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Abstract

Large distributed systems are often built by assembling off-the-shelf (OTS) compo-
nents developed independently. The current approach is to interconnect their APIs
manually. This is ad-hoc, complex, tedious, and error-prone.

To address this issue, Varda offers a higher-level language, motivated by a vision
of safe-by design. To express a system, a programmer describes its architecture,
involving OTS components, using well-defined entities and constraints. To provide
safety, the compiler performs static verification, generates a correct-by-construction
implementation and inject dynamic checks. To enhance programmers’ productivity,
Varda offloads the boilerplate plumbing to the compiler. To improve performance,
the compiler applies property-preserving optimisations (e.g., component inlining).

Our experiments show that Varda applications are compact, exhibit modular and
reusable design, and have a modest run-time overhead.

Keywords: Distributed System, Programming Language, Composition, Optimisa-
tions, Safety
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Résumé

Les systèmes distribués sont souvent construits en assemblant des composants prêts
à l’emploi (OTS) développés indépendamment. La pratique actuelle consiste à
interconnecter manuellement leurs API. Cette méthode est complexe, fastidieuse et
sujette aux erreurs.

Pour résoudre ce problème, Varda propose un langage de haut niveau prenant en
compte la correction des systèmes dès la conception. Un programme Varda décrit
l’architecture du système à l’aide d’entités et de contraintes formelles. Le compilateur
vérifie statiquement l’architecture, génère une implémentation correcte et injecte
des tests dynamiques. Pour gagner en productivité, Varda automatise la génération
du code d’interconnexion. Pour améliorer les performances, le compilateur applique
des optimisations préservant la sémantique du système.

Nos expériences montrent que les applications Varda sont compactes, modulaires, et
ont un surcoût modeste à l’exécution.

Mots-clés : Systèmes distribués, Langage de programmation, Composition, Optimi-
sation, Correction
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Part I

Introduction





Distributed systems are everywhere, from smartphones to data centers. A distributed
system is an assembly of logical units (compute or storage) located on different
nodes, which communicate and coordinate together to provide a common service
to other systems, services or apps to end users. Distributed systems range from
multi-agent systems to large-scale systems for parallel data processing. A computing
unit may be a process, an actor, a physical or virtual machines, devices, containers
and so on. As opposed to a parallel system, a distributed system is not necessarily
homogeneous, composed of loosely coupled units, has important inter-unit latency
and suffers from unavoidable asynchrony and failures.

Distributed systems are at the core of our society’s critical system, such as telecom-
munication or financial transactions. For instance, we are witnessing a technological
convergence between distributed systems and telecommunication (e.g., 5G core
network). The COVID-19 pandemic has further accelerated the digital transforma-
tion of our societies and has reinforced Cloud integration in our daily lives. Our
appetite for remote human interaction (e.g., social network), data processing and
collaborative work rely on complex distributed system, capable of ingesting data,
storing and processing them, while guaranteeing privacy and consistency to some
extent.

Such distributed systems are complex to design, develop, deploy, maintain and
debug. They can fail in many ways, and they are exposed to many threats: crashes,
asynchrony, network outages, etc.

Their intrinsic complexity is one of the major issues of distributed systems. This
complexity is mainly due to the fact that they are composed of many elements,
each having its own behaviour, (informal) specification, protocol, state, failure
model, security model, etc. Moreover, the interactions between these elements are
often under-specified, asynchronous and non-deterministic. Combined with the fast
growth of distributed systems and their messy integration, the intrinsic complexity
of distributed systems makes them hard to understand, reason and debug.

For instance, according to the 2021 Facebook Papers leak, the tangle of systems
processing user data is such that it was impossible to know what personal data
is processed by what systems and when. Untangling this situation was a major
engineering challenge for the company. This implies to redesign and rearchitect the
whole data processing pipeline, composed of several distinct systems. Internally, the
company estimated the time cost associated with this redesign around 750 years of
engineering work1.

1https://www.documentcloud.org/documents/21716382-facebook-data-lineage-internal-
document
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A popular approach to decrease complexity is to re-use and assemble existing
components (e.g., libraries, services, processes, etc.) often off-the-shelf or developed
independently [60]. Actors, services (or microservices), virtual machines and
containers are all mechanisms for reducing complexity and for composing and
reusing components. Each component is dedicated to providing crucial services such
as data processing, storage, synchronisation primitives and resource management.

In sequential programming, reusing libraries and frameworks is well established.
Strongly typed, narrow procedural interfaces and encapsulation limit the opportu-
nities for errors. However the situation darkens for distribution because existing
approaches for managing this assemblage are less rigorous and disciplined than for
sequential code. Typically, a component in a distributed system runs as an inde-
pendent process or actor, which communicates through a message-based API, e.g.,
REST. This process lacks structure, is time-consuming, and error-prone. Extensive
manual effort is required, including repetitive and standard code implementation.
Concurrent interactions introduce a high level of complexity due to the exponential
growth of possible combinations. Moreover, the lack of formal constrains hampers
the verification of the concurrent interactions.

Ad-hoc composition comes with its set of harmful bugs. Those bugs are hard to detect
and to fix: they are often non-deterministic, intermittent and hidden in some corner
cases of integration. Recall that the size of mainstream distributed systems is mea-
sured in millions of lines of codes doing asynchronous and concurrent interactions
with each other. For instance, a recent study reviews 120 cross-system interac-
tion failures in production-ready and mainstream systems [168], indiscriminately
in private services (e.g., AWS, Azure and Google Cloud) or in large open-source
projects (e.g., Spark, Flink). Therefore there is a pressing need for tools to support
the developers of distributed systems, at all stages: design, development, testing,
debugging, deployment, monitoring, etc.

Programming languages could help to prevent bugs and help programmers building
systems. Morever, a high-level programming language could improve programmer
productivity by providing well-defined primitives and abstractions to manipulate
different aspects of distribution. For instance, Charles, Grothoff, Saraswat, Donawa,
Kielstra, Ebcioglu, Von Praun, and Sarkar [41] ensures deadlock freedom by con-
struction using specialised parallel combiners. It can prevent subtle bugs, by either
using static analysis (e.g., ownership), or by high-level abstraction of consistency
or fault-tolerance policies. Most programming languages does not provide a global
vision of the system and hide the complexity of distribution. They tend to get ride
of the non-functional aspects of the system that are delegated to external tools

4



or configuration files. For instance, deployment, consistency, security and fault
tolerance are assumed to be addressed by a separate system, not programmable
with the same first-class abstractions.

In practice, programmers use programming language to build the different subsys-
tem, then the rely on external tools, as orchestration engines, to mechanise the
handling of non-functional properties. Unfortunately, these tools are not aware of the
application semantics. Moreover, they are not subject to the same rigorous design,
and analysis typically accorded to a traditional programming language [162].

At the other end of the spectrum, a specification language captures the functional
aspect of the architecture. However, this has four main drawbacks: real software
components have incomplete, evolving, heterogeneous and undocumented assump-
tions [162]; a specification language aims at expressing functional correctness, and
leaves out non-functional aspects; the system architecture evolves [79], [162]; and,
it adds an extra layer of indirection.

One needs a pragmatic high level approach for distributed programming interweav-
ing specification language and programming language in order to easily compose
heterogeneous distributed pieces in a sound way.

Our ambition is to raise the level of abstraction, thanks to a high-level language,
called Varda, with simple top-level requirements: provide strong guarantees, have
good performance, and automate common tasks.

Let us first consider the guarantees. To deal with off-the-shelf (OTS) components
that might misbehave in arbitrary ways, we require that a component interact
with its environment through a strongly typed interface, called its shield. A shield
specifies:

• The signatures of invocations that the component may emit or accept.
• Its protocol, a state machine formalising the pacing of invocations.
• Contracts, predicates over invocation arguments and component state.

Components can be logically nested, to provide encapsulation boundaries. A higher-
level component orchestrates the life-cycle of its inner components, spawning and
killing component instances, interconnecting them through communication channels,
intercepting and manipulating invocations and replies, and more generally computing
over components and messages. The protocol, hierarchy and interception constraints
are enforced by Varda.

Varda natively allows safe incremental development using interception. Interception
make it possible to interpose adaptor code, in order to evolve a component interface
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or to substitute a component with a similar one. Since interception is a first-
class object in Varda, the compiler ensures that the functional guarantees of the
composition are preserved.

Varda provides control over a few non-functional properties that are important for
efficient system programming. First, elasticity make it possible to dynamically create
or destroy component instances at run-time. Second, the developer may specify
where to place a component instance, e.g., on a specific node or co-located with,
or away from some other specific component2. Finally, Varda provides supervision
mechanisms for fault-tolerance and non-stop execution.

To automate common tasks, the Varda compiler generates the interconnection glue
code from the architecture. This includes supervising and responding to run-time
error conditions, creating and linking sockets, marshalling/unmarshalling language-
level data into messages and dynamic checking of safety conditions.

Varda provides built-in support for architecture optimisations. Our inlining mecha-
nism can compile away expensive inter-process communication between co-located
components. The idea is to group multiple logical units into a single execution
unit (e.g., a process, a container, etc.). The developer may write safe, modular
code and leverage interception without paying the overhead of crossing protection
boundaries. Therefore, programmers can split the business logic at fine grain in
multiple independent components - thereby leveraging modularity and incremental
programming - while preserving the locality of data and computation.

Publications

Some of the results presented in this thesis have been published as follows:

• L. Prosperi, M. Shapiro, and A. Bouajjani, “Varda: An architectural framework
for compositional distributed programming,” M. Mezini and M.-A. Koulali,
Eds., vol. LNCS 13464, Online, May 2022, pp. 16–30

During my thesis, I collaborate on other research topics. These efforts have led me
to contribute to the following publications:

2Note that, by design, placement is orthogonal to the encapsulation hierarchy. The developer may co-
locate components that are at different levels of encapsulation but are closely coupled; conversely,
she may place components that are at the same encapsulation level on different nodes, for instance,
for fault tolerance.
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• B. Martin, L. Prosperi, and M. Shapiro, “Transactional-turn causal consistency.,”
in 29th International European Conference on Parallel and Distributed Computing
(Euro-Par), Cyprus, 2023

• B. Martin, L. Prosperi, and M. Shapiro, “A new environment for composable
and dependable distributed computing,” in EuroSys Doctoral Workshop, 2020

Organization of this thesis

This thesis is divided into three parts. This introduction is Part I.

In Part II, we introduce the background of our work, formulate the problem, present
existing approaches and discuss requirements. This part is divided into two chapters:
Chapter 1 discusses the problem statement and the top-level requirements. From this,
we derive our requirements for composition-based programming. Then, Chapter 2
reviews the state of the art and positions Varda in the ecosystem.

In Part III, we detail our language, Varda, for safe component-based programming:
its expressiveness, how it works, design choices and applications to system program-
ming. This part is divided into four chapters. Chapters 4-6 describe different aspects
of Varda: respectively, the core programming model; extensions to support fine-grain
system programming with optimisations and provided guarantees. We conclude this
part with the Chapter 7, which discusses the compiler and the run-time system.

In Part IV presents an empirical evaluation to demonstrate the usability of Varda for
distributed system programming. We show that Varda successfully expresses safety
and improves programmer productivity with reasonable performance overhead.
Chapter 8 shows how to represent some common communication (e.g., streams,
pub/sub mechanism) and distribution patterns (e.g., two-phase commit). Chapter 9
presents a full-scale example: a geo-distributed database. It concludes with a
preliminary experimental analysis.

Part V, summarises our contributions; we discuss the pros, the cons and the scope
of our approach; and, we present our vision for future development of Varda and
research directions.
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Part II

Background





Problem statement and
requirements

1

Distributed systems suffers from an overwhelming intrinsic complexity that comes
from failure, asynchrony, network costs and system size. A popular approach to
decrease their complexity is to re-use and assemble existing components [60]. More-
over, when design distributed systems by composition, a developer has to balance
between the two high-level objectives [113], [114]: efficiency and dependability. In
the following, we discuss these objectives and identify the requirements to build a
programming language dedicated to system programmer. Last but not least, to ease
the adoption of such a language, we need to make the language yummy for system
programmers.

However all these objectives conflict (Section 1.5). There is no single right solution
for these trade-offs: it is application specific and it may evolve over time. Therefore,
we conclude this chapter by proposing pragmatic requirements to let the programmer
explicitly balance these trade-offs. Figure 1.1 summarise all the requirements
identified in this chapter. In the next Part, Chapter 3 derives and explains the design
of our language from these identified high-level requirements.

Methodology To evaluate the current state of practice, needs, frictions
for the developers, we conduct interviews with developers and architects
of distributed systems. They covered the following topics: platform for
collaborative development (Plateform.sh, XWiki and the DiverSE team
at IRISA/INRIA), Edge and IoT computing (AdLink and Concordant),
storage and data management (AntidoteDB and Scality), and blockchain
(Nomadic Labs).
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1.1 Composition

The existing ecosystem of languages and tools already covers the construction
of individual components very well, as well as network interaction technologies
between components (below the application layer of the OSI model). To take
advantage of the maturity of these technologies, we shall abstract them and focus
on composition and distribution-related properties (Requirement 1). One of the
best abstraction levels to describe systemwide features is architecture [82] since it
focuses on interconnecting components and it describes the overall system structure
and features. An architecture integrates all the blocks with their orchestration and
interconnection logic.

Programmers have a fierce appetite for composition and modularity since they ease
code re-use, written in various languages and possibly managed by multiple tenants.
Modularity enforces a separation of concerns between the different building blocks
such that each of them can be specified and built in isolation using dedicated tooling.
Therefore, the developer should be able to import arbitrary black box components,
built using any kind of technologies, in the architecture (Requirement 2).

Additionally, composition enables the incremental building of distributed systems.
This helps keep the system easier to understand and to get it right [113], [114].
The idea is to enrich the system step by step by either adding new elements without
changing the existing architecture or, by modifying the behaviour of the existing
architecture. To automate that and to ease the work of the developers, a language
must provide safe and built-in evolution mechanisms (Requirement 3).

Requirements Writing distributed systems, by composition : (1) program
composition while abstracting away non-distribution related functionali-
ties; (2) reuse existing code base and services written with heterogeneous
languages; (3) incrementally add new components and new features
without having to update the whole system.

1.2 Dependability

Building system by composition simplifies the design, the build and the verification
process of individual components [66], [178]. Each module has a limited complex-
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ity, which eases writing module specification1. This feature of composition is not
widespread enough. On the one hand, the literature extensively covers the verifica-
tion and testing of modules in isolation. On the other, in practice, according to our
interviews, existing code base is loosely specified. Therefore, one need a common
ground in between specification and system implementation. For this we enrich
the architecture such that it should formalise the individual components [59] or at
least their observable (Requirements 4); and specify how they communicate [@74],
[109], [128] (Requirements 5).

Reasoning about the dependability independently for each module is not enough.
The composition of modules may introduce new behaviours and some interesting
properties do not compose [60], [109] (e.g., linearisability in the general case) .
As a result, building systems by composition uncovers a new source of bugs: the
cross-system interaction (CSI) failures [168]. Programmers introduce those bugs
when they interconnect systems that do not enforce strict functional specifications.
Indeed, the current manual, ad hoc approach to composing OTS components cannot
ensure safety properties since interconnecting informal API ,thanks to network
layer and configuration files, do not provide strong guarantees [@74], [128]. For
instance, a classic stream processing infrastructure is made up of Apache Kafka (0.7
million LoC) for ingestion, Apache Flink (2 million LoC) for processing and Apache
Zookeeper for synchronisation (170,000 LoC). Under the hood, Flink leverages
systems like Hive (2.2 million LoC) and HDFS (700,000 LoC) to manage the data.
Tang, Bhandari, Zhang, Karanika, Ji, Gupta, and Xu [168] counts 23 bugs in the
previous stream processing architecture: 12 CSI failures between Flink and Kafka,
8 CSI failures between Flink and Hive, 3 CSI failures between Flink and HDFS.
Note that having access to the sources does not change significantly the situation
due to the complexity of each component. To address this, programmers should
formally specify the orchestration and the communication of the composed object
(Requirements 6).

Beyond the functional correctness of the composition, the dependability of a dis-
tributed system encompasses various non-functional properties [113], [114] since
they directly affect the capacity of a system to provide the services for which it
was deployed. Often non-functional correctness encompasses2: availability, the
capacity to keep functioning, especially under load or failures; consistency, defined
as the absence of contradictions between the observable; fault tolerance is the system
ability to behave in a well-defined manner once a fault occurs. Therefore, the

1Specification tells you what a system do whereas the code tells you how.
2In this paper, we omit a major system requirement : security.
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specification language should be able to express some non-functional properties
(Requirement 7).

Having a specification separated from the implementation could ease the introduc-
tion of subtle errors when programmers fill the gaps in between [39], [60]. For
instance, the Nomadic Labs team encodes the blockchain specification in Coq and
writes its implementation in Ocaml. At the time of the interviews, the Coq specifica-
tion is orthogonal to the Ocaml implementation: engineers bridge the gap by hand.
Therefore, there is a lot of back and forth between specification and implementation
to evolve the design of the system. To avoid this, a mechanised process should ensure
that implementation of the architecture follows its specification (Requirement 8).

The former separation makes it difficult to maintain a specification that keeps
pace with the evolution of systems. Indeed, programmers adapt systems during
their lifetime to meet new requirements, to scale up or down, or even to preserve
compliance when the regulation updates. To address both issues, programmers
should write the architecture and its specification in a single place to reason about
the global behaviour of the system (Requirements 7). In addition, this helps fight
against the lack of global vision, which identified as one major practical limitation
when building large-scale systems by composition. System designers often struggle
with the cartography of their systems and lack a global and up-to-date view of the
system to reason on the overall properties.

Requirements Ensuring safety implies the programmer to be able to:
(4) formalize the individual components; (5) specify how they com-
municate; (6) specify the orchestration and the communication of the
composed object; (7) formally write the whole architecture with addi-
tional specification in a single place to reason about the global behaviour
of the system. (8) ensure that the composed implementation follows
those specifications.

1.3 Efficiency

The individual efficiency3 of components and network links is outside the scope
of this work since existing tools are mature and performed well. Leaving aside

3Efficiency encompasses traditional performance metrics (such as CPU, memory or energy consump-
tion).

14 Chapter 1 Problem statement and requirements



individuals, the overall performance of a distributed composition is mainly correlated
with scalability, elasticity4 and its ability to run non-stop [113], [114]. During our
interviews, system programmers require to be able to programme and control at fine
grain these three features to correctly design and build high-performance systems.
Since the features depends on the semantics of the application and directly impact the
capabilities of the system, the architecture should model this logic as orchestration
code (Requirements 9-11). Under the hood, non-stop execution often requires
asynchronous communication between components (Requirement 9). Furthermore,
elasticity requires that the orchestration is aware of the underlying resources, e.g.,
nodes location, and can reason about them (Requirements 10- 11) .

Programmers often have to finely tune the network layer that interconnects the com-
ponents according to the nature of the system. For instance, to programme efficient
distributed storage in a cluster, they need efficient serialisation and asynchronous
communication. Conversely, they leverage brokers (e.g., Kafka or RabbitMQ) to
implement multi-cloud communication to have a single logical exchange point
that provides interesting properties like adaptable routing logic, back-pressure and
message persistency in case of a network outage. Hence, programmers should
have on-demand access to low-level primitives when this matter for performance
(Requirement 12), for instance, to customise the network.

A side effect of the quest for modularity is scattering the logic across a large number
of isolated execution units (e.g., containers or processes). This dispersion induces
a significant performance overhead due to context switching and remote commu-
nication (latency, message marshalling and unmarshalling). For instance, a recent
feedback on the monitoring platform of Prime Video shows that moving from a dis-
tributed microservice architecture to a monolithic architecture significantly improves
performance5. Their initial serverless architecture suffers from two main problems:
the cost of managing orchestration and the cost of sending video images between
the different components. Engineers re-architected the system by collocating the
orchestration and the different analysers in a single service.

Addressing this issue implies to preserve the locality of data (resp. computation)
either in the same execution unit or in close enough units to reduce communication
cost. On the one hand, programmers should be able to co-locate components in the
same nodes ( Requirements 11). On the other hand, they should be able to group

4Scalability is the ability of a system to handle a varying demand for work by consuming a proportional
amount of resources (e.g., nodes). Elasticity denotes the capacity of a system to dynamically enlarge
(or shrink) to sustain the load.

5https://www.primevideotech.com/video-streaming/scaling-up-the-prime-video-audio-
video-monitoring-service-and-reducing-costs-by-90
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logical units (i.e., components) in one execution unit to avoid context switching.
Moreover, both optimisations must be easy to apply throughout a project’s life cycle
as performance bottlenecks often appear on system use and vary according to its
maturity. To enhance productivity and development efforts, a programmer should
apply these transformations orthogonally to the logical structure of the architecture
without rewriting the system (Requirement 13).

Requirements Writing distributed systems, by composition, with good
performance, requires the developer to be able to: (9) build non-stop
and asynchronous systems; (10) support a form of elasticity; (11) control
non-functional and performance-related properties, such as component
co-location; (12) on-demand access low-level primitives when this mat-
ters for performance, for instance to customize the network; (13) apply
architecture optimizations, for instance compiling away expensive inter-
component communication.

1.4 The ergonomic problem

Fulfilling the previous requirements is not enough, system developers should accept
the proposed language. This is a difficult and non-specific to distribution languages.
It often exists a gap between what the programmers use and what are the available
mature tools. For instance, the C (resp. C++) language is still widely used in
system programming despite its lack of safety. During the last decade, memory
safety remains the most common vulnerability class [133].

Transitioning to safer language and tools requires that their design limits the frictions
with the developers [133]. Otherwise, programmers will not adopt them whatever
their quality and functionalities. Therefore, our language should be ergonomic for
system developers, it should:

• make unsafe things hard to do, however, the programmer must be able to
do them intentionally since system programming often requires to do so
(Requirement 15);

• increase programmer productivity in order to give incentive to use it (Require-
ment 14);

• simple enough and familiar for system developers (Requirement 16).
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During our interviews, we cartography the technologies and processes that the
system builder community use to programme distributed system. This cartography
highlights that 1. programmers are reluctant to use high-level distribution languages
because they fear to lose control on their system; 2. system specification is mostly
informal; 3. and system validation relies on manually writing tests.

Programmers tend to avoid distributed programming language since they fear loss
of control on the system and to struggle to find the origin of a bug or a performance
bottleneck. They use general-purpose languages such as C, C++ and Rust for
low-level backend and Python, Typescript for the exposed interfaces.

At first glance, this trend seems to go against the idea of relying on distribution-
specific abstractions to ease programming and to improve the dependability of
the system. However, programmers express the needs for new tools to handle
the inherent complexity of distribution and component integration. Tackle this
reluctance, while providing safety guarantees, demands to provide easily explainable
generated code (Requirement 17) and to let programmers specialise the building
blocks of the languages according to there needs (Requirement 18). For instance,
they should be able to update a memory allocator for a given component or to
embed their own implementation for a given network link.

Similarly, our interviews show that programmers rarely use existing solutions to
specify and verify distributed programs. Most of the time, system architects write
specifications in an informal language (e.g., English). From time to time, they
formalise small critical parts of the system. For this, programmers write the specifi-
cation using static verification tools, such as model checkers, to detect errors. For
instance, the Scality team use TLA+ [111] to model some synchronisation protocols.
Therefore, to reduce the developers’ frictions the core specification language of the
architecture should rely on well-known and used formalism: types and predicates
without fancy high-level logic.
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Fig. 1.1.: Our top-level objectives and the resulting requirements.

Requirements

Requirements To reduce the frictions with the developers, a new lan-
guage should: (14) relieve the programmers from repetitive program-
ming tasks; (15) do not hinder programmers, i.e., make unsafe things
hard to do but not impossible; (16) expose a familiar language entities;
(17) make the generated implementation understandable;(18) let pro-
grammers specialize the building blocks of the languages.

1.5 Sumup

Each of these aspects (modularity, efficiency and dependability) have inherent
trade-offs and are conflicting with each other. They lead unavoidably to trade-offs
when designing systems (e.g., CAP [25], FLP [77]). For instance, efficiency and
dependability conflict with each other. On the one hand, dependability often requires
strong component isolation to dynamically ensures some safety properties. On the
other, high performance requires zero-cost abstraction and to breach isolation to
avoid paying an extra overhead.
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There is no one-size-fits-all solution as they depend on the application requirements,
the expected environment and workloads, the available resources, etc. To be usable
in a large range of distributed systems, a high-language should provide a pragmatic
approach to let the programmer explicitly balance those trade-offs according to its
needs (Requirement 19). For instance, this means making costly verification and
dynamic checking optional. In addition, the language should guarantee strong
isolation by default, and on explicit programmer demand breach isolation for perfor-
mance. The key idea is to avoid forcing developers who do not need the expressive
power of an operation to have to pay for it (in terms of performance or of cognitive
cost). Therefore, one needs to expose an adaptable programming model composed
of simple and specialised building blocks [113], [114].

Requirement To let a programmers balance between those requirements,
our proposed language should (19) offer a wide range of simple and
specialized building blocks.
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Related Work 2
We see three categories of prior work: distributed programming languages, tools
for composing OTS modules, and tools that aim for reaching high-level guarantees
on systems. Accordingly, we structure the following state of the art along those
three categories. We discuss our three top-level objectives (i.e., dependability,
efficiency and ergonomic) through the following sections for each sub-category of
prior work.

2.1 Languages for distributed programming

In one form or another, programming languages are the main tools that develop-
ers use to create their systems. On the one hand, using a programming language
specialised for distribution programming improve programmer productivity by pro-
viding well-defined primitives and abstractions to manipulate different aspects of
distribution. On the other hand, it helps to prevent bugs.

This section is structured according to the main ways to abstract distribution in
languages. For each category, we present the expressiveness of the underlying
programming model and we discuss if it is suitable for system programming in
the light of the previous chapter. In particular, we discuss the following aspects:
1. does it ease composition of OTS modules? And, how easy it is to evolve a
system? 2. what guarantees does it provide on the resulting system? 3. what degree
of performance control does it offer programmers? We conclude this section by
a synthetic comparison of these different categories and we highlight the main
borrowings of Varda. We defer all non-programming languages (e.g., specification
or interface language ) to the following sections (Sections 2.2-2.3).

2.1.1 The actor model

The actor model [97] enables to program a modular system at fine grain. A system
built using the actor model is composed of a set of "atomic" execution units, called
actors, that interact by exchanging messages. An actor is a "process" that responds
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to messages it receives by making a local decision, creating other actors, sending
messages and determining how to respond to the next message. An actor may modify
its own private state, but cannot affect another actor except through messages.

An actor alternates between two states: ready to accept a message or busy processing
a message. A turn is the processing of a single message by an actor until completion
[55]. An actor’s turn terminates without interruption. Within one actor, turns do not
interleave.

There are a lot of actors frameworks implemented from scratch (e.g., Erlang [16]) or
on top of mainstream languages (e.g., Akka [@8], Orleans [30] or Pony [@47]).

Composition Actor programming model requires that the entire system is rewrit-
ten using actors. It does not provide any mechanism to embedded existing OTS
components. Programmers have to write their own actors to wrap existing com-
ponents. Moreover, it prescribes using other forms of concurrency control (e.g.,
threads or classical futures) in conjunction with actors [92], [167]. There exists a
few experimental actor languages that mix actor with futures [84], [136].

To compose actors, or group of actors, a developer programs the sending of messages
and their reception, using callbacks. There is no specific combiners for composition
except method calls and native streams.

Adding new features to a system means creating new actors and interconnecting
them with the previous system by updating the existing code. There is no built-in
mechanism to evolve the actor-based architecture of a system. Programmers have
to manually update the source code. However, some actor runtimes (e.g., Erlang)
provide hot-swapping mechanisms to apply the update on a running system without
downtime.

Dependability

The model actor model provides strong isolation between actors. By nature, an actor
cannot directly alter the memory of another actor. It can only communicate through
messages. This is a useful property as it prevents memory-based deadlocks. Note
that, message-based deadlocks are still possible.

Most of the existing framework guarantees extend the actor isolation to failure:
the failure of an actor does not make other actors crash. In addition, most of the
frameworks provide, to the programmer, building blocks to react to failure. The most
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common mechanism is to provide a supervision tree, parent actors can monitor the
execution of their children, and can react to their failure [16]. Bykov, Geller, Kliot,
Larus, Pandya, and Thelin [30] discharge the programmer from writing the reaction
logic to a failure. It leverages actors state persistency and optimistic transactions to
automatically recover for an actor crash. Each incoming request starts a transaction.
On transaction success, the actor persists its new state. Otherwise, it discards its
transient state and restart the transaction.

Actor models do not come with specific static analysis nor verification tools. Most
of the framework relies on the type system of the host language. For instance,
Akka [@8] uses the Scala (resp. Java) type systems to detect illegal sends of
message: a message can only be sent to an actor that has a callback that can handle
its type.

Regarding our Requirement 7 for dependability, the actor model suffers from a
major issue: it tangles the representation of the system, especially for large systems.
Programmers have to invest a lot of efforts to understand, to maintain the code,
and to track bugs or performance bottlenecks. According to Boer, Serbanescu,
Hähnle, Henrio, Rochas, Din, Johnsen, Sirjani, Khamespanah, Fernandez-Reyes, and
others [23] this is intrinsic to the actor model since its usage tends to facilitate the
appearance of the callback hell [70], which denotes the situation where callbacks
are nested within other callbacks several levels deep.

Efficiency

Most actor frameworks leverage the underlying runtime to dynamically optimise the
network communication between runtime node or to replace messages with shared-
memory communication when the communicating components are on the same
runtime node [@8]. Moreover, the Orleans [30] runtime can dynamically optimise
the system by controlling the activation placement. It uses a load balancing and load
shedding policy with the ability to migrate actors between servers to balance the
load at run time.

Conversely, the compilers often do not consider optimising the architecture. On the
one hand, host compilers are unaware of the distribution semantics of the program.
On the other, built in compilers focus on generating efficient local code [155].

Non-functional properties In a traditional actor system, the developer remains
responsible for the creation, the placement, the discovery, the recovery, the scaling
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and the load-balancing of actors. Even with actors, this remains complex and
tedious. Two kinds of works address this issue, the first one by exposing high-level
primitives to programmers [157], the second one by automating the management
of actors [30].

Sang, Roman, Eugster, Lu, Ravi, and Petri [157] augments the actor model with pro-
grammable scalability overlay. Programmers specify high-level bottleneck conditions
(e.g., an excessively high volume of messages exchanged among specific actors),
with their corresponding mitigation actions (e.g., co-locate actors).

To automates all of these aspects, Bykov, Geller, Kliot, Larus, Pandya, and Thelin
[30] introduces virtual actors. A virtual actor is a stateful actor that supports multiple
instances, called activations. An activation is the base execution unit. It has the
same structure as the virtual actor. Upon creation, its state is a copy of the virtual
actor one. During its life, the activation has a dedicated local state that evolves
independently from the virtual actor state and from the other activations state. Upon
termination, the runtime merges the state of the activation into the state of the
virtual actor.

For instance, Orleans can automatically and transparently scale up or down according
to the load with a small overhead. When the load increase, the runtime spawns
new activations. Each activation state is hydrated using the persistent state of the
virtual actor. When the load decrease, the runtime terminates some activations to
free resources. The runtime merges the state of the terminated activations into the
persistent state of the virtual actor.

2.1.2 Dataflow programming

Dataflow programming provides a simple programming model to design the dis-
tributed pipeline of computation. A dataflow program is a directed graph with
nodes representing operations and edges representing data dependencies between
computations [17].

Traditionally, dataflow implies a complex engine to schedule the execution of the
graph, to dispatch the operators on nodes, and to manage the data at run time.
Most of the time, this engine automatically provides the following non-functional
properties: elasticity, placement optimisations, replication, and fault tolerance.

Large-scale data processing widely use dataflow platforms [7], [19], [33], [37],
[56], [138], [175], [176]. Indeed, the dataflow paradigm is well suited to describe
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the pipeline of the data. Moreover, dataflow frameworks integrate well with external
services that emit or store data. A dataflow program can natively ingest (e.g., from
a Kafka) or sink data to external services (e.g., a database).

Composition As we said, the dataflow paradigm is well suited to embedded OTS
components that consume or produce data. For this, a programmer warps the
OTS inside an operator. Mainstream dataflow frameworks provide out of the box
integration with classical OTS (e.g., brokers and data stores).

To compose two operators, a programmer simply needs to interconnect an output
"port", i.e., an output data stream, of the first operator to an input "port" of the other
operators. The number of output (resp. input) data streams of an operator depends
on its type. For instance, a filter operator has one input and one output data stream
whereas a join operator has two input data streams and one output data stream.

This composition mechanism suffers from a major limitation: it does not support
the composition of subgraphs. A programmer has to manually list the operators of
the first subgraph and bind their output streams with the correct operators of he
other subgraph. This limitation comes from the fact that the dataflow graph does
not support nested operators. Indeed, a node cannot abstract a whole subgraph.

This hinders the evolution of the dataflow program: programmers have to manually
update the whole program. Adding new features to a dataflow program means
creating new operators and interconnecting them with the previous system by
updating the existing code. For instance, to replace a map operator by a subprogram,
the programmer has to explicitly add all the subprogram operators to the main
program as top-level operators and to correctly bind them with the pre-existing
operators.

Dependability

Most of the dataflow engines [19], [33], [56], [138], [176] automatically provide
fault tolerance, high-availability, and a limited form of consistency guarantees. In
this case, consistency often refers to guarantees on message delivery between two
operators (e.g., at most once, at least once or exactly once delivery).

Interestingly, the graph structure eases a global view of the program, with the
appropriate visualisation tool. Moreover, the structure eases static analysis and
helps the engine to manage fault tolerance and high-availability, and to optimise the
program, as we shall discuss later.
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However, the graph structure often support a limited level of detail. Operator
interfaces only define their input (resp. output) streams along with the type of
the events they carry. The internal of operators are completely hidden and the
programmer cannot specify their observables. Often, the compiler only checks that
the interconnected operators are compatible, i.e., that the output type of an operator
is compatible (i.e., a subtype) with the input type of the other operator.

Efficiency

Thanks to the graph representation, dataflow programs support a wide range of
optimisations: graph rewriting at compile time and graph scheduling at run time.
Most of the dataflow frameworks apply them in sequence [10].

At compile time, graph rewriting provides nonlocal optimisations. A graph rewriting
optimisation transforms an input dataflow graph in an equivalent1 one to improve
the performance of the computation [98], [102]. For instance, one common optimi-
sation goal is to reduce the network cost of the execution. The compiler can easily
optimise the program structure. The literature explores various kinds of rewriting.
For instance, operator permutation can reduce the network cost by moving light
weight operators first [98]. Operator grouping aims at reducing latency by increasing
data locality [102]. It merges multiple operators in a logical one to avoid splitting
them on distinct nodes.

At run time, the graph scheduling maps the operators to the underlying infrastructure
(i.e., nodes) while avoiding overloading nodes and minimising various (dynamic)
metrics [150], e.g., the execution time or network cost. Moreover, some works take
the heterogeneity of the infrastructure into account to allow data processing on a
hybrid Edge-Cloud infrastructure [33]. Most of the engine scheduling relies on an
external declarative configuration. Developers cannot program their behaviours
inside the dataflow application. In some cases, programmers can refine operators
with declaratively annotations to locally specialise the scheduling. For instance, with
Flink [33], they can specify an upper bound on the number of replicas per operator
in order to guide operator replications, that is use to improve throughput.

The same limit holds for the management of other non-functional properties (e.g.,
fault tolerance, elasiticy, etc.). They are most of the time non-programmable in the
dataflow model, but they are often configurable using external configuration files.
Moreover, the programming model cannot represent resources as places or network
links.

1In terms of observable.
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There is a variant of dataflow programming, namely synchronous dataflow pro-
gramming [91], [116], [117], that get rid of the runtime engine. This variant
takes advantage of the compile time knowledge of the dataflow graph and of the
underlying infrastructure. Therefore, the compiler can statically convert the dataflow
program into sequential programs and statically schedule them on the underlying
infrastructure. However, it does not support dynamic evolution of the scheduling
when the load changes.

2.1.3 Distributed reactive programming

Distributed reactive programming generalises the dataflow paradigm [18], [72],
[123]. It provides high-order nodes, i.e., an operator can encapsulate a set (or a
hierarchy) of operators. Moreover, programmers do not have to explicitly define
dataflow graphs. They can write classical programs where the different remote
entities are interconnected by shared reactive variables.

A reactive variable is a special type of variable that automatically updates its value
in response to changes in the system or other variables it depends on [17]. For
instance, let us consider the following variable declaration: x = y + 1. Whenever
the value of y changes (on a remote node), the value of x is automatically updated.
From the underlying dataflow graph perspective, this declaration adds a directed
edge from node x to node y.

Under the hood, the reactive runtime ensures the propagation of changes [73]. They
are various flavours of propagation (e.g., a push or pull model) [18], [123]. Some
of them specialise the semantics of the reactive variables. For instance, propagation
changes can either happen in one direction or in either direction. Bidirectional
means on our previous example, that the engine 1. updates x when y changes; and,
2. updates y when x changes.

As a result, the dataflow graph cannot be known statically anymore. The runtime
engine has to dynamically maintain it.

Composition With reactive programming, sharing variables is the core mechanism
to compose remote entities. Therefore programmers can reuse classical programming
entities for modularity [101], [123] (e.g., functions, modules, objects, etc). For
instance, compared to traditional programming, actors and distributed objects,
reactive programming leads to code that is more composable and more compact
than with the actor model [156].
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Likewise, embedding OTS components is external to reactive paradigm, program-
mers should use the host language mechanisms, if any, to do so.

Dependability

Compared to the actor model, reactive programming get ride of the callback hell
since programmers can program linearly their application. As a result, the code is
easier to understand and to maintain [129], [156].

Compared to dataflow, the dynamicity of the graph limits the benefits of static
analysis and hinders the ability to automate some dependability features. Often the
runtime only provides guarantees (e.g., consistency and fault tolerance) that covers
the propagation. For instance, Drechsler, Salvaneschi, Mogk, and Mezini [68], [69]
provides different level of consistency guarantees for variable propagation to avoid
glitches2.

To cover the logical components, programmers often have to write their own logic.
Mogk, Baumgärtner, Salvaneschi, Freisleben, and Mezini [134] propose an extension
that automatically stores and recovers program states from crashes while preserving
weak consistency. The runtime automatically propagates errors using the graph of
dependencies. Moreover, developers can integrate their own fault-tolerance logic
leveraging an onError guard on reactive variable .

In addition, dynamically maintaining the dependency graph complicate the handling
of faults. Indeed, this mechanism leads to a tighter coupling between the dependent
components of the application, making them less resilient to network failures and
may reduce overall scalability [68], [69].

Efficiency

The reactive manifesto [@24] argues that a system built in a loosely coupled manner,
that can be executed in an asynchronous and non-blocking fashion is able to be
scalable, resilient, elastic and responsive. On the one hand, the asynchronous
and non-blocking nature allow the programmer to easily design their system to
match their requirements in terms of scalability. On the other hand, likewise for
dependability, it limits what the runtime can do to optimise the execution. Moreover,

2Glitches are updating inconsistencies that may occur during the propagation of changes. They can
come from the order of instruction (eliminate glitches by arranging expressions in a topologically
sorted graph - i.e., decency ) or by distribution (network failures, delays, and lack of a global
clock).
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reactive programming is not designed to expose resources (e.g., places, links, etc.)
which make it difficult to program with fine grain control on the performance
execution. This is exacerbated by the complexity of the runtime execution model,
which makes it difficult to predict performance.

2.1.4 Multitier programming

Multitier languages, also known as tierless programming, seek to make developing
distributed systems closer to programming single-host applications by making logical
entities orthogonal from the distribution unit and their location.

Traditionally, programmers split their application in multiple logical tiers (i.e., mod-
ule) according to the running location of the code [170]. For instance, a web
application is often split in two tiers: the client and the server. With multitier
programming, the programmer can combine functionalities from different tiers in
the same logical unit (e.g., an object). For instance, the developer can modularise
the web application per features. Then, write linearly a function for each feature that
embedded the client and server code. It is up to the compiler to automatically splits
the compilation unit into artefacts, one for each tier, and to generate the necessary
communication code in between [141], [158].

Composition Multitier paradigm enables the programmer to changes the bound-
aries of its logical entities to fit the system features and not the placement of the code.
This paradigm does not impose a particular composition mechanism. It depends
on the nature of the logical entities (i.e., function, object, etc.), which are often
imported from the host language. Likewise, support for OTS components is external
to tierless programming.

Various works hybridise the multitier paradigm with the reactive one [154], [173].
Their goal is to use the reactive variable to interconnect logical units while leveraging
the ability of mulititier to avoid modularising the program according to tiers. In
practice, this reduces the complexity of a distributed system since programmers do
not need to scatter the logic of the same feature in multiple code entities.
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Dependability

Since programmers can program linearly, this paradigm reduces the callback hell [104],
[130]. However, apart from limiting the complexity of the application3, tierless does
not provide additional guarantees.

As a negative side effect, programming without modularising according to tiers
scatters the communication code in the application since tiers often model the com-
munication boundaries. Weisenburger, Köhler, and Salvaneschi [173] addresses this
issue by adding a layer of static checking to ensure properties about the placement of
data and computations. For this, programmers annotate the application with types
that represents tiers and their legal static communication topology. For instance,
they can specify that a client cannot communicate directly with a storage backend.
Then, programmers type their reactive variable with the appropriate tier type, i.e.,
placement. Based on this additional information, the type system enforces that the
programmer cannot access remote data without explicitly asking for it and that the
dynamic communication respects the static topology.

Efficiency

Tierless main purpose is ergonomic, not efficiency. For instance, the compiler
can generate communication code between tiers (e.g., data marshalling, network
communication). However, it does not enable specific optimisations nor control
non-functional properties.

Most of the works on tierless programming focus on web orchestration [43], [153],
[158], [171]. As a result, they do not take system programming into account. By
mixing the reactive and multitier paradigms, ScalaLoci [173] proposes a general
programming paradigm and apply it to program a stream processing platform engine.
However, when it comes to controlling over performance, this work suffers from the
same drawbacks as those of reactive programming.

2.1.5 Serverless programming

Serverless computing shifts the focus towards writing and deploying code, instead
of dealing with infrastructure management [93]. Developers program with known
abstraction, functions, and focus on the application logic. They do not need to

3Which indirectly limits the likelihood introducing bugs.
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bother with the distribution aspects of the application. The paradigm abstracts
the infrastructure and the underlying resources: the concept of the server is not
visible at the application logic. The underlying platform transparently manages the
infrastructure [71], [159]: it automatically handles parallelism, placement, elasticity
and fault tolerance.

Serverless computing is an approach where the program runs short-term function
in response to events [27]. The quantum of computation is a serverless function.
Functions are asynchronously triggered by external events. The source of an event
could be a database updates, an incoming API request, a scheduled event (by the
runtime) or a call from another function. When a function is triggered by an event,
the serverless platform automatically creates an instance of that function to handle
the event. The instance is “destroyed” when the function has finished executing and
outputs a response.

Composition The core composition mechanism is the function calling.

Very often serverless application orchestrates various OTS components. Furthermore,
these applications rely on external services to persist data (e.g., databases, object
storage). To embed them, programmers manually write serverless functions that call
the exposed OTS API (e.g., a REST API).

Dependability

Most of the serverless platforms automatically provide fault-tolerance and guarantee
failure isolation between independent functions.

Conversely, serverless complicates the modelling, verification and overall reasoning
on applications. On the one hand, the cognitive complexity increase due to return
of the callbacks hell. Functions can be triggered by an external event, breaking
away from the more natural sequential reasoning. They also often interact with
various remote services which makes difficult any semantic reasoning. On the other
hand, the programmers move the state to external data stores because most of the
mainstream platforms propose stateless functions or have arbitrary limitations on
the size of messages that can be sent between functions (e.g., AWS EventBridge is
limited to 256KB per message). This requires programmers to reason upon parallel
and concurrent access to these states, and to handle partial execution failures [27].
This is notoriously difficult.
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Efficiency

Serverless is designed to build applications on top of existing distributed systems,
rather than the other way around. Hence, the nature of serverless goes against
providing fine grain control on the execution by system developers.

2.1.6 Summary

Table 2.1 compares the previous languages according to the requirements we iden-
tified in Chapter 1. As a result, we observe that none of these languages offers
mechanisms to ease transparent composition of remote components. In addition,
they offer limited expressiveness and checking (either static or dynamic) capabil-
ities to increase the developer’s confidence in the correctness of the composition.
Conversely, for efficiency, the trend is to automate non-function properties (e.g.,
fault tolerance, elasiticy) and to make it transparent for the programmer. This work
well for developers that build high-level applications. However, it is not suitable for
system developers since they are seeking control (Chapter 1).

Position of Varda From actors, we pick the overall execution model of a component
(i.e., send/receive messages and spawn children).

We follow the core principles of the reactive manifesto: loosely coupled components,
asynchronous and non-blocking interaction. However, to provide enough control
over performance to programmers, we avoid introducing dataflow graph nor variable
dependencies. We use a programming model closer to the execution model.

Unlike tierless, we do not try to bring distributed programming closer to program-
ming single host to avoid restricting the control of programmers on the distribution
behaviours. As tierless, our compiler can automatically generate specific artefacts
for specific targets without having to split the architecture in terms of tiers.

Varda follows a completely different approach than serverless. Serverless abstracts
away too many infrastructure details that matter for performance. Indeed, both ap-
proaches have distinct objectives: the former one target system developers whereas
the latter focuses on making it easier to build distributed applications, built on top
of existing distributed systems.
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Actor model Dataflow Reactive Mulititier Serverless

Expressiveness
Execution unit actor operator any execution entities function
Communication message stream shared vari-

able
variable function call

Composition
Built-in OTS 7 3 7 7 3

Composition mecha-
nism

7 7 7 7 7

Program evolution manual manual manual manual manual
Hot swapping 3 (3) 7 7 (3)

Guarantees
Isolation 3 3 7 7 (3)
Additional specifica-
tion

7 limited limited 7 7

Verification 7 limited 7 7 7

Global vision 7 3 7 7 7

Efficiency
Non-functional prop-
erties

manual or au-
tomatic

automatic manual 7 automatic

Expose resources
(e.g., place, network)

7 7 7 7 7

Runtime optimisa-
tions

3 3 7 7 -

Architecture optimisa-
tions

7 3 7 7 -

Ergonomy
Code generation 7 7 7 communication

plumbing
7

Varda’s borrowings 3 7 7 3 7

Tab. 2.1.: Comparison of the four main language classes for distributed programming
according to the requirements we identified in Chapter 1.
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2.2 Flexible system composition

There exists to our knowledge four main (and non-exclusive) ways to tackle the
composition problem at the scale of a large architecture: API interconnection,
orchestration engines, interception mechanism and composition languages.

2.2.1 API and Interface Description Languages

An Interface Description Language (IDL) formalises the API of services. Then,
the IDL compiler generates invocation skeletons, which automates marshalling
and unmarshalling arguments into messages. Popular examples include Google’s
Protocol Buffers [@86] (Protobuf), Apache’s Thrift [@78] and OpenAPI [@3],
[@165], which permits to model an HTTP-based API.

Sharing a common IDL enables interoperability between components written in
various languages. For instance, to make a Go client interoperable with a Java server,
a programmer describes a Protobuf client interface in Go (resp. server interface in
Java). Then, the IDL compiler generates the client and server stubs that ensures the
translation between Go (resp. Java) data structures to Protobuf messages. Finally,
to interconnect both components, the programmer has to manually configure the
Python client to connect to the Java server address.

IDLs offer limited support to specify properties about components. They only
specify simple signatures. For instance, they do not specify the legal (resp. illegal)
observable of components they encapsulate. Furthermore, they are often limited to
RPC-style protocols which prevent them to model complex interactions. As a result,
mainstream IDLs do not prevent cross-system interaction failures [@74], [168]

Similarly, IDLs do match our efficiency requirement. Most of the mainstream IDLs
lacks orchestration and deployment logic. As a result, they cannot express non-
functional properties about the composition. Corba [172] is an exception, however,
it is not suitable for system programming as we will explain below. In addition to
its IDL, Corba models the orchestration logic. For this, Corba exposes distributed
objects that can invoke methods on remote objects, pass parameters, and exchange
data transparently. Under the hood, Corba uses middleware and gateways to run
the orchestration logic independently of the composed components. However,
this additional layer of abstraction induces a performance overhead and tends to
complicate the overall architecture [85].
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2.2.2 Orchestration and composition engines

An Orchestration engine is responsible for automating the management and the
coordination of components (e.g., containers or VMs), ensuring their elasticity,
availability, fault-tolerance and efficient utilisation of resources engines such as
Docker Swarm [@63], Kubernetes [@2] or OpenStack [@4]. Moreover, they are
powerful tools to automate deployment and to control network topology.

By design, they compose and orchestrate OTS components by interconnecting
their network interfaces [@5], [28], [@62]. They are business logic agnostic.
They only requires that developers packages each component in their format (e.g.,
Docker image or VM image). Often, programmers rely on IDL to make components
interoperable. Then, they rely on orchestration engines to manage them.

One of the major interests of this engine is that they transparently handle the
deployment and various non-functional properties of the system. For instance,
Kubernetes [@2] can provide persistency at the file-system granularity. Moreover,
programmers can express simple placement policy using containers’ annotations,
called labels. For instance, the programmer can specify that a container must be
collocated with another one or should be replicated on every node of the cluster.
Programmers can also use the engine to scale the system. One common way
is to replicate containers [@2], [@63] while using under the hood distributed
system (e.g., DB or file system) to share state when needed. However, this is
completely orthogonal with the specification of the system: scalability properties are
not included in the system specification and, conversely, the engine is unaware of
the semantics of the business logic.

In addition, these engines support rolling updates of application deployments,
allowing new versions to be gradually rolled out while maintaining the availability
of the application. In case of failures, the orchestration engine can perform rollbacks
to the previous stable version. However, there is no built-in mechanism to evolve
the description of a system architecture. Programmers have to do it manually.

Orchestration engines cannot enforce interesting composition safety properties [@74],
[128] since they are run-time tools that interconnect network APIs, but are unaware
of application semantics.
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2.2.3 Interception mechanisms

To support incremental building of systems, programmers often indirect communica-
tion through a proxy. The proxy enables evolving part of the architecture without
modifying the other components. Indeed, the proxy interposition is often transpar-
ent for the pre-existing components. It integrates well with orchestration engines.
For instance, network proxy interposition is the mainstream solution to add access
control or load-balancing to containerised HTTP services.

Under the hood, transparently adding a proxy requires a form of interception. Inter-
ception denotes the addition of an indirection layer between a set of communicating
entities without altering the code (resp. configuration) of these entities.

Interception is a common problem, which has prompted many creative approaches.
For instance, firewall features can be used for redirection and interception at the net-
work layer, such as iptables [@1] or mesh services [@26], [@103] in containerised
environment. Reverse proxies (e.g., Nginx or HAProxy) intercept and modify the
communication between two communicating components to handle encryption or
load-balancing for instance. Service workers [@137] redirect requests within a web
browser. This enables, for instance, to interpose a persistent cache transparently.
These mechanisms are very flexible, but they do not provide any semantics and
provide no correctness guarantees since they are intercepting APIs calls and network
packets.

Conversely, aspect-oriented programming language (AOP) [106] leverages a built-
in interception mechanism to increase modularity by allowing the separation of
cross-cutting concerns (e.g., logging). It does so by adding behaviour to the existing
code without modifying the code itself. Instead of separately specifying which code
is modified, it provides a global entity call "cross-cutting concerns" that permits
updating globally the code structure. The programmer encapsulates the crosscutting
logic into an additional piece of code called advice. Then, the advice is applied at a
remote pointcut [110], [140], [145], [147]. A remote pointcut is a set of execution
points on remote execution units. For instance, a pointcut can be the entry point
of a function. Then, the logging advice is applied at the entry point each function.
Applying an aspect, i.e., an advice on a pointcut, leverages a form of interception:
the advice transparently intercept the flow of the local program.

Even if AOP is aware of the application semantics, it does not match our requirements.
It limits the ability to develop programs independently [166]. Indeed, its interception
mechanism is not designed to intercept network communication. As a result, it
requires that all the intercepted components are written in the AOP language.
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Moreover, it increases the cognitive load of the programmer since it complicates the
control flow [49], [166].

2.2.4 Coordination and choreography languages

A coordination/choreography language tackles the composition problem from a
head-on perspective. It models the interactions, coordination and synchronisation
between multiple remote components. Such a language aims at writing coordination
plans from a global point of view. Then, the compiler generates a decentralised
implementation of the coordination logic [31], [32].

Choreography languages handle OTS components by design. Perez De Rosso, Jack-
son, Archie, Lao, and McNamara III [148] goes one step further and explores how
to build a web application by configuring and composing concepts drawn from a
given catalogue. However, they do not provide built-in evolution mechanisms. The
classical method is to manually update the high-level choreography description and
then recompile it to generate a new implementation.

Various works [29], [89], [135] specifies the semantics of choreography languages
using various variants of process calculi. However, they provide a limited way to
express additional constraints on the behaviours of the embedded components.

Although appealing for their global vision they propose, those languages lack fine-
grained control on low-level implementation details that matters for performance.
Often, they are not designed to program non-functional properties since they hide
resource management logic and since they do not model the non-functional be-
haviours of independent components. Indeed, they focus on capturing the behaviour,
communication patterns, and dependencies among these components while ignoring
the internals of the components. As a result, most of the choreography languages
are designed to orchestrate existing web components [13], [89], [@105], [135]. To
the best of our knowledge, there is no choreography language for system program-
ming.

2.2.5 Summary

Table 2.2 compares the previous approaches (e.g., IDLs, orchestration engines, chore-
ography langauge and interception) according to the requirements we identified in
Chapter 1. As expected, all this tools provide a solid support to compose OTS com-
ponents. They differs on their evolution supports: high-level tools (e.g., distributed
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AOP and choreography) ease the updating of the program whereas orchestration
engines provide hot-swapping to deploy a new version of the program without down
time. Interception helps on system evolution by providing a way to transparently
add new features to the program.

All of them increase programmer productivity either by generating part of the intre-
connection code (e.g., IDLs and choreography) or by automatising the deployment
of the program (e.g., orchestration engines).

Nevertheless, none of these tools satisfactorily meets our requirements in terms of
efficiency and dependability. They do not provide a way to specify the behaviour of
the systems. Moreover, IDls, orchestration engines and interception are often not
aware of the semantics of the components they compose. In the same way, IDLs
and interception cannot express and program non-function properties. Although
orchestration engines automatically handle scalability or fault tolerance, they go
against requirements (Chapter 1) since programers have to declaratively configure
it outside the application. Finally, choreography languages are not designed to
program non-functional properties since they hide resource management logic.

2.3 Building dependable distributed systems

There are two main and non-excluding approaches to build correct systems. The first
one relies on the usage of carefully design constructs provided by the programming
language to eliminates whole classes of bugs (Section 2.3.1). The second focuses on
validating the system by checking that it follows its specification. First, this requires
to formalise the specification of the system (Section 2.3.2). Then, to validate
the implementation against its specification (Section 2.3.3). Existing validation
approaches can be split into two groups: proof-based and (systematic) testing.The
gold standard is to directly generates, or extracts, the implementation from the
specification to avoid subtle glitches in between [39], [60].

2.3.1 Dependability in programming languages

Two of the major specific issues with distributed programming is to correctly handle
failures and consistency which denotes the absence of contradictions between the
(concurrent) observable. To address these issues, some specialised programming
languages provide higher abstraction to provide a safer distribution programming.
Some works [66], [@119] explores the use of synchronous models to ease fault
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IDLs Orchestration en-
gines

Interception Choreography lan-
guages

Composition
Built-in OTS 3 3 3 3

Composition mecha-
nism

(3) 3 3 3

Program evolution 7 7 3 3

Hot swapping 3 3 7 7

Guarantees
Isolation - 3 3 7

Additional specifica-
tion

limited 7 7 limited

Verification limited 7 7 limited
Global vision (3) 7 7 3

Efficiency
Non-functional prop-
erties

7 automatic 7 (7)

Expose resources
(e.g., place, network)

7 7 7 7

Runtime optimisa-
tions

7 (3) 7 7

Architecture optimisa-
tions

7 7 7 7

Ergonomy
Code generation (3) 7 7 3

Tab. 2.2.: Comparison of the four main ways to tackle the composition problem according
to the requirements we identified in Chapter 1.
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tolerance and to simplify the design of distributed systems. Others, like serverless
languages or Bykov, Geller, Kliot, Larus, Pandya, and Thelin [30], offer a runtime
mechanism that automatically and transparently handles failures.

Various languages provide consistency abstraction to easily program a system with
the desired consistency level (e.g., weak, causal or strong). Language-level consis-
tency [12] allows programmers to write the system with additional annotations to
materialise the dependencies and the appropriate consistency properties. Then the
compiler can automatically analyse the consistency properties of entire applications.
Most of those languages rely on type-checking and guards (pre/post conditions)
on methods to specify the consistency. Type checking can be sufficient to achieve
flow-level consistency [118], [131]. Embedding a flow-level consistency in language
implies adding consistency annotation or leveraging an external specification. Object-
level consistency provides fine-grain specification of consistency that describes the
behaviour of the objects and not just a label in a lattice. Therefore, they rely on
guards [132], [164]. Last but not least, Milano and Myers [131] enables to compose
safely different OTS storage systems that provide different consistency levels.

The main interest of having high-level programming entities in a lan-
guage is that programmers cannot anymore make mistakes that are not
expressible in the language. However, in the context of programming
systems, developers still have to be able to program unsafe things as in
Rust [@6] for performance. As we shall discuss later, Varda design is a
balance between providings carefully design constructs and the ability
to use arbitrary code.

2.3.2 Specification language and formal methods

A specification language describes what should be done by a system whereas a
programming language expresses how the system will perform a task. Existing
specification languages for distributed systems fall into three categories: general-
purpose specification language, architecture description languages and, domain-specific
specification languages4. For the latter, we focus on protocol specification languages
since supporting other domains in Varda is future work. There are additional

4By domain-specific we mean that the language is designed to express properties of a specific domain
(e.g., security, consistency, etc.).
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works that cover consistency and synchronisation specification [100], [139]; or, that
models deployment steps of microservices architectures to express both qualitative
and quantitative properties related to both safety and efficiency [40], [53].

Note that, without additional tooling (e.g., code generation/extraction or applying
theorem prover on the implementation) a specification language manipulates a
model decoupled from the system implementation. The following section discusses
how to bridge the gap between the specification and the implementation.

General purpose specification language

Most of the time, system programmers use them to model small critical parts of a
system since it requires a tremendous effort by programmers [142]. As you can see
in Figure 2.1, the models are often very small compared to the size of the systems.
Often programmers use them to explore the effects of concurrency or failures in their
program. For instance, one common use case is to model and verify the correctness
of consensus primitives or synchronisation protocols [38], [142].

TLA+ [111] is one of the most used5 language by system programmers. It expresses
the semantics of systems in terms of Temporal Logic of Action. TLA+ logic specifies
system properties over time. It could express complex behaviours, safety and liveness
properties, fairness, and temporal ordering constraints. Moreover, it includes a model
checker that checks systematically that the desired properties hold on the model.
PlusCal [112] provides an imperative programming language that looks like pseudo-
code on top of TLA+. PlusCal eases the specification of sequential algorithms since it
is closest to the programmer habits [38], [142]. Recent work [11] extends PlusCal to
work well on modular and distributed systems. Namely, it provides built-in entities
to model communication channels and message passing.

According to Newcombe, Rath, Zhang, Munteanu, Brooker, and Deardeuff [142],
using formal specification when building systems is particularly relevant to find
subtle bugs and to make aggressive performance optimisations. Indeed, reasoning
on a formal model could give enough understanding to get ride of corner checks/-
conditions since programmers could achieve strong confidence that execution flow
would never enter this case [177].

specification are also important to better shape systems. Programmers can use them
to explore the design space on a simplified model before starting implementation.

5Based on our interviews and the work of Newcombe, Rath, Zhang, Munteanu, Brooker, and
Deardeuff [142].
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Fig. 2.1.: Usage of TLA+ on AWS services, extracted from Newcombe, Rath, Zhang,
Munteanu, Brooker, and Deardeuff [142]. To have an idea of the size of the
systems, the number of lines of code of an open-source lock manager is about to
170 KLoC (Apache Zookeeper) and databases are one order of magnitude greater.

For instance, Maude [22], [46] explores how to formally prototype distributed
systems. A Maude program models a system in terms of rewriting logic. Then the
core Maude model checker verifies safety properties. In addition, a probabilistic
model checker estimates performance of the design.

Architecture description languages (ADLs)

ADLs follow a head-on approach to build a system by composition [48]. First,
programmer models the architecture. Then, they often provide code generation to
generate the final implementation [80], [81], [122], [126]. ADLs tend to be inde-
pendent of the implementation language(s) in order to build systems by assembling
pre-existing components and connectors [127].

We call architecture a description of the overall structure of a system [82]. In particu-
lar, architectural issues include interaction between components, either the protocols
for communication or data access. Architecture also encompasses non-functional
structural properties such as scalability. An ADL models the system’s architecture
using the following building blocks [81]: components, connectors, and architectural
configurations (i.e., topology). Most of the ADLs add those building blocks on top of
existing semantic theory (e.g., CSP, Petri nets, finite state machines).

A component is a unit of computation, or of data storage. It has a formally defined
interface that specifies its possible interactions with the external world in terms of
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messages, operations and shared variables. An interface also includes additional
constraints on the observable behaviours of a component.

To communicate, two components should be connected through a connector. A con-
nector represents the underlying communication channel. ADLs exposes connectors
as first-class entities [58], [151]. Moreover, to provide efficient communication, a
developer may reuse external program connectors in the ADL (e.g., shared variables,
SQL links, or sockets). Such a connector may not correspond to a compilation unit
in the implementation.

In general, an ADL supports a limited form of evolution [48], [127]. A programmer
can modify a component interface as long as its type signature remains compatible
with the previous one, based on inheritance or subtyping. However, an ADL cannot
express an architecture transformation, i.e., changing the topology of a subset of
components without updating each component one by one. For instance, to impose
access control to a set of components, a programmer has to divert the connectors
to the controller and has to create new connectors between the controller and the
components.

Protocol specification languages

A communication protocol is a set of rules that governs interaction between agents.
It is a formal description of the messages, in what order and under what exchange
conditions.

A protocol specification language is a formal language for describing protocols.
There are protocol specification languages [44] based on three main formalisms: on
execution traces, on information objects, and on session types.

Trace expression Castagna, Dezani-Ciancaglini, and Padovani [34] and Ferrando,
Winikoff, Cranefield, Dignum, and Mascardi [76] specify protocols using execution
traces, i.e., sequences of messages. For instance, Castagna, Dezani-Ciancaglini, and
Padovani [34] give the semantics of each language expression as a set of admissible
traces. It provides three expression operators to build protocols: sequential composi-
tion (concatenation of traces), choice (union of traces), and shuffle (interleaving of
traces).

These languages can express multiparty protocols, i.e., protocols that involves agents
with distinct roles: e.g., a buyer, a seller and compliance officer. In a session, i.e.,
an instance of a protocol, each agent has a role. Then, for each agent, the compiler
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projects the protocol to a local perspective, such that the agent is only aware of the
part of the protocol that involves it, i.e., messages from it or to it.

Information object Chopra, Singh, et al. [45] and Singh [163] declaratively
specify protocols using information objects. An information object describes a set of
transition rules. A rule specifies the sending of a message between the two roles.
Each message is associated with a set of input or output parameters, i.e., a set of
named variables. The order of messages is implicit. It derives from the dependencies
between the parameters of the rules. For instance, can send a given message type
only if it has a binding for the input parameters, i.e., if it knows a value for the given
variables. Output parameters mean that the reception of the message binds those
output parameters.

In this approach, there is no overall description of a protocol. Rather it describes the
perspective of each agent separately, and the protocol emerges from their respective
behaviours. Therefore, the projection of a "global" protocol to an agent perspective is
trivial. Conversely, this could undermine confidence in the modelling of the protocol.
Indeed, programmers could forget to model some interactions between agents since
it tangles the representation.

Session types A session type encodes a protocol definition as a type [61]. Moreover,
the programming model provides well-typed operations on sessions: sending a
message, receiving a message, selecting a labelled branch of a protocol or receiving
the chosen branch. The following Chapter 4 details examples of what session types
can express.

A session type describes the current type of the message that can be received or
sent6, and the type of the continuation, i.e., the type of the session after receiving
or sending this message. Moreover, session types have been extended in various
ways to support recursive protocols multiparty [51], [99] broadcast [57], [108], or
timing constraints [143].

The type system guarantees [54] that

• the exchanged data has the expected type,
• the structure of session types matches the structure of communication (i.e.,

the operations on a given session),
• the session channel has the expected structure, and

6It can also specify that the session is over.
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• the session channel is private, i.e., it is visible only by the communicating
parties.

Comparison Table 2.3 compares the different kinds of protocol specification lan-
guages. This work is inspired by Chopra, Singh, et al. [44]. It explores the following
dimensions:
Concurrency Does the language support specifying protocols in which agents may

emit and receive messages concurrently?
Extensibility Is the protocol language such that an agent may participate in multi-

ple, potentially unrelated protocols?
Asynchronous Does the language support asynchronous communication over

protocol?

Since developers often need to specify additional constraints on messages, we extend
these dimensions with the following criteria:
Dependent Does the language support predicates on the value of the message.

For instance, can we specify that two subsequent messages in a protocol are
increasing for some order?

Time-aware Does the language supports time delivery upper bounds on messages?

Compared to others, session types with extensions could express interesting con-
straints on the execution of protocols, i.e., time-bounds and constraints on the value
of messages. However, a session type protocol cannot model that distinct agents
should concurrently send (resp. receive) messages. It is not as restrictive as it seems
since an agent may abstract multiple running components. Moreover, Kouzapas,
Gutkovas, and Gay [108] extends session types with a parallel composition of session.
Last but not least, one of the main advantages of session types when designing a new
language is that session types are easy to integrate with existing type systems [115],
[144], [146].

For those reasons, we use session types as the basis of our protocol specification
language in the following part (Part III).

2.3.3 Bridging the gap between specification and code

Having a specification separated from the implementation could ease the introduc-
tion of subtle errors when programmers fill the gap in between [39], [60]. There
are two main approaches to bridge the gap: certification by proving (part) of the
implementation or by extracting the code from a formal proof (e.g., Coq extraction);
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Trace expression Information object Session types (with extensions)

Concurrency No Yes (No)
Extensibility No Yes Yes
Asynchronous Yes Yes Yes
Dependent No No Yes
Time-aware No No Yes

Tab. 2.3.: Comparison of protocol specification languages.

or, generating the code from a specification while embedding external (untrusted)
code.

Certified distributed system

There are two contrasting approaches to a certified distributed system: top-down,
by formally writing the system in a high-level proof language (e.g., Coq, F* or
Why3) then extracting the machine code from the formal model. For instance,
code in Ocaml, Haskell or Scheme can be extracted from Coq or Why3. Bottom-up,
by certifying an existing implementation in a mainstream programming language.
Often, this means importing a model of the system in a proof language and manually
proving properties about it.

Top-down Verdi [174] provides building blocks to implement and formally verify
distributed systems. Verdi is developed using the Coq proof assistant, and systems are
extracted to OCaml for execution. For instance, Verdi’s verified system transformers
(VSTs) encapsulate common fault tolerance techniques and offer a refinement
method to build systems. The developer can verify an application in an idealised
fault model. Then, he applies a VST to obtain an equivalent application in a more
adversarial environment.

IronFleet [95] stratifies the certification work in three layers following a top-down
approach: 1. First, developers formalise the overall system’s behaviour (specification
layer). 2. Then, they write an abstract distributed protocol layer and prove that
the protocol refines the specification layer. 3. Finally, they write an imperative
implementation layer and must prove that the implementation refines the protocol
layer. The first proof uses a TLA+-style technic whereas the second one leverages
Hoar logic reasoning. They successfully apply this approach to a Paxos-based
replication library and to a key-value store. The performance of their key-value store
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remains competitive, achieving 75% of the peak throughput of Redis, a popular but
unverified key-value store.

Certifying a distributed system requires tremendous effort of an order of magnitude
greater than the implementation. For instance, Gu, Shao, Chen, Wu, Kim, Sjöberg,
and Costanzo [88] provides a proof of functional correctness of a general-purpose
concurrent OS kernel. The certifier kernel is 6500 lines of C and x86 assembly. In
contrast, the proof script is 100KLoC.

Bottom-up A different path is to certify an existing code base written in a main-
stream programming language. The canonical approach is to translate the code
in a proof language then to prove its correctness manually. The translation is not
always possible, at least it requires that the programming language has a formal and
sound semantics. There are various works that aims at importing programs: Appel
[15] translates an existing C program into a formal Coq model. Chajed, Tassarotti,
Kaashoek, and Zeldovich [35] takes a subset of Go code with a strong semantics
and translates it into a Coq model. Moreover, Chajed, Tassarotti, Kaashoek, and
Zeldovich [35] provides tools to reason a bout Go concurrency, data structure and
file system with faults. For instance, using this tool, Chajed, Tassarotti, Theng, Jung,
Kaashoek, and Zeldovich [36] implements a verified concurrent and fault-tolerant
journalling system. The ratio between the code and the proof (about 1:19) is similar
to the top-down approach ratio (about 1:15).

Building certified distributed systems is a major success. However, these
frameworks require substantial effort and are often too complex to be
used by non-researchers. Moreover, the certification process is often too
monolithic: a huge challenge on complex system is to keep the proof
up to date with upates and bug fixes. Note that certification does not
prevents bugs that comes from an ill-defined specification.

Partially verified system

Recent specification languages can generate a correct7 implementation directly from
a formal specification [52], [59], [67], [90], [121]. This is the gold standard of

7Assuming that the compiler itself is correct.

2.3 Building dependable distributed systems 47



programming, as it ensures that the system’s specification is rigorously checked and
that the system’s behaviours does not deviate from the specification.

Compared with the previous approach, this approach is much lighter at the cost
of less confidence in the system correctness. The amount of effort to write the
specification is similar to that of Section 2.3.2. Moreover, the effort involved in
"verifying" the desired properties of the model is limited since, most of the time,
these languages relieve the programmer from this burden and automate it using
model checkers. In addition, the current approach gives programmers more control:
they could often import unsafe code snippets and specialise the code generation in
various mainstream programming languages according to the system needs. For
instance, Lingua Franca [@119] could generate TypeScript implementation for the
sub-system running in the web-browser and C++ implementation for the backend
running on a data center.

PGo PGo [90] generates a Go implementation from a Modular PlusCal specifica-
tion and it delegates the verification of the specification to the TLA+ model checker.
PGo suffers, as the subsequent top-down approaches, from a lack of control over per-
formance. For instance, a PGo program cannot define placement (Requirement 11)
nor the nature of the network links (Requirement 12). Conversely, the PGo compiler
generates efficient implementation. However, they do not provide any architecture
optimisations (Requirement 13).

Lingua Franca Lingua Franca [@119] focuses cyber-physical systems. The pro-
grammer writes a deterministic specification with holes to fill with unsafe code
snippets in various target languages (C, C++, Java or Typescript). Then, the com-
piler generates the implementation, which embeds the arbitrary unsafe snippets.
Therefore, Lingua Franca supports OTS natively. However, it does not provide com-
position primitives to help interconnecting remote components (Requirement 1-3).

The main goal is to prevent accidental non-determinism behaviours. To write
non-deterministic code, the programmer must explicitly express it [121]. Forcing
determinism implies strong assumptions on network delay, clock synchronisation
and a turn-by-turn execution. This conflict with our asynchrony requirement (Re-
quirement 9).

Beyond the guarantees provided by the execution model, LinguaFranca does not
offer additional tools to specify and checks a system.
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P P [59] unifies modelling and programming of asynchronous code into a single
language using state machines. A state machine represents each system component.
State machines communicate through events and callbacks. Then the P compiler
generates C code from the specification.

Programmers could model the behaviours of a state machine by defining safety and
liveness properties based on machine observables. For this they write a monitor, i.e.,
another state machine. A monitor observes a set of events during the execution of
the system and checks that various assertions and predicates hold on the observable
events. Moreover, the P compiler could erase monitors during code source generation
to increase performance.

Once the programmer has written the specification with monitors, P leverages
type-checking then model checking to ensure that the following properties hold.
The type checking ensures that the code is wellformed, i.e., that the compiler can
erase monitors and that statements are deterministic. Then, the model checker
ensures that safety and some liveness properties hold (up to some predefined depth)
. Moreover, the model checking pass ensures that each machine has a handler for
any kind of events it may receive.

To scale the size of a system that P can check, ModP [60] proposes a compositional
verification using modules. A module is a collection of state machines. The idea is
to decompose the system-level testing problem into a collection of simpler module-
level testing problems. Moreover, ModP offers a composition operator to compose
the specification of the modules. However, this ModP operator does not ease the
composition of components, i.e., state machine. As in P, developers must write
the communication logic manually in the internal code of the state machines (e.g.,
callbacks and sending messages). Conversely, P supports natively C OTS since it can
import arbitrary C building blocks (types, methods) during code generation.

Eventually, P suffers from the same limitations as PGo and Lingua Franca concerning
our requirements about efficiency and control. Developers cannot program place-
ment, nor model the network link nor use architecture optimisations to get ride of
certain communication and context-switching overheads.

2.4 Summary

Neither API description languages nor orchestration engines can express rich com-
position semantics that depends on the behaviour of the components. Conversely,
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Fig. 2.2.: Overview of prior work and positioning of Varda.

current specification and programming languages for distributed programming re-
strict programmer control on the system and do not give enough power to express
low-level and non-functional properties while keeping the system safe.

We believe that there is a sweet pot between specification languages and program-
ming languages for a high-level architecture language that provides enough control
over performance for system programmers while reducing the occurrence of bugs.
Figure 2.2 illustrates the positioning of Varda. Next Chapter discusses how we design
Varda, our language, to take advantage of this sweet pot to address the requirements
of Chapter 1.
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Part III

Contributions





Design and overview 3
Like most “new” languages, little about Varda is actually novel. We build Varda upon
prior language features. It tackles the composition problem from a new perspective:
trying to balance the requirements for system programming by composition with the
objective of providing a safe distributed programming model1. Its novel contribu-
tions include an interception-based programming model to ease composition and
performance optimisations to avoid paying the cost of modularity.

Classically Varda is composed of a language - subdivided in one sublanguage for
each top-level requirements -, a compiler that checks properties and generates glue
code. To support the generated code we provide a runtime and a library for each
target. A target denotes the target programming language of the code generation.
Figure 3.1 presents an overview of the Varda environment.

In Section 3.1, we discuss the design choices of Varda according to the requirements
of Chapter 1. Then we illustrate the usage of Varda from the developer’s perspective
while discussing the compiler work to build and deploy a system, in Section 3.2.
Note that, this chapter focuses on the main concepts of Varda. The details are
deferred to Chapters 4-7.

3.1 Design

As explained by Cheung, Crooks, Hellerstein, and Milano [42] language and compiler
for distributed programming has four main objectives: (1) to express a program
simply;(2) to provide guarantees on the behaviours of a program; (3) to generate
code; and (4) to perform optimisations. Accordingly, we structure the following
discussion along those four axes. Section 3.1.1 presents the expressiveness of Varda.
Section 3.1.2 presents the guarantees provided by Varda. Section 3.1.3 discusses
how Varda compiler eases the work of the programmer using code generation.
Section 3.1.4 shows how Varda it helps improve the efficiency of a system.

1Chapters 4-7 details our contributions.
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Fig. 3.1.: Varda overview.

3.1.1 Expressiveness

To express properties related to our three main categories of requirements, a Varda
program provides a global vision of the system that integrates the following abstrac-
tion levels:

The architecture describes the topology of the system in terms of components,
encapsulation and their interconnection [82]. An architecture is a set of
components, which communicates with asynchronous message-passing, with
their interconnection and orchestration logic. We extend this core minimalistic
language with architecture transformation to ease composition and evolution

The specification sub-language adds constrains over the architecture in order to
explicitly defines the admissible behaviour of the system. With this sublan-
guage, a programmer may add constraints on communication, interfaces, and
components and orchestration behaviours.

The non-fonctional sub-language makes programmable non-functional proper-
ties that are relevant for performance and fault tolerance (e.g., network, place-
ment). Moreover, this sublanguage exposes annotations to guide optimisations
(e.g., component inlining and co-location).
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Fig. 3.2.: A storage service with two OTS servers and load balancing

Architecture

We introduce the main concepts of Varda, based on a running example. Suppose
that you want to create a distributed storage service by assembling off-the-shelf
components. You might instantiate several copies of an existing storage server, for
instance RocksDB [@75], behind a load balancer, as illustrated in Figure 3.2. A
server executes get and put invocations. The load balancer is configured to accept
the same interface from clients, and to route a get to any server, and each put to
all of them; it awaits the response and sends it back to the caller. We defer the
details and the code snippets to the next chapter. The following sections focus on
the overall design.

The corresponding Varda program formalises a system architecture as a composition
of components. A component either describes a computation unit or a data store.
Each component is an independent execution, asynchronous. As actors, the execution
of Varda a component instance is composed of turns. Each turn runs without
interruption. On completion of a turn, the component suspends and waits for an
external event. On reception of an external event, the suspend component start a
new turn and process the event.

The developer can program a component entirely in Varda, which is Turing-complete.
Alternatively, it is possible to import, into the Varda architecture, foreign components,
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developed independently (and quite possibly in a different programming language),
for which we use the term “off-the-shelf (OTS).” An OTS component may, for
instance, be a library, an independent process or a REST service. The behaviour of
an OTS component may be completely arbitrary, and even buggy.

To embed arbitrary OTS and ensure safety, the programmer isolates an OTS com-
ponent behind a Varda shield. The shield restricts the component’s behaviour by
specifying its interface, its protocol (i.e., what it may send or receive, and in what
order), and pre- and post-conditions. The developer also provides stub methods,
called adaptors, that enable Varda to communicate with the OTS component.

In our example, the developer wraps the OTS component (RocksDB) behind a shield
that constrains its API and interaction protocol. For instance, the shield could restrict
the storage service to put and get invocations, passing a strictly increasing counter,
and keys structured as the following pattern "name.ext".

To protect separate parts of a program from unwanted interactions, Varda relies
on encapsulation to restrict what a component is aware of (e.g., communication
channels, identities of other components). Moreover, in Varda encapsulation most
often implies communication and failure isolation (see Chapter 6). In Varda, the unit
of encapsulation is the component. To provide fine-grain protection, components
may be nested2. For instance, to be able to update the we group storage backend in
a generic component that exposes the get/put interface since the Gateway does not
need to see the internal behaviours of the store. An outer component orchestrates its
inner components, spawning or killing component instances, interconnecting them,
and supervising error conditions; it can intercept and manipulate communication,
and more generally compute over components and messages.

Communication and interactions Components communicate with one other. To
ensure safety, communication passes through a strictly defined interface. This
interface is composed of ports. A port drills an explicit hole in the boundary of
a component. It ensures the binding between the internal logic and the external
communication. A Varda port interface specifies both the syntax of messages, and
their protocol in the style of session types [61]. A protocol specifies the type and
the ordering of messages between communicating parties. For instance, the store
protocol specifies that a client opens a session with the storage service, sends any
number of get or put messages, receives a response for each request, and finally
ends the session.

2However, strict encapsulation can get in the way. Accordingly, Varda supports escape mechanisms
such as component inlining (Section 5.3) and direct communication channels (Section 4.2.2).
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To interconnect two Varda components, the developer binds one active port with
one passive port using a network channel. We introduce network channels to model
the underlying network in charge of the transmission of messages. We defer the
discussion of channels to Section 3.1.1.

Interaction with non-Varda code A distributed system often provide services to
other programs. For instance, a messaging application may use our key-value store
to share and persist data between different users. Moreover, for interoperability,
the external caller (e.g., the messaging application) should not need to be aware
of the existence of the Varda framework. Hence, to serve external requests, Varda
enables the programmer to expose a generic network interface. Then, the compiler
generates RPC stubs (either gRPC or REST). For instance, the Gateway exposes a
get/put interface that checks the wellformdness of the request (e.g., the shape of
the key) before delegating the query processing to the backend.

Conversely, a Varda program may receive asynchronous notification from the outside
or either from the code an OTS component. For instance, to react to failure, the
runtime should notify the crash of a storage node to the load balancer (Section 5.2.1).
To receive those notifications, a component exposes a supervision port and a callback
for each notification type it can receive.

Architecture evolution To support incremental building of systems, programmers
often indirect communication through a proxy. It may help to evolve the system
without modifying the other components. In Section 4.2, we use proxy interposition
to transform a single-node key-value store into a multi-node store with sharding.
Unfortunately, a common practice is to use network-level proxy tricks, but this is
quite specific, ad hoc and somewhat awkward. Those tricks are unaware of the
semantics of the components they intercept.

To address this common problem, Varda has a generic interception mechanism. A
component that encapsulates inner components may impose their communication
to redirect messages to an interposition component without any changes to the
intercepted components. Interception is completely transparent for the intercepted
parties. If the interposer specifies the same protocol and contract as the interposed
component, interception guarantees that impersonation is correct.
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Specification sub-language

To improve safety, programmers can refine the architecture with additional constrains
on communication, interfaces, and components and orchestration behaviours. We
choose to integrate these specifications inside the architecture to avoid the classical
gap between high-level descriptions and their concrete implementations, discussed
in Section 2.3.3.

Mixing correctness requirements with our performance and ergonomic (i.e., accept-
ability for the developers) requirements, requires a pragmatic approach. For this, we
design the specification sublanguage in order to let the programmer balance between
performance and checking overhead (i.e., specification expressiveness). For each
kind of specification (communication, components and orchestration behaviours),
Varda provides various specialised building blocks with increasing expressiveness
and overhead. For instance, the programmer can specify the communication be-
tween components at different grains from component interface to properties on
the observables of a subset of the architecture. Furthermore, to mitigate cognitive
overhead, we made most of the constraints optional except for mandatory type
annotations since programmers are used to it.

To ensure that a Varda component internally behaves as expected, the programmer
can optionally write contracts, i.e., predicates over the arguments, return values of
a method and over local variables. A contract pre (resp. post) condition can call
any method of the component, any function or any Varda primitives. Moreover,
programmers can add contracts to the OTS shield to contain the misbehaviour of
OTS components by checking its observable. Since an OTS could be an arbitrary
black box Varda cannot express properties about its internal. For instance, using a
contract on a storage node, we specify that the value returned by get(key) is the
one associated with the most recent put for the same key (Section 6.1.2).

Non-fonctional sublanguage

To make non-functional properties programmable in Varda, this sub-language em-
beds resources (e.g., failures, places and network links) as first-class objects in the
languages. Moreover, it provides various primitives and annotations to easily pro-
gram classical distribution properties as fault supervision or elasticity. For instance,
we leverage this to extend the LoadBalancer such that it spawns a new storage
component when a new node join the infrastructure (Section 5.2.2).

58 Chapter 3 Design and overview



Placement impacts the properties of a distributed system. For instance, close-by
components tend to fail together, negating the benefits of redundancy and repli-
cation. Placement also has security implications, related to trust in the execution
environment of a component. Therefore, we integrate placement into the architec-
ture. Varda exposes a place abstraction, which summarises information about the
network topology. A place represents a specific location, such as a virtual machine,
compute nodes, compute clusters, etc. Programmers can refine the architecture
with placement annotations in order to colocate components, pin components to
a place or specify that two components must run on distinct nodes. For instance,
we colocate the gateway and load balancer in the same node to eliminate network
overhead.

The nature of the component interconnection matters for various functional (e.g.,
message order and delivery guarantees) and non-functional properties (e.g., se-
curity). For this, Varda offers channels to finely control the network between
components. In a Varda architecture, channels interconnect communicating ports.
Different classes provide specific guarantees, e.g., a FIFO TCP socket channel, a Rab-
bitMQ persistent channel or a secure TLS channel. We choose to model the network
at the channel level since the network is often non-uniform and heterogeneous.

3.1.2 Guarantees

Anytime, anywhere programming with Varda provides a minimal set of guarantees:
component isolation and communication safety (i.e., communications are abiding
by their protocol).

To avoid unplanned interactions and to constraint failure propagation, Varda guaran-
tees isolation between distinct component instances. Components’ state and internal
logic are encapsulated from external components, children and OTS. Components
can only interact with each other by exchanging messages through channels and
ports, and by spawning children. However, isolation guarantees do not take hidden
side channels into account since Varda design allows embedding arbitrary OTS.
Note that those side-channels can either result from a malfunctioning or a malicious
OTS.

To ensure that the sending component provides at least what the receiving side
expects, Varda type-checking ensures that the interconnected ports are compatible.
Moreover, the type-checking ensures that the following properties hold for protocol-
based communication code inside a component [54]: the exchanged data has the
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expected type, the structure of communication follows the protocol (e.g., its order),
and the communication is private, i.e., a third component cannot see messages
except when using the interception mechanism.

The compiler checks that there is no glitch between the architecture, the (additional)
specification and the (additional) non-functional behaviours by taking advantage of
the integration of those three abstraction layers. Moreover, the code generator en-
sures that the generated implementation is a faithful and up-to-date representation
of the architecture. In addition, the compiler ensures that the architecture transfor-
mations (e.g., interception, inlining) are legal and that the resulting architecture
preserves the guarantees of Varda and the specification.

Vardac can instrument the glue code, i.e., the shield of components, with dynamic
checks. The coverage of checks, and their overhead, depends on the level of detail
of the specification.

3.1.3 Ergonomy

To automate common tasks, the Varda compiler generates the interconnection glue
code between components. This includes supervising and responding to runtime
error conditions, creating and linking sockets, marshalling/unmarshalling language-
level data into messages and dynamic checking of safety condition.

For programmers, top-down approaches that generate code may result in a loss of
control on the development workflow and in difficulties to track bugs or performance
bottlenecks. To address this, we design Vardac to generates human-readable code
with additional compilation provenance information. This help programmers to
easily blame an architecture piece for a system behaviour.

Last but not least, programmers may specialise the implementation according to their
deployment use case without altering the architecture since the logical units (i.e.,
components) are orthogonal to the physical location (using placement annotation),
to the computation units (using inlining), and to compilation units (using code-
generation configuration).

3.1.4 Efficiency

To enhance efficiency, we follow a three steps approach. First, programmers can
control low-level details and non-functional properties using the non-functional
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sublanguage. Moreover, since a component can embed arbitrary code, programmers
could leverage specialised and optimised implementation of various parts. For
instance, they can import their custom data structures.

Second, to balance between correctness and performance requirements, all the
specification annotations are optional, except for the types. We take care to provide
simple and specialise Varda specification building blocks such that the programmer
choose the trade-offs they want. Moreover, at compile time, programmers can
disable the injection of dynamic checks in the implementation to avoid run-time
overheads.

Third, the compiler optimises the architecture (e.g., component inlining) and the
generated code. To generate an efficient implementation, the compiler performs
traditional local optimisations such as ghost elimination, constant-propagation,
partial evaluation, unaliasing and dead-code elimination.

Additionally, crossing component isolation boundaries can be costly, due to context
switching, marshalling/unmarshalling, and network overhead.

• To mitigate network overhead, programmers can co-locate components.
• To avoid marshalling, shared-memory communication replaces local message-

passing at run time, i.e., between components hosted by a same place. This
optimisation depends on the implementation of the execution units3.

• To eliminate context switching, Varda can statically inline components, in-
dependently of the nature of the execution units. Inlining merges the im-
plementation of two or more instances into a single component before code
generation. Currently, programmers have to annotate the architecture to
trigger component inlining.

3.2 Usage

Before diving into the details of the language, the Figure 3.3 presents an overview
of the usage of Varda from the developer’s perspective while discussing the compiler
work to build and deploy a system. Suppose that you want to create a distributed
storage service by assembling off-the-shelf components, developer follows the fol-
lowing method:

3It works well for processes, threads and actors. Our prototype leverages the Akka actor model. It
may be tricky for containers. It should be impossible for VMs.
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Step 1 System definition The developer starts by defining the system in Varda
as follows

• Describe the architecture of the system in terms of components, interfaces,
and interconnections. Incrementally add new system features thanks to
interception.

• Define OTS adaptors to bridge the gap between a shield interface (in
Varda) and the OTS. An adaptor is a manually written piece of implemen-
tation code that maps the OTS API to the shield interface.

• Model the infrastructure, i.e., the kinds of nodes (e.g., servers and VMs)
and the group relationship between them. Then annotate the architecture
with placement annotations. For instance, to model a multi-region cloud,
specify that there are data centers that contain compute nodes in each.
Then, place the component on the infrastructure. For instance, the
developer can place at exactly one store replica per data center to achieve
geo-distribution (Chapter 9).

1 compiler−−−−−→ 2 Use the compiler to check the architecture for safety issues, generate
the glue code with an optional deployment strategy, and inject dynamic checks.
Moreover, the compiler can (optionally) instrument the generated code with
basic tracing and metrics functionalities.

The generated code is a set of code projects one per target (e.g., Akka target,
Kubernetes target or Typescript target) with additional build instructions to
automate the generation of the artefacts. An artefact is a compilation unit. Its
nature depends on the target (e.g., Docker images, binaries and libraries, etc.).

The deployment strategy (currently expressed as a DockerCompose file) speci-
fies how to package and deploy the artefacts, and how to start external OTS.

Step 2 System implementation at rest (Optionally) Review, profile and man-
ually improve the generated sources code. The Varda compiler generates
readable source code, with provenance information, to ease debugging and
profiling.

2 Build instructions−−−−−−−−−−−→ 3 Use the build instruction to generate the artefacts.

Step 3 Executables Specify how to group logical units into compilation units,
according to the given deployment strategy. Then, use the build instructions
to generate the artefacts.

2 Deployment strategy−−−−−−−−−−−−−→ 3 Use the (optional) generated deployment strategy instruc-
tion to deploy the artefacts on the infrastructure and to bootstrap the system.
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Step 4 System execution Bootstrap the system by starting the deployed arte-
facts on each node. Each artefact starts an entry point component that is
responsible for spawning a subset of the architecture on any nodes enrolled in
the runtime. Note that, a new node can be added or removed dynamically.

Trace, collect metrics and monitor the running system either by using the
generated tracing and metrics functionalities or by using external tools.
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Core Varda language 4
In this chapter, we present the core Varda language. We explain the concepts of the
core minimalistic language that describes the architecture in terms of components
and interconnections (Section 4.1). Then we extend the language with interception
to ease the composition and the evolution of a distributed system (Section 4.2). We
discuss these concepts based on our key-value store running example introduced in
the previous chapter (Figure 3.2).

We use these minimal primitives as base building blocks for all the other complex
features of the language. For instance, we define interception as a rewrite mecha-
nism that manipulates only this minimalistic language. Moreover, in the following
chapters, we extend them with additional primitives to meet our dependability and
our efficiency requirements.

4.1 Varda concepts

4.1.1 Component

Modularising a system into components is a well-known approach to ease the
development and the maintenance of a system. In Varda, is the core building block
to describe a computation unit or a data store. It interacts with other components
by message passing and with the external world through events. Those interactions
are formally defined and identified/tracked by its declarative interface. Additionally,
programmers can specify the internal logic. Note that the developer must explicitly
define the integration between the internal logic and the interface holes to allow a
component to communicate.

In Figure 4.1, we zoom on the server component of our running key-value store
example. This component is composed of three parts: a declarative interface that
defines and constrains the allowed communication with the load balancer; an OTS
interface that specifies the interaction with the external RocksDB component; and,
the shield logic that handles the request from the Load balancer, performs (optional)
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Fig. 4.1.: The three parts of a Server component: the communication interface, the OTS
interface and the shield logic.

additional checks and query the RocksDB instance to response to the incoming
requests through the OTS interface.

Compared with some other approaches, a Varda’s component is a logical unit, it
is neither a compilation unit nor a deployment unit. Using inlining (Section 5.3),
a programmer can merge multiple components into a single compilation unit. By
configuring the code generation targets (Section 7.2), a programmer can also group
multiple components into a single deployment unit (e.g., a container, a binary).

Declarative interface of a component

We first examine a component’s interface. It specifies how the component communi-
cates with other components in a declarative style. The Varda compiler and run-time
enforce the interface specification. Component interfaces type check if they are
compatible, i.e., if the sending side provides at least what the receiving side expects,
as detailed in Chapter 6.

Message types Abstractly, a component sends and receives messages.1

Varda provides classical built-in types (e.g., integer, boolean, list, tuple, dictionary
and optional types). Moreover, programmers can define their own type aliases.
To simplify the code generation when targeting languages with basic type system,
Varda does not provide a rich type system for user-defined types. However, pro-
grammers can embed richer types available in the code-generation target language
(Section 5.1.4).

1Co-location and inlining eliminate message overhead, as we will explain in Section 5.3.
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A message type is a classical Varda type such that the type of its payload (i.e., its type
parameters are serialisable). For instance, a “list<int>” can be used as a message
type and “list<non_serialisable>” cannot.

In our running example, the following declaration (Figure 1, line 16)

type key of string;
type value of string;
type put_request of tuple<integer,key,value>;

specifies the type of a “put_request” message, whose payload is a tuple of counter
to represent versions, key and value.

Protocols Component instances communicate within a session, itself an instance of
a protocol type. A protocol describes a kind of a state machine, in the style of session
types [61]. Protocol primitives create a session, send or receive a message within
the session, and close the session.

Some session states are branching states, i.e., they have several possible outgoing
transitions: each one corresponds to a unique branch label, i.e., a unique message.

In our example, the following declaration (Listing 1 from lines 18–25)

(&{ (* choice *)
l_get: !get_request?value.;
l_put: !put_request?bool.;
})*;

describes a protocol where the client opens a session with the storage service,
sends any number of get or put messages, and finally ends the session. The “&”
type constructor indicates a branching state, with branches labelled “l_get” or
“l_put”. The get branch “!get_request?value.” states that the client starts the
communication by sending a “get_request”. Then, it expects to receive a value.

The Kleene star “*” operator states that the protocol can either terminate or iterate
any number of times. The Kleene star protocol is just a handy syntactic sugar on
top of Varda recursive protocol. Recursive protocol is directly inspired by recursive
session types [54]. A recursive session types explicitly define the type of its continua-
tions. Compared to the Kleene star, a recursive session protocol can specify different
continuations for each branch of a protocol whereas with the Kleene star implies the
same continuation for all the branches.

For instance, the following snippet defined a protocol where the “Client”does an un-
bounded number of “put_request”then finishes by doing exactly one “get_request”.
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type p_rec = µ x: (* x denotes the session types define as follows *)
&{ (* choice *)

l_get: !get_request?value.;
(* x is the type of the continuation of the put branch *)
(* i.e., the whole p_rec *)
l_put: !put_request?bool - x.;

};

The protocol of one party is the dual of the other party, i.e., one’s send is the other’s
receives, and vice versa. We indicate a reversed protocol with the keyword “dual”,
as in “dual kv_protocol” (Listing 2, Line 39).

Ports A component has ports; a component instance connects to another one by
pairing their ports over a channel.2 There are different kinds of ports, notably:
An active port is the initiator of sessions over its channels; a passive port waits to
be notified that a session was created by its active counterpart; a supervision port
receives error conditions (see Section 5.2.1).

The Listing 4 shows the active port of the “Loadbalancer” (Line 62) component
and the passive port of the “Server” component (Line 39). The load balancer
has is communication interface split into two sub-interfaces: an interface that
describes the allowed communication with the gateway another one that describes
the communication with the backend. Both the active and the passive ports are
typed by the p_kv protocol either directly or through its dual.

Ports are typed by admissible protocol. The set of ports’ signatures, and the type of
the “onStartup” method3, defines the functional signature of a component.

Imperative aspect: inside a component

A component can perform arbitrary computation, as long as it satisfies the declar-
ative interface. Varda provides an imperative Turing-complete language, enriched
with primitives related to protocols and non-functional properties, described in
Chapter 5.

Classically, in Figure 4.2, a component has methods (i.e., local procedures), and
per-instance local variables with the usual types (integer, string, array, tuple, etc.).
A method may call another method explicitly. A method may also be invoked by
a callback when some specific event occurs. In particular, when the component is

2The definition of channel is deferred to Section 4.1.2.
3This method is invoked on component instantiation.
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15 component KVStore {
16 type put_request of tuple<integer,key,value>;
17 type get_request of tuple<integer,key>;
18 protocol kv_protocol = (&{ (* choice *)
19 l_get: !get_request?value.; (* send get_request, receive value *)
20 l_put: !put_request{msg -> (* predicates on the value of put_request *)
21 predicate_key(msg.1) &&
22 last_c < msg.0 &&
23 store_meta(last_c,msg.0)
24 }?bool.; (* or send put_request, receive ack *)
25 })*; (* do any number of get or put request *)
26

27 onStartup (){ (* On KVStore bootstraping *)
28 (* Create a FIFO communication channel *)
29 channel<Gateway, Server, kv_protocol> chan = channel();
30 (* Start new component at a given location *)
31 activation_ref<Server> kv_a = spawn Server(chan);
32 (* Start and connect a client *)
33 activation_ref<Gateway> c = spawn Gateway(chan, kv_a);
34 }
35 }

Listing 1: Code for the load-balanced storage service (simplified)

Fig. 4.2.: Inside the load balancer

instantiated, this invokes the method associated with the keyword “onStartup”.
When a passive port suffers the opening of a session, or when a supervision port
receives a notification, this invokes the associated callback.

Execution model

The component is the smallest observable grain of concurrency and distribution
in Varda4. It runs on a given node (e.g., container, virtual machine), specified or
not by the programmer (Section 5.1.1). Then the orchestration code manages the
component life cycle.

4It could encapsulate a multithreaded OTS. However, this will totally hidden from the Varda perspec-
tive.
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36 component Server {
37 (* Listen for session with type ( dual kv_protocol ) .
38 Upon reception, message is handled by [this.kv_callback]. *)
39 passiveport p_p expecting (dual kv_protocol) = this.kv_callback;
40 onStartup (channel<pk_protocol> chan){ (* On Server creation *)
41 bind(this.p_p, chan); (* Dynamically bound the channel [chan] with the [p_p] port *)
42 }
43

44 (* Bindings between interaction interface and procedural interface *)
45 void kv_callback (blabel msg, kv_protocol s) {
46 branch s on msg { (* choice *)
47 | "get" => s -> {
48 tuple<tuple<key,int>, ?value.> tmp = receive(s); (* async wait for key

message *)↪→
49 (* return the value bound to the received ( key,counter ) *)
50 (* the backend store expected a key of type string *)
51 fire(tmp.1, get(tmp.0.0 +":"+str(tmp.0.1)));
52 }
53 | "put" => s -> { ... }
54 }}
55

56 (* Procedural interface - will bound to an OTS adaptor ( Section 5.1.4) *)
57 value get(string k);
58 bool put(string k, string v);
59 }
60

61 component Gateway {
62 activeport p_a expecting kv_protocol;
63 activation_ref<Server> kv;
64 onStartup (channel<kv_protocol> chan, activation_ref<Server> kv){(* On [Gateway] creation

*)↪→
65 bind(this.p_a, chan); (* Dynamically bound the channel [chan] with the [p_a] port *)
66 this.kv = kv;
67 }
68

69 (* [api_put] is exposed as a gRPC ( or a REST ) interface to external client
70 Therefore, it can onyl takes as arguments and returns primitive types ( e.g. int ) *)
71 @exposed result<bool, error> api_put(string key, int counter, string value){
72 (* Creation of a session with [this.kv] through the activeport [p_a] *)
73 session<kv_protocol> s = initiate_session_with(this.p_a, this.kv);
74 (* Select the [put] branch of the protocol *)
75 !put_request?bool. s = select(s, l_put)?;
76 (* Craft and send the request then wait for the response *)
77 ?bool. s = fire(s, put_request(counter, key, v))?;
78 tuple<bool, .> res = receive(s);
79 return ok(res.0); (* Return the received boolean *)
80 }
81

82 @exposed result<string, error> api_put(string key, int counter){...}
83 }

Listing 2: Code for the load-balanced storage service (simplified)
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Fig. 4.3.: Varda turns: upon instantiation, a component bootstraps by running the
“onStartup” method. Then, it expects requests from external components (i.e.,
session establishment). On notification of session creation, i.e., first message, it
runs the callback bound to the receptionpassive port. At the end of the callback
or on an asynchronous receive primitive on a session, the component suspend
and returns to the waiting state. At this point, the component can be resuming
either by receiving a new message on a passive (resp. supervision port); or, by
receiving a message of an asynchronous receive which will trigger the execution
of the continuation of the receive expression.

A component responds to messages or events (e.g., timers, errors) it receives by
making a local decision, creating other components, sending messages and updating
its local state. This is inspired by the actor model [97]. A component instance
may arbitrarily modify its own private state, but cannot affect the state of another
component instance with Varda primitives. However, a component can alter stealthily
the state of another one through their unsafe OTS code. For instance, two OTS
components can use the same database entry to share information. In this case,
Varda it is not aware of these dependencies cannot guarantee any isolation.

A component alternates between two states, like actors [55]: ready to accept a
message or busy processing a message or an event. Figure 4.3 shows the life cycle
of components. A turn is the processing of a single message (resp. event) by a
component instance until completion. The component executes the message (resp.
event) callback until completion or until the execution flow reaches an explicit
asynchronous “receive” primitive (resp. “branch”).

Mixing the explicit asynchronous “receive” primitive (resp. branch) of the session
types paradigm with the callbacks of ports may seem odd at first glance. It permits
to explicitly control all the initialisation of communication thanks to ports, and, at
the same times to program linearly the processing of a session which greatly mitigate
the callback hell. For the sake of availability, the processing of two distinct sessions
can be interleaved. On an asynchronous “receive” (resp. branch), the suspension
only affect the current session (i.e., the one passed in argument to the “receive”
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primitive). While the session processing is suspended, messages of other sessions
(or external events) can be processed.

Orchestration

Orchestration code has to do with managing the life cycle of a component instance
and its interactions. As explained above, method callbacks are associated with com-
ponent startup, passive session creation, supervision events, and message receives.
Conversely, a component can actively spawn an instance (Listing 1, Line 31), connect
a component’s active port with another’s passive port, create a session (Listing 2,
Line 73), or send a message (Listing 2, Line 77).

When a component is in a branching state, it may actively choose the next state by
sending an appropriate message. Conversely, it may passively suffer the next state
transition by receiving a message.5 The “Gateway”(Listing 2, Line 75) selects the
put branch, then it can send the “put_request”and waits for a value. Conversely,
the “Server” wait for the choice (Listing 2, Lines 46–54) using a form of pattern
matching on the labels. When the server receives the “put” label, it enters the
corresponding branch (Listing 2, Lines 47–51). In this branch, the session “s” has
the type of the “put” branch of the protocol, i.e., expects to send a “put_request”
and, then, to receive an “ack”.

Orchestration code may also use the so-called non-functional directives. These do
not change the semantics, but influence run-time properties that may be important
for performance or fault tolerance. For instance, the code may spawn a component
at (or away from) some specific “place” (a virtual machine or container, a compute
node, or a cluster of compute nodes, for instance) or class of places (e.g., “a node
located in Europe”). Conversely, there are discovery primitives for querying the
system topology. We discuss placement and discovery later, in Section 5.2.

4.1.2 Communication

To make two component instances communicate, the programmer specifies the
underlying network in charge of the transmission of messages using channels. A
channel is the abstraction of a network connection. Then, the imperative shield
manages the communications through sessions that flows over the previously defined
channels (Figure 4.4).

5In the vocabulary of session types, active choice is called “select,” and suffered choice is called
“branch.”
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Fig. 4.4.: Channel “chan” ensures the network interconnection between the “Loadbalancer”
and the Servers. Messages between both groups are flowing through “chan” and
are logically grouped into sessions.

A channel has two endpoints, an initiator charged with actively initiating sessions,
and listeners that passively await session creation. The syntax “channel<A, B,
some_protocol>” denotes a channel that connects initiator ports of type “A” with
listener ports of type “B”, under protocol “some_protocol”. The Section 5.1.2 details
the system and network aspects of channels.

To interconnect two components with a channel, the developer binds one active
port and one passive port to the selected channel. Varda provides a port binding
primitive : “bind(this.port, some_channels);”. Each component is responsible
for binding its ports with channels.

For instance, the Listing 1 shows the interconnection between the “Gateway” and the
“Server” using the FIFO channel “chan” (Line 31). The “Gateway” instance binds
its active port with “chan” (Line 65), received as a “onStartup” parameter. Then
(Line 73) , it starts a session over the previously bounded channel and begins its
communication.

Being interconnected by the same channel enables communication. However it does
not make components exchange messages. The internal logic of the interconnected
components manages the communications. Conversely, the absence of a channel be-
tween components disallows any direct interaction between them. More specifically,
they must both declare type-compatible channel types, and share a channel instance
at run-time.

Vardac ensures that the protocol of the port and of the channel are compatible6. By
transitivity, it ensures that the interconnected ports are compatible. Moreover, it also
ensures that the orchestration logic that interacts with the port (either the callback
at reception or the expression emitting a message) is well typed according to the
port protocol.

6We discuss compatibility in Section 6.1.1.
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Fig. 4.5.: Interposing the “LoadBalancer” in between an existing “Gateway”-“Server” ar-
chitecture.

4.2 Interception

It is often useful to indirect communication through a proxy [160]. For instance, in
our running example, the load balancer serves as a proxy for the backend storage
servers (Figure 4.5). A proxy might filter, redirect, and/or modify messages. The
purpose may be to mask internal interfaces, for instance, hiding internal servers be-
hind a single external one; to sanitise messages; to add provenance or authorisation
information; to improve performance, for instance, by interposing a cache. It may
help to evolve the system, for instance, replacing a key-value storage server with a
file server.

A proxy, between some client and some service, is semantically transparent if it
impersonates the client for the service, and the service for the client. Unfortunately,
enforcing indirection through the proxy is often technically non-transparent, requir-
ing changes to one or the other of the endpoints. A common example is setting
up a web proxy or a service worker, where it is the responsibility of the browser
to redirect traffic. Alternatively, a common practice is to use network-level DNS
tricks, but this is quite specific, ad hoc and somewhat awkward. Neither mechanism
ensures any correctness guarantees.

4.2.1 Interception mechanism

To address this common problem, Varda has a generic interception mechanism. A
component that encapsulates inner components may impose their communication
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to redirect to an interposition component, without any changes to the intercepted
components. Interception is completely transparent for the intercepted parties. If
the interposer specifies the same protocol and contract as the interposed component,
these guarantees that impersonation is correct; furthermore, the interposer may
constrain the interposed one, by using a restricted sub-protocol (a subtype of the
original protocol) and/or a stronger contract (see Section 6.1.1).

Interception depends only on the interface of the intercepted components. Therefore
interception remains transparent, and orthogonal to non-functional properties such
as placement or inlining.

Interception redirects the communication between components to a proxy, the inter-
position component. The proxy may be inlined to avoid any networking overhead
(Section 5.3). The intercepted component is a first-class piece of Varda architec-
ture. The interception logic is responsible for processing (alteration, delaying and
forwarding) session establishments and messages between internal and external
activations.

Programmers can control each stage of the life cycle of an intercepted session: session
creation, sending/receiving of messages and branch selection. Varda provides a
method decorator for each stage. “@sessioninterceptor” methods are triggered
when a session is established, conversely “@msginterceptor” methods are triggered
when a message (or a branch label) crosses the interception border.

The steps to automate interception are as follows. 1. Code the interceptor according
to the specific interception requirements. 2. Enclose the intercepted components
inside an interception scope with the “intercept<Interceptor> { stmts }” block
statement.

Let’s apply this to the storage service example. To simplify exposition, we write the
load balancer purely in Varda instead of using an OTS balancer such as HAproxy.

The code, illustrated in Listing 4, specifies an interception scope (Lines 155–158)
containing two “Server” instances. The interceptor, “LoadBalancer”, implements
the load-balancing algorithm (Line 84–149).

The “LoadBalancer” establishes a session between the interceptor and a “Server”
once the client has provided the key, which is required to select the right “Server”
using a user-defined function pick (Lines 137–147).

Varda uses the signature of “intercept_get”, i.e., the type of the arguments, to
select the correct communication. Here, the session of type “!get_requet?bool.”.

4.2 Interception 75



LoadBalancer

Server-1 Server-2

Gateway

Egress
interface

Ingress
interface

External sessions

Internal sessions 

interception perimeter

Fig. 4.6.: The interception mechanism applies to add a load balancer in between a Gateway
and a KVServer

For compactness, the “LoadBalancer” does not intercept the branch selection (l_get,
l_put).

Delaying messages can be tricky, since arbitrary long delay between messages of the
same session could be triggering a timeout depending on the session implementation.
And, a fortiori, dropping messages of a running session leads to a timeout on the
other side of the session. Dropping session establishment is correct.

An interceptor has three interfaces (See. Figure 4.6). The ingress interface han-
dles communication between the interceptor and the external components. The
egress interface handles the communication between the interceptor and the in-
tercepted components. The onboarding interface handles onboarding request, i.e.,
communication between the parent(s) and interceptor(s).

Programmers can write “@messageinterceptor” logic (resp. “@sessioninterceptor”)
specialised for messages received on the egress interface, on the ingress inter-
face or, indifferently, on both. Varda provides an optional interface parameter for
“messageinterceptor” (resp. sessioninterceptor) which can be either ingress,
“egress” or “both”, which is the default value.
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84 component LoadBalancer {
85 list<activation_ref<Server>> replicas = []; (* List of managed replicas *)
86 (* Mapping between ingress session and egress sessions
87 when broadcasting the put order to all replicas *)
88 dict<session_id, !key?bool.> s_inner_put = dict();
89

90 (* * * * * * * * * * * * * * Onboarding * * * * * * * * * * * * * *)
91 (* @param [a] is the activation to onboard
92 @param [p_of_a] is the place ( i.e., the node ) on which [a] has been spawned
93 *)
94 @onboard([Server])
95 bool onboard_A(activation_ref<Server> a, place p_of_a){
96 (* initialize the list of replicas managed by this load balancer instances *)
97 append(this.replicas, a);
98

99 (* [is_safe_node] is a predicate that returns
100 - [true] if the place belongs to the internal network
101 - [false] otherwise *)
102 return is_safe_node(p_of_a);
103 }
104

105 (* * * * * * * * * * * * * * Session interception * * * * * * * * * * * * * *)
106 @sessioninterceptor(true, both)
107 result<option<activation_ref<KVServer>>,error> p_kv_interceptor(
108 activation_ref<Client> from, string requested_to_schema,
109 blabel msg (* triggered when receiving the first message *)
110 ){
111 return ok(none()); (* Do nothing, wait for key *)
112 }
113

114 (* * * * * * * * * * * * * * Msg interception * * * * * * * * * * * * * *)
115 @msginterceptor(both)
116 result<!key?value.,error> intercept_branch(
117 (dual p_kv) s_client, p_kv s_replica,
118 blabel msg
119 ){
120 branch s_client on msg {
121 | l_get => s -> { (* nothing to do, suspend and wait for the key *) }
122 | l_put => s -> { (* create one session per replica then suspend and wait *)
123 for(activation_ref<Server> replica in this.replicas){
124 session<p_kv> s = initiate_session_with(this.custom_p_out, replica);
125 !key?bool. s_a = select(s, l_put)?;
126 add2dict(this.s_inner_put, sessionid(s_client), s_a);
127 }
128 }
129 }
130

131 !key?value. s_out = select(s_replica, msg)?;
132 return ok(s_out);
133 }
134

135 (* Intercept all the get_request *)
136 @msginterceptor result<.,error> intercept_get(
137 ?bool. s_client, p_kv s_replica, get_request m){
138 (* [onboarded] denotes the set of all intercepted components *)
139 activation_ref<Server> dest = pick(this.onboarded, m);
140

141 (* Select the get branch of the protocol *)
142 p_kv s = initiate_session_with(dest);
143 !get_request?value. s_a = select(s, l_get)?;
144

145 (* Propagate the put request *)
146 fire(s, m)?;
147 }
148

149 }

Listing 3: Code of the “LoadBalancer” written as an interceptor (simplified syntax)
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150 (* Extending the simple KVStore with load balancing *)
151 component KVStore {
152 onStartup (){
153 (* All the instances spawned inside the [intercept] scope
154 are intercepted by the LoadBalancer *)
155 intercept<LoadBalancer> {
156 activation_ref<Server> kv = spawn Server(chan);
157 activation_ref<Server> kv = spawn Server(chan);
158 }
159

160 (* Outside the intercept scope, the [kv] variable is the
161 identity of the interceptor *)
162 activation_ref<Gateway> c = spawn Gateway(chan, kv);
163 }
164 }

Listing 4: Intercepting “Server” for load balancing (simplified syntax)

4.2.2 Properties and guarantees

Transparency

Interception is transparent for both the intercepted component instances and the
external ones. Both are unaware that the communication is intercepted. Therefore,
their code does not need to be altered to support interception.

To achieve this, Vardac guarantees, after rewriting that the interceptor egress interface
is compatible with each interface of the intercepted components. The ingress interface
is compatible with each interface of the external components that may communicate
with an intercepted component.

Composition

Intercept blocks can be nested, like any other statements. For instance, the following
snippet shows how to add access control on top of the load balancer by enclosing the
intercept block of Listing 4 by another intercept block parametrised by a user-defined
“AccessController” (Figure 4.7a). The Section 8.3.1 details how to build access
control using interception.

Programmers can also intercept all the communications of an interceptor, i.e., both
the external components (as in Figure 4.7a) and the internal ones. This behaviour
is useful to implement an access control mechanism that does not trust the clients
nor the servers. For instance, in the Figure 4.7b, the AccessController intercepts
all the communication between the Gateway and the LoadBalancer; and, all the
communication between the LoadBalancer and the Servers.
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(a) Nested composition: the outer
AccessControl intercept block intercepts all
the communication between the Gateway and
the inner LoadBalancer intercept block.

LoadBalancer

Server-1 Server-2

Gateway

AccessController

(b) Interceptor interception: the
“AccessController” intercepts all the
communication of the load balancer intercep-
tor. Compared with the figure on the left,
in this setup the “AccessController” also
intercepts the communication between the
load balancer and the shards.

Fig. 4.7.: Interception composition

Interception isolation

An intercepted component cannot communicate directly (i.e., send and receive Varda
messages through session) with an external component. Moreover, interception
does not provide communication isolation between two external components, and,
neither between two intercepted components if they share the same interceptor
instance.

Interception isolation could either be bypassed from below by using non-Varda com-
munication primitive or breached by above by establishing a side channel after
interception.

Bypassing from below is intrinsic to Varda design. The programmers can embed any
kind of arbitrary and unsafe code behind a shield. For instance, two components
unsafe code can create unseen side channels by using raw sockets, filesystem-based
communication or a third-party service (e.g., a shared database). Preventing such
side channels exceeds the scope of Varda: it implies to strictly contains arbitrary
code (e.g., network, syscalls and file system).

Breaching by above is programmable in plain Varda. Conversely, programmers can
filter it out. Breaching interception enable communication optimisation by removing
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unnecessary redirection. A programmer can breach the isolation by establishing a
direct side channel between an external and an internal instance. This requires that
one of the intercepted protocols supports exchanging channels (recall that channels
are first-class value) and that both the external and internal instances agree to use
this channel to communicate.

Conversely, developers can prevent the breaching from above either by ensuring
that intercepted protocols cannot carry channel value; or, by writing a dedicated
“@msginterceptor” in charge of changing the nature of the side channel.

4.2.3 Interception workflow

Figure 4.8 shows the workflow of the interception of a “Server” by a “LoadBalancer”.
The programmer writes the interceptor ( 1 ) and defines the interception context
( 2 ). Then, Vardac prepares the system architecture ( 3 – 4 ) at compile time, i.e.,
it generates the interception boilerplate composed of new ports, channels, states
and communication logic.

At run-time, while executing the “intercept” block, Varda runtime performs7 the
interception setup ( 5 – 7 ), i.e., it starts the interception logic, it onboards inter-
cepted instances and it interconnects the intercepted components with the intercep-
tor.

Once the interception is set up, the intercepted components can communicate with

the external world8 through their interceptors ( 8.a – 8.e details the workflow of a
“get_request”).

Static interception workflow (See. Figure 4.8)

1 The programmer codes the “LoadBalancer” logic (Listing 3). In particu-
lar, the developer specifies the interception logic using decorated methods:
“@sessioninterceptor” and “@msginterceptor”.

7The compiler cannot perform the interception statically since the exact perimeter of the interception
depends on the execution path of the “intercept” block. For instance, a given shard component
could be spawned outside the interception perimeter to model an additional metadata server.
Moreover, the interception perimeter can contain a variable number of shards.

8The communication initiator can be either an intercepted or an external component, depending on
the exposed ports.
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Fig. 4.8.: Intercepting a “Server” with a “Load Balancer”. The compiler performs steps
1-4. The generated code is responsible for steps 5-8.

This user-defined interception logic can coexist with non-interception logic
written in classical Varda. For instance, the “LoadBalancer” may expose a
supervision port to monitor the addition of a new place to achieve elasticity9.

2 The programmer defines the interception scope which defines the static perime-
ter of the interception (Listing 4, Lines 155–158). Note that the “intercept”
block is defined inside the orchestration code of “KVStore”. Note that the
“KVStore” instance is the parent of the intercepted instances and of the inter-
ceptors.

3 From 1 and 2 Vardac generates the logistics for the interceptor 3 . The
compiler adds one interceptor’s port for each port of each intercepted com-
ponent10. Then, Vardac binds these intercepted ports with their user-defined
interception logic based on the signature of the decorated methods ( 1 ). The
behaviour of this binding is detailed at the end of this section.

Furthermore, Vardac adds some helper local states to manage the intercepted
communication : the “onboarded” set of intercepted component instances and

9The details of supervision are deferred to Section 5.2.2.
10Multiple instances of the same component connected to the same channel share the same interceptor

ports.
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the “session_bindings” map, which translates and external sessions11 into
and internal ones.

4 Vardac rewrites the “intercept” block12 ( 2 ) as follows:

• The compiler generates the logic in charge of selecting (or spawning) the
interceptor for the block, based on the interception policy.

• Then, it adds the code in charge of triggering the onboarding procedure
at each spawn of an intercepted component. For this, it adds an active
port to the “KVStore” and binds it to the “onboarding port” of the
interceptor.

• It correctly binds the ports of each intercepted component with those
of the ingress interface (generated during 3 ). Conversely, it binds the
intercepted bridges to the ports of the ingress interface.

• Outside the intercept block, it updates the identity of all the intercepted
instances with the interceptor one, without altering their type thanks to
subtyping13.

Dynamic setup This stage begins when the parent of the intercepted components
(here the “KVStore” instance) starts executing the “intercept” block. Vardac per-
forms the dynamic setup (i.e., steps 5 – 7 ) at each spawn of an intercepted compo-
nent. The dynamic setup of a new intercepted instance can run in parallel with the
interception of communication of already onboarded instances.

5 When the execution flow enters the “intercept” block, the “KVStore” spawns
an interceptor (here a “LoadBalancer” instance) using the interception_policy14.

6 When the execution flow reaches the following spawn expression

server1 = spawn Server(...);

inside the “intercept” block, the “KVStore” spawns a “server-1” such that
all its ports are bound to the interceptor ones. The interceptor blocks all the
communication of “server-1” until its onboarding.

11An external session denotes a session between a component external to the intercept block and
the interceptor. Conversely, an internal session denotes a session between the interceptor and an
intercepted instance.

12It is part of the parent instance (e.g. KVStore) orchestration logic.
13The interceptor egress interface is a superset of the union of the interfaces of the intercepted

components.
14In practice, Varda provides a more expressive workflow where the “interception_policy” is used

to assign an interceptor, possibly distinct, per intercepted components.
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7 Then, the “KVStore” instance sends an onboarding request to the “LoadBalancer”.
The onboarding allows the interceptor to distinguish intercepted component
instances from external ones.

On acceptation, the interceptor registers the intercepted activation identity into
its local “onboarded” set. The “LoadBalancer” notifies the “KVStore” with the
acceptation (or the rejection) of the onboarding15.

Intercepting communication This stage begins when the onboarding of the first
intercepted component instance is over and successful. The following describes the
route of a “get_request” between the “gateway” and the “server-1”.

8.a The “gateway” sends a “get_request” to what it thinks to be the server, i.e.,
the “kv” variable (Listing 4 at line 158). Outside the interception scope, the
“kv” points toward the “LoadBalancer”.

8.b The “LoadBalancer” receives the “get_request” and run the corresponding
“sessioninterceptor” followed by the “msginterceptor” logic, both defined
in 1 , to decide what is next.

• The “@sessioninterceptor” is triggered upon reception of a session
creation notification (Listing 3, Lines 107-112), i.e., when the interceptor
receives the first message of the session. Here, it is the branch label.

On success, it triggers the “intercept_branch”. Its logic stores the newly
created external session in the interceptor store and terminates. The
creation of the internal session is delayed until the reception of the
key, managed by a “intercept_get”, for a “get_request”. Since the
“LoadBalancer” chooses the server according to the key.

• Each message reception triggers its related “msginterceptor” callback.
Upon the reception of a “get_request”, the interceptor executes the
“intercept_get” method. It selects a server among the intercepted repli-
cas and creates an internal session.

8.c The method “intercept_get” initiates a session with the intercepted “Server”
and sends the “get_request”, unmodified. The interceptor stores the pair
of the internal session (i.e., between the interceptor and the intercepted
components) and the external session (i.e., between the interceptor and the

15Currently, the interception mechanism does not support handlers. A promising approach, inspired
from exception handling, would be to add an “except cases” to the “intercept” block in order
to handle onboarding failure (resp. rejection).
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external component) inside its local state session_bindings. This binding is
mandatory to be able to correctly route the subsequent messages exchanged
on both internal and external sessions16.

8.d The “server” processes the request without noticing the interception. It sends
back its “get_response” to the “LoadBalancer”.

8.e The response is processed by either the continuation17 of the “intercept_get”
logic, by another user-defined “@msginterceptor” specifically written protocol
step or by the default message interceptor (generated by Vardac).

The default logic propagates the messages using the internal session (resp.
external). The interceptor computes the destination session thanks to the
session_bindings.

4.2.4 Expressing the interception (details)

Controlling the dynamic perimeter of the interception with onboarding

The onboarding allows the interceptor to distinguish intercepted component in-
stances from external ones. This process is triggered each time a new intercepted
component start.

Interception scope defines statically an over-approximation of the perime-
ter of the interception, whereas, onboarding defines the run-time (and
dynamically evolving) perimeter of each interceptor instance.

The onboarding is programmable. A developer can specialise the onboarding process
to initialise some local state of the interceptor or to reject intercepted component
instances based on run-time information (e.g., accept only instances that know a
given security token or instances that run on safe nodes). To do so, a programmer
defines a method decorated by @onboard. Furthermore, the programmer can define
multiple onboarding functions, each one managing a disjoint set of component types
using @onboard[component_types].

16For the put request, the interceptor binds the external session with a set of internal sessions, one per
intercepted Server.

17If there is an asynchronous “receive” inside (resp. branch).
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166 (* Scope 1)
167 intercept<Interceptor, modifiers> interception_policy {
168 (* Scope 2*)
169 (* stmts such that *)
170 kv = spawn Component ( ... ) ;
171 (* is intercepted *)
172 }
173 (* Scope 3*)

Listing 5: General interception block.

For instance, Listing 4 defines an onboarding function (Lines 95–103) that register
new intercepted Server, i.e. “Server” spawned inside the “intercept” code block,
into the “LoadBalancer” local state. Moreover, this function reject onboarding
request of untrusted instances, i.e., running outside some internal network.

The interception block

The “intercept” block syntactically defines the frontier between intercepted com-
ponent instances and external ones: components spawned inside the “intercept”
scope are intercepted, the others are not.

To make the interception fully transparent, the interception scope exposes its binders
contrary to the classical syntactic scopes. The Listing 5 presents the different syntactic
scopes introduced by an “intercept” block. The variables bounded in “scope 2”
are bound in scope 3.

The scope exposition semantics depends on the type of the variable: non-component
and non-channel variables are exposed as is; component instances and channels
must be processed with special care not to break interception. For instance, in
Listing 4, the “kv” variable is bound inside the intercept block (Lines 155–158) and
is used (Line 162) outside the interception context as an argument for Gateway. The
semantic of “kv” (Listing 4) differs according to the scope. Inside the intercept
scope it points either on “server-1” or “server-2” according to the execution flow.
Outside the intercept scope, it denotes the interceptor.

Exposing component identity There are two different use cases: for load-balancing,
the “Gateway” does not need to (and should not) known the number of the “Server”
nor should not be able to distinguish their identity. Whereas to achieve access
control with interception (see Listing 22), the intercepted activation identity must
be exposed since sending a request to “server-1” differs from sending a request to
“server-2” even if they share the same component type.
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Varda interception provides additional mechanisms (Listing 5), called )modifiers,
to control component identity exposition. The “anonymous” modifier erases the
identity of intercepted instances whereas its absence exposes the identity intercepted
instances. To avoid leaking internal information, and possibly breaching interception
isolation, the exposed identity is aliases of the real ones.

Exposing channels Contrary to components, channels defined inside an “intercept”
block are not exposed to avoid creating unseen side channels. Those internal
channels are dedicated to non-intercepted communication between intercepted
components.

Channels defined before the block (i.e., in the scope 1) and used inside the in-
tercepted scope are intercepted. Vardac creates a copy of those channels. The
original channel interconnects an external components (either defined in “scope-1”
or in scope-3) with the interceptor. The copy interconnects the interceptor with an
intercepted component (defined in scope-2). Furthermore, it can interconnect two
intercepted components.

User-defined interception policy

Programmer can control the choice of the interceptor instance in charge of an
“intercept” block or even, at finer grain, the programmer can control the choice of
the interceptor instance in charge of a given intercepted activation. To achieve this,
the “intercept” statement can be parametrised by a user-defined function called
the interception policy18.

For a given intercepted component, this policy computes (resp. spawns) the inter-
ceptor instance in charge of it. It can either create a new instance while customising
its placement and the value of its parameters, or lookup some state to select an
existing one.

The interception policy can specify complex relationship between intercepted in-
stances and interceptor instances. This range from specifying multiple interceptors
for a given interception scope to define exactly one interceptor for multiple context.
Whatever the relationship, to avoid non-determinism, Varda guarantees that there is
exactly one interceptor in charge of a given intercepted activation.

18Neither the interception logic nor the interception scope can express how and where interceptors are
spawned and what is the relation between intercepted activation and interceptor activation (e.g.,
one to one or many to one).
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Fig. 4.9.: Using the interception policy.

To achieve this flexible behaviour, Varda calls the given interception policy before
each “spawn” of an intercepted activation. It computes (resp. creates) the interceptor
instance in charge of this specific instance based on the type and the place of the
intercepted components. It cannot use the identity of the instance yet since the
interceptor assignation must precede the spawn of the instance not to lose any
message send by the “onStartup” method on the intercepted component19.

One interceptor multiple contexts One can reuse the same interceptor between
interception scopes to create logical interception scope that aggregates scattered
interception scope. Such a logical interception is not constrained by syntactic
scope boundaries limitations. Figure 4.9a illustrates this example. Listing 6 shows
how to write a singleton_policy that reuse the same singleton interceptor in-
stance (Listing 6, lines 189-190) for all the “intercept” blocks parametrised by the
singleton_policy.

One context multiple interceptors Conversely, one can spawn multiple interceptors
for a given interception scope to improve performances by replicating the intercep-
tion logic (Figure 4.9b). In that case, the policy assigns an interceptor instance for
a (dynamic) set of intercepted instances. The perimeter of those sets is controlled
by either the place or the type of the intercepted instances. Filter groups based on
policy parameters, i.e., place and type of the intercepted activation.

19One possible Varda extension could be to provide access to the spawn arguments in the policy
function.
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174 (* * Singleton policy logics * *)
175

176 option<activation_ref<LoadBalancer> singleton_interceptor = none();
177

178 (*
179 [intercepted_component_schema] denotes the schema of the intercepted component
180 [p_of_intercepted] denotes its place
181 [factory] is the function that instantiate a new interceptor, the compiler provides it
182 Moreover, a policy takes the parameters of the onStartup method of the interceptor, if

any.↪→
183 *)
184 activation_ref<LoadBalancer> singleton_policy(
185 place -> activation_ref<Server> factory,
186 string intercepted_component_schema,
187 place p_of_intercepted
188 ){
189 if(this.singleton_interceptor == none()){
190 this.singleton_interceptor = some(factory(current_place()));
191 }
192

193 return option_get(this.singleton_interceptor);
194 }

Listing 6: Interception policy for S-KV

For instance, for stateless interceptors, an interesting strategy could be to initiate
one interceptor replica per node where an intercepted component runs. We provide
an implementation of such a replication_policy in Listing 7.

Of course, programmers can hybridise and tangle the two approaches to
control precisely the interception.

General notes on interception implementation

Binding user-defined interceptor logic with generated ports Vardac specializes the
interceptor component ( 3 ) for each interception block, in order to create the needed
ports according to the intercepted ports and bridges. Vardac binds the annotated
methods with generated ports of the interceptor based on methods signature which
includes and the intercepted session type and the current message type. Note that
“@interceptsession” is triggered when the first message of the session reaches the
interceptor.

For instance, in Listing 4, Vardac binds “intercept_get” (Lines 137–147) with
the generated interceptor’s port expecting a “get_request” since the signature of
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195 dict<place, activation_ref<KVServer>> interceptors = dict();
196

197 (*
198 [intercepted_component_schema] denotes the schema of the intercepted component
199 [p_of_intercepted] denotes its place
200 [factory] is the function that instantiate a new interceptor, the compiler provides it
201 Moreover, a policy takes the parameters of the onStartup method of the interceptor, if

any.↪→
202 *)
203 activation_ref<SomeInterceptor> node_replication_policy(
204 place -> activation_ref<Server> factory,
205 string intercepted_component_schema,
206 place p_of_intercepted
207 ){
208 if(exist2dict(this.singleton_interceptor, p_of_intercepted)){
209 return get2dict(this.singleton_interceptor, p_of_intercepted);
210 } else {
211 activation_ref<SomeInterceptor> interceptor = factory(p_of_intercepted);
212 add2dict(this.singleton_interceptor, p_of_intercepted, interceptor);
213 return interceptor;
214 }
215 }

Listing 7: Replication policy. It instantiates at most one interceptor per node.

“intercept_get” specifies that it is responsible for the messages of type “get_request”
with a continuation of type “?bool.”.

Interceptor logic uses method annotations and not classical component definition to
reduce the programming efforts and to remain as general as possible. In this manner,
programmers do not have to take care of creating the communication interface
of the interceptor which depends on the nature of the intercepted components.
Moreover, an interceptor component can be re-used for various “intercept” block
that may contain different set of intercepted components. Vardac generates all this
boilerplate.

As a side effect, two intercepted channels with the same protocol and the
"same" left (resp. right) hand-side component type are intercepted by
the same methods. However, inside the interception logic, programmers
can distinguish between both, by accessing the unique identifier of the
channel instance.
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4.3 Sumup

We propose a new language, Varda, at the intersection between programming and
specification languages. A Varda program describes how to compose components
into a coherent architecture. To ensure safety, the programmer isolates an OTS
component behind a Varda shield. The shield restricts the component’s behaviour
by specifying its interface, its protocol (i.e., what it may send or receive, and in
what order), and pre- and post-conditions. Components can be logically nested,
to provide encapsulation. An outer component orchestrates its inner components,
spawning or killing component instances, interconnecting them, and supervising
error conditions; and more generally compute over components and messages.

We extend this core language with an interception mechanism to support incremental
building of systems. Varda interception is a safe language abstraction of proxy
interposition. A component that encapsulates inner components may impose their
communication in order to redirect messages to a proxy component without any
changes to the intercepted components.
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Support for systems
programming

5

Supporting the development of real, distributed systems, has conflicting require-
ments: on the one hand, to reduce complexity and opportunities for errors, by
abstracting away low-level detail; on the other, to pay attention to features that
affect performance and fault tolerance. It is a trade-off: parallelism is good for
performance but bad for complexity; co-locating components is good for communi-
cation cost, but bad for parallelism, resource contention, and fault tolerance (since
faults are not decoupled); some system algorithms require low-level but unsafe code,
etc. Clearly, there is no right answer; Varda follows pragmatic approach: it lets the
developer choose the trade-off for its specific use case.

This chapter explores what are the entities that a programmer can leverage to
have low-level control over the system and its performance. First, we explore the
representation of the network and placement in Varda and how they integrate with
components. Then, we review how to combine the existing building blocks to
program classical distribution features as scalability and fault supervision. Finally,
we introduce the component inlining optimisation to compile away expensive inter-
process communication. In particular, it eliminates the extra overhead induced by
the usage interception.

5.1 Primitive features for system programming

5.1.1 Placement

Placement is an important trade-off in a distributed system. On the one hand,
placing together two components that communicate may reduce network overhead;
on the other, placing too many components together may overload the underlying
node (e.g., VM or server). Furthermore, close-by components tend to fail together,
negating the benefits of redundancy and replication. Placement also has security
implications, related to trust in the execution environment of a component.
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Fig. 5.1.: Placement of the load balance key-value store on a three node infrastructure.

To program placement as a first-class feature, Varda embeds an abstract represen-
tation of the infrastructure: the places. For this, Varda provides a two-step flexible
placement mechanism, illustrated in Figure 5.1.

The first step, the left-hand step on the figure, corresponds to the placement of
the component instance on a logical representation of the infrastructure. The
architecture specifies this step. Furthermore, places are Varda logical values, which
can be manipulated by the program. However, they cannot be created or destroyed
by the core Varda’s programming model. The runtime manages their life and
death.

The second step, the right-hand step in the figure, corresponds to the mapping of the
logical infrastructure to the physical infrastructure. This mapping is external to the
architecture and is defined thanks to an external configuration file and deployment
phase.
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Step 1: Component placement

Varda supports a place abstraction, which summarises information about the network
topology. A place represents a specific location, such as a virtual machine, compute
nodes, compute clusters, etc.

A Varda component may specify, imperatively, where to place a new instantiation of a
component, near to, or away from, some specified node, or specified components. To
this effect, the directive “spawn” instantiates a component with an optional “place”
parameter. A component instance is placed when it is instantiated and does not
move thereafter. Dynamic migration is not supported directly, but can be manually
programmed above, by spawning a new instance, synchronising the state between
the old and new instance.1 As an example, writing “b = spawn () @ place(a);”
co-locates instance b with a.

To ease the programming of placement, Varda runtime provides a placement and
discovery service that answers questions such as: What places currently exist? What
is the place of this specific instance? What instances are running at this given place?
This service maintains the mapping between abstract places and physical nodes (set
up during deployment, as specified in a configuration file), and the locations of
component instances.

To monitor the evolution of the infrastructure, a component can subscribe to no-
tification triggered by this service by exposing a supervision port. For instance, a
component can be notified when the set of places grows or shrinks dynamically, by
subscribing the supervision port to events “new_place” and “del_place”.

Step 2: Mapping places with the infrastructure

The mapping of places to infrastructure is inherently dynamic. The running infras-
tructure changes for each deployment and evolves dynamically (e.g., node failure,
commissioning, decommissioning or network partition). Therefore, it is the Varda
runtime that onboard places in the registry.

Even if the infrastructure is dynamic, the placement of distributed components
is often related to a static infrastructure schema. For instance, a geo-distributed
key-value store expects to have nodes grouped in several DCs. Each DC should host
its own frontend, a replica of the backend store and an inter-DC replication strategy.

1To make migration transparent, the idiomatic way would be to use interception to redirect commu-
nication to the new instance.
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In this situation, the hierachisation of the infrastructure per DC is known in advance,
even if the number and composition of the DCs remain dependent on deployment.

To models this static part, Varda uses an infrastructure schema which represents
the architecture a priori knowledge of the infrastructure. This schema models the
hierarchy and ownership of places. Hence it is composed of place schemas. A place
schema represents a group of places, for instance a DC. Moreover, to model the
hierarchical infrastructure, place schemas can be nested.

The infrastructure schema is immutable whereas actual infrastructure
(composed of places) is dynamic.

To set up this infrastructure schema, a programmer defines the schema in a separate
file, which describes the name of each place schema, their properties and, optionally,
their children. In addition, the developer could optionally specify additional prop-
erties (as a list of arbitrary key-value tuples) for each place schema. For instance,
programmers can set a secure flag when a node runs in a trusted network.

To bind the infrastructure schema with the running infrastructure, the programmer
should bind each place with a place schema during place onboarding. For this,
the easy way is to tag the generated deployment strategy with the names of place
schemas.

Finally, in the architecture, the programmer can leverage the knowledge of the
infrastructure schema to select places based on their tags or on their properties.
For instance, in the geo-distributed key-value store, the orchestration logic can
distinguish between DCs and spawn a replica in each. In Chapter 9, we use this
feature to build a clone of AntidoteDB.

Discussion

Performance considerations Mapping places with the infrastructure is done during
deployment, it does not induce runtime overhead. On the other hand, placement
reflexivity is intrinsically dynamic, since the infrastructure may evolve and compo-
nents’ placement changes. Therefore, placement reflexivity induces an extra runtime
cost when an instance is created or deleted and when a place joins or leaves. This
overhead comes from the need to register the modification into a shared registry. To
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avoid those runtime-cost, programmers can disable placement reflexivity : globally
(Vardac parameters) or per component, by annotating the component schema with
@disablePlacementReflexivity.

Deployment Once, Vardac has generated and build the glue, programmers package
the glue code for their deployment tool. First, they need to deploy the underlying
Varda runtime on each node. During this phase, they onboard the node and tag
it. This exposes the node as a place. Programmers (or failures) can remove (or
add) places at runtime with the same mechanism. Then, they start the system entry
points. Each entry point start spawning activations on places.

To ease this step, Varda can generate a deployment plan. The programmer just needs
to write the docker-compose file template. Then Varda can automatically generate
a Dockerfile for each target. To use Kubernetes instead of docker compose, the
developer has to replace the docker compose template file with a Kubernetes one.

5.1.2 Networking

A channel is an abstract object supporting message-passing between ports and encap-
sulating low-level OS or network primitives. In contrast to many high-level systems,
a channel is a first-class, programmable object. As explained earlier, channels are
subject to type checking.

A channel is a serialisable type, i.e., a message can send a channel to another
component. This enables establishing a direct connection between components,
bypassing encapsulation and interception boundaries. For instance, when a client
first connects to a service, its interceptor might return a direct connection to some
internal server for the service, minimising indirection overhead. This does not break
safety, because it must be allowed both by the message type and by the channel
class.

Channel classes are implemented in a trusted library. Different classes provide
specific guarantees, e.g., a TCP socket channel, or a RabbitMQ persistent channel.
Additionally, we provide channels wrappers that alter the non-functional properties
of the channel, i.e., it does not change the communication pattern. A channel
wrapper is a function that takes a channel as input and returns a channel as output.
Wrappers can be chained. For instance, a channel wrapper can add encryption to a
channel as follows:
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Channel class Guarantees Comments

default_channel FIFO per sender-receiver tuple Support a many-to-many pat-
tern, which means that it can
interconnect multiple initiator
components with multiple lis-
tener components.

amqp_channel FIFO per sender + at most one
delivery

many-to-many + AMQP is the
mainstream protocol for bro-
kers. Our prototype uses Rab-
bitMQ under the hood.

Channel wrappers
aes_wrapper the properties of the wrapped

channel + AES encryption
We assume that the key are
known by all the tenants of
such a channel.

Tab. 5.1.: Currently available Varda channel classes. Guarantees cover all the messages
exchanged on the channel even if they belongs to distinct sessions.

channel<A, B, my_protocol> chan = amqp_channel(my_protocol, "amqp://localhost:5672",
"my_topic");↪→

channel<A, B, my_protocol> secure_chan = aes_wrapper(chan);

The management and distribution of shared secrets are out of the scope of the
“aes_wrapper” and of this work. We assume that there is an external mechanism
that provides the key to the wrapper. For instance, we can embed a HashiCorp
Vault2 client in a Varda component and use it to distribute secrets. HashiCorp Vault
provides a secure and centralised solution for storing, accessing, and distributing
secrets such as API keys, passwords, encryption keys, and certificates.

As in ADLs languages, we dissociate channels from components and
make channel internals opaque. Conceptually, channels (like places)
are the reprensentatives of the lower layers of the OSI model. This
permits to provide taylored and efficient implementation of channels
whitout extra overhead. This separation is needed to finely control
the network interconnection between components since the network is
often non-uniform and heterogeneous at the scale of an infrastructure.
Moreover, this give the ability to the programmer to use high-level system
to propagate messages between components (e.g., Kafka, RabbitMQ,
etc.).

2https://www.vaultproject.io/
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218 for(activation_ref<_> b in rightactivations(c)?){
219 if(some_predicate(b)) {
220 session<st> s0 = initiate_session_with(b);
221 (* starts communication *)
222 }
223 }

Listing 8: Discovering the activations listening on channel c

5.1.3 Instance discovery

Recall that in Varda an activation, i.e., a component instance, a can start a communi-
cation with activation b only if a knows the identity of b, i.e., the “activation_ref”.
Conversely, b does not need to know a before receiving the first message. Activation
a knows the identity of b if is the parent of b. Otherwise, a needs to discover the
identity of b before starting a communication. a can gain this knowledge from its
parent, by receiving it thanks to its onStartup arguments. Otherwise, a can discover
it by receiving a message containing b with another activation c.

Manually propagating the activation identities can be time-consuming and error-
prone. Each Varda channel offers reflexivity on its endpoints. Figure 8 shows how
to get the activations listening on channel c. Channel-based activation discovery
only work if both activations a and b have a port bound with c, and therefore
knows c. Varda placement reflexivity primitives give the ability to gain access to
activation running on given place (Section 5.1.1). For performance or security,
programmers can choose to make activations, of given component, invisible for
reflexivity primitives.

Channel discovery behaves like the activation discovery, except that an activation
cannot discover a channel thanks to place-based discovery. Therefore, channel
discovery mechanism works only if activations a and b share a common ancestor. If
they don’t, two different entry points have spawned them3. In this case, channels
cannot be shared without prior common knowledge. For instance, a traditional
common knowledge is the tuple of an IP address and a port number. Varda repre-
sents this common knowledge using static channels. As its name suggests, a static
channel is fully statically determined. Thus, it can be defined at top-level outside
any component and pre-exists the system. Note that, a static channel requires
that its arguments, if any, are known at compile time and that its instantiation is
deterministic. All of the current channels kind can be used statically.

3A Varda system can have multiple "main functions", i.e., entry points. Each entry point spawns a
different part of the system.
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5.1.4 Interaction with non-Varda system

Exposition

To serve external requests, a system built using Varda must expose an interface that
can be queried using mainstream technologies. Such that the external caller does
not need to be aware of the existence of the Varda framework. For instance, in
Figure 3.2, a YCSB client4 (resp. a console client) can fire requests to the gateway
using its REST benchmarking plugin.

To ease this step, Varda enables the programmer to expose a generic network
interface. This requires to open up the corresponding encapsulation boundary. Varda
provides keyword “exposed.” It instructs the compiler to generate RPC stubs (either
gRPC or REST). The stubs do some minimal type-checking, and include run-time
conformance checks that enforce the protocol and contract.

In our running example, the “KVStore”component both encapsulates the storage
service (see Lines 15–34). Its “Gateway”component exposes the method api_put as
a gRPC interface (Lines 71–80). Different clients, e.g., a console or a YCSB driver,
can address this interface.

OTS adaptor

To wrap an OTS module inside a component often requires an unsafe language,
for instance, Java. Varda structures this into three parts: safe component code,
unsafe adaptor, and the OTS module itself. The component declares the interface
of methods that call into the OTS module, but not their implementation, which is
delegated to the adaptor5.

As the OTS module can be completely arbitrary, this requires flexibility in adaptors.
For instance, if the OTS is a Java library, it requires Java code to use Java calling
conventions; if it is a web service, it wants to receive and send REST messages.
Typically, the adaptor is written as short Varda snippets embedding unsafe code, in
Java or some other appropriate language. The Varda compiler inlines the adaptor
code, generates glue code, does type-checking, and generate (optional) run-time
conformance checks.

4YCSB is mainstream a benchmarking tool for databases [50].
5This is inspired from the P language [59].
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224 impl component Server {
225 impl raw java:{=
226 /* Use a unique DB connection per Server */
227 RocksDB _db;
228 RocksDB getDB (){
229 if(this._db == null){
230 // Open the backend
231 String db_path = System.getenv("ROCKSDB_PATH");
232 org.rocksdb.Options options = new org.rocksdb.Options();
233 this._db = RocksDB.open(options, db_path);
234 }
235 return this._db;
236 }
237 =}
238

239 (* binding for the get method *)
240 impl method get java:{=
241 // Perform the GET request on key [k]
242 // {{% Varda expression %}} is compile to Java code
243 byte[] value = this.getDB().get({{%k%}}.getBytes());
244 return new String(value);
245 =}
246

247 impl method put java:{= ... =}
248 }
249 }

Listing 9: A “Server”to RocksDB adaptor

By design, adaptor code is kept in a separate file. This makes it easy to substitute
an OTS module with another. For instance, with suitable adaptor files, our storage
service supports multiple backends, an in-memory table, Unix files, or an advanced
storage engine such as RocksDB [@75].

Adaptor syntax is as follows. Notation “{= ... =}”embeds a code snippet written in
the unsafe programming language. The compiler interpolates templates containing
Varda expressions, signalled by “{{% ... %}}”.

In our example, Figure 9 illustrates a Java adaptor for “Server”. The “get”method
is a wrapper around the RocksDB Java library (Lines 240–245). It uses opaque Java
(Lines 225–237), and reuses a single RocksDB connection for all the requests to a
given Server. Our compiler translates “{{%key%}}” (Line 243), where “key” is an
Varda variable, into the corresponding Java code.

Programers can embed existing data structures with their helping primitives. For
this, the developer has to embed the data type as an abstract type and the primitives
as abstract functions, with their code-generation adaptors. For instance, we embed
a CRDT LastWriterWin register when we build a geo-distributed datastore (see
Chapter 9).
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Fig. 5.2.: Supervision of a storage server by leveraging the existing supervision mechanism
of the underlying actor runtime.

This mechanism avoid to complefixify the language and, at the same
time, to rely and reuse existing libraries that implements interesting data
structures.

5.2 Building features for distributed systems

This section shows how to combine the available foundational elements to attain
traditional distributed system capabilities, such as scalability and fault monitoring.
This demonstrates that the Varda expressiveness is sufficient to program those
functionalities and that it can easily leverage the existing implementation provided
by the underlying runtime or by the infrastructure management system.

5.2.1 Supervision

Varda embeds existing tools provided by the underlying runtime (e.g., Akka super-
vision) in its programming model, thanks to OTS adaptors and supervision ports,
Whereas other environments, such as Erlang [16], provide built-in crash supervi-
sion. Indeed, reusing tools has two major advantages: leveraging performant and
well-tested tools, and controlling underlying OSI layers that would otherwise be
abstracted.
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250 component LoadBalancer {
251 (* Supervision port expecting a [child_failed] event *)
252 supervisionport child_failed =
253 x : child_failed -> print("Backend failure");
254

255 onStartup (){
256 (* The activation to suppervise *)
257 activation_ref<A> a = ...;
258 (* Start the supervision of [a] *)
259 watch(a);
260 }
261 }

Listing 10: Supervision of a storage server.

Figure 5.2 shows how to leverage an existing supervision mechanism to built compo-
nent supervision. In this example, the load balancer supervises the backend servers
it manages. We built this example on top of an actor model: the component is
compiled toward actors and the actor runtime already provides an actor supervision
mechanism.

A component may subscribe to events regarding its subcomponents, for instance,
an indication that a sub-component is not responsive. These events are received
on the component’s supervision port. With this information, the developer can, for
instance, recover from a failed instance.

The runtime environment can be set up to deliver error events to a component’s
supervision port.

Listing 10 shows how this works. Component “LoadBalancer” supervises storage
server a. Supervision starts with “watch(a);”. If a fails, the runtime triggers a signal
of type “child_death” on the supervision port “p_monitor”, the “LoadBalancer.”

The approach works as is for other fault-detection mechanism and for
non-actor components as long as the authors can provide an adaptor for
the watch primitive and a runtime hook to transform the notification of
the fault-detection into a child_failed event.

5.2.2 Elasticity

Elasticity is the capability of a system to adapt dynamically to the load and to the
available resources, by provisioning and deprovisioning [96]. In Varda the developer
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262 component KVStore {
263 (* suppervision port listening for a [new_place] event,
264 sent by the runtime *)
265 supervisionport new_place =
266 (* On reception trigger the [add_server] callback *)
267 e : new_place -> this.add_server(e.place);
268

269 (* Spawn a server on each new place *)
270 void add_server(place p){
271 (* Add the newly created server to the the
272 replicas pool of the loadbalancer *)
273 intercept<LoadBalancer> {
274 spawn Server(chan) @ p;
275 }
276 }
277 }

Listing 11: Adding elasticity to Listing 4.

controls computation needs by spawning and terminating component instances.
Moreover it can discover the available resources (e.g., additional places) thanks to
the discovery service.

Listing 11 shows how to add elasticity to the example storage service. When
“ElasticManager” receives a “new_place” notification (Line 265), spawns a new stor-
age server using the “add_server” method. The interceptor “LoadBalancer”receives
a notification when the new server has started, and adds it to its intercepted pool
(Line 273).

Last but not least, if the underlying runtime or infrastructure management system
provides elasticity/scalability features, the developer can embed them in the Varda
realm by following the same pattern as for the previous section.

5.3 Component inlining

Crossing component isolation boundaries can be costly, due to context switching,
marshalling/unmarshalling, and network overhead. Co-location avoids part of
this overhead. Furthermore, Varda can inline co-located components, to eliminate
context switching and marshalling overhead. Inlining merges the implementation of
two or more instances into a single process or virtual machine, depending on the
compilation target of a component.

To take a simple example, consider our key-value store with load balancing: the
gateway listen to external gRPC requests, validate them and forward them to the load
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Fig. 5.3.: Inlining the load balancer (LB) into the gateway.

balancer. An interesting optimisation is to eliminate the message overhead between
the gateway and the load balancer by inlining the loadable into the gateway6.

Figure 5.3 illustrates the transformation. After inlining, the gateway acts as a
component host for the loadblancing logic. The load balancer component is encoded
in a "single host/sequential" object such that the gateway can directly call its methods.
We use object representation to keep data encapsulation: a component could host
multiple inlined instances of the same components.

Inlining occurs on request, at run time (in contrast with previous work [64],
[65] where it is automatic and at compile time). The execution of “lb = spawn
LoadBalancer(...) in gateway” triggers inlining of lb into gateway. Vardac can-
not do it statically, since the identity of s is not known in advance.

5.3.1 Properties and guarantees

Using Varda inlining

Induces a lost of parallelism Inlining unavoidably affects liveness, as it results in
a loss of parallelism between the host and the inlined components.

Affects isolation between the host and the inlined components Inlining relaxes
the isolation between the host and the inlined component: the compiler pre-
serves OTS and communication isolation. However, if the host crashes, the

6Inling the gateway in the load balancer is conceptuallyu possible. However, our prototype does not
support it: Vardac does yet handle exposed interface when inlining.
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inlined components crashes as well. The reverse is not true, an inlined compo-
nent can fail without crashing the host.

Note that, the host and the inlined component can communicate if and only if
they could communicate without inlining: i.e., they are interconnected by a
channel.

It also leads to an unavoidable host identity leakage since external components
needs to send messages to the host to reach the inlined component.

Suffers from channel limitation A component cannot host two instances of the
same component type that uses two different channels for the same-named
port. This comes from the fact that the Varda programming model does not
support to dynamically add new ports to a component. On the other hand,
having static ports greatly simplifies the reasoning on a Varda architecture and
the code generation.

Preserves other Varda guarantees The other safety guarantees are preserved:
components inlining preserves interfaces and encapsulation of the components.
Moreover, it inlining mixes well with all the building blocks, provided by Varda,
to strengthen system dependability (see Chapter 6).

Generates a correct-by-construction architecture

Our prototype does not yet support nested inlining.

5.3.2 Inlining workflow

In this section, we present a generic inlining workflow which is fully
transparent for code-generation since it compiles down to core Varda.
One could specilize the inlining compilation for a specific code-generation
target to leverage existing underlying inlining mechanism.

Figure 5.4 shows the workflow of the inlining of a “LoadBalancer” into a “Gateway”.
The programmer writes the different components 1 and specifies that the load
balancer should be inlined into the gateway instance using the spawn instruction.
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Fig. 5.4.: Inlining general workflow. “Filters”f1, . . . , fn are inlined inside the Source.
Filter g is a regular Varda component.

Vardac prepares the system architecture at compile time ( 2-3 ), i.e., it generates
the inlining boilerplate composed of new ports, states and communication logic.

At runtime, while executing the “spawn with inlining”, Varda runtime performs the

dynamic inlining setup ( 5-7 ), i.e., it starts an object in the host and correctly set
the communication links.

Once this is set up, the inlined component can communicate with the external world
through their host ( 8 details the workflow of a message).

Static inlining workflow (See. Figure 5.4)

2 From 1 , Vardac generates the generic inlining logistics inside “Gateway”.
This logistics permits to receive inlining requests and to process them. It is
composed of a dedicated port listing for inlining request; a local state that regis-
ters the running inlined component; and, the inlining master logic that spawns
a local component instance upon request reception and which attributes to
him a unique identity.

6 For each type of component that might be inlined inside Gateway, here
LoadBalancer. Our compiler generates a “LoadBalancer” class that embed-
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ded all the internals of its respective component, i.e., its methods and its local
state.

7 Vardac generates adds a load balancer interface to the gateway, since the load
balancer class and logic are hidden inside the host internals.

There is one LoadBalancer interface shared by all the objects (lb1, . . . , lbn)
whereas each classical instance of a component has its one dedicated interface.
Vardac generates the “lb_dispatcher” logic to correctly paired the incoming
message with the related load balancer object based on session metadata.

Dynamic setup

The dynamic setup stage starts when the execution flow of the parent reach the
“sapwn LoadBalancer(...) in ...” instruction and terminates at the end of this
instruction execution.

5 When the “KVStore” component reach this instruction, it sends an inlining
request to the “Gateway” containing the type of the “LoadBalancer” and its
“onStartup”arguments.

6 Upon the reception of the request, the inlining master logic starts a “LoadBalancer”
object, here lb-1, with a unique global id for future communication. The
gateway stores the id in its local state for further routing and sends it back to
the parent component.

7 Upon reception of this id, the parent craft a component reference using the s

reference (the host of the inlined component) and the id of the internal object.

Vardac generates all the code specific for this dynamic setup during the
static phase.

Communication with an inlined component

This the steady state after inlining. The following describes the route of an element
sent by another component to lb1.
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8 The other component sends a message elt to “lb_1” which points to “gateway”
with an additional metadata that uniquely identifies the lb1 object. This
metadata is piggybacked on the message by the generated logic.

The “Gateway” receives it on its “LoadBalancer” interface. The dispatcher
routes the message to lb1 based on metadata. Which process it and can option-
ally response or create new session through the ‘’‘LoadBalancer” interface of
the “Gateway”.

5.3.3 Interaction between inlining and interception

On the one hand, inlining can be used orthogonally to interception enables tailored
optimisations: inlining can be used without restriction inside an interception scope
and, in some conditions/restrictions, can be orthogonal to an interception scope.
On the other hand, inlining is a powerful feature that can be used in conjunction
with interception to eliminate the communication overhead of the interception. This
allows programmers to use interception to incrementally build distributed systems
by leveraging interception without paying an unacceptable overhead.

The current prototype does not yet support all these behaviours.

To discuss and to illustrate these behaviours, we use the following toy example:

intercept<I> policy_i {
activation_ref<A> a = spawn A();
intercept<J> policy_j {

b = spawn B();
c = spawn C() in a;
d = spawn D() in b;

}
e = spawn E() in b;

}

Inlining inside an interception scope Inside an interceptor context, programmers
can use inlining directive without restriction. For instance, d = spawn D() in
b; works as we discussed in the previous section.

Inlining ⊥ interception By nature, the Varda inlining instruction can cross the
interception boundaries (i.e., interception scope). In the following, we discuss
the two cases where inlining could interfere with interception: either the
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host is outside the interception scope or the inlined component is outside the
interception scope.

To discuss the first case, without loss of generality, let us consider the inlining
of c in a such that there is an interceptor j in between. In this setup, j
should intercept both the communication induces by the inlined setup and the
actual communication of c with external components. This implies that the
interceptor j will intercept the C interface of the host. As a result a cannot
host intercepted and non-intercepted instances of C at the same time.

To discuss the first case, without loss of generality, let us consider the inlining
of e in b such that there is an interceptor j in between. In this setup, i should
intercept both the communication induces by the inlined setup and the actual
communication of b. However, it should not intercept the communication
of the inlined e with external components. This implies that the interceptor
i should intercept the C interface of the host. As a result, with the current
inlining mechanism, a cannot host intercepted and non-intercepted instances
of C at the same time.

Mixing inlining and interception induces a restriction in the interception
capabilities: the communication betwen the host and the inlined compo-
nents are not intercepted. Even if they are split by an interception scope.

Inlining an intercepted component into its interceptor This case is observably
equivalent to classical interception. The inlining takes over interception,
without modifying the functional behaviour of the interception. Note that
inlining nested interceptors (e.g., j in i) is a special case.

Inlining must respect the spawn order. For instance, inlining i in j (resp.
j in b) is impossible due to the interception spawn order: the interceptor
is always spawned before the intercepted component.

Inlining an interceptor The idea is to compile away communication indirection
introduced by interceptors using inlining. In our example, the idea is to
inline the inner interceptor (e.g., J) into the outer interceptor (e.g., I). To
support this, an interception policy should specify interceptor inlining. We
introduce a variant of the interception factory function in order to allow either
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inlining or classical placement of the interceptor according to the execution
flow. According to the usage, the compiler generates the either a simple factory
function of the previous chapter (with placement specification only) or this
inlining factory function. For instance, policy_j can inline j in i as follows:

activation_ref<J> policy_j (
option<place> -> option<activation_ref<any>> -> activation_ref<any> factory,
string intercepted_component_schema,
place p_of_intercepted

){
(* Where this.interceptor_i is the first interceptor *)
return factory(none, some(this.interceptor_i));

}

5.4 Summary

To make non-functional properties fine-grain programmable (e.g., fault tolerance,
elasticity, placement), Varda provides resources (e.g., failures, places and network
links) that models the underlying infrastructure or the underlying OSI layers. To
ease programming Varda exposes these resources as first-class objects. In the sense
that components can copy them, store them or send them to other components,
with some restrictions depending on the nature of the resources. For instance, a
component cannot create a place out of thin air.

Using these core resources, Varda provides various primitives and annotations
to easily program classical distribution properties as component placement, fault
supervision or elasticity. Moreover, programmers could easily extend the Varda to
control additional non-function properties (e.g., security). For this, a developer could
expose custom resources and primitives by leveraging OTS adaptors and supervision
port. We demonstrate this approach by extending the Varda programming model
with fault supervision by abstracting the underlying supervision mechanism of an
actor framework.

Last but not least, Varda provides optimisations to reduce the overhead inherent
to the composition of independent components (e.g., due to context switching,
marshalling/unmarshalling, or network communication):

• To mitigate network overhead, programmers can co-locate components using
placement annotations independently of the encapsulation boundaries.

• To eliminate context switching, programmers inline components at the cost of
a loss of parallelism.
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Towards verified distributed
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6

Introduction

Modern mainstream programming languages provide safety guarantees for non-
distributed programs, ranging from memory safety to type systems, to predicates
on types [41]. Additionally, distributed systems must deal with issues specific to
distributions and composition. This chapter explores how Varda can help to improve
correctness. We focus on the interaction between components and the adequation
between code and specification with a special focus on the OTS.

We first present the Varda’s safety building blocks (Section 6.1). Then, we discuss
how to combine those blocks to achieve the following objectives (Section 6.2):
formalising component behaviour; specifying the interaction between components;
constraining OTS behaviours; and, bridging the gap between specification and code.
Note that, this work does not address liveness properties since Vardac checking
mechanisms (e.g., type checking and dynamic check injection) are not sufficient to
detect a liveness violation.

A pragmatic approach is required to be able to reconcile correctness requirements
with performance and ergonomic requirements. Therefore, Varda toolbox often
provides various specialised building blocks for a given property. Each block refines
the previous one by adding more expressiveness at the cost of additional cognitive
cost and system overhead.

6.1 Safety toolbox

This section details the building blocks to strengthen system dependability. Varda
provides two distinct kinds of tools: (mandatory) declarative tools that hold by
construction when using Varda entities (e.g., interception or isolation) and (optional)
imperative tools that a programmer can use to additionally constraints on a system.
Figure 6.1 shows a classification of those blocks. On the x axis, we classify the
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Fig. 6.1.: Overview of the Varda verification toolbox.

blocks according to when and where they are checked: at compile time, at run time,
or post-mortem1. On the y axis, we categorise the blocks according to the their
expressiveness2: whether a guarantee is provided by construction, or the whether a
programmer must state them explicitly by by declaratively annotating the architecture
or by programming them.

6.1.1 Declarative specification

Component compatibility

Component compatibility is the property that two components are mutually com-
patible based on their interfaces, i.e., they can be interconnected and can communi-
cate.

To ensure this, Varda leverages type-checking since programmers are used to anno-
tate programs with types and since types are sufficient to formally specify component
interfaces, while ensuring component reuse and evolution [128]. The type system
works at three layers: classical types 1. describe the internal logic of a component.
Additionally, 2. each communication between components is typed by a protocol.

1We denote by “post-mortem” the fact that information is available, at the end of the system execution,
for inspection either inside the logs or inside the generated code.

2Note that the control provided by a block is often proportional to its cognitive cost.
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Furthermore, 3. the type system ensures that the internal logic processes messages
according to these protocols.

Varda type system provides built-in types for the most common data structures such
as lists, tuples or dictionaries. Programmers can define new types by composing any
of the existing Varda types as named tuples. Moreover, they can embed external
types (see Section 5.1.4) as abstract type [59]. These types are defined in an external
language and use in Varda as opaque data type, i.e., a Varda component can only
pass by argument or (optionally) send a value with an opaque type. To manipulate
those value, programmers can import external libraries using adaptors. For instance,
using embedded types, a developer can import existing data structure libraries (i.e.,
the data structure representation and its associated primitives) to write the business
logic of a component.

Communication is described by a protocol specified as a binary session type [61].
Binary, in contrast to multiparty, means that the protocol only involves two compo-
nents3. The type-system guaranteeing that the communications performed through
session primitives (i.e., fire, select, receive, branch) follow the protocol. More pre-
cisely, the following properties hold [54]: the exchanged data has the expected type,
the structure of session types matches the structure of communication at run time,
the session channel has the expected structure and the session channel is visible
only by the communicating parties.

A component type is classically described by a signature of its internal logic (i.e.,
methods, states and subcomponents) and by its interface. The interface denotes the
set of the signatures of its ports (i.e., the protocols), and the type of the “onStartup”
method.

To ease code reuse and architecture evolution, Varda type system supports both
parametric polymorphism and subtyping [128]. Parametric polymorphism allows
developers to parameterise types based on a generic type. For instance, it this
enables the programmer to write code generic code using Varda collections (e.g., set
or list) or to manipulate components independently of their interfaces. Conversely,
subtyping represents a notion of substitutability between data types and between
components [120]. This allows replacing (or update) a component by another one
with additional observable features without having to change the code of the other
components which are already connected to it.

3We disscuss adding multiparty session types as futur work, Chapter 11.
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Interface substitution The interface of a component can evolve independently of
the others as long as the interconnected ports remain compatible. A programmer
can extend the interface of a component by adding arbitrary new ports. Moreover,
the developer can update the protocol (and the related inner logic) of existing ports
according to port substitutability. Note that interconnected ports cannot be deleted
without updating other components.

The Varda type system captures these properties through interface subtyping which
leverages session type subtyping [83]. Without loss of generality, component “A” is
substitutable by component “B” (i.e., “B” is a subtype of “A”) if

• for each port of “A” there is a substitutable port of “B”;
• the “onStartup” method of “B” is a subtype of the “onStartup” method of “A”

Port “p_1” is substitutable by port “p_2” if

• both ports have the same kind (i.e., passive, active or supervision);
• port “p_2” is a subtype of port “p_1”.
• Port subtyping is covariant for passive ports and contravariant for active port.

Therefore,
– for passive port, the protocol of “p_2” is a subtype of the protocol of

“p_1”.
– for active port, the protocol of “p_1” is a subtype of the protocol of “p_2”.

The protocol subtyping relation allows the protocol to evolve by changing message
types covariantly4 in input positions or contravariantly5 in output positions; changing
the set of labels covariantly in branch types or contravariantly in choice types; and
changing the continuation types covariantly in input, output, branch and choice
types.

For instance, a straightforward evolution of our key-value store will be to replace
one replica at a time by a new replica that supports deletion and that exposes a
monitoring port to provide load information to guide the “LoadBalancer” when it
selects the replica responsible for an incoming “get_request”.

The new protocol “kv_protocol_2” with the additional delete operation is defined
as follows

type delete_request of key;
protocol kv_protocol_2 = (&{

l_get: !get_request?value.;

4A typing rule or a type constructor is covariant if it preserves the ordering of types, which orders
types from more specific to more generic

5A typing rule or a type constructor is contravariant if it reverses this ordering.
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l_put: !put_request?bool.;
l_delete: !delete_request?bool.;

})*;

This requires the following changes to Listing 2: 1. add a passive monitoring
port; 2. update the protocol of the passive port “p_p” from “kv_protocol” to
“kv_protocol_2”.

Compatibility and architectural transformation The architectural transformations
presented above (i.e., interception and inlining) preserve functional compatibility.
Technically, such a transformation is a source-to-source rewriting. Therefore, the
output architecture passes the compiler standard checks.

Component isolation guarantees

Component’s internals are encapsulated from other components, children and OTS.
Components can interact only by exchanging messages through channels and ports,
or by spawning children. Moreover, a parent component is isolated from its children,
and vice versa. For instance, a parent cannot access the state of a child nor terminate
it. Of course a parent could send a termination request message to a child if the
protocol supports it.

Varda ensures strong isolation between components in order to mitigate the effects
that a component can have on another one. Namely, Varda provides: communication
isolation at both the network layer and the application layer, failure isolation and
OTS sandboxing.

Communication isolation By default, components cannot communicate with each
other. The programmer explicitly drills holes in interfaces to interconnect them
through channels and ports, or to receive events from the environment (i.e., the
runtime) through supervision ports.

At the network layer, Varda ensures that components can communicate only if their
ports are connected through a channel and are compatible. Moreover, at runtime,
a message sent on a channel cannot be intercepted by another component, even
using interception. Remember that the interception adds a new component that
act as a proxy between the sender and the receiver. Interception is performed at
compile time, at run time the architecture is composed of traditional channels and
components. (Section 4.2).
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At the application layer, Varda ensures that sessions are isolated from each other
even over the same channel. A component can receive only a message of which it is
an explicit destination.

Crash and failure isolation Varda follows the “Let It Crash” ([16]) principle since
faults and crash are unavoidable in a distributed system. The runtime guarantees
that if a component instance crashes, the other components are not directly impacted.
Furthermore, a faulty component cannot block another’s execution since all message
reception is asynchronous in Varda. However, a crash still indirectly affects other
components since communication with the faulty component may trigger a timeout
or a crash notification to fault supervisors. As a result the business logic of a
component can stop progressing.

OTS sandboxing A Varda shield isolates an OTS component. The compiler ensures
that an OTS can interact with Varda components only through its shield. The shield
restricts the component’s behaviour to its specified interface, protocol, and pre- and
post-conditions.

However, Varda cannot detect nor protected against hidden side channels. Such side
channels may result either from a malfunctioning or a malicious OTS. In this context,
such an OTS could bypass the Varda guarantees. For instance, a side channel may
result from malfunctioning components using the same external key-value store with
an overlapping key space. Detecting such a channel implies to be able to reason
about the semantics of the OTS implementation. It is out of the scope of Varda and it
is the responsibility of the programmer. In the same way, security isolation is out of
the scope of the current prototype since a malicious component can escape the Varda
safe programming model, by accessing low-level resources (e.g., raw sockets).

Isolation and architectural transformation Interception preserves the isolation
guarantees. Conversely, inlining relaxes the isolation between the host and the
inlined component. The compiler preserves OTS and communication isolation6, , if
the host fails, the inlined component crashes as well. The reverse is not always true:
an inlined component could fail without crashing the host depending of the nature
of the failure and of the coge-generation target.

6The host and the inlined component can communicate if and only if they could communicate without
inlining: i.e., they are interconnected by a channel.
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301 contract m
302 (* pre-contract constant binders *)
303 with
304 int x = store_a_copy_of_some_local_state
305 int y = ...
306 (* precondition *)
307 ensures <expr> (* expr can contain local state and pre-contract variables *)
308 (* post-condition *)
309 (* the post-condition is a predicate that takes the return value of m as arguments *)
310 returns x : m_ret_type -> <expr> (* expr can contain local state and pre-contract

variables *)↪→
311

312 (* the invariant is an optional predicate that is added to the pre and to the post
condition *)↪→

313 invariant <expr>

Listing 12: Detailed syntax of a contract over method m.

6.1.2 Imperative specification

Component contract

To verify that a component behaves as expected, the programmer may optionally
attach contracts to internal methods. A contract is a set of predicates over the
arguments, return values of a method and over local variables. Listing 12 shows
the general syntax of a contract for a method m. It has three optional predicates:
precondition (ensures), postcondition (returns) and invariant (invariant). The
invariant is a syntactic sugar such that the compiler adds it to the pre- and post-
conditions. A predicate may include any legal Varda code but should not have
side effects. Indeed, using communication primitives in contracts may be tricky
and dangerous: the architecture with and without contracts may not be observably
equivalent. Therefore, erasing (resp. injecting) the dynamic checks in the generated
code could potentially change the semantics of a component.

To express complex properties over the execution of a component and to only pay
the extra overhead when needed, a predicate may refer to ghost variables. A ghost
variable is only involved in expression and statement that concerns the verification
logic. They can be compiled away if the contracts are not injected in the final
implementation. More generally, Varda supports ghost methods, ghost state and ghost
statement. A ghost statement might be nested in non-ghost logic.

For instance, the following contract (Listing 13) specifies that the value returned
by “get(key)” must be the one associated with the previous “put” the highest
“counter”. It uses ghost state “last_value” to remember the value of the highest
counter, for each key. The get contract checks the condition7 whereas the put

7For simplicity, it omits the case where ghost state does not contain the key.
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314 (* For each key [last_value] stores the value with the highest counter *)
315 ghost dict<key,value> last_value = dict();
316 (* Checks that the get ( key ) returns the value with the highest counter *)
317 (* [key] is the argument of [get]; [res] is the return value of the [get] call *)
318 (* [store] is a user defined function that wraps dictionary insertion into a predicate *)
319 contract get returns res -> this.last_value[key] == res
320 && store(this.last_value, key, res)
321 contract put returns res -> store(this.last_value, key, value)

Listing 13: Contract for the get method of the key-value store. It ensures that each read
value corresponds to the value with the higest counter.

contract registers value using the “store” function which wraps dictionary insertion
into a predicate.

Varda enforces contracts by injecting dynamic checks and ghost variable in the
generated code. Programmers can disable dynamic checks injection by setting a
compilation flag --erase-dyncheks. The evaluation on method call follows as is8:
1. bindings of local wit binders, if any; 2. runs the precondition and the invariant if
any; 3. runs the function body and store result; 4. runs the post-condition on the
result and the invariant.

Protocol guards

Session types cannot express properties based on the content of the exchanged
messages, nor on the history of the protocol (previous exchanges/rounds). To
circumvent these limitations, programmers can optionally specify the observable
of communication by adding dynamic guards to protocols. A protocol guard is a
predicate over messages. Those predicates can express constrains on message value,
message timeout delivery or on session history.

To support predicate over session history, a session has a context, i.e., a side state
used to remember values during the session lifetime. A programmer can add a
new variable in the context to store a piece of session history (e.g., to remember a
message value), then they can access it. Programmers can update a context value
with store_meta(name, value). Currently, to simplify the compilation in the case
of recursive protocols, they cannot delete it, nor update it with a different type.

For instance, one can specify that, the key of a “put” contains two alphanumeric
substrings separated by a dot (e.g., follows a "name.extension" pattern), and that its
counter increases monotonically. This example is shown in Listing 4 (Lines 20–23).
Here “predicate_key” is a procedure that returns true if its argument satisfies the

8We adapt the evaluation strategy of the D language: https://dlang.org/spec/contracts.html.
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322 (* msg is the value of the current put_request *)
323 (!put_request{msg ->
324 (* check that the key follows a pattern defined by [predicate_key] *)
325 predicate_key(msg.1) &&
326 (* Ensure that the counter of the message is strictly greater
327 than the one of the previous message, if any. *)
328 last_c < msg.0 &&
329 (* Register the current counter in the session metadata *)
330 store_meta(last_c,msg.0)
331 (* Define a session metadata counter *)
332 }?value.)*{metadata int last_c = 0}

Listing 14: Example message predicate, extracted from Listing 4

required pattern9. Directive “metadata int last_c” piggy-backs on the message
the metadata variable “last_c”, which contains the counter of the last “put” request,
as directed by “store_meta(last_c, msg.0)”.

Furthermore, one can specify times bound on sessions using ad hoc timers. Pro-
grammers can set timers at the beginning of the session step (e.g., sending or
receiving a message) and specify upper (resp. lower) bound on those timer in-
side guards of subsequent session step. For instance, the protocol “!key{timer
t|}?value{|(t<100)}.” triggers a notification if the sender of “key” does not re-
ceive “value” within 100 ms.

Guards are session specific and component independent. Component independence
means that the guard is agnostic of the identity and type of the component that uses
the protocol. Session specificity means that a guard cannot ensure communication
properties that involve multiple sessions, and, especially, not properties that involve
distinct protocols. Hence, a guard context is specific to a given session. It cannot be
shared between two sessions. We add this limitation to avoid synchronisation and
consistency issues between arbitrary distant components. However, programmers
can, at their own risk, use an external backend to share information between sessions
guards10. This behaviour is outside the scope of the Varda guarantees.

9For brevity, we omit the definition of the “predicate_key”. It can be either written in plain Varda
or as an external library using a component stub.

10Synchronization overhead and consistency may depend on the selected backend.

6.1 Safety toolbox 119



A component contracts constraints the behavior of a specific component
whereas a protocol guard applies to all instances of protocol indepen-
dently of the components instances that use it. Therefore, a guard cannot
reference a local state of a component. We introduce this distinction
because this avoid to annotate manually all the reception logic with
contracts and to centralize the definition of communication properties.

Evaluation strategy Guards are a kind of syntactic sugar on top of core Varda.
Vardac either injects the guards at the reception or at the emission of a message
involved in a guarded protocol. An alternative approach could be to add guards in
the middle of a communication by leveraging an interceptor in charge of applying
them. However, this would add an extract communication indirection with its
resulting overhead. Therefore, we do not use this approach for point-to-point
communication.

Guard context Varda adds metadata to the session to store its context and to
propagate it between communicating components. That metadata is piggy-backed to
session messages. Therefore, this does not imply extra communication, nor external
backends, nor synchronisation. However, the advantages of this technique fade
when the context becomes too large with respect to the original message size.

Extending guards to nonlocal properties In the following snippet, we show how
a programmer can incorporate an external backend, at its own risk, to express
nonlocal guards. We transform the previous guarded protocol of Listing 14 into the
following protocol such that it ensures that the counter (i.e., the version) of each
“put_request” is increasing, independently of the session.

(* Abstract methods bound to OTS implementations
using the same datastore backend
( e.g., redis://shared_redis_host:6379)

*)
int get_shared_counter(string key);
bool set_shared_counter(string key, int amount);
protocol p_b = µx: !msg{get_shared_couter("last_c") < msg.0 && set_shared_counter("last_c",

msg.0)}-x;↪→

To achieve this, we use an external backend to store the shared counter using
our OTS adaptor. In such a case, Vardac only ensures that the expressions in the
predicate are well-defined and type check.
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Performance

To mitigate the system overhead, the usage of most of the block is optional and the
Vardac can compile away/eliminate most of the constraints in production mode11.
This eliminates the protocol guards, the contracts, the ghost states and the ghost
statements. Furthermore, Varda building blocks does not require synchronisation
and have a limited network cost extra-communication12.

6.2 Using the primitives

6.2.1 Constraining the OTS behaviours

Varda is designed to reuse existing code bases and services. Therefore, a common
pattern is to reuse and compose unsafe off-the-shelf (OTS) components. Such a
component may misbehave in arbitrary ways.

To contain that risk13, Varda encapsulates OTS components in a shield. All the
interaction between the shield and the OTS must be initiated by thformerld. The
OTS does not have the initiative except if the shield explicitly allows it by exposing a
supervision port to collect effects from the environment. In that case, the program-
mer has to write an adaptor code to translate the OTS actions into environment
events.

Moreover, programmers can leverage core Varda safety building blocks (e.g., con-
tract) to add extra constraints on the observable of an OTS.

6.2.2 Constraining interactions between (two) components

A programmer should be able to specify how components communicate [@74], [109],
[128] and reason over the composition logic [109], i.e., the orchestration code running
in the Varda shields, either handwritten or generated thanks to the interception
mechanism.

This section presents a summary of what levers do Varda propose for constraining
the effects between components. Running components can have both direct and

11Using the –erase-dynchecks compilation option.
12It only attaches additional metadata (controlled by the programmer) to messages for some usages.
13Note that the current Varda implementation does not mitigate security risk. It only focuses on safety.
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indirect effects on each other and can suffer from effects from the environment,
more precisely:

Direct effects come from message passing exchanged through ports and sessions.

Indirect side effects Components can alter the knowledge of each other thanks
to reflexivity primitives (either on channels or on placement). They can also
use the environment to deliver specific messages using supervision ports. Last
but not least, components can establish a hidden side channel using OTS,
either by design, by malfunction, or, even, by malfeasance. For instance, two
components that use the same data store might share the same key space.

Environment The runtime can send arbitrary events on supervision ports14 as long
as they are well typed. Those events could be triggered by other components,
by runtime internal events, or by the external services if the runtime is in-
strumented with hooks to convert unsafe notification from services to a safe
environment event.

This section focuses on the effects that are visible by Varda’s runtime:
effects that result from message passing and event delivery through
supervision ports. The other effects are out of the scope of this work.

Programmers can specify the component topology, i.e., who can communicate with
whom ?; the communication semantics, i.e., how the communication must behave;
and, some non-functional effects (e.g., write contracts on placement).

Topology

Topology in Varda covers three abstraction levels: static topology (domain of types),
network dynamic topology and the session dynamic topology, which represents the
effective communication.

Let us define the relationship between those topologies: the static topology is a
superset of both the dynamic topology and the network dynamic topology; the
latter is also a superset of the session dynamic topology. This means that if two
components cannot communicate in the static topology, they cannot communicate
in the dynamic topologies. Conversely, if two components can communicate in the
14For instance, it cannotify a component that one of its children has been killed.
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static topology, they might communicate in the dynamic topologies depending on
the coordination logic and of the execution flow.

Static topology The static topology is a multigraph, where edges are annotated by
protocols, which represents the allowed communication between component type.
It is derived from channel types. If there is a channel of the form channel<U,V,
some_protocol> then the static topology contains the following edges: A

some_protocol−−−−−−−−−→ B
for all A <: U , V <: B where <: denotes the subtyping relation.

In practice programmers do not have to write the whole static topology as a monolith
but only need to type each channel. From this, the compiler infers the static topology:
it statically ensures that the network dynamic topology matches the static topology.
Moreover, it can optionally provide simple visualisation capabilities of the inferred
graph.

Dynamic channel topology The dynamic channel topology is a dynamic multigraph
that represents the run time allowed communication between component instances15.
Programmers explicitly define the edges by binding channels to ports.

A communication channel must be established prior to any communica-
tion. Note that two components that can communicate according to the
topology may not exchange any messages during an execution due to
the execution flow.

Varda runtime does not maintain a global view of such topology to avoid overhead
and consistency issues. Instead, components knows only their neighbours.

Programmers can constrain this topology by restraining the channels that can bind to
ports. To protect the binding logic, they can write contracts using Varda’s primitives
that can answer questions such as: What are the components already bound to a
given channel ? What is the channel already bound to a given port ?

15Currently Varda is agnostic of the infrastructure topology, i.e., network between nodes. To specify/-
collect the topology of the infrastructure, programmers have to write their own API and expose it
thanks to abstract methods.
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Dynamic session topology This represents the effective exchanged message. This
topology is managed by session initialization and communication primitives. Pro-
grammers can write nonlocal form of topology constraints thanks to interception.
In Section 8.3.1, we discuss how to implement access control at the session layer
leveraging interception.

Constraining message passing

Allowed interactions between two activations are abiding by a formal protocol
guaranteeing the type, the order of messages, optional predicate on the content of the
session and optional time delivery upper bounds. However all the involved building
blocks provided by Varda toolbox are designed for peer-to-peer communication.
To express property about groups of components, programmers either needs to
manually inject their logic inside the orchestration logic, or, they can use a monitor
pattern [59] leveraging interception.

The role of a monitor is to check properties on the global view of a subsystem. For
this, monitors introduce a kind of global state for a region of the system. Note
that, a monitor cannot constrain properties about the internal states of the observed
components. For instance, the following properties cannot be expressed: the sum of
the internal counter of a component type is lower than ten.

In Varda, the idiomatic way to express a monitor is to define it as an interceptor which
intercepts all the component instances that should be observed. Monitors can check
complex properties with the history of a set of components that aggregates multiple
sessions with different components types, exchanged between a (dynamic) set of
components. Programmers can craft a monitor by defining a ghost interceptor such
that the compiler can transparently interpose it in this architecture, and, optionally,
remove it at compile time when building the production release.

The Listing 6.2 shows the definition of a monitor, called “MyMonitor”, that checks
that the number of sessions created by a set of components is lower than 100.
“MyMonitor” intercepts all the session creation and increment an internal counter
(Lines 348-351). If the counter reach 100, the contract of the “incr” method is
violated and the execution is aborted (Lines 344-345).
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340 component MyMonitor{
341 int number_of_sessions = 0;
342 int max_number_of_session = 100;
343

344 contract incr
345 ensures this.number_of_session < this.max_number_of_session
346

347 (* For compactness, we do not write the return type nor the arguments of the method *)
348 @sessionintercept(both)
349 ... incr(...){
350 this.number_of_session = this.number_of_session + 1;
351 }
352 }
353

354 (* Check that the inner component cannot create more than 100 sessions *)
355 ghost intercept<MyMonitor> my_monitor_policy {
356 (* The monitor monitors all the components spawned inside this scope *)
357 }

Fig. 6.2.: MyMonitor ensures that the number of session created by the intercepted compo-
nents are less than 100 without relying on an external backend.

Constraining the environment effects

Contracts are the idiomatic way to check properties on environment notification
delivered on supervision ports. As above, they can only express component-local
properties, unless the contract (or the component) relies on an external backend to
access a shared state. Additionally, using contracts, programmers can constrain non-
functional interactions related to the placement thanks to the placement reflexivity
primitives (Section 5.1.1). Note that, the current prototype of Varda does not
provide any consistency guarantees on the placement view obtain by using those
primitives16.

For instance, the following example (Listing 15) checks that there is at most
one KVServer per nodes in both DC- and DC-2. This check is performed when
a Loadbalance start (Line 381). It calls the check_d function (Line 366-375) on the
places of the two DC. check_d iterates over the nodes attached to the current DC and
marks those that hosts a KVServer. The place_selecto function (Line 358-364)
selects the places where KVServe they are deployed.

Since the placement registry is asynchronously updated without any consistency
guarantees, this example can trigger false positive. For instance, if there is a node
a such that it hosts a KVServer, this instance dies and a new one starts again with
a distinct identity. During a short period of time, depending on the propagation
mechanism, the LoadBalance can observe two KVServe on the same node.

16There is a delay between the addition/deletion of a node (resp. component) from the global index
and its visibility by others.
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358 bool place_selector(place p){
359 for(activation_ref<any> a in activationsat(place)){
360 if(schemaof(a) == "KVServer")
361 return true;
362 }
363 return false;
364 }
365

366 bool check_dc(vplace vp_dc){
367 set<place> marked_place = {};
368 for(place p in select_places(vpa, place_selector)){
369 if(exists2set(vpb, place))
370 return false;
371 else
372 add2set(vpb, place);
373 }
374 return setlength(vpb) >= k;
375 }
376

377 component LoadBalancer{
378 vplacedef vp_dc1_backend_nodes of "DC-1::nodes";
379 vplacedef vp_dc2_backend_nodes of "DC-2::nodes"; (* TODO check syntax to access a

child *)↪→
380

381 contract onStartup
382 invariant check_dc(vp_dc1_backend_nodes) && check_dc(vp_dc2_backend_nodes);
383 }

Listing 15: Checks that there is at most one instance of KVServer per node and that there
is least K nodes per DC that host a KVServer.

6.2.3 Bridging the gap between code and specification

Combining a high-level description of the system architecture and a low-level imple-
mentation may lead to introduce subtle discrepancies between the two, and thus to
introduce unwanted behaviours and bugs [39], [60].

To ensure that the system’s behaviour does not deviate from the specification.
Vardac generates17 a glue code from the architecture written in Varda, given the
implementation/adaptor with the OTS. Moreover, Vardac can instrument the glue
code, i.e., the shield, with dynamic checks to detect run time violations of the
architecture specification.

To cope with OTS and arbitrary legacy code adaptor, Varda isolate them behind
a shield that exposes a well-defined Varda interface18. Programmers can write
contracts to check properties on the component-local observables of an OTS. Those
conditions can use all the tools that we present earlier in the toolbox. Vardac
instruments the shield with those dynamic checks.

17The code generator is part of the trusted computing base (TCB).
18If the target language, used to encode the glue code, is statically typed, the compilation ensures that

the adaptor/OTS interfaces can be hidden by the shield interface.
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Conversely, the outside world can call a Varda system thanks to its expose API (see
Section 5.1.4), which is using non-Varda representation as gRPC or REST. The Vardac
ensures that the API is consistent with the architecture specification, since it derives
from annotated methods. If the external caller is not trusted, the programmer
should check the entries inside the exposed method. Otherwise, when the caller is
trusted, for instance, when the Varda system is API-composed with other existing
building blocks to form a new system, the programmer can add contracts on exposed
methods in order to check that the caller match its "specification" and remove it in
production.

6.3 Summary

By construction, Varda ensures strong isolation between components (e.g., failure
isolation, memory isolation and OTS sandboxing). Moreover, each component has
formal communication interfaces such that an inter-component communication
using Varda primitives follows the following properties:

• it is abiding by a formal protocol which guarantees the type and the order of
the messages;

• it can only occur between components that are explicitly connected by chan-
nels;

• it is private, i.e., messages are visible only by the communicating parties.

Additionally, Varda provides a specification sublanguage such that the developer
could enrich the architecture with custom constraints. With them it can specify:

• component’s behaviours and OTS’s observables using contracts (i.e., pre/post
conditions) and ghost component state;

• run time protocol behaviours using message predicates, delivery upper bounds
or protocol history predicates. The use of these additional constraints pre-
vents programmers from scattering communication specifications within the
component logic.

• the behaviours of a set of components using monitors, by combining the
interception with the previous building blocks (e.g., contracts).

Varda toolbox often provides various building blocks for a given property kind.
Each building refines the previous one by adding more expressiveness at the cost of
additional cognitive cost and system overhead. We specialise these building blocks
in order to avoid forcing developers who do not need the expressive power of a
block to have to pay for it. Table 6.1 sum up these properties with their trade-offs in
terms of expressiveness, cognitive cost and system overhead.
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Constraints Perimeter Executors Cognitive cost System overhead
General constraints
Functional compatibility point-to-point compiler low low
Bridging the gap system-wide compiler medium19 -
Component internals
Isolation-base local compiler + runtime low low
Isolation-interception components-group compiler + runtime medium medium
Contracts component-instance component instance low arbitrary
Interaction
Static topology group-to-group component instance low -
Network topology point-to-point/channel-wide component-instance medium low
Session topology point-to-point component-instance medium low
Session-specific guard session component-instance medium arbitrary
Monitors component-group component-instance medium arbitrary
Environment
Sandboxing/shield local compiler + runtime medium low
Observable local compiler-instance medium variable

Tab. 6.1.: Summary of the trade-offs of dependable programming with Varda. Perimeter
denotes the scope of the constraint: a local constraint is only checked at the
component level and cannot express properties involving multiple components.
A point-to-point constraint can express properties about the communication
between (exactly) two components. A component group constraint can express
properties about the communication between a group of components and the
remaining part of the components. Note that programmer control is inversely
proportional to the runtime and cognitive overhead.

Under the hood, to ensure all this, Vardac performs static checks, mostly type
checking, and injects dynamic checks to detect constraint violations. Moreover,
Vardac can erase all the dynamic checks to avoid system overhead.

19On one hand, programmers do not have to write the glue code to compose the OTS. On the other
hand, they have one more language to learn and one extra layer of compilation.
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Compiler 7
The development workflow is described in Figure 7.1. It is designed to be multi-
target, where a target is a programming language and a support runtime. An input
Varda program describes a system’s architecture. The Varda compiler first applies
target-independent transformations. Then it links the result together with OTS
adaptor code that the developer has provided separately. Finally, it generates code in
the target language; it also generates a deployment plan, from a template provided
by the developer. Here the target-specific compiler and deployment system take
over.

To help with debugging, we strive to make generated code readable by humans. On
demand, it is annotated with provenance information.

Vardac is composed of a large target-independent part1 and some small target-
specific plugins (e.g., the Java/Akka code generation plugin). The current version of
Vardac, supports one target based on the Java version of Akka with DockerCompose
for deployment.

The Table 7.1 the development effort in terms of LoC. The core compiler consists
of 38 KLoC2 of OCaml 4.12. The Akka target-specific part adds 4 KLoC of Java3.
Benchmarks and tests contribute another 15 KLoC of Varda, Java and OCaml. At the

1In terms of LoC, 80% of the Varda compiler is independent of the code generation target.
2LoC are given without comment and blank lines.
3The OCaml Akka plugin represents 8 KLoC of the main compiler.

Generated
artifacts

Java-specific
code generation

Generated
Java code

Java
library

Java
compiler

OTS Adaptor
code

Varda
program

Target-
independent

passes

Java targetCompiler

Fig. 7.1.: Varda workflow. The developer of a distributed system provides the grey parts.
The Varda compiler generates the dashed (orange) blocks.
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Parts KLoC
Core compiler target independent Ocaml: 30 KLoC
Code generation
Generic code generation 800 LoC
Akka plugin OCaml: 8 KLoC
Akka library Java: 4 KLoC
Vardac OCaml: 38 KLoC, Java: 4 KLoC

Tests 6 KLoC
Benchmarks4 14 KLoC

Tab. 7.1.: Summary of the Varda development effort in terms of LoC.

end of this chapter, we provide a detailed overview of the support of Varda entities
by the compiler.

The Varda framework is open-source under an Apache2 license. The
code source is available as an open source repository at the following
location: https://gitlab.lip6.fr/lprosperi/Lg4DC.

7.1 Target-independent compilation

Vardac consists of a succession of Abstract syntax tree (AST) rewriting passes. These
compilation passes are generic, they do not depend on the target choice. Figure 7.2
shows the overview of the AST transformation. To simplify the code generation
and to avoid duplicating logic for each target plugin, Vardac performs a series of
transformations that simplify the AST. Then, Vardac enriches the Simple IR with the
code of the OTS adaptors and the description of the infrastructure.

Figure 7.3 shows the detailed flow of the compilation passes. Early passes perform
static analysis, including standard type-checking and protocol compatibility verifica-
tion. Then, it performs target-independent optimisations such as ghost elimination,
constant-propagation, partial evaluation, unaliasing and dead-code elimination.

Vardac interposes message marshalling/unmarshalling as required (EventAutoBox-
ing). Then, it rewrites the initial AST to a simpler subset of the Varda language,
by compiling away complex features such as branching and asynchronous receive

4This includes the code of the baseline implementation of the microbenchmarks in Akka.
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Fig. 7.2.: Overview of the Intermediate Representation (IR) transformations.

(CommSimplification), and architecture transformations, such as inlining (InlineEl-
imination), interception (InterceptElimination) and RPC derivation (DerivationElim-
ination).

In practice, Vardac execute those passes multiple times. For instance, the Intercep-
tionElimination pass introduces session communication that should be compiled
away by the CommSimplification transformation.

7.2 Code generation

Code generation is target specific: the compiler splits the architecture into one
distinct (sub)architecture per target. Then, for each sub-architecture, it delegates
the code generation to the corresponding plugin.

A target defines a set of compilation units, each of them grouping a set of components.
Target configuration and target assignment are orthogonal to Varda architecture.
This enables and facilitates two following properties:

• Varda architecture is polyglot [@119] which means that for a given target can
generate an implementation in various target languages without having to
alter the architecture.

• developers can finely adapt the implementation according to the underlying
infrastructure. Often, the infrastructure is heterogeneous: i.e., mixing well
defined and homogeneously infrastructure in the Cloud (either public or
private) with more heterogeneous and less controlled infrastructure at the edge.
Having the compilation units orthogonal to the logical units (i.e., components)
simplifies specialising the final deployment according to a given infrastructure
without having to alter the architecture.
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To increase the programming flexibility, programmers can inject custom source files
to customise the generated code for a given target. They just need to add those
files into an external (resp. templates) directory of the Varda project. The compiler
automatically processes those files and injects them inside the final generated code.
Moreover, those files can be templates5 that will be rendered by the code generation
plugin according to the environment exposed by the plugin (e.g., list of component
names).

7.2.1 Target configuration

The Target config file describes the different targets of a given system. Each target
entry specifies a code-generation plugin which defines the underlying technology
(e.g., the Akka framework in Java) and a custom configuration that range from the
choice of the expose interface implementation (e.g., gRPC or REST), the definitions
of the generated artefacts (e.g., how to package system in JAR files); and, the target
compiler options (e.g., the JAVA compiler options).

The Listing 16 shows the simplified target configuration file that we use for our
running key-value store example. It defines one target named “akka” configured to
use the Akka runtime plugin (line 389); to output the code in Java (line 388); and,
to use a gRPC6 implementation for the expose interface7 (line 390).

This target specifies three distinct artefacts: 1. one for the gateway (Lines 394-399),
2. one for the store (Lines 400-405) 3. and one for the console (Lines 411-423).
The architecture is split between the first two artefacts. The gateway bootstraps the
Gateway component. The store bootstraps the KVStore component which spawns
a load-balancer instance and the backend servers. Both the gateway and the store
are packaged in a single JAR file named according to the artefact name. Note that,
these artefacts do not define custom main function8

The console artefact defines a user-defined artefact (lines 411-423), out-of-the scope
of Varda architecture. We us the Vardac’s template mechanism to inject a user-defined
Console.java file that exposes CLI console leveraging the gRPC client generated to
query the exposed interface of the key-value store.

5We use the Jinja2 template engine to resolve them.
6The Akka plugin supports two interface generation plugins: gRPC and REST.
7The exposed interface is defined by methods annotated with “exposed” (see. Section 5.1.4).
8Any Varda top-level function can be defined as a main function.
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384 - target: akka
385

386 # configuration for the code-generator plugin
387 codegen:
388 language: Java # select output language plugin
389 runtime: Akka # select the code-generator plugin
390 interface: gRPC # the interface extension used (if any) for @exposed method
391

392 # [artefacts] defines the set of artefacts generated for this target
393 artefacts:
394 gateway:
395 # [no_main] is a dedicated key word
396 entrypoint: Gateway
397 # the main function used to process the cmdline option
398 # its output is the arguments of the onStartup of the root
399 entrypoint: no_main
400 kvstore:
401 # [no_main] is a dedicated key word
402 entrypoint: KVStore
403 # the main function used to process the cmdline option
404 # its output is the arguments of the onStartup of the root
405 main: no_main
406

407 # arbitrary user-defined string that will be appended to the build dir
408 # here it defines a Gradle task that compiles a console
409 # from a ConsoleClient.java file provide by the programmer
410 user_defined: |
411 task jarConsole(type: ShadowJar) {
412 archiveBaseName.set('console')
413 archiveClassifier.set('')
414 archiveVersion.set('')
415 configurations = [project.configurations.compileClasspath]
416 manifest {
417 attributes('Main-Class': '{{author}}.{{project_name}}.ConsoleClient')
418 }
419 transform(AppendingTransformer) {
420 resource = 'reference.conf'
421 }
422 with jar
423 }
424

425 # user-defined k/v map defining the options for the target compiler (e.g., Java compiler)
426 compiler:
427 loglevel: INFO

Listing 16: Targets definition for our running key-value store.
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7.2.2 Code-generation plugin

A code-generator plugin translates a piece of Varda architecture into a final imple-
mentation in a given target technology (i.e., language and runtime and runtime
library).

Additionally, a Vardac plugin comes with a runtime library, written in the target
language, that adapt the underlying programming model to the needs of the code
generation. For instance, the library for the AkkaJava plugin provides java classes
for sessions, places, or errors. It adds a virtual layer of ports on top of actors, and it
implements the placement registry leveraging the Akka Distributed Data.

Figure 7.4 shows the three parts architecture of the AkkaJava code-generator plugin:
a runtime plugin that encodes the Varda into the programming model of the plugin;
a language plugin which is independent of the runtime and provides general utilities
to generate the code in a given language (e.g., Java); and, a translator that encodes
the runtime AST into the language AST. Note that, the Java plugin could be reused
by another code-generation plugin.

The code-generator structure is common to all kind plugins. Plugins differ by the
implementation of the internal building blocks: each plugin defines its internal ASTs,
their intermediate compilation passes and the pretty printing of the language AST.

Vardac provides all the pipework and utilities (e.g., type constraints and functors)
to easily build a plugin. Moreover, it also provides general compilation passes to
optionally simplify the intermediate Varda before code generation by removing some
non-trivial features, if the underlying programming model does not support them.

For instance, the Akka plugin, encode components as actors. However, mixing
actors with other concurrency control entities is tricky [167]. Hence, we use the
core FutureElimination compilation pass to eliminate futures introduced by the
asynchronous receive elimination transformation, applied by the core compiler. This
completely gets rid of futures. It encodes them using ports, states and callbacks
(using a form continuation-passing style).

7.3 Starting a Varda system

Deployment is orthogonal to the work of Varda. It is the responsibility of the
programmers to deploy the artefacts on a running infrastructure. The programmers
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can use any deployment tool (e.g., Docker, Kubernetes, Ansible, etc.) to manage the
artefacts.

Varda can partially automate the generation of the deployment instructions leverag-
ing the template mechanism. For all the examples of this document, we generate
Docker Compose instructions9. Note that, the deployment templates can contain
instruction to set up external services. For instance, we add the deployment of OTS
services (i.e., Redis, Kafka and RabbitMQ) inside those templates.

7.4 Understandability

Top-down approaches that generate code, like Varda does, may result for program-
mers in a loss of control on the development workflow and in difficulties to track
bugs or performance bottlenecks. According to the interviews, we conducted (see.
Chapter 1), it is one of the main reasons why system programmers do not use the
code generation.

To address this, we design Vardac to help them to easily blame an architecture piece
(or an adaptor) for a generated code behaviour. Vardac generates human-readable
code with additional compilation provenance information. Vardac maintains prove-
nance information for each piece of the ASTs throughout the compilation pipeline.
This information reflects the origin of the language entities, ranging from component
definition to expression and types. The provenance information is injected in the
generated code as comments. The provenance definition contains the source10 of
the entities and (optionally) the major transformations applied to them.

The remaining burden of a developer is to bind the system observables with the
generated code to track bugs or performance bottlenecks. Currently, Varda only
provides rustic and limited tools to tackle these issues. Note that, by design, Varda
allows programmers to use their favourite tools to track bugs and profiles artefacts
since the generated code can be loaded as a classical code project. They could
also inject arbitrary debugging and profiling codes in the Varda architecture by
leveraging abstract ghost methods. Moreover, to avoid drowning programmers in
the analysis of the mass of the generated code, Vardac provides a basic tracing

9To use Kubernetes instead of docker compose, the developer has to replace the docker-compose.yml
template file with a Kubernetes one.

10The source is either location into a Varda source file (resp. in a usage adaptor definition) or a
compilation pass that creates the entities.
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Feature Main compiler Akka plugin Varda library Comments
Component
Communication ports 3 3 -
Supervision ports 3 3 -
Other component entities 3 - -
Communication 2 KLoC 600 LoC
Receive 3 - -
Branch 3 - -
Recursive protocol 3 - -
Multicast (low/weak) 3 - -
Event auto-boxing 3 - -
Expressions
Local error propagation 3 - -
Standard library 3 3 3

Tab. 7.2.: Status of Vardac support for core Varda features.

mechanism that highlights the execution of the Varda building blocks11. Eventually,
Vardac instrument the code to collect some metrics12.

7.5 Vardac support

The Tables 7.2-7.5 show the status of the support of the Varda features by the
compiler. They distinguish between the main compiler that is targeting independent,
the code generation plugin (e.g., AkkaJava) and the Varda standard library13. Addi-
tionally, we indicate a subapproximation of the core development efforts in terms of
LoC14.

11Currently, those blocks are: components, methods and protocol branching.
12Currently, we use it to collect session performance metrics.
13A plugin can add new functions and change the implementation of existing ones. However, it cannot

alter, nor delete, the existing interface of the standard library.
14LoC exclude comments and blank lines. We omit quantification when the support is transverse and

scattered to too many parts of the compiler. We also omit all the helper/utility code (e.g., lexer,
parser, etc.) and the cost of translating from an AST (e.g., Simple Varda) to another (e.g., Akka).

15This only counts the cost of implementing the type checker and the type inference with some helper
functions.
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Feature Main compiler Akka plugin Varda library Comments
Network
Classical FIFO channel 3 3 -
External service-base channel - 3 -
Encrypted channel - 3 -
Discovery primitives 3 3 -
Placement 300 LoC 518 LoC

(runtime)
Remote spawn 3 3 -
Placement index - 3 -
Infrastructure representation 3 - -
Reflexivity primitives 3 3 -
Integration with OTS 1,2KLoC
Adaptor 3 - -
Abstract/hidden type and state 3 - -
Exposed API 3 KLoC
Expose annotations 3 - -
REST/gRPC generation - 3 -

Tab. 7.3.: Status of Vardac support for system entities and features.

Feature Main compiler Akka plugin Varda library Comments
Interception 3,7 KLoC
Base interception 3 - -
Nested interception 3 - -
Interception of an interceptor 3 - - Compared to nested interception,

the communications between the
interceptor and the instances it
manages are also intercepted

Explicit un-intercepted channel 3 - -
Inlining 1,6 KLoC
Base inlining 3 - -
Nested inlining 7 - - Not tested
Inlining an interceptor 7 - - Not yet implemented
Interception of inlining 3 - - Interception is transparent to the

existing components
Derivation 700 LoC - -
RPC 3 - -

Tab. 7.4.: Status of Vardac support for architecture transformation.
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Feature Main compiler Akka plugin Varda library Comments
Encapsulation 3 7 - The code generation does not

handle the method visibility yet,
i.e., arbitrary injected Java code
could breach the encapsulation.

Isolation 3 (3) - Currently, the Akka code-
generator plugin does not
provide unforgeability of com-
ponent reference since Akka
implementations does not
provide actors reference unforge-
ability yet. It should be released
in Akka 3.

Type system 2,5 KLoC15

Base type system 3 3 - This includes polymorphism and
subtyping.

Interface subtyping 3 7 - Encoding in the typed Akka is not
implemented yet.

Type reconstruction 3 - -
Type checking 3 - -
Constraints
Contracts 3 - -
Ghost elimination 3 - -
Guards 1 KLoC 300 LoC
Protocol guards 3 3 -
Timers 3 3 -
Metadata guard-context 3 3 -

Tab. 7.5.: Status of Vardac support for verification toolbox.
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Part IV

Validation





This last part of the thesis presents an empirical evaluation that demonstrates the
usability of Varda for distributed system programming. Our main focus is to provide
a proof of existence of Varda the ecosystem, how it can be used in practice, and
what are its benefits and limitations.

First, we perform a qualitative analysis of Varda the framework in the Chapters 8-9.
The Chapter 8 shows the gain in expressiveness and conciseness obtained through the
use of Varda. On the one hand, we encode common communication (e.g., streams,
pub/sub mechanism) and distribution patterns (e.g., two-phase commit, access
control or metadata piggybacking). On the other, we show how to transparently
apply those patterns to the existing system to make them evolve. Chapter 9 illustrates
how to incrementally build a distributed system by composition on a real use case.
We implement a geo-distributed database [@14]: starting from a single node
database, made of various OTS component plugged together, to geo-distribution.

Secondly, we perform a light quantitative analysis in Section 9.2 to evaluate gain in
conciseness and performance overhead of using Varda. Note that, we do not aim to
provide a comprehensive performance evaluation of Varda, since the compilation
pipeline is not optimised yet.

Both chapters demonstrate the integration of Varda in a real ecosystem. We integrate
five different OTS into an Varda architecture (Kafka, RabbitMQ, Redis, RocksDB and
a Java CRDT library). Conversely, we illustrate how a code-generated system can be
integrated in an existing ecosystem not aware of Varda: for the different use cases
we generate either REST or gRPC API with additionally external benchmarks (e.g.,
YCSB), observable testing or console clients that are written in Java without any
knowledge of the existence of Varda.

The examples used in the evaluation, the scripts to launch the evaluation
and the scripts to parse the results are all available at the following url:
https://gitlab.lip6.fr/lprosperi/Lg4DC
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Varda at work: Classical
communication and
distribution patterns

8

This chapter shows how to encode classical communication and distribution patterns
in Varda. We first present the patterns that can be achieved with core Varda (i.e.,
with protocols, ports and channels) either for point-to-point (Section 8.1) or group
communication (Section 8.2). Moreover, we introduce a syntactic sugar which allows
programs to perform remote call of a method belonging to another component
without having to handle the communication by hand (Section 8.1.2). Then, we
show how to use interception to transparently impose an arbitrary communication
pattern in between a set of components (Section 8.3). We denote this new pattern
as a virtual network layer since it belongs to the Varda realm and not on the network
layer.

8.1 Point to point communication patterns in Varda

8.1.1 Streams

Streams are common point-to-point communication primitives to model a possibly
unbounded sequence of data. Streams are often used in data processing scenarios
where large volumes of data need to be processed or transformed. They interconnect
the different operators that process the data incrementally [33].

Varda provides native support for streams using recursive protocols. Moreover,
it offers a simple and linear way to handle streams by making the asynchronous
receive on a stream iterable.

The Listing 17 shows a scenario where a component A sends a ping message to a
component B, which in returns replies with a random number of pong messages. We
model communication by “protocol pingpong = !ping (?pong)*;”. Recall that
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428 protocol stream_pong = (?pong)*;
429 protocol pingpong = !ping stream_pong;
430

431 component A {
432 port p_pong expecting (dual pingpong) = handle_pong;
433

434 result<void, error> start( channel<A, B, pingpong> chan, activation_ref<B> b) {
435 pingpong s = initiate_session_with(chan, b);
436

437 stream_pong s1 = fire(s, ping())?;
438

439 (* Receive the first pong *)
440 for(tuple<pong, stream_pong> tmp in receive(s1)){
441 (* Custom logic unrolling one round of the protocol *)
442

443 (* Set the session for the next round *)
444 s1 = tmp.1;
445 }
446

447 return ok(());
448 }
449 }

Listing 17

Kleene star “*” operator states that the protocol can either terminate or iterate any
number of times.

After sending the initial ping message, the code of A (lines 440-440) processes each
round of the stream in order1. To avoid having to use callbacks and to lost the
interest of the stream, A iterates over the receive.

At the end of the loop body (line 444), the programmer should explicitly set the
value of the session for the next round, if any. Computing the continuation cannot be
fully automated since the body of the loop may use arbitrary logic to process a round.
For instance, such logic can unroll an arbitrary number of rounds or delegates the
execution to an external function. The following snippet illustrates this:

void process(tmp){
(* Expects to receive two consecutive pongs *)
tmp = receive(tmp._1);
tuple<pong, stream_pong> another_var = receive(tmp._1);

}

for(tuple<pong, stream_pong> tmp in receive(s1)){
process(tmp);

}

1Remember that Varda guarantees that messages of a same session are always processed in the order.
To avoid synchronizing the rounds, programmers have to emulate the stream through supervision
ports. In that case, the communication logic is defined outside the Varda perimeter thanks to OTSs
and adaptors.
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where the process function expects to receive two consecutive pong messages before
handing over to the main loop. Remember that a session can be consumed at most
once by a session primitive (or a listening port). Therefore, the value of s1 updates
to value of another_var (Line 453) before continuing iterating on the stream.

Our prototype does not yet trigger session termination notifications
when iterating on streams. For non-recursive protocol, the termination
is inferred without notification when the protocol of the continuation is
the empty protocol “.”.

Varda streams can have strict bounds. For instance, a stream of pong messages can
be bounded to a given number of rounds. This is done by defining a protocol guards
that are evaluated in each round of the stream. Section 6.1.2 discusses how to write
that kind of guards. If the guard predicate fails, the stream is terminated and the
session triggers a runtime error.

8.1.2 Transparent RPC

Varda can relieve programmers from writing the communication logic when they
are equivalent of remotely calling a method of another component. To motivate this
feature, we compare the work of using a shared counter in Varda without (Listing 18)
and with transparent RPC (Listing 19).

In core Varda, all the communication use message passing through sessions. There-
fore, to use a shared counter between components, the developer needs to write
the following communication logic. It has to represent the counter as a state-
ful component Counter and defines a protocol that supports both increment and
read operations. Furthermore, for each component C, which might want to use
the counter: it has to bind a channel between the Counter and C, and write the
corresponding communication logic.

To avoid writing this cumbersome code, Varda provides a transparent RPC mecha-
nism. A component can do remote method calls by using the same syntax as local
calls. Remote calls are asynchronous, the caller can process incoming events in
between the remote call and the return of the call.
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459 protocol p_shared_counter = +{
460 l_incr: .;
461 l_read: ?int.;
462 };
463

464 component Counter {
465 (* Listen for either an increment or a read request *)
466 passiveport p_in expecting (dual p_shared_counter) = this.onOperation;
467 int counter = 0;
468

469 (* Note that the logic of both [incr] and [read]
470 depends on the nature of the [counter].
471 It can be a local state, as in this example, or
472 an entry in a remote DB, for instance.
473 *)
474 void incr(){
475 this.counter = 1 + this.counter;
476 }
477

478 int read(){
479 return this.counter;
480 }
481

482 result<void, error> onOperation (blabel op, p_shared_counter continuation) {
483 branch continuation on op{
484 | l_incr => s -> {
485 (* Increment the counter
486 The continuation [s] has type [.]
487 *)
488 this.incr();
489 }
490 | l_read => s -> {
491 (* Get the value from the internal logic of the [Counter]
492 Send the value to the caller
493 The continuation [s] has type [!int.]
494 *)
495 fire(s, this.value());
496 }
497 }
498 }
499 }
500

501 component C{
502 (* Port to communicate with the counter *)
503 activeport p_counter expecting p_shared_counter;
504

505 onStartup(channel<Counter, C, p_shared_counter> chan, activation_ref<Counter> counter){
506 (* [chan] is the channel interconnecting [C] and [Counter] *)
507 bind(this.p_counter, chan);
508

509 (* Read and print the value of the counter *)
510 p_shared_counter s = initiate_session_with(chan, counter);
511 ?int. s = select(s, l_read)?;
512 print(receive(s)._0);
513 }
514 }

Listing 18: Manually sharing a counter between all the instances of the C component. Note
that the +{...} is the dual of the notation of ... which means that the first
notation denotes the selection of a non-deterministic branch whereas the latter
denotes the non-deterministic wait for the notification of the selection of a
branch.
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515 component Counter {
516 int counter = 0;
517

518 void incr(){
519 this.counter = 1 + this.counter;
520 }
521

522 int read(){
523 return this.counter;
524 }
525 }
526

527 component C {
528 onStartup (activation_ref<Counter> c){
529 (* Remote call *)
530 c.incr();
531 print(c.read());
532 }
533 }
534

535 (* Instruct the compiler to generate the RPC boilerplate code and
536 to rewrite all the remote calls to [Counter]. *)
537 @@derive rpc<Counter><>();

Listing 19: Counter exposing RPC primitives

Varda supports this feature by providing an optional and parametric architecture
rewriting transformation. The @@derive rpc<Counter><>(); statement instructs
the compiler to generate all the boilerplates to support RPC calls on Counter methods
and to rewrite all the remote method calls, performed on a Counter instance, to
message-passing. Vardac generates the ports, the channels, the session, and the
communication logic. Note that, the compiler will reject all the remote call on
non-rpc methods.

Our prototype lacks an annotation to specify the visibility of component
methods. A classical component, with no RPC support, has all its methods
private and encapsulated. A RPC component, on the other hand, have
all its methods exposed to remote calls.

Listing 19 shows the RPC version of our shared counterexample. In this version,
message-passing communication is completely hidden from the programmer. In this
example, using RPC derivation instead of manual communication logic decrease the
number of codes to write by a factor of two.
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Fig. 8.1.: The low-level multicasting is implemented using the Varda external communica-
tion primitives.

8.2 Group communication patterns in Varda

8.2.1 Broadcast and multicast

Compared to point-to-point method, multicasting and broadcasting2 avoid sending
the data to each recipient one by one. The sender sends, exactly once, the data
to a special multicast (resp. broadcast) address. Different layers of the OSI model
provides multicasting (resp. broadcasting) primitives. For instance, this ranges from
application-level multicast to the IP protocol broadcast address (local network) to
wireless links broadcast.

Varda could embed multicasting (resp. broadcasting) at two abstraction layers,
depending on the application requirements: low-level multicasting using external
communication primitives (Figure 8.1) or high-level multicasting using sessions.
The former approach seeks to maximise performance whereas the latter focus on
providing additional safety guarantees by encoding the pattern in the protocol.
Currently, Varda protocol only supports binary session types therefore we defer the
discussion of the latter to future work.

Varda components can also leverage low-level multicasting primitives, external to
the Varda programming model, to take advantage of the performance or of the
scalability they offer. For instance, the former can leverage an external broker or the
IP broadcast address at the cost of losing all Varda communication guarantees.

2Broadcasting is a method of transferring a message to all recipients simultaneously. Multicasting is a
method of transferring a message to a group of recipients simultaneously.
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538 (* Abstract method *)
539 result<void, error> my_broadcast_enroll(activation_ref<any> a);
540 result<void, error> my_broadcast(string msg);
541

542 component A {
543 onStartup() {
544 (* Broadcast "Hello" to all enrolled instances of B *)
545 my_broadcast("Hello");
546 return ok(());
547 }
548 }
549

550 component B{
551 onStartup (){
552 (* Join the broadcasting group *)
553 my_broadcast_enroll(current_activation());
554 }
555

556 supervisionport broadcast_msg = e : broadcast_msg ->
557 print("Received broadcast message");
558 }

Listing 20: A broadcast "Hello" to all running B components.

This multicast provides the same behaviour as classical multicast: it uses one
multicast address and it is performed in one operation without session management.
However, it is not covered by Varda communication guarantees.

The idiomatic way of proceeding is as follows:

• The source calls a custom multicasting primitive, injected in Varda thanks to
implementation bindings.

• The external code transports the multicasted message.
• In each endpoint, another piece of external code receives the message and

converts it to a runtime notification.
• The runtime delivers it to the adequate supervision port of the component.

The Listing 20 and the Figure 8.1 show an example of multicasting using a hid-
den RabbitMQ broker. In this scenario, A broadcasts "Hello" to all the running
instances of components B. This example leverages two abstract methods to import
the broadcast logic: my_broadcast_enroll and mq_broadcast. On startup, an in-
stance of B runs my_broadcast_enroll to join the broadcast group. Then, A runs
mq_broadcast to send a message to all the enrolled instances of B.

Under the hood, enrolling a new instance of B means to creating a new queue and
binding it to the RabbitMQ fanout exchange which represents the multicast address.
Broadcasting a message is publishing to the RabbitMQ fanout exchange.
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8.2.2 Pub/sub

In the publish-subscribe pattern, publishers group messages in categories and publish
them on a pub/sub infrastructure without knowing the subscribers3. Usually, the
class of the message is either defined by the publisher (topic-based) or by the content
of the message. Once the middleware receives a message, it delivers it to the group
of subscribers interested in the class of the message. The semantics of delivery is
often as follows: the message is delivered to at most (resp. exactly) one member of
the group.

Pub/sub brokers are widely used in distributed systems. They act as intermediaries
between services and decouple them. Moreover, they provide out-of-the box inter-
esting properties as scalability, fault tolerance, and back pressure. They ease the
building of a scalable, loosely coupled, and resilient distributed system architec-
ture.

The idiomatic way to use publish-subscribe communication in Varda is to use an OTS
PubSub component that models the broker infrastructure (Figure 8.2). Other Varda
components publish and subscribe using session communication primitives.

With respect to the broker, the PubSub component acts as a subscriber for each Varda
subscriber and as virtual publisher for each Varda publisher. Its implementation uses
an external broker thanks to Varda adaptors. For instance, it can be a RabbitMQ or
Kafka based implementations.

In Listing 21, we propose a generic topic-based PubSub component. It supports a
pubsub_protocol (Line 561) that encompasses both the subscription and the publi-

3Note that publisher does not send messages directly to subscribers.
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cation protocols. Hence, a subscriber component (resp. publisher) is a component
that has established a session with the PubSub component and that has selected the
sub branch (resp. pub).

Let’s follow the path of a message from a subscriber to a publisher.

1. When a publisher wants to publish a message, it creates a session, then it
selects the pub branch and it sends the message.

2. The PubSub component receives the topic and the message (Lines 583-589).
Then, it publishes the message on the broker using the abstract OTS method
pubsub_publish4.

3. At this point, the message leaves the realm of Varda. The broker delivers
the message to one of its internal queue.

4. Since the PubSub component acts as a virtual subscriber with respect to the
broker. This queue sends the message to the brocker-subscriber logic of the
component. This logic is brocker-specific, therefore it is implemented in an
adaptor and not exposed in the shield interface.

5. On reception, this adaptor transforms the message to a Varda supervision
notification.

6. The runtime delivers it to the supervision port of the PubSub component.
7. The execution comes back into Varda realm. On notification on the supervi-

sion port, the PubSub component forwards the message to the corresponding
component subscriber (lines 616-623). It computes the retrieves the sub-
scription stream toward the corresponding subscribers thanks to its internal
state active_subscribers, which map the topic name to the active set of
subscribers.

We use a centrealized PubSub component. Programmers can replicate
this components as long all instance use the same broker, as depicted
by Figure 8.3. Furthermore, since this PubSub pattern adds an extra
message-passing layer between components, an interesting optimization
is to inline an instance of the PubSub in each component that use it.

4In our implementation, we use a RabbitMQ adaptor.
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559 event topic of string;
560 event msg;
561 protocol pubsub_protocol = +{
562 (* Publish a message on a topic
563 - Step1: the publisher selects the pub branch
564 - Step2: the publisher sends the message to publish *)
565 pub: !topic!msg.;
566 (* Subscribe to a topic
567 - Step1: the subscriber selects the sub branch
568 - Step2: the subscriber listen for a stream the messages *)
569 sub: ?topic (µx. ?msg-x);
570 }
571

572 component PubSub {
573 (*
574 The [PubSub] component maintains a map between
575 the [topic] and the set of the actual subscribers.
576 The set contains subscription streams. *)
577 dict<topic, set<µx. !msg-x.>> active_subscribers = dict();
578

579 (* * * Interface with the other components * * *)
580 passiveport pub expecting pubsub_protocol = this.callback;
581 result<void, error> callback(blabel label, pubsub_continuation continuation) {
582 branch continuation on label {
583 | pub => continuation -> {
584 (* Receive the topic and the message to publish *)
585 topic t, stream_msg stream = receive(continuation);
586 (msg, stream) = receive(stream);
587 (* Call the OTS interface to publish it *)
588 pubsub_publish(t, msg);
589 }
590 | sub => continuation -> {
591 (* Receive the topic to subscribe for the sender of [s]. *)
592 topic t, (dual stream_msg) stream = receive(continuation);
593 (* Register the output stream *)
594 if(exist2dict(this.active_subscribers, t)){
595 add2set(get2dict(this.active_subscribers, t),stream);
596 } else {
597 add2dict(this.active_subscribers, t, set(stream));
598 }
599 (* Register the current [PubSub] instance as a subscriber of topic [t] *)
600 pubsub_add_suscriber(t, vid);
601 }
602 }
603 return ok(());
604 }
605

606 (* * * Interface with the OTS broker * * *)
607 result<void, error> pubsub_publish(topic t, msg m);
608 result<void, error> pubsub_add_suscriber(topic t, virtual_id vid);
609

610 (* This supervision port listens for messages from the broker.
611 Those messages correspond to message delivered by the broker
612 to a topic watched by the current [PubSub] instance.
613

614 On reception, the onIntermalMsg compute the stream session associated
615 to the subscriber and forwards the message. *)
616 supervisionport sub expecting tuple<topic, msg> = this.onInternalMsg;
617 supervision onInternalMsg(tuple<virtual_id, msg> tmp) {
618 (* Get the stream session associated to the subscriber
619 Pick a random session among [active_subscribers] for the topic [t] *)
620 stream_msg stream = pick(get2dict(this.active_subscribers, tmp.0));
621 (* Send m to the subscriber and update the internal state *)
622 add2dict(this.active_subscribers, tmp.0, send(stream, tmp.1)?);
623 }
624 }

Listing 21: Topic-based PubSub component.
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8.3 Updating the communication topology with virtual
networks

In the previous sections, we show how to onboard/encode classical communication
patterns in Varda. Now, we review how to transparently transform an existing
communication topology. The interception mechanism can transparently impose
a virtual network layer in between a set of components. to arbitrarily modify the
communication pattern. Figure 8.4 shows the general transformation consisting
of adding a virtual network between two components A and B. The first step is to
intercept A and B with, respectively, I and J. Then, the communication between A
and B is routed through I and J. The virtual network denotes the network between
I and J.
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The programmer can implement any communication pattern between
I and J using Varda communication primitives. Note that, a virtual
layer may use other virtual networks under the hood leveraging nested
interception. Conversely, a virtual network layer could use an external
system to transport communication thanks to OTS and adaptors.

In the following, we review two applications of virtual networks: access control and
metadata piggy packing.

8.3.1 Dynamic access control

Access control refers to the mechanisms that regulate and manages access to services
and resources within a distributed system. It involves authentication and authori-
sation, which determines the level of access of the authenticated applicant. Access
control can be enforced at different layers of the OSI model. In this section, we show
how to enforce simple access control at the application layer such that the access
control is aware of the Varda semantics.

Dynamic access control in Varda means that the programmer can prevent commu-
nication (i.e., by disallowing session creation) or can filter the protocol (e.g., by
disallowing some branch or restricting message values) according to the identity of
the communicating components or based on the history of the communication.

A programmer can transparently impose access control to a set of components by
intercepting those components by a user-defined AccessController component
(Figure 8.5). This is a simple form of virtual network where there is a single
interceptor since the protocol remains unmodified. Optionally, each component can
have its dedicated AccessController, possibly inlined, to enforce access control
locally and independently of other components.
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Network-layer access control cannot be achieved by virtual networks.
To work at network layer (resp. syscall layer), programmers must use
existing and external tools like host firewall (e.g. iptables) or service-
mesh (e.g. Istio or Linkerd) in a containerzed environment. Those tools
will also constrained the runtime and loose the knowledge of the Varda
semantics.

Let us take a version of our running key-value store example with a protocol
supporting get, put and delete operations without streams. The Listing 22 specifies
access control for a “Server” such that

• Only gateways running in a private network can perform delete operations;
• put operations are restricted for gateways running on public nodes. Those

gateways cannot update security-related keys;
• get operations are unrestricted.

To impose access control to a set of Server, the programmer encloses them into
an interception scope (Lines 632-635). Since the access control logic does not
require shared state, the controller is replicated for each server to avoid introducing
a bottleneck. The one_controller_per_server policy starts a new controller for
each intercepted components5. The interception block exposes the identity of the
intercepted components6. Hence, the gateway can distinguish between the identity
of both servers.

5Another strategy is to start a single controller per place.
6Since we do not use the anonymous modifier to parametrize the intercept block.
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625 protocol p_protocol = &{
626 l_get: !key?value.;
627 l_delete: !key?bool.;
628 l_put: !tuple<key,value>?bool.;
629 };
630

631 (* Protect two servers *)
632 intercept<AccessController> one_controller_per_server {
633 spawn Server(...) @ ...;
634 spawn Server(...) @ ...;
635 }
636

637 component AccessController {
638 set<session_id> unauthorized_sessions = set();
639

640 (* This predicate checks if the activation [a], i.e. a gateway,
641 is runing either in the local or on the public network. *)
642 bool is_public(activation_ref<any> a){
643 (* For simplicity, we checked that the ip of the node runing [a] is
644 in a certain range of IP addresses [public_ips].
645 *)
646 return exist2set(ip(place(a)), public_ips);
647 }
648

649 (* Intercept each session creation *)
650 @msginterceptor(both)
651 result<.,error> intercept_choice(
652 activation_ref<A> from, activation_ref<B> to,
653 (dual p_protocol) continuation_in, p_protocol continuation_out,
654 blabel msg
655 ){
656 branch continuation_in on msg {
657 | l_get => s -> { (* Nothing to do, allowed for all *) }
658 | l_delete => s -> {
659 if(set2exists(this.public_instances, activationid(from)))
660 {
661 (*
662 The error will be logged by the interceptor.
663 The Client will be notified when it will send the key,
664 to preserve session guarantees.
665 *)
666 return err("Message can only be deleted by trusted Client");
667 }
668 }
669 | l_put => s -> { (* Nothing to do at this point since the key is not

known *) }↪→
670 }
671 }
672

673 (* Intercept each put request and check if the key can be updated *)
674 @msginterceptor(both)
675 result<?put_response., error> intercept_put_request(
676 activation_ref<A> from, activation_ref<B> to,
677 !put_response. continuation_in,
678 !put_request?put_response. continuation_out,
679 put_request msg
680 ){
681 key k = msg._0;
682 (* "private" key can only be updated by trusted Client *)
683 if( key in {"private"} && this.is_public(from) )
684 return ok(fire(continuation_out, err("Unauthorized update from

outside"))?);↪→
685 }
686 }

Listing 22: Adding access control for “Server”
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The access control logic is embedded into the “AccessController” (Lines 637-686).
The controller performs the filtering in two steps. First, it prevents unauthorised
deletion when the gateway selects a branch of the protocol (Lines 651-671). Then, it
filters update on private keys upon reception of a put_request (Lines 675-685).

This AccessController can protect any kind of components that
use the key-value stores protocol. Namely, it can either protect the
LoadBalancer or protect each Server when a LoadBalancer calls them.

8.3.2 Encapsulating messages and piggy-backing metadata

Using the virtual network, programmers can piggy-back metadata to messages (resp.
encapsulate messages) without updating the components. Piggy-back metadata can
carry consistency, provenance or debugging information.

For instance, let us take a ping-pong application (at the left of Figure 8.6) where
component “A” sends a “ping” message to component B, which replies with a “pong”.
The protocol between A and B is as follows “!ping?pong.”. The use case is to piggy
back the metadata of user-defined type meta to the “ping” (resp. pong) message
without modifying neither A nor B.

To achieve this, the programmer adds a virtual network, illustrated by the right-
hand side of Figure 8.6. This virtual network leverages Varda direct communica-
tion primitives with a modified protocol that support metadata: “!tuple<ping,
meta>?tuple<pong, meta>.”.

SidecarA and SidecarB intercept, respectively, A and B. The two sidecars are con-
nected by a channel supporting the modified protocol. On the one hand, SidecarA
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intercepts the ping message, piggy-backs metadata to it and transfers it to SidecarB.
Then SidecarB unwraps the message, processes the metadata and delivers the ping
message to B. The pong message is processed in the same way.

The Listing 23 shows the implementation of the two sidecars and explains how to
set up the inter-sidecar communication. To illustrate how it works, let’s follow the
path of the ping message from A to B.

Phase 0 A sends a ping message to B.

Phase 1 - ping interception SidecarA intercepts the message and processes it
using the intercept_ping method (Lines 690-696). This method delegates
the redirection to the route_ping method.

Phase 2 - inter-sidecars routing This routing logic compute the destination of the
message (i.e., the identity of SidecarB) and it creates a session, with metadata
support, with the destination sidecar. Then, it wraps the ping message in a
tuple to carry the metadata and it sends it through the session.

Phase 3 - reception SidecarB receives the message through the p_in_side port
and it processes it with handle_side_ping method. For simplicity, this toy
method discards the metadata and delivers the message to B.

Phase 4 - delivery to B The final delivery is quite tricky since there is no estab-
lished session between SidecarB and B at this point. It is up to SidecarB to
initiate the session.

To initiate a session with B, SidecarB uses the virtual p_inner_out port.
Compared to classical ports, its up to Vardac to bind it with the correct channel.
Here p_inner_out is bound to the interception channel that interconnects
SidecarB with B.

With the current prototype, a programmer cannot yet write an arbi-
trary piggy-backing interceptor that works for any kind of components
since there is no meta-programmation primitives that permit to rewrite
protocols: i.e., to take a protocol in input (e.g. !ping?pong.) and to out-
put a new protocol (e.g. !tuple<ping, meta>?tuple<pong, meta>.).
Therefore, programmer has to write a piggy-backing interceptor for each
protocol. Note that an interceptor can support multiple protocols.
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687 component SidecarA {
688 (* * Interception of A communication * *)
689 @msginterceptor(both)
690 result<?pong.,error> intercept_ping(
691 activation_ref<A> from, activation_ref<B> to,
692 !pong. continuation_in, !ping?pong. continuation_out,
693 ping msg
694 ){
695 this.route_ping(continuation_in, msg);
696 }
697

698

699 (* Side channel that interconnects both sidecars with the modified protocol *)
700 activeport p_out_side expecting p_intermediate;
701 onStartup (channel<SidecarA, SidecarB, p_intermediate> chan) {
702 bind(this.p_out_side, chan);
703 }
704

705 (* Inter-sidecar logic
706 It piggy pack a metadata to the ping message.
707 Then, it sends this new message to the other sidecar
708 through the inter-sidecars channel.
709 *)
710 result<void, error> route_ping(!pong. inner_s1, ping msg){
711 set<activation_ref<SidecarB>> sidecars =

rightactivations(channel_of(this.p_out))?;↪→
712 activation_ref<SidecarB> dest = set_pick(sidecars);
713 session<p_intermediate> outer_s0 = initiate_session_with(
714 this.p_out, dest);
715 ?pong. outer_s1 = fire(outer_s0, (msg, meta(1)))?;
716 tuple<tuple<pong,meta>, .> res = receive(outer_s1);
717 . outer_s_end = fire(inner_s1, (res._0)._0)?;
718 }
719 }
720

721 component SidecardB {
722 (* * Interception of B communication * *)
723 @msginterceptor(both)
724 result<?pong.,error> intercept_pong(
725 activation_ref<A> from, activation_ref<B> to,
726 !pong. continuation_in, !ping?pong. continuation_out,
727 ping msg
728 ){
729 ?pong. s_out = fire(continuation_out, msg)?;
730 return ok(s_out);
731 }
732

733 (* Side channel that interconnects both sidecars with the modified protocol *)
734 passiveport p_in_side expecting (dual p_intermediate) = this.handle_side_ping;
735 onStartup (channel<A, B, p_intermediate> chan) {
736 this.bind(this.p_in_side, chan)
737 }
738

739 (* Virtual port that point toward B instances *)
740 activeport<ingress:ingress> p_inner_out expecting (inline p_pingpong);
741

742 (* Inter-sidecar logic
743 On reception of wrapped ping:
744 it unwraps the message, processes the metadata and
745 delivers the ping message to B.
746 *)
747 result<void, error> handle_side_ping (tuple<ping,meta> msg,
748 !tuple<pong,meta>. outer_s1) {
749 session<p_pingpong> inner_s0 = initiate_session_with(
750 this.p_inner_out, this.replica);
751 ?pong. inner_s1 = fire(inner_s0, msg.0)?;
752 tuple<pong, .> res = receive(inner_s1);
753 fire(outer_s1, (res.0, meta(2)));
754 }
755 }

Listing 23: Piggy-packing metadata on a pingpong protocol with virtual network.
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Use Case and Preliminary
Performance Evaluation

9
To demonstrate the expressiveness of Varda and its ability for real distributed
system programming, we model and implement in Varda a simplified version of
AntidoteDB [@14], [94], a highly available geo-replicated key-value database (Sec-
tion 9.1).

We build it incrementally starting from a single node database to a geo-distributed
database. For this, we leverage Varda interception to transparently extend the system
with new features without having to update the existing code base. Moreover, this
chapter demonstrates the ability and the ease to compose various OTS ranging from
a conflict-free replicated data type (CRDT) library to popular distributed services
(e.g., Redis and Kafka).

The chapter then concludes with a brief quantitative analysis in Section 9.2 to
evaluate gain in conciseness and performance overhead of using Varda.

9.1 Use Case: Step-by-step implementation

9.1.1 AntidoteDB overview

AntidoteDB supports concurrent operations over a number of data centers (DCs).
Clients’ operations are grouped into transactions that starts by a begin, contains
a various number of data operations (e.g., read/write) and ends by a commit.
Moreover, to maintain isolation and asynchrony between transactions, AntidoteDB
use a form of multiversion concurrency control (MVCC) [20] to allow a client to
(read and) write data without waiting. MVCC creates multiple versions of each data
item, and assigning a unique timestamp to each version. A transaction only sees the
version of the data that is valid at the start time of the transaction.

AntidoteDB provides horizontal scalability per DC and replication between DCs.
Each DC is partitioned into non-overlapping storage servers called shards. Fig-
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Fig. 9.1.: Overall architecture of AntidoteDB, extracted from Hatia and Shapiro [94].

ure 9.1 illustrates this overall architecture. To ensure consistency in the presence of
concurrent transactions, AntidoteDB ensures

• strong consistency for commits inside each DC1.
• transaction causal consistency between DCs [9] two handle operations that

happen concurrently on different DCs. Two clients can concurrently update
the database from two distinct DCs. In that case, AntidoteDB orders operations
by causal order. To track causal dependencies and to maintain causal order,
the authors tags each transaction with a logical clock, implemented by vector
timestamp with one entry per DC.

9.1.2 AntidoteDB entities

A data center is composed of different kinds of entities to handle transactions (the
TransactionManager and the TransactionCoordinator), to store the data (the Journal),
and to support querying the state of an object in a given version (the Materializer).
Furthermore, the Inter-DC entity ensures data replication across the DCs.

Transaction Manager The TransactionManager processes transactions from clients.
There is one manager per DC. On clients’ transaction creation, the Transac-
tionManager creates a TransactionCoordinator to handle the transaction. The
manager supervises its coordinators: it ensures that they terminate correctly
and restart them if needed.

1For this, the authors use a variant of Snapshot Isolation.
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Transaction Coordinator A coordinator manages exactly one transaction identi-
fied by a unique identifier and a dependency version (i.e., a vector timestamp).
A transaction operation can only see an operation that is in its logical past to
preserve causality, i.e., such that its commit version is older or equal to the
dependency version.

Upon creation, the coordinator starts the transaction on each involved shard. A
shard is involved in a transaction if it contains an object that is read or written
by this transaction. Then, the coordinator sends each client’s operation to the
correct shard.

On commit, to ensure strong consistency inside a DC, TransactionCoordinator
coordinates the commit of the transaction among all the involved shards using
a two-phase commit protocol.

Shard In a shard, the Journal persists the writes whereas the Materializer response
to the reads. Furthermore, the Inter-DC asynchronously replicates the persisted
data to other DCs.

Journal Inside a shard, the operations that impact the state of the store (i.e.,
the updates, the begin, and the commit) are persisted in a log, called the
Journal. A log is a grow-only sequence of records, ordered by timestamps.
Each (internal) operation is represented by a given type of record and
persisted in the journal.

Materializer On read operation, the Materializer computes the state of the
read object at a given version from the data stored in the Journal. We
denote by materializer logic the union of the Cache, Fill Daemon and Evict
Daemon of Hatia and Shapiro [94]. The Cache speeds up the reads. It
avoids unneeded scan of the Journal by storing the most recent versions
of the objects in memory. The two daemons manage the cache either
filling it form the Journal or evicting the least recently used objects.

Inter-DC replication Each DC has the same number of shards and each replica
of a shard manages the same key domain. Hence, the Inter-DC replication
works on a shard-to-shard basis, according to their key domain: all the
updates arriving to a shard are sent asynchronously to the corresponding
shard in other DCs.

Others We omit some AntidoteDB’s features like the checkpoint store and the
journal trimming mechanisms.
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9.1.3 Method

In the following, we implement a simplified version of AntidoteDB, called VAntidot-
eDB, such that

• VAntidoteDB only supports simple put and get operations on objects;
• Objects are Last Writer Wins Registers (LWWRegister) [161]: a read operation

on LWWRegister returns the value of the highest version.
• VAntidoteDB embeds a simplified replication process. In AntidoteDB each

shared is replicated one-by-one across all DCs, whereas in VAntidoteDB, the
replication works at coarse grain: the whole set of operations applies to a DC
is replicated to other DCs.

• VAntidoteDB supports multi-versions and strong consistent commit per DC.
However it does not support causal consistency between DCs.

We build VAntidoteDB incrementally, step-by-step, as follows:
1. We start with a single shard in a single DC.
2. We add shards without ensuring consistency between them.
3. We ensure strong consistency to commit between shards.
4. We add multi-DC support and we implement replication across them without

maintaining causal consistency.

To evolve the system from one step to the next, we leverage interception such that
we do not modify existing orchestration logic except when the type of protocols
changes.

Figure 9.2 shows the whole logical architecture of VAntidoteDB. The Gateway ex-
poses a gRPC interface to the external clients. Like AntidoteDB, VAntidoteDB split
the transaction handling logic between a TxManager and a set of TxCoordinators.
We implement both components logic in Varda.

The backend is composed of a Virtualizer that shards the operations on a set
of backend servers according to the keys. A shard contains a Materializer and
a Journal. We reuse the log of Kafka to implement the Journal. Furthermore,
we shield the key-value store of Redis to build the Cache, and we embed the
LWWRegister from the Akka CRDT library to represent the VAntidoteDB objects. We
implement the sharding logic and the materializer logic in Varda since we did not
find ease to use off-the-shelf components for them.

The Replicator component asynchronously replicates the operations to the other
DCs. We implement the replication logic in Varda. In each DC, the replicated
operations are received by the recipient Replicator instance which forwards them
to the DC backend. We use a RabbitMQ broker to transport inter-DC communication
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Fig. 9.2.: Logical architecture of VAntidoteDB.

to benefit from the delivery guarantees in case of network partition and the back
pressure offered by RabbitMQ. Conversely, we rely on a classical FIFO channel (i.e.,
Akka inter-actor communication) for intra-DC communication.

9.1.4 Step 1 - Single shard, single DC, no replication, no
consistency between shards

For step 1, we built the definitive2 frontend and transaction management layers.
The backend layer is simplified: it contains a single shard. However, we implement
the definitive functionalities of a shard which encapsulates both a Materializer
and a Journal. For the journal, we sandbox Kafka in a Docker container and wrap
it as an OTS component. We implement the Materializer as the composition of
a Cache and the embedded CRDT Akka library (using OTS adaptors and abstract
types). We write in Varda the built-in materializer logic that integrates both the
library with the Cache. For the cache, we sandbox Redis in a Docker container and
wrap it as an OTS component.

Figure 9.3 describes the logical architecture of VAntidoteDB at step 1 with inter-
connections annotated by protocols. Before delving into the technical details, we
explain the flow of executing a request as follows:

2By definitive, we mean that the subsequent steps will not modify them.
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Fig. 9.3.: Logical architecture of VAntidoteDB at step 1 where arrows represent typed com-
munication channels. Both p_tx and p_kv represent a transaction: the former one
models a full transaction whereas the last one models a transaction without the
begin. p_cvv is the protocol that defines the exhange between a TxCoordinator
and its TxManager to select a commit version. The protocol p_server is the
read/write protocol supported by the backend. Unlike the previous protocol, it
does not refer to transaction operation but to reading or writing backend record.
A backend record is a generic persistent structure that either represents a begin,
an update, a commit or an abort depending of the value of its attribute. The
p_materializer and p_journal protocols are respectively the read, write projec-
tion of the p_server. p_mat_journal represents the scan of the journal by the
materializer on cache miss.
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Execution flow of a request

The VAntidoteDB pipeline is as follows:

Starting a transaction An external client (e.g., a console) connects to the Gateway
through a gRPC interface. It starts a transaction by sending a begin request to
the Gateway. The Gateway assigns a unique identifier to the transaction and
delegates its processing to the TransactionManager. The TransactionManager
starts a TransactionCoordinator dedicated to this transaction. The coordi-
nator writes, on the backend, a begin record with the following transaction
information: the transaction id and the dependency timestamp provided by
the client.

Reading an object On read requests, the Gateway forwards it to the TransactionCoordinator,
through the TransactionManager. We instruct the compiler to inline the
TransactionManager into the Gateway to avoid inter-component indirection.

There are two different cases for the read:

• The read operation concerns a key that has not been updated by the current
transaction. In this case, the TransactionCoordinator forwards the
read request to the backend which in returns delegate it to its internal
Materializer.

On reads, the materializer queries the cache. If the value is in the cache,
the materializer responses back to the Shard with the value. On cache
miss, it starts a scan of the log on the Journal which replies with an
ordered stream of records.

On record reception, the Materializer logic updates the cache. On
reception of the commit record corresponding to the requested version,
the Materializer returns the materialised values of the key.

• The read operation concerns a key that has been updated by the current
transaction. In this case, the TransactionCoordinator returns the value
of the last update since objects are LWWRegister. This ensures the read-
your-writes consistency properties. For this the coordinator, maintains a
local cache3 which materialises the state of the objects updated by the
current transaction.

3Since it is a local and transient cache, bounded by the number of objects update by a transaction,
we implement it as a simple Varda map without involving an OTS.
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Updating an object On write, the Gateway forwards it to the TransactionCoordinator,
through the TransactionManager. Then the TransactionCoordinator up-
dates its local cache, crafts a backend record which describes the update (i.e.,
the key, the value, the version and the transaction ID), and sends this record
to the backend.

On record reception, the Shard permanently stores the record in its Journal
which appends the record at the end of its log. Each Journal’s instance uses a
dedidcated Kafka topic to implement its log.

Committing a transaction On commit, the TransactionManager computes a valid
commit timestamp and send it to the TransactionCoordinator. Then the
coordinator crafts and writes a commit record on the backend.

Component interconnection: protocols and channels

For the sake of brevity, we only detail the p_kv protocol which models an AntidoteDB
transaction, in between the TxManager and TxCoordinator, as follows:

(* [p_kv] is a recursive protocol
it executes an arbitrary number of operations before either committing or aborting.

*)
protocol p_kv = µ y. +{

(*
[y] denotes the continuation of the branch
i.e. when the session reaches the "[y] state",
it loops an execute the protocol again.

*)
l_get: !key?option<value> - y;
l_put: !tuple<key,value>?bool - y;

(* l_commit and l_abort are terminal branches and are mutually exclusive *)
l_commit: ?bool.;
l_abort: .;

};

We do not add the begin operation in p_kv since the TxManager spawns the
TxCoordinator on begin and passes it the dependency version and the transaction
identity as arguments.
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9.1.5 Step 2 - Sharding, single DC, no replication, no consistency
between shards

To horizontal shard the backend while minimising the updates of the architecture,
we interpose a Virtualizer component between the transaction layer and the
servers using interception. Currently, we explicitly declare the additional shards
when the system starts. This transformation is similar to the sharding of Section 4.2.
Most of the work is to adapt the routing logic to handle the various cases of the
transaction protocol.

9.1.6 Step 3 - Adding strong consistency between shards

To ensure strong consistent commit between shards, we use the two-phase commit
protocol [87] (2PC) as in AntidoteDB. We add the 2PC between the virtualizer and
the shards in two steps. On the one hand, we define a generic4 two-phase commit
protocol: p_server. For this, we encode 2PC as a virtual network pattern (see
Section 8.3). Then, we transparently interpose this virtual network in between the
Virtualizer and the Shards thanks to the interception mechanism.

The two-phase commit protocol

The two-phase commit protocol ensures atomic commitment for a transaction. This
protocol uses a central coordinator to handle the synchronisation between the
participants. Figure 9.4 illustrates the sequence of the protocol.

In the first phase, the coordinator asks the participants to prepare the commit. The
protocol ensures that all the participants, involved in the transaction, have already
persisted the transaction’s updates to their stable storage.

In the second phase, if all the participants of the first phase answer with an OK, the
coordinator asks the participants to commit the transaction. Otherwise, it tells them
to abort. After committing, each participant persists the same commit record in the
log and sends a success message to the coordinator.

4By generic, we mean that the protocol is not specific to the VAntidoteDB use case. Moreover, it is
independent of the type, the number, and the identity of the interconnected components. It only
depends of the protol on which we add 2PC.
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Fig. 9.4.: Two-phase commit protocol between a coordinator and a set of participants.

Two-phase commit protocol as virtual network

To encode the 2PC protocol as a virtual network, we define two new interceptors,
detailed in Figure 9.5:

• CoordinatorTwoPC which plays the role of the coordinator in the 2PC protocol;
• ParticipantTwoPC which plays the role of a participant in the 2PC protocol;
• and, we also define the intermediate Varda protocol, p_2pc, which is used to

exchange messages between the coordinator and the participants.

The idea is to interpose a ParticipantTwoPC in front of each shard and to add
the CoordinatorTwoPC in front of the Virtualizer. Both interceptors are connected
thanks to a dedicated channel typed by the p_2pc protocol (Listing 24). When the
virtualised sends a message to a shard, the CoordinatorTwoPC wraps it into the
p_2pc variant:

• On non-commit message, it behaves like the identity function;
• On commit message, it starts a two-phase commit. It starts by sending

l_pc_prepare (Listing 24, line 782) message to all the participants. Then,
it waits for the answer of all the participants. If all the participants answer
with an OK, it sends a l_pc_commit message (Listing 24, line 783) to all the
participants. Otherwise, it sends a l_pc_abort message (Listing 24, line 784)
to all the participants.

172 Chapter 9 Use Case and Preliminary Performance Evaluation



routing_logic

non-commit record

2PC-logic

prepare step commit stepon
success

prepare

ack

interception_logic

Intercepted
communication

Virtual network logic

routing_logic

Shard

interception_logic

send record
or read

operation

ack
or

read return

ack

Virtual network logic

C
oo

rd
in

at
or

Tw
oP

C
Pa

rt
ic

ip
an

tT
w

oP
C

Virtualizer

Fig. 9.5.: Logical structure of the two-phase commit interceptors.

772 (* dep_ts, commit_ts, tid, type, key, value
*)↪→

773 event record of timestamp,
option<timestamp>, t_tid, record_type,
key, value;

↪→
↪→

774

775 protocol p_server = +{
776 l_read: !tuple<timestamp,

key>?option<value>.;↪→
777 l_write: !record?bool.;
778 };

779 protocol p_two_pc_server = +{
780 l_pc_read: !tuple<timestamp,

key>?option<value>.;↪→
781 l_pc_write: !record?bool.;
782 l_pc_prepare: ?bool.;
783 l_pc_commit: ?bool.;
784 l_pc_abort: .;
785 };

Listing 24: On the left, the p_server is the protocol between the virtualizer and the
shards. On the right, the p_two_pc_server is the protocol between the
CoordinatorTwoPC and the ParticipantTwoPC. It is an extended version of
p_server with the 2PC messages.
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The Listing 25 details the implementation of the CoordinatorTwoPC. Let us explain
the journey of a commit message record from the virtualizer to a shard.

1. First, the classical interception part of the coordinator (Listing 25, Lines 787-
798) receives the message. It delegates the routing of the message to a helper
function route_round (Line 795).

2. Then, the inter-sidecar part5 of the coordinator takes over (Listing 25, Lines -
843).

3. On commit record, the routing function starts a prepare phase, "waits" for the
answers, and, triggers the commit phase (resp. abort). For brevity, we only
detail the prepare phase. The commit one follows the same encoding.

a) The prepare phase starts by sending a prepare message to all the partic-
ipants (Line 829). The local state this.rights stores the participants’
identity. The coordinator discovers those identities thanks to channel
reflexivity: it queries the running listeners of the inter-sidecar channel.

b) Then, CoordinatorTwoPC "waits" for all the answers (Line 831).
c) Meanwhile, on the shard side, the ParticipantTwoPC instance handles

both the prepare and the commit phase. Moreover, it also unpacks
messages from the p_2pc protocol and encodes them into the p_server
one then send them to the backend.

Interposing the virtual network

The question that remains is how to transparently interpose this virtual network
knowing that the Virtualizer is already an interceptor. Transparently means that
we do not want to modify either the Virtualizer or the Shards.

5The logic that ensures the communication between the CoordinatorTwoPC and the
ParticipantTwoPCs
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786 component CoordinatorTwoPC {
787 (* * * * * * * * * Interception * * * * * * * * *)
788 @msginterceptor(both)
789 result<p_server, error> intercept_round(
790 activation_ref<TxCoordinator> from, activation_ref<KVServer> to,
791 (dual p_server) continuation_in, p_server continuation_out,
792 blabel msg
793 ){
794 non_generic_activation_ref to = to;
795 this.route_round(to, msg, continuation_in);
796

797 return err(());
798 }
799

800 (* * * * * * * * * Inter-sidecar routing * * * * * * * * *) label{line:2PCcoordinatorinterstart}~
801 outport p_out_two_pc expecting p_two_pc_server;
802 inport <egress:ingress> p_abstract_in expecting (dual p_server) =

this.default_callback;↪→
803 result<void, error> default_callback(blabel msg, (dual p_server) continuation){
804 return err(error("Vardac replace this callback by the interception one"));
805 }
806

807 (* For brevity, we only present the handling on a commit operation *)
808 result<void, error> route_round(activation_ref<ParticipantTwoPC> dest, blabel msg,

(dual p_server) inner_continuation){↪→
809 session<p_two_pc_server> outer_continuation =

initiate_session_with(this.p_out_two_pc, dest);↪→
810

811 branch inner_continuation on msg {
812 | l_write => inner_continuation -> {
813 tuple<record, !bool.> tmp = receive(inner_continuation);
814 record r = tmp._0; record_type rtype = r._3_; !bool. inner_continuation =

tmp._1;↪→
815

816 if(rtype == t_COMMIT){
817 (* Start 2PC *)
818 bool ack_prepare = this.prepare()?;
819 if(ack_prepare)
820 bool ack_commit = this.commit()?;
821 }
822 }
823 }
824 }
825

826 result<bool, error> prepare(){
827 list<bool> votes = [];
828 for(activation_ref<KVServer> right in this.rights){
829 this._prepare(votes, right)?;
830 }
831

832

833 if(listlength(this.rights) == listlength(votes)){
834 for(bool vote in votes){
835 if(vote == false){
836 return ok(false);
837 }
838 }
839 return ok(true);
840 } else {
841 return err(error("CoordinatorTwoPC:: prepare - not all votes received"));
842 }
843 }
844 }

Listing 25: Simplified logic of the coordinator interceptor
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The easiest way (see Figure 9.6), although counter-intuitive, is

1. to intercept each shard with a ParticipantTwoPC replica;
2. to intercept the resulting sub-architecture, formed by the shards with their

sidecar, with the CoordinatorTwoPC thanks to nested interception;
3. to intercept the CoordinatorTwoPC with a Virtualizer in order to link the

coordinator with the virtualizer. Moreover, to avoid a costly and unused
indirection, the inter-sidecar channel remains unintercepted.

The first two steps are straightforward, they directly leverage classical interception
(Listing 26, Lines 874-878). The third step is trickier. We instrument the interception
policy in charge of the CoordinatorTwoPC (Listing 26, Lines 855-867) such that
there is at most one coordinator (Line 860) and such that the Virtualizer intercepts
the instantiation of the coordinator (Line 861).

As you may notice in the listing, we annotate the intercept block declaration with
“@1” (Line 861). This is a compiler instruction that specifies the order of intercep-
tion elimination. In this case, Vardac waits for the end of the generation of the
Coordinator interception block before starting the generation of the Virtualizer
one. More generally, the annotation “@n” specifies that the interception block is
generated after the generation of the interception blocks annotated within “@0-@n-1”.
“@0” is the default priority level associated to unannotated interception blocks. The
compiler cannot automatically infer the priority level of an interception block since
it depends on the desired behaviours.

9.1.7 Step 4 - Add multi-DCs replication

The transition from one single-DC to multi-DCs implies to add a notion of DC,
to manage the placement per DC and to add a replication mechanism between
the DCs. In this section, we do not detail the replication since it behaves like the
sharding logic with another routing logic. We focus on how to represent and handle
a geodistributed infrastructure.

For simplicity, we encapsulate the backend of a DC into a DCStore component. This
component orchestrates all the backend layer, namely it spawns the sharding logic,
the 2PC virtual network and the shards on the nodes of the DC. Conversely, we only
spawn one frontend that works with all the DCs.
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845 (* For simplicity, we use a KVStore attribute since interception does not intercept
attributes bridges yet↪→

846 in the future we will need to carrefully establish a non-intercepted bridge between
847 CoordinatorTwoPC and ParticipantTwoPC and Right
848 *)
849 bridge<CoordinatorTwoPC, ParticipantTwoPC, p_two_pc_server> two_pc_bridge =

bridge(p_two_pc_server);↪→
850

851 option<activation_ref<Virtualizer>> virtualizer = none;
852 option<activation_ref<CoordinatorTwoPC> left = none;
853

854 (* * * Interception policy * * *)
855 activation_ref<CoordinatorTwoPC> make_interceptor_left (
856 bridge<CoordinatorTwoPC, ParticipantTwoPC, p_two_pc_server> -> option<place> ->

activation_ref factory,↪→
857 string intercepted_component_schema,
858 place p_of_intercepted
859 ){
860 if(is_none(this.left)){
861 with<Virtualizer, anonymous> this.make_interceptor @1{
862 activation_ref<CoordinatorTwoPC> res = factory(this.two_pc_bridge,

some(p_of_intercepted));↪→
863 this.left = some(res);
864 }
865 }
866 return option_get(this.left);
867 }
868

869 (* * * Interposing the 2PC virutal layer * * *)
870

871 bridge<DCStore, KVServer, p_server> b_backend = bridge(p_server);
872 bind(this.p_out_backend, b_backend);
873

874 with<CoordinatorTwoPC> this.make_interceptor_left {
875 with<ParticipantTwoPC, direct_onboarding> this.make_interceptor_right {
876 activation_ref<KVServer> backend = spawn KVServer(b_backend);
877 }
878 }

Listing 26: Interposing the CoordinatorTwoPC in front of the Virtualizer with one shard.
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- place: dc1
nbr_instances: "1"
children:

- place: nodes
nbr_instances: "N"

- place: dc2
nbr_instances: "1"

- place: nodes
nbr_instances: "N"

Listing 27: Modelling the infrastructures

Modelling and managing the infrastructure

We model the infrastructure as follows, in Listing 27: we define two named DCs
("dc1" and "dc2") such that they contain an arbitrary number of nodes.

On startup, the architecture loads the infrastructure model (Listing 28, Lines 10-12).
Then, it computes the actual running nodes on both DCs by querying the places that
are tagged by "nodes" and that belongs to "dc1" (resp. "dc2") (Lines 14-16).

Integration between the infrastructure and the architecture

We spawn the DCStore component on a random node of each DC (Lines 23 and 28).
On creation, the DCStore spawns its children (i.e., component instances) on the
nodes of the data center for which it is responsible.

To add the replication mechanism, a DCReplicator component intercept each
DCStore component (Listing 28, lines 22 and 27). The replicators are intercon-
nected by the inter_dc_channel (Line 19). As we discussed earlier, we implement
this channel using a RabbitMQ broker.

The DCReplicator component behaves as follows:
On begin, update, commit or abort It asynchronously sends a copy to the other DCs

and forwards the message to the DCStore.
On read It forwards the message to the DCStore.

9.1.8 Summary

The Table 9.1 summarise the development efforts to incrementally build VAntidot-
eDB. The system remains compact thanks to interception and virtual network. Most
of the LoC are related to the implementation of the component individually. More
specifically, communication code represents a large part of it since our protocols

9.1 Use Case: Step-by-step implementation 179



10 (* Load the definition from the YAML file *)
11 vplacedef dc1 of "dc1";
12 vplacedef dc2 of "dc2";
13

14 (* Select all the running nodes of each DC *)
15 list<place> nodes1 = select_places(select_children(dc1, l'nodes'), x : place-> true);
16 list<place> nodes2 = select_places(select_children(dc2, l'nodes'), x : place -> true);
17

18 (* Inter-DC communication channel using a RabbitMQ broker *)
19 bridge<TxCoordinator, DCStore, p_server> inter_dc_channel = amqp_channel(p_server,

"amqp://broker_ip_address:broker_port", "inter_backend");↪→
20

21 (* DC-1 *)
22 with<DCReplicator, anonymous> this.make_interceptor_replicator{
23 activation_ref<DCStore> backend = spawn DCStore("dc-1", nodes1, inter_dc_channel) @

dc1;↪→
24 }
25

26 (* DC-2 *)
27 with<DCReplicator, anonymous> this.make_interceptor_replicator{
28 activation_ref<DCStore> backend = spawn DCStore("dc-2", nodes2, inter_dc_channel) @

dc2;↪→
29 }
30

31 (* One frontend *)
32 bridge<Gateway, TxManager, p_dep_kv> b_gateway_manager = channel(p_dep_kv);
33 activation_ref<TxManager> manager = spawn TxManager(b_gateway_manager, inter_dc_channel,

backend) @ dc1;↪→
34 (* Colocate the gateway with the manager *)
35 activation_ref<Gateway> gateway = spawn Gateway(b_gateway_manager, manager) @

placeof(manager);↪→

Listing 28: Adding geo-distribution with inter-DC replication.
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Lines of Code Comments
archi. adaptor

Miscellaneous 219 29 Type, protocols, top-level com-
ponents and helping functions

Single Shard, Single DC 710 184
Gateway 84
TxManager 93
TxCoordinator 84
Shard 38 Excluding Materializer, Cache

and Journal
Materializer 86 30
Cache 52 35
Journal 54 90

Sharding 67

Strong consistent commit 159
CoordinatorTwoPC 115
ParticipantTwoPC 44

Multi-DC 20 RabbitMQ does not increase
adaptor LoCs since the stan-
dard library already provides
a generic channel for brokers
that use the AMQP protocol.

DCReplicator 60
DCs orchestration logic 21

Total 956 184
Tab. 9.1.: Summary of the programmers’ efforts at each stage of VAntidoteDB’s implemen-

tation. Most of the LoCs comes from the handling of each protocol branch.

has a lot of branches. The composition codes (i.e., children creation, interception
scope and policy) only represent a few dozens of LoC. For comparative purposes, the
existing AntidoteDB code base, with all its features, is about 7000 LoCs for the trans-
action layer and 6500 LoC for the backend (i.e., the caching, materialisation and
logging layers). However, you should keep in mind that our clone only implements
the core features.

We identified the following limitations and future needs for our prototype. As we
will see in the next chapter, most of them are not scientific needs but are related
to the maturation of the Varda ecosystem and tooling. Namely, our compiler is
not mature enough to mix complex interaction between features (e.g., between
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nested interception and inlining). Moreover, the most complicated task was to
debug the Varda code since there is no debugger, profiler nor decent integration in
IDEs6 yet. In addition, this work highlights the need for some meta-programming to
write interceptor factories that take a protocol in input and generate an interceptor
component in output such that the interceptor logic is derived according to the
structure of the protocol. One application could be to write a generic TwoPC factory
that automatically adds the prepare, commit and abort phase to an input protocol,
and that generates the corresponding interceptors.

9.2 Experimental Evaluation

Our experimental evaluation addresses the following questions: How difficult is it to
develop a system with Varda? How does a system developed with of Varda perform,
compared to its manually written counterpart? Note that, we do not aim to provide
a comprehensive performance evaluation of Varda, since the compilation pipeline is
not optimised yet.

9.2.1 Experimental protocol

We compare systems written in Varda with a baseline written manually in Akka (a
Java variant). Both variants incorporate the same OTS component.

We conduct performance benchmarks, using micro-benchmarks to isolate the impact
of the abstractions, and the load-balanced storage service using RocksDB. After a
warm-up phase (not measured), each experiment runs five times.

We run the performance experiments on an Intel Core i7-10510U, clocked at 1.80–4.9
GHz with 16 GiB of memory. To simulate multiple places, we use Docker containers,
each of them embedding a Java Virtual Machine.

Micro-benchmarks

Massive parallel ping-pong (MPP) The MPP benchmark is composed of two com-
ponents, “A” and B. “A” sends n “Ping” asynchronous messages to B. “B” replies with
a “Pong” message.

6Our prototype only provides syntax coloring right now. Adding them would require a significant
engeeering effort.
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Akka Varda
LoC CB LoC LoC CB

archi. adaptor

MPP 310 2 133 10 2
MS 338 3 173 48 3
KVS 681 10 185 104 1

Tab. 9.2.: Programmer effort. LoC = Lines of Code. CB = Number of callbacks

The MPP-contract version counts the number of ping-pong rounds, which is added to
each message. “A”has a contract ensuring that the received counter Pong counters
are strictly positive.

Distributed merge sort (MS) The MS benchmark is a distributed merge sort. A
“Runner” component splits its input array in two parts, sending each half to a newly
spawned instance of itself. The runner waits for both children to return a sorted
array, merges their results, and sends this back to its own parent.

Storage service with load balancer (KVS) We implement a key-value storage service
with load-balancing (KVS). We consider two backends: a simple in-memory map, or
an OTS RocksDB server. We stress test the KVS using Workload A (50/50 reads and
writes) of the YCSB benchmark [50].

9.2.2 Programmer effort

Programmer effort We measure programmer effort as the number of lines of code
(LoC), counted by the cloc system.7 We do not count comments, blank lines, nor
lines added for debugging and instrumentation.

The results in Table 9.2 show that Varda is more compact than Akka. On simple
micro-benchmarks, the Varda version is twice as short. It is three times shorter for
the more complex KVS.

The “CB” columns in Table 9.2 count the number of callbacks, which indicate a
complex control flow. Varda drastically reduces this complexity.

7https://github.com/AlDanial/cloc
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(a) MPP latency (b) MS latency (c) KVS latency

Fig. 9.7.: Latency experiments

9.2.3 Performance

YCSB YCSB measures latency of requests on the KVS system [50]. It runs on a
virtualised infrastructure using Docker [@62].

Figure 9.7c shows latency (average and variance). The Varda version is on average
twice slower than Akka. However, as the following micro-benchmark shows, the
cost is attributable to our current inefficient message-passing.

Micro-benchmarks The MPP and MS described above are used for micro-benchmarking.
We avoid spurious communication overhead by running all components of MS in a
single JVM on the same machine; for MPP we compare one and two JVMs.

The MPP benchmark (Figure 9.7a) shows that the session primitives incur a high
overhead. Varda creates a new session for each ping-pong exchange, whereas Akka
uses asynchronous fire-and-forget. This clearly points to the need for a more efficient
approach. Indeed, although our compiler optimises the core Varda code, it does not
optimise code generated by the Java plugin.

Note that adding run-time checking of a contract, in benchmark MPP-contract, does
not impact the results.

The MS benchmark (Figure 9.7b) shows only a modest overhead over Akka. Indeed,
this benchmark evaluates mainly the cost of creating component instances. For a
vector of size n, it instantiates approximately n components.
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Discussion 10
10.1 Take-aways

10.1.1 What makes life easier for the programmer ?

Varda eases the incremental design and writing of distributed systems by facilitating
safe composition of heterogeneous off-the-shelf components.

Program distribution related behaviours To achieve this, Varda either provides
built-in distribution primitives (e.g., placement, error handling, network chan-
nels) or embeds existing tools (e.g., supervision, fault tolerance) in its pro-
gramming model thanks to OTS adaptors and supervision ports. Reusing
tools has two advantages: leveraging performant and well-tested tools, and
controlling underlying OSI layers that would otherwise be abstracted (e.g.,
network layers).

Understandable code generation To discharge programmers from the burden of
writing boilerplate code, Vardac generates the glue code between components.
In addition, to ease integration with existing technologies, the compiler au-
tomates the generation of mainstream APIs (e.g., REST and gRPC) from the
functional definition of a component interface. Eventually, Vardac generates
readable source code with provenance information to ease debugging and
profiling.

Incremental design To incrementally and safely extend an existing system, Varda
interception transparently interposes proxies between existing components to
add new components, modify the behaviours of existing ones or update the
communication topology. Then, Vardac automatically propagates the changes
to the pre-existing architecture and generates the new implementation. For
example, we show that interception allows evolving a transactional database
effortlessly from a single-node architecture to a geo-distributed architecture
(see Chapter 9).

Explicit tradeoffs between efficiency and dependability To avoid forcing pro-
grammers, who do not need the expressive power of an abstraction, to have to
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pay for it, Varda offers adaptative control over low-level details, distribution
behaviour and safety verification. On the one hand, programmers could explic-
itly choose to degrade features and guarantees to improve system efficiency.
Almost all the features (e.g., using the placement registry) and checks that
could impact run time performance are either optional or the compiler can
erase them for production releases (e.g., protocol guards and contracts). On
the other hand, programmers could extend the programming language with
arbitrary unsafe features to fit their needs by leveraging OTS adaptors. For
instance, they can embed Cloud providers’ primitives to dynamically request
identity and security tokens.

Optimization and implementation specialization To optimise and specialise a
system without modifying the architecture, Varda programmers can configure
the mapping of these components, orthogonally to the logical boundaries (i.e.,
component boundaries):

• to the physical location using placement annotations,
• to the computation units using component inlining, and
• to compilation units using the code generation configuration.

Combined with the fact that Varda code generation is polyglot, i.e., it can
generate the glue code in various languages, programmers can fit a system to
infrastructure and deployment constraints without modifying the architecture
or its specification.
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Without Varda With Varda

Informal system
design

(e.g. in English)

Select a set of components

Write OTS adaptors

Write the system implementation Write the system architecture

components protocol channels
interconnection

annotations
(e.g., placement)

configuration
files
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code API custom 

services

API
interconnection

Polyglot implementation

Manually
prevent drifts

Manually
prevent drifts

Vardac automatically
prevents drifts

manual checksnon-functional
properties

Fig. 10.1.: Comparison of the work of a programmer to build a distributed system with (on
the right) and without Varda (on the left).

10.1.2 What would be the work of the programmer with and without
Varda?

Figure 10.1 summarise the comparison between the work to build a distributed
system without (on the left) and with Varda (on the right). In the following, we
review four steps of the lifecycle of a distributed system:

• building the first version of the system;
• adding a new feature to the system;
• optimising the system by leveraging data locality, either by leveraging to the

placement or by getting rid of logic boundaries;
• equipping the system with a formal specification. For the last step, we explore

how a programmer can gain strong confidence in the fact that the system
implementation follows the formal specification.

Without Varda the programmer has to

On first build
1. Write the system design using an informal language (e.g., English);
2. Select (or craft) the different components that compose the system;
3. Write the system implementation

• Manually write and expose the API of the crafted components;
• Manually interconnect the different components (e.g., by configuring

the network);
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• Write the orchestration logic in other components or use an externl
system to impose it (e.g., an orchestration engine). For instance,
define the placement strategy and synchronize the computation of
the different components;

• Build the artefacts and define the deployment strategy.
• Note that the programmer has to ensure manually that there are no

drifts between the high-level design and the system implementation.
On architecture update Manually update the system implementation. This means

redoing all the steps of first build and manually applying changes without
introducing regression or bugs.

Optimizing the system depending on the nature of the optimisation
Customizing placement Update the deployment strategy since developers often

rely on it to handle placement. In doing so, programmers must manually
ensure consistency between the placement strategy, system implemen-
tation and high-level design without introducing non-functional issues.
For instance, for key-value store, two replicas storing the same content
should not be placed on the same physical machine.

Refactoring the execution unit boundaries Re-architect the system. This means
updating the component boundaries by moving computation from one
component to another. This implies rewriting components, their API, and
updating both their interconnection and the orchestration logic.

When the system is equiped with a formal specification Write tests to check the
system implementation against the expected behaviours.

With Varda the programmer has to

On first build
1. Steps 1-2 from the non-Varda approach
2. Derive a Varda architecture from the design document. The developer

still has to manually ensure that the architecture remains consistent with
the design document.

3. Generate the system implementation and (optionally) the deployment
strategy:

• Select the code-generation target;
• Write (or import) the adaptor for each off-the-shelf component;
• Note that Vardac automatically guarantees that there is no drift

between the architecture and the final implementation.
On architecture update Update the architecture using interception to transpar-

ently update the architecture without modifying the existing components.
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Then, the compiler automatically propagates the changes through the steps of
First step.

Optimizing the system Annotate the architecture by adding either place or inlin-
ing constraints. Then, use the Vardac to generate the corresponding implemen-
tation.

When the system is equipped with a formal specification Embed the semantics’s
constraints in the architecture by annotating the architecture using Varda ver-
ification toolbox, discussed in Chapter 6. Then, the Vardac either statically
ensures some guarantees (e.g., communication order) or (on-demand) injects
dynamic checks in the implementation.
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10.1.3 What safety guarantees would you obtain using Varda?

Global system view By its design, halfway between a specification language and
a programming language, Varda provides a centralised high-level view of the
system which summarises the architecture of the system, some important
non-functional properties for performance (e.g., placement, combining exe-
cution units) and some formal specification (e.g., protocol guards, pre/post
conditions). This view is useful to:

Provide an up-to-date cartography of the system to the programmers

Reduce drifts between design and architecture Indeed, it should be easier for pro-
grammers to convince themselves that a system’s architecture follows
their design rather than studying the final implementation, since the
architecture view strips away unnecessary implementation details.

Eliminate drifts between the architecture and implementation By design, Vardac gen-
erates an implementation that is up to date and correct with respect to
the architecture. As always, there is no free lunch, this comes at the cost
of adding an additional step when building systems. For instance, this
could complicate keeping track of bugs. In Section 7.4, we discuss this
problem and the mitigation strategy we adopt.

Built-in guarantees and additional specification expressiveness By construc-
tion, Varda ensures strong isolation between components (e.g., failure isolation,
memory isolation and OTS sandboxing). Moreover, each component has a
formal communication interface such that inter-component communication
using Varda primitives follows the following properties:

• it abides by a formal protocol which guarantees the type and order of the
messages;

• it can only occur between components that are explicitly connected by
channels;

• it is private, i.e., messages are visible only by the communicating parties.

Additionally, Varda provides a specification sublanguage that allows the devel-
oper to enrich the architecture with custom constraints. The sublanguage can
specify:

• component’s behaviours and OTS’s observables using contracts (i.e., pre/-
post conditions) and ghost component state;

• run time protocol behaviours using message predicates, delivery up-
per bounds or protocol history predicates. The use of these additional
constraints prevents programmers from scattering communication specifi-
cations within the logic of components.
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• The behaviours of a set of components using monitors, by combining
the interception mechanism with the previous building blocks (e.g., con-
tracts).

Vardac performs static checks, mostly type checking, under the hood, to ensure
all this and injects dynamic checks to detect constraint violations.

10.2 Limitations of Varda

10.2.1 Intrinsic limitations

Limits of the perimeter Varda focuses on system programming. Its perimeter is lim-
ited to the system composition and the communication pattern. It covers deployment
to a limited extent (i.e., using templates). Moreover, it does not cover side channels
or shared state between components. Additionally, programmers cannot, yet, specify
synchronisation easily. They have to encode this into protocol and message passing.
The current prototype ignores security concerns. We discuss promising approaches
to address these problems in Chapter 11.

What is the intrinsic cost of using Varda? Top-down code generation approaches,
like Varda, add unavoidable indirection layers in the development workflow. This
may complicate the tracking of bugs or performance bottlenecks. Indeed, a pro-
grammer has to pair the system observable to the implementation code, then the
implementation code to the architecture. We take this into account and provide a
mitigation mechanism in Section 7.4.

10.2.2 Technical limitations

Limits of the prototype The prototype (Vardac) suffers from a lack of maturity.
It incorporates all the features discussed in this document. However it provides
different support for each of them. The Section 7.5 summarise the support of each
feature.

Although we built our language and our prototype with the aim of being independent
of the implementation, our current prototype has only one code-generation target,
i.e., Akka. This prevents us from investigating how to generate a multi-target system,
we discuss this in our future work.
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Limits of the evaluation The evaluation suffers due to the lack of maturity of the
compiler. This precludes a large-scale evaluation with good performance since the
compilation does not produce enough optimised code yet. For instance, a low-
hanging fruit would be to optimise the Akka library, i.e., the interface between the
Akka framework and the generated code. Indeed, Vardac optimisation passes (see
Chapter 7) simplify the generated code, however, they do not, yet, optimise the final
encoding into Akka programming model.

10.3 Approach discussion

Varda is a preliminary study in exploring the viability of building languages tailored
to system programmers according to our requirements (see Chapter 1). Due to lim-
ited manpower, going in this direction implies tradeoffs between the expressiveness
of the language, the performance of the generated code, and the stability of the
framework.

We focus on exploring the design space language (i.e., its expressiveness) and to
get feedback on our language design, as quickly as possible, by building distributed
systems with it. This approach enables to

• empirically evaluate the ability of the language to build a real-distributed
system;

• get feedback on the language design to check that the features covers all the
common needs for distributed system programming.

• ensures that the different features of the language are compatible with each
other in a system programmer’s perspective.

These choices are not harmless. They have a direct impact on the nature of the
prototype and its evaluation (see Section 10.2.2). As a result, we had to postpone
the writing of a formal semantics since the language design evolves a lot. Now we
are confident that the design is stable enough. Hence, equipping Varda with a formal
semantics is the next step toward dependability. We discuss this in the following
chapter.

Future work depend on logistics, not on science. Before going further
and exploring the research directions in Chapter 11, the mandatory work
is to stabilize and optimize the existing framework.
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Why not start by extending an existing language? We build Varda from scratch
because

A different abstraction level Varda proposes an intermediate abstraction level in
between specification language and programming language. Therefore, we do
not build Varda on top of existing specification languages to ensure that our
prototype exposes enough control over performance (i.e., placement, network
links or fault tolerance). Conversely, we do not use a programming language as
our baseline to provide an implementation-independent architecture stripped
away from unnecessary low-level details.

No good candidates The previous point eliminates all the mainstream and mature
languages. Some research languages remain, namely those that generates code
from a specification (see Section 2.3.3). However, we exclude them because
they do not address our composition nor our efficiency requirements. Therefore
porting Varda on top of one of them would have required a significant and
in-depth transformation of the underlying language. In addition, when we
began our work, they were in active development and were not sufficiently
mature.

10.3.1 Comparison with Varda competitors

Chapter 2 positions Varda with respect to its competitors, according to our require-
ments. In this section, we focus on logistics to rough out what it would take to push
Varda one step further as proposed in the future work (Chapter 11). We compare our
prototype with those of our closest competitors: P, LinguaFranca and PGo. Although
imperfect, this comparison is interesting for planning the logistics and governance
needed to build an experimental language that goes beyond a first proof of concept.
For this, we explore the efforts invested in each prototype (e.g., LoC and number
of contributors) in Figure 10.2. Then, we compare the research milestones they
reached (e.g., number of papers) with respect to their manpower in Figure 10.3.
Eventually, Figure 10.4 summarise the results of the previous figures in a normalised
radar chart. We collect the data on April 29, 2023.

Figure 10.2 shows that we produce the same amount (order of magnitude) of LoC as
other competitors for the core compiler (excluding tests, benchmarks and comments)
with two to ten times less commits. Even if they are imperfect quantitative metrics,
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Fig. 10.2.: Comparison with Varda competitors: development efforts

the ratio between the number of commits1 and the number of LoC is an easy to
collect indicators to approximate the polishing and stabilisation effort.

Figure 10.3 illustrates the efforts needed to build a reusable research prototype
language. This confirms the intuition of the previous section: future work needs
logistics before doing science again. Note that the data we collect does not reflect
the coordination overhead of a large number of contributors on a short period.

1We do not exclude the merge commits. Their proportion should increase for project with a high
number of concurrent contributors (i.e., LinguaFranca).
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Research directions 11
We have identified three major directions for extending Varda beyond its current
scientific limits: 1. expressiveness to give programmers greater flexibility and ability
to express nonlocal properties (Section 11.1), 2. system aspects to cover blind spots
that matter for real system programming (e.g., specializing a system to run on
a heterogeneous Edge-Cloud infrastructure) (Section 11.2), 3. dependability to
develop our long-term vision of a language between formal specification and system
programming (Section 11.3).

11.1 Extending Varda expressiveness

11.1.1 Smart and reversible inlining

An interesting improvement would be to make inlining reversible by providing a
primitive to move away an inlined component. For instance, one use case is to
offload a component host in case of an excessive resource consumption. One way to
implement it is to provide a split(host_instance, inner_activation) keyword,
inspired by [169].

The next interesting extension is to build an automatic inlining decision that chooses
where and when to inline a component instance based on inlining annotations,
topology, and execution traces and metrics. One way would be to provide a control
plan modelled by a component that manages a group of components identified either
by scope or by annotations. To achieve this, Varda the programming model should
support the inlining of a running component. This implies providing a programmable
mechanism to migrate the state of a component.

11.1.2 Control global behaviours

To preserve the programmer’s ability to control the system behaviour (e.g., place-
ment, elasticity, state, etc.) at the component grain, core Varda only provide
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component-local primitives to specify those behaviours. For instance, a component
can only specify the placement of its child instances, one-at-a time. Hence the
programmer cannot directly specify the global behaviour of a (subset) of the system:
for placement, for state. The control is scattered per component, and locally specifies.
This complexifies the architecture, increases the cognitive load on the developer and
hinders its ability to have a clear situation awareness of the system. As a result, this
decentralised control could induce subtle glitches between what the programmers
want and what the system does.

To address this, the first research direction is to add a declarative placement and
elasticity policies layer in the style of PLASMA [157] to centralise control of place-
ment in one logical place. Then, the compiler will either split and scatter the
placement constraints on the whole architecture (zero-cost abstraction) or generate
a placement engine configuration. Such a placement engine could be written like
an ordinary component receiving placement constraints from message passing and
using reflexivity to collect knowledge of the current topology.

The second direction is to add shared states in Varda. The objective is twofold: On
the one hand, to be able to express global properties of the system (using global
ghost state) and to ease the expression of some invariant. On the other hand, to be
able to model hidden interaction between components that emerges from accessing
external sharded state through OTS. Indeed, shared states are massively used in
distributed systems in the form of database, key-value store, block or object storage,
etc. In this manner, ghost shared state could model a lot of side channels introduced
by OTS logic.

11.2 System aspects

11.2.1 Multi-target code generation

Current trend of systems distributed is to build a distributed system on top of a
heterogeneous infrastructure ranging from devices to data centers: to take advantage
of the Edge-Fog-Cloud continuum for new usage or to improve metrics such as
latency or network cost [21], or to regain control over personal data by following a
local-first approach [107].

Building systems that span across such a continuum often requires a composition of
distinct technologies according to the nature of the infrastructure. Often, the core
of the system runs on cloud technologies (e.g., containers and VMs), whereas the
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clients run on an edge device (e.g., a web browser) and provides specific logic (e.g.,
caches).

Generating a system on top a two-side infrastructure requires doing multi-target
code generation and correctly interconnecting those targets. One part of the system
should be specialised for the cloud technologies, and the other should be adapted to
the constraints of edge devices.

The prototype should be extended with new code-generation target languages: on
the one hand, a target for the edge (e.g., TypeScript); on the other hand, a better
integration with Cloud technology by either providing a Kubernetes or a serverless
target.

Note that the current version of Varda can generate the Cloud part and package
it as containers. However, it does not integrate in the existing ecosystem or take
advantage of the advance of the Cloud platforms in terms of resource management
(serverless) and container orchestration (Kubernetes).

Kubernetes target

Having a Kubernetes target would make containers first-class objects and not inert
artefacts. Spawning a component should result in spawning a new container,
placement primitives should integrate with K8S placement engines and maybe,
interception can leverage service-mesh technologies [@26], [@103].

Exploring this direction requires implementing the components using containers and
to introduce dynamic interactions between the Varda runtime and the orchestration
engine: encoding Varda abstractions into the corresponding Kubernetes entities,
and, vice versa, exposing relevant Kubernetes abstractions as first- class values in
Varda, thereby adding the capability to program the deployment and elasticity of
components.

Multi-target code generation

Doing multi-target code generation means scattering the architecture in different
parts, each part being specialised for a specific target. Our prototype already provides
support for these features in a per component type basis. Each component type
can be compiled down to a distinct target language. The choice of the target is
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independent from the architecture1 to ease porting software to new infrastructure.
Programmers specify the target using the target configuration file (see Chapter 7).

Currently, there are no mechanisms that transparently interconnect to separate
targets and that maintain all the guarantees of Varda. For instance, a programmer can
split a system into two independent variants of the Akka target to avoid sharing the
same Akka runtime. In this case, both systems could expose gRPC/REST interfaces.
Then the programmer needs to interconnect these interfaces manually. With this
setup, sessions are not preserved between two targets and the placement registry is
not shared.

A promising direction is to use the Varda code generation to automatically generates
the boilerplate to interconnect distinct subsystems built from distinct targets by
adding an additional gRPC layer to support session and to optionally interconnect
the underlying runtime services (e.g., placement registry), if requested by the
programmer.

11.2.2 Code evolution

Distributed system needs to be able to evolve over time without down time2. At
present, Varda provides built in primitives to allow safe incremental system building,
however, it does not support hot swapping yet. Hot swapping refers to the ability
to add, remove, or replace components of a system while it is running, without the
need to shut down or reboot the system.

The current situation is as follows. At the component level, the inner logic of a
component can be altered as long as the new interface remains compatible with the
previous one. At the group of component level, interception permits to transparently
update the composition and communication pattern while preserving each compo-
nent. However, leveraging both features to update a system implies recompiling the
whole architecture and manually selecting the altered (or new) artefacts to deploy.

An interesting direction is to automate the hot swapping by leveraging these existing
building blocks while preserving the guarantees of the Varda. One way could be to
adapt the deployment instructions generation to leverage the Kubernetes deployment
strategies that already provides various forms of hot swapping and support multiple
versions of the same component at the same time.

Doing this implies to address those three complex challenges:

1

2We discussed this requirement in Chapter 1.
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How to handle statefull components ? Indeed, Varda components might be state-
ful and interact with arbitrary OTS components that can hide any kind of state.
Therefore, running multiple versions of the same instance can be tricky in
terms of state reconciliation3.

How to add or remove interception scope at run time ? Recall that the generic
and polyglot way of doing interception is to rewrite a subset of the architecture.
There are two ways to tackle this problem:

• Either redeploy the whole set of intercepted components and interceptors.
• Or provide a specialised dynamic interception implementation for the

Kubernetes target in order to perform interception leveraging service
mesh for instance. In this case, the hard part will be to correctly unpack
the intercepted network packets and correctly interpret them as high-level
Varda communication.

In any case, doing this implies responding to the following question: What is
the semantics of the interception when the migration runs ? For instance, should
the interception migration be atomic ?

How to support component interface evolution ? If the interface update remains
in the range of protocol subtyping, then the existing building blocks could
handle it transparently4. Conversely, what if a programmer introduces breaking
changes in a protocol between two components? An interesting two-step solution
could be to: First, generate for each component a protocol adaptor component
that intercepts the origin component such that the adaptor supports both the
old and the new protocol. Then, update the running system. Second, once
the system is updated, dynamically inline each adaptor in their corresponding
component or eliminate the adaptor after use.

3In container realm, the classical workaround is to deport the state outside of the container.
4This depends on the encoding of the Varda type system in the target language.
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11.3 Dependability

Our long-term vision for Varda is to bridge the gap between formal
specification and high-performance implementation. We argue that
the Varda architecture is a sweet spot that provides the right level of
abstraction to act at the common ground between the formal model(s)
and the implementation(s). At the same time, programmers can use
safe programming primitives and enrich the architecture with safety
constraints while expressing the adequate level of control for system
programming and mitigating the performance overhead.

To increase dependability, we propose to explore an intermediate approach between
extracting an implementation from a formal model and verifying an existing im-
plementation. As for code generation, the idea is to derive a formal model from
the architecture and use formal verification tools to reason on it. Moving in that
direction implies strengthening what a programmer can specify, equipping Varda
with formal semantics, and providing a way to extract a formal model from the
architecture.

Formal Varda semantics The first step is to equip Varda with formal semantics
that includes a formal core calculus to model system execution, operational seman-
tics and formal type semantics. In addition to traditional properties such as type
soundness5, the semantics should also be able to match the following properties:
applying interception preserves the semantics of the intercepted components; and,
the semantics of an inlined program is observably equivalent to the semantics of the
original program.

Strengthen the specification At present, apart from manually using monitors, pro-
grammers have to scatter the safety constraints to either pair of components (proto-
cols) or singleton (contracts). The next step is to provide a way to express global
safety properties that encompass the whole system (or a subset) in order to model
interesting properties about emergent behaviours (e.g., deadlock freedom, consis-
tency or predicate on a set of component state). The first step could be to leverage

5Type soundness is the property that well-typed programs do go wrong [149]. This guarantees that:
1. A well-typed program will never get stuck (Progress). 2. If a well-typed program takes a step of
evaluation, then the resulting program is well-typed (Preservation).
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Fig. 11.1.: Expected Varda workflow with model extraction. The developer of a distributed
system provides the grey parts. The Varda compiler generates the dashed
(orange) blocks.

multiparty session types (with broadcasts) in order to express complex protocols
that involve more than two components.

Apart from supervision and timeouts, the current prototype does not formalise
liveness requirements; a fortiori, it does not help the developer reason about them.
Future work should address this limitation.

Another blind spot of the current prototype is the lack of properties on the network
channels. Some channel implementations provide interesting properties such as
FIFO. However, they are implicit and are not modelled in the architecture. The
language could extend the channel types to either represent delivery guarantees as a
type annotation (e.g., using type latices for channel properties) or as channel guards.
The first solution has the advantage of being easy to check, the second has the
advantage of being more expressive. Note that protocol guards cannot express those
properties since they reason on sessions and the proposed channel guard reason on
network-layer messages (p. ex. TCP paquets).

Formal model extraction The least resistance line to extract models from the archi-
tecture is to follow the same architecture as the code generation. The idea is to add
a plugin-based extraction system to the compiler. Figure 11.1 depicts the expected
workflow. Such that the developer can use the right tool according to the wanted
properties and available commitment time. For instance, theorem proover plugins
(e.g., Coq, HOL) might allow programmers to prove arbitrary properties about
architecture. Model checker based plugins (e.g., TLA+) might automate checking
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for general-purpose properties. Finally, specific model tools might be integrated to
check distribution specific properties, e.g., consistency (e.g., CISE, Hamzas).
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General conclusion 12
Large distributed systems are often built by assembling off-the-shelf (OTS) compo-
nents, e.g., components, services, processes, etc., developed independently. The
current approach is to interconnect their APIs manually. This is ad hoc, complex,
tedious, and error-prone.

Programming languages offer a promising approach to addressing this problem.
First, they could help reduce the occurrence of bugs. The programmer specifies the
system using well-defined entities and constraints. Then, the compiler a correct-
by-construction implementation providing various guarantees (e.g., that commu-
nications are correctly ordered). Furthermore, languages could help improve pro-
grammers’ productivity. The code generation offloads the boilerplate plumbing to
the compiler. In addition, the compiler might perform optimisations leveraging its
knowledge of the system.

In this thesis, we propose a new language, Varda, at the intersection between pro-
gramming and specification languages. A Varda program describes how to compose
components into a coherent architecture. To ensure safety, the programmer isolates
an OTS component behind a Varda shield. The shield restricts the component’s be-
haviour by specifying its interface, its protocol (i.e., what it may send or receive, and
in what order), and pre- and post-conditions. Components can be logically nested,
to provide encapsulation. An outer component orchestrates its inner components,
spawning or killing component instances, interconnecting them, and supervising
error conditions; it can intercept and manipulate communication, and more generally
compute over components and messages. Varda provides strong guarantees (e.g.,
isolation between components), enforcing the specification by static analysis, by
run-time checks, and by sandboxing.

At the same time, to be useful for the development of real, practical distributed
systems, Varda takes a pragmatic approach. A shield can contain non-Varda adaptor
code (e.g., Java) in order to incorporate black-box OTS components. Varda provides
control over non-functional properties that are relevant for performance and fault
tolerance, for instance elasticity, placement, and inlining. The Varda compiler
automates the generation of boilerplate glue code to make components work together.
Varda supports non-stop execution, thanks to supervision mechanisms.
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We demonstrate the expressiveness and the ergonomic of Varda by encoding classical
distributed patterns (e.g., sharding and access control). To illustrate how Varda
helps build a real distributed system, we implement a clone of the AntidoteDB
geo-replicated datastore.

Varda applications are compact, and exhibit modular and reusable design. Our
experiments show that the run-time overhead is modest, thanks to compile-time
verification and optimisations.
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Résumé A
Les grands systèmes distribués sont souvent construits en assemblant des composants
prêts à l’emploi (OTS), c’est-à-dire des composants, des services, des processus,
etc., développés indépendamment. La pratique actuelle consiste à interconnecter
manuellement leurs API. Cette méthode est ad hoc, complexe, fastidieuse et sujette
aux erreurs.

Les langages de programmation offrent une approche prometteuse pour résoudre
ce problème. Premièrement, ils permettent de réduire l’apparition de bogues. Le
développeur spécifie formellement le système. Ensuite, le compilateur assure des
garanties de correction et génère une implémentation correcte par construction.
Deuxièmement, les langages contribuent à améliorer la productivité des program-
meurs. La génération de code automatise l’interconnexion des composants et peut
optimiser l’implémentation générée.

Dans cette thèse, nous proposons un nouveau langage, Varda, à l’intersection en-
tre langages de programmation et de spécification. Un programme Varda décrit
l’interconnexion de composants en une architecture cohérente. Le développeur
isole un composant OTS derrière un shield. Celui-ci restreint le comportement
du composant en spécifiant son interface, son protocole (c’est-à-dire ce qu’il peut
envoyer ou recevoir, et dans quel ordre), ainsi que des pre/post-conditions. Les com-
posants peuvent être logiquement imbriqués. Un composant externe orchestre ses
composants internes, en créant ou en tuant des instances, en les interconnectant et
en supervisant leurs erreurs ; il peut intercepter et manipuler leurs communications.
Varda fournit des garanties solides, grâce à de l’analyse statique et à de l’injection de
tests dynamiques.

Pour être utile en pratique au développement de systèmes distribués, Varda adopte
une approche pragmatique. Un shield peut contenir du code non-Varda (par ex, Java)
afin d’incorporer des composants en boîte noire. Varda permet de contrôler les pro-
priétés non fonctionnelles qui sont importantes pour la performance et la tolérance
aux pannes, par exemple l’élasticité, le placement et l’intégration. Le compilateur
Varda automatise la génération du code d’interconnexion et d’orchestration. Varda
prend en charge l’exécution non-stop, grâce à des mécanismes de supervision.
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Nous démontrons l’expressivité et l’ergonomie de Varda en programmant des struc-
tures distribuées classiques (par exemple, le contrôle d’accès). Pour illustrer l’emploi
en condition réelle de Varda, nous implémentons un clone du datastore géorépliqué
AntidoteDB.

Les applications Varda sont compactes et présentent une conception modulaire et
réutilisable. Nos expériences montrent que le surcoût d’exécution est modeste, grâce
à la vérification et à l’optimisation au moment de la compilation.
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