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Mots clés: Intelligence Artificielle, Faible consommation d'énergie, technologies de mémoire, Calcul Dans/Proche de la Mémoire, Memristors, Inférence Bayésienne Résumé: L'Intelligence Artificielle (IA) émerge comme une force omniprésente dans notre vie quotidienne, possédant le potentiel de provoquer une révolution transformatrice dans une multitude de secteurs de la société. Cependant, sous cette promesse de transformation, l'IA est confrontée à deux défis majeurs qui nécessitent une attention urgente : l'efficacité énergétique et la fiabilité. Les besoins énergétiques croissants de l'industrie de l'IA contribuent aux émissions mondiales de carbone en raison des hautes exigences computationnelles des modèles d'IA, menaçant la durabilité environnementale. Parallèlement, la nature 'boîte noire' de nombreux systèmes d'IA, produisant des décisions difficiles à interpréter, soulève des questions de confiance. Ces incertitudes introduisent des risques dans des secteurs critiques, formant des barrières à l'acceptation plus large de l'IA. En réponse à ces défis, cette thèse propose une approche multidisciplinaire qui unifie l'intelligence artificielle, l'architecture informatique et les technologies émergentes. Notre stratégie implique le développement de circuits intégrés spécialisés utilisant la technologie de pointe des memristors, une technologie nanoelectronique conçue pour supporter des paradigmes de calcul à faible énergie pour les modèles d'IA, spécifiquement dans des contextes à ressources limitées. Le concept central de cette approche est d'exploiter la non-volatilité et les capacités de calcul Dans/Proche de la mémoire des memristors, tout en tenant compte de leurs caractéristiques non-idéales, pour atteindre une haute efficacité énergétique, particulièrement dans le domaine du edge computing. De plus, nous incorporons l'inférence Bayésienne, une technique d'IA totalement explicative, dans le circuit pour répondre aux problèmes de confiance associés à l'IA, favorisant ainsi le développement d'applications d'IA transparentes et fiables. Le premier chapitre de cette thèse introduit une architecture de calcul Proche-mémoire conçue pour les applications d'IA de périphérie (AI at the Edge), inspirée par l'efficacité énergétique exceptionnelle du cerveau humain. Nous proposons une architecture de machine Bayésienne basée sur des memristors, qui ouvre la voie vers des modèles d'IA à haute efficacité énergétique. Dans le deuxième chapitre, nous explorons une machine Bayésienne qui emploie une approche de calcul stochastique au sein d'un système d'array de memristors distribué. Cette machine, que nous avons conçue, fabriquée et testée, présente une efficacité énergétique supérieure par rapport aux unités de microcontrôleurs traditionnelles pour des tâches telles que la reconnaissance gestuelle. Elle démontre une résilience aux erreurs logicielles et aux radiations, la rendant bien adaptée pour le déploiement dans des environnements rudes. Le troisième chapitre aborde les limitations du calcul stochastique dans notre machine Bayésienne et présente une solution alternative : une machine Bayésienne basée sur le calcul logarithmiques. Ce nouveau circuit, conçu, fabriqué et testé, améliore la précision et accélère les opérations d'inférence, tout en maintenant l'architecture et le design de la machine originale. Le chapitre fournit également une analyse comparative de nos machines Bayésiennes stochastiques et logarithmiques, élucidant leurs forces et faiblesses respectives. Dans le dernier chapitre, nous abordons les défis associés à l'utilisation des memristors. Nous introduisons une plateforme de prototypage basée sur des memristors multimodes qui facilite la mise en oeuvre de projets analogiques et numériques. Actuellement, cette plateforme est utilisée dans deux laboratoires de recherche pour valider une gamme de concepts neuromorphiques analogiques et de logique numérique en mémoire.

Abstract:

Artificial Intelligence (AI) is emerging as an omnipresent force in our everyday lives, possessing the potential to bring about a transformative revolution across a multitude of societal sectors. Yet, beneath this promise of transformation, AI is grappling with two significant challenges that need urgent attention: energy efficiency and trustworthiness. The AI industry's escalating energy demands are contributing to global carbon emissions due to the high computational needs of AI models, threatening environmental sustainability and restricting the deployment of AI in resource-constrained settings such as edge devices. Simultaneously, the 'black box' nature of many AI systems, producing difficult-to-interpret decisions, raises concerns about trust. These uncertainties introduce risks in critical sectors forming barriers to the wider acceptance of AI. In response to these challenges, this thesis proposes a multidisciplinary approach that unifies artificial intelligence, computer architecture, and emerging technologies. Our strategy involves the development of specialized integrated circuits utilizing cutting-edge memristor technology, a nanoelectronic technology designed to support low-energy computational paradigms for AI models, specifically in resource-constrained contexts. The central concept of this approach is to harness the non-volatility and in/near-memory capabilities of memristors, while accounting for their non-ideal characteristics, to achieve high energy efficiency, particularly in the realm of edge computing. Additionally, we incorporate Bayesian inference, a fully explainable AI technique, into the circuitry to address the trust issues associated with AI, fostering the development of transparent and dependable AI applications. The first chapter of this thesis introduces a near-memory computing architecture designed for edge AI applications, inspired by the human brain's exceptional energy efficiency. We propose a memristor-based Bayesian machine architecture employing memristors, that paves the path towards energy-efficient AI models. In the second chapter, we delve into a Bayesian machine that employs a stochastic computing approach within a distributed memristor array system. This machine, which we have designed, fabricated, and tested, exhibits superior energy efficiency compared to traditional microcontroller units for tasks such as gesture recognition. It demonstrates resilience to soft errors and radiation, making it well-suited for deployment in harsh environments. Chapter three addresses the limitations of stochastic computing in our memristorbased Bayesian machine and presents an alternative solution: a logarithmic memristor-based Bayesian machine. This newly designed, fabricated, and tested circuit enhances precision and accelerates inference operations, while maintaining the original machine's architecture and design. The chapter also provides a comparative analysis of the stochastic and logarithmic memristorbased Bayesian machines, elucidating their relative strengths and weaknesses. In the final chapter, we tackle challenges associated with memristor utilization. We introduce a multimode memristorbased prototyping platform that facilitates both analog and digital project implementation. Currently, this platform is being used in two research labs to validate a range of digital logic-in-memory and analog neuromorphic concepts. countless remarkable individuals.
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Artificial neural network with hidden layer, two inputs and two outputs. . . . . .
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Growth in AI compute power demands over the past six decades. Plot of the computational power required by benchmark AI models, measured in PetaFlopdays (One petaFLOPS-day is the number of computations that could be performed in one day by a computer capable of calculating a 10 15 floating point operations per second). Models for several applications: vision, language, speech, and game models. Two different eras of progress can be distinguished based on the usage of growth slopes. In the first era, compute doubled every two years; in the second era, every 3.4 months [START_REF] Amodei | Ai and compute[END_REF][START_REF] Lohn | Ai and compute: How much longer can computing power drive artificial intelligence progress[END_REF] (adapted from [START_REF] Amodei | The cost of training machines is becoming a problem[END_REF]). . . . . . . . . . . . . . . . . . . . .
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Equivalent carbon-dioxide footprint for training AI on image recognition task.

The computing resources and energy required to train the best objects recognizing deep-learning systems designed for error levels at human performance (less than 5 percent in this graph) would be enormous, leading to the emission of as much carbon dioxide as New York City generates in one month [START_REF] Neil C Thompson | The computational limits of deep learning[END_REF] (adapted from [START_REF] Neil C Thompson | Deep learning's diminishing returns: The cost of improvement is becoming unsustainable[END_REF]). . and energy of memory access to SRAM and DRAM in a modern computer (reproduced from [START_REF] Horowitz | 1.1 computing's energy problem (and what we can do about it)[END_REF]). The energy for accessing DRAM is four orders of magnitude time higher than performing 8-bit addition operation. . . . . . . . . . . . . . . . . 1.9 Specialized memory hierarchy for a spatial architecture. a An example of Memory Hierarchy of a spatial architecture (Reproduced from [START_REF] Chen | Eyeriss: A spatial architecture for energyefficient dataflow for convolutional neural networks[END_REF]). b The Energy cost of data movement in a memory hierarchy (Reproduced from [START_REF] Chen | Eyeriss: A spatial architecture for energyefficient dataflow for convolutional neural networks[END_REF]). . . . . . . . . . Both images are reproduced from [START_REF] Muller | Handbook of floating-point arithmetic[END_REF]. c

A simple multiplexer can perform the sum in stochastic computing, the output is z = px + (1 -p)y. If p = 1/2, z = (x + y)/2. d A logical AND gate can perform the stochastic multiplication between two bit-streams. (Reproduced from [START_REF] Hirtzlin | Digital Implementation of Neuromorphic systems using Emerging Memory devices[END_REF]) . . . .

General architecture of the Stochastic Bayesian machine. Optimization of the

Bayesian machine for hardware. Random numbers (RND) are generated using linear feedback shift registers (LFSRs), shared by column, and converted using digital "Gupta" circuits to a series of random bits proportional to the appropriate probability. Additionally, the likelihoods are normalized by the maximum likelihood value of the column to maximize the convergence speed of the machine.

The stochastic multiplication is implemented by a single-bit AND gate. . . . . . RESET programming voltages is seen (reproduced from [START_REF] Garbin | Hfo2-based oxram devices as synapses for convolutional neural networks[END_REF]). b Progressive evolution of the resistance of two measured devices with consecutive weak RESET pulses. We see non-linearity and instability of the resistance change with consecutive applied voltage (reproduced from [START_REF] Majumdar | Model of the weak reset process in hfo x resistive memory for deep learning frameworks[END_REF]). c Cycle-to-cycle programming variability in resistance states, Distribution of the low resistance state for different SET programming conditions (reproduced from [START_REF] Dalgaty | Ex situ transfer of bayesian neural networks to resistive memory-based inference hardware[END_REF]). d Cumulative distributions of OxRAM devices in eight different conductance levels, after standard iterative programming, a resistance drift can be seen (reproduced from [START_REF] Esmanhotto | Experimental demonstration of multilevel resistive random access memory programming for up to two months stable neural networks inference accuracy[END_REF]). . . 

Introduction

"We can only see a short distance ahead, but we can see plenty there that needs to be done."

Alan TURING

INTRODUCTION

A brief history of artificial intelligence

The transition from combustion cars to electric vehicles has become imperative due to the growing concerns over their adverse environmental impacts [START_REF] Masson-Delmotte | Global warming of 1.5 c. An IPCC Special Report on the impacts of global warming of[END_REF][START_REF] Berrang-Ford | Are we adapting to climate change?[END_REF]. This transition is an example of the technology development life cycle [START_REF] Franklin | Technology development life cycle processes[END_REF], a dynamic process that spans multiple stages. The cycle begins with invention, where researchers develop and explore new technologies and potential applications. Industries drive innovation and diffusion by developing, demonstrating, deploying, and adopting these technologies, continuously refining them as usage increases [START_REF] Robinson | A summary of diffusion of innovations[END_REF]. Eventually, less efficient or unsustainable technologies are replaced by advanced alternatives, driven by evolving human needs and regulations [START_REF] Frank | Technological transitions as evolutionary reconfiguration processes: a multi-level perspective and a case-study[END_REF].

By contrast, some technologies undergo a continuous improvement cycle, such as electricity and internet technologies, ensuring their ongoing relevance and utility in modern civilization, others may become obsolete or replaced in favor of new technologies that are better suited to meet emerging challenges. This thesis delves into a technology that has often been likened to the "new electricity" by modern Artificial Intelligence (AI) pioneer, Andrew Ng [START_REF] Ng | Artificial intelligence is the new electricity[END_REF]. AI is a multidisciplinary field that strives to create computational models mimicking various intelligent behaviors observed in animals, encompassing aspects such as reasoning and learning. AI has undergone a remarkable evolution since its inception, evolving from a topic of scientific curiosity to a pervasive technology in many facets of modern life [START_REF] Haenlein | A brief history of artificial intelligence: On the past, present, and future of artificial intelligence[END_REF][START_REF] Kaplan | Siri, siri, in my hand: Who's the fairest in the land? on the interpretations, illustrations, and implications of artificial intelligence[END_REF].

AI's rich history spans multiple decades, tracing its roots back to the ideas of mathematicians and computer scientists like Alan Turing and John McCarthy [START_REF] Turing | Computing machinery and intelligence[END_REF][START_REF] Mccarthy | Programs with common sense[END_REF], leading to the development of sophisticated algorithms and model [START_REF] Haenlein | A brief history of artificial intelligence: On the past, present, and future of artificial intelligence[END_REF]. During the 1950s, 1960s, and 1970s, early AI research centered on symbolic reasoning and problem-solving. Pioneering programs such as the General Problem Solver (GPS) by Allen Newell and Herbert A. Simon [START_REF] Newell | Report on a general problem solving program[END_REF] emerged in this era. Concurrently, researchers began constructing bottom-up models of nervous systems [START_REF] Wiener | Cybernetics or Control and Communication in the Animal and the Machine[END_REF][START_REF] Warren | A logical calculus of the ideas immanent in nervous activity[END_REF], drawing inspiration from biological neurons and synapses (depicted in Fig. 1 a), as expounded by Alan Hodgkin, Andrew Huxley [START_REF] Hodgkin | A quantitative description of membrane current and its application to conduction and excitation in nerve[END_REF] (depicted in Fig. 1 b), and Hebbian learning [START_REF] Attneave | The organization of behavior; a neuropsychological theory[END_REF]. In 1958, Frank Rosenblatt proposed the perceptron [START_REF] Rosenblatt | The perceptron: a probabilistic model for information storage and organization in the brain[END_REF], based on McCulloch-Pitts neurons [START_REF] Warren | A logical calculus of the ideas immanent in nervous activity[END_REF], the first general-purpose model inspired by biological neural networks (see Fig. 1 c), laying the foundation for artificial neural networks (see Fig. 1 d) and machine learning techniques like supervised, unsupervised, and reinforcement learning [START_REF] Batta | Machine learning algorithms-a review[END_REF].

The 1980s and 1990s witnessed the advent of convolutional neural networks [START_REF] Lecun | Gradient-based learning applied to document recognition[END_REF], and recurrent neural network architectures such as Hopfield networks [START_REF] Hochreiter | Long short-term memory[END_REF][START_REF] John | Neural networks and physical systems with emergent collective computational abilities[END_REF]. The back-propagation algorithm for training neural networks also emerged during this period [START_REF] David E Rumelhart | Learning representations by back-propagating errors[END_REF][START_REF] Paul | Backpropagation through time: what it does and how to do it[END_REF]. Though initially rooted in bio-inspired models, artificial neural networks gradually gravitated towards more statistical and mathematical models. Nonetheless, some researchers, like Carver Mead, persisted in exploring brain-like systems [START_REF] Carver | A silicon model of early visual processing[END_REF], giving rise to neuromorphic computing concepts in parallel [START_REF] Mead | Neuromorphic electronic systems[END_REF]. By the end of the 20th century, AI research pivoted towards data-driven approaches, propelled by the rise of the internet and increased computational power, enabling the devel- and the protein-folding algorithm AlphaFold [START_REF] Jumper | Highly accurate protein structure prediction with alphafold[END_REF]. The development of the Transformer architecture, which employed attention mechanisms in natural language processing [START_REF] Vaswani | Attention is all you need[END_REF], led to considerable advancements in language understanding and text generation. This breakthrough paved the way for state-of-the-art transformer-based models such as Google's BERT [START_REF] Devlin | Bert: Pretraining of deep bidirectional transformers for language understanding[END_REF] and OpenAI's GPT series [START_REF] Radford | Improving language understanding by generative pre-training[END_REF], including GPT-3 and GPT-4. (adapted from [START_REF] Amodei | The cost of training machines is becoming a problem[END_REF]).
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In recent years, AI has transitioned into the stages of innovation and diffusion. With benchmarks like the Turing test becoming less relevant, as it arguably represents a narrow artificial intelligence test [START_REF] Turing | Computing machinery and intelligence[END_REF], large language models such as ChatGPT now exhibit early "sparks" of artificial general intelligence [START_REF] Bubeck | Sparks of artificial general intelligence: Early experiments with gpt-4[END_REF][START_REF] Brown | Language models are few-shot learners[END_REF]. This has led to AI's potential being recognized by both governments and technology corporations, driving the rapid growth of its commercial applications. AI has already made significant advancements in fields such as healthcare, finance, and autonomous vehicles [START_REF] Makridakis | The forthcoming artificial intelligence (ai) revolution: Its impact on society and firms[END_REF][START_REF] Esteva | A guide to deep learning in healthcare[END_REF][START_REF] Culkin | Machine learning in finance: the case of deep learning for option pricing[END_REF]. As AI increasingly becomes a vital technology in our lives, akin to electricity and the internet, it is crucial to address its fundamental drawbacks and limitations to support green and sustainable growth [START_REF] Strubell | Energy and policy considerations for deep learning in nlp[END_REF]. Although the vast availability of data and algorithmic innovations played a role in AI's development, the rapid expansion can be primarily attributed to advancements in underlying computing hardware, particularly the utilization of GPUs [START_REF] Lecun | Deep learning[END_REF][START_REF] Krizhevsky | Imagenet classification with deep convolutional neural networks[END_REF]. Since the performance of deep neural networks scales directly with their size and complexity, numerical growth is more apparent in the growing AI models in terms of parameter count and computing power [START_REF] Amodei | Ai and compute[END_REF][START_REF] Lohn | Ai and compute: How much longer can computing power drive artificial intelligence progress[END_REF].

Examining recent advancements, shown in Fig. 2, the required computing power for deep learning during the first era (pre-GPU era) had a growth rate in sync with Moore's law [START_REF] Gordon E Moore | Cramming more components onto integrated circuits[END_REF],

doubling every two years. In the modern era, the use of GPUs has accelerated the computing process, enabling larger and more complex models. The required computing power rate now doubles every 3.4 months, posing challenges for conventional hardware (GPUs) to keep pace with this increasing demand. The memory requirement scenario for deep learning exhibits similar patterns, shown in Fig. 3. Comparing parameter counts for recent deep learning models with the volatile memory capacity (HBM and DRAMs) of modern AI-dedicated hardware reveals that, although the memory capacity of GPUs and TPUs can satisfy the requirements for computer vision models, the progress rate of GPU memory falls behind that of natural language processing models. Despite the achievements in increasing the capacity and bandwidth (HBM) of modern GPUs' volatile memories, such as the Nvidia Tesla V100 GPU, it becomes apparent that this trend will not suffice for the growing memory requirements of AI [START_REF] Kwon | Beyond the memory wall: A case for memory-centric hpc system for deep learning[END_REF], indicating an approaching saturation point with these volatile memory technologies. The increasing demand for memory and computational power not only impacts AI development, but it also leads to higher energy consumption costs for data movement and computation [START_REF] Strubell | Energy and policy considerations for deep learning in nlp[END_REF][START_REF] Sze | Efficient processing of deep neural networks: A tutorial and survey[END_REF]. A significant portion of this energy is consumed during the training phase [START_REF] Neil C Thompson | Deep learning's diminishing returns: The cost of improvement is becoming unsustainable[END_REF],

which can take weeks or months using multiple energy-hungry GPUs [START_REF] Strubell | Energy and policy considerations for deep learning in nlp[END_REF][START_REF] Sze | Efficient processing of deep neural networks: A tutorial and survey[END_REF][START_REF] Jones | How to stop data centres from gobbling up the world's electricity[END_REF]. For instance,

To reach human-level recognition, the computing resources and energy required to train a modern deep learning model have an estimated carbon dioxide footprint equivalent to New York City's monthly emissions [START_REF] Neil C Thompson | The computational limits of deep learning[END_REF][START_REF] Neil C Thompson | Deep learning's diminishing returns: The cost of improvement is becoming unsustainable[END_REF][START_REF] Strubell | Energy and policy considerations for deep learning in nlp[END_REF] (shown in Fig. 4). Despite requiring less computation than training AI models, AI inference in the cloud is still associated with significant energy costs. This is due to the sheer number of users accessing AI services, which leads to a high
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volume of inference computations, and additional computation for managing these millions of access requests, which in turn requires additional energy consumption. To compound the issue, data transmission to and from the cloud also contributes to energy costs. As a result, a significant carbon dioxide footprint for inference in the cloud due to the massive scale of usage and infrastructure required to support it. This carbon footprint will continue to grow with the increasing model size and computational complexity, presenting an unsustainable trajectory from an environmental standpoint [START_REF] Strubell | Energy and policy considerations for deep learning in nlp[END_REF].

The Turing test, while providing a simple measure of AI capabilities, falls short in considering critical aspects such as energy efficiency. Presently, most modern AI models are trained in data centers [START_REF] Jones | How to stop data centres from gobbling up the world's electricity[END_REF]. As AI progresses at a rapid pace, there is a pressing need for energy-efficient hardware solutions that can adapt to the swift evolution of AI algorithms [START_REF] Sze | Efficient processing of deep neural networks: A tutorial and survey[END_REF]. A striking example of this disparity is AlphaGo, the AI developed by DeepMind, which triumphed over the human champion in the ancient Chinese board game Go [START_REF] Silver | Mastering the game of go with deep neural networks and tree search[END_REF]. However, it faltered in terms of power efficiency, utilizing 1,920 CPUs and 280 GPUs as opposed to Lee Sedol's 20W brain power consumption [START_REF] Silver | Mastering the game of go with deep neural networks and tree search[END_REF][START_REF] Indiveri | Memory and information processing in neuromorphic systems[END_REF]. This situation directs us towards a potential solution for the AI energy problem -seeking inspiration from the human brain as a model of an efficient intelligent system. Tackling the challenges of AI's energy consumption will not only facilitate harnessing the advantages of AI at the edge but also contribute to resolving some of the trust issues surrounding AI.

Human performance

Figure 4: Equivalent carbon-dioxide footprint for training AI on image recognition task. The computing resources and energy required to train the best objects recognizing deeplearning systems designed for error levels at human performance (less than 5 percent in this graph) would be enormous, leading to the emission of as much carbon dioxide as New York City generates in one month [START_REF] Neil C Thompson | The computational limits of deep learning[END_REF] (adapted from [START_REF] Neil C Thompson | Deep learning's diminishing returns: The cost of improvement is becoming unsustainable[END_REF]).

Artificial Intelligence Also Has a Trust Problem

Intelligent systems have demonstrated immense value across various domains, yet trust issues pose significant challenges to the successful adoption and integration of artificial intelligence (AI) technologies [START_REF] Amodei | Concrete problems in ai safety[END_REF][START_REF] Siau | Building trust in artificial intelligence, machine learning, and robotics[END_REF]. The energy costs of AI algorithms on conventional hardware have led most AI systems to upload their sensed data to the cloud for processing [START_REF] Editorial | Big data needs a hardware revolution[END_REF], raising privacy and security concerns [START_REF] Chen | Data security and privacy protection issues in cloud computing[END_REF][START_REF] Xiao | Security and privacy in cloud computing[END_REF][START_REF] Takabi | Security and privacy challenges in cloud computing environments[END_REF]. As AI algorithms often rely on large amounts of personal data to function effectively, concerns arise regarding data collection, storage, usage, and the potential for misuse or unauthorized access.

Furthermore, deep neural networks, particularly in critical applications like intelligent medical systems, exhibit crucial limitations. First, they require massive amounts of data for training, which is often unavailable [START_REF] Chen | Deep learning and alternative learning strategies for retrospective real-world clinical data[END_REF][START_REF] Ghassemi | A review of challenges and opportunities in machine learning for health[END_REF]. Second, their results are non-explainable [START_REF] Rai | Explainable ai: From black box to glass box[END_REF][START_REF] Barredo Arrieta | Explainable artificial intelligence (xai): Concepts, taxonomies, opportunities and challenges toward responsible ai[END_REF], as deep learning models are often considered "black boxes" due to their complex inner workings. This lack of transparency makes it difficult for users to trust AI-generated outputs or recommendations, rendering them unacceptable for certain critical applications due to ethical and regulatory reasons. Issues such as accountability and responsibility arise when AI systems make decisions or take actions, as it can be challenging to determine who should be held accountable or responsible. Another major limitation of deep neural network-based AI systems is the absence of model uncertainty quantification [START_REF] Abdar | A review of uncertainty quantification in deep learning: Techniques, applications and challenges[END_REF]. This lack of uncertainty quantification can lead to challenges when deploying AI models in real-world applications, where making reliable and informed decisions is crucial. For instance, large language models like ChatGPT tend to make up or "hallucinate" responses even if they don't have a correct answer.

Addressing these trust concerns is essential for building user confidence in AI systems and ensuring their ethical and responsible use across various domains. Researchers, policymakers, and industry leaders are working on various initiatives to tackle these concerns. Notably, AI pioneers Yoshua Bengio and Geoffrey Hinton have expressed concerns about AI regulation [START_REF] Castelvecchi | Ai pioneer:'the dangers of abuse are very real[END_REF].

Bengio participated in an initiative calling for a halt in developing AI models beyond GPT-4 until proper regulations are in place, while Hinton left Google to freely discuss AI dangers and risks [START_REF] Douglas | Geoffrey hinton tells us why he's now scared of the tech he helped build[END_REF].

To tackle the trust problem in AI, several potential solutions have been proposed. Among them, Bayesian deep learning and Bayesian inference stand out as promising approaches that can enhance explainable AI, interpretability, uncertainty estimates, and robustness to data limitations [START_REF] Ghahramani | Probabilistic machine learning and artificial intelligence[END_REF][START_REF] Kendall | What uncertainties do we need in bayesian deep learning for computer vision[END_REF][START_REF] Andrew | Bayesian deep learning and a probabilistic perspective of generalization[END_REF]. Another compelling strategy to address trust issues in AI is the implementation of AI at the edge [START_REF] Zhou | Edge intelligence: Paving the last mile of artificial intelligence with edge computing[END_REF], as opposed to traditional cloud-based AI. AI at the edge offers numerous advantages, such as safeguarding sensitive information, enhancing system responsiveness, and adapting AI systems to specific users or devices. By providing these benefits, AI at the edge can help cultivate trust in AI applications.

INTRODUCTION

Summary of the thesis

The objective of this thesis is to explore solutions to the energy and trust challenges of AI by engaging in interdisciplinary research in the fields of artificial intelligence, computer architecture, and emerging technologies to develop specialized integrated circuits using novel nanoelectronic technology. This work involves designing and testing proof-of-concept AI circuits using cutting-edge memristor technology, which can support low-energy computing paradigms to implement AI models for applications in resource-constrained settings at the edge. The key focus is on exploiting the non-volatility and in-memory and near-memory capabilities of memristors while considering their other non-ideal characteristics. This approach leads to designs associating tightly logic and memory, resulting in a high energy efficiency that is well-suited for edge computing, addressing safety and privacy concerns associated with cloud-based systems.

Furthermore, the incorporation of Bayesian inference -a fully explainable AI technique -into the circuitry addresses the trust issue in AI, promoting transparent and reliable AI applications.

To achieve this, during my thesis, I have been involved in nine research projects, mainly or partially, in collaboration with teams from C2N, CEA Leti, IM2NP, and Spintec. These projects explore several solutions, such as the implementation of near-memory memristor-based Bayesian inference machines [START_REF] Harabi | A memristor-based bayesian machine[END_REF][START_REF] Turck | Energy-efficient bayesian inference using near-memory computation with memristors[END_REF], the development of memristor-based prototyping platforms for analog and digital computing [START_REF] Harabi | A multimode hybrid memristor-cmos prototyping platform supporting digital and analog projects[END_REF], in-situ learning of Bayesian models using memristors' intrinsic properties [START_REF] Dalgaty | In situ learning using intrinsic memristor variability via markov chain monte carlo sampling[END_REF], energy-efficient implementation of memristor-based Binary Neural Networks and Ternary Neural Networks [START_REF]Powering ai at the edge: A robust, memristor-based binarized neural network with near-memory computing and miniaturized solar cell. Under review[END_REF][START_REF] Renaudineau | Experimental demonstration of memristor delay-based logic in-memory ternary neural network[END_REF], and the development of nano-device-based true random number generators. During my thesis, I have participated in the design of seven emerging nanoelectronic-based integrated circuits (including Resistive RAM, Magnetoresistive RAM, and Ferroelectric RAM), with three of them successfully fabricated and experimentally verified, three others fabricated and currently in the packaging stage, and one still in the fabrication stage. Most of these designs are based on a hybrid 130nm CMOS-Nanodevice process, and these circuits serve as proof-of-concept, ranging from prototypes of circuits with several nanodevices to a core with around a quarter-million transistors (a thesis infographic is shown in Fig. 5).

This thesis is organized into four chapters, focusing on the projects that successfully completed all phases, including design, fabrication, testing, and publication. The other projects are mentioned, in this thesis but not reported in detail.

Chapter 1 summarizes why in/near-memory computing using memristors can be a solution to the AI energy problem and lists some state-of-the-art approaches in this context. It also This work is published in the Nature Electronics journal [START_REF] Harabi | A memristor-based bayesian machine[END_REF]. In addition, the chapter explores improving the energy efficiency of stochastic Bayesian machines using low-energy stochastic nano-devices, such as SMTJ, for random number generation. Prototype circuits based on MTJ devices were designed and fabricated for random number generation.

Chapter 3 explores logarithmic computing in Bayesian machine architecture, focusing on energy efficiency and accuracy improvements. It presents a designed, fabricated, and tested logarithmic Bayesian machine integrated circuit and its viability despite memristor imperfections. The chapter also compares stochastic and logarithmic computing in near-memory computing circuits, highlighting the potential for enhanced statistical analysis and energy efficiency across various fields. This work is published in the proceedings of the Design, Automation and Test in Europe Conference (DATE 2023) [START_REF] Turck | Energy-efficient bayesian inference using near-memory computation with memristors[END_REF]. The chapter also introduces our next Bayesian machine generation: the large-scale Bayesian machine with 143k memristors and 285k transistors was designed and fabricated for real-life applications and demonstrations.

Chapter 4 introduces an integrated circuit for prototyping memristor-based projects, featuring both digital and analog modes. This platform enables the development and testing of innovative neuromorphic concepts, addressing memristor imperfections, challenges, and potential solutions. This work is published in the proceedings of the 28th Asia and South Pacific Design Automation Conference (ASP-DAC 2023) [START_REF] Harabi | A multimode hybrid memristor-cmos prototyping platform supporting digital and analog projects[END_REF]. 

Chapter 1

The Case for Building Bayesian

Machines with Memristors

Probability is orderly opinion, and that inference from data is nothing other than the revision of such opinion in the light of relevant new information.

Thomas BAYES

CHAPTER 1: THE CASE FOR BUILDING BAYESIAN MACHINES WITH MEMRISTORS

The energy and trust challenges in AI systems -including energy inefficiency in edge computing and the lack of transparency in decision-making processes -have sparked significant interest among researchers. This has prompted investigations across various domains, including AI algorithms, hardware, nanophysics, and nanodevices.

In the realm of AI algorithms, researchers are exploring lightweight neural networks, such

as MobileNet [START_REF] Andrew G Howard | Mobilenets: Efficient convolutional neural networks for mobile vision applications[END_REF], SqueezeNet [START_REF] Forrest N Iandola | Squeezenet: Alexnet-level accuracy with 50x fewer parameters and< 0.5 mb model size[END_REF], and EfficientNet [START_REF] Tan | Efficientnet: Rethinking model scaling for convolutional neural networks[END_REF], designed to be smaller and computationally efficient for edge devices. Quantization and pruning are other techniques employed to reduce the size and computational complexity of neural networks without significant performance loss [START_REF] Han | Deep compression: Compressing deep neural networks with pruning, trained quantization and huffman coding[END_REF], such as Binary neural networks and Ternary neural networks [START_REF] Courbariaux | Binarized neural networks: Training deep neural networks with weights and activations constrained to+ 1 or-1[END_REF][START_REF] Zhu | Trained ternary quantization[END_REF]. Additionally, federated learning enables edge devices to collaboratively train machine learning models while retaining local data [START_REF] Yang | Federated machine learning: Concept and applications[END_REF], and transfer learning leverages pre-trained models to minimize training time and computational resources needed for edge AI applications [START_REF] Sinno | A survey on transfer learning[END_REF].

For AI hardware, AI accelerators like Google's Edge TPU [START_REF] Cass | Taking ai to the edge: Google's tpu now comes in a maker-friendly package[END_REF], NVIDIA's Jetson series [START_REF] Mittal | A survey on optimized implementation of deep learning models on the nvidia jetson platform[END_REF],

and Intel's Movidius [START_REF] Horea | The movidius myriad architecture's potential for scientific computing[END_REF], along with other AI hardware solutions based on Application-Specific Integrated Circuits (ASICs) and Field-Programmable Gate Arrays (FPGAs), are specialized hardware components designed to enhance AI performance on energy constrained devices. In the field of nanophysics and nanodevices, memristor technologies (Resistive RAM), Magnetoresistive RAM and Phase Change Memory (PCM) and Ferroelectric RAM are being developed to offer non-volatile storage, high-density, and energy-efficient memory solutions [START_REF] Sebastian | Memory devices and applications for in-memory computing[END_REF][START_REF] Marković | Physics for neuromorphic computing[END_REF][START_REF] Yu | Neuro-inspired computing with emerging nonvolatile memories[END_REF][START_REF] Burr | Neuromorphic computing using non-volatile memory[END_REF].

In this chapter, we explore the potential of Bayesian reasoning with near-memory computing architecture for AI at the edge, introducing our work on building Bayesian Machines with memristors. We begin by presenting a brief history of chip design evolution, highlighting trends that led to the choices behind our Bayesian machines. Next, we discuss the design choices involved in implementing our near-memory Bayesian machines and provide a detailed explanation of the steps required to develop a Bayesian machine with memristors. Finally, we explain how our work is positioned concerning state-of-the-art realizations of neural networks and Bayesian concepts with emerging memories. [START_REF] Mead | Neuromorphic electronic systems[END_REF][START_REF] Hassabis | Neuroscience-inspired artificial intelligence[END_REF].

In this section, we delve into in/near-memory computing with memristors, a brain-inspired approach for building energy-efficient AI hardware. We start with a retrospective on chip design, emphasizing the evolution towards greater energy efficiency. Next, we explore the limitations of the traditional von Neumann architecture and the benefits of brain-inspired architectures. Lastly, we highlight the potential of memristors, an emerging technology, for energyefficient computing, especially in the context of artificial neural network accelerators.

The Evolution of making Efficient Chips

The process of making efficient chips is akin to constructing a miniature civilization based on semiconductor devices. Over the years, this process has undergone numerous iterations and innovations, evolving from the construction of the first house, the transistor device, to the creation of villages, Small and Medium Scale Integration Circuits, and the creation of cities, Large and Very Large Scale Integration circuits, and finally, mega-cities, ultra-scale large integrated circuits, and empire on a city, System on Chip, from billions of devices up to a trillion devices (see Fig. 1.2).

The aim of chip-making is the continuous improvement of performance and efficiency, driven by advancements in chip design and fabrication. This has led to several eras, from the manual construction of chips by humans to the current era of computer-aided chip design and fabrication, and the future era of AI-assisted chip-making.

In this section, we explore the evolution of chip-making through six key pillars: transistor development, lithography and fabrication processes, design languages and tools, computer architecture, packaging technologies and sustainable creation of knowledge and talents in the field. By examining these core areas, we gain a deeper understanding of the challenges and breakthroughs that have made efficient chip-making possible.

Transistor Development and Scaling

The invention of the transistor in 1947 marked a turning point in the history of electronics and computers [START_REF] Riordan | The invention of the transistor[END_REF][START_REF] Bardeen | The transistor, a semi-conductor triode[END_REF], as it replaced the electron vacuum tube devices (the transistor celebrated its 75th anniversary during my PhD thesis, Fig. transistor design and scaling have been a major driving force behind the development of more efficient and powerful chips [START_REF] William F Brinkman | A history of the invention of the transistor and where it will lead us[END_REF]. Early transistors made of germanium were bulky and powerhungry. The introduction of silicon as a semiconductor material in the late 1950s paved the way for the creation of smaller and more efficient transistors [START_REF] Kittel | Introduction to solid state physics eighth edition[END_REF].

Transistor scaling, which involves making transistors smaller, has been a critical factor in the evolution of chip-making. It allows more transistors to be packed onto a single chip, leading to improvements in performance and efficiency. This has been particularly significant due to Moore's Law, proposed by Gordon Moore in 1965 (he passed away this year), which predicted that the number of transistors on a chip would double approximately every two years [START_REF] Gordon E Moore | Cramming more components onto integrated circuits[END_REF]. This observation has generally held true, driving the miniaturization of transistors and the corresponding increase in computational power [START_REF] Mack | Fifty years of moore's law[END_REF].

The evolution of transistor development has seen the introduction of new transistor designs, such as the metal-oxide-semiconductor field-effect transistor (MOSFET) [START_REF] Scott E Thompson | In search of" forever," continued transistor scaling one new material at a time[END_REF][START_REF] Simon M Sze | Physics of semiconductor devices[END_REF]. MOS-FETs have become the dominant transistor design in modern chips, allowing for faster switching speeds and lower power consumption. This transistor technology has undergone several generations of evolution. Planar manufacturing process introduced in 1959 [START_REF] Hoerni | Patents [method of manufacturing semiconductor devices-us patent[END_REF], led to the invention of Planar FETs [START_REF] Hoerni | Patents [method of manufacturing semiconductor devices-us patent[END_REF], showed in Fig. 1.3b, paved the way for scaling of transistor dimensions, until it reached its performance limitation at a scale of 28 nm. As Planar FETs transistor dimensions have decreased, challenges related to power consumption, heat dissipation, and leakage current have emerged, necessitating the development of innovative materials and transistor designs [START_REF] Scott E Thompson | In search of" forever," continued transistor scaling one new material at a time[END_REF][START_REF] Scott | Moore's law: the future of si microelectronics[END_REF]. FinFETs technologies were introduced in the early 2000s, and are a type of MOSFET transistor that features a thin, vertical silicon "fin" that protrudes from the silicon substrate [START_REF] Pham | Finfet device junction formation challenges[END_REF][START_REF] Colinge | FinFETs and other multi-gate transistors[END_REF],

showed in Fig. 1.3b. This new transistor technology is well-suited for performance applications and has allowed scaling to continue until current days, reaching a scale of 3 nanometers, as demonstrated this year by TSMC [120]. Concurrently, FD-SOI (Fully Depleted Silicon-On-Insulator) transistors, developed by researchers at CEA-Leti, are a type of MOSFET design that uses a thin silicon layer on top of an insulating layer to reduce power consumption and improve performance [START_REF] Cristoloveanu | Silicon on insulator technologies and devices: from present to future[END_REF][START_REF] Carter | 22nm fdsoi technology for emerging mobile, internet-of-things, and rf applications[END_REF]. Making them particularly well-suited for low-power applications. To allow Moore's Law to continue, a new technologies are now under development and employment for sub-5-nm nodes. GAA-FET (Gate-All-Around Field-Effect Transistor) is a transistor design featuring a gate wrapped around a nanosheet-shaped channel (or nano-wire channels), as shown in Fig. 1.3b, allowing for better electrostatic control and improved switching behavior [START_REF] Bhol | Journey of mosfet from planar to gate all around: A review[END_REF]. GAA-FETs offer several advantages, such as smaller feature size, reduced leakage current and improved speed performance. This technology has already been used this year by Samsung for their 3-nanometer node [START_REF] Samsung | Optimized 3nm process achieves 45% reduced power usage, 23% improved performance and 16% smaller surface area compared to 5nm process[END_REF].

Two decades ago, there were ten champions in the transistor scaling race. However, today only two of them have reached mass production of cutting edge 3-nanometer nodes, TSMC and Samsung [START_REF] Mckinsey | Semiconductor design and manufacturing: Achieving leadingedge capabilities[END_REF]. This achievement is not solely related to financial resources, as the USA companies have considerable resources [START_REF] Mckinsey | The chips and science act: Here's what's in it[END_REF][START_REF] Waters | Can intel become the chip champion the us needs?[END_REF], or human resources, as Chinese companies have a large workforce [START_REF] Textor | Number of undergraduate engineering graduates from chinese higher education institutions from 2011 to 2021[END_REF]. Instead, it is primarily due to the development of a complete ecosystem surrounding this field of technology, which has been achieved by Taiwan and South Korea [START_REF] Lin | Taiwan shows how winning the semiconductor race takes more than money[END_REF]. For the long run, there are several challenges facing the electronics industry to maintain the rapid rate of innovation and continue to follow Moore's Law [START_REF] Waldrop | The chips are down for moore's law[END_REF]. The industry must overcome complex manufacturing techniques and high production costs, as well as the physical limits of transistor scaling [START_REF] Mark Lapedus | Transistors reach tipping point at 3nm[END_REF][START_REF] Ratneshwar K Ratnesh | Advancement and challenges in mosfet scaling[END_REF]. As transistors become smaller, they are more prone to various effects that can affect their behavior [START_REF] Ratneshwar K Ratnesh | Advancement and challenges in mosfet scaling[END_REF]. While there is still potential for
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improvement, the margin is not as significant as it has been in the past [START_REF] Waldrop | The chips are down for moore's law[END_REF]. Moore's law may not hold forever, as Fig. 1.3b illustrate, Dennard scaling already ended around 2005, and recently Moore's law is facing challenges to be kept alive.

To maintain the rapid rate of innovation in the semiconductor industry, new approaches are needed to overcome the risk of Moore's Law dying. One approach is to explore new computing paradigms such as neuromorphic computing, analog computing, in/near memory computing, etc. Another approach is to develop innovative packaging and interconnection techniques such as 3D integration and faster memories. Emerging devices and solutions such as 2D materials [START_REF] Nicholas R Glavin | Emerging applications of elemental 2d materials[END_REF], photonic computing [START_REF] Bhavin | Photonics for artificial intelligence and neuromorphic computing[END_REF], and quantum computing may also hold promise for future developments in the semiconductor industry [START_REF] Gyongyosi | A survey on quantum computing technology[END_REF].

Lithography and Fabrication Processes

The construction of modern civilization required humans to transition from building simple clay houses to creating skyscrapers, roads, bridges, and supply chains by developing increasingly sophisticated techniques, materials, and tools. Similarly, to accommodate the shift from a single transistor to billions of transistors on a single chip, electronics research and industry had to innovate and refine techniques, materials, fabrication processes, and tools. One such critical technique is photolithography [START_REF] Wayne | Semiconductor lithography: principles, practices, and materials[END_REF].

Lithography plays a pivotal role in integrated circuit (IC) fabrication and the transistor scal- The history and evolution of lithography techniques and machines can be divided into sev-
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eral distinct eras, each characterized by the development and adoption of new techniques and machines that pushed the limits of transistor scaling. The earliest lithography techniques involved hand-drawn patterns on Rubylith photomasks (see Fig. 1.4a), which were then transferred to substrates using contact printing. These methods were limited by the precision of hand-drawn patterns and the resolution achievable with contact printing. Steppers, the first reduction projection systems, were introduced in the 1970s, using a reduction lens to project a smaller image of the photomask pattern onto the substrate [START_REF] John | Optical lithography: 40 years and holding[END_REF]. The 1980s saw the introduction of excimer lasers, which emit deep ultraviolet (UV) light, allowing for higher resolution and smaller feature sizes [START_REF] Jain | Excimer laser lithography[END_REF]. In the 1990s, phase-shift masks and optical proximity correction (OPC) were developed to further improve resolution [START_REF] Marc D Levenson | Improving resolution in photolithography with a phase-shifting mask[END_REF][START_REF] Oberdan | Automated optical proximity correction: a rules-based approach[END_REF]. The early 2000s brought immersion lithography and multiple patterning techniques, using a liquid medium between the lens and the substrate and combining multiple lithography steps to overcome the limitations of conventional lithography [START_REF] Owa | Immersion lithography: its potential performance and issues[END_REF]. The most recent development is extreme ultraviolet lithography (EUV), which employs alight with a wavelength of 13.5 nm [START_REF] Bakshi | Euv lithography[END_REF]. It enables even higher resolution and smaller feature sizes, facilitating the continuation of Moore's Law. EUV lithography, which has been in development for several decades, is now being employed in high-volume manufacturing by only one Dutch multinational corporation, ASML, showed in Fig. 1.4c.

These advancements in lithography have gone hand in hand with improvements in the fabrication process. This process involves a series of steps, with lithography serving as a central technique. Throughout the years, new materials and innovations have been introduced to further enhance the fabrication process, such as chemical mechanical planarization (CMP) [START_REF] Joseph M Steigerwald | Chemical mechanical planarization of microelectronic materials[END_REF],

atomic layer deposition (ALD) [START_REF] Steven | Atomic layer deposition: an overview[END_REF], and high-k materials [START_REF] Robertson | High-k materials and metal gates for cmos applications[END_REF]. High-k materials, with a high dielectric constant, have been introduced to replace traditional silicon dioxide gate dielectrics in transistors, reducing gate leakage current and enabling further scaling of transistor dimensions.

Design Languages and Design Automation Tools

Building a city is not like building a village, building a city is indeed a complex process that requires adherence to numerous rules and regulations. Similarly, the design and fabrication of complex chips with a high number of transistors also necessitate the implementation of rules, design methodologies, and advanced tools to ensure the successful creation of functional, efficient, and reliable electronic devices. Therefore, design languages (HDLs) and design automation tools (EDA) were invented and evolved in parallel with integrated circuit progress.

Hardware Description Languages (HDLs) and design automation tools, or Electronic Design Automation (EDA) tools, evolved in parallel, as the complexity of digital systems increased over time [START_REF] Wang | Electronic design automation: synthesis, verification, and test[END_REF]. The development of both HDLs and EDA tools has been driven by the need for more efficient design, simulation, verification, and fabrication processes in the face of growing design complexity, as shown in Fig. 1.5.
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In the late 1960s and early 1970s, the earliest HDLs, such as ISPS and AHDL, emerged to simplify the design and simulation of digital circuits [START_REF] Barbacci | Instruction set processor specifications (isps): The notation and its applications[END_REF]. In parallel, the first EDA tools, like SPICE for analog circuit simulation, were developed to help automate the analysis of electronic circuits [START_REF] Nagel | Spice (simulation program with integrated circuit emphasis)[END_REF]. As digital systems grew more complex in the mid-1970s to early 1980s, more sophisticated HDLs, like HILO and RTL/2, were developed to describe circuits at the registertransfer level [START_REF] Pong | RTL hardware design using VHDL: coding for efficiency, portability, and scalability[END_REF]. Concurrently, EDA tools evolved to support schematic capture and layout design, enabling designers to create and edit circuit schematics and layouts more efficiently.

By the late 1980s, the development of VHDL, a standardized language for the design and verification of digital systems, marked a major milestone in the evolution of HDLs. Around the same time, Verilog, another widely-used HDL, was introduced. EDA tools also progressed, with From only functional design and verification of transistor level circuits, to multi-process multidisciplinary design and verification of Heterogeneous chips (Reproduced from [START_REF] Park | This is not your fathers advanced semiconductor packaging[END_REF]).

In the early 2000s, SystemVerilog, an extension of Verilog, was introduced, offering improved support for object-oriented programming, advanced data types, and enhanced verification capabilities. EDA tools also evolved, with verification tools such as formal and functional verifiers becoming more sophisticated to ensure the correctness and reliability of designs. Sys-temC, a C++ extension for system-level modeling and simulation, emerged in the late 1990s and early 2000s to address the need for higher-level abstractions. High-Level Synthesis (HLS) tools As cities continue to grow and expand, there is an increasing need for specialized urban planning and design, also known as city architecture. This discipline involves designing and organizing the physical layout, infrastructure, and public spaces within cities and other settlements.

The ultimate goal of city architecture is to create functional, sustainable, and aestheticallypleasing urban environments that can accommodate the needs of residents, businesses, and visitors.

In the realm of computing, a similar need for organization and design arises as computing chips are complex systems, consisting of various components such as processing units, memory hierarchy, data buses, storage, and input/output (I/O) systems. This calls for a well-defined computer architecture [START_REF] John | Computer architecture: a quantitative approach[END_REF], which refers to the design and organization of a computer system's hardware components that work together to process data and execute instructions. The primary objective of computer architecture is to optimize performance, power consumption, cost, and other factors for a specific set of applications or target markets. An important part of computer architecture is Instruction Set Architecture (ISA): it is an interface between the hardware and software that defines a set of instructions a computer can understand and execute. The ISA acts as a blueprint for designing the processor and the compiler that generates machine code.

The evolution of computer architecture and instruction set architecture (ISA) has been marked by continuous advancements and innovations aimed at improving computing performance, efficiency, and capabilities. In the 1940s and 1950s, early electronic computers like the ENIAC, EDVAC, and IBM 701 used vacuum tubes and employed machine-specific assembly languages [START_REF] Mccartney | ENIAC: The triumphs and tragedies of the world's first computer[END_REF][START_REF] Von | First draft of a report on the edvac[END_REF][START_REF] Backus | The ibm 701 speedcoding system[END_REF]. The concept of stored-program computers emerged during this time, allowing instructions and data to be stored in the same memory. In the 1950s and 1960s, with transistors replaced vacuum tubes, IBM introduced the System/360 during this period, featur- ing a family of computers with compatible ISAs that allowed for a range of performance and cost options [START_REF] Amdahl | Architecture of the ibm system/360[END_REF]. The 1960s and 1970s saw the rise of integrated circuits (ICs). Microprocessors, such as the Intel 4004 and 8080, emerged during this time, bringing computing power to smaller devices and setting the stage for personal computers [START_REF] Noyce | A history of microprocessor development at intel[END_REF].

The development of RISC architectures in the 1980s represented a significant shift in chip design, and marked the beginning of the RISC vs. CISC debate, leading to two distinct approaches to ISA design. RISC architectures, like MIPS and ARM, focused on a smaller set of simple instructions for faster execution, emphasizing simplicity and efficiency over the complexity of the previously dominant complex instruction set computer (CISC) architectures. While CISC architectures, like x86, featured more complex instructions for better memory efficiency. In the 1990s and 2000s, the era of parallelism began, with superscalar processors executing multiple instructions per clock cycle. Multi-core processors, such as the Intel Core and AMD Opteron series, became prevalent, allowing for increased performance and power efficiency. The emer-gence of multicore processors and graphics processing units (GPUs) has further diversified the landscape of computer architectures.

In the 21st century, the focus shifted to heterogeneous computing and specialized architectures for specific workloads [START_REF] Dean | A new golden age in computer architecture: Empowering the machine-learning revolution[END_REF]. Graphics processing units (GPUs) gained prominence for parallel processing tasks. These developments have been accompanied by the creation later of NVIDIA's CUDA, tailored to simplify their use.

As artificial intelligence (AI) has become increasingly prominent in recent years, the need for more powerful and efficient computing platforms has grown [START_REF] Dean | A new golden age in computer architecture: Empowering the machine-learning revolution[END_REF]. Traditional AI implementation using Central Processing Units (CPUs) has been limited by the architecture's shortcomings, including its inability to meet AI's parallel computing and vast memory demands.

Although memory caches and Dynamic Random Access Memory (DRAM), have been placed

close to CPUs to increase performance in terms of speed [START_REF] John | Computer architecture: a quantitative approach[END_REF], the Single Instruction, Single Data (SISD) architecture remains inadequate for AI computing (a simple illustration of CPU's architecture shown in Fig. 1.6a). The use of Graphics Processing Units (GPUs), initially designed for rendering graphics, has improved AI computing performance by accelerating processes through parallel computing [START_REF] John D Owens | Gpu computing[END_REF]. While their Single Instruction, Multiple Data (SIMD) architecture has been a viable solution for data centers and AI in the cloud, it comes with significant energy costs due to communication, data exchange, and cooling requirements (a simple illustration of GPU's architecture shown in Fig. 1.6b). Additionally, GPUs occupy large areas and require extensive cooling systems, making them unsustainable for AI's growing models and incompatible with energy and area-constrained edge systems, such as wearable and batterypowered devices.

To address the energy efficiency challenges in AI hardware, specialized accelerators like Google's Tensor Processing Unit (TPU) [START_REF] Norman P Jouppi | In-datacenter performance analysis of a tensor processing unit[END_REF], Intel Vision Processing Unit (VPU) [START_REF] Horea | The movidius myriad architecture's potential for scientific computing[END_REF], various

Neural Processing Units (NPUs) [START_REF] Sze | Efficient processing of deep neural networks: A tutorial and survey[END_REF], and FPGA-based accelerators have been developed by research groups, companies, and start-ups. Most of those solutions use a spatial architecture, a tiling architecture of parallel processing elements, interconnected using a network on chip (NoC) [START_REF] Sze | Efficient processing of deep neural networks: A tutorial and survey[END_REF] (a simple illustration of a spatial architecture shown in Fig. 1.6c). These new developments are part of a new trend toward more heterogeneous computing, involving so-called domain-specific architectures.

Packaging and Advanced Packaging Technologies

The growing population and expansion of cities have made transportation increasingly challenging, as traditional road-based systems struggle with traffic congestion. In response, cities have sought innovative solutions, such as underground metros and trains, which offer a third dimension to transportation infrastructure. These systems help reduce travel time and distance within and between cities. Similarly, in the realm of modern chips, packaging plays a crucial role in enhancing performance by improving data transfer rates (interconnection bandwidth) and reducing energy consumption. By bringing components closer together, advanced
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packaging techniques facilitate better performance in terms of speed, energy efficiency, and spatial footprint.

As chips have become more powerful and complex, the need for effective packaging technologies has grown. Early packaging solutions, such as dual in-line packages (DIPs) and pin grid arrays (PGAs), were adequate for simpler chips but were limited in terms of performance, thermal management, and form factor [START_REF] Rao R Tummala | Packaging: past, present and future[END_REF].

The introduction of advanced packaging technologies, such as flip-chip, ball grid array (BGA), and chip-scale packages (CSPs), addressed these challenges by enabling improved electrical performance, reduced power consumption, and smaller form factors. These packaging solutions also facilitated the integration of multiple chips or dies within a single package, leading to the development of system-in-package and package-on-package (PoP) technologies.

More recently, 2.5D and 3D packaging techniques have emerged, employing techniques like through-silicon vias (TSVs), interposers, and wafer-level packaging to achieve even greater levels of integration and performance [START_REF] Lancaster | Integrated circuit packaging review with an emphasis on 3d packaging[END_REF]. These advanced packaging technologies have been instrumental in addressing the challenges of increased chip complexity, while also enabling the development of heterogeneous systems that integrate different types of chips, such as CPUs, GPUs, and memory, into a single package. In the same vein, ensuring sustainable progress in the field of designing efficient chips demands increased accessibility to knowledge and resources. This encompasses a wide range of ). The energy for accessing DRAM is four orders of magnitude time higher than performing 8-bit addition operation.

Despite numerous enhancements and optimizations over the years, the von Neumann architecture has inherent limitations that hinder performance, particularly in the context of artificial intelligence (AI) and other data-intensive applications [START_REF] Pedram | Dark memory and accelerator-rich system optimization in the dark silicon era[END_REF][START_REF] Querlioz | Bioinspired programming of memory devices for implementing an inference engine[END_REF]. The von Neumann
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bottleneck, which arises from the separation of memory and processing units, is a primary source of energy inefficiency and performance bottlenecks in AI workloads (see Fig. 1.8b).

To address these limitations, specialized AI accelerators have been developed, explicitly designed to optimize AI computations. These include accelerators with spatial architectures, which employ strategies such as supporting massive parallelism to enhance computational efficiency and incorporating specialized memory hierarchies and on-chip volatile memory, including registers, SRAM, and DRAM, to reduce data movement overhead and mitigate the von

Neumann bottleneck [START_REF] Sze | Efficient processing of deep neural networks: A tutorial and survey[END_REF][START_REF] Norman P Jouppi | In-datacenter performance analysis of a tensor processing unit[END_REF] (see Fig. 1.9).

These accelerators yield reduced latency and improved energy efficiency for AI computations compared to traditional CPUs and GPUs. However, depending on memory hierarchies and on-chip volatile memory introduces its own set of challenges, including concerns related to area, memory density, and energy consumption. One notable limitation is the inherent volatility of memory. Accessing data from non-volatile memories (HDD or SSD) and transferring it to accelerators entails traversing the entire memory hierarchy, consuming additional energy.

Moreover, using volatile cache memory with limited capacity, such as registers, results in constant data changes, as they cannot store data for extended periods while new data is processed.

The general limitations of SRAM and DRAM are explored further in the following subsection.

a b

Figure 1.9: Specialized memory hierarchy for a spatial architecture. a An example of Memory Hierarchy of a spatial architecture (Reproduced from [START_REF] Chen | Eyeriss: A spatial architecture for energyefficient dataflow for convolutional neural networks[END_REF]). b The Energy cost of data movement in a memory hierarchy (Reproduced from [START_REF] Chen | Eyeriss: A spatial architecture for energyefficient dataflow for convolutional neural networks[END_REF]).

Current AI accelerators emphasize energy efficiency by integrating more memory into computing elements and minimizing data movements. Still, while these solutions have lessened the impact, they have not entirely solved the energy problem associated with the memory wall, as they tend to retain the "spirit" of the von Neumannn architecture, with a main memory separate from the processing units .

The von Neumann architecture can be likened to having companies situated outside a city, where workers need to commute daily using buses or cars (depicted in Fig. 1.8a top). This daily transportation consumes both time and energy. While this arrangement might be suitable for spatially oriented companies, such as production, mining, and agriculture firms, it creates an inefficient system for other types of businesses. For example, service companies could benefit from being located closer to their employees and clients, thereby optimizing the overall efficiency of the system, instead of relocating their employees closer to the companies.

Brain Inspired Architectures, Near-Memory and In-Memory Computing

To The pursuit of energy-efficient AI hardware has led researchers to investigate emerging computing paradigms inspired by the human brain's efficiency. Despite performing complex tasks, the brain consumes approximately 20 Watts of power, which is orders of magnitude less than current AI systems when performing advanced tasks [START_REF] Indiveri | Memory and information processing in neuromorphic systems[END_REF]. A crucial aspect of the brain's energy efficiency lies in the colocation of computation and memory, a concept akin to inmemory computing.

Neuromorphic computing, or brain-like computing, is an emerging field that replicates various aspects of the brain's physical elements, connections, logic, architecture, and learning rules [START_REF] Mead | Analog VLSI implementation of neural systems[END_REF]. This field has given rise to multiple approaches, ranging from mimicking the brain's computing processes, such as the spike-timing-dependent plasticity (STDP) learning rule, to emulating its physical elements and connections, as demonstrated in the neuromorphic chip TrueNorth from IBM [START_REF] Paul A Merolla | A million spiking-neuron integrated circuit with a scalable communication network and interface[END_REF], and Loihi from Intel [START_REF] Davies | Loihi: A neuromorphic manycore processor with on-chip learning[END_REF].

Drawing from the brain's architecture, in-memory and near-memory computing architectures have emerged to address the von Neumann bottleneck for AI and data-centric computing applications [START_REF] Verma | In-memory computing: Advances and prospects[END_REF][START_REF] Ielmini | In-memory computing with resistive switching devices[END_REF][START_REF] Singh | Near-memory computing: Past, present, and future[END_REF]. By closely integrating memory and processing units, these architec- Near-memory computing architecture can leverage mature memory technologies, such as SRAM and DRAM near-data processing systems, as well as emerging memory technologies like memristors. This approach has already progressed to the deployment stage, such as Samsung's processing-in-memory (PIM) products based on HBM-DRAMs, demonstrating promise for data-centric and AI applications (presented in Fig. 1.11).

In-memory computing represents a more radical paradigm shift in computing architecture, as it integrates computation within memory devices [START_REF] Verma | In-memory computing: Advances and prospects[END_REF][START_REF] Ielmini | In-memory computing with resistive switching devices[END_REF]. This approach aims to significantly reduce data movement, with fixed memory data and only inputs and results moving. Although this architecture can leverage mature memory technologies, such as SRAMs and DRAMs, it works better with specialized memory devices, such as memristors, which involve analog storage and computation for high parallelism computing, at the cost of increased design complexity. Using the worker and company analogy again, depending on their type of work, the worker can do remote work and no longer needs to move at all. They only need to send and receive tasks and data via the internet, but they require specialized tools, such as a computer, internet connection, and VPN access (depicted in Fig. 1.10b).
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Memristors for Energy-Efficient Computing

As the need for more energy-efficient and high-performance computing solutions continues to grow, the search for new memory technologies that can overcome the limitations of existing SRAM and DRAM has intensified. Memristors, a class of emerging memory technologies, have shown great potential for addressing these challenges and enabling new computing paradigms.

Brief Evolution of Memory Technology

Memory The electronic computer era that emerged in the 1940s and 1950s brought significant progress in memory technology. The earliest electronic computers employed vacuum tubes to represent binary states. However, these were not a persistent form of memory and were prone to heat-induced failure. Subsequently, magnetic drum memory was introduced as a non-volatile storage medium (see Fig. As we look towards the near future of memory technology, it is apparent that continued progress in 3D stacking will be a significant trend. However, as demands for greater performance and energy efficiency escalate, the limitations of current memory technologies are becoming increasingly evident. This has spurred exploration into alternative methodologies.

Among these, emerging technologies such as memristors hold significant potential. These devices promise to fundamentally transform how we store and access data, thereby pushing the frontiers of computing further. Limitations of SRAM Despite its advantages, such as speed, low latency, compatibility with CMOS processes, and scalability with transistor scaling, SRAM has several limitations when employed in in/near-memory computing:

High Power Consumption: SRAM cells consume a significant amount of static power due to leakage current, even when not actively accessed. This results in high energy consumption, which is a major concern for energy-efficient in/near-memory computing.

High Power Consumption: SRAM cells consume a significant amount of static power due to leakage current, even when not actively accessed. This issue is exacerbated as transistor nodes become smaller. This results in high energy consumption, which is a major concern for energy-efficient in/near-memory computing.

Large Cell Size: SRAM cells typically require six transistors per cell, leading to a relatively large cell size. This affects memory density, limiting the amount of on-chip memory that can be integrated within an in/near-memory computing architecture.

Cost: Due to the larger cell size, SRAM is more expensive to manufacture than other memory technologies like DRAM. This higher cost can be a barrier to widespread adoption in costsensitive applications.

Limitations of DRAM Although DRAM provides higher density and lower cost compared to SRAM, and faster speed than conventional NVM (such as NAND and NOR flash memories), it has its own set of limitations in the context of in/near-memory computing: Refresh Overhead: DRAM cells require periodic refresh cycles to maintain stored data, which consumes energy and reduces the effective memory bandwidth available for computation.
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This refresh overhead can negatively impact the performance of in/near-memory computing architectures.

Higher Latency: DRAM cells exhibit higher access latencies compared to SRAM cells, which can limit the performance gains achievable through in/near-memory computing.

Complex Integration: Integrating DRAM cells with processing units in an in/near-memory computing architecture can be challenging due to the inherent differences in their fabrication processes. This may limit the potential benefits of DRAM-based in/near-memory computing.

Limitations of Flash memory

The idea of in-memory or near-memory computing using flash memory is intriguing because it can potentially bring computation closer to where the data is stored. The non-volatility, multi-level state (MLS) storage, high density, low cost, and low power consumption of flash memory add to its attractiveness for such applications. However, despite these appealing advantages, flash memory technology also presents significant challenges limitations:

Very High Latency: It is inherently slower compared to SRAM or DRAM, particularly when it comes to write and erase operations, which can significantly hamper the performance of computational tasks that require frequent data updates.

Write Complexity:

The necessity of erasing entire blocks before rewriting complicates data management and could slow down computations.

Higher error rates: Flash memory is subject to higher error rates, especially when programmed in multi-level states. This impacts reliability and necessitates the implementation of complex error-correcting code mechanisms.

Complex Integration: Similar to DRAMs, Integrating Flash memory with processing units can be challenging due to the inherent differences in their fabrication processes.

In conclusion, while SRAM, DRAM, and Flash memory technologies each offer viable solutions for in/near-memory computing, their applicability depends largely on specific use cases.

For example, in/near-memory computing based on DRAM can be used to accelerate AI computations, offering marginal improvements in energy efficiency for applications that can tolerate higher energy consumption. Conversely, in/near-memory computing that utilizes SRAM could potentially replace register files in the spatial architecture of Neural Processing Units (NPUs), thereby reducing the energy consumption associated with memory access. However, both SRAM and DRAM have their limitations, including high power consumption, lower density, higher cost, refresh overhead, and integration complexity, which may inhibit potential performance enhancements and energy efficiency gains, particularly in energy-constrained applications. Flash memory, despite its many advantages, also has its own set of challenges that could limit its effectiveness in in/near-memory computing. Addressing these limitations will be a crucial step in advancing the development of more efficient in/near-memory computing architectures. This might necessitate exploring alternative memory technologies or innovative design approaches to surmount these hurdles.
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The evolution of memory technologies over time has led to the development of a diverse array of memory types, each with its own unique set of characteristics. This diversity has given rise to the concept of a memory hierarchy within a computer system, a construct designed to balance the trade-offs between speed, capacity, energy efficiency, and error tolerance. This hierarchy can often be represented as a pyramid. At the top of the pyramid, we find the fastest and most expensive types of memory, namely volatile memories, i.e. static and dynamic random access memories (See Fig. 1.15). At the bottom of the pyramid, we find the slowest but highest-capacity non-volatile memories, which are also the least expensive types of memory: flash memories and magnetic hard drives. 

Emerging Memory Technologies

The goal of many emerging memory technologies is to combine the speed of RAM with the nonvolatility data storage, hence their classification as non-volatile RAMs. These devices include memristors, usually called resistive RAM (ReRAM) in the industry, magnetic RAM (MRAM), Memristor or ReRAM: The memristor, a theoretical circuit element proposed by Leon Chua in 1971 [START_REF] Chua | Memristor-the missing circuit element[END_REF], was not realized until a disputed claim by HP Labs in 2008 [START_REF] Strukov | The missing memristor found[END_REF]. Despite the controversy, the concept of resistive memory, or ReRAM, sharing similar traits with the proposed memristor, has gained attention [START_REF] Wong | Metal-oxide rram[END_REF]. This thesis will use "memristor" and "resistive RAM" interchangeably to refer to these devices. Memristor stores data by modulating the resistance of a dielectric material sandwiched between two metal electrodes (See Fig. respectively, and also can be adapted to store multi-level state data or continuous analog data.

Magnetic RAM (MRAM): MRAM stores data using magnetic tunnel junctions (MTJs), which consist of two ferromagnetic layers separated by a thin insulating barrier [START_REF] Dieny | Opportunities and challenges for spintronics in the microelectronics industry[END_REF] (See Fig. 1.16c).

Data is stored by changing the relative magnetization direction of the ferromagnetic layers.

When the magnetization directions are parallel, the MTJ has low resistance, representing a bi- Ferroelectric RAM (FeRAM): FeRAM stores data using ferroelectric capacitors, which exhibit spontaneous polarization that can be reversed by applying an electric field [START_REF] Mikolajick | Ferroelectric hafnium oxide for ferroelectric random-access memories and ferroelectric field-effect transistors[END_REF] (See Fig. 1.16i).

Data is represented by the orientation of the polarization, with up and down polarization directions corresponding to binary 0 and 1, respectively (See Fig. 1.16d). The polarization state of a ferroelectric capacitor can be read by applying a voltage and measuring the resulting current, which is proportional to the amount of charge displaced by the polarization reversal. Unlike other emerging memories, the read operation is destructive in these devices.

Ferroelectric FET (FeFET):

FeFET is a three-terminal device that uses the concept of ferroelectric polarization [START_REF] Ali | Silicon doped hafnium oxide (hso) and hafnium zirconium oxide (hzo) based fefet: A material relation to device physics[END_REF] (See Fig. 1.16e). However, in FeFETs, a ferroelectric material is used as the gate insulator in a Field-Effect Transistor. The data is stored by switching the polarization of the ferroelectric material, which, in turn, modulates the transistor's channel conductivity.

Upward and downward polarization directions correspond to binary '0' and '1', respectively (See Fig. 1.16e). The transistor's current state, which represents the stored binary data, can be read by applying a voltage to the gate and measuring the resulting current in the channel.

This current is affected by the polarization state of the ferroelectric material and thus indicates whether a '0' or '1' is stored.

In conclusion, the advent of non-volatile RAMs marks a notable shift in memory technology. Each of these technologies possesses distinct operational mechanisms and exhibits a broad array of characteristics. Consequently, they afford a diverse range of potential applications, thereby facilitating the advancement and diversification of memory storage and processing systems.

Memristors and other emerging memories, exhibit a promising range of unique characteristics that are fostering a new landscape of potential applications spanning across various domains. These characteristics encompass parameters such as read and write speed, energy efficiency during read and write operations, endurance, physical area requirements, variability, resolution, susceptibility to read disturbances, cost, and process complexity. Each of these attributes contributes to the versatility of these technologies, thereby rendering them suitable
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for a broad spectrum of potential applications [START_REF] Spiga | Memristive Devices for Brain-Inspired Computing: From Materials, Devices, and Circuits to Applications-Computational Memory, Deep Learning, and Spiking Neural Networks[END_REF]. The specific nature of these applications will be inherently determined by the balance of these factors.

Storage: Emerging Memories exhibit characteristics that make them a potential candidate for non-volatile storage devices [START_REF] Burr | Storage class memory[END_REF]. While their current capacity might not meet the demands of high-storage devices, their potential integration into 3D memory architectures could pave the way for future advancements. For devices with more modest storage requirements, such as IoT devices or microcontroller units, memristors could represent a viable option. Moreover, these emerging technologies might find application in the replacement of DRAM or as thirdtier cache memory in low-power, low and medium-speed devices [START_REF] Jg Alzate | 2 mb array-level demonstration of stt-mram process and performance towards l4 cache applications[END_REF].

Logic:

Emerging Memories can also offer potential utility in the construction of logic gates and circuits [START_REF] Kvatinsky | Magic-memristor-aided logic[END_REF]. The properties of these devices may enable the development of non-volatile registers and reconfigurable logic gates. It is also conceivable that they could contribute to logic gates requiring fewer components, potentially leading to more compact computing systems.

Randomness Generation (RNG):

The inherent variability and instability in certain types of emerging memory technologies can serve as a potential source for random number generation [START_REF] Vodenicarevic | Low-energy truly random number generation with superparamagnetic tunnel junctions for unconventional computing[END_REF]. This characteristic could be leveraged in the context of probabilistic computing and cryptographic applications. Additionally, these properties could supply a valuable source of randomness for sampling algorithms [START_REF] Dalgaty | In situ learning using intrinsic memristor variability via markov chain monte carlo sampling[END_REF]. Furthermore, these memory technologies could find use in the creation of physical unclonable functions (PUFs), potentially enhancing hardware security [START_REF] Nili | Hardware-intrinsic BIBLIOGRAPHY 163 security primitives enabled by analogue state and nonlinear conductance variations in integrated memristors[END_REF].

In and Near-Memory Computing: Memristors and other emerging memories, due to their non-volatile memory states, may provide viable utility across a range of computing paradigms, including neuromorphic, digital, analog, and probabilistic computing [START_REF] Ielmini | In-memory computing with resistive switching devices[END_REF]. They could notably enhance low-power, high-speed vector and matrix multiplication tasks, potentially offering more energy-efficient and high-performance AI inference capabilities at the edge. The capacity of memristors to facilitate in-situ AI learning algorithms presents a compelling approach for AI training at the edge, particularly within the framework of local learning rule-based or brain-inspired algorithms. The prospect of continuous training at the edge might promote greater confidence in AI deployment and proliferation.

Memristors-Based Artificial Neural Network accelerators

Memristors offer a unique set of attributes that render them particularly suitable for energyefficient AI systems [START_REF] Yu | Neuro-inspired computing with emerging nonvolatile memories[END_REF][START_REF] Spiga | Memristive Devices for Brain-Inspired Computing: From Materials, Devices, and Circuits to Applications-Computational Memory, Deep Learning, and Spiking Neural Networks[END_REF]. What sets them apart is their ability to maintain multiple resistance states. This trait enables them to conduct complex operations and, crucially, to emulate functions of the human brain, an essential component in the development of neuromorphic, or 

Memristor crossbar for In-Memory Computing of Artificial Neural Network:

A key operation in neural networks is the multiplication of weights and input data followed by an accumulation of the products, commonly referred to as multiply-and-accumulate. Memristor
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crossbar arrays can be employed to perform this operation in an analog, in-memory fashion, taking advantage of Ohm's Law and Kirchhoff's Law. In such arrays, the conductance of the memristor devices represents the synaptic weights of the neural network. In a weightstationary dataflow scheme, input voltages, representing input activations, are applied to the rows, and the resulting currents in the columns correspond to the dot products, i.e., the neuron outputs (See Fig. 1.17a). Numerous realizations of this proposal have been demonstrated recently [START_REF] Yu | Neuro-inspired computing with emerging nonvolatile memories[END_REF][START_REF] Ielmini | In-memory computing with resistive switching devices[END_REF][START_REF] Ambrogio | Equivalent-accuracy accelerated neural-network training using analogue memory[END_REF][START_REF] Prezioso | Training and operation of an integrated neuromorphic network based on metal-oxide memristors[END_REF][START_REF] Wang | Fully memristive neural networks for pattern classification with unsupervised learning[END_REF][START_REF] Cheng-Xin Xue | A cmosintegrated compute-in-memory macro based on resistive random-access memory for ai edge devices[END_REF]. By performing multiply-and-accumulate operation directly within the memory array, memristor-based in-memory analog computation can significantly reduce data movement between memory and processing units, which is a major source of energy consumption in traditional architectures. Additionally, the parallelism inherent in the crossbar structure enables a high degree of concurrency, potentially leading to substantial improvements in computational throughput. Furthermore, memristor-based analog computing can leverage the continuous conductance levels of memristor devices to represent multi-bit synaptic weights, enabling possibility for higher precision calculations compared to binary-weighted neural networks. This can lead to better accuracy in inference tasks without incurring the energy and area overhead typically associated with higher precision digital computation.

However, a practical implementation of memristor crossbars in industrial products needs a deep study of all needed parts for a fully reliable system, not only relying on conceptual potentials. Implementing an ANN accelerator with in-memory analog computing with a memristor crossbar is still a challenging research subject. This is due to device imperfections that present a substantial challenge [START_REF] Dalgaty | In situ learning using intrinsic memristor variability via markov chain monte carlo sampling[END_REF][START_REF] Ielmini | In-memory computing with resistive switching devices[END_REF][START_REF] Spiga | Memristive Devices for Brain-Inspired Computing: From Materials, Devices, and Circuits to Applications-Computational Memory, Deep Learning, and Spiking Neural Networks[END_REF]. Achieving precise control over each memristor's resistance state, which signifies a synaptic weight in neural networks, is still limited due to the current memrsitor devices variability. This lack of precision can lead to limited reliable device resolution, heavy precise write periphery circuits, and affects on computational accuracy [START_REF] Esmanhotto | Experimental demonstration of multilevel resistive random access memory programming for up to two months stable neural networks inference accuracy[END_REF]. From a circuit level, higher design complexity, as MAC operations are done in analog and other operations are in digital, necessitates the conversion between analog and digital signals, therefore, complex Analog to Digital Converters (ADC) and Digital to Analog Converters (DAC) circuitries are required, with high-precision, high-speed and tolerant devices noise (See Fig. 1.17b). From a system level, as the weights are stationary, a careful design consideration needs to be taken for the dimensions of memristor crossbars and the capacity of volatile memory for activations: this is for giving more degree of freedom for mapping, applying pipelined computation, reconfiguration of the system for different neural networks models, and to increase date usage and reuse for a purpose of increasing the efficiency of the system (See Fig. 1.17c-d). Addressing these challenges necessitates advancements in memristor device technology, to improve device characteristics, circuit design techniques, improve read write circuitry and techniques, system-level architectures, and algorithmic level, such as developing hardware friendly AI models, based on network pruning, network, reduced precision models.

A famous example, to be mentioned here is the ISAAC (In-Situ Analog Arithmetic in Crossbars) accelerator [START_REF] Shafiee | Isaac: A convolutional neural network accelerator with in-situ analog arithmetic in crossbars[END_REF], which has been proposed for convolutional neural networks (CNN) ac-
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celerators. This architecture leverages memristor crossbar arrays at its core to store synaptic weights and perform dot-product computations (Fig. 1.17b). The system's core is built around memristor crossbar arrays integrated within each of its multiple nodes or tiles (See Fig. 1.17cd. The system tackles several of the challenges mentioned above, by limiting device resolution to 2-bits and using sequential inputs to reduce analog-to-digital converter (ADC) and digital-to-analog converter (DAC) overheads. Furthermore, through a meticulous design space exploration, ISAAC studied the optimal balance of chip area dedication to storage, computation, buffers, and ADCs, resulting in a substantial boost in throughput, energy efficiency, and A different approach for Memristor crossbar. In-memory computing using memristor crossbars based on current summation faces dimensional constraints. This arises from the high current flow associated with numerous parallel resistors, particularly in the case of low-resistance states. This high current can lead to an increased peripheral circuitry size and enhanced impact of parasitic resistors in routing metals. Addressing this, researchers from the Samsung 

computational
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As delineated in the introduction of this thesis, positioning AI at the edge could mitigate certain trust concerns associated with artificial intelligence. Bayesian reasoning, or Bayesian inference, is an artificial intelligence approach that could better adapt than neural networks to safety-critical applications, where explainable decisions with uncertainty-quantification are required [START_REF] Ghahramani | Probabilistic machine learning and artificial intelligence[END_REF][START_REF] Letham | Interpretable classifiers using rules and bayesian analysis: Building a better stroke prediction model[END_REF]. Bayesian reasoning is a probabilistic framework that permits decision-making in situations with incomplete information, maximally incorporating all available evidence, assumptions, and prior knowledge [START_REF] Edwin | Probability theory: The logic of science[END_REF][START_REF] Bessière | Bayesian programming[END_REF]. Within this approach, reasoning is fully explainable and excels at 'small data' situations, as it is able to incorporate prior expert knowledge [START_REF] Van De Schoot | A gentle introduction to bayesian analysis: Applications to developmental research[END_REF]. It can also estimate the certainty of its prediction [START_REF] Letham | Interpretable classifiers using rules and bayesian analysis: Building a better stroke prediction model[END_REF], which is a challenge for neural networks.

Bayesian models are not directly brain-inspired but have been connected to biological intelligence [START_REF] Laurens | Bayesian processing of vestibular information[END_REF][START_REF] Sing | Hierarchical bayesian inference in the visual cortex[END_REF][START_REF] Maass | Noise as a resource for computation and learning in networks of spiking neurons[END_REF][START_REF] David | The bayesian brain: the role of uncertainty in neural coding and computation[END_REF][START_REF] Deneve | Bayesian spiking neurons i: inference[END_REF][START_REF] Houillon | The probabilistic cell: implementation of a probabilistic inference by the biochemical mechanisms of phototransduction[END_REF].

However, although Bayesian reasoning requires considerable memory access, implementing it near-memory is more challenging than for neural networks. In a Bayesian approach, networks feature a topological nature, but in a way that is more subtle than neural networks.

Bayesian reasoning is usually implemented on conventional computers [START_REF] Smith | Massively parallel bayesian inference for transient gravitational-wave astronomy[END_REF], microcontroller units [START_REF] Leech | Real-time room occupancy estimation with bayesian machine learning using a single pir sensor and microcontroller[END_REF][START_REF] Lei | Research on mechanical vibration monitoring based on wireless sensor network and sparse bayes[END_REF], or graphics processing units [START_REF] Ferreira | Bayesian real-time perception algorithms on gpu[END_REF]. Several works have also implemented it on large field-programmable gate arrays [START_REF] Zermani | Fpga implementation of bayesian network inference for an embedded diagnosis[END_REF][START_REF] Cai | Vibnn: Hardware acceleration of bayesian neural networks[END_REF][START_REF] Liu | An unbiased mcmc fpga-based accelerator in the land of custom precision arithmetic[END_REF][START_REF] Frisch | A bayesian stochastic machine for sound source localization[END_REF], and CMOS-based application-specific integrated circuits [START_REF] Glenn G Ko | A 3mm 2 programmable bayesian inference accelerator for unsupervised machine perception using parallel gibbs sampling in 16nm[END_REF]. However, the energy efficiency of such approaches is always limited by the cost of memory access to the external dynamic random-access memory.

Because Bayesian inference does not use multiply-and-accumulate operations, strategies commonly used in neural networks accelerators, such as relying on analogue computation (see section 1.1.3.5), do not bring the same benefit and would have a very high cost in terms of periphery circuit. Therefore, we chose to use a strategy in which memristors are used in a binary fashion and read by tiny, robust and highly energy-efficient sense amplifiers. As a result, we developed hardware systems that we call Bayesian machines. Based on memristors and nearmemory computing, those machines offer features not commonly seen in neural network accelerators: they do not need any calibration process; they are robust to device imperfection without the need for any compensation circuitry; and they can function over a broad range of voltage without any adjustment, making them particularly useful in environments with unreliable power supply, such as those based on energy harvesting.

The foundation of our Bayesian system is Bayes' theorem, which is a fundamental concept in Bayesian statistics that allows for the updating of probabilities based on new observed evidence:

P (Y |O) = P (O|Y )P (Y ) P (O) . (1.1)
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The theorem states that the posterior probability of a hypothesis or event given some observed evidence P (Y |O) is proportional to the product of the likelihood of the observed evidence given the hypothesis P (O|Y ) and the prior probability of the hypothesis P (Y ). Since calculating the probability of evidence P (O) can be challenging, and this factor only acts as a uniform multiplicative coefficient, the product of the prior and likelihood is often considered as a simplified approach to computation:

P (Y |O) ∝ P (O|Y )P (Y ). (1.2)
The probabilities updating process enables us to revise our beliefs about a hypothesis as we receive new evidence. Interestingly, this updating process mirrors how humans learn and understand new concepts. When humans encounter new information, they update their beliefs to reflect this new knowledge. This process of updating beliefs based on new information is a crucial aspect of the learning process and is analogous to the Bayesian updating of probabilities using Bayes' theorem.

Bayesian programming is a complex and broad discipline that cannot be fully summarized in a subsection of a chapter. For a comprehensive understanding, we recommend reading the "Probabilistic Graphical Models" [START_REF] Koller | Probabilistic graphical models: principles and techniques[END_REF] and "Bayesian Programming" [START_REF] Bessière | Bayesian programming[END_REF] books. In this section, we focus on the adaptation of Bayesian inference models to a near-memory hardware architecture that we call the Bayesian machine architecture. 

p(Y = y|O 1 ,O 2 , ...,O n ) ∝ p(O 1 ,O 2 , ...,O n |Y = y) × p(Y = y). (1.3)
The likelihood factors feature a prohibitive memory cost, which grows exponentially with the number of observations n. In real-life settings, this cost can be alleviated. In our example, sensors that measure distinct aspects of the patients (e.g., heart rate and body temperature) may often be considered conditionally independent (meaning that once given the knowledge that a stroke is currently happening, the heart rate and body temperature values can be regarded as statistically independent processes). If all observations are conditionally independent, equation 1.3 simplifies to

p(Y = y|O 1 ,O 2 , ...,O n ) ∝ p(O 1 |Y = y) × p(O 2 |Y = y) × p(O 3 |Y = y)... × p(O n |Y = y) × p(Y = y), (1.4)
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with a memory cost for the likelihood now growing linearly with n, and likelihood factors now becoming easy to model based on measurements of the sensor values, e.g., during the occurrence or in the absence of a stroke. The architecture in Fig. 1.19 presented a case where all observations can be considered conditionally independent, which is not always the case. In particular, When two redundant sensors measure the same phenomenon, they may not be regarded as independent in a good model, even conditionally to the inferred variable. It should also be noted that in the case of a uniform prior, the prior blocks of the Bayesian machine may be removed entirely. An important challenge of the memristor-based Bayesian machine is that multiplications are normally an area-expensive operation in CMOS, raising a concern if a multiplier is associated with each likelihood memory array. For this reason, we adopted two promising computing approaches to implement several Bayesian machines with different computing styles:

• Stochastic computing [START_REF] Gaines | Stochastic computing systems[END_REF][START_REF] Alaghi | Survey of stochastic computing[END_REF] (see Chapter 3): a computing paradigm encodes probabilities as streams of random bits, where, at each clock cycle, the probability for the bit to be one is just the encoded probability. The multiplication of probabilities can then be achieved using simple AND gates, with an extremely minimal area cost [START_REF] Gaines | Stochastic computing systems[END_REF].

• Logarithmic computing [START_REF] Sousa | Nonconventional computer arithmetic circuits, systems and applications[END_REF][START_REF] Parhami | Computing with logarithmic number system arithmetic: Implementation methods and performance benefits[END_REF] (see Chapter 4): a computing paradigm that encodes probabilities in the logarithmic domain. The multiplication of probabilities can then be achieved using simple addition operation.

An important aspect shared by both these models of computation is that the memristorbased Bayesian machine reduces data movement considerably. Due to its simplicity, the Bayesian machine just looks like a memory chip -we call it a "natively intelligent" memory.
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Making a chip, whether in an industrial company or in a research lab, is a complex and demanding process that requires a combination of technical expertise, advanced manufacturing techniques, and significant resources. For industry, the need for advanced engineering, so- 

phisticated
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The aim of a Bayesian machine project is to develop a highly optimized and efficient Bayesian machine by incorporating memristors into an integrated circuit. To achieve this, a collaborative approach is taken, with experts in Bayesian theory, memristor device modeling and characterization, and integrated circuit design working together. The project consists of several main steps.

The theory and early model of the Bayesian machine were developed by Tifenn Hirtzlin Using the scaled-up system and a homemade energy analysis framework developed by Clement Turck and I, an energy versus performance study is conducted, and the results are benchmarked with conventional computing units. Finally, the performance of the Bayesian machine is evaluated in real-world application, a hand gesture recognition task, the task was developed by Raphael Laurent (HawAI.tech). The potential benefits and limitations of the Bayesian machine are evaluated. Our works were rewarded by one published article in the Nature Electronics journal [START_REF] Harabi | A memristor-based bayesian machine[END_REF], and one article presented at the DATE 2023 conference [START_REF] Turck | Energy-efficient bayesian inference using near-memory computation with memristors[END_REF].

Design Flow for Memristor-based Chips

The Bayesian machine is an application-specific integrated circuit (ASIC), i.e., an integrated circuit designed for a particular use and. To design these circuits, a complex design flow needs to be respected. A conventional design flow of a chip using mature technologies (available
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for industries) is a multi-step process that starts from a concept or idea to the creation of a Graphic Design System (GDS) mask of a functional integrated circuit ready to be sent to fabrication. In this multi-step process, several software tools provided by EDA companies such as Cadence and Synopsys are used. Technology libraries are needed, provided by the design kit of the foundry.

As shown in Fig. 1.22, the design flow begins with system specifications, where the definition of concept and requirements for the chip is defined, including the intended use case, performance requirements, and power constraints. The next step is the architectural design,

where the overall architecture of the chip is determined, including the number and types of components, the connections and the data flow between them. The digital logic of the chip is then designed using a high-level hardware description language in the RTL (register-transfer level) design stage. This is followed by the logic synthesis step, where the RTL design is transformed into a gate-level representation. The physical design step involves laying out the components of the chip and defining the interconnections between components. Verification is an important part of the design flow, where the chip design is tested and validated at various stages to ensure that it meets the specifications. The final step is generating the GDS file to be sent for fabrication, where the chip is manufactured using specialized techniques such as photolithography. The memristor-based Bayesian machines are hybrid CMOS/memristor integrated circuits that embed memory arrays within logic. Due to the lack of a foundry design kit that supports such designs, and the need to use multi-supply voltages, we developed a semi-automated design flow for our first Bayesian machine (the stochastic Bayesian machine). The memristor arrays and their mixed-signal peripheral circuitry were manually designed, placed, and routed using the Cadence Virtuoso electronic design automation (EDA) tool. To enable the exploration of various programming regimes for the memristors, we designed the programming circuitry with wide transistors and large safety margins. Analog simulations were performed using the Siemens Eldo and Cadence Spectre simulators.

On the other hand, we described all digital computation blocks using the SystemVerilog hardware description language and verified their logical correctness using the Cadence NC-Verilog Simulator. The digital circuits were synthesized using either the Cadence Encounter RTL Compiler (stochastic Bayesian machine) or Cadence Genus Synthesis Solutions (logarithmic Bayesian machine), and then placed and routed using the Cadence Encounter RTL-to-GDSII tool (stochastic Bayesian machine) or the Cadence Innovus system (logarithmic Bayesian machine). The digital circuits employed thin gate oxide high-threshold transistors.

In the case of the stochastic Bayesian machine, the resulting computation blocks' layouts, as well as those of memory blocks, were manually placed and routed in a full-custom fashion.

We performed design rule checks, layout-versus-schematic comparison, and antenna effects design rule checks using dedicated Calibre EDA tools to ensure the final design's physical verifications. 

System Specifications
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To expedite the physical design process for the Logarithmic Bayesian machine, the next generation of Bayesian machines, we developed a fully-automated place and route flow, shown in Fig. 1.23. This flow automatically places and routes the memory blocks, which consist of a memristor array with its mixed-signal peripheral circuitry, alongside digital logic standard cells. This significantly reduces the time and effort required for the design process. Prior to the synthesis step, we developed a Liberty Timing File for the memory cell, which represents the timing and power parameters associated with the cell. In addition, we generated an abstract view of the memory cell, which is necessary for automatic layout tools. We then only need to do some modifications to the standard automated place and route scripts and use a custom-designed floor plan. With these changes, we are able to complete the physical design process of any digital hybrid CMOS/memristor-based chip, from the placement stage (step 7 in Fig. 1.22) to the generation of a GDSII file (step 11 in Fig. 1.22) using the Cadence Innovus Implementation System. We then perform further physical verifications of the final design, including design rule checks, layout-versus-schematic comparison, and antenna effects design rule checks, using dedicated Calibre EDA tools. By implementing this automated flow, we were able to reduce the time required for the physical design process from over a month to less than two days, which significantly sped up our research and development efforts.

Once the design was finalized, the chip was sent to fabrication. The CMOS part of our test chip was fabricated using a low-power foundry 130-nanometer process with four layers of metals. The memristors were fabricated on top of exposed vias and composed of a TiN/HfO x /Ti/TiN stack. The active HfO x layer was deposited using atomic layer deposition and is 10-nanometers thick. The Ti layer was also 10-nanometers thick, and the memristor structure had a diameter of 300 nanometers. Finally, a fifth layer of metal was deposited on top of the memristors.

Measurement Setup for Memristor-based Chips

When preparing a measurement setup for a memristor-based die, the choice of packaging is critical. Packaging, which involves enclosing an integrated circuit in a protective case or enclosure, is primarily aimed at safeguarding the fragile silicon chip from mechanical damage, moisture, corrosion, and other environmental factors that could impair or destroy its performance. Additionally, it facilitates the mounting of electrical contacts for connecting the die to the printed circuit board (PCB).

Our hybrid CMOS/memristor chips are fabricated in two phases, including the input/output pads that are primarily intended for a characterization task, without built-in electrostatic discharge (ESD) protection. To overcome this limitation, we designed and implemented our own custom ESD protection circuit, necessitating additional precautions during measurements.

However, packaging a chip with only custom ESD protection is a risky decision, so we produced two batches of chips: one non-packaged batch (Fig. 1.24a-b) and one packaged batch (Fig. 1.24e), which required two different measurement setups.

We used a custom-made 25-pads probe card (Fig. 1.24c) and a dedicated printed circuit For packaged dies, we designed a custom PCB that differs from the one used for nonpackaged dies (Fig. 1.25a). The packaged dies can be easily plugged and unplugged into a package adapter (socket) soldered on the PCB. The inputs and outputs of this PCB are connected to the same hardware and use the same software as the non-packaged die setup. For both measurement setups, the tests are conducted using Python within a single Jupyter notebook that controls the entire setup (Fig. 1.25).

Before using the Bayesian machine, the memristors must undergo a unique "forming" operation to create conductive filaments. This is done memristor-by-memristor. Once formed, the memristors can be programmed in low-resistance or high-resistance states (LRS or HRS).

We need to conduct characterization experiments to explore the digital programming conditions and identify the appropriate programming voltages. Once we determined the correct programming voltages, we can program the likelihoods in the memristor arrays. High programming voltages are no longer necessary once the likelihoods are programmed, and the test chip can be used in its normal mode to perform Bayesian inference based on observations (more details about chip testing will be reported in the next chapter). 

Task Implementation and Energy analysis

The characterization and testing of the Bayesian chip were essential components of our research project. After successfully verifying programming and inference, it was crucial to conduct an energy and performance analysis of the system. To achieve this, we worked on a realworld task, the hand gesture recognition task, based on inputs measured by an inertial measurement unit (IMU). The ultimate objective of the system was to accurately identify the hand gestures performed by a user wearing the IMU. All details about this part of the work are provided in the next chapter. • Implement the likelihood model. The likelihoods of the Bayesian models are computed.

In our sample gesture recognition task, likelihoods are modeled by fitting Gaussian laws on the training data. In other situations, likelihood models may also be obtained based on expert knowledge or prior information [START_REF] Bessière | Bayesian programming[END_REF].

• Normalize and quantize likelihoods. For improving the efficiency of stochastic computing, likelihoods are normalized per column by the maximum likelihood value of the column. Likelihoods are then discretized as eight-bit integers, and models are quantized to the number of observation values supported by the Bayesian machine.

• Program the Bayesian machine. Likelihood values are programmed to the memristors of the Bayesian machine following the methodology described in the next chapter.

• Use the Bayesian machine to do inference. The Bayesian machine can finally be used to infer variables based on observations, using the methodology described in the next chapter.

ral network inference only requires low precision for synaptic weights, further enhancing the suitability of analog storage for this purpose. The situation is different for Bayesian inference. Unlike in neural networks, the multiplyand-accumulate operation is not needed, which limits the main benefit of analog computation and increases the energy cost due to periphery circuits. Moreover, higher precision is required for storing likelihood than for synaptic weights in neural networks. For instance, our machine uses eight-bit precision, which is not achievable with analog memristors. Therefore, our design relies on single-level bit cells read with extremely simple and highly energy-efficient precharge sense amplifiers (more details are provided in Chapter 2).

This work

Our approach using sense amplifiers has several advantages over analog methods. The
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sense amplifiers apply a current to the memristors only as long as necessary, while the analog approach needs to apply a current long enough for the voltages to stabilize, which usually involves a relatively slow feedback circuit. Furthermore, our approach avoids the need for energy-hungry analog-to-digital or time-to-digital converters, as the sense amplifiers naturally provide a digital output. This reliance on digital read with PCSA circuit distinguishes our work from other neural network implementations.

The digital read with PCSA circuit is highly flexible in terms of supply voltage, unlike ana- In recent years several works have explored connections between emerging memories (such as memristors) and Bayesian inference. Most of those works from the state of the art either re-

log

CHAPTER 1: THE CASE FOR BUILDING BAYESIAN MACHINES WITH MEMRISTORS

lied on computer simulations [START_REF] Gao | Bayesian inference based robust computing on memristor crossbar[END_REF][START_REF] Faria | Implementing bayesian networks with embedded stochastic mram[END_REF], or on hybrid hardware/software realizations, where experimental nanodevices are used, and the rest of the system is simulated on a computer [START_REF] Vodenicarevic | Low-energy truly random number generation with superparamagnetic tunnel junctions for unconventional computing[END_REF][START_REF] Dalgaty | Ex situ transfer of bayesian neural networks to resistive memory-based inference hardware[END_REF][START_REF] Dalgaty | In situ learning using intrinsic memristor variability via markov chain monte carlo sampling[END_REF].

The works of [START_REF] Dalgaty | Ex situ transfer of bayesian neural networks to resistive memory-based inference hardware[END_REF][START_REF] Dalgaty | In situ learning using intrinsic memristor variability via markov chain monte carlo sampling[END_REF] focus on the implementation of Bayesian neural networks, a special class of Bayesian model that can model uncertainty much better than conventional neural networks, but do not feature the comprehensive explainability of the more traditional Bayesian inference addressed by our machine. These two works use memristors as main memory, as in our machine, and exploit the variability of memristors as a source of random variable. On the other hand, our machine focuses on reliability by eliminating the impact of memristor variability.

Bayesian inference in the work of [START_REF] Gao | Bayesian inference based robust computing on memristor crossbar[END_REF] is used in a very different way. Unlike all other works reported in Table 1.2, the final goal of this work is to implement non-Bayesian machine learning model (a conventional neural network). By treating these networks as Bayesian neural networks modeling memristor variability, the authors are able to tolerate memristor imperfection better than more conventional approaches. In this work, memristors also implement memory.

References [START_REF] Vodenicarevic | Low-energy truly random number generation with superparamagnetic tunnel junctions for unconventional computing[END_REF][START_REF] Faria | Implementing bayesian networks with embedded stochastic mram[END_REF] differ from all other works of Table 1.2, in that the nanodevices are not used as memory, but as random bit generators (replacing the linear feedback shift registers).

These works are not full-system studies, as they do not address the memory question. Also, they focus on random variables with binary values, unlike our Bayesian machine that deals with multiple-valued inputs and outputs. On the other hand, we see at the end of the next chapter that incorporating some ideas from these works is a natural prospect for our Bayesian machine.

In our work on Bayesian Machines, we aim to advance the state-of-the-art of nanodevicebased Bayesian inference by developing fully fabricated Bayesian systems that improve the maturity of memristor-based Bayesian accelerators. These systems consist of locally distributed memory arrays that operate in parallel to perform Bayesian inference. Importantly, our approach differs conceptually from other proposals in the literature (Table 1.2), and here we aim to clearly define our contributions to the field:

• Our integrated circuits are the first fully fabricated memristor-based Bayesian inference systems.

• Compared with memristor-based neural network accelerators, our systems allow flexibility and simplicity (possibility to vary supply voltage, absence of calibration or compensation), and high robustness to read disturb (see Section 3.2.3), device variability, and outstanding robustness to single-upset events. All these features are due to the use of single-level cells read with particularly simple, robust, and energy-efficient precharge sense amplifiers.

• Our integrated circuits is a full system that features an array memory blocks that perform Bayesian inference in parallel, therefore solving the challenge of the distribution of the The Bayesian machine has the potential to be embedded at the edge with low power consumption, providing a practical solution for dealing with highly uncertain situations with little data and making predictions using an explainable mode. Additionally, the explainability of Bayesian inference is desirable in critical situations for ethical and regulatory reasons, and the Bayesian machine can recognize situations where it cannot provide a reliable answer, which could be useful for medical devices to prevent wrong decisions with serious consequences.

Overall, the developed integrated circuits, the stochastic Bayesian machine (see chapter

2) and the logarithmic Bayesian machine (see chapter 3) offer flexibility, simplicity, and high robustness to device variability and single-upset events. our work on those projects have been published in a Nature Electronics article [START_REF] Harabi | A memristor-based bayesian machine[END_REF] and presented at the DATE 2023 conference [START_REF] Turck | Energy-efficient bayesian inference using near-memory computation with memristors[END_REF].

Chapter 2

A Stochastic Bayesian Machine

Anyone who attempts to generate random numbers by deterministic means is, of course, living in a state of sin.

John VON NEUMANN

CHAPTER 2: A STOCHASTIC BAYESIAN MACHINE

Real-world information, which consists of continuous-valued analog signals, requires conversion to digital data via quantization for digital circuits to process. However, high precision in quantization can be costly in terms of energy consumption and memory requirements. To address this issue, a recent trend in the literature has been to reduce precision and to implementing "approximate" computing.

These ideas have been massively applied to simplify coding schemes and optimize hardware for neural network-based algorithms in recent years. However, less attention has been devoted to the Bayesian approach, which involves successive product of probabilities. The main potential influences on energy consumption in Bayesian computation are access to probabilities data, multiplication operations between probabilities, and data movement. To address these challenges, we have employed stochastic computing, which uses random bit streams to perform computations and requires far fewer transistors and minimal data movement compared to traditional arithmetic.

In this chapter, we present a memristor-based stochastic Bayesian system that is fully implemented in hardware. Our prototype circuit incorporates 2,048 memristors and 30,080 transistors on the same chip, using a hybrid CMOS/memristor process. The architecture of the machine uses fully distributed memory, and due to the locality of computations and reliance on stochastic computing, minimum data movement is performed between different parts of the system. We provide a detailed explanation of the design, fabrication, and characterization of the Bayesian system, followed by an energy vs. accuracy performance study for a hand gesture recognition task. Our study shows that our system has an energy improvement of several orders of magnitude compared with a standard implementation of Bayesian inference on a microcontroller unit fabricated in a similar CMOS technology. Moreover, our system has an instant on/off feature due to the use of non-volatile memory and is inherently resilient to soft errors, making it suitable for use in extreme environments.

The primary energy expenditure in our machine was found to be due to random number generation. To mitigate this, we also considered using nanodevices for local generation of random bits, with the potential for farther energy reduction of our Bayesian machine. This led us to design and fabricate prototype circuits, which utilized unstable SMTJ devices and PCSA sensing circuitry for random bit generation.

The following Sections provide further details on the implementation and performance of our developed system. This chapter, with the exception of section 2.5, is adapted from an article published in Nature Electronics [START_REF] Harabi | A memristor-based bayesian machine[END_REF]. The simple logic circuitry of stochastic computing operations, such as stochastic adders (as shown in Figure 2.1c) and stochastic multipliers (as shown in Figure 2.1d), is well-suited for co-location with memory circuitry. The multiplication of probabilities can be achieved using basic AND gates, resulting in minimal area cost [START_REF] Gaines | Stochastic computing systems[END_REF] and efficient replication of the elementary processing circuit, the likelihood circuit in the Bayesian system. This enables the parallel computation of a large number of computations, simplifying the overall design and increasing processing efficiency.

BAYESIAN INFERENCE WITH STOCHASTIC

In addition, stochastic computing also reduces data size and data movement. While it may require a larger number of clock cycles compared to conventional calculation methods, the use of a single wire to encode data significantly reduces data size. An important aspect of this model of computation is that, as in most practical settings, probabilities tend to be low, and the output of stochastic computing AND gates is a zero value at most clock cycles. Therefore, the different blocks of the memristor-based Bayesian machine only need to pass single bits (Fig. 2.2) that are zeros at most clock cycles: the memristor-based Bayesian machine limits data movement considerably.

Figure 2.2: General architecture of the Stochastic Bayesian machine. Optimization of the Bayesian machine for hardware. Random numbers (RND) are generated using linear feedback shift registers (LFSRs), shared by column, and converted using digital "Gupta" circuits to a series of random bits proportional to the appropriate probability. Additionally, the likelihoods are normalized by the maximum likelihood value of the column to maximize the convergence speed of the machine. The stochastic multiplication is implemented by a single-bit AND gate.

The memristor-based Bayesian machine is an elegant concept, but its design faced significant challenges related to the use of stochastic computing. To ensure a consistent result on mathematical operations, stochastic computing requires high-quality random number generators that can encode uncorrelated bitstream data. Random number generators can be divided into two categories: PRNGs (Pseudo Random Number Generators) and TRNGs (True Random Number Generators). TRNGs derive random bits from physical sources that have intrinsic entropy, such as thermal noise, whereas PRNGs implement a deterministic system with a specific algorithm. For our Bayesian architecture, which uses near-memory computing, the generation of random numbers is a design choice that is subject to the algorithmic constraints of the
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system.

For our stochastic Bayesian machine, we have chosen to employ digital pseudorandom number generators, specifically linear-feedback shift registers (LFSRs), to generate uniformly distributed numbers. In our design, a single LFSR is used per column (Fig. 2.2) so that each row can perform an independent stochastic computation, and different rows can rely on the same pseudorandom numbers. At each clock cycle, each likelihood block generates a random bit with the probability p by comparing the number generated by the vertical LFSR with the value of the probability p read from the likelihood memory array. After a defined number of clk cycles, the resulting bitstream has a ratio of 1 to 0 proportional to a probability stored in the memories. We use a special comparator circuit in our design, proposed by Gupta in 1988 [START_REF] Alaghi | Survey of stochastic computing[END_REF][START_REF] Kumar | Binary multiplication with pn sequences[END_REF], for the comparator.

Additionally, stochastic computing converges slowly when multiplying low probabilities, and likelihoods in Bayesian models tend to be very low. To optimize the operation of the Bayesian machine without any loss of accuracy, we normalize the probabilities in a column so that the maximum likelihood in a column is one. The first considerable challenge to design a reliable Bayesian machine is that memristors are prone to errors. Industrial applications of memristors use strong formal error-correcting codes (ECC) [START_REF] Chang | envm rram reliability performance and modeling in 22ffl finfet technology[END_REF]. Using ECC in the Bayesian machine is inappropriate, as error detecting and correcting circuits would dominate both area and energy consumption if they needed to be replicated for each likelihood memory array [START_REF] Gregori | On-chip error correcting techniques for new-generation flash memories[END_REF]. Therefore, we use an alternative strategy:

memristors are used as single-level cells, and bits are programmed in a complementary fashion, and read differentially by sense amplifiers comparing the resistance of two memristors (see Programming the memristors within the Bayesian machine is a second major challenge.

The nominal voltage of our foundry CMOS process is only 1.2 volts for the digital functions, whereas the forming and programming operations of the memristors require several volts. The distribution of the higher-than-nominal voltages is a challenge in systems such as this one with massively distributed memory blocks that each need access to all voltage supplies. For this reason, in our circuit, the signals controlling the forming and programming operations are distributed as nominal-voltage logic signals. They are raised to higher voltages by level shifters distributed locally all around the memristor arrays. Fig. 2.5c-d shows the schematic of the level shifters implemented in our circuit. Section 2.2.2 details specifically how the memristors can be formed and programmed to zero or one state using these level shifters.

In each likelihood memory array, each row includes the eight bits of one likelihood value, and the different rows correspond to the different values of the observation. When new observations are presented to the system, a whole row needs to be read in each of the 16 likelihood memory arrays (the observations presented through vertical wires, acting as a row address for each memory array see Fig. 2.2). Fig. 2.4b shows the differential precharge amplifier used for reading the memory bits. This circuit precharges the two complementary bitlines to the supply voltage, and naturally detects the bitline that discharges the fastest using cross-coupled inverters. This very compact circuit is highly energy-efficient, as it involves no direct current between ground and the supply voltage. It is also highly robust due to its differential nature and requires no calibration. Each column of each likelihood memory arrays features a precharge sense amplifier, and during a read operation all 128 sense amplifiers of the Bayesian machine function simultaneously (corresponding to the simultaneous read of 8 bits for each of the 16 likelihood memory arrays). Section 2.2.3 explains in more details the operation of precharge sense amplifiers.

After this read operation, the Bayesian machine can perform Bayesian inference using stochastic computing. The four LFSRs generating pseudorandom numbers each clock cycle are situated within the digital control unit and their output are distributed to the likelihood memory arrays through vertical wires. Each likelihood block uses the GUPTA comparator circuit to generate random bits with a probability equal to the value read in their likelihood memory array, based on the output of the LFSRs. This circuit gives equivalent results than a comparator, but with lower area cost [START_REF] Kumar | Binary multiplication with pn sequences[END_REF]. The resulting bits are combined by AND gates, all happening during a single clock cycle. An important aspect of the design is the clock is only necessary in the digital control circuitry block, outside the core machine, to operate the LFSRs. This feature limits the energy cost of clock distribution. Section 2.2.4 presents in more detail the operation of the Bayesian machine.

Programming methodology of the Bayesian machine

Memristors are programmed with voltages higher than the nominal voltage used for digital circuitry. The higher-than-nominal programming voltage requirement of memristors is a minor concern in systems that separate memory from computing, as a single dedicated high-voltage circuitry can be associated with the memory array. The Bayesian machine, by contrast, features multiple small memory arrays fully embedded within logic. The programming of memristors, therefore, requires the distribution of higher-than-nominal programming voltages locally and
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an appropriate programming strategy. Managing this complexity is the largest design challenge for obtaining a functional Bayesian machine.

The Bayesian machine stores bits using a 2T2R structure (see Fig. 2.6a): the bit cell is composed of a "bit line" and a "bit line bar" memristor (R and R b ), positioned on the same row, and each associated with a selection nMOSFET. The two memristors are connected to two different bit lines (BL and BLb) on their bottom electrode side. Conversely, the top electrode of the two memristors is connected to the same source line (SL), to limit wiring and programming circuitry. This shared source line requires careful attention when programming the memristors.

The gates of the control transistor of all memristors on the same row are connected to the same word line (WL).

Programming operation is controlled by nominal-voltage signals (CBL, CSL, and CWL) and an address, all provided by the digital control unit of the Bayesian machine. Decoders select the addressed row and column (Fig. 2.6a)). Then, local level shifters apply either ground or higher-than-nominal voltages (VDDR and VDDC) to the crossbar arrays, where needed:

• Each memory row features one level shifter (LS, commanded by CWL), which controls the word line that feeds the gates of nMOS selection transistors of the memory rows.

Depending on the value of CWL, the level shifter of the addressed row connects its world line either to ground or to the VDDR power supply (see Figs. 2.5b and c).

• Correspondingly each memory column features two level shifters (regular LS, commanded by CSL and tri-state TLS, commanded by CBL), which control the source lines and the bit lines. These level shifters connect the source line and the two bit lines either to the ground or to the VDDC power supply. Notice that the two-bit lines BL and BLb are connected to the same level shifter, and therefore always receive complementary voltage (see

Figs. 2.5b and d).

When the system is first characterized, the memristors need to be formed. Fig. 2.6a shows the voltages that need to be applied on the memristors during the forming step. The Table in Fig. 2.6c lists the associated CSL, and CBL values. Note that when one memristor is being formed, the other memristor is unaffected, due to the fact that the bit line and bit line bar always see complementary voltages (as they are connected to the complementary outputs of the BL level shifter). Once the proper address, CSL, and CBL values have been set, CWL is raised to one, and forming occurs during the CWL pulse (of one-microsecond duration, see Fig. 2.6b).

Once the memristors are formed, they are all in a low resistance state. The memristors can then be programmed and reprogrammed at will, either in low resistance state (LRS) by a SET operation, or to a high resistance state (HRS) by a RESET operation. In our 2T2R bit cells, the two memristors are always programmed in a complementary fashion: this complementary technique allows high robustness to memristor variability and read disturb effects [START_REF] Hirtzlin | Digital biologically plausible implementation of binarized neural networks with differential hafnium oxide resistive memory arrays[END_REF][START_REF] Bocquet | Inmemory and error-immune differential rram implementation of binarized deep neural networks[END_REF].

To program a zero value in the bit cell, the bit line memristor is programmed to high resistance (RESET) and the bit line bar memristor to low resistance (SET). The opposite is done to The PCSA is an energy-efficient sense amplifier that operates without any direct current path between the ground and the power supply, thanks to the initial precharge phase. The details of the operation of this circuit are reported in [START_REF] Zhao | High speed, high stability and low power sensing amplifier for mtj/cmos hybrid logic circuits[END_REF][START_REF] Zhao | Synchronous non-volatile logic gate design based on resistive switching memories[END_REF], and we summarize them here. The precharge pulls up all voltages of the sense amplifier and the bit lines to the digital power supply VDD (Figs. 2.7a and c). In the actual read operation, the two bit lines discharge (Figs. Before starting Bayesian inference operations, we first need to load the LFSR seeds. In our design, the input seeds are loaded from input pads and routed to the four LFSRs of the Bayesian machine by the Bayesian machine digital control unit. Being able to choose the LFSR seed is important for our study (see section 2.3.3). In a final design, optimal LFSR seed values could be loaded automatically by the control unit. As the LFSRs have a periodical output, the seed initialization needs to be performed only once as long as the digital power supply VDD remains on.

Reading strategy and Read disturb on the Bayesian machine

Inference Using a Bayesian machine

The Bayesian machine then performs inference in two main phases:

• Memory read. Likelihood values are read from the memristor arrays, based on the input observations (acting as row addresses). Observations O 1 , ...,O n are off-chip inputs loaded from dedicated input pads, then addressed to the likelihood memory arrays by the Bayesian machine digital control unit (one observation for each column, see Fig. 2.2).

All likelihood memory arrays are read simultaneously.

• Iterative stochastic inference phase. At each clock cycle, LFSRs generate new eight-bits pseudo-random numbers. These numbers feed the Gupta comparator circuits to compute the stochastic bits based on the read likelihood values. Outputs of Gupta comparator circuits from the same row are fed to a chain of AND gates, to perform the stochastic multiplications; the results of those multiplications represent the Bayesian machine outputs. All these operations are performed by purely combinational circuits in one clock cycle. As the periodicity of the LFSRs is 255 cycles, the maximum number of iterations is 255 cycles.

The Bayesian machine can operate in two modes. In the conventional stochastic inference mode, computation is performed for a pre-chosen number of cycles. The machine decision is based on bit streams counting of outputs (the number of generated one values). In the"powerconscious mode", the Bayesian machine stops the stochastic inference iterations as soon as one of the outputs produces a bit value of one; the decision is made based on that result (see section 2.4).
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Stochastic Bayesian machines hold great promise as a means of implementing Bayesian inference tasks, and as such, it is imperative to experimentally verify the reliability of memristorbased chips for such computations. In this section, we present a series of on-chip experiments and simulations that aimed to optimize the performance of a stochastic Bayesian machine.

To this end, we conducted most of our experiments using non-packaged dies, employing a custom-made 25-pads probe card for probe testing (shown in Chapter 1), with the exception of read-disturb experiments which were conducted on packaged dies.

We first emphasize the importance of exploring the forming and programming conditions of memristors, given their process-to-process variability and generation-to-generation changes.

The fabrication of new memristor-based chips with improved processes renders the forming and programming voltages potentially different from those of previously tested chips. These first results are reported in section 2.3.1. Subsequently, we conducted an experimental study on the effect of LFSR seed choices on the on-chip inference results following successful programming of the likelihoods in the memristor arrays. These measurements are shown in section 2.3.2. Our findings underscore the considerable improvement achieved with optimal seeds as compared to the imperfections and deviations observed with non-optimal seeds.

To optimize the performance of the stochastic Bayesian machine, we carried out stochastic Bayesian inference simulations aimed at searching for optimal seeds for the linear feedback shift registers. This exploration is detailed in section 2.3.3.

Forming, Programming, and Read-Disturb Experiments

The first results of the electrical characterization of the test chip are presented in Fig. 2.11. The programmed bits are very stable. When remeasuring the die five months after programming, no error was seen. The demonstrator was stored at room temperature during these five months

The typical operation of a Bayesian machine requires frequent read operation on the likelihood arrays, with rare reprogramming: the memristors need to be reprogrammed only when To evaluate the existence of read disturb, we performed repeated read operations on one likelihood memory block of the fabricated memristor machine. The read operations are performed by the on-chip precharge sense amplifiers. We used a digital power supply voltage of 1.2 volts, as it is the highest digital supply voltage supported by our system, and the more at-risk of read disturb effects. Our experimental setup allows reading the likelihood array approximately one million times per day. We observed that after five days of continuous read operations, i.e. a total of 5.7 million read operations of a complete likelihood memory array, no likelihood bit had changed (see Fig. 2.9c), suggesting a high immunity to read disturb effects.

The immunity to read disturb of our machine can be explained by three main reasons:

• Hafnium oxide memristors are naturally resilient to read disturb effects due to the highly nonlinear nature of their switching process [START_REF] Grossi | Electrical characterization and modeling of 1t-1r rram arrays with amorphous and polycrystalline hfo2[END_REF].

• The complementary 2T2R approach not only reduces the impact of device variability, but also read disturb effects. Even if the read disturb effect increased the resistance of a low resistance state device, the stored likelihood would be affected only if the disturbed device ends up in a resistance higher than its complementary high resistance device.

• The precharge sense amplifier used to read the devices naturally mitigates read disturb effects. When the sense amplifier has identified the stored bit, the nodes connecting the
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sense amplifier to the memristor array are rapidly pulled down to the ground, and the read memristors therefore see zero voltage. Therefore, current is applied to the memristors only during the time needed for the sense amplifier to differentiate between the two possible memory states. This mode of operation contrasts with conventional currentmode sense amplifiers where current is applied during a fixed time that has to be chosen in a worst-case scenario [START_REF] Chang | A 0.5 v 4mb logic-process compatible embedded resistive ram (reram) in 65nm cmos using low-voltage currentmode sensing scheme with 45ns random read time[END_REF].

Bayesian Inference Experiments

The actual results of the stochastic Bayesian machine operation are shown in Fig. 2.12a-b. In In Fig. 2.12a, we see that the measured probabilities closely follow Bayes' law, with some deviation. This deviation can be attributed to the imperfect nature of LFSR-generated pseudo-random numbers. The numbers generated on the different columns have correlations, which prevent stochastic computing from being perfectly accurate.

Fortunately, this imperfection can be avoided by an intelligent choice of the LFSR seeds. In the measurements of Fig. 2.11b, the chip was initially programmed by an optimal seed choice.

We see that the measurements follow Bayes' law perfectly for all possible inputs, which highlights the high potential of stochastic computing for Bayesian inference. Section 2.3.3 of this document details how the optimal LFSR seeds were chosen, their value, and the reason for their existence. This result shows that the Bayesian machine is able to produce accurate outputs, despite its reliance on very simple pseudorandom numbers. The methodology for finding this optimal seed values is presented in the next subsection.

In addition to its limited data movement, which we analyze further in the section 2.4, our approach offers two significant opportunities for low-energy operation. First, as the likelihoods are stored in non-volatile memristors, the system provides an instant on/instant off feature.

Therefore, the power supply can be turned off any time the system is not used. Second, due to its fully digital nature, the system is flexible in terms of supply voltage. Figs. 2.11a-b highlight that the system remains fully functional when reducing the power supply down to a value of 0.6 volts, although the nominal supply of our CMOS technology is 1.2 volts. This operation allows reducing power consumption by a factor of approximately four. At lower voltages (light blue points), the Bayesian inference becomes less accurate. This voltage limit is due to the threshold voltage value of the thick oxide transistors used within the memory array, around 0.6 volts. Even lower supply voltages could therefore be used by using lower threshold-voltage transistors.

The search for Optimal LFSR seeds

In its original form, stochastic computing relies on high-quality and non-correlated random numbers. Generating high-quality random bits and maintaining the independence of stochastic bits after they have been processed by stochastic computing circuits is a major challenge, leading to costly strategies like randomness isolation and regeneration [START_REF] Winstead | Tutorial on stochastic computing[END_REF]. However, in practice, multiple works have shown that pseudorandomness and correlations are not necessarily a fundamental issue for stochastic computing, if they are properly considered in the system design [START_REF] Alaghi | Survey of stochastic computing[END_REF]. In the particular case of our Bayesian machine, we found that we could rely on low-quality, low-cost LFSR-generated random numbers, and still get accurate Bayesian inference, under the condition of initializing the LFSRs with well-chosen seeds.

Our design exploits one eight-bit LFSR per column, which generates pseudorandom numbers with a periodicity of only 255 clock cycles. This type of correlation is observed with most choices of LFSR seeds. However, the choice of seeds used to generate Fig. 2.13b, referred to as "optimal" throughout the thesis, shows dramatically reduced correlations. This allows obtaining the highly accurate results of Figs. 2.11b, and suggests that these seeds should be used for all computations. Due to the periodicity of the LFSR, LFSR initialization needs to be performed only once, when the system is turned on. The gesture recognition task, which we analyze further in the next section, requires six LFSRs. We also used eight-bit LFSRs and optimized the seed choice for this situation.

Energy efficiency of the Stochastic Bayesian machine

Our test chip allows validating the possibility to address the challenges of designing and fabricating the memristor-based Bayesian machine. This system is, however, not adapted to evaluate the power consumption of a final system, as the test chip is too small to implement real-life applications. Additionally, the constraints of the semi-academic process and the wide transistors that we employed cause a high increase of the dynamic capacitive energy consumption.

To evaluate power consumption, we switch to a larger design and a realistic application, and use industry-standard integrated circuit design tools to assess energy consumption with a fine granularity.

We focus on an application of gesture recognition. The input to the Bayesian machine is a selection of features extracted from the time traces on an inertial measurement unit (IMU, see Appendix section of this chapter). The goal of the system is to recognize the hand gesture performed by a user wearing the IMU (see Fig. 2.14a): the gesture of writing the digit one, the digit two, the digit three, or a signature (see Appendix section of this chapter). This task is performed by a scaled-up version of the Bayesian machine, using 24 (six columns, four rows) four-kilobits likelihood memory arrays. We designed and laid out this system in our reference process (low-power foundry 130nanometer process) and evaluated its energy usage based on simulations. We can see in the image of the masks shown in Fig. 2.14b that in this scaled design, the area of the memristor arrays is now dominant, with regard to the memory periphery circuitry and the wiring of the Bayesian machine. The energy consumption is based on an exact scenario using value change dump files, and required adapting the standard flow of energy analysis, which is not naturally adapted for systems where the memory is as distributed as ours (see Appendix section of this chapter). The energy consumption of the memory arrays and the digital circuits is evaluated independently using circuit (Spice) simulation and digital circuits analysis tools. In both cases, parasitic capacitances were extracted based on a complete layout and were included in the energy analysis (see Appendix section of this chapter).

Fig. 2.15a shows the energy consumption of the different elements of the system in the three operation phases (after the likelihoods have been programmed). The LFSR initialization consists in loading the seeds of the six LFSRs of the circuit. This operation consumes 0.38 nanojoules; it needs to be performed once when the system is turned on, and does not need to be repeated as long as the power remains on. It, therefore, remains a minor contribution to energy consumption. This energy could also substantially be reduced by hardwiring the value of the optimal seeds (whereas seeds are loaded from external inputs in our design). By contrast, the memory read operation needs to be performed each time a new input is presented to the system, and consumes a total of 0.3 nanojoules, including both the energy associated with the memory circuit themselves and the digital control circuitry. The actual stochastic inference, corresponding to the stochastic computation, consumes 2.2 nanojoules (assuming that all 255 cycles of the LFSRs have been operated). Therefore, in sharp contrast with von Neumann-type architectures [START_REF] Pedram | Dark memory and accelerator-rich system optimization in the dark silicon era[END_REF], the energy consumption of the computation is dominant with regards to the energy for accessing data, highlighting the benefits of computing close to memory. Before that, an obvious technique to lower the energy consumption is to reduce the number of cycles computed during stochastic inference. This reduction naturally impacts accuracy, as highlighted in Fig. 2.16a. This Figure shows, for the gesture recognition task, the accuracy of the Bayesian machine, as a function of the number of considered cycles. Numbers higher than 255 serve no purpose, as 255 is the periodicity of the eight-bits LFSRs. We consider the traditional stochastic computing strategy, as well as a "power-conscious" strategy. In the traditional approach, the system is operated for a fixed number of cycles, and the recognized gesture is chosen as the output that generated the highest number of ones. In the simplified powerconscious strategy, computation is stopped as soon as any of the circuit outputs produces a one, and this output gives the recognized gesture. We see that in both cases, cycle numbers as low as 50 allow approaching the accuracy obtained with 255 cycles. Based on these results, Fig. 2.16b shows the interplay between accuracy and energy consumption, using both strategies. The power-conscious approach consumes less energy than the conventional approach at equivalent accuracy. However, the power-conscious approach is limited to an accuracy of
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86%, while the conventional approach can reach 89%. Overall reducing the number of cycles appears a highly effective strategy: in the conventional approach, accepting an accuracy reduction of only one percentage point allows reducing the energy consumption by a factor of 2.9.

To benchmark the energy efficiency of our approach, we also implemented the Bayesian gesture recognition task on a microcontroller unit (MCU), with an optimized approach using integer computation solely (see section Appendix section of this chapter). MCUs are tiny computers incorporating all their logic, volatile, and non-volatile memory on a single chip. They are currently the mainstream approach for providing AI at the edge in energy-constrained contexts [START_REF] Warden | Tinyml: Machine learning with tensorflow lite on arduino and ultra-low-power microcontrollers[END_REF]. Experimental measurements showed that recognizing one gesture with the MCU used 2.0 microjoules. Comparatively, the Bayesian machine, even when using 255 cycles, is using a total of 2.5 nanojoules to recognize one digit using the conventional approach, and 0.4 nanojoules using the power-conscious approach (with the maximum supply voltage of 1.2 volts). This is particularly impressive as our reference MCU is fabricated in a 90-nanometer CMOS node, comparable but more energy-efficient than the 130-nanometer CMOS node used for our Bayesian machine.

Nanodevice-Based True Random Number Generation

The energy efficiency of the stochastic Bayesian machine could significantly improve in the future. Fig. 2.15b reveals that in the current design, 75% of the energy is spent for the random number generation by the LFSRs and their distribution to the likelihood blocks ("vertical wires"). Several recent works have shown the possibility of generating random bits at a very low energy cost using stochastic nano-devices such as superparamagnetic tunnel junction (SMTJ) [START_REF] Kerem Y Camsari | P-bits for probabilistic spin logic[END_REF][START_REF] Vodenicarevic | Low-energy truly random number generation with superparamagnetic tunnel junctions for unconventional computing[END_REF][START_REF] Faria | Implementing bayesian networks with embedded stochastic mram[END_REF][START_REF] Borders | Integer factorization using stochastic magnetic tunnel junctions[END_REF] or random telegraph noise in RRAMs [START_REF] Govindaraj | Csro-based reconfigurable true random number generator using rram[END_REF]. These proposals rely on natural fluctuations of the devices due to thermal or random telegraph noise and can therefore generate random bits relying only on read operation, at a very low cost. They could be distributed within likelihood arrays, thanks to their small area, and generate random bits at a much lower energy cost than LFSR (in the order of femtojoule/bit) and without requiring vertical wires. In the particular case of probabilistic bit, or"p-bits", the Gupta circuit, which consumes in our design 22% of the inference energy could also be avoided, as this concept provides random bits with easily adjustable probabilities [START_REF] Kerem Y Camsari | P-bits for probabilistic spin logic[END_REF][START_REF] Borders | Integer factorization using stochastic magnetic tunnel junctions[END_REF].

In this section we introduce our work in collaboration with one of the leading spintronics research laboratories worldwide, SPINTEC, and CEA-Leti to design and fabricate several prototype circuits of True Random Number Generator and P-bits circuits based on the SMTJ devices and PCSA sensing circuitry.

Random Number Generation with MTJs

Random number generation refers to the process of generating a sequence of numbers that are intended to be random or unpredictable and do not follow a predictable pattern. The generation of high-quality random numbers is crucial for various applications, including not only probabilistic computing, but also cryptography, simulations, statistical sampling, and game programming.

In most cases, the generated numbers must be independent and decorrelated in time to ensure consistent results in mathematical operations. There are two main categories of random number generators: Pseudo-Random Number Generators (PRNGs) and True Random Number

Generators (TRNGs). TRNGs are generated from physical sources that exhibit intrinsic entropy, such as thermal noise, while PRNGs are obtained through a deterministic system using a specific algorithm. TRNGs are considered more secure than Pseudo-Random Number Generators (PRNGs) as they are not based on deterministic algorithms and are therefore less susceptible to predictability and potential security flaws.

Various approaches and technologies have been used to generate true random numbers based on several types of entropy sources. Some works have proposed to generate random bits by exploiting the write operations of emerging memories (e.g., in spin-torque MRAM [START_REF] Fukushima | Spin dice: A scalable truly random number generator based on spintronics[END_REF] or in RRAM [START_REF] Balatti | True random number generation by variability of resistive switching in oxide-based devices[END_REF]). These proposals can generate high-quality random bits at high speed, but would Figure 2.17: Stochastic superparamagnetic tunnel junctions. a Representation of the bistable magnetic states, and the associated low energy barrier(adapted from [START_REF] Kerem Y Camsari | P-bits for probabilistic spin logic[END_REF]). b Experimental resistance trace and thresholding operation (Reproduced from [START_REF] Vodenicarevic | Low-energy truly random number generation with superparamagnetic tunnel junctions for unconventional computing[END_REF]).

not necessarily be adapted for the Bayesian machine. Due to the need for a write operation to generate a random bit, their energy consumption is comparable or higher than the LFSRs used in the current version of the machine.

Another interesting approach is to use the thermal noise as an entropy source, the unstable resistance state of a resistive device due to thermal noise is converted to a current or a voltage, and then processed by a comparator to compare the unstable voltage or current levels with the reference level to obtain a digital random signal. Some works have proposed to exploit the thermal noise effect on unstable spintronic nano-devices [START_REF] Kerem Y Camsari | P-bits for probabilistic spin logic[END_REF][START_REF] Vodenicarevic | Low-energy truly random number generation with superparamagnetic tunnel junctions for unconventional computing[END_REF][START_REF] Faria | Implementing bayesian networks with embedded stochastic mram[END_REF][START_REF] Borders | Integer factorization using stochastic magnetic tunnel junctions[END_REF], such as superparamagnetic tunnel junctions (SMTJs). SMTJs consist of a pinned nanomagnet and a free nanomagnet separated by a tunnel oxide layer. The free magnet can be in one of two states, parallel (P) or antiparallel (AP), with respect to the pinned magnet. The electrical resistance of the junction in the AP state is higher than that in the P state due to the tunnel magneto-resistance (TMR) effect.

The unstable SMTJ is designed with a low effective energy barrier between the two states compared to thermal noise, which causes the free magnet to spontaneously switch its magnetization direction between the two states, due to thermal noise (see Fig. To perform stochastic computation, such as in our Bayesian machine, we need a stream of random bits with a configurable probability distribution of 1s and 0s, to obtain a sum of 1s that is proportional to the binary value stored in the memory. For this purpose, our Bayesian ma- Each column shows the specifications and a simple illustration of the computational paradigms, based on basic computational units: respectively,the bit, the p-bit and the qubit. (Adapted from [START_REF] Chowdhury | A full-stack view of probabilistic computing with p-bits: devices, architectures and algorithms[END_REF]).

chine used LFSR for random number generation and GUPTA comparator for bitstream weighting. However, having one circuit based on nanodevices that can do both functions will lead to a considerable energy reduction in our system. The operation of generating a weighted (biased) probability of the random bit stream is related to the concept of probabilistic bit (p-bit).

A probabilistic bit, or p-bit, is a two-level state system that can exhibit probabilistic behavior.

Unlike classical bits, which can only be either 0 or 1, p-bits are represented by a distribution of 0s and 1s (see the table in Fig. 2.18).

Like TRNGs, a p-bit stream generation can be implemented through the use of magnetic tunnel junctions (MTJs). However, here a third terminal need is added to the sensing operation to bias the distribution of the outcome bitstream. The MTJs can be operated at room temperature, which is important for implementing them with classical computers.

Randomness Sensing With Precharge Sense Amplifier

True random number generators based on physical phenomena (such as thermal noise) are more desirable for stochastic computing but also challenging to implement with minimal energy consumption due to the energy cost of triggering random events. A hardware true random number generator typically consists of several consecutive steps to convert some aspect Extracting random numbers that function by triggering random events (random programming of devices) or by amplifying the noise comes with large circuits and a non-negligible energy cost, making it less efficient. However, [START_REF] Vodenicarevic | Low-energy truly random number generation with superparamagnetic tunnel junctions for unconventional computing[END_REF] proposed the use of a superparamagnetic tunnel junctions, which intrinsically amplify thermal noise without external energy supply. In the same work [START_REF] Vodenicarevic | Low-energy truly random number generation with superparamagnetic tunnel junctions for unconventional computing[END_REF], the authors showed that SMTJ can generate high-quality random bits with minimal readout circuitry. In this work, and based on circuit simulations, the energy-efficient PCSA circuit was used to sense the outcomes (see Fig. 2.20a). The advantages of this approach are:

no need for programming operation or programming circuitry for triggering random events, no need for circuits to amplify the noise, and use a low energy reading operation, and a fully compatible with standard CMOS fabrication processes.

In the work of [START_REF] Kerem Y Camsari | P-bits for probabilistic spin logic[END_REF], the authors proposed presented an Embedded MTJ-based p-bit; they show that the concept of a probabilistic bit can be implemented using a three-terminal circuit, based on a standard two-terminal MTJ with low barrier magnet (LBM) connected to the drain of NMOS transistors (see Fig. 2.20b). This structure is a voltage divider circuit with the MTJ resistance in series with a transistor resistance. The fluctuation of MTJ resistance (between Rp and Rap) will lead to drain voltage fluctuation Vm, to covert this fluctuation to digital bits, the Vm voltage is thresholded using an inverter. Based on SPICE models and simulation and using the transistor gate terminal, they have a tuned p-bit outcomes. While the concept certainly presents an intriguing and straightforward approach, it may benefit from a more comprehensive experimental exploration, particularly with regards to the read disturb effect. The observed steady current and voltages appear to be on the higher side, which might merit further investigation. In addition, the continuous application of sensing voltages, inherent to this concept, could potentially introduce concerns related to device longevity and increased energy consumption. These considerations are shared with a view to enhancing the robustness and efficiency of the concept. 

Design of SMTJ-Based RNG

In partnership with Spintec and CEA-Leti, we have collaborated on the design and the fabrication of a demonstrator chip for both True Random Number Generator (TRNG) and P-bit. These devices are based on SMTJs as the source of randomness and use, Precharge Sense Amplifier (PCSA), the same as circuit as the one used for reading memristors in the Bayesian machine (see section 2.2.3) as the sensing circuitry. Using PCSAs in this context was initially proposed in
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a simulation study in [START_REF] Vodenicarevic | Low-energy truly random number generation with superparamagnetic tunnel junctions for unconventional computing[END_REF].

The PCSA read scheme involves two phases: charge and discharge. This read scheme is particularly advantageous for fragile devices like SMTJs as it applies instant charge and discharge currents rather than continuous currents. Additionally, it maintains a low voltage difference between the device terminals, which increases the device's lifespan. However, it is crucial to limit the instant charge and discharge currents to avoid biasing the device's randomness. Our first design is a True Random Number Generator (TRNG) that produces a bitstream with an equal probability of 0s and 1s. Instead of using an unstable SMTJ in one side and a reference resistor in the other side like initially proposed in [START_REF] Vodenicarevic | Low-energy truly random number generation with superparamagnetic tunnel junctions for unconventional computing[END_REF], we used unstable SMTJs on each side (see Fig. 2.21a). By using two sources of randomness, we can achieve a joint probability distribution, which increases the speed of fluctuations and is expected to improve the quality of the bitstream. The main challenge in this design was reducing the mismatch effect of transistors N1 and N2 (in Fig. 2.20a). Increasing their sizes led to relatively high instant current through the SMTJs, which is biasing the outcomes, thus limited the maximum size we can reach. Another idea was to reduce the size of transistor N3 (in Fig. 2.20a) or reduce its gate voltage to limit the maximum flowing current. However, this solution led to noisy discharging, which biased again the outcomes and affected the quality of the bitstream. We performed an investigation using SPICE simulations to find the best performance based on sizing compromises, and we validated the final design for tape-out and fabrication.

The investigation for the first design was based without taking into consideration the variability that occurs during the fabrication process of nano-devices. As devices shrink to the nanometer scale, process variations have a more pronounced impact on device performance and yield. Variability in the dimensions of magnetic tunnel junctions, for instance, can lead to changes in the device's resistance and switching behavior. In our case, device-to-device vari-ability can cause a mismatch between the two SMTJ devices, resulting in a biased bitstream.

To overcome this variability challenge, a second version of the design was developed, which added a biasing NMOS transistor in series with each SMTJ (see Fig. whitening circuit using two basic RNG circuits and one XOR2 circuit. c Schematics of the XOR4 whitening circuit using four basic RNG circuits and three XOR2 circuits.

Our third design was inspired by a concept presented in [START_REF] Vodenicarevic | Low-energy truly random number generation with superparamagnetic tunnel junctions for unconventional computing[END_REF] that been presented in Fig. 2.20a, which uses an unstable SMTJ on one side and a reference resistive device on the other side.

However, in our design, we chose to use a transistor as the reference resistive device (see Fig. 2.22a).

By controlling the gate voltage Vb2 of this transistor (N5), we can calibrate the circuit for TRNG or manipulate the outcome probabilities to turn it into a P-bit generator.

Similar to our second design, we also incorporated the two transistors to control the maximum instant current through the SMTJ. Using SPICE simulations, we optimized the transistor sizes and validated the design for tape-out and fabrication.

In case our basic designs could not generate random bits with high enough quality, a "whitening" technique can be applied on the raw random bit outcomes. The whitening process involves transforming a set of raw or biased random bits into a more uniform and unbiased set of random bits. This is typically achieved by combining multiple independent bitstreams using XOR gates. The XOR2, XOR4 and XOR8 whitening methods are methods that combines respectively two, four and eight independent bitstreams (from RNG) using XOR gates (see Fig. 2

.22b).

This technique reduces auto-correlation exponentially and brings the mean state closer to a perfect balance. The more bitstreams combined, the greater the reduction in auto-correlation and bias, and the more the sampling frequency is increased.

Whitening can eliminate biases in the raw random bit outcomes of our three basic RNG designs using off-chip (software or hardware XOR) or on-chip XOR circuitry. Although off-chip XOR is easier to implement, it is less accurate in terms of energy estimation. On-chip XOR implementation allows for more precise real-world experiments and energy measurements. We implemented XOR2 and XOR4 whitening circuits based on our three RNG designs. We created new derivative designs with XOR2 whitening circuits based on design one and design three, and new derivative designs with both XOR2 and XOR4 whitening circuits based on design one and design three (see table in Fig. 2.23).

We have designed seven prototyping circuits, the designs tested by simulations than are taped out for fabrication. Because we use 25 input/output pads designed for characterization by a custom probe card, we needed to set of pads to route all of our designs (see Fig. 2.24a).

The tapeout of our designs was fabricated in a hybrid CMOS/SMTJ process (see Fig. 2.24b).

The CMOS part of the circuit is fabricated using a low-power foundry 130-nanometer process with four layers of metals. SMTJ devices are fabricated on top of the CMOS foundry layers by our partners in Spintec and CEA-Leti.

At the time of writing this thesis, we are expecting the delivery of the fabricated dies any day. 

Conclusion

In this chapter, we have shown that a Bayesian machine can be implemented in a system with distributed memristors, performing computation locally and with minimal energy movement.

This allows it to perform Bayesian inference with an energy efficiency orders of magnitude higher than that of a standard microcontroller unit. Due to its reliance on non-volatile memory, and its sole use of read operations once the likelihoods have been programmed, the system can be powered down while regaining functionality instantly. It can also be operated at low, and possibly varying, supply voltages. While Bayesian models are usually considered computationally expensive, our results suggest that complex models could be embeddable at the edge, with low power consumption. This could allow edge systems to benefit from the qualities of Bayesian inference to deal with highly uncertain situations with little data, and to make predictions using an explainable mode.

Explainability is desirable in many critical situations for ethical and regulatory reasons [START_REF] Rai | Explainable ai: From black box to glass box[END_REF].

The fact that Bayesian inference takes decisions based on explainable models also has practical consequences, in particular when we use them with inputs that differ from those used for training the model: the Bayesian machine excels at recognizing situations where it cannot provide a reliable answer. For example, Supplementary Note 10 of our published work [START_REF] Harabi | A memristor-based bayesian machine[END_REF] shows that when we present a gesture from a different subject than the one for which it has been trained, the Bayesian machine provides a clear signature that it cannot provide a certain output. This feature could be particularly useful for medical devices, where wrong decisions can have dramatic consequences. Supplementary Note 11 of our published work [START_REF] Harabi | A memristor-based bayesian machine[END_REF] also illustrates the possibility to train the Bayesian machine with little data: a mean accuracy of 78% can be obtained on gesture recognition using only two examples per gesture. This possibility originates in the natural capacity of Bayesian models to generalize and also in the possibility to

CONCLUSION

93

incorporating prior assumptions on the model into the likelihood training process.

The design choices of the Bayesian machine were led by the specificities of Bayesian inference. The need for eight-bit likelihood, a precision higher than what analogue memristors can provide, and the fact that Bayes' law does not require multiply-and-accumulate, led to a digital design. In contrast, most memristor-based neural network accelerators use analogue computation, at least to some extent. This allowed us to rely on a simple sense amplifier for reading memristors, which brings multiple advantages: it is highly flexible in terms of supply voltage, functions without needing any calibration, mitigates read disturb, and is largely immune to device variation. The simplicity of the sense amplifier also allowed us to demonstrate a complete system featuring 16 small memory blocks, whereas analogue memristor-based neural networks usually have a single memory block.

In addition, a benefit of the use of stochastic computing by the Bayesian machine is that our system is naturally resilient to soft errors: bit errors can make one cycle wrong, but will be averaged throughout the computation. (This point is illustrated in Supplementary Note 9 of our published work [START_REF] Harabi | A memristor-based bayesian machine[END_REF], which demonstrates the resilience of the gesture recognition tasks to single-event upsets.) As memristor storage is also more resilient to radiation than static RAM [START_REF] Petzold | Heavy ion radiation effects on hafnium oxide-based resistive random access memory[END_REF], this feature can make the Bayesian machine appropriate for extreme environments. All these features make the Bayesian machine robust and flexible, and it can therefore be particularly useful for monitoring difficult environments with variable or unstable power supply.

This capability maps well with the fact that Bayesian excels at dealing with the highly uncertain situations encountered in such environments (see Supplementary Notes 10 and 11 of our published work [START_REF] Harabi | A memristor-based bayesian machine[END_REF]).

The results achieved in this study, as shown by the measurements performed on the demonstrator chip and the energy estimates based on the scaled-up design, have encouraged us to take the project further. Specifically, by creating a system that has both larger memory and higher computing capacity, which will allow us to implement real tasks on the chip. To achieve this goal, a modified version of the scaled-up system was designed and sent for fabrication (see Section 3.5).

Our research utilized a 130-nanometer process, demonstrating that inexpensive technology can achieve energy efficiency. Since digital circuitry dominates energy consumption, scaling the design to more advanced technology nodes can further reduce energy consumption.

Our energy analysis indicated that during the inference phase, 88% of energy consumption resulted from random number generation and distribution. The cost of generation is due to the use of LFSRs, while the non-local nature of random number generation leads to distribution cost. Our system employed a single 8 bits LFSR per column, which was shared by all the likelihood blocks of the column.

The energy of random number generation could be reduced by again using nanodevices (see section 2.5), based on the study in [START_REF] Vodenicarevic | Low-energy truly random number generation with superparamagnetic tunnel junctions for unconventional computing[END_REF] about using stochastic nanodevices to generate high-quality random bits locally, at a very low area and energy cost, using read operations, we have designed and fabricated several prototyping circuits, that uses unstable SMTJs and PCSA sensing circuitry for generation random bits (RNG or P-bit).

Anticipating future experimental results and future advancements in device integration, we propose several ideas for integrating our circuits into the Bayesian machine to reduce energy costs. One idea is to replace the 8-bit LFSR circuit with an 8-bit TRNG circuit. While this will reduce the energy cost of the LFSR, the energy of the GUPTA circuit and distribution will still remain. Another idea is to embed an 8-bit TRNG circuit as shown in Fig. 2.25a, which will reduce distribution costs at the expense of increasing the total number of TRNG circuits.

If we completely change the design of the Bayesian machine by adopting analog memory for storing likelihoods, we could embed a P-bit circuit with the analog biasing voltage for each likelihood, as shown in Fig. 2.25b. The probability value is read from the analog memory, converted to analog voltage that will bias the P-bit to generate random numbers proportional to the read probability. This approach improves memory density because of using the analog approach and eliminates the need for energy-hungry ADCs. Additionally, only one P-bit cell is required instead of 8 TRNGs, and eliminating the need for the GUPTA circuit. While this approach offers many advantages, challenges remain due to the lack of technological maturity of the devices, high noise and variability problems with analog storage, and the ongoing exploration of the behavior of unstable SMTJs.

Energy Estimation of a scaled stochastic Bayesian machine

In order to implement the Gesture recognition task, the memory capacity of the fabricated Bayesian machine was not enough. A scaled-up Bayesian machine need to be designed. The scaled-up machine features six columns and four rows of likelihood blocks. Each likelihood block features an array of 128×64 memristors arranged using the same differential structures as our test chip, therefore implementing four kilobits per array. We developed a behavioral MathWorks MATLAB model of the machine, a synthesizable SystemVerilog description, and test benches for both models using consistent input files. Both models were verified to be equivalent for all possible inputs and for all cycles. We synthesized the SystemVerilog description and placed and routed the whole Bayesian machine in our reference technology (see Fig. 2.14b). Post-place-and-route simulation, including the delays due to the gates and the parasitic capacitances, gave results that still matched perfectly the MATLAB model of the Bayesian machine.

The energy estimation of the Gesture recognition task on the scaled Bayesian machines was performed using a homemade framework using a hybrid methodology. These estimates focus on the inference phase, i.e., the actual operation of the Bayesian machine when various inputs are presented, after the memristors have been formed and the likelihoods programmed. The energy consumptions of the memristor arrays themselves are obtained using circuit simulations (based on the Siemens Eldo simulator), including the parasitic capacitance extracted from the memory array layout. The energy consumption of the rest of the system is obtained using the Cadence Voltus power integrity solution framework. These estimates use value change dump (VCD) files obtained from our test bench, ensuring that the energy estimates correspond to a realistic situation.

A challenge of these estimates is that when estimating energy consumption, it is crucial that Cadence Voltus models the behavior of the memristor arrays properly, as the energy consumption of the system depends directly on the output of these blocks. However, as they are custom blocks, and not included in the standard library of the foundry, special developments were required. We programmed, using MATLAB, a memristor array to liberty file compiler, providing, based on the likelihoods programmed in a memory block, a file describing to Cadence Voltus the functionality of the array. During the MATLAB simulation, we extract the intermediates values of the inference, and we include them as a memory output. For that purpose, we create a new liberty file that will be used in the place-and-route operation. This liberty file specifies the output for each memory as a function of the input and addresses. This method can only be used to estimate the energy consumption during the inference phase as the outputs are tailor-made for this phase.

As a benchmark, we also implemented the gesture recognition task on an ST Microelectronics STM32F746ZGT6 microcontroller unit (MCU, integrated on a test Nucleo-F746ZG board).

This type of MCU, manufactured in a 90-nanometer CMOS process, is commonly used for edge artificial intelligence. Our implementation was programmed in the C language using the 2.6 CONCLUSION
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ST Microelectronics STM32 Cube integrated development environment and was optimized for running on the MCU (the stochastic computation of our test chip is replaced by standard integer addition, and the likelihoods were replaced by log-likelihoods to avoid multiplications).

To perform the benchmark, the MCU computes gesture recognition for all possible inputs sequentially and blinks an LED on the board every one-million inference to allow precise timing.

The energy consumption of the MCU was measured using a standard Ampere meter (the energy consumption of solely the MCU was measured, excluding all other components on the board). To isolate the energy consumption strictly due to Bayesian inference, we also measured the energy consumption of a control program that includes all operations performed by the gesture recognition program (looping inputs, LED blinking...), except the actual Bayesian inference. Then, we subtract the energy consumption of the full gesture recognition program (2.4µJ /gesture) and the one of the control program (0.4µJ /gesture) to get the energy used by the MCU strictly for Bayesian inference (2.0µJ /gesture).

Chapter 3

A Logarithmic Bayesian Machine

"There's a Way To Do It Better -Find It" Thomas EDISON

CHAPTER 3: A LOGARITHMIC BAYESIAN MACHINE

Mathematics is a cornerstone of engineering, with a plethora of techniques available for modeling, analyzing, and solving complex problems. By altering the computational domain, a range of benefits can be obtained, such as improved security and efficiency in cryptography by employing different number fields, optimization of control systems by altering matrix space or eigenvalue, signal processing by analyzing in the frequency domain, and reduced power consumption through the use of probabilistic or logarithmic representations.

To address the area and energy-intensive nature of classical computation circuitry in memristorbased Bayesian machines, stochastic computing has been successfully employed, as outlined in the previous chapter, with minimal area requirements and low energy consumption. However, stochastic machines suffer from limitations in precision, inference speed, and complexity with random number generation. In response, in this chapter, we turn to the logarithmic computing approach, which offers increased precision and faster inference operations.

Logarithmic computing is particularly suitable for Bayesian inference, as it allows computing the product of the prior distribution and the likelihoods using simple addition and subtraction operations. This makes it an ideal choice for hardware implementation, where speed and efficiency are crucial factors. Logarithmic probability representation also provides an advantage over traditional arithmetic, preventing numerical underflow and loss of precision when dealing with small probabilities or large datasets.

This chapter examines the use of logarithmic computing in our Bayesian machine architecture, utilizing the same design choices as the stochastic version, such as memristors and near-memory computing architecture. We demonstrate how logarithmic computing can be implemented and why it is poised to improve the energy efficiency and accuracy of Bayesian inference. Moreover, we present a newly fabricated logarithmic Bayesian machine integrated circuit, which has undergone recent testing. On-chip measurements on both machines, the logarithmic and the stochastic, reveal the viability of our Bayesian machine approach, even in the presence of memristor imperfections. Our Bayesian machines can operate at low supply voltages, and scaled-up versions are capable of performing a gesture recognition task using orders of magnitude less energy than a microcontroller unit. Additionally, we provide the first explicit comparison of stochastic and logarithmic computing in a near-memory computing integrated circuit with nanodevices, comparing their energy efficiency.

The results in this chapter are adapted from an article presented at the DATE 2023 conference [START_REF] Turck | Energy-efficient bayesian inference using near-memory computation with memristors[END_REF].
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Bayesian Inference with Logarithmic computing

The invention of logarithms by John Napier in 1614 revolutionized the way that calculations were performed, making them faster and easier. Although calculators have replaced humans for calculation, the concept of simplifying calculations is continued to be used in the modern era of calculators and computers in the context of emerging non-conventional computing paradigms [START_REF] Burr | Neuromorphic computing using non-volatile memory[END_REF][START_REF] Ielmini | In-memory computing with resistive switching devices[END_REF][START_REF] Toffoli | Non-conventional computers[END_REF], due to the need for area and energy-efficient computation [START_REF] Gupta | IMPACT: IMPrecise adders for low-power approximate computing[END_REF][START_REF] Kim | Energy Efficient Approximate Arithmetic for Error Resilient Neuromorphic Computing[END_REF][START_REF] Han | Approximate computing: An emerging paradigm for energyefficient design[END_REF][START_REF] Venkataramani | Approximate computing and the quest for computing efficiency[END_REF] for wearable and energy-constrained IoT devices [START_REF] Ray | The changing computing paradigm with internet of things: A tutorial introduction[END_REF]. The use of logarithms has once again been employed to simplify and streamline computations [START_REF] Sousa | Nonconventional computer arithmetic circuits, systems and applications[END_REF][START_REF] Parhami | Computing with logarithmic number system arithmetic: Implementation methods and performance benefits[END_REF], specially for improving the energy efficiency of the artificial intelligence edge systems.

As most of the research on energy-efficient AI systems has focused on deep neural networks (DNNs), logarithmic computing has already been used to improve the efficiency of those neural networks [START_REF] Miyashita | Convolutional neural networks using logarithmic data representation[END_REF][START_REF] Lee | Lognet: Energy-efficient neural networks using logarithmic computation[END_REF][START_REF] Kouretas | Logarithmic number system for deep learning[END_REF][START_REF] Oh | Automated log-scale quantization for low-cost deep neural networks[END_REF][START_REF] Ding | Flightnns: Lightweight quantized deep neural networks for fast and accurate inference[END_REF]. The logarithmic number representation has been employed in convolutional neural networks in the work of [START_REF] Miyashita | Convolutional neural networks using logarithmic data representation[END_REF]. Based on the results in this work, the logarithmic approach can handle non-uniform distributions of weights and activations, and enables stateof-the-art networks to be encoded in an extremely reduced bits representation with negligible loss in classification performance, improving on fixed-point representations. For some specific applications, logarithmic data representation is more robust to quantization than fixed-point, eliminates bulky digital multipliers, and reduces memory requirements, area, and energy consumption. Similarly, [START_REF] Lee | Lognet: Energy-efficient neural networks using logarithmic computation[END_REF] proposed using logarithmic encoding of non-uniformly distributed weights and activations to reduce power consumption and increase inference speed. The authors of this work demonstrated their ideas in LogNet, an inference engine using only bitshiftadd convolutions and weights distributed across the computing fabric.

Although logarithmic arithmetic simplifies multiplication and division, it can render additions and subtractions more complex, which poses challenges for deep neural networks that depend heavily on multiply and accumulate (MAC) operations. However, Bayesian inference is particularly well-suited for the logarithmic computing approach as it relies on computing the product of the prior distribution and the likelihoods, followed by normalizing the result to obtain the posterior distribution. With logarithmic arithmetic, Bayesian inference requires only simple addition and subtraction operations, making it easier to implement in hardware. This makes it a preferred option for implementing Bayesian inference in hardware, where speed and efficiency are paramount. Furthermore, the use of the logarithmic representation for probabilities offers another advantage over traditional arithmetic. Specifically, it prevents numerical underflow and loss of precision when dealing with small probabilities or large datasets, which can occur when using low-precision fixed-point representation.

In the stochastic Bayesian design (explained in Chapter 2), the probability values of the likelihood range between 0 and 1 and are represented with an unsigned eight-bit fixed-point format, which quantizes only the fractional part in the linear scale, resulting in a loss of precision for small probability values due to fixed step-size between all representation levels. A A logarithmic representation with log-scale quantization can overcome this limitation by assigning more code values to smaller probability values on a logarithmic scale, resulting in an increased resolution in lower probability regions. To apply this representation, the number of bits (N) used to store the probability and the logarithmic base (B) must be determined. As the base represents probabilities, it must fall within the range of 0 < B < 1 and be approximated with respect to the logarithmic quantization function f (n):

f (n) = B (K -n)/m . ( 3.1) 
The binary probability value of f (n) is stored as n, where K = 2 n -1 is the maximum number in the digital representation. To maximize the system's accuracy for specific use cases, the number of quantized probabilities m that satisfy f (n) > f (m) = B is determined. For example, Although the function f (n) in equation 3.1 represents an increasing function where binary values increase with probability values, it is not practical for converting multiplication to addition. For example, adding the binary numbers n 1 = 1 and n 2 = 2 results in n 3 = 3, but the prod- 

uct of f (n 1 ) × f (n 2 ) ̸ = f (n 3 ). This is because f (1) × f (2) = B (K -1)/m × B (K -2)/m = B (2K -3)/m ̸ = B (K -3)/m .
(2) = B 1/m × B 2/m = B 3/m = g (n *
3 ). This means that the product can be implemented using a simple fixed-point adder. As illustrated in Fig. 3.2b, by increasing M, we achieve better approximation for probabilities higher than 1/2. However, it gradually increases the minimum encoded probability. For example, with M = 30%(m = 5), the minimum encoded probability is g (15) = 0.125, which means that all probabilities less than that minimum are rep-
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resented with the same value, leading to an increase in rounding errors.

The determination of the logarithmic quantization parameters depends on the application, the computation model, and the data distribution. In the case of the Bayesian machine, it is recommended to set this value in such a way as to have more probabilities between 1/2 and 0 than between 1 and 1/2. The main reason for this is that some events have quite low probabilities of occurring, and therefore, to increase the accuracy of the system, a low value is needed. Therefore, in a Bayesian system, probabilities between 1/2 and 0 are more important than those between 1 and 1/2. While the logarithmic quantization method does not allow us to encode the exact probability of an event, it provides a reliable approximation of the most probable event, this approximation is made in such a way as to minimize the risk of errors.
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Design of a Logarithmic Bayesian Machine

The successful implementation of the memristor-based Bayesian machine with a stochastic computing approach has prompted us to utilize the same architecture and design choices for the logarithmic computing approach. As a reminder, Bayesian inference aims to evaluate the probability of an event Y based on a collection of observations O 1 , . . . ,O n , using Bayes' law [START_REF] Edwin | Probability theory: The logic of science[END_REF][START_REF] Bessière | Bayesian programming[END_REF]. If all observations are conditionally independent, Bayes' law simplifies to the product of prior probability p(Y ) and likelihood factors p(O i |Y ), known as the naive Bayes' law as presented in Chapter 1 (see Equation 1.4). By applying a logarithmic function with a base B to the naive Bayesian equation, we obtain the logarithmic form of the naive Bayesian equation in 3.3:

log B p(Y |O 1 , . . . ,O n ) ∝ log B p(O 1 |Y ) + . . . + log B p(O n |Y ) + log B p(Y ). (3.3) 
The logarithmic form of Bayes' law simplifies the product of prior probability and likelihood factors to the sum of logarithmic likelihoods. The idea of applying the logarithm to the likelihoods (log-likelihood) is already been used in the maximum of likelihood method for parameters estimation (used for fitting the likelihood distributions). This is because the logarithmic function is monotonically increasing, ensuring that the maximum value of the logarithm of the probability occurs at the same point as the original probability function. The decisionmaking in our Bayesian machine relies on the maximum of the posterior probabilities of an event, making our machine unaffected by the logarithmic transformation of the probabilities.

Therefore, we can implement the simpler log-likelihoods in our Bayesian machine instead of the original likelihoods. Similar to the stochastic design, we use a two-transistor-two-resistor (2T2R) strategy in which memristors are used in a binary fashion. We also adopt the same memristor read and write strategies explained in Chapter 2. conduct experimental verification on a fabricated chip to validate the functionality of our flow.

As this was the first chip designed using our in-house automatic place and route design flow, successful experimental measurements can enable its use in future-generation designs.

We fabricated a fully-functional prototype circuit of a logarithmic Bayesian machine (see 

Measurements on the Logarithmic Bayesian machine

First, it is crucial to explore the forming and programming conditions of memristors, particularly given that the logarithmic Bayesian chip was fabricated during the next CMOS/memristor tapeout after the one of the stochastic Bayesian chip. With improved fabrication processes, the forming and programming voltages of new memristor-based chips may differ from those of previously tested chips, making it essential to investigate these conditions for optimal chip performance.

We designed an experimental setup at C2N, as illustrated in Fig. 3.7, that incorporates a custom PCB to route an STM32 microcontroller unit with a probe station and power supply sources. The experimental setup was automated using Python scripts to streamline and expedite testing procedures. To conduct the measurements, we utilized an STM32 microcontroller unit to send and receive input and output signals from the non-packaged die, which was probed tested. This method is similar to the stochastic Bayesian machine described in Chapter 2.

After examining the forming and programming conditions, we obtained a likelihood memory array. We again verified that over 5 million consecutive readings with a 1.2 V supply voltage, no changes in memory values were detected. This finding led us to conclude that, similar to At supply voltages below 0.7V (light blue points), the measurements on both chips of Fig. 3.8a,b exhibit considerable deviations, resulting in less accurate Bayesian inference. This is attributed to the threshold voltage value of the thick oxide transistors used within the memory array, which is approximately 0.6 volts. Utilizing lower threshold-voltage transistors, available in many CMOS processes, could overcome this limitation. Interestingly, the errors manifest differently for each chip: while the stochastic Bayesian machine's errors can occur for any probability value, the logarithmic Bayesian machine only shows errors for small probabilities in the form of saturated values (represented as "11111111" due to overflow of the logarithmic representation). These errors cause the adders to detect overflow and saturate outputs. Ongoing investigations aim to uncover the reasons behind these errors and their occurrence specifically for small probabilities.

The accurate measurement results obtained from both Bayesian machines highlight their high potential. These machines are capable of producing precise outputs with high flexibility in terms of power supply. Furthermore, the systems remain fully functional even when reducing the power supply to 0.7 volts, which is a considerable reduction from the nominal supply of our CMOS technology, which is 1.2 volts. This feature allows for a significant reduction in power consumption, by a factor of approximately three.

The logarithmic machine provides an instant-on/instant-off feature, whereby the system is ready to perform Bayesian inference as soon as the power supply is turned on, without the need to load any data from memory. As a result, the power supply can be turned off anytime the system is not in use, without any penalty, offering an excellent opportunity for energy-saving.

Although both Bayesian machines share many design choices, they still differ in their computing approaches. Unlike the stochastic machine, the logarithmic machine does not require loading LFSR seeds or optimizing those seeds, making it easier to operate and immediately perform inference computation, thus reducing the complexity of the system's starting configuration. Additionally, the logarithmic machine performs inference in one clock cycle compared to the 255 clock cycles (i.e., the periodicity of the LFSRs) required for the stochastic machine, resulting in lower latency for inference. However, it takes eight clock cycles to read the output data from a logarithmic machine, compared to only one clock cycle needed for the stochastic machine. The readout latency for the logarithmic machine is due to the limited number of IO pads used in our chip; this issue is fixed in our next-generation chips.

Although the measurements show excellent results on both machines, the logarithmic ma-CHAPTER 3: A LOGARITHMIC BAYESIAN MACHINE chine produces more accurate results than the stochastic machine. This is because the stochastic computing is a conceptually approximate computing approach whose performance relies on the quality of the randomness generation, which is affected by used a pseudo-random number generator, leading to reduced quality of the randomness.

Regarding robustness, the stochastic machine is naturally resilient to soft errors. Bit errors can make one cycle wrong but will be averaged throughout the computation. This point is illustrated in Supplementary Note 9 of our published work [START_REF] Harabi | A memristor-based bayesian machine[END_REF]. However, the logarithmic machine is more prone to soft errors, especially when the errors occur in the most significant bits, which drastically change the probability values.
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Energy Efficiency of the Bayesian Machines

The stochastic and logarithmic test chips utilized in our experiments serve as demonstrator chips that verify the feasibility of memristor-based Bayesian machines. However, their small size in terms of memory and computing capabilities prohibits their implementation in realworld tasks, and they are not suitable for accurate power consumption evaluations. In response, we developed a scaled-up version of the logarithmic Bayesian machine with 6x4 likelihoods, each comprising 4,096 bits of memory, to perform a gesture recognition task, much like the approach we employed in Chapter 2 with the stochastic Bayesian machine. To accomplish this, we designed and laid out the system utilizing the reference low-power foundry 130-nanometer process and subsequently evaluated its energy consumption. Based on the results presented in Table 3.1, we conclude that logarithmic computing performs better in energy consumption than both stochastic computing approaches, for accuracies higher than 86.9%. This is due to the fact that logarithmic computing reduces the inference operation to simple addition operations in one clock cycle, whereas stochastic inference requires multiple clk cycles with energy consumption dominated by random number generation, random number distribution, and clock distribution (as shown in the energy estimation results presented in Chapter 2).

We have shown in Chapter 2 that stochastic computing energy consumption could be reduced by using another type of random number generator. In our design, the consumption related to random number generation is 60% of the total consumption. However, even if we subtract this cost entirely (which is not a realistic assumption), we obtain an energy consumption of 1.18nJ (2.5 × 0.4 + 0.3). Logarithmic computing still outperforms conventional stochastic computing in terms of both accuracy and energy consumption for higher accuracies. In addition to its accuracy performance, logarithmic computing also has a shorter latency (one cycle) than stochastic computing. On the other hand, the stochastic machine has an inherent tolerance to single-event upsets (SEUs) [START_REF] Harabi | A memristor-based bayesian machine[END_REF].
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Large Scale Multi-computing Mode Bayesian machine

Our Bayesian machine studies in this Chapter and in Chapter 2 have shown promising results based on measurements taken from demonstrator chips and energy estimates on scaled-up designs. These findings have inspired us to take the project further and fabricate a scaled-up system with larger memory and higher computing capacity that can handle real tasks on the chip. To achieve this goal, we implemented a large-scale chip that provides both logarithmic and stochastic computing modes. The logarithmic computing mode offers high accuracy at a lower computational cost, while the stochastic computing mode is well-suited for low-power, harsh environment applications. By using a multi-computing mode Bayesian machine, we can take advantage of the benefits of both computing modes in one chip. To make this possible, we used a mechanism that allows the Bayesian machine to switch between the logarithmic computing mode and stochastic computing mode depending on the specifications of the task. In this section, we introduce our large-scale version of the Bayesian machine, which has been designed and taped out (see Fig. Therefore, the measurement setup for this chip is fixed to the packaged measurement option (see Chapter 1).

Control Unit

Address

The circuit has already been fabricated, and at the time of writing of this thesis, it is currently undergoing the packaging process.
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Conclusion

In this chapter, we have addressed the limitations of stochastic computing in memristor-based Bayesian machines and presented logarithmic computing as a solution to these limitations. We have shown that logarithmic computing offers increased precision and faster inference operations while retaining the same architecture and design choices as the general Bayesian machine (see Table 3.2). We have demonstrated that the logarithmic Bayesian machine can be implemented with distributed memristors, performing computation locally and with minimal energy movement. The logarithmic machine also inherits all the advantages of the Bayesian inference approach, such as explainable models, uncertainty information, and training with limited data. Our new approach targets being embeddable at the edge, with low power consumption, enabling edge systems to benefit from the qualities of Bayesian inference to deal with highly uncertain situations with little data and to make predictions using an explainable mode.

We reported the design and fabrication of the logarithmic Bayesian inference circuits, then the testing of the two prototype Bayesian inference circuits -the stochastic and logarithmic computing ones. We showed that both machines have accurate measurement results, highlighting the high potential of our Bayesian inference machines, with high flexibility in terms of supply voltage. Using a homemade energy estimation framework, we showed that both designs can perform a gesture recognition task using orders of magnitude less energy than a microcontroller unit. Each design can be more suitable for specific applications based on energy and accuracy constraints. Based on the energy estimation results, we conclude that logarithmic computing performs better in energy consumption than both stochastic computing approaches, for accuracy higher than 86.9%. Stochastic computing is more energy-efficient for lower-accuracy inference up to 86.9% for our gesture recognition task, due to the powerconscious inference strategy.

Our results show that memristor-based near-memory Bayesian computing is a viable solution for energy-efficient machine learning systems. These results highlight the potential of memristor-based near-memory Bayesian computing, even with inexpensive technology such as the 130-nanometer process we utilized. Scaling up the design to more advanced technology nodes can help to further reduce energy consumption.

Overall, the logarithmic Bayesian machine approach provides a promising solution to the limitations of stochastic computing in memristor-based Bayesian machines. The potential of this approach for energy-efficient and accurate machine learning systems motivates us to create a larger and more powerful system capable of implementing real tasks on the chip.

CHAPTER 4: MULTIMODE MEMRISTOR-BASED PROTOTYPING PLATFORM

Memristors offer fantastic opportunities in the field of computing for implementing new paradigms [START_REF] Hamdioui | Memristor for computing: Myth or reality? In Design[END_REF][START_REF] Seok | Memristors for energy-efficient new computing paradigms[END_REF], such as analog computing [START_REF] Hu | Memristor-based analog computation and neural network classification with a dot product engine[END_REF], neuromorphic computing [START_REF] Burr | Neuromorphic computing using non-volatile memory[END_REF], stochastic computing [START_REF] Govindaraj | Csro-based reconfigurable true random number generator using rram[END_REF], and In or Near memory computing [START_REF] Sebastian | Memory devices and applications for in-memory computing[END_REF][START_REF] Mehonic | Memristors-from in-memory computing, deep learning acceleration, and spiking neural networks to the future of neuromorphic and bio-inspired computing[END_REF]. However, memristors are based on emerging technologies that are still in the research and exploration stage, and several challenges and imperfections need to be addressed. Such challenges emphasize the importance of experimental platforms for prototyping new computing paradigms. These platforms enable the implementation, exploration, and experimental validation of new ideas, as well as the validation and optimization of reading, programming, and computing techniques.

The purpose of this chapter is to present an integrated circuit that provides a prototyping platform for projects involving memristors. This circuit includes periphery circuitry for using memristors within digital circuits and an analog mode with direct access to memristors. This platform allows for developing and testing innovative memristor-based neuromorphic concepts that address specific challenges and requirements.

In the following sections, we will first discuss memristor imperfections and the challenges in implementing new computing paradigms using memristors. This discussion will naturally lead to the potential solutions for using imperfect memristors and the importance of memristorbased experimental platforms. Then we discuss the design, fabrication, testing, and potential projects for our experimental multimode memristor-based platform.

The integrated circuit presented in this chapter was presented at The ASPDAC 2023 conference [START_REF] Harabi | A multimode hybrid memristor-cmos prototyping platform supporting digital and analog projects[END_REF]. For example, in volatile memories like DRAM and SRAM, data is stored by manipulating electric charge movement and storage. On the other hand, mature non-volatile memories such as flash memory utilize the charge storage method, wherein the floating gate is charged with trapped electrons using the quantum tunneling phenomenon to shift the transistor threshold voltage and implement the memory effect.

Emerging non-volatile memory technologies like memristors control the resistance state of the device to store data. The resistive switching mechanism differs depending on the specific technology used. For example, OxRAM-based RRAM or memristor uses oxygen vacancy filaments in the oxide layer to store data, while PCM uses changes in the material phase to store data. MTJ and FRAM use spin orientation of magnetic fields and electric polarization of ferroelectric materials, respectively, to store and retrieve data.

However, due to the emerging nature of memristor technologies, challenges and imperfections still exist. For example, OxRAM-based memristors exhibit non-linearity, asymmetry, instability (drift), and variability. These issues can negatively impact performance, increase energy consumption, and make system design more complex. In this section, we will discuss the non-idealities and imperfections of OxRAM-based memristors, the implications of these imperfections for non-conventional computing, and potential solutions to mitigate these issues. Finally, we will explore new computing models that embrace imperfection and leverage non-idealities.

Non-Ideal Behavior of OxRAM-Based Memristor

The main operation for programming OxRAM devices involves the SET and RESET processes, which result in resistance switching through the formation and dissolution of the oxygen vacancybased conducting filament (see Fig. 4.1a). However, the exact mechanism underlying the switching process is not fully understood. This has led to several challenges in exploiting these devices for both storage and computing applications.

One such challenge is the asymmetry in the SET and RESET programming processes, as shown in Fig. 4.1a, where the current-voltage (I-V) characteristics of the memristor is dependent on the direction of the applied voltage. This asymmetry results in up and down conductance changes that are not directly symmetrical, making it difficult to direct the switching be- An asymmetry in the SET and RE-SET programming voltages is seen (reproduced from [START_REF] Garbin | Hfo2-based oxram devices as synapses for convolutional neural networks[END_REF]). b Progressive evolution of the resistance of two measured devices with consecutive weak RESET pulses. We see non-linearity and instability of the resistance change with consecutive applied voltage (reproduced from [START_REF] Majumdar | Model of the weak reset process in hfo x resistive memory for deep learning frameworks[END_REF]). c Cycle-to-cycle programming variability in resistance states, Distribution of the low resistance state for different SET programming conditions (reproduced from [START_REF] Dalgaty | Ex situ transfer of bayesian neural networks to resistive memory-based inference hardware[END_REF]). d Cumulative distributions of OxRAM devices in eight different conductance levels, after standard iterative programming, a resistance drift can be seen (reproduced from [START_REF] Esmanhotto | Experimental demonstration of multilevel resistive random access memory programming for up to two months stable neural networks inference accuracy[END_REF]).

set and reset operations to achieve the desired state.

Another challenge is non-linearity, which refers to the fact that the resistance of an OxRAMbased memristor does not change in a linear fashion with applied voltage, as shown in Fig. 4.1b.

The resistive states exhibit stochastic and non-linear incremental resistance changes, with two progressive increase regimes observed in the cell resistance: an initial more progressive increase followed by a subsequent noisier increase that suffers from Random Telegraph Noise (RTN). This result confirms the idea that higher resistance states are less stable. During the reading operation, a noisy reading of the resistance state may occur when a steady reading current is applied over a period of time, which can also disturb the device state if the reading conditions are harsh.

The OxRAM is advantageous because it can be programmed in single-level or multiple-level states in a non-volatile fashion. However, resistive states obtained after programming are im- 

Mitigating Imperfections for Non-Conventional Computing

Imperfections and non-ideal behaviors of OxRAMs have implications for using those devices on both conventional and non-conventional computing paradigms. If those devices are to be utilized as a conventional digital storage memory, the programming imperfection, both Single-Level Cell or Multi-Level Cell, can be solved using conventional EECs. However, ECCs are not compatible solutions for near-memory computing. For this type of computing, other solutions have been suggested, such as using 2T2R bit-cell structure with complimentary programming as we did in our Bayesian machines (Chapters 2 and 3). Another solution is using 1T1R structure with intense programming conditions to increase the gap between LRS and HRS for Single-Level Cell storage, with the cost of decreasing device endurance, or the use of iterative programming strategy to improve the programmed states distribution.

We have also seen in Chapter 1 that memristors are being explored for in-memory computing, which involves performing computational tasks directly within the memory devices, rather than in a separate processing unit. In particular, memristors can implement multiply and accumulate (MAC) operations (deep learning's basic operation) in an analog fashion, relying only on Kirchhoff laws. However, variability has a high impact on this type of computing, as it leads to decreasing the computing accuracy. This is because memristor's conductance state is used for both analog storage and analog computing: this limits the possibility of using error correcting techniques. Therefore, the need for more accurate and stable analog states is an important aspect. To overcome the programming variability problems, an iterative programming algorithm was used for the purpose of the programmed conductance state distribution (decreasing the distribution's STD). This algorithm relies on a program-and-verify strategy: memristor devices are programmed multiple times, with a target conductance interval. This programming strategy has successfully improved the multi-state device programming. In Fig. 4.2b (black curve), we can see the separated programmed conductance states. However, this is only a short-term strategy, as OxRAM conductance states suffer from instability over time 'drift effect', as it can be seen Fig. 4.2b (blue curve) reading the devices after 60 s from programming, the distributions worsen, specially for the high resistance states.

To overcome the conductance instability effect (conductance drift), an optimized programand-verify technique was recently proposed (see Fig. 4.2a), with the addition of a wait time of δt before the conductance verification step. This technique ensures that the verification step will check both cases: the imperfect programmed devices and the unstable drifted states before the next program iteration. Fig. 4.2c shows that the resulting programmed cells have highly stable states: the conductance distributions were stable after 1 min and after 12 h. Overall, the non-ideal behaviors such as variability of memristors can potentially be compensated with optimised programming techniques or a proper design choices of the bit-cells. However, those optimizations need to be adopted in hardware, and this requires changes in the periph-
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eral circuitry, which will lead, typically, in increased circuit complexity and operational time and energy. All of those compromises need to be studied to confirm the advantages of the non-conventional computing in terms of energy and performance than the equivalent digital implementations.

Finally, in neuromorphic computing, the field of research that seeks to develop brain-inspired artificial intelligence systems, memristors have been proposed as a key element due to their ability to implement artificial synapses. However, the non-ideal characteristics of memristors can pose challenges to implementing accurate and reliable neural networks, especially to perform learning on chip. As synaptic or weight values are stored in a form of a conductance or resistance, the non-linearity and the asymmetry effects make changing device resistance or conductance during learning very difficult, as resistance variation is not the same when applying positive and negative voltage pulses. These imperfections are problematic as learning rules tend to require uniform and precise weight update operations (Fig. 4.3c). The presence of noise or device-to-device variability is contradictory to that.

One approach to mitigating the impact of imperfections in memristors for neuromorphic computing is to develop novel algorithms and architectures that are inherently robust to imperfections. A hardware-aware algorithm is needed, requiring a co-design approach between hardware and software. Overall, while imperfections in memristors can pose challenges for building reliable computing systems, researchers are actively working on developing novel approaches to mitigate these imperfections and unlock the full potential of memristors for nonconventional computing applications.

Embracing Imperfection for Non-Conventional Computing

Rather than trying to eliminate the imperfections of memristors, some research embraces those imperfections and explores new computing approaches that leverage non-idealities. These approaches aim to take advantage of the inherent variability, non-linearity, and complexity of memristors to enable new computing paradigms that are more efficient, robust, and adaptable. Some examples of such models include neural networks with stochastic synapses, braininspired computing systems, and reservoir computing.

In this subsection, we report an example of embracing the device imperfection [START_REF] Dalgaty | In situ learning using intrinsic memristor variability via markov chain monte carlo sampling[END_REF]. We present a project where we were collaborating with a team from CEA-leti, about a novel machine learning approach that exploits the variability of memristors to implement in-memory Markov chain Monte Carlo (MCMC) sampling algorithms [START_REF] Hastings | Monte carlo sampling methods using markov chains and their applications[END_REF] in a fabricated array of 16,384 devices configured as a Bayesian machine learning model. The algorithmic and experimental work was performed mainly by first author Thomas Dalgaty, while I contributed to system-level evaluations and benchmarking aspects of the paper. The approach is experimentally demonstrated for tasks such as malignant tissue recognition, heart arrhythmia detection, and the cartpole reinforcement learning task. We showed that cycle-to-cycle conductance variability in memristors (see Fig. To prove the concept of memristor-based MCMC sampling, we implement an experimen-
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tal system that consists of a computer-in-the-loop with a fabricated memristor array with 1T1R configuration. We train the system to recognize cancerous mammographies. Benchmarked against deterministic software-based neural network models, we find that the resulting Bayesian models perform better,and that memristor-based MCMC trains a full model with orders of magnitude fewer programming operations compared to existing memristor-based backpropagation approaches. Finally, through the design and simulation of a fully-integrated implementation of our approach, we compare the training energy of our approach with that required using only CMOS technology with conventional architecture approaches (MCU), and observe an energy reduction of several orders of magnitude. Our approach could also support the implementation of several Bayesian learning algorithms. This prospect is supported by the fact that Bayesian network topologies are already employed in some biomedical machine learning applications [START_REF] Pourret | Bayesian networks: a practical guide to applications[END_REF].

After the publication of our work [START_REF] Dalgaty | In situ learning using intrinsic memristor variability via markov chain monte carlo sampling[END_REF], I continued to work on the design of a standalone and fully integrated memristor-based MCMC sampling chip, which incorporates additionally to the memristor array, analog programming, and inference circuitry. Using a new 2T1R memory configuration (see Fig 4 .4c), the chip can perform the sampling operation by realizing sensing and programming simultaneously. The chip has been designed, fabricated, and it is at the packaging stage now (this chip is not directly related to the one described later in this chapter).

A common feature of all ongoing research and development for the purpose of exploring, optimizing, mitigating the impact of imperfections, or leveraging them for improved performance is the need for an experimental platform. Our research and projects on those subjects were due to a successful collaboration with teams that own experimental platforms. The increased need for experimental validation of our ideas and for accelerating the research process pushed us to work on developing an internal experimental platform with the help of the expertise of our collaborators.

Description of the Hybrid CMOS/Memristor Die

Memristor-based computing projects are made easier through the use of simulations based on memristor behavioral models. Alas, these models fail to provide a perfect description of memristor non-ideal behaviors and imperfections for all programming conditions. As each project involves the exploration of new ideas, specific programming conditions and strategies are required. This means that researchers can either use a specific model for each project or rely on accessible experimental data based on desired programming conditions from a collaborator. Alternatively, they can employ an experimental platform for the on-chip implementation of new ideas. While the latter is the most challenging option, the use of memristor-based experimental platforms is an essential tool for researchers exploring and validating new computing paradigms. Experiments allow us to collect high-quality data that would be difficult or impossible to obtain otherwise, providing precise measurements and insights into the underlying mechanisms that govern complex phenomena. Moreover, experimental platforms enable to optimize the conditions and techniques for reading, programming, and computing using memristors, as well as developing and testing innovative memristor-based neuromorphic concepts that address specific challenges and requirements. Although it can be challenging to design, fabricate, or gain access to cutting-edge technologies, the benefits of utilizing experimental platforms cannot be overstated. As a research group interested in brain-inspired computing and utilizing both analog and digital computing concepts, we designed a platform capable of implementing both analog and digital projects. For this purpose, the structure of the memory cell requires careful design. Fig. 4.4 illustrates the three basic memory cell structures that we used in designing our memristor-based chips. Fig. 4.4a shows the 1T1R structure that can be used for analog storage or for dense digital storage cell: we adopt this structure for the analog mode in our platform. Fig. 4.4b illustrates the 2T2R structure that is used for reliable digital storage, which we used in the Bayesian machines presented in Chapters 2 and 3. We also adopted this structure for the digital mode in our platform. Fig 4.4c shows the 2T1R structure used in our new design of a Markov Chain Monte Carlo sampling machine. In addition to analog computing, this structure enables reading a device conductance and programming another device conductance from the same memristor array at the same time, which is essential for the sampling process from the memristor cycle to cycle distribution. This last structure is not implemented in our platform. 1T1R memristor array (8k devices) and the mode switching MUXs, designed using thick oxide transistors to be compatible with high voltages. Blue-colored blocks are digital-mode circuits, designed using thin oxide low-power transistors and supplied by digital nominal voltage (except for level shifters). Orange-colored blocks are analog-mode circuits, also designed using thick oxide transistors.

Digital Mode Circuitry

The digital mode circuitry ( ). The 2T2R memory cell with complementary approach of [START_REF] Bocquet | Inmemory and error-immune differential rram implementation of binarized deep neural networks[END_REF] is used in our array for reducing the bit error rate. The total digital memory that can be stored with the complemen-
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tary approach is 4 kilobits. Because of the limitation in the number of IO pads, shift registers are used for both logic-in-memory inputs and Data Outputs, creating limitations for data read latency.

The efficiency of the 2T2R approach to reduce bit errors is confirmed in Fig 4 .6c. This Fig-

ure plots the bit error rate of the 2T2R approach as a function of the one of the 1T1R approach, obtained experimentally and theoretically. The theoretical result assumes a perfect sense amplifier. The experimental results are reproduced from [START_REF] Hirtzlin | Digital biologically plausible implementation of binarized neural networks with differential hafnium oxide resistive memory arrays[END_REF] and were obtained on a different integrated circuit based on the same memristor technology. We also plotted the error rate that would be obtained when using a conventional Single Error Correcting/Double Error Detecting correction code (SECDED, or extended Hamming) that doubles the number of memristors, as our approach. We see that our approach reduces the number of bit errors almost equivalently to the SECDED code. However, the SECDED code requires area, delay, and energy-costly error decoding circuits, while, in our approach, error correction happens naturally within the sense amplifier without any additional cost. 

Analog Mode Circuitry

Uses of the Platform

This section briefly discusses the potential applications of our prototyping platform for both analog and digital computing projects, highlighting its versatility and potential impact for future research.

Digital Prototyping Projects

Several potential digital computing projects could be implemented on our platform. Optimizing read and programming strategies using the digital mode can allow the successful implementation of digital applications. Memristors feature a complex interplay between programming energy, reading speed, read disturb effects, and device endurance, which our platform allows understanding.

A Binarized Neural Network (BNN) can be implemented using memristors as digital storage and the in-memory XNOR circuitry from our platform to implement the BNN multiplication [START_REF] Bocquet | In-memory and error-immune differential rram implementation of binarized deep neural networks[END_REF]; with adding memory digital or analog popcount [START_REF] Jebali | Capc: A configurable analog popcount circuit for near-memory binary neural networks[END_REF] and threshold circuitry outside of the platform, all needed computation are fulfilled.

Synaptic metaplasticity in binarized neural networks [START_REF] Laborieux | Synaptic metaplasticity in binarized neural networks[END_REF] is another interesting project that could be implemented using the platform, for attempting to overcome the "catastrophic forgetting" problem of neural networks. The hidden weights used by binarized neural networks, can be used as metaplastic variables, and memristors can store the analog values of those weights. 
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Another project idea concerns memristor-based Ternary Neural Networks (TNN). It would extend the basic approach of storing ternary values in the 2T2R structure shown in [START_REF] Laborieux | Low power in-memory implementation of ternary neural networks with resistive ram-based synapse[END_REF]. In this approach, weights are programmed using two memristors per weight. The analog mode of the platform can be used to prototype computing concepts where memristors are used in an analog fashion, e.g., as artificial synapses in machine learning or neuromorphic circuits [START_REF] Yu | Neuro-inspired computing with emerging nonvolatile memories[END_REF]. Fig. 4.11 shows measurements on a memristor in our platform when applying a succession of 15,000 1V 1.5-µs programming pulses: the memristor resistance progressively increases, a feature that permits the memristor to implement a synaptic learning rule. This use is particularly appealing due to its compactness, but the imperfections of memristors (thermal and random telegraph noise, cycle-to-cycle, and device-to-device variability)

Analog Prototyping Projects

CHAPTER 4: MULTIMODE MEMRISTOR-BASED PROTOTYPING PLATFORM

pose challenges that make it necessary to test ideas experimentally. Our platform supports prototyping various neuromorphic experiments, targeting inference, deterministic or probabilistic learning [START_REF] Dalgaty | In situ learning using intrinsic memristor variability via markov chain monte carlo sampling[END_REF].

In fact, a Ph.D. student of the group, Marie Drouhin, is currently utilizing the platform to demonstrate the training of a memristor-based neural network using equilibrium propagation, a hardware-friendly alternative to the widely-used backpropagation algorithm [START_REF] Scellier | Equilibrium propagation: Bridging the gap between energy-based models and backpropagation[END_REF]. Equilibrium propagation addresses some of the hardware limitations associated with backpropagation, such as the need for complex weight update computations and excessive data movement, making it an attractive choice for implementation on neuromorphic hardware like our platform. The student's research aims to showcase the potential of memristor-based neuromorphic systems in efficiently executing learning tasks and to provide insights into the practical challenges and performance trade-offs associated with this innovative approach.

The concept of mortal computation and the new Forward-Forward Algorithm (FFA) have been recently suggested by Geoffrey Hinton [START_REF] Hinton | The forward-forward algorithm: Some preliminary investigations[END_REF]. These new concepts have promising implications for the future of computing, as they offer hardware-friendly algorithms, energy, and cost savings. Memristors are particularly well-suited for implementing the FFA and supporting mortal computation. Our memristor-based experimental platform is an ideal candidate for projects of implementing the FFA, as it allows for the exploration and optimization of the unique properties of individual memristors.

CONCLUSION 137 Conclusion

In conclusion, memristors offer unique characteristics that make them a promising hardware solution for implementing new computing paradigms. However, several challenges, memristor imperfections, need to be addressed to fully utilize their potential. Experimental platforms are crucial for addressing these challenges and developing and testing innovative memristor-based concepts.

We have presented a multimode memristor-based prototyping platform that enables the implementation and exploration of new ideas and the validation and optimization of reading, programming, and computing techniques. Our hybrid CMOS/memristor integrated circuit includes periphery circuitry for using memristors within digital circuits and an analog mode with direct access to memristors. The platform has been designed, fabricated, and tested for both digital and analog computing concepts.

Future research directions and opportunities for using memristor-based experimental platform in energy-efficient AI applications are vast. Currently, we are using the platform to validate multiple digital logic-in-memory and analog neuromorphic concepts within two research laboratories, and we plan to make the platform available to other research groups.

Conclusions and Future work

"The future depends on some graduate student who is deeply suspicious of everything I have said."

Geoffrey HINTON minimizing energy movement, leading to far superior energy efficiency compared to a conventional microcontroller unit for a gesture recognition task. We opted for a digital computingbased design, driven by the specificities of Bayesian inference and the near-memory computing approach. This decision facilitated the deployment of a simple sense amplifier for reading memristors, yielding several benefits, including supply voltage flexibility, calibration-free operation, mitigation of read disturbances, and immunity to device variation. The digital approach also allowed us to demonstrate a complete system comprising 16 small memory blocks. The machine's use of stochastic computing offers natural resilience to soft errors and radiation, making our machine well-suited for deployment in extreme environments. The results of our work on this project have been successfully published in the Nature Electronics journal [START_REF] Harabi | A memristor-based bayesian machine[END_REF].

We further explored strategies to decrease the dominant energy consumption in our machine, associated with random number generation. Our proposition involved utilizing nanodevices to locally generate high-quality random bits, which could potentially result in significant energy cost reduction. We ventured into fabricating several prototype circuits employing unstable SMTJ devices with PCSA sensing circuitry to generate random bits. The progress made in this chapter paves the way for further exploration in the field of Bayesian machines, stochastic computing, and the efficient use of nanodevices.

In Chapter 3, we addressed the limitations of stochastic computing in memristor-based Bayesian machines and presented logarithmic computing as an effective solution. This method enhances precision and accelerates inference operations, all while preserving the architecture and design choices of the original Bayesian machine. The Logarithmic machine, also implemented with distributed memristor arrays, inherits all the benefits of our Bayesian inference approach, including reduced data movement, explainable models, uncertainty information, and efficient training with limited data. We conducted a comparative study based on measurements from two prototype Bayesian machines we fabricated: the logarithmic and the stochastic Bayesian machines. Both machines produced accurate measurement results under a variety of supply voltages, demonstrating the high robustness and supply voltage flexibility of our Bayesian inference machines. Further energy estimation, performed using a homemade energy estimation framework, confirmed that both designs could execute a gesture recognition task using significantly less energy than a microcontroller unit. The choice between the two designs ultimately hinges on specific applications and their respective energy and accuracy constraints. Our findings underscore the potential of memristor-based near-memory Bayesian computing as a promising solution for energy-efficient machine learning systems, even when using affordable technology such as the 130-nanometer process. The results of our work on this project have been successfully presented in the DATE 2023 conference [START_REF] Turck | Energy-efficient bayesian inference using near-memory computation with memristors[END_REF]. Inspired by the encouraging results of our Bayesian machine studies, as presented in Chapters 2 and 3, we were motivated to develop a larger, more competent system capable of handling real tasks onchip. Consequently, we designed and fabricated a large-scale, multi-computing mode chip that features both logarithmic and stochastic computing modes. This dual-mode chip allows us to harness the benefits of both computing modes. These promising developments have set a solid foundation for us to continue working on several practical tasks for future research directions.

In Chapter 4, we addressed the inherent challenges associated with the use of memristors. Recognizing memristors' imperfections as significant hurdles to overcome, we underscored the crucial role of experimental platforms for confronting these issues and fostering the development and testing of innovative memristor-based concepts. To this end, we introduced our multimode memristor-based prototyping platform, designed to facilitate the implementation of both analog and digital projects. Following successful design, fabrication, and testing phases, the platform emerged as a promising conduit for the exploration of new ideas, alongside the validation and optimization of reading, programming, and computing techniques.

The platform has been presented in the ASP-DAC 2023 conference for the university design contest [START_REF] Harabi | A multimode hybrid memristor-cmos prototyping platform supporting digital and analog projects[END_REF]. Looking to the future, the potential for using this memristor-based experimental platform in energy-efficient AI applications is vast. Currently, the platform is employed in two research laboratories, it is being utilized to validate an array of digital logic-in-memory and analog neuromorphic concepts.

Implications of the Research. Our research signifies additional steps on the evolving path of emerging computing paradigms using cutting-edge technologies. This aligns with the objective of our research group, "IntegNano", aimed at incorporating nanodevice technologies to address real-world issues. Our work bridges the gap between theoretical concepts, device demonstrations, and simulations, and actual integrated system demonstrations. During this thesis, we functioned as an intermediary between two research realms: the material and device world and the algorithms and computing world. Throughout our projects, we successfully incorporated devices, especially memristors, into energy-efficient systems, demonstrating the potential viability of our approaches, such as in-near memory computing with memristors, in addressing real-world problems like AI energy efficiency and trustworthiness. This propels the field of research forward, edging closer to more mature deployment in the near future.

Limitations. Much like an iceberg, the visible success of research is always underpinned by invisible hard work in overcoming limitations. During our research, we encountered numerous difficulties inherent to working in emerging research fields, utilizing immature technologies, design tools, and methodologies. A substantial portion of our work focused on resolving these issues. Given our young research group, it was initially challenging to develop sophisticated systems. We chose to progress incrementally, enhancing the complexity of our designs and projects in tandem with our accumulating experience.

Reflection. Reflecting on our journey, it is evident that our research, albeit challenging, has been immensely rewarding. It underscored the understanding that innovative solutions re-quiring multidisciplinary knowledge is a complex and demanding task, necessitating a mix of technical expertise, advanced manufacturing techniques, and substantial resources. This is especially true for research laboratories, which often face significant constraints due to limited resources. This journey has personally transformed my perspective on developing innovative technologies and solutions, and it has been a truly enriching journey to undertake.

Perspectives

The journey through this thesis has led to notable advancements in integrating nanoelectronic technology in energy-efficient AI demonstrator circuits. However, these achievements are not endpoints but stepping stones leading to a multitude of new research avenues, particularly in an age where energy-efficient and trustworthy AI applications are of paramount importance.

Several potential research directions, outlined below, emerge from the major contributions of this thesis.

Scaling up Memristor-based Systems:

The large-scale Bayesian machine, presented in Chapter 3, offers one of the most immediate opportunities for continued research. With its design and fabrication incorporating 143k memristors and 285k transistors, thorough testing and characterization of this machine are essential next steps. The potential of this machine to tackle real-world tasks is a fascinating aspect waiting to be explored, particularly given its dual-mode (stochastic and logarithmic) functionality. Furthermore, it is worth investigating the development of more advanced technology nodes to further reduce the energy consumption of our Bayesian machines. While the 130nm CMOS process was employed in this thesis due to its accessibility and affordability, transitioning to more advanced nodes such as 28nm or 22nm could significantly decrease energy consumption and boost the performance of memristorbased circuits. Looking further ahead, an aspiration is to develop a core-level demonstrator, integrating a RISC-V processor for standalone control and computing capabilities. This would entail augmenting the memory hierarchy, such as adding SRAMs to the system, and expanding the memory size, such as using memristors' analog capabilities, for enabling the core to In summary, our future research directions will explore a multidimensional solution space.

This will range from the technological dimension, incorporating several emerging nanodevice technologies, to the conceptual dimension, which embraces diverse approaches, learning and inference methods, and computing approaches (analog, digital, stochastic). From an architectural perspective, this includes near-memory and in-memory architectures, while from a system scale perspective, it ranges from the device to the system level (See last La thèse est structurée en quatre chapitres clés. Le chapitre 1 offre un aperçu du calcul dans la mémoire proche en utilisant les memristors comme une solution viable au défi de l'efficacité énergétique en IA, tandis que le chapitre 2 approfondit la mise en oeuvre d'un système bayésien stochastique basé sur des memristors. Dans le chapitre 3, nous adoptons le calcul logarithmique dans l'architecture de la machine bayésienne et ses implications pour l'efficacité énergétique. Le chapitre 4 introduit un circuit intégré conçu pour le prototypage de projets basés sur les memristors. Chaque chapitre fournit une analyse approfondie des processus de conception, de fabrication et de test et les implications des résultats pour le domaine. Ce travail de thèse souligne le potentiel de la technologie des memristors et de l'inférence bayésienne pour relever les deux défis centraux de l'IA : l'efficacité énergétique et la fiabilité. 

Résumé des Chapitres

Résumé du Chapitre 1: Machine Bayesienne à base du Calcul Proche de la Mémoire Ce premier chapitre met l'accent sur l'application du raisonnement bayésien (Eq 1) à une architecture de calcul proche de la mémoire pour l'intelligence artificielle en périphérie (Fig 3). Il décrit en détail comment construire des Machines Bayésiennes à l'aide de memristors. Une courte revue de l'évolution de la conception des puces sert de préambule à cette discussion, soulignant les motivations qui ont conduit à l'élaboration de nos Machines Bayésiennes. Cette section fournit une explication approfondie des choix de conception et du processus de développement nécessaires pour implémenter ces Machines Bayésiennes proches de la mémoire.

P (Y |O) = P (O|Y )P (Y ) P (O) .

(1)

L'ambition ultime de ce projet est de repousser les frontières de l'inférence bayésienne basée sur les nanodispositifs et de réaliser des systèmes entièrement fabriqués qui renforcent la maturité des accélérateurs bayésiens basés sur les memristors. Pour y parvenir, le projet mobilise une approche collaborative rassemblant des compétences issues de domaines tels que la théorie bayésienne, la modélisation et la caractérisation des dispositifs à memristor, ainsi que la conception de circuits intégrés. La performance supérieure du système repose sur son utilisation de la mémoire non volatile. Cette caractéristique offre au système bayésien une fonction marche/arrêt instantanée précieuse, validant son utilité même dans les environnements les plus extrêmes. Les décisions de conception de la machine bayésienne ont été guidées par les exigences spécifiques de l'inférence bayésienne. Requérant une précision supérieure à ce que les memristors analogiques pourraient offrir, la conception numérique a évité le besoin d'opérations de multiplication et d'accumulation. Cette déviation par rapport aux accélérateurs de réseau neuronal basés sur des memristors courants a conduit à une conception plus flexible qui accueille de multiples petits blocs de mémoire. L'un des attributs notables de ce système bayésien est sa résilience intrinsèque aux erreurs logicielle, une conséquence directe de sa dépendance à le calcule stochastique. Cette caractéristique, couplée à la robustesse du stockage de memristors contre les radiations, rend le système bayésien idéal pour une utilisation dans des environnements difficiles. Bien que la performance énergétique du système soit notable, la consommation d'énergie principale a été attribuée à la génération de nombres aléatoires (Fig 5 .b). Comme contre-mesure, nous avons envisagé la possibilité de générer localement des bits aléatoires en utilisant des nanodispositifs. Le développement ultérieur de circuits prototypes, utilisant des dispositifs SMTJ instables et un circuit de détection PCSA, a ouvert une voie prometteuse pour des économies d'énergie supplémentaires dans notre machine bayésienne.

Le chapitre se conclut en envisageant l'évolution future de ce projet. La poursuite d'un système doté d'une mémoire plus grande et d'une capacité de calcul supérieure, capable de gérer des tâches réelles sur la puce, est à l'horizon. Couplée à la perspective de réduire encore plus la consommation d'énergie en redimensionnant la conception à des noeuds technologiques plus avancés, l'avenir de ce système bayésien innovant semble prometteur.

Résumé du Chapitre 3: Une Machine Bayesienne Logarithmique à base de Memristors Ce chapitre entreprend une exploration à travers le dédale du calcul stochastique au sein des machines bayésiennes basées sur les memristors. Confronté aux limites de précision, de vitesse d'inférence et de complexité de la génération de nombres aléatoires inhérentes à ces machines, il présente une alternative significative : le calcul logarithmique. Cette alternative se distingue par sa capacité à améliorer la précision, à accélérer les opérations d'inférence, et à gérer efficacement les problèmes liés à l'underflow numérique et à la perte de précision, notamment lorsqu'il s'agit de petites probabilités ou de grands ensembles de données.

Un aspect essentiel du calcul logarithmique réside dans sa compatibilité avec l'inférence bayésienne. Cette compatibilité repose en grande partie sur le fait qu'elle transforme le calcul du produit de la distribution a priori et des vraisemblances en opérations d'addition et de soustraction élémentaires, améliorant ainsi l'efficacité et la vitesse de l'implémentation matérielle. Le récit se concentre donc sur l'intégration du calcul logarithmique dans l'architecture existante de la machine bayésienne, tout en respectant les principes de conception fondamentaux tels que l'utilisation de memristors et d'une architecture de calcul proche de la mémoire, qui sont également présents dans le modèle stochastique. La mise en oeuvre pratique de ces théories et concepts est illustrée par l'introduction et le test d'un circuit intégré de machine bayésienne logarithmique récemment développé. Soumis à des tests rigoureux, ce circuit démontre le potentiel du calcul logarithmique pour améliorer l'efficacité énergétique et la précision de l'inférence bayésienne. Une validation supplémentaire de ce potentiel est obtenue grâce à des mesures comparatives sur les machines logarithmiques et stochastiques. Malgré les imperfections des memristors, ces mesures confirment la faisabilité de l'approche de la machine bayésienne ( En soulignant les avantages offerts par l'approche d'inférence bayésienne, tels que les modèles explicables et la capacité à fonctionner avec des données limitées, le chapitre fait l'éloge des vertus de la machine bayésienne logarithmique. Cette machine se distingue par sa capacité à effectuer des calculs localement à l'aide de memristors distribués avec un minimum de mouvement d'énergie. Cela en fait un candidat prometteur pour gérer les situations incertaines dans les systèmes embarqués. Dans le but de résoudre le problème de la consommation d'énergie, une étude comparative de l'énergie entre le calcul stochastique et logarithmique est présentée (Tableau 1). L'étude indique qu'une mise à l'échelle de la conception vers des noeuds technologiques plus avancés pourrait encore réduire la consommation d'énergie, soulignant le potentiel du calcul logarithmique pour des systèmes d'apprentissage automatique écoénergétiques.

Le chapitre se conclut sur une note inspirante, montrant le potentiel prometteur du calcul logarithmique dans la création de systèmes d'apprentissage automatique non seulement écoénergétiques, mais aussi plus précis. Motivés par les résultats obtenus, l'objectif futur est de développer un système plus grand et plus robuste, capable de gérer des tâches réelles sur la puce, nous rapprochant ainsi de la réalisation de cet objectif ambitieux.

Architecture

CLKs Le chapitre 4 explore le domaine innovant et stimulant de la technologie des memristors. Bien que prometteurs pour faciliter l'émergence de nouveaux paradigmes de calcul tels que le calcul analogique, neuromorphique, stochastique, et calcule Proch ou dans le memoire, les memristors se trouvent encore en phase exploratoire, avec des défis intrinsèques et des imperfections. Ce contexte souligne la nécessité de plateformes expérimentales pour le prototypage efficace, les tests et la validation de nouveaux concepts basés sur les memristors.

Le chapitre aborde ces défis de front, en commençant par une exploration perspicace des imperfections des memristors et de leur impact sur la mise en oeuvre de nouveaux paradigmes de calcul. Il dévoile des stratégies potentielles pour exploiter ces memristors imparfaits, mettant ainsi en évidence le rôle indispensable des plateformes expérimentales basées sur les memristors ( Fig 7). Suite à cette exploration théorique, le chapitre se focalise sur les applications pratiques. Il présente un circuit intégré, conçu comme une plateforme de prototypage à double mode pour les projets de memristors ( 

Conclusion et Projets Futurs

Cette recherche offre un examen rigoureux des problèmes de consommation d'énergie et de fiabilité en IA, mettant en évidence la nécessité de stratégies minutieuses et réfléchies pour l'intégration de l'IA dans la vie de tous les jours. L'étude s'est focalisée sur le développement de circuits intégrés spécialisés pour soutenir les modèles d'IA économes en énergie, en particulier pour les applications de bord.

Un élément central de cette stratégie était l'incorporation de l'inférence bayésienne, une technique d'IA reconnue pour sa transparence et sa responsabilité, renforçant ainsi la confiance dans les applications d'IA. S'inspirant de l'efficacité énergétique exceptionnelle du cerveau humain, nous avons utilisé une architecture de calcul proche de la mémoire, rendue possible par la technologie nanoelectronique avancée. Cette approche a intégré divers domaines, dont l'IA, l'architecture des systèmes de calcul et les technologies émergentes, en exploitant principalement la non-volatilité et les capacités de mémoire proche des memristors.

La contribution de cette recherche à de nouveaux paradigmes de calcul, notamment ceux utilisant des technologies émergentes, est significative. En créant des liens entre les matériaux et les dispositifs, les algorithmes et les systèmes de calcul, elle fournit une voie concrète pour intégrer des dispositifs tels que les memristors dans des systèmes économes en énergie. Elle ouvre la voie à de futures avancées en matière d'efficacité énergétique et de fiabilité de l'IA.

Orientations pour la recherche future : Plusieurs pistes prometteuses se dessinent pour la recherche future : Optimisation des systèmes basés sur les memristors : Il est intéressant d'explorer davantage les tests et l'amélioration de la machine bayésienne à grande échelle conçue dans cette étude, avec une attention particulière portée aux noeuds de technologie avancée pour l'efficacité énergétique.

Intégration de nanodispositifs et de la nanophysique dans les systèmes de calcul : Il y a place pour une intégration supplémentaire de nanodispositifs émergents dans notre architecture de machine bayésienne et d'autres modèles d'IA, en commençant par les prototypes SMTJ.

Surmonter les imperfections des memristors : Les imperfections des dispositifs persistent comme un défi important, et la plateforme de prototypage multimode basée sur les memristors développée dans cette recherche offre un outil unique pour relever ce défi.

Aborder les défis de l'apprentissage sur puce : Le circuit intégré développé ouvre une voie pour l'examen de nouveaux concepts et algorithmes neuromorphiques, en exploitant la machine d'échantillonnage MCMC et les réseaux hybrides Memristor/FeFET. 
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Figure 1 :

 1 Figure 1: From Biological Neuron to Artificial Neural Network. a Biological neuron (adapted from wikimedia). b An electrical circuit model for a neuron proposed by Hodgkin and Huxley, using basic electric circuit elements to implement bio-neuron behavior. c Artificial Neuron model (or perceptron), proposed by McCulloch-Pitts, the sum of the multiplication of the elements of an input vector X and a synaptic weight vector w is output by the neuron (followed by a non-linear function). d Artificial neural network with hidden layer, two inputs and two outputs.

ArtificialFigure 2 :

 2 Figure 2: Growth in AI compute power demands over the past six decades. Plot of the computational power required by benchmark AI models, measured in PetaFlop-days (One petaFLOPS-day is the number of computations that could be performed in one day by a computer capable of calculating a 10 15 floating point operations per second). Models for several applications: vision, language, speech, and game models. Two different eras of progress can be distinguished based on the usage of growth slopes. In the first era, compute doubled every two years; in the second era, every 3.4 months [1, 2](adapted from[START_REF] Amodei | The cost of training machines is becoming a problem[END_REF]).

Figure 3 :

 3 Figure 3: Growth in AI models parameters size, and the AI dedicated hardware memory size, from 2016 to 2021.Growth of total number of parameters that a model needs over time. The plot shows the count for state-of-the-art models in computer vision (blue points), natural language processing (red points), recommender systems (black points), as well as the maximum memory capacity of AI hardware (green points). (Adapted from[START_REF] Gholami | Ai and memory wall[END_REF])
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 9 hand gesture recognition task compared to standard Bayesian inference implementations.

Figure 5 :

 5 Figure 5: Ph.D. Thesis Infographic. During my thesis, I have been incorporated mainly or partially in nine research projects, resulting in six publications (see list of publications) and the design of seven emerging nanoelectronic-based integrated circuits ( 1, 2, 3, 4, and 5 are RRAM-based, 6 is MRAM-based, and 7 is FRAM based). The numbers stand for the projects, the color code is yellow for taped-out design (sent for fabrication), orange for fabricated circuits and started testing, and blue for paper publication. Most of the designs are fabricated in a hybrid 130nm CMOS-Nanodevice process; only design 7 is based on a hybrid 22nm FDSOI-Nanodevice process.
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 12 Figure 1.2: Transistors population: from one device to trillion device on a chip. a The first transistor, developed by Walter Brattain and John Bardeen in 1947. (source: Nokia USA Inc. and AT&T Archives) b Apple M2 Chip (released on 2022), an ARM-based system on a chip (SoC) designed by Apple Inc. The M2 is made with TSMC's Fin-Fet Enhanced 5-nm technology, and it contains 20 billion transistors. The M2 Max version contains 67 billion transistors (Source: Apple website). c Wafer Scale Engine Two (WSE-2) chip, designed by Cerebras Systems, The Wafer Scale Engine (WSE) is a single, wafer-scale integrated circuit processor, it is designed for AI training and inference workloads in data-centers. The WSE-2 has 850, 000 cores with a total of 2.6 trillion transistors, made with TSMC's FinFet 7-nm technology (Source: Cerebras website).
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 13 Figure 1.3: The Evolution of the modern world's most important invention: the transistor. a 75th Transistor anniversary (cover image of the IEEE Spectrum magazine, by Lisa Sheehan). b The evolution of MOSFET Based transistors (Source: Samsung Tech Blog). c The Dennard scaling stoped around 2005, Moore's law trend might follow the same destiny (Reprofuced from [7]).
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 14 Photoresist

  simulation tools like ModelSim emerging to support HDL-based design and verification. As the adoption of HDLs like VHDL and Verilog grew, EDA tools advanced to support synthesis, placeand-route, and verification tasks. Logic synthesis tools, such as Synopsys Design Compiler, and place-and-route tools, like Cadence Innovus, started automating the process of converting HDL descriptions into gate-level netlists and optimized physical layouts.
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 15 Figure 1.5: Evolution of chip design complexity. From only functional design and verificationof transistor level circuits, to multi-process multidisciplinary design and verification of Heterogeneous chips (Reproduced from[START_REF] Park | This is not your fathers advanced semiconductor packaging[END_REF]).
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 20116 Figure 1.6: Current used Computer architecture. a A Simplified CPU architectures, and b a GPU architectures (adapted from the NVIDIA documentation). c Spatial Architecture for Highly-Parallel Computing, suited for NPUs, it has a tiling architecture, consisting Parallel processing elements, interconnected by network on chip (Reproduced from [9]). d Data reuse schemes, used in most of Spatial Architecture based NPUs, for decreasing data movement by Minimizing weights movement with weight stationary scheme, Minimizing outputs movement with output stationary scheme, or Minimizing activation's movement with activation stationary scheme (Reproduced from [9]).
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 17 Figure 1.7: Evolution of Multi-Chip/Chiplet Packaging (Reproduced from [8]).
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 12118 Figure 1.8: Data movement and the von Neumann bottleneck. a (Bottom) In the conventional von Neumann architecture, the memory unit and the processing unit are physically separated; the data needs to be constantly shuttled through them via a bus. This imposes a limitation in terms of speed and energy of computation: it is called the von Neumann bottleneck. (Top) A worker, company and house analogy. b The energy costs of single arithmetic operations for different precisions, and energy of memory access to SRAM and DRAM in a modern computer (reproduced from [10]). The energy for accessing DRAM is four orders of magnitude time higher than performing 8-bit addition operation.
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 110 Figure 1.10: Tward Non-Von-Neumann Architecture, the brain inspired architectures. a Near-Memory computing architecture, with worker, home and company analogy. b In-Memory computing architecture, with worker, home and company analogy.
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 1111 Figure 1.11: Samsung's processing-in-memory (PIM) solution. A hardware solution to accelerate the AI computation. a A System on Chip hardware includes GPUs and b high bandwidth memory (HBM-PIMs), which consist of c stacked DRAM based processing in memory dies (PIM-DRAM), each contain two Programmable Computing Unit (PCU), located near to 8 DRAM banks, with extra digital periphery (Source: Samsung Website).
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 112 Figure 1.12: Early Memory Technologies. a Punch cards, a mechanical memory that encoded data through the presence or absence of holes in specific positions. b Magnetic drum memory, a non-volatile memory that functioned by magnetizing small spots on a metal drum. The polarity of the magnetized spot would represent binary 0s and 1s. c Magnetic-core memory, used tiny magnetic toroids, the "cores", which could be magnetized in one of two directions, representing a 0 or 1.
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 113114 Figure 1.13: Semiconductor-Based Memory Technologies. a A 6T SRAM cell consists of two CMOS inverters connected back to back. b A DRAM cell comprises a capacitor C that serves as the storage node, which is connected in series to a FET. c Floating gate transistor. The storage node of a flash memory cell is a floating gate of a FET, and can be been used for d flash NOR structure or e flash NAND structure. (Reproduced from [11])
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 132 The Limitations of SRAM, DRAM, and Flash memories for In/Near-Memory Computing While in/near-memory computing based on mature memory technologies has demonstrated promise in addressing the von Neumann bottleneck, there are inherent limitations associated with the use of SRAM and DRAM in these architectures. Understanding these limitations is crucial in identifying potential areas for improvement and exploring alternative approaches.
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 115 Figure 1.15: Memory Hierarchy and Addressing the Gap with Emerging Technologies.
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 1116 Figure 1.16: Emerging Memory Technologies. a Resistive RAM structure and its f currentvoltage (I-V) characteristics for a bipolar switching device. b Phase-change memory structure and its g resistance change characteristics. c Magnetic RAM structure and its h resistance-voltage characteristics. d Ferroelectric RAM structure and e Ferroelectric FET structure and their i polarization-voltage hysteretic characteristic. (Reproduced from [11])

  1.16a). The application of an electric field induces the formation or dissolution of conductive filaments within the dielectric material, resulting in a change in the resistance state (See Fig.1.16f). These resistance states can represent binary data, where high and low resistance states correspond to '0' and '1'

1. 1

 1 IN/NEAR MEMORY COMPUTING WITH MEMRISTORSnary 1. When the magnetization directions are anti-parallel, the MTJ exhibits high resistance, corresponding to a binary 0 (See Fig.1.16h). MRAM devices can be written and read by applying currents.Phase-Change Memory (PCM):PCM is based on the reversible phase transition of a chalcogenide material, typically a compound of germanium, antimony, and tellurium (GeSbTe or GST)[START_REF] Wong | Phase change memory[END_REF] (See Fig.1.16b). Data is stored by changing the phase of the chalcogenide material between amorphous (high resistance) and crystalline (low resistance) states, representing binary 0 and 1, respectively (See Fig.1.16g). Phase transitions are induced by applying heat through electrical pulses, which cause the material to melt and subsequently cool rapidly (quench) into the amorphous state or heat and cool slowly to form the crystalline state.
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 1117 Figure 1.17: In-Memory computing with Memristor crossbars for artificial neural network. a Neural network with three inputs and two outputs mapped on a memristor crossbar of three rows and two columns. The multiply-and-accumulation operation can be performed in the analog regime, taking advantage of Ohm's Law and Kirchhoff's Law. b A memristor crossbar used as a vector-matrix multiplier, including ADCs, DACs, and digital input and output cicuitry. This crossbar is a main element in the ISAAC architecture hierarchy, used to build c the In-Situ Multiply-and-Accumulate block that is part of d the ISSAC Tile block. (Reproduced from [12])
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 118 Figure 1.18: In-Memory computing with resistance summation for artificial neural network. a Resistance summation crossbar array architecture. b Time-domain readout method. A lumped capacitor and distributed parasitic capacitors in the array are charged, and the time taken for the voltage at the end of the column to reach a reference voltage is measured, correlating to the column resistance. The resistance value represent the dot product of the input vector and the weight vector. c Bitcell structure, which combines two parallel paths, each comprising a resistive device and a MOSFET in series. d Implementation of an analog XNOR operation, the multiply operation for the binary neural network, by the bit-cell structure. (Reproduced from [13]).

CHAPTER 1 :

 1 THE CASE FOR BUILDING BAYESIAN MACHINES WITH MEMRISTORSAdvanced Institute of Technology have proposed a novel crossbar array architecture that leverages resistance summation for analogue multiply-accumulate operations, instead of current summation[START_REF] Jung | A crossbar array of magnetoresistive memory devices for in-memory computing[END_REF] (See Fig.1.18a). The architecture is built on an MRAM crossbar array, chosen for its low resistance states. As MRAM is confined to only two states, this architecture has been utilized to implement a binary neural network model for image classification tasks. The architecture's bit-cell combines two parallel paths, each comprising an MRAM tunnel junction (MTJ) and a MOSFET in series (See Fig.1.18c). In this configuration, one path's FET gate is driven by a binary input voltage, while the other is driven by the complement of the input voltage. Each path stores a synaptic resistance weight, with one path holding the weight and the other its complement. The chosen path, determined by the input voltage, results in the bit-cell output, thus implementing an analog XNOR operation-the multiply operation for the binary neural network (see Fig.1.18d). The bit-cell output resistances are connected in series in each column of the array and their sum yields the column resistance. This process replaces the current sum in conventional crossbar arrays, with the column resistance being the dot product of the input vector and the weight vector. The column resistance is read via a time-domain method; a lumped capacitor and distributed parasitic capacitors in the array are charged, and the time taken for the voltage at the end of the column to reach a reference voltage is measured, correlating to the column resistance (see Fig.1.18b). This time delay is captured by a time-to-digital converter (TDC) that extracts the resistance. Despite MRAM's low resistances, this architecture promises lower power consumption, as computations are based on charge and discharge currents rather than steady summed currents. A limitation, however, is the binary nature of the MRAM, which may necessitate an increased network size or longer computing time to achieve desired performance. An effective countermeasure is the integration of memristors, which, unlike binary MRAM, can store a broader range of resistance states, enhancing the precision of stored weight values and promoting more accurate computations within the neural network model.

  Let us take an example where we try to evaluate the probability of an event Y , e.g., the occurrence of a medical emergency, based on a collection of observations. A value of one for Y might represent the occurrence of a minor stroke, a value of two a major stroke, and a value of zero the absence of any stroke. Bayes' law then provides the probability that these situations are currently occurring, based on their probability to happen at any time (the prior p(Y = y)) and likelihood factors p(O 1 ,O 2 , ...,O n |Y = y) that model the behavior of the sensors O 1 , O 2 ,...,O n in the absence or presence of a stroke:
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 119 Figure 1.19: General architecture of the Bayesian machine. The likelihoods are stored in likelihood memory arrays implemented by memristor arrays. Observations from the real world choose the appropriate probability values from likelihood memory arrays, based on which the probability values are red from likelihood arrays, which are multiplied by multipliers. At the output, the generated results encode the posterior distribution.

CHAPTER 1 :

 1 For example, if observations O 2 and O 3 are not conditionally-independent, the p(O 2 ,O 3 |Y = y) likelihood may not be factorized, and an appropriate Bayesian inference model may read such as eq. 1.5p(Y = y|O 1 ,O 2 , ...,O n ) ∝ p(O 1 |Y = y) × p(O 2 ,O 3 |Y = y)× = ... × p(O n |Y = y) × p(Y = y).(1.5) This model can still be implemented by a memristor-based Bayesian machine. In that case, THE CASE FOR BUILDING BAYESIAN MACHINES WITH MEMRISTORS observations O 2 and O 3 should be pooled into a single column, and their joint value should be used to address the likelihood arrays of this column, as presented in Fig. 1.20. Nevertheless, it should be highlighted that the memory cost of the Bayesian machine grows with the number of non-conditionally independent variables.
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 120 Figure 1.20: Architecture of the Bayesian machine with non-conditionally independent observations. This architecture performs non-naive Bayesian inference following eq. 1.5, by pooling observations O 2 and O 3 into the same column.

  manufacturing techniques, and significant investment has led to a limited supply chain dominated by a few companies at the forefront of cutting-edge technology. Meanwhile, research labs often face greater challenges due to limited resources, including funding, personnel, and equipment, making it difficult for them to access the necessary advanced tools and techniques to produce high-quality chips.The focus on exploring new ideas and technologies in research labs often involves taking risks and experimenting with novel approaches, such as new hardware architectures, devices, and computing paradigms, which can increase the risk of having errors or defects on the fabricated chip and make the design and verification process more complex using less mature Electronic Design Automation tools. Thus, the challenges faced in projects involving chip fabrication highlight the importance of a productive multidisciplinary collaboration. Our projects involving the Bayesian machines are the result of the successful collaboration of a group of researchers from four research entities: Centre for Nanosciences and Nanotechnologies (C2N) in the Paris-Saclay territory, Institut Matériaux Microélectronique Nanosciences de Provence (IM2NP) in Marseille, CEA-Leti in Grenoble, Institute of Intelligent Systems and Robotics (ISIR) in Paris, and a start-up company (HawAI.tech) based in Grenoble.
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 121 Figure 1.21: Affiliation of collaborating research entities in the Bayesian machine project. Including C2N, IM2NP, CEA-Leti, ISIR, and HawAI.tec. Along with image of our paper on the cover of Nature Electronics Journal [14].

(

  then at C2N) under the supervision of Damien Querlioz (C2N) , in collaboration with Bayesian theory experts Jacques Droulez and Pierre Bessiere (ISIR). Then, an intensive study of design choices and computing paradigms was performed in collaboration with Marc Bocquet (IM2NP), who specializes in memristor device modeling and characterization, and Jean-Michel Portal (IM2NP), an expert in integrated circuit design. I did the actual design of the first Bayesian machine "The stochastic Bayesian machine", in collaboration with Tifenn Hirtzlin, and of the second Bayesian machine "The logarithmic Bayesian machine", in collaboration with Clement Turck (C2N), all under the supervision of Jean-Michel Portal and Damien Querlioz.After the design was finalized, the chip was sent to a foundry for fabrication, with Elisa Vianello (CEA-Leti) leading the process. The fabrication process is based on a hybrid CMOS/memristor technology, which goes through two phases. The first phase involves the fabrication of the CMOS part using a conventional silicon-based process with a 130-nanometer commercial technology. The second phase involves the integration of memristor devices using an emerging technology process from the CEA-Leti research center.Once the chips are received, the electrical characterization of the stochastic machine was performed by Marc Bocquet and Tifenn Hirtzlin; the electrical characterization of the logarithmic machine was performed by Clement Turck and I, under the supervision of Marc Bocquet and Damien Querlioz. Both systems were tested using a custom-designed measurement setup, and in parallel, we designed scaled-up versions of the Bayesian systems with Clement Turck to implement applications based on Bayesian inference models, adapted to the Bayesian machines.
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 122 Figure 1.22: Overview of an Integrated Circuit Design Flow. a Computer-aided steps performed with EDA Tools. At the end, GDS mask layouts are obtained, ready for the fabrication process (Reproduced from [15]). b Diagram of the main steps for making a chip from system specification to ready-to-use chip (Reproduced from wikimedia).
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 123 Figure 1.23: Diagram illustrating our custom-developed automated design flow for integrating mixed digital and memory circuits.
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 124 Figure 1.24: Packaging or probe testing of Bayesian machine dies. a Non-Packaged batch (Logarithmic chip) and b a zoom-in on one die. c The custom-made 25-pads probe card, used within the probe station to connect the pads of the non-packaged dies to SMA connectors. d The operation of connecting the 25 micro-probes to the 25 chip pads. e Packaged die with a J-Lead Ceramic Chip Carrier of 52 pins (JLCC52) and f a plastic leaded chip carriers (PLCC) sockets, a chip carrier used to form connections between packaged chips and PCB. Chips can be easily exchanged or removed.
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 125 Figure 1.25: Measurement setups for Bayesian machine systems. a Setup for the packaged dies. b Setup for the non-packaged dies.

Fig. 1 .

 1 Fig. 1.26 recapitulates the different steps of the hand gesture recognition implementation on the Bayesian machine, from training to on-chip operation:

1. 5 CONCLUSION 57 various voltages to program and read memristors. 1 . 5 Conclusion

 55715 This chapter has presented the architecture of a Bayesian machine with distributed memristors that allows for local computation and minimal data movement for energy-efficient Bayesian inference. The unique requirements of Bayesian inference, which do not require multiply-andaccumulate operations like those commonly used in neural network accelerators, were taken into consideration in the design.The goal of this work is to advance nanodevice-based Bayesian inference and develop fully fabricated systems that improve the maturity of memristor-based Bayesian accelerators. Collaboration between experts in Bayesian theory, memristor device modeling and characterization, and integrated circuit design is crucial for success. The project involves several steps, including theory development, design, fabrication, electrical characterization, and evaluation of real-world applications.

COMPUTING 61 2. 1

 611 Bayesian Inference with Stochastic ComputingAn important challenge of the memristor-based Bayesian machine is that the classical computation circuitry, and particularly multiplications are normally an area-expensive operation in CMOS (Figs. 2.1a-b), raising a concern if a multiplier is associated with each likelihood memory array. For this reason, we rely on stochastic computing[START_REF] Gaines | Stochastic computing systems[END_REF][START_REF] Alaghi | Survey of stochastic computing[END_REF]. Stochastic computing represents data as a bitstream of 1s and 0s, with the proportion of 1s representing the encoded data between 0 and 1. This unique method of representation limits all values in the stochastic approach to the range of 0 to 1. Integrating stochastic computing into the design of a memristorbased Bayesian machine with near-memory computing offers several advantages, particularly in terms of processing efficiency.
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 21 Figure 2.1: Architectures of adders and multipliers. Basic architecture of a a floating-point adder and b a floating-point multiplier. Both images are reproduced from [16]. c A simple multiplexer can perform the sum in stochastic computing, the output is z = px + (1 -p)y. If p = 1/2, z = (x + y)/2. d A logical AND gate can perform the stochastic multiplication between two bit-streams. (Reproduced from[17])
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 23 Figure 2.3: Fabricated memristor-based Bayesian machine. a Optical microscopy photograph of the Bayesian system die. b Detail of the likelihood block, which consists of digital circuitry and memory block with its periphery circuit. c Photograph of the 2T2R memristor array. d Scanning electron microscopy image of a memristor in the back end of line of our hybrid memristor/CMOS process. All subfigures use consistent color codes.

Fig. 2 .

 2 Fig.2.4b-c and their description below). This technique has been shown previously to reduce errors as efficiently as single error-correcting, double error-detecting codes (extended Hamming), using the same degree of memristor redundancy, and necessitating no error decoding circuit[START_REF] Hirtzlin | Digital biologically plausible implementation of binarized neural networks with differential hafnium oxide resistive memory arrays[END_REF]. It is used here within a full system for the first time. The likelihoods themselves are coded in binary representation as eight-bit integers.
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 24 Figure 2.4: The designed memristor-based likelihood circuit. a Schematic of the likelihood block presented in Fig. 2.3b. b Schematic of the differential precharge sense amplifier used to read the binary memristor states. c Principle of complementary programming of the 2T2R bit cell memristors.

program a one value. Fig. 2 .

 2 6a shows the required voltages to program one and zero values, and the Table in

Fig. 2 .

 2 6c lists the corresponding CSL and CBL value. The voltage levels of VDDR and VDDC used for the SET and RESET operations are shown in Fig. 2.6b.
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 25 Figure 2.5: Programming circuitry for the likelihood memory arrays. a Detailed schematics of the likelihood memory array, with its programming and reading periphery circuitry, displaying the voltages needed to perform a SET operation on the first row, last column left memristor R. b Schematics of the 2T2R bit cell connections to the reading and programming circuitry. Two level shifters (conventional level shifter LS and three-state level shifter TLS) and one sense amplifier (PCSA) are implemented in each column. One level shifter is implemented in each row. The digital signal BLEN allows choosing between the reading or programming mode. c Transistorlevel schematics of the level shifter (LS) and d the three-state level shifter (TLS) circuits.

Figure 2 . 6 :

 26 Figure 2.6: Programming methodology for the 2T2R bit cell. a Voltages that need to be applied on the bit line BL, bit line bar BLb, and source line SL for forming, programming a zero, and programming a one in a 2T2R Bit cell. b Programming voltage levels and timings used for the Forming, RESET, and SET operations (mentioned in the Methods section of the main article). c Table summarizing the configuration of programming signals (level shifters) for the different programming operations supported by the memory array (forming, programming a zero, and programming a one).
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 27 Figure 2.7: Read operation for the likelihood memory array: Precharge phase. b The read scheme involves a precharge and a discharge phase. a Schematic and c circuit simulation of the precharge phase. BL and BLb are charged to VDD. During the read mode, the bit lines are disconnected from the programming level shifter circuit (using the tri-state level shifter TLS, see Fig. 2.5d) and connected to the precharge sense amplifier (PCSA) circuit using analog transmission gates. The source line and word line level shifters then act as buffers supplied by nominal voltage VDD (see Fig. 2.7a). The read operation functions in two phases: precharge and discharge (see Fig. 2.7b).

  2.8a,b).The bit line with the lowest-resistance discharges faster unit its associated inverter output discharges to ground, which latches the complementary inverter output to the supply voltage (Fig.2.9a,b). The two output voltages, therefore, represent the comparison of the two complementary resistance values, which gives the bit stored in the 2T2R bit cell.

Figure 2 . 8 :

 28 Figure 2.8: Read operation for the likelihood memory array: discharge phase. a Schematic and b circuit simulation of the discharge phase, BL and BLb are discharged to GND with different speed.
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 29 Figure 2.9: Read operation for the likelihood memory array: Precharge phase. a Schematics and b circuit simulation of the outputs of the PCSA converging to a stable state, while BL and BLb are completely discharged to GND. c Experimental measurement of the read disturb on likelihood memory arrays, with a VDD value of 1.2 volts. Even after 5.7M read operations of the whole array, no error is seen.
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 210 Figure 2.10: Detailed operation of the Bayesian machine. a Schematic illustrating the detailed architecture of a likelihood elementary block. b Flowchart of the different operations to perform a Bayesian inference computation in the Bayesian machine. c Time diagram illustrating the operation of the Bayesian machine.

Fig. 2 .

 2 Fig.2.11a shows the measured results of reading the likelihood memory arrays of the chip, before forming and programming, naturally showing random values (as bits are stored in a complementary manner using two memristors, reading the memory with unformed bitcells leads to random results). Fig.2.11b presents the same measurements after programming: the intended patterns are obtained without errors, showing the efficiency of the complementary programming technique. These artificial patterns were chosen so that performing Bayesian with random inputs allows exploring the whole range of possible output probabilities, allowing to test the functionality of the demonstrator.
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 211 Figure 2.11: Measurements of the fabricated memristor-based Bayesian machine. a Measurements of the likelihood stored in the memristors, before they have been formed. As the bits are programmed in a complementary fashion involving two memristors, the result of the measurement appears random. b Measurements of the likelihood stored in the memristors, after they have been formed and programmed. No bit error is seen.

Fig. 2 .

 2 Fig. 2.12a, the LFSRs were initialized using random seeds. The x-axis represents the theoretical result expected from Bayes' law (i.e., the desired output for the Bayesian machine), while the y-axis represents results measured experimentally by counting bits at the output of the die. The different points in the Figure are obtained by randomly changing the inputs O 1 , O 2 , O 3 , and O 4 of the circuit, and by changing the nominal supply voltage V DD . For each random set of input, the system was operated 255 clock cycles (i.e., the periodicity of the LFSRs). The number of ones outputted at each row is counted and divided by 255 to be converted as a probability, and plotted in the Figure.

Figure 2 . 12 :

 212 Figure 2.12: Measured output of the Bayesian machine. a measured posterior probability as a function of the expected value from Bayes' law. The different points correspond to random observation inputs. The different rows are pooled in the same graph. The points are obtained with various supply voltages VDD ranging between 0.5 and 1.2 volts. This graph is obtained with non-optimal LFSR seeds. The measured probabilities are obtained by averaging the experimental measurements over the full LFSR period (255 cycles). b Same as a, using optimal LFSR seeds. The symbols indicate which row of the Bayesian machine was used (circle, up triangle, down triangle, square: first, second, third, and fourth row).

Fig. 2 .

 2 13a highlights the correlation between the random numbers generated by the LFSRs, by plotting the 255 values generated by each LFSR as a function of the 255 values generated by each other LFSR at the same time. This Figure is plotted with initially random-chosen LFSR seeds, as in Figs. 2.11a. Obvious correlations are observed between some LFSR. These correlations cause some inputs to the stochastic computing
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 213 Figure 2.13: Correlations of the random numbers generated by four LFSRs. Each graph presents the output of one of the four LFSRs of the Bayesian machine, as a function of the output of another LFSR. Each graph contains 255 points corresponding to the 255 cycles of operation of the Bayesian machine. Graphs on the diagonal (LFSR1/LFSR1, LFSR2/LFSR2, LFSR3/LFSR3, LFSR4/LFSR4) appear as x=y lines, by definition. a The random numbers generated with initially randomly chosen seeds used in in Fig. 2.12a. The presence of very discernible patterns in some of the graphs (LFSR1/LFSR3, LFSR1/LFSR4), indicates the existence of a strong correlation between the output of some LFSRs. On the other hand, the outputs of some LFSRs appear largely uncorrelated (LFSR1/LFSR2, LFSR2/LFSR3, LFSR2/LFSR4). The seeds for the four LFSRs are, respectively, in hexadecimal representation: 50, E9, 10, and C6. b The random numbers generated with the optimal seeds used in Fig 2.12b. The results show an absence of evident correlation between all outputs of the different LFSRs. The seeds for the four LFSRs are, respectively, in hexadecimal representation: EB, FB, 7F, and 5C.
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 214 Figure 2.14: Application of the Bayesian machine on a practical gesture recognition task. a Setup with inertial measurement unit used to record the gesture recognition dataset. b Masks of the placed-and-routed Bayesian machine design used to perform the design-level gesture recognition analysis.
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 215 Figure 2.15: Energy analysis of the Bayesian machine on a gesture recognition task. a Energy consumption of the system (Dynamic consumption and memory arrays) during the three phases of computing: loading the seeds into the LFSR, reading the memories, and the actual inference of 255 cycles. b Energy consumption of the system's important points during the inference phase for 255 cycles. All energy numbers are given for a supply voltage of 1.2 volts.
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 216 Figure 2.16: Energy and recognition accuracy analysis of the Bayesian machine on a gesture recognition task. a Mean accuracy according to the number of cycles in the inference for two types of computation: using a "power conscious" method by taking into account only the first one out for the decision (in red) and using the conventional stochastic computing by using the maximum number of one out for the decision (in blue). The shadows around the graph show one standard deviation of the mean accuracy over the ten subjects. b Energy consumption during the inference phase as a function of the accuracy for gesture recognition for the two methods. The stars correspond to the same point in both graphs a and b. All energy numbers are given for a supply voltage of 1.2 volts.

  2.17a). This random switching can be observed as two-state fluctuations in the electrical resistance of the junction, which resembles a random telegraph signal. Resistance versus time measurements can be used to study the dynamics of these fluctuations (see Fig.2.17b). These truly unpredictable resistance fluctuations can be converted to voltage or current fluctuations in the SMTJ device, then using a specific sensing circuitry those voltage or current fluctuations are converted to random digital bits.
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 218 Figure 2.18: Comparison table between conventional Digital, Probabilistic and Quantum computing paradigms.Each column shows the specifications and a simple illustration of the computational paradigms, based on basic computational units: respectively,the bit, the p-bit and the qubit. (Adapted from[START_REF] Chowdhury | A full-stack view of probabilistic computing with p-bits: devices, architectures and algorithms[END_REF]).

  of the physical phenomena to a digital bit-stream. The simplified structure of a TRNG based on SMTJs consist of four main modules as shown in Fig.2.19: (1) random signal is obtained from the unstable devices; (2) sensing and converting the random signal to digital signals; (3) if the obtained raw sequences does not satisfy a the uniform distribution, a feedback calibration signal is sent to the sensing circuitry; and (4) when a statistically-accepted sequence is obtained, the digital processing can be performed. Almost the same structure is applied for P-bits based on SMTJs; the only difference is that the sensing circuitry has a biasing parameter to control the weighted probabilistic P-bit distribution.
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 219 Figure 2.19: Hardware structure for TRNG. a Simplified hardware structure for TRNG with uniform distribution. b Simplified hardware structure for P bit generator. (Adapted from [21]).
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 220 Figure 2.20: Sensing circuitry for Stochastic magnetic tunnel junctions. a PCSA based sens-ing circuit for reading the state of a SMTJ (Adapted from[START_REF] Vodenicarevic | Low-energy truly random number generation with superparamagnetic tunnel junctions for unconventional computing[END_REF]). b a circuit for MTJ based P bit (Reproduced from[START_REF] Kerem Y Camsari | P-bits for probabilistic spin logic[END_REF]).
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 221 Figure 2.21: Schematics of the designed TRNG and P-bit prototypes. a Schematics of the first prototype TRNG circuit based on two SMTJs and a PCSA. b Schematics of the second prototype TRNG circuit based on two SMTJs, two biasing transistors and a PCSA, it can function as P-bit as well.

  2.21b). By controlling the gate voltage of these transistors (Vb1 and Vb2), we could calibrate the circuit to reduce mismatch between the two devices and control the maximum instant current through them.In addition to reducing device variability, the biasing voltages also allow us to control the outcome probabilities by manipulating the Vb1 and Vb2 values to bias the bitstream towards one state more than the other. This additional functionality turns our design into a P-bit generator. Based on SPICE simulations, we selected the optimal transistor sizes and validated the design for tape-out and fabrication.
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 222 Figure 2.22: Schematics of a designed P-bit prototype, and the XOR whitening technique. a Schematics of the third prototype TRNG circuit based on two SMTJs, two biasing transistors and a PCSA, it can function as P-bit as well. b Schematics of the XOR2 whitening circuit using two basic RNG circuits and one XOR2 circuit. c Schematics of the XOR4 whitening circuit using four basic RNG circuits and three XOR2 circuits.
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 223 Figure 2.23: Classification table of the designed prototypes. The table lists and classify the designs . First row for the basic designs and second row for the designs with the XOR whitening technique. and Based on the type of the design. One column per prototype.
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 224 Figure 2.24: The SMTJ Based RNG and P-bit demonstrator chip. a Layout view of the chip with the seven designs, using two sets of 25 IO pads. b Optical microscopy photograph of the fabricated die.
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 225 Figure 2.25: Suggested integration of TRNG and P-bit to the Bayesian machine. a Schematics of likelihood with embedded TRNG. b Schematics of likelihood with embedded Pbit, the likelihhods are stored in analog values, the analog read of memory outputs analog biasing voltages corresponding the stored probability.

Figure 3 . 1 :

 31 Figure 3.1: Quantization functions. a Linear quantization of probabilities represented by an unsigned four-bit fixed point format. b Logarithmic quantization of probabilities represented by an unsigned four-bit fixed point format. c Logarithmic quantization of probabilities represented by an unsigned one's complement four-bit fixed point format.

Fig 3 .

 3 Fig 3.1b shows a function f (n) used with 4-bits numbers, B = 1/2 as the logarithmic base, and m = 2. This configuration allows 14 binary values to represent probabilities between 1/2 and 0, with the smallest possible probability value of f (0) = 0.0055 (close to the eighth-bit fixed-point resolution of 0.0039), and only two binary values for probabilities between 1 and 1/2.
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 31103 Thus, the product cannot be implemented by a simple adder. One solution to this problem is to use the one's complement representation n * of the digital number n (without the use of sign bit), where K = 2 n -1 = n + n * . By replacing K -n with n * in equation 3.1, we obtain the new quantization function g (n * ): (n * ) = B n * /m . (3.2) The function g (n * ) in eq 3.2 represents probability as a decreasing function, where the probability values decrease with increasing binary values. For instance, Fig 3.1c displays a function g (n * ) with N = 4 bits, base B = 1/2, and m = 2, where the smallest possible probability value is represented by the biggest binary value 1111, which corresponds to the probability value g (15) = 0.0055. Using the new function, adding the binary numbers n * 1 = 1 and n * 2 = 2 results in n * 3 = 3, and the product of g (n * 1 ) × g (n * 2 ) = g (n * 3 ), as explained by g (1) × g
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 32 Figure 3.2: Determining the Logarithmic Quantization Parameters. This Figure explores the impact of two parameters on quantized probabilities: (a) the logarithmic base and (b) the m parameter. Increasing either parameter leads to a better representation of high probability values at the cost of reduced precision and increased minimum encoded probability value.
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 331063 Figure 3.3: General architecture of the Logarithmic Bayesian machine.
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 34 Figure 3.4: Detailed operation of the logarithmic Bayesian machine. a Schematic illustrating the detailed architecture of a Log-likelihood elementary block. b Flowchart of the different operations to perform a Bayesian inference computation in the logarithmic Bayesian machine.

Fig. 3 .

 3 Fig. 3.4c shows a time diagram of the machine operation. The color code throughout Fig. 3.4is as follows: the orange color is used for memory read, and the green color for the actual logarithmic inference. The inference operation in the logarithmic Bayesian machine is much easier than the stochastic one, the inference performed in three main phases:
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 35 Figure 3.5: Physical views of the memory block used in the Bayesian machines. a Masks of the memory block with five routing metal layers. b Abstract view of the memory block, consisting of metal blockage masks to avoid routing above the memory block and pin masks to define the routing position of In and Out pins, and c the routing position of the supply voltages, which are easily distributed and routed.
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 36 Fig. 3.6), using the hybrid CMOS/Memristor fabrication process (see Chapter 1), with 2,048 memristors and 35,400 transistors, using a the same special low-power 130-nanometer CMOS process as in Chapter 2, where hafnium-oxide memristors are fabricated in place of vias between metal layers 4 and 5.
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 36 Figure 3.6: Fabricated memristor-based logarithmic Bayesian machine. Optical microscopy photograph of the Bayesian system die.

Figure 3 . 7 :

 37 Figure 3.7: The experimental setup for on-chip measurements on the logarithmic Bayesian machine. The setup includes a custom PCB to route an MCU with a probe station and several power supply sources.

Figure 3 . 8 :

 38 Figure 3.8: Inference measurements on the fabricated Bayesian machines. Measured output as a function of expected result on the fabricated a logarithmic and b stochastic Bayesian machine. In the logarithmic case, all points for supply voltages ranging from 0.7 to 1.2 V are superimposed.
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 39 Figure 3.9: Placed-and-Routed Logarithmic Bayesian Machine Masks for Gesture Recognition Analysis at the Design Level.
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 310 Figure 3.10: Schematic illustrating the architecture of a multi-mode likelihood elementary block. The likelihood elementary block used in the large-scale Bayesian version features two computing modes, the logarithmic and the stochastic. The mode needs to be decided before memristor programming.

Figure 3 . 11 :

 311 Figure 3.11: The fabricated large-scale Bayesian machine. a Masks of the placed-and-routed large-scale Bayesian machine design sent for fabrication. b Optical microscopy photograph of the large-scale Bayesian machine.

  physical devices relies on underlying physical phenomena, such as magnetic or electronic processes. To ensure accurate programming, retention, modification, and readout of device states, these phenomena must be well understood and controllable. Different memory technologies rely on distinct physical phenomena and use varied approaches and methods.
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 41 Figure 4.1: Imperfections of OxRAM-based memristors. a Current-voltage OxRAM character-istics for FORMING, SET, and RESET operations. An asymmetry in the SET and RE-SET programming voltages is seen (reproduced from[START_REF] Garbin | Hfo2-based oxram devices as synapses for convolutional neural networks[END_REF]). b Progressive evolution of the resistance of two measured devices with consecutive weak RESET pulses. We see non-linearity and instability of the resistance change with consecutive applied voltage (reproduced from[START_REF] Majumdar | Model of the weak reset process in hfo x resistive memory for deep learning frameworks[END_REF]). c Cycle-to-cycle programming variability in resistance states, Distribution of the low resistance state for different SET programming conditions (reproduced from[START_REF] Dalgaty | Ex situ transfer of bayesian neural networks to resistive memory-based inference hardware[END_REF]). d Cumulative distributions of OxRAM devices in eight different conductance levels, after standard iterative programming, a resistance drift can be seen (reproduced from[START_REF] Esmanhotto | Experimental demonstration of multilevel resistive random access memory programming for up to two months stable neural networks inference accuracy[END_REF]).
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 1 IMPERFECT MEMRISTORS FOR BUILDING NEW COMPUTING PARADIGMS 123perfect even under identical programming conditions. This imperfection is called variability, with two main types distinguished in the OxRAM: device-to-device variability, which refers to the variation between different devices, as seen in Fig.4.1b, where the progress of the resistance state of two devices differs even under the same programming conditions; and cycle-to-cycle programming variability, which refers to the programmed resistance state differing over successive programming cycles for the same device. Fig.4.1c shows the probability distributions of cycle-to-cycle conductance variability of a single device programmed under three different SET programming conditions, with the distributions fitted using a normal distribution.Even if the programming process is optimized to achieve ideal resistive states, OxRAMbased memristors are still prone to resistance instability, called the drift effect, which refers to the fact that the resistance state of the memristor can change over time, even without any external stimuli, potentially leading to data loss. This effect can be more pronounced in the high resistance state (or low conductance state, LCS), as shown in Fig.4.1d.Despite the non-idealities and imperfections present in memristors, they are still considered a highly promising technology for energy-efficient computing systems. Ongoing research and development aim to better understand the switching mechanism, mitigate the impact of imperfections, and even leverage them for improved performance. Various techniques for characterizing and modeling imperfect memristors have been developed, and novel algorithms, architectures, and techniques are being explored. Understanding and mitigating the impact of imperfections in memristors is crucial for building new computing paradigms.
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 42 Figure 4.2: Optimizing memristor programming algorithms. a Optimized iterative programming algorithm. b Conductance cumulative probability distribution for eight distinct conductance levels programmed using the standard iterative programming algorithm. c Conductance cumulative probability distributions for eight conductance levels programmed using the optimized programming technique in a, stable resistance states read after 60s and 12h. (reproduced from [25])
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 126443 Figure 4.3: Analog in-memory computing with imperfect memristors. a A single array row that can perform in analog fashion a dot product V.g operation. b Probability density of the cycle-to-cycle variability for a single memristor. It follows a normal distribution, which makes memristors serve as a random variable. c (left) Gradientbased learning algorithms iteratively compute the derivative of an error metric with respect to a conductance model g, multiplied by a learning rate α, to determine updates to be applied to the g parameters. The ideal memristor device should be capable of high precision and linear conductance updates. (right) The three panels show the gradient descent algorithm for an increasing number of model updates (green crosses). From an initial model, the algorithm performs gradient-based updates until it converges to a local minimum in error. d In our work, memristor random conductance updates are used by the sampling algorithm to perform, local random jumps on the posterior distribution, then an approximation of this distribution is stored.

Figure 4 . 4 :c 1 Figure 4 . 5 :

 44145 Figure 4.4: Memory cell structures. a 1 Transistor 1 Resistor (1T1R) structure, for analog mode computing. b 2 Transistor 2 Resistor (1T1R) structure, for digital mode computing. c 1 Transistor 1 Resistor (1T1R) structure, for MCMC sampling.

Fig. 4 .

 4 Fig. 4.5a shows a simplified schematic of 1T1R cell connected to analog multiplexers: it illustrates the mode-switching of our platform. Each cell of the array is connected to three mode-switching MUXs: one for the source line, one for the bit line, and one for the word line. The designed integrated circuit embeds periphery circuitry enabling the use of memristors within the two modes. Fig. 4.5b shows a simplified schematic for the global circuit. It uses consistent color codes. Grey-colored blocks are the shared circuitry. They consist of 128 × 64

Fig 4 .Figure 4 . 6 :

 446 Figure 4.6: Digital Mode Circuitry. a Schematic of the digital mode circuitry. It consists of address decoders, level shifters, PCSA sense and XNOR compute circuitry, input and output shift registers. The design adopts the 2T2R structure for storing one bit. bSchematics of the sensing circuitry with XNOR logic-in-memory feature, the pass transistor logic XNOR, the differential precharge sense amplifier used to read the binary memristor states and the SR Latch. c Error rate of the 2T2R approach as a function of the error rate of the 1T1R approach, in simulations assuming a perfect PCSA (black line) or experimentally measured on the integrated circuit of[START_REF] Hirtzlin | Digital biologically plausible implementation of binarized neural networks with differential hafnium oxide resistive memory arrays[END_REF] (light blue points). Blue line: error rate of a SECDED ECC using the same number of devices as our 2T2R

Figure 4 . 7 :

 47 Figure 4.7: Analog Mode Circuitry. a Simplified schematic of 1T1R cell in analog mode, illustrating the switching of analog InOuts. b Schematic of the analog mode circuitry, with shift registers selecting inputs via Multiplexers, which consist of analog MUXs connected to SL, BL, and WL terminals. Each MUX is controlled by a shift register, to choose one of two analog inputs. c An example of measurement of memristor conductance from the memristor array.

Figure 4 . 10 :

 410 Figure 4.10: Principle of logic-in-memory ternary input weight multiplication. The input is voltage IN, the weight is stored in the 2T2R cells, the multiplication is done in two cycles.

Fig. 4 .

 4 10): the sense amplifier output reflects the product of input IN and the programmed weight.

Figure 4 . 11 :

 411 Figure 4.11: Measurement of memristor resistance as a function of number of RESET programming pulses. A characterization experiment for implementing a synaptic learning rule.

  handle more complex tasks. The ultimate goal would be to develop a standalone research or open-source platform, akin to the Arduino prototyping platform, replete with IOs, near-sensors integration, and embedded solar power cells. This platform could advance research in smart devices and edge AI, serving potential application areas like edge computing, Internet of Things (IoT) devices, and wearable technology.Expanding Integration of Nanodevice and Nanophysics in Computing:Our research also paves the way for the integration of other emerging nanodevices into our Bayesian machine architecture or other AI models. While memristors were primarily chosen for their in-memory and near-memory capabilities, other nanodevices might offer additional benefits or superior performance under certain conditions. The SMTJ prototypes developed in Chapter 2 for RNG and P-bits could be the starting point for exploring these possibilities. Characterization and modeling of these devices and circuits could lead to the development of an array-level system as an experimental platform for probabilistic computing projects.Tackling Memristor Imperfections for analog In-Memory Computing:The challenge of addressing device imperfections remains despite the promising potential of the In/Near-memory computing approach with memristor devices for building energy-efficient AI systems. The multimode memristor-based prototyping platform developed in Chapter 4 provides an invaluable tool for future research. It can be used to test new designs, refine existing concepts, and deepen our understanding of memristor properties and non-ideal characteristics. Moreover, it creates an opportunity to explore memristor-based Binary Neural Networks and Ternary Neural Networks, with brain-inspired synaptic plasticity feature, which could be optimized further with an enhanced understanding. We plan to extend the availability of this platform to other research groups, fostering further advancements in this exciting field.Addressing On-chip Learning Challenges:The integrated circuit developed for prototyping memristor-based projects also lays the foundation for future research in developing and testing new neuromorphic concepts and algorithms, which are hardware-friendly or adopt local learning rules for experimental implementation and testing. The Markov chain Monte Carlo (MCMC) sampling machine, a separate chip we developed as part of the MCMC project[START_REF] Dalgaty | In situ learning using intrinsic memristor variability via markov chain monte carlo sampling[END_REF] (not discussed in this thesis), provides an additional platform. This platform incorporates advanced analog circuitry, paving the way for addressing in-situ learning challenges. It opens up the possibility of integrating more sophisticated Bayesian techniques, such as Bayesian neural networks, into our current Bayesian AI research direction. This could potentially lead to substantial improvements in both accuracy and uncertainty quantification. Furthermore, the hybrid Memristor/FeFET arrays in the BEOL of the 22nm FDSOI process, developed in collaboration with our partners (IM2NP and CEA-Leti), present another significant opportunity.By harnessing the potential of two promising emerging devices in tandem with the energy efficiency of 22nm FDSOI transistors, we may be able to implement in-memory learning and computing in innovative ways. For instance, one device could store the weight and the other the updates, or one could store the mean and the other the standard deviation of a Gaussian distribution.

  Figure in thisRésumé de Thése en FrançaisIntroduction L'Intelligence Artificielle (IA) se trouve à l'épicentre d'une révolution technologique, détenant un pouvoir transformateur dans de nombreux secteurs de la société. Cependant, l'ascension de l'IA apporte avec elle deux défis centraux qui nécessitent notre attention urgente : l'efficacité énergétique et la fiabilité. D'une part, les exigences énergétiques croissantes de l'industrie de l'IA, alimentées par les besoins computationnels élevés des modèles d'IA, exercent une pression sur les émissions mondiales de carbone. Cela, à son tour, pose des menaces à la durabilité environnementale et limite le déploiement de l'IA dans des contextes à ressources limitées tels que les dispositifs de bordure. D'autre part, la nature "boîte noire" de nombreux systèmes d'IA et leurs processus de prise de décision opaques suscitent des préoccupations quant à leur fiabilité. Ces problèmes représentent un obstacle considérable à l'acceptation généralisée et à l'application responsable de l'IA.Pour répondre à ces défis, cette thèse suit une approche interdisciplinaire, chevauchant les domaines de l'intelligence artificielle, de l'architecture informatique et des technologies émergentes (Fig 1). L'objectif principal est d'exploiter le potentiel de la technologie nanoelectronique nouvelle, spécifiquement les memristors, pour soutenir des paradigmes de calcul à faible énergie pour les modèles d'IA, permettant ainsi leur mise en oeuvre dans des contextes à ressources limitées. En parallèle, nous utilisons l'inférence bayésienne, une technique d'IA entièrement explicative, pour résoudre les problèmes de confiance inhérents à l'IA, favorisant ainsi le développement d'applications d'IA transparentes et fiables.

Figure 1 :

 1 Figure 1: Calcul Bio-inspiré. La convergence des avancements dans les algorithmes d'IA, les architectures informatique, et les nanodispositifs contribue à l'émergence du calcul neuromorphique, offrant des solutions potentielles aux défis prédominants en IA, tels que l'efficacité énergétique.
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 2 Figure 2: Infographie de ma Thèse de Doctorat. Durant ma thèse, j'ai été incorporé principalement ou partiellement dans neuf projets de recherche, aboutissant à six publications et à la conception de sept circuits intégrés basés sur des nanotechnologies émergentes (1, 2, 3, 4 et 5 sont basés sur la RRAM, 6 est basé sur la MRAM, et 7 sur la FRAM). Les numéros représentent les projets, le code couleur est jaune pour le design déposé (envoyé pour fabrication), orange pour les circuits fabriqués et les tests commencés, et bleu pour la publication de l'article. La plupart des designs sont fabriqués dans un processus hybride CMOS-Nanodevice de 130nm ; seul le design 7 est basé sur un processus hybride FDSOI-Nanodevice de 22nm.

Figure 3 :

 3 Figure3: Architecture générale de la machine bayésienne. Les probabilités sont stockées dans des matrices de mémoire de probabilités implémentées par des réseaux de memristors. Les observations du monde réel sélectionnent les valeurs de probabilité appropriées à partir des matrices de mémoire de probabilités, en fonction desquelles les valeurs de probabilité sont lues à partir des matrices de probabilités, qui sont ensuite multipliées par des multiplicateurs. En sortie, les résultats générés codent la distribution a posteriori.

Figure 4 :

 4 Figure 4: La Machine bayésienne fabriquée basée sur des memristors. a Photographie en microscopie optique de la puce du système bayésien. b Détail du bloc de vraisemblance, qui se compose de circuits numériques et du bloc de mémoire avec son circuit périphérique. c Photographie de la matrice de memristors 2T2R. d Image de microscopie électronique à balayage d'un memristor à l'arrière du processus hybride memristor/CMOS. Toutes les sousfigures utilisent des codes couleurs cohérents.

Figure 5 :

 5 Figure 5: Analyse de l'énergie de la machine bayésienne lors d'une tâche de reconnaissance de gestes. a Consommation d'énergie du système (consommation dynamique et des block de mémoire) lors des trois phases de calcul : chargement des valeurs de départ dans le LFSR, lecture des mémoires, et l'inférence réelle de 255 cycles. b Consommation d'énergie des points importants du système lors de la phase d'inférence de 255 cycles. Toutes les valeurs d'énergie sont données pour une tension d'alimentation de 1,2 volt.

  Fig 6).

Figure 6 :

 6 Figure 6: Mesures d'inférence sur les machines bayésiennes fabriquées. Sortie mesurée en fonction du résultat attendu sur la machine bayésienne fabriquée a logarithmique et b stochastique, Pour des tensions d'alimentation allant de 0,5 à 1,2 V sont superposés.
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 878 Figure 7: Schematique de Plateforme de Prototypage Hybride Multimode Memristor-CMOS. a Schéma simplifié d'une cellule 1T1R connectée à des multiplexeurs analogiques, illustrant le concept de changement du mode d'accès. b Schéma de la puce hybride Memristor-CMOS, composée de deux modes de circuit : le mode analogique (en orange) alimenté par la tension nominale VDD5, et le mode numérique (en bleu) alimenté par VDD, VDDC, et VDDR.

Figure 9 :

 9 Figure9: Un graphique des perspectives Un graphique prospectif illustrant la croissance projetée de nos efforts de recherche, l'axe des X représentant l'échelle des démonstrateurs du dispositif au circuit complet, et l'axe des Y indiquant le nombre de dispositifs dans les circuits. La ligne linéaire symbolise l'évolution de nos conceptions, des projets existants aux projets futurs, démontrant une augmentation anticipée à la fois de l'échelle et de la complexité.

  

  

  

  

  

Device Software Hardware Neuromorphic Neuron-like Devices Brain-like Logic Brain-like Architecture Figure 1.1: Brain-like Computing. The

  

	confluence of advancements in AI algorithms, hard-
	ware technologies, and nanodevices contributes to the emergence of neuromorphic
	computing, offering potential solutions to prevailing challenges in AI, such as en-
	ergy efficiency.
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	Throughout history, humans have drawn inspiration from nature and animals to create inno-
	vative and efficient technologies using an approach called biomimicry [105]. These biomimetic
	inventions, ranging from Velcro (inspired by burdock burrs clinging to fur and clothing) to ad-
	vancements in aviation, robotics, and sustainable architecture, have significantly impacted our
	civilization [106, 107]. Similarly, looking within ourselves, specifically to the human brain's nat-
	ural intelligence, can guide us in ensuring the sustainable development of artificial intelligence
	and computing technologies

1.1 IN/NEAR MEMORY COMPUTING WITH MEMRISTORS were

  developed to automate the process of converting high-level programming languages like C, C++, or SystemC into hardware implementations, further speeding up the design process.

	From the 2000s to the present, EDA tools have continued to evolve, incorporating advanced
	optimization techniques, physical verification, and sign-off tools to ensure manufacturabil-
	ity and reliability. In parallel, HDLs and high-level design methodologies, such as HLS, have
	gained traction, enabling designers to handle the increasing complexity of digital systems more
	efficiently. Current EDA tool development addresses the increasing complexity of electronic
	systems and evolving industry trends. Key advancements include handling advanced process
	nodes, such as 3-nm and 2-nm nodes, incorporating machine learning and AI-based tech-
	niques to help optimize various design tasks [150], developing emerging computing EDA tools,
	enhancing hardware security mitigating potential hardware vulnerabilities, focusing on system-
	level design and optimization challenges, adopting cloud-based EDA, improving interoperabil-
	ity and IP reuse, and supporting 3D integration.

1.1.1.4 Computer Architecture and Instruction Set Architecture

  

Table 1 .

 1 

			Yao et al., 2020[212]	Wan et al., 2020[213]
	Application	Bayesian inference	Neural Network	Neural Network/RBM
	Computations	Bayes' law	MAC	MAC
	Device	HfOx memristor	HfOx/TaOx memristor HfOx/TaOx memristor
	CMOS node	130 nm	130 nm	130 nm
	Basic cell	2T2R	1T1R	1T1R
	Levels per cell	SLC	Analog	Analog
	Read circuit	PCSA	Analog + ADC	Analog + CDS
	Number of arrays	16 (connected)	1	1
	Number of devices	16×8×8	16 × 128	256 × 256
	Inference voltage	0.62-1.2V	Predet.	Predet.
	Need for calibration	No	ND	Yes
		Xue et al., 2021[186] Jung et al., 2022[13] Khaddam et al., 2022[211]
	Application	Neural Network	Neural Network	Neural Network
	Computations	MAC	MAC	MAC
	Device	Proprietary RRAM	MRAM	PCM
	CMOS node	22 nm	28 nm	14 nm
	Basic cell	1T1R	2T2R	8T4R
	Levels per cell	SLC	SLC	Analog
	Read circuit	Sense amplifier	Analog + TDC	Analog + ADC
	Number of arrays	1	1	1
	Number of devices	1, 024 × 2, 048	64 × 64	256 × 256
	Inference voltage	Predet.	Predet. (array)	Predet.
			0.8V-1.0V(TDC)	
	Need for calibration	Yes	Yes	Yes

1: Comparison of the design choices of the Bayesian machine with leading emerging memory-based realizations of neural network hardware blocks. Abbreviations. RBM: restricted Boltzmann machine. MAC: multiply and accumulate. PCM: Phase Change Memory. ADC: analog-to-digital converter. CDS: correlated double sampling. SLC: single-level cell. TDC: time-to-digital converter. Predet.: Predetermined. ND: not discussed.

2 Other Bayesian Concepts Involving Nanodevices

  approaches that require calibration and compensation mechanisms to eliminate circuit and device imperfections (e.g., voltage offsets due to circuit variability). Due to its differential nature, the sense amplifier functions over a wide range of voltage, without any need for recalibration or adjustment of any reference. This feature can be particularly useful in envi-

		This work	Dalgaty et al.	Dalgaty et al.
			2021[88]	2021[24]
	Current status	Fully HW	Hybrid SW/HW exp.	Hybrid SW/HW exp.
	Device	HfOx memristor	HfOx memristor	HfOx memristor
	Use of the device	Local digital memory	Local analog memory Local analog memory
	Concept	L-E Bayesian inference	Bayesian learning	Bayesian NN inference
		Gao et al.,	Vodenicarevic et al.,	Faria et al.,
		2021[215]	2017[19]	2018[216]
	Current status	Simulated	Hybrid SW/HW exp.	Simulated
	Device	Memristor	Stochastic MTJ	Stochastic MTJ
	Use of the device Local analog memory	RNG	RNG
	Concept	Resilient NN inference L-E Bayesian inference L-E Bayesian inference
	Table 1.2: Comparison of our work with approaches of the literature associating nanoelectron-
	ics with Bayesian concepts. Abbreviations. SW: software. HW: hardware. L-E: Low-
	Energy. NN: Neural Network. MTJ: magnetic tunnel junction. RNG: random number
	generation.		

ronments with little energy available (e.g., relying on variable energy harvesting) or in conjunction with dynamic voltage scaling. In contrast, neural network accelerators employing analog and/or mixed-signal circuitry usually require calibration and compensation mechanisms to eliminate circuit and device imperfections (e.g., voltage offsets due to circuit variability)

[START_REF] Jung | A crossbar array of magnetoresistive memory devices for in-memory computing[END_REF][START_REF] Cheng-Xin Xue | A cmosintegrated compute-in-memory macro based on resistive random-access memory for ai edge devices[END_REF][START_REF] Khaddam-Aljameh | Hermes-core-a 1.59-tops/mm 2 pcm on 14-nm cmos in-memory compute core using 300-ps/lsb linearized cco-based adcs[END_REF][START_REF] Weier Wan | 1 a 74 tmacs/w cmos-rram neurosynaptic core with dynamically reconfigurable dataflow and in-situ transposable weights for probabilistic graphical models[END_REF]

. Overall, our simple read circuit does not need any calibration or compensation mechanisms, greatly simplifying circuit operation and increasing its flexibility in all types of conditions.

1.4.

Table 3 .

 3 1 presents a comparison of the accuracy in gesture recognition and energy consumption for different situations for both stochastic and logarithmic Bayesian machines. The energy estimation method, based on the Cadence Voltus power integrity solution framework, is detailed in Chapter 2. This table utilizes the stochastic computing concepts introduced in Chapter 2. Conventional stochastic computing involves performing the computation for a certain number of cycles and then deciding based on the maximum number of ones. In the powerconscious mode, computation is stopped when the first one is encountered. Table3.1 demon-

	strates that the logarithmic architecture performs better in accuracy, achieving 90.6% accu-
	racy compared to 90% for conventional stochastic architecture and 86.9% for power-conscious
	stochastic architecture.
	The logarithmic architecture also has a low energy consumption of 0.5 nJ, with the energy
	being dominated by the reading operation at 0.3 nJ (60%). Still, in terms of energy efficiency,
	the power-conscious stochastic architecture performs the best, consuming only 0.4 nJ with a
	full periodicity (255 clock cycles per inference), resulting in a 20% improvement in energy per-

  Discharge rates reveal memristor states: slow discharge occurs when both memristors are in high resistance state (HRS), representing zero weight; if one memristor is in low resistance state (LRS) and the other in HRS, either the output or the complimentary discharges in a few ns depending on the programmed weight being 1 or -1. I have proposed an update of this concept, which can be implemented in the platform, where this behavior enables logic-in-memory operations in two cycles (see table in

Table 1 :

 1 Comparaison des deux machines bayésiennes sur la tâche de reconnaissance de gestes. Conv : calcul stochastique conventionnel. PC : calcul stochastique conscient de la puissance. Inf : inférence.

			Précision E (nJ)	E (nJ)
		Inf.	(%)	Inf.	Inf. & Rd
	Stoch Conv.	255	90.0	2.17	2.47
	Stoch Conv.	50	86.7	0.43	0.73
	Stoch Conv.	25	82.9	0.21	0.51
	Stoch PC	255	86.9	0.10	0.40
	Stoch PC	50	84.4	0.06	0.36
	Stoch PC	20	80.2	0.04	0.34
	Logarithmique	1	90.6	0.20	0.50

Résumé du Chapitre 4: Une Plateforme de Prototypage Multimode à Base de Memristors
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We saw in section 1.1.3.5 that in recent years, there have been significant advancements in the use of memristors and emerging resistive memories such as phase-change memory (PCM) and spin-torque magnetic random access memory (MRAM) for machine learning accelerators.

These implementations aim to closely associate memory and computing functions to eliminate the energy cost of the von Neumann bottleneck. While these approaches differ in their use of memory devices, they all show great potential for improving machine learning performance.

Since 2020, several high-profile machine learning accelerators that employ in-or nearmemory computing based on emerging memories have been published. Table 1.1 provides an overview of some of these accelerators, as well as our own Bayesian machine accelerators.

While these published works target neural network implementation, our work is focused on the first fully fabricated memristor-based Bayesian machine. Unlike neural networks, Bayesian computing requires higher precision for storing likelihood, and does not require multiply-andaccumulate (MAC) operations, which limits the benefits of analog computation in neural networks.

The memristor-based neural network accelerators have reached better technological maturity than memristor-based Bayesian system, with several systems implemented in sub-30nm CMOS [START_REF] Jung | A crossbar array of magnetoresistive memory devices for in-memory computing[END_REF][START_REF] Cheng-Xin Xue | A cmosintegrated compute-in-memory macro based on resistive random-access memory for ai edge devices[END_REF][START_REF] Khaddam-Aljameh | Hermes-core-a 1.59-tops/mm 2 pcm on 14-nm cmos in-memory compute core using 300-ps/lsb linearized cco-based adcs[END_REF]. The memory array in [START_REF] Cheng-Xin Xue | A cmosintegrated compute-in-memory macro based on resistive random-access memory for ai edge devices[END_REF], based on a fully commercial technology, possesses an impressive number of 2M devices. At the same time, state-of-the-art memristorbased network accelerators usually feature a single memory array [START_REF] Jung | A crossbar array of magnetoresistive memory devices for in-memory computing[END_REF][START_REF] Cheng-Xin Xue | A cmosintegrated compute-in-memory macro based on resistive random-access memory for ai edge devices[END_REF][START_REF] Khaddam-Aljameh | Hermes-core-a 1.59-tops/mm 2 pcm on 14-nm cmos in-memory compute core using 300-ps/lsb linearized cco-based adcs[END_REF][START_REF] Yao | Fully hardware-implemented memristor convolutional neural network[END_REF][START_REF] Weier Wan | 1 a 74 tmacs/w cmos-rram neurosynaptic core with dynamically reconfigurable dataflow and in-situ transposable weights for probabilistic graphical models[END_REF], or in the case of [START_REF] Li | Cmos-integrated nanoscale memristive crossbars for cnn and optimization acceleration[END_REF], three independent memory arrays.

Some neural network implementations exploit the analog storage feature of memristive technologies and phase change memories ( [START_REF] Li | Cmos-integrated nanoscale memristive crossbars for cnn and optimization acceleration[END_REF], [START_REF] Yao | Fully hardware-implemented memristor convolutional neural network[END_REF], [START_REF] Weier Wan | 1 a 74 tmacs/w cmos-rram neurosynaptic core with dynamically reconfigurable dataflow and in-situ transposable weights for probabilistic graphical models[END_REF] and [START_REF] Khaddam-Aljameh | Hermes-core-a 1.59-tops/mm 2 pcm on 14-nm cmos in-memory compute core using 300-ps/lsb linearized cco-based adcs[END_REF]). Others rely on singlebit basic cells to simplify periphery circuitry [START_REF] Cheng-Xin Xue | A cmosintegrated compute-in-memory macro based on resistive random-access memory for ai edge devices[END_REF] or due to device limitations. Note that [START_REF] Jung | A crossbar array of magnetoresistive memory devices for in-memory computing[END_REF] relies on single-bit-per-cell storage, but still uses analog computation to compute neuronal activation function (using resistance sum, as we explained in subsubsec:Inmemmoryanalog).

Despite the inherent complexity of analog or mixed-signal circuitry, utilizing analog storage can be advantageous for neural network implementations for two primary reasons. Firstly, the fundamental operation of neural networks, namely multiply-and-accumulate (MAC), can be naturally realized through the use of Ohm's law and Kirchhoff's current law when memristors are utilized in this way. As a result, several devices can be read simultaneously during inmemory computing, utilizing the same periphery circuitry, which significantly decreases the energy cost of analog and mixed-signal periphery circuitry through parallelism. Secondly, neu-Appendix: Methods for the Evaluation of the Scaled-Up Bayesian Machine (section 2.4)

Gesture recognition task on a Bayesian machines

The gesture recognition task is realized on a dataset collected in-lab, including ten subjects.

Each subject was asked to perform four gestures (writing the digits one, two, three, and a signature specific to each person) in the air. The subjects were not given any instruction on how to perform the gestures, leading to a high diversity within the dataset. The gestures were recorded using the three-axis accelerometer of a standard inertial measurement unit. Each subject repeated the same move between 25 to 27 times. The recording time varied by subject and gesture, and ranged from 1.3 to 3 seconds. We extracted ten features, named F 0 to F 9 , from each recording, after filtering of the gravity: mean acceleration, maximum acceleration on the three axis, variance of the acceleration on the three axis, mean value of the jerk of the acceleration, and maximum value of the jerk of the acceleration on the three axis.

We train the system using 20 of the 25-27 recordings for each subject, and the last 5 Bayesian machine. We then normalize the probabilities in each column of the Bayesian machine so that the maximum value is one. Finally, we quantified the normalized probability values to eight-bit integers, with the value zero equivalent to 1/256 and 255 to 256/256.

To optimize further the energy consumption of the system, we use only six of the extracted ten features in the Bayesian machine. Based on a systematic study, the features deleted for the experiment are F 0 , F 2 , F 3 , F 8 . Additionally, we realized that broadening the Gaussians obtained when fitting the data allowed stochastic computing to converge faster, allowing the system to reach better accuracy. Therefore, in all our results, the standard deviation of the Gaussian in the fitted likelihoods is multiplied by a broadening coefficient of 1.3 with regards to the initial fit.

In the conventional technique, the answer of the Bayesian machine to an output is given by the argmax of the number of ones outputted by each row. In the power-conscious method, the answer is the row that produced the first one. In both cases, if no output produced a one, the answer is considered an error. Multimode Memristor-based

Features

Prototyping Platform

If it disagrees with experiment, it's wrong. In that simple statement is the key to science.

Richard FEYNMAN CHAPTER 4: MULTIMODE MEMRISTOR-BASED PROTOTYPING PLATFORM

log InOuts is connected to the ground), which can be connected to external equipment, e.g., Keysight B1530, a pulse source and measurement unit widely used to characterize memory devices. Fig. 4.7c shows an example of configuration allowing the measurement of a memristor conductance from the array.

The analog mode has access to the 8k memristor devices that can serve as analog storage.

However, because we are limited to only two analog inputs, the array can implement analog MAC operation only for Binarized Neural Network. Multi-level analog MAC operation can be implemented virtually using a computer-in-the-loop experiment, based on the measurements on each device.

Design Signoff and Measurement Setup

The memristor array and all analog and mixed-signal circuits were designed in a full custom fashion. All digital circuits were placed and routed automatically using an HDL description and the Cadence Encounter flow. Then, all circuits of the system were assembled manually and routed automatically using a Cadence Encounter flow developed in-house using a homemade abstract view of the memory array (see Chapter 1). 

VDD5 VDD a b c

Summary

Revisiting the research objectives laid out in the introduction, this thesis tackles two key challenges in the field of AI: energy consumption and trustworthiness. As AI becomes increasingly integrated into our daily lives, it is imperative to follow a mindful and cautious development strategy. This approach ensures the preservation of human safety, natural resources, and the environment. The primary focus of this thesis was the development of specialized integrated circuits capable of supporting low-energy AI models, particularly for edge applications in resource-constrained environments. The incorporation of Bayesian inference -an AI technique celebrated for its transparency and explainability -was a crucial aspect of our approach, as it addresses trust issues in AI. This integration promotes the creation of applications that are not only transparent but also reliable.

Inspired by the astounding energy efficiency and intelligence of the human brain, we utilized the near-memory computing architecture, facilitated by cutting-edge nanoelectronic technology. This endeavor called for an interdisciplinary approach, merging fields such as artificial intelligence, computer architecture, and emerging technologies. A key focus was the exploitation of the non-volatility and near-memory capabilities of memristors, along with their other non-ideal characteristics. The designs we created associate logic and memory, resulting in high energy efficiency, ideally suited for edge computing. The first three chapters directly served the thesis's objectives, while the fourth chapter ventured further to address the fundamental challenges associated with memristors, a promising emerging nanodevice for new computing paradigms.

In Chapter 1, we set out a comprehensive exploration into the potential of near-memory computing architecture for edge AI applications. We began by investigating the evolution of making efficient chip, before discussing the limitations of von Neumann Machines with respect to the new computing and energy efficiency demands. We emphasized the shift towards In/Near-Memory Computing using emerging memories, such as memristors. The core of this chapter was the creation of a basic Bayesian machine architecture leveraging memristor technology. Our project aims to make substantial contributions to nanodevice-based Bayesian inference by bringing fully developed, efficient memristor-based accelerators to reality. This chapter laid a solid foundation for developing energy-efficient Bayesian machines using memristors and set the stage for the subsequent development of two specific integrated circuits-stochastic and logarithmic Bayesian machines-discussed in Chapters 2 and 3, respectively.

In Chapter 2, we reported considerable progress in developing, fabricating, and measuring a Bayesian machine implemented with a stochastic computing approach in a system with distributed memristor arrays. The machine showcases its ability to perform local computations, Ph.D. thesis Fig. 4.12). The linear line signifies the evolution of our designs,our Moore's law, from existing to future projects, showcasing an anticipated increase in both scale and complexity.
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