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Abstract

The exact mechanism with which a fluid interface interacts dynamically with
a solid surface during wetting is still open to research. Among the many
subjects addressed in this field in the literature, the “moving contact line
problem” is one that has been ubiquitous since at least the 1970s, where
a paradox in the description of the contact line was found to exist. The
paradox in a few words is the next: macroscopic hydrodynamic models using
the no-slip boundary condition will predict infinite shear stress close to the
contact line.
The most promising studies to tackle the problem come from information pro-
vided by molecular dynamics simulations. They have confirmed that close
to the contact line, the no-slip boundary condition is relaxed to some form
of slip. Unfortunately, molecular simulations are still limited to very small
scales in space and time, so hydrodynamic models and numerical simulations
based on Navier-Stokes equations are still needed. In these simulations, the
Continuum Surface Force model CSF for the calculation of the capillary
contribution introduces a grid dependent contact line velocity and shear at
the wall, which is a problem we proposed to solve here. In this work, we
analyze the flow close to the moving contact line in the context of corner
stokes-flow and explore the effects of the boundary conditions at the wall.
One of these conditions offered in the literature, provides relief to the shear
divergence and also opens the possibility to observe Moffatt vortices in the
vicinity of the contact line, not yet seen in experiments or numerical simu-
lations. We explore this possibility analytically and then numerically using
the code JADIM. The latter task is constrained by the contamination of the
velocity field by the so-called spurious velocities if the VOF method is used.
To solved this inconvenient, a very promising version of the front-tracking
method with lagrangian markers is implemented and enhanced to handle
non-uniform distribution of markers without losing its spurious velocities
elimination features.
Numerical tests are conducted to validate the implementation, spurious ve-
locities are reduce close to machine precision and comparison to benchmark
data is performed obtaining good agreement. Tests including contact lines
are then compared with exact solutions for shape analyzing the effect of the
Bond number, showing remarkable results. Numerical experiments with this
implementation close to a contact line show the existence of vortical patterns
during of spreading.
Finally, and based on the theoretical background developed in this work, a
new sub-grid model method is proposed for macroscopic numerical simula-
tions and implemented in the new front-tracking method of JADIM. Quanti-
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tative data is obtained and compared to numerical and experimental spread-
ing cases revealing improvement of grid convergence and excellent agreement.
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Résumé

Les mécanismes d’interaction entre une interface fluide et une paroi solide en
situation de mouillage sont encore des problèmes ouverts. Parmi les nom-
breuses interrogations traitées dans la littérature, le “problème de la ligne
de contact en mouvement” est très étudié depuis les années 1970, lorsque
le paradoxe lié au mouvement de la ligne de contact a été identifié. En
quelques mots ce paradoxe est le suivant : les modèles hydrodynamiques
macroscopiques utilisant une condition de non-glissement à la paroi prédisent
un cisaillement infini au niveau de la ligne de contact. Des études promet-
teuses pour aborder ce problème se sont appuyées sur des résultats fournis
par les simulations dynamiques moléculaires. Elles confirment la présence de
glissement au niveau de la ligne de contact. Malheureusement, les simulations
de type dynamique moléculaire sont limitées à de très petites échelles à la fois
temporelles et spatiales de sorte que les modèles hydrodynamiques et les sim-
ulations numériques des équations de Navier-Stokes restent nécessaires. Dans
ce type de simulation, la méthode Continuum Surface Force pour traiter le
terme capillaire entraine une vitesse et un cisaillement au niveau de la ligne de
contact dépendant de la résolution, problème qui est abordé dans ce travail.

L’écoulement au voisinage de la ligne de contact est analysé théoriquement
dans la limite des écoulements de Stokes et l’effet des conditions limites à
la paroi est exploré. Une des conditions proposées dans la littérature per-
met de lever la divergence du cisaillement et rend possible l’observation de
tourbillons de Moffatt au voisinage de la ligne de contact ce qui reste en-
core à observer que ce soit expérimentalement ou numériquement. Cette
possibilité est explorée de manière théorique puis numérique à l’aide du code
JADIM. Sur le plan numérique, la présence de courants parasites est apparue
comme limitante si la méthode VoF est utilisée. Pour remédier à cet obstacle
numérique, une version très prometteuse de la méthode front-tracking util-
isant des markers Lagrangien a été implémentée et améliorée pour permettre
de traiter des distributions non-uniformes de markers sans perdre les perfor-
mance de réduction significative des courants parasites. De nombreux tests
ont été réalisés pour valider la méthode développée et montre la réduction à la
précision machine des courants parasites. La méthode est également validée
pour la simulation des lignes de contact statiques et dynamiques avant d’être
utilisée pour l’étude de tourbillons induits par la mise en mouvement d’une
ligne de contact.

Finalement, s’appuyant sur les développements théoriques de ce travail,
un nouveau modèle de sous maille est proposé pour permettre la simulation
de lignes de contact aux échelles macroscopiques. Il est implémenté dans
la nouvelle méthode front-tracking introduite dans JADIM. Les premiers



résultats montrent une amélioration partielle de l’effet du maillage sur la
vitesse de la ligne de contact mais une maitrise totale du cisaillement. Les
simulations de l’étalement de gouttes permet de retrouver de manière très
satisfaisante les résultats théoriques et expérimentaux de référence.
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Chapter 1

Introduction

Wetting phenomena play an important role in many industrial, environmen-
tal and biological processes like lubrication, evaporation, chemical reactions,
etc. Being a physical phenomenon so omnipresent in our day-by-day life, it
is ironic that our knowledge of its functioning mechanisms at all scales is
very limited. In fact, literature on the subject is vast but it seems that the
precise mechanism with which a fluid interface advances over a solid surface
is still only partially understood (see Blake, 2006; Bonn et al., 2009) and a
consistent system of equations to model this multi-scale problem is still an
open question, specially for numerical simulation purposes. Special attention
has been given to the “moving contact line problem” where shear stress on
the wall diverges as one approach the contact line when conventional no-slip
boundary condition is applied. This singularity, known sometimes as the
Huh and Scriven’s paradox (see Huh and Scriven, 1971; Bonn et al., 2009)
can be interpreted, by simple means, as the need of a infinite force to sink a
solid body into a fluid, which is physically incorrect. It is accepted that there
must be a microscopic scale mechanism which must be taken into account to
solve this problem, although by the time of this paradox became evident, the
no-slip boundary condition was pretty well established, quoting Batchelor
(2000):

“..the validity of the no-slip boundary condition at a fluid-solid interface
was debated for some years during the last century, there being some doubt
about whether molecular interactions at such an interface lead to momentum
transfer of the same nature as that at a surface in the interior of a fluid;
but the absence of slip at a rigid wall is now amply confirmed by direct ob-
servations and by the correctness of its many consequences under normal
conditions...”.
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Among the mechanisms proposed to remove the singularity of dissipation
at the contact line, a finite slippage at the solid surface has been amply in-
vestigated. This slippage consists on relaxing the no slip condition in the
region of the moving contact line. In other words, we allow the fluid to have
a relative velocity with respect to the wall (de Gennes, 1985).
The most simple form of the slip condition is the Navier-slip condition
(Navier, 1823) or linear slip-shear in which the velocity on the wall should
be a proportion of the normal velocity gradient (See equation 1.1).

u|y=0 = λ
∂u

∂y

∣∣∣∣
y=0

(1.1)

Where λ is the slip length or slip coefficient (a measure of the length over
which the slip is important) and is usually considered to be extremely small
for hydrophilic surfaces and tens of nanometers for hydrophobic ones (Lauga
and Stone, 2003). There are however other models, less used but present in
literature (see Greenspan, 1978; Haley and Miksis, 1991): The inverse linear
slip and the inverse quadratic slip (See equations 1.2 and 1.3).

u|y=0 =
λ2

y

∂u

∂y

∣∣∣∣
y=0

(1.2)

u|y=0 =
λ3

y2

∂u

∂y

∣∣∣∣
y=0

(1.3)

Note that these slip formulations are only valid for contact angles below π/2.
Although the exact mechanism responsible for this slip is still open to inves-
tigation, Molecular Dynamics have confirmed its existence, or at least that
the no-slip boundary condition breaks at that scale level (Thompson and
Robbins, 1989; Koplik and Banavar, 1993).
Classic references on the use of slippage close to the contact line are Huh
and Scriven (1971), Dussan V. and Davis (1974) and Voinov (1976). Huh
and Mason (1977) analyse the case of a steady state movement of a liquid
meniscus applying two different slip conditions. One consists on applying
zero shear on the inner region (with size λ) and regular shear on the outer
region. The other one consists on applying the slip in the whole wall as
stated in equation 1.1. Analytic expresions for the shape of the interface
are obtained. Hocking Hocking (1977) applied a similar solution for a gen-
eral moving fluid interface using the Navier slip condition and a numerical
approach is use to obtain a bounded force on the wall. He considers that
the microscopic angle is sufficient to describe the phenomena. In the same
line of aproximation, Hocking and Rivers (1982) obtained an analytical so-
lution for the interface shape relating the microscopic to the macroscopic
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contact angle through the capillary number when studying the spreading of
a drop. Cox (1986), using matched asymptotic expansions for Ca << 1,
obtained an equivalent expression as Hocking and Rivers (1982) but without
the knowledge a priori of the interface shape. The same technique is used by
Cox (1998) when Reynolds numbers outside the inner region are considered
large. These analytical solutions have been used intensively in the literature
and numerical codes (see Dupont, 2007; Afkhami et al., 2009; Dupont and
Legendre, 2010; Legendre and Maglio, 2013; Sui and Spelt, 2013b; Legendre
and Maglio, 2015; Solomenko et al., 2017, etc). The results obtained are in
general in good agreement with experimental data but all of them share a
common deficiency: lack of rigorous grid convergence for velocity and shear
at the wall.
Kirkinis and Davis (2013, 2014), introduce a special Navier-slip condition
with λ = f(r) into the Stokes flow analysis on a corner aiming to relieve the
shear unboundedness an preserve the no slip boundary conditions away from
the contact line. They demonstrated that an infinite sequence of vortices
should exist (Moffatt vortices), confirming what Moffatt (1964), and Ander-
son and Davis (1993) had found before on a similar analysis without slippage.
Both findings are yet to be found experimentally, although as mentioned in
those references this would be extremely difficult because of the scale and
intensity of those vortices.
On the other hand, Shikhmurzaev (1993a,b, 1994, 1996, 1997a,b, 2005, 2011);
Blake et al. (1999); Blake (2002) and Billingham (2008) consider that wetting
is a process of forming interfaces. Basically, this model states that surface
tension on the interface of two fluids is not a constant, but need to change
in a finite time to the appropriate value at the solid-liquid interface. Lo-
cal change in density and surface tension are responsible for the slip near
the contact line and the angle deviation from its static value to a dynamic
value. A very interesting feature of this model is that the dynamic contact
angle becomes an output variable. Contact angle dependence with contact
line velocity and other far-field variables is confirmed in Blake et al. (1999),
Blake (2002), Wilson et al. (2006). Sprittles and Shikhmurzaev (2013) im-
plemented Shikmurzaev’s model into a finite element code for capillary rise,
obtaining good agreement with experiments.
Another strategy to analyze the moving contact line is to use data obtained
from molecular simulations. The work of Qian et al. (2003a,b) and Qian
et al. (2005) proposed the Generalized Navier Boundary Condition (GNBC)
for hydrodynamic models. In that study, it is theorized based on molecular
simulations, that shear at the wall close to the contact line is composed of a
viscous part and the non-viscous “unbalanced Young stress” giving remark-
ably good results in comparison with molecular dynamic simulations. The
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GNBC in the context of (ALE) can be found also in Gerbeau and Lelievre
(2008). More recently a model that combines sequentially macroscopic sim-
ulation and molecular dynamics is proposed in Zhang et al. (2017).

As was seen in this brief introduction, the moving contact line model-
ing is complex and has been studied from many fronts. A key ingredient in
getting the correct physics of the contact line without resorting directly to
molecular dynamics is the application of some slip model that acts locally.
Robust hydrodynamic models are needed.
The main objective of this work is to make focus on the flow structure in
the corner made by a moving contact line and a wall. For this purpose, we
attack this problem by both analytical considerations and numerical simula-
tions. Considering the analytical part, we analyze a moving contact line in
the framework of corner stokes flow, highlighting the effects of the boundary
conditions in the flow field. Special focus is dedicated to a variable slip con-
dition proposed by Kirkinis and Davis (2013, 2014) to study the existence
of Moffatt vortices in the vicinity of a moving contact line. In the numeri-
cal part, we implement in the code JADIM a very promising version of the
front-tracking method that is capable to reduce spurious velocities close to
machine precision. We enhanced the method to handle non uniform distri-
bution of markers without losing its capability to reduce spurious velocities
which is crucial to the task of confirming the presence of vortices at the con-
tact line. Finally, we propose a new numerical subgrid model attacking the
grid convergence issues (on velocity and shear) of conventional models in the
literature.

Work organization

This work is organized as follows: Chapters 2 and 3, are devoted to the
presentation of the numerical code JADIM and the description and the im-
plementation of a new method in JADIM : the front-tracking method. In
chapter 4 we validate the front-tracking method against classical tests for
spurious velocities, bubble rising and wetting. Chapter 5 is devoted to give
an analytical view of the moving contact line problem from the perspective of
corner Stokes flow. Chapters 6 and 7 explore analytically and numerically the
possible existence of Moffatt vortices in the vicinity of a moving contact line.
Finally, we propose a subgrid model in the framework of the front-tracking
method for the simulation of drop spreading in chapter 8. Conclusions and
future perspectives close this work.
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Chapter 2

Numerical code JADIM

In this work, the numerical code JADIM was used. This chapter dedicates
some lines to describe this in-house code.

2.1 Background

JADIM was developed at IMFT and is in constant improvement. Among its
many features, we can name the interface tracking with lagrangian adaptive
grids, transport of passive scalars (like temperature), simulation of turbu-
lence with LES and of course the treatment of moving interfaces by volume
tracking methods, specifically VOF and Level-Set methods which have been
addressed in the literature in Bonometti and Magnaudet (2007); Dupont and
Legendre (2010); Abadie et al. (2015); Legendre and Maglio (2013, 2015).
JADIM has been formulated in a 3D general orthogonal curvilinear coordi-
nate system and in the next section, we cover the solver of Navier-Stokes
equations in the context of two-fluid phenomena using the one fluid formu-
lation for 2D problems.

2.2 Navier Stokes equation solution

Assuming a newtonian two-fluid incompressible isothermal flow with no mass
transfer at the constant surface tension interface, a one fluid formulation for
the Navier-Stokes equations can be adopted:

∇ ·U = 0 (2.1)

∂U

∂t
+ (U ·∇)U = −1

ρ
∇P +

1

ρ
∇ ·Σ + g + Fσ (2.2)
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Figure 2.1: Cell center position for variables u, v and pressure P in a stag-
gered 2D grid. Their corresponding control volumes are denoted ϑu, ϑv and
ϑP respectively

where U stands for the velocity vector, P for the pressure, Σ is the viscous
stress tensor, g is the acceleration due to gravity, Fσ is the capillary con-
tribution, ρ and µ are the local density and dynamic viscosity, which are
calculated using the classical VOF function (or volume fraction) C:

ρ = Cρ1 + (1− C)ρ2 (2.3)

µ = Cµ1 + (1− C)µ2 (2.4)

Calculation of C is addressed separately in section 2.3.

2.2.1 Spatial Discretization

Transport equations 2.1 and 2.2 are discretized using the finite volume method
in a general orthogonal curvilinear coordinate system. Velocity components
u, v and pressure P are arranged in a staggered grid having their own control
volumes ϑu, ϑv and ϑP respectively (see figure 2.1). Continuity and momen-
tum equations 2.1 and 2.2 are integrated in their respective control volume
ϑ or depending on the case, in the surface Γ bounding their volumes:∫

Γ

UinidΓ = 0 (2.5)∫
ϑ

∂Ui

∂t
dϑ = −

∫
ϑ

1

ρ

∂P

∂ξi
dϑ+ L[Ui] +N [Ui] +

∫
ϑ

Fσdϑ (2.6)
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where L[Ui] and N [Ui] are the operators grouping terms treated implicitly
and explicitly respectively. They are given by:

L[Ui] =
1

ρ

∫
Γ

µ
∂Ui

∂ξj
nidΓ (2.7)

N [Ui] =

∫
ϑ

gidϑ+
1

ρ

∫
Γ

µ
∂Uj

∂ξi
njdΓ− 1

ρ

∫
Γ

UiUjnjdΓ

+
1

ρ

∫
Γ

µ
(
2Hk

i Ukδij −H i
jUj −Hj

iUi

)
njdΓ

+

∫
ϑ

H i
j (UjUj − τjj) dϑ−

∫
ϑ

Hj
i (UjUi − τij) dϑ (2.8)

WhereH are factors containing grid curvature, n is the normal to the control
volume faces, δ is the delta kronecker function and τ is the viscous stress
tensor, given by:

τij =
µ

ρ

(
∂Ui

∂ξj
+
∂Uj

∂ξi
−H i

jUj −Hj
iUi + 2Hk

i Ukδij

)
(2.9)

Spacial derivatives are calculated using a second-order centered scheme.

2.2.2 Temporal Discretization

A third-order three-step Runge Kutta scheme is used to solve the advective
terms time advancement, whereas a semi-implicit Crank-Nicholson method is
used to treat viscous terms, giving a global precision for this numeric scheme
an order ∆t2.
The Runge Kutta algorithm can be summarized as follows: at any given time
step n, an intermediate velocity field Um is calculated as:

Um −Um−1

∆t
ϑ = − (αm + βm)

1

ρ
∇Pϑ+ αmL[Um−1]

+βmN [Um] + γmN [Um] + ζmN [Um−2] + (αm + βm)Fσϑ (2.10)

where αm, βm, γm and ζm are the Runge-Kutta coefficients at intermediate
step m. These coefficients are:

α1 = β1 = 4/15 ; γ1 = 8/15 ; ζ1 = 0

α2 = β2 = 1/15 ; γ2 = 5/12 ; ζ2 = −17/60

α3 = β3 = 1/6 ; γ3 = 3/4 ; ζ3 = −5/12

At step m = 1, it is imposed: Um−1 = Un. The velocity field at m = 3
contains all the vorticity of the solution but it is not divergence-free. To
obtain a divergence free velocity field, a projection method is used.
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Physical contribution Criterion

Gravity ∆t <
√

∆x/g

Advection ∆t <
√

3∆x/U
Diffusion ∆t < ∆2x/ν

Capillarity ∆t <
√

(ρ1 + ρ2)∆3x/8σ

Table 2.1: Time criteria used in JADIM.

2.2.3 Projection method

The coupling between velocity and pressure is achieved through a projection
method. An auxiliary potential Ω is defined such that:

ρ
Un+1 −Un,3

∆t
= −∇Ωn+1 (2.11)

Given that the free-divergence condition dictates∇ ·Un+1 = 0, the potential
Ω must satisfy the pseudo-Poisson equation:

∇ ·
(

1

ρ
∇Ωn+1

)
=

1

∆t
∇ ·Un,3 (2.12)

Once Ω is solved from equation 2.12, then a free-divergence velocity field
Un+1 can be obtained from equation 2.11. Pressure is then calculated using:

P n+1 = P n + Ωn+1 (2.13)

Further details are provided in (Cranga, 2002; Calmet and Magnaudet, 1997;
Dupont and Legendre, 2010).
The time step criteria inside JADIM is given in table 2.1. In this work, we
will be concerned with flows where capillary effects are dominant. In that
case, time step is selected to be constrained with respect to the advective
time where the velocity would be the maximum of a capillary wave Brackbill
et al. (1992); Abadie (2013).

2.3 Volume fraction transport

In JADIM, two volume-tracking methods to advect the volume fraction C
were available before this work: VOF (see Hirt and Nichols, 1981; Rudman,
1997; Garrioch and Baliga, 2006) and Level set (see Sussman et al., 1994;
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Chang et al., 1996; van der Pijl et al., 2005). Both methods solve a conser-
vation equation of the form:

∂χ

∂t
+U ·∇ (χ) = 0 (2.14)

where χ represent the volume fraction C or the distance (level set) function
φ.
The VOF method inside JADIM uses the algorithm based on Flux-Corrected
Transport (FCT) schemes (see Zalesak, 1979; Bonometti and Magnaudet,
2007). Due to unphysical spreading of the interface, its current implementa-
tion has been improved as described in Abadie (2013). We will refer to this
implementation as VOF-FCT-CSF.
On the other hand, the Level-Set method implemented in JADIM solves
equation 2.14 using a fifth order WENO scheme. Once φ is known, C can be
calculated through the mollified heaviside function:

C =


0 if φ < −ε,
0.5
[
1 + φ

ε
+ 1

π
sin
(
πφ
ε

)]
if |φ| ≤ ε,

1 if φ > ε

(2.15)

where ε =
√

2∆x is approximately half the numerical thickness of the inter-
face and ∆x is the size of the grid. Details of this implementation can be
found in Abadie (2013) and we will refer to it as Level-Set-CSF method.
When using VOF-FCT-CSF or Level-Set-CSF, the capillary contribution Fσ
in equation 2.2 is solved using the CSF (continuum surface force) formulation
Brackbill et al. (1992):

Fσ = −σ
ρ
κ∇C (2.16)

where σ is the constant surface tension and κ the local curvature of the
interface that is calculated through:

κ =∇ ·
(
∇C
‖∇C‖

)
(2.17)

In JADIM, Fσ is integrated in the surface of every control volume containing
the interface:

Fσ = −σ∇C
ρϑ

∫
dS

∇C
‖∇C‖

∣∣∣∣
S

· nSdS (2.18)

where nS is the normal vector to the volume face, ∇C is the average of ∇C
at the staggered control volumes. To minimize variations in the calculation
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Figure 2.2: Spurious velocities for a static 2d droplet of radius r = 0.25 in a
solid wall box of L = 1.0 simulated using VOF-FCT-CSF in JADIM. Internal
and external fluids share the same density and dynamic viscosity set at ρ = 1
and µ = 0.25 respectively and surface tension is σ = 7.5. Maximum velocity
reported is Ca ≈ 5× 10−4. Fluid interface

of κ, C is convoluted or “smoothed” a number of steps prior to the calcula-
tion of ∇C and ∇C. It is important to note that the number of convolution
steps is different for∇C and∇C. Some tests for these convolution steps are
given in Dupont (2007) and Dupont and Legendre (2010). Also, to reduce
the intensity of spurious velocities, density at the interface is averaged as
ρ = (ρ1 + ρ2)/2 (see Brackbill et al., 1992).

2.4 Spurious velocities.

Whether we use VOF-CSF or Level-Set-CSF, the CSF formulation for the
capillary force contribution has been known for its propensity to generate
unphysical flow, “spurious currents” or “spurious velocities” near the inter-
face (Francois et al., 2006). Figure 2.2 shows a typical velocity field obtained
when using CSF formulation in VOF-FCT-CSF for a static droplet in a solid
wall box. Ideally, in equilibrium, the velocity field for this problem should
be zero. In figure 2.2, the maximum normalized velocity was found to be
Ca ≈ 5 × 10−4. This unphysical phenomenon occurs due to a numerical
imbalance of the surface tension force and its associated pressure gradient,
although interface advection also plays an important role in it. A compre-
hensive study on the coupling between surface tension force and interface
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advection can be found in Abadie (2013) and Abadie et al. (2015). In those
works, different discretizations of the curvature are tested, i.e. Height func-
tion and the SSF (Sharp Surface Force Cummins et al., 2005) in the VOF
and Level-Set frameworks inside JADIM. Their results were revealing. For
the case of a static bubble, the height function discretization preformed bet-
ter than classical CSF model for VOF-FCT-CSF. VOF-PLIC combined with
the height function performed even better, spurious velocities were close to
Ca ≈ 1 × 10−13. In the case of Level-Set, the redistancing of the Level-Set
function showed to be intrusive in the reduction of spurious velocities, for the
classical CSF, height function and SSF formulations, resulting in velocities
close to those of classical VOF-FCT-CSF with CSF formulation, typically
Ca ≈ 1 × 10−4. When no redistancing is applied, the Level-Set combined
with SSF provided an impressive Ca ≈ 1× 10−16, followed by Level-Set with
Height function at Ca ≈ 1×10−13. This results are summarize in figure 2.3a.
Surprisingly, in the case of a translating bubble, all curvature discretizations
reported spurious velocities above Ca ≈ 1 × 10−6, see figure 2.3b. This is
explained by the strong coupling between surface tension force and the inter-
face advection, where errors in curvature are caused by advection errors. It
is true however, that the Level-Set formulation in general allows a more pre-
cise calculation of curvature and normals due to its “smooth” nature when
compared to the VOF method.
Attempts to reduce spurious velocities abound in the literature, typically im-
proving the accuracy of curvature calculation (see for example Renardy and
Renardy, 2002; Cummins et al., 2005; Popinet, 2009), a sharp surface ten-
sion force (SSF) by Francois et al. (2006), also, under energy considerations
Jamet et al. (2002).
It is known, that the front-tracking method can transport interfaces more
accurately compared with other methods and in most of cases, interface
geometrical properties like curvature can be calculated more precisely (see
Tryggvason et al., 2001). An hybrid formulation CSF-like formulation is pre-
sented in Shin et al. (2005) succeeding in reducing spurious velocities close
to machine precision, though this reduction is only possible for a uniform
distribution of markers at the front.

2.5 Summary

In this chapter we have described the Navier-Stokes equations solver inside
JADIM for 2D problems in the context of a one-fluid formulation. Both
methods to advect the interface (VOF-FCT-CSF and Level-Set-CSF) avail-
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(a)

(b)

Figure 2.3: Maximum spurious velocity evolution in nodimensional time t∗.
Comparison of:. VOF-FCT-CSF classic CSF; VOF-FCT-CSF Height
function CSF; VOF-PLIC Height function CSF; Level-Set classic
CSF; Level-Set Height function CSF; Level-Set SSF; Level-Set
classic CSF, no redistancing; Level-Set Height function CSF, no redis-
tancing; Level-Set SSF, no redistancing. a) Static bubble; b) Translating
bubble. Source: Abadie et al. (2015)
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able before this work were also addressed. We showed a brief demonstration
of the consequences of using the CSF formulation to address the capillary
force contribution (i.e. spurious velocities) and the role of the advection in
spurious velocities reductions according Abadie et al. (2015). Given that the
context of this work is dealing with capillary-related flows and seeing the
great potential of the front-tracking method to reduce spurious velocities, we
implemented it inside JADIM. This is addressed next in chapter 3.
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Chapter 3

The Front-tracking method

This chapter is dedicated to give details of the implementation of the front-
tracking method inside JADIM that was accomplished during this work. We
first give some background to the method, then we list the shortcomings of
it and we propose solutions and enhancements to the method.

3.1 Background

In the front-tracking method with lagrangian markers, besides the grid used
to solve primitive variables like u, v and P , another grid is defined at the
interface between fluids and it moves with it. This lagrangian grid or “front”
is formed by discrete points or “markers” that are distributed along the fluid
interface on the top of the eulerian grid (see figure 3.1a). In comparison with
volume tracking methods like VOF-FCT-CSF or Level-Set-CSF, in the front-
tracking method, the volume fraction is not advected through a conservation
equation like 2.14, but it is calculated from the position of markers which are
advected instead with the velocity field U . It is possible however to solve C
inside a pseudo-Poisson equation (see Unverdi and Tryggvason, 1992; Shin
and Juric, 2002; Shin et al., 2005) but again, no direct role of velocity is
involved in it. As a consequence and since the interface position and geometry
are explicitly known, variables like curvature, normal and tangential vectors
at the interface can be calculated more accurately in most cases.

At some point during a typical numerical simulation using the front-
tracking method, information (i.e. surface tension force, velocity, etc) must
be interchanged between the lagrangian and the eulerian grids. This is
achieved through special interpolation schemes (see Peskin, 1977, 2002).
As pointed in section 2.4 and here, one of the main advantages of the front-
tracking method in the numerical treatment of two-phase-flows is that surface
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(a) (b)

Figure 3.1: Front tracking schematics. (a) Schematic for eulerian/lagrangian
grid, showing eulerian cells with subscripts i, j and lagrangian markers with
subscripts k; (b) Schematic for polygon construction (for clarity, polygons
on only one side are shown).

tension forces can be treated in a more natural and conservative way (see
Tryggvason et al., 2001). This advantage however, comes with some short-
comings. We consider important to first dedicate some lines to the main
disadvantages of the method (see section 3.2) and then we will describe the
current implementation inside JADIM to solve them and improve the method
(section 3.3).

3.2 Front-Tracking method shortcomings

Fluid interfaces can move and deform in such fashion that markers forming
the front can travel in the tangential direction to the interface, accumulating
in large numbers in small interface areas, or leaving large interface areas
depleted of them (see figure 3.2a, where a rising bubble is simulated with no
special treatment). In the former case, if care is not taken, the flow is lead to
instabilities (See Popinet and Zaleski, 1999; Hou et al., 1994). In the latter,
lost of precision in the interchange of information between the front and the
eulerian grid is experienced. Increasing the number of markers does not solve
any of this problems (see figure 3.2b, where the number of markers has been
increased ×4). Adding or removing elements from the front according to
some threshold of element size is a relatively simple procedure (see Unverdi
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(a) (b)

Figure 3.2: Front-tracking method implemented in JADIM (present work,
without any reconstruction/redistribution), applied to a rising Bubble for:
ρ1/ρ2 = 10, µ1/µ2 = 10, σ = 24.5, g = 0.98, Re = 35, Eo = 10 (following
Hysing et al., 2009). (a) With 63 markers and no special treatment. (b)
Increasing the number of markers ×4.

and Tryggvason, 1992; Juric and Tryggvason, 1998). However, it is not known
how the flow is affected by it, furthermore, algorithmic complexity is expected
in interface merging and break-up problems, also in 3D calculations.

Trying to keep a uniform distribution of markers work well enough in
cases involving mild interface deformation (see for example the work of Ming-
Chih Lai and Huang, 2011, where an artificial tangential marker velocity is
applied), but for the case reported in figure 3.2, some perturbations are found
on the sides of the bubble, this is shown in figure 3.3a. A similar behavior
is expected when instead of an artificial velocity, polynomials/functions are
fitted to the markers and then are used to keep an uniform distribution of
the front (See Popinet and Zaleski, 1999; Tryggvason et al., 2001), although
this has not been reported. Also, it is known that markers can suffer of
small amplitude mesh-scale oscillations that are not physical in nature (See
Longuet-Higgins and Cokelet, 1976). The application of smoothing filters like
those found in Longuet-Higgins and Cokelet (1976) or in Savitzky and Golay
(1964), seems to alleviate this situation. The combination of both artificial
tangential marker velocity and smoothing filter recovers a physically relevant
bubble shape (see figure 3.3b), however, for a different set of parameters of
the problem, a larger number of markers may be required, rendering these
two solutions useless as they will produce a uniform front with a low density
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(a) (b)

Figure 3.3: Front-tracking method implemented in JADIM (present work,
without reconstruction), applied to a Rising Bubble for: ρ1/ρ2 = 10, µ1/µ2 =
10, σ = 24.5, g = 0.98, Re = 35, Eo = 10 (following Hysing et al., 2009).
63 front markers treated with: (a) Artificial tangential marker velocity. (b)
Artificial tangential marker velocity and Fourth order filter Longuet-Higgins
and Cokelet (1976); Savitzki-Golay Savitzky and Golay (1964) filter.

of markers.
These treatments that seem to solve the front-tracking method issues are
necessarily defined in the context of a uniform distribution of markers and
their extension to 3D problems is not quite obvious.

On the other hand, Shin et al. (2005) introduced a new “Hybrid for-
mulation” treatment for the surface tension forcing contribution which re-
ported reduced spurious velocities down to machine precision and also a
new reconstruction method based on an optimum indicator function contour
which is intersected to the eulerian grid faces to obtain a non-uniform mass-
conservative marker distribution. This approach was reported to be robust
enough to solve all the issues described above. There is however an issue left
to solve, the reconstruction method proposed in Shin et al. (2005) produce a
non-uniform distribution of markers, which affects negatively the ability of
the “Hybrid formulation” to reduce spurious velocities. We treat and solve
this last problem in section 3.6.
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3.3 Volume fraction advection in the front-

tracking method

To calculate C from a given marker distribution, we adopt the procedure
found in Ceniceros and Roma (2005); Ceniceros et al. (2010). Briefly, a set
of markers identified with indexes k in figure 3.1a is distributed along the
fluid interface forming the “front” over the eulerian grid identified with sub-
scripts i, j. Around each front element ek of length ∆sk formed by the pair of
markers k and k + 1, a rectangle (typically B and C in figure 3.1b) of width
∆sk and height ` can be constructed using the normal unit vector to the el-
ement pointing to both sides of the interface. The signed distance d(x) from
the Eulerian cell centers xi,j lying inside each rectangle to the lagrangian el-
ement center x′

k can be calculated cheaply and easily by geometrical means,
and also its sign can be determined depending on which side of the interface
the point xi,j lies.
Additionally, irregular quadrilaterals can be constructed at each marker in
between two rectangles on the convex side of the interface (i.e. quadrilat-
eral A in figure 3.1b). They are constructed because regular rectangles will
not cover convex areas in between neighbor elements. Inside these irregular
quadrilaterals, d(x) is calculated as the distance from xi,j to the marker.
The distance function φ to the interface is then determined by:

φ(x) =


−γ if d(x) < −γ,
d(x) if |d(x)| ≤ +γ,

+γ if d(x) > +γ

(3.1)

where γ is the width of the band, typically γ = 2
√

2∆x (see Ceniceros and
Roma, 2005). Also, ` is chosen such that 0 < γ < `, so the band of width
2γ is contained in the union of all the polygons constructed before. Outside
the union of all the polygons, the continuous distance function φ is given by
d(x) = ±γ. This operation is repeated at each time step, and only φ(x)
of eulerian points lying in the vicinity of the interface are updated (given of
course that a consistent initialization of φ(x) is provided at t = 0). It is worth
mention the simplicity of implementation of φ(x), its accuracy and economy
of calculation (see Ceniceros and Roma, 2005; Ceniceros et al., 2010).

Once the field φ(x) is known, C is found through the mollified heaviside
function (equation 2.15).
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3.4 Capillary force contribution.

In the front-tracking method, the capillary contribution Fσ is calculated
again through equation 2.16. Instead of approximating curvature κ as in
equation 2.17 (Brackbill et al., 1992), we adopt the hybrid formulation given
in Shin et al. (2005). For this, any discrete scalar information ψk, Ψi,j from
the lagrangian/eulerian grid can be transferred to the eulerian/lagrangian
grid respectively through:

Ψi,j =
∑
k

ψkDi,j∆sk ; ψk =
∑
i,j

Ψi,jDi,j∆x∆y (3.2)

with Di,j the discrete form of δ(x − x′), a function to represent interface
terms that are concentrated at the boundary between fluids. To calculate
δ(x−x′) we use the distribution function reported in Peskin (2002). Taking
in consideration the center cell for the x component of velocity:

Di+1/2,j =
δ(xi+1/2,j − x′k)δ(yi+1/2,j − y′k)

∆x∆y
(3.3)

where

δ(r) =


δ∗(r) if |r| ≤ 1,

1/2− δ∗(2− |r|) if 1 < |r| < 2,

0 if |r| ≥ 2

(3.4)

and

δ∗(r) =
3− 2|r|+

√
1 + 4|r| − 4r2

8
(3.5)

variables xi+1/2,j − x′k and yi+1/2,j − y′k are the distances between centers of
front elements to eulerian velocity cells, normalized by the grid size ∆x and
∆y respectively.
The lagrangian capillary force using markers is F ′

σ = σκG, where F ′
σ and G

are given by:

F ′
σ =

∫
Γ(t)

fδ(x− x′)ds =
∑
k

fDi+1/2,j∆sk (3.6)

G =

∫
Γ(t)

nδ(x− x′)ds =
∑
k

nDi+1/2,j∆sk (3.7)

where f is the local capillary force calculated at the front and n is the normal
unit at the front element pointing towards the tracked fluid. Both F ′

σ and
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G are interpolated from eulerian velocity cells to eulerian pressure cells. In
a uniform staggered grid, this is achieved by:

F ′xi,j =
1

2
(F ′xi+1/2,j + F ′xi−1/2,j) (3.8)

F ′yi,j =
1

2
(F ′yi,j+1/2 + F ′yi,j−1/2) (3.9)

Similarly for Gxi,j and Gyi,j. The curvature at eulerian pressure cells is then
calculated with:

κi,j =

{
F ′xi,jGxi,j+F

′
yi,jGyi,j

σ(G2
xi,j+G

2
yi,j)

if G2
xi,j +G2

yi,j > 0,

0 if G2
xi,j +G2

yi,j = 0
(3.10)

also, a filter function is used:

ci,j =

{
1 if G2

xi,j +G2
yi,j > 0,

0 if G2
xi,j +G2

yi,j = 0
(3.11)

Then the curvature at velocity centers is recovered with:

κi+1/2,j =

{
κi,jci,j+κi+1,jci+1,j

ci,j+ci+1,j
if ci,j + ci+1,j > 0,

0 if ci,j + ci+1,j = 0
(3.12)

κi,j+1/2 =

{
κi,jci,j+κi,j+1ci,j+1

ci,j+ci,j+1
if ci,j + ci,j+1 > 0,

0 if ci,j + ci,j+1 = 0
(3.13)

Finally, the capillary force Fσ contribution is found with equation 2.16, dis-
cretely:

Fxi+1/2,j = −σ
ρ
κi+1/2,j

Ci+1,j − Ci,j
∆x

(3.14)

Fyi,j+1/2 =
σ

ρ
κi,j+1/2

Ci,j+1 − Ci,j
∆y

(3.15)

It is clear that the calculation of κi,j in equation 3.10 projects the lagrangian
force F ′

σ to the normal to the interface G in a similar procedure as the one
made in the CSF method Brackbill et al. (1992), i.e. apply a “smoothing”
or a “convolution” filter to the VOF function C.
The local force f at a front element (in 2D) is calculated following Tryggvason
et al. (2001):

fe,k =

∫
∆s

σκnds (3.16)
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Figure 3.4: (a) Local force fe,k at element ek, using equation 3.17 (present
work); (b) Local force fk at marker k, using equation 3.18.

and using the curvature of a two-dimensional line, κn = ∂t/∂s, we have:

fe,k = σ (tk − tk−1) (3.17)

where tk and tk−1 are the tangent vectors at markers k and k− 1 (red circles
in figure 3.4) that define the front element ek (see red line in figure 3.4a).
This approach is found in the literature (see Unverdi and Tryggvason, 1992;
Juric and Tryggvason, 1998; Agresar et al., 1998; Tryggvason et al., 2001;
Popinet and Zaleski, 1999; Yamamoto and Uemura, 2008; Yamamoto et al.,
2013, 2014). There is however another approach to this force (see Shin and
Juric, 2002; Shin et al., 2005; Lai et al., 2010; Huang et al., 2004; Ceniceros
et al., 2010; Li et al., 2012) where the force is calculated at markers and
is based in the difference between tangents of neighbor front elements (see
figure 3.4b):

fk = σ (te,k+1 − te,k) (3.18)

Although both formulations ensure that the total force on any closed surface
is equally zero, there is a crucial difference that will be addressed in section
3.6.

3.4.1 Contact angle imposition

The front tracking method has been used also to address wetting problems.
Depending on the force location formulation, the contact angle can be im-
posed in two different but equivalent ways. If capillary force at the front
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Figure 3.5: Front element adjacent to the wall.

is calculated at the front elements (as in this work), then the information
missing is the unit tangent at the marker on the wall (marker k in figure
3.5). In the work of (Yamamoto and Uemura, 2008), wetting is considered
a particular case of a three fluid junction (see figure 3.5), so, from Young’s
equation, at the front element adjacent to the wall:

fxe,k = σ(cosαs − txk−1) ; fye,k = 0 (3.19)

where αs is the static contact angle. The imposition of a dynamic/apparent
contact angle is done in the same way. Muradoglu and Tasoglu (2010) an-
alyzed the impact and spreading of droplets on solid walls with the front
tracking method considering enough to defined a cut-off distance from the
wall at which the front is fitted with a polynomial having a gradient at the
wall equivalent to the dynamic contact angle obtained by the Kistlers’s cor-
relation or any equivalent, i.e. Cox’s asymptotic expansions (see Cox, 1986).

When capillary force is calculated at the nodes, the static contact angle
is imposed through the unbalance Young force at the node on the wall of
interest:

fk = σ(cosαs − cosα) (3.20)

where σ is the constant surface tension, αs is the static contact angle and α
is the angle formed by the element at the wall and is given by:

cosα = te · twall (3.21)

Here, twall stands for the tangent of the wall. Works with this type of an-
gle imposition include: Huang et al. (2004) in the front-tracking method,
Manservisi and Scardovelli (2009) in a variational approach for drop spread-
ing and the works of Lai et al. (2010) and Ming-Chih Lai and Huang (2011)
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in the immersed boundary method.

3.5 Markers advection

Once equations 2.1 and 2.2 are solved and a conservative velocity field is
achieved, markers are advected integrating in time:

dx′
k

dt
= Uk (3.22)

using an explicit first order (FO) scheme:

x′n+1
k = x′n

k +Uk∆t (3.23)

where n stands for the current time step. The marker velocity Uk is inter-
polated from the eulerian grid through:

Uk =
∑
ij

∆x∆yUijDij (3.24)

Dij is given by equation 3.3. Typically, each time step follows the next
pseudo-algorithm:

• Velocity and pressure fields are initialized along with initial markers
position.

• The distance function φ is calculated.

• From φ, the VOF function C is found through equation 2.15 and fluid
properties are calculated using equations 2.3 and 2.4.

• Surface tension contribution is found using the hybrid formulation in
equations 3.14 and 3.15.

• The Navier-Stokes equations 2.2 are solved, using the capillary contri-
bution (equations 3.14 and 3.15) in each Runge-Kutta cycle.

• Markers are advected using a interpolated velocity from the conserva-
tive eulerian field, equation 3.23.

• Cycle repeats at the second step.
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In theory, higher order of time stepping to advect markers should improve
the accuracy of marker advection (Tryggvason et al., 2006). In this work, for
comparison purposes, some cases will use marker advection inside the general
three-step Runge-Kutta cycle (RK3) as follows:

x′m
k − x′m−1

k

∆t
= (αm + βm)Um−1

k (3.25)

where αm and βm are the Runge-Kutta coefficients of the Navier-Stokes solver
(see section 2.2.2), Um

k is the divergence-free intermediate velocity and the
subscript m is the current RK3 step. When m = 1 we simply impose
x′m−1
k = x′n

k . By default, in all tests of this work, advection of markers
will be performed using FO, except for those cases where RK3 is explicitly
mentioned.

3.6 Tangent calculation at markers position

Tangents at markers position have been addressed in the literature by fit-
ting/interpolating functions on the markers and then calculating the tangents
analytically (see for example Tryggvason et al., 2001; Popinet and Zaleski,
1999). In this work we consider that at any given time step, two neighbor
front elements ek and ek+1 share a common curvature center, as depicted in
figure 3.6a. By simple geometrical means, it can be shown that the tangent
at marker k can be calculated as the element length weighted average of
tangents of the two neighbor elements ek and ek+1:

tk =
∆sk+1te,k + ∆skte,k+1√

∆s2
k+1 + ∆s2

k + 2∆sk+1∆skte,k · te,k+1

(3.26)

Here subscript e means that the vector belongs to the front element. If ∆s
is constant, equation 3.26 reduces even further. This approach is based on
the fact that after the fluid interface has been discretized by markers and
front elements, the only remaining information of the actual interface (black
curve in figure 3.6a) is preserved at markers, so, assuming that two elements
share a common curvature center which is the equivalent to fitting a circle
through each three consecutive markers, should be as good as any fitting
function on the markers (the accuracy of this claim will be tested). Also,
it is worth noticing that we only keep a list of neighbors at both sides of
each element and no sorted list of markers/elements is stored, subscripts k
in all cases are only given for notation. An implicit advantage when f is
calculated with tangents at both ends of the front element (equation 3.17)
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(a) (b)

Figure 3.6: Schematics of a front. The black curves represent the actual
interface, in red: the discrete front. (a) Curvature center C for elements ek
and ek+1; (b) Two interfaces: above with a uniform markers distribution and
below, with a non-uniform marker distribution.

with respect to f calculated with tangents of neighbor elements (equation
3.18) is that the former includes geometrical information of the neighbor
elements. This can be better understood in figure 3.6b. Elements AB, A′B′,
BC, B′C ′ have been drawn so front element pairs (AB, A′B′) and (BC,
B′C ′) have the same unit tangents. So, if fB = σ (tBC − tAB), as in Shin
and Juric (2002); Shin et al. (2005); Lai et al. (2010); Huang et al. (2004);
Ceniceros et al. (2010); Li et al. (2012), both interfaces will have an identical
local force fB = fB′ even though they represent different interfaces with
different curvatures. The consequences of this problem were identified in
Shin et al. (2005), when the elimination of spurious velocities was affected
due to a non-uniform markers distribution after front reconstruction. In that
work, however, using f with tangents on elements, was justified in terms
that no logical connectivity between front elements was seek for simplicity
in the reconstruction, since for that approach, front elements do not need to
know information of their neighbors.

3.7 Front reconstruction

It is well known that markers drift along the interface. In the literature,
procedures to keep a reasonable density of markers on the front consist on
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Figure 3.7: Typical reconstruction procedure for a rising bubble flow:
ρ1/ρ2 = 1000, µ1/µ2 = 100, σ = 1.96, g = 0.98, Re = 35, Eo = 125,
(following Hysing et al., 2009). Circles 1, 2, 3, 4 and 5 are generated with
associated curvature of front elements ab, cd, de, ef and fg respectively.
Markers are given: Before reconstruction; After reconstruction. Details
of this reconstruction are given in figure 3.8

including and removing markers given a certain element size threshold (see
Unverdi and Tryggvason, 1992; Juric and Tryggvason, 1998). A more so-
phisticated and automated procedure can be found in Popinet and Zaleski
(1999), where an interpolating curve is used to obtain an homogeneous dis-
tribution. Also, an artificial tangential velocity can be calculated and added
to the marker velocity to produce a front with a uniform distribution (see
Ming-Chih Lai and Huang, 2011; Ceniceros et al., 2010). A more robust pro-
cedure is proposed in Shin et al. (2005), where an optimum indicator function
(to preserve mass) is found and is intersected to eulerian faces to produce
a new marker. Also in Shin et al. (2005), an increase in spurious velocities
is reported because of the non-uniform marker distribution obtained after
reconstruction. In this work, the new procedure to calculate tangents at
markers (equation 3.26), as described before, also provides tools to propose a
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new front reconstruction method that solves equally all the known issues of
the front-tracking method (see section 3.2) and does not affect the reduction
of spurious velocities. At both ends of each front element, unit tangents can
be calculated with the procedure described in 3.6. The radius Re of a circle
can then be determined for this element using the Frenet relation for local
curvature R−1

e n = dt/ds, or discretely:

R−1
e =

∥∥∥∥tk+1 − tk
∆s

∥∥∥∥ (3.27)

The center of this circle is found using the inner product of the normal vector
of the element (which always points inside the tracked fluid) and the local
surface tension force (equation 3.17):

Circle center =

{
inside if ne · fe > 0,

outside if ne · fe < 0
(3.28)

Once this circle is totally defined, it is intersected with the faces of the eule-
rian grid generating new markers. In practice the intersection is only made
to the eulerian cells in the vicinity of the element. Although an algorithm
to intersect circle-line segment is used, additional verifications are applied to
make sure that the intersecting point is inside the circular arc limited by the
markers at both ends of the element. Since front elements do not overlap,
intersecting points at each eulerian face are unique, except of course in the
case that more than one front is being treated and they are about to coalesce
(not addressed in this work). Also, since tangents at the markers location are
unique, the circles of neighboring elements will define new smooth front and
marker distribution. Figure 3.7 shows a typical reconstruction process. At
the step time nt, the front is represented by the red squares. Through selected
elements ab, cd, de, ef and fg, the circles 1, 2, 3, 4 and 5 can be constructed
as described before. The intersection between these circles and the eulerian
grid faces, define the new front markers in blue circles. Figure 3.8 shows in
detail selected elements and their associated circles for reconstruction. Ex-
cept for front element ab in figure 3.8a, elements cd, de and ef in figures 3.8b,
3.8c and 3.8d respectively, have large curvature, producing relatively small
circles. Small circles will intersect eulerian grid faces away from the front
element. The case depicted in figure 3.8b, shows circle 2 close to a eulerian
grid corner. In this situation, two markers will be generated forming a new
front element of short length (see lower left in figure 3.8b, where we have
enlarge the eulerian cell corner to show the preliminary markers in green).
The closer the circle gets to the corner of a eulerian cell, the smaller is the
front element produced (in a extreme case ∆s = 0). The effect of having
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(a) (b)

(c) (d)

Figure 3.8: Zoom-in into figure 3.7 at front element: (a) ab. (b) cd. (c)
de. (d) ef . Before reconstruction; After reconstruction; Preliminary
markers after reconstruction.
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small elements will be discussed in section 4.4. A threshold value ∆smin is
introduced to control the minimum size of the elements. If ∆sk ≤ ∆smin the
markers k and k − 1 are fused together to avoid small elements. Following
the method described above a circle of radius Re is determined based on the
two markers to fuse. They are replaced by an unique marker located at the
center of the circular arc between the two markers. Figure 3.8b shows the
result of such fusion.

3.8 Summary

In this chapter we have given details on how the front-tracking method has
been implemented inside JADIM during this work. We have listed the main
shortcomings and difficulties of the use of the front-tracking method. We have
proposed countermeasures and enhancements to it. Both the calculation of
tangents at markers and the front reconstruction need to be validated and
tested to provide evidence that the spurious velocities can be maintained
close to machine precision. This validation is conducted in chapter 4.
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Chapter 4

Validation of the
Front-Tracking Method

In this chapter we validate the current implementation of the front-tracking
method inside JADIM, presented in the previous chapter.

4.1 Background

In the literature, it has been reported (see Shin et al., 2005) that the Hybrid
formulation (equations 3.8 to 3.13) for the capillary contribution reduces
spurious velocities close to machine precision when a uniform distribution
of markers is used. We reproduced first the case proposed in Shin et al.
(2005) for a static bubble in section 4.2 and then analyze the case of a
translating bubble in section 4.3. In both cases, the reconstruction procedure
described in section 3.7 is not applied and we evaluate only if the new tangent
formulation proposed in this work (equations 3.17 and 3.26) for a non-uniform
distribution of markers can reduce spurious velocities as in the case of a
uniform distribution. In section 4.4 we evaluate the conditions under which
the reconstruction process of section 3.7 can keep spurious velocities close to
machine precision. We close the chapter benchmarking the method with the
rising 2D bubble test and we analyze the performance of the method in the
case of the equilibrium shape of a droplet spreading on a wall with effects of
gravity.

4.2 Static bubble

A 2D bubble with radius R = 0.25 is initialized in a regular 50× 50 grid of
L = H = 1. Having all fluid properties set to 1, the corresponding Laplace
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Figure 4.1: Numerical simulation of a 2D static bubble in stagnant fluid
(using equation 3.18). Comparison of a uniform ( ) and a random distri-
bution of markers ( ). (a) Maximum normalized velocity evolution. (b)
Normalized pressure at y = 0.5.

number is La = ρDσ/µ2 = 0.5. For this test, markers are advected using a
first order time integration (equation 3.23). Results are shown in figure 4.1
where two distributions of markers are compared. In blue, the interface is
initialized with a uniform distribution of markers such that ∆s = ∆x. In red,
the interface is initialized with a random distribution of markers, having a
minimum and a maximum element size of ∆smin = 0.3∆x and ∆smax = ∆x
respectively, the reason of this choose will be clear later. Calculation of the
local surface tension force f is performed using equation 3.18 as reported
in Shin et al. (2005). The maximum velocity Umax inside the domain is re-
ported in figure 4.1a (normalized with σ/µ) as a function of time (normalized
with the capillary time scale τ = t/

√
ρD3/σ). It can be seen in figure 4.1a

that a non-uniform distribution of markers, increases the maximum velocity
Ca up to 8 orders of magnitude with respect to the value obtained with a
uniform distribution (similar to what was reported in Shin et al. (2005)).
However, the pressure on a line crossing the center of the bubble seems to
be unaffected and correctly predicted in both uniform and non-uniform dis-
tribution of markers. This is reported in figure 4.1b, where r̃ = (x− xc)/xc,
P̃ = P/(σ/R) and xc is the x coordinate of the bubble center. The same test
is repeated, now with f calculated with tangents in equation 3.26 (present
approach). As can be seen in figure 4.2a, in both uniform and non-uniform
distributions of makers, the maximum velocity is recovered between a margin
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Figure 4.2: Numerical simulation of a 2D static bubble in stagnant fluid
(using equation 3.26). Comparison of a uniform ( ) and a random distri-
bution of markers ( ). (a) Maximum normalized velocity evolution. (b)
Normalized pressure at y = 0.5.

of 2 × 10−16 favorable to the uniform distribution. Pressure at y = 0.5 still
shows no variation for both distributions (see figure 4.2b).
Next, the influence of Laplace number La on the spurious velocities for a
non-uniform distribution is analyzed. Again we use the same numerical do-
main as in the previous test. Density ρ and dynamic viscosity µ of both fluids
are set to 1, while surface tension is set such that La = 0.5, 12, 120, 1200 and
12000. Results are shown in figure 4.3a where the evolution of the maximum
adimensional velocity is reported. Laplace number affects the initial evolu-
tion of the velocity, but in all cases stabilization is always achieved. Up to
La = 1200, stabilization occurs at τ ∼ 0.5. For La = 12000, constant Ca
is achieved after τ ∼ 7 (not shown). Figure 4.3b shows the same evolution
up to τ = 0.2, showing also the evolution of the RMS dimensionless velocity.
The rate of convergence in time for the RMS velocity is quite similar to that
of the maximum velocity and its value is 1 order of magnitude smaller. This
convergence occurs from a minimum to a maximum value, the opposite to the
evolution found in Popinet (2009) and Abadie et al. (2015) (from maximum
to minimum). The values reached here are close to machine precision as in
Popinet (2009) and also to those obtained with LS-SSF (Level Set Sharp
Surface Force) reported in Abadie et al. (2015), but in a quicker velocity
stabilization than both references.

We define the average pressure jump ∆Pavg and the maximum pressure
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Figure 4.3: Effect of La for a non-uniform distribution of markers on: (a)
Maximum velocity evolution: , La = 0.5; , La = 12; , La = 120;

, La = 1200; , La = 12000. (b) Maximum and RMS velocity evolution:
, La = 0.5; , La = 12; , La = 120; , La = 1200; , La =

12000. (c) Pressure Jump error: , ∆Pmax; , ∆Pavg.
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Figure 4.4: Static bubble test. Effect of R/∆x (∆τ = 0.15) over: (a) ,
Maximum Velocity; , RMS Velocity. (b) Percent error for , ∆Pmax;

, ∆Pavg

jump ∆Pmax both normalized by the Laplace pressure σ/R. The former is
found by taking the difference of the area weighted average of the pressure
inside and outside the bubble, while the latter is calculated by the difference
between the maximum and the minimum pressure inside the domain. The
influence of La on the error for ∆Pmax and ∆Pavg taking 1.0 as a reference
is shown in figure 4.3c. The error in ∆Pmax has a tendency to decrease with
La, while ∆Pavg is kept close to ∼ 0.01% for any La.
A grid test dependence is shown in figure 4.4. There we see a growth in
the maximum velocity with grid resolution (figure 4.4a) a similar tendency is
found for the error in the maximum pressure jump (figure 4.4b). The error in
the average pressure however shows a decrease with grid resolution. Next we
evaluate the effect of the step of time (∆t) in the reduction of spurious veloc-
ities. The case of La = 12000 is chosen for this test and results are reported
in figure 4.5 where the step of time has been normalized by the minimum ∆t
(table 2.1). A comparison between FO and RK3 marker advection is shown
for velocity and pressure jump error. As can be seen from figure 4.5a, for
all ∆τ tested, the maximum velocity reaches ∼ 2 × 10−14 and for both FO
and RK3, spurious velocities converge at ∆τ ∼ 0.2. Spurious velocities for
RK3 are similar in magnitude to those for FO, except for ∆τ ∼ 1.8 where
the difference is about 2 orders of magnitude. This is expected given that
RK3 is a high order scheme of advection so the difference between the two
schemes will be noticeable when increasing the time step. There is virtually
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Figure 4.5: Effect of ∆t (R/∆x = 12.5) over: (a) , Maximum Velocity
(FO); , RMS Velocity (FO); , Maximum Velocity (RK3); , RMS
Velocity (RK3). (b) Error for , ∆Pmax (FO); , ∆Pavg (FO); ,
∆Pmax (RK3); , ∆Pavg (RK3).

no difference between FO and RK3 for error in pressure jump (figure 4.5b).
Error in maximum pressure jump shows a continuous improvement and con-
vergence with ∆τ whereas error in average pressure is kept almost constant
at ∼ 0.01%.

4.3 Translating bubble

This is a more aggressive test for the evaluation of spurious velocities re-
ported in the literature (Popinet, 2009; Abadie, 2013; Abadie et al., 2015).
This test is also very useful because when simulating real flows we expect the
combined effects of curvature calculation and interface advection as stressed
in Abadie et al. (2015). We analyze a translating bubble of R = 0.2 inside a
unit computational square domain which is initialized with a uniform velocity
field U0. In both horizontal surfaces the symmetry boundary condition is im-
posed, while in vertical surfaces a periodic one is prescribed. As described in
Popinet (2009), this setup introduces a new timescale tU = D/U0 with which
the normalized time τ will be obtained. Here the non-uniform distribution
of markers is obtained randomly, as described in section 4.2. Properties of
fluids are varied to test different La and Ca numbers, keeping always the
same density and viscosity inside and outside the bubble. The schematics of
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Figure 4.6: Schematic of a translating bubble test

this test are shown in figure 4.6. Theoretically, in the reference frame of the
translating bubble, the velocity is zero. So, we define the normalized veloci-
ties Ũmax = max(|U − U0|)/U0 and ŨRMS = |URMS − U0| /U0. The evolution
of Ũ with time is shown in figure 4.7. The maximum velocity stabilizes in the
late τ ∼ 0.75 for all La. The RMS velocity however does not converge with
time, this was noticed also in Popinet (2009) where it is stated that advec-
tion will continue perturbing the shape of the interface (hence the curvature
calculation) in time. Figure 4.8a shows the effect of the Laplace number over
the maximum and the RMS velocity keeping We = 0.4. Maximum velocity
reaches a peak at Ũ ∼ 1× 10−13 and ŨRMS ∼ 1× 10−14, showing an increase
with La but still keeping spurious velocity close to machine precision, con-
firming the observations reported in Popinet (2009), where a ŨRMS ∼ 0.0015
was reported; percent error for the maximum pressure jump decreases with
La to ∼ 0.01%, while the average pressure jump if kept almost constant close
to ∼ 0.01, this can be seen in figure 4.8b.
Both velocity and pressure jump are tested against the mesh quality. This

is shown in figure 4.9. In the grid test, no convergence is reported for both
maximum and RMS velocity, reaching remarkably a maximum of 7 × 10−13

and ∼ 4×10−14 respectively, the reason for this behavior is not clear, though
the order of magnitude is significantly lower than those reported in Popinet
(2009) and Abadie et al. (2015) (see figure 4.9a). The ∆t used for this test
is about ∼ 0.15∆tmin from the capillarity time criteria in table 2.1 corre-
sponding to the finest grid (R/∆x = 50). The average pressure jump error
improves as R/∆x increases, reaching ∼ 0.002%. This improvement in av-
erage pressure jump error is due to the way in which the average pressure is
calculated, the finer the grid, the more precise the area weighted average is
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Figure 4.7: Translating bubble test. Temporal evolution of the maximum
velocity for: , La = 1.2; , La = 120; , La = 1200; , La = 12000;
and for RMS velocity for: , La = 1.2; , La = 120; , La = 1200;

, La = 12000, while keeping We = 0.4 and R/∆x = 12.8.
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Figure 4.8: Translating bubble test. Effect of La over: (a) , Maximum
Velocity; , RMS Velocity. (b) Percent error for , ∆Pmax; , ∆Pavg,
while keeping We = 0.4 and R/∆x = 12.8.
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Figure 4.9: Translating bubble test. Effect of R/∆x (∆τ = 0.15) over: (a)
, Maximum Ũ ; , RMS Ũ . (b) Percent error for , ∆Pmax; , ∆Pavg,

while keeping We = 0.4 and La = 12000.

(a) (b)

Figure 4.10: Translating bubble test. Pressure profile for R/∆x = 50, La =
12000 and We = 0.4 at: (a) τ = 0.0804; (b) τ = 1.6089.
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Figure 4.11: Translating bubble with R/∆x = 12.8. Effect of Ca over: (a)
, Maximum Velocity; , RMS Velocity. (b) Percent error for , ∆Pmax;
, ∆Pavg.
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Figure 4.12: Effect of R/∆x (∆τ = 0.15) over: (a) , Maximum Velocity;
, RMS Velocity. (b) Percent error for , ∆Pmax; , ∆Pavg, while

keeping Ca = 1× 10−10.
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Figure 4.13: Effect of ∆t (R/∆x = 12.8) over: (a) , Maximum Velocity
(FO); , RMS Velocity (FO); , Maximum Velocity (RK3); , RMS
Velocity (RK3). (b) Error for , ∆Pmax (FO); , ∆Pavg (FO); ,
∆Pmax (RK3); , ∆Pavg (RK3).

found. The error in the maximum pressure jump shows a growing tendency
with a maximum error of ∼ 0.06%. A similar tendency is found in Abadie
et al. (2015). It is not clear why error in ∆Pmax increases with grid quality.
The pressure profile is always sharp and no perturbation in its shape could
be found, this can be seen in figure 4.10, where the normalized pressure is
shown at two selected time steps. Limitations in numerical simulations are
related to capillary numbers under which the flow is contaminated by spu-
rious velocities. In the next test, we use the translating bubble setup and
modify properties to achieve 1×10−10 ≤ Ca ≤ 1 and check if the current im-
plementation can reduce spurious velocities to acceptable levels. Results are
shown in figure 4.11 and 4.12. We have defined C̃amax = max(|U − U0|)µ/σ
and C̃aRMS = |URMS − U0|µ/σ as the characteristic capillary number of the
spurious velocities for the maximum and the RMS velocity of each time step.
From figure 4.11a, it can be deduced that spurious capillary velocities are
always ∼ 10 orders of magnitude lower than the main flow capillary veloc-
ity. For Ca = 1 we see that the maximum pressure jump starts departing
from the theoretical Laplace pressure jump (e ∼ 0.4%). The error in the
average pressure jump shows to be stable (around ∼ 0.01%) with Ca (see
figure 4.11b). A grid test reveals a growth on the spurious velocities when
the grid quality is increased (figure 4.12a) but still keeping small magnitudes.
A growing tendency in the error of ∆Pmax is also experienced (figure 4.12b),
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whereas ∆Pavg shows improvement with grid quality as expected. Again, the
profile of pressure is not perturbed (not shown here).

A test for ∆t is also conducted for the translating bubble. In figure
4.13a, the normalized velocity shows no convergence with ∆τ , in fact, there
is a growth in both maximum and RMS using the smallest ∆τ ∼ 0.01. This
can be explained with the complex coupling between surface tension force
calculation and interface advection (see Abadie et al., 2015). When we use
smaller ∆t more time steps are required to achieve the same time of simu-
lation, which means also that any perturbation on the general velocity field
by the spurious velocities will affect successive calculations more frequently
than using a larger ∆τ . This is a fact that will occur even for high order
time advection schemes, in our case RK3, when we performed calculations
of Ũ at a order of magnitude so small as those obtained in this work. We
also performed the same tests for ∆τ , using a quadruple precision version of
JADIM, with no better results (not shown here). In anyway, Ũ using FO re-
sulted in ∼ 1 order of magnitude less than Ũ for RK3 (for ∆τ ∼ 0.1), this is
the opposite to what was found for the static bubble, where RK3 performed
slightly better than FO. Maximum pressure jump error (figure 4.13b) shows
improvement with ∆τ and independence of the advection method (both FO
ans RK3 are superposed), while the average pressure jump error is kept
roughly constant for any ∆τ at e(%) ∼ 0.01, with FO performing slightly
better.

4.4 Assessment of the reconstruction proce-

dure

We have demonstrated so far that a non-uniform distribution of markers can
achieve spurious velocities close to those obtained with a uniform distribution
when care is taken calculating tangents at the ends of front elements. This
section objective is to evaluate the new reconstruction process described in
section 3.7. First we check the ability of the reconstruction to reproduce a
known mathematical function and then we check if, after the reconstruction
procedure, the spurious velocities can be kept at their low magnitude for the
static and translating bubble cases. Finally, we also explore the stability of
the reconstruction process in a case with large Laplace number.

4.4.1 Geometrical accuracy

To asses the accuracy of the reconstruction process described in section 3.7,
we initialize the front with an ellipse of equation x2/9+y2/4 = 1 in a 12×12
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Figure 4.14: Effect of ∆s/∆x over the geometry of the ellipse x2/9+y2/4 = 1:
(a) Varying number of eulerian elements; (b) Varying number of lagrangian
markers;

box (see Torres and Brackbill, 2000, for details on the initialization). First, we
construct the ellipse with 100 markers and we vary the number of cells in the
eulerian grid from 162 to 1682. We report the maximum percent error between
markers y coordinates obtained after reconstruction and the reference value
computed from the ellipse equation using each marker coordinate x. Results
are shown in figure 4.14a. ∆s/∆xi represents the ratio between the average
element length of the initial front versus the length of a eulerian cell face. It
can be seen that when the quality of the eulerian grid improves, the error
on the geometry shape increases (from ∼ 2 × 10−4 to ∼ 9 × 10−4). The
explanation for this is that when ∆si/∆x is large, less reconstructing circles
can be generated so the geometry of the ellipse loses quality. This result is
confirmed in 4.14b, where we repeated the test, this time keeping the eulerian
grid at 162 cells and varying the number of elements of the initialized ellipse
from 10 to 100 markers. The maximum error is ∼ 0.4(%) corresponding to
the maximum ratio tested (∆si/∆x = 2.1). Also, figure 4.14b shows that
the error in the reconstruction procedure is ever increasing, this because we
have large front elements that would intersect many eulerian faces using a
unique curvature. As stated in the introduction, large front element size can
also bring errors in the transfer of information between the front and the
eulerian grid. So, based on figure 4.14a the maximum size ratio to have an
accurate reconstruction should be kept close to 1. This raises the question
on how small ∆s/∆x can be (see section 4.4.2).
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Figure 4.15: Test for minimum element size in a static drop, following Shin
et al. (2005). (a) Maximum velocity; ∆smin = 0.0∆x; ∆smin =
0.1∆x; ∆smin = 0.2∆x; ∆smin = 0.3∆x; ∆smin = 0.4∆x. (b)
Percent error for pressure jump: ∆Pmax; ∆Pavg.

4.4.2 Stability of the spurious velocities elimination

It has been reported in Shin et al. (2005) that a non-uniform distribution
of markers affects hybrid formulation capacity to reduce spurious velocities
after a reconstruction process. In the preceding section we have explored the
upper limit of ∆s, here we explore the lower limit.
Small front elements are expected to arise when the flow groups markers in
a small zone and when the reconstruction process is close to the corner of a
eulerian cell. In fact, in an extreme case, since markers are reconstructed at
eulerian faces, two markers forming a new element may coincide at the cell
corner, producing a front element with ∆s = 0.
To asses ∆smin we retake the static bubble test from section 4.2. A bubble of
R = 0.25 is put in a 2D box of L = H = 1, having ρ and µ set to one, surface
tension σ is set such that La = 12000. More details on the set up can be
found in Shin et al. (2005). The simulation begins with a front initially uni-
form (∆s/∆x = 1.0), and the reconstruction procedure is set to be performed
at each 100 time steps. The threshold ∆smin is defined as 0, 0.1, 0.2, 0.3,
0.4 times the uniform eulerian grid size ∆x = L/25. ∆smin/∆x = 0 means
that any element length ∆sk is allowed. If ∆smin/∆x > 0 then the markers
are fuse together with the procedure explained in section 3.7 and depicted
in figure 3.8b. A simulation is set up to τ ∼ 4200 such to obtain velocity
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stability in time. The maximum adimensional velocity is reported in figure
4.15a. There, lines are superposed into two groups: blue (∆smin/∆x = 0),
red (∆smin/∆x = 0.1) and orange (∆smin/∆x = 0.2) on the top and black
(∆smin/∆x = 0.3) and green (∆smin/∆x = 0.4) on the bottom. From there
it is deduced that only if ∆smin > 0.2∆x spurious currents results are compa-
rable to those of a uniform distribution. For ∆smin ≤ 0.2∆x, the maximum
Ca stabilizes and reaches values comparable to those in Figure 4.1a (red line),
which is compatible of using tangents of elements to calculate f as in Shin
and Juric (2002); Shin et al. (2005); Lai et al. (2010); Huang et al. (2004);
Ceniceros et al. (2010); Li et al. (2012) (equation 3.18). Figure 4.15b shows
the percent error in the maximum and average pressure jump as a function
of ∆smin/∆x. Maximum/average pressure jump error decrease/increase re-
spectively with ∆smin/∆x. For ∆smin/∆x > 0.2 both errors meet roughly
with an error of ∼ 0.05%. A similar test is conducted for the translating
bubble of section 4.3, using a grid size of ∆x = L/25. Again, the front is
initialized with a uniform distribution of markers (∆s/∆x = 1). Reconstruc-
tion is performed at each 100 time steps, properties and initial velocity U0

are set to give La = 12000 and We = 0.4. Results for this test are shown in
figure 4.16. Normalized maximum velocity Ũ seems to converge for all cases
except for the ratio ∆s/∆x = 0.0 (any ∆s is allowed). A closer look to the
second half of τ of figure 4.16a is shown in figure 4.16c. There we can see
that only ratios ∆s/∆x > 0.2 in black and green lines present stability in
time (up to τ = 1). This confirms results obtain for the static case. On the
other hand, pressure jump seems to be independent of ratio ∆s/∆x as can be
deducted from the error in figure 4.16b. Error in the average pressure jump
is ∼ 0.001% and error in the maximum pressure jump is kept ∼ 0.0002%. To
understand why a small ∆s affects the spurious velocity reduction, we ana-
lyze next equation 3.17. At any given time step, the local force per surface
tension unit at front element ek (see figure 3.6a) is given by:

fe,k/σ = tk − tk−1 (4.1)

Substitution of equation 3.26 yields:

fe,k/σ =
te,k∆sk+1 + te,k+1∆sk√

∆s2
k+1 + ∆s2

k + 2∆sk+1∆skte,k · te,k+1

− te,k−1∆sk + te,k∆sk−1√
∆s2

k + ∆s2
k−1 + 2∆sk∆sk−1te,k−1 · te,k

(4.2)

Clearly in equation 4.2, if ∆sk → 0 then fe,k/σ → 0, which means that small
elements do not contribute to the global surface tension contribution, which
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Figure 4.16: Test for minimum element size in a translating bubble. (a)
Maximum velocity; ∆smin = 0.0∆x; ∆smin = 0.1∆x; ∆smin =
0.2∆x; ∆smin = 0.3∆x; ∆smin = 0.4∆x. (b) Percent error for
pressure jump; ∆Pmax; ∆Pavg. (c) Zoom-in into figure 4.16a.
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Figure 4.17: Translating bubble. Effect of frequency of reconstruction in
time step units. (a) , Maximum Ũ ; , RMS Ũ . (b) Percent error for
pressure jump; ∆Pmax; ∆Pavg.

is also obvious from equation 3.6. Nevertheless, a small element may affect
negatively the local force of its neighbors, i.e. if ∆sk−1 → 0 then the force in
equation 4.2 results in:

fe,k/σ =
te,k∆sk+1 + te,k+1∆sk√

∆s2
k+1 + ∆s2

k + 2∆sk+1∆skte,k · te,k+1

− te,k−1

which shows a large contribution of the small element tangent te,k−1 which
undermines the calculation of the local surface tension force. A threshold of
∆smin/∆x > 0.2 ensures stability of the spurious velocities close to machine
precision and it is used as the default threshold in this work. Next, the fre-
quency of reconstruction is analyzed for the case of the translating bubble.
Keeping properties to achieve La = 12000 and We = 0.4, we prescribe a
reconstruction frequency of nt equal to 10, 50, 100 and 200 time steps. Re-
sults are shown in figure 4.17. Dimensionless velocities show a decreasing
tendency with decreasing frequency of reconstruction. Cut-off errors in the
circle-segment line intersection calculation are introduced and accumulated
in the calculations, hence the decreasing tendency. Nevertheless, magnitude
of spurious velocities are kept close to machine precision (see figure 4.17a).
Average pressure jump shows also its smallest value, ∼ 0.007 for nt = 200
time steps, while the maximum pressure jump error is independent on the
reconstruction frequency, keeping its value at ∼ 0.002 (figure 4.17b).
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We close this spurious velocities and stability evaluation with a test proposed
in Torres and Brackbill (2000) and reproduced in Shin et al. (2005) for a large
La. An elliptical droplet of equation x2/0.0032 + y2/0.0022 = 1 is initialized
inside a 0.01 × 0.01 box with periodic boundary conditions. Properties are
set such that density and viscosity jumps are 1000 and 10 respectively. Sur-
face tension then is 0.1 for a total La = 500000. Reconstruction process
for this problem is set at 1000 time steps on a grid of 642 uniform cells.
According to Scardovelli and Zaleski (1999), for large density ratios, high
spurious velocities should be found. It is also mentioned that destruction of
the interface is expected for large La. We experienced this latter point when
trying to compared our implementation with VOF-FCT-CSF inside JADIM
with catastrophic results (not shown here, but we can mention that it took
only ∼ 15000 time steps of the 5× 106 planned to destroy the interface), so
instead we compared the results of this test with Level-Set-CSF method in
JADIM (see Abadie et al., 2015, for details on the implementation).
Figure 4.18a shows the evolution of the maximum velocity inside de domain.
It can be seen that the present formulation of the front-tracking method with
reconstruction has an evolution that keeps reducing the velocity, while Level-
Set-CSF seems to reach its minimum value at Umax ∼ 10−2. Similar tendency
is obtained for the kinetic energy evolution (Ek =

∫
ρU · UdV ), Level-Set-

CSF reaches a minimum of Ek ∼ 10−8 while results for front-tracking keep
falling (see figure 4.18b). Figures 4.18c and 4.18d show the maximum and
average pressure jump, this time normalized using σ/req, where req is the
radius of a droplet equivalent in area to the initial ellipse. Again we see that
the present front-tacking implementation evolves to reproduced the correct
pressure jump. The pressure jump in the Level-set method does not con-
verge. In fact we found out that the droplet area starts increasing with time
after oscillations have ceased (t ∼ 3). At t ∼ 5, Level-Set-CSF reported an
increase of 25% in the droplet area while the error with the front tracking
method was found to be less than 1%.

4.5 Benchmarking the method

This section is devoted to compare the present implementation to data found
in the literature outside the scope of the spurious velocities analysis. The
test selected is the 2d rising bubble that can be found in Hysing et al. (2009).
This test allows us to evaluate relatively large interface motion and deforma-
tion to asses the robustness of the new local surface tension force calculation
and reconstruction methods. An initially circular bubble of R = 0.25 is put
into a box containing a denser fluid (see figure 4.19). No slip and symmetry
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Figure 4.18: 2D oscillating droplet test using: Front tracking (present);
Level-Set-CSF. (a) Maximum Velocity evolution. (b) Kinetic Energy

evolution. (c) Maximum Pressure jump. (d) Average Pressure jump.
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Figure 4.19: Initialization of the bubble rising test, according to Hysing et al.
(2009).

Test ρ1/ρ2 Γ σ g Re Eo

1 10 10 24.5 0.98 35 10
2 1000 100 1.96 0.98 35 125

Table 4.1: Rising bubble parameters

boundary conditions are applied on the two horizontal and the two vertical
surfaces respectively. A constant gravity acceleration is imposed and proper-
ties for fluids are selected so two tests are analysed according to the table 4.1.
Property ratios are given from the heavier to the lighter fluid. Γ stands for
the viscosity ratio, σ for the surface tension. Governing numbers Reynolds
and Eötvös are given by Re = ρ1

√
g(2R)3/2/µ and Eo = 4ρ1gR

2/σ. Four
uniform grids are tested such that ∆x = 1/40, 1/80, 1/160 and 1/320 using
time steps of ∆t = ∆x/16. According to Hysing et al. (2009), three groups
participated in these tests: The group 1 (TU Dortmund, Inst. of Applied
Math.) using a FEM-Level Set method code, the group 2 (EPFL Lausanne,
Inst. of Analysis and Sci. Comp.) using a FEM-Level Set method code and
the group 3 (Univ. Magdeburg, Inst. of Analysis and Num. Math.) using
a FEM-ALE method code. For more details we refer the reader to Hysing
et al. (2009). All test cases are initialized with a non-uniform distribution of
markers (resulting from intersecting the bubble with the eulerian grid, taking
care of the constrain ∆s/∆x > 0.2). Bubble centroid position Yc, Circularity
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c̆ and Rise velocity Vc are calculated as follows:

Yc =

∑
i,j CijyijAij

Ab
(4.3)

c̆ =
2π

L

√
Ab
π

(4.4)

Vc =

∑
i,j CijvijAij

Ab
(4.5)

In these equations, sub-index ij denote quantities at the centroid of the
eulerian cell. A, Ab and L denote the cell area, total bubble area and the
bubble perimeter. They are calculated as follows:

Ab =
∑
ij

CijAij (4.6)

L =
∑
k

∆sk (4.7)

Three types of error will be used to compare results (see Hysing et al., 2009).

e1 =

∑
t|qt,ref − qt|∑

t|qt,ref |
(4.8)

e2 =

(∑
t|qt,ref − qt|2∑

t|qt,ref |2

)1/2

(4.9)

e3 =
maxt|qt,ref − qt|
maxt|qt,ref |

(4.10)

where qt is some quantity to be compared and qt,ref is the quantity of ref-
erence. If a grid tests is performed, the reference quantity is understood to
be the one on the finest grid level. Benchmark quantities are given at http:
//www.featflow.de/en/benchmarks/cfdbenchmarking/bubble.html.

4.5.1 Results for Test 1

First we test the frequency at which the front reconstruction process is
performed. We selected nt to be 10, 50, 100 and 200 times steps using
∆x = 1/40. Results are shown in figure 4.20. Bubble shape, circularity,
centroid position and rise velocity seem to converge independently of nt. A
zoom on the final time steps in figures 4.20b and 4.20d show some perturba-
tions caused by the reconstruction process, but in all cases the general trend
is not broken (see figures 4.21a and 4.21b).
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Figure 4.20: Numerical simulation of a 2D rising bubble in stagnant fluid,
Test 1 table 4.1. Frequency of front reconstruction in time steps: , nt = 10;

, nt = 50; , nt = 100; , nt = 200.
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Figure 4.21: Zoom performed in figures 4.20b and 4.20d. Frequency of front
reconstruction in time steps: , nt = 10; , nt = 50; , nt = 100; ,
nt = 200.

Table 4.2 summarizes the errors obtained for each case, taking the same grid
level data as a reference. No significant difference among the frequencies of
reconstruction can be observed and no frequency gives the smallest error in
every quantity evaluated. For the next tests we have chosen an intermediate
frequency of reconstruction nt = 100, so economy of computations can be
achieve and also, we reduce the possibility of having ∆s to large or to small
according to the considerations described in the previous section. The pro-
cess of front reconstruction can be also triggered by measuring at each time
step the minimum and maximum front element size and acting accordingly.
In this work however, we consider this expensive and prefer to prescribe a
fixed frequency of reconstruction. Results are shown in figure 4.22. This
time the solution of reference is at the finest grid. We can see convergence to
the reference given in green. In fact, according to figure 4.22a, the bottom
of the bubble seems to have been left behind in the case of ∆x = 1/40, this
however affected little the position of the bubble centroid (see figure 4.22c).
Circularity seems to be the most affected variable by the coarsest grid. In
figure 4.22b, at t = 2, ∆x = 1/40 reaches its minimum c̆ = 0.897 while the
reference indicates c̆ = 0.901. Contrary to this, rise velocity reports that
∆x = 1/40 experiences a slight acceleration at t = 1 which will result in
a slight larger value of Vc at the end of the simulation (Vc = 0.199 for a
reference value of Vc = 0.193).

To conclude this first test, results of ∆x = 1/320 are compared to its ref-
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Figure 4.22: Evolution of a 2D rising bubble in stagnant fluid, Test 1 table
4.1, for ∆x: , 1/40; , 1/80; , 1/160; , 1/320; , Ref. 1/320.
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nt e1 e2 e3

Circularity
10 2.80e-03 3.28e-03 6.07e-03
50 2.76e-03 3.23e-03 6.01e-03
100 2.81e-03 3.28e-03 6.18e-03
200 2.68e-03 3.11e-03 5.84e-03
Centroid position
10 2.41e-03 3.37e-03 5.69e-03
50 2.53e-03 3.52e-03 5.96e-03
100 2.46e-03 3.43e-03 5.79e-03
200 2.38e-03 3.28e-03 5.46e-03
Rise velocity
10 1.30e-02 1.47e-02 2.19e-02
50 1.23e-02 1.40e-02 2.17e-02
100 1.26e-02 1.43e-02 2.15e-02
200 1.34e-02 1.49e-02 2.17e-02

Table 4.2: Test for reconstruction frequency using ∆ = 1/40.

e1 e2 e3

Circularity 9.75e-05 1.22e-04 2.62e-04
Centroid position 8.69e-05 1.35e-04 2.58e-04
Rise velocity 1.90e-03 2.10e-03 2.75e-03

Table 4.3: Comparison of ∆x = 1/320 against reference data for Test1.

erence equivalent in table 4.3. The maximum error is 2.75 × 10−3 for rise
velocity.

4.5.2 Results for Test 2

Our new implementation is now evaluated in the Test 2 of table 4.1, with a
frequency of reconstruction set at nt = 100. As was the case of the group 3
in Hysing et al. (2009), where a FEM-ALE code was used, our implementa-
tion could not handle break-up automatically, instead, the simulation kept
stretching the bubble skirt. Although we could not reproduce the break up
feature, our implementation showed that the bulk of the bubble shape is in
good agreement with groups of the reference data (see figure 4.23). Quanti-
ties such as Circularity, Centroid Position and Rise velocity are reported in
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Figure 4.23: Rising Bubble, Test 2, table 4.1 at t = 3. Comparison with
groups: , 1; , 2; , 3; , present.

e1 e2 e3

Circularity 3.75e-02 8.44e-02 2.16e-01
Centroid position 2.53e-03 4.15e-03 9.16e-03
Rise velocity 3.29e-02 3.88e-02 6.37e-02

Table 4.4: Comparison of ∆x = 1/130 against reference data for Test2.

figure 4.24. Remarkably, circularity evolution for the present implementation
is nearly identical to that of group 1 (up to t ∼ 2.3), from there, the circu-
larity will be affected by the shape of the small bubble in the interface that
has undergone a break-up (see figure 4.24a). The Centroid position shown in
figure 4.24b is virtually independent of the break up process. Rise velocity is
the most affected quantity for all groups and the present implementation. It
can be said in general that it follows the same trend (see figure 4.24c). The
norm error of our implementation is now compared to that of group 1 and
reported in table 4.4. Confirming what figure 4.24, the largest norm errors
are obtained for Circularity.
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Figure 4.24: Evolution of a 2D rising bubble, Test 2, table 4.1, in stagnant
fluid for ∆x = 1/320. Comparison of: , Group 1; , Group 2; ,
Group 3; , Present.

69



4.6 Validation in wetting cases

In this section we assess the ability of the front-tracking method with la-
grangian markers in cases where a moving contact line is found. In principle,
we need to addressed on how to tread velocity advection of markers close to
a solid wall.

4.6.1 Advection of markers close to the wall

The discrete form of the integral property of the Dirac function is:∑
ij

Di,j = 1 (4.11)

This property is true if the marker in question is away from any solid wall, or
better said, whenever is surrounded completely by eulerian cells containing
fluids. For markers that are close to solid boundaries, a value of

∑
ij Di,j < 1

is expected. The immediate effect of this value is that markers close to walls
will move slower than those away from it. Physically this is a natural effect,
since close to a wall we expect slower velocities. In the simulation of con-
tact lines (with the front-tracking method), this would mean however, that
a marker in contact to the wall should remain static, though in the practice,
because of the influence of the velocity away from the wall, the marker will
move but at a unacceptable low rhythm. Methods like VOF-FCT-CSF and
LevelSet-CSF are not affected by this, since there is no interpolation of ve-
locity to the interface, but rather a direct advection by conservation means.
We dramatize this effect with a small numerical experiment. A 2D viscous
drop spreading on a wall is set up in a square solid domain with a radius of
R0 = 0.25 and fluid properties set up as ρ1 = ρ2 = 1, µ1 = µ2 = 0.25 and
σ = 7.5 according to Afkhami et al. (2009). The initial configuration forms
an initial contact angle of 90◦ with the wall and a constant static contact
angle of 60◦ is prescribed. A 32×32 grid is used and VOF-FCT-CSF is com-
pared against the current front-tracking implementation in JADIM. Results
for selected time steps (τ = tµ/ρR2

0) are given in figure 4.25, where the black
curve represent the fluid interface for VOF-FCT-CSF (0.5 contour of VOF
function) and the red line with triangular symbols represent the interface
found with the front-tracking method. As can be seen in the sequence of
figures 4.25a to 4.25d, markers close to the wall move slower with respect to
the VOF-FCT-CSF method, being the slowest the marker at the wall. This
produces an interface strongly curved at the wall and will affect negatively
the kinematics of the bubble, we see that already at τ = 0.4 (figure 4.25d)
the contact line of the front-tracking method has been left behind around one
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Figure 4.25: Hemispherical 2D viscous drop spreading, comparing:
VOF-FCT-CSF; Front-tracking no treatment at contact line; Front-
tracking special treatment at contact line at: a) τ = 0.1; b) τ = 0.2; c)
τ = 0.3 and d) τ = 0.4.
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and half computational cell. Eventually of course, when τ →∞, both inter-
faces for the methods will converge because the static angle will be reached,
but the transition to this state is significantly affected. Uzgoren et al. (2009)
proposed a solution for this advection issue: since

∑
ij Di,j = 1 is expected,

then the advection of markers must be made according to:

Uk =

∑
ij UijDij∑
ij Di,j

(4.12)

Using 4.12 does not affect markers away from the wall, since
∑

ij Di,j = 1,
but it corrects the summation to 1 for markers close to it. The results of this
correction are shown in figure 4.25 with a blue line and square symbols rep-
resenting the markers. It can be seen that this new interface follows correctly
the one obtained with VOF-FCT-CSF allowing a smooth configuration close
to the wall. The evolution of the contact line position r̃ = r/R0 is reported
in figure 4.26. VOF-FCT-CSF (in black) and the front-tracking with special
advection at the wall (equation 4.12), in black, evolve similarly and reach
the static theoretical configuration (see equation 4.13) L̃ = 1.385 at τ ≈ 3,
giving a percent error of 0.8% and 0.1% respectively. The small difference
between the final position between VOF-FCT-CSF and front-tracking is due
to the way in which it is post processed. In the case of the front-tracking,
the position is given by the marker at the wall, while in VOF-FCT-CSF,
the volume fraction contour of 0.5 is used as a reference. The front-tracking
without any treatment (red line) shows a slower evolution and at τ = 4 has
not yet reached the final configuration but it is towards to it. It is important
to make clear that the special procedure to advect markers close to the wall
in no way imposes the contact angle, only provides enough relaxation to the
velocity of the markers close to a wall. The angle is imposed in this part
by equation 3.19. After solving the issue of marker advection close to the
wall, we present tests destined to assess the ability of the implementation to
reproduce the shape and pressure jump of a drop spreading at equilibrium
and compare it with analytical solutions if available. Specifically we will use
the tests reported in Dupont and Legendre (2010).

4.6.2 Drop spreading to a equilibrium state

First we conduct the test in the absence of gravitational effects. The test
is a viscous drop with properties ρl = 1, ρg = 0.1, µl = 0.25, µg = 0.00025
and σ = 7.5. The drop of initial radius R0 = 0.5 is initially in contact with
the wall forming 90◦ (see figure 4.27 a)). Ten static contact angles are tested
ranging from 10◦ to 170◦ in steps of 20◦. Only one half of the drop is simu-
lated in a computational domain of uniform 160× 120 cells that corresponds
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Figure 4.26: Contact line evolution for a 2D drop following Afkhami et al.
(2009), using the the static contact angle model and the noslip boundary
condition. Front-tracking using equation 4.12; Front-tracking using
standard markers advection (equation 3.24); VOF-FCT-CSF (the line
corresponds to the 0.5 volume fraction contour)
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h αs

L
R

(a) (b)

Figure 4.27: a) Initialization of a viscous drop released at a wall; b) Final
configuration parameters in the absence fo gravity
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to R0/∆x = 40. We define L̃ and h̃ to be half the length of the bubble pro-
jection on the horizontal wall and the height of the drop respectively, both
normalized by R0. We denominate ∆P to the Laplace pressure jump. Nu-
merically we define ∆Pmax and ∆Pavg as the maximum pressure jump (the
difference between the maximum and the minimum pressure in the whole
domain) and the average pressure jump (the difference between the average
pressure inside and outside the drop), both normalized by σ/R0. In the ab-
sence of gravity and at equilibrium, L̃, h̃ and ∆P are given analytically by
(Dupont and Legendre, 2010):

L̃ =
R

R0

sinαs (4.13)

h̃ =
R

R0

(1− cosαs) (4.14)

∆P = σ/R (4.15)

where R is the radius of the circle defining the interface at equilibrium:

R = R0

√
π

2(αs − sinαs cosαs)
(4.16)

The interface is set to be reconstructed at each 100 time steps.
Results for the equilibrium h̃ and L̃ are shown in figure 4.28. It can be seen
in figure 4.28a, that with exception of static angles close to 0◦ and 180◦, the
agreement obtained is remarkable in both h̃ and L̃. Similar agreement is ob-
tained when comparing both numerical pressure jumps against its analytical
value, with exception of angles 150◦ and 170◦. Next we test the influence of a
gravitational field on the shape obtained by the solver for two static angles,
αs = 50◦ and αs = 130◦. Using again the initialization of figure 4.27(a) and
fluid properties of the last test, a gravity acceleration is imposed such to
produce an Eötvös number (Eo = ρlR

2
0g/σ) ranging between 0.001 and 50.

For low Eötvös numbers (Eo � 1), the non-dimensional analytical height
can be used as a reference (equation 4.14), however, when Eo� 1, height of
the drop is proportional to the capillary length:

ẽ =
2

h̃R0

√
σ

ρlg
sin
(αs

2

)
(4.17)
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Figure 4.28: h̃, L̃ and ∆P for a Drop at equilibrium with ρl = 1, ρg = 0.1,
µl = 0.25, µg = 0.00025, σ = 7.5 and R0 = 0.5. a) Normalized drop length
and height at equilibrium: Analytical L̃, equation 4.13; Numerical L̃;

Analytical h̃, equation 4.14; Numerical h̃. b) Normalized pressure jump:
Analytical ∆P , equation 4.15; Numerical ∆Pavg; Numerical ∆Pmax.
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Figure 4.29: Normalized drop height under the influence of gravity for a static
contact angle of αs = 50◦ as a function of Eötvös number. Equation 4.14;

Equation 4.17; Numerical simulation. On the right panel: drop interface
for selected Eötvös numbers. 1: Eo = 0.001; 2: Eo = 0.865; 3: Eo = 13.
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Figure 4.30: Normalized drop height under the influence of gravity for a static
contact angle of αs = 130◦ as a function of Eötvös number. Equation
4.14; Equation 4.17; Numerical simulation. On the right panel: drop
interface for selected Eötvös numbers. 1: Eo = 0.001; 2: Eo = 0.865; 3:
Eo = 13.

Results are shown in figures 4.29 and 4.30. For both the angles tested,
results are remarkably good when compared to the analytical descriptions in
equations 4.14 shown in a solid black lines and 4.17 shown in a dashed black
line. The right panel in figures 4.29 and 4.30 contains the actual non-scaled
interface configuration at equilibrium for selected Eötvös numbers.

Normalized drop thickness ẽ for Eo < 0.2 follow almost exactly the circu-
lar cap exact solution for both contact angles. Above Eo ≈ 0.2 drop thickness
departs from the circular cap configuration to become flatter, reaching the
shape shown in the right panel of figure 4.29, item number 3 for Eo ≈ 10 and
αs = 50◦. Similarly, Eötvös number (Eo ≈ 0.2) mark the transition between
a circular cap configuration to a flattened drop for αs = 130◦. In the right
panel of figure 4.30, item 3, it is reported the final shape configuration of the
drop for Eo ≈ 10. As expected, ẽ for Eo ≈ 10 and αs = 130◦ is larger than
that for αs = 50◦ (0.4236 to 0.3329) because αs = 130◦ works against gravity
while αs = 50◦ works in favor of it.
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4.7 Summary

In this chapter we have reconsider the calculation of tangents at markers po-
sition, using the “classical” local force from tangents difference proposed in
Unverdi and Tryggvason (1992); Juric and Tryggvason (1998); Agresar et al.
(1998); Tryggvason et al. (2001); Popinet and Zaleski (1999); Yamamoto and
Uemura (2008); Yamamoto et al. (2013, 2014) and we have calculated tan-
gents with a new, simple, yet powerful element length average. This reconsid-
eration forced the length ∆s of the neighbors elements to intervene in t, oth-
erwise, local surface tension force f becomes “deaf” to front non-uniformity.
It was demonstrated that this reconsideration recovers the capacity of the
hybrid formulation Shin et al. (2005) for surface tension force to reduce spu-
rious currents to a level comparable to that of a uniform marker distribution,
close to machine precision in all the cases analyzed. The new implementation
was tested against a static and a translating bubble for diverse La and Ca
numbers showing remarkable results. It was noticed however, that in gen-
eral, only velocity is affected by the new implementation, pressure jump is
invariably well predicted, showing always errors below 1%.
Furthermore, test on the time step ∆t was performed, achieving convergence
in the case of the static bubble with better results for RK3 advection. When
analyzing spurious velocities at order of magnitude close to machine precision
as in this work, no convergence with ∆t could be achieved for the translating
bubble case. In fact, further reduction of ∆t brought the growth of spurious
velocities above those obtained using large ∆t for both the high order time
marker advection scheme (RK3) and the first order (FO). This is due to the
accumulation of perturbations in the velocity field by the spurious velocities
and of course, the complex coupling between curvature calculation and inter-
face advection given in the translating bubble. For this test, FO performed
slightly better than RK3.
This new approach to calculate tangents allowed us also to propose a new
reconstruction scheme by which the front can be redistributed/reconstructed
automatically at prescribed time intervals. This reconstruction scheme is
based on circles whose radii are taken from curvature information in the
front and then are intersected with the eulerian grid faces. The precision
and stability of this reconstruction was tested and it was shown that the
interval 0.2 < ∆s/∆x ≤ 1 provides the most accurate reconstruction given a
known geometry and also provides stability in the spurious velocity reduction
for both static and translating bubble cases. Also, the new reconstruction
scheme was tested for a large La number, obtaining better results than those
for the Level-Set-CSF method.
Finally, this new implementation was tested against the benchmark results in
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Hysing et al. (2009) for a rising 2D bubble. For a moderate interface deforma-
tion (Test 1 in table 4.1), the results showed independence to the frequency of
reconstruction and small errors compared to the reference values. For Test 2,
where large deformations and break up were present, the performance of the
current implementation was comparable to those of the benchmark, specif-
ically to the group 3 which was not prepare to handle break up as it is in
our current implementation. Nevertheless, the quantities measured showed
the same tendency as for the other groups. Also, the bubble shape for this
second test was remarkably in good agreement with the benchmark data.
In cases involving wetting we have seen the power of the front-tracking
method to reproduce the shape and pressure jump features of a drop spread-
ing to a equilibrium state with and without the effects of a gravitational
field after correcting the advection of markers close to a wall. Results were
compared to the theoretical and analytical solutions for spherical caps and
thickness of a drop under the influence of gravity.
For the spherical cap, results were always in good agreement with the theo-
retical height and length of the drop for static contact angles in the range of
10◦ < α < 170◦. For α = 10◦ and α = 170◦, the results were acceptable. It
is not clear why the shape is not correct anymore close to 0◦ and 180◦. The
same trend was experienced for the pressure jump, although the explanation
for this variable could be that calculating it during Navier-Stokes solutions
inside JADIM and post-processing it might be affected by the confinement
of one or the other phase at angles close to 0◦ and 180◦ to the wall. Anyhow,
we consider that results have improved compared to those obtained with
VOF-FCT-CSF (see for example Dupont and Legendre, 2010, for the same
tests). Further calculations and comparison with experimental data will be
given in chapter 8.
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Chapter 5

Some contact line situations in
the context of corner Stokes
Flow

In this chapter we explore some situations in which a contact line can be
regarded in the context of corner Stokes flow. First we take a look into two
boundary conditions at the wall, i.e. the no slip, and the navier-slip which will
later be used as key ingredients to explore the existence of Moffatt vortices
in the vicinity of the contact line in chapter 6 and for the development of a
new subgrid model in the context of the front-tracking method in chapter 8.
Finally we explore an original situation where the contact line is pinned on a
moving wall, resulting in the variation of the angle of the interface with the
wall.

5.1 Background

When approaching to the contact line formed by the interface of two fluids
over a horizontal solid surface, it is possible to consider a corner flow con-
figuration (see Figure 5.1). Considering a bidimensional flow and choosing
cylindrical coordinates whose origin moves with the contact line itself, it is
possible to invoke the creeping flow approximation given that as we approach
the contact line r → 0 then Re→ 0:

µA∇2uA −∇pA = 0 (5.1)

µB∇2uB −∇pB = 0 (5.2)

∇ · uA = 0 (5.3)

∇ · uB = 0 (5.4)

79



α

U

fluid 1fluid 2

φ = α

r

Figure 5.1: Moving contact Line sketch in the reference frame attached to it.

Taking the curl on equations 5.1 and 5.2 and replacing the velocity vector
by its Lagrange’s stream function equivalent (equation 5.5), the continuity
equations 5.3 and 5.4 are automatically satisfied and equations 5.1 and 5.2
are reduce to the biharmonic equation (see equation 5.6).

uk =
1

r

∂ψk
∂φ

vk = −∂ψk
∂r

(5.5)

∇4ψk = 0 (5.6)

Equation 5.6 admits separable solutions of the form:

ψk = rn+1U/Lnfk(n, φ) (5.7)

Choosing a convenient adimensionalization:

r̃ =
r

L
; ψ̃k =

ψk
UL

; ũ =
u

U
; ṽ =

v

U
; τ̃ =

τL

µ1U

p̃ =
pL

µ1U
(5.8)

and dropping the “tilde” notation, the stream function becomes:

ψk = rn+1fk(n, φ) (5.9)

where n is any number, real or complex, U is the velocity of the contact line,
µ1 is the dynamic viscosity of fluid 1, τ is the shear stress, L is a characteristic
length of the flow (i.e. the radius of a drop in the case of a drop spreading)
and k is 1 or 2 referring to the fluids 1 or 2 in figure 5.1. The function
fk(n, φ), is given by (Anderson and Davis, 1993):

fk(n, φ) = Ak cos [(n+ 1)φ] +Bk sin [(n+ 1)φ]

+Ck cos [(n− 1)φ] +Dk sin [(n− 1)φ] (5.10)
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where Ak, Bk, Ck and Dk are constants to be determined by the appropriate
boundary conditions. For the particular cases when n = 0 and 1, equation
5.10 takes the degenerate forms (Anderson and Davis, 1993):

fk(0, φ) = Ak cosφ+Bk sinφ+ Ckφ cosφ+Dkφ sinφ (5.11)

fk(1, φ) = Ak cos(2φ) +Bk sin(2φ) + Ckφ+Dk (5.12)

When assuming a flat interface a “partial local analysis” can be conducted
considering that the flow matches with the outer flow at a large distance
from the corner (typically, the bulk recirculation for a sliding drop). Partial
local solutions describe situations in which all the local boundary conditions
are satisfied with the exception of the normal-stress condition (see Moffatt,
1964; Anderson and Davis, 1993; Shtern, 2014). In practice, this assumption
is valid for an interface in the limit of zero capillary number.
At this point is also useful to express shear, pressure and normal stress as a
function of the stream function. Shear is given by:

τ1 =

(
1

r2

∂2ψ1

∂φ2
1

− ∂2ψ1

∂r2
+

1

r

∂ψ1

∂r

)
(5.13)

τ2 = Γ

(
1

r2

∂2ψ2

∂φ2
2

− ∂2ψ2

∂r2
+

1

r

∂ψ2

∂r

)
(5.14)

the pressure writes:

∂p1

∂r
= ∆u1 −

u1

r2
− 2

r2

∂v1

∂φ
;

1

r

∂p1

∂φ
= ∆v1 −

v1

r2
+

2

r2

∂u1

∂φ
(5.15)

∂p2

∂r
= Γ

(
∆u2 −

u2

r2
− 2

r2

∂v2

∂φ

)
;

1

r

∂p2

∂φ
= Γ

(
∆v2 −

v2

r2
+

2

r2

∂u2

∂φ

)
(5.16)

and the normal stress is:

σ1 = −p1 +
2

r

(
1

r

∂ψ1

∂φ
− ∂2ψ1

∂r∂φ

)
; σ2 = −p2 +

2Γ

r

(
1

r

∂ψ2

∂φ
− ∂2ψ2

∂r∂φ

)
(5.17)

where Γ is the viscosity ratio µ2/µ1 and the operator ∆ is given by:

∆ =
∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂φ2
(5.18)

5.2 The no-slip boundary condition for a mov-

ing contact line.

Considering a clean and impermeable wall and no interchange of mass at the
fluid interface, the boundary conditions for the problem depicted in figure
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5.1 are given as follows. At the wall, no-slip and no-penetration boundary
conditions:

At φ = 0 → u1 = U ; v1 = 0 (5.19)

At φ = π → u2 = −U ; v2 = 0 (5.20)

At the fluid interface (φ = α), continuity of tangent velocity to the interface,
no penetration and shear stress equilibrium:

u1 = u2 (5.21)

v1 = v2 = 0 (5.22)

τ1 = τ2 (5.23)

Substitution of equations 5.5 and 5.9 yields at the wall:

rn f ′1|φ=0 = 1 ; −(n+ 1)rnf1|φ=0 = 0 (5.24)

rn f ′2|φ=π = −1 ; −(n+ 1)rnf2|φ=0 = 0 (5.25)

which can only be satisfied if n = 0. Then f is given by equation 5.11.
Substitution of n leaves:

f ′1|φ=0 = 1 ; f1|φ=0 = 0 (5.26)

f ′2|φ=π = −1 ; f2|φ=0 = 0 (5.27)

And at the fluid interface: conditions 5.21-5.23 become

f ′1|φ=α = f ′2|φ=α (5.28)

f1|φ=α = 0 (5.29)

f2|φ=α = 0 (5.30)

f ′′1 |φ=α = Γ f ′′2 |φ=α (5.31)

where f ′k and f ′′k stand for the first and second derivatives of fk with respect
to φ. The system of equations 5.26 to 5.31 can be solved by regular means
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yielding the next set of constants:

A1 = 0 (5.32)

B1 =
αΓ (sinα(sinα + π cosα)− α(α− π)) + (α− π)2 − sin(α)2

Υ
(5.33)

C1 =

Γ(sinα cosα(α(α− π)− sin2 α)− π sin2 α)

+ sinα cosα(sin2 α− (α− π)2)

Υ
(5.34)

D1 =
sin2(α)((α(α− π)− sin2(α))Γ− (α− π)2 − sin2(α))

Υ
(5.35)

A2 =

−π sinα
(
Γ cosα(α2 − sin2 α)− π sinα

− cosα(sin2 α + α(π − α))
)

Υ
(5.36)

B2 =

((α− π)(sinα(π(cosα + α sinα)− sinα) + α(α− π))

−((α− π) + π sin2 α)(α2 − sin2 α)Γ− π sin4 α
)

Υ
(5.37)

C2 =

sinα
(
cosα(α2 − sin2 α)Γ

+ cosα(α(π − α) + sin2 α)− π sinα
)

Υ
(5.38)

D2 =
−(sin2 α(sin2 α− α2))Γ + sin2 α(α(π − α) + sin2 α)

Υ
(5.39)

with:

Υ = Γ(α2 − sinα
2
)(π − α + cosα sinα)

+(α− cosα sinα)((α− π)2 − sinα2) (5.40)

It is immediately evident that substitution of n = 0 into equation 5.5 leaves
the velocity field as:

uk = f ′k ; vk = −fk (5.41)

which is independent of r. This means that the velocity field at r = 0 has
multiple values. This is known as the “multivaluedness” of the velocity field
(see Dussan V. and Davis, 1974). This inconsistency of the velocity field is
explained if we look at the shape of the shear, which is given by:

τ1 =
1

r

(
f1|φ=0 + f ′′1 |φ=0

)
; τ2 =

Γ

r

(
f2|φ=π + f ′′2 |φ=π

)
(5.42)

so, at r = 0, τk → ∞, which constitutes an unphysical quantity. This
unbounded shear at the wall means that any solid surface would require an
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(a)

(b)

Figure 5.2: Stream function (equation 5.9) for the flow in the corner formed
by two viscous fluids (Γ = 1) using the no-slip boundary condition, forming
an angle of: (a) α = 60◦ and (b) α = 150◦

infinite force to be wetted by a liquid, clearly, this is not a physical behavior.
This was first noticed by Huh and Scriven (1971) and by Moffatt (1964) before
them, although in the later reference the focus of their work was directed to
vortices. Similarly, the pressure field diverges as r → 0:

p1 = −1

r

(
f ′′′1 |φ=0 + f ′1|φ=0

)
; p2 = −Γ

r

(
f ′′′2 |φ=π + f ′2|φ=π

)
(5.43)

Normal stress balance at the interface will also vary as r−1 and as noticed
by Huh and Scriven (1971), as r → 0 a highly curved interface should be
found. Perhaps at this point they were predicting the effects of viscous
bending in hydrodynamic models without noticing it. The stream functions
of the flow produced by the no-slip boundary condition for Γ = 1 (fluids
of equal viscosity), α = 60◦ and α = 150◦ can be seen in figure 5.2. The
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(a)

(b)

Figure 5.3: Stream function (equation 5.9) for the flow in the corner formed
by two viscous fluids (Γ = 1 × 10−5) using the no-slip boundary condition,
forming an angle of: (a) α = 60◦ and (b) α = 150◦. Fluid interface.
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(a)

(b)

Figure 5.4: Stream function (equation 5.9) for Stokes flow in the corner
formed by two viscous fluids (Γ = 1× 105) using the no-slip boundary condi-
tion, forming an angle of: (a) α = 60◦ and (b) α = 150◦. Fluid interface.

first feature of the flow that calls for attention is the “rolling” motion of the
advancing fluid (fluid 1) from the top to the bottom of the figures as shown
with blue arrows in figure 5.2a, hence wetting the solid surface. The opposite
motion is expected for fluid 2 as it is displaced by fluid 1. At the interface,
the flow splits to match velocity fields of both fluids. A similar pattern is
observed for α = 150◦ in figure 5.2b. As noted by Moffatt (1964), in the
reference frame of the contact line, a “fluid 1 particle” traveling at the liquid
interface (red line) will approach the contact line, whose velocity is zero, and
instantly will accelerate to U . This would require of course, infinity shear and
pressure. Figure 5.3, shows the stream lines for angles α = 60◦ and α = 150◦

for a viscosity ratio Γ = 1× 10−5 (i.e. a viscous fluid spreading in a gaseous
environment). Again the direction of the stream lines follows the pattern
shown in figure 5.2. For α = 60◦ the flow splits, covering a larger angle
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than that shown in figure 5.2a, and for α = 150◦ the splitting occurs inside
fluid 2 (see figure 5.3b). This was observed also in Huh and Scriven (1971)
and they gave no explanation for this splitting pattern, but it was observed
that it occurs mostly in the less viscous fluid. Finally, figure 5.4, shows the
stream functions for Γ = 1× 105, confirming the splitting in the less viscous
fluid. Although this makes sense in terms of matching velocity fields of both
fluids at the interface, there is no experimental/numerical confirmation of
such patterns.

5.3 The Navier-slip boundary condition for a

moving contact line.

As was seen in section 5.2, the no slip boundary condition yields unphysical
shear and a multivalued velocity field at a moving contact line. To relax the
no-slip boundary condition, some slip at the wall can be allowed. The most
simple form of this slippage is the Navier-slip law. In the reference frame of
the contact line it writes:

u− U =
λ

r

∂u

∂φ
(5.44)

The boundary conditions at the wall are then, at φ = 0:

At φ = 0 → u1 − U =
λ

r

∂u1

∂φ
; v1 = 0 (5.45)

At φ = π → u2 + U = −λ
r

∂u2

∂φ
; v2 = 0 (5.46)

and the other boundary conditions at the fluid interface remain as shown in
equations 5.21 to 5.23. Substitution of equations 5.5 and 5.9 yield at the
wall:

rn f ′1|φ=0 − 1 = λrn−1 f ′′1 |φ=0 ; f1|φ=0 = 0 (5.47)

rn f ′2|φ=π + 1 = −λrn−1 f ′′2 |φ=π ; f2|φ=0 = 0 (5.48)

Here, the slip length λ has been non-dimensionalized using λ̃ = λ/L. Two
important considerations must be made to solve terms containing r in equa-
tions 5.47 and 5.48. First, by order of magnitude, it can be seen that if
r → 0, then rn f ′k|wall decays quicker than λrn−1 f ′′k |wall so the former can be
neglected altogether. Secondly, the only value of n, satisfying 5.47 and 5.48
(after the neglected terms) is n = 1. Conditions at the wall are given then
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by:

−1 = λ f ′′1 |φ=0 ; f1|φ=0 = 0 (5.49)

1 = −λ f ′′2 |φ=π ; f2|φ=0 = 0 (5.50)

and at the fluid interface:

f ′1|φ=α = f ′2|φ=α (5.51)

f1|φ=α = 0 (5.52)

f2|φ=α = 0 (5.53)

f ′′1 |φ=α = Γ f ′′2 |φ=α (5.54)

The degenerate form of fk in equation 5.12 is used and the system of equations
5.49 to 5.54 is solved yielding the set of constants:

A1 = 1/(4λ) (5.55)

B1 =

((sin(4α) + 4α(sin2(2α)− 1))(α− π) + 2π sin(2α))Γ

+4α(sin2(2α)− 1)(π − α)− α sin(4α)

Υ1

C1 =
(1− Γ)(sin(2α) + 2 cos(2α)(π − α))

Υ2

(5.56)

D1 = −A1 (5.57)

A2 = A1 (5.58)

B2 =

(π − α)(2α− sin(4α) + 2α cos(4α))Γ

+2 sin(2α)(π − α cos(2α)) + 4α(sin(2α)2 − 1)(π − α)

Υ1

C2 =
(1− Γ)(sin(2α)− 2α cos(2α))

4Υ2

(5.59)

D2 =

α(sin(2α)− 2α cos(2α)) + 2α2 cos(2α)

− sin(2α)(α + π)

4Υ2

(5.60)

Υ1 = 8Γλ(α sin(4α)− sin2(2α))(α− π)

−4λα(cos(4α) + 2 sin(4α)(α− π)− 1) (5.61)

Υ2 = 4λ(α(sin(2α) + 2 cos(2α)(π − α))

−(α− π)(sin(2α)− 2α cos(2α))Γ) (5.62)

Since n = 1, velocity, viscous shear and pressure fields in the case of the
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(a)

(b)

(c)

Figure 5.5: Stokes flow in the corner formed by two viscous fluids using
the navier-slip boundary condition forming and angle of α = 60◦. (a) Stream
function (equation 5.9) for Γ = 1, (b) Velocity field for Γ = 1 and (c) Velocity
field for Γ = 1× 10−5. Fluid interface.
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Navier-slip boundary condition are given by:

uk = rf ′k ; vk = −2rfk (5.63)

which now is uniquely defined and vanishing as r → 0. Shear and pressure
at the wall result in:

τ1 = f ′′1 |φ=0 ; τ2 = Γ f ′′2 |φ=π (5.64)

p1 = ln r
(
f ′′′1 |φ=0 + 4 f ′1|φ=0

)
; p2 = Γ ln r

(
f ′′′2 |φ=π + 4 f ′2|φ=π

)
(5.65)

eliminating the unphysical shear but a logarithmic singularity still remains
in the pressure. As discussed in Shikhmurzaev (2006), when r → 0 then
p → −∞, which gives the idea of cavitation occurring at the contact line,
clearly not compatible with the initial hypothesis of the problem. Normal
stress balance at the interface will vary also as ∼ ln r, pointing to a highly
curved interface close to the contact line.
Describing the characteristics of the flow obtained by a navier-slip boundary
condition, in the case of fluids with the same viscosity Γ = 1, the flow
“splitting” seen in the case of the no-slip boundary condition is not present
here, as can be seen in figure 5.5a. Slippage allows fluid 2 to flow against U at
the wall and the whole flow can be compared to an impinging jet flow. This
is confirmed by the velocity field in figure 5.5b. Changing viscosity ratio to
Γ = 1 × 10−5 restores the splitting as was before with the no-slip boundary
condition (see figure 5.5c).
There are more complex forms of a slip boundary condition, i.e. the inverse
linear slip and the inverse quadratic slip shown in equations 5.66 and 5.67
respectively. Because these conditions result in higher values of n, they solve
both singularities, although they predict zero shear and pressure as r → 0. A
compilation of such models and the way they relieve the shear and pressure
unboundedness can be found in Sibley et al. (2015).

u|φ=0 =
λ2

h

∂u

∂φ

∣∣∣∣
φ=0

(5.66)

u|φ=0 =
λ3

h2

∂u

∂φ

∣∣∣∣
φ=0

(5.67)

In chapter 6, we will focus on a very special navier-slip law model proposed
by Kirkinis and Davis (2013).
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Figure 5.6: Scheme of the experiment. A nanofiber with radius R is dipped
in a liquid interface leading to the formation of a meniscus with profile ζ(r)
Inset: SEM image of a 60 nm in diameter silicon nanofiber (CDP55, Team
Nanotec). Scale bar: 100 nm. Source: Dupré de Baubigny et al. (2015).

5.4 A pinned contact line with an oscillating

interface.

The flow close to a pinned contact line with an oscillating interface can be
visualized using the stokes-flow approximation. This problem has a physi-
cal precedence in Dupré de Baubigny et al. (2015) and Dupré de Baubigny
et al. (2016), where the spring constant of liquid interface is determined at
a nanometric scale. The schematics of the experiment is depicted in figure
5.6. In our case, of course, the lack of curvature and an appropriate length
scale limits a direct comparison with experimental results.
The problem, in the reference frame of the pinned contact line can be de-
picted as shown in figure 5.7. The two-fluid interface forms an angle α with
the solid wall. When the solid surface moves horizontally with some fre-
quency and the contact line is assumed to be pinned, in the reference frame
of the contact line the azimuthal velocity at the interface is v = ωr, so α
oscillates at the angular velocity ω = dα/dt. Since we are close to corner,
such acceleration can be neglected as Re = ωr2/ν � 1 (see Moffatt, 1964).
In this context, the normalization of the velocity is performed using:

ũ =
u

ωL
; ṽ =

v

ωL
(5.68)

The boundary conditions at the wall are then:

At φ = 0 → u1 = 0 ; v1 = 0 (5.69)

At φ = π → u2 = 0 ; v2 = 0 (5.70)
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r

α

fluid 1fluid 2

φ = α

ω

Figure 5.7: Pinned contact Line sketch in the reference frame attached to it.

At the interface:

At φ = α → u1 = u2 ; v1 = ±1/2 ; v2 = ±1/2

τ1 = τ2 (5.71)

In equation 5.71, the sign of vk is positive/negative for anticlockwise/clockwise
direction of rotation. The substitution of the stream function yields at the
wall:

f ′1|φ=0 = 0 ; f1|φ=0 = 0 (5.72)

f ′2|φ=π = 0 ; f2|φ=π = 0 (5.73)

and at the interface:

f ′1|φ=α = f ′2|φ=α ; f1|φ=α = ±1/2 ; f2|φ=α = ±1/2 (5.74)

f ′′1 |φ=α = Γ f ′′2 |φ=α (5.75)

Since, at the interface vk|φ=α = −(n+ 1)rn f ′′k |φ=α = r, it follows that n = 1,
so fk in equation 5.12 is used and the system of equations 5.72 to 5.75 is
solved yielding the set of constants:

A1 = −

2((π − 2α + sin(2α)) + 2(α− π) sin2(α)) sin(α)2Γ

−2 sin2(α)(sin(2α) + 2 cos2(α)(π − α))

Υ1

(5.76)

B1 =

−(1/2(Γ− 1)(cos(4α)− 2 cos(2α)

+α sin(4α)− π sin(4α) + 1))

Υ2

(5.77)

C1 =

−((Γ− 1)(cos(4α)− 2 cos(2α)

+α sin(4α)− π sin(4α) + 1))

Υ2

(5.78)
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D1 =

(α(cos(2α)− 1)(cos(2α) + 1)− (sin(2α) + π cos(2α))

(cos(2α)− 1))Γ− 2(sin2(α))(sin(2α) + 2 cos2(α)(π − α))

Υ2

(5.79)

A2 =

−(cos(2α)− 1)(α− sin(2α) + α cos(2α))Γ

+(cos(2α)− 1)(α− π − sin(2α) + α cos(2α))

Υ2

(5.80)

B2 =
−(cos(2α)(Γ− 1)(cos(2α) + α sin(2α)− 1))

Υ2

(5.81)

C2 =
2(cos(2α)(Γ− 1)(cos(2α) + α sin(2α)− 1))

Υ2

(5.82)

D2 =

(sin(2α)− sin(4α)/2 + 2π sin2(2α)− α sin2(2α)− 4π sin(α)2

−απ sin(4α))Γ− 4 cos(α) sin3(α) + α(sin2(2α) + π sin(4α))

+2π sin2(α)(4 sin2(α)− 3)

Υ2

(5.83)

Υ1 = (2π − α− 8 cos(α) sin3(α)− cos(4α)(3α− 2π) + 2(2 cos(2α)

−α sin(4α))(α− π))Γ + 2 sin(2α)(π sin(2α) + 1)

+8α sin2(α)(3 sin2(α)− 2)− sin(4α)(2πα− 2α2 + 1) (5.84)

Υ2 = (2π − α− 8cos(α) sin3(α) + 4 cos(2α)(α− π)

− cos(4α)(3α− 2π)− 2αsin(4α)(α− π))Γ + 8 cos(α) sin3(α)

+2(π − 3α) sin2(2α) + 8α sin2(α) + 2α sin(4α)(α− π) (5.85)

Because n = 1, velocity, shear and pressure are also given by equations 5.63,
5.64 and 5.65. It is interesting to note here that although no divergence is
present in shear as r → 0, unbounded shear is present for two other conditions
as we see next. Shear at the wall is given by:

τ1|φ=0 = −4A1 ; τ2|φ=π = −4A2 (5.86)

Substitution of constants in equations 5.76 and 5.80 into 5.86 and making
the small angle approximation leaves the shear:

τ1|φ=0 = 2α(α− π) +
π

α

(
1− 1

Γ− 1

)
(5.87)

τ2|φ=π = − π

α(Γ− 1)
− 2 (5.88)

showing divergence for α ≈ 0 and at the same time if Γ ≈ 1 (two fluids of
the same viscosity). This could translate in an increasing force necessary to
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(a)

(b)

(c)

Figure 5.8: Stokes flow in the corner formed by two viscous fluids with an
oscillating interface at α = 90◦ showing the Stream function (equation 5.9)
for: (a) Γ = 0.001, (b) Γ = 1000 and at α = 30◦ for (c) Γ = 1. Fluid
interface.
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(a)

(b)

(c)

Figure 5.9: Stream function (equation 5.9) for Stokes flow in the corner
formed by two viscous fluids with an oscillating interface for Γ = 1 × 10−5

at: (a) α = 30◦; (b) α = 60◦ and (c) α = 145◦. Fluid interface.
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produce the motion of the wall (the nanofiber in the experiments of Dupré de
Baubigny et al. (2015, 2016)) for small values of α. This needs confirmation of
experiments, although in a private communication with Thierry Ondarçuhu
from CEMES, such divergence of dissipation as α → 0 was positively con-
firmed. It is also probable that for α = 0 sets the breakdown of this similarity
solution (see Moffatt and Duffy, 1980). This is also the case for the no slip
boundary condition. Streamlines are given in figure 5.8a and 5.8b for the
case at α = 90◦ with a viscosity ratio of Γ = 0.001 and Γ = 1000. Viscosity
change symmetrically the streamlines with respect to the normal of the wall.
When Γ = 1, perfect horizontal stream lines can be obtained for any angle
0◦ < α < 180◦. This is shown in figure 5.8c for α = 30◦ as an example.
The effect of the interface angle can be seen in figure 5.9 for Γ = 1 × 10−5

at angles α = 30◦, α = 60◦ and α = 145◦. The sign of ω only reverses
the direction of the velocity field but does not change the stream function
pattern shown in all cases.

5.5 Summary

In this chapter we have explored a moving contact line considering it as a
corner Stokes flow. We have given the analytical solutions for three different
boundary conditions, two at the wall, namely, the no slip and the Navier slip
conditions and one at the interface.
We have shown the effect of the no slip condition at the wall on viscous
share and pressure with results known in the literature: the unbounded shear
and pressure as r → 0 (see Moffatt, 1964; Huh and Scriven, 1971). When
using the Navier-slip condition, the unphysical shear was removed, but a
logarithmic singularity still remained. In both cases, normal stress balance
pointed out to a highly curved interface as we approach the contact line,
clearly defying the initial flat interface hypothesis of this chapter.
Finally, we explore the case of a pinned contact line with a wall that moves at
a certain frequency. In the reference frame of the contact line, the interface
could be considered to oscillate with some angular velocity ω. For this case,
n was determined to be 1 as in the case of the Navier slip condition. It was
noticed that shear was bounded as r → 0, but as α → 0 shear will diverge.
This could translate in an increasing force necessary to produce the motion
of the wall. Also, when α→ 0, Γ = 1 produces divergence in viscous shear.
In the next chapter we analyze a special navier slip law that could open the
door to the existence of Moffatt Vortices in the vicinity of the contact line.
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Chapter 6

On the existence of Moffatt
vortices at a moving contact
line between two fluids.

In this chapter we explore the flow close to a two-fluid contact line extending
the formulation of a special slip condition given in Kirkinis and Davis (2013)
and Kirkinis and Davis (2014) to handle two viscous fluids and analyze the
existence of Moffatt vortices in the vicinity of the contact line.

6.1 Background

In principle, molecular simulations suggest that some kind of slippage must
occur close to the contact line (Thompson and Robbins, 1989; Qian et al.,
2005) and at a large distance from it, the no slip-boundary condition must
be recovered. Kirkinis and Davis (2013) proposed a novel slippage theory
with a slip length of the form:

λ = `n/rn−1 − b(α, n)r (6.1)

where ` is a macroscopic scale, b(α, n) is a dimensionless quantity determined
by the boundary conditions. When neglecting the outer fluid influence and
considering a static contact angle αs = 0, these parameters are related to the
capillary number by the relation Ca = µU/σ = nb(α, n)(1 − cosα). Origi-
nally in Kirkinis and Davis (2013), n was assume to fit experimental data.
Later in Kirkinis and Davis (2014), n becomes part of the solution of the flow
and in general can take complex values (n = nR + inI). When n is complex,
an infinite series of vortices is observed in the vicinity of the contact line
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similar to those found in Moffatt (1964) for the no-slip boundary condition.

6.2 Corner Stokes flow with a variable slip

length

The slip model proposed by Kirkinis and Davis (2013) for two fluids is given
by:

λk = `n/rn−1 − bk(α, n) r for r ≤ r∗k (6.2)

λk = 0 for r ≥ r∗k (6.3)

By definition this slip length vanishes at r = r∗k = `/b
1/n
k if n is a real

number (nI = 0), so to recover the no-slip boundary condition. Considering
a characteristic velocity U ∼ 1mm/s, Kirkinis and Davis (2013) reported
r∗ ∼ 0.68 mm for glycerine and r∗ ∼ 1 µm for water. When nI 6= 0, both
quantities λk and `/b

1/n
k are complex, a mistake in Kirkinis and Davis (2014)

that we correct in this derivation.
Substitution of equation 6.1 and a zero azimuthal velocity on the wall for
fluid 1 (φ = 0) and for fluid 2 (φ = π) gives:

u1 − U =

(
`n

rn−1
− b1r

)
1

r

∂u1

∂φ
; v1 = 0 (6.4)

u2 + U = −
(

`n

rn−1
− b2r

)
1

r

∂u2

∂φ
; v2 = 0 (6.5)

Zero azimuthal velocity, the continuity of both the tangential velocity and
the tangential shear writes at the interface (φ = α):

v1 = v2 = 0 ; u1 = u2 ; τ1 = τ2 (6.6)

The adimensionalization is perform using U and `, so:

r̃ =
r

`
; ψ̃k =

ψk
U`

(6.7)

Dropping the notation of “tilde” for clarity and replacing the stream function
form equation 5.9 and function f from equation 5.10, the boundary conditions
leave at the wall:

f1|φ=0 = 0 ; rn f ′1|φ=0 − 1 = f ′′1 |φ=0 − b1r
n f ′′1 |φ=0 (6.8)
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f2|φ=π = 0 ; rn f ′2|φ=π + 1 = rnb2 f
′′
2 |φ=π − f ′′2 |φ=π (6.9)

and at the interface:

f1|φ=α = 0 ; f2|φ=α = 0

f ′1|φ=α − f ′2|φ=α = 0 ; f ′′1 |φ=α − Γ f ′′2 |φ=α = 0 (6.10)

The slip condition (second condition in 6.8 and 6.9) is satisfied in fluid 1
(resp. fluid 2) for any r if f ′1 = −b1f

′′
1 and f ′′1 = −1 (resp. f ′2 = b2f

′′
2 and

f ′′2 = −1). In these conditions, n cannot be determined by satisfying the
boundary conditions directly, instead it becomes part of the solution. The
first eight equations from 6.8 to 6.10 are used to determine Ak, Bk, Ck and
Dk. We find:

A1 =
1

4n
(6.11)

B1 =
sin(nα) sin(α) + n (2 b1 sin(α (n− 1))− sin(nα) sin(α))

4n sin(nα) cos(α)− 4n2 cos(nα) sin(α)
(6.12)

C1 = − 1

4n
(6.13)

D1 =
sin(nα) sin(α)− n (2 b1 sin(α (n+ 1))− sin(nα) sin(α))

4n sin(nα) cos(α)− 4n2 cos(nα) sin(α)
(6.14)

and:

A2 =
O

W
(6.15)

B2 =
Q

W
(6.16)

C2 =
S

W
(6.17)

D2 =
−T
W

(6.18)

with

O = sin(α− n (α− 2 π))− sin(α (n+ 1)) + 2n cos(nα) sin(α)

+2 b2 n (cos(α (n− 1))− cos(α− n (α− 2 π))) (6.19)

Q = cos(α (n+ 1))− cos(α− n (α− 2π)) + 2n sin(nα) sin(α)

+2 b2 n (sin(α (n− 1))− sin(α− n (α− 2 π))) (6.20)

S = sin(α (n− 1)) + sin(α + n (α− 2 π))− 2n cos(nα) sin(α)

−2 b2 n (cos(α (n+ 1))− cos(α + n (α− 2 π))) (6.21)

T = cos(α (n− 1))− cos(α + n (α− 2π))

+2 b2 n (sin(α (n+ 1)) + sin(α + n (α− 2π))) + 2n sin(nα) sin(α) (6.22)

W = 8n (sin(n (α− π)) cos(α)− n cos(n (α− π)) sin(α))(6.23)
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Since n is to be found as part of the solution, shear and pressure fields have
the general form:

τ1 = rn−1
((

1− n2
)
f + f ′′

)
; τ2 = Γrn−1

((
1− n2

)
f + f ′′

)
(6.24)

p1 =
rn−1

n− 1

(
f ′′′ + (n+ 1)2 f ′

)
; p2 = Γ

rn−1

n− 1

(
f ′′′ + (n+ 1)2 f ′

)
(6.25)

Note that only values of n ≥ 1 relief the unboundedness for shear and pres-
sure. One additional equation is needed to close the system and find bk and
n. This is achieved through the unbalanced Young-Force. The imposition of
a contact angle α different to the static contact angle αs produces the motion
of the contact line. The force F that drives this motion is then called “non
compensated Young Force” (Brochard-Wyart and de Gennes (1992)):

F = σ(cosαs − cosα) (6.26)

This force must overcome friction forces caused by the motion of the contact
line. The shear stress at the wall, for fluids 1 and 2 (with dimensions) is
given by:

τ1|φ=0 = µ1
1

r2

∂2ψ1

∂φ2

∣∣∣∣
φ=0

(6.27)

τ2|φ=π = µ2
1

r2

∂2ψ2

∂φ2

∣∣∣∣
φ=π

(6.28)

Introducing functions f1 and f2 for the stream function (equation 5.10 in the
manuscript):

τ1|φ=0 = µ1
Urn−1

`n1
f ′′1 |φ=0 (6.29)

τ2|φ=π = µ2
Urn−1

`n1
f ′′2 |φ=π (6.30)

The total force at the wall exerted by the two fluids is obtained by the
integration of the shear in the slip region:

F =

∫ r∗2

0

τ2|φ=π dr +

∫ r∗1

0

τ1|φ=0 dr (6.31)

Substitution of the shear yields:

F = − 1

n
(Γr∗n2 + r∗n1 ) (6.32)
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Figure 6.1: Stream function (equation 5.9) for α = 1 rad, Ca = 0.01, Γ =
1 × 10−6. (a): solution obtained following Kirkinis and Davis (2014): n =
6.999193+1.278230i, (b): our corrected derivation: n = 6.799117+1.648136i.

This force must balance the non-compensated Young force:

cosαs − cosα =
Ca

n
(Γr∗n2 + r∗n1 ) (6.33)

where Ca = µ1U/σ is the capillary number based on the viscosity of the
advancing fluid. A value of Γ → 0 indicates that a fluid is pushing another
fluid of much smaller viscosity (typically a drop spreading in a gas) while the
opposite limit, Γ→∞, corresponds to a fluid pushing an other fluid of much
larger viscosity (for example a bubble spreading in a liquid). Note that in
Kirkinis and Davis (2014), the radial position r∗1 (a real number) has been

replaced by `/b
1/n
1 in Eq. (6.33) which is not correct because if n is complex

then it follows that `/b1/n is complex. The effect of this correction is shown
in Figure 6.1.
Figure 6.1 reports the streamlines in the limit Γ → 0, for αs = 0 and α = 1
rad corresponding to the case reported in Kirkinis and Davis (2014). The
solution shown in Figure 6.1a is obtained with the derivation proposed by
Kirkinis and Davis (2014) while the streamlines shown in Figure 6.1b are
obtained with our corrected solution. Following the Kirkinis and Davis (2014)
derivation we obtain n = 6.999190+1.278228i in perfect agreement with their
solution. Note that considering Γ = 1×10−6 instead of Γ = 0 (this is the case
shown in figure 6.1a) gives the same streamlines and a very close value for
n, n = 6.999193 + 1.278230i. Despite noticeable changes in the streamlines
shape, the flow structure in the receding fluid (not considered in Kirkinis and
Davis (2014)) reveals the development of Moffatt vortices of similar shape
on both sides of the interface.
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Figure 6.2: Map of real solutions for Ca = 0.01 and (a) Γ = 0.01, (b) Γ = 0.1,
(c) Γ = 1, (d) Γ = 2, (e) Γ = 10, (f ) Γ = 100.

6.3 Results

The system of equations 6.8 to 6.10 and 6.33 is solved numerically using
“fsolve” inside MATLAB which uses the Levenberg-Marquardt and trust-
region-reflective methods (Matlab, 2015) with default parameters. We can
select the solution with the smallest positive nR because it determines the
asymptotic flow pattern at leading order (Shtern, 2014), but the solution may
also be imposed by the flow far from the contact line (Kirkinis and Davis,
2014). Multiple solutions for n can be obtained for each set of parameters
(Γ, α, αs, Ca) that can be varied independently. The flow structure is
significantly changed depending if n is a real or a complex number.

6.3.1 Regular corner flows (real solutions for n)

The solution with real values for n are reported in figure 6.2 as a function
of α for Ca = 0.01 and for viscosity ratio from Γ = 0.01 to Γ = 100 in
order to cover both gas/liquid and liquid/liquid interfaces. Both the den-
sity of solutions and the appropriate angle for having a solution are clearly
depending on α and Γ. It seems that available solutions can be found for
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Figure 6.3: Effect of Γ. Stream function (equation 5.9) for α = 30◦, αs = 0◦

and Ca = 0.01. (a) Γ = 0.1, n = 3.490212; (b) Γ = 1, n = 1.253249; (c)
Γ = 2, n = 1.202459; (d) Γ = 10, n = 1.246048;

any angle. The density of the solution increases with Γ. Note that the map
of solution is different between large and small Γ. Indeed Γ and 1/Γ do not
play a symmetrical role in equation 6.33. Below the threshold nR = 1, shown
using a dotted red line, no valid description of the shear and pressure can
be obtained as r → 0, as it is in the case of the no-slip boundary condition,
because shear and pressure are both varying as rn−1. Stream lines are shown
in Figure 6.3 and in Figure 6.4 where different values of Γ and α are con-
sidered, respectively. The flow behaves like a classical flow in a corner. The
main feature of the flow structure is that it can be split depending on the
conditions. For example, in Figure 6.3 where the effect of Γ is reported for
the imposed dynamic contact angle α = 30◦, the flow only splits in fluid 2
while the flow can also be split in the two fluids as shown in Figure 6.4b.
Huh and Scriven (1971) observed, with a no-slip boundary conditions for the
two fluids, that there is a tendency of this splitting to appear in the fluid
with the lower viscosity, while here we observe the opposite attributed to the
imposed slip condition. We also have to mention that larger numbers of flow
splitting appear with the increase of n. This is for example the case in figure
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Figure 6.4: Effect of α. Stream function (equation 5.9) for Ca = 0.01, Γ = 1
and αs = 0. (a) α = 25◦, n = 1.272566; (b) α = 50◦, n = 3.556807; (c)
α = 75◦, n = 2.613791; (d) α = 130◦, n = 3.560146.

6.3a where two splits are present in fluid 2.

6.3.2 Moffatt vortices (complex solutions for n)

Moffatt vortices are observed for complex solution for n. Because of the
continuity of the velocity at the interface, each vortex in the advancing fluid
is connected at the interface to its counterpart in the receding fluid 2, so
that a pair of vortices can be identified and infinite series of Moffatt vortices
are observed on both sides of the interface. In the following we call vortices
1 and 2 the vortices in the advancing fluid 1 and in the receding fluid 2,
respectively. Examples of stream lines are reported in Figure 6.5 and in
Figure 6.6 where the effect of the dynamic contact angle and the viscosity
ratio are shown respectively. Comparing the streamlines in these figures, it
is clear that their shape are very sensitive to these two parameters. Different
types of Moffatt vortices can be identified: the “corner vortex” (see figure
6.5b in the advancing fluid), the “detached corner vortex” (see figures 6.6c to
6.6d in the receding fluid), the “wall vortex” (see figure 6.5a in the advancing
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fluid) and the “interface vortex” (see Figure 6.5b for the receding fluid). In
addition, it is also clear from these figures that the vortex size is different
when comparing fluid 1 and fluid 2. For example in Figure 6.5a a zoom is
necessary to visualize the vortex 2 that matches to its corresponding vortex
1 at the interface: vortex 2 is here more than one order of magnitude smaller
than vortex 1. The velocity being continuous at the interface, a smaller
vortex reveals a vortex of stronger vorticity. In Figure 6.6, we observe that
vortex 1 becomes significantly much smaller than vortex 2 when Γ increases.
This is consistent with the consideration that the motion is easier in the less
viscous fluid than in the more viscous fluid. The inspection of the effect
of both the Capillary number Ca and the static angle αs (not shown here)
reveals that the fluid structure is preserved when varying independently these
two parameters. In fact considering the system of equations (6.10-6.33), Ca
and αs are both impacting the solution by relation 6.33 so that the relevant
parameter to consider is C̃a = Ca/(cosαs − cosα) which measures the ratio
of viscous force to the non compensated Young force. The cases for α = 90◦,
Γ = 1 and αs = 0 (not shown here) are characterized by a perfect symmetry
of the solution with respect to the interface.

6.4 Discussion

Moffatt vortices are observed for solutions where n is a complex number. As
a consequence, the slip length as proposed by Kirkinis and Davis (2014) (see
Eq. 6.2) used in the derivation is then a complex number. The solution of
interest being given by the real part of the stream function, the slip length,
as defined by Eq. (6.2) is not the effective slip experienced by the two fluids
at the wall. The normalized effective slips at the wall for the advancing and
receding fluids, λ1E and λ2E, are to be deduced from the real part of the
solution for φ = 0 and φ = π respectively as (the normalization is based on
U and `):

R (u1 − 1) = λ1ER

(
1

r

∂u1

∂φ

)
; R (u2 + 1) = λ2ER

(
−1

r

∂u2

∂φ

)
(6.34)

Here, R(z) and I(z) stand for the real and the imaginary part of the complex
number z. Considering the advancing fluid (k = 1), the radial velocity at
the wall is:

R (u1(φ = 0)) = rnR
[
cos (nI ln(r)) R(f ′1|φ=0)− sin (nI ln(r)) I(f ′1|φ=0)

]
(6.35)
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Figure 6.5: Effect of α. Stream function (equation 5.9) for Ca = 0.01,
Γ = 0.1 and αs = 0. (a) α = 30◦ (n = 2.049237 + 0.242136 i); (b) α = 50◦

(n = 2.231697+0.319340 i); (c) α = 75◦ (n = 2.849756+1.033444 i); (d) α =
130◦ (n = 2.679453 + 0.383081 i); (e) α = 150◦ (n = 4.733359 + 0.381333 i) ;
(f ) α = 170◦ (n = 4.053887 + 0.403130 i) ;
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Figure 6.6: Effect of the viscosity ratio Γ. Stream function (equation 5.9) for
α = 60◦ , Ca = 0.01. (a) Γ = 0.01 (n = 2.587148 + 0.349960 i); (b) Γ = 0.1
(n = 2.620577 + 0.334090 i); (c) Γ = 0.25 (n = 2.675627 + 0.265560 i); (d)
Γ = 0.8 (n = 2.834106 + 0.400948 i); (e) Γ = 1 (n = 2.773461 + 0.210823 i) ;
(f ) Γ = 2 (n = 2.633405 + 0.209562 i)
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while the velocity gradient at the wall is:

R

(
1

r

∂u1

∂φ

∣∣∣∣
φ=0

)
= rnR−1

[
cos (nI ln(r)) R(f ′′1 |φ=0)− sin (nI ln(r)) I(f ′′1 |φ=0)

]
(6.36)

From the boundary conditions at φ = 0, we get f ′1|φ=0 = b1, f ′′1 |φ=0 = −1
and the effective slip length experienced by the fluid on the wall is then:

λ1E = −rR(b1) + r tan (nI ln(r)) I(b1) +
1

rnR−1 cos (nI ln(r))
(6.37)

Note that the value of the radial position on the wall r = r∗1 where the slip
length cancel (and used in Eq. 6.33) comes from this relation. Following the
same derivation for the receding fluid we can show that for both fluids r∗k is
given by

r∗k [cos (nI ln(r∗k))R(bk)− sin (nI ln(r∗k)) I(bk)]
1/nR = 1 (6.38)

The evolution of the normalized effective slip λ1E with r is shown in figure
6.7 for two cases: the case reported in Kirkinis and Davis (2014) (see Figure
6.1b) with n = 6.799117 + 1.648136i (α = 1 rad, Ca = 0.01, Γ = 0) and
the case shown in Figure 6.5b with n = 2.231697 + 0.319340 i (α = 50◦,
Ca = 0.01, Γ = 0.1). The slip length evolution is plotted here up to r = r∗

given by eq. 6.38 when it cancels. For clarity, the absolute value of λ1E is
reported with the use of a log/log scale, red lines are showing negative values
of the slip while blue lines are showing positive values. For both cases, the
effective slip clearly follows the general trend of the modulus of the “complex”
slip λ1 shown in green but we observe periodical changes in the sign of the
effective slip length λ1E. In the limit of small r with nR > 1, the third term in
Eq. 6.37 is dominant, and Eq. 6.37 simplifies to λ1E ≈ 1/rnR−1 cos (nI ln(r)).
This expression is reported using a black line in Figure 6.7. It clearly shows
that it provides a very good description of the evolution of the effective slip
with r and it reproduces the successive changes of sign. The normalized
wave length Λ for the change of sign can be deduced from this relation as
Λ ≈ exp(π/nI) and its magnitude is thus very sensitive to the value of the
complex part nI of the solution n. The sign of the effective slip is clearly
understood to come from the shear at the wall resulting from the direction
of the vortex rotation. A perfect slip (zero shear) is observed between two
vortices. It is clear that such a slip behavior is questionable for real surfaces
where a positive slip is expected. As shown in Figure 6.7b the slip has a
positive value before it cancels while it is negative in Figure 6.7a. The case
with a positive slip may be consistent with the existence of only one vortex
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in the corner. Following Moffatt (1964), we can show that the ratio ρ of
the distance to the corner of two successive vortices is given in each fluid by
ρ = exp(π/nI). We recover here the wave length Λ observed for the change
of sign. This relation indicates that small values of nI induce a relative large
distance between two successive vortices. An infinite vortex observation being
limited in real flow by the continuum limit, in some cases only one vortex
may be observed making consistent the proposed slip. Taking for instance a
millimetric drop of water moving on a plane surface in a more viscous oil, the
selected solution for n has to satisfy nI ∼ 0.2, corresponding for example to
the solution found for α = 60◦, Ca = 0.01 and Γ = 2 and reported in Figure
6.6f.

We end the discussion by considering a slip length of the general form
λk(r) for both the advancing and the receding fluids, with the imposed condi-
tion that λk(r) is positive and real. Different slip models have been reported
(see for example Dussan V., 1976; Sibley et al., 2015) to consider the singu-
larity of the solution close to the contact line. Imposing a zero slip condition
gets n = 0 and the solution has the form of equation 5.11 with both stress
and pressure diverging (Huh and Scriven, 1971) as r−1. A constant slip im-
poses n = 1 and removes the singularity at the contact line in the stress
but not in the pressure. The function f(φ, n) has then the form (Anderson
and Davis, 1993) of equation 5.12. Non-constant slip models with n > 1
solve both singularities and the function f has then the shape considered
in this work. Replacing the stream function ψk = rn+1fk in relations (5.45)
and (5.46) we get that the the Navier-slip conditions are satisfied if the slip
lengths λk(r) have the form:

λ1(r) = r
f ′1|φ=0

f ′′1 |φ=0

− 1

rn−1

1

f ′′1 |φ=0

; λ2(r) = − 1

rn−1

1

f ′′2 |φ=π

−r
f ′2|φ=π

f ′′2 |φ=π

(6.39)

With relation (6.39), we can recover the above mentioned slip lengths and in
particular the shape of the slip law introduced by Kirkinis and Davis (2013)
and considered in our work. As a consequence, this slip law provides the
general shape for a Navier-slip length allowing Stokes flow description in a
corner. Relation (6.39) shows that a positive real slip can only be imposed
on the wall if n is real but then the infinite series of Moffatt vortices is not
observed. When n is a complex number then λk(r) is complex and induces
a solution with an effective slip as discussed above.
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Figure 6.7: Example of effective slip length for the advancing fluid.
negative part of equation 6.37; positive part of equation 6.37; λ1E ≈
`/rnR−1 cos [nI ln(r/`)]; Modulus of equation 6.37. (left) for the case
reported in Kirkinis and Davis (2014) shown in Figure 6.1b n = 6.999190 +
1.278228 i (Ca = 0.01, Γ = 0, α = 1rad); (right) for the case shown in Figure
6.5b: n = 2.231697 + 0.319340 i (Ca = 0.01, Γ = 0.1, α = 50◦)
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6.5 Summary

In this chapter we have reconsidered the derivation proposed in Kirkinis and
Davis (2014) to study the flow in the corner formed by a moving contact
line between two viscous fluids. This extension makes it possible to obtain
a complete view of the flow structure for any fluid/fluid and contact angle
combination. Solutions for real values of n (the stream function has the
form ψk = rn+1fk) provide regular flows in the corner, and flow splitting is
observed depending on the parameters. Increasing the values for n, increase
the number of separations. Solutions for complex values for n result in an
infinite series of Moffatt vortices on both sides of the interface. The flow
structure is significantly dependent on both the dynamic contact angle and
the viscosity ratio while it is weakly affected by the capillary number and the
static angle. Moffatt vortices can be located in the center of the wedge (the
classical representation of Moffatt vortices) but they can deform and drift to
the interface or to the wall. We named these structures as “corner vortices”,
“detached corner vortices”, “interface vortices” and “wall vortices”.

A slip law of the form λ = `n/rn−1 − b(α, n) r, as proposed by Kirkinis
and Davis (2013), provides the general shape for a Navier-slip length allowing
Stokes flow description in a corner. A positive slip, as observed on real sur-
faces, can only be imposed on the wall if n is real and then the infinite series
of Moffatt vortices cannot be observed. Indeed, a solution with a complex
number for n corresponds to an effective slip characterized by alternative
changes of sign. However, the cutoff imposed by the continuum limit may
restrict the vortex series to only one vortex in the corner. Such a situation
with an imposed positive slip may then be selected by the flow. Vortices
generated by the motion of a moving contact line have yet to be observed.
Well controlled experiments or direct numerical simulations are required to
resolve this point. Note that the presence of internal vortices is connected to
a vortex organization in the receding fluid where the vortex detection may
be more accessible in experiments.
Next, in chapter 7, we will look for evidence of the existence of some of these
vortices numerically, discussing their origin.
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Chapter 7

Numerical evidence of vortices
in the vicinity of a moving
contact line.

In chapter 6 we saw the possible existence of Moffatt vortices in the vicinity
of the contact line, using a special slip boundary condition at the wall. In
this chapter we use JADIM to determine if such vortical structures (Moffatt
vortices) are possible in the context of the full Navier-Stokes solution since
the technique used in chapters 5 and 6 did not take into consideration the
curvature associated to the normal stress balance at the interface and the
influence of the flow away from the contact line.

7.1 Background

In the knowledge of the author only two references have reported the flow
patterns close to the contact line while using boundary conditions at the
wall different from the classical no slip: (Sheng and Zhou, 1992) employing
three different slip models, reported anecdotally vortices close the contact line
for their third model and Sibley et al. (2012) when analyzing the interface
formation model (see Shikhmurzaev, 1993a), they reported a recirculation
close to the contact line and was regarded as a flow-induced Marangoni effect
due to the model. An obvious constraint on this analysis is that the numerical
solver must be capable of delivering a “clean” flow field. A preliminary test
is conducted using VOF-FCT-CSF method against the new front-tracking
method (present implementation, see chapter 3, section 4.6, figure 4.25).
The test is the spreading of a viscous drop used in chapter 4 with fluids
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(a) (b)

(c) (d)

Figure 7.1: Streamlines of a viscous drop spreading as in section 4.6: R0 =
0.5, ρ = 1, Γ = 1 and σ = 7.5. Using: a) VOF-FCT-CSF; b) zoom-in close
to the contact line in a); c) Front tracking with lagrangian markers (current
implementation); d) zoom-in close to the contact line in c)
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having the same properties, for a relatively low Laplace number La ∼ 60.
The boundary condition at the walls used for this test for both methods is
the no slip boundary condition except in the rightmost vertical boundary
which is treated as a symmetry line. The dynamic contact angle model is
prescribed at the contact line. The streamlines pattern at τ ∼ 0.7 (τ =
tµ/ρR2

0) in the reference frame of the contact line is given in figure 7.1.
It is immediately clear that the VOF-FCT-CSF method (figures 7.1a and
7.1b) provided the worst description of the flow close to the contact line if
the objective is the discussion of the presence of vortices seen in chapter 6.
Remarkably, the front-tracking method with lagrangian markers (figures 7.1c
and 7.1d) provided a clean flow in the vicinity of the contact line, showing
a recirculation at the interface. When we approach the corner (r → 0), the
rolling motion typical of a no slip boundary condition is recovered, and the
large recirculation at the interface can be identified as the flow “splitting”
shown in section 5.2 comparable to figure 5.2a for the same viscosity ratio.
A similar flow pattern can be found in Sui and Spelt (2013b) for the Level-
set method. As a consequence, the front-tracking method with lagrangian
markers, using artificial tangential velocity Ceniceros et al. (2010) (to avoid
the introduction of noise due to the reconstruction process) will be used in
the following to investigate the flow close to the contact line.

7.2 Problem statement

For this numerical investigation, we apply the no slip boundary condition
and the Navier-slip law in two separate conditions. The first is considering
the slip length as a constant λ = `, so a uniform slip is expected along the
wall. The second condition will use a variable slip length in the same sense
as in Kirkinis and Davis (2013) and Kirkinis and Davis (2014) (see chapter
6), recovering the no slip boundary condition at some distance r∗ from the
contact line. Since we do not know a priori the solution an the corresponding
value of n, we simply apply a sinusoidal variation of λ, of the form:

λ(r) =

{
1
2
`
(
sin
(
φ+ π

2

)
+ 1
)

if r ≤ r∗,

0 if r > r∗
(7.1)

where ` is the maximum value of the slip length, r is the vertical distance
from the contact line to the eulerian cell center at the wall, r∗ is the verti-
cal distance from the contact line where the no slip boundary condition is
recovered and φ is defined as φ = πr/r∗. The shape of this slip condition is
plotted for illustrative purposes in figure 7.2a for ` = 100 and r∗ = 1 (both
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Figure 7.2: 2D Capillary rise. Properties of fluid 1 are set such that Re <
1× 10−3 and Ca < 1× 10−3. a) Variable slip length for ` = 100 and r∗ = 1;
b) Domain definition and initial interface position.

normalized by r∗). The problem to be analyzed is a 2D capillary rise. The
computational domain is a square box L = H such that L = 1.5mm. See fig-
ure 7.2b, where we have defined also r∗ = L/6 (this parameter will be tested).
Properties of fluids are selected such that Re = ρUclr

∗/µ < 1×10−3 to ensure
Stokes flow in the corner and at the same time, to keep low capillary numbers
Ca = Uclµ/σ. Both horizontal surfaces are treated as no slip walls, while the
right vertical surface is a symmetry line. On the left vertical surface, different
slip conditions will be applied. This configuration is selected because allows
the interface to quickly acquire the contact angle imposed and also allows
the interface to keep the angle longer than with other configurations (i.e. a
drop). Another reason for this configuration is that for angles close to 90◦,
it is possible to obtain a moving contact line with an interface almost flat
as considered in the analytical part in chapter 6. Since the flow inside the
slip region will be solved, the static contact angle is imposed as a boundary
condition for the interface at the wall.
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7.3 No slip

A preliminary test is conducted in a uniform grid of 240 × 240. A static
contact angle of 47◦ is imposed using the no slip boundary condition. A
viscosity ratio of Γ = 0.001 is selected. This is done because small Γ intro-
duced large perturbation at the interface in the test shown in section 7.4.2.
Properties of fluids are taken as ρ1 = ρ2 = 1000kg/m3, µ1 = 3×10−4Pa s and
σ = 4×10−9N/m for Re ≈ 1×10−4 and Ca ≈ 9×10−3. We show this test here
to have a reference of how a velocity field should look without slip (except of
course the one that is numerically induced ∼ ∆x/2) and discard the presence
of perturbations due to spurious velocities, which should increase for fluids
with different viscosities. The initial configuration of the interface is a flat
horizontal line (see figure 7.2b). Figure 7.3 shows a sequence of streamlines
for selected times τ = 4.7× 10−3, τ = 3.4× 10−2 and τ = 3.6× 10−2 (which
were normalized by characteristic time τ = t/t∗ = tµ/ρr∗2). Coordinates x
and y are normalized by L in this case. Figure 7.3a, 7.3b and 7.3c present a
recirculation at the interface as a common feature with what was shown in
figure 7.1 for a viscous drop with Γ = 1 and also compatible with the no slip
boundary condition in corner stokes flow shown in chapter 5 with the flow
splitting in the less viscous fluid. Any departure from this pattern needs to
be considered as an effect of the slip boundary condition, shown in the next
sections. Note also, that no perturbation of the stream lines is present at the
interface, which lead us to think that spurious velocities are being minimize
by the method as expected.

7.4 Uniform slip length.

Using a uniform grid of 240 × 240 cells, a static contact angle of 47◦ is im-
posed at the interface and ` is set to be large enough ` = 100L/6, compared
to the grid size ∆x = L/240, to ensure the solution of the flow inside the slip
region and a viscosity ratio of Γ = 1 is selected.
Four selected times τ are reported in figures 7.4 and 7.5. Snapshots of stream-
lines at selected times are presented in figures 7.4a, 7.4c, 7.5a and 7.5c reveal-
ing the presence of a recirculation around the contact line that begins with
an elongated form with the largest part of its area occupying fluid 2. The
area occupying fluid 1 will increase in time to a point where the recirculation
in fluid 2 is so small that its presence is only detected by the vorticity field
(figure 7.5d). It is important to note that streamlines are crossing the inter-
face which did not occur in the analytical part (chapter 6). This is because
in this spreading interface, the velocity along the interface is not uniform.
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(a) (b)

(c)

Figure 7.3: Snapshots of streamlines in the vicinity of the contact line for
αs = 47◦, Γ = 0.001 and no slip condition at the wall. Axes are normalized
by L. The Streamlines sequence are reported at: a) τ = 4.7 × 10−3; b)
τ = 3.4 × 10−2 and c) τ = 3.6 × 10−2. streamline contour ψ = 0;
fluid interface
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(a) (b)

(c) (d)

Figure 7.4: Snapshots of vortical patterns and vorticity field in the vicinity
of the contact line for αs = 47◦, Γ = 1 and a uniform slip length. Axes
are normalized by L. The sequence reported is for: a) Streamlines at τ =
8× 10−4; b) vorticity field at τ = 8× 10−4; c) Streamlines at τ = 1.6× 10−3;
d) Vorticity field at τ = 1.6× 10−3. streamline contour ψ = 0; fluid
interface
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Vorticity fields for the same sequence (figures 7.4b, 7.4d, 7.5b and 7.5d) re-
veal that the largest magnitudes around the contact line is concentrated in
the recirculation at fluid 1. Some peaks of vorticity are also present a the
interface. This might be due to small spurious velocities, still present.

7.4.1 Test for large contact angle

We change the initialization of the interface from a horizontal line to one
forming 120◦ with the vertical and change the static contact angle to 100◦,
while keeping the other parameters constant for a uniform slip length. Re-
sults can be seen in figure 7.6. In this case, the interface shows only one
recirculation present in fluid 2 that is always in contact to the wall. An
important feature of this particular contact angle is that the velocity field is
“cleaner” than that obtained with αs = 47◦.

7.4.2 Low viscosity ratio test

Changing the viscosity ratio from Γ = 1 to Γ = 0.001 (i.e. a viscous fluid
spreading in air) has immediate effects into the presence of vortices close
to the contact line. Vortices are present in both sides of the interface for
early spreading (figure 7.7a). Vortices will merge and invade the interface
forming strange patterns as can be seen in figures 7.7b and 7.7c. As we had
anticipated when performing the test for the no slip boundary condition in
section 7.3, any pattern on the top of the “clean” flow obtained in section 7.3
must be due to the slip condition. It is difficult to say why such patterns are
formed, specially since we have reduce spurious velocities considerably with
the front-tracking method.

7.4.3 Test for the slip length `

A test is conducted to evaluate the effect of ` on the uniform slip length
formulations proposed. For this test a grid of finer resolution is used (4802

cells) and an angle of 85◦ is prescribed, this is made to obtain an interface as
“flat” as possible to be more in accordance to the analytical stokes solution
presented in chapter 5.
In this test, we use ` = 1/6L, ` = 10/6L and ` = 100/6L. Results for this
test at τ = 0.0017 are shown in figure 7.8. When ` is only 1/6L, no vortex
can be identified in the field, save for a mild and elongated wiggly recircu-
lation (see figure 7.8a). A different result is obtained when increasing ` to
10/6L and 100/6L in figures 7.8b and 7.8c respectively. There, vortices can
be seen, one on each fluid at the corner and another one at he interface in
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(a) (b)

(c) (d)

Figure 7.5: Snapshots of vortical patterns in the vicinity of the contact line
for αs = 47◦, Γ = 1 and a uniform slip length. Axes are normalized by L.
The sequence reported is for: a) Streamlines at τ = 3.2× 10−3; b) Vorticity
field at τ = 3.2× 10−3; c) Streamlines at τ = 7.8× 10−3; d) Vorticity field at
τ = 7.8× 10−3. streamline contour ψ = 0; fluid interface
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(a) (b)

(c) (d)

Figure 7.6: Snapshots of streamlines in the vicinity of the contact line for
αs = 100◦, Γ = 1 and a uniform slip length. Axes are normalized by L. The
sequence reported is for: a) 1.6× 10−3; b) τ = 4.7× 10−3; c) τ = 7.8× 10−3;
d) τ = 1.0× 10−2. streamline contour ψ = 0; fluid interface
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(a) (b)

(c)

Figure 7.7: Time evolution of vortical patterns in the vicinity of the contact
line for αs = 47◦, Γ = 0.001 and a uniform slip length. Axes are normalized
by L. The sequence reported is for: a) τ = 1.6× 10−3; b) τ = 2.0× 10−2; c)
τ = 3.0× 10−2. streamline contour ψ = 0; fluid interface
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fluid 1. When ` = 10/6L (figure 7.8b) the large vortex in fluid 1 is not in
contact to the wall but “floating” away from it in a similar manner as was
seen in figure 6.6 for the analytical part in chapter 6 which we denominated
“detached corner vortex” ad equally similar to that for the no slip boundary
condition (figure 7.3). When ` = 100/6L, the large vortex is attached to
the wall along with the small vortex in fluid 1. This large vortex can be
considered “wall vortex” according to the definition given in chapter 5. We
also see in figure 7.8 that some undulations are present at the interface, due
probably to spurious velocities.
Further refinement of the grid (9602) for the case of uniform slip does not

seem to provide new flow features (see figure 7.9a), i.e. new vortices that
would suggest a Moffatt vortices series. The interface still present undula-
tions of unknown origin.

7.5 Non uniform slip length

A non uniform slip length should recover the no slip condition at some r∗.
The key idea is to emulate the slip law reported in chapter 6 and references
Kirkinis and Davis (2013, 2014). Also, it will tell us if vortices are present
even for the case a variable slip length.
We use here a uniform grid of 240× 240 cells, a static contact angle of 47◦,
` = 100r∗ and Γ = 1, as was for the case in section 7.4 now using a variable
slip length with r∗ = 1/6L. A similar initial spreading as was seen for the
uniform slip (figure 7.4) is seen in the case of a variable slip length in figures
7.10a and 7.10b with a unique recirculation at the contact line. In this case,
the recirculation splits into two separate vortices and continues like that
as time evolves (see sequence for selected times in figures 7.10c, 7.11a and
7.11b). Again in this case, the vorticity field reveals its strongest magnitude
in the vortex of fluid 2 (see figures 7.10d, 7.10e, 7.10f, 7.11c and 7.11d). Since
the viscosity ratio is Γ = 1, we can only speculate that vortices are generated
in the receding fluid. The large recirculation in fluid 1, shows low values of
vorticity. Again, some peaks of vorticity are seen at the interface pointing to
some residual spurious velocities.

7.5.1 Low viscosity ratio test

Changing the viscosity ratio from Γ = 1 to Γ = 0.001 shows that there
are vortices present on both sides of the interface (see figure 7.12) but the
vortex/recirculation at the interface is separated from the other two vortex
at the corner in a fashion compatible with the flow shown in figure 7.1d and
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(a) (b)

(c)

Figure 7.8: Streamlines in the vicinity of a contact line for capillary rise with
αs = 85◦, Γ = 1 and a uniform slip length at τ = 0.0017, using: a) ` = 1/6L;
b) ` = 10/6L; c) ` = 100/6L. Axes are normalized by L. streamline
contour ψ = 0; fluid interface
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(a) (b)

Figure 7.9: Streamlines in the vicinity of a contact line for capillary rise with
αs = 85◦, Γ = 1 at τ = 0.0017, using a uniform slip with ` = 100/6L. a)
Large recirculation; b) zoom-in in the corner. Axes are normalized by L.

figure 6.1 using the case from Kirkinis and Davis (2014).

7.5.2 Test for slip region r∗

A second test is conducted in the variable slip formulation, we change r∗ from
1 to 0.5 and see its effect on the flow using a grid of 4802 cells. When r∗ = 1,
a configuration similar to that in figure 7.8b is identified, with vortices at
the corner in both fluids and a large recirculation at the interface (see figure
7.13a). It is not clear why for this slip formula, contact angle and grid
resolution, the flow presents large undulations close to the interface. Having
r∗ = 0.5, results in a field with no vortex in fluid 1 and also none at the
interface (see figure 7.13b). Even at this level of refinement, there exist some
undulations of the stream lines at the interface.

7.6 Evolution of vortices in time

The evolution of the size of vortices/recirculations that developed at the
contact line is reported in figure 7.14. d̃ represents the average of height
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Figure 7.10: Snapshots of vortical patterns in the vicinity of the contact line
for ` = 100/6L, αs = 47◦, Γ = 1 and a slip length calculated using equation
7.1. Axes are now normalized by r∗. The sequence reporting Streamlines is
for: a) τ = 8×10−4; b) τ = 1.6×10−3; c) τ = 3.2×10−3; reporting Vorticity
field: d) τ = 8× 10−4; e) τ = 1.6× 10−3; f) τ = 3.2× 10−3;. streamline
contour ψ = 0; fluid interface
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Figure 7.11: Snapshots of vortical patterns in the vicinity of the contact line
for ` = 100/6L, αs = 47◦, Γ = 1 and a slip length calculated using equation
7.1. Axes are normalized by r∗. The sequence reporting Streamlines is for: a)
τ = 6.4×10−3; b) τ = 1.5×10−2; reporting Vorticity field: c) τ = 6.4×10−3;
d) τ = 1.5× 10−2. streamline contour ψ = 0; fluid interface
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Figure 7.12: Time evolution of vortical patterns in the vicinity of the contact
line for αs = 47◦, Γ = 0.001 and a variable slip length (equation 7.1). Axes
are normalized by r∗. The sequence reported is for: a) 1.6 × 10−3; b) τ =
9.5 × 10−3; c) τ = 2.0 × 10−2. streamline contour ψ = 0; fluid
interface
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Figure 7.13: Streamlines in the vicinity of a contact line for capillary rise
with αs = 85◦, Γ = 1 and a variable slip length following equation 7.1 at
τ = 0.0017, using: a) r∗ = 1; b) r∗ = 0.5. Axes are normalized by r∗.
streamline contour ψ = 0; fluid interface
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and width of the vortex, normalized by `. For the case of uniform slip
length, Γ = 1 and α = 47◦, an increasing size of the unique recirculation
is reported (figure 7.14a), this is pretty standard since we are in the early
stage of spreading while for the case of variable slip length, three sizes are
found. In blue, vortex size in fluid 1 (the advancing fluid), in red vortex size
in fluid 2 (the receding fluid) and in green vortex size occupying both fluids
(see figure 7.14b). Vortex size in fluid 2 seems to remain almost constant at
d̃ ∼ 0.5× 10−3 (or ∼ 10µm in physical dimensions), while vortex size in fluid
1 oscillates in time, but it is always larger than in fluid 2 and larger as time
evolves (∼ 100µm). The vortex occupying both fluids is only present at initial
stages of spreading. Considering a low viscosity ratio, vortices size evolution
for the case of constant and variable slip length are shown in figures 7.14c
and 7.14d. In the case of uniform slip, it can be seen that vortices in the less
viscous fluid (in red) keep their size relatively constant, while vortices size in
the most viscous fluid 1 (in blue) oscillates up to a maximum of d̃ ∼ 6×10−3.
There are places where both vortices fuse together in a large recirculation,
this is shown in green circles. For the variable slip length (figure 7.14d),
vortices on both fluids are present in almost the same size d̃ ∼ 1× 10−3 and
there are two places where an additional vortex/recirculation is present at
the interface, they were shown in figures 7.12b and 7.12c.
In all tests for αs = 85◦, the smallest vortex at the corner is about d̃ ≈
1.8× 10−4 or ≈ 5µm in physical units. Further refinement of the grid (9602)
for the case of uniform slip did not provide new flow features (see figure 7.9a),
except perhaps that the large recirculation has grown, reaching x ≈ 0.05 in
comparison with the coarser grid x ≈ 0.035. Also, the size of the smallest
vortices are kept at d̃ ≈ 0.003.

The evolution of of maximum vorticity in the vortex is presented in figures
7.15 and 7.16 for contact angles of α = 47◦ and α = 85◦ respectively for a
viscosity ratio of Γ = 1 and a uniform slip length. In the case of α = 47◦,
vorticity of vortex in fluid 2 is reported, while for α = 85◦, vorticity for
vortices on both fluids are shown. In both cases the magnitude of vorticity
decays in time. In the logarithmic scale, the trend of decay is according to
a slop of ∼ −1. It is difficult to characterize the vortices found here. One
interesting comparison is the Lamb-Oseen (Lamb, 1932) vortex defined with:

Uφ(r, t) =
C

2πr

(
1− exp−

r2

4νt

)
(7.2)

ωz =
C

4πνt
exp−

r2

4νt (7.3)

where Uφ is the azimutal velocity, C is the circulation and ν the kinematic
viscosity. Vorticity decay of our results seems to follow consistently the ten-
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(c) (d)

Figure 7.14: Vortices/recirculation size evolution for ` = 100/6L and α =
47◦. For Γ = 1: a) Constant slip length b) Variable slip length; For Γ = 0.001:
a) Constant slip length; b) Variable slip length; vortex in fluid 2; vortex
in fluid 1; recirculation occupying both fluids or when recirculation only
exists in one of them.
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Figure 7.15: Vorticity evolution in time for one vortex in fluid 2 for the case
of α = 47◦, Γ = 1 and a uniform slip lenght. a) Lineal axes; b) Logarithmic
axes. vortex in fluid 2

dency of equation 7.3, but the size of the vortices analized here, remains
almost constant. In the case of Moffatt vortices, both size and intensity are
stabilized. Further tests are needed to determine the true nature of these
vortices.

7.7 Summary

A preliminary investigation on the existence of vortices at a moving contact
line has been presented. The numerical experiments reported in this chapter
helped us to determined if vortices can be found in the vicinity of a moving
contact line. We can say safely that the presence of these vortical patterns is
enhanced by the use of some slip law at the wall. Using the no slip boundary
condition creates a large vortex (which we called recirculation minding that
this might be the mechanism selecting n in the analytical part) at the fluid
interface that is coherent to what was seen in the analytical part (section
5.2, figures 5.2, 5.3 and 5.4) and the numerical test in figure 7.1. This
is consistent with the idea that slippage occurs only in the vicinity of the
contact line. Away from it, the picture will be consistent with the use of the
no slip boundary condition. The use of a uniform or a variable sip length with
an acute angle (α = 47◦), revealed the presence of vortices in both fluids.
A larger angle (α = 100◦) showed a single vortex or recirculation in the
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Figure 7.16: Vorticity evolution in time for one vortex in fluid 2 for the case
of α = 85◦, Γ = 1 and a uniform slip length. a) Lineal axes; b) Logarithmic
axes. vortex in fluid 2; vortex in fluid 1.

advancing fluid. Using a small viscosity ratio revealed in the case of uniform
slip, vortices at the corner in each fluid that will merge and interact with a
recirculation at the interface, making difficult the task of visualize them. In
the case of variable slip length, and additional recirculation at the interface
is found, and it is compatible with the case reported in the analytical part
in figure 6.1 from Kirkinis and Davis (2014).
Vortices at the corner reached an equal size of d̃ ≈ 0.5× 10−3 for Γ = 1 and
d̃ ≈ 0.001 for Γ = 0.001, this was not observed in the analytical solution
for complex n, there, vortices in both fluids where at least of one order of
magnitude different in size. The most favorable conditions for the detection of
vortices close to the contact line in this numerical experiment were observed
using a contact angle of αs = 85◦, that allowed the interface to be almost
flat, and clean some undesirable features observed for αs = 47◦. For αs = 85◦

we found that the slip length ` must be larger than ∼ 10/6L to be able to
detect vortices at the contact line, otherwise the flow field presents a wiggly
recirculation pointing to an underdevelopment of the slip zone even when the
grid resolution was found to be small enough (L/∆x ∼ 480). For increasing
values of ` we could identify the evolution from “detached corner vortex”
to a “wall vortex” for the largest recirculation at the interface, compatible
with the classification made in the analytical part in chapter 6. Using larger
grid resolutions did not revealed new features, but considering figure 7.9, the
connection between the two vortices in fluid 1 opens the door to consider that
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we are seeing the first two vortices of a Moffatt series. Further research might
give a final answer to this. The use of a variable slip length revealed also three
vortices but contaminated with undulations at the interface. Decreasing r∗

revealed only one vortex in fluid two. Increasing the resolution of the grid did
not show any new features of the flow and the size of vortices in the corner
were kept with a size of d̃ ≈ 3 × 10−3 almost one half of those observed for
αs = 47◦. Note that the large recirculation at the interface in this last test can
be associated with the macroscopic motion who perhaps decide the value of n
in the analytical solution in chapter 6 and setting the configuration of vortices
in the corner. Grid resolution did not help in suppressing perturbations at
the interface. We believe that this is a combination of the slip condition and
residual spurious velocities, although, when using the no slip condition, this
undulations at the interface were not observed. It was difficult to characterize
this kind of vortices due to the fact that spreading is not a steady-state
phenomenon. Nevertheless, it can be said that they might be caused by the
initial impulse of the contact from rest, similar to the vortices generated by
a bluff object against a normal flow (see Koumoutsakos and Shiels, 1996;
Lian and Huang, 1989), this would explain the decay of vorticity with time
reported here. We can say that a first step in the detection of vortices in
the vicinity of the contact line has been taken. Further and more profound
studies are needed.
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Chapter 8

A new numerical model for
moving contact lines

As explained in chapter 5, a full solution of Navier Stokes equations including
the slip region for millimetric drops is still out of the reach of our current
computational resources Maglio and Legendre (2014). We begin this chapter
with a brief background statement in the state of the art of current subgrid
models of the literature and the theory behind it. After that, we will describe
the new subgrid model that we propose in this work in the context of the front
tracking method and finally we will provide the validation against numerical
tests and experiments.

8.1 Background

Although the local analysis performed in sections 5.2, 5.3 has provided great
insight into the moving contact line problem, there is a factor that has not
been taken into account: the influence of the external geometry (i.e. geomet-
rical information far away from the contact line) and the effects of interface
curvature (i.e. when Ca is not small to consider a flat interface). Asymptotic
theories (see for example Huh and Mason, 1977; Hocking, 1977; Hocking and
Rivers, 1982; Cox, 1986) provide insight in this cases. Figure 8.1 shows the
moving contact line for two viscous fluids in the reference frame attached to
it. From the hydrodynamic point of view there exist an inner (microscopic)
region where the contact line is defined by the microscopic contact angle αw
which can be considered as the static contact angle αw, although experimen-
tal evidence suggests otherwise (see Ramé et al., 2004). In this inner region,
some slip boundary condition applies at the wall (i.e. Navier slip in section
5.3) and is valid up to a distance λ (typically slip length). At some point r∗
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Figure 8.1: Moving contact line sketch in the reference attached to it, from
the hydrodynamic point of view.

from the contact line on the wall, the effects of slip disappear and the no-slip
condition is satisfied. Away from the contact line, an outer (macroscopic)
region can be defined to be of scale L or some characteristic length of the
flow (i.e. radius of a droplet). In this region, the interface is defined by the
“apparent” contact angle αapp, which is not known a priori. Solutions of the
inner and the outer zones can be matched at an intermediate zone where
the contact angle is αm and a characteristic scale Lm. The procedure of
matching is described in Cox (1986), boundary conditions are those treated
in section 5.2 (even for the inner region the normal stress to be matched to
the outer zone must be that satisfying no-slip boundary conditions) including
additionally the normal stress balance at the interface. From equation 5.17
we have:

− p1 +
2

r

(
1

r

∂ψ1

∂φ
− ∂2ψ1

∂r∂φ

)
= −p2 +

2Γ

r

(
1

r

∂ψ2

∂φ
− ∂2ψ2

∂r∂φ

)
(8.1)

Substitution of equations 5.9 and 5.11 into 8.1, leaves at the interface:

− 2r−1 [(ΓC2 − C1) cosα + (ΓD2 −D1) sinα] = −r−1F (α,Γ) (8.2)
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also, substitution of constants from equations 5.34, 5.38,5.35 and 5.39 yields
the function:

F (α,Γ) =

2 sinα
{
λ2(α2 − sin2 α) + 2Γ

[
α(π − α) + sin2 α

]
+
[
(π − α)2 − sin2 α

]}
Γ(α2 − sin2 α) [(π − α) + sinα cosα]

+
[
(π − α)2 − sin2 α

]
(α− sinα cosα)

(8.3)

The matching procedure goes on (see Cox, 1986, for details), establishing
relationships between angles at leading order:

g(αm,Γ) = g(αapp,Γ) + Cacl ln

(
Lm
L

)
(8.4)

g(αm,Γ) = g(αw,Γ) + Cacl ln

(
Lm
λ

)
(8.5)

combining equations 8.4 and 8.5, we get:

g(αapp,Γ) = g(αw,Γ) + Cacl ln

(
L

λ

)
(8.6)

where g(α,Γ) is given by:

g(α,Γ) =

∫ α

0

dα

F (α,Γ)
(8.7)

Equation 8.6 has been applied recently in the literature of numerical sim-
ulation of moving contact lines. We can mention for example the works of
Dupont (2007); Afkhami et al. (2009); Dupont and Legendre (2010); Legen-
dre and Maglio (2013); Sui and Spelt (2013a); Maglio and Legendre (2014);
Legendre and Maglio (2015); Solomenko et al. (2017).
In general lines, the procedure to use equation 8.6 in numerical modeling of
contact lines consists first in defining the outer zone scale L, typically, half a
numerical grid distance is chosen L = ∆x/2. Secondly, dimensionless contact
line velocity (Cacl) must be calculated in a constant manner. Again, a good
idea is to take the velocity of the control volume containing the contact line,
at a distance ∆x/2 from the wall (see Dupont and Legendre, 2010; Legendre
and Maglio, 2013; Maglio and Legendre, 2014; Legendre and Maglio, 2015).
Other ideas to calculate Cacl (see Solomenko et al., 2017), is to simply use
the difference in positions of the contact line, divided by the time step. Once
this quantities are defined, function g(α,Γ) in equation 8.6 is calculated nu-
merically. In cases where the viscosity ratio is small Γ ≈ 0, equation 8.7
takes the form:

g(α,Γ) =

∫ α

0

α− sinα cosα

2 sinα
dα (8.8)
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Figure 8.2: function g(Γ, α) (equation 8.7) for diverse viscosity ratios:
Γ = 0; Γ = 0.01; Γ = 0.01; Γ = 1; Γ = 10. For comparison,

polynomial in equation 8.9.

for simplicity in the implementation, equation 8.8 can be substituted by a
polynomial form (see Mathieu, 2003):

g(α) ≈ α3

9
− 0.00183985α4.5 + 1.845823× 10−6α12.258487 (8.9)

the inverse of this function which yields α, can also for simplicity be approx-
imated by the polynomial:

g−1(α) ≈ (9x)1/3 + 0.0727387x− 0.0515388x2 + 0.00341336x3 (8.10)

then α becomes a numerical boundary condition that plays a role in the mo-
mentum equation. Figure 8.2 shows equation 8.7 for diverse viscosity ratios.
For comparison, polynomial 8.9 is shown. We can see that the polynomial
approximation matches almost perfectly equation 8.7 for Γ = 0, except for
a small region near α = 180◦, but it departs from the curves for larger Γ.
At g ≈ 0.1, the difference in α between Γ = 10 and Γ = 0 is about ∼ 60◦.
In the knowledge of the author, no analytical approximation for g−1(Γ, α) is
available in the literature for Γ > 0.
The results obtained when applying the procedure described before have
yielded diverse results in the literature already mentioned. All coincide in
good descriptions of the moving contact line position and shape of the inter-
face.
Two important aspects are still missing when performing numerical simu-
lations of the contact line. When using the dynamic contact angle model,
it has been noticed that there exists a mesh dependent initial acceleration
(see Legendre and Maglio, 2015) which does not allow grid convergence at
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Figure 8.3: Velocity evolution for the numerical simulation of a 2D drop of
radius 0.5 spreading on a solid surface using the front-tracking method, and
the dynamic angle formulation (e.q. 8.6). Density and viscosity ratios are
set to 1, surface tension is set to 7.5 and slip length to λ = 1×10−5. Colored
line represent the grid resolution: 32 × 32; 64 × 64; 128 × 128;

256× 256.

initial spreading. The integration of momentum equation at t = 0 using the
finite volume method and the CSF formulation for the capillary contribution
revealed an initial acceleration of the form:

a0 ∼ σ

ρ
(cosαw − cosα0

d)
1

(∆x)2
(8.11)

Such initial acceleration for diverse grid resolutions can be seen in figure 8.3
for the spreading on a solid surface of a drop of radius R = 0.5, using viscosity
and density ratios of 1 and a surface tension of σ = 7.5. The initial config-
uration for this problem was shown in figure 4.27. Non-dimensional time
τ = tµ/ρR2 is used to normalize the time. There we can see that grid con-
vergence cannot be achieved for initial acceleration, and also for maximum
velocity of spreading. Similar results were found in Legendre and Maglio
(2015). Additionally, we can see oscillations in the velocity reported, this are
due to the front reconstruction process. When the reconstruction algorithm
deals with the element at the wall, an additional constrain is imposed: the
marker at the wall cannot be eliminated (i.e. the position of the contact line

141



-0.5 -0.25 0 0.25 0.5

r̃

0

200

400

600

∂
u
/
∂
y

(a)

-0.5 -0.25 0 0.25 0.5

r̃

0

100

200

300

400

∂
u
/
∂
y

(b)

-0.5 -0.25 0 0.25 0.5

r̃

0

50

100

150

200

∂
u
/
∂
y

(c)

-0.5 -0.25 0 0.25 0.5

r̃

0

50

100

∂
u
/
∂
y

(d)

Figure 8.4: Normal velocity gradient at the wall for the case shown in figure
8.3: (a) τ = 0.001; (b) τ = 0.05; (c) τ = 0.5. r̃ is the distance to the contact
line. Colored line represent the grid resolution: 32× 32; 64× 64;
128× 128; 256× 256.
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cannot change with the reconstruction), besides, no neighbor element is to
be found to calculate a tangent at that marker. What is done currently is
to assume that the tangent at the marker on the wall is equal to that of the
element it belongs to. In this way the marker at the wall is preserved. This
provides a circle representing a good curvature, but the new element created
at the wall does not in general have the same size and direction as before,
so when applying equation 3.19, a new balance of forces is created, hence
the oscillations in velocity. Proposing a reconstruction process that address
this particular problem is a subject of future investigation. The effect of this
issue will be solved partially by the subgrid model proposed here.
The second aspect is the lack of convergence with grid refinement for shear at
the wall. Figures 8.4a, 8.4b, 8.4c and 8.4d show the normal velocity gradient
at the wall for τ = 0.001, τ = 0.01, τ = 0.2 and τ = 0.4 respectively. In
all cases, no grid convergence was achieved. In Legendre and Maglio (2015),
shear at the wall shows some convergence at r = 0.6, but in the late phase
of spreading.
Both aspects seem to point out to a single problem: an inherent defect of the
numerical method (i.e. the discretization of the CSF model close to the wall),
although it is not clear how much the use of a no slip boundary condition
influences the lack of convergence.
Obviously, the second aspect could be solved by direct numerical simulation,
modeling the microscopic scales inclusive (down to ∼ λ) with and adequate
slip model. Since this kind of simulations seems still out of reach (see a rough
calculation of resources necessaries for spreading of a millimeter-size droplet
in Maglio and Legendre, 2014), a robust macroscopic model is still needed.

8.2 Towards a new subgrid model

In this work, we propose a subgrid model for macroscopic simulation of the
contact line in the context of the front-tracking method with two clear ob-
jectives: first, eliminate the initial acceleration in simulations and second,
obtained grid convergence for viscous shear.
Since the numerical discretization of the contact angle brings an initial ac-
celeration of the type seen in equation 8.11, we stop including the contact
angle inside the calculation of the capillary contribution. Instead, we fit
a circle through a number of selected markers at the contact line and find
the tangent at the wall (i.e. first derivative of the circle function), similar
to what is done in Yamamoto et al. (2013). This is depicted in figure 8.5.
The force contributing the contact angle will be embedded in the viscous
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shear. This is done under the next hypothesis: if the right viscous shear is
obtained or modeled at the contact line, then the shape of the interface (at
the macroscopic scale) characterized by αapp should be the physically sound
(i.e. it should follow roughly 8.6). If the hypothesis is right, then θapp should
not be a boundary condition, but instead an output variable resulting from
forces balances, a feature that this subgrid model will share with the interface
formation model Shikhmurzaev (1993a, 1996, 1997a,b). The big question is:
what is the right viscous shear?
The answer is not simple, but any hydrodynamic model must fulfill the next
two conditions:

• shear in the immediate vicinity of the contact line, must be given by
some slip law. Molecular dynamics and any models based on it suggest
that the right model is the navier-slip (see Qian et al., 2003b; Gerbeau
and Lelievre, 2008).

• away from the contact line, at a distance r∗, the no-slip boundary
condition must be recovered.

Friction force per length unit (in 2D) fµ results from the integration of shear
along the wall. Following a two-fluid corner Stokes flow in polar coordinates:

fµ =

∫ r∗1

0

τ1,indr +

∫ r∗2

0

τ2,indr +

∫ rm

r∗1

τ1,outdr +

∫ rm

r∗2

τ2,outdr (8.12)

where τk,in stand for viscous shear in the inner region (where the Navier slip
boundary condition applies at the wall), τk,out stands for viscous shear in
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the outer region (where the no slip boundary condition applies), r∗k stands
for the distance from the contact line up to where the navier slip boundary
condition is valid and rm is some distance from the contact line up to where
the current subgrid model will be applied (some proportion of the grid size
∆x). We will call this parameter “subgrid zone”.
According to de Gennes (1985), the logarithmic cut off region r∗k should be of
the form r∗ ∼= λ/θapp, here instead we find its exact value by equating viscous
shear at the wall, for the slip and the no slip regions, given by equations 5.42
and 5.64, which in dimensional form are:

τ1,in = −µ1Ucl
λ

; τ2,in = −µ2Ucl
λ

(8.13)

τ1,out =
µ1Ucl
r

(2D1 − A1) ; τ2,out =
µ2Ucl
r

(A2 − 2D2 + πC2) (8.14)

parameters A1, D1, A2, C2 and D2 are function of αapp and Γ and are given
by equations 5.32 to 5.39. At r = r∗ inner and outer shear must be matched,
so:

r∗1 = −λ (2D1 − A1) ; r∗2 = −λ (A2 − 2D2 + πC2) (8.15)

Since r∗k is proportional to λ, its value is expected to be small. Note that
although shear in the inner zone is extremely large due to λ (see equation
8.13), the frictional force produced in this small region will be limited by r∗.
Equation 8.12 will take into account viscous shear in the small region limited
by rm. Another contribution now is added to take into account the contact
angle: the non balanced young force (see equation 6.26). So, the total force
fT to be applied in the momentum equations at the wall will be given by:

fT = fµ + fY oung (8.16)

The idea of this superposition of viscous and non-viscous forces is not new.
Molecular dynamics simulations show that tangential stress at the wall can
be decomposed into a viscous and a non-viscous component, dominating
outside and inside the interfacial region respectively (see Qian et al., 2003a;
Qian et al., 2005). This non-viscous component of the shear is the non-
balanced or non-compensated young stress.
Numerically, the solver (at the macroscopic scales), will not feel or distinguish
both contributions for separate, but the combination of both in a unique
force. In fact, to be applied in the momentum balance we will consider that
this total contribution fT comes as a unique average viscous shear. In this
way:

fT =

∫ rm

−rm
µ
∂u

∂y
dr (8.17)
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where µ and ∂u
∂y

are some consistent averaging of the viscosity and the velocity
gradient at the wall, close to the contact line. So, the boundary condition to
be applied in the momentum equation is:

∂u

∂y
=
fµ + fY oung

2rmµ
(8.18)

8.2.1 Connecting information

To transfer information between the numerical macroscopic simulation and
the subgrid region, adequate interpolation schemes must be used. The ob-
jective is to use a scheme compatible with the front-tracking method (i.e. a
cosinus like interpolation function). So, to transfer viscosity from the macro-
scopic simulation to the subgrid region, we first calculate the viscosity at
each momentum control volume on the wall (see equation 2.4) and then cal-
culate the distance from the centroid of the control volume to the contact
line using:

d̃ =
|xcl − xi,j|

rm
(8.19)

using d̃, µ can be constructed in a weighted averaged fashion:

µ =

∑
wi,jµi,j∑
wi,j

(8.20)

where wi,j is calculated as:

wi,j =

{
cos
(
d̃π
4

)
if d̃ < 2,

0 if d̃ ≥ 2
(8.21)

Equation 8.21 uses a cosine-like form only to make a smooth weighted aver-

age. After ∂u
∂y

has been calculated at the subgrid level, it must be transferred
to the macroscopic simulation. This is achieved simply by:

∂u

∂y

∣∣∣∣
i,j

= wi,j
∂u

∂y
(8.22)

8.2.2 Viscosity inside the subgrid region

Numerically, the interface between two fluids is not a sharp discontinuity,
but a smooth transition occupying at least two control volumes (for VOF-
FCT-CSF, Level-Set and the front-tracking method), so, averaging viscosity
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Figure 8.6: Theoretical viscous force per unit length (equation 8.12) close the
contact line due to viscous shear for Γ = 1: fluid 1, fluid 2; Γ = 0.001:

fluid 1, fluid 2; and Γ = 1000: fluid 1, fluid 2.

from the macro region to the subgrid is a natural decision. But information
of the interface returning from the subgrid to the macro region will also be
felt as an average, i.e. a macroscopic control volume will receive a velocity
gradient that contains the imbalance between capillary and viscous forces,
without knowing which of the fluids contributed more or less to the latter.
The question here is: does it matter which fluid contributes more or less to
the total viscous force in the subgrid model? It is a difficult question.
We do a quick analytic experiment to see the individual fluid contribution
to the viscous force fµ in equation 8.12. For this we neglect the force in
the inner zone for both fluids since r∗1 and r∗2 are of order ∼ λ. We select
roughly r∗1 = r∗2 ≈ 1 × 10−9 m, 0◦ < α < 180◦ and Ucl ≈ 1 mm/s. We
test viscosity ratios of Γ = 0.001, Γ = 1 and Γ = 1000. Results are shown
in figure 8.6, where we report |fµ| to use a logarithmic scale. We can see
there that independent of the viscosity ratio Γ, the fluid that is confined
contributes in a larger part to the total viscous flow. This is in agreement
with Marchand et al. (2012) for gas entrainment. We believe that this effect
of the confinement is important, so instead of using individual viscosities for
each fluid in equations 8.13 and 8.14, we will reinforce the dominance of the
contribution from the fluid that is confined. We use the next angle dependent
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Figure 8.7: Velocity evolution for drop spreading using the subgrid model in
the present work. Colored lines represent the grid resolution: 32 × 32;

64× 64; 128× 128; 256× 256.

viscosity average:

µmod =
αapp
π
µ2 +

(
1− αapp

π

)
µ1 (8.23)

This modelling viscosity µmod replaces µ1 and µ2. Except where the contrary
is indicated explicitly as “individual viscosities”, µmod is the option by default
used in the subgrid model. Its formulation can in the future be treated in a
more elaborated way. We will judge this assumption with results obtained
in the section 8.3.

8.3 Validation

We repeat the test reported in section 8.1 with the subgrid model using
λ = 0.001. Since this is a test for grid convergence, rm is fixed at the largest
grid spacing rm = ∆x32×32 for all grids and the interface is reconstructed each
50 time steps. Results for the nondimensional velocity evolution in time are
shown in figure 8.7. It can be seen that grid convergence at early stage
has been improved compared to figure 8.3. Additionally, the perturbations
suffered in the velocity for the case using the dynamic contact angle (figure
8.3) have been smoothed, although some perturbations are still present for
the grids 128 × 128 and 256 × 256. Even with this small perturbations,
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Figure 8.8: Apparent contact angle (measured from the numerical simula-
tion) as a function of nondimensional velocity Ca.

we believe that they do not affect severely the general trend of variables of
interest. The evolution of function g(αapp)− g(αw) (g(α) calculated through
equation 8.7) with Ca is shown in figure 8.8. The log-log plot helps to see
that the trend of αapp measured in the numerical simulation is in agreement
with Cox’s relations Cox (1986), where, as indicated by equation 8.6, we
expect an exponent for Ca of ln (L/λ) ≈ 1.37. In this case, L was taken
to be L = 1/256, the grid size ∆x256×256. A fitting procedure revealed a
exponent of ≈ 1.01 for Ca dependency of the results. Finally for this test,
the normal velocity gradient at the wall is reported in figure 8.9 for selected
times τ = 0.001, τ = 0.01, τ = 0.2 and τ = 0.4. As can be seen, at the
initial spreading (τ = 0.001 and τ = 0.01 in figures 8.9a and 8.9b), shear
is larger for finer grids, but with a convergent tendency in both cases. This
is consistent with the value of velocity at those times. In figures 8.9c and
8.9d selected times τ = 0.2 and τ = 0.4 show a velocity gradient at the wall
almost constant, with a small deviation for grids 128 × 128 and 256 × 256,
also consistent with contact line velocity evolution in figure 8.7. It is clear
that the straight shape at the top of the velocity gradient is due to the
rm selected. With this test, it is demonstrated that a subgrid model can
achieve grid convergence for the maximum velocity of spreading and also has
improved the initial acceleration. Shear at the wall has converge with the
grid refinement and the evolution of the apparent contact angle has been
described correctly.

In the viscous regime, Solomenko et al. (2017) compare their model to
DNS results from Sui and Spelt (2013b) for an axisymmetric droplet of R0 =
0.5 in a 1 × 1 domain. Properties are set such that density and viscosity
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Figure 8.9: Velocity gradient at the wall for drop spreading using the present
subgrid model at selected times: a) τ = 0.001; b) τ = 0.01; c) τ = 0.2 and d)
τ = 0.4. Colored lines represent the grid resolution: 32×32; 64×64;

128× 128; 256× 256.
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Figure 8.10: Grid convergence for drop spreading according to Solomenko
et al. (2017). a) Non-dimensional contact line position. b) Non-dimensional
contact line velocity. Present study ∆x = 1/64; Present study ∆x =
1/128; Present study ∆x = 1/256; Sui and Spelt (2013b); Solomenko
et al. (2017) ∆x = 1/256.
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Figure 8.11: Results for the test reported in figure 8.10, using the same
∆t (that for ∆x = 1/256) in each grid with the new subgrid model.
∆x = 1/64; ∆x = 1/128; ∆x = 1/256;

ratios are 0.1 and numbers Re and Oh are 5 and 0.1 respectively. The
initial configuration of the droplet is set to form an angle of 60◦ and the
static configuration is set at αw = 30◦. Three uniform grids are tested
such that ∆x = 1/64, ∆x = 1/128 and ∆x = 1/256, using a time step
of ∆t/∆x = 1280 × 10−6 and a slip length of λ = 0.0001. More details
can be found in Sui and Spelt (2013b), Solomenko et al. (2017). For the
subgrid model, the interface is reconstructed each 50 time steps, a subgrid
zone of rm = 1/64 is prescribed for all grids. In figure 8.10a the evolution
in time of the contact line position is reported. Solid lines in blue, red and
black represent the subgrid model position evolution for grids ∆x = 1/64,
∆x = 1/128 and ∆x = 1/256. Dashed red line and blue dots represent
the position evolution (normalized by 2R a α = 60◦) for ∆x = 1/256 for
the model used in Solomenko et al. (2017) and the DNS results of Sui and
Spelt (2013b) respectively. We can see that the finest grids (∆x = 1/128
and ∆x = 1/256) converge almost perfectly to the results of Solomenko
et al. (2017) but still a bit below of what was obtained in the DNS. Figure
8.10b shows the evolution of the non-dimensional velocity of the contact line.
There we can see that the subgrid model has achieved grid convergence of
the maximum velocity of spreading.

The convergence of initial acceleration is not clear at this point since
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Figure 8.12: Grid convergence for drop spreading according to Solomenko
et al. (2017), using ∆x = 1/128. a) Non-dimensional contact line position.
b) Non-dimensional contact line velocity. Present study with individ-
ual viscosities; Present study with modelling viscosity; Sui and Spelt
(2013b);
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in this test, time step ∆t is different for each grid. Contact line velocity
evolution using the same ∆t (that for ∆x = 1/256) in each grid is reported
in figure 8.11 confirming that the convergence of initial acceleration with grid
refinement has been improved. Solomenko et al. (2017) did not provide the
velocity evolution at this axis scale, so a direct comparison for convergence
could not be made. The noise in the curves of figures 8.10b are caused by the
process of front reconstruction. It can be noticed that the velocity for grid
∆x = 1/256 shows some oscillations of unknown origin between τ = 0.01
and τ = 0.1. Both perturbations however do not affect the global tendency.
Since for this test Γ 6= 1, we test the individual viscosities inside the subgrid
zone. Using the grid with ∆x = 1/128 We can see in figure 8.12a that using
the individual viscosities in the subgrid model has improved the evolution of
the contact line position towards the DNS results of Sui and Spelt (2013b).
In figure 8.12b we see that the achievement of the contact line position was at
the cost of an increase from ≈ 0.015 to ≈ 0.017 in the maximum spreading
velocity. Without a direct comparison with velocities of Solomenko et al.
(2017), nothing further can be commented. We will test the viscosity again
later in comparison with experiments.
Simulations using the new subgrid model are now compared to experimental
data from Lavi and Marmur (2004) for squalane drops. An squalane drop
is carefully placed on a wall with no initial velocity. The centroid of the
drop from the wall, is located at yc, a distance slightly smaller than initial
radius of the drop R0. The effect of this initial configuration will be analyzed.
The liquid properties of squalane are ρ = 809 kg/m3; µ = 0.034 Pa s, σ =
0.032 N m−1 and R0 = 0.001m. An equilibrium angle was determined to be
αw = 41.5◦. It is assumed a slip length value of λ = 1 × 10−9 m. A square
axisymmetric domain of H = L = 0.003 m divided uniformly in 32 × 32
control volumes is used, all tests are reported using the nondimensional time
τ = tσ/µV 1/3, where V is the volume of the drop. A preliminary test is
conducted to determine convergence with the time step. Time steps of ∆t =
2 × 10−5, ∆t = 1 × 10−5, ∆t = 5 × 10−6 and ∆t = 2 × 10−6 s are tested
and results are shown in figure 8.13. Except for 2 × 10−5 s, the contact
line position r̃ = r/R0 converges perfectly with the time step. A second
test is conducted to see the effect of rm. As was discussed previously, this
subgrid zone, needs to be a function of ∆x and obviously needs to have a
minimum value of rm = 1∆x. We use the same configuration as the last
test increasing the grid quality to 64 × 64. Subgrid zones of rm = 1∆x,
rm = 2∆x, rm = 3∆x, rm = 4∆x and rm = 5∆x are tested. We use a time
step of 2× 10−6 s to achieve τ = 100. Results shown in figure 8.14a indicate
that rm exerts no effect in both the beginning and the end of the spreading,
except for rm = 1∆x, where an irregularity in r̃ evolution is found at the end
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Figure 8.13: Convergence in time test of contact line position for a squalane
drop according to experiments in Lavi and Marmur (2004). Time steps
tested: 2× 10−5; 1× 10−5; 5× 10−6; 2× 10−6. for rm = 2∆x

of spreading. This is expected for two reasons: numerically, if rm = 1∆x,
an abrupt change in the boundary conditions of the wall around the contact
line is produced and the front-tracking method with lagrangian markers (as
implemented in this work) requires a surrounding zone of at least 2 grid cells
in each direction to be smooth. Figure 8.14b shows a zoom-in into figure
8.14a around τ ∼ 10. This is done to see the effect of rm. According to what
is reported in figure 8.14b, it seems that larger values of rm translates the
solution to the right proportionally except at the beginning and at the end
of spreading. Large rm may render the whole subgrid model meaningless (we
expect rm to be small), not to mention that away from the contact line (in
the reference frame attached to it), the stokes assumption under which the
model is constructed, may fail. In all the tests conducted here compared to
experimental data, rm is taken to be rm = 2∆x, which provides stability and
coherence with the subgrid model. We test next the effect of initial position
of the drop. This can be expressed also in terms of the initial vertical position
of the drop centroid yc. The values tested are yc = 0.95R0 (which is used by
default in other tests), yc = 0.98R0 and yc = 0.99R0. Further increase of yc
produced the divergence of the solver, the reason for this remains unclear. A
64 × 64 grid is used with a time step of 2 × 10−6 s. Results for the contact
line position r̃ are shown in figure 8.15a, reporting the same evolution around
τ ≈ 10.

r∗ =
r −R0

Rf −R0

(8.24)

Normalizing the contact line position using equation 8.24 (where Rf is the
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Figure 8.14: Effect of rm on the contact line position evolution for a squalane
drop. a) r̃ evolution up to τ = 100; b) Zoom-in into figure 8.14a. rm tested:

rm = 1∆x; rm = 2∆x; rm = 3∆x; rm = 4∆x; rm = 5∆x.

final contact line position), shows that the initial wetted area is not impor-
tant for the evolution of r∗ (this was also concluded in Legendre and Maglio
(2015)). This is shown in figure 8.15b. In figure 8.16 we compare the evo-
lution of wetted area normalized by the final wetted area A/Af with the
experiment reported in Lavi and Marmur (2004). It can be seen that the
agreement is remarkable and it is comparable to the dynamic models used
in Legendre and Maglio (2015) with the VOF-FCT-CSF model. The test
based on Lavi and Marmur (2004) experiments is also a good test to report
the parameters of the subgrid model since it covers a large range of αapp.
In figure 8.17a the evolution of viscous and non-balanced Young forces per
length unit inside the subgrid zone are reported. We can see clearly that the
non-balance Young force is always dominant (in the subgrid region), this is
consistent with the observations of Qian et al. (2003a) and Qian et al. (2005)
for molecular dynamics simulations. In our case we use this dominance in
our favor to introduce the capillary effects of the contact angle. Figure 8.17b
shows the viscous forces for both fluids inside and outside the slip region.
We can see that the viscous force in the receding fluid is always larger than
in the advancing one both inside and outside the slip region. Forces outside
the slip region are always larger by at least one order of magnitude than
the forces inside the slip region, for both fluids. The characteristic slip re-
gion r∗ in both fluids is reported in figure 8.17c. We see that initially the
slip region in fluid 1 is smaller than in fluid 2, this tendency is reverted at
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Figure 8.15: Effect of the initial wetted area on the contact line position for
the numerical simulation of a millimetric squalane drop. yc = 0.95R0;

yc = 0.98R0 yc = 0.99R0
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Figure 8.16: Comparison of wetted area of numerical simulation of a milli-
metric squalane drop against experiment reported in Lavi and Marmur (2004)
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Figure 8.17: Temporal evolution of main parameters of the subgrid model
for the case following Lavi and Marmur (2004).
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Figure 8.18: Effect of the initial wetted area on the contact line position
for the numerical simulation of a millimetric squalane drop, using individual
viscosities. yc = 0.95R0; yc = 0.98R0 yc = 0.99R0

τ ∼ 10. Finally, macroscopic average and modelling viscosities µ and µmod
are reported in figure 8.17d. We see that µ is almost constant before τ ∼ 10,
then it experiences a small fall. This is consistent with a volume fraction
averaging process, while the modelling viscosity µmod increases over time in
a fashion similar to the wetted area evolution. The test on initial wetted
area is repeated using individual viscosities in the subgrid model. Results
for the effect of the initial wetted area and comparison with experimental
data are reported in figures 8.18 and 8.19. We can see that the evolution of
the contact line is quite similar to that with modelling viscosity see figure
8.18. An important difference is found around τ = 10, the contact line has
experienced an acceleration which can be deduced from figure 8.19. This ac-
celeration has caused a slight disagreement with experimental data at τ = 10,
but has improved it from τ = 5 to τ = 9. Further investigation regarding
this modelling viscosity must still be made.

Another interesting test on partial wetting is reported in Legendre and
Maglio (2015), based on the experiments of Winkels et al. (2012) for low
viscosity drops. A drop of R0 = 0.5 mm spreads on three different substrates
with different equilibrium contact angles αw: 0◦, 65◦ and 115◦. Properties of
the liquid are ρ = 664 kg/m3, µ = 3.64× 10−4 Pa s and a surface tension of
σ = 0.017 N/m. Numerically, a square domain of L = H = 3R0 is divided
into a uniform 64 × 64 grid and a time step of t = 1 × 10−6 s is set. Again
here, since the slip length is not provided by the experiment, it is assumed
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Figure 8.19: Comparison of wetted area of numerical simulation of a millimet-
ric squalane drop against experiment reported in Lavi and Marmur (2004),
individual viscosities

λ = 1× 10−9 m. Contact line position evolution is shown in figure 8.20. For
equilibrium angles of αw = 65◦ and αw = 115◦, the agreement with exper-
imental data is excellent. For αw = 0◦, the experimental evolution seems
to be quicker than that of the subgrid model. This seems to be numerical
artifact. In fact, a similar result can be obtained for any angles smaller than
αw = 10◦ (not shown here). Further research is needed to find the reason
of why spreading with small static contact angles evolve in this fashion with
the front-tracking method. Figure 8.21 shows again the same evolution, this
time for r̃ = r/R0 in a log-log scale in a normalized time τ = t/

√
ρR3/σ. The

experimental initial evolution of the contact line position grows as r̃ ∼ t1/2,
but later (after τ ≈ 0.1), the growth does not follow ∼ t1/2 which was not
observed in molecular dynamics (see the discussion on this aspect in Winkels
et al., 2012). The numerical results obtained with the subgrid model follows
remarkably the features of the experiment for τ > 0.1. Similar results were
obtained in Legendre and Maglio (2015) with the VOF-FCT-CSF method,
showing an evolution of τ 1/2 for initial spreading.
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Figure 8.20: Temporal evolution of the contact line position for droplet
spreading according to Winkels et al. (2012) as a function of αw. Exper-
imental data (see Winkels et al., 2012) with open symbols: αw = 0◦;
αw = 65◦; αw = 115◦; Compared to numerical simulation with subgrid
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Figure 8.21: Temporal evolution of the contact line position for droplet
spreading according to Winkels et al. (2012) as a function of αw. Exper-
imental data (see Winkels et al., 2012) with open symbols: αw = 0◦;
αw = 65◦; αw = 115◦; Compared to numerical simulation with subgrid
model: αw = 0◦; αw = 65◦; αw = 115◦.
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8.4 Summary

We can conclude this chapter with a brief summary of our findings. First, a
subgrid model was implemented inside JADIM in the context of the front-
tracking method. Considering the drop spreading case proposed Afkhami
et al. (2009), it was demonstrated that the subgrid model in this work can
achieve grid convergence for both initial velocity and shear. Additionally
a satisfactory evolution of the apparent contact angle was achieved, which
is here an output variable and not a boundary condition, a feature only
shared (in the knowledge of the author) with the interface formation model
(see Shikhmurzaev, 1993a, 1996, 1997a,b). It was seen also, that the subgrid
model predicted satisfactorily the contact line evolution in the viscous regime
for the numerical test proposed in Solomenko et al. (2017), showing also con-
vergence with grid refinement in the maximum spreading velocity and an
improvement for the initial acceleration. The use of individual viscosities in
this case improved the contact line position evolution towards DNS results
in Sui and Spelt (2013b) and showed a slightly larger value for maximum
spreading velocity with respect to the modelling viscosity subgrid version.
Further tests were conducted and compared to experimental data in drop
spreading. Excellent agreement for wetted area evolution was found in com-
parison to the test on squalane drops from Lavi and Marmur (2004). Time
step and initial wetted area independency was found, this is consistent with
observations for the same case in Legendre and Maglio (2015). A test for rm
was conducted, no clear evidence of for the best choice of rm could be found.
It is recommended that rm is kept as small as possible and always rm ≥ 2∆x.
The evolution of parameters of the subgrid model was reported. It was shown
that the non-balance Young force is always larger than its viscous counter-
part in the subgrid zone. We took advantage of this to stop imposing the
contact angle as boundary condition in the CSF environment. The force
due to viscous shear in the receding fluid has always a dominant role dur-
ing drop spreading. Also, viscous force outside the slip region were shown
to be stronger than that inside it. The evolution of the modelling viscosity
was compared to the average viscosity. They showed to have contrary ten-
dencies. The same tests was conducted using individual viscosities. Similar
evolutions of the contact line position were found, but a small acceleration in
the contact line evolution at τ = 10 was reported, producing a little disagree-
ment when compared to experimental data. The critical factor for the use of
modelling viscosity or individual viscosity seems to be the confinement of the
fluids. This comes from the fact that in the test of Solomenko et al. (2017),
little confinement was present, so individual viscosities performed better. On
the other hand, the squalane drop spreading case (Lavi and Marmur, 2004)
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possesses a large confinement of fluid 2 in the intitial spreading, so in this
case, the modelling viscosity performed better. Further test are needed to
determine the correct viscosity inside the subgrid region, as was commented
before. Something is now for sure: the macroscopic simulation is affected by
the individual contributions of each fluid to the viscous force. The subgrid
model also performed well against the experiments of Winkels et al. (2012).
Results were remarkably good for equilibrium contact angles of αw = 65◦

and αw = 115◦ and acceptable for αw = 0◦. This latter result deserves fur-
ther investigations, since similar trends can be obtained for any angles up to
αw = 10◦. For now, the subgrid model in the context of lagrangian markers
seems to be unable to simulate low equilibrium contact angles. Neverthe-
less, in the log-log scale, the evolution of the contact line was found to be
in excelent agreement with the experimental data, reproducing a changing
exponent for t with αw as discussed also in Winkels et al. (2012).
We conclude that the development of the subgrid model in the context of the
front-tracking method provide a very promising approach for the macro-scale
simulation of moving contact lines.
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Conclusions and Future work

Conclusions

In this work we have focused on a small but challenging subject which is the
numerical simulation of two-fluid flows involving the motion of a contact line.
We began with a brief description of the numerical solver used in this work:
JADIM and the methods available inside to capture the interface. We
pointed out the need of a method that ensures the elimination of spurious
velocities. A very promising answer to this requirement came from the work
of Shin et al. (2005) in the framework of the front-tracking method, although
its performance to reduce spurious velocities was negatively affected after the
reconstruction procedures. A general background statement was presented
on the issues related to the use of the front-tracking method i.e. markers
clustering, mesh-scale oscillations, algorithmic complexity, etc. The imple-
mentation of the front-tracking method inside JADIM was then detailed and
two important enhancements were introduced: the first is a novel technique
to calculate tangents at markers positions using an element length weighted
average. This technique allowed the use of a non-uniform distribution of
markers at the front, a feature that is normally avoided in the literature of
the front-tracking method. The second enhancement was a new front recon-
struction procedure, focused on preserving the local curvature of the front
by composing circles that were intersected with the eulerian grid. A battery
of classical tests were performed to evaluate this new implementation and
to show the reduction of spurious velocities close to machine precision. All
tests for Laplace number La, Capillary number Ca and grid size R/∆x pro-
vided low spurious velocities. A minimum element size of ∆s > 0.2∆x was
determined to provided stability of the performance. Benchmarking results
for rising bubbles were in excellent agreement with available reference data.
Wetting cases using the static contact angle provided also excellent agree-
ment to available analytical results (see Dupont and Legendre, 2010) after a
correction in the advection of markers close to the wall.
Having developed a powerful tool to simulate numerically two-fluid flows, we
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got immersed into the analytical analysis of a moving contact line in the con-
text of corner Stokes flow and analyzed the effect of the different boundary
conditions at the wall on the relevant flow field variables: velocity, shear and
pressure. A special slip theory in the works of Kirkinis and Davis (2013) and
Kirkinis and Davis (2014) was the focus of our attention, because besides
relieving the shear divergence at a contact line, it provided evidence of the
existence of Moffatt vortices in the vicinity of the contact line. We extended
the formulation of Kirkinis and Davis (2014) to handle two fluids and gen-
eralize the calculations to non-zero static contact angle. The real results
for n revealed flow patterns similar to those found with the no-slip and the
navier-slip boundary conditions. Complex results for n revealed the presence
of Moffatt vortices but also revealed that such presence is incompatible with
a real positive slip. The cut-off imposed by the continuum limit may leave
the door open for the existence of only one vortex. Next we verify the ex-
istence if such vortices numerically. Tests revealed the existence of vortices
in any case were some slip scheme is applied to te wall. This vortices kept
their size and showed a decreasing evolution of vorticity. The development
of such vortices might be due to the initial impulse induced by the motion
of the contact line, an analogy to those found for example in normal flows
over plates (see Koumoutsakos and Shiels, 1996). Some perturbations on the
interface were found, caused probably by spurious velocities. Further studies
are needed on how to improve the front-tracking method for wetting cases.
Finally, in the last chapter, we proposed a subgrid model for the simulation
of drop spreading. The motivation for this new model was the fact that
in the current literature where the capillary contribution is treated through
the CSF formulation (see Brackbill et al., 1992), a grid dependence is ob-
served in contact line velocity and viscous shear at the wall. We addressed
both problems proposing an imbalance of viscous and the non-balance Young
forces in a microscopic numerical region. Viscous forces were formulated to
follow the exact solution of corner Stokes flow from chapter 5 for the inner
and outer regions. Product of this imbalance, a velocity gradient became a
new boundary condition for velocity and at the same time a new boundary
condition for the imposition of a macroscopic or “apparent” contact angle.
Tests revealed that this subgrid model provides grid convergence for both
maximum contact line velocity and shear at the wall, something not seen in
the literature in the context of CSF. Additionally, improvement on the grid
convergence for initial acceleration was reported. Comparisons with results
from bibliography (see for example Solomenko et al., 2017) revealed simi-
lar contact line position evolution. When compared to experimental drop
spreading (see Lavi and Marmur, 2004), the subgrid model performed with
excellent results. Further tests results were reported to assess the effect of
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substrate wettability (Winkels et al., 2012), showing excellent agreement for
static contact angles larger than 10◦, which seemed to be the limit for this
model. Nevertheless, the trends followed by the numerical results were also
in excellent agreement with the experiments.
To summarize, in this work, we have contributed in three specific aspects: the
first, we have improved the front-tracking method to handle non-uniform dis-
tribution of markers, preserving its spurious velocity reduction performance
and eliminating many of its subjacent issues. The second aspect, we have
shown analytically that under certain conditions, a unique vortex might be
found in the vicinity of the contact line. Numerically, it was shown that such
vortices are sensible to the slip at the contact line. Their generation might
be due to the initial impulse of the contact line motion. And finally, we
have provided a new method to simulate drop spreading that achieves grid
convergence for maximum velocity and shear at the wall, leaving the accel-
eration more difficult to converge. This aspect of grid convergence for the
acceleration is little commented in the literature. Mainly, this new method,
provides the apparent contact angle as an output variable and not anymore
as boundary condition to be imposed. However, much is still to be studied
and a lot of work is waiting in the future.

Future work

There are immediate studies that need to be conducted regarding the front
tracking method. First, it is necessary to improve the reconstruction pro-
cess to be compatible with problems involving contact lines. We saw some
perturbations in the contact line velocity caused by it. A force balance in
the vicinity of the contact line may provide a correct curvature at the wall,
generating means for a correct reconstruction. Also, generalizing the subgrid
model to handle low static contact angles is a point that can make this tech-
nique more robust. Further research can be conducted to achieve strict grid
convergence for initial acceleration in spreading. Also, the subgrid model can
be easily transfered to methods like VOF or Level-Set.
A natural and challenging step to be taken is the implementation of break-up
and merging interfaces and of course, the generalization of the front-tracking
method to handle 3D problems. For 3D, in preliminary tests we have experi-
enced spurious velocities reductions to Ca ≈ 1× 10−11 for the static bubble
test in chapter 4 extended to 3D, but a reconstruction process is still not
ready. A similar extension of the subgrid model is also a natural step to be
taken. More complex phenomena like hysteresis, surfactant transport and
phase change at the contact line must be added to this list.
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mécanismes de base intervenant dans les écoulements diphasiques. PhD
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torat dirigée par Tadrist, Lounès Mécanique. Énergétique Aix-Marseille 1
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