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Preface

The research presented in this thesis results from a long history of passion for sciences and
music, and a strong desire to work in their interdisciplinary field. In high school, I already
knew that I wanted to enroll in the ATIAM1 (Acoustique, Traitement du signal et Informatique
Appliqués à la Musique, i.e., sciences applied to music) Master’s program coordinated and
housed at IRCAM2, the Institute for Research and Coordination Acoustics/Music, which I did
upon graduation from the IOGS3 (Institut d’Optique Graduate School).

This is during the course of the ATIAM mandatory internship that I first discovered and got
familiar with general music processing and the specific audio alignment task as Arshia Cont
and Philippe Cuvillier gave me the opportunity to work on their score following system,
Antescofo4. Ever since, the open challenges and the numerous and various applications offered
by the alignment task have kept captivating me.

As I was willing to experience a journey within the academic field, I applied for the voice-
related PhD position proposed by Axel Roebel from IRCAM’s Analysis/Synthesis team, in the
context of a new ANR (Agence Nationale de la Recherche) project. Entitled ARS5, this project
deals with the Analysis and tRansformation of singing Style and, to this aim, the development
of alignment algorithms dedicated to voice − and not music as I used to at Antescofo − were
necessary.

This is the story the present document covers. This journey began on January 20th, 2020
and shall end on June, 30th 2023. The thesis has been defended on July, 7th 2023 at Ircam6.

This work has been fully funded by the French National Research Agency (ANR) project
ARS (ANR-19-CE38-0001-01) and has also benefited from IRCAM’s UPI “ISiS Voices” .

1https://www.atiam.ircam.fr/
2https://www.ircam.fr/
3https://www.institutoptique.fr/
4https://www.metronautapp.com/fr
5https://ars.ircam.fr/
6https://www.youtube.com/watch?v=O5RWUl_vZ9M&ab_channel=Ircam
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Abstract

To listen, to respond, to make coincide, to coordinate, to adjust, to follow, to adapt, to be
in unison, to synchronize, to align... The rich vocabulary dedicated to the correspondence of
human activities shows the importance of their temporal organization. Human communication,
multi-modal by nature, is fully concerned by this problematic since there exists a semantic
gap between oral locutions and their symbolic sequences: how to interpret a written message
without the vocal intonation? what performative style beyond a fixed musical score? This
thesis proposes to uncover the complex underlying relationships between the audio and symbolic
domains in order to reduce this gap through the fine study of the inherent temporality contained
in voice recordings. The voice alignment task lies at the core of this objective, as it aims
to determine the temporal occurrence of symbols that are assumed to be present in a voice
signal. This work notably focuses on the development of an acoustic model, ADAGIO, capable
of estimating such time-symbol links. Recent progress in deep learning have led to implement
ADAGIO as a deep neural network in a powerful generic formalism: the “Connectionist Temporal
Classification” (CTC). However, the great flexibility offered by CTC is undermined by its
intrinsic lack of guarantees for temporally accurate predictions. Therefore, the key contributions
of this research consist in reinforcing CTC with additional temporal constraints to improve the
quality of the inferred alignments. To do so, three ancillary tasks of (1) spectral content
reconstruction; (2) audio structure propagation; and (3) guided monotony are introduced and
induce a positive impact on the alignment between voices, texts, and notes. Then, ADAGIO
contributes to many practical applications via collaborations such as concatenative speech
synthesis or the study of expressive production strategies at play for both social attitudes
in speech and singing style in musical performances.
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Résumé

S’écouter, se répondre, faire se coïncider, se coordonner, s’accorder, se suivre, s’adapter, être à
l’unisson, se synchroniser, s’aligner... Le riche vocabulaire dédié à la mise en correspondance
dans le temps des activités humaines montre l’importance que revêt leur organisation temporelle.
La communication humaine, multi-modale par nature, est pleinement concernée par cette
problématique puisqu’il existe un écart sémantique entre les locutions orales et leurs séquences
symboliques : comment bien interpréter un message écrit sans l’intonation vocale ? quel style
performatif au delà d’une partition musicale figée ? Cette thèse se propose de révéler et expliquer
les complexes relations entre les domaines audio et symbolique afin de réduire cet écart grâce
à l’étude fine de l’inhérente temporalité contenue dans les enregistrements vocaux. Au coeur
de cet objectif, se trouve la tâche d’alignement de voix qui vise à déterminer l’occurrence
temporelle de symboles supposés présents dans un signal vocal. Ces travaux s’intéressent tout
particulièrement au développement d’un modèle acoustique, ADAGIO, capable d’estimer de
tels liens temps-symboles. Les récents progrès en apprentissage profond amènent à implémenter
ADAGIO sous la forme d’un réseau de neurones profond dans un puissant formalisme générique :
la “Classification Temporelle Connectioniste” (CTC). Cependant, la grande flexibilité offerte par
la CTC est mise en défaut par son absence intrinsèque de garanties de prédictions temporellement
précises. Les contributions clefs de cette recherche visent à renforcer la CTC par des contraintes
temporelles supplémentaires pour améliorer la qualité des alignements déduits. Pour cela, trois
tâches annexes de (1) reconstruction du contenu spectral, (2) propagation de la structure audio,
et (3) monotonie guidée sont introduites et induisent un impact positif sur l’alignement entre
voix, textes, et notes. Dès lors, ADAGIO contribue à de nombreuses applications pratiques au
travers de collaborations telles que la synthèse vocale concaténative ou l’étude des stratégies de
production expressives en jeu tant pour les attitudes sociales dans la parole que pour le style
de chant dans des performances musicales.
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Chapter 1
Introduction

“If you knew Time as well as I do,” said the Hatter, “you
wouldn’t talk about wasting it.”

The Hatter in Alice’s Adventures in Wonderland
− Lewis Carroll

�

Time.
A name, a concept, a notion so common and yet so disconcerting.
Not only has time obsessed artists, philosophers, or even the common, ordinary human

sensitive to, concerned by, or simply aware of the finitude of the human condition, but it has
also captivated scientists of various disciplines.

Representing time − whether objective (“physical”) or subjective (“lived”) − has especially
stimulated many minds. It is a recurrent source of inspiration in arts, maybe as a necessity
to express its omnipresence and the lack of means to control it. Because of its absence of any
concrete form, time has been portrayed through common related objects (e.g., hourglass or
clocks) by painters or embodied in characters by writers, as shown in Figure 1.1, often dealing
with the underlying anguish of time flying and of the fleeting nature of life and memory.

The question of time representations is also of highest importance for scientists eager to
study the evolution of physical phenomena − as most physical properties are not static but
rather dynamic − and for general ordering between events. Such objectives have led to define a
reference for time measurements, the second, and incited to gather knowledge about time itself.

14



15

Figure 1.1: Time representations in arts.

The probably never-ending quest for the deep understanding of time has repeatedly revealed
its special nature. Tracing back its history, questioning its origin in astrophysics, trying to
model its evolution or report on its impacts on physical observations with mathematical laws
− time was shown to be, and still remains, an intriguing concept full of secrets.

Indeed, among the four dimensions humans are familiar with − three spatial coordinates,
usually denoted with the Cartesian (x, y, z) or Polar (r, θ, φ) coordinate systems, and time t
−, time is the only dimension that cannot be “touched”, crossed forward and backward, but
rather that humans inexorably experience. The noticeable theories of Special Relativity and
General Relativity, focusing on time-space relationships, demonstrate that time measurements
are not even universal but are subject to the quite counter-intuitive time dilation effect such
that time passes at different rates for two clocks (observers) in relative motion or submitted
to different gravitational potentials − perhaps as if the very essence of time could not be
universally determined but should rather maintain some level of inaccessibility.

This manuscript, far from considering time per se as a core topic of study, rather proposes
to investigate some of its implications, which are ubiquitous in one’s daily life. Many signals, as
observed quantities in the surrounding world, are non-stationary such that their observations
vary with the passing of time. Among the wide variety of existing signals with this property,
this thesis clearly focuses on characterizing audio observations − taking various practical shapes
between sounds, music, speech and singing, each with their intrinsic and fascinating diversity.

Notably, it is undeniable that time plays a crucial role in the way humans interact with one
another− and particularly through audio signals. The very vocabulary of verbal communication
but also of musical exchanges, is highly correlated with temporality: listening to, responding,
following, coordinating, adapting, synchronizing, aligning... A deeper look at this temporal
organization may thus reveal some of the characteristics at the heart of human communication.
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The means of communication are, for humans, fundamentally multi-modal in the sense that
the same idea can be expressed by several media and be represented in different formats. For
example, a primarily way of expression is the voice which allows one to talk or sing by emitting
sounds. But these locutions are very often associated with some underlying representation(s)
of symbolic nature. Reciting a poem, reading a story out loud, giving a speech or a lecture,
usually imply the existence of written texts. Similarly, performing a musical piece, acting in a
musical or singing in an opera may be dependent on music scores and music theory.

Yet, albeit originally characterizing the same message to communicate, transitions between
these diverse modalities are far from being straightforward. There are, indeed, for a single
symbolic text, many ways of expressing it through the voice which can lead, for example, to
humorous situations or misunderstandings when only a written message is available but the
voice, intonation and temporality are missing. In the same way, a music score, although fixed,
allows for multiple interpretations so that each concert and performance turns out to be unique.

The semantic gap precisely relates to these differences between two descriptions of a message
or concept in different representations − e.g., sounds, letters or symbols. In the very words
of Andreas Hein (2010), the semantic gap corresponds to “the difference in meaning between
constructs formed within different representation systems”.

In the context of the ARS project − Analysis and tRansformation of Singing style, ANR-
19-CE38-0001-03 (http://ars.ircam.fr) −, which has fully funded this thesis, one of the core
objective was to develop means that allow describing the singing style in popular music. Given
the multi-modal nature of music and especially recordings featuring singing voice, as mentioned,
the idea to investigate algorithms capable of jointly and comparatively manipulating symbolic
sound descriptions with arbitrary alphabets and audio recordings, saw the light of day.

By keeping these algorithms as generic and general as possible, they would not only allow
studying singing performances but also, in a way broader scope, allow bridging the semantic
gap − notably by exploiting the inherent temporality contained in voice signals.

1.1 Thesis research scope

Therefore, the scope of this thesis is to uncover the complex underlying temporal relationships
between several representations conveying communication messages, with a focus on voice
signals which, by nature, feature strong variations over time. The main research problem
at the core of this challenge is temporal voice alignment or synchronization. It is studied as a
goal for designing systems capable of revealing temporal information from voice data, and as a
means for the analysis and synthesis of voice signals and their intrinsic expressivity.

Concretely, the alignment task aims to determine the precise time positions of a symbolic
sequence, whose symbols are known to constitute the content of a given audio signal. The
problem requires an audio file and a symbolic sequence as inputs. Note that the alignment is
distinct from recognition, which consists in finding the symbols present in an audio signal.

http://ars.ircam.fr
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Deep Neural Networks (DNN) are worthy candidates to address the alignment problem as
they allow learning complex mapping functions between different domains (here, audio and
symbolic) entirely informed by data. To fully benefit from this data-driven approach, no task-
specific contextual information is provided besides the ones that can be directly inferred from
the inputs at disposal (i.e., voice signals and symbols).

A central objective is to develop an algorithm working for arbitrary symbol sets such as
characters, phonemes, or even music notes, that does not need any specific information about
the problem at stake. This way, the system can handle different languages, speakers, audio and
voice qualities (speech and singing), and ideally arbitrary audio length. The main idea in this
thesis is that the integration of general (i.e., non-task specific) temporal constraints directly in
the design and data modeling stage of DNNs must result in a better alignment accuracy, given
the primary importance of time in the processes discussed.

Addressing such a research problem requires to raise and tackle practical and/or research
questions. Three of them (and their corresponding sub-questions) are answered in this document.

Question 1 (Q1). Temporal voice alignment – what?

• What is the temporal alignment task in general and for voice?

• What kind of representations can be used to align voice data?

Question 2 (Q2). Temporal voice alignment – how?

• How to develop a system for the temporal alignment of voice?

• How to extract suitable temporal information from audio to reinforce alignment accuracy?

Question 3 (Q3). Temporal voice alignment – why?

• Why is temporal alignment of interest in various research communities?

• Why does temporal voice alignment lead to numerous research applications?

Q1 − what? is a practical question necessary to get familiar with the task addressed in this
thesis. Q2 − how? is the research question that aims at investigating ways to achieve temporal
voice alignment. Q3 − why? is another practical question thought to better understand the
need for temporal alignment, all in all giving motivation based on examples demonstrating the
potential of such algorithms.
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1.2 Summary of contributions

Subsequent to these interrogations, this thesis has proposed solutions and led various studies
for their exploration and answering. This section provides a summary of these contributions
and applications.

ADAGIO − A system for the Automatic Deep AliGnment of vOIce
The core proposal of this work is the development of ADAGIO − a system dedicated to
the Automatic Deep AliGnment of vOIce. It is an acoustic model, i.e., a model capable
to temporally estimate and represent the symbolic content associated with an audio recording.
Built upon recent advances in deep learning for voice analysis research, ADAGIO is implemented
as an end-to-end Deep Neural Network (DNN) in a Connectionist Temporal Classification
(CTC) training scenario. Its generic nature allows aligning voice signals with symbolic sequences
as long as they describe successive events occurring in the audio.

Temporal constraints for acoustic model training
The second main proposal of this thesis is the definition of additional temporal constraints
integrated during the training phase of the acoustic model, with the aim to better capture the
temporal relationships and lead to an overall higher alignment quality. These constraints are:

• Spectral content reconstruction with the claim that a precise temporal reconstruction
of the relevant spectral information (i.e., spectral envelope or excitation) is heavily
dependent on the voice alignment;

• Temporal structure preservation with the claim that shared similarity patterns,
informing on the local temporal structure, are expected to be found in the original voice
signals and in the alignment predictions;

• Guided time-symbol monotony with the claim that a pertinent alignment must
highlight a clear monotonic path between the voice data sequences.

Validation on voice-to-text and voice-to-notes alignments
As a third contribution, experiments are conducted to evaluate ADAGIO enhanced with the
above-mentioned temporal constraints and validate its generic nature and potential. Voice-to-
text alignment is tackled at various granularities. Word-level and syllable-level alignment are
obtained by aligning graphemes, and phonetic alignment through the alignment of phonemes.
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Two evaluation datasets, one for speech (20 mn audio with manual word-level annotations)
and one for singing voice, are proposed to the community. The robustness of the model to music
instrumentals and even imperfect transcripts is demonstrated through a series of quantitative
evaluations. Then, the voice-to-notes alignment problem is also tackled and the feasibility of
aligning voice music scores with audio (despite background music) with ADAGIO is confirmed.
However, this note alignment task can still be improved at the time of writing.

Collaborative applications to voice analysis and synthesis
Last but not least, ADAGIO has been employed in many practical collaborations in diverse
research contexts such as automatic speech analysis, singing voice synthesis and musicological
studies. The different applicative contexts in which ADAGIO has already been used are listed
below:

• Concatenative singing voice synthesis with the integration of new voices for ISiS
(Ircam Singing Synthesizer) thanks to their phonetic alignment with ADAGIO;

• Production strategies of social attitudes with a core component, offered by the
phonetic alignment of expressive speech with ADAGIO, dedicated to study the temporal
aspects involved when speakers aim at conveying precise social intentions;

• Musicological singing style analysis with the development and future online release
of a complete pipeline allowing musicologists to study expressivity in sung performances
notably thanks to both syllables and notes alignments made possible by ADAGIO;

• Very long audio alignment for which ADAGIO, as an acoustic model, is coupled with
a linear memory decoding module, to synchronize very long recordings (i.e., several hours,
e.g., entire music playlists or audiobooks) with their wide text transcripts.

1.3 Dissertation outline

The Figure 1.2 gives a global overview over the organization of the document. It also shows
how the different parts and chapters relate to the raised practical and research questions.
Concretely, besides this introduction (Chapter 1 ) and an overall conclusion (Chapter 8 ), this
work is divided into three parts, each composed of two chapters.

• Part I − Voice alignment: context & background
In this part, all the notions necessary for a complete reading of the whole manuscript are
introduced by getting familiar with the task of temporal alignment of vocal signals. In
this perspective, the practical motivations of a research work focused on temporal voice
alignment and an extensive literature review are presented. More precisely:
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Figure 1.2: Outline of the dissertation and its relationships with the practical and research
questions raised by temporal voice alignment.

— Chapter 2 : Context and applicative motivations explores the notions related to
human communication, and in particular vocal communication, to introduce audio
time-frequency representations and symbolic sequences manipulated in this work
(Q1 − what? ). Following their presentation, the task of their temporal alignment is
defined (Q1 − what? ), as well as the opportunities offered by such synchronizations
in the voice community (Q3 − why? ), thus making the link between the scientific
disciplines mentioned and the technical tools to be presented in the next chapter.

— Chapter 3 : Scientific background for voice alignment proposes a systematic review
of the state of the art associated with voice alignment by presenting mathematical
concepts and models from the literature. The specific task of voice alignment is
formalized (Q1 − what? ) and then the various strategies used for its resolution
are presented (Q2 − how? ). Recent approaches, including this thesis, are based
on artificial intelligence, which motivates a summary of the key notions of deep
learning. This work will concretely adopt a Connectionist Temporal Classification
(CTC) training strategy whose specificities are detailed.



1.4. LIST OF PUBLICATIONS 21

• Part II − Contributions: time-constrained neural voice alignment

This part introduces a deep neural voice alignment algorithm, denoted ADAGIO, which,
together with multiple losses imposing temporal constraints, is the main contribution of
the thesis. This part, consequently, fully addresses the research question Q2 − how?
More precisely:

— Chapter 4 : ADAGIO, an acoustic model for temporal voice alignment exposes
the acoustic model at the heart of this work − ADAGIO, a system dedicated to
the “Automatic Deep AliGnment of vOIce”. Its convolutional architecture and
comparisons with other existing and previous systems are made.

— Chapter 5 : Temporal constraints for alignment enhancement aims at improving
ADAGIO through the introduction of additional temporal information. Supplementary
modeling objectives are proposed to reinforce the temporal coherency of the predictions
and alignment quality. These contributions include a temporal audio reconstruction,
propagation of the temporal structure, and temporal-sequential monotony assurance.

• Part III − Outcomes: experiments & applications

This part, finally, focuses on the results of this thesis through the evaluations of the
proposed models in comparison to relevant baselines, demonstrating the interest of the
contributions, and by putting ADAGIO into practice. More precisely:

— Chapter 6 : Evaluations of deep voice alignment conducts a set of experiments
evaluating the accuracy of the ADAGIO algorithm, an essential step for determining
the relevance of any synchronizer (Q2 − how? ). This evaluation procedure is
applied on several cases of practical interest (Q3 − why? ). Performance comparisons
with relevant baseline algorithms demonstrate the robustness of ADAGIO and the
proposals defended in this thesis.

— Chapter 7 : Applications and collaborations is dedicated to the practical and scientific
contributions made possible by ADAGIO, by means of describing applications done
in collaboration with other researchers (Q3 − why? ).

Chapter 8 features an overall conclusion to this work by summarizing the content of the
manuscript and associated contributions as well as eventually answering to the three practical
and research questions.

1.4 List of publications

The list of research papers that have been written during this PhD and accepted for publication
in peer-reviewed national/international conferences and journal is presented below.
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Remark: the publication marked with †, as a collaborative and fruitful side project between
vision and audio communities, is not concerned with temporal voice alignment − although it
was interested in defining relevant temporal sound transformations to address speaker/voice
identification. Its content, therefore, will not be discussed in this manuscript.
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Chapter 2
Context and applicative motivations

“Music is nothing else but wild sounds civilized into Time
and tune.”

− Thomas Fuller

This chapter presents the general context associated with this thesis, inscribing this research
into larger and more specific fields of study, and the main practical motivations behind the
development of temporal alignment algorithms for voice processing.

The starting point of this thesis is the human communication theory, and in particular vocal
communication, as exposed in section 2.1 . It allows introducing two major modalities of
messages that human exchange when interacting, that are in line with this research: symbolic
sequences and voice signals. Notably, representing the temporal evolution of the parameters
contained in such signals is a mandatory step to further focus on temporal aspects. This requires
voice signal processing background, given in section 2.2 . Then, the two transcription and
alignment tasks, at the heart of the manuscript as they link symbolic and audio representations,
are deeply introduced in section 2.3 . Finally, section 2.4 proposes an overview of the practical
applications offered by the temporal synchronization between voice and symbolic information,
motivating a research work in this domain. The chapter is summarized in section 2.5 .

$
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2.1 Human communication

Communication is an essential aspect of human life and has been crucial in the evolution of
humans as a species. From hearing the voice of their mother before they are born to daily
life implications − even up to summarizing years of research in PhD manuscripts −, humans
communicate to connect and maintain relationships with one another, share information and
knowledge. It is by communicating that humans bring about a common interpretation of the
world in which they live, their environment, which makes possible their collaboration in the
broadest sense. As a result, the study of human communication is of highest interest.

To this aim, a mathematical formalization of the concept of communication, introduced
by Shannon (1948) in the form of the communication theory, is first presented. It allows
defining the generic and fundamental notion of message necessary in all future investigations. A
message can contain information of numerous natures, yet this thesis is particularly interested
in symbolic and oral messages whose brief writing history and involved physical production
mechanisms, respectively, are further exposed. In addition to this core part, humans are able
to induce and interpret many variations when communicating a message − a short overview on
this expressivity is proposed.

2.1.1 Communication fundamentals

Shannon’s theory of communication
A theoretical approach to understand communication can be traced back to 1948, when Claude
Shannon introduced the concept of the communication chain − a model for comprehending
the process of transmitting and receiving information, also known as the Shannon model of
communication (Shannon, 1948).

According to this theory, the communication process involves six elements, as depicted in
Figure 2.1. A sender emits a message m which is encoded by an encoder E , transmitted over a
communication channel and eventually decoded by a decoder D and intercepted by a receiver.
If communication has been successfully achieved, the decoded message (D ◦ E)(m) must be
exactly the original message m.

However, this cannot be systematically guaranteed as there are sources of noise along the
transmission chain, blurring information throughout the propagation of the message, and
altering the effectiveness of the communication process. Noise can take many forms from
physical (e.g., interferences on a telephone line) to psychological (e.g., misunderstandings or
distractions preventing the receiver from fully comprehending the message).

The notion of noise is not static and highly depends on the message that is transmitted. For
example, in different contexts, musical background can be considered as noise (e.g., hearing
someone talking in a concert) or as the key information to decode (e.g., focusing on the
construction of a music piece).
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Encoder DecoderCommunication 
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Noise
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message

decoded
message

Figure 2.1: Shannon’s communication chain.

Communication message

The message m is a core element of the communication chain as it contains the information
one wants to transmit. Figure 2.2 proposes a succinct overview of what messages are made of.

It can be summarized as follows:

• On the one hand, there is the central part of the message, its content and its denotation,
which precisely relates to its strict meaning, i.e., the sense and ideas that are to be
communicated. This implies the existence of an underlying system − a language −
defining a set of rules, admitted and shared by a group of people that allow to state
understandable and meaningful messages. Human linguistics (Cook, 2003) and music
theory (Besson and Schön, 2001) are examples of languages of interest in this work.

• On the other hand, there is always meta-information in a message, which is divided into
two main categories: (1) the para-linguistic which connotes the strict meaning through,
e.g., expressivity and emotions; and (2) the extra-linguistic which places the speech in a
context (e.g., geo-socio origin, age, communication style). These extra- and para-linguistic
aspects of communication will have their importance for applicative motivations − they
are therefore highlighted in section 2.1.4 .

Message modalities in voice research

Much like the information it contains, the nature of a message is highly variable. For a given
language, indeed, a message can be expressed in diverse modalities.

In this thesis with a focus on the relationships between audio and texts, two well-known
human communication modalities are ubiquitous: oral and symbolic modalities.
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Figure 2.2: Content of communication messages. Illustrations from https://openmoji.org/

Symbolic messages are dependent on the existence of a writing system and are the focus of
section 2.1.2 . Oral messages, such as speech and singing, are produced by humans thanks to
their voice via physical body mechanisms that are presented in section 2.1.3 .

For the sake of completeness, even though beyond the focus of this thesis, it is worth
mentioning that other types of modalities are studied in their associated literature − e.g.,
facial motion or body gesture (Fares et al., 2021).

2.1.2 Writing and symbolic modality

Writing is a representation of a language through the use of visual symbols such as pictograms,
figures, letters or characters. It is a system that allows people to communicate messages and
transmit ideas in a symbolic form − through written documents. The ensemble of all symbols
constituting a writing system is known as an alphabet A.

A brief history of writing
The history of writing (Fischer, 2003) dates back to ancient civilizations, where it was a
means of recording, preserving as well as transmitting information. Thanks to writing, humans
were able to share notions beyond time and space, enabling the exchange of knowledge and the
growth of civilizations.

https://openmoji.org/
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Figure 2.3: Writing systems of some modern languages. The meaning is “time” for all words.

One of the earliest known forms of writing is cuneiform, which involved pressing a reed
stylus into clay tablets to create symbols representing objects, words, and ideas. It was used by
the Sumerians in ancient Mesopotamia (4000 BCE) to keep track of a variety of content (e.g.,
religious texts, legal codes, etc.). In ancient Egypt (3000 BCE), writing was also an important
tool of communication and record-keeping. The ancient Egyptians relied on hieroglyphics − a
system of writing based on pictorial symbols representing words and ideas. Hieroglyphics were
primarily inscribed on stone or other durable materials, such as tombs and temple walls.

With the passing of time, writing systems also evolved and adapted to the needs of different
languages (Schmandt-Besserat, 2014). For example, the Phoenicians (2000 BCE) developed
an alphabet leading to a simpler and more efficient system of writing: individual symbols were
meant to represent sounds rather than whole words or concepts. The Phoenician alphabet
served as the basis for the Greek alphabet and other upcoming writing systems.

Throughout history, writing played a crucial role in the development and spread of language
and culture − and music notation fully inscribes itself in these considerations (Strayer, 2013).
Writing, though, is not an inherent part of a language: most spoken languages, actually, have
no standardized written forms or no written system at all. For illustration purposes, Figure 2.3
displays some contemporary writing systems.

Symbolic modality of communication
The research presented in this manuscript deals with languages that do have a well-defined
alphabet A to write documents based on linguistic or grammar rules. This includes recent
versions of unsigned living languages (e.g., English, French, Greek, etc.) and classical musical
notation and notes from music theory.
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-Oh my god look at that face You look like my next mis take
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-Love’s a game wan na play?
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Figure 2.4: Singing music sheet features both text and note as symbolic information. Taylor
Swift’s “Blank Space”, 1989 (2014), measures 7−10 (15:30−25:30). Transcription done by
Antoine Petit. Courtesy of Antoine Petit (Petit, 2022).

In a textual context − A sequence (or text) is defined as an ensemble of one or more of
written message(s). Characters from the alphabet A, which are referred to as graphemes, allow
to constitute syllables or words, that compose sentences, leading to paragraphs. The Latin
alphabet Aℓ will be primarily used as common to many spoken languagues. It contains all the
basic latin characters/graphemes (a, b, c, etc.) and is augmented with the digits (0, 1, 2, etc.)
as well as a space (ø) to separate words. All in all, it is defined as a set of 37 symbols, that is

Aℓ = {a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z,
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ø}. .

(2.1)

In a musical context − A sequence (or melody or melodic line or sheet) is similarly defined as
a succession of notes from the alphabet. Musical words (e.g., chords), sentences and paragraphs
can be analogically defined, but will not be necessary in this work. The note alphabet A♩ used
this manuscript will be based on the piano, hence including the natural notes and their altered
versions, i.e., 12 semi-tones per octave − thus resulting in 88 classes from A0 to C8. It is also
augmented with a silence token denoted 0.

Interestingly, these two symbolic natures (e.g., text and notes) can be entangled as shown
in Figure 2.4. Indeed, this sheet music features a text and singing melody that are expected to
“happen” simultaneously in such a way that each part of a word (i.e., a syllable) is associated
with a note or even hold on several notes in the case of melisma − e.g., see “play? ” on Figure
2.4. It becomes a perspective of research to choose whether to study the text, the notes, or
both, which justifies their previous mutual introduction. From a general point of view, both
these symbolic information are contained in the sound that a singer would produce. This calls
for more expertise on another modality: orality.
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2.1.3 Voice production and oral modality

Besides symbolic modalities, humans are able to exchange communication messages by generating
sounds with their voice and listening to voice sounds from others. The voice is intrinsically
speaker-dependent but the production mechanisms of these oral messages are shared by all
humans. They are therefore briefly detailed in the following.

Acoustic phonetics
The range of ways to articulate sounds when speaking a language is determined by the anatomy
of the human body and cannot be expanded upon. This means that all humans have the same
potential for making sounds, and sounds from the world’s languages rely on similar body
configurations. As a result, there exist categories of sounds that can be distinguished based on
the way they are produced (articulation) or their characteristics (acoustics). Each language
can use a combination of these sounds to form its own inventory of phonemes (Stevens, 2000).

Phonemes are the building blocks of any spoken language as they are defined as the smallest
units of sound that can alter the meaning of a word when changed or swapped out, e.g.,

time 7→ /t/ /a/ /i/ /m/
dime 7→ /d/ /a/ /i/ /m/

Understanding how phonemes can be voiced − and become sounds− requires further information
on the vocal apparatus.

Production mechanisms
The vocal apparatus is the physical system humans are born with that is capable to turn air
flow into sounds. As summarized in Figure 2.5, it can be described by two main elements:

• First, the voice generator whose vocal folds, in the case of harmonic sounds, turns air
flow from the lungs into periodically spaced pulses, resulting in an excitation with a given
tone − or Fundamental Frequency (F0) ;

• Second, the vocal tract composed of the tongue, nasal cavity and lips, which is responsible
for creating the “color” of the voice − its timbre.

Phonemes are classified in two upper categories, namely vowels and consonants. Consonants
(e.g., /t/, /m/) are articulated with complete or partial closure of the vocal tract. Vowels (e.g.,
/a/, /e/, /i/, /o/, /u/, /y/) are generated without any restriction of the vocal tract, resulting
in periodic air pulses leading systematically to harmonic sounds. That is why vowels have a
special role in speech and singing analysis: they carry the tone or the melody. In singing, the
notes are hold on the vowels of each syllable (Sundberg and Rossing, 1990).
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Figure 2.5: Voice production mechanisms. Courtesy of Léane Salais (Salais et al., 2022).

The form of the vocal tract changes with respect to time as its constituent elements are
dynamically in motion. Therefore, in order to capture the time-dependent fluctuations of the
phonemes, one must rely on Time-Frequency Representations (TFR) − they will be extensively
presented in the next section 2.2 .

Formants

The formants are the main resonances of the vocal tract. If these resonances are sufficiently
dense, formants may be observed on TFR, in regions surrounding the frequency peaks (partials)
− i.e., maxima of magnitude (energy). Depending on the phonetic context, there can be one
or several formants at a given time as depicted in Figure 2.6.

In the case of vowels, two formants are usually detected and analysed. The first formant F1

is linked to the aperture of the vocal tract while the second formant F2 is related to the position
of the tongue. Singing voice (especially in opera) also has a high third formant F3 referred to
as the singing formant and located around 3kHz (Sundberg, 1974).

In the case of unvoiced excitation (or unvoiced consonant), only one formant F1 can be
expected as there are no vibrations of the vocal cords generating harmonic structure.

Phoneme identification can be based on formant analysis− e.g., the two first formants F1 and
F2 have been used to discriminate between vowels by defining the vowel diagram (Hellwag,
1886). However, formants alone are not sufficient to fully describe voiced phonemes. There are
many aspects, characterizing one’s expression or interpretation, that can shape the sound of a
spoken or sung phoneme. These are the focus of upcoming paragraphs.
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Figure 2.6: Visualization of phonemes and F1/F2 formants on Time-Frequency Representation.
Courtesy of Léane Salais (Salais et al., 2022).

2.1.4 Expressivity and interpretative style

Humans convey emotions when they talk; singers integrate feelings during a performance. This
expressivity is precisely what makes a voice sound natural and the reason voice goes beyond a
simple succession of phonemes and formants. The very simple fact to rise or lower the tone of
a voice creates an intonation (Collier and Hart, 1975) that shares a state of a mind.

Many studies have been dedicated to emphasize the outstanding ability humans have to
communicate social signals when speaking − from emotions and their identification (Le Moine
and Obin, 2020) to social attitudes (Wichmann, 2000)1 conveyed in speech utterances (Le
Moine et al., 2021). Interestingly, analogous phenomena have been highlighted between
musicians (Juslin, 2019) for, e.g., humor in music (Rodriguez et al., 2021).

Vocal expressivity is known to induce significant changes in speech characteristics. For
instance, the smiling process leads to higher formants F1 and F2 during both smiled speech
production (Arias et al., 2018b) and perception (Ponsot et al., 2018) to the extent that
auditory smiles communicated through formant frequencies can trigger emotional reaction in
listeners (Arias et al., 2018a). Facial expression of disgust also modifies the formants (Chong
et al., 2018).

In a similar manner, singers carry their very own personal singing or interpretative style that
have driven musicological research in various genres, e.g., French chanson (Chabot-Canet,
2020b; Chabot-Canet et al., 2020) or Rap (Migliore and Obin, 2018). Key aspects, like
the vibrato, will be mentioned when comparing speech and singing in section 2.2.3 .

Like recent collaborative work (Ardaillon et al., 2016), an applicative motivation of this
thesis is to uncover some temporal facets of (1) speech production and (2) singing expressivity
in a musicological context, and throw them into relief. This will be detailed in section 2.4 .

1Attitudes are concerned with a speaker’s social intention while emotions refer to a speaker’s affective state.
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Section summary − Human communication

Humans exchange information with one another through communication messages that,
for a given language, have two main modalities: (1) symbolic messages that are dependent
on a writing system and an alphabet of symbols A; and (2) oral messages that are based
on production mechanisms − from the vocal folds generating periodic tones to the vocal
tract creating the formants (timbre of voiced phonemes). In addition to these physical
aspects, voice has a wide range of expressivity that comes into play.

2.2 Voice signal processing

The study of a physical phenomenon can be described as one or several quantities, i.e., physical
variable(s) depending on time and/or space. Extracting information from the observations at
our disposal often requires to look closely at these temporal or spatial aspects. It is common
to refer to a temporal evolution as signal and to a spatial evolution as image.

In this context, signal processing is a wide scientific field (Rabiner and Gold, 1975)
dedicated to extract, manipulate and transform information contained in signals. While there
exist many natures of signals (e.g., electric measurements, temperature values, weather maps,
etc.), the research in this thesis is exclusively focused on sounds. Indeed, voice, audio and music
are sound signals and, as such, can be manipulated with signal processing tools (Müller, 2015).

This section naturally exposes the main notions necessary to study voice and audio from
a signal processing perspective. Once the basics from digital audio are presented, the main
characteristics − or features − one can extract from voice signals are defined. Since voice
can result in speech or singing signals that share similarities but also differences, a comparison
between speaking and singing voices is drawn. Finally, two major signal-oriented research fields
highly tied to each other are presented: analysis and synthesis of voice signals.

2.2.1 Digital audio basics

The starting point of (sound) signal processing is the signal itself. When a sound is produced
in a fluid, the surrounding molecules are set in motion by the sound waves, creating pressure
variations step by step in both space and time.

A sound signal ∫ is therefore a function varying continuously in time that maps an instant
tc ∈ R to a vibration amplitude ∫(tc), that is

∫ : R → R
tc 7→ ∫(tc).

(2.2)
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From continuous-time to discrete-time signals
In practice, sound signals are captured and often emitted by systems such as microphones
and loudspeakers that cannot deal with continuous values for time and amplitudes as it would
require an infinite storage capacity. Therefore, in the context of digital signal processing, audio
signals are discretized by means of quantization and sampling.

Quantization consists in limiting the amplitude range of ∫ to a finite number of allowed
values Qb, depending on the number of digital bits Nb implied in the process, such that each
amplitude ∫(tc) becomes the closest permitted value ∫q(tc) ∈ Qb, i.e.,

∫q(tc) =min
q∈Qb

|∫(tc)− q|. (2.3)

Sampling consists in measuring the signal amplitude at only discrete instants tn with n ∈ N.
In the most classical sampling setup for audio, known as equidistant sampling, two successive
discrete instants are separated by a constant, fixed sampling period Ts so that tn = nTs.

This leads to define the discrete-time signal x from the continuous-time signal ∫ as follows:

x : N → Qb

n 7→ x[n] = ∫q(tn) =min
q∈Qb

|∫(nTs)− q|. (2.4)

Frequency and harmonic analysis
A signal is referred to as periodic if there exists a minimal quantity called period T0 ∈ R∗

+ such
that ∀t ∈ R, ∫(t) = ∫(t+ T0). The (fundamental) frequency F0 is the reciprocal of the period:

F0 = 1/T0. (2.5)

If the period (in sec.) defines the duration before the signal repeats itself, the frequency (in
Hertz, Hz) measures the number of repetitions in an unit time interval. Integer multiples of
the fundamental frequency are known as harmonics.

The harmonic decomposition of signals, which is the basis of all Fourier’s analysis theory
(Higgins et al., 1996), has revealed that any signal (even non-periodic ones) can actually be
represented by a summation/integral of periodic signals. Hence, a signal contains information
at many frequencies − from zero to an upper limit Fmax above which no information is left.

It was shown that discretizing a signal involves a sampling period Ts, one can thus define
similarly the sampling frequency :

Fs = 1/Ts. (2.6)
One major result of digital signal processing is the Nyquist-Shannon-Kotelnikov theorem
stipulating that a signal whose maximum frequency is Fmax can be sampled without loss of
information if and only if the sampling frequency verifies the Shannon’s criterion:

Fs >
Fmax

2
. (2.7)
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As far as humans are concerned, their hearing system has a frequency upper bound around
20kHz and voice components, whether voiced or unvoiced, are rather small for frequencies
above 8kHz. As a result, given Eq. (2.7) usual values for the sampling frequency Fs are
44, 1Hz or 48kHz for the recording industry and 16kHz for voice processing technologies. One
exception to mention is the reduced bandwidth in telephony (less than 4kHz), for which a
sampling frequency of 8kHz is enough.

Due to the mentioned harmonic decomposition, it is extremely common to work in the
frequency domain rather than the time domain as many operations, such as filtering (i.e.,
alteration of the content of a signal), are easier to perform in the former one. Therefore, the
most relevant frequency representations of audio signals are further introduced.

Discrete Fourier Transform (DFT)
The Discrete Fourier Transform (DFT) is a mathematical operator allowing to decompose a
discrete-time signal into its constituent frequencies, i.e., its spectrum or spectral representation.
The DFT of the discrete-time signal x of length N − denoted DFT[x] − is defined as follows:

DFT[x] : N → C

f 7→ DFT[x](f) =
N−1∑
n=0

x[n] exp

(
−2jπfn

N

)
(2.8)

where j =
√
−1 is the imaginary unit and f ∈ {0, . . . , F−1} is the f th frequency. The Fourier

coefficient DFT[x](f) ∈ C contains the magnitude and the phase of the sinusoidal component
of the signal with frequency fFs/N .

Note that a common variant of the Discrete Fourier Transform (DFT) is the Discrete Cosine
Transform (DCT) that makes use of a cosine function instead of a complex exponential in Eq.
(2.8). In the case of DCT, Fourier coefficients are real numbers.

Short-Time Fourier Transform (STFT)
The spectral content of voice or audio recordings is evolving with respect to time, e.g., people do
not talk permanently with the exact same “tone” and chords/notes usually vary in songs. Thus,
sound signals are intrinsically non-stationary as their statistical properties are time-dependent.

A single Discrete Fourier Transform (DFT) is not sufficient to study such signals as it
would result in a representation that would not capture the temporal evolution of the spectral
properties. Time-Frequency Representations (TFR) are much more relevant features to manipu-
late in this regard.

The Short-Time Fourier Transform (STFT) is specifically designed for the analysis of non-
stationary signals as it considers them as successive short signals on which local DFTs are
computed and concatenated.
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This is done by sliding a temporal window w of fixed sample size W , step by step with
overlapping. Each resulting sub-signal is referred to as a frame and indexed through time by
t ∈ N. The sliding and overlapping parameter is known as hop size H and typically defines the
temporal precision δt = H/Fs. All in all, the STFT x of the signal x is a function of both time
frame t and frequency f :

x : N× N → C

[t, f ] 7→ x[t, f ] =
N−1∑
n=0

w[n]x[n+ tH] exp

(
−2jπfn

N

)
.

(2.9)

Windowing the signal might prevent edge effects like the Gibbs phenomenon (Gottlieb
and Shu, 1997) from appearing but distort the samples’ weight, which is compensated by
overlapping. STFT computations classically rely on the Hann (or Hanning) window:

w[n] =

{
1
2

(
1− cos

(
2π

n

W

))
if n ∈ {0, . . . ,W − 1}

0 elsewhere.
(2.10)

Spectrogram
The spectrogram |x| is the magnitude of the STFT, that is

|x| : N× N → R

[t, f ] 7→ |x|[t, f ] =

∣∣∣∣∣
N−1∑
n=0

w[n]x[n+ tH] exp

(
−2jπfn

N

)∣∣∣∣∣ . (2.11)

It is one of the most used representations for audio and music processing.

Convolution & signal filtering
Convolution, denoted ∗, is an extremely popular operation as it mathematically embodies
linear filtering, i.e., the modification of some inputs by application of a kernel K. It concretely
performs a smooth weighted average between the kernel and the inputs at each point.

In the case of a 1-D convolution − inputs are typically time series like a raw signal x. The
kernel K is also one-dimensional and the resulting filtering is expressed as:

(x ∗ K)[n′] =
∑
n

x[n]K[n′ − n]. (2.12)

In the case of a 2-D convolution − inputs are typically images or, for audio, any TFR like
the spectrogram |x|. The kernel K is therefore two-dimensional and the resulting filtering is
expressed as:

(|x| ∗ K)[t′, f ′] =
∑
t

∑
f

|x|[t, f ]K[t′ − t, f ′ − f ]. (2.13)



2.2. VOICE SIGNAL PROCESSING 37

2.2.2 Voice features

The general notions and frequency representations of sound signals have been introduced,
allowing one to specifically define the main characteristics − or features − related to voice
signals. In order to clearly emphasize the relationships among these features, their Time-
Frequency Representations (TFR) are summarized in Figure 2.7.

Pitch − Fundamental Frequency (F0)
The pitch of a voice, similar to the pitch of a note, is related to its perceived highness or lowness.
The common auditory sensation is that the greater the pitch, the higher the voice. It allows to
naturally distinct voice tones from one another and order them in a gradually increasing scale
from low to high.

In practice, when a given pitch is perceived, it can be mapped to the frequency of a pure
sound (sine wave). Therefore, throughout this manuscript, the Fundamental Frequency (F0)
will be the main feature to characterize a pitch and both terms may be used interchangeably,
although there is more to pitch than a single F0 value, e.g., (Révész, 1954; Shepard, 1982).

Log-Mel-spectrogram
Psychoacoustic studies dedicated to human auditory system revealed that human hearing
perception scales up logarithmically in frequency and intensity (Fastl and Zwicker, 2006).
The ear, indeed, is able to distinguish (1) very calm from very loud sounds; and (2) lower
from higher pitches with a better discriminative pitch perception in low frequencies. These
considerations are not taken into account in a simple spectrogram as defined in Eq. (2.11).

Regarding the ear’s loudness perception, it is more relevant to compute log-scaled magnitudes
than linear ones. By means of the operation |x| 7→ 20 log10(ϵ + |x|), with ϵ a small value, the
spectrogram is turned into a log-spectrogram.

Regarding the ear’s frequency perception, Stevens et al. (1937) introduced a perceptive
“mel”ody scale − the Mel scale − specifically designed to represent frequencies in line with
human audition:

M(f) = 2595× log10

(
1 +

f

700

)
. (2.14)

Mapping the spectrogram linear frequencies to the Mel scale is usally done with F overlapping
triangular filters referred to as Mel filterbank. In the end, the mel-spectrogram is obtained.

Coupling both loundness and frequency aspects, one can compute the log-mel-spectrogram,
which contains all perceptual features, making it a robust default representation of voice and
audio signals.
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Spectral envelope
A classical audio production model is the source-filter model, which assumes that a signal
∫ results from an original excitation (the source) e modified by a resonator (the filter) r.
Remembering section 2.1.3 , the voice correlates are the vocal cords for the source and the
vocal tract for the filter. For each time tc ∈ R, the signal is therefore expressed as a temporal
convolution:

∫(tc) = (e ∗ r)(tc). (2.15)
In the frequency domain, denoting F a general Fourier transform, the spectrum are multiplied,

F [∫ ](f) = F [e](f) × F [r](f). (2.16)

Taking the logarithm of Eq. (2.16), one can isolate spectral components, respectively the pitch
(from the source) and the harmonic content or timbre (resonances/attenuations from the filter).
Summing up, the cepstrum is defined as:

log (F [∫ ](f)) = log (F [e](f))︸ ︷︷ ︸
fast variations in f

+ log (F [r](f))︸ ︷︷ ︸
slow variations in f

.
(2.17)

The (log-)spectral envelope precisely corresponds to the resonator term log (F [r]). It is supposed
to be a smooth and F0-free representation carrying only information from the vocal tracts (voice
formants and timbre). The problem is r is concretely unknown. In practice, a Discrete Cosine
Transform (DCT) of the whole cepstrum is performed to separate high and low quefrencies and
isolate the specral envelope from the excitation structure. See (Röbel and Rodet, 2005) for
another method for spectral envelope estimation.

Mel-Frequency Cepstral Coefficients (MFCCs)
The Mel-Frequency Cepstral Coefficients (MFCCs) have been one of the widespread features in
the audio and voice literature, allowing a compact representation of above-mentioned spectral
envelope (Davis and Mermelstein, 1980).

The MFCCs are the low order coefficients (i.e., , usually up to 13) from the Discrete
Cosine Transform (DCT) calculated on the log-mel-spectrogram. According to previous source-
filter modeling, MFCCs are expected to globally follow the spectral envelope and be pitch-
independent to a certain extent.

Phonetic characterization

As discussed in section 2.1.3 , formants are induced by the vocal tract. Therefore, as previously
exposed, spectral envelope and/or MFCCs features− given their strong links− seem particularly
well-suited for representing formants and phonetic information. Concretely, a given spectral
envelope should be enough to recognize a precise phoneme and reciprocally.
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Figure 2.7: Time-Frequency Representations (TFR) in voice signal processing. Example is sung
vocals “I ain’t got the time” from Amy Whinehouse’s Rehab, Hansen (2012)’s dataset.
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2.2.3 Speech vs singing comparison

The main representations used to study and process voice signals have been presented. While
these features can be exploited for both speech and singing, it is undeniable that − despite
common characteristics − speaking and singing voices cannot be classified as equals. This
section provides insights on these differences that are worth mentioning. A visual example
highlighting these variations can be found in Figure 2.8.

Either specialized on singing (Sundberg and Rossing, 1990) or speech (Kent and Read,
2002), or clearly addressing their comparison (Livingstone et al., 2013; Ohishi et al., 2005),
even up to the recording, release and analysis of a specific dataset (Duan et al., 2013),
there is a long research history dedicated to such questions. Based on these references, five
main differences between speaking and singing voices are listed. They are either related to
characteristics of the speaker’s vocal apparatus (see section 2.1.3 ), or prosodic gestures and
expressivity (see section 2.1.4 ). A summary of these speech/singing discrepancies is proposed:

• Vocal tract shape − During the generation of voice signals, the shape of the vocal tract
(i.e., mouth, tongue, and throat) varies to produce the several phonemes and sounds.
A first difference between speech and singing voice is that the vocal tract changes much
faster in speech than in singing.

• Intonation − Then, intonation, is an important way to convey meaning and emotion
through voice by, e.g., slightly adapting F0 curves. There are generally faster variations
in speech but they may purposely be exaggerated in a singing context, while rather subtle
in spoken utterances.

• Vibrato − The vibrato may be the prime example of speech-singing differences as this
effect is not observed for spoken voice. Created by a fine control of the muscles of the
vocal apparatus, the vibrato manifests through local and rapid fluctuations in the pitch
of a note. It has been highly analyzed by musicologists to understand a singer’s style
(Chabot-Canet et al., 2020) as it is a major piece of expressivity and is ubiquitous in,
e.g., French chanson or popular music.

• Fundamental Frequency (F0) − The fundamental frequency of spoken voice typically
ranges between 80Hz and 200Hz. The singing voice has a much wider tessitura as sung
pitches can reach high frequencies, up to 1kHz and more.

• Phoneme duration − In speech, phoneme duration is around 20-200ms (as measured on
(Zue et al., 1990)). In singing, for which a pitched note is associated with a vowel,
phonemes can be hold much longer as singers tend to sustain vowels for longer periods.
In doing so, they can add expressivity to their performances, duration being in itself an
expressive means, via intensity variations over a syllable or vocal techniques mastering.
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Figure 2.8: Illustration of differences between speech and singing: vowel duration, F0, vibrato.
Example is the same sentence read and sung by KENN_17 from Duan et al. (2013)’s dataset.

Moving forward, having covered the diversity encountered in voice signals − both in terms
of their features and their quality (speech vs singing) − the core tasks and challenges involved
in current voice research can be exposed: analysis and synthesis.

2.2.4 Voice analysis and synthesis

Scientists in voice-related research have extensively worked on three main fields− voice analysis,
synthesis and transformation. The later field, voice transformation, consists in modifying one
or some feature(s) of a given voice, e.g., changing the attitude in a recording (Tao et al., 2006)
or convert several vocal attributes (Sisman et al., 2020), but it is out of the scope of this thesis.
On the contrary, the two former, synthesis and analysis, have an important role in this work.

Synthesis of voice signals
Voice synthesis is the field aiming at producing artificial, yet plausible, voices. This includes
synthesis of both speech and singing signals that should be perceived as natural as possible.
As in many other voice-oriented tasks, early research was focused on speech and the same
procedures were later extended and adapted to singing.

The first attempt to synthesize speech dates back to 1791 with the “speaking machine” (von
Kempelen, 1791). This mechanical system, and others that followed (Dudley et al., 1939),
was designed to mimic the physical mechanisms of speech production that were introduced in
section 2.1.3 . Far from this original system that required manual intervention, speech synthesis
has benefited from the progress in computer sciences towards the rise of automatic methods.

The modern era of speech synthesizer has been marked with the development of Text-to-
Speech (TTS) systems, that are capable to directly synthesize acoustic signals with relevant
speech parameters for a given text to be voiced. Most current systems rely on approaches
based on artificial intelligence for both speech (Ning et al., 2019) and singing (Cho et al.,
2021) synthesis. Related deep learning notions for voice will be covered in section 3.1 .
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Today, voice synthesis is ubiquitous in daily life technologies and has found relevance in
telecommunications (e.g., vocal assistants (Pal et al., 2019)), medicine (Brunow and Cullen,
2021; Řepová et al., 2021) or artistic creations (e.g., video games (Farner et al., 2008)), etc.

While this thesis is not dedicated to voice synthesis, there exists a synthesis method that
resonates with this work. It is concatenative synthesis that achieves TTS by creating smooth
transitions between phonemes − or groups of successive phonemes (biphones, triphones) −
from pre-existing voice recordings (Ardaillon, 2017). This approach intrinsically requires a
strong correspondence between audio and text, which is in line with this research. Thus, voice
synthesis will remain an interesting application that will be discussed in section 2.4 .

Analysis of voice signals
Voice analysis is the field aiming at extracting all kind of information from voice signals, which
covers a wide scope of possible objectives. Among numerous examples, typical voice analysis
tasks are concerned with pitch estimation (Ardaillon and Roebel, 2019), language and
speaker identification (Tirumala et al., 2017), keyword spotting (López-Espejo et al., 2021),
query by singing and humming (Liang et al., 2021a), or vocals extraction (Cohen-Hadria
et al., 2019). There is also an active research field − Music Information Retrieval (MIR) −
specialized on similar considerations for music (Müller, 2007b; Schedl et al., 2014).

Early research was based on hand-crafted methods, i.e., deriving systematic rules upon
computation of audio descriptors (Peeters et al., 2011). With the emergence of large collections
of data and higher computational power over the years, recent research rather relies on data-
driven methods (e.g., machine learning and deep learning) that are able to construct relevant
prediction patterns from data themselves (Papakostas et al., 2017), or a coupling of both.
The required background to manipulate data-driven systems is introduced in the next chapter.

This thesis inscribes itself in voice analysis as it aims to understand and uncover the
underlying relationships between voice and symbolic representations. Hence, the upcoming
section is dedicated to the tasks intimately related to this research: transcription and alignment.

Section summary − Voice signal processing

Voice signal processing a wide scientific field allowing to define, represent and transform
information in digital voice signals. These signals result from a temporal sampling with
a usual sampling frequency of Fs =16kHz. Among the numerous existing voice features,
the log-mel-spectrogram and spectral envelope are two Time-Frequency Representations
(TFR) of highest interest. The later captures the formants and phonemes while the
former integrates all human perception aspects. Based on TFR, active research on voice
analysis and synthesis has been conducted. In practice, despite the known speech-singing
differences (e.g., vowels duration, etc.), speech approaches tend to be adapted to singing.
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2.3 Transcription and alignment tasks

Transcription and alignment are two prominent analysis tasks in many fields. They have
gained tremendous interest and found major and diverse implications in the audio domain, and
especially in the voice community, and beyond. The research presented in this manuscript is
dedicated to voice-to-symbols synchronization, yet, given the high proximity between alignment
and transcription in terms of concepts, formalization, modeling approaches as well as general
multi-modal problems, both of them will be studied and referred to throughout the entire
document.

2.3.1 Definitions

The common definitions and notations that will used for both tasks are introduced first. These
concepts are, more generally, in line with all literature processing data sequences − a sequence
being a finite succession of elements, with a notion of order through an indexing via indices.

Sequence modeling & decoding

Let X , Y and H denote three feature spaces. Let X ∗, Y ∗ and H ∗ be the sets of all sequences
over X , Y and H , respectively.

Let m denote a message emitted in two different forms with, e.g., different modalities and/or
expressivity. Let x ∈ X ∗ denote the first emission and y ∈ Y ∗ denote the second emission.
Let T be the length of x such that x = {x0, . . . ,xT−1} with ∀t ∈ {0, . . . , T − 1},xt ∈ X . Let
M be the length of y such that y = {y0, . . . ,yM−1} with ∀m ∈ {0, . . . ,M − 1},ym ∈ Y .

Transcription and alignment tasks can be seen as twofold procedures composed of

• A similar modeling functionM, such that

M : X ∗ → H ∗

x 7→ M(x). (2.18)

Applied on the first emission x, this function returns the quantity M(x), which has a
different designation (e.g., saliency map, posteriorgram) according to the task objective.
With no loss of generality, it can be called latent code, hidden code or hidden representation.

• A specialized decoding module D, which differs between transcription and alignment
tasks, but somehow connects the two emissions x and y.

The existing and chosen approaches for designing the modeling and decoding functions are
at the core of this research and will be mathematically exposed in the following chapters.
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Sequence similarity & alignment
The notion of alignment comes from the long research history dedicated to the relationships and
similarities between sequences, which manipulates specific tools that are introduced hereinafter.

To define a notion of correspondence between two sequences x ∈X ∗ and y ∈ Y ∗, a sequence
π of length K = max(M,T ) of ordered tuples over the indices of x and y is defined as:

π = {πk} with ∀k ∈ {0, . . . , K − 1}, πk = (tk,mk) ∈ {0, . . . , T − 1} × {0, . . . ,M − 1}
(2.19)

This sequence goes by many names including a path or pathway (Needleman and Wunsch,
1970), warping or warping function (Itakura, 1975), or alignment path. The later option will
be chosen in this work. The ensemble of all paths between elements of X ∗ and Y ∗ is denoted
Π(X ∗,Y ∗). There exist several properties − or alignment constraints − that a given path
π ∈ Π(X ∗,Y ∗) is expected to satisfy. Namely,

• Boundary conditions such that the alignment starts (resp. ends) at the first (resp. last)
indices of the two sequences:

π0 = (0, 0) and πK−1 = (T − 1,M − 1). (2.20)

• Monotony, which stipulates that the path can only move forward, such that successive
indices verify:

∀k ∈ {0, . . . , K − 2}, tk ≤ tk+1 and mk ≤ mk+1. (2.21)

• Limited progression of the path, such that only some transitions are permitted between
successive states πk and πk+1 according to a set of allowed gaps G, i.e.,

∀k ∈ {0, . . . , K − 2},πk+1 − πk = (tk+1 − tk,mk+1 −mk) ∈ G. (2.22)

The Figure 2.9 illustrates an alignment verifying these constraints between audio and text
(e.g., x represents T spectral frames and y represents M characters) when G = {(1, 0), (1, 1)}.

Finally, let S : X × Y → R be a similarity measure between the elements of X and Y .
The alignment between the sequences x ∈X ∗ and y ∈ Y ∗ corresponds to the optimal path π∗,
that is the path maximizing the accumulative similarity measures (i.e., for all tuples of indices).
It reads, with xt ∈X and ym ∈ Y the tth and mth elements of x and y, respectively,

π∗ = argmax
π

∑
(t,m)∈π

S (xt,ym). (2.23)

The resulting alignment score A∗ ∈ R between the sequences is the full similarity measure of
this optimal path:

A∗ =
∑

(t,m)∈π∗

S (xt,ym). (2.24)

Solving Eq. (2.23) is a typical optimization problem. Techniques for efficiently computing this
path via Dynamic Programming (DP) will be seen in the next chapter − in section 3.3.1 .
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Figure 2.9: An alignment path π between sequences x (voice log-mel-spectrogram) and y (text).

Transcription/Recognition

Transcription − or recognition − is the task that aims at predicting a symbolic sequence of a
message from some input data representing its emission. Concretely, from the message emission
in a given modality x ∈ X ∗, it is expected to retrieve y ∈ Y ∗ − where in practice, Y is a
finite alphabet of symbols A. The Figure 2.10 illustrates the philosophy of this task.

Although there might be a little distinction between transcription and recognition terms2,
they will be both used interchangeably from now on, very much as done in the literature.

In a transcription context associated with a modeling M, the decoding module D ≡ DT

becomes
DT : H ∗ → Y ∗

M(x) 7→ (DT ◦M)(x) = ŷ (2.25)

and therefore estimates a sequence ŷ ∈ Y ∗ as close as possible to the real sequence y.
Classical options for the decoding module DT are greedy search (Germann, 2003) or beam

search decoding (Freitag and Al-Onaizan, 2017) that are designed to estimate the most
probable sequence given an hidden representation likeM(x).

2Actually, recognition is a specific and constrained case of transcription that aims to predict one-to-one
correct symbol while transcription, more generally, aims to reflect a correct content (as a semantic concept),
which is more flexible than per-symbol prediction.
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emiss
ion 1

emission 2

Figure 2.10: Transcription task overview: an emission x of a message m is processed by a model
M prior to the estimation ŷ of a second and symbolic emission y thanks to a decoder DT.

Alignment/Synchronization
Alignment − or synchronization − is the task that consists in finding the precise correspondence
between several emissions of a message. The events to tie, hence, share a common underlying
information but differ in their respective emissions due to different modalities and/or expressivity.
Concretely, from two emissions x ∈ X ∗and y ∈ Y ∗ of the same message m, it is expected to
retrieve the optimal path π∗ ∈ Π(X ∗,Y ∗) (and its similarity score A∗ ∈ R) between them.
The Figure 2.11 illustrates the philosophy of this task.

According to its Latin etymology linea − meaning line or string − the word “alignment”
intrinsically carries the idea to draw a line between objects or concepts and, by doing so,
mapping them out. Synchronization is the specific case of alignment for which time is involved
in the process, i.e., when linking the different events requires and is done with a temporal
reference − a timeline. For such cases, one can refer synonymously to both alignment and
synchronization terms, as it will be done in the rest of the writing.

In this thesis, more specifically, forced alignment problems are tackled, as finding the best
path ensures that none of the events to align is missed. Indeed, the above-mentioned constraints,
i.e., Eq. (2.20), Eq. (2.21) and Eq. (2.22), make sure that each event in the sequence y has at
least one corresponding event in the other sequence x (admitting that M ≤ T otherwise some
symbol from y would be left out). Many alignment issues actually deal with forced alignment.

In such a context associated with a modelingM, the decoding module D ≡ Dπ becomes

Dπ : H ∗ × Y ∗ → Π(X ∗,Y ∗)
(M(x),y) 7→ Dπ (M(x),y) = π̂∗ (2.26)

and therefore estimates an alignment path π̂∗ as close as possible to the true optimal path π∗.
As a reminder, the modeling function M shares a common role between transcription

and alignment: to encode the input data x into a more relevant and exploitable hidden
representation before decoding. This function has been implemented with multiple approaches
over the years that will be exposed in the upcoming chapter covering mathematical essentials.
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emission 2
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ion 1

Figure 2.11: Alignment task overview: an alignment path π̂∗ between two emissions x and y
of a message m is estimated through a modeling functionM and a mixed decoder Dπ.

2.3.2 Transcription algorithms

In this section, the wide variety of transcription algorithms are presented starting from general
then audio-related transcriptions and with a final emphasis on the voice transcription tasks.
Some of the mentioned examples are shown in Figure 2.12.

General transcription
There are many applications of transcription algorithms in various fields such as Computer
Vision (CV) or Natural Language Processing (NLP) .

Concrete examples are the optical recognition of characters (Srivastava et al., 2022) or
handwriting digits (LeCun et al., 1989) in images, or address numbers from street views
(Goodfellow et al., 2014).

From videos, one can attempt to transcribe sign language (Bantupalli and Xie, 2018) or
identify movements in sports (Cust et al., 2019), which are special cases of automatic gesture
recognition (Wu and Huang, 1999).

Through their application in studies of texts and languages, transcription algorithms also
have their impacts in NLP (Dister et al., 2009). One core domain is Machine Translation
(MT) which proceeds to text-to-text predictions by automatically translating content from a
source language to a target language (Stahlberg, 2020).

Audio transcription
The audio domain, closer to this work, also requires transcription algorithms for diverse tasks.
Besides speech/singing recognition, which are discussed below, a main research objective is to
recover symbolic music (e.g., music sheet) from audio recordings.
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7 3 4 6 1 

4C5 8D5 8E5 8F5 8G5 8A5 8B5 | 
4C6 4A5 4E5 4F♯5 |  

Hello, reader!

Figure 2.12: Examples of transcription tasks: (a) handwritten digits recognition (LeCun et al.,
1989); (b) Optical Music Recognition (OMR) applied to the first music score scan published
by Prerau (1972); and (c) a typical voice recognition scenario.

This includes notes/main melody estimation for singing voice (Rigaud and Radenen,
2016), instrument (Abeßer and Müller, 2021) or over the global piece (Bittner et al.,
2015). Others topics are chord identification (Jiang et al., 2019), drums transcription (Jacques
and Roebel, 2019) or even several of these objectives at the same time (Ryynänen and
Klapuri, 2008).

In the field of Optical Music Recognition (OMR), music scores are to be recognized inside
images from high quality to highly deteriorated, such as pictures or scans of formatted scores
(Calvo-Zaragoza et al., 2017) or handwritten ones (Baró et al., 2019).

Voice recognition
The voice community has heavily relied on recognition algorithms, and this thesis inherits from
this research that can be traced back to the 1970s (Velichko and Zagoruyko, 1970) and
remains today an active field of investigations (Liu et al., 2023). In the long quest to adapt daily
experiences and knowledge on human-human interaction to human-machine communication,
speech and singing recognition systems have played a crucial role in the development of, e.g.,
vocal assistants (Michaely et al., 2017).

Automatic Speech Recognition (ASR) is the task dedicated to retrieve the spoken content in
a speech recording. Automatic Lyrics Transcription (ALT) is the task dedicated to retrieve the
sung content in a singing recording. As they are by essence extremely close, ASR algorithms
serve as basis and are usually adapted to ALT. However, due to the more challenging nature of
singing voice (cf. section 2.2.3 ), ALT performances are far below the ones reported on ASR.
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Hello, reader!
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0 0 0 0 0 0 0 0 0 0 0

G 0 1 1 1 1 1 1 1 1 1 1 1

G 0 1 1 1 1 1 1 1 2 2 2 2

A 0 1 2 2 2 2 2 2 2 2 2 3

T 0 1 2 2 3 3 3 3 3 3 3 3

C 0 1 2 2 3 3 4 4 4 4 4 4

G 0 1 2 2 3 3 4 4 5 5 5 5

A 0 1 2 3 3 3 5 5 5 5 5 6

hello reader

Figure 2.13: Examples of alignment tasks: (a) biological sequences alignment based on
Needleman and Wunsch (1970)’s algorithm; and (b) a typical voice alignment scenario.

At the core of the scientific content defended in this thesis, the speech and singing recognition
algorithms, especially relying on deep learning techniques, are explained in the next chapter.

2.3.3 Alignment algorithms

Similar to voice transcription, the sequence alignment algorithms are not unique to speech or
singing processing. In fact, several research communities in the 1970s were facing the same
need to find the optimal alignment path between sequences of several types and, as a result
of their independent yet close investigations, similar algorithms were (re)discovered almost
simultaneously. Some of the mentioned examples are shown in Figure 2.13.

General alignment
Telecommunications were the first field to benefit from a solution to sequence alignment when
Viterbi (1967) introduced the fundamentals of his forward-backward decoding algorithm,
which has become since then a core reference on all alignment systems and beyond (Ramasso
et al., 2007). Many authors still refer to the “Viterbi’s algorithm” or “Viterbi’s decoding”.
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In bioinformatics, alignment systems have been widely used to arrange sequential data
such as sequences of DNA, RNA, protein, amino acid, or equivalent through the work of
Needleman and Wunsch (1970). The alignment of biological sequences have allowed to
study their homology and identify regions of (dis)similarity between them. With such precise
information, it has been possible to study gene expression (Aach and Church, 2001) and
enhance shared structural patterns highlighting, e.g., consequences of evolution, existence of
common ancestor or effects of mutations (Ng and Henikoff, 2001).

In the broader scope of time series manipulation (Folgado et al., 2018), such alignments
algorithms have been used to compare such series leading to human activity analysis (Machado
et al., 2015) or on-line secure validation of handwritten signature (Xia et al., 2018).

Sequence alignments are also found in Natural Language Processing (NLP) with the example
of bitext word alignment that consists in retrieving, given a text and its translation in another
language, the translation relationships among the words (Brown et al., 1993).

Audio alignment

Alignment challenges were also studied in the audio literature. Synchronization and performance
comparisons between musicians (or singers) can be achieved via audio-to-audio alignment
(Kirchhoff and Lerch, 2011).

Audio-to-score alignment, which deals with mapping a music score and an associated audio
recording, is also a well-known research problem (Simonetta et al., 2021), and can be used to
analyse how a given performer (musician/singer) enacts a symbolic score. Its real-time variant,
referred to as score following (Cont, 2009), can lead to on-the-fly page turning during a live
performance (Arzt et al., 2008) or be the starting point towards adaptive and automatic
accompaniment (Cont et al., 2012; Raphael, 2001).

Voice alignment

This thesis is primarily concerned with the alignment between audio recordings featuring voice
and symbolic sequences. Automatic Speech Alignment (ASA) is the task dedicated to align a
symbolic sequence with an associated speech recording. Automatic Lyrics Alignment (ALA) is
the task dedicated to align a symbolic sequence with an associated singing recording.

ASA (resp. ALA) systems have been systematically built upon the recent advances on ASR
(resp. ALT) − therefore, ASA and ALA are also based on similar models and ALA still faces
more challenges than ASA because of the complexity of singing voice.

The scope of these voice-related paragraphs remain voluntarily limited to a simple introduction
of voice recognition/alignment as the next chapter will extensively detail the technical background
and design choices for their practical implementations − especially section 3.3 for legacy
approaches and section 3.4 for deep learning-based strategies.
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Section summary − Transcription and alignment tasks

Given a message m characterized by two emissions x and y with different modalities
and/or expressivity,

• Transcription is the task aiming at predicting ŷ − an estimate of y − from x;

• Alignment is the task aiming at mapping at least one dimension of each sequences
x and y through π̂∗ − an estimate of the optimal path between them.

Sequence transcription and alignment problems arose in many literature and have been
concerned with various objectives in audio and voice processing. They follow a similar
two-stage architecture made of a modeling function M applied on x and a decoding
module D specific to each task allowing the final predictions.

2.4 Applicative motivations of voice alignment

The central text-to-voice alignment problem, which historically emerged in the late 1970s,
originated from a bottleneck in the speech recognition community: the need to automatically
segment voice recordings into small labelled excerpts (i.e., pairs of audio and their associated
text), with the aim to build larger corpora than those available at that time. Ever since,
the synchronization of a voice signal with its corresponding text has known many practical
applications for the entertainment industry or the general public such as audio indexing via
text, automatic subtitling or karaoke generation (Fujihara and Goto, 2012).

In this short section, the applicative motivations presented in this thesis are briefly mentioned
to give a global overview on the launched initiatives and scientific and technological cooperations.
The Chapter 7 will be dedicated to their practical accomplishment.

• Concatenative phonetic synthesis

As mentioned, phonemes are the building blocks of voiced languages, from syllables to
words and sentences etc. In the context of concatenative synthesis − a specific strategy
for Text-to-Speech (TTS) − a target text is decomposed into its corresponding phonemes
and audio is generated by selecting in an available dataset the most relevant voice samples
associated with each phoneme and their surrounding context (usually, succession of two
phonemes, i.e., biphones, are used). Voice-to-phoneme alignment is prominent as the
reference voice recordings needs to be aligned very precisely so that chosen regions for
a given biphone make sense. The alignment algorithms of this thesis are applied to the
alignment of new voices for ISiS3. See section 7.1 for further details.

3Ircam Singing Synthesis: https://forum.ircam.fr/projects/detail/isis/.

https://forum.ircam.fr/projects/detail/isis/
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• Production strategies of speech attitudes

Humans are clearly able to communicate social intentions when interacting with one
another. In the context of such expressive speech, conveying noticeable social attitudes,
the synchronization of audio with phoneme sequences allows group statistics between
speakers regarding their speech prosody modulations and phonetic structure changes
over time − a major step forward uncovering the interactional properties beyond speech
prosody. See section 7.2 for further details.

• Musicological analyses of singing voice style

Singers, very much like speakers, convey emotions and use deliberate effects to integrate
expressivity in their performances. The study of singing style − i.e., these production
strategies at play in a singer’s performances defining their very own artistic identity − is of
great interest for musicologists eager to understand the artistic choices made by a singer.
The automatic voice alignment algorithms developed in this thesis − both for syllables and
notes − fully inscribe themselves in such musicological research as they highly simplify
tedious tasks traditionally done manually and allow exploring in details, e.g., rythmic,
articulation, or multi-modal gesture like melisma. To this aim, a musicological pipeline
for singing voice style analysis based on neural voice processing and alignment has been
developed in the ARS project and benefit from this thesis research. See section 7.3 for
further details.

• Perspectives

Finally, some ongoing/future applications are mentioned in section 7.4 , two of which are

– Automatic pre-segmentation of large corpora like turning an audiobook into small
coherent pairs of audio and text, which is possible thanks to a collaborative work
dedicated to a linear memory decoding algorithm allowing to alignm very long audio
recordings, e.g., full audiobooks or lengthy music playlists and their transcripts;

– Joint singing voice separation and alignment so that both tasks can help each other
as suggested by recent literature.

Section summary − Applicative motivations of voice alignment

Several applications of voice alignment motivates the research in this thesis. Phoneme-
level alignment paves the way for singing concatenative synthesis and understanding
the production strategies involved in speech attitudes. Word-level alignment, which is
the standard case study, is also of high interest, especially when applied on very long
audio recordings. Coupled with note alignment, it greatly simplifies tedious and time-
consuming processes required in musicological analyses.
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2.5 Context and applicative motivations in a nutshell

Chapter summary − Context and applicative motivations

In this chapter, I exposed the key concepts to carry out voice analysis research, with a
focus on voice alignment and its applications. Based on human communication theory, I
introduced the two modalities at the heart of my research: symbolic sequences and voice.
Sequences inherit from a long history of writing languages and require the existence of an
alphabet of characters A − like the Latin alphabet Aℓ or note alphabet A♩. From a signal
processing perspective, I presented two relevant representations to analyse and synthesize
voice: (1) the log-mel-spectrogram − capturing all perceptual features; and (2) the spectral
envelope − characterizing well formants and phonetic content. Finally, I defined the
closely related transcription and alignment tasks and mentioned the thrilling applications
offered by synchronizing voice with symbols, including the ones this thesis is concerned
with, e.g., musicological studies, production of vocal attitudes, notes alignment, etc.



Chapter 3
Scientific background for voice alignment

“Nothing in life is to be feared, it is only to be understood.
Now is the Time to understand more, so that we may fear
less.”

− Marie Skłodowska-Curie

This chapter aims to provide a comprehensive review of the mathematical concepts, technical
tools and scientific strategies for designing voice-to-symbol synchronization systems and the
practical implementations of their associated acoustic models and decoding modules.

Upon delving into the essentials of deep learning in section 3.1 , which form the foundation
for the rest of this thesis, and providing a formalization of the voice alignment problem in section
3.2 , the various options found in the literature for the acoustic modeling and the decoding
module are presented. To this aim, the section 3.3 is dedicated to the traditional approaches
and notably introduces the Dynamic Time Warping (DTW) algorithm as a reference decoding
module and retraces the emergence of probabilistic acoustic models. Following recent and
promising trends, the section section 3.4 focuses on the latest deep learning techniques applied
to voice alignment with an exploration in greater depth, in section 3.5 , of the Connectionist
Temporal Classification (CTC) which, given its flexibility, has been chosen as the main strategy
to perform voice-to-symbol alignment in this thesis. This chapter is summarized in section 3.6 .

6
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3.1 Deep learning background

The emergence of deep learning approaches, and especially deep neural networks, has initiated
a breakthrough in many scientific fields. For a given task at hand, a deep learning-based model
can specialize “itself” by automatically targeting and exploiting the most relevant task-related
information in the data, thus outperforming legacy methods that were rather dependent on fixed
prior knowledge. Speech and singing voice communities are no exception as recent analysis and
synthesis systems have been built upon deep learning techniques, increasingly replacing former
approaches, while denoting major progress in comparison to previous literature.

This section reviews the motivations and the mathematical notions necessary to carry out
research using deep learning as a tool for voice processing tasks (i.e., voice transcription and
alignment). A brief contextualization on data-driven systems serves as basis to further introduce
general machine/deep learning concepts, notably deep neural networks and their architecture
design. For an extensive explanation of deep learning, one can refer to (Goodfellow et al.,
2016), the pointing reference of this section.

3.1.1 Data-driven approach

Deep learning is the computer science field dedicated to the development of algorithms capable
to learn specific and relevant patterns from data according to some objective. These algorithms
are known as as data-driven systems as they exploit the observation of a wide quantity of data.

In opposition to classic systems − in the denomination of Humphrey et al. (2012) − deep
learning models do not require expert prior knowledge for defining hand-crafted 1) features
and/or 2) prediction rules from them. Instead, and from the data themselves, such a system can
manipulate complex abstractions, automatically extract relevant features and make predictions.
Frequently, instead of the raw data, compact and interpretable hand-crafted representations,
e.g., Time-Frequency Representations (TFR) for audio, are computed at the very beginning of
the system − but are eventually turned into learned features by the model.

Benefiting from greater computational power and the latest improvements in hardware and
software infrastructures, deep learning-based systems have shown impressive generalization
properties that have lead to significant advances in many states of the art, e.g., computer
vision (Loiseau et al., 2021; Voulodimos et al., 2018), natural language processing (Otter
et al., 2020) and audio domain (Briot, 2022; Douwes et al., 2023; Purwins et al., 2019).

3.1.2 Essentials

In this thesis, feature extraction and task-oriented prediction rely on the training of Deep Neural
Networks (DNN) in a supervised learning scenario, obtaining their parameters by optimization
of a loss function via mini-batch gradient descent. These core concepts are gradually developed.
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Artificial neuron
A whole category of learning models have been vaguely inspired from the human brain and
specifically from a simplified version of its functioning centered around the notion of neuron.
Let X ∗ and W denote some feature space definition ensemble with no a priori.

In imitation of a biological neuron, an artifical neuron receives an input excitation x ∈ X ∗

to which it is more or less sensitive. The reactivity of the neuron to the excitation is embodied
by weighting parameters w ∈ W and a response function f : W × X ∗ → R that applies
some transformation to x according to w. By electrical analogy, if the resulting “potential”
f(w,x) ∈ R is sufficient, e.g., higher than a threshold b ∈ R, then the neuron is said to be
activated and can transmit information to the next neuron, and so on. This neural activation,
which is intrinsically non-linear, is simulated by an activation function σ : R→ R.

Summing up, an artificial neuron predicts an output ŷ ∈ R from inputs x ∈X ∗ following

ŷ = σ (f(w,x) + b) (3.1)

and weights w and bias b are referred to as parameters of the neuron.

Non-linear activation
The non-linearity introduced in a neural response is of utmost importance in deep learning as it
is the core reason a neuron can represent (and learn) complex relationships between its outputs
and inputs.

There is a wide range of options for choosing the activation function σ, three of which will
be used in this manuscript:

• The Rectified Linear Unit (ReLU) introduced by Maas et al. (2013) and defined ∀x ∈ R
as

ReLU(x) = max(0, x) (3.2)

• The hyperbolic tangent, smoother than ReLU and with a bounded output range [−1, 1],
such that ∀x ∈ R,

tanh(x) =
ex − e−x

ex + e−x
(3.3)

• The softmax function, which returns a probability distribution (hence a bounded output
range [0, 1]) from the inputs it receives, i.e., ∀x ∈ RT , softmax(x) ∈ RT with

softmax(x)t =
xt∑T−1
t=0 xt

(3.4)

where the t ∈ {0, . . . , T − 1} subscript denotes the tth element of its associated vector.
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Deep Neural Networks (DNN)
Eq. (3.1) represents the response of a neuron to an excitation. In practice, there is hardly
ever a single neuron but rather a layer of neurons simultaneously excited. For a given layer
ℓ composed of n ∈ N neurons, the previous formalism remains identical when considering the
weights of the entire layer Wℓ ∈ W n as the ensemble of all neurons’ weights, their associated
response function f, and the outputs ŷℓ ∈ Rn and bias bℓ ∈ Rn as vectors instead of scalars:

ŷℓ = fℓ(x) = σ (f(Wℓ,x) + bℓ) . (3.5)

The weights Wℓ and bias bℓ are the parameters of the neural layer and can be changed to
orientate the outputs ŷℓ towards certain values, as it will be further detailed.

In the human brain, layers of neurons are inter-connected to one another, entangled in a
intricate network, and propagate information step by step up to specialized regions of the
brain. Artificial Neural Networks (ANN) follow the same approach as they are defined by
a succession of layers, each composed of several neurons. Deep Neural Networks (DNN) are
artificial networks sufficiently deep, that is composed of “many” layers − although there is no
concrete consensus on how much “many” should be.

Layer after layer, more and more parameters and nonlinearities allow increasingly complex
modeling of the data x towards the final prediction ŷ. For ℓ = 0, . . . , l− 1 indexing the layers,
the prediction of the DNN, which is the output last layer, is expressed as:

ŷ = (fl−1 ◦ . . . ◦ fℓ ◦ . . . ◦ f0)︸ ︷︷ ︸
=fΘ

(x) = fΘ(x). (3.6)

where Θ refer to all trainable parameters {Wℓ,bℓ}ℓ∈[0,l−1] − often simply called weights through
misuse of language. The neural prediction can then be supervised, i.e., compared to a reference.

Supervised learning
Supervised learning is a paradigm in which data are annotated and these ground truths are
used as references to evaluate and update the weights and bias of deep neural networks. Given
a dataset D of labeled input-output pair (x, y), the label y associated with representation x is
what is expected to be predicted by the final output ŷ = fΘ(x) of a neural model.

It is desired that fΘ perfectly fits an unknown function f ∗ that fully reports on the connection
between the labels y and the representations x, i.e., f ∗(x) = y. This is barely possible in
practice as the design choices for fΘ typically induce inductive bias preventing from exactly
matching f ∗. The universal approximation theorem, though, states that any neural network
properly configured can represent a whole family of functions with only few hypotheses on the
activation function of each neuron (verified by, e.g., ReLU, tanh and softmax). Deep neural
networks are therefore good candidates for approximating via fΘ the underlying function f ∗.
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This research is exclusively based on supervised learning but systems can also rely on
semi-supervised learning (Zhu, 2005) when only some part of the data are annotated or even
unsupervised learning (Barlow, 1989) when no annotation is accessible. Supervised learning
is heavily dependent on the quality of the annotations as they are, by nature, considered as
references to predict. Wrongly labeled pair can therefore induce severe errors. Annotation
checking is in itself an activate research field in deep learning (Meseguer-Brocal et al.,
2020a; Ridzuan and Zainon, 2019). In this work, however, all annotations are considered
correct even if manual inspections or automatic checking of the labels are not systemically
done.

Loss function

In order to determine to which extent the model prediction fΘ is a relevant approximation
of f ∗, and tune its parameters towards a better fit if need be, a quantitative measure of the
“proximity” between f ∗ and fΘ is essential.

This is done by defining a loss function L (Θ) − or cost function, objective function or
error function − which compares the neural prediction to the ground truth for each pair (x,y)
contained in the dataset D given some distance d (not necessarily a distance in the mathematical
sense). It reads:

L (Θ) =
∑

(x,y)∈D

d [ŷ||y] =
∑

(x,y)∈D

d [fΘ(x)||y] . (3.7)

The choice of the cost/distance d depends on the task at hand. Several distances will be
manipulated in this manuscript, as a core part of this research is precisely dedicated to emphasize
a correct combination of cost functions. These will be introduced whenever necessary.

Optimization

The goal of a deep learning algorithm is to minimize the value of its associated loss function
L (Θ) as the smaller the loss, the better fΘ fits the true function f ∗ to uncover. Concretely,
one is looking for the theoretical optimal parameters Θ∗ such that

Θ∗ = argmin
Θ

L (Θ). (3.8)

This is an optimization problem which can be solved thanks to numerical methods allowing
to progressively update the parameters Θ while diminishing the loss function − with the aim
to eventually reach sufficiently adequate weights and bias (i.e., finding a local minimum close
enough to the global minimum).
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Back-propagation & gradient descent
Back-propagation algorithms (Rumelhart et al., 1986) are commonly used to perform the
optimization of a model. Their philosophy is to “learn from made mistakes”.

To do so, given the current weights and bias Θ, the loss value L (Θ) is computed. Then, its
partial derivate or gradient with respect to the model’s parameters is calculated, i.e.,

∇ΘL (Θ) =
∂L

∂Θ
(Θ). (3.9)

As a positive gradient indicates the direction augmenting the error for parameters Θ, the
opposite of the gradient is the direction to follow for decreasing the loss.

The deep learning community has extensively relied on gradient descent to update step by
step the parameters Θ in this direction. The kth modification of the weights and bias is

Θk ← Θk−1 − λ∇ΘL (Θk−1). (3.10)

This is known as a training step in which λ − the learning rate − regulates the strength of the
update. Training deep neural networks consists in successively applying this procedure.

More sophisticated and adaptive gradient descent algorithms have been proposed in order
to both speed up convergence and avoid local minima. An efficient approach is to not only
consider the gradient, but also its momentums (e.g., mean and variance) in the update rule.
This is the strategy employed by the ADAM optimizer (Kingma and Ba, 2014). Ubiquitous
in the literature, it will be systemically used for training in this work.

Minibatch gradient descent

In practice, the datasets D = {(x(i),y(i))}i are too large to allow computation of the loss value
as expected in Eq. (3.7), given the limited resources and available memory on modern machines.

An alternative is to rely on minibatch gradient descent to compute an approximate of the
loss and its gradient. Instead of considering the whole database D , a few numbers of samples
(i.e., a minibatch) are randomly selected and the loss function is calculated only on this subset
of examples. The gradient can be computed and the weights and bias updated following above-
mentioned procedure. The size of the minibatch − the batch size − is a key hyperparameter
for training a model, very much like the learning rate.

Model generalization
Measuring the loss value during the training procedure does not indicate the generalization
properties of the model, i.e., its capacity to predict coherent results when applied to new data
outside of the dataset D .
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Indeed, the network may become too specialized on the data seen during training and unable
to deal with data outside of this scope. In order to prevent such an over-fitting, the dataset D
is generally split into two subsets referred to as the training set and the validation set.

The training set is used to update the model parameters via minibatch gradient descent. The
validation set, containing different data, ensures that the model still generalizes by monitoring
that the validation loss (or a validation metric) keeps decreasing alongside the training loss.
The training procedure can be interrupted as soon as over-fitting is dedected: this is known as
early stopping.

Another prevalent option to counter the appearance of over-fitting is dropout (Srivastava
et al., 2014), which consists in randomly deactivating several neurons between two layers ℓ
and ℓ + 1. This simple strategy allows independent and efficient joint learning of the many
sub-network composing the whole network.

3.1.3 Architecture design

Previous section presented Deep Neural Networks (DNN) and their training to optimize the
parameters Θ defining an approximative, yet robust, predictive function fΘ. According to Eq.
(3.6), this learned function can be decomposed into many successive layers of neurons, f ℓ with
ℓ ∈ {0, . . . , l − 1}. Among the available options to design the architecture of a neural layer,
each associated with a different fℓ, the ones relevant to this thesis are exposed.

Dense
A dense layer − or fully connected layer − connects all neurons to the input representations
with a simple multiplicative weighting:

ŷℓ = fℓ(x) = σ (Wℓx + bℓ) . (3.11)

Dense layers are the building block of Feed-Forward Neural Networks and remain often used
as final layer in many practical cases.

Convolutional Neural Networks (CNN)
Convolutional Neural Networks (CNN) (LeCun et al., 1995) exploit convolution operation −
as presented in Eq. (2.12) or Eq. (2.13) according to data dimension −, to extract abstractions
from filtering the data. The learnable weights Wℓ constitute the convolution kernel, such that

ŷℓ = fℓ(x) = σ (Wℓ ∗ x + bℓ) . (3.12)

Frequently, a single convolutional layer ℓ is multi-channel, meaning that multiple kernels are
learned and applied to the same input x, thus resulting in several filtering of the data.
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Due to the nature of the convolution operation, the dimensions on which the kernel(s)
is(are) slid across are susceptible to change. Padding of the input data can be done before the
convolution to keep the(se) dimension(s) identical. This is systematically done in this thesis.

Recurrent Neural Networks (RNN)
Recurrent Neural Networks (RNN) (Rumelhart et al., 1986) are specifically designed to
process sequential data by introducing internal memory and dependence between components
of the prediction. Denoting x = {x(0), . . . ,x(t), . . . ,x(T−1)} and ŷℓ = {ŷ

(0)
ℓ , . . . , ŷ(t)

ℓ , . . . , ŷ(T−1)
ℓ },

a typical recurrent layer computes:

∀t ∈ {0, . . . , T − 1}, ŷ(t)
ℓ = σ

(
Wy

ℓ ŷ
(t−1)
ℓ + Wx

ℓx(t) + bℓ

)
. (3.13)

The learnable weights are thus separated into recurrent weights processing both current input
vector Wx

ℓ and previous internal output state Wy
ℓ . If causaliy is not a key requirement for the

foreseen application, one can rely on bidirectional recurrent layer (Schuster and Paliwal,
1997) by considering Eq. (3.13) for the reserved input sequences xr = {x(T−1), . . . ,x(0)} and
concatenate causal and anti-causal predictions.

Well-known drawbacks of basic RNNs are the vanishing and exploding gradients problems
induced by their recurrences (Bengio et al., 1993). As a result, RNN cells with internal
memory reset were introduced to specifically address these limitations. The Long Short-Term
Memory (LSTM) (Hochreiter and Schmidhuber, 1997) is one of the widely used option.

Attention mechanism
Attention mechanisms allow to learn the relative importance between the components of two
sequences and integrate this information into a third sequence. They were introduced by
Bahdanau et al. (2014) for the machine translation task, a problem for which the structure
between input and output sequences may differ and a general context (e.g., at the sentence
level) can be highly beneficial to learn the structural changes.

A Bahdanau attention (also known as additive attention) layer, therefore, learns a weighting
between a query vector q ∈ RT×E and a key vector k ∈ RM×E and generates an attention context
from a value vector v ∈ RM×E′ . It reads, with T the transpose operator,

ŷℓ = fℓ(k,q,v) = softmax
(
qWℓkT + bℓ

)
v. (3.14)

Note that the query and the key must share their last dimension E and that the key and the
value must share their first dimension M . In practice, the key and the value are often equal
k = v. Self-attentions are also considered when k = q = v. Architectures relying partially
− or even solely − on (self-)attention mechanisms, e.g., Transformer (Vaswani et al., 2017),
have become popular design choices for DNN.
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Figure 3.1: A generic deep neural network. Inputs x are turned into predictions ŷ thanks to
the modeling function f Θ whose parameters Θ are updated via gradient descent on the loss
function L measuring the proximity between ŷ and ground truth y.

Batch Normalization (BN)

Batch Normalization (BN) is a method proposed by Ioffe and Szegedy (2015) to fasten the
training of Artificial Neural Networks (ANN) and make this procedure more stable. It consists
in normalizing the inputs received by a layer by re-centering and re-scaling of its values.

Section summary − Deep learning background

With the emergence of large annotated datasets D = {(x(i),y(i))}i and progress in
computer infrastructures, Deep Neural Networks (DNN) were shown to be worthy
candidates to estimate the underlying function describing the relationships between
representation-label pairs {(x(i),y(i))}i with a non-linear, Θ-parameterized function fΘ.
This function can be implemented via a succession of convolutional, recurrent, attention
and/or dense layers connected with non-linear activations. The weights and bias Θ of the
model are typically obtained through the progressive optimization, i.e., minimization, of
a loss function L (Θ) by minibatch gradient descent under ADAM update rule. The
Figure 3.1 proposes a visual summary of all of these notions.
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Figure 3.2: The voice alignment problem − finding the best time-symbol correspondence
between two message emissions from audio (log-mel-spectrogram) and symbolic (texts, notes)
domains.

3.2 Voice alignment problem statement

In this short section, the voice alignment problem is clearly stated, with an emphasis on the
preparation of the voice data.

3.2.1 Formalization

The Figure 3.2 depicts how the generic sequence-to-sequence alignment can be applied to the
specific voice alignment problem.

In that case, data to synchronize represent an audio recording featuring voice with a temporal
dimension of interest, and a symbolic sequence of characters (text alignment) or notes (melody
alignment). The goal, in aligning these sequences, is to map each label (or symbol) to an instant
and a duration or, which is equivalent, a start and end time markers.

The modeling function M aims to generate a timestamped encoding of the audio, i.e.,
it creates a hidden representation which conserves a temporal axis, essential for temporal
alignment. As this model processes audio data only and aims to extract relevant voice-related
parameters, it is often referred to as acoustic model by the speech community (Hinton et al.,
2012). The resulting latent code, or timestamped encoding M(x), usually goes by the name
of posteriorgram or saliency map so that notation P ≡ M(x) will be chosen for such hidden
encoding.
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The decoding module, Dπ is generally based on Dynamic Time Warping (DTW) or equivalent.
This work, however, will rely on a specific decoding module as it uses a specific framework,
known as Connectionist Temporal Classification (CTC) presented in a later section.

3.2.2 Voice data

Voice representations

In this work, the inputs x of all neural network are 2-D Time-Frequency Representations (TFR)
such as (log-mel-) spectrograms or spectral envelope as introduced in section 2.2 . They are
accounting for the oral modality of a message communicated through voice (see section 2.1.3 ).

Their temporal axis is indexed by t ∈ {0, . . . , T − 1} where T is the number of computed
frames. Their frequency axis is indexed by f ∈ {0, . . . , F − 1} where F is the number of bins.

Symbolic representations

The supervised labels y a neural network aims to predict are sequences of symbols belonging
to an alphabet A of size L. In order to manipulate and process sequences of numbers, each
element of A is mapped to a unique figure of the ensemble A′ = {0, . . . , L− 1}.

An one-hot encoding of the labels is also possible to turn them into a 2-D representation:
for a symbol s ∈ A′ a vector [δ0s , . . . , δ

L−1
s ] is generated with δks being the Kronecker delta

returning 1 when s = k and 0 otherwise, and such vectors can be concatenated for each label.
The following examples illustrates these mappings, i.e., the sequence-to-number conversion

and the final one-hot encoding:

y = b a ø a b ≡ 1 0 L-1 0 1 ≡


0 1 0 1 0
1 0 0 0 1
0 0 0 0 0
...

...
...

...
...

0 0 1 0 0

 .

The labels account for the symbolic modalities of a message communicated in a voice signal.
As defined in section 2.1.2 , the Latin alphabet Aℓ will be used for characters and the note
alphabet A♩ for melodic lines.

Their sequential axis is indexed by m ∈ {0, . . . ,M − 1} where M is the length of the label
sequence. Their encoding axis, if present, is indexed by l ∈ {0, . . . , L− 1} with L the alphabet
size.
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Section summary − Voice alignment problem statement

Voice alignment systems are based on a two-step principle made of:

• an acoustic model M generating a timestamped encoding P ≡M(x) of the audio
voice recordings x;

• and a decoding module Dπ mapping the timing information from P to the target
symbols to synchronize y.

Concretely, inputs x ∈ RT×F are Time-Frequency Representations (TFR) and labels
y ∈ {0, . . . , L−1}M×1 or {0, 1}M×L are symbolic sequences such as texts (lyrics, syllables,
phonemes) or notes according to an alphabet A of size L.

3.3 Traditional approaches to voice alignment

Over the years, the forced alignment problem has been implemented with multiple strategies.
In this section, an historical literature review presents the traditional approaches that have been
used to tackle voice alignment. The decoding module Dπ involved in an alignment system has
been quite systematically based on Dynamic Time Warping (DTW) inheriting from sequence-
to-sequence similarity research. The acoustic modelingM, however, has been built upon several
strategies from hand-crafted systems to the noteworthy emergence of stochastic approaches and
notably Hidden Markov Models (HMM).

3.3.1 Dynamic Time Warping (DTW)

A naive determination of the alignment, as defined by the optimal path from Eq. (2.23) and
illustrated in Figure 2.9, based on path exploration is usually intractable as there are too many
possible paths between the two sequences x ∈ X ∗ and y ∈ Y ∗. Indeed, as reported by
Garreau et al. (2014), the set Π(X ∗,Y ∗) contains all paths on a rectangular grid starting
from the northwest (0, 0) and ending at the southeast (T − 1,M − 1) corners. Its cardinality
defines the Delannoy numbers (Banderier and Schwer, 2005). In the case of an infinitely
large square grid (i.e., T = M and T → +∞), Torres et al. (2003) showed that:

#Π(X ∗,Y ∗) ≃
(
3 + 2

√
2
)T

√
πT

√
3
√
2− 4

. (3.15)

Despite being finite values, examples for T = 50 (1037 paths) and for T = 100 (1075 paths)
clearly points out the impossibility to calculate each path independently and keep the best one.
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In the early 1970s, researchers from various communities (Needleman and Wunsch, 1970;
Velichko and Zagoruyko, 1970; Vintsyuk, 1968; Viterbi, 1967) needed to solve the
sequence alignment problem but were confronted to this specific issue.

Interestingly, they all proposed a similar algorithm noticing that the best path could be
computed indirectly via Dynamic Programming (DP) techniques. As a result, this algorithm
was named Dynamic Time Warping (DTW) by speech specialists (Vintsyuk, 1968).

The core principle of DTW is that the optimal similarity measure between two sequences
can actually be obtained recursively, considering the sequence prefixes at intermediate indexes
t and m, that is x0:t = {x0, . . . ,xt} and y0:m = {y0, . . . ,ym}, respectively.

To this aim, an accumulative score matrix α ∈ RT×M is defined so that α[t,m] represents
the optimal alignment similarity between the prefixes x0:t and y0:m. The computation of α
involves the similarity measure S from Eq. (2.23), and the set of permitted gaps G between
successive states introduced in Eq. (2.22).

The classical textbook DTW algorithm (Itakura, 1975) allows insertions, deletions and
substitutions between the two sequences such that G = {(1, 1), (0, 1), (1, 0)}. The initialisation
steps and recursion rules for matrix α are therefore:

t = 0 ∀m α[0,m] =
m∑
k=0

S (x0,yk)

∀t m = 0 α[t, 0] =
t∑

k=0

S (xk,y0)

∀t > 0 ∀m > 0 α[t,m] = S (xt,ym) + max


α[t,m− 1].......

α[t− 1,m].......

α[t− 1,m− 1].

(3.16)

In the context of temporal alignment (i.e., t represents a time quantity), the matching
between the sequences may involve a strict temporal causality such that α[t,m] cannot depend
on α[t,m′],∀m′ ∈ {1, . . . ,m − 1}. In that case, the permitted transitions are reduced to
G = {(1, 0), (1, 1)}. It comes:

t = 0 ∀m α[0,m] =
m∑
k=0

S (x0,yk)

∀t m = 0 α[t, 0] =
t∑

k=0

S (xk,y0)

∀t > 0 ∀m > 0 α[t,m] = S (xt,ym) + max

{
α[t− 1,m].......

α[t− 1,m− 1].

(3.17)

At each iteration, local scores are accumulated and only the best prefix of the optimal path
is kept − this is known as the forward pass.
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The global optimal path π̂∗ between the sequences can be retrieved by backtracking the
retained transitions that occurred during the forward pass − this is known as the backward
pass. In the end, once all αs have been computed, the optimal alignment similarity is simply:

A∗ = α[T − 1,M − 1]. (3.18)

The DTW algorithm has found numerous applications in Music Information Retrieval (MIR)
tasks (Müller, 2007a) and audio alignment including melody search (Mongeau and Sankoff,
1990), music tracking (Arzt, 2016), score following (Dixon, 2005), audio matching (Müller
et al., 2005), beat tracking (Ellis, 2007) or version identification (Serra and Gómez, 2007).
In practice, the decoding module Dπ of a forced alignment system generally relies on DTW or
one of its variant.

3.3.2 Pioneer acoustic modeling

In the first stages of voice alignment research, in the 1980s, pioneering works were exploiting
hand-crafted strategies in order to force-align sequences to audio.

The synchronization of phonetic utterances to audio typically relied on (1) features extracted
from the audio thanks to signal processing techniques; and (2) domain knowledge rules for the
forced alignment step per se (Leung and Zue, 1984; Wagner, 1981).

Similarly, in the early appearances of score following in 1984 (Dannenberg, 1984; Vercoe,
1984), the alignment challenge was actually dealt with string matching techniques in real-time
instead of direct use of the audio stream or spectrograms, due to the limited computational
capabilities at that time.

3.3.3 Hidden Markov Models (HMM)

A key noteworthy progress in Automatic Speech Recognition (ASR) and, consequently, audio
alignment literature was the emergence of approaches based on probability theory during the
1990s (Grubb and Dannenberg, 1994; Ljolje and Riley, 1991; Placeway and Lafferty,
1996). The main motivation for these was the growing necessity to handle all different kinds
of uncertainties or unpredictable events in audio performances such as mispronunciation or
mistakes or skips, e.g., (Gupta et al., 2017; Nakamura et al., 2015).

Probabilistic approaches, therefore, tend to have better applicative flexibility than previous
pioneering works. Most of them have been based on generative probabilistic models whose
main assumption is that the audio recording has been generated by the events reported in the
sequences to align, e.g., the music score or the list of phonemes.

Maybe the major breakthrough in alignment research was the application of Hidden Markov
Models (HMM) to this task (Brugnara et al., 1993; Raphael, 1999; Vogel et al., 1996),
leveraging the progress made in ASR systems with these models.
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In the HMM framework, the events to align y = {y0, . . . ,ym, . . . ,yM−1} are manipulated
via probabilistic hidden states h = {h0, . . . ,ht, . . . ,hT−1} such that ∀t,ht ∈ y, that are not
directly observable, but are expected to explain the audio frames x = {x0, . . . ,xt, . . . ,xT−1}.

Determining the alignment between x and y through h, requires to solve an inference
problem, that is finding the most likely succession of events characterizing the audio. The
formulation of the inference mechanism appears as a comprise between two important quantities:
(1) a prior evolution of hidden states specifying, e.g., their temporal evolution; and (2) an
observation model, which measures a likelihood between audio observations x and the labels
from the sequence y through the hidden states h. The inference rule is expressed thanks to
Bayes’s theorem on conditional probabilities,

P(h|x)︸ ︷︷ ︸
inference computation

∝ P(x|h)︸ ︷︷ ︸
observation model

P(h).︸ ︷︷ ︸
prior evolution

(3.19)

Note that since the quantity P(x), which should be part of the inference formula, is numerically
independent of the hidden states to retrieve, it is usually dropped out of the computations.

As their name suggests, HMM assume the Markovian hypothesis, which stipulates that
the audio at frame t (i.e., xt) depends exclusively on its associated state (i.e., ht) and, more
drastically, that the sequence of states h is memoryless as well, such that

P(x|h) = P(x0, . . . ,xT−1|h0, . . . ,hT−1) =
T−1∏
t=0

P(xt|ht). (3.20)

This assumption is highly disputable but is widely accepted in practice as it allows the inference
mechanism to remain tractable all along.

The inferred values precisely correspond to the timestamped encoding of the audio such that,
according to Figure 3.2, M(x) = P(h|x), and a decoding algorithm Dπ (like Viterbi’s) can
be applied on it to force-align the true labels y to the audio x.

Extensive literature can be found on methods for designing coherent prior evolution of hidden
states P(h), e.g., in score following (Cuvillier, 2016; Cuvillier and Cont, 2014), as well
as defining robust observation models P(x|h). The later emission probabilities are typically
based on Gaussian Mixture Models (GMM) to compute a distance between prototypical and
true audio features (Cont, 2009; Ljolje and Riley, 1991; Placeway and Lafferty, 1996;
Raphael, 2006).

Such HMM-GMM aligners are ubiquitous in the voice alignment literature − e.g., (Duan
et al., 2013; Gong et al., 2015; Gorman et al., 2011; Hosom, 2009; McAuliffe et al., 2017;
Rosenfelder et al., 2017).
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Section summary − Traditional approaches to voice alignment

Dynamic Time Warping (DTW) − or Viterbi’s decoding − is a general sequence-to-
sequence alignment algorithm which constructs, recursively, an accumulative cost matrix
based on local distances and permitted transitions between the sequences (forward pass)
and retraces their alignment path from it (backward pass). In the light of its success,
DTW (or a close variant) is a common choice for the decoding module Dπ. The acoustic
modeling M, on the contrary, has known various implementations, notably through
Hidden Markov Models (HMM) coupled with Gaussian Mixture Models (GMM) that,
by their probabilistic nature, could handle uncertainties when modeling the sequential
structure of voice signals, despite assuming the disputable Markovian hypothesis.

3.4 Neural approaches to voice alignment

With the advent and success of deep learning in many fields − their data-driven approach
outperforming various states of the art −, an increasing number of audio and voice-related
tasks started adopting Deep Neural Networks (DNN) in their design. This is notably the case
of the Automatic Speech Recognition (ASR) community in the 2010s (Mohamed, 2014).

At first, DNN were integrated in hybrid systems in which they were coupled with Hidden
Markov Models (HMM) . In these dual DNN-HMM architecture, DNN had the role to overcome
the limitations of Gaussian Mixture Models (GMM) that were struggling to model complex data
with high dimensions (Mohamed et al., 2011). Then, end-to-end architectures were introduced
so that HMM were completely removed from the ASR systems. In doing so, voice acoustic
modeling was freed from the Markov assumption (Graves et al., 2013) and could benefit
from the DNN capacity to capture long-term relationships in the voice signals. In opposition to
earlier HMM-based models, end-to-end DNN-based systems are completely free from specialized
and often complex expert knowledge (Hannun et al., 2014). As a result, their data processing
pipeline, training and inference usage are much simpler to handle than traditional or specialized
approaches, yet not consistently better: the state of the art in lyrics transcription/alignment
does integrate expert knowledge (Gao et al., 2021; Gupta et al., 2020).

Given the proximity between voice recognition and voice alignment problems, the success
of DNN reported in the ASR literature motivated their progressive adoption for voice-to-text
synchronization. In such frameworks, the acoustic modeling functionM≡MΘ is parametrized
by neural weights Θ, and the resulting timestamped encoding, or posteriorgram, P =MΘ(x)
can be fed to the decoding module Dπ, always referring to Figure 3.2.

As explained in section 3.1 , the design of a training procedure implies the choice of loss
function L (Θ). Several approaches, based on different losses, for achieving forced alignment
with DNN have been proposed in complement to standard methods and are thus presented.
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3.4.1 Frame-wise classification

Early attempts in the deep learning-based voice alignment direction relied on an intuitive
strategy consisting in letting the model predict one label per time step and ensuring that the
correct symbol is effectively emitted at each instant. From this point of view, the alignment
challenge is a frame-wise classification problem.

In this regard, by predicting and supervising symbol emission at the frame level, both the
model outputs ŷ = MΘ(x) and the ground truth reference y must be of the same length as
the audio (i.e., M = T ), by means of duplicating all elements of the target sequence such that
the duplicated elements align with the audio. The loss function, as generally presented in Eq.
(3.7), to minimize for such a multi-category classification task, is based on a distance d known
as the Categorical Cross-Entropy (CCE) such that

L (Θ) =
∑

(x,y)∈D

d [ŷ||y] =
∑

(x,y)∈D

− ylog(ŷ) =
∑

(x,y)∈D

[
−

T−1∑
t=0

ytlog(ŷt)

]
. (3.21)

Although great performances are to be denoted with this strategy (Backstrom et al., 2019;
Kelley and Tucker, 2018), such training procedure calls for data in the form of paired audio
and already precisely time-aligned text. This is a major shortcoming since only few accessible
datasets provide that level of annotations, thus the data diversity and contexts seen by the
model is intrinsically limited − as the process of manual labelling is tedious and extremely
time-consuming.

Therefore, different approaches that could be trained with more widespread data, such as
paired audio and text without precise timing information − that are available for, e.g., Text-
to-Speech (TTS) algorithms −, were investigated.

3.4.2 Attention mechanism

Schulze-Forster et al. (2020) precisely developed a system permitting the alignment between
audios and their respective phonetic transcripts without requiring timestamps.

With the objective to isolate clean speech even in very noisy conditions, the authors proposed
an encoder-decoder architecture based on Bidirectional LSTM (Bi-LSTM) and integrating a key
attention mechanism (see section 3.1.3 ).

By taking both the audio x of length T and non-aligned sequences y of length M as inputs,
the learnable weights involved in the attention mechanism α ∈ [0, 1]T×M turned out to resemble
the accumulative score matrix intervening in the forward pass of the DTW algorithm (see section
3.3.1 ). An alignment path could thus directly be derived from α through a backward pass.

The similar procedure have been applied to singing voice, however, due to its more challenging
nature than speech (cf. section 2.2.3 ), the attention weights α needed to be constrained to
follow a monotonic path prior to any backward pass.
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The authors proposed to directly impose a DTW-alike progression in the attention weights,
thus introducing a new “DTW attention mechanism” (Schulze-Forster et al., 2021).

Summing up, voice-to-text alignment has been obtained as a positive side effect of voice
separation, minimizing during training a simple loss function L (Θ) measuring that the extracted
vocals were close to the true vocals by means of a classical L1 distance choice for d.

3.4.3 Connectionist Temporal Classification (CTC)

Another approach for achieving voice alignment without the need of hard-labelled audio-symbol
pairs was inspired from advances in end-to-end Automatic Speech Recognition (ASR) systems
with a specialized cost function known as Connectionist Temporal Classification (CTC) .

The CTC loss was initially introduced to train Recurrent Neural Networks (RNN) on un-
segmented data (Graves et al., 2006) and became, ever since, tremendously popular in the
speech recognition literature (Collobert et al., 2016; Graves and Jaitly, 2014; Hori et al.,
2017; Kim et al., 2017; Watanabe et al., 2017; Zhang et al., 2017).

Given some audio inputs x, a CTC-trained neural network MΘ generates a posteriorgram
P =MΘ(x) which takes the form of per-frame discrete probability distributions over a finite
alphabet of labels (e.g., graphemes, phonemes, notes). In a speech recognition context, the
temporal information contained in the posteriorgram is usually discarded as only an estimate
ŷ of the target sequence y must be predicted but, yet again, this timestamping can explicitly
be leveraged to force-align a ground-truth sequence y to the audio via a DTW-alike decoding
algorithm Dπ. Concretely, CTC-based architectures have paved the way for the development
of new, end-to-end alignment systems.

Regarding the alignment of singing utterances, and to the best of the author’s knowledge,
Stoller et al. (2019) were the first to explore such a CTC strategy and exploit the temporal
axis of posteriorgrams to align raw audio waveforms, with background music, to their text
transcripts. The acoustic modeling of the audio samples was a Wav-U-Net (Stoller et al.,
2018) trained on a private dataset of more than 40k songs. Pursuing along the same trend,
Vaglio et al. (2020a) proved that aligning singing voice with CTC could be extended to a multi-
lingual context, even for languages with almost no training data, along with the robustness of
CTC acoustic modeling for various tasks (Renault et al., 2021; Vaglio et al., 2020b, 2021).

Regarding the alignment of speech utterances, Kürzinger et al. (2020) showed that a CTC-
based model, originally trained for ASR, could outperform legacy HMM-based methods for the
automatic segmentation of large speech corpora into small audio excerpts and sentence-level
texts.

In the light of its flexibility, the alignment systems proposed in this work are built upon
a CTC strategy. Such a framework, though, has its own mathematical specificities and a
decoding algorithm close but different to the classical DTW. The next section is dedicated to
these notions.
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.

Section summary − Neural approaches to voice alignment

Deep learning-based voice alignment consists in approximating the acoustic modeling
function with a neural network MΘ, parameterized by Θ, capable of extracting high-
level and powerful features from the audio. Among the existing approaches found in
the literature, i.e., frame-wise classification (requiring hard labelling, i.e., time-stamped
ground truth sequences) and attention mechanisms (requiring an auxiliary task, e.g., voice
separation), the Connectionist Temporal Classification (CTC) is particularly appealing
as it has shown great potential for end-to-end voice-to-sequence alignment with soft
labelling. As a result, CTC is at the core of the acoustic models developed in this thesis.

3.5 CTC-based voice alignment

In the applicative context of end-to-end voice-to-sequence alignment, acoustic models trained
to minimize the Connectionist Temporal Classification (CTC) loss are a pertinent choice.
Proposed by Graves et al. (2006) in order to train a neural network for labelling unsegmented
data, CTC introduced its specific formalism whose main definitions and original ideas relevant
to this research are summarized in this section.

This background requires, on one hand, to detail the original CTC modelingMΘ for sequence
transcription and, on the other hand, to present the CTC adaptation of a classic, DTW-based
decoding module Dπ for deriving alignment from the timing information of CTC predictions.

3.5.1 CTC-based acoustic modeling

Let A be a finite alphabet of symbols of size L associated with the set of sequences A∗ such
that

y = {ym}m∈{0,...,M−1} ∈ A∗ ⇐⇒ ∀m ∈ {0, . . . ,M − 1},ym ∈ A.
Elements of A∗ are referred to as labellings. Let Aε denote the alphabet A extended with a
blank label ε, and A∗

ε be the set of all sequences made of labels from A and blanks ε. Elements
of A∗

ε are referred to as (labelling) extensions.
A neural network MΘ supervized by CTC typically receives as input a sequence x ∈ RT×F

from which it generates a posteriorgram P ∈ [0, 1]T×(L+1). The posteriorgram results from the
application of a softmax activation, according to Eq. (3.11), on the last dimension, such that
each of its frames P [t], t ∈ {0, . . . , T − 1} represents the emission probability distribution over
the alphabet Aε, i.e., over L+ 1 symbols including the blank label ε.

Consequently, P [t, l] ∈ [0, 1] can be interpreted as the probability that the label l ∈ Aε is
emitted at the time instant t in the input sequence x.
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The probability of observing a labelling extension l ∈ A∗
ε of length T , l = {l0, . . . , lT−1},

conditionally on the inputs x associated with posteriorgram P , is expressed as

P(l|x) =
T−1∏
t=0

P [t, lt]. (3.22)

Let B : A∗
ε → A∗ denote the CTC mapping operator which, for any extension l ∈ A∗

ε, first
merges all successively repeated symbols into one and then discards the blank labels ε, e.g.,

l ∈ A∗
ε for T = 15 merge repetitions discard blanks B(l) ∈ A∗

hεeeeeεεllεlεoo hεeεlεlεo hello hello
hhhhεεεelεεlloo hεelεlo hello hello
εεhheeεllεlεoεε εheεlεlεoε hello hello

The previous examples illustrate the importance of the blank label ε is the CTC framework.
Not only does it allow to separate the labels, even handling successive identical ones (e.g., “ll”
in “hello”), but also does not appear in the final predictions such that ε offers flexibility while
constructing the posteriorgram P . Due to its non-informative nature, embodying the choice not
to specify any symbol from A at a given frame, predicting high probabilities for the blank label
is an easy option for the network during its learning phase to explore without hard penalization
(because blanks are not in the final output in opposition to a wrongly recognized symbol).

The operator B thus performs a many-to-one mapping as the same labelling y ∈ A∗ of size M
can be obtained from several extensions l ∈ B−1(y) of size T ≥M . The conditional probability
of observing the labelling y given the audio x is therefore the sum of all its associated extensions,
i.e.,

P(y|x) =
∑

l∈B−1(y)

P(l|x). (3.23)

A CTC-trained neural network aims to predict the labelling ŷ ∈ A∗ maximizing Eq. (3.23),

ŷ = argmax
y∈A∗

P(y|x) (3.24)

or, which is equivalent, mimizing the associated negative-log-likelihood, which defines the CTC
training criterion:

ŷ = argmin
y∈A∗

−logP(y|x). (3.25)

Such an optimization algorithm, very much alike DTW (see section 3.3.1 ), is intractable if
approached naively − the cardinal of B−1(y) being huge for a given labelling y. Here again,
Dynamic Programming (DP) techniques must be used to compute the CTC loss function, which
is

LCTC(Θ) =
∑

(x,y)∈D

− logP(y|x; Θ) =
∑

(x,y)∈D

− log

 ∑
l∈B−1(y)

P(l|x; Θ)

 . (3.26)
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Figure 3.3: Transitions allowed in the CTC framework between labels and blanks, for the toy
example target sequence “ab” with interleaved blanks ε.

In the specific CTC framework, however, the recursion rule for efficiently computing the
probabilities is a bit different than DTW due to the introduction and major role of the blank
label ε. Indeed, the possible value of the tth element lt of an extension l ∈ A∗

ε (associated with
a labelling y ∈ A∗) depends on the previous element lt−1:

• When coming from a blank ε, an extension can either stay on the same blank ε or
transition to a label ym, i.e.,

lt−1 = ε =⇒ lt ∈ {ε,ym}. (3.27)

• When coming from a label ym−1, an extension can either stay on the same label ym−1,
transition to a blank label ε or jump directly to the next label ym, i.e.,

lt−1 = ym−1 =⇒ lt ∈ {ym−1, ε,ym}. (3.28)

In order to take into account these transitions between blanks and non-blank labels, illustrated
in Figure 3.3, Graves et al. (2006) defined a new sequence from y, by adding a blank at the
beginning and the end of it and interleaving blanks between every label. This sequence, denoted
ỹ = {ỹs}s∈{0,...,S−1}, has therefore a length S = 2M + 1, and

ỹ = {ε,y0, ε, . . . , ε,ym, ε, . . . , ε,yM−1, ε}. (3.29)
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Figure 3.4: CTC loss computation via Dynamic Programming (DP) for the toy example “ab”.
Adaptation of the figure proposed by Hannun (2017).

This extended sequence is used to compute P(l|x) dynamically with a reasoning resembling
DTW − i.e., through an accumulative score matrix α between the (prefixes of the) sequences
ỹ and x. Given the permitted transitions from Eq. (3.27) and Eq. (3.28), and as illustrated in
Figure 3.4, α ∈ RT×S is computed following

∀t ∈ {1, . . . , T − 1},∀s ∈ {2, . . . , S − 1}...........................................................................

α[t, s] = P [t, ỹs]×

{
α[t− 1, s] +α[t− 1, s− 1]........................... if ỹs ∈ {ε, ỹs−2}
α[t− 1, s] +α[t− 1, s− 1] +α[t− 1, s− 2] otherwise

(3.30)
with the initialization

α[t, 0] = 0 ∀t ≥ 0
α[0, s] = 0 ∀s ≥ 0.

(3.31)

Finally, considering that a given extension l can terminate either with the final blank (index
s = S − 1) or with the last label (index s = S − 2), the probability of observing l conditionally
on x becomes:

P(l|x) = α(T − 1, S − 1) + α(T − 1, S − 2). (3.32)

As P(l|x) depends on the posteriorgram P , which is learned, this quantity is thus differentiable
with respect to the model’s learnable weights Θ and back-propagation algorithms can be used
for training (Graves et al., 2006) and minimizing the loss LCTC(Θ) for, notably, ASR purposes.
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Figure 3.5: Alignment retrieval from the best decoded extension via the exploitation of
transitions between two symbols or between symbol and blank.

3.5.2 CTC-based decoding module

The above-mentioned matrix α is fundamental to compute the CTC loss and allow model
training. Naturally, in this objective, α produces a marginalization over all possible alignment
paths − i.e., all extensions l ∈ B−1(y) associated with the labelling y −, which is embodied by
the sum operation of Eq. (3.30).

However, by considering the maximum operation instead of a summation, hence maximizing
the probability P(l|x), one can come back to a forced alignment scenario close to Viterbi’s
decoding. The initialization from Eq. (3.31) is unchanged, but the recursion rules become:

∀t ∈ {1, . . . , T − 1},∀s ∈ {2, . . . , S − 1}..........................................

α[t, s] = P [t, ỹs]×


max

{
α[t− 1, s]

α[t− 1, s− 1]
if ỹs ∈ {ε, ỹs−2}

max


α[t− 1, s]

α[t− 1, s− 1]

α[t− 1, s− 2]

otherwise.

(3.33)

This corresponds to the forward pass. Then, through the backward pass, one can retrieve the
optimal extension l∗, expressed as

l∗ = argmax
l∈B−1(y)

P(l|x) (3.34)

by keeping trace of successive transitions retained during the forward pass.
Finally, the alignment path π∗ between x and y is obtained by removing the blanks from l∗

according to the visualizations in Figure 3.5, which gives insights on how start and end times
for each symbol from y (i.e., without blanks) are retrieved. This defines the CTC variant of
the forced alignment decoding module Dπ that will be used in this work.
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Section summary − CTC-based neural alignment

Connectionist Temporal Classification (CTC) is a great option for end-to-end, soft-
labelled neural voice alignment between an audio x ∈ RT×F and a sequence y ∈ A∗

defined via an alphabet A of L symbols. The first step is a CTC-based acoustic modeling
with a neural networkMΘ, which generates a posteriorgram P =MΘ(x) ∈ [0, 1]T×(L+1)

representing per-frame emission probabilities over the alphabet A and a blank label ε.
This extra token, ε, is responsible for the flexibility of a CTC approach, as the model
can choose not to specify any symbol from A but must eventually recognize the target
sequence y from P . The second step is the decoding module Dπ exploiting the temporal
information in P towards final alignment retrieval. This module is implemented as a
variant of the classical Viterbi’s algorithm in a CTC context, i.e., accounting for the
additional transitions and subtleties induced by the introduction of the blank ε.

3.6 Scientific background for voice alignment in a nutshell

Chapter summary − Scientific background for voice alignment

In this chapter, I introduced the definitions and mathematical tools necessary to tackle
the voice alignment problem between an audio x ∈ RT×F and a sequence y ∈ A∗ whose
symbols belong to a finite alphabet A. I showed that any synchronization system is
based on an acoustic model M and a decoding module Dπ. In this thesis, exploiting
recent advances in deep learning for voice processing and their robustness through their
ability to learn from data themselves, the acoustic models are implemented as Deep
Neural Networks (DNN) parameterized by Θ, i.e.,M≡MΘ. I motivated the choice of a
Connectionist Temporal Classification (CTC) framework for the acoustic modelMΘ due
to its great practical flexibility, enabling model training with only soft labelling and the
design of end-to-end architectures. Following such an approach, the alignment between
an audio x and a sequence y ∈ A∗ relies on (1) a posteriorgram P =MΘ(x) representing
per-frame probabilities over the alphabet A and the CTC non-informative blank label
ε; and (2) a variant of the DTW algorithm, accounting precisely for the blank ε, which
allows the forced alignment per se.
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Chapter 4
ADAGIO: An acoustic model for temporal voice
alignment

“Scientific research involves going beyond the well-trodden
and well-tested ideas and theories that form the core of
scientific knowledge. During the Time scientists are working
things out, some results will be right, and others will be
wrong. Over Time, the right results will emerge.”

− Lisa Randall

This chapter aims to present ADAGIO − the acoustic model at the heart of this thesis
work which serves as a base for the defended contributions. Beyond the acronym standing for
Automatic Deep AliGnment of vOIce, ADAGIO is an end-to-end model thought for voice-to-
symbol alignment and developed within the CTC framework.

As that is the case for many advances in research, ADAGIO is based on several inspirations
from the literature. Therefore, the section 4.1 exposes the neural architectures used for the
acoustic modeling of recent alignment systems mentioned in the previous chapter and retraces
the early explorations that rose the fundamental requirements that an acoustic model should,
in the current context, satisfy. In light of these considerations and thought process, the proper
design and (fixed) parameters of ADAGIO are detailed in section 4.2 . A summary of this
chapter is given in section 4.3 .

H
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Figure 4.1: The Wav-U-Net architecture for CTC-based voice alignment (Stoller et al., 2019).

4.1 Model history

Before introducing the ADAGIO system itself, this section elaborates the stages of its design,
notably by tracing the inspirations from the models in the literature and the first experimental
tests carried out. In this perspective, the neural baselines − as anchors and comparison points
− are presented and discussed. The first developmental drafts, run in the context of phonetic
alignment with clean signals, are specified. ADAGIO being born from their extension, and
especially from the overcoming of their intrinsic limits, these are exposed.

4.1.1 Baselines

First and foremost, the existing systems for addressing voice alignment are presented as they
constitute inspirations (clarified in the next section 4.1.2 ) and baselines for this work.

Wav-U-Net

Stoller et al. (2019) implemented the acoustic model as a CTC-trained Wav-U-Net whose
architecture is shown in Figure 4.1.
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Figure 4.2: The recurrent-attention (ARNN) architecture for separation-based voice alignment
(Schulze-Forster et al., 2021).

It processes raw audio recordings, i.e., 1-D signals, through a series of 1D convolution and
downsampling layers allowing to capture low-level and higher level features from the audio
at multiple time resolution. To generate the posteriorgram, to be optimized with respect
to the CTC criterion, upsampling and more 1D convolutions are used. The core of any
U-Net architecture is to propagate a multi-level modeling via concatenations between the
downsampling and upsampling blocks.

Attentional Recurrent Neural Network (ARNN)

Schulze-Forster et al. (2021) implemented the acoustic model as an Attentional Recurrent
Neural Network (ARNN) whose architecture is shown in Figure 4.2.

It processes both text and audio with recurrent layers and an attention mechanism. The
model supervises the reconstruction of the (denoised/clean) voice inputs from the output of
the attention layer. The alignment can be derived from the same attention mechanism, as it
exploits attention weights measuring the “weighting” of each symbol in each audio frame, which
is in line with a typical Dynamic Time Warping (DTW) accumulative score matrix.
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Figure 4.3: The convolutional-recurrent (CRNN) architecture for CTC-based voice alignment
(Vaglio et al., 2020a).

Convolutional Recurrent Neural Network (CRNN)

Vaglio et al. (2020a) implemented the acoustic model as a plain Convolutional Recurrent
Neural Network (CRNN) whose architecture is shown in Figure 4.3.

It processes log-mel-spectrograms first with two convolutional layers, extracting more abstract
features from the audio representation, then with three recurrent layers (Bi-LSTM) with dropout
in-between, and a final (time-distributed) dense layer which generates the desired posteriorgram.
The training procedure is supervised by the CTC loss.

.
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4.1.2 Early explorations and learnings

First attempt
The first proposal made in this thesis was highly inspired from the architecture of Schulze-
Forster et al. (2021) where the separation loss was replaced by the CTC training criterion.
Hence, the defined acoustic model was exploiting both non-aligned transcripts y and audios x
as inputs of the acoustic model and was benefiting from an attention mechanism to generate
relevant posteriorgram P . This model was well suited for phonetic alignment, i.e., alignment of
an audio recording with its associated sequence of pronounced phonemes. In the case of clean
speech and solo singing voice, the feasibility to develop an end-to-end CTC-based voice aligner
was confirmed, even with high temporal precision (as required by the phonetic granularity).
This architecture was the starting point of the publication (Teytaut and Roebel, 2021).

Second attempt
However, there was room for improvements:

• On one hand, it was desired to get free from the symbols y as second input of the model
for two reasons:

– First, because the attention mechanism involves a softmax that generates, for each
of the T frames, a probability distribution over the M symbols, i.e., α ∈ [0, 1]T×M in
Figure 4.2. During training, only short audio-text pairs are fed to the network due
to memory constraints − hence, the attention weights α are specialized on small
sequences. But in concrete inference usage, e.g., aligning a song with its lyrics,
the softmax operation would be over a much greater number M of symbols than
during the training phase, resulting in blurred and unexploitable attention weights
α. A solution would be to pre-segment the whole recording into shorter audio-symbol
pairs, inducing circular dependency, which is neither straightforward nor convenient.
This approach was, therefore, not suitable for a real world inference scenario.

– Second, because having the symbols as inputs is fundamentally preventing the model
from being used for transcription. Although it is not the purpose of this work,
predicting and evaluating transcriptions from audio remains an interesting option.

• On the other hand, Recurrent Neural Networks (RNN) are computationally intensive
and may be tricky to train. As an associated trend in the ASR literature, it was aimed
to replace such layers. The increasingly popular Transformer architecture (Vaswani
et al., 2017), and its application to speech recognition with CTC (Miao et al., 2020),
highlighted that similar performances could be obtained without recurrent layers (and
less parameters) thanks to simpler dense layers coupled with self-attention mechanisms.
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Following these observations, the Bi-LSTM were replaced by Conv 1D layers, which capture
a wider temporal context than pure dense layers (Collobert et al., 2016). The attention
mechanism became a multi-head self-attention (Vaswani et al., 2017) and, as now independent
from the target sequence, the overall model could be used for aligning whole recordings − on
condition of applying it successively on small audio portions and concatenate the outputs. This
second design was the starting point of the publication (Teytaut et al., 2022).

Limitations
This second approach, though, also remained limited and needed to be improved. Although
applicable on entire audio recordings, the attention mechanism was still imposing a segmentation
stage (of the audio only). For convenience, the acoustic model should be usable in one-shot on
voice signals. Second, and more importantly, this model was small and focused on the phonetic
alignment tasks with only short and clean speech and singing voice databases − without noises
or background music −, which were, once again, not representative of real world inference
scenario.

4.1.3 Acoustic model requirements

Given these explorations, insights were gained on the several requirement that any robust and
practical acoustic model should satisfy. There are summarized in this section.

At training time,

— Parsimony is desirable in terms of number of parameters for the network and data
neediness for the training procedure per se;

— Non-Recurrent architectures are preferred to Recurrent Neural Networks (RNN) and
their variants (and even more so for CTC-based alignment, as detailed later).

At inference time,

— Audio-Only models, in terms of inputs, are straightforward to apply and therefore
recommanded;

— Polyphonic usage is essential as the less pre-processing of the audio, the better. The
system must be robust to musical accompaniment and usable on real recordings directly,
without, e.g., relying on a source separator to isolate vocals.

None of the existing literature proposals satisfy all of these criteria. Indeed, the data-
intensive nature of the Wav-U-Net has required its training on a private dataset of more than
40k songs, much more than any publicly available dataset, and its large architecture that cannot
fit on limited hardware infrastructure. The ARNN and CRNN both exploit recurrent layers.
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Wav-U-Net CRNN ARNN ADAGIO

Training Parsimony ✓ ✓ ✓
Non-Recurrent ✓ ✓

Inference Audio-Only ✓ ✓ ✓
Polyphonic ✓ ✓ ✓

Table 4.1: Advisable criteria for a robust voice-to-symbol alignment system.

The CRNN uses Spleeter (Hennequin et al., 2020) as a pre-processing step to extract vocals
for both training and inference, while the ARNN needs the target sequence as second input.

The Table 4.1 summarizes these observations. The core proposal of this research is to develop
a new system in line with all of the identified criteria − ADAGIO.

Section summary − Model history

The early explorations of the current research, which has been based on and inspired
from the existing models of the literature − Wav-U-Net (Stoller et al., 2019), CRNN
(Vaglio et al., 2020a) and ARNN (Schulze-Forster et al., 2021) −, have allowed
to identify criteria that any robust voice-to-symbol alignment system should satisfy but
were not systemically fulfilled. These are: parsimony both in terms of data neediness and
architecture size, absence of recurrent layers, audio-based inference only and robustness
to noise/music accompaniment for real world application on, e.g., polyphonic music. This
thesis precisely aims to develop a system in line with these objectives − ADAGIO.

4.2 ADAGIO: Automatic Deep AliGnment of vOIce

This section is dedicated to the presentation of ADAGIO, the acoustic model at the center of this
research. Based on convolutional architecture and the Connectionist Temporal Classification
(CTC) framework, ADAGIO allows generating posteriorgrams characterizing the temporal
evolution of the symbolic information contained in voice signals. The core architecture of
the acoustic model is depicted in Figure 4.4.

Data pre-processing

The network takes as inputs normalized log-mel-spectrograms x ∈ [0, 1]T×F×1 that are derived
from the audio. For numerical stability and uniformity over the whole dataset, the Time-
Frequency Representations (TFR) are scaled between 0 and 1 based on a 80dB threshold, as
commonly done in the community− e.g., this is the default audio reading setting of the librosa
audio library for Python (McFee et al., 2015).



86 CHAPTER 4. AN ACOUSTIC MODEL FOR TEMPORAL VOICE ALIGNMENT

Audio Modeling Net

BatchNorm

Conv2D

BatchNorm

ReLU

Dropout

Conv. Block

Conv. Block

Posteriorgram Net

BatchNorm

Conv2D

BatchNorm

Softmax

x8

Figure 4.4: ADAGIO − Neural architecture.

The ground-truth transcripts y serve for supervision.
During the on-the-fly creation of the data batches, the TFR and symbolic sequences are

padded if necessary so that all audios (resp. sequences) have the same number of frames T
(resp. number of symbols M), i.e., the greatest one. Zero-padding is used on raw audios and
a dedicated padding token is used for the labels.

Model design
ADAGIO’s neural layers are organized into two successive subnets:

— an Audio Modeling Net, in charge of capturing deep learned featured from the audio;

— and a Posteriorgram Net, which simply generates the posteriorgram from the learned
feature map.
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Net Stage Layer Input size Output size
A

ud
io

M
od

el
in

g

n = 1
Conv. Block 1 T × F × 1 T × F × C
Conv. Block 2 T × F × C T × F/2× C

n > 1
Conv. Block 1 T × (F/2n−1)× (2n−2 · C) T × (F/2n−1)× (2n−1 · C)
Conv. Block 2 T × (F/2n−1)× (2n−1 · C) T × (F/2n)× (2n−1 · C)

...
...

n = 8
Conv. Block 1 T × 1× (2n−2 · C) T × 1× E
Conv. Block 2 T × 1× E T × 1× E

P
os

te
ri

or
gr

am Batch Norm T × 1× E T × 1× E
Conv 2D T × 1× E T × 1× (L+ 1)

Batch Norm T × 1× (L+ 1) T × 1× (L+ 1)
Softmax T × 1× (L+ 1) T × 1× (L+ 1)

Table 4.2: ADAGIO − summary of neural layers and input-output shapes.

The Audio Modeling Net is a fully convolutional network composed of 8 successive stages
of 2 convolution blocks. A convolutional block is constructed with the following layers: batch
normalization, 2D-convolution, batch normalization, ReLU activation, and dropout. No time
pooling is performed − the number of frames T is thus completely determined by the signal
processing setup. At each stage, the first block uses a 1 × 1 stride but the second one uses a
1 × 2 stride for the 2D convolution, hence halving the number of Mel frequency bins, and the
number of convolutional filters (common to both blocks) is increased by two times. By changing
the number of frequency bins and channels every other layer, more convolutional blocks can be
integrated, increasing the modeling power and the receptive field.

The Posteriorgram Net is composed of a final succession of batch normalization, a last 2D
convolution, batch normalization and a softmax activation to obtain the per-frame probability
distributions over the labels. The number of channels of the last convolution is the desirable
dimension for the posteriorgram, i.e., the size L of the symbol alphabet A plus the blank token.
Predictions can be derived from the posteriorgram P ∈ [0, 1]T×(L+1).

For each layer, the shapes of the input-output tensors are shown in Table 4.2 and the network
hyperparameters are specificed in Table 4.3. Note that, with this setup, the global receptive
field of the 16 convolutional layers is 1024ms. Therefore, the model can be trained on audio
excerpts of several seconds (typically 10–20s), but can be used in inference on audio with much
longer durations thanks to its fully convolutional architecture.
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Parameter Notation Value Unit Remark
Signal processing

Sampling rate FS 16000 Hz
Window nature w[n] Hann window − see Eq. (2.10)
Window length 1024 samples
FFT size 1024
Hop size H 512 samples
Frame duration δt 32 ms = 1000×H/FS

Top dB value 80 dB Audio normalization threshold
Mel bins F 128

Neural architecture
Filters (init.) C 16
Filters (max.) E 512
Kernel size K 3× 3
Deep depth D 8 Number of stages of the Audio Modeling Net
Receptive field 1024 ms = 2×D × (K − 1)× δt

Table 4.3: ADAGIO − hyperparameter setup.

Section summary − ADAGIO: Automatic Deep AliGnment of vOIce

ADAGIO is an end-to-end, fully convolutional network which processes normalized audio
log-mel-spectrograms x ∈ [0, 1]T×F×1. Its neural architecture consists of 16 convolutional
blocks proceeding to an audio modeling with a receptive field around 1s, and a final
convolutional block generating the posteriorgram P ∈ [0, 1]T×(L+1) over the L labels and
the CTC blank ε.

4.3 Acoustic model for temporal voice alignment in a nutshell

Chapter summary − An acoustic model for temporal voice alignment

In this chapter, I presented ADAGIO, the acoustic model at the core of my thesis, which is
dedicated to the Automatic Deep AliGnment of vOIce. Retracing the early explorations
of my research, I shed light on relevance and convenience criteria that a robust voice
aligner should satisfy. For the sake of flexibility, and according to these criteria, ADAGIO
has been implemented as an end-to-end, fully convolutional network trainable with a
reasonable (i.e., publicly available) amount of data and directly applicable on voice signals
in the presence of music accompaniment.



Chapter 5
Temporal constraints for alignment
enhancement

“One must work with Time and not against it.”

− Ursula Kroeber Le Guin

It has been seen that a temporal voice alignment system depends on an acoustic model
and a decoding module. The previous chapter, exploiting the technical tools of deep learning,
was dedicated to the introduction of ADAGIO − a convolutional neural network predicting
time-symbol posteriorgrams from audio that can be exploited to force-align a target sequence.
The quality of the temporal information contained in the posteriorgram is thus essential and
crucial for the relevance of the estimated alignments. The purpose of this chapter precisely is
to reinforce the temporality of the neural predictions with ADAGIO via temporal constraints.

The section 5.1 first exposes why ADAGIO, due to the Connectionist Temporal Classification
(CTC) formalism itself, carries some limitations for alignment, which motivates a search for a
better robustness. The fundamental section 5.2 introduces proposals to this aim. Concretely,
temporal (1) spectral reconstruction, (2) structure propagation and (3) guided monotony are
thought as additive temporal constraints. These ideas are practically implemented as loss
functions to be minimized on the vocals in addition to CTC, so that a multi-objective training
phase is specified in section 5.3 . In the end, this new time-constrained version of ADAGIO is
fully summarized in section 5.4 prior to a chapter recap in section 5.5 .

Z
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Figure 5.1: The CTC alignment limitation: Two posteriorgrams both relevant for transcription
of the text “ab” but leading to fundamentally different alignments.

5.1 The need for additional constraints

Previous Chapter 4 introduced ADAGIO as an acoustic model built upon the Connectionist
Temporal Classification (CTC) algorithm. In section 3.5 , the formalism of CTC was thoroughly
presented. Its founding principle is an one-to-many prediction framework based on the existence
of a blank label ε that allows, by its non-informative nature, to decode several acceptable
sequences from a given input (Graves et al., 2006; Hannun, 2017). This is achieved by
inserting blanks ε between the symbols of the target sequence y − creating the so-called
extensions l of y. By marginalizing over all possible extensions l from y and interleaved
blanks, a CTC-trained neural network eventually estimates a conditional probability of y given
x − i.e., a posteriorgram P that can be further used to force-align a sequence of symbols.

However, this approach also means that CTC cannot guarantee accurate temporal alignments
between the input and output sequences, by the very nature of this one-to-many mapping it
exploits. The blank symbols can occur at any time step in the output sequence, which makes
it difficult to know precisely when each audio frame is aligned with each symbol.

The Figure 5.1 illustrates this on a toy example where two different CTC-trained models
produce different yet relevant posteriorgrams as both of them (1) perfectly recognize the target
text “ab”; but (2) lead to drastically different temporal alignments. Such time shifts were often
empirically observed during this thesis and were naturally dependent on the neural architecture
at play (e.g., recurrences or convolutional receptive field). This can be problematic for some
applications, such as automatic captioning of videos, where the timing of the output text is
crucial and, in a wider scope, for temporal audio and voice alignments in general.

This is the reason why speech specialists started introducing attention mechanisms as Eq.
(3.14) in joint CTC-attention models. Attention allows handling relevant dependencies between
audio and symbols over time, which can benefit downstream tasks as speech recognition (Kim
et al., 2017; Park et al., 2022; Watanabe et al., 2017). Extending such approaches for
designing voice synchronizers precisely resembles Schulze-Forster et al. (2021)’s proposal,
at the cost of (1) increasing computation complexity; and (2) being dependent on the target
sequence for the acoustic modeling.
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Some approaches have tried regularization on the CTC loss to better understand the role
and utmost importance of its blank label (Bluche et al., 2015), prevent peaky probability
distribution (Liu et al., 2018), or improve its scalability with Cross-Entropy (CE) through
sampling (Variani et al., 2018). But, all in all, and to the best of the author’s knowledge, no
existing work has been dedicated to explicitly address and ensure the emergence of temporal
alignment directly in CTC probabilities.

This thesis has focused on this point since its very beginning, alongside the search of the
neural architecture for ADAGIO, as seen in the two publications (Teytaut and Roebel, 2021;
Teytaut et al., 2022) on which this chapter is based on. The final proposals inheriting from
these explorations are detailed in the next sections to temporally constraint CTC posteriorgrams.

Section summary − The need for additional constraints

Connectionist Temporal Classification (CTC) has launched a new trend in the voice
alignment literature with the great benefit of not requiring aligned data for training
deep acoustic models. Yet, alignment remains intrinsically difficult to couple with CTC.
Indeed, by nature, CTC measure a transcription cost and can therefore be minimized
without guaranteeing precise alignment properties. There thus exists a need to define
additional constraints to reinforce the temporality in the CTC predictions.

5.2 Temporal constraints for reinforcing alignment

This section details the temporal constraints proposed to enhance the emergence of voice
alignment properties in CTC posteriorgrams, which has been one of the key contributions
of this thesis work − in addition to the basic neural architecture of ADAGIO, which serves as
a starting point hereinafter.

The expression “temporal constraints” convey two essential pieces of information. First, the
term “contraints” is used to mean that the ramifications added to the initial network take the
form of additional cost functions that will also be minimized during neural training alongside
the CTC. Second, the term “temporal ” clearly states that these introduced losses are concerned
with the temporal axis of involved tensors, in order to precisely bring in temporal knowledge
during the optimization phase.

In this context, three angles to define new temporal training objective have been identified.
The first one is to ensure an accurate temporal reconstruction of the spectral content. The
second goal is to preserve the structural organization from the audio recordings. The third
angle aims to guarantee the occurrence of a precise monotonicity between the predictions of
the acoustic model and the symbolic sequence to be decoded through a classical accumulative
score. This section explores each of these research paths. All details about the related network
structures can be found in Table 5.1 at the end of this chapter.
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Figure 5.2: Illustration of the proposed spectral reconstruction content.

5.2.1 Spectral reconstruction

The first approach proposed to help the model predicting the symbols at their accurate and
relevant position is a supplementary constraint that consists in reconstructing the audio spectral
information from the CTC posteriorgram, which can be seen as a compressed representation
of the audio. The reconstruction is performed by a small neural network − the Reconstruction
Net. It is also of convolutional nature − this way, the spectral reconstruction at a given frame
t depends only on a small temporal context around t in the posteriorgram. The inputs to
the Reconstruction Net are the probabilities of all symbols without the blank as it is precisely
desired to limit the importance of the blank in the overall prediction as it is mostly responsible
for the CTC intrinsic alignment limitation (see section 5.1 ). During training, the supervision
is done with a L1 distance loss between the estimated and real spectral content. The Figure
5.2 illustrates this additional reconstruction constraint in the case of voice-to-text alignment.

Preliminary research

In the first study (Teytaut and Roebel, 2021), the reconstruction of the entire input
spectrogram x ∈ [0, 1]T×F was supervised. In the second study (Teytaut et al., 2022), it
was stated that such a systematic global reconstruction might not be pertinent. For instance,
the propagation of the F0 and harmonics is irrelevant for the alignment of phonemes − or any
textual modality of communication more generally − as phonemes are associated with formants.
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Thus, the network would have to dedicate some of its modeling capacity to produce an F0
estimation that would not be pertinent for the alignment task. In this second study, the
spectral reconstruction was supervised on the Mel-Frequency Cepstral Coefficients (MFCCs).
In this manuscript, it is proposed to directly rely on the spectral envelope that fully characterizes
formants and is a F0-free Time-Frequency Representations (TFR) − see section 2.2.2 .

Vocals separation

However, considering the spectral envelope of the entire audio mixture is no interest as the
envelope associated with musical accompaniment conveys no information on the phonetic
content. Therefore, the spectral reconstruction must only be based on the vocals contained
in the audio recordings. This implies the usage of a source separation algorithm, a common
need in the voice community (Vincent et al., 2018), and here specifically a singing voice
extractor (Jansson et al., 2017).

A re-implementation of Choi et al. (2019)’s neural voice separator was at disposal upon
training with data augmentation (Cohen-Hadria et al., 2019; Lancaster and Souviraà-
Labastie, 2020). It achieves high quality extraction of the voice and these estimated vocals
were judged clean enough to be reliable for constraining the network. More information can be
found on a dedicated section 7.3.2 where the voice separation algorithm is detailed, evaluated
(Vincent et al., 2006) and integrated in a musicological pipeline.

Note that the isolated vocals solely serve during the training phase. They are not required
for inference: only the audio mixture shall be fed to the network.

Final proposal

Given an estimation ê ∈ [0, 1]T×F of the “true” spectral envelope e ∈ [0, 1]T×F extracted from
solo vocals upon voice separation, the spectral reconstruction loss LREC(Θ) is defined as the
following L1 distance:

LREC(Θ) = ∥ê− e∥1 =
T−1∑
t=0

F−1∑
f=0

|ê[t, f ]− e[t, f ]| . (5.1)

Figure 5.3 shows the ramification of ADAGIO associated with this spectral reconstruction
constraint.

It is worth mentioning that this proposal remains valid for the case of note alignment
although one should precisely consider spectral excitation − i.e., Fundamental Frequency (F0)
and harmonics or everything but the spectral envelope. Remembering the source-filter modeling
in Eq. (2.15) and Figure 2.7, the information of the varying pitches will be well represented in
the spectral excitation, which is was should be supervised in that context.
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Figure 5.3: Spectral reconstruction constraint (here, for voice-to-text alignment).

5.2.2 Temporal structure propagation

The second approach proposes to study the temporal structure with the claim that shared
similarity patterns, informing on the local temporal structure, are to be found in the original
voice signals and in the alignment predictions. To do this, Self-Distance Matrix (SDM) are
computed on the input audio − as features representing the structural content − and are to
be recovered from the CTC posteriorgrams. This is performed by a small neural network −
the Structural Net. It is also of convolutional in nature − this way, the estimated structure
at a given frame t depends only on a small temporal context around t in the posteriorgram.
The inputs to the Structural Net are again the probabilities of all symbols without the blank.
During training, the supervision is done with a L1 distance loss between the estimated and
real SDM. The Figure 5.4 illustrates this additional reconstruction constraint in the case of
voice-to-text alignment.

Self-Distance Matrix (SDM)
Self-Distance Matrix (SDM) are well-known representations for capturing the structure of pieces
of music (Cohen-Hadria and Peeters, 2017; Fell et al., 2022).
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Figure 5.4: Illustration of the proposed temporal structure propagation.

The SDM S ∈ [0, 1]T×T of the log-mel-spectrogram x ∈ [0, 1]T×F measures a proxmitiy
between every spectral frame. The value S[t, t′] ∈ [0, 1] is the dissimilarity between the frame
t and t′. The so-called dissimilarity implies the choice of a distance, whose nature depends on
the studied context, calculated between the frame contents.

The lack of contrast in SDM is known for often limiting their discriminative power (Peeters
and Angulo, 2022), which was commonly observed when relying on a cosine distance measure.
For data whose value range is [0,1], a L1 distance based on their L2 norms coupled with a simple
normalization factor has empirically appeared as a sufficiently discriminative choice.

Therefore, in this work, the non-resemblance between frames is defined as a frequency-based
scoring based on L2 norms, i.e.,

∀t, t′ S[t, t′] =
1

F p

F−1∑
f=0

∣∣x[t, f ]2 − x[t′, f ]2
∣∣. (5.2)

where p = 1/
√
2 has been fixed upon empirical observations.
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For the same reasons as exposed before for spectral reconstruction, the structure of the
musical background does not carry relevant information for voice alignment. Hence, the ground-
truth structural information is derived from the spectral envelope (for text synchronization) or
excitation (for notes synchronization) of the solo vocals estimated thanks to a voice separator.

Finally, as (1) one is looking for local patterns but not up to the frame level; and (2) all
SSM are (T × T )-shaped hence memory demanding, a (4× 4)-average pooling operation with
stride (2× 2) is used both to smooth local structural singularities and reduce memory storage.

Comparisons with previous work

The structural loss was introduced in the publication (Teytaut et al., 2022), although Self-
Similarity Matrices were considered in that paper (with no loss of purpose). They were
computed using the cosine similarity on the complete log-mel-spectrogram, hence including
both spectral envelope and source (F0 and harmonics), which was not an optimal strategy.
The data already were clean solo speech and singing signals so the extension to real world
recordings was limited.

Here, the reference structure is derived from the spectral envelope of the solo vocals estimated,
once again, via a voice separator. This separation is only required for training and not inference.
The other main difference between previous proposal and this manuscript regarding temporal
structure is that the SDMs were computed directly on the posteriorgrams P in (Teytaut et al.,
2022) while they are derived from an extra encoding from P here. This choice was motivated by
realizing that the structural constraint alone was not helping the alignment procedure, and ad
hoc analyses revealed that posteriorgrams could be trickily shaped to have correct structures,
yet without predicting the full duration of each label. In order to prevent this negative side
effect from happening, while continuing to propagate the temporal structure information, it is
here proposed to generate a new feature map from P and compute the SDM of this one.

Final proposal

Given an estimation Ŝ ∈ [0, 1]
T
2
×T

2 of the temporal structure S ∈ [0, 1]
T
2
×T

2 extracted from solo
vocals envelope upon voice separation and after the strided average pooling (hence T/2 frames),
the structural propagation loss LSTR(Θ) is defined as the following L1 distance:

LSTR(Θ) =
∥∥∥Ŝ − S∥∥∥

1
=

T
2
−1∑

t=0

T
2
−1∑

t′=0

∣∣∣Ŝ[t, t′]− S[t, t′]∣∣∣ . (5.3)

The Figure 5.5 shows the ramification of ADAGIO associated with this structural propagation
constraint.
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Figure 5.5: Structural propagation constraint (here, for voice-to-text alignment).

5.2.3 Guided audio-symbol monotony

The third and final approach proposes to directly measure and quantify a sequence-to-sequence
accumulative score, typical derived from the Dynamic Time Warping (DTW) algorithm. Speech
and singing signals and symbolic transcripts are ordered sequences. Remembering the very
definition of alignment between general sequences (see section 2.3.1 ), synchronizing audio with
such symbols implies uncovering a path with monotonic properties and relevant transitions
between the symbols. This is performed by a small external module − the Monotonic Net.
Although it is not a neural network per se (no extra parameters), it does define a new gradient
to be propagated through the posteriorgram. The inputs to the Monotonic Net are the CTC
symbol probabilities (without blank) and the target sequence. The symbolic sequence is thus
used during training to supervise CTC and this new constraint but it is still not needed at
inference time. A DTW-alike score is obtained and becomes the loss aimed at being minimized.
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Figure 5.6: Illustration of the proposed time-symbol guided monotony.

The Figure 5.6 illustrates this additional audio-symbol monotonic constraint in the case of
voice-to-text alignment.

Audio-symbol likelihood

The starting point of this additional constraint is the definition of a proximity measure between
each of the T frames and each of the M symbols. Such a matrix is easy to obtain from the
posteriorgram without blank P ∈ [0, 1]T×L and the one-hot encoded symbols y ∈ {0, 1}M×L.
From these two tensors, one can compute the audio-symbol log-likelihood D ∈ [0, 1]T×M by
taking the opposite of the logarithm of the direct matrix multiplication between P and y. The
probabilities are set to a minimum threshold of 1e−9 so that these log-likelihoods have an upper
bound of 9Np (Neper), which allows renormalization of the measures between 0 and 1. In short,
with T the transpose operator,

D = −log
(
PyT

)
. (5.4)

The existence of a monotonic alignment implies the emergence of a pseudo-diagonal in
matrix D (hence its denomination), which can actually be seen in Figure 5.6. This diagonal is
supposedly associated with the best alignment path to uncover.
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Accumulative score matrix

The next step, highly similar to Dynamic Time Warping (DTW) from Eq. (3.17), consists in
computing an accumulative score matrix with only two permitted transitions G = {(1, 1), (1, 0)}
− i.e., coming from the same label or the previous label at the previous frame. This accumulative
score S ∈ RT×M uses D as reference for distances. It follows:

t = 0 m = 0 S[t, 0].. = D[t, 0].
t = 0 ∀m > 0 S[0,m] = ∞

∀t > 0 ∀m > 0 S[t,m] = D[t,m] + min

{
S[t− 1,m].......

S[t− 1,m− 1].

(5.5)

Note that, as opposed to the DTW, which usually maximises a resemblance, the min operator
is used here to define a training criterion to minimize.

Guided audio-symbol monotony

Following Eq. (3.18), the final accumulative value is a direct measure of the (mis)alignment
between the two sequences, i.e., between time and symbols, e.g., between voice signals and text
or notes. This leads to introduce the monotonic, DTW-alike loss LDTW(Θ) as:

LDTW(Θ) = S[T − 1,M − 1]. (5.6)

By minimizing this score, the network is guided towards the best alignment path. This
can happen only if CTC systematically highlights the full duration of each label and not only
their onset. The Figure 5.7 shows the ramification of ADAGIO associated with this guided
audio-symbol monotony constraint.

Comparison with previous work

The idea to exploit the sequence y, which is available during training, to measure a time-label
proximity based on the posteriorgram P has been introduced in (Teytaut et al., 2022). The
matrix D was similarly defined and it was precisely desired to ensure the existence of a diagonal
in it. For this, inspired from guided attention literature (Tachibana et al., 2018), a Gaussian-
decreasing matrix was used to extract a fixed diagonal out of D and derive a loss value from
it. However, this strategy carried a prior that all labels should have similar duration, which
was intrinsically not true. The continuation of this work was rather to couple D with a better
alignment quality metric − Dynamic Time Warping (DTW), hence the current proposal.
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Figure 5.7: Guided monotony constraint (here, for voice-to-text alignment).

Section summary − Temporal constraints for reinforcing alignment

In order to reinforce both onset and duration detection of non-blank labels in CTC
posteriorgrams P , with the ultimate goal to guarantee the emergence of alignment
properties directly in the probabilities, three temporal constraints were defined, namely:

• Spectral reconstruction aiming at reproducing the relevant spectral information
(e.g., envelope for text or excitation for note alignment) from the label probabilities;

• Temporal structure propagation ensuring that the same structural as the input
spectral content can be temporally retrieved from the posteriorgrams;

• Guided audio-symbol monotony measuring an accumulative (mis)alignment
score derived from both the labels and the posteriorgrams.

Vocals extraction is performed prior to the supervision of the two former cases as musical
accompaniment is an inherent obstacle to learn the reconstruction and structure of voice.
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5.3 Multi-objective training

The present research aims to couple various losses together − the CTC and three additional
constraints− thus raising the question of how to combine them and to determine their respective
trade-off, which is a concern for all multi-task learning problems (Kim et al., 2017; Liang et al.,
2021b).

Since all the losses are duration-dependent, it is proposed to ensure that they all scale
similarly, linearly with the time length T , which is the dimension of interest for temporal audio
alignment. Prior to the scaling process itself, an idea of the relative order of magnitude of the
different losses is necessary. They are estimated from worst-case scenario studies, and allow, in
the end, to build a global loss function to minimize during training.

5.3.1 Worst-case scenario studies

This section presents the estimation of cost functions from critical and theoretical scenarios,
which tend to represent the early stages of training where the weights are random and the
network has not yet had time to specialize. For each loss, its associated formula is remembered
and further investigated. It is reminded that x ∈ [0, 1]T×F denotes the input log-mel-spectrogram
and y ∈ AM or {0, 1}M×L represents the target symbols as a linear sequence or one-hot
encoding. The model’s learnable parameters are denoted Θ.

Connectionist Temporal Classification (CTC)

Retracing the definition of the Connectionist Temporal Classification (CTC) training criteria
from Eq. (3.25), the CTC loss can be expressed as

LCTC(Θ) = − log

 ∑
ℓ∈l

l∈B−1(y)

T−1∏
t=0

P [t, ℓ]

 . (5.7)

The number of alignment paths considered in the sum of the CTC computation is the cardinal
of B−1(y), which contains all (labelling) extensions l that reduce to y after application of the
operator B merging repeated character and removing blanks. Hannun (2017) and Mao (2019)
revealed that there were

(
T+M
T−M

)
possibilities. In the most uninformative way possible, the CTC

posteriorgram would be uniform over the L labels and blank. An estimate of the loss value
then becomes:

LCTC(Θ) ∼ − log

[(
T +M

T −M

)(
1

L+ 1

)T
]
. (5.8)
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Going further, it can be assumed that there are much more time frames T than symbols to
synchronize M , i.e., T ≫M , leading to:

LCTC(Θ) ∼ log(L+ 1)T. (5.9)

Note that the CTC algorithm necessarily needs that T ≥M . (One cannot map each of the M
symbols to an audio frame if there are less than M frames.)

Spectral reconstruction

As seen in Eq. (5.3), the spectral reconstruction directly compares an estimate of the spectral
content, e.g., envelope ê ∈ [0, 1]T×F to a reference one e ∈ [0, 1]T×F by minimizing:

LREC(Θ) = ∥ê− e∥1 =
T−1∑
t=0

F−1∑
f=0

|ê[t, f ]− e[t, f ]| . (5.10)

Given the value range and shapes associated with both tensors, the maximum difference one
could theorically measure is:

LREC(Θ) ∼ FT. (5.11)

Temporal structure propagation

Similarly, the temporal structure loss minimizes the difference between the input Self-Distance
Matrix (SDM) S ∈ [0, 1]

T
2
×T

2 and an estimated one from the posteriorgram Ŝ ∈ [0, 1]
T
2
×T

2 . It
comes:

LSTR(Θ) =
∥∥∥Ŝ − S∥∥∥

1
=

T
2
−1∑

t=0

T
2
−1∑

t′=0

∣∣∣Ŝ[t, t′]− S[t, t′]∣∣∣ . (5.12)

Given the value range and sizes associated with both tensors, the maximum difference one
could theorically measure is:

LSTR(Θ) ∼ 1
4
T 2. (5.13)

Guided audio-symbol monotony

Finally, the monotony constraint is based on a per-frame accumulative penalty score, see Eq.
(5.5). It is maximized when CTC does not recognize any label correctly, and even less their
full duration. In this case, the greatest distance possible (which is 1) is added at each of the T
frames. In the end:

LDTW(Θ) ∼ T. (5.14)



5.3. MULTI-OBJECTIVE TRAINING 103

5.3.2 Scaling the losses

It has been shown that chosen objective criteria do not result in similar variations when the
audio length, i.e., number of frames T , changes. This is a major issue since different elements
in the training set will not end up inducing comparable updates for the gradients and weights
themselves.

Consequently, from previous worst-case scenario studies, highlighting estimates of the loss
value, it is proposed to scale each loss so that they all have identical, linear dependency on
T , which is reasonable because time segments in sequences will always have the same impact
independently of the phrase they are found in.

The scaled losses are defined as:

L n
CTC(Θ) ← 1

log(L+ 1)
LCTC(Θ)

L n
REC(Θ) ← 1

F
LREC(Θ)

L n
STR(Θ) ← 4

T
LSTR(Θ)

L n
DTW(Θ) ← LDTW(Θ)

(5.15)

All in all, the global loss to be minimized during training is:

L (Θ) = L n
CTC(Θ) + 1

3

∑
i
siL n

i (Θ) (5.16)

with i an index over the above-mentioned constraints and si ∈ {0, 1} whether the constraint i
is used or not. The factor 1

3
aims at preventing even all joint constraints from dominating the

CTC, which remains the core objective as it does generate the posteriorgrams. This results in
8 possible configurations to be evaluated, which is precisely the core of the next Part III − to
evaluate and apply ADAGIO as an acoustic modeling.

Section summary − Multi-objective training

The proposals to integrate more temporal information during the training of the acoustic
model ADAGIO suffer from not having the same dependency on the number of audio
frames, which is a problem for their direct combination. To cope with this, based on
worst-case scenario studies, a scaling factor was estimated to normalize each of them,
ensuring that the losses all have an indentical, linear variability with respect to audio
length.
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5.4 Time-constrained acoustic modeling

All in all, a time-constrained version of ADAGIO has been proposed and implemented to
reinforce alignment quality. The Table 5.1 depicts the succession of layers and tensor shapes
for ADAGIO and these extensions. It notably sheds light on the number of convolutional filters
used for spectral reconstruction and structure propagation. These new convolutions use a kernel
size of 1× 1. The other hyperparameters are the same as the ones shared in Table 4.3.

Section summary − Time-constrained acoustic modeling

Summing up, three additional temporal constraints were proposed with the aim to
reinforce ADAGIO by assuring the emergence of alignment properties directly in the
posteriorgrams. Each of these supplementary constraints is implemented in practice
by adding a subnetwork that is connected to the output of ADAGIO, i.e., the CTC
posteriorgram without blank. The respective Reconstruction Net, Structural Net and
Monotony Net are therefore integrated to complement the original neural architecture.
This time-constrained extension of ADAGIO is fully summarized in Figure 5.8.

5.5 Temporal constraints for alignment enhancement in a
nutshell

Chapter summary − Temporal constraints for alignment enhancement

In this chapter, I presented a time-constrained extension of my acoustic model ADAGIO.
I started by explaining why the Connectionist Temporal Classification (CTC) formalism,
notably due to the blank label ε, cannot guarantee precise temporal alignment. I proposed
to explicitly address this problem by introducing three additional temporal constraints
aimed at forcing the posteriorgram to capture deep alignment properties by integrating
time-dependent information. These contributions took the form of three auxiliary tasks
of spectral reconstruction, temporal structure propagation, and guided time-sequence
monotony. Each of them relied on a similar idea: to generate a new representation
heavily dependent on coherently aligned emissions in the posteriorgram. They required
completing the neural architecture and design a multi-objective training scenario by
normalizing the diverse losses at play. The final upcoming chapters evaluate the relevance
of these proposals and present their concrete applications to voice research.
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Net Stage Layer Input size Output size

A
ud

io
M

od
el

in
g

n = 1
Conv. Block 1 T × F × 1 T × F × C
Conv. Block 2 T × F × C T × F/2× C

n > 1
Conv. Block 1 T × (F/2n−1)× (2n−2 · C) T × (F/2n−1)× (2n−1 · C)
Conv. Block 2 T × (F/2n−1)× (2n−1 · C) T × (F/2n)× (2n−1 · C)

...
...

n = 8
Conv. Block 1 T × 1× (2n−2 · C) T × 1× E
Conv. Block 2 T × 1× E T × 1× E

P
os

te
ri

or
gr

am Batch Norm T × 1× E T × 1× E
Conv 2D T × 1× E T × 1× (L+ 1)

Batch Norm T × 1× (L+ 1) T × 1× (L+ 1)
Softmax T × 1× (L+ 1) T × 1× (L+ 1)

R
ec

on
st

ru
ct

io
n

Conv. Block 1 T × 1× L T × 1× E
Conv. Block 2 T × 1× E T × 1× F

Tanh T × 1× F T × 1× F

St
ru

ct
ur

al Conv. Block 1 T × 1× L T × 1× E
Conv. Block 2 T × 1× E T × 1× F

Tanh T × 1× F T × 1× F

M
on

ot
on

y MatMul ➊ T × 1× L ≡ T × L
T ×M

➋ M × L
Log-likelihood T ×M T ×M

DTW T ×M T ×M

Table 5.1: Time-constrained ADAGIO − summary of neural layers and input-output shapes.
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Audio Modeling Net

BatchNorm

Conv2D

BatchNorm

ReLU

Dropout

Conv. Block

Conv. Block

Posteriorgram Net

BatchNorm

Conv2D

BatchNorm
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Structural Net Monotony NetReconstruction Net

x8

Conv. Block

Conv. Block

Tanh
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Figure 5.8: ADAGIO enhanced with temporal constraints of spectral reconstruction, structure
propagation and guided monotony.
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Chapter 6
Evaluations of deep voice alignment

“The history is important because science is a discipline
deeply immersed in history. In other words, every Time you
perform an experiment in science or in medicine, what
you’re actually doing is you’re answering someone,
answering a question raised by someone in the past.”

− Siddhartha Mukherjee

This chapter focuses on the evaluation of deep learning-based temporal voice alignment
systems, with a particular emphasis on the contributions introduced in this research. Through
a series of carefully designed experiments, the effectiveness and accuracy of these proposals are
quantified and provide valuable insights into their capabilities and limitations.

As developing and evaluating the models require data featuring speaking and singing voice,
the many voice corpora used in this manuscript are first presented in section 6.1 . The core of
the evaluation procedure, including alignment retrieval by neural inference and decoding to the
classical quantitative metrics, is then detailed in section 6.2 . Then, in section 6.3 , an ablation
study is carried out to evaluate the impact of the proposed contributions. Finally, results from
various voice-to-symbols alignments scenarios are shared, compared to relevant baselines, and
commented in section 6.4 . The main outcomes obtained in this chapter are summarized in
section 6.5 .

l
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Voice Content

Dataset Language(s) Duration [h] Speech Singing Transcripts Alignments Background
Text Phonemes Words Phones Notes music

LibriSpeech English 1,000.00 ✓ ✓
TIMIT English 0005.00 ✓ ✓ ✓ ✓ ✓
Philos 10 English 0000.35 ✓ ✓ ✓
Att-HACK French 0030.00 ✓ ✓ ✓
DALI
⌞ English English 0220.10 ✓ ✓ ✓ ✓ ✓ ✓
⌞ Playlist50 English 0002.60 ✓ ✓ ✓ ✓ ✓ ✓

Hansen English 0000.60 ✓ ✓ ✓
Jamendo English 0001.20 ✓ ✓ ✓ ✓
Chanter RT French 0001.50 ✓ ✓ ✓ ✓

Table 6.1: Overview of all voice corpora used in experiments.

6.1 Voice corpora

This section describes the various speech and singing corpora used for training and evaluating
the voice aligners. The origin and role of each dataset in the undertaken studies are specified
as well as the nature of their annotation (manual vs automatically generated). For the sake of
conciseness, Table 6.1 summarizes their main characteristics.

.

6.1.1 Speech datasets

LibriSpeech

LibriSpeech is a corpus featuring 1,000h of spoken voice from audiobook recordings sampled at
16kHz and read by various speakers. It has been prepared in the context of the LibriVox project
and has manually been segmented into small audio excerpts and their associated transcripts
(Panayotov et al., 2015). Train, test and development sets for clean and more challenging
speech are shared. LibriSpeech has been widely used in the speech recognition literature and,
although no text alignment is provided, the audio-text pair allows CTC training.

TIMIT

TIMIT (Zue et al., 1990) is another extremely popular dataset in the speech recognition
literature. TIMIT is a multi-speaker dataset of 5 hours of speech, organized in 6,300 sentences
(4,000 for training, 1,300 for testing), with available word and phonetic transcripts. Although
TIMIT is much smaller than LibriSpeech, respective word- and phone-level manual alignments
to the audio are available, making it a relevant test set for both word and phonetic alignments.
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Philos 10 (The Problems of Philosophy, B. Russell, Chapter 10)
TIMIT and LibriSpeech feature naturally short or pre-segmented audio excerpts that are
necessary to train models due to memory limitation on GPU. Yet, evaluations on these datasets
may not be really relevant for real-world applications. Indeed, in practice, one rarely needs to
align 5-10s of audio with its text, but rather longer context. This is the problem of (very) long
audio alignment, which is known as a limitation for most alignment algorithms and that will be
briefly mention in section 7.4 . There is thus a need for a long audio-text evaluation dataset.

Instead of artificially creating longer test audio-text pairs by concatenating existing small
pieces, it was decided to manually annotate an entire chapter from a publicly available audiobook.
Given the extremely time-consuming nature of manual annotations, the annotation is limited
to word-level alignments. To report fair evaluations, neither the chosen audiobook nor its
reader could be part of LibriSpeech. It has been found that “The Problems of Philosophy”
by Bertrand Russell (2001) fulfilled these criteria. The 10th chapter of this book, which
contains exactly 100 sentences (i.e., 2672 words) and has an audio duration of 21min, has been
chosen and collectively aligned. This dataset is referred to as Philos 10 and is shared with the
community1.

The annotation process, as detailed in the associated publication (Doras et al., 2023),
has been done as follows: once the Librivox audio preamble (title and copyright information)
was discarded, ADAGIO was used to roughly synchronize the onset of each word with the
audio. Given these alignments, temporal markers were extracted and manually corrected in
some audio visualization software, e.g., Audacity2 or Partiels3. A spectral display was used to
better capture the phonetic evolution and mark the word onsets. Some inconsistencies between
audio and text were heard, so the text was modified/corrected accordingly to match the audio
perfectly.

Att-HACK
The Att-HACK dataset (Le Moine and Obin, 2020) complements the above-mentioned ones
as it exposes (French) expressive speech, i.e., speech acted by professional actors that were
asked to sound as natural as possible given some instructions.

Concretely, 20 native French speakers (9 men and 11 women) had to portray four social
attitudes − friendly, seductive, dominant and distant − over 100 isolated sentences. To account
for the individual variations when it comes to produce a vocal attitude, each utterance has been
recorded multiple times (three to five versions), resulting in a total of 30h of expressive speech.
All the audio excerpts are provided with their orthographic text transcription.

1https://ircam-anasynth.github.io/papers/2023/a-linear-memory-ctc-based-algorithm-for-
text-to-voice-alignment-of-very-long-audio-recordings

2https://github.com/audacity/audacity
3https://forum.ircam.fr/projects/detail/partiels/

https://ircam-anasynth.github.io/papers/2023/a-linear-memory-ctc-based-algorithm-for-text-to-voice-alignment-of-very-long-audio-recordings
https://ircam-anasynth.github.io/papers/2023/a-linear-memory-ctc-based-algorithm-for-text-to-voice-alignment-of-very-long-audio-recordings
https://github.com/audacity/audacity
https://forum.ircam.fr/projects/detail/partiels/
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6.1.2 Singing datasets

DALI

DALI (Dataset of synchronised Audio, LyrIcs and notes)4 is the first publicly available, large-
scale dataset of singing voice with various annotations (Meseguer-Brocal et al., 2018). It
contains 5,358 songs, each with note alignments and lyrics alignments at the word, sentence
and paragraph levels as well as additional meta information (language, genre, artist, year, etc.).
The dataset is coloured in terms of western genres (e.g., pop, rock, rap, etc.) and languages
(e.g., English, French, Spanish, Italian, Polish, etc.).

It has been created using the machine learning teacher-student paradigm (Meseguer-
Brocal et al., 2020b) from online manual annotations considered as reliable. Its release has
permitted significant improvement and many success in various Music Information Retrieval
(MIR) tasks involving singing, e.g., (Demirel et al., 2021; Meseguer-Brocal and Peeters,
2020; Renault et al., 2021), since DALI offers sufficient amount of data to train deep models.

Playlist 50
In order to have a unique dataset allowing the evaluations of both text and notes alignment
for singing voice with polyphonic music, 50 songs (i.e., about 3 hours) and their available
annotations were selected to constitute a test set − the so-called Playlist 50. It is larger than the
classical evaluations sets (see below) and has originally been used to assess very long alignment
by Doras et al. (2023). The DALI IDs and annotations are accessible to the community5.

Hansen (a capella)
Hansen’s dataset (Hansen, 2012) is one of the most famous singing datasets for evaluating and
benchmarking systems on automatic lyrics transcription and alignment tasks. It is composed
of 9 entire pop music songs in English with manual annotations of word onsets and offsets. The
version at disposal is the a cappella one, hence featuring solo singing voice only.

Jamendo
Jamendo (Stoller et al., 2019) is also a very popular dataset to assess singing transcription
and alignment. It features 20 entire music songs (from 10 different Western genres) with manual
annotations of word onsets. All songs have instrumental accompaniment allowing to quantify
the performances of a model on real-world data and its robustness to background music.

4https://github.com/gabolsgabs/DALI/
5https://ircam-anasynth.github.io/papers/2023/a-linear-memory-ctc-based-algorithm-for-

text-to-voice-alignment-of-very-long-audio-recordings

https://github.com/gabolsgabs/DALI/
https://ircam-anasynth.github.io/papers/2023/a-linear-memory-ctc-based-algorithm-for-text-to-voice-alignment-of-very-long-audio-recordings
https://ircam-anasynth.github.io/papers/2023/a-linear-memory-ctc-based-algorithm-for-text-to-voice-alignment-of-very-long-audio-recordings
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Chanter RT

The 1.5-hour French Chanter RT dataset of solo singing was recorded to build a singing system
based on phonetic concatenation as detailed in (Ardaillon, 2017). As a result, the singer
(RT) was asked to sing slowly and hold long vowels to facilitate this synthesis objective. The
temporal distribution of the sung phonemes is bi-modal with a lobe around 1s for the vowels
and another around 200ms for the other phonemes. It features 36 French phonemes plus a
silence token. This dataset will allow testing whether ADAGIO alignments are relevant for
concatenative synthesis, which is one of the target applications of this work − see section 7.1 .

Section summary − Voice corpora

The diverse voice corpora used in this thesis − for experiments (training phase),
evaluations (inference phase) and for voice studies − have been presented. Two of
them were proposed in co-authored (Doras et al., 2023) and further shared with the
community: (1) Philos 10 for a manually word-level aligned audiobook chapter; and
(2) Playlist 50 for a larger singing evaluation dataset with word-level notes and lyrics
alignments.

6.2 Evaluation procedure

In this section, the complete evaluation procedure is thoroughly detailed from the computed
quantitative metrics to implementation details for ADAGIO and baselines.

6.2.1 Assessment metrics

The quantitative evaluation of voice alignment requires the definition of assessment metrics.
There already exist standard evaluation procedure and metrics for the alignment task (Cont
et al., 2007). In this work, benefiting from the existence of the (in their own words) “transparent,
standardized, and straightforward” library mir_eval6 (Raffel et al., 2014), the metrics they
proposed will be used and briefly introduced. Note that, in all computations, only the symbol
onsets are considered as decision boundaries. Taking end positions into account would penalize
a system detecting perfectly each start of utterance without predicting its full duration. This
is commonly done in the literature, e.g., in the competitive challenge MIREX7.

The starting point of any alignment evaluation is the alignment errors between the predicted
timestamps and the truth timestamps associated with each event of the symbolic sequence.

6https://craffel.github.io/mir_eval/
7https://www.music-ir.org/mirex/wiki/2020:Lyrics_Transcription

https://craffel.github.io/mir_eval/
https://www.music-ir.org/mirex/wiki/2020:Lyrics_Transcription
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Average Absolute Error (AAE)
The Average Absolute Error (AAE) reports the average over all events of the absolute difference
between estimated and reference timestamps. It is the metric most used to evaluate alignment.
The lower, the better.

Median Absolute Error (MAE)
The Median Absolute Error (MAE) reports the median of the absolute difference between
estimated and reference timestamps over all events. In opposition to the AAE, this metric is
insensitive to outliers. The lower, the better.

Percentage of Correct Onsets (PCO)
The Percentage of Correct Onsets (PCO) is a metric measuring the percentage of predicted
onset timestamps that can be considered correctly aligned. A threshold of 300ms is commonly
admitted and chosen by the community for the misaligned/well-aligned binary decision (Cont
et al., 2007; Vaglio et al., 2020a), and so do these evaluations. The higher, the better.

Karaoke Perceptual Metric (KPM)
Finally, the Karaoke Perceptual Metric (KPM), introduced as “Perc-PCO” in Masclef et al.
(2021), takes the human synchronicity perception into account and reflects how alignments
would be judged synchronous by users in a Karaoke-like scenario. The higher, the better.

.
The acoustic model is also often evaluated for transcription, see Eq. (2.25), via two metrics.

Character Error Rate (CER)
The Character Error Rate (CER) indicates the percentage (%) of elements (e.g., graphemes,
phonemes, notes, etc.) that were incorrectly predicted by a model in comparison to a ground-
truth transcription. It is computed with the JiWER toolkit8. The lower, the better.

Word Error Rate (WER)
The Word Error Rate (WER) indicates the percentage (%) of groups of elements (e.g., words)
that were incorrectly predicted by a model in comparison to a ground-truth transcription. A
single error in the group classifies the group as false. This metric is therefore much more drastic
than CER. The JiWER toolkit is also used. The lower, the better.

8https://github.com/jitsi/jiwer

https://github.com/jitsi/jiwer
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6.2.2 Implementation details

In this section the practical implementations of the deep neural trainings, alignment retrieval,
and baseline comparisons are mentioned.

Data & alphabet
For singing voice, the models are trained on the English part of the DALI dataset which excludes
(1) some validation data with unique singers that are not part of the training data; and (2)
songs from evaluation set Playlist 50 − none of their different 50 singers are part of the training
or validations sets. DALI songs were segmented into small audio excerpts between 10 and 20s
(with their transcripts) by making sure not to truncate the last annotated word. For speaking
voice, the models are trained on the complete LibriSpeech dataset. The validation set is TIMIT.

Depending on the experiments dfferent alphabets A will be used. For phonetic alignment, a
custom alphabet covering all the phonemes encountered in the associated database is constituted.
For text alignment, the augmented Latin alphabetAℓ from Eq. (2.1), which includes graphemes,
digits and a space token ø with a size of L = 37, is considered. For note alignment, a note
alphabet A♩ is defined. To do so, the F0 annotations in DALI were retrieved and converted
into notes. The resulting notes ranged from C1 to C7, which is particularly large for the human
voice, but a manual inspection of outliers has not been pursued. The alphabet A♩ contains all
12 semitones per octave and a silence token for long pauses (i.e., silences longer than 500ms
according to DALI annotations), hence a size of L = 73.

Training setup
Unless clearly stated otherwise, all experiments rely on the same training procedure.

Training is performed on Graphical Processing Units (GPU) − either with one GeForce
GTX 1080 Ti with 11Go or NVIDIA TITAN Xp COLLECTORS EDITION with 12Go − to
benefit from their computational power and parallelization strategies. A number of 10 epochs is
typically chosen. Each epoch processes the entire database by means of 16-sample (for DALI)
or 8-sample (for LibriSpeech) batches. The loss(es) function(s) is(are) minimized with default
ADAM optimizer and an initial learning rate set to λ = 1e−4.

At the end of each epoch, the Average Absolute Error (AAE) is computed over the associated
validation set. The learning rate is reduced by a factor 0.8 each time the alignment error has not
decreased on the evaluation set for 2 consecutive epochs. The training time for one configuration
of ADAGIO on DALI/Librispeech in the given setup ranges between 18h (no constraints) to
29h (all constraints).

Codes are written in Python/Tensorflow and are supported, at the time of writing, in
Tensorflow 2.8. The original inspiration was the CTCModel implementation as proposed and
shared by Soullard et al. (2019).
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Alignment retrieval
Remembering the general overview of any voice aligner (see Figure 3.2), an acoustic modelMΘ

generates an encoding of the audio x and, second, a dedicated decoding module Dπ is used to
force-align the target sequence y to the temporal axis of the encoded representationMΘ(x).

In this context, ADAGIO acts as the acoustic model and generates a CTC posteriorgram P
from the voice recordings, as explained in section 3.5.1 , such that P =MΘ(x). It is the role
of the specific CTC decoder, which is the focus of section 3.5.2 , to finally retrieve π̂∗ − the
estimated alignment between x and y.

Baselines & state of the art
The performances of ADAGIO are then compared to those of other alignment systems.

Baselines − In terms of end-to-end neural architectures, CRNN (Vaglio et al., 2020a)
and ARNN (Schulze-Forster et al., 2020) have been re-implemented and will be used for
polyphonic music evaluation (CRNN) and for phonetic alignment (ARNN) − see section 4.1.1 .

State of the art − Results from the latest Music Information Retrieval Evaluation eXchange
(MIREX)9 with lyrics alignment task are also reported as the work of Gao et al. (2021) remains,
to the best of the author’s knowledge, current state of the art in Automatic Lyrics Alignment
(ALA) on classical evaluation datasets. It is based on the system of Gupta et al. (2020), which
exploits (1) an acoustic model made of time-dilated neural layers trained with Kaldi (Povey
et al., 2011) on the English subset of DALI; (2) an extended pronunciation lexicon addressing
the long hold on vowels in singing (Gupta et al., 2018); (3) additional genre-informed modeling
of phonemes and silences (Gupta et al., 2020); and (4) a tri-gram word language model created
from the available lyrics. It is directly usable on polyphonic music but, as seen, connects several
specialized modules, as opposed to end-to-end models. This model is referred to as SOTA.

Section summary − Evaluation procedure

ADAGIO, upon training on a single GPU with publicly available dataset for speech and
singing, will be used in inference to estimate voice-to-symbol alignments (predictions) that
will be compared to annotations at disposal (ground-truth). The temporal differences
will allow to assess the model with four metrics for alignment − i.e., Average Absolute
Error (AAE), Median Absolute Error (MAE), Percentage of Correct Onsets (PCO) and
Karaoke Perceptual Metric (KPM) −, and two metrics for transcription − i.e., Character
Error Rate (CER) and Word Error Rate (WER) . Comparisons with existing baselines
are performed via the re-implementation of CRNN and ARNN models and latest MIREX
challenge results to relate to the state of the art (SOTA) held by Gao et al. (2021).

9https://www.music-ir.org/mirex/wiki/2020:Lyrics_Transcription

https://www.music-ir.org/mirex/wiki/2020:Lyrics_Transcription
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Configuration LCTC(Θ) LREC(Θ) LSTR(Θ) LDTW(Θ)
C ×
CR × ×
CS × ×
CD × ×
CRS × × ×
CRD × × ×
CSD × × ×
CRSD × × × ×

Table 6.2: Model configurations for ADAGIO according to the loss(es) to minimize.

Alignment metrics Transcription
Dataset Configuration AAE [ms]↓ MAE [ms]↓ PCO [%]↑ KPM [%]↑ CER [%]↓ WER [%]↓
Playlist50 C 124.2 (± 29.2) 39.2 (± 3.7) 95.2 (± 1.1) 88.6 (± 1.4) 53.7 (± 1.3) 94.5 (± 1.7)

CR 096.2 (± 19.2) 39.6 (± 4.7) 96.5 (± 0.8) 87.9 (± 1.3) 49.4 (± 1.6) 91.3 (± 2.2)
CS 103.4 (± 27.6) 39.7 (± 4.7) 96.4 (± 1.0) 87.9 (± 1.3) 50.1 (± 1.6) 89.1 (± 1.7)
CD 098.8 (± 17.3) 38.9 (± 3.0) 96.3 (± 0.8) 90.4 (± 1.1) 51.3 (± 1.6) 91.2 (± 1.6)
CRS 102.6 (± 18.5) 39.6 (± 4.3) 95.7 (± 0.9) 87.7 (± 1.3) 51.3 (± 1.5) 91.4 (± 1.5)
CRD 096.1 (± 13.2) 41.5 (± 3.5) 96.3 (± 0.8) 50.2 (± 1.6) 50.2 (± 1.6) 89.9 (± 1.7)
CSD 098.5 (± 38.5) 38.5 (± 4.4) 96.6 (± 0.8) 88.5 (± 1.2) 49.0 (± 1.6) 90.1 (± 2.1)
CRSD 093.1 (± 16.4) 38.0 (± 4.0) 96.8 (± 0.8) 89.2 (± 1.2) 49.4 (± 1.7) 89.6 (± 2.2)

Philos 10 C 51.2 (± 19.1) 46.2 (± 2.6) 100.0 (± 0.0) 95.6 (± 2.1) 15.1 (± 1.1) 47.9 (± 2.6)
CRSD 45.7 (± 20.1) 39.9 (± 2.1) 100.0 (± 0.0) 96.7 (± 1.8) 17.9 (± 2.5) 55.0 (± 2.9)

Table 6.3: Impact of additional temporal constraints (with scaling and supervised on vocals)
on voice-to-word alignment. For metrics, ↑ means higher is better, ↓ means lower is better, and
95% confidence intervals on the mean are shown.

6.3 Ablation study

Before comparing the ADAGIO system to reference aligners, its best version must be determined.
In view of the proposals introduced in the previous Part II , comparative tests must be
conducted on the various versions of ADAGIO based on the possible combinations of additional
temporal constraints. This section specifically addresses such ablation studies. The denomination
of the model’s configurations with respect to their supervision strategy is exposed in Table 6.2.

Impacts of the temporal constraints

The Table 6.3 reports the evaluations of ADAGIO on voice-to-word alignment for its different
configurations (these are also depicted on the left side of Figure 6.1 and Figure 6.2).

As singing voice in a musical context is much more challenging to align than clean speech,
the observed effects are stronger for singing, hence easier to showcase − that is why, despite
similar conclusions for speech and singing, all configurations are shown for Playlist 50 and only
the two extremes (CTC alone vs fully constrained CTC) for Philos 10.
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First, one can see that the proposed additional temporal constraints are indeed
beneficial to the alignment task . The very fact to add one supplementary loss already
improves the AAE. Interestingly, the MAE remains quite stable among the configuration and
around 40ms for both speech and singing voice. The configuration with best potential for
karaoke application is CD with the best KPM − its alignment would globally be perceived
more synchronous in a karaoke-like display. It is also confirmed, as stated in section 5.1 , that
better performances in transcription with CTC do not necessarily result in better alignment.

For speech, the AAE is typically half of that observed for singing. This indicates that there
are fewer outliers for speech and that these outliers are less severe, which is in line with the
absence of a high “corruption” of the voice through the musical accompaniment.

The full combination of constraints, i.e., the final configuration CRSD, again slightly improves
the overall alignment accuracy and stands out in AAE, MAE and PCO metrics. Thus, from
now on, any mention of ADAGIO will systematically refer to the CRSD configuration.

Impact of scaling the losses
The Figure 6.1 shows, for each configuration, the Average Absolute Error (AAE) measured
whether the temporal constraints are scaled or not. One can see the utmost importance of the
scaling process to obtain relevant alignment performances.

In the case of the reconstruction loss LREC(Θ)− without scaling, the reconstruction dominates
the CTC cost such that the model struggles to converge and denegerates into some simple
“spectral auto-encoder” that does not perform alignment. This holds true for the structural
loss LSTR(Θ) with an even stronger degradation as it scales quadratically in audio length.

Interestingly, as the monotony loss LDTW(Θ) does not require any scaling − see Eq. (5.15),
the configuration CD is less sensitive to the scaling process. Yet, no scaling leads to a CTC
loss dominating DTW, which turns out to have a negative impact on the alignment.

Impact of voice supervision
The Figure 6.2 shows, for each configuration, the Average Absolute Error (AAE) measured
whether the temporal constraints are supervised on mixes or vocals (estimated, as explained in
section 5.2.1 , via a voice separator based on the work of Choi et al. (2019)).

It is straightforward to conclude that supervision on the vocals is the right option, as the
mixes contain music instrumental that does not inform about voice properties and, if considered
as ground-truth for the temporal constraints, necessarily confuses the network. Here again, as
the monotony loss LDTW(Θ) is independent from any references derived from audio features
for its computation − but only requires the available posteriorgrams and transcripts −, the
configuration CD is not affected by this study.
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Figure 6.1: Ablation study − impact of scaling the losses. Errors bars correspond to 95%
confidence intervals on the mean. AAEs greater than 500ms are masked for readability.
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Figure 6.3: Impact of the several temporal constraints during the training phase. The sample
used to create the figure was selected from the validation set at the end of the first, an
intermediate and the final epoch. Example is a clean singing voice dataset. Throughout
training, ADAGIO progressively learns not only to recognize the correct phonemes but also
to solve the additional constraints leading to better alignments (see evaluations).

Visualizations during training

Finally, for illustrations purposes, the Figure 6.3 shows the evolution of the different losses
during training.

At the beginning of the training, no information is captured so that neither recognition
nor alignment are actually performed. A little bit at the time, symbols (here, phonemes)
are recognized and their selection serves to reconstruct an estimate of the spectral envelope,
temporal structure and construct an alignment score. By the end of the training procedure,
phonetic content is well recognized and predicted with high temporal relevance so that the
additional temporal constraints are also satisfied.
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Section summary − Ablation study

Through ablation studies, the relevance of the additional temporal constraints proposed
in this thesis was confirmed. The best configuration, in terms of AAE, MAE and PCO,
is associated with the full combination of these supplementary objectives and will be
systematically implied hereinafter when mentioning ADAGIO. Also, the necessity to scale
the various losses and to supervise them on vocals − estimated via a source separation
algorithm − instead of direct mixes was highlighted.

6.4 Temporal alignment results

This section is dedicated to the evaluation of the optimal version of ADAGIO, according to
above-mentioned ablation studies, on various voice databases and its comparison with other
algorithms from the literature. On the one hand, voice-to-text alignment is evaluated at different
granularities − word-level and phone-level text synchronizations. On the other hand, voice-to-
note alignment is also assessed. These three concrete usages will have their importance in the
next Chapter 7 dedicated to the exploitations of such time-symbol mappings.

6.4.1 Voice-to-text alignment

First, the task of synchronizing an audio recording with its text transcript is evaluated. Depending
on the chosen text representations − ultimately engraved in the used alphabet A which can
be composed of graphemes or phonemes − two subtasks can be investigated, i.e., alignment of
word and alignment of phonemes.

High level alignment − word granularity

The Table 6.4 sets the results for word -level alignment out for speech and singing voice. From
this table, one can conclude that ADAGIO produces relevant alignment performances that
compare favorably to the Convolutional Recurrent Neural Network (CRNN) baseline, even
outperforming it on most alignment metrics. The CRNN model, though, remains almost
systematically better for pure transcription, which can be explained by its recurrent architecture.

However, SOTA performances measured in Average Absolute Error (AAE) are not reached by
ADAGIO on the classical evaluations datasets (Jamendo and Hansen). Ad hoc error repartition
revealed two strong outliers for 2 out of the 20 songs in Jamendo, and especially an extreme
one (>4s) for a song that, interestingly, all MIREX submissions are struggling to align10. This
naturally degrades the AAE, all the more so given the small number of track samples.

10Pure_Mids_-_The_Leader_
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Alignment metrics Transcription
Dataset Model AAE [ms]↓ MAE [ms]↓ PCO [%]↑ KPM [%]↑ CER [%]↓ WER [%]↓
Philos10 ADAGIO 45.7 (± 20.1) 39.9 (± 2.1) 100.0 (± 0.0) 96.7 (± 1.8) 17.9 (± 2.5) 55.0 (± 2.9)

CRNN 79.2 (± 30.2) 56.9 (± 6.9) 100.0 (± 0.0) 94.9 (± 3.3) 18.9 (± 2.1 ) 53.9 (± 3.2)

Playlist50 ADAGIO 093.1 (± 16.4) 38.0 (± 4.0) 96.8 (± 0.8) 89.2 (± 1.2) 49.4 (± 1.7) 89.6 (± 2.2)
CRNN 135.4 (± 13.6) 42.5 (± 4.9) 93.5 (± 0.7) 88.4 (± 1.2) 42.8 (± 2.3) 81.7 (± 2.2)

Hansen ADAGIO 115.5 (± 104.1) 47.3 (± 11.9) 97.4 (± 2.6) 84.0 (± 2.9) 36.8 (± 3.8) 75.6 (± 4.2)
CRNN 146.5 (± 057.0) 51.3 (± 10.0) 96.2 (± 2.2) 82.2 (± 3.1) 37.4 (± 4.3) 72.1 (± 4.2)
SOTA 86.7 (± 065.6) 31.6 (± 07.5) − − − −

Jamendo ADAGIO 284.8 (± 212.3) 47.7 (± 12.5) 94.5 (± 2.7) 84.0 (± 3.5) 49.2 (± 4.0) 87.4 (± 4.1)
CRNN 323.8 (± 089.3) 55.7 (± 04.5) 93.2 (± 2.0) 84.2 (± 2.2) 46.4 (± 3.2) 83.1 (± 3.8)
SOTA 217.0 (± 127.8) 46.1 (± 06.1) − − − −

Table 6.4: Results on voice-to-word alignment. For metrics: ↑ means higher is better, ↓
means lower is better, and 95% confidence intervals on the mean are shown. Results for
SOTA are from the latest MIREX challenge (https://www.music-ir.org/mirex/wiki/2020:
Automatic_Lyrics-to-Audio_Alignment_Results) and only share AAE and MAE metrics for
the two classical evaluations sets Jamendo and Hansen.

Yet, the Median Absolute Error (MAE) values produced by ADAGIO − 40-50ms on all test
sets − are in line with the ones reported for SOTA. Therefore, it can be stated that these
assessments are very much acceptable remembering that SOTA involves acoustic, language,
genre and prononciation models while ADAGIO relies on a simpler, fully data-driven architecture.

Low level alignment − phoneme granularity

The Table 6.5 sets the results for phoneme-level alignment out. In this table, the Phoneme
Error Rate (PER) metric is defined by analogy with the Character Error Rate (CER).

For speech, TIMIT is used as it also features phonetic alignment. Data are already divided
into train and test sets. While all three aligners can precisely align phonemes on clean speech,
ADAGIO stands out for its alignment quality together with the other criteria that motivated its
construction: absence of recurrent layers (as opposed to CRNN & ARNN), and only processing
audio (as opposed to ARNN). Again, CRNN remains a better transcriber. In comparison to
the first thesis proposal in (Teytaut and Roebel, 2021) with proper similar configuration,
AAE (44.1ms) and MAE (27.3ms) have significantly improved with the ADAGIO architecture.

A second evaluation is done on Chanter RT, which also comes with phonetic alignment
ground-truths. Yet, just like the specific nature of this dataset (single pitch point, vowels
voluntarily held very long, less than 2h of audio in total), a special alignment procedure is
proposed here. Instead of dividing the dataset into train and test sets, it is entirely used for
training and test stages. 100 training epochs processing the whole dataset are used.

https://www.music-ir.org/mirex/wiki/2020:Automatic_Lyrics-to-Audio_Alignment_Results
https://www.music-ir.org/mirex/wiki/2020:Automatic_Lyrics-to-Audio_Alignment_Results
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Alignment metrics Transcription
Dataset Model AAE [ms]↓ MAE [ms]↓ PCO [%]↑ KPM [%]↑ PER [%]↓
TIMIT ADAGIO 18.0 (± 0.7) 14.3 (± 0.5) 100.0 (± 0.0) 100.0 (± 0.0) 35.2 (± 4.7)

CRNN 20.5 (± 1.2) 13.3 (± 0.5) 100.0 (± 0.0) 100.0 (± 0.0) 29.3 (± 3.3)
ARNN 22.5 (± 1.5) 12.2 (± 0.6) 100.0 (± 0.0) 100.0 (± 0.0) n/a

Chanter RT ADAGIO 39.3 (± 1.8) 28.0 (± 0.9) 99.3 (± 0.2) 94.7 (± 0.2) n/a
(overfitting) CRNN 52.2 (± 1.8) 35.2 (± 3.3) 99.0 (± 0.2) 93.9 (± 0.2) n/a

ARNN 44.5 (± 3.4) 34.0 (± 1.8) 99.3(± 0.2) 96.3 (± 0.2) n/a

Table 6.5: Results on voice-to-phoneme alignment. For metrics: ↑ means higher is better,
↓ means lower is better, and 95% confidence intervals on the mean are shown. “n/a”: non-
applicable when overfitting (texts are known) and for ARNN (phonemes are model inputs).

In doing so, overfitting is deliberately intended. Such an uncommon approach in deep
learning, as one is usually looking for models with high generalization capabilities and avoid
specializations on training data, actually has its interest for aligning small datasets with
specific phonetic alphabet (theoretically any custom alphabet) whose small amount of data
would prevent the learning of an inference algorithm anyway. However, since the CTC only
requires weak labeling for its supervision, the symbol timestamps are new information gained
throughout the training procedure. The reported results highlights the capability of ADAGIO
to competitively produce phonetic alignments in such a context. The overall process (training
and alignment retrieval) took about ∼2.5h. Concrete applications of this strategy will be
detailed in section 7.1 and section 7.2 .

6.4.2 Voice-to-note alignment

The Table 6.6 sets the results for note alignment out. In this table, the Note Error Rate (NER)
metric is defined by analogy with the Word Error Rate (WER) as notes, similar to words for
a text, are here represented through a succession of characters, e.g., D4# or 0 for silences,
separated by a space.

In the same vein as the previous evaluations, one can see that the recurrent architecture
(CRNN) achieves better recognition than the purely the convolutional one (ADAGIO), but the
later clearly outperforms the baseline when aligning a singing melody to an audio performance.

This note aligner has been successfully integrated in a musicological study, see section 7.3.3 ,
thus demonstrating the practical feasibility of aligning singing notes with CTC. To the best
of the author’s knowledge, it is the first time that an end-to-end, CTC-based model addresses
note alignment − while note transcription was recently tackled (Weiss and Peeters, 2021).
Yet, as all the metrics reported, and notably the Average Absolute Error (AAE) and Median
Absolute Error (MAE), remain quite high, these results call for modesty and shall be seen as
a first step towards future investigations − see perspectives in section 7.4 .
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Alignment metrics Transcription
Dataset Model AAE [ms]↓ MAE [ms]↓ PCO [%]↑ KPM [%]↑ NER [%]↓
Playlist50 ADAGIO 231.8 (± 73.1) 105.1 (± 47.3) 83.6 (± 4.4) 75.3 (± 4.0) 66.7 (± 5.7)

CRNN 334.1 (± 100.8) 139.3 (± 39.9) 79.7 (± 3.8) 70.0 (± 3.2) 59.7 (± 3.5)

Table 6.6: Results on voice-to-note alignment task. For metrics: ↑ means higher is better, ↓
means lower is better, and 95% confidence intervals on the mean are shown.

In terms of cross-modality comparisons, two statements can be made. First, regarding
recognition, it appears than musical transcription is easier than textual transcription− although
reported performances are far from being exploitable for, e.g., automatic melody transcription.
Second, with an AAE and MAE more than twice as large for note alignment than for word
alignment, it is clear that the voice-to-note (V2N) alignment problem is more challenging than
its voice-to-word (V2W) counterpart.

Three reasons come to mind: (1) for V2N, each note is individually aligned (with background
music, as opposed to phonetic alignment) whereas for V2W, several characters are in the end
merged into a single timestamp, which may forgive some local mistakes; (2) the F0 ground-truth
in DALI, which is used to obtain the note sequences, is not as reliable as lyrics annotation11;
and (3) the musical background is in the same modality as the symbolic sequence to uncover in
the case of V2N so that the network must learn to distinguish two types of musical information
(i.e., singing voice pitches and chords), often coherently and harmonically mixed, which may
be more complex task than “fully” ignoring the musical context to focus exclusively on voice
production mechanism.

For the sake of illustration, the Figure 6.4 displays an example of inference with this model.

6.4.3 Robustness to transcription errors

In practice, the symbolic transcriptions associated with an audio are error prone and can
typically contain mistakes. For instance, a text composed of words can contain typos − e.g., one
or several characters might have been added, removed, or altered (wrongly spelled for instance),
or entire words could be inserted or deleted. In singing, lyrics also carry their own level of
uncertainties as onomatopoeia, words or even lines or paragraphs (e.g., spoken interlude in a
song) that can actually be heard in the recording might be missing in the transcript. This holds
true for music scores which, depending on the context and the singer’s actual interpretation of
the score, might not represent all notes really sung in a given performance.

11This is even explicitly stated on the official DALI webpage: https://github.com/gabolsgabs/DALI
(accessed 04/04/2023)

https://github.com/gabolsgabs/DALI
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Figure 6.4: An example of inference for voice-to-note alignment with ADAGIO. Note that in
this context e represents an excitation signal (all but spectral envelope). The posteriorgram,
temporally constrained during training, predicts per-frame probability of note occurrences.

In this section, the robustness of ADAGIO to these kinds of transcription errors is evaluated
for voice-to-word alignment. To this aim, the alignment accuracy is measured on Philos 10
and Playlist 50 with modified transcripts. Similar studies were presented in the publication
(Doras et al., 2023) yet, although close conclusions are made, these are distinct evaluations.

Effect of replaced characters

Figure 6.5 first shows the impact of character substitution. For these investigations, p% of the
characters are randomly replaced in both Philos 10 and Playlist 50. The space characters ø
are not modified so that the number of words is not altered.

The new characters are sampled uniformly at random in the letters (a, . . ., z). The audio
posteriorgram P is not altered by these transcriptions as the acoustic model MΘ exclusively
processes the audio. The difference is that the decoding module Dπ here tries to force-align P
to the altered transcript.

For speech − one can see that the alignment error remains remarkably stable around the
baseline (i.e., true transcript) up to 50% of replaced characters. The error even remains under
a 200ms threshold up to 80% of substitutions, but dramatically rises after that. The system is
thus able to compensate for transcription errors, as long as it obtains enough correct anchorage
characters, which is guaranteed by the space token ø.
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Figure 6.5: Average Absolute Error (AAE) for different percentages of substituted characters
for speaking and singing voices with ADAGIO.

For singing − the error increases much faster than for speech, even for a small percentage
of replaced characters. Due to the presence of musical accompaniment, the posteriorgram
exhibits less clear-cut character probabilities, which causes the correct anchor characters to be
more easily confused with wrong characters and the optimal alignment path to diverge faster
during the decoding step.

Effect of added/removed characters
Figure 6.6 then shows the impact of character insertion and deletion. For these investigations,
p% of the characters are randomly added to or removed from both Philos 10 and Playlist 50.
The space characters ø are not modified so that the number of words is not altered. When p
decreases towards −100%, it becomes likely that several characters will be removed per word
− it is thus ensured that at least one character remains for each word. The alignment path is
estimated between the posteriorgram and the new transcript.

For speech − the alignment accuracy remain extremely stable around the reference (true
transcript) up to 50% of the added/removed characters. The error increases steadily when
adding extra characters, as expected. More surprisingly, alignment becomes a bit better when
removing 0–30% of the characters. An interpretation for this effect is that removing some
characters could be beneficial for the CTC decoding should the model fail to recognize them
properly. When more than 50% of the characters are removed, the error increases again.
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Figure 6.6: Average Absolute Error (AAE) for different percentages of character insertion and
deletion for speaking and singing voices with ADAGIO.

Interestingly, the Average Absolute Error (AAE) always remains under 200ms, even after each
word contains only one single character. This indicates and confirms that the space character
ø is a very powerful anchor, and plays a crucial role in word-level speech alignment.

For singing − once again, the model is way more sensitive to these alterations. This can be
similarly explained by the fact that anchor characters are more ambiguous for singing than for
speech, which makes the optimal path decoding more difficult and more subject to divergence.

Effect of added/removed words
Figure 6.7 finally shows the impact of word insertion and deletion. For these investigations, p%
of the words are randomly added to or removed from Philos 10 and Playlist 50. For each added
word, a length ℓ is randomly drawn from a normal distribution with a mean of six characters,
and then ℓ characters are sampled uniformly at random in the letters (a, . . ., z). In these
evaluations, the AAE is computed only on the original words, for which true timestamps exist.

For speech − the alignment error remains under 200ms error even when every other word is
removed or added. This indicates that the system is very robust to noise as long as more than
half of the true words remain untouched. However, at some point, there are not enough words
to keep the alignment stable, dramatically increasing the AAE.
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Figure 6.7: Average Absolute Error (AAE) for different percentages of word insertion and
deletion for speaking and singing voices with ADAGIO.

For singing − similarly to the previous experiments, one can see that singing voice alignment
is much more sensitive to a full word addition or deletion. This can be interpreted by the fact
that the posteriorgram does not exhibit sufficiently salient probabilities for correcting characters
in order to provide steady anchorage compensating for transcription errors.

Section summary − Temporal alignment results

According to various experiments with data with reference alignments, ADAGIO
was demonstrated to produce relevant voice-to-symbol alignments in line with recent
baselines. First, text alignment has been studied at the word level (by classical inference)
and at the phoneme level (by overfitting strategy) and has shown relevant performances
with a Median Absolute Error (MAE) below 50ms for both types of voice. The robustness
to imperfect transcripts was also investigated and revealed that the system can keep
aligning as long as a minimal amount of correct characters serve as anchors for the
decoding. Although inferior to the state of the art on lyrics alignment, ADAGIO stands
out by its simplicity and ability to be easily transferred from one domain to another
thanks to its end-to-end architecture. Second, albeit to a lesser extent, note alignment
with ADAGIO was also tackled as a first step towards further development.
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6.5 Evaluations of deep voice alignment in a nutshell

Chapter summary − Evaluations of deep voice alignment

In this chapter, I quantitatively showed that my proposed contributions − ADAGIO
and its enhancement via temporal constraints − were well-suited for the synchronization
between voice and symbols. Based on various voice corpora, two of which introduced
in this research as evaluation sets and shared with the community, I conducted key
experiments to evaluate my acoustic model ADAGIO. First, through an ablation study,
I demonstrated that all additional temporal constraints ultimately have a positive effect
on the alignment accuracy. Then, I compared the best version of ADAGIO, fully time-
constrained, to recent baselines and state of the art for text and note alignments. I
highlighted the various associated temporal alignment results to gather insights from these
assessments. Concretely, ADAGIO can perform word-level and phone-level alignment
with a median error below 50ms for both speaking and singing voices. Although state-
of-the-art performances are not reached for lyrics alignment, ADAGIO stands out by an
end-to-end architecture, allowing great flexibility. Finally, note alignment was shown to
be feasible and promising but, at the time of writing, still requires further investigations.



Chapter 7
Applications and collaborations

“Hier encore, j’avais vingt ans, je gaspillais le Temps en
croyant l’arrêter, et pour le retenir, même le devancer, je
n’ai fait que courir, et me suis essoufflé.”

Hier Encore (1964)
− Charles Aznavour

The whole manuscript, up to this point, has consisted in the exhaustive presentation of the
alignment task between voice and symbolic data as well as its practical implementation through
AGADIO − an acoustic neural model reinforced by temporal constraints − whose relevance has
been validated by quantitative evaluations. It is now time for practice. This chapter, therefore,
presents various concrete applications of the ADAGIO algorithm. These results are from
collaborations with other researchers and must be seen as proofs of concept of the
ADAGIO aligner, rather than original research work done solely by the author.

In section 7.1 , the task of singing voice synthesis based on the concatenation of a phonetically
aligned singing dataset is addressed. In the following section 7.2 , speech phonetic alignment
is used to identify some temporal production strategies involved in the expression of social
attitudes. Continuing the study of vocal expressivity, the next section 7.3 focuses on the
musicological characterization of singing style, which is at the heart of artistic choices in vocal
performances, through syllabic and note alignments. Finally, some ongoing research and future
works are mentioned in section 7.4 . A summary of the chapter is proposed in section 7.5 .

~
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Figure 7.1: Global view of a concatenative synthesis system. To generate an utterance,
(di)phonetic units are selected from a pre-aligned database; units are successively concatenated
and transformed according to some target parameters. Phonetic alignments of the reference
dataset are thus required beforehand. Highly inspired from Figure 3.1 of Ardaillon (2017).

7.1 Concatenative singing synthesis (ISiS)

As first concrete application, temporal voice alignment is used as a means to enrich a singing
voice synthesis algorithm based on a concatenative approach which, by nature, requires precise
knowledge of the phonetic regions in a reference pre-aligned database. The core of the singing
synthesizer − Ircam Singing Synthesis (ISiS) 1 − has been developed in Ardaillon (2017)’s
thesis and has not been modified in this work. The application of ADAGIO is an upstream
contribution, independent from the synthesis motor per se yet necessary to its functioning.

Context

An overview of the synthesis strategy can be found on Figure 7.1 and is briefly summarized.
An user asks to synthesize a target utterance (e.g., “C’est une chanson”) associated with given
control parameters (e.g., note pitches and durations, singing style, etc.). The desired text
is firstly turned into a phonetic sequence (e.g., “s E t y n S a s o _”) with a dedicated
algorithm. The resulting phonemes are grouped into diphones, e.g., succession of two phonemes
as [sE] [Et]. The theory of diphones stipulates that transitions between diphones are smoother
than between raw phonemes. Then, relevant sound units are selected from an existing singing
database that (1) covers all diphones of the language; and (2) has been temporally aligned.
For each diphone, the unit corresponding best to its surrounding context is chosen. Units are
successively concatenated resulting in a first version of the synthesis. The final step consists
in transforming the pitches, durations and transitions between the units with signal processing
tools to fit some control parameters, e.g., music score or singing style (Ardaillon et al., 2016).

1https://forum.ircam.fr/projects/detail/isis/

https://forum.ircam.fr/projects/detail/isis/
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R i t m e

Figure 7.2: Example of a sound sample found in Chanter RT, a reference corpus for ISiS, with
phonetic alignment of the French locution “Rythmé” (rhythmic) phonemized as “R i t m e”.

Unit selection, as a fundamental part of this system, is heavily dependent on the phonetic
alignment quality for the reference corpus of sounds. At the time of ISiS creation, an industrial
partner with proprietary algorithms was in charge of aligning the corpus. In order to diverse the
potential of ISiS, e.g., adding new voices and languages, a voice-to-phoneme aligner is necessary.
(The Ircam Analysis-Synthesis team voice aligner, “ircamAlign” (Lanchantin et al., 2008), is
not adapted to ISiS corpora as its statistical models were trained for speech.) This is where
ADAGIO comes into play. In the context of Ircam’s UPI 2022 “ISiS Voices” , new singers
were recorded for ISiS. The ground-truth phonetic sequences are known but are not aligned −
which opens an interesting opportunity for ADAGIO.

Alignment strategy

Currently, only French language is supported in ISiS but extension to other languages is highly
desirable. The recorded datasets are small (less than 2h of audio) and composed solely of short
audio excerpts (around 3s) in which vowels are purposely held long to facilitate “diphonic” unit
selection. An example is depicted in Figure 7.2. Theoretically, any phonetic alphabet could be
used as each language would rely on different phonemes. The International Phonetic Alphabet
(IPA) being quite large and not fully covered in all languages does not seem as interesting as
having a specific and dedicated phonetic catalog per language.

All in all, training ADAGIO as an acoustic model capable of inferring phonetic posteriorgrams
for all languages seems vain, both due to the lack of available data and potentially infinite
diversity of phonetic representations encountered in practice.
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Figure 7.3: Phonetic alignment produced on a newly recorded voice with ADAGIO overfitting.

For these reasons, an overfitting approach was chosen. The training of ADAGIO does not
aim at achieving a generic acoustic model (e.g., capable of generalization) but at specializing
on the target database. Inference, indeed, is made on the same data as during training. The
predicted posteriorgrams are then used to predict a forced phonetic alignment.

While everything is usually done to prevent a system from overfitting, temporal information
has been gained thanks to this procedure: phonetic sequences, which were not aligned, now are
associated with timestamps.

Results

The relevance of this procedure was confirmed in the evaluations conducted in section 6.4
for the Chanter RT dataset − which is the default sound corpus used in ISiS (Ardaillon
et al., 2016). Given all of these considerations, a new voice for ISiS has been recorded and
aligned by ADAGIO. A result is shown in Figure 7.3. Recording of other singers are on the
way. Again, one of the key potential offered by ADAGIO through such usage − intrinsically
due to the generic framework of the Connectionist Temporal Classification (CTC) −, is the
ability to align any phonetic alphabet in the future, thus extending ISiS to other languages.

Audio examples of voice synthesis with this procedure are accessible online2.

Section summary − Concatenative singing synthesis

Ircam Singing Synthesis (ISiS) relies on a concatenative strategy to generate sung
utterances from pre-aligned dataset at the phoneme level. ADAGIO has been successively
applied to align a new French voice thanks to an overfitting strategy. This method was
validated in previous evaluations for a reference dataset for ISiS with gold ground truth.
In the future, ADAGIO will allow the integration of potentially any (phonetic) alphabet
in this system and thus, notably, its extension and usage beyond French.

2https://www.youtube.com/live/O5RWUl_vZ9M?si=cm2w1qmvC3hjP5ti&t=2128 (35:27)

https://www.youtube.com/live/O5RWUl_vZ9M?si=cm2w1qmvC3hjP5ti&t=2128
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7.2 Temporal production strategies of vocal attitudes

Depending on the outcome humans expect from an interaction and the nature of the relationship
between the individuals − e.g., strangers meeting for the first time, longstanding friends,
hierarchy in job interview, etc. −, voice and its expressivity are modulated to convey different
social attitudes. The temporality involved in these communicative strategies has not been a
core focus of previous research. Benefiting from phonetic alignment, this collaborative work has
precisely aimed at uncovering some of the mechanisms at the heart of such expressive speech
based on these temporal aspects. This section showcases a summary of associated findings −
further details can be found in the complete publication (Salais et al., 2022).

Context
Human interactions rely on communicating social attitudes to other individuals (McAleer
et al., 2014). These attitudes, that are distinct from emotions, indicate an individual’s social
intentions such as being friendly or dominant (Wichmann, 2000). Despite their fundamental
role in spoken interactions, the way these attitudes are conveyed through vocal communication
has been barely explored. This collaborative study, therefore, has aimed at developing an
acoustic evaluation based on anatomic considerations derived from phoneme-to-audio alignment,
to uncover the production strategies at play when speakers communicate social attitudes.

To do this, an analysis procedure has been conducted on a 20-speaker subset of the Att-
HACK dataset (Le Moine and Obin, 2020), introduced in section 6.1 , which features acted
expressive speech in four attitudes − dominant, friendly, seductive and distant. The texts were
converted into phoneme sequences with the phonemizer of Bernard and Titeux (2021).

Alignment strategy
In order to investigate both articulatory and phonetic information in these vocal strategies,
speech signals needed to be segmented so that each phonetic region was clearly identifiable.

In this specific use case, one is not interested in developing a system for inference on new,
unseen data, but rather to fully align a fixed dataset of paired audios and unaligned phonetic
transcripts. This is possible, once again, with the CTC framework in an overfitting scenario
− instead of the common seek for generalization properties. Therefore, the acoustic model is
trained to overfit on the entire Att-HACK subset, and forced phonetic alignments are derived
from the posteriorgrams.

Exploitations
The temporal alignment information was then levegared to study both articulatory strategies
and phonetic structure.
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Figure 7.4: Computation and analysis of vocal tract actuation and phonetic structure extracted
from voice temporal alignments for friendly, dominant, distant and seductive vocal attitudes.
‘⋆’: statistically significant difference (p<0.05). Error bars represent 95% confidence intervals
on the mean.

Regarding the articulatory strategies − as switching between articulatory modes corresponds
to transitions between formants (Pisanski et al., 2022), the Vowel Space Density (VSD) was
examined as proposed by Story and Bunton (2017). It represents the space formed by the
two formants F1 and F2 for all vowels, whose time frames can be known thanks to the alignment,
and by only keeping the highest density regions per attitude.

Regarding the phonetic structure − revealing the speech prosodic stress and rhythm −, the
phonetic timestamps were used to compute (1) the mean phoneme duration, (2) the Speech
Rate (SR) as the mean numbers of phoneme per second in each utterance, (3) the Rhythmic
Irregularity Measure (RIM) as the mean duration difference between all segments in a sentence,
and (4) the Rhythm Ratio (RR) as the mean duration difference between contiguous speech
segments. For each attitude, the mean value of these descriptors (over all sentences) was
computed upon speaker normalization and zero-centering.

Results
The obtained results are depicted in Figure 7.4.

In terms of vocal tract articulation, the Vowel Space Density shows that Distance has a
significantly lower F1 in comparison to Dominance that has a high F1. This suggests that
speakers wanting to establish distance from their audience shorten their vocal tract using mostly
closed mouth, as if being understood by other(s) was not important. Conversely, people desired
to be dominant rather elongate their vocal tract and open their mouth, as a necessity to be
understood. More broadly, clusters for each attitude − albeit associated with mostly marginal
differences − are identifiable, indeed pointing to an articulatory dimension in speech intention
communication, which is a novel perspective.
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In terms of phonetic structure, significant inter-attitude variations are found for the Speech
Rate (SR) and the Rhythmic Irregularity Measure (RIM) but not for Rhythm Ratio (RR). This
indicates that attitudes impact global rhythmic communication schemes but not local ones.

In view of these results, it appears that humans express Seductiveness with a specific
temporality, clearly distinct from the other three attitudes studied. As a result, a prototype of
“seductiveness” featuring these temporal strategies can be highlighted. Specifically, seductive
utterances are significantly associated with small speech rate (in line with longer vowel duration)
and high RIM, such that they are produced slowly and with irregular rhythm, as if speakers
were purposely taking the time to express themselves and hint at their intentions.

Section summary − Temporal production strategies of vocal attitudes

Phonetic alignment has permitted a deep look into the temporal aspects involved when
communicating social intentions. It has been shown that French speakers use shared
production strategies to express vocal attitudes such as friendliness, dominance, distance
or seductiveness. From a phonetic structure perspective, the later attitude (seductiveness)
is significantly different from the others as associated with slower speech rate and more
irregular rhythmics. Besides, and to the best of the authors’ knowledge, this study has
revealed for the first time that social attitudes are also conveyed via articulatory modes.
Insights from significant observed effects are that people might shorten their vocal tract
to impose distance with their interlocutor and, conversely, elongate it to be dominant.

7.3 A musicological pipeline for singing style analysis

In the continuation of the analysis of voice expressivity, this section focuses on the production
strategies at play in singing performances, referred to as singing voice style.

The study of singing voice style is of great interest both for expressive vocal synthesis and for
the musicological analysis of vocal performances and incites to a fruitful convergence between
signal processing and musicology. A previous research in that direction (Ardaillon et al.,
2016) has precisely been integrated in Ircam Singing Synthesis (ISiS) for expressive control of
voice rendering, see section 7.1 , and might call for more findings. However, for musicologists,
these studies often come up against the absence of semi-automatic analysis tools for voices
recorded in a musical context, imposing long and tedious manual annotation work.

This collaboration introduces a complete processing chain in support of musicological analysis,
notably providing musicologists with powerful tools for the automatic analysis of singing voices.
ADAGIO is a core element of this pipeline, as it is in charge of producing both voice-to-syllable
and voice-to-notes alignments necessary for the fine-grained exploration of artistic choices made
by a singer during their performances. This section is based on the collaborative publication
(Teytaut et al., 2023) and was made possible by the ARS project (https://ars.ircam.fr).

https://ars.ircam.fr
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7.3.1 Musicological context

The singing voice, as a vector of communication, appropriates many of the codes of the spoken
voice to convey emotions or social attitudes (Lacheret-Dujour and Beaugendre, 1999).
As a result, in the 2010s, some musicologists initiated research in vocal performance analysis
(Chabot-Canet, 2008; Lacasse, 2010) based on, e.g., paralinguistics, phonostylistics or
psycholinguistics (Fónagy, 1983; Léon, 1993; Poyatos, 2002).

Singers can exploit a rich palette of singing techniques to shape their interpretations. These
techniques can either relate to general musical conventions or “trends” − e.g., belting in musicals
(Henrich Bernardoni, 2020) or singing format in classical singing (Sundberg, 1974) − or
rather a personal style via particular vibrato, timbre, phrasing, intonation and more.

The very essence of musical interpretation implies that there may possibly be a large, if
not infinite, number of performances corresponding to one piece of music or song. However,
an artistic identity necessarily means a certain amount of coherence between the performances
− which is ultimately and fortunately fixed, to a certain extent, in some reference recording.
Such recordings allow to study, in the most neutral, objective and reproducible way possible,
the production strategies and the palette of effects deliberately chosen by the singer to be
“engraved” in the studio − i.e., the singer’s very own singing voice style (Chabot-Canet,
2020a).

For years, musicologists interested in singing performance were facing the absence of tools
for automatic acoustic analyses of voices recorded in a musical context. Consequently, they had
to manually transcribe and synchronize the audio by ear or via visual spectral representations.
While expert listening of musicologists remains essential for data supervision and analyses, a
purely manual approach has its own limits. It is very time-consuming, imposing one to limit
oneself to small corpora, can be error-prone and, in some cases, overly subjective. Thus, relying
on automatic systems for transcription (Gao et al., 2022) and alignment (Doras et al., 2023)
may lead to a considerable gain in time, and help in setting a common base for the musicological
community.

This is the context in which a new musicological pipeline is introduced, with the aim to
highly simplify tedious steps previously carried out by hand and opens new perspectives through
automation.

7.3.2 Pipeline introduction

This section presents the proposed pipeline for the musicological analysis of singing voice style.
As shown in Figure 7.5, it is composed of four main categories, with independent modules (hence
a flexible worflow) that are connected, namely voice characterization, musicological expertise,
voice alignment, and musicological exploitations, that are further detailed.
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Figure 7.5: Overview of the complete analysis pipeline involving musicological expertise, deep
learning models for the automation of voice characterization and alignment in order to help
musicologists studying singing voice style.

Voice characterization

(This research has been conducted by co-author Axel Roebel. It is detailed as the voice
separator was used to estimate the vocals supervising the temporal constraints in section 5.2 .)

The core of any singing or singer analysis system is the voice itself. As musicologists
are interested in commercial recordings, the background music must be removed as it is
not compatible with parameter estimation algorithms and can hinder a precise description
of the singing intonation. The first step, therefore, is to isolate the vocals. To do so, Choi
et al. (2019)’s model was re-implemented as it achieves state-of-the-art singing voice extraction
quality with a comparatively small number of parameters. This model, denotedMV in Figure
7.5, has been trained using the publicly available MUSDB18 (Rafii et al., 2017) and CCMixter
(Liutkus et al., 2015) datasets, and a collection of internal data featuring solo singing voices
and instrumental music with notably instruments not well covered in the public datasets.
During training, the voice and music samples were randomly mixed and pitch-shifted following
(Cohen-Hadria et al., 2019; Lancaster and Souviraà-Labastie, 2020). In line with
Choi et al.’s results, extracted vocals are of very satisfying quality− i.e., SDR metric (Vincent
et al., 2006) of 9.2dB for the vocals separated from the HQ-MUSDB test set. In inference,
separation is faster than real-time even when running on a CPU on a small laptop.
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The isolated vocals are then used to extract the F0 with another neural network, denoted
MF0 in Figure 7.5 and detailed in (Ardaillon and Roebel, 2019).

Musicological expert knowledge

A typical objective is to correlate the voice features with other relevant information and
emphasize their relationships via temporal alignment. In the context of singing performances,
both lyrics and singing melody (notes) are of high interest. Musicologists have the role to
collect such symbolic data and adapt them if necessary to match their research angle.

Regarding the lyrics − lyrics are easy to gather for most commercial music today, either
online or via an album booklet, so that manual transcription is rarely required. In practice, a
succession of syllables is more musicologically relevant than words for the text as singing notes
are held on the vowels of each syllable (Sundberg, 1987). Plus, one can note that the lyrics
rarely exactly match the singing content due to additive onomatopoeia (e.g., “yeah”, “hm”) or
unpronounced utterances. Fortunately, it was shown in section 6.4.3 that ADAGIO can handle
a decent amount of such irregularities and aligns despite missing or additional syllables. The role
of the musicologists in lyrics retrieval is thus twofold: (1) to ensure that the text is coherent and
correctly written; and (2) to explicitly adapt, whenever necessary, repeated syllables, missing
entries, or onomatopoeia judged pertinent, i.e., conveying meaningful interpretative aspects.

Regarding the melody − one is looking for the note sequences performed by the singers (as
in, e.g., a music score). When the music score is not accessible, transcriptions remain often
done by musicologists − this way they can annotate any precise gesture made by the artist.

Voice-to-symbols synchronization

This is the core integration of this thesis into this collaboration since ADAGIO is used to
temporally align both syllables and notes.

First, voice-to-syllable alignment is tackled with ADAGIO trained for the acoustic modeling
of words − it is denotedMV2T in Figure 7.5. Albeit trained for word-level alignment, syllables
can be synchronized as well. Indeed, as words and syllables share the same alphabet, the
acoustic modeling does not require any adaptation. The only difference lies in the decoding
step, as there are more spaces (label ø) to synchronize between syllables than between words.

Second, voice-to-note alignment is tackled with ADAGIO trained for the acoustic modeling
of notes − it is denoted MV2N in Figure 7.5. A major novel perspective offered by this dual
approach is the capability to fully align melisma, i.e., multiple notes held on the same syllable
(shown in musical notation by slurs). Musicologists can thus concretely rely on note-level
alignment to complement the syllable-level alignment in such case as portrayed in Figure 7.6.
To the best of the author’ knowledge, it is the first option proposed to musicologists for dealing
with the automatic analysis of melisma.
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Figure 7.6: Automatic analysis of a melisma: syllable-level alignment only predicts the word
“play” on the full duration of this excerpt, without taking pitch variation into account − note-
level alignment allows a deeper look into this multi-modal gesture. Score transcription done by
Antoine Petit. See Taylor Swift case study − section 7.3.3 .

Musicological exploitations

Finally, further musicological studies can be carried out benefiting from the flexibility of the
proposed pipeline. The alignment time markers can be read into visualization software (e.g.,
Sonic Visualiser3 or RX4) for unavoidable manual corrections − being still much less tedious
than starting from scratch. All in all, these timestamps are available for qualitative and/or
computational analyses. In the rest of this section, a demonstration of the whole musicological
protocol is proposed via a case study on Taylor Swift. The temporal data from the alignments
have allowed performing fine-grained rhythmic analyses and to investigate the structural role
played by articulation and micro-rhythm. This is interestingly in line with the previous speech
studies (section 7.2 ) proving interconnections between all voice research angles.

Note that the publication (Teytaut et al., 2023) also features a case study on Charles
Aznavour, made by co-author Céline Chabot-Canet, which is focused on vocal phrasing
and rhetorical effects involving intonation. However, both for the sake of conciseness and as
it mostly exploited the F0 estimation, with textual alignment being only used as a qualitative
support to instantaneously relate the effects heard and spectral observations, as shown in Figure
7.7, this analysis is voluntary left out of the current manuscript.

3https://www.sonicvisualiser.org
4https://www.izotope.com/en/products/rx.html

https://www.sonicvisualiser.org
https://www.izotope.com/en/products/rx.html
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Figure 7.7: Verse 1, line 1 from Charles Aznavour’s “La Bohème”. Score transcription,
sonogram, F0 and text alignment. ‘a’: fast flow, intonational instability, and absence of vibrato;
‘b’: sustained note with vibrato on the last syllable of the phrase.

7.3.3 Case study − Taylor Swift’s “Blank Space”

(This research has been conducted by co-author Antoine Petit. It is detailed as it demonstrates
strong exploitations of alignment time markers and their evaluations via manual corrections.)

This study examines Taylor Swift’s 2014 hit single “Blank Space”5 which was selected
because (1) at the time of writing, it is Swift’s second-best charting song and its analysis may
uncover what makes a successful song; (2) Swift’s songs have not yet been the object of much,
if any, musicological attention with the recent exception of (Petit, 2022); and (3) beyond a
standard form, its organization reveals lower-level patterns in verses and chorus linked to vocal
delivery. Overall, it presents a prime example of analytical work afforded by the pipeline.

The musicologist has focused on the first half of the first verse, i.e., eight bars from 5:30
to 25:30, a score transcription of which is given in Figure 7.8. It exhibits a srdc6 structure
(Everett, 2009) and can thus be divided into four parts − two fairly similar segments (sr)
and a contrasting passage leading to a concluding gesture (dc). Following Hanninen (2012),
one may wish to understand which criteria elicit such a quite self-evident segmentation. The
claim of this study is that articulation and micro-rhythm play a key role in shaping the form of
the excerpt. This can be investigated with the proposed pipeline and its temporal alignments.

Application of the pipeline
Syllables retrieved from a first score transcription were synchronized with the audio with
ADAGIO. For each syllable not followed by a rest, the P-center (perceptual center, i.e., the
moment heard as beginning) is approximated by the mean between the start and end times of
the syllable. These were then manually checked.

5Words and music by Taylor Swift, Max Martin and Shellback. Reference recording: 1989, Big Machine,
2014.

6Statement, restatement/response, departure, closure.
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Figure 7.8: Taylor SWIFT, “Blank Space”, first verse, measures 3–10. Transcription done by
Antoine Petit.

Next, pitches were transcribed and refined thanks to the visualization of both F0 curves and
syllables alignment. The resulting MIDI notes were synchronized to the audio with ADAGIO
afterwards. Only the notes associated with the five identified melisma (four in measure 4 and
one on “play? ” in measures 9-10) are kept and their time markers were also manually corrected.

One can then compare the time differences between the corrected markers and the predicted
markers leading to an Average Absolute Error (AAE) from a musicological expertise. This
is reported on Table 7.1. Interestingly, one can note that the manual syllable corrections are
below the theoretical precision δt = 16ms of ADAGIO in its original setup (which is half of the
frame size and given the signal processing setup from Table 4.3). Once again, note alignment
appears as less stable but remains acceptable and exploitable.

Alignments Syllables (all) Notes (on melisma)
“Blank Space”
(manual correction)

⌞ AAE (ms) 13.5 ± 40.9 022.5 ± 063.0

Table 7.1: Manual alignment corrections for the “Blank Space” case study.
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s r d c
Non-legato notes

⌞ Number 4 6 10 2
⌞ Proportion (%) 20 46 59 22
⌞ Mean duration (ms) 213 162 161 180

std. dev. (ms) (14.1) (71.5) (84.8) (175)

Table 7.2: Non-legato notes by subsection in Taylor Swift’s “Blank Space”, measures 3–10.

Musicological analyses
This timing data at hand − onset, P-center and end of every note in the excerpt − allow
analyzing how Taylor Swift uses articulation and micro-rhythm to structure her vocals.

Legato articulation, or lack thereof, can be computed by subtracting the onset time of the
n+1th note with the end time of the nth note. The Table 7.2 displays the number, proportion,
and mean duration of non-legato notes by subsection, painting a vivid picture of form organized
through articulation. The excerpt begins with mostly legato singing, interspersed with a few
very homogeneous silences. Swift’s vocals then gradually become more jagged − mostly non-
legato, with many overall shorter, but also much more heterogeneous, silences− before returning
to the initial legato articulation in the concluding melisma, which is split in two by the longest
silence in the excerpt. This arch-like progression seems fairly obvious upon listening (especially
when it has been explicitly pointed out beforehand), but may has been missed without the
ability to gather accurate timing data.

But articulation is only part of the story. Figure 7.9 maps the duration of every note
(i.e., difference between two successive P-centers to which is subtracted the length of the
intervening silence, if any) to its P-center. Legato articulation is shown with connecting lines,
the internal notes of each melisma (aligned with ADAGIO) is shown as unfilled dots. The
vertical dashed lines correspond to the beginning of the four subsections, and the horizontal
ones to the projected duration of eighth, sixteenth, and thirty-second notes (i.e., the three most
frequent symbolic durations in the transcription) at 96BPM.

Not all notes last for their projected duration. In particular, many sixteenth notes appear
“uneven”, with the on-beat one being longer than the off-beat one. Long/Short subdivision
(Caporaletti, 2014) (i.e., swing) is endemic to s and r, where it affects almost all sixteenth
notes, but is absent in d, which prioritizes straight eighth notes.

Thus, there exists a subtle interplay between two contrasting local vocal styles: (1) mostly
legato, with L/S (swung) sixteenth notes and step-wise motion (sr and c); and (2) mostly
non-legato, with straight rhythms and large leaps filled with gliding intonations (d). The more
jagged articulation of r allows Swift to smoothly transition from style (1) to style (2), while
the leap of a major sixth coupled with L/S sixteenth notes on “wanna” at the beginning of c
enables the reverse.
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Figure 7.9: Note durations (log-scale) in Taylor Swift’s “Blank Space”, measures 3–10.

s r d c
Mean displacement (ms) 32.6 38.6 27.2 30.5

std. dev. (ms) (38.4) (27.7) (9.82) (29.8)

Table 7.3: Micro-rhythmic displacements by subsection in Taylor Swift’s “Blank Space”,
measures 3–10.

These local styles also share a number of characteristics, among which propulsive tendencies
(Caporaletti, 2014) in melismatic passages (i.e., the notes are shorter than projected)7 and
lengthened notes when followed by a silence (both of these can be observed on Figure 7.9), a
lack of vibrato (this can be observed on the automatically-extracted F0), and micro-rhythmic
displacements of most notes (computed by subtracting their P-center with their projected onset
at 96BPM), which consistently appear about 30ms later than projected, as shown in Table 7.3.

Thanks to the pipeline streamlining the annotation process, this analysis can easily be
expanded upon, so that it encompasses the whole verse/verse-chorus unit/song, etc., up to
(at least) the level of the album − thus shedding light on Swift’s multifaceted vocal style.
The many strategies discovered during the analysis can then be compared with other artists’.

7Because such propulsive tendencies are independent from the underlying pulse, which does not change, the
last note of a melisma must last longer than projected, as “compensation”.
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Section summary − Musicological pipeline for singing style analysis

A complete pipeline for the musicological analysis of singing voice style has been proposed.
It notably exploits deep learning models for singing voice extraction from background
music, voice parameter (F0) estimation and − as far as this thesis is concerned −
ADAGIO for robust automatic alignment of both syllables and notes to the audio. Not
only does this pipeline greatly simplify the tedious tasks traditionally done manually
by musicologists, but it also offers practical flexibility, as demonstrated in two concrete
musicological studies: (1) text and note alignments allowed investigating articulation
and micro-rhythm in a Taylor Swift song (American pop, 2014); and (2) although not
detailed in this manuscript, F0 curves and vowel regions were exploited to highlight
vocal phrasing and rhetorical effects involving intonation in a Charles Aznavour song
(French chanson, 1966). More generally, this work is meant for future and strong
collaborations between musicologists and deep learning researchers sharing a common
interest in singing voice. The tools presented will be made available to the community
in a web interface hosted at https://passagesxx-xxi.univ-lyon2.fr/activites/
projets-anr/projet-ars-analyse-et-transformation-du-style-de-chant-1.

7.4 Perspectives

This thesis paves the way for further investigations, concrete applications and collaborations.
This section thus exposes some ongoing projects that cannot be considered as achieved at the
time of writing but that are in line with the main scope of this thesis, as well as burgeoning
ideas for future research.

Automatic corpora segmentation
The alignment of very long audio recordings has been a well-known limitation to many aligners
(Bordel et al., 2015; Katsamanis et al., 2011). This is due to classical DTW- or CTC-
based decoding modules Dπ, which compute the forced alignment per se, as they require the
computation and storage of an alignment path that scales quadratically in number of frames
and symbols to synchronize (cf. section 2.3.1 ). This quickly becomes prohibitive for long
audio and symbolic sequences − exceeding the memory storage available on modern machines.

This thesis was involved in a project on this issue (Doras et al., 2023) in which ADAGIO
was the acoustic modelMΘ used in experiments and was revealed for the first time. However,
as the main contribution of the paper was the design a new decoding module Dπ supporting
very long sequences, and was implemented by the paper’s first author, this section is voluntarily
kept short. The core idea was to adapt the CTC decoding with an exact reformulation of the
DTW algorithm, which scales linearly in memory, introduced by Tralie and Dempsey (2020).

https://passagesxx-xxi.univ-lyon2.fr/activites/projets-anr/projet-ars-analyse-et-transformation-du-style-de-chant-1
https://passagesxx-xxi.univ-lyon2.fr/activites/projets-anr/projet-ars-analyse-et-transformation-du-style-de-chant-1
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This aligner was shown to be capable of synchronizing several hours of audio and text even
for different languages and despite some errors in transcripts (as the evaluations presented in
section 6.4.3 ). In the future, it is planned to use this system for the automatic segmentation
of large corpora like audiobooks into small excerpts of paired audio and labels for enriching
and completing existing datasets for downstream tasks, such as voice recognition, conversion
or synthesis (Kürzinger et al., 2020; Roebel and Bous, 2022).

Joint singing voice alignment and separation

An open research problem is to investigate to what extent both separation and alignment can
be addressed simultaneously. These tasks are traditionally studied independently, but recent
research shed light on their potential complementarity.

Indeed, Stoller et al. used the same neural architecture to perform each task individually
(Stoller et al., 2018, 2019); Schulze-Forster et al. (2021) derived alignment from an
attention mechanism informing voice separation; Meseguer-Brocal and Peeters (2020)
exploited pre-aligned phonemes to help vocal extraction; Vaglio et al. (2020b) built their
acoustic model on pre-isolated vocals; and this thesis improved voice alignment thanks to an
auxiliary constraint of spectral reconstruction of estimated vocals.

These results tend to indicate that alignment and separation are beneficial to each other.
Yet, to the best of the author’s knowledge, no approach has tried a joint training procedure so
far. One potentially interesting direction to start with would be the work of Choi et al. (2019)
that proposed a relatively light U-Net architecture for singing voice extraction in the spectral
domain. (It was the voice separator used for the temporal constraints in section 5.2 and the
musicological pipeline from section 7.3 .) The continuation of this work (Choi et al., 2021)
introduced a signal-based conditioning that might be adapted for alignment data.

Note alignment for voice and music

Further experiments are required to enhance and complete the study on the synchronization
between notes and singing voice as already mentioned in section 6.4.2 . The author believes
there is way for improvement in terms of alignment accuracy and, also, in exploitation of the
posteriorgram for singing note transcription based on empirical observations of the saliency
maps − see Figure 6.4. In a similar vein, the problem of note alignment can go beyond
voice signals such that the alignment of monophonic instruments could probably be handled
with a CTC-based aligner like ADAGIO. To go even further, one could tackle the simultaneous
alignment of multiple notes for polyphonic instruments by taking inspiration, e.g., from the work
of Weiss and Peeters (2021) who introduced a multi-label CTC for polyphonic transcription.
A final objective would be to integrate such CTC-based acoustic modeling into a real-time
audio-to-score alignment (Lajugie et al., 2016) for score following applications (Cont, 2011).
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Improving the acoustic modeling & transcription
This work, as commonly done in the alignment literature, has extensively relied on acoustic
modeling approaches originally thought for voice transcription to decode and synchronize
symbols to audio from some hidden representations. As a result, it is reasonable to assume that
better acoustic modeling will lead to performance improvements. Two options in that direction
come to mind. Either to keep a flexible and general end-to-end architecture and informing
it with other types of information e.g., pitch detection as recently proposed by Huang et al.
(2022), or to add additional modules, like language models (Ycart et al., 2019), to complement
the acoustic model in the decoding step − this is the strategy supported by Gupta et al. (2020).
It is worth mentioning that this thesis was concerned with the former strategy, i.e., additional
temporal constraints. The later strategy would contradict the thesis initial objective, which was
to be able to align without domain knowledge. More generally, there is an aim for universality
such that a theoretically optimal system could proceed to both audio/voice transcription and
alignment − even without requiring the ground-truth texts (Zhu et al., 2022).

Section summary − Perspectives

There are many upcoming investigations in the continuation of this work as voice
alignment algorithms can (1) serve to automatically segment large corpora; (2) be coupled
with the voice separation task; (3) be improved and extended for notes and melody
synchronization; and (4) keep motivating the search of an “universal” transcription-
alignment system.

7.5 Applications and collaborations in a nutshell

Chapter summary − Applications and collaborations

In this chapter, the practical applications of my thesis were presented by means of
conducted collaborations. First, I investigated singing voice synthesis in a concatenative
strategy for which ADAGIO was trained to voluntary specialize (overfit) on a new
recorded dataset and produce phonetic alignments. Then, I detailed collaborative studies
on voice expressivity focused on production strategies of both spoken social attitudes and
singing style in musical performances. The former (speech) revealed for the first time that
social attitudes are also conveyed through articulation. The later (singing) introduced a
complete pipeline dedicated to the analysis of singing style with neural voice processing
and alignment of both syllables and notes, that has already been exploited by musicology
partners. Lastly, I mentioned recent ongoing works and perspectives for future research
− notably one following a project for the alignment of very long audio recordings.



Chapter 8
Conclusion

“Never is an awfully long Time.”

Peter Pan
− James Matthew Barrie

�

Time.
An essential, and yet so perplexing, aspect of the universe and human daily life. Many

physical laws are governed by time so that it determines the evolution of various observations
and surrounding signals. Audio data are no exception: music and voice are fundamentally
non-stationary signals whose temporal study can reveal many properties.

Humans can interact with one another through messages that they can commonly express
with their voices, as orality is a primary modality of human communication. These vocal
locutions are very often associated with underlying representations of symbolic nature, which
translate another modality of communication, typically depending on a textual language (e.g.,
stories, tales, poems, legends, etc.) and/or music theory (e.g., songs, opera, musical scores).

In the context of such communicative approaches, the notion of temporality is of utmost
importance and has greatly motivated research studies dedicated to its analysis. This thesis
has precisely proposed to automatically tackle the problem of temporal alignment between voice
signals and their related symbolic sequences, to uncover some key temporal aspects involved in
human communication. In doing so, it was aimed to bridge, to some extent, the semantic gap
between diverse communication modalities.
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8.1 Manuscript summary

The content of this thesis is briefly summarized in this section.

(Chapter 2.) First and foremost, I exposed the overall context of my work: to better
understand some expressive strategies in human communication by revealing the temporal
relationships between two voice modalities − oral and symbolic. To characterize the orality,
I introduced signal processing basics allowing to highlight relevant voice features capturing
the temporal evolution of the spectral content. The representation of symbolic sequences was
highly correlated with the history of writing of both spoken languages and music theory. At
the heart of the interaction between voice signals and symbols, lie two prominent analysis
tasks: transcription and alignment. My thesis has been primarily interested in temporal
voice alignment, or synchronization, which aims at associating each symbol with a timestamp
of appearance in the audio recording, and offers thrilling applications for the general public
(automatic closed-captioning, karaoke) and research community (voice analysis and synthesis).

(Chapter 3.) Through a systemic review of the literature, I showed that any system
for temporal voice alignment is composed of (1) an acoustic model, inferring a time-symbol
representation from the audio, and (2) a decoding module, using this representation for the
forced alignment of a ground-truth sequence. While the decoding module is typically based on a
reference dynamic programming algorithm, the acoustic model has seen many implementations.
Inspired by recent advances in deep learning for voice processing, I motivated the choice to
design the acoustic model as a deep neural network. In particular, I presented the Connectionist
Temporal Classification (CTC) framework, which is particularly convenient and appealing for
end-to-end voice alignment and was the chosen approach for my thesis.

(Chapter 4.) Then, I presented my preliminary proposals of CTC-based aligners which
allowed me to develop a series of criteria that a robust and practical aligner should respect.
These criteria were not systematically validated either by existing systems or by my first
attempts, which prompted the development of a new acoustic model in accordance with these
identified needs. This is ADAGIO − for Automatic Deep AliGnment of vOIce −, the central
node of my thesis research. Trained on the CTC criterion, ADAGIO predicts, from an audio,
a posteriorgram estimating the temporal evolution of the underlying symbolic content.

(Chapter 5.) However, since the CTC is originally a transcription measure, it can be
minimized without aligning as precisely as desired. Faced with this intrinsic limitation, I
proposed to introduce additional temporal constraints when training the networks to ensure
the emergence of alignment properties directly in the posteriorgrams. This temporal knowledge
took the form of ancillary tasks of spectral reconstruction, temporal structure propagation,
and time-sequence monotonicity. This defined a version of ADAGIO enhanced with temporal
information learning. It is worth highlighting that these enhancements were purposely thought
generic, i.e. not based on any domain/expert knowledge (e.g., specific language or music genre).
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(Chapter 6.) Objective evaluations based on classical metrics were conducted to quantify,
and ultimately confirm, the suitability of ADAGIO for voice-to-text and (to a lesser extent)
voice-to-note alignments, and the beneficial impacts of my auxiliary temporal constraints when
supervised on isolated voices. Two word-level aligned datasets were derived from existing works:
Philos 10 for speech and Playlist 50 for lyrics and notes. Although state of the art is not reached
in the classical evaluation case, ADAGIO stands out for its simplicity and diversity of use.

(Chapter 7.) Finally, ADAGIO has been put into practice through various collaborations
in which I performed the alignments and analyses were dominantly done by respective end
users. These works have focused on the concatenative synthesis of singing voice via phonetic
alignment, and the study of expressive production strategies for both spoken social attitudes
and singing style in musical performances − bridging, to some extent, the semantic gap between
symbols and audio. Lastly, ongoing research and perspectives were mentioned.

8.2 Coming full circle: back to initial questions

In the course of this thesis, I have deeply learned to investigate and answer to practical and
research questions − and notably the ones raised by temporal voice alignment in section 1.1 .
To give a greater overview to this research, and essentially conclude this manuscript, this last
section sums up the answers I propose to these initial questions from accumulated knowledge.

Question 1 (Q1). Temporal voice alignment – what?

• What is the temporal alignment task in general and for voice?
A task consisting in predicting a precise timestamping for each event reported in a
sequence of ordered elements expressed in an audio recording. This thesis specializes
on voice alignment, which links oral and symbolic modalities of human communication.

• What kind of representations can be used to align voice data?
Time-Frequency Representations (TFR) are relevant features to manipulate voice signals
as they capture the variations of the spectral content over time. Symbolic sequences are
defined through an associated finite alphabet of labels (e.g., letters, digits, notes, etc.).

Question 2 (Q2). Temporal voice alignment – how?

• How to develop a system for the temporal alignment of voice?
Most voice aligners in the literature are composed of an acoustic model and a decoding
module. The decoding module often relies on a Dynamic Time Warping (DTW) algorithm.
Recent acoustic models exploit deep neural networks learning robust features from audio.
In this thesis, an acoustic model, ADAGIO, was proposed as an end-to-end, convolutional
network trained in the highly flexible Connectionist Temporal Classifical (CTC) framework.
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• How to extract suitable temporal information from audio to reinforce alignment accuracy?
The main claim of this research is that incorporating additional temporal information
in the acoustic modeling must result in higher alignment accuracy. This appeared as
a natural extension for ADAGIO, as the flexibility offered by the CTC came with no
intrinsic guarantee of precise alignments. In the end, temporal spectral reconstruction,
temporal structure propagation, and audio-symbolic monotonicity were introduced as
new supplementary and general (i.e. without domain knowledge) objectives that were
integrated in the training phase. These constraints, when supervised on solo vocals
estimated with voice separation, were shown to have a beneficial impact on voice alignment.

Question 3 (Q3). Temporal voice alignment – why?

• Why is temporal alignment of interest in various research communities?
General alignment algorithms emerged in many fields requiring similarity measures between
sequences such as telecommunications, bioinformatics and the audio domain. The specific
case of voice synchronization appears as a means to bridge, to some extent, the semantic
gap between different modalities involved in human communication by uncovering and
looking closely at the temporal relationships between these diverse representations. Voice
aligners have already found well-known mainstream applications for the general public
such as text-based audio indexing, automatic closed captioning, or karaoke generation.

• Why does temporal voice alignment lead to numerous research applications?
Beyond the above-mentioned use cases, temporal voice alignment is of great interest
in research dedicated to voice analysis and synthesis. Concatenative singing synthesis,
indeed, exploits aligned phonetic content to generate sung utterances. The automatic
segmentation of audiobooks, often needed by speech specialists, is possible via long audio
alignment. Synchronizing voice data also allows fine-grained analysis of voice expressivity
and thus a better understanding of, e.g., the production strategies at play to convey social
attitudes or singing interpretative style according to musicological studies.

Naturally, one could wonder whether asking such questions in the first place was of interest.
In the very words of Luciano Berio (2006), “I think that the search for a universal answer to
the questions raised by musical experience will never be completely fulfilled; but we know that a
question raised is often more significant than the answer received. Only a reckless spirit, today,
would try to give a total explanation of music, but anyone who would never pose the problem
is even more reckless.” Perhaps the very essence of questioning music and voice, as essential
expressive and communicative vectors, would be a springboard to better apprehend time itself.

And even beyond music, voice and time − the very act of raising questions, of all kinds and
at all levels, seems more essential than ever, today, to stimulate the minds and the intellect.
So many more questions have to be raised to, hopefully, face the challenges of the century such
as global warming, modern wars and human condition − this sure will require some time.
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.

End of the Thesis

“Time isn’t the main thing. It’s the only thing.”
.

Miles Davis
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