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Abstract

This thesis deals with the redesign of manufacturing systems by data-driven
simulation, optimization and problem-solving. Simulation of material flows is a widely
spread tool for solving problems in the design of manufacturing systems. However,
limitations are the high requirements in terms of time and knowledge to execute
simulation studies, evaluate results and solve design problems. New chances arrives
with the technologies of industry 4.0 and particularly the digital shadow, providing
production data for modeling and simulation. However, the methods to use
production data for the redesign of production systems are not available yet. Purpose
of this work is providing the methods to a) automate modeling and simulation from
digital shadow, b) use data-driven simulation to optimize systems and provide
experimental data and c) solve problems in the design of manufacturing system. The
strategy to provide the methods is studying the literature, extracting the methods,
evaluation in two case-studies and providing the insights in the discussion. The result
of this work is a framework for the application of the digital shadow in optimization

and problem-solving as well as its validation in two case-studies.

Keywords: Digital shadow, data-driven simulation, optimization, inventive design,

problem-solving.
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Chapter 1 Introduction

1-1  Context

Producing organizations exist in a fast-changing environment. Organizations must
respond to increased competition, continuously changing market-conditions,
unpredictable demands, and a high variety in product mix. These challenges force
organizations to continuously advance their production systems. With increasing size
and complexity of the systems, the redesign of production system becomes an
increasingly difficult task. Simulation of material flows is a recognized tool for
generating knowledge about the critical systems and support of redesign through
experiments using digital models. However, problem-solving in the redesign of

material flows remains difficult and requires expertise.

Inventive problem-solving is in the focus of the research efforts conducted over the
past fifteen years in the CSIP laboratory. The core of this methodology consists of
reformulating problems by highlighting the system limitations, formulating the system
of contradictions and changing the model to solve a problem and overcome system
limitations. Methods and algorithms have been developed in previous works to
reformulate problems and change models based on the systematic analysis of
experimental data. To support problem-solving, experimental data is required and
must provide links between action and evaluation parameters. Depending on the field
of research or expertise, the term ‘action parameters’ is also referred to as decision
variables (e.g. in experimental design, optimization area), design parameters or system
parameters. In this work, all three terms are used interchangeably. The availability of

experimental data is a major challenge to overcome.

New means of obtaining data have resulted from Industry 4.0, which has been marked
by an elevated level of connectivity and intelligence through the adoption of

ubiquitous information and communication technologies. Data are automatically
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measured in the physical production systems with sensors, smart machines, and
various Industry 4.0 technologies. The volume of available data has increased, enabling
new concepts, particularly the digital shadow, which represents the physical system in
virtual space. Through data-driven simulation, the digital shadow can also provide data
about the behaviour of the problematic systems. This data can support solving
problems in design, but requires systematic methods to extract knowledge [1]. The
present work is dedicated to exploring the use of the new technologies of Industry 4.0,
particularly the digital shadow and data-driven simulation, as well as inventive

problem-solving methods to solve problems in the redesign of production systems.

The first goal of this work is to provide the methods and tools to generate experimental
data for problem-solving by simulation of material-flows on request. Providing
experimental data entails two objectives. The first objective is to provide methods to
build simulation models and execute experiments from the data, and to provide the
methods to extract simulation data from the digital shadow in order to enable data-
driven simulation. The second objective is to provide the methods to define ideal
simulation experiments for providing the right data to detect system limitations and
root-causes. The second goal is to provide the methods to analyse the generated
simulation data, formulate the system of contradictions and eventually support model

change in order to overcome system limitations.

In order to demonstrate the genericity of the methods, two illustrative case-studies
will be presented. The case-studies focus on the design of a remanufacturing system
for trains (TRM) and a medical emergency department (ED). Subsections 1-1.1 to 0
provide the background of this research. The focus of the background is the role of the
digital shadow and data-driven simulation in the design of material-flow systems,
particularly from the system type of job-shop manufacturing systems, simulation-
based optimization, and data-based problem-solving methods. The challenges of this
research are then presented through research questions on three different levels in

section 1-2:
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- Generating models of material flows and simulating experiments from data

received via the digital shadow
- Providing data for problem-solving by systematic simulation experiments

- Highlighting system limitations, formulating system of contradictions and

changing models to overcome problems in system design

To address the research questions, a research method is proposed and questions are
answered by providing methods and tools in section 0. Presentation of the two
previously mentioned case-studies support this research and process to conclude

Chapter 1.

1-1.1 Problem-solving

Problem-solving is an elementary activity in numerous domains and a crucial challenge
in the design and redesign of systems [2]. The ability to solve problems effectively and
efficiently is essential in design. In the design of complex and large-scale systems,
problems become complex and multidimensional. Simple, linear problem-solving
approaches are not appropriate for solving these problems. Moreover, problem-
solving requires a deep understanding of the underlying causes and a holistic approach
to develop sustainable solutions. A systematic process for solving problems and

providing new solutions was presented in [3], [4] and is illustrated in Figure 1.

Opt|m|zat|on means:
DoE, Optimization,
What-if-scenario

Are all
State problems Get system Simulate
and objectives model experiments objectives
reached?

NO
Are there Accent
Change model acceptable P i
compromise
solutions? g

Figure 1: Problem-solving loop

The initial activity of problem-solving is the description of the problem and definition

of objectives. In get system model, a simulation model of the system to be improved

3
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or changed is provided. In the activity simulate experiments, the model is used to
evaluate the system’s behaviour and determine its performance by exploring the
design space using approaches. Optimization means for exploring the design space are
what-if scenarios, design of experiments (DoE) or optimization algorithms. The
objective is to find values for decision variables to satisfy the objectives in problem-
solving by parameterization of the model. When all objectives are reached, the
problem-solving process stops and the decision maker has a solution. When the
objectives are not reached, the decision maker decides to accept or not accept a
compromise. Accepting a compromise means to choose a solution among the results
of the activity simulate experiments, which does not reach all objectives but is not
unacceptable. In change model, the decision maker designs new solution concepts to
satisfy all (at least more) objectives. Model change refers to generation of new solution
concepts by structural changes beyond the simple change of decision variables. New
simulation models are required to validate solution concepts. The loop repeats until a

solution fulfils all objectives or provides an acceptable compromise.

In the presented problem-solving loop two approaches are appropriate to solve
problems and create new solution concepts: optimization and inventive design [3].
Optimization increases the system efficiency by optimizing the system parameters.
Inventive design introduces new parameters during the design process and changes
the principle of work. In problem-solving, the formulation of a problem requires a
statement of the system parameters; successive optimization of existing parameters is
the first step of problem-solving. If optimization cannot provide acceptable solutions,
then the problem is considered to be an inventive problem, for which the decision
maker uses solving techniques of inventive design. Inventive design requires more

profound changes of the model.

1-1.2 Optimization

In system design, the objective of optimization is to find solutions for design problems
by exploring a predefined problem solution search space. For optimization, the

decision maker provides a mathematical model, representing the idealized problem
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[5]. The mathematical model provides the link between decision variables and the
objective function for the critical system. The decision variables represent the
decisions to be made by determining specific values. The objective function measures
the consequence of the taken decisions by evaluating the mathematical model. The
goal of optimization problems is to minimize or maximize the values for the objective
function by determining values for the decision variables. During optimization,
parameterization of decision variables moves the system through the problem solution
search space, defined in [6], by adopting alternative states of problem-solving.
Optimization browses a space of potential solutions that is limited by the problem
space. The objective is to arrive at an optimal state without changing the model

beyond determining parameters.

An illustration of an exemplary optimization problem is given in Figure 2 [3], with the
decision space on the left and the solution space on the right. The illustrated problem
has k objectives (y) in the solution-space Y and all objectives are to be minimized. In
the example there is no additional knowledge about importance of the objectives
available. The solution of this multi-objective problem is describable in terms of the
decision variables (x) for n decision variables, formulated in a decision vector. All
possible decisions determine the decision space X. As a consequence, a function can
be expressed that evaluates the quality of a specific solution by calculating the values
for the objective functions and providing an objective vector in the solution-space Y.
The function for evaluation in mathematical optimization is expressed by the problem
model. However, any model capable of evaluating a specific decision vector can

provide the objective function, e.g. simulation in a model of material flows.
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Figure 2: Optimization problem

The model can provide a set of solution vectors by evaluating a set of decision vectors.
Within the set of solution vectors there are subsets of dominated and non-dominated
solution vectors. The subset of non-dominated solution vectors describes the Pareto
front of the optimization problem. Distinction between dominated and non-
dominated solutions is required. Based on the concept of Pareto dominance [7], one
objective vector Y;i dominates another objective vector Y;j, if Yi achieves all objectives
of Yj plus at least one additional objective. Providing optimum solutions by
optimization requires the identification of non-dominated solutions that clearly
perform better than dominated solutions. However, comparing multiple non-
dominated solutions does not provide one best solution; moreover, trade-offs
between multiple objectives are provided. In this case, if all the objectives are not

satisfied, an inventive problem occurs.

1-1.3 Inventive design (model change)

Optimization methods are proven to be effective in solving many problems [8], [9], but
are not effective for problems of inventive design, which require improving systems by
adding new decision variables and new links between decision variables. The objective
of inventive design is to go beyond the Pareto front of optimization and obtain results

in the desired objective space. To go beyond the Pareto front, Genrich Altshuller
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developed a systematic problem-solving methodology called TRIZ [10]. TRIZ, which
stands for teoriya resheniya izobretatelskikh zadatch in Russian or ‘theory of inventive
problem solving’ in English is based on the idea that innovation and creativity can be
approached in a structured and methodical manner. To lead to new and inventive
solutions to technical problems, TRIZ uses two assumptions about contradictions and

inventive principles.

- Evolution of technical systems through contradictions: TRIZ is built on the
premise that systems evolve by resolving contradictions. Contradictions occur
when improvements in one aspect of a system lead to a degradation in another

aspect. Resolving contradictions drives to innovative solutions.

- Inventive principles: TRIZ assumes that there are universal principles
underlying inventive solutions that have been employed throughout the
history of technical evolution. By identifying these principles and applying
them to current problems, engineers and innovators can generate novel

solutions.

When applying TRIZ to solve problems, the main objective is to detect contradictions
by finding a situation where improvement of one aspect of a system leads to
degradation of another aspect, and vice versa. After detection of the contradictory
situation, application of inventive principles yields a solution to the problem by
resolving the contradiction. For resolving contradictions, TRIZ provides inventive

principles.

To illustrate the process of going beyond optimization, Figure 3 illustrates the Pareto
front of an exemplary problem [3]. In the illustration, a) shows the Pareto front of an
optimization problem. There is a conflict between different objective vectors in regard
to the objective functions. For the exemplary problem in b), solution 1 satisfies
evaluation parameter 1 and solution 2 satisfies evaluation parameter 2. For both
solutions, the remaining evaluation parameter is not satisfied. In inventive design, this
situation is named contradictory [11]. The conflict between objective functions is

considered a technical contradiction. For solving the contradiction, this conflict is to be
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translated into the search space of possible solutions, which is to be considered as a

physical contradiction.
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Figure 3: Pareto front and inventive problem

The definitions for the different contradictory situations are given in the literature [10],
[12], [13]. The literature separates between administrative, technical and physical

contradictions:

- An administrative contradiction describes a situation in which an objective is

formulated but not satisfied.

- Paired technical contradictions describe a situation with two conflicting
objective functions. For different solution vectors, the first objective function
improves while the second objective function degrades, and vice versa.

Satisfying both does not seem possible.

- A physical contradiction describes the conflicting situation on the basis of the
decision variables. A decision variable must adopt the opposite states (values)

simultaneously to satisfy both objective functions.

The idea of solving-problems by describing them through their contradictions obtained
from experiments is used and applied in many works [7], [14], [15]. A general
framework for the system of contradictions is provided in [16] and is illustrated in
Figure 4. The system of contradictions describes the conflicting situation through the

technical and physical contradictions and removes the administrative contradiction. It

8
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should be highlighted that during optimization, the technical contradiction appears
before the physical contradiction. The physical contradiction explains the technical
contradictions on a deeper level. There is an assumption that behind each paired
technical contradiction there is a physical contradiction.

Evaluation parameter EP2 does not
meet our requirements

|
Action | TC1
— parameter | -
state 1 |
Evaluation parameter EP1 meets our
| - requirements Our dESil’Ed
Action - | solution
parameter | — Evaluation parameter EP2 meets our
requirements
Action |
~ parameter | m TC?2
state 2 | Evaluation parameter EP1 does not
~— meet our requirements
|
Physical Contradiction Paired technical contradiction

Figure 4: System of contradictions

Inventive design provides systematic methods to describe the problem through its
contradictions on several levels. For solving the contradiction, [12] proposes
separation principles. Separation principles include spatial, temporal and structural
separation of decision variables. The decision maker introduces new parameters and

functions in order to change the principle of work and solve the conflict.

1-1.4 Data-driven simulation

Both optimization and inventive design require the model to evaluate solution
candidates and provide a link between decision variables and objective functions. For
providing the links, a high number of experiments should be simulated. A common
technique for analysis of material flows is modelling and simulation in discrete-event
simulation (DES). DES enables simulating material flows in a dynamic environment,
and analysing waiting lines while considering stochastic uncertainties. The technique
can solve a wide range of problems in system design. However, simulation has

significant requirements for the system modeler [17]. The process of setting up valid
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simulation models is time-consuming and requires expertise in the domain. The

process of executing simulation studies is illustrated in Figure 5, based on [18].
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v
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T - T
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v
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Reporting and
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Figure 5: Modelling and simulation process

According to [18], the simulation process begins with problem formulation and setting
study objectives. In these phases, the system modeler understands the system and
problem, and designs a conceptual mode of the critical system. Based on the
conceptual model, the model implementation and data acquisition are performed in
parallel, ending with providing the final simulation model. In the verification and
validation steps, the correctness and accuracy of the model are ensured. In the model
analysis, the model generates new knowledge by evaluating action parameters and
providing evaluation parameters by simulation. The system model provides reports for
communicating results. Depending on the complexity and size of the system to be
analysed, simulation studies can last from a few days to several weeks and months,

particularly when proposing, implementing and evaluating new solution concepts.

New opportunities are offered with data-driven simulation, which enables setting up
simulation models and executing simulation experiments instantly from the data [19].
However, a literature review in the context of this work demonstrated the current

limitations of data-driven simulation [20]. In the literature, a range of methods (e.g.

10
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reuse, parameterization and data-driven modelling) can provide models for
simulation, while compromising between genericity and specificity. The strategy and
methods that can be used to provide models for problem-solving by data-driven
modelling are unclear. Assuming that the strategies and methods are available as data-
driven simulation, automated evaluation of a wide range of systems can be obtained

within short time.

The benefits and drawbacks of data-driven simulation depend on the quality of the
simulation data [21]. Providing simulation data is a major issue in data-driven
simulation, and in previous studies it was mainly linked to data-extraction from
corporate business systems, called system data [22], [23]. In particular, since the rise
of Industry 4.0, methods have been sought for extracting simulation data from actual
material flows, called flow data [24], [25]. The added value of flow data can be seen in

the increased precision of historic data.

1-1.5 Retrieval of simulation data

Studies dealing with data-driven modelling and simulation differentiate between the
retrieval of simulation data as system data and flow data. System data describe the
physical system. Data change when the configuration of the physical system changes;
consequently, changes do not occur regularly. Flow data describe the historic material
flows in the physical system. Data change with each finished activity. Consequently,

flow data change regularly and are extended with each event in the physical system.

System data describe the products, processes and resources and the physical system.
In scientific and industrial literature, there are many works available providing models,
standards and exchange formats for exchanging and providing system data for data-
driven simulation. Examples for these are the product, process and resource (PPR)
model [26], AutomationML [27] and Core Manufacturing Simulation Data (CSMD) [28].
The standards entail predefined classes for definition of system properties and allow
the description of entire material flow systems by data. In addition to PPRs, classes can
be used to describe the organization of work by providing order schedules and shift

calendars. Extensions of the standards are permitted to model system-specific
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properties. The methods for retrieval of system data in this work are considered as

available.

Flow data describes the historic material flows that occurred in a physical system [25].
To provide them, material flows are recorded in event-logs [24]. Event-logs provide
information about the begin time and end time of an activity by measuring the
moment and writing the event into a database (see Figure 6(a)). Alternatively, to
measure the material flows on the shop floor, event-logs can be provided by a
workflow-oriented system, e.g. enterprise resource planning (ERP) systems or
manufacturing execution systems (MES) [29] by recording feedback from the shop
floor. Event-logs provide the historic flows inheriting simulation data, but do not
explicitly provide simulation data. Transformation (e.g. a process map) is required to
extract simulation data. Figure 6 illustrates the exemplary input and output of the
transformation process based on [24]. Extraction provides process-maps of material
flows (b), from event-logs with historic data from the shop floor (a). In addition to
creating input for simulation, analysis of event-logs allows for extracting knowledge

about the historic material flows.

Workpiece Station Time
BBOOF B/3 2020-10-08 08:00:0°
0184A B/3 2020-10-08 08:00:0°
95A0C cn 2020-10-08 08:00:2:
a) b)

Figure 6: Extraction of material flows from event-logs

Given the availability of system and flow data, methods are required to extract
simulation data for data-driven modelling and simulation. In particular, to describe
material flows, the methods for extraction of the process-map from logs with recorded

events are not clear.
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1-1.6 Digital shadow

The retrieval of simulation data from physical systems and information systems is a
major challenge in simulation modelling and is tackled in numerous works [21]-[23],
[30]. A literature review highlighting the challenges of data acquisition on the shop
floor from a technical perspective is provided in [31] and identifies challenges,
particularly in the acquisition from non-automated manufacturing systems with
manual data inputs during the manufacturing process. Surveys at winter simulation
conferences in 2002 and 2012 with simulation experts point out that acquisition of
simulation data is a major challenge in simulation studies [22], [23]. Between 40 % and
50 % of the time spent on simulation studies is dedicated to data acquisition and, out
of these, 80 % of activities are manually executed [1]. Following [21], just 7 % of the
simulation data is available when needed. Providing data for simulation remains a
major challenge. Origins for the challenge are seen in [25] by the high number and

variety of data sources and, in particular, corporate business systems.

New opportunities have been created by the new technologies of Industry 4.0 and
particularly the digital twin concept. A ‘digital twin’ was first mentioned in 2002 by
Grieves and is defined as a set of virtual information constructs that fully describes a
potential or actual physical manufactured product from the micro atomic level to the
macro geometrical level [32]. From 2017 to 2019 the digital twin was one of the
strategic trends identified by Gartner [33]-[35]. However, the literature review in [36]
highlights, beyond laboratory-scale case studies there are barely any implemented
digital twins available. Additionally, the authors provided an extended definition: ‘The
Digital Twin consists of a virtual representation of a production system, that is able to
run on different simulation disciplines that is characterized by the synchronization
between the virtual and real systems’ [36]. The core of their definition is the
differentiation between a digital model, shadow and twin based on the level of

integration between the physical and virtual system (see Figure 7).
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Figure 7: Digital model, shadow and twin

With the automated data flow from physical object to the digital object, the digital
shadow is eligible to receive data from the physical object and provide it for modelling
and simulation. Consequently, this work focuses on the digital shadow and its ability
to provide data for simulation. The purpose of the digital shadow is to use simulations
to forecast, optimize and evaluate the outcome of production systems at each life cycle
phase [36], [37]. For the use of simulation in the context of the digital twin, Grieves
[32] introduced the digital twin environment, an integrated, multi-domain application
space for operating on digital twins for a variety of purposes. Consequently, in the
context of the digital shadow there is a digital shadow environment providing a multi-
domain application space for optimization and problem-solving. In this context, [1]
highlights the possibility and gap in research for using big data generated by simulation
for problem-solving and improvement. However, to use a digital shadow for problem-
solving in manufacturing system design, there are multiple challenges to overcome.
Challenges are linked to the retrieval of simulation data, data-driven modelling and

simulation, and their application in optimization and problem-solving.

1-1.7 Discussion

Sections 1-1.1 to 0 provide the background for this work. The background covers the
domains of problem-solving and data-driven simulation. In problem-solving, the
background for both optimization and inventive design has been provided. In the
context of simulation, the background has been provided for data-driven simulation,
retrieval of simulation data and the digital shadow concept. In the design and redesign
of material flows, the presented methods, techniques and tools can support the

problem-solving process. The assembly of the retrieved knowledge establishes a
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theoretical framework for problem-solving based on the digital shadow. The

framework is illustrated in Figure 8.

The presented framework relies on Kritzinger’s concept of the digital shadow [36] and
Grieves’ concept of the digital shadow environment with the multi-domain application
space [32], both of which are illustrated with a grey background. In the red and blue
boxes, the domains of optimization and inventive design are shown. Optimization uses
data-driven simulation in the multi-domain application space to solve design problems
by optimizing system parameters. Experimental data from optimization is the enabler
for detecting contradiction and adding new system parameters for changing the model

and solving design problems.
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Figure 8: Technical framework for problem-solving with the digital shadow

The initial point in the presented framework is the physical object. In the digital
shadow concept, it is represented by its digital object, receiving data via an automated
dataflow. The digital shadow is the data source for simulation and provides system
data (PPR-data) and flow data (event-logs). Methods of data-retrieval extract
simulation data from the event-logs of the digital shadow. Data-driven modelling and

simulation provides simulation models for optimization and experimentation. As input
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for data-driven modelling, there are simulation data and partial models, providing
particular models, as proposed by the concepts of enterprise modelling [38]. Partial
models provide reusable concepts for modelling in this work, particularly for job-shop
systems. Simulation data provides the case-specific data of the physical object. Data-
driven modelling provides particular models of the physical objects in the digital
shadow environment by instantiating particular models from partial models according

to the simulation data.

For optimization, the particular model allows the solution candidates to be evaluated
by simulation. Optimization means (e.g. heuristics) suggest solution candidates by
providing decision vectors with values for the decision variables. Parameterization of
the particular model provides a model of the solution concept, while simulation
evaluates the solution concept and provides a solution vector with values for the
objective functions. Optimization means use data-driven simulation in a loop to
evaluate solution candidates. Optimization experiments also provide data linking
decision vectors and solution vectors. In problem-solving, when no viable solution is
available, inventive design can be applied. Simulation-based experimental data and
methods of inventive design enable the description of the technical and physical
contradiction, changing the model by adding new decision variables. Changing the
model and adding new decision variables have the consequence of extending
simulation data and partial models to enable data-driven modelling. However, in this

framework there are four major issues to be solved.

- Retrieval of simulation data: Techniques of Industry 4.0 enable the
measurement and recording of data, particularly event-logs on the shop floor,
and provide them in the digital shadow. Simulation requires data describing
material flows. Extraction of simulation data is required to provide material
flows from event-logs with recorded events. Nevertheless, the methods for
extracting material flows are not yet clear, especially for systems with high

uncertainties in the process.
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Data-driven simulation: Data-driven simulation allows scenarios to be
evaluated in optimization and problem-solving by simulation on click. However,
previous studies highlight a range of methods that are available to provide
different types of models for different types of systems. The methods for
generating models by data-driven modelling, automation and simulation

experiments are not available.

Simulation and optimization: Optimization provides solution candidates that
minimize or maximize given objective functions. For design problems with
multiple objectives, one best solution cannot be provided. Moreover, a set of
non-dominated solutions describes trade-offs between objectives and is
required as source data for solving the design problem by inventive design. The
methods for receiving the experimental data from a digital shadow and data-

driven simulation are not clear.

Problem-solving: Beyond optimization, problem-solving benefits from the
availability of experimental data, which provides the link between decision
variables and values for the objective functions. Consequently, it inherits
technical and physical contradictions that define system limitations. Support of
the model change for extracting the contradictions is required. However, the

methods for extraction of contradictions are not available.

1-2 Research statement

The global framework of this PhD thesis is the redesign of production systems by their

digital shadow, which deals with the role of data-driven simulation of material flows in

problem-solving. In this global environment, three research questions address the

topic of data-driven modelling from the digital shadow (RQ1), using generated models

for experimentation and optimization to provide data with the link between action and

evaluation parameters (RQ2), as well as using data-driven modelling to support the

problem-solving loop and changing the model by detecting contradiction and inventive

design (RQ3). Based on literature research and its gaps, in the state of the art, there

are three research questions that are addressed in this work.
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What are the methods for generating
simulation models for problem-solving from
the digital shadow?

RQ1: Modelling and
Simulation

What are the methods for optimizing material
flows through the digital shadow and data-
driven simulation?

RQ2: Simulation and
Optimization

What are the methods for solving problems in
RQ3: Model Change the design of material flows by the digital
shadow and data-driven simulation?
Additionally, there are three assumptions (AS1-AS3) defined to provide a framework
for this research and define the type of manufacturing systems, availability of data and

relevant stage in the manufacturing system lifecycle:

AS1: System type Systems from type job shop;

Data is available digitally and instantly (PPR-

AS2: Availability of data data and historic event-logs);

It is focused on the stage of planning (design
AS3: Lifecycle stage and redesign) in the lifecycle of material-flow
systems.
The formulated assumptions limit the scope of this research in regard to system type,
lifecycle phase and data-availability. The literature research highlights that for different
types of systems, different problems and different methods for modelling are available
[20]; a common approach does not exist. Because the focus is on systems, whose
material flows follow the paradigm of a job shop, data-driven simulation requires data
from the physical system. Data-gathering from the shop floor is time-consuming and
can include additional research questions [21]. Because data from the physical system
are assumed to be available in the digital shadow instantly and digitally, during the
system lifecycle there are many problems to be solved. To limit the scope, this work

focuses on problems in the design and redesign of systems.

1-3 Research method
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As a research method to address the stated questions, this work relies on action
research, which uses a cyclic approach to tackle problems and generate knowledge
[39]. In action research, an undefined and unlimited number of cycles sequentially
addresses research questions. The phases of this cycle are plan, action, overserve and
reflect. After each reflection, a revised plan can be formulated and allows entering
another cycle. The cyclic approach allows us to sequentially address the research
questions provided after each problem and the outputs that can be used for

addressing the next set of problems. Figure 9 shows the phases of action research.

Reflect ~~ > Plan
Reflect
Cycle 1: —
s

Observe 4 Action

Reflect - Revised plan
Cycle 2: —

Observe Ry =1 Action

Figure 9: Action research cycle

- Plan: The researcher formulates the objectives and defines the method to

address the objective.

- Action: The researcher executes the plan by implementing new methods,

processes and technologies.

- Observe: The researcher gathers data to observe the impact of the

implemented interventions.

- Reflect: The researcher analyses the data to evaluate the interventions, reflects

on new insights and formulates new objectives.

In this work, there are four research cycles to address the three questions. The first

question (RQ1: Modelling and simulation) is split into two cycles, where each cycle is
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described in one chapter. The first cycle addresses retrieving simulation data from the
digital shadow (Chapter 2) and the second cycle addresses the generating and
simulation models of material flows (Chapter 3). The outputs of the first question, the
methods and tools to generate and simulate models of materials, are enablers for
addressing the second question. The second question (RQ2: Simulation and
optimization) is addressed in the third cycle and provides the methods to use
simulation for generated models to address various optimization problems in the case
studies, particularly in scheduling, resource allocation and constraint optimization
(Chapter 4). The third question (RQ3: Problem solving) is addressed in the fourth cycle
and provides the methods to use data-driven simulation and optimization to solve
inventive problems (Chapter 5). An overview on the cycles and chapters of this work is

given in Figure 10.

Available knowledge | . .
is restricted. more | _ Provide simulation
Chapter 2: data is required sz
Retrieval of —
simulation data Extract simulation . Analyze literature and
knowledge and data ¢ ction -+ provide methods for
in case-study data extraction
B Methods for . .
;i : Simulate material = oo
generation of big-data - flows o =
Chapter 3: are unknown E =
Data-driven  — s E
simulation Data-driven Analyze literature and g =
simulation case- -+ provide simulation z g
studies methods (= o
_______________ ety p—— e/ A =
— c
Optimization provides L g ‘®
e i Revised | | Solve optimization 5 =
i o = problems o £
Chapter 4: knowledge is limited = ©
Simulation & — 3 é
. . . -4 wv ]
ormeten | | soveopmaaton | i | & 4
_ : Action =7
problems case-studies methods S O
DlscussA r‘esults and Hevised e e e
role of digital shadow Plan = . :
] ) in design
in problem-solving
Chapter 5:
Problem-Soiving Solve problemsin Analyze literature and
design in case-study Action = T
solving methods

~——

Figure 10: Research cycles in this work
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1-4 Organization of the thesis

Chapter 2 (Cycle 1) aims at providing methods for retrieval of simulation data. The plan
is to extract data with material-flows from event-logs with historical data provided by
the digital shadow. In the action phase, a literature review is provided to understand
the methods in the literature. Based on the literature review, new methods are
proposed and implemented to receive simulation data. A case-study in the ED is
presented to validate the methods and provide simulation data. The methods are

evaluated, properties are discussed, and new objectives are formulated.

Chapter 3 (Cycle 2) is intended to provide methods for data-driven simulation. The plan
is to provide models and execute experiments on request from data. Experiments
evaluate sets of action parameters by simulation and provide sets of evaluation
parameters. In the action phase, a literature review is provided to understand the
methods in the literature. Based on the literature review, new methods are proposed
and implemented to generate and simulate models. Two case-studies are presented in
ED and TRM to validate the methods and provide simulation results. The methods are

evaluated, properties are discussed, and new objectives are formulated.

Chapter 4 (Cycle 3) has the objective of providing methods to solve optimization
problems by simulation. The plan is to provide methods to use models, generated from
the digital shadow, to solve various optimization problems, particularly in scheduling,
resource allocation and constraint optimization. In the action phase, a literature review
is provided to understand the methods in the literature. Based on the literature review,
new methods are proposed and implemented to solve optimization problems. Two
case-studies are presented in ED and TRM to validate the methods and determine
optima. The methods are evaluated, properties are discussed and new objectives are

formulated.

Chapter 5 (Cycle 4) is dedicated to problem-solving, based on data-driven simulation
and optimization. The plan is to provide methods to solve design problems, based on

results from data-driven simulation and optimization. In the action phase, a literature
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review is provided to understand the methods in the literature. Based on the literature,
a review of new methods for problem-solving is presented. A case study is presented
in the ED to validate the methods and solve design problems. The methods are

evaluated, properties are discussed and new objectives are formulated.

Chapter 6, (Conclusion) summarizes the results of the previous chapters, highlights
contributions and discuss their benefits and drawbacks. Areas for future research are

also given.

1-5 Case-Studies

This work uses two case-studies of redesign: an ED and a TRM. The focus of both case-
studies is the redesign of physical flows, specifically, patient flows in the ED and train
flows in the TRM. Despite the domains and differences in the system, the fundamental
mechanics of both systems follow the paradigm of a job-shop production system. The
system is characterized as a shop of different resources with similar functions for
executing activities, i.e. doctors and nurses in the ED and installations in the TRM.
Materials arrive at the shop floor and follow a sequence of activities. Each activity
requires a resource to be executed; missing resources cause queues and waiting times,
increasing the patient’s length of stay (LOS) in the ED and the train’s LOS in the TRM.
When competing for a resource, priority is given by rules. A patient’s prioritization is
based on the emergency severity categorization in the ED and on the arrival sequence

of the train in the TRM.

Owing to the nature of the system, the ‘batch size of production orders’ is equal to
one. Each patient or train arrives individually with case-specific problems, i.e. diseases
in the ED and technical defects in the TRM. The process in both cases is marked by
assembly and dismantling activities. Indeed, during the ED process, patients arrive in
the system and are ‘assembled/dismantled’ with stretchers, samples and reports.
Patients need to be separated from samples and reports during their journey in the
ED, and from the stretcher before leaving. In the TRM, during the remanufacturing

process, the train, which is the train a grande vitesse (TGV) in our case study, is broken
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down into its two power cars and the eight or ten carriages that make up its trainset.
In further descriptions, we use the word ‘wagon’ for both carriages and power cars of

the trains. Before leaving the TRM, the wagons are reassembled to form a train.

Both systems are marked by a high degree of uncertainty. For both patients and trains,
all the activities to be undertaken during the stay in the system are not clear at the
moment of arrival. In the ED, the doctors decide during consulting which tests are
required to make a diagnosis, and in the TRM the technicians decide which parts of
the wagons are to be replaced. Consequently, the sequence and durations of activities

are partially generated during the process. Table 1 displays an overview of both cases.

Table 1: Comparison of the two case studies

Emergency department

Train remanufacturing system

activity sequences

and in doctoral consulting

Material Patients Trains
(Unplanned arrivals) (Planned arrivals)
System type Job-shop-production system Job-shop-production system
Assembly/Dismantling Stretchers; samples; reports Wagons
Uncertainty of Sequence is unknown on arrival Sequence is unknown on arrival

and determined in diagnosis

Uncertainty in
activity durations

Activity duration is determined on
the shop floor

Activity duration is determined on
the shop floor

Resource

Doctors, nurses

Installations

Measure

Length of stay

Makespan (for a set of trains)
Length of stay (for each train)

The case studies have the purpose of highlighting how data-driven simulation from the
digital shadow can support problem-solving and validate the proposed models, even
though the domains of the cases are completely different. We also questioned
whether cross-fertilization among these domains is possible by comparing how the
similar problems are solved in each area. Therefore, the case-study of the ED is used
for retrieval of simulation (Chapter 2), data-driven simulation (Chapter 3), simulation
and optimization (Chapter 4) and problem-solving (Chapter 5). The case-study of the
train remanufacturing system is used for data-driven simulation (Chapter 3) and

optimization (Chapter 4). Both case studies are introduced in this chapter.

23



Introduction

1-5.1 Emergency department

This case study tackles the improvement of the patient flows in a hospital, in particular,
the ED. Patients arrive at the ED with a given arrival stream, defined by the inter-arrival
time (iat). The average arrival stream cycles; it depends on the day of the week and
hour of the day. At the moment of arrival, there is no information about the pathology
of the patient and the available pathway in the ED. The general pathway of the patient
isillustrated in Figure 11. Patients register, see a nurse (triage), see a doctor, go through
the testing loop and leave the ED. In the waiting area, the nurses assign the patient a
priority level in accordance with a severity index. During the doctoral consulting, a
doctor checks the patient, defines the tests to be performed and defines the patient’s
pathway (routing). The patient enters the testing sequence and executes the tests.
After the sequence of tests, the patient sees the doctor for a final diagnosis and leaves,
or further tests are required. In the last case, the patient enters a new testing sequence
before seeing the doctor again. We call the ‘see doctor and testing sequence’ the
‘testing loop’. The patient may perform several testing loops before leaving the ED. The

pathways within a testing loop are illustrated in Figure 12.

Hospital
Waiting area Emergency department

Register See Nurse | ]
O—’ Patient (Triage) - Seeliucio] 4’®—’ [[=sHng
Are there tests
O‘i Leave

raquired?

Figure 11: Patient pathways (from the point of view of sequence of activities)

Depending on the patient’s pathway, there are different tests to be executed: blood
sampling, scanning (RX) and imaging (Scan). If multiple tests are to be performed,
there is a defined sequence. The sequence is blood sampling, scanning and imaging.
The execution of activities requires resources. Unavailable resources cause waiting
times and increase the patient’s LOS. The severity index assigned to the patient in the

waiting area (see Figure 11) defines the priority of patients for access to resources..
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The patient flow is accompanied by an information flow. The information flow
describes samples and reports created during the testing loop. At the end of each
sequence of tests, patients must wait for all results to be communicated to the doctor.
In the activity map in Figure 12, samples and reports of blood sampling, scanning and

imaging are shown in purple, turquoise and orange, respectively.

Testing

RX
Analyse\l
RX ) [Analyse |
Scan |
) X X
%_ % % Sean X—(E)—
Blood E E arAe‘Ia‘j:Hl\lcl‘;e
"'Ana\yse\
. Blood |
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Blood MNG \>ﬁ
=i reqﬁ"xaw 'E:ii:” Injection Wit for blaod
b \aé red?  analys

Figure 12: Testing loop

In the case study, there are two situations to be compared: the initial situation (S1),
and a planned future situation (S2). Following the definition of the initial and future

situation:

- In the initial situation, patients are organized with three increasing severity
levels: green, orange, red. The severity levels are supplied by the hospital and
reflect the history. In addition, the ED is organized in three zones. The patients
are assigned to zones to balance the number of patients of each colour level in
each zone (i.e. each colour should be equally represented among the zones).
There are a given number of resources: stretchers, nurses, doctors and boxes

to be assigned to the three zones for treating the patients.

- In the future situation, the patients are classified into two groups (blue and

orange) using an algorithm based on the Emergency Severity Index (ESI), which
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is supplied to us by the ED L. The ED is organized into two zones, dedicated to
orange and blue patients, respectively. There is a given number of stretchers,

nurses, doctors and boxes to be assigned to zones for treating the patients.

An overview of the scenarios and parameters for comparison are listed in Table 2.
Regarding the resources, switching from the initial situation to the future situation is
accompanied by the removal of four doctors. In the initial situation, there are ten
doctors that are assigned to three zones in the future situation six doctors are assigned
to two zones. In parallel, the number of nurses assigned to the zones is increased by 1

from three in the initial situation to four in the future situation. The set of arriving

patients is identical and is defined by the sequence and inter-arrival time.

Table 2: Scenarios of the emergency department

Initial situation (S1) Future situation (52)
Categorization green / orange / red blue / orange
Number Zones 3 2
Patient Mixed coloured zones Specialized zone,
assignment Balancing stock level of each colour one for each colour
Same set of patients and inter-arrival times
Htstort? patient 13252 green patients 19860 blue patients
arrivals 16877 orange patients 11642 oranee vatients
5111 red patients gep
Stretchers (beds)
10/10/10 10/20/-
(zones: 1/2/3)
Doctors
4/4/2 2/4/-
(zones: 1/2/3)
Nurses
1/1/1 2/2/-
(zones: 1/2/3)
Boxes
5/5/5 5/10/-
(zones: 1/2/3)
Stretcher-bearer 1 1
RX 1 1
Imaging 1 1
poces o reen < orange < red blue < orange
(low < high) & 8 £

! The Emergency Severity Index (ESI) is a five-level emergency department triage algorithm, initially
developed in 1999. It was previously maintained by the Agency for Healthcare Research and Quality
(AHRQ), but is currently maintained by the Emergency Nurses Association (ENA) [40].
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1-5.2 Train remanufacturing system

This case study tackles the improvement of the material flow in a remanufacturing
system for high-speed trains. Trains arrive at the remanufacturing system with a given
schedule. The schedule defines the type of the arriving train and the inter-arrival time.
Each type of train has specific processes (phases) to undergo, defined by the train type
process (plan) routing. However, the exact activities and workload to be performed
depend on the condition of the trains. During the routing, the trains are dismantled to
the single wagons (DA, D1, ..., DB), each wagon undergoes a sequence of processes,
and the wagons are assembled to form the entire train (see Figure 13). During the
dismantling and assembly process, there are technical constraints to be considered.
Technical constraints describe precedence and successor relationships between
phases of different wagons, e.g. the wagon DA has to be removed before removal of
D1. In addition to dismantling and assembly, there are additional technical constraints
during the entire process. Furthermore, the execution of processes underly start
conditions. A list of start conditions is provided by the decision makers and defines
permitted moments of start for each phase, e.g. painting cannot start before the

weekend to not interrupt the process.

Figure 13: Train dismantling and assembly

The execution of phases requires resources (installations), e.g. installations for painting
and washing. Each installation processes one wagon at the time. A bill of resources
provides the resources, available on the shop floor. Each resource is available one or
multiple times. A shift-calendar describes the temporal availability of resources.
During execution of processes, resources are bound for given durations and cannot
perform other tasks. Unavailable resources cause waiting times and increase the LOS
of trains. Within the waiting lines, the arrival date of the trains at the shop floor defines

the priority. Priority is given to trains with early arrival dates. On the shop floor,
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resources are arranged in a given layout. However, in this case study, the layout is not
considered and traveling of wagons between resources is assumed as finished

instantly.

In the case studies, there are several scenarios to be compared. The scenarios are
defined by the scheduling parameters for the arrival of trains on the shop floor,
particularly the inter-arrival time (iat) and the maximum number of trains on the shop
floor (nbT). The inter-arrival time defines the temporal distance between the arrival of
two trains, and the number of trains defines the maximum number of trains that is
accepted to be on the shop floor at the same moment. For comparison of scenarios,
there are two measures to be taken: the makespan of trains, and productivity of the
system. The makespan of trains describes the average time between arrival and
departure of trains (average LOS), and the productivity describes the system efficiency,
defined as the takt time for departure of trains from the shop floor. An overview of the

parameters and values is displayed in Table 3.

Table 3: Scheduling scenarios in train remanufacturing systems

Future situation (S2)

Inter-arrival time iat={0, 1, ...,8,9}

Maximum number of trains nbT ={1,2,...,9,10}
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Chapter 2  Retrieval of simulation data

This chapter is dedicated to the question of the generation of models for material flow
simulation from the data (RQ1): What are the methods for generating simulation
models for problem-solving from the digital shadow? In particular, this chapter
tackles the challenge of providing simulation data for data-driven simulation (see
Figure 18). To address this question, this chapter provides the state of the art in the
retrieval of simulation data (section 0), provides the methods to extract simulation
data from event-logs (section 0), validates and evaluates the methods in the case study
of the ED (section 2-3) and provides a discussion based on the retrieved knowledge

from the case studies (section 0).

( A Are all
State problems Get system Simulate
- . objectives
and objectives model experiments
reached?

NO
)
Are there Accept
Change model |« acceptable P .
compromise
solutions? Q

Figure 14: Providing simulation data for problem-solving

The state of the art provides definitions of simulation data and shows how simulation
data is extracted in the literature. The contributions in the context of data retrieval are
the methods for extraction of simulation data. The methods enable extracting product
arrivals and process maps from event-logs with historical data. Product arrivals
describe the arrival of materials and process maps describe the sequences of activities.
The case-study presents retrieval of simulation data for the case of the ED. The case
study describes patient flows on a generalized level, i.e. material flows. In the case
study, the product arrivals describe the patient arrival and the process maps their
pathways. The methods are generic and provide product arrivals and process maps

from event-logs for cases in different domains.
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2-1 State of the art

The retrieval of simulation data has the purpose of extracting relevant data from the
information system and providing it for simulation. The state of the art has the purpose
of identifying data for modelling and simulation, and providing methods for the
extraction of simulation data from the literature. The state-of-the-art is separately
provided for extraction of system data (section 0) and extraction of flow data (section
0). System data provides information about the non-static physical system, and flow

data provides information about the dynamic material flows.

2-1.1 System data

In the context of job-shop production systems, Son and Wysk presented multiple works
[41]-[43], addressing the problem of generating simulation models from data. In [38],
they defined the data, particularly system data, that is required for model generation.
For defining system data, the authors described the requirements for modelling and
simulation of job-shop production systems. Based on the requirements, they derived
the required data. In addition to providing the content and structure of system data
regarding the physical system, the authors highlighted the need to define experimental
data, which describes the experiments to be executed (decision vectors) and the
results of the simulation (objective vectors). For validation, the authors provided a
simulator to simulate a lab-scale system. The data for the simulation of job-shop

production systems are as follows:

- Header information describes the experiments and the configuration of the

systems in each experiment. The data provides sets of action.

- Experimental information defines the environment of the simulation

experiments, e.g. duration and number of replications.

- Shop-floor information describes the resources of the shop floor by stating the

amount, type and temporal capacity of resources.
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- Product and process information describes processes for each product by

stating durations and required resources.

- Production information describes the production schedule by defining orders,

their quantities and moments of arrival.

- Output information manages and provides the simulation results, which

provide sets of evaluation parameters for optimization and problem-solving.

The literature provides a wide range of standards and exchange methods to automate
the exchange of data between information systems and simulation environments.
From a technical perspective, [44] proposes to exchange PPR data between different
product lifecycle management (PLM) environments with XML, which is a mark-up
language that defines a set of rules for encoding documents in a format that is both
human-readable and machine-readable. XML is appropriate to exchange data between
the digital shadow and a simulation. However, a mark-up language does not predefine

classes for the exchange of particular types of data.

From a modelling perspective, PPR is used in multiple works to model production
processes. In [45], [46] PPR is used to exchange simulation data between engineering
software and a non-DES simulation environment. PPR is a common standard for the
exchange of engineering data in the product lifecycle through various information
systems. Therefore, the standard describes the products to be manufactured by the
bill of materials and the resources of the shop floor by the bill of resources. The
processes describe the manufacturing process by linking products and resources. The
standard is supported by systems for PLM and MES, as well as various simulation tools

[47]. PPR is the basis of ISA-95 and AutomationML.

ISA-95 is an international standard, developed for the integration of business
enterprises and control systems [48]. In [46], the authors use ISA-95 to orchestrate
data exchange between the systems of ERP and MES. The purpose of ISA-95 is to
generate a common understanding for communication and integration of information

systems. However, integration of simulation environments is not within the scope of
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this standard. However, studies have been conducted using the standard for exchange
of system data for simulations of material flows [50], in particular, of a conveyor system

in the continuous manufacturing industry.

Another PPR-based exchange standard in industry and research is AutomationML. In
[48], the authors use AutomationML to exchange simulation data between PLM tools
of the digital factory to evaluate a planned system by simulation in a dynamic
environment. For the exchange, the authors provide interfaces to integrate
AutomationML into the tools of the digital factory. Additional work is presented in [52]
and uses AutomationML to model product, process, and resource data (PPR-data) of a
production process and transfer these to a DES. With the standard, the authors provide
system data for modelling and simulation of job-shop systems and evaluate a

conceptual process through data-driven simulation.

The more specific standard, CMSD, was developed to provide data from corporate
business systems, e.g. ERP and MES, for simulation in DES. In [50], the authors focus
on exchanging data and generating models in DES based on CMSD. In another work,
the same authors discuss the benefits and drawbacks, and provide the research
agenda for the standard [54]. Additional work with CMSD addressing the exchange
with data from the shop floor is presented in [55] and highlights the limitations in the

definition and exchange of simulation results in CMSD.

In addition to the presented standards and formats, STEP has been developed to focus
on the exchange of CAx data from computer-aided design systems [53], and SysML, a
modelling language, has been used for simulation modelling [56], [57]. The authors
also developed individual standards for exchange owing to individual demands, for
instance in [58]—-[61]. A common property of the presented standards is the objective
of exchanging engineering data between corporate business systems and simulation
environments. Case-studies succeeding in the data exchange of static engineering data

are widely available.
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2-1.2 Flow data

New challenges arise with dynamic production data, which describes the historic
production flows on the shop floor and is recorded in event-logs with timestamps for
the beginning and end of activities. According to [62], this data is gathered in ‘non-
standardized’, self-built systems and is available as unfiltered raw data. There are two
significant challenges: gathering the data from the shop floor, and extracting relevant
data and knowledge for simulation. A survey from 2015 executed with German
manufacturers shows that 80 % of the companies can provide timestamps for the end
and 63 % additionally measure the beginning of activities. From the analysed
companies, 53 % state have unlimited evaluation options regarding data quality [63].
However, in industry, data is gathered in different ways. To provide the state of the art,

this section investigates available approaches from the literature.

The synthesis of the literature review is provided at the end of this subsection in Table
4. The publication metadata defines the authors and the area. The area defines the
domain of application, which is either manufacturing (Ma), banking and insurance (BI)
or ED. The retrieval method refers to the methods provided by [23]: direct entry (1),
manually populated external data source (2), automatically populated external data
source (3) and direct link to an external data source (4). The column data states the
output of the data retrieval and the input for knowledge extraction. Methods for
knowledge extraction are provided for product arrival, process and resource data. For
blank fields, the authors either did not state the methods or the problem was not

addressed in this work.

Goodall et al. [64] focus on the simulation of remanufacturing systems. As input for
computer simulation, the authors use static engineering data and knowledge from
corporate business systems and domain experts and extend this with data gathered
with radio-frequency identification (RFID) tags during the manufacturing process. To
gather data, the company equipped cores during the manufacturing process with RFID-
tags and individually tracked the progress within the factory [65]. Data from RFID tags

provides data about work in progress, the arrival of cores, activity times and failure
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rates. In simulations, this information initializes and parameterizes the model.
However, extraction of event-logs and material flows is not within the scope. The main
inputs for simulation modelling are the processes from static engineering data.
Dynamic production data initializes the model to provide the initial stocks and provides

parameters for the activities.

Reinhardt et al. [25] has highlighted model generation research gaps, especially in
simulation from data describing dynamic production flows. To tackle this problem, the
authors in [24] focus on gathering relevant information from the shop floor. To gather
traceability, the authors use RFID-tags to provide event-logs with the historical
material flows on the shop floor in data storage. An exemplary data extract is given in
Figure 15 and provides information about historical flows by providing the workpiece,
station and timestamp. To extract knowledge, the authors analyse the event-logs to
directly provide new insights about the system and extract simulation data to arrive at
new insights via simulation. For simulation data, they propose to extract the process
map to describe the material flows. In their work, they present a data analysis and put

utilization for modelling and simulation on the research agenda for future works.

Workpiece Station Time

BBYOF B/3 2020-10-08 08:00:07
0184A B/3 2020-10-08 08:00:07
95A0C i 2020-10-08 08:00:22

Figure 15: Exemplary event-log

Van der Aalst introduced the concept of object-centric process mining in [66]. As a
challenge in process mining, it is highlighted that activities and events of the same case
can involve multiple objects of different types, e.g. different products in the bill of
materials. Additionally, when describing a process modelling language, e.g. Business
Process Model and Notation (BPMN), AND and OR decisions can be included. Classical
process mining does not address these challenges of nonlinear sequences with
splitting and merging flows. To overcome limitations, the authors propose to use

object-centric event-logs. These event-logs, in addition to the sequence of events, log
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the objects that are involved in the logged events. For illustration, they use an order
handling process, involving orders, items, packages and routes. In focus of the paper
was to provide a tutorial for dealing with object-centric process mining; therefore, the
authors formulate the problems and provide abstract models to define data structures
of event-logs and link them to physical objects. Simulation of the data is not the focus.

An exemplary object-centric event-log based on [67] is illustrated in Figure 15.

activity objects involved
event time-stamp name type components assembly

1 0.00 1 start A001 -
2 0.00 3 start BOO1 -
3 0.35 1 finish A001
4 0.35 2 start A001 -
5 0.45 3 finish B0O1 -
6 0.45 4 start B0O1 -
7 0.51 B finish BOOI -
8 0.62 2 finish A001 -
9 0.62 > start {A001,B001} D001
10 0.76 5 finish {A001,B001} D001
11 0.76 6 start {A001,B001} D001
12 0.88 6 finish {A001,B001} D001

Figure 16: Exemplary object-centric event-log

Lugaresi and Matta focused on the generation of simulation models and digital twins
from mined production data [68]. The authors proposed object-centric event-logs for
the description of assembly processes by linking events to the affected materials and
final product via the bill of materials [69]. The object-centric event-log can provide all
events that belong to a particular product. The authors extracted process maps from
event-logs with historical material flows and used data-driven modelling to provide a
digital model [70]. The origin of event-logs is in manufacturing systems. The authors
assumed that data is measured via sensors in the physical system. By applying object-
centric event-logs, the authors were able to describe complex assembly processes. A
lab-scale case study is presented in [71]. As activities for future research, the authors
added the extraction of statistic distributions from the event-logs to describe the

duration of activities in stochastic models.

Multiple authors have tackled the challenge of providing laws with stochastic

uncertainties. In [72], the authors highlighted the occurrence of uncertainty,

35



Retrieval of simulation data

particularly for production domains with a high percentage of labour-intensive
processes, such as textile manufacturing. To provide laws with statistical uncertainties,
the authors acquired data in a field study by measuring the duration of activities. For
providing statistical laws, the authors used statistical software and evaluated the fitted
distributions by applying the chi-squared test. The authors applied the fitted
distribution to the simulation of the manufacturing system. With the background of
uncertainty in processing times, failure and repair of machines, Law and McComas [73]
provided a tool for distribution fitting. For validation, the authors fitted distributions
for real-world data and provided specifications and rankings. In an additional study,
Swanson [74] proposed the Monte Carlo method to generate samples for randomized
simulations. To model orders in a case-study, they used a sample of deliveries that
were planned for a given period and pulled random samples to increase the number
of orders. By using this strategy, the authors generated additional orders and increased

the duration of the simulated time in a case study.

Kumbhar et al. [72] focused on bottleneck detection from dynamic production data via
direct data analysis and simulation. To provide data, the authors extracted and
aggregated multi-source data from a manufacturing company’s information system.
The extracted production data provided event-logs with historical material flows. From
the event-logs, the authors extracted three types of information: process maps, inter-
arrival times, and activity durations. The authors extracted the process maps by
extracting the sequence of events for each material on the shop floor. For each activity,
they extracted the inter-arrival time (IAT) and duration. Therefore, for each activity,
they measured the time between two product arrivals and the time between begin
and end. They used this information to build a model and run simulation experiments
to detect bottlenecks. In parallel, the authors attempted to detect bottlenecks through
direct data analysis of the extracted data without simulation. In applications, they
succeeded in extracting bottlenecks with both approaches, direct analysis and
simulation. However, in [75] the authors highlight the added value of detecting
bottlenecks without effort for modelling and simulation in the direct analysis, and the

added value of execution of what-if scenarios in DES.
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Cheaitou et al. [74] faced similar challenges in the context of modelling and simulation
of patient flows. The authors received data about patient arrivals from the hospital’s
information system. From the information system, they extracted the arrival streams
and determined the arrival rates for patients with different severity indices. However,
the authors used average values for the simulation. For the modelling of patient flows,
they modelled a flowchart of the patient flows with experts. Another challenge is seen
in modelling treatments, particularly the estimation of activity durations. The authors
gathered data and build a statistical distribution for use as an input parameter, e.g. for

treatment durations given by the physicians of the ED.

In [76], Lay extracted data from a hospital’s database using data mining technologies.
Data is classified as administrative or medical information. The authors removed the
patient information and focused on the extraction of the event-logs with patient
pathways through the ED. Therefore, the authors grouped the event-logs by the cases
to receive the sequence of events for each patient. As output, they received a process
map of each patient variant. The authors introduced a global filter and local filter to
apply the Pareto principle, first filtering infrequent variants, and then filtering the
infrequent activities. In a case study they proved that despite removing 5 % and
retaining 95 % of the variants, a good overall precision can be maintained. The author
compared different gradations of filtering to determine how they affect the
meaningfulness of data. The authors in [77] used the received knowledge to model
material flows of the ED and used the cases from process mining as the patient pool.
In a simulation they executed what-if scenarios with alternating patient mixes to
evaluate stretcher allocation policies. As input for the simulation, the authors applied
a global filter that took 90 % of the cases into consideration for simulation modelling.
However, the reason for applying the filter and removing 10 % of the case variants is

unclear and can bias the simulation results.

Liu et al. [29], in the area of banking and insurance, modelled and simulated the credit
card application process. To receive data for modelling, the authors extracted
workflow data directly from an ERP system to receive an event-log with timestamps
for begin and end of activities by process-mining methods. They highlighted that the
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data can be retrieved by each workflow-oriented information system. The authors
used the event-log to extract the historical processes by coupling pairs of events for
the begin and end of the activity and determined the duration of the activity. From the
historical processes, the authors derived a process map describing the entire credit
card application process. Other than in manufacturing systems and EDs, the extraction
of data and simulation focuses on a specific process. The competition of different
processes for resources and waiting lines are not at the core of the simulation study
because activities are digital and not a bottleneck. The authors built a simulation
model based on the process map to analyse the process duration, throughput and

acceptance rate of the process.

Wang et al. [77], [78] analogously presented two case studies of providing material
flows from workflow data in the banking and insurance industry. However, other than
previous works in manufacturing and emergency systems, in banking and insurance
there is no physical material or patient flow. The ‘manufacturing’ process in banking
and insurance is digitalized and, by nature, data is available or at least considered
available. For simulation, the authors extracted event-logs and retrieved a process map
from company databases. The authors built a model in DES to evaluate the received
data. For future research, the authors proposed to couple data mining, modelling and
simulation activities, and provide usable tools that are capable of applying these

activities as a service.

The state-of-the-art created new insights regarding available methods and tools for the
extraction of system and flow data. For the system data describing the physical
configuration of the shop floor, there are many standards available to structure and
provide simulation data from information systems. The methods for providing system
data are considered to be available. A different situation is given for flow data, tackling
mainly product arrivals and processes as well as uncertainties. The literature provides
a range of methods to extract simulation data (see Table 4). Sources are generic event-
logs for providing material flows and specific data sources, e.g. measurements from

the shop floor for providing uncertainties of process durations. Using generic event-
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logs provides a wide range of information and enables the description of product

arrivals and processes.

Table 4: Comparison of literature

Publication Data retrieval Knowledge extraction
metadata
Author Area Extract Data Pro.duct Process Resource
method Arrivals
Goodall [64], Specific Estimate Estimate
[65] Ma (2) RFID Data ) Distributions Distributions
Reinhard [24], Event- Extract
[25] Ma | (2) RFID log ) Event map i
Van der Aalst Ma i Event- Map Extract
[66] log products Activity map
Lugaresi and Ma i Event- Map Extract i
Matta [62], [67] log products Activity map
Kursun-Bahadir Ma i Specific ) Fit stochastic i
[72] Data laws
Law and Ma i Specific ) Fit stochastic i
McComas [73] Data laws
Swanson [74] Ma i Specific Mpnte C.arlo ) i
Data simulation
Kumbhar [75], (3) Data- Event- Extract
[78] Ma base log Extract IAT Activity map )
. (3) Data- Event- Extract
Liu [29] BI base log ) Activity map )
Event- Extract
Wang [79], [80] BI - log - Event map -
. (3) Data- | Specific Estimate Estimate
Cheaitou [81] ED base Data arrival rate Distributions )
(3) Data- Event- ) Extract i
Lay [76], [77] ED base log Event map

For providing simulation from event-logs with historical data, two major challenges
are identified: the extraction of product arrivals, and the extraction of process maps.
Additionally, for product arrivals and process maps, there are methods required to
provide static data from the event-logs for deterministic simulations and to create
randomized variants for stochastic simulations. Creation of static product arrivals and

process maps as well as random variants are addressed in the next section.

2-2 Methods for retrieval of simulation data

The purpose of this section is to present the generic methods to extract product
arrivals and process maps from event-logs with historical data. The methods are

derived from the data-mining and simulation literature. Both are provided as historic
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and randomized logs. Historic logs describe the historic material flows that occurred
on the shop floor and randomized variants describe stochastic variants. The steps to
extract simulation data from event-logs are illustrated in Figure 17. The upper part
shows the extraction of historic and randomized product arrivals and in the lower part
shows the extraction of historic and randomized process maps. Section 0 describes the
methods for receiving product arrivals and section 2-2.2 describes the methods for
receiving the process maps. Both product arrivals and process maps are input for data-

driven simulation.

Create Randomize
arrival-log arrival logs 1
Arrival-log Randomized
arrival-logs N
Event-logs Simulation
Create Randomize data
activity-log activity-logs
——— _—
Activity map Randomized

activity-log

Figure 17: Methods of data-retrieval

The required data for the extraction of product arrivals and process maps are event-
logs from the digital shadow. The general shape of the event-logs is displayed in Table
5. The property event is an incrementing number identifying each unique event of the
event-log. In this work, event-logs are assumed to be available digitally and instantly
(AS2). The attribute case ID assigns multiple events to a common case. When applying
in the cases of the ED and train remanufacturing system, the neutral case ID can be,
e.g. a patient ID or an order ID. The attribute event-name identifies the type of each
event by referring to a finite list of predefined events. For each event, the timestamp
gives the moment of occurrence. Additional properties can exist, for instance, the
case-study of the ED the property ES/ classifies the priority of the patients. The events
of one case ID, sorted by the timestamp describe the sequence of events in the historic

material flow.
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Table 5: Event log in the emergency department

event case ID event-name timestamp
1 13101 Register Patient 01.01.2021 00:23
2 14609 Register Patient 01.01.2021 00:28
3 13101 Start Triage 01.01.2021 00:29
4 13101 Stop Triage 01.01.2021 00:35
5 14609 Start Triage 01.01.2021 00:42
6 14609 Stop Triage 01.01.2021 00:44
7 14609 RX Realization 01.01.2021 00:48
8 14609 See Doctor 01.01.2021 01:08
9 22939 Register Patient 01.01.2021 01:09
10 22939 Start Triage 01.01.2021 01:12
11 22939 Stop Triage 01.01.2021 01:23

The event-log lists those events that occurred in the physical system in a table. Data
cleaning is required to ensure data quality and can include multiple steps. Cleaning is
particularly required when dealing with manually generated data. The process can
inherit activities to correct spelling errors, missing data and duplicates. Filtering
removes data that is not within the scope of the study, e.g. events outside the period
of study. Aggregation allows grouping the events of a particular case and providing the
routing of events for each case. Detection and removal of outliers removes cases that
are not representative for the analysis and would distort the results. Filtering can be
applied to use the Pareto principle and remove cases based on the frequency of their

routing. The event-log is the assumed to be input in the subsequent chapters.

2-2.1 Extract product arrivals

The arrival stream describes the arrival of cases on the shop floor. Modelling of the
arrival stream in the simulation requires as input for arrival the type of material and
the time between arrival of two consecutive arrivals, i.e. the inter-arrival time (IAT).
This information is available in the historic event-log and can be received through
analysis of the timestamps (TS) for arrival of cases. Figure 18 illustrates how the event-
logs describe historic arrival of cases and how the arrivals are linked to the IAT based

on the events of Table 5.
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case ID: 13101 case ID: 14609 case ID: 22939
event: Register Patient event: Register Patient event: Register Patient
2021-01-01 | T5: 2021-01-01 00:23:00 TS: 2021-01-01 00:28:00 TS:2021-01-01 01:09:00
00:00:00 | | |
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Figure 18: Arrival stream of patient in emergency department

Extracting product arrivals has the purpose of providing the historic arrivals from the
event-logs as simulation input. The input is the event-log and the output is product
arrivals, describing the arrival stream. There are three steps required to extract the

product arrivals.

1. Copy event-log: Create a copy of the event-log as a draft for the creation of the

product arrivals and to retain the initial event-log for further analysis.

2. Filter arrivals: The event-log contains all historic events (Register Patient, See
Nurse, ...). Filtering removes non-arrival events from event-log. Cases are
filtered by the event-name; for the case of the ED, ‘Register Patient’. The output

is a log stating all arriving cases.

3. Calculate inter-arrival time: The inter-arrival time of each case is measured
from the previous case. For the first case, the inter-arrival time measures the

time from the beginning of the observation period.

The output is the historic arrival-stream, as illustrated in Table 6 for the case of the ED.
The properties case ID, timestamp and inter-arrival time describe the sequence and
moments of arrivals. The historic arrival stream directly provides knowledge or serves

as input for data-driven simulation.

Table 6: Log with case arrivals

case ID timestamp Inter-arrival time [sec]
13101 2021-01-01 00:23:00 1380
14609 2021-01-01 00:28:00 300
22939 2021-01-01 01:09:00 2460
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Direct analysis of the arrival stream for the case of the ED can, e.g. provide the arrivals
of the patients during the hours of the day (see Figure 19). The figure provides a static
view of the historic arrivals, highlights that arrivals are not continuous and underlies
uncertainties. Different alternative arrival streams could provide the same distribution
of arrivals during the hours of the day and could be input for simulation. Simulation of
stochastic variants is required to understand the input of uncertainties. Because
uncertainties do not include just the inter-arrival time, but also the sequence of cases,
new randomized logs with arrival streams are to be created to enable stochastic

simulation experiments.
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Figure 19: Hourly arrival stream for historic patient arrivals

Monte Carlo simulation is proposed to randomize arrivals logs and provide stochastic
variants. In Monte Carlo simulation, an algorithm pulls random samples from datasets.
Grouping the arrivals by the hours of the day, and potentially days of the week,
provides datasets with the arrivals for periods of time. For the creation of a new arrival
stream, an algorithm simulates the timeline and pulls random samples from the
datasets according to the simulation time. In the simulation, the seed value is the
origin for creation of stochastic variants. Changing the seed generates alternative
random behaviour and is the origin for different stochastic variants. For the generation

of the arrival streams, a three-step approach is proposed.
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1. Copy product arrivals as a template: Create a copy of the historic arrival stream
and remove all case arrivals to receive an empty template. Reuse the template

to generate alternative arrival streams.

2. Copy product arrivals as an arrival pool: Create a copy of the product arrivals
as an arrival pool that lists all historic arrivals. Group the arrival pool by the
hours of the day. The grouped arrival pool is the source for pulling samples. An

exemplary arrival pool based on Table 6 is illustrated in Table 7.

3. Simulate arrivals: Use Monte Carlo simulation to generate random arrival
streams. Build an algorithm to simulate the arrival of patients during the
observation time. Pull random samples from the classified arrival pool based
on the time of simulation. Write the arrivals for each simulation run in a new

template to create stochastic variants.

The procedure creates new logs with case arrivals. Each log has different sequences
and inter-arrival times based on stochastic behaviour. In the case of the ED, random
laws can increase and decrease the number of patients with blue and orange severity
indices during sampling. Impacting the sampling process can provide data for
simulation of scenarios. The log with the generated arrival stream has the same

structure as the initial log, but describes stochastic variants of case arrivals.

Table 7: Arrival pool

arrival class case ID timestamp Inter-arrival time [sec]
13101 2021-01-01 00:23:00 1380
00:00:00 — 00:59:50 14609 2021-01-01 00:28:00 300
22939 2021-01-01 01:09:00 2460
01:00:00 — 01:59:50

2-2.2 Extract process maps

Material-flow simulation is activity-centric and simulates activities occurring over a

period of time. The historical event-log is event-centric and describes the moments of

occurrence. To bridge the gap between events and activities, transformation is
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required and provides a log with the historic activities. Each activity is defined through
two events for begin and end. The time between begin and end defines the duration.
Figure 20 illustrates the relationship between events and activities in the lifecycle of
the exemplary case 13101 of Table 5. Time in the case that is not explicitly assigned to

a specific activity is waiting time. Waiting time is caused by missing resources.

case ID: 526013101

case |ID: 526013101 case ID: 526013101 event: Stop Triage
event: Register Patient event: Start Triage TS: 2021-.01-0pl 00.55.00
TS: 2021-01-01 00:23:00 TS: 2021-01-01 00:29:00 ' T
ESI: Green
( wait = 360 min ][ duration = 360 min ] t/sec

Figure 20: Event-centric view vs. activity-centric view

Extracting activities from event-log requires to map pairs of corresponding events for
begin and end of activities. Time that is not assigned to an activity is waiting time.
Waiting time is to be removed from the data and does not go explicitly as activity into
the process map. Input for extraction of activities is the event-log. An algorithm can
map events and generate activities. Output is the sequence of historic activities. For

extraction a four-stepped approach is proposed:

1. Copy event-log: Create a copy of the event-log and retain the initial event-log

for further analysis.

2. Group by case: Grouping of the historic events by case provides datasets with
events for each case. This step is required to avoid pairing events of different

cases.

3. Create activities: Map corresponding events for each case to define activities.
Calculate the time between the beginning and end of event-pairs to obtain the

duration.

4. Determine process map: Sort the activities of each case by the timestamp and
provide for each event the successor as property by referencing the successor

with the name.
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An exemplary process map based on the example of Table 5 is illustrated in Table 8.
The process map describes the activities and their sequences for all cases. Each activity
is described by the attributes case ID, activity-name, successor-name, duration and
resource. The attributes describe details of the historic material flow. The successor-
name links activities and provides a routing for each case ID. The attributes case-ID
and resource link the activity with the physical materials and resources of the

production system.

Table 8: Output of create activities method

case ID activity-name successor-name duration [min] resource
13101 Registration Triage 0 -
13101 Triage - 360 Nurse
14609 Registration Triage 0 -
14609 Triage RX 120 Nurse
14609 RX See Doctor 300 RX
14609 See Doctor - 600 Doctor
22939 Registration 2 Triage 0 -
22939 Triage - 660 Nurse

Visualization of the process map in a graph provides the structure illustrated in Figure
21. The figure illustrates the cases of Table 8. The activity map shows the activities
that occurred during the observation period and their successor relations. The weight
of the transitions denotes the number of patients that are described by the

corresponding successor relationship as absolute and relative values.
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Figure 21: Activity map

Direct analysis of the process map for the case of the ED provides the durations of
activities, e.g. the duration of the activity triage for orange and blue patients (see
Figure 22). The figure shows the density for the appearance of values in the historic

data. Simulation of stochastic variants is required to understand the input of
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uncertainties. To describe the uncertainty distribution, fitting can provide random laws

by fitting a probability distribution to the historic data.
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Figure 22: Probability distribution for triage based on severity index

In this work, distribution fitting is applied to fit stochastic laws to historic data and
determine the parameters that enable the highest approximation. The inputs are the
historic activities with the determined durations. The outputs of the fitting are the

stochastic laws and parameters. To extract the laws, a four-step approach is used.

1. Copy historic activities: Create a copy of the dataset with the historic activities

to provide analysis for each activity type.

2. Group activities: Group the list of activities by the activity-name. Grouping by
additional attributes can provide more precise distributions, e.g. providing

distributions individually for different severity indices in the ED-case.

3. Create histogram and probability distribution: Create a class diagram with the
frequency of durations for each grouped element, fit a set of probability
distributions to receive the best fit and provide parameters of the best fit. This

work uses the Python library fitter package for distribution fitting [82].

47



Retrieval of simulation data

An exemplary output of the distribution fitting is displayed in Table 9. The table shows
the distribution and parameters for each activity. The property distribution states the
type for each activity. Additional properties specify the parameters. The probability

distributions generate random values or the activity duration in the simulation.

Table 9: Output of method: fit distributions

Activity name distribution mean standard deviation minimum | maximum
Triage Erlang 9,22 5,83 1 103
Blood Analysis Erlang 39,37 16,02 1 119

2-3 Case-Study: Emergency department

A case-study was performed in the ED. System data was received from the information
system. The system data contained information about 64 technical and human
resources and was provided to the simulation. For the retrieval of flow data, the
presented methods for data-retrieval were applied. The IT department of the hospital
provided the event-logs for the year 2021. The event-logs contained 297463 events for
36857 patients. A global filter was set to 95 % and removed 5 % of the patients with
less frequent variants. The filter was needed because before the simulation, the
validity each variant had to be checked manually. Focusing on 95 % of the patients
reduced the number of variants from 968 to 103 and enabled reliably checking for

invalid variants.

The event-logs provided for each event the case ID, the event-name, the timestamp
and the additional property ESI. The generalized case ID was used in the case-study to
represent the patient ID. The ESI describes the severity index of the patients in the
initial (green, orange, red) and planned future system (orange, blue). The ESI provides
additional case-specific, non-general information of the ED. In addition, expert
interviews were conducted to receive information that are not available from the data,
e.g. the operational rules on the shop floor, particularly for assignment, prioritization
and displacement of patients. Assignment describes the rules of assigning patients to

zones based on the severity level. Prioritization describes the priority rules of the
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laboratories. Displacement is linked to moving the stretchers with patients from the

zones to laboratories.

The presented methods were applied to extract patient arrivals and pathways from
the event-logs with historical data. For providing the historic patient arrivals, the
events were filtered for the arrival event and the inter-arrival times were calculated.
Datasets of patient arrivals for each hour of the week were developed to perform
Monte Carlo simulation and generate randomized arrival streams. To provide the
patient pathways, the historic activities were extracted from event-log, and durations
were calculated. Owing to missing events for the start and stop of some activities, a
dictionary was provided to generate activities from a single event and a duration,
which was received during an interview with an expert. From the historic activities, a
process map was derived. Figure 23 illustrates the activity maps as a first-order Markov
chain. The weights of the transitions define the probabilities for patients to follow the
pathway. Random laws for activity durations were developed by fitting stochastic

distributions to provide uncertainty in the simulation.
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Figure 23: Markov chain with routing variants
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In addition to providing simulation data as the input for data-driven simulation, the
arrival and process maps enable static analysis of the historic material flows. In the
design for the two ED situations, initial and future situations are to be compared
according to the case description in section 1-5.1. A static analysis based on the historic
arrival stream provides the number of patients arriving in each zone in the initial
(green, orange, red) and future situation (blue, orange) (see Figure 24). The figure
shows that the transition from the initial to the future situation creates more patients
with blue than orange severity class (23598 vs. 11642). Without considering the
workload per patient, the distribution indicates a lack of capacity for the patients in

the blue zone.
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Figure 24: Patients per triage rule categories

To confirm the hypothesis, Figure 25 provides the static workload in the orange and
blue zone based on the historic arrival stream and activities. The figure shows the
average transit time per patient in minutes (left axis) and the cumulated workload in
hours (right axis), depending on the number of loops (See Doctor) the patients
complete during their stay. In the diagram, the x-axis describes the number of loops

and O represents the triage.
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Figure 25: Workload and transit time for patients per triage rule categories

As seen in the figure, the workload in the orange zone is approximately equal to the
workload of the blue patients (14920 vs. 16274 h). The workload is mainly generated
by patients during triage in the first two loops for blue patients and in the first three
loops for orange patients. However, for designing the workload, the colour provides
anindication about an appropriate assignment of stretchers, doctors, nurses and boxes
to zones. The planned configuration with 20 orange stretchers, 4 orange doctors, 3
orange nurses and 10 orange boxes can cause problems owing to a lack of capacity in
the blue zone. In particular, when considering the distribution of arrivals in Figure 19,

demand causes peak capacity between 11:00 am and 20:00 pm.

2-4 Discussion

The leading question of this chapter is RQ1: What are the methods used to generate
simulation models for problem-solving from the digital shadow? This question covers
the retrieval of simulation data and the generation of a model. Generating models are
addressed in Chapter 3. This chapter addresses the simulation data. The event-logs
with historical data are the inputs for retrieval of simulation data. Based on the event-
log, this thesis uses multiple methods to extract product arrivals and process maps.
Owing to the different requirements of simulation for both, deterministic historic
variants and multiple stochastic virtual variants required. Randomization of the arrival
streams and process maps generates random scenarios for simulation studies. The
purpose is to randomize parameters of the model, such as inter-arrival times, routing

sequences and activity durations.
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Extract product arrivals has the purpose of providing schedules with historical
material arrivals from event-logs. Extraction of the arrival stream requires arrival
events from historical event-logs and the determination of the inter-arrival times for
the arrivals. For the case of the ED, the extracted arrival stream describes the historic
sequence of patients with their ESI and routing variants as well as the time between
arrival of materials. This input is sufficient to determine the arrival stream for
deterministic simulation. Problems in the case study arise from manual data inputs
and cause problems with the data quality. Corrupted data causes patient arrivals that
do not exist with the recorded routing in the history. In this case, the number of valid
and invalid variants is increased. Because a validation check for all variants is required
before simulation, a Pareto filter is introduced and removes 5 % of the patients without
regularly presented variants. However, this can cause biases in data analysis and
simulation. To fully exploit the event-logs and extract patient arrivals, valid data is
required. When measuring events on the shop floor, measurements should be

recorded automatically to ensure the correct timestamps and event descriptions.

Extract process map has the purpose of providing routing of arriving products or
patients. Extracting the activities of the process map requires the events to be
transformed into activities by mapping pairs of corresponding events for the beginning
and end of an activity. Calculating the time between these events provides the
duration of the corresponding activity. For the case of the ED, the extracted activities
describe the pathways of the historic patient arrivals. Problems were experienced in
the case-study, particularly regarding the data structure. The event-logs did not
contain information about the affected objects for multiple parts of the same product.
Consequently, when dealing with different parts associated to the same product, the
sequence of events for the different parts was not clear from interpreting the event-
logs. To facilitate retrieval of events of nonlinear routings, it is recommended to record
object-centric event-logs. Without information of object-centric event-logs, additional

effort is required to map the information about assembly and dismantling processes.
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Randomizing patient arrivals: Uncertainty is introduced via the arrival streams by
pulling random samples for patient arrivals. Random samples determine the inter-
arrival time, routing and severity index. For each of the arrival patients, the routing is
deterministic in the simulation algorithm once the patient arrives. For randomization
of arrivals, this work recommends building datasets containing the product arrivals at
each hour of the day, and to use Monte Carlo simulation to pull random samples
according to the hour of the day and week in the simulation. However, the dependence

of patient arrivals from the hour and day of the week is the specific behaviour of EDs.

An alternative approach, which is provided in several studies, is to separate
randomization of inter-arrival time and routings. In some studies, the randomization
of routings is indirectly performed owing to an analysis of the event logs, and provides
a first-order Markov chain model of the routines (i.e. when an activity is finished, the
next activity to be performed is defined by a probability). This approach is easy to
implement, but requires changes to the data-driven model we are proposing. It does
not, however, dispense with the initial data analysis described above. However, the
interest in using our proposed approach lies not only in the re-use of the data-driven
model described above, but also in theoretical considerations about the limits of the
first-order Markov chain model of routines. Indeed, we have good reason to believe
that patient routines do not fit into a first-order Markov chain. A preliminary study
carried out at the CSIP Laboratory seems to confirm this hypothesis from a statistical
perspective. A first-order Markov chain model could create variants or even provide a
routing with an infinite number of loops, which does not exist in reality. If this
hypothesis is confirmed, then the Markov chain model approach would require the
identification of higher-order chains, making the approach much more difficult to
implement; multiple additional preliminary analyses of event-logs would be required.
Our approach avoids these potential biases. We plan to use our model to carry out a
comparative study of the two approaches, particularly in terms of measured

performance (e.g. LOS).

Randomization of activities focuses particularly on the durations of the activities. For

randomizing activities, this work recommends building datasets with the historic
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durations for each activity and to pull random samples. This approach requires the
fitting of stochastic laws on historic data. Alternatively, distribution fitting can be used
to pull random samples by using stochastic laws, analogous to the process of pulling

random patient arrivals from the arrival pool with Monte Carlo simulation.

In addition to the presented branches of introducing uncertainty more sub-variants
are possible. Randomization could be performed for the inter-arrival time in the
arrivals and for the routings in the activity map. For pulling samples of activity
duration, the use of stochastic laws and Monte Carlo simulation is appropriate.
Independently from these strategies, there are different ways of implementation from
a technical perspective. Activities of randomization require the methods of data
science, which are not necessarily available in simulation tools. Thus, it was
advantageous in the case study to determine stochastic variants entirely with the data
science tools and simulate these stochastic variants in a deterministic simulation

model.

Independently from extraction of the product arrivals and process maps, another
challenge was identified in the case study. For modelling and simulation system data,
data for system behaviour was required. As stated in the literature, methods and
standards for retrieval of system data are available. A different situation is encountered
for the extraction of system behaviour. There is lack of methods to extract rules and
behaviours. In the case studies, control logic was obtained from interviews and was
reformulated using modelling languages such as BPMN. More standardized methods
could allow us to extract control logic automatically, analogous to the spreadsheet

extraction of the system configuration and event-logs with historical material flows.

54



Chapter 3  Data-driven simulation

This chapter provides further answers to the question of the generation of models for
material flow simulation from data (RQ1l): Which are the methods to generate
simulation models for problem-solving from digital shadow? Particularly, this chapter
tackles the data-driven modeling from the arrival stream and process maps, extracted
in the previous chapter, see Figure 26. To address the question this chapter first
provides a state of the art in enterprise modeling (Chapter 0), second provides the
methods for data-driven simulation (Chapter 3-2), third applies the methods in the two
case-studies (Chapter 0) and fourth provides a discussion based on the retrieved

knowledge from the case-studies (Chapter 0).

Are all
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Figure 26: Automated modelling and simulation in problem-solving

The state-of-the-art provides approaches for the automated generation of material-
flow simulation models and shows how models can be set up without expert
knowledge. The methods, which are the contribution of this work, provide valid
simulation models instantly from the data using a library of generic models and data-
driven simulation. These methods enable the use of the digital shadow and simulation
for optimization and problem-solving. The case studies present two applications of
data-driven modelling, first in the ED and second in the train remanufacturing system.
The two case-studies highlight how the generic methods can instantly provide models
of material flows for systems from different domains and generate new knowledge for

problem-solving that was not previously available.
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3-1 State of the art

Simulation of material flows has the purpose of evaluating existing and planned
systems by experimentation in dynamic models. When evaluating scenarios, decision
variables to be tested are implemented in the model, and simulation provides
measures of the performance. Performance measures can be interpreted as values for
an objective function in optimization. To evaluate systems by simulation, a model of
the material flows is required. Modelling and simulation have high requirements to
the system modeler in the dimensions of time, knowledge and effort [17]. To facilitate
simulation, the literature offers processes for execution of simulation studies and
describes tasks and objectives in each phase [83]-[87]. Another approach is
automated modelling and simulation. Assuming simulation data as available,
techniques of data-driven simulation enable simulation without expert knowledge by
using algorithms to build models from data and run simulation experiments [88]—[91].
This section has the purpose of providing the methods of data-driven simulation from
the literature. Therefore, the state of the art is provided in two parts: section 0
provides the standard for enterprise modelling [38], and section 3-1.2 provides the
methods for data-driven simulation. The state of the art in data-driven simulation has

its origin in a review paper that was published in context of this PhD thesis [20].

3-1.1 Enterprise modeling

To provide methods for data-driven modelling and simulation, the state-of-the-art
begins with the enterprise modelling cube [38], which provides a framework for
defining generic concepts for creation of enterprise models. The framework proposes
three dimensions: the enterprise model phase, genericity, and the enterprise model
view (see Figure 27). The enterprise model phase describes the life cycle phases of
model development, the genericity level describes the degree of abstraction, and the
enterprise model view describes the selective perception of particular aspects of the
enterprise. This work focuses on the dimensions of genericity and enterprise model

views.
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Figure 27: Enterprise modelling cube

Enterprise modelling phases describe the lifecycle phase of the model. During the
model lifecycle, there are specific questions to be addressed. The lifecycle starts with
defining the objectives, scope and limitations of the model. In the concept definition,
the business concepts and operations are defined. The definition ends in the
specification of the requirements for the model to be implemented. The modeler
defines the model requirements, e.g. deterministic vs. stochastic model. In the design
specification, the modeler defines the modelling concepts. Consequences of the
requirements definition appear in the implementation description. Depending on the
requirements of the model, individual data and concepts are required for
implementation; in this work, deterministic and stochastic models. In the domain
operation, the models are used for their actual purpose, e.g. scheduling or resource
dimensioning. In the decommission phase, the system model seeks to enable reuse,
recycling and conservation of the model. During the modelling phases, the modeler
defines and details the modelling domain for the relevant genericity levels and

modelling views explained in the upcoming sections.

The genericity dimensions describe through generalization and specialization
mechanisms the transition from generic modelling constructs through reusable

models, called partial models to, finally, particular models representing specific
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systems. The generic level is a set of given modelling constructs corresponding to a
modelling language; the modeler chooses the language and/or technique and included
constructs (in this work, DES). The choice of modelling language, techniques and
model properties is elementary and provides the framework for the partial level. The
partial level corresponds to specialized and aggregated industry and domain-specific
models to represent common patterns. The modeler designs and reuses specific
libraries with concepts, common to a set of enterprises or class of problems (in this
work, job-shop manufacturing). The partial level facilitates the modelling when
libraries are available because the modeler does not design the model from scratch.
Available state-of-the-art works have been presented in this study. The presented
works instantiate partial models to generate particular models of different enterprises.
The particular level is the last-level genericity dimension. Partial models are used to
generate a wide range of particular models of different enterprises to address specific
questions (in this work, ED and train remanufacturing systems). The analysed literature
identified two steps of setting up simulation models in data-driven approaches (see
Figure 28). First, design of a library that provides partial models, which is generally
implicit in the data-driven modelling literature. Second, data-driven modelling
instantiates partial models to generate particular models. In the instantiation process,
an algorithm chooses specific elements from the library and parameterizes them with
data from the case-specific database. Design of libraries and data-driven modelling

support the transition from generic to partial and from partial to a particular model.

Choose Design Data-driven
model library modeling

A\YAYA!

Genericity

Figure 28: Transition between generic, partial and particular level

Enterprise modelling views describe the modelled elements that interact to describe

the holistic behaviour of the system. The function view describes the activities of the
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production process. The information view describes the information of the production
flows, which includes the representation of materials. The resource view describes the
human and technical resources of the system. These three views are constant with the
standards of the digital factory, e.g. the PPR model [54]. Challenges in data-driven
modelling exist, especially in the organization view. The organization view describes
responsibilities and organization of work. For standardized elements, generic partial
models describe the general behaviour for data-driven modelling. For case-specific
control logic, the literature uses modification to provide case-specific classes. The

complex behaviour of the organization view is a bottleneck in data-driven modelling.

3-1.2 Automated modelling and simulation

Automated modelling and simulation deals with setting up simulation models and
running experiments from data. This review has the purpose of understanding the
strategies and methods that are available to automatically generate simulation models
and execute experiments. For analysis of the literature, the classification framework in
Table 10 is presented and has its origin in the genericity levels of enterprise modelling.
During the review, all the approaches were classified according to the criteria of this
framework. The generic model criterion describes the modelling language and
technique of the approach. This review mainly considers works in DES modelling. DES
models are developed with either process-oriented modelling (POM) or resource-
oriented modelling (ROM) [92]. The partial model describes the library of the partial
level. The authors provide libraries for different classes of problems and types of
systems: job-shop, manufacturing line, assembly line. Additionally, there are case-
specific libraries. For job shops, there is a distinction between job shops with linear
flows, and job shops that can describe assembly and dismantling operations. The
particular model criterion describes how the instantiation of particular models is
performed. The available works generate models by data-driven modelling from data
and libraries, parameterization of generic models or manual interactions. In particular,

data-driven modelling customization allows the description of case-specific behaviour.
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Table 10: Classification framework

Solution Space
Generic Process-oriented modelling (POM) Resource-oriented modelling (ROM)
model Resource-oriented modelling Non-DES modeling
with logistics (ROM+L) (non-DES)
Job shop . . e 1
Partial (with linear flows) Manufacturing Line Case-specific library
model Job-shop .
(with Assembly) Assembly Line
Particular By data and library Parameterization of generic model
model . . . .
By data and (customized) library Manual interaction

Hubl et al. addressed automated simulation modelling using a data-driven approach
based on the bill of materials and ERP data [93]. This approach describes production
processes and considers resources as machine groups with their associated capacities,
as well as their control logic. The layout and logistics of the shop floor are not within
the scope of this approach. By considering the bill of materials from ERP, the authors
were able to simulate the assembly of parts, stocks and material supply. For validation,
the authors provided an industrial case in an automotive plant and evaluated the
performance of alternative scenarios within kanban and MRPII decisions [94]. The
models were reused in multiple studies to support a wide range of decisions, such as
capacity and material requirements [95], stochastic uncertainties in demand and
customer orders [96], lot size and lead time [97], make-or-buy [98] and decision-

making in workforce training [99].

Charpentier et al. referred to the idea of reusing and reducing simulation models [100].
The authors aimed to reduce the complexity of routing and describe multiple and
similar work centres as aggregated blocks with given capacities. Similar to Hubl et al.,
the authors used the master production schedule (MPS) from ERP to provide
simulation models of the production process. To implement decision-making in the
simulation model, the authors reused predefined decision entities parameterized with
the MPS data [101]. They applied their simulation approach in an industrial case of a

job-shop system and provided schedules of manufacturing facilities.
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Goodall et al. provided an approach for data-driven model generation for
remanufacturing systems [64]. The challenge in their work was to overcome the
complexity of the remanufacturing process, which is marked by dismantling,
processing and reassembly. To overcome this issue, they designed reusable modules
for each process type. To generate simulation models, they reused the predefined
modules and generated a model of the process using a data-driven approach. The
approach was validated in an industrial remanufacturing system for electrical

equipment.

Schlecht et al. automated modelling and simulation for the scheduling of product
arrivals in an industrial remanufacturing system [102]. The authors used a generic
data-driven approach to generate process-oriented simulation models. POM allowed
them to provide simulation models for complex remanufacturing processes. This
approach can analyse the consequences of order scheduling under the dependency of
task prioritization on the shop floor. Data-driven modelling enabled the authors to
automatically generate simulation models, execute a set of simulation experiments,

alternate systematic experimental parameters, and provide data for decision-making.

Arons and Boer presented an approach for model generation based on
parametrization [103]. The authors provided generic simulation models along with
simulation parameters in a database. The database model is described in [104], and
the model generation is described in [105]. Users can parameterize the database. In
the model generation phase, an algorithm pulls the generic model and parameters
from the database and generates a simulation model by parametrization. The purpose
of this approach is to provide simulation models to non-experts. Simulation models
are simple, first-in first-out (FIFO)-managed job-shop systems with unspecified buffer
dimensions. The modelling of complex control logic and logistics was not within the

scope of their study.

Son and Wysk presented an approach for model generation for discrete manufacturing
systems, especially job-shop systems [41]. They provided a data model and

implemented it in a Microsoft Access database. The model describes experiments,
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products, processes, shop floor, and orders. In [42], the authors connected the model
to the shop floor to receive real-time status updates from the shop floor and manage
the shop floor. To reduce the complexity and overcome the inherent risk of deadlocks,
the authors assumed the material flow to be linear. Products in the linear material flow
do not pass the same machine more than once; consequently, the linear material flow
cannot describe loops and feedback. In [43], a generic database was used to generate
models for different simulation environments. Because the results in different
environments coincide, the authors highlight the added value of data-driven online

simulation.

In [106], Barlas and Heavey focused on online simulation and provide an online
platform for simulation called DREAM. The project addresses data acquisition from
corporate business systems, management of simulation data, and automated
generation of the simulation model. In [107], data acquisition from corporate systems
and the management of simulation data using the standard CMSD were addressed. In
[108], the authors presented an approach to manage simulation data with the data
exchange standard CMSD. Data-driven model generation was described in [109]. The
project was dedicated to job-shop systems. The models are point-based and do not
include logistics. The authors used DREAM to analyse the impact of default style
prioritization rules on machining. The objective of this study was to provide a free-to-

use online simulation tool. Industrial validation was not presented in the study.

Bergmann [110] presented a tool for automated model generation. As a source of
simulation data, the authors focused on corporate business systems and exchanged
data with the modelling standard CMSD [53]. The purpose was to provide simulation
models for evaluating the scenarios described in corporate business systems. The
author focused on job-shop and flow-shop systems, including the dismantling and
assembly processes. In the case of a flow shop, unlike a job shop, the buffer capacities
were not modelled. In [111], the author also addressed further questions regarding
task prioritization, human resources, and machine groups. However, the authors listed
complex buffer strategies and scheduling logic as future research problems. The

validation of the provided tool was performed in a laboratory environment, and its

62



Data-driven simulation

application in an industrial case was not addressed. The logistic processes were not
considered in this study. An application in a case study was presented in [112], in which
the authors explicitly highlighted the advantages of data retrieval from ERP/MES and

automated simulation modelling.

Zilch et al. presented an approach for automated model generation for job-shop
production systems and implemented it in a usable tool called SIMULAST [113], [114].
The focus of the tool is on the simulation of the human workforce in manufacturing
processes. In [115], the authors analysed the consequences of human errors on the
operation time, product quality, and rework. They provide industrial case studies for a
sheet-metal and pressing-plastic manufacturer. The simulation models were point-
based. Logistics were modelled as ideal, and there was no delay in the travel of the
workforce. Another study was based on the presented approach and analysed the
influence of alternative personal structures on human errors [116]. The authors

provided industrial case studies on sheet-metal and pressing-plastic manufacturing.

Tiacci et al. [117] presented an approach for model generation with a focus on
resources and labour. The authors focused on linear assembly lines with ROM in a
length-based system. This assumption reduces the complexity by excluding loops and
feedback from the material flow. In this way, the authors removed the risk of deadlocks
and were able to analyse the impact of buffers and blocking. Logistics were modelled
in a length-based model with conveyors and labour transport. The authors used a
parametric simulator and a genetic algorithm (GA) to improve the assembly lines in
laboratory cases. The GA was used for the optimization of line balancing and buffer
allocation [118], [119]. To model human processes, the authors varied the cycle times

using statistical laws.

In [70], Lugaresi and Matta focused on the generation of models of manufacturing
lines. The focus was on model generation and initialization from stream data. With
stream data, the authors refer to data generated during the manufacturing process
that are typically available in MESs. Unlike planning data, stream data contain

timestamps for the start and stop of historical processes. For validation, they
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performed a case study using a LEGO demonstrator [71]. Using the generated data,
the authors provided a digital shadow using DES. In [68], they implemented a bill of
materials to generate the DES of an assembly line. These models are length-based
resource models that describe the layout and material handling system with buffers

and conveyors.

Wang et al. presented a data-driven modelling approach for manufacturing systems
[120]. The authors designed a data model and built a generic database to manage
manufacturing data. To generate simulation models, they populated the
manufacturing data in the simulation environment. Simulation models describe
production and logistics in a length-based model with a ROM view, including
transportation by labour, conveyors, and forklifts. The assumption of linear systems
enabled the authors to simplify the logistics system and model the system without
using control logic. This approach was validated in an industrial case in an automotive

manufacturing line.

Wy et al. presented another approach for data-driven modelling [19]. In addition to
the input data, the authors used an AutoCAD model of the layout and flows and
extended this with data on machine perturbation and workforce planning. The
genericity of this approach is limited owing to the required availability of an AutoCAD
model, which is typically manually modelled. The authors proposed reusing existing
factory models to reduce time and effort. The approach was applied to compare
different forms of organization for workshops and material handling in decision-

making.

Popovics et al. focused on the generation of simulation models based on processing
data from the MES and programmable logic controller (PLC) code [121]. The authors
received product, process, and resource data, described in the ISA-95 modelling
language from ERP and the behaviour of the system from PLC code. A parsing process
was used to receive specific data from the PLC code and to describe the behaviour of
the model. Using this data, they could model an industrial flow system with conveyors,

buffers, and machines [50]. In contrast to previously analysed approaches, the PLC
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code allowed them to model complex behaviour. This approach was validated using an
industrial conveyor system. In [122], the authors provided a database and a human

interface to simplify the application and validate the approach for several test cases.

Ferrer et al. [123] focused on the mapping of product, process, and resource data
through different domains during the engineering process of manufacturing systems.
In [46], the authors focused on modelling complex manufacturing systems. They
provided an ontology to exchange PPR data with AutomationML, from engineering to
process simulation. The authors defined semantic rules and matched them to the
instantiated objects to model functions. Ultimately, they used data-driven model
building based on PPR data and semantic rules to generate complex simulation models
[45]. Validation was performed at the engine assembly line of an automotive

manufacturer with non-DES modelling.

Friedewald and Wagner presented a partially automated approach for scenario
simulation [124]. In their proposed approach, experts design reusable modules and
non-experts build a simulation model by reusing these elements. The reuse of
predefined elements is performed manually. This procedure allows the integration of
complex functions through the implementation of predefined modules. The authors
validated their approach in an industrial manufacturing system and analysed capacity
planning in scenarios [125], [126]. The purpose of their approach was to empower
non-experts to build complex models in a short time rather than automate the

generation of models for systematic experimentation.

Kallat et al. presented an approach for evaluating alternative scenarios in factory
design using model generation [127]. The authors developed a library of reusable
modaules with individual behaviour and implemented control logic in these modules. A
resource-oriented model was generated by reuse and parameterization. They
presented a use case on an industrial manufacturing system. In another study, they
applied their approach and generated a simulation model of a warehouse [128]. The
authors used POM to simulate the packing process. The simulation of the layout and

logistics processes in this model was beyond the scope of their study.
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Butzer et al. provided a reusable simulation model for remanufacturing processes
[129]. The model assumes a generic remanufacturing process comprising the following
seven steps: inbound, disassembly, cleaning, checking and sorting, reconditioning,
reassembly, and outbound. This approach aims to reuse the entire model, assuming
that a new case is described by the same process. The model is reusable for
remanufacturing systems described by the proposed generic process. This model is
appropriate for investigating remanufacturing systems and their efficiency. It is not
appropriate for analysing complex routing or remanufacturing processes. Validation

was performed for a turbocharger remanufacturing system.

An overview and classification of the analysed studies based on the criteria defined in
Table 10 is presented in Table 11. On a generic level, within modelling and simulation
in DES, two major modelling techniques exist [20]. In POM, the authors model material
flows by modelling processes that request resources during the simulation. In ROM,
the authors model material flow by modelling the system. During simulation, parts
move through the machines according to their processing routes. POM describes the
process clearly and is widely applicable, although the size of models rapidly increases.
ROM describes the physical structures and models the processes implicitly. In the
review works, the replication of structure in ROM was enabled to model spatial
organization and logistic processes. On the partial level, the works presented libraries
for simulation of manufacturing systems. Libraries where identified for two types of
manufacturing systems and two sub-types of material flows. Libraries of flow-shop
systems describe manufacturing systems with linear routings, while libraries of flow-
shops describe nonlinear routings with loops and feedback. Within both types, the
consideration of assembly processes defines the sub-type. Material flows inherit split
and merge activities for assembly and dismantling or are completely linear. In addition,
case-specific libraries were used to represent specific behaviour. On a particular level,
different strategies were used to instantiate models from generic libraries. Case-
specific libraries were observed to be used as templates for manual modelling
activities. Remaining libraries were instantiated from data. However, to adapt case-

specific behaviour of systems, customization of libraries was observed.
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Table 11: Overview of literature review

Generic model - Partial model - Particular model —
Author . . .
model type library type instantiation type
. Job-shop By data and
Hubl POM in DES (with Assembly) (customized) library
Haouzi POM in DES Assembly Lines By Qata aqd
(customized) library
. Job-shop .
Goodall POM in DES (with Assembly) Instantiation from data
. Job-shop By data and
Schlecht POM in DES (with Assembly) (customized) library
. Job-shop .
Bergmann ROM in DES (with Assembly) By data and library
. Job-shop .
Arons and Boer ROM in DES (with linear flows) By data and library
. Job-shop .
Son and Wysk ROM in DES (with linear flows) By data and library
Barlas and . Job-shop By data and
Heavey ROM in DES (with Assembly) (customized) library
Ziilch ROM in DES _ Job-shop By data and library
(with linear flows)
Tiacci ROM in DES Assembly Lines By data and library
Lug:;aeft;and ROM+L in DES Assembly Lines By data and library
Wang ROM+L in DES Assembly Lines By data and library
Wy ROM+L in DES Assembly Lines By data and library
. . - By data and
Popovics ROM+L in DES Case-specific library (customized) library
Ferrer Non-DES Case-specific library Manual interaction
Friedewald ROM in DES Case-specific library Manual interaction
Kallat ROM in DES Case-specific library Manual interaction
. Job-shop Parameterization of
Butzer POM in DES (with Assembly) generic model

On a generic level, within DES modelling the review particularly exposed two modelling
technique processes and ROM. The POM describes the manufacturing system by
modelling processes. During the simulation, the manufacturing process requires
resources. The resource travels to the process. The resource-oriented view describes
the system by modelling the machines on the shop floor. During the simulation, the
parts move through the machines according to their given processing routes. A
detailed description of the benefits and drawbacks of the strategy are given in [92].

Within the resource-oriented works, some approaches additionally used techniques

67



Data-driven simulation

for modelling movement of materials in the layout. In the partial level, a range of
libraries was provided for specific system types (job-shop, flow-shop and assembly
lines) and specific assumptions (linear vs. nonlinear material flows). On the particular
level, different strategies were used to instantiate models. Challenges are seen in
providing models of specific cases from generic libraries, particularly when case-
specific behaviour and control rules exist. To tackle these problems, customization of
the partial models was used to provide case-specific libraries of partial models and

instantiate models from these libraries.

3-2 Methods for modelling and simulation

The purpose of this section is to provide the methods for data-driven simulation, for
which this work uses the generic, partial and particular levels of enterprise modelling.
In Chapter 3-2.1, the generic level of simulation models is presented. The generic level
defines the framework for the building of the partial library. On the partial level,
Chapter 0 provides a library of modelling concepts for the different modelling aspects:
processes, resources and material flow objects. On the particular level, in Chapter 0
this work provides the methods to generate models from data and libraries. Data-
driven modelling is executed by an algorithm. After model-building, the algorithm
manages simulation experiments and provides simulation results for optimization and

problem-solving.

The validation of the proposed methods in section 0 uses the cases of the ED and train
remanufacturing system. However, in this section, this work uses the neutral
terminology of material flows to describe the generic methods. The flow of materials
on the shop floor is appropriate for representing the processing of trains in the
remanufacturing systems and movements of patients in the ED. The generic and partial
models for both systems are identical. Customization of the partial models provides

case-specific behaviour during the instantiation of the particular models.
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3-2.1 Define generic model

Enterprise models in this work are modelled as material flows, which describe the
movement of patients and trains in the ED and remanufacturing system. During the
flow, the materials perform activities that are defined in the process map. For
execution of activities, the materials can request resources. A lack of resources causes
waiting lines and increases the time between arrival and departure of the material
from system, that is, the LOS of the patient or makespan of the train. The systems are
modelled as queuing networks to analyse the waiting line materials. To model flows,
DES is used, particularly the plant simulation. A classification of models in this work is

given in Table 12 based on [85], [130].

Table 12: Classification of models

Property Type
Simulation method Discrete-Event-Simulation
Temporal behaviour static dynamic
Time steps discrete continuous
State steps discrete continuous
Uncertainties deterministic stochastic
Termination terminating non-terminating
Model orientation process-oriented resource-oriented

This work uses models and simulation in DES. The dynamic nature of this technique
enables analysing material flows over time and observing the effects of changes in real
time. By considering the changes over time, one can examine the material flows under
different operating conditions and identify critical bottlenecks or inefficient areas. In
addition, the dynamics of the simulation allow different scenarios to be tested and
alternative solutions for optimizing the material flows to be evaluated. The
consequence of the model being static rather than dynamic is a limited ability to

capture changes in material flows over time.

The proposed simulation models use discrete time and state steps to consider material
flows at regular intervals. Using discrete time steps and states allows the analysis of
the flow in clearly defined conditions and for changes in the system to be recorded.

The occurrence of events and durations of activities is limited to discrete moments and

69



Data-driven simulation

periods. Both events and processes are simulated through the discrete representation
of time and states. Conversely, in continuous simulation, states and steps change
continuously, causing an increase in the complexity of modelling and computing power
for simulation. Simulation of discrete time and states is sufficiently accurate for

analysis of material flows.

The simulation models consider both deterministic and stochastic uncertainties in the
material flow, depending on the simulation data provided. Deterministic uncertainties
are modelled through precise knowledge of the parameters and conditions in the
system. They make it possible to analyse the material flow under idealized conditions
and to identify the potential for optimization. Moreover, stochastic uncertainties are
modelled by random variations in the parameters. This makes it possible to examine
the effects of uncertainties and fluctuations in real operation and to assess the
robustness of the material flow processes and address specific questions in problem-

solving.

An important aspect of the simulation models is the termination. This means that the
simulation returns a final result after a set number of steps or when certain conditions
are met. The terminating nature of the simulations indicates that the material flow can
be analysed in a well-defined time frame to provide quantifiable results. Termination
makes it possible to reach a defined end state at which simulation results are provided
and allows simulation to be used as a black box for optimization. Simulation results are
generated during simulation. To generate simulation results, an empty event-log is
provided. Simulation writes events for the start and stop of activities in the event-log
and generates an output having the same structure as the input of the data-retrieval
process. The event-log enables the calculation of all relevant key performance

indicators (KPIs) for optimization and problem-solving.

The modelling orientation is defined as POM. The simulation model describes a
network of processes for each product by providing complex predecessor and
successor relationships. In simulations, the material is represented by an information

object that follows the process flow. For execution of activities, the processes request
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resources. Available resources travel instantly to the process and are released after
processing. Traveling and material movements are modelled explicitly by use of
processes. Waiting lines occur virtually when multiple processes request limited
resources. Each material of information object waits in its specific process, since spatial

limitations of the layout are not considered in simulation.

3-2.2 Design library of partial models

Partial models of enterprise modelling have the purpose of describing models and
concepts for a group of common problems and systems. For this work, the partial
models are eligible for the problem class of job-shop production systems (AS2). For
simplification, the partial models do not consider material flows in space, but simulate
material displacement as processes with fixed cycle times. The partial models
implement the four modelling views of enterprise modelling: function view, resource
view, information view, and organization view. Therefore, four specific classes are
provided. Partial models of the generator class and drain class generate and destroy
information representing material on the shop floor and describe the information
view. The process class represents the activities of material routing and describes the
function view. Resources describe the resource view and represent the capacities of
technical and human resources. In the organization view, organizing the work on the
shop floor has no specific partial model as represented. The organization of work is
implemented by customization of the partial models of the function, resource, and
information view, particularly by adding code and functions that are executed by

resources when starting and stopping activities.

The generator class has the purpose of generating new products during simulation and
moving them to the tasks of their process map. The generator is modelled from the
generic DES elements: source, queue and process. The conceptual model of the
generator is given in Figure 29. The input data for the generator are the product
arrivals, describing the arrival stream. For each arriving material, the generator writes
the associated information in the generated element. The information contains data

to identify the material and the sequence of activities. After the simulation starts, the
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source instantly creates all arriving materials and sends them to the queue and the
process. The process delays each material (pi) based on the inter-arrival time of the
arrival stream. After the delay, the process sends each material to the first activity of
its routing. Generated materials wait in the queue before entering the process with
the delay. On exit, the process writes the event of arrival together with the timestamp

in the event-log of the simulation results.

I
p -
F A_. | | —

Arrival-log Source Queue Process

Generator to create
new cases

Figure 29: Case generator class

The drain class has the purpose of removing finished materials from simulation during
experimentation; it consists of the generic DES elements queue and drain. A
conceptual model of the drain is illustrated in Figure 30. The drain eliminates incoming
materials and writes the moment of removal as a departure in the simulation results.

The process of destroying materials occurs instantly and a waiting line is not required.

Drain to eliminate |
finished patients

Queue Drain

Figure 30: Drain class

The process class simulates activities of the material routing. The class is an
instantiation of the generic DES class process. Each process describes an activity of the
material routing. A conceptual model of the process class is given in Figure 31. In
parameterization, the process receives the duration (das) of an activity (a) for a
material (i) from the simulation data. Further, the process needs one or multiple
assigned resources (ris) to be executed. In the simulation, a material arrives at the
process and requests a resource. If the resource is available, it moves instantly to the
process and starts execution of the activity. When the resource is not available, the

material waits in a virtual queue for arrival of the resource. On arrival, the resource
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writes the event of beginning the activity and a timestamp into the event-log of the
simulation results. The resource is blocked until the activity is finished. When the
activity is finished, the resource leaves instantly and writes the event and a timestamp
into the event-log. The material moves to the successor activities from the simulation

data.

Activity (a;) of a |
patient (i) and the
step (s) |

P

— |cc=dy

Process

Figure 31: Process class

The resource class describes the capacities of the ED for groups of identical resources
(r). The class is parameterized with the number of elements in the class, the shift
calendar and the available services. Data is received from simulation data and assumed
to be available. The shift calendar periodically defines the time where resources are in
the states of active and passive. Passive resources are in an idle state and active
resources execute activities. Resources are used to carry out transport and processing
activities. For processing, they travel to the case. Traveling between resources is
idealized and to be considered as performed instantly. A conceptual model, describing
the resource class and interaction with the activity in the process class, is given in
Figure 32. If resources are requested by multiple cases, the control logic defines the
prioritization of cases; by default, there is FIFO-style prioritization. When changing the

state owing to shifts or breakdowns, resources write an event in the event-log.

Resource (r) and

interaction with R |- t=0

activity " 0000 -
r ]
cc=IAT;
(i,s)
v Resource Shift-Calendar

Figure 32: Resource class

In enterprise modelling, the organization view describes the organization of work. The

organization of work is partially described by a partial model that describes job-shop

73



Data-driven simulation

manufacturing systems. Additionally, the generic aspect of the shift calendar is
implemented in the resource class. Depending on the physical system, additional
organizational information is stored in the partial models and, as a consequence, the
partial models lose genericity and become case-specific partial models (in this work,
partial models of the ED and train remanufacturing systems). Despite sacrificing
genericity of the partial models, customization at one point is required to model the
entire complexity of physical system. Therefore, implementation of the organization
view is performed within the partial models of generator, drain, process and resource
and provides case-specific partial models to generate particular models of the system

by data-driven modelling.

3-2.3 Data-driven simulation

For data-driven simulation, an algorithm generates a model from simulation data,
action parameters of optimization, partial models for the generator, drain processes
and resources. The algorithm derives particular models from the partial models by
instantiating objects of the reusable classes for the generator, drain, process and
resource. Parameterization extends each object with case-specific attributes, such as
inter-arrival time and required resources for execution of activities. The first step is
generation of the generator and drain for creation and removal of materials; the
second step is the generation of resources for execution of activities; and the third step
is the generation of the activities of each material. The description of the model
generation algorithm with pseudocode is given in Figure 33. After the generation of

the model, the algorithm automatically executes simulation experiments.

# Generate materials
CREATE Generator
CREATE Drain

# Generate resources
FORr=1TOR
CREATE Resourceyy)
PARAMETERIZE Resource(r)
NEXT

# Generate processes
FORp=1TOP
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FORs=1TOS;
CREATE activityqi,s)
PARAMETERIZE activity )
CONNECT activity,s), activitys-1)
NEXT
NEXT

# Start simulation experiment
EXECUTE SIMULATION

Figure 33: Data-driven modelling

In the first step, the algorithm instantiates objectives of the generator and drain
classes. During instantiation, the algorithm parameterizes the generator with the
product arrivals, inheriting the sequence and inter-arrival times for product arrivals. In
the second step, the algorithm generates the technical and human resources. The
input data is the bill of resources describing the temporal capacities of resources. The
algorithm loops through all lines of the bill of resources, where 1 is the first line and R
is the last line, instantiates objects from the resource class and gives parameters for
amount and temporal capacity. In the third step, the algorithm generates the activities
of the material flows for all incoming materials. The algorithm instantiates the
activities of the steps s for each material pi, and writes the parameters for cycle-time
and resources in each activity. After parameterization, the algorithm links each activity
with each predecessor and successor to describe the material flows. A conceptual
model of the output is illustrated in Figure 34. After generating the model, the
algorithm starts the simulation experiment that automatically stops when all materials

have arrived at the drain.
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Figure 34: Generic simulation model

After simulation model building the simulation starts and the generator creates
materials. With delay of the inter-arrival time, the generator sends the materials to
their routings. At each activity, the material requests resources to execute processes.
Missing resources cause virtual queues, while the materials wait in the activity for
arrival of the resource. Available resources travel instantly to the place of need.
Limitations of the layout are not considered. After finishing an activity, the resource is
released. Materials move from activity to activity, according to their routing. After
reaching the last activity, materials move to the drain. The drain removes the material
from the simulation. During simulation, the generator, process and drain write events
for arrivals and departures of materials as well as the beginning and end of activities
in the event-log of the simulation results. The event-log follows the same structure as

the event-log that provides the historical material flows as input for data-retrieval.

3-3 Case-Studies

This section has the purpose of showing how the generic methods can provide valid
simulation models of different systems in different domains and enable simulation
experiments without manual interactions. The case studies use the cases ED (section

0) and train remanufacturing system (section 0). Both cases are in different domains;
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however, as highlighted in section 0, they follow the logic of a job-shop production
system. Customization is used to adapt the generic models to the two specific cases.
After illustrating the application of data-driven modelling, the case-studies highlight
how simulation in dynamic models can generate new knowledge for problem-solving

that was not previously available.

3-3.1 Emergency department

In the case study of the ED, the presented methods, the libraries of this chapter and
simulation data from the previous chapter, were applied to model and simulate the
system. The input covers system data and flow data. System data describes the system
configuration and flow data describes the patient arrivals and their pathways through
the ED. Automated modelling and simulation were applied in three steps according to
enterprise modelling genericity levels. On the generic level, Table 12 defines the
framework of using dynamic material flow simulation. On the partial level, a library
with generic classes for the generator, drain, process and resource was designed as
previously described. On the particular level, customization was used to adapt the
partial model to the case study and data-driven modelling was used to build models

and run simulation experiments in four steps.

1. Creation of generator and drain: The algorithm instantiated a generator and
drain from the partial models to simulate the arrival and departure of 35 240

patients of the historic arrival stream during one year of simulation.

2. Creation of resources: The algorithm instantiated 64 technical and human
resources (e.g. stretchers, doctors, nurses) in a loop, and the temporal

capacities were defined for each resource by providing the shift-calendar.

3. Creation of activities: The algorithm instantiated 297 463 activities from the
process map in a loop to model the pathways of patients, and linked the

activities to describe predecessor and successor relationships.

4. Run simulation: The algorithm completed the simulation experiments and

provided evaluation parameters for a set of action parameters by simulation.
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The data-driven modelling exposed the benefits and drawbacks of the partial models.
The approach allowed simulation models to be generated and simulated on request.
Given the availability of data and partial models, this allows a time reduction for
modelling and simulation from days and weeks to seconds and minutes. Reduction of
modelling and simulation time allows the evaluation of a large number of solution
candidates and the use of data-driven modelling and simulation for optimization.
However, drawbacks in the data-driven modelling were identified and are caused by
the generic nature of the partial libraries. The assignment of patients to zones and
stretchers after triage requires the modelling of specific functions in the process class.
For data-driven modelling, a new genericity level was introduced between the partial
and particular level. The customized partial model enriches the partial models by case-

specific functions of this specific ED.

Simulation of the historic product arrivals and process maps in the initial and future
system evaluates the performance in both scenarios and provides the patient LOS, the
time between arrival and departure of patients. Figure 35 provides and compares the
average LOS for patients with blue and orange severity indices. The LOS defines the
time between patient arrival and departure. The transition from S1 to S2 degrades the
average LOS of blue patients from 108 to 132 min and improves the average LOS of
orange patients from 257 to 241 min. The LOS of the patient mix degrades from 157
to 168 min. The results confirm the analysis made in section 2-3 that forecasted
waiting lines after redesign, particularly in the blue zone. Independently, the box-plots

show a high degree of uncertainty in the LOS, particularly for the blue patients.
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Figure 35: Average length of stay of orange and blue patients

Although this analysis is commonly used in the design of EDs, there are shortcomings.
Comparing both scenarios does not provide an indication about the improvement and
degradation of the different patient types and their dispersion. The simulation model
of the ED includes the routings of 62 different patient types. Each routing variant has
a specific, static LOS, in this work defined as reference. The reference is the ideal LOS
of each patient. It is statically calculated for each patient with the routing of the
patients and durations for activities (section 2-3). It is defined solely by the activity
durations and does not entail waiting. The analysis in Figure 35 does not consider
different patient types. It shows the average LOS of all patients, independent from the
reference because the analysis of the global distribution of the LOS of all patients is

not meaningful, owing to the variance of the reference.

To overcome this issue, this work proposes a comparison of the LOS of the entire
patient population with the reference and an evaluation of the dispersion. Figure 36
illustrates this method. The graph in (a) plots the reference by plotting the reference
vs. the reference. The reference is identical patients with the same routing, since the
reference provides a straight line (red). For evaluation of simulation results, (b) plots
the simulated LOS vs. the reference. The discrepancy between reference and simulated
LOS is caused by the dynamics of the simulation, particularly by waiting times. Vertical
structures in the graph represent multiple patients with the same reference but having

waiting times to different degrees.
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Figure 36: Length of stay —reference vs. reference

The illustration method of Figure 36 is applicable for the patient populations based on
their severity indices in the initial and future scenario. Figure 37 plots the reference
and LOS of the populations in the initial (top) and future scenario (bottom) in multiple
sub-plots. Each sub-plot shows the populations of blue and orange patients based on
their severity index in the initial system that was either green, orange, or red,
highlighted in the background of the sub-plots. For example, sub-plot (a) shows the
patients that initially had a green severity index but received a blue or orange severity

index in the new triage system.
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Figure 37: Length of stay —reference vs. simulation for patient groups

The plots reveal that the reference of the patients is not correlated to the severity
index of the patients. The range of references is identical for all groups of patients,
independent from the severity index. However, there is a correlation between the
severity index impacting the priority and dispersion. In the initial situation, the
dispersion decreases with increasing priority (green, orange, red) of patients,
illustrated in (a), (b) and (c). In the future situation, the dispersion is linked to the new
severity indices (blue, orange), illustrated in (d), (e) and (f). The plots explain the
observations of Figure 35. When switching from the initial to the future situation, the
LOS improves, particularly for patients that benefit from increased priority (orange
patients in (a) and (c)) while patients with decreased priority have a lower LOS (blue
patients in (e) and (f)). To improve some green patients by increasing priority, some

red patients are scarified by decreasing the priority.

3-3.2 Train remanufacturing systems

In the case study of the train remanufacturing system, the presented methods
(libraries in this chapter and simulation data from the previous chapter) were applied
to model and simulate the system. The input covers system data and flow data. System
data describe the system configuration and flow data describe the train arrivals and
their routings through the train remanufacturing system. Automated modelling and
simulation were applied in three steps according to enterprise modelling genericity
levels. On the generic level, Table 12 defines the framework of using dynamic material
flow simulation. On the partial level, a library with generic classes for the generator,
drain, process and resource were designed as previously described. On the particular
level, customization was used to adapt the partial model to the case study and data-

driven modelling was used build models and run simulation experiments in four steps.

1. Creation of generator and drain: The algorithm instantiated a generator and
drain for the planned arrival and removal of 20 trains to be remanufactured in

the year 2022. Each train is an assembly of 10 wagons.
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2. Creation of resources: The algorithm instantiated 50 resources in a loop,
particularly installations for the processing of wagons, and provided the shift-

calendar with temporal capacities for each resource.

3. Creation of activities: The algorithm instantiated 8 580 activities in a loop to
model the remanufacturing process of each train with 429 activities and linked

activities to describe predecessor and successor relationships.

4. Run simulation: The algorithm runs the simulation experiments and provides

evaluation parameters for a set of action parameters by simulation.

The data-driven modelling exposed benefits and drawbacks of the partial models. The
approach allowed the generation and simulation of models on request. Given the
availability of data and partial models, this allows a reduction of the time for modelling
and simulation from days and weeks to minutes. Reduction of modelling and
simulation time allows for the evaluation of a large number of solution candidates and
the use of data-driven modelling and simulation for optimization. However, drawbacks
are linked to the generic nature of the partial libraries. In the case study, customization
of partial libraries was required in the process class to add a new function to check the
start conditions before the start of the activity. For data-driven modelling, a new
genericity level was introduced between the partial and particular level. The
customized partial model enriches the partial models by case-specific functions of this

specific train remanufacturing system.

The simulation evaluates the planned system for the given action parameters of train
arrivals every four weeks and a maximum of four trains in the system. The simulation
results consider the waiting lines and waiting times of trains when competing for
resources in the dynamic model and provide the makespan of each train. The results
are illustrated in Figure 38 and compare the makespan of trains that was simulated in
a queueing system with the calculated lead time of the remanufacturing process. The
results show the need for validating static models and calculation by simulation of
dynamic models. In particular, in a dynamic system the results of dynamic simulation

are required to provide robustness of the measures.
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Figure 38: Average length of stay for trains in static calculation

The provided simulation results in this case study have the same structure as in the ED
and enable the theoretical application of the illustrated dispersion analysis. However,
because in this case there are only 20 trains to be remanufactured and all trains are of
the same type, the dispersion analysis will not provide new knowledge about the
performance of the population that is not visible in the box-plot. However, application

in other manufacturing cases is of interest.

3-4 Discussion

The leading question of this chapter is RQ1: What are the methods for generating
simulation models for problem-solving from the digital shadow? This question covers
the retrieval of simulation data and the generation of a model. Retrieving simulation
data was addressed in Chapter 2. This chapter addresses the automated generation of
a material flow simulation model and execution of experiments. Before explaining the
methods, the framework for modelling is provided, independent of the question of
automated generation and simulation of models. The framework is based on the
standard for enterprise modelling, particularly the genericity levels and modelling
views (see section 0). Genericity levels define models through generalization and
specialization mechanisms in the generic, partial and particular level. Modelling views
describe different aspects of the system, particularly function, information, resources
and organization. In this framework, four methods were identified to generate

simulation models (see Figure 39).
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Figure 39: Methods of data-driven simulation

Definition of the generic model provides the framework for modelling and simulation.
The system modeler gathers information about the system and understands the
problem. The objective is to define the properties of the model, including the
modelling technique language and modelling constructs. However, this method was
treated in this work only on the application level because the framework was given.
The framework of this thesis is defined by simulation of material flows in stochastic
and dynamic environments (see Table 12). However, it should be mentioned that a
wide range of models exist to address a wide range of problems. Defining the generic

model is crucial and has a significant impact on the success of the simulation studies.

Design library of partial models provides a library of reusable models for data-driven
modelling. Partial models are neutral, reusable models describing different aspects of
the system, according to the enterprise modelling views. Aspects inherit function,
information, resources and organization. Functions, information and resources were
used in this work as synonyms for products, processes and resources. The organization
view includes all information regarding responsibilities, e.g. the assignment of
resources to zones in the ED. Partial models are common for a class of problems or
type of system, e.g. job-shop or flow-shop. The library of partial models contains
generic representations of products, processes and resources as well as aspects

regarding the organization.
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Derivation of case-specific models is required to customize the library of partial
models to the requirements of the specific case. Despite belonging to the same class
of problems, different systems to be modelled can feature case-specific behaviour of
the particular system. In the two case-studies, both systems share common partial
models for job-shop systems, but inherit case-specific behaviour, e.g. the assignment
of patients based on ESI in the ED and the conditions to start activities in train-
remanufacturing. Derivation of case-specific models provides customized, case-
specific libraries that enable the algorithmic generation of models, entirely based on
the generic simulation data. However, simple cases without case-specific control logic
and behaviour do not require customization of the partial library. In these cases, the
step becomes optional and data-driven simulation is possible from the generic partial

models.

Data-driven modelling and simulation is the method used to generate models and
run simulation experiments from the data. In data-driven simulation, an algorithm
builds a simulation model by instantiating particular models from the library of case-
specific models. The algorithm instantiates and parameterizes particular models
according to the simulation data. After model-building, the algorithm starts simulation
experiments and waits for termination of the experiment to provide results of the
simulation data. The previous design of a library with partial or case-specific models is

crucial and absolutely necessary for data-driven modelling and simulation.

This chapter provides the methods used to generate simulation models and run
simulation experiments. The methods are evaluated in the case-studies of the ED and
train remanufacturing system. Despite the obvious differences in the domain and
systems, the models are similar. Materials (trains or patients) arrive in the system and
follow their routings (remanufacturing process or pathways). During their routing,
there are several activities to be executed by resources (doctors or installations) and,
finally, the material leaves the system after a given lead time (makespan or LOS). For

modelling, the similarities of both systems are enabled using common partial models.
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The case-specific behaviour of the system was implemented by customization of
partial models and provided a library of case-specific models. The scope of
customization in the case studies included aspects of the organizational view. These
elements were marked by heterogenous structures and data, which were in contrast
to products, processes and resources not describable in a standardized data structure.
Acquisition and modelling required expert interviews and problem-specific tools, e.g.
functions, code and BPMN models. Customization is to be performed for the case-
specific behaviour of each system and is a manual activity. The process of customizing
for each of the two cases required time in the dimension of hours and days. After
providing customized partial models and simulation data, modelling and simulation is
available on request. By reusing the concepts of partial and particular models of
enterprise modelling and introducing customization, the methods tackle the existing
conflict in the literature [20] between genericity and specificity (see Figure 40). The
available approaches are either generic or specific. Generic approaches are
appropriate to model a wide range of systems, but lack capability to implement case-
specific behaviour, and specific approaches implement case-specific behaviour but are
not appropriate to model a wide range of systems.

e e 1 |

I T T T 1
Reuse Reuse of Reuse of Parameterization Data-driven
of model modules Code modelling

Figure 40: Trade-off between genericity and complexity

By using the concept of customizing partial models, the methods provide a trade-off
by reusing modules and code via the case-specific libraries. Partial models (modules)
describe a class of problems or systems (in this work, job-shop production systems).
Specific partial models inherit the case-specific behaviour (code) of a particular
system. Introducing customization of partial model enables the use of generic partial

models to simulate a wide range of systems by data-driven simulation from the data.

In the case-studies, the methods were used to compare and evaluate planning

scenarios. Data-driven simulation requires time in the dimension of seconds and
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minutes. Consequently, data-driven simulation allows the evaluation of a large number
of solution candidates. Manually modelling and simulation of one solution candidate
can require days and weeks. Thus, running a design of experiments is not possible
without these methods, due to a lack of time. However, the number of experiments in
the design of experiments is limited by the required time for data-driven simulation.
Beyond executing the design of experiments, data-driven simulation is usable within
optimization. The algorithm can implement values for decision variables coming from
optimization algorithms in the model and provide the simulation-dependent results as
values for the objective function. This allows going beyond simple optimization of
parameters and enables the introduction of qualitative parameters, e.g. adding and
removing resources, changing patient mix, or changing the control logic for assignment

of patients by using different models from the library.

The case study of the ED was used to provide a new method for analysis of simulation
results. The need for the method comes from the high variance of patients (materials)
with individual routings. Data-driven simulation enabled the development of a model
that included 62 different routings, which is barely possible manually. Analysis of the
global LOS (makespan) does not take into consideration the inherent variance of the
reference caused by the different routings. The method proposes an analysis of the
dispersion of the entire population of patients by comparing the results from the
simulation with the statically calculated reference. This approach enables an analysis
to be performed that considers the initial dispersion of the different patient variants
when evaluating the LOS for the entire patient population. The discrepancy between
the reference and the simulated LOS can be explained by waiting times due to lack of
resources. In the case study, this analysis allowed the improvement of orange patients
and degradation of blue patients to be explained. This method is of particular interest
in cases having a wide range of variants, e.g. different materials and patients. A similar
analysis is possible with the simulation results of train remanufacturing. However,
because there was just one type of train considered in the simulation, the analysis does
not yield benefits. Application to new cases is of interest to evaluate the benefits and

drawbacks in the domain of manufacturing.
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Chapter 4  Simulation and Optimization

This chapter is dedicated to the question of using data-driven simulation to solve
optimization problems (RQ2): What are the methods for optimizing material flows
through the digital shadow and data-driven simulation? In particular, this chapter
explains how simulation data (Chapter 2) and the methods for data-driven simulation
(Chapter 3) can be applied to solve optimization problems (see Figure 41). To address
this question, this chapter first provides a state of the art in optimization (section 0),
provides the methods for simulation and optimization (section 0), applies the methods
for solving three optimization problems (section 0) and provides a discussion of the

methods and insights gained in the case studies (section 4-4).

. Are all
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Figure 41: Optimization in problem-solving

The state of the art provides an overview of different optimization approaches and
demonstrates how simulation can optimize complex systems. The methods of this
work, couple data-driven simulation and algorithmic optimization, are used to solve
optimization problems. For coupling, simulation evaluates the objective function of
the optimization algorithm. The case studies present the application for three different
optimization problems in train remanufacturing and ED. The case studies highlight how
the methods can optimize different optimization problems without explicitly
formulating mathematical models and reformulating the optimization problems by

coupling data-driven simulation and optimization.
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4-1 State-of-the-art

In problem-solving, optimization has the objective of providing solution candidates to
minimize or maximize one or multiple objective functions. This section provides the
state of the art to understand the available optimization methods and clarify how
simulation can be used for optimization. The state of the art is separated into two
sections. Section 0 presents the optimization methods and provides methods to solve
different optimization problems and section 0 presents the method of simulation-

based optimization, linking simulation and optimization.

4-1.1 Optimization methods

Optimization describes the process of searching for a solution that minimizes or
maximizes an objective function towards a defined objective, called the optimum.
During optimization, the impact of decisions towards the objective are evaluated,
typically by using mathematical models [5]. Optimization can be used for a wide range
of industrial and scientific decision problems. The purpose of optimization is typically
to improve the efficiency, performance and effectiveness of a system or process. For
finding optimal solutions, optimization uses mathematical methods. Especially in
complex and large-scale systems, optimization can become difficult due to the high
number of potential solutions. Depending on the type of system and problem,
different methods are applicable for optimization. The choice of an appropriate
optimization method is crucial for resolution of an optimization problem. Figure 42
provides an overview of the available optimization methods, based on [131]-[134]. At
the top level, there are different branches of optimization. Algorithmic optimization
uses algorithms to find minima and maxima for optimization problems, while design

of experiments uses systematic experiments to explore the solution space.
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Figure 42: Optimization methods

Within algorithmic optimization, the literature in optimization distinguishes between
exact and approximate methods. Exact methods classify methods that provide the
optimum for the optimization problem, e.g. enumeration and branch and bound.
Enumeration compares all possible solutions of an optimization problem, and branch
and bound divides the solution space into subspaces and successively eliminates
subspaces without optimal solutions. Common problems of using exact methods are
the effort of testing solutions and the amount of computing power. Consequently,
these methods are appropriate for problems with limited size and complexity of the

solution space.

Approximate methods are non-exact methods, approximating towards the optimum
without knowing the optimum. Examples of approximate methods include heuristic
methods, metaheuristics and artificial intelligence. Heuristics include problem-specific
methods. In contrast, metaheuristics are not problem specific. These methods use
general, superordinate search strategies to provide solutions for a high variance of
optimization problems. As a third group, artificial intelligence uses agent-based
systems and neural networks to solve optimization problems. These methods attempt
to mimic human intelligence and understand the behaviour of the system to be

optimized.

Within metaheuristics, there are trajectory and population-based methods. Trajectory
methods such as local-search start optimizing with an initial solution and improve the
solution successively by searching within the neighbourhood. Limitations appear when
optimizing for problems with local optima. More advanced methods such as tabu

search [135] and simulated annealing [136] use additional functions to proceed from
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local optima to towards global optima. In contrast, population-based methods
overcome local optima by generating new solution candidates with stochastic
behaviour. Examples of these methods are swarm optimization [137], ant colonization
[138] and GA [139]. These methods create and evolve a variety of solution candidates

in parallel and are advantageous for problems with complex solutions spaces.

A crucial property affecting the choice of an appropriate optimization method is the
number of objectives. There are mono- and multi-objective problems. Many real-life
optimization problems are multi-objective problems, with multiple objectives to be
minimized or maximized [138]. Additionally, conflicts between the objectives can
appear [134]. In a multi-objective problem, there is not one single best solution, but a
set of superior solutions. Within the solutions of a multi-objective problem, a set of
dominating solutions is superior to a set of dominated solutions. The non-dominated
solutions satisfy the different objectives to varying degrees. Various non-dominated
solutions represent trade-offs between the different objectives of the optimization
problem. In [132], complex problems are solved with multi-objective solution spaces,

with a GA being the most common metaheuristic.

One strategy for handling multiple objectives is the introduction of weights. Weighting
of multiple objective functions transforms multi-objective problems to mono-
objective problems [140]. However, the method of using weights has challenges. First,
it is not possible to satisfy all objectives in a multi-objective problem with a single
solution; the solutions generated by weights compromise multiple functions. Second,
weighting objective functions requires expert knowledge about the critical systems.
Optimality of the solution is limited to the framework of the given weights. Changing

the weights can provide completely different solutions in optimization.

Beyond compromising multiple objective functions by using weights, multi-objective
optimization optimizes for multiple objectives simultaneously. With this approach,
multi-objective optimization provides multiple solution candidates with trade-offs
between multiple objective functions. The concept of Pareto optimality is used to

provide solutions that are clearly better than others. Specific multi-objective
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algorithms attempt to provide Pareto optimal solutions [132] with trade-offs between
multiple objectives. An algorithm for addressing the problem of multiple, conflicting
objective functions is the non-dominated sorting genetic algorithm Il (NSGA-I1) [141],

[142]. However, Pareto optimization is not exclusively addressed by GAs.

There are numerous optimization methods available. Strengths and weaknesses
depend on the problem to be addressed. In particular, for the design of complex
systems, where problems with multiple, conflicting objectives can occur and are to be
optimized, the ability to deal with multiple objectives is crucial. Methods of interest
for solving problems with multiple objectives are design of experiments and Pareto
optimization. Design of experiments creates an understanding of the impact of
parameters on multiple objective functions, and Pareto optimization provides sets of

dominant solutions with trade-offs between multiple objective functions.

4-1.2 Simulation-based optimization

Despite the differences, heuristic methods and metaheuristics have properties in
common [143]. During the search for a solution, both move from one solution to
another and search for a solution inside the search space, although metaheuristics are
not limited by restrictive assumptions about the search space. Another shared
property is the principle of solution search. The principle of search with heuristics and
metaheuristics is illustrated in Figure 43, according to [143]. The individualities of the

methods are within the strategies for generating initial and new solutions.

Define solution Generate initial
encoding solution(s)

Return best
solution

Evaluate objective
function(s)

Check results

Figure 43: Principle of heuristics

Stop criterion
eached?

The optimization principle begins with define solution encoding. In this activity, the
decision-maker chooses the heuristics for optimization; these define the strategy for

defining solution candidates. In generate initial solutions(s), the algorithm creates one
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or multiple solution candidates to be tested, depending on the optimization heuristics.
In evaluate objective function(s), the algorithm evaluates the fitness of the new
candidates(s). The evaluation takes one or multiple objective functions into
consideration. In the decision stop criterion reached, the algorithm checks if more
populations are to be evaluated. Decision criteria consider properties of the
algorithms, for example, the number of iterations or properties of the solutions (e.g. a
threshold of the objective function(s)). If the algorithm is to be stopped, the next

activity is return best solution; the algorithm provides the best solution candidate.

Evaluation of the objective function is crucial for optimization heuristics. A wide range
of techniques can be used to evaluate objective functions. Mathematical models use
mathematical functions to formulate the objective functions. An example for
mathematical models is (mixed) integer linear programming [144], [145]. In mixed
integer linear programming, the objective function is formulated as a function of the
decision variables. A solution candidate is described by a vector of decision variables.
For evaluation of the objective function, the mathematical model is resolved. The
objective functions of the mathematical model provide the fitness of the solution

candidate.

Other approaches use complex modelling techniques. The authors of [146] used CAD
models for optimizing welding points with the finite element method, and in [147] the
authors optimize the layout of a facility by modelling the layout as a quadratic
assignment problem. For optimization with computer models, a set of values for the
decision variables is implemented in the model and a simulation evaluates the solution
candidates. The model provides a set of values for the objective functions.
Optimization requires modelling and simulation in a loop to evaluate decision vectors

and provide objective vectors.

Optimization of material flows uses modelling and simulation in DES. For optimization,
the values of decision variables are implemented in the model and simulation provides
the values for the objective functions. For optimizing an assembly system in [139], the

authors used data-driven modelling to model solution candidates of an assembly
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system and used simulation of material flows to evaluate the efficiency. By combining
optimization with a GA and data-driven simulation, the authors optimized the
scheduling of an assembly system. In an analogous approach in [136], the authors
applied simulated annealing to optimize the layout of a machine shop and used a
model in DES to evaluate solution candidates. The works using simulation and
optimization to solve design problems separate both domains. The authors combined
simulation in generic models and optimization by defining interfaces to exchange
values for decision variables and objective functions [9], [132]. They applied
metaheuristics to optimize without knowledge about the system and for evaluating

the use of simulation in parametric and data-driven models.

Providing a model to evaluate the objective functions in optimization is complex and
requires expert knowledge. Especially when dealing with complex systems, the
requirements to the modelers increase significantly. Additional problems occur with
the availability of dynamic systems having stochastic behaviour. However, a simulation
of material flow is capable of evaluating the objective functions and providing an
objective vector for a given decision vector. For data-driven modelling, the evaluation
of the objective function is automatable. Simulation-based optimization couples
parametric and data-driven simulation and optimization heuristics to optimize

complex systems using simulation.

4-2 Methods for simulation and optimization

This work proposes simulation-based optimization to solve problems in the design of
material flows. Owing to the complexity of production systems, the evaluation of
solution candidates is not possible without simulating material flows in a dynamic
environment. In this approach, simulation evaluates the objective functions for each
solution candidate by using techniques of data-driven modelling and simulation. Data-
driven simulation enables the replacement of entire models without reformulating the
mathematical models, constraints and objective functions of the optimization problem

by only replacing the data of the case-study. Enablers are generic interfaces that
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manage the exchange of decision vectors and objective vectors between optimization

means and the simulator.

In simulation-based optimization, simulation and optimization heuristics function in a
loop (see Figure 44). Generic optimization means provide values for the decision
variables and evaluate the objective functions. To optimize without knowledge about
the modelled system, this work recommends using metaheuristics. A conceptual
architecture for combining simulation and optimization is given in Figure 44, and
follows the study in [132]. In this approach, the optimization heuristics request the
evaluation of solution candidates from the simulator, which implements the solution
candidate in a model and executes a simulation experiment to evaluate the candidate.
After simulation, the simulator provides the optimization parameters to the

optimization heuristics, which interpret optimization parameters as objective

functions.
Request evaluation parameters
v |
Optimization mean Simulation model:
Decision variables Model of material flows in
Objective functions discrete-event-simulation
Meta-constraints Constraints in the system

| ')

Provide action parameters

Figure 44: Architecture for simulation and optimization

The scheme illustrates the interaction between optimization means and the simulation
model. The optimization means consists of the optimization heuristics, definition of
decision variables and objective functions, as well as the constraints of the
optimization problem. Decision variables and objective functions determine the
decision and objective vectors and define the interface between optimization means
and the simulation model. Meta-constraints describe relations between decision
variables and limits for the objective functions. The simulation model is represented
by the methods for data-driven simulation. These methods provide models of the
material flow, execute experiments and provide the decision vector as a service for

optimization. The simulation models inherit the constraints of the physical system. To
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provide these, the control logic of material flow is implemented within the methods
for data-driven simulation. In simulation-based optimization, the constrains of the
physical system are exclusively defined in the simulation model. However, models of

material flows can be substituted by models of other domains.

4-3 Case-Studies

This section presents three applications of data-driven simulation and optimization
from the digital shadow. The purpose of the case studies is to highlight the three added
values of this approach. First, using data-driven modelling and simulation enables
substituting the cases by replacing the simulation data of one case by the simulation
data of another case. This allows optimization for a wide range of cases by only
replacing simulation data. Second, data-driven modelling and provides complex
models for optimization. These models can inherit complex behaviour and control logic
of real systems and prevent explicit modelling of these constraints in objective
functions. This allows generic simulation models to be used to address a wide range of
optimization problems. Third, addressing different cases and problems can require
different optimization means and algorithms. Consequently, coupling data-driven
simulation and optimization enables the addressing of a wide range of problems
without requiring the definition of optimization problems and algorithms. To highlight
the abovementioned added values, this work uses data-driven simulation and
optimization to solve three design problems in the two industrial cases of a train
remanufacturing system and an ED. The following is an overview of the optimization

problem.

- Order Scheduling (section 4-3.1): scheduling of product arrivals in the train
remanufacturing system. In this problem, a fixed number of train orders are to
be scheduled by defining the sequence and timing of arrivals. The objective is
to minimize the makespan of trains and maximize productivity. The

optimization means for addressing the problem is a full design of experiments.
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- Resource allocation problem (section 0): allocation of resource to zones of the
ED. In this problem, a fixed number of resources, i.e. stretchers, doctors, nurses
and boxes, are to be allocated to two zones (orange and blue). The objective is
to minimize the LOS of patients in the hospital. The optimization means for

addressing this problem are using a GA and NSGA-II.

- Constrained optimization (section 0): allocation of resource to zones of the ED.
In this problem, an undefined number of resources, i.e. stretchers, doctors,
nurses and boxes, are to be allocated to two zones (orange and blue). The
objective is to minimize the number of resources without violating the
constraint of a maximum acceptable waiting time. The optimization means for

addressing this problem are using a GA and NSGA-II.

The following sections describe the problems, models and heuristics for solving the
optimization problems. The results in the sections for stochastic problems are the
average values for experiments with 20 replications. The detailed simulation results of

each individual experiment are in Appendices 1-5.

4-3.1 Scheduling problem

The scheduling problem tackles the optimization of the order schedule in the train
remanufacturing system. The objective is to minimize the average makespan of trains
and the takt-time for remanufacturing of trains. The problem is known as an order-
scheduling problem [148]. The order-scheduling problem is defined as a problem
where n customer orders with different products are to be processed on m different
machines. Each production order comprises multiple jobs to be executed on different
machines. Optimization attempts to schedule the arrival of a fixed number of orders
and minimize/maximum the objective function [132], [140]. Objective functions can
be the individual and overall makespans of the orders to be scheduled, as well as the
productivity of the production system. The problem is classified as an NP-hard problem
because: a) there are no steps known to arrive to the optimum solution; b) there is an
exponential number of solutions; and c) there is no algorithm that solves the problem

in polynomial runtime.
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In this specific case, there are two objective functions. The first objective function
describes minimizing the average makespan of all customer orders, and the second
objective function describes minimizing the takt time between the departure of
customer orders. There are two decision variables to act on. First decision variable is
the inter-arrival time (iat) describing the time between the arrival of two trains, and
the second decision variable is the number of trains to be allowed in the system at the
same moment (nbT). The latter parameter reflects the stock level on the shop floor.
When new trains arrive according to the inter-arrival time, but the stock level is
reached, arriving trains wait before entering the system until the stock level permits
the system to be entered. The focus of the case study is to obtain knowledge about
the impact of both decision variables. A design of experiments is defined to
systematically alternate both decision variables and provide knowledge about their

impact.

The simulation model describes the scheduling principle and rules of the train
remanufacturing system according to the description in section 1-5.2. Arriving trains
are processed according to their workplans, following the production method of a job-
shop production system. For the inter-arrival times, integer values between 0 and 9
are tested, describing the time between arrivals in weeks, with the inter-arrival time
of 0 describing a scenario where all trains arrive in the same moment. The types,
amounts and temporal capacities of resources are fixed. Values to be tested for the
inter-arrival time are integer values between 0 and 9, defining the number of weeks
between the arrival of trains. Values to be tested for the allowed number of trains are
integer values between 1 and 10. To understand the impact of the decision variables,
a full design of experiments is applied. There are 20 trains to be scheduled. The

decision variables and constraints of the optimization problem are as follows:

iat: labels the inter-arrival time, iat=1, 2, ..., 9
nbT: labels the maximum number of trains, nbt=1, 2, ..., 10

i: Index for trains, i=1, 2, ..., 20
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The constraints of the decision variables are modelled in the optimization problem.
The remaining constraints of the remanufacturing process, e.g. the sequence of
processes, precedence rules and conditions to start activities, are implemented in the
methods for data-driven simulation. The objectives of the optimization problems are
to minimize the average makespan of trains (Cmax), given by equation (1), and to
minimize the takt-time (T), given by equation (2). The inter-arrival time and takt-time

are measured in days.

I

. C ,
minimize Cpax = =" for 11 < i < 20 (1)
{=2 ti — tiq (2)
minimize T = -1 for11<i <20

The simulation model describes the arrival, dismantling, processing reassembly and
departure of trains. The input is the decision vector with the inter-arrival time and
maximum number of trains. The output is the objective vector with the makespans of
the trains i. The full design of experiments contains 100 experiments. To consider the
warmup of the model, the makespan and takt-time are measured from trains 11 to 20.
Simulation is self-terminating and stops when all trains have departed from the
system. A deterministic model describes the scheduling principles because the
experiments were not replicated. In the design of experiments, simulation was used
to evaluate all possible combinations of decision variables and provide values for the
objective functions. After executing the full design of experiments, the average
makespan and takt-time were calculated for all experiments. Applying the concepts of
Pareto dominance provided two sets of experiments, dominated and non-dominated
solutions. The set of dominated solutions describes trade-offs between makespan and
takt-time. Figure 45 illustrates the dominated solutions (red) and non-dominated
solutions (blue). The Pareto front links the non-dominated solutions; the experiments

of the Pareto front are provided in Table 13.
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Figure 45: Optimization results for scheduling problem
Table 13: Non-dominated solutions for scheduling problem
Action parameters Evaluation parameters
Experiment nbT [trains] iat [days] T [days] Cunax [days]
e91 10 0 24 260
e84 9 21 25 225
e71 8 0 26 210
e74 8 21 26 208
€62 7 7 26 185
e61 7 26 184
€53 6 14 27 162
e75 8 28 27 150
edl 5 0 29 148
€46 5 35 35 136
€66 7 35 35 136
e76 8 35 35 136
ed7 5 42 42 136
€29 3 56 56 130
€39 4 56 56 130
€49 5 56 56 130
e59 6 56 56 130
€69 7 56 56 130
e79 8 56 56 130
e89 9 56 56 130
€99 10 56 56 130

The Pareto front exposes a conflict between both evaluation parameters. In

experiments with a relatively low takt time, the average makespan increases, and in
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experiments with relatively low makespan, the takt time increases. Minimizing both
evaluation parameters at the same time is not possible. The experiments demonstrate
that acceptable compromises are reachable when the inter-arrival time is equal to the
takt-time, particularly for the experiments e46, e66, €76, ed7, e29. In these
experiments, the maximum number of trains loses impact on the evaluation
parameters. In experiments with inter-arrival times greater than five weeks (35 days),

there is no more waiting at the entrance, owing to the maximum number of trains.

4-3.2 Resource allocation problem

The resource allocation problem tackles the assignment of stretchers, doctors, nurses
and boxes to zones of an ED. The objective is to minimize the LOS of the patients. The
problem is known as a resource allocation problem, which is a problem where limited
resources are to be distributed among competing demands to minimize or maximize
an objective function (Katoh and Ibaraki, 1998). Owing to the domain, the literature
considers the problem more precisely as a resource allocation problem in healthcare
(Blake and Carter, 2002; Vlah Jeri¢ and Figueira, 2012). The problem is a combinatorial
optimization problem and attempts to find the best combination for the assignment.
The problem is classified as an NP-hard problem [149]. There are multiple reasons for
this classification: a) there are no steps known to arrive at the optimum solution; b)
there is an exponential number of solutions; and c) there is no algorithm that solves
the problem in polynomial runtime. Owing to its classification as NP-hard,
metaheuristics are appropriate for optimization. However, without testing all possible

solutions, there is no guarantee that the optimum will be found.

The optimization problem addresses the allocation of a fixed number of resources:
stretchers, doctors, nurses and boxes to zones. Zones are spatial and organizational
areas within the ED. In this particular case, there are three objective functions. The
objectives are to minimize the LOS of orange patients, blue patients and the patient
mix. For solving optimization problems with multi-objectives, the literature proposes
two strategies. In [140], [150], it is recommend to reformulate multiple objective

functions into one objective function by using weights, and to apply metaheuristics,
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e.g. with a GA to provide an optimum. In [132], it is recommended to formulate
multiple objective functions and apply Pareto optimization, e.g. with a non-dominated
GA, to explore the entire Pareto front of non-dominated solutions. In this section, the
optimization problem is tackled by both approaches. The purpose is to understand the
benefits and drawbacks for application in problem-solving. A comparison and insights

are presented in the discussion.

The resources consist of 30 stretchers, 6 doctors, 4 nurses, and 15 boxes, which are
assigned to the two zones of the ED. One zone is available for the orange patients,
whose conditions are more severe, and one zone for the blue patients, whose
conditions are less severe. The constraints for assigning the patients to the zones are
inherited in the methods for data-driven simulation. During the observation time of
one year, 35 240 patients arrive sequentially. Details about the system behaviour, e.g.
patient arrivals, prioritization, etc., are modelled within the simulation model. The list

of system parameters is as follows:

z: labels the zones, z=1, 2, ..., Z

Z: Number of zones

k: Index for resources, k=1, 2, ..., K

List of resources: My = {‘stretchers’, ‘doctors’, ‘nurses’, ‘boxes’}

I: Index of units at resource 13, 1 =1, 2, ..., L

Ly: Number of elements in the k" set of resources

i: Index for patients, i € {1, 2, ..., I}

I: Number of patients

The decision variables describe the decisions of the optimization problem. In equation
(3), the decision variable x;, determines the number of units of each resource k that
is assigned to a zone z. In addition, meta-constraints describe the relations between
the decision variables. The sum of units of each resource per zone must be equal to
the number of units of each resource (4), and each resource must be represented in

each zone with at least one unit (5). Exemplary for the doctors, each doctor must be
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assigned to one of the two zones (4), and there has to be at least one doctor in each

zone (5). The constraints of the decision variables are as follows:

xk’Z = 1, 2, ...,Lk (3)
Z
Zxk,z= Lk,k:1,2,...,K (4)
z=1
Xy =1, 2=12.2k=12.,K (5)

The objective functions use the LOS of the patients (C,,,4y ;) to describe the average
LOS for orange (Corange) and blue (Coive) patients in (6) and (7). Equation (8) describes
the average LOS of the patient mix (Cmix). All objective functions are to be minimized.
The LOS of the patients are provided by simulation. Minimization is performed while
changing values of xy, ,; the remaining system variables are considered as static. The
decision variables o; and b; in (9) and (10) support calculating the LOS for orange and

blue patients.

e e 2l= 0;xC i

minimize Corange = W (6)

L i=1 Yi max,i 7
minimize Cyye = b (7)

j=1%J
TS S _ VI Cmax,i
minimize Cpjx = Lj=g (8)
0 = {1, if severity e; of patient p; is 'orange’ (9)
o, otherwise
b = {1, if severity e; of patient p; is 'blue’' (10)
L0, otherwise
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The simulation model describes the arrival, treatment and departure of patients. After
arrival, each patient follows an individual pathway. During the pathway, patients are
assigned to stretchers and zones and are treated by the resources. The input is the
decision vector with the assignment of resources to zones. The output is the objective
vector with the LOS of the patients i. For optimization, two metaheuristics, a GA and
NSGA-II with open source libraries [141] are tested. The objective function for the GA
is the length of stay for the patient mix, compromising orange and blue patients. The
objective functions for NSGA-II are the LOS for orange and blue patients as well as the
patient mix. A warmup period was not used, since no extended transient behaviour
was observed and empty states occurred regularly during the night. To consider
uncertainties in the arrivals and pathways of patients, experiments were replicated 20

times. The results are provided in Table 14 and Table 15.

Table 14: Optimization results for resource allocation problem with GA

Action parameters Evaluation parameters
ox Stretchers Doctors Nurses Boxes LOS(0) LOS(b) LOS(mix)
P (o/b) (o/b) (o/b) (o/b) [min] [min] [min]
e0 14/16 3/3 1/3 4/10 - - 161

In Table 14, the GA provides one experiment with the minimum LOS for the patient
mix. Weighting the objective functions reduces the two objective functions for orange
and blue patients to one objective function for the mix. The reduction enables the
ranking of solution candidates and provides one minimum solution candidate. This
solution candidate does not match with the proposed solution of the future situation
(S2) for the ED that was to assign 20 stretchers, 4 doctors, 2 nurses and 10 boxes to
the orange zone, and 10 stretchers, 2 doctors, 2 nurses and 2 boxes to the blue zone.
At least for the objective of improving the LOS of the patient mix the planned, future

situation does not provide the minimum.

Table 15: Optimization results for resource allocation problem with NSGA-II

Action parameters Evaluation parameters
ox Stretchers Doctors Nurses Boxes LOS(0) LOS(b) LOS(mix)
P (o/b) (o/b) (o/b) (o/b) [min] [min] [min]
e0 22/8 4/2 1/3 11/4 239 147 178
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el 12/18 1/5 2/2 2/13 752 104 326
e2 14/16 373 2/2 10/5 240 120 161
e3 7/23 2/4 1/3 1/14 453 106 225
e4 7/23 373 1/3 1/14 445 107 222
e5 6/24 2/4 1/3 4/11 612 105 279
€6 6/24 2/4 1/3 3/12 612 105 279
e7 20/10 4/2 1/3 11/4 239 134 170
e8 8/22 2/4 1/3 8/7 288 111 171
e9 7/23 2/4 2/2 2/13 339 108 187
el0 7/23 2/4 1/3 2/13 339 108 187
ell 7/23 373 1/3 3/12 327 109 184
el2 9/21 2/4 1/3 11/4 268 113 166
el3 19/11 4/2 1/3 11/4 239 131 168
el4 12/18 2/4 2/2 3/12 249 117 162
els 18/12 3/3 1/3 11/4 239 123 163
el6 16/14 4/2 1/3 11/4 239 128 166
el7 10/20 2/4 2/2 2/13 260 115 164
el8 19/11 3/3 1/3 11/4 239 125 164
el9 11/19 2/4 2/2 2/13 254 116 163

In Table 15, NSGA-II provides multiple experiments with the minimum LOS for the
orange and blue patients and the patient mix. Using multiple objective functions in
Pareto optimization enables multiple non-dominated solution candidates on the
Pareto front. The simulation results from section O provide average LOS values of 241,
132, and 168 min for orange and blue patients and the patient mix, respectively.
Comparing these values with the optimization results shows that there are
configurations that perform better for each of the three objective functions,
particularly el15, e16 and e18. Comparison shows that the planned future situation
(S2) is a dominated solution candidate that is not on the Pareto front. Optimization
provides three experiments that perform better for each of the stated objective

functions as S2.

4-3.3 Constrained optimization problem

The optimization problem tackles the assignment of stretchers, doctors, nurses and
boxes to zones of an ED. In this problem, the number of resources is not fixed. The
objective is to minimize the resources that are assigned to each zone. Additionally,

there are constraints on the objective functions. Constraints define the acceptable
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LOS. These constraints are to be maintained while minimizing the resources. Again, as
in section 4-3.1, the problem is classified a resource allocation problem. However,
constraints on the LOS classify the problem as a constrained optimization problem,
which focus on minimizing or maximizing an objective function with constraints [151].
Constraints are not linked to specific optimization problems. Moreover, constraints can
occur in different optimization problems, for example, resource allocation [152]. Based
on the criteria of section 4-3.1, the problem is classified as a multi-objective NP-hard

problem.

The optimization problem addresses minimizing the number of stretchers, doctors,
nurses and boxes, that are assigned to each zone. Similarly, the objective function
describes the number of stretchers, doctors, nurses and boxes that are assigned to
each zone. Decision variables and objective functions are identical to those in the
previous problem. The constraints define the acceptable LOS for orange and blue
patients as well as the patient mix. The problem is a multi-objective problem.
Analogous to section 4-3.1, two strategies are appropriate to optimize the multi-
objective problem. The weighted sum method reformulates the objective functions
and introduces weights [140]; Pareto optimization is applied for multiple objectives to
provide a set of non-dominated solutions [132]. Both strategies are tested and
compared in this section. To ensure that the optimization constraints are upheld, two
strategies are available. The introduction of penalty functions allows the fitness of a
solution candidate to be degraded, if the constraints are not maintained and
unacceptable solutions are given [151]. Another approach is to include constraints
along with the decision variables and objective functions as an additional entity in the
optimization algorithm [141]. The insights from the case study are presented in the

discussion (section 4-4).

As resources, 60 stretchers, 12 doctors, 8 nurses, and 30 boxes are available for both
zones of the ED. One zone is available for the orange patients, whose cases are more
severe, and one zone is for the blue patients, whose cases are less severe. The
constraints for assigning the patients to the zones are inherited in the methods for

data-driven simulation. During the observation time of one year, 35240 patients

106



Simulation and Optimization

arrived sequentially. Details about the system behaviour, e.g. patient arrivals,
prioritization, etc., are modelled within the simulation model. The following is the list

of system parameters:

z: labels the zones, z=1,..., Z

Z: Number of zones

k: Index for resources, k=1, 2, ..., K

List of resources: My = {'stretchers’, ‘doctors’, ‘nurses’, ‘boxes’}

I: Index of units at resource 1y, 1 =1, 2, ..., L

Li: Number of elements in the k" set of resources

i: Index for patients, i €{1, 2, ..., I}

I: Number of patients

Ccrit: Threshold for length of stay

The decision variables describe the decisions of the optimization problem. In (11) the
decision variable x;, determines the number of units of each resource k in a zone z.
Additionally, the meta-constraints describe the relationship between the decision
variables. The meta-constraints in (12) ensure that each resource is represented in
each zone with at least one unit. Exemplary for the doctors, there is at least one doctor
in each zone. Equation (13) describes the constraint of the acceptable LOS (Ccrit) values,
which are 132, 241, and 168 min for the blue and orange patients and the patient mix,
respectively. The origin of the constraints are the simulation results for the planned
future situation in section 0. The purpose is to understand if the same result is
achievable with fewer stretchers, doctors, nurses and boxes. The following are the
constraints of the decision variables:
Ly

xk’Z = 1, 2,...,Lk ,xk'z = 1, 2,...,7 (11)

Xkz = 1 foreachz=1,2,..,Zand eachk =1,2,...,K (12)
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Cmax,i

I

I
= Ccrit (13)

i=1

The objective function describes the minimization of the number of resources that are

assigned to both zones. In equation (14), x represents the vector of decision variables

Xk z- Minimization is performed with respect to x, ,. While minimizing the sum of all

resources that are assigned to all zones, the remaining system variables do not move.

For optimization, the constraint is the critical waiting time.

K Z
. (14)
minimize f(x) = z z Xk z
k=1z=1
—C
with the constraint: mlaxl < Corit

The simulation model describes the arrival, treatment and departure of patients. After
arrival, each patient follows an individual pathway. During the pathway, patients are
assigned to stretchers and zones and are treated by the resources. The input is the
decision vector with the assignment of resources to zones. The output is the objective
vector with the LOS of the patients i. For optimization two metaheuristics, a GA and
NSGA-II with open source libraries [141] are tested. The objective function for the GA
is the sum of the number of resources that is available in each zone. The objective
functions for NSGA-Il are the number of resources that are assigned to each zone. A
warmup period was not used, since no extended transient behaviour was observed
and empty states occurred regularly during the night. To consider uncertainties,
experiments were replicated 20 times. Table 16 and Table 17 provide optimization

results of the GA and NSGA-II.

Table 16: Optimization results for constraint optimization problem (GA)

Action parameters & Evaluation parameters Values for constraints

Stretcher | Doctors Nurses Boxes
exp (0/b) (o/b) (0/b) (o/b) LOS(0) LOS(b) LOS(m)
el 19/11 4/3 12 3/3 239 125 164
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Table 16 provides the optimization results of the GA with the minimum number of
resources. Summing up the number of each resource reduces the eight objective
functions to one objective function. Providing one objective function enables the
solution candidates to be ranked and provides one minimum. The minimum solution
candidates have LOS values of 239, 125, and 164 min for orange, blue and mixed
patients, respectively, with the resources of e0. The results are better than in the
future situation with values of 241, 132, and 168 min, respectively (section 0). In the
experiment, the number of stretchers, nurses and boxes was smaller than in the future
situation; however, an additional doctor was required. The decision-maker must

decide if the minimum from the optimization represents a preferable solution.

Table 17: Optimization results for constraint optimization problem (NSGA-II)

Action parameters & Evaluation parameters Values for constraints
exp | 5 ”(‘;’fb’)""’ b ). o) lj;’j‘bjs LOS(0) LOS(b) LOS(m)
e0 16/10 4/4 2/1 4/4 238 126 164
el 16/11 3/4 2/1 3/3 239 123 163
e2 16/12 4/3 2/1 4/4 238 122 162
e3 15/13 4/4 2/1 3/4 239 121 161
ed 16/11 3/3 2/1 5/4 239 124 163
e5 17/10 4/4 2/1 3/5 239 126 164
e6 15/11 4/4 2/1 3/5 239 123 163
e7 17/10 3/4 2/1 4/3 239 126 165
e8 14/10 4/4 2/1 5/4 239 125 164
e9 15/11 3/4 2/1 4/3 239 123 163
el0 17/13 4/2 2/1 4/3 238 128 166
ell 14/11 4/3 2/1 5/4 239 124 163

In Table 17, the NSGA-II provides multiple experiments with the minimum number of
stretchers, doctors, nurses and boxes in the blue and orange zone. Using multiple
objective functions in Pareto optimization enable multiple non-dominated solution
candidates on the Pareto front. However, in the optimization, only 12 non-dominated
solution candidates were identified. Following the concept of the Pareto optimum,
there is no best solution. However, the results show that there are two experiments,
e4 and el0, that use fewer resources than the future situation S2 from section 0 and

provide better performance (see Table 18).
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Table 18: Comparison of S2, e4, and e10

o Stretchers Doctors Nurses Boxes LOS“(o) LOAS-'(b) LOS(mix)
(o/b) (o/b) (o/b) (o/b) [min] [min] [min]
S2 20/10 4/2 2/2 10/5 241 138 168
ed 16/11 3/3 2/1 5/4 241 126 165
el 17/13 4/2 2/1 4/3 240 131 168

4-4 Discussion

The leading question of this chapter is RQ2: What are the methods for optimizing
material flows through the digital shadow and data-driven simulation? For
addressing this question, simulation data (Chapter 1), libraries of partial models and
methods for data-driven simulation (Chapter 2) are assumed to be available. The
method to tackle optimization problems is implementation of data-driven simulation
from data of the digital shadow in the method of simulation-based optimization.
Simulation and optimization provide a generic architecture consisting of optimization
algorithms and simulation models [132], where the exchange of action and evaluation
parameters realize the interface between both. However, in the proposed method of
data-driven simulation and optimization, the simulation model is represented by the
library of case-specific models, simulation data and the methods for data-driven
simulation (see section 3-2). The interface between optimization algorithms and
simulation models is realized via the simulation data. Values for action parameters are
edited into the simulation data. For each new set of action parameters, data-driven
modelling provides an individual model, runs simulation experiments and provides

evaluation parameters to the optimization algorithm.

Request evaluation parameters

I !
Library of case- Simulation: Optimization
specific models Data-driven Model of material flows in Decision variables
simulation discrete-event-simulation </> Objective functions
Constraints in the system Meta-constraints
Particular model Optimization
algorithm

Simulation data

t

Provide action parameters
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Figure 46: Data-driven simulation and optimization

The generic architecture of simulation and optimization enables optimization for a
wide range of problems by using simulation in parametric models for evaluating the
objective function. The proposed method of data-driven simulation and optimization
enhances the decision space of the optimization problem. By writing action
parameters in the simulation data and instantiating models from libraries, non-
parametric changes in the model can be evaluated, e.g. changing the product mix,
adding and removing resources and changing the organization of work. Examples will
be presented in the case-study of the ED in Chapter 5, in which new assignments of
stretchers to patients and the changes in the assignment of processes to activities are

described. Both represent qualitative aspects of system control.

The method of data-driven simulation brings added value to optimization by
generating an increased amount of genericity. The methods independent replacement
of the simulation model of the case, optimization problem to be solved, and the
optimization algorithm. This degree of freedom enables a wide range of optimization
problems to be solved. The details of substituting simulation models, optimization

problems and optimization algorithms is described in the following paragraphs.

Replacing the simulation model enables optimization problems to be addressed in
different systems. In this chapter, optimization for three problems in two case-studies
is presented, a train remanufacturing system and an emergency department. The
models of the two systems were substituted by replacing the models of the case-
specific library and simulation data. The algorithm for data-driven simulation and the
models of the partial library remained consistent for both problems. To address
additional cases, the derivation of new models in the case-specific library and the
replacement of simulation data are required. The limitations are the partial models

that are designed for simulating material flows in job-shop production systems.

Replacing optimization problems enables different optimization problems to be
addressed. The problems in this chapter belong to three general groups: scheduling

problems, resource allocation problems, and constraint optimization problems. The
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replacement of optimization problems is enabled by using generic simulation
models that simulate experiments for different values of the decision variables and
provide results for the objective functions. The required activities to replace the
problem are defining the decision variables, objective functions and meta-constraints
of decision variables and objective functions. The remaining constraints of the system
are implemented within the simulation model to avoid the formulation of
mathematical models and reformulation when switching between different
optimization problems. An additional problem addressed in [139] provides an
application and describes using a GA to optimize for a single-objective sequencing

problem.

Replacing the optimization algorithm allows substituting the algorithm with different
optimization means. In this work, what-if scenarios (section 0), design of experiments
(section 4-3.1), and optimization (section 0 and 0) with GA and NSGA-Il were tested.
Benefits were experienced when using NSGA-Il, especially for multi-objective
problems. The algorithm provides non-dominated solutions on the Pareto front,
representing the trade-offs between multiple objective functions, different from GAs
and design of experiments. The GA provides the optimized solution for the weighted
objective functions, and design of experiments provides the entire set of solutions,

including dominated solutions; non-dominated solutions are to be identified manually.

For optimizing the ED, two optimization algorithms, GAs and NSGA-Il were compared.
Limitations of the GA were encountered when formulating the objective function.
Weighting multiple objectives to arrive at a single objective function is not possible
without expert knowledge. The NSGA-II enabled optimization for multiple objectives
without weighting and provided a set of non-dominated solutions representing trade-
offs between the objective functions. However, by using weights, the GA creates a
ranking and provides the best solution, while the NSGA-Il provides a set of non-
dominated solutions and requires expert knowledge to choose a solution for
application. Compared to the design of experiments, the NSGA-II provides solutions
exclusively on the Pareto front. In the case-study of the scheduling problem, the

solutions were manually classified as dominated and non-dominated. For optimizing
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complex systems, manual classification can become difficult and time-consuming,

while Pareto optimization provides only the set of non-dominated solutions.

The train remanufacturing system was modelled in parallel with mixed-integer linear
programming [153]. The objective of this model was to tackle two problems in
optimization: the scheduling of production tasks, and minimizing the resources on the
shop floor. New insights were retrieved by comparing optimization with mixed-integer
linear programming and simulation. Providing a mathematical model to evaluate the
objective function is a manual activity with high requirements to the system modelers,
particularly when modelling complex systems in a dynamic environment while
considering uncertainties. Data-driven simulation provides values for the objective
functions automatically on request, based on the data from the digital shadow.
However, limitations are linked to the high requirements for computing power for
simulation. The mathematical model was able to provide the performance of solution
candidates instantly, while simulation of complex systems requires multiple seconds.

Consequently, limitations in terms of the search space occurcur.
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Chapter 5 Problem-Solving

This chapter is dedicated to the question of model change in context of the redesign
of manufacturing systems (RQ3): What are the methods for solving problems in
design of material flows by the digital shadow and data-driven simulation? This
chapter explains how the data-driven simulation from Chapter 3 and optimization from
Chapter 4 can be applied to solve problems in design by changing the model (see
Figure 47). To address this question, this chapter provides the background of inventive
design (section 0), provides the methods to support model change (section 0), applies
the methods in the case-study to solve a design problem (section 0), and provides a

discussion of the methods and insights gained in the case-studies (section 0).

Are all
State problems Get system Simulate e YES
o X objectives
and objectives model experiments
reached?

NO
I Are there Accent
Change model acceptable P )
compromise
solutions? Q

Figure 47: Changing the model in problem-solving

The background provides an overview of the methods of inventive design and shows
how inventive design uses the concept of model change to improve systems when
optimization cannot achieve the objectives. The methods of this work use the results
from optimization to solve problems by highlighting the system limitations, extracting
contradictions, and changing the model. The presented case study applies the
methods to solve problems in the design of the ED. The case-study highlights the
added value of applying data-driven simulation (Chapter 3) and optimization (Chapter
4) in problem-solving and shows how the methods of inventive design can address

problems that are not solvable by simulation.

114



Problem-Solving

5-1 Background

In the problem-solving process illustrated in Figure 47, two approaches are considered
separately or combined to solve problems and create (new) solution concepts:
optimization and inventive design [3]. Optimization increases the system efficiency by
optimizing the system parameters. Inventive design introduces new parameters during
the design process. As stated in section 1.1.1, optimization is the first step of problem-
solving. Experimental data from optimization are required to change the model by
inventive design methods. To provide the background, section O describes the
methods for retrieving experimental data for problem-solving, and section 0 describes
the methods to exploit experimental data and provide model change. The methods

from state of the art will be applied in the case study to solve problems in design.

5-1.1 Provide experimental data

In the literature, the problem-solving process of Figure 47 is applied in multiple works
in different domains. Optimization has the purpose of generating data with a link
between action and the evaluation parameters. In inventive design, the data are used
to formulate contradictions and solve the problem. Optimization and execution of
experiments is crucial for problem-solving. The purpose is to evaluate alternative
solution concepts and provide data about the link between the decision vector and
the objective vector in the optimization problem. To obtain this knowledge, a wide

range of techniques can be applied.

In the domain of train design, the authors in [154] use expert interviews to evaluate
alternative configurations of trains, represented by three action parameters versus ten
evaluation parameters. The authors use the gathered data to identify multiple
technical contradictions in the system. Despite recognizing the problem as not
solvable, they are able to state the problem by using expert interviews providing the

evaluation parameters for different solution candidates.

In the domain of electrical circuit breakers, the authors in [14], [155]-[157] use a

design of experiment with physical prototypes to understand the impact of five action
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parameters on six evaluation parameters. From the experimental data they provide
the technical and physical contradictions of the system. To solve the problem, the

authors use the TRIZ-principle separation in space and provide a solution concept [14].

In the domain of lattice structures, the authors in [158], [159] extract the link between
action and evaluation parameters from scientific research papers. For the extraction
of action and evaluation parameters, they use algorithms for natural language
processing and formulate a problem-graph. From the action of evaluation parameters,
they extract the technical and physical contradictions and solve a design problem

having a lattice structure.

In the domain of cutting processes, the authors in [150] use a design of experiments
with physical prototypes to understand the impact of three action parameters on two
evaluation parameters. The authors provide a mathematical model to describe the link
between action and evaluation parameters and use optimization with a GA and the
weighted-sum method to provide a solution candidate for the multi-objective
optimization problem. However, the results of the optimization are not able to solve

the design problem. Therefore, the authors propose the use of TRIZ principles.

In the domain of cutting tools, the authors in [7] use a design of experiments with
physical prototypes to understand the impact of five action parameters on six
evaluation parameters. From the experimental data they can highlight, that there is no
solution that satisfies the design problem. Based on the experimental data, they
describe the system of contradictions and provide a new solution concept by using the

TRIZ principle of separation.

In the domain of warehousing, the authors in [4], [15] use simulation of material flows
to understand the link between action and evaluation parameters. To define
simulation experiments, they use a design of experiments. Experimentation in virtual
models allows them to execute a large number of experiments in a short time. With
the experimental data, they provide the Pareto front and describe the system of
contradictions. Based on the reformulated problem, the authors apply methods of

TRIZ to redesign the material flows and provide new solution concepts.
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The analysis of previous works shows that to obtain experimental data, different
approaches can be used: expert interviews, experiments in physical prototypes and
experiments in digital models. For analysing complex and large-scale systems with a
big decision space, expert interviews and prototypes have limitations. Digital models
and simulation can be used to analyse a large number of solution concepts without
harming the system to be designed. To define the action parameters in optimization,
the studies use design of experiments and what-if scenarios. These studies did not use
algorithmic optimization to provide experimental data. Therefore, is should be
determined by testing if optimization (particularly, multi-objective optimization) can

provide the relevant data to extract contradictions and support model change.

5-1.2 Bridge between optimization and model change

Inventive design addresses the overcoming of system limitations by providing a
qualitative change of the model or the system such that it fits the solution
requirements. The actual model change is a creative process. In contrast, optimization
provides solution candidates by quantitative changes of action parameters. The focus
of inventive design is on exploiting experimental results and generating knowledge
about critical systems. The literature provides methods to support this process. Based
on the simulation results from the design of experiments in the warehouse, a
dominance analysis is used in [4] to classify the experiments as dominated and non-
dominated. Based on the concept of Pareto dominance, an experiment is better (non-
dominated experiment) than another (dominated experiment) if it has at least as good
performance for all objectives and is more successful for at least one objective. The
set of all non-dominated solutions describes the Pareto front, which represents the
best compromise solution, provides choices for the decision-maker and represents

various trade-offs between goals.

When the objective is not attainable with optimization, model change can be applied
to solve the inventive problem. In [155], to bridge the gap from detecting the Pareto
front to model change, a system of contradiction is formulated to define the problem,

as illustrated in Figure 48 (based on [16]). For describing the system of contradictions,
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the authors first identify the paired technical contradiction by finding a situation where
improvement of one aspect of a system leads to degradation of another aspect, and
vice versa. After identifying the paired technical contradiction, a physical contradiction
is identified within which one or multiple action parameter(s) must take on different
values at the same moment. The system of contradictions is then formulated. The
concept of the system of contradictions is part of OTSM-TRIZ, which is presented in
[16]. The figure illustrates a ‘classical’ contradiction and a generalized contradiction.
The classical contradictory situation describes a conflict between two evaluation
parameters that is caused by a conflict with one action parameter. A paired generalized
technical contradiction describes a conflict between two solution concepts with
multiple evaluation parameters. The origin, the generalized physical contradiction, is

expressed by a set of action parameters.

but then it degrades EVALUATION PARAMETER 2
but then it doesn’t fit CONCEPT 2 OF EVALUATION PARAMETERS

has to be VALUE 1< to improve EVALUATION PARAMETER 1
Action Parameter / has to be CONCEPT 1 to satisfy CONCEPT 1 OF EVALUATION PARAMETERS
(of an element) / 4l . DESIRED
) RESULT
Set of action parameters to improve EVALUATION PARAMETER 2
(of a system) has to be VALUE 2 < to satisfy CONCEPT 2 OF EVALUATION PARAMETERS
has to be CONCEPT 2 but then it degrades EVALUATION PARAMETER 1

but then it doesn’t fit CONCEPT 1 OF EVALUATION PARAMETERS
Figure 48: System of contradictions

As initially stated