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Abstract

Ground-based aircraft trajectory prediction is a critical issue for air traffic management.
A safe and efficient prediction is a prerequisite for the implementation of automated tools
that detect and solve conflicts between trajectories. In this scope, this work proposes two
non-parametric interval prediction methods in the regression context. These methods are
designed to predict intervals that contain at least a desired proportion of the conditional
distribution of the response value (referred to predictive intervals). Firstly, we consider the
problem of the estimation of a probability distribution with a small sample size. Based on
the probabilistic interpretation of the possibility theory, we describe possibility distributions
that encode different kinds of statistical interval. Then, we propose a statistical test to verify
the reliability of an interval prediction model. We also introduce two measures for comparing
different interval prediction models giving intervals that have different sizes and coverage.
Starting from our work on statistical intervals (and the associated possibility distribution),
we present a pair of methods to find two-sided predictive intervals for non-parametric
least squares regression without the non-biased prediction and the error homoscedasticity
assumptions. Our predictive intervals are built by using tolerance intervals on prediction
errors in the query point neighborhood. The query point neighborhood is obtained with a
fixed or variable size neighborhood selection method. We finally obtain a method that finds in
most cases the smallest reliable predictive interval model of a dataset. The proposed interval
prediction methods are compared with other well-known interval prediction methods both
at the theoretical and the practical level. An evaluation is performed with nine benchmark
datasets. They are tested on their reliability, efficiency, precision and tightness of their
obtained envelope. These experiments show that our methods are more reliable, effective
and precise than their competitors. The final chapter describes the application of our
method to an aircraft trajectory prediction problem in the climb phase and we compare the
results with those obtained with the state of the art algorithms and with physical models.
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Résumé

La prédiction de trajectoires d’avions à partir des données disponibles au sol est un problème
critique pour le contrôle aérien. Une prédiction fiable et efficace est un prérequis pour
l’implémentation d’outils automatiques pour la détection et la résolution de conflits entre
les trajectoires. Dans ce contexte, nous proposons de nouvelles méthodes non paramétriques
pour la prédiction d’intervalle contenant une proportion attendue des données avec un haut
niveau de confiance. Dans un premier temps, nous traitons le problème de l’estimation d’une
distribution de probabilité à partir d’un petit échantillon. En considérant l’interprétation des
distributions de possibilité comme une famille de distributions de probabilité, nous décrivons
un ensemble de distributions de possibilité qui résument différents types d’intervalles
statistiques. Ensuite, nous proposons un cadre de travail pour vérifier si un modèle,
construit à partir de données, respecte les propriétés de recouvrement requises par les
intervalles de prédiction. Nous introduisons aussi deux mesures pour comparer des modèles
de prédiction d’intervalle qui ont des tailles moyennes et des taux de recouvrement différents.
À partir de nos travaux sur les intervalles statistiques (et leurs distributions de possibilité
associés), nous présentons une nouvelle méthode pour induire des intervalles de prédictions
bornés pour des méthodes de régression des moindres carrés non paramétriques sans assumer
que la prédiction est non biaisée et que les erreurs sont homoscédastiques. Nos intervalles
de prédiction sont construits en utilisant des intervalles de tolérances sur les erreurs dans
le voisinage du point à prédire. Pour cela, nous décrivons une méthode de sélection de
voisinage à taille fixe ou de voisinage à taille variable dépendant de la quantité d’informations
autour du point. Nous obtenons un algorithme qui induit, dans la majorité des cas, les
intervalles de prédiction fiables les plus petits possibles. Les méthodes que nous proposons
sont comparées avec les méthodes les plus connues au niveau théorique et au niveau pratique.
Une évaluation est effectuée sur neuf bases de données. La taille, l’efficacité, la fiabilité
et la précision des intervalles prédits sont comparés. Ces expérimentations montrent que
nos approches sont significativement plus précises et fiables que les autres. Enfin nous
appliquons nos méthodes au problème de la prédiction de trajectoires d’avions et nous
comparons les résultats avec ceux des méthodes classiques et des modèles physiques.
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Introduction

To respond to the increasing levels of air traffic demand, we need Air Traffic Management
(ATM) systems capable of automatically detecting and solving potential aircraft trajectory
conflicts. The efficiency of these conflict solvers are mainly influenced by their trajectory
prediction module. Even if most aircraft have very efficient control modules which are
able to determine precisely their positions in the future, this information is not available
to ground control systems. Ground control systems have access to the past positions of
the aircraft and some forecast information. Moreover, the lack of critical information
such as the mass of the aircraft makes the use of physical models very tricky. Thanks to
the monitoring and storage of ground control data on large period, the use of statistical
regression methods to predict the future positions of the aircraft trajectory appears to
be a reliable solution. However, it is unrealistic to expect that statistical techniques will
provide precise prediction due to the lack of some important information (such as ground
control orders which are not recorded by computers). Because a safe and efficient aircraft
trajectory predictor is a prerequisite for the implementation of automated tools that detect
and solve trajectory conflicts, it seems more reasonable to predict intervals rather than
precise aircraft positions. The thesis considers multiple topics. First, we focus on the tools
for representing the uncertainty around the prediction. Next, we provide a review of the
state of the art on interval prediction methods in regression and proposes a framework for
comparing and checking the reliability of these methods. Indeed, what we propose is an
interval prediction method which generally provides a smaller reliable prediction envelope.
We finally apply it to our aircraft trajectory prediction problem.

Context of the thesis

There are different kinds of regression techniques which estimate different characteristics of
the conditional distribution of the response variable Y (x). The most common approaches
estimate the mean of the random variable Y (x) and are usually known as least-squares
techniques. Robust regression approaches are similar to least-squares techniques but they
are designed to be robust to outliers and violations of the least-squares assumptions. An-
other kind, called quantile regression, estimates the conditional quantiles of the response
variable. In each category, the regression function can be estimated with a parametric linear,
a parametric non-linear or a non-parametric method. This results in linear, non-linear
or non-parametric regression models. These models are always built with finite sample
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sizes, thus the predicted mean or quantile is an estimate of the true unknown conditional
mean or quantile of the random variable Y (x) = f(x) + ε. Therefore while dealing with
finite size datasets, we need to make some statistical inferences. In this work we are
interested in finding two-sided prediction intervals in regression models which contain, with
a high confidence level, at least a desired proportion of the conditional response variable.
Such interval prediction models can be obtained with tolerance intervals for regression
or confidence interval on quantile regression, but the application of these methods in the
non-linear and particularly the non-parametric case are limited in the literature.

We can divide interval prediction approaches into two categories: The first category
methods are based on the estimated conditional mean. These methods are usually based
on least-squares models and propose interval prediction techniques that are centered on the
estimation of the mean regression function. These approaches generally assume a non-biased
regression model with a Gaussian error having constant variance. On the other hand we have
quantile regression methods which directly estimate these intervals. Quantile regression
methods are more robust to outliers and have less assumptions than the least-squares
approaches. But they suffer from other weaknesses like slower speed of convergence and the
crossing quantile effect.

The discussed interval prediction methods are in the classical frequentist statistics
framework. However the interval prediction problem is not restricted to this framework.
The uncertainty concept is divided into two types: the first uncertainty is due to fluctuations
or heterogeneity of materials and components space and time, because of the intrinsic
stochastic variability of individuals, materials and components. This type of uncertainty is
known as “aleatory uncertainty” which shows its relation to the randomness in gambling
and games of chance. The second, known as “epistemic uncertainty”, arises from observation
errors, censoring, hidden nature of the system, lack of variables and scientific ignorance.
This type of uncertainty can usually be reduced by additional observations and further
empirical effort. When the uncertainty about quantities is just aleatory, probability theory
is the ideal framework. However for situations in which the uncertainty about quantities
contain both the aleatory and epistemic uncertainties, different competing approaches have
been proposed. One idea states that the classical probability theory can be addressed in
both the uncertainty types but many authors disagree. Several works have addressed the
concept of modeling both the epistemic and aleatory uncertainties by using probability
theory and they resulted in similar ideas which mainly state that one can use bounds on
probability instead of precise probabilities. This idea was initiated by Boole [Boole 54]
and has been developed by Walley and Fine [Walley 82], Williamson [Williamson 89] and
Berleant [Berleant 93]. This modeling brings several new uncertainty frameworks such as:
p-box, possibility theory and Transferable Belief Models (TBM).
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Propositions and Contributions

As stated before, our work is based on the classical frequentist probability framework, but
we do not restrict it to aleatory models. So we also propose a possibilistic representation of
our statistical models which lets us access the wide community of imprecise probabilities.
The possibility theory provides the simplest uncertainty framework which can be used
to represent imprecise or incomplete knowledge. A quantitative possibility distribution
needs at most n − 1 values to fully represent the possibility distribution of a sample set
of n observations [Destercke 08]. Moreover, a possibility distribution is an appropriate
uncertainty model for encoding two-sided statistical confidence intervals or credible intervals
for future realizations from an unknown or partially known probability distribution. The
possibility distribution contains all the probability distributions that are respectively upper
and lower bounded by the possibility and the necessity measure [Didier 06]. Therefore
the possibility choice corresponds fully to the aim of this thesis which is to provide ro-
bust two-sided intervals for future aircraft positions. One major contribution of our work
addresses the high confidence two-sided interval prediction problem. For a given sample
set, there are different methods for building possibility distributions which encode the
family of probability distributions that may have generated our sample set. Apart from
our recent study [Ghasemi Hamed 12b], all the existing methods are based on parametric
and distribution free confidence bands. In this work, we look at these new possibility
distributions. These distributions encode different kinds of uncertainties that have not been
treated before. They encode statistical tolerance and prediction intervals. We also propose
a possibility distribution encoding the confidence band of the normal distribution, which
improves the existing ones for all sample sizes. These distinct possibility distributions can
be used to build different types of possibilitic regression for the same sample set. These
possibilitic regression models are the result of exploiting the relationship between statistical
inference on regression models and the possibility theory.

Once we have chosen our uncertainty framework and studied different types of confidence
intervals, we can focus on the high confidence interval prediction problem in regression
models. We refer to such methods as“interval prediction methods”. One of our contributions
is the review and the comparison of different least-squares and quantile regression techniques
used to find intervals which contain a desired proportion of the response variable. We
take advantage of this work to address common mis-understood questions about interval
prediction methods in the machine learning community. We explain their applications and
review their drawbacks. As pointed out at the beginning paragraph, we are interested in
finding intervals in regression models which contain, with a high confidence level, at least a
desired proportion of the conditional response variable. For that purpose, we introduce a
new type of interval prediction method named “predictive interval methods”. A predictive
interval model contains, for any query point x, at least a desired proportion of the condi-
tional distribution of the response variable. Such models can be obtained with tolerance
intervals for regression or confidence interval on quantile regression, but these concepts
have limited applications in the literature. We propose predictive interval models for local
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linear regression models. Our predictive interval models are applied for two-sided interval
prediction, however one can easily extend them to a one-sided interval prediction context.
Then, we introduce a statistical test to check if an“interval prediction model” is a “predictive
interval model”. In the same context, we introduce two measures for ranking interval pre-
diction models. These measures rate the efficiency and the tightness of the obtained envelope.

Our main contribution is to propose two predictive interval methods for non-parametric
regression. Our local linear predictive interval methods are based on the local linear regres-
sion and give variable size intervals. We assume that the mean regression function is locally
linear and that the prediction error is locally homoscedastic (heterocedastic in general).
Our method does not neglect the regression bias and finds intervals that work properly with
biased regression models. The proposed predictive intervals are based on the leave-one-out
or 10-fold cross-validation prediction errors of the local linear regression. We also briefly
discuss the concept of simultaneous predictive intervals. A simultaneous predictive interval
model provides simultaneous predictive intervals for all the points in the predictor space,
∀x ∈ X . β-content simultaneous predictive intervals can be obtained with simultaneous
tolerance intervals for regression in linear regression. This work introduces simultaneous
predictive intervals for K-Nearest Neighbor (KNN) regression. It is similar to predictive
intervals with local linear regression but has three main differences: first, it is performed in
a simultaneous context. Second, it uses a KNN regression method instead of a local linear.
Finally, the simultaneous predictive interval for the response value is obtained directly with
the observation values instead of prediction errors.

In order to validate our findings, we use several regression datasets to compare our
predictive interval method for local linear regression with other interval prediction methods.
The selected methods will be tested on their capacity to provide two-sided β-content predic-
tive interval models. The models are compared by their reliability, efficiency, precision and
the tightness of their obtained envelope. This comparison is made regardless to any variable
selection or outliers detection preprocessing. We also take advantage of our evaluation
chapter to show that the conventional interval prediction method is not appropriate for high
confidence interval prediction. It is almost always less efficient than our predictive interval
methods and their envelope is almost always larger than the envelope obtained by our meth-
ods. After a detailed comparison of the methods, we come back to the ground-based aircraft
trajectory prediction which was our first motivation. In this work, a standard point-mass
model and statistical regression method is used to predict the altitude of climbing aircraft.
In addition to the standard linear regression model, we use two common non-linear regres-
sion methods, Least Squares Support Vector Machines (LS-SVM) and the Loess method.
These methods lead to five different prediction models and they are compared, based on
their point based prediction performance. However because of the critical nature of our
problem and regarding the safety constraints, it seems more reasonable to predict intervals
rather than precise aircraft positions. We apply nine different interval prediction methods
to our aircraft trajectory prediction dataset. Some of these interval prediction models
are built on the obtained prediction models and others (quantile regression based models)
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are constructed without using the preceding regression models. Our experiments com-
pare these models based on their reliability, efficiency and tightness of the obtained envelope.

Organization

This work is divided into three parts and ten chapters. The first part contains the first
three chapters. It reviews imprecise probabilities and discusses the problem of interval
prediction within the statistics and possibility theory. The second part is dedicated to
the interval prediction problem within the statistical regression context. This part briefly
discusses the relationship between all the mentioned statistical interval prediction methods
and possibilistic regression with crisp input and output data. This part is composed of
Chapters 4 to 8. The third part contains Chapters 9 and 10 which describe our experiments.

Chapter 1 gives a brief review of the mostly used uncertainty frameworks that address
both aleatory and epistemic uncertainty and have been used within the regression context.

Chapter 2 reviews some of the most classical confidence sets in frequentist statistics.
Tolerance intervals are explained in 2.3 and they are the core concept of our work. A
tolerance interval depends on the number of observations that was used to construct it.
Thus it is not an asymptotic interval and this is what makes it an interesting tool for
statistical inference based on finite sample size. Chapter 3 uses the possibility framework
to encode a family of probability distributions which may have generated our sample set.
We have partially published this chapter in [Ghasemi Hamed 12b] and [Bounhas 13].

Chapter 4 is a background of the regression analysis with an exhaustive state of the art
on fuzzy and non-fuzzy interval prediction methods.

Chapter 5 covers interval prediction with statistical regression. The contribution of this
chapter is to review and compare different least-squares and quantile regression techniques
used to find such intervals. We address a mis-understood interval prediction method in the
machine learning community. We explain its applications and review its drawbacks.

Chapter 6 introduces a new interval prediction framework within the regression context.
This chapter introduces the concept of regression predictive intervals and regression predic-
tive interval models. This concept is followed by a test to verify if an “interval prediction
model” is a “predictive interval model”. We also describe the relationship between predictive
intervals models and tolerance intervals for regression and confidence interval on quantile
regression. We explain how to choose a confidence level γ to obtain efficient and reliable
predictive interval models. The final part is dedicated to an illustrative example which
compares two distinct interval prediction methods on the motorcycle dataset [Silverman 85].

Chapter 7 deals with predictive interval methods for local linear regression. This chapter
begins by proposing a method to compute tolerance intervals for local linear regression.
We describe how to use the tolerance intervals to obtain predictive interval models and
then, show how to obtain our interval prediction models with a commonly used local linear
regression method called loess. This chapter ends up with an illustration section and a
conclusion part which compares existing methods.
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Chapter 8 introduces the concept of simultaneous predictive intervals. We introduce
simultaneous predictive interval for KNN regression. This chapter discusses briefly these
intervals, but the interested reader can find more details in [Ghasemi Hamed 12c]. The
reader can also find a related study under the possibility theory [Ghasemi Hamed 12a].

Chapter 9 evaluates the performance of our predictive interval method for local linear
regression. The selected methods are tested on their capacity to provide two-sided β-content
predictive interval models. This chapter is organized in five sections: the first section
describes our datasets, the second section describes the interval prediction methods used
in the third section. The fourth section explains our experiments on the simultaneous
predictive models which are also published in [Ghasemi Hamed 12c].

Chapter 10 is a ground-based aircraft trajectory prediction example which has been
partially published in [Ghasemi Hamed 13]. As stated before, the main goal of this thesis
is to obtain interval prediction models able to provide intervals that, with a high confidence
level, contain at least a desired proportion of the distribution for the future aircraft position.
The experiments part compares our predictive interval for Loess with other point mass
based and regression based interval prediction models.
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Uncertainty Frameworks
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Risk analysis contains two different types of uncertainties [Ferson 03]: the first one is
an uncertainty which is due to fluctuations or heterogeneity of materials and components
space and time, because of the intrinsic stochastic variability of individuals, materials and
components. This type of uncertainty is known as “aleatory uncertainty” which shows its
relation to the randomness in gambling and games of chance. It is also called as “irreducible
uncertainty”because, by definition, one cannot reduce the aleatory uncertainty by additional
empirical study. The second known as “epistemic uncertainty” arises from observation
error, censoring, hidden nature of the system, lack of variables and scientific ignorance.
This type of uncertainty can usually be reduced by additional observations and further
empirical effort. When the uncertainty about quantities is just aleatory, probability theory
is the ideal framework. However for situations in which the uncertainty about quantities
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contains both the aleatory and epistemic uncertainties, different competing approaches
have been proposed. The first approach states that the classical probability theory can be
addressed in both the uncertainty types. Shafer [Shafer 76] argued that an approach that
takes into account the indistinguishability of underlying states within bodies of evidence
would be required. Walley [Walley 91], proposed that this problem must be treated by the
imprecise probabilities theory and Williamson [Williamson 89] and Williamson and Downs
[Williamson 90] investigated arithmetics on p-boxes. Smets introduced the Transferable
Belief Model [Smets 94] as an interpretation of the Dempster-Shafer model [Shafer 76]. In
the same context, Dubois [Didier 06] proposed a possibility distribution as a family of
probability distributions. Destercke et al. [Destercke 08] introduced a generalized form of
p-boxes which have interesting connections with other well known uncertainty representa-
tions. Apart from the Walley [Walley 91] book, there is little rigorous and detailed work
that compares these uncertainty frameworks in a concise manner. Meanwhile, the Destercke
et al. [Destercke 08] study gives a brief introduction and review of these subjects.

The current thesis is based on the classical frequentist probability and the possibility
theory [Zadeh 78], but we also take a brief and non-exhaustive review of the mostly used
uncertainty frameworks that address both aleatory and epistemic uncertainty and have
been used within the context of regression. In Chapter 3 we use the possibility framework
to encode a family of probability distributions which may have generated our dataset.

1.1 Imprecise probabilities

Walley’s book [Walley 91] is a reference work for the theory of imprecise probabilities. He
modeled uncertainty by lower and upper bounds (called coherent lower previsions) on the
expected value of bounded real-valued functions on the random variable X. Imprecise
probability theory is a very general concept. From a mathematical point of view it involves
all the uncertainty models represented in this work. Imprecise probability gives appropriate
and encompassing ways to treat several of the most practical uncertainty models and risk
analysis problems as described by [Ferson 03]:

• Partially or imprecisely specified distributions;

• Inconsistency in the input data quality;

• Model uncertainties;

• Lack of sufficient knowledge on dependencies;

• Non-stationarity in distributions;

• Consequential measurement uncertainties;

• Small sample sizes.
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Several works have addressed the concept of modeling both the epistemic and aleatory
uncertainties by using probability theory and they resulted in similar ideas which mainly
state that one can use bounds on probability instead of precise probabilities. These idea was
first initiated by Boole [Boole 54] and has been developed by Walley and Fine [Walley 82],
Williamson [Williamson 89] and Berleant [Berleant 93]. Note that Walley’s definition of
imprecise probabilities share some similarities with the classical robust statistics, but it is
not based on the same principles described in [Huber 09].

1.1.1 Bayesian Interpretation

Bayesian statistical inference models beliefs and preferences with precise probability dis-
tributions (priors), and then it makes use of the Bayes rule to combine these priors with
statistical data. We distinguish objective Bayes theory from subjective Bayes theory. The
objective Bayes theory began with Bayes work [Bayes 63] and was developed by Laplace
[Laplace 12] [Laplace 14]. The idea behind these theories is to use “non-informative” priors
to model the ignorance of any prior probability distribution. Criticism of the objective
Bayesian theory is detailed Chapter 2 in [Fisher 59], Chapter 4 in [Savage 72] and sections
5.1.2 , 5.5 and 7.4 in [Walley 91]. Subjective Bayesian theory is a more popular version of
the Bayesian approach. It suggests that probability distribution models the personal belief
[De Finetti 72].

Bayesian sensitivity analysis uses some kind of inference which is the same as the
imprecise probability theory. In Bayesian sensitivity analysis [Berger 84], the analyst makes
several precise Bayesian inferences with different precise probability priors. This produces
a range of precise posterior probability distribution which leads to a range of probability
measures or a range of expected utilities in decision making. More details and discussions
can be found in [Good 62, Good 65], [Huber 09] and [Walley 91].

1.1.2 Frequentist Interpretation

Huber and Strassen [Huber 73] and Huber [Huber 09] studied a frequentist interpretation
of lower and upper probabilities in robust statistics. Wally and Fine [Walley 82] presented
a frequentist theory of statistics to introduce upper and lower probabilities (interval-valued
probability). They consider models based on independent and identically distributed
observations (IID) for unlinked repetitions of experiments which are described by Interval-
Valued Probability (IVP). They also suggest several generalizations of standard concepts
of independence, asymptotic certainty and estimability. The idea is that we dispose of a
lot of geological, economic, medical, psychological and sociological observations time series
data for which we have little information concerning dependence between their observations.
Such problems are modeled by non-stationary probability models, which are usually complex
and are often not based on our understanding of the phenomenon. However these behaviors
can be much more simply modeled by non-additive IID models and are precise enough
to give useful predictions. Another type of upper and lower probability which models
stationary processes having unstable time average can be found in [Grize 87] and [Fine 88].
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1.2 P-box

Let P be a probability measure on the random variable X on R and F (·) be its cumulative
distribution F (x) = P (X ≤ x). Let F (·) and F (·) denote two cumulative distributions for
X such that for all x, F (x) ≤ F (x) ≤ F (x). Then the pair [F (·), F (·)] is a “p-box” for X
[Ferson 03]. It means that the cumulative distribution F (·) is unknown but we know that
it is contained in the p-box [F (·), F (·)]. Therefore F (x) is a lower bound on F (x). It can
be calculated from a lower probability measure P for the random variable X [Walley 91]:

F (x) = P (X ≤ x)

and the upper bound can be obtained by

F (x) = 1− P (X > x).

Probability box (or p-box) is a a framework for modeling both the aleatoric and epistemic
uncertainties. This is often used in risk analysis or uncertainty modeling where numerical
calculations must be performed. Probabilistic knowledge from experts is usually represented
by cumulative distributions [Technology 91], and so the p-box can benefit from such tools
but it also offers the opportunity to have epistemic uncertainties.

Williamson [Williamson 89] and Williamson and Downs [Williamson 90] investigated
arithmetics on p-boxes. They described detailed examination of numerical methods for
calculating the distribution of arithmetic operations on pairs of p-boxes. Note that there is
no general relationship between the frameworks of possibility distributions, p-boxes and
probability intervals. Comparison of possibility distributions and p-boxes can be found in
[Baudrit 06]. Destercke et al. [Destercke 08] defined a generalized form of p-boxes which
have interesting connections with other well known uncertainty representations. They
show that generalized p-boxes are equivalent to pairs of possibility distributions, and that
they are special kinds of random sets. They also present a review of common uncertainty
representation frameworks, their relationships and their transformations.

In the same context, we have probability intervals [de Campos 94] which are lower
and upper bounds of probability distributions. They are defined by a set of intervals
L = {[l(x), u(x)],∀x ∈ X} where

l(x) ≤ p(x) ≤ u(x),∀x ∈ X , and p(x) = PX(x).

and X is the domain of x. There is a particular case of lower and upper probabilities
where the constraints can only affect individual probabilities x. Restriction which affect
more than one individual probability like P (x1) + P (x2) ≤ uij are possible in lower and
upper probabilities, but they are not permitted in probability intervals [de Campos 94].
Probability intervals are suitable for modeling uncertainties on multinomial data where
they can be used to represent lower and upper confidence bounds. [Destercke 08]
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1.3 Possibility Theory

In 1978, Zadeh introduced the possibility theory [Zadeh 78] as an extension of his theory of
fuzzy sets. Possibility theory offers an alternative to the probability theory when dealing
with some kinds of uncertainty. The possibility theory has a qualitative and a quanti-
tative interpretation. Despite both interpretations sharing the same elementary notions,
qualitative and quantitative possibility theories diverge on conditioning and combination
tools. Qualitative possibility theory has a close link to non-monotonic reasoning whereas
quantitative possibility involves notions similar to the probability theory. Quantitative
possibility is an imprecise probability framework that represents probability bounds and
it can also be seen as a special case of belief functions [Dubois 98]. Quantitative pos-
sibility distributions can also be viewed as a family of probability distributions. Then,
the possibility distribution contains all the probability distributions that are respectively
upper and lower bounded by the possibility and the necessity measure [Didier 06]. For a
given sample set, there are different methods for building possibility distributions which
encode the family of probability distributions that may have generated the sample set
[Ghasemi Hamed 12b, Aregui 07b, Masson 06, Aregui 07a]. The mentioned methods are
almost all based on parametric and distribution free confidence bands.

1.3.1 Definition

Possibility theory [Zadeh 78, Dubois 80], was initially created in order to deal with impreci-
sion and uncertainty due to incomplete information. This kind of uncertainty may not be
handled by probability theory, especially when a priori knowledge about the nature of the
probability distribution is lacking. In possibility theory, we use a membership function π to
associate a distribution on sample space Ω. In this paper, we only consider the case Ω = R.

Definition 1 A possibility distribution π is a function from Ω to [0, 1] (π : R→ [0, 1]).

The definition of the possibility measure Π is based on the possibility distribution π such
that:

Π(A) = sup(π(x),∀x ∈ A). (1.1)

The necessity measure is defined by the possibility measure

∀A ⊆ Ω, N(A) = 1− Π(AC) (1.2)

where AC is the complement of the set A. A distribution is normalized if: ∃x ∈ Ω such that
π(x) = 1. When the distribution π is normalized, we have:

Π(∅) = 0, Π(Ω) = 1,

Π(U ∪ V ) = max(Π(U), Π(V ))

N(A) ≤ Π(A).
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Based on Zadeh’s [Zadeh 78] consistency principle of possibility “what is probable
should be possible”, and by considering the definition of necessity, we obtain the following
inequalities:

N(A) ≤ P (A) ≤ Π(A), A ⊂ Ω. (1.3)

Thus by using the possibility and necessity measures, like in the Dempster-Shafer theory,
we can define upper and lower values to describe how likely an event is to occur. Note that
for any event A, we will have either :

Π(A) = 1 or N(A) = 0

which means that the pair [N(A), Π(A)] will be [0, α] or [β, 1].

Definition 2 The α-cut Aα of a possibility distribution π(·) is the interval for which all
the points x located inside it have a possibility membership π(x) greater than or equal to α.

Aα = {x|π(x) ≥ α, x ∈ Ω}, (1.4)

Therefore, we have:
[N(Aα), Π(Aα)] = [α, 1].

1.3.2 Probability-possibility transformation

In many cases it is desirable to move from the probability framework to the possibility frame-
work. This is why several transformations based on various principles such as consistency
(this principle states that “what is probable should be possible”) or information invari-
ance have already been proposed [Civanlar 86, Delgado 87, Klir 90, Dubois 93a, Dubois 04].
Dubois et al. [Dubois 93b] suggest that when moving from the probability to possibility
framework, we should use the “maximum specificity” principle which aims to find the most
informative possibility distribution. The definition of the maximum specificity principle is
based on three other concepts known as “inter-quantile”, “smallest β-content interval” and
“specificity”. W begin by their definition and then formally define the maximum specificity
principle. We denote the density function of a probability distribution by f(·), its receptive
cumulative distribution function (cdf) by F (·) and its probability measure by P .

Definition 3 The interval between the lower and upper quantiles of the same level are
called inter-quantiles. The inter-quantile at level p is defined by

[F −1(p), F −1(1− p)], 0 < p < 0.5 (1.5)

where F −1(·) is the inverse function of the continuous strictly-monotone cdf F (·).

An inter-quantile at level p contains β proportion of the distribution where β = 1− 2p.
We will call a β-content inter-quantile Iβ, the interval that contains β proportion of the
underlying distribution, we have Pr(Iβ) = β.
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Definition 4 Given a probability density function f(·) with a finite number of modes, we
define the interval I∗

β defined below as the “smallest β-content interval” of f(·).

I∗
β = {x : f(x) ≥ c} (1.6)

where c is defined as
∫

✶I∗

β
(x)f(x)dx = β and ✶I∗

β
(x) is the indicator function for I∗

β.

Thus we have:
P (X ∈ I∗

β) = β

and I∗
β does not exists for f having infinite number of modes, for instance the uniform

distribution.

Definition 5 A possibility distribution π1 is more specific than the possibility distribution
π2 if and only if:

∀x ∈ X , π1(x) ≤ π2(2), (1.7)

where X is the domain of x. This can also be represented by π1 ≤ π2.

Definition 6 Given the maximum specific possibility distribution (m.s.p.d) π∗ that encodes
the probability distribution function F (i.e. ∀A ⊆ Ω, N∗(A) ≤ P (A) ≤ Π∗(A)) we have, for
all π such that ∀A ⊆ Ω, N(A) ≤ P (A) ≤ Π(A), π∗(x) ≤ π(x),∀x ∈ Ω.

Because the possibility distribution explicitly handles the imprecision and is also based on
an ordinal structure rather than an additive one, it has a weaker representation than the
probability one. This kind of transformation (probability to possibility) may be desirable
when we are in presence of weak source of knowledge or when it is computationally harder
to work with the probability measure than with the possibility measure. The “most specific”
possibility distribution is defined for a probability distribution having a finite number of
modes [Dubois 04]:

π∗(x) = sup(1− P (X ∈ I∗
β), x ∈ I∗

β) (1.8)

where πt is the most specific possibility distribution, I∗
β is the smallest β-content interval

[Dubois 04]. Then, in the spirit of equation 1.10, given f and its transformation π∗ we have:

A∗
α = I∗

β where α = 1− β.

Figure (1.1) presents the maximum specific transformation (in blue) of a normal proba-
bility distribution (in green) with mean and variance respectively equal to 0 and 1 (N (0, 1)).
It also illustrates two inter-quantiles of the standard normal distribution and their respective
α-cuts in the m.s.p.d for N (0, 1).

Lemma 1 The maximum specific possibility distribution (m.s.p.d) π∗(·) of the unimodal
symmetric probability density function f(·) can be built as follows:

π∗(x) =











2F (x) = 1 if x = µ,
2F (x) if x < µ,
2F (2µ− x) if x > µ,
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Figure 1.1: Illustrating 0.25-cut and 0.75-cut and their respective smallest β-content
intervals.

Where, µ denotes f(·)’s mode or median and F (·) its cumulative distribution function.

Proof : The mode, median and mean of a symmetric and unimodal distribution are
identical, so the smallest β-content interval I∗

β of f(·) is also its inter-quantile at level
1−β

2
. Thus the smallest inter-quantile I∗

β containing x is the inter-quantile that maximizes
1 − P (X ∈ I∗

β) in Equation 1.8 with x being on its borders. If x is smaller than the

mode(x < µ), then x is equal to the I∗
β’s lower bound x = F −1(1−β

2
). Otherwise it is equal

to the I∗
β’s upper bound x = F −1(1 − 1−β

2
). By simple calculations and application of

Equation 1.8 we deduce the previous proposition. �

Proposition 1 The maximum specific possibility distribution (m.s.p.d) π∗(·) of a unimodal
symmetric probability density function f(·) can be built by calculating the β-content inter-
quantile Iβ of f(·) for all the values of β, where β ∈ [0, 1].

Proposition (1) is a direct result of Lemma (1).

1.3.3 Encoding a family of probability distributions

One interpretation of possibility theory, based on Zadeh’s [Zadeh 78] consistency principle
of possibility (“what is probable should be possible”), is to consider a possibility distribution
as a family of probability distributions (see [Didier 06] for an overview). Thus, a possibility
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distribution π will represent the family of the probability distributions Θ for which the
measure of each subset of Ω will be bounded by its possibility measures:

Definition 7 A possibility measure Π is equivalent to the family Θ of probability distribu-
tions F such that

Θ = {F |∀A ∈ Ω, P (A) ≤ Π(A)}, A ⊆ Ω. (1.9)

Now let θ be a set of cdfs, where F is defined by a possibility distribution function π(·).
Then, an alternative to equations (1.9) is:

∀α ∈ [0, 1],∀F ∈ Θ, I∗
F,β ⊆ Aπ,α, (1.10)

where β = 1− α and Aπ,α is the α-cut of possibility distribution π(·). Thus, a possibility
distribution encodes a family of probability distributions for which each smallest (1− α)-
inter-quantile is bounded by a possibility α-cut. This is stated formally as:

Proposition 2 Let Θ be a family of probability and let π(·) denote the possibility distribution
function encoding Θ. Each α-cut of π(·) contains the smallest (1−α)-content inter-quantile
of all of the probability distributions included in family Θ.

This property makes possibility distributions a good tool for representing two-sided
confidence intervals on nested random sets. In other words, a possibility distribution is
an appropriate uncertainty model for encoding two-sided statistical confidence intervals or
credible intervals for future realizations from an unknown or partially known probability
distribution.

1.4 Transferable Belief Model (TBM)

The Transferable Belief Model (TBM) [Smets 94, Smets 13] is an interpretation of the
Dempster-Shafer model [Shafer 76], and it is used for representing quantified beliefs with
belief functions. TBM is a model for point-wise quantified beliefs. TBM has two levels: the
first level is known as the “credal” level in which one uses belief functions to represent its
belief on world. The second level is the“pignistic” level where the decision making takes place.
Whenever we need to make a decision, the belief functions are transformed using “pignistic
transformation” to probability functions. TBM is widely used as a formal framework for
information fusion [Aregui 07c, Quost 07, Mercier 08] and is used increasingly in imprecise
data analysis [Masson 04, Denoeux 04, Petit-Renaud 04, Su 13]. Some important aspects
of the Transferable Belief Model are the following [Smets 94]:

• This is a two level model; beliefs are represented and updated in the credal level and
a pignistic level is used only to make decisions.

• TBM departs from the idea that we do not require any probability function even
though it may exist. There is no need to have a probability distribution to obtain a
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belief function. The TBM is suited for subjective models and personal beliefs. This
is the application domain of the Bayesian framework. The fundamental contrast
between the Transferable Belief Model and the Bayesian framework is its complete
dissociation from any probability function.

• The credal level always precedes the pignistic level.

Let X = {x1, ..., xn} be a finite set and X be a variable with Ω as its domain. TBM
encodes the knowledge of variable X by a so-called basic belief assignment (bba) m which
is a mapping from 2Ω to [0, 1] such that:

∑

A⊆2Ω

m(A) = 1.

Each mass m(A) shows our belief to the statement that variable X can have a value
inside A, X ⊂ A. The difference between basic belief assignment (bba) and probability
models is that masses can be given to any subset of Ω instead of just assigning mass to
atoms of Ω. Subsets of Ω that have a mass greater than zero m(A) > 0 are called the focal
sets of m. When these focal sets are nested, the bba m is known to be consonant. The
belief bel(·), plausibility pl(·) and commonality q(·) functions are defined as below:

bel(A) =
∑

∅6=B⊆A

m(B), (1.11)

pl(A) =
∑

B∩A6=∅
m(B), (1.12)

q(A) =
∑

B⊇A

m(B), (1.13)

and these formulas hold for all A ⊆ Ω.
When m is consonant, the plausibility function is also a possibility measure and the

corresponding possibility distribution denoted by π(·) is defined by:

∀x ∈ Ω, π(x) = pl(x) = q(x)

where the possibility and commonality function respectively verify the following two
properties:

∀A, B ⊆ Ω, pl(A ∪B) = max(pl(A), pl(B)),

∀A, B ⊆ Ω, q(A ∪B) = min(q(A), q(B)).

The necessity measure and possibility measure are, respectively, particular cases of belief
functions and plausibility functions where they are induced from a random set with nested
focal sets. Having a possibility distribution π(·), one can obtain its corresponding bba m in
the TBM model as follows [Aregui 07a]:
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Let πn = π(xn), and consider an arrangement of the elements of Ω such that:

π1 ≥ π2 ≥ · · · ≥ πn.

Then, the corresponding bba is defined as follows:

m(A) =







































1− π1, if A = ∅,
πk − πk+1, if A = {x1, · · · , xn}, where k ∈ {1, · · · , n},

πn, if A = Ω,

0, otherwise.

(1.14)

For a more detailed comparison of TBM and the possibility theory see [Smets 90a].

Having a sample of observations, if we assume that our data comes from a random
variable X having an unknown probability distribution PX , we would like to express our
beliefs about future realizations of X from the sample set. The inferred belief function
must be such that its pignistic probability distribution is equal to PX . Masson et al.
[Masson 06], suggested simultaneous confidence intervals of the multinomial distribution
to build possibility distributions and Denoeux [Denoeux 06] applied the same concept in
the TBM framework. Aregui et al. [Aregui 07a] proposed a method for building a TBM
belief function from a random sample drawn from a Gaussian distribution. In the same
context, Aregui et al. [Aregui 07b] used the Kolmogorov confidence band [Birnbaum 52] to
construct predictive belief functions for sample sets drawn from an unknown distribution.

1.5 Confidence Intervals

1.5.1 Frequentist Confidence Interval

In frequentist statistics, a confidence interval is an estimated interval based on past obser-
vations, which states how frequently it contains the true parameters. The frequency of the
confidence interval is known as its confidence level. More specifically, the term “confidence
level” means that, if one uses a sample to find a confidence interval with a desired confi-
dence level, then by repeating the same experiment, the proportion of confidence intervals
constructed based on different samples (with the same number of observations and from
the same distribution), which contains the true parameter will converge to the previously
selected confidence level.

Definition 8 Let X = {X1, · · ·Xn} be a random sample from a probability distribution
with unknown parameters. A confidence interval for the parameter θ, with confidence level
or confidence coefficient 1− α, is an interval determined by the pair of statistics u(X) and
v(X), with the following property:
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Pθ

Ç
u(X) ≤ θ ≤ v(X)

å
= 1− α

The generalization to multivariate interval estimation is the confidence region.

1.5.2 Bayesian Credible Interval

A credible interval plays the same role in Bayesian statistics that the confidence interval
plays in frequentist statistics. A credible interval is an interval from the posterior probability
distribution and it is used for interval estimation.

Definition 9 Let X = {X1, · · ·Xn} be a random sample from a probability distribution
with unknown parameter θ, and let Pθ(·|X) be the posterior distribution for the parameter
θ, a confidence level 1− α-credible interval for θ from Pθ(·|X), is an interval determined by
the pair of statistics u(X) and v(X) where:

Pθ

Ç
u(X) ≤ θ ≤ v(X)|X

å
= 1− α.

The generalization to multivariate interval estimation is the credible region. Credible
intervals are different from confidence intervals in different ways:

• A credible interval has a more appealing interpretation than a frequentist confidence
interval. A credible interval is a random variable that has a probability of (1− α) to
contain the true parameter which itself is a random variable distributed according to
the prior distribution. However, in the frequentist view, the confidence interval is a
random variable and the true parameter is a fixed value. The frequentist confidence
interval will include the true parameter or not, and so it contains the true parameter
with probability 0 or 1. The confidence intervals probability is the limit of the fraction
of confidence intervals constructed based on different samples that contain correctly
the fixed unknown parameter.

• A credible interval encodes the information from the prior distribution into the
estimate, while confidence intervals are based on the random samples.

However, as mentioned in 1.1.1, there is a classical debate about the consistency of
objective Bayesian inference that selects a conjugate prior while we ignore any information
on θ’s distribution.

1.6 Conclusion

The TBM framework is the most general framework discussed here. P-boxes, possibility
theory and lower and upper probabilities can all be modeled by belief functions. However
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depending on the application, one framework may be more appropriate than the other.
P-boxes are often used in risk analysis or uncertainty modeling where numerical calculations
must be performed. They are suitable tools for representing knowledge from experts with a
pair of cumulative distributions [Destercke 08].
The necessity measure in the possibility theory can be viewed as a coherent lower probability,
thus its possibility distribution induces a family of probability distribution as defined in
Equation (1.9). We have also seen that the necessity measure is a particular case of
belief function. It is induced from a random set with nested focal sets. This means
that, in several cases, possibility distributions cannot reflect all the available information.
In order to fully represent the possibility distribution of a sample set, we need at most
|X| − 1 values. This is the simplest uncertainty framework which can be used to represent
imprecise or incomplete knowledge [Destercke 08]. Despite this lack of general expressive
power, possibility distributions are yet suited for several applications. Beyond what has
been stated, a psychological study shows that sometimes people treat the uncertainty like
possibility rules [Raufaste 03]. We have also seen that the possibility distribution is an
appropriate uncertainty model for encoding two-sided statistical confidence intervals or
credible intervals for future realizations from an unknown or partially known probability
distribution. The aim of this thesis is to provide robust two-sided intervals for future aircraft
positions. With the preceding statement, possibility distributions are an appropriate choice
for our problem.





Chapter 2

Statistical Intervals

Contents
2.1 One-sided and Two-sided Confidence Intervals . . . . . . . . . 24

2.2 Confidence Band . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2.2 Confidence bands based on confidence region of parameters . . . 25

2.2.3 Confidence region for parameters of a normal distribution . . . . 26

2.2.4 Confidence band for a normal distribution . . . . . . . . . . . . . 28

2.2.5 Distribution-free confidence bands . . . . . . . . . . . . . . . . . 29

2.3 Tolerance interval . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.3.1 Tolerance interval for the Normal Distribution . . . . . . . . . . 33

2.3.2 Distribution-free tolerance interval . . . . . . . . . . . . . . . . . 35

2.3.3 Tolerance regions . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.4 Prediction interval . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.4.1 Prediction interval for the normal distribution . . . . . . . . . . 38

2.4.2 Expectation Tolerance intervals . . . . . . . . . . . . . . . . . . . 39

2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

In this chapter we will review some of the most classical confidence sets in frequen-
tist statistics. First we will have a brief review of confidence bands. Then we will see
how they can be constructed based on the confidence region of parameters. Tolerance
intervals are explained in 2.3, and are the core concept of our work. A tolerance interval
depends on the number of observations that was used to construct it. Thus it is not
an asymptotic interval, and this is what makes them an interesting tool for statistical
inference based on finite sample size. In Section 5.2.3 we continue the discussion of tolerance
intervals within the regression context. Prediction intervals are the final type of intervals
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discussed in this chapter. They are closely related to tolerance intervals and Section
2.4.2 discuss this relationship. The contribution of this chapter remains the comparison
of well known and recent confidence bands and confidence regions of the normal distribution.

In the next chapter, we use a possibility distribution to encode the intervals explained
here. Chapter 4 deals with inference on regression which describes similar statistical intervals
to those described here, but in a regression context. Intervals discussed in this chapter and
in Chapter 4 have their own specific definition and application. The goal of this chapter is
to explain their statistical interpretation and their differences, and we think that this will
help us to use them appropriately in uncertainty modeling.

2.1 One-sided and Two-sided Confidence Intervals

Definition 10 Let X = {X1, · · ·Xn} be a random sample from a probability distribution
with unknown parameters. A one-sided upper confidence interval IU1−α for the parameter
θ, with confidence level or confidence coefficient 1 − α, is an interval determined by the
statistic v(X), such that:

IU1−α = (−∞, v(X)], where Pθ

Ç
θ ≤ v(X)

å
≥ 1− α. (2.1)

An upper (1− α)-confidence interval for θ will cover, in at least 100(1− α)% of cases,
the next observation of X’s distribution.

Definition 11 Let X = {X1, · · ·Xn} be a random sample from a probability distribution
with unknown parameters. A one-sided lower confidence interval IL1−α for the parametr
θ, with confidence level or confidence coefficient 1 − α, is an interval determined by the
statistic u(X), such as:

IL1−α = [u(X), +∞), where Pθ

Ç
θ ≥ u(X)

å
≥ 1− α. (2.2)

A lower (1− α)-confidence bound is an upper α-confidence bound. Using the statistic
u(X) defined in Equation (2.2), we obtain an upper α-confidence interval IUα(x):

IUα = (−∞, u(X)], where Pθ

Ç
θ ≤ u(X)

å
≤ α.

The (1− α)-lower confidence interval for θ will provide an upper limit which covers, at
most 100α% of the time, the next observation of X’s distribution. Similarly, a (1−α)-upper
confidence interval for θ will provide lower limits which cover, at most 100α% proportion of
the time, the next observation of X’s distribution. Once we know the distribution of an
estimator, the procedure for obtaining one-sided or two-sided confidence intervals is almost
the same. In this work, we only consider two-sided intervals but it is obvious that if one
is able to construct a one-sided confidence interval for an estimator, it can also find its
two-sided confidence interval.
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2.2 Confidence Band

2.2.1 Definition

Definition 12 The confidence band for a cdf F (·) is a function which associates to each x
an interval [L(x), U(x)] such that:

P

Ç
∀x ∈ X , L(x) ≤ F (x) ≤ U(x)

å
≥ γ, where ∀x ∈ X , 0 ≤ L(x) ≤ U(x) ≤ 1. (2.3)

In frequentist statistics, a confidence band is an interval defined for each value x of the
random variable X such that for a repeated sampling, the frequency of F (x) located inside
the interval [L(x), U(x)] for all the values of X tends to the confidence coefficient γ. Note that
given any γ level confidence band, we can use it to infer confidence intervals of the quantile
function Q(β) = F −1(β) = inf{x ∈ R : β ≤ F (x)}, for all β ∈ (0, 1). In other words, the
confidence band simultaneously gives confidence intervals for all F −1(β),∀β ∈ (0, 1).

Let Ic
βi

i ∈ (1, · · · , n) be the γ-confidence interval of the unknown βi-quantile i ∈
(1, · · · , n) of the unknown c.d.f F . The simultaneous condition is:

P

Ç
(β1 ∈ Ic

β1
) ∩ (β2 ∈ Ic

β2
) ∩ · · · ∩ (βn ∈ Ic

βn
)

å
= γ. (2.4)

Therefore such confidence intervals derived from confidence bands are Simultaneous
Confidence Intervals (SCI) for all population quantiles. One can take advantage of this
property to derive simultaneous γ-confidence intervals for β-content inter-quantiles of the
unknown c.d.f F (·), and we will denote them by IC

β .

2.2.2 Confidence bands based on confidence region of parameters

Suppose that K is a set of estimated c.d.f F̂ for F , which in a repeated sampling the frequency
that the function F̂ will be equal to the true c.d.f F (if so we will have ∀x, F̂ (x) = F (x)),
will tend to 1−α. This is what is in the equation (2.5). Note (2.5) and (2.3) are two different
definitions which represent the confidence band concept with two different views. In the
case of F being a parametric probability distribution, one can use the confidence region
of its parameter vector to construct its confidence band [Cheng 83],[Frey 09]. Confidence
bands built by confidence regions are described by:

P

Ç
∃F̂ ∈ K, F = F̂

å
= 1− α. (2.5)

We know that if two parametric c.d.f Fθ1 with the parameter vector θ1 and Fθ2 with the
parameter vector θ2 belonging to the same parametric family of probability distribution say
F are equal, their parameter vectors will also be equal:

Fθ1 = Fθ2 ⇔ ∀x, Fθ1(x) = Fθ2(x)⇔ θ1 = θ2. (2.6)
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Now suppose that K is a family of c.d.f defined over any parametric probability distribution
F described by the vector parameter θ. Hence by using (2.6) we have:

∀F̂ ∈ K, P

Ç
∀x, F̂ (x) = F (x)

å
= 1− α

⇔ ∀F̂ ∈ K, P

Ç
∃F̂ ∈ K, F = F̂

å
= 1− α

⇔ P

Ç
∃θ̂ ∈ R, θ̂ = θ

å
= 1− α,

where R is the set which contains just the parameters of family K. We can notice that R is
the 1−α confidence region of the unknown parameter vector θ of the c.d.f F which belongs
to the family F . Having a sample set coming from a parametric distribution F , a simple
method for constructing a 1− α-confidence band from the 1− α-confidence region R1−α of
parameters of F is as follows :

1. Obtain a 1− α confidence region R1−α of parameters.

2. For each point θ ∈ R1−α, and for all x ∈ X obtain the max and min values of Fθ(x)
and denote them respectively by minx and maxx.

3. The resulted band [L(x), U(x)]

[L(x), U(x)] = {[minx, maxx] |∀x ∈ X , minx = min
θ∈R1−α

(Fθ(x)), U(x) = max
θ∈R1−α

(Fθ(x))}
(2.7)

is a 1− α-confidence band for F .

For more details on the construction of continuous confidence band for parametric
functions, the reader should refer to [Kanofsky 72] and [Cheng 83].

2.2.3 Confidence region for parameters of a normal distribution

Suppose that we have n observations x1, x2, · · · xn drawn from a normal distribution
with unknown mean µ and unknown variance σ2. The 1 − α confidence region for the
parameters of N (µ, σ2), contains a region in the two dimensional space of µ and σ2 which
has a probability of 1 − α to contain the true parameters value µ and σ2. Arnold and
Shavelle [Arnold 98] compared several methods to find such confidence regions. They used
simulations with different sample sizes to compare the fraction of true parameters lying in
each confidence region with its nominal value. They are all asymptotically equivalent, but
for small sample sizes there are only two methods which satisfy appropriately the required
confidence level. The first is a well known method that they call the Mood’s exact region,
defined by Equation (2.8). This method always gives a confidence region which is exactly
the same as its nominal confidence level. Mood confidence regions are built by taking α1
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and α2 such that 1− α = (1− α1)(1− α2) where 1− α is the confidence level of the found
region and it is defined by:

R(n, x, S) = {(µ, σ2) :
n− 1

χ2
1− α2

2
,n−1

S2 < σ2 <
n− 1

χ2
α2
2

,n−1

S2,

x− Φ1− α1
2

σ√
n

< µ < x + Φ1− α1
2

σ√
n
}.

(2.8)

Where x = 1
n

∑n
i=1 xi , S =

√

1
n−1

∑n
i=1(xi − x)2 and Φq and χ2

q,k are respectively the

qth quantile of the standard normal distribution and the qth quantile of the chi-square
distribution with k degrees of freedom. If α1 = α2, the confidence region is not optimal
(because the chi-square distribution is asymmetric), so in the same paper [Arnold 98], they
give values for the combination of α1 and α2 that gives the smallest possible region for a
fixed confidence level 1− α and for a fixed number of observations n. Table 2.1 is extracted
from Table 4 in [Arnold 98] and gives the values for α1, α2 and δ. 1 − α1 denotes the
confidence interval of the distribution of x which is a normal distribution, 1 − α2 is the
confidence interval of the chi-square distribution and δ is the proportion of α2 which is put
in the lower tail of the chi-square distribution.

1− α n α1 α2 σ
0.95 10 0.0117 0.0388 0.0384
0.95 25 0.0180 0.0326 0.0307
0.95 100 0.0231 0.0275 0.0219

Table 2.1: α1, α2 and δ values to find the smallest Mood confidence region, extracted from
Table 4 in [Arnold 98].

The second method uses the likelihood ratio test to build confidence regions having
a confidence level a bit smaller than the required value. The likelihood ratio confidence
region has even smaller area than the Mood’s optimal confidence region.

Frey [Frey 09] proposed the minimum area confidence region and the minimum area
confidence band for the normal distribution. She proposed two types of confidence region,
the first one is the Minimum Area (MA) confidence region and the other is the confidence
region that yields the minimum area confidence band which we denote MAB confidence
region. She stated that the Minimum Area (MA) confidence region is asymptotically
equivalent to Cheng and Iles [Cheng 83] and other maximum likelihood confidence regions
in statistics literature, however the Minimum Area confidence band improves over other
confidence bands for all sample sizes. Figures (2.1 ,2.2 and 2.3) show four different confidence
regions for parameters of the normal distribution. In these figures, we can see the smallest
Mood confidence region, as defined in [Arnold 98], Mood confidence region [Arnold 98],
Cheng and Iles [Cheng 83] and Frey’s minimum area confidence region [Frey 09]. These
regions are defined for sample sets with sizes n = 10, 25 and 100, all having (X̄, S) = (0, 1)
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and a confidence level of 0.95. It can be seen that Frey’s minimum area confidence region
[Frey 09] is always the smallest.
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Figure 2.1: 0.95 confidence region for parameters of a normal distribution based on a sample
set with size n = 10 and with (X̄, S) = (0, 1).

2.2.4 Confidence band for a normal distribution

There are already several confidence bands for the normal distribution. Some confidence
bands are obtained directly [Kanofsky 72] while others are constructed based on confidence
regions [Cheng 83, Frey 09]. One can also use Mood’s confidence region or the Smallest
Mood’s confidence region along with Equation (2.7) to obtain confidence bands for the
normal distribution. Frey [Frey 09] proposed its minimum area confidence region and
minimum area confidence band for the normal distribution. Note that the first one is the
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Figure 2.2: 0.95 confidence region for parameters of a normal distribution based on a sample
set with size n = 25 and with (X̄, S) = (0, 1).

confidence band based on the Minimum Area confidence region denoted MAR confidence
band and the second one is just the Minimum Area confidence band (MA confidence band).
The MA confidence band is a very small improvement of the MAR confidence band obtained.
However it is more difficult to calculate. This can be seen in Figures 2.4, 2.5 and 2.6, where
one cannot distinguish between these two confidence bands. So in this work we just use the
Frey minimum area confidence region (MA confidence region) and use Equation (2.7) to
obtain the MAR confidence band. In Figures 2.4, 2.5 and 2.6, the Frey confidence bands
have smaller area.

2.2.5 Distribution-free confidence bands

For distribution-free confidence bands, the most known method is the Kolmogorov [Birnbaum 52]
statistic for small sample sizes and the Kolmogorov-Smirnov test for large sample sizes. Some
other methods have also been suggested based on the weighted version of the Kolmogorov-
Smirnov test [Anderson 52]. Owen [Owen 95] inverted the nonparametric likelihood test of
uniformity introduced by Berk and Jones [Berk 78] to construct nonparametric likelihood
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Figure 2.3: 0.95 confidence region for parameters of a normal distribution based on a sample
set with size n = 100 and with (X̄, S) = (0, 1).

confidence bands for a distribution function. Nonparametric likelihood bands are narrower
in the tails and wider in the center than Kolmogorov-Smirnov bands. They are asymmetric
about the empirical cumulative distribution function. Frey [Frey 08] suggested another
approach in which the upper and lower bounds of the confidence band are chosen to minimize
a narrowness criterion. The optimal bands have a nice property: by choosing appropriate
weights, one may obtain bands that are narrow in whatever region of the distribution is of
interest. Other methods for construction of continuous confidence bands for parametric
function have been proposed by Kanofsky and Srinivasan [Kanofsky 72] and Cheng and
Iles [Cheng 83]. In Figures 2.7, 2.8 and 2.9, we have illustrated the Kolmogorov-Smirnov
0.95-confidence band for a sample set drawn from normal distributions. Meanwhile, we
illustrated that if we do not know the sample set distribution, distribution-free confidence
bands are everywhere wider than normal confidence bands. It is important to notice that
even for large samples, like n = 100 in figure 2.9, the Kolmogorov-Smirnov band remains
significantly wider than the parametric confidence bands.
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Figure 2.4: 0.95 confidence band for a normal distribution based on a sample set with size
n = 10 and with (X̄, S) = (0, 1).

2.3 Tolerance interval

A tolerance interval is an interval that is guaranteed with a specified confidence level γ,
to contain a specified proportion β of the population. Confidence bounds or limits are
endpoints within which we expect to find a stated proportion of the population. As the
sample set grows, a parameter’s confidence interval decreases toward zero. In the same
way, increasing the sample size leads the tolerance interval bounds to converge toward a
fixed value. We name a 100β% tolerance interval(region) with confidence level 100γ%, a
β-content γ-coverage tolerance interval (region) and we denote it by IT

γ,β.

Definition 13 Let X1, · · · , Xn denote a random sample from a continuous probability
distribution and let X = (X1, · · · , Xn). A tolerance interval is an interval that is guaranteed,
with a specified confidence level γ, to contain a specified proportion β of the population. The



32 CHAPTER 2. STATISTICAL INTERVALS

−6 −4 −2 0 2 4 6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

C
um

ul
at

iv
e 

pr
ob

ab
ili

ty

0.95 Mood confidence band
0.95 Smallest Mood confidence band
0.95 Cheng & Iles band
0.95 Frey MA band
0.95 Fey MAR  Band

Figure 2.5: 0.95 confidence band for a normal distribution based on a sample set with size
n = 25 and with (X̄, S) = (0, 1).

IT
γ,β sign is used to refer to a β-content γ-coverage tolerance interval [Krishnamoorthy 09].

Then, we have:

PX

Ç
P (X ∈ IT

γ,β|X) ≥ β

å
= γ. (2.9)

Suppose that we draw many independent groups of random samples from the distribution
F . If one calculates the β-content γ-coverage tolerance interval from many of these groups
of random samples, a γ fraction of tolerance intervals would, in the long run, contain at
least a β proportion of F [Hahn 91].
Therefore one-sided tolerance intervals can be used as γ-level confidence intervals for an
unknown β-quantile. In the same manner, two-sided tolerance intervals could serve as
γ-level confidence intervals for an unknown β-inter-quantile. However we do not have the
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Figure 2.6: 0.95 confidence band for a normal distribution based on a sample set with size
n = 100 and with (X̄, S) = (0, 1).

simultaneous condition given by (2.4).

P

Ç
P (X ∈ IT

γ,βi
) ≥ βi

å
= γ, ∀βi ∈ (0, 1), i ∈ {1, 2, · · · , n}, (2.10)

but

P

Ç
P (X ∈ IT

γ,β1
) = β1) ∩ (P (X ∈ IT

γ,β2
) = β2)) ∩ · · · ∩ (P (X ∈ IT

γ,βn
) = βn)

å
6= γ.

2.3.1 Tolerance interval for the Normal Distribution

When our sample set comes from a univariate normal distribution, the lower and upper
tolerance bounds (xl and xu, respectively) are calculated by (2.11) and (2.12) where X̄
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Figure 2.7: 0.95-Kolmogorov-Smirnov distribution free confidence band for a sample set
with size n = 10 drawn from N (0, 1).

is the sample mean, S is the sample standard deviation, χ2
1−γ,n−1 represents the p-value

of the chi-square distribution with n− 1 degrees of freedom, and Z2
1− 1−β

2

is the square of

the critical value of the standard normal distribution with probability (1− 1−β
2

) [Howe 69].
Hence, the boundaries of a β-content γ-coverage tolerance interval for a random sample of
size n drawn from an unknown normal distribution are defined as follows:

xl = X̄ − kS, xu = X̄ + kS, (2.11)

k =

Õ
(n− 1)(1 + 1

n
)Z2

1− 1−β
2

χ2
1−γ,n−1

. (2.12)

For more details on tolerance intervals see [Hahn 91, Krishnamoorthy 09].



2.3. TOLERANCE INTERVAL 35

−4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

C
um

ul
at

iv
e 

pr
ob

ab
ili

ty

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●● ● ●● ● ●

●● ●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

0.95 Mood confidence band
0.95 Fey MAR  Band
0.95 Kolmogorov−Smirnov band
Empirical Distribution Function
Estmated Normal Distribution

Figure 2.8: 0.95-Kolmogorov-Smirnov distribution free confidence band for a sample set
with size n = 25 drawn from N (0, 1).

2.3.2 Distribution-free tolerance interval

Let {x1, x2, · · · , xn} be n independent observations drawn from the continuous probability
density function f(x). A Distribution-free tolerance region is the region between two
tolerance limits where the probability that this region contains a proportion β of the
unknown probability distribution function is equal to γ. The mentioned tolerance limits
are functions L1(x1, x2, · · · , xn) = xr, and L2(x1, x2, · · · , xn) = xs constructed based on
the order statistics of the observations:

∫ xr

xs

f(x)dx ≥ β, (2.13)
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Figure 2.9: 0.95-Kolmogorov-Smirnov distribution free confidence band for a sample set
with size n = 100 drawn from N (0, 1).

In order to find the Distribution-free β-content γ-coverage tolerance interval (region) of
continuous random variable X, we have to find the smallest n and the order statistics xr and
xs for which the probability that (2.13) holds is greater than or equal to γ. Equation (2.13)
has a sampling distribution which was first defined by Wilks [Wilks 41] for a univariate
random variable with symmetrical values of r and s. Wald [Wald 43] generalized the
method to the multivariate case. The principle for finding a Distribution-free p-content
(1− α)-coverage tolerance interval or region of continuous random variable X is based on
order statistics. Having a univariate sample set, the distribution law, f(p) of the p percent
of the population of the universe included between the r and s order statistics is defined by
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[Wald 43]:

f(p)dp =
Γ(n + 1)

Γ(s− r)Γ(n− s + r − 1)
ps−r−1(1− p)n−s+rdp. (2.14)

In Wilks [Wilks 41] definition, s = n + r− 1. However in (2.14), as stated by [Wald 43],
we can have any r and s such that 0 < r < s ≤ n. Note that because Distribution-
free tolerance intervals are based on order statistics, the sample size required for a given
Distribution-free tolerance interval may increase with the interval’s confidence level (γ)
or the interval’s proportion β. For example, in order to have 95% 0.99-content tolerance
interval between the first and last element of a sample set, using the formula in [Hanson 63],
we need n = 473. For the calculation of the sample size requirement for tolerance intervals
the reader can refer to [Hahn 91] and [Hanson 63].

2.3.3 Tolerance regions

The problem of normal tolerance intervals has been widely studied in the statistical literature.
However the multivariate normal case has received less attention, especially when the number
of variables is greater than two (k > 2). Wald [Wald 42] considered the tolerance region for
large sample sizes. John [John 63] developed a theoretical framework and an approximation
method to construct tolerance regions in a multivariate case and for finite sample size. Slotani
[Slotani 64] also used approximations to build tolerance regions. However, the computations
are considerable and he only gave a solution for the bivariate normal distribution. Chew
[Chew 66] reviewed the result of John [John 63] and he also considered the other cases
when the covariance matrix and/or the mean is known. Krishnamoorthy and Mathew
[Krishnamoorthy 99] compared several tolerance region construction methods and use Monte
Carlo simulation to show that all these approaches are inefficient with high dimension and
high coverage probability (p = 0.95, p = 0.99). In the same paper two other approximation
based approaches are proposed which give more satisfactory results. Krishnamoorthy and
Mondala [Krishnamoorthya 06] suggested a new method which uses Monte Carlo methods
combined with an approximation method to find the confidence factors. They also used
Monte Carlo simulation to evaluate the accuracies of the tolerance and show that the new
approach is very satisfactory, even for small samples. This approach is the most accurate
solution to find the tolerance factors of the multivariate normal until now. More details can
be found in [Krishnamoorthy 99] and [Krishnamoorthya 06].

Distribution-free tolerance regions for multivariate data were first addressed by Wald
[Wald 43]. Then Tukey [Tukey 47],[Tukey 48] continued to study the construction of
tolerance regions for the continuous and non-continuous random variables. He used Wald’s
principle to provide many new ways of using the samples of n to divide the range of
the population into n + 1 blocks. For more detail, see [Tukey 47],[Tukey 48] and Murphy
[Murphy 48].
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2.4 Prediction interval

Let us now define a prediction interval and its associated possibility distribution. A
prediction interval uses past observations to estimate an interval for future values. However
other confidence intervals and credible intervals of parameters give an estimate for the
unknown value of true population parameters.

Definition 14 Let X1, X2, · · · , Xn be a random sample drawn from an arbitrary distribu-
tion, then interval IP rev

1−α = [Xl, Xu] is a 100%(1− α) prediction interval such that:

P (Xl ≤ Xn+1 ≤ Xu) = 1− α.

1 − α prediction intervals can be used as (1 − α)-level confidence intervals for the next
observations and we denote them by IP rev

1−α . Equation (2.15) describes the predictive
properties of prediction intervals.

P (Xn+1 ∈ IP rev
1−α ) = 1− α, ∀α ∈ (0, 1). (2.15)

Suppose that we have many independent pairs of random samples. If in each pair we
calculate the (1− α)-prediction interval of the first sample and then see if the value(s) of
the second sample are included in the computed (1 − α)-prediction interval of the first
sample, 1− α fraction of prediction intervals would, in the long run, contain the second
sample value(s). Note that both the different pairs of samples and the observations within
each sample must be independent [Hahn 91].

2.4.1 Prediction interval for the normal distribution

The prediction interval for the future observation from a normal distribution is given by
[Hahn 69]:

xn+1 −Xn

S
»

1 + 1/n
∼ tn−1, (2.16)

IP rev
1−α =

ñ
Xn − t( α

2
,n−1)S

 
1 +

1

n
, Xn + t(1− α

2
,n−1)S

 
1 +

1

n

ô
. (2.17)

Equation (2.17) gives a two-sided 1− α prediction interval for the future observation xn+1

, where Xn represents the estimated mean from the n past observations, t(1− α
2

,n−1) is the

100(1+p
2

)th quantile of Student’s t-distribution with n− 1 degrees of freedom.

For Distribution-free prediction intervals, the reader can find more information in
[Hahn 91], [Konijn 87] and [Chakraborti 00].
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2.4.2 Expectation Tolerance intervals

The tolerance intervals and regions mentioned before are β-content γ-confidence tolerance
intervals. Another type of tolerance interval is the expectation tolerance interval.

Definition 15 Let X1, · · · , Xn denote a random sample from a continuous probability
distribution and let X = (X1, · · · , Xn) . A β-expectation tolerance interval is an interval
which on average contains a specified proportion β of the population. The IEXT

β notation,
is used to refer to a β-expectation tolerance interval [Krishnamoorthy 09]. Then, we have:

EX

Ç
P (X ∈ IEXT

β |X)

å
= β. (2.18)

An expectation tolerance interval or region is such that its average content is β. Paulson
[Paulson 43] showed that the interval [L(X), U(X)] which based on a random sample X, is
a β-prediction interval for observing the next observation of the random variable X is also
a β-expectation tolerance interval.

PX,X(X ∈ IEXT
β ) = β. (2.19)

2.5 Discussion

We have seen three types of intervals and their statistical interpretations. Each interval has
its own application. Confidence bands are more suitable for making statements about the
whole distribution. Tolerance intervals focus on the probability that one interval contains
at least a desired proportion of the unknown population. Prediction intervals are suited for
next future observations or mean coverage behaviors.

Example 1 Tolerance intervals : suppose that we want to access the air lead level
in a laboratory. We can see that the log transform of the sample data fits a normal
distribution, so we will compute a γ = 0.9, β = 0.95 one-sided upper normal tolerance
interval for the log transformed sample. Now if the obtained tolerance interval does not
exceed the Occupation Exposure Limit (OEL), the laboratory is considered to be safe
[Krishnamoorthy 09]. Tolerance intervals have industrial applications like quality control,
environmental monitoring, industrial hygiene, exposure data analysis, etc. For more
examples, see [Gibbons 01] and [Gibbons 94].

Example 2 Prediction intervals : an automobile client may wish to know, based on a
sample set of five similar cars, an interval that with a high degree of confidence will cover
the gasoline millage that the new automobile will obtain under specified driving conditions
[Hahn 91]. In this case we assume that the five automobiles and the new one are random
observations from the same population.
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Example 3 Confidence band : suppose that we are a transport company and we trans-
port pieces with different weights. We have a sample of the 50 past transports in the current
year and we wish to build the next year’s pricing strategy. For this purpose, we need to
know the maximum and minimum weights of 0.5, 0.75, 0.95 and 0.99 fraction of our future
commands. We will use these intervals to simultaneously build the future sales strategy. In
this case we will find a high γ = 0.99 confidence band for the unknown distribution. Then
we use this band to find simultaneous confidence intervals on population quantiles. Then we
have a probability of 1−γ = 0.01 that all these intervals simultaneously do not cover the real
fraction of weights. So we have a probability of 0.99 to have a correct sale strategy. However
if we used two-sided 0.95 coverage 0.5, 0.75, 0.95 and 0.99 -content tolerance intervals, we
would have a chance of 0.01 of making a mistake for each interval and that at least one not
covering interval is stronger than 0.01.

We can use (2.4), (2.10) and (2.15) to deduce the following properties:

Proposition 3
∀γ, ∀β, Ic

β ≥ IT
γ,β. (2.20)

All the simultaneous γ-confidence intervals of β-interquartile for an unknown distribution
are wider than their corresponding β-content γ-coverage tolerance intervals.

Proposition 4
∀n ≥ 5, γ ≥ 0.75,∀β, Ic

β ≥ IT
γ,β ≥ IP rev

β . (2.21)

For any random sample larger than 5, if we fix γ and β, then the β-inter-quantile of
confidence band is equal to or larger than the corresponding β-content tolerance intervals
and β-prediction intervals the smallest ones.

These two properties can be easily verified by comparing numerical values of the afore-
mentioned confidence bands, tolerance and prediction formula. The reader can also refer to
tables and equations listed in [Hahn 91] and [Krishnamoorthy 09].

2.6 Conclusion

This chapter presents the definition and the interpretation of confidence bands, tolerance
intervals and prediction intervals. We have seen that if we want a γ-confidence interval on
a β-inter-quantile, we can infer them from tolerance intervals or confidence bands but those
provided by confidence bands are always wider than their corresponding tolerance intervals.
We have also noticed that prediction intervals are expectation tolerance intervals. So, as
opposed to γ-coverage β-content tolerance intervals that with confidence level γ, contain β
proportion of the underlying distribution, β-prediction intervals (or β-expectation tolerance
intervals) are intervals that, on average, contain a proportion β of the underlying population.
The next chapter shows how these intervals can be encoded by possibility distributions.
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For a given sample set, there are already different possibility distributions that encode a
family of probability distributions that may have generated our sample set. Apart from our
recent study [Ghasemi Hamed 12b], almost all the existing methods are based on paramet-
ric and distribution-free confidence bands. In this work, we look at these new possibility
distributions. These distributions encode different kinds of uncertainties that have not
been treated before. They encode statistical tolerance and prediction intervals (regions).
We also proposed a possibility distribution encoding the confidence band of the normal
distribution which improves on the existing one for all sample sizes. In this work we keep
the idea of building possibility distributions based on intervals which are among the smallest
intervals for small sample sizes. We also discuss the properties of the mentioned possibility
distributions. This chapter is a detailed version of our work in [Ghasemi Hamed 12b] and
[Bounhas 13]. Our contributions are some comparative figures or concluding propositions
not stated in the original paper.

In the previous chapter, we reviewed some methods for constructing confidence bands
for the normal distribution and for constructing distribution-free confidence bands (γ-C
distribution). Here we propose a possibility distribution for a sample set drawn from an

41
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unknown normal distribution based on Frey’s [Frey 09] confidence band which improves
the existing possibility distribution proposed by Aregui et al. [Aregui 07a] for all sample
sizes. We also introduced a possibility distribution which encodes tolerance intervals, called
the γ-CTP distribution [Ghasemi Hamed 12b]. The proposed possibility distribution uses
tolerance intervals to build the maximal specific possibility distribution that bounds each
population quantile of the true distribution (with a fixed confidence level) that might have
generated our sample set. The distribution obtained will bound each confidence interval
of inter-quantiles independently. This latter is different from a possibility distribution
encoding a confidence band, because a possibility distribution encoding a confidence band
will simultaneously bound all population quantiles of the true distribution (with a fixed
confidence level) that might have generated our sample set. Finally, we consider possibility
distributions encoding prediction intervals (prediction possibility distribution). In this
case, each α-cut will contain the next observation with a confidence level equal to 1− α.
Each of the proposed possibility distributions encodes a different kind of uncertainty that
is not expressed by the other ones. We show that a γ-confidence distribution is always
less specific than a γ-CTP distribution which is itself less specific than the prediction
possibility distribution. This is due to the fact that the distribution’s properties are less
and less strong. Note that the confidence level is usually chosen by the domain expert.
This section is structured as follows: we begin with a review of possibility distribution
encoding confidence bands and their relationship with confidence regions. In this section
we introduce a method which improves existing possibility distributions. Next we see how
to encode tolerance intervals and prediction intervals by possibility distributions. Finally,
we end with a discussion of the mentioned possibility distributions and some illustrations.

3.1 Possibility distribution encoding confidence bands

We saw in 2.2.1 that a confidence band is an interval defined for each value x of the random
variable X such that for a repeated sampling, the frequency of F (x) located inside the
interval [L(x), U(x)] for all the values of X tends to the confidence coefficient γ. It can also
be used to infer confidence intervals of the quantile function (see 2.2.1). In other words, the
confidence band simultaneously gives confidence intervals for all quantiles. Therefore such
confidence intervals derived from confidence bands are Simultaneous confidence Intervals
(SCI) for all population quantiles. We tooked advantage of this property to derive simul-
taneous γ-confidence intervals for β-content inter-quantiles of the unknown cdf F (·) and
denoted them by IC

β .

By using proposition (1) and tables of confidence band stated in the statistic literature
[Anderson 52, Kanofsky 72, Birnbaum 52, Cheng 83, Frey 09, Frey 08], we can encode si-
multaneous γ-confidence intervals for β-content inter-quantiles IC

β , of an unknown cdf F (·)
by a possibility distribution represented by πC

γ :

πC
γ (x) = 1− max

x∈IC
1−α

(α) where Aα = IC
β , β = 1− α. (3.1)
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By construction, the obtained distribution has the following property:

Proposition 5 Let πC
γ be a possibility distribution obtained by Equation (3.1). We have:

P (∀α ∈ (0, 1), P (X ∈ Aα) ≥ 1− α) ≥ γ.

Figure 3.1: Comparing inter-quantiles of N (0, 1) with its 0.95-Confidence distribution based
on a sample set with (µ, σ2) = (X̄, S2) = (0, 1).

Here, we restate an equation similar to Equation (2.4), but expressed for confidence-
possibility distributions.

P ((P (X ∈ Aα1) = α1) ∩ (P (X ∈ Aα2) = α2)) ∩ · · · ∩ (P (X ∈ Aαn
) = αn))) = γ, (3.2)

where αi = 1 − βi. Figure 3.1 shows this concept graphically. The blue probability
distribution denotes the unknown probability distribution which has generated the sample set
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and the black possibility distribution is the corresponding 0.95-Frey Confidence distribution.
In order to ease the comparison of inter-quantiles and their corresponding α-cut we suppose
that the sample set which has n = 10 comes from N (µ, σ2) and (µ, σ2) = (X̄, S2) = (0, 1).

3.1.1 Possibility distribution encoding normal confidence bands

As stated in section 2.2.1, we can use the confidence region for the parameter of a probability
distribution to infer its confidence band. Thus a possibility distribution that encodes a
1− α confidence region for the parameters of a normal distribution has the same properties
as a possibility distribution encoding a 1− α normal confidence band. This is stated by the
following proposition:

Proposition 6 Suppose that we have a sample set of n observations from a normal distri-
bution and let X, S2 and R1−α respectively denote the sample mean, the sample variance
and the (1 − α)-confidence region of the parameters of the normal distribution that may
have generated our random sample. Let also, F represent the family of normal distribution
that have their parameters inside region R1−α.

The most specific possibility distribution π(n,X,S) which encodes the family F has the
same statistical properties as the most specific possibility distribution which encodes any
1− α-normal confidence for the mentioned sample.

Proof : We know that encoding the family F is similar to encoding the 1− α-confidence
band resulted by R1−α. So encoding the family F leads to encode a confidence band. It
is obvious that two possibility distributions which encode two distinct normal confidence
bands having the same confidence level 1− α share the same statistical properties �

This most specific possibility distribution encoding the family F is constructed by the
formula below. Let Λ = {π|π = Tr(F ), F ∈ F} be the set of possibility distributions
obtained by applying the probability-possibility transformation Tr(·) (described by Equation
(1.8)) to each probability distribution in F . The possibility distribution defined by

π(n,X,S)(x) = sup{π(x)|π ∈ Λ}

encodes all the family F and has the following definition:

π(n,X,S)(x) =











1, if x ∈ [µmin, µmax]
2 ∗ G(x, µmin, σ2

max), if x < µmin

2 ∗ G(2 ∗ µmax − x, µmax, σ2
max), if x > µmax

(3.3)

where µmin, µmax and σ2
max are respectively the lower and the upper bounds of the mean

confidence interval, and the upper bound of the variance confidence interval associated to
the confidence region found by (2.8). Moreover, G(x, µ, σ2) is the cumulative distribution
function of N (µ, σ2).
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Cheng and Iles [Cheng 83] and Kanofsky [Kanofsky 72] used this approach to infer
the confidence band of the normal distribution. Aregui et al. [Aregui 07b], proposed to
construct possibility distributions for a sample set drawn from a known parametric family
with an unknown parameter vector. Their possibility distribution encoded the Cheng et
al. [Cheng 83] confidence band. Aregui et al. [Aregui 07a] proposed a similar possibility
distribution which encoded the “Smallest Mood exact” confidence region for parameters of
the normal distribution. The “Smallest Mood exact” region contains exactly the desired
confidence level and it was the the second smallest confidence region (after the “likelihood-
ratio test”) in [Arnold 98]. This region is easy to obtain and is particularly useful for small
sample sizes.

Frey proposed the minimum-area confidence region and the minimum area based
confidence band for the normal distribution. She showed that her minimum area confidence
band improves on other bands for all sample sizes [Frey 09]. In the same way we propose
a possibility distribution which encodes the Frey confidence band. In Figures (3.3,3.4)
we compare our possibility distribution named “0.95 Frey C.P.D.” (0.95 Frey Confidence
Possibility Distribution) which is displayed in blue, with the Mood based and Smallest
Mood based confidence possibility distribution. The Mood based and the Smallest Mood
based confidence bands are obtained by Equation (2.7). We have seen that Frey’s normal
confidence band improves on the confidence band resulted by the “Smallest Mood exact”
region and the situation is the same for the encoding possibility distributions.

3.1.2 Possibility distribution encoding distribution-free confidence
bands

Masson et al. [Masson 06], suggested simultaneous confidence intervals of the the multi-
nomial distribution to build possibility distributions. In another paper, Aregui et al.
[Aregui 07b] proposed the Kolmogorov confidence band [Birnbaum 52] to construct predic-
tive belief functions [Smets 90b] for sample set drawn from an unknown distribution. Thus,
we propose use of Frey’s band to construct the possibility distribution, since it allows us to
have narrower α-cuts for the α’s of interest.

3.2 Possibility distribution encoding tolerance interval

Tolerance intervals were defined in section 2.3. A β-content γ-coverage tolerance interval
is denoted here by IT

γ,β. Having a sample set which comes from a cdf F (·) with unknown
parameters and for a given confidence level γ, we encode all the β-content γ-coverage
tolerance intervals of F (·), ∀β ∈ (0, 1), by a possibility distribution and we name it “γ-
confidence tolerance possibility distribution” (γ-CTP distribution represented by πCT P

γ ).
When we do not know the distribution of the sample set, we can use β-content γ-coverage
distribution-free tolerance intervals ,∀β ∈ (0, 1), of the unknown probability distribution in
order to build distribution-free γ-Confidence Tolerance Possibility (γ-DFCTP distribution
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represented by πDF CT P
γ ) distribution. The possibility distributions πCT P

γ and πDF CT P
γ will

have, by construction the following property:

Proposition 7 Let πCT P
γ (or πDF CT P

γ ) be a possibility distribution that encodes tolerance
intervals. We have:

∀α ∈ (0, 1), P (P (X ∈ Aα) ≥ 1− α) ≥ γ, where Aα = IT
γ,β, β = 1− α. (3.4)

Note that it may also be interesting to fix the proportion β and make the confidence
coefficient vary, γ ∈ (0, 1), to have a β-content tolerance possibility distribution.

Equation (3.4) is the same as Equation (2.10) but is now stated for CTP distributions or
Distribution Free Confidence Tolerance Possibility Distribution (DFCTP distribution)s and
Figure 3.2 shows this concept graphically. In Figure 3.2, the blue probability distribution
denotes the unknown probability distribution which has generated the sample set and
the black possibility distribution is the corresponding 0.95-CTP distribution. In order to
ease the comparison of inter-quantiles and their corresponding α-cut we supposed that the
sample set which has n = 10 comes from N (µ, σ2) and (µ, σ2) = (X̄, S2) = (0, 1).

Possibility distribution encoding tolerance interval for the normal distribution

When our sample set comes from a univariate normal distribution, the lower and upper
tolerance bounds (xl and xu respectively) are calculated by formulas (2.11) and (2.12). By
using proposition (1), we can find the boundaries of the (1− α)-cut A1−α = [xl, xu] of the
possibility distribution which are calculated by (2.11), then we obtain the possibility
distribution πCT P

γ as computed below, where Φ(·) is the cdf of the standard normal
distribution.

πCT P
γ (x) = 2

Ñ

1− Φ

ÑÕ
χ2

(1−γ,n−1)(
x−X̄

S
)2

(n− 1)(1 + 1
n
)

éé

. (3.5)

Possibility distribution encoding distribution-free tolerance interval

The construction of possibility distribution based on distribution-free tolerance intervals
(region) raises some problems, because for a given sample set there are many ways to
choose the r and s order statistics. If we choose them symmetrically like in the Wilks
method [Wilks 41] (r = n− s + 1), then the possibility distribution which encodes these
intervals does not guarantee that its α-cuts include the mode and the α-cuts are neither the
smallest ones. In fact, for any symmetric unimodal distribution, if we choose r and s order
statistics in a symmetrical way, we will have tolerance intervals which are also the smallest
possible ones and also include the mode of the distribution (see proposition (1)). Thus the
Distribution-Free γ-Confidence Tolerance Possibility (πDF CT P

γ ) distribution is constructed
by the following equation where xr and xs are the limits for the distribution-free IT

γ,β of our
sample set.

πDF CT P
γ (x) = 1− max

x∈IT
γ,1−α

(α), where Aα = IT
γ,β = [xr, xs], β = 1− α
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Figure 3.2: Comparing inter-quantiles of N (0, 1) with its 0.95-CTP distribution based on a
sample set with (µ, σ2) = (X̄, S2) = (0, 1).

3.3 Possibility distribution encoding prediction intervals

A prediction interval, defined in section 2.4, uses past observations to estimate an interval
for what the future values will be and we denote a 1 − α prediction interval by IP rev

β

where β = 1− α. By using Proposition (1) and Equation (2.17), we can infer a prediction
possibility (πP rev) distribution for a sample set which comes from a normal distribution
with an unknown mean and variance. πP rev is computed as below, where Tn−1(·) is the cdf
of the Student t distribution with n− 1 degree of freedom. Equation (3.6) describes how to
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compute a prediction possibility distribution and Proposition 8 shows its α-cut properties.

πP rev(x) = 2

Ç
1− Tn−1

Ç∣
∣

∣

∣

∣

Xn+1 −Xn

S
»

1 + 1/n

∣

∣

∣

∣

∣

åå
. (3.6)

By construction, the obtained distribution has the following property:

Proposition 8 Let πprev be a possibility distribution that encodes prediction intervals using
equation (3.6) built from a random sample set X = {X1, . . . , Xn} we have:

∀α ∈ (0, 1), P (Xn+1 ∈ Aα) ≥ 1− α, where Aα = IP rev
β , β = 1− α.

3.4 Discussion and Illustrations

We have seen three different types of intervals and their encoding possibility distributions.
The most common approach is to choose the possibility distribution which is encoded
by confidence bands. However, depending on the application, we might be interested to
infer other possibility distributions than the one that encodes conventional Simultaneous
Confidence Intervals (SCI)s. Section 2.5 discusses different applications of the different
intervals encoded by the mentioned possibility distributions. Figure (3.3) shows the πC

0.95

for a sample set of size 10 with sample mean and sample variance respectively equal to
0 and 1. Figure (3.3) represents the same concept for n = 25. This figure illustrates the
final remark in Section 3.1.1. Indeed, we can see that our possibility distribution is more
informative than the Aregui et al. possibility distribution.

In Figure (3.6) the blue color is used to represent πP rev for different sample sets drawn
from the normal distribution, all having the same sample parameters, (X, S) = (0, 1)
but different sample sizes. The green distribution represents the probability-possibility
transformation of N (0, 1).

In Figure (3.5) we used the previous settings for the πCT P
0.95 . Note that, for n ≥ 100,

the tolerance interval is approximately the same as the maximum likelihood estimated
distribution. In Figure 3.7, the blue curves represents the πDF CT P

0.95 for a sample set of size
450, drawn from N (0, 1) and the green distribution represents the probability-possibility
transformation for N (0, 1). In Figure (3.8), we used two different sample sets with n = 194
to build two different πDF CT P

0.9 . In this example, in order to reduce the required sample size,
we restricted the largest β to 0.98.

Figures (3.4, 3.4 and 3.4), represent and compare the three possibility distributions. It is
easy to note that the 0.95-Frey confidence possibility distribution, shown by the black color
mentioned above, always provide wider intervals. Then comes the 0.95-CTP distribution
and the smallest one is the 0.95 prediction possibility distribution. The blue color is used to
represent πP rev for different sample sets drawn from the normal distribution, all having the
same sample parameters, (X, S) = (0, 1) but different sample sizes. The green distribution
represents the probability-possibility transformation of N (0, 1). Finally, we can deduce
from Proposition 4 that:
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Figure 3.3: Possibility distribution encoding normal confidence band for a sample set of
size 10 having (X̄, S) = (0, 1).
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Figure 3.4: Possibility distribution encoding normal confidence band for a sample set of
size 25 having (X̄, S) = (0, 1).
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Figure 3.5: 0.95-confidence tolerance possibility distribution for different sample sizes having
(X, S) = (0, 1).
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Figure 3.6: 0.95-confidence prevision possibility distribution for different sample sizes having
(X, S) = (0, 1).

Proposition 9

∀n ≥ 5, γ ≥ 0.75,∀β, ∀x, πC
γ (x) ≥ πCT P

γ (x) ≥ πP rev(x).
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For any random sample larger than 5, if we fix γ then πC
γ is less specific than πCT P

γ and
πCT P

γ is less specific than πP rev.

In this work, we focus on two-sided intervals because possibility distribution encoded
two-sided intervals. The reviewed distributions can be used for different purposes in un-
certainty management. Wallis [Wallis 51] used the Wald et al [Wald 46] normal tolerance
limits to find tolerance intervals for linear regression. In the same way, we can use our
γ-CTP distribution to build a probabilistic regression which encodes tolerance bounds of
the response variable. Note that we are not restricted to possibilistic linear linear regression
with homoscedastic and normal errors. We can also apply our γ-CTP and γ-DFCTP
distributions for possibilistic non-parametric and parametric regression with homoscedastic
or heteroscedastic errors.

3.5 Conclusion

We have, proposed different possibility distributions encoding different kinds of uncertainties.
We also proposed a possibility distribution encoding confidence bands of the normal
distribution which improves on the existing ones for all sample sizes. Building possibility
distributions which encode tolerance intervals and prediction intervals are also new concepts
that we introduced in this work. In future work, we propose to build, in the same way, the
possibility distributions encoding distribution-free tolerance regions [Wald 43] and tolerance
regions for the multivariate normal distribution [Krishnamoorthy 99]. The introduced
γ-CTP distribution is used in [Ghasemi Hamed 12a] for possibilistic regression.
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Figure 3.7: distribution-free 0.95-confidence tolerance possibility distribution for a sample
set with size 450 drawn from N (0, 1).
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Figure 3.8: Two distribution-free 0.9-confidence tolerance possibility distributions for two
sample sets of size 194 drawn from N (0, 1).
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Figure 3.9: Comparing possibility distributions encoding Frey confidence band, tolerance
intervals and prediction interval for a sample set with n = 5 drawn from a normal distribution
having (X̄, S) = (0, 1).
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Figure 3.10: Comparing possibility distributions encoding Frey confidence band, tolerance
intervals and prediction interval for a sample set with n = 10 drawn from a normal
distribution having (X̄, S) = (0, 1).
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Figure 3.11: Comparing possibility distributions encoding Frey confidence band, tolerance
intervals and prediction interval for a sample set with n = 20 drawn from a normal
distribution having (X̄, S) = (0, 1).
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Regression analysis is a statistical technique for estimating the value of one variable as
a function of independent variables. The estimated variable Y is called response variable or
dependent variable Y and the independent variables x are also called predictors, explanatory
variables or regressors. If there is one predictor, we have a simple regression and if each
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predictor is a vector the problem is called multiple regression. Regression techniques are
widely applied in science and engineering, they are used in problems like function estimation,
financial forecasting, and time series prediction.

In the most general form a regression equation has three variables: the response variable
Y , a deterministic function f(x) and a random error ε, where Y = f(x) + ε. We divide
statistical regression techniques into two categories. The first category estimates the mean
of the random variable Y by f(x) which as explained in the following section, is usually
known as a least-squares model. The second one is called quantile regression. A function
f(x), based on predictor values, estimates conditional quantiles of Y . In each category, the
regression function f(·) can be estimated with a parametric linear, a parametric non-linear
or a non-parametric method. This results in linear, non-linear or non-parametric regression.
We used the motorcycle dataset [Silverman 85] for illustrating these methods. This dataset
is a well known non-linear regression dataset composed of 133 rows of accelerometer readings
taken through time in an experiment to determine the efficacy of crash-helmets. This
chapter does not contain any new contribution. It is a review on the regression models
mentioned in the above paragraph. In this chapter, Yi denotes the random response variable
and yi is an observation of the random variable Yi.

4.1 Estimating the mean function

4.1.1 Regression

In fixed design regression, there are n pairs of observations (x1, Y1), · · · , (xn, Yn), where xi

is the vector of observations known as covariates and Yi is the response variable. In other
words, the random variable Yi or Y (xi) follows a mean function f(xi) with a random error
term εi defined as:

Yi = f(xi) + εi, where E(εi) = 0. (4.1)

The model supposes that εi are mutually independent and identically distributed (iid)

random variables. The goal is to estimate the mean function f(·) by f̂(·), being as close
as possible to the unknown function f(·). We could also treat the data as random where
(X1, Y1), · · · , (Xn, Yn) are random vectors. In this case, f(x) is interpreted as the mean of
Y conditional on X = x as in (4.3).

E(Y |X = x) = f(x). (4.2)

In this case, Xi are supposed iid and also independent from the εi’s. This model is
described by (4.3) where εi are iid and have zero mean and unit variance.

Yi = f(Xi) + v
1
2 (Xi)εi, (4.3)

whereE(εi) = 0,v(Xi) = V ar(Y |X = xi).
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These models are different formulations of regression, however while working with local
polynomial regression explained in (4.3.2) the formula remains the same for both and in
this work we will refer to the fixed design approach. The usual assumption is to suppose
that the variance of the error is the same everywhere. This is known as homoscedasticity
and the opposite hypothesis (variable error variance) is known as heteroscedasticity.

In a least squares regression, the idea is to estimate the mean of Y (x) by f̂(x) and based
on some assumptions, described in 4.1.2, it results in finding the function that minimizes
the Mean Squared Error (MSE), i.e. finding f̂(·) that minimizes:

MSE(f) =
1

n

n
∑

i=1

(yi − f̂(xi))
2.

4.1.2 Mean Squared Errors (MSE) and Predictive Risk

Predictive risk is tightly coupled with the MSE. This notion is the most commonly used
measure for tuning of hyper-parameters, model selection and inference. We will devote the
current subsection to its definition. The risk of an estimator is the square of the difference
between the true value of the parameter and its estimation. Given a fixed value of x, the
mean of squared error for all values of the random variable f̂(x) is defined as the risk at
point x:

MSEf̂(x) = RISKf̂(x) = E[(f(x)− f̂(x))2]. (4.4)

It is well known that (4.4) can also be decomposed in bias and variance terms as in (4.5).

MSEf̂(x) = E[(f̂(x)− f(x))2] = Bias2
f̂(x)

+ Vf̂(x) (4.5)

, where Biasf̂(x) = E[f̂(x)− f(x)] (4.6)

and Vf̂(x) = E[f̂(x)2]− E[f̂(x)]2. (4.7)

Average Mean Square Error of f̂(·), or the average risk of f̂(·), is the average of the

mean squared error of f̂(·) over all values of x, and it is used as an evaluation measure in
regression problems.

Average MSE =
1

n

n
∑

i=1

E[(f̂(xi)− f(xi))
2].

The average risk is related to the predictive risk. Let us first define the squared prediction
error. The squared prediction error is the squared error of prediction for a new observation
(xi, Y ∗) and it is defined as:

(Y ∗ − f̂(xi))
2 = (f(xi) + ǫ∗ − f̂(xi))

2.
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The predictive risk is:

Predictive Risk =
1

n

n
∑

i=1

E[(Y ∗ − f̂(xi))
2]

= Average MSE +
1

n

n
∑

i=1

σ2(xi),

so we have:

Predictive Risk = Average MSE + c, where c =
1

n

n
∑

i=1

σ2(xi); (4.8)

σ2(xi) is the variance of the response variable at xi, and c is a constant. If the error variance
σ2(xi) is constant for all xi, then

Predictive Risk = Average MSE + σ2. (4.9)

Hence based on (4.8), minimizing the predictive risk results in minimizing the average risk

of the estimated regression function f̂(·). In a small to medium size dataset, leave-one-out
or 10-fold cross validation MSE are well-known estimators of predictive risk.

4.2 Linear Regression

Linear regression was the first type of regression analysis to be studied rigorously, and
has been used extensively in practical applications. This is due to the fact that regression
models which linearly depend on their parameters are easier to fit than non-linear regression
models. In statistics, a linear model uses a linear function f(x) to represent the relationship
between a dependent random variable Y and a k-dimensional vector of predictor variables
x. When we have a sample of n observations (xi, yi)

1, in most cases it is not possible to
find a linear function f(·) of the k-dimensional input vector x for which yi = f(xi) holds for
all i ∈ (1, . . . , n). So this inequality is modeled through an error εi, which is an unobserved
random variable that adds noise to the linear relationship between the dependent variable
and regressors. Hence we have:

Yi = f(xi) + εi = xT
i β + εi,

where xT
i is the transpose of xi, and β is a p-dimensional (p = k + 1) vector of parameters

in the linear function f(·).
If we stack these n equations together and write them in vector form we have:

Y = Xβ + ε, (4.10)

1yi is an observation of the random variable Yi.
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Y = (Y1, · · · , Yn)T ,

X =

Ü
1 x11 · · · x1k
...

...
...

...
1 xn1 · · · xnk

ê

, ε = (ε1, . . . , εn)T ,

where Y is the vector of response variables, X represents a matrix of all xi, and ε is the
vector of all errors. In this context, we look for the best estimate of yi (minimizes the risk)

written as ŷi. The response variable is estimated by the equation below in which β̂ is an
estimate of the true vector β:

ŷi = f̂(xi) = xT
i β̂ (4.11)

In the parameter estimation phase, we are searching for the vector of parameters β̂
which fits a straight hyperplane through the set of n points in a way to minimize the sum
of squared errors defined by (4.4).

4.2.1 Ordinary Least Squares problem (OLS)

The most common estimation method for a linear model is the OLS which is described in
this section. The assumptions are stated below :

• The matrix X must have full column rank p, otherwise we have what is called perfect
multicollinearity in the regressors. Methods for estimating parameters in linear models
with multicollinearity have been developed, [Draper 79], [Tibshirani 96], [Efron 04],
but they require additional assumptions.

• The regressors xi are assumed to be error-free. It means that they do not have
measurement errors. This otherwise leads to another problem known as errors-in-
variables models.

• ε has the normal distribution:

ε ∽ N (0, σ2I). (4.12)

The last statement is one of the most common assumptions in practice and we did similarly.
It also implies spherical errors:

• Homoscedasticity: ∀i, V ar[ε2
i ] = σ2. The inverse hypothesis, heteroscedasticity, is

made when error terms do not have necessarily equal variance. Under such cases it
might be better to use a weighted version of the OLS named Weighted Least Squares
(WLS). WLS minimizes a weighted version of the sum of squared error terms, where
each error term is weighted by a factor that indicates the precision of the information
contained in the associated observation.

• Non-autocorrelation of errors E[εiεj] = 0,∀i 6= j.
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In this situation, the Gauss-Markov theorem states that minimizing the sum of squared
residuals gives us the Best Linear Unbiased Estimator (BLUE). In other words, OLS fits a
plane through the set of n vectors in such a way it that makes the sum of squared residuals
of the model (that is, vertical distances between the points of the data set and the fitted
plane) as small as possible.

β̂ = Argmin
β

(UT U), where U = y −Xβ

In OLS the BLUE estimator is found by:

β̂ = (XT X)−1XT y. (4.13)

The vector β̂ is distributed normally:

β̂ ∽ N (β, σ2(XT X)−1), (4.14)

and σ̂2 which is the maximum likelihood estimator of σ2 and the nσ̂2

σ2 term has a
chi-square distribution with n− p degrees of freedom [Mendenhall 06].

σ̂2 =
ÛT Û

n
, where Û = y −Xβ̂ (4.15)

nσ̂2

σ2
∽ χ2

n−p. (4.16)

Figure 4.1 shows a simple linear model built on a dataset of 100 observations drawn
from N (10 + 5x, 702). The red line represents the true mean function and the blue line is
the OLS.

4.2.2 Weighted Least Squares (WLS)

The homoscedasticity assumption does not hold, even approximately, in every modeling
application. In this such cases, OLS is not BLUE and it is better to use a weighted version
of the OLS named Weighted Least Squares (WLS). WLS minimizes the wighted distance
error term of each observation.

arg min
β̃

n
∑

i=1
wi|yi − f(xi)|2 = arg min

β̃

∥

∥

∥W 1/2(y−Xβ̃)
∥

∥

∥

2
,

where wi > 0 is the weight of the ith observation, and W is the diagonal matrix of such
weights. The estimated parameter values are linear combinations of the observed values
[Rao 99]:

β̂ = (X⊤WX)−1X⊤Wy. (4.17)

It is shown [Rao 99] that in WLS, the estimator is BLUE if, when minimizing the
weighted sum of squared residuals, we take each weight wi equal to the reciprocal of the
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Figure 4.1: An OLSE model based on a sample set with n = 100 .

variance of the measurement: wi = σ−2
i .

Each weight value indicates the precision of the information contained in the associated
observation. Minimizing the weighted fitting criterion, allows the weights to determine
the contribution of each observation to the final parameter estimates. Hence, the main
advantage of WLS over other methods is its ability to handle regression cases having data
points with varying quality. WLS assumes that the weights are known and we just want to
optimize the parameters, which is almost never the case in real applications so we have to
estimate them from the sample sets. Experience indicates that small differences between
the estimated and true weights do not often affect a regression analysis or its interpretation.
However, by using estimated weights from small numbers of replicated observations, the
regression analysis result can be very badly and unpredictably affected [eng 11]. This can
be the case when the weights for extreme values of the response variable are estimated
using a few observations. Therefore it is important to use this method when weights can be
precisely estimated relatively one to another [eng 11]. Chen and Shao [Chen 93] showed
that at least three observations in each group of the same variance are required to obtain
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WLS that asymptotically improve OLS. A more generalized form of WLS is the Generalized
Least Squares (GLS), for more details see [Rao 99].

4.3 Local regression methods

4.3.1 State of the art

Non-parametric regression is a type of regression analysis in which the response value
is not a predefined function of the predictor variables and vector of parameter θ which
must be estimated from the data. As opposed to parametric regression, which is based
on the construction on a model based on a training set, the prediction for a vector x
is made by local estimation inside the training set. The motivation of non-parametric
methods is their utility when dealing with complex models or when having non-linear and
sometimes heteroscedastic data. Therefore, in such situations, exploiting the neighborhood
of the input data to estimate the local distribution of response value may be justified. A
number of monographs including Eubank (1988) [Eubank 99], Hastie and Tibshirani (1990)
[Hastie 90], Hardle (1990) [Härdle 90], Wahba (1990) [Wahba 90] and Fan and Gijbels (1996)
[Fan 96] have discussed this topic. Projection pursuit regression [Friedman 81], generalized
additive models[Hastie 86], local polynomial regression [Cleveland 88], and Multivariate
Adaptive Regression Spline (MARS) [Friedman 91] are common methods for nonparametric
regression with multivariate predictor variables. These regression methods have been applied
in multivariate case as well as in univariate case.

The idea of Local Polynomial Regression (LPR) first appeared in the statistical liter-
ature in Stone (1977) [Stone 77a] and Cleveland (1979) [Cleveland 79]. Cleveland (1979)
[Cleveland 79], introduced Locally Weighted Regression (LWR) and a robust version of
locally weighted regression known as Robust Locally Weighted regression Scatter plot
Smoothing (LOWESS). LOWESS is an iterative version of LWR and the idea of LOWESS
is to change the weight function defined in 4.19 so as to minimize outlier’s impact. He
states that this method is more convenient for regression datasets that have a non-normal
error. Cleveland and Delvin (1988) [Cleveland 88] show that local polynomial regression
can be very useful in real data modeling applications. They introduced “loess”, which is
a multivariate version of locally weighted regression. Their work includes the application
of loess with multivariate predictor datasets. They introduce some statistical procedures
analogous to those usually used in parametric regression. They also propose an ANOVA
test for loess.

Fan (1992,1993) [Fan 92a, Fan 93] studied some theoretical aspects of local polynomial
regression. Fan shows that Locally Weighted Linear Regression (LWLR) (or weighted
local linear regression) is design adaptive. It adapts to random and fixed design as seen
respectively in Equations (4.3) and (4.1). LWLR can be used in highly clustered as well as
nearly uniform designz. He also shows the best local linear smoother has 100% efficiency
among all possible linear smoothers, including kernel regression, orthogonal series and
splines in minimax sense. Another important property of LWLR is its adaptation to
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boundary points. As shown by Fan and Gijbels (1992) [Fan 92b], the LWLR estimator
does not have boundary effects and therefore it does not require any modification at the
boundary points. This is a very attractive property of these estimators, because in practice,
a large proportion of the data can be included in the boundary regions. Then Ruppert and
Wand (1994) [Ruppert 94] extended Fan’s results on asymptotic bias and variance to the
case of multivariate predictor variables. Hastie and Loader (1993) [Hastie 93] discussed the
bias, boundary effect and derivative estimation in locally weighted regression.

4.3.2 Local Polynomial Regression (LPR)

Local Polynomial Regression (LPR) assumes that the unknown function f(·) can be locally
approximated by a low degree polynomial. LPR fits a low degree polynomial model in
the neighborhood (xi) of the point x. The estimated vector of parameters used in the
fitted LPR is the vector that minimizes a locally weighted sum of squares defined later in
Equation (4.20). Once the local polynomial is fitted to x’s neighborhood, f̂(x) (or ŷ), is
estimated by evaluating the local polynomial with x as predictor variable value. Thus for
each x a new polynomial is fitted to its neighborhood and the response value is estimated
by evaluating the fitted local polynomial with the vector x as covariate. In general the
polynomial degree (d) is 1 or 2; for d = 0, LPR becomes a kernel regression and
when d = 1 it changes to Local Linear Regression (LLR).

Definition of LPR

Suppose that the regression function f(·) at the point x can be approximated locally for
xi inside a neighborhood of x. The idea is to write the Taylor’s expansion for xi inside a
neighborhood of x as follows [Fan 96]:

f(xi) =
d

∑

j=0

f j(x)

j!
(xi − x)j ≡

d
∑

j=0

βj(xi − x)j. (4.18)

Equation (4.18) models the regression function by a polynomial function. Thus, for
every observation z in the neighborhood of x, we write (4.18) and estimate the vector

β = (β0, · · · , βd)T by the vector of parameters β̂ = (β̂0, · · · , β̂d)T which minimizes the
locally weighted sum of squares defined in Equation (4.19), and where Kb(·) represents a
kernel function with bandwidth b. In fact, estimating f(x) for the random design as well as
for the fixed design results in the locally weighted polynomial regression expressed by the
equation below [Fan 96]:

β̂ = Argmin
β∈R(d+1)

n
∑

i=1

Kb(xi − x)

Ç
Yi −

d
∑

j=0

βj(xi − x)j

å2

(4.19)
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The above formula can be re-expressed as:

n
∑

i=1

wi

Ç
Yi − f̂(xi)

å2

, (4.20)

where wi = Kb(xi − x) and f̂(xi) =
d

∑

j=0

β̂j(xi − x)j.

By re-writing (4.19) in vector notation, we obtain

(Y−Xxβ)T Wx(Y−Xxβ), (4.21)

where Y is the vector of response variables and for each x, Xx and Wx are respectively its
predictor matrix and weight matrix as in (4.22).

Y = (Y1, · · · , Yn)T ,

Xx(n×(d+1)) =

Ü
1 (x1 − x) · · · (x1 − x)d

...
...

...
...

1 (xn − x) · · · (xn − x)d

ê

, Wx = diag(K(
xi − x

b
))n×n. (4.22)

The vector β̂x minimizing this weighted sum of squares is provided by WLS:

β̂x = (Xx
T WxXx)−1Xx

T WxY, (4.23)

and f̂(x) becomes a linear smoother as in (4.24).

f̂(x) =
n
∑

i=1

ai(x)Yi, (4.24)

where a(x) = IT
1 β̂x and IT

1 = (1, 0, · · · , 0).

We can also write the fitted values in vector notation as in Equation (4.25), where L is

the projection matrix or the smoother matrix in which its Lij = aj(xi), and f̂ is the vector
of fitted values.

f̂ = LY, (4.25)

f̂ = (f̂(x1), · · · , f̂(xn))T .

Note that (4.23) works for single variate regression. When it comes to multivariate LPR
with p predictor variables, the final d columns of Xx are repeated for each covariate. Hence,
Xx becomes a n × (p × d + 1) matrix, β̂x a vector of (p × d) + 1 element and the kernel
function a multivariate kernel.
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Kernel function:

In kernel regression or in LPR, a kernel function K(·) is used to weight the observations. It
is chosen so that observations closer to the fitting point x have bigger weights and those far
from x have smaller weights. If K(·) is a kernel, then Kb(·) is also a kernel function.

Kb(u) =
1

b
K(

u

b
), where b > 0.

Here, b, known as the bandwidth, is a constant scalar value used to select an appropriate
scale for the data. A kernel function is a non-negative real-valued integrable function K(·)
with the properties listed below [Cleveland 79]. Almost all kernel function respect the
first three properties, so they become probability density functions. The last property
limits the neighborhood and this helps to achieve better computing performance. For more
explanation about the weight function properties see [Cleveland 79].

∀u,K(−u) = K(u)

∀u,K(u) ≥ 0
∫ +∞

−∞
K(u) du = 1,

K(u) > 0, |u| < 1

In the following, you can see some of the most common kernel choices [Li 07]. Note that
I(·) is the indicator function.

• Gaussian: K(u) = 1√
2π

e− 1
2

u2
,

• Tricube: K(u) = 70
81

(1− |u|3)3 I{|u|≤1},

• Epanechnikov: K(u) = 3
4
(1− u2) I{|u|≤1},

• Uniform: K(u) = 1
2

I{|u|≤1},

• Triangle: K(u) = (1− |u|) I{|u|≤1},

• Quartic (biweight or bisquare): K(u) = 15
16

(1− u2)2 I{|u|≤1},

• Triweight: K(u) = 35
32

(1− u2)3 I{|u|≤1},
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• Cosine: π
4

cos
Ä

π
2
u
ä

1{|u|≤1}

For multivariate LPR, the kernel function KB(·) is a function of p variables. In this case
B is a symmetric positive definite p× p matrix and |B| denotes its determinant. It can be
redefined as:

KB(u) =
1

|B|K(B−1u). (4.26)

In practice, one can normalize or standardize all the predictors and then use the following
kernel:

Kb(u) =
1

b
K
Ç

D(u)

b

å
, (4.27)

where D(·) is a distance function like the L2-norm. Some authors including [Cleveland 79]
and [Cleveland 88], took the K-nearest neighbors of x as its neighborhood. In this case,
for each x, b = Dk(x), where Dk(x) is the distance from the K-th nearest neighbors (the
farthest neighbor) from the point x. For a detailed discussion see [Atkeson 97].

Bandwidth Selection

A popular bandwidth selection method is the Leave-One-Out (LOO) technique suggested
in Stone (1977) [Stone 77a] which chooses the following bandwidth b:

b = Argmin
n
∑

i=1

(yi − f̂−i(xi))
2, (4.28)

where f̂−i(xi) is the estimation without using the ith observation obtained by Equation
(4.24). Estimating the bandwidth by LOO is a time-consuming task, so it is common
to minimize the K-fold cross validation score with K = 5 or K = 10; this leads to an
approximation of LOO. Plug-in bandwidth is another smoothing strategy which is a formula
for the asymptotically optimal bandwidth. The plug-in bandwidth requires several unknown
quantities that must be estimated from the data. In section 4.2 of Fan and Gijbels (1996)
[Fan 96], a plug-in bandwidth for linear weighted local linear regression is defined. One of
the required parameters for this estimator is f(·)’s second derivative which is more difficult
to estimate than f(·) itself. In this work we use 10-fold cross validation to find the best
bandwidth of our dataset.

Computational Complexity

In this part, we consider the computational complexity of LPR. We consider that the
dataset is sorted and we ignore this computational complexity. In the most näıve case, LPR
takes O(n2) operations. This is because the computation of weights at each point is O(n).
If we use kernel bounded support the computation takes O(fn2), where f is the fraction of
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the whole dataset inside the neighborhood [Cleveland 79]. It results in f = K/n for models
using K-nearest neighbors as their neighborhood selection method like in [Cleveland 79]
and [Cleveland 88]. Binning and updating algorithms are two categories of fast computation
algorithms. A comparison of these fast implementations is made in [Fan 94]. They made a
comparison between the two fast implementations and the naive version. The comparison
is performed carefully with various settings, machine and softwares. The observed speed
improvement factor is above hundreds for large sample size, for both methods. However
neither the binning nor the updating algorithm dominates. The updating method has some
problems of stability. The difference between the binned version and näıve implementation
is small, and negligible from a practical point of view.
The binning method is an approximation of the direct method which reduces the number
of kernel evaluations, based on the fact that many of these evaluations are approximately
the same. The idea is to create an equally spaced grid of the dataset, so each grid point
represents a bin. The dataset is modified by assigning each pair (xi, Yi) its nearest grid
point xj(i). The modified dataset is summarized as:

{(xj, Y j, cj), j = 1, · · · , g},

where Y j denotes the bin average and cj the bin counts.

Y j = average(Yi, Yi ∈ binj), cj = number of instances in binj.

Note that the only approximation is the process of replacing each xi by its nearest
grid point. Then the estimation is done using the modified dataset. Thus the computa-
tional complexity of building a binning-based model is O(n), and the evaluation is just
done on the grid points which can reduce the complexity to O(g), where g is the num-
ber of grid points. But if the model is built with grid points and then each true value
of xi is evaluated, rather than its nearest grid point, the evaluation complexity will be O(ng).

The updating method relies on computing the average recursively. Each average is
computed by updating the previous average. This concept is exploited in different ways
by Friedman (1984) [Friedman 84] and Cleveland (1979) [Cleveland 79]. Gasser and Kneip
(1989) [Gasser 89] introduce the updating idea for polynomial kernels, then this concept is
developed more in [Fan 94]. The updating procedure principally refers to expanding the
polynomials into expressions which can be calculated quickly by recursive updating. The
updating version of LPR is of O(n) complexity. The algorithm may suffer from numerical
instability due to rounding errors. See [Seifert 94] for a solution to this numerical instability.
For more details, see [Fan 94].

4.3.3 K-Nearest Neighbors (KNN)

K-nearest Neighbors (KNN) is a local regression method. For each query x, it takes the
weighted average of response values of the neighborhood around x as an approximation
to f(x). The neighborhood of x are points in the predictor space which are nearest to x
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than others, and the size of this neighborhood is controlled by the bandwidth which is the
number K. KNN is a version of Local Polynomial Regression, described by Equation (4.20),
where the polynomial degree is zero d = 0 and its weights are calculated with Equation
(4.27) where D(·) is the Euclidean distance in the predictors space and b is the distance
between the input vector x and its Kth nearest neighbor. The KNN estimator is a kernel
smoother and can be also defined as:

f̂(x) =

∑n
i=1Kb(D(x, xi))Y (xi)
∑n

i=1Kb(D(x, xi))
. (4.29)

In fact, KNN is a specialized form of the Nadaraya-Watson [Nadaraya 64, Watson 64] kernel
estimator in which the bandwidth b is not constant and depends on the distance between
input vector x and its Kth nearest neighbor. Usually, the size of the neighborhood, K, has
to be fixed before the learning phase and it will be constant for all the input vectors.

4.3.4 Loess

Loess was introduced by Cleveland and Delvin [Cleveland 88], and is a multivariate version
of LOWESS [Cleveland 79], which is another version of LPR. Loess is described by (4.20),
where the polynomial degree is one d = 1 or two d = 2. For the bandwidth selection and
weight calculation, loess is similar to KNN. Its weights are calculated with (4.27) where,
u = (xi − x), D(·) is u’s L2-norm in the predictor space and b is the Euclidean distance
between the input vector x and its Kth nearest neighbor. The weight function chosen by
Cleveland and Delvin [Cleveland 88] was the Tricube kernel, however any other weight
function that satisfies the properties listed in the kernel definition could also be used.

In this work, we use linear loess as our non-parametric smoother function. Therefore,
for each input vector x, we infer the vector of parameter β̂x from the training set as in
(4.23), where d = 1. As we can see in (4.30), for each prediction the locally weighted linear
regression problem is converted to a WLS in which the weights are estimated by a kernel
function.

β̂x = arg min
n
∑

i=1

wi(yi − xT
i β)2, (4.30)

where wi ≥ 0 is the weight of the ith observation. Figure 4.2 uses the motorcycle dataset
from [Silverman 85] to compare KNN with linear loess. We can see that linear Loess gives
a slightly smoother function.

4.4 Quantile Regression (QR)

Koenker and Bassett (1978) [Koenker 78], introduced quantile regression in which we find
estimation of conditional quantiles of the response variable Y given X = x. Least squares
regression estimates the conditional mean of the response variable based on given values of
the independent variables, whereas quantile regression extends the regression model to the
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Figure 4.2: Comparing Loess regression with k = 20 and KNN regression with k = 12 for
the motorcycle data from [Silverman 86].

conditional quantiles of the prediction variable (given the predictor values). We focus to find
50, 75 or 95 percentile of the conditional distribution of Y , given X = x ( F (Y |X = x)).

Least-squares methods are used much more than quantile regression and Koenker
[Koenker 05] mentioned three possible reasons for this dominance:

• The linear estimators in least-squares methods are computationally tractable.

• If the noise is Gaussian, in some cases the least-squares method becomes the unbiased
minimum variance estimator.
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• Recent observations show that least-squares methods are a general approach for
estimating the mean function.

However, the mean or its estimation is not sufficient. Even if we are interested in
having a statistical analysis on single sample, we need to obtain other measures like
skewness, kurtosis, density estimation. This is why quantile regression techniques can help
us to have a clearer picture of the regression problem. It is also important to note that
quantile regression is much more flexible than least squares regression when dealing with
heterogeneous conditional distributions, because it makes no distributional assumption
about the error term in the model and just provides a conditional distribution of the
prediction given the predictor values [Koenker 01].

4.4.1 Linear Quantile Regression (LQR)

Linear quantile regression considers the problem of estimating a vector of unknown param-
eters, β, from an identically distributed random sample (Y1, · · · , Yn) where each random
variable comes from

Yi = xT
i β + εi, where F −1

εi
(τ) = 0, (4.31)

and εi comes from an unknown distribution Fε(·). Quantile regression does not assume
that the shape of Fε is known. In the case of a Gaussian Fε, Rao demonstrated that the
least squares estimator is its minimum variance unbiased estimator. However when the
distribution is not normal, least-squares linear regression can in many cases obtain very
poor results [Koenker 78]. In fact, linear quantile regression is also an alternative robust
estimator for linear models.

The τth conditional quantile distribution of Y is a linear function where:

Qτ (y|x) = xT
i β + F −1

ε (τ),

which is written:
Qτ (y|x) = xT

i βτ . (4.32)

Having the observations (xi, yi) (i = 1, · · · , n), we can estimate βτ by β̂τ by solving the
following optimization problem:

βτ = arg min
β∈R

n
∑

i=1

ρτ (yi − xT
i β), (4.33)

where
ρτ = r(τ − I(τ < 0)), (4.34)

and I(·) is the indicator function. Equation (4.33) can be reformulated to a linear
programming problem where X is the n× p matrix of predictors and Y denotes the vector
of response values [Koenker 05]:

min(τ1T
n U + (1− τ)1T

n V ), (4.35)
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with constraints:

β ∈ R
p,

(U, V ) ∈ R2n
+ and

Xβ + U − V = Y.

If the errors on observations are iid, Koenker and Basset [Koenker 78] have shown that

β̂τ is asymptotically normal. If εi are independent but not identically distributed then the
asymptotic covariance is:

Vτ = (τ(1− τ))(XT FX)−1(XT X)(XT FX)−1, (4.36)

where F = diag{f1(0), · · · , fn(0)}, and fi(·) is εi’s probability density function; in a
model with iid errors the much more variance becomes [He 96]:

Vτ =
τ(1− τ)

f 2(0)
(XT FX)−1. (4.37)

Note that if we want two or more quantiles from a finite dataset, the estimated quantile
regressions may cross or overlap with each other, which is called as quantile crossing. This
phenomenon occurs because each of the quantile functions has been estimated independently
[Koenker 05]. Quantile crossing is a troublesome problem, because it is in contradiction
with the semantic of the quantile estimation problem. Fortunately, this problem can be
avoided by estimating all of the selected quantile functions the same time enforcing the
non-crossing constraint. However after enforcing this constraint the conditional
quantile estimator may not converge to the true conditional quantile.

4.4.2 Non-linear Quantile Regression

By surveying the non-linear quantile regression literature, we can observe that it has received
much less attention than the linear quantile regression. Konenker and Park [Koenker 96]
have developed an interior point algorithm for non-linear quantile regression. This method
is implemented by the nlrq function in the R’s quantreg package. The problem consists of
minimizing

min
θ∈Rp

n
∑

i=1

ρτ (Yi − g(xi, θ)), (4.38)

where g(·, θ) is considered to be continuously differentiable in θ. For more details see
[Koenker 96, Koenker 05]. Takeuchi et al. [Takeuchi 06] have also proposed a kernel-based
quantile regression method. They compared their method on several benchmarks and
artificial datasets to linear quantile regression and the spline quantile regression, introduced
by Koenker et al. [Koenker 94b] (it is provided by the rqss function in R’s quantreg
package). Their method consists of solving a quadratic programming problem. Their
experiments show the feasibility of their kernel-based quantile regression and compared
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it with linear and spline based quantile regression. The reader can find this method
implemented in the R’s kernlab package. Figure 4.3 shows Takeuchi et al.’s method
[Takeuchi 06] applied to the motorcycle dataset. In this figure the training set and the
validation set are the same. We can see that the proposed kernel based quantile regression
fits well the nonlinear structure of the data but it suffers from the quantile crossing problem.
Figure 4.4 is also an application of Takeuchi et al.’s method to the motorcycle dataset. But
in this case the method is applied in a 10-fold cross validation schema. We can easily see
that in this case, the kernel method becomes much less reliable and its crossing quantile
effects get much more stressed than in the previous example.
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Figure 4.3: Kernel-based non-linear qunatile regression applied to the motorcycle dataset
[Silverman 86].

4.4.3 Non-parametric Quantile Regression

There is an extensive literature on non-parametric quantile regression. Stone [Stone 77b]
considers the K-nearest neighbors quantile regression. He establishes its consistency and
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Figure 4.4: Kernel-based non-linear qunatile regression applied in a 10-fold cross validation
schema to the motorcycle dataset [Silverman 86].

rate of convergence. Bhattacharya et Gangopadhyay [Bhattacharya 90] studied kernel and
nearest-neighbor quantile estimators. In order to consider the asymptotics of these estimates,
they obtained Bahadur type [Bahadur 66] representations of the sample conditional quantiles.
Then Chaudhuri [Chaudhuri 91] introduced locally polynomial quantile regression. As we
saw in Section 4.3.1, kernel and nearest-neighbor estimators are a version of local polynomial
estimator having a polynomial of degree zero. The Chaudhuri [Chaudhuri 91] conditional
quantile estimator differs from the the Fan and Gijbels [Fan 92b] conditional mean estimator,
by its loss function. The mean estimator uses the squared errors as its loss function and
the quantile estimator uses the Pinball loss function described previously in Equation
(4.34). Equation (4.39) describes a conditional local polynomial quantile estimator for a one
dimensional fixed design quantile regression model. If the predictors are in the p-dimensional
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space, then the parameter β must be optimized in R
p×(d+1).

min
β∈Rd+1

n
∑

i=1

wiρτ

Ç
Yi −

d
∑

j=0

β̂j(xi − x)j

å
, (4.39)

where wi =
1

b
K(

xi − x

b
).

Figure 4.5 shows the local linear quantile regression applied to the motorcycle dataset.
In this figure the training set and the validation set are the same. We can see that the
proposed kernel based quantile regression fits quite well the nonlinear structure of the data
but it suffers much less from the quantile crossing problem than the non-linear model in
figure 4.3. Figure 4.6 is also an application of Chaudhuri’s method to the motorcycle dataset.
But in this case the method is applied in a 10-fold cross validation schema. We can easily
see that in this case, the kernel method becomes much less reliable, its crossing quantile
effects appears more and the quantile estimation function becomes much less smooth.

4.5 Other interval regression methods

4.5.1 Methods with an optimization point of view

Interval regression has been studied based on several contexts. Tanaka [Tanaka 87] was the
first to propose possibilistic regression, which is reminiscent of quantile regression. The
goal of this approach is to associate the data with a pair of upper and lower regression
functions, while minimizing the total spread of the output coverage. Then Ishibuchi
and Tanaka [Ishibuchi 90] proposed several reformulations of the linear interval regression
model with interval data. This work reformulates the problem as a linear programming
problem. In another work [Ishibuchi 92], they used neural networks to handle nonlinear
interval regression models with interval data. Their work consists of employing two back-
propagation networks (BPNs); one network identifies the upper side of the interval valued
response variable and the other one finds its lower side. Ishibuchi et al. [Ishibuchi 93] use one
interval neural network to represent both the upper and lower sides of the interval response
variable. This work first proposes an architecture of neural networks with interval weights
and interval biases. This neural network maps an input vector of real numbers to an output
interval. Cheng and Lee [Cheng 01] proposed to use radial basis function network in fuzzy
regression analysis without predefining any functional relationship between the covariates
and the response variable. The proposed approach is a fuzzification of the connection
weights between the hidden and the output layers. This fuzzy network is trained by a hybrid
learning algorithm, where c-mean clustering method and the K-nearest-neighbor heuristics
is used for training the parameters of the hidden units and linear possibilistic programming
is used for updating the weights between the hidden and the output layers. Huang et al.
[Huang 98] introduced robust interval regression for neural networks. They proposed two
robust learning algorithms for determining a robust nonlinear interval regression model.
The two robust algorithms are derived in a similar manner to the back-propagation (BP)
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Figure 4.5: Local linear quantile regression with a bandwith of 20-nearest neighbors applied
to the motorcycle dataset [Silverman 86].

algorithm. Peters [Peters 94] proposed a fuzzy LP based method for constructing a robust
fuzzy linear regression model. Interval regression with Support Vector Machines (SVM) has
been introduced by [Jeng 03] and [Hong 03]. Jeng et al. [Jeng 03] proposed Support Vector
Interval Regression Network (SVIRN) for interval regression analysis. SVIRN uses a pair
of radial basis function networks. One network identifies the upper side of interval valued
response variable, and the other network finds its lower side. In the proposed method, the
SVIRN approach with the ǫ-insensitive loss function is used to obtain the initial structure
of SVIRNs. Then, a BP learning algorithm is employed to adjust the two networks. SVIRN
is a robust interval regression method for interval numeric and interval output data. Hong
and Hwang [Hong 05] proposed interval regression with support vector machine using a
quadratic loss function.

Petit-Renaud and Denoeux [Petit-Renaud 04] were the first to propose a regression
analysis approach for imprecise and uncertain data. They called their model “EVREG”
(EVidential REGression) model which is a version of the KNN algorithm that uses a
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Figure 4.6: Local linear quantile regression with a bandwith of 20-nearest neighbors applied
in a 10-fold cross validation schema to the motorcycle dataset [Silverman 86].

fuzzy belief function to represent the input and output data. Zhi-gang and Wang [Su 13]
investigate the multiple linear and nonlinear regression of belief function on interval-valued
variables. They also extended the EVREG model to deal with belief function on interval-
valued variables. Their main contribution is the proposed parametric and nonparametric
evidential regression models that deal with regression of imprecise and uncertain data,
represented as a belief function with finite interval-valued focal elements.

In the context of possibility theory, Serrurier and Prade [Serrurier 07] considered impre-
cise regression for triangular and trapezoidal fuzzy sets. They use the simulated annealing
algorithm to find a model that has the best tradeoff between faithfulness with respect to
data and (meaningful) precision. In the same context, we proposed “Possibilistic KNN
regression using tolerance intervals” [Ghasemi Hamed 12a]. This is the first imprecise re-
gression approach with crisp-input and crisp-output data which address the reliability of an
imprecise model by its coverage of the response values. The idea is to use tolerance intervals
to build the maximal specific possibility distribution that bounds population quantiles of
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the unknown conditional distribution of the response value. The interval regression method
that is introduced is based on KNN and takes advantage of our possibility distribution in
order to choose, for each instance, the value of K which will be a good trade-off between
precision and uncertainty due to the limited sample size. This work is explained in section
7. Celmins [Celmins 87] and [Diamond 88] have another point of view for fuzzy regression,
which is in contrast to all the regression approaches described here. Diamond [Diamond 88]
extends the least squares on fuzzy sets but its least square definition does take into account
the qualitative nature of the fuzzy sets. Their definition does not consider the stochastic
nature of fuzzy sets and thus we do not consider it a relevant option for regression.

In the Symbolic Data Analysis (SDA) framework [Bock 00, Billard 12], interval-valued
data are known as variables with observed values being intervals from the set of real
numbers. Thus SDA regression is a type of interval regression with interval-input and
interval-output data. Billard and Diday [Billard 00] proposed the first approach to fit a
linear regression model to symbolic interval-valued data. Their approach consists of fitting a
linear model to the midpoint of the interval valued dataset. The lower and upper bounds of
the response variable are predicted by applying this model to the lower and upper bounds of
the covariates. They proposed another approach [Billard 02] where two independent linear
regression models are built. One model fits with lower side of intervals and the other one
fits the upper side. The overall model minimizes SSEL + SSEU over the training set where
SSEL and SSEU denote respectively the sum of squared errors of the lower and the upper
model. Lima Neto and De Carvalho [de Lima Neto 08] improved the former approach with
another method which is again based on two linear regression models. The first model fits
the midpoints of the intervals and the second one is a regression over the ranges, which
predicts the dependent variable bounds in a more efficient way. This approach considers the
minimization of the sum of the mid-point square error plus the sum of the range square error,
and the prediction of the dependent variable is based on the mid-point and range predictions.

Domingues et al. [Domingues 10] have also proposed a robust version of the linear
regression method for interval valued-data. Their approach is a center and range approach
similar to [Billard 00] and [de Lima Neto 08]. Two innovative features are considered
in their work: the predicted values are more robust to the presence of interval valued
outliers because they estimate the model parameters by considering heavy-tailed probability
error distributions. In their experiments, they use real and simulated symbolic interval
datasets to compare their introduced method with Lima Neto and De Carvalho’s method
[de Lima Neto 08] and they demonstrate that their regression model outperforms the other
one.

4.5.2 Methods with a probabilistic point of view

Despite all these contributions to symbolic regression and interval regression models, current
approaches view the interval regression problem from an optimization point of view which
seeks to minimize a pre-defined criterion and do not consider the probabilistic aspects related
to regression models. Therefore, one cannot benefit from statistical inference techniques on
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these non-probabilistic models. It makes it impossible to have hypothesis tests or confidence
intervals on parameter estimates or prediction. Lima Neto et al. [de Lima Neto 09] were
the first to consider a probabilistic view of SDA interval regression. They use bivariate
generalized linear models (BGLM) proposed by Iwasaki and Tsubaki [Iwasaki 05] in the
context of interval-valued data. Their work includes consideration of some important aspects
related to the BGLM and a performance comparison of their approach to that of Billard
and Diday [Billard 00] and Lima Neto and De Carvalho’s [de Lima Neto 08]. Cattaneo and
Wiencierz [Cattaneo 11, Cattaneo 12] introduced Likelihood-based Imprecise Regression
(LIR) as a very general theoretical framework for regression analysis with imprecise data.
[Cattaneo 12] is a refinement of [Cattaneo 11], where they proposed a robust version of
imprecise regression. Their method combines nonparametric likelihood inference with impre-
cise probability where very weak assumptions are needed and different kinds of uncertainty
can be taken into account. The mentioned method is nonparametric, in the sense that no
assumption about the error distribution is necessary. They assume that the variables have
precise values, but they are imprecisely observed. This imprecision can be observed for the
predictors, the response variable or both. Their regression method is linear and based on
interval dominance. In another work, Wiencierz and Cattaneo [Wiencierz 13] proposed an
algorithm derived from the geometrical properties of LIR results. This algorithm determines
the set-valued result of a simple linear regression performed with robust LIR with interval
data.
In [Ghasemi Hamed 12c], we extended the Possibilistic KNN regression idea to the prob-
ability framework. In this work we propose a KNN interval regression method which
finds intervals that for all input instances x ∈ X simultaneously contain a β proportion
of the response values. We called this problem simultaneous interval regression. This
is similar to simultaneous tolerance intervals for regression with a high confidence level
γ ≈ 1. We considered the simultaneous interval regression problem for KNN without the
homoscedasticity assumption. This work is explained in Section 7.

4.6 Conclusion

In this chapter we have seen the definition of mean regression estimation and quantile
regression. We have also seen local linear regression which is a simple effective regression
technique. LLR can be used in situations where the function to estimate is complex or
where we lack sufficient observations to build a parametric model. Then we have seen
quantile regression techniques. These estimators are more robust than least-squares models
but as shown by two cross validation examples, they suffer from the crossing quantile effect.
Finally, we had a quick look at other regression methods, which give intervals as the output
of the response variable. We divided them into two big categories: those which have an
optimization view of regression (this is the largest part of the interval regression literature);
and those which contain methods which are based on probabilistic assumptions (this part of
interval regression literature is based on statistical methods). In my opinion, the latter are
more appropriate for the regression problem, which is intrinsically a statistical technique.
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As pointed out in the previous chapter, regression techniques provide estimates of the
conditional mean or quantiles of a real-valued random variable Y (x), being the result of
an unknown deterministic function f(x) plus a random noise ε. These models are always
built with finite sample size (n < inf), thus the predicted mean or quantile is an estimate
of the true unknown conditional mean or quantile of the random variable Y (x) = f(x) + ε.
Therefore while dealing with datasets of finite size , we need to make some statistical
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inferences. In this chapter, we are interested in finding intervals in regression models which
contain a desired proportion of the response variable. The contribution of this chapter is the
review and the comparison of different least-squares and quantile regression techniques used
to find such intervals. Besides, we take advantage of this chapter to address a misunderstood
interval prediction method in the machine learning community. We explain its applications
and review its drawbacks.

We choose a fixed regression design where dataset S = (x1, Y (x1)), · · · , (xn, Y (xn)) is a
random sample. The xi’s are deterministic vectors of observations and Y (xi) are drawn from
the distribution of Y (xi). These distributions are continuous probability distributions. We
always suppose that there is one true mean regression function f(·) with a zero mean error
and an unknown variance σ2. The most practical assumption is the Gaussian homoscedastic
error, but it is not mandatory. S is a finite random sample, so the estimated regression
model finds a pair of (f̂ , σ̂); f̂ denotes the estimated regression function and σ̂ is the
estimated error standard deviation. This pair is a random vector in the probability space
of regression models defined for the underlying regression type (for ex: OLS). Note that in

the case of error being not normally distributed, the pair (f̂ , σ̂) does not correctly represent
the estimated regression model. Thus we will use the symbol PS instead of Pf̂ ,σ̂ to refer to
a probability distribution where the random vector is the estimated regression model based
on the random sample S. We also use the following notation:

• S = (x1, Y (x1)), · · · , (xn, Y (xn)): the random sample of regression;

• f(·): the true and unknown regression function;

• f(x): the conditional mean of the response variable for specified combination of the
predictors;

• f̂(·): the estimated regression function;

• f̂(x): the estimated regression function at point x;

• ε: the error variable;

• σ2: the true and unknown variance of the error variable;

• σ̂2: the estimated variance of the error variable;

• σ2
f̂(x)

: the variance of f̂(x);

• σ̂2
f̂(x)

: the estimated variance of f̂(x);

• Y (x): the conditional response variable for a given combination of the predictors,
Y (x) = f(x) + ε;

• χ2
p,n: the p-quantile of a chi-square distribution with n degrees of freedom;
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• Zp: the p-quantile of a standard normal distribution;

• tp,n: the p-quantile of a Student t distribution with n degrees of freedom.

5.1 Conventional techniques

This section describes two conventional interval prediction methods used in least squares
models. These methods are asymptotic interval prediction techniques but practitioners
tend to use them for a wide class of applications, such as prediction intervals, tolerance
intervals and simultaneous tolerance intervals. This is explained further in 5.2. The goal of
this section is to see their definitions and discuss their properties.

5.1.1 Conventional Interval prediction

One of the most common interval prediction techniques used in practice is to take [f̂(x)−
Z 1−β

2
SSE

1
2 , f̂(x) + Z1− 1−β

2
SSE

1
2 ]) as the interval which contains a β proportion of Y (x)’s

population,where SSE is the average MSE given by a Leave-One-Out (LOO) or a 10-fold
cross validation scheme. One might assume that the intervals expressed below have similar
properties to the regression tolerance interval defined in the next section.

P

Ç
Y (x) ∈

ñ
f̂(x)− Z 1−β

2
SSE

1
2 , f̂(x) + Z1− 1−β

2
SSE

1
2

ôå
= β. (5.1)

As seen in (4.8), the expected value of SSE is approximately equal to the predictive risk.
Thus, based on the bias-variance decomposition:

E(SSE) = Average MSE +
1

n

n
∑

i=1

σ2(xi)

=
1

n

n
∑

i=1

Bias2
f̂(xi)

+
1

n

n
∑

i=1

σ2
f̂(xi)

+
1

n

n
∑

i=1

σ2(xi)

and we have:

E(SSE) = Average Bias2
f̂(xi)

+ Average σ2
f̂(xi)

+ Average σ2(xi) (5.2)

We assume that:

• the error variance for all x’s is constant (homoscedasticity).

• the estimator’s variance σ2
f̂(x)

is constant for all x.

• f̂(x) is an unbiased estimator of f(x).

• the error ε, and f̂(x), are independent and both have normal distributions.



88 CHAPTER 5. INTERVAL PREDICTION METHODS IN REGRESSION

Then, we have:

E(SSE) = σ2
f̂(x)

+ σ2

f̂(x)− ε ∼ N (f(x), σ2
f̂(x)

+ σ2).

Considering the fact that n tends to be large and under the above condition, we can
consider SSE as an approximation to the variance of the prediction around any point
SSE ≈ σ2

f̂(x)
+ σ2, which results in (5.3):

f̂(x)− Y (x)

SSE
1
2

∼ N (0, 1). (5.3)

Thus under the above conditions, (5.1) becomes asymptotically valid, but it remains
non-applicable for finite sample size datasets. Some practitioners might even think that
these intervals contain; a proportion β of the distribution of Y (x) for all values of x ∈ X .
As we will see, this is defined by a simultaneous tolerance interval for regression which is
discussed in Section 5.2.4.

5.1.2 Point-wise confidence intervals for the mean function

A mean regression model gives an estimate f̂(x) of the unknown true conditional mean
of the response variable f(x). Therefore, one might be interested in obtaining confidence
intervals on the true mean function by point-wise confidence intervals.

Definition 16 Point-wise confidence intervals are intervals that, with a desired level of
confidence, are guaranteed to contain the conditional mean regression function f(x).

Pf̂(x)(f(x) ∈ Ipw
1−α(x)) = 1− α. (5.4)

The estimated function is usually assumed to have an asymptotic normal distribution
[Härdle 90, Fan 95]. In case of asymptotic bias, the center of the distribution is shifted and
it depends on derivatives of the regression curve (and the distribution of X if we have a
random regression model). Given such assumptions, normal point-wise confidence intervals
are calculated as follows:

Ipw
1−α(x) =

Ç
f̂(x)−‘bias(x)

å
± Zα

2
σ̂f̂(x), (5.5)

where ‘bias(x) is the estimated asymptotic conditional bias. The practical assump-
tion is to ignore the bias and assume that the conditional estimated mean
function f̂(x) has a constant variance. Figure 5.1 shows a simple linear model built
on a dataset of 50 observations. The red line represents the true mean function and the
blue lines are the different OLS obtained with different random sample generated from the
same regression function. In this figure, point-wise 0.95-confidence intervals for the mean
function are shown with dashed orange lines.
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Figure 5.1: Point-wise confidence intervals for the mean function.

Another common method for constructing point-wise confidence intervals uses boot-
strapping. This method is applied differently to fixed design and random design. This is
because bootstrap the is a re-sampling method that needs bootstrap sample using the same
random procedure that has generated the initial dataset. For more details see [Härdle 90]
and [Godfrey 09].

5.2 Least-Squares inference techniques

This section describes some well-known statistical inference techniques applied to least-
squares regression models. Prediction and tolerance intervals have some equivalents in
the quantile regression set-up, but confidence band and simultaneous tolerance intervals
seem to be unique to the least-squares world. The goal of this section is to emphasize
that least-squares interval prediction methods are not restricted to large sample techniques.
There is an extensive literature on this topic. However, there are still some subjects like
tolerance intervals and simultaneous intervals that need further study.
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5.2.1 Prediction interval for least-squares regression

For a given regression dataset and a query point x, a 1− α prediction interval contains, on
average, a proportion (1− α) of the distribution of the response variable Y (x). In other
words, the expected proportion of the population of Y (x) contained in its (1−α)-prediction
interval IP red

1−α (x) is 1− α.

Definition 17 Let S = (x1, Y (x1)), · · · , (xn, Y (xn)) denote a random sample, where the
xis are observations, and Y (xi) are drawn from the continuous distribution of Y (xi). A
(1−α)-prediction regression interval for the point x contains on average a proportion (1−α)
of the population of Y (x). The IP red

1−α (x) notation refer to a (1− α)-prediction regression
interval [Krishnamoorthy 09]. Then, we have:

PS,Y (x)(Y (x) ∈ IP red
1−α (x)) = 1− α, where Y (x) = f(x) + ε. (5.6)

Suppose that we have n independent pairs of random samples as defined below:

((S, T )1), · · · , (S, T )n)

such that:

Si = (x1, Y (x1)), · · · , (xk, Y (xk))i and Ti = (x1, Y (x1)), · · · , (xl, Y (xl))i,

where l and k are arbitrary positive numbers, and we have built a regression model for
the first sample of each pair: Si. If for a given x = x∗, one calculates the (1− α)-prediction
interval of the first sample at point x and then check whether the value(s) of Y (x∗) in the
second sample (Ti) are included in the computed (1− α)-prediction interval IP red

1−α (x∗), one
can observe that, a fraction 1 − α of IP red

1−α (x∗) will, in the long run, contain the future
value(s) of Y (x∗). Note that both the different pairs of samples and the observations within
each sample must be independent [Hahn 91].

Regression prediction intervals are also known as (1−α)-expectation regression tolerance
intervals. An expectation regression tolerance interval is such that its average content
is 1 − α. Thus, interval [LP red

1−α (x), UP red
1−α (x)], which is based on a random sample S, is a

(1 − α)-regression prediction interval for observing the next observation of the random
variable Y (x) is also a (1− α)-expectation tolerance interval.

ES(P (Y (x) ∈ IEXT
1−α (x)|S)) = 1− α, where Y (x) = f(x) + ε. (5.7)

For a detailed discussion about the differences between prediction and tolerance intervals,
the reader can find more in [Hahn 91, Krishnamoorthy 09, Paulson 43].
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Prediction interval in OLS

Suppose that we have an OLS model as explained in 4.2.1, and let x∗ be a point in the
predictor space which may be previously, observed or not. We know from (4.14) that

the estimated vector of parameters β̂ in OLS has a normal distribution, so the prediction
ŷ∗ = f̂(x∗) is also normally distributed:

ŷ∗
∽ N (x∗T β, σ2x∗T (XT X)−1x∗), (5.8)

and we can conclude that:

(y − ŷ∗)
√

nσ̂2

n−p
(1 + x∗T (XT X)−1x∗)

∽ tn−p. (5.9)

So we have:

ŷ∗ − ct(1− α
2

,n−p) ≤ y ≤ ŷ∗ + ct(1− α
2

,n−p), (5.10)

c =

√

nσ̂2

n− p
(1 + x∗T (XT X)−1x∗)

and (5.10) gives a two tailed 1 − α prediction interval for the OLS [Mendenhall 06].
These intervals are illustrated in Figure 5.2.

Bonferroni Prediction intervals

Prediction intervals are confidence intervals for the response variable Y (x) = f(x) + ε.
They can be also constructed by using the Bonferroni inequality to construct simultaneous
confidence statements on both the mean regression function and the error variable. Let
the intervals Ipw

1− α
2
(f(x)) = [Lpw

1− α
2
(f(x)), Upw

1− α
2
(f(x))] and IC

1− α
2
(ε) = [LC

1− α
2
(ε), UC

1− α
2
(ε)] be

respectively a (1− α
2
) point-wise confidence interval for the conditional mean at point x

and the confidence interval for error variable such that:

Pf̂

Ç
f(x) ∈ Ipw

1− α
2
(f(x))

å
= 1− α

2
, (5.11)

and

Pσ̂,ε

Ç
ε ∈ IC

1− α
2
(ε)

å
= 1− α

2
.

Then based on the Bonferroni inequality we have:

Pf̂ ,σ̂,ε

Çñ
f(x) ∈ IC

1− α
2
(f(x))

ô
and

ñ
ε ∈ IC

1− α
2
(ε)

ôå
= 1− α.



92 CHAPTER 5. INTERVAL PREDICTION METHODS IN REGRESSION

x
x

x

xx
x

x
x

xxxx

x

x

x

x

x
x

x
x
x
x

x

x

x x

x

x

x

x

x
x

x x

x

x
xx

x
x x

x
x

x
x

x

x

x

xx

0 50 100 150 200 250 300

0
50

0
10

00
15

00

x

y

True Mean Function
Estimated Mean Function 
0.95−Prediction Interval

Figure 5.2: Predition intervals for OLS.

Therefore we have (5.12), which describes a prediction interval for the regression function.

Pf̂ ,σ̂,ε

Ç
Y (x) ∈ IP red

1−α (x)

å
= 1− α, where IP red

1−α (x) = [Lpw
1− α

2
(f(x))+LC

1− α
2
(ε), Upw

1− α
2
(f(z))+UC

1− α
2
(ε)].

(5.12)

5.2.2 Confidence bands for least-squares regression

Confidence bands are simultaneous point-wise confidence intervals. The idea is to have
intervals that, with confidence level 1− α, contain the entire true mean function.

Definition 18 Confidence bands are random intervals [U1−α(x), L1−α(x)] that include, with
probability 1− α, the entire true mean regression function f(·).

Pf̂

Ç
f(x) ∈ Icb

1−α(x) for all x ∈ X
å

= 1− α, where Icb
1−α(x) = [U1−α(x), L1−α(x)], (5.13)

where X is the domain of x.
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Confidence bands are usually hard to compute, even for parametric models. Working
and Hotelling [Working 29] were the first to propose the confidence band for the simple
linear regression and Scheffe [Scheffé 59] generalized it to the linear regression with multiple
predictors. Sun and Loader [Sun 94] generalized the linear case to the non-linear regression
with linear estimates. They provided an approximation to the tube formula which can be
used for multidimensional predictors and a wide class of linear estimates. There are three
general ways to compute non-linear confidence bands [Härdle 90]:

• Bonferroni approach: confidence bands are simultaneous confidence intervals around
the mean function. Therefore one common way to obtain uniform confidence bands
is to use point-wise confidence intervals with a confidence level adjusted by the
Bonferroni inequality. Some authors have already studied this approach [Eubank 93,
De Brabanter 11]. It is well suited if the band is required for a small number of points
otherwise it provides wide intervals.

• Gaussian process approximation: this approach consists of considering f̂(x)− f(x)
as a Gaussian process and deriving its asymptotic Gaussian process approximation
[Sun 94]. For this purpose we need the distribution of the maximum of a Gaussian
process and fortunately this is a well studied problem.

• Bootstrap method: this technique uses re-sampling in order to approximate the
distribution of the maximum deviation from the mean

Wn = sup
x∈X

|f̂(x)− f(x)|.

The lower and upper bands will be the α
2
-quantile and (1− α

2
)-quantile of Wn. Another

approach consists of approximating the distribution of f̂(x)−f(x) for each x and then
correcting the confidence level of all points in order to have simultaneous coverage of
1− α [Hardle 91, Härdle 90].

Figure 5.3 use orange solid lines to represent the Working and Hotelling confidence band.
We can see that they are larger than point-wise confidence intervals for the mean function.

5.2.3 Tolerance intervals for least-squares regression

In the case of regression with constant error variance and normal distribution of errors,
usually inter-quantiles of a normal distribution with mean zero and variance σ̂2, (being
the error variance estimator) are used as an approximate solution to find intervals that
contain a desired proportion of the distribution of the response variable for a given value of
dependent variables. For instance, the 0.95 inter-quantile [f̂(x) − 1.96σ̂, f̂(x) + 1.96σ̂] is
often used as the interval containing 95% of the distribution of Y (x) (i.e., as a regression
tolerance interval). As shown by Wallis [Wallis 51], this statement is not true since σ̂2 and

f̂(x) are only estimations of the true error variance σ2 and the true mean function at point
x, f(x). These estimations are always made on a finite sample and are then pervaded with



94 CHAPTER 5. INTERVAL PREDICTION METHODS IN REGRESSION

x

x

x

x
x

x

x

x

x x
xx

x

x

x

x

x

x

x

x

x

x

x

x

x x

x

x

x

x

x

x

x
x

x

x

xx

x

x x

x

x

x

x

x

x

x

xx

50 100 150 200 250 300

0
2

0
0

4
0

0
6

0
0

8
0

0
1

0
0

0

x

y

True Mean Function
Estimated Mean Function 
0.95−Confidence Interval on Mean
 0.95−Confidnece Band (Simultaneous)

Figure 5.3: Working and Hotelling confidence band in OLS for a random sample with
n = 50.

uncertainty. Tolerance intervals for least squares regression have been introduced in order
to take into account this uncertainty. These intervals are described formally by (5.14). We
will refer to such intervals, β-content γ-coverage regression tolerance intervals and they are
denoted by IT

γ,β(x).

P

Ç
∫ UT

β,γ
(x)

UT
β,γ

(x)
px(t)dt ≥ β

å
= γ where Y (x) = f(x) + ε, (5.14)

where px(t) denotes the probability density function of Y (x) for a specified value of the
predictor variable x. A two-sided tolerance interval IT

γ,β(x) for Y (x) is taken, of the form

f̂(x)± ρ(x)σ̂, where ρ(x) is the tolerance factor to be determined subject to the content β

and the desired confidence level γ. Let C(x; f̂ , σ̂) represent the content of this tolerance
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interval,

C(x; f̂ , σ̂) = PY (x)

Ç
f̂(x)− ρ(x)σ̂ ≤ Y (x) ≤ f̂(x) + ρ(x)σ̂

å
. (5.15)

The tolerance factor ρ(x) satisfies the following condition:

Pf̂ ,σ̂

Ç
C(x; f̂ , σ̂) ≥ β

å
= γ. (5.16)

Equations (5.14) and (5.16) could also be expressed as follows:

Pf̂ ,σ̂

Ç
PY (x)

Ç
Y (x) ∈ IT

γ,β(x)

å
≥ β

å
= γ, (5.17)

IT
γ,β(x) = [LT

β,γ(x), UT
β,γ(x)] = [f̂(x)− ρ(x)σ̂, f̂(x) + ρ(x)σ̂].

It is important to observe that tolerance intervals in regression are defined separately
for each input vector. Therefore, for two different input vectors x = x1 and x = x2, IT

γ,β(x1)
and IT

γ,β(x2) are different and the event Y (x1) ∈ IT
γ,β(x1) is independent of Y (x2) ∈ IT

γ,β(x2).
For more details see [Hahn 91] and [Krishnamoorthy 09].

Bonferroni regression tolerance intervals

Tolerance intervals for regression can be also constructed by using the Bonferroni inequality.
In this part, we demonstrate how to find Bonferroni regression tolerance intervals for the
OLS. We have chosen the OLS model because we have already described all the formulae,
and it is the simplest case but this technique can be applied to any regression model. For
this purpose one must use the Bonferroni inequality in order to combine the confidence
bands on the regression’s mean and the confidence interval on the error’s standard deviation.

The first part is exactly the same as the first step in Bonferroni Prediction intervals
described in 5.2.1. It consists of finding a point-wise confidence interval for the conditional
mean at point x described by (5.11). In the next step, an upper bound on the error’s
standard deviation must be obtained. In the case of OLS, we use (4.16) which results in
(5.18) where N denotes the number of observations, and k the number of predictors in the
OLS model. In non-linear models, the error’s standard deviation, are estimated by other
methods and more details can be found in [Gasser 86, Yu 04].

Pσ̂(σ ≤ cσ̂) = 1− α

2
, where c =

Ç
N − k − 1

χ2
α
2

,N−k−1

å 1
2

. (5.18)

Now by applying the Bonferroni inequality, one can use the confidence statements (5.18)
and (5.11) to obtain a joint confidence statement with probability greater or equal than
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1− α. Equation (5.19) describes this combination.

Pf̂ ,σ̂

Çñ
Pε

Ç
Z 1−β

2
cσ̂ ≤ ε ≤ Z1− 1−β

2
cσ̂

å
= β

ô
and

ñ
f(x) ∈ Ipw

1− α
2
(f(x))

ôå
≥ 1− α, (5.19)

where c =

Ç
N − k − 1

χ2
α
2

,N−k−1

å 1
2

, Ipw
1− α

2
(f(x)) = [Lpw

1− α
2
(f(x)), Upw

1− α
2
(f(x))].

By rewriting the statement above, we find tolerance intervals for a regression function.

Pf̂ ,σ̂

Ç
Pε

Ç
Lpw

1− α
2
(f(x)) + Z 1−β

2
cσ̂ ≤ f(x) + ε ≤ Upw

1− α
2
(f(x)) + Z1− 1−β

2
cσ̂

å
= β

å
≥ γ,(5.20)

where c =

Ç
N − k − 1

χ2
α
2

,N−k−1

å 1
2

, γ = 1− α.

Figure 5.4 represent the Bonferroni regression tolerance intervals in OLS. We can see
that they are larger than prediction intervals.

5.2.4 Simultaneous tolerance intervals for least-squares regres-
sion

As seen above, tolerance intervals for least squares regression are point-wise intervals which
are obtained separately for each vector of x. Lieberman and Miller [Lieberman 63] extended
the Wallis [Wallis 51] idea to the simultaneous case. Simultaneous tolerance intervals are
constructed in such a way, that with confidence level γ, simultaneously for all possible values
of input vector x, at least a proportion β of the whole population of the response variable
Y is contained in the obtained intervals. Simultaneous tolerance intervals for least squares
regression [LT S

β,γ(x), UT S
β,γ (x)] create an envelope around the entire mean regression function

f(·) such that, for all x ∈ X , the probability that Y (x) is contained in [LT S
β,γ(x), UT S

β,γ (x)] is
simultaneously β, and this coverage is guaranteed with a confidence level γ. We name such
intervals β-content γ-coverage simultaneous regression tolerance intervals. We represent
them by IT S

γ,β(x) and they are described by (5.21), where px(t) represents the probability
density function of Y (x) for a specified value of the predictor variable x.

P

Ç
min
x∈X

Ç
∫ UT S

β,γ
(x)

LT S
β,γ

(x)
px(t)dt

å
≥ β

å
= γ, where Y (x) = f(x) + ε. (5.21)

If ρ(x) in (5.15) is a simultaneous tolerance factor, then it must satisfy the following
condition:

Pf̂ ,σ̂

Ç
min
x∈X

C(x; f̂ , σ̂) ≥ β

å
= γ. (5.22)

These intervals have been studied for the linear regression by several authors [Lieberman 63,
Wilson 67, Mee 91]. For an introduction to the subject, the reader can see Lieberman and
Miller [Lieberman 63]. They explained the problem in detail and presented four different
methods for construction of such intervals for linear regression. For more information about
simultaneous inference, see [Krishnamoorthy 09, Miller 91].
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Figure 5.4: Bonferroni regression tolerance intervals in OLS for a random sample with
n = 50.

Bonferroni Simultaneous tolerance intervals

Lieberman and Miller [Lieberman 63] used the Bonferroni inequality to construct simulta-
neous tolerance intervals for linear regression. However, this approach can be applied in
other models with a constant and normal error variance. For this purpose one must use the
Bonferroni inequality in order to combine the confidence bands on the regression mean and
the confidence interval on the error standard deviation.

As explained in Section (5.2.2), a (1 − α
2
)-confidence band for the mean regression

function is a tube that, with confidence level (1− α
2
), contains the entire mean function

f(·) and (5.23) describes such bands.

Pf̂

Ç
f(x) ∈ Icb

1− α
2
(x) for all x ∈ X

å
= 1− α

2
, where Icb

1− α
2
(x) = [Lcb

1− α
2
(x), U cb

1− α
2
(x)]. (5.23)

Confidence bands for the linear regression can easily be obtained with Scheffe’s technique
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[Scheffé 59], but it becomes harder for non-linear models. Then we must obtain an upper
bound on the error’s standard deviation. In the case of OLS, we can use (5.24), where N
denotes the number of observations, k the number of predictors in the OLS model and it is
a direct result of (4.16). In non-linear models the error’s standard deviation, are estimated
by other methods and the interested reader can find details in [Gasser 86, Yu 04].

Pσ̂(σ ≤ cσ̂) = 1− α

2
, where c =

Ç
N − k − 1

χ2
α
2

,N−k−1

å 1
2

. (5.24)

Now by applying the Bonferroni inequality, one can use the confidence statements (5.24)
and (5.23) to obtain a joint confidence statement with probability greater or equal to 1− α.
Equation (5.25) describes this combination.

Pf̂ ,σ̂

Çñ
Pε

Ç
Z 1−β

2
cσ̂ ≤ ε ≤ Z1− 1−β

2
cσ̂

å
= β

ô
and

ñ
f(x) ∈ Icb

1−α(x) for all x ∈ X
ôå
≥ 1− α,

(5.25)

where c =

Ç
N − k − 1

χ2
α
2

,N−k−1

å 1
2

, Icb
1− α

2
(x) = [Lcb

1− α
2
(x), U cb

1− α
2
](x).

By rewriting the above statement, we find simultaneous tolerance intervals for a regression
function:

Pf̂ ,σ̂

Ç
Pε

Ç
Lcb

1− α
2
(x) + Z 1−β

2
cσ̂ ≤ f(x) + ε ≤ U cb

1− α
2
(x) + Z1− 1−β

2
cσ̂

å
= β, for all x ∈ X

å
≥ γ,

(5.26)

where c =

Ç
N − k − 1

χ2
α
2

,N−k−1

å 1
2

, γ = 1− α.

Lieberman and Miller [Lieberman 63] compared this approach to other simultaneous
tolerance intervals for simple linear regression. These resulting intervals have the nominal
β-content but they tend to be too wide. Figure 5.5 represent the these intervals in OLS.

5.3 Interval prediction with Quantile Regression Mod-

els

While the least-squares models just estimates the conditional mean function f(x), the
quantile regression obtains estimates of conditional quantiles which, on average, estimates
the true quantile function. A quantile regression model can estimate one conditional
quantile, so with quantile regression models, we can find one-sided intervals:

IQ1−α(x) = (−∞, Q1−α(x)], (5.27)

where Q1−α(x) estimates the true (1 − α)-quantile of the conditional distribution of the
response value Y (x), given a particular combination of predictors. Note that as seen in
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Figure 5.5: Bonferroni tolerance intervals and Bonferroni simultaneous tolerance intervals
in OLS for a random sample with n = 50.

Section 4.4, Q1−α(x) is just an estimation of the unknown conditional quantile function.
This means that interval IQ1−α(x) will, on average, contain a proportion 1− α of Y (x). In
the following section, we will have a quick look at different ways of obtaining confidence
intervals on regression quantiles and then we will see how quantile regression can be used
to predict one-sided and two-sided conditional intervals.

5.3.1 Confidence interval on regression quantiles

Once we have estimated our conditional quantile with a quantile regression model, we need
a method of statistical inference to obtain confidence intervals on the conditional quantile.
Equations (4.36) and (4.37) give respectively the covariance matrix and the variance of β̂τ .
However, evaluating these quantities require the value of the error’s density function at the
origin ( 1

f(0)
), called the sparsity, which is itself unknown. Koenker [Koenker 94a] studied

some methods for estimating 1
f(0)

. In the same study, he used a Monte-Carlo experiment to
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evaluate the discussed methods, and this study showed that confidence intervals based on
(4.37) are not robust for heteroscedastic error models.

There are already three classes of methods to find these confidence intervals [Kocherginsky 05].

• Direct estimation: this method uses kernel-smoothing to obtain direct estimations of
the sparsity for the iid and non-iid error model. This method holds generally when
the sample size increases and the bandwidth of the smoother tends to zero, but for
finite sample size its performance depends strongly on the choice of the smoother’s
bandwidth.

• Rank-Score Method: Koenker [Koenker 94a] proposed another approach for finding
confidence intervals on linear regression quantiles. This method is based on inverting a
regression rank score test. This method has reliable results and is robust to deviations
from the model, but it is practically feasible only for one-dimensional parameter and
becomes computationally prohibitive for large datasets and does not provide any
estimate of the covariance matrix [Kocherginsky 05].

• Re-sampling Method: the two common methods are bootstrapping residuals (holds
only for iid models) and bootstrapping pairs. Pairwise bootstrap is a rather effec-
tive method to estimate the confidence intervals. These methods require repeated
calculation of regression quantiles, which can become very time consuming when n
and p increase. He and Hu. [He 02] proposed a new re-sampling method based on
the Markov Chain Marginal Bootstrap (MCMB). Instead of solving a p-dimensional
system for each bootstrap replicate, as is usually done in the bootstrap, it completes
each bootstrap replication by solving p one-dimensional equations. This method
decreases the computational complexity associated with bootstrap application in
high-dimensional spaces. Note that this method is only proposed for the linear models
in the class of quantile regression estimators.

Kocherginsky et al. [Kocherginsky 05] compared several methods of the three classes
listed above and they proposed different approaches depending on the size of the dataset
and the number of variables. Kocherginsky et al.[Kocherginsky 05] have also proposed
a simple modification to the He and Hu [He 02] MCMB method which yields a more
time-saving method for obtaining quantile regression confidence intervals. Note that all
the experiences and results on confidence intervals for regression quantiles
have so far only been done for linear models.

5.3.2 One-sided interval prediction

In quantile regression models, if we want one-sided intervals that contain a desired proportion
of the conditional distribution of the response variable, we have two choices:

• Estimates of point-wise interval: This is the definition of quantile regression
explained in 4.4.1. The estimated intervals are defined by (5.27). These intervals
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contain, on average, a proportion 1− α of the conditional distribution of the response
variable Y (x). These interval are similar to one-sided prediction intervals in least-
squares models defined in 5.2.1.

• Confidence based point-wise inference: This is the definition of the confidence
interval on regression quantiles explained in 5.3.1. This one-sided upper γ confidence
interval on (1− α)-regression quantile will be of the form:

IQγ
1−α(x) = (−∞, Qγ

1−α(x)], (5.28)

where Qγ
1−α(x) is an upper or lower γ-confidence bound on the conditional quantile of

Y (x).

– An upper γ-confidence interval on the 1−α quantile of Y (x) will cover, the 1−α
quantile of Y (x) with at least a proportion γ. This is described by IUγ

1−α(x):

IUγ
1−α(x) = (−∞, Uγ

1−α(x)],

where Uγ
1−α(x) is the upper confidence bound.

– In contrast, a lower γ-confidence interval on the 1−α quantile of Y (x) will cover,
the 1 − α quantile of Y (x) with at most a proportion γ. This is described by
ILγ

1−α(x):

ILγ
1−α(x) = (−∞, Lγ

1−α(x)], (5.29)

where Lγ
1−α(x) is the upper confidence bound.

Note that by using lower confidence bounds, we can obtain intervals Iγ
α(x) such that:

Iγ
α(x) = [Lγ

1−α(x),∞).

Iγ
α(x) is an upper γ-confidence interval that covers, at least γ of the time, an interval
containing the 1− α proportion of Y (x). As stated in 5.3.1 all the experiments and
results on confidence interval for regression quantiles have so far only been performed
for linear models. These intervals are similar to one-sided tolerance intervals for
regression in least-squares models explained in 5.2.3.

5.3.3 Two-sided interval prediction

In order to obtain two-sided (1 − α)-content conditional intervals, one must build two
distinct quantile regression models: a lower α

2
-quantile regression model and an upper

(1− α
2
)-quantile regression model. As in one-sided conditional intervals, we have two choices:
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• Estimates of point-wise interval: One must build two distinct quantile regression
models to obtain two-sided intervals. Thus we build a pair of models which consist
of a lower (α

2
)-quantile regression model and an upper (1 − α

2
)-quantile regression

model. For example, in order to obtain 90-predictive intervals with Linear Quantile
Regression (LQR), we construct a lower 0.05-LQR model and an upper 0.95-LQR
model. Such pairs of models can provide two-sided intervals which contain, on average,
a desired proportion 1− α of the distribution of Y (x). These intervals are similar to
two-sided prediction intervals in least-squares models defined in 5.2.1.

• Confidence based point-wise inference: These two-sided intervals contain with
a γ confidence level, a proportion 1− α of Y (x). As described above, we need a pair
of (α

2
, 1− α

2
) quantile regression models but each model now needs itself a confidence

interval as explained in 4.4.1. Suppose that we have built the upper and lower quantile
regression models and let γ = 1− τ , now we must obtain a lower (one-sided) (1− τ

2
)

confidence interval on the lower α
2
-quantile regression model and an upper (one-sided)

(1 − τ
2
) confidence interval on the upper (1 − α

2
)-quantile regression model. The

lower and upper (1− τ
2
)-confidence intervals are respectively denoted IL

1− τ
2

α
2

(x) and

IU
1− τ

2
1− α

2
(x) in Equations (5.30) and (5.31).

PS

Ç
PY (x)(Y (x) ∈ IL

1− τ
2

α
2

(x)|S) ≤ α

2

å
= 1− τ

2
, where IL

1− τ
2

α
2

(x) =]−∞, L
1− τ

2
α
2

(x)],

(5.30)

PS

Ç
PY (x)(Y (x) ∈ IU

1− τ
2

1− α
2
(x)|S) ≥ 1−α

2

å
= 1− τ

2
, where IU

1− τ
2

1− α
2
(x) =]−∞, U

1− τ
2

1− α
2
(x)].

(5.31)

In Equations (5.30) and (5.31), L
1− τ

2
α
2

(x) denotes an lower confidence bound on the
α
2
-regression quantile at point x. This confidence bound must, a proportion 1− τ

2
of

the time, cover the α
2
quantile of Y (x). L

1− τ
2

1− α
2
(x) denotes an upper confidence bound

on the regression quantile at point x and it must, a proportion 1 − τ
2
of the time,

cover the 1− α
2
quantile of Y (x).

Note that these confidence statements are made on two different models, and so we
cannot use them directly to construct two-sided confidence intervals. However, by
applying the Bonferroni inequality, one can merge the pair of (1 − τ

2
) confidence

intervals to obtain a joint confidence statement with a probability greater than or
equal to γ = 1− τ . Equation (5.32) describes this combination.

PS

Ç
PY (x)

Ç
Y (x) ∈ IQ1−τ

1−α(x)

å
≥ 1− α

å
≥ 1− τ, (5.32)
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where IQ1−τ
1−α(x) = [L

1− τ
2

α
2

(x), U
1− τ

2
1− α

2
(x)].

It is important to emphasize that although these intervals are theoretically feasible,
there has not been any work, until now, which treats the problem of two-sided interval
prediction with one-sided confidence intervals on regression quantiles. Such intervals
are similar to two-sided γ-coverage 1− α-content least-squares tolerance intervals and
they are explained in 5.2.3.

Figure 5.6 shows these intervals for linear model built on a dataset of 50 observations.
The red line represents the true mean function and the green lines are the different
linear estimate of quantile function obtained with different samples of the same
function. We used 0.025− LQR, 0.975− LQR, and 0.95-coverage 0.95-content two-
sided Bonferroni LQRC to denote respectively linear estimation of 0.025-quantiles,
linear estimation of 0.975 quantiles and confidence intervals on regression quantiles
combined with the Bonferroni method as explained in Equations (5.30) and (5.31).
These lines are shown by orange color and they are obtained for one pair of green lines.
They are obtained with the re-sampling method as explained in [Kocherginsky 05].
quantile function. obtained with different random sample generated from the same
regression function. In this figure, point-wise 0.95-confidence intervals for the mean
function are shown with dashed orange lines.

Note as discussed in 4.4, two different quantile regression models may cross or overlap
each other, which is called as quantile crossing. Thus two-sided interval prediction is more
meaningful by enforcing the non-crossing constraint. However after enforcing this constraint
the conditional quantile estimator may not converge to the true conditional quantile. Thus
we have to choose between a “non-correct” or non-convergent estimator.

5.4 Discussion

In the previous chapter we saw different regression techniques. Apart from interval regression
methods, the presented techniques are employed to estimate a point of the conditional
distribution distribution of the response variable. This point can be a conditional quantile
or the conditional mean. This chapter discussed several methods of finding intervals in
regression models which contain a desired proportion of the response variable. One common
category contains methods that consist of building a least squares or mean estimating
regression model and then employing some kind of statistical inference techniques to predict
such intervals. Another classical method uses quantile regression models [Koenker 05]. In
this section we will give a brief survey of the presented interval prediction methods. This
classification is summarized in Figure 5.4. First, we begin by least-squares methods and
then we will survey quantile regression interval prediction techniques.
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Figure 5.6: Two-sided Bonferroni method for confidence intervals on regerssion quantiles.

5.4.1 Least-Squares models

• Conventional method: Some practitioners of the Machine Learning community
tend to use a common method to estimate different types on intervals explained below:

1. The error variance (σ̂2
error) is just estimated by the training set’s average mean

squared error usually obtained with a cross-validation schema. This method is
explained in Section 5.1.1.

2. The desired β-inter-quantile of the error’s distribution is estimated.

3. Finally, the estimated inter-quantile is added to f̂(x) (the estimated mean
function) and is used to find the inter-quantile of the conditional distribution of
response variable Y (x).

Unfortunately, most practitioners of the Machine Learning community usually employ
such type of inference for predicting intervals such as prediction intervals, tolerance
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intervals and simultaneous tolerance intervals. The practitioner’s method has two
properties. First of all, the estimation does not take into account the sample size, so
they must take into account the asymptotic notion of these intervals. The second
property is that the conventional method explained in 5.1.1 is usually used for
estimating a point-wise confidence interval for the conditional mean f(x), and thus it
cannot be used to estimate the conditional response variable Y (x), which has also an
error term. For a detailed discussion on these statistical intervals and their differences
see [Hahn 91] and [Krishnamoorthy 09].

• Inference on the conditional mean function f(x):

– Asymptotic point-wise inference: this is the definition of the confidence interval
for the mean regression function Ipw

β (x) explained in 5.1.2 which contains, asymp-
totically, a desired proportion β of the conditional distribution of the estimated
mean function f̂(x) for each combination of the predictors.

– Simultaneous Confidence based inference on the mean regression for all x ∈ X :
this is the idea of γ-confidence band Icb

γ (x) for the regression function described
in 5.2.2. These intervals create an envelope around the entire mean regression
function f(·) such that, for all x ∈ X , the probability that the true f(x) is
contained in the band is simultaneously γ.

• Inference on the response variable Y (x) = f(x) + ε:

– Asymptotic point-wise inference: this is the definition of prediction interval for
regression IP red

β (x) explained in 5.2.1 which contains, asymptotically, a desired
proportion β of the conditional distribution of the response variable Y (x) for
each combination of the predictors.

– Confidence based point-wise inference: this is the definition of the tolerance
interval for regression IT

γ,β(x) explained in 5.2.3. The interval contains, with a
confidence level γ, at least a desired proportion β of the conditional distribution
of the response variable Y (x) for each combination of the predictors.

– Simultaneous confidence based inference on the response variable for all x ∈ X :
this is the idea behind β-content γ-coverage simultaneous regression tolerance
intervals IT S

γ,β(x) described in 5.2.4. These intervals create an envelope around
the entire mean regression function f(·) such that, for all x ∈ X , the probability
that Y (x) is contained in the band is β, and this coverage is guaranteed with a
confidence level γ.

Note that tolerance intervals and simultaneous tolerance intervals for least squares
regression have been well studied for linear regression but the application of these
methods in the non-linear and particularly the non-parametric case are limited in the
literature. Figure 5.8 displays these intervals for a simple linear model.
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Figure 5.8: Comparing different interval prediction methods in linear least-sqaures regression.

5.4.2 Quantile Regression Models

A quantile regression model can estimate one conditional quantile so one-sided and two-sided
interval estimation is treated separately.

• One-sided interval prediction:

– Estimates of point-wise interval: this is the definition of quantile regression
explained in 4.4.1 and these intervals are similar to one-sided prediction intervals
in least-squares models defined in 5.2.1.

– Confidence based point-wise inference: this is the definition of confidence
intervals on regression quantiles explained in 5.3.1. The obtained one-sided
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interval contains, with a confidence level γ, at least a desired proportion β of
Y (x). They have so far been studied for linear models, and they are are similar
to one-sided tolerance intervals for regression explained in 5.2.3.

• Two-sided interval prediction: in order to obtain two-sided (1 − α)-content
conditional intervals, one must build two distinct quantile regression models: a lower
α
2
-quantile regression model and an upper (1− α

2
)-quantile regression model.

– Estimates of point-wise interval: This is done by a pair of upper and lower
quantile regression model. These intervals are estimations and they are similar
to two-sided prediction intervals in least-squares models defined in 5.2.1.

– Confidence based point-wise inference: These two-sided intervals contain, with
a γ confidence level, a proportion 1−α of Y (x). As noted, we need two quantile
regression models but each model now itself needs a confidence interval, as
explained in 5.3.3. There is not any work using this method, and they are
are similar to the two-sided γ-coverage (1− α)-content least-squares tolerance
intervals explained in 5.2.3.

Two-sided interval prediction is more meaningful by enforcing the non-crossing
constraint but this may lead to a non-convergent quantile estimator. Thus we have to
choose between “non-correct” or non-convergent estimators.

5.5 Conclusion

This chapter discussed several methods of finding intervals in regression models which
contain a desired proportion of the response variable. One common category contains
methods that consist of building a least squares or mean estimating regression model
and then employing some kind of statistical inference technique to predict such intervals.
Another classical method is based on quantile regression models. We reviewed different
types of intervals and described their frequentist interpretation. We also take advantage
of this chapter to address a common interval prediction method in the Machine Learning
community. Unfortunately, most practitioners of this community usually employ this
conventional inference for predicting interval such as prediction intervals, tolerance intervals
and simultaneous tolerance intervals. We dedicated the first section of this chapter to
explaining this conventional technique and its applications, and to reviewing its drawbacks.
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The previous chapter discussed different concepts and methods of interval prediction
within the regression context and we referred to such methods with the “interval prediction
method” term. The goal of this chapter is to propose a new interval prediction framework.
We introduce the concept of regression predictive intervals and regression predictive interval
models. Next, we propose a statistical test to verify if an “interval prediction model” is
a “predictive interval model”. In the same context, we introduce two measures for rating
interval prediction models. These measures rate the efficiency and the tightness of the
obtained envelope. Next, we describe the relationship of predictive intervals models and
tolerance intervals for regression and confidence interval on quantile regression. We explain
how to choose a confidence level γ to obtain efficient and reliable predictive intervals models.
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The final part, is dedicated to an illustrative example which compares two distinct interval
prediction methods on the motorcycle dataset [Silverman 85].

6.1 Interval Prediction Models

The goal of this paragraph is to emphasize the differences between intervals, interval
prediction methods and interval prediction models. An interval prediction method is the
procedure required for obtaining an interval. It is just the way to do it but when it is
applied to a dataset, we obtain an interval prediction model. For example, a tolerance
interval for regression is a type of interval. The method to obtain it in linear models is
described in [Krishnamoorthy 09] and, when applied to a dataset, the model which gives
the tolerance interval for each point in the predictor space is the interval prediction model.

Definition 19 A regression β-content interval prediction model, built on the dataset S, is
function I(·)S,β from the predictor space R

P to the response variable space R such that:

I(·)S,β : RP → I, where I = {[a, b]|a, b ∈ R ∪ {−∞,∞}, a < b}. (6.1)

and, the expected content of the intervals is at least β:

ES

Ç
P

Ç
Y (x) ∈ I(x)S,β

∣

∣

∣

∣

∣

S
åå
≥ β. (6.2)

Thus when the size of our training set goes to infinity and under certain conditions, a
β-content interval prediction model finds intervals that on average contain, at least, a β
of the distribution of Y (x). This is a quite broad definition which covers all the interval
prediction method for Y (x) and we will use it for such purpose.

Our works deals with the regression models, so we omit to mention the regression word
and use “interval prediction model” instead of “regression interval prediction model”. Note
that test and model selection techniques are always applied to models and not to methods.
However when a method is more efficient than its competitors on several datasets or in a
general theoretical framework, we can state that this method is more efficient than others.
Section 6.3 introduces a test for predictive interval models. The next section introduces
predictive intervals and predictive interval models. Chapter 9 uses several regression datasets
to compare different interval prediction methods. In Chapter 9, we will use different datasets
to check whether the compared interval prediction methods are, in general, reliable enough
to be used as predictive interval methods.

6.2 Predictive Interval Models

In the frequentist interpretation of confidence intervals, a confidence interval for a parameter
contains zero or one parameter. The parameter is fixed and confidence intervals change with
different random samples. In the same way, the γ used in tolerance intervals for regression
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defined in (5.17) and confidence intervals for regression quantiles formulated by Equations
(5.28) and (5.29) mean the following: the probability that the obtained intervals contain,
under re-sampling, at least a proportion β of the conditional distribution of the response
value Y (x) is γ. We know that the confidence level in Neyman-Pearson confidence intervals
is independent of the observed sample. It means that if we obtain γ-confidence β-content
tolerance intervals of an observed sample from a regression function, then the confidence
level γ does not induce any posterior probability of including β proportion of the distribution
of Y (x). Therefore, the confidence coefficient in frequentist confidence intervals cannot be in-
terpreted as posterior probability. This idea is discussed in detail in Chapter 7 in [Walley 91].

Hence, under the frequentist viewpoint of regression, the true conditional response
variable’s inter-quantile is included with probability zero or one in the obtained interval
(by using tolerance intervals for regression or confidence intervals for regression quantiles).
Our goal is to obtain intervals that correctly bracket these inter-quantiles. They can be
found in two ways: the first approach takes a very high confidence level like γ ≈ 1 and
the second method finds the smallest confidence level 0 < γ0 < 1 which includes the true
unknown model. We introduce the concept of predictive intervals which refer to both of
these intervals. A predictive interval built on S, is guaranteed to contain for the query point
x, at least a desired proportion of the conditional distribution of the response variable. It
can be obtained with tolerance intervals for regression or confidence intervals for regression
quantiles but these concepts have so far only been treated for linear models

Definition 20 Let S = {(x1, Y1) · · · , (xn, Yn)} denote a random sample where Yi = f(xi)+
εi and εi is white noise. A β-content predictive interval for x, denoted by I(x)P

β , is an
interval such that:

PY (x)

Ç
Y (x) ∈ I(x)P

β

∣

∣

∣

∣

∣

S
å
≥ β, where I(x)P

β = [L(x)P
β , U(x)P

β ]. (6.3)

Since we have observed S, I(x)P
β is no longer random and the probability measure is just

related to cover at least a proportion β of the conditional distribution of the response variable
Y (x) for a specified combination of the predictors.

Definition 21 Let S = {(x1, Y1) · · · , (xn, Yn)} denote a random sample where Yi = f(xi)+
εi and εi is white noise. A β-content predictive interval model, denoted by I(·)P

β , is a
function such that:

I(·)P
β : Rp → I, where I = {[a, b]|a, b ∈ R ∪ {−∞,∞}, a < b}, (6.4)

and for all x in the predictor space, the obtained interval is a β-content predictive interval
described by (6.3).
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6.3 Predictive Model Test

The goal of this part is to develop an statistical test with which we can rate the reliability
of any model claiming to provide β-content predictive intervals. A predictive interval
model must provide predictive intervals for each point in the predictor space. We saw
that the distribution of Y (x) changes for each value of x. So in order to see whether an
interval for the regression function at the point x contains at least a proportion β of the
s distribution of Y (x), we need (for each combination of predictors x) a sample set from
the distribution of Y (x) = f(x) + ǫ, and then we can observe if the constructed interval
contains a proportion s distribution of the distribution of Y (x). In the same way, in order
to verify if the methods works for an entire dataset {xi| ∈ (1, · · · , n)}, we need a distinct
sample set for each xi and this sample must be drawn from Y (xi). Since a sample set is
required for each xi, i ∈ (1, · · · , n), the described procedure requires a huge dataset having
many observations for each point x in the feature space which makes it impractical or
impossible for multiple regression problems. However, we can make some approximations
and use the results stated above to derive the following test. We first begin by defining
a variable MIP on the dataset. We will see that this variable can be approximated by a
normal distribution. Then we use the normal distribution to define the α level predictive
model test. So one can verify for example if tolerance intervals for the linear regression
applied to the Motorcycle dataset is a predictive interval model or not.

6.3.1 Simultaneous Inclusion with Predictive Intervals

A β-content predictive interval for regression I(x)P
β must contain at least β proportion of

the conditional distribution Y (x). Hence, the probability measure in (6.3), is just related to
contain at least a proportion β of the conditional distribution of the conditional response
variable Y (x). We define the function V (x) as:

V (x) =







1 if Y (x) ∈ I(x)P
β ,

0 otherwise.

The above definition means that the probability that V (x) is equal to 1 is β, so V (x)
has a Bernoulli distribution with p = β.

V (x) ∼ Bernoulli(β). (6.5)

Suppose that we have a dataset of ntrain observations T = {(x1, Y1) · · · , (xntrain
, Yntrain

)}
with which we build our model, and nv other observations S = {(xv

1, Y v
1 ) · · · , (xv

nv
, Y v

nv
)},

not contained in the original dataset as our test set. If we apply the function V (·) on the
whole test set S and sum the result, we obtain:

MIPS,β = n−1
v

nv
∑

i=1

V (xv
i ). (6.6)
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Therefore, we can deduce that MIPS,β has a Binomial distribution. This is expressed
formally by (6.7) where B(nv, β) is a binomial distribution with n = nv and p = β.

nvMIPS,β ∼ B(nv, β). (6.7)

If nv is sufficiently large, we can assume that MIPγ,β has a normal distribution as:

MIPS,β ∼ N (β,
β(1− β)

nv

). (6.8)

Thus the fraction of instances having their response value included in their predictive
intervals is on average β. This means such predictive intervals for regression have in average
a simultaneous content of β so, on average, they are like simultaneous regression tolerance
intervals. For small to medium datasets, MIPS,β is computed in a cross-validation
or leave-one-out schema on the whole dataset which means that S = T .

6.3.2 Testing Predictive Interval Models

As we have seen in (6.8), the random variable MIPS,β can usually be well approximated
by a normal distribution. The test below is used to verify, with level α, if the interval
prediction method does provide β0-content predictive intervals for all x in the predictor
space.

H0 : β ≥ β0 versus H1 : β < β0, (6.9)

then H0 can be rejected with significance α where:

MIP Test: MIPS,β < n−1/2
v β0(1− β0)Zα = F α

β0,nv
, (6.10)

where Zα is the α-quantile of the standard normal distribution. So if (6.10) is true, we fail
to reject the null hypothesis with significance level α, and accept the underlying model as a
model providing β-content predictive intervals.

In this thesis we used a significance level of α = 0.05, so for each dataset we compared
the MIPS,β’s value on the test set with F 0.05

β0,nv
. For the sake of simplicity, we refer to MIPS,β

for a given dataset S and desired proportion β as MIP (Mean Inclusion Percentage). As we
have seen in (6.8), the fraction of response values inside their β-content predictive intervals
converges to β, so the test defined in (6.10), where α = 0.05 is used to verify if the obtained
intervals, with a confidence level 0.95 and on average and not at least like in simultaneous
tolerance internals, do simultaneously contain a proportion β0 of the distribution of Y (x)
for all x in the predictor space.

6.4 Comparing Interval Prediction Models

The above test can be used to verify the reliability of a model claiming to provide β-
predictive intervals but it does not tell us anything about its efficiency. For a given dataset,
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we may have several interval construction models which pass this test but we need to
find the the most efficient one. For this purpose, we define the dataset measures listed
below. These measures are then used as building blocks for some graphical charts and plots
explained further in this section. The idea is to provide graphical tools which can help
us to compare the effectiveness of different interval prediction methods through different
datasets. Each symbol denotes a variable, that when applied to an interval prediction
model, is indexed by the predictive interval model’s dataset and method. For example MIS
denotes the Mean of Interval Size. However MISm

S , denotes the mean of intervals size of
intervals obtained with the interval prediction method m applied to the dataset S.

6.4.1 Direct Dataset Measures

For each of the datasets the following quality measures can be computed:

• MIP: Mean Inclusion Percentages and must satisfy the MIP constraint:

MIP Constarint: MIPS,β ≥ F 0.05
β,n .

(see (6.6)).

• MIS: Mean of Interval Size.

MIS =
1

n

n
∑

i=1

size(I(x)P
β ).

• σis: sample standard deviation of interval sizes.

σis =
1

n

n
∑

i=1

(size(I(x)P
β )−MIS)2,

where size(I(x)P
β ) refers to the size of the β-content predictive interval. For small to

medium datasets, the above measures are computed using a cross-validation or a leave-one-
out schema.

6.4.2 Composed Dataset Measures

We use the above quality measures to define the following composed measures:

Normalized MIS

Suppose that we want to test c different methods (“Method1”, “Method2” ,..., “Methodc”)
on the dataset S. They give us c distinct models and each model has a Mean of Interval
Size (MIS), so we have: MIS1

S , MIS2
S ,..., MISc

S . But depending on the dataset and β’s
value, one model may satisfy the MIP constraint or not. For a model that does not pass
the test, its normalized MIS value is not computed. For each model satisfying its constraint
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on the dataset, its normalized MIS is equal to the ratio of its MIS to the maximum MIS on
this dataset

normalizedMISi
S =

MISi
S

max
i∈(1,··· ,c)

(MISi
S)

.

If we have :

MISm1
S ≥MISm2

S and MIP m1
S,β ≥ F 0.05

β,n and MIP m2
S,β ≥ F 0.05

β,n

⇔ m1 provides a wider reliable envelope than m2.

M2 is better than m1 because it satisfies the MIP constraint and it also gives the smallest
normalized MIS value. Choosing the ratio to the maximum MIS value rescales the MIS
value between 0 and 1 and lets us compare the strength of methods across different datasets.
However we can not use the normalized MIS to compare two models (constructed on the
same dataset) that obtain different MIP values but have equal or approximately equal MIS
values. In this case, we have to compare them by their Equivalent Gaussian Standard
Deviation, explained below.

Equivalent Gaussian Standard Deviation (EGSD)

If we have two reliable models (constructed on the same dataset) having different MIP
values but approximately equal MIS values, we normally choose the one that gives the to
higher MIP. But the situation can get more complicated for models (constructed on the
same dataset) with different MIS values and different MIP values. EGSD is a measure which
can be used to compare interval prediction models, constructed on the same dataset, which
have different MIP values. Such models can have different or equal MIS values. Let m be a
β-content interval prediction model built on the dataset S, yielding MISm

S and MIP m
S,β.

The idea behind EGSD is to find the Equivalent Gaussian Distribution (EGD) for successful
predicted intervals of m. We have seen that by taking intervals size on average equal
to MISm

S , that MIP m
S,β of the observations will be contained in their prediction interval.

So EGD is the distribution of the size of predicted intervals obtained by model m1 that
correctly contains their response variable. Therefore the EGD which has the smallest
variance corresponds to the most efficient model. The Equivalent Gaussian Distribution for
m is the normal distribution θ-content inter-quantile size of which will be equal to MISm

S .
We have: θ = MIP m

S,β. So the Equivalent Gaussian Standard Deviation of m is calculated
by:

EGSDm
S =

MISm
S

2Z1− α
2
θ
, where θ = MIP m

S,β , α = 1− β,

and Zα is the α-quantile of the standard normal distribution. Now by using each model’s
EGSD, we can compare models with different values of MIP and MIS. EGSD measures the
trade-off between average interval size and the fraction of successful predictions. Smaller
EGSD values denote more effective interval prediction models. Finally, for the
sake of readability, all found EGSD are normalized in each dataset. Thus the final value
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is the ratio of the method’s EGSDm
S to the maximum EGSD value on the underlying

dataset:

normalizedEGSDm
S =

EGSDm
S

max
i∈(1,··· ,c)

(EGSDi
S)

.

Note that if the model m1 has smaller EGSD than the model m2, it does not mean m2’s
envelope is wider than m1’s envelope. As seen above smaller normalized MIS values mean
smaller envelopes and smaller EGSD values means more effective models.

6.4.3 Figures

Plots and charts help us to compare different interval prediction methods on different
datasets because a figure can visualize complex and big tables. Each plot is dedicated to
one dataset and it compares dataset measures of different interval prediction methods on
the same dataset whereas a chart compares a desired dataset measure for different methods
and across different datasets. All the presented plots have the same x axis. This axis is
labeled “Nominal MIP”, and it represents distinct values of the desired proportion (distinct
β values). On the other hand, each plot type has a different y axis. This axis denote the
underlying dataset measure on the tested interval prediction models.

MIP plot

The MIP plot is similar to the well-known Q-Q plot with the difference that it compares
MIP instead of quantiles. The x axis is denoted by “Nominal MIP” and it represents the
desired proportion of inclusion (distinct values of β). The y axis is denoted by “Obtained
MIP”. It represents the model’s MIP. Each point represents the model’s obtained MIP for
its value on the “Nominal MIP” axis. This figure always has two lines: the “MIP constraint
line” and the “Nominal MIP line”. The “MIP constraint line” displays F 0.05

β,n for different
values of nominal MIP, and the “Nominal MIP line” represents the function y = x. By
looking at this figure we can see the reliability of a method for different nominal MIP. The
first value in the x axis where a line crosses the MIP constraint line will be called its failure
MIP. It is obvious that the method having the higher failure MIP is the most reliable one.

One can also use the MIP plot to rate the model’s precision. If a model obtains MIP
values much higher than the desired nominal MIP, it means that the method is reliable
but not precise. For example a model which obtains MIP values of 0.45, 0.9 and 0.99 for
respective nominal MIP of 0.25, 0.75 and 0.95 is reliable but not precise. The most precise
model is the one having the nearest line to the “Nominal MIP line”. Finally, the best model
in this plot is the one which is the most precise and the most reliable. It means that the
best model in a MIP plot is the one having the nearest line to the upper side
of the “Nominal MIP line”. Figure 6.2 is an example of an MIP plot.
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EGSD plot

EGSD plot: the y axis of an EGSD plot is labeled by “Normalized EGSD Value” and it
represents the model’s normalized EGSD value. By looking at this figure we can compare
the efficiency of different models. It is obvious that the model having the highest line is
the most inefficient model. We suggest using this plot along with the MIP plot to rate
the efficiency of reliable methods. However one may ignore the reliability aspect and take
advantage of this plot to compare the efficiency of different models.

MIS plot

The y axis of an EGSD plot labeled “Normalized MIS Value” and it represents the model’s
normalized MIS value. By looking at this figure, we can compare the model which obtains
the tightest reliable envelope. The model having the highest line provides the widest
envelope. If a model does not pass the MIP test, its normalized MIS value is not computed.
The MIS plot shows each model’s normalized MIS until its “failure MIP”. We suggest using
this plot along with the EGSD plot.

Charts

Charts are used to compare one dataset measure on different datasets. We propose the
following charts:

• Mean Inclusion Percentage Chart (MIP chart): the goal of this chart is to compare
the mentioned methods based on their fraction of response values located inside their
predictive intervals. It just displays the MIP value and it usually does not contain
important information.

• MIS ratio chart: this chart displays the normalized MIS measure on different datasets.

• Equivalent Gaussian Standard Deviation chart (EGSD chart): it displays the normal-
ized EGSD measure on different datasets.

6.5 Predictive interval models with tolerance inter-

vals and confidence interval on quantile regression

This section explains the relationship of predictive intervals models and tolerance intervals
for regression and confidence intervals on quantile regression. The first part describes
how the confidence level γ in tolerance intervals for regression and confidence intervals on
quantile regression can be used to obtain predictive interval models. Then the second part
will help us find the “best” value of γ. By this, we mean the confidence level that provides
the predictive interval model with the smallest MIS value.
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6.5.1 Simultaneous Inclusion

As seen previously, the confidence level γ in regression tolerance intervals defined in (5.17)

is related to the estimated regression model M̂ = (f̂ , σ̂) and β is related to Y (x). We know

that the true regression modelM = (f, σ) is unknown and the estimated model M̂ = (f̂ , σ̂)
is a random vector which depends on the random sample S = {(x1, Y1) · · · , (xn, Yn)}. Let
RM,γ denote the γ-confidence region ofM. Then we have:

PM(M∈ RM,γ) = γ,

so RM,γ is a subspace in the regression model space of S. It contains regression models
for which the probability of Y (x)’s β-inter-quantile being contained in the tolerance interval

I(x)T
γ,β is γ. However, once S has been observed, M̂ = (f̂ , σ̂) and I(x)T

γ,β becomes non-
random and there exists a value of γ0 such that for all γ greater or equal to γ0 the true
modelM = (f, σ) is included in RM,γ. It can be found by its γ0 quantile and it is stated
formally by:

P −1
M (γ0) =M.

Consequently, for a given sample set S, we suppose that we have found a confidence
level γ ≥ γ0 such that M ∈ RM,γ. This allows us to ignore the external probability in
(5.17) and we can state that, for the fixed value of covariate x, the probability of Y (x)
being in I(x)T

γ0,β is greater or equal to β. Since we have observed S, I(x)T
γ,β is no longer

random and the resulting probability measure in (5.17), is just related to cover at least a
proportion β of the conditional distribution of the response variable Y (x) for a specified
combination of the predictors. Then we have:

MIPS,β ≡MIPS,γ,β.

If we have the right value for γ as stated before, the fraction of instances having their
response value included on their regression tolerance intervals is in average β. The above
discussion holds similarly for γ confidence intervals for β-regression quantiles. Once we
have found a confidence level γ greater than or equal to the true and unknown
γ0 stated above, the resulted γ-coverage β-content tolerance intervals for least
squares regression (or γ-confidence β-content regression quantiles in the case
of a quantile regression model) can be used as β-content predictive intervals.
Now, we can use the test defined above to find a γ greater or equal to γ0. Note that the
most reliable method is to take γ ≈ 1 but it provides wide intervals, so our test is an
intuitive way of finding the smallest reliable confidence level. As we have seen in (6.8), the
random variable MIPS,γ,β can usually be well approximated by a normal distribution. For
the sake of simplicity we refer to MIPS,γ,β for a given dataset S, fixed values of γ and β as
MIP (Mean Inclusion Percentage).
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6.5.2 Hyper-parameter Tuning and Model Selection

This part addresses hyper-parameter tuning questions related to predictive interval ex-
plained in Section 6.2. We suppose that the β-content predictive intervals are obtained via
tolerance intervals for regression or via confidence interval on regression quantiles. For the
sake of brevity we continue this part with tolerance intervals for regression but the same
procedure and statements hold for confidence interval on regression quantiles.

Tolerance intervals are obtained upon regression models which may themselves have
hyper-parameters. Consider an example of constructing predictive interval models by
tolerance intervals on a KNN regression. This model has two hyper-parameters, the KNN
regression’s hyper-parameter which is the number K, and the confidence level γ related to
tolerance intervals. First we find the regression’s hyper-parameters; It can be K for KNN
or Loess, or kernel related parameters in SVM regression or nothing in the linear regression
(this hyper-parameter depends on the regression method). Once we have found the best
regression model, we use an iterative algorithm that searches the smallest γ that satisfies
the tuning constraint defined below which results in intervals having the smallest MIS
measure. MIP and MIS are computed based on a leave-one-out or 10-fold cross validation
scheme on the training set.

Tuning Constraint: MIPS,γ,β = β. (6.11)

A more conservative approach could be to find γ which gives the tolerance intervals
having the smallest mean interval size and also satisfying the constraint below where Z1−α

is the (1− α)-quantile, i.e. 0.95 quantile, of the standard normal distribution.

Conservative Tuning Constraint: MIPS,γ,β ≥ t−1/2β(1− β)Z1−α. (6.12)

High values of γ will guarantee the tuning constraint (6.11) but the computed intervals
can be very large, so the search begins with a high confidence value like γ = 0.9 or γ = 0.99
and we try to decrease γ and thus decrease the mean interval size. This procedure is
repeated as long as the tuning constraints are satisfied and the search strategy is left
to the user. Note that the tuning constraint is a hard constraint and there is
no trade-off between satisfying this constraint and minimizing the MIS. Some
datasets might require just 2 or 3 iterations but some others may work with small γ. It
depends on the dataset and it can be influenced by the domain expert.

6.6 Illustration

Figure 6.1 gives an illustration of two distinct models used to obtain two-sided 0.95-content
predictive intervals. These models are built with a 10-fold cross validation schema on the
motorcycle dataset [Silverman 85]. The first one is a β-content predictive interval model
which is constructed with confidence intervals on quantile regression [Kocherginsky 05].
The 0.95-level two-sided content is obtained with two different quantile regression models
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as explained in 5.3.3. The second model is based on the conventional interval prediction
method explained in 5.1.1 obtained with a least-squares SVM regression. The results of this
experiment are displayed in Table 6.1. We can see that both models have their MIP value
greater than F 0.05

0.95,133 = 91.89, so they satisfy (6.10) and they are two-sided 0.95-content
predictive interval models.
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Figure 6.1: Two-sided 0.95-predictive intervals for the motorcycle dataset [Silverman 85].

However, their normalized MIS values show that the conventional model obtains much
a tighter envelope than its competitor. Then the normalized EGSD value shows that the
intervals obtained by the conventional model are also much more efficient than the intervals
obtained by the two-sided Bonferroni model. Figure 6.1 represents the MIP plot for these
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Method MIP MIS σis normalized MIS EGSD

Two-sided Bonferroni method 92.46 182.05 5.13 1 1
LS-SVM conventional method 94.77 93.46 0 0.51 0.47

Table 6.1: Experiment results of Figure 6.1.

methods. We can see that the conventional method is very reliable on the motorcycle
dataset. Although this method works here, we do not recommend it for this purpose. In
Chapter 9 we will use several distinct datasets to demonstrate that the conventional method
does not provide reliable models and must therefore not be used as predictive interval
models.
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Figure 6.2: Comparing obtained MIP to the MIP constraint for different β values.
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6.7 Conclusion

This chapter proposed a new interval prediction framework. We introduced the following
notions: predictive interval’s concept, predictive interval model’s notion, a predictive interval
model test and two interval prediction measures. We have seen that a predictive interval
for linear models can be obtained with tolerance intervals for regression and confidence
intervals on quantile regression. However, such models may provide wide intervals. So
we explained how to tune the confidence level of tolerance intervals for regression and
confidence intervals on quantile regression in order to obtain efficient and reliable predictive
interval models. The final part gives an illustrative example which compares two distinct
interval prediction methods on the motorcycle dataset [Silverman 85]. In the next chapter
we take advantage of the test defined here to propose some non-parametric predictive
interval methods. Then our efficiency measures will be used to demonstrate the superiority
of the suggested non-parametric methods compared to their competitors.
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In the previous chapter we introduced the predictive interval framework. The con-
tributions of this chapter are the introduction of two predictive interval methods for
non-parametric regression. They are applied for two-sided interval prediction but one can
also use them in a one-sided interval prediction context. We propose two predictive interval
models for local linear regression which both give variable size intervals. We assume that the
mean regression function is locally linear and the prediction error is locally homoscedastic.
Our methods do not neglect the regression bias and find intervals that work properly with
biased regression models. The proposed predictive intervals are constructed based on the
leave-one-out or 10-fold cross validation prediction errors of the local linear regression.
The local linear regression needs a regression bandwidth which could be found by any of
the existing methods in the literature. In order to obtain our non-parametric predictive
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intervals, we need a second bandwidth, which is the tolerance interval bandwidth (LHNPE
bandwidth). This work suggests two different tolerance interval bandwidths: a bandwidth
having a fixed number of neighbors and a bandwidth having a variable one but both obtain
variable size intervals. In the end, we will see that all these methods can also be used
for possibilistic regression with crisp input and output data. This chapter is organized
as follows: the first section explains how to compute tolerance intervals for local linear
regression. The next section describes how to use the tolerance intervals to obtain predictive
interval models. Then we will briefly see how to obtain our interval prediction models
with a commonly-used local linear regression method called Loess. Finally we will have
an illustration section and we conclude this chapter with a comparison of our method to
existing ones.

7.1 Tolerance Interval for local linear regression

We have seen in the previous chapter that predictive intervals can be obtained with
tolerance intervals for regression or confidence intervals for regression quantiles. However
these intervals have not yet been studied for non-parametric models, so in this section
we introduce two new methods for the calculation of predictive intervals for local linear
regression. Another important subject is the regression bias. It is well known that the
optimal smoothing in LLR or other non-parametric regression methods consists of a trade-off
between the bias and the standard deviation. This non-parametric bias does not vanish even
with large sample sizes, so it is important to use methods that do not ignore the regression
bias. The idea behind our predictive intervals is to exploit the local density of prediction
error (Yi − f̂(xi)) in the LHNPE neighborhood of the query point x∗ to find the most
appropriate interval that contains the desired proportion of response values Y (x∗). The
response variable predictive intervals are constructed by adding the regression estimates to
the locally approximated prediction error’s predictive interval. Prediction error’s predictive
interval are centered on negative bias, so when added to the biased regression results, they
remove the regression bias. Thus it leads to response variable’s predictive intervals which
correctly contain a proportion β of the distribution of Y (x).

7.1.1 Theoretical context

This part describes the theoretical context of tolerance intervals for local linear regression.
We first define the concept of a Local Homoscedastic Normal Prediction Error (LHNPE)
regression estimator. Then, we define the LHNPE neighborhood of a query point and in
the end we will use a simple a straightforward inference to obtain the formula of tolerance
intervals for local linear regression.

Definition 22 The oscillation of the function f : X → R on an open set U is defined as:

ωf (U) = sup
x∈U

f(x)− inf
x∈U

f(x).
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Definition 23 A regression estimator f̂(x) is a Local Homoscedastic Normal Pre-
diction Error (LHNPE) if it satisfies the following conditions:

• Normal distribution: the prediction error εpred
x = Y (x)−f̂(x) has a normal distribution.

• Almost constant distribution the prediction error: We suppose that the mean µ(εpred
x )

and the standard deviation σ(εpred
x ) of the distribution for the prediction error have

small local oscillations. This is defined formally as:

For all x, there exists an open set U ∋ x, such that:

ωµ(εpred
x )(U) ≤ υ1 and ωσ(εpred

x )(U) ≤ υ2,

where υ1 and υ2 are small fixed positive values.

Definition 24 Let f̂(x∗) be a LHNPE regression estimator for the query point x∗. The
LHNPE neighborhood for x∗ are instances for which the prediction error satisfies the
LHNPE conditions. This neighborhood is described as below:

Ksetx∗ = {(xi, Yi)|d(x∗, xi) ≤ b}, (7.1)

where d(x∗, xi) is a distance function in the feature space and b denotes the LHNPE
bandwidth.

Note that the LHNPE bandwidth Ksetx∗ is different from the regression bandwidth
Regx∗ in local linear regression:

Regx∗ = {(xi, Yi)|d(x∗, xi) ≤ breg}. (7.2)

The regression bandwidth minimizes the regression bias-variance trade-off but the LHNPE
bandwidth is used to find the neighborhood which satisfies the LHNPE conditions. The
LHNPE neighborhood is almost always included in the regression neighborhood:

Ksetx∗ ⊆ Regx∗ , (7.3)

because the constant’s

Ç
Y (x∗)− f̂(x∗)

å
distribution in the neighborhood of the query point

x∗ usually occurs inside its regression neighborhood. It is possible to find two different
regression neighborhoods being next to each other having approximately the same prediction
error distribution and not the same regression neighborhood. There are already several
references on regression bandwidth Regx∗ selection in non-parametric regression. We do
not treat this problem and the reader can find more details in [Fan 96] and [Härdle 90].

Proposition 10 Let Y (x) = f(x) + εx denote a regression function and let f̂(x) denote its
Local Linear regression estimator. If our regression estimator satisfies the conditions below:

• Normal error distribution: εx ∼ N (0, σ2
x) .
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• Normal distribution of the local linear estimator: f̂(x) ∼ N
Ç

f(x) + Biasf̂(x), σ2
f̂(x)

å
,

Fan et al. [Fan 95] have shown that this assumption holds under certain regularity
conditions.

• f̂(x) satisfies the LHNPE conditions defined above.

where Biasf̂(x∗) = E[f̂(x∗)− f(x∗)] is the estimator’s bias, σ2
x is the variance of the error

and σ2
f̂(x∗)

is the variance of the estimator. Then the γ-confidence β-content regression

tolerance interval for the query point x∗ is:

I(x∗)T
γ,β = f̂(x∗) + I(εpred

x∗ )T
γ,β, (7.4)

where εpred
x∗ = Y (x∗)− f̂(x∗).

In the above equation, I(x∗)T
γ,β and I(εpred

x∗ )T
γ,β denote, respectively, the regression tolerance

interval and the prediction error tolerance interval.

Proof: The assumptions lead to assume that the prediction error has a normal distribution
and its variance is approximately the same in the neighborhood of x∗. Let x∗ denote the
query point and let εpred

x∗ denote its prediction error, then we have:

εpred
x∗ = ε + f(x∗)− f̂(x∗),

which results in:
εpred

x∗ ∼ N (−Biasf̂(x∗), σ2
x∗ + σ2

f̂(x∗)
). (7.5)

The tolerance interval of the prediction error, is denoted by

I(εpred
x∗ )T

γ,β = [L(εpred
x∗ )T

γ,β, U(εpred
x∗ )T

γ,β] = ICentered(εpred
x∗ )T

γ,β −‘biasf̂(x∗),

‘biasf̂(x∗) =
1

card(Ksetx∗)

∑

εpred
i

xi∈Ksetx∗

,

where ICentered(εpred
x∗ )T

γ,β, card(Ksetx∗) and ‘biasf̂(x∗) are respectively the zero-centered

version of I(εpred
x∗ )T

γ,β, the cardinal of Ksetx∗ and the sample bias of f̂(x∗). Thus I(εpred
x∗ )T

γ,β

takes into account two kinds of uncertainties: the regression’s method uncertainty and
the observation error. Equation (7.5) shows that the prediction error εpred

x∗ has a normal
distribution with the unknown mean −Biasf̂(x∗). The prediction error tolerance interval

I(εpred
x∗ )T

γ,β is constructed based on the Ksetx∗ , which is a finite sample size, so it is centered

on the sample bias −‘biasf̂(x∗). However, because of its definition, I(εpred
x∗ )T

γ,β is guaranteed
with confidence level γ, to contain at least a proportion β of the normal distribution of the
prediction error at x∗. Hence we have:

PT

Ç
Pε

Ç
L(εpred

x∗ )T
γ,β ≤ εpred

x∗ ≤ U(εpred
x∗ )T

γ,β

∣

∣

∣

∣

∣

T
å
≥ β

å
= γ,
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where T = (f̂(x∗), σx∗) is the estimated vector at point x∗. This equation can be rewritten

PT

Ç
Pε

Ç
L(εpred

x∗ )T
γ,β ≤ ε + f(x∗)− f̂(x∗) ≤ U(εpred

x∗ )T
γ,β

∣

∣

∣

∣

∣

T ≥ β

å

= PT

Ç
Pε

Ç
f̂(x∗) + L(εpred

x∗ )T
γ,β ≤ Y (x∗) ≤ f̂(x∗) + U(εpred

x∗ )T
γ,β

∣

∣

∣

∣

∣

T
å
≥ β

å

= PT

Ç
Pε

Ç
Y (x∗) ∈ (f̂(x∗) + I(εpred

x∗ )T
γ,β)

∣

∣

∣

∣

∣

T
å
≥ β

å
= γ.

(7.6)

Equation (7.6) means that, by taking our assumptions, the tolerance interval for the
response variable is computed by adding the local linear regression estimate to the tolerance
interval on the prediction error:

I(x∗)T
γ,β = f̂(x∗) + I(εpred

x∗ )T
γ,β�

Even though we have a biased prediction, our tolerance interval for Y (x∗) contains the
desired proportion of the conditional distribution of the response variable. This is due to
the fact that our tolerance intervals on the response variable I(x∗)T

γ,β are computed based

on the tolerance intervals on the prediction error I(εpred
x∗ )T

γ,β. LHNPE conditions assume
that the prediction error has a unknown normal distribution with mean and variance being
respectively the negative bias and the variance of the prediction error. So for high values
of γ and for β > 0.5, I(εpred

x∗ )T
γ,β will contain the true bias. Therefore, adding I(εpred

x∗ )T
γ,β to

the biased regression estimate will remove the bias and give tolerance intervals that works
properly with biased regression estimators.

7.1.2 Computational aspect

By taking advantage of the LHNPE conditions for the local linear estimator, the tolerance
interval on the prediction error at the point x∗, described by (7.4), is approximated by the
tolerance interval on prediction errors inside its LHNPE neighborhood. The prediction
error inside the LHNPE neighborhood of the query point is represented by Esetx∗ and it is
defined formally as:

Esetx∗ = {εpred
i |(xi, Yi) ∈ Ksetx∗}, where εpred

i = Yi − f̂−i(xi), (7.7)

where f̂−i(xi) is the local linear estimation without using the ith observation, obtained by

(4.24). Note that Yi− f̂(xi) is a residual and it depends on the random variable Yi; however,

Yi − f̂−i(xi) and Yi are independent.

Hence, given an input vector x∗, K the number of neighbors in Esetx∗ , β the desired
content and γ the confidence level, the tolerance interval for the prediction error variable
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εpred
x∗ is computed by replacing θ̂, σ̂ and n in Equations (2.11) and (2.12) which results in:

I(εpred
x∗ )T

γ,β = θ̂ ± cσ̂, where c =

Õ
(K − 1)(1 + 1

K
)Z2

1− 1−β
2

χ2
1−γ,K−1

, (7.8)

θ̂ = εpred
i = K−1

∑

εpred
i

ε−i
i

∈Esetx∗

and σ̂2 = (K − 1)−1
∑

εpred
i

∈Esetx∗

(εpred
i − εpred

i )2. (7.9)

We propose to take the LHNPE neighborhood as the K-nearest neighbors to the
query points where K can be a fixed or a variable number tuned on the dataset. So
depending on the LHNPE neighborhood selection method, we have two different methods
to obtain tolerance intervals for LLR but both methods require 10-fold cross validation or
Leave-One-Out (LOO) errors of the whole training set. We denote this by error set:

error set = {εpred
i |(xi, Yi), i ∈ (1, · · · , n)}, where εpred

i = Yi − f̂−i(xi). (7.10)

Algorithm 1 summarizes the required steps for obtaining tolerance intervals for local
linear regression.

Algorithm 1 Tolerance Interval for local linear regression
1: for all (xi, Yi) ∈ trainingSet do

2: ε
pred
i ← Yi − f̂−i(xi)

3: error set← {error set, ε
pred
i }

4: end for
5: for all x∗ ∈ testSet do
6: fval← f̂(x∗)
7: Ksetx∗ ← findToleranceNeighborhood(x∗)
8: Esetx∗ ← error of instances in Ksetx∗ , previously stored in error set

9: I(εpred
x∗ )T

γ,β ← β-content γ-coverage normal tolerance interval of Esetx∗ as in Equations
(7.8,7.9).

10: I(x∗)T
γ,β ← fval + I(εpred

x∗ )T
γ,β

11: end for

7.1.3 LHNPE bandwidth with Fixed K

This method takes the K nearest neighbors of x∗ as its LHNPE neighborhood. These
neighbors are returned by the function “findToleranceNeighborhood(x∗)”. K is a fixed
number for all the dataset which is tuned as a hyper-parameter. We denote this interval
prediction method for LLR by “fixed K”. Once the local linear model has been built and
error set has been found on the training set, the computational complexity of interval
prediction for a new instance is the same as an evaluation under the local linear regression.
More explanation can be found in Section 4.3.2. We select this neighborhood in such a way
that it remains inside the regression neighborhood. This condition is respected appropriately
all points of the feature space of a dataset. Thus we have to take a LHNPE bandwidth
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that coherent on the majority of points in the feature space. In Chapter 9, this condition is
always satisfied except in the “Auto” dataset where the LHNPE bandwidth is a bit greater
than the Regression bandwidth.

7.1.4 LHNPE bandwidth with variable K

The idea behind this LHNPE bandwidth selection method is to find the “best” LHNPE
bandwidth (best K) of each input vector x∗. This method is summarized in Algorithm 2.
For a fixed value of β, and for each input vector x∗, the computation begins with an initial
value of K, then the β-content γ-coverage normal tolerance interval of errors in Esetx∗

defined in (7.7) is calculated. This process is repeated for the same input vector x∗ but
different values of K, MINK ≤ K ≤ MAXK . Finally, the I(εpred

x∗ )T
γ,β having the smallest

size among the tolerance intervals computed by different values of K (different Esetx∗) is

chosen as the desired interval and is added to f̂(x∗). This iterative procedure leads us to
choose the interval that has the best trade-off between the precision and the uncertainty
to contain the response value. The more K increases, the less the local homoscedasticity
assumptions match reality and this yields a prediction error variance different from the true
one. If we find a variance higher than the true one, it could be partially compensated by
the fact that the tolerance interval size decreases when the sample size increases. However,
an increase in K may lead us to obtain smaller prediction variance; this issue is controlled
by MAXK . On the contrary, when K is small, the LHNPE conditions are respected but
the tolerance interval sizes increase just because the sample size is too small. Thus choosing
the value of K that minimizes a fixed β-content γ-coverage tolerance interval ensures that
we will have the best trade-off between the faithfulness of the local assumptions (LHNPE
conditions) and the required sample size to guarantee the desired β proportion of the
response value. The optimal value of K may vary much more on heterogeneous datasets.
MINK and MAXK are global limits for the search process. MAXK stops the search
process if the best value for K is not found before. This can occur when increasing the
neighborhood, it gets contaminated with instances having smaller predictive errors than the
prediction of the query point. In practice, these smaller prediction errors usually belong to
a different subspace of the feature space with different error variances and/or prediction
error distributions. Therefore these two bounds serve to restrict the search process in a
region where it is most likely to contain the best neighborhood of x∗. MAXK is usually
included in the regression neighborhood. However one can take it greater than the regression
bandwidth and let our search algorithm (Algorithm 2) find the neighborhood which gives
the smallest tolerance interval.

Once the local Linear model has been built and error set has been found on the
training set, the computational complexity of interval prediction for a new instance is
(MAXK −MINK) times higher than the complexity of an evaluation under the local linear
regression. Because from the beginning to the Ksetx∗-finding step, everything is similar
to LLR, then in the interval calculation phase, LLR computes just one value and “Var K.”
computes (MAXK −MINK) intervals. More explanation on the LLR complexity can be
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Algorithm 2 LHNPE neighborhood with variable K
1: function findToleranceNeighborhood(x∗)
2: IntervalSizemin ←∞
3: Ksetreturn ← ∅
4: for all i ∈MINK , . . . , MAXK do
5: Ksetx∗ ← i nearest number of instances (xi, Yi) ∈ trainingSet to x∗

6: Esetx∗ ← ε−i
i of instances in Ksetx∗ previously computed in error set

7: I(εpred
x∗ )T

γ,β ← β-content γ-coverage normal tolerance interval of Esetx∗ as in Equations
(7.8,7.9).

8: if size(I(εpred
x∗ )T

γ,β) ≤ IntervalSizemin then
9: Ksetreturn ← Ksetx∗

10: IntervalSizemin ← size(I(εpred
x∗ )T

γ,β)
11: end if
12: end for
13: return Ksetreturn

14: end function

found in Section 4.3.2

7.2 Local Linear Predictive Intervals

This section describes how to use tolerance intervals for local linear regression to obtain
predictive interval models. First we describe how the confidence level γ in these tolerance
intervals can be used to obtain predictive interval models. Then we see how to find the
“best” value of γ that provides predictive interval model with the smallest mean interval
size.

7.2.1 Local Linear Predictive Intervals

The β-content predictive interval on the prediction error, denoted by I(εpred
x∗ )P

β , is obtained
by finding the predictive intervals hyper-parameters which satisfies the MIP constraint in
(6.11). Finally, the β-content predictive interval on the response variable is computed by
adding local linear regression estimation to the error predictive interval:

I(x∗)P
β = f̂(x∗) + I(εpred

x∗ )P
β .

As explained in 6.5.2, regression predictive intervals models have two types of hyper-
parameters. This first is the regression method’s hyper-parameter. In LLR, it is the
bandwidth used for regression and it serves to find the error set. The second type of
hyper-parameters are the predictive interval hyper-parameters. These hyper-parameters
are (K, γ) or (MINK , MAXK , γ), respectively, for predictive intervals with fixed K and
predictive intervals with variable K.



7.2. LOCAL LINEAR PREDICTIVE INTERVALS 131

7.2.2 Hyper-parameter Tuning

At this stage, we suppose that the local linear regression bandwidth has been found. The
hyper-parameter tuning methods are the same for the fixed K method or the variable K.
The only difference is that in variable K, we are looking for the pair (MINK , MAXK)
instead of K in fixed K. The Hyper-parameter Tuning reduces to the constraint optimiza-
tion problem listed below where all the constraints are hard constraints. The tuning
procedure explained here is similar to the one discussed in 6.5.2 except that in this case, we
must also tune the LHNPE neighborhood hyper-parameters.

Optimization problem for fixed K:

(γ, K) = Argmin(MIS), where MIS =
1

n

n
∑

i=1

I(εxi
)T

γ,β

Subject to: 0 < γ < 1

0 < K ≤ n

MIPS,γ,β ≥ β or MIPS,γ,β ≥ F α
β,n

Optimization problem for variable K:

(γ, MINK , MAXK) = Argmin(MIS), where MIS =
1

n

n
∑

i=1

I(εxi
)T

γ,β

Subject to: 0 < γ < 1

0 < MINK ≤MAXK ≤ n

MIPS,γ,β ≥ β or MIPS,γ,β ≥ F α
β,n

Algorithm 3 describes how to tune the predictive interval hyper-parameters for variable
K. The algorithm used for the fixed K is almost the same so we do not mention it. In a
first attempt, γ is considered as a fixed high value like γ = 0.9 or γ = 0.99 and we focus on
finding the LHNPE neighborhood hyper-parameter: the hyper-parameter K or the pair
(MINK , MAXK). In section 6.5.1, we saw that the variable MIPS,γ,β defined by (6.6) must
on average be equal to nβ. Thus we can select the LHNPE neighborhood hyper-parameter(s)
which find(s) intervals that, based on a Leave-One-Out (LOO) or 10-fold cross validation
scheme on the training set, satisfies the tuning constraint defined in (6.11) and also have
the smallest Mean Interval Size (MIS). Once we have found K or (MINK , MAXK) we
search for the smallest value of γ that satisfies the following constraint.

Tuning Constraint: MIPS,γ,β = β.

A more conservative approach could be to find LHNPE neighborhood hyper-parameter(s)
which give(s) the tolerance intervals having the smallest mean interval size and also satisfying:

Conservative Tuning Constraint: MIPS,γ,β ≥ t−1/2β(1− β)Z1−α.
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where Z1−α is the (1− α)-quantile,i.e., 0.95 quantile, of the standard normal distribution.
Small neighborhoods result in big tolerance intervals, thus higher coverage. As long as K’s
value is increased, the mean interval size decreases too. However after a threshold, the mean
interval size may increase or change a little bit but the coverage begins to decrease. In
practice, we usually evaluate the effectiveness of both methods on datasets, and incorporate
our a priori knowledge on the hyper-parameter tuning phase. We may first find K for
“Fixed K”(tune the first method) and when it comes to the finding (MINK , MAXK), we
can try to choose the [MINK , MAXK ] interval in a way to contain the fixed K values
found before.

MINK ≤ fixed K ≤MAXK .

Once K is found, we try to decrease value of γ, which decreases the mean interval size.
Our goal is to have the smallest mean tolerance interval size that satisfies our inclusion
constraint. The idea is to fix the neighborhood parameters with the values found in the
preceding process and decrease γ. This procedure is repeated as long as the inclusion
constraint is satisfied. High values of γ will guarantee constraint (6.11) but the computed
intervals can be very large. Note that, with this approach, the value of γ can be less than
β and this may happen when the local density of the response variable is quite dense.
Based on the new value of γ, we can go to the first step and recalculate new values for the
neighborhood hyper-parameter (K or the pair (MINK , MAXK)) and this can be repeated
for one or two iterations.

7.2.3 Application with Linear Loess

We saw above, how to compute predictive interval models in the general form of local linear
regression. This paragraph briefly reviews an application with the linear loess regression
method. Loess is a version of linear polynomial regression that for each query point, takes its
K nearest instances in the feature space as its neighborhood. We denote loess’s regression
bandwidth with Kloess. Bandwidth selection and weight calculation in loess are similar to
KNN, as explained in 4.3.3. Loess uses a first or second degree polynomial, so Linear loess
refers to a loess with a first degree polynomial.

Predictive intervals with Linear loess have three or four hyper-parameters: the linear
loess bandwidth Kloess and the predictive hyper-parameters which are the confidence level
γ and the LHNPE bandwidth. As seen above, (K) and (MINK , MAXK) are respectively
the LHNE bandwidth for predictive intervals with fixed K and predictive intervals with
variable K. Based on (7.3), we usually have :

MAXK ≤ Kloess or K ≤ Kloess.
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Algorithm 3 Hyper-parameter tuning for predictive interval with variable K.

1: function TuneHyper-Params(error set, β)
2: γ ← 0.99 ⊲ or γ ← 0.9 depending on the dataset
3: (MINK , MAXK)← (MINK0 , MAXK0) initial values
4: for iteration = 1..3 do
5: (MIPγ,β, MIS)← ComputeOnTrainigSet(β, γ, MINK , MAXK)
6: MISmin ←MIS.
7: while SatisfyConstraint(β, MIPS,γ,β) and MIS ≤MISmin do
8: (MINK , MAXK)← (MINK ± somestep1, MAXK ± somestep2)
9: MISmin ←MIS.
10: (MIPγ,β, MIS)←ComputeOnTrainigSet(β, γ, MINK , MAXK)
11: end while
12: while SatisfyConstraint(β, MIPS,γ,β) and MIS ≤MISmin do
13: γ ← γ − step
14: MISmin ←MIS.
15: (MIPγ,β, MIS)←ComputeOnTrainigSet(β, γ, MINK , MAXK)
16: end while
17: end for
18: return (MINK , MAXK , γ)
19: end function
20:

21: function SatisfyConstraint(β, val)
22: return MIPS,γ,β == β ⊲ or MIPS,γ,β ≥ t−1/2β(1− β)Z1−α

23: end function
24:

25: function ComputeOnTrainigSet(β, γ, MINK , MAXK)
26: MIPS,γ,β ← compute this value on the training set by algorithm 2 and using a LOO

or 10-fold CV schema .
27: MIS ← compute the mean of interval sizes found in the previous step.
28: return (MIPS,γ,β, MIS)
29: end function
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7.3 Relationship with Possibility Distributions

In chapter 3, we have seen how to build different possibility distributions encoding a
family of probability distributions that may have generated our sample set. They encode
confidence bands, tolerance and prediction intervals. These possibility distributions can also
be used in a regression context. Thus the “conditional γ-confidence possibility distribution”
will be the maximal specific possibility distribution that bounds, with confidence level
γ, simultaneously all inter-quantiles of the unknown conditional distribution Y (x) of the
sample set. The “conditional γ-CTP distribution” will be the maximal specific possibility
distribution that bounds, with confidence level γ, independently each inter-quantile of Y (x).
The “conditional prediction distribution”will be the maximal specific possibility distribution
that bounds, on average, independently each inter-quantile of Y (x). These conditional
possibility distributions could be applied for possibilitic regression with crisp input and
output data. Thus the idea is to find the maximum specific possibility distribution where
its alpha-cuts are upper bounds on inter-quantiles of the unknown conditional probability
distribution Y (x). Based on Proposition (1) in chapter 3, if we have a method to calculate
all β-content inter-quantiles of a conditional unimodal symmetric probability distribution,
we can build its conditional possibility distribution.

This chapter, along with the previous one have dealt with different methods of obtaining
an upper bound on inter-quantiles of the unknown conditional distribution of the response
value. All these methods suppose that the conditional distribution and the error distribution
are Gaussian, so they satisfy the unimodal symmetric assumption. Thus we can use the
proposed β-tolerance intervals in this chapter for “local linear γ-CTP regression”. It requires
us to obtain β-content tolerance intervals for local linear regression. However, these intervals
must be obtained for all the values of β where β ∈ [0, 1]. We have done similar work in
[Ghasemi Hamed 12a], called “Possibilistic KNN regression using tolerance intervals”. This
method proposes a possibility distribution which encodes “simultaneous β-content predictive
intervals” (explained in the next chapter). Apart from the three possibilistic regression
methods defined in the above paragraph, one can take advantage of any two-sided interval
prediction method explained in this thesis to define different types of possibilistic regression.

7.4 Illustrations

This section illustrates the performance of predictive intervals for local linear regression.
For the LLR algorithm we used loess with a polynomial of first degree (linear loess). Figure
7.1 illustrates the performances of the following non-linear interval prediction methods on
the motorcycle dataset:

• “LS-SVM Conv.”: the conventional interval prediction method explained in 5.1.1
obtained with a least-square SVM regression.

• “Loess Conv.”: the conventional interval prediction method explained in 5.1.1 obtained
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with a Linear Loess regression.

• “Fixed K”: local linear predictive intervals with fixed K explained in 7.1.3.

• “Var. K”: local linear predictive intervals with variable K explained in 7.1.4.

• “NPQR ”: two-sided interval prediction by using two non-parametric quantile regression
models [Takeuchi 06] as explained in “Estimates of point-wise interval” of 5.3.3.

“NPQR” consists of a lower (1−β
2

)-quantile regression model and an upper (1− 1−β
2

)-quantile
regression model. For instance to obtain 90-predictive intervals with “NPQR”, we construct
a pair of 0.05-“NPQR” and 0.95-“NPQR” regression models. In this figure we can see how
well the methods can fit a complex dataset. The models displayed in Figure 7.1 have the
same training set and validation set.
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Figure 7.1: Non-linear two-sided 0.95-content interval prediction on motorcycle dataset.
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Figure 7.2 shows the same results but with a 10-fold Cross Validation (CV) schema
on the whole dataset. The red point displayed by + in Figure 7.2 corresponds to points
which the “NPQR ” predictive intervals fail to cover. We can see that “NPQR ” becomes
very unreliable in a CV schema. Thus we added another version of non-parametric quantile
regression denoted by “NPQR CV”. The “NPQR CV” hyper-parameters are tuned in a way
to find intervals that have the smallest MIS and satisfy the MIP tuning constraint in a
10-fold CV on the training set.
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Figure 7.2: Non-linear two-sided 0.95-content interval prediction on motorcycle dataset in
a 10-fold cross validation schema.

“NPQR” can describe very precisely the data in Figure 7.1 but the intervals are learned
and predicted on the same dataset. However, Figure 7.2 shows that once the model’s
hyper-parameters are tuned on the training set then tested with 10-fold CV (the “NPQR”
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case), the intervals are still small and follow the main structure of the function but they do
not contain the desired amount of response value (76.59%) and thus become unreliable. On
the other-hand, if we proceed as “NPQR CV” in Figure 7.2, we obtain an acceptable MIP
of 94.66 (satisfies the MIP constraint) but it results in very large intervals. The results of
this experience are displayed in Table 7.1. We can see that both methods except “NPQR”
have their MIP value greater than F 0.05

0.95,133 = 91.89, so they satisfy Equation (6.10) and
do provide correctly two-sided 0.95-content predictive intervals for this dataset. We can
see that our proposed methods have the smallest EGSD values. It means that if all the
methods take intervals of the same size, then “Var. K” and “Fixed K” will contain a greater
proportion of response values into their predictive intervals than their competitors. While
looking at normalized MIS, we observe that “Var. K” also has the smallest value which
shows that it gives the tightest reliable envelope. On the other hand, by looking at EGSD
and normalized MIS for “NPQR ”, we can see that this method is not efficient neither
reliable on this dataset.

Interval Prediction Method MIP MIS σis normalized MIS EGSD

LS-SVM Conv. 94.77 93.44 0 0.52 0.52
Loess Conv 93.23 93.46 0 0.52 0.55
Fixed K 97.74 101.66 50.28 0.57 0.48
Var K 96.31 86.77 38.65 0.49 0.45
NPQR 76.59 62.49 33.55 - 0.57

NPQR CV 94.66 176.65 7.81 1 1

Table 7.1: Experiment results for Figure 7.2.

7.5 Conclusion

This chapter introduced predictive interval models for non-parametric regression. They are
applied for two-sided interval predictions but one can also use them in a one-sided interval
prediction context. Predictive intervals and predictive interval models were defined in the
previous chapter. These models provide intervals which contain at least a desired proportion
of the conditional distribution of the response variable given specified combination of
predictors. They can be obtained with tolerance intervals for regression or confidence
intervals for regression quantiles but the application of these methods in the non-linear and
particularly the non-parametric case are limited in the literature. The originality of this
work is to extend this concept to local linear models. Our method does not neglect the
regression bias and finds intervals that work properly with biased regression
models. For more details see the review of the interval prediction methods in Section 5.4.
Finally we have seen that all these methods can also be used for possibilistic regression with
crisp input and output data. Our predictive intervals are based on local linear regression (see



138CHAPTER 7. PREDICTIVE INTERVALMODELS FOR NON-PARAMETRIC REGRESSION

[Carroll 88] for a detailed discussion about inference on heteroscedastic regression models).
We assume that the mean regression function is locally linear and the prediction error
variable (Yi − f̂(xi)) has locally the same distribution. The idea behind this method is to
exploit the local density of prediction error in the LHNPE neighborhood of the query point
x∗ to find the most appropriate intervals that contain the desired proportion of response
values Y (x∗). For this purpose, we use tolerance intervals on prediction errors and they
are obtained with a fixed and variable neighborhood method. We use the leave-one-out or
10-fold cross validation errors of the regression function to obtain the predictive intervals.
These errors are obtained based on a local linear estimation which could be done by any
bandwidth selection technique. Once the mentioned errors have been found, we can
use them to obtain our non-parametric predictive intervals. For this purpose,
we need a second bandwidth, which is the tolerance interval bandwidth. The
LHNPE bandwidth is always included in the regression bandwidth. One must not confuse
our predictive intervals with bandwidth selection methods for local polynomial
regression. Local linear regression needs a bandwidth, but is not just a bandwidth selection
method. In the same way, our predictive interval method requires a bandwidth on the local
prediction errors, but it is not just a bandwidth selection method.

Our method differs from conventional least-squares approaches for finding confidence
intervals on the unknown conditional mean function explained in 5.1.2. Because our method
takes into account the sample size and finds confidence intervals on inter-quantile of the
local distribution for the response variable f(x) + ε, while the conventional methods just
estimate asymptotic global inter-quantiles for the conditional response variable (or the
conditional mean estimate). Most practitioners of the Machine Learning community usually
estimate such predictive intervals by another method described in 5.1.1. We have seen that
this method has a very small area of application and does not take into account the sample
size. In Chapter 9, we will see that it is one of the most unreliable predictive interval
techniques.

Contrary to quantile regression, our method is based on the local linear least squares
model, so one can obtain both the conditional mean function and the predictive intervals.
Another main difference is that quantile regression obtains estimates of quantiles which, on
average, estimate the true quantile function but our method proposes predictive intervals
which contain at least a desired proportion of the conditional response variable. Quantile
regression may sometimes be more robust than least-squares estimators but it suffers from
several problems. One of these problems is the absence of a conditional quantile function.
It can occur where the conditional variance of the error distribution is not a function of
predictors. Now consider the case when the conditional quantile function is different to the
conditional mean function. We know that the conditional mean estimator converges faster
than the conditional quantile estimator [Koenker 05]. Thus estimating intervals by quantile
regression may be less efficient than using least-squares methods. Besides, it is important
to note that quantile regression also suffers from the crossing quantile problem, which is
not present here. Our proposed methods are in the class of least-squares based interval
prediction methods, so they take advantage of their fast convergence. However they are
more reliable and efficient than the other members of this class (conventional methods).
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This is because our methods take into account the sample size and find confidence intervals
on inter-quantiles of the local distribution for the response variable whereas the conventional
methods just estimate asymptotic global inter-quantiles of the conditional response variable.
The next chapter discusses “simultaneous predictive intervals with KNN”. Then in Chapter
9, our proposed predictive interval models, as well as other conventional interval prediction
methods, linear quantile regression, confidence interval on linear regression quantile and a
non-linear quantile regression method are applied on nine different benchmark regression
datasets. The results show that our approach performs very well. It is significantly more
effective than other methods and remains the most reliable non-linear interval prediction
method. In the following cases, our method may have similar results to its alternatives:

• For interval prediction models which contain a very high proportion (0.99 or more) of
the distribution of Y (x) .

• The dataset is almost identically distributed in the feature space.

• The dataset has quite low heteroscedasticity.

Our methods are not suited when:

• The reliability of the predicted intervals is not a concern.

• There exits regression models having significantly better prediction results than
non-parametric regression models.

• The prediction errors are not normally distributed.

The advantages and drawbacks of our methods are listed below:

Advantages

• It is a reliable interval prediction method for local linear least squares models.

• It does not ignore the non-parametric regression bias.

• It can be used with models having heteroscedastic errors.

• It directly addresses the problem of having predictive intervals that contain at least
the desired proportion of response values. It is not designed to work asymptotically
and also works with small datasets.

• It does not suffer from the crossing quantiles effect.

• It provides one model for two-sided interval prediction.

• It is simple, reliable and effective.

• It is based on local linear regression, which is a well-known regression method.
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Drawbacks

• It is currently just based on local linear regression.

• It has a greater computational complexity than conventional and quantile regression
interval prediction methods.
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This chapter introduces the concept of simultaneous predictive intervals. These intervals
form an envelope around the regression estimate which contains simultaneously a proportion
β of the whole distribution of the response variable Y . A simultaneous predictive interval
model provides simultaneous predictive intervals for all the points in the predictor space,
∀x ∈ X . An interval alone cannot be a simultaneous predictive interval because it cannot
assure the simultaneous condition (an interval is not an envelope). Thus we use the term
“simultaneous predictive interval” to refer to models which provide such intervals. β-content
simultaneous predictive intervals can be obtained with simultaneous tolerance intervals for
regression in linear regression. This work introduces simultaneous predictive intervals for
KNN Regression. This work is similar to predictive intervals with local linear regression
but it has three main differences: first, it is performed in a simultaneous context. Second,
it uses a KNN regression method instead of a local linear one, and finally the simultaneous
predictive interval for the response value is obtained directly with the observation values
instead of prediction errors. This chapter briefly discusses these intervals, but the interested
reader can find more details in [Ghasemi Hamed 12a] [Ghasemi Hamed 12c].

8.1 Simultaneous Predictive Intervals

Definition 25 Let S = {(x1, Y1) · · · , (xn, Yn)} denote a random sample where Yi = f(xi)+
εi and εi is white noise. β-content simultaneous predictive intervals for x, are denoted by
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I(x)SP
β , and they are such that:

PY (x)

ÇÇ
Y (x) ∈ I(x)SP

β

∣

∣

∣

∣

∣

S
å
, for all x ∈ X

å
≥ β, where I(x)SP

β = [L(x)SP
β , U(x)SP

β ] (8.1)

Since we have observed S, I(x)SP
β is no longer random, and the probability measure is

just related to cover at least a proportion β of the conditional distribution of the response
variable Y (x), simultaneously for every x ∈ X .

Simultaneous predictive intervals contain, for all x ∈ X , simultaneously, at least a desired
proportion of the conditional distribution of the response variable. Simultaneous predictive
intervals for linear models can be obtained by simultaneous tolerance intervals but these
concepts have only so far been treated for linear models. We have addressed a similar concept
for non-parametric regression with crisp input and output data [Ghasemi Hamed 12c]. The
reader can also find a related study under the possibility theory [Ghasemi Hamed 12a].

8.2 Testing the Models

In this case we use the test defined in (8.2), to verify if a model, built on a dataset, respects
the coverage required by simultaneous predictive intervals. This is done in a 10-fold cross
validation and we expect the fraction of prediction values inside the envelope to be greater
or equal to β, for each of the 10 models in cross validation. For example, for β = 0.95 in
a 10-fold cross validation, it is expected that each of the 10 built models to have a Mean
Inclusion Percentage (MIP) greater than or equal to 0.95. Thus for each fold must satisfy:

Simultaneous MIP constraint: MIPS,β ≥ β, (8.2)

where MIPS,β defined in (6.6) has a different value for each fold; β is the desired simultaneous
proportion of the conditional distribution, and nv is the number of test instances used to
validate each of the 10 models. Every concept seen in Chapter 6 for predictive interval
models is the same for simultaneous predictive intervals, expect for the MIP constraint.
This case is simpler since each fold MIP must be at least βn.

8.3 KNN simultaneous predictive intervals

As in the predictive interval models case, there are two ways to obtain simultaneous
predictive interval models: the first employs simultaneous tolerance intervals with a very
high confidence level like γ ≈ 1; and the second finds the smallest confidence level 0 < γ0 < 1
which includes the true unknown model. The concept of simultaneous predictive intervals
refers to both intervals. There is not yet any work in the literature for simultaneous tolerance
intervals with the KNN regression method, thus we introduced a direct way of obtaining
such intervals. This chapter has been published in [Ghasemi Hamed 12c] as “Simultaneous
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Interval Regression for K-Nearest Neighbor”. Our method exploits the local density of
the neighborhood to find the most appropriate intervals to contain the desired proportion
of response values, so the proposed interval construction method may be more effective
with heterogeneous data set with heteroscedastic error. This method is very similar to
local linear predictive intervals with variable K, explained in 7.1.4, except that it is used
to obtain a simultaneous content, the regression method is KNN instead of locally linear
and the simultaneous predictive interval for the response value is obtained directly with the
observation values instead of prediction errors.

The Method

Equation (8.3) gives a γ-confidence β-content normal tolerance interval for the response
values of observations that are in the Simultaneous Predictive Intervals (SPI) neighborhood,
Ksetx∗ . SPI neighborhood Ksetx∗ is the sample set that contains the response values of
the K-nearest neighbors of x∗. This neighborhood can provide SPI intervals. We suppose
that given an input vector x∗, K, β, and γ such SPI neighborhood exits and if we find
it along with a sufficiently high confidence level γ, this equation can provide us with the
Simultaneous Predictive Intervals (SPI) for the response variable:

I(x∗)SP
β = θ̂ ± cσ̂, where c =

Õ
(K − 1)(1 + 1

K
)Z2

1− 1−β
2

χ2
1−γ,K−1

, (8.3)

θ̂ = f̂(x∗) =

∑n
i=1Kb(d(x∗, xi))Y (xi)
∑n

i=1Kb(d(x∗, xi))
, (8.4)

σ̂2 = (K − 1)−1
∑

Y (xi)∈Ksetx∗

(Y (xi)− Ȳ )2 and (8.5)

Ȳ = K−1
∑

Y (xi)∈Ksetx∗

Y (xi). (8.6)

The symbol f̂(x∗) above denotes the KNN regression estimate (Equation (4.29)). The
SPI neighborhood Ksetx∗ can be found in two ways: with a fixed number of neighbors
(Fixed K) or with a variable number of neighbors (variable K). The fixed K idea in KNN
regression comes from the assumption which supposes that the data is homogeneously
distributed in the feature space. In this work the constructed intervals are used to find the
“best” predictive neighborhood (best K) for each input vector x∗.

Our method is described by Algorithm 4. For a fixed value of β, and for each input
vector x∗, the computation begins by an initial value of K, then the β-content γ-coverage
normal tolerance interval of Ksetx∗ is calculated. This process is repeated for the same
input vector x∗ but different values of K, MINK ≤ K ≤MAXK . Finally, for a given x∗,
the interval having the smallest size between other tolerance intervals for different Ksetx,
where MINK ≤ K ≤MAXK , is chosen as the desired interval.
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Algorithm 4 KNN simultaneous predictive intervals
1: for all x∗ ∈ testSet do
2: IntervalSizemin ← Inf

3: for all i ∈MINK , . . . , MAXK do
4: Ksetx∗ ← response value of the K nearest instances to x∗

5: I(x∗)SP
β ← SPI for Ksetx∗ by Equation (8.3)

6: if size(I(x∗)SP
γ,β) < IntervalSizemin then

7: foundInterval← I(x∗)SP
β

8: IntervalSizemin ← size(I(x∗)SP
β )

9: end if
10: end for
11: I(x∗)SP

β ← foundInterval

12: end for

How it works

Our variable bandwidth leads us to choose the interval that has the best trade-off between
the precision and the uncertainty to contain the response value. Indeed, when K decreases
the neighborhood considered is more reliable but it increases the uncertainty of the esti-
mation. On the contrary, when K increases, the neighborhood becomes less reliable but
the size of the tolerance intervals decreases. In fact the intervals take into account the
number of instances in the neighborhood, and their size also reflects the neighborhood’s
density. Thus, choosing K that minimizes a fixed β-content γ-coverage normal tolerance
ensures the best trade off between the faithfulness of the neighborhood and the uncertainty
of the prediction due to the sample size. For the case of the computational complexity, the
computation process of KNN simultaneous interval regression is (MAXK −MINK) times
higher than the complexity of KNN regression with fixed K. Because from the beginning to
the Ksetx finding step, everything remains the same for both regression methods, then in
the interval calculation phase, KNN regression with fixed K computes just one interval and
instead our method computes MAXK ones. For more details on the complexity of KNN
see [Silverman 86].

MINK and MAXK are global limits for the search process and play a similar role to
the local linear predictive intervals with variable K. They restrict the search process in a
region where it is most likely to contain the best neighborhood of x. MINK , MAXK and
γ are algorithms hyper-parameter and they can be found by evaluating the effectiveness of
the algorithm on the training set. Our goal is to find an envelope that gives a proportion to
be greater or equal to β of all the predictions. The process of finding the optimal value
of γ is like predictive intervals explained in Section 7.2.2. High values of γ will guarantee
that MIP ≥ β but the computed intervals can become very large. Thus, we search for the
smallest value of γ that satisfies the simultaneous MIP constraint. Note that, with this
approach, the value of γ can be lower than β and this may happen when the local density
of the response values is quite dense. The next chapter contains some experiments that
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help us to rate the reliability and the efficiency of this method.

8.4 Conclusion

The goal of this chapter was to obtains intervals that simultaneously contain a proportion of
at least β of the whole distribution of the response variable. For this purpose we introduced
Simultaneous Predictive Intervals for KNN regression. Then we used a test to verify if a
model claiming to provide such intervals contains the coverage required by these intervals
or not. This test is also used as a constraint in the hyper-parameter tuning procedure. In
the next chapter, we take advantage of the reliability test defined here to demonstrate the
superiority of our method with other alternatives for simultaneous predictive intervals.
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Chapter 5 discussed several methods for finding intervals in regression models which
contain a desired proportion of the response variable. Then, Chapter 6 introduced the
concept of predictive interval models and Chapter 7 proposed two methods to obtain such
models for local linear regression. In this chapter we will use several regression datasets
to compare our predictive interval method for local linear regression with other interval
prediction methods. The selected methods will be tested upon their capacity to provide
two-sided β-content predictive interval models. The models are compared for their reliability,
efficiency, precision and the tightness of their obtained envelope as described in Chapter 6.
Note that we are interested in comparing the mentioned methods regardless of any variable
selection or outlier detection preprocessing. This chapter is organized in five sections: the
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first section describes our datasets, the second section describes the interval prediction
methods that are used in the third section. The fourth explains our experiences on the
simultaneous predictive models which have been published in [Ghasemi Hamed 12c].

9.1 Benchmark datasets

In this work we use nine benchmark datasets to validate our suggested methods. These
datasets are listed below, where we can find each dataset name in double quotes and its
abbreviation in parentheses. Then we mention their numbers of predictor and number
of instances, respectively denoted by p and n. Note that some of these datasets have
fewer variables than their source because we systematically removed any instances having
null values. The “Parkinsons Telemonitoring” dataset [Frank 10] contains two regression
variables named “motor UPDRS” and “total UPDRS”. We considered it as two distinct
datasets named“Parkinson1”and“Parkinson2”. Each dataset has one of the“motor UPDRS”
or “total UPDRS” variables.

• “Parkinsons Telemonitoring” [Frank 10] (Parkinson1). We extracted Parkinson1 from
the“Parkinsons Telemonitoring” [Frank 10] dataset. It has the“total UPDRS”variable
and does not contain the “motor UPDRS” variable. n = 5875, p = 21.

• “Parkinsons Telemonitoring” [Frank 10] (Parkinson2). We extracted Parkinson2 from
the “Parkinsons Telemonitoring” [Frank 10]. It has the “motor UPDRS” variable and
does not contain the “total UPDRS” variable. n = 5875, p = 21.

• “Wine Quality” [Cortez 98] (Wine) (Red Wine). n = 4898, p = 12.

• “Concrete Compressive Strength” (Concrete) [Yeh 98]. n = 1030, p = 9.

• “Housing” [Frank 10] (Housing). n = 506, p = 14.

• “Auto MPG” (Auto) [Frank 10]. n = 392, p = 8.

• “CPU” [Frank 10] (CPU). n = 209, p = 7.

• “Concrete Slump Test” [Yeh 07] (Slump). n = 103, p = 10.

• “Motorcycle” (Motorcycle) [Silverman 85]. n = 133, p = 1.

9.2 Interval Prediction Methods

In this section we describe the interval prediction methods used to build predictive interval
models. Our experiments are performed with the R programming language. So, we first
describe how each tested method is implemented in R. Each method has some general and
dataset specific hyper-parameters. General hyper-parameter values are given next to the
method name in the listing below, and the dataset specific hyper-parameters values are
given in Table 9.1. Note that linear models do not have any hyper-parameters.



9.2. INTERVAL PREDICTION METHODS 151

9.2.1 Method’s Implementation

All the interval prediction methods listed below are explained in Chapter 5, except for our
predictive-interval method for local linear regression, which is introduced in Chapter 7. The
selected methods are as follows:

• “Fixed K”: two-sided predictive interval for linear loess as explained in 7.1 with the
fixed K LHNPE neighborhood.

• “Var. K”: two-sided predictive interval for linear loess as explained in 7.1 with the
variable K LHNPE neighborhood.

• “LQR”: two-sided interval prediction with linear quantile regression [Koenker 05]. We
used the rq and rq.predict function in R’s quanterg package.

• “LQRC” two-sided Bonferroni 0.95-level confidence β-content interval obtained with
two different quantile regression models as explained in “Confidence based point-wise
inference” of 5.3.3. We used the rq and rq.predict functions in R’s quanterg package.
We use predict with the following arguments: interval=“confidence”, type=“percentile”,
se=“boot”, bsmethod= “wild”.

• “NPQR”: two-sided interval prediction by two non-parametric quantile regression
models [Takeuchi 06] as explained in “Estimates of point-wise interval” of 5.3.3. This
method’s hyper-parameter minimizes the Pin-ball loss function with a 10-fold CV
on the training set. This method is implemented by the kqr function in R’s kernlab
package. We use kqr with the following arguments: kernel=“rbfdot”, for a radial
basis kernel function. We set kpar= “automatic” as the default value for radial basis
functions. C=4, the cost regularization parameter is set between 3.8 and 5, depending
on the dataset.

• “NPQR CV” : two-sided interval prediction by two non-parametric quantile regression
models [Takeuchi 06]. The “NPQR CV” hyper-parameters are tuned in a way to find
intervals that, in a 10-fold CV on the training set, have the smallest MIS and satisfy
the tuning MIP constraint. We use the kqr function in R’s kernlab package. We use
kqr with the following arguments: kernel=“rbfdot”, for a radial basis kernel function.
We set kpar= “automatic” as the default value for radial basis functions. C=0.1, the
cost regularization parameter is chosen to lie 0.05 and 0.2, depending on the dataset.
Satisfying the tuning MIP constraint on the training set requires us to select small
values of cost regularization parameters.

• “LS-SVM Conv.”: the conventional interval prediction method explained in 5.1.1
obtained with a least-square SVM regression. We used the ksvm function in R’s
kernlab package. We use ksvm with the following arguments: kernel=“rbfdot”, for a
radial basis kernel function. kpar= list(sigma= 0.2), the sigma hyper-parameter is set
between 0.01 and 0.45, depending on the dataset, except for the motorcycle dataset
which has sigma=6. We also set tau = 0.01, reduced = TRUE, tol = 0.0001.
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• “Loess Conv.” the conventional interval prediction method explained in 5.1.1 obtained
with a linear loess regression.

We use the Tricube kernel, as in [Cleveland 88], as the kernel function in all of our
experiments.

9.2.2 Dataset Specific Hyper-Parameters

The linear Loess regression uses the Kloess-nearest neighbors as the bandwidth. This Kloess

is found by minimizing the 10-fold cross validation error on the training set. For more
details about linear loess see 4.3.4. All the non-linear methods listed above have at least one
hyper-parameter that must be tuned on the dataset. These hyper-parameters are mentioned
in Table 9.1 except for “Fixed K” and “Var. K”, because “Fixed K” and “Var. K” may
have different hyper-parameter for different β value. Thus their hyper-parameter values are
mentioned with their method results.

Dataset “NPQR” C “NPQR CV” C “LS-SVM Conv.” sigma “Loss Conv.” Kloess

Parkinson1 5 0.2 0.25 80
Parkinson2 5 0.1 0.2 70

Wine 5 0.1 0.45 150
Concrete 4 0.1 0.3 80
Housing 4.5 1 0.08 60
Auto 3.8 0.2 0.25 30
CPU 4 0.2 0.025 40
Slump 4.5 0.05 0.05 30

Motorcycle 4 0.1 6 15

Table 9.1: Hyper-parameter values for non-linear interval prediction models.

Hyper-parameter tuning strategy

In a first attempt, datasets are divided into two subsamples of size 2
3
n and 1

3
n, where

n represents the dataset size. The part containing 2
3
of observation is used to tune the

predictive interval model’s hyper-parameters. Then, all of the instances will serve to
validate the results using a 10-cross validation scheme. Note that we are interested
in comparing the mentioned methods regardless of any variable selection or
outlier detection preprocessing.

9.3 Testing Predictive Interval Models

The goal of this section is to compare the above-mentioned interval prediction methods
based on their strength while providing β-content predictive interval models. The models
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are compared based on reliability, efficiency, precision and the tightness of their
envelope. Our introduced methods (“Var. K” and “Fixed K.”) are used to obtain predictive
interval models for Local Linear Regression (LLR). Consequently, we first compare our
methods with the conventional interval prediction on the local linear regression (“Loess
Conv.”). For this purpose, we will use Tables 9.2 and 9.3 which compare “Loess Conv.”,
“Var. K” and “Fixed K.”. These models are built upon the same regression model and
their only difference is their interval computation algorithm. Our tables provide detailed
experimental results but they take a lot of spaces which make them hard to interpret, and
not useful for comparing several methods across different datasets. We will use MIP charts,
MIS charts and EGSD charts to compare all of the interval prediction methods. This
comparison measures a method’s strength, while providing β-predictive interval models
with β = 0.8, 0.9, 0.95 and 0.99. We have chosen five big datasets and compare in a very
detailed manner the precision, reliability, efficiency and envelope width of our models with
the conventional model which is its most efficient competitor.

9.3.1 Comparing Local linear Methods

Outliers, limited number of observations and contrast between our assumptions and the
true regression function cause errors in the prediction process. These errors occur in a
similar manner when estimating the response variable distribution and they increase with
β. For β = 0.9, 0.95, and particularly for β = 0.99, it becomes a critical task to find an
effective interval prediction procedure that is able to find an upper bound for inter-quantiles
of Y (x). However these inter-quantiles are the most used ones in machine-learning and
statistical hypothesis-testing. Hence, we will compare the methods based on their strength,
while providing β-predictive interval models with β = 0.8, 0.9, 0.95 and 0.99.

Tables 9.2 and 9.3 are used to display the direct dataset measures explained in Chapter
6, for each dataset. These tables compare models of “Loess Conv.” , “Var K.” and“Fixed K.”.
For each dataset, we have 12 models, (3 methods : “Loess Conv.” , “Var K.” and “Fixed K.”
× 4 β’s value : 0.8, 0.9, 0.95 and 0, 99). These 12 models are built on the same regression
model which is a linear Loess model with Kloess as its bandwidth. Kloess is represented next
to the dataset’s name and it is found by minimizing the 10-fold cross validation error on
the training set. Then we will use charts to compare our local linear predictive interval
models with the other methods.

Table description

In Tables 9.2 and 9.3, each combination of dataset and β has a cell which displays F 0.05
β,n for

the underlying experiment. We can see if a model satisfies its MIP test or not. If it does
not satisfy this constraint a ◭ or ⊳ sign may appear. The ◭ sign appears when the current
model is the only one to fail the MIP test. When more than one of the three compared
model fails, the ⊳ sign is put near their results. For each experiment, the model which
passes the MIP test and has the smallest MIS is distinguished with the * sign. If a method
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receives the * sign for two consecutive β of the same dataset, it is annotated in bold and
with * . When it comes to our introduced model hyper-parameters, “Var K.” needs the
value of MINK , MAXK and γ and “Fixed K.” has a proper value for its K and γ. These
hyper-parameters are illustrated in each dataset row.

Table commentaries

By looking at Tables 9.2 and 9.3, one can see that the three methods work for β = 0.8 on
benchmark dataset. When the desired proportion is 0.8, “Var K.” is slightly more effective
than “Loess Conv.” and “Fixed K.” finds the biggest intervals. When it comes to β = 0.9,
“Loess Conv.” loses its reliability and fails to satisfy the MIP constraint on three datasets.
If we increase the desired proportion to 0.95, the situation stays the same for “Var K.” and
“Fixed K.”, but “Loess Conv.” becomes much more unreliable. In fact it fails to satisfy the
MIP constraint for five of the nine datasets. When looking in more detail, one can observe
that “Fixed K.” has almost everywhere larger MIP and gives wider intervals than others. It
is important to emphasize that the conventional method is nowhere more reliable
than our methods. We can also observe that “Var K.” usually appears with the * sign
and it is the only method which becomes bold. It means that it usually works and obtains
the tightest band.

9.3.2 Comparing All Methods by Charts

Our tables are not useful for displaying the eight methods listed in 9.2.1, so for the sake of
readability we produced Figures 9.1, 9.2, 9.3 and 9.4. These figures are MIP charts for our
experiments. We can see that our introduced methods obtain high MIP, but we need more
information to compare their reliability and efficiency. For this purpose we will use the MIS
ratio charts and EGSD charts that are explained in 6.4.3.

Chart description

Each β value has a MIP, an EGSD and a MIS ratio chart. For each β, its EGSD chart is
displayed just after its MIS ratio chart. For example, Figure 9.5 is the MIS Ratio chart
for β = 0.8 and just after Figure 9.6 is the EGSD chart for β = 0.8. The MIS ratio charts
display the MIS ratio for the reliable models (models which pass the MIP test). For a
given dataset, the method having the smallest MIS ratio value is that which finds the
tightest reliable envelope (the set of all obtained intervals). The EGSD chart displays the
normalized EGSD value for all models. For a given dataset, the model having the smallest
EGSD value has an Equivalent Gaussian distribution with the smallest variance.
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Dataset Method
80% 90%

MIP MIS (σis) F 0.05

0.8,n MIP MIS (σis) F 0.05

0.9,n

Parkinson1
(n=5875,
p=21),
Kloess=80

Loess Conv. 86.99 4.96

79.14

90.08 6.37

89.35
Fixed K = 40,
γ = 0.9

91.55 5.48 (4.4) 94.88 7.04 (5.64)

Var. K * 88.55 4.39 (3.78) * 92.81 5.64 (4.85) *

Hyper. params. (MINK , MAXK , γ) = (20 , 60 , 0.9)

Parkinson2
(n=5875,
p=21),
Kloess=70

Loess Conv. 86.36 3.53

79.14

89.95 4.53

89.35
Fixed K = 50,
γ = 0.9

91.46 4.2 (3.22) 94.64 5.4 (4.14)

Var. K * 89.08 3.52 (2.95) * 93.03 4.52 (3.79) *

Hyper. params. (MINK , MAXK , γ) = (30 , 60 , 0.9)

Wine
(n=4898,
p=12),
Kloess=150

Loess Conv. 80.45 1.58 *

79.05

88.39 ◭ 2.03

89.29
Fixed K = 50,
γ = 0.7

82.88 1.75 (0.38) 90.62 2.25 (0.48) *

Var. K 83.19 1.77 (0.39) 91.09 2.27 (0.51)

Hyper. params. (MINK , MAXK , γ) = (30 , 60 , 0.9)

Concrete
(n=1030,
p=9),
Kloess=80

Loess Conv. 79.89 16.63 *

77.94

87.56 ◭ 21.35

88.46
Fixed K = 35,
γ = 0.5

82.61 16.76 (5.73) 91.45 21.52 (7.36) *

Var. K 83.68 17.03 (5.91) 93 22.2 (7.59)

Hyper. params. (MINK , MAXK , γ) = (20 , 60 , 0.9)

Housing
(n=506,
p=14),
Kloess=60

Loess Conv. 87.17 8.47

76.67

92.68 10.88

87.5
Fixed K = 40,
γ = 0.9

87.97 8.67 (3.31) 92.7 11.14 (4.25)

Var. K * 84.59 7.8 (2.8) * 91.72 10.01 (3.6) *

Hyper. params. (MINK , MAXK , γ) = (30 , 55 , 0.9)

Auto
(n=392,
p=8),
Kloess=30

Loess Conv. 89.29 8.56

77.07

93.61 10.98

87.8
Fixed K = 50,
γ = 0.9

88.27 7.76 (3.14) 94.41 9.96 (4.03)

Var. K * 84.7 6.91 (2.81) * 92.61 8.87 (3.61) *

Hyper. params. (MINK , MAXK , γ) = (30 , 60 , 0.9)

CPU
(n=209,
p=7),
Kloess=40

Loess Conv. 79.87 84.64

75.44

85.13 ◭ 108.63

86.58
Fixed K = 40,
γ = 0.9

85.16 88.07 (64.23) 91.4 113.04 (82.44)

Var. K * 80.37 78.49 (59.2) * 88.97 100.75 (20.89) *

Hyper. params. (MINK , MAXK , γ) = (20 , 50 , 0.9)

Slump
(n=103,
p=10),
Kloess=30

Loess Conv. 87.63 5.58

73.51

91.45 7.17

85.13
Fixed K = 20,
γ = 0.5

85.72 4.85 (1.41) 88.54 6.23 (1.81)

Var. K * 83.81 4.32 (1.24) * 87.63 5.55 (1.6) *

Hyper. params. (MINK , MAXK , γ) = (15 , 30 , 0.5)

Motorcycle
(n=133,
p=1),
Kloess=30

Loess Conv. 82.57 61.11

74.29

90.21 78.43

85.72
Fixed K = 35,
γ = 0.7

85.72 66.47 (32.87) 96.31 85.31 (42.2)

Var. K * 85.6 56.73 (25.27) * 94 72.82 (32.44) *

Hyper. params. (MINK , MAXK , γ) = (15 , 35 , 0.7)

Table 9.2: Predictive interval models for local linear regression built on benchmark datasets
with β = 0.9, β = 0.9.
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Dataset Method
95% 99%

MIP MIS (σis) F 0.05

0.95,n MIP MIS (σis) F 0.05

0.99,n

Parkinson1
(n=5875,
p=21),
Kloess=80

Loess Conv. 92.35 ◭ 7.59

94.53

94.85 ⊳ 9.97

98.78
Fixed K = 40,
γ = 0.99

97.61 9.63 (7.7) 98.74 ⊳ 12.66 (10.2)

Var. K 96.31 7.72 (6.51) * 98.08 ⊳ 10.15 (8.56)

Hyper. params. (MINK , MAXK , γ) = (20 , 60 , 0.99)

Parkinson2
(n=5875,
p=21),
Kloess=70

Loess Conv. 91.91 ◭ 5.4

94.53

94.41 ⊳ 7.09

98.78
Fixed K = 50,
γ = 0.99

97.4 7.26 (5.57) 98.64 ⊳ 9.54 (7.32)

Var. K 96.35 6.1 (5.07) * 98.13 ⊳ 8.02 (6.76)

Hyper. params. (MINK , MAXK , γ) = (30 , 60 , 0.99)

Wine
(n=4898,
p=12),
Kloess=150

Loess Conv. 92.4 ◭ 2.43

94.48

97.3 ⊳ 3.19

98.76
Fixed K = 50,
γ = 0.9

95.83 2.91 (0.63) * 98.75 ⊳ 3.82 (0.83)

Var. K 96.42 3.05 (0.67) 98.93 4.02 (0.88) *

Hyper. params. (MINK , MAXK , γ) = (30 , 60 , 0.9)

Concrete
(n=1030,
p=9),
Kloess=80

Loess Conv. 93.87 ◭ 25.44

93.88

98.53 33.43 *

98.49
Fixed K = 35,
γ = 0.5

95.62 25.64 (8.77) * 99.02 33.7 (11.53)

Var. K 95.72 26.46 (9.04) 99.02 34.77 (11.88)

Hyper. params. (MINK , MAXK , γ) = (20 , 60 , 0.9)

Housing
(n=506,
p=14),
Kloess=60

Loess Conv. 95.24 12.96 *

93.18

97.62 ◭ 17.04

98.17
Fixed K = 40,
γ = 0.9

95.45 13.27 (5.07) 98.61 17.44 (6.66) *

Var. K 96.24 13.8 (5.01) 98.61 18.14 (6.58)

Hyper. params. (MINK , MAXK , γ) = (30 , 50 , 0.99)

Auto
(n=392,
p=8),
Kloess=30

Loess Conv. 96.17 13.09

93.4

97.46 ◭ 17.2

98.27
Fixed K = 50,
γ = 0.99

97.2 13.39 (5.42) 98.71 17.6 (7.12)

Var. K * 96.44 11.99 (4.82) * 98.71 15.76 (6.34) *

Hyper. params. (MINK , MAXK , γ) = (30 , 60 , 0.99)

CPU
(n=209,
p=7),
Kloess=40

Loess Conv. 86.11 ◭ 129.45

92.52

91.39 ⊳ 170.12

97.86
Fixed K = 40,
γ = 0.99

96.16 154.67 (112.8) 98.07 203.27 (148.24) *

Var. K 94.25 137.68 (101.75) * 96.64 ⊳ 180.95 (133.72)

Hyper. params. (MINK , MAXK , γ) = (20 , 50 , 0.99)

Slump
(n=103,
p=10),
Kloess=30

Loess Conv. 94.36 8.54

91.46

97.18 ◭ 11.23

97.38
Fixed K = 20,
γ = 0.9

97.18 9.35 (2.72) 98.09 12.29 (3.57)

Var. K * 96.27 8.16 (2.25) * 98.09 10.73 (2.96) *

Hyper. params. (MINK , MAXK , γ) = (15 , 30 , 0.9)

Motorcycle
(n=133,
p=1),
Kloess=30

Loess Conv. 93.23 93.46

91.89

98.51 122.82

97.58
Fixed K = 35,
γ = 0.7

97.8 101.66 (50.28) 99.23 133.6 (66.08)

Var. K * 96.31 86.77 (38.65) * 99.23 114.03 (50.8) *

Hyper. params. (MINK , MAXK , γ) = (15 , 35 , 0.7)

Table 9.3: Predictive interval models for local linear regression built on benchmark datasets
with β = 0.95, β = 0.99.
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Chart commentaries

Now we can easily compare all the interval prediction methods. Figures 9.5 and 9.6 respec-
tively display the MIS ratio chart and EGSD chart for β = 0.8. β = 0.8 is the easiest case
and all the methods can provide reliable predictive interval model. One can observe that
“Var. K” and “Fixed K”models are almost always more efficient than the others. If we look
in more detail, we can see that “Var. K”usually finds both the smallest MIS ratio and EGSD
value. The conventional methods “Loess Conv.” and “LS-SVM Conv.” are the next efficient
ones. When it comes to testing β = 0.9, the situation stays almost the same for “Var. K”
and “Fixed K” and “Var. K” remains the most efficient method. Conversely both the conven-
tional methods fail to provide reliable predictive interval model for three of the nine datasets.

Figures 9.9 and 9.10 (β = 0.95) show that the conventional pair (“Loess Conv.” and
“LS-SVM Conv.”) are definitely not reliable. Their non-working models find wider and
less efficient envelope than our proposed models “Var. K” and “Fixed K”. The scenario
is still the same for “Var. K”: It is the method which usually finds the tightest reliable
envelope. It also provides models that, even compared to non-reliable models, have the
smallest variance of prediction error. Finally let us look at Figures 9.11 and 9.12 (β = 0.99).
In this case “Fixed K” and “LQRC” are the most reliable models. “Fixed K” takes second
place. It fails once more than “Fixed K” and “LQRC”. When comparing the efficiency, “Var.
K” is still the most efficient solution but its gap decreases with others. In this case “Fixed
K” becomes approximately as efficient as “Var. K”. It is also interesting to note that, for
β = 0.99, “LQRC” provides more efficient models than before.

Note also that both the conventional pair and the “NPQR CV”method fails more for
large datasets than for small datasets. Small datasets do not have sufficient observations to
reject the null hypothesis, which states that the tested model is a predictive interval model,
so we accept their models as predictive interval models. It is also interesting to observe
that “NPQR” fails in all cases. Its intervals are neither reliable nor efficient. These results
are summarized in Table 9.4. Table 9.4 summarizes all the displayed charts. Each row
of this table is dedicated to a different dataset which summarizes three qualities through
β = 0.8, 0.9, 0.95 and 0, 99. The first quality is the reliability: we cite the method which is
the most reliable through β = 0.8, 0.9, 0.95. The second quality (the third column) shows
the method that, for each dataset, generally provides the tightest reliable band and the
fourth column displays the most efficient method. In the fourth column we ignore the
method’s reliability and we just compare its EGSD normalized value with others EGSD
normalized value.
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Dataset Most Reliable Tightest
reliable band

General Efficiency
(ignore the reliability)

Parkinson1 LQRC Var. K Var. K
Parkinson2 LQRC Var. K Var. K

Wine Var. K & LQRC Fixed K Loess Conv
Concrete Var K, Fixed K, LQRC, NPQR CV

& Loess Conv
Fixed K. Fixed K

Housing Fixed K & LQRC Fixed K Fixed K
Auto Var K, Fixed K, LQRC, NPQR CV

& LS-SVM Conv
LS-SVM
Conv

LS-SVM Conv

CPU Fixed K Var K Var K
Slump Var K, Fixed K, NPQR CV, Loess

Conv & LS-SVM Conv
Var K Var K

Motorcycle Fixed K, Var K, NPQR CV, LS-
SVM Conv & Loess Conv

Var K Var K

Table 9.4: General ranking based on the MIP charts, MIS charts and EGSD charts for
β = 0.8, 0.9, 0.95 and 0.99.

9.3.3 Detailed Comparison Using Plots

In the previous experiments, we concluded that our proposed predictive interval methods
are the most reliable and effective method. Our goal is to compare in a very detailed
manner the precision, reliability, efficiency and envelope tightness of our methods with
one of its most efficient competitors. For this purpose, we have chosen the five largest
datasets, because bigger datasets can provide more significant results. If we compare our
introduced methods with the most reliable method, we have to select “LQRC”. However
“LQRC” is not more reliable than “Fixed K” but we have seen that “LQRC” is considerably
less efficient and it only begins to be useful for β > 0.95. Therefore, we will have a more
detailed comparison of our methods with the most effective interval prediction methods.
We have seen that “Loess Conv.” and then “LS-SVM Conv.” are the most effective solutions
after “Var K.”. They have the same interval prediction methods but they use different
regression algorithms, so we select “Loess Conv.” which is revealed to be a bit more reliable
and effective than “LS-SVM Conv.” on the largest datasets. For this purpose we will use
EGSD plots and MIP plots (described in 6.4.3) to compare “Var K.”, “Fixed K.” and “Loess
Conv.”.

Plot interpretation

For each dataset, the EGSD plot compares the efficiency of the tested models and the
method having the highest line in this plot is the most inefficient one. MIS plots compares
the envelope wideness of reliable models. The method having the most bottom line provides
the most reliable envelope in the MIS plot. Note that in the MIS plot each model is plotted
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until its failure MIP. Once we have compared methods based on their envelope size and
their efficiency, the MIP plot will help us to compare the precision and reliability of interval
prediction models. The best model in this plot is the one that has the nearest line to the
upper side of the “Nominal MIP line”. For further explanation of these plots, see 6.4.3.

Plot commentaries

By looking at Figure 9.13, we can see that when the nominal MIP is greater than or equal
to 0.6, the “Loess Conv.” model loses its efficiency but Figure 9.14 shows that the “Var
K.” model is the tightest reliable model. At the same time, Figure 9.15 compares their
failure MIP. We can see that when the “Loess Conv.” failure MIP is 0.93, our methods
give a failure MIP equal to 0.99. This figure also shows that “Var K.” has the most precise
model and “Loess Conv.” has the least reliable and precise one. The same experiment is
performed for the Parkinson2 dataset which gives Figures 9.16, 9.17 and 9.18. In this case,
“Loess Conv.” becomes more efficient than “Fixed K.” but it is always less efficient than
“Var K.”. Then Figures 9.17, shows that the “Var K.” method provides again the most
tightest reliable band. Next we look at the Parkinson2’s MIP plot and we can see that the
“Var K.” model remains the most precise model. Figures 9.18 states that “Loess Conv.” has
a failure MIP of 0.93 and it is again the most unreliable solution.

In the Concrete dataset, the previous ranking gets better for “Fixed K.”. “Loess Conv.”
is no longer the most efficient solution. Figures 9.19, 9.20 and 9.18 show that the “Fixed
K.” model is more effective and more precise than the “Loess Conv.” model. The “Fixed
K.” method provides a model for the concrete dataset that obtains the tightest reliable
band. Note that for NominalMIP ≥ 80 (β ≥ 0.8), its envelope is even tighter than the
“Var K.”. Our experiments continue with the Wine dataset where the “Loess Conv.” model
is the most efficient and provides the tightest band, however it has a failure MIP of 0.83
compared to a failure MIP of 0.99 for “Fixed K” and 0.97 for “Var K.”.

We finalize our experiments with the Housing dataset where EGSD, MIS and MIP
plots are displayed respectively in Figures 9.25, 9.26 and 9.27. Figures 9.25 shows that
the “Var K.” model, the “Loess Conv.” model and the “Fixed K.” model are respectively
ranked as the first, the second and the third ranking efficient models. “Var K.” is again
the method that provides the tightest reliable band and for β ≥ 0.8 the “Loess Conv.”
model is tighter than the “Fixed K.” model. Figure 9.27 gives the same ranking for their
precision. These rankings are summarized in Table 9.5. Each row of this table is dedicated
to a different dataset which summarizes four qualities through 16 different inter-quantiles:
0.25 ≤ β ≤ 0.99. The first three columns are similar to Table 9.4 except that they are
obtained for 0.25 ≤ β ≤ 0.99. The fourth column displays the method which is generally
the most precise. This is the method that its MIP line, compared to other methods, remains
the nearest to the upper side of the “Nominal MIP line”.
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Dataset Most Reliable Tightest
reliable band

General Efficiency
(ignore the reliability)

General
Precision

Parkinson1 Var. K & Fixed K. Var. K Var. K Var. K
Parkinson2 Var. K & Fixed K. Var. K Var. K Var. K

Wine Fixed K. Loess Conv. for
β ≤ 0.8

Loess Conv. Var. K

Concrete Var. K & Fixed K. Fixed K. Var. K Var. K.
Housing Var. K & Fixed K. Var. K Var. K Var. K

Table 9.5: General ranking based on the MIP plots, MIS plots and EGSD plots for
0.25 ≤ β ≤ 0.99.
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Figure 9.1: MIP chart for benchmark datasets with β = 0.8.
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Figure 9.2: MIP chart for benchmark datasets with β = 0.9.
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Figure 9.3: MIP chart for benchmark datasets with β = 0.95.
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Figure 9.4: MIP chart for benchmark datasets with β = 0.99.
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Figure 9.5: MIS Ratio chart for benchmark datasets with β = 0.8. The smallest value
denotes the tightest reliable band.
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Figure 9.6: EGSD chart for benchmark datasets with β = 0.8. The smallest value denotes
the most efficient band. This measure ignores the reliability.
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Figure 9.7: MIS Ratio chart for benchmark datasets with β = 0.9. The smallest value
denotes the tightest reliable band.
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Figure 9.8: EGSD chart for benchmark datasets with β = 0.9. The smallest value denotes
the most efficient band. This measure ignores the reliability.
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Figure 9.9: MIS Ratio chart for benchmark datasets with β = 0.95. The smallest value
denotes the tightest reliable band.
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Figure 9.10: EGSD chart for benchmark datasets with β = 0.95. The smallest value denotes
the most efficient band. This measure ignores the reliability.
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Figure 9.11: MIS Ratio chart for benchmark datasets with β = 0.99. The smallest value
denotes the tightest reliable band.
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Figure 9.12: EGSD chart for benchmark datasets with β = 0.99. The smallest value denotes
the most efficient band. This measure ignores the reliability.
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Figure 9.13: EGSD plot for Parkinson1 dataset. The lowest line denotes the method that
yields the most efficient band. This measure ignores the reliability.
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Figure 9.14: MIS plot for Parkinson1 dataset. The smallest value denotes the tightest
reliable band.
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Figure 9.15: MIP plot for Parkinson1 dataset.
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Figure 9.16: EGSD plot for Parkinson2 dataset. The lowest line denotes the method that
yields the most efficient band. This measure ignores the reliability.
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Figure 9.17: MIS plot for Parkinson2 dataset. The smallest value denotes the tightest
reliable band.
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Figure 9.18: MIP plot for Parkinson2 dataset.
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9.3.4 Discussion of Results

We have compared our introduced methods with six other well-known interval prediction
methods. This comparison is performed with a 10-fold cross validation schema on nine
benchmark regression datasets which contain between 1 and 21 predictors. For β ≥ 0.9,
it becomes a critical task to find an effective predictive interval method that works on all
datasets. However these inter-quantiles are the most used ones in machine learning and
statistical hypothesis testing. Hence, we first compared the mentioned methods based on
their strengths while providing β-predictive interval models with β = 0.8, 0.9, 0.95 and 0.99.
While comparing our methods with their six competitors, we found them to be the most
reliable non-linear predictive interval models. Our experiments have shown that they are
usually also the most effective solution.

The conventional methods“Loess Conv.” and“LS-SVM Conv.” are revealed
to be unreliable solutions. They even fail for β = 0.9 although they are almost always
less efficient than “Var K.” and “Fixed K.” and their envelope is almost always larger
than the “Var K.” model’s band. There is just one case where “Fixed K.” and “LQRC”
are more reliable than “Var K.”. However “LQRC” always provides much wider bands than
our methods and it is also much more inefficient and imprecise than “Var K.” and “Fixed
K.”. On the other hand, if we ignore their reliability, “Loess Conv.” and “LS-SVM Conv.”
rank are the most efficient methods after “Var K.”. They sometimes provide tighter bands
than “Fixed K.” , however a model which provides a tight band but usually does not work
is not appropriate for predictive interval models. “NPQR CV” is more reliable than the
conventional pair but it is the least efficient solution. “NPQR” and “LQR” are absolutely
not appropriate for high confidence interval prediction.

In a second attempt, we compared our methods with their most effective competitor.
These comparisons have been performed on the five largest datasets of the nine benchmarks
and each time on 16 distinct desired contents (β value). These experiments show the
superiority of “Var K.” and then “Fixed K.”. We have seen that “Var K.” usually
provides models with the tightest bands and they are almost always the most
effective and more precise than others. “Fixed K.” models are usually more effective
and precise than “Loess Conv.”. Note that for β ≥ 0.5, “Loess Conv.” is the most effective
solution but it is in the same time the least precise. By more effective, we mean that the
normalized EGSD value is the smallest for β ≥ 0.5 but does not provide the tightest and
the most precise envelope. Thus we do not recommend “Loess Conv.”, because its model
provides intervals that are too wide.

In a regression context, the conditional mean, the conditional variance and/or the
conditional quantile may have different functions. The conditional mean is the general
trend of the regression function whereas the conditional quantile is more related to the
local distribution of the response variable. Least-squares based interval prediction methods
(“Loess Conv.”, “LS-SVM Conv.”, “Fixed K.” and “Var. K”) try to indirectly estimate the
conditional quantile function. They first estimate the conditional mean and then, based
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Figure 9.19: EGSD plot for Concrete dataset. The lowest line denotes the method that
yields the most efficient band. This measure ignores the reliability.
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Figure 9.20: MIS plot for Concrete dataset. The smallest value denotes the tightest reliable
band.
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Figure 9.21: MIP plot for Concrete dataset.
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Figure 9.22: EGSD plot for Wine dataset. The lowest line denotes the method that yields
the most efficient band. This measure ignores the reliability.
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Figure 9.23: MIS plot for Wine dataset. The smallest value denotes the tightest reliable
band.
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Figure 9.24: MIP plot for Wine dataset.
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Figure 9.25: EGSD plot for Housing dataset. The lowest line denotes the method that
yields the most efficient band. This measure ignores the reliability.
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Figure 9.26: MIS plot for Housing dataset. The smallest value denotes the tightest reliable
band.
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Figure 9.27: MIP plot for Housing dataset.
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on this estimated conditional mean, they estimate the conditional quantile. On the other
hand, we have quantile regression based methods (“NPQR”, “NPQR CV”, “LQRC” and
“LQR”) which directly estimate the conditional quantile. We know that the general trend
is easier to predict and its estimator, compared to the conditional quantile, has a higher
speed of convergence. This is why all of our least-squares based interval prediction methods
are more efficient than the quantile regression based methods. Another reason for this
superiority may be the absence of a conditional quantile function. It can occur where
the conditional variance of the error distribution is not a function of the predictors. Our
proposed methods are in the class of least-squares based interval prediction methods, so
they take advantage of this fast convergence. However they are more reliable and efficient
than the other member of this class (conventional methods). This is because our methods
take into account the sample size and find confidence intervals on inter-quantile of the
local distribution for the response variable whereas the conventional methods just estimate
asymptotic global inter-quantiles of the conditional response variable. This idea is explained
in detail in 7.5.

9.4 Experiments for Simultaneous Predictive Inter-

vals for KNN

In this section we will describe the interval prediction methods which will be used to build
simultaneous predictive interval models.

Implementation of Method

All the interval prediction methods listed below are explained in Chapter 5, except for our
predictive-interval method for local linear regression, which is introduced in Chapter 7. Our
selected methods as follows:

• “KNN Var. K”: two-sided Simultaneous Predictive Intervals for KNN, as explained in
8.3.

• “KNN Conv.” the conventional interval prediction method explained in 5.1.1, obtained
with a KNN regression.

We have to mention that we use the Tricube kernel as the kernel function in all of our
experiments.

Hyper-parameter tuning

In a first attempt, datasets are divided into two subsamples of size 2
3
n and 1

3
n, where n

represents the dataset size. The part containing 2
3
of observations are used to tune the

predictive interval model’s hyper-parameters. The hyper-parameters are MINK , MAXK

and γ for our proposed interval regression method and just K for the KNN (“KNN Conv.”).
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For the classical KNN, the fixed K maximizing the Root Mean Squared Error (RMSE) of
response variable is chosen. For our proposed method, the hyper-parameters having the
smallest MIS and also satisfying the simultaneous MIP constraint (see (8.2)) are selected.

Experiments Plan

Once we have tuned the hyper-parameters, all the instances will serve to validate the results
using a 10-cross validation schema. For each desired proportion of simultaneous inclusion
(β value), we compare the reliability and the the tightness of the obtained band of the
tested models. The goal is to find simultaneous β-content predictive interval models where
β = 0.9, 0.95 and 0.99. The motivation of these β values is that these inter-quantiles are
the most used ones in machine-learning and statistical hypothesis-testing. Another reason
justifying our choice is that they are harder to approximate.

When considering the simultaneous interval regression, it is expected that the fraction
of prediction values inside the envelope (for each of the 10 models in cross validation) will
be greater than or equal to β (Simultaneous MIP constraint). For example, for β = 0.95 in
a 10-fold cross validation, it is expected that each of the 10 built model to have a Mean
Inclusion Percentage (MIP) greater than or equal to 0.95 (MIP ≥ β). In our experiments,
we are interested to compare the obtained intervals regardless of any variable selection or
outliers detection preprocessing. The results are the mean inclusion percentages and the
Mean of Interval Size (MIS) in each of the fold in the 10-fold cross validation scheme. The
MIP (see (8.2)) and MIS over all the 10-fold cross validations are also contained in the results.

9.4.1 Results

Table 9.6 summarizes the application of the algorithm 4 (“KNN Var. K”) and the con-
ventional interval prediction approach combined with KNN (“KNN Conv.”) to the seven
datasets listed below. For each 10-fold cross validation scheme, the following quality
measures are computed:

• MFIP: Mean Fold Inclusion Percentage (value of the MIP for one fold). It must be
greater than or equal to the desired β for each of the 10 models built in the cross
validation phase. This is the simultaneous MIP constraint explained in Equation
(8.2).

• Min(MFIP): minimum value of MFIP across the 10 models. min(MFIP ) < β, means
that the underlying model failed to cover the required proportion β of the response
values.

The column MIS is the Mean of Interval Size for all the 10 models and σis is the standard
deviation of the interval size over the whole dataset. Note that σis is not defined for the
conventional method because its interval size is constant over the entire data set. The star
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* sign appears when min(MFIP ) satisfies the requirement (i.e. min(MFIP ) ≥ β). When
only one of the two compared methods satisfies this requirement, the result is given in bold.

Dataset Algo.

90% 95% 99%

Min(MFIP) MIS (σis) Min(MFIP) MIS (σis) Min(MFIP) MIS (σis)

Parkinson1
(n=5875,
p=21)

KNN
Conv.

94.54 * 6.62 94.55 7.88 95.4 10.36

KNN Var.
K

90.98 * 5.01 (6.92) 95.23 * 6.38 (8.75) 99.14 * 11.19 (14.47)

Hyper.
params.

(MINK , MAXK , γ) =
(5, 40, 0.25)

(MINK , MAXK , γ) =
(5, 40, 0.35)

(MINK , MAXK , γ) = (5, 40, 0.8)

Parkinson2
(n=5875,
p=21)

KNN
Conv.

94.04 * 4.73 94.55 5.64 95.57 7.41

KNN Var.
K

92.34 * 3.97 (5.37) 95.23 * 5.06 (6.77) 99.14 * 9.37 (11.85)

Hyper.
params.

(MINK , MAXK , γ) =
(5, 25, 0.3)

(MINK , MAXK , γ) =
(5, 25, 0.4)

(MINK , MAXK , γ) = (5, 25, 0.87)

Wine
(n=4898,
p=12)

KNN
Conv.

78.93 1.84 90.59 2.19 93.46 2.88

KNN Var.
K

90.2 * 2.5 (0.55) 95.71 * 3.51 (1.48) 98.77 5.04 (1.05)

Hyper.
params.

(MINK , MAXK , γ) =
(20, 50, 0.9)

(MINK , MAXK , γ) =
(5, 25, 0.99)

(MINK , MAXK , γ) = (20, 50, 0.999)

Concrete
(n=1030,
p=9)

KNN
Conv.

80.58 25.58 86.4 30.48 94.17 40.05

KNN

Var. K*

91.26 * 33.29 (11.86) 95.14 * 41.91 (14.8) 99.02 * 80.72 (26.47)

Hyper.
params.

(MINK , MAXK , γ) =
(10, 25, 0.6)

(MINK , MAXK , γ) =
(10, 25, 0.7)

(MINK , MAXK , γ) = (10, 25, 0.99)

Auto
(n=398,
p=8)

KNN
Conv.

87.17 9.96 90 11.87 94.87 15.6

KNN Var.
K

94.87 * 12.57 (6.48) 95 * 14.98 (7.72) 97.43 23.54 (11.98)

Hyper.
params.

(MINK , MAXK , γ) =
(7, 20, 0.95)

(MINK , MAXK , γ) =
(7, 20, 0.95)

(MINK , MAXK , γ) = (7, 20, 0.99)

Housing
(n=506,
p=14)

KNN
Conv.

84.31 14.23 90.19 16.96 94 22.29

KNN Var.
K

92.15 * 22.9 (13.09) 96 * 27.28 (15.6) 98 43.45 (24.44)

Hyper.
params.

(MINK , MAXK , γ) =
(10, 20, 0.99)

(MINK , MAXK , γ) =
(10, 20, 0.99)

(MINK , MAXK , γ) = (10, 20, 0.999)

Slump
(n=103,
p=10)

KNN
Conv.

80 12.73 80 15.16 80 19.93

KNN Var.
K

90 * 29.58 (9.83) 90 35.25 (11.71) 100 * 46.32 (15.4)

Hyper.
params.

(MINK , MAXK , γ) =
(5, 15, 0.99)

(MINK , MAXK , γ) =
(5, 15, 0.99)

(MINK , MAXK , γ) = (5, 15, 0.99)

Table 9.6: Comparing the interval prediction method proposed to provide simultaneous
predictive intervals for KNN.
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For β = 0.9, 0.95 and for the datasets Parkinson1 and Parkinson2 in Table 9.6, we can
see that our method gives smaller intervals than the KNN Conv. approach. However,
contrary to the KNN Conv. approach, the intervals contain the required proportion β of the
response values. It is usually a difficult task to satisfy the requirement for β = 0.99 and it
becomes even harder for small dataset. Because each fold contains n

10
of total observations,

so one percent is equal to n
1000

. It means that the constructed intervals must miss at most
n

1000
of total instances and this is a quite hard task for small and even medium-sized dataset.

But we can see that our method satisfies this condition for half of the datasets and the
mean of the inferred intervals is compared to the required constraint. It is also interesting
to note that our proposed method performs better in general for bigger datasets. This is
because our method is based on the local density of the data.

9.4.2 Results Discussion

The results show that our approach performs very well on dense dataset. In the case of
dataset with small sample size compared to the number of variables, our method is less
reliable, but it is still better than the conventional interval prediction method in KNN.

9.5 Conclusion

This chapter investigated two concepts by experiments: the first concept was the proposed
pair of non-parametric predictive interval methods which were introduced in chapter 6 and
the second concept was simultaneous predictive intervals for KNN regression.

The first concept was studied in detail. We used several regression datasets to compare
our predictive interval method for local linear regression with six well-known other interval
prediction methods. The selected methods have been tested on their capacity to provide
two-sided β-content predictive interval models. While comparing our methods with their
six competitors, we found our methods to be the most reliable non-linear predictive interval
models. We have seen that “Var K.” generally provides models with the tightest
bands and they are almost always more effective and precise than others. Then
it comes to “Fixed K.” models which are normally more effective and precise than their con-
ventional competitors. The conventional interval prediction methods reveals to be unreliable
solutions. They even fail for β = 0.9, although they are almost always less efficient than our
predictive interval methods and their envelope is almost always larger than the “Var
K.” model’s band. If we ignore the reliability notion, the conventional method ranks as
the most efficient method after our predictive interval method. It sometimes provides tighter
bands than “Fixed K.”. However, a model which provides a tight band but usually does not
satisfies the reliability constraint (MIP test), is not appropriate for high confidence interval
prediction. Then we explained our experiments on the simultaneous predictive models
with KNN regression. This part mentioned the results published in [Ghasemi Hamed 12c].
The results show that our method performs very well on large datasets. In the case of
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datasets with small sample sizes compared to their number of variables, our method is
less reliable, but it is still better than the conventional interval prediction method with KNN.

The next chapter discusses the ground-based aircraft trajectory prediction problem,
which is a critical issue for air traffic management. A safe and efficient prediction is a
prerequisite for the implementation of automated tools that detect and solve conflicts
between trajectories. We modeled this problem by regression, and so we will use our
proposed methods to find the tightest reliable band.
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Ground-based aircraft trajectory prediction is a critical issue for air traffic management.
A safe and efficient prediction is a prerequisite for the implementation of automated tools that
detect and solve conflicts between trajectories. This chapter has been partially published in
[Ghasemi Hamed 13]. In this work, a standard point-mass model and statistical regression
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method is used to predict the altitude of climbing aircraft. In addition to the standard
linear regression model, two common non-linear regression methods, LS-SVM and loess
are used. These methods lead to five different prediction models and they are compared
based on their point based prediction performance. However because of the critical nature
of our problem and regarding the safety constraints, it seems more reasonable to predict
intervals rather than precise aircraft positions. So we apply nine different interval prediction
methods on our aircraft trajectory prediction dataset. Some of these interval prediction
models are built upon the obtained prediction models and others (Quantile regression based
models) are constructed without using the preceding regression models. The experiments
part compares these models based on their reliability, efficiency and the tightness of the
obtained envelope.

A dataset is extracted from two months of radar and meteorological recordings, and
several potential explanatory variables are computed for every sampled climb segment. A
Principal Component Analysis allows us to reduce the dimensionality of the problems, using
only a subset of principal components as input to the regression methods. The prediction
models are scored by performing a 10-fold cross-validation. Statistical regression method
results appears promising. The experimental part shows that the proposed regression models
are much more efficient than the standard point-mass model. Our interval prediction models
have the advantage of being more reliable and narrower than those found by other interval
prediction and point-mass models. The chapter is organized as follows: the first section
introduces the aircraft trajectory prediction problem. Then Section 10.2 describes the
point-mass model and reviews its equations. The third section describes how the regression
methods are applied to our problem and the experimental results are given in the fourth
section.

10.1 The aircraft trajectory prediction problem

This section begins by describing the aircraft trajectory prediction context. We will have
a quick review of the ground based trajectory prediction motivations. Next we survey
the state of the art of the problem, and then we will explain and present arguments our
solutions.

10.1.1 The context

Predicting aircraft trajectories with great accuracy is central to most operational concepts
([Swenson 06], [Consortium 07]) and is necessary to the automated tools that are expected
to improve air traffic management (ATM) in the near future. On-board flight management
systems predict the aircraft trajectory using a point-mass model of the forces applied to the
center of gravity. This model is formulated as a set of differential algebraic equations that
must be integrated over a time interval in order to predict the successive aircraft positions
in this interval. The point-mass model requires knowledge of the aircraft state (mass, thrust,
etc), atmospheric conditions (wind, temperature), and aircraft intent (target speed or climb
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rate, for example).

Much of this information is not available to ground-based systems, and the available
information is not known with good accuracy. The actual aircraft mass is currently not
transmitted to the ATM ground systems, although this is being discussed in the EUROCAE1

group in charge of elaborating the next standards for air-ground data-links. For a recent
reference on the mass estimation problem see [Alligier 13]. The atmospheric conditions
are estimated through meteorological models. Finally, the current ground-based trajectory
predictors make fairly basic assumptions on the aircraft intent (see the “airlines procedures”
that go with the BADA2 model. These default “airline procedures” may not reflect reality,
where the target speeds are chosen by the pilots according to a cost index that is a ratio
between the cost of operation and the fuel cost. These costs are specific to each airline
operator, and are not available. As a consequence, ground-based trajectory prediction
is currently fairly inaccurate, compared with the on-board prediction. A simple solution
would be to downlink the on-board prediction to the ground systems. However, this is not
sufficient for all applications: some algorithms ([Durand 96, Swenson 06, Consortium 07,
Drogoul 09, Prats 10, Chaloulos 10]) require the computation of a multitude of alternate
trajectories that could not be computed and downlinked fast enough by the on-board
predictor. There is a need to compute trajectory predictions in ground systems, for all
traffic in a given airspace, with enough speed and accuracy to allow a safe and efficient
4D-trajectory conflict detection and resolution. The literature on trajectory prediction is
fairly large, and one may refer to [Musialek 10] for a literature survey on the subject, or
[Gong 04], [Romanelli 09], or [Vivona 10, Tastambekov 14] for the trajectory predictor’s
statistical analysis and validation. Other works focus on the benefits provided to ground-
based trajectory predictors by using additional, more accurate, input data ([Center 98],
[Coppenbarger 99], [ADA 09]). An interesting model-based stochastic approach is presented
in [Lymperopoulos 06], although this is only validated in a simulation environment.

10.1.2 Our approach

In this work, we compare different ways of dealing with the trajectory prediction problem,
focusing on the aircraft climb with a 10 minute look-ahead time. We are also interested in
finding intervals which contain a desired (i.e. 0.95) proportion of the future aircraft position.
Such intervals reflect the prediction uncertainty and can be used for more accurate conflict
detection. Climb phase prediction has already been treated by Alligier et al. [Alligier 12].
Their work addresses the energy rate prediction problem during the climb phase. We
selected the climb phase because predicting during this phase is harder and much less
accurate than during the cruise phase. As a first approach, the point-mass model is applied
with different settings for the model parameters, considering a constant CAS/Mach climb
procedure where the aircraft first climbs at a constant Calibrated Air Speed (CAS) until it
reaches the CAS/Mach crossover altitude and then continues the climb at a constant Mach

1EUROCAE:European Organization for Civil Aviation Equipment
2BADA:Base of Aircraft DAta
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number. In this approach, the basic parameter setting consists of using the standard CAS
and Mach values of the BADA climb procedures file, and a standard reduced thrust during
climb, with an average reference aircraft mass. The second setting still uses the reference
mass and standard thrust reduction factor, but the actual CAS is computed from the past
aircraft positions.

The second approach is radically different and is based on regression methods. The
predicted aircraft position is considered as a function f(x), where x is a vector of input vari-
ables and f(·) is parametric or non-parametric function. We have also applied Possibilistic
KNN regression to the trajectory prediction problem [Ghasemi Hamed 12a]. This consists
of predicting possibility distributions rather than precise values. This method focuses on
finding a conditional possibility distribution for the K-nearest neighbors (KNN) regression
method.

In this work, the regression input variables are the past aircraft positions, the observed
CAS at the current altitude, the deviation of the air temperature from the standard
atmosphere, and the predicted wind at different flight level. The regression must be
adjusted using historical data so that the computed output fits the observed position as
closely as possible. In this work, we will use three well-known regression methods. The idea
is to see how a parametric linear model, a common parametric non-linear model and an
efficient non-parametric model perform on our dataset. In a first attempt, we use an OLS
to predicts the altitude z of the aircraft based on the past trajectory. The next model is a
LS-SVM regression model which belongs to the class of parametric non-linear models. The
third model is the loess [Cleveland 88] method. It is a version of locally weighted linear
regression which uses K-nearest neighbors as its bandwidth. For more details on loess see
Chapter 4. As discussed before, aircraft trajectory prediction is a critical problem and we
need more than point based prediction models. Thus, we will look for the interval prediction
method that provides the smallest reliable envelope. We employed the following interval
prediction methods: our predictive interval methods for LLR, the conventional interval
prediction method, tolerance intervals for linear regression, and linear quantile regression.

10.2 The point-mass model

10.2.1 Simplified model

Most ground systems use a simplified point-mass model, sometimes called a total energy
model, to predict aircraft trajectories. This model, illustrated in figure 10.1, describes the
forces applying to the center of gravity of the aircraft and their influence on the aircraft
acceleration, making several simplifying assumptions3. It is assumed that the thrust and
drag vectors are colinear to the airspeed vector, and that the lift is perpendicular to these

3Note that more complex point-mass models have been proposed for UAV or fighter airplanes (see
[T. Kinoshita 06]), modeling also the side-slip angle.
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Figure 10.1: Simplified point-mass model.

vectors. Thus, projecting the forces on the airspeed vector axis, the longitudinal acceleration
a = dVTAS

dt
along the true airspeed (VTAS) axis can be expressed as follows:

m.a = T −D −m.g.sin(γ), (10.1)

where T is the total thrust, D the aerodynamic drag of the airframe, m the aircraft mass,
g the gravitational acceleration, and γ the path angle (i.e. the angle between the airspeed
vector and the horizontal plane tangent to the earth surface).

Introducing the rate of climb/descent dh
dt

= VTAS.sin(γ), where h is the altitude in meters,
this equation can be rewritten as follows (see [Nuic 09]):

(T −D).VTAS = m.VTAS.
dVTAS

dt
+ m.g.

dh

dt
. (10.2)

Several equivalent forms of this equation can be used (see Eurocontrol BADA User
Manual), depending on which unknown variable is being calculated from the other known
variables. Actually using Equation (10.2) to predict a trajectory requires a model of the
aerodynamic drag for any airframe flying at a given speed through the air. In addition, we
may need the maximum climb thrust, which depends on the engines that the aircraft is
equipped with. In the experiments presented here, the Eurocontrol BADA model was used
for that purpose.

One cannot use (10.2) without prior knowledge of the initial state (mass, position,
speed,...) of the aircraft, and also of the pilot’s intentions as to how the aircraft will be
operated in the future (thrust law, speed law, or rate of climb). When the aircraft is
operated at a given calibrated air speed (CAS4) or Mach number, computing the true air
speed (TAS) requires knowledge of the atmospheric conditions (the air temperature and
pressure). Finally, as we need to predict the trajectory over the ground surface, and not
only through the air, the wind magnitude and direction are also required.

4CAS: Calibrated Air Speed, which can be equated to the speed indicated on the pilot’s intruments.
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10.2.2 Aircraft operation during climb

Generally, when no external constraint applies during the climb, the aircraft is operated at
constant CAS and variable Mach number, until a specified Mach number is reached. Above
this CAS/Mach crossover altitude, the aircraft is operated at a constant Mach number,
and variable CAS. External constraints may apply, however. After take-off, the aircraft
cannot exceed a specified maximum CAS until Flight Level is reached1005. This first climb
segment is followed by an acceleration at FL100, and then a second climb segment at a
higher calibrated air-speed, until the CAS/Mach crossover altitude is reached.

In this work, we consider only this second climb segment at constant CAS, followed by
the constant Mach climb, as we are mostly interested in predicting the aircraft trajectory in
the en-route airspace. Note that some other air traffic control constraints may apply, that
modify the aircraft operation during climb. For instance, the aircraft may be operated at a
prescribed rate of climb, on some flight segments, in order to be above a specified flight
level over a given waypoint.

Even without such constraints, and assuming a climb at constant CAS/Mach, predicting
the aircraft trajectory is not easy for ground systems. The actual CAS and Mach values
are chosen by the airlines’ operators, according to a cost index specific to each airline. The
cost index, and the chosen CAS and Mach values are not known by the air traffic control
systems, although some studies show the improvements that such knowledge would provide
in the trajectory prediction ([Center 98],[Coppenbarger 99]).

10.3 The Aircraft trajectory Prediction dataset

In our trajectory prediction problem, we predict the altitude z(t) at time t > t0, where t0 is
the current time, The input x is a vector of values extracted from the values:

• The current and previous aircraft states, characterized by z[k], d[k], with k ∈ [−10, 0].
The past trajectory is sampled every δt seconds. z[k] denotes the value measured for
the altitude z at time t = t0 + kδt. With this notation, z[0] = z(t0) is the current
altitude, z[−1] is the altitude δt seconds before t0, and so on. The same notation
applies for the distance d;

• The difference between the actual air temperature at sea level and the air temperature
of the International Standard Atmosphere (ISA) at sea level;

• The along-track and cross-track wind w and the temperature T at different altitudes;

• Other variables, such as the current CAS, Mach number, energy share factor, ROCD,
Ground speed, etc, and their derivatives with respect to time.

The regression model must be adjusted using historical data, so that the computed
outputs are as close as possible to the observed data. The performance of the tuned model

5FL100 = 10000 feet above isobar 1013 hPa.
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is measured by assessing how the model generalizes on fresh inputs. K-fold cross validation
can be used for that purpose. In order to start with a relatively simple problem, we predict
only one future point of the trajectory, N steps ahead. Let us now describe the dataset
used to predict the future aircraft position.

10.3.1 The available data

Recorded radar tracks from the Paris Air Traffic Control Center were used to build the
patterns used in the regression methods. This raw data is made of one position report every
1 to 3 seconds, over two months (July 2006, and January 2007). In addition, the wind and
temperature data from Meteo France are available at various isobar altitudes over the same
two months. The raw Mode C altitude6 has a granularity of 100 feet. So the recorded
aircraft trajectories were smoothed, using a local quadratic model, in order to obtain: the
aircraft position (X,Y in a projection plan, or latitude and longitude in WGS84), the
ground velocity vector (Vx, Vy), the smoothed altitude (z, in feet above isobar 1013.25 hPa),
and the rate of climb or descent (ROCD). The wind (Wx, Wy) and temperature (T ) at every
trajectory point were interpolated from the meteo datagrid. The temperature at isobar
1000 hPa was also extracted for each point, in order to compute a close approximation of
(∆T0)ISA, the difference between the actual temperature and the ISA model temperature
at isobar 1013.25 hPa (mean sea level in the ISA atmospheric model). This (∆T0)ISA is
one of the key parameters in the BADA model equations.

Using the position, velocity and wind data, we computed the true air speed (TAS), the
distance flown in the air (dAIR), the drift angle, and the along-track and cross-track winds
(Walong and Wcross). The successive velocity vectors allowed us to compute the trajectory

curvature at each point. The actual aircraft bank angle was then derived from true airspeed
and the curvature of the air trajectory. The climb, cruise, and descent segments were
identified, using triggers on the rate of climb or descent to detect the transitions between
two segments.

Finally, the BADA model equations were used to compute additional data, such as:
calibrated airspeed (CAS), Mach number (M), energy share factor7 (ESF), as well as the
derivatives of these quantities with respect to time.

10.3.2 Filtering and sampling climb segments

As our aim is to compare several prediction models, we focused on a single aircraft type
(Airbus A320), and selected all flights of this type departing from Paris Orly (LFPO) or
Paris Roissy-Charles de Gaulle (LFPG). We selected the Airbus A320, because this the
most common aircraft in Europe. Another technical reason is that introducing other aircraft
types forces us to treat the aircraft trajectory prediction problem with more complex models

6This altitude is directly derived from the air pressure measured by the aircraft. It is the height in feet
above isobar 1013.25 hPa.

7The energy share factor (ESF) measures how much of the energy is devoted to climb or to longitudinal
acceleration.



190 CHAPTER 10. APPLICATION TO AIRCRAFT TRAJECTORY PREDICTION

having more parameters and requiring significantly more trajectories. In fact, if we are
able to obtain efficient prediction for a single aircraft type, then the investigation of a more
complex model, which is a much bigger task, could be easily justified. The trajectories were
then filtered so as to keep only the climb segments. An additional 40-seconds were trimmed
from the beginning and end of each segment, so as to remove climb/cruise or cruise/climb
transitions. The trajectories were then sampled every 15 seconds, with time and distance
origins at the point P0 where the climb segment crosses flight level FL1808. The trajectory
segments were sampled so as to obtain 10 points preceding P0, and a number of points
after P0, depending on the chosen look-ahead time. So the trajectory observed during the
preceding time steps (2 minutes 30 seconds), can be used to predict the aircraft position
at one or several future time steps. The predicted position can be compared to the actual
aircraft position at the same time step.

Trajectories exhibiting a bank angle greater than 5 degrees were discarded, so that
the influence of trajectory turns on the rate of climb can be neglected. This allows us to
disregard the lateral navigation in our trajectory prediction problem, and focus on the
longitudinal and vertical dimensions of the trajectory.

10.3.3 Construction of the regression dataset

The regression models y = f(x) are tuned and assessed using sets of patterns (x, yd), where
x is an input vector, and yd is the corresponding desired output that can be compared to
the computed output y. These patterns, that we have already described in Section 10.3,
were extracted from the sampled climb segments. 1500 patterns were randomly chosen, to
build the set used in our experiments.

Each pattern used for regression contains the current ground speed, true and calibrated
air speed, Mach number, and their derivatives with respect to time, the energy share factor,
the altitude variations and distance flown for the ten preceding time steps, and also the
predicted wind and temperature at several altitudes that the aircraft may cross in the
look-ahead time. It also contains the potential target variables: distance flown, in the air
or above the ground, and altitude reached after N time steps in the future.

10.3.4 Principal component analysis

The final patterns set contains 79 numerical variables, measured for 1500 aircraft climbs.
There are 76 explanatory variables, and 3 variables to explain (although only the altitude is
predicted here). A principal component analysis was performed on the explanatory variables,
so as to reduce the dimensonality and avoid redundant input variables in the trajectory
prediction. Figure 10.2 shows the standard deviations of the principal components: 9
components have a standard deviation above 1, and 7 other components are between 0.5
and 1.

8FL180: 18000 feet above isobar 1013 hPa.
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Figure 10.2: Principal components standard deviations.

Principal components are linear combinations of the initial variables, that we can use
as explanatory variables in the regression method. This reduces the dimensionality from
10 to 15 significant principal components, instead of the 76 initial variables. One must
keep aware, however, that using linear combinations representing projections on a basis of
orthogonal vectors may not take into account some non-linearities in the initial variables.

10.3.5 Validation of regression assumptions

As seen in Chapter 4, a regression model must have non-autocorrelated errors. So we tested
our linear model with the two-sided Durbin-Watson test. The alternative hypotheses of the
Durbin-Watson test is that the true model’s first-order autocorrelation is not 0. Then we
tested our linear model with the Breusch-Godfrey test for serial autocorrelation of errors
with order up to 12. Its null hypothesis is that there is no serial correlation of the regression
model residuals of any order up to 12. These results are indicated in Table 10.1 (we also
tested our model with Breusch-Godfrey test separately for Lag 1, Lag 1 and 2, until Lag
1, ..., 12 and the P-value were approximately the same). The next step was dedicated
to check against homoscedasticity. For this purpose we used the Breusch-Pagan test; the
alternative hypothesis of which is heteroscedasticity. The normality of errors was tested
as follows: externally studentized residuals of the linear regression model having a normal
homoscedastic error follow a Student distribution with n− d− 2 degrees of freedom, where
n and d are respectively the number of residuals and the dimension of the predictor space.
In our case, we have a Student distribution with 1484 degree of freedom, which can be
very well approximated by the standard normal distribution. So we tested the externally
studentized residuals with the Shapiro-Wilk normality test and the normality assumption
was rejected with a p-value of 8.466e− 08.
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Test name Null hypotheses P-value Accept the null
hypothesis

Durbin-Watson residuals first order auto-
correlation equal to zero

0.2989 Accept

Breusch-Godfrey all correlation of residual
with any order up to 12
equal to zero

0.1508 Accept

Breusch-Pagan homoscedasticity of resid-
uals

9.778e-05 Reject

Shapiro-Wilk normality test Normality of residuals 8.466e-08 Reject

Table 10.1: Test results for the linear regerssion model on the ATM dataset.

Note that the normality test assumes that the linear model has normal and homoscedastic
error but we saw that we do not have a homoscedastic error. Thus even in case of normal
errors, the normality test would have failed. Table 10.1 shows that we have a regression
model which does not respect the assumptions of an OLS model. The mean of the squared
residuals for our linear model was 952, but it decreased to 699 for a loess regression model.
The non-linear models seem to be more promising for our ATM dataset, so in the search
for a better dataset fit, we will try loess and LS-SVM regression models.

10.4 Experiments

This section describes our experiments. First, we employ our point-based aircraft trajectory
prediction methods. They are composed of two BADA and three regression methods. These
five prediction methods lead to five distinct prediction models which are compared based
on their point-based prediction performance. However, we cannot use an illusory precise
point-based prediction as the future aircraft position. Moreover, we are more interested
in having a interval prediction model rather than a point based prediction. Therefore, we
will apply nine interval prediction methods to our dataset. These models are compared in
Table 10.3.

The tested methods are scored using a 10-fold cross-validation on the Air Traffic
Management (ATM) dataset described in section 10.3.3. The cross validation procedure
splits this set into ten subsets. It use nine of the subsets to build the prediction model, and
keeps the remaining subset to assess the model performance. This operation is repeated 10
times, cycling through the subsets. The model’s performance is assessed over the ten runs,
considering the mean score, the standard deviation, and also confidence intervals for the
computed output.
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10.4.1 Point based prediction models

We used the following aircraft trajectory prediction methods:

• BADA : BADA point-mass model, using the reference mass for each aircraft and
BADA values for the constant CAS/Mach, assuming reduced climb (eq. 3.8.1 and
3.8.2, p.22 in [Nuic 09]), and taking account of the (∆T0)ISA temperature difference;

• BADA(obs): Same BADA model as above, but using the CAS observed at t0, and
the BADA target Mach number;

• LR : Ordinary least squares linear regression with the lm function in R;

• LS-SVM : Regression with least-squares support vector machines with the ksvm
function in the R’s kernlab package. We use ksvm with the following arguments:
kernel=“rbfdot”, for using a radial basis kernel function. We also set kpar= list(sigma=
0.01) and tau = 0.01, reduced = TRUE, tol = 0.0001;

• Loess : linear loess with Kloess = 500 as its bandwidth and Tricube as its kernel
function; for more detail see Chapter 4.

Table 10.2 shows the prediction errors (mean absolute error, and root mean squared
error) over the 10 runs of the cross-validation, for all tested methods. The 15 principal
components of higher variance were used as input to the regression methods. This selection
was made by prior trials, successively adding the principal components until no significant
improvement was observed.

Method MAE RMSE
BADA 1440 (79) 1824 (95)
BADA(obs) 1440 (77) 1819 (86)
LR 744 (55) 962 (72)
LS-SVM 729 (57) 952 (73)
Loess 700 (54) 908 (72)

Table 10.2: Average prediction errors (and standard deviations) on the altitude (in feet) for
Airbus A320 aircraft, using 15 principal components as input, with the reference point at
FL180 and a 10-minutes look-ahead time.

All regression methods perform significantly better than the BADA point-mass model.
There are several factors explaining the poor performance of the point-mass models. The
parameter’s choice assumed a constant CAS/Mach climb at economic thrust, and the same
reference mass for all aircraft, which is not actually the case in reality. Also, the regression
methods use the past trajectory to predict the future altitude, whereas our BADA models
do not. Using the observed CAS instead of the BADA standard CAS does not improve the
results on altitude prediction.
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It came as a surprise that the LS-SVM method did not really perform better than the
ordinary least squares linear regression. There may be several explanations for this. Using
the principal components as inputs does favor linear methods. In addition, tuning the
parameters with the ordinary least squares linear regression can be done with an exact
method, whereas LS-SVM methods require iterative approximations or a stochastic selection
process, that may have difficulties to find the optimum when using input variables that are
not very efficient in explaining the target variable(s). In fact LS-SVM, being non-linear
estimators, have less bias but higher variance than OLS. Due to the high dimensionality
of our dataset and the relatively small number of observations, the LS-SVM estimations
suffer from high variance. This latter leads the LS-SVM’s MSE to be greater than that for
OLS. For more detail on the bias-variance trade-off and model complexity in regression see
[Rao 99].

As expected by the theoretical properties of loess, reviewed briefly above, we can observe
that this method gives the best results on our data. We can see in Table 10.2 that loess is
more efficient than LS-SVM and OLS. We used a two-sided Mann-Whitney test (paired
Wilcoxon signed rank test) to compare the 10 Root Mean of Squared Error (RMSE) resulted
by (the 10-fold cross validation of) loess and LS-SVM. The test rejected the null hypothesis
of loess RMSE’s mean being greater than or equal to the LS-SVM RMSE’s mean with a
p-vale of 0.004883.

10.4.2 Interval prediction models

Uncertainty on the prediction can be assessed in the following ways: once the model
parameters have been tuned on the training set, we can compute a theoretical 95%-
confidence interval using the root mean square error (RMSE) observed on this training set,
assuming a Gaussian distribution of the error in altitude. This method is the conventional
interval prediction method explained in 5.1.1 and it is applied upon BADA, BADA(obs),
loess and LS-SVM models. Our regression interval prediction methods are listed below:

• “Fixed K”: two-sided predictive interval for linear loess as explained in 7.1 with the
fixed K tolerance neighborhood with the loess regression model obtained before. The
hyper-parameter for this model are (K, γ) = (270, 0.99).

• “Var. K”: two-sided predictive interval for linear loess as explained in 7.1 with the
variable K tolerance neighborhood with the loess regression model obtained before.
The hyper-parameters for this model are (MINK , MAXK , γ) = (80, 170, 0.99)

• “LQR”: two-sided interval prediction with linear quantile regression [Koenker 05]. We
used the rq and rq.predict function in R’s quanterg package.

• “LQRC” two-sided Bonferroni 0.95-level confidence β-content interval obtained with
two different quantile regression models as explained in “Confidence based point-wise
inference” of 5.3.3. We used the rq and rq.predict function in R’s quanterg package.
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We use predict with the following arguments: interval=“confidence”, type=“percentile”,
se=“boot”, bsmethod= “wild”.

• “Loess Conv.” the conventional interval prediction method explained in 5.1.1 obtained
with the loess regression model obtained before.

• “LS-SVM Conv.” the conventional interval prediction method explained in 5.1.1
obtained with the LS-SVM regression model obtained before.

• “LR Tolerance.” Two-side 0.95-coverage 0.95-content tolerance interval for linear
regression as explained in 5.2.3.

Method Percentage in
theoretical 95%
interval (MIP)

Mean Interval
size of 95% in-
terval

Predictive Interval
Model (MIP ≥ 94.07)

EGSD

BADA 92 (2.5) 6558 X 1872.98
BADA(obs) 93 (2.1) 6738 X 1859.36

LS-SVM Conv 94.19 (2.22) 3767 993.96
Loess Conv 94.79 (2.2) 3684 948.36

Fixed K 94.26 (2.33) 3606 947.77
Var K 94.33 (2.76) 3602 946.15

LR Tolerance 99.93 (0.21) 7714 1137.90
LQR 93.73 (1.96) 3837 X 1030.72
LQRC 96.86 (2.26) 4424 1027.90

Table 10.3: Different Interval prediction models for the altitude prediction (Airbus A320),
with a reference point at FL180 and a 10-minute look-ahead time.

The interval prediction results are shown in Table 10.3. The second column shows the
percentage of predictions, computed with instances from the validation set, that actually fall
within the 95% predicted interval (MIP measure defined in Chapter 6). The third column
shows the mean interval size of this obtained interval (MIS measure defined in Chapter 6).
The fourth column indicates whether the model is a predictive interval model (passes the
MIP test described in Chapter 6). Any model which is not an predictive interval model is
distinguished by the “X” in its fourth column. The final column displays the Equivalent
Gaussian Standard Deviation (EGSD) measure which is an interval prediction model’s
efficiency measure. The model having the smallest EGSD value is the most efficient model,
for more details see Chapter 6. Table 10.3 is also divided into four vertical parts. The
first part contains the BADA results. The second part describes the conventional interval
prediction method applied upon the neural network regression and the loess regression
models. The third part describes the results of our proposed methods and the final part
shows different linear interval prediction methods.
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We can observe that point-mass models give much wider intervals than the regression
models. Loess based interval prediction models and particularly “Var K” and “Fixed K”
provide reliable predictive interval models being much more tighter than the BADA model.
We can also observe that our proposed interval prediction methods (“Var K” and “Fixed K”)
have the smallest reliable envelope and they are also the most efficient interval prediction
models. Then we have the conventional interval prediction models (“Loess Conv” and
“LS-SVM Conv”) and next linear models which are still more efficient and reliable than
BADA models. It is important to note that these intervals are computed on the climb
phase which is really hard to estimate.

Table 10.3 shows that our proposed predictive interval methods provide the most effective
models. Now, our goal is to compare in a very detailed manner the precision, reliability,
efficiency and envelope tightness of our models with their most efficient competitors. If we
compare our introduced methods with the most reliable method, we have to select “Linear
Tolerance”. However “Linear Tolerance” is considerably less efficient and it only begins to be
useful for β ≥ 0.99. We have seen that “Loess Conv.” gives the most effective solutions after
“Var K.” and “Fixed K”. For this purpose we will use EGSD plots and MIP plots (described
in 6.4.3) to compare the performance of “Var K.”, “Fixed K” and “Loess Conv.” on our
dataset. For each dataset, the EGSD plot compares the efficiency of the tested models and
the method having the highest line in this plot is the least efficient one. MIS plot compares
the envelope width of reliable models. The method represented by the bottom line provides
the most reliable envelope in the MIS plot. Note that in the MIS plotted each model is
plot until its failure MIP (described in 6.4.3). Once we have compared methods based on
their envelope size and their efficiency, the MIP plot will help us to compare their precision
and the reliability of interval prediction models. The best model in this plot is that which
is represented by the nearest line to the upper side of the “Nominal MIP line”. For more
explanations on these plots see 6.4.3.

By looking at Figure 10.3, we can see that when the nominal MIP is greater than or
equal to 0.85, the “Loess Conv.” model loses its efficiency and Figure 10.4 shows that the
“Var K.” model is the tightest reliable model. In the same time, Figure 10.5 compares their
failure MIP and precision. We can see that they have the same failure MIP 0.97, but “Var
K.” and “Fixed K” are more precise models than “Loess Conv.”.

10.5 Conclusion

In this chapter, we have applied several methods to the prediction of altitude. The aim
was to compare these methods when predicting the altitude of climbing aircraft 10 minutes
ahead, starting from an initial point at flight level FL180, and possibly using the past
trajectory to improve the prediction. Radar and Meteo data recorded over two months
(July 2006, January 2007) was used to build a dataset of explanatory and target variables.
A principal component analysis of this data allowed us to reduce the dimensionality from
10 to 15 significant components, instead of the 76 initial explanatory variables. The models
are compared by performing a 10-fold cross-validation on a set of 1500 climb segments. Our



10.5. CONCLUSION 197

● ● ● ● ● ●

●

● ● ●

●

0.
85

0.
90

0.
95

1.
00

Nominal MIP

N
or

m
al

iz
ed

 E
G

S
D

 V
al

ue

75 77 80 83 85 87 90 93 95 97 99

● ● ● ● ●

●

● ●

● ● ●

●

●

● ● ● ●

●

●

●

●

●

Var. K
 Fixed K. 
Loess Conv.

Figure 10.3: EGSD plot for the aircraft trajectory prediction datasets. The lowest line
denotes method that yields most efficient band. This measure ignores the reliability.
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Figure 10.5: MIP plot for the aircraft trajectory prediction dataset.
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results show that the regression methods perform significantly better than the point-mass
model. This is not surprising as the former learns from the observation of the past trajectory,
whereas the point-mass model uses the same standard values for most parameters (mass,
power reduction, target speeds) for all aircraft. The linear regression method is efficient,
although not as efficient as the loess regression method.

From an operational point of view, the proposed methods could be applied to the
detection of potential conflicts between trajectories. The current approach of the controller
is to isolate the entire vertical path of a climbing aircraft. Suppose that an aircraft (A)
wants to climb until 10000 feet, so the controller will not let other aircraft (B) enter the
segment 0 to 10000 feet of the climbing aircraft (A). Consequently, our interval prediction
methods could be used to provide a relatively narrow probabilistic interval allowing us to
detect conflicts with a great look-ahead time. In future work, we shall try to improve the
loess approach by introducing elements of the point-mass model in the predictors, and by
testing other robust methods. Since the regression models had efficient results, we can
use bigger datasets and random effect regression models to have a production level model
working with different aircraft types, destinations and trajectory prediction phases. Another
parallel plan could be to conduct a more thorough analysis of the available data, to obtain
less noisy data. We could then learn the aircraft trajectory in a specific operation mode,
thus giving a better chance to the point-mass model.





Conclusion

This thesis has focused on high confidence two-sided interval prediction methods and their
application to aircraft trajectory prediction. Our contributions are based on the classical
frequentist probability framework. However we did not restrict them to aleatory model,
so we also proposed a possibilistic representation of our statistical models. We began
the first chapter with a review of the uncertainty frameworks that address both aleatory
and epistemic uncertainty within the regression context. We explained that quantitative
possibility distribution can also be viewed as a family of probability distributions. This pos-
sibility distribution contains all the probability distributions that are respectively upper and
lower bounded by the possibility and the necessity measure [Didier 06]. Then we described
different types of statistical intervals in the frequentist statistics and we proposed possibility
distributions that encode these distinct kind of intervals. Possibility distributions encoding
tolerance intervals and prediction intervals are also new concepts that we introduced in this
work.

Then we extended our work in the regression context. We provided a review of interval
prediction methods in the fixed regression design of the frequentist statistic. One common
category contains methods that consist in building a least squares or mean estimating
regression model and then employ some kind of statistical inference technique to predict such
intervals. Another classical method is based on quantile regression models. We reviewed
different types of intervals and described their frequentist interpretation. We also took
advantage of this work to address a common interval prediction method in the Machine
Learning community. However, most practitioners of this community usually employ this
conventional inference for predicting interval such as prediction intervals, tolerance intervals
and simultaneous tolerance intervals. We dedicated the first section of Chapter 5, to
explain this conventional technique and its drawbacks. We introduced the following notions:
predictive interval concept, predictive interval model, a predictive interval model test and
two interval prediction measures. Predictive intervals of a linear model can be obtained with
tolerance intervals for regression and confidence interval on quantile regression but they
can provide wide intervals. So we explained how to tune the confidence level of tolerance
intervals for regression and confidence interval on quantile regression in order to obtain
efficient and reliable predictive interval models. Next, we introduced predictive interval
models for local linear regression. These models provide intervals which contain at least a
desired proportion of the conditional distribution of the response variable given a specified
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combination of predictors. They can be obtained with tolerance intervals for regression or
confidence intervals for regression quantiles but these concepts have only been treated for
linear models so far. The originality of this work is to extend this concept to local linear
models. Our method does not neglect the regression bias and finds intervals that work
properly with biased regression models. We have also seen that all these methods can also
be used for possibilistic regression with crisp input and output data.

Our predictive interval models are based on local linear regression. We assume that
the mean regression function is locally linear and the prediction error variable (Yi − f̂(xi))
has, locally, almost the same distribution. The idea behind this method is to exploit the
local density of prediction error in the neighborhood of the query point x∗ to find the
most appropriate intervals that contain the desired proportion of response values Y (x∗).
For this purpose, we use tolerance intervals on prediction errors. They are obtained with
a fixed and variable neighborhood method. We use the leave-one-out or 10-fold cross
validation errors of the regression function to obtain the predictive intervals. These errors
are obtained based on a local linear estimation which could be done by any bandwidth
selection technique. Once the prediction errors have been found, we can use them to obtain
our non-parametric predictive intervals. For this purpose, we need a second bandwidth,
which is the tolerance interval bandwidth. The LHNPE bandwidth is always included in
the regression bandwidth. One must not confuse our predictive intervals with bandwidth
selection methods for local polynomial regression. Local linear regression needs a bandwidth,
but is not just a bandwidth selection method. In the same way, our predictive interval meth-
ods are interval prediction methods which require a bandwidth on the local prediction errors.

Figure 10.5 displays the positions of our methods compared to the state of the art.
Our method differs from conventional least-squares approaches to find confidence inter-

vals on the unknown conditional mean function because it takes into account the sample
size and finds confidence intervals on inter-quantiles of the local distribution for the re-
sponse variable f(x) + ε, while the conventional methods just estimate asymptotic global
inter-quantile for the conditional response variable (or the conditional mean estimate). Most
practitioners of the Machine Learning community usually estimate such predictive intervals
by another conventional interval prediction method. We have seen that this method has
a very small area of application and does not take into account the sample size. In the
experimental part, we observed that it is one of the most unreliable predictive intervals
techniques. Contrary to quantile regression, our method is based on the local linear least
squares model, so one can obtain both the conditional mean function and the predictive
intervals. Another main difference is that quantile regression gives estimations of quantiles
which on average, finds the true quantile function but our method proposes predictive
intervals which contain at least a desired proportion of the conditional response variable.
Quantile regression may sometimes be more robust than least-squares estimators but it
suffers from several problems. One of these problems is the absence of a conditional quantile
function. It can occur if the conditional variance of the error distribution is not a function
of predictors. Consider the case when the conditional quantile function is different from the
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conditional mean function. We know that the conditional mean estimator converges faster
than the conditional quantile estimator [Koenker 05]. Thus estimating intervals by quantile
regression may be less efficient than using least-squares methods. Besides, it is important
to note that quantile regression also suffers from the crossing quantile problem which is
not present here. Our proposed methods are in the class of least-squares based interval
prediction methods, so they take advantage of their fast convergence. However they are
more reliable and efficient than the other members of this class (conventional methods).
This is because our methods take into account the sample size and find confidence intervals
on inter-quantiles of the local distribution for the response variable whereas the conventional
methods just estimate asymptotic global inter-quantiles of the conditional response variable.

The experimental part tests our proposed method to find “predictive intervals models”
and “simultaneous predictive intervals models”. In this chapter, our proposed predictive
interval models, other conventional interval prediction methods, linear quantile regression,
confidence intervals on linear regression quantiles and a non-linear quantile regression
method are applied on nine different benchmark regression datasets. The results show
that our approach performs very well. It is significantly more effective than other methods
and remains the most reliable non-linear interval prediction method. The advantages and
drawbacks of our methods compared to the other ones are listed below:

Advantages of our approach

• It is the most reliable interval prediction method for non-linear least squares models
in the experiments.

• It takes into account the amount of data available in the neighborhood to find the
best trade-off between quantity of information and precision of the prediction.

• It does not ignore the non-parametric regression bias.

• It can be used with model having heteroscedastic errors.

• It directly addresses the problem of having predictive intervals that contain at least
the desired proportion of response values. It is not designed to work asymptotically
and also works with small datasets.

• It does not suffer from the crossing quantiles effect.

• It provides one model for two-sided interval prediction.

• It is simple, reliable and effective.

• It is based on local linear regression, which is a well-known regression method.
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Drawbacks of our approach

• It is currently just based on local linear regression.

• It has a greater computational complexity than conventional and quantile regression
interval prediction methods.

We explained our experiments on the simultaneous predictive models with KNN regres-
sion. This part mentioned our results published in [Ghasemi Hamed 12c]. The results show
that our method performs very well on large datasets. In the case of datasets with small
sample sizes compared to the number of variables, our method is less reliable, but it is still
better than the conventional interval prediction method with KNN.

Finally, we have applied several methods to the aircraft trajectory problem. The aim
was to compare these methods when predicting the altitude of climbing aircraft 10 minutes
ahead, starting from an initial point at flight level FL180, and possibly using the past
trajectory to improve the prediction. Radar and Meteo data recorded over two months (July
2006, January 2007) were used to build a dataset of explanatory and target variables. A
principal component analysis of this data allowed us to reduce the dimensionality from 10 to
15 significant components, instead of the 76 initial explanatory variables. The models were
compared by performing a 10-fold cross-validation on a set of 1500 climb segments. Our
results show that the regression methods perform significantly better than the point-mass
model. This is not surprising as the former learns from the observation of the past trajectory,
whereas the point-mass model uses the same standard values for most parameters (mass,
power reduction, target speeds) for all aircraft. The linear regression method is efficient,
although not as efficient as the Loess regression method. From an operational point of
view, the proposed methods could be applied to the detection of potential conflicts between
trajectories. Our interval prediction methods could be used to provide a relatively narrow
probabilistic interval allowing us to detect conflicts with a big look-ahead time.

Future Work

For future work in imprecise probability, we propose the use of tolerance intervals instead
of confidence bands to infer p-boxes from statistical data. In case of predictive intervals, we
have several horizons: The easiest and most promising idea is the extension of our two-sided
predictive intervals to one-sided predictive intervals where they can be directly compared
with confidence intervals on regression quantiles. One can also extend the predictive interval
models on local linear regression to predictive interval models on any regression function,
i.e. support vector machines. Interval prediction in time series models may be the next
application of our methods.

The aircraft trajectory prediction may be improved by using bigger datasets with more
trajectories and more aircraft types. In this case, we may better model this problem by
random effect regression models. Another parallel plan could be to conduct a more thorough
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analysis of the available data, to obtain less noisy data. We could then learn the aircraft
trajectory in a specific operation mode, thus giving a better chance to the point-mass model.
This prediction problem could also be studied by other statistical prediction models such as
times series and stochastic process model and so on.
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Glossary

ATM Air Traffic Management.

bba basic belief assignment.

BLUE Best Linear Unbiased Estimator.

cdf cumulative distribution function.

CTP distribution Confidence Tolerance Possibility distribution.

DFCTP distribution Distribution Free Confidence Tolerance Possibility Distribution.

EGSD Equivalent Gaussian Standard Deviation.

iid independent and identically distributed.

KNN K-Nearest Neighbors.

LLR Local Linear Regression.

LOO Leave-One-Out.

LPR Local Polynomial Regression.

LS-SVM Least Squares Support Vector Machines.

MSE Mean Squared Error.

OLS Ordinary Least Squares.

RMSE Root Mean of Squared Error.

SCI Simultaneous Confidence Intervals.

SDA Symbolic Data Analysis.
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SVM Support Vector Machines.

TBM Transferable Belief Model.

WLS Weighted Least Squares.
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