ = 5% suspension flow. Because of symmetry of profiles, in each figure the left part correspond to single-phase flow and the right part stands for two-phase flows. production; dissipation; turbulent transport; pressure strain; pressure diffusion; viscous diffusion; dipole feedback.

Figure 1 .

 1 Figure 1. Sketch of the regeneration cycle sub-steps

Couette

  

Figure 2 .

 2 Figure 2. Effect of neutrally buoyant particles on the laminar-turbulent transition threshold, as depicted from the temporal evolution of C f , after decreasing Re b in (a) Couette flow and (b) pressure-driven flow. The initial flow configuration of the Couette (resp. channel) flow is taken from a fully-turbulent simulation at Re b = 500 (resp. 2300). (a): Re b = 500, Φ = 5%; Re b = 470, Φ = 10%; Re b = 455, Φ = 10%; Re b = 440, Φ = 10%; Re b = 455 to 345, Φ = 5% and I to V corresponding to Re b = 455, 415, 390, 365 and 355. (b): Re b = 2000, Φ = 1%; Re b = 2000, Φ = 5%; Re b = 1700, Φ = 5%; Re b = 1500, Φ = 5%.

Figure 3 .

 3 Figure 3. Particle effect on flow stability. Left panel : Couette flow starting from a fully turbulent regime. The turbulent state is stable under singlephase condition, even when the streamwise velocity perturbations are suppressed, the flow recovers its fully turbulent nature. Adding particles damp the velocity fluctuations and make the flow laminar. Re b = 430, single-phase flow removes u ; Re b = 430, Φ = 5% and L y /d = 10; Re b = 455, single-phase flow removes u ; Re b = 455, Φ = 10% and L y /d = 20. Right panel : channel flow starting with a flow distribution according to (3.1) where an artifical streak is initially imposed. The single-phase flow tends towards the laminar state at Re b = 2600 which is above the laminar-turbulent transition. Adding small number of particles in the flow triggers the transition to turbulence. single-phase flow; Φ = 0.5% and L y /d = 16; Φ = 0.75% and L y /d = 16; Φ = 0.5% and L y /d = 20.

Figure 4 .

 4 Figure 4. Flow vorticity induced by a layer of particles seeded in the plane y/d = 0.8 (near the wall) in the same flow configuration as 3(h). The total volume concentration is Φ = 0.5%, and the size ratio L y /d = 16 is used. The snapshots are taken at three time instants t = 0.2, 2.7 and 29.5 (scaled by h/U bulk ) which correspond to t + = 2, 27 and 295 (scaled by ν/u 2 τ ).

Figure 5 .

 5 Figure 5. Particle distribution in yz plane and xz plane. (a) and (b) show concentration contours averaged in the streamwise direction, over 80 time units in cases C500-5 and P 2600-5. The corresponding profiles in wall-normal direction are averaged over 500 time units for C500 -5, C500 -10 and P 2600 -1, P 2600 -5. (c) shows the effective viscosity, based on Eilers fit: C500 -5; P 2600 -5, based on local shear stresslet and concentration: blue circle is C500 -5; red cross is P 2600 -5. (d) and (e) are the concentration contours taken at y/L y = 0.2 in xz plane averaged over 80 time units for C500 -5 and P 2600 -5, the isolines show u /U bulk in xz plane where dashed line stands for negative and solid line shows positive, the interval is 0.04 in (d) and 0.03 in (e). The profiles of u /U bulk averaged in streamwise are also plotted on the right side of (d) and (e), separately.

Figure 6 .

 6 Figure 6. Velocity rms of single and two phase flows in different quadrants. For (a → f ): the line style denotes the quadrant, Q1, Q2, Q3, Q4. The line color refers to the flow concentration, blue for single-phase flow and green for 5% concentration. (ac): Couette flow. (d-f): channel flow. (a, d), (b, e) and (c, f ) show -u v , u u and v v , respectively. In (g, h), the velocity rms are then split into contributions near the particle surface (a < r < 1.5a in dashed lines), and far from the particle surface (r > 1.5a in dashed dot lines) as sketched in figure (i), as a reference, the velocity rms in single-phase flow (solid lines) is also plotted in both figures. Here the black color corresponds to the ejection and the red to the sweep events. The profiles in (g) are from channel flow and the profiles in (h) from Couette flow.

Figure 7 .

 7 Figure 7. Top panels: Couette flow; Bottom panels: channel flow. (a) and (d) show the one-dimensional streamwise and spanwise wavenumber energy spectra of the streamwise velocity E uu averaged in the wall-normal direction. In (a) C500-0; C500-5; C500-10. In (d) P 2600-0; P 2600-5; P 2600-10. Contour figures show the two-dimensional contours of the energy spectra. (b) and (e): single-phase flow with C500 -0 and P 2600 -0. (c) and (f ): two-phase flow with C500 -5 and P 2600 -5.

Figure 8 .

 8 Figure 8. Simultaneous temporal evolution of the friction coefficient C f and the near wall streamwise vorticity, in Couette flow ((a) and (b)), and channel flow ((c) and (d)). (a) and (c) plot the summation of x-independent vortices (m = 0) for different spanwise wavenumbers (1 n N z /2) and integrated in the near wall region (y + < 15). (b) and (d) show x-independent vortices (m = 0) in the near wall region (y + < 15) as a function of spanwise wavelength (2L z /N z λ z L z ). The line style indicates single-phase (solid) and two-phase (dashed line) flows. In (a) and (b): C500 -0; C500 -5, in (c) and (d): P 2600 -0; P 2600 -5.

Figure 9 .

 9 Figure 9. Spatial-temporal evolution of the Reynolds shear stress (-u v /U 2 bulk ) averaged in the homogeneous directions (streamwise and spanwise). Left panel is for Couette flow and right panel is for channel flow. (a) and (b) correspond to single-phase flows whereas (c) and (d) correspond to two-phase flows.

Figure 10 .

 10 Figure 10. Spatial-temporal evolution of the lift-up term (-vdu/dy) scaled by U 2 bulk /h. The green isoline of the Reynolds shear stress (-u v /U 2 bulk ) are added on the top of these figures, the interval in (a) and (c) is 0.003, and the interval in (b) and (d) is 0.005. Left panel is for Couette flow and right panel for channel flow. (a) and (b) stand for single-phase flows. (c) and (d) stand for two-phase flows.

Figure 11 .

 11 Figure 11. Modal decomposition as in (5.1): is mode M (0, β); is mode M (α, 0). (a) Couette flow in the whole domain, (b) Channel flow in the whole domain, (c) and (d) stand for channel flow in the upper half domain and bottom half domain. In (a), black is C500 -0 and red is C500 -5. In (b), (c) and (d), black is P 2600 -0 and red is P 2600 -5.

  figures11(c, d), the integration is performed in the vicinity of one single wall which is regarded as an individual shear layer (Y 1 = 0 → Y 2 = L y /2 near the bottom wall, and Y 1 = L y /2 → Y 2 = L y near the upper wall). The quasi-periodic fluctuations of these modes, with period ∼ 100h/U bulk for Couette flow, are related to the regeneration cycle. The strongest mode is M (0, β) which corresponds to x-independent streaks. As a general trend, neutrally buoyant particles decrease the amplitude of the fluctuations of this mode, whereas they do not have significant impact on its period, which is related to the regeneration cycle. However in channel flow, it can be noted that both (0, β) mode and (α, 0) mode are of the same strength and period compared between single with two-phase flow.

Figure 12 .

 12 Figure 12. (a) and (b) show temporal evolution of circulation (integrated over 0.1 < y/L y < 0.4) and spacial average of absolute value of vorticity stretching (| ω x ∂u/∂x | within 0.1 < y/L y < 0.4 where large scale vortices take place as seen in figure 5(b)). (c-f ) show contours of the streamwise velocity fluctuations u /U bulk in the snapshot plane at y/L y = 0.2, showing the streaks. The interval of isolines is 0.04. stands for u /U bulk < 0 and stands for u /U bulk > 0. The color contours indicate the stretching term ω x ∂u/∂x. Left panels are for single-phase flow P 2600 -0, two points (c) and (e) in (a) are x-independent flow (at the trough of the vorticity stretching instant ∆tU bulk /h = 900) and for x-dependent flow (at the peak of the vorticity stretching instant ∆tU bulk /h = 970). Right panels are for suspension flow P 2600 -1, two points (d) and (f ) in (b) are corresponding to ∆tU bulk /h = 405 and ∆tU bulk /h = 480. Line styles in (d) and (f ) are same as in (c) and (e).
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Figure 5 . 1 :

 51 Figure 5.1: (a) and (b) show the particle distribution and orientation viewed from streamwise direction of C500-5-05-1 (oblate) and C500-5-2-1 (prolate particles), respectively. The figures are chosen when the large scale streaks are the strongest. The isocontours represent the instantaneous velocity magnitude in y-z slice. (c) Particle concentration profiles for different particle shapes and density ratios. (d) shows the corresponding effective viscosity based on local shear Stresslet and concentration, the average value calculated over y/h < 0.8 and y/h > 1.2 is plotted in the inset.

Figure 5

 5 Figure 5.2: (a) Wall-normal profiles of the particle orientation angles θ and ϕ (projections of the p vector). The angle between the symmetry axis (p or -p) with the positive axis (+x or +z) is used. * and • stand for oblate and prolate particles respectively. (b -d): Profiles of the particle absolute angular velocity in streamwise (| ω x |), wall-normal (| ω y |) and spanwise (| ω z |) directions normalized by the average shear rate γ. The shape effect is shown for y/h < 1 and density ratio effect for y/h > 1 on the same graph.

Figure 5 . 3 :

 53 Figure 5.3: Profiles of the repulsive force components (f i ) in directions x black, y blue and z red. In (a) simulation results with spherical particles C500-5-1-1(s) are compared to the simulations with prolate particles C500-5-2-1. In (b) the effect of inertia is shown with cases C500-10-1-0 and C500-10-1-5.

Figure 5 . 4 :

 54 Figure 5.4: (a) The temporal evolution of the wall-normal position of a particle in turbulent pCf at Reynolds number 500 for different particle shapes and densities: ρ r = 1.25 10 -3 ; ρ r = 5 and A r = 0.5; A r = 2. (b) and (c) show the temporal auto-correlation function of the wall-normal particle position fluctuation. The line style of (b) and (c) is shown in table5.1. Set I noted in these figures contains the statistics of particles trapped in one large scale vortex and set II contains particles transferred from one LSV to the other. The criteria used to attribute each particle to set I, set II or neither of the two sets, is based on ∆t min at which the minimum of R yy corresponding to each particle occurs: if ∆t min U w /h < 60, particle belongs to set I; if 60 < ∆t min U w /h < 100, particle belongs to set II. Overall, 10 to 20 percent of the total number particles belong to each set.

Figure 5 . 5 :

 55 Figure 5.5: Probability density functions of velocity fluctuations in the buffer layer (10 < y + < 40): the particle velocity (circles), fluid fluctuation close to the particles (legend is shown in table 5.1) inside the spherical shells between 1.0 and 1.5 times of the particle radius, and the fluid fluctuations (crosses) of single-phase flow in the whole domain. Both streamwise and wall-normal velocity components are shown, and the PDFs are averaged over ∼ 400 time units. (a) shows the effect of particle shape and (b) the effect of particle-tofluid density ratio.

Figure 5 . 6 :

 56 Figure 5.6: Temporal evolution of particle percentage of total number of particles in different quadrants of C500-10-1-0. (a): particle percentage in four quadrants separately. (b): particle percentage in Q1 + Q2 and Q3 + Q4, Q2 + Q4 and Q1 + Q3. (c): particle percentage difference of Q1 -Q3 and Q4 -Q2.
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 212 x = mα, k z = nβ) ≡ { Y mα, y, nβ) + v 2 (mα, y, nβ) + w 2 (mα, y, nβ)]dy} 1/2

Figure 5 .

 5 Figure 5.8(a) (on the left panel) shows the temporal evolution of the flow circulation, which period of oscillation corresponds roughly to the period of the turbulence regeneration cycle. The average in the x and y directions of

Figure 5 . 8 :

 58 Figure 5.8: Left panel of (a) shows the temporal evolution of circulation and M (0, β) for single-phase flow. Right panel of (a) shows the evolution over z of the average in the x and y directions of the positive Reynolds shear stress, for different instants corresponding to different values of the flow circulation (indicated by points on the left panel). (b -g): instantaneous slice corresponding to those instants, containing the flow streamlines in the (y, z)-plane with red arrowed lines, supplemented by the iso-contours of the Reynolds shear stress: indicates Q2 and Q4 events, i.e. -u v (y, z)/U 2 w > 0 (from zero to 0.04 with an interval 0.002) and indicates Q1 and Q3 events, i.e. -u v (y, z)/U 2 w < 0 (from -0.016 to zero and the interval is 5.3.e -4).
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 59 Figure 5.9: Temporal evolution of the flow circulation (blue lines) and of the percentage difference between Q1 and Q3 event regions (ratio between particles difference in Q1 and Q3 with the total number of particles) in the buffer layer (10 < y + < 40 and 40 < y + < 70). The Q1 between the two walls is defined as u v > 0 and inward (to the gap center) motion and Q3 is defined as u v > 0 and outward (to the walls) motion. (a, c, e) show the particle shape effect with the cases from top to bottom: C500-5-1-1, C500-5-05-1 and C500-5-2-1. (b, d, f ) show the effect of particle density, using from top to bottom: C500-10-1-0, C500-10-1-2 and C500-10-1-5.

  the dimension from 4 × 4 and 4 × 1 in (A.18) to 4 × 3 and 3 × 1 as in(A.19) 

Figure B. 2 :

 2 Figure B.2: Successive approximations for the detection of the minimum distance between two ellipsoids starting from a point P located far away from ellipsoids.

  Figure C.2: (a): Streamlines in a rotor-driven flow obtained using numerical simulations with FCM representation of a rotor with radius r = 0.03 and angular velocity ω = 0.86 located at (2, 0.25); The simulation domain is 4 × 1 × 0.2. (b):Velocity profiles obtained at the midplane (y/L y = 0.5), along the core of the vortical structures: comparison between numerical simuation results and the theory ofHackborn [1990].

  u(x, t)) (x -Y n (t))d 3 x (C.6) without taking into account the dipole forcing in the flow momentum equations. The trajectories of a spherical particle and a prolate one with Ar = 3 are displayed in fig.C.
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TABLE I .

 I Simulation domain characteristics for the Miniunit in (a) some selected references and (b) the present work. Mesh is stretched in the y direction and follows an error function mapping y(k) = erf(αk)/erf(α),k = (-1:2/N y :1) with α = 2.0.

			(a) In the references	
	Re b	y +		x +	z +	Reference
	4500	0.92 (wall)-5.9 (center)	13.7	6.18	Ref. [2]
	3000	0.08 (wall)		7.55	4.8	Ref. [50]
	2150	0.18 (wall)-8.34 (center)	12.05	6.02	Ref. [65]
	625	0.18 (wall)-3.7 (center)	13	8.9	Ref. [24]
		(b) In the present work		
	Case	Re b	L x × L y × L z		N x × N y × N z
			Stretched mesh		
	A	500	2.75 × 1.0 × 1.88		30 × 86 × 32
		y + min = 0.08, y + max = 1.91; x + = 7.35; z + = 4.70	
			Regular mesh		
	B	500	2.758 × 1.0 × 1.939	182 × 66 × 128
		y			

TABLE II .

 II Parameters used in numerical simulations. The particle Reynolds number Re p ≡ a 2 /ν based on local shear rate = | du dy |, and the Stokes number St ≡ ρ p /(3ρ f )Re p cancel at the Couette center and are maximum at the wall Re p (max) takes place near the Couette wall where the shear rate is the strongest.

	Domain size		L x × L y × L z = 0.88π × 1.0 × 0.6π	
	Re b	500	750	1000
	Re τ	39.5	52.2	67.3
	y +	[0-80.5]	[0-105.4]	[0-134.5]
	L y /d	10, 20	20	20
	d +	8.0, 4.0	5.3	6.7
	Re p (max)	17.5, 4.38	5.83	8.75
	St(max)	3.89, 0.97	1.30	1.94
	τ + p	5.31, 1.37	2.32	3.77
	St turb	0.066, 0.017	0.022	0.028
	Mesh grid	182 × 66 × 128	382 × 134 × 256	
		(for L y /d = 10)	(for L y /d = 20)	
	(%)			

TABLE III .

 III Contributions to the Reynolds-stress transport Eq. (C2) and Eq. (C3)

		u 2	u u		v v		w w		u v	
	P ij	ρu v du dy	-ρu v du dy	-		-		-ρv v du dy
	ε ij	-μ( du dy ) 2	-μ ∂u ∂x j	∂u ∂x j	-μ ∂v ∂x j	∂v ∂x j	-μ ∂w ∂x j	∂w ∂x j	-2μ ∂u ∂x j	∂v ∂x j

Table 1

 1 contains also the Stokes number based on the local shear which achieves its maximum value near the channel or Couette walls, where the shear rate is the highest. It is nearly 1 in Couette and 2.4 in channel flow. Note that the results of simulations in

Table 1 .

 1 Parameters of the numerical simulations. The Reynolds number Re b ≡ U bulk h/ν for Couette flow and Re b ≡ Q/ν for channel flow. h = L y /2 is half of the Couette gap or channel height. In channel flow, the flow rate per unit depth is Q = 4U bulk L y /3. U bulk is the velocity of the moving walls in Couette flow whereas it is half the central velocity that the channel flow would have if the flow was laminar. The Reynolds number based on the friction velocity and on the channel half-width is Re τ ≡ u τ h/ν. The particle Reynolds number Re p ≡ Γ a 2 /ν based on local shear rate Γ = |du/dy|, and the Stokes number St ≡ 2ρ p /(9ρ f )Re p are low near the Couette and channel centers and they are maximum near the walls where the shear rate is the highest. The maximum particle Reynolds and Stokes numbers are based on the shear rate calculated at one particle diameter away from the walls.

	St turb

Table 5 .

 5 1: Parameters of the numerical simulations. The Reynolds number of the singe-phase flow is Re b ≡ U w h/ν = 500 where U w = 0.5 is half of the relative wall velocity and h = L y /2 is half of the Couette gap. The Reynolds number based on the friction velocity and half-width of the Couette gap is Re

τ ≡ u τ h/ν. The particle Reynolds number Re p

Néamoins dans un écoulement en canal, les particules isodenses augmentent l'intensité des contraintes de Reynolds dans le plan transverse. Nous montrons que par leur concentration préférentielle dans les structures cohérentes à côté des parois (les éjections), elles influencent significativement le cycle de régénération en agissant sur tous les processus à la fois linéaires et non linéaires du cycle: la formation des streaks, puis leur rupture et la régénération des vortex alignés avec l'écoulement. La diminution du seuil de transition est la conséquence directe de cette modulation du cycle.

f(ratio of particle to fluid time scales)
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APPENDIX B: SHEAR STRESS BUDGET

The stress of a suspension flow has been derived by Batchelor [4] assuming homogeneous conditions. Batchelor introduced a decomposition of the stress into fluid and particulate phase

ij where both terms are explicitly written as (the dispersed phase has total surface A 0 and volume V 0 )

stress due to particle acceleration -1 V V 0 ρu i u j dV τ Tp , particle Reynolds stress .

(B2)

In the absence of external torques and forces applied on particles, the first and last terms of Eq. (B2) account for the contribution of particles to the total stress. Note that the Reynolds stress components in the work of Batchelor appear only inside the particle contribution because the flow is laminar. Here the Reynolds stress appears also in the stress of the fluid phase due to the flow 084302-28

Chapter 4

Modulation of the regeneration cycle by neutrally finite-size particles

This draft was prepared using the LaTeX style file belonging to the Journal of Fluid Mechanics 1 Modulation of the regeneration cycle by neutrally buoyant finite-size particles G. Wang 1,2,3 , M. Abbas 2,3 † and E. Climent Direct numerical simulations of turbulent suspension flows are carried out with the Force-Coupling Method in plane Couette and pressure-driven channel configurations. Dilute to moderately concentrated suspensions of neutrally buoyant finite-size (L y /d = 20) spherical particles are considered when the Reynolds number is slightly above the laminar-turbulent transition. Tests performed with synthetic streaks, in both turbulent channel and Couette flows, show clearly that particles trigger the instability in channel flow whereas the plane Couette flow becomes laminar. Moreover, we have shown that particles have a pronounced impact on pressure-driven flow through a detailed temporal and spatial analysis whereas they have no significant impact on plane Couette flow configuration. The substantial difference between both flows is related to spatial preferential distribution of particles in the large scale rolls (inactive motion) in Couette flow, whereas they are accumulated in the ejection (active motion) regions in pressure-driven flow. Through investigation of particle modification on two distinct flow configurations, we were able to show the specific response of turbulent structures and the modulation of the fundamental mechanisms composing the regeneration cycle in the buffer layer of near-wall turbulence. Especially for pressure-driven flow, the particles enhance the liftup and let it act continuously whereas the particles do no significantly alter the streak breakdown process. The reinforcement of the streamwise vortices is attributed to the vorticity stretching term by the wavy streaks. The smaller and more numerous wavy streaks enhance the vorticity stretching and consequently strengthen the circulation of large scale streamwise vortex in suspension flow. 

Application of Unit Quaternion for Rotation

Quaternions avoid a mathematical issue called gimbal lock which can result, for example in pitch/yaw/roll rotational systems. The representation of a rotation as a quaternion (4 numbers) is more compact than the representation as an orthogonal matrix (9 numbers). The development of quaternions has been proposed by Hamilton [1843]. The new-found quaternion equations are A fourth parameter is defined as

Thus an unit quaternion is represented by using an extension of Euler's formula: e 1 ,e 2 ,e 3 ) T ≡ (e 0 , e) T (A.4)

The conjugate of q is also a quaternion expressed as

We give the product of two quaternions q m and q n as

Now we would like to use a quaternion in R 4 to operate the rotation of a vector in R 3 , thus we note (0, v) T is a quaternion whose real part is zero. The vector v in R 3 after rotation can be written as

Equation (A.8) can be simplified into R 3 by using a transformation matrix R as a classic rotation of matrix-vector product (A.9)

where R is defined as rotation matrix in this work and can be derived to (A.10) in terms of Euler parameters. We note that this rotation matrix is orthonormal and satisfies

The angular velocity can further be derived conveniently by using quaternion as q = 1 2 ωq (A.12)

where q = ė0 + ė1 i + ė2 j + ė3 k, and we show how the (A.12) is obtained by derivation of quaternion q.

At time t 0 + ∆t (for a small ∆t), the orientation of the rigid body is the result of first rotation by q(t 0 ) and then further rotates with velocity ω(t 0 ) for Appendix A: Application of Unit Quaternion in Rotation a small time period of ∆ t . This small extra rotation is about the instantaneous axis ω = ω/ ω through the angle ∆φ = ω ∆t (the same result can be obtained for ∆φ = -ω ∆t if ∆φ is negative). This can be express as

Making the substitution of t = t 0 + ∆t, (A.13) can be rewritten as

Differentiation of (A.14) separately considering q(t 0 ) as a constant, can further get .15) and the limit at time t = t 0 of (A.15) is easily calculated

The product 1 2 (0, ω(t 0 ))q(t 0 ) is abbreviated to the form 1/2ω(t 0 )q(t 0 ) and

A.2 Appendix B

Detection of the Shortest Distance between the

Surface of Two Ellipsoids

Compared to the collision between two spherical particles, an analytical solution for the detection of collision between two ellipsoidal particles is missing even in R 2 . For the sake of determining efficiently the possibility of intersection and detecting the nearest distance between ellipsoids in R 3 , we perform three pre-screening processes before doing the detection of the shortest distance which is a more time consuming process using the successive approximation.

Considering spheroids with same size in parallel computing, the three prescreening processes are:

(1) Only ellipsoids in the same processor have the possibility to collide with each other due to ghost nodes used in Message Passing Interface (MPI) in JADIM and the number of ghost nodes for Gaussian envelop is more than the meshgrids along the maximum length of axes of the ellipsoid (e.g. 2a for a prolate spheroid);

(2) If the distance between centers of two ellipsoids is greater than the maximum length of axes of the ellipsoid (e.g. 2a for a prolate spheroid), no collision between these two ellipsoids can occur;

(3) If the distance between centers of two ellipsoids is smaller than the minimum length of axes of the ellipsoid (e.g. 2b = 2c for a prolate spheroid), collision evidently happens between these two ellipsoids.

Afterwards, the collisions between the remaining cases have to be identified by performing iterative detection, so called successive approximation detection. We will describe this method carefully and give some tests to verify this method has enough accuracy (upto 0.1%a) with only 8 -10 iterations.

First of all, we detect the nearest distance from an external point (P ) to an arbitrary ellipsoid using a method proposed by [START_REF] Pope | Algorithms for ellipsoids[END_REF], who used the Cholesky representation of ellipsoid in terms of translation and rotation.

The rotation matrix is stored in packed format. [START_REF] Pope | Algorithms for ellipsoids[END_REF] considered that the nearest distance can be obtained from a standard quadratic minimization problem explained in Sec.9 of his paper.

It is not hard to derive an analytical prediction in the case that an external point to an ellipse in R 2 as follows. A external point (x, y) expressed as

Perpendicular to the slope is

The line across the given point P (x P , y P ) and an arbitrary point (a cos θ, b sin θ) on the edge of the ellipse also perpendicular to the tangent, expressed as

Normalizing the above equation using the same variable ψ

and we can get a quartic equation

The above quartic equation (B.1) has a general formula for 4 roots, two of which give the shortest and the largest distances from the given point P to the ellipse. The shortest distance numerically is solved (using LAP ACK in f ortran90) in R 3 based on [START_REF] Pope | Algorithms for ellipsoids[END_REF] and is compared to the analytical prediction (solved by matlabr2016b) from (B.1) in R : theory and +: numerical prediction.

The shortest distance between two ellipsoids in R 3 is obtained by successive approximations. This method can be accomplished by the following i steps and plotted in fig. B.2.

(1) A point P located far away is preset which satisfies P A β,1 min is larger than 2a to make sure A β,1 A α,1 min is always smaller than P A β,1 min ;

(2) Detecting the minimum distance A β,1 A α,1 min starting from A β,1 and getting the point A α,1 in the other ellipsoid;

...

and getting the point A α,i-1 in the other ellipsoid;

(i) Find the minimum distance A α,i A β,i min starting from A α,i and get the point A β,i in the other ellipsoid

Calculating the tolerance of two minimum distances between i step and i -1 step, T OL = A α,i A β,i min -A β,i-1 A α,i-1 min , and finishing the iteration as soon as the tolerance satisfies the preset determination condition T OL ≤ 0.1%a. We note here that i = 8-10 iterations will meet T OL ≤ 0.1%a and i = 4 -6 iterations will meet T OL ≤ 1%a for our tests. C.1 and table C.2. Hackborn [1990] gave a theoretical prediction of the flow, assuming the rotor can be represented by a rotlet source term in the fluid momentum equations. Assume the plates coincide with the planes x = -h and x = h and the axis of the rotor is located at x = c, where -h < c < h (in our following simulations, we use y instead of x to stands for the wall-normal direction). The rotor has a radius r and rotates with angular velocity ω. The time and velocity can be scaled by h/rω and r 2 ω/h. Holding the torque exerted by the rotor (r 2 ω) constant. The fluid Reynolds number is defined by Re = r 2 ω/ν. Particularly, Hackborn [1990] investigated the mixing region between the secondary vortical structures on both sides of the primary vortex around the rotor as shown in fig. C.2(a). The flow has a hyperbolic stagnation point when the rotor size ranges between 0.165 < r/2h < 0.279. The flow field for Re 1 as derived by these authors is:

where ψ denotes the stream function for the steady flow, it is expressed as

The functions F and G are as follows.

We realized numerical simulations of the flow induced by the rotating cylinder (using the FCM to represent the rotor) and compared the flow velocity to the solution of the above equations computed numerically (with matlabr2016b) on a cartesian discrete (x, y) grid using the following steps:

1. Calculate the partial derivative of F (x, y) and G(x, k) cos(ky) (use G (x, y) to stand for the product at a given value of k): ∂F/∂x, ∂F/∂y, ∂G /∂x and ∂G /∂y;

2. Integrate ∞ 0 G(x, k) cos(ky)dk at the grid points. We found that k = 18 can be used to approximate the upper infinite limit; 3. Calculate the velocity field at the at the grid points u = dx/dt and v = dy/dt.

The numerical simulations were carried out, using a regular mesh refined inside the cylinder and in its vicinity (blockmesh). The radius of the rotor is r = 0.03 placed at (2, 0.25) with a constant angular velocity ω = 0.86. Hackborn [1990]. Afterwards, we performed numerical simulations using prolate spheroids (with the aim of getting close to the rod-like particle shape of the experiments) in the rotor-driven flow. Different aspect ratios are summarized in table C.2. The numerical setup is therefore similar to the experimental one, except that particles in numerical simulations are twice as big as the experimental ones. Though, a qualtitative understanding of the particle behaviour can be obtained, since the particle Stokes number (St = 2 9 ρp ρ f ( a/2 lv ) 2 Re) based on the Reynolds number in the vicinity of the vortices is still very low (O(10 -2 )) in both experiments and simulations. The mesh is divided by 262 × 78 × 32 where blockmesh is used in x direction (N x = 10 + 242 + 10 points used in L x = 0.05 + 0.3 + 0.05), the regular mesh is used in the region of the two secondary vortical structures. The mesh is divided into 16 (4 × 4 × 1) cores and the CPU time is 1.5s per time step (2.6 × 10 -4 ). Normally, we need 35 days for calculating one case of 800 time units.

The trajectories of spheres and prolate spheroids with different aspect ra- J. Fluid Mech., 218:531-546, 1990.