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Résumé: Cette these porte sur I’étude de modeles
de parking dans un sens large sur de grands graphes
et arbres aléatoires. Dans un premier temps, nous
étudions deux algorithmes permettant d’obtenir un
grand ensemble indépendant d’un graphe, c’est-a-
dire un sous-ensemble de sommets du graphe qui ne
contient pas de paire de sommets voisins. Le pre-
mier utilise une stratégie gloutonne pour construire
un ensemble indépendant maximal pour 'inclusion.
L’ensemble ainsi obtenu a en général une densité
positive et nous donnons des exemples de grands
graphes (aléatoires) ou l'on peut calculer exacte-
ment la loi de la taille de l’ensemble indépen-
dant que 'on obtient. Le second algorithme est
I’algorithme de Karp—Sipser, qui est optimal au sens
ou il existe un ensemble indépendant de taille max-
imale qui contient le sous-ensemble de sommet pro-
duit par lalgorithme. Cependant, cet algorithme
s’arréte lorsque le sous-graphe inexploré ne contient
plus de feuilles et on appelle alors ce sous-graphe le
coeur de Karp—Sipser. Nous donnons la localisation
de la transition de phase pour 'existence d’un coeur
de Karp-Sipser géant pour un modele de configura-
tion avec des sommets de degrés 1, 2 et 3, et nous
analysons précisément la taille de ce coeur au point
critique.

Dans un second temps, nous nous intéressons au
modele de parking (dynamique) introduit par Kon-
heim et Weiss dans le cas de la ligne. Dans cette

version, on se place sur un arbre enraciné ou chaque

sommet représente une place de parking et les arétes
sont orientées vers la racine. Les voitures arrivent
sur les sommets, se garent des que possible en suiv-
ant les arétes orientées et sortent de l'arbre par la
racine si elles ne trouvent pas de place. On s’attend
naturellement & observer une transition de phase.
En effet, si peu de voitures arrivent, la plupart
d’entre elles va pouvoir se garer tandis que si la den-
sité de voitures est trop élevée, une proportion posi-
tive de voitures ne trouvera pas de place disponible
et sortira par la racine de I'arbre. Nous formal-
isons d’abord I'existence de cette transition de phase
pour une suite d’arbres qui converge vers une limite
locale sous des hypotheses assez 1égeres. Ensuite,
nous en donnons la localisation pour des arbres de
Bienaymé—Galton—Watson critiques en utilisant a
nouveau la limite locale, et sur I’arbre binaire in-
fini via des techniques combinatoires. Pour les ar-
bres critiques, nous montrons également le caractere
abrupte de la transition de phase. De plus, pour un
modele particulier d’arbres et d’arrivées de voitures,
un couplage entre le modele de parking et le modele
de graphe d’ Erdés-Rényi nous permet notamment
d’étudier la fenétre critique de la transition de phase
et fournit des informations sur les arbres de voitures
garés. Enfin, nous établissons un lien entre le mod-
ele de parking et les cartes planaires via une décom-
position combinatoire issue du parking vis-a-vis de

la derniere voiture.
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Abstract: This thesis deals with the study of park-
ing models on random graphs and trees in a broad
sense. First we investigate two algorithms which
enable us to find a large independent set of a graph,
that is a subset of the vertices of the graph where
no pair of vertices are connected to each other. The
first one uses a greedy procedure to construct an
independent set which is maximal for the inclusion
order. In the generic case, this subset has a posi-
tive density and we give example of large (random)
graphs for which we can explicitly compute the law
of the size of this greedy independent set. The sec-
ond algorithm is Karp—Sipser algorithm which is op-
timal in the sense that there exists an independent
set with the maximal possible size which contains
the subset of vertices produced by Karp—Sipser al-
gorithm. However, this algorithm stops when the
unexplored subgraph contains no more leaves and
We

give the precise localization of the phase transition

we call this subgraph the Karp—Sipser core.

for the existence of a giant Karp—Sipser core for a
configuration model with vertices of degree 1, 2 and
3, and we precisely analyse its size at criticality.
Then, we examine the (dynamical) parking
model introduced by Konheim and Weis on the line.

In this version, we consider a rooted tree where each

vertex represents a park spot and the edges are ori-
ented towards the root. Cars arrive on the vertices
of the tree, each car tries to park on its arrival node
and if the spot is already occupied, it drives towards
the root and parks as soon as possible. We expect
to observe a phase transition. Indeed, if few cars
arrive, most of them can park on the tree whereas
if the “density” of cars is too large, then a positive
proportion of them will not manage to park and
exit the tree. We first formalize the existence of
this phase transition for a sequence of trees which
converges locally under slight hypotheses. We then
give the localisation of this transition for critical
Bienaymé—Galton—Watson trees using again the lo-
cal limit, and for the infinite binary trees via a com-
binatorial decomposition. On critical trees, we also
show that the phase transition is sharp. Moreover,
for a good choice of trees and car arrivals, a coupling
between the parking model and the Erdés—Rényi
random graph model enables us to study the critical
window of the phase transition and gives informa-
tion about the geometry of the clusters of parked
cars. Lastly, we establish an unexpected link be-
tween the parking model and planar maps by using

a “last car” decomposition.
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Chapitre 1 :

Introduction

Cette these s’articule essentiellement en deux parties. La premiere sera centrée sur un modele de
parking statique qui permet d’obtenir des grands ensembles indépendants d’un graphe (aléatoire ou
non). Elle contient les articles [65] et [52]. La deuxiéme représente le coeur de ce manuscrit et traite

du modele de parking dynamique sur des arbres. Les travaux [64, 67, 12, 63] y figurent.

L’introduction de cette these est divisée en quatre sections. Dans un premier temps (Section 1.1),
nous présentons le contexte général des arbres et graphes aléatoires, notamment la notion de limite
locale ainsi que le principe d’exploration markovienne qui seront des outils cruciaux dans nos travaux.
Les parties suivantes donnent un apercu de nos contributions principales. En particulier, la Section
1.2 rassemble nos résultats issus de [65, 52] liés a la construction de grands ensembles indépendants.
La troisieme section (Section 1.3) présente nos contributions propres au modele de parking dynamique
sur les arbres [64, 67, 12] tandis que la derniére (Section 1.4) montre le lien inattendu entre ce modele

et celui des cartes planaires [03].
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1.1 Arbres et graphes aléatoires

Nous introduisons dans cette partie les différents modeles d’arbres et de graphes qui forment le

support de cette these.

1.1.1 Arbres et graphes

Graphes. Commencons par rappeler quun graphe g est la donnée d’un ensemble de sommets V' et
d’un (multi-)ensemble E de paires de sommets appelées arétes. Selon le contexte, on considérera des
arétes orientées (si (x,y) € E, alors il y a une aréte allant du sommet x vers le sommet y), ou non
(si {x,y} € E, il y a une aréte reliant les sommets x et y). Egalement, on s’autorisera parfois des
arétes multiples (plusieurs arétes reliant la méme paire de sommets) et des boucles (arétes dont les
deux extrémités sont le méme sommet), voir Figure 1.1. En Pabsence d’aréte multiple et de boucle,

on parle de graphe simple.

Figure 1.1 : A gauche, un graphe simple avec 19 sommets et 30 arétes. Sur la droite, un
(multi-)graphe, avec 17 sommets et 32 arétes dont 2 boucles et 4 arétes multiples. Dans les

deux cas, les arétes ne sont pas orientées, et les deux graphes sont connexes.

Tous les graphes que nous considérons ont un nombre fini ou au plus dénombrable de sommets et
d’arétes, et ils sont localement finis, c’est-a-dire que le degré (nombre d’arétes incidentes, les boucles
étant comptées deux fois) de chaque sommet est fini. On s’intéressera souvent a la distance (de
graphe) entre deux sommets x,y € V, qui est le plus petit nombre d’arétes d’un chemin non orienté
reliant x et y. Si pour toute paire de sommets, il existe un chemin reliant les deux sommets, on dira
que le graphe est conneze. Pour un graphe fixé g, on notera |g| son nombre de sommets ou taille,

sauf mention contraire.

Arbres. Parmi les graphes, une catégorie nous intéressera particulierement : les arbres. Un arbre est
un graphe (simple) connexe et acyclique. En particulier, on peut remarquer qu'un arbre fini possede

n — 1 arétes s’il est composé de n > 1 sommets. Quand un sommet particulier, que 'on appelle racine,
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est distingué, on munit naturellement ’arbre d’une structure généalogique dont ’ancétre commun
est la racine. Plus précisément, étant donné un sommet x a distance r > 1 de la racine, il y a un
unique sommet y a distance r — 1 de la racine situé sur I'unique chemin reliant x a la racine. On dit
alors que x est un enfant de y, et que y est donc le parent (unique) de x, voir Figure 1.2. En général,
on représente la racine en bas de I’arbre et on la note souvent @& lorsqu’il n’y a pas d’ambiguité’.
Enfin, on appelle arbre plan un arbre enraciné muni d’un ordre cyclique autour de chaque sommet :
pour chaque sommet x de 'arbre, les enfants de x sont numérotés, et ’on représente le premier enfant
de x a gauche dans le plan, le deuxiéme enfant directement a droite du premier et ainsi de suite.

Pour une définition plus formelle d’un arbre plan comme un sous-ensemble de ’arbre d’Ulam, voir
2n—2

.1 ) arbres plans avec n sommets.

par exemple [111] ou [73]. On peut montrer qu'il y a %(

Y

%] %]

Figure 1.2 : Deux exemples d'arbres enracinés en &. A gauche, les deux sommets oranges
sont les enfants du sommet rouge. Ce sont les mémes arbres enracinés mais ce ne sont pas

les méme arbres plans.

Arbres de Bienaymé—Galton—Watson. Un des modeles les plus étudiés d’arbres aléatoires est le mo-
dele de Bienaymé—Galton—Watson. 1l a été introduit par Bienaymé puis indépendamment par Galton
et Watson pour étudier I'extinction des patronymes des familles nobles en Angleterre. Soit v une me-
sure de probabilité sur {0,1,2,...}. Un arbre de Bienaymé-Galton-Watson de loi de reproduction
v est un arbre plan ou 'on part d’un individu racine a la génération 0, et ou chaque individu a un
nombre aléatoire d’enfants (numérotés) suivant la loi v, indépendamment pour tous les individus.
Autrement dit, la racine de I'arbre a X enfants ou X a loi v et les sous-arbres issus de chacun de
ces enfants sont des arbres de Bienaymé—Galton—Watson de loi de reproduction v indépendants, et

indépendant de X. Voir [114] pour une définition formelle.

1Cela provient de la notation de Neveu pour les arbres plans, voir [144].
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Une des forces du modele de Bienaymé—Galton—Watson est qu’il englobe, pour de bons choix de
loi de reproduction, de nombreux modeles combinatoires. Par exemple, si on veut obtenir un arbre
non-plan étiqueté (aussi appelé arbre de Cayley) de taille n uniformément au hasard, il suffit de tirer
un arbre de Bienaymé-Galton—-Watson avec loi de reproduction Poisson(1) conditionné & avoir taille
n, et conditionnellement a cet arbre, assigner des étiquettes aux sommets uniformément au hasard et
oublier I'orientation autour de chaque sommet. De méme, un arbre de Bienaymé-Galton—Watson de
loi de reproduction géométrique (critique) conditionné & avoir n sommets a la méme loi qu’un arbre

plan (non étiqueté) de taille n uniforme.

Graphe d’Erd6s-Rényi. Le modele de graphe aléatoire le plus “populaire” en probabilités est celui
d’Erdés—Rényi. C’est un graphe simple non orienté noté G(n, p) pour n > 1 et p € [0, 1], ayant pour
ensemble de sommets {1,...,n} et pour chaque paire (i,), une aréte est présente entre les sommets
i et j avec probabilité p, et ce, indépendamment pour chaque aréte possible. En fait, le modele sous
cette forme a été introduit par Gilbert [98] en 1959, et la méme année, Erdds et Rényi [33, 31] ont
introduit un modele assez similaire mais avec un nombre d’arétes m fixé. Nous utiliserons plutot
cette version, et méme, on s’autorisera une version avec des arétes multiples et des boucles. Plus

précisément :

Définition 1.1. Soit n,m € {0,1,2,...}. Le (multi-)graphe d’Erdés—Rényi G(n,m) est un graphe
aléatoire avec n sommets numérotés {1,...,n} et m arétes (non ordonnées) indépendantes tel que
pour tout 1 < i < m, les deux extrémités de la i-ieme aréte sont deux sommets indépendants et

uniformes.

De cette définition, il est aisé de voir qu’on peut coupler les graphes a nombre de sommets n fixé
pour définir un processus (G(n,m) : m > 0) tel pour que pour tout m > 0, on passe de G(n,m)
a G(n,m+ 1) en ajoutant une aréte dont les extrémités sont deux sommets indépendants choisis

uniformément au hasard indépendamment de G(n,m).

Version gelée. Nous nous intéresserons également a une version modifiée du graphe d’Erdés—Rényi,
introduite dans [(7], que nous appelons “gelée” car nous allons supprimer certaines arétes, et donc
ralentir, ou “geler” partiellement la croissance de certaines composantes connexes (celles qui ne sont
pas des arbres). Plus précisément, nous définissons un processus de graphes® (F(n,m) : m > 0)
dont les n sommets étiquetés {1,...,n} peuvent étre soit blancs, soit bleus. On se donne une famille
de variables aléatoires représentant les extrémités des potentielles arétes ((X, Yy) : m > 1) indé-
pendantes et uniformes sur {1,...,n}2. Initialement, le graphe F(n,0) est composé des n sommets
étiquetés {1,...,n} coloriés en blanc et ne contient pas d’aréte. Ensuite, on ajoute les arétes une par

une selon la regle suivante, voir Figure 1.3 : pour tout m > 1,

e Si X;; et Yy, sont deux sommets blancs dans F(n,m — 1), alors on ajoute une aréte entre Xy,
et Yy, & F(n,m — 1) pour obtenir F(n,m). De plus, si cette aréte crée un cycle, alors on colorie

tous les sommets de la composante connexe de X, et Y;, en bleu.

2F pour frozen en anglais.
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e Si X, est un sommet bleu, alors on laisse F(n,m) = F(n,m —1).

e Enfin si X, est un sommet blanc et Y, est un sommet bleu, on ajoute une aréte entre X, et
Yy & F(n,m — 1) et on colorie tous les sommets de la composante connexe de X, (et Yy,) pour

obtenir F(n,m).

On dit que les composantes bleues sont les composantes gelées du graphe et I’ensemble de ces com-

posantes gelées forme le congélateur.

ple IR WSS

CANCRIE

Figure 1.3 : lllustration des regles de transition pour le modéle de graphe d'Erdés—Rényi gelé.

La nouvelle aréte potentielle est en pointillé rouge. Si elle est entre deux sommets blancs (deux
premiéres figures a gauche), on la garde, et on colorie sa composante en bleue si elle crée un
cycle (deuxieme figure). Si elle est entre un sommet bleu et blanc, on ne la garde que si elle
va du sommet blanc vers le bleu et toute la nouvelle composante est déclarée gelée et bleue
(troisieme figure). On supprime I'aréte si elle arrive entre deux sommets bleus (quatrieme

figure).

Notons qu’on peut construire la version classique et la version gelée du graphe d’Erdés—Rényi a

partir de la méme suite d’arétes ((Xp, Yin) : m > 1).

Modéele de configuration. Un autre modele bien étudié dans la littérature probabiliste est le modéle
de configuration. A Dinverse du graphe d’Erd6s—Rényi ol les degrés des sommets sont aléatoires, ce

modele permet d’obtenir un graphe aléatoire ou les degrés des sommets sont prescrits.

Définition 1.2. Soit d = (d;)i>1 une suite d’entiers telle que Y ;>qid; = 2m est pair. Notons
n=Y,>14d;. Le modéle de configuration sur d, noté CM(d), est le (multi-)graphe aléatoire obtenu a
partir de n sommets, dont d; sommets de degré i pour tout i > 1, en appariant les 2m demi-arétes

ou “pattes” des sommets uniformément au hasard.

La condition de parité sur la somme des id; garantit qu’on puisse apparier toutes les demi-arétes.
Notons que ici, on s’autorise les arétes multiples et les boucles. On s’est également restreint au cas
ou il n’y a pas de sommet de degré 0 puisque ces sommets ne jouent pas un role important dans
le graphe. Pour une définition plus rigoureuse, il faudrait en fait étiqueter les demi-arétes que l'on

apparie, voir par exemple [1], Section 2.4].
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Figure 1.4 : Une réalisation de F(200,130) et de G(200,130) ou les deux graphes sont
construits en utilisant les mémes arétes. Les arétes rouges sont les arétes de G(200,130) qui
sont gardées dans F(200,130) et celles en pointillé bleu sont les arétes supprimées. Notons

qu'on ne supprime jamais d’arétes entre deux composantes qui n'ont pas de cycle.
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Figure 1.5 : Un exemple d'appariement d'arétes pour le modeéle de configuration.

1.1.2 Limite locale et méthode objective.

Il y a plusieurs manieres d’étudier un “grand” graphe : on peut soit regarder de maniere globale le

graphe, “vu de loin”, soit s’intéresser aux propriétés locales du graphe, autour d’un point “typique”.
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C’est ce second point de vue que nous allons décrire et adopter dans cette section. Rappelons que
les graphes que l'on considere (au moins dans cette section) ne sont pas plans (ce ne sont pas des

cartes), et sont localement finis.

Graphe enraciné. La notion de convergence locale a été introduite par Benjamini et Schramm [20].
Heuristiquement, la topologie locale rend compte du “paysage” local autour d’un point du graphe.
Pour ce faire, il faut pouvoir distinguer un sommet du graphe et on va donc considérer des graphes
enracinés (avec un sommet distingué) et connexes. Si (g1, p1) et (g2, p2) sont deux graphes connexes

enracinés en p1 et pp respectivement, alors on définit la distance locale

dioc((81,01), (82,02)) = (1 +sup{r > 0: Bi(g1,01) = Br(g2,02)})

ou B,(g,p) désigne la boule de rayon r autour de la racine p de g, c’est-a-dire le sous-graphe induit
par tous les sommets situés a distance (de graphe) au plus r de p. Notons que 1'égalité entre les
deux boules est vue a isométrie de graphes préservant la racine pres. En effet, nous voulons que
cette distance nous permette de comparer la géométrie locale de deux graphes enracinés, quelque
soit ’étiquetage de leurs sommets. On notera G°® I'ensemble des graphes localement finis, connexes
et enracinés en un sommet, vus a isométrie (préservant la racine) pres. En particulier, deux graphes
enracinés sont & une distance (locale) plus petite que 1/(r + 1) si les voisinages autour de leur racine
respective coincident au moins jusqu’a une distance r. La topologie induite par cette distance sur G*
est appelée topologie locale, et (G®,djoc) est un espace métrique séparable et complet.

Une suite déterministe (gu, 0n)n>1 de graphes connexes enracinés converge pour la topologie
locale si pour tout r > 0, la boule de rayon r autour de la racine p, de g, converge (donc est
constante a partir d’un certain rang). Par extension, si les graphes g, ne sont pas nécessairement
connexes, on dit que (gu, Pn)n>1 converge pour la topologie locale si la composante connexe de py,
dans g, converge pour la topologie locale. On peut également s’intéresser a la convergence en loi dans
lespace métrique (G*,djoc). Une maniére de formuler cette convergence que nous utiliserons dans la
suite, est de dire qu'une suite de graphes enracinés éventuellement aléatoires (G, 0y )y>1 converge en
loi pour la topologie locale vers un graphe (Geo, poo), lui aussi localement fini, si pour tout r > 0, la
boule B,(Gy, pn) de rayon r autour de p, dans G, converge en loi vers By(Ge, Poo), autrement dit si
pour toute fonction f continue bornée telle que f(g,p) ne dépend que de la boule B,(g,p) pour un

r > 0, alors

E[f(Gu,pn)] —— E [f(Geo )]

Graphe non-enraciné. Si on veut donner une définition de convergence locale pour des graphes non
enracinés mais finis, on peut également se donner un choix (déterministe ou aléatoire) de racine. Le
point de vue adopté par la convergence au sens de Benjamini et Schramm est de choisir un sommet
racine uniformément au hasard. Introduisons donc Ggp,; I'ensemble des graphes finis, connexes et vus
& isométrie pres. Plus précisément, si on a (Gp),>1 une suite de graphes (aléatoires) de Ggpi, pour

chaque n > 1, conditionnellement a G;, on note X, un sommet uniforme de G,.
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On dit alors que (Gj)u>1 converge vers (Go, Poo) € G° au sens de Benjamini-Schramm si (la
composante connexe de X, dans) (G, X;;) converge vers (Geo, pso) pour la topologie locale, c’est-a-
dire si pour tout r > 0 et toute fonction f continue bornée telle que f(g,p) ne dépend que de la

boule B,(g, p), alors
E [(Gns X)) —— E [f(Garpo)].

On peut se demander quelles sont les limites possibles pour le graphe enraciné aléatoire (Geo, oo )-
On dira que f est une fonction de transport si f est une fonction qui prend en entrée un graphe et
deux points (ordonnés) de ce graphe et renvoie un réel positif, telle s’il existe une isométrie de graphes
qui envoie un graphe g; sur un graphe gy et une paire de points (x1,y1) de g1 sur une paire de points
(x2,y2) de gp, alors f((g1,x1,11)) = f((82,%2,2)) (f est invariante par isométrie de graphes qui
préserve deux points). Une propriété importante [74, Théoreme 7] est que si (G, ),>1 converge au sens
de Benjamini-Schramm vers un graphe (infini ou non) (Ge, peo), alors (G, Poo) €st unimodulaire,

c’est-a-dire que pour toute fonction de transport f,

E Zf(Goo,poo,x) =E

XEGoo

Y. f(Goo,x,poo>] :

XEGoo

On dit aussi que (Geo, Poo) Vvérifie le principe de transport de masse. De plus, les graphes unimodulaires
ne peuvent avoir que 0,1,2 ou une infinité de bouts. Ce nombre peut éventuellement étre aléatoire,
mais si on se restreint au cas des arbres, des simplifications apparaissent. La notion de bouts coincide
pour les arbres avec celle d’épines dorsales, c’est-a-dire de suite de sommets (v;);>1 telle que v; et
v;11 sont reliés, vue a égalité (éventuellement décalée) a partir d’un certain rang, pres, voir par
exemple [74, Théoreme 14]. Si on se donne une suite d’arbres qui a une limite au sens de Benjamini—
Schramm, alors la limite est un arbre avec presque stirement 1 ou 2 épines dorsales, voir par exemple
[74, Théoreme 13].

Benjamini-Schramm quenched. Enfin, dans certains cas, nous aurons besoin d’une version encore un
peu plus forte de convergence locale, qui introduit une forme d’indépendance. Soit (Gy),>1 une suite
de graphes aléatoires finis, et pour chaque n > 1, conditionnellement a G, on note X, et Y, deux
sommets indépendant choisis uniformément au hasard, et (Ge, Poo) un graphe enraciné. On dit que
(Gp)u=1 converge vers (Geo, Poo) au sens de Benjamini—Schramm quenched si les suites (G, Xn)n>1
et (Gy, Yn)n>1 convergent localement vers deux copies indépendantes de méme loi que (G, poo). En
particulier, la suite (G;),>1 converge vers (Geo, poo) au sens de Benjamini—Schramm.

Autrement dit, la suite (G,),>1 converge vers (Geo, o) au sens Benjamini-Schramm quenched
si pour tout r > 0 pour toutes fonctions f et g continues bornées telles que f(g,p) et g(g, p) ne
dépendent que de la boule B,(g,p),

E [f(Gn, X1)8(Gn, Yu)] P E [f(Geo, poo)] E [(Goo, poo)] -

Cette notion de convergence est similaire a la notion de convergence presque siire au sens de Benjamini—
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Schramm [97, |. Une autre fagon de formuler cette convergence est de regarder la mesure empirique
PG = e X0
n) = (Gn,0)
‘V<G”) ’ veV(Gy)

Alors (Gy)p>1 converge vers (G, Poo) au sens de Benjamini-Schramm quenched si la mesure u(G,)
converge en probabilité vers 6(g_, o.)-
La plupart des graphes aléatoires issus de modeles “classiques” ont une limite au sens de Benjamini—

Schramm, voire au sens de Benjamini—Schramm quenched. Nous donnons deux exemples ci-dessous.

Premier exemple : Arbres de Bienaymé—Galton—Watson critiques. Intéressons nous au cas des
arbres de Bienaymé-Galton—Watson. On se fixe une loi de reproduction v et on note 7 un arbre de
Bienaymé-Galton-Watson de loi de reproduction v = ) - Vxdx. On suppose que v a pour espérance
1, et que v est apériodique, c’est-a-dire pour tout n assez grand IP (| 7| = n) > 0, olt on rappelle que
|T| désigne le nombre de sommets de 7. On note 7, la version de 7 conditionnée & avoir taille n
(lorsque cela est possible), et p,, la racine de l'arbre 7.

Introduisons les deux arbres infinis qui vont apparaitre lorsque ’on s’intéresse aux limites locales
de ces arbres. D’une part, on a l'arbre de Kesten [117] que I'on peut décrire de la maniére suivante :
c’est un arbre plan dont les sommets de l'arbre peuvent étre soit “normaux”, soit “mutants”. On
part d’'un sommet racine de type mutant. Tous les sommets ont un nombre aléatoire d’enfants in-
dépendamment les uns des autres. Pour les sommets normaux, ce nombre d’enfants a pour loi v
et tous les enfants sont normaux. Les sommets mutants se reproduisent selon la loi biaisée par la
taille v = ) > kviéx. Notons que ¥ est bien une mesure de probabilité puisque I'on a supposé que
Y1 kvk = 1, et que cette loi est supportée par les entiers strictement positifs. Parmi les enfants
d’un sommet mutant, I'un d’eux est choisi uniformément au hasard (indépendamment de toutes les
générations précédentes) et est déclaré mutant, et les autres sont normaux. Il y a donc exactement
un sommet mutant a chaque génération, voir Figure 1.6.

L’autre arbre qui apparait est 'arbre d’Aldous® [7] construit de la mani¢re suivante : on part
d’un arbre de Bienaymé—Galton—Watson de loi de reproduction v, enraciné sur le sommet initial. On
ajoute a la racine un enfant vers le bas, qui est le point de départ (mutant) d’un arbre de Kesten.
Dans le cas de 'arbre d’Aldous, on représente souvent I’arbre de Kesten sous-jacent vers le bas, voir
Figure 1.6. La relation parents/enfants est alors inversée le long de la lignée de mutants. On peut
remarquer que si v est la loi de Poisson de parametre 1, alors I’arbre de Kesten et 'arbre d’Aldous
ont méme loi puisque dans ce cas, si X a loi v = Poisson(1), alors X + 1 a loi 7.

Munis de ces deux définitions, nous pouvons maintenant énoncer les résultats de convergence
locale. D’abord, la suite d’arbres enracinés (7, 0 )n>1 converge localement vers I'arbre de Kesten,
voir par exemple [2]. En revanche la suite d’arbres (7,),>1 converge au sens de Benjamini-Schramm

(donc les arbres sont enracinés uniformément au hasard) vers ’arbre d’Aldous, voir par exemple [163].

3en anglais, Aldous’ sin-tree, ot le mot sin fait référence au fait qu’il y a un seul chemin infini (single infinite path,),

comme pour ’arbre de Kesten
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Figure 1.6 : 3 gauche, I'arbre de Kesten. Le sommet racine est mutant et le sommet rouge
représente le chemin infini partant de la racine qui relie tous les sommets mutants. A droite,

I'arbre d'Aldous ou on a dessiné |'arbre de Kesten sous-jacent vers le bas.

Ces convergences sont d’ailleurs toujours vraies au sens plan, en conservant ’orientation cyclique

naturelle autour de chaque sommet.

Deuxiéme exemple : graphe d’Erd6s—Rényi. On peut aussi s’intéresser a la limite locale du graphe
d’Erdés—Rényi G(n,p). Comme les sommets ne jouent pas de role particulier, le graphe G(n,p)
enraciné en le sommet numéroté 1 a la méme loi que le graphe G(#n,p) enraciné uniformément au
hasard. Il suffit donc de s’intéresser a la limite de G(n, p) au sens de Benjamini-Schramm. Le régime
“intéressant” est lorsque le degré moyen d’'un sommet est fixé, c’est-a-dire lorsque p est d’ordre c¢/n
pour un ¢ > 0 fixé lorsque n est grand. Le résultat est alors le suivant : pour tout ¢ > 0, le graphe
G (n,|c/n]) converge au sens de Benjamini-Schramm vers un arbre de Bienaymé-Galton—Watson
de loi de reproduction Poisson(c). Bien qu'’il puisse y avoir des cycles dans G (n, |[c¢/n]), cela ne se
voit pas dans la limite locale. Ce résultat est souvent utilisé pour montrer la transition de phase pour

I’existence d’'une composante géante a ¢ = 1.
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1.1.3 Exploration markovienne

La plupart des modeles que nous définirons et étudierons dans la suite possedent la structure suivante :
d’abord on choisit un (grand) arbre ou graphe aléatoire, puis on ajoute sur ce graphe un modele ou
algorithme déterministe ou aléatoire. Une des principales techniques que nous utiliserons est de ne
pas révéler I’arbre ou le graphe aléatoire entierement des le début, mais en fait de se servir de notre
modele ou algorithme pour le révéler pas-a-pas, au fur et & mesure de nos besoins.

Le modele de configuration est ’exemple typique de graphes aléatoires sur lequel on peut appliquer
cette technique. En effet, plutét que d’apparier toutes les demi-arétes a la fois pour obtenir un
appariement uniforme, on peut en fait les choisir deux par deux uniformément et ainsi révéler pas-
a-pas le graphe. Si on choisit deux demi-arétes uniformément au hasard indépendantes et qu’on les
apparie, puis qu’on apparie toutes les demi-arétes restantes uniformément et indépendamment, alors
I’appariement total est uniforme. Nous verrons une application de cette technique dans le chapitre 3.
Cette technique d’exploration markovienne est aussi tres utilisée pour les cartes ou graphes planaires.
Elle est appelée dans ce cas processus d’épluchage ou peeling process en anglais, et nous ’expliciterons
dans la section 1.4.1. Nous introduirons également une nouvelle exploration markovienne des arbres

de Cayley qui sera un outil crucial pour les chapitres 2 et 6.

1.2 Parking statique sur des graphes

Nous motivons et présentons dans cette section nos travaux [52, (5] qui concernent une version

statique d’un probleme de parking.

1.2.1 Ensemble indépendant de sommets et appariement d’arétes

Commengons par présenter les deux problemes qui vont nous intéresser dans cette section, tres
classiques en théorie des graphes : trouver un couplage ou appariement, et trouver un ensemble
indépendant de sommets. Un couplage d’un graphe est un sous-ensemble de arétes qui ne contient
pas de paire d’arétes adjacentes. D’un point de vue “parking”, on peut imaginer que des voitures
se garent sur les arétes et débordent sur les sommets adjacents, de sorte que d’autres voitures ne
peuvent pas se garer sur les arétes adjacentes aux arétes “occupées”. De maniere similaire, un ensemble
indépendant d’un graphe est un sous-ensemble de sommets qui ne contient pas de paire de sommets
voisins. L’interprétation parking est similaire : on peut imaginer des voitures se garant sur les sommets
et empiétant sur les arétes adjacentes, si bien que les sommets voisins des sommets “garés” ne peuvent
pas contenir de nouvelles voitures. On donne un exemple en Figure 1.7.

Etant donné un graphe, trouver un couplage ou trouver un ensemble indépendant de taille maxi-
male peuvent sembler deux problemes tres similaires a premiere vue. Pourtant, le probleme qui
concerne les sommets est bien plus difficile que celui qui concerne les arétes! En effet, d’un point de
vue algorithmique, trouver un couplage de taille maximale se fait en temps polynomial en la taille du

graphe. Le premier & proposer un tel algorithme est Edmonds en 1985 (voir [32] et [151, Théoréme
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Figure 1.7 : A gauche, les sommets verts forment un ensemble indépendant du graphe. A
droite, les arétes oranges forment un couplage du graphe. Dans les deux cas, le couplage ou
I'ensemble indépendant est maximal au sens ou on ne peut pas ajouter d'aréte ou de sommet,

mais ils ne sont pas de taille maximale.

9.1.8]). Depuis, différentes améliorations ont été proposées, voir [151, Tableau 9.1.1] ou [38, 906, ].
En revanche, construire un ensemble indépendant de taille maximale est un probleme NP-complet
[95]. Il est possible de faire un peu mieux que la méthode naive consistant a examiner tous les sous-
ensembles de sommets possibles et vérifier s’ils forment un ensemble indépendant, ce qui prendrait
un temps O(2" - n?). De nombreux travaux ont consisté a trouver des algorithmes de plus en plus
performants [175, Table 1], mais le temps nécessaire pour déterminer un ensemble indépendant de
taille maximale reste exponentiel en le nombre de sommets du graphe, et ce, méme si on se restreint
a des classes de graphes ayant des degrés bornés (voir par exemple [176]). En fait, la présence d’'un
sommet dans un ensemble indépendant de taille maximale a une influence importante sur la présence

d’autres sommets, méme tres lointains, ce qui n’est pas le cas pour les couplages.

1.2.2 Stratégie gloutonne

Puisque déterminer un ensemble indépendant de taille maximale est un probleme difficile, commen-
cons par étudier une stratégie dite “gloutonne” qui permet de générer un ensemble indépendant

relativement grand.

Algorithme glouton. Comme on vient de le dire, il est tres difficile de déterminer un ensemble
indépendant de taille maximale. En revanche, on peut facilement en construire un “grand”, maximal
pour linclusion, en ajoutant des sommets (compatibles) un par un, tant que c’est possible. On
examine les sommets dans un certain ordre (déterministe ou aléatoire) et lorsqu’on ajoute un sommet,
on “bloque” ses voisins puisqu’ils ne pourront pas faire partie de I’ensemble indépendant final. Plus
précisément, on divise les sommets en trois catégories : les sommets indéterminés, les sommets actifs

et les sommets bloqués. Initialement, tous les sommets sont indéterminés. A chaque étape, on choisit

4ou greedy en anglais
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un sommet indéterminé, change son statut en “actif” et tous les voisins indéterminés de ce sommet
deviennent bloqués. On s’arréte lorsque qu’il n’y a plus de sommet indéterminé. Notons qu’a chaque
étape, 'ensemble des sommets actifs forme un ensemble indépendant de sommets et a la fin de
lalgorithme, I’ensemble des sommets actifs est maximal pour l'inclusion (s’il on ajoute un autre
sommet, l’ensemble ne sera plus indépendant). Dans la suite, on appellera stratégie gloutonne cette
stratégie lorsque conditionnellement au graphe de départ, les sommets sont examinés dans un ordre

aléatoire uniforme.

Constante d’encombrement. Bien siir, ’ensemble obtenu ne sera pas mazimum, au sens ou il n’a
pas la plus grande taille possible. Cependant, pour des graphes peu denses, I’ensemble indépendant
que 'on obtient est déja relativement grand, et il a en général une densité positive lorsque la taille du
graphe est grande. Génériquement, lorsqu’on prend une suite de graphes (peu denses) de plus en plus
grands, la densité (proportion de sommets) de I'ensemble indépendant obtenu par la stratégie glou-
tonne converge en probabilité vers une constante que 1’on appelle alors la constante d’encombrement
ou en anglais, jamming constant. L’existence d’une constante d’encombrement a été montrée par
McDiarmid [1410] pour des graphes d’Erd6és—Rényi ou par Wormald dans le cas de graphes réguliers
[173, |, ce dernier utilisant la méthode de ’équation différentielle. On peut également mentionner
[27, 16] qui ont étudié le cas du modele de configuration. Tous ces résulats sont englobés par un
résultat de Krivelevich, Mészaros, Michaeli et Shikelman [125], qui montrent dans un cadre assez
général en utilisant la méthode objective d’Aldous [141], 'existence d’une constante d’encombrement.
Pour énoncer leur résultat, nous avons besoin d’introduire pour un graphe g fini et x un sommet de
g, le nombre N(g,x,7) de chemins de longueur au plus r partant de x. Etant donné une suite de
graphes finis (Gy),>1 (éventuellement aléatoires), on dira que (Gy),>1 a une croissance de chemins

sous-polynomiale si
lim limsup E [N (Gy, Xn,7) A M]

M—oo 4 oo r! r—00

\0/

ol (Xy)n>1 est une suite de points indépendants choisis uniformément au hasard dans G,. On peut

alors résumer leur résultat de la maniére suivante.

Théoréme 1 ([125]). Soit (Gn)n>1 une suite de graphes finis. Supposons que (Gp)n>1 converge au sens
de Benjamini—Schramm quenched vers (Goo,poo) et est a croissance de chemins sous-polynomiale.
Notons I, la taille (aléatoire) de l’ensemble indépendant obtenu par la stratégie gloutonne sur Gy.
Alors,

I, (P)
|Gn| n—oco
ol « est une constante qui ne dépend que de (Geo, Poo)-

Ce théoreme nous donne donc 'existence d’une constante d’encombrement avec des hypotheses
peu restrictives sur la suite de graphes (G, ). Bien souvent, le défi est de déterminer cette constante

d’encombrement.
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Sur la ligne. Un exemple de graphe tres simple auquel on peut penser pour appliquer cet algorithme
est la ligne de taille n, ¢’est-a-dire le graphe avec pour sommets (1,2,---,n) et arétes (i,i + 1) pour
1 < i < n entre 1. Bien sir, il est facile d’obtenir un ensemble indépendant de taille maximale
sur la ligne : il suffit de prendre un sommet sur deux alternativement, voir Figure 1.8. La densité

asymptotique d'un ensemble indépendant de taille maximale est de 1/2.

Maximum

TaR TaR TaR TaR
N\ N\ N\ N\

Greedy ) a\ a\ a\ a\
) ) ) ) )

Figure 1.8 : En haut, les sommets verts forment un ensemble indépendant de taille maximale
sur une ligne de longueur 9. En bas, les sommets verts forment un ensemble indépendant sur

cette méme ligne obtenu pour une réalisation de la stratégie gloutonne.

Cependant, on peut se demander quelle est la taille d’'un ensemble indépendant obtenu par la stra-
tégie gloutonne. La densité asymptotique d’un tel ensemble converge dans ce cas vers une constante
appelée constante de Rényi discréte. De maniere indépendante, Flory [93] et Page [145] ont montré
que cette constante vaut 1*27972 Page obtient de plus les moments asymptotiques de la taille de ’en-
semble indépendant obtenu par la stratégie gloutonne. Notons que dans le cas de la ligne discrete,
il est facile de passer d’ensemble indépendant a couplage en échangeant le role des sommets et des
arétes.

Il existe une variante continue treés similaire & ce probléme : on se place sur Uintervalle [0, x) pour
x € R} et on essaie de garer des voitures de longueur 1 jusqu’a saturation : a chaque étape, on tire
un réel Uy uniformément au hasard et indépendamment du passé entre 0 et x — 1 et on gare une
voiture sur l'intervalle [Ug, Uy + 1) si elle n’intersecte aucune voiture déja garée. On s’arréte lorsqu’il
n’y a plus aucun intervalle de longueur 1 disponible pouvant accueillir une nouvelle voiture. On peut
alors regarder la densité des voitures dans l'intervalle [0, x). La densité moyenne de voitures quand

x tend vers 'infini converge en probabilité vers une limite

0 X 1—eY
= [ 4 —2/ dy — )
m /0 xexp( | dy y )

appelée constante de Rényi [155].

Sur la grille. Plus généralement, on peut s’intéresser a la grille de dimension d. Encore une fois, il est
facile de voir qu’on peut obtenir un ensemble indépendant de taille maximale en prenant un sommet
sur deux alternativement dans chaque direction. En revanche, déterminer la valeur de constante
d’encombrement de la grille (qui existe par le Théoréeme 1), méme en dimension 2 reste a ce jour un

probléme ouvert. Une conjecture de 1960 de Palasti [116] suggere qu’en dimension 2, la constante
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d’encombrement serait simplement le carré de la constante de Rényi (en dimension 1), pour le cas
discret comme pour la variante continue. Cependant, dans les deux cas, les simulations numériques
récentes suggerent que cette conjecture serait erronée, bien que ce n’ait pas encore été prouvé ou

infirmé. On peut se référer a [90, Section 5.3] pour un apergu des travaux sur ce sujet.

Sur des arbres de Cayley. Quand le graphe que l'on considére est un arbre, il y a également un
algorithme simple permettant de déterminer un ensemble indépendant de taille maximale. Nous I’étu-
dierons d’ailleurs dans la sous-section suivante. Néanmoins, il est tout de méme pertinent d’étudier
la stratégie gloutonne. Intéressons-nous au cas des arbres de Cayley & n sommets, c’est-a dire des

arbres non planaires dont les sommets sont étiquetés entre 1 et n.

Figure 1.9 : Un arbre de Cayley avec 30 sommets. Les sommets verts forment un ensemble
indépendant, obtenu en appliquant la stratégie gloutonne en utilisant les étiquettes des som-

mets pour déterminer |'ordre dans lequel on ajoute les sommets.

Soit T, un arbre de Cayley choisi uniformément au hasard parmi les n"~2 arbres de Cayley & n
sommets possibles, et notons 7,° I'arbre enraciné obtenu a partir de 7, en distinguant un sommet
uniformément au hasard. Meir et Moon [I41] montrent que la taille maximale d’un ensemble indé-
pendant de sommets sur 7, se concentre autour de fn avec f ~ 0.5671 'unique solution de xe* = 1.
En ce qui concerne la stratégie gloutonne, ’existence d’une constante d’encombrement pour 7, est
donnée par le Théoreme 1, et méme, la preuve met en évidence le “fait intriguant” que cette constante
vaut 1/2. Dans [65], nous donnons une explication probabiliste et combinatoire a cette constante 1/2
en donnant la loi de la taille I, de I’ensemble indépendant obtenu par la stratégie gloutonne sur 7,

et en montrant de I, a presque la méme loi que n — I, la taille de son complémentaire.
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Théoréme 1.1 ([65])

e La taille de I’ensemble indépendant glouton sur T,, a la méme loi que le nombre de sommets

a hauteur paire dans T, .

e Pourl<k<n—1, (n k”*k(n . k)k—l
)

nn—1
e [l existe une variable aléatoire £, a valeurs dans {0,1} telle que
Iy = (n—1I,)+ &

De plus, P(E, = 1) — 1/4 quand n tend vers +oo.

La preuve du premier item de ce théoreme repose essentiellement sur le fait qu’un arbre de
Cayley uniforme de taille n est uniforme par réenracinement uniforme au hasard, voir par exemple
[129, fin de la Section 1.5]. En utilisant cette invariance par réenracinement, on remarque que la taille
de l'ensemble indépendant glouton et le nombre de sommets & hauteur paire dans 7, satisfont la
meéme équation récursive qui caractérise leur loi. Le calcul de la loi explicite repose sur des résultats
de Féray et Kortchemski [$9] sur les arbres de Bienaymé-Galton—Watson bi-types alternants. On

établira d’ailleurs un théoreme central limit local pour I, : pour tout A > 0,

n 1 1 x2
P (=[5 +avi]) Vi Vam/ae P (‘2(1/4>z>
uniformément pour x € [—A, A].

Cette égalité en loi suggere d’ailleurs une quasi-symétrie de la loi de I,, autour de n/2. Mais, il y
a en fait une petite dissymétrie dans la loi du nombre de sommet a hauteur paire (et donc dans la loi
de I,;) puisque par exemple, la racine de 7, est toujours a hauteur paire. C’est ce que met d’ailleurs
en évidence la troisieme partie du théoreme. La technique utilisée pour montrer cette partie est tres
différente, méme si on pourrait probablement déduire ce résultat de la loi exacte de I,. La preuve
repose sur une construction markovienne de ’ensemble indépendant glouton ainsi qu’une nouvelle
exploration markovienne des arbres de Cayley. L’idée principale est de considérer I’arbre comme

initialement inconnu, et de le découvrir au fur et a mesure qu’on applique la stratégie gloutonne.

Couplage glouton sur des arbres de Cayley. Similairement, on peut s’intéresser au couplage ob-
tenu par la stratégie gloutonne. De maniere totalement analogue, on peut montrer ’existence d’une
constante d’encombrement pour les couplages gloutons en utilisant la limite locale. Gréace a notre
exploration markovienne des arbres de Cayley, on peut montrer que cette constante d’encombrement
de couplage est égale & 3/8 pour les arbres de Cayley, et obtenir un théoréme central limite local

(avec variance 1/96). Ce résultat a été obtenu par une méthode différente par Dyer, Frieze et Pittel

[51].
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Couplage glouton sur des arbres plans. D’un point de vue combinatoire, il parait également naturel
d’étudier le couplage obtenu par la stratégie gloutonne pour des arbres invariants en loi par réenraci-
nement sur une aréte (orientée) uniforme. C’est le cas des arbres plans (non étiquetés) uniformes a n
sommets, qui peuvent aussi étre obtenus comme arbres de Bienaymé—Galton—Watson de loi de repro-
duction Geom(1/2) conditionnés & avoir n sommets (et enracinés sur l’aréte allant du sommet racine
vers son premier fils). De maniére semblable, on montre que dans le cas d’arbres plans uniformes a n
sommets, la constante d’encombrement de couplage vaut 1/3, et on peut obtenir exactement la loi
de la taille du couplage glouton ainsi qu’un théoréeme central limite local.

Théoréme 1.2 ([65])

Soit My, la taille d’un couplage obtenu par la stratégie gloutonne sur un arbre plan uniforme a n

sommets. Alors la loi de M, est donnée par

_ n (S nl(n—1)!(n+k—2)!
P(My =) = 3 * (12;_—12; = (2k —1)!(n — 2k)1(2n — 2)1’

pour tout 1 <k < |n/2|. En conséquence, pour tout A > 0,

~ n x2
P (= |5 xvi) 5. Jr s e ()

uniformément pour x € [—A, A].

1.2.3 Stratégie optimale : I’algorithme de Karp—Sipser

En fait, pour construire un ensemble indépendant (ou un couplage), il est souvent possible de faire
mieux que la stratégie gloutonne en partant d’une observation simple : §’il existe une feuille dans le
graphe, alors elle fait partie d’un ensemble indépendant de taille maximale. En effet, si un ensemble
indépendant ne contient pas cette feuille, alors on peut I’ajouter a cet ensemble et enlever 'unique
voisin de cette feuille (s’il y était). Le nouvel ensemble sera toujours indépendant et sa taille ne peut

qu’augmenter. C'est cette stratégie qu’exploite I'algorithme de Karp—Sipser [115].

A 4 o
\ \ A \.
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Figure 1.10 : lllustration de la phase 1 de I'algorithme de Karp—Sipser. Sur la figure de droite,
les sommets en jaune appartiennent a un des ensemble indépendant de taille maximale. Le

sous-graphe induit par les sommets violets forme le cceur de Karp—Sipser du graphe.
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Phase 1. Fixons nous un graphe g = (V,E). La premiere phase de I'algorithme est la suivante :
en reprenant les notations de la section précédente, on démarre avec tous les sommets inexplorés
Uy = V, et aucun sommet actif ou bloqué Ay = By = @. A chaque étape k > 1, on regarde le
graphe gj_1 induit par g sur I’ensemble de sommets inexplorés Uy_1 (on garde toutes les arétes de g
entre les sommets de Uy_1). Si gx_1 contient (au moins) une feuille, alors on ajoute une des feuilles
ar de gr_1 aux sommets actifs, et on ajoute son unique voisin by aux sommets bloqués pour obtenir
Bi. On ajoute également a Aj_q toutes les autres feuilles dont I'unique voisins est aussi by pour
obtenir Ai. On continue ainsi jusqu’a ce que le graphe g ne contienne plus de feuille et on note
T = inf{k > 0 : gi ne contient pas de feuille} I'instant auquel 1’algorithme s’arréte. Le sous-graphe
g que l'on obtient a la fin de cette phase de I'algorithme est appelé ceeur de Karp—Sipser de g et
on le notera KSCore(g). Cette phase est optimale au sens ol il existe un ensemble indépendant de
sommets de taille maximale qui contient A;. Il est également optimal pour obtenir un couplage de

taille maximale, puisqu’il en existe un qui contient les arétes ({ay, b} : 1 <k < 7).

Phase 2. Il n’y a pas de stratégie “simple” pour trouver un couplage ou un ensemble indépendant de
taille maximale a partir du cceur de Karp—Sipser d’un graphe. Cependant, il existe une deuxieme phase
de l'algorithme qui permet de donner une bonne approximation d’un couplage de taille maximale, mais
elle ne fonctionne pas pour trouver un ensemble indépendant de taille maximale. En effet, du fait des
potentielles corrélations a longue portée pour I’appartenance d’un sommet a un ensemble indépendant
de taille maximale, il est tres difficile d’obtenir méme une approximation d’un tel ensemble.

Pour approcher un couplage de taille maximale, la stratégie de la phase 2 de l'algorithme de
Karp—Sipser consiste & choisir une aréte uniformément au hasard et de supprimer (ou bloquer) les
sommets correspondants (et donc ignorer les arétes qui leur sont incidentes). Si on a créé au moins une
feuille, on applique a nouveau la phase 1 de ’algorithme, jusqu’a ce qu’il n’y ait plus de feuille dans
la partie inexplorée du graphe. Puis on recommence (& choisir une aréte au hasard puis réappliquer

la phase 1) jusqu’a ce qu’il n’y ait plus de sommet inexploré.

Transition de phase. Puisque la phase 2 de 'algorithme fait des erreurs importantes pour obtenir
un ensemble indépendant de taille maximale, il est important de comprendre la taille du cceur de
Karp—Sipser que nous fournit la premiere phase de I'algorithme. Pour des modeles “classiques” de
graphes aléatoires, on peut observer une transition de phase en fonction de la densité des arétes :
tant qu’il y a peu d’arétes, la taille du cceur de Karp—Sipser sera petite devant la taille du graphe
initial, alors que si la densité d’arétes devient trop grande, la taille du coeur de Karp—Sipser devient
linéaire en la taille du graphe initial. Par exemple, dans le cas du graphe d’Erdés—Rényi G(n, %), les
performances de 'algorithme de lalgorithme ont été analysées par Karp et Sipser [115] eux-mémes
puis raffinées par Aronson, Frieze et Pittel [19]. On peut résumer leur résultat ainsi. Lorsque ¢ < e,
le coeur de Karp—Sipser est vide avec grande probabilité lorsque 7 tend vers I'infini, et donc la phase
1 de 'algorithme fournit un ensemble indépendant et un couplage de taille maximale. Lorsque ¢ > e,

la taille du cceur de Karp—Sipser est linéaire en n lorsque n est grand, et la phase 2 de ’algorithme
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fournit un couplage, dont la taille differe au plus de O(n'/? log(n)'?) de la taille maximale. Enfin,
lorsque ¢ = e, la taille du coeur de Karp—Sipser est petite devant n lorsque n — oo, mais ils ne

donnent pas de précisions sur son ordre de grandeur.

Figure 1.11 : A gauche, la composante géante d'un graphe G(n,5) pour n = 2000 et au
milieu, son coeur de Karp—Sipser. A droite, le coeur de Karp—Sipser est dessiné en rouge a
I'intérieur du graphe initial.

Ce résultat de transition de phase pour la taille du cceur de Karp—Sipser a ensuite été étendu au
cas du modele de configuration [39, 110]. Dans un travail en collaboration avec Thomas Budzinski et
Nicolas Curien [52], nous avons étudié plus précisément la taille et la géométrie du cceur de Karp—
Sipser au point critique dans le cas d’'un modele de configuration. Dans un souci de cohérence avec
les notations de l'article [52] et du chapitre 3 correspondant, nous noterons jusqu’a la fin de cette
section |g| le nombre de demi-arétes du graphe g et non plus son nombre de sommets, et il sera

souvent appelé n. Nous espérons que le lecteur nous pardonnera.

On se fixe donc une suite d" = (dY,d5,d%),>1 telle que

n = d} +2dy + 3d5 est pair.

On imagine que d" représente le nombre de sommets de degré 1, 2 et 3 et on s’intéresse CM(d") un

modele de configuration obtenu en appariant les demi-arétes uniformément au hasard. On suppose

de plus que
dy 243 3d;
- > P1, > P2, et > P3, (11)
N n—oo N  n—o N n—oo

de sorte a ce que la proportion asymptotique de demi-arétes incidentes a un sommet de degré i est
pi pour 1 <1< 3. Si (uy) est une suite de réels positifs et (X,,) une suite de variables aléatoires, on
notera X,, = Op(u,) si la suite (u,;an) est tendue, et on notera X, = op(u,) si u,; !X, converge

vers 0 en probabilité.
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Nous montrons d’abord un critere explicite pour la transition de phase.
Théoréme 1.3 ([52])
Sous I’hypothése (1.1), on définit

© = (ps — p1)* —4p1.
e Cas sous-critique. Si ® < 0, alors, quand n — oo, on a

|KSCore(CM(d"))| = Op(log® n).

e Cas surcritique. Si ® > 0, alors

1 " Py 40
n~ - |KSCore(CM(d"))| o 31 0"

e Cas critique. Enfin, si © = 0, alors [KSCore(CM(d"))| = op(n).

L’idée principale pour montrer ce théoreme est de construire le graphe en méme temps qu’on explore
l’ensemble indépendant. Ensuite la méthode de ’équation différentielle [173] nous permet d’approcher
le nombre renormalisé de sommets de degrés 1, 2 et 3 a chaque étape par la solution d’un systeme
d’équations différentielles. L’analyse de ce systeme déterministe nous permet de prouver le critere
ci-dessus.

Pour analyser plus précisément le cas critique, nous avons besoin d’hypotheses plus restrictives
sur la suite des degrés, et surtout un contréle plus précis des fluctuations initiales. On se fixe une

suite de degrés telle que

3 3
1e=n(l— \2[) +0(1), 2d3,=0, et 3dy = n—-+ O(1), (1.2)
et df +3d; = n est pair pour que l'on puisse apparier les arétes. En particulier, on a bien

®=(v3-12—-4(1- @) = 0 et on est bien dans le cas critique présenté dans le Théoreéme 1.3.

Nous obtenons alors le résultat suivant.

Théoreme 1.4 ([52])

Soit Dy(n) (resp. D3(n)) le nombre de demi-arétes attachées a des sommets de degré 2 (resp. 3)
dans KSCore(CM(d”

crit

)). Alors, on a
n-3/5. Dz(i’l) @) 3-3/5914/5 -2
% . ,
7’172/5 . Dg(n) n—oo 3*2/5216/5 . 19*3
ou ® = inf{t > 0 : B, = t~2}, pour un mouvement brownien linéaire standard (B; : t > 0)

démarré de 0. De plus, conditionnellement a (Dy(n), D3(n)), le graphe KSCore(CM(d.

arit)) est un
modele de configuration CM((0, D2(n), D3(n))).
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La preuve de ce théoreme utilise la méme exploration (markovienne) que celle utilisée pour mon-
trer la transition de phase. Cependant, pour étudier le cas critique, nous avons besoin d’avoir un
controle beaucoup plus fin de la chaine de Markov juste avant son extinction (quand le nombre
de sommets de degré 1 atteint 0). Plus précisément, nous montrons que en étapes avant la fin, les
nombres de sommets (inexplorés) restants de degré 1, 2 et 3 sont d’ordres respectivement e?n, en et
€3/211 “en espérance”. D’un autre coté, nous montrons que les fluctuations du nombre de sommets de
degré 1 sont d’ordre €3/4/n. Ainsi le nombre de 1 atteint 0 lorsque ses fluctuations sont du méme
ordre de grandeur que son espérance, c’est-a-dire pour £ &~ n~2/>. Pour montrer que cette heuristique

est valide, nous établissons un controle précis de la chaine de Markov échelle par échelle.

1.2.4 Perspectives

Plusieurs questions émergent naturellement de cette présentation. D’abord, nous étudions précisément
ce qui se passe au point critique pour le cceur de Karp—Sipser, mais on pourrait vouloir étendre notre
analyse & l’ensemble de la fenétre critique. De plus, notre résultat pour la taille du coeur de Karp—
Sipser est pour 'instant restreint au cas du modele de configuration avec des sommets de degrés 1, 2
et 3, mais il semble tout a fait naturel de I’élargir au cas de graphe d’Erd6s—Rényi. D’ailleurs, 1’idée
d’une exploration markovienne pas-a-pas qui est la base de notre preuve a déja été exploitée pour
montrer cette transition de phase et analyser la seconde phase de ’algorithme dans le cas du graphe
d’Erdés—Rényi [19]. En se basant sur les résultats de cet article, il nous semble tout & fait possible
d’adapter notre analyse fine de la chaine de Markov et de ses fluctuations dans le cas critique pour
montrer que le coeur de Karp-Sipser a également une taille d’ordre #3/% pour le graphe d’Erd8s—
Rényi. D’ailleurs, nous remarquons que ’exposant qui apparait a la fin de la phase 2 de ’algorithme
(dans le cas surcritique) est le méme que celui concernant le nombre d’erreurs commises dans la phase

2. Nous pensons que ces deux quantités sont en fait liées.

1.3 Parking dynamique sur des arbres enracinés

Dans cette partie, nous présentons un autre modele de parking pour lequel les voitures se déplacent

sur un arbre enraciné a la recherche d’une place libre.

1.3.1 Regle de parking et motivations

Commencons par rappeler le modele de parking (dynamique) sur un arbre. On se donne t un arbre
enraciné, et une configuration d’arrivées de voitures, c’est-a-dire un étiquetage des sommets (a, : u €
t) par des entiers positifs ou nuls. Cet étiquetage représente le nombre de voitures arrivant sur chaque
sommet, et chaque sommet de t peut accueillir (au plus) une voiture garée. La régle pour garer les
voitures est la suivante : lorsqu’une voiture arrive sur un sommet libre, elle s’y gare. Sinon, elle se

déplace en direction de la racine et occupe la premiére place disponible. Si elle ne trouve aucune
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place disponible le long de son trajet, alors, elle sort de I’arbre par la racine et contribue au flux de

voitures sortantes, voire figure 1.12.

e YR e
m}J |/ N A//
xR \/

Figure 1.12 : A gauche, un arbre enraciné avec 11 sommets ou les arétes sont dirigés vers le
sommet racine, ainsi que 9 voitures arrivant sur ses sommets. A droite, la configuration finale
une fois que les 9 voitures sont garées, ainsi que le flux de voitures traversant chaque aréte.
Remarquons que deux voitures n'ont pas trouvé de place disponible et sortent de |'arbre.

Une propriété importante de ce modele est sa propriété abélienne : quelque soit I’ordre dans lequel

les voitures se garent, la configuration finale de places occupées et le flux de voitures sortantes seront
les mémes. On peut d’ailleurs retrouver la configuration initiale d’arrivées de voitures a partir de
la configuration finale de places occupées, du flux de voitures traversant chaque arréte et du flux
sortant.
Ce modele a d’abord été introduit dans le cas ou l'arbre t est simplement une ligne (orientée vers
la racine, disons a gauche) par Konheim et Weiss [122] dans les années 60 pour des motivations
informatiques. Depuis, de nombreux travaux ont exploré ce modele, montrant notamment son lien
avec le coalescent additif [57, 35, 29]. L’étude de ce modele sur des arbres est bien plus récente, initiée
par Lackner et Panholzer en 2016 [128]. Ils étudient le processus de parking dans le cas ou 'arbre
sous-jacent est aléatoire, et nous décrirons plus précisément leur modele dans la section suivante.

Une des motivations de I'introduction du modele de parking sur des arbres vient de considérations
hydrologiques. On peut notamment essayer de modéliser de ’eau qui ruisselle dans une pente. Une
premiere simplification est de découper notre pente en petites cellules, chaque cellule pouvant absorber

une “unité” d’eau. Imaginons qu’il pleuve et qu’'une quantité aléatoire d’eau arrive sur chaque cellule,
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de manie¢re indépendante et uniforme sur les cellules. Autrement dit, la quantité d’eau qui arrive est
i.i.d. sur chaque cellule. Si la quantité d’eau qui arrive est inférieure a une “unité”, elle s’infiltre. Sinon
I’eau va ruisseler vers le bas. Selon notre choix de découpage en cellules de la pente, on peut envisager
différentes dynamiques pour le ruissellement. Par exemple, sur le réseau en diamant (voir figure 1.13)
il est raisonnable d’imaginer que de chaque cellule, ’eau ruisselle sur la case soit en bas a gauche
soit en bas a droite avec méme probabilité (1/2) indépendamment sur chaque cellule. Sur un réseau
carré, on peut imaginer que l'eau ruisselle soit sur la case juste en dessous (avec proba 1 —2p), ou va
en bas a gauche ou a droite, chacun avec proba p, et conditionne la configuration finale au fait qu’il
n’y ait pas de croisement. Vu d’un point en bas de la pente, ’ensemble des points depuis lesquels
Peau peut ruisseler jusqu’a ce point, forme un arbre. Jones [111] appelle 'arbre obtenu un arbre de
drainage. Malheureusement, ’étude du modele de parking sur ce type d’arbre est difficile du fait de
sa géométrie, notamment des fortes dépendances entre les différentes branches. Méme s’il existe des
résultats sur les arbres de drainages, notamment leurs lien avec le chateau brownien [55, ], le

modele de parking sur ces arbres ne fait pas (encore!) partie des modeles étudiés dans la littérature.

v '

Figure 1.13 : A gauche, un exemple de ruissellement sur un réseau en diamant et a droite, un
exemple sur le réseau carré. En rouge et orange, est indiqué sur chaque cellule la direction dans
laquelle ruisselle I'eau si elle ne peut pas étre absorbée. Vu d'une cellule du bas, les cellules

pouvant ruisseler jusqu'a ce point forment naturellement un arbre, par exemple I'arbre orange.

Dans la suite, on s’intéressera a plusieurs caractéristiques observables du modele, par exemple
e flux sortant de voitures ou les “composantes” de voitures garées. On peut aussi considérer la
le fl tant d t les tes” d t (0] t d 1
probabilité d’obtenir une configuration ou toutes les voitures sont garées a la fin (le flux sortant de

voitures est nul), ou encore la probabilité que la racine de 1’arbre soit une place libre.

1.3.2 Transition de phase (universelle via la limite locale)

Les premiers résultats sur ce modele mettent en évidence une transition de phase pour le flux sortant

de voitures. En effet, on peut imaginer que si trés peu de voitures arrivent sur notre arbre, alors
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elles vont quasiment toutes trouver une place disponible (et ce, proche de leur sommet d’arrivées).
En revanche, lorsque la densité des arrivées de voitures est trop importante, alors une proportion
positive d’entre elles ne va pas arriver a se garer et contribuera au flux sortant. Nous commencons

par rendre rigoureuse cette heuristique dans un cadre assez général.

Transition de phase via la limite locale. Soit (7;),>1 une suite d’arbres enracinés avec n sommets.
Pour tout entier k > 0, on consideére une famille de lois de probabilité (‘u(k),,x :« € Ry) stochas-
tiquement croissante en a. Pour tout & € Ry fixé, on considere le modele & de parking sur 7y,
c’est-a-dire que conditionnellement & 7, on se donne des arrivées de voitures aléatoires (Ay : x € Ty)
indépendantes sur chaque sommet et de loi p (), sur chaque sommet de degré k > 0, et on applique
la procédure de parking décrite ci-dessus. On note respectivement M (k)0 €t U(Zk)’ . Vespérance et la
variance de i () . Enfin on note ¢« (Ty) le flux de voitures sortantes pour tout & € IR;, et on appelle
composantes de voitures garées les composantes connexes de la forét obtenue en ne gardant que les
arétes de l'arbre initial dont les extrémités contiennent toutes les deux une voiture garée dans la

configuration finale.

Théoréme 1.5 (Chapitre 4)

On suppose que T, converge au sens de Benjamini—Schramm quenched vers un arbre infini enraciné
(T, p) qui n’a qu’une seule épine dorsale presque sirement. Pour s’assurer une continuité des

arrivées de voitures (],t(k),,x :k>0,0 € Ry) en a, on suppose que

Y VM. =
k=0

ou v, = IP (deg(p) = k dans T), et on suppose que pour tout « € R, il existe une constante
Ky telle que my , < Ky pour tout k = 0. Soit

a. :=inf{a € Ry : P (il existe une composante infinie de voitures garées dans Te) > 0}.

Alors, on a

Wﬂ{o sioa<ag

n n=e | CypoSiox >,

ot C, > 0 est une constante strictement positive si & > «..

Notons qu’ici, méme si arbre Te est infini, il n’y a pas d’ambiguité pour définir la dynamique de
parking sur 7 puisque pour chaque sommet de 7o, le sous-arbre au dessus de ce sommet est fini,
et le statut final du sommet ne dépend que de ce sous-arbre. Nous verrons comment contourner la
difficulté qui apparailt si ¢a n’était pas le cas dans le chapitre 7.

La preuve de ce théoréme en chapitre 4 consiste essentiellement a utiliser le caractére unimodulaire
et ergodique de la limite au sens de Benjamini—Schramm. Nous nous sommes volontairement restreint

au cas des arbres dont la limite au sens de Benjamini—Schramm n’a qu’une seule épine dorsale.
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Comme le Théoreme 1 de la section précédente, le théoreme ci-dessus nous montre un résultat
universel pour une large classe de graphes en utilisant leur limite locale, en 'occurrence ’existence
d’une transition de phase pour le modele de parking sur de nombreux arbres. Mais le challenge en
général est de déterminer les constantes qui entrent en jeu dans le modele, ici la valeur de a., qui

nous permet de localiser précisément la transition.

Cas particuliers. D’un point de vue chronologique, cette transition de phase a d’abord été montrée
pour des choix particuliers de suite d’arbres (7). Lackner et Panholzer sont les premiers a s’intéresser
au modele de parking sur des arbres. Ils étudient d’un point de vue combinatoire le modele de parking
sur un arbre de Cayley de taille n avec m arrivées ordonnées de voitures sur les sommets. Rappelons
qu'un arbre de Cayley de taille 1 est un arbre non-plan avec n sommets étiquetés de 1 a n. Quitte
a rendre le nombre total d’arrivées de voitures aléatoire, leur modele rentre en fait dans le cadre de
notre Théoreme 1.5. Le point de vue adopté par Lackner et Panholzer est tres différent : ils énumerent
et obtiennent une formule explicite pour le nombre de configurations initiales (arbre et arrivées de
voitures) pour lesquelles toutes les voitures sont garées dans la configuration finale [128, Théoréme
4.4 et 4.5]. Evidemment, il faut pour cela que le nombre de voitures m soit inférieur ou égal au nombre
de places disponibles, c’est-a-dire de sommets dans I'arbre n. En se rappelant qu’il y a n*~! arbres
de Cayley enracinés de taille n différents et n™ choix possibles pour les arrivées de m voitures, on
peut calculer la probabilité p, ,, d’obtenir une configuration finale ot toutes les voitures sont garées,
pour une configuration intiale choisie uniformément au hasard. Le régime pour lequel on observe
une transition de phase est lorsque le nombre de voitures par sommet est d’ordre constant quand n
tend vers linfini, ¢’est-a-dire lorsque m = |an] pour un a € [0,1] fixé. Dans ce régime, Lackner et
Panholzer remarquent [128, Corollaire 4.7] qu’on a les équivalents asymptotiques suivants lorsque n

tend vers 'infini :

Ca si a<1/2,
P lan] cpn Ve si a=1/2,
adr siooa>1/2,

ou ¢y > 0 et dy > 0 sont des constantes explicites qui ne dépendent que de a. Leur preuve utilise une
décomposition combinatoire en fonction de la derniere voiture, idée que nous exploiterons a nouveau
dans la section 1.4.2 et le chapitre 8. Ceci est le premier indice de I'apparition d’une transition de
phase & &« = 1/2. Ce modele a ensuite été étudié d’un point de vue probabiliste par Goldschmidt
et Przykucki [100]. En effet, il est trés proche du modele de parking ou l'arbre sous-jacent est un
arbre de Bienaymé-Galton-Watson conditionné & avoir taille n avec loi de reproduction Poisson(1),
et ol les arrivées de voitures sont i.i.d. sur les sommets et ont pour loi Poisson(a). Un argument
de poissonisation et dépoissonisation permet de passer du modele discret (nombre fixé de voitures)
au modele aléatoire (arrivées de voitures aléatoires) et réciproquement. Goldschmidt et Przykucki
donnent une explication probabiliste & cette transition de phase et retrouvent le résultat de Lackner
et Panholzer en utilisant la méthode objective [11], c’est-a-dire un argument de limite locale. Ils

s’intéressent de plus au flux de voitures sortantes et montrent que lorsque a < 1/2, 'espérance du
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flux de voitures est bornée uniformément en n (par 1) alors que cette espérance tend vers l'infini
quand 1 — oo pour & > 1/2.

Deux autres cas particuliers ont été étudiés dans la littérature. Chen et Goldschmidt [60] ont
regardé un modele ou I’arbre sous-jacent est un arbre plan uniforme de taille 7, ou arbre de Bienaymé—
Galton—Watson conditionné & avoir taille n avec loi de reproduction géométrique de parametre 1/2,
et avec toujours des arrivées de voitures de loi de Poisson de parametre a sur les sommets. Ils
montrent une transition de phase semblable & a. = v/2 — 1. Enfin, motivé par la modélisation de
réseaux hydrologiques, Owen Dafydd Jones étudie le cas d’arbre de Bienaymé-Galton—Watson avec
loi de reproduction v = B(dy + 2) + (1 —2B)d1 pour B € (0,1/2), et des arrivées de voitures de loi
i = (1—wa)dy+ ady. Il donne la localisation précise a. ot a lieu la transition (en fonction de p). On

peut aussi mentionner Panholzer qui s’est intéressé a de nombreux modeles combinatoires [1413].

Universalité via la limite locale des GW. Les premiers a obtenir la localisation de la transition
de phase du modele de parking pour une large classe d’arbres sont Curien et Hénard en 2019 [75].
Notamment, ils donnent un critére explicite pour déterminer la phase (sous-critique, critique ou
surcritique) du modele de parking lorsque l'arbre sous-jacent est un arbre de Bienaymé-Galton—
Watson critique (’espérance de la loi de reproduction est 1) et pour des arrivées de voitures i.i.d. sur
les sommets (conditionnellement a l’arbre). Le plus frappant dans leur résultat est que la localisation
de la transition de phase dépend de maniere relativement simple des parametres du modele. Placons
nous dans un cadre encore un peu plus général que dans [75], qui est celui étudié dans [64]. D’abord,
étant donné un arbre enraciné t, on suppose que les arrivées de voitures sur chaque sommet de t sont
des variables aléatoires indépendantes et que leur loi ne dépend que du nombre d’enfants du sommet

dans t. Pour k > 0, on note la loi d’arrivées des voitures sur un sommet ayant k enfants
H(x) de moyenne m ) = 0 et de variance finie (T(zk).

Pour ces arrivées de voitures, on notera ¢(t) le flux de voitures sortant de l’arbre t. En ce qui concerne
le choix de I'arbre, nous optons pour différentes versions d’un arbre de Bienaymé-Galton—Watson

critique de loi de reproduction
v # 61 de moyenne 1 et de variance finie 22,

la version “classique” (non conditionnée) 7, la version conditionnée & avoir n sommets 7,°. On
suppose qu’il existe k > 1 tel que v, > 0 et pour lequel la loi d’arrivées de voitures M (k) est différente
de 41. Pour caractériser la localisation de la transition de phase, nous avons besoin d’introduire la loi

de reproduction biaisée par la taille V = ) ;1 kvidy et les quantités

Belm] i= . kvmqg, Bl = ) vemg et Bulo® 4 = i= )y (0B + ey —mye))

Notons en particulier que si les lois d’arrivées de voitures ne dépendent pas du nombre d’enfants du

sommet et ont pour moyenne commune # et variance o2, alors

50n se restreint aux valeurs de n pour lesquelles P(|7| = n) > 0.
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Nous avons établi le théoreme suivant.

Théoréme 1.6 ([6/])

On suppose que Ey[m] < 1. Le processus de parking sur un arbre de Bienaymé-Galton—Watson

subit une transition de phase qui ne dépend que du signe de la quantité
O := (1 — Ey[m])? — X%E,[0? + m? — m]. (1.3)

Plus précisément, nous avons trois régimes différents présentant les caractéristiques suivantes

sous-critique critique surcritique
®>0 =0 ®<0
¢(Ty) quand n — oo converge en loi %)—) co mais est o(n) | ~ cn avec ¢ > 0
n—oo
| S2E[p(T)] + Eg[m] — 1 [ Vo | 0 | %
’ P (& contient une voiture dans T) H E,[m] ‘ E, [m] ‘ E,[m] — ¢

La preuve de ce résultat repose essentiellement sur I'utilisation de la limite locale de T,; quand n
tend vers 'infini, qui est 'arbre de Kesten 7o présenté plus haut. Grace a 'utilisation d’une formule
“tous-pour-un”, ainsi que l'introduction de temps aléatoires pour les arrivées des voitures, on peut
écrire une équation différentielle ordinaire pour 'espérance du flux sortant de voitures au temps t.
Cette équation se résolvant facilement, on peut a partir de cette équation déterminer si I’espérance

du flux de voitures sortantes est finie ou infinie, une fois toutes les voitures arrivées et garées.

1.3.3 Transition continue et abrupte

Mieux qu’une simple transition, nous montrons que pour le modele tres général précédent, la tran-
sition de phase est non seulement continue, mais également abrupte, au sens ol les caractéristiques
observables du modele, comme le flux de voitures sortantes ou la taille des composantes de voitures
garées, décroissent exponentiellement lorsque 1’on s’écarte du point critique. Pour ce faire, nous avons
besoin d’'une hypothese supplémentaire indiquant que la loi du nombre d’arrivées de voitures sur un

sommet “typique” de ’arbre a une queue exponentielle, c’est-a-dire que la série

F(z) = Y we )} i)z (Hexp)

k=0  i>0

a un rayon de convergence strictement plus grand que 1. Dans ce régime, nous montrons le théoreme

suivant.
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Théoréme 1.7 ([6/])

On suppose (Hexp). Soit € > 0. Dans le régime surcritique, c’est-a-dire quand © < 0, il existe

6 >0, et ng = 0 tel que pour tout n = ny,
P (|¢(Ty) — cn| > en) < e,

ot ¢ > 0 est donné par le Théoréme 1.6. Dans le régime sous-critique, c¢’est-a-dire quand @ > 0,

il existe 6 > 0, et ng = 0 tel que pour tout n = ny,

P (|o(T)| > en) <e .

La preuve de ce théoreme utilise des techniques tres différentes dans le cas surcritique et le cas sous-
critique. Le cas surcritique utilise une borne exponentielle pour la distribution des arbres “pendants”
ou franges, que nous établissons. Le cas sous-critique utilise un point de vue bien plus analytique.
Nous utilisons la définition récursive des arbres de Bienaymé-Galton—Watson (décomposition a la
racine) pour écrire une équation récursive sur z — W(z) la fonction génératrice du flux de voitures
sortant de I’arbre. Bien que 1’équation que nous obtenons ait une singularité en z = 1, nous résolvons
cette singularité grace au développement de Newton—Puiseux de la série pour montrer que son rayon

de convergence est strictement plus grand que 1.

Une application importante de ce théoreme est qu’il permet d’estimer la taille des composantes de
voitures garées dans les phases surcritiques et sous-critiques. Rappelons qu’on appelle composantes de
voitures garées les composantes connexes de la forét obtenue en ne gardant que les arétes reliant deux
sommets adjacents dans ’arbre et contenant tous les deux une voiture garée dans la configuration
finale. Notons |Cmax(7)| la taille de la plus grande composante de voitures garées dans Ty, et |Ca(n)|
la taille de la deuxiéme plus grande. Le résultat suivant nous donne des informations sur la taille

asymptotique de ces deux composantes.

Corollaire 1.1 ([6/])

(surcritique ® < 0) [Cmax ()| ®hc et P(|Ca(n)| = Aln(n)) — 0O,

n n—oo n—00

(sous-critique ® > 0) P(|Cmax(n)| = Aln(n)) — 0,

n—oo

ou C € (0,1) et A > 0 sont des constantes dépendant des lois v et Mk pour k = 0.

On peut remarquer que ces tailles de composantes sont tres similaires a ce que I’on observe pour
le graphe d’Erdés—Rényi. Ce n’est d’ailleurs pas une simple coincidence, ce que nous mettons en

évidence dans la section suivante.
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1.3.4 Etude de la fenétre critique

Nous avons montré dans la section précédente I'existence d’une transition de phase pour le modele de
parking sur des arbres “critiques”. Nous avons aussi vu que les régimes sous-critiques et surcritiques
sont plutot bien compris, au contraire du régime critique pour lequel nous pouvons seulement dire
que le flux de voitures sortantes tend vers l'infini mais est petit devant la taille de ’arbre n quand
n — o0. On peut donc se demander plus précisément quel est son ordre de grandeur, et quelle est la
taille des composantes de voitures garées, leur géométrie...

C’est 1'objet de notre travail [(7] écrit en collaboration avec Nicolas Curien. Bien que nous pen-
sons que les résultats qui vont étre présentés dans cette section valent pour un ensemble de modeles
trés généraux, nous restreignons le cadre d’étude au méme modele que celui étudié par Lackner et
Panholzer dans [128] : arbre de Cayley 7, de taille n choisi uniformément au hasard et m voitures ar-
rivant uniformément au hasard et indépendamment sur les sommets de 7;,. Nous décrivons 1’évolution

de la taille des composantes dans la fenétre critique, et introduisons pour cela, pour tout A € IR,

mu(A) = B + /2\712/3J AO.
Nous introduisons également une notion de composantes de voitures garées un peu différente de celle
utilisée précédemment. On appelle composantes proches de voitures garées les composantes connexes
de la forét obtenue en gardant les arétes entre les places de parking occupées et leur parent dans
I’arbre sous-jacent.
Pour tout A € R, notons Cj;(A) la taille de la composante proche de voitures garées de la
racine (éventuellement vide), (C,;(A) : i > 1) les tailles des autres composantes ordonnées par

ordre décroissant, et D, (A) le flux de voitures sortantes dans T, apres larrivée de m,(A) voitures

sur 7.

Théoréme 1.8 ([67])

Pour la topologie de Skorokhod sur Cadlag(R, 2 x Ry x Ry), nous avons la convergence en loi

suivante
n=2/3. C,,i A, i>1 Gi(A), i>1
-2/3 (d)
n * Cnl* (/\) H—oo> Cg* (/\)
n1/3.D, (V) AER 7(A) A€R.

ot les processus €;, ¢« et & sont construits explicitement.

La preuve de ce théoréme repose sur un couplage discret entre le processus de parking sur 7,
ou l'on ajoute les voitures une par une uniformément au hasard, et la version gelée du processus
de graphe d’Erdds-Rényi (F(n,m) : m > 0) défini plus haut. En particulier, nous explicitons une
correspondance entre les composantes gelées de F(n,m) et la composante (proche) de voitures garées
la racine dans T, avec m arrivées de voitures, et entre les composantes non gelées de F(n,m) et les
autres composantes proches dans 7T,. Notamment, les arétes du graphe d’Erdés—Rényi “classique”

G(n,m) que 'on supprime pour obtenir sa version gelée F(n,m) correspondent aux voitures qui ne
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Figure 1.14 : A gauche, une simulation d'un arbre de parking critique 75000 avec 2500
voitures. Les couleurs et épaisseurs des arétes indiquent le flux de voitures les traversant. La
racine de I'arbre est représentée par un cercle noir. A droite, la décomposition du méme arbre

en composantes de voitures garées.

trouvent pas de place disponible. Nous faisons ensuite une analyse détaillée de la limite des tailles
de composantes dans (F(n,m) : m > 0), en s’appuyant sur ses similarités avec sa version classique
(G(n,m) : m > 0). En effet, pour la version classique, la limite des tailles des composantes a été tres
étudiée dans la littérature et s’appelle dans la fenétre critique, le coalescent multiplicatif. Nous verrons
dans le chapitre 6 comment définir précisément la limite pour la version gelée, que 'on appellera le
coalescent multiplicatif gelé.

En fait, notre couplage donne bien plus d’informations que simplement la taille des composantes.

On donne par exemple la probabilité que toutes les voitures arrivent a se garer.

Proposition 1.1 ([67])

Pourn > 1 et m > 0, nous avons

m
IP(m voitures i.i.d. uniformes se garent toutes sur Ty) (1 - g> = P(G(n, m) est acyclique).

Notre couplage nous permet également de décrire la géométrie des composantes proches de voitures
garées. Il est aisé de voir que ces composantes sont des “nearly parked trees”, c’est-a-dire des arbres de
Cayley avec N > 1 sommets et N — 1 arrivées de voitures numérotées, conditionnés a ce que toutes
les voitures se garent et que la racine reste vide dans la configuration finale. On définit donc Py un

nearly parked tree uniforme a N sommets pour N > 1 et on note p sa racine.

Proposition 1.2 ([67])

L’espérance de la hauteur d’un point typique dans nearly parked tree & N sommets est

R = E () (R 0), e i

xePy h=1

1
—E
N
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ou d désigne la distance de graphe (dans Py) et (x), = x(x+1) -+ (x +a —1) est le symbole de
Pochhammer.

1.3.5 Et sur d’autres arbres ?

Tout ce que nous avons décrit jusque la concerne le modele de parking sur des arbres de Bienaymé-—
Galton-Watson critique, quand les sommets ont en moyenne 1 enfant chacun. Mais on peut se de-

mander ce qui se passe sur d’autres arbres.

Arbres sous-critiques. D’abord, intéressons-nous aux arbres de Bienaymé-Galton—Watson sous-
critiques. Premiérement, si on regarde I’arbre non-conditionné 7T, alors I'espérance de sa taille (son
nombre de sommets) est finie donc le nombre de voitures arrivant sur l'arbre est également d’espé-
rance finie. L’espérance du flux seront donc aussi toujours finie, et ceci est d’ailleurs valable méme
quand il y a plus d’une voiture par sommets en moyenne. Si on s’intéresse a la limite locale d’un
arbre de Bienaymé-Galton—Watson 7, avec une loi de reproduction v sous-critique conditionné &

avoir taille n, alors deux phénomenes différents [2, 1, , | se produisent en fonction de v :

e Si v est “générique”, alors l'arbre 7, a une limite locale qui est un arbre de Kesten pour une
certaine loi vV critique. Dans ce cas, la transition de phase pour 7, est la méme que pour un
arbre de Bienaymé-Galton—Watson avec loi de reproduction V. Comme v dépend un peu plus
subtilement de v, la transition de phase ne dépend pas uniquement des deux premiers moments

de v, mais elle ne dépend bien que des deux premiers moments de la loi des arrivées de voitures.

e Si v est “non-générique”, alors la “limite locale” T, contient presque stirement un sommet x de
degré infini & hauteur finie. Ainsi, une proportion positive des enfants de ce sommet recevra
plus de 2 voitures arrivées (pour une loi d’arrivées de voitures non triviale). Le flux de voitures

sortant de x est donc infini, et celui de la racine aussi.

Arbres surcritiques. Le probleme dans le cas d’arbres surcritiques (plus d’un enfant par sommet
en moyenne) est un peu plus difficile. L’existence d’une transition de phase a été montrée [22] par
Bahl, Barnet et Junge. Cependant, il n’existe & notre connaissance que des bornes numériques sur la
localisation de la transition dans des cas particuliers, hormis notre travail [12] que nous présentons

ci-dessous.

Arbre binaire infini. Dans un travail avec David Aldous, Nicolas Curien et Olivier Hénard, nous nous
sommes intéressés au cas de ’arbre binaire infini et avons déterminé la localisation de la transition.
Plus précisément, notre modele est le suivant. On se place sur arbre binaire infini B = U,>0{0,1}"
avec {0,1}0 = @ la racine de l’arbre, et des arétes entre u et u0, et entre u et ul pour tout mot
u € B. On fait arriver des voitures (A, : u € B) sur chaque sommet de I’arbre B. On suppose que
les arrivées de voitures (A, : u € B) sont i.i.d. avec une loi fixée u = (pg : k > 0) dont le support est

{0,1,2,...}.
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Figure 1.15 : lllustration du processus de parking sur les 5 premiers niveaux de I'arbre binaire
infini. Les voitures, incluant celles venant des niveaux supérieurs, sont représentées par les
carrés rouges. Les sommets occupés dans la configuration finale sont représentés en gris
tandis que les sommets libres sont en blanc. Les composantes connexes de voitures garées

sont représentées avec des arétes plus épaisses.

Pour éviter les cas triviaux, on suppose que po + 1 < 1, sinon les voitures se garent toujours sur
leur noeud d’arrivée et le flux de voitures est toujours nul. Notons
k
G(x) = Z kX
k>0

la fonction génératrice de la loi y. On introduit également la variable aléatoire
X := nombre de voitures qui passent par la racine,

de sorte a ce que le flux de voitures sortantes est (X — 1)y = max(X — 1,0). Dans cette section,
nous revenons a une notion de composantes connexes plus classiques, c’est-a-dire que comme dans
la section 1.3.3, nous appelons composantes de voitures garées les composantes connexes de la forét
obtenue en ne gardant les arétes entre deux sommets reliés dans 'arbre que s’ils contiennent tous les
deux une voiture dans la configuration finale. Nous nous intéressons également aux composantes de
places vides, c’est-a-dire les composantes connexes de la forét obtenue en ne gardant les arétes entre
deux sommets reliés dans I'arbre que si aucun des deux ne contient une voiture dans la configuration

finale. Alors nous montrons la dichotomie suivante en fonction du choix de la loi y :

e soit le nombre X de voitures qui visitent la racine @ a une espérance finie, et toutes les compo-

santes de voitures garées sont finies presque stirement. On appelle cela la phase sous-critique.
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e soit X = oo presque surement et en fait, tous les sommets de B sont occupés dans la configu-

ration finale, et on appelle cette phase le régime surcritique.

Nous distinguons de plus le régime critique, quand il n’est pas possible d’augmenter stochastiquement
u en restant dans le régime sous-critique. Comme dans le cas des arbres de Bienaymé-Galton-Watson
critiques, le processus de parking est dans le régime surcritique des que E[Ag| > 1, puisqu’il y a plus
de voitures que de places de parking en moyenne. Bien que le modele semble a priori plus simple que
le modele précédent avec des arbres de Bienaymé—Galton—Watson critiques, la transition de phase
dépend de maniére beaucoup plus subtile de la fonction génératrice G de la loi d’arrivée de voitures
#, comme le montre le théoreme suivant.

Théoréme 1.9 ([12])
On suppose qu'il existe t. € (0,00) tel que

te=min{t >0: 2(G(t) — tG'(t))* = t*G(t)G"(t)}. (%)
Alors, le processus de parking est sous-critique si et seulement si

(b —2)G(k) > te(te = 1)G/ (k). (14)

La condition (%) sur Pexistence d’un t. est en fait légere et peu restrictive. Elle est par exemple
vérifiée des lors que les fonctions génératrices ont un rayon de convergence infini. Nous donnerons
d’ailleurs dans le chapitre 7 un moyen de déterminer si le processus de parking est surcritique ou
sous-critique si cette condition (x) n’est pas vérifiée.

Nous obtenons des informations supplémentaires dans le régime critique : supposons donc que (x)
est vérifiée et que p est critique. Nous verrons que cela correspond en fait au cas ou (7.1) est une
égalité. Rappelons que X désigne le nombre de voitures qui passent par la racine et on introduit
pr = P(X =k), et po = po et pe = p1 pour les probabilités d’avoir la racine vide, ou occupée mais
avec un flux sortant nul. Dans le régime critique, nous montrons le résultat suivant.

Théoréme 1.10 (/712])

Supposons que la condition (x) est vérifiée et que (7.1) est une égalité. Alors, la racine est soit

vide, soit appartient a une composante finie de voitures garées presque stirement, et nous obtenons

——t% and — [P
Po = 4(t, —1)G(t,) Pe =\ P

Mentionnons deux conséquences de ce théoreme.

e E[X] < oo, méme dans le régime critique.

e Un porisme de ce théoreme est que les composantes de places vides sont en fait des arbres de

Bienaymé—Galton—Watson dont la loi de reproduction ¢ est donnée par

% 2pePo %
nv(gzo)z(poip_)z, 1P(C=1)=<pﬁr;,.)z' P(CZZ):(ponrp.)z'
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Nous montrons en autres que dans tout le régime sous-critique (et critique), on a p, > %, et ces
arbres sont donc surcritiques. Ainsi, méme dans le régime critique pour le modele de parking,
il y a des composantes infinies de places disponibles (et méme un nombre infini). Au contraire,

les composantes de voitures garées sont toujours finies, méme dans le régime critique.

La preuve de ces deux résultats utilise essentiellement la méme décomposition combinatoire en
composantes de voitures garées, et leur énumération. Pour les compter, nous nous appuyons sur une

autre décomposition combinatoire, cette fois-ci directement a la racine, “a la Tutte”.

1.3.6 Perspectives

Arbres surcritiques généraux. Une extension naturelle du modeéle, qui n’est pas contenue dans
cette these, serait de localiser la transition de phase pour des arrivées de voitures i.i.d. sur un arbre
de Bienaymé-Galton—Watson surcritique général. Comme mentionné plus haut, 'existence d’une
transition de phase a déja été montrée [22] mais il n’y a a notre connaissance pas de caractérisation
de sa localisation dans le cas général. La méthode que nous développons dans le cas de l'arbre
binaire infini nous semble en fait assez universelle. Le point crucial est de parvenir a énumérer les
composantes (pondérées) de voitures garées ou fully parked trees. Ceci a d’ailleurs déja été fait par
Linxiao Chen [59] dans le cas d’arbres plans, pour des arbres de Bienaymé—Galton—Watson surcritique
avec loi de reproduction géométrique de parametre p pour p € (1/2,1). Nous espérons obtenir une
caractérisation de la localisation de la transition de phase pour des arbres surcritiques généraux grace

aux techniques utilisées dans [12].

Universalité de la phase critique? Nous pensons que cette transition de phase revét un caractere
universel, c’est-a-dire que de nombreuses caractéristiques ont le méme comportement dans les dif-
férentes phases pour un grand nombre de choix d’arrivées de voitures et d’arbres sous-jacents. Par
exemple, nous pensons que pour un arbre de Bienaymé—Galton—Watson critiques ou la loi de repro-
duction a une variance finie, et pour des arrivées de voitures dont les lois sont a queues légeres, la
taille des composantes de voitures garées est aussi d’ordre n2/3, comme pour les arbre de Cayley avec
arrivées de voitures uniformes. Ce résultat devrait découler d’un couplage similaire & celui présenté
dans le chapitre 6 entre le modele de parking et la version gelée du processus d’Erdés—Rényi, mais il
faut cette fois-ci définir une version gelée d’un modele de configuration [66]. Cependant, différentes
classes d’universalité devraient apparaitre lorsque les lois d’arrivées de voitures sont a queues lourdes.
Ces différentes classes d’universalité sont d’ailleurs déja présentes dans [59] et [12] : une phase gé-
nérique, une phase dense et une phase diluée, selon la queue de distribution de la loi d’arrivées de

voitures.

Quand &, = 0... Lorsque &, = 0, dés qu’on met des arrivées de voiture qui sont fixes avec n la taille
de ’arbre, le modele de parking sera toujours dans la phase surcritique. Mais on peut se demander
quel est 'ordre de grandeur précis du nombre de voitures qu’on peut faire arriver sur 'arbre pour

observer une transition entre phase sous-critique et phase surcritique. C’est le cas notamment des
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arbres qui ont aussi de grands degrés a la limite, par exemple les arbres de Bienaymé—Galton—Watson
critiques dont la loi de reproduction a une variance infinie (stable, & queue lourde), ou encore des
arbres récursifs (uniforme ou a attachement préférentiel). Plus précisément, dans ce cas, deés que la
loi des arrivées de voitures (i.i.d. sur les sommets) est fixe avec la taille de 'arbre, alors le modele de
parking sera nécessairement dans la phase surcritique. Par exemple, si on regarde un arbre récursif
uniforme & n sommets, alors le degré de la racine est d’ordre log(n). Il faut donc que Iespérance
du nombre de voitures par sommets soit au plus d’ordre 1/log(n) pour que le modele de parking
puisse étre sous-critique. Pour toutes ces familles d’arbres, il nous parait donc pertinent de déterminer
Pordre de grandeur du nombre de voitures par sommet (pour les arrivées) qui nous permet d’observer

une transition de phase pour le flux sortant.

Un modeéle un peu différent. Enfin, on peut mentionner une extension naturelle du modele de
parking. Revenons au cas le plus simple possible d’arbre : la ligne (de taille ). Konheim et Weiss
montrent que pour des arrivées de m = |an] voitures uniformes sur la ligne avec & € [0,1], la
transition de phase pour le flux sortant a lieu pour a, = 1. Mais que se passerait-t-il si les voitures
(garées ou sorties) avaient le droit de quitter leur place, de choisir un nouveau sommet d’arrivée et
d’essayer de se garer 7 Si on met n voitures, le flux de voitures sortant serait certainement toujours
d’ordre /n. Plus précisément, on peut se demander quelle est la loi de répartition de n voitures
sur une ligne de taille n dans la configuration finale qui est invariante par I’opération de choisir une
voiture uniformément au hasard (garée ou sortie), 'enlever de sa place, lui choisir un nouveau sommet

d’arrivée et essayer de la garer.

1.4 Parking et cartes planaires

Un dernier aspect de cette these est de montrer les nombreuses similarités entre le modele de parking

et le modele des cartes planaires.

1.4.1 Définition de cartes et arbres de peeling

Commengons par une introduction au modele des cartes planaires et aux propriétés qui nous seront

utiles.

Cartes. D’abord, rappelons qu’'une carte est un graphe (non orienté) fini et connexe (non nécessai-
rement simple), plongé sur une surface et vu & homéomorphisme préservant 1’orientation pres. On
ne s’intéressera ici qu’aux cartes planaires, c’est-a-dire que la surface sur laquelle les graphes sont
plongés est la spheére de dimension 2, mais plus généralement on parlera de cartes de genre g > 0
lorsque la surface sous-jacente est un tore de genre g. Pour éviter les problemes de symétrie, les cartes
que nous considérons sont enracinées sur une aréte orientée distinguée, voir Figure 1.16. Le nombre
d’arétes incidentes & une face est appelé degré de la face (ou parfois son périmeétre ou sa longueur).

Nous allons nous intéresser en particulier a deux types de cartes : les quadrangulations, ol toutes les
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faces ont degrés 4, et les triangulations, ou toutes les faces ont degré 3. Parfois, nous considérerons
des cartes avec une frontiere, c’est-a-dire avec une face distinguée qui peut avoir un degré différent
(mais ce degré devra étre pair dans le cas des quadrangulations). Dans ce cas, nous imposerons que
laréte racine se trouve sur cette frontiere, avec la face distinguée a la droite de laréte racine (en
allant dans le sens de l'orientation de la fleche). On appellera cette face la face externe. Notons que

pour une carte planaire, on a la formule d’Euler
#sommets + #faces — #arétes = 2.

Pour les quadrangulations ou triangulations, on peut également également écrire une relation entre
le nombre de faces et le nombre d’arétes, si bien qu’il n’y a plus qu'un degré de liberté pour la taille

d’une quadrangulation ou triangulation planaire (sans bord).

Figure 1.16 : A gauche, une carte planaire enracinée avec 10 sommets. A droite, une qua-

drangulation planaire a 10 sommets, 8 faces et 16 arétes.

Algorithme et arbre de peeling. Une maniere possible de décrire et d’énumérer les triangulations
ou quadrangulations est de le faire arétes par arétes, récursivement, inspiré par une décomposition
de Tutte [168]. La difficulté vient du fait que, lorsqu’on enléve une aréte a une quadrangulation, elle
ne reste pas une quadrangulation car 'une des faces a un degré différent. On se retrouve alors avec
une quadrangulation avec une frontiere (et il faut décider d’une régle pour ré-enraciner la nouvelle
quadrangulation). Plus précisément, lorsque qu’on enléve 'aréte racine a une quadrangulation avec
une frontiere de degré 2p pour p > 1, alors 'un des deux évenements suivant se produit, voir
Figure 1.17 :

e soit la quadrangulation reste connexe. Cela signifie qu'on a découvert une nouvelle face de la
quadrangulation, qui est donc un quadrangle. On se retrouve donc avec une quadrangulation
avec une frontiere de degré 2(p + 1) que l'on réenracine sur Paréte “la plus & gauche” de la face

que 'on vient de découvrir.
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e soit la quadrangulation n’est plus connexe et on se retrouve avec deux quadrangulations de bord
de degré 2p; et 2py avec p1 + p2 +1 = p, que 'on réenracine en utilisant les deux extrémités

de l'arétes que ’on vient d’enlever.

Notons qu’on donne ici un choix de réenracinement, ou algorithme de peeling possible mais on pourrait
s’en donner un autre, tant qu’il ne dépend que du degré du bord et des étapes précédentes, et non de
la quandrangulation tout entiere. Dans le cas ot p = 0, la carte est juste une carte-sommet, composée

d’un seul sommet sans aréte.

p p+1 n D2

p+1 y4i D2

= (0 or | or N/
p P

Figure 1.17 : lllustration de la décomposition récursive de Tutte dans le cas des quadrangu-

lations, et en dessous, la correspondance dans I'arbre de peeling.

Il est possible d’itérer cette exploration ou épluchage, aréte par aréte, jusqu’a ne se retrouver
qu’avec des cartes-sommet. Cette technique d’épluchage a d’abord été introduite par le physicien
Watabiki [172], puis reprise par Omer Angel sous une forme un peu différente et pour des triangu-
lations dans [15], et sous une forme trés semblable par Timothy Budd [51]. On peut encoder cette
exploration dans un arbre appelé arbre de peeling en se souvenant a chaque instant de la longueur

du bord de la carte explorée, voir figure 1.18.

D’autres moyens d’énumérer les cartes. Depuis, de nombreuses méthodes ont permis I’énumération
de cartes. On peut mentionner par exemple les intégrales de matrices [15, ], les bijections avec
d’autres arbres “a la Schaeffer” [69, ) | ou encore les correspondances avec la hiérarchie KP
[56, ]. Nous ne détaillerons pas ces méthodes ici, puisque notre travail utilise essentiellement une

nouvelle décomposition des arbres de peeling.

1.4.2 Décomposition selon la derniere voiture

Nous présentons dans cette section notre travail [63], qui introduit de nouvelles équations pour 1’énu-

mération des quandrangulations et triangulations planaires, sans bord ou avec un ou deux bords.
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Figure 1.18 : Exemple pas-a-pas du processus d'exploration d'une quadrangulation planaire
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avec n = 12 sommets et une frontiére de degrée 2p ou p = 6, et son arbre de peeling
correspondant. En bleu, deux sommets de la quadrangulation et leurs feuilles étiquetées 0
correspondantes dans I'arbre de peeling. En rouge et orange, deux arétes de la quadrangulation

et leurs sommets internes correspondants dans |'arbre.

Nous utilisons une nouvelle méthode qui s’inspire d’une décomposition issue du modele de parking :

une décomposition par rapport a la derniére voiture introduite par Lackner et Panholzer [128].

Décomposition des arbres fortement garés. Commencons par décrire cette décomposition pour un
certain type d’arbres de parking, les arbres fortement garés qui sont des arbres de Cayley enracinés
sur I'un des 7 sommets et avec n + p arrivées de voitures étiquetées sur les sommets, tel que dans la
configuration finale, toutes les places sont occupées (donc p voitures contribuent aux flux de voitures
sortantes) et il y a un flux strictement positif de voitures traversant chaque aréte de 'arbre, voir
figure 1.19.

Prenons un arbre fortement garé et imaginons qu’on enléve de cet arbre la derniére voiture arrivée.
Si le flux de voitures sortantes est positif, cette voiture était nécessairement une voiture sortante (sinon
on aurait eu une aréte de I’arbre avec un flux de voitures nul en dessous de la place ou aurait été
garée cette voiture). Si le flux de voitures est nul, alors pour la méme raison, cette derniére voiture

voiture s’était garée sur la racine.
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Figure 1.19 : lllustration de la décomposition en derniére voiture d'un arbre fortement garé

o «+0ff

p=3+1-1=3
P + 9

(2 gauche). En retirant les arétes dont le flux devient nul quand on enléve la derniére voiture,
on se retrouve avec une suite d'arbres fortement garés avec un point distingué, dont le premier

peut avoir un flux positif de voitures sortantes.

En enlevant cette voiture, on peut créer des arétes ou le flux de voitures est nul. On se retrouve
donc avec une suite d’arbres fortement garés, chacun avec un sommet distingué pour se souvenir de
la facon dont il faudra recoller les arbres pour retrouver I’arbre initial. Plus précisément, introduisons
la fonction génératrice bivariée des arbres fortement garés

S(y)= ¥ ot

— L x"yP
>Tp0 nl(n+p)!

ott SP(n, p)°® désigne le nombre d’arbres fortement garés avec n sommets et n + p voitures. Alors, la

décomposition en derniere voiture donne I’équation suivante sur S

[ xya S(x/y)
yayS(x,y) + xaxS<x,y) -S (X,O) = #(X,O)’
ol 8*(x,y) = x0xS(x,y) est la fonction génératrice des arbres fortement garés avec un sommet

distingué. On pourrait se dire que résoudre cette équation nécessite de connaitre a priori S(x,0),
mais en fait elle détermine entierement S(x,y). Si on applique la décomposition par rapport a la
derniere voiture directement aux arbres fortement garés sans voitures sortantes (p = 0), on trouve
d’ailleurs une équation tres simple

. . X
S*(x,0) = m/

Spour strongly parked trees en anglais.
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qu’il est aisé de résoudre pour trouver SP(n,n) = (2n — 2)!. Ce résultat avait déja été montré par
King et Yan [119].

Décomposition “derniére voiture” des arbres de peeling. L’idée de notre travail [63] est d’appliquer
cette décomposition aux arbres de peeling des cartes pour obtenir de nouvelles équations. Notre
décomposition permet par exemple d’énumérer les quadrangulations. On note Q, le nombre de qua-
drangulations enracinées (sans bord) avec n sommets, et on introduit £ la série génératrice corres-
pondante

Q(x) 1= Y Qux" = x* +2x> 4+ 9x* +54x° +378x° + - - - .

n=2

Notons que par convention, la carte avec deux sommets reliés par une aréte est considérée comme
une quadrangulation, ce qui explique le terme x2.
Théoréme 1.11 (/67])

En notant Q° = xQ'(x), la “décomposition en derniére voiture” des arbres de peeling des qua-

drangulations donne I’équation suivante

Q° -9
Q=24+ 6x | ——— ).
1—-9°/x
Cette équation caractérise £ et est équivalente a I'équation récursive suivante : Q, = 1 et pour
nz=3,

n—1
nQy = Z k(i’l +1- k)Qan+1—k + (411 - 10>Qn—1-
k=2

La forme de I’équation qu’on obtient est tres proche d’une équation récursive similaire obtenue en
montrant des correspondances avec une équation issue de la physique, appelée équation KP (pour
Kadomtsev—Petviashvili), comme montré par exemple dans [134, Corollary 2] ou [56]. Cependant, ces
deux équations n’ont pas 'air équivalentes, I’équation venant de la hiérarchie KP s’écrivant avec nos

notations

Q° — 0 =4x(29° - 39) +3(29° — 39)* + x%.

On peut également déduire de notre décomposition en derniere voiture des équations sur les
quadrangulations avec un bord. On note donc Q,(f ) Je nombre de quadrangulations enracinées avec n

sommets et un bord de degré 2p, et Q la série génératrice bivariée correspondante

n
Qx,y) =) ) QP x"yP = x +y <x2+2x3+9x4+ ) + 1 (2x3+9x4—|—54x5+ ) e
n=1p=0
Notons que par convention, la carte-sommet est une quadrangulation avec un bord de longueur 0, ce

qui explique le terme x. Notre décomposition en derniere voiture donne d’équation suivante

Q2° -9

Q° =x+6yQ* (1—53'/x

) +2xy (3Q° —2Q — y9,Q),
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o Q° = x9,Q.
On obtient également des équations similaires dans le cas de triangulations. Pour cela, introdui-
sons T, le nombre de triangulations enracinées (sans bord) avec n sommets et la série génératrice

correspondante
T(x) = Y Tux" = % + 4% 4+ 32x* +336x° + ...

n=2

Théoréme 1.12 ([/63])

La décomposition en derniére voiture des arbres de peeling des triangulations donne I’équation

e e (T
3% —43_2<1_T,/x),

ot T* = xT'(x). En posant T, = 1, cette équation caractérise T et est équivalente a I'équation

suivante

récursive suivante

1 n—1
T, =—— Z (3k - 4) (7’1 +1-— k)Tan+1_k.
n—255

Comme pour les quadrangulations, cette équation semble tres proche de I’équation provenant de
la hiérarchie KP :
T — T = (63° — 8T +x)?,

voir [101, Théoreme 5.4 et Equation 45]. Cependant, il ne nous semble pas possible de déduire une
équation de l'autre par le calcul. On définit également T,(lp) le nombre de triangulations avec une
frontiere de degré p et n sommets au total, et T la série génératrice bivariée correspondante.

T(x,y)= ), T,E”)X”y”:x+y(x2+4x3+32x4+...)+....

n=1,p=>0

Notre décomposition en derniere voiture montre que T satisfait I’équation différentielle suivante

4y 3 -F
T® —2y9, T — 6T +yd,(yT) = =T* | ————— 4T® — 3T — yo,T) .
6T* —2y0,T — 6T +y3, (yT) = (1_3./x>+y( 3T —y9,T)
ou T® = x0,T.
Nous verrons qu’on peut également obtenir des équations pour énumérer les triangulations et

quadrangulations avec deux bords, voir la fin du Chapitre 8.

1.4.3 Perspectives

Notre décomposition en derniere voiture est complétement explicite sur les arbres de peeling. Mal-
heureusement, son action sur la carte de départ elle-méme (celle qui correspond a ’arbre de peeling)
n’est pour l'instant pas bien comprise. En fait, cette décomposition dépend fortement de notre choix
d’algorithme de peeling au départ et devrait donc donner de nombreuses bijections en fonction de
I’algorithme de peeling choisi. Nous nous demandons s’il existe un algorithme de peeling pour le-

quel notre transformation nous permettrait de construire une nouvelle bijection “simple” entre, par
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exemple, une quadrangulation enracinée avec un sommet distingué et la suite de cartes correspondant

a la décomposition en dernieéres voitures de son arbre de peeling.
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Chapitre 2 :

Surprising identities for the greedy
independent set on Cayley trees

LES RESULTATS DE CE CHAPITRE SONT ISSUS DE L’ARTICLE [(5], PUBLIE DANS JOURNAL OF AP-
PLIED PROBABILITY.

We prove a surprising symmetry between the law of the size G, of the greedy independent set on
a uniform Cayley tree T, of size n and that of its complement. We show that G, has the same law as
the number of vertices at even height in 7T, rooted at a uniform vertex. This enables us to compute
the exact law of G,,. We also give a Markovian construction of the greedy independent set, which
highlights the symmetry of G, and whose proof uses a new Markovian exploration of rooted Cayley

trees which is of independent interest.

7
17 10 ?
Q o ‘
—©29
2 12
2 27 e
30 e 5
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0 —
19 44 16 e25
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Figure 2.1: Example of the greedy independent set obtained on a tree of size 30. The
labels represent the order in which vertices are inspected in the construction of the greedy
independent set. The green vertices are the active vertices whereas the red vertices are the

blocked vertices.
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2.1 Introduction

An independent set of a graph G = (V,E) is a subset of vertices where no pair of vertices are
connected to each other. Finding an independent set of maximal size is a notoriously difficult problem
in general [95]. However, using a greedy procedure, we can construct a mazimal (for the inclusion
order) independent set by inspecting the vertices of the graph one by one in a random order, adding
the current vertex and blocking its neighbours if it is not connected to any previously added vertex.
More precisely, the vertices are divided in three possible statuses: the undetermined vertices U, the
active vertices Ay and the blocked vertices By. Initially, we start with Uy = V and Ag = By = @. At
step k > 1, we choose an undetermined vertex v uniformly at random, change its status to active and
change the status of all its undetermined neighbours to blocked. We stop at T = min{k > 0, Uy = O}.
Note that at each step k, no vertices of A are neighbours and A; is a maximal independent set,
which we call the (random) greedy independent set, see Figure 2.1.

Of course the independent set obtained by the greedy algorithm is usually not mazimum in the sense
that it does not have the maximal possible size. In the case of trees, finding an independent set
of maximal size is much simpler than in general. However, from a probabilistic or combinatorial
point of view the greedy independent set is still worth investigation even on (random) trees. Greedy
independent sets on (random) graphs have been studied extensively with a particular focus on the
proportion of vertices of the graph in the greedy independent set called the greedy independence ratio
or jamming constant. Recently, Krivelevich, Mészaros, Michaeli and Shikelman [125] used Aldous’
objective method [14] to prove under mild assumptions that if a sequence of random finite graphs
with a root vertex chosen uniformly at random converges locally, then the sequence of their greedy
independence ratios also converges in probability.

Recall that a Cayley tree of size n is an unrooted and unordered tree over the n labeled vertices
{1,...,n} and we let 7, be a random Cayley tree sampled uniformly at random among the n" 2
Cayley trees of size n. We shall denote by 7,” the rooted tree obtained from 7, by distinguishing a

vertex uniformly at random. Using the local limit of 7, given by Kesten’s infinite tree, Krivelevich,
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Mészéros, Michaeli and Shikelman [125, Section 6.3] proved the “intriguing fact” that the asymptotic
greedy independence ratio of uniform Cayley trees is 1/2. Meir and Moon proved in [1411] that the
size of a maximum independent set of a uniform Cayley tree concentrates around pn where p ~ 0.5671
is the unique solution of xe* = 1.

In this note we prove a much stronger, and perhaps surprising statement concerning the size of the
greedy independent set on a uniform Cayley tree showing that it has (almost) the same law as that
of its complement! We denote by G, the size of the greedy independent set |.A¢| on a uniform Cayley
tree T, and H, the number of vertices at even height in 7,°. Our first observation is that G, has the
same law as H,, which enables us to compute the exact law of G;,.

T_heorem 2.1

The size G, of the greedy independent set on T, has the same law as the number H,, of vertices
at even height in 7,’. As a consequence, for 1 <k <n—1,

P(Gy = k) = P(Hy = k) — <’;> = (2.1)

nh—1

The proof of Theorem 2.1 relies on the invariance of Cayley trees under rerooting at a uniform
vertex. The exact computation of the law of H, is a consequence of a result of [39] on bi-type
alternating Galton—Watson trees. This equality in distribution of G, and H, suggests that their
common law is almost symmetric with respect to n/2. But H, (as well as G,) has a little drift
caused by the root vertex of 7, which is always at even height. Indeed, it follows from Theorem 2.1

that G, /n converges in probability to 1/2 (thus, recovering [125, Section 6.3]) and we also have a

" m w (- ch2/4)> (22)

uniformly for x € [—A, A]. We also give a “Markovian” construction of the greedy independent set

local central limit theorem for G,: for all A > 0,

P (6= [ -3

which brings to light this symmetry of G;,.
Theorem 2.2

There exists a random variable £, with values in {0,1} such that we have
d
(:) (Tl - Gn) + gn.

Moreover P(E, = 1) — 1/4 as n goes to .

This symmetry between G, and n — G, is striking because the geometry of a greedy independent
set and that of its complement are totally different (see Figure 2.1). The main idea for the proof of
Theorem 2.2 is to consider the underlying tree as “unknown” and to discover it as we build the greedy
independent set. See [27, 40, | for similar applications of this technique for other random graph
models. In our case, we develop in Section 2.3 a new type of Markovian explorations of uniform

Cayley trees which is inspired by Pitman’s famous algorithm [149] but is more flexible in the sense
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that we can choose which vertex to explore at each step of the procedure. By choosing the next
vertex to explore as the next vertex inspected by the greedy algorithm, we connect these Markovian
explorations with the construction of the greedy independent set. We expect these explorations to
be applicable to a wider range of contexts, e.g. we will shed new light on Aldous-Broder algorithm
[6, 18] and Pitman’s construction [119] of 7T, using particular cases of our Markovian explorations
(see Section 2.3). Similar explorations are used in a forthcoming work [67] on the parking process on

Cayley trees.

Independent sets of edges. Instead of an independent set of vertices, we could have considered an
independent set of edges or a matching, that is a set of edges in which no pair of elements have
a vertex in common. As for the vertices, we can construct a maximal independent set of edges
greedily by inspecting the edges one by one in a uniform random order, keep it if our edge set stays
independent and stop once we have inspected all the edges. Denoting by M, the number of edges
kept after applying this algorithm on a uniform Cayley tree T, of size n, our Markovian exploration
allows us to show that M,,/n concentrates around 3/8 and to obtain a Central Limit Theorem for
M,,. We do not include the details here since this result has already been shown by Dyer, Frieze and
Pittel in [$1, Theorem 2] by other means.

But in the case of plane trees i.e. on rooted and ordered unlabeled trees, the invariance under rerooting
at a uniform edge plays the same role as the invariance under rerooting at a uniform vertex above
and enables us to compute the exact law of the size of the greedy independent set of edges. More
precisely, we let 7, be a uniform plane tree i.e. rooted and ordered (unlabeled) tree of size n (i.e.
with n vertices) and let M,, be the size of the greedy independent set of edges obtained on T
T_heorem 2.3

The size M, of the greedy independent set of edges on 7, has law given by

_ n (5D nl(n —1)1(n +k — 2)!
P(My =) = * (12:1215 = kI(2k — 1)!(n — 2k)1(2n — 2)1’

for 1 <k < |[n/2]. As a consequence, for all A > 0,

~ n 1 1 x2
P (= |5+ i) v Tr s on (<5 grop)

uniformly for x € [—A, A].

We prove this theorem at the end of Section 2.2.

Peleg Michaeli has recently informed us that the formula 2.1 was also independently proved by Alois
Panholzer in 2020 in [117].
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2.2 Greedy independent sets and bicolored trees

In this section, we prove Theorems 2.1 and 2.3 by relating the construction of greedy independent
sets to bicolored Galton—Watson trees with alternating colors. Our main tool will be invariance of

the underlying random tree with respect to rerooting at a uniform vertex or edge.

2.2.1 Independent set of vertices for Cayley trees.

The following lemma is well known (see for instance [129, End of Section 1.5]) and implies in particular

the invariance of a uniform Cayley tree under independent uniform relabeling of the vertices.

Lemma 2.1. If .7, is a Galton—Watson plane tree with Poisson(1) offspring distribution conditioned to
have n vertices, then the tree T,® obtained by labeling its vertices by {1,...,n} uniformly at random,

forgetting the planar ordering but keeping the root vertex, is a uniform rooted Cayley tree.

In particular, if 0, is a uniform permutation of {1,2,...,n} independent of 7, then the tree T,
obtained by relabeling the vertex i of T, by 0;,(i) for 1 < i < n is still a uniform Cayley tree. In the

rest of this section, we shall always consider that 7, and 7,° are built from .7, as above.

Remark. By invariance under rerooting, the tree 7,° has the same law, seen as unlabeled rooted tree,
as the tree T, rooted at any deterministic vertex i € {1,...,n}. In the next section, we shall always
suppose that our Cayley trees are rooted at the vertex with label #n, but in this section, it is better

to think of them as rooted on a uniform vertex.

We decompose the proof of Theorem 2.1 in two parts. We first prove that G, has the same law as

H,, and then compute explicitly the law of H, using bi-type alternating Galton-Watson trees.

Proof of the first half of Theorem 2.1. The proof of this lemma relies on Lemma 2.1. We will show
that G, and Hj obey the characteristic same recursive distributional equation.

Let us start with H,. Recall that 7, is built from the conditioned Galton—-Watson plane tree .7,
by assigning uniform labels, keeping the root vertex and forgetting about the plane ordering. If we
denote by K > 0 the number of vertices of height 2 in 7, by Ty,..., Tx the plane trees (ordered
from left to right) attached to theses vertices in .7, by Nj, ..., Nk their respective sizes (see Figure
2.2), then by the Markov branching property of the Galton-Watson measure [102], conditionally
on (K, Nj, ..., Ng), the plane rooted trees (Ty,..., Tk) are independent Galton—Watson plane trees
with Poisson(1) offspring distribution conditioned to have sizes (Nj,..., Ng). Since the number of

vertices at even height in .7, is just 1 (for the root vertex) plus the sum of the number of vertices at
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even height in every tree T; for 1 < i < K, it follows that
K
d )
He 214y HY, (2.3)
i=1

where (Hj(i) : 1 < i,j) are independent variables also independent of (K, Ny, ..., Nx) and H]@ has
law Hj for every i,j > 1.

Figure 2.2: On the left, an illustration of the recursive equation in law for the number
H,, of vertices at even height on .7;,. In black at the bottom, the root vertex, in white its
neighbours, and the next vertices to include are the black roots in each tree T;. On the right,
an illustration of the first step of the greedy algorithm. With our coupling with .7, the first
vertex that we add in the greedy independent set is the root vertex of .7, (in green at the
bottom and in red, its neighbours). The next vertices (in green) to inspect in each T; are

then not necessarily the root vertices of T;.

Let us now move on to the size of the greedy independent set. By construction, it is built first
by including a uniform vertex V with label in {1,...,n} and blocking its neighbours (which are the
vertices at distance 1 from the vertex V). We can assume that this vertex is actually the root vertex
of 7,0 (or equivalently of .7,) since it is a uniform vertex of {1,...,n}. Using the same notation
as above (see Figure 2.2), the crucial observation is that the greedy independent set is obtained by
joining the existing root vertex of 7 together with the independent sets obtained by applying the
greedy algorithm on the trees Ti,..., Tx independently. The difference with the case of H, above
is that, in each tree T;, the next vertex to inspect is not necessarily the root of T; (induced by .7,)
but a “new” uniform vertex of T; (see Figure 2.2). But by invariance of uniform Cayley trees under

uniform rerooting, we still have

K .
G 21+y ¢l (2.4)
i=1

where (G]@ :1 < i,j) are independent variables also independent of (K, Ny, ..., Ng) and G](i) has law
Gjfori,j=1.
Moreover, the equations (2.3) and (2.4) characterize the law of H, and G, since Ny +---+ Ng <n—1

almost surely. Hence G, and H, have the same law and we get the desired result.

O
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Proof of the second half of Theorem 2.1. By Lemma 2.1, the variable H;,, has the same law as the
number of vertices at even height in a Galton-Watson tree with Poisson(1) offspring distribution
conditioned to have n vertices. To compute it, we artificially introduce two types of vertices (white
vertices and black vertices) and let .7}, be a two-type alternating Galton—Watson tree with a black
root and with Poisson(1) offspring distribution (for both types of vertices), so that all vertices at
even height are black and have white children, and all vertices at odd height are white and have
black children. We denote by N} (resp. Ny,) the number of black (resp. white) vertices in .7,. Using
the result of [5%] and more precisely [39, Corollary 3.4] and denoting by S; the sum of j i.i.d. random
variables with law Poisson(1) for j > 1, so that S; has law Poisson(j), we obtain, for all k > 1

P(H, =k) = P(N, =k Ny =n—k|N,+ Ny = n)
Tl]P(Sk_i’l—k)IP(Sn k:k—l)
P(S, =n—1)

k
_ <>knk )kl'

A straightforward application of Stirling’s formula gives Equation 2.2. We then easily deduce the

O

local central limit theorem and the law of large numbers.

2.2.2 Independent set of edges for plane trees.

As mentioned in the introduction, this construction of the greedy independent set of vertices on
uniform Cayley trees, which are invariant under rerooting at a uniform vertex, suggests a similar
construction for the greedy independent set of edges on uniform plane trees which are invariant
under rerooting at a uniform edge. Recall that we denote by 7, a uniform plane tree of size n (i.e.
with n vertices). It can be seen as a graph which is properly embedded in the plane, has only one
face of degree 2n — 2, and is rooted at the oriented edge going from the root vertex to its leftmost
child (see Figure 2.3). The crucial observation is that if, conditionally on 7~71, we let € be a uniform
oriented edge of ’7}1, then the tree 7~7f obtained be rerooting the tree 7, at the edge ¢ is still a uniform
plane tree.

Moreover, as uniform Cayley trees, uniform plane trees of size n can be seen as conditioned

Galton—Watson trees with the appropriate offspring distribution (see for instance [9]).

Lemma 2.2. A Galton—Watson plane tree with Geom(1/2) offspring distribution conditioned to have

n vertices is a uniform (rooted) plane tree of size n, where a random variable X has law Geom(1/2)

if for allk > 0, we have P(X = k) = 27F1,

Using this lemma and the invariance under rerooting at a uniform oriented edge, we now prove
Theorem 2.3.

Proof of Theorem 2.3. By invariance under rerooting at a uniform oriented edge, we can assume that

our greedy algorithm on 7, first includes the root edge, blocks its “neighbouring edges” i.e. the edges
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R

Figure 2.3: On the left, a plane tree rooted at the black oriented edge. On the right, the

usual representation of this plane tree rerooted at the green oriented edge.

adjacent to one of its endpoints (see Figure 2.4, left). We denote by K, the number of children of the
root vertex minus 1 (or number of brothers of the root edge), by K; the number of children of the
first child of the root, and by T, ..., T11<1 and T12, e TI%Z the trees attached to theses vertices (ordered
from left to right, see Figure 2.4), which have respective sizes N, .. .,N}<1 and le, . ,N12<2. Then,
conditionally on (K, Ko, Nll, .., N11<1, le, .., NIZQ), the trees (Tll, ... T11<1, le, oL, TIZQ) are independent
Galton—Watson trees with Geom(1/2) offspring distribution conditioned to have respective sizes
(Nll, .. .,N11<1,N12, . "’N12<z)' By the same argument as in the proof of Theorem 2.1, we deduce that

M,, satisfies the following recursive distributional equation

o NS ), RS oK)
My, =1+) My +) My, (2.5)
i=1 ! i=1 !

where (Z\7I](i) :1 < i,j) are independent variables also independent of
(K1,Ko,Ni, ..., Ng, N, ..., Ng))

and ]\71]@ has law ]\7I]- for1<1i,j.

As in the proof of Theorem 2.1 we interpret the last recursive distributional equation using two-type
Galton-Watson trees. Specifically, let T be a two-type alternating Galton—Watson tree, with green
and red vertices, with a green root and where the red vertices have Bernoulli of parameter 1/2
offspring distribution and the offspring distribution of the green vertices is the law of the sum of two
independent variables with law Geom(1/2). We denote by N (resp. N") the number of green (resp.
red) vertices in T. Writing N$ for the number of green vertices in the tree T conditioned to have

n — 1 vertices in total, then N5 obeys the same recursive equation (2.5) as M, (see Figure 2.4).

Using again [39, Corollary 3.4] and denoting by §f the sum of j i.i.d. random variables with law

Geom(1/2) and §; the sum of j i.i.d. random variables with Bernoulli law of parameter 1/2 for
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Figure 2.4: On the left, an illustration of the first step of the greedy algorithm for the
independent set of edges. The first edge that we add in the independent set is the green
root edge, and we block its neighbouring edges (red). The next edge to inspect is a uniform
edge in each tree Tl] but can be taken as the root edge by invariance under rerooting. On
the right, a plane tree t with black vertices and with edges colored as follows: we color the
root edge in green, its neighbouring edges in red and reapply the procedure in each tree by
taking first the root edge (in green). Its corresponding bi-type alternating plane tree tg is
obtained by considering the edges of t as the vertices of t,: the children of a green vertex in
t; correspond to its children followed by its brothers in t, and a red vertex has a green child
in tg if the red corresponding edge has (at least) a child in t.

j = 1, so that §]7 has binomial distribution of parameters j and 1/2, we obtain, for all k > 1,

P(M,=k) = P(N§=kN =n—1—k[N$+ N =n—1)
1P(S5, =n—1-kP(S, , ,=k-1)
P(S§=n—1)

k—=2y\ m—k—-1
(e ) ()

D)

=

=

2.3 Markovian explorations of a rooted tree

In this section, we introduce the Markovian explorations of Cayley trees which we will use to prove
the symmetry of the law of G, (Theorem 2.2) and which we shall call “peeling explorations” by
analogy with the peeling process in the theory of random planar maps, see [72]. Given a Cayley tree
t, an ezploration of t will be a sequence of forests (fo, ..., f,_1) starting from the forest fy made of n
isolated vertices and ending at f, 1 = t, such that we pass from {; to f; ;1 by adding one edge. In our
setup, the edge to add at each step will be the edge linking the vertex peeled at step i to its parent.
To do so, we thus need to root our tree t by distinguishing a vertex and orienting all edges towards

it. That is why in the rest of the paper (and contrary to the previous section) we will always see a
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Cayley tree t as rooted at the vertex of index n.

Specifically, for 0 < k < n —1, we let F*(n,k) be the set of (unordered) rooted forests on labeled
vertices {1,...,n} with exactly k edges where one of the trees is distinguished: in the following, the
distinguished tree and its vertices are seen as being blue whereas the other trees and vertices are
white, see Figure 2.5. We denote by Fyi = Uj—j F*(n, k) the set of such rooted forests on {1,...,n}.
Below, the blue component will correspond to the component of the “real” root of the tree in our
peeling exploration of rooted Cayley tree. Given a forest f € F*(n, k), we say that a rooted Cayley
tree t contains f if t can be obtained from f by adding edges between each white root of a tree and
another compatible vertex i.e. a vertex contained in a different tree of f. Moreover, if v is the root
of a white tree and v is a vertex of another tree, we denote by f;, _,, the forest obtained from f by
adding an edge from v; to vy and coloring the resulting component with the color of v;. Assume now
that we have a function a called the peeling algorithm which associates f € F,; \ F*(n,n — 1) with a

white root of a tree of the forest f.

@ @
OO © 0
() ® OENCHONCONONG)

Figure 2.5: Example of a forest F{, which can be obtained after 10 steps of exploration of a
given tree t of size 18. The edges which are still unknown are in dashed. If the vertex labeled
a(F§,) = 16 is the next peeled vertex, then the next edge to be added will be the dashed
orange edge.

Definition 2.1. Let t be a Cayley tree with n vertices rooted at the vertex labeled n. The peeling

exploration of t with algorithm a is the sequence
FF—F — ... —F _, —F_,

obtained by starting from Ef§ the unique element of F*(n,0) with isolated vertices, which are all white
except the blue vertex n, and at step i > 1, the forest FY is obtained from F}_ and a(F}_;) as follows:
if v is the parent of a(F}_;) in t, then we add the edge from a(F¢_;) to v to F | and color the vertices

of the resulting component with the color of v to obtain F} = (Fgfl)a(F“ Jso
i—1

Notice that F;_; is the tree t with blue vertices, regardless of the choice of a. Moreover, when

t = 7, is a uniform Cayley tree rooted at 1, then the sequence (F%)o<i<,—1 is a Markov chain:
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Proposition 2.1. Fiz a peeling algorithm a. If T, is a uniform Cayley tree of size n rooted at n, then
the exploration (F%)o<i<n—1 of Tu with algorithm a is a Markov chain whose probability transitions
are described as follows: fori >0, conditionally on F} and on a(F}), we denote by m > 1 the size of

the connected component of a(FY) and by £ > 1 the number of blue vertices in F¢.

o For every blue vertex v, the parent of a(F¢) is v with probability (£ 4+ m)/(¢n) and in that case,

a

we add an edge from a(F?) to v and color the resulting component blue to obtain Fl .

o For every white vertex v which does not belong to the component of a(F%), the parent of a(F)

is v with probability 1/n and in that case we add an edge from a(F}) to v to obtain Fl ..

This proposition is a direct corollary of the following lemma.

Lemma 2.3. If f € F*(n,k) is a forest on {1,...,n} with k edges and € > 1 blue vertices (hence
n —k — 1 white trees and a blue tree), then the number N(f) of rooted Cayley trees containing f is
equal to fn" %2,
Proof. The proof is similar to that of Pitman in [149, Lemma 1]. We introduce the number N*(f)
of refining sequences of f, that is the number of sequences (f;, ..., f;) where f; = f and for i < j, the
forest f; has a blue tree and i — 1 white trees, and f;_1 can be obtained from f; by adding an edge
as above. Note that j = n — k since f has n — k — 1 white trees. Given a fixed target f;, any forest
f; that contains a f; has j — 1 fewer edges than f;. Hence there are (j — 1)! refining sequences from
f; to f; and N*(f;) = (j — 1)!N(f;). Now we prove the result on N(f) by induction over j —1, the
number of white trees of f. When j =1, then f € F*(n,n — 1) is simply a blue rooted tree and the
result is clear.

Suppose the result holds for some j —1 > 0. Let f € F*(n,n —j—1) be a forest on {1,...,n}
with 17 > 1 blue vertices and j white trees (tp, .. .,th) of size (ny, ..., nj+l)- Then, if r; is the root
of the white tree t;,

e for each blue vertex vy, by the induction hypothesis, there are N*(f,,_5,) = (11 +n;)n/=2(j — 2)!

refinements of f,,_,,, and there are ny such vertices vy,

e and for each vertex v; in a white tree t; with i # j, by the induction hypothesis, there are
N*(fr,-0,) = nin/=2(j — 2)! refinements of fr,—0; and there are n — (n; +n1) such vertices v;.
In total, the number of refinements of f is
j+1 ' ‘ '
N*(f) = Y mi(m +n)n/2(j =21+ (n — (nj 4+ m))mn/ 2(j = 2) = (j — 1)Imn/ 7,

=2

and we get the desired result.
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Now we can prove Proposition 6.5. Proof. [Proof of Proposition 6.5] It suffices to notice that
since 7, is uniform, for all i > 0, conditionally on Ff, the tree 7}, is a uniform tree among those which

contain F?. Hence, for every (compatible) vertex v,

[{t s.t t contains (F}),ps)_o )|
P(F% , = (F?¢ a F¢ a(F%)) = d
( i+1 ( i )a(Fi )*ﬂ]’ ir Cl( 1)) ‘{t s.t t contains Ff}’

Using Lemma 6.1, we recognize the transition probabilities given in Proposition 6.5 and obtain the

desired result.

O
The strength of Proposition 6.5 is that different peeling algorithms yield different explorations
(hence different types of information) of the same underlying tree. Let us illustrate this with several

examples of peeling algorithms.

Pitman’s algorithm and a,,;;. A natural choice of algorithm a is, given a forest f, to choose a root of
a white tree of f uniformly at random for a,u¢(f). This does not seem to enter our setup since ayy; is
not a deterministic function of f. However we can imagine that we first condition on the randomness
involved in ay,; making it deterministic. Once a,p; is fixed, we apply it to a random Cayley tree
T, thus independent of the choice of ayn;. The Markov chain obtained in Proposition 6.5 to this
peeling is reminiscent of (but not identical to) Pitman’s construction [119] of uniform rooted Cayley
trees, which we quickly recall: Start from the forest made of the n isolated vertices {1,...,n} and
at step 1 < k < n—1, pick a vertex Vi uniformly at random and then pick a root Rj uniformly at
random among the n — k trees which do not contain Vi, and add the directed edge from Ry to V.
Note that in Pitman’s construction, we first pick a uniform vertex then a uniform compatible root
and the “real” root of the Cayley tree is found out only at the end of the exploration whereas in
our peeling exploration with algorithm ay,is, we first fix the root as the vertex labeled n and during
the exploration we choose uniformly a root of a white tree whose parent is chosen almost uniformly

among the compatible vertices.

Building branches and Aldous-Broder algorithm. Let us mention another choice of algorithm which
sheds new light on Aldous-Broder’s construction [0, 18] of T, by using a random walk on the complete
graph with loops. We assume in this paragraph that n > 2. Given a forest f € F,i, let asp(f) be
the root of the tree which contains the white vertex with the smallest label. For example, starting
at Fy"?, then a AB(F?AB) is the root of the component of 1 until the exploration hits the blue root .
Let T7** = min{i > 1 s.t. 1 is a blue vertex in F/“?} be the length of the first “branch” built in this
exploration. Then, for k > 2,
. k k—1 i
P(T" :k):ng< _n).

Recall now Aldous-Broder’s algorithm [0, 18] on the complete graph on n vertices, that is the graph

with vertex set {1,...,n}, and all possible edges including the loops (i,7): Consider a random walk
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(X; : i > 0) starting at Xy := n and where the X;’s are i.i.d. uniform random variables on {1,...n} for
i > 1. We denote by 7 := inf{i : X; = k} < oo for any k € {1,...,n}. The walk induces the tree 7B
which consists of the tree on {1, ..., n} with the edges (X, 1, X, ) for 1 <k < n—1 (we only take the
edges which lead to newly discovered vertices). Consider T{1¥ = min{i > 1 s.t. X; € {Xo,..., Xi—1}}
the time of the first repetition of the walk (X; : i > 0). Then by construction, P(T{*f = 1) = 1/n
and for k > 2,

k= i n—1
AB __ _ _ GAB __ _ AB AAB
P(T{* =k) = EE <1 - n) = — P(T{*® = k) = P(T{" # 1) - P(T}** = k).
We deduce that conditionally on X; # n, the law of the length TlAB of the first branch is identical
to that of the length of the branch linking # and 1 in 7y, see [8]. A similar result holds for the next
branches in both constructions. This has been already observed by Camarri and Pitman in the more

general context of p-trees in [54, Corollary 3].

Greedy construction. In the next section, we use a peeling algorithm (with additional decorations)

tailored to the construction of the greedy independent set on 7.

2.4 Markovian construction of the greedy independent set

This section is devoted to the proof of Theorem 2.2 which use our Markovian exploration of Cayley

trees.

2.4.1 Markovian construction and its transitions

Recall from the introduction the greedy algorithm: given a Cayley tree, we inspect its vertices
sequentially in a uniform random order and at each step, if the considered vertex is undetermined,
we change its status to active and change the status of all its undetermined neighbours to blocked. By
Lemma 2.1, we have an invariance property of 7, under independent uniform relabeling. Hence we
can and will directly use the labels of 7, to define the order of exploration of the greedy independent
set on Tj,.

Recall that we rooted our tree at the vertex n. The idea here is to link the greedy construction to
a peeling exploration of 7T,: we explore and inspect at each step a vertex and update its status and
possibly that of its parent in the tree but not these of its children. In particular, the root n of the
tree is possibly the last vertex to be considered (when it is not previously blocked).

More precisely, given the Cayley tree 7, rooted at n, we divide its vertices into three statuses

(undetermined, active or blocked) as before and set
ﬁ(?:{l,...,n}, ﬂg:l?g:@.

Then inductively at step i, we inspect v; the undetermined vertex with the smallest label and we let

w; be its parent in 7, (unless v; = n). Then we update their statuses as follows:
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e If v; = n, then the vertex n becomes active i.e. @’11 =@ and "2(:'1+1 = AU {v}

e If w; is undetermined, then v; becomes active (it is taken in the greedy independent set) and
w; becomes blocked i.e. Z;{Jl.’fH =U"\ {v;, w;} and j?ﬂ = A" U {v;} and gl’?H = B U {w;}.

e If w; is blocked (resp. active), then v; becomes active (resp. blocked), that is L?i’fH = Z:ll.” \ {v;}

and JZ?H = A" U {v;} (resp. gﬁ_l = Bru{v}).

O
O

O

O

Figure 2.6: lllustration of the possible transitions in the peeling exploration with agreedy
together with the updating of the status of the vertices. The interior color represents the color
of the vertices (blue or white) in the peeling exploration and the boundary color represents
the status of the vertices in the greedy construction of the independent set: black for the
undetermined vertices, green for the active vertices and red for the blocked vertices. The
new edge which we explore (between v; and w;) is in dotted gray. When v; = n, there is no

peeling step but v; is the last undetermined vertex and it becomes active.

As before, at each step i, the set ./Tl” is an independent set and we stop the process when all vertices
are active or blocked i.e. at time 6, = inf{i > 0, U = @}. Tt is then easy to check that the
random subset jgn is equal to the greedy independent set .A; defined in the introduction (if we
inspect vertices according to their labels in the tree). The advantage of the above construction over
the one of the introduction where we update the status of all neighbours of the inspected vertex is
that it can be seen as a Markovian exploration of 7, in the sense of the preceding section (where
we additionally keep track of the status of the vertices). Indeed, it is equivalent to the peeling of
T, started at the forest Fgcreedy made of an undetermined blue vertex with label n and n — 1 isolated
white undetermined vertices and where at step i + 1, we peel the vertex

AGreedy )

iy TN .
v; = min U] := agreedy (F;

the undetermined vertex with the smallest label and update the status of the vertices as above, see

Figure 6.3. Recall the two possible colors for the vertices during a peeling exploration: the vertices
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which are in the connected component of the vertex labeled n which is the “real root” of the tree are
blue whereas the other vertices are white. We make the following remarks which are easily checked by
induction: with the possible exception of the vertex n, the undetermined vertices are white whereas
the active or blocked vertices can be white or blue. Moreover at each step i < 8,, the forest F?Greedy
is made of white isolated undetermined vertices, white trees of size at least 2 rooted at a blocked

vertex, and a blue tree, see Figure 2.7.

@ ©®© O
OO ©
® ® CHCONORONG)

Figure 2.7: lllustration of a possible value of Figree‘iy. As in Figure 6.3, the interior color

represents the color of the vertices in the peeling exploration and the boundary color represents
the status of the vertices in the greedy construction of the independent set: black for the
undetermined vertices, green for the active vertices and red for the blocked vertices. The new

vertex to peel has label 12 here.

A small caveat is that a priori the peeling exploration with algorithm agreedy is not defined after
time 6,: Generically, at that time, although the status in the greedy independent set of all vertices
is known, the whole geometric structure of 7, is not completely revealed since there are many white
vertices in ancr%dy (we never peel the blocked roots of white trees). For the sake of completness we
may continue the peeling exploration (for example by peeling the white (blocked) root of a tree with
the smallest label), but we shall not use it.

We denote by (U, A?, B)i>o the number of undetermined, active and blocked vertices in the
process on a uniform Cayley tree 7, with the greedy peeling algorithm OGreedy 1-€. the size of Z:ll.”, /Tf
and B}'. For the active and blocked vertices, we distinguish the number of white vertices A?’w and
B* from the number of blue vertices A?’b and B?’b. Then with the notation of Theorem 2.2, we have

G, = Agn and using a decorated version of Proposition 6.5, we see that
(ue, AM, B, A B0 < i < 6y)

is a Markov chain. To describe its probability transitions, we introduce AX; := X;;1 — X; the
increment of a random process (X]- :j>0) at time i > 0. Suppose that ZZ" is not empty. On the one
hand, when n € ﬂl.", then n is the only blue vertex in F?Gr%dy, hence A?’h = B?’b = 0. On the other
hand, when 7 ¢ U, then A" > 1 and B > 1. Note that as long as U!" is neither {n} nor the

AGreedy

emptyset @, the vertex agreedy (F; ) is a white isolated vertex in F?Greedy. Therefore, conditionally
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on (U, A?’w, Bf’w, A?’b, B?’b), the transitions of the increments of ((U?, A?’w, B?’w, A?’b, B?’b) 11 >0)
are given by:
b b g
If AY” =B =0and U =1ie. if U' = {n} then almost surely,
AU, AT, B0 AT BIY) = (~1,0,0,+1,0).
If AP =B =0 and U >2, If A > 1,B" > 1 and U > 1,
T T , N I I e N L )
’ with prob. H uin 2 ‘ Ain ‘ Bin % ‘ with prob. n n n (A;”bJrB:l’h)n (A?,bJrB;t,b)n

AU 2| -1]|-1| -2 AU 2| -1] -1 -1 -1

A 41 o [+ o | [aare [ 11 ] 0 [ 41 0 0 (2.6)

ABM |1 [ 41 0 | [aB™ |41 |+1] 0 0 0

AAY 0 | 0 +1 | [aA o]0 ] o0 0 +1

AB"* 0 +1| [aB" [ 0|0 |0 +1 0

2.4.2 Symmetry of the greedy independent set

We now prove Theorem 2.2 which states the symmetry between the law of Ay the size of the
maximal independent set obtained by the greedy algorithm and Bgn that of its complement. The

main observation is the following lemma.

Lemma 2.4. For j > 0, the laws of (A", AP

7 o<igjr1 and (B?’zU,B?’b)0<i<j+1 are the same on the
event U # {n} for alli <j.

Proof. Notice then that the role of (A”", A™) and that of (B[, B/") are exchangeable in the
probability transitions (2.6) as long as U # {n}. The lemma follows.

O

Thanks to this lemma, we notice that conditionally on LNIZ-” # {n} for all 0 < i < 6, then the size
Ajp of the greedy independent set has the same law as that its complement By . Otherwise, if there
exists i > 0 such that Z]f =
have the same law and Agn =G, = Agn—l + 1 and B’gn = Bgn—l' Hence, the random variable &, in
Theorem 2.2 is the indicator function of the event {3Ji > 0, ﬁi” = {n}} and to prove Theorem 2.2,

it only remains to show that

n}, then this i corresponds to 8,, — 1 and in that case, AZ . and B} _
0,—1 0,—1

P(E, =1) =P(3i, U' = {n}) —1/4

To compute the above probability and also obtain the fluctuations of G, we study the fluid limit of
, Chapter 11]). The transition probabilities (2.6) in both cases point to the idea
of gathering blue and white vertices and focusing only on their status. Indeed, the Markov chain
(ur, A, B :i > 0) has bounded increments and for i < 6,

our system (see [

AU uy Ur An B 3 —2x—y—z
E AA" Al —F(—+,—,—+ ]| <=, where F(x,y,2z) = x+z (2.7)
! ! n n’'n n
AB! B! xX+y



2.4. MARKOVIAN CONSTRUCTION OF THE GREEDY INDEPENDENT SET 71

This suggests to study the deterministic system which is solution of the following equations:

u'(t) = =2u(t) —a(t) — b(t), u(0) =1,
a'(t) =u(t) +b(t), a(0) =0,
b'(t) =u(t) +a(t), b(0) = 0.

The solution is given by

u(t) =2e"t-1,

a(t)=b(t)=1—e"".
In particular * = min{t > 0, u(t) =0} = In(2) and a(t*) = 1/2. We can now apply [¢5, Theorem
2.1 p456] to the process X,(t) = 1/n - (UfthfATth'BTth) which starts at X,,(0) = (1,0,0) with,

using the notation of [¢5], the function F given by (2.7) and

Bi—211)(x,y,2) = x,
Bi-101) (%, ¥,2) =Y,
B-110(x,y,2) =z

We obtain that at least for all ¢t < t*, for any € > 0,

ur . At . Bt
lsn] “Tlsn] Tlsnl ) _ -
P (o (S S ) bt s ) 0

Since u/(+*) < 0, we can apply [35, Theorem 4.1 p464] which states that the stopping time of our

Markov chain also concentrates around its expected value and has Gaussian fluctuations around it:

Vn <9; — t*) % N(0,3/4). (2.8)

Lastly, notice that £, = 1 when the vertex n stays undetermined at each step 1 < i < 6, — 1, that
is, with probability 1 —2/n at each step, and by the the previous equation (1 —2/ n)e" converges in

" and is bounded by 1. Hence we obtain

0,—1
SO
n n—oo 4

probability towards e~2

P& =1)=E

which concludes the proof of Theorem 2.2.
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Chapitre 3 :

The critical Karp—Sipser core of ran-
dom graphs

LES RESULTATS DE CE CHAPITRE ONT ETE OBTENUS EN COLLABORATION AVEC THOMAS BUDZINSKI
ET N1coLAS CURIEN ET ONT ETE SOUMIS POUR PUBLICATION [52].

We study the Karp—Sipser core of a random graph made of a configuration model with vertices
of degree 1,2 and 3. This core is obtained by recursively removing the leaves as well as their unique
neighbors in the graph. We settle a conjecture of Bauer & Golinelli [241] and prove that at criticality,
the Karp-Sipser core has size ~ Cst- 92 - n3/% where ¢ is the hitting time of the curve t — %2 by
a linear Brownian motion started at 0. Our proof relies on a detailed multi-scale analysis of the

Markov chain associated to the Karp-Sipser leaf-removal algorithm close to its extinction time.

3.1 Introduction

The Karp—Sipser algorithm. Let g be a finite graph. The Karp-Sipser algorithm [I16] consists in
removing recursively the vertices of degree 1 in g as well as their unique neighbors, see Figure 3.2.
The initial motivation of Karp & Sipser for considering this algorithm is that the leaves' and isolated
vertices removed during this process form an independent set of g which has very high density. We
recall that an independent set in g is a subset of vertices, no two of which are adjacent. The problem
of finding an independent set of maximal size is in general a NP-hard problem, and the Karp—Sipser
algorithm provides a fair lower bound (it is furthermore “optimal” as long as there are remaining

leaves in the graph).

1Here and in the rest of the paper, the concept of leaf is a dynamical concept, as a vertex in the initial graph which

is not a leaf may become one later.
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e

Figure 3.1: (Left). The giant component of an Erdés—Rényi random graph G(n,ﬁ) with

n = 2000 on the left and (Middle) its Karp-Sipser core. (Right). The Karp-Sipser core in
red inside the original graph.

7 7 o ’ 7
~ / ® ~ /
\ /\\ /\\ TN /\ \ \\
[N (N [N/ VANV,

N\, y’ \ ~

S\ AN . /N
Figure 3.2: lllustration of the Karp—Sipser algorithm. The first 4 figures show the initial
graph, as well as the recursive deletion process of the leaves (in red) together with their
unique neighbor (crosses), until no leaf is left: we then obtain the Karp-Sipser core (fourth
figure). On the right, the initial graph is represented together with the Karp—Sipser core in

thick lines and the independent set formed by the removed “leaves” in yellow.

The Karp-Sipser core of random graphs. A striking property of the leaf-removal process is its
Abelian property: whatever the order in which we decide to recursively remove the leaves and their
neighbors, we always obtain the same subgraph of g (with no leaves) which we will call the Karp-
Sipser core of g and denote by KSCore(g), see [24, Appendix] or [124, Section 1.6.1]. Beware that
the above notion differs from the usual k-core of a graph?, see Section 3.5. By the above remark, the
Karp—Sipser algorithm creates an independent set (the leaves removed during the algorithm) whose
size is within at most [KSCore(g)| from the maximal size of an independent set in g.

The performance of the Karp-Sipser algorithm on the Erdés-Rényi random graph G(#n, {) has
been analyzed in the pioneer work [116] and later refined in the breakthrough [19] which established

a phase transition as n — oo depending on the value of c:

e if c < e, then as n — co, the size [KSCore(G(n, 1-))| is of order O(1);

2The k-core of g is the largest subset V of its vertices such that for any v € V, the induced degree of v within V is
at least k.
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e if ¢ > e, then as n — co, the size [KSCore(G(n, 1;))| is of order n.

Those works have later been extended to the configuration model [39, |. However, the careful
analysis of the critical case ¢ = e was open as of today to the best of our knowledge. In [24], based
on numerical simulations, the physicists Bauer & Golinelli predicted that [KSCore(G(n, $))| should
be of order #3/5. The main result of this work (Theorem 3.2) is to settle this conjecture in the case

of a random graph with degrees 1,2 and 3.

Model and results. In this paper we shall consider a random graph model closely related to G(n, £)
but for which the analysis of the Karp—Sipser algorithm is simpler. Namely, we fix a sequence of
numbers d" = (d},d5, d%),>1 such that

n =dy + 2d5 + 3d3 is even.

We imagine d" as the number of vertices of degree 1,2 and 3 and consider a random multi-graph
CM(d") sampled by pairing the edges emanating from the df + d 4 d% vertices uniformly at random.
This is a special instance of the so-called configuration model introduced by Bollobas [10], see [170)]
for background. In the rest of the paper we shall further assume that

dat 24} 3d%

3
a — py, and 3 — s py (3.1)
n n—oo n n—oo n n—oo

so that the proportion of half-edges which are incident to a vertex of degree i is p;. Our goal will
be to analyze KSCore(CM(d")). A phase transition has been observed in [110] for the size of the
Karp-Sipser core but its location depending on (p1, p2, p3) was not explicit. Our first contribution
is to make this threshold precise. For a graph g, we will write |g| for twice the number of edges of g,
and call this quantity the size of g. If (u,) is a sequence of positive numbers and (X,) a sequence of
random variables, we will write X, = Op(uy) if (1, 'X,) is tight, and we will write X, = op(u,) if
u; 1X, converges to 0 in probability.

Theorem 3.1 (Explicit phase transition)

Under the assumptions (3.1), let

® = (p3 — 1)’ — 4p1. (3.2)
e Subcritical phase. If ©® < 0, then as n — oo we have

|KSCore(CM(d"))| = Op(log® n).

e Supercritical phase. If © > 0, then

1 " P) 40
n~ - |KSCore(CM(d"))] — 310

e Critical phase. If © = 0, then |KSCore(CM(d"))| = op(n).
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Sketch of proof of the phase transition. The proof of this theorem uses classical techniques. We
shall reveal the random graph CM(d") by pairing its half-edges two-by-two as we perform the Karp-
Sipser leaf removal algorithm (a.k.a. peeling algorithm). More precisely, when we remove a leaf, we
reveal its neighbor in the graph and remove it as well, which decreases the degrees of some other
vertices. During this process, the number of remaining vertices of degree 1,2 and 3 evolves as an
(220)3—valued Markov chain with explicit probability transitions. This is, of course, a recurrent idea
in random graph theory and has already been used many times for the Karp—Sipser algorithm itself
[116, 19]. More precisely, we shall erase leaves uniformly at random one-by-one (in contrast with
[110], where all possible leaves are erased at each round) and use the differential equation method
[173] to prove that the renormalized number of vertices of degree 1,2 and 3 is well approximated by
a differential equation on R3 for which we are able to find explicit solutions. In a sense, this returns
to the roots of this method since it was Karp & Sipser [116] who first introduced it in the context of

random graphs following earlier works of Kurtz [120] in population models.

Remark (A spectral parallel to the Karp-Sipser phase transition). The nullity of a graph is the
multiplicity of 0 in the spectrum of its adjacency matrix. It is easy to see that the leaf-removal
process on a graph g leaves its nullity invariant and so the Karp—Sipser algorithm can also be used
to study the later, see [25, ]. The phase transition for the emergence of a Karp—Sipser core of
positive proportion in G(n, %) has a parallel phase transition® for the emergence of extended states
(an absolutely continuous part) at zero in G(n, £), see [25, 70]. We wonder whether a similar result

holds true for the configuration models we study.

We now turn to the detailed analysis of the critical case which is the main goal of our work. For
this we fix a particular degree sequence d;, = (df ., d3 ., d5 ) such that df .+ 3d5 = n is even (to
be able to perform the configuration model) and

, V3 V3

1,c = 7’1(1 — 7) —+ O(l), nglc = 0, and 3dg[c = 7’17 + O(l) (33)

In particular we have @ = (/3 —1)2 —4(1 — ?) = 0 so we are indeed in the critical case of Theorem
3.1. By definition, the core KSCore(CM(d;,)) has only vertices of degrees 2 or 3. Our main result
is then the following:

Theorem 3.2 (Geometry of the critical Karp—Sipser core)

Let Dy(n) (resp. D3(n)) be the total number of half-edges attached to a vertex of degree 2 (resp.
3) in KSCore(CM(d"..)). Then we have

crit
n=3/5. Dz(?’l) ) 3-3/5914/5 -2
— . ,
n*2/5 . D3(7’l) n—oo 3*2/5216/5 . 19*3

where ¢ = inf{t > 0: B; = t~2}, for a standard linear Brownian motion (B; : t > 0) started from
0. Moreover, conditionally on (Dy(n), D3(n)), the graph KSCore(CM(d”

")) is a configuration

model.

3Unfortunately, this does not seem to be an easy corollary of the “geometric” phase transition.
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Remark (Bauer & Golinelli’s prediction). The above theorem confirms a long-standing prediction of
Bauer & Golinelli [21] stated in the case of the Erdds-Rényi random graph: based on Monte-Carlo
simulations they proposed a few possible sets of critical exponents [24, Table 1] and our theorem

confirms their prediction. See also [99, ] for later developments.

Note that our assumptions on the initial degree sequence are much stronger than for Theorem 3.1
since the size of the critical core is quite sensitive to initial conditions. Our proof still works if the
error O(1) is replaced by O(n!/2), and the result should remain true as long as the initial error is
0(n3/%), see Section 3.5 for a discussion on the near-critical regime. Although our main result only
considers the graph CM(d!,,), we believe that the above limiting result holds for a large variety of
random graphs which are critical for the Karp—Sipser algorithm. In particular, we expect a similar
result for configuration models with bounded degrees and for the Erdés-Rényi graph G(n, ), but

(5-k)

the number of vertices of degree 2 < k < 5 in the core should be of order n /5. In particular, we

conjecture that there are no vertices of degree 6 or more in KSCore(G(n, §)).

Ideas of proof. The proof of Theorem 3.2 uses the same Markov chain as the one used to study the
phase transition. The difference is that we need to study the behaviour of this chain right before its
extinction, at a scale much finer than n. More precisely, we can expect from the differential equation
approximation that en steps before extinction, the number of vertices of unmatched degrees 1, 2 and

3 are respectively of order €21, en and €3/2

n. On the other hand, a variance computation shows that
the fluctuations of the number of vertices of degree 1 are of order €3/4,/n. Finally, the time at which
we can expect the Markov chain to terminate is the time where the fluctuations exceed the expected
value, that is at e = n=2/5. However, checking that the differential equation approximation remains
good until that scale requires some careful control of the Markov chain accross scales. In particular,
the reason why the fluctuations become much smaller than /7 in the end of the process is that the

drift of our Markov chain induces a “self-correcting” effect.

Acknowledgments. The last two authors were supported by ERC 740943 GeoBrown and by ANR
RanTanPlan. The first author is grateful to the Laboratoire de Mathématiques d’Orsay, where most
of this work was done, for its hospitality. We warmly thank Matthieu Jonckheere for a stimulation
discussion about [110] and Justin Salez for enlightening explanations about maximal matchings and

independent sets in random graphs.

3.2 Karp—Sipser exploration of the configuration model

As we mentioned in the introduction the main idea (already present in [116, 19, , 39, ]) is
to explore the random configuration model CM(d") at the same time as we run the Karp-Sipser
algorithm to discover its core. Let us explain this in details. Fix a degree sequence d" = (df,d%,d})
such that n = d 4 2d 4 3d} is even. We shall expose the 5 edges of CM(d") one by one and create
a pProcess

(X5 YE,ZE -k >0)
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where X",Y", Z" represent respectively the number of unmatched half-edges linked to vertices of
unmatched degree* 1,2,3. The process of the sum is denoted by §" = X" + Y" + Z". In particular,
we always have (X§, Y}, Z}}) = (d},2d},3d%) and Sj = n with our conventions.

As long as X}! > 0, the process evolves as follows. Since X;! > 0, there are still vertices of
unmatched degree 1. We pick ¢ (for leaf) one of these vertices uniformly at random and reveal its
neighbor v in the graph. Now, in the Karp—Sipser algorithm this vertex is “destroyed” so we shall
erase v from the configuration as well as the connections is has with other vertices of the graph. More
precisely, we reveal the neighbors of v in CM(d") and erase all the connections we create when doing
so. In particular, if v is connected to a vertex w # £ of unmatched degree d via i edges, then after
the operation w becomes a vertex of unmatched degree d — i. After that, the vertices of unmatched
degree 0 are simply removed. We listed all 13 combinatorial possibilities (recall that our vertices

have degree 1,2 or 3) in Figure 3.3. The stopping time of the algorithm is
0" :=inf{k > 0: X} = 0}.

Finally, we extend the process (X",Y",Z") to any k by setting (X}, Y}, Z}!) = (X}, Y}, Z§) for
k > 0". We denote by (Fi)i=0 the natural filtration generated by this exploration. The starting

point of our investigations is the following.

Proposition 3.1. The process (Xg,yl?,z;:)ogkggn 1s a Markov process whose probability transitions
are described in Figure 3.3. Furthermore, for any stopping time T, the remaining pairing of the

unmatched edges conditionally on Fr is uniform.

Proof. This is standard: the above exploration procedure of CM(d") is Markovian and preserves the

fact that the remaining pairing of edges is uniform.

O

In particular, notice that at the stopping time 6", the graph made by pairing the remaining

unmatched edges is precisely the Karp—Sipser core of CM(d") and so the second part of Theorem
3.2 is already proved.

3.3 Phase transition vza fluid limit of the Markov chain

In this section, we prove Theorem 3.1. The main ingredient is a deterministic fluid limit result for
the Markov chain (X", Y", Z").

3.3.1 Fluid limit for the Markov chain

For a process indexed by discrete time (£ : k > 0) we use the notation Af) = Hrq — Hi for k > 0.

Given the transitions of the Markov chain (X", Y", Z") the following should come as no surprise.

4The unmatched degree of a vertex at time k is the number of half-edges attached to this vertex which are still

unmatched at time k.
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Figure 3.3: Transitions probabilities of the Markov chain (X", Y",Z"): as long as X" > 0,
a vertex ¢ of degree 1 (in red above) is picked and its neighbor v is revealed. The vertices
¢, v are then removed from the configuration model as well as the connections they created.
The probability of each event is indicated in green in the upper right corner. The variation
of X,Y,Z are displayed in blue. A symmetry factor is indicated when needed in purple in
the upper left corner. Notice in particular that the last three cases on the bottom have

probabilities of smaller order O(1/S), so they will not participate to the large scale limit.
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Proposition 3.2 (Fluid limit). Suppose that d" = (d,d5,d}) satisfies (3.1). Then we have the

following convergence in probability for the uniform norm:

Xt Y Zn P
< Z I Efl il J) 11:—13 (2(t), Z(t), Z(t))o<t<tens (3.4)
0<t<0"/n

where (2, %, %) is the unique solution’® to the differential equation (2',%', 2" = ¢(2,%, %)
with ¢ defined below (3.5) with initial conditions (p1, p2, p3) and where tex is the first hitting time
of 0 by the continuous process & . Moreover, 0" /n — text in probability as n — oo.

Proof. It is a standard application of the differential equation method. Indeed, the increments of the
Markov chain (X", Y", Z") are bounded and using the exact transitions (Figure 3.3), the conditional

expected drifts
E [AX}, AY), AZ} | Fi

converge for large values of n towards ¢ (X%, %, Z%) where the function ¢ is defined by
v —2x — yz — 3x%z — 2yx + zy? — 2zxy — 2> — 42°x
| ¥ = 473 — 2xy — 4zy2 —4xyz — AJ:y2 +47°%x , (3.5)
Z —3yz — 3zy? — 122%y — 3zx* — 6xyz — 12z>x — 92°
1 Z
with & 1= 2+ % + 2 and where | y | := 7 w is the proportion vector. (3.6)
z Z

For any & > 0, the convergence of the conditional expected drifts to ¢ is uniform on {n=!-S" > 6}
and (x,y,z) — ¢(x,y,z) is Lipschitz on {(x,y,z) € R3 : 671 > x+y+2z >} as Vp(x,y,z) is of the

form (ffyyég“ where P is a polynomial. Therefore, by [173, Theorem 1], the equation (27, %", ') =
O(Z, %, %) with initial condition (p1, p2, p3) has a unique solution until the time . where 2 first

)

hits 4, and the convergence (3.4) holds for 0 < t < t0 .. Moreover, let foy = limy_ Eot-

Ot Since ¢ is
bounded by an absolute constant, the solution (27, %, %) is Lipschitz on [0, text), SO we can extend
it uniquely in a continuous way to [0, fext|, and by continuity fext is indeed the first time where 2~
hits 0. We know that (3.4) holds on every compact subset of [0, fext). Moreover, the increments of
(X", Y",Z") are bounded by an absolute constant, so the functions n~1 - (X", Y", Z") are uniformly
Lipschitz and the previous convergence extends to a uniform convergence on [0, fext|.

We now only need to check that % converges in probability to text. We notice that deterministi-
cally, if k < 6", then S}, < S} — 2, which implies 0" < 1, so up to extraction we may assume that
% converges to some random variable Foxt- By convergence of the process and the definition of teyt,

it is immediate that fext = fext. For the other direction, we treat two cases separately:

5More precisely, by solution, we mean that (Z,%,%) is a continuous function from [0, fext] to R3 such that 2 first
hits 0 at time fext and (27(t), 27 (t), Z7(t)) = ¢ (Z°(t), Z (t), Z(t)) for all 0 < t < toxt.
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o if . (text) = 0, then let € > 0, and let & > 0 be such that .7 (texy — ) < e. With probability
1—0(1) as n — +oo, we have Sl te—gyn) < 2en. Since §" decreases by at least two at each
step, this implies 6" < (text — 0)1 + €11, 50 foxt < foxt.

o if ./ (fext) > 0, we first argue that the first component of ¢ (£, %, %) remains bounded from
above by a negative constant along the whole trajectory. Indeed, since . is bounded from
below, we have 27/ > —cZ for some constant ¢ along the trajectory. Hence 2 is bounded from
below by a positive constant on [0, text], so y is bounded away from 1. Since the first component
of ¢ (2,%,%) is at most —yz + y’z = —yz(1 —y), this proves our claim. Therefore, with
high probability, the conditional expected drift IE [AX,’(1 | X]'(z] is also bounded from above by a
negative constant —c along the trajectory. Since the increments are bounded, by the weak law

of large numbers this ensures foy; < te %s for all € > 0, SO fext = Foxt.

0250 % [
y 0.2} Yy 0
\ b . ,
P x
005 \ [ N
G 0.1¢ 0.15 [ [ 0.10 0.15 0.20

0.02 0.04 0.06 0.08

Figure 3.4: lllustration of the differential system (2°, %, %) in terms of “number of legs”

in the subcritical (left), critical (center) and supercritical (right) cases.

3.3.2 Solving the differential equation

In this section, our goal will be to gather information about the solutions to (3.5), which will give
Theorem 3.1 and be an important tool in the proof of Theorem 3.2. As indicated by the system (3.5),
we will see that the solutions are easier to express in terms of proportions. We refer to Figures 3.4

and 3.5 for a visualization of the trajectories of these solutions.
Proposition 3.3. We fiz p1 > 0 and p2, p3 = 0 with p1 + p2 +p3 = 1. Let (2 (t), % (t), ff(t))ogtgtext
be the solution to (3.5) with initial condition (p1, p2, p3). Recall from (3.2) the definition
© = (ps —p1)* —4p1 € [-3,1].
o If © < 0 (subcritical case), then X (text) = X (text) = Z(text) = 0. Moreover, for t < text
sufficiently close to text, we have Z(t) < Z(t).
o If® > 0 (supercritical case), then

40
Z(te) =0, P (tew) = 56 (1 _ \F@) >0, and Z(teq) =

4032

m > 0. (3-7)
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o If® =0 (critical case), then Z (text) = ¥ (text) = Z (text) = 0, and more precisely as € — 0:

X (text —€) ~ 3¢,
Y (tos —€) ~ de, (3.8)
P (text —€) ~ 43632,

Supercritical

Maximal Critical

/ /
/

/ Non-maximal
Subcritical
Z<X

Subcritical
Region for the
l Configuration model
Il A

Figure 3.5: lllustration of the differential system X,Z with the vector field. The maximal

/ ; Suberitical

0

solutions start from X(0) +Z(0) = 1. A maximal supercritical (resp. critical, resp. subcritical)
solution is shown in green (resp. blue, resp. red). A non-maximal subcritical solution is
displayed in orange. Note that any subcritical solution terminates in the gray region which is

subcritical for the configuration model itself.

Proof. We will first obtain an explicit (up to time-change) solution to (3.5). We recall that .7 =
X + % + Z is the fluid limit of the sum process and that x,y,z are the proportions whose sum is
constant and equal to 1.

Using y = 1 — x — z, the system (3.5) translates into the following system on x,z and .%:

X = L(x—z)z,

Z = L(-24+x—-2)z (3.9)
S = 2(-24+x—1z),
where again .#/(0) = 1 and x(0),z(0) > 0 satisfy x(0) +z(0) < 1.
In order to get rid of . in this system, we perform a time change: for t € [0, text], we write

b ds

y(t) = ) 7 € [0, +o0].

We also define the functions X,§,Z on [0, text], With tex = Ote“ d(s) by %(u) = x (7' (u)) and
z(u) =z (v '(u)). We obtain the system
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{

We find solutions to this system as follows: by subtracting the second line to the first one, we have

/

P

|
—~
P

|
Nt
N—

N

"= (-24+x-12)z

N

X' —Z' = 2%z and the second line implies that X — z = <%/ +2>. Deriving the second identity and

comparing, we deduce the following second-order non-linear one-dimensional differential equation:
2(2)° =2"2— ().

A complete family of solutions is given by

N b?

2(u) = sinh(b(u + u) )2’

x(u) = ( b —1)2+1—b2 (3.10)
tanh (b(u + ug)) ’ '

b)) = —2b? N 2b Lo 1

y tanh?(b(1 + o)) tanh(b(u + 1)) ’

\

where b, 1y € R. We notice that along these solutions, the quantity (Z — )"()2 — 4X is constant, and is
equal to 4(b* — 1), this quantity is equal to the @ defined by (3.2):

(z—%)?—4x=4(*—1) = (p3 — p1)* —4p1 = O. (3.11)

We also notice that ¥ is always increasing and that § < 0 for u small enough, which has no
meaning in our context. Therefore, every solution is contained in a maximal solution, i.e. a solution
where the initial condition (pl, P2, p3) satisfies pp = 0. Since we are only interested in the behavior
near extinction and since the right-hand side of the formulas (3.7) depends only on b, we may restrict
ourselves to maximal solutions, i.e. assume p, = 0. Other solutions can be deduced from this by a
time shift in (X, ¥, Z), which translates into a time shift in (27, %, ). From §(0) = 0, we get

uy = %blog <1+2b+2b‘2(b4321_1)> >0,
SO plzl—%mandpgz%m.

We now come back to the true solutions (2°, %, Z) in each of the three cases of Proposition 3.3.
For this, we need to study the time change 7 : [0, fext] — [0, ttext]. By definition of 7 and the third
line of (3.9), for all t € [0, fext), we have

{ s = 7,
) = 2(=2+x(y(t)) —z(v(t)).

Multiplying those lines and integrating both sides using the exact expressions of X and Z, we find
Slog.7(t) = =44 log (sinh(b - (7(t) +1u0))) so the following quantity is constant:

2\ 2 4 4
let)> __r 4 (3.12)

FWsint 6+ (110) +m) =70 (75 ) = 5007 =
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Note that this last equation, combined with the expression of .’ (t), provides a differential equation
satisfied by .7, from which we could express . as the inverse bijection of an explicit function.
However, this will not be needed in the proof. Given those findings, the rest of the proof is made of
easy calculations. Let us proceed. We refer to Figures 3.4 and 3.5 for visualization of the system in

terms of proportions or in “number of legs”.

Subcritical regime. For ® < 0, we have 3 < b < 1. In this case, we observe that X(u) > 1—b? is

X (text) —0.

bounded away from 0, so the same is true for x() on [0, fext]. It follows that .7 (fext) = i)

Therefore, by (3.12), we have z(fext) = \/ (41’%1) L (text) = 0. In particular, for ¢ sufficiently close
to fext, we have z(t) < x(f), so Z°(t) < 2 (t). Note that this also implies eyt = +00.

Supercritical regime. For ® > 0, we have 1 < b < @ In this case, the function X first hits 0 at

time
1 1+ Vb2 -1
Oext = —Ug + fArccoth+7.
b b
This implies that eyt < flext. We claim that we have equality. Indeed, if this is not the case, we
have X(fext) = X(text) > 0, 80 . (text) = 0, s0 (3.12) implies Z(Uext) = 0 with eyt < +00, which is
not possible given the explicit expression of Z. Therefore, we have X(uext) = 0. Using (3.11) we can

compute

z(text> = Z(uext) = 2\/ b2 -1 and Y(text) =1-2 V bz -1

and finally, using (3.12):

4 16(b* — 1)
y<text> = sze}d) = W’
which, once translated in terms of ©, gives (3.7).
Critical regime. For ® = 0, the maximal solution starts from pz = @ and p1 = 1— @, and we

have b = 1. In particular, using uy > 0, we have X(u) > 0 for all u > 0. By the same argument as
in the supercritical regime, this implies uext = +00. Therefore, by the exact expression of X, ¥, Z, as
t — text, we have x(t),z(t) — 0 and y(t) — 1. Therefore, by (3.12) at t = text, we have . (text) = 0,
80 Y (text) = Z (text) = 0.

Hence, letting t — fext in the third equation of (3.9), we have /'(t) — —4 as t — toxt, SO
S (text — €) ~ 4e as ¢ — 0. Injecting this in (3.12), we find z(text —€) ~ V3¢, so P (text — €) ~
44/3¢3/2. Finally, we know from (3.11) that (z — x)? — 4x is constant equal to 0, 50 X(fext — €) ~

%z(text —¢)? ~ %s, which gives the asymptotics for 2.
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3.3.3 Phase transition: proof of Theorem 3.1

Subcritical regime. We assume that (pl, P2, pg) is subcritical, and consider the associated solution
(Z,%,%) to the differential equation. By Proposition 3.3, let t; < text be such that 2°(t1) < 2 (t1).
By Proposition 3.2, we have
Liwn  yn om (P)

(X Y ) = (2 (h), 7 (h), Z (1))

E \_tlnj 4 \_tﬂ’lJ ’ \_tlnj H—+o0

Moreover, by Proposition 3.1, conditinally on F| 1) the remaining graph after |[tin| steps of the
Karp—Sipser algorithm is a configuration model with respectively X’ftln Ik thln | and Z’ftln | half-edges
this

belonging to vertices of degree 1, 2 and 3. Since 11_1Z’ft1nJ ~ Zth) < Z(h) = n_letan

is a subcritical configuration model (do not confuse with subcriticality in terms of the Karp—Sipser
core). In particular, by [142, Theorem 1.b] there is a constant ¢ = c(p1, p2, p3) such that with
high probability the remaining subgraph after |[f1n]| steps has fewer than clog(n) cycles and all

of its connected components have size at most clog(n). On the other hand, by construction, the

ﬁl"]’

Remark (True size of the subcritical KS-core). The above bound O]p(log2 n) for the size of the

Karp-Sipser core is included in the union of all the cycles of G so it has size Op (log2 n).

subcritical Karp—Sipser core is very crude towards the end of the proof. We expect the actual order

of magnitude of the KS-core to be Op(1) as in the Erdés-Rényi case [19].

Critical and supercritical regime. In this case, combining Proposition 3.2 and our explicit compu-
tations of the solutions, we obtain that (X"/S",Y"/S",Z"/S",n~!-S")(6") converges to

(X(text), ¥ (text), Z(text), - (text)) = <o,1 —2/P2 =122 —1, 1%;’;_1”) :

In particular the number of half-edges of the Karp-Sipser core is equal to Sp, = Y, + Zg,, so it is
asymptotically op(n) if b = 1 (critical case). If b > 1, it is linear in n, which concludes the proof of

Theorem 3.1 after a quick computation.

3.4 Analysis of the critical case

In this section, we shall prove our main result Theorem 3.2. In the rest of the paper, we shall thus
suppose that the initial conditions (3.3) are in force. Let us first explain the heuristics to help the
reader follow the proof. We refer to Figure 3.6 for an illustration.

We have seen above that in the critical regime, the asymptotic size of the Karp-Sipser core is
op(n) and that almost all vertices have degree 2 (i.e. with density 1 since y(fext) = 1). Recall that
the process stops at time

0" =inf{k > 0: X' =0},

which by Proposition 3.2 is & feyt - #1. To analyse this stopping time and understand the size of the KS-

core, we need to be more precise in the analysis of the fluctuations of the process (X", Y", Z") around
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Figure 3.6: Heuristics for the proof of Theorem 3.2. The variations of the processes (X, Y, Z)
around its deterministic fluid limit when k = (fext — €)n are displayed above. In particular,

in the case of X, the number of degree 1 vertices, those variations may cause X to touch 0

-2/5 3/5 3/2 2/5

when g, =~ n so that there are gin ~ n°/> vertices of degree 2 and &’ “n &~ n*/> vertices

of degree 3 remaining in the graph.

its fluid limit n - (27, %/, Z). To this end, we define the fluctuations processes (A}, BY, C)o<k<er by

Xp = n2 (5)+4
vp o= no (&) 4By
zp = nz(5)+q

To simplify notation, the n in the exponent will be implicit for the rest of the paper when there is

no ambiguity, even if we will often look at the asymptotic as n goes to infinity.

When we are sufficiently far from the end of the process, i.e. when k = tn for 0 < t < fext We

know from Proposition 3.2 that (X, Y, Z) is well approximated by n - (2", %, %) and classical results

(see Lemma 3.2) will show that the fluctuations A, B and C renormalized by a factor 1/+/n converge

to Gaussian variables whose variances depend on t. To analyse the algorithm towards the end we
will use the notation, for 0 < k < (fextn1) A6,

k
& = text — E >0 so that k= (text - Sk)”'

(3.13)

Notice the bold font for & to avoid confusion. Recall from Equation (3.8) that 2 (k/n), % (k/n) and

3/2

% (k/n) are of order respectively &7, & and g . We will see below that the order of magnitude of
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n V2. Ay, n V2. B, and n=1/2. C; are respectively 82/4, 1 and si/z. In particular, the fluctuations

A of X become of the same order of magnitude as its deterministic approximation nZ" when

2/5 5

ner = ng (text — &) ~ Ag = \/ﬁ-ei/‘l ie. when g ~n5 = nteq —k~n®5,

and this explains heuristically why 0, = fextnt + O(n3/ %) and why the size of the Karp-Sipser core is

3/5 The rest of this section makes those heuristic rigorous and proves

given essentially by Yy =~ n
our main result Theorem 3.2.

We first provide estimations of the conditional expected drifts and variances of the increments of
the fluctuation processes (A, B, C) in Propositions 3.4 and 3.5. These propositions support the above
heuristics and lead us to introduce the renormalized fluctuations processes

- A _ -
A=k By , and Cp=—r—

v Vs
e/t \/n g/*\/n

which, at least heuristically, should be tight in k. After that, our proof consists in two main steps.

Cy

B

First we will show that with high probability as n — co, we can bound —with some log’s— the process
(A, B, C) up to time O(1n3/5) before texn, see Proposition 3.6. To do so we will extensively use the fact
that for C and /T, the conditional expected drifts tend “to pull them back to 0” so that the processes
remain small over all scales. Finally, in a second step, we will show that when k = nfey — tn3/5
for x € R the fluctuation process A is well approximated by a stochastic differential equation, see
Proposition 3.8. The fluctuations Band C are, at this scale, still negligible in front of their differential

method approximation.

3.4.1 Drift and variance estimates

In this section we compute the conditional expected drift and variance of the fluctuations processes
A, B,C. Recall the very important notation & introduced in (3.13). As explained above, it will turn
out that § = 6" is located around ten — O(n%/%) and in the forthcoming Propositions 3.4 and 3.5
we shall allow a little room and only look at times k < @ such that & > n—2/5-1/100 (and indeed the

fraction 1/100 is somehow arbitrary). We thus put
G=0n (textn - n3/5—1/100) . (3.14)
Recall from above the notation

Ziy—nZ (%)
8}(/2—\/5

Recall also that Fj is the o-algebra generated by (X;, Y;, Zi)ogigk- We have chosen the normalization

Ak::— Ek::— and ék::

so that the processes gk, Ek and ék are of order 1 and fluctuate at the time-scale gn, which is why

the conditional expected drift and variances are all of order e,%n
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Proposition 3.4 (Drift estimates). There exists a constant K > 0 such that for all § > 0, there is
n = n(8) > 0 such that the following holds for n large enough. For any (text —n)n < k < 0, if we
have |Ag|, |Bi|, |Ck| < 10001ogn then:

~ 11~ 5 Ke/* <~ K
AA A By, = 30 1
R A (1.160) + 0, (a1
_ SO K
E |ABi|Fi é—\/amax \Aky,\Bky,\ck\ + — /30 (3.16)
En &n

- 1 (3 ~ ) S~ K ~ K
E |ACk| Fi| — — in—ck < —max (|By|, |Gyl ) + —&/* A + —n"1/30 (3.17)
En Ekn &n gn

Proposition 3.5 (Variance estimates). There exists a constant K such that for all 6 > 0, there is
7 = n(8) > 0 such that the following holds for n large enough. For any (texx —n)n < k < 0, if we
have | Ay|, |Bi|, |Ck| < 10001logn then:

Var (AA|F) Zsf <ot ;n“” + anZAZ + X nax (B C?), (3.18)
Var (A4 F) < 2‘/5;; " ;;nl/?’o, (3.19)
Var (Aﬁkyfk) < I:;i‘ (3.20)
Var (Aékyfk) < K;(’l‘n/z. (3.21)

The proofs of the above two propositions follow by examining precisely the probability transitions
of the Markov chain (X,Y,Z) given by Figure 3.3 and basic (though important) analysis of the
behavior of the function ¢ (defined by (3.5)) and its gradient V¢ near feyr. Let us start with a

deterministic lemma based on (3.8) controlling X, Y, Z from the processes A,B,C:

Lemma 3.1. There are absolute constants C,c > 0 such that if | A¢|, |Bxl, |Cx| < 1000logn and Xj > 0
and g € [n=2/57110 y] for n large enough we have

X < Cein x nt/10 Y, < Cen,  Z < Cs3/2

and
Sk = Yk = cegn.

Proof. Recall the asymptotics (3.8). We simply write

X < nZ <:> +&/*/nA, < Cein+1000e*y/nlogn.
(3.8)

3/5-1/100
J

The assumption k < feqt — 1 ie. & = n_2/5_1/100, implies that the second term is

O (&2n x n/100) The other two upper bounds can be proved in the same way. Finally, we have
k

Sk > Yy = n% (k/n) + /nBy > c'gxn — 1000y/nlog n,
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which is enough to prove the lower bound on Sy since gn > n3/5-1/100 i5 much larger than /n logn
if n is large enough.

O

Proof of Proposition 3.4. Recall the definition of ¢ in (3.5) given in terms of proportions, so that

using the notation s = x + vy + z we have

2 3 2
_ X Yz Xz xy | vz xyz z Xz
Px(x,y,z) = 2g—?—3f—2 +7_ 3 ——53—4—53,
z3 xy yzz xyz y 72
¢y(x,y,z)—2<253— 52 _ZST_ 7—2 +2S3),
2 2 2 3
— yz Yz yz xX°z xyz Xz z
$z(x,y,z) =3 <_s2 -5 —4—53 -5 —2753 _4753 _3s3> )

and the fluid limit equation is 27 = ¢x (2, %, %), and similarly for the two other coordinates.
WE START WITH THE ESTIMATE (3.15) ON A. We first decompose the conditional expected drift
as follows:

~ 1 e/t ~
IE[AA ].F}zilE[AA F+ | % -1]A
ki k 3/4 k1 k 3/4 k
n
k+1 k+1
1

=i (B (7 (57) -7 (1)) + (35 1)

Therefore, by decomposing 1/4 =1 —3/4, we can decompose the left-hand side of (3.15) as follows:

’E [Agk‘]:k} +sk1nigk
g/* 31
k —_ S
) (82141 1) A g e A (3.22)
1 X Yo Zi
+ E(x] —ox (350 %) (3.23)
T
1 Xk Yk Zk k Ak Bk Ck k
* | < e > Px ((%,@,ff) <n>> (n,n n) Vox ((%,@,ff) <n>>‘
+1
(3.24)
1 Ar Br G k 1 A,
sl (3 e (o () 4 029
k k+1 k
o (19 (5)) o (7 (550) - ()] -

We will bound each of these five error terms one by one. More precisely, we will prove that the
terms (3.22), (3.23), (3.24) and (3.26) are all O( U

from (3.25). We start with (3.22), which is easy. We smlply write &g = fext — % and &1 = fext — knil

), whereas the other terms in (3.15) come
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This 1mphes =1- s;%n’ SO

gt .81 4 (1)
&/l 4gen (exn)? )’

3/5-1/100

where the constant is absolute. Finally, using gn > n we have

| Ak - 1001 ~3/5+1/10015g 11
(£k1’l)2 = En ’

so we can bound (3.22) by S%n_l/m.

We now move on to (3.23). The drift [E [AXy|Fk] can be expressed as the sum over all the
cases of Figure 6.3 of the probability of each case multiplied by the variation of X in this case. For
example the probablhty for the first case is S" . Approximating E [AXy|Fi] by ¢x <& Y Q) is

n’n’ n
1 by ?"//Z, and similarly for all the other terms. But we have
1
X, —1 Xi/n 1—X7 Xi/n 1 1 X /n 1
= = 1-0 @) = ol =1,
Se—1  Si/n “1-L  Su/n %) TO\s)) T sm O\

Sk

since S > X;. When we do the same computation for all the cases of Figure 6.3, we also get an
error O(Slk) Note that for the last three cases on the bottom right of Figure 6.3, the probability is
already O(Slk), so these cases do not contribute to ¢x(x,y,z). So we can bound (3.23) by

1 1 1 1 1 1 ~1/30
ey <S)L:31O<3/4 xg,l) > 1O<€n>< 2134 > O(nsn>'
€41V kg emes giavn &) sy K (n=5710)3/4/n k

We move on to (3.24). We want to estimate the error when we do a linear approximation of ¢x
near (2,%,%) (%), so we will need to bound the second derivatives of ¢x near this point. More

precisely, we write (v1,v2,v3) = (%, %, %) By the Taylor-Lagrange formula we can bound (3.24)
by
1 ?¢x
3 Y oil x Jo;] % max =5 (11, up, u3)]| . (3.27)
|uy—Z (k/n)|<|vy| | 9X;0X;
k+1\f 1<i,j<3 \Mz 2 (k) ‘<|021| ]
|uz— %(k/n)|<|vs\
By the assumptions of the proposition, we have the bounds:
logn log logn
v1] < 1000/4=2=, <1000—5=, |v3] < 1000&/> ==, 3.28
On the other hand, we can compute the second order derivatives of ¢x, which are of the form (}I:J(:Cyi‘g
for some polynomial P. By Lemma 3.1, we know that uq, up and us are respectively O ( 21/ 100),

@) (Sknl/loo) and O ( 15;/2 1/100), and the sum uy + up 4+ u3 is of order &. Hence, we can consider

the term with the highest order in the numerator. For example, we find

%px  12ud + 28upuz + 1013
9x3  (ur+uz+uz)?
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and the highest order term in the numerator is u% =0 (8%1’11/ 50). On the other hand, the denominator

is of order s‘,f, so we get

92 _
af; (ull U, u3) =0 <€k 2n1/50> )

2
The bounds on % (u1,up, u3) that we obtain for all second-order partial derivatives are summarized
i9%;

in the following table:

i\j 1 2 3

1 0 (81{—2”1/50) 0 <£k—3/2nl/50) 0 (sk—znl/so)
2 | o <8;3/2n1/50> 0 <S;1n1/5o> 0 <€;3/2n1/50>
3 O (2n1/%) | O (5;3/2141/50) O (e 2n1/50)

Combining this with (3.28), we find that each term of (3.27) is

k—l 1/50 loan 1 n1/50 log n n—1/30
@) B =0 — X N = @) ,
k+1n\f &t €1 vn 2y >n—2/5-1/100 &

which bounds (3.24). Note that it was necessary to handle one by one the terms of (3.27) and not

to bound everything crudely by ||v||? x |D?¢x|| (we would have obtained an additional factor & ',
which is too large).
Let us now bound (3.25). We first compute the gradient of V¢x:

Vox(x,y,z) = !

m (—4y2 —9yz +xz — 322, 4xy + 6xz + 222, —x? — 2yz + 3xy + 3xz) )

(3.29)
On the other hand, by (3.8), when ¢ — 0, we have

X (text —€) ~ 3%, W (text —€) ~4e , X (text — €) ~ 432

Therefore, we can replace (x,y,z) in (3.29) by (Z°(t), % (t), Z(t)) and let t — fexy. We find that
there are constants K,# > 0 such that, for any 0 < & < 77, we have:

Apx 1] ¢
pp (2,7, f'f)(fext—ﬁ))—g S
L (2,9, 2) (les — )| <K,
9 K
’ ayX (Z,%,2) (text —€))| < 7

This is the value of 77 that we take in Proposition 3.4. We can now replace € by & € (0,7) and we
obtain the following bound on (3.25):

VRS RIS SRS SRS SEVRE BT
- 2742 — 4%k _ 272 ~—I|Pk
an " ya gy
5 L K 14~
- = 4B
Ek‘ k|+ |Be| + s |Cx|
5 TO00K
< 1A+ ooo M logn
&kn Ekn
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We finally treat the term (3.26). We recall that 2 solves the equation 2" = ¢x(2, %, %),
so this is just a linear approximation, so we will need to bound the second derivative 2™'. More

precisely, (3.26) is bounded by

1\2
3/+ X <> x max_|27"|. (3.30)
gV N [

Moreover, by differentiating 2" = ¢x (2, %, %), we have

20 = (05 02+, ) (20, 20, 20)

- %t))‘* (2 (1) —22° ()2 (1) +8 () Z (1) + 112 (1)?).

This is a continuous function of f on [0, fext). Moreover, by (3.8), we have

44/3¢3/2
(40t

so 2" is bounded by a constant K. Plugging this into (3.30), we can bound (3.26) by 83/4% =
k+1

0(22)

WE NOW MOVE ON TO THE ESTIMATES (3.16) AND (3.17). Since the proof is similar, we will not

X (text — €) ~e0 x 8 x 4e x 4v/363/2 = 6,

do it in full details and only stress the differences with the proof of (3.15). The decomposition of the

error into five terms is the same with the following modifications:

21/2 ~
S = 1) G~ 305Gk
k+1

e in tlie terms (3.23), (3.24), (3.25) and (3.26), the factors iﬁ\f become f for B and iﬁf
for C;

e the first term (3.22) becomes for C, and disappears completely for B;

e in the fourth term (3.25), the drift s;%ngk becomes 0 for B and 3\2—651{ — %ék of C.

—1/30

The first and second term can then be bounded by O ( > in the exact same way as for A (this

3/4

bound actually becomes cruder for (3.23), since now the factor &1

in the denominator disappears
or become larger).

The bound on the fifth term (3.26) is also very similar: we now have

g —
(1) =3 (27 +42Y 1497+ 822 + 149 X +1127) (1) = O ((text ) 1/2) _

71/2
Therefore, the analog of (3.26) for B (resp. C) is O (T X 1 X (%)2 X z—:k_l/z) =0 ( e > (resp.

-1
@) <;§/Z>) In both cases, this is O ( NSO).
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The analog of the third term (3.24) is still very similar, but requires to be more careful. In-

deed (3.27) becomes respectively

1 824)1/
= 2 |vilxlolx — max oo (11,12, 13)] (3.31)
3 n<ii lug—2 (k/n)|<|vr] | 0X;0X
ST s (k/m<iosl
luz—2 (k/n)|<|vs|
and
1 324;2
— v;| X |v;] X max ———(uq,up, usz)|. 3.32
\/ﬁlgi,j<3| l| | ]| |y — 2 (k/n)|<|v1] axiaxj( 172 3) ( )

lug—% (k/n)|<|vy|
luz—2 (k/n)|<vs|

~ ~ 2 2
for B and C. Moreover, when we compute the second order partial derivatives aax.‘g;v and %, we
(s (s}

get respectively the following tables:

i\j 1 2 3
O (.23 | O (e 2n'/%) O (&, 2n'/%)

2 | 0(g2n/%) | O (8;3/2,11/50) O (& 2n1/)

3 o (sk_znl/50) 0 (£k—2n1/50) 0 <£;3/2n1/50>

—_

i\j 1 2 3
0 <gk—3/2n1/50> 0 (81:3/2,11/50) 0 (8;2711/50)
2 o <£;3/2n1/5o> 0 (5;3/2111/50) 0 (£;2n1/50)

3 9] 8;21’11/50) 0) (8]:2711/50) O (8;21’11/50)

In both cases, using (3.28), we find that each term of (3.31) or (3.32) is

8,:3/21’11/50 logzn 1 n1/50 logzn n—1/30
O /3 3/ =0 —x —2— ] @) .
&1l &t eV e>n" 510 Eklt

Finally, to handle the analog of the fourth term (3.25), we just need to compute the gradients of
(Py and (Pzi

(SN}

Voy(x,y,z) = Giyrap? (2xy + 6y* + 6yz — 82%, —2x* — 6xy — 6xz + 4yz + 1227, 8xz + 4y* + 12yz)

Voz(x,y,z) = CESEE (3xz +9yz + 1522, 6yz + 1222, —3x% — 9xy — 15xz — 6y> — 12yz) .

As in the first case, we can now replace (x,y,z) by (2 (t), # (t), Z(t)), use (3.8) and identify the
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highest order terms in fexy — t. We find that there is a constant K such that for all 0 < t < tey:

by K
™ (2°(t),#(t), Z(t)| < o 1
&ﬂ K

Sy (2020, 20) <

9 K
T EOI020) <

3 K
5%@%UL@ULgU»5§@;iBW?

Moreover, there is # > 0 (depending on J) such that, if texy —# < t < fext, then

20 3v3 1 6
e o 0,200) -2 il <

'My 3 1 ‘< 5

3y (20,7, ZM) + 57— S ¢

From here, taking t = % and replacing (Ayg, B, Cx) by ( /4fAk, /1By, € /z\ka>, we easily ob-
tain the claimed bound on (3.25).

O

Proof of Proposition 3.5. Just like in the proof of Proposition 3.4, we first introduce the following

functions (again with the notation s = x +y + z):

2 2 3
¥x(x,y,z )—4 +4xy yf+yz+9—+2xyz+2—+z
2 3
Xy y y xyz XZ
Prixyz) = 5 +ah +als 127 12 1 a,
2 2 3
Yz(x,y,2) = g+ﬁ+8yz +—+2xyz+8 9%.

These functions are respectively the fluid limit approximations of E[(AX)? | Fi], E[(AY;)? | Fi]
and E[(AZy)? | Fi] and can be computed from the transitions given in Figure 6.3 as before.
VARIANCE OF A. Let us start by establishing (3.18). We first note that, since adding a function of

Ay does not change the conditional variance on Fj, we have

~ ~ 1 1 1
Var AAk‘./_"k = Var (AAk + ( - ) Ak|fk> = ———Var (AAk‘Fk) —>— Var (AXk|./_"k)
(27 i) M) " i

Therefore, we can write

Var (AAkyfk) 7B [(AX2|F] — <5 E [AX A,

&l €1
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SO

2\@<

&N

1

3/2.
&l

1 Xy Y Z
+ 75— E [(AX0)?|Fi] — ¥x (k, k,k)‘
&

s G ) e (7 () (5) = (3)
Hg;lzln o (2 ()7 (5) 2 (5) - (vava)

7, | (2vava) - (2vavai)|

Var (Aﬁkyfk) - E [AXy| Fi]? (3.33)

—2/5-1/100

The first term can be bounded by using Proposition 3.4 and & > n Moreover, by the

exact same argument as for term (3.23) in the proof of Proposition 3.4, the second term is

o 1 1 _ 5 1 B o n—1/30
83/2 n x 57]( Ler;&] 85/21’12 21 En ’
pae] k e>n 5 100

We now bound the third term of (3.33). If we write (v, v2,0v3) = (%, % 7’{) this is bounded
by

IPX(

- (3.34)

Y, 2)|-

3/2 2|

€1

max
\x—%(k/ﬂ)\ﬂvll
ly— (k/n)|<|on|
2= 2 (k/n)|<|os]

Just like for ¢x in the proof of Proposition 3.4, we can compute the gradient of ¥x: the partial

P(x,y,z)
(xty+z)%

Lemma 3.1, just like in (3.27), we have that x, y and z are respectively O (e%nl/loo), (@) (sknl/loo)
and O <£i/ Znt/ 100) and that the sum x +y + z is of order g;. Therefore, by considering the higher

derivatives are of the form where P is a homogeneous polynomial of degree 3. By using

order terms in the polynomial P(x,y,z), we obtain the following estimates:

all’x (x,y,2) = O (81(—1”3/100) / ¢x (x y,2) =0 (£k—1/2n3/100) , a;bx(x,y, ) =0 (Skfln3/100) .

Combining this with (3.34), we get that the third term of (3.33) is
3/100
n logn
en
using & > n~2/571/10_ this is O ("

We now bound the fourth term of (3 33). For this, we use again (3 8). In particular, when we write
down Yx (2,9, %) (text — €), ~ v/3/€ and @j ~ V/34/¢, s0

we have

—-1/30
&n

Px (2,9, Z) (fext — €) ~es0 2V3Ve.
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In particular, taking € = g, if we choose # small enough the fourth term of (3.33) is bounded by s%n'
Finally the fifth term is also smaller than s%n if & is small enough. Gathering-up the pieces we have
established (3.18).

The bound (3.19) follows from the same proof by noticing that the only term of (3.33) which

A2 B2 2
g/

makes the errors appear is the —IE [AXk\]:k]z, which is negative.

VARIANCE OF B. The bound (3.20) is immediate: for the same reason as with A, we have

- 1 9
Var (ABk|}"k) = —Var (AY|F) < -,

since |AYy| is bounded by 3.
VARIANCE OF C. Finally, we prove (3.21): as before, we can write

~ 1
Var (ACklfk> = E [(Azk>2’fk] —E [AZk’fk]z
Ek+1n
1 X Yy Z 1 X Yy Z
< g [FlOzP17) 2 (G )| e (G T).
k+1 k+1

By the exact same argument as for g, the first term is

1 1 1 172
o(atud) o (i) o)
&eai1n Sk gn &n

where the first equality comes from Lemma (3.1) and the second from g > n=2/571/10_ On the

other hand, noticing that every term in 1z (x,y,z) has a factor Z, we can write

Xe Yo Ze\ _ (%) - g%n\ _ 1/2
lpz(n'n’n)_O(Sk =0 &n _O(sk )’

where the second inequality comes from Lemma 3.1. This proves (3.21).

3.4.2 Rough behaviour of A,Band C

In this section we will use our drift and variance estimates to control A, E, C. Recall notation from
(3.14) and (3.13). We shall get a rather rough control on A, B and C (Proposition 3.6) and later
refine the one on A. In the rest of this subsection, on top of the constant K > 0 given by Propositions

3.4 and 3.5, we fix

1
=100

for definiteness and let 0 < y = 5(d) < 1/2 so that we can apply the above propositions. In
particular, the value of # does not depend on 7, nor on the coming € > 0 and its value may be
decreased for convenience by keeping the same 6. In the coming pages Cst > 0 is a constant (which

may depend on the constant K or the now-fixed § = ﬁ) and that may increase from line to line, but
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whose value does not depend upon n (provided it is large enough), nor #, nor on the forthcoming e.
On the contrary K, is a constant that depends upon € but also upon # in an implicit way.

The value 7 shall give our “starting scale” ko = | (fext — #7)n] which is such that &, = # and we
shall then look at times kg < k < 6. We start by controlling the fluctuations at ko.

Lemma 3.2 (Fluctuations in the bulk). For all € > 0 there exists Kc > 0 so that for all n large
enough, with probability at least 1 — € we have

max(|Ag,|, |Bi,|, |Ci,|) < Ke and 8 > ko. (3.35)

Proof. Classical results entail that on top of the law of large numbers for the process n=! - (X", Y", Z")
given in Proposition 3.2, we have a functional central limit theorem for their fluctuations, as long
as we stay in the bulk. More precisely, for 0 < t < (fext — 1), the solution given by the differential

equation (3.5) is bounded away from 0, i.e.
inf{min(Z°(¢),# (), Z(t)) : 0 <t < (text — 1)} >0, (3.36)

and thanks to our hypothesis (3.3), the initial fluctuations Ag, By and Cy are bounded so that
(Ao, Bo, Co)/+/n converges to (0,0,0)°. Therefore, we can apply [%5, Theorem 2.3 p 458], which
implies that

Al Bin) Cin)\ gy
\/ﬁ ’ \/ﬁ ’ \/ﬁ . X b x lext 17
converges as 1 goes to infinity weakly to a continuous random processes driven by a nice stochastic

differential equation. Furthermore [385, Theorem 2.3 p 458] entails that the terminal value

A (tea—mn] Bltea—mn] Clltex—n)n]
v oy n

converges towards a Gaussian law whose covariance depends on # only. Given (3.36), this implies
that w.h.p. we have Xj > 0 for all 0 < k < (text — 7)1 (in other words 0 > (text — #)n) and that
|g£(fext*?7)nj |, |§L(text*77)nj l, ‘ét(fexrv)nj | are tight. The statement of the lemma follows.

After this initial control, we shall provide a rough upper bound on the fluctuation processes.

Proposition 3.6 (Rough upper bounds). For all € > 0, there exists a constant K¢ > 0 such that for n
large enough, with probability at least 1 — € we have

A

k0<k<§

Remark (The truth). The proof of the proposition shows that we can replace the 3/4 exponent by
1/2+ 6 for all § > 0. We anyway expect an “iterated logarithm” behavior for A so that we could

6We could have allowed o(+/n) fluctuations, but not o(n) as in Theorem 3.1.
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replace |log(g;)| by |loglog(ex)|. In the same vein, a little more effort would yield that B and C

“converge”” but our estimates will be largely sufficient for our purposes.

Proof. In light of the form of the drift of C obtained in Equation (3.17), we will rather consider the
process Ek~: ék: ?’zﬁgk instead of C, but notice we can control |Cy| < 3—\2/§|§k~|+ |Ef’ using the
processes B and E so that it is sufficient to prove the proposition after replacing C by E. Introduce

L the first time at which one of the those three processes becomes large, i.e.

i i
L:Q/\min{k}kozmax (HJg;knm,yBk\,yEkO >1<6}.

We call the region defined by the above inequalities on (g, B, 6) the good region for the processes
and evaluate separately the probability that we exit this region (i.e. that L < 5) via one of the three

processes A,Bor E. By definition (3.14) of 8 and since we will always take n large enough to have
Ke(1+log3/*(n)) < log(n),

as long as kg < k < L, we can apply the estimates obtained in Propositions 3.4 and 3.5. Specifically,
we will decompose the processes A,B and E into their predictable and martingale parts and use
Doob’s maximal inequality and L? estimates to control the martingales.

LET US START WITH B. We write for ko <k<L,

k—1
gk = Ekg + Z E [A§[|f4 + M}j
(=K,

where (MP, | )i=k, is an (Fy)-martingale which starts from 0 at time ko. We first evaluate the
drift /predictable part. To ease the calculation and readability, we will deliberately drop the integer-
part notation |-| and introduce scales. Recall that the value of 7 = &, has been fixed above, but we
may decrease it for convenience as long as it is independent of n and €. We start from kg = (text — )1

and we let

ki = (fext — 172_j)n,

for 0 < j < (3 + 155)1og,(n). In particular we have j + |log, 17| < |log, &| < (j+1) + |log, ] for

"To be precise, and stressing the dependence in 1, the processes (E'[1 : t € [0, text]) converge in law for the ||||co

tn| A"
distance towards a limiting process (Bt te [O, text]) which is continuous and in particular continuous at text. Similarly
(C = %P8,

finjpen * € [0, text]) — (Ct : £ € [0, text]) for a random continuous process and furthermore Cy,, =

ext *
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all kj < k < kj 1. With this notation, and using our estimate (3.16), we know that if k > ko we have

1 o max (1A, Bl 1Cl) 4
1 E |AB/|F, < Cst Y 1 + —p1/30
k<L g;‘o [ d 4 (3.16) g,:‘o t=t VeEm gmn
> 1 4411
< CstKee Y Lo <|0g€e|+ +n1/30>
good region (=K \/571 &mn
log, (n) kj—1 ; 3/4
+|lo 1 _
< Cst-Ke- Y. ) G+ 8if7|) o 1/30
scales =1 t=k; 4 \/Wﬂ n n
log, (n) ; 3/4
+ |lo
< Cst-K.- (\/ﬁ(] |2]%§’7|) +n1/3o>
j=1
log, (1) .
+1 _
< Cst- K¢ - |logn| - <\/ﬁ]2j/2+n 1/30>
j=1

< Ke-(Cst-y/llognl),

for n large enough where Cst > 0 is a constant that may vary from line to line but that does not
depend on 1, nor on € nor on y as long as it is small. In particular, we may decrease the value of
1 so that the parenthesis in the last display is smaller than 1/4 say. We obtain that the sum of
the absolute values of the expected conditional drifts of B between ko and L is bounded by K¢/4
(deterministicaly).

We deduce that the event {L < @ and |By,| < K¢/4 and |Br| > K¢} is included in the event
{L < 8 and [MB| > K/2} so that in particular we can write

P (L < § and we exit the region by E) < P (y§k0| > K€/4) +P (L < and [MB| > K€/2>

< P (y§k0| > Ke/4> +P ( sup |MB| > K€/2>
ko<k<L
E [(M})?]

< P (1B > Ke/4) +4—5 0k
€

Doob

Up to increasing K. we can bound the first term by € using Lemma 3.2. To bound the second term,

we use our variance estimate (3.20) which gives in the good region

E [(AM,?)2|}',<, k< L} = Var (AME|fk, k< L) = Var(AB|Fi, k< L) <

K
(3.20) n

By the orthogonality of martingale increments in L? we deduce that

ad K(textn — k
E((MP)?) = Y E[(aM)10 |7 < KUt =R _ g,
k=ko

Hence we obtain

IP(L < § and we exit the good region by B) < € + 16

E[(MB)?] 16K7n
—r o Sef

€
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If K¢ is large enough, the second term is also less than € so that the probability in the left-hand side
is small. Conclusion: it is unlikely that we exit first the good region because of the process B.
CASE OF E. The proof is similar, but we shall use more precisely the form of the conditional expected

drifts. As before, we write
k-1
Ee=Ey+ Y E [AEKW} + ME
=k,
where (M, | )ksk, is an (F)-martingale which starts from 0 at time ko. We will bound P(L <
6 and EL > K¢) and the case EL < —Ke will be treated similarly. Let us introduce L, the last
time before L where E is smaller that K./2. In particular on the event {L < 0 and E; > K.}, for

L, <k < L the process Eis larger than K./2 and its conditional expected drift therefore satisfies

. 1 = 3v3 [ K o= = K
]E[AE ]:]—— E < < emax(A,B,C>+n1/30>
ki Ex1 (3.16)&(3.17) 2 €k”ﬁ Al 1Bl 1l &n
>Ke/2
5 - K K
+-% max (]Bk\, |ck|) + — A Ay —n /D
Exn &n g
043K ~ o~ 4K ~ 4K
< RV o (B 1G) + 2K e A 1 2K
En &n &n
1/2 3/4
< K. (2(5+3K\/a) | 4Key | log &%/ )
good region En En

n large enough

Up to further diminishing # (which forces & < # to be small), we can assume that the right-hand
side is smaller than K¢/ (4gn) for n large enough so that we are sure that the conditional expected
drift E [AEk]}"k] is less than —K¢/(4gn) for Ly < k < L and in particular it is negative and pulls

back the process towards 0.

A

ko W Ly L -

Figure 3.7: lllustration of the proof. If we exit the good region through the process E, then

it has a negative drift (green arrows on the figure) over the time interval (L;,L) and this

forces its martingale part to vary too much.

We deduce that on the event {ky < Ly <L< 0 and E; > K¢} the variation of the martingale
ME over [Lz, L] must be larger than K¢/2 (just because the drift plays against the process in this
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region). Hence,

_ . K
P(L <8 and Ep > Ke) <P(Lp <ko) +P | sup |ME | >=5
ko<k<L 4

We now use our variance estimates (3.21) and (3.20) in the good region. In particular,

3
E {(AM,’?)ZJLKL} — Var (AankgL) — Var ((Ack _ \[ABk> ILKL>

~ ~ Cst
< Cst - | Var(AGk1 + Var(ABj1 < ,
( ( ¢ KL) ( g kgL)) (3.20)&(3.21) \/an

where Cst > 0 as usual does not depend on # nor on € nor on . Summing those variances over one

scale we obtain

kit1-1 T iy
5 Cst < Cst(kit1 k) < st 2 n27'n — Cstyi(VD)
K=k, V EkM Vi V27
We deduce that
Pl aup ME > Ke) < 16E[(M)?] _ CStikifluz[(AM 11, < N
7| .S T S k<L
ko<k<L ¢ 4 ) Doob Kz Kz = k=k; ¢ ) Kz

If K¢ is large enough, this bound, as well as P(L; < ko) (by Lemma 3.2), are less than € so the
probability of the event {kg < L < 6 and EL > Kc} is less than 2e. Combined with the symmetric
case when E; < —Ke, this finishes the case of E.
LET’S FINALLY MOVE ON TO THE CONTROL OF A . Again, we decompose A as follows
Ap=An+ Y E [AAA}}} + M4,
I=ko
where (M,’?AL) k>k, is a martingale for the canonical filtration and starts at 0 at time kg. Compared

to the above cases, we shall look more precisely at the scale of L and introduce
J such that k; < L < kjyq.

In particular, recall that if k; < k < kj1q1 we have j+ [log, 77| < |log, &| < (j+ 1) + |log, | so
that up to losing a multiplicative factor, we may replace |log&x| by the corresponding scale j in the
calculations. As before, let us bound from above the probability that we exit the good region with
the process A, that is

P(L < 8 and A; > K. - (] +1)%%)

and the case L < 6 and A < —K, - (J +1)%/* is symmetric. As for the case of E, we introduce L,
the last time before L where A is smaller than Kc(J4+1)%/#/2 and I its corresponding scale (i.e. such
that k; < L, < kjy1), see Figure 3.8. As before, we get from Lemma 3.2 that L, > ko with high
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A K5j3/4

kO kl kr

kriq k; ky+1

Figure 3.8: lllustration of the proof. If we exit the good region through the process A, thenit
has a negative drift (green arrows on the figure) over the time interval (L, L) whose strength

is proportional to J3/4K. over a scale. As in the above cases, this forces its martingale part
to vary too much.

probability when K is large. We will now use the fact that the conditional expected drift of A not
only goes against A but also that its strength is linear in A.

Specifically, when L, < k < L, the process A is larger than K¢(J + 1)3/4/2 while the other

processes are in absolute value less than K¢ so that by (3.15) the predictable drift is negative and of
order —Ay/ (gen):

~ 1 ~ o |~ Kel/* -~ K
E [AAk\fk} - A < |Ak\+—kmax(\3k|,\cky) b p1/30
4€k1’l N~ (3.15) En En &N
2K (J+1)374/2
1/10 2 Ke K 13
< Ke(J+1)* + =L Ke 4+ —n"V
good region €N &n &n
1
< %Ke(] + 1)3/41 (3.38)

~ /

for n large enough up to diminishing # if necessary. In particular, IE [AAk\]:k} is less than — % U t:]): !

and summing the conditional expected drift over all k € (L}, L) yields total drift smaller than
L-1

Y E[AA(F] < —c- (J—I—=1DK(] +1)*4,
k=L,+1

for some constant ¢ > 0. Let us first concentrate on the case where I +1 < [ sothat [ — I —1 > 0.

In particular, the variation of the martingale M4 between L, +1 and L must compensate this drift
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and must be larger than —c(J — I — 1)K¢(J 4+ 1)3/4. Thus, we have

]P(ko <L;<L<f@andI+1<]and KL/(]+1)3/4>1<€)

logy (1) j—2
< ) Z]P( sup M — inf Mg‘>c(j—i—1)1<€(j+1)3/4>

=2 im0 \k<l<kjaAL Kist<kja AL
logy(n) j=2 E[(MA , — M{#)?]

< Cst ) ) 2 kﬁ;/AzL 'kl 2
Doob j=2 i=0 Ke(]+1) (] 1_1)

Thanks to our variance estimates (3.19) we have E[(AM{)*1,1] < $ CSt so that after summing over

scales we obtain ]E[(M,‘g - M;{?)Z] < Cst- (j+1—1i). Plugging thls back into the above estimate

+1AL
we deduce

]P(ko <L;<L<fandI+1< ] and AL/(]+1)3/4>1<€)

lo
_ Cst Bl (G+1—1) Cst
. < 75
kL 1201+13/2 i—17 S K2

so that this probability can be made arbitrarily small by making K. large. The case Ay /(] +1)¥* < —K,
is treated similarly. As for the case |I — J| <1, since kg < L, w.h.p. (by Lemma 3.2), we use that

in this case the martingale M# must have a variation of at least Ke(j + 1)3/4/2 over (kj_1,kj11) (we
do not use the strength of the drift, but just the fact it plays against us over (L, L) as for the case

of E) By Doob maximal inequality and the above estimate, this probability is bounded from above
by Cst/ ((j +1)%2K2), whose sum over 0 < j < log,(n) is < CSt . We conclude similarly.

O

3.4.3 This is the end

Using Proposition 3.6 and (3.8), we can conclude as in Lemma 3.1 that the process X stays positive

at least as long as
ne,% > \/ﬁ(ek)3/4| log ek]3/4, i.e. as long as  teht —k > n3/5(log n)3/5.

Through a more refined control on g, we shall first prove that we can remove the log3/ > and
prove that ntes — 60 = Op(n3/%), see Proposition 3.7. The convergence in law of n73/5(ntex — 6)
will be deduced by doing a SDE approximation for the process gk when &; ~ n~2/% in Proposition 3.8.

Since we now take a close look at times k = fexitt — O(n3/ 5), let us introduce a new piece of

notation: for k > 0, we write
ty = n’3/5(textn —k), sothat k=teun— tn® ie. g = tn >

With this notation at hands, we can state a refined control on A.
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Proposition 3.7 (Control on A in the critical region). For all € > 0 there exists K such that with
probability at least 1 — €, for all k < texn such that t, > K¢, we have

|Avk‘ < th}{/g.

In particular, performing the same argument as in the beginning of this subsection, we deduce

3/5 with probability at least

that X stays positive until time tegnt — Kett/2, that is 0 > tegnt — Kent
1—e.
Proof. The proof is similar to the control of Ain Proposition 3.6. With the notation of the proof of

Proposition 3.6, let us introduce
~ 1
T = LAmin{k > ko : |Ax| > Ke - £/}

and J € {0,1,2,...} the corresponding scale, i.e. such that 20>t > 20-1)_ As for the previous
control of A , we will replace t1 by 2/ in the calculation to make the reading easier. Note in particular
that k — #; is decreasing.

We bound the probability P(T = k < L and Ay > K - 2§), the case {T = k < L and Ay <
—KGZé} being similar. For this, let « > 0 be a small constant (to be precised later), and let

T~ = sup {ko <k<T: Ay <a(l—J+1D)K2/8 with 271 < ¢, < 21}

and [ > | its corresponding scale (notice the slight difference here with the proof of Proposition 3.6
because I enters in the definition of the barrier). As before, Lemma 3.2 will entail that T~ > ko
with high probability as # — oo and when kg < T~ < k < T and 271 < f < 2!, we have
A > a(i — J +1)K:2//8. By the same calculation as in (3.38) we have

w(i—J+1)K2/8

E[sddA] < g,

Summing those expected conditional drifts over all T~ +1 < k < T yields a total drift smaller than

T-1 -1
Y, EDAJAR] < )Y Y L0 E[AA]F]
k=T +1 scales i=]+1k>0
v = 8 1
< -3 Y (i =T+ DK2BY Lyiny g —
i=]+1 k>0 &M
p 11
< - Y (i—J+DK278
16,57,

14

< — ] —1)2K2)78,

Let us first focus on the case I — ] > 2: as soon as T~ > kg the variation of the martingale M4
between T~ and T must compensate this drift plus the difference of the starting and ending values,

and so must be larger than

K2’ (1‘%(1—]— 12 —a(I-]+1) +2—1/8) :
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If « has been chosen small enough (e.g. &« = ﬁ), as soon as [ — | > 2, this is larger 31—21(62]/8([ — )2
As in the proof of Proposition 3.6, the sum of the variances of the increments of M* between

scales i and j is bounded above by Cst(i — j) and so the probability that M# varies by more than

1

3—2(1' - j)2K€Zj /8 over this time interval is bounded above using Doob’s inequality by

Cst =] —.
((i —j)2K:2178)

Summing these probabilities over all scales jo < j < i, we deduce that
1P(k0<T’ <T<LandI—1>]> andﬁT>1<€2f/8)
Cst i—j Cst - 27Jo/4

<y 7 <
2 i \4nj/4 2
Ke i2j+2>jo+2 (i—j)r2/ Kg

and this can be made arbitrarily small by taking jo large enough. Finally, we treat the case 0 <
I — ] < 1 similarly, by noting that in this case, if kg < T~ (which has high probability by Lemma
3.2), the variation of A between times T~ and T is at least (271/® — 2a)K.2//8. Since the drift is
negative, the martingale M4 must have a variation of order K.2//8 (provided a < %) over the scale

J, and the conclusion is the same.

O
In the rest of this subsection we stress back the dependence in n and use 8" = 6 for the stopping

time of the exploration and study the convergence of
tgn € R such that 0" = teyn — tgnn3/5.

Proposition 3.8. We have the following convergence in distribution as n goes to infinity

tor —2Ly 373/5 . 04/5 g2,
n—oo

where © = inf{t > 0: W; = —t 2} with W a standard linear Brownian motion started from 0 at 0.

Proof. Fix € > 0 and let K. > 0 so that on an event &, of probability at least 1 — 3¢, the conclusions
of Lemma 3.2, Proposition 3.7 and Proposition 3.6 hold. Fix KZ! > & > 0 small enough so that
K218 < e. We shall first focus on the times k satisfying ¢ < tp < &1 and consider the renormalized
process N

~ Ak

k

Let us compute its conditional expected drift and variance: for k < 8" with & < t, < &1, on the

event &, the assumptions of Proposition 3.4 hold, so that using & = n~2/%t; we have

= o 5 K 130_ 0 & K 130
23 1 2V/3 )

Var (Afk|]-"k, 8n> — Var (Agk|Fk) -

3/2,3/5 1/2 3/2,3/5|  £3/2,.3/5°
£/ *n®/ t £/ 3/ £/ n3/
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We now make ¢ vary with n and take 6 = J, T> 0 in the above displays. Indeed, using the notation
n—oo

of Propositions 3.4 and 3.5 we can do so as soon as (d,) > 1/¢ - n=2/5. To avoid stopping times

issues, we possibly extend F after time 0" (in the case tgn < ¢) by a process F whose increments are
+( 23

ti/2n3/5

)1/ 2 with probability 1/2 (in particular independent, centered, with variance and

ti/2n3/5
whose L®-norm tends to 0 uniformly as n — o0), so that our estimates (3.39) and (3.40) remain true
for all {k: & < tx < & '}. Let us recapitulate what we have: with probability at least 1 — 3¢ for all

{k:e<t <)

|ﬁntext—é‘*1n3/5| <€, (by Prop. 3.7 and the assumption K.&/8 < ¢),

E[AF|Fi] = o(n™3/%) - |F| + o(n™/5),

2 2v3 ~3/5
Var (AFk|fk) = W‘FO(TI ),

( [[AFleo = o(1),

where the o(1) function is uniform in {k : & < t; < ¢~'}. By standard results in diffusion approxi-

mation, see e.g. [127], this implies the following weak convergence for the ||||c-norm:
(Ffext”*”ﬁ“ - Ftexrn*€‘1n3/5>¢<t<¢ﬂ o Hecrse s

where the process H satisfies the stochastic differential equation (in reverse time) dH_; = %f){gdB_t
with initial condition Hz1 = 0. By Dubbins-Schwarz theorem, the solution of this SDE can be

written as

vt Vet ) g<i<g!

where W is a standard linear Brownian motion with Wy = 0. Letting € — 0 and ¢ — 0, we deduce

2.31/4 <w1 - W

the following convergence weak convergence over all compact subsets of (0, 00):

. ) W . 3.41
(textnftnws O<t<oo H—00 ( \}E>0<t<oo ( )

To see that the above convergence implies the convergence of stopping times recall that

, Fo=—n*52 (k/n)/t}
, B < =52 (k/n) /).

ton :=sup{ty >0, Xx =0} = sup{t

In particular, the time fg» can be seen as the first time when started from +oo that the process F

crosses the barrier " defined by
C"(t) = —n*S2 (k/n)/ty.

Recalling (3.8), we have —n4/5<%”(k/n)/tk ~ —3t;, so that the barrier " converges towards the
graph ¢ of the function t — —3t. Since the crossing of C by (Wl/\ﬂ 0<t< oo) when started
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from 400 happens at an almost surely positive time T and since W immediately takes values strictly
above and below % after hitting it, it follows that

tor s 7 = sup{t >0: 2-34. W, = 3t}

n—00 Vi

By scaling we have the equality in distribution

T @ sup{t>0:2-31/4-WL=—3t}
33/4 -2
= <inf{u >0:W, = —2}>
u=1/t
-2
o <1nf{u NG — Wy, = }
1 3%/4 -
((x inf{v >0: W, = Vaa?- _2}>
33/ —4/5
° _ -2
- 33/4 ( 5 ) (inflo >0: W, =0 })

The statement follows.

3.4.4 Proof of Theorem 3.2: Size and composition of the KS-Core

We have now all the ingredients to prove our main Theorem 3.2. First by Proposition 3.8, the
renormalized ending time tg: converges in distribution to 2#/3373/592 where @ is the hitting time

of the curve t — —t~2 by a Brownian motion. At this time, by Proposition 3.6 and (3.8) we have

o"
an = Bgn +n% | — ~ 4t9n 1’13/5,
~—~— n
< Csty/nlog(n)¥/4 ~———
Prop.3.6 ~ 4tgn1’13/5
(3.8)
on
Zon = Con + n (n> ~ 4382 n?/0.
< Cstnd/10]og(n)3/4 N——~—"
Prop.3.6 ~ 4\/51-9;1”2/5
(3.8)

Moreover using Proposition 3.1, the KS-Core is just obtained by pairing the remaining half-edges

uniformly at random. Our theorem follows. Oulff.

3.5 Comments

We conclude this paper with a few perspectives that our work opens.



108 CHAPTER 3. THE CRITICAL KARP-SIPSER CORE OF RANDOM GRAPHS

Near critical heuristics. We believe that our techniques can be used to tackle the near-critical
window for the Karp-Sipser core. In particular, this window should be obtained by starting from

1e=n(l- \ég) +0(n*?), 243 =0(n*%), and3d}i, = n\f +0(n%9),

whereas we studied only the critical case (3.3). All these shifts in the starting configuration should
result in a shift of order O(n3/5) of the absorption time. In a similar vein, one could study the “Phase
2”7 of the Karp-Sipser algorithm [19] which, in the supercritical case, consists in removing a uniform
vertex when there are no leaves left. The analysis of this phase should be intimately connected to

the above near-critical dynamics.

Universality. Obviously, we conjecture that the geometry of the critical core and the scaling limits
results are independent of the fine details of the model of random graph we started with. In particular,
it should hold for the Erdés-Rényi case or for configuration models with small enough degrees.
However, proving a general result seems challenging because we heavily rely on the exact form of the

fluid-limit of our exploration processes (such results are available for the Erdés-Rényi case, see [19]).

Stopped Markov chain. More generally, we believe that the techniques developed in this paper
could be used to understand precisely the exit times of Markov chains from domains. To fix ideas, let
(X":k>0)bea Z%-valued Markov chain whose expected conditional drift is well-approximated by
(X" /n) for some function ¢ : RY — RY. The differential equation method shows that under some
mild assumptions (n—lx'fm : t > 0) converges towards a solution X' to X’(t) = ¢(X(t)). I Qisa
bounded domain and Q" its discrete approximation, it is reasonable to believe that the exist time 6"
of (" by X" should converge after normalization towards the exit time tey of (2 by X'. However, the
fine fluctuations of 8" around ntex should depend on fine properties of ¢ (and its derivatives) near

the exit point. We plan on addressing those general questions in future works.

Comparison with the k-core phase transition. Finally, it is interesting to compare our results with
the appearance of the k-core in random graphs as studied in [150, |, where the phase transition is
discontinuous.

Recall that the k-core of a graph g is the maximal subgraph of g’ C g so that the induced degree
inside g’ of each of its vertices is at least k. The emergence of a giant k-core has been studied for
the Erd6s—Rényi random graph and the configuration model, see [150, ]. A difference with the
Karp-Sipser core is that the phase transition is discontinuous: when the k-core exists asymptotically,
its proportion is bounded away from 0. This can be explained heuristically as follows.

Suppose for the discussion that k = 3 and that we are interested in the size of the 3-core in a
configuration model on vertices of degrees 1,2,3 and 4. As in the case of the Karp—Sipser algorithm,
one can reveal the 3-core by iteratively taking a leg attached to a vertex of degree < 2, remove
it, and destroy the vertex it is attached to as well as the connection it makes in the graph (hence

diminishing the unmatched degree of the vertices in question). As in this paper, if one starts with
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some proportions p1, p2, p3, P4 of legs attached to vertices of degree one, two, three and four, we can
write the differential equation governing the fluid limit of this process, see [108]. The main difference
with the Karp—Sipser core is that in this case, the number of legs attached to leaves (to be precise to
vertices of degree 1 or 2) is not necessarily decreasing. Actually, in the critical case, the fluid limit
of the proportion of vertices of degrees 1,2 follows a curve which is tangent to the boundary of the
domain at some point before diving back into the bulk of the simplexe and dying at the right corner,
see Figure 3.9 (and compare with Figure 3.5). This explains the first-order phase transition in this
case: a slight perturbation of the initial conditions may push the curve to exit the domain at a very

different location.

prop. degree 3,4
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Figure 3.9: lllustration of the fluid limit of the renormalized number of legs attached to
vertices of degree 4,3 and < 2 in the k-core algorithm at the critical point. In particular,
a slight perturbation of the initial conditions may cause a drastic change of the absorption
time of the system and this explains why the k-core percolation exhibits a first-order phase

transition.
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Partie 11

Parking dynamique sur des arbres
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Chapitre 4 :

Transition de phase via la limite
locale

CE CHAPITRE EST TRES COURT.

In this chapter, we show the existence of a phase transition for the model of parking on a (random)
rooted tree under slight hypothesis. We first recall briefly the parking rules. Given a finite rooted
tree t, we assume that the vertices of t are parking spots and each can accomodate (at most) one car.
We imagine now that cars arrive one after the other on the vertices of t. Each car tries to park at its
arriving vertex but if it is already occupied, it drives towards the root and takes the first available
spot. If no free spot is found during its descent towards the root, then the car exits the tree without
parking. Given a rooted tree t, we denote by (Ay : x € t) the car arrivals on the vertices of t, and we
suppose that the (Ay : x € t)’s are independent random variables and that their law only depends
on the outdegree of the vertex i.e. its number of children. In what follows, we simply write degree
instead of outdegree. For all integers k > 0, we consider (‘u(k),w :0 < a < 1) a family of probability
measures which is stochastically increasing in «, such that for every 0 < a < 1, the common law of

the car arrivals on a vertex of degree k is

(k) With mean m, , and variance U(Zk),a'

We let @, (t) be the outgoing flux of cars i.e. the number of exiting cars.

Concerning the trees, let us consider a sequence of rooted trees (7, Pn)n>1 such that the tree 7y
has n vertices, and an infinite (random) rooted tree (7T, Poo) Which has almost surely one spine, such
that the sequence (7,) converges in the sense of Benjamini-Schramm quenched towards (7co, Poo)-
Recall the the Benjamini-Schramm limit of a sequence of trees is a unimodular tree which has by [74,
Theorem 13] 1 or 2 spines almost surely. The case of one spine is similar to the one-dimensional case,
so that we focus here on the more interesting case of one spine. We have just described the parking

procedure on finite rooted trees, and have to be more precise to define it on To. The point is that the

113
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root P is not “at the bottom” of the tree 7o (think for example of critical Bienaymé-Galton-Watson
trees and Aldous’ sin-tree, which we described at the end of Section 1.1.2). Thus we orient the edges
of (7, Poo) as follows: for the spine of T i.e. the (unique) infinite non-backtracking path starting
from the root p, we orient the edges from the root towards infinity, and the other edges are oriented
in the direction of this spine. As a consequence, there is exactly one edge going out from each vertex,
and this defines the direction in which the cars can drive. Moreover, for each vertex x € 7To, there is
a finite number of vertices from which there exists an oriented path towards x. In other words, the
subtree above x is finite, and the car arrivals in this subtree determines the status of x (occupied or
free) in the final configuration of parking. Thus the parking procedure is well defined on (7co, Poo)
(even if we can not speak about outgoing flux in this case) and we can consider the clusters of parked
cars in Te, which are the trees of the forest obtained by keeping the edges in T only if they link two
occupied spots in the final configuration. Since the (y(k)la,O < & < 1)’s are stochastically increasing

in «, we define
ac :=inf{a > 0: IP (there exists an infinite cluster of parked cars in Te) > 0}.

We have now all the tools to state our theorem.

Theorem 4.1

We assume that (7,) converges in the sense of Benjamini-Schramm quenched towards an infinite
(random) rooted tree (Te, poo) which has only one spine almost surely. To ensure a continuity of

the family (p(x) o 1k > 1,0 < a < 1) with respect to a, we assume that

2 Vit =
k=0

where vy = IP (deg(p) = k in Tw), and we suppose there exists a constant K such that my) , < K
and a%k) L < K for all 0 < « <1 and for all k > 0. We then have

¢a(Tn) ﬂ{ 0 if a<a,

n n=e | C, if a>a,

where C, > 0 is a positive constant if & > a.. Moreover, the constant C, depends on the
(H(x)n k= 0) and on (Te, peo) but not on (7y).

As a corollary of our proof, we will see & < 1 because if } - Vi (x), = & > 1, then the renormalized
flux of outgoing cars @,(7,)/n also converges towards a constant C, > 0. Indeed, there are more

cars than parking spots in this case !

Proof. We fix « > 0. We start by proving that the outgoing flux renormalized by n converges in

probability. To this end, we have by conservation of cars,

Z Ax = ¢u(To) + Z L, contains a parked car-

xeTy xeT,
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On the one hand, the mean density of arriving cars converges in probability. Indeed, let us compute

the first two moments of this quantity.

E E [Ax|deg(x)

xG'E

Z m (deg(x /\ K
xe'ﬁ,

ZA

x67;,

Z M (deg(x)

x€771

Moreover, the degree of the root is a continuous function for the local topology, and thus, for all a,
the function (g,0) + M (geg(p)),n A K is continuous and bounded for the local topology. Since (7y)

converges in the sense of Benjamini—Schramm towards 7, we obtain

ZA

— E E s
" [ (deg(poo)) } Vk
xE Tn

k=0

The computation is very similar for the second moment:

( ZA) :IE:nZZA2+1Z Y AA

x€Ty x€T; n? X€Ty y#x€Ty
=1 2 2 1
=E |5 L Caegt)a + Maegtat 37 Lo 1 Mideg(x))a(deg(y)
xX€Tn XETw y#x€T,

= Tl2 Zadeg Zmdeg Zmdeg ]

x€Ty xeT,, ye%

Using now the quenched Benjamini—Schramm convergence, we have
2 2
Z Ay njoo 0+ E [m(deg(p)),a] = .
xeTl
Lastly, using Bienaymé—Tchebychev’s inequality, we have for all € > 0,
1 2 1 2
1 E [(H Lrer, Ax) } —E [ Lrer, Ax]
Pl|- >e| < N 5 njoo 0.
" (e +[E[(; Erer, Ax)] — )

On the other hand, we can show similarly that for all R > 0,

ZAx—uc

xX€Ty

1

n Z L, contains a car coming from distance<R
x€Ty

@, p (poo contains a car coming from distance < R in 7o) .
n—oo

Moreover, since we assume that 7o has almost surely one spine, and this spine is “below” the
2

root pPeo, for all € > 0, we can find R¢ > 0 such that with probability at least 1 — e the part “above
the root pe in 7o has total height < Re. Thus,

|IP (poo contains a car coming from distance < R;) — IP (po contains a car)| < e.
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Since the function t — 1 ht <.} 1S continuous (and bounded)

{the part above the root of t has heig
for the local convergence, we deduce from the Benjamini-Schramm convergence of (7,) that we can

find ng such that for all n > ny,

1
P (n 2 Ilthe part above x has height>R. in 7, < 8) >1-2e

X€Ty
Thus,
P (711 x; L, contains a car coming from height>R, < S) >1-—2e.
We obtain
1 (P)

= Z L, contains a car > P (peo contains a car),

n xeT,

and this, together with the first part, shows that

90’"51771) % a — P (poo contains a car) .

Note that if « > 1, then the right-hand side is necessarily a positive constant. Now, it suffices to
show that the almost sure existence of an infinite cluster of cars in 7 is equivalent to the fact that

a > P (pe contains a car). We introduce the transport function

fltxy) = Lia car arriving on x parks on y in t}-

The main difficulty is to give a proper definition of this function. To do this, we fix a relative ordering
between the vertices which is coherent layers by layers, and we imagine that each car need a time 1

one to go through each edge.

For & < &, we just park the cars time by time, which means that a car coming from x parks at y
if x is the first vertex in the ordering among the arriving vertices of the cars arriving at first time at
y, see Figure 4.1. If @ > &, we introduce a little subtlety and apply this rule twice. More precisely,
we introduce a; < a’ := (« +a.)/2 < a and decompose for every x € t we decompose the car arrival

Ax ~ H(deg(x)),« &b the vertex x so that

Ac =AY+ 4P,

where Aﬁf) has 1aw J(geg(x)),nr and Agf) > 0 almost surely. Then, to determine the value of f(t, x,v),

we first park the cars (Aﬁcl), x € t) (with the above rule) and then the cars (Aﬁf), x € t). Notice that
given x and y two vertices of t, the value of f(t,x,y) only depends on the subtree above y (and its
value is 0 if x is not in this subtree), which is always almost surely finite.
We now apply the mass transport principle to this function:
E

Z f(Too,X,poo) =E

X€T

)3 f(Too,Poo,x)] :

X€T
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Figure 4.1: On the left, a rooted tree with a car arrival configuration together with a relative

ordering of the vertices which defines a priority rule for parking. At time 0, we park one car
at each vertex (if there are cars arriving on it). At time 1, we allow cars driving through one
edge towards the root. For exemple, the orange car parks on the root vertex. If there are
cars coming from two different vertices arriving at the same vertex, then we use the priority
rule. For exemple the turquoise car parks on the vertex with priority 10 and not the red car.
Note that the red car can not park since the orange car arrive at the root before it.

On the left-hand side, we simply have E [Y c7. f(Teo, X, 0o0)] = PP (poo contains a car). On the

right-hand side, we have

E| ), f(Teo oo, )

XeToo

= [E [number of cars arriving at pe which park on Te] .

If there is no infinite cluster almost surely, then all cars park, thus this quantity is simply IE [pr] =u.
This proves our theorem when o < a,. Otherwise i.e. when & > a., we use a sprinkling argument :
there is a chance that there is an infinite cluster and that p. belongs to this cluster, and more than
that, there is a positive probability that AE,B < Ap,, and pe is in an infinite cluster even with the
car arrivals (Agcl), x € t) (with &’. In this case, there is no vertex x such that the cars corresponding

to AF(,EB park on x. Thus IE [¥ 7. f(7c, Peo, X)] < &, which concludes the proof.

0

This theorem shows a phase transition for the flux of outgoing cars between a sublinear and a
linear regime, which coincides with the existence of an infinite cluster of parked cars with positive
probability. We wonder if it exists an infinite cluster of cars at criticality. We believe that there

exists a tailor-made non-unimodular graph for which there exists an infinite cluster at a..

Open Question. Is there a unimodular tree 7o such that the probability of the existence of an infinite

cluster of cars in Ty is positive at & = &, ?
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Chapitre 5 :

Sharpness of the phase transition
for parking on random trees

LES RESULTATS DE CE CHAPITRE SONT ISSUS DE L’ARTICLE [(4] PUBLIE DANS RANDOM STRUC-
TURES AND ALGORITHM.

o=
= =
=

LA I \/ 1

NIy TN l/}a

o oy = =

\/ A\ /i

| na

Figure 5.1: lllustration of the parking process of 9 cars on a tree. On the left: a rooted
tree together with a configuration of cars trying to park. On the right, the resulting parking
configuration with flux on the edges and with two cars which did not manage to park on the

tree.
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Recently, a phase transition phenomenon has been established for parking on random trees in
[60, 100, 111, 137, 148]. We extend the results of [75] on general Bienaymé-Galton—Watson trees and
allow different car arrival distributions depending on the vertex outdegrees. We then prove that this
phase transition is sharp by establishing exponential bounds for the flux of exiting cars. This has
consequences on the offcritical geometry of clusters of parked spots which displays similarities with

the classical Erdés-Renyi random graph model.
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5.1 Introduction

Parking functions on the line are combinatorial objects first introduced by Konheim and Weiss in
[122] in the context of collision in hashing functions. Since then, many generalizations of the parking
procedure have been studied, most notably on plane trees. On critical Bienaymé-Galton—Watson
trees with i.i.d. car arrivals on the vertices, Curien and Hénard proved in [75] that the parking
procedure undergoes a phase transition: when the “density” of cars is small, then the probability
that all cars can park is large, whereas when the density is too large, then with high probability,
there is at least one car that will not manage to park. This transition was first observed by Lackner
and Panholzer [137], then by Goldschmidt and Przykucki [100] on Cayley trees with cars arriving
uniformly on the vertices. Other particular cases have been studied in [60, , ]. The phase
transition was also proved in related models: see [22, | for the case of supercritical Bienaymé—
Galton—Watson trees and [01] for a similar framework on regular trees.

In this work, we generalize the results of [75] by allowing the distributions of car arrivals to
depend on the vertex’s outdegree. But most importantly we show that this phase transition is sharp.
Establishing sharpness of phase transition in statistical mecanics models is a crucial step in the
understanding of the transition and in particular offcritical regimes, see [5, 80]. In our case, this
sharpness will appear as exponential bounds for the flux of cars in the subcritical and supercritical
cases (see Theorem 5.2) and will have direct consequences on the geometry of clusters in these regimes
(Corollary 1).
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General Phase Transition. Let us first recall the parking procedure on a rooted tree t i.e. a tree with
a distinguished vertex called the root and denoted by &. We assume that the edges of t are oriented
towards the root and consider the vertices of t as parking spots. Imagine now that cars arrive one
after the other on the vertices of t. Each car tries to park at its arriving parking spot. If the parking
spot is empty, the car stops there. If not, the driver follows the edges towards the root and takes
the first available space, if there is one. If not, the car leaves without parking (see Figure 5.1). An
important property of this model is its Abelian property: changing the order of the car arrivals does
not affect the final configuration and the number of cars that exit the tree.

We consider here a slightly more general model than in [75] by allowing the law of car arrivals
to depend on the outdegree of the vertex. Specifically, given a rooted tree t, we suppose that the
arrivals of the cars on each vertex of t are independent random variables and that their law only
depends on the outdegree of the vertex i.e. its number of children. In what follows, we simply write
degree instead of outdegree (note the special role of the root vertex). We denote by (Ly : x € t) the

car arrivals on the vertices of t. The common law of the arrival of cars on a vertex of degree k is
H(x) With mean m ) = 0 and finite variance (T(Zk). (5.1)

In this chapter we shall only deal with (rooted) plane trees (i.e. such that the children of a given
vertex are ranked from left to right), which are versions of critical Bienaymé—Galton—Watson tree
with offspring distribution

[ee]

V= Z V40 with mean 1 and finite variance X2, (5.2)
k=0
the classical Bienaymé-Galton—Watson tree 7T, the Bienaymé—Galton—Watson tree conditioned to
have n vertices 7T,,' and the Bienaymé—Galton—Watson tree conditioned to survive forever 7o. We
assume throughout the chapter that the number of cars arriving on a “typical” vertex has exponential
tails, i.e.

F(z) = Y v} ng ()7 (Hexp)

k=0 i>0
has a radius of convergence strictly larger than 1. We also suppose that v # 61 and that there exists
k > 1 such that vx > 0 and p i) # 1. Let ¢(t) be the flux of the parking process on t i.e. the number
of exiting cars. Given a vertex x of t, we sometimes denote by ¢, (t) the flux at vertex x of t, i.e.
the outgoing flux of the parking process on Top(t, x) the subtree of the descendants of x in t. To
characterize the location of the phase transition, we introduce the size-biased distribution v (k) = kvy

for k > 1 and the quantities

]Eg[m] = E k]/k M(k), ]EV [m] = E Vi m(k) and IEV[(TZ + m2 - m] = Z Vi (U(Zk) + m%k) - m(k)) .
k=0 k=0

n all this chapter, we shall implicitly restrict to the values of n for which P(|7| = n) > 0.
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Theorem 5.1 (Phase transition for parking)

We assume Ey[m] < 1. The parking process on Bienaymé-Galton—Watson tree undergoes a phase

transition which depends on the sign of the quantity
@ := (1 —Ey[m])?* — Z2E, [0* + m* — m]. (5.3)

More precisely, we have three regimes classified as follows:

subcritical critical supercritical
©>0 ©=0 ©<0
o(Ty) asn — oo converges in law %)—> oo but is o(n) | ~ cn with ¢ > 0
| S2E[o(T)] + Eg[m] — 1 | —/0 | 0 | o0 |
| P(oisparkedin T) | E, [m] | E, [m] | BJml-c |

As an example of application of Theorem 5.1, if the cars can arrive only on the leaves with law
1 (0); then the phase transition occurs for @ = 1 — 21 (0(20) + m%o) — m(o)), where ) and (7(20)
are respectively the expectation and the variance of the number of arrivals at a leaf. However, if
the cars arrive with the same global density but spreaded on every vertex i.e. if the distribution of
the car arrivals is p = vop () + (1 —1vp)dp and does not depend on the degree of the vertex, then
Ounit = (1 — vom(o))Z — X2y ((7(20) + m%o) — m(o)) < Ojear- This means that with the same density of
cars, the parking can be subcritical if the cars arrive only on the leaves but supercritical if the cars
arrive uniformly on every vertex.
A natural assumption for the parking process to be subcritical is that IE,[m] < 1, so that there are
typically fewer cars than parking spots. The assumption Eg[m] < 1 may sound unnatural but comes
for the fact that the number of children of the vertices in a “typical” branch has size-biased law v
[100]. Indeed, the parking process is supercritical when Eg[m] > 1, as we will see in Section 5.2.1
(see the remark before Proposition 5.2). As a consequence of this phase characterization, we can
deduce that if Ey[m] < 1 and @ > 0, the parking process is subcritical and therefore E, [m] < 1, and
conversly, if Ey[m] < 1 and E,[m] > 1, then the parking process is supercritical and hence ® < 0.
However these implications are not derived by easy algebraic manipulations.
As we said above, Theorem 5.1 generalizes the result of [75] and its proof follows the same lines. It

is presented in Section 5.2.

Sharpness and exponential bounds. Our main contribution in this chapter consists in showing that
the phase transition established in Theorem 5.1 is sharp. More precisely, we shall reinforce the first

line in the table of Theorem 5.1 by proving exponential bounds:
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Theorem 5.2 (Exponential bounds for the flux)

Let € > 0. In the supercritical regime i.e. if @ < 0, there exists 6 > 0, and ng > 0 such that for
all n > ng,
P (|p(Ty) — cn| > en) < e,

where ¢ > 0 is as in Theorem 5.1. In the subcritical regime, there exists 6 > 0, and ng > 0 such
that for all n > ny,
P (|o(T)| > en) <e™".

Notice that the second item of Theorem 5.2 applies to the unconditioned tree 7. It holds also for T,
after changing the constants since IP(|7 | = n) has polynomial probability. Our proof of Theorem 5.2
is very different in the supercritical and subcritical cases. In the supercritical case, the exponential
bounds will be established by showing first exponential bounds for the fringe subtree distribution
of T, in Section 5.2.2. This may be a result of independent interest which complements the law of
large numbers and the Central Limit Theorem of Aldous [7] and Janson [106, 105]. In the subcritical
case, we adopt a very different analytic point of view. Following [100] the flux at the root of T
satisfies a recursive distributional equation which turns into an analytic equation on its generating
function z — W(z). However, the equation has a singularity at z =1 and W(1) = 1. By employing
Newton—Puiseux expansion we are able to resolve this singularity and prove that in the subcritical

case z — W(z) has radius of convergence strictly larger than 1. This is the object of Section 5.3.

Offcritical geometry. We will give an application of this exponential decay for the flux to the size of
the connected components after the parking procedure, that is the clusters of occupied parking spots
in 7}, in the subcritical and supercritical phases. We notice that this geometry shares many similarities
with the size of the connected components of the Erdés-Renyi random graph: only logarithmic clusters
in the subcritical case and a giant component in the supercritical phase. This is actually not a mere
coincidence and in forthcoming works we shall exhibit a strong link between parking on random trees

and random graph processes [66, (7].

Corollary 1 (Offcritical geometry). Let |Cmax(1n)| be the size of the largest parked connected component

in Tn, and |Ca(n)| be the size second largest connected component. Then,

» [Cinax(n)[  (P)
(supercritical ©® < 0) — - C and P(|Cy(n)| = Aln(n)) = 0,
(subcritical © > 0) P(|Cmax(n)| = Aln(n)) — 0,

n— o0

where C € (0,1) and A > 0 are constants that depend on the laws v and py for k > 0.

Acknowledgments. I would like to thank warmly Nicolas Curien for precious suggestions and cor-
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5.2 Phase transition and fringe subtrees

In this section, we generalize the phase transition result of [75] to our case, that is when the distri-
bution of the car arrivals depends on the degree of the vertex. The strategy of proof is very similar
and we will only highlight the necessary adaptations. The crux is the adaptation of [75, Proposition

1] into Proposition 5.1.

5.2.1 The mean flux and the probability that the root is parked in 7

We first obtain the expected outgoing flux of the unconditioned Bienaymé—-Galton—Watson tree using
a differential equation. To this purpose, we let the cars arrive according to random times A, uniform
in [0, 1] independently on each vertex x of the tree 7. More precisely, conditionally on 7, we define
a family (Ax)ye7 of i.i.d. random variables with law Unif[0, 1] independently of car arrivals (Ly)ye7-
We denote by ¢(7,t) = ¢(t) the outgoing flux on the root of T after the parking procedure with
car arrivals Lgf) = 14,<tLy on each vertex x € T conditionally on 7. Note that conditionally on T,
the car arrivals (Lj(f)) xe7 are independent with law ‘uEIt{)) = (1 —1t)do + tp ) if x has k > 0 children.

Proposition 5.1 (Phase transition for the mean flux). For t € [0,1], we denote by ®(t) = E[¢(T,t)]
the mean flux at the root of T with car arrivals with law VEI?) Let tmin be the smallest solution to
(1 — Eg[m]t)? = Z2E,[¢? + m?> — m]t in [0,1] (set tmin = +00 if there is no such solution). Then,

for t €[0,1]

(1 — Eg[m]t) — /(1 = Bo[m]t)% — 22E, [0% + m? — m]t

Q)(t) = 32 if < fmin (54)
+o0 if t > tmin-
Proof. We use the same notation as in [75, Proposition 1]: if x is a vertex of T, we denote by I*(s)

the number of cars that arrived at time s on the vertex x which contribute to ¢(t), i.e. those that

did not manage to park at their arrival time s < t. For t € [0,1], we have

E | Y I"(Ax)No<a <t
xeT

Z Z I 110<AY<f]]-{x has degree k}
x€T k=0

Recall that the degree of a vertex x in a tree t is a function of Top(x,t) the subtree of the
descendants of x. We use the many-to-one formula (see e.g. [75, Formula 3]) and integrate on s = Ay

to obtain

/ ds Z Z E [ 5, h H{Sh has degree k}}

=0h=0

where I(s, 1) is obtained as follows: First recall the construction of Kesten tree 7o. Consider a semi-
infinite line Sy, S1,..., rooted at Sy, called the spine, and graft independently on each S; a random
number Y — 1 of independent Bienaymé-Galton-Watson trees with offspring distribution p where

Y ~ 7, and consider a random uniform ordering of the children of S;. Here, we define a tree T (h),
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for h > 0, by considering only a finite line Sg, S1,...,S;, and grafting independently on each S; a
random number Y — 1 of independent Bienaymé—Galton—Watson trees where Y ~ v for 0 < i < h,
and consider a random uniform ordering of the children of S; and furthermore X independent copies
of T on Sj, where X ~ v (see Figure 5.2). This tree is decorated by letting cars arrive with law ‘uE?)) at
each vertex of degree | independently, except on the vertex S;, where we put an independent number
of cars distributed as pi () (instead of VE;))) when Sy, has degree k. Then I(s, h) is the number of those

cars arriving on Sy, that do not manage to park after all other cars of 7 (h) have parked.

Figure 5.2: The tree 7 (h) conditioned by {5, has degree k}.

To compute [E [I(s, 1)1, has degree k] » We use the fact that at time s and on the event {S; has degree k},
the outgoing flux from the vertex S;,_; (before parking the cars arriving on Sy,) is given by a random
walk W((;))l minus its current infimum, where the random walk W((If)),i has length h and i.i.d. increments
of law Z(®) — 1 with

i=1

where Y ~ 7, the FZ.(S) are copies of F(®) ~ @(T,s) for i > 0, the P((;)) have law ‘ugi)) for k > 0 and

all the variables are independent. The starting point of the random walk W((Z)) o 1s distributed as the
sum of k independent copies of ¢(7,s) minus 1. We define T((]f)) _, to be the first hitting time of —1

by the walk W((;; and we write P, for the law of W((]f)) started at x and E, for the corresponding
(s)

expectation, for x € Z. When specifying its starting point, the random walk W(k) does not depend
(s)

on k so that we simply write W) or T]. Summing over &, we obtain in the same way as in [75,

Proposition 1]

2 [I(s, )05, has degree k] = Vi (Z(U(Zzo + 1y — M) + km(k)q)(5)> Eo [TY].
h=0

On the one hand, if E[Z(¥) — 1] > 0, the random walk W(;) has a nonnegative drift, hence IEg [Tﬁﬂ -

0. On the other hand, if E[Z() — 1] < 0, the random walk W((]f)) has a strictly negative drift and by

1 _ 1
E[1—-26)]  1—Eg[m]s—X2®0(s)’

Wald equality

o [Tﬁsl)] -
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Summing over k > 0, we obtain ®(0 ) =0, and for all t < £,

/d v[o? +m? — m] + Eg[m]P(s)
1 —sEy[m] — X2®(s) ’
where t, = inf{t > 0: 1 — Ey[m]t — Z2®(t) < 0}. We can easily check that the function defined
on the right-hand side of (5.4) satisfies this equation. It remains to check that both functions “blow
up” at the same time fpin = f.. This is done in the proof of Proposition 1 in [75] using monotone

and dominated convergence.

O
When Ey[m] < 1, then t — (1 — Ey[m]t)? — £2E, [0? + m? — m]t is decreasing over [0,1]. Hence,
we obtain the following phase characterization for parking: when tnin < 1 then ® < 0 (supercritical
regime), when tyin = 1 then ® = 0 (critical regime) and when fpin > 1 then ® > 0 (subcritical
regime).
Remark. When Ey[m] > 1, the function t — (1 — Ey[m]t)? — 2E,[0? + m? — m]t is positive at
t = 0 and negative at t = 1/Ey[m] < 1, so that tmin < 1/Ey[m] < 1, and the parking process is
supercritical.
Using the same technique, we now control the probability that the root of an unconditioned

Bienaymé-Galton—Watson tree is parked as in [75, Proposition 2.
Proposition 5.2 (Probability that the root is parked). We have

E,m] i ©2>0,

<E,[m] if ©<O0. (5:5)

P (& is parked in T) = {

Proof. We proceed as in the previous proposition and let the cars arrive according to random times
Ay independently for each vertex x on the tree 7. Let p; = IP(& contains a car in (7,¢)). Then,
/ ds Z P(P
h>0
where P(s,h) is the event that in the labeled tree 7 (), one car arriving on the vertex Sj, at time

s goes down the spine and manages to park on the empty root . Moreover, conditionally on
L
{S, has k children}, the event P(s, h) is U, {TESZ.) = h} under P ) where L ~ px). Thus,

(k),0
) _L(k)
Y P(P(s,h) N {Sy has k children}) = wlE |} P i (T < c0)
h=0 i=1 0
—L(k) (s) k() |
= yE | Y_Po(TY] <o) #
i=1

— VEIM (k) if s < tmin
< 172003 if s> fmin-

Summing over k and integrating over s, we get the desired result.
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5.2.2 Fringe subtrees and weak law of large numbers for the flux

We now want to show a convergence result for the flux of the conditioned Bienaymé-Galton—Watson
tree T,. To this end, a useful tool will be the Lukasiewicz walk (in the depth-first order) of the
Bienaymé-Galton—Watson tree (see [129]), decorated with the car arrivals on each vertex. Therefore
in the rest of the chapter, we consider (S, L) a random process where S is a random walk with starting
point Sy = 0 and i.i.d. increments of law IP(S; = k) = vk, for k > —1, and conditionally on (S), the
(Li)izo are independent of law (g, _g,11)- Note that the (L;);i>o are i.i.d. and E[Lo] = E,[m]. We
also define T the first hitting time of —1 by the walk S. Then the law of (S;, L;)o<i<n conditionally
on {T = n} is the law of the Lukasiewicz walk of a Bienaymé-Galton-Watson tree T, conditioned to
have n vertices “decorated” with the car arrivals on each vertex. Therefore, we couple (S, L) with 7,
and 7 so that (S, L)o<i<t (resp. (S, L)o<i<n) is the Lukasiewicz walk of T (resp. T,) decorated with
the car arrivals conditionally on T (resp. {T = n}).

Proposition 5.3 (Law of large numbers for the flux). The flux at the root of T, satisfies

(P(Z;) _(E)_> :[Ey[m] P (@’ 1s parked in T)

Proof. By conservation of cars, the total number of cars arriving on 7}, is

( Z Lx> = (P(’];l) + Z Ly i parked-

XE€Ty XETy

We first prove that the proportion of arriving cars per vertex in 7, converges in probability towards
E,[m] as n goes to co. Recall that we defined a random walk S with i.i.d increments of law v together
with L the car arrival “decoration” and T the first hitting time of —1, so that conditionally on {T = n}
and on 7, the car arrival on vy, the kth vertex of 7, in the depth-first order, is L,, = Ly_1 and has
law p(s,—s, 1) for 1 < k < n. Then, for all € > 0,

4

Since the Ly are i.i.d. and their common law has by assumption (Heyp) an exponential tail, we can

P (|3 (L~ Bulm])| > en)

Z Ly —E,[m|n BT = )

x€Ty

(5.6)

>sn> <

bound the above numerator by e~®" for some § > 0. Moreover we recall the classical asymptotic
P(T = n) ~ Cn=3/? (5.7)

for some C > 0 as n goes to +oo (at least along values for which IP(T = n) > 0). Hence the
probability on the left-hand side converges to 0 as n goes to oo and does so exponentially fast.
Then we observe that the degree of a vertex x in a given tree t is a function of Top(x, t), the
subtree of the descendants of x. Therefore we can use the theorem of Janson [106, Theorem 1.3,
formula (1.11)] which states that the fringe subtree distribution of a conditioned Bienaymé-Galton—

Watson tree ) o7 5Top(x,Tn )/ n converges in probability to the v-Galton—Watson measure. Adding
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car arrivals decoration on each vertex, this implies that

1

P . .
- Z Ly is parked n:—lz P (& is parked in 7).

XETy

The desired result follows.

U
We have seen above that the total number of cars arriving on 7, concentrates around its (uncon-
ditioned) expectation E,[m|n. We will see in the sequel that we can also obtain exponential bounds

for the outgoing flux of cars but let us first sketch the proof of Theorem 5.1.

Sketch of Proof of Theorem 5.1. The second line of Theorem 5.1 can be easily derived from
Proposition 5.1. Moreover Proposition 5.2 already gives us the third line of the table of Theorem
5.1 and together with Proposition 5.3, we obtain that the flux is linear when ® < 0 and sublinear
when ® > 0. There only remains to check that the flux converges in law in the subcritical case and
diverges in the critical case. The proof is an adapation of [75, Section 4] and in particular [75, Lemma

3], which shows that no car coming from far away in 7, contributes to ¢ (7).

O

To obtain exponential bounds for the flux (at least in the case of supercritical parking process),
we also need a exponential bounds for the fringe subtree distribution. We establish such a result in
a more general context, which concerns not only the subtree of the descendants of the vertices, but
a more general local neighborhood. Let t be a plane tree, x € t be a vertex of t and k > 0. We
define Hy(t,x) = Top(t, xx) where xi is the kth ancestor of x if there is one. Otherwise, we just
say Hx(t,x) = ¢. When t = 7, and x = u, is a uniform vertex of 7,, Aldous [7] (see also Stufler
[163]) has proved that Ty, seen from the vertex u, converges in distribution (for the local topology)
towards an infinite plane tree with almost surely one spine 7* called the random sin-tree: Consider
(ux)k=0 a semi-infinite path, “pointed” at up, such that 1 is the ancestor of uy for all k > 0. Then
graft independently on 1y a random number X of independent Bienaymé—Galton—Watson trees where
X ~ v and on each uy for k > 1 a random number Y — 1 of independent Bienaymé-Galton—Watson
trees where Y ~ 7, and consider a random uniform ordering of the children of u;. Note that for all
k > 0, the subtree Top(7*,uy) = Hx(7T*,uo) has law T (k) (see Figure 5.2). Aldous’ sin-tree T* is
closely related to the Kesten tree Too: whereas Too describes the local limit of 7, near the root vertex,

T* describes its local limit near a “typical” vertex.

Proposition 5.4 (Exponential bounds for the fringe subtrees). Let t be a (fixed) plane finite tree and
k > 0 an integer such that the height of t is at least k. For every e > 0, there exists 6 > 0 and ng > 0
such that for all n = ny,

(

1 "
. Y M7t — P(H(T*,u0) = 1)
xX€Ty

> 8> e 0n,
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Proof. We shall prove the result using the Lukasiewicz walk of 7, which is almost a random walk
and for which exponential bounds for density of patterns is easy to see. Let L' = (th‘)Ogi<|t| be
the Lukasiewicz walk of t and (Ui)0<i<‘t| 1 be the vertices of t in the depth-first order, so that
L}, — Lt +1 is the number of children of v; in t for 0 <7 < [t/ — 1. We denote by M the maximum
of the increments of Lt.

We extend the walk (S) as a bi-infinite walk by setting S; = 1 for j < 0. For j € Z, we write

(Si(j ) = Si+j — Sj)iez for the walk shifted at time j. We claim that there exists a function f; defined
over bi-infinite paths and taking values in {0, 1} such that conditionally on {T = n},

Hi(Tw o) =t <= A(SY) =1, (5.8)

where (vx)o<k<n—1 are the vertices of 7T, listed in the depth-first order. Specifically, f; is defined as
follows: considering W € Z#, we first define 79 = 0, then 7y = sup{j < To, W; < Wy} if it exists (—

otherwise), and so on up to 7 = sup{j < T_1, W; < Wy, _, }, so that if 7 > —oo, the 7;’s correspond
to the locations of the ancestors of the vertex “0”. We then set fy(W) = 1 if and only if 7 > —|t|
and <p\/]§fk)>0<j<|t| = L*. In particular, the value of fy(W) only depends on (Wy)_ ¢j<k<|¢- More than
that, if 7 > —|t| and Wiy — Wy > M for some 1 < k < 7 + |t], then fi(W) = 0 (and changing the
values of Wy for k < 7 or k > T + |t| does not change the value of f;). Therefore we consider the
random walk (Sy)gez such that Sy = Sy for k < 0 and Sgq — Sg = (Skp1 — Sk) A (M +1), and the

corresponding shifted walk S0,
Using (5.8), we obtain

(2

L, (7;,0)=t — P(Hk (T, u0) = t)

1
n

2 Hk(T Mo) = t)

o
e

LY f(SD) = P(HK(T*, ug) = t)‘ 2 S)
P(T = n) '

Apart from the first 0 < j < |t| values, the function j — f(S0)) = ft(<§1((j)>f|t\<k<\t\) is a function
of the underlying Markov chain ( (S~,(<] ))—|t\<k<\t\) j>0- Furthermore, by Aldous [7, Proposition 10] we
can see that P(Hy(7T*,up) = t) is the probability that f¢(S) = 1 under the stationary distribution
of the Markov chain ((g(j))f|t|<k<|t\)j>\t| which is simply the law of the two-sided random walk with
increments V(. 1)a(my1)- Since V(. 1)a(m+1) has finite support, this is a Markov chain with finite state
space, and Sanov’s theorem [77, Section 6.2] implies an exponential decay for the numerator, which

is bounded above by e~%" for some § > 0 for n large enough. Using (5.7), we get the desired result.

O
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5.3 Exponential bounds for the parking process

5.3.1 Supercritical parking process
We are now able to prove Theorem 5.2 in the supercritical case, i.e when ® < 0.

Proof of Theorem 5.2, supercritical case. As in the proof of Proposition 5.3, by conservation of

cars, we have

= Z Lx - Z ]]-x is parked-

x€T, xeT,

/n>+n»< >

Using the bound (5.6) for the total number of cars, the first term of the right-hand has exponential

Hence,

=

N[ ™

Y. Ly —E,[m]n

xX€Ty

Z ]lx is parked T (IEV [m] - C) n
X€Ty

P (lp(Tn) —cn| > ¢ (

decay. We now want to have exponential bounds for the number of occupied parking spots. By
Theorem 5.1, the probability IP(& is parked in T) is [E,[m] — c. We therefore can choose M > 0
such that

P(|T|<MandVx e T,Ly < M)>1—¢/8 and (5.9)

Ey[m] —c > P(o is parked in T, |[T| < M and Vx € T,Ly < M) > E,[m] —c—¢/8.  (5.10)

€
Z Ty is parked — (IEV[m] - C) n n) <P ( = n)
2 4
x€Ty
3
+P < 2 Ty is parked]l\Top(7;,,x)|<M1Vy6T0p(7;,,x),Ly<M - (]Ev[m] - C) n| = 47’l> .

x€Ty
For the first term, using the bound (5.9) and applying an easy extension of the exponential bounds

Then

4

| o

> Z H\Top(’n,x)|>M or JyeTop(Tn,x) s.t. Ly>M

xX€T,

result of Proposition 5.4 with car arrivals decoration on the finitely many configurations of tree t such
that |t| < M and such that all vertices carry less than M cars, we get d; > 0 and np > 0 such that

for all n > ny,

s

P ( Y U top (75, v) <M MvyeTop(Ty ) Ly<m < <1 - ZL) ”)
xX€T,

o

2 L top (75, x)|<MLvyeTop(Tr,2),L,<m — MP(|T| < M and Vx € T, Ly < M)

x€Ty,

I3
> 8”) <e 0,
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For the second term, using (5.10) and (an extension of) Proposition 5.4 again, we obtain
P ( ;r Ly is parked Xl Top (7, x)|<MLvyetop (7o), L,<m — (Ev[m] —c)n
xeTy
<

for some d3 > 0 and for n large enough. We get the desired result by combining theses inequalities.

Z le is parkcd]1| Top(77,,x)\gMIlVyeTop(ﬁ,x),Lng
XETy

—P(@ is parked in 7, |T| < Mand Vx € T,Ly < M)n

€
> 8”) <e %,

5.3.2 Subcritical parking process

We now prove Theorem 5.2 in the subcritical case, i.e when ® > 0. Our strategy of proof is very
different from the supercritical case and requires analytical and geometric arguments. Let X be the

number of cars that visit the root of 7 and W its generating function, i.e.

—+o0
W(z) =) Z"P(k cars visit the root)
k=0
Since ¢(T) = (X —1)4+ = sup(X —1,0), it suffices to show that X has an exponential tail. More
precisely, we will show that W is a convergent series and has radius of convergence strictly larger
than 1 so that the probability P(k cars visit the root) has exponential decay. Using the branching

property at the root of 7 we see that X is a solution to the following recursive distributional equation:

X =

1

(Xi — 1)+ + Py, (DE)

™=

Il
-

where N ~ v, the Py have law p ) for k > 0, the X; for i > 0 are i.i.d. copies of the variable X and
all variables on the right-hand side are independent. Therefore, W satisfies the following equation at

least in terms of formal power series:

k

W) = A (VG = p) i) (5Q)
k=0

where Ay is the generating function of Py ~ p) and pg = P (& is parked not in 7). This equation

on W was used in [100] and [60] in the case of Poisson Bienaymé-Galton—Watson trees and geometric

or Poisson arrivals of cars. In these cases, they gave an explicit solution for W in the subcritical

case. Notice in passing that (EQ) or equivalently (DE) characterizes the law of X and in particular,

the quantity po which appears in (EQ) is determined by (EQ). In the subcritical case however, we
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already proved pg = 1 — E,[m] in Proposition 5.2 by probabilistic means. Plugging this into (EQ)
we deduce that z — W(z) is solution of F(z —1, W(z) — 1) = 0 where

1 ¢ »
Flx,y) = ) wAr(1+2) (1+x(y+1 — o) +P0) —y=1= 3 axy,

k=0 i,j>0

for some family (a;;); >0, which is analytic around (0,0) in both variables by the assumption (Hexp).
Since W is a generating function, it is locally well defined around z = 0 and is also the unique solution
of F(z—1,w(z) —1) xz = 0 and w(0) = pp. Its radius of convergence is at least 1 and we have
W(1) = 1. The problem is that z =1 and W(1) = 1 may be a singularity for the equation: indeed,

we have

B Ak(l—i—x) y—|—1—p0 k=1
JyF(x,y) = 1+k;kvk e ( T x + po ,

k k-1
_ / y+1—po _ y+1—po (y+1—po
0,F(x,y) = 1§1VkAk(1 + x) < T % +po> kv A(1+ x) GEIL < e :

Since Ay is the generating function of p ), we have Ax(1) = 1 and A (1) = m ). Using the fact that
po = 1 — E,[m] (Proposition 5.2), we obtain d,F(0,0) = 0 and 9,F(0,0) = 0, so one cannot use the
implicit function theorem at this point to extend W(z). In the subcritical case we will resolve this

singularity and prove that F(z,w) has two analytic branches at (0,0).

Lemma 5.1. The origin is a double point of the section defined by F(x,y) = 0: that means that in a
neighborhood of (0,0), the equation F(x,y(x)) = 0 has two analytic branches.

20~

05

0.0k
0.0 05 1.0 15 2.0

Figure 5.3: The curve defined by F(x + 1,y + 1) = 0 when the offspring distribution is
geometric and the car arrivals are i.i.d with Poisson distribution of parameter & = 0.325 <
ae = V2 —1 (see [60]). Notice the two analytic branches around (1,1). The orange one is
the generating function W.

Proof. We apply Newton’s method to determine the Newton—Puiseux expansion at the point (0,0)
[92, p498-500]. The Newton—Puiseux expansion of a solution y of F(x, y(x)) = 0 around (0,0) shows
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that any solution can be expressed as a locally convergent series (see [121, Remark 1.2 (2) p6]) of the

form

y(x) = )

k>ko
where kg € Z and d is a positive integer. Inductively we will show that d = 1, kg > 0 and that we
have only two choices for the sequence (cx )i, in our case and so that F has two solutions y+ which
are analytic around 0. We look for a solution to F(x,y(x)) = 0 of the form y(x) = cx® + o(x*) with
¢ # 0. We expand F up to order 2 and we obtain

0 = ax0x? +ag2c®x® + ay1cx' ™ + 0 (x*?)
x2 Y22
= (Ey[m®+ 0® — m] + Ey[m]*(£* — 2) — 2Eg[m]) & + —-—x*

2 2
+c (Eg[m](l _ 22) o 1) xl+a + O(xZu/\Z)

Since the equation has to be identically satisfied, the main asymptotic should be 0. This can
only happen if two or more of the exponents in {2,1+ a,2a} coincide and the coefficients of the
corresponding monomial in F are zero. We obtain here a2 = 1 and c satisfies a quadratic equation
that has two different real solutions which are

— (Eg[m](1-%2)-1) £ VO

C+ = 32 (5.11)

We choose one of the two solutions for ¢; and suppose that we have a solution of the form
y(x) = c1x + -+ g ¥+ o(xF1) (where some of the ¢;’s may vanish) and look for a solution of
the form y(x) = c1x + - - + cx_1 81 + cxx® + 0(x*) where k — 1 < a < k. Expanding F up to order
k+ 1 and we obtain

, ]
0= ) oax <c1x +o g T g + o(x“)) + o(xF1)
1<i j<k+1

22
= Cx <012 + (]Ev[m](l _ 22) _ 1)> ylta + xk+1 Z a;; Z cl, - --Cl]- + 0(x(1+a)/\(k+1)>
1<, j<k+1 1<h,..., <k
Yl =k+1—i

=EVOqxT + Y Y o ¢, + o(x(1+9)),
1<i j<k+1 1<l di<k
Clp=k+1—i
depending on the choice of ¢1. If 2 < k and since the main asymptotic should be zero, then ¢, = 0.

Therefore we can take a = k, and the above equation implies

Cx = +— Z Eli/]' Z Cly--- Clj/
Oogijh1 1<k, i<k
Y ly—k41—i

which can possibly be zero. This recursively shows the Puiseux expansion of y has only integer

powers, and concludes the proof.

O
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Proof of Theorem 5.2, subcritical case. By Lemma 5.1, the equation F(z —1,w(z) —1) = 0 has
two analytic branches around (z,w) = (1,1) (Figure 5.3). One of these branches coincides with the
generating function of the number of cars which visit the root W defined in (5.3.2) in a neighborhood
of 17. Therefore W can be extended analytically in a complex neighborhood of z = 1. Moreover
since W is a generating function, its power expansion around z = 0 has non-negative coefficients.
Hence, by Pringhsheim’s theorem [92, Theorem IV.6 p240], the radius of convergence of W around 0

is greater than 1 and the desired result follows.

O

5.4 Application to the size of the connected components

In this section we want to study the size of the connected components in the final configuration i.e.
the clusters of vertices that contain a car after the parking procedure and prove Corollary 1. We say

that x € t is free (resp. parked) if it contains (resp. does not contain) a car after parking.

5.4.1 Supercritical Case: Giant component

In this section we suppose that we are in the supercritical case i.e. @ < 0 and prove Corollary 1 in
this phase. We first prove that the second largest connected component is of size O(In(n)). This can

be easily deduced from the following proposition.

Proposition 5.5. When ©® < 0, there exists Ag = 0, such that for all A > Ay,
P(3x € Ty s.t. | Top(Tn, x)| = Aln(n) and x is a free spot) — 0
n—oo

Proof. We let vy be the kth vertex in the depth-first exploration of 7, for 0 < k < n —1. We use the
fact that conditionally on | Top(7Ty,, vx)| = N, the tree Top(T,, vx) has law Ty: for every fixed tree t,

P(Top(frn,vk) - t‘ | Top (75, v¢)| = N) =P(Ty = t). (5.12)

We first bound the probability in the proposition by the expectation of the number of such vertices
x. Therefore, the probability in the proposition satisfies

P(3x € Ty s.t. | Top(Tu, x)| = Aln(n) and x is a free spot)

n
< E E |:]]~|Top(7;,,vk)\2Aln(n) and vy is a free spot}
k=1

n

< Z Z : E |:Ilvk is a free spot

k=1s>Aln(n

[Top(7, v)| = 5| P(| Top(Ts, 01| = 5)

< n sup IP(& is a free spot in 7Ty)
(5.12) s>Aln(n)
< nx e—(SAln(n)/
Thm 5.2
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where ¢ is independent of A (and n). Therefore, if A > 2/4, this quantity converges to 0 as n goes

to oo.

O

Recall that [Cmax(1)] is the size of the largest parked connected component of 7,. Recall Aldous’

sin-tree 7* from Section 5.2.2 with spine {ug, uy,...}.

Proposition 5.6. We have the following convergence
— P (Vk > 0, uy is parked in T*),

where the probability on the righthand side is computed by imagining that we perform the parking on

T* (rooted at infinity) with the same rules for car arrivals as for T .

Proof. We chose A > Ag and we work on the complement event of that of Proposition 5.5 i.e. on
En = {Vx € Ty st. |Top(Ty, x)| = Aln(n),x is parked}. Then, when n is large enough, the root
is parked and its parked component contains all vertices x such that | Top(7,, x)| > Aln(n) and is
therefore with high probability the only parked component of size larger than Aln(n). Hence, we
can decompose the vertices of 7, according to whether they have an ancestor which is a free parking

spot and how far this ancestor is: on &,, when n is large enough and with high probability,

|Cmax(n)] = n—|[{x € T, s.t. x has an ancestor at distance < Aln(n), which is a free spot}|

—|{x € Ty s.t. x has an ancestor at distance > Aln(n), which is a free spot}|.
Since A > Ay as defined in Proposition 5.5, then on &, i.e. with high probability,
|{x € Ty, x has an ancestor at distance > Aln(n), which is a free spot }| = 0.

Recall that conditionally on the tree T, (or 7*) the car arrivals are independent on each vertex
(and their law only depends on the tree through their arrival vertex degree). Therefore, we can
extend [163, Theorem 5.2] to trees with car decorations by extending the couplings given by the total
variation distance in such a way that the car arrivals are the same on Hy, (7, x) and Hy, (7%, 1)

whenever both trees are equal. Since in our case In(n) = 0o(y/n), we deduce that

1
EHX € Ty s.t. x has an ancestor at distance < Aln(n), which is a free spot }|

L

n—oo

—IP (30 < k < Aln(n), uy is not parked in 7)

As the probability IP(&,) converges to 0 and P (30 < k < Aln(n), uy is not parked in 7*) converges
to IP (Ik > 0, uy is not parked in 7*) as n goes to oo, we get the desired result.
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5.4.2 Subcritical parking

In this section we suppose that we are in the subcritical case i.e. @ > 0 and prove Corollary 1 in this
case.

Proof. [Proof of Corollary 1] The proof is based on the sprinkling method which consists in adding
cars while staying in the subcritical phase. Since ® > 0, there exists € > 0 such that

@' = @+ &> — 2¢(1 — Ey[m] — %E, [m]) > 0,

This means that the parking process on 7, or 7 with offspring distribution v and car arrivals with
distribution fif, such that ji,, (j) = (1 =&)pg (j) +ep (j — 1) (that is we add a car with probability
€ on each vertex independently) is still subcritical. We denote by ¢ the corresponding flux. Recall
that @y (t) is the flux at vertex x i.e. on Top(t, x). Imagine that in 7, with arrivals y, we have a large
parked component C of size larger than Aln(n). If we further let cars arrive on each vertex with
probability €, then by the law of large numbers, the root x of C gets a flux ¢, (7,) = Aeln(n)/2 with
probability at least 1/2 when n is large enough. Therefore, for n large enough,

P (|Coax ()| > Aln(n)) < 2P (Elx € T 9x(To) > S;ln(n))

n n A
s2 Z ZIP<¢UI<(7;‘) Z %h‘(”)“TOP(E/UkH = M)IP(|Top(771,Uk)| =M).
M=1k=1

Now we use the conditional law (5.12), the asymptotic (5.7) and Theorem 5.2 so that

P (¢(T) > %5 In(n))

P ((Coun ()] > An(w) <23 3P (| Top(Ty, )] = M)

(512)  M=1k=1 P(|T] = M)
n A
< 2C Y Y P (|Top(Tn, v)| = M) x n*/2 x P (@(T) > 81n(n)>
5.7 — 2
(5.7) M>1k=1
< 2Cn5/2 % n*(SsA/Z’
Thm 5.2

for some constant C > 0 and some § > 0. Therefore, choosing A > 2/(d¢) +5/2, we obtain the

desired result.



Chapitre 6 :

Parking on Cayley trees & Frozen
Frdos—Rényi

LES RESULTATS DE CE CHAPITRE SONT ISSUS DE L’ARTICLE [ ], ECRIT EN COLLABORATION AVEC
NicorLAs CURIEN ET ACCEPTE POUR PUBLICATION DANS THE ANNALS OF PROBABILITY.

Figure 6.1: First line: Parking on a random Cayley tree with 10000 vertices when resp.
4000, 5000 and 6000 cars have arrived (color and thickness indicate the flux of cars along the
edges). Second line: The frozen Erdés—Rényi process at stages 400, 500, 600,700 and 800
on a graph with 1000 vertices.
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Consider a uniform rooted Cayley tree T, with n vertices and let m cars arrive sequentially,
independently, and uniformly on its vertices. Each car tries to park on its arrival node, and if the
spot is already occupied, it drives towards the root of the tree and parks as soon as possible. Lackner
& Panholzer [125] established a phase transition for this process when m =~ 7. In this work, we couple
this model with a variant of the classical Erdés—Rényi random graph process. This enables us to
describe the phase transition for the size of the components of parked cars using a modification of the
multiplicative coalescent which we name the frozen multiplicative coalescent. The geometry of critical
parked clusters is also studied. Those trees are very different from Bienaymé-Galton—Watson trees
and should converge towards the growth-fragmentation trees canonically associated to the 3/2-stable

process that already appeared in the study of random planar maps.
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Introduction

In this paper we establish a connection between the parking process on a random Cayley tree and a
certain modification of the classical Erdés—Rényi random graph obtained by freezing or more precisely
“slowing down” components with surplus. This unexpected relationship enables us to understand the
phase transition for parking established in [128] and in return gives a new point of view on the Erdés—
Rényi random graph and the multiplicative coalescent process. Our coupling works by redirecting
and discarding certain edges in the random graph process in order to construct step-by-step the
underlying tree to accommodate the parking process (using a Markovian or “peeling” construction).
The geometry of the parked components at criticality is built by a “multiplicative” merging similar to
the construction of the minimal spanning tree [1] but gives rise to random trees which we believe to
converge towards the growth-fragmentation trees [30] that already appeared in the study of random
planar maps [31, 32]. This conjecture is further supported by deep analogies between the enumeration

of planar maps and that of fully parked trees with outgoing flux.

Parking on random trees. Let us first recall the model of parking on a Cayley tree first studied in
[128]. Consider a finite tree t with a root vertex. We interpret the vertices of t as being parking spots
(each vertex can accommodate only one car) and we let cars arrive sequentially, independently and
uniformly over the vertices of t. Each car tries to park on its arrival node, unless the spot is taken in
which case it drives towards the root of the tree in search of the first available parking spot. If during
its descent to the root vertex no free spot is found, then the car exits the tree without parking, see

Figure 6.2.
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e \/ 115
aa>J l/ dJaz /
XY \/

Figure 6.2: On the left, a rooted tree with 11 vertices (the root vertex is the bottom vertex)
where all edges are oriented towards the root vertex, together with 9 cars arriving on its
vertices. On the right, the result of the (sequential) parking of the 9 cars. The flux of cars
along each edge is indicated. Notice that two cars did not manage to park and exited the

tree.

Of course when the underlying tree is a discrete line, this corresponds to the famous one-
dimensional parking process of Konheim & Weiss [122] which is now part of the folklore in probability
[57]. The study of parking on more general trees was only recently initiated by Lackner & Panholzer
[128] where the underlying tree was a uniform Cayley tree of fixed size rooted at a uniform ver-
tex (see also [53, 118, 119] for related works in combinatorics). Recall that a Cayley tree of size n
is a (unordered) tree over the labeled vertices {1,2,...,n}. This model was later studied from a
probabilistic angle in [100]. Since then, a body of work with an increasing level of generality has
emerged [21, 60, 75, | ultimately considering critical conditioned Bienaymé-Galton—Watson tree
(with finite variance) for the underlying tree and independent car arrivals whose laws may depend on
the degree of the vertices [64]. See [22, (1] for the case of supercritical trees. In this broad context, it
was shown that a sharp phase transition appears for the parking process: there is a critical “density”
of cars (depending on the combinatorial details of the model) such that below this density, almost all
cars manage to park, whereas above this density, a positive proportion of cars do not find a parking
spot. See [(4, 75] for precise statements. The goal of this work is to provide scaling limits for the
critical and near-critical dynamics of the parking process in the special case of uniform Cayley trees

with i.i.d uniform car arrivals where the critical density is %, see [128]. Perhaps surprisingly, this will
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be done by relating the model to the ubiquitous Erdés—Rényi random graph.

Frozen Erdés—Rényi. Fix n > 1. Over the vertex set {1,2,...,n}, consider for i > 1 independent
identically distributed oriented edges Ei = (X, Y;) where both endpoints are independent and uniform
over {1,2,...,n}. We denote by E; the unoriented version of the oriented edge Ei. Notice in particular
that we may have X; = Y; and Ei = E]- for i # j. For m > 0, the Erdds-Rényi random graph' is the
random multigraph G(n,m) whose vertex set is {1,2,...,n} and whose unoriented edge set is the
multiset {{E;: 1 <i < m}}.

We now define the frozen Erdés—Rényi process (F(n,m) : m > 0), which is obtained from the
above graph process (G(n,m) : m > 0) by “freezing” or more precisely slowing down the components
which are not trees. The vertices of F(n,m) will be of two types: standard “white”, or frozen “blue”
vertices. The blue vertices constitute the freezer of F(n,m). Initially F(n,0) is made of the n labeled
white vertices {1,2,...,n}. Asin the (G(n,m) : m > 0) process, we let the (same) edges E; = (X;, Y;)
arrive sequentially for i > 1 but discard some of them and color the vertices in F(n,-) according to

the following rule, see Figure 6.3: for m > 1

e if both endpoints of E,, are white vertices then the edge E,, is added to F(n,m — 1) to form
F(n,m). If this addition creates a cycle in the graph then the vertices of its component are

declared frozen and colored in blue.
e if both endpoints of E,, are blue (frozen vertices), then E,, is discarded.

e if E,, connects a white and a blue vertex, then E,; is kept if I:jm goes from the white to the blue

vertex. If so, the new connected component is declared frozen and colored in blue.

A more general version of the frozen process depending on a parameter p € [0,1] can be defined
(see Section 6.9.1) by keeping edges between white and blue components with probability p. Different
models of “frozen” percolation have already been considered on the Erdés—Rényi random graph [71,

, | or on other graphs [11, 78, |, but to the best of our knowledge, the above random graph
processes are new. One interesting feature of the frozen process is that for any m > 0, conditionally
on the frozen part of F(n,m), the “forest part” made of the white components is a uniform forest
given its number of vertices and edges, see Proposition 6.8. We shall refer to this property as the free
forest property. The geometry of large critical uniform random forests has been studied in particular
by Luczak [135] using counting results of Rényi and Britikov [17, 156] and more recently by Martin
& Yeo [138] using an exploration process converging to an inhomogeneous diffusion with reflecting
boundary. We shall revisit and shed new light on those results using random walks coding and
(conditioned) 3/2-stable processes, see Section 6.7.4.

In the case of the Erdés—Rényi random graph, Aldous proved in a famous paper [10] that the

process of the component sizes in G(n,m) exhibits a phase transition in the critical window m =

LCommonly in the literature, the Erdés-Rényi random graph is a simple graph where self-loops and multiple edges
are forbidden, but this small variant is more natural probabilistically as it was noticed already in [91], [L07, Section 1]
[36, Section 2.3.1] or [132].
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Figure 6.3: lllustration of the transitions in the frozen Erd6s-Rényi process. The new edge

to be examined is in dotted red. If this edge appears between two white tree-components,
it is kept (first and second figures on the left). When a cycle is created, the component is
colored in blue and becomes frozen (second figure). An edge appearing between a frozen blue
and a white component is kept if it goes from white to blue and the entire new component

is declared frozen. All edges between frozen components are discarded.

5+ %nz/ 3 for A € R. The same critical window will appear in this work and so to lighten notation,
when we have a discrete process (X (n,m) : m > 0) where n denotes the fixed “size” of the system and
m =1,2,3,... is an evolving parameter, we shall denote its continuous time analog by a mathrm
letter

X, (A) =X <n, Vzl + ;‘nmJ vo) , for A €R. (6.1)

The parameter A will often be called the “time” parameter and will enable us to compare processes of
different sizes in the same time window. This will e.g. apply to G(n,m) and F(n, m) to yield G, (A)
and F, (A). With this notation, Aldous proved that after renormalizing the component sizes of G, (A)
by n~2/3, the resulting process converges to the multiplicative coalescent which is a random cadlag
process (.4 (1) : A € R) with values in £? intuitively starting from “dust” as time —oco and such that
every pair of particles of mass x and y merges to a new particle of mass x + v at a rate xy, see Figure
6.4. Using Aldous’ work [10] and its extensions [30, 50], we are able to prove (Theorem 6.2) a similar
result for the component sizes in F,(A) and refer to the scaling limit (% (A) : A € R) as the frozen
multiplicative coalescent. This however requires careful cutoffs and controls since the dynamics of
the frozen Erdés—Rényi is not “monotonous”. Similar ideas have been used by Rossignol in [157] to
define a split/merge stationary dynamics on the scaling limit of critical random graphs.

To be a bit more precise, the particles of the frozen multiplicative coalescent Z.# (A) at time
A are of two types: the frozen (blue) particles whose decreasing masses are in ¢! and non-frozen
(white) particles whose decreasing masses form a sequence in £2. Then .Z.# is a cadlag process with
values in ¢! x ¢? which evolves heuristically according to the same dynamics as that of F,(-): every

pair of white particles of mass x and y merge to a new white particle of mass x 4+ y at a rate xy,
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Figure 6.4: Dynamics of the frozen multiplicative coalescent .#.# . The interaction between
standard “white” particles is the same as in the multiplicative coalescent (left), but the inter-
action between white and frozen “blue” particles is slowed down (middle). Besides, a white
particle can become blue at rate proportional to its mass squared (right).

whereas a blue particle of mass x merges with a white particle of mass y to form a blue particle of

mass X + Yy at a rate % Also, a white particle of mass x becomes frozen “if it creates an internal

cycle” which appears with a rate XZ—Z, see Figure 6.4. We stress that this “infinitesimal transition” is
only a heuristic description of Z.# and its actual definition (at least in the present work) is given
by Theorem 6.2 as the limit of the discrete frozen Erdés—Rényi processes. The process Z# also
has a Markovian property and in particular the process of the total mass of the frozen particles is a
Feller pure-jump process with an explicit jump kernel close to that of a %—Stable subordinator, see
Proposition 6.15. Since .Z.# is naturally coupled with the multiplicative coalescent, it gives a new
perspective on the multiplicative coalescent (see Part 7.6). We also introduce generalized frozen
multiplicative coalescents depending on a parameter p € [0, 1], the case p = 1/2 being the one above,
whereas for p = 1 the dynamics heuristically corresponds to removing the edges which would create
surplus larger than 2 in the Erd6s—Rényi model, see Section 7.6. We wonder whether the dynamics
of the frozen multiplicative coalescent ## can be described by “merging the excursion lengths of
random functions” as it is the case for the multiplicative coalescent [17, 50, , | or its version
with linear deletion [139]. We also leave open the question of “entrance laws” or the behavior at —oo

of those processes, [133].

Coupling parking on Cayley trees and the frozen Erd6s—Rényi. As announced above, the main
input of this paper is to construct an explicit coupling between the dynamical parking process on a
uniform rooted Cayley tree T, and the frozen Erdés-Rényi process F(n,-) so that the components
match up. On the tree side, this coupling consists in considering the underlying tree T, as unknown
and exploring its oriented edges one after the other to park the cars. To do this we develop a general
Markovian or “peeling” exploration of Cayley trees (Section 6.2.1) similar to that of [65, 72] and

which may have further applications. To be a bit more precise, for m > 0 consider
Thear(n,m) C Ty

the subforest of T, spanned by the m edges emanating directly from a vertex containing one of the
first m cars (recall that the edges are oriented towards the root), see Figure 6.7. Then we prove in
Proposition 6.6 that we can couple the parking process on T, with the frozen Erdés—Rényi F(n, )

so that after merging the frozen components of F(n,m) we get the same components as Tpear (1, 1)
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—but the geometry inside the components is totally different—. See Section 6.2.2 for details. The
construction is easier to understand when the underlying tree T, is replaced by a uniform random
mapping M, and we start with this case in Section 6.1.3. In particular, in our construction, the
discovery of the first cycle in G(n, ), or equivalently in F(n,-), corresponds to a car parking at the

root of T;,, and this enables us to prove the remarkable identity:
Proposition 6.1 (Complete parking and acyclicity of G(n,m)). For n > 1 and m > 0 we have
P(m i.i.d. uniform cars manage to park on Ty) (1 - %) =TP(G(n,m) is acyclic).

Combining this proposition with classical tree enumeration going back to Rényi [156] and Britikov
[17], we recover the counting results of Lackner & Panholzer [128, Theorems 3.2 & 4.5 & 4.6] which
were derived using (sometimes delicate) analytic combinatorics and singularity analysis, see Section
6.4. Another consequence concerns the scaling limit of the component sizes in the parking process:
let us denote by C;(n,m) for i > 1 the non-increasing sizes (number of vertices) of the components
of Thear(n,m) of T, when m cars have arrived. We put the component of the root vertex aside and
denote its size by C.(n,m). We also write D(n,m) for the number of cars among the first m that did

not manage to park (the letter D stands for “discarded”). With our convention (6.1) we prove:

Theorem 6.1 (Dynamical scaling limit for the component sizes and the outgoing flux)

We have the following convergence in distribution for the Skorokhod topology on Cadlag(RR, £? x
1R+ X R+)

n23.Ci(A), i=1 , c(N), i>1
n2/3.C,, (A) e 7Y

-1/3 .
n Dy (/\) AER @(A) AER.

The processes 6;, ¢« and & are built from the frozen multiplicative coalescent as follows:
e (¢;(A):i>1) is the non-increasing sequence of masses of the white particles in F.4# (M),

e ¢.(A) is the sum of the masses of the blue particles in F.# (M),

« I(\) = ;/_Aoods%*(s).

Notice in particular that, in the critical window m = 5 + O(nZ/ 3 ), the flux of cars that did not
manage to park in T, is of order n'/3 whereas the size of the largest cluster of parked cars is of
order n?/3. See Figure 6.5 for a simulation of a critical parking and its decomposition into parked
components. Our theorem also holds for different versions of components e.g. if we only keep the

edges between parked vertices, see Section 6.7.2.

Remark (Dynamical parking and coalescence). It is striking to notice that Konheim & Weiss’ parking
on the line is related to the additive coalescent [57, 50], whereas the essence of our findings is that

the parking process on random Cayley trees obeys a modified multiplicative coalescence rule.
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Figure 6.5: (Left) A simulation of a critical parking on Tsppp with 2500 cars. The colors
and widths of the edges indicate the flux of cars going through them. The root of the tree
is represented by a black disk. (Right) The decomposition of the same tree into its parked

components.

Geometry of fully parked trees and Bertoin’s growth-fragmentation processes. Theorem 6.1 de-
scribes the phase transition of the parking in terms of the sizes of the parked components and
outgoing flux of cars in T,. But one can wonder about the geometry of the parked components
and the flux of cars on its edges. It is not hard to see (see Proposition 6.12) that except for the
component of the root vertex, conditionally on their sizes N, those components are (after relabeling
of the vertices and cars) uniform fully parked trees, i.e. random uniform rooted Cayley tree Ty with
N vertices carrying N labeled cars conditioned on the (unlikely) event that all cars successfully park
on Ty. In what follows, we shall consider a slight variant of this model and denote by Py a uniform
nearly parked tree of size N > 1 which is a uniform rooted Cayley trees of size N carrying N — 1
labeled cars conditioned on the event that the root p stays void after parking, see Figure 6.6 and
Figure 6.7.

The conditioning imposed on the parking configuration makes the geometry of Py very different
from that of a uniform Cayley tree Ty: heuristically they are more elongated or path-like. When
restricted to nearly parked trees, our coupling gives a construction of a nearly parked tree Py from a
uniform Cayley tree Ty of size N whose edges are labeled from 1 up to N — 1 and oriented randomly

(see Section 6.5.2.1 for details). Using this we are able to prove:
Proposition 6.2 (Typical height of Py). The mean height of a nearly parked tree of size N is

1 Py & (N h+1\* 1 I'(3/4) L34
NE| L dgf(p’x>]_z ) U )N ), Ve A N

x€Vertices(Py) h=1
where (x); = x(x+1)--- (x+a—1) is the Pochhammer symbol.

A nearly parked tree Py naturally comes with a labeling (¢n(e) : e € Edges(Py)) on its edges
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Figure 6.6: A nearly parked tree with 18 vertices and 17 cars that manage to park while
leaving the root empty (the labels of the vertices and cars are not displayed for the sake of
clarity). Right: A simulation of a large uniform nearly parked tree of size 15000, where the

thickness and color of the edges indicate the flux of cars going through them.

counting the number of cars going through that edge in the parking process, see Figure 6.6. An
Abelian property actually shows that this labeling does not depend on the order in which we have
parked the cars. In particular, the sum ) ¢n(e), corresponding to the total distance travelled by the

cars, is also invariant under relabeling of the cars. We compute the expectation of this quantity:

Proposition 6.3 (Total traveled distance N°/4). The mean total distance travelled by the cars in a

uniform nearly parked tree Py is

1 N= 1 T/A) s
E| ) zZ<h+1>h+2)N <2>h e DAz NV

eeEdges(PN)

The heuristic picture suggested by the above two results is that a uniform nearly parked tree
Py is of height N3/ and that the flux of cars along “long branches” of Py is of order N'/2 so that
N3/4. N1V/2 = N5/4 ig the total distance driven by the cars. This is coherent with the fact that in

2/3 is of order

the critical window, the outgoing flux at the bottom of the root component of size n
n'/3 = (n?/3)1/2 by Theorem 6.1.

In fact, we believe that rescaled uniform nearly parked trees converge after normalization towards
the growth-fragmentation trees that already appeared in the study of scaling limits of random planar
maps and the Brownian sphere, see [31, 32, 130] or [72, Chapter 14.3.2]. Those are “labeled continuum
random trees” describing the genealogy of the masses of individuals in a family of living cells. These
cells evolve independently one from the other, and the dynamics of the mass of a typical cell is
governed by (a variant of) a 3/2-stable spectrally negative Lévy process. Each negative jump-time
for the mass is interpreted as a birth event, in the sense that it is the time at which a daughter cell is
born, whose initial mass is precisely given by the absolute height of the jump (so that conservation of
mass holds at birth events). With some work, one can define a version (7, (¢(x) : x € T)) of those
random labeled trees conditioned to start from a single cell of mass 0 and to have a total “volume”

of 1, see [34, 33] for details. We propose the following conjecture:
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Conjecture 1. We have the following convergence in distribution for some cq1,c2 > 0

Py
<<PN, 13254) ; (‘P\l}%) e € Edges(PN)>> %) (c1-T,(c2-p(x):x€T)),

see [7]] for the topology one may want to use (which in particular implies the Gromov-Hausdorff

convergence on the first coordinate).

Apart from the above propositions, one strong support for this conjecture is the fact that fully
parked trees satisfy a Tutte-like equation by splitting the flux at the root which is reminiscent of
that appearing in the realm of planar maps, see Section 6.8. In particular, if correct, combining
the above conjecture with our coupling construction would uncover a “dynamical” construction of
growth-fragmentation trees which is similar in spirit to that of the minimal spanning tree [1] but

with a redirection of the edges.

The paper is organized in two main parts. The first one is purely in the discrete setting and
presents the coupling construction as well as its enumerative and geometric consequences. The
second one focuses on scaling limits and involves the multiplicative coalescent of Aldous as well as
stable Lévy processes. For the reader’s convenience, we provide an index of the main notations at

the end of the paper.

Acknowledgements. We acknowledge support from ERC 740943 GeoBrown. We thank Linxiao
Chen, Armand Riera and especially Olivier Hénard for several motivating discussions during the
elaboration of this work. We thank Svante Janson and Cyril Banderier for comments about the first
version of this work. Last, but not least, we warmly thank the anonymous referee for a thorough

reading of our paper and precious comments which were greatly appreciated.

I Discrete constructions

This part is devoted to the discrete constructions and couplings. We consider non-necessarily con-
nected finite multigraphs g, i.e. self-loops and multiple edges are allowed. The number of vertices
of g will be denoted by ||g||e, its number of edges by |/g|lee and the vertex set is often taken to
be {1,2,...,]/g|le}. The vertices of our graphs will often be colored in two colors, white (standard)
or blue (frozen), and we denote by ||g||o and |/g|le the number of vertices of each color and by [g].
and [g]e the graphs induced on vertices of each color. The surplus of a connected multigraph g is
defined as ||g||e-s — ||g]|e + 1 and corresponds to the number of “cycles” created when building g. The
subgraph made of the components without surplus is called the forest part of g and denoted by [g]tree-

In the rest of the paper T, is a uniform rooted Cayley tree with n labeled vertices {1,2,...,n}.
We shall always see the edges of T, as oriented towards the root vertex. For i > 1, we let X;,Y;
be i.i.d. uniform points of {1,2,...,n} so that E = (Xi,Y;) can be seen as i.i.d. uniform oriented
edges (self-loops are allowed). In the sequel T, will always be independent of (X; :i > 1) but not of
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6.1 Warmup

In this section we introduce the main ingredients for the coupling of the parking process on Cayley
trees with the Erd6s—Rényi random graph. We shall first describe the different notions of components
in the parking process. We then present the coupling in the case of the parking on random mappings
(Proposition 6.4) for which the proof is easier to understand. Note that Lackner & Panholzer [128]

already noticed striking similarities between parking on mappings and parking on Cayley trees.

6.1.1 Components and versions of parked trees

Fix a random uniform rooted Cayley tree T, with n labeled vertices {1,2,...,n} and independently
of it, let X; € {1,2,...,n} be uniform i.i.d. car arrivals for i > 1. For m > 0, we proceed to the
parking of the first m cars as explained in the introduction and consider the clusters of parked cars.
There are several possible notions to define those clusters and let us go from the more restrictive to

the more permissive, see Figure 6.7:

e If we only keep the edges (and neighboring vertices) having a positive flux of cars (that is
through which at least one car had to go), then we obtain the strong components, i.e. a subforest
Tstrong (1, m) C T,. The components of Tsyong(n,m) different from the component containing
the root vertex are” either isolated empty vertices or strongly parked trees which are rooted
Cayley trees of size N carrying N labeled cars, so that all cars manage to park (outgoing flux

0), and such that all edges have a positive flux of cars.

o If we only keep the edges so that both extremities are occupied spots, then we obtain the full
components Tgy (1, m). The components of Tgy (1, m) different from the component containing
the root vertex are either isolated empty vertices or fully parked trees which are rooted Cayley

trees of size N carrying N labeled cars and so that all cars manage to park (outgoing flux 0).

e Finally, if we only keep the edges emanating from the occupied vertices, then we obtain the
near components Thear(1,m). The components of Tpear(n,m) different from that of the root
vertex are nearly parked trees i.e. rooted Cayley trees of size N carrying N — 1 labeled cars

and so that the root vertex stays empty after parking the cars.

Of course we have Tyrong (1, m) C T (1, m) C Thear(n, m) in terms of edge sets. The component
of the root vertex in those forests may not be a strong/fully/nearly parked tree since a positive flux
of car may exit through the root (or in the case of near components, the root vertex may contain a
car). When the component of the root is neither a strongly/fully /nearly parked tree nor an empty
vertex, we shall color it in blue. On a high level, the starting observation of this paper is that for n

fixed the processes

m— T,(n,m) for x € {strong, full, near} are Markov processes,

2after an increasing relabeling of its vertices and cars
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Figure 6.7: lllustration of the different notions of clusters of parked cars: from left to right
the strong, full and near components. The labels of the vertices and of the cars are not
displayed for better readability. After m = 23 car arrivals, the black vertices contain a car
and the red edges have seen at least one car going through them. The grey components are,
from left to right, strongly/fully/nearly parked trees. The components of the root vertex is

not of the same type and is thus colored in blue.

see Proposition 6.6 and Section 6.2.3. Although the notions of strong or full components seem more
natural than the notion of near components, we shall see in the next sections that the evolution of
m 5 Thear(n, m) is very close to the evolution of the Erdés-Rényi random graph, which constitutes
the basis of our work. One key feature is that Thear(n,m + 1) is obtained from Thear(1, m) by adding

at most one edge (which is not the case for the two other notions of components).

Remark (Versions of parked trees). Fully parked trees have been considered by Lackner & Panholzer

in [128] and strongly parked trees by King & Yan in [119]. Both works provide enumeration formulas
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which we shall recover in Section 6.4. Different versions of fully parked trees have recently been

investigated by Chen [59] and Panholzer [118], see Section 6.8.2 for more details.

6.1.2 Frozen and Erdos-Rényi random graphs

Recall from the introduction the definition of the random graph process (G(n,m) : m > 0) obtained
by adding sequentially i.i.d. uniform unoriented edges E; = {X;, Y;} where the oriented edges l:fz- =
(X;,Y;) have i.i.d. uniform endpoints over {1,2,...,n}.

[G(n, m)]iree g

Figure 6.8: lllustration of the inclusion of F(n,m) inside G(n,m). The two processes

G(n,m)

B
=
=

coincide on connected components of G(n, m) that do not contain surplus (left column) and
F(n,m) is obtained by further splitting the remaining components in G(n,m).

The frozen process (F(n,m) : m > 0) is constructed by discarding certain of those edges and
coloring the vertices in blue or white (see Figure 6.3). In particular ||F(n,m)|les < m and the
inequality may be strict. The vertices in the frozen components of F(n,m) will be colored in blue
while the others stay white. In that construction, the process F(n,-) lives inside G(n,-) and in

particular for every n,m > 0 we have
F(n,m) C G(n,m) (6.2)

in terms of edge set. Moreover, it is easy to see by induction on m > 0 that F(n,m) and G(n, m)

coincide on the forest part [G(n, 1)]iee, see Figure 6.8.



6.1. WARMUP 151

6.1.3 Parking on random mapping and the frozen Erdos—Rényi

A mapping is a graph over the n labeled vertices {1,2,...,n} with oriented edges and so that each
vertex has exactly one edge pointing away from it, see Figure 6.9. Equivalently, the oriented edges
of the graph can be seen as i — ¢ (i) where ¢ is a map {1,2,...,n} — {1,2,...,n}, hence the
name “mapping”. In particular, if M, is a uniform random mapping on {1,2,...,n} then the targets
o(i) i.e. the vertices to which point the edges emanating from 1,2,...,n are just i.i.d. uniform on
{1,2,...,n}.

Figure 6.9: An example of a mapping over {1,2,...,13}.

The parking process can be extended from a rooted tree to a mapping (see [128]): Given the
random mapping M, we consider independent uniform car arrivals X; € {1,2,...,n}. Each car tries
to park on its arrival vertex and stops there if the parking spot is empty. Otherwise the car follows
the oriented edges of M, and takes the first available space, if there is one. If the car is caught in an

endless loop, then it exits without parking.

As for the parking on T,, when m cars have arrived we can define submappings (subgraphs of a
mapping)
Mstrong(”/ m) - Mfull(n/ m) - Mnear(n/ m)/

by keeping respectively the oriented edges with positive flux of cars, the oriented edges linking two
occupied spots, or the oriented edges emanating from occupied spots in the parking process. In the
remainder of this section we shall focus on Mpear(n, m). When an (oriented) cycle is discovered in
Mhear (1, m) we shall color the entire non-oriented component in blue.

In the above construction, the car arrivals X;’s are independent of the uniform random mapping
M,,. The main observation of this section is that one can in fact couple the oriented edges Ei = (X3, Y;)
from which we constructed the process F(n, -) with M, so that M,, has the correct law and furthermore

that F(n,m) has the same components (in terms of subsets of vertices) as Mpear(7, m). In particular:
e M, will be constructed from (Xj, Yi)i>1.
® Mhpear(n,-) is constructed by additionally taking (X; :i > 1) to be the car arrival process.

e In fact, the mapping M, ends up being independent of (X; : 7 > 1) in the construction.
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Of course, the components of F(n, m) and Mpear(11, m) are not the same subgraphs since we will need

to redirect® the edges of F(n,m) to obtain Mpear(11,m). More precisely:
Proposition 6.4 (Coupling of parking on mapping with the frozen Erd6s—Rényi). We can couple the
uniform random mapping M, with the X;’s and the Y;’s in such a way that

(Parking on mapping) The graph My, is a uniform random mapping on {1,2,...,n} independent
of the car arrivals (X;:i > 1),

(Coupling with F(n,-)) For each m > 0, the subgraph Mnear(n,m) has the same (unoriented)

connected components as F(n,m). More precisely:
e The blue components of F(n,m) correspond to components with surplus in Mnear(n,m),

e The indices of the discarded edges in F(n,-) correspond to the indices of the cars that do not

manage to park on M.

Proof. We will construct the mapping M, by prescribing the targets (i) of its vertices using the

oriented edges E.s according to the following rule:

From oriented edges to parking on mapping. The starting points (X; : i > 1) of the edges
Ei are the i.i.d. arrivals of the cars over {1,2,...,n}. We use them to construct iteratively
an increasing sequence of oriented graphs (M(n,m) : m > 0) where M(n,0) is the graph
over {1,2,...,n} with no edge. For m > 1, we use the edges of M(n,m — 1) to (try to)
park the mth car arrived on X,,. If we manage to park it, we denote by {,, € {1,2,...,n}
its parking spot, otherwise we set {,, = t. When (,, # 1, we add the edge {;, — Y to
M(n,m —1) to form M(n, m), equivalently we put

0(lm) =Ym when (, # t. (6.3)
Em Y;n X Em Y:m
Bix,,
free 1 .
¢ e SOt ‘& e ﬂ
Opo o e C’m

It is perhaps not clear for the reader how the above rule serves as recipe to construct a mapping, so
let us make a couple of remarks and refer to Figure 6.10 for a step-by-step illustration. First notice
that Yy, is (obviously) independent of M(n, m — 1), but then M(n,m) depends (obviously!) on Yj,.
It is easy to see by induction that every vertex in M(n, m) has at most one edge pointing away from
it and that the vertices having an emanating edge are those which already accommodate a car. If the

mth car is trapped in an endless loop the graph does not evolve and we have M(n,m) = M(n,m —1).

3note that when we redirect an oriented edge, we may change its starting vertex (as opposed to just changing its

orientation)
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When {X;:1 < i< m} has spanned {1,2,...,n} (which holds for large enough m when the E;’s are

i.i.d. uniform oriented edges), the graph M(n, m) is constant and we define

M, = | M(n,m),

m>=1

which is a random mapping of size n. With this construction, it is clear that we have
Mhpear(n, m) = M(n,m),  for every m > 0.

The second point of the proposition is then easy to check by induction (see Figure 6.10) in particular
the edges emanating from a blue component in F(n,-) correspond, via the coupling, to cars arriving
on a component already containing an oriented loop: such cars will be trapped in an endless loop
and contribute to the outgoing flux in the parking, whereas the corresponding edges are discarded
in the frozen process. The non-trivial probabilistic point consists in showing the first point of the
proposition, i.e. that this coupling reproduces the parking on a uniform random mapping or in other
words, that M,, made of the edges

Ci—Y;, when(; #1t

forms a uniform mapping, independent of the X;’s (but not of the Y;’s II!). Fix m > 1 and notice
that p, is determined by M(n,m — 1) and X,,, and in particular is independent of Y;,,. We deduce
that conditionally on ,, # 1, its target 0({u) = Y is independent of the edges already constructed
in M(n,m — 1), also independent of (X; : i > 1), and is uniform over {1,2,...,n}. Since {{; :i > 1}
spans {1,2,...,n} almost surely, conditionally on the X;’s, the {; (different from t) can be seen as a
way to sample the vertices of {1,2,...,n} (and they all will be sampled) and at each step they are
assigned an independent random uniform target. A moment’s thought shows that the targets of all

vertices are i.i.d. uniform over {1,2,...,n} and independent of (X; :i > 1).

6.2 Coupling of parking on Cayley trees with the frozen Erdos—Rényi

We shall now perform a similar coupling between the frozen FErdés—Rényi process and the parking
process on a uniform Cayley tree. Although the main idea (considering T;, as unknown and revealing
Thear (11, m) step-by-step in a Markovian way) is the same, the Markovian exploration of Cayley trees
is a little more complicated than in the case of random mappings and we shall need some extra

randomness to perform the coupling.

6.2.1 Markovian exploration of rooted Cayley trees

We present the Markovian explorations of uniform Cayley trees which are adapted from [65]. We call

these “peeling explorations” by analogy with the peeling process of random planar maps [72]. We
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Figure 6.10: lllustration of the redirections of the edges (E; : 0 < i < m) to obtain M(n, m).
On the top right, a possible value for G(13,18) and its corresponding F(13,18) if one only
keeps the black edges. On the left, the corresponding M(13,18). The redirected edges which
are different from those in F(n,-) are in orange. The labels of the vertices are not displayed for
better visibility, but the labels of the cars are present (blue for their arrival vertices, black for
the parking spot, and red if the car does not manage to park). In the tabular, we represented
a step-by-step construction by displaying M(13,m) for m = 3,4,6,7,8,9,13,16 and 18.
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will later tailor those explorations to the parking process using a specific peeling algorithm and this
will yield the coupling with the frozen Erdés—Rényi, see Proposition 6.6.

Recall that a rooted Cayley tree t is an unordered tree over the n labeled vertices {1,2,...,n}
where one of its vertices has been distinguished and called the root. This root enables us to orient
all edges of t towards it. As in the case of mappings, this allows us to speak of the target (i) of each
vertex i € {1,2,...,n} which is the vertex to which points the edge emanating from i. A difference
with the previous section is that in the case of trees no loop can be created and the root vertex
r of t has no target which we write as ¢(r) = @. The information on t is thus encoded by the n

“Instructions”
{i > 0c(i)} whereo(i)e€{1,2,...,n}U{@} forie{l1,2,...,n}.

An ezxploration of t can be seen as revealing those n instructions one by one by discovering the target
of one vertex at a time. A set S of instructions is said to be compatible if it corresponds to a subset of
instructions of some tree. Any such set can be interpreted as a forest of rooted trees by connecting the
vertices to their revealed targets, see Figure 6.11. If the target of the root is “revealed” (one should
probably better say that the root vertex is revealed) then we record this information by coloring the

corresponding tree in blue, the other trees being referred to as white.

CHONCRONG

Figure 6.11: lllustration of the rooted forest obtained from the explored subset S = {3 —
18,18 - @,7 —+ 6,6 — 18,11 —+ 4,8 — 4,10 - 4,4 —+ 2,9 — 2,2 — 5,1 — 16}. Notice
that the root vertex has been revealed thanks to the presence of 18 — & and we have colored
the corresponding tree in blue. In this example the next vertex to be peeled is a(S) = 16 and

its target is the vertex 4. The remaining edges of the underlying tree are displayed in dotted
gray.

Of course, a given rooted Cayley tree t with n vertices can be explored in n! different ways and
we shall choose one using a function a, called the peeling algorithm, which associates any subset S
of compatible instructions (which does not yet form a tree) with a vertex a(S) whose target is not

revealed yet (in particular a depends only on S and not on the underlying tree, and a(S) must be a
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root of a standard white tree of the forest associated with S). The peeling of t with algorithm a is

then the sequence
n

s§csfc---csy=J{i—=c)}
i=1
where Sf is the empty set and S¢ ; = S§ U {a(S}) — o(a(S}))} for all i <n — 1. We shall call those
explorations “peeling explorations” or “Markovian explorations”, indeed, when the peeling algorithm
a is deterministic and when the underlying tree t is a uniform rooted Cayley tree, this exploration is

a Markov chain with explicit probability transitions:

Proposition 6.5 (Markov transitions for peeling exploration of uniform Cayley trees). Fizx a peeling
algorithm a. If T, is a uniform rooted Cayley tree with n vertices, then the exploration (S%)o<i<n
of T, with algorithm a is a Markov chain whose probability transitions are described as follows.
Conditionally on S and on a(S%), in the forest representation of 8¢ we denote by k > 1 the number
of vertices of the tree of root a(S%) and by £ > 0 the number of vertices of the blue tree (if any) then:

o If { = 0, with probability £ we have o(a(S$)) = @ (i.e. the vertex we peel is the root of the
underlying Cayley tree), otherwise o(a(S¥)) is a uniform vertex not belonging to the tree of root
a(S).

o If { > 1, with probability =X the target o(a(S¥)) is a uniform vertex of the blue tree of S,

n
otherwise it is a uniform vertex of the remaining trees except the tree of root a(SY}).
The proof is similar to that of [65, Proposition 1] and relies on counting formulas established in

[65, Lemma 5] based on Pitman’s approach [1419, Lemma 1]. Specifically we have:

Lemma 6.1. If f is a forest of white rooted trees on {1,2,...,n} with m edges, then the number of
rooted Cayley trees containing f is n"~™=1. If * is a forest of rooted trees on {1,2,...,n} with m
edges containing a blue tree with £ > 1 vertices, then the number of rooted Cayley trees containing £*

n—m-—2

with the root being the root of the blue tree is {n

To be precise, [65] considers Cayley trees as rooted at the vertex n whereas we allow the root
vertex to be any vertex of {1,2,...,n} hence the factor n difference between the numbers appearing
in the above lemma and those of [05, Lemma 5].

Proof of Proposition 6.5. Given the last lemma, the proof is easy to complete. It suffices to notice
that since the underlying tree T, is uniform over all rooted Cayley trees with n vertices, for all i > 0,
conditionally on S}, the tree T, is a uniform tree among those which contain the forest associated to
S¢ (with or without a blue tree depending whether the root vertex has been revealed or not). Hence,
for every (compatible) target v € {1,2,...,n} U{D},

]P(a(a(Sf‘)) — sy, a(S?)) _ #{t containing the forest associated with 8} U {a(S}) — v}}

#{t containing the forest associated with S}
Using Lemma 6.1, we recognize the transition probabilities given in Proposition 6.5 and obtain the

desired result.

O
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The interest of Proposition 6.5 is that different peeling algorithms can be used to explore a uniform
Cayley tree. See [65, Sections 3 and 4] for applications to the greedy independent set, the Aldous—

Broder or Pitman algorithms.

6.2.2 The near exploration

Recall the notion of near components defined in Section 6.1.1. We shall see that Thear(#, ) can be
interpreted as a peeling process of T;, using an algorithm (called aneqr below) tailored to the parking
process. Furthermore, as in the last section, we shall make a coupling of T,, with the oriented edges
Ei’s so that T, stays independent of the car arrivals X;’s but in such a way that Thear(7, -) is closely

related to the frozen process F(n, -).

Proposition 6.6 (The main coupling). We can couple T, with the X;’s and the Y;’s so that:

e (Parking on Cayley tree) The tree T, is a uniform rooted Cayley tree independent of the

car arrivals (X;:i>1).

e (Coupling with F(n,-)) For each m > 0, the subforest Tnear(11, m) has the same (unoriented)
connected components (in terms of subsets of vertices) as F(n,m) where all the frozen compo-

nents have been joined. More precisely:

— The white components of F(n,m) are the connected components of Tnear(1, m) with a pos-

sible exception for the component containing the root if Tnear(n, m) has a blue component,

— The vertices of the blue components of F(n,m) correspond to the vertices of the (unique)

blue component of Tnear(n, m),

— The indices of the discarded edges in F(n,-) correspond to the indices of the cars that do

not manage to park on T,.

Proof. As in the proof of Proposition 6.4, we shall construct T, using the ]:ji’s. The main difference
being that the appearance of the first cycle in G(n, m) corresponds to the detection of the root vertex
in the Cayley tree and that we need an additional randomization to redirect some of the edges E;

(whereas in the case of mapping, the redirection was a measurable function of the X; and Y;).
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From oriented edges to parking on trees. The starting points (X; : i > 1) of the edges E;
are the i.i.d. arrivals of the cars over {1,2,...,n}. We use them to construct iteratively an
increasing sequence of compatible instructions (Sl,fflrk :m > 0) or equivalently of growing
forests (T(n,m) : m > 0) with zero or one blue tree. Initially Sgark is the empty set and
for m > 1, we use the edges of Siail; to (try to) park the mth car arrived on X,,. If we
manage to park it, we denote by {, € {1,2,...,n} its parking spot, otherwise set {,,, = 1.
If 7, = t then S%ark = S};irl;. Otherwise

e if the addition of the edge {;; — Yy, does not create a cycle in T(n, m — 1), then add
it to Sf:il; to form S%ark,
e if the addition of the edge ,; — Y, creates a cycle in T(n,m — 1) then

— If T(n,m — 1) has no blue tree (the root vertex is not revealed), then add
{m — D to form S%ark,

— Otherwise add {,;, — U, where U, is a uniform point over the blue tree of

T(n,m — 1) sampled independently of the past to form Sl,;ark, see Figure 6.12.

o O O O O

Figure 6.12: When a new cycle is created by the addition of the edge E,;, the target of Cm

is chosen uniformly in the blue tree.

As in the proof of Proposition 6.4, the increasing forests T(n, m) eventually stabilize to form a

(blue) tree and we put
Tu:= |J T(n,m).

m=0

With this definition, it is clear that we have
Thear(n,m) = T(n,m) for all m > 0,

and the deterministic properties of the coupling between the parking on T, and F(n,-) are easy
to prove by induction. It thus remains to prove that T, is indeed a uniform rooted Cayley tree
independent of (X; : i > 1). To see this, we shall interpret the Markov chain (S%ark :m > 0) as a
peeling exploration of a uniform Cayley tree. Specifically, given (X; : i > 1) we construct a peeling

algorithm apear as follows. At m = 0, we start from the empty set Sg"e” and for m > 1, if S:t‘;iai is
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the current status of the exploration, we let a car arrive on vertex X,,. The car follows the oriented
edges already present in 82‘8_35 to find its parking spot (. As in the case of random mapping, if the
car does not park (i.e. exits through the root of the tree) then we put {, = 1 and do not trigger a

peeling step, i.e. move to step m + 1. In the case {,, # T we put

anear(sz?e_ai) = Cm, (64)

that is we reveal the target o({,) € {1,2,...,n} U{@} and include {; — 0 () to form Syre. The
process (Sl,ffrk :m > 0) has the same law as the peeling exploration (Sy* : m > 0) with the random
algorithm apear: indeed the probability transitions of Spark Jegeribed above are the same as those of
Proposition 6.5. Conditionally on the X;’s, the function apear can be seen as a deterministic peeling
algorithm, so by Proposition 6.5, the tree T;, constructed this way is indeed uniform. In particular,
the tree T, is independent of the (X; : i > 1) which are themselves i.i.d. uniform on {1,2,...,n}.

Our claim follows

O

Remark (Other couplings between mappings and Cayley trees.). By combining the constructions in
the previous two sections, we get a coupling between a uniform mapping M, and a uniform rooted

Cayley tree T,, which is different from the one [13] based on Joyal’s bijection.

Convention

In the rest of the paper we shall always suppose that the tree T, the car arrivals (X; : i > 0) and the
frozen Erdés-Rényi process F(n,-) are built from the sequence (E; = (X;,Y;) : i > 1) as in the proof
of Proposition 6.6.

6.2.3 The strong exploration

We saw above in the proof of Proposition 6.6 that the process m > Tnear(n,m) can be seen as a
peeling exploration of the underlying tree T), with the algorithm apear that reveals the targets of the
parked vertices. In a similar vein, one can interpret m — Tstrong(n, m) as a peeling exploration where
we reveal the target of a vertex when a car leaves that vertex (for the first time). More precisely, we
let the cars arrive one by one on the vertices X; and peel the vertices when the cars need to move
and find their potential parking spot (as opposed to the former near algorithm where we peeled the
vertex on which the ith car parked). In particular, the arrival of a car may result in no peeling step
(e.g. if the car parks on its arrival vertex) or to several peeling steps, see Figure 6.13. We do not
formalize further and hope it is clear for the reader. After m cars have arrived, this exploration has

revealed the strong components

Tstrong (7’1/ m )
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@ ’ T'strong(ll? 8)

1,5 @

Figure 6.13: lllustration of the strong parking peeling algorithm. On the top, the current
status {11 — 7,1 — 5,6 — 5,5 — 8} after 8 cars have arrived triggering in total 4 peeling
steps. The available spots are in white whereas the gray vertices already contain a car, the
red edges have positive flux. If the next car arrives on vertex 2, it triggers two peeling steps
resulting in 2 — 11 and 7 — 4 before parking on vertex 4. If the next car arrives on vertex
1, it follows the edges, triggers the step 8 — & and cannot park. The root components then

becomes blue because we discovered the root of the underlying tree.

which we defined in Section 6.1.1. Recall also that if the outgoing flux of cars is positive then the
tree carrying the root vertex in Tstrong(n, m) is seen as a blue tree (and indeed we discovered the root
vertex during the peeling exploration).

This peeling exploration enables to see Tstrong(n,m) (together with its coloring) as a Markov
chain. We shall not describe its probability transitions, but we shall use it to relate the probability
that the root of T, contains a car to the probability that the outgoing flux in T}, is equal to 0. Recall
from the introduction that D(n,m) is the number of cars that did not manage to park among the

first m cars.

Lemma 6.2. Forn >1 and 0 < m < n we have

IP(the root of Ty, is not occupied by one of the first m cars |D(n,m) =0) =1— %

Proof. Let us explore the underlying tree T, using the strong parking peeling algorithm until we
manage to park m < n cars (notice that the number of peeling steps is between 0 and m —1). On

the event {D(n,m) = 0} all peeling steps performed so far have not revealed the root vertex of T,
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(we did not need to peel the root vertex since no car was emanating from it) so the corresponding
forest Tstrong(n,m) is made of white rooted trees (no blue tree) containing n — m isolated vertices
which do not yet accommodate a car. By the proof of Proposition 6.5 and Lemma 6.1, conditionally
on Tstrong(n, m), the probability that the root vertex of T, (which is yet undiscovered) is a given root
of a tree t of Tstmng(n, m) is proportional to the number of vertices of t. Hence, the probability that

the root vertex of T;,, does not contain one of the first m cars is % as desired.

O

Remark. We saw above that m +— Tsyong(n,m) and m +— Thear(11,m) can be seen as peeling explo-
rations of Ty,. It does not seem to be the case for m — Tpy (1, m) although it is a Markov process

and might alternatively be used to prove the above proposition.

6.3 Free forest property

In this section we gather several results about (random uniform) labeled (unrooted unordered) forests

over {1,2,...,n}. We first recall their enumeration from classical results of Rényi and Britikov.

6.3.1 Uniform (unrooted) forest

Let §(n, m) be the set of all unrooted unordered forests over the n labeled vertices {1,2,...,n} with
n —m components (hence m edges in total). To enumerate such forests it is better to considered
the trees as indexed by {1,2,...,n —m} and consider the set of all unrooted, unordered forests of
{1,2,...,n} with n — m components indexed by 1,2,...,1n — m. The number of such forests with

components of sizes (ki,...,ky—n) is equal to

( : )nﬁk’“/ (6.5)
kl/---/kn—m i=1 !

the binomial coefficient (k1 ...nkn,m) counts for the number of choices to partition the n vertices in a
list of n — m subsets of kq, ..., ky,_, vertices and on each subset there are k;{"_z ways to choose a
spanning tree (Cayley’s formula). To manipulate those numbers, let us introduce

n—2

T(z) = Z n (6.6)

|
n>1 n:

the exponential generating function of (unrooted) Cayley trees. Summing (6.5) over all choices of

ki,...,kn—m and dividing by (n — m)! to remove the indexation of the components we deduce that

n!
(n—m)!

#5(n,m) = [x"]T" " (x), (6.7)

where we recall the standard notation [x"] Y- a;x' = a,. Based on (6.7) Rényi [156] showed
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Note that the power series T(z) is convergent when |z| < e™!, and for z = e ! we have T(e 1) = 3

(it follows from (6.20) below) so that 2T(z/e) is the generating function of a probability measure

kk72

of expectation 2z9,T(z)|,_.1 = 2 which has furthermore a heavy tail p(k) ~ \/% k™52 as k — co.

The following proposition is the probabilistic translation of the above combinatorial results:

Proposition 6.7. Let Cq,...,Cy_ be the components indexed from 1 to n — m in a uniform manner

of a uniform unrooted unordered forest over {1,2,...,n} with m edges. The vector of the sizes
(ICills 1 <i<n—m)

has the same law as the increments of a random walk (S; : 0 <i < n—m) started from Sy = 0 with
i.i.d. increments of law u and conditioned on {Sy_m = n}. Furthermore, conditionally on their sizes
([Cille : 1 < i< n—m) the (increasing relabeling of the) trees C; are independent (unrooted) uniform

Cayley trees.

Proof. The fact that conditionally on the vertices in each component, their increasing relabeled
versions are independent Cayley trees is clear already in our way to obtain (6.5). The same property
holds true if we condition on the sizes of the components only. For the first point, notice that the

probability that the increments of the walk are kq,...,k;_ with k1 +---4+k,_,, = 1 is equal to
k-2

2r e T kik,—! which is proportional to (6.5) and where the proportionality factor only depends

on n and m. This proves the proposition. Note for the record that we have
27" (n—m)

P(Sy e = 1) = T’ (1, m). (6.10)

O

The above proposition still holds if we consider a random walk with step distribution generating
function given by z + T(zo) - T(z - zo) for any 0 < zo < e~!. However, our choice of zg = e~}
is the “correct” probabilistic choice in the critical window m = 7 + O(n?/3) and yields a measure u
with a heavy tail in the domain of attraction of the 3/2-stable law. More precisely, we shall consider
the stable Lévy process (.%})s>0 with index 3/2 and only positive jumps, which starts from 0 and

normalized so that its Lévy measure is

1
7|x|_5/21x>0’ or equivalently E[exp(—¢.%)] = exp(zzitga/z)

V271
d
for any £,t > 0, see [28, Section VIII]. We chose this normalization so that n_2/3(Sn/2 —n) (_>—)> A.
n—oo
By standard results [177], for any f > 0 the variable .#; —which is distributed as a 3/2-stable totally
asymmetric spectrally positive random variable— has a density with respect to the Lebesgue measure

on R which we denote by p;(x) for x € R and t > 0. By the scaling property of (.#) we have

pr(x) = t7253py (x - +72/3),



6.3. FREE FOREST PROPERTY 163

o=t () o ().

where Ai is the Airy function. In particular,

with

P ="
The function pp(x) (see Figure 6.14) is sometimes called the (map)-Airy distribution as in [23] (in
the notation of [23, Definition 1] we have p1(—x) = cA(cx) with ¢ = J and in the notation of [135]
we have py(x) = cg(cx) with ¢ = 22/3). In particular, it is a smooth positive function tending to 0

at oo and from [23, Eq. (3)] we have the following asymptotics

pr(A) ~ rv’/\ exp< |/\|) if A — —o0 (6.11)
m‘ |=5/2 if A — oo

04~

L N
2 4

Figure 6.14: Plot of the density p;(-) over [—5,5]. The function is rapidly decreasing to
0 as x — —oo and polynomially decreasing to 0 as x — oo. It is smooth and unimodal:

increasing from —oo to ~ —0.886 and then decreasing up to oo.

Using this notation and equipped with (6.8), Britikov [47] computed the asymptotic of #§(n, m)

as n and m go to 0. Those results are recalled here:

Lemma 6.3 (Britikov [17]). If n,m — oo, then

2’”711' 1- Zf 27;11 W:l 1/3 — —00
n—1/6 .
#3(71, ﬂ’l) I mpl ()\) V 27T ’Lf m = % + %nz/?’
n"-2 2m =5/2 .+ om—n._1/3
=t (it — 1) if At/ = foo.

Those asymptotics are better understood on the variable IP(S,_,, = n) which is related to the
number of forests by (6.10). Indeed, writing m = % + 4n2/3 and using the asymptotics on p1(A)
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from (6.11), we see that as long* as |A| < n!/3 then
n?/3 P(Sy_m = n) ~ p1(A), (6.12)

which can be seen as a strong form of the local central limit for random variables in the domain of

attraction of stable laws due to Gnedenko.

6.3.2 Free forest property

In this section we establish a Markovian property of the frozen Erdés-Rényi process F(n, m). Recall
that D(n,m) = m — ||[F(n,m)||es stands for the number of discarded edges up to time m (i.e. the
edges that have not been added in F(n,m) because their starting point was in a frozen component)

and recall that ||F(n,m)|e is the number of vertices in the frozen (blue) components of F(n,m).

Proposition 6.8 (Free forest property). For any n > 1,m > 0, conditionally on ||F(n,m)||ee and
|F(n,m)|le the (increasing relabeling of the) forest part [F(n, m)|wee is uniformly distributed over

§(n = 1E(n,m)|lo, [F(n,m)|es — [[F(rn,m)]]s).

The proof of the proposition follows from two invariance properties of the law of a uniform random

forest which are described as follows. We shall write W(n,m) for a uniform forest of §(n,m).

e Size-biased removal. Pick X € {1,2,...,n} uniformly and independently of W(n, m) and denote
by K the number of vertices of the tree containing the vertex X in W(n, m). Then conditionally
on K, the forest obtained by removing the tree containing X and relabeling the vertices in

increasing order has the same law as W(n — K,m — K+ 1).

e Addition of one edge. Pick (X,Y) € {1,2,...,n}? uniformly and independently of W(n,m)
and let us add the edge E = {X, Y} to the forest W(n, m). If the addition of this edge creates a
cycle, let us denote by K the number of vertices of this component. Otherwise put K = 0. Then
conditionally on K, the forest obtained by adding E to W(n, m), and removing the corresponding
component if this addition creates a cycle has the same law as W(n — K,m — K+ 1) (as usual

up to an order-preserving relabeling of the vertices).

The proof of these two facts is easily seen by counting arguments, see [138, p 957 after Lemma 6.1]
for a proof of the second one. In the first case, we call this operation a size-biased removal because
the tree of size K removed from W(n,m) is not uniform over all components but biased by its number

of vertices.

Proof. We prove the proposition by induction on m > 0. For m = 0 there is nothing to prove. We
decompose the effect of the (tentative) addition of the edge Epi1 = (Xpmi1, Yms1) to F(n,m) in a
two steps procedure. First, conditionally on ||F(n,m)||e and ||F(n,m)| ee we decide whether:

1. Xpi1, Yme1 € [F(n,m)]e with probability n2||F(n, m)||2,

4that is A = A,, may depend on n but n71/3. A, > 0asn — o



6.3. FREE FOREST PROPERTY 165

2. Xyy1 € [F(n,m)]e and Y,41 € [F(n,m)]o with probability n=2||F(n, m)|

o [[E(n,m)lfo,

3. Xyy1 € [F(n,m)]o and Yy,11 € [F(n,m)]e with probability n=2||F(n, m)|

o [[F(n,m) o,
4. or Xpy1, Y1 € [F(n,m)]o with probability n=2||F(n, m)||?

In this first two cases the edge E,+1 is not added and F(n,m + 1) = F(n,m). Conditionally on case
3, the point X, 11 is uniformly distributed over [F(n,m)], and the addition of the edge E, 1 will
link the component of X;,;1 to a frozen component, freezing it. Since by induction, [F(n, m)], was
a uniform forest, we conclude by invariance under size-biased removal that [F(n,m + 1)], is again a
uniform forest of F(n — ||[F(n,m+1)|e, ||F(n,m +1)|ee — ||F(n,m +1)|[s). Case 4 is similar and

we argue as above using the invariance property under addition of one edge.
O

Corollary 2 (Transitions of the size of the freezer and discarded edges). For every fired n > 1, the

process
(IF(r, m)lls, [IF (n, m) || ee - m > 0)

is a (inhomogeneous) Markov chain with transitions

P( AIEGm)lle = 0 | [E(r,m)]s >:||P<n,m>||%

AfF(n,m)lee = 1 | [[F(n,m)[les n?

4

4

P( AIEGm)lle = 0 | [E(r,m)]s ):nP(n,m)n.
AIEGm)llea = O | [ECtm)e "

and writing n' = ||[F(n,m)|lc =n — ||[F(n,m)|le and m" = ||F(n,m)||ee — |F(n,m)||e, for k > 1,

[E(r,m)]lo )

[E (1, m) oo

]P< MG m)l. = K

(n’) K243 (n' — k,m' — k+1) <k2 +kHP(n,m)||.)
AlF(n,m)fes = 1

k #3(n',m’) n?

’ / = 1’1/— 2 n,nile
- =) P =B (K )

In particular if k = yn?/3, ||[F(n,m)|le = xn?/3, m = %+ 4n?/3 for x,y > 0, A € R and m —
|F(n,m)|les = 0(n?/3), using the asymptotic on the tail of u given after (6.9) together with (6.12)
we deduce that if y > 0, the last probability transitions are asymptotic to

4/3 Pl()\_x_y) (613)

where gx,)\(y) = (y+x) pl()\_x) ’

1 _

e 8 (y)-n
and this asymptotic is uniform as long as x, y, |A| < n1/3 uniformly and k — co. We will meet again
the function gy 1 (y) in Section 6.7.3 when dealing with the scaling limit of the process ||F(n,m)|s in

the critical window.



166 CHAPTER 6. PARKING ON CAYLEY TREES & FROZEN ERDOS-RENYI

6.4 Enumerative consequences

In this section, we derive enumerative consequences of the coupling between the parking process on
Cayley trees and the frozen Erdés—Rényi. In particular we recover much of the results of [128]. The
reader may also find a discussion about enumeration of (strongly or fully) parked trees with outgoing
flux at the end of the paper (Section 6.8).

We denote by PF(n, m) (resp. PFyoot(11,m)) the number of configurations made of m labeled cars
arriving on the vertices of a Cayley tree over {1,2,...,n} so that all cars can park i.e. no outgoing
flux (resp. so that the root vertex does not contain a car after the parking process). These numbers
thus count the parking functions on Cayley trees [128, ]. In particular, the number of fully parked
trees of size n is PF(n,n) whereas the number of nearly parked trees of size 1 is PFyoot(11, 1 — 1). Also

for m < n — 1 we have that PFyo0t(n, m) < PF(n,m) and actually Lemma 6.2 shows that

PFroot (11, 1) = (1 - %) -PF(n, m). (6.14)

6.4.1 Exact counting and asymptotics for parking functions

We start by proving Proposition 6.1 stated in the Introduction: By Proposition 6.6, the probability
that the root of a uniform Cayley tree of size n is not parked after m i.i.d uniform car arrivals is the
probability that F(n,m) (hence G(n,m)) contains no cycle (i.e. no frozen blue component). In that

case, the graph G(n,m) must be an unrooted forest. Therefore we have
IP(the root of T, is not occupied by one of the first m cars) = P(G(n,m) has no cycle), (6.15)

and so Proposition 6.1 follows by combining the last display with (6.14). We can actually go further

and give a formula for the number PFyoot(1, m):

Proposition 6.9. For 0 < m < n—1 we have

n" Ml "y — o (=12 i (i —m
PFroot(n/ m) =~ < > ( ) ( )

(n—m)! (m—1i)! (6.16)

i=0 !

In particular, when m = n — 1, the number of nearly parked trees of size n (see Section 6.1.1) is equal
to
PFro0t(n,n — 1) = 2"} (n — 1)In" 2. (6.17)

Proof. Equation (6.15) can be rewritten as

PFroot(n,m) = n""1-n™P(G(n,m) has no cycle),

— nn—‘rm—l 2 %m |2m
m
fes(um) "

= "Ly #5(n,m)

and the result follows after plugging in (6.8).
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O
By combining the above proposition with (6.14) we find an exact expression of PF(n,m) for
m < n—1, see [128, Theorem 4.5] for a different” expression. Plugging the asymptotics of Section
6.3.1 we also recover (and extend) the asymptotics of [128, Theorem 4.6] namely
( 2m
+m—1 i 2m—n,1/3
Tln m 1-— 7 if nm W? — —00
22y |
o) | E et gy
n —m)!
22m—n+1y,2n—m=3,.1 /2 -5/2
i | if 2mnl/3_> 0.
(n—m—1)! ( n ) T +

6.4.2 Enumeration of parked trees

In the case m = n, Equation (6.14) is meaningless and does not enable us to compute PF(n,n). To
do so, we shall use a decomposition at the root of a nearly parked tree and recover [128, Theorem
3.2]. We introduce the (exponential) generating functions for nearly parked trees, fully parked trees

and strongly parked trees

N(x) _ n;l PFI;;)!O(:SWLTZ; 1)3(”, F(x) — Z

n>1

P]i;(/l’;l)/zn) X", S(X) — Z

n>1

SP(n,n) ,

< (6.18)

where SP(n,n) is the number of strongly parked tree of size n. By Proposition 6.9 we have N(x) =
IT(2x)
5 :

Lemma 6.4. The number of fully parked trees with n vertices and n cars is
n—1 : j
— ). (2n)
PE(n,n) = (n —1)1)2 Y W
j=0 ’

Proof. Performing a decomposition at the root of a nearly parked tree (the trees attached to the root
of a nearly parked tree are fully parked trees up to an order-preserving relabeling of the vertices and

of the cars) we obtain for n > 1:

P 1) Ly ( n—1 >< " )ﬁPF(n )
root\ 1, 1 — = P v
k=0 k! YF L n=n—1 Moyt NIty i=1
1 PF 7’11,
-Ys 'H

Here k denotes the number of subtrees attached to the root and the factor 1/k! corresponds to
the k! reorderings of the subtrees that represent the same tree. This is equivalent to the following

equation on generating functions

N(x) = x -exp(F(x)). (6.19)

50bviously the two expressions coincide numerically, but we have not been able to transform one into the other
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Recalling that $T(2x) = N(x) and using the classical relations (see for instance [1413])
1
T(x) = xT'(x) — E(xT’(x))2 and  T'(x) = exp(xT'(x)), (6.20)

we deduce that

F(x) = 2xT'(2x) +In (1 — xT'(2x)) .

This relation is the same as that obtained by Lackner & Panholzer in [128, Equation 5]. Using

Lagrange inversion formula on xT’(x) via (6.20) (right) we obtain

[x"]In (1 —xT'(2x)) = —% .

and straightforward calculations yield the result.

O
In turn the enumeration of fully parked trees can be used to count strongly parked trees by a
simple substitution operation. This was already done by King & Yan in [119] but we recall it to

prepare the reader to similar decompositions in Section 6.5.1.
Proposition 6.10 (King & Yan [119]). For n > 1 we have SP(n,n) = (2n — 2)!.

Proof. A fully parked tree can be decomposed into the strong component of the root vertex (which
can be reduced to a single vertex) on which fully parked trees are attached. This decomposition

translates into the following equation for n > 1,

n n K
P = Y Seom) Y [Ty £ (o ) TIPFGm).
no—1 ky ko no/O] 1kj! ny,ong=1 N - K
S ke L ni=n-ng

Summing over n > 1, we obtain

F(x) = S(x-exp(F(x))), (6.21)

see [119, Section 3]. Solving the above equation (see [119]), we obtain S(x) =1 —In(2) — /1 —4x +
In (1 ++v1 - 4x), whose derivative is simply the usual generating function of the Catalan numbers
(" /(n+1) ie. S'(x) = (1 — v/1—4x)/(2x), hence SP(n,n) = (2n — 2)!.

O
In Section 6.8 we show how the above results can be extended to enumerate exactly and asymp-
totically fully/strongly parked trees with a positive outgoing flux at the root. In particular, those

problems are very similar to the enumeration of random planar maps with a boundary.



6.5. GEOMETRY OF PARKED TREES 169

6.5 Geometry of parked trees

In this section we study the geometry of the components, specifically the near components, in the
parking process. We prove that uniform nearly parked trees of size N have height of order N3/4
and total flux of order N°/4. We expect that those large scale properties are shared by the fully or
strongly parked trees (and that versions of Conjecture 1 hold for them). We start by describing the

decomposition of a uniform nearly parked tree of size N into strongly/fully parked components.

6.5.1 Law of large numbers for components

Recall from Section 6.1.1 (see Figure 6.7) the definition of nearly/fully /strongly parked trees as the

components (different from the root component and possibly from isolated vertices) of the subforests
Tstrong(n/ m) C Tfull(n/ m) C Tnear(”/ m)

We saw in the proof of Lemma 6.4 that a nearly parked tree can be decomposed at the root into a
forest of fully parked trees. Going further, we can decompose each fully parked tree into a forest of
strongly parked trees after removing the edges without flux, see Figure 6.15. In this decomposition,
each nearly parked tree n is associated with a bitype rooted tree Bitype(n) such that the vertices at

even generation are disks o/e and those at odd generations are squares [1:

e Each parked vertex of n corresponds to a disk vertex e in Bitype(n), and the empty root vertex

of n corresponds to the root vertex o of Bitype(n).

e The children of each disk vertex in Bitype(n) are square vertices which correspond to the

strongly parked components of n linked to this vertex by edges with zero flux.

e The children of each square vertex in Bitype(n) correspond to the vertices of the strongly parked

component of n above the corresponding square.

For convenience, the tree Bitype(n) is given a plane orientation by fixing independently for each
vertex an order on its children. Recall that by Proposition 6.9 we have N(x) = $T(2x) and combining
it with (6.19) and (6.21), we get

N <21e> =1/4<o0 and F <21e> =S (i) =1—-1In(2) < co. (6.22)

Therefore, we can define a random nearly parked tree P (whose size is not fixed) under the critical

Boltzmann distribution, i.e. with law

4 1 ||“H-
PP=2)= el ~ Dl (2> ' (6.23)

Lemma 6.5. The tree Bitype(P) has the law of a bitype alternating Bienaymé-Galton—-Watson (BGW)

tree where (disk) vertices at even generations have Poisson offspring distribution ve with mean

F((2e)71) and where (square) vertices at odd height have offspring distribution v given by

_ [x"]S(x/4) 4" (2n—2)!
wit) = =gqm ~1-m@) e 0 frrzt
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Figure 6.15: (Left) A nearly parked tree n with 26 vertices. (Right) Its decomposition
Bitype(n) into the tree of strong components. Notice that the square vertices (at odd
generations in Bitype(n)) correspond to the strong components and their degrees are the sizes

of the components. Whereas n is unordered, the tree Bitype(n) is ordered for convenience.

Proof. Let t be a fixed bitype alternating plane rooted tree starting at a disk vertex and let us
denote by (0;)1<i<ny, its square vertices, by (ko )1<i<ny, their respective number of children all of
which should be positive, by (®;)1<i<,, its disk vertices and by (ke,)1<i<n, their respective number
of children. Notice that

Ne no
Y ke, =ng and ) kg, =n.—1 (6.24)
i=1 i=1

The probability that the BGW tree described in the lemma equals t is

TTe "G JF((2e) 1)k 2o (1/4)9SP(kp,, ko)
1 ke,! ST S(1/4)(ko,!)?

By counting the number of ways to partition the vertices {1,2,...,71e} and assign a strongly parked
tree to each square vertex of t, recalling (6.23), we deduce that the probability that Bitype(P) = t is

equal to

e

4 - (2e) " Ne ne — 1 =1
(e —1)lnal (1,k|]1,...,k|]nm>< k%> [ TsP(ko, ko) ko)t T{rﬂl

ko, - 11

Using (6.24), (6.21) and (6.22) it can be easily checked that the above two probabilities are the same

and we get the desired result.

O
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This decomposition is used in the following lemma which states that inside a large uniform
nearly parked tree of size N, there is an essentially unique fully parked tree of size N — Op(1)
containing an essentially unique strongly parked tree of size N/2 + op(N). The proof is based on a
condensation phenomenon for conditioned subcritical Bienaymé—Galton—Watson trees and is similar
to the approach of Addario-Berry to block size in random planar maps [3]. This will be used in the

proof of Theorem 6.1 when dealing with full components.

Proposition 6.11. Let Py be a uniform nearly parked tree of size N and consider MF(Py) the fully
parked tree of mazximal size above its root and MS(Py) the strongly parked component of mazimal
size included in Pn. Then we have
IME(PN)[le @), IMS(Pn)lle ) 1
N N—oo N Nooo 27
furthermore the second largest fully parked tree is of size Op(1) and the second largest strongly parked
tree is of size Op(N?/3).

During the proof we shall need a well-known “big-jump” lemma for which we provide some details
for the reader’s convenience. See [16, Lemma 2.5] or [76, Lemma 3.3] for similar results and [18, 20]

for generalizations.

Lemma 6.6 (Single big-jump in a random sum). Let Zy,...,Z;,... be i.i.d. random variables of law
v having a heavy tail v(n) ~ cn=® for some ¢ > 0 and « > 1. We let K be a random variable
independent of the Z;’s and having some exponential moment ]E[e‘SK] < oo for some 6 > 0. We

consider the random sum «
=Yz
i=1

Then conditionally on {& = N}, if we remove the largest term Z; for i € {1,2,...,K} from
(Z1,...,Zk), then the remaining random vector converges in law towards (le---/Zf_1> where K
is the size-biased variable K independent of the Z;’s. In particular N — maxj<i<k Z; converges in law
as N — 0.

Proof. Since v is a regular polynomial tail and K has exponential moments, it follows from [20,
Theorem 3 (i)] that
. P(6=N)
lim ——= =E|K 2
NSe P(Zy = N) (K], (6:25)
(in our cases of applications, this can directly be checked by a calculation using generating functions).
Now, fix k > 1, fix values ny,...,1n,_1 and denote by Z1,...,7Zk_1 the re-indexed variables {Z;i:1<

i < K with i # argmax; ;¢ Z;}. Then for N large we have
P(K=kand Zj =njfor 1<j<k—1|&=N)
1 k—1
= ——kP(K=k e - N — -
P = )P K = Rl v av (N = Yo

% ]E[lK]kIP(K =kyv(ni)---v(ng_1).
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Since the above probabilities sum to 1, this implies the desired convergence in law.

0

Proof of Proposition 6.11. Let us start with the case of the fully parked tree of maximal size. By the
decomposition of nearly parked trees at the root vertex (proof of Lemma 6.4), the size of the critical
Boltzmann nearly parked tree P can be written as 1+ Z{il Z; where K is a Poisson random variable
of mean 1 —In(2) independent of Z1,Zy,...,Z;, ... which are the sizes of i.i.d. critical Boltzmann
fully parked trees, i.e. with P(Z; = n) = [x"]F(x/(2e))/(1 —In(2)) ~ \/%1_}&71_5/2 as n — oo.
We can thus directly apply Lemma 6.6 and deduce that when we condition 1+ Zszl Z; to be equal
to N, then as N — oo with high probability one of the Z; is of order N — Op(1). This translates into
the desired result on || MF(Py)]|e-

Let us now move to the case of strongly parked tree. By Lemma 6.5 the variable ||MS(Py)|le

is equal in law to the maximal degree of a square vertex in the alternating bitype BGW tree with
offspring distribution (ve,v5) conditioned to have N disk vertices in total. We shall first consider
the monotype Bienaymé-Galton—Watson tree obtained by “skipping” the odd generations i.e. with
offspring distribution ¢ given by Zszl S; where K has Poisson distribution with mean 1 — In(2)
independent of the S;’s which are i.i.d. with distribution vg. This BGW tree is subcritical since

1
E[K] - E[$1] = x8'(x)[,_; 4 = 5/
and furthermore it has a regular varying heavy tail P({ = n) ~ 71:?%)11_5/ 2 as n — oo. Here also a
“big-jump” or “condensation” phenomenon appears [105, | and it is known, that when its number

of vertices N goes to infinity, the maximal degree of such a tree is of order N /2, whereas the second
largest is of order N?/3 with high probability. Let us now focus on this largest degree vertex whose
degree we denote by D. Remember from the construction that this degree has been obtained as
D= le(:l S;. After conditioning on D, we can apply Lemma 6.6 and deduce that when D is large,
the largest degree of the square vertices contributing to D is D — Op(1) as desired.

O

After all these combinatorial decompositions, the following should come as no surprise:

Proposition 6.12. Conditionally on their component sizes and after relabeling, the white strong (resp.
full, resp. near) components in T,, after cars X1, ..., X have parked, are independent uniform strongly

(resp. fully, resp. nearly) parked trees.

Proof (sketch). To fix ideas, let us consider the case of the full components. Fix n > 1 and m > 0
and let us condition on everything except the internal structure of the fully parked trees (obtained
after relabeling of the vertices and cars as usual) of Ty (n, m). That is, we reveal the partition of
{1,2,...,n} into the full components, the induced partition of the cars {1,2,...,m}, the edges of T,
between empty vertices, as well as the possible blue tree of Tgy (1, m) containing the root. It should

be clear then that any fully parked of the proper size can appear in each component, so that the
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probability of seeing a given configuration is proportional to Hi'(:l PF(n;,n;). The result follows. The

case of near or strong components is similar.

O

6.5.2 Height and Flux

In this section we use our coupling construction of Section 6.2.2 specified to the case of nearly parked
trees to deduce some geometric information on the latter. We use the letter N to denote the size of

the nearly parked tree not to confuse with the size n of the underlying Cayley tree.

6.5.2.1 “Coupling construction” of nearly parked trees

Fix N > 1 and denote by Py a uniform random nearly parked tree with N vertices (chosen among
the 2N=1(N — 1)INN=2 possibilities, according to Proposition 6.9). This is a random rooted Cayley
tree over {1,2,..., N} which carries N — 1 cars arrivals X; € {1,2,..., N} so that after the parking
process, all cars are parked and the root of the tree is free. We can obtain such a random tree by
applying the coupling construction of Section 6.2.2 with the oriented edges (El :1<i<N-1)on
the event when the unoriented edges (E; : 1 <i < N — 1) do not create any cycle. In such case, the
graph G(N, N — 1) is simply a uniform (unrooted) Cayley tree Ty (u stands for unrooted) and the
edges (E; : 1 <i< N —1) can be obtained by labeling the edges of Ty by {1,2,...,N — 1} uniformly
at random and given random independent orientations. We shall denote by €}, e, ..., ey the labeled
oriented edges of T§; (they correspond to El, ..., E N on the appropriate event) and by 74, ..., 7y their
redirections which form the nearly parked tree Py (where the oriented edges are directed towards its
root). In this special case, the coupling presented in the proof of Proposition 6.6 (or Proposition 6.4)
is very simple: With the same notation, the ith car arriving on vertex X; will always find a parking
spot {; and we redirect the edge €; = (X;, Y;) into 7; = ({;, Y;). Since we never encounter loops, we
never have {; = 1t and never create any “blue” component. See Figure 6.16.

In the above construction, for j > i let us describe the event on which the car number j > i
needs to go through the redirection 7; of the edge €; to find its parking spot. To do this we introduce
i =/{y,...,s = j the labels of the edges on the path between the edge ¢; and ¢; (both included) in
Ty, see Figure 6.17. We consider the record times 1 = 71 < 1o < -+ - < T associated with the strict
ascending records i = by < by < -+ < by_; < by of the process {1,0>,...,0s_1,0s. That is we put

71 = 1, set by = {1, = i and recursively define

biy1 = {y,, where 71 = inf{1; <t <s: 4 > b}

Lemma 6.7. With the above notation, the jth car goes through the redirection 7; of the edge €; in Py
if and only if by = | (that is | is the maximal record) and all edges with labels by, by, ..., bx_1 on the

path from €; to €; in Ty point away from €;, and furthermore €; points away from ¢;.

Proof. Let us show the proposition by induction on N, see Figure 6.18. Fix i < j and consider the

path going from ¢; to €; (included) in TY;. We write v; and v; for the vertices at the extremities of this
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®
e
16 @ 12
®
.0 o )
®3 o) ©
(@) T8 13
0 @ O
@)

Figure 6.16: lllustration with N = 18 of the construction of a nearly parked tree from a
uniform unrooted Cayley tree whose edges are uniformly labeled and oriented. The black
edges represent the €;'s and the orange edges are their redirections 7;'s. The root of Pig is

here the vertex 6.

Z:«ﬂl—bl gs:bk—]
e —<——@ - - - - - - oo - - oo - - oo - <> ommfpg
%) ) bs bk 51
4
labels

| | : | | | | L »

Figure 6.17: Labeling of the edges on the branch from ¢; to €; in Ty The jth car goes
through the redirection of &; in Py if and only if j is a record on the branch from é; to €; and

the edges of records are oriented accordingly.
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branch, the point v; being closer to €; and v; to E}. Imagine that we build the tree Py by re-orienting
the edges €, . . ., €, one after the other and first contemplate the situation when we examine the edge
ep,. This edge connects two nearly parked trees (which may be reduced to single free spots) made of
some of the edges 71,...,7, 1 that we already re-oriented. We denote those nearly parked trees B;
and PB; where PB; contains v; and %B; contains v;. Clearly if the edge €, separates €; from €; then the
jth car is already parked in 9; and did not go through 7;. So the interesting case is when by = j. In
this case we must further have that &, is oriented from *B; to P; for otherwise the jth car arrives on
B; and parks at its root without going through 7;. Let us now go backward in time and examine the
situation when we constructed 7y,...,7, 1 and were about to re-orient &, . Similarly as above,
at that time, the edge €, , connects two nearly parked trees B; containing the vertex v; and another
one P’ which may not contain v;. A reasoning similar to the one above shows that it is necessary for
the jth car to go through 7; that €, , points towards P;. In this case, when the jth car arrives, it
lands on some vertex of SB’, follows the oriented edges to its root and then go through 7y, , to reach
the target of e, , in P;. Asking whether that car goes through 7; is equivalent to asking whether a
car arrival corresponding to the edge ?bk—l (with reversed orientation) would go through 7; inside
P;. Since the size of the system strictly decreased, we can then apply the induction hypothesis and

deduce the condition presented in the lemma.

a

Figure 6.18: lllustration of the proof of Lemma 6.7. The edges 71,...,7, ,_1 are in black.
The edge 74, , is in green as well as the journey of the by_qth car. Theedges 7,  11,...,7p 1
are in gray. The root of the trees B3; and B’ are in yellow, and those of 93; and ‘B; are in red.
The car of index by = j goes through 7; if and only if &, and €, , respectively points away
from and towards v; and if a car landing on the target of &, , would go through 7; inside P

The beginning of the journey of the jth car is in blue.
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O

6.5.3 Typical height

We can now prove Proposition 6.2.

Proof of Proposition 6.2. We suppose that Py is constructed from Ty as in the preceding section.
Independently of T¥;, we let V € {1,2,...,N} be a uniform point and I € {1,2,...,N — 1} be an

independent (label of an) oriented edge. Then we have

) dgr 0, X ] (N — 1)IP (71 contributes to the height of V in Py).
xePy

Notice that the number Hy of edges on the path between V and €; (included) in Ty has the same
law as the length of the branch of T}, between two uniform distinct points. By [143, Theorem 7.8
p76] we have for 1 <h < N —1,

h+1N(N-1)---(N—h)

N-—-1 Nh+1 /

To see whether the Ith car will contribute to the height of V in Py we can graft an imaginary oriented

P(Hy = h) =

edge éy41 on V oriented away from €; and apply Lemma 6.7 with j = N + 1 to ask whether that
fictive N + 1th car would go through €;. We deduce that the necessary and sufficient condition is
that all oriented edges on the path from €7 to V in T}, corresponding to strict ascending record for
their labels are oriented away from V. Since conditionally on Hy, the order preserving relabeling of
the edges on the branch is uniform, we deduce that the number of such records is equal in law to
the number of cycles with disjoint support of a uniform permutation oy, over Hy elements, see [92,
Example 11.16 p140]. By [92, Example II1.2 p155] we have

1 #Cycles(oy,) h—1 1/2 +j (h + ]) 1
(2> ] =11 j+1 (it 1) <2)h' 020

j=0
1 #Cycles(oy,)
(2)
 EN(N-1)-- - (N=h) (h+1) (1
- ,;1 N+ r \2/,

and we get the desired result. The asymptotic of this sum is done by standard estimates: the main

E

Combining these lines, we obtain

N-1
)y dgﬁp,x)] = (N-1) Py
=1

xXEPy

1
—E
N

contribution appears for & = x+/N with x > 0 for which the terms are of order

1/4 X
CEII(- )~ vy et
X% N3/4F(3/4)

and a series-integral comparison yields the asymptotic N3/4 fooo dx \/%e* 3 S

N‘*,\,
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6.5.3.1 Total traveled distance

Proof of Proposition 6.3. The proof is similar to that of Proposition 6.2. If I, ] are two distinct
uniform edge labels of {1,2,...,N — 1} then we have

E [Total Distance Traveled in Py] = (N —1)(N — 2)IP(Jth car goes through Ith edge),

where (N —1)(N — 2) is the number of distinct pairs of edges. Since choosing 2 different edges in
a tree is the same as choosing two vertices at distance at least 2, by [113, Theorem 7.8 again, the
length Hy of the branch from & to € in T¥ is distributed as

i N h+1N(N-1)---(N—h)
PN =h) =5 § 1 N+l :

Since conditionally on Hy the increasing reordering of the labels on the branch is uniform, by Lemma
6.7 and using (6.26) again, conditionally on Hy = h, the probability that the Jth car passes through
7y is equal to + (the probability that | is a record) time

1h(1
2nt\2), ;"

where the additional 1/2 comes from requiring the good orientation for ;. Combining those lines
gives the desired result. The asymptotic of the sum is done as in the preceding proof and is left to

the reader.

O

IT  Scaling limits

This part is devoted to scaling limits in the critical regime m = 5 + O(n*/3). We first use known
results on the (standard augmented) multiplicative coalescent to show the convergence of the com-
ponent sizes in the frozen Erdés—Rényi process (Theorem 6.2). Thanks to our coupling construction
(Section 6.2.2) these translate into results on the parking process on Cayley trees (Theorem 6.1). We
then take another point of view on the limiting processes, and in icular on the total mass of the frozen
components, using the Markovian properties of F(#,+). On the way we describe the scaling limit of
component sizes of a critical random forest using conditioned stable Lévy processes thus giving an

alternative (and shorter) approach to the results of Martin & Yeo [138]. Recall convention (6.1).

6.6 The frozen multiplicative coalescent

In this section we establish a scaling limit for the component sizes in the frozen Erdés—Rényi F,(+) in
the critical window. This is deduced from known results on the multiplicative coalescent but requires
some care because the inclusion of the frozen process in the Erd6s—Rényi process is “non-monotonous”.

We use cutoffs and controls which are similar to those of [157].
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For g > 1, we let

61 = {<X1,x2,---):x1 >xp>--->0and Zx? <oo},
i>1
be the space of non-increasing £9 sequences. It has a natural norm inherited from the £7 space and
is a closed subspace of £1. In the following we denote by £ = Ei X Eﬁ which is a Polish space when
endowed with the distance d¢ defined by

1/2
de ((x,y), (X, ) = ¥ | — xi| + (2 v —y:-|2> .
i>1 i>1
An element (x,y) of £ will be interpreted as the masses of the particles of a system, the particles
whose masses are x1, X2, ... will be called the frozen or blue particles and their total mass is finite,
whereas the particles whose masses are y1,5,... will be called the standard or white particles and
their total mass may be infinite. With this interpretation in mind, and in accordance with the

notation for graphs, we put for z = (x,y) € £

[zlo=x and [zlo=y, and |[z[.=)_x;.
i>1
Recall from the Introduction the definition of the frozen Erdés—Rényi random graph (F(n,m) : m > 0)
and its continuous time counterpart (F,(A) : A € R). We shall denote by

F,(A) €&

the decreasing sequence of the sizes of the frozen blue components (completed with zeros) of F,(A)
renormalized by n~2/3, followed by the decreasing sequence of sizes of the white components also
renormalized by n—2/3 (also completed with zeros). If I C R is an interval and Pol some Polish space,
we denote by Cadlag(I, Pol) the set functions f : I — Pol which are right-continuous with left limits
at every point, endowed with the Skorokhod J; topology on every compact interval of I. The main
theorem of this section is:

Theorem 6.2 (Scaling limit for component sizes of the frozen Erdés—Rényi)

We have the following convergence in distribution for the Skorokhod topology on Cadlag(RR, &)

(Fu (A))rer —2> (Ftt (M) k- (6.27)

n—oo

The process F4 is called the frozen multiplicative coalescent.

Remark. The above result defines the process F 4, although it will follow from the proof that Z#
can be built from the (augmented) multiplicative coalescent of Aldous [10] by taking an appropriate

cutoff procedure.

The proof of Theorem 6.2 occupies the rest of this section. To fix ideas, we shall restrict to a fixed

compact time interval and prove the convergence (6.27) for A € [—1,0] (since convergence in law of
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stochastic process indexed by R is equivalent to convergence over all compact intervals I C R). We
first prove a convergence in distribution using the (weaker) supremum norm

deup ((x,¥), (¥, ¥)) = sup |x; — xj| + sup |yi — yil, (6.28)

i1 i>1

and then lift it for the dg distance by proving the required tightness (see Proposition 6.9). Recall
from the Introduction that the dynamics between standard white particles in the frozen multiplicative
coalescent is the same as in the multiplicative coalescent, but the interaction between standard and
frozen particles is different. Our first difficulty in this program is that the frozen part is always present,
ie. |[Z(A)||le > 0for all A € R. In the next section, we shall prove however that we can neglect the
effect of the frozen part that is “old enough” in the ¢'-sense in the time-window A € [—1,0]. Then,
we approximate the remaining frozen process by a process on finitely many “particles” for which
the convergence in distribution is obvious, see Figure 6.19. These cutoff procedures are of course
reminiscent of the original construction of Aldous [10] and of the more recent work of Rossignol
on dynamical percolation [157]. We first present deterministically the two cutoff procedures in the
following section and then prove the necessary estimates using the relations with the multiplicative

coalescent process (Proposition 6.13).

6.6.1 Getting rid of old cycles

We first start with a control that enables us to get rid of the frozen part that is “old enough”. For
Ag < —1, let us denote by

On(Ao) (6.29)

n

the union of the components of G,(0) = G(n, | 5 |) which have a surplus that appeared before time
Ag i.e. before L% + %nZBJ edges have been added, see Figure 6.19. We will see in Proposition 6.13

that n72/3 - ||0,(Ag)]|e is small provided that Ag is negative enough. We shall compare our usual
frozen process F,(A) for A € [Ag, 0] to the process

FN(A) 1 A € [Ao, 0]

which is started from time Ay without any frozen part and obtained as follows. Let us consider the
graph Gy (Ag) and remove from it the components with surplus to get its forest part [Gy,(Ao)]tree-
We then let the remaining edges arrive as in the G(n,m) process and only examine those that
connect points of [G,(Ag)]tree and apply the rule of the frozen process (Figure 6.3) to get FLAO] (A) for
A € [Ag, 0], see Figure 6.19 (third line).

Of course, the process F,, and F,[{w are not identical, but it is clear that their possible differences
are only located on O, (Ag). Since the supremum distance dSup defined in (6.28) decreases under the

non-increasing re-arrangement of both parts, it follows from the above remark that for all A € [Ag, 0]

dap (Fa(ELI () < 2+ 0723 04(A0) o, (6.30)

where IF,[?O] (A) is the pair of renormalized non-increasing sizes of frozen components followed by the

renormalized sizes of the standard components of Fiol (A).



180 CHAPTER 6. PARKING ON CAYLEY TREES & FROZEN ERDOS-RENYI

A0 0  time

o

Figure 6.19: The two cutoff procedures: Comparisons of the processes F,, with F,[qA and

F,[{\O’(s]. The orange part on the top right corner is O, (Ag). Third line: The process FLAO] is
obtained by starting from G(n, L% + %nZ/‘gJ ), removing the components having a surplus,

and then applying the rules of the construction of the frozen Erd6s—Rényi with the remaining

edges. Fourth line: The process FLAO"S] is further obtained by restricting to components of

2/3

size at least dn</> at time Ay.
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6.6.2 Approximation by the 7-skeleton

Following the above notation rule, we write GLl (+) the Erdés—Rényi process started from [G; (Ao)]tree
at time Ag and keeping only the remaining edges that belong to [G;(Ag)]tee- Our goal now is to
approximate the process (FLAO](/\) : A € [Ap,0]) by a process with a number of particles that stays
bounded as n — co. More precisely, in the following, we shall call the components of [Gy(Ag)]tree =
F,[?O} (Ap) the “specks” and say that their masses are given by their number of vertices renormalized
by n~2/3. Those specks will be seen as “macroscopic vertices” on which acts our dynamics. Indeed,
notice that in the processes G,[{w or FLAO}, for A € [Ag,0], all the vertices belonging to the same
speck share the same color. This enables us to define the “speck version” of this processes denoted
respectively by (SGLAO] (A) : Ap < A <0) and (SFLAO](/\) : Ao < A < 0) obtained by contracting all
vertices and edges belonging to the same speck: the vertex set of those processes is thus made of
the specks of [G;(Ag)]tree. Alternatively, those processes can be constructed sequentially: initially all
specks are disjoint and we interpret the incoming edges between vertices as incoming edges between

the corresponding specks and following the usual rules to get SG and SF.

For every 6 > 0, we denote by (FLAO’(S] (A) : A € [A,0]) the frozen process started from il (Ao)
and obtained by only examining those edges between or inside specks of mass at least J, see Figure
6.19 fourth line. Similarly as above we denote by (SFLAO’J](A) : A € [Ao,0]) the associate process
on specks after identifying all vertices belonging to the same speck. The fact that we discarded
some edges may affect the colors and the connections of the vertices (resp. specks) due to the non-
monotonicity of the frozen dynamics. However, we shall see that if § is small enough the dynamics
are coherent (Lemma 6.8) on a large part of the graph. We now establish deterministic inclusions

between all these processes.

The 7-skeleton. Consider the graph SGLAO](O) on the specks. This graph has a certain number of
non-trivial cycles (including self-loops and multiple edges) involving certain specks. We fix # > 0

and define the
n-skeleton

as the set of all specks in SGLAO](O) that belong to a non-backtracking path whose extremities are
either a speck of a cycle of SGLAO] (0) or a speck of mass at least 7 > 0, see Figure 6.20. In particular,
all specks on (non-backtracking) paths in SG,[{\O} (0) between specks of the 17-skeleton actually belong

to the 77-skeleton®. We then denote by

¥ = vn(Ao, 1) (6.31)

the minimal mass of a speck on the #-skeleton.

The key is to show that as soon as § < < the induced frozen Erdés—Rényi process SFLAO"S} is

constant on the y-skeleton. More precisely:

6in other words, two vertices of the #-skeleton which are connected in G,[{\U] (0) are connected within the #-skeleton

and all non-trivial cycles of GL,AO] (0) are inside the #-skeleton



182 CHAPTER 6. PARKING ON CAYLEY TREES & FROZEN ERDOS-RENYI

Figure 6.20: On the left the graph SGLAO} (0) and its 77-skeleton on the right. The points
(black, green, purple) represent the specks, i.e. the components of [G;(Ag)]tree- Specks of

mass larger than # (i.e. with more than > 17712/3 vertices) are displayed in purple, those of

mass in-between 7y and 77 are in green, and those of mass smaller than -y are in black.

Lemma 6.8. With the above notation for any A € [Ag,0] and any é € [0,7), the edges between vertices

belonging to specks of the n-skeleton and the color of these vertices are the same in F,[;‘O’(ﬂ(/\) and in

Eil(A).

Proof. We prove the lemma by induction, adding the edges one by one. We focus in the proof on the
speck graphs, and the statement concerning the underlying graphs on the vertices {1,2,...,n} will
follow. Fix 6 < 7 and consider the status of the edges and the color of the specks of the 7-skeleton in
SFLAO"S} (A) and SFLAO} (A). Clearly, at time A = A( they match up: all specks are isolated and white.
By induction, suppose that at some time A € [Ag, 0] we examine the status of an edge E; between

two specks and that at time A~ the induced graph on the #-skeleton is the same in SFLAO’(S} (A7) and

in SEY/ (A7):
e Suppose first that E; is an edge of the #-skeleton. In particular, both endpoints are located on
a speck of mass at least  and this edge gets examined both in SF,[?O’(S](/\_) and in SF" (A7)
(since & < 7). Since the colors and the connections of the vertices in the #-skeleton are the
same in both processes at time A~ applying the rules of the construction of the frozen process

yields the same transformations for the specks, colors and edges of the 7-skeleton in both cases.

e If E; is not an edge of the 7-skeleton, one may think that we do not care whether we add it
or not in the frozen processes: Indeed, we saw above that the non-backtracking paths between
specks of the 77-skeleton stay within the skeleton so that adding that edge does not change the
connections between specks of the 5-skeleton. However its addition might change the color of
some specks of the y-skeleton. But this can only happen if this edge creates a cycle or relates
a white component carrying a speck of the y-skeleton to a frozen blue component. Since the
frozen blue components necessarily contain a cycle one can check that E; must belong to the

n-skeleton and so we are back to the previous item.
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O

Let us use the above lemma and more generally the relations between G, (+), GL/\O] (-) and Fy,(+), FLAO] (), FLAO"S] ()
to derive bounds on the d¢ distance. For a given vertex x € {1,2,...,n}, the cluster of x in F,[?O’(ﬂ (A)
and in FLAO](/\) may differ’, but when § < 7, by Lemma 6.8 they contain the same specks of the
n-skeleton, so their difference is in particular supported by vertices of specks of mass < 1 and be-

longing to the component of x in G} (0). If we denote by An(Ag,77) the maximal difference (number

of vertices) between a component in G,[{\O}(O) and its subcomponent made of (vertices of) specks of

mass > 1/ then we have for 6 < 7y and A € [Ag,0] with an obvious notation

daup (B (AL ENI(A)) <0723 80 (Mo, 7). (6.32)

6.6.3 Estimates via the augmented multiplicative coalescent

Recall from the previous section the definition of the variables O, (Ag), vn(Ao, 1) and A, (Ao, 7). We
provide the necessary (asymptotic) controls on those variables to apply the above cutoffs. These are

derived using known estimates on the (augmented) multiplicative coalescent [10, 36, 157].

Proposition 6.13. For any € > 0 one can find
M <—-1, ne€(0,1), 6€(0,7),

and ng = 1 so that for all n = ng with probability at least 1 — & we have

n 22 [On(A0)lle < (6.33)
n 23 A (Ao, ) < g (6.34)
Yu(ro, 1) = 0. (6.35)

Proof. The proof will follow from the convergence of the component sizes and surplus of G(n,m)
towards the augmented multiplicative coalescent and some of its basic properties. To help the reader,

let us sketch in which order the variables will be chosen

Ao <0 n>0 6>0
g€ — so that w.h.p. — so that w.h.p. — so that wh.p.
n 23 Ou(Ao)[le < & n 2% Ay (Ao, ) < e 5 < (Ao 1),

where w.h.p. indicates with high probability.

We first recall the construction of the standard augmented multiplicative coalescent following
Broutin & Marckert [50]. Let (B; : t > 0) be a linear Brownian motion and Z be an independent
Poisson point process on R X Ry with unit intensity. For A € IR, we consider the process BW
obtained by reflecting  — By + At — % above its running infimum (i.e. by subtracting the running
infimum process). The processes BW) are coupled with respect to A since they involve the same

Brownian motion B. Each excursion of B is then seen as a particle of mass given by its length

"we do not have deterministic inclusion of one inside the other
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and the surplus of this particle is the number of atoms of & that fall under this excursion (i.e. such
that Bg/\) > y if the atom lies at (7,y)). After ranking the particles in decreasing mass and recording
their surplus, we get an element ((.#;(A))i>1, (-7i(A))i>1) of

Ut = {(x,s) € Eﬁ YANE insi < o0 and s; = 0 whenever x; = O} ,
i>1

in particular the total mass of the particles with positive surplus is almost surely finite [36]. The
process A — (A (M), 7 (A)) is the augmented multiplicative coalescent introduced in [36] and appears
as the scaling limit® of the renormalized component sizes and surplus in G, (A), see [36, 50].

This convergence holds for the Skorokhod topology on Cadlag(RR, UV) where U* is endowed with
the metric >

b (59, ) = (E )+ e il
i1 i>1

Since (x,s) € Ut — Y x;1s,~0 is continuous for this topology, the previous convergence implies the
convergence of the total renormalized size n=2/3 - |/0,,(0)||s of all components at time A = 0 carrying

a surplus at time 0, towards its continuous counterpart

_ (d)
n=231|0,(0)]ls — Y #(0)15,0)>0- (6.36)
i>1

Furthermore, we have seen above that every atom (7, y) of E corresponds, in the augmented coalescent
to a surplus of one in a particle and we can define the time of appearance of this surplus as the smallest
A € R so that Bg‘) < vy, notice that A > —oo almost surely for each atom. It follows from these
observations, and the proof of Theorem 4 in [50, Section 7.2] that we have the convergence in law for
each Ay < 0 fixed

d

123 0u(Ao)lle = [G(A0)], (6.37)
where |0'(Ag)| is the total mass of all particles of .#(0) which have a surplus appeared before time
Ag. Also, |0(Ag)| — 0 as Ag — —o0 almost surely by dominated convergence. Together with the last
display, this proves the first point of the proposition and gives the existence of Ay and ng. Estimates

of that flavor were first obtained by enumerative techniques, see [94, Theorem 2.20].
For the second and third item, notice that once Ay has been fixed, the convergence to the aug-
mented multiplicative coalescent [37] implies that the masses of the specks (i.e. the renormalized

sizes of the components of el (A0) = [G1(A0)]iree) converge in distribution in the £? sense to

) i
<.//i()\o)1yi(/\0):0 1z 1) . (638)

After an inoffensive Poissonization of the time (i.e. by letting the edges arrive according to a Poisson

process instead of discrete time steps) the second point is a consequence of the Feller property of the

8 Actually, we deal with a slightly different version of the G(n, p) model since we have a fixed number m of edges

and we allow self-loops and multiple edges, but this model is considered in [36, ] and the result applies.
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multiplicative coalescent [10, Proposition 5] together with the last display: in words the renormalized
component sizes of GLAO} (0) are well approximated by restricting to specks of mass > 7 in the £? sense
(uniformly in n) hence in the (% sense so that sup,-, n=2/3A,(Ag,17) — 0 in probability as 5 — 0.
The third convergence is similar and follows from the Feller property of the augmented coalescent

[37, Theorem 3.1]. See also [157, Corollary 5.6].
O

6.6.4 Proof of Theorem 6.2

We now gather the deterministic controls established in Sections 6.6.1 and 6.6.2 together with the
probabilistic estimates of Proposition 6.13 to prove Theorem 6.2. As announced, we start with a

weaker convergence for the supremum norm.

Convergence for the supremum norm. We consider & = ﬁfg X Efo where Efo is the space of non-
increasing sequences tending to 0 endowed with dsyp (see (6.28)) which is a Polish space. Clearly
& C &y and the convergence for the dg distance is stronger than for dsyp.

Fix € > 0 and find Ag,#,d > 0 and ng > 1 as in Proposition 6.13. On the event described in this
proposition of probability at least 1 — € for n large enough we have for every A € [Ag, 0]

deup (Fa(A); (1))

< dap (B ) + dap (BRI )N 1))
trig. ineg
< 2 ([0n(A0) e + An(Ao, 1))
(6.30),(6.32)
< 2e. (6.39)
Prop. 6.13

On the other hand, by (6.38), the starting configuration of IF,[?O’(S] converges in law towards some
vector having a finite number of non-zero components. Since there are only finitely many particles to
take care of, applying the dynamics of the frozen coalescent it should be clear that for fixed Ag < 0
and § >0

(]F,[f‘o’é] (A) 1 A € [Ao, 0])
converges in distribution for the Skorokhod topology on Cadlag([Ao, 0], ). If dpp denotes the Lévy—
Prokhorov distance associated to the convergence in law for the Skorokhod topology on Cadlag([Ag, 0], &)
then restricting (6.39) to A € [—1,0] we deduce

Ao, 0
drp ((]F”(/\))Ae[—l,o]? (]FL ’ }(A)))\e[—l,o]) <2
for all n > ng (this actually holds for the supremum norm which is stronger than the Skorokhod
distance). Since (]FLAO"S] (A) : A € [—1,0]) is converging in law as n — oo, we can combine this with
the last display to deduce that (IF, (1)) Ae[-1,0] is Cauchy for d;p and so converges as desired. Its limit

is obtained by first letting n — oo, then 6 — 0 and finally Ag — —oo in the process n~=2/3 -FL/\U’(S].

O
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Convergence in Ei X Ei. To upgrade the previous convergence for the dsyp distance to a convergence
for the distance d¢, we need to prove tightness i.e. to control uniformly over A € [—1, 0] the cumulative
effect of the (rescaled) small component sizes in our frozen coalescent processes. More precisely, for

any ¢ > 0 and z = (x,y) € £ we denote by

R./g(z) = inlxi<§ and Rolg(z) = Zyz‘zlyi<c§/
i1 i>1
respectively the sum of the masses of the blue particles and sum of the squares of the masses of the

white particles of mass smaller than . We also put Rz(z) = Rge(z) + Rgo(2z). We then have :

Lemma 6.9 (Towards tightness of IF,(-)). For any ¢ > 0 there exists > 0 and ny > 1 such that for
all n = ng we have with probability at least 1 — €

sup (Rg(F,(A))) <e.
re[-1,0]

Proof. Let us begin with the ¢?-part. By the inclusion of the frozen exploration process in the
standard Erd8s-Rényi process, all the components of F,(A) for A € (—o0,0] -frozen or not- are
contained in G,(0). Next, if 0 < f1,..., fy < and fi+ -+ fr < y then we have

fit+fE< (it +fi) Eny) <(Ey) Ay~ (6.40)

We apply this inequality when fi, ..., fx are the renormalized sizes of the components in F,(A) which
are included in the same component of G,(0) with renormalized size y and this for each component
of G,,(0) which is made of small components of F,(A): if we denote by Y(") = (Yi(”) : 1 > 1) the

-2/3

decreasing sizes of the components of G, (0) renormalized by n then we have

sup Roz(Fu(A) < Y (g.y}n)) A (1/1‘(”))2,

A<0 iz1

By the result of Aldous [10], the sequence (Yi(n) i > 1) converges in distribution for the @ distance
towards the multiplicative coalescent .#(0) at time 0. Since iz : éi — Ry defined by ¢s((y; : i >
1)) = Yis1vi- (yi AG) is continuous for the fi—distance we deduce from the previous convergence
that 9z(Y(™) converges in law towards ¢z(.#(0)). Furthermore, by dominated convergence we have
Pe(A(0)) = 0 a.s. as ¢ — 0. We deduce that

Ve >0, supP (Z (&™) A (Yi("))z > s) — 0,
nz1 i>1
and this takes care of the R, . part of the lemma.
The (!-part is a bit trickier. Recall from Section 6.6.1 that for any A € (—oo,0], the frozen
components of F,(A) are included in O,(0), the union of the components of G,(0) that have a
surplus. Notice that if k > 1 frozen components of F,(A) belong to the same component of G,(0),

then this component must have surplus at least k (recall that each frozen component contains exactly
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one cycle). Hence if X(") = (Xl(n) : 1 > 1) are the decreasing sizes of the components of O, (0)

renormalized by n~2/3 and if K, is the maximum surplus of a component in G,, (0) then we have for
all A € (—o0,0]
Reg(Fa(A) <Kp- 3 (X A E).
i>1
By [136, Theorem 1], the sequence (K, : n > 1) is tight. From the discussion just before (6.36) we get

that X" converges in law for the Ki—topology towards the masses (///i(O)l yi(0)>0)¢ of the particles
in the augmented multiplicative coalescent at time 0 that carry a surplus. By the same argument as
above we deduce that for every € > 0, there exists ¢ > 0 such that P (Kn Y1 (é‘ . Xl.(n)) = 8) <e
for all n > 1 and this finishes the proof of the lemma.

U

We can now finish the proof of Theorem 6.2: Recall that IF,(A) is the renormalized sizes of the

frozen and standard components in F,(A). In a nutshell, the tightness of (IF, (A) : A € [-1,0]) for

the Skorokhod topology with values in & together with the last lemma establishes the tightness

of (F, (A): A € [-1,0]) for the Skorokhod topology with values in £. Since the convergence in &
determines the law, we are done. Let us provide some details. Recall that we already proved that

(Fy (A): A e [-1,0)) “ (Za(M) : A € [-1,0]), (6.41)

n—00

for the Skorokhod topology on the space Cadlag(R, &) of cadlag functions with values in & endowed
with dsup. By Skorokhod representation theorem, we can then assume that for each n > 1, the
processes [F, and .Z.4 are coupled in such a way that the Skorokhod distance between IF,(-) and
FAM converges almost surely to 0 for dsup as 7 — co. This means that we can find increasing time
shifts ¢, : [—1,0] — [—1,0] with ||¢, —Id|| — 0 a.s. and such that

sup dsup(Fn(A), Ztt (P (A)) ﬁ 0. (6.42)
A€[-1,0]

Recalling the notation introduced before Lemma 6.9 and using this lemma, up-to rebuilding a new
coupling, one can furthermore suppose that we have for every ¢ > 0

limsupsup sup Rg(FF,(A)) —= 0.

g0 n=1 Ae[-1,0] nree
In particular, by Fatou’s lemma, this implies a similar estimate for .#.# namely,
limsup sup Rg(Zs(A)) — 0.
Zlo0 Ae[-1,0] e
One can now use our coupling to evaluate the £-distance between [F,, and .Z.#Z, namely
de(Fu(A), Ztl (§(N)) <2 sup (Re(Fl (V) + Re(Fau(A))) +de (B (1), 2o (y(1)).
A€[—1,0]

Using the second and third to last displays, the first term on the right-hand side can be made

small uniformly in n and A € [—1,0] by choosing ¢ small enough. The second term also tends to 0
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thanks to (6.42): since .Z.4 is cadlag with values in &, the maximal size of a particle in .Z.# (and
in IF,,(-)) and the maximal number of particles of mass > ¢ is bounded over [—1,0]. We have indeed
proved that in this coupling we have [F, — %4 almost surely for the dg metric. This implies the

desired result.

6.7 Markovian properties of the freezer and the flux

Since the mapping z € £ — ||z« is continuous for the topology induced by dg, our Theorem 6.2
implies that

(172 [By(A) o : A € R) ~Ls (|t (A)]|o : A € R), (6.43)
for the Skorokhod topology where we recall that ||.Z.# (A)|e is the total mass of the frozen particles
in the frozen multiplicative coalescent. In this section, we use the Markov properties of the process
|F(n,-)|le —or more precisely of (||[F(n,-)||e, |F(1,-)|lee)— given in Proposition 6.8 to prove (Propo-
sition 6.14) the joint convergence of the number of discarded edges D(n,-) in the scale n'/3 which,
thanks to our coupling construction, will give us the flux of outgoing cars in the parking process on
Cayley trees.

Using this Markovian point of view, we also give in Proposition 6.15 a new and perhaps more
concrete construction of the process A +— |74 (A)|le as a pure-jump Feller process with a time-
inhomogeneous infinite jump measure

1

dy
Jdy) = 5 - ——Z—g.2(y), 6.44
n(x,dy) = 3 T (v) (6.44)

where g, () was defined in (6.13). We complete this alternative Markovian description of the frozen
multiplicative coalescent by computing the law of [Z.# (A)]o given ||.Z4 ())||« (see Proposition 6.16):
By passing Proposition 6.8 to the scaling limit, conditionally on |[.Z.4 (A)]|e, the £>-part of .Z.4 (A)
has the law of the scaling limit of component sizes in a critical random forest. This law has been
described in [138] using excursion lengths of a time inhomogeneous diffusion with a reflection term.
We give here an alternative (and quicker) description of this law using conditioned 3/2-stable Lévy
processes. The last two results are not used for the parking process but we include them to motivate

further the study of the frozen Erdés—Rényi process, see Part 7.6 for perspectives.

6.7.1 Scaling limits for the freezer and flux

The main result of this section is the joint convergence of the renormalized number of discarded edges
D(n,m) together with (6.43), see Figure 6.21.

Proposition 6.14 (Joint convergence of discarded edges). Jointly with the convergence of Theorem 6.2

we have the following convergence in distribution for the uniform topology on C(R,R)

i) £ (1 1w

AER N0 - AER.
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-5 0 5

Figure 6.21: A simulation of the renormalized processes n=2/3 - ||F,(A)||s (in orange) and
n~1/3.D,(A) (in blue) for A € [~5,5] and n = 3000. Notice that the first process is pure
jump in the scaling limit and that the second one is the integral of the first.

The main ingredient to prove the joint convergence of the number of discarded edges together

with Theorem 6.2 is the following consequence of Corollary 2

P (AD(n,m) - 1‘ HF(n,m)H.) = HF(”nm)” (6.45)

so that the above result formally follows from integrating and passing to the limit. To make this

precise, we shall start with a lemma controlling the flux at the bottom of the critical window:

Lemma 6.10. There exists a constant C > 0 such that for anyn > 1 and any A < —1

E[Dy (V)] < -Sn/3.
A
Proof. In this proof, for n > 1 and m > 0 we denote by Cl(n,m) the cluster of the vertex 1 in
G(n,m) and by Spl(n,m) = ||Cl(n,m)||ee — ||Cl(n, m)||e + 1 its surplus. Recall from (6.2) that the
number of blue vertices in F(n,m) is less than the number of vertices which belong to a component

which has a cycle in G(n,m). By (6.45) and taking expectations we deduce that
1
E[AD(n,m)] = ([[F(1,m)]|] < P (Spl(n, m) > 1) < E [Spl(n, m)]. (6.46)

Now we provide an upper bound for E [Spl(n,m)] following the proof of [38, Theorem 1.2]. Note
that Spl(n, m) is bounded from above by the number of vertex-disjoint cycles (including self-loops)
in Cl(n,m). Given a graph g and k distinct vertices (vy,...,vx), we say that the graph g contains
the cycle (vy,...vx) of length k > 1 if g contains the (unoriented) edges (v;, Vi1 1modx) for 1 <i < k.
For k = 1, the expected number of self-loops (or cycle of length 1) in C/(n, m) is bounded above by
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mE [||Cl(n, m)||s] /n?. Since every cycle of length k > 3 (resp. 2) corresponds to exactly 2k (resp. 2)
k-uplet (v1,...,vx), we have for 2m < n,

n
) ) IP (G(n,m) contains Ly and 1 is connected to L)

k=2 Lk cycle of length k

< Z 2 - Z IP((E;)ic; form Ly and (Ei)igm,iel connect 1 with {vq,...0¢})

2 2k

n k
<Y, L i L ok(3) TENCm

_ ; k(n”_'k)’ <7:>k! (;)k - 2:113 1Ce(n, )]

k=2
2 & 2m\F C
< = — | Ef||Cl(n,m)||e] < ——=FE|[||Cl(n,m)l||e],
22 (5F) ElICnmL < g Bl
for some constant C > 0 that may vary in the following lines. An easy adaptation of [109, Theorem
1.1] using [109, Remark 1.6] to our model G(n,m) shows that
C
E{]|Cl(n,m)lls] < -y (6.47)
n
so that combining these inequalities we deduce that for 2m < n
E[Spl(n,m)] < — = (6.48)
p 7 X n(l _ sz)Z- .

Coming back to D and writing m,(A) = 0A |5 + %nz/3j, we obtain using (6.46) that for A < —1,

pl/3

m,(A)—1
E[D,(A)] =E[D(n,m,(A)] = Y, E[AD(nm)]<C Y, —as < C
m=0 m=0 n(l n ) |A|

which concludes the proof.

|

Proof of Proposition 6.14. Recall that the convergence of Theorem 6.2 implies the convergence of
of (n72/3||F,(A)]|e : A € R). We now prove the joint convergence of (n71/3D,(A) : A € R) using the
probability transitions given in (6.45). Indeed, writing m,(A) = 0 A |4 + 4n%/3] as above, we have

m,(A)—1

Dy(A) =Dy(A) = Y. AD(n,m),

m=my, (Ag)
and for all m > 0, conditionally on ||F(n,m)|le, the variable AD(n,m) is a Bernoulli variable
with parameter |F(n,m)|l¢/n. By the convergence of the process (n72/3||F,(A)|le : A € R) to
(|| Z4#(A)]le : A € R) in the Skorokhod sense, we have for every —oo < Ag < A < 400,

my(A)—1

B 1 n72/3(mn(/\)fn/2) (d) 1 A
Yo w3 E(n,m)|. = 1 2/3/_2/3 |F.(s)]|eds —= 5/ ds |74 (5)]]e-
m=nmy (Ao) n (my(Ao)—n/2) n Ao
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In addition, since (AD(n,m) — ||[F(n,m)|le/n : m > 0) are the increments of a martingale,

m,(A)—1 my(A)—1 2
E (n_1/3 Y., AD(n,m)— Y, n_4/3HP(n,m)H.>

711:1’1’1”(/\0) m=my (/\0)

m,(A)—1 - 2
=n?3 Y E (AD(n,m)—”F(n’m)H.>]
m=mn(Ao) L n
my(A)-1 T 2 2
e " g Il (Il +<1_Hme)H-),(HP(n,m)H->]
memm(ho) L n n n n
my(A)—1 r
crn " g [l
m:mn(/\ﬂ) - n

which converges to 0 as n — oo by the estimates of (the proof of) the previous lemma. It follows that

@ 1 rA
Dy(A) ~Du(ho) - 5 [ ds||ZA(5)]l.
0

n—oo A

Now we use Lemma 6.10, which shows that IE [nfl/ 3Dn()\o)] can be made arbitrarily small if we
choose Ag small enough, and this uniformly in n. Hence, by Fatou’s lemma, we obtain for all
)\0 S (—OO, /\]7

A
1/ ds | Za(s)|e <0 as.,
2 Ja

and letting Ag — —oo, we get
1 A
@, 5/ ds | Z (s)||e = 2(M). (6.49)

The above reasoning can be extended to prove that, jointly with the convergence of the first coordinate
in Proposition 6.14, for each —00 < A} < Ay < -+ < Ay < 00 we have n7V3.D,(A;) — 2(A;).
Since the processes D, (-) are increasing and since A — Z(A) is continuous and increasing as well,
this is sufficient to imply the joint convergence of n=1/3.D,(-) to 2(-) for the uniform norm over

every compact of R.

6.7.2 Proof of Theorem 6.1

Near components. Recall the notation F,(A) € £ for the renormalized components sizes (first

frozen, followed by the standard ones) in F,(A). Accordingly, we write Thear,n(A) for the vector
(n*z/?’c*,n()\); (n*2/3 Cin(A) 1> 1)) ,

where Cy ,(A) and C; ,(A) are the sizes of the (blue) root component followed by the other components

in decreasing order of size in Tnearn(A). Recall that by Proposition 6.6, the white components of
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F(n,m) are exactly the components of Tnear(11, m) which do not contain the root and the blue vertices
of F(n,m) are exactly the vertices of the parked component of the root. Furthermore, the flux of
outgoing cars D(n,m) corresponds to the number of discarded edges in F(n, m). Since the mapping
z €& (||z)le [2z]o) € Ry x Ei is continuous, we can combine Theorem 6.2 and Proposition 6.14 to
deduce that

(1’171/3 . Dn()\);Tnear,n ()\)) ﬂ) (-@(/\)/ Hﬂ'/{()\) H’/ [‘g\j/(}\)]o))\em’

AER n—oo

for the Skorokhod topology on Cadlag(R x R x Ei)

O

Full components. Let us sketch how to obtain the equivalent of Theorem 6.1 for the full components
of Tgan(n, -) rather than the near components. To extend the above convergence to the case of full
components, notice first that Dy, (A) stays the same for near and full components, and that as soon
as Dy (A) > 0 (which is the case with high probability in the whole critical window) we have with an
obvious notation

HTnear,nM)H- = HTfull,n(A)Hﬂ

since the blue components of the root with flux are the same in Tpear and in Tgy;. We just have to

show that for any fixed compact time interval I we have

s)\lélf dgf ([Tnear,n(/\)]o, [Tfull,n<}\)]0) %) 0,
with an obvious notation. For any fixed A, the fully parked trees of Tgy ,,(A) are obtained by splitting
the nearly parked trees of Thear,(A) at their root vertices. Since by Proposition 6.12, conditionally
on their sizes, those are uniform nearly parked trees (this can also be seen by combining our coupling
construction with Proposition 6.8 and Proposition 6.7), we deduce from Proposition 6.11 that each
large nearly parked tree of Tnearn(A) contains a unique fully parked tree of roughly the same size.
Since [Thear,n(A)]o converges in 7 we easily deduce that for each A € R we have
d (P)
axy ([Tnear,n ()\)]0/ [Tfull,n ()‘)]0) —0.

n—oo

Actually, the last display also holds for any stopping time A which belongs to some fixed time
interval. Combining this we the monotony property of the processes Tpear and Ty, standard but

tedious arguments (which we shamefully leave to the reader) show that we in fact have

(P)
SAUI;) défo ([Tnear,n (/\)]0/ [Tfull,n(/\)]o) H—Oo> 0.
€

To boostrap the above convergence by replacing the 63’0 metric with the ﬁi metric, we use Lemma
6.9 on [Thear,n(A)]o and remark that the proof straightforwardly extend to [Ty ,(A)]o-

O
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Strong components. Obviously a version of Theorem 6.1 holds if we consider the strong components
in the parking process to the cost of multiplying the scaling limit of the components sizes by 1/2, since
by Proposition 6.11 each large nearly parked tree contains a giant strongly parked tree of roughly
half its size. To be precise, one would need to establish the same behavior for the component of
the root (which may have some outgoing flux). We refrain from doing so to keep the paper’s length

acceptable.

6.7.3 The freezer as a Lévy-type process

In this section we give an alternative description of the process || Z.#(-)||e by “passing Corollary 2
to the scaling limit”. Since we shall not use this in the rest of the paper, the proofs are only sketched

and this section can be skipped at first reading. Recall the function gy 1 (y) from (6.13).

Proposition 6.15 (A pure-jump description of || .Z.4# (A)|ls). The process A — ||.Z.4# ())|]e is a Markov
Feller processs with inhomogeneous jump measure

1 dy
2.\ /2my3

n,(x,dy) = S ()

”

started “from 0 at time —o0”,

Heuristically, this means that the process A — ||.Z.4# (A)||s has no drift, no Brownian part and
jumps according to a modification of the (infinite) measure y_3/ 2dyly>0 depending on time A and
location x. This is an example of a so-called Lévy-type process (quite simple in our case since we
only have positive jumps) we refer to the monograph [12] for survey. We shall rather see it as the

solution of a pure-jump stochastic differential equation driven by some Poisson measure.

Sketch of proof. Let us first see why we can define a Feller Markov process & with the above jump
kernel over a time interval [Ag, A1] C R starting from the initial value xg > 0 at time Ag. To do this,

we consider a Poisson point process IT over Ry X Ry X [Ag, A1] with (infinite) intensity

dy
2y’

- dz1,50 - dA.

N —

We then consider the solution & to a pure-jump stochastic differential equation driven by I, obtained
by starting from x( at time Ag and from every atom (y,z,A) of I, the process & has a jump of
height y at time A~ i.e. #) = Z)_ 4y if

z< gz, AY),

so that the jump kernel is indeed given by n,(x,dy). We now verify the usual Lipschitz conditions
so that strong solution and pathwise uniqueness holds. For this, we shall first gather a few remarks

on the function py:

(P1) The function x — p1(x) is bimodal: increasing from —o0 t0 Xmax ~ —0.886 and then decreasing

from then on.
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(P2) For all A € [Ag, Aq] and x,y > 0, the ratio p1(A —x —y)/p1(A — x) is bounded by a constant
C =1A(p1(*max)/p1(A1)) > 0 depending only on A;.

(P3) The function gy A(y) is a smooth function of any of its variable x > 0,y > 0 and A € R.

Those properties are easily proven using a Math software such as Mathematica or Maple. In partic-

ular, using (P2) we see that

1
VA€ Do) Vx>0, [Tyomxdy) <a(l+w),
0
for some c¢; > 0 depending on A; only so that the “linear growth condition is satisfied” and the process
does not explode in finite time. By (P3), it follows that for any A > 0 we have

1 d
YA € [Ao, Adl, W, x' € [0, A, / " —ovr(y)] < calx — ],
[Ao, M, Vx, x" € [0, A Y W\gm(y) S (y)| < c2x —X|

for some ¢, > 0 depending on A; and A. We are thus in the classical Lipschitz and linear growth
condition so that we have strong solution and pathwise uniqueness for &, see [103, Theorem 9.1,
page 245] or [104, Chap III.2.c, page 155]. It is also easy to check that the resulting process is a
Feller Markov process &. Furthermore, the process & is the scaling limit of the chain ||F(n,m)|e
in the sense that if we start the Markov chain (||F(n,m)||s, |F(11,1)||es) from m = 2 + 201?/3 with
|F(n,m)||e = xon?/3 and m — ||F(n,m)||es = 0(n?/3) then

(n™23F,(A) 1 A € [Ag, A1) —— (2(A) : A € [do, M]) with 2(A0) = xo (6.50)
in the sense of Skorokhod. Indeed, the asymptotics (6.13) shows that the jump kernels of (n72/3||F,(A)||s, n72/3D,(

converge towards (ny(x,dy),0) and for any € > 0, all m = 5 + %nz/?’ for A € [Ag, A1] and n large

enough

min(A||F(n, m +1)||s,en2/3) | |F(n,m)||s = xn?/3 ]g( Cy/e )

A(m —||F(n,m)||es) | m—[|F(n,m)lee <0/ 2(1+x)n~ 113

for some constant C > 0 independent of n. The convergence (6.50) is then a consequence of general
convergence results on Feller processes, see [1 14, Chapter 19] or [104, Chapter IX, 4]. We leave the
verifications to the reader.

Finally, let us see why we can define the Feller process & by starting from 0 at time —oo. To
prove this, we need to show convergence of & at a fixed time, say A = 0, when &2 is started from
0 at a very negative time Ag < 0. This can be deduced by rather tedious calculations using nj
and asymptotics of p; but let us sketch another route using our cutoff construction of Section 6.6.1.
Specifically, recall the construction of the process F,[?O] (A) obtained by throwing all components with
cycles in G, (Ag) and starting the construction of the frozen process from there. We shall use a variant
of this construction by considering a random stopping time A (with an implicit dependence in 1)
associated to Mg = 4 + %nz/ 3 defined as follows

My :inf{m 20:2(m—g) — |G(n,m)||e 2/\0712/3}.



6.7. MARKOVIAN PROPERTIES OF THE FREEZER AND THE FLUX 195

In words, My is the first instant m where the felt time-parameter in the forest part [G (1, 1)]tee is
above Ag. We first claim that for A9 negative enough, My < n/2 and is actually close to 5 + %nz/ 3
with high probability: indeed it follows from (6.48) that n=2/3- ||G,(Ag)||e is of order A% and so
the function m — 2 (m — ) — ||G(n,m)||e > Agn?/3 crosses Agn?/3 around time Ag &= Ay 2. On this
event, by Proposition 6.8, the process FLAO}(- + Ap) has the same transitions as F started from 0
at time m’ = ”7/ + 202/3 4 o(n?/3) over n' = n — ||G(n, My)||e vertices with a slight time change
coming from the fact that certain edges are discarded (this does not persist in the limit). So by (6.50)
it converges after scaling towards the process 2 (- + Ag) started from 0 at time Ag. The convergence
of n=2/3. (FLAO] (A) : A = 0) proved in Section 6.6.1 together with the fact that n72/3||G,,(Ag)|le — 0
as Ag — oo and the above convergence imply that the law of the process & started from 0 at
time Ag does converge as Ag — oo and this enables us to start &2 from 0 at time —oo. Combining
those observations we deduce that the process & started from 0 at time —oo has the same law as
|74 (-)||e. We leave the many details to the fearless reader.

6.7.4 Scaling limit of random forest

In this section we revisit the result of Martin and Yeo [138] to complete the Markovian description
of the scaling limit of the frozen multiplicative coalescent. As for the preceding section, the results

are not used in the rest of the paper and so this part may be skipped at first reading.

As in the proof of Corollary 6.8, for n > 1 and m > 0 we denote by W(n,m) € §(n, m) a uniform
random forest over the n labeled vertices {1,2,...,n} with m edges in total. We chose the letter
W for the German “Wald” because there are already too many f’s in the paper. In particular, the
forest W(n, m) has n — m components. Although there is no obvious coupling of W(n, m) for varying
m > 0 (see [138, Section 1.4.2]), we shall use our usual notation (6.1) and write W, (A) for a random
forest with m = | % + 4n2/3| edges and by W, (A) € {7, the renormalized sequence of its component
sizes in non-increasing order.

Recall from Section 6.3.1 that (.#});>0 denotes the stable Lévy process with index 3/2 and only
positive jumps, which starts from 0 and normalized so that E[exp(—(.%)] = exp(zzitﬁ‘g/ 2) for any
¢, > 0, see Figure 6.22 for a simulation. The density of .} is p;(-) for t > 0. For any A € R we can
use this function to define the process (.#/* : 0 < t < 1) called the (0,0) — (1,A) bridge, obtained by
conditioning (.} : 0 < t < 1) to be equal to A at time 1. Of course this is a degenerate conditioning,

but it can be obtained by performing an inhomogeneous h-transform with respect to the function

p1-t(A — )
p(A)

see [131, Theorem 4].



196 CHAPTER 6. PARKING ON CAYLEY TREES & FROZEN ERDOS-RENYI

Proposition 6.16 (Another route towards critical random forests). Fiz A € R. For all € > 0, we have
the following convergence in distribution for the Ki/zﬂ'— topology
(d) AL il

W, (M) — (A 0<t <) (6.51)

where (x;:i > 1)¢ is the non-increasing rearrangement of the sequence (x;:i > 1).

0.5

-0.5

Figure 6.22: A simulation of a %—stable spectrally positive Lévy process over the time interval

[0,1]. The jumps are displayed in orange.

Proof. From Proposition 6.7, the sizes of the components in the random forest W(n,m) has the same
law as the increments +2 of a random walk (Si :0 < i< n—m) started from 0, conditioned to hit
n—2(n—m) = An?3+0(n*?3) at time n — m and with independent increments of law u(k + 2) for
ke {-1,0,1,2,...} introduced in (6.9). Recall that the variable S is centered and in the domain of
attraction of the 3/2-stable spectrally positive random variable. The following convergence for the

Skorokhod topology on Cadlag([0, 1], R) follows from the conditional invariance principle of Liggett

[131]

n—oo

(728 10 <t <1) s (A 0< e <),

In particular by [104, Corollary 2.8], the random point measure } g<;<1 6,,-2/3.4¢ converges weakly

[(n—m)t]
towards } g<;<1 0y Bz from which we deduce the convergence (6.51) for the £, topology. To bootstrap

this into a convergence for the Zi/ 2t topology, it suffices to establish tightness in the later (since
convergence in Ei"o characterizes the limit in fi/ 2Jrg). For this we claim that it is sufficient to prove

that

n—m-—1 3/24¢
sup E Z (n_2/3 . ASZ-> Su_m =n| < oo, (6.52)
nz=1 i=0

7

where S has increments of law p(k) given by (6.9). Indeed, for ¢ > 0 and € > 0
)3/2+2£ n-m-1 >3/2+£
i

y (n—z/s -AS; 1, 20552 < & y (n—2/3 -AS

i>1 i=0
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so that using (6.52) the expectation of the right-hand side of the last display can be made arbitrarily
small by choosing ¢ small. Combining this with the tightness in Ej"o, it is easy to deduce tightness
in Ei/ 22 of (W,(A) : n > 1). To prove our claim, notice that by cyclic exchangeability we have

n—m—1

Z (n—2/3 - AS;

i=0

k=1

3/2+¢
g )

Let us focus first on the k’s such that k < n. In this case, writing k = yn?/3 and using (6.9) and
(6.12), we deduce that there are constants C,C’ > 0 (which may depend on our fixed A) such that
the last display is bounded above by

Cn-2/3 i(kn72/3>71+s _P1 (A —kn?/3

) //oo —1+¢
<C dy < 0.
= pi(A) o VY

On the other hand, if k if of order n, rough large deviations estimates show that W

exponentially small (in k and so in 1) so that the contribution to the sum is negligible. This finishes

is

the proof of (6.52) and of the proposition.

0

As an application of this methodology, let us revisit a few of the results of [135] discussed in
[138, Section 1.4.3]. Consider a slightly supercritical random forest W(n, m) with m = % 4 5 with
n?/3 <« s <« n whose component sizes are coded by (Agi +2:0 < n—m-—1) conditioned on
Su—m = s. According to standard “big-jump” principles, since p is a subexponential distribution such
a random walk has a unique “big-jump” of height of order s and once this jump has been removed,
the remaining random walk is close in total variation distance to an unconditioned p-random walk,
see [18, Theorem 1]. This gives another way to prove that the largest cluster in W(n,m) is of size

2/3

(14 0(1))s and the remaining components converge after normalization by n*/° to the jumps of the

unconditioned Lévy process (% : 0 <t < 1).

III Comments and perspectives

We end this paper by presenting several research directions and connections of our work. This part
is informal and we do not claim any mathematical statement. We first draw a parallel between the
enumeration of (strongly, fully or nearly) parked trees and random planar maps which gives another
support for Conjecture 1. We then present a few fallouts of the study of (generalized) frozen process
F(n,-) on the Erdés—Rényi random graph G(#n,-). We end with extensions of our work concerning

the parking process on random trees.

6.8 Links with planar maps and growth-fragmentation trees

We shall consider strongly parked trees with outgoing fluz. More precisely, for n, p > 0 we denote by
SP(n,n + p) the number of labeled rooted Cayley trees of size n with n + p labeled cars so that after
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parking, all edges have a positive flux and exactly p cars exit the tree. We encode these numbers

into the generating function

SP(n,n+ p)
S(x,y) = — L xyP,
(x,y) @%20 mm+p)l Y

which replaces the univariate generating function S(x) which we considered in Section 6.4. In par-

ticular since King & Yan [119] computed SP(n,1n) = (2n — 2)! we have (Proposition 6.10) that
1
S(x,0) =1—In(2) — VI —4x +1In (1 +VI- 4x) , for0<x <=, (6.53)

6.8.1 Tutte’s equation

To get a functional equation on S one considers the decomposition of strongly parked trees at the

root vertex (see Figure 6.23 left) which shows that SP(n, n + p) is equal to

1 n n+p K
Z Z k! <1,n1,n2, S ,nk> ( ) HSP(ni/”i + 1)Ly n=n—1

a>0 k>0 .1 1 a,m +pi ..., M+ Pr/ i atpi++pe=p+1.
pis-piz1

Indeed, the integer a counts the number of cars arriving at the root, the integer k is the number of

children of the root vertex and n;, p; are the characteristics (number of vertices and outgoing flux) of

the subtrees above it. This equation translates into the following equation on S

S(x,y) == (eyesw—sum _ 1) . (6.54)
y

At first sight, one may think that the series S(x,0) is a necessary input (which we do have) to
solve the equation, but a close inspection shows that the equation actually determines the coefficients
of S by induction on n + p.

This type of equation is very common in the map enumeration literature where they are called
“Tutte” equations, see [13] for a comprehensive survey. More precisely, recall that a map is a planar
graph properly embedded in the plane given with one distinguished oriented edge. Following Tutte,
when enumerating (various classes of) planar maps by their size n, it is convenient to introduce an
external parameter p, the perimeter of the external face (lying on the right of the root edge). When
performing the root erasure, certain situations yield a splitting of a map of size n and perimeter p
into two components of size n; and n, having perimeter p; and p, so that we have (on a high level)
ny +ny =~ n and p; + p2 = p which is similar to penultimate equation above, see Figure 6.23 right.
Similar equations arose in [68, 79].

In our case, Equation (6.54) can be solved using the Lambert function. Fix (x,y) and observe

that S = S(x,y) is solution to an equation of the form aeS + bS + ¢ = 0. If we put

x\ x
A:—ex(—Sx,O—><O
p(y—S(x0) )y
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p2=1
a=0

p=pitpta-1=3

Figure 6.23: Left: Illustration of the recursive decomposition at the root of strongly parked
trees to get a functional equation on S. Right: heuristic representation of Tutte's equation

in the theory of planar map enumeration.

when x > 0 and y > 0, then the above equation has solutions if A > —e~ ! which are
X

—Wi(A) — =

l y

where W; is the ith branch of the Lambert function. There is actually a singularity and we need to

change branch (see Figure 6.24), more precisely, when x < x. = 1/4 we have

~Woi(A) =5 ity <5 (1-v1-4x)
—WO(A)—§ if (1—-+v1—4x)<y<y(x),
where y.(x) is the radius of convergence of the series in y when x is fixed which is the maximal

solution of A = —e™!. At x = x. = 1/4, then A + e ™! vanishes at y. = y.(1/4) = 1/2 and yields a
singularity of type (y — y.)%/2.

S(x,y) = { (6.55)

6.8.2 Lackner & Panholzer’s decomposition and the KP hierarchy?

Actually, there is another completely different way to get a functional equation on S. Adapting
an idea of [128] (see in particular Equation (4) there) one can decompose a strongly parked tree
according to the travel of the car labeled n + p (the last car) in a sequence of strongly parked trees
each given with a distinguished point, see Figure 6.25. This last car decomposition yields to the

following equation on S(x,y):

. xy0,S(x,
y9,S(x,y) + x9xS(x,y) — S°(x,0) = 1y—S'((x¥J§’ (6.56)
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Figure 6.24: Plot of the function y — S(x,y) for x = 0.245. To get an analytic function,
S changes from the blue to the orange branch at y ~ 0.41.

where S°®(x,y) = x9,S(x, y) is the generating series of strongly parked trees with an additional distin-
guished vertex. It should be possible to solve the above equation using the method of characteristics

to recover (6.55) but we have not been able to carry the calculations. Also, applying the last car

last car &}

&b
&

Ow@)
&

Eﬁ

Figure 6.25: lllustration of the decomposition of a strongly parked tree according to the ride
of the last car. If we remove the edges through which the last car had to go, then we end up

with a sequence of strongly parked trees with distinguished points, where the last of those

=3+1-1=3
p + 9

0 0

may have a positive flux at the root.

decomposition to the case y = 0 (no flux) one finds the equation

S0 = s )
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involving S(x,0) only and enables us to recover (6.53) very easily. In the theory of planar maps, there
are similar inductive decompositions of planar maps of size n involving planar maps of size 11 and 7,
with n1 4+ np = n without boundary. Those decompositions are obtained via the KP hierarchy, see
[101] or [134, Corollary 1] for details. We plan on adapting the “last car decomposition” of Lackner
& Panholzer to the enumeration of random planar maps.

We expect that the information on the bivariate generating function S(x,y) will enable us to
perform the asymptotic enumeration of strongly parked trees with flux and prove similar results as

in the planar map setting, i.e.

SP(n,n 2
n!(n+p)! n

for some constants c1,c; > 0 as long as p?/n stays in a fixed compact interval of (0,0). Those

asymptotics are necessary to progress towards Conjecture 1 but also would be a crucial input to

compute, for fixed A € R, the exact distribution of (||.Z4# (A)|le, Z(A)). The behavior (6.57) has

been observed in a great generality for a related model [59] which we now describe.

Chen’s and Panholzer’s generalizations of fully parked trees. Panholzer [1158] studies the model of
fully parked trees (with no flux) when the underlying Cayley tree is replaced by a combinatorial
model such as d-ary trees, ordered trees... and he obtains remarkable explicit formulas. In particu-
lar, he finds connections with models of planar maps (OEIS A000139, or OEIS A000260 via OEIS
A294084), see Remark 2 in [148]. It is natural to extend the above discussion to those models. In
[9], Chen considers the enumeration of plane trees (rather than Cayley trees) decorated with i.i.d.
(not necessarily Poisson) car arrivals conditioned to be fully parked and with a possible flux at the
root. He proves a phase transition for the enumeration of such structures appearing at the same
location as the phase transition for the parking process [75]. In the case of bounded car arrivals,
he proves in [59, Theorem 3] an asymptotic enumeration of plane fully parked trees with flux of the
form (6.57). This supports the belief that the parking processes are in the same universality classes,

see below.

6.8.3 Growth-fragmentation trees and conjectural scaling limits.

Let us now give some background for Conjecture 1. By the discussion in the last paragraph, the
generating series of strongly parked trees is finite at x = x, = %. Hence, for each p > 0, we can
define as in Section 6.5.1 a random strongly parked tree S, with flux p at the root under Boltzmann

critical distribution whose law is simply

X . 1\ lsple
P(Sy =sp) = [yP1S(xc,y) lIsplle!(llsplle + p)! <4> '

for each strongly parked tree s, with flux p at the root. Let us forget the labels of the vertices and

the cars and see such a tree as a rooted unordered tree where each vertex is labeled by the flux of car

emanating from it (so that the root has label p). It is easy to see that such trees are Markov branching
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trees, that is, have the same law as the family tree of a system of particles evolving independently of
each other. Each particle carries a non-negative integer label (the emanating flux of car from that
vertex) and at each step, a particle of label p “splits” into k particles of labels p1, po, ..., px (ordered

uniformly at random) with probability

1 1
[WP1S(xc,y) (p— (p1+---+px) +1)

1 k
o TIPS e ).
R

When the scaling limit of the labels along a branch? is given by a positive self-similar Markov process,
the scaling limit of those trees are described by the growth-fragmentation trees'” of Bertoin [30]. In
our case of random strongly parked trees, the labels evolve in the scaling limit as (versions of) the
3/2-stable Lévy process, exactly as for the Markov branching trees appearing the peeling exploration
of random planar maps, see [32] and [31, Section 6]. To be more specific, the growth-fragmentation
mechanism involved in Conjecture 1 is the one “canonically associated” to the spectrally positive

3/2-stable Lévy process i.e. with the cumulant function

c(q) = L1=2)
I'(qg—3)
for g > 3/2 and self-similarity index & = —3/2, see [31, Section 5]. Our Conjecture 1 concerns
conditioned version of those Markov branching trees, see the forthcoming work [34] for details.

6.9 Back to Erdos—Rényi

Let us now formulate a few possible consequences of our work on the classical Erd6s—Rényi random

graph. For this we need to generalize a little the frozen process by introducing a parameter p € [0, 1].

6.9.1 Generalized frozen process

Given the sequence of unoriented edges (E; : i > 1) and an independent sequence of uniform random
variables (U; : i > 1) we construct a generalization of the frozen Erd6és—Rényi process as follows. Fix
a parameter p € [0,1] and define a growing graph process F,(n,m) with two colors, white and blue,
in a way very similar to F(n,m): Initially F,(n,0) is made of the n labeled white vertices {1,2,...,n}

and for m > 1

e if both endpoints of E, are white vertices then the edge Ej is added to F,(n,m — 1) to form
Fy(n,m). If this addition creates a cycle in the graph then the vertices of its component are

declared frozen and colored in blue.

e if both endpoints of E,, are blue (frozen vertices), then E,, is discarded.

9to be specific, one define a branch by following the locally largest label at each splitting
10to be precise, Bertoin defines a growth-fragmentation process from to which we can associate a continuum random

tree by [154, Corollary 4.2]
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e if E,, connects a white and a blue vertex, then E,, is discarded if U, > p and kept otherwise,

in which case the new connected component is declared frozen and colored in blue.

blq o <ok

P Uzgp Ul>p

O pE e &

Figure 6.26: Transitions in the frozen Erdés-Rényi with parameter p.

Obviously, in the case p = %, the process Fj/; has the same law as the frozen Erdés-Rényi that
we used in this paper!!. For p = 0, the process corresponds to completely stopping the connected
components once they create a cycle. In the case p = 1, the process is obtained from G(n,m) by

discarding the edges which would create a surplus of 2. In particular, we have
[Fi(n,m)]o = [F1(n,m)]ree = [G(n, M)]tree,  for all m > 0. (6.58)

Notice however, that the obvious coupling of F, for all p € [0,1] is not monotonic in p.

It should be easy to extend our analysis to the frozen Erdés—Rényi processes with parameter p
and in particular Theorem 6.2, Propositions 6.8 and 6.15 and Corollary 2 should hold with the proper
changes. E.g., the scaling limit of the rescaled total size of the frozen components in F, ,(A) should
be a pure-jump Feller process %p(/\) with jump kernel given by

1 1 dy p1(A —x—y)

Y+ 2px) . 6.59
Specifying those results for p = 1 and using (6.58) we deduce that the process of the total mass of the
particles with surplus in the multiplicative coalescent . (A) has law 27(A) and that conditionally on
it, the remaining components are distributed as the jump of the conditioned Lévy process . A=2p(A),

We were not aware of such a description prior to this work.

6.9.2 Asymptotics when A — oo

If the above description of the scaling limit 2,(A) of n=2/3 - ||E, ,(A)||s is granted, then one can

perform the analysis in the near supercritical regime A — co. It is easy to see that 2},(A) tends to

Hin the paper we used the orientation of the edges Ei and did not require the additional randomness of the U;.
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oo and it is not hard to see that it is asymptotically larger than A. Using (6.11) and the definition of

the jump kernel (6.59) we can compute formally

0 _5}// _

FEHW] - ]Et/o T CPTN+) 'plzgfm_p@(fj()A))y)]
pZp(A) [~ dy Y-z, pZp(A)

~ ]E[ \/%T /0 ym.y.eyu J(A))/Z}_E[W].

25(A)=A—c0

From this we conjecture the asymptotic rate of growth of the process A — 2,(A) for p € [0,1]

2,(A
PN ® (6.60)
A A—o0

In particular, when p = 0 i.e. when we stop the cluster growth when they have a positive surplus,
we believe that the total mass of the frozen part is of order A and furthermore that 2((A) — A converge
in distribution as A — oo towards a stationary law (an example of self-organized criticality).

In the case p = 1 we should have 27(A) ~ 2A. This is coherent with the result of Luczak [130]

2/3

saying that the largest cluster in G,(A) is of order 2An*/> when A — oo (this cluster is likely to be

formed by the majority of the connected components of the frozen part).

6.9.3 Process construction

In the case of the multiplicative coalescent, there has been a substantial amount of work describing the
process in terms of collections of excursion lengths of evolving random functions [17, 50, , , ].

We do not know whether such a construction is doable for our frozen processes.

6.10 Extension of parking process

In this work we used a coupling between the Erdos—Rényi random graph and uniform parking on
Cayley trees to study the later. Our results obviously call for generalizations for other models of
random trees and other arrival distributions of cars. The ideas of this paper can indeed be extended
to cover the model of [64] and this is the subject of a forthcoming work of the first author [66]. In
particular, although the precise location of the phase transition depends on the combinatorial details,
we believe that the scaling limits unraveled in this paper are common to a large class of models as long
as the degree distribution and the car arrivals have a sufficiently light tail. In the presence of group
arrival of cars with heavy tail, new scaling limits should occur related to the different universality
classes observed for component sizes in configuration models [37, 19, 62, ]

Once Conjecture 1 has been addressed, we hope to describe a dynamical scaling limit for the
geometry of the parked components as well as the flux of cars (and ideally passing our coupling
construction to the scaling limit). This should involve spiraling frozen fractals all around [75]... We

will try to address those questions in future works.
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Table of notation

General notation

Xn(A) Xn(A) = X (n, | %+ 4n2/3] v 0) shorthand notation for a process X(n,m)
AX(n,m) AX(n,m)=X(n,m+1)— X(n,m)
shorthand notation for the increments of a process X(n,m)
T, uniform rooted Cayley tree over {1,2,...,n}
T.(n,m) for x € {near, full, strong} different types of components
in T, after parking m cars, see Figure 6.7.
X1,Y1,X0,Ys ... independent uniform numbers over {1,2,...,n}
the X;’s are seen as car arrivals and are independent of T,
while the Y;’s are coupled non-trivially with T,
E = (Xi,Y3) ith oriented edge
G(n,m) Erd6s—Rényi random graph built by adding the first m unoriented edges
F(n,m) frozen Erdés—Rényi random graph built from the first m edges
D(n,m) number of discarded edges in the construction of F(n, m)
or equivalently of cars that did not manage to park on Tj
W(n, m) uniform unrooted labeled forest with n vertices and m edges
Wi () sequence of renormalized sizes of components in W, (+).

9, [0lo, [0]e, [0]tree a multigraph, its subgraph made of white/blue vertices, and its forest part
llglle, llgllo, ||glle, ||g]lee number of vertices, white vertices, blue vertices and edges of g

§(n,m) unrooted forests over {1,2,...,n} with m edges

#3(n,m

)
(k) = 2e *E2

number of unrooted forests over {1,2,...,n} with m edges

step distribution in the random walk S coding the forests

Continuous processes notation

The random variables in the “continuous world” are usually denoted with a mathscr font.

S 3/2-stable spectrally positive Lévy process with Lévy measure %
S version of . conditioned on .¥] = u

P1, Ps density of . at time 1 (Airy distribution) resp. s > 0
n,(x,dy), gx A (y) jump kernel, see Section 6.7.3 and (6.13)

(M (A): A €ER) (standard) multiplicative coalescent
frozen multiplicative coalescent
Mle, | Ztt (A)||e  £1- part of Zs/(A) and its total mass

Mlo 02 part of F (A)
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Generating functions and counting functions

Generating func
PF(n, m)

PFroot(nr m)
FP(n,n+ p)

SP(n,n+ p)

S(x,y)

tions are denoted by a mathbf symbol.

for 0 < m < n number of parking functions,

i.e. of Cayley trees of size n and m cars so that all cars park

for 0 < m < n number of parking functions with empty root,

i.e. of Cayley trees of size n and m cars so that all cars park and the root stays void

for n, p > 0 number of fully parked trees with flux p

i.e. of Cayley tree of size n and n + p cars so that exactly p cars do not park

for n, p > 0 number of strongly parked trees with flux p

i.e. of Cayley trees of size n and n + p cars so that exactly p cars do not park

and so that all edges have positive flux

Exponential GF Zn>1 2 for unrooted Cayley trees

Exponential GF }_,~q %n])l)

which is equal to 1T (2x) by Proposition 6.9

Exponential GF }7,~4 P ")

Exponential GF Zn>1 1; 172 ) 3 for strongly parked trees

which is equal to 1 —In(2) — v/1 —4x + In (14 +/1 — 4x) by Proposition 6.10
P

Exponential GF }_,~; = n+)p ) x "yP for strongly parked trees with flux

" for nearly parked trees

x" for fully parked trees

Notation for Section 6.6

Cadlag(I, Pol) Space of cadlag function from an interval I C R to some Polish space Pol
(A(N): X ER) (standard) multiplicative coalescent

&= €1 X EZ de state space of the frozen multiplicative coalescent and its metric

&= K“’O X E Tor dsup  proxy state space of pair of decreasing sequences tending to 0 and its metric
(FM(A): A €ER) frozen multiplicative coalescent

[Ztl (Mo, || Ftt (A)||e  £1- part of Zs/(A) and its total mass
Z(N) = |74 (N)|o shorthand notation for the total mass of the frozen particles

O, (o)
F,[/IAO] G][{‘O]

7

FLAO,(S} , GL/\g,(S]

Fo, I,
n-skeleton

¥ = Yu(Ao, 1)

number of vertices of G, (0) whose components

carry surplus appeared before time Ag

frozen (resp standard Erd6s—Rényi process) process started from time Ag
by removing the components with surplus at time Ag

same process as above restricted to the specks

(i.e. components of [G,(Ag)]iee) of size at least n?/3

Sequences of renormalized sizes of components (frozen followed by standard)

graph spanned by the specks of G, (0) of mass at least 7
or belonging to a cycle of G,[f‘o] (0)

minimal mass of a speck of the 7-skeleton



Chapitre 7 :

Parking on the infinite binary tree

LES RESULTATS DE CE CHAPITRE SONT ISSUS DE L’ARTICLE [12], ECRIT EN COLLABORATION AVEC
DAvID ALDOUS, NIcOLAS CURIEN ET OLIVIER HENARD ET PUBLIE DANS PROBABILITY THEORY

AND RELATED FIELDS.

Figure 7.1: Simulation of the parking process on the first 9 levels of the full binary tree (the
edges are oriented towards the origin of the tree which is at the center of the figures). The
dotted vertices on the left figure initially contain 2 cars whereas the others are void. In the
middle and right figures, the highlighted edges have seen a positive flux of car.
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Let (Ay
the full binary tree B. Each car tries to park on its arrival node, but if it is already occupied, it drives
towards the root and parks on the first available spot. It is known [100, 22] that the parking process
on B exhibits a phase transition in the sense that either a finite number of cars do not manage to
park in expectation (subcritical regime) or all vertices of the tree contain a car and infinitely many
cars do not manage to park (supercritical regime). We characterize those regimes in terms of the law

of A in an explicit way. We also study in detail the critical regime as well as the phase transition

CHAPTER 7. PARKING ON THE INFINITE BINARY TREE

: u € B) be i.i.d. non-negative integers that we interpret as car arrivals on the vertices of

which turns out to be “discontinuous”.
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7.1 Introduction

The parking process is a central algorithm in combinatorics and probability. When the underlying
graph is an oriented line, it was first studied by Konheim & Weiss [122] in relation with hash tables
and it has led to many developments in probability notably via connections with the Brownian
continuum random tree and the additive coalescent [57]. Recently, Lackner & Panholzer [128] started
the systematic study of the parking functions on finite rooted trees. This triggered an intense activity
on the model of parking on a random critical Galton—Watson tree. In particular, a phase transition
was proved to occur and the threshold was located in an increasing level of generality [100, 75, 64].
Furthermore a surprising connection with the Erdés—Rényi random graph and the multiplicative
coalescent was unraveled in [67].

However, much less is known about the parking scheme on supercritical Galton—Watson trees,
apart from the existence of a phase transition [100, 22] and despite an intense activity on the closely
related Derrida—Retaux model [(1]. The goal of this paper is to close this gap and locate and study
the phase transition in the case of the parking process on the infinite binary tree (see Section 7.6 for

extensions).

Parking on the infinite binary tree. Consider the full planar rooted binary tree. Its vertices can be
conveniently represented by the finite words on two letters B = U,,50{0,1}", with {0,1}° = & being
the root of the tree and with edges between the words u# and u0 and the words u and ul. Those
vertices will be interpreted as free parking spots, each spot accommodating at most 1 car. On top
of that tree, we consider a non-negative integer labeling (A, : u € B) representing the number of
cars arriving on each vertex u € IB. Each car tries to park on its arrival vertex, and if the spot is
occupied, it travels downwards in direction of the root of the tree until it finds an empty vertex to
park. If there is no such vertex on the path towards the root &, the car exits the tree, contributing

to the flux of cars at the root. If we introduce the random variable
X := number of cars which have visited &,

the outgoing flux of cars is then simply F = (X — 1)+ = max(X —1,0). As we will see in Section
7.2.1, the final configuration (flux and status void/occupied for the vertices), and in particular the
value of variables X and F, does not depend upon the order chosen to park the cars.

In the remainder of this paper we shall suppose that the car arrivals (A, : u € B) are i.i.d. with
a given distribution p = (g : k > 0) on {0,1,2,3,...}. To avoid trivialities, we always suppose that
1#({0,1}) < 1 for otherwise the cars would always park on their arrival node. We let

G(x) =} mxt

k>0

be the generating function of the law p. One can then establish a dichotomy (see Lemma 7.1 and

also [100, 22] as well as Proposition 7.1 below):
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Figure 7.2: lllustration of the parking process in the first 5 levels of the full binary tree. The
car arrivals are represented by red squares (including the cars that may come from higher
levels on top of the tree). After the parking process, the vertices accommodating a car are
displayed in gray, whereas the free spots are displayed in white. The connected components

of parked cars are drawn with thick lines, they are fully parked trees.

e Either the number X of cars that visited the root @ has a finite mean and all clusters of parked

vertices are finite almost surely, we call this phase the subcritical regime,

e Or almost surely X = co and actually, all vertices of B are occupied after the parking process,

we call this phase the supercritical regime.

We shall furthermore distinguish the critical regime, when it is not possible to stochastically increase
u and stay subcritical. A first trivial remark is that when E[A] > 1 the process is necessarily
supercritical (since there are more cars than parking spots on average). Our main result is then a
characterization of those regimes explicitly in terms of the generating function G of u:

Theorem 7.1 (Location of the phase transition)

Suppose that there exists t. € (0,00) such that
te=min{t > 0: 2(G(t) —tG'(t))* = 2G()G"(t)}  (%).
Then the parking process is subcritical if and only if

(te —2)G(tc) = to(t. — 1)G'(tc). (7.1)
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The condition (%) on the existence of t. is mild and is for example verified for all generating
functions with infinite radius of convergence (see Remark 7.4.2). When (%) is not verified, we provide
a method to check if we are in the subcritical phase, see Section 7.5.3. Checking the signs of the
two sides of the inequality (7.1), see Remark 7.5.1, we see in particular that the generating function
G must have a radius of convergence at least 2 to be in the subcritical phase. This can easily be
explained by probabilistic arguments: otherwise, the maximum of 2" independent copies of a random
variable with law y is larger than n with high probability, so that the car arrivals at the single level
n of B suffice to guarantee that the root @ is occupied, see Lemma 7.1. The same argument actually
even proves that the radius of convergence of X (which is stochastically larger than A) must stay
above 2 in the subcritical regime. Notice that deciding whether u is subcritical for parking depends
in a subtle way on the distribution as opposed to the case of critical Galton—Watson trees [100, 75, (4]
where its depends only on the first two moments.

Let us give a couple of examples of application of our theorem in the case of a car arrival distri-
bution that is parametrized by a family (y, : 0 < «) which is stochastically increasing with mean
« > 0: in this case the parking is subcritical if & < a. and supercritical if & > «., for some threshold

«. depending on the family of laws:

e Binaryg,, arrivals. If p, = (1 — 5)d + 502, then the critical threshold is

1
Bi = —-
ac(Binary ;) 1
This settles an open problem of Bahl, Barnet & Junge [22]. Obviously the value of a, is in
agreement with the bounds 3% < < % of [100, Proposition 3.5] and improved to 0.03175 <

a, < 0.08698 in [22, Proposition 4].

e Binaryy i arrivals. More generally if p, = (1 — %)do + §6x for some k € {2,3,4,...}, then the
threshold is

k

122 (34 JBD) (k= Dk +4) +ky/GF7E—T))

ac(Binary g x) =

e Poisson arrivals. If y, is Poisson with mean «, then

ac(Poisson) = 3 — 2v/2.

e Geometric arrivals. If u, = p*(1 — p) for k > 0 is a geometric law with mean a = % then

pc(Geometric) = 1/9 and

1
a:(Geometric) = 3

The critical regime. Let us now focus more precisely on the critical regime : we assume that u is
subcritical (and () holds) and that it is not possible to stochastically increase y while remaining

subcritical. As we shall see in Section 7.5, this means that the inequality in (7.1) is actually an
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equality. Recall that we denoted by X the number of cars that wvisited the root @ of B during the
parking process. We set for k > 0, py = P(X = k) and will use the shorthands p, = pp and pe = p1
for respectively the probability that the root is void and the probability that the root is at the bottom
of a parked cluster without flux, after parking. In the following, we shall call white the clusters of
void vertices, and black the clusters of parked vertices.

Theorem 7.2 (Critical computations)

Suppose that (x) holds and that (7.1) is an equality. Then almost surely the root @ is void or

it belongs to a finite black cluster, and we have

£

Po
0 = —mm  ——— d e — ./ — — Vo.
Po= i —nc) M P T P

These calculations have a few surprising consequences:

e [E[X] < co. The fact that the expectation of the flux of cars is finite in the whole subcritical
regime (including at criticality) may be surprising at first, but this can actually be seen from

the recursive distributional equation satisfied by X by splitting at the root of B

—
=

X 9 (X -1+ (X—1)s+ A4, (7.2)

where X1, Xo are two copies of law X independent of the car arrivals A of law u. Indeed, the
RHS has expectation at least 2IE[X] — 2 which is strictly larger than E[X] as soon as E[X] > 2.
[terating the argument, one sees that there is no a.s. finite solution to the above recursive
distributional equation which has a mean > 2, see [22, Theorem 1.1] for details. Actually, as
we already mentioned the variable X must have a radius of convergence larger than 2, even at
the critical point, see the forthcoming Lemma 7.1. Also, plugging the value of p, = P(X = 0)
into (7.2) we deduce that

E[X]+E[A] =2(1—p.), or equivalently  E[F]+E[A] =1— p.

Now, by Remark 7.5.2, on the subcritical regime we have p, > %, so that the LHS of the left
identity is bounded by 1 and the LHS of the right identity by 1/2; one can also show that these

bounds are sharp.

o [t will follow from our combinatorial decomposition that the clusters of void vertices are actually

Bienaymé—Galton—Watson trees with offspring distribution ¢ given by

2 2
P 2pepo Ps
PE=0)=—"—~, Pl=1)=—"-", P(=2)=—"—""-.
(o + pe)? (po +po)? (o + pe)?
Again, since by Remark 7.5.2 we have p, > %, those trees are supercritical, implying that at
criticality there are (infinitely many) infinite white clusters. On the contrary, we shall see in
Proposition 7.1 that in the subecritical regime (including the critical case), there are no infinite

black clusters.
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Those phenomena underline once again the fact that the phase transition in the parking process is

discontinuous, in contrast e.g. with the case of Bernoulli percolation on the same tree'.

Fully parked trees and their enumeration. The proofs of our main results rely on a simple combi-
natorial decomposition into clusters of parked vertices and the enumeration thereof. More precisely,
a fully parked tree f is a subtree of B containing the root, decorated with car arrivals, so that all
those cars manage to park on f and that reciprocally all vertices of f are parked. If F = F,(x) is the
generating function of fully parked trees counted with a weight x per vertex and incorporating the
u-weight of car arrivals, see Section 7.3.1 for the precise definition, then the high-level idea of the

proof is to write the fixed point equations for p, and p,., which are

po = po(po+pe)> and  pe = poFu(po), (7.3)

and translate the idea that we decompose the structure into the (finite) clusters of parked vertices.
Theorem 7.1 boils down to deciding whether we have a non trivial solution p, # 0 to these equations
(otherwise we are in the supercritical regime). The critical regime corresponds to the case where p, is
exactly the radius of convergence of F. Thus the main ingredient in the proof is the “computation” of
the generating function F. The enumeration of fully parked trees has already been considered in the
combinatorics literature [128, 59, , 67, 63] and it shares many similarities with the enumeration
of planar maps. The idea is to enumerate a more complicated structure, namely fully parked trees
with a possible flux of cars at the origin. Those are defined as fully parked trees, except that now
the number of cars may be larger than the number of vertices of the tree so that the number of
cars X visiting the root of the tree may be strictly larger than 1. If F = Fy(x,y) is the generating
function of fully parked trees with weight x per vertex and y per outgoing car, then writing a recursive

decomposition at the root vertex we obtain
X 2 2
Flny) = (14 F) 6 - (14 F(x,0))°6(0)). (7.4)

These equations are reminiscent of Tutte’s equation [166] in the realm of planar maps where the
perimeter of the external face plays the role of our outgoing flux of cars. In this equation, the variable
y is called the catalytic variable since its role is to disappear to recover F(x,0) = F(x), the generating
function of fully parked trees with no flux. We apply the standard kernel method [14] to solve those

equations, see Section 7.4 for details.

Once we have sufficient information on F, the proofs of our main results are rather straightforward.
Deciding whether p, is non trivial boils down to an inequality on F(x.,0) at its radius of convergence
Xc, see Proposition 7.2. Under the assumption (%), this inequality is equivalent to (7.1) and the
critical case corresponds to the case when p, coincides with the radius of convergence of F(-,0).

Furthermore, in the subcritical case the generating function of the outgoing flux of cars is given by
poF(po,y) (see (7.6)).

Lin this model, the probability that the root of the full binary tree belongs to an infinite component is a continuous

function of the percolation probability
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Growth-fragmentation trees. It will follow from our decomposition that conditionally on X = 1,
i.e. on & being the root of a fully parked tree with no flux, then the cluster of parked cars above @ is
a random fully parked tree whose size has generating function F(poz)/F(po). In the critical regime,
since p, corresponds to the radius of convergence of F, the tail of the cluster size has a subexponential
decay and in the generic situation (e.g. when the car arrivals have bounded support), we actually

have

IP(& is a the root of a parked cluster of size 1) ~ cst-n=5/2, (7.5)

the exponent 5/2 being common in the theory of map enumeration. Furthermore, we also believe
that in the generic situation, rescaled large fully parked trees converge after normalization towards
the growth-fragmentation trees that already appeared in the study of scaling limits of random planar
maps and the Brownian sphere, see [31, 32, | or [72, Chapter 14.3.2]. We already made a similar
conjecture for the scaling limits of parked components in the parking process on large uniform Cayley
trees [67, Conjecture 1]. It is interesting to notice that although the phase transition in the parking
on B is of a different flavor (the phase transition in the case of critical Galton—Watson trees is
“continuous”), the large scale geometry of the critical components should be the same. However,
there are non-generic situations (with specific car arrivals distributions having heavy-tail) where
(7.5) does not hold and where we expect different scaling limits. See Section 7.6 and [59] for a similar
phenomenon in the case of enumeration of non-binary plane fully parked trees. We plan to address

those questions in following works.

Relationship with the literature. In deriving soft arguments about the existence of a phase transition
(section 7.2.2), we do reuse (with acknowledgment) some ideas of [22] and [100], mostly to offer a
self-contained account; yet the meat of this work is the derivation of explicit formulae (meaning
expressions in term of u) for the probability that the root of the tree is parked, hence for the
localisation of the phase transition: more precisely, the key equation (7.3) is derived in Section
7.3.2 and solved in Section 7.4.1 using the explicit solution of the Tutte equation (7.4) satisfied

by fully parked trees with an additional flux. Those trees are interesting on their own and have

been investigated from a pure analytic combinatorics viewpoint in the work [59]. In fact, [59] was
motivated by [75], and [59] together with this paper were conceived following discussions between
their authors. In a sense, the contribution of this paper is to bridge the gap between [75] an [22],

using methods from analytic combinatorics to give insight on more probabilistic quantities.

Acknowledgments. A.C and N.C. acknowledge the support from ERC 740943 GeoBrown. Part of

this work was initiated during a conference in CIRM and we thank our host for its hospitality.

7.2 Background

In this section we formally present the parking process on B and gather a few “rough” probabilistic

results (mostly adapted from [100, 22]).
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7.2.1 Parking on infinite trees

Let T be a rooted locally finite (plane) tree decorated with car arrivals (a, : u € T). As described in
the introduction, cars try to park on their arrival node, and if the spot is taken they travel downwards
in search of the first empty spot and, in case there is no such spot, exit at the root. In the case T is
finite, an easy Abelian property shows that the number of cars visiting each vertex of the tree does
not depend on the order in which we park the cars, see Section 2.1 of [128].

On infinite trees, to prevent cumbersome issues, we shall stick to a given parking procedure: park
the lowest cars first. More precisely, for each n > 0 let us consider the finite tree [T], made of the first
n generations above the root @ (recall that T is supposed locally finite) together with the restriction

of the car arrivals on these vertices. We can then perform the parking on [7], and construct variables
xp(u) u€[t],,

representing the number of cars that visited the vertices of [T], in the parking process (recall that
those variables do not depend on the order in which we parked the cars on [t],). Notice that for
a given vertex u € T, the function n — x,(u) is non-decreasing (it is defined for n larger than the
height of u) so that we can let n — oo and define
x(u) = nlg)go xn (1),

as the limiting number of cars visiting u in the parking process on T. This morally corresponds to
parking the lowest cars first?. In particular we say that u is void if x(u) = 0, that u is occupied if
x(u) > 1 and the flux of outgoing cars at u is f(u) = (x(u) —1).

7.2.2 Rough phase transition

We now focus on the case of the binary tree B with i.i.d. car arrivals (A, : u € B) with law u
satisfying #({0,1}) < 1. We denote by X(#) the number of cars that visited vertex u € B as
defined in the preceding section and will use the shorthand notation X = X (). We first establish
a dichotomy on X in the next lemma, which we then interpret in more geometric terms by proving

that there cannot be infinite black clusters with a finite flux.

Lemma 7.1 (Dichotomy subcritical/supercritical). We have the following dichotomy:
Subcritical case. Either the sequence (2"P(X > n) :n > 0) is bounded.

Supercritical case. Or X = o0 a.s, in which case all vertices are parked a.s.

Proof. Assume that (2"IP(X > n) : n > 0) is not bounded, and observe that the same is then true
of the sequence (2"IP(X > n+k) : n > 0) for any integer k. Then consider the collection of the 2"
i.i.d. variables X(u) attached to the vertices u of B at height n. We have the upper bound

P( () {X(u) < n+k}) < e PO,

u:|u|=n

2In fact, we could equivalently fix an exhaustion of T by finite trees Ty C T» C --- and define the parking on T as

the limit of the parking procedure over the T,’s.
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with the right-hand side going to 0 along a subsequence. But on the complement of the event on the
left-hand side, one of the variables X (u) is strictly larger n + k and this contribution only suffices to
imply that X = X(&) > k. Combined with our assumption, this implies that, almost surely, X > k,
hence, k being arbitrary, X = oo. This means that the root of B almost surely contains a car, and it

is the same for any other vertex.

O
The next lemma says that the above dichotomy is equivalent to the existence of infinite black

clusters. In particular, it rules out the possibility of having an infinite black cluster and a finite flux.
Proposition 7.1. In the subcritical regime, there is no infinite black cluster.

Proof. Suppose that u is subcritical, so that all variables X (u) are finite after the parking process.
It suffices to prove that the probability that the cluster of the origin C(@) is infinite is 0. Fix p > 0
and let us consider the event £ = {X(&) = p and C(©) is infinite}. We shall explore the process by
parking on the first n levels of IB as in the preceding section. More precisely, let F, be the sigma field
generated by the variables X;,(u) for X, (u) the number of cars visiting the vertex u when restricting
the parking on [B],. We then construct a sequence of stopping times 61 < 6, < --- obtained as
follows: 6; = inf{n > 0: X,,(&) = p} and then by induction ;11 = inf{n > 6; : @ <> I[B],} where
& <> 0[B], means that & is connected to the level n by a path whose vertices satisfy X, (u) > 1.
A moment’s though shows that on the event £ all these stopping times are finite for otherwise the
black cluster of the origin would not be infinite. For n > 2, on the event {6, < oo}, let v, be
the (first, for definiteness) vertex of d[B]y, to be connected to the root when parking on [Blg, . Set
D, = {Av,0,Av,1 € {0,1}} the event that the two children of v, have car arrivals < 1. Plainly,
E C Dy,N{H, < oo} since otherwise, the flux coming from these two vertices would go down all the

way to @ and we would have X (&) > p. In particular we have
P(Dilg, <o | Fo,) = (pto+ p1)* < 1.

Notice then that Dj, ..., D,_1 are Fp,-measurable so that by induction we have

P(£) < P8, < 00) [TP(Dy6n < 00) < (po + p1)?" Y,
k=2

which implies IP(€) = 0 since n is arbitrary and we assumed the distribution y satisfies pg + p1 < 1.

O

As a consequence of the (proof of) Lemma 7.1, there is no lower bound for E[A] for supercritical

parking, since one may cook up distributions u with arbitrarily small expectation but IE[ZA] = oo.

However, if the car arrival distribution is bounded, one can obtain a lower bound for the expectation

E[A] of the car arrival distribution for supercritical parking using a first moment method, see [100,
Proposition 3.5] and [22] for details.

To speak of a phase transition, one may imagine a family (u*),>0 of car arrival distributions

that is stochastically increasing in the mean a. In this case, the subcritical phase is identified with
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a closed set a € [0,a.], and the supercritical phase with the set |a., 1]. The fact that a. is actually
subcritical (i.e. satisfies the first alternative of the dichotomy) can be seen by monotone convergence
since the expectation of the flux is bounded above by 2 in the whole subcritical phase as recalled in

the introduction (see [22] for details).

7.3 Decomposition into fully-parked components

In this section we present our combinatorial decomposition which underlies our main results. The
idea is very simple: we decompose the final configuration on B into the black clusters of parked
vertices and the white empty vertices. This shows that we can decompose the final configuration as
a two-type Bienaymé-Galton—Watson tree whose offspring distribution is related to the generating

function F of fully parked trees studied in detail in the next section.

7.3.1 Fully parked trees

Suppose that we performed the parking process on B, and recall that the black vertices are those
u € B satisfying X(u) > 1, the other ones being the empty or white vertices. The finite black
connected components are fully parked trees t, i.e. connected subsets of the binary tree decorated by
car arrivals (a,)uer such that after parking all vertices are occupied. If such a tree appears as the
black component of the root &, then the fully parked tree may have an outgoing flux at the root
(i.e. containing more cars than vertices), otherwise it contains as many cars as vertices. See Figure
7.3.

[/ BV
NN NS

Figure 7.3: Three examples of fully parked trees. Notice that the first two have no outgoing
flux and represent the same plane tree but their embeddings in B is different. The last fully
parked tree on the right has an outgoing flux of 2 cars.

For the enumeration of the fully parked trees we shall always consider that their bottom vertex
is g. Each plane rooted structure of a fully parked tree with m vertices with 1 child actually
corresponds to 2" different embeddings as a subset of B (with @ as the root): for this reason, later

()

in the decomposition we shall put a weight of 2 for vertices with outdegree 1. Let us denote by T}
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the set of all fully parked trees with root &, with n vertices and having outgoing flux p > 0 (i.e. p+1
cars have visited the root vertex). The weight w(t) of a fully parked tree t = (t: (4, : u € t)) is the

= Hﬂaw

uet

weight of its car decoration, that is

We can then form the bivariate generating series of fully parked trees (with flux) as

Flx,y) = Fu(x,y) == Y. ) Y. x"y'w(t)

n=1p=0 teT( )
= x(utpey+psy’ oo ) + 27 200+ ) + 2y (ps + 2mpa) +o ) 4
Section 7.4 is devoted to the study of F via a functional equation obtained by splitting a fully parked

tree at the root, see (7.11). But before doing so, let us present the combinatorial decomposition and
the characterization of subcriticality in terms of F. It turns out that most equations simplify if one
introduces

F(x,y):=1+F(x,y) and Fp(x):=F(x,0):=1+F(x,0).

7.3.2 Decomposition

Recall that the law of X is (px : k > 0) and that we gave a short-hand notation p, = po for the
probability that the root vertex is empty. We write C(&) for the monochromatic cluster of the origin
in B after parking. Notice that the number of vertices adjacent from above to a fully parked tree
t C B with n vertices is n + 1, regardless of the shape of t. Recalling Proposition 7.1 we have for
k>0

P(X(2)=k+1) | = P(X(2)=k+1amd#C(2) <o)
= Y. P(C(@)=1t)
teT®
= 2 Z w(t)pi ™! = poly 1 (po, ). (7.6)
teTn

The other fundamental equation is obtained by noticing that the event {X(&) = 0} occurs if and
only if Az =0 and {X(u) € {0,1} : for u € {0,1}} which turns into

po = Ho(po+pe)*. (7.7)
Specializing (7.6) to k = 0, we recover together with the previous display the fixed point equation

Pe = PoF(po,0), mentioned in the introduction. In particular, re-injecting in (7.7) we obtain
Po = Hop> (Fo(po))z, where we recall that Fo(x) = 1+ F(x,0).

Notice that the function x — pox?(Fo(x))? is strictly convex and that p, = 0 is a trivial solution to
the above equation, so there is at most one positive solution p,. Under the same hypothesis, splitting

according to the values of X(@) we also obtain thanks to (7.6)

1 = po+pr+p2+--- o poF(ps,1). (7.8)
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Proposition 7.2 (F-characterization of subcriticality). The law p is subcritical if and only if there is

a positive solution to the equation
1 = uox(Fo(x))>. (7.9)

Proof. Let u be a subcritical law for the parking on B. Since p, # 0, the above calculations show
that p, is indeed a solution to the equation (7.9).

Conversely, suppose that there is a positive solution x, to (7.9). As a special case of equation (7.11)
below for F(x,y), we know that the series f(y) = F(x,y) is a solution to y + ?x.G(y) —yf — 1 = 0.

Solving the quadratic equation and taking the combinatorial solution we have

_ Y+ VIR +H4x(1-y)G(y)
Hy) = 2%,G(y) '

At first, the above equality holds only as a formal power series in y. But notice that the function
y? 4+ 4x,(1 — y)G(y) inside the square-root does not vanish over y € [0,1] so that the solution above
is analytic over [0,1]. By Pringsheim’s theorem [92, Theorem IV.6 p.240], the function § has radius
of convergence at least 1 and we have (1) = xio which is x.F(x5,1) = 1. This in turn ensures that

there exists a random variable Z (the outgoing flux of cars) whose generating function is

Z(y) = x.F(xo,¥).

We then compute, using Tutte’s equation (7.4) (see (7.11) below) as well as (7.9):

;(Z(y)ZG(y) — Z(0)°G(0)) + Z(0)*G(0)

—x. (2Bl y26(0) - F(x., 07G(0)) ) + 22E(x., 0G(0)
=xF(xo,y) + %0 = Z(y),

but this identity is equivalent to the following recursive distributional equation for Z:
(@)
Z=(Z1+ 2+ A-1),

where on the right-hand side the variables are independent and Z;, Z, are two copies of law Z.
This recursive distributional equation enables us to decorate the vertices of B by i.i.d. variables
Ay in such a way that for every n, the parking on [B], together with i.i.d. fluxes on 9[B], yields a
flux of law Z at the root (in a coherent manner). Replacing the i.i.d. fluxes on 9[B], by null fluxes
on d[B],, and writing X,, = X([B],) for the number of cars visiting the root for the parking on [B],,
we deduce by comparison that the flux at the root Fy, = (X, — 1) is dominated by the a.s. finite
random variable Z, which implies in particular that the parking on B with law y is subcritical. Et

voila.
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7.4 Enumeration of fully parked trees

This section is the analytic core of the paper. We write the recursive equations (Tutte’s equation)
for fully parked trees and solve them using the kernel method of Bousquet-Mélou & Jehanne [141].
Combined with Proposition 7.2 this enables us to prove our main results easily. The results are
similar to the work of Chen [59] which considered plane fully-parked trees (as opposed to our binary
case). Notice also that the technical part of [59] consists in obtaining asymptotics for the coefficients,

a goal that we did not pursue in these pages.

7.4.1 Solving Tutte’s equation

Recall that F(x,vy) is the bivariate generating function of the fully parked trees where x encodes the
number of vertices of the tree and y the flux of cars and G is the generating function of the car
arrivals. To enumerate fully parked trees, we decompose them at their root vertices. Take a fully

parked tree with n > 1 vertices and n + p cars in total (the flux of cars is p). Then

e cither n = 1 which means that the root vertex has no vertex above it. In this case, at least one
car arrives on this vertex (since the root vertex should contain a parked car) and the number

of cars arriving on this vertex is 1+ p. Summing over p gives the term x(G(y) — G(0))/y.

e Another possibility is that the root vertex has a unique child in the fully parked tree, which can
be the left or right neighbor in B. In that case, the subtree above this child is a fully parked
tree with n — 1 vertices and a flux of cars p; where p; + ¢ —1 = p if there are ¢ cars arriving
on the initial root vertex. Notice that the case p; = £ = 0 is excluded since otherwise the root

vertex is not parked. Summing over p yields the term 2x(F(x,y)G(y) — F(x,0)G(0))/y.

e The last case is when the root vertex has two parked children, each carrying a fully parked tree
above it with respective sizes k > 1 and n —k —1 > 1 and flux of cars p; and p>. To obtain
a flux of cars p at the root, one must have p; + p» + ¢ —1 = p where £ is the number of cars
arriving at the root vertex. Again the case p; = p» = £ = 0 is excluded. We thus obtain a

term x(F(x,y)?>G(y) — F(x,0)2G(0))/y.
Summing these three terms, we obtain the following recursive equation for F:

yF(x,y) = x(G(y) — G(0)) + 2x(F(x,y)G(y) — F(x,0)G(0)) + x(F(x,y)*G(y) — F(x,0)*G(0))
(7.10)
With our notation F = F +1 and Fo(x) = F(x,0) = F(x,0) + 1, this equation simplifies to

P(F(x,y), Fo(x),x,y) =0 where  P(f, fo,x,y) =y + f*xG(y) - fy — f5xG(0). ~ (7.11)

To solve this equation, we apply the kernel method of Bousquet-Mélou and Jehanne [44] and look
for a (formal) power series Y = Y(x) such that o¢P(F(x,Y(x)), Fo(x),x,Y(x)) = 0 so that combined
with (7.11) we also find automatically d,P(F(x,Y(x)),Fo(x),x,Y(x)) = 0. This introduction may
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X 2
&
SGLp+1
_ . D1 D2
= % or b1 SE or a-af
D
p=p1+{—1 p=pi+p2+L—1

Figure 7.4: lllustration of Tutte's recursive decomposition at the root vertex. On the left a
fully parked tree with flux p. If n =1, then the tree is just a vertex with p + 1 cars arriving

on it. Otherwise, it has one or two children which are the root of smaller fully parked tree.

seem ad-hoc, but it enables us to find a system of three equations on the three unknowns F, Fy and
Y, so that with a little luck we will find an “expression” for those. Actually, as we will see below
x — Y(x) is a convenient change of variable which simplifies our expressions. To summarize, we are

looking for a solution Y = Y(x) to the following system:

Y — 2xFG(Y) =0,
1+ xG'(Y)F? =F, (7.12)
Y +xG(Y)F? = YF + xG(0)F3.

Thanks to the first equation, we know that F = Y/(2xG(Y)). Replacing F by this quantity in the

second equation, we obtain

1+

Q) v | G
4xG(Y)2 ~ 2xG(Y) that is ¥ = x <2G(y) _ YG’(Y)) / (7.13)

which makes it clear that Y = Y(x) exists as a power series (and even with a positive radius of
convergence in a neighborhood of 0). Once the existence of Y is granted, we use again the system of
equations (7.12) to obtain an equation that only involves Fy(x) and Y(x). If we replace in the third
equation F by Y/(2xG(Y)) (which is a consequence of the first equation) and x by %}gz@(m,

we obtain

4YG(Y) F2YG(0)(2G(Y) — YG'(Y))

2G(Y) = YG (Y) G2 =4Y.

This equation is quadratic in Fy(x) and using the fact that it has non negative coefficients we obtain

2G(Y)\/G(Y) — YG/(Y)
(2G(Y) = YG/(Y))/G(0)

Fo(x) = with Y =Y(x) as in (7.13). (7.14)

We have found here an “explicit” solution for Fy(x) around x = 0. Coming back to Tutte’s equation,
once Fy is known this equation is quadratic in F and we can solve it into
_ Y=V +4G(y)x(G(0)Fo(x)%x — y)

F(x,y) = 2Gly)x . (7.15)
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The sign in front of the square root can actually change since the function inside the square root
vanishes when y = Y(x) and we need to change branch to keep an analytic function. But we shall

not use the exact expression in what follows.

7.4.2 Radius of convergence

In this section we use the explicit resolution of the functional equation (7.11) to determine the radius
of convergence x. of Fy and the value of Fy(x.). The important fact for our application to parking

being that under the condition (%) on the existence of t, in Theorem 7.1 we have

2G(t.)\/G(t.) — t.G'(t.)
(2G(tc) — .G/ ())/G(0)

Fo(xc) =

Recall from (7.14) that Fo(x) is an explicit function of Y(x) itself given by the implicit equation
(7.13).

Analyticity of Y. We first determine the analytic properties of the change of variable x — Y(x).
Recall from (7.13) that x and Y = Y(x) are linked by the equation

Y(2G(Y) — YG'(Y))

y(2G(y) —yG'(y))

X = GV , equivalently x=9(Y(x)) withy(y)= e
(7.16)
ote that 2G(y) — ¥G' () — PG)G" (y)
2yp(y) = 26—y 4yG(y)3y ¥)G"(y

and in particular ¢(0) = 0 and ¢'(0) > 0 so that by the implicit function theorem, we can define
Y in a neighborhood of 0 such that x = ¢(Y(x)). Recall the condition (x) from Theorem 7.1 which
says that the function y — y*G”(y)G(y) — 2(G(y) — yG'(y))? at the numerator of d,1(y) reaches 0

at time t, € (0,00), see Figure 7.5.

Remark. In particular if G has an infinite radius of convergence then (x) holds. Indeed, the quantity
G(y) —yG'(y) = Lizo k(1 — k)y* equals G(0) = pp > 0 at y = 0 and is bounded from above by
o — (1 — po — p1)y? for y > 1 which goes to —co as y — +oo. Thus, there exists z. such that
G(z¢) — y:G'(z¢) = 0 and the function y — y?>G" (y)G(y) — 2(G(y) — yG'(y))? is positive at y = z.
Since it is negative at y = 0, then (%) holds and ¢, € (0, z).

The assumption (x) is also satisfied when G has a finite radius of convergence y. and (at least)
one of the three quantities G(y.), G'(yc), G”(yc) is infinite. In case G(y.) = oo, starting from
yG'(y) — G(y) = ¥ Lo pik(k — 1)y*1, and noting that p(k — 1)y ~ pueky 1, we deduce that
yG'(y) — G(y) ~ yG'(y) as y — ¥, hence G(y) — yG'(y) again has limit —co as y — oo, and the
same argument as above applies. The last cases are obvious : in case G'(y;) = oo but G(y.) < oo,

G(y) —yG'(y) plainly has limit —oo; last, in case G”(y.) = oo but G'(y.) < oo, we directly have
limy .y yG"(¥)G(y) — 2(G(y) — yG'(y))* = +oo.
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To clarify the reader’s spirit and for latter discussion, let us classify the possible scenarios accord-

ing to the three cases identified in Chen [59, Figure 1], see Figure 7.5:

e the most common case is when f. exists and is strictly less than the radius of convergence y.
of G. At this point we have
02 te

ayay¢<y) . = w (2(th/<tc) - ZG(tc))GH(fc) — th(l‘c)GW(tc)) ,

and since G(t.) > t.G/(t) this second derivative is strictly negative so that the function y —

P(y) reaches a local maxima at this point. We call this situation the generic situation.

e it could also happen that t, exists and is equal to the radius of convergence of G. In this case,
although y — ¢(y) reaches a maxima at f., the local behavior around the maximum may not

be quadratic. We call this situation the non-generic situation.

e Otherwise t. does not exists and in particular the radius y. of convergence of G is finite and
y — P(y) has a finite positive derivative at y.. This is the dense situation which leave aside

for the moment.

generic dilute non-generic dense
z=9(Y) z=19(Y)
L '\ Tel oo .
e Y =Y(x) te 'y ve Y

Figure 7.5: lllustration of the three scenarios for the change of variable x — Y(x). Our
standing assumption (%) holds in the first two cases.

Under the assumption (%) —i.e. except in the dense situation— we introduce

(7.17)

Lemma 7.2. Under assumption (x) the function x — Y(x) is increasing and analytic over [0,x.) and

furthermore

lim Y'(x) = co.

X—Xc

Proof. Under the assumption (x) the function y — (y) is increasing and analytic over [0, f.) so that
by the analytic version of the implicit function theorem one can define its increasing inverse function
x — Y(x) over [0,x.). Note that since ¥'(y) — 0 as y T y. we have Y'(x) — oo as x 1 x..

O
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Radius of convergence of Fy. We still suppose (x). Coming back to Fg, notice that (G(Y(x)) —
Y(x)G'(Y(x))) is always positive for x € [0,x.], thus by Equation (7.14) the function Fj is also
analytic over [0, x.). Since Fy only has positive coefficients, by Pringsheim’s Theorem (see for example
[92, Theorem IV.6 p.240]), its radius of convergence is at least x.. The following lemma shows that

it actually coincides with it

Lemma 7.3. Suppose (%) then we have

. 7 .
xh—I;IJ-clc FO <x> = 0o,

in particular the radius of convergence of Fy is equal to x..

Proof. We use our explicit computations of Fy and Y to derive formulas for the first two derivatives of
x. Even if we don’t need it for this lemma, we start with the first derivative. We take the expression
of Fy given by Equation (7.14), differentiate it with respect to x and replace the occurence of Y’(x)
by 1/(9,9(Y(x))) thanks to Equation (7.16). We obtain

4G(Y(x))°G'(Y(x)) .
VG(Y(x)) = Y(x)G (Y (x))(2G(Y(x)) — Y (x)G'(Y(x)))?

Fy(x) =

This quantity has a finite limit when Y(x) converges to t.. We thus need to compute the second
derivative of Fy. To do so, we differentiate the above expression of Fj, and again replace the occurence
of Y'(x) by 1/(9y9(Y(x))). We then obtain a fraction involving the derivatives of G at Y (x). Using

the definition of . under assumption (x), we can show that

lim F(x) = lim YC(°RG() — (G (H)*(G(1) — 1G (1) (2G() — tC' () _ |

X Xe t—te 12(G(t) —tG'(t))3/2- (2(G(t) —tG/(1))? — 2G(1) G (1))
since all but the factor (2(G(t) — tG'(t))? — t*G(t)G" (t) are positive for t < t, and have a positive
limit as t — f..

O

7.5 Probabilistic consequences

Armed with our enumeration results and the criterion of Proposition 7.2, we can now proceed to the

proof of our main results.

7.5.1 Theorem 7.1: Location of the threshold

Recall that by Proposition 7.2, the parking process is subcritical if and only if there exists a positive
solution to (7.9). When (%) holds, since the function x — G(0)xFy(x) is strictly increasing, Equation
(7.9) has a solution if and only if G(0)x.Fo(x.)? > 1 where x. is the radius of convergence of Fy found
in the previous paragraph. Now, since f, = Y(x.) and plugging the value of Fy(x.) given by Equation

(7.14) in G(0)x.Fo(x;)? > 1, we obtain t, + % >1.
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By definition of t. under Assumption (x), the quantity t.G'(t.) —2G(t;) < t.G'(t.) — G(t.) is

always negative. Hence there is a solution x to (7.9) if and only if . satisfies
(te —2)G(tc) = to(t. — 1)G'(tc),

which together with Proposition 7.2 concludes the proof of Theorem 7.1.
Remark. Notice that if ¢, satisfies the condition of Theorem 7.1, then it is greater than 2. This implies

that if the parking process is subcritical, then the radius of convergence of the generating function
G of the car arrivals is at least 2. To see it, first note that the inequality (f —2)G(t) > t(t — 1)G'(¢)
can not be satisfied for t € [1,2] since the left-hand side is non-positive and equals 0 only for t = 2,
whereas the right-hand side is non-negative and equals O for { = 0 and f = 1 only. Neither can
this inequality be satisfied for t € (0,1), because for such ¢, we can bound from above the quantity
t(t —1)G'(t)/(t —2) by (3 —2v/2)G'(1) < (3—2v2)G'(1) < 1/5 since G'(1) = E[A] < 1 in the
subcritical case. On the other side, the quantity G(t) is bounded from below by G(0) > 1/2.

7.5.2 Theorem 7.2: critical computations

Before moving on to the critical computation (Theorem 7.2) let us prove that the critical case char-
acterized by the equality in the second display of Theorem 7.1 actually corresponds to the natural

fact that one “cannot increase the number of cars” and stay subcritical:

Lemma 7.4 (Criticality). Suppose (). Then we have equality in (7.1) iff for any € > 0 the law with
generating function G¢(t) = G(t) + et — € is supercritical.

Proof. Suppose that u is subcritical in the sense of Theorem 7.1 and look at the probability measure
e such that its generating function is given by G¢(t) = G(t) + et — ¢ for some € > 0. First notice
that p, satisfies Assumption (x) for € small enough. Indeed the radius of convergence of G is that

of G and the quantity

2(Ge(t) = tGL(1))* = £Ge()G{ (1) = (2(G(t) —tG'(t) —)* — (G(t) +e(t —1))G"(t)
= 2(G(t) — tG'(1))*> = 2G(t)G"(t)
+2e% —2¢(G(t) — tG/(t)) — et?*(t — 1)G" ()

is negative at f. when ¢ is small enough, so that t& ;= min{t > 0, 2(G.(t) — tG.(t))? = t>G(t)G/(t)} <
tc and the function e — t is continuous in a positive neighborhood of 0. To determine whether p, is

subcritical or not, we then need to determine the sign of
(te = 2)Ge(te) — te(te — 1)Gi(£),

which is then continuous is e. Thus if Equation (7.1) is not an equality, we can increase p and remain
subcritical.
Suppose now that (7.1) is an equality. We can show that
6G(t.) +2GO) (t.)(t, —1)°
ay(l)s(tc_(s): (C)+cz (C)(C )5_
4G(t)?(te — 1) 2(te — 1)G(tc)

s€+o0(e) +o0(9).
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When t. — § = £, then the left hand side is zero so that the main asymptotic on the right hand side

should be 0. Hence § = t. — tf is of order e. Moreover,
(te —2)Ge(te) — te(te = 1)Gi(te) = —2e(t — 1) + O((t — £c)?).
is negative when e small enough and . is supercritical by Theorem 7.1.

O
Proof of Theorem 7.2. Let us focus now on the case when (7.1) is an equality. In that case, since
(7.9) is an equality for x = x., then x. = p,. If x satisfies Equation (7.16) and the parking is critical,
so that y = f. is solution of (t —2)G(t) = t(t — 1)G'(t), then
1 1

and Fo(x.)? = = . 7.18
o(%e)” = 2°G0) ~ pora (718)

£
4(te —1)G(tc)

X =X, =

Moreover, using Equation (7.7), we obtain

_ P
p. ]/[0 pO/

and this concludes the proof of Theorem 7.2.
0

Remark. The fact that p, > 1/2 is a consequence of the equation for t given by Theorem 7.1. Indeed,
in the critical case, then po = x, = #2/(4(t. — 1)G(t;)) where t, is given by Theorem 7.1. But since

Do > 2t

> 1/2.
tc—1> /

7.5.3 Examples

Let us proceed to the computation of the critical threshold for parking for various families of stochas-
tically increasing laws. In the first four cases below, it is easy to check that condition (x) holds so
that we can just apply the general formulas. In the last example we explain how our techniques can

be applied even if (x) does not hold.

Binary(,, car arrivals. As a first example, we can imagine that either 0 or 2 cars arrive at each

spot, i.e. the law of the car arrivals is g = (1 — §)d + 562, so that G(t) = (1 —§) + 5#*. This is the

example considered in [100, Proposition 3.5] and [22, Proposition 4]. Explicit computations show in
this case that

2—w 3\/§

te = Y<xc) - ’ Xe = —F———=

3w 16/a(2 — a)

Note that Fg(x.) does not depend on &, see the remark below. We then see that for t = f., the

4/6
9

and  Fo(x.) =

Inequality (7.1) is quadratic in « and is satisfied as soon as & < a, = 1/14.
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Binary . car arrivals. In the case when p = (1 — %)d + %6, so that G(t) = (1 — %) + 4+* with
k > 3, we have

7

Y(x:) = <(k_”)(—4+k(3+k—\/m)>1/k

(
2a(k—2)(k — 1)

Fo(x,) = V2(Bk — /(k—1)(k+7) —3)

5—k k—1)(k+7
(k—2) (k- 1)\/ e ad

so that the model is critical at

k

14 2-k-2 (3+ \/ﬁ)k ((k— 1) (k+4) +k\/m).

occ(BinaryO/k) =

Poisson. Suppose the law of the car arrivals is Poisson with mean a« > 0, so that in this case

G(t) = e*(t=1)  Again, explicit computation show that

Y(x) = 2— ﬁ, Yo = (V2 - 1)e“—2+ﬁ i Fo(x.) = \/Mi_l)elfl/\/ﬁ’

o 2u

so that the model is subcritical for parking as long as a < a with

IXC:3_2\/§.

Geometric. Consider here the case when G(t) =1/(1+ « — at). Then

1+« 1+a)?
Y(xc) - 30( ’ Xe = (120() and FO(XC) =

=

so that the model is subcritical for parking as long as a < a, with a, = 1/8.

Remark (Combinatorial counting). The reader may be puzzled by the fact that in the last four
cases the value Fy(x;) does not depend on the parameter a. This is because in each case, the
dependence on « of the p,-weight of a fully parked tree of size n is of the form (c,)", for a constant
¢y depending on a that cancels out at criticality. To wit, consider fully-parked trees associated
with 0/k arrivals : in this case, for n a multiple of k, fully parked trees of size n have weight

n —1/k)n -1/k
Hv .ua(v) = ‘uo/kyl(cl ) = (y(l)/ky}((l ))n

Without (x). When hypothesis (%) is not satisfied we can still apply our method: If the generating

series G has a radius of convergence . then the value t. is then replaced by
fo = min {y., min{t > 0: 2(G(t) — tG'(t))* = *G(t)G"(t)} },

and we need to check that . defined analogously by (7.17) is again the radius of convergence of

the series Fy (we did not try to prove such a general statement here). Then using Proposition 7.2,



228 CHAPTER 7. PARKING ON THE INFINITE BINARY TREE

the subcriticality of the parking is equivalent to the fact that puo%:(Fo(%:))?> > 1, the only different
point is that we cannot use the equality 2(G(f.) — £.G(£.))? = F2G(£.)G"(E;) to further simplify the

expression. As an example of such law, consider the generating function

1+2 1 (3-1\"

The radius of convergence of G is equal to 3 but G'(3) and G”(3) exist. An explicit computation
shows that (x) holds with t. = y. = f. = 3 for G, and furthermore G is critical for the parking
process. However if one considers G = 0.9 + 0.1G then f. = 3 and (%) does not hold but still G is

subcritical for the parking process.

7.6 Extensions and comments

In this work, we voluntarily stick to the simplest case of the binary tree with i.i.d. arrivals without
specific conditions to keep the paper accessible to a wide audience. Let us mention a few perspectives

that our approach opens:

7.6.1 Non-generic and dense case

In this work, we focused on the localization of the threshold and on the computation of some critical
quantities. One could also try to get scaling limits of critical components and compute several critical
or near-critical exponents. As mentioned in the introduction, we expect that a large family of critical
car arrivals (say, with bounded support) belong to a common universality class where we expect that

the cluster size of the root has a tail that decays as n—°/2

as n — oo and where the scaling limits
of the critical components are given by 3/2-stable Growth-Fragmentation trees. But when the car
arrivals have a heavy tail (and when the parameters are fine-tuned so that the law is critical), we
hope to see different universality classes. Actually, as seen in Section 7.4.2, the singular behavior
of Fp near its radius of convergence is linked to the behavior of the Y(x) near near x., see Figure
7.5. For instance, in the example (7.19) an explicit computation shows that the singular behavior
of Fg(3 — x) — Fo(3) is of the form Cx*/3 which indicates a polynomial decay of the critical cluster
with exponent n~7/3. This is very similar to the scenarios that happened in the enumeration of plane
fully parked trees in Chen [59], with the notable difference that in our model the dense case can
be critical for the parking process. See also [61, Theorem 1.2] for the Derrida-Retaux model with
heavy-tailed distributions where the free-energy has a peculiar behavior. We plan on studying those

different behaviors in forthcoming works.

7.6.2 General case of d-ary tree and GW trees

Our work may be extended to parking on more general trees such as d-ary trees and perhaps super-
critical Bienaymé—Galton—Watson trees. The crux is of course the enumeration of fully parked trees.

In the case of Bienaymé—Galton—Watson trees with a geometric offspring distribution, we can use
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the enumeration of plane fully parked trees already performed by Chen [59]. In the case of general
supercritical Bienaymé—Galton—Watson trees, one would probably need the addition of another vari-
able z counting the number of adjacent vertices of the fully parked tree inside the global tree (in our
case, we had a fixed number n + 1 of vertices adjacent from above to a fully parked tree of B of size
n). We wonder whether the randomness of the underlying tree may yield to different universality

classes compared to the case of d-ary trees and plan on investigating this in forthcoming works.

7.6.3 Links with Derrida-Retaux model

As mentioned several times in the paper, the Derrida-Retaux model [(1] is closely related to the

parking process on B. We wonder whether a firm connection can be made between the two models.
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Chapitre 8 :

Last Car Decomposition ot Planar
Maps

LES RESULTATS DE CE CHAPITRE SONT ISSUS DE L’ARTICLE [(3] ET ONT ETE SOUMIS POUR PUB-
LICATTON.

We give new equations which characterize the generating functions of planar quadrangulations
and planar triangulations, with zero, one or two boundaries. The proof is inspired by the
Lackner—Panholzer last car decomposition of parking trees [1258] and consists in applying a similar
decomposition to the peeling trees of planar maps.
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8.1 Introduction

Since their introduction by Tutte in his series of “census” papers [165, , , ], maps are fun-
damental objects which have been extensively studied especially in combinatorics and in probability.
The purpose of this work is to establish new recursive equations to enumerate particular types of
maps which are inspired both by the well-known peeling procedure for maps [72] and by the last car

decomposition of fully parked trees introduced first by Lackner and Panholzer in [125].

Enumeration of planar maps. In this paper, we will focus on planar maps, which are finite connected
graphs (possibly with loops and multiple edges) properly embedded in the two-dimensional sphere,
seen up to continuous deformation. To avoid symmetries, all planar maps will be rooted at a distin-
guished oriented edge. The number of edges incident to a face, i.e. that of its underlying polygon, is
called the degree (or sometimes the perimeter or length) of this face. We will particularly study the
case of planar quadrangulations and triangulations which are maps where all faces are quadrangles
(resp. triangles). Sometimes our maps will have a boundary, i.e. a distinguished face which may have
a different degree (but this degree has to be even in the case of quadrangulations), in which case the
root edge lies on the boundary with the distinguished face lying to its right. This face will be called
the external face.

One possible way to enumerate quadrangulations or triangulations is to use Tutte’s method based
on a recursive decomposition which is obtained by removing the root edge. The point is that when
removing an edge from a quadrangulation, it may not be a quadrangulation anymore but a quadran-
gulation with a boundary. More precisely, when erasing the root edge of a quadrangulation with a

boundary with degree 2p with p > 1, one of these two possible events occurs (see Figure 8.1):

e either the quadrangulation stays connected, which means that one discovers a new face of the
initial quadrangulation, and one re-roots the quadrangulation at the edge adjacent to the left

of the oriented peeled edge.

e or the deletion of the root edge disconnects the quadrangulation and one gets two quadrangu-
lations with half-perimeter p; > 0 and p, > 0 such that p; + p» = p — 1, that one can re-root

using the two endpoints of the removed edge.

Note that we considered here the half-perimeter since the quadrangulations are bipartite and we only
encounter even boundaries during the exploration. In the case p = 0, the map is just a vertex map,
i.e. the map composed of one single vertex and no edge. One can iterate Tutte’s decomposition in
each quadrangulation with a boundary until one obtains a collection of vertex maps. This edge-by-
edge peeling exploration of a planar quadrangulation can be encoded in a so-called peeling tree' by

recursively labeling the vertices with the half-perimeters of the boudaries, see Figure 8.1. Conversely,

In random map theory, we often consider different ways to re-root the components, or peeling algorithms, which
may yield different peeling trees, see [72]. For the sake of simplicity, we shall stick here to the rules presented above

and do not use any other peeling algorithm.
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p p+1 n D2

p+1

D1 p
= 0 or \ or \/
p p

2

Figure 8.1: Tutte's recursive decomposition for quadrangulations and the local correspon-
dence in the peeling tree. In the case when the removal of the root edge splits the quadran-
gulation (right), we put the component attached to the origin of the root edge on the left of
the peeling tree.

given a labeled plane tree whose labeling follows the appropriate rules described above, one can
recover the initial quadrangulation. Note that the vertices of the peeling tree with label 0 are the
leaves and correspond to the vertices in the quadrangulation, whereas the other vertices correspond
to the edges of the map, see Figure 8.2.

Tutte then obtained recursive equations for the number of quadrangulations using the boundary
length as a catalytic variable, which can be summarize into the following equation on Q the bivariate
generating function of quadrangulations with a boundary, where the variable x counts the number

of vertices and y counts the half-perimeter of the boundary
s 1
Q=x+yQ'+ (Q-x-y2), (8.1)

where Q = [yl]Q is the (univariate) generating function of quadrangulations with a boundary of
length 2. On the right, the term x stands for the vertex map, and the term yQZ encompasses the
case where the removal of the root edge splits the quadrangulation. The remaining term corresponds
to the case where the quadrangulation stays connected, in which case the new quadrangulation has
at least a boundary of length 4. This equation characterizes the power series Q and has been solved
explicitly using the so-called “quadratic method” and then its generalization introduced by Bousquet-
Mélou and Jehanne [11].

Since then, other methods have been developed to enumerate maps: via matrix integrals [15, ],
bijections with other labels trees “a la Schaeffer” [69, , ] or correspondence with the KP
hierarchy [56, |. Our work concentrates on peeling trees but uses another method to enumerate
them which is based on Lackner—Panholzer last car decomposition of parking trees [128]. This link

between parking models and maps was already suggested by Panholzer in [147, Remark 2] and by
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Figure 8.2: Step-by-step example of the peeling process on a quadrangulation with n = 12
vertices and a boundary of degree 2p with p = 6 and its corresponding peeling tree. In
blue, two vertices of the quadrangulation and the two corresponding leaves with label O in
the peeling tree. In orange and rouge, two edges and their corresponding inner vertices in the

peeling tree.

the author and Curien in [67, Section 8]. Panholzer found remarkable explicit enumeration formulas
of parked trees for a large class of combinatorial models, one of which is linked to the enumeration of
non-decomposable maps. The non-decomposable maps also have links with description trees [653] of
Cori and Schaeffer whose construction shares similarities with that of parking trees which we explain
now. The link between bipartite planar maps and “degree trees” pointed out by Fang in [36, 87] also

supports this strong link between parking trees and map models.

Parking on trees. Our decomposition uses an idea introduced by Lackner and Panholzer in [1258] in
the context of parking trees. Let us recall this model for the readers’ convenience, although we shall
not use it in this paper. Let t be a finite (plane) rooted tree which is our parking lot. Each vertex
represents a parking spot which can accommodate at most one car. We then let cars arrive on the
vertices of t. Each car tries to park on its arrival node, but if the spot is already occupied, it drives

towards the root and parks as soon as possible. An important property of this model is its Abelian
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property: the final configuration, the flux of cars which go through a given edge and the outgoing
flux of cars do not depend upon the order chosen to park the cars. In particular, one can recover
the initial configuration of cars from the final configuration of parked cars and flux on the edges.
This model undergoes a phase transition and was first studied on a directed line [122] and raised

recently a growing interest, especially on random tree models with an increasing level of generality

[ ? ) ? ’ ]

We will focus here on the connected components of parked vertices in the final configuration in
this model, which are called fully parked trees. They consist of plane trees with a decoration of cars
so that all vertices accommodate a car and some cars possibly contribute to the outgoing flux. We
can decorate the edges of those trees with the flux of cars and in a specific case of trees and car
arrivals, the labeled trees obtained that way (pushing up the labeling from the edges to the vertices
above) are very similar to our peeling trees since the rules for the labels are identical, see Figure 8.3.
Specifically, consider a fully parked tree where each vertex has 0, 1 or 2 children and where exactly
one car arrives on each leaf (vertex with 0 child), no car arrives on vertices with one child and two
cars arrive on vertices with two children. Then the leaves will all get label 0 since one car arrives
and parks on each leaf and no car can come from above. If a vertex has one child with label £ > 1
(and no car arriving on it), then one of the ¢ cars arriving from above parks and the vertex will get
label ¢ — 1. Lastly, a vertex with two children with label #; and ¢, > 0 has two cars arriving on
it and ¢1 4+ ¢, coming from above. One of them parks and it remains ¢; + £, + 1 cars contributing
to the flux on the edge below. Those local rules are exactly the same as that of peeling trees of
quadrangulations and we can thus match bijectively these fully parked trees (with prescribed car

arrivals) with quadrangulations with a boundary.

To enumerate such general plane trees with parking, Chen [59] uses a method which is similar to
Tutte’s since he decomposes the fully parked trees at their root using the outgoing flux of cars as a

catalytic variable.

The technique introduced by Lackner & Panholzer [128] and deepened by Panholzer in [117] is
different: it consists in a decomposition of the initial fully parked tree according to the parking spot
of a distinguished car seen as the “last” car. Thanks to the Abelian property, we can imagine that
we first park all the cars but this distinguished car and that it arrives at last and parks on a vertex,
which was empty before the last car arrived. And when removing this last car, the trees which are
attached to this free spot are also fully parked trees. See also [67, Section 8.2] for the decomposition

of fully parked trees with a different notion of components and with possibly a flux of outgoing cars.

The heart of this work is to adapt the “last car decomposition” to the enumeration of planar
maps, more precisely of the peeling trees of planar maps. This new decomposition is explained in
Section 8.2 in the case of quadrangulations and in Section 8.3 for triangulations with zero, one or
two boundaries. In both cases, this decomposition enables us to establish new equations on the

corresponding generating functions which we state now.
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Figure 8.3: Left, an example of a fully parked tree with 16 vertices and 19 cars, three of
which can not park. We put exactly one car arriving on every leaf, two cars on every vertex
with two children, and no car on vertices with one child. In the middle, the corresponding final
configuration where the edges are decorated with the flux of cars (when non-zero). When
pushing up the labels to the above vertices, one obtains a labeled tree which follows the same

local rules as the peeling tree of quadrangulations (right).

Quadrangulations. We introduce Q,, to be the number of rooted quadrangulations (without bound-

ary) with n vertices, and we denote by £ its corresponding generating function

Q(x) := Y Qux" = x* 4+ 2x° 4 9x* + 54x° +378x° + - - - .
n=2
We already encountered £ as the generating function of quadrangulations with a boundary of perime-
ter 2. Indeed we will see later that we can transform the root edge of a quadrangulation without
boundary to get (bijectively) a quadrangulation with boundary of degree 2. By convention, the map

with two vertices linked by an edge is considered as a quadrangulation (without boundary) with 0

face, which explains the term x2.
Theorem 8.1
Writing Q° = xQ'(x), the “last car decomposition” translates into the equation
Q-9
C =22 t6x | ——— |, 8.2

which characterizes Q and which is equivalent to the following recursive equation: Q, = 1 and
forn > 3,

n—1
nQy = Z k(i’l +1-— k)Qan+1—k + (411 - 10>Qn—1- (8'3)
k=2
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Notice that Equation (8.2) or equivalently (8.3) does not make use of quadrangulations with a bound-
ary. They are fundamentally different from those of Tutte (8.1) which necessitated the introduction of
a catalytic variable y to write the equation on the bivariate generating function of quadrangulations
with a boundary (see Q bellow) and eventually characterize  alone. The form of the equations
above may remind the knowledgeable readers the decomposition obtained via the KP hierarchy, see
for example [134, Corollary 2] or [56]. But it seems that those equations can not be deduced one

from another. Indeed with our notation, the equation coming from the KP hierarchy is
Q° — 0 =4x(29° - 39) +3(29° — 39)* + x%. (8.4)

Our decomposition also allows us to deduce a recursive decomposition of quadrangulations with a
boundary. Let Q,(f ) be the number of rooted quadrangulations with a boundary of length 2p and n

vertices, and we denote by Q its corresponding bivariate generating function

n
Qxy) =Y ) Q,(f)x"yp :x+y(x2—|—2x3—|—9x4+~~> +y? <2x3+9x4+54x5+~~> +---
n=1p=0
By convention, we consider the single isolated vertex as a planar quadrangulation with a boundary of
perimeter 0 (and 0 face), which explains the term x. The last car decomposition gives the following
differential equation on Q
Q-9

where Q® = x9,Q. This equation is not as “simple” as Tutte’s Equation (8.1) since it also involves
the partial derivatives of the generating function Q.

Lastly we can also consider quadrangulations with multiple boundaries that are enumerated by
Tutte’s slicing formula, see [72, Theorem 3.4]. We will only deal with the case of two boundaries at
the end of Section 8.2 but the general case can be obtained by stacking and gluing the appropriate

number of peeling trees with the same procedure.

Triangulations. An adaptation of the “last car” technique gives similar results in the case of trian-
gulations. As above we start by the case without boundary, and the map with two vertices linked
by an edge is considered as a triangulation with 0 face. We denote by T, the number of rooted

triangulations with #n vertices without boundary and we denote its generating series by

T(x) = Y Tux" = x> +42° +322* +3362° + . ..

n=2

Theorem 8.2

The last car decomposition yields the following equation

. (T3
3T° —4T =2 <1 —‘Z'/x>' (8.6)
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where ¥°* = xT'(x). Assuming T, = 1, this equation characterizes ¥ and is equivalent to the
recursive equation which is similar to (8.3)

1 n—1

Toi= s Y (Bk=4)(n+ 1= KTl (8.7)
k=2

As above, this equation may remind the reader of the following equation coming from the KP hier-

archy:
T — T = (63° — 8T +x)?, (8.8)

see [101, Theorem 5.4 and Equation 45]. However, we were not able to deduce one from another by
simple computation. We now let T,sp) be the number of rooted triangulations with a boundary of

length p and n vertices in total, and we denote by T its corresponding generating function

T(x,y)= ), TP P = x +y( + 433 +320 + .. ) +....

n=1,p=>0
Then our last car decomposition shows that T satisfies the following differential equation

T -T .
1—f/x> +y (4T* — 3T — y9,T). (8.9)

4
6T* — 249, T — 6T + yd, (yT) = %T' (
where T®* = x0,T, which is the analogue of Equation (8.5). We will see later that a small local
transformation on the triangulations shows that T = [y!]T = [y?]T = [y*]T. We can also adapt our

decomposition in the case of triangulations with two boundaries, see the end of Section 8.3.
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Budzinski and Baptiste Louf for stimulating discussions. I am also grateful to Nicolas Curien for his

precious suggestions.

8.2 “Last Car” decomposition of quadrangulations

We have given above an insight into the peeling exploration technique on quadrangulations with a
boundary. Let us precisely explain the correspondence between quadrangulations with a boundary
and their peeling tree. Recall that the removal of the root edge in a quadrangulation can produce
two possible events: either it stays connected and the half-perimeter rises by 1, or it splits in two

parts and the sum of the two half-perimeter is prescribed, see Figure 8.1.
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Peeling tree of quadrangulations with one boundary. With each rooted quadrangu-
lation with 7 vertices and with a boundary of perimeter 2p, we can match bijectively
its peeling tree, which is a labeled plane tree whose vertices have between zero and

two children including n leaves. The labeling satisfies the following rules:
e The root vertex has label p.

e The leaves have label 0.

* (local rules) All inner vertices have a label ¢ > 1 and either one child with
label £ 4+ 1 or two children with labels £1, /» > 0 such that /1 + /¢, —1 = /£. See
Figure 8.2.

Note that the labels of the vertices can be seen as the half-perimeter of the successive
boundaries during the exploration, and that the local rules imply that it has 2n —

p — 2 inner vertices, which is also the number of edges of the quadrangulation.

We will now concentrate on such peeling trees and (almost) forget about their interpretation in
terms of maps. We want to apply a “last car” decomposition to such a tree. Let us first explain the
influence of removing a car from a parking tree or fully parked tree. Recall that a fully parked tree
is a rooted tree together with a car configuration where all parking spots are occupied (eventually
with an outgoing flux) and that we can label each vertex by the flux of cars that go through the edge
just below (or the outgoing flux for the root vertex). Imagine now that one removes a distinguished
car from this tree, or more precisely that we first park all the cars but this one and then try to park
this distinguished car so that we can easily remove it. Take for example a car which contributed to
the outgoing flux. Then the effect of this removal is that the flux in the edges of the branch between
the arriving spot of this car and the root vertex has decreased by 1, see Figure 8.4.

In the next sections, we will try to subtract 1 from the labels in a branch of a peeling tree. We

will see that, for the inner vertices of the branch, this transformation preserves the local rules.

8.2.1 Quadrangulations without boundary or with a boundary of length 2.

To enumerate quadrangulations without boundary we actually first transform them into quadrangu-
lations with a boundary of degree 2. To this end, the standard trick is to cut along the root edge and
“open” it, see Figure 8.5. This transformation does not affect the number of vertices of the initial
quadrangulation and is a bijection between quadrangulations without boundary and with a boundary
of perimeter 2 with the same number of vertices. Since we only consider planar maps, Euler’s formula
implies that a quadrangulation without boundary has 2n — 4 edges (and n — 2 faces), and applying
the root transform only increases the number of edges and faces by 1.

Thanks to this trick, we now only need to concentrate on peeling trees of quadrangulations with
a boundary of length 2, i.e. those whose root has label 1.

Inspired by removing the last car in fully parked trees [128], we want to remove 1 from all labels on a
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Figure 8.4: The effect of removing a car (seen as the last car) in a fully parked tree. We
remove here the car in green on the left and imagine it parked last. On the right, it decreases
by 1 the flux of the edges between the green point (location of the car arrival) and the root

edge.

Figure 8.5: Root transform for quadrangulations (or more generally for bipartite maps). On
the left the initial root edge and on the right the distinguished face of degree 2 together with
the new root edge.

“branch” of the peeling tree. To do this, we need to distinguish a leaf of the tree, which corresponds
to a vertex in the initial quadrangulation and we consider the branch between this leaf and the root
vertex. The key observation is that subtracting 1 to all labels of this branch preserves the local rules

of the tree which we described in (%), but two issues may appear.

e First, the initial distinguished leaf cannot get a label —1, but it has a parent with some label
k > 1 and a sibling with label k — 1, so that we can just contract these three vertices into a
vertex with label k — 1. We distinguish it to remember where we removed the distinguished

leaf. We also need to remember whether the leaf was on the left or on the right.

e The other possible issue is that the vertices with label 1 will get label 0 and therefore have to be
leaves. This is also easily solved by cutting the edges just above the new 0’s and distinguishing

them to remind the location of the cuts, see Figure 8.6.

Lastly, when n > 3, the root vertex of the tree has always a single child with label 2 so that we
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Figure 8.6: Example of the last car decomposition on a peeling tree of quadrangulation with
n = 7 leaves into k = 3 trees with n +k —2 = 8 leaves in total. On the left, the initial
peeling tree where the distinguished leaf is displayed in orange as well as the branch between
this leaf and the root. In the middle, we point out the needed transformations when removing
one in this branch to preserve the local rules: the father and sibling of the distinguished leaf
are contracted into a (marked) vertex labeled 2, we remove the initial root (or cut just above),
and we cut above the two vertices which get label 0. On the right, the resulting sequence of

three trees.

just remove the initial root and root the new tree at this child which gets label 1.

To summarize, our transformation converts a peeling tree starting from 1 with n > 3 leaves, marked
at one leaf, into a sequence of k trees for some k > 1, with root label 1, with n + k — 2 leaves in total
and such that the first tree has a distinguished vertex (leaf or inner vertex) and the eventual following
trees have a marked leaf. Conversely, given such a sequence, we can recover the initial peeling tree
by gluing successively the root of a tree with the distinguished leaf of the next tree of the sequence
and add 1 to the labels in the appropriate branch. Noting that a quadrangulation with a boundary
of perimeter 2 and n vertices has 2n — 3 edges hence its peeling tree has 3n — 3 vertices in total, we

obtain the following differential equation on £:

0°® =2x% +2x <3Q _3Q> ,

1-9Q°/x
which is Equation (8.2). Let us explain this in more details:

e The term 2x? stands for the map with two vertices connected by the root edge, which is a
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quadrangulation by convention.

e The factor 2x comes from the fact that there are two possible ways to “reglue” the initial marked

leaf with label 0 on the first tree of the transformed sequence (left or right).

e The factor 30Q°® — 39 comes from the first tree in the sequence, which has a distinguished
vertex, and is divided by 1 — Q°/x for all possible cuts, see SEQ construction, for example in
[92, Theorem III.1 p.166].

By identifying the coefficient in the equation above, we obtain Equation (8.3) which concludes
the proof of Theorem 8.1. This is a new equation which characterizes A000168 in Sloane online

encyclopedia for integer sequences.

8.2.2 Quadrangulations with a boundary of degree 2p > 4

The transformation which we described above also works for quadrangulations with a boundary of
perimeter 2p > 4. The only difference is this in that case, we do not remove the initial root of the
tree. Starting from a peeling tree with n > 3 leaves, a root labeled p > 2 and a distinguished leaf,
we apply our last car decomposition in the branch between the distinguished leaf and the root of the

tree. We obtain a sequence of k > 1 peeling trees for some k > 1 such that:
e the first tree is marked at a vertex (leaf or not),
e all eventual following trees have a marked leaf,
e all but the last tree have a root label 1 and the last tree has a root labeled p —1 > 1,
e the trees have n 4+ k — 2 leaves with label 0 in total.

See Figure 8.7. Note that the first and the last tree can be confounded. We then get the differential
Equation (8.5) on Q that we recall here:

Q° -9

Q* =x+6yQ° (1_9,/36

> +2xy (3Q* —2Q — y9,Q),

where Q® = x9,Q and Q = [y!]Q, (resp. Q° = [y!]Q*). Indeed,

e The term x corresponds to the map composed of a single vertex and no edge whose peeling tree

is simply the tree with one vertex labeled O.

e The second term corresponds to the case where our transformation gives more than one tree
(and in particular, the first and the last trees are not the same), including the case of quad-
rangulations with a boundary of perimeter 2 where the last tree after transformation is the
tree with one vertex labeled 0. In that case, the last tree is a tree with root label p —1 and a
marked leaf, which corresponds to the factor yQ®. The first tree has a distinguished vertex and

its root has label 1, hence the factor 32Q® — 39 as in the case of a boundary of perimeter 2. The
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Figure 8.7: Two examples of our transformation on the same tree with root labeled p = 4
and n = 7 leaves with two different distinguished leaves. On the top, the transformation
produces k = 2 trees and have n — k — 2 = 7 leaves in total. The first one has a distinguished
vertex and root labeled 1, and the second one has a distinguished leaf and root labeled
p—1 = 3. At the bottom, we get k = 1 tree with n —k —1 = 6 leaves, a distinguished
vertex and a root labeled p —1 = 3. In particular, the first and last tree are the same.

factor 1/ (1 —Q°/ x) stands for the other possible cuts. There is also a factor 2 which comes
from the fact that there are two possible ways to reglue the initial distinguished leaf labeled 0

on the first tree.

e The last term corresponds to the quadrangulations with n > 2 vertices where we get only one
tree when applying our transformation on its peeling tree. In that case the resulting tree has
n — 1 leaves, a root labeled p — 1 hence 2(n —1) — (p — 1) — 2 = inner vertices (edges in the
quadrangulation) and 3(n —1) —2 — (p — 1) vertices in total, one of them is distinguished,
explaining the factor 3Q°® —2Q — yd,Q.
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8.2.3 Quadrangulations with two boundaries

We can also give a recursive equation for the number of quadrangulations with two boundaries. We
interpret the first boundary as above but the second boundary as a distinguished face of perimeter
2q, and denote by lep ) the number of rooted quadrangulations with a boundary of length 2p, a
distinguished face of perimeter 2q and n vertices in total. In the peeling exploration, the discovery
of the distinguished face corresponds to the event of seeing a boundary of half-perimeter » > 1 which
becomes a boundary of half-perimeter » +- g — 1 when removing an edge. This matches in the peeling
tree to a vertex with label » > 1 which gives birth to a vertex labeled r 4+- g — 1 when discovering this
distinguished face. The rest of the local transitions are exactly the same as before, see Figure 8.8.
Thus, we introduce A,(f ) the number of peeling trees of “quadrangulations” with n leaves labeled 0,

a distinguished leaf with label r and a root labeled p.

S
& <o

Figure 8.8: Step-by-step peeling exploration of a quadrangulation with a boundary of perime-

ter 8 = 2 -4 and a distinguished hexagon in green. The discovery of this face leads to a
transition from a boundary of half-perimeter 3 to one with half-perimeter 343 -1 =5
(green edge in the peeling tree on the right). Removing this green edge in the peeling tree
on the right, the above part is a usual peeling tree of a quadrangulation with a boundary of
half-perimeter 5 and 6 leaves. The bottom part starts from a label 4, has 5 leaves with label
0 and a distinguished leaf with label 3.
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Indeed, if we decompose the peeling tree of a quadrangulation with two boundaries of length 2p
and 2q according to this different transition, then for some r > 1, the above part is the usual peeling
tree of a quadrangulation with one boundary of length 4 g — 1 and the other one has root label p
and a distinguished leaf with label r. And the total number of leaves with label 0 should be 7 as the

quadrangulation had #n vertices. With this decomposition, we obtain

_ Z Z QU= (8.10)

Knowing the A;(,IP,CI)’

s, this equation allows us to deduce the QEIP ’q). Note that the sum on r when
k = 0 encompasses the case where the bottom part has only one leaf with label » and is just a straight
vertical line (thus A(p ) equals 1 if r > p and 0 otherwise).

It only remains to enumerate peeling trees with a distinguished leaf with label r > 1. For this,
we can use our last car decomposition and subtract 1 along the branch to the distinguished leaf. In
this case, we do not need to transform the father and the sibling of the distinguished leaf. When

= 1, then removing 1 in the branch between this leaf and the root of the tree creates a leaf
with label 0 and thus a usual peeling tree of a quadrangulation with one boundary. Hence we have
APV = (n+ 1)Q( )1 when n > max(1,p —1).
When 7 > 2, the distinguished leaf just get label r —1 > 1. We then obtain the following recursive
equation, which we explain bellow:

n—1
Vr>1,Vp21,vn 21, AP = At Ly 40 4 ) (8.11)

k=0

The first term on the right corresponds to the case where there is no 1 in the branch so that there is
no cut in the decomposition. When p = 1, we remove the initial root whereas we do not remove it
when p > 2 so that the root of the new tree has label p — 1, which explained the index max(p —1,1).
The last term corresponds to the case where there is a cut and decompose the initial tree according
to this highest cut. In that case, we only subtract 1 in the top part, since the bottom part is just a
smaller peeling tree with a distinguished leaf labeled 1. Notice that when k = 0, the only possibility
to have no leaf labeled 0 is to have a straight-line from label 1 to label r — 1 so that A((]l’r_l) =1
when r > 2.

8.3 “Last Car” decomposition of triangulations

We now apply our techniques to the case of triangulations. We first describe the encoding of trian-
gulations by their peeling trees which is similar to the case of quadrangulations.
8.3.1 Peeling triangulations

The peeling technique can be adapted to triangulations. Indeed, we can also remove the edges one-

by-one “a la Tutte” to get recursive equations on the number of triangulations with a boundary.
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As in the case of quadrangulations, two possible events can occur when erasing the root edge of a

triangulation with a boundary p > 1:

e either the triangulation stays connected, which means that one discovered a new face of the
initial triangulation, and one re-roots the triangulation at the left-most edge of the new face.

The new triangulation has then a boundary of length p + 1.

e or the deletion of the root edge disconnects the triangulation and one gets two triangulations
with perimeter p; > 0 and p > 0 such that p; + p2 +2 = p, that one can re-root easily using

the two endpoints of the removed edge as in the case of quadrangulations, see Figure 8.9.

Here, we do not consider the half-perimeter of the boundary since the triangulations are not bipartite.
As for quadrangulations, we can encode this edge-by-edge peeling exploration in a peeling tree by
recursively labeling the vertices with the perimeter of the boundaries, see Figure 8.9. Note in par-
ticular that when the removal of the root edge disconnects the triangulation, we put the component
attached to the origin of the root to the left in the peeling tree. To fix ideas, the peeling process

gives us the following correspondence between triangulations and trees.

Peeling trees of triangulations with one boundary. To each rooted triangulation
with n vertices and with a boundary of perimeter p, we can bijectively match its
peeling tree which is a plane tree with labeled vertices with zero, one or two children
encoding recursively the perimeter of the boundaries in the peeling exploration. The

labeling satisfies:
e the tree has n leaves with label 0,

e its root has label p,

o (local rules) Each vertex with label ¢ > 1 has either a child with label £+ 1 or
two children with label ¢1 and ¢ such that ¢ + ¢, +2 = £. See Figure 8.9.

In particular, the local rules imply that such tree has 3n — p — 3 inner vertices.

As for the case of quadrangulations, it will be convenient to see triangulations of the sphere as
triangulations with a boundary. The most natural idea would be to see a triangulation of the sphere
as a triangulation with a boundary of perimeter 2 after unzipping the root edge or 3 if we see the
triangle lying on the right of the root edge as the external face. It implies [y?]T = [y?]T. But since
the triangulations are not bipartite, the root edge can be a loop and it will be more convenient to use
another root transform. We shall actually view triangulations without boundary as triangulations
with a boundary of length 1 (i.e. a loop): we cut along the root edge and “open” it to get a double
edge, and then insert a loop inside this double edge at the starting point of the initial root edge
to obtain a triangle and root the new triangulation on this loop in clockwise direction so that the

new triangulation has the 1-gon to its right, see Figure 8.10. We also obtain [y!]T = [y?]T = [y*]T.
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Figure 8.9: Step-by-step peeling exploration of a triangulation with a boundary of perimeter
p = 5, with n = 6 vertices and a distinguished loop. This loop in green matches in the tree
with the green leaf labeled 1, which we can put indifferently left or right.

The choice of the clockwise orientation of the new root edge on the new loop is canonical since we

imposed that the maps with a boundary have their distinguished face to their right.

In fact, we can apply this root-transformation on any distinguished oriented edge even in tri-
angulations which already have a boundary. We will apply our decomposition to peeling trees of
triangulations with a boundary and a distinguished face of degree 1 or loop. When the distinguished
loop does not lie on the boundary, we can “invert” the root transform and see the distinguished loop
as coming from a distinguished oriented edge. To summarize, our decomposition will be based on

the following trees.
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Peeling trees of triangulations with one boundary and a distinguished loop. To
each rooted triangulation with n vertices and with a boundary of perimeter p and a
distinguished loop, we can bijectively match its peeling tree which is a plane tree with
labeled vertices with between 0 and 2 children encoding recursively the perimeter of

the boundaries in the peeling exploration. The labeling satisfies:
e the tree has n leaves with label 0,
e its root has label p,

e one inner vertex with label £ > 1 has two children, one of which is a leaf with
label 1 and the other one hase label £ — 1. For this leaf (and only for this leaf

1), the planar ordering does not matter, see Figure 8.9.

o (local rules) All other vertices with label ¢ > 1 has either a child with label
£ 41 or two children with label £1 and ¢, such that £ + ¢, +2 = £. See Figure
8.9.

In particular, the local rules imply that it has 3n — p — 3 inner vertices.

It will then be more convenient to apply our last car decomposition in the branch between this
leaf with label 1 and the root of the tree.

/ \ \
/// \ /// \ /// ///
/ /

Figure 8.10: Root transform for triangulations: on the right, the case where the initial
root edge is a loop and on the left, the case where the two endpoints of the root edge are
different. In both cases, the initial triangulation is on the left and on the right, we obtain a

triangulation with a boundary of perimeter 1.

8.3.2 Triangulations without boundary

We first want to enumerate triangulations without boundary, and to do this, we apply the above root-
transform which gives a bijection between rooted triangulations without boundary and triangulations
with a boundary of length 1 and preserves the number of vertices. Instead of distinguishing a vertex
to apply our decomposition, we shall this time distinguish an oriented edge, to which we apply
another time the above root transform to obtain a triangulation with a boundary of perimeter 1
(obtained from the transformation of the initial root edge) and with a distinguished loop (obtained

from the additional distinguished oriented edge). Note in particular that the oriented distinguished
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edge can be the root edge, but will be different after applying the root transform for the second time.
Therefore the distinguished loop can not lie on the boundary and its edge is part of an internal face
so that we can inverse the root transform to recover the initial distinguished oriented edge.

We then build its peeling tree to which we can apply our transformation, i.e. subtract 1 in the
whole branch between the distinguished leaf labeled 1 and the root of the tree. The transformation
works then as in the case of quadrangulations: the local rules (o) are preserved but two issues may

appear.

e The initial distinguished leaf with label 1 has a parent with label k > 1 and a sibling with label

k — 1, so that we just contract these three vertices into a single marked vertex with label k — 1.

e if a vertex labeled 1 becomes a vertex with label 0, then we cut the edge just above it; and we

remove the initial root which had label 1.

The transformation then takes a tree as described above and maps it into a sequence of k trees
with root labeled 1 and such that the first tree has a distinguished vertex (leaf or not), each possible

other tree has a distinguished leaf, and the trees have n 4+ k — 1 leaves in total, see Figure 8.11.

1
1
1
1
I
1
I
1
I
1
1
1
1
I
1
I
1
I
1
1
4 1
1
I
1
I
1
1
1
1
I
1
I
1
I
1
1
1
1
I

Figure 8.11: Example of our decomposition on a tree with n = 6 leaves labeled 0 into
k = 3 trees with n +k —1 = 8 leaves in total. On the left, the initial peeling tree where
the distinguished 1-leaf is displayed in orange as well as the branch between this leaf and the
root. After removing 1 on all labels of the orange branch (in the middle), we need to remove
the initial root (or cut just above), cut above the two vertices which get label 0 and contract
the father and sibling of the distinguished leaf into a (marked) vertex labeled 1. On the right,
the resulting sequence of three trees.
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This gives the following differential equation on ¥

T —-%
. __ =4 = -
63° — 8% <1 ./>

which is equivalent to Equation (8.6). Let us explain this equality:

e On the left, since a triangulation of the 1-gon has 3n — 4 edges, the function 6%* — 8% is the

generating function of triangulations with a boundary of length 1 given with an oriented edge.

e On the right, the first tree of our transformation is a tree which has #n leaves for some n; > 1
hence 3117 — 1 — 3 inner vertices and 411 — 4 vertices in total, one of them is distinguished which
gives the factor 4T°* — 4%.

e The factor 1/(1 —%*/x) gives the potential other trees (SEQ construction) which are marked

at a leaf.

The equation above can rewritten as ¥* — 2% = T*(3%°* — 4%))/x. By identifying the coefficients,
a straightforward computation gives Equation (8.7), which characterizes entry A002005 in Sloane

online encyclopedia for integer sequences.

8.3.3 Triangulations with one boundary

As in the case of quadrangulations, the transformation which we described above can be adapted
to triangulations with a boundary of perimeter p > 2. More precisely, we consider peeling trees
of triangulations with a boundary of length p > 2 and one distinguished loop that we described in
Section 8.3.1. Such peeling trees have a distinguished leaf with label 1 coming from the distinguished
loop for which we recall its local rule: if its father has label £, its sibling has label £ — 1. We can
apply now our “last car’-transformation on the branch between this leaf labeled 1 and the root of the
peeling tree. The only difference with that of peeling trees starting from 1 is that we do not remove
the root of the trees starting from p > 2. Our last car decomposition of a peeling tree starting from
p with n leaves labeled 0 produces then a sequence of k peeling trees of triangulations for some k > 0
such that:

e the first tree is marked at a vertex (leaf or not)

e all eventual following trees have a marked leaf

e all but the last tree have a root label 1 and the last tree has a root labeled p —1 > 1
e the trees have n 4+ k — 1 leaves labeled 0 in total.

Conversely, given the sequence, we can recover the initial tree by stacking and gluing the trees and
adding 1 in the appropriate branch so that it is really a bijection, which gives Equation (8.9), which
we recall here:

4 -
6T* — 2ya, T — 6T + y3, (yT) = %T' (%) +y (4T —3T —ya,T) .



8.3. “LAST CAR” DECOMPOSITION OF TRIANGULATIONS 251

where T® = xd,T. Let us explain this equation in more details:

e The left-hand side enumerates triangulations with a boundary of length p > 2 and one dis-
tinguished loop with a weight x per vertex and y per boundary length. If the loop is on the
boundary, then we can map the triangulation to a triangulation with perimeter p —1 and a
distinguished vertex on the boundary where the initial loop is attached. Therefore, this type
of triangulation are enumerated by the factor yd,(yT). When the loop is not on the boundary,
then this edge is really an edge of an inner triangle so that we can perform the converse of the
root transform and obtain a distinguished oriented edge. Since there are 3n — p — 3 (unori-
ented) edges in a triangulation with n vertices and boundary of length p, these are enumerated
by the term 6T® — 2yd, T — 6T, which explained the left-hand side term.

e On the right, the first term corresponds to the case where our transformation gives more than
a tree (and in particular, the first and the last tree are not the same), including the case of
triangulation with boundary 1 where the last tree after transformation is the tree with one
vertex labeled 0. The last tree is in that case a tree with root label p —1 and a marked leaf,
which corresponds to the factor yT®. The first tree has a distinguished vertex and its root has
label 1, hence the factor 4T* — 4%, and the division by (1 — T*/x) stands for the other possible
cuts. There is no factor 2 in that case since the discovery of the marked loop can be indifferently

put left or right in the tree, but a factor 1/x to obtain the appropriate total number of leaves.

e The last term corresponds to the triangulations where we get only one tree when applying our
transformation on its peeling tree. In that case the resulting tree has n — 1 leaves, a root labeled
p—1hence 3(n —1) — (p — 1) — 3 inner vertices in the tree and 4(n —1) —3 — (p — 1) vertices
in total, one of them is distinguished explaining the factor 4T* — 3T — y9,T.

8.3.4 Triangulations with two boundaries

As in the case of quadrangulations, we are also able to enumerate triangulations with two boundaries.
Considering the second boundary as a distinguished face, we can do the same decomposition according
to the discovery of this different face. The discovery of this distinguished face corresponds in the
peeling tree to a transition from a vertex labeled r > 1 to a vertex labeled r 4+ g — 2 since we consider
here the perimeter (and not the half-perimeter).

We introduce for this purpose B,(lp ") the number of peeling trees of triangulations with 7 leaves 0 and
a distinguished leaf with label r and boundary of length p. When r = 0, we set B,(f 0 = (n+ 1)T,(lp)

when n > 1. The last car decomposition leads to the following recursive equations:
n—1
Vr>1,¥p>1,Yn>1, BY" =pmar-thrh oy gl gl
k=0
This equation are very similar to Equation (8.11). We only need to adapt the initial conditions in the

B,(lp ’0)’8. Given the B,(f’r)’s, we are now able to deduce the number T,,(lp ) of rooted triangulations with
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n vertices and with a boundary of length p and a distinguished face of length g from the equation

=

Lr+ J+1

(pr) p(r+q-2)
Bk Tn—k 4

N

(7) 2n—gn—
Tnp'q — Z
r=1 k

I
o

which is the analog of Equation (8.10) for quadrangulations with two boundaries. The only changes
are that we replaced the initial conditions and adjusted the bounds of the sums. Notice that we
already enumerated the the triangulation with one boundary and a distinguished loop (counted by
the TSP"’s) by 6T* — 249, T — 6T + yd, (yT) the left-hand side of (8.9).

8.4 Comments and perspectives

We mention here a few possible developments of this work.

Other models of maps. We applied here a “last car decomposition” in the case of quadrangulations
and triangulations with zero, one or two boundaries. We believe that this decomposition can be
adapted for other models of planar maps such as p-angulations (at least for p even) or (bipartite)

maps with Boltzmann weights.

Solving equations. We gave here new equations which characterize the enumeration of a certain
type of maps. Some of them were already explicitly enumerated (quadrangulations with zero, one or
two boundaries, triangulations without boundary...) so it can be easily checked that their generating
functions satisfy our equations. But we may wonder if we can recover those coefficients directly by
solving our equations explicitly. This is also a relevant question in the cases when no explicit formula

is known: can we extract from these equations explicit formulas for the coefficients?

Decomposition of maps. Here we gave a decomposition of the peeling tree into smaller peeling trees,
i.e. peeling trees of “smaller” maps. We do not know if this decomposition can be easily interpreted
on the maps. In particular, we choose a specific way to reroot the maps in the peeling exploration,
but there are many ways to do it by choosing different peeling algorithm. There may be a choice of
peeling algorithm for which the transformation on the maps is “natural”. We have no hope that it is

local but it may have similarities with the cut and slice operation of Louf [134].



Bibliography

[1] R. ABRAHAM AND J.-F. DELMAS, Local limits of conditioned galton-watson trees: the conden-
sation case, Electronic Journal of Probability, 56 (2014), pp. Article-56.

[2] ——, Local limits of conditioned Galton-Watson trees: the infinite spine case, Electron. J.
Probab., 19 (2014), p. 19 pp.

[3] L. ADDARIO-BERRY, A probabilistic approach to block sizes in random maps, ALEA Lat. Am.
J. Probab. Math. Stat, 16 (2019), pp. 1-13.

[4] L. ADDARIO-BERRY, N. BROUTIN, C. GOLDSCHMIDT, AND G. MIERMONT, The scaling limit
of the minimum spanning tree of the complete graph, (2013).

[5] M. AIZENMAN AND D. J. BARSKY, Sharpness of the phase transition in percolation models,
Communications in Mathematical Physics, 108 (1987), pp. 489-526.

6] D. ALpous, The random walk construction of uniform spanning trees and uniform labelled
trees, STAM J. Discrete Math., 3 (1990), pp. 450-465.

[7] ——, Asymptotic fringe distributions for general families of random trees, Ann. Appl. Probab.,
1 (1991), pp. 228-266.

[8] ——, The continuum random tree. I, Ann. Probab., 19 (1991), pp. 1-28.
9] ——, The continuum random tree 111, Ann. Probab., 21 (1993), pp. 248-289.

——, Brownian excursions, critical random graphs and the multiplicative coalescent, e An-
10 B ) ' itical d h d th ltiplicats l The A

nals of Probability, (1997), pp. 812-854.

[11] ——, The percolation process on a tree where infinite clusters are frozen, in Mathematical
Proceedings of the Cambridge Philosophical Society, vol. 128, 2000, pp. 465—477.

[12] D. ALpous, A. CoNTAT, N. CURIEN, AND O. HENARD, Parking on the infinite binary tree,
Probability Theory and Related Fields, (2023), pp. 1-24.

253



254

[13]

[14]

[15]

[16]

[20]

[21]

[24]

BIBLIOGRAPHY

D. Arpous, G. MIERMONT, AND J. PITMAN, Brownian bridge asymptotics for random p-
mappings, Electronic Journal of Probability, 9 (2004), pp. 37-56.

D. ALpous AND J. M. STEELE, The objective method: probabilistic combinatorial optimization
and local weak convergence, in Probability on discrete structures, vol. 110 of Encyclopaedia
Math. Sci., Springer, Berlin, 2004, pp. 1-72.

O. ANGEL, Growth and percolation on the uniform infinite planar triangulation, Geom. Funct.
Anal., 13 (2003), pp. 935-974.

O. ANGEL AND O. SCHRAMM, Uniform infinite planar triangulation, Comm. Math. Phys., 241
(2003), pp. 191-213.

I. ARMENDARIZ, Dual fragmentation and multiplicative coagulation, Unpublished preprint,
(2005).

I. ARMENDARIZ AND M. LoOULAKIS, Conditional distribution of heavy tailed random wvari-

ables on large deviations of their sum, Stochastic processes and their applications, 121 (2011),
pp. 1138-1147.

J. ARONSON, A. FRIEZE, AND B. G. PITTEL, Maximum matchings in sparse random graphs:
Karp-sipser revisited, Random Structures & Algorithms, 12 (1998), pp. 111-177.

S. ASMUSSEN, S. Foss, AND D. KORSHUNOV, Asymptotics for sums of random variables with
local subexponential behaviour, Journal of Theoretical Probability, 16 (2003), pp. 489-518.

R. BaHL, P. BARNET, T. JOHNSON, AND M. JUNGE, Diffusion-limited annihilating systems
and the increasing convez order, Electronic Journal of Probability, 27 (2022), pp. 1-19.

R. BAHL, P. BARNET, AND M. JUNGE, Parking on supercritical Galton- Watson trees, ALEA,
18 (2021), pp. 1801-1815.

C. BANDERIER, P. FLAJOLET, G. SCHAEFFER, AND M. SORIA, Random maps, coalescing sad-
dles, singularity analysis, and Airy phenomena, Random Structures & Algorithms, 19 (2001),
pp- 194-246.

M. BAUER AND O. GOLINELLI, Core percolation in random graphs: a critical phenomena anal-
ysis, The European Physical Journal B-Condensed Matter and Complex Systems, 24 (2001),
pp- 339-352.

M. BAUER AND O. GOLINELLI, Random incidence matrices: moments of the spectral density,
Journal of Statistical Physics, 103 (2001), pp. 301-337.

I. BENJAMINI, O. SCHRAMM, ET AL., Percolation beyond Z°, many questions and a few an-
swers, Electronic Communications in Probability, 1 (1996), pp. 71-82.



BIBLIOGRAPHY 255

[27]

28]

[29]

[30]

[31]

32]

[33]

[34]

[35]

[36]

[40]

[41]

P. BERMOLEN, M. JONCKHEERE, AND P. MOYAL, The jamming constant of uniform random
graphs, Stochastic Processes and their Applications, 127 (2017), pp. 2138-2178.

J. BERTOIN, Lévy processes, vol. 121 of Cambridge Tracts in Mathematics, Cambridge Univer-
sity Press, Cambridge, 1996.

——, Burning cars in a parking lot, Communications in mathematical physics, 306 (2011),
pp. 261-290.

———, Markovian growth-fragmentation processes, Bernoulli, 23 (2017), pp. 1082-1101.

J. BERTOIN, T. BUuDD, N. CURIEN, AND [. KORTCHEMSKI, Martingales in self-similar growth-

fragmentations and their connections with random planar maps, Probability Theory and Re-

lated Fields, 172 (2018), pp. 663-724.

J. BeErTOIN, N. CURIEN, AND I. KORTCHEMSKI, Random planar maps and growth-
fragmentations, Ann. Probab., 46 (2018), pp. 207-260.

——, On conditioning a self-similar growth-fragmentation by its intrinsic area, arXiv preprint
arXiv:1908.07830, (2019).

J. BERTOIN, N. CURIEN, AND A. RIERA, Scaling limits for branching process with integers

types and their conditional versions, (in preparation).

J. BERTOIN AND G. MIERMONT, Asymptotics in Knuth’s parking problem for caravans, Ran-
dom Structures & Algorithms, 29 (2006), pp. 38-55.

S. BHAMIDI, A. BUDHIRAJA, AND X. WANG, The augmented multiplicative coalescent, bounded
size rules and critical dynamics of random graphs, Probability Theory and Related Fields, 160
(2014), pp. 733-796.

S. BHAMIDI, R. VAN DER HOFSTAD, AND S. SEN, The multiplicative coalescent, inhomogeneous

continuum random trees, and new universality classes for critical random graphs, Probability

Theory and Related Fields, 170 (2018), pp. 387-474.

N. BLuM, A new approach to maximum matching in general graphs, in Automata, Languages
and Programming: 17th International Colloquium Warwick University, England, July 1620,
1990 Proceedings 17, Springer, 1990, pp. 586-597.

T. BOHMAN AND A. FRIEZE, Karp—Sipser on random graphs with a fixed degree sequence,
Combinatorics, Probability and Computing, 20 (2011), pp. 721-741.

B. BOLLOBAS, A probabilistic proof of an asymptotic formula for the number of labelled reqular
graphs, European J. Combin., 1 (1980), pp. 311-316.

B. BOLLOBAS AND B. BELA, Random graphs, no. 73, Cambridge university press, 2001.



256

[42]

[43]

[44]

BIBLIOGRAPHY

B. BOTTCHER, R. SCHILLING, AND J. WANG, Lévy matters. iii, Lecture Notes in Mathematics,
2099 (2013), pp. 71-80.

M. BOUSQUET-MELOU, Rational and algebraic series in combinatorial enumeration, Proceed-
ings of the ICM 2006 (arXiv:0805.0588), (2008).

M. BOUSQUET-MELOU AND A. JEHANNE, Polynomial equations with one catalytic variable,
algebraic series and map enumeration, J. Combin. Theory Ser. B, 96 (2006), pp. 623-672.

E. BrEziN, C. ITYKSON, G. PARISI, AND J.-B. ZUBER, Planar diagrams, Comm. Math.
Phys., (1978).

G. BRIGHTWELL, S. JANSON, AND M. LuczAKk, The greedy independent set in a random graph
with given degrees, Random Structures & Algorithms, 51 (2017), pp. 565-586.

V. BRITIKOV, Asymptotic number of forests from unrooted trees, Mathematical notes of the
Academy of Sciences of the USSR, 43 (1988), pp. 387-394.

A. Z. BRODER, Generating random spanning trees, in FOCS, vol. 89, Citeseer, 1989, pp. 442—
447.

N. BROUTIN, T. DUQUESNE, AND M. WANG, Limits of multiplicative inhomogeneous random
graphs and Lévy trees, arXiv preprint arXiv:1804.05871, (2018).

N. BROUTIN AND J.-F. MARCKERT, A new encoding of coalescent processes: applications
to the additive and multiplicative cases, Probability Theory and Related Fields, 166 (2016),
pp. 515-552.

T. BuDpD, The peeling process of infinite boltzmann planar maps, The Electronic Journal of
Combinatorics, 23 (2016), pp. P1-28.

T. BubpziNski, A. CONTAT, AND N. CURIEN, The critical Karp—Sipser core of random graphs,
arXiv preprint arXiv:2212.02463, (2022).

S. BUTLER, R. GRAHAM, AND C. H. YAN, Parking distributions on trees, European Journal
of Combinatorics, 65 (2017), pp. 168-185.

M. CAMARRI AND J. PITMAN, Limit distributions and random trees derived from the birthday
problem with unequal probabilities, Electronic Journal of Probability, 5 (2000), pp. 1-18.

G. CANNIZZARO AND M. HAIRER, The brownian castle, Communications on Pure and Applied
Mathematics, (2020).

S. R. CARRELL AND G. CHAPUY, Simple recurrence formulas to count maps on orientable
surfaces, Journal of Combinatorial Theory, Series A, 133 (2015), pp. 58-75.



BIBLIOGRAPHY 257

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

P. CHASSAING AND G. LOUCHARD, Phase transition for parking blocks, Brownian excursion
and coalescence, Random Structures & Algorithms, 21 (2002), pp. 76-119.

L. CHAUMONT AND R. Liu, Coding multitype forests: application to the law of the total pop-
ulation of branching forests, Transactions of the American Mathematical Society, 368 (2016),
pp. 2723-2747.

L. CHEN, Enumeration of fully parked trees, arXiv preprint arXiv:2103.15770, (2021).

Q. CHEN AND C. GOLDSCHMIDT, Parking on a random rooted plane tree, Bernoulli, 27 (2021),
pp- 93-106.

X. CHEN, V. DAGARD, B. DERRIDA, Y. Hu, M. LIFSHITS, AND Z. SHI, The Derrida—Retauz
conjecture on recursive models, arXiv preprint arXiv:1907.01601, (2019).

G. CONCHON-KERJAN AND C. GOLDSCHMIDT, The stable graph: the metric space scaling limit
of a critical random graph with iid power-law degrees, arXiv preprint arXiv:2002.04954, (2020).

A. CONTAT, Last car decomposition of planar maps, arXiv preprint arXiv:2205.10285, (2022).

— Sharpness of the phase transition for parking on random trees, Random Structures &

Algorithms, 61 (2022), pp. 84-100.

—, Surprising identities for the greedy independent set on Cayley trees, Journal of Applied
Probability, 59 (2022), pp. 1042-1058.

———, Parking on random trees via the configuration model, (In Preparation).

A. ConTAT AND N. CURIEN, Parking on Cayley trees € Frozen Erdds-Rényi, arXiv preprint
arXiv:2107.02116, (2021).

R. Corl AND G. SCHAEFFER, Description trees and Tutte formulas, Theoretical Computer
Science, 292 (2003), pp. 165-183.

R. Cor1 AND B. VAUQUELIN, Planar maps are well labeled trees, Canad. J. Math., 33 (1981),
pp. 1023-1042.

S. COSTE AND J. SALEZ, Emergence of extended states at zero in the spectrum of sparse random
graphs, The Annals of Probability, 49 (2021), pp. 2012-2030.

E. CRANE, N. FREEMAN, AND B. TOTH, Cluster growth in the dynamical Erdés-Rényi process
with forest fires, Electronic Journal of Probability, 20 (2015).

N. CURIEN, Peeling random planar maps, Saint-Flour course 2019, available at https://wuw.

imo.universite-paris-saclay.fr/"curien/.


https://www.imo.universite-paris-saclay.fr/~curien/
https://www.imo.universite-paris-saclay.fr/~curien/

258

73]

[74]

[75]

[83]

[84]

[85]

[36]

[87]

[83]

BIBLIOGRAPHY
——, Random walks and random graphs, a few topics, available at https://www.imo.
universite-paris-saclay.fr/"nicolas.curien/enseignement.html.

——, Stationary random graphs, available at https://www.imo.universite-paris-saclay.

fr/"nicolas.curien/enseignement.html.

N. CUrIEN AND O. HENARD, The phase transition for parking on Galton-Watson trees,
arXiv:1912.06012, (2019).

N. CURIEN AND I. KORTCHEMSKI, Random non-crossing plane configurations: a conditioned
Galton-Watson tree approach, Random Structures Algorithms, 45 (2014), pp. 236-260.

A. DEMBO AND O. ZEITOUNI, Large deviations techniques and applications, Jones and Bartlett
Publishers, Boston, MA, 1993.

DISNEY, Let it go (frozen).

E. DucHI, V. GUERRINI, S. RINALDI, AND G. SCHAEFFER, Fighting fish: enumerative prop-
erties, Sém. Lothar. Combin. B, 78 (2017), p. 2017.

H. DuMINIL-CoOPIN, A. RAOUFI, AND V. TASSION, Sharp phase transition for the random-
cluster and Potts models via decision trees, Annals of Mathematics, 189 (2019), pp. 75-99.

M. DYER, A. FRIEZE, AND B. PITTEL, The average performance of the greedy matching
algorithm, The Annals of Applied Probability, (1993), pp. 526-552.

J. EDMONDS, Paths, trees, and flowers, Canadian Journal of mathematics, 17 (1965), pp. 449—
467.

P. ERDOs AND A. RENYI, On random graphs I, Publ. math. debrecen, 6 (1959), p. 18.

——, On the evolution of random graphs, Publ. Math. Inst. Hung. Acad. Sci, 5 (1960), pp. 17—
60.

S. N. ETHiER AND T. G. KuURTZ, Markov processes: characterization and convergence,
vol. 282, John Wiley & Sons, 2009.

W. FANG, Planar triangulations, bridgeless planar maps and tamari intervals, European Jour-
nal of Combinatorics, 70 (2018), pp. 75-91.

—, Bijective link between Chapoton’s new intervals and bipartite planar maps, European
Journal of Combinatorics, 97 (2021), p. 103382.

L. FEDERICO, R. VAN DER HOFsTAD, F. DEN HOLLANDER, AND T. HULSHOF, Ezpansion

of percolation critical points for hamming graphs, Combinatorics, Probability and Computing,
29 (2020), pp. 68-100.


https://www.imo.universite-paris-saclay.fr/~nicolas.curien/enseignement.html
https://www.imo.universite-paris-saclay.fr/~nicolas.curien/enseignement.html
https://www.imo.universite-paris-saclay.fr/~nicolas.curien/enseignement.html
https://www.imo.universite-paris-saclay.fr/~nicolas.curien/enseignement.html

BIBLIOGRAPHY 259

[89]

[90]

[91]

[100]

[101]

[102]

[103]

[104]

V. FERAY AND I. KORTCHEMSKI, The geometry of random minimal factorizations of a long
cycle via biconditioned bitype random trees, Annales Henri Lebesgue, 1 (2018), pp. 149-226.

S. R. FINCH, Mathematical constants, Cambridge university press, 2003.

P. FrajoLeT, D. E. KNUTH, AND B. PITTEL, The first cycles in an evolving graph, Discrete
Mathematics, 75 (1989), pp. 167-215.

P. FLAJOLET AND R. SEDGEWICK, Analytic combinatorics, Cambridge University Press, Cam-
bridge, 2009.

P. J. FLORY, Intramolecular reaction between neighboring substituents of vinyl polymers, Jour-
nal of the American Chemical Society, 61 (1939), pp. 1518-1521.

A. FRIEZE AND M. KARONSKI, Introduction to random graphs, Cambridge University Press,
2016.

A. FRrIEZE AND C. MCDIARMID, Algorithmic theory of random graphs, Random Structures &
Algorithms, 10 (1997), pp. 5-42.

H. N. GaBow AND R. E. TARJAN, Faster scaling algorithms for general graph matching
problems, Journal of the ACM (JACM), 38 (1991), pp. 815-853.

A. GEORGAKOPOULOS AND S. WAGNER, Limits of subcritical random graphs and random
graphs with excluded minors, arXiv preprint arXiv:1512.03572, (2015).

E. N. GILBERT, Random graphs, The Annals of Mathematical Statistics, 30 (1959), pp. 1141—
1144.

C. GoLDSCHMIDT AND E. KREACIC, The spread of fire on a random multigraph, Advances in
Applied Probability, 51 (2019), pp. 1-40.

C. GOLDSCHMIDT AND M. PRZYKUCKI, Parking on a random tree, Combinatorics, Probability
and Computing, 28 (2019), pp. 23-45.

I. P. GOULDEN AND D. M. JACKSON, The KP hierarchy, branched covers, and triangulations,
Adv. Math., 219 (2008), pp. 932-951.

B. HAaAs AND G. MIERMONT, Scaling limits of Markov branching trees, with applications to
Galton-Watson and random unordered trees, Ann. of Probab., 40 (2012), pp. 2589-2666.

N. IKEDA AND S. WATANABE, Stochastic differential equations and diffusion processes, Else-
vier, 2014.

J. JAacop AND A. N. SHIRYAEV, Limit theorems for stochastic processes, vol. 288 of
Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical

Sciences], Springer-Verlag, Berlin, second ed., 2003.



260

[105]

106

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119)]

[120]

BIBLIOGRAPHY
S. JANSON, Simply generated trees, conditioned Galton—Watson trees, random allocations and
condensation., Probability Surveys, 9 (2012), pp. 103-252.

— Asymptotic normality of fringe subtrees and additive functionals in conditioned Galton—
Watson trees, Random Structures & Algorithms, 48 (2016), pp. 57-101.

S. JansonN, D. E. KNuTH, T. Luczak, AND B. PITTEL, The birth of the giant component,
Random Structures & Algorithms, 4 (1993), pp. 233-358.

S. JANSON AND M. J. Luczak, A simple solution to the k-core problem, Random Structures
& Algorithms, 30 (2007), pp. 50-62.

—, Susceptibility in subcritical random graphs, Journal of mathematical physics, 49 (2008),
p- 125207.

M. JONCKHEERE AND M. SAENZ, Asymptotic optimality of degree-greedy discovering of inde-
pendent sets in configuration model graphs, Stochastic Processes and their Applications, 131
(2021), pp. 122-150.

O. D. JoNES, Runoff on rooted trees, 2018.

T. JONSSON AND S. O. STEFANSSON, Condensation in nongeneric trees, Journal of Statistical
Physics, 142 (2011), pp. 277-313.

A. JOSEPH, The component sizes of a critical random graph with given degree sequence, Annals
of Applied Probability, 24 (2014), pp. 2560-2594.

O. KALLENBERG, Foundations of Modern Probability, Springer, New York, second ed., 2002.

R. M. KARP, Reducibility among combinatorial problems, in Complexity of computer compu-
tations, Springer, 1972, pp. 85-103.

R. M. KARP AND M. SIPSER, Mazimum matching in sparse random graphs, in 22nd Annual
Symposium on Foundations of Computer Science (sfcs 1981), IEEE, 1981, pp. 364-375.

H. KESTEN, Subdiffusive behavior of random walk on a random cluster, Ann. Inst. H. Poincaré
Probab. Statist., 22 (1986), pp. 425-487.

W. KING AND C. YAN, Parking functions on directed graphs and some directed trees, arXiv
preprint arXiv:1905.12010, (2019).

W. KiING AND C. H. YAN, Prime parking functions on rooted trees, Journal of Combinatorial
Theory, Series A, 168 (2019), pp. 1-25.

D. Kiss, Frozen percolation in two dimensions, Probability Theory and Related Fields, 163
(2015), pp. 713-768.



BIBLIOGRAPHY 261

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

J. KOLLAR, Lectures on resolution of singularities (AM-166), Princeton University Press, 2009.

A. G. KONHEIM AND B. WEISs, An occupancy discipline and applications, STAM Journal on
Applied Mathematics, 14 (1966), pp. 1266-1274.

I. KORTCHEMSKI, Limit theorems for conditioned non-generic Galton—Watson trees, in Annales
de I'THP Probabilités et statistiques, vol. 51, 2015, pp. 489-511.

E. KREACIC, Some problems related to the Karp-Sipser algorithm on random graphs, PhD
thesis, University of Oxford, 2017.

M. KRIVELEVICH, T. MESZAROS, P. MICHAELI, AND C. SHIKHELMAN, Greedy mazimal in-
dependent sets via local limits, in 31st International Conference on Probabilistic, Combinatorial
and Asymptotic Methods for the Analysis of Algorithms, 2020.

T. G. KuUrTz, Solutions of ordinary differential equations as limits of pure jump markov pro-
cesses, Journal of applied Probability, 7 (1970), pp. 49-58.

H. J. KUSHNER, On the weak convergence of interpolated markov chains to a diffusion, The
annals of Probability, (1974), pp. 40-50.

M.-L. LACKNER AND A. PANHOLZER, Parking functions for mappings, Journal of Combina-
torial Theory, Series A, 142 (2016), pp. 1 — 28.

J.-F. LE GALL, Random trees and applications, Probability Surveys, (2005).

J.-F. LE GALL AND A. RIERA, Growth-fragmentation processes in Brownian motion indezxed
by the Brownian tree, Annals of Probability, 48 (2020), pp. 1742-1784.

T. M. LIGGETT, An invariance principle for conditioned sums of independent random variables,
Journal of Mathematics and Mechanics, 18 (1968), pp. 559-570.

V. Lvic, A playful note on spanning and surplus edges, arXiv preprint arXiv:1703.02574,
(2017).

—, The eternal multiplicative coalescent encoding via excursions of lévy-type processes,
Bernoulli, 25 (2019), pp. 2479-2507.

B. Lour, A new family of bijections for planar maps, Journal of Combinatorial Theory, Series
A, 168 (2019), pp. 374-395.

T. Luczak AND B. PirTEL, Components of random forests, Combinatorics, Probability and
Computing, 1 (1992), pp. 35-52.

T. Luczak, B. PITTEL, AND J. C. WIERMAN, The structure of a random graph at the point of
the phase transition, Transactions of the American Mathematical Society, 341 (1994), pp. 721—
748.



262

[137]

[138]

[139]

[140]

[141]

[142]

[143]

[144]

[145]

[146]

[147]

[148]

[149]

[150]

[151]
[152]

[153]

BIBLIOGRAPHY

R. Lyons AND Y. PERES, Probability on Trees and Networks, vol. 42 of Cambridge Series
in Statistical and Probabilistic Mathematics, Cambridge University Press, New York, 2016.
Available at https://rdlyons.pages.iu.edu/prbtree/prbtree.html.

J. MARTIN AND D. YEO, Critical random forests, Latin American Journal of Probability and
Mathematical Statistics, 15 (2018).

J. B. MARTIN AND B. RATH, Rigid representations of the multiplicative coalescent with linear
deletion, Electronic Journal of Probability, 22 (2017).

C. McDiarMID, Colouring random graphs., Annals of Operations Research, 1 (1984).

A. MEIR AND J. W. MOON, The expected node-independence number of random trees, in
Indagationes Mathematicae (Proceedings), vol. 76, Elsevier, 1973, pp. 335-341.

M. MoLLoy AND B. REED, A critical point for random graphs with a given degree sequence,
Random structures & algorithms, 6 (1995), pp. 161-180.

J. W. MooN, Counting labelled trees, (1970).

J. NEVEU, Arbres et processus de Galton-Watson, Ann. Inst. H. Poincaré Probab. Statist., 22
(1986), pp. 199-207.

E. PAGE, The distribution of vacancies on a line, Journal of the Royal Statistical Society:
Series B (Methodological), 21 (1959), pp. 364-374.

I. PALASTI, On some random space filling problems, Publ. Math. Inst. Hung. Acad. Sci, 5
(1960), pp. 353-359.

A. PANHOLZER, A combinatorial approach for discrete car parking on random labelled trees,
Journal of Combinatorial Theory, Series A, 173 (2020), p. 105233.

—, Parking function varieties for combinatorial tree models, Advances in Applied Mathe-
matics, 128 (2021), p. 102191.

J. PrrMAN, Coalescent random forests, Journal of Combinatorial Theory, Series A, 85 (1999),
pp. 165-193.

B. PiTTEL, J. SPENCER, AND N. WORMALD, Sudden emergence of a giantk-core in a random
graph, Journal of Combinatorial Theory, Series B, 67 (1996), pp. 111-151.

M. D. PLUMMER AND L. LOVASz, Matching theory, Elsevier, 1986.
B. RATH, Mean field frozen percolation, Journal of Statistical Physics, 137 (2009), pp. 459-499.

B. RATH AND B. TOTH, Erdds-Rényi random graphs+ forest fires= self-organized criticality,
Electronic Journal of Probability, 14 (2009), pp. 1290-1327.


https://rdlyons.pages.iu.edu/prbtree/prbtree.html

BIBLIOGRAPHY 263

[154] F. REMBART, M. WINKEL, ET AL., Recursive construction of continuum random trees, The
Annals of Probability, 46 (2018), pp. 2715-2748.

[155] A. RENYIL, On a one-dimensional problem concerning space-filling, Publ. Math. Inst. Hungar.
Acad. Sci., 3 (1958), pp. 109-127.

[156] ——, Some remarks on the theory of trees, Magyar Tud. Akad. Mat. Kutaté Int. Kézl, 4 (1959),
p- 12.

[157] R. ROSSIGNOL, Scaling limit of dynamical percolation on critical Erdés—Rényi random graphs,
The Annals of Probability, 49 (2021), pp. 322-399.

[158] J. SALEZ, Some implications of local weak convergence for sparse random graphs, PhD thesis,

Université Pierre et Marie Curie-Paris VI; Ecole Normale Supérieure de Paris ..., 2011.

[159] G. SCHAEFFER, Bijective census and random generation of Eulerian planar maps with pre-

scribed vertex degrees, Electronic Journal of Combinatorics, 4 (1997), p. 20.
[160] G. SCHAEFFER, Conjugaison d’arbres et cartes combinatoires aléatoires. PhD thesis, (1998).

[161] E. SCHERTZER, R. SUN, AND J. M. SWART, The Brownian web, the Brownian net, and their

universality, Advances in disordered systems, random processes and some applications, (2017),
pp. 270-368.

[162] B. STUFLER, The continuum random tree is the scaling limit of unlabelled unrooted trees, arXiv
preprint arXiv:1412.6333, (2014).

[163] ——, Local limits of large Galton—Watson trees rerooted at a random vertex, in Annales de
I'Institut Henri Poincaré, Probabilités et Statistiques, vol. 55, Institut Henri Poincaré, 2019,
pp. 155-183.

[164] G. T HOOFT, A planar diagram theory for strong interactions., Nuclear Physics B, 72 (1974),
pp. 461-473.

[165] W. T. TUTTE, A census of Hamiltonian polygons, Canad. J. Math., 14 (1962), pp. 402-417.

[166] ——, A census of planar triangulations, Canad. J. Math., 14 (1962), pp. 21-38.
[167] ——, A census of slicings, Canad. J. Math., 14 (1962), pp. 708-722.
[168] ——, A census of planar maps, Canad. J. Math., 15 (1963), pp. 249-271.

[169] G. URIBE BRAVO, Markovian bridges, Brownian excursions, and stochastic fragmentation and
coalescence, PhD thesis, UNAM, (2007).

[170] R. VAN DER HOFSTAD, Random Graphs and Complex Networks. Vol. II, available at https:

//www.win.tue.nl/ “rhofstad/NotesRGCN.html, preliminary version.


https://www.win.tue.nl/~rhofstad/NotesRGCN.html
https://www.win.tue.nl/~rhofstad/NotesRGCN.html

264 BIBLIOGRAPHY

[171] V. V. VAZIRANI, A theory of alternating paths and blossoms for proving correctness of the
O(We) general graph mazimum matching algorithm, Combinatorica, 14 (1994), pp. 71-1009.

[172] Y. WATABIKI, Construction of non-critical string field theory by transfer matriz formalism in
dynamical triangulation, Nuclear Phys. B, 441 (1995), pp. 119-163.

[173] N. C. WORMALD, Differential equations for random processes and random graphs, The annals
of applied probability, (1995), pp. 1217-1235.

[174] ——, The differential equation method for random graph processes and greedy algorithms, Lec-
tures on approximation and randomized algorithms, 73 (1999), pp. 0943-05073.

[175] M. X1a0 AND H. NacamocHi, Confining sets and avoiding bottleneck cases: A simple mawi-
mum independent set algorithm in degree-3 graphs, Theoretical Computer Science, 469 (2013),
pp- 92-104.

[176] ——, Ezact algorithms for mazimum independent set, Information and Computation, 255
(2017), pp. 126-146.

[177] V. M. ZOLOTAREV, One-dimensional Stable Distributions, vol. 65, American Mathematical

Society, translations of mathematical monographs ed., 1986.



	8fc13d59-7cec-43af-a2cf-789fae2aca46.pdf
	Introduction
	Arbres et graphes aléatoires
	Parking statique sur des graphes
	Parking dynamique sur des arbres enracinés
	Parking et cartes planaires

	I Parking statique sur des graphes
	The greedy independent set on Cayley trees
	Introduction
	Greedy independent sets and bicolored trees
	Markovian explorations of a rooted tree
	Markovian construction of the greedy independent set

	The critical Karp–Sipser core of random graphs
	Introduction
	Karp–Sipser exploration of the configuration model
	Phase transition via fluid limit of the Markov chain
	Analysis of the critical case
	Comments


	II Parking dynamique sur des arbres
	Transition de phase via la limite locale
	Sharpness of the phase transition for parking
	Introduction
	Phase transition and fringe subtrees
	Exponential bounds for the parking process
	Application to the size of the connected components

	Parking on Cayley trees & Frozen Erdos–Rényi
	I Discrete constructions
	Warmup
	Coupling of parking on Cayley trees with the frozen Erdos–Rényi
	Free forest property
	Enumerative consequences
	Geometry of parked trees
	II  Scaling limits
	The frozen multiplicative coalescent
	Markovian properties of the freezer and the flux
	III  Comments and perspectives
	Links with planar maps and growth-fragmentation trees
	Back to Erdos–Rényi
	Extension of parking process

	Parking on the infinite binary tree
	Introduction
	Background
	Decomposition into fully-parked components
	Enumeration of fully parked trees
	Probabilistic consequences
	Extensions and comments

	Last Car Decomposition of Planar Maps
	Introduction
	``Last Car" decomposition of quadrangulations
	``Last Car" decomposition of triangulations
	Comments and perspectives




