
HAL Id: tel-04228520
https://theses.hal.science/tel-04228520

Submitted on 4 Oct 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Formalisation of asynchronous interactions
Florent Chevrou

To cite this version:
Florent Chevrou. Formalisation of asynchronous interactions. Other [cs.OH]. Institut National Poly-
technique de Toulouse - INPT, 2017. English. �NNT : 2017INPT0124�. �tel-04228520�

https://theses.hal.science/tel-04228520
https://hal.archives-ouvertes.fr

En vue de l'obtention du

DOCTORAT DE L'UNIVERSITÉ DE TOULOUSE
Délivré par :

Institut National Polytechnique de Toulouse (INP Toulouse)
Discipline ou spécialité :

Sureté de Logiciel et Calcul à Haute Performance

Présentée et soutenue par :
M. FLORENT CHEVROU

le mercredi 22 novembre 2017

Titre :

Unité de recherche :

Ecole doctorale :

Formalisation of Asynchronous Interactions

Mathématiques, Informatique, Télécommunications de Toulouse (MITT)

Institut de Recherche en Informatique de Toulouse (I.R.I.T.)
Directeur(s) de Thèse :
M. PHILIPPE QUEINNEC
MME AURELIE HURAULT

Rapporteurs :
M. MOHAMED MOSBAH, INP BORDEAUX

M. STEPHAN MERZ, INRIA NANCY

Membre(s) du jury :
Mme CAROLE DELPORTE, UNIVERSITE PARIS 7, Président

Mme AURELIE HURAULT, INP TOULOUSE, Membre
Mme BERNADETTE CHARRON-BOST, CNRS PARIS, Membre
Mme DELPHINE LONGUET, UNIVERSITE PARIS 11, Membre

M. PHILIPPE QUEINNEC, INP TOULOUSE, Membre

Abstract
Large computing systems are generally built by connecting several distributed subsystems. The
way these entities communicate is crucial to the proper functioning of the overall composed
system. An in-depth study of these interactions makes sense in the context of the formal devel-
opment and verification of such systems. The interactions fall in two categories: synchronous
and asynchronous communication. In synchronous communication, the transmission of a piece of
information - the message - is instantaneous. Asynchronous communication, on the other hand,
splits the transmission in a send operation and a receive operation. This make the interleaving
of other events possible and lead to new behaviours that may or may not be desirable. The
asynchronous world is often viewed as a monolithic counterpart of the synchronous world. It
actually comes in multiple models that provide a wide range of properties that can be studied
and compared. This thesis focuses on communication models that order the delivery of messages:
for instance, the “FIFO” models ensure that some messages are received in the order of their
emission.

We consider classic communication models from the literature as well as a few variations. We
highlight the differences that are sometimes overlooked. First, we propose an abstract, logical,
and homogeneous formalisation of the communication models and we establish a hierarchy that
extends existing results.

Second, we provide an operational approach with a tool that verifies the compatibility of
compositions of peers. We mechanise this tool with the TLA+ specification language and its
model checker TLC. The tool is designed in a modular fashion: the commmunicating peers, the
temporal compatibility properties, and the communication models are specified independently.
We rely on a set of uniform operational specifications of the communication models that are
based on the concept of message history. We identify and prove the conditions under which they
conform to the logical definitions and thus show the tool is trustworthy.

Third, we consider concrete specifications of the communication models that are often found
in the literature. Thus, the models are classified in terms of ordering properties and according
to the level of abstraction of the different specifications. The concept of refinement covers these
two aspects. Thus, we model asynchronous point-to-point communication along several levels
of refinement and then, with the Event-B method, we establish and prove all the refinements
between the communication models and the alternative specifications of each given model. This
work results in a detailed map one can use to develop a new model or find the one that best fits
given needs.

Eventually we explore ways to extend our work to multicast communication that consists in
sending messages to several recipients at once. In particular, we highlight the differences in the
hierarchy of the models and how we modify our verification tool to handle this communication
paradigm.

3

Résumé
Les systèmes informatiques sont construits par composition de plusieurs sous-systèmes répartis.
La manière dont communiquent ces entités, ou pairs, joue un rôle clé dans la bonne marche
du système composé. L’étude détaillée de ces interactions est donc essentielle dans le cadre de
la vérification et du développement formel de tels systèmes. Ces interactions se décomposent
en deux catégories: la communication synchrone et la communication asynchrone. La com-
munication synchrone admet une transmission instantanée de l’information, le message, entre
deux entités. La communication asynchrone, en revanche, prend en compte le découplage de la
transmission du message en une opération d’envoi puis de réception avec la possibilité que des
événements s’intercalent entre les deux donnant ainsi lieu à des variations de comportement,
désirables ou non, des systèmes. Souvent considérée comme une entité monolithique duale du
monde synchrone, le monde asynchrone se décline en réalité en de multiples modèles qui peuvent
induire sur la communication une grande variété de propriétés qu’il convient de caractériser et
comparer. Cette thèse se focalise sur les modèles de communication qui orchestrent l’ordre de
délivrance des messages : par exemple les modèles dits FIFO qui assurent que certains messages
sont reçus dans l’ordre dans lequel ils ont été émis.

Nous considérons des modèles de communication classiques de la littérature ainsi que des vari-
ations de ces modèles dont nous explicitons les différences parfois négligées. Dans un premier
temps nous proposons une formalisation logique abstraite et homogène des modèles de communi-
cation considérés et nous les hiérarchisons en étendant des résultats existants.

Nous proposons dans un second temps une approche opérationnelle sous forme d’un outil de
vérification de compositions de pairs que nous mécanisons à l’aide du langage de spécification
TLA+ et du vérificateur de modèles TLC. Cet outil permet de spécifier des pairs communicants
et des propriétés temporelles à vérifier pour les différents modèles de communication de façon
modulaire. Pour cela, nous apportons un ensemble de spécifications uniformes et opérationnelles
des modèles de communication basé sur la notion d’histoires de messages. Nous identifions et
prouvons les conditions de leur conformité aux définitions logiques et validons ainsi la pertinence
de notre outil.

Dans un troisième temps nous considérons des spécifications concrètes de nos modèles de
communication, semblables à nombre de celles présentes dans la littérature. Nous disposons donc
d’une hiérarchisation des modèles selon les propriétés d’ordre qu’ils garantissent mais également
d’une autre hiérarchisation pour un modèle donné entre sa définition logique abstraite et ses
implantations concrètes. Ces deux dimensions correspondent à deux dimensions du raffinement.
Nous introduisons graduellement par raffinement la notion de communication asynchrone point
à point et prouvons, grâce à la méthode Event-B, tous les liens de raffinement entre les différents
modèles de communication et leurs déclinaisons. Nous offrons ainsi une cartographie détaillée
des modèles pouvant être utilisée pour en développer de nouveaux ou identifier les modèles les
plus adaptés à des besoins donnés.

Enfin, nous proposons des pistes d’extension de nos travaux à la communication par diffusion
où un message peut être envoyé simultanément à plusieurs destinataires. En particulier, nous
montrons les différences induites dans la hiérarchie des modèles et les adaptations à effectuer sur
notre outil de vérification pour prendre en compte ce mode de communication.

5

Remerciements
Je souhaite particulièrement remercier Stephan Merz et Mohamed Mosbah, rapporteurs de cette
thèse, qui ont consacré leur temps à la lecture détaillée du présent manuscrit et m’ont transmis
leurs remarques. Je remercie également Bernadette Charron-Bost, Carole Delporte, et Delphine
Longuet d’avoir accepté de faire partie du jury et de venir assister à ma soutenance.

Je tiens bien entendu à remercier mes directeurs de thèse : Aurélie Hurault et Philippe
Quéinnec, qui m’ont offert en tout premier lieu l’opportunité de travailler avec eux sur ce sujet.
Au cours de ces quelques années partagées, ils ont fait preuve d’une disponibilité sans faille et
pris à cœur leurs rôles d’encadrants. Je les remercie pour leur implication, leur soutien, leur
patience souvent, leur indulgence parfois, et la qualité de nos échanges.

Il serait difficile de dresser une liste exhaustive des personnes avec qui ce fut un plaisir
d’évoluer au quotidien. Je salue donc tous les membres de l’équipe ACADIE pour leur aide
et leurs conseils, en particulier Xavier Thirioux et Philippe Mauran, les nombreux collègues avec
qui j’ai eu l’occasion de travailler en enseignement, ainsi que l’équipe des secrétaires qui font
rimer administration avec efficacité et bonne humeur.

Impossible enfin de terminer sans citer ceux avec qui j’ai partagé un bureau et le plus clair
du quotidien de ces dernières années. Un grand merci à Guillaume et Mathieu pour l’excellente
ambiance, nos longues discussions, et nos légendaires dérapages de fin de semaine ; une pensée
pour Kahina et nos premières années de thèse ainsi que pour Adam qui assure déjà brillamment
la relève.

Acknowledgements
I wish to thank Professor Shin Nakajima for his warm welcome and precious advice during my
internship at the National Institute of Informatics in Tokyo.

7

Contents

1 Introduction 13
1.1 Problem . 13

1.1.1 Synchronous Communication . 13
1.1.2 Asynchronous Communication . 14

1.2 Contributions . 15
1.3 Outline of this Work . 15

1.3.1 Distributed Systems and Formal Verification 15
1.3.2 Point-to-point Communication . 16
1.3.3 Group Communication . 17

I Distributed Systems and Formal Verification 19

2 Distributed Systems 21
2.1 Message-Passing Communication . 21
2.2 Point-to-Point Communication . 25
2.3 Group Communication . 25
2.4 Asynchronous Communication Models . 27

2.4.1 Fully Asynchronous Communication . 27
2.4.2 FIFO 1-1 Communication . 27
2.4.3 Causal: Causally Ordered Communication 28
2.4.4 FIFO n-1 Communication . 31
2.4.5 FIFO 1-n Communication . 31
2.4.6 FIFO n-n Communication . 35
2.4.7 RSC : Realisable with Synchronous Communication 37
2.4.8 Summary of the Asynchronous Communication Models 37

2.5 Hierarchy . 38

3 State of the Art 45
3.1 Description of Distributed Systems . 45

3.1.1 Transition Systems . 45
3.1.2 I/O Automata . 46
3.1.3 Message Sequence Charts . 46
3.1.4 Choreographies and Compatibility Checking 47
3.1.5 Process Calculi . 48

3.2 Asynchronous Communication in Distributed Systems 51
3.2.1 Hierarchy of Ordering Paradigms . 51
3.2.2 Hierarchy of Operational Communication Models 52

9

3.2.3 Realisability with Synchronous Communication 52
3.2.4 Summary . 52

3.3 Formal Verification . 53
3.3.1 Proof Assistance . 54
3.3.2 Correct-by-Construction Design of Distributed Systems 54

II Point-to-Point Communication 57

4 Compatibility Checking of Communicating Peers 59
4.1 Description and Formalisation of the Framework 61

4.1.1 Channels . 61
4.1.2 Specification of Compositions of Peers . 61
4.1.3 Specification of Communication Models 63
4.1.4 Overall Product System . 64
4.1.5 Compatibility Checking . 66
4.1.6 Specification of Communication Models with Message Histories 69
4.1.7 Specification of Capped Asynchronous Communication 73

4.2 Conformance to the Specifications . 74
4.2.1 Correctness . 76
4.2.2 Completeness . 80

4.3 Conclusion . 87

5 Mechanised Compatibility Checking with TLA+ 89
5.1 The TLA+ Specification Language . 89
5.2 Organisation and Structure of the TLA+ Modules 90
5.3 User-Friendly Automations . 92

5.3.1 Alternate Specification of a Peer using a CCS Term 92
5.3.2 Faulty Reception Completion . 96
5.3.3 Composite Communication Models . 97

5.4 Examples and Results . 100
5.4.1 Detailed Example: The Examination Management System 100
5.4.2 Practical Example: The Client-Controller-Application System 102
5.4.3 Advanced Usage of Composite Models: the Video Stream 102

5.5 Optimised Communication Models . 104
5.5.1 Reduction to Finite State Spaces by Purging Histories 105
5.5.2 Dedicated Optimised Implementations . 105

5.6 Benchmarking . 105
5.6.1 Scenario . 105
5.6.2 Analysis . 107

5.7 Conclusion . 108

6 A Menagerie of Refinements 109
6.1 Introduction . 109
6.2 Distributed Systems . 110

6.2.1 Distributed Executions . 110
6.2.2 Event-B . 110
6.2.3 From Events to Distributed Executions 111
6.2.4 Summary . 116

6.3 Abstract Communication Models . 116

10

6.3.1 Specifications of the Communication Models 116
6.3.2 Reduction of Non-Determinism . 118
6.3.3 Proofs and Invariants . 118

6.4 History-based Communication Models . 120
6.4.1 Specifications with Histories . 120
6.4.2 Refinement of Events by Histories . 121
6.4.3 Preservation of the Hierarchy . 126

6.5 Concrete Communication Models . 128
6.5.1 Refinement with Counters of Messages . 128
6.5.2 Refinement with Queues of Messages . 130
6.5.3 Logical Clocks . 130

6.6 Additional Remarks . 132
6.6.1 Proof Effort . 132
6.6.2 Deadlock Freedom . 133
6.6.3 Previous Work in TLA+ . 133
6.6.4 Utility of the Hierarchies . 133
6.6.5 Localisation . 134

6.7 Conclusion . 135

III Group Communication 137

7 Multicast Communication 139
7.1 Extension of the Hierarchy of Communication Models 139

7.1.1 Totally Ordered Multicast Distributed Executions 139
7.1.2 One-to-All Communication . 141

7.2 Towards a Mechanised Framework . 146
7.2.1 Lifespan of a Message in the Network of Messages In-Transit 146
7.2.2 Preventing a Peer from Receiving the Same Message Twice 147
7.2.3 Specification of the Interest . 147
7.2.4 Point-to-Point and One-to-All Communication 148
7.2.5 Organisation and Structure of the TLA+ Modules 148
7.2.6 Communication Models . 149
7.2.7 A Composite Communication Model . 155
7.2.8 Limitations . 158
7.2.9 Addressing the Issue . 159

7.3 Conclusion . 160

IV Conclusion 161

8 Conclusion and Future Work 163
8.1 Results and Practical Benefits . 163
8.2 Future Work . 164

8.2.1 Wider Range of Communication Models 164
8.2.2 Equivalence between Communication Models with regard to Compatibility 165

11

Chapter 1

Introduction

Computing systems usually consist of a collection of individual components that interact with
each other to fulfill a common purpose: for instance computing a result or making a consensual
decision. The components do not have direct access to a shared knowledge and must exchange
information between each other to achieve their goal. Interestingly, everyday situations are often
reminiscent of the difficulty of this task. Friends have indeed always struggled to agree on a
meeting time for a night out to the movies; some never receive the last update in time; oth-
ers are confronted to conflicting information; and overly polite friends have sometimes missed
the beginning of the show waiting for each other to cross the doorstep of the theater first. All
these hassles find echoes in actual distributed systems as challenging incompatibilities. Guaran-
teeing a collection of components is compatible is indeed far from trivial. With the advent of
cloud computing, the Internet of Things, and the resulting interlinking of computerised objects
spanning from large data centers to the pettiest kitchen appliances, the distributed systems are
gaining even stronger influence and sway on our lives. As a consequence, ensuring their proper
functioning is crucial. Failing to do so can result in physical, environmental, economical, or
even life-threatening complications. Many critical systems are indeed inherently distributed:
classic examples include sensors and calulating units in aircrafts or autonomous cars, emergency
telecommunication networks, or parallel computing of medical data.

Formal methods propose to meet such demanding safety and performance requirements by
instrumenting mathematical structures and proofs to describe, model, and reason on the design
of the systems in order to minimise the risks of bugs and the burden of troubleshooting. They
offer to certify systems actually conform to a collection of specifications and properties of well-
behaviour. In that regard, this work contributes to the formalisation of a specific domain of
interactions in distributed systems called asynchronous interactions.

1.1 Problem
In distributed systems, a collection of entities called peers exchange information by sending
messages to each other. The semantics of the transmission of messages is however not unique.

1.1.1 Synchronous Communication
A simple viewpoint considers this transmission to be instantaneous. This is called synchronous
communication. Extensive work has been carried out to study this model of interaction in
distributed systems. The clarity and minimalism of synchronous communication is an asset in

13

formal reasoning that eases modelling and proof. In some cases, synchronous communication
may be an appropriate rough description that leads to satisfactory results. Nevertheless, it
fails to capture simple situations. As an example, consider Alistair who goes to the post office
to send his friend Roberta a parcel containing a present for her birthday. The next day, he
realises he forgot to include a birthday card and goes back to the post office to mail her one.
Roberta receives the card first because of how the transporter handles large parcels. This scenario
cannot be described by synchronous communication (without explicitly modelling the post office).
Synchronicity implies Roberta receives the parcel at the time Alistair sends it. Hence, there are
only two possible outcomes: the parcel is transmitted first, or the card is transmitted first, none
of which accurately models the considered scenario that may yet occur in practice.

1.1.2 Asynchronous Communication
Asynchronous communication splits the transmission of a message in two separate events: the
emission and the delivery that do not happen simultaneously. Taking the asynchrony into account
allows to describe the previous situation. This opens the way for any possible interleaving of
the communication events. Yet, asynchronous communication is not to be mistaken for a single
interaction model. It actually covers a wide range of interaction models. Consider a new policy
at the post service that now guarantees the letters and parcels sent from Alistair’s post office
are always delivered in the order they have been dropped in the letterbox. This new policy
sill describes asynchronous communication: Alistair and Roberta may phone while the parcel
and the letter are still in transit because the transmission is not instantaneous. Yet, it is not
the same asynchronous interaction model that allowed the previous scenario to happen, it is
in fact characterised by a property on the order of the deliveries. If the presented scenario
were undesirable, the choice of the communication model would be crucial when it comes to the
design of a system that prevents it. Hence, knowing, describing, and comparing these models of
asynchronous interactions is key to the quest for well-behaved distributed systems.

There are currently several issues that arise in the study of asynchronous interactions:

Clarity The asynchronous communication models are unfortunately often a source of confusion:
various asynchronous communication models wrongly fall under the generic term “asyn-
chronous” although they actually incorporate particular properties of the communication
in addition to the decoupling of the emissions and deliveries. “FIFO” is another term
used in the literature to describe a whole family of communication models that exhibit
fundamental differences.

Exhaustiveness and Consistency There is no standard for the specification of common asyn-
chronous communication models. Structural descriptions and operational descriptions co-
exist side by side. They branch again into specifications based on different data structures.
There is a lack of exhaustiveness and consistency which makes it difficult to compare the
models.

Comparison The different options in the choice of a communication model and its formal spec-
ification are seldom motivated, let alone the comparison of these models and specifications.
The existing studies of the relations between the communication models lack popular com-
munication models, in particular in the “FIFO” family of communication models. A clear
overview of the relations between the communication models helps

Considering the role of the communication model in the compatibility of communicating peers
and the consequences of unsafe systems, these caveats pose challenges it is relevant to tackle.

14

1.2 Contributions
This work addresses the three challenges in the formalisation of asynchronous interactions bear-
ing in mind the ultimate purpose of this undertaking: supporting the design of trustworthy
distributed systems. The main contributions are:

• uniform, generic, and simple structural definitions of the asynchronous communication
models;

• a generic approach for both point-to-point communication and group communication where
messages can be sent to several peers at a time;

• uniform, generic, and simple operational specifications of the asynchronous communication
models;

• an extensive and mechanically certified cartography of the relations between the asyn-
chronous communication models and the alternate specifications of each communication
model;

• a full-featured certified framework for compatibility checking of compositions of peers in
point-to-point communication;

• a practical and user-friendly mechanisation of this framework;

• an extension of the contributions to group communication.

1.3 Outline of this Work
This work is articulated in three parts. The first one provides a detailed overview of the domains
and concepts on which the thesis relies: namely distributed systems, asynchronous communica-
tion, and formal methods. The second and third parts explore two aspects of communication:
point-to-point and multicast communication. In the second part, we design, formalise, mechanise,
and review extensive frameworks dedicated to the in-depth study of point-to-point communica-
tion and compatibility in point-to-point distributed systems. In the third part, we propose to
extend previous contributions to multicast communication. Eventually, after a thorough review
of these propositions, we conclude on the contributions and glance forward to perspectives and
future work.

1.3.1 Distributed Systems and Formal Verification
In Chapter 2, we introduce the concepts of message-passing communication in distributed systems
with a focus on asynchronous communication and the different declinations, the communication
models, that we are to study throughout the entire thesis. The three main contributions of this
chapter are the following:

• We consider additional communication models that are rarely taken into account in exist-
ing work. Sometimes, these models are not distinguished from each other and fall under
the generic term “FIFO” although they carry fundamental differences. We show these
differences and provide a formal base that allows to easily highlight and compare them.

15

• We unify the formalisation of the seven communication models we consider using the notion
of distributed executions. The distributed executions are partially ordered sets of internal
or communication events that permit to describe distributed systems as a whole. It is well
adapted to the definition of ordering policies on message deliveries in the communication
models.

• Thanks to the uniform definitions of the communication models, we prove how they relate
to each other depending on the strength of the underlying ordering policy and we deduce
an overall hierarchy for both point-to-point communication and multicast communication.
Existing results on the matter seldom take multicast communication into account nor the
different declinations of FIFO communication.

The formal ground of Chapter 2 and the definition of the different message-ordering paradigms
serve as a reference for the contributions in the following chapters.

Chapter 3 explores the context of the thesis and previous work carried on the formalisation
and study of asynchronous communication in distributed systems. First, we browse different
formalisms designed or adapted to the specification of distributed systems among which transition
systems and automata, message sequence charts, or process calculi. For each one of them, we
identify which characteristics are of interest to our work. We then focus on existing results on
the study and comparison of the ordering paradigms. Finally, we explore the different aspects of
formal verification techniques that play central roles in this work.

1.3.2 Point-to-point Communication
Chapter 4 is about the formal verification of the compatibility of compositions of peers in asyn-
chronous point-to-point communication. The study of the compatibility of communicating peers
aims at illustrating the key influence of the communication model on the well-behaviour of dis-
tributed systems and the importance of a strict formal framework dedicated to compatibility
checking. This chapter motivates the different choices made in the design and formalisation of
such a framework. The framework we propose allows to specify individual peers as well as com-
munication models with transition systems that interact and yield to an overall system over which
temporal compatibility properties are to be checked. The main contributions of this chapter are
the following:

• We formalise a full stack framework for the verification of communicating peers that remains
as generic and simple as possible. It is based on transition systems and a custom product
operation that makes the peers interact with the communication medium.

• We consider channel-based communication where channels are not limited to one sender
and one receiver.

• We formalise uniform operational specifications of the seven communication models we
study. They are a compromise that describes models that can reasonably be considered for
implementation yet abstract enough to ease their formal study and comparison.

• We prove these specifications conform to the reference logical definitions of the ordering
policies from Chapter 2 thus ascertaining a high level of trust in the framework.

In the following chapter, we mechanise the entire framework with the TLA+ specification
language and the TLC model checker. The result is a fully automated and modular tool that
retains every aspect of the theoretical description, including the formal proofs of conformance to

16

the logical descriptions, among with simplifications of the peer specification process. It provides
compatibility results and counterexamples for a given set of peers, a communication model, and
a compatibility criterion. Practical examples illustrate these features and we eventually provide
a performance review that compares alternate optimised specifications of the communication
models.

In Chapter 6, we extend results about how the ordering policies relate to each other in order
not only to take into account the logical descriptions of the communication models but the
different descriptions that fit a given model as well. We rely on refinement and a mechanisation
of the proofs with the Event-B method. This chapter aims at drawing the big picture that helps
identifying the most adapted communication model to a given situation and the most adapted
specification of that communication model among the variety of descriptions that correspond to
different levels of abstraction. The contributions of this chapter are:

• An extensive library of operational specifications of the different models including new
concrete practical specifications specified using the Event-B method.

• The use of concretisation refinement to prove that concrete specifications of the models
still conform to the reference definitions and the levels of abstractions in-between.

• The use of refinements for simulation to prove the hierarchy of the communication models
holds at more concrete levels of specification.

• The mechanisation of these proofs using the Event-B method.

1.3.3 Group Communication
In Chapter 7, we extend point-to-point contributions to multicast communication. We add the
study of total ordering, a property of multicast communication, to the existing hierarchy of
communication models. We also propose a new mechanised framework in TLA+ that handles
group communication and point-to-point communication in a generic approach.

17

Part I

Distributed Systems and Formal
Verification

19

Chapter 2

Distributed Systems

A distributed system is composed of peers that interact with each other by exchanging mes-
sages. In asynchronous communication, the messages are sent and received during two distinct
communication events and transmitted according to rules dictated by a communication model.
This chapter introduces all these concepts and serves as a reference throughout the remainder
of this work. It lays down the formal base for the description of asynchronous interactions,
the distributed executions, and then presents seven common communication models. The seven
communication models are eventually compared to establish a global hierarchy.

2.1 Message-Passing Communication
Let P be an enumerable set of communicating peers and M an enumerable set of messages.
In message-passing communication, the transmission of a piece of information, the message,
between two peers, corresponds to a couple of communication events: namely send and receive.
An event occurs on a peer. A communication event can be a send event or a receive event and it
is associated to a message. Let L , {Send,Receive, Internal} the set of event labels. Events do
not carry information about the type of event (send, receive, or internal), the message, and the
peer where it occurs. A distributed execution is a partially ordered set of events with labelling
functions that provide the information and give meaning to those events. It describes which
messages are sent and received by the peers in the system. The partial order is usually named
the causal order [Lam78, Ray13]. It abstracts independent events.

Definition 1 (Distributed Execution). A distributed execution (E , (≤p)p∈P ,≺c , com,peer,mes)
is a partially ordered set with labelling functions where E is an enumerable set of events, and
com, peer, mes are labelling functions.

• com ∈ E → L provides the nature of an event: an internal event Internal or a communi-
cation event Send or Receive.

• peer ∈ E →P localises an event on a peer.

• mes ∈ com−1({Send,Receive})→M labels a communication event with a message.

Events occurring on the same peer are totally ordered.

∀p ∈P : ≤p is a total ordering on peer−1({p})

21

!m1
p1

!m2
p1

!m3
p1

?m2
p2

!m4
p2

!m5
p2

?m3
p3

?m5
p3

?m4
p3

?m1
p3

!m6
p3

Figure 2.1: Example of a Distributed Execution (E , (≤p)p∈P ,≺c , com,peer,mes). A send event
of a message m by a peer p is denoted !mp (an event e ∈ E such that com(e) = Send∧mes(e) =
m ∧ peer(e) = p). A receive event of a message m on a peer p is denoted ?m

p (an event e ∈ E
such that com(e) = Receive∧mes(e) = m ∧ peer(e) = p). A path from e1 to e2 means e1 ≺c e2.

≺c is the causal partial order on E . It extends the total orderings on peers with the couples
of send and receive events associated to the transmission of a message. It is the smallest (for the
inclusion) order on E such that:

∀e1, e2 ∈ E : e1 ≺c e2 ⇔


∃p ∈P : e1 ≤p e2 (peer ordering)

∨

 com(e1) = Send
∧ com(e2) = Receive
∧ mes(e1) = mes(e2)

 (transmission of a message)

∨ ∃e ∈ E : e1 ≺c e ∧ e ≺c e2 (transitivity)


A receive event is preceded by a corresponding send event.

∀e ∈ E : com(e) = Receive⇒ ∃e ′ ∈ E : com(e ′) = Send∧mes(e ′) = mes(e) ∧ e ′ ≺c e

Figure 2.1 illustrates a partially ordered set of events. It is a distributed execution. First,
every receive event is preceded by a corresponding send event. For instance, the reception of m1
on p3 is preceded by the send of m1 on p1. A send event does not need to be followed by an
associated receive event: for example there is no receive event of message m6 although there is a
send event of m6 on p3. Then, events occurring on the same peer are totally ordered. Each line
in the diagram corresponds to a peer. The horizontal arrows account for the local total ordering
of the events on each peer.

Definition 2 (Run). A run (E , (≤p)p∈P ,≺c ,≺σ, com,peer,mes) extends a distributed execution
(E , (≤p)p∈P ,≺c , com,peer,mes). (E ,≺σ) is a totally ordered set of events, where ≺σ is a linear
extension of ≺c:

∀e, e ′ ∈ E : e ≺c e ′ ⇒ e ≺σ e ′
∀e, e ′ ∈ E : e 6= e ′ ⇒ e ≺σ e ′ ∨ e ′ ≺σ e

The set of runs that extend the distributed executions in a set Σ is denoted Runs(Σ).

Assuming interleaving of independent events and no true concurrency, a run is a linear ex-
tension of a distributed execution.

Theorem 3 (Order Inclusion). Given a run (E , (≤p)p∈P ,≺c ,≺σ com,peer,mes):

∀e1, e2 ∈ E :
(

(∃p ∈P : e1 ≤p e2) ⇒ e1 ≺c e2
∧ e1 ≺c e2 ⇒ e1 ≺σ e2

)
Proof. By Definition 1 of a distributed execution and Definition 2 of a run.

22

!m1
p1

!m2
p1

?m2
p2

!m3
p1

?m3
p3

!m4
p2

!m5
p2

?m5
p3

?m4
p3

?m1
p3

!m6
p3

!m1
p1

!m2
p1

?m2
p2

!m4
p2

!m5
p2

!m3
p1

?m3
p3

?m5
p3

?m4
p3

?m1
p3

!m6
p3

Figure 2.2: Two Runs (E , (≤p)p∈P ,≺c ,≺σ, com,peer,mes) and (E , (≤p)p∈P ,≺c ,≺′σ
, com,peer,mes) Associated with the Distributed Execution in Figure 2.1. A path from e1 to e2
in the first run means e1 ≺σ e2 (resp. e1 ≺′σ e2 in the second run). Events that happen in a
different order in each run are circled.

p1

p2

p3
m6

m1

m2

m3 m4m5

Figure 2.3: A Space-Time Diagram Providing an Alternative Representation of the Second Run
in Figure 2.2 from older events on the left towards newer events on the right. Each horizontal
line is a peer. An arrow corresponds to the transmission of a message from one peer to another.
The two ends of an arrow are the associated send and receive events.

Theorem 4 (Causal and Total Orderings are Locally Equivalent). Given a run (E , (≤p)p∈P ,≺c
,≺σ, com,peer,mes), ≺c and ≺σ are locally the same:

∀e1, e2 ∈ E : peer(e1) = peer(e2)⇒ (e1 ≺c e2)⇔ (e1 ≺σ e2)

Proof. By definition 1, events occurring on the same peer are totally ordered by ≺c . By defini-
tion 2, ≺σ is a total order that extends ≺c . Therefore, they are locally the same.

Figure 2.2 provides two linear extensions of the distributed execution depicted in Figure 2.1.
In the distributed execution, there is no causal dependency between the send event of m3 and the
send event of m4. This is also the case for the send events of m3 and m5. This is why there are
two runs in which those events happen in a different order. However, the send events of m4 and
m5 are causally related (they both happen on p2): therefore the ordering is always preserved in
the runs that are derived from the distributed execution. This is also the case for the send and
receive events of m3. Other runs derived from the distributed execution involve the interleaving
of causally unrelated events. Here, for any event that happens on p2, it is independent from the
send event or receive event of m3 (two unrelated branches in the partially ordered set). Figure 2.3
is a space-time diagram that describes the second run. It is a convenient representation of the
total ordering of events in the run that also emphasises the local total ordering of events on each
peer and the transmission of messages. In addition, it is easy to read the layout of the inherent
distributed execution: causal precedence corresponds to paths (on a peer or through transmission
of messages) in the diagram. For instance, the send event of m2 precedes the receive event of
m5. On the diagram there are two causal paths of independent events between them:

• from p1 to p2 then p3 with the transmission of m2 followed by the transmission of m5;

• from p1 to p3 with the transmission of m3.

.

23

Lemma 5. Given (E , (≤p)p∈P ,≺c , com,peer,mes) a distributed execution, ≺c is the smallest
relation on E such that:

∀e1, e2 ∈ E : e1 ≺c e2 ⇔


e1 ≺elem

c e2

∨ ∃e3 ∈ E :

 e1 6= e3
∧ e1 ≺elem

c e3
∧ e3 ≺c e2




where:

e1 ≺elem
c e2 ,


(e1 ≺c e2 ∧ peer(e1) = peer(e2))

∨

 com(e1) = Send
∧ com(e2) = Receive
∧ mes(e1) = mes(e2)




Proof. This is the transformation of “transitivity n-n” to “transitivity 1-n”, and the two defini-
tions are proven equivalent in the Coq Standard Library (module Relations).

Theorem 6. Given (E , (≤p)p∈P ,≺c , com,peer,mes) a distributed execution, two events that
are causally dependent and happen on two different peers are causally linked by the transmission
of a message.

∀e1, e2 ∈ E :
(

peer(e1) 6= peer(e2)
∧ e1 ≺c e2

)
⇒ ∃es , er ∈ E :


com(es) = Send

∧ com(er) = Receive
∧ mes(es) = mes(er)
∧ peer(es) = peer(e1)
∧ e1 ≺c es
∧ er ≺c e2


Proof. Let (E , (≤p)p∈P ,≺c , com,peer,mes) a distributed execution and e1, e2 ∈ E such that

e1 ≺c e2 and peer(e1) 6= peer(e2). Let us prove that ∃es , er ∈ E :


com(es) = Send

∧ com(er) = Receive
∧ mes(es) = mes(er)
∧ peer(es) = peer(e1)
∧ e1 ≺c es
∧ er ≺c e2


by induction on the principle underlying Lemma 5.

1. Case e1 ≺elem
c e2.

(a) Case e1 ≺c e2 ∧ peer(e1) = peer(e2).
Impossible by hypothesis peer(e1) 6= peer(e2).

(b) Case com(e1) = Send∧ com(e2) = Receive∧mes(e1) = mes(e2).
QED with es ← e1 and er ← e2 because ≺c is reflexive.

2. Case ∃e3 ∈ E : e1 6= e3 ∧ e1 ≺elem
c e3 ∧ e3 ≺c e2.

(a) Case e1 ≺c e3 ∧ peer(e1) = peer(e3).

By the induction hypothesis ∃es , er ∈ E :


com(es) = Send

∧ com(er) = Receive
∧ mes(es) = mes(er)
∧ peer(es) = peer(e3)
∧ e3 ≺c es
∧ er ≺c e2

.

24

p1

p2

p3

p4p5

p6

p7

· · ·
pn

Figure 2.4: Example of Point-to-Point Communication. An arrow accounts for the transmission
of a message. Each message has got one sender and one receiver.

Therefore, peer(e1) = peer(es) and e1 ≺c es by transitivity of ≺c .
QED with es ← es and er ← er .

(b) Case com(e1) = Send∧ com(e3) = Receive∧mes(e1) = mes(e3).
QED with es ← e1 and er ← e3.

2.2 Point-to-Point Communication
In point-to-point (or one-to-one) communication, a message is received by at most one peer. A
given message is sent by a peer and may be received by another. Unless otherwise specified, this
work assumes point-to-point communication. Figure 2.4 illustrates point-to-point communication
and the transmission of messages between one sender and one receiver.

Definition 7 (Point-to-Point Distributed Execution and Run). A point-to-point distributed ex-
ecution (E , (≤p)p∈P ,≺c , com,peer,mes) is a distributed execution where no message is sent or
received more than once.

∀e, e ′ ∈ E :
(

com(e) = com(e ′) = Send
∨ com(e) = com(e ′) = Receive

)
∧mes(e) = mes(e ′)⇒ e = e ′

The set of point-to-point distributed executions on (P,M) is denoted ExecP2P. The set of
runs that extend point-to-point distributed executions is RunP2P , Runs(ExecP2P).

The distributed execution depicted in Figure 2.1 is a point-to-point distributed execution.
There is indeed at most one send event and one receive event for a given message. Note that the
definition allows sent messages to never be received (a message m such that ∃e ∈ E : com(e) =
Send∧mes(e) = m ∧ ¬∃e ′ ∈ E : (com(e ′) = Receive∧mes(e ′) = m)). This can be interpreted
as the loss of the message, and is indistinguishable from a message staying forever in transit. In
the example, m6 is such a message.

2.3 Group Communication
In group (or one-to-many) communication, a message is sent by a peer and may be received
by several others. Figure 2.5 illustrates multicast communication: in this example p1 sends a

25

p1

p2

p3

p4p5

p6

p7

· · ·
pn

Figure 2.5: Example of Multicast Communication. An arrow, from one peer to another, accounts
for the transmission of a message. A message has got only one sender but some messages can
have more than one receiver although they are sent only once.

!m1
p1

!m2
p1

?m4
p1

?m5
p1

?m1
p2

!m3
p2

!m4
p2

?m4
p2

?m3
p3

?m1
p3

?m4
p3

!m5
p3

Figure 2.6: Example of a Multicast Distributed Execution. A send event of a message m by a
peer p is denoted !mp . A receive event of a message m on a peer p is denoted ?m

p . A path from
e1 to e2 means e1 ≺c e2.

message that is received by p2, p4, and p7. This does not mean that the message is sent three
times and received by a different peer each time. It means the message is sent once but received
by those three peers. Point-to-point communication is a specific case of multicast communication:
for instance, in the diagram p5 sends a message that is received by pn only.

Definition 8 (Multicast Distributed Execution and Run). A multicast distributed execution
(E , (≤p)p∈P ,≺c , com,peer,mes) is a distributed execution where no message is sent more than
once and where no message is received more than once on the same peer.

∀e, e ′ ∈ E : com(e) = com(e ′) = Send∧mes(e) = mes(e ′)⇒ e = e ′

∀e, e ′ ∈ E : com(e) = com(e ′) = Receive∧mes(e) = mes(e ′) ∧ peer(e) = peer(e ′)⇒ e = e ′

The set of multicast distributed executions is denoted Exec. The set of runs that extend
multicast distributed executions is Run , Runs(Exec).

Figure 2.6 depicts an example of a multicast distributed execution. In a multicast distributed
execution, as in point-to-point distributed executions, a message can only be sent once. It can be
received once (e.g. m3 and m5), not received at all (e.g. m2), or received several times. Message
m4 is received exactly once per peer, including the sending peer p2: there cannot be more receive
events of m4 in a multicast distributed execution that involves three peers. Here, message m1
is received by p2 and p3 but it is not received by p1 which is valid in a multicast distributed
execution.

26

2.4 Asynchronous Communication Models

There is a great variety of ordering properties that can specify the communication. Applicative
orderings, such as message priorities, are not considered as our goal is to study the communication
models without taking any specific application into account.

We present seven asynchronous communication models. There are four variants of FIFO
communication, according to the peers involved: FIFO 1-1 coordinates one sender with one
receiver, FIFO n-1 coordinates all the senders of a unique receiver, FIFO 1-n coordinates one
sender with all its destinations, and FIFO n-n coordinates all the senders with all the receivers.
Additionally, there are causal communication Causal, pseudo-synchronous communication RSC,
and Fully Asynchronous communication.

Some communication model (Fully Asynchronous, FIFO 1-1, and Causal) consist in ordering
events that are causally dependent. They are characterised by a subset of point-to-point or
multicast distributed executions.

Some communication models (FIFO 1-n, FIFO n-1, FIFO n-n, RSC) involve ordering events
that occur on different peers without any causal dependency. Such models need to be char-
acterised by a subset of point-to-point or multicast runs: their specifications imply absolute
time and make use of the total ordering of events that extends causality. The peers need to
share knowledge in order to account for the total ordering. In distributed implementations of
these models, the transmission of messages is the only way to exchange information. Additional
messages have to be dedicated to the realisation of the ordering policy.

2.4.1 Fully Asynchronous Communication

No order on message delivery is imposed. Messages can overtake others or be arbitrarily delayed.
The implementation is usually modeled by a bag (or a set if messages are unique). Any point-
to-point or multicast distributed execution is a valid Fully Asynchronous distributed execution.

Definition 9 (Fully Asynchronous Distributed Execution). The set of Fully Asynchronous dis-
tributed executions is Exec. The set of point-to-point Fully Asynchronous distributed executions
is ExecP2P. The set of Fully Asynchronous runs is Run. The set of point-to-point Fully Asyn-
chronous runs is RunP2P.

2.4.2 FIFO 1-1 Communication

Messages transmitted between a given couple of sending peer and receiving peer are delivered in
the sending order. Messages transmitted from, or to, a different peer are however independently
delivered. More precisely, if a peer sends a message m1 and later a message m2, and these two
messages are received by a same peer, then m2 must be received after m1.

Definition 10 (FIFO 1-1 Distributed Execution and Run). The set Exec11 of FIFO 11 dis-

27

tributed executions is:

Exec11 ,



(E , (≤p)p∈P ,≺c , com,peer,mes) ∈ Exec

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∀es1, es2, er1, er2 ∈ E :

com(es1) = Send
∧ com(es2) = Send
∧ com(er1) = Receive
∧ com(er2) = Receive
∧ mes(es1) = mes(er1)
∧ mes(es2) = mes(er2)
∧ peer(es1) = peer(es2)
∧ peer(er1) = peer(er2)
∧ es1 6= es2
∧ es1 ≺c es2


⇒ er1 ≺c er2


The set of point-to-point FIFO 1-1 distributed executions is ExecP2P

11 , ExecP2P ∩Exec11. The
sets of FIFO 1-1 runs and point-to-point runs are Run11 , Runs(Exec11) and RunP2P

11 ,
RunP2P ∩Run11.

The definition states that a local ordering of the send events implies a local ordering of
associated receive events. It orders the communication between one peer (1) and another (1)
in a first in first out (FIFO) manner, hence the name FIFO 1-1. As a result, the model could
be easily implemented with a simple queue between each pair of peer. When a peer p1 sends a
message m to peer p2, m is appended to a queue q(p1, p2). When p2 is to receive a message from
p3, it retrieves the first message of the queue q(p3, p2). This is illustrated in Figure 2.7.

The distributed execution in Figure 2.8a is FIFO 1-1 because m1 is sent before m2, both on
peer p1 and they are both received on p2 in that order. In Figure 2.8b, m2 is received before
m1, thus the distributed execution is not FIFO 1-1. This is also the case in Figure 2.8c but this
time, m1 and m2 are received on different peers so the distributed execution is FIFO 1-1 anyway.
Similarly, m3 and m1 are received on the same peer p3 in the reverse order of their emission but
the send events occur on different peers. Figures 2.9a, 2.9b, and 2.9c depict possible runs based
on these distributed executions.

2.4.3 Causal: Causally Ordered Communication
Messages are delivered according to the causality of their send [Lam78]. More precisely, if a
message m1 is causally sent before a message m2, then a given peer cannot receive m2 before m1.

Definition 11 (Causal Distributed Execution and Run). The set Execc of Causal distributed
executions is:

Execc ,



(E , (≤p)p∈P ,≺c , com,peer,mes) ∈ Exec

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∀es1, es2, er1, er2 ∈ E :

com(es1) = Send
∧ com(es2) = Send
∧ com(er1) = Receive
∧ com(er2) = Receive
∧ mes(es1) = mes(er1)
∧ mes(es2) = mes(er2)
∧ peer(er1) = peer(er2)
∧ es1 6= es2
∧ es1 ≺c es2


⇒ er1 ≺c er2


28

q11

1

1

p1

q22

11

p2

· · ·

qnn

1 1

pn

qn1
1

1
q1n

1

1

q12

1

1

q21

1

1

q2n

1

1

qn2

1

1

Figure 2.7: Illustration of the FIFO 1-1 Ordering. An arrow departing from a peer towards a
queue means a message is sent and inserted in the queue. An arrow departing from a queue
towards a peer means the reception of a message retrieved from the queue.

!m1
p1

!m2
p1

?m1
p2

?m2
p2

(a) FIFO 1-1

!m1
p1

!m2
p1

?m2
p2

?m1
p2

(b) Non FIFO 1-1

!m1
p1

!m2
p1

?m2
p2

!m3
p2

?m1
p3

?m3
p3

(c) FIFO 1-1

Figure 2.8: FIFO 1-1 Ordering in Example Distributed Executions

29

p1

p2 m1 m2

(a) FIFO 1-1

p1

p2 m1m2

(b) Non FIFO 1-1

p1

p2

p3 m1

m2

m3

(c) FIFO 1-1

Figure 2.9: FIFO 1-1 Ordering in Example Runs. The underlying distributed executions are
depicted in Figures 2.8a, 2.8b, and 2.8c.

!m1
p1

!m2
p1

?m2
p2

!m3
p2

?m1
p3

?m3
p3

(a) Causal

!m1
p1

!m2
p1

?m2
p2

!m3
p2

?m1
p3

?m3
p3

(b) Non Causal

Figure 2.10: Causal Ordering in Example Distributed Executions

The set of point-to-point Causal distributed executions is ExecP2P
c , ExecP2P ∩Execc. The sets

of Causal runs and point-to-point runs are Runc , Runs(Execc) and RunP2P
c , RunP2P ∩Runc.

The distributed execution in Figure 2.10b, which is FIFO 1-1 as seen previously, is not Causal
because m3 and m1 are both received on the same peer p3 in that order but the send event of m1
actually precedes the send event of m3. However, in Figure 2.10a, on peer p3, the receive events
occur in the same order so the distributed execution is Causal. Figures 2.11a and 2.11b depict
possible runs based on these distributed executions.

An implementation of this model requires the sharing of the causality relation, using causal
histories [SM94, KS98] or logical vector/matrix clocks [RST91, CDK94, PRS97, Ray13].

p1

p2

p3 m1

m2

m3

(a) Causal

p1

p2

p3 m1

m2

m3

(b) Non Causal

Figure 2.11: Causal Ordering in Example Runs. The underlying distributed executions are
depicted in Figures 2.10a and 2.10b.

30

2.4.4 FIFO n-1 Communication

Messages received on the same peer are received in their sending order. Even if the send events
are independent, the delivery order is their sending order in absolute time. A send event is
implicitly and globally ordered with regard to all other emissions toward the same peer. This
means that if a peer p consumes m1 (sent by a peer p1) and later m2 (sent by peer p2), then p
knows that the sending on peer p1 occurs before the sending on peer p2 in the total run order,
even if there is no causal dependency between the two emissions.

Definition 12 (FIFO n-1 Run). The set Runn1 of FIFO n-1 runs is:

Runn1 ,



(E , (≤p)p∈P ,≺c ,≺σ, com,peer,mes) ∈ Run

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∀es1, es2, er1, er2 ∈ E :

com(es1) = Send
∧ com(es2) = Send
∧ com(er1) = Receive
∧ com(er2) = Receive
∧ mes(es1) = mes(er1)
∧ mes(es2) = mes(er2)
∧ peer(er1) = peer(er2)
∧ es1 6= es2
∧ es1 ≺σ es2


⇒ er1 ≺c er2


The set of point-to-point FIFO n-1 runs is RunP2P

n1 , RunP2P ∩Runn1.

Note that, in the previous definition, er1 ≺c er2 is substitutable with er1 ≺σ er2 because er1
and er2 happen on the same peer (Theorem 4).

The definition states that a global ordering of the send events implies a local ordering of
associated receive events. It orders the communication between all the n peers and a given (1)
receiver in a first in first out (FIFO) manner, hence the name FIFO n-1. An implementation of
this model requires a shared real-time clock [CF99] or a global agreement on event order [DSU04,
Ray10]. For example, each peer has a unique input queue, a mailbox, in which messages are
deposited instantly by senders, without blocking. When a peer p1 sends a message m to peer p2,
m is appended to the queue q(p2). When p2 is to receive a message from p1, p3, or any other
peer, it retrieves the first message of the queue q(p2). Thus, on a given peer, the messages are
received in their absolute sending order. Figure 2.12 illustrates this.

The run in Figure 2.13a is FIFO n-1 because m1 is sent before m2, and the associated
receptions that occur on the same peer p3 happen in the same order. In Figure 2.13b however,
they happen in the reverse order: the run is not FIFO n-1. Information about the sending peers
is here irrelevant.

This model is used for instance in [BBO12, OSB13] as an abstraction of asynchronous com-
munication. This model is often confused with the previously described FIFO 1-1 model.

2.4.5 FIFO 1-n Communication

Messages from a same peer are delivered in their sending order. This model is the dual of
FIFO n-1 : it induces another global order, this time on the receivers (one for each sender).

31

p1

q1

n

1

p2

q2

n

1

p3

q3

n

1

· · ·

pn

qn

n

1

Figure 2.12: Illustration of the FIFO n-1 Ordering. A queue per peer serves as an inbox and
provides FIFO ordering between the n peers of the system and the one (1) peer associated the
this inbox. An arrow departing from a peer towards a queue means a message is sent and inserted
in the queue. An arrow departing from a queue towards a peer means the reception of a message
retrieved from the queue.

p1

p2

p3 m1 m2

(a) FIFO n-1

p1

p2

p3 m1m2

(b) Non FIFO n-1

Figure 2.13: FIFO n-1 Ordering in Example Runs

32

Definition 13 (FIFO 1-n Run). The set Run1n of FIFO 1-n runs is:

Run1n ,



(E , (≤p)p∈P ,≺c ,≺σ, com,peer,mes) ∈ Run

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∀es1, es2, er1, er2 ∈ E :

com(es1) = Send
∧ com(es2) = Send
∧ com(er1) = Receive
∧ com(er2) = Receive
∧ mes(es1) = mes(er1)
∧ mes(es2) = mes(er2)
∧ peer(es1) = peer(es2)
∧ es1 6= es2
∧ es1 ≺c es2


⇒ er1 ≺σ er2


The set of point-to-point FIFO 1-n runs is RunP2P

1n , RunP2P ∩Run1n .

Note that, in the previous definition, es1 ≺c es2 is substitutable with es1 ≺σ es2 because es1
and es2 happen on the same peer (Theorem 4). The definition states that a local ordering of
the send events implies a global ordering (total order on the run) of associated receive events. It
orders the communication between a given sender (1) and all the n peers in a first in first out
(FIFO) manner, hence the name FIFO 1-n. In a possible implementation, each peer has a unique
queue, an outbox, where sent messages are put. Destination peers fetch messages instantly from
this queue and acknowledge their reception. When a peer p1 sends a message m to peer p2, p3,
or any other peer, m is appended to the queue q(p1). When p2, p3, or any other peer is to receive
a message from p1, it retrieves the first message of the queue q(p1). Thus, all the messages sent
by a given peer are received in their sending order, wherever they are received.

The run in Figure 2.15a is FIFO 1-n: m1 is sent before m2, both by peer p1, and the
associated receptions occur in this order. Although the receptions occur on different peers, if the
receive event of m2 occured before the receive event of m1, the run would not be FIFO 1-n as in
Figure 2.15b.

In point-to-point communication, an alternative definition of FIFO 1-n only involves a causal
dependency on the send events.

Theorem 14 (Alternative definition of point-to-point FIFO 1-n Runs). RunP2P
1n = RunP2P

1n
′

where:

RunP2P
1n
′
,



(E , (≤p)p∈P ,≺c ,≺σ, com,peer,mes) ∈ Run

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∀es1, es2, er1, er2 ∈ E :

com(es1) = Send
∧ com(es2) = Send
∧ com(er1) = Receive
∧ com(er2) = Receive
∧ mes(es1) = mes(er1)
∧ mes(es2) = mes(er2)
∧ es1 6= es2
∧ es1 ≺c es2


⇒ er1 ≺σ er2


Proof.

1. Proof of RunP2P
1n
′ ⊆ RunP2P

1n

33

p1

q1 1

n

p2

q2

1

np3

q3

1

n

· · ·

pn

qn

1

n

Figure 2.14: Illustration of the FIFO 1-n Ordering. A queue per peer serves as an outbox and
provides FIFO ordering between the one (1) sender associated with this outbox and all the n
peers of the system. An arrow departing from a peer towards a queue means the send of a
message and its insertion in the queue. An arrow departing from a queue towards a peer means
the reception of a message retrieved from the queue.

34

p1

p2

p3

m1

m2

(a) FIFO 1-n

p1

p2

p3 m1

m2

(b) Non FIFO 1-n

Figure 2.15: FIFO 1-n Ordering in Example Runs

Let (E , (≤p)p∈P ,≺c ,≺σ, com,peer,mes) ∈ RunP2P
1n
′. ∀e1, e2 ∈ E : peer(e1) = peer(e2) ∧

e1 ≺c e2 ⇒ e1 ≺c e2. Hence RunP2P
1n
′ ⊆ RunP2P

1n .

2. Proof of RunP2P
1n ⊆ RunP2P

1n
′

Assume r , (E , (≤p)p∈P ,≺c ,≺σ, com,peer,mes) ∈ RunP2P
1n and r /∈ RunP2P

1n
′.

∃es1, es2, er1, er2 ∈ E :


com(es1) = com(es2) = Send

∧ com(er1) = com(er2) = Receive
∧ mes(es1) = mes(er1)
∧ mes(es2) = mes(er2)
∧ es1 6= es2
∧ es1 ≺c es2

, but er2 ≺σ er1.

(a) Case peer(es1) = peer(es2)
Contradiction since r ∈ RunP2P

1n , then er1 ≺σ er2 and r ∈ RunP2P
1n
′.

(b) Case peer(es1) 6= peer(es2)
by Theorem 6, ∃es, er ∈ E : com(es) = Send∧ com(er) = Receive∧mes(es) =
mes(er) ∧ peer(es1) = peer(es) ∧ es1 ≺c es ∧ er ≺c es2

i. Case es = es1
er = er1 because r ∈ RunP2P (at most one reception in point-to-point communi-
cation).
er1 ≺c es2 because er ≺c es2 and er = er1.
es2 ≺c er2 by transmission of a message.
Contradiction. er1 ≺c er2 by transitivity.

ii. Case es 6= es1
es ≺c er and es2 ≺c er2 by transmission of messages
er ≺σ er2 by transitivity of ≺c and ≺σ extends ≺c
Contradiction. r /∈ RunP2P

1n because er ≺σ er1 (since er2 ≺c er1), es 6= es1, but
es1 ≺c es.

2.4.6 FIFO n-n Communication
Messages are globally ordered and are delivered in their emission order. This model can be based
on a shared centralised object (e.g. a unique queue). Usually, it is used as a first step to move
away from the synchronous communication model, by splitting send and receive events.

35

q
n n

p1

p2

p3p4

p5

pn

· · ·

Figure 2.16: Illustration of the FIFO n-n Ordering. A unique centralised object provides FIFO
ordering between all the n peers. An arrow departing from a peer towards a queue means the
send of a message and its insertion in the queue. An arrow departing from a queue towards a
peer means the reception of a message retrieved from the queue.

Definition 15 (FIFO n-n Run). The set Runnn of FIFO n-n runs is:

Runnn ,



(E , (≤p)p∈P ,≺c ,≺σ, com,peer,mes) ∈ Run

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∀es1, es2, er1, er2 ∈ E :

com(es1) = Send
∧ com(es2) = Send
∧ com(er1) = Receive
∧ com(er2) = Receive
∧ mes(es1) = mes(er1)
∧ mes(es2) = mes(er2)
∧ es1 6= es2
∧ es1 ≺σ es2


⇒ er1 ≺σ er2


The set of point-to-point FIFO n-n runs is RunP2P

nn , RunP2P ∩Runnn .

The definition states that a global ordering of the send events implies a global ordering of
associated receive events. It orders the communication between all the peers (n) and all the peers
(n) in a first in first out (FIFO) manner, hence the name FIFO n-n. As a result, the model can
be easily described with a simple global queue that contains all the messages in transit. When
a peer p1 sends a message m to peer p2, m is appended to that queue q . When p2 is to receive
a message it retrieves the first message of the queue q . This is illustrated by Figure 2.16.

The run in Figure 2.17b is not FIFO n-n because m1 is sent before m2 but it is received after,
even though the involved peers are all different. The messages are however received in the same
order in the FIFO n-n run from Figure 2.17a.

36

p1

p2

p3

p4

m1

m2

(a) FIFO n-n

p1

p2

p3

p4

m1

m2

(b) Non FIFO n-n

Figure 2.17: FIFO n-n Ordering in Example Runs

2.4.7 RSC : Realisable with Synchronous Communication
A point-to-point run is realizable with synchronous communication if each send event is imme-
diately followed by its corresponding receive event [CBMT96, KS11]. If the couple of send and
receive events is viewed atomically, this corresponds to a synchronous communication execution.
In multicast communication, this means that a send event is immediately followed by the corre-
sponding receive events or internal events. After another message is sent, no more receptions of
the previous message can happen in the run.

Definition 16 (RSC Run). The set RunRSC of RSC runs is:

RunRSC ,



(
E , (≤p)p∈P ,≺c ,≺σ,
com,peer,mes

)
∈ Run

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∀es, er , e ∈ E :
com(es) = Send

∧ com(er) = Receive
∧ mes(es) = mes(er)
∧ es ≺σ e ≺σ er


⇒


e = es

∨ com(e) = Internal

∨
(

com(e) = Receive
∧ mes(e) = mes(er)

)



The set of point-to-point RSC runs is RunP2P

RSC , RunP2P ∩RunRSC .

The definition states that between a send event and a receive event of a given message, there
can only be other receive events of that message or internal events.

The run in Figure 2.18b is not RSC because, although the two messages are exchanged by
different couples of peers, m2 is sent before m1 is received. Two messages must not be in transit
at the same time. However, the run in Figure 2.18a is RSC because m1 is received first.

2.4.8 Summary of the Asynchronous Communication Models
The asynchronous communication models that have been presented, with the exception of the
Fully Asynchronous and Realisable with Synchronous Communication communication models,
are characterised by two kinds of orderings among causal, local, and global.

1. An event can causally precede another when they are related in the distributed execution.

2. An event can locally precede another when they occur on the same peer.

37

p1

p2

p3

p4

m1

m2

(a) RSC

p1

p2

p3

p4

m1

m2

(b) Non RSC

Figure 2.18: RSC Ordering in Example Runs

Send
Causal Local Global

es1 ≺c es2
es1 ≺c es2

∧ peer(es1) = peer(es2) es1 ≺σ es2

R
ec
ei
ve Lo

ca
l

er1 ≺c er2
∧ peer(er1) = peer(er2) Causal FIFO 1-1 FIFO n-1

G
lo
ba

l

er1 ≺σ er2 FIFO 1-n

FIFO 1-n
only in point-to-point

communication
(Theorem 14)

FIFO n-n

Table 2.1: Ordering Policy Resulting from the Dependency between the Ordering of Send Events
and the Ordering of Receive Events in Runs. Given a distributed execution (E , (≤p)p∈P ,≺c
, com,peer,mes) and two couples of send and receive events es1, es2, er1, and er2 corresponding
to the transmission of two messages (mes(es1) = mes(er1), mes(es2) = mes(er2), com(es1) =
com(es2) = Send, and com(er1) = com(er2) = Receive), if the relation between the send events
in a column implies the relation between the receive events in a row then it corresponds to the
communication model in the associated cell.

3. When it comes to the total ordering on runs, an event can also globally precede another.

Table 2.1 recaps which ordering policy arises when one type of precedence between send
events implies one type of precedence between receive events. In Theorem 14, the equivalence
between two alternative specifications of the FIFO 1-n communication model has been proven:
this equivalence shows up in the table and may come in handy to facilitate modelling, reasoning,
proof, or implementation, depending on the context (whether the focus is on locality or causality).

2.5 Hierarchy between the Models based on the Inclusion
of the Sets of Runs

There is a hierachy between the communication models that arises from the ordering properties
on the events. For instance, any communication model is stricter than the Fully Asynchronous
communication model because the runs that are valid under the six other models are also valid
under the Fully Asynchronous model. We base the hierarchical structure of the communication

38

models on the inclusion of their characteristic sets of runs. For instance, the Causal runs are
FIFO 1-1 runs, hence Causal is stricter than FIFO 1-1. Given a run, knowing the hierarchy
between the models might allow to substitute a model with another that is stricter. This is of
great interest in the study of the compatibility of communicating peers that will be detailed in
Chapter 4. A thorough analysis of the hierarchy between the communication models based on
refinement is presented in Chapter 6.

Theorem 17 (Hierarchy of the Seven Communication Models). The hierarchy of the seven
communication models in the general multicast case is:

• RunRSC (Runnn (Runn1 (Runc (Run11 (Run

• RunRSC (Runnn (Run1n (Run11 (Run

• Runn1 and Run1n are not comparable

• Run1n and Runc are not comparable

In point-to-point communication, RunP2P
1n (RunP2P

c :

• RunP2P
RSC (RunP2P

nn (RunP2P
n1 (RunP2P

c (RunP2P
11 (RunP2P

• RunP2P
RSC (RunP2P

nn (RunP2P
1n (RunP2P

c (RunP2P
11 (RunP2P

• RunP2P
n1 and RunP2P

1n are not comparable

Two Venn diagrams illustrate the hierarchy of the communication models in multicast and
point-to-point communication respectively in Figure 2.19a and Figure 2.19b.

Most of the inclusions arise from the definition of the orders and are the same in multicast and
point-to-point communication. The relation between FIFO 1-n and Causal is however tricky:
the inclusion does not hold in multicast communication.

Let (E , (≤p)p∈P ,≺c ,≺σ, com,peer,mes) ∈ Run and es1, es2, er1, er2 ∈ E .

• Runnn ⊆ Run1n and RunP2P
nn ⊆ RunP2P

1n because

com(es1) = com(es2) = Send
∧ com(er1) = com(er2) = Receive
∧ mes(es1) = mes(er1)
∧ mes(es2) = mes(er2)
∧ peer(es1) = peer(es2)
∧ es1 6= es2
∧ es1 ≺c es2


⇒



com(es1) = com(es2) = Send
∧ com(er1) = com(er2) = Receive
∧ mes(es1) = mes(er1)
∧ mes(es2) = mes(er2)
∧ peer(er1) = peer(er2)
∧ es1 6= es2
∧ es1 ≺σ es2


since es1 ≺c es2 ⇒ es1 ≺σ es2 by Lemma 3.

• Runnn ⊆ Runn1 and RunP2P
nn ⊆ RunP2P

n1 because

com(es1) = com(es2) = Send
∧ com(er1) = com(er2) = Receive
∧ mes(es1) = mes(er1)
∧ mes(es2) = mes(er2)
∧ peer(er1) = peer(er2)
∧ es1 6= es2
∧ es1 ≺σ es2


⇒


com(es1) = com(es2) = Send

∧ com(er1) = com(er2) = Receive
∧ mes(es1) = mes(er1)
∧ mes(es2) = mes(er2)
∧ es1 6= es2
∧ es1 ≺σ es2


39

RunRSC

Runnn

Runn1 Run1n

Runc

Run11

Run

(a) Multicast Communication

RunP2P
RSC

RunP2P
nn

RunP2P
n1 RunP2P

1n

RunP2P
c

RunP2P
11

RunP2P

(b) Point-to-Point Communication

Figure 2.19: Inclusion of the Sets of Runs of Communication Models for Multicast and Point-to-
Point Communication

40

• Runn1 ⊆ Runc and RunP2P
n1 ⊆ RunP2P

c because

com(es1) = com(es2) = Send
∧ com(er1) = com(er2) = Receive
∧ mes(es1) = mes(er1)
∧ mes(es2) = mes(er2)
∧ peer(er1) = peer(er2)
∧ es1 6= es2
∧ es1 ≺c es2


⇒



com(es1) = com(es2) = Send
∧ com(er1) = com(er2) = Receive
∧ mes(es1) = mes(er1)
∧ mes(es2) = mes(er2)
∧ peer(er1) = peer(er2)
∧ es1 6= es2
∧ es1 ≺σ es2


since es1 ≺c es2 ⇒ es1 ≺σ es2 by Lemma 3.

• Runc ⊆ Run11 and RunP2P
c ⊆ RunP2P

11 because

com(es1) = com(es2) = Send
∧ com(er1) = com(er2) = Receive
∧ mes(es1) = mes(er1)
∧ mes(es2) = mes(er2)
∧ peer(es1) = peer(es2)
∧ peer(er1) = peer(er2)
∧ es1 6= es2
∧ es1 ≺c es2


⇒



com(es1) = com(es2) = Send
∧ com(er1) = com(er2) = Receive
∧ mes(es1) = mes(er1)
∧ mes(es2) = mes(er2)
∧ peer(er1) = peer(er2)
∧ es1 6= es2
∧ es1 ≺c es2



• Run11 ⊆ Run and RunP2P
11 ⊆ RunP2P by definition of Exec11.

• RunP2P
1n ⊆ RunP2P

c , based on the alternate definition of FIFO 1-n runs from Theorem 14
because

com(es1) = com(es2) = Send
∧ com(er1) = com(er2) = Receive
∧ mes(es1) = mes(er1)
∧ mes(es2) = mes(er2)
∧ peer(er1) = peer(er2)
∧ es1 6= es2
∧ es1 ≺c es2


⇒


com(es1) = com(es2) = Send

∧ com(er1) = com(er2) = Receive
∧ mes(es1) = mes(er1)
∧ mes(es2) = mes(er2)
∧ es1 6= es2
∧ es1 ≺c es2


• RunRSC ⊆ Runnn

Proof. Let (E , (≤p)p∈P ,≺c ,≺σ, com,peer,mes) ∈ RunRSC .

Let es1, es2, er1, er2 ∈ E such that


com(es1) = com(es2) = Send

∧ com(er1) = com(er2) = Receive
∧ mes(es1) = mes(er1)
∧ mes(es2) = mes(er2)
∧ es1 6= es2
∧ es1 ≺σ es2


mes(er1) 6= mes(er2) because mes(es1) 6= mes(es2) by definition of a multicast run (a
message is sent at most once) since es1 6= es2.
Assume er2 ≺σ er1.
er2 6= es1 because com(es1) 6= com(er2).

41

p1

p2

p3

m1

m2

(a) FIFO 1-n not Causal

p1

p2

p3

m1

m2

(b) FIFO 1-n, Causal, not FIFO n-1
p1

p2

p3

m1

m2

(c) FIFO n-1 not FIFO n-n

Figure 2.20: Additional Example Runs

er2 = es1 ∨mes(er1) = mes(er2) by the property of RunRSC with

es ← es1

er ← er1

e ← er2

.

Contradiction. mes(er1) 6= mes(er2) ∧ er2 6= es1

QED. er1 ≺σ er2

The inclusions are strict as demonstrated by the examples referenced in Figure 2.21.

42

RunRSC

RunnnRunn1 Run1n

Runc

Run11

Run

1

2
3

4 5
6

7

8

9
1 Figure 2.18a
2 Figure 2.18b
3 Figure 2.17b
4 Figure 2.20b
5 Figure 2.20a
6 Figure 2.20c
7 Figure 2.10a
8 Figure 2.8a
9 Figure 2.8b

Figure 2.21: Example Runs that Prove the Strict Inclusions. Each number correspond to a figure
that illustrates a distributed execution or run.

43

Chapter 3

State of the Art

Before getting to the heart of our contributions to the formal aspects of asynchronous commu-
nication developed in the following chapters, we provide some context and explore existing work
carried out so far around the areas of distributed systems, formal specifications, and the concepts
Chapter 2 has already introduced. When applicable, we draw parallels with our work or detail
why existing approaches might not be adapted to the pursuit of our goals.

Approaches for the description of distributed systems are a natural starting point in this
overview. The nature of the specification of systems happens to be crucial to the work developed
in Chapter 4 about the compatibility of communicating peers under the different communication
models. We put up a non exhaustive inventory of existing approaches and draw parallels with our
work. Regarding asynchronous communication, we then contextualise the results from Chapter 2
and highlight how they help extend classic results in the domain. Eventually, we explore the
motives for formal verification of distributed systems and approaches that meet those needs with
an emphasis on refinement which plays a major role in our work in Chapter 6.

3.1 Description of Distributed Systems
3.1.1 Transition Systems
A classic approach we follow throughout this work consists in describing distributed systems
with transition systems. Tel’s textbook [Tel00] describes a distributed system as a “collection of
processes and a communication subsystem”. Each process is a transition system, and the transi-
tion system induced under asynchronous communication is built with the product of the process
transition systems extended with a collection of messages in transit, and two rules for “send” and
“receive”. This is similar to the framework for the verification of communicating peers we describe
in Chapter 4. His formal definition considers synchronous and Fully Asynchronous communica-
tion. FIFO 1-1 and Causal communication are mentioned but are not formalised. Tel’s goal
is to describe distributed algorithms whereas our objective is to study communication models.
In our work, we explicitly describe the communication models with transition systems and we
compare them. We also base a framework for the verification of asynchronously communicating
peers on these models.

Finite-state machines are used to represent communicating services in several verification
frameworks such as in [CLB08] and, notably, in the field of web services [DOS12, BCT04,
FUMK04].

Moreover, transition systems are at the heart of formal specification and verification languages

45

such as TLA+ [Lam02] (Temporal Logic of Actions), Promela [Hol04, chap. 3] (Process Meta
Language), or the Event-B method [Abr10]. They allow to specify state transition systems that
may describe distributed systems and asynchronous interactions. Our work rely heavily on TLA+

and the Event-B method. Promela models communication with FIFO message channels which
does not fit our need for a less restrictive approach that encompasses the variety of asynchronous
communication models.

Many other formalisms may also represent the communicating entities in distributed systems,
their interactions, or their correct behaviour: process calculi, petrinets [LFS+11, TFZ09, Mar03],
interaction diagrams, or choreographies. The remainder of this section details these formalisms.

3.1.2 I/O Automata
Input/output automata [Lyn96] provide a generic way to describe components that interact with
each other thanks to input and output actions. Those actions are partitioned into tasks over
which fairness properties can be defined in the same way fairness properties can be set over TLA+

actions. Components can either describe processes or communication channels. They can also
be composed and some output actions can be made internal (hiding) in order to specify complex
systems. I/O automata are said to be “input-enabled”: every input action of an automata is
required to be enabled in every state, in order to avoid “the failure to specify what the component
does in the face of unexpected inputs” [Lyn96, p. 203].

In our work in Chapter 4, a property called “stability with regard to interest” (Definition 20
on page 63) plays this role. It ensures the receptions of messages that might be of interest later
are specified. They may result in a specified faulty state which accounts for the unexpectedness
of the input.

I/O automata can model asynchronous systems in a broad sense and provide a powerful
framework to describe distributed systems. However, few automatic tools have been developed
to make use of I/O automata and perform modelling and property checking.

3.1.3 Message Sequence Charts
Message Sequence Charts are convenient diagrams that allow to describe the desired interactions
between components that exchange messages in a system. It is an ITU standard (ITU recom-
mendation Z.120) of the SDL (Specification and Description Language) family (ITU recommen-
dation Z.100) that is used to describe telecommunication protocols. Message Sequence Charts
characterise traces with input and output events in the distributed systems. Communication is
asynchronous but the Message Sequence Charts do not assume any particular communication
model whereas the peers have buffers in SDL. Thus, MSCs may be used to extend the modelling
of interactions in SDL. There are two common ways to formalise the semantics of the MSC:

• With a process algebra as standardised in ITU recommendation Z.120 Annex B and pre-
sented in [MR94] by Mauw and Renier.

• With partially ordered sets of events as introduced by Alur et al. in [AHP96]. They consider
the local ordering of events on each peer and the ordering of couples of send and receive
events which corresponds exactly to our model of distributed executions in Chapter 2.

Engels et al. [EMR02] build on the second formalisation for their hierarchy of communication
models (see Section 3.2.2). So does Longuet [Lon12] who proposes frameworks for the testing of
systems and their conformance to specifications using Message Sequence Graphs (MSG). MSGs
specify distributed systems with a graph structure whose nodes are MSCs. Several resulting

46

MSCs (that fit the notion of distributed executions in our work) can be derived. A confor-
mance relation formalises what it means for a system to be tested against its specification. Trace
inclusion of global observations of a system is an example of global conformance relation. In
Chapter 4, the framework we propose allows to perform global testing; it implies a global knowl-
edge of the system. Longuet also exposes conformance relations for local testing that may consist,
for example, in isolating each peer individually and observe the interactions with the rest of the
system or a set of testing peers. Eventually, the conditions for the equivalence of global and local
conformance relations are established and allow to locally test if a system globally conforms to
its specification.

Alur and Yannakakis propose to perform model checking of temporal properties over Message
Sequence Charts in [AY99]. It relies on the formalisation of the MSCs with partial ordered sets
of events [AHP96] and the automata that describe the different linear extensions. With MSC-
graphs that allow to concatenate MSCs, the model checking problem with the asynchronous
approach of concatenation is undecidable [AY99].

3.1.4 Choreographies and Compatibility Checking
Collaborations and choreographies are pivotal in the web services field and we can draw parallels
between our work on compatibility checking in Chapter 4 and the compatibility checking of
collaborations and choreographies. Collaborations describe the interactions between entities
while choreographies characterise the expected behaviour resulting from these interactions. As
an example, BPMN diagrams (Business Process Model and Notation), despite a partial lack of
formal grounding, are a standardised approach to graphically describe such models.

Compatibility of services or software components has largely been studied, with two main
goals:

• Can peers communicate and provide more complex services?

• Can one peer be replaced by another one (substitutability)?

These two notions of compatibility are different. In the first case, the peers must be comple-
mentary. In the second case however, they shall provide the same functionality: it is classically
expressed by the notion of simulation (as in [ABDF08]) or the notion of trace inclusion (as
in [CLB08]). In this taxonomy, we can also include different models of failure traces [GGH+10],
where refusal sets may be used to model the receiving capabilities of the process and their preser-
vation, thus the absence of forever pending messages. In this work, we mainly focus on the first
aspect. Many approaches exist to verify behavioural compatibility of web services or software
components.

Different criteria are used to represent compatibility for choreographies: deadlock freeness
[DOS12, FUMK04], the absence of unspecified receptions [BZ83, DOS12], possible termination
(at least one execution leads to a terminal state) [DOS12, BCT04, DWZ+06, LFS+11], certain
termination (all the executions lead to a terminal state) [BCT04, BCPV04], progress (no star-
vation) [FUMK04], or divergence [BCPV04]. Here, divergence is a dual notion of termination
that is adapted to systems that are, as most web services, expected to go on running without
actually terminating. Domain application conditions are also used. In [CLB08], the behavioural
compatibility of web services corresponds to a specific concept of substitutability (here trace
inclusion). In [CPT01], Canal et al. formalises a notion of conformance between components
that are specified by π-calculus processes.

Synchronous communication and the FIFO communication models are common interaction
paradigms in this field. In [DOS12, BCT04, FUMK04, DWZ+06, BCPV04, CPT01], the com-
munication is synchronous. FIFO n-1 is another communication paradigm in this field [BBO12,

47

OSB13] that might not be clearly distinguished from the FIFO 1-1 model encountered, for
instance, in [BZ83].

In Chapter 4 and Chapter 5, we consider all the main compatibility criteria and the possibility
to specify ad hoc properties. Furthermore, the compatibility checking is not restricted to specific
communication models.

Brand and Zafiropulo’s approach for unspecified receptions in [BZ83] and our property of
stability with regard to interest (see Definition 20 on page 63) are two sides of the same coin. In
Brand and Zafiropulo’s work, if a peer can receive a given message in some state, then it must
also accept this message later, in a successor state (accessible via send events). In other words,
if a message can be received at a given state, its reception must also be specified at later states
for a system to be correct with regard to unspecified receptions. In our work, we reverse the
proposition: if a message can be received, the communication model may deliver it earlier and
the system must expect this situation. This is the property of stability with regard to interest
we detail in Chapter 4.

To sum up, although some works are dedicated to several compatibility criteria, all of them
are dedicated to one communication model, mostly the synchronous model. None of them pro-
poses a verification parameterised by both the compatibility criteria and multiple communication
models. Moreover, only a few approaches also provide a tool to automatically check the pro-
posed composition. One of our contribution is a unified formalisation of several communication
models and compatibility criteria in a framework that checks the correctness of a composition
of peers in a unified manner under any combination of the communication models. Lastly, the
mechanisation of this framework returns examples of invalid runs when a compatibility criterion
is violated.

3.1.5 Process Calculi
Synchronous Communication

The algebraic representation of process calculi, or process algebra, provides a simple, concise,
and powerful way to describe distributed systems. The processes are specified by terms under
an algebra. They are constructed from other processes thanks to composition operators (parallel
composition, sequence, deterministic or non-deterministic choice, renaming, hiding, . . .). The
basic processes represent elementary actions, which are most often communication operations
(send or receive). The communication is a directed stream of information: this often relies on
the notion of channel which accounts for the different possible streams and a rendez-vous between
the send operation and a dual operation receive. This implies synchronous communication. The
following is a transition rule that describes the rendez-vous between two processes P and Q in
parallel (symmetric operator |) that exchange a message over channel c and then become P ′ and
Q ′ respectively. c! denotes a send event. c? denotes a receive event:

P c!−→ P ′ Q c?−→ Q ′

P |Q τ−→ P ′|Q ′

CCS (Calculus of Communicating Systems) [Mil82] is an early and seminal calculus with
these features. CSP (Communicating Sequential Processes) [Hoa78] was initially a concurrent
programming language that eventually evolved into a process calculus that shares many charac-
teristics of CCS. The communication in these calculi is point-to-point and synchronous. There-
fore, it is not adapted to our work. Nevertheless, we make use of CCS in Chapter 5 to specify
individual peers. The notion of channel is close to the one we develop in the next chapters which
makes it possible to benefit from the composition operators to elaborate complex specifications.

48

The parallel composition of CCS and synchronous communication are replaced by our model
of asynchronous interaction. The parallel composition of CCS and hiding are yet of interest to
model internal parallel composition (interleaving) and internal fork-join layouts.

LOTOS (Language of Temporal Ordering Specification) [ISO89] is another example. It is a
specification language with a calculus that also proposes similar parallel composition operations
of events: per event (“selective parallelism”) or between all observable events (“full synchronisa-
tion”). It is an international standard used to describe OSI protocols and systems.

All the previously mentioned calculi are static. This means the algebraic representation of
the processes do not evolve according to the content of the messages that are exchanged over
channels. Milner has also defined the π-calculus [Mil99]. The main difference is the introduction
of parameters: channels can be communicated through channels themselves; new channels can
also be created. This allows to describe systems with dynamic configurations. In this work, we
do not consider such configurations. Moreover, the π-calculus is also synchronous.

Asynchronous Communication

Nevertheless, there have been many propositions of process calculi that model asynchronous
communication. It is possible to represent synchronous communication in asynchronous com-
munication with additional synchronisation messages. It is also possible to describe buffered
asynchronous communication with synchronous communication and additional buffer processes.

Some adaptations of the π-calculus have been proposed [HT91, Bou92] to change the se-
mantics of communication into an asynchronous one. A send primitive with no continuation
represents asynchronous communication in the asynchronous π-calculus.

Josephs uses a similar approach in [Jos92] and develops an asynchronous process calculus
based on CSP with the concept of “receptive processes”. The interactions between a system and
the environment are always non-blocking resulting in undefined behaviour when the system is
not ready for an input.

In [Pal03], Palamidessi proves that the asynchronous π-calculus is less expressive than the
full π-calculus. Beauxis et al. [BPV08] compare the asynchronous π-calculus with three different
versions of the π-calculus where channels are explicitly represented as special buffer processes.
Those buffers are bags, queues or stacks depending on the model of interest. There is a strong
correspondence between the asynchronous model and the model with bags. But that correspon-
dence does not hold with queues and stacks. This is conform to our results from Chapter 2:
our Fully Asynchronous and our FIFO models are not equivalent. Since we are interested in
comparing the communication models used by the distributed computing community, their π-
calculus with queue is not satisfactory. Indeed, the FIFO property is guaranteed for a given
channel, whereas distributed algorithms use this property between peers. Since two peers can
communicate together via several channels, there is no direct correspondence between these two
approaches. We haven’t studied communication models using stacks, since those models are
not relevant when dealing with distributed applications, but our approach in Chapter 4 and
Chapter 5 allows to specify the duals of FIFO models using stacks instead of queues.

Richer Process Calculi and Mobility

In the π-calculus, the processes are dynamic: the channels can be communicated through chan-
nels. If some channels designate processes, this constitutes a first approach of mobility. Mobility
means the processes can move between separated domains of computation that may be isolated
or interact. The CHemical Abstract Machine [BB92] is a framework that models mobility with
notions of molecular reactions in solutions that are isolated by membranes. The reflexive CHem-
ical Abstract Machine enables new kinds of molecules and reactions to take place locally instead

49

of requiring to travel and react in specific sites which means communication is not centralised in
these sites anymore. It fits asynchrony and distribution. The join-calculus [FG96] is a syntaxic
description of the molecules in the reflexive CHAM. Fournet et al. [FG96] also prove it is equiva-
lent to the π-calculus. With the Ambient Calculus [CG98], Cardelli et al. focus on the movement
of processes called ambients and the boundaries of domains they are allowed to enter or exit. It
provides an extensive set of mobility-related primitives to explicitly describe how they enter and
exit the domains. The communication between ambients inside a domain is independent of the
mobility primitives. In Ambient Calculus, it encodes the asynchronous π-calculus. These calculi
are mainly used to model mobility, distribution, firewalls and security properties. However, they
do not fit our concerns for two reasons. First, modelling distribution is not straightforward: it
usually involves a mix of local communications and moves between domains. Since distribution
is at the core of our concerns, we want to keep things as simple as possible. Second, they are
not parameterised by communication models. Encoding the communication models would be
cumbersome.

Broadcast

Prasad presents CBS, a Calculus of Broadcasting Systems [Pra91] that is based on CCS. Here,
the traditional communication rule with rendez-vous between two processes is replaced by rules
that describe broadcast communication where one process may broadcast (send) a message on
a channel that all the other peers can receive. Even though communication may not always
consist of a single transition, this means the communication is still synchronous. The associated
communication rules are the following:

P c!−→ P ′ Q c?−→ Q ′

P |Q c!−→ P ′|Q ′
P c?−→ P ′ Q c!−→ Q ′

P |Q c!−→ P ′|Q ′
P c?−→ P ′ Q c?−→ Q ′

P |Q c?−→ P ′|Q ′

This implies that every process should be ready to receive messages from the environment
(third rule) over every existing channel in order to avoid unspecified behaviours. CBS requires
that they are indeed “input-enabled”, even if it consists in stuttering (P c?−→ P). This is remi-
niscent of I/O automata and the property of stability with regard to interest we develop in the
next chapter (see Definition 20 on page 63). In this work we consider multicast communication
in general whereas CBS describes broadcast communication with peers that are always ready to
receive any message. Moreover, CBS is synchronous.

Model Checking for Process Calculi

There exist several model checkers for process calculi. CADP [GLMS13] analyses high-level
descriptions written in various languages with synchronous communication, such as LOTOS,
LNT (simplified version of E-LOTOS [ISO01]), FSP, or π-calculus. Our goal is not to model
check process calculus. Our main concern is the comparison of communication models and being
able to check properties over systems with a wide range of communication models.

Overview

Table 3.1 recaps the features of the process calculi that are mentioned previously. None of them
perfectly fits the context of our work. However, they may come in handy when it comes to the
specification of individual peers (see CCS in Chapter 5).

50

Static/Dynamic Sync/Async P2P/Multicast

CSP static synchronous point-to-point
CCS static synchronous point-to-point

LOTOS static synchronous point-to-point
π-calculus dynamic synchronous point-to-point

Asynchronous π-calculus dynamic asynchronous point-to-point
Receptive Process Theory static asynchronous point-to-point

Join Calculus dynamic asynchronous point-to-point
Ambient Calculus mobility asynchronous point-to-point

CBS static synchronous broadcast

Table 3.1: Some Process Calculi and their Features

3.2 Asynchronous Communication in Distributed Systems
Ordered delivery has long been studied in distributed algorithms and goes back to Lamport’s pa-
per introducing logical clocks [Lam78]. Implementations of the FIFO 1-1 and Causal communi-
cation models using histories or clocks are explained in classic textbooks [Mul93, CDK94, Tel00,
KS11, Ray13], and the required information to realise these orders has been studied [PBS89,
KS98].

3.2.1 Hierarchy of Ordering Paradigms
Point-to-point asynchronous communication models in distributed systems have been studied
and compared. In [CBMT96] and [KS11], they are specified as classes of distributed executions
called distributed computation classes in [CBMT96] and message ordering paradigms in [KS11].
They correspond to the exact descriptions of the communication models that are characterised
by distributed executions in Chapter 2, that is to say communication models that only rely
on the causal partial ordering of communication events (send and receive events). We use the
same definition of the causal ordering. Our distributed executions, contrary to the distributed
computations, may contain localised internal events which do not change the semantics of the
communication models. “non-FIFO” corresponds to the Fully Asynchronous communication
model; “FIFO” corresponds to the FIFO 1-1 communication model; “CO (Causally Ordered)”
corresponds to the Causal communication model.

As in Chapter 2, the hierarchy between these communication models is established from the
gradual strengthening of the conditions for two receive events to be causally ordered. Charron-
Bost et al. [CBMT96] also provide and prove alternative characterisations of the “Causally Or-
dered computations“ (Causal distributed executions). They show “CO” computations are equiv-
alent to “MO (Message Ordered)” computations in which two receive events cannot happen in
the reverse causal order if the associated send events are causally ordered. They also prove they
are equivalent to “EI (Empty Interval)” computations in which no event shall stand between
a send event and its associated receive event when it comes to strict causal ordering (in the
absolute time of a linear extension, events may interleave).

Our work is complementary in two ways. The communication models described in [CBMT96]
and [KS11] rely on distributed executions; we consider additional communication models that
cannot be characterised by sets of distributed executions. The specifications of these models are
based on linear extensions of the causal ordering instead: the runs, as described in Chapter 2.
Runs are not distributed computations. The additional communication models are FIFO n-1,

51

FIFO 1-n, and FIFO n-n. FIFO n-n is often the first step to move away from synchronous
communication by decoupling the send and receive events. FIFO n-1 is sometimes used in the
literature [OSB13] without distinction from the classic FIFO order we call here FIFO 1-1 despite
their differences we study in this work.

3.2.2 Hierarchy of Operational Communication Models
In [EMR02], Engels et al. establish a hierarchy of communication models for message sequence
charts (MSC) that corresponds to ours. The peers are here called instances and are provided with
a given type of input and output message buffers. The buffers can be global, local to an instance,
associated to a pair of instances, or local to each message. Depending on the configuration of
the buffers for input and output, a great variety of communication models arises: it is reduced
by equivalence to a smaller set that includes the ones we study. The intuitions and examples of
implementations using buffers we present in Chapter 2 are reminiscent of the work in [EMR02].
Table 2.1 in Chapter 2 associates a communication model to each couple of ordering type (among
causal, local, and global) on send and receive events. This corresponds to the layout of buffers
in [EMR02] and the event orderings they rely on. Although similar, our work focuses on logical
specifications (Chapter 2) of the communication model and operational specifications based on
message histories (Chapter 4) while Engels et al. [EMR02] compare operational and practical
implementations using buffers. In particular, the Causal communication model do not emerge
from any layout of buffers, thus, it is not part of the hierarchy in [EMR02]. In our work,
we provide homogeneous logical (Chapter 2) and operational (Chapter 4) descriptions of the
communication models that make it possible to compare all the models and establish a complete
hierarchy. In [EMR02], Engels et al. consider an additional communication model called “inst2”
that is purely operational and requires an intermediate step between send and receive to transfer
a message through the appropriate buffers. It corresponds to a combination of FIFO 1-n and
FIFO n-1 we can specify thanks to the concept of composite communication models that we
develop in Chapter 5.

3.2.3 Realisability with Synchronous Communication
Charron-Bost et al. [CBMT96] and Kshemkalyani et al. [KS11] introduce the concept of real-
isability with synchronous communication. It is not exactly the RSC communication model
presented in Chapter 2 that we study in this work. In [CBMT96] and [KS11], it characterises
distributed executions whereas we characterise runs: a distributed execution is realisable with
synchronous communication when there exists a non-separated linear extension (run) of the un-
derlying causal ordering. In a “non-separated run”, as in “EI (Empty Interval)” computations,
no additional event shall interleave between a send event and the associated reception. Ignoring
internal actions, this corresponds to our actual specification of the point-to-point RSC model.
As for Causal, Charron-Bost et al. provide alternative characterisations of RSC. In particular,
they highlight the relations with actual synchronous communication. The RSC computations are
shown to be equivalent to computations that may be represented by space-time diagrams with
only vertical lines and computations that do not contain crowns. Given n couples of associated
send and receive events s1, . . . , sn and r1, . . . , rn : they form a crown if ∀i ∈ 2..n : si−1 precedes
ri but sn precedes r1.

3.2.4 Summary
Table 3.2 sums up the equivalence between our communication models and the literature: it
reveals that we unify and complete existing hierarchies.

52

Model in [CBMT96] and [KS11] Model in [EMR02] Model in our work

Non-separated linear exten-
sions of computations nobuf RSC

global FIFO n-n

inst2 FIFO 1-n and FIFO n-1

instout FIFO 1-n

instin FIFO n-1

CO (Causally Ordered) Causal

FIFO pair FIFO 1-1

non-FIFO msg Fully Asynchronous

Table 3.2: Communication Models of the Hierarchies found in the Literature and This Work. A
blank cell means the model is not specified and not part of the hierarchy.

Furthermore, our work takes multicast communication into account and adapts the definition
of RSC accordingly. We also prove the multicast counterpart of the hierarchy of communication
models and highlights the differences with the extended point-to-point hierarchy.

3.3 Formal Verification
There are different approaches to the formal verification of distributed systems that satisfy three
main needs:

• Verifying the validity of existing distributed systems and algorithms. This means proving
that existing systems satisfy their specifications. The verification is often static and relies
on proof assistants with a varying degree of ad-hoc automation.

• Designing distributed systems that are correct by construction. In other words, deriving
systems from their specifications. This usually relies on a top down approach with step-
wise mechanised refinement, possibly supplemented by certified translation to source code.
Refinement is at the heart of the design and comparison of the diverse specifications of
communication models in Chapter 6.

• Detecting and avoiding bugs in running implementations of distributed systems. In prac-
tice, implementations of distributed system might not have been constructed or proven to
be bug free and errors might occur after long running sessions. Runtime verification aims at
detecting or avoiding such errors at runtime. For example, during execution of the system,
the CrystalBall [YKKK09] approach consists in locally model checking a system for safety
violation over a state space that depends on recent snapshots of the neighbouring peers.
The state exploration predicts and avoid redundant interleaving of causally independent
chains. This sneak-peek at the future enables a peer to “steer” away from a path that
would eventually lead to safety violation. We do not focus on runtime verification in our
work and will not detail this approach any further.

53

3.3.1 Proof Assistance

Manual Proof

Formal verification of distributed algorithms has been conducted with success. However the
hypotheses on the communication are often fuzzy or unclear and one has to dive deep into the
proofs to identify them. For instance, [LMP04] studies the topology maintenance in structured
peer-to-peer networks. Different algorithms are studied, some assume FIFO channels and some
do not. It is unclear why it is required, and if it is required for all channels.

[LMW11, Lu13, AMW17] presents a full and complete verification of Pastry, an overlay and
routing protocol for the implementation of a distributed hash table, in TLA+, which has been
mechanically checked with the TLA+ Proof System [CDLM10]. It assumes asynchronous com-
munication with loss of message, and uses send and receive actions similar to the one presented
in this paper. Part of the complexity of the proof is the interleaving of actions caused by the
Fully Asynchronous delivery of messages, and it would be interesting to find if a more orderly
communication (e.g. FIFO 1-1 or Causal) would simplify it. Moreover, when the formal proof
only considers safety properties, the loss of messages has no influence. [Zav12] models Chord,
another algorithm for a distributed hash table, in Alloy but it contains no explicit communication
actions. Actually, distributed communication is modelled by means of shared state: peers are
allowed to read the states of other peers. The paper argues that this avoids many implementation
details while preserving the central concepts of Chord.

Assistance to the Writing of Proofs

Given the implementation of a distributed system, it is easier to prove it correct under a
simple reliable environment than under a more realistic fault model. Wicox et al. propose
Verdi [WWP+15], a framework that makes it possible to transform an implementation and
proofs of safety in Coq established under an ideal environment into an implementation that is
fault-tolerant under a more hostile environment. “Verified System Transformers” may enrish the
system in a modular way with fault models for crashes, message loss, duplication or reordering.

Implementing and proving systems in Coq in the first place still demands efforts. Rick-
etts et al. [RRJ+14] describe the domain-specific language Reflex and adapted Coq proof
tactics that have been designed alongside and alleviate the burden of manual proof in reactive
systems.

3.3.2 Correct-by-Construction Design of Distributed Systems

Refinement

In this work, in Chapter 6, we mechanise an extensive set of proofs of refinement between
specifications of communication models with the Event-B method. This work has also partially
been conducted in TLA+ with the TLA+ Proof System. Both methods offer their own specific
take on the concept of refinement. Chapter 5 and Chapter 6 respectively provide in-depth
presentations of the TLA+ specification language and the Event-B method.

The two classic characteristics of refinement of an abstract system by a concrete system
are the weakening of the preconditions and the compliance to the abstract system. Informally,
this means the concrete system might extend the abstract system with additional behaviour or
become more deterministic.

54

TLA+

In TLA+, the specification of a system (initial state and transition predicates) may also include
fairness properties. The refinement of a TLA+ specification by another is the logical implication
Specc ⇒ Speca where Specc and Speca are the concrete and abstract specifications, including
fairness. Notably, this means the concrete specification shall not introduce more deadlocks.
Sometimes, the structure of the transition predicates, called “actions” in TLA+, is similar enough
in both specification to allow for a refinement of the actions individually. In our work, all the
specifications for the communication models consist of two actions “send” and “receive”. A
model refines another when the predicate of the concrete “send” action implies the predicate of
the abstract “send” action and the concrete “receive” implies the abstract one.

In [Lam11, Lam10], Lamport describes the addition of Byzantine resilience to standard Paxos.
The proof is conducted by refinement of the distributed non-Byzantine algorithm and has been
mechanically checked with the TLA+ Proof System [CDLM10]. Another approach is presented in
[Lam01]. Three versions of Paxos (the classic one, disk Paxos and Byzantine Paxos) are derived
from an abstract, non-distributed algorithm.

Event-B

Unlike refinement in TLA+, refinement of Event-B specifications called “machines” always con-
sists of a refinement of the operations called “events”. The guards may be weakened and the
behaviour must conform to the abstract event. New events refine the special event called “skip”.
Variants might be used to avoid divergence. There is no fairness in Event-B.

The Event-B book [Abr10] presents several examples of refinements of distributed algorithms.
The “simple file transfer protocol” decomposes the atomic sending of a file in a sequence of send
events, and uses counters to coordinate the progression. This protocol is later extended to
handle loss and re-transmission with an alternating bit protocol. In this example, asynchronous
communication appears implicitly during refinement, and properties of the communication are
directly embedded in the resulting machine. A logical clock is used in the “routing algorithm
for a mobile agent”. It is used to order the messages sent by a mobile agent while it moves.
This example can be seen as the development of an ordered communication model down to a
concrete model that can be localised. Lastly, the “leader election on a connected graph network”
(also in [ACM03]) deals with the difficulties of splitting an atomic action (in a shared-memory
model) into several actions (in a message-passing model). This creates deadlocked states (a
situation called “contention” in the algorithm) where two nodes are each waiting for the other to
progress. This development is more concerned with providing a algorithmic solution in presence
of non-atomic actions, than with the development of non-atomicity (i.e. messages).

[AMS12, AMS14] presents the development of snapshot algorithms with Event-B. A context
network describes the static part (processes and channels). A machine system specifies the
send, receive and internal events. The development is done by refinement, starting with the spec-
ification of the snapshot problem, which is by essence a global property. A generic architecture
with asynchronous communication is presented, which allows the derivation of several algorithms.
At one point, the set of messages (which models fully asynchronous communication) is refined by
FIFO queues (which models ordered communication). This leads to another, simpler, snapshot
algorithm, which ends being the well-known Chandy-Lamport algorithm.

[RRM05] presents the development in Event-B of a topology maintenance algorithm for fault-
prone network. The abstract specification is described with two global variables, refinement
introduces events and splits the variables on each peer. At no point messages are explicitly
introduced and it is thus unclear what is the exact communication model that is required.
[SY10] presents the development of a total order broadcast using Event-B. Communication is

55

explicitly modelled by a broadcast event. The presented algorithm uses a unique sequencer which
numbers messages. As the goal is to develop a Byzantine immune algorithm, no hypothesis is
made on the communication. [ILTR11] describes the formal derivation of an algorithm for leader
election in Event-B. The abstract model is centralised, and refinement introduces distribution.
The behavioural part of the communication model first comprises two events, send and receive
which directly access the state variable of the other peers. Then, a new refinement introduces new
variables to decouple the peers and to get a “one-to-one asynchronous communication channel”.

[Bry11] presents the development of a consensus algorithm using stepwise refinement. The
last refinement introduces messages and send and receive events. The studied algorithm relies
on a synchronous timing model and is round-based, meaning that all messages sent in one round
are received at the end of this same round. Thus, the model splits a round in three successive
phases: “sending” (processes send messages), “receiving” (getting and handling all the messages
for each process), and “restarting” (resetting the state of the processes for the next round). The
transition between the phases are still global specifications, even if the paper suggests that this
could be further refined in local events.

[BTMK16] shows how to combine refinement and composition to transform a distributed
algorithm with local termination detection into an algorithm with global termination detection.
Their approach uses refinement to traditionally develop the algorithm, and then to introduce
the last step for global termination detection. This global termination detection is achieved with
a proved model of a global termination detector. Certified composition is used to combine the
detector and the algorithm. The correct-by-construction approach ensures that the extended
algorithm satisfies the same specification as the original one.

Translation and Code Generation

In this work, we do not consider code generation. The work carried in Chapter 6 where we
refine each communication model through advanced degrees of concretisation does not encom-
passes code generation because our goal is actually to compare the different specifications of the
communication models. Nevertheless, there are many approaches to code generation in formal
verification.

For example, Tounsi et al. present B2Visidia [TMM16], a tool that generates runnable Java
programs from the formal specification of a distributed algorithm in a subset of the Event-B
language. Thanks to annotations of models specified with the Event-B language that make it
compatible with the B2Visidia language, an adapted subset of the Event-B language, the tool
generates Java code that can be executed by the Visidia [BM03] software (a framework for
implementation and experimentation on distributed algorithms).

Mace [KAB+07] is a specification language and C++ implementations generator. Mace is
a C++ language extension that restricts how systems can be specified and allows to specify
the different layers. This results in high-performance implementations that preserve high level
structures which makes it possible to benefit from features such as model checking of Mace code.
For example, MaceMC [KAJV07], a model checker whose key feature deals with finding safety
properties that might hide behind liveness properties, is used on Mace specifications.

Splitting the specification of a distributed system or protocol into different layers is also at the
heart of the IronFleet [HHK+15] methodology. On the “distributed protocol” layer, verification
consists in classic refinement from the higher level specification. On the “implementation” layer,
the verification is Hoare-like and performed using Dafny [Lei10], a program verifier that can
generate C# programs.

56

Part II

Point-to-Point Communication

57

Chapter 4

Compatibility Checking of
Communicating Peers

The objective is to check the compatibility of the composition of a set of peers, given a beha-
vorial description of the peers and a communication model. To get an intuition, consider the
compatibility in terms of termination of the composition of two peers specified as follows:

User

1. Send the username

2. Send the PIN code

3. Receive a report

4. Terminate

Login service

1. Receive a username

2. Receive a PIN code

3. Check validity

4. Send a report

5. Terminate

In the synchronous world, the compatibility of these two peers is well defined: both match on
a first rendez-vous on the username, then proceed to a second rendez-vous on the PIN code, then
on the report, and eventually terminate. However, this is less clear in the asynchronous world.
Traditionally, from a distributed systems point of view, one considers that the communication
medium controls the message deliveries: this means it pushes messages up to the applications.
The applications cannot impose a delivery order. In our example, if the communication medium
ensures FIFO ordering, then the username is delivered before the PIN code (because they are
sent in this order) and both peer terminate: we say they are compatible. However, if the
communication medium is Fully Asynchronous, the PIN code may be delivered first. The login
service might be unable to cope with such a situation. From there, termination of the login
service is uncertain. Moreover, there is no guarantee that a report would ever be sent: the
user could wait for it and also never terminate. Whether a positive output exists or not, the
composition is deemed incompatible under Fully Asynchronous communication.

Checking the compatibility could consist in extensively building the set of all the runs of
the composition of peers, reducing it by filtering out the runs that are irrelevant in the chosen
communication model (according to the definition from Chapter 2), and eventually evaluating

59

!m1
p1 · · · !m2

p1 · · · ?m2
p2 · · · · · · · · · FIFO 1-1 compatible

not containing ?m1
p2

!m1
p1 · · · !m2

p1 · · · ?m2
p2 · · · ?m1

p2 · · ·· · · FIFO 1-1 incompatible

Verification at time t

Figure 4.1: Two Runs that Illustrate the Oracle Issue in Compatibility Checking. The validity
of the reception of m2 on p2 depends on the future in the run.

properties on this set (non-emptiness, temporal properties, . . .). Although this solution would
make use of the exact definitions of the communication models in Chapter 2, this is not satisfac-
tory because they are about whole runs. They are actually oracles. A reception is indeed valid at
a given point with regard to all events: events that happen before and after that reception. For
instance, consider FIFO 1-1 and two messages m1 and m2 sent by the same peer in this order:
the reception of m2 on a peer p at time t is correct only if p never receives m1 later at time
t ′ > t . This means that the verification of compatibility at time t depends on events that have
yet to happen. Figure 4.1 illustrates this example. The verification of compatibility has to be
of practical use: a communication model must decide to deliver a message on past events only.
Therefore, our description of the communication models should be operational instead. It should
also remain as abstract as possible, not to preclude implementations, so that the compatibility
can be ascertained for any practical implementation. The chosen formalisation is based on mes-
sage histories: they contain information about the formerly sent messages that are of interest to
build valid runs.

The specifications of the peers of a composition, the communication models, the overall system
in which they interact, and the compatibility properties constitute a framework for the verifi-
cation of the compatibility of communicating peers. The first section describes and formalises
this whole framework. The second section demonstrates its validity in terms of correctness and
completeness.

Correctness The runs generated by the framework match the definitions of the communication
models in Chapter 2.

Completeness The framework generates all possible runs that match these definitions and the
behaviour of the peers that are involved in the composition.

A peer is specified by a transition system labeled with internal or communication events.
The correctness and completeness of the framework rely on well behaved peers that prevent the
communication model from having to glimpse into the future. Since a communication model
is also specified by a transition system labeled with communication events, modelling the com-
munication simply consists in an operation close to a synchronous product of labeled transition
systems: several peers and a communication model. The runs are the sequences of transitions of
the traces of the resulting system. Checking the compatibility of a composition of peers under a
communication model consists in evaluating the properties of a given compatibility criterion in
this system.

The mechanisation of this framework in TLA+ is described in the next chapter.

60

4.1 Description and Formalisation of the Framework

4.1.1 Channels
Let C be an enumerable set of channels. A channel is a label on messages. The content of
messages, that is to say the data they carry, is irrelevant outside the scope of peers’ internal
behaviour. Going back to the introduction example with the user and the login service, the
actual username, the actual PIN code, and the content of the report do not matter at all when
it comes to the communication and compatibility checking. This information is not accessible
to the communication model, as if inside an opaque parcel. The channel of a message plays the
role of a label on the opaque parcel: it enables the communication model to distinguish messages
that would otherwise look identical from this external viewpoint. In the framework, messages do
not have an explicit destination peer. The peers send messages through channels instead. In our
example, the user would send its username on a channel username, its PIN code on a channel
PIN, and the login service would report on a report channel. Here, the different channels make
it possible to decide on the compatibility: under the Fully Asynchronous communication model,
it reveals that the delivery of the username and PIN code in the reverse order poses a problem
because the specification of the login service refers to a specific reception order from the two
channels.

The channels are not restricted to one sender and one receiver. Different peers can send
messages on the same channel. Likewise, different peers can receive a message from the same
channel. Yet, it is nonetheless a point-to-point communication abstraction because a given
message still has exactly one sender and at most one receiver. If a single message is sent on a
given channel and several peers expect to perform a reception from this channel, only one of them
will be able to receive the message. This allows for richer and more elegant system specifications
where a message can be received by a peer that depends on the state of the communication
medium. For example, it is possible to describe arbitrary client-server and publish-subscribe
architectures naturally.

4.1.2 Specification of Compositions of Peers
Specification of Individual Peers

Peers are specified using transition systems labelled by communication events or internal actions.
This provides simplicity and flexibility in theoretical and practical uses. It is adapted to verifi-
cation techniques like model checking. Optionally, in order to ease the specification of peers, the
transitions systems can be derived from process calculi terms such as CCS [Mil82] as detailed
in Section 5.3.1 in the next chapter. Communication models are also specified using transition
systems. The communication interactions are detailed in 4.1.4.

Definition 18 (Peer Specification). A peer is specified by a labeled transition system (S , I ,R,L)
where:

• S is the set of states.

• I is the set of initial states: I ⊆ S .

• L is a (enumerable) set of labels: L ⊆ ({Send,Receive} × C) ∪ Internal.

• R is the transition relation: R ⊆ S × L× S .

61

“User” peer specification:

s0 s1 s2 s3
username ! PIN ! report ?

“Login service” peer specification:

s0 s1 s2 s3 s4
username ? PIN ? τ report !

Figure 4.2: Representation of the Specification of the two Peers from the Introduction Example

s0 s1 s2 s3 s4

PIN ?

username ? PIN ? τ report !

Figure 4.3: A Specification of the Login Service that discards messages from the PIN channel
until a username is received.

Given a channel c, the labels (Send, c) and (Receive, c), alternatively denoted c! and c?, are
interpreted as the sending of a message on channel c, and the reception of a message from chan-
nel c. Internal is interpreted as any other internal action that does not involve communication
and alternatively denoted τ .

Figure 4.2 provides a graphical representation of the transition systems that specify the two
peers of the introduction example: the user and the login service.

Listened Channels

As mentioned in the introduction of this chapter, the communication medium controls the mes-
sage deliveries. This is why the composition of the two peers of the running example is incom-
patible under certain communication models that might push unexpected messages. In order to
solve this issue, the specifications of the peers could be strengthened to handle the edge cases.
Consider the specification of the login service depicted in Figure 4.2. Under Fully Asynchronous
communication, a message from the PIN channel might be pushed towards the login service when
it expects a message from the username channel in state s0. A very simple workaround consists
in discarding all the messages from the PIN channel until an actual username is received. The
specification is an additional (s0, PIN ?, s0) transition as shown in Figure 4.3. Being ready to
handle all kinds of messages makes sense in this situation. If the composition involved other
peers that exchanged unrelated data through independent channels, there would also be a risk to
deliver unexpected messages to the user and login service. However, this time, making sure the
login service is able to cope with all the messages that may transit through the communication
medium is inappropriate: it would mean the specification of a peer should change according to
the exact environment it takes part in. The communication medium should not push such mes-
sages that belong to a different sub-environment of communication. This problem arises from
the absence of an explicit destination peer on each message.

The concept of listened channels provides a sensible compromise between adapting the speci-
fications to the environment and explicit destination peers. The communication medium pushes

62

a message up to a peer only if a reception from the channel on which this message transits is
specified in the current state of the peer. This means that in state s0 of the peer from Figure 4.3,
the communication medium can push messages in transit on channels username and PIN but it
may behave as if messages in transit on other channels did not exist.

Definition 19 (Listened Channels). Let P , (S , I ,R,L) be the specification of a peer and s a
state in S . The listened channels LCP (s) of P in s is the set of channels involved in possible
receptions from s.

LCP (s) , {c ∈ C | ∃s ′ ∈ S : (s, (Receive, c), s ′) ∈ R}

There is however a caveat. Going back to the specification Plogin of the login service in Fig-
ure 4.2, username is the only listened channel in s0: LCPlogin(s0) = {username}. Considering
that the communication medium, depending on the properties it models, may behave as if mes-
sages transiting on non-listened channels did not exist, this means that the login service chooses
a delivery order. This is unrealistic and negates the purpose of compatibility checking.

The specification of the login service in Figure 4.2 is legal yet not suited for compatibility
checking unlike the alternative specification P ′login in Figure 4.3. In the latter, LCP ′

login
(s0) =

{username, PIN}. Channel PIN is indeed expected to be listened to since the login service has
future interests in it. The absence of username in LCP ′

login
(s1) = {PIN} does not pose a problem

because from state s1, the login service is not interested in messages transiting on username
anymore. This channel is then no different from any other independent channel the peer does
not listen to. We say that such specifications are stable with regard to interest: the set of listened
channels (in states involving receptions) can only decrease. If a peer is not interested in a channel
in a given state (i.e. it is not listening to it), then it will never be interested in it later.

Definition 20 (Stability with regard to Interest). The specification P , (S , I ,R,L) of a peer
is stable with regard to interest if and only if the set of listened channels decreases on states
involving receptions.

∀s, s ′ ∈ S : (s, s ′) ∈ R+ ⇒
(

LCP (s) = ∅ (no receptions in s)
∨ LCP (s ′) ⊆ LCP (s) (less channels of interest)

)
R+ is the transitive closure of {(s, s ′) ∈ S 2 | ∃l ∈ L : (s, l , s ′) ∈ R}.

4.1.3 Specification of Communication Models
The specification of a communication model is a labelled transition system that is similar to the
specifications of peers. The transitions are internal or communication events on channels. There
is a difference from the specifications of peers: events are localised on peers. A reception is also
characterised by a set of listened channels. This may be taken into account depending on the
properties of the communication.

Definition 21 (Communication Model Specification). A communication model is specified by a
labeled transition system (S , I ,R,L) where:

• S is the set of states.

• I is the set of initial states: I ⊆ S .

63

• L is an enumerable set of labels:

L ⊆

 Internal
∪ P × {Send} × C
∪ P × {Receive} × C × 2C


• R is the transition relation: R ⊆ S × L× S .

Given a peer p, a channel c, and a set of channels C , the labels (p,Send, c) and
(p,Receive, c,C), alternatively denoted p, c! and p, c?,C , are interpreted as p sending a mes-
sage on channel c, and p receiving a message from channel c while listening to channels in C .
Internal is interpreted as any other internal action of the communication model that does not
actually involve any interaction with the peers. It is alternatively denoted τ .

Figure 4.4 depicts a simple communication model that handles, without any particular or-
dering, messages on channels username and PIN. It is limited to two messages in transit. s0
corresponds to the state without any message in transit, a message on each channel in s5, two
messages on PIN in s4, and so on. The actual definition of a communication model depends on
its characteristics and examples are provided in Section 4.1.6.

4.1.4 Overall Product System
Definition 22 (Specification of a System). Let (Pp)p∈P , (Sp , Ip ,Rp ,Lp)p∈P the specifications
of the peers in P and CM , (SCM, ICM,RCM,LCM) the specification of the communication model.

The specification of the overall system consisting of the composition of peers under this com-
munication model is the product of the (Pp)p∈P and CM with synchronisation on the send (resp.
receive) transitions of a peer and the communication model. It is a transition system (S , I ,R)
where:

• S is the set of states:
S , SCM ×

∏
p∈P

Sp

• I is the set of initial states:
I , ICM ×

∏
p∈P

Ip

• R is the transition relation:

R ,



(s, s ′) ∈ S × S

where:
s , (sCM, (sp)p∈P)
s ′ , (s ′CM, (s ′p)p∈P)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(
Stuttering
s = s ′

)

∨



Internal action(
(sCM, Internal, s ′CM) ∈ RCM

∧ ∀p ∈P : sp = s ′p

)

∨


sCM = s ′CM

∧ ∃p ∈P :
(sp , Internal, s ′p) ∈ Rp

∧ ∀q ∈P \ {p} : sq = s ′q





∨


Communication

∃p ∈P : ∃c ∈ C :
send(s, s ′, p, c)

∨ receive(s, s ′, p, c)




64

s0

s1
u

s2
P

s3
u u

s5
u P

s5
P P

(_, username!)

(_, PIN!)

(_, username?,_)

(_, PIN?,_)

(_, username!) (_, username?,_)

(_, PIN!)(_, PIN?,_)

(_, PIN!)

(_, username!)

(_, username?,_)

(_, PIN?,_)

Figure 4.4: Specification of a Fully Asynchronous Communication Model with Two Channels
and Limited to Two Messages in Transit. The two channels are username and PIN. Here, _ in a
tuple means any possible value for the peer or set of listened channels. In each state, messages in
transit are depicted in a box: u for messages transiting on username, P for messages transiting
on PIN.

65

where the rendez-vous on send actions in peer p and the communication model is:

send(s, s ′, p, c) ,


(
sp , (Send, c), s ′p

)
∈ Rp

∧
(
sCM,

(
p, (Send, c)

)
, s ′CM

)
∈ RCM

∧ ∀k ∈P \ {p} : (sk , Internal, s ′k) ∈ Rk


and the rendez-vous on receive actions in peer p and the communication model is:

receive(s, s ′, p, c) ,


(
sp , (Receive, c), s ′p

)
∈ Rp

∧
(
sCM,

(
p, (Receive, c),LCPp (sp)

)
, s ′CM

)
∈ RCM

∧ ∀k ∈P \ {p} : (sk , Internal, s ′k) ∈ Rk


Parallel independent communication cannot happen: sending and receiving a message is a

rendez-vous between a send or receive transition of one peer and the communication model.
Contrary to synchronous communication between peers where a rendez-vous occurs between a
send transition and a receive transition, the send and receive operations are here distinct.

In Figure 4.5, we consider simplified specifications of the user and login service: we focus on
the transmission of the username and PIN code only. The login service is stable with regard
to interest. It is ready to receive messages in any order from both channels. The figure shows
the specification of the composition of the two peers under the communication model from
Figure 4.4. This communication model does not guarantee that messages are received in any
particular order. Hence, there are two branches in the system: one in which the username is
received before the PIN code, one in which the PIN code has been received before and discarded
by the login service. The verification of the compatibility of the composition under the particular
communication model consists in verifying if properties of interest are satisfied by this system.

4.1.5 Compatibility Checking
Compatibility depends on specific criteria. The same composition under the same communication
model might be compatible or not depending on the selected criterion. In the running example
depicted in Figure 4.5, several compatibility criteria (and combination of criteria) are significant:

1. Does the user eventually terminate?

2. Does the login service eventually terminate?

3. Do all the peers eventually terminate?

4. Are there messages eventually left in transit?

Termination of the user means it has reached state u2 of its specification, after all messages
have been sent. Termination of the login service means it has reached state l2 of its specification,
after all messages have been received. This is an explicit specification decision. Assuming
minimal progress, the overall system eventually ends up either in state (s0, u2, l1) or (s0, u2, l2).
In both cases, it corresponds to the user in u2 (termination) and the communication model in s0
(the state corresponding to an empty network of messages in transit). However, the login service
can be stuck in state l1: this happens when the message on PIN is received first.

66

Simplified user:
u0

u1

u2

username !

PIN !

Simplified login service:

l0

l1

l2

PIN ?

username ?

PIN ?

Overall system under the communication model from Figure 4.4:

s0, u0, l0 s1, u1, l0
u

s5, u2, l0
u P

s0, u1, l1 s2, u2, l1
P

s0, u2, l2

s1, u2, l0
u

s0, u2, l1

Figure 4.5: Transition system associated to the composition of simplified versions of the user and
login service under the communication model from Figure 4.4. According to the definition of an
overall system, a state is a tuple whose first element corresponds to a state of the communication
model, the second and third to states in the two specifications of the peers. In each state,
messages in transit are depicted in a box: u for messages transiting on username, P for messages
transiting on PIN.

67

1. The user eventually terminates: OK.

2. The login service may not terminate.

3. A peer may not terminate.

4. Eventually, there are not any messages left: OK.

Had the peers been composed under a communication model that imposes that messages
are delivered in the order of their emission (such as FIFO 1-1), the branch containing states
(s5, u2, l0), (s1, u2, l0), and (s0, u2, l1) would not exist in the system and all four compatibility
properties would be satisfied.

Specifying termination requires to identify subsets of states in the specifications of peers.
Similarly, identifying faulty states following unexpected receptions makes sense. For example,
when the PIN code is received before the username, the login service remains in the same state
hoping to function normally from then. It could instead switch to a separate faulty state and
stop doing anything else. Once a peer has reached a terminal or faulty state, it shall remain
in it and stop sending and receiving messages. Consequently, distinguishing between different
terminal (resp. faulty) states is not necessary and we therefore collapse them into one terminal
state and one faulty state usually denoted 0 and ⊥.

Additional compatibility properties include the absence of communication deadlocks. Strictly
speaking, termination or the faulty state are cases of deadlock that are handled by dedicated
compatibility criteria. A communication deadlock consists in reaching a stable state that is not
termination or fault. In the running example, state (s0, u2, l1) corresponds to a communication
deadlock: a message on PIN is expected by the login service but the communication model never
provides that message. This compatibility property makes sense in systems that are not supposed
to stop.

Definition 23 (Compatibility Properties). A compatibility property is given as an LTL formula
over a system. Let System , (S , I ,R) be a system and s , (sCM, (sp)p∈P) a state in S . Let 0
and ⊥ denote the terminal and faulty states in the specifications of the peers.

The following state-wise properties are defined:

• All the peers are in the terminal state:

0∀ , ∀p ∈P : sp = 0

• Peer p is in the terminal state:
0p , sp = 0

• An unexpected message has been delivered:

⊥∃ , ∃p ∈P : sp = ⊥

The compatibility properties include the following classic temporal properties the system may
satisfy assuming minimal progress:

System termination The system always reaches the terminal state:

System |= ♦�0∀

68

Peer termination Peer p always reaches the terminal state:

System |= ♦�0p

No faulty receptions No unexpected reception ever occurs:

System |= �¬⊥∃

Absence of communication deadlock No state is stable except termination or fault:

System |=

 ∀s ∈ S : �♦¬s
∨ ♦�0∀
∨ ♦�⊥∃


The list of compatibility properties is not exhaustive. Ad-hoc state or temporal properties

might be of interest.

4.1.6 Specification of Communication Models with Message Histories
Specifications for communication models (Definition 21) corresponding to the seven communi-
cation models from Chapter 2 are provided in this section. The conformance to the reference
definitions of the communication models in Chapter 2 is studied in the next section.

Common Layout

All the specifications follow a uniform layout that relies on a data structure called “message
history”. A message carries a message history: it contains previous messages that might help
enforce the ordering properties of a communication model. The state of a communication model
consists of:

• a network (a set) of messages in transit,

• either a global history (common to all the peers) or localised histories (one per peer) of
messages serving as a reference for the histories of newly introduced messages.

More precisely, a message is comprised of:

• the channel on which it has been sent,

• its sender,

• the set of previously sent messages it depends on (the history).

The reception of a message is possible if its history does not contain a message that is
still in transit, with mitigations on the exact conditions depending on the ordering policy. For
example, the restriction may be applicable to messages that have been sent by the same peer
only (FIFO 1-n). Especially, the listened channels filter out forbidden receptions in several
communication models. In other communication models, they have no influence.

69

Building Message Histories

Initially the global (resp. local histories) are empty. A message carries the content of the global
history (resp. local history of the sender) at the time of emission. Once the message is sent, the
global history (resp. local history of the sender) carries that message. For example, consider a
communication model with a global history H containing two messages m1 and m2 and a network
net containing m2. The following diagram shows the evolution of the state variables when a new
message is sent by peer p on channel c.

net = {m2}
H = {m1,m2}

p,c!−−→
net =

{
m2,

(
c, p, {m1,m2}

)}
H =

{
m1,m2,

(
c, p, {m1,m2}

)}
When a message is received, the network evolves (the message in question is removed) but

the histories remain unchanged. In the specification of the Causal communication model (relying
on local histories) however, more messages are added to the history of the receiver during the
reception. This models the aspect of causal dependency that corresponds to the transmission of
a message from one peer to another. The message that is received and the messages carried in
its history are added to the history of the receiver. For example, consider the following state in
the Causal communication model and the reception of a message from channel c on p3

m1 , (a, p1,∅)
m2 , (b, p1, {m1})
m3 , (c, p2, {m1,m2})

net = {m3}
H1 = {m1,m2}
H2 = {m1,m2}
H3 = {m1}

p3,c?,{a,b,c}−−−−−−−−→

net = ∅
H1 = {m1,m2}
H2 = {m1,m2}
H3 = {m1,m2,m3}

In brief, the message histories are designed as operational descriptions based on messages of
the three kinds of orderings on events presented in Chapter 2. The validity of this statement is
checked in the next section.

Event ordering Message history

Total ordering (runs) Global history

Local ordering on peers Local histories without up-
date at reception

Causal ordering (distributed
executions)

Local histories with up-
date at reception (sometimes
called “causal histories”)

The histories have a second role: they identify messages. Since history variables increase when
a message is sent and never decrease afterwards, the message history carried by each message is
unique.

Model-specific Properties

The Fully Asynchronous and Realisable with Synchronous Communication models only make
use of the message histories to identify messages: there is not any particular ordering property

70

involved at reception. It does not matter in Fully Asynchronous communication and there is at
most one message in transit in RSC.

The specification of the other five communication models differ on two elements related to
the ordering of events summed up in Table 2.1 on page 38:

1. The use of local histories or a global history. This depends on the ordering on send events.
If the characteristic ordering property of the communication model involves a global order
on the emissions, then a global history is used such as in FIFO n-1 and FIFO n-n. If it
involves a local order per peer, local histories are used such as in FIFO 1-1 and FIFO 1-n
and the provenance of messages are compared. Finally, causal ordering (Causal model)
requires local histories with the previously described update at reception.

2. Whether or not the listened channels are taken into account to decide on which messages
in transit might prevent a reception. This depends on the ordering on receive events. If the
ordering property of the communication model involves a global order on the receptions
such as in FIFO n-n and FIFO 1-n, the communication model shall not selectively ignore
some messages in transit based on the listened channels. However, when the communication
model only involves local ordering of the receptions, it is allowed to deliver a message whose
history contains messages in transit on channels that are not listened to. As explained
in 4.1.2 and proved in the next section, it makes sense when dealing with peers that are
stable with regard to interest.

Formal Specification

Definition 24 (Specification of the Communication Models with Message Histories). Let the
set of operational messagesM , ∅∪C ×P×2M associated to the peers in P and the channels
in C . The specification of the communication models are:

RSC MRSC , (SRSC , IRSC ,RRSC ,L)
FIFO n-n Mnn , (Snn , Inn ,Rnn ,L)
FIFO 1-n M1n , (S1n , I1n ,R1n ,L)
FIFO n-1 Mn1 , (Sn1, In1,Rn1,L)
Causal Mc , (Sc , Ic ,Rc ,L)
FIFO 1-1 M11 , (S11, I11,R11,L)
Fully Asynchronous Ma , (Sa , Ia ,Ra ,L)

where

L ⊆

 Internal
∪ P × {Send} × C
∪ P × {Receive} × C × 2C


The state contains the network of messages in transit and global or local message histories.

The network and message histories are subsets of messages (2M).
Some models have global histories:

Network Global history
Snn ⊆ 2M × 2M
Sn1 ⊆ 2M × 2M

Inn = In1 = (∅ , ∅)

71

Some models have local histories (one per peer):

Network Local histories
SRSC ⊆ 2M × (P → 2M)
S1n ⊆ 2M × (P → 2M)
Sc ⊆ 2M × (P → 2M)
S11 ⊆ 2M × (P → 2M)
Sa ⊆ 2M × (P → 2M)

IRSC = I1n = Ic = I11 = Ia =
(
∅ , (∅)p∈P

)
The specification of the communication transitions that guarantee the different ordering poli-

cies are:

RRSC ,




 (net , (Hp)p∈P),

(p,Send, c),
(net ′, (H ′p)p∈P)


∣∣∣∣∣∣∣∣

net = ∅
∧ net ′ = net ∪

{
(c, p,Hp)

}
∧ H ′p = Hp ∪

{
(c, p,Hp)

}
∧ ∀q ∈P \ {p} : H ′q = Hq

 Send

∪


 (net , (Hp)p∈P),

(p,Receive, c,L),
(net ′, (Hp)′p∈P)


∣∣∣∣∣∣∣∣
∃(c1, p1, h1) ∈ net :

c1 = c
∧ net ′ = net \ {(c1, p1, h1)}
∧ ∀q ∈P : H ′q = Hq

 Receive



Rnn ,




 (net ,H),

(p,Send, c),
(net ′,H ′)

∣∣∣∣∣∣ net ′ = net ∪
{

(c, p,H)
}

∧ H ′ = H ∪
{

(c, p,H)
}  Send

∪


 (net ,H),

(p,Receive, c,L),
(net ′,H ′)


∣∣∣∣∣∣∣∣∣∣∣∣

∃(c1, p1, h1) ∈ net :
c1 = c

∧
(
¬∃(c2, p2, h2) ∈ net :
(c2, p2, h2) ∈ h1

)
∧ net ′ = net \ {(c1, p1, h1)}
∧ H ′ = H


Receive



Rn1 ,




 (net ,H),

(p,Send, c),
(net ′,H ′)

∣∣∣∣∣∣ net ′ = net ∪
{

(c, p,H)
}

∧ H ′ = H ∪
{

(c, p,H)
}  Send

∪



 (net ,H),
(p,Receive, c,L),
(net ′,H ′)


∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∃(c1, p1, h1) ∈ net :
c1 = c

∧

 ¬∃(c2, p2, h2) ∈ net :
c2 ∈ L

∧ (c2, p2, h2) ∈ h1


∧ net ′ = net \ {(c1, p1, h1)}
∧ H ′ = H


Receive


72

R1n ,




 (net , (Hp)p∈P),

(p,Send, c),
(net ′, (H ′p)p∈P)

∣∣∣∣∣∣
net ′ = net ∪

{
(c, p,Hp)

}
∧ H ′p = Hp ∪

{
(c, p,Hp)

}
∧ ∀q ∈P \ {p} : H ′q = Hq

 Send

∪



 (net , (Hp)p∈P),
(p,Receive, c,L),
(net ′, (Hp)′p∈P)


∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∃(c1, p1, h1) ∈ net :
c1 = c

∧

 ¬∃(c2, p2, h2) ∈ net :
p1 = p2

∧ (c2, p2, h2) ∈ h1


∧ net ′ = net \ {(c1, p1, h1)}
∧ ∀q ∈P : H ′q = Hq


Receive



R11 ,




 (net , (Hp)p∈P),

(p,Send, c),
(net ′, (H ′p)p∈P)

∣∣∣∣∣∣
net ′ = net ∪

{
(c, p,Hp)

}
∧ H ′p = Hp ∪

{
(c, p,Hp)

}
∧ ∀q ∈P \ {p} : H ′q = Hq

 Send

∪



 (net , (Hp)p∈P),
(p,Receive, c,L),
(net ′, (Hp)′p∈P)



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∃(c1, p1, h1) ∈ net :
c1 = c

∧


¬∃(c2, p2, h2) ∈ net :

p1 = p2
∧ c2 ∈ L
∧ (c2, p2, h2) ∈ h1


∧ net ′ = net \ {(c1, p1, h1)}
∧ ∀q ∈P : H ′q = Hq


Receive



Rc ,




 (net , (Hp)p∈P),

(p,Send, c),
(net ′, (H ′p)p∈P)

∣∣∣∣∣∣
net ′ = net ∪

{
(c, p,Hp)

}
∧ H ′p = Hp ∪

{
(c, p,Hp)

}
∧ ∀q ∈P \ {p} : H ′q = Hq

 Send

∪



 (net , (Hp)p∈P),
(p,Receive, c,L),
(net ′, (Hp)′p∈P)



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∃(c1, p1, h1) ∈ net :
c1 = c

∧

 ¬∃(c2, p2, h2) ∈ net :
c2 ∈ L

∧ (c2, p2, h2) ∈ h1


∧ net ′ = net \ {(c1, p1, h1)}
∧ H ′p = H ′p ∪ h1 ∪ {(c1, p1, h1)}
∧ ∀q ∈P \ {p} : H ′q = Hq


Receive



Ra ,




 (net , (Hp)p∈P),

(p,Send, c),
(net ′, (H ′p)p∈P)

∣∣∣∣∣∣
net ′ = net ∪

{
(c, p,Hp)

}
∧ H ′p = Hp ∪

{
(c, p,Hp)

}
∧ ∀q ∈P \ {p} : H ′q = Hq

 Send

∪


 (net , (Hp)p∈P),

(p,Receive, c,L),
(net ′, (Hp)′p∈P)


∣∣∣∣∣∣∣∣
∃(c1, p1, h1) ∈ net :

c1 = c
∧ net ′ = net \ {(c1, p1, h1)}
∧ ∀q ∈P : H ′q = Hq

 Receive


4.1.7 Specification of Capped Asynchronous Communication
It is also possible to count and/or limit the number of messages in transit, for the full network
or on its projections (number of messages in transit for each channel). A counter of messages in

73

transit is updated during the send and receive transitions. This counter can be used to ascertain
through a dedicated compatibility property if the number of messages in transit is effectively
capped. A cap that prevents send transitions can be used to quickly check if a system may
be realisable. Note that this implies that the emission of a message is not always enabled. In
particular, the specification of the RSC communication models correspond to an asynchronous
communication model where the bound on the number of messages in transit is 1.

4.2 Conformance to the Specifications using Distributed
Executions

This section explains why the operational specifications of the communication models in Def-
inition 24 are consistent with the characterisations using runs of events in the definitions of
Chapter 2. We identify necessary conditions to prove the correctness and completeness of each
communication model.

The specification of a communication model is correct when the traces of a composition of
peers under that model (Definition 22) correspond to valid runs of events under this model. In
some cases (namely FIFO n-1, Causal, and FIFO 1-1), we assume the peers in the composition
are stable with regard to interest (Definition 20).

The specification of a model is complete when all the runs that are valid according to the
definition from Chapter 2 can be generated in a composition of peers under this model. We
actually restrict the property to runs in which all sent messages are eventually received and in
the same special cases as for correctness, we assume systems with mono-receptor channels only.

Correctness and completeness assume a link between the overall product systems (composi-
tions of peers under a communication model) and runs of events. Runs are sequences of events
based on messages; the traces of the product system are sequences of states and the specification
of the peers and communication model on which it is based are labelled by communication events
on channels. We first describe how to formally link these two views.

Channels and messages As previously established, the message histories in the specifications
of the communication models serve as unique identifiers for messages. Therefore we choose
to work on runs of messages inM. From now on, in this section, M ,M.

Traces and runs Given a trace of the product system between a composition of peers and
a communication model, the corresponding run is based on the sequence of associated
transitions in the specification of the communication model we call the dual of the trace.
We consider maximal traces: they are all infinite because the system stutters.

Definition 25 (Maximal Trace of a System). Given the specification of a system (S , I ,R). A
maximal trace is an infinite sequence of states (si)i∈N such that s0 ∈ I and ∀i ∈ N : (si , si+1) ∈ R.
We denote traces((S , I ,R)) the set of maximal traces of (S , I ,R):

traces((S , I ,R)) ,
{

(si)i∈N ∈ (N→ S)
∣∣∣∣ s0 ∈ I
∧ ∀i ∈ N : (si , si+1) ∈ R

}
Definition 26 (Dual of a trace). Let CM , (SCM, ICM,RCM,LCM) the specification of a com-
munication model (Definition 24), (Pp)p∈P , (Sp , Ip ,Rp ,Lp)p∈P the specifications of peers and
(S , I ,R) the specification of the composition of these peers under CM.

∀(si)i∈N ∈ traces((S , I ,R)) :

74

dual is the least fixed point solution to:

dual((si)i∈N) = event(s0, s1) · dual((si+1)i∈N)

where · is a sequence constructor, ∅ is a value such that ∀seq : ∅·seq = seq, and event extracts
the communication or internal event that happens between two states in the product system:

∀s, s ′ ∈ S :


∃sP , s ′P ∈

∏
p∈P Sp

∃sCM ∈ SCM
∃s ′CM ∈ SCM

∃net ,net ′, h, h ′ ∈ 2M
:


sCM = (net , h)

∧ s ′CM = (net ′, h ′)
∧ s =

(
sP , sCM

)
∧ s ′ =

(
s ′P , s

′
CM
)

⇒

event(s, s ′) ,



∅ if

 ∀p ∈P : sp = s ′p

∧
(

sCM = s ′CM
∨ (sCM, Internal, s ′CM) ∈ SCM

) 
(Internal, p) if ∃p ∈P :


sCM = s ′CM

∧ (sp , Internal, s ′p) ∈ Rp
∧ sp 6= s ′p
∧ ∀q ∈P \ {p} : sq = s ′q


(Send, p,m) if

 ∃p ∈P
∃c ∈ C
∃m ∈M

 :
(

send(s, s ′, p, c)
∧ net ′ \ net = {m}

)

(Receive, p,m) if

 ∃p ∈P
∃c ∈ C
∃m ∈M

 :
(

receive(s, s ′, p, c)
∧ net \ net ′ = {m}

)

The set of all duals of maximal traces of the system (S , I ,R) is:

seqruns((Pp)p∈P ,CM) , dual
(

traces(S , I ,R)
)

For every couple of consecutive states s and s ′, the associated event is computed. If a message
m has been removed from the network, it is a (Receive,,m) event. If a message m has been added
to the network, it is a (Send,,m) event. Depending on which peer p may have changed, the event
is localised. If the state of a peer p has changed but the state of the communication has not,
it corresponds to an internal event (Internal, p). When all the peer remain in the same state,
even if the state of the communication has changed, no new event is added to the sequence (∅)
because a change in the communication model is not an actual event in the distributed system:
it cannot be localised.

The dual of a trace is a sequence of tuples containing the information that characterises the
events that happen in a trace. The order in the sequence corresponds to the total ordering of
events in a run. Yet, such sequences do not exactly fit the definition of runs from Chapter 2.
A run is composed of totally ordered events and labelling functions that associate peers and
messages. We need to bridge the gap between the operationnal specifications of communication
models and the structural definitions in order to assert the correctness and completeness.

Definition 27 (Run of a Sequence). Given N ∈ N ∪ ∞ and a sequence (si)i∈1..N ∈ 1..N →(
{Internal} × P

)
∪
(
{Send,Receive} × P × M

)
, the run associated to that sequence is

run((si)i∈1..N) , (E , (≤p)p∈P ,≺c ,≺σ, com,peer,mes) such that:

• E = {si | i ∈ 1..N }

75

• ∀p ∈P : (Internal, p) ∈ E ⇒
(

com((Internal, p)) = Internal
∧ peer((Internal, p)) = p

)

• ∀(c, p,m) ∈ ({Send,Receive} ×P ×M) : (c, p,m) ∈ E ⇒

 com((c, p,m)) = c
∧ peer((c, p,m)) = p
∧ mes((c, p,m)) = m


• ∀p ∈P : ∀i , j ∈ 1..N : si ≤p sj ⇔ i ≤ j ∧ peer(si) = peer(sj) = p

• ≺c derives from (≤p)p∈P according to the definition of a distributed execution (Defini-
tion 1).

• ∀i , j ∈ 1..N : si ≺σ sj ⇔ i ≤ j

Let CM , (SCM, ICM,RCM,LCM) the specification of a communication model from Defini-
tion 24, (Pp)p∈P , (Sp , Ip ,Rp ,Lp)p∈P , the set of runs associated to the composition of the
peers under this communication model is:

runs((Pp)p∈P ,CM) , run(seqruns((Pp)p∈P ,CM))

In the following, we do not distinguish the duals of maximal traces and their associated runs
anymore. We therefore consider the sets of actual runs associated to a composition under a
communication model and we compare them to the runs that define the communication models
in Chapter 2. Furthermore, when the definition of the labelling functions and orders of a run
are omitted, we assume the three orders on runs are all denoted ≤, ≺c , ≺σ and the labelling
function are denoted com, peer, and mes.

4.2.1 Correctness
Theorem 28 (The Framework Generates Point-to-Point Runs). Given (Pp)p∈P specifications
of peers.

∀M ∈ {MRSC ,Mnn ,M1n ,Mn1,Mc ,M11,Ma} : runs((Pp)p∈P ,M) ⊆ RunP2P

Proof.

1. Messages are unique.
OK the histories expand when a new message is introduced and never decrease afterwards

2. A receive event is preceded by a send event.
OK a reception can only happen if the message is in the network (which is initially enmpty)
and the message can only be added in the network when it is sent.

3. A message can only be received once.
OK a message is removed from the network (which is initially empty) when it is received.

In the following, the peer where an event occur is denoted _ when it is not relevant: this
means it can be replaced by some peer in P. Since the runs are all point to point runs, there is
no ambiguity because messages are unique and they are sent and received at most once.

76

Histories and Orderings on Events

This section shows that the logical descriptions with histories realise the causal, local, and total
orders on events in runs.

Theorem 29 (Order Encoding). Histories correctly encode the orders on events (local, causal,
and total). Given (Pp)p∈P specifications of peers, N ∈ N ∪∞, (σi)i∈0..N ∈ runs((Pp)p∈P ,M),
and two distinct messages m1 = (c1, p1, h1) and m2 = (c2, p2, h2) sent in the sequence. Depending
on M :

M11 (Send,_,m1) ≤p1 (Send,_,m2) ⇔ m1 ∈ h2
M1n (Send,_,m1) ≤p1 (Send,_,m2) ⇔ m1 ∈ h2
Mc (Send,_,m1) ≺c (Send,_,m2) ⇔ m1 ∈ h2
Mnn (Send,_,m1) ≺σ (Send,_,m2) ⇔ m1 ∈ h2
Mn1 (Send,_,m1) ≺σ (Send,_,m2) ⇔ m1 ∈ h2

Proof.

1. Local ordering: M11 and M1n (local histories (Hp)p∈P)

• ⇒ (hyp: (Send, p1,m1) ≤p1 (Send, p2,m2))

∃i , j ∈ N :


(Send, p1,m1) = σi

∧ (Send, p2,m2) = σj
∧ p1 = p2
∧ i + 1 ≤ j


because

(
(Send, p1,m1) ≤p1 (Send, p2,m2)

∧ m1 6= m2

)
.

Since the histories can only grow over time, at time j , m1 ∈ Hp1 because after sending
m1 (from time i + 1) m1 ∈ Hp1 .
QED because h2 is Hp2 at time j , that is Hp1 at time j because p1 = p2.
• ⇐ (hyp: m1 ∈ h2)
Let j the time when m2 is sent: (Send, p2,m2) = σj .
p1 = p2 because by construction in a peer history, all the messages are from the same
peer.
∃i ∈ N : i + 1 ≤ j and m1 ∈ Hp1 at i + 1 but m1 /∈ Hp1 at i because at 0, Hp1 = ∅.
σi = (Send, p1,m1) is the only reason why m1 is put in the local history Hp1 .
QED because i < j and p1 = p2.

2. Causal ordering: Mc (causal histories (Hp)p∈P)
A history carries the causal past of a message, that is the set a messages which causally
precede this message [BJ87, Bir96, KS11, Ray13].

• Send event: the current causal past of the peer is piggybacked in the sent message m,
and the causal past of the next sent message from this peer will contain m.

• Receive event: the causal past of the peer becomes the union of the current causal past
of the peer, of the causal past of the received message (piggybacked in the message),
and the message itself. Thus, the causal past of a future message from this peer will
have all the messages which causally precede it, from the same peer or from peers
which have, directly or indirectly, communicated with it.

77

3. Total ordering: Mn1 and Mnn (global history H)

• ⇒ (hyp: (Send,_,m1) ≺σ (Send,_,m2))

∃i , j ∈ N :

 (Send,_,m1) = σi
∧ (Send,_,m2) = σj
∧ i + 1 ≤ j


because

(
(Send,_,m1) ≺σ (Send,_,m2)

∧ m1 6= m2

)
.

Since the histories can only grow over time, at time j , m1 ∈ H because after sending
m1 (from time i + 1) m1 ∈ H .
QED because h2 is H at time j .
• ⇐ (hyp: m1 ∈ h2)
Let j the time when m2 is sent: (Send,_,m2) = σj .
∃i ∈ N : i + 1 ≤ n and m1 ∈ H at i + 1 but m1 /∈ H at i because at 0, H = ∅.
σi = (Send,_,m1) is the only reason why m1 is put in the global history H .
QED because i < j .

We now show that the specifications of the communication models with message histories
conform to the structural definitions of the communication models in Chapter 2. Some specifi-
cations of communication models are only correct when involved in compositions of peers that
are stable with regard to interest (Definition 20).

Theorem 30 (Correctness of the Framework). Given (Pp)p∈P specifications of peers.

• runs((Pp)p∈P ,MRSC) ⊆ RunP2P
RSC

• runs((Pp)p∈P ,Mnn) ⊆ RunP2P
nn

• ∀p ∈P : p is stable with regard to interest ⇒ runs((Pp)p∈P ,Mn1) ⊆ RunP2P
n1

• runs((Pp)p∈P ,M1n) ⊆ RunP2P
1n

• ∀p ∈P : p is stable with regard to interest ⇒ runs((Pp)p∈P ,Mc) ⊆ RunP2P
c

• ∀p ∈P : p is stable with regard to interest ⇒ runs((Pp)p∈P ,M11) ⊆ RunP2P
11

• runs((Pp)p∈P ,Ma) ⊆ RunP2P

Proof. Correctness of RSC given the condition on the send and receive transitions of MRSC ,
a send transition can only occur if net = ∅ and a receive transition can only occur if
net 6= ∅. A send transition ensures that net 6= ∅ in the next state and a receive transition
ensures that net = ∅ in the next state. Thus, send and receive events (with interleaved
internal events) alternate in runs of runs(MRSC) which is conform to RunP2P

RSC .

Correctness of FIFO n-n Let σ ∈ runs((Pp)p∈P ,Mnn).

Let m1 , (c1, p1, h1) and m2 , (c2, p2, h2) such that:
(Send,_,m1) ≺σ (Send,_,m2)

∧ (Receive,_,m1) ∈ σ
∧ (Receive,_,m2) ∈ σ

m1 ∈ h2 by Theorem 29.

78

Assume that (Receive,_,m2) ≺σ (Receive,_,m1).
When (Receive,_,m2) happens,m1 ∈ net becausem1 6= m2, (Send,_,m1) ≺σ (Send,_,m2)
and (Receive,_,m2) ≺σ (Receive,_,m1).
Contradiction. The specification of Mnn requires that m1 /∈ net because m1 ∈ h2.
QED σ ∈ RunP2P

nn because (Receive,_,m1) ≺σ (Receive,_,m2).

Correctness of FIFO n-1 Let σ ∈ runs((Pp)p∈P ,Mn1).
Let p ∈P.

Let m1 , (c1, p1, h1) and m2 , (c2, p2, h2) such that:
(Send,_,m1) ≺σ (Send,_,m2)

∧ (Receive, p,m1) ∈ σ
∧ (Receive, p,m2) ∈ σ

m1 ∈ h2 by Theorem 29.
Assume that (Receive, p,m2) ≺σ (Receive, p,m1).
When (Receive, p,m2) happens,m1 ∈ net becausem1 6= m2, (Send,_,m1) ≺σ (Send,_,m2)
and (Receive, p,m2) ≺σ (Receive, p,m1).
In order for (Receive, p,m2) to happen, p is not interested by c1. This comes from the
specification of Mn1 because m1 ∈ h2.
In order for (Receive, p,m1) to happen, p is interested by c1. This comes from the specifi-
cation of Mn1.
Contradiction. p is stable with regard to interest but at a given time it is not interested
in c1 and later is.
QED σ ∈ RunP2P

n1 because (Receive, p,m1) ≺σ (Receive, p,m2).

Correctness of FIFO 1-n Let σ ∈ runs((Pp)p∈P ,M1n).

Letm1 , (c1, p1, h1) andm2 , (c2, p2, h2) such that:

(Send, p1,m1) ≺c (Send, p2,m2)
∧ p1 = p2
∧ (Receive,_,m1) ∈ σ
∧ (Receive,_,m2) ∈ σ

m1 ∈ h2 by Theorem 29 because (Send, p1,m1) ≤p1 (Send, p2,m2).
Assume that (Receive,_,m2) ≺σ (Receive,_,m1).
When (Receive,_,m2) happens,m1 ∈ net becausem1 6= m2, (Send, p1,m1) ≺σ (Send, p2,m2)
and (Receive,_,m2) ≺σ (Receive,_,m1).
Contradiction. The specification of M1n requires that m1 /∈ net because m1 ∈ h2 and
p1 = p2.
QED σ ∈ RunP2P

1n because (Receive,_,m1) ≺σ (Receive,_,m2).

Correctness of Causal Let σ ∈ runs((Pp)p∈P ,Mc).
Let p ∈P.

Let m1 , (c1, p1, h1) and m2 , (c2, p2, h2) such that:
(Send,_,m1) ≺c (Send,_,m2)

∧ (Receive, p,m1) ∈ σ
∧ (Receive, p,m2) ∈ σ

m1 ∈ h2 by Theorem 29.
Assume that (Receive, p,m2) ≺σ (Receive, p,m1).

79

When (Receive, p,m2) happens,m1 ∈ net becausem1 6= m2, (Send,_,m1) ≺c (Send,_,m2)
and (Receive, p,m2) ≺σ (Receive, p,m1).
In order for (Receive, p,m2) to happen, p is not interested by c1. This comes from the
specification of Mc because m1 ∈ h2.
In order for (Receive, p,m1) to happen, p is interested by c1. This comes from the specifi-
cation of Mc .
Contradiction. p is stable with regard to interest but at a given time it is not interested
in c1 and later is.
QED σ ∈ RunP2P

c because (Receive, p,m1) ≺σ (Receive, p,m2).

Correctness of FIFO 1-1 Let σ ∈ runs((Pp)p∈P ,M11).
Let p ∈P.

Letm1 , (c1, p1, h1) andm2 , (c2, p2, h2) such that:

(Send, p1,m1) ≺c (Send, p2,m2)
∧ p1 = p2
∧ (Receive, p,m1) ∈ σ
∧ (Receive, p,m2) ∈ σ

m1 ∈ h2 by Theorem 29.
Assume that (Receive, p,m2) ≺σ (Receive, p,m1).
When (Receive, p,m2) happens,m1 ∈ net becausem1 6= m2, (Send,_,m1) ≺c (Send,_,m2)
and (Receive, p,m2) ≺σ (Receive, p,m1).
In order for (Receive, p,m2) to happen, p is not interested by c1. This comes from the
specification of M11 because m1 ∈ h2 and p1 = p2.
In order for (Receive, p,m1) to happen, p is interested by c1. This comes from the specifi-
cation of M11.
Contradiction. p is stable with regard to interest but at a given time it is not interested
in c1 and later is.
QED σ ∈ RunP2P

11 because (Receive, p,m1) ≺σ (Receive, p,m2).

Correctness of Fully Asynchronous The framework generates point-to-point runs (Theo-
rem 28).

4.2.2 Completeness
The specification of a communication model is complete when it can generate any run that is valid
according to the definitions in Chapter 2. The runs that are generated by the Fully Asynchronous
communication model (whose specification states that sending a message or receiving a message in
transit is always allowed) constitute the reference pool of runs. The runs the other communication
models generate are in this pool of Fully Asynchronous.

First, we restrict the study of the completeness to a subset of these runs we call “fair”.
In fair runs, all the messages in transit are eventually received. When a system deadlocks
(termination, unexpected reception, communication deadlock), some messages may be left in
transit and the resulting finite run is unfair. Yet, these are common cases it is not acceptable to
ignore. Therefore, we prove that completeness also holds for runs that can be extended to fair
runs: if an extension can be generated by the communication model, any prefix can, including
the finite unfair run of interest. We then provide an actual way to extend any finite unfair run

80

s0 s1 s2 s3
a! b! c!

(a) Peer p1

s0

s1

s2

s3

s4

s5

a?

b?

c?

a?

c?

(b) Peer p2

!ap1 !bp1
?b
p2

!cp1
?c
p2

(c) Problematical Unfair Run. The send (resp. receive) event of a message on channel c by peer p is
denoted !cp (resp. ?c

p).

Figure 4.6: Two peers and an example run that illustrate the issue with unfair runs under
communication models such as FIFO 1-1.

into a fair run taking the communication properties into account. For some of the communication
models (namely FIFO 1-1, Causal, and FIFO n-1), we prove the completeness for single receptor
systems only. In such systems, at most one peer may listen to a given channel.

Once again, this section considers runs as sequences of events of the form (Send, p,m),
(Receive, p,m), and (Internal, p) where p is a peer and m a message. See Section 4.2 for more
details. Given σ a run and e an event, e ∈ σ means that e is an element of the sequence of
events σ.

Definition 31 (Fair Runs). A run is fair when all the sent messages are eventually received.

∀σ ∈ RunP2P : fair(σ) ,
(
∀m ∈M : ∀p ∈P : (Send, p,m) ∈ σ ⇒

(
∃q ∈P :
(Receive, q ,m) ∈ σ

))
Let us consider the two peers in Figure 4.6a and 4.6b. The run in Figure 4.6c can be generated

by the two peers under the Fully Asynchronous communication model: it is in runs
(
(p1, p2),Ma

)
.

This run is a valid FIFO 1-1 run according to Definition 10 in Chapter 2 (page 27): it is
in Run11. However, this run is not expected to be generated by the framework, it is not in
runs

(
(p1, p2),M11

)
, because of the oracle issue described at the beginning of this Chapter and

in Figure 4.1. In state s0, p2 listens to channels a, b, and c. According to the specification
M11 of the FIFO 1-1 communication model in the framework, once a message on channel a has
been sent, p2 has to receive this message before any other. The reception of the message on b is
impossible and the run cannot be generated. The run is unfair: the message on a is put aside.
In an unfair run, any troublesome message can be ignored, thus any send behaviour could be
turned into a valid receive behaviour. Yet, the framework aims at checking if a composition of
peers is compatible, that is, if their send behaviour is compatible with their receive behaviour.
For now, we prove a loose version of completeness with fair runs only.

Definition 32 (Single Receptor Composition). In a single receptor system, the channels are
restricted to one receiver. At most one peer may listen to a channel. We first overload Defini-
tion 19 of the listened channels on peers. Given P , (S , I ,R,L) the specification of a peer, the
listened channels of P is the set of channels in possible receptions in P :

LC(P) ,
⋃
s∈S

LCP (s)

81

s0 s1 s2
a! b!

(a) Peer p1

s0

s1

s2

a?

b?

(b) Peer p2

s0 s1
a?

(c) Peer p3

!ap1 !bp1
?b
p2

?a
p3

(d) Problematical Run

Figure 4.7: Three peers and an example run that illustrate the issue with non single receptor
systems under communication models such as FIFO 1-1.

Given N ∈ N and (Pp)p∈1..N specifications of peers, their composition is a single receptor
composition when:

SingleRecep((Pp)p∈1..N) , ∀i , j ∈ 1..N : i 6= j ⇒ LC(Pi) ∩ LC(Pj) = ∅

Let us consider the three peers in Figure 4.7a, 4.7b, and 4.7c. The run in Figure 4.7d
can be generated by the two peers under the Fully Asynchronous communication model, it is
a valid FIFO 1-1 run, and it is fair. Completeness should then guarantee that this run can
also be generated by the same peers under the FIFO 1-1 communication model: it should be
in runs

(
(p1, p2, p3),M11

)
. The framework cannot actually generate it because the message on

channel a blocks the reception of the message on channel b by peer p2. There is no way to know
that, in the future, the message on channel a will be received by another peer and allow the
reception of the message on b now. The problem occurs because both p2 and p3 are listening to
the same channel a. The completeness of FIFO 1-1, Causal, and FIFO n-1, only holds for single
receptor systems.

Lemma 33 (Completeness of the Models with Fair Runs). Given P a composition of peers.

∀σ ∈ Runs(P ,Ma) :

σ ∈ Run ∧ fair(σ) ⇒ σ ∈ Runs(P ,Ma)
σ ∈ Run11 ∧ fair(σ) ∧ SingleRecep(P) ⇒ σ ∈ Runs(P ,M11)
σ ∈ Runc ∧ fair(σ) ∧ SingleRecep(P) ⇒ σ ∈ Runs(P ,Mc)
σ ∈ Run1n ∧ fair(σ) ⇒ σ ∈ Runs(P ,M1n)
σ ∈ Runn1 ∧ fair(σ) ∧ SingleRecep(P) ⇒ σ ∈ Runs(P ,Mn1)
σ ∈ Runnn ∧ fair(σ) ⇒ σ ∈ Runs(P ,Mnn)
σ ∈ RunRSC ∧ fair(σ) ⇒ σ ∈ Runs(P ,MRSC)

Proof. Let P a composition of peers and σ ∈ Runs(P ,Ma).

Case Fully Asynchronous Trivial.

Case RSC
σ alternates send and receive events because σ ∈ RunRSC and fair(σ) (if σ were not fair,
messages could be sent and never received).

82

|net | ≤ 1 in every state of the corresponding trace because of the alternation and initially
net = ∅.

• If a receive transition is enabled with Ma , it is enabled in the same state with MRSC
(same action).
• If a send transition is enabled with Ma , the network is empty because in the next
state (as in every state), |net | ≤ 1, hence it is enabled in MRSC .
• Internal transitions are always enabled.

Other communication models ∗ where ∗ may be 11, c, 1n, n1, or nn.
Assume σ ∈ Run∗ and fair(σ) but σ /∈ Runs(P ,M∗)
By definition of Runs(P ,Ma) (Definitions 25, 26, and 27), σ is the dual of a trace generated
by the composition P under Ma .
P underM∗ does not generate more transitions becauseM∗ refinesMa . This result is simple
and detailed both in Chapter 6 (mechanisation with Event-B), [CHMQ16] (mechanisation
with TLA+ and the TLA+ Proof System), and [CHQ16] (mechanisation with Why3).
Thus, there is a state in which a transition with a given label is enabled in the composition
P with Ma but not in P with M∗. Consider this state and transition:

1. Cases Internal and Send:
Contradiction. Internal transitions are always enabled in M∗. Send transitions too
(remember that M∗ is not MRSC).

2. Case Receive: Let m2 , (c2, p2, h2) the message that cannot be received in M∗ by a
peer whose specification is denoted RP (Receiving Peer) in the following.
A message m1 , (c1, p1, h1) blocks the reception:
• It is in transit : m1 ∈ net .
• It precedes m2: m1 ∈ h2.

m1 is delivered at some point because fair(σ).
m1 is delivered after m2 because m1 ∈ net .
Therefore, (Receive,_,m2) ≺σ (Receive,_,m1).

(a) Case FIFO n-n (∗ = nn):
(Send,_,m1) ≺σ (Send,_,m2) by Theorem 29 because m1 ∈ h2.
Contradiction. (Receive,_,m1) ≺σ (Receive,_,m2) by Definition 15 (page 36)
of FIFO n-n.

(b) Case FIFO 1-n (∗ = 1n):
(Send,_,m1) ≤_ (Send,_,m2) by Theorem 29 because m1 ∈ h2.
Contradiction. (Receive,_,m1) ≺σ (Receive,_,m2) by Definition 13 (page 31)
of FIFO 1-n.

(c) Case FIFO n-1 (∗ = n1):
Assume P is a Single Receptor Composition: SingleRecep(P).
i. Case peer((Receive,_,m1)) = peer((Receive,_,m2)):

(Send,_,m1) ≺σ (Send,_,m2) by Theorem 29 because m1 ∈ h2.
Contradiction. (Receive,_,m1) ≺σ (Receive,_,m2) by Definition 12
(page 31) of FIFO n-1.

83

ii. Case peer((Receive,_,m1)) 6= peer((Receive,_,m2)):
Let RP1 the specification of the other peer that received m1.
c1 ∈ LC(RP1)
c1 ∈ LC(RP) by Definition 24 of Mn1 because m1 blocks the reception of m2.
Contradiction. P is not a Single Receptor Composition because RP1 6= RP .

(d) Case Causal (∗ = c):
Assume P is a Single Receptor Composition: SingleRecep(P).
i. Case peer((Receive,_,m1)) = peer((Receive,_,m2)):

(Send,_,m1) ≺c (Send,_,m2) by Theorem 29 because m1 ∈ h2.
Contradiction. (Receive,_,m1) ≺σ (Receive,_,m2) by Definition 11
(page 28) of Causal.

ii. Case peer((Receive,_,m1)) 6= peer((Receive,_,m2)):
Let RP1 the specification of the other peer that received m1.
c1 ∈ LC(RP1)
c1 ∈ LC(RP) by Definition 24 of Mc because m1 blocks the reception of m2.
Contradiction. P is not a Single Receptor Composition because RP1 6= RP .

(e) Case FIFO 1-1 (∗ = 11):
Assume P is a Single Receptor Composition: SingleRecep(P).
i. Case peer((Receive,_,m1)) = peer((Receive,_,m2)):

(Send,_,m1) ≤_ (Send,_,m2) by Theorem 29 because m1 ∈ h2.
Contradiction. (Receive,_,m1) ≺σ (Receive,_,m2) by Definition 10
(page 27) of FIFO 1-1.

ii. Case peer((Receive,_,m1)) 6= peer((Receive,_,m2)):
Let RP1 the specification of the other peer that received m1.
c1 ∈ LC(RP1)
c1 ∈ LC(RP) by Definition 24 of M11 because m1 blocks the reception of m2.
Contradiction. P is not a Single Receptor Composition because RP1 6= RP .

As explained earlier, restricting completeness to fair runs puts aside many cases of interest: in
particular termination, faulty receptions, or communication deadlocks. Consider the composition
of p1, p2, and p3 specified in Figures 4.8a, 4.8b, and 4.8c under the FIFO 1-1 communication
model. In order to ensure the three peers will always reach the terminal state 0 (termination
compatibility property), Causal communication is necessary. In our case, the run in Figure 4.8d
is interesting because it may be generated under FIFO 1-1 and corresponds to a violation of
the compatibility property. Unfortunately, it is not fair, thus, it does not fall under the scope
of Lemma 33. Yet, it is different from the example we have seen earlier because there is a fair
extension of that run that can be generated under the FIFO 1-1 communication model. In
the current example, the message on channel a can be received after the message on channel c
because these messages have been sent by different peers: they are unrelated when it comes to
FIFO 1-1 communication. In the previous example, there was no way to extend the unfair run
without violating the ordering policy of the communication model. Additional receptions have
to be added to the specifications of the peers in order to empty the network from the last state
of the system. The simplest way to do this consists in choosing a peer in the composition and
introducing new loop reception transitions in the last visited state for every channel. This cannot
apply to FIFO 1-1, Causal, and FIFO n-1 which require the composition is single receptor. In
these cases the receptions cannot be introduced in an arbitrary peer: each channel is mapped to
its corresponding recipient and the new reception transitions are added to the last visited state

84

s0 s1 0a! b!

(a) Peer p1

s0 s1 0b? c!

(b) Peer p2

s0

s1

⊥

0
a?

c?

c?

(c) Peer p3

!ap1 !bp1
?b
p2

!cp2
?c
p3

(d) Interesting Run

s0

s1

⊥

0
a?

c?

c?

a?

(e) Extended Peer p3

!ap1 !bp1
?b
p2

!cp2
?c
p3

?a
p3

(f) Extended Fair Run

Figure 4.8: Three peers and an example run with FIFO 1-1 that illustrate the interest of the
runs that are eventually fair.

in the corresponding peers. In the current example FIFO 1-1, a single receptor composition is
needed, thus, the reception transition on a is added in p3, the peer that listens to a, in the last
visited state ⊥, hence the specification in Figure 4.8e and the extended run it allows to generate
in Figure 4.8f. The interesting unfair run is a prefix of this fair run and until the extended part
begins, it is generated by a composition that fits the initial one exactly. From then, it is safe to
state that the interesting run can be generated by the composition of peer under the FIFO 1-1
communication model. We say such runs are “eventually fair” and we prove completeness of the
models still holds.

Definition 34 (Default Destination of a Channel). Given a composition of peers (Pp)p∈1..N and
a channel c in C :

dest((Pp)p∈1..N , c) ,

 Pi such that c ∈ LC(Pi) if
(

SingleRecep((Pp)p∈1..N)
∧ c ∈ LC({Pp | p ∈ 1..N })

)
any Pi such that i ∈ 1..N otherwise

The default destination of a channel is an arbitrary peer in the composition unless it is a single
receptor composition containing a peer that listens to this channel.

Definition 35 (Eventually Fair Runs). An infinite run is eventually fair when it is fair. A finite
run is eventually fair when it can be extended into a fair execution with respect to a communica-
tion model. Given a composition of peers (Pp)p∈1..N , the specification of communication model
M∗ where ∗ may be a, 11, c, 1n, n1, nn, or RSC , and a run σ in Runs((Pp)p∈1..N ,M∗):

85

• If σ is infinite: ♦fair((Pp)p∈1..N ,M∗, σ) , fair(σ)

• If σ is finite
♦fair((Pp)p∈1..N ,M∗, σ) ,

∃σ′ :



∀e ∈ σ′ : com(e) = Receive
∧ σ · σ′ ∈ Run∗
∧ fair(σ · σ′)

∧


∀e ∈ σ′ :
∃c ∈ C :(

mes(e) = (c,_,_)
∧ peer(e) = dest((Pp)p∈1..N , c)

)



Theorem 36 (Completeness of the Models). Given P a composition of peers:

∀σ ∈ Runs(P ,Ma) :

σ ∈ Run ∧ ♦fair(P ,Ma , σ) ⇒ σ ∈ Runs(P ,Ma)
σ ∈ Run11 ∧ ♦fair(P ,M11, σ) ∧ SingleRecep(P) ⇒ σ ∈ Runs(P ,M11)
σ ∈ Runc ∧ ♦fair(P ,Mc , σ) ∧ SingleRecep(P) ⇒ σ ∈ Runs(P ,Mc)
σ ∈ Run1n ∧ ♦fair(P ,M1n , σ) ⇒ σ ∈ Runs(P ,M1n)
σ ∈ Runn1 ∧ ♦fair(P ,Mn1, σ) ∧ SingleRecep(P) ⇒ σ ∈ Runs(P ,Mn1)
σ ∈ Runnn ∧ ♦fair(P ,Mnn , σ) ⇒ σ ∈ Runs(P ,Mnn)
σ ∈ RunRSC ∧ ♦fair(P ,MRSC , σ) ⇒ σ ∈ Runs(P ,MRSC)

Proof. Let N ∈ N, (Pp)p∈1..N a composition, and σ ∈ Runs((Pp)p∈1..N ,Ma) such that σ ∈ Run∗
and ♦fair(P ,M∗, σ) where ∗ can be 11, c, 1n, n1, nn, RSC , or a (in that case Runa , Run).

1. Case σ infinite:
fair(σ) by Definition 35.
QED by Lemma 33.

2. Case σ finite:
Let t the trace of the system from which σ is derived. Let s = (sCM, (sp)p∈1..N) the last
state in t before the infinite stuttering. This state exists by Definition 26 because σ is
finite.
Take σ′ that extends σ into a fair run according to Definition 35. It exists because
♦fair(P ,M∗, σ).
∀p ∈ 1..N : ∃Sp , Ip ,Rp ,Lp : Pp = (Sp , Ip ,Rp ,Lp) by Definition 18.
Let (R′p)p∈1..N , p ∈ 1..N 7→ Rp∪

{(
sp , (Receive, c), sp

)∣∣c ∈ C ∧ Pp = dest((Pp)p∈1..n , c)
}

Let (P ′p)p∈1..N , (Sp , Ip ,R′p ,Lp) a new composition of peers.
Then, σ · σ′ ∈ Runs((P ′p)p∈1..N ,Ma) because the new system accepts σ (the original tran-
sitions) extended by σ′ (the new transitions).
σ · σ′ ∈ Run∗ and fair(σ · σ′) by Definition 35.
σ · σ′ ∈ Runs((P ′p)p∈1..N ,M∗) by Lemma 33.
σ ∈ Runs((P ′p)p∈1..N ,M∗) because σ is a prefix of σ · σ′.
σ ∈ Runs((Pp)p∈1..N ,M∗) since the (P ′p)p∈1..N do not introduce any transition used to
generate σ. QED.

86

4.3 Conclusion
This chapter provides an operational point of view of asynchronous communication that com-
pletes the study of the communication models described in Chapter 2 and lays down theoretical
bases for certified mechanised compatibility checking of communicating peers.

We present a framework to check whether or not compositions of peers comply to good-
behaviour temporal properties depending on the asynchronous communication model in use. A
uniform set of operational specifications for the seven communication models is presented. Yet,
they remain abstract enough not to preclude implementations. The specifications all rely on
the concept of message histories that allows to establish strong generic links with the logical
definitions of the ordering policies. Thus, the conformance of the framework with respect to the
actual event ordering properties is established: correctness and completeness of the communica-
tion models are proven keeping the objectives of the compatibility checking in mind.

The next chapter presents an extensive mechanisation that relies on model-checking and the
TLA+ specification language.

87

Chapter 5

A Mechanisation of Compatibility
Checking with TLA+

This chapter presents a mechanisation of the framework described in Chapter 4. The notions
of peers and communication models correspond to TLA+ specifications that are structured into
independent modules and may be changed on-the-fly individually. Together, they form a system
that is model-checked, with TLC (the TLA+ model checker), against the compatibility criteria
expressed as temporal properties. To ease that process, additional user-friendly automations are
proposed: they help to generate specifications of peers and their associated TLA+ module. The
notion of composite communication model is also introduced: it makes it possible to construct
a complex communication model from instances of other communication models. Each one of
the building blocks correspond to a group of channels which means different parts of the system
may be associated to different ordering properties. This allows to fine tune the communication
properties for each practical case. The proposed mechanisation offers a ready-to-use and fully
automated toolchain but there is room for easy customisation and extensibility at every step
of the process. The first section provides the necessary background for the TLA+ Specification
Language and tools. The second section presents the structure of the TLA+ modules involved
in compatibility checking, the next section provides user-friendly automations to help the spec-
ification of compositions and communication models. Eventually the last section illustrates the
mechanised framework with examples and offers insights on the model checking process and
performance.

5.1 The TLA+ Specification Language
TLA+ [Lam02] is a formal specification language based on untyped Zermelo-Fraenkel set the-
ory for specifying data structures, and on the temporal logic of actions (TLA) for specifying
dynamic behaviours. Expressions rely on standard first-order logic, set operators, and several
arithmetic modules. Hilbert’s choice operator, written as choose x ∈ S : p, deterministically
picks an arbitrary value in S which satisfies p, provided such a value exists (its value is undefined
otherwise).

Functions are primitive objects in TLA+, and tuples are a particular kind of function. The
application of function f to an expression e is written as f [e]. The set of functions whose domain
is X and whose co-domain is a subset of Y is written as [X → Y]. The expression domain f
is the domain of the function f . The expression [x ∈ X 7→ e] denotes the function with domain

89

X that maps any x ∈ X to e. The notation [f except ![e1] = e2] is a function which is equal
to the function f except at point e1, provided that e1 ∈ domain f , where its value is e2. Tuples
(a.k.a sequences) are functions with domain 1..n,n ∈ Nat . Tuples are written 〈a1, a2, a3〉. 〈〉 is
the empty sequence.

Modules are used to structure complex specifications. A module contains constant declara-
tions, variable declarations, and definitions. A module can extend other modules, importing all
their declarations and definitions. A module can also be an instantiation of another module. The
module MI , instance M with q1 ← e1, q2 ← e2 . . . is an instantiation of module M , where
each symbol qi is replaced by ei (qi are identifiers specifying constants or variables of module
M , and ei are expressions). Then MI !x references the symbol x of the instantiated module.

Other than constant and variable declarations, a module contains definitions in the form
Op(arg1, . . . , argn) , exp. This defines the symbol Op such that Op(e1, . . . , en) equals exp,
where each argi is replaced by ei . In case of no argument, it is written as Op , e. A definition
is just an abbreviation or syntactic sugar for an expression, and never changes its meaning.

The dynamic behaviour of a system is expressed in TLA+ as a transition system, with an
initial state predicate, and actions to describe the transitions. An action formula describes the
changes of state variables after a transition. In an action formula, x denotes the value of a
variable x in the origin state, and x ′ denotes its value in the destination state. A prime is never
used to distinguish symbols but always means “in the next state”. enabled A is a predicate
which is true in a state iff the action A is feasible, i.e. there exists a next state such that A is
true.

A specification of a system is written as Init ∧ 2[Next]vars ∧ F , where Init is a predicate
specifying the initial states, 2 is the temporal operator which asserts that the formula following
it is always true, Next is the transition relation, usually expressed as a disjunction of actions,
[Next]vars is defined to equal Next∨vars ′ = vars (Next with stuttering), and F expresses fairness
conditions. Fairness is usually expressed as a conjunction of weak or strong fairness on actions
WFvars(A1)∧WFvars(A2) . . .∧SFvars(Ai) Weak fairness WFv (A) means that either infinitely
many A steps occur or A is infinitely often disabled. In other words, an A step must eventually
occur if A is continuously enabled. Strong fairness SFv (A) means that either infinitely many A
steps occur or A is eventually disabled forever. In other words, an A step must eventually occur
if A is repeatedly enabled.

System properties are specified using linear temporal logic (LTL). 2φ means that φ holds in
every suffix of the behaviour. 3φ is defined to equal ¬2¬φ and means that φ eventually holds
in a subsequent state. ψ ; φ is defined to equal to 2(ψ ⇒ 3φ) and means that, whenever ψ
holds, then later φ holds.

5.2 Organisation and Structure of the TLA+ Modules
Communication models are self-contained TLA+ modules that respect a common pattern with:

• Two state variables net and H : the network of messages in transit and the history (local,
causal, or global depending on the model)

• Two actions send and receive parameterised by the peer on which the said action happens,
the concerned channel, and the listened channels (for receive)

This corresponds to the common layout of the seven communication models presented in
Definition 24 (page 71). The TLA+ specifications of those seven communication models are
direct translations of the definition.

90

module causal
extends Naturals, FiniteSets
constants

CHANNEL, Set of the available communication channels
N Number of peers involved

variables
net , Set of messages in transit
H Causal histories on each peer

Init ,
∧ net = {} The network is initially empty
∧H = [i ∈ 1 . . N 7→ {}] The causal histories are all empty

EmptyNetwork , net = {}
nochange , unchanged 〈net , H 〉
internal , false

send(peer , chan) ,
let message , 〈chan, peer , H [peer]〉in
∧ net ′ = net ∪ {message}
∧ H ′ = [H except ![peer] = H [peer] ∪ {message}]

receive(peer , chan, listened) ,
∃ 〈c1, p1, h1〉 ∈ net :
∧ c1 = chan
∧ ¬(∃ 〈c2, p2, h2〉 ∈ net : c2 ∈ listened ∧ 〈c2, p2, h2〉 ∈ h1)
∧ net ′ = net \ {〈c1, p1, h1〉}
∧H ′ = [H except ![peer] = H [peer] ∪ h1 ∪ {〈c1, p1, h1〉}]

Figure 5.1: TLA+ Module Associated to the Causal Communication Model

91

As an example, Figure 5.1 shows the TLA+ module corresponding to the causal communica-
tion model. All the models are available at:
http://hurault.perso.enseeiht.fr/asynchronousCommunication/.

Table 5.1 sums up the content of the TLA+ module of each one of the seven communication
models. One may of course come up with additional communication models that respect the
layout. The mechanisation is not limited to the seven studied communication models.

The TLA+ specifications of compositions of peers instantiates the TLA+ specification of a
communication model in order to refer to the predicates for the Init , send and receive actions of
that model. Although, once again, the content of the module that specifies the composition can
be written from scratch as long as it interfaces with the actions of the communication model,
we provide a standard layout to describe compositions of peers specified with transition systems
according to Definition 18 (page 61). This layout relies on ordinal counters to characterise
the state of each peer in the corresponding transition system. An action in the composition
correspond to the conjunction of a communication action and a change of the value of a peer’s
counter. This corresponds to the synchronisation between the transitions of the peers and the
transitions of the communication model.

Figure 5.2 shows an example of the TLA+ module of a simple composition under the Causal
communication model. It extends a TLA+ module called peermanagement , presented in Fig-
ure 5.3, that eases the management of the counters that characterise the state of the peers in a
composition. In particular it provides the trans action to change the state of a peer and defines
temporal properties that serve as a basis for compatibility checking. Most compatibility criteria
described in Definition 23 (page 23) are covered by the module. Unlike the other compatibility
criteria, we actually use the native detection of deadlock of TLC which checks enabled(Next).
Note that Next may include user stuttering which is distinguished by TLC from the implicit
stuttering of [Next]vars . As for the rest of the mechanised framework, the list of compatibility
properties can be extended or modified at will.

Figure 5.4 recaps the overall stucture of the mechanisation with the different modules and
steps of the verification. It also includes the optional user-friendly automations that the next
section describes.

5.3 User-Friendly Automations
The specification with transition systems of even quite simple peers can be cumbersome. One
may want to step back and provide more abstract specifications. Furthermore, in order to
check the compatibility of compositions of peers, information about terminal and faulty states
has to be provided. For these reasons the proposed mechanisation provides alternate ways to
specify peers. The following describes how specifications of peers can be derived from CCS terms
using the standard CCS rules at first, and then completed into specifications that are ready for
compatibility checking. These two additional and optional steps are summed up in Figure 5.4.

5.3.1 Alternate Specification of a Peer using a CCS Term
A peer can alternatively be described by a process specified with a CCS term where we consider:

• the empty process 0, neutral element of + and ‖,

• the prefixing operator ·, to perform an action followed by a process. An action is τ (an
internal action), or c! (a send action over a channel c), or c? (a receive action on c),

• the choice operator +,

92

http://hurault.perso.enseeiht.fr/asynchronousCommunication/

Model Variables
Send

scm
p,c!−−→ s ′cm

Receive
scm

p,c?,L−−−−→ s ′cm

MRSC net , 〈Hp〉

net = ∅
∧ net ′ = {〈c, p,Hp〉}
∧ H ′p = Hp ∪ {〈c, p,Hp〉}
∧ ∀k 6= p : H ′k = Hk

∃〈c1, j , h1〉 ∈ net :
c1 = c

∧ net ′ = net \ {〈c1, j , h1〉}
∧ ∀k : H ′k = Hk

Mnn net ,H H ′ = H ∪ {〈c, p,H 〉}
∧ net ′ = net ∪ {〈c, p,H 〉}

∃〈c1, j , h1〉 ∈ net :
c1 = c

∧ ¬∃〈c2, l , h2〉 ∈ net : 〈c2, l , h2〉 ∈ h1
∧ net ′ = net \ {〈c1, j , h1〉}
∧ H ′ = H

M1n net , 〈Hp〉
H ′p = Hp ∪ {〈c, p,Hp〉}

∧ net ′ = net ∪ {〈c, p,Hp〉}
∧ ∀k 6= p : H ′k = Hk

∃〈c1, j , h1〉 ∈ net :
c1 = c

∧ ¬∃〈c2, l , h2〉 ∈ net :
∧ l = j
∧ 〈c2, l , h2〉 ∈ h1

∧ net ′ = net \ {〈c1, j , h1〉}
∧ ∀k : H ′k = Hk

Mn1 net ,H H ′ = H ∪ {〈c, p,H 〉}
∧ net ′ = net ∪ {〈c, p,H 〉}

∃〈c1, j , h1〉 ∈ net :
c1 = c

∧ ¬∃〈c2, l , h2〉 ∈ net :
∧ c2 ∈ L
∧ 〈c2, l , h2〉 ∈ h1

∧ net ′ = net \ {〈c1, j , h1〉}
∧ H ′ = H

Mc net , 〈Hp〉
H ′p = Hp ∪ {〈c, p,Hp〉}

∧ net ′ = net ∪ {〈c, p,Hp〉}
∧ ∀k 6= p : H ′k = Hk

∃〈c1, j , h1〉 ∈ net :
c1 = c

∧ ¬∃〈c2, l , h2〉 ∈ net :
∧ c2 ∈ L
∧ 〈c2, l , h2〉 ∈ h1

∧ net ′ = net \ {〈c1, j , h1〉}
∧ H ′p = Hp ∪ h1 ∪ {〈c1, j , h1〉}
∧ ∀k 6= p : H ′k = Hk

M11 net , 〈Hp〉
H ′p = Hp ∪ {〈c, p,Hp〉}

∧ net ′ = net ∪ {〈c, p,Hp〉}
∧ ∀k 6= p : H ′k = Hk

∃〈c1, j , h1〉 ∈ net :
c1 = c

∧ ¬∃〈c2, l , h2〉 ∈ net :
∧ l = j
∧ c2 ∈ L
∧ 〈c2, l , h2〉 ∈ h1

∧ net ′ = net \ {〈c1, j , h1〉}
∧ ∀k : H ′k = Hk

Ma net , 〈Hp〉
H ′p = Hp ∪ {〈c, p,Hp〉}

∧ net ′ = net ∪ {〈c, p,Hp〉}
∧ ∀k 6= p : H ′k = Hk

∃〈c1, j , h1〉 ∈ net :
c1 = c

∧ net ′ = net \ {〈c1, j , h1〉}
∧ ∀k : H ′k = Hk

(Initially, all vars are equal to ∅.)

Table 5.1: Specification of the Actions in the TLA+ modules of the Communication Models based
on Definition 24 (page 71). 93

module composition

extends
Naturals,
peermanagement Declares the state variable peers

constant N Total number of peers

variables net , H State variables used to instantiate the communication model

vars , 〈net , H , peers〉
Com , instance causal with CHANNEL← {“a”, “b”}

Init , ∧ Com!Init ∧ peers = 〈11, 14〉 N = 2, Initial states: First peer: s11 Second peer: s14

p1

t1(peer) , trans(peers, 11, 12) ∧ Com!send(peer , “a”) First peer: s11
a!−→ s12

t2(peer) , trans(peers, 12, 13) ∧ Com!send(peer , “b”) First peer: s12
b!−→ s13

p2

t3(peer) , trans(peers, 14, 15) ∧ Com!receive(peer , “a”, {“b”, “a”}) Second peer: s14
a?−−→ s15

t4(peer) , trans(peers, 15, 16) ∧ Com!receive(peer , “b”, {“b”}) Second peer: s15
b?−−→ s16

t5(peer) , trans(peers, 14, 17) ∧ Com!receive(peer , “b”, {“b”, “a”}) Second peer: s14
b?−−→ s17

Weak fairness for minimal progress
Fairness , ∀ i ∈ 1 . . N :

(WFvars(t1(i)) ∧WFvars(t2(i)) ∧WFvars(t3(i)) ∧WFvars(t4(i)) ∧WFvars(t5(i)))
∧WFvars(Com!internal ∧ unchanged peers)

Next , ∃ i ∈ 1 . . N : (t1(i) ∨ t2(i) ∨ t3(i) ∨ t4(i) ∨ t5(i))
∨ (Com!internal ∧ unchanged peers)

Spec , Init ∧2[Next]vars ∧ Fairness

s11p1 : s12 s13
a! b!

s14p2 :

s15 s16

s17

a?

b?

b?

Figure 5.2: TLA+ Module of the Composition of the Two Represented Peers with the Causal
Communication Model

94

module peermanagement

extends Naturals, Sequences

constant
BOTTOM_STATE , The error state ⊥
EMPTY_STATE The terminal state 0

variable peers

PeersTypeInvariant , peers ∈ Seq(Nat) The state is a finite sequence of program counters.

trans(peer , init , next) , Peer transition from state init to next.
∧ peers[peer] = init
∧ peers ′ = [peers except ![peer] = next]

AllPeersIn(states) , ∀ i ∈ domain peers : peers[i] ∈ states
OnePeerIn(states) , ∃ i ∈ domain peers : peers[i] ∈ states
Compatibility

NonBottom , 2¬OnePeerIn({BOTTOM_STATE}) No peer ever reaches the faulty state.
Terminates , 32AllPeersIn({EMPTY_STATE}) All the peers eventually terminate.

Figure 5.3: TLA+ Module that Ease the Management of the Peers in a Composition. It provides
the trans action to change the state of a peer and defines temporal properties that might serve
as a basis for compatibility checking.

Transition
system

Completed
transition
system

TLA+ module
Composition

Peer
Other peers

System
Compatibility

result
Counter-
example

TLA+ module
Communication Model

LTL properties
Compatibility Criteria

FRC

User friendliness

CCS
term

Figure 5.4: Main Steps Performed by the Framework Including Optional User Friendly Steps

95

s0 s1 s2 s3 s4 s5

s6 s7

s8 s9

a!

b?

c? f ? d ! e!

d !

e!

f ?

d !

f ?

e!

X , a! ·
(
b? ·X +

(
c? · (d ! · e! · 0 ‖ f ? · 0)

))
Figure 5.5: Example of a Specification of a Peer Derived from a CCS Term

• the parallel composition operator ‖,

• the restriction operator \,

• the relabelling operator [],

• and process identifiers (defined by X , Process).

The peer transition system is derived from the CCS term using the standard CCS rules [Mil99,
p.39], excluding the synchronous communication rule reactt . Since synchronous communication
is not used, ‖ is similar to an interleaving operator. It can model internal parallelism and
dynamic creation of processes inside a peer. The translation from a CCS term to a transition
system is achieved through the Edinburgh Concurrency Workbench [CPS93]. We directly use
the ability of The Concurrency Workbench to output the transition system of a CCS term
(command graph without any change to the software). Each peer is independently translated,
and as the translation is not applied to the composed system (the set of peers), synchronous
communication (reaction in Milner’s vocabulary) does not occur, and only observable actions
(Milner’s vocabulary) appear in the translation.

Figure 5.5 provides an example of a specification of a peer derived from the CCS term
X , a! ·

(
b? ·X +

(
c? · (d ! · e! · 0 ‖ f ? · 0)

))
.

On-the-fly construction of the transition systems would make incompatibility detection more
efficient as the complete transition system may be unnecessary for a counter-example, but prov-
ing compatibility would still require constructing all transitions of the peers. PlusCal speci-
fications [Lam09], for instance, could also offer practical alternatives to CCS and the explicit
generation of transitions.

5.3.2 Faulty Reception Completion
Specifying a peer that is stable with regard to interest according to Definition 20 (page 63)
requires to take all the possible premature receptions into account, in every state of the peer.
This can be cumbersome and prone to error. Yet, as detailed in the previous chapter, this
property is crucial to ensure that the specifications of the communication models conform to
the ordering policies they are supposed to guarantee. The Faulty Reception Completion (FRC)

96

consists in identifying the unexpected receptions in a peer and mark them as faulty. This means
it adds the corresponding transitions toward the faulty state ⊥.

Informally, for every state s that is the origin of a (Receive,_) transition, the set of channels
corresponding to possible future receptions is computed (the future channels). For each one
of these channels c, unless there is already a corresponding

(
s, (Receive, c),_

)
transition, a

new transition
(
s, (Receive, c),⊥

)
is added to the specification. We call such transitions “faulty

receptions”. Eventually, the obtained specification is stable with regard to interest: once a peer
is not interested in a channel, it shall never be again later.

Definition 37 (Faulty Reception Completion). Let P = (S , I ,R,L) be the specification of a
peer.

FRC(P) , (S ∪ {⊥}, I ,RFRC,L)

with:

RFRC , R ∪
{(

s, (Receive, c),⊥
)∣∣∣∣(s ∈ ReceiveStatesP (S)

∧ c ∈ FutureChannelsP (s) \ ListenedChannelsP (s)

)}
where:

• ReceiveStatesP (S) , {s ∈ S | ∃c ∈ C , s ′ ∈ S : s c?−→ s ′ ∈ R} are the states in S having at
least one receive transition.

• FutureChannelsP (s) , {c ∈ C | ∃s1, s2 ∈ S : s → s1 ∈ R∗ ∧ s1
c?−→ s2 ∈ R} (with R∗ the

reflexive transitive closure of {s → s ′ ∈ S 2 | ∃l ∈ L : s l−→ s ′ ∈ R}). are the channels of
future possible receptions from s.

• ListenedChannelsP(s) , LCP (s) , {c ∈ C | ∃s ′ ∈ S : s c?−→ s ′ ∈ R} are the listened
channels in state s according to Definition 19 page 63:

For instance, let us consider the specification of the peer depicted in Figure 5.6a. In state
s4, the future channels are a, b, and c because a reception from a is possible in state s4 which
leads to state s0. From state s0, a reception from b is possible and s2 is a reachable state. In
s2, a reception from c is possible. However, the only specified reception in s4 is from channel a.
This means state s4 misses two reception transitions: one from channel b, the other from channel
c. In the completed specification in Figure 5.6b, two corresponding faulty transitions have been
added. In the example, the other missing faulty receptions were from channel c on states s0 and
s1.

Theorem 38 (Faulty Reception Completion provides Stability with regard to Interest). Given
P the specification of a peer, FRC(P) is stable with regard to interest.

Proof. Let (S , I ,R,L) the specification of FRC(P). By definition of FutureChannelsFRC(P),
∀s, s ′ ∈ S : (s, s ′) ∈ R∗ ⇒ FutureChannelsFRC(P)(s ′) ⊆ FutureChannelsFRC(P)(s), and by
construction of FRC(P), ∀s ∈ S : LCFRC(P)(s) = FutureChannelsFRC(P)(s).

5.3.3 Composite Communication Models
Up to this point systems are composed of a set of peers associated to a communication model
that ensures ordering properties on the communication medium. Messages transiting between the

97

s0 s1 s2

s3s4

a? b?

c?b?a?

(a) Original Specification

s0 s1 s2

s3s4 ⊥

a? b?

c?b?a?
c?

c?

b?

c?
(b) Completed Specification

State Future Channels Listened Channels Missing Receptions
s0 {a, b, c} {a, b} {c}
s1 {b, c} {b} {c}
s2 {c} {c} {}
s3 {} {} {}
s4 {a, b, c} {a} {b, c}

Figure 5.6: Example of Faulty Reception Completion

peers on all the channels involved in the communication are handled by a unique communication
model. However, some practical cases require that different sets of channels be associated to
different instances of communication models. This motivates the specification of composite
communication models.

Messages on channels that are associated to only one model are emitted on (resp received
from) one instance of that model. Messages on channels that are associated to several models
are simultaneously emitted on (resp received from) instances of these models. Therefore, the
reception of a message on such a channel can only occur when the ordering properties of all the
involved communication models are met. For instance, if a, b, and c are channels associated to
an instance of Causal and c, d to an instance of FIFO 1-1, then the reception of a message from
c will require that it respects the causality of the emissions on a, b, and c, while also respecting
the order of emissions on c and d from the same peer.

When a message is received from a channel, it has to be retrieved from every communication
model instance it is associated to. In each of these instances, the same message can be locally
identified by a different history. To prevent inconsistent receptions, messages are given a global
id shared in the different instances.

Figure 5.7 shows the generated TLA+ module associated to a composite communication model
that takes into account channels that can be associated to the FIFO 1-1 communication model
(channels exclusively in CH 1), the causal communication model (channels exclusively in CH 2),
or both (channels in CH 1 and CH 2). The referenced primitive communication models TLA+

specifications have to handle message identifiers in the communication actions. Since they are
external markers used by composite communication models, it does not change the structure of
the derived transition system nor the ordering properties it guarantees.

98

module multicom
extends Naturals
constants N ,

CH 1, Channels of the first communication model
CH 2 Channels of the second communication model

variables messid , net1, H 1, net2, H 2
Var1 , 〈net1, H 1〉 State variables of the first communication model
Var2 , 〈net2, H 2〉 State variables of the second communication model
Vars , 〈Var1, Var2, messid〉
Com1 , instance fifo11 with CHANNEL ← CH 1, net ← net1, H ← H 1
Com2 , instance causal with CHANNEL← CH 2, net ← net2, H ← H 2

Init , messid = [chan ∈ CH 1 ∪ CH 2 7→ {}] ∧ Com1!Init ∧ Com2!Init

max_id(chan) , choose n ∈ messid [chan] : ∀ p ∈ messid [chan] : p ≤ n
available_id(chan) , if messid [chan] = {} then 1 else (Message id generation and reuse

choose n ∈ 1 . . max_id(chan) + 1 :
(n /∈ messid [chan] ∧ (∀ p ∈ 1 . . n − 1 : p ∈ messid [chan])))

EmptyNetwork , Com1!EmptyNetwork ∧ Com2!EmptyNetwork
nochange , unchanged messid ∧ Com1!nochange ∧ Com2!nochange
internal , ∧ unchanged messid

∧ ((Com1!internal ∧ Com2!nochange) ∨ (Com2!internal ∧ Com1!nochange))

send(peer , chan) ,
let id , available_id(chan)in

∧messid ′ = [messid except ![chan] = @ ∪ {id}] Take available id
∧ On a channel from second group only: send on Com2
∨ (chan /∈ CH 1 ∧ chan ∈ CH 2 ∧ unchanged Var1 ∧ Com2!send(peer , chan, id))
On a channel from first group only: send on Com1
∨ (chan ∈ CH 1 ∧ chan /∈ CH 2 ∧ unchanged Var2 ∧ Com1!send(peer , chan, id))
On a channel from both group: send simultaneously (same message id) on Com1 and Com2
∨ (chan ∈ CH 1 ∧ chan ∈ CH 2
∧ Com1!send(peer , chan, id) ∧ Com2!send(peer , chan, id))

receive(peer , chan, listened) ,
∃ id ∈ messid [chan] :
∧messid ′ = [messid except ![chan] = @ \ {id}] Release message id for reuse
∧ On a channel from second group only: receive from Com2
∨ (chan /∈ CH 1 ∧ chan ∈ CH 2 ∧ unchanged Var1
∧ Com2!receive(peer , chan, id , listened))

On a channel from first group only: receive from Com1
∨ (chan ∈ CH 1 ∧ chan /∈ CH 2 ∧ unchanged Var2
∧ Com1!receive(peer , chan, id , listened))

On a channel from both group: receive simultaneously (same message id) from Com1 and Com2
∨ (chan ∈ CH 1 ∧ chan ∈ CH 2
∧ Com1!receive(peer , chan, id , listened) ∧ Com2!receive(peer , chan, id , listened))

Figure 5.7: Composite Communication Model with FIFO 1-1 and Causal

99

Supervisor

Secretary

Student

Teacher
studentname

studentname

resit

ok coffee

examreq

materials exam

answers

mark

(a) Example of a Run in which the student accepts to resit.

Supervisor

Secretary

Student

Teacher
studentname

studentname

resit

kocoffee

cancel

mark

(b) Example of a Run in which the student refuses to resit.

Figure 5.8: Examples of Expected Runs of the University Example

5.4 Examples and Results

5.4.1 Detailed Example: The Examination Management System

Specification

Let us consider an examination management system composed of a student, a supervisor, a
secretary, and a teacher. When a student has failed, the supervisor sends their name to the
teacher and the secretary, and the resit information to the student. A student who chooses to
resit answers ok and asks the teacher for the exam. The teacher sends the needed materials
and then the exam, after which the student sends back answers. Eventually, the teacher sends
a mark to the secretary. A student who declines to resit informs the supervisor who sends a
cancel message to the teacher and the former mark to the secretary. An unrelated exchange also
occurs between the secretary and the supervisor who would like to meet during the coffee break.
The secretary sends a message to inform the supervisor that coffee is ready. The supervisor is
ready to join after having sent work-related messages: just before, after, or while dealing with
the student’s choice. Sample executions are depicted in Figure 5.8a and Figure 5.8b. The system
is specified in Figure 5.9.

Next, consider the properties needed to make this work as intended. There is a causal
dependency between the studentname message and the examreq message (the request for the
exam must not arrive before the student name). This causal dependency comes from the resit
message, which follows the studentname message and is the cause of the examreq message. Causal
communication is thus required. Moreover, if a cancel message is sent, it should be received after
the student’s name by the teacher. Therefore, cancel is part of this causal group. The same holds

100

Supervisor , studentname! · studentname! · resit ! · SupervisorWaiting

SupervisorWaiting ,

 (
ok? · 0

+ ko? · cancel ! ·mark ! · 0

)
‖ (coffee? · 0)


Secretary , coffee! · studentname? ·mark? · 0

Student , resit? ·
(

τ · ko! · 0
+ τ · ok ! · StudentOk

)
StudentOk , examreq ! ·materials? · exam? · answers! · 0

Teacher , studentname? ·
(

cancel? · 0
+ examreq? · TeacherExam

)
TeacherExam , materials! · exam! · answers? ·mark ! · 0

Figure 5.9: Supervisor-Secretary-Student-Teacher Specification

for the mark channel, since the secretary first expects a studentname. Besides, the materials
and the exam are sent in two separate messages and are expected to be received in this order by
the student. Lastly, the coffee break exchange requires that several messages can be in transit
so that the supervisor can send the studentname and resit messages after the secretary has sent
coffee.

This example is checked with the seven asynchronous models of Table 5.1, and with the
following composite model:

Causal Mc {studentname, resit , examreq , cancel ,mark}
FIFO 1-1 M11 {materials, exam}
Fully Asynchronous Ma {ok , ko, answers, coffee}

Compatibility

In this example, studentname is a channel over which two messages are sent and from which
they are received by different services (teacher and secretary). In addition, mark is a channel
over which only one message is to transit, but it may be emitted by different services (supervisor
and teacher). Therefore, compatibility, especially termination of the secretary service, is not
trivial. Consequently, in addition to the generic compatibility properties defined in Definition 23
(page 68), we also consider the termination of the secretary and we check if all messages have
been received upon full termination.

Figure 5.10 presents the results. It confirms that Causal (or a model stricter than Causal
apart from RSC) is required to ensure compatibility of the composition. However, causality is
not required over the whole set of channels. The composite model with the considered partition
is a restrictive enough communication model. In this example, the maximal number of distinct
states is 988.

101

MRSC Mnn M1n Mn1 Mc M11 Ma Mcomposite
Termination 5 4 4 4 4 5 5 4
Termination (empty network) 5 4 4 4 4 5 5 4
Termination of the secretary 5 4 4 4 4 5 5 4
No faulty receptions 4 4 4 4 4 5 5 4
No communication deadlock 5 4 4 4 4 4 4 4

Figure 5.10: Compatibility Results: Examination Management System

MRSC Mnn M1n Mn1 Mc M11 Ma Mcomposite
No faulty receptions 4 4 4 4 4 5 5 4
Messages will be received
∀m ∈M :
m ∈ net ; m /∈ net

4 4 4 4 4 5 5 4

Figure 5.11: Compatibility Results: Client-Controller-Application System

5.4.2 Practical Example: The Client-Controller-Application System
Let us consider an example taken from [SHQ17] where a client interacts with an application and
a third peer, the controller, to get the authorisation to access the application. The controller
starts the application when needed. More precisely, the client sends a login to the controller
which can accept of reject the demand. If accepted, the client can send several upload messages
to the application. This controller starts the application (message begin) when it accepts a client,
and signals it to end when the client logs out (logout). Figures 5.12a, 5.12b, and 5.12c specify
the peers. They are stable with regard to interest.

In terms of unexpected receptions, the framework highlights counterexamples. When the
communication is not Causal or stronger (according to the hierarchy in Section 2.5 of Chapter 2
on page 38) on channels begin, accept , and upload , a message sent on begin by the controller
might not be received by the application (in state ap1) before the message sent by the client on
upload . This leads the application in the faulty state ⊥. Similarly, when the communication is
not FIFO 1-1 or stronger on login and logout , the client can log in just after loging out but if
the message on login is received first, the application remains in ap2 and the controller can send
a message on begin that leads the application in the faulty state ⊥ upon reception. Figure 5.11
recaps these results. The composite communication model is:

Causal Mc {begin, accept , upload}
FIFO 1-1 M11 {login, logout}
Fully Asynchronous Ma {reject}

5.4.3 Advanced Usage of Composite Models: the Video Stream
The previous examples has illustrated how channels can be partitioned and associated to different
communication models in order to perform sharper analysis. Here we provide a case where the
need for channels to be associated to more than one communication model arises.

Let us consider a system in which a client watches a live video with subtitles. The video is
stored on a remote video server, and captioning is performed on the fly by a subtitle generator.
The streams are cut into video parts (resp. subtitle parts) denoted Vi (resp. Si) where i
designates the i -th part. The client expects to receive each video part, one after the other, and
the associated subtitle part with little enough delay between them.

In order to achieve that goal, we introduce checkpoints in the streams. Each video or subtitle

102

cl0 cl1 cl2 cl3 cl4

login!

accept?reject? upload! upload!

logout!

(a) Client

ap1

⊥

ap2

begin?

end?

upload?

upload?end?

begin?

(b) Application

ct0

ct4

ct5

ct1 ct2 ct3
login? τ

τ

begin!

accept!

reject!

logout?

end!

(c) Controller

Figure 5.12: Specifications of the Client, Controller, and Application. The peers are stable with
regard to interest.

103

Client

Subtitle
generator

Video
server

VC1

SC1VC1

VC2

VC2

VC3 VC4

[...]

[...]

[...]

V1 V2 V3

Figure 5.13: Transmission of One Part Between the Three Peers

S3

Client

Subtitle
generator

Video
server

V1 V2 V3 V4

VC1 VC2 VC3 VC4

SC1 SC2 SC3

S1 S2

VC1

NON CAUSAL
NON CAUSAL

[...]
NON CAUSAL

VC1 frontier

[...]

[...]

Figure 5.14: Desirable and Undesirable Executions with FIFO 1-1

part Vi (resp. Si) is preceded by the emission of an associated checkpoint message denoted VCi
(resp. SCi). FIFO 1-1 ordering is used so that messages that compose a part are received in the
right order, as well as the checkpoint messages. Figure 5.13 provides a possible execution where
a part is transmitted as expected.

FIFO 1-1 communication is not sufficient to prevent the video stream from being late with
regard to the subtitles, as they are sent by different peers (Figure 5.14). Causal communication
on the entire system would prevent this, but this is excessive, as a little desynchronisation
between a video part and its corresponding subtitle part is not perceived. It is sufficient to
consider a composite communication model, where all the channels are associated to an M1−1
instance, and all the control point channels are also associated to an Mcausal instance. Model
checking of this system (three parts of two Vi/Si messages each, plus checkpoint messages, for
a total of 30 messages) generates 353988 distinct states and takes around 22s with an optimised
implementation of M1−1.

5.5 Optimised Communication Models

Several practical issues and restrictions arise from the provided specifications of the communica-
tion models. For instance, as the presented communication models are based on message histories
that never decrease, we are confronted to performance limitations. Moreover, systems involving
behaviours with loops, such as for instance the trivial system composed of any communication
model and two peers derived from the CCS terms P1 , a! · b? · P1 and P2 , a? · b! · P2, will
actually consist in an infinite transition system.

104

5.5.1 Reduction to Finite State Spaces by Purging Histories
One solution to the problem of systems with loops could consist in using unique message identi-
fiers as a base for message histories. When a message is sent, it is given a new unique identifier
and this very identifier is added to the history (local, global, or causal) instead of the message
itself. This means that the history associated to a message in transit is a simple flat set of iden-
tifiers instead of a recursive data structure that contains entire messages. When remembering a
message becomes irrelevant (no message in transit refers to it), the associated identifier can be
used again for new messages. In some cases, this might change an infinite system into a finite
state system and thus allow model checking. There are however two caveats:

• Such specifications introduce a new concept: message identifiers. They also change the
fundamental data structure on which the communication models rely: message histories.
This is a significant step away from the formal specifications from Chapter 4 that have
been proven correct and complete with regard to the structural definitions from Chapter 2.

• The benefits in term of state space reduction strongly depend on the way the message
identifiers are generated and reused. There are many possible ways to reuse identifiers:
in a LIFO manner (the new message takes the newest available identifier), in a FIFO
manner (the new message takes the oldest available identifier), only once a given amount
of identifiers has been made available (the new message takes a new identifier unless there
are too many available "second-hand" identifiers), etc. Some policies might increase the
number of state even more: at worst a new message can take any of the available identifiers.
Depending on the considered system, some choices might provide better results than others.

A mechanism to purge history has been implemented instead. In the modified implementa-
tions, messages that are retrieved from the network of a communication model are recursively
removed from histories. This purge reduces the previous example to a finite state system over
which model checking always reaches a conclusion. These alternative communication model
specifications have proven useful to check practical examples.

5.5.2 Dedicated Optimised Implementations
When possible, more optimised and practical implementations consist in using counters of mes-
sages instead of message histories, or explicit sequences (in FIFO communication models). How-
ever, unlike the already presented specifications with message histories, these implementations
are not guaranteed to be equivalent to the structural definitions from Chapter 2. Figure 5.15
is a TLA+ module that corresponds to a FIFO n-n specification relying on a unique queue of
messages. There are not histories anymore and the network is the queue. In Chapter 6, we
introduce more examples and prove they do not violate the ordering policies.

5.6 Benchmarking

5.6.1 Scenario
We consider two parameters n ≥ 0 and m ≥ 0, a1, . . . , an and b channels. Two peers are specified
by the following CCS terms from which we derive transition systems and apply FRC:

(a1! · . . . · an ! · b? · 0)m and (a1? · . . . · an? · b!)m

105

module fifonnsequence

extends Naturals, Sequences

constant
CHANNEL, N

variable
net , The network is now a sequence of messages
H There is no need for histories (still present for integration in the framework)

Init ,
∧ net = 〈〉 The network is initially the empty sequence
∧H = {}

EmptyNetwork , net = 〈〉
nochange , unchanged 〈net , H 〉
internal , false

send(peer , chan) ,
∧ net ′ = Append(net , 〈chan, peer〉)
∧ unchanged H

receive(peer , chan, listened) ,
∧ net 6= 〈〉
∧ Head(net) = 〈chan, peer〉
∧ net ′ = Tail(net)
∧ unchanged H

Figure 5.15: TLA+ Module Associated to an Optimised Specification of the FIFO n-n Commu-
nication Model

 0
 5

 10
 15

 20
 25

 30
 35

 40
 45

 0
 5

 10
 15

 20
 25 30

 35
 40

 45 0

 100

 200

 300

 400

 500

 600

t (sec)

Fifo 1-1 with purge

M
N

 0
 50

 100
 150

 200
 250

 300

 0
 50

 100
 150

 200
 250

 300
 0

 200

 400

 600

 800

 1000

 1200

 1400

t (sec)

Fifo 1-1 queue implementation

M
N

Figure 5.16: Optimised Implementations

106

 0

 100

 200

 300

 400

 500

 600

 0 5 10 15 20 25

t
(s

e
c)

N

Fifo 1-1 - M=1

Fifo 1-1 - M=2

Fifo 1-1 with purge - M=1

Fifo 1-1 with purge - M=2

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 5 10 15 20 25 30 35 40 45

t
(s

e
c)

M

Fifo 1-1 - N=1

Fifo 1-1 - N=2

Fifo 1-1 with purge - N=1

Fifo 1-1 with purge - N=2

Figure 5.17: Comparison Between the Formal Implementation and the Purge-Based Optimised
Implementation

M 1 1 41 51 101 301
N 1 311 111 51 91 1
states 9 48834 259494 70334 432184 1209
transitions 11 97041 509801 135361 845781 1211

Table 5.2: Number of States and Transitions (Samples)

The composition consists in transmitting sequences of n messages (on the ai channels) from
the first to the second peer. A synchronisation message is exchanged (from the second to the
first peer) between each sequence. The messages are expected to be received in the order of their
emission and a communication model has to ensure that unexpected receptions are impossible.

The framework is used to check the termination of the proposed composition. In the fol-
lowing results, we consider M11, an alternative specification with history purge M purge

11 , and an
implementation using a queue M queue

11 . The machine that runs the simulations is 2 × 4 cores
Intel Xeon CPU E5-2690 v3 at 2.60GHz with 23GiB of memory. We focus on the number of
generated states and the time required to perform model checking. The results are presented in
Figures 5.16 and 5.17 and Table 5.2 for M11, M purge

11 , and M queue
11 . The results obtained with

the other models of Table 5.1 and their different implementations are similar. Indeed, their
specification do not differ much in terms of data structure and guard on reception, and the time
required to explore the state space do not vary significantly. Differences appear between the
different implementations of a given model.

5.6.2 Analysis
With M purge

11 , the results show that the number of states (Table 5.2), which does not depend on
the implementation of the model, and runtime (which is directly related to the number of states)
linearly increase with m the number of critical sequences. In Figure 5.16, the runtime is plotted
for different values of n and m. For a given value of n, it shows that the runtime increases
linearly along the m axis. The number of states and runtime exponentially increase when it
comes to n as illustrated once again on Figure 5.16. It accounts for the maximum number of
messages in transit at a given time and all the possible receptions that have to be visited. m
corresponds to the number of repetitions of the scenario, thus the linear profile. The second
graph in Figure 5.17 reveals that runtime does not grow linearly for m with M11: it grows ex-

107

ponentially because histories of past iterations actually accumulate which generates new states.
When the histories are purged, the number of states is capped: in the same graph we see that,
however large m is, runtime remains constant and looks close to 0 (almost along the m axis in
the figure). Checking if a reception is possible requires to explore this entire past whereas M purge

11
and M queue

11 do not keep track of received messages.

Advantages Drawbacks

Regular specifications
with message histories

Direct translation of
the formal specifica-
tion.

Keeps track of every
emitted message: poor
m-type scalability.

Regular specifications
with purge of histories

Close to the formal
specification. No accu-
mulation of messages
in histories. Better
m-type scalability (lin-
ear).

Additional time
needed to purge
histories: state space
explosion occurs earlier
in terms of maximum
number of messages in
transit.

Dedicated specifications Way better overall
performances. Use-
ful as a quick first
compatibility check
or to find potential
counterexamples.

Equivalence to the for-
mal specification is not
guaranteed.

5.7 Conclusion
The mechanisation of the framework provides a practical toolset to verify the compatibility of
compositions of peers with model checking. It is modular, extensible, and flexible: the specifi-
cations of the peers, the communication models, and the compatibility properties are all inde-
pendent and share common interfaces to integrate in the mechanised framework. Moreover, we
provide optional automations to ease the specification of complex compositions that satisfy sta-
bility with regard to interest. The TLA+ specifications of the communication models correspond
to the exact specifications of the models from Chapter 4. The mechanised framework is trustwor-
thy because these specifications conform to the logical definitions of the communication models
in Chapter 2 when dealing with peers that are stable with regard to interest. The framework has
been used to specify practical examples of compositions and reveal counterexamples (runs) that
violate the compatibility properties. This allows to incrementally fine tune the communication
model to fit the system’s needs thanks to possibility to specify composite communication models
in the mechanised framework.

In terms of performance, the impact of sate space explosion on the overall time of model
checking may be limited by optimised specifications of the communication models. However,
there is less confidence in these alternate unproved specifications. Systems that loop such as
the client-controller-application example may generate an infinite state space due to the ever
increasing message history: this is solved with communication models that remove old messages
from the histories at the cost of performance of the model checking.

108

Chapter 6

A Menagerie of Refinements

This chapter is a contribution to the study of the asynchronous communication models and how
they are derived. Three approaches are considered to model the point-to-point asynchronous
communication paradigms. In the first and most abstract one, communication models are spec-
ified as properties on the ordering of events in distributed executions as in Chapter 2. In the
second approach, they are modelled with message histories which embed the dependencies in
a similar way to the models in Chapter 4. In the last and more concrete approach, they are
modelled using classical approaches such as counters, queues or vector clocks.

Refinement is used in several ways. A first chain of refinements introduces distributed events
and the causality link between them. Then, a hierarchy of the seven point-to-point communica-
tion models from the previous chapters is established by refinement. This hierarchy can be used
to choose the most adequate model for an application, i.e. the least constrained model which
is sufficient to prove the correctness. Lastly, concrete models are derived by data refinement.
The different approaches – from the most abstract to the most concrete – allow to choose sev-
eral versions of the same communication model, either more amenable to proving or closer to a
deployable implementation.

6.1 Introduction
A classic way to develop distributed algorithms is to start with a global goal, such as mutual
exclusion or global agreement. A distributed version of the algorithm is then derived, either
directly or by progressive transformation of the specification, e.g. by refinement. At the end,
the most concrete versions have to ensure that variables are not shared by different sites, and
that messages/signals/port interactions are used to communicate. This approach dates back to
early work by Dijsktra [Dij83], Chandy-Misra with UNITY [CM88], Back and Kurki-Suonio with
action systems [BK88], Lamport with TLA [Lam94] and TLA+ [Lam02]. It is still bustling in
the correct-by-construction community and Event-B [Abr10] is a well-known framework which
embodies this methodology. At one point of the development process, communication is explicitly
introduced, to express the flow of information from one site to another. This communication
later takes the form of message exchanges. When the development is thoroughly conducted
with formal verification, the properties of the communication are shown to be sufficient for the
correctness of the algorithm. However, it is often unclear what are the specific properties of this
communication that are necessary to ensure the correctness of the algorithm. Especially, it may
be difficult to replace one communication model with another without doing again the full proof
or development.

109

The presented work aims at alleviating these difficulties for asynchronous point-to-point com-
munication. Refinement is used in several ways. A first chain of refinements introduces dis-
tributed events and the causality link between them, and gives several models of asynchronous
distributed executions: a model with abstract events and partial ordering, a linear extension of
the partial ordering, and lastly a refined model with message-related events. Then, the seven
point-to-point communication models from previous chapters are studied. They differ in the
delivery order of messages (e.g., messages are always received in the order in which they were
sent). The constraints on the delivery order are actually restrictions on the non-determinism
of the deliveries. The ordering between events can be captured either explicitly or implicitly
with message histories. This gives two chains of refinements. Yet, these two chains are closely
related, yielding a ladder of refinements. Lastly, concrete models are derived by data refinement
to get concrete models. On the whole, this allows to substitute one communication model with
another, either having weaker / stronger properties, or having a more abstract / more concrete
description. The overall picture of these refinements is presented in the conclusion (Figure 6.8).

The outline of this chapter is the following. Section 6.2 recalls basic definitions of the theory
of distributed systems and their modelling in Event-B for asynchronous point-to-point commu-
nication with messages. Section 6.3 presents seven communication models and their modelling
in Event-B with distributed executions and events. Section 6.4 presents the refinements to get
models based on histories of messages. Section 6.5 refines one step further towards concrete
models. Section 6.6 discusses several common points: proof effort, deadlock freedom, previous
work in TLA+, localisation. Eventually, the conclusion draws perspectives after summing up this
work.

6.2 Distributed Systems
An asynchronous message-passing distributed system is composed of a set of peers that exchange
messages. This chapter considers point-to-point communication where message has exactly one
sender and at most one receiver.

6.2.1 Distributed Executions
Let PEER be the set of peers, MESSAGE an enumerable set of messages identifiers, and COM
, {Send ,Receive} the communication labels. In this chapter we stick to the definitions of
distributed executions and runs from Chapter 2. In order to simplify the presentation of the re-
sults concerning the communication models, we do not consider internal actions (Internal). The
total orders on peers ≤· are also omitted. It is simply done with peer(e1) = peer(e2) ∧ e1 ≺c e2
or peer(e1) = peer(e2) ∧ e1 <σ e2 instead. As events occurring on the same peer are totally
ordered and <σ contains ≺c , both formulae are equivalent.

In the following, some ordering specialisation will forbid message loss or impose a deadlock.
For instance, if a FIFO property is realised by counting sent and received messages, the loss of
a message prevents the delivery of all following messages.

6.2.2 Event-B
A model in Event-B [Abr10], or machine, is an abstract state machine. It contains state variables
v , invariants I (v), and events1. An event E parameterised by x has the form EVENT E ANY x

1Unfortunately, the word event is burdened with multiple meanings. In this chapter, an event can be an
element of a distributed execution or a part of an Event-B machine. The context hopefully makes it clear which
is which.

110

WHERE G(v , x) THEN A(v , x) END, where G(v , x) are the guards of the event and A(v , x) an
action changing the values of v . In this chapter, actions are deterministic assignments of the
form v := expr or v : | v ′ = expr where v is a state variable. Both forms can be represented
using a before-after predicate BA(v , x , v ′), where v ′ is the state of the variables after the action.
When values for the parameters x satisfy the guards of E , E is said to be enabled and the state
of the machine evolves according to the action A. Moreover, an event can contain witnesses
(clause WITH) for removed parameters and variables of the machine it refines. INITIALISATION
is a special event without parameters or guards that specifies the initial state of a machine. A
machine can be related to one Event-B context, the machine SEES that context. The context
specifies sets, constants, axioms and theorems (grouped in C) on these sets and constants. The
invariants, guards, and actions in a machine can depend on the definitions provided by the
context and proofs can rely on the axioms and theorems. The Rodin tool [ABH+10] generates
proof obligations for the preservation of the invariants by the events. For an invariant I (v), the
INV proof obligation for an event is: C ∧ I (v) ∧G(v , x) ∧ BA(v , x , v ′)⇒ I (v ′).

The main concept of the Event-B method is refinement. Consider a concrete machine Mc
with variables w , an abstract machine Ma with variables v , the associated axioms Cc (resp Ca),
and invariants Ic(w) (resp Ia(v)). Abstract variables v are linked to concrete variables w by a
gluing invariant J (v ,w). The refinement of an event Ea of Ma (with guard Ga(v , x) and action
BAa(v , x , v ′)) in an event Ec of Mc (with guard Gc(w , y) and action BAc(w , y ,w ′)) generates
the proof obligations:

Cc ∧ Ca ∧ Ic(w) ∧ Ia(v) ∧ J (v ,w) ∧Gc(w , y) ∧W (x ,w , y)⇒ Ga(v , x)(
Cc ∧ Ca ∧ Ic(w) ∧ Ia(v) ∧ J (v ,w)
∧Gc(w , y) ∧W (x ,w , y) ∧ BAc(w , y ,w ′)

)
⇒ ∃v ′ ·(BAa(v , x , v ′) ∧ J (v ′,w ′))

W (x ,w , y) is the witness predicate which links abstract parameters x and concrete parameters
y if they are different. The first rule means that the guard is strengthened (GRD proof obligation)
and the second rule means that the abstract action is correctly simulated by the concrete one
(SIM proof obligation). skip is the stuttering event which is implicitly refined by an event of
a concrete machine that does not refine any other event. In our case, models also generate
additional proof obligations like well-definedness of terms (WD/WWD proof obligation) and
feasibility of non-deterministic action or witness (FIS/WFIS proof obligation)

In Event-B, x1 7→ x2 denotes a pair (x1, x2). Relations are sets of pairs. dom(r) and ran(r)
denote the domain and range of a relation r . E ↔ F denotes the set of relations between E
and F , E ↔↔ F the set of total surjective relations, and E → F total functions from E to F .
The relation r1; r2 denotes the forward composition of relations r1 and r2. “�” is the domain
restriction operator such that given a relation r and a set E , E � r , {x 7→ y | x 7→ y ∈
r ∧ x ∈ E}. “�−” is the domain subtraction operator such that given a relation r and a set E ′,
E ′�− r , {x 7→ y | x 7→ y ∈ r ∧ x /∈ E ′}. “�−” is the overriding operator such that given relations
r1 and r2, r1�−r2 , r2∪(dom(r2)�−r1). P(E) denotes the powerset of E and union(E) , ∪X∈EX .
partition(E ,E1, · · · ,En) is a predicate that states that E is partitioned in E1, · · · ,En .

6.2.3 From Events to Distributed Executions
The general architecture of the initial refinements is shown in Figure 6.1. The initial machines
introduce events, and then establish a link between two events: a cause and a consequence
(context Event and machines Events and Communication). Peers are then introduced, and events
occur on peers (machine DistributedExecution and context Peers). This yields distributed
executions, where events are causally related (partial order ≺c). Next, a run is a linear extension

111

Events SEES // Event

Communication

REFINES

OO

DistributedExecutions

REFINES

OO

SEES // Peers

EXTENDS

OO

Run

REFINES

OO

RunWithMessages

REFINES

OO

SEES // Messages

EXTENDS

OO

Figure 6.1: General Architecture of the Preliminary Design

of ≺c , where events are totally ordered by <σ (machine Run). Lastly, messages are introduced
(context Messages and machine RunWithMessages). Messages establish the link between two
events, a send event and the corresponding receive event. This last machine conforms to the
definitions of distributed execution and run. This corresponds to a distributed system with
asynchronous point-to-point communication.

The page http://hurault.perso.enseeiht.fr/MenagerieOfRefinements/ contains all the
models discussed in this chapter2. This page also gives indications to replay the proofs (mainly
version of Rodin and SMT provers).

Events

The context Event introduces the set EVENT. The machine Events simply states that new events
happen. The variable past holds past events, to ensure that no event occurs twice.

MACHINE A_Events
SEES A_Event
VARIABLES

past // Set of events that have happened
INVARIANTS
Tpast: past ∈ P (EVENT)

EVENT INITIALISATION THEN past := ∅
EVENT happen

ANY e // New event
WHERE

grd1: e ∈ EVENT \ past
THEN

act1: past := past ∪ {e}
END

CONTEXT A_Event
SETS
EVENT

END

2The names of the models are of the form L_Name, where the prefix is used so that models are displayed in
their refinement order in Rodin. The text of the chapter often omits this prefix but the extracts of the models
retain it for reference.

112

http://hurault.perso.enseeiht.fr/MenagerieOfRefinements/

Links between events

The machine Communication introduces the notion of link between an event and its cause. This
link will be later realised with an explicit message where the send of a message will be a cause,
and the reception will be the consequence. A new variable links is introduced. As this chapter
deals with point-to-point communication, the following invariants are expected:

INVARIANTS
Tlinks : links ∈ past ↔past
inv0 : dom(links) ∩ ran(links) = ∅// Causes (emissions) and consequences (receptions) are distinct .
inv1 : ∀ e1, e2, c · e1 7→ c ∈ links ∧ e2 7→ c ∈ links ⇒ e1 = e2 // A consequence has only one direct cause.
inv2 : ∀ e, c1, c2 · e 7→ c1 ∈ links ∧ e 7→ c2 ∈ links ⇒ c1 = c2 // A cause has at most one consequence.

The event happen is refined into two new events: an event create which is exactly happen
and a new event link to establish a link.

EVENT create REFINES happen extended
... // unchanged

EVENT link REFINES happen // A new event occurs, with a link to its cause
ANY e // New event

cause // Cause event
WHERE

grd1: e ∈ EVENT \ past
grd2: cause ∈ past // The cause event has already happened.
grd3: cause /∈ dom(links) // A cause serves once only .
grd4: cause /∈ ran(links) // A cause is not a consequence.

THEN
act1: past := past ∪ {e}
act2: links :| links ’ = links ∪ {cause 7→ e}

END

Distributed Executions

The context Peer extends Event with PEER, a set of peer identity.
The machine DistributedExecution adds two variables: peerOf that holds, for each event,

the peer on which it has occurred, and prec which is the causality relation between events (also
previously noted ≺c in the text). The main invariants state that prec is a partial order, is totally
ordered on peers, and contains links.

INVARIANTS
Tprec: prec ∈ past ↔↔past
TpeerOf: peerOf ∈ past →PEER
inv1 : (past � id) ⊆ prec // prec is reflexive .
inv2 : prec ; prec ⊆ prec // prec is transitive .
inv3 : prec ∩ prec−1 ⊆ id // prec is anti−symmetric.
inv4 : links ⊆ prec // prec contains (the reflexive transitive closure of) links .
inv5 : ∀ e1, e2 · e1 ∈ past ∧ e2 ∈ past ∧ peerOf(e1) = peerOf(e2) ⇒ e1 7→ e2 ∈ prec ∨e2 7→ e1 ∈ prec

// Events occurring on the same peer are totally ordered .

113

EVENT link REFINES link extended
ANY

...
p

WHERE
...
+grd5: p ∈ PEER

THEN
...
+act3: peerOf := peerOf ∪{e 7→ p}

// The new event is causally after all events from the same peer (third line)
// and after all events that causally precedes the cause (fourth line).

+act4: prec :=
prec
∪ {e 7→ e}
∪ {ep · ep ∈ past ∧ (∃ ep2 · ep2 ∈ past ∧ peerOf(ep2) = p ∧ep 7→ ep2 ∈ prec) | ep 7→ e}
∪ {ep · ep ∈ past ∧ ep 7→ cause ∈ prec | ep 7→ e}

END

(The event create is similar, without the fourth line of the assignment +act4 which is the
transitive closure of prec with regard to cause)

Run

The next refinement is the machine Run which introduces a variable run as a total order of events
and verifies that it is a linear extension of prec. The Event-B expression e1 7→ e2 ∈ run is
also noted e1 <σ e2 in the text.

INVARIANTS
Trun: run ∈ past ↔↔ past
inv0 : ∀ e1, e2 · e1 ∈ past ∧ e2 ∈ past ⇒ e1 7→ e2 ∈ run ∨e2 7→ e1 ∈ run // run is total .
inv1 : (past � id) ⊆ run // run is reflexive (consequence of inv0).
inv2 : run ; run ⊆ run // run is transitive .
inv3 : run ∩ run−1 ⊆ id // run is anti−symmetric.
inv4 : prec ⊆ run // run extends prec .
inv5 : ∀ e1, e2 · e1 ∈ past ∧ e2 ∈ past ∧ peerOf(e1) = peerOf(e2)

⇒ ((e1 7→ e2 ∈ prec) ⇔(e1 7→ e2 ∈ run))

run is constructed by a superposition to both create and link actions with:

EVENT create REFINES create extended
...
+act5: run := run

∪ {e 7→ e}
∪ {ep · ep ∈ past | ep 7→ e}

EVENT link REFINES link extended
...
+act5: run := run

∪ {e 7→ e}
∪ {ep · ep ∈ past | ep 7→ e}

Messages

At last, messages are introduced. A message links its send event and its reception event. The
machine RunWithMessages adds two variables mesOf and comOf which, for each event, specify
the associated message and event type (send or receive). Conversely, the variable links and the
parameter cause of event link (refined in receive) are removed. A gluing invariant Glinks
and adequate witnesses in receive are provided.

This machine models a message-passing distributed execution with asynchronous point-to-
point communication.

114

MACHINE E_RunWithMessages
REFINES D_Run
SEES E_Messages
VARIABLES

past
peerOf
prec
run
mesOf // Message mesOf(e) of a communication event e.
comOf // label comOf(e) (Send or Receive)

// of a communication event e.

CONTEXT E_Messages
EXTENDS C_Peers
SETS
MESSAGE
COM

CONSTANTS
Send
Receive

AXIOMS
COM: partition(COM,{Send},{Receive})

INVARIANTS
TcomOf: comOf ∈ past →COM
TmesOf: mesOf ∈ past →MESSAGE
inv1 : ∀ e1, e2 · e1 ∈ past ∧ e2 ∈ past ∧ comOf(e1) = comOf(e2) ∧mesOf(e1) = mesOf(e2) ⇒e1 = e2

// no message is sent or received more than once
inv2 : ∀ e · e ∈ past ∧ comOf(e) = Receive

⇒ (∃ es · es ∈ past ∧ comOf(es) = Send ∧mesOf(e) = mesOf(es) ∧es 7→ e ∈ prec)
// a receive event is preceded by a send event

Glinks : ∀ es , er · es 7→ er ∈ links ⇒ comOf(es) = Send ∧comOf(er) = Receive ∧mesOf(es) = mesOf(er)

EVENT send REFINES create extended
ANY e // New event.

p // Peer where the event occurs .
m // Sent message.

WHERE
...
grd3: m ∈ MESSAGE \ran(mesOf)

THEN
...
+act5: mesOf := mesOf ∪{e 7→ m}
+act6: comOf := comOf ∪{e 7→ Send}

EVENT receive REFINES link
ANY e // New event.

p // Receiver .
m // Received message.

WHERE
grd1: e ∈ EVENT \ past
grd4: p ∈ PEER
grd5: m ∈ MESSAGE
grd6: ∀ ep · ep ∈ past ∧ comOf(ep) = Receive ⇒mesOf(ep) 6= m // m has not been received yet .
grd7: ∃ es · es ∈ past ∧ comOf(es) = Send ∧mesOf(es) = m // m has been sent.

WITH
cause: cause ∈ past ∧ comOf(cause) = Send ∧mesOf(cause) = m
links ’ : links ’ = links ∪ {es · es ∈ past ∧ comOf(es) = Send ∧mesOf(es) = m | es 7→ e}

THEN
act1: past := past ∪ {e}
act3: peerOf := peerOf ∪{e 7→ p}
act4: prec := prec ∪ {e 7→ e}

∪ {ep · ep ∈ past ∧ (∃ ep2 · ep2 ∈ past ∧ peerOf(ep2) = p ∧ep 7→ ep2 ∈ prec) | ep 7→ e}
∪ {ep · ep ∈ past

∧ (∃ es · es ∈ past ∧ comOf(es) = Send ∧mesOf(es) = m ∧ep 7→ es ∈ prec)
| ep 7→ e}

act5: run := run ∪ {e 7→ e} ∪ {ep · ep ∈ past | ep 7→ e}
+act6: mesOf := mesOf ∪{e 7→ m}
+act7: comOf := comOf ∪{e 7→ Receive}

115

6.2.4 Summary
The initial model may seem contrived with no invariant and a trivial event. It forms the foun-
dation for the refinements that, at each step, introduce an essential element up to a model of
message-passing distributed execution with point-to-point asynchronous communication. The
machine Communication introduces point-to-point communication with a relation between two
events. By playing with the guards, other models could be specified: imposing that consequences
are also causes (synchronous communication); allowing several consequences for a cause (multi-
cast); allowing several causes for a consequence (join). The next machine, DistributedExecution,
introduces peers and the causality relation (a partial order, total on events on the same peers).
Then, the machine Run introduces an observation of a distributed execution as a total order on
events. Lastly RunWithMessages identifies the relation between two events as a message and
expresses the two essential invariants on messages (uniqueness of reception and reception after
send). This last machine models a fully asynchronous point-to-point communication model.

6.3 Abstract Communication Models
The interaction model (or communication model) plays a major role in distributed systems. It
specifies when a communication action (send or receive) is possible in order to ensure specific
properties on the communication. For instance, a globally ordered communication model imposes
that all messages are received in the same order as they were sent: no message overtakes another
on a run.

The seven communication models from Chapter 2 and their relations are studied below.
Their specifications are expressed as properties on distributed executions or runs. They serve
as invariants on Event-B machines that specify the distributed executions permitted by each
model. An Event-B machine is built for each communication model. Refinement is used to
define a hierarchy based on simulation. The strengthening of the delivery order reduces the
non-determinism of the receptions.

6.3.1 Specifications of the Communication Models
We consider the specifications of the communication models with events. Each communication
model is characterised by an invariant that describes the ordering properties it ensures on the
communication. The model-specific invariants are presented in Table 6.1. For RSC, the invariant
states that no event (e) can occur between the send event of a message (es) and the receive
event of this message (er). The common part for the four FIFO models and the Causal model
introduces es1 and es2 as send events of two distinct messages, er1 and er2 as the corresponding
receive events. The specific part imposes an order on the receive events based on the causal or
run order of es1 and es2, and on the equality of the sending and/or receiving peers (same sending
peer and same receiving peer for FIFO 1-1, same sending peer for FIFO 1-n, same receiving peer
for FIFO n-1 and Causal). For instance, the ordering invariant in the machine Fifo11Event is:

∀ es1, er1 , es2, er2 · es1 ∈ past ∧ er1 ∈ past ∧ es2 ∈ past ∧ er2 ∈ past
∧ comOf(es1) = Send ∧comOf(es2) = Send
∧ comOf(er1) = Receive ∧comOf(er2) = Receive
∧mesOf(es1) = mesOf(er1) ∧mesOf(es2) = mesOf(er2)
∧ peerOf(es1) = peerOf(es2) ∧ peerOf(er1) = peerOf(er2)
∧ es1 7→ es2 ∈ prec
⇒ er1 7→ er2 ∈ run

116

Model Invariant of the Communication Model
async >

RSC

∀es, er ·
es ∈ past ∧ er ∈ past

∧ comOf (es) = Send
∧ comOf (er) = Receive
∧ mesOf (es) = mesOf (er)

⇒ ¬(∃e · e ∈ past
∧ es <σ e
∧ e <σ er)

common
to fifo*
and
causal

Common ,



es1 ∈ past ∧ es2 ∈ past
∧ er1 ∈ past ∧ er2 ∈ past
∧ comOf (es1) = Send
∧ comOf (es2) = Send
∧ comOf (er1) = Receive
∧ comOf (er2) = Receive
∧ mesOf (es1) = mesOf (er1)
∧ mesOf (es2) = mesOf (er2)


∀es1, es2, er1, er2·

fifo11


Common

∧ es1 ≺c es2
∧ peerOf (es1) = peerOf (es2)
∧ peerOf (er1) = peerOf (er2)

 ⇒ er1 <σ er2

∀es1, es2, er1, er2·

causal

 Common
∧ es1 ≺c es2
∧ peerOf (er1) = peerOf (er2)

 ⇒ er1 <σ er2

∀es1, es2, er1, er2·

fifo1n

 Common
∧ es1 ≺c es2
∧ peerOf (es1) = peerOf (es2)

 ⇒ er1 <σ er2

∀es1, es2, er1, er2·

fifon1

 Common
∧ es1 <σ es2
∧ peerOf (er1) = peerOf (er2)

 ⇒ er1 <σ er2

∀es1, es2, er1, er2·

fifonn
(

Common
∧ es1 <σ es2

)
⇒ er1 <σ er2

Table 6.1: Model-specific invariants in the Event-B machines with distributed executions. The
common part for the fifo* and causal models introduces es1 and es2 as send events, er1 and er2 as
the corresponding receive events. The specific part imposes an order on the receive events based
on the causal or run order of es1 and es2, and on the equality of the sending and/or receiving
peers. The Weakest Preconditions of these invariants are used as guards on the send and receive
events.

117

It states that if two messages are sent from the same peer (events es1 and es2) and are received
on the same peer (events er1 and er2), and that es1 occurs before es2 (on their common peer),
then the events er1 and er2 must occur in this order in the run. One noteworthy point of
these specifications is that they implicitly include message loss as a never-delivered message: the
corresponding receive event of a send event does not exist in the generated run.

Our next goal is to compare the communication models (Section 6.3.2) by proving that some
have less transitions than others (i.e. are more deterministic). Later in Sections 6.4 and 6.5, we
derive more concrete models. However, at the current point, it is important to have machines that
are as liberal as the ordering allows. Thus, the weakest preconditions of the ordering invariants
are stipulated for the send and receive events and are used as guards on both communication
events. As the actions are assignments of the form var := var ∪ {· · · }, the computation of the
weakest preconditions is trivial [DS90]. As an example, Figure 6.2 shows the machine describing
the FIFO 1-1 communication model.

6.3.2 Reduction of Non-Determinism
The communication models presented in the previous chapters constitute gradual steps between
fully asynchronous distributed communication (Fully Asynchronous) where sending and receiving
a message is always possible, partially ordered communication (FIFO 1-1, Causal, FIFO 1-n,
FIFO n-1), totally ordered communication (FIFO n-n), and almost synchronous communication
(RSC) where a message must be received immediately after it has been sent.

The machine RunWithMessages models asynchronous communication and corresponds to the
Fully Asynchronous model. The other models impose more and more determinism on reception
(and, for RSC, on send). The hierarchy is thus proved by refinement. Note however that these
are not concretisation refinements: no model can be called more (or less) concrete or realisable.
Concretisation of the communication models will follow a specific path for each model and is
described in Section 6.4 and Section 6.5.

The results of the formal proofs of refinement between the Event-B machines are summed
up in Figure 6.3. The two machines for FIFO n-n are actually the same (strictly same context,
same variables and same events): one refines FIFO 1-n, the other one refines FIFO n-1. This
propagates to the two machines for RSC.

6.3.3 Proofs and Invariants
The difference between the communication models is an invariant directly related to the order of
delivery, and the associated weakest precondition used as a guard on the communication events.
A proof of refinement consists in proving the logical implications between these invariants. Most
of the time these proofs require little manual intervention thanks to auto-provers, post-tactics,
and SMT solvers.

The refinements of Causal in FIFO n-1 and FIFO 1-n need manual intervention with the
help of a specific invariant:

∀ e1, e2 · e1 7→ e2 ∈ prec ∧peerOf(e1) 6= peerOf(e2)
⇒ (∃ es , er · e1 7→ es ∈ prec

∧ es 7→ er ∈ prec ∧ er 7→ e2 ∈ prec
∧ peerOf(e1) = peerOf(es)
∧ comOf(es) = Send
∧ comOf(er) = Receive
∧mesOf(es) = mesOf(er))

118

MACHINE G2_Fifo11Event
REFINES E_RunWithMessages
SEES E_MESSAGES
VARIABLES // unchanged

past
peerOf
prec
run
mesOf
comOf

EVENT send REFINES send extended
ANY e

p
m

WHERE
grd1: e ∈ EVENT \ past
grd2: p ∈ PEER
grd3: m ∈ MESSAGE \ran(mesOf)

// weakest precondition of the fifo11 ordering invariant
ordering : ∀ es1, er1 , es2, er2 · es1 ∈ past ∪ {e} ∧ er1 ∈ past ∪ {e}

∧ es2 ∈ past ∪ {e} ∧ er2 ∈ past ∪ {e}
∧ (comOf ∪ {e 7→ Send})(es1) = Send ∧(comOf ∪{e 7→ Send})(es2) = Send
∧ (comOf ∪ {e 7→ Send})(er1) = Receive ∧(comOf ∪{e 7→ Send})(er2) = Receive
∧ (mesOf ∪ {e 7→ m})(es1) = (mesOf ∪{e 7→ m})(er1)
∧ (mesOf ∪ {e 7→ m})(es2) = (mesOf ∪{e 7→ m})(er2)
∧ (peerOf ∪ {e 7→ p})(es1) = (peerOf ∪ {e 7→ p})(es2)
∧ (peerOf ∪ {e 7→ p})(er1) = (peerOf ∪ {e 7→ p})(er2)
∧ es1 7→ es2 ∈ run ∪ {e 7→ e} ∪ {ep · ep ∈ past | ep 7→ e}
⇒ er1 7→ er2 ∈ run ∪ {e 7→ e} ∪ {ep · ep ∈ past | ep 7→ e}

THEN // unchanged
act1: past := past ∪ {e}
act2: peerOf := peerOf ∪{e 7→ p}
act3: prec := prec ∪ ...
act4: run := run ∪ ...
act5: mesOf := mesOf ∪{e 7→ m}
act6: comOf := comOf ∪{e 7→ Send}

EVENT receive REFINES receive extended
...
WHERE

...
// weakest precondition of the fifo11 ordering invariant

ordering : ∀ es1, er1 , es2, er2 · es1 ∈ past ∪ {e} ∧ er1 ∈ past ∪ {e}
∧ es2 ∈ past ∪ {e} ∧ er2 ∈ past ∪ {e}

∧ (comOf ∪ {e 7→ Receive})(es1) = Send ∧(comOf ∪{e 7→ Receive})(es2) = Send
∧ (comOf ∪ {e 7→ Receive})(er1) = Receive ∧ (comOf ∪ {e 7→ Receive})(er2) = Receive
∧ (mesOf ∪ {e 7→ m})(es1) = (mesOf ∪{e 7→ m})(er1)
∧ (mesOf ∪ {e 7→ m})(es2) = (mesOf ∪{e 7→ m})(er2)
∧ (peerOf ∪ {e 7→ p})(es1) = (peerOf ∪ {e 7→ p})(es2)
∧ (peerOf ∪ {e 7→ p})(er1) = (peerOf ∪ {e 7→ p})(er2)
∧ es1 7→ es2 ∈ run ∪ {e 7→ e} ∪ {ep · ep ∈ past | ep 7→ e}
⇒ er1 7→ er2 ∈ run ∪ {e 7→ e} ∪ {ep · ep ∈ past | ep 7→ e}

THEN
... // unchanged

Figure 6.2: FIFO 1-1 Communication Model, described with events. Weakest preconditions are
used to ensure that the events are no more constrained than the ordering invariant that defines
the communication model.

119

RunWithMessages (Fully Asynchronous)

Fifo11Event

OO

CausalEvent

OO

Fifo1nEvent

66

Fifon1Event

kk

FifonnEvent

OO

FifonnEvent

OO

RscEvent

OO

RscEvent

OO

Figure 6.3: Refinements between the Event-B machines of the communication models. An arrow
means “refines”. The lines of “=” express that both FifonnEvent models are strictly the same,
except for different parent, and the same for RscEvent.

This invariant states that two causally related events on different peers are necessary linked by
(at least) one message. Informally, it means that causality between events on distinct peers only
exists only due to message exchanges. This invariant is verified in the machine RunWithMessages
but is only needed when refining the machine CausalEvent. During the proof, it had to be
manually instantiated.

6.4 History-based Communication Models
In this section, we present a first set of refinements of the communication models. This step
shares a common framework based on the concept of message histories which allows to compare
them. Yet, the models are realistic enough, in the sense that they could be implemented and used
as such. The ordering properties are realised by keeping track of dependant messages in histories.
Refinement is used in two ways: to verify that a machine that models a communication model
with histories refines the corresponding machine where the communication model is described
by a relation between events (Section 6.4.2); and to prove that the hierarchy of Figure 6.3 is
preserved (Section 6.4.3).

6.4.1 Specifications with Histories
We consider specifications of the asynchronous point-to-point interaction models where commu-
nication occurs according to two parameterised events:

Action Parameters Description
send p ∈ PEER, d ∈ PEER,m ∈ MESSAGE peer p sends message m to peer d
receive p ∈ PEER,m ∈ MESSAGE peer p receives message m

In order to simplify the specifications and refinements, unlike the communication actions in
Chapter 4, the destination peers are here explicit paramaters. We therefore do not use channels
and this also means a given message will always reach a deterministic destination. Since the
completeness of some models in the framework in Chapter 4 require mono-receptor systems, this
choice in this chapter for the menagerie of refinement is not a significant setback.

The models rely on a state variable net that contains messages in transit. Messages are
labelled to carry information about the communication: the origin peer, the destination peer, and

120

the history of the message. The history of a message is the set of messages on which it depends,
i.e. the set of messages which precede it. As two notions of precedence exist (causal/execution),
two kinds of message histories are defined: namely causal and global.

Definition 39 (Message Histories). For a run σ = (E ,≺c , <σ, com,mes, peer),

∀m ∈ MESSAGE :

hgOf (m) ,

m ′ ∈ MESSAGE : ∃e, e ′ ∈ E :
com(e) = Send ∧ com(e ′) = Send

∧ mes(e) = m ∧mes(e ′) = m ′
∧ e ′ <σ e


hcOf (m) ,

m ′ ∈ MESSAGE : ∃e, e ′ ∈ E :
com(e) = Send ∧ com(e ′) = Send

∧ mes(e) = m ∧mes(e ′) = m ′
∧ e ′ ≺c e


In the Event-B models, the message histories are built upon state variables hg ⊆ MESSAGE,

the global history and hc ∈ PEER→ P(MESSAGE), the causal histories of each peer. When peer p
sends a message m, the global history (hgOf) and the causal history (hcOf) of m are the current
values of hg and of hc(p). The new message is also added to the history state variables (hg
and hc(p)). The causal history hc(p) of a destination peer p is updated when a message m is
received to account for the causal relation induced by the transmission of the message from one
peer to another: m and its causal history hcOf(m) are added to hc(p). The ordering properties
of a model are determined by specific guards on the send and receive events that depend on
the message histories, origin, and destination of a message.

6.4.2 Refinement of Events by Histories
For each communication model, the refinement of the event-based model in the history-based
model is done in two steps. The first step adds the new variables to hold histories and message
destination (net, hg, hc, hgOf, hcOf, destOf), and replaces the guards on events by guards on
histories. Then, the second step removes the now useless variables related to events (past, prec,
run. . .). Thus, for FIFO 11, we have MACHINE F2_Fifo11History REFINES E_Fifo11Event and MACHINE
G2_Fifo11History REFINES F2_Fifo11History. The machine F2_Fifo11History combines events and
histories, and the machine G2_Fifo11History is the cleaned up machine. Doing this in two
steps significantly facilitates the proofs.

The resulting model for FIFO 1-1 is shown in Figure 6.4. The ordering invariants for each
model are presented in Table 6.2 and the ordering guards are in Table 6.3. For instance, the
FIFO 1-1 ordering invariant states that if m1 and m2 have the same origin and destination, and
that m1 was sent before m2 (thus m1 is in the causal history of m2), then m1 cannot be still in
transit while m2 has already been received. This means that m1 must be received before m2. The
ordering guard for receive allows to deliver a message m if there does not exist another message
m2 in transit, with same origin and destination, and which is in the history of m.

Gluing and Additional Invariants

The machine that specifies a communication model based on events is refined into a machine
where the state variables, type invariants, event parameters, guards, and actions dealing with
message histories are added. The main proof obligations consist in proving that the model-specific
guards on each communication event (see Table 6.3) suffice to guarantee the ordering properties
on the distributed executions (see Table 6.1). This is achieved with an ordering invariant stated

121

MACHINE G2_Fifo11History
REFINES F2_Fifo11History
SEES E_Messages

VARIABLES
net // Network
hg // Global history
hc // Causal history per peer
origOf // sender of message
destOf // destination of message
hgOf // global history of message
hcOf // causal history of message

INVARIANTS
Tnet: net ∈ P (hg)
Thg: hg ∈ P (MESSAGE)
Thc: hc ∈ PEER →P (hg)
TorigOf: origOf ∈ hg →PEER
TdestOf: destOf ∈ hg →PEER
ThgOf: hgOf ∈ hg →P (hg)
ThcOf: hcOf ∈ hg →P (hg)
ordering : ∀ m1, m2 ·m1 ∈ hg ∧m2 ∈ hg ∧m1 6= m2

∧ origOf(m1) = origOf(m2)
∧ destOf(m1) = destOf(m2)
∧m1 ∈ hcOf(m2)
⇒ ¬ (m1 ∈ net ∧m2 /∈ net)

EVENT INITIALISATION THEN
a1: net := ∅
· · ·
a9: hcOf := ∅

EVENT send REFINES send
ANY p m d
WHERE
Tp: p ∈ PEER
Tm: m ∈ MESSAGE \ hg

// new message id
Td: d ∈ PEER

THEN
a1: net := net ∪ {m}
a2: hg := hg ∪ {m}
a4: hc(p) := hc(p) ∪ {m}
a5: origOf := origOf ∪ {m7→ p}
a6: destOf := destOf ∪ {m7→ d}
a7: hgOf := hgOf ∪ {m7→ hg}
a8: hcOf := hcOf ∪ {m7→ hc(p)}

EVENT receive REFINES receive
ANY p m
WHERE
Tp: p ∈ PEER
intransit : m ∈ net
destination : destOf(m) = p

THEN
a1: net := net \ {m}
a2: hc(p) := hc(p) ∪ hcOf(m) ∪ {m}

Figure 6.4: History-Based Event-B Model for Fifo 11 Communication

122

Fully Asynchronous >

FIFO 1-1
∀ m1, m2 ·m1 ∈ hg ∧m2 ∈ hg ∧m1 6= m2

∧ origOf(m1) = origOf(m2) ∧destOf(m1) = destOf(m2) ∧m1 ∈ hcOf(m2)
⇒ ¬ (m1 ∈ net ∧m2 /∈ net)

Causal

∀ m1, m2 ·m1 ∈ hg ∧m2 ∈ hg ∧m1 6= m2
∧ destOf(m1) = destOf(m2) ∧m1 ∈

hcOf(m2)
⇒ ¬ (m1 ∈ net ∧m2 /∈ net)

FIFO 1-n

∀ m1, m2 ·m1 ∈ hg ∧m2 ∈ hg ∧m1 6= m2
∧ origOf(m1) = origOf(m2) ∧m1 ∈

hcOf(m2)
⇒ ¬ (m1 ∈ net ∧m2 /∈ net)

FIFO n-1

∀ m1, m2 ·m1 ∈ hg ∧m2 ∈ hg ∧m1 6= m2
∧ destOf(m1) = destOf(m2) ∧m1 ∈

hgOf(m2)
⇒ ¬ (m1 ∈ net ∧m2 /∈ net)

FIFO n-n ∀ m1, m2 ·m1 ∈ hg ∧m2 ∈ hg ∧m1 6= m2 ∧m1 ∈ hgOf(m2) ⇒¬(m1 ∈ net ∧m2 /∈ net)

RSC net = ∅∨ (∃ m · net = {m})

Table 6.2: Ordering Invariants for the History-based Communication Models. For instance,
Fifo11 invariant states that if m1 and m2 have the same origin and destination, and that m1 was
sent before m2 (thus m1 is in the causal history of m2), then m1 cannot be still in transit while
m2 has already been received. This means that m1 must be received before m2. Likewise, the
other invariants state the ordering of the models. RSC simply states that there is at most one
message in transit.

123

Communication Guard for Guard for
Model send(p,d,m) receive(p,m)

Fully Async. > m ∈ net ∧ destOf (m) = p

FIFO 1-1 >

m ∈ net
∧ destOf (m) = p
∧ ¬(∃m2 ·m2 ∈ net ∧ origOf (m) = origOf (m2)

∧ destOf (m2) = p
∧ m2 ∈ hcOf (m))

Causal >

m ∈ net
∧ destOf (m) = p
∧ ¬(∃m2 ·m2 ∈ net ∧ destOf (m2) = p

∧ m2 ∈ hcOf (m))

FIFO 1-n >

m ∈ net
∧ destOf (m) = p
∧ ¬(∃m2 ·m2 ∈ net ∧ origOf (m) = origOf (m2)

∧ m2 ∈ hcOf (m))

FIFO n-1 >

m ∈ net
∧ destOf (m) = p
∧ ¬(∃m2 ·m2 ∈ net ∧ destOf (m2) = p

∧ m2 ∈ hgOf (m))

FIFO n-n >
m ∈ net

∧ destOf (m) = p
∧ ¬(∃m2 ·m2 ∈ net ∧ m2 ∈ hgOf (m))

RSC net = ∅ m ∈ net ∧ destOf (m) = p

Table 6.3: Model-specific guards in the Event-B machines with message histories. The common
guards deal with types.

124

INVARIANTS
Ghg: hg = ran(mesOf)
Gnet: ∀ m · m ∈ hg ∧¬ (∃ e2 · e2 ∈ past ∧ comOf(e2) = Receive ∧mesOf(e2) = m) ⇒m ∈ net
Gnet2: ∀ e · e ∈ past

∧ comOf(e) = Send
∧ ¬ (∃ e2·e2∈ past∧comOf(e2)=Receive∧mesOf(e2)=mesOf(e))
⇒ mesOf(e) ∈ net

Gnet3: ∀ e · e ∈ past ∧ comOf(e) = Receive ⇒mesOf(e) /∈ net
GorigOf: ∀ e · e ∈ past ∧ comOf(e) = Send ⇒origOf(mesOf(e)) = peerOf(e)
GdestOf: ∀ e · e ∈ past ∧ comOf(e) = Receive ⇒destOf(mesOf(e)) = peerOf(e)
GhgOf: ∀ es1, es2 · es1 7→ es2 ∈ run

∧ es1 6= es2
∧ comOf(es2) = Send
⇒ mesOf(es1) ∈ hgOf(mesOf(es2))

GhgOf2: ∀ e1, e2, m1, m2 ·m1 ∈ hg ∧m2 ∈ hg ∧m1 6= m2 ∧e1 7→ e2 ∈ run
∧ comOf(e1) = Send ∧comOf(e2) = Send
∧mesOf(e1) = m1 ∧mesOf(e2) = m2
⇒ m1 ∈ hgOf(m2)

GorigOf2: ∀ m · m ∈ hg ⇒origOf(m) ∈ {e · e ∈ past ∧ comOf(e) = Send ∧mesOf(e) = m | peerOf(e)}
GhcOf: ∀ es1, es2 · es1 7→ es2 ∈ prec

∧ es1 6= es2
∧ comOf(es2) = Send
⇒ mesOf(es1) ∈ hcOf(mesOf(es2))

GhcOf2: ∀ e1, e2, m1, m2 ·m1 ∈ hg ∧m2 ∈ hg ∧m1 6= m2 ∧e1 7→ e2 ∈ prec
∧ comOf(e2) = Send ∧mesOf(e1) = m1 ∧mesOf(e2) = m2
⇒ m1 ∈ hcOf(m2)

Ghc: ∀ e1, e2 · e1 7→ e2 ∈ prec ⇒mesOf(e1) ∈ hc(peerOf(e2))
Hinv1: net ⊆ hg
Hinv2: ∀ m · m ∈ hg ⇒m /∈ hgOf(m)
Hinv3: ∀ m · m ∈ hg ⇒m /∈ hcOf(m)
Hinv4: ∀ m, m2 ·m ∈ hg ∧m2 /∈ hgOf(m) ⇒m2 /∈ hcOf(m)
fifo11_ordering : ∀ m1, m2 · m1 ∈ hg ∧m2 ∈ hg

∧ origOf(m1) = origOf(m2)
∧ destOf(m1) = destOf(m2)
∧m1 ∈ hcOf(m2)
⇒ ¬ (m1 ∈ net ∧m2 /∈ net)

Figure 6.5: Common invariants involved in the proofs of refinement between the models using
events and the models using histories. They include invariants on the communication models
using histories (prefix: H) along with gluing invariants that link the state variables from both
models (prefix: G). The invariant fifo11_ordering is specific to the machine Fifo11History.

125

on histories (see Table 6.2) and additional invariants to make the glue between the event-based
model and the history-based model.

Some invariants that are common to all the communication models have been highlighted
to prove the refinements. They are presented in Figure 6.5. The first group of invariants are
gluing invariants between the state variables of the concrete machine (network, histories, and the
associated accessors) and the state variables of the abstract machine (distributed executions). To
make the proofs automatic, it was sometimes necessary to state the same (or similar) invariant
in different ways. The three invariants Gnet, Gnet2, Gnet3 express that a message m is in transit
(m ∈ net) iff the message has been sent (m ∈ hg, or there exists a send event for it) and there
is no receive event for it. GhgOf and GhgOf2 are close invariants which state that a message m1
is in the global history of m2 if m1 has been sent before (in the sense of total order <σ, coded in
run) message m2. Likewise, invariants GhcOf and GhcOf2 relate causal history and causal order
≺c (coded in prec).

Removal of Useless Variables

Once the refinement of an event-based model by a history-based model has been done, the
variables related to events (past, prec, run, and the accessors peerOf, mesOf, comOf) are no
longer necessary. A second refinement is used to hide them. This refinement depends on a
bijection between EVENT and COM × MESSAGE. This bijection means that events (in the sense of
distributed execution, Definition 1) are uniquely defined by an action (send or receive) on a given
message. This bijection is introduced in the context MESSAGES:

CONTEXT E_MESSAGES
CONSTANTS ...
eventmapper

AXIOMS
T1: eventmapper ∈ (COM ×MESSAGE) ��EVENT

The final G2_Fifo11History is thus F2_Fifo11History, stripped of the variables related to
events, and with a witness to replace the removed parameter:

MACHINE G2_Fifo11History REFINES F2_Fifo11History
...
INVARIANTS
eventmapper: eventmapper[{Send} ×hg] ∪ eventmapper[{Receive} ×(hg \

net)] = past

EVENT send REFINES send
ANY p m d
WITH
e: e = eventmapper(Send 7→ m)

...

EVENT receive REFINES receive
ANY p m
WITH
e: e = eventmapper(Receive 7→ m)

...

6.4.3 Preservation of the Hierarchy
Each history-based model is a refinement of its corresponding event-based model (for instance
Fifo11History refines Fifo11Event), which proves that it obeys the ordering rule of the ab-

126

AsyncHistory

Fifo11History

OO

CausalHistory

OO

Fifo1nHistory

77

Fifon1History

gg

FifonnHistory

gg 77

RscHistory

OO

Figure 6.6: Refinements between the Event-B machines of the history-based communication
models. An arrow means “refines”. As in Figure 6.3, there are two versions of FifonnHistory,
strictly identical except for their parent, and they are merged in the figure.

stract communication model based on events. As explained in Section 6.3.2, the communication
models also form a hierarchy based on their non-deterministic nature (e.g. CausalEvent re-
fines Fifo11Event, see Figure 6.3). This same hierarchy is preserved with history-based models
(Figure 6.6).

The history-based approach provides descriptions of the communication models with a similar
template. For a given communication model, only one (or none) kind of history is actually
useful. FIFO 1-1, Causal and FIFO 1-n rely only on the causal message histories, FIFO n-n and
FIFO n-1 rely on the global message histories, and Fully Asynchronous and RSC on none at
all. Nevertheless, experience revealed that when it comes to proving the refinements between the
models, keeping trace of all the histories in all the models was more convenient and sometimes
necessary in practice. This way, only guards on the send (RSC) and receive (other models)
events differ between the models, while the actions themselves are the same.

Since only a guard on the receive event (send in the case of RSC) differs between the
communication models, proving the refinement between two models consists in proving that one
guard implies the other. The guards have quite similar structures: they specify that no message
in transit is in the (global or causal) history of the one that is to be retrieved, and additional
conditions about senders or destinations can be involved (Table 6.3). Therefore, the proofs do
not require complex manual interventions. They mostly rely on the invariants of Figure 6.5,
specifically the Hinv* ones, and are mainly first-order implications with quantifiers derived from
the ordering invariants (i.e. causal_ordering ⇒ fifo11_ordering).

The refinement from CausalHistory to Fifo1nHistory is the trickiest. It requires to high-
light a specific property of fifo1n: messages in transit that are causally related have necessarily
the same origin peer (this property is false for causal/fifo11/asynchronous communication). In-
variant i2 below formalises this property and i1 is a prerequisite to its proof. This property is
crucial to the proof of refinement.

MACHINE Fifo1nHistory INVARIANTS
// Required to prove that Fifo1nHistory refines CausalHistory .
i1 : ∀ m, p · m ∈ net ∧p ∈ PEER ∧m ∈ hc(p) ⇒origOf(m) = p
i2 : ∀ m1, m2 ·m1 ∈ net ∧m2 ∈ net ∧m2 ∈ hcOf(m1) ⇒origOf(m1) = origOf(m2)

127

async

fifo11

fifo1n fifon1

fifonn

RSC

Event-Based Message Histories Concrete Models

causal

(RunWithMessages)
async

fifo11

fifo1n fifon1

fifonn

RSC

causal

async

fifo11 with counters

fifo1n with
counters

fifon1 with
counters

fifonn with counters
fifonn with queues

RSC

causal with vectors

Figure 6.7: Refinements between the Event-B machines of the different approaches for each
communication model. An arrow means “refines”. The async and RSC concrete implementations
are no different from their message histories counterparts.

6.5 Concrete Communication Models

Two descriptions of the communication models introduced in Chapter 2 have been provided in
6.3.1 and 6.4.1. The abstract models based on events directly translate the ordering policies
of the communication models. They are high level models where the distributed aspect of the
interaction between peers is abstracted by a run that contains communication events. The second
approach of modelling using message histories is more concrete: the locality and transmission
of data is taken into account with messages that carry their history. However, keeping trace of
all the previously sent messages is still unrealistic in practice. Therefore we refine the models
that use histories with concrete models using counters of messages or queues of messages. The
proposed concrete models are shown in Figure 6.7. They serve as a proof of concept of how one
can refine a high level specification of a communication model into concrete models.

6.5.1 Refinement with Counters of Messages

Depending on the degree of distribution of the communication model, if n denotes the number
of peers, 2 counters (FIFO n-n), 2 × n counters (FIFO n-1 and FIFO 1-n), or 2 × n2 counters
(FIFO 1-1) are used to account for the ordinal rank of the last sent and last received messages in
the system (FIFO n-n), a peer (FIFO n-1 and FIFO 1-n), or couple of peers (FIFO 1-1). The
rank of the last sent message serves to associate the rank to a new message at send. The ranks
of the last received messages determine the rank of the messages that can be received (possibly
depending on origin and destination). The Event-B machine of FIFO 1-1 with counters and the
invariants that have been highlighted to achieve the proof of refinement are shown below. The
gluing invariant GrankOf2 shows that counters are consistent with causality (for messages that
have same origin and destination). The three invariants inv* show the relations between the
counters and the ranks of the messages.

128

MACHINE H2_Fifo11Counter
REFINES G2_Fifo11History
SEES E__Messages

VARIABLES
· · ·
rankOf // Accessor : ordinal rank of a message
lastReceived // Rank of the last received message
lastSent // Rank of the last sent message

INVARIANTS
· · ·
TrankOf: rankOf ∈ net →N
TlastSent: lastSent ∈ (PEER ×PEER) →N
TlastReceived : lastReceived ∈ (PEER ×PEER) →N
GrankOf: ∀ m1, m2 ·m1 ∈ net ∧m2 ∈ net

∧ origOf(m1) = origOf(m2)
∧ destOf(m1) = destOf(m2)
∧m1 6= m2
⇒ rankOf(m1) 6= rankOf(m2)

GrankOf2: ∀m1, m2 ·m1 ∈ net ∧m2 ∈ net
∧m1 ∈ hcOf(m2)
∧ origOf(m1) = origOf(m2)
∧ destOf(m1) = destOf(m2)
⇒ rankOf(m1) < rankOf(m2)

inv1 : ∀ m · m ∈ net ⇒ lastReceived (origOf(m) 7→ destOf(m)) < rankOf(m)
inv2 : ∀ m · m ∈ net ⇒ rankOf(m) ≤ lastSent(origOf(m) 7→ destOf(m))
inv3 : ∀ p1, p2 · p1 ∈ PEER ∧p2 ∈ PEER ⇒lastReceived(p1 7→ p2) ≤ lastSent(p1 7→ p2)

EVENT INITIALISATION THEN
· · ·
+act5: rankOf := ∅
+act6: lastReceived := {pp·pp∈ PEER×PEER | pp 7→ 0}
+act7: lastSent := {pp·pp∈ PEER×PEER | pp 7→ 0}

EVENT send REFINES send
ANY p m d WHERE
grd1: p ∈ PEER
grd2: m ∈ MESSAGE \hg // new message id
grd3: d ∈ PEER

THEN
act1: net := net ∪ {m}
act2: hg := hg ∪{m}
act3: destOf := destOf ∪ {m 7→ d}
act4: origOf := origOf ∪ {m 7→ p}
+act5: rankOf := rankOf ∪{m 7→ 1 + lastSent(p 7→ d)}
+act6: lastSent (p 7→ d) := 1 + lastSent(p 7→ d)

EVENT receive REFINES receive
ANY p m WHERE
grd1: p ∈ PEER
grd2: m ∈ net
grd3: destOf(m) = p
ordering : rankOf(m) = lastReceived(origOf(m) 7→ p) + 1

THEN
act1: net := net \ {m}
+act2: rankOf := {m} �−rankOf
+act3: lastReceived (origOf(m) 7→ p) := rankOf(m)

129

6.5.2 Refinement with Queues of Messages
Alternatively, message queues (FIFO) can be used instead, hence the names of the communication
models if n denotes the number of peers: a global queue (FIFO n-n), n inbox queues (FIFO n-1)
or outbox queues (FIFO 1-n), or n2 queues (FIFO 1-1). Queues3 are functions from 0..n to
MESSAGE. The context Queues provides axioms and theorems used in the proof of refinement
between FIFO n-n with message histories and FIFO n-n with queues. The gluing invariant
Gluing2 states that if m1 is in the global history of m2, then m1 occurs before m2 in the queue.

CONTEXT I__Queues EXTENDS E__Messages
CONSTANTS
Queue size append head tail

AXIOMS
axm1: Q ueue ∈ P (N →MESSAGE)
axm2: Queue = {∅} ∪union({n · n ∈ N | 0 .. n →MESSAGE})
thm1: ∀ q · q ∈ Queue ⇒ finite (q)
axm3: size ∈ Queue →N
axm4: ∀ q · q ∈ Queue ⇒(∃ n · n ∈ N∧ dom(q) = 0 ..n ∧ size (q) = n)
axm5: append ∈ MESSAGE ×Queue →Queue
axm6: ∀ q, m · q ∈ Queue ∧m ∈ MESSAGE ⇒append(m 7→ q) = q ∪{size(q) + 1 7→ m}
axm7: head ∈ Queue \ {∅} →MESSAGE
axm8: ∀ q · q ∈ Queue \ {∅} ⇒head(q) = q(0)
axm9: tail ∈ Queue \ {∅} →Queue
axm10: ∀q · q ∈ Queue \ {∅} ⇒ tail (q) = {i · i ∈ 0 .. size (q) −1 | i 7→ q(i + 1)}

MACHINE I6a_FifonnQueue
REFINES G6a_FifonnHistory
SEES I_Queues

VARIABLES
hg
destOf
queue // shared FIFO

INVARIANTS
Tqueue: queue ∈ Queue
Gluing1: ran(queue) = net
Gluing2: ∀ m1, m2 · m1 ∈ net

∧m2 ∈ net
∧m1 ∈ hgOf(m2)
⇒ (∃ i , j · i ∈ N

∧ j ∈ N
∧ i < j
∧ queue(i) = m1
∧ queue(j) = m2)

EVENT send REFINES send
ANY p m d WHERE
· · ·

THEN
act1: hg := hg ∪{m}
act2: destOf := destOf ∪ {m 7→ d}
+act3: queue := append(m 7→ queue)

EVENT receive REFINES receive
ANY p m WHERE
grd1: p ∈ PEER
grd2: m ∈ ran(queue) ∧destOf(m) = p
order : queue 6= ∅∧m = head(queue)

THEN
+act1: queue := tail(queue)

6.5.3 Logical Clocks
Regarding the causal model, the causality relation can be explicit, using pruned causal histo-
ries [KS98] (in the worst case, this is as costly as our version with histories), or derived from
logical vector clocks of size n [Fid88, Mat89] or matrix clocks of size n × n [RST91, Ray13].

Every peer p has a vector clock vcOf (p). For peers p and pp, vcOf (p)(pp) holds the number
of events on pp that are in the current past of peer p. When a peer sends a message, it increments

3We have also modelled queues with sequences (Seq) from the BasicTheory of the Theory Plugin [BM13] but
we have chosen to dispense with this plugin as our usage was simple.

130

its own count (vcOf (p)(p)) and piggybacks its current vector with the message. When a peer
receives a message, it updates every component of its vector with the max of its current value
and of the component of the received vector. Thus, vcOf (p)(pp) holds the number of messages
sent by pp and known by p. A message m is in the causal history of m ′ if and only if every
vector component of m is lower or equal than the one of m ′ (and at least one is strictly lower: no
two different messages can have the same vector). To ensure causal reception, a message can be
delivered to a peer if and only if no other message exists for this peer with a lower timestamp.

The refinement of CausalHistory replaces the history variables (hc, hcOf) with vector clocks
(vcOf, rankOf). The events are refined to update these variables and, in the receive event, the
guard built on histories is replaced with a property on the vectors. A similar derivation is
presented in [YB05].

MACHINE H3_CausalVector
REFINES G3_CausalHistory
SEES E_Messages
VARIABLES

net
hg
origOf
destOf
rankOf // message →

vector clock
vcOf // peer →vector clock

INVARIANTS
TrankOf: rankOf ∈ net →

(PEER →N)
TvcOf: vcOf ∈ PEER →

(PEER →N)

EVENT send REFINES send
ANY p m d WHERE
Tm: m ∈ MESSAGE \hg
Tpd: p ∈ PEER ∧d ∈ PEER

THEN
act1: net := net ∪ {m}
act2: hg := hg ∪{m}
act3: origOf := origOf ∪ {m 7→ p}
act4: destOf := destOf ∪ {m 7→ d}
act5: vcOf(p) := vcOf(p) �−{p 7→ vcOf(p)(p)+1}
act6: rankOf(m) := vcOf(p) �−{p 7→ vcOf(p)(p)+1}

EVENT receive REFINES receive
ANY p m WHERE
Tm: m ∈ net
Tp: p ∈ PEER
dest : destOf(m) = p
order : ¬(∃m2 ·m2 ∈ net \ {m}

∧ destOf(m2) = p
∧ (∀ pp · pp ∈ PEER ⇒rankOf(m2)(pp) ≤ rankOf(m)(pp)))

THEN
act1: net := net \ {m}
act2: vcOf(p) := { pp ·pp ∈ PEER | pp 7→ max({ vcOf(p)(pp), rankOf(m)(pp) })}
act3: rankOf := {m} �− rankOf

END

The refinement proof requires gluing invariants on causal histories and vector clocks. Invariant
inv1 relates the timestamps of two messages and states that if message m1 is in the causal history
of m2, then every vector component of m1 is lower or equal than the one of m2. Invariant
inv2 exhibits the vector component that is certainly strictly lower. Invariant inv3 relates the
timestamps of messages and peers.

INVARIANTS
inv1 : ∀ m1, m2 ·m1 ∈ net ∧m2 ∈ net ∧m1 6= m2

⇒ (m1 ∈ hcOf(m2) ⇒(∀ p · p ∈ PEER ⇒rankOf(m1)(p) ≤ rankOf(m2)(p)))
inv2 : ∀ m1, m2 ·m1 ∈ net ∧m2 ∈ net ∧m1 ∈ hcOf(m2)

⇒ rankOf(m1)(origOf(m2)) < rankOf(m2)(origOf(m2))
inv3 : ∀ m, p · m ∈ net ∧p ∈ PEER ∧m ∈ hc(p)

⇒ (∀ pp · pp ∈ PEER ⇒rankOf(m)(pp) ≤ vcOf(p)(pp))

131

6.6 Additional Remarks
6.6.1 Proof Effort
The menagerie holds 42 machines, 41 refinements, 329 invariants, and more than 1400 proof
obligations. Once the necessary invariants are stated, the large majority of these proof obligations
are automatically proved by Rodin with SMT solvers (49 manual proofs, 3.5% of the proof
obligations). The main difficulties are described below.

• To make the proofs automatic, the trick is to find additional invariants. For instance, to
prove that RscHistory refines RscEvent, the following invariant has to be made explicit
(it says that if there exists at least one event after a send event e1, then the message sent
at e1 is no longer in transit).

∀ e1, e2 · e1 7→ e2 ∈ run ∧comOf(e1) = Send ∧e1 6= e2 ⇒mesOf(e1) /∈ net

As expected, the discovery of the necessary invariants was the hardest part in the proofs,
and the majority of the proof efforts was devoted to this point. Our methodology was to
run the automatic provers, and to analyse the failure (if any). After some case analysis
of the disjunctions, a contradiction often appeared in the hypotheses. This contradiction
leads us to a relevant new invariant. Once stated and proved, this new invariant may,
with good luck, suppress the unsuccessful branch and advance towards the fully automatic
proof.

• The refinements of Causal in FIFO n-1 and FIFO 1-n are never easy. One essential
invariant states that:

∀ e1, e2 · e1 7→ e2 ∈ prec ∧peerOf(e1) 6= peerOf(e2)
⇒ (∃ es , er · e1 7→ es ∈ prec ∧ es 7→ er ∈ prec ∧ er 7→ e2 ∈ prec

∧ comOf(es) = Send ∧comOf(er) = Receive
∧ peerOf(e1) = peerOf(es)
∧mesOf(es) = mesOf(er))

It states that two causally related events on different peers are necessary linked by (at
least) one message, or conversely, that causality between different peers only arises from
message exchanges. Nevertheless, this invariant has to be manually instantiated.

• For each communication model, the Receive/GRD obligation of the refinement of the event-
based model by the history-based model requires light manual intervention. The proof
mainly consists in case disjunctions of the four events that appear in the ordering invariant
(Are they equal? Is one of them the new receive event?) and instantiating the relevant
guard.

• The refinements which eliminate events, once unused, need witnesses that rely on a bijection
between EVENT and COM × MESSAGE (eventmapper). Proofs often require to abstract away
the expressions where it occurs.

• Concrete models need ad-hoc reasoning. For instance, Section 6.5.3 presents the specific
invariants that are required to prove that CausalVector refines CausalHistory. These
invariants are expected as they state that vector clocks encode causality. Nevertheless, the
refinement proofs require to manually recall and instantiate these invariants.

132

6.6.2 Deadlock Freedom
In all the communication models (except RSC), the send event is always enabled. Thus all these
models are trivially deadlock free. Actually, a stronger property is expected: if there are messages
in transit, then at least one of them can be received. This means that (at least) a receive event
(with adequate parameters) must be enabled if net is not empty. This is still a weak liveness
property, as it does not state that all sent messages are eventually received: if there are finitely
many send events, all messages must eventually be received, but if there are infinitely many send
events, some messages may never be received without invalidating this property.

This property is stated as an invariant which has the form net 6= ∅ ⇒ guard of receive (see
Table 6.3). For instance, in the model G2_Fifo11History (Figure 6.4), the invariant is:

net 6= ∅⇒ (∃ m, p · p ∈ PEER ∧m ∈ net ∧destOf(m) = p
∧ ¬(∃m2· m2 ∈ net

∧ origOf(m) = origOf(m2)
∧ destOf(m2) = p
∧m2 ∈ hcOf(m)))

and in the model H2_Fifo11Counter (Section 6.5.1), the invariant is:

net 6= ∅⇒ (∃ p, m · p ∈ PEER
∧m ∈ net
∧ destOf(m) = p
∧ rankOf(m) = lastReceived(origOf(m) 7→ p) + 1)

The model checker ProB has been used to check this invariant with a small number of peers
and messages (3 or 4 depending on the model).

6.6.3 Previous Work in TLA+

In [CHQ16], we have presented TLA+ [Lam02] specifications for the seven communication models.
The goals of this other work were different. A first objective was to develop a framework to
verify systems [CHQ15]. In this framework, systems are described with TLA+ actions, and the
communication model and the properties of correctness can easily be changed thanks to TLA+

modules. A second objective was to compare the communication models. As in this chapter,
the communication models are described with events and with message histories. However only
the communication model with message histories are specified in TLA+. The same hierarchy
of the communication models is proved in [CHQ16]. For the event-based models, the proofs
were paper-proofs and used inclusion properties on orders, whereas refinement is used in this
chapter. The hierarchy of the history-based models in TLA+ was proved by refinement using
TLAPS [CHMQ16]. Event-B refinements offer a similar approach in this chapter. [CHQ16] was
paying attention to both the correctness and the completeness of the models: do the history-
based models conform to the event-based models? Are the history-based models as liberal as
possible, allowing the same set of executions as the event-based models? In the Event-B models,
refinement ensures correctness, and the use of weakest preconditions provide completeness.

6.6.4 Utility of the Hierarchies
These hierarchies of refinement are important for substitutability, the ability to replace one model
with another. If a communication model M1 refines a communication model M2, it means that

133

M1 cannot deliver more messages than M2, or conversely, that any message that M1 delivers is
also deliverable in M2. Thus, for any system using asynchronous point-to-point communication,
a safety property that is proved with M2 is necessarily true when substituting M2 with M1. Of
course, liveness properties are not guaranteed to be preserved, as the refined model allows fewer
behaviors. For instance, RSC does not allow two consecutive send events without a receive event
between them, and thus a system may deadlock with RSC while progressing with a more liberal
model.

This substitutability is linked to model decomposition. A distributed application is refined
up to the point where communication is introduced. Once components and communication are
apparent, a model decomposition can be used to isolate the communication part. The hierarchy
of communication models is then used to choose an adequate ordered communication model, and
the concretisation of this model is a step toward implementation.

There exist three existing approaches to decomposition in Event-B [HISW11]: shared-
variable [AH07], shared-event [But09, Sil11] and modularisation [ITL+10]. All three focus on
allowing independent refinements of sub-models while ensuring that the recomposition of the re-
fined sub-models is a refinement of the original model. In shared-variable decomposition, events
of a model are partitioned in several sub-models and a part of the state (the shared variables) is
replicated in several sub-models. In shared-event decomposition, variables are partitioned and
a set of events are synchronised and shared by sub-models. In modularisation, interfaces com-
posed of variables and operations are specified for sub-components. Operations are specified by
pre/post-conditions, hiding their implementation.

Our menagerie of refinements seems well suited for shared-event decomposition. During the
refinement of a system, asynchronous communication appears via two events send and receive.
These events are isolated in a sub-model to be further refined using the results of this chapter. We
have already followed a similar approach in TLA+ to develop the framework for the automated
verification of asynchronous communicating systems [CHQ15] in Chapter 4 and Chapter 5: the
communication model and the peers (which contain the application part) are connected via a
synchronous product on communication events. Note that, as observed in [HISW11, p. 10],
while shared-event decomposition naturally leads to CSP/CCS-like synchronous communicating
systems, introducing a “buffer” (in our case the variable net) allows to model asynchronous
communication.

6.6.5 Localisation
The last point concerns the distributed nature of the communication models. The first abstract
models, based on properties of the executions, are purely logical and offer a global point of
view of the communication models. The second models, based on histories, are actually directly
implementable even if costly. By looking at Table 6.3, one can distinguish distributed commu-
nication models and centralised communication models. The distributed communication models
(Fully Asynchronous, FIFO 1-1, Causal, FIFO 1-n) only need meta information piggybacked
with the message and local knowledge available on the peer. The centralised communication
models (FIFO n-1, FIFO n-n, RSC) require global shared knowledge. The lower part of the hi-
erarchy contains the centralised communication models, and the upper part are the distributed
ones.

This consideration applies to localisation. In the four communication models Fully Asyn-
chronous, FIFO 1-1, Causal, FIFO 1-n, be it history-based or concrete, the variables4 which occur

4The remaining variables in these models are hg and net. hg is solely used to uniquely identify messages and
could trivially be refined in peer-local counters PEER×N as long as peers are uniquely identified. The variable
net models the transport layer which could be further refined for instance with communication channels as in

134

async

fifo11

fifo1n fifon1

fifonn

RSC

Event-Based Message Histories Concrete Models

causal

(RunWithMessages)

RunDistributed

Executions
Commu-
nicationEvents async

fifo11

fifo1n fifon1

fifonn

RSC

causal

async

fifo11 with counters

fifo1n with
counters

fifon1 with
counters

fifonn with counters
fifonn with queues

RSC

causal with vectors

Figure 6.8: All the Proved Refinements between the Event-B machines. An arrow means “refines”.

in the ordering predicate are associated to a message (origOf, destOf, hcOf in the history-based
models or rankOf in the concrete H2_Fifo11counter and H3_CausalVector), or are indexed by
peer (hc in the history-based models, vcOf in CausalVector, lastSent and lastReceived in
Fifo11Counter. . .). In contrast, the models FIFO n-1, FIFO n-n, RSC are based on globally
shared variables (for instance hg in Fifon1History or queue in FifonnQueue). This comes from
their definition which depends on the run order (<σ) of independent events occurring on distinct
peers. The implementation in a distributed system requires a central coordinator or a totally
ordered multicast.

6.7 Conclusion
This chapter considers the diversity of point-to-point asynchronous communication models with
different approaches for their modelling in Event-B. It starts with abstract models based on
distributed executions such as in Chapter 2, it then considers a uniform modelling using message
histories that is similar to the specifications of the communication models in Chapter 4, and then
presents concrete models. The relations between the models are refinements. The overall picture
of the proved refinements is shown in Figure 6.8.

A methodology to model the communication part of a distributed system uses both directions
of refinement:

1. Use the hierarchy to find the most adequate / required communication model;

2. Use the concretisation refinements to find the most concrete / less expensive model.

In the first step, a communication model is chosen, either beforehand, or when verifying the
under-development system. The hierarchy helps in choosing the degree of determinism of the
communication model. The abstract specifications (Table 6.1) give intelligible ordering proper-
ties, and the specifications based on histories (Table 6.3) provide a model that can be used to
study and prove the considered system. Then, different versions of the retained communication
model can be used. The concretisation refinements allow to substitute a model for another.

Ongoing work aims at extending the menagerie with new models, introducing broadcast or
multicast (analogous to a message consumed by more than one peer) and join (a synchronised
reception of a set of messages). Moreover, broadcast possesses new orderings that are independent
of the ordering of the send events, namely totally ordered broadcast, where different messages are

[ACM03].

135

received in the same order on different peers. A rich enough modelling needs to take into account
the notion of group. A broadcast targets a group of recipients, and ordering is defined w.r.t to the
groups: local total order (messages to the same group); pair-wise total order (at the intersection
of the recipient groups); global total order (independently of the groups). Another question
regards round-based algorithms. In round-based algorithms, a computation is divided in rounds.
At round n, messages from round n − 1 are received, a local action on each peer is done, and
messages are sent for round n+1. This computation model, called synchronous in the distributed
systems community, allows to solve consensus in presence of node failure. However, it is less
strict than synchronous communication as in CCS/CSP (or than Realisable with Synchronous
Communication), allowing several in transit messages and asynchronous communication inside
a round.

136

Part III

Group Communication

137

Chapter 7

On the Particularities of
Multicast Communication

The formal base for the study of multicast communication (or group communication) is layed
out in Chapter 2. Although the seven communication models studied throughout this work
remain the same in both point-to-point and multicast communication, the latter reveals to lead
to more complex modelling, analysis, and results. For example, the hierarchy between the
different communication models happens to be simpler in point-to-point communication. While
the three previous chapters provide an in-depth analysis of point-to-point communication, the
particularities of the more generic multicast communication are at the heart of this chapter. The
chapter aims at extending the work carried with point-to-point communication so it encompasses
multicast communication. It is divided in two sections that respectively focus on structural and
operational aspects of multicast communication.

The first section considers a message ordering property called total ordering that only makes
sense in multicast communication along with a specific case of communication here called one-to-
all communication. It compares both of them to the known communication models in order to
enrich the existing hierarchy. The second section presents ongoing work on a TLA+ framework
for the compatibility checking of compositions of peers that features and seamlessly integrates
point-to-point and multicast communication. The conception choices are motivated and the
limitations of these choices discussed along with potential solutions. Eventually, a recap of the
current progress in the study of multicast communication concludes the chapter.

7.1 Extension of the Hierarchy of Communication Models

7.1.1 Totally Ordered Multicast Distributed Executions
Some distributed systems feature duplicated peers that are supposed to serve the same purpose
and make the overall system more robust. A message that would be sent to a single peer in point-
to-point communication is sent, in multicast communication, to all the duplicates. In such cases,
it is interesting to guarantee that the same messages are received in the same order by all the
duplicates. This way, the receptions of a message by all the duplicates may be viewed as atomic,
as if the duplicates where abstracted by a single peer that receives the message in question. This
property is called total ordering (not to be mistaken for the mathematical concept of total order)
and is independent of other ordering policies (e.g. FIFO 1-1). It may simply be considered as

139

!m1
p1

!m2
p2

?m1
p3

?m1
p4

?m2
p3

?m2
p4

(a) Totally Ordered

!m1
p1

!m2
p2

?m1
p3

?m1
p4

?m2
p3

?m2
p4

(b) Totally Ordered

!m1
p1

!m2
p2

?m1
p3

?m1
p4

?m2
p3

?m2
p4

(c) Non Totally Ordered

Figure 7.1: Examples of distributed executions (E , (≤p)p∈P ,≺c , com,peer,mes) that illustrate
total ordering. A send event of a message m by a peer p is denoted !mp (an event e ∈ E such
that com(e) = Send∧mes(e) = m ∧ peer(e) = p). A receive event of a message m on a peer p is
denoted ?m

p (an event e ∈ E such that com(e) = Receive∧mes(e) = m ∧ peer(e) = p). A path
from e1 to e2 means e1 ≺c e2.

another communication model and is usually combined with either the Causal communication
model (total-causal) or FIFO communication (the combination with total ordering makes the
FIFO models indistinguishable because total ordering propagates the FIFO ordering to all the
peers). The following formalises this concept and updates the hierarchy established in Chapter 2
accordingly.

Definition 40 (Total Ordering). ExecT is the set of distributed executions such that messages
are received (when they are received) in the same order on all the peers. Such a distributed
execution is said to be totally ordered.

ExecT ,



(
E , (≤p)p∈P ,≺c ,
com,peer,mes

)
∈ Exec

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∀es1, es2, er1, er2, er ′1, er ′2 ∈ E :

com(es1) = Send
∧ com(es2) = Send
∧ com(er1) = Receive
∧ com(er2) = Receive
∧ com(er ′1) = com(er ′2) = Receive
∧ mes(es1) = mes(er1) = mes(er ′1)
∧ mes(es2) = mes(er2) = mes(er ′2)
∧ peer(er1) = peer(er2)
∧ peer(er ′1) = peer(er ′2)
∧ er1 ≺c er2


⇒ er ′1 ≺c er ′2


RunT denotes the set of totally ordered runs that extend totally ordered distributed executions.

The distributed execution in Figure 7.1a is totally ordered because on peers p3 and p4, m1 and
m2 are received in the same order, a property that does not hold in the distributed execution in
Figure 7.1c. Regarding the totally ordered distributed execution in Figure 7.1b, it is important to
notice that, although there is a causal dependence between the two send events, the receptions
can happen in the reverse order. Total ordering is another independent ordering policy that
happens not to depend on the causality between the send events.

Theorem 41. The FIFO n-1 runs are totally ordered.

Runn1 ⊆ RunT

140

Proof. Let σ , (E , (≤p)p∈P ,≺c ,≺σ, com,peer,mes) ∈ Runn1.

Let es1, es2, er1, er2, er ′1, er ′2 ∈ E such that:



com(es1) = com(es2) = Send
∧ com(er1) = com(er2) = Receive
∧ com(er ′1) = com(er ′2) = Receive
∧ mes(es1) = mes(er1) = mes(er ′1)
∧ mes(es2) = mes(er2) = mes(er ′2)
∧ peer(er1) = peer(er2)
∧ peer(er ′1) = peer(er ′2)
∧ er1 ≺c er2


Assume ¬es1 ≺σ es2.
es1 6= es2 and es2 ≺σ es1 because ≺σ is a linear order on E .
er2 ≺c er1 because σ ∈ Runn1. Contradiction.
Therefore es1 ≺σ es2.

1. Case es1 = es2:
er ′1 = er ′2 because mes(es1) = mes(er ′1) = mes(es2) = mes(er ′2), peer(er1) = peer(er2) and
σ ∈ Run and a message is received at most once on a given peer by Definition 8 (page 26)
of Run.
QED er ′1 ≺c er ′2 by reflexivity.

2. Case es1 6= es2:
QED er ′1 ≺c er ′2 because σ ∈ Runn1.

Corollary 42. All the runs that are FIFO n-1, FIFO n-n, and RSC are totally ordered.

RunRSC ⊆ Runnn ⊆ Runn1 ⊆ RunT

Proof. From Theorem 17 (page 39) and the previous theorem.

Figure 7.2 depicts the upgraded knowledge about the inclusion of the sets of runs. It shows
how total ordering relates to the other ordering policies. Each area in the diagram has a label
that corresponds to a witness run in the first column of Table 7.1 and Table 7.2.

7.1.2 One-to-All Communication
A specific case of multicast communication is one-to-all communication. Messages are received
by all the peers in the distributed system, including the sender. This is not an ordering policy.
In practice, reliable broadcast implies one-to-all communication.
Definition 43 (One-to-All Distributed Execution and Run). A one-to-all distributed execution
(E , (≤p)p∈P ,≺c , com,peer,mes) is a multicast distributed execution where every sent message is
received exactly once on each peer. The set of one-to-all distributed executions is denoted ExecA.

ExecA ,


(E , (≤p)p∈P ,≺c , com,peer,mes) ∈ Exec

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∀e ∈ E :
com(e) = Send
⇒
∀p ∈P :
∃e ′ ∈ E : com(e ′) = Receive
∧ peer(e ′) = p
∧ mes(e ′) = mes(e)





141

Set Example in Run Example in RunA

1 RunRSC

2 Runnn \RunRSC

3
(

Run1n
∩ Runn1

)
\ Runnn

4

 Run1n
∩ Runc

∩ RunT

 \ Runn1

5 (Run1n ∩RunT) \ Runc Impossible (Theorem 44)

6 (Run1n ∩Runc) \ RunT

7 Run1n \(RunT ∪Runc)

8 Runn1 \Run1n

Table 7.1: Example Runs Associated to the Numbered Labels in Figure 7.2

142

Set Example in Run Example in RunA

9 (Runc ∩RunT)
\ (Runn1 ∪Run1n)

10 (Run11 ∩RunT)
\ (Runc ∪Run1n)

11 Runc \(Run1n ∪RunT)

12 Run11 \

 Runc
∪ Run1n
∪ RunT



13 RunT \Run11

14 Run \(Run11 ∪RunT)

Table 7.2: Example Runs Associated to the Numbered Labels in Figure 7.2

143

RunRSC

Runnn
Runn1 Run1nRunT

Runc

Run11

1

2
3

4

5

6

7
8

9
10

11

12

13

14

Figure 7.2: Inclusion of the Sets of Runs. Total ordering (dashed line) extends the existing
hierarchy from Theorem 17 (page 39) and example runs prove strict inclusion. The examples
associated to each label are presented in Table 7.1 and Table 7.2.

RunA denotes the set of one-to-all runs that extend one-to-all distributed executions.

The second column in Table 7.1 and Table 7.2 presents one-to-all runs that may serve as
examples for each region in the diagram in Figure 7.2. One cell in the table is missing: the
example would correspond to a one-to-all run (RunA) with total-ordering (RunT) that is FIFO 1-
n (Run1n) but not Causal (Runc). In the following theorem, we state and prove that there is no
such run.

Theorem 44 (One-to-All Impossibility). No one-to-all run can feature total-ordering and FIFO 1-
n ordering without being also Causal.

Run1n ∩RunT ∩RunA (Runc

Proof. Let σ , (E , (≤p)p∈P ,≺c ,≺σ, com,peer,mes) ∈ Run1n ∩RunT ∩RunA.

Let es1, es2, er1, er2 ∈ E such that:



com(es1) = com(es2) = Send
∧ com(er1) = com(er2) = Receive
∧ mes(es1) = mes(er1)
∧ mes(es2) = mes(er2)
∧ peer(er1) = peer(er2)
∧ es1 6= es2
∧ es1 ≺c es2


Goal er1 ≺c er2
By induction on the principle underlying Lemma 5 (page 24.

1. Base Case: es1 ≺elem
c es2.

144

(a) First ≺elem
c Case: es1 ≺c es2 ∧ peer(es1) = peer(es2).

QED because σ ∈ Run1n .
(b) Second ≺elem

c Case: com(es1) = Send∧ com(es2) = Receive∧mes(es1) = mes(es2).
Contradiction com(es2) = Send.

2. Inductive Step: let e ∈ E such that es1 6= e ∧ es1 ≺elem
c e ∧ e ≺c es2.

By the induction hypothesis:



com(e) = com(es2) = Send
∧ com(er1) = com(er2) = Receive
∧ mes(e) = mes(er1)
∧ mes(es2) = mes(er2)
∧ peer(er1) = peer(er2)
∧ e 6= es2
∧ e ≺c es2


⇒ e ≺c er2

(a) First ≺elem
c Case: es1 ≺c e ∧ peer(es1) = peer(e).

i. Case com(e) = Send:
∃er ∈ E : com(er) = Receive∧mes(er) = mes(e) ∧ peer(er) = peer(er1) =
peer(er2) because σ ∈ RunA.
er1 ≺c er since es1 ≺c e ∧ es1 6= e ∧ peer(es1) = peer(e) and σ ∈ Run1n .
A. Case e = es2:

QED because σ ∈ Run1n .
B. Case e 6= es2:

er ≺c er2 by the induction hypothesis.
QED by transitivity of ≺c .

ii. Case com(e) = Internal∨ com(e) = Receive:
A. Case peer(es1) = peer(es2):

QED because σ ∈ Run1n .
B. Case peer(es1) 6= peer(es2) :

∃es, er ∈ E :


com(es) = Send

∧ com(er) = Receive
∧ mes(es) = mes(er)
∧ peer(es) = peer(e1)
∧ e ≺c es
∧ er ≺c er2

 by Theorem 6 (page 24) since

peer(e) = peer(es1) 6= peer(es2) and e ≺c er2.
es1 ≺c es by transitivity because es1 ≺c e and e ≺c es.
peer(es1) = peer(e) = peer(es).
e ≺c er2 by transitivity because es ≺c er (definition of a distributed execu-
tion) and er ≺c er2.
Proof by case 2.a.i. with e ← es.

(b) Second ≺elem
c Case: com(es1) = Send∧ com(e) = Receive∧mes(es1) = mes(e).

∃er ′2 ∈ E : com(er ′2) = Receive∧mes(es2) = mes(er ′2) ∧ peer(er ′2) = peer(e) because
σ ∈ RunA.
es2 ≺c er ′2 by definition of a distributed execution.
e ≺c er ′2 by transitivity of ≺c because e ≺c es2 and es2 ≺c er ′2.
QED er1 ≺c er2 because e ≺c er ′2 and σ ∈ RunT (the order of the receptions must
be the same on all the peers).

145

In Table 7.1 and Table 7.2, many examples such as #8 prove that Runc 6⊆ Run1n ∩RunT ∩RunA.

7.2 Towards a Framework for the Compatibility Checking
of Compositions with Asynchronous Multicast Com-
munication

This section deals with the design of a verification framework in TLA+ that retains the features
of the mechanisation of the point-to-point framework described in Chapter 5 and also handles
mutlicast communication. The following is a snapshot of ongoing work. After motivating the
choices made to address the challenges of multicast communication, we present the current state
of the multicast verification framework. Eventually, we discuss the limits and issues that are still
to be addressed.

7.2.1 Lifespan of a Message in the Network of Messages In-Transit
In the mechanisation of the point-to-point framework for the compatibility checking of composi-
tions of peers, the transmission of a message consists of two operations:

1. Send. The message is added to a set of messages in transit called the network.

2. Receive. If the message to be received is in transit in the network, it is removed from the
network.

This means that once a message has been received, it cannot be received again later because
it is no longer in the network of in transit messages. This constitute the first and main challenge
to be addressed when it comes to multicast communication.

Sending the messages over and over

A simple solution would consist in sending the message again once it has been received so it can
be received another time by another peer. There are two problems:

• The reception of a message may be forbidden by the communication model and the ordering
property depends on the order of entry in the network. For instance, with FIFO ordering
and two messages m1 and m2 sent in this order, the communication model should guarantee
that m1 is received before m2. If m1 is received and then sent again, the new order of entry
in the network becomes m2 followed by m1.

• This solution does not specify when to stop sending messages again, that is to say the
lifespan of a message in the network.

Never removing the messages from the network

If we were to leave messages in the network of messages in transit forever, this would indeed
allow multicast communication : a message could be received as many times as the peers want.
However, this poses a problem with some communication models such as FIFO n-n. In the
operational description of FIFO n-n in the point-to-point framework, it is not possible to ignore
a message in the network contrary to models such as FIFO 1-1 in which channels may not be
“listened to” anymore. This means that the first message to enter the network would block the
reception of all the others.

146

Removing a message from the network once received by all the peers

A solution to the previous issue consists in removing a message from the network once all the
peers have received it. This means that all the peers must be ready to receive all the messages
in order not to block the system. This requirement is too strong to allow for the verification of
interesting and realistic systems.

Removing a message from the network after the relevant peers have received it

Removing a message from the network as soon as the peers that should receive it actually have
solves the previous problem. This is reminiscent of Chapter 4 when a solution was devised to
prevent a peer from having to be ready to receive messages transmitted between other indepen-
dent peers; in other words the specification of a peer should not depend on the environment in
takes part in. Chapter 4 develops the concepts of listened channels and stability with regard to
interest to overcome the problem.

With a similar notion of interest, removing a message from the network once it has been
received by all the interested peers seems like the most sensible management of the lifespan of a
message in transit. It also sticks to the guidelines of the point-to-point framework which paves
the way for compatibility with point-to-point communication.

7.2.2 Preventing a Peer from Receiving the Same Message Twice
According to Definition 8 (page 26) of multicast communication in Chapter 2, a message should
be received at most once per peer.

• A message might remain in the network after it has been received once. The state of the
network cannot prevent duplicate receptions on a peer.

• Interest deals with channels, not messages. If a peer stops being interested in a channel, it
cannot receive new messages from this channel later which is not an acceptable restriction.

Therefore, a new mechanism has to be introduced in order to prevent local duplicate recep-
tions. It simply consists of local sets received of already received messages. Once a message is
received, on peer p, it is added to received [p] and a message m can only be received on p if
m /∈ received [p].

7.2.3 Specification of the Interest
In the framework in Chapter 4, the interest, which is part of the specification of the peers, is
a label on the reception: the “listened channels”. It contains the set of channels the peer is
still interested in at the time of the reception. The communication model may make use of this
information to allow or forbid the reception.

Here, in order to ease the management of messages in the network, that is to say removing
them when no peer is interested anymore, we remove this label and introduce a new action
in the communication models called ignore. The specifications of the peers can make use of
ignore to state that they are no longer interested in a given set of channels. The communication
model itself keeps track of which peer is interested in which channel with a state variable interest
that maps each peer to a set of channels. The specification of the ignore action may consist in
removing a message from the network when the last peer that is interested in a channel stops
to be. Specifying interest with the ignore action also forbids, by construction, specifications
that are not stable with regard to interest. It is indeed impossible to stop ignoring a channel.

147

Initially, a peer may be interested in some channels or all of them. During the course of the run,
a peer can lose interest in some of those channels thanks to the ignore action which prevents the
communication model from imposing the reception of irrelevant messages but the peer cannot
cheat and resume interest in these channels: it is unable to violate stability with regard to
interest.

receive If the reception is possible on peer p (the message is not in received [p], the channel is in
interest [p], and the ordering policy of the communication model is respected), the message
is added to received [p]. It is removed from the network only if this was the last interested
peer that had not yet received the message.

ignore The set of channels is removed from the channels of interest of peer p, that is to say from
interest [p]. If there were messages in transit on channels that no longer interest any peer,
they are removed from the network.

Alternatively, explicit group destination could have been used instead, like the explicit des-
tination peers in the communication models in Chapter 6. A message, at send time, would be
associated to a set of destination peers and removed from the network once all these peers have
received the message. Basing the lifespan of a message on the concept of interest, much like in
the framework described in Chapter 4 and Chapter 5, allows to specify systems where channels
are not statically associated to a given sender or a given group of receivers.

7.2.4 Point-to-Point and One-to-All Communication
This revision of the framework for multicast communication aims at handling systems with
point-to-point communication as well, or even systems that mix multicast and point-to-point
communication thanks to composite communication models as in the point-to-point framework
of Chapter 5.

The operational semantics of multicast communication described previously is adapted to
become generic and also describe point-to-point communication. Consider two parameters of the
communication called MIN and MAX . Let N denote the number of peers in the system.

• MIN is the minimum number of times a message must be received before it is removed
from the network of messages in transit.

• MAX is the maximum number of times a message can be received before it is removed
from the network, even if there still are peers that are interested in the message.

Up until now, we have described multicast 0-N communication: a message is removed from
the network when all the peers that are interested in this message have received it. Point-to-point
communication corresponds to multicast 1-1. Indeed, a message must be received at least once
before it can be removed from the network and must not be received more than once. This means
it is immediately removed from the network following the first reception, never before. Similarly,
multicast 1-n would correspond to multicast communication were at least one peer must receive
a message before it is removed, and multicast n-n only generates one-to-all runs.

7.2.5 Organisation and Structure of the TLA+ Modules
In this framework, we split the ordering properties and the management of the network into
different TLA+ modules to avoid code duplication and easy interfacing of various properties on
the communication. For example regular multicast FIFO 1-1 bound to 5 messages in transit

148

is the composite communication model composed of: the module for multicast communication
(with MIN = 0 and MAX = N), the module for FIFO 1-1 ordering, and the module for bounded
communication (with a value of 5 for the bound). Only the multicast module removes messages
from its network. When this happens, the networks of the other communication models have to
be updated accordingly which requires an additional transition. A new boolean state variable
ready prevents communication actions from occuring before the update is done and the states of
the communication models are consistent.

In Chapter 5, Section 5.5.1 details alternative specifications of the communication models
where the histories do not contain messages but message identifiers instead. Thus, the histories
and network are flat sets of identifiers. This is a simplification over the recursive data structure
of the message histories of the point-to-point framework. The multicast framework relies on
identifiers and given a message, its identifier is the same across all the modules of a composite
communication model.

Minor small details, everything else remains identical to the point-to-point framework from
Chapter 5. The different TLA+ modules are:

peermanagement Defines the array of state variables (program counters) peers for the peers
and provides helper actions and basic properties. See Figure 7.4. Almost identical to its
counterpart from Chapter 5.

system Specifies the composition of peers and instanciates the composite communication model
to use. Contrary to the framework from Chapter 5 and as explained earlier, the ignore
action of the communication model is used instead of listened channels that parameterise
the receive action. Figure 7.3 is a simple example that highlights the small differences
(ignore action) with specifications of compositions in the framework from Chapter 5. It may
be specified manually or derived from a transition system or a CCS term as in Chapter 5.

multicom The composite communication model. The idea of a conjunction between the com-
munication predicates of the submodels remains the same as in Chapter 5 but this module
exhibits many particularities (detailed later) of the multicast framework. This module is
generated according to the number of models and the channels they are associated to.

multicast The module that, depending on the MIN and MAX value, specifies whether or not a
message should be removed from the network.

Communication Models A module per communication model that specifies the underlying
ordering policy. The seven communication models have been specified. Ongoing work aims
at specifying a communication model that models total ordering in multicast communica-
tion.

7.2.6 Communication Models
In order to ease interfacing of the modules, the communication models have a single state variable
s, a TLA+ record. The fields correspond for instance to the network or the interest. Besides the
ignore action, another new action free is present in the specifications. It is used by the multicom
during the update of the networks of the communication models and consists in removing mes-
sages in a given set of identifiers from the network and message histories. Furthermore, the
specifications provide the used_id set that contains all the identifiers that are not free to be
affected to new messages. The multicom specification makes use of the information for the
generation of new message identifiers.

149

module system
extends Naturals, peermanagement
constants N
variables id , ready , s0, s1
ComVars , 〈id , ready , s0, s1〉
Vars , 〈peers, ComVars〉
Com , instance multicom
TypeInvariant , Com!TypeInvariant ∧ PeerTypeInvariant

Init , Com!Init ∧ peers = 〈10, 20, 30〉
t1(peer) , trans(peer , 10, 11) ∧ Com!ignore(peer , {“a”, “b”, “c”})
t2(peer) , trans(peer , 11, 12) ∧ Com!send(peer , “a”)
t3(peer) , trans(peer , 12, TERM_STATE) ∧ Com!send(peer , “b”)
t4(peer) , trans(peer , 20, 21) ∧ Com!ignore(peer , {“a”, “c”})
t5(peer) , trans(peer , 21, 22) ∧ Com!receive(peer , “b”)
t6(peer) , trans(peer , 22, 23) ∧ Com!ignore(peer , {“b”})
t7(peer) , trans(peer , 23, TERM_STATE) ∧ Com!send(peer , “c”)
t8(peer) , trans(peer , 30, 31) ∧ Com!ignore(peer , {“b”})
t9(peer) , trans(peer , 31, 32) ∧ Com!receive(peer , “a”)
t10(peer) , trans(peer , 31, BOTTOM_STATE) ∧ Com!receive(peer , “c”)
t11(peer) , trans(peer , 32, 33) ∧ Com!ignore(peer , {“a”})
t12(peer) , trans(peer , 33, 34) ∧ Com!receive(peer , “c”)
t13(peer) , trans(peer , 34, TERM_STATE) ∧ Com!ignore(peer , {“c”})

Fairness ,
∧WFVars(Com!cleanup ∧ unchanged peers)
∧ ∀ i ∈ 1 . . N : WFVars(t1(i)) ∧ . . . ∧WFVars(t13(i))

Next ,
∨
∧ Com!cleanup
∧ unchanged peers

∨ ∃ i ∈ 1 . . N : t1(i) ∨ . . . ∨ t13(i)
Spec , Init ∧2[Next]Vars ∧ Fairness

a! b!

b? c!

⊥

a?

c?

c?

Figure 7.3: TLA+ Module of the Specification of a Composition. It corresponds to the classic
example that illustrates causality with three peers and three messages. It is a point-to-point
example but here illustrate how the ignore actions are used.

150

module peermanagement
extends Naturals, Sequences
constant

BOTTOM_STATE ,
TERM_STATE

variable
peers

PeerTypeInvariant , peers ∈ Seq(Nat)
trans(peer , init , next) ,
∧ peers[peer] = init
∧ peers ′ = [peers except ![peer] = next]

AllPeersIn(states) , ∀ i ∈ domain peers : peers[i] ∈ states
OnePeerIn(states) , ∃ i ∈ domain peers : peers[i] ∈ states
NonBottom , 2¬OnePeerIn({BOTTOM_STATE})
Terminates , 32AllPeersIn({TERM_STATE})
Terminated , AllPeersIn({TERM_STATE})

Figure 7.4: TLA+ Module that eases the management of the peers in a composition. It provides
the trans action to change the state of a peer and defines temporal properties that might serve
as a basis for compatibility checking.

A Regular Communication Model

The specifications of the seven communication models have not changed. As explained before,
the TLA+ modules only specify the ordering policy. The following is the specification of the
FIFO 1-1 communication model.

module fifo11
extends Naturals
constants

N , Number of peers
CHANNEL Set of channels

variables s

Peer , 1 . . N
MessageHistory , subset Nat
Message ,

[
id : Nat ,
channel : CHANNEL,
peer : Peer ,
history : MessageHistory

]
Network , subset Message
Interest , [Peer → subset CHANNEL]

TypeInvariant ,
s ∈ [

151

network : Network ,
interest : Interest

]

Init ,
s = [

network 7→ {}, Empty network
interest 7→ [peer ∈ Peer 7→ CHANNEL] Full interest

]

TransitingMessages , s.network 6= {}

IGNORE
peer peer losing interest in the channels
chan_set set of channels to ignore

ignore(peer , chan_set) ,
∧ s ′ = [s except

!.interest = [s.interest except
![peer] = s.interest [peer] \ chan_set
]

]

SEND
id id to give to the new message
peer peer that sends the new message
chan channel associated to the message

send(id , peer , channel) ,
let related_messages , {m ∈ s.network : m.peer = peer}in

s ′ = [s except
! .network = @ ∪

{
[

id 7→ id ,
channel 7→ channel ,
peer 7→ peer ,
history 7→ union {m.history ∪ {m.id} : m ∈ related_messages}

]
}

]

RECEIVE
id id the received message must match
peer peer that receives the message
chan channel associated to the message

receive(id , peer , channel) ,
∃m ∈ s.network :
∧m.id = id
∧m.channel = channel
∧ ¬∃m2 ∈ s.network : Ordering policy

152

∧m2.channel ∈ s.interest [peer]
∧m.peer = m2.peer
∧m2.id ∈ m.history

∧ unchanged s Not a transition: it only specifies the ordering policy

FREE
ids set of ids to remove from the network

free(ids) ,
s ′ =

[s except
!.network =
{

[m except !.history = @ \ ids] :
m ∈ {m2 ∈ @ : m2.id /∈ ids}

}
]

Message ids currently in use in this model
used_ids , {m.id : m ∈ s.network}
transiting_ids , {m.id : m ∈ s.network}

The Multicast Communication Model

The rules that specify the multicast module have already been detailed thoroughly. It is the
only communication model that removes messages from its network by itself depending on the
parameters MIN and MAX .

module multicast
extends Naturals
constants

N , Number of peers
CHANNEL, Set of channels
MIN , After MIN receptions, a message can be removed by disinsterest
MAX After MAX receptions, a message is removed no matter the interest

variables s

Peer , 1 . . N
MessageHistory , subset Nat
Message ,

[
id : Nat ,
channel : CHANNEL,
received : Nat The number of times a message has been received

] There is no message history because this model does not deal with message ordering
Network , subset Message
Interest , [Peer → subset CHANNEL]
Received , [Peer → subset Nat]

TypeInvariant ,

153

s ∈ [
network : Network ,
interest : Interest ,
received : Received

]
Init ,

s = [
network 7→ {}, Empty network
interest 7→ [peer ∈ Peer 7→ CHANNEL], Full interest
received 7→ [peer ∈ Peer 7→ {}] No receptions yet

]
TransitingMessages , s.network 6= {}

IGNORE
peer peer losing interest in the channels
chan_set set of channels to ignore

ignore(peer , chan_set) ,
let new_peer_interest , s.interest [peer] \ chan_set in

s ′ = [s except
!.interest =

[@ except
![peer] = new_peer_interest

],
!.network = Ignoring a channel can trigger the removal of messages
{m ∈ @ :
∨m.received < MIN
∨ ∃ p ∈ Peer \ {peer} : m.channel ∈ s.interest [p]
∨m.channel ∈ new_peer_interest

}
]

SEND
id id to give to the new message
peer peer that sends the new message
chan channel associated to the message

send(id , peer , channel) ,
let related_messages , {m ∈ s.network : m.peer = peer}in

s ′ = [s except
! .network = @ ∪

{
[

id 7→ id ,
channel 7→ channel ,
received 7→ 0

]
}

]

RECEIVE

154

id id the received message must match
peer peer that receives the message
chan channel associated to the message

receive(id , peer , channel) ,
∃m ∈ s.network :
∧m.id = id
∧m.channel = channel
∧m.id /∈ s.received [peer]
∧ let network_preupdate , The incremented values of the receptions counters are computed

(s.network \ {m}) ∪ {[m except !.received = @ + 1]}in
s ′ = [s except The network is updated accordingly

! .network = {m2 ∈ network_preupdate : Receiving might remove a message.
∧m2.received < MAX Between MIN and MAX ,
∧ messages are kept if
∨m2.received < MIN their channel interests
∨ ∃ p ∈ Peer : m2.channel ∈ s.interest [p] a peer.

},
! .received = [@ except ![peer] = @ ∪ {id}]

]

FREE
ids set of ids to remove from the network

free(ids) ,
s ′ =

[s except
!.network = {m ∈ @ : m.id /∈ ids}

]

Message ids currently in use in this model
used_ids , {m.id : m ∈ s.network}
transiting_ids , {m.id : m ∈ s.network}

7.2.7 A Composite Communication Model
After a communication action, the state of the composite communication model becomes ¬ready .
The cleanup action can switch it back to ready after it has computed which identifiers correspond
to messages that should be removed from the networks of the communication models that take
part inmulticom. Those identifiers are those “in use” that are not “in transit” where in_use is the
union of all the identifiers used in the submodels and in_transit the intersection. Since messages
are not removed from the communication models that specify ordering policies, their identifiers
are in in_use but since the messages may be removed from the network of the multicast model,
their identifiers are not in in_transit . This is how the removal of messages from the network
propagates through all the communication models and how their state is kept consistent.

module multicom
extends Naturals
constants N Number of peers
variables id , ready , s0, s1
Vars , 〈id , ready , s0, s1〉

155

Groups of channnels
Channel0 , {“a”, “b”, “c”}
Channel1 , {“a”, “b”, “c”}
Channel , Channel0 ∪ Channel1
Com0 , instance multicast with CHANNEL← Channel0, MIN ← 0, MAX ← N , s ← s0
Com1 , instance fifo11 with CHANNEL← Channel1, s ← s1

IdTypeInvariant , id ∈ [
in_use : subset Nat ,
in_transit : subset Nat
] ∧ id .in_transit ⊆ id .in_use

TypeInvariant ,
∧ Com0!TypeInvariant ∧ Com1!TypeInvariant
∧ IdTypeInvariant
∧ ready ∈ boolean

Init ,
∧ Com0!Init ∧ Com1!Init
∧ id = [

in_use 7→ {},
in_transit 7→ {}
]

TransitingMessages , Com0!TransitingMessages ∧ Com1!TransitingMessages

max (id_set) ,
if id_set = {}
then 0
else (choose x ∈ id_set : (∀ y ∈ id_set : y ≤ x))

first_free(id_set , used) ,
choose x ∈ id_set \ used : (∀ y ∈ id_set \ used : y ≥ x)

SEND
peer peer that sends the new message
chan channel associated to the message

send(peer , chan) ,
let new_id , first_free(1 . . max (id .in_use) + 1, id .in_use)in

∧ ready
∧ ready ′ = false
∧
∨
∧ chan ∈ Channel0
∧ chan /∈ Channel1
∧ Com0!send(new_id , peer , chan)
∧ unchanged s1

∨
∧ chan /∈ Channel0
∧ chan ∈ Channel1
∧ unchanged s0

156

∧ Com1!send(new_id , peer , chan)
∨
∧ chan ∈ Channel0
∧ chan ∈ Channel1
∧ Com0!send(new_id , peer , chan)
∧ Com1!send(new_id , peer , chan)

∧ id ′ =
[

in_use 7→ union {Com0!used_ids ′, Com1!used_ids ′},
in_transit 7→ Com0!transiting_ids ′ ∩ Com1!transiting_ids ′

]

RECEIVE
peer peer that receives the message
chan channel associated to the message

receive(peer , chan) ,
∃ common_id ∈ id .in_transit :
∧ ready
∧ ready ′ = false
∧
∨
∧ chan ∈ Channel0
∧ chan /∈ Channel1
∧ Com0!receive(common_id , peer , chan)
∧ unchanged s1

∨
∧ chan /∈ Channel0
∧ chan ∈ Channel1
∧ unchanged s0
∧ Com1!receive(common_id , peer , chan)

∨
∧ chan ∈ Channel0
∧ chan ∈ Channel1
∧ Com0!receive(common_id , peer , chan)
∧ Com1!receive(common_id , peer , chan)

∧ id ′ =
[

in_use 7→ union {Com0!used_ids ′, Com1!used_ids ′},
in_transit 7→ Com0!transiting_ids ′ ∩ Com1!transiting_ids ′

]

IGNORE
peer peer losing interest in the channels
chan_set set of channels to ignore

ignore(peer , chan_set) ,
∧ ready
∧ ready ′ = false
∧ Com0!ignore(peer , chan_set) ∧ Com1!ignore(peer , chan_set)
∧ id ′ =

[

157

in_use 7→ union {Com0!used_ids ′, Com1!used_ids ′},
in_transit 7→ Com0!transiting_ids ′ ∩ Com1!transiting_ids ′

]

CLEANUP
Free ids that no longer belong to messages in transit

cleanup ,
∧ ¬ready
∧ ready ′ = true
∧ let useless_ids , id .in_use \ id .in_transit in
∧ Com0!free(useless_ids) ∧ Com1!free(useless_ids)
∧ id ′ =

[
in_use 7→ union {Com0!used_ids ′, Com1!used_ids ′},
in_transit 7→ Com0!transiting_ids ′ ∩ Com1!transiting_ids ′

]

7.2.8 Limitations
In the current state of the framework, it is impossible to check the compatibility of a system under
a composite communication model that has different groups of channels. In the previous example
of a multicom module, there were two identical groups associated respectively to a multicast
instance (with MIN = 0 and MAX = N) and a fifo11 instance, hence modelling multicast 0-n
FIFO 1-1 communication. This kind of configuration works and the cleanup action ensures the
consistence of the networks in the two instances.

With a composite communication model such as the one used in the examination management
system example (Section 5.4.1 in Chapter 5 on page 100), the cleanup action is problematic. Let’s
consider 4 instances in a composite communication model:

1. Multicast 0-n on channels a, b, c.

2. FIFO 1-1 on channels a, b, c.

3. Multicast 1-1 on channels d , e.

4. FIFO n-n on channels d , e.

The cleanup action removes messages that are not common to all the four networks. This is
fine with only 1 and 2, or only 3 and 4, because the groups of channels are the same. However,
with the four instances, there is no way a message on channel a will ever end up in the networks
of instances 3 or 4. Conversely, no message on channels d can be in the networks of instances 1
and 2. This means after each communication action, the cleanup action removes all the messages
from all the networks. If some groups overlapped, only a few common messages would survive.

When a message is removed from the network of a multicast instance but remains in another
instance of a communication model (for example fifo11), there is no risk to receive the message
because the receive action in a multicom module is a conjunction of all the receive actions of
the instantiated communication models, including multicast where the receive action would be
disabled. Therefore, the cleanup operation might seem unnecessary. It actually is not for two
reasons.

158

• The cleanup operation prevents the network from indefinitely accumulating messages. In
systems that loop over a finite number of state, the state-space during model checking
would diverge anyway. This is reminiscent of the problem described in Section 5.5.1 of
Chapter 5 with message histories and purge of received messages.

• It is possible to ignore received messages as if they were not in the network anymore in
communication models such as FIFO 1-1, FIFO n-1, or Causal thanks to the ordering
property that takes interest into account. In the FIFO 1-n, FIFO n-n, or RSC communi-
cation models, it is however impossible to ignore messages in the network. Take FIFO n-n
as an example with two messages m1 and m2 added to the network in this order. After
receiving m1 in point-to-point communication (Multicast 1-1), m1 is removed from the
network of the multicast instance which prevents it from being received again but it is still
in the network of the fifonn instance which will block any further reception.

As a conclusion, the cleanup operation is almost always necessary. The following table sums
the capabilities of both versions of the framework, with, or without a cleanup operation.

With cleanup Without cleanup
Homogeneous groups of channels Yes Yes
Heterogeneous groups of channels Invalid Yes

Systems with loops Maybe finite state-space Infinite state-space
FIFO 1-n, FIFO n-n, and RSC Yes Invalid

7.2.9 Addressing the Issue
Several ideas may address the issue:

Individual Network Management In the point-to-point framework in Chapter 5, each com-
munication model manages additions and removals of messages in their network. If the
multicast specification were duplicated in every communication model, there would be no
need for the multicast module and the previous issue would not arise. The specifications
of the communication models would grow in complexity with a significant degree of dupli-
cation since the multicast module is quite complex.

Groups of network consistence The specification of a composite communication model could
group instances of communication models into groups of network consistence, i.e. groups
of instances that should keep their network identical. For instance, the layout from 7.2.8
would be split into two of these higher level groups:

• First group of instances
– Multicast 0-n on channels a, b, c.
– FIFO 1-1 on channels a, b, c.

• Second group of instances
– Multicast 1-1 on channels d , e.
– FIFO n-n on channels d , e.

The cleanup action would then operate individually on each group of instances. The
composite communication models in the point-to-point framework allow to specify groups of
channels that overlap and this solution would also allow it inside a given group of instances.
In the following example, the Causal ordering policy applies to messages on channels a, b,

159

and c, and FIFO 1-1 applies to messages on channels c and d . There is, for instance, no
constraint on the order of the receptions between messages on a and d . Channels e and f
are part of another communication group that is point-to-point: the network management
is different.

• First group of instances
– Multicast 0-n on channels a, b, c, d .
– Causal on channels a, b, c.
– FIFO 1-1 on channels c, d .

• Second group of instances
– Multicast 1-1 on channels e, f .
– FIFO n-n on channels e, f .

Ongoing work aims at exploring these ideas.

7.3 Conclusion
This chapter has introduced total ordering in multicast communication to our existing formal
toolkit, along with one-to-all communication, and proved how they integrate to the hierarchy of
communication models. The results illustrate the relative complexity of multicast communication
in comparison with point-to-point communication. Second, we have proposed a revision of the
TLA+ framework for compatibility checking that handles both multicast communication and
point-to-point communication as a special case of multicast communication. The overall structure
remain similar to the existing framework minor small choices that result in a greater distance
between the formal base and the mechanisation. The multicast framework indeed lacks the proofs
of correction and completeness that give trust to its point-to-point counterpart. Along with some
fine-tuning on the specification of the lifespan of a message in composite communication model
and adaptation of the user-friendly automations of the point-to-point framework, proving the
multicast framework conforms to the definitions of the communication models is a prime goal.

160

Part IV

Conclusion

161

Chapter 8

Conclusion and Future Work

The compatibility of communicating peers is seldom trivial. In particular, with asynchronous
communication, the decoupling of the emissions and deliveries of messages allow for interleaving
of communication events, chaotic ordering of reception, and increased risks of incompatibility.
This work contributes to the design and verification of safe and trustworthy distributed systems
by providing comprehensive formal tools that take the diversity of asynchronous interactions
into account. The first section sums up this work and assesses the fulfillment of the initial goals.
Then, the second section details areas of improvement that are to be tackled in future work.

8.1 Results and Practical Benefits
This work addresses classic issues in the formal approach of asynchronous communication:

• the lack of clarity in the denomination and distinction between common communication
models;

• the lack of consistency and uniformity in the specifications of these models;

• the lack of a concise big picture that highlights how all these interaction models relate to
each other.

We answer these problems on two levels:

Logical Chapter 2 formally defines the communication models. The definitions all rely on dis-
tributed executions and runs, that is to say partially ordered sets of communication events
and their linear extensions. They consist of an ordering property that give meaning to each
model. The chapter also compares these definition to establish a hierarchy. Chapter 7 then
extends this hierarchy to multicast-specific concepts.

Operational Chapter 4 provides operational specification of the same models and prove the
conformance with the structural definitions. Chapter 6 proves the hierarchy holds with the
operational descriptions and draws a big picture that encompasses the seven considered
communication models and different degrees of abstractness.

Thanks to this work on the formalisation of asynchronous interactions, we provide a frame-
work for the verification of safety and liveness properties in practical distributed systems that
relies on a comprehensive formalisation of asynchronous interactions. The said framework is fully

163

mechanised, user-friendly, and proved conform to the theory. It has already been successfully
used on a lot of examples. In Section 8.2.2, we describe how it helped make a hypothesis about
the communication models and compatibility properties that constitute a key perspective.

Moreover, the “menagerie of refinements” established in Chapter 6 provides a useful map to
direct the choice or substitution of a communication model depending on the desired communi-
cation properties and degree of abstractness.

Eventually, all the point-to-point exclusive contributions are to be extended to encompass
group communication. Chapter 7 already presents a significant part of this work, including
an early stage mechanised framework for the verification of distributed systems with group
communication.

8.2 Future Work

8.2.1 Wider Range of Communication Models

The asynchronous interactions are not limited to the seven communication models we have
studied in depth throughout the previous chapters. Future work aims at expanding the results
to all kinds of new communication models.

Concrete Specifications

Chapter 6 considers a few concrete specifications of the models that are closer to actual imple-
mentations. This could be generalised to all the models with additional steps of refinement that
lead to the said implementations. The main challenge is localisation, that is, associating each
variable of the system to a peer. Some communication models, like FIFO n-n, are indeed more
easily described in a centralised fashion that is not fit for implementation in distributed systems.

Capped Communication Models

Neither the structural definitions nor the certified operational specifications of the communication
models actually allow for the specification of bounds on the number of messages in transit,
globally, per channel, or per buffer. Although the framework for compatibility checking already
makes it possible to specify a cap on the number of messages in transit in the network, it would
also be interesting to compare the models and establish conditional hierarchies that depend on
parameters such as the size and nature (global, local) of the bounds.

Group Communication

The structural definitions of the seven communication model are generic but only the point-
to-point operational specifications of these models are proved to conform to these definitions.
The proofs of correctness and completeness for the specifications of the seven communication
models in the multicast framework 7 are to be carried out in future work since they require
adaptation and tweaking. Future work also include the specification of a communication model
for total ordering in the multicast framework. Currently, the menagerie of refinements does not
include specifications for multicast communication. This would require to formalise the concept
of destination group and specifications for the total ordering model.

164

Fault Models

Another perspective is the specification and comparison of fault models that allow to specify faults
in distributed systems such as message loss, duplication, or crash of a peer. The specification of
message loss is for instance a challenge that requires to decide on several questions. The concept
may indeed refer to messages that are forever in transit in the network or to a removal from the
network without an associated reception. Moreover, the specifications of the ordering policies
should state whether or not the loss of a message allows the reception of newer messages, as if
the lost message had never existed.

Round-Based Communication Models

A class of distributed algorithms models communication with rounds: at a given round, all the
messages of the previous round are received and new messages that will be received during the
next round are sent. Although reminiscent of synchronous communication (all the messages of
the previous round are received at the same logical time), there is a decoupling of the emission
and delivery of a message so the communication is asynchronous. In the different hierarchies,
this new communication model would likely settle between the RSC communication model and
the FIFO n-n communication model.

8.2.2 Equivalence between Communication Models with regard to Com-
patibility

This work has established and proved how the communication models and their alternate speci-
fications relate to each other. Chapter 4 proves the specifications of the communication models
with message histories conform to the structural definitions in Chapter 2. Chapter 2 compares
these definitions and establishes a hierarchy that encompasses multicast communication while
Chapter 7 expands the results with additional knowledge that is specific to multicast communi-
cation. Chapter 6 exhibits a “menagerie of refinements” for the point-to-point communication
models that unifies results from the other chapters and also considers concrete specifications that
are close to actual implementations. Thanks to these results, it is possible to know whether or
not a communication model can be substituted by another without risking unexpected behaviour
of the underlying distributed system.

However, these results only deal with the communication models by themselves, not the
distributed systems they take part in or the considered compatibility properties. Interestingly,
observations lead on many different examples with the mechanised framework presented in Chap-
ter 5 reveal that, for stable compatibility properties such as the termination of a system or the
occurrence of an unexpected reception, the compatibility result do not seem to depend on the
communication model provided it is Causal, FIFO 1-n, FIFO n-1, or FIFO n-n. Given a compo-
sition of peers and such a stable property, the compatibility result is the same under all the four
models, despite different sets of runs. Ongoing work aims at proving the Causal communication
model and the FIFO n-n communication model are indeed equivalent when it comes to stable
compatibility properties. The equivalence between all the four models would derive from the
already established hierarchies.

The equivalence between these models would reveal to be instrumental in the compatibility
checking of systems because it would allow to substitute a complex communication model such as
Causal with a formally simple model such as FIFO n-n in order to ease proofs of compatibility.
In the remote future, looking for other classes of equivalence, for instance among the new kinds
of communication models evoked in the previous section, would also help move towards this goal.

165

Bibliography

[ABDF08] Ali Ait-Bachir, Marlon Dumas, and Marie-Christine Fauvet. BESERIAL: Be-
havioural Service Analyser. In Business Process Management International Con-
ference. Demo session., pages 374–377, 2008. LNCS 5240.

[ABH+10] Jean-Raymond Abrial, Michael J. Butler, Stefan Hallerstede, Thai Son Hoang,
Farhad Mehta, and Laurent Voisin. Rodin: an open toolset for modelling and
reasoning in Event-B. STTT, 12(6):447–466, 2010.

[Abr10] Jean-Raymond Abrial. Modeling in Event-B - System and Software Engineering.
Cambridge University Press, 2010.

[ACM03] Jean-Raymond Abrial, Dominique Cansell, and Dominique Méry. A mechanically
proved and incremental development of IEEE 1394 tree identify protocol. Formal
Aspects of Computing, 14(3):215–227, 2003.

[AH07] Jean-Raymond Abrial and Stefan Hallerstede. Refinement, decomposition, and in-
stantiation of discrete models: Application to Event-B. Fundamenta Informaticae,
77(1-2):1–28, 2007.

[AHP96] Rajeev Alur, Gerard J Holzmann, and Doron Peled. An analyzer for message se-
quence charts. In International Workshop on Tools and Algorithms for the Con-
struction and Analysis of Systems, volume 1055 of LNCS, pages 35–48. Springer,
1996.

[AMS12] Manamiary Bruno Andriamiarina, Dominique Méry, and Neeraj Kumar Singh. Re-
visiting snapshot algorithms by refinement-based techniques. In 13th International
Conference on Parallel and Distributed Computing, Applications and Technologies,
PDCAT 2012, pages 343–349. IEEE, 2012.

[AMS14] Manamiary Bruno Andriamiarina, Dominique Méry, and Neeraj Kumar Singh. Re-
visiting snapshot algorithms by refinement-based techniques. Computer Science and
Information Systems, 11(1):251–270, 2014.

[AMW17] Noran Azmya, Stephan Merz, and Christoph Weidenbach. A machine-checked cor-
rectness proof for Pastry. Science of Computer Programming, 2017. To appear.

[AY99] Rajeev Alur and Mihalis Yannakakis. Model Checking of Message Sequence Charts,
pages 114–129. Springer Berlin Heidelberg, 1999.

[BB92] Gérard Berry and Gérard Boudol. The chemical abstract machine. Theoretical
Computer Science, 96(1):217–248, 1992.

167

[BBO12] Samik Basu, Tevfik Bultan, and Meriem Ouederni. Synchronizability for verification
of asynchronously communicating systems. In 13th International Conference on
Verification, Model Checking, and Abstract Interpretation, volume 7148 of LNCS,
pages 56–71. Springer-Verlag, 2012.

[BCPV04] Antonio Brogi, Carlos Canal, Ernesto Pimentel, and Antonio Vallecillo. Formaliz-
ing web service choreographies. Electronic Notes in Theoretical Computer Science,
105:73–94, December 2004.

[BCT04] Boualem Benatallah, Fabio Casati, and Farouk Toumani. Analysis and management
of web service protocols. In Conceptual Modeling – ER 2004, volume 3288 of Lecture
Notes in Computer Science, pages 524–541. Springer, 2004.

[Bir96] Kenneth P. Birman. Building secure and reliable network applications. Manning,
1996.

[BJ87] Kenneth P. Birman and Thomas A. Joseph. Reliable communication in the presence
of failures. ACM Transactions on Computer Systems, 5(1):47–76, January 1987.

[BK88] Ralph-Johan Back and Reino Kurki-Suonio. Distributed cooperation with action
systems. ACM Transactions on Programming Languages and Systems, 10(4):513–
554, 1988.

[BM03] Michel Bauderon and Mohamed Mosbah. A unified framework for designing, im-
plementing and visualizing distributed algorithms. Electronic Notes in Theoretical
Computer Science, 72(3):13–24, 2003.

[BM13] Michael Butler and Issam Maamria. Practical theory extension in Event-B. In
Zhiming Liu, Jim Woodcock, and Huibiao Zhu, editors, Theories of Programming
and Formal Methods, volume 8051 of Lecture Notes in Computer Science, pages
67–81. Springer Berlin Heidelberg, 2013.

[Bou92] Gérard Boudol. Asynchrony and the Pi-calculus. Research Report RR-1702, INRIA,
1992.

[BPV08] Romain Beauxis, Catuscia Palamidessi, and Frank D. Valencia. On the asynchronous
nature of the asynchronous π-calculus. In Rocco De Nicola, Pierpaolo Degano, and
José Meseguer, editors, Concurrency, Graphs and Models, volume 5065 of Lecture
Notes in Computer Science, pages 473–492. Springer, 2008.

[Bry11] Jeremy W. Bryans. Developing a consensus algorithm using stepwise refinement.
In 13th International Conference on Formal Methods and Software Engineering,
ICFEM’11, pages 553–568. Springer-Verlag, 2011.

[BTMK16] Maha Boussabbeh, Mohamed Tounsi, Mohamed Mosbah, and Ahmed Hadj Kacem.
Formal proofs of termination detection for local computations by refinement-based
compositions. In Proceedings of the 5th International Conference on Abstract State
Machines, Alloy, B, TLA, VDM, and Z - Volume 9675, ABZ 2016, pages 198–212.
Springer-Verlag New York, Inc., 2016.

[But09] Michael J. Butler. Decomposition structures for Event-B. In Integrated Formal
Methods, 7th International Conference, IFM 2009, pages 20–38, 2009.

168

[BZ83] Daniel Brand and Pitro Zafiropulo. On communicating finite-state machines. Jour-
nal of the ACM, 30(2):323–342, April 1983.

[CBMT96] Bernadette Charron-Bost, Friedemann Mattern, and Gerard Tel. Synchronous, asyn-
chronous, and causally ordered communication. Distributed Computing, 9(4):173–
191, February 1996.

[CDK94] George Coulouris, Jean Dollimore, and Tim Kindberg. Distributed Systems: concepts
and design. Addison Wesley, second edition, 1994.

[CDLM10] Kaustuv Chaudhuri, Damien Doligez, Leslie Lamport, and Stephan Merz. Verifying
safety properties with the TLA+ Proof System. In Proceedings of the 5th Interna-
tional Conference on Automated Reasoning, volume 6173 of LNCS, pages 142–148.
Springer-Verlag, 2010.

[CF99] Flaviu Cristian and Christof Fetzer. The timed asynchronous distributed system
model. IEEE Transaction on Parallel and Distributed Systems, 10(6):642–657, June
1999.

[CG98] Luca Cardelli and Andrew D. Gordon. Mobile ambients. In First International Con-
ference on Foundations of Software Science and Computation Structure, FoSSaCS
’98, pages 140–155. Springer-Verlag, 1998.

[CHMQ16] Florent Chevrou, Aurélie Hurault, Philippe Mauran, and Philippe Quéinnec. Mech-
anized refinement of communication models with TLA+. In 5th Intl. Conf. Abstract
State Machines, Alloy, B, TLA, VDM, and Z (ABZ 2016), volume 9675 of LNCS,
pages 312–318. Springer-Verlag, May 2016.

[CHQ15] Florent Chevrou, Aurélie Hurault, and Philippe Quéinnec. Automated verification
of asynchronous communicating systems with TLA+. Electronic Communications
of the EASST (PostProceedings of the 15th International Workshop on Automated
Verification of Critical Systems), 72, 2015.

[CHQ16] Florent Chevrou, Aurélie Hurault, and Philippe Quéinnec. On the diversity of asyn-
chronous communication. Formal Aspects of Computing, 28(5):847–879, September
2016.

[CLB08] Heung Seok Chae, Joon-Sang Lee, and Jung Ho Bae. An approach to checking
behavioral compatibility between web services. International Journal of Software
Engineering and Knowledge Engineering, 18(2):223–241, 2008.

[CM88] K. Mani Chandy and Jayadev Misra. Parallel Program Design: A Foundation.
Addison-Wesley, 1988.

[CPS93] Rance Cleaveland, Joachim Parrow, and Bernhard Steffen. The concurrency work-
bench: A semantics-based tool for the verification of concurrent systems. ACM
Transactions on Programming Languages and Systems, 15(1):36–72, January 1993.

[CPT01] Carlos Canal, Ernesto Pimentel, and José M. Troya. Compatibility and inheritance
in software architectures. Science of Computer Programming, 41(2):105–138, Octo-
ber 2001.

[Dij83] Edsger W. Dijkstra. EWD851b – reducing control traffic in a distributed implemen-
tation of mutual exclusion, 1983.

169

[DOS12] Francisco Durán, Meriem Ouederni, and Gwen Salaün. A generic framework for
n-protocol compatibility checking. Science of Computer Programming, 77(7-8):870–
886, July 2012.

[DS90] Edsger W. Dijkstra and Carel S. Scholten. Predicate Calculus and Program Seman-
tics. Springer-Verlag New York, Inc., 1990.

[DSU04] Xavier Défago, André Schiper, and Péter Urbán. Total order broadcast and multicast
algorithms: Taxonomy and survey. ACM Computing Surveys, 36:372–421, December
2004.

[DWZ+06] Shuiguang Deng, Zhaohui Wu, Mengchu Zhou, Ying Li, and Jian Wu. Model-
ing service compatibility with pi-calculus for choreography. In 25th International
Conference on Conceptual Modeling, Conceptual Modeling - ER 2006, pages 26–39.
Springer-Verlag, 2006.

[EMR02] André Engels, Sjouke Mauw, and Michel A. Reniers. A hierarchy of communication
models for message sequence charts. Science of Computer Programming, 44(3):253–
292, 2002.

[FG96] Cédric Fournet and Georges Gonthier. The reflexive cham and the join-calculus. In
23rd ACM Symposium on Principles of Programming Languages, POPL ’96, pages
372–385. ACM, 1996.

[Fid88] Colin J. Fidge. Timestamps in message-passing systems that preserve the partial
ordering. In 11th Australian Computer Science Conference, pages 55–66, February
1988.

[FUMK04] Howard Foster, Sebastian Uchitel, Jeff Magee, and Jeff Kramer. Compatibility
verification for web service choreography. In IEEE International Conference on
Web Services, pages 738–, 2004.

[GGH+10] Paul Gardiner, Michael Goldsmith, Jason Hulance, David Jackson, Bill Roscoe,
Bryan Scattergood, and Philip Armstrong. FDR2 user manual. Technical report,
Oxford University, november 2010.

[GLMS13] Hubert Garavel, Frédéric Lang, Radu Mateescu, and Wendelin Serwe. CADP 2011:
a toolbox for the construction and analysis of distributed processes. International
Journal on Software Tools for Technology Transfer, 15(2):89–107, 2013.

[HHK+15] Chris Hawblitzel, Jon Howell, Manos Kapritsos, Jay Lorch, Bryan Parno,
Michael Lowell Roberts, Srinath Setty, and Brian Zill. Ironfleet: Proving practical
distributed systems correct. In Proceedings of the ACM Symposium on Operating
Systems Principles (SOSP), October 2015.

[HISW11] Thai Son Hoang, Alexei Iliasov, Renato Silva, and Wei Wei. A survey on Event-B
decomposition. ECEASST, 46, 2011.

[Hoa78] Charles Antony Richard Hoare. Communicating sequential processes. Commun.
ACM, 21(8):666–677, 1978.

[Hol04] Gerard J. Holzmann. The Spin Model Checker : Primer and Reference Manual.
Addison-Wesley, 2004.

170

[HT91] Kohei Honda and Mario Tokoro. An object calculus for asynchronous communica-
tion. In Proceedings of the European Conference on Object-Oriented Programming,
ECOOP ’91, pages 133–147. Springer-Verlag, 1991.

[ILTR11] Alexei Iliasov, Linas Laibinis, Elena Troubitsyna, and Alexander Romanovsky. For-
mal derivation of a distributed program in Event-B. In ICFEM, volume 6991 of
Lecture Notes in Computer Science, pages 420–436. Springer, 2011.

[ISO89] ISO. Information processing systems – Open Systems Interconnection – LOTOS
– A formal description technique based on the temporal ordering of observational
behaviour. ISO 8807:1989, International Organization for Standardization, 1989.

[ISO01] ISO. Information technology – Enhancements to LOTOS (E-LOTOS). ISO
15437:2001, International Organization for Standardization, 2001.

[ITL+10] Alexei Iliasov, Elena Troubitsyna, Linas Laibinis, Alexander Romanovsky, Kimmo
Varpaaniemi, Dubravka Ilic, and Timo Latvala. Supporting reuse in Event B de-
velopment: Modularisation approach. In Abstract State Machines, Alloy, B and Z,
pages 174–188, 2010.

[Jos92] Mark B. Josephs. Receptive process theory. Acta Informatica, 29(1):17–31, 1992.

[KAB+07] Charles Edwin Killian, James W. Anderson, Ryan Braud, Ranjit Jhala, and Amin M.
Vahdat. Mace: Language support for building distributed systems. SIGPLAN Not.,
42(6):179–188, June 2007.

[KAJV07] Charles Edwin Killian, James W. Anderson, Ranjit Jhala, and Amin Vahdat. Life,
death, and the critical transition: Finding liveness bugs in systems code (awarded
best paper). In 4th Symposium on Networked Systems Design and Implementation
(NSDI 2007), April 11-13, 2007, Cambridge, Massachusetts, USA, Proceedings.,
2007.

[KS98] Ajay D. Kshemkalyani and Mukesh Singhal. Necessary and sufficient conditions on
information for causal message ordering and their optimal implementation. Dis-
tributed Computing, 11(2):91–111, 1998.

[KS11] Ajay D. Kshemkalyani and Mukesh Singhal. Distributed Computing: Principles,
Algorithms, and Systems. Cambridge University Press, March 2011.

[Lam78] Leslie Lamport. Time, clocks and the ordering of events in a distributed system.
Communications of the ACM, 21(7):558–565, July 1978.

[Lam94] Leslie Lamport. The temporal logic of actions. ACM Transactions on Programming
Languages and Systems, 16(3):872–923, 1994.

[Lam01] Butler W. Lampson. The ABCD’s of Paxos. In Proceedings of the Twentieth Annual
ACM Symposium on Principles of Distributed Computing, PODC 2001, pages 13–.
ACM, 2001.

[Lam02] Leslie Lamport. Specifying Systems. Addison Wesley, 2002.

[Lam09] Leslie Lamport. The PlusCal algorithm language. In Martin Leucker and Carroll
Morgan, editors, Theoretical Aspects of Computing, volume 5684 of Lecture Notes in
Computer Science, pages 36–60. Springer, 2009.

171

[Lam10] Leslie Lamport. Mechanically checked safety proof of a byzantine Paxos
algorithm. http://research.microsoft.com/en-us/um/people/lamport/tla/
byzpaxos.html, 2010.

[Lam11] Leslie Lamport. Byzantizing paxos by refinement. In David Peleg, editor, 25th
International Symposium on Distributed Computing, DISC 2011, volume 6950 of
Lecture Notes in Computer Science, pages 211–224. Springer, 2011.

[Lei10] K Rustan M Leino. Dafny: An automatic program verifier for functional correctness.
In International Conference on Logic for Programming Artificial Intelligence and
Reasoning, volume 6355 of LNCS, pages 348–370. Springer, 2010.

[LFS+11] Xitong Li, Yushun Fan, Q. Z. Sheng, Z. Maamar, and Hongwei Zhu. A Petri net
approach to analyzing behavioral compatibility and similarity of web services. IEEE
Transactions on Systems, Man and Cybernetics, 41(3):510–521, May 2011.

[LMP04] Xiaozhou Li, Jayadev Misra, and C. Greg Plaxton. Active and concurrent topol-
ogy maintenance. In Rachid Guerraoui, editor, Distributed Computing, 18th In-
ternational Conference, volume 3274 of Lecture Notes in Computer Science, pages
320–334. Springer, 2004.

[LMW11] Tianxiang Lu, Stephan Merz, and Christoph Weidenbach. Towards verification of
the Pastry protocol using TLA+. In Roberto Bruni and Jürgen Dingel, editors,
International Conference on Formal Techniques for Distributed Systems FORTE,
volume 6722 of Lecture Notes in Computer Science, pages 244–258. Springer, 2011.

[Lon12] Delphine Longuet. Global and local testing from message sequence charts. In Pro-
ceedings of the 27th Annual ACM Symposium on Applied Computing, SAC ’12, pages
1332–1338. ACM, 2012.

[Lu13] Tianxiang Lu. Formal Verification of the Pastry Protocol. PhD thesis, Université
de Lorraine – Universität des Saarlandes, July 2013.

[Lyn96] Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers Inc., 1996.

[Mar03] Axel Martens. On compatibility of web services. Petri Net Newsletter, pages 12–20,
2003.

[Mat89] Friedemann Mattern. Virtual time and global state in distributed systems. In Int’l
Workshop on Parallel and Distributed Algorithms, pages 215–226. Elsevier Science
Publishers, 1989.

[Mil82] Robin Milner. A Calculus of Communicating Systems. Springer-Verlag New York,
Inc., 1982.

[Mil99] Robin Milner. Communicating and Mobile Systems: The π-calculus. Cambridge
University Press, 1999.

[MR94] Sjouke Mauw and Michel A. Reniers. An algebraic semantics of basic message
sequence charts. The computer journal, 37(4):269–277, 1994.

[Mul93] Sape J. Mullender, editor. Distributed Systems. ACM Press Frontier Series, second
edition, 1993.

172

http://research.microsoft.com/en-us/um/people/lamport/tla/byzpaxos.html
http://research.microsoft.com/en-us/um/people/lamport/tla/byzpaxos.html

[OSB13] Meriem Ouederni, Gwen Salaün, and Tevfik Bultan. Compatibility checking for
asynchronously communicating software. In International Symposium on Formal
Aspects of Component Software (FACS 2013), volume 8348 of LNCS, pages 310–
328, 2013.

[Pal03] Catuscia Palamidessi. Comparing the Expressive Power of the Synchronous and the
Asynchronous pi-calculi. Mathematical Structures in Computer Science, 13(5):685–
719, 2003.

[PBS89] Larry L. Peterson, Nick C. Buchholz, and Richard D. Schlichting. Preserving and
using context information in interprocess communication. ACM Transactions on
Computer Systems, 7(3):217–246, 1989.

[Pra91] K. V. S. Prasad. A calculus of broadcasting systems. In S. Abramsky and T. S. E.
Maibaum, editors, TAPSOFT ’91: Proceedings of the International Joint Conference
on Theory and Practice of Software Development Brighton, UK, April 8–12, 1991,
volume 493 of LNCS, pages 338–358. Springer, 1991.

[PRS97] Ravi Prakash, Michel Raynal, and Mukesh Singhal. An adaptive causal ordering
algorithm suited to mobile computing environments. Journal of Parallel and Dis-
tributed Computing, 41(2):190–204, March 1997.

[Ray10] Michel Raynal. Communication and Agreement Abstractions for Fault-tolerant Asyn-
chronous Distributed Systems. Synthesis Lectures on Distributed Computing Theory.
Morgan and Claypool Publishers, 2010.

[Ray13] Michel Raynal. Distributed Algorithms for Message-Passing Systems. Springer, 2013.

[RRJ+14] Daniel Ricketts, Valentin Robert, Dongseok Jang, Zachary Tatlock, and Sorin
Lerner. Automating formal proofs for reactive systems. SIGPLAN Not., 49(6):452–
462, June 2014.

[RRM05] John Risson, Ken Robinson, and Tim Moors. Fault tolerant active rings for struc-
tured peer-to-peer overlays. In IEEE Conference on Local Computer Networks, LCN
’05, pages 18–25. IEEE Computer Society, 2005.

[RST91] Michel Raynal, André Schiper, and Sam Toueg. The causal ordering abstraction and
a simple way to implement it. Information Processing Letters, 39:343–350, October
1991.

[SHQ17] Nathanael Sensfelder, Aurélie Hurault, and Philippe Quéinnec. Inference of Channel
Priorities for Asynchronous Communication (regular paper). In International Con-
ference on Distributed Computing and Artificial Intelligence, volume 620 of Advances
in Intelligent Systems and Computing. Springer, 2017.

[Sil11] Renato Silva. Towards the composition of specifications in Event-B. Electronic
Notes in Theoretical Computer Science, 280:81–93, 2011.

[SM94] Reinhard Schwarz and Friedemann Mattern. Detecting causal relationships in dis-
tributed computations: In search of the holy grail. Distributed Computing, 7(3):149–
174, June 1994.

[SY10] Raghuraj Suryavanshi and Divakar Yadav. Formal development of byzantine im-
mune total order broadcast system using Event-B. In ICDEM, volume 6411 of
Lecture Notes in Computer Science, pages 317–324. Springer, 2010.

173

[Tel00] Gerard Tel. Introduction to Distributed Algorithms. Cambridge University Press,
second edition, 2000.

[TFZ09] Wei Tan, Yushun Fan, and MengChu Zhou. A Petri net-based method for compat-
ibility analysis and composition of web services in business process execution lan-
guage. IEEE Transactions on Automation Science and Engineering, 6(1):94–106,
2009.

[TMM16] Mohamed Tounsi, Mohamed Mosbah, and Dominique Méry. From Event-B speci-
fications to programs for distributed algorithms. Int. J. Auton. Adapt. Commun.
Syst., 9(3/4):223–242, January 2016.

[WWP+15] James R. Wilcox, Doug Woos, Pavel Panchekha, Zachary Tatlock, Xi Wang,
Michael D. Ernst, and Thomas Anderson. Verdi: A framework for implementing
and formally verifying distributed system. In PLDI 2015, Proceedings of the ACM
SIGPLAN 2015 Conference on Programming Language Design and Implementation,
June 15–17, 2015.

[YB05] Divakar Yadav and Michael J. Butler. Application of Event B to global causal
ordering for fault tolerant transactions. In Workshop on Rigorous Engineering of
Fault Tolerant Systems (REFT2005), pages 93–102, July 2005.

[YKKK09] Maysam Yabandeh, Nikola Knezevic, Dejan Kostic, and Viktor Kuncak. Crystal-
ball: Predicting and preventing inconsistencies in deployed distributed systems. In
Proceedings of the 6th USENIX Symposium on Networked Systems Design and Im-
plementation, NSDI’09, pages 229–244. USENIX Association, 2009.

[Zav12] Pamela Zave. Using lightweight modeling to understand Chord. SIGCOMM Com-
puter Communication Review, 42(2):49–57, April 2012.

174

	Abstract
	Résumé
	Remerciements
	Contents
	1 Introduction
	1.1 Problem
	1.1.1 Synchronous Communication
	1.1.2 Asynchronous Communication

	1.2 Contributions
	1.3 Outline of this Work
	1.3.1 Distributed Systems and Formal Verification
	1.3.2 Point-to-point Communication
	1.3.3 Group Communication

	I Distributed Systems and Formal Verification
	2 Distributed Systems
	2.1 Message-Passing Communication
	2.2 Point-to-Point Communication
	2.3 Group Communication
	2.4 Asynchronous Communication Models
	2.4.1 Fully Asynchronous Communication
	2.4.2 FIFO 1-1 Communication
	2.4.3 Causal: Causally Ordered Communication
	2.4.4 FIFO n-1 Communication
	2.4.5 FIFO 1-n Communication
	2.4.6 FIFO n-n Communication
	2.4.7 RSC: Realisable with Synchronous Communication
	2.4.8 Summary of the Asynchronous Communication Models

	2.5 Hierarchy

	3 State of the Art
	3.1 Description of Distributed Systems
	3.1.1 Transition Systems
	3.1.2 I/O Automata
	3.1.3 Message Sequence Charts
	3.1.4 Choreographies and Compatibility Checking
	3.1.5 Process Calculi

	3.2 Asynchronous Communication in Distributed Systems
	3.2.1 Hierarchy of Ordering Paradigms
	3.2.2 Hierarchy of Operational Communication Models
	3.2.3 Realisability with Synchronous Communication
	3.2.4 Summary

	3.3 Formal Verification
	3.3.1 Proof Assistance
	3.3.2 Correct-by-Construction Design of Distributed Systems

	II Point-to-Point Communication
	4 Compatibility Checking of Communicating Peers
	4.1 Description and Formalisation of the Framework
	4.1.1 Channels
	4.1.2 Specification of Compositions of Peers
	4.1.3 Specification of Communication Models
	4.1.4 Overall Product System
	4.1.5 Compatibility Checking
	4.1.6 Specification of Communication Models with Message Histories
	4.1.7 Specification of Capped Asynchronous Communication

	4.2 Conformance to the Specifications
	4.2.1 Correctness
	4.2.2 Completeness

	4.3 Conclusion

	5 Mechanised Compatibility Checking with TLA+
	5.1 The TLA+ Specification Language
	5.2 Organisation and Structure of the TLA+ Modules
	5.3 User-Friendly Automations
	5.3.1 Alternate Specification of a Peer using a CCS Term
	5.3.2 Faulty Reception Completion
	5.3.3 Composite Communication Models

	5.4 Examples and Results
	5.4.1 Detailed Example: The Examination Management System
	5.4.2 Practical Example: The Client-Controller-Application System
	5.4.3 Advanced Usage of Composite Models: the Video Stream

	5.5 Optimised Communication Models
	5.5.1 Reduction to Finite State Spaces by Purging Histories
	5.5.2 Dedicated Optimised Implementations

	5.6 Benchmarking
	5.6.1 Scenario
	5.6.2 Analysis

	5.7 Conclusion

	6 A Menagerie of Refinements
	6.1 Introduction
	6.2 Distributed Systems
	6.2.1 Distributed Executions
	6.2.2 Event-B
	6.2.3 From Events to Distributed Executions
	6.2.4 Summary

	6.3 Abstract Communication Models
	6.3.1 Specifications of the Communication Models
	6.3.2 Reduction of Non-Determinism
	6.3.3 Proofs and Invariants

	6.4 History-based Communication Models
	6.4.1 Specifications with Histories
	6.4.2 Refinement of Events by Histories
	6.4.3 Preservation of the Hierarchy

	6.5 Concrete Communication Models
	6.5.1 Refinement with Counters of Messages
	6.5.2 Refinement with Queues of Messages
	6.5.3 Logical Clocks

	6.6 Additional Remarks
	6.6.1 Proof Effort
	6.6.2 Deadlock Freedom
	6.6.3 Previous Work in TLA+
	6.6.4 Utility of the Hierarchies
	6.6.5 Localisation

	6.7 Conclusion

	III Group Communication
	7 Multicast Communication
	7.1 Extension of the Hierarchy of Communication Models
	7.1.1 Totally Ordered Multicast Distributed Executions
	7.1.2 One-to-All Communication

	7.2 Towards a Mechanised Framework
	7.2.1 Lifespan of a Message in the Network of Messages In-Transit
	7.2.2 Preventing a Peer from Receiving the Same Message Twice
	7.2.3 Specification of the Interest
	7.2.4 Point-to-Point and One-to-All Communication
	7.2.5 Organisation and Structure of the TLA+ Modules
	7.2.6 Communication Models
	7.2.7 A Composite Communication Model
	7.2.8 Limitations
	7.2.9 Addressing the Issue

	7.3 Conclusion

	IV Conclusion
	8 Conclusion and Future Work
	8.1 Results and Practical Benefits
	8.2 Future Work
	8.2.1 Wider Range of Communication Models
	8.2.2 Equivalence between Communication Models with regard to Compatibility

	Bibliography

