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Résumé: L’Intelligence Artificielle (IA) émerge
comme une force omniprésente dans notre vie quo-
tidienne, possédant le potentiel de provoquer une
révolution transformatrice dans une multitude de
secteurs de la société. Cependant, sous cette
promesse de transformation, l’IA est confrontée à
deux défis majeurs qui nécessitent une attention
urgente : l’efficacité énergétique et la fiabilité.
Les besoins énergétiques croissants de l’industrie
de l’IA contribuent aux émissions mondiales de
carbone en raison des hautes exigences computa-
tionnelles des modèles d’IA, menaçant la durabilité
environnementale. Parallèlement, la nature ’boîte
noire’ de nombreux systèmes d’IA, produisant des
décisions difficiles à interpréter, soulève des ques-
tions de confiance. Ces incertitudes introduisent
des risques dans des secteurs critiques, formant
des barrières à l’acceptation plus large de l’IA.
En réponse à ces défis, cette thèse propose une
approche multidisciplinaire qui unifie l’intelligence
artificielle, l’architecture informatique et les tech-
nologies émergentes. Notre stratégie implique le
développement de circuits intégrés spécialisés util-
isant la technologie de pointe des memristors, une
technologie nanoelectronique conçue pour sup-
porter des paradigmes de calcul à faible énergie
pour les modèles d’IA, spécifiquement dans des
contextes à ressources limitées. Le concept central
de cette approche est d’exploiter la non-volatilité
et les capacités de calcul Dans/Proche de la mé-
moire des memristors, tout en tenant compte de
leurs caractéristiques non-idéales, pour atteindre
une haute efficacité énergétique, particulièrement
dans le domaine du edge computing. De plus,
nous incorporons l’inférence Bayésienne, une tech-
nique d’IA totalement explicative, dans le circuit
pour répondre aux problèmes de confiance as-
sociés à l’IA, favorisant ainsi le développement
d’applications d’IA transparentes et fiables. Le

premier chapitre de cette thèse introduit une ar-
chitecture de calcul Proche-mémoire conçue pour
les applications d’IA de périphérie (AI at the Edge),
inspirée par l’efficacité énergétique exceptionnelle
du cerveau humain. Nous proposons une architec-
ture de machine Bayésienne basée sur des mem-
ristors, qui ouvre la voie vers des modèles d’IA
à haute efficacité énergétique. Dans le deuxième
chapitre, nous explorons une machine Bayésienne
qui emploie une approche de calcul stochastique
au sein d’un système d’array de memristors dis-
tribué. Cette machine, que nous avons conçue,
fabriquée et testée, présente une efficacité énergé-
tique supérieure par rapport aux unités de micro-
contrôleurs traditionnelles pour des tâches telles
que la reconnaissance gestuelle. Elle démontre une
résilience aux erreurs logicielles et aux radiations,
la rendant bien adaptée pour le déploiement dans
des environnements rudes. Le troisième chapitre
aborde les limitations du calcul stochastique dans
notre machine Bayésienne et présente une solution
alternative : une machine Bayésienne basée sur le
calcul logarithmiques. Ce nouveau circuit, conçu,
fabriqué et testé, améliore la précision et accélère
les opérations d’inférence, tout en maintenant
l’architecture et le design de la machine originale.
Le chapitre fournit également une analyse compar-
ative de nos machines Bayésiennes stochastiques
et logarithmiques, élucidant leurs forces et faib-
lesses respectives. Dans le dernier chapitre, nous
abordons les défis associés à l’utilisation des mem-
ristors. Nous introduisons une plateforme de pro-
totypage basée sur des memristors multimodes qui
facilite la mise en œuvre de projets analogiques
et numériques. Actuellement, cette plateforme est
utilisée dans deux laboratoires de recherche pour
valider une gamme de concepts neuromorphiques
analogiques et de logique numérique en mémoire.
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Abstract:

Artificial Intelligence (AI) is emerging as an
omnipresent force in our everyday lives, possessing
the potential to bring about a transformative rev-
olution across a multitude of societal sectors. Yet,
beneath this promise of transformation, AI is grap-
pling with two significant challenges that need ur-
gent attention: energy efficiency and trustworthi-
ness. The AI industry’s escalating energy demands
are contributing to global carbon emissions due to
the high computational needs of AI models, threat-
ening environmental sustainability and restricting
the deployment of AI in resource-constrained set-
tings such as edge devices. Simultaneously, the
’black box’ nature of many AI systems, produc-
ing difficult-to-interpret decisions, raises concerns
about trust. These uncertainties introduce risks
in critical sectors forming barriers to the wider ac-
ceptance of AI. In response to these challenges,
this thesis proposes a multidisciplinary approach
that unifies artificial intelligence, computer archi-
tecture, and emerging technologies. Our strategy
involves the development of specialized integrated
circuits utilizing cutting-edge memristor technol-
ogy, a nanoelectronic technology designed to sup-
port low-energy computational paradigms for AI
models, specifically in resource-constrained con-
texts. The central concept of this approach is to
harness the non-volatility and in/near-memory ca-
pabilities of memristors, while accounting for their
non-ideal characteristics, to achieve high energy
efficiency, particularly in the realm of edge com-
puting. Additionally, we incorporate Bayesian in-
ference, a fully explainable AI technique, into the
circuitry to address the trust issues associated with
AI, fostering the development of transparent and

dependable AI applications. The first chapter of
this thesis introduces a near-memory computing
architecture designed for edge AI applications, in-
spired by the human brain’s exceptional energy ef-
ficiency. We propose a memristor-based Bayesian
machine architecture employing memristors, that
paves the path towards energy-efficient AI models.
In the second chapter, we delve into a Bayesian
machine that employs a stochastic computing ap-
proach within a distributed memristor array sys-
tem. This machine, which we have designed, fab-
ricated, and tested, exhibits superior energy ef-
ficiency compared to traditional microcontroller
units for tasks such as gesture recognition. It
demonstrates resilience to soft errors and radia-
tion, making it well-suited for deployment in harsh
environments. Chapter three addresses the limita-
tions of stochastic computing in our memristor-
based Bayesian machine and presents an alter-
native solution: a logarithmic memristor-based
Bayesian machine. This newly designed, fabri-
cated, and tested circuit enhances precision and
accelerates inference operations, while maintain-
ing the original machine’s architecture and design.
The chapter also provides a comparative analy-
sis of the stochastic and logarithmic memristor-
based Bayesian machines, elucidating their relative
strengths and weaknesses. In the final chapter, we
tackle challenges associated with memristor uti-
lization. We introduce a multimode memristor-
based prototyping platform that facilitates both
analog and digital project implementation. Cur-
rently, this platform is being used in two research
labs to validate a range of digital logic-in-memory
and analog neuromorphic concepts.
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1 From Biological Neuron to Artificial Neural Network. a Biological neuron (adapted

from wikimedia). b An electrical circuit model for a neuron proposed by Hodgkin

and Huxley, using basic electric circuit elements to implement bio-neuron be-

havior. c Artificial Neuron model (or perceptron), proposed by McCulloch-Pitts,

the sum of the multiplication of the elements of an input vector X and a synaptic

weight vector w is output by the neuron (followed by a non-linear function). d

Artificial neural network with hidden layer, two inputs and two outputs. . . . . . 3

2 Growth in AI compute power demands over the past six decades. Plot of the

computational power required by benchmark AI models, measured in PetaFlop-

days (One petaFLOPS-day is the number of computations that could be performed

in one day by a computer capable of calculating a 1015 floating point operations

per second). Models for several applications: vision, language, speech, and game

models. Two different eras of progress can be distinguished based on the usage

of growth slopes. In the first era, compute doubled every two years; in the second

era, every 3.4 months [1, 2] (adapted from [3]). . . . . . . . . . . . . . . . . . . . . 4

3 Growth in AI models parameters size, and the AI dedicated hardware memory

size, from 2016 to 2021. Growth of total number of parameters that a model

needs over time. The plot shows the count for state-of-the-art models in com-

puter vision (blue points), natural language processing (red points), recommender

systems (black points), as well as the maximum memory capacity of AI hardware

(green points). (Adapted from [4]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

4 Equivalent carbon-dioxide footprint for training AI on image recognition task.

The computing resources and energy required to train the best objects recog-

nizing deep-learning systems designed for error levels at human performance

(less than 5 percent in this graph) would be enormous, leading to the emission

of as much carbon dioxide as New York City generates in one month [5] (adapted

from [6]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
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5 Ph.D. Thesis Infographic. During my thesis, I have been incorporated mainly or

partially in nine research projects, resulting in six publications (see list of publica-

tions) and the design of seven emerging nanoelectronic-based integrated circuits

( 1, 2, 3, 4, and 5 are RRAM-based, 6 is MRAM-based, and 7 is FRAM based). The

numbers stand for the projects, the color code is yellow for taped-out design (sent

for fabrication), orange for fabricated circuits and started testing, and blue for

paper publication. Most of the designs are fabricated in a hybrid 130nm CMOS-
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Introduction

“We can only see a short distance ahead,

but we can see plenty there that needs to be

done.”

Alan TURING



2 INTRODUCTION

A brief history of artificial intelligence

The transition from combustion cars to electric vehicles has become imperative due to the

growing concerns over their adverse environmental impacts [27, 28]. This transition is an ex-

ample of the technology development life cycle [29], a dynamic process that spans multiple

stages. The cycle begins with invention, where researchers develop and explore new tech-

nologies and potential applications. Industries drive innovation and diffusion by developing,

demonstrating, deploying, and adopting these technologies, continuously refining them as us-

age increases [30]. Eventually, less efficient or unsustainable technologies are replaced by ad-

vanced alternatives, driven by evolving human needs and regulations [31].

By contrast, some technologies undergo a continuous improvement cycle, such as electric-

ity and internet technologies, ensuring their ongoing relevance and utility in modern civiliza-

tion, others may become obsolete or replaced in favor of new technologies that are better suited

to meet emerging challenges. This thesis delves into a technology that has often been likened

to the “new electricity” by modern Artificial Intelligence (AI) pioneer, Andrew Ng [32]. AI is a

multidisciplinary field that strives to create computational models mimicking various intelli-

gent behaviors observed in animals, encompassing aspects such as reasoning and learning. AI

has undergone a remarkable evolution since its inception, evolving from a topic of scientific

curiosity to a pervasive technology in many facets of modern life [33, 34].

AI’s rich history spans multiple decades, tracing its roots back to the ideas of mathemati-

cians and computer scientists like Alan Turing and John McCarthy [35, 36], leading to the de-

velopment of sophisticated algorithms and model [33]. During the 1950s, 1960s, and 1970s,

early AI research centered on symbolic reasoning and problem-solving. Pioneering programs

such as the General Problem Solver (GPS) by Allen Newell and Herbert A. Simon [37] emerged

in this era. Concurrently, researchers began constructing bottom-up models of nervous sys-

tems [38, 39], drawing inspiration from biological neurons and synapses (depicted in Fig. 1 a),

as expounded by Alan Hodgkin, Andrew Huxley [40] (depicted in Fig. 1 b), and Hebbian learn-

ing [41]. In 1958, Frank Rosenblatt proposed the perceptron [42], based on McCulloch-Pitts

neurons [39], the first general-purpose model inspired by biological neural networks (see Fig. 1 c),

laying the foundation for artificial neural networks (see Fig. 1 d) and machine learning tech-

niques like supervised, unsupervised, and reinforcement learning [43].

The 1980s and 1990s witnessed the advent of convolutional neural networks [44], and recur-

rent neural network architectures such as Hopfield networks [45, 46]. The back-propagation al-

gorithm for training neural networks also emerged during this period [47, 48]. Though initially

rooted in bio-inspired models, artificial neural networks gradually gravitated towards more sta-

tistical and mathematical models. Nonetheless, some researchers, like Carver Mead, persisted

in exploring brain-like systems [49], giving rise to neuromorphic computing concepts in par-

allel [50]. By the end of the 20th century, AI research pivoted towards data-driven approaches,

propelled by the rise of the internet and increased computational power, enabling the devel-
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Figure 1: From Biological Neuron to Artificial Neural Network. a Biological neuron (adapted
from wikimedia). b An electrical circuit model for a neuron proposed by Hodgkin and
Huxley, using basic electric circuit elements to implement bio-neuron behavior. c

Artificial Neuron model (or perceptron), proposed by McCulloch-Pitts, the sum of the
multiplication of the elements of an input vector X and a synaptic weight vector w is
output by the neuron (followed by a non-linear function). d Artificial neural network
with hidden layer, two inputs and two outputs.

opment of sophisticated algorithms.

The 21st century has been marked by an unprecedented surge in data availability and en-

hanced computing capabilities of CPUs and GPUs, alongside the advent of large-capacity mem-

ories. The onset of deep learning spurred a renaissance in AI research, yielding breakthroughs

in computer vision and natural language processing through deep learning architectures like

Deep Convolutional Neural Networks (CNNs) and Deep Recurrent Neural Networks (RNNs) [51].

Landmark achievements in the deep learning revolution include the deep convolutional net-

work models AlexNet [52], DeepMind’s deep reinforcement learning approach with AlphaGo [53],

and the protein-folding algorithm AlphaFold [54]. The development of the Transformer archi-

tecture, which employed attention mechanisms in natural language processing [55], led to con-

siderable advancements in language understanding and text generation. This breakthrough

paved the way for state-of-the-art transformer-based models such as Google’s BERT [56] and

OpenAI’s GPT series [57], including GPT-3 and GPT-4.
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Artificial Intelligence Might Be the New Electricity, but It

Has An Energy Problem

1000

10000

GPT-3

GPT-4

& CSET

Figure 2: Growth in AI compute power demands over the past six decades. Plot of the com-
putational power required by benchmark AI models, measured in PetaFlop-days (One
petaFLOPS-day is the number of computations that could be performed in one day by
a computer capable of calculating a 1015 floating point operations per second). Mod-
els for several applications: vision, language, speech, and game models. Two different
eras of progress can be distinguished based on the usage of growth slopes. In the
first era, compute doubled every two years; in the second era, every 3.4 months [1, 2]
(adapted from [3]).

In recent years, AI has transitioned into the stages of innovation and diffusion. With bench-

marks like the Turing test becoming less relevant, as it arguably represents a narrow artificial

intelligence test [35], large language models such as ChatGPT now exhibit early “sparks” of

artificial general intelligence [58, 59]. This has led to AI’s potential being recognized by both

governments and technology corporations, driving the rapid growth of its commercial applica-

tions. AI has already made significant advancements in fields such as healthcare, finance, and

autonomous vehicles [60–62]. As AI increasingly becomes a vital technology in our lives, akin to

electricity and the internet, it is crucial to address its fundamental drawbacks and limitations

to support green and sustainable growth [63]. Although the vast availability of data and algo-

rithmic innovations played a role in AI’s development, the rapid expansion can be primarily

attributed to advancements in underlying computing hardware, particularly the utilization of

GPUs [51, 52]. Since the performance of deep neural networks scales directly with their size and

complexity, numerical growth is more apparent in the growing AI models in terms of parameter

count and computing power [1, 2].

Examining recent advancements, shown in Fig. 2, the required computing power for deep
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learning during the first era (pre-GPU era) had a growth rate in sync with Moore’s law [64],

doubling every two years. In the modern era, the use of GPUs has accelerated the computing

process, enabling larger and more complex models. The required computing power rate now

doubles every 3.4 months, posing challenges for conventional hardware (GPUs) to keep pace

with this increasing demand. The memory requirement scenario for deep learning exhibits

similar patterns, shown in Fig. 3. Comparing parameter counts for recent deep learning mod-

els with the volatile memory capacity (HBM and DRAMs) of modern AI-dedicated hardware

reveals that, although the memory capacity of GPUs and TPUs can satisfy the requirements for

computer vision models, the progress rate of GPU memory falls behind that of natural language

processing models. Despite the achievements in increasing the capacity and bandwidth (HBM)

of modern GPUs’ volatile memories, such as the Nvidia Tesla V100 GPU, it becomes apparent

that this trend will not suffice for the growing memory requirements of AI [65], indicating an

approaching saturation point with these volatile memory technologies.

Figure 3: Growth in AI models parameters size, and the AI dedicated hardware memory

size, from 2016 to 2021. Growth of total number of parameters that a model needs
over time. The plot shows the count for state-of-the-art models in computer vision
(blue points), natural language processing (red points), recommender systems (black
points), as well as the maximum memory capacity of AI hardware (green points).
(Adapted from [4])

The increasing demand for memory and computational power not only impacts AI devel-

opment, but it also leads to higher energy consumption costs for data movement and compu-

tation [63, 66]. A significant portion of this energy is consumed during the training phase [6],

which can take weeks or months using multiple energy-hungry GPUs [63, 66, 67]. For instance,

To reach human-level recognition, the computing resources and energy required to train a

modern deep learning model have an estimated carbon dioxide footprint equivalent to New

York City’s monthly emissions [5, 6, 63] (shown in Fig. 4). Despite requiring less computation

than training AI models, AI inference in the cloud is still associated with significant energy

costs. This is due to the sheer number of users accessing AI services, which leads to a high
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volume of inference computations, and additional computation for managing these millions

of access requests, which in turn requires additional energy consumption. To compound the

issue, data transmission to and from the cloud also contributes to energy costs. As a result, a

significant carbon dioxide footprint for inference in the cloud due to the massive scale of usage

and infrastructure required to support it. This carbon footprint will continue to grow with the

increasing model size and computational complexity, presenting an unsustainable trajectory

from an environmental standpoint [63].

The Turing test, while providing a simple measure of AI capabilities, falls short in consider-

ing critical aspects such as energy efficiency. Presently, most modern AI models are trained in

data centers [67]. As AI progresses at a rapid pace, there is a pressing need for energy-efficient

hardware solutions that can adapt to the swift evolution of AI algorithms [66]. A striking ex-

ample of this disparity is AlphaGo, the AI developed by DeepMind, which triumphed over the

human champion in the ancient Chinese board game Go [53]. However, it faltered in terms of

power efficiency, utilizing 1,920 CPUs and 280 GPUs as opposed to Lee Sedol’s 20W brain power

consumption [53, 68]. This situation directs us towards a potential solution for the AI energy

problem — seeking inspiration from the human brain as a model of an efficient intelligent sys-

tem. Tackling the challenges of AI’s energy consumption will not only facilitate harnessing the

advantages of AI at the edge but also contribute to resolving some of the trust issues surround-

ing AI.

Human performance  

Figure 4: Equivalent carbon-dioxide footprint for training AI on image recognition task. The
computing resources and energy required to train the best objects recognizing deep-
learning systems designed for error levels at human performance (less than 5 percent
in this graph) would be enormous, leading to the emission of as much carbon dioxide
as New York City generates in one month [5] (adapted from [6]).



INTRODUCTION 7

Artificial Intelligence Also Has a Trust Problem

Intelligent systems have demonstrated immense value across various domains, yet trust issues

pose significant challenges to the successful adoption and integration of artificial intelligence

(AI) technologies [69, 70]. The energy costs of AI algorithms on conventional hardware have

led most AI systems to upload their sensed data to the cloud for processing [71], raising privacy

and security concerns [72–74]. As AI algorithms often rely on large amounts of personal data to

function effectively, concerns arise regarding data collection, storage, usage, and the potential

for misuse or unauthorized access.

Furthermore, deep neural networks, particularly in critical applications like intelligent med-

ical systems, exhibit crucial limitations. First, they require massive amounts of data for training,

which is often unavailable [75, 76]. Second, their results are non-explainable [77, 78], as deep

learning models are often considered “black boxes” due to their complex inner workings. This

lack of transparency makes it difficult for users to trust AI-generated outputs or recommen-

dations, rendering them unacceptable for certain critical applications due to ethical and reg-

ulatory reasons. Issues such as accountability and responsibility arise when AI systems make

decisions or take actions, as it can be challenging to determine who should be held account-

able or responsible. Another major limitation of deep neural network-based AI systems is the

absence of model uncertainty quantification [79]. This lack of uncertainty quantification can

lead to challenges when deploying AI models in real-world applications, where making reliable

and informed decisions is crucial. For instance, large language models like ChatGPT tend to

make up or “hallucinate” responses even if they don’t have a correct answer.

Addressing these trust concerns is essential for building user confidence in AI systems and

ensuring their ethical and responsible use across various domains. Researchers, policymakers,

and industry leaders are working on various initiatives to tackle these concerns. Notably, AI

pioneers Yoshua Bengio and Geoffrey Hinton have expressed concerns about AI regulation [80].

Bengio participated in an initiative calling for a halt in developing AI models beyond GPT-4

until proper regulations are in place, while Hinton left Google to freely discuss AI dangers and

risks [81].

To tackle the trust problem in AI, several potential solutions have been proposed. Among

them, Bayesian deep learning and Bayesian inference stand out as promising approaches that

can enhance explainable AI, interpretability, uncertainty estimates, and robustness to data lim-

itations [82–84]. Another compelling strategy to address trust issues in AI is the implementa-

tion of AI at the edge [85], as opposed to traditional cloud-based AI. AI at the edge offers numer-

ous advantages, such as safeguarding sensitive information, enhancing system responsiveness,

and adapting AI systems to specific users or devices. By providing these benefits, AI at the edge

can help cultivate trust in AI applications.
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Summary of the thesis

The objective of this thesis is to explore solutions to the energy and trust challenges of AI by en-

gaging in interdisciplinary research in the fields of artificial intelligence, computer architecture,

and emerging technologies to develop specialized integrated circuits using novel nanoelec-

tronic technology. This work involves designing and testing proof-of-concept AI circuits us-

ing cutting-edge memristor technology, which can support low-energy computing paradigms

to implement AI models for applications in resource-constrained settings at the edge. The key

focus is on exploiting the non-volatility and in-memory and near-memory capabilities of mem-

ristors while considering their other non-ideal characteristics. This approach leads to designs

associating tightly logic and memory, resulting in a high energy efficiency that is well-suited for

edge computing, addressing safety and privacy concerns associated with cloud-based systems.

Furthermore, the incorporation of Bayesian inference – a fully explainable AI technique – into

the circuitry addresses the trust issue in AI, promoting transparent and reliable AI applications.

To achieve this, during my thesis, I have been involved in nine research projects, mainly or

partially, in collaboration with teams from C2N, CEA Leti, IM2NP, and Spintec. These projects

explore several solutions, such as the implementation of near-memory memristor-based Bayesian

inference machines [14, 86], the development of memristor-based prototyping platforms for

analog and digital computing [87], in-situ learning of Bayesian models using memristors’ in-

trinsic properties [88], energy-efficient implementation of memristor-based Binary Neural Net-

works and Ternary Neural Networks [89, 90], and the development of nano-device-based true

random number generators. During my thesis, I have participated in the design of seven emerg-

ing nanoelectronic-based integrated circuits (including Resistive RAM, Magnetoresistive RAM,

and Ferroelectric RAM), with three of them successfully fabricated and experimentally verified,

three others fabricated and currently in the packaging stage, and one still in the fabrication

stage. Most of these designs are based on a hybrid 130nm CMOS-Nanodevice process, and

these circuits serve as proof-of-concept, ranging from prototypes of circuits with several nano-

devices to a core with around a quarter-million transistors (a thesis infographic is shown in

Fig. 5).

This thesis is organized into four chapters, focusing on the projects that successfully com-

pleted all phases, including design, fabrication, testing, and publication. The other projects are

mentioned, in this thesis but not reported in detail.

Chapter 1 summarizes why in/near-memory computing using memristors can be a solu-

tion to the AI energy problem and lists some state-of-the-art approaches in this context. It also

describes the main principles and design choices for the memristor-Bayesian machines that

we have developed during my thesis.

Chapter 2 reports on a memristor-based stochastic Bayesian system with a hybrid CMOS/memristor

chip design, fully distributed memory, and minimal data movement. It details the design,

fabrication, and characterization, highlighting significant energy efficiency improvements in
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a hand gesture recognition task compared to standard Bayesian inference implementations.

This work is published in the Nature Electronics journal [14]. In addition, the chapter explores

improving the energy efficiency of stochastic Bayesian machines using low-energy stochastic

nano-devices, such as SMTJ, for random number generation. Prototype circuits based on MTJ

devices were designed and fabricated for random number generation.

Chapter 3 explores logarithmic computing in Bayesian machine architecture, focusing on

energy efficiency and accuracy improvements. It presents a designed, fabricated, and tested

logarithmic Bayesian machine integrated circuit and its viability despite memristor imperfec-

tions. The chapter also compares stochastic and logarithmic computing in near-memory com-

puting circuits, highlighting the potential for enhanced statistical analysis and energy efficiency

across various fields. This work is published in the proceedings of the Design, Automation and

Test in Europe Conference (DATE 2023) [86]. The chapter also introduces our next Bayesian

machine generation: the large-scale Bayesian machine with 143k memristors and 285k transis-

tors was designed and fabricated for real-life applications and demonstrations.

Chapter 4 introduces an integrated circuit for prototyping memristor-based projects, fea-

turing both digital and analog modes. This platform enables the development and testing of

innovative neuromorphic concepts, addressing memristor imperfections, challenges, and po-

tential solutions. This work is published in the proceedings of the 28th Asia and South Pacific

Design Automation Conference (ASP-DAC 2023) [87].
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Chapter 1

The Case for Building Bayesian

Machines with Memristors

Probability is orderly opinion, and that inference

from data is nothing other than the revision of

such opinion in the light of relevant new

information.

Thomas BAYES
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The energy and trust challenges in AI systems – including energy inefficiency in edge com-

puting and the lack of transparency in decision-making processes – have sparked significant

interest among researchers. This has prompted investigations across various domains, includ-

ing AI algorithms, hardware, nanophysics, and nanodevices.

In the realm of AI algorithms, researchers are exploring lightweight neural networks, such

as MobileNet [91], SqueezeNet [92], and EfficientNet [93], designed to be smaller and compu-

tationally efficient for edge devices. Quantization and pruning are other techniques employed

to reduce the size and computational complexity of neural networks without significant per-

formance loss [94], such as Binary neural networks and Ternary neural networks [95, 96]. Ad-

ditionally, federated learning enables edge devices to collaboratively train machine learning

models while retaining local data [97], and transfer learning leverages pre-trained models to

minimize training time and computational resources needed for edge AI applications [98].

For AI hardware, AI accelerators like Google’s Edge TPU [99], NVIDIA’s Jetson series [100],

and Intel’s Movidius [101], along with other AI hardware solutions based on Application-Specific

Integrated Circuits (ASICs) and Field-Programmable Gate Arrays (FPGAs), are specialized hard-

ware components designed to enhance AI performance on energy constrained devices. In the

field of nanophysics and nanodevices, memristor technologies (Resistive RAM), Magnetore-

sistive RAM and Phase Change Memory (PCM) and Ferroelectric RAM are being developed to

offer non-volatile storage, high-density, and energy-efficient memory solutions [11, 102–104].

In this chapter, we explore the potential of Bayesian reasoning with near-memory com-

puting architecture for AI at the edge, introducing our work on building Bayesian Machines

with memristors. We begin by presenting a brief history of chip design evolution, highlight-

ing trends that led to the choices behind our Bayesian machines. Next, we discuss the design

choices involved in implementing our near-memory Bayesian machines and provide a detailed

explanation of the steps required to develop a Bayesian machine with memristors. Finally, we

explain how our work is positioned concerning state-of-the-art realizations of neural networks

and Bayesian concepts with emerging memories.

Device

Software Hardware

Neuromorphic

Neuron-like 
Devices

Brain-like 
Logic

Brain-like 
Architecture

Figure 1.1: Brain-like Computing. The confluence of advancements in AI algorithms, hard-
ware technologies, and nanodevices contributes to the emergence of neuromorphic
computing, offering potential solutions to prevailing challenges in AI, such as en-
ergy efficiency.
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1.1 In/Near Memory Computing with Memristors

Throughout history, humans have drawn inspiration from nature and animals to create inno-

vative and efficient technologies using an approach called biomimicry [105]. These biomimetic

inventions, ranging from Velcro (inspired by burdock burrs clinging to fur and clothing) to ad-

vancements in aviation, robotics, and sustainable architecture, have significantly impacted our

civilization [106, 107]. Similarly, looking within ourselves, specifically to the human brain’s nat-

ural intelligence, can guide us in ensuring the sustainable development of artificial intelligence

and computing technologies [50, 108].

In this section, we delve into in/near-memory computing with memristors, a brain-inspired

approach for building energy-efficient AI hardware. We start with a retrospective on chip de-

sign, emphasizing the evolution towards greater energy efficiency. Next, we explore the limi-

tations of the traditional von Neumann architecture and the benefits of brain-inspired archi-

tectures. Lastly, we highlight the potential of memristors, an emerging technology, for energy-

efficient computing, especially in the context of artificial neural network accelerators.

1.1.1 The Evolution of making Efficient Chips

The process of making efficient chips is akin to constructing a miniature civilization based on

semiconductor devices. Over the years, this process has undergone numerous iterations and

innovations, evolving from the construction of the first house, the transistor device, to the cre-

ation of villages, Small and Medium Scale Integration Circuits, and the creation of cities, Large

and Very Large Scale Integration circuits, and finally, mega-cities, ultra-scale large integrated

circuits, and empire on a city, System on Chip, from billions of devices up to a trillion devices

(see Fig. 1.2).

The aim of chip-making is the continuous improvement of performance and efficiency,

driven by advancements in chip design and fabrication. This has led to several eras, from the

manual construction of chips by humans to the current era of computer-aided chip design and

fabrication, and the future era of AI-assisted chip-making.

In this section, we explore the evolution of chip-making through six key pillars: transistor

development, lithography and fabrication processes, design languages and tools, computer

architecture, packaging technologies and sustainable creation of knowledge and talents in the

field. By examining these core areas, we gain a deeper understanding of the challenges and

breakthroughs that have made efficient chip-making possible.

1.1.1.1 Transistor Development and Scaling

The invention of the transistor in 1947 marked a turning point in the history of electronics and

computers [109, 110], as it replaced the electron vacuum tube devices (the transistor celebrated

its 75th anniversary during my PhD thesis, Fig. 1.3a). Since then, continuous advancements in
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a b c

Figure 1.2: Transistors population: from one device to trillion device on a chip. a The first
transistor, developed by Walter Brattain and John Bardeen in 1947. (source: Nokia
USA Inc. and AT&T Archives) b Apple M2 Chip (released on 2022), an ARM-based
system on a chip (SoC) designed by Apple Inc. The M2 is made with TSMC’s Fin-
Fet Enhanced 5-nm technology, and it contains 20 billion transistors. The M2 Max
version contains 67 billion transistors (Source: Apple website). c Wafer Scale Engine
Two (WSE-2) chip, designed by Cerebras Systems, The Wafer Scale Engine (WSE) is
a single, wafer-scale integrated circuit processor, it is designed for AI training and
inference workloads in data-centers. The WSE-2 has 850,000 cores with a total of
2.6 trillion transistors, made with TSMC’s FinFet 7-nm technology (Source: Cere-
bras website).

transistor design and scaling have been a major driving force behind the development of more

efficient and powerful chips [111]. Early transistors made of germanium were bulky and power-

hungry. The introduction of silicon as a semiconductor material in the late 1950s paved the way

for the creation of smaller and more efficient transistors [112].

Transistor scaling, which involves making transistors smaller, has been a critical factor in

the evolution of chip-making. It allows more transistors to be packed onto a single chip, leading

to improvements in performance and efficiency. This has been particularly significant due to

Moore’s Law, proposed by Gordon Moore in 1965 (he passed away this year), which predicted

that the number of transistors on a chip would double approximately every two years [64]. This

observation has generally held true, driving the miniaturization of transistors and the corre-

sponding increase in computational power [113].

The evolution of transistor development has seen the introduction of new transistor de-

signs, such as the metal-oxide-semiconductor field-effect transistor (MOSFET) [114, 115]. MOS-

FETs have become the dominant transistor design in modern chips, allowing for faster switch-

ing speeds and lower power consumption. This transistor technology has undergone several

generations of evolution. Planar manufacturing process introduced in 1959 [116], led to the

invention of Planar FETs [116], showed in Fig. 1.3b, paved the way for scaling of transistor di-

mensions, until it reached its performance limitation at a scale of 28 nm. As Planar FETs tran-

sistor dimensions have decreased, challenges related to power consumption, heat dissipation,

and leakage current have emerged, necessitating the development of innovative materials and

transistor designs [114, 117].
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a b c

Figure 1.3: The Evolution of the modern world’s most important invention: the transistor. a

75th Transistor anniversary (cover image of the IEEE Spectrum magazine, by Lisa
Sheehan). b The evolution of MOSFET Based transistors (Source: Samsung Tech
Blog). c The Dennard scaling stoped around 2005, Moore’s law trend might follow
the same destiny (Reprofuced from [7]).

FinFETs technologies were introduced in the early 2000s, and are a type of MOSFET transis-

tor that features a thin, vertical silicon “fin” that protrudes from the silicon substrate [118, 119],

showed in Fig. 1.3b. This new transistor technology is well-suited for performance applica-

tions and has allowed scaling to continue until current days, reaching a scale of 3 nanometers,

as demonstrated this year by TSMC [120]. Concurrently, FD-SOI (Fully Depleted Silicon-On-

Insulator) transistors, developed by researchers at CEA-Leti, are a type of MOSFET design that

uses a thin silicon layer on top of an insulating layer to reduce power consumption and improve

performance [121, 122]. Making them particularly well-suited for low-power applications. To

allow Moore’s Law to continue, a new technologies are now under development and employ-

ment for sub-5-nm nodes. GAA-FET (Gate-All-Around Field-Effect Transistor) is a transistor

design featuring a gate wrapped around a nanosheet-shaped channel (or nano-wire channels),

as shown in Fig. 1.3b, allowing for better electrostatic control and improved switching behav-

ior [123]. GAA-FETs offer several advantages, such as smaller feature size, reduced leakage cur-

rent and improved speed performance. This technology has already been used this year by

Samsung for their 3-nanometer node [124].

Two decades ago, there were ten champions in the transistor scaling race. However, today

only two of them have reached mass production of cutting edge 3-nanometer nodes, TSMC

and Samsung [125]. This achievement is not solely related to financial resources, as the USA

companies have considerable resources [126, 127], or human resources, as Chinese companies

have a large workforce [128]. Instead, it is primarily due to the development of a complete

ecosystem surrounding this field of technology, which has been achieved by Taiwan and South

Korea [129]. For the long run, there are several challenges facing the electronics industry to

maintain the rapid rate of innovation and continue to follow Moore’s Law [130]. The industry

must overcome complex manufacturing techniques and high production costs, as well as the

physical limits of transistor scaling [131, 132]. As transistors become smaller, they are more

prone to various effects that can affect their behavior [132]. While there is still potential for
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improvement, the margin is not as significant as it has been in the past [130]. Moore’s law

may not hold forever, as Fig. 1.3b illustrate, Dennard scaling already ended around 2005, and

recently Moore’s law is facing challenges to be kept alive.

To maintain the rapid rate of innovation in the semiconductor industry, new approaches

are needed to overcome the risk of Moore’s Law dying. One approach is to explore new comput-

ing paradigms such as neuromorphic computing, analog computing, in/near memory com-

puting, etc. Another approach is to develop innovative packaging and interconnection tech-

niques such as 3D integration and faster memories. Emerging devices and solutions such as 2D

materials [133], photonic computing [134], and quantum computing may also hold promise for

future developments in the semiconductor industry [135].

1.1.1.2 Lithography and Fabrication Processes

The construction of modern civilization required humans to transition from building simple

clay houses to creating skyscrapers, roads, bridges, and supply chains by developing increas-

ingly sophisticated techniques, materials, and tools. Similarly, to accommodate the shift from

a single transistor to billions of transistors on a single chip, electronics research and industry

had to innovate and refine techniques, materials, fabrication processes, and tools. One such

critical technique is photolithography [136].

Lithography plays a pivotal role in integrated circuit (IC) fabrication and the transistor scal-

ing process. This technique refers to the process of transferring a pattern from a photomask (or

reticle) onto a photosensitive material (photoresist) on a substrate, typically a silicon wafer. The

basic steps of the lithography process include substrate preparation, photoresist application,

mask alignment and exposure, development, etching or deposition, and photoresist removal

(shown in Fig. 1.4b).

a b c
Substrate

Substrate
Photoresist

Substrate
Photoresist

Substrate

Mask Mask Mask

(1) Apply 

photoresist
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to light

(3) Apply 

developer

Figure 1.4: Photolithography from Rubylith to EUV. a Hand drawing patterning on Rubylith
photomasks (Source: Intel and Computer history museum). b The basic steps of the
lithography process include substrate preparation, photoresist application, mask
alignment and exposure, development, etching or deposition, and photoresist re-
moval. c ASML EUV machine (Source: ASML website)

The history and evolution of lithography techniques and machines can be divided into sev-
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eral distinct eras, each characterized by the development and adoption of new techniques and

machines that pushed the limits of transistor scaling. The earliest lithography techniques in-

volved hand-drawn patterns on Rubylith photomasks (see Fig. 1.4a), which were then trans-

ferred to substrates using contact printing. These methods were limited by the precision of

hand-drawn patterns and the resolution achievable with contact printing. Steppers, the first

reduction projection systems, were introduced in the 1970s, using a reduction lens to project

a smaller image of the photomask pattern onto the substrate [137]. The 1980s saw the intro-

duction of excimer lasers, which emit deep ultraviolet (UV) light, allowing for higher resolution

and smaller feature sizes [138]. In the 1990s, phase-shift masks and optical proximity correc-

tion (OPC) were developed to further improve resolution [139, 140]. The early 2000s brought

immersion lithography and multiple patterning techniques, using a liquid medium between

the lens and the substrate and combining multiple lithography steps to overcome the limita-

tions of conventional lithography [141]. The most recent development is extreme ultraviolet

lithography (EUV), which employs alight with a wavelength of 13.5 nm [142]. It enables even

higher resolution and smaller feature sizes, facilitating the continuation of Moore’s Law. EUV

lithography, which has been in development for several decades, is now being employed in

high-volume manufacturing by only one Dutch multinational corporation, ASML, showed in

Fig. 1.4c.

These advancements in lithography have gone hand in hand with improvements in the fab-

rication process. This process involves a series of steps, with lithography serving as a central

technique. Throughout the years, new materials and innovations have been introduced to fur-

ther enhance the fabrication process, such as chemical mechanical planarization (CMP) [143],

atomic layer deposition (ALD) [144], and high-k materials [145]. High-k materials, with a high

dielectric constant, have been introduced to replace traditional silicon dioxide gate dielectrics

in transistors, reducing gate leakage current and enabling further scaling of transistor dimen-

sions.

1.1.1.3 Design Languages and Design Automation Tools

Building a city is not like building a village, building a city is indeed a complex process that

requires adherence to numerous rules and regulations. Similarly, the design and fabrication of

complex chips with a high number of transistors also necessitate the implementation of rules,

design methodologies, and advanced tools to ensure the successful creation of functional, effi-

cient, and reliable electronic devices. Therefore, design languages (HDLs) and design automa-

tion tools (EDA) were invented and evolved in parallel with integrated circuit progress.

Hardware Description Languages (HDLs) and design automation tools, or Electronic De-

sign Automation (EDA) tools, evolved in parallel, as the complexity of digital systems increased

over time [146]. The development of both HDLs and EDA tools has been driven by the need for

more efficient design, simulation, verification, and fabrication processes in the face of growing

design complexity, as shown in Fig. 1.5.
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In the late 1960s and early 1970s, the earliest HDLs, such as ISPS and AHDL, emerged to

simplify the design and simulation of digital circuits [147]. In parallel, the first EDA tools, like

SPICE for analog circuit simulation, were developed to help automate the analysis of electronic

circuits [148]. As digital systems grew more complex in the mid-1970s to early 1980s, more

sophisticated HDLs, like HILO and RTL/2, were developed to describe circuits at the register-

transfer level [149]. Concurrently, EDA tools evolved to support schematic capture and layout

design, enabling designers to create and edit circuit schematics and layouts more efficiently.

By the late 1980s, the development of VHDL, a standardized language for the design and

verification of digital systems, marked a major milestone in the evolution of HDLs. Around the

same time, Verilog, another widely-used HDL, was introduced. EDA tools also progressed, with

simulation tools like ModelSim emerging to support HDL-based design and verification. As the

adoption of HDLs like VHDL and Verilog grew, EDA tools advanced to support synthesis, place-

and-route, and verification tasks. Logic synthesis tools, such as Synopsys Design Compiler,

and place-and-route tools, like Cadence Innovus, started automating the process of converting

HDL descriptions into gate-level netlists and optimized physical layouts.

Figure 1.5: Evolution of chip design complexity. From only functional design and verification
of transistor level circuits, to multi-process multidisciplinary design and verification
of Heterogeneous chips (Reproduced from [8]).

In the early 2000s, SystemVerilog, an extension of Verilog, was introduced, offering im-

proved support for object-oriented programming, advanced data types, and enhanced verifica-

tion capabilities. EDA tools also evolved, with verification tools such as formal and functional

verifiers becoming more sophisticated to ensure the correctness and reliability of designs. Sys-

temC, a C++ extension for system-level modeling and simulation, emerged in the late 1990s and

early 2000s to address the need for higher-level abstractions. High-Level Synthesis (HLS) tools
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were developed to automate the process of converting high-level programming languages like

C, C++, or SystemC into hardware implementations, further speeding up the design process.

From the 2000s to the present, EDA tools have continued to evolve, incorporating advanced

optimization techniques, physical verification, and sign-off tools to ensure manufacturabil-

ity and reliability. In parallel, HDLs and high-level design methodologies, such as HLS, have

gained traction, enabling designers to handle the increasing complexity of digital systems more

efficiently. Current EDA tool development addresses the increasing complexity of electronic

systems and evolving industry trends. Key advancements include handling advanced process

nodes, such as 3-nm and 2-nm nodes, incorporating machine learning and AI-based tech-

niques to help optimize various design tasks [150], developing emerging computing EDA tools,

enhancing hardware security mitigating potential hardware vulnerabilities, focusing on system-

level design and optimization challenges, adopting cloud-based EDA, improving interoperabil-

ity and IP reuse, and supporting 3D integration.

1.1.1.4 Computer Architecture and Instruction Set Architecture

As cities continue to grow and expand, there is an increasing need for specialized urban plan-

ning and design, also known as city architecture. This discipline involves designing and orga-

nizing the physical layout, infrastructure, and public spaces within cities and other settlements.

The ultimate goal of city architecture is to create functional, sustainable, and aesthetically-

pleasing urban environments that can accommodate the needs of residents, businesses, and

visitors.

In the realm of computing, a similar need for organization and design arises as computing

chips are complex systems, consisting of various components such as processing units, mem-

ory hierarchy, data buses, storage, and input/output (I/O) systems. This calls for a well-defined

computer architecture [151], which refers to the design and organization of a computer sys-

tem’s hardware components that work together to process data and execute instructions. The

primary objective of computer architecture is to optimize performance, power consumption,

cost, and other factors for a specific set of applications or target markets. An important part

of computer architecture is Instruction Set Architecture (ISA): it is an interface between the

hardware and software that defines a set of instructions a computer can understand and exe-

cute. The ISA acts as a blueprint for designing the processor and the compiler that generates

machine code.

The evolution of computer architecture and instruction set architecture (ISA) has been

marked by continuous advancements and innovations aimed at improving computing perfor-

mance, efficiency, and capabilities. In the 1940s and 1950s, early electronic computers like the

ENIAC, EDVAC, and IBM 701 used vacuum tubes and employed machine-specific assembly

languages [152–154]. The concept of stored-program computers emerged during this time, al-

lowing instructions and data to be stored in the same memory. In the 1950s and 1960s, with

transistors replaced vacuum tubes, IBM introduced the System/360 during this period, featur-
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Figure 1.6: Current used Computer architecture. a A Simplified CPU architectures, and b a
GPU architectures (adapted from the NVIDIA documentation). c Spatial Architec-
ture for Highly-Parallel Computing, suited for NPUs, it has a tiling architecture,
consisting Parallel processing elements, interconnected by network on chip (Re-
produced from [9]). d Data reuse schemes, used in most of Spatial Architecture
based NPUs, for decreasing data movement by Minimizing weights movement with
weight stationary scheme, Minimizing outputs movement with output stationary
scheme, or Minimizing activation’s movement with activation stationary scheme
(Reproduced from [9]).

ing a family of computers with compatible ISAs that allowed for a range of performance and

cost options [155]. The 1960s and 1970s saw the rise of integrated circuits (ICs). Microproces-

sors, such as the Intel 4004 and 8080, emerged during this time, bringing computing power to

smaller devices and setting the stage for personal computers [156].

The development of RISC architectures in the 1980s represented a significant shift in chip

design, and marked the beginning of the RISC vs. CISC debate, leading to two distinct ap-

proaches to ISA design. RISC architectures, like MIPS and ARM, focused on a smaller set of sim-

ple instructions for faster execution, emphasizing simplicity and efficiency over the complexity

of the previously dominant complex instruction set computer (CISC) architectures. While CISC

architectures, like x86, featured more complex instructions for better memory efficiency. In the

1990s and 2000s, the era of parallelism began, with superscalar processors executing multiple

instructions per clock cycle. Multi-core processors, such as the Intel Core and AMD Opteron

series, became prevalent, allowing for increased performance and power efficiency. The emer-
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gence of multicore processors and graphics processing units (GPUs) has further diversified the

landscape of computer architectures.

In the 21st century, the focus shifted to heterogeneous computing and specialized archi-

tectures for specific workloads [157]. Graphics processing units (GPUs) gained prominence for

parallel processing tasks. These developments have been accompanied by the creation later of

NVIDIA’s CUDA, tailored to simplify their use.

As artificial intelligence (AI) has become increasingly prominent in recent years, the need

for more powerful and efficient computing platforms has grown [157]. Traditional AI imple-

mentation using Central Processing Units (CPUs) has been limited by the architecture’s short-

comings, including its inability to meet AI’s parallel computing and vast memory demands.

Although memory caches and Dynamic Random Access Memory (DRAM), have been placed

close to CPUs to increase performance in terms of speed [151], the Single Instruction, Single

Data (SISD) architecture remains inadequate for AI computing (a simple illustration of CPU’s

architecture shown in Fig. 1.6a). The use of Graphics Processing Units (GPUs), initially de-

signed for rendering graphics, has improved AI computing performance by accelerating pro-

cesses through parallel computing [158]. While their Single Instruction, Multiple Data (SIMD)

architecture has been a viable solution for data centers and AI in the cloud, it comes with sig-

nificant energy costs due to communication, data exchange, and cooling requirements (a sim-

ple illustration of GPU’s architecture shown in Fig. 1.6b). Additionally, GPUs occupy large areas

and require extensive cooling systems, making them unsustainable for AI’s growing models and

incompatible with energy and area-constrained edge systems, such as wearable and battery-

powered devices.

To address the energy efficiency challenges in AI hardware, specialized accelerators like

Google’s Tensor Processing Unit (TPU) [159], Intel Vision Processing Unit (VPU) [101], various

Neural Processing Units (NPUs) [66], and FPGA-based accelerators have been developed by re-

search groups, companies, and start-ups. Most of those solutions use a spatial architecture,

a tiling architecture of parallel processing elements, interconnected using a network on chip

(NoC) [66] (a simple illustration of a spatial architecture shown in Fig. 1.6c). These new devel-

opments are part of a new trend toward more heterogeneous computing, involving so-called

domain-specific architectures.

1.1.1.5 Packaging and Advanced Packaging Technologies

The growing population and expansion of cities have made transportation increasingly chal-

lenging, as traditional road-based systems struggle with traffic congestion. In response, cities

have sought innovative solutions, such as underground metros and trains, which offer a third

dimension to transportation infrastructure. These systems help reduce travel time and dis-

tance within and between cities. Similarly, in the realm of modern chips, packaging plays a

crucial role in enhancing performance by improving data transfer rates (interconnection band-

width) and reducing energy consumption. By bringing components closer together, advanced



22 CHAPTER 1: THE CASE FOR BUILDING BAYESIAN MACHINES WITH MEMRISTORS

packaging techniques facilitate better performance in terms of speed, energy efficiency, and

spatial footprint.

As chips have become more powerful and complex, the need for effective packaging tech-

nologies has grown. Early packaging solutions, such as dual in-line packages (DIPs) and pin

grid arrays (PGAs), were adequate for simpler chips but were limited in terms of performance,

thermal management, and form factor [160].

The introduction of advanced packaging technologies, such as flip-chip, ball grid array

(BGA), and chip-scale packages (CSPs), addressed these challenges by enabling improved elec-

trical performance, reduced power consumption, and smaller form factors. These packaging

solutions also facilitated the integration of multiple chips or dies within a single package, lead-

ing to the development of system-in-package and package-on-package (PoP) technologies.

More recently, 2.5D and 3D packaging techniques have emerged, employing techniques

like through-silicon vias (TSVs), interposers, and wafer-level packaging to achieve even greater

levels of integration and performance [161]. These advanced packaging technologies have

been instrumental in addressing the challenges of increased chip complexity, while also en-

abling the development of heterogeneous systems that integrate different types of chips, such

as CPUs, GPUs, and memory, into a single package.

Figure 1.7: Evolution of Multi-Chip/Chiplet Packaging (Reproduced from [8]).

1.1.1.6 Democratized, Sustainable Chip Design

“In the advance of civilization, it is new knowledge which paves the way, and the pavement is

eternal,” said Willis R. Whitney. The evolution of human civilization cannot merely be repre-

sented by modern cities; rather, it is deeply intertwined with the quality and quantity of free,

shared knowledge within human societies. It also reflects our collective responsibility towards

sustainable development and preserving the environment for future generations.

In the same vein, ensuring sustainable progress in the field of designing efficient chips de-

mands increased accessibility to knowledge and resources. This encompasses a wide range of
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opportunities, such as access to books, online courses, open-source projects, and innovative

architectural solutions. Additionally, providing open access to EDA tools and Foundry PDKs

through university programs, as well as offering multi-project wafer services to universities and

research labs, is crucial.

The semiconductor industry currently faces a talent shortage, making it imperative to tap

into the vast pool of potential talent worldwide. Talented individuals are not defined by gender,

ethnicity, or nationality but can be found across diverse backgrounds and communities. By

democratizing access to knowledge and resources in chip design and development, we can

foster a more inclusive and dynamic ecosystem that encourages innovation and breakthroughs.

In summary for the full section, the evolution of making efficient chips has been driven by

innovations and advancements across a range of domains, including transistor development,

lithography and fabrication processes, design languages and tools, computer architectures and

ISAs, and packaging technologies. As the industry continues to push the boundaries of chip

design and fabrication, new challenges and opportunities will undoubtedly emerge, requiring

further breakthroughs in these key areas to sustain the ongoing growth in chip performance

and efficiency.
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1.1.2 Toward Non-Von Neumann Machines

1.1.2.1 Limitations of the von-Neumann Architecture

The von Neumann architecture, named after its creator John von Neumann, has been a corner-

stone in the history and evolution of computers. As the foundation for most modern computer

systems, this groundbreaking architecture has profoundly influenced the computing landscape.

Central to the von Neumann architecture are key components such as memory for storing data

and instructions, and a processing unit comprising a control unit for managing data flow and

an arithmetic and logic unit for executing computations (see Fig. 1.8a bottom).

The widespread adoption of the von Neumann architecture can be attributed to its numer-

ous advantages and strengths, which include simplicity, general-purpose design, compatibility,

and most importantly, scalability. This scalability allows for the development of more power-

ful computers through component upgrades without redesigning the entire system, enabling

the electronics industry to concurrently develop computer components with various technolo-

gies, such as processing units with scaling MOSFET transistors and memories based on diverse

technologies for specific purposes, including DRAM, SRAM, HDD, and SSD.

Processing Unit Memory Unit

a b

Figure 1.8: Data movement and the von Neumann bottleneck. a (Bottom) In the conventional
von Neumann architecture, the memory unit and the processing unit are physically
separated; the data needs to be constantly shuttled through them via a bus. This im-
poses a limitation in terms of speed and energy of computation: it is called the von
Neumann bottleneck. (Top) A worker, company and house analogy. b The energy
costs of single arithmetic operations for different precisions, and energy of memory
access to SRAM and DRAM in a modern computer (reproduced from [10]). The en-
ergy for accessing DRAM is four orders of magnitude time higher than performing
8-bit addition operation.

Despite numerous enhancements and optimizations over the years, the von Neumann ar-

chitecture has inherent limitations that hinder performance, particularly in the context of ar-

tificial intelligence (AI) and other data-intensive applications [162, 163]. The von Neumann
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bottleneck, which arises from the separation of memory and processing units, is a primary

source of energy inefficiency and performance bottlenecks in AI workloads (see Fig. 1.8b).

To address these limitations, specialized AI accelerators have been developed, explicitly

designed to optimize AI computations. These include accelerators with spatial architectures,

which employ strategies such as supporting massive parallelism to enhance computational ef-

ficiency and incorporating specialized memory hierarchies and on-chip volatile memory, in-

cluding registers, SRAM, and DRAM, to reduce data movement overhead and mitigate the von

Neumann bottleneck [66, 159] (see Fig. 1.9).

These accelerators yield reduced latency and improved energy efficiency for AI computa-

tions compared to traditional CPUs and GPUs. However, depending on memory hierarchies

and on-chip volatile memory introduces its own set of challenges, including concerns related to

area, memory density, and energy consumption. One notable limitation is the inherent volatil-

ity of memory. Accessing data from non-volatile memories (HDD or SSD) and transferring it

to accelerators entails traversing the entire memory hierarchy, consuming additional energy.

Moreover, using volatile cache memory with limited capacity, such as registers, results in con-

stant data changes, as they cannot store data for extended periods while new data is processed.

The general limitations of SRAM and DRAM are explored further in the following subsection.

a b

Figure 1.9: Specialized memory hierarchy for a spatial architecture. a An example of Memory
Hierarchy of a spatial architecture (Reproduced from [9]). b The Energy cost of data
movement in a memory hierarchy (Reproduced from [9]).

Current AI accelerators emphasize energy efficiency by integrating more memory into com-

puting elements and minimizing data movements. Still, while these solutions have lessened the

impact, they have not entirely solved the energy problem associated with the memory wall, as

they tend to retain the “spirit” of the von Neumannn architecture, with a main memory sepa-

rate from the processing units .

The von Neumann architecture can be likened to having companies situated outside a city,

where workers need to commute daily using buses or cars (depicted in Fig. 1.8a top). This daily

transportation consumes both time and energy. While this arrangement might be suitable for

spatially oriented companies, such as production, mining, and agriculture firms, it creates an

inefficient system for other types of businesses. For example, service companies could ben-

efit from being located closer to their employees and clients, thereby optimizing the overall

efficiency of the system, instead of relocating their employees closer to the companies.
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1.1.2.2 Brain Inspired Architectures, Near-Memory and In-Memory Computing

To address the limitations of the von Neumann architecture, researchers have explored alter-

native computing paradigms known as non-von Neumann architectures. These alternative so-

lutions encompass a wide range of approaches, including paradigm-shifting ideas such as cel-

lular automata, quantum computing, optical computing, DNA computing, and brain-inspired

computing. By reorganizing the way data is processed, stored, and communicated within a

computing system, these approaches aim to overcome the von Neumann limitations and its

associated challenges.

Near Memory Compute

a b

In Memory Compute

Figure 1.10: Tward Non-Von-Neumann Architecture, the brain inspired architectures. a

Near-Memory computing architecture, with worker, home and company analogy.
b In-Memory computing architecture, with worker, home and company analogy.

The pursuit of energy-efficient AI hardware has led researchers to investigate emerging

computing paradigms inspired by the human brain’s efficiency. Despite performing complex

tasks, the brain consumes approximately 20 Watts of power, which is orders of magnitude less

than current AI systems when performing advanced tasks [68]. A crucial aspect of the brain’s

energy efficiency lies in the colocation of computation and memory, a concept akin to in-

memory computing.

Neuromorphic computing, or brain-like computing, is an emerging field that replicates

various aspects of the brain’s physical elements, connections, logic, architecture, and learn-

ing rules [164]. This field has given rise to multiple approaches, ranging from mimicking the

brain’s computing processes, such as the spike-timing-dependent plasticity (STDP) learning

rule, to emulating its physical elements and connections, as demonstrated in the neuromor-

phic chip TrueNorth from IBM [165], and Loihi from Intel [166].

Drawing from the brain’s architecture, in-memory and near-memory computing architec-

tures have emerged to address the von Neumann bottleneck for AI and data-centric computing

applications [167–169]. By closely integrating memory and processing units, these architec-
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tures optimize data processing and reduce energy consumption by minimizing data movement

(see Fig. 1.10).

Near-memory computing [169] places a small processing unit near the memory, reduc-

ing data movement overhead by avoiding accessing off-chip memories or using low-latency,

energy-hungry buses, thus reducing energy consumption. Using an analogy of a worker and

a company, the worker no longer needs to take a bus or car to go to work, as the company is

located in their city (in their neighborhood or the next one), so they can walk or ride their bike

to the company (depicted in Fig. 1.10a).

a b c

Figure 1.11: Samsung’s processing-in-memory (PIM) solution. A hardware solution to accel-
erate the AI computation. a A System on Chip hardware includes GPUs and b high
bandwidth memory (HBM-PIMs), which consist of c stacked DRAM based pro-
cessing in memory dies (PIM-DRAM), each contain two Programmable Comput-
ing Unit (PCU), located near to 8 DRAM banks, with extra digital periphery (Source:
Samsung Website).

Near-memory computing architecture can leverage mature memory technologies, such as

SRAM and DRAM near-data processing systems, as well as emerging memory technologies

like memristors. This approach has already progressed to the deployment stage, such as Sam-

sung’s processing-in-memory (PIM) products based on HBM-DRAMs, demonstrating promise

for data-centric and AI applications (presented in Fig. 1.11).

In-memory computing represents a more radical paradigm shift in computing architec-

ture, as it integrates computation within memory devices [167, 168]. This approach aims to

significantly reduce data movement, with fixed memory data and only inputs and results mov-

ing. Although this architecture can leverage mature memory technologies, such as SRAMs and

DRAMs, it works better with specialized memory devices, such as memristors, which involve

analog storage and computation for high parallelism computing, at the cost of increased de-

sign complexity. Using the worker and company analogy again, depending on their type of

work, the worker can do remote work and no longer needs to move at all. They only need to

send and receive tasks and data via the internet, but they require specialized tools, such as a

computer, internet connection, and VPN access (depicted in Fig. 1.10b).
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1.1.3 Memristors for Energy-Efficient Computing

As the need for more energy-efficient and high-performance computing solutions continues

to grow, the search for new memory technologies that can overcome the limitations of existing

SRAM and DRAM has intensified. Memristors, a class of emerging memory technologies, have

shown great potential for addressing these challenges and enabling new computing paradigms.

1.1.3.1 Brief Evolution of Memory Technology

Memory technology has been a cornerstone in the evolution of computers since the dawn of

the digital age. The history of memory technology is characterized by continual advancements

in speed, density, and energy efficiency. The inception of the von Neumann architecture, which

segregated the computer’s processing and memory units, marked a significant starting point,

paving the way for the independent evolution of volatile and non-volatile memory systems.

a b c

Figure 1.12: Early Memory Technologies. a Punch cards, a mechanical memory that encoded
data through the presence or absence of holes in specific positions. b Magnetic
drum memory, a non-volatile memory that functioned by magnetizing small spots
on a metal drum. The polarity of the magnetized spot would represent binary 0s
and 1s. c Magnetic-core memory, used tiny magnetic toroids, the “cores”, which
could be magnetized in one of two directions, representing a 0 or 1.

The initial phase of computer memory began with mechanical systems, utilizing punch

cards in devices such as Charles Babbage’s Analytical Engine in the mid-19th century (see Fig. 1.12a).

The electronic computer era that emerged in the 1940s and 1950s brought significant progress

in memory technology. The earliest electronic computers employed vacuum tubes to repre-

sent binary states. However, these were not a persistent form of memory and were prone to

heat-induced failure. Subsequently, magnetic drum memory was introduced as a non-volatile

storage medium (see Fig. 1.12b). It functioned by magnetizing specific areas on a metal drum

to represent binary 0s and 1s. However, the access times were prolonged due to the drum’s

rotational movement for reading or writing data. The magnetic-core memory, introduced in

the 1950s, was a significant stride in memory technology (see Fig. 1.12c). It utilized small

toroidal magnetic cores that could be magnetized in two directions to represent a binary 0 or

1. This technology served as the forerunner to contemporary Random Access Memory (RAM),
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enabling random access to memory locations.

a b c d e

Figure 1.13: Semiconductor-Based Memory Technologies. a A 6T SRAM cell consists of two
CMOS inverters connected back to back. b A DRAM cell comprises a capacitor C
that serves as the storage node, which is connected in series to a FET. c Floating
gate transistor. The storage node of a flash memory cell is a floating gate of a FET,
and can be been used for d flash NOR structure or e flash NAND structure. (Repro-
duced from [11])

The most impactful change occurred with the advent of semiconductor memory in the

1960s. By leveraging integrated circuits, semiconductor memory could store binary data within

flip-flops or capacitors. It was during this era that the concepts of Random Access Memory

(RAM) and Read-Only Memory (ROM) emerged. ROM, a non-volatile memory, stored firmware

like BIOS used in the bootstrapping process, while RAM, a volatile memory, temporarily stored

data for high-speed CPU access. During the 1970s, RAM underwent a significant evolution

with the introduction of Dynamic RAM (DRAM) and Static RAM (SRAM). SRAM stored data us-

ing a six-transistor memory cell, resulting in a faster but more costly solution (see Fig. 1.13a).

DRAM, storing data within an integrated circuit capacitor, needed periodic refreshing due to

capacitor charge leakage. Despite this, DRAM became the standard for main system memory

in computers, favored for its relatively low cost and smaller physical size per bit of storage (see

Fig. 1.13b). The 1980s and beyond saw DRAM evolve into various forms, until the DDR SDRAM

(Double Data Rate SDRAM) variant of SDRAM became the standard for modern computer sys-

tems, with successive generations (DDR2, DDR3, DDR4, DDR5) offering superior transfer rates

and reduced power consumption.

The 1980s also marked the advent of Flash memory, a type of Electrically Erasable Pro-

grammable Read-Only Memory (EEPROM). This technology uses floating-gate transistors to

store data, which can be electrically erased and reprogrammed, proving ideal for storage de-

vices like USB flash drives (see Fig. 1.13c). Furthermore, hard disk drives (HDDs) were devel-

oped as a result of significant advancements in magnetic storage. These devices provided large

storage capacities and were extensively used for storing operating systems, applications, and

user data. Optical storage technologies, such as CDs, also made their appearance during this

period, with DVDs and Blu-ray Discs following in the 1990s and 2000s, offering greater storage

capacities. Flash memory took a central role in the mid to late 2000s, with Solid-State Drives
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(SSDs) beginning to supplant traditional Hard Disk Drives (HDDs). SSDs use NAND-based

flash memory to store data, boasting considerable advantages over HDDs, such as faster ac-

cess times, lower latency, and resistance to physical shock (see Fig. 1.13e). As the cost per giga-

byte for SSDs has steadily decreased, they are increasingly becoming the standard for primary

storage in modern computer systems. Moreover, SSDs themselves have evolved with the in-

troduction of NVMe (Non-Volatile Memory Express) technology, which utilizes the high-speed

PCIe (Peripheral Component Interconnect Express) interface to achieve faster data transfer

rates than traditional SATA (Serial ATA) interfaces.

a b c c

Figure 1.14: 3D integration of Memory Technologies. a 3D stacking of DRAM based HBM
memories (Source: AMD website). b 3D NAND Memory from Micron (Source: Mi-
cron website) c Empire State Building (3D urban architecture) under construction.
(Source: reddit)

As computer capabilities have advanced, particularly in graphics processing units (GPUs),

and with modern applications like artificial intelligence algorithms demanding ever-increasing

data storage and memory, there has been a pressing need for memory technologies to enhance

their density and bandwidth. The solution came in the form of exploiting the third dimension,

much akin to the evolution in urban architecture where skyscrapers serve as a model for high-

density constructions, and elevators enable rapid movement within them (example of 3D ur-

bain structure, the Empire State Building, shown in Fig. 1.14c). One of the most significant ad-

vancements in memory technology has been the development of 3D integration and 3D stack-

ing. This methodologies entail stacking memory cells vertically, thereby enhancing density

without necessitating a reduction in the size of individual cells. Within the sphere of flash mem-

ory, this innovation has fostered the creation of Vertical NAND (V-NAND) or 3D NAND technol-

ogy (example of Micron 3D NAND memory shown in Fig. 1.14b). This approach stacks memory

cells in multiple layers, leading to increased densities, decreased memory access power con-

sumption, and improved reliability. In the realm of DRAM technology, the emergence of High

Bandwidth Memory (HBM) marks a noteworthy progression [170]. HBM employs 3D-stacking

along with Through-Silicon Vias (TSVs), vertical electrical connections that traverse an entire

silicon wafer or die (See Fig. 1.14a). HBM offers significantly higher bandwidth compared to

traditional DDR memory, making it ideal for use in high-performance systems such as graph-

ics cards and high-performance computing systems. As the evolution of memory technology
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continues, it remains a pivotal component in the ongoing development and enhancement of

computing systems.

As we look towards the near future of memory technology, it is apparent that continued

progress in 3D stacking will be a significant trend. However, as demands for greater perfor-

mance and energy efficiency escalate, the limitations of current memory technologies are be-

coming increasingly evident. This has spurred exploration into alternative methodologies.

Among these, emerging technologies such as memristors hold significant potential. These de-

vices promise to fundamentally transform how we store and access data, thereby pushing the

frontiers of computing further.

1.1.3.2 The Limitations of SRAM, DRAM, and Flash memories for In/Near-Memory

Computing

While in/near-memory computing based on mature memory technologies has demonstrated

promise in addressing the von Neumann bottleneck, there are inherent limitations associated

with the use of SRAM and DRAM in these architectures. Understanding these limitations is

crucial in identifying potential areas for improvement and exploring alternative approaches.

Limitations of SRAM Despite its advantages, such as speed, low latency, compatibility with

CMOS processes, and scalability with transistor scaling, SRAM has several limitations when

employed in in/near-memory computing:

High Power Consumption: SRAM cells consume a significant amount of static power due

to leakage current, even when not actively accessed. This results in high energy consumption,

which is a major concern for energy-efficient in/near-memory computing.

High Power Consumption: SRAM cells consume a significant amount of static power due

to leakage current, even when not actively accessed. This issue is exacerbated as transistor

nodes become smaller. This results in high energy consumption, which is a major concern for

energy-efficient in/near-memory computing.

Large Cell Size: SRAM cells typically require six transistors per cell, leading to a relatively

large cell size. This affects memory density, limiting the amount of on-chip memory that can

be integrated within an in/near-memory computing architecture.

Cost: Due to the larger cell size, SRAM is more expensive to manufacture than other mem-

ory technologies like DRAM. This higher cost can be a barrier to widespread adoption in cost-

sensitive applications.

Limitations of DRAM Although DRAM provides higher density and lower cost compared to

SRAM, and faster speed than conventional NVM (such as NAND and NOR flash memories), it

has its own set of limitations in the context of in/near-memory computing:

Refresh Overhead: DRAM cells require periodic refresh cycles to maintain stored data, which

consumes energy and reduces the effective memory bandwidth available for computation.
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This refresh overhead can negatively impact the performance of in/near-memory computing

architectures.

Higher Latency: DRAM cells exhibit higher access latencies compared to SRAM cells, which

can limit the performance gains achievable through in/near-memory computing.

Complex Integration: Integrating DRAM cells with processing units in an in/near-memory

computing architecture can be challenging due to the inherent differences in their fabrication

processes. This may limit the potential benefits of DRAM-based in/near-memory computing.

Limitations of Flash memory The idea of in-memory or near-memory computing using flash

memory is intriguing because it can potentially bring computation closer to where the data is

stored. The non-volatility, multi-level state (MLS) storage, high density, low cost, and low power

consumption of flash memory add to its attractiveness for such applications. However, despite

these appealing advantages, flash memory technology also presents significant challenges lim-

itations:

Very High Latency: It is inherently slower compared to SRAM or DRAM, particularly when

it comes to write and erase operations, which can significantly hamper the performance of

computational tasks that require frequent data updates.

Write Complexity: The necessity of erasing entire blocks before rewriting complicates data

management and could slow down computations.

Higher error rates: Flash memory is subject to higher error rates, especially when pro-

grammed in multi-level states. This impacts reliability and necessitates the implementation

of complex error-correcting code mechanisms.

Complex Integration: Similar to DRAMs, Integrating Flash memory with processing units

can be challenging due to the inherent differences in their fabrication processes.

In conclusion, while SRAM, DRAM, and Flash memory technologies each offer viable solu-

tions for in/near-memory computing, their applicability depends largely on specific use cases.

For example, in/near-memory computing based on DRAM can be used to accelerate AI com-

putations, offering marginal improvements in energy efficiency for applications that can tol-

erate higher energy consumption. Conversely, in/near-memory computing that utilizes SRAM

could potentially replace register files in the spatial architecture of Neural Processing Units

(NPUs), thereby reducing the energy consumption associated with memory access. However,

both SRAM and DRAM have their limitations, including high power consumption, lower den-

sity, higher cost, refresh overhead, and integration complexity, which may inhibit potential per-

formance enhancements and energy efficiency gains, particularly in energy-constrained appli-

cations. Flash memory, despite its many advantages, also has its own set of challenges that

could limit its effectiveness in in/near-memory computing. Addressing these limitations will

be a crucial step in advancing the development of more efficient in/near-memory computing

architectures. This might necessitate exploring alternative memory technologies or innovative

design approaches to surmount these hurdles.
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1.1.3.3 Computer Memory Hierarchy and Addressing the Gap with Emerging Tech-

nologies

The evolution of memory technologies over time has led to the development of a diverse ar-

ray of memory types, each with its own unique set of characteristics. This diversity has given

rise to the concept of a memory hierarchy within a computer system, a construct designed to

balance the trade-offs between speed, capacity, energy efficiency, and error tolerance. This hi-

erarchy can often be represented as a pyramid. At the top of the pyramid, we find the fastest

and most expensive types of memory, namely volatile memories, i.e. static and dynamic ran-

dom access memories (See Fig. 1.15). At the bottom of the pyramid, we find the slowest but

highest-capacity non-volatile memories, which are also the least expensive types of memory:

flash memories and magnetic hard drives.
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Figure 1.15: Memory Hierarchy and Addressing the Gap with Emerging Technologies.

This division within the memory hierarchy gives rise to a distinct gap between volatile and

non-volatile memories. This gap elucidates the limitations of existing mature memory tech-

nologies in meeting the demands of emerging computing paradigms, such as in/near memory

computing, which prioritize energy efficiency [171]. Each of these memory technologies pos-

sesses both a trump card feature and an Achilles heel feature. Emerging memory technologies

like memristors hold the potential to address this gap in the memory hierarchy by offering a

more balanced combination of speed, density, energy efficiency, and non-volatility. They can

facilitate the development of more efficient computing architectures and unlock new possibil-

ities for in/near-memory computing, as well as other advanced computing paradigms.

1.1.3.4 Emerging Memory Technologies

The goal of many emerging memory technologies is to combine the speed of RAM with the non-

volatility data storage, hence their classification as non-volatile RAMs. These devices include

memristors, usually called resistive RAM (ReRAM) in the industry, magnetic RAM (MRAM),
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phase-change memory (PCM), ferroelectric RAM (FeRAM), and ferroelectric FET (FeFET). These

technologies exhibit non-volatility and provide several advantages over traditional nonvolatile

memory counterparts, including faster switching speeds, and reduced energy consumption

[172]. Each of these devices operates based on distinct physical mechanisms:

Bottom

TOP

Bottom

TOP + +++

- - - -

-
+

-
+

-
+

-
+

N+ N+

+ +++

- - - -

-
+

-
+

-
+

-
+

a b c d e

f g h i

Figure 1.16: Emerging Memory Technologies. a Resistive RAM structure and its f current-
voltage (I-V) characteristics for a bipolar switching device. b Phase-change mem-
ory structure and its g resistance change characteristics. c Magnetic RAM structure
and its h resistance-voltage characteristics. d Ferroelectric RAM structure and e

Ferroelectric FET structure and their i polarization–voltage hysteretic characteris-
tic. (Reproduced from [11])

Memristor or ReRAM: The memristor, a theoretical circuit element proposed by Leon Chua

in 1971 [173], was not realized until a disputed claim by HP Labs in 2008 [174]. Despite the con-

troversy, the concept of resistive memory, or ReRAM, sharing similar traits with the proposed

memristor, has gained attention [175]. This thesis will use “memristor” and “resistive RAM” in-

terchangeably to refer to these devices. Memristor stores data by modulating the resistance of a

dielectric material sandwiched between two metal electrodes (See Fig. 1.16a). The application

of an electric field induces the formation or dissolution of conductive filaments within the di-

electric material, resulting in a change in the resistance state (See Fig. 1.16f). These resistance

states can represent binary data, where high and low resistance states correspond to ’0’ and ’1’

respectively, and also can be adapted to store multi-level state data or continuous analog data.

Magnetic RAM (MRAM): MRAM stores data using magnetic tunnel junctions (MTJs), which

consist of two ferromagnetic layers separated by a thin insulating barrier [176] (See Fig. 1.16c).

Data is stored by changing the relative magnetization direction of the ferromagnetic layers.

When the magnetization directions are parallel, the MTJ has low resistance, representing a bi-
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nary 1. When the magnetization directions are anti-parallel, the MTJ exhibits high resistance,

corresponding to a binary 0 (See Fig. 1.16h). MRAM devices can be written and read by apply-

ing currents.

Phase-Change Memory (PCM): PCM is based on the reversible phase transition of a chalco-

genide material, typically a compound of germanium, antimony, and tellurium (GeSbTe or

GST) [177] (See Fig. 1.16b). Data is stored by changing the phase of the chalcogenide mate-

rial between amorphous (high resistance) and crystalline (low resistance) states, represent-

ing binary 0 and 1, respectively (See Fig. 1.16g). Phase transitions are induced by applying

heat through electrical pulses, which cause the material to melt and subsequently cool rapidly

(quench) into the amorphous state or heat and cool slowly to form the crystalline state.

Ferroelectric RAM (FeRAM): FeRAM stores data using ferroelectric capacitors, which exhibit

spontaneous polarization that can be reversed by applying an electric field [178] (See Fig. 1.16i).

Data is represented by the orientation of the polarization, with up and down polarization di-

rections corresponding to binary 0 and 1, respectively (See Fig. 1.16d). The polarization state of

a ferroelectric capacitor can be read by applying a voltage and measuring the resulting current,

which is proportional to the amount of charge displaced by the polarization reversal. Unlike

other emerging memories, the read operation is destructive in these devices.

Ferroelectric FET (FeFET): FeFET is a three-terminal device that uses the concept of ferro-

electric polarization [179] (See Fig. 1.16e). However, in FeFETs, a ferroelectric material is used

as the gate insulator in a Field-Effect Transistor. The data is stored by switching the polarization

of the ferroelectric material, which, in turn, modulates the transistor’s channel conductivity.

Upward and downward polarization directions correspond to binary ’0’ and ’1’, respectively

(See Fig. 1.16e). The transistor’s current state, which represents the stored binary data, can

be read by applying a voltage to the gate and measuring the resulting current in the channel.

This current is affected by the polarization state of the ferroelectric material and thus indicates

whether a ’0’ or ’1’ is stored.

In conclusion, the advent of non-volatile RAMs marks a notable shift in memory tech-

nology. Each of these technologies possesses distinct operational mechanisms and exhibits

a broad array of characteristics. Consequently, they afford a diverse range of potential appli-

cations, thereby facilitating the advancement and diversification of memory storage and pro-

cessing systems.

Memristors and other emerging memories, exhibit a promising range of unique charac-

teristics that are fostering a new landscape of potential applications spanning across various

domains. These characteristics encompass parameters such as read and write speed, energy

efficiency during read and write operations, endurance, physical area requirements, variabil-

ity, resolution, susceptibility to read disturbances, cost, and process complexity. Each of these

attributes contributes to the versatility of these technologies, thereby rendering them suitable
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for a broad spectrum of potential applications [172]. The specific nature of these applications

will be inherently determined by the balance of these factors.

Storage: Emerging Memories exhibit characteristics that make them a potential candidate for

non-volatile storage devices [171]. While their current capacity might not meet the demands

of high-storage devices, their potential integration into 3D memory architectures could pave

the way for future advancements. For devices with more modest storage requirements, such

as IoT devices or microcontroller units, memristors could represent a viable option. Moreover,

these emerging technologies might find application in the replacement of DRAM or as third-

tier cache memory in low-power, low and medium-speed devices [180].

Logic: Emerging Memories can also offer potential utility in the construction of logic gates

and circuits [181]. The properties of these devices may enable the development of non-volatile

registers and reconfigurable logic gates. It is also conceivable that they could contribute to logic

gates requiring fewer components, potentially leading to more compact computing systems.

Randomness Generation (RNG): The inherent variability and instability in certain types of

emerging memory technologies can serve as a potential source for random number generation

[19]. This characteristic could be leveraged in the context of probabilistic computing and cryp-

tographic applications. Additionally, these properties could supply a valuable source of ran-

domness for sampling algorithms [88]. Furthermore, these memory technologies could find

use in the creation of physical unclonable functions (PUFs), potentially enhancing hardware

security [182].

In and Near-Memory Computing: Memristors and other emerging memories, due to their

non-volatile memory states, may provide viable utility across a range of computing paradigms,

including neuromorphic, digital, analog, and probabilistic computing [168]. They could no-

tably enhance low-power, high-speed vector and matrix multiplication tasks, potentially offer-

ing more energy-efficient and high-performance AI inference capabilities at the edge. The ca-

pacity of memristors to facilitate in-situ AI learning algorithms presents a compelling approach

for AI training at the edge, particularly within the framework of local learning rule-based or

brain-inspired algorithms. The prospect of continuous training at the edge might promote

greater confidence in AI deployment and proliferation.

1.1.3.5 Memristors-Based Artificial Neural Network accelerators

Memristors offer a unique set of attributes that render them particularly suitable for energy-

efficient AI systems [103, 172]. What sets them apart is their ability to maintain multiple resis-

tance states. This trait enables them to conduct complex operations and, crucially, to emulate

functions of the human brain, an essential component in the development of neuromorphic, or
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brain-like, computing. Memristors’ compact size and possibility for high storage resolution al-

low for efficient handling of large volumes of data, a characteristic demanded by AI applications

and a distinct advantage over solutions such as SRAM. The potential for 3D configuration could

further augment their data storage capacity, answering the escalating demand for memory in

AI applications. Their efficiency is bolstered by fast, low-energy write and read operations,

which offer both speed and energy benefits. Furthermore, the simplicity of their structure and

fabrication process could lead to cost savings. The compatibility of memristors with the CMOS

back-end-of-line process facilitates their integration into existing manufacturing workflows.

Despite challenges such as consistency and reliability, the growing body of research and the

increasing application of memristors in AI hardware systems underscore their potential. Until

nown most research has focused on implementing artificial neural networks (ANNs).
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Figure 1.17: In-Memory computing with Memristor crossbars for artificial neural network. a

Neural network with three inputs and two outputs mapped on a memristor cross-
bar of three rows and two columns. The multiply-and-accumulation operation can
be performed in the analog regime, taking advantage of Ohm’s Law and Kirchhoff’s
Law. b A memristor crossbar used as a vector-matrix multiplier, including ADCs,
DACs, and digital input and output cicuitry. This crossbar is a main element in the
ISAAC architecture hierarchy, used to build c the In-Situ Multiply-and-Accumulate
block that is part of d the ISSAC Tile block. (Reproduced from [12])

Memristor crossbar for In-Memory Computing of Artificial Neural Network: A key oper-

ation in neural networks is the multiplication of weights and input data followed by an ac-

cumulation of the products, commonly referred to as multiply-and-accumulate. Memristor
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crossbar arrays can be employed to perform this operation in an analog, in-memory fash-

ion, taking advantage of Ohm’s Law and Kirchhoff’s Law. In such arrays, the conductance of

the memristor devices represents the synaptic weights of the neural network. In a weight-

stationary dataflow scheme, input voltages, representing input activations, are applied to the

rows, and the resulting currents in the columns correspond to the dot products, i.e., the neuron

outputs (See Fig. 1.17a). Numerous realizations of this proposal have been demonstrated re-

cently [103, 168, 183–186]. By performing multiply-and-accumulate operation directly within

the memory array, memristor-based in-memory analog computation can significantly reduce

data movement between memory and processing units, which is a major source of energy con-

sumption in traditional architectures. Additionally, the parallelism inherent in the crossbar

structure enables a high degree of concurrency, potentially leading to substantial improve-

ments in computational throughput. Furthermore, memristor-based analog computing can

leverage the continuous conductance levels of memristor devices to represent multi-bit synap-

tic weights, enabling possibility for higher precision calculations compared to binary-weighted

neural networks. This can lead to better accuracy in inference tasks without incurring the en-

ergy and area overhead typically associated with higher precision digital computation.

However, a practical implementation of memristor crossbars in industrial products needs a

deep study of all needed parts for a fully reliable system, not only relying on conceptual poten-

tials. Implementing an ANN accelerator with in-memory analog computing with a memristor

crossbar is still a challenging research subject. This is due to device imperfections that present a

substantial challenge [88, 168, 172]. Achieving precise control over each memristor’s resistance

state, which signifies a synaptic weight in neural networks, is still limited due to the current

memrsitor devices variability. This lack of precision can lead to limited reliable device resolu-

tion, heavy precise write periphery circuits, and affects on computational accuracy [25]. From

a circuit level, higher design complexity, as MAC operations are done in analog and other oper-

ations are in digital, necessitates the conversion between analog and digital signals, therefore,

complex Analog to Digital Converters (ADC) and Digital to Analog Converters (DAC) circuitries

are required, with high-precision, high-speed and tolerant devices noise (See Fig. 1.17b). From

a system level, as the weights are stationary, a careful design consideration needs to be taken for

the dimensions of memristor crossbars and the capacity of volatile memory for activations: this

is for giving more degree of freedom for mapping, applying pipelined computation, reconfigu-

ration of the system for different neural networks models, and to increase date usage and reuse

for a purpose of increasing the efficiency of the system (See Fig. 1.17c-d). Addressing these chal-

lenges necessitates advancements in memristor device technology, to improve device charac-

teristics, circuit design techniques, improve read write circuitry and techniques, system-level

architectures, and algorithmic level, such as developing hardware friendly AI models, based on

network pruning, network, reduced precision models.

A famous example, to be mentioned here is the ISAAC (In-Situ Analog Arithmetic in Cross-

bars) accelerator [12], which has been proposed for convolutional neural networks (CNN) ac-
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celerators. This architecture leverages memristor crossbar arrays at its core to store synaptic

weights and perform dot-product computations (Fig. 1.17b). The system’s core is built around

memristor crossbar arrays integrated within each of its multiple nodes or tiles (See Fig. 1.17c-

d. The system tackles several of the challenges mentioned above, by limiting device reso-

lution to 2-bits and using sequential inputs to reduce analog-to-digital converter (ADC) and

digital-to-analog converter (DAC) overheads. Furthermore, through a meticulous design space

exploration, ISAAC studied the optimal balance of chip area dedication to storage, computa-

tion, buffers, and ADCs, resulting in a substantial boost in throughput, energy efficiency, and

computational density for comprehensive CNN and Deep Neural Network (DNN) applications.

This work addresses the challenges associated with adopting a solution based on emerging ap-

proaches that encompass interdisciplinary fields.

a b

c d

Figure 1.18: In-Memory computing with resistance summation for artificial neural network.

a Resistance summation crossbar array architecture. b Time-domain readout
method. A lumped capacitor and distributed parasitic capacitors in the array are
charged, and the time taken for the voltage at the end of the column to reach a ref-
erence voltage is measured, correlating to the column resistance. The resistance
value represent the dot product of the input vector and the weight vector. c Bit-
cell structure, which combines two parallel paths, each comprising a resistive de-
vice and a MOSFET in series. d Implementation of an analog XNOR operation, the
multiply operation for the binary neural network, by the bit-cell structure. (Repro-
duced from [13]).

A different approach for Memristor crossbar. In-memory computing using memristor cross-

bars based on current summation faces dimensional constraints. This arises from the high cur-

rent flow associated with numerous parallel resistors, particularly in the case of low-resistance

states. This high current can lead to an increased peripheral circuitry size and enhanced im-

pact of parasitic resistors in routing metals. Addressing this, researchers from the Samsung
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Advanced Institute of Technology have proposed a novel crossbar array architecture that lever-

ages resistance summation for analogue multiply-accumulate operations, instead of current

summation [13] (See Fig. 1.18a). The architecture is built on an MRAM crossbar array, chosen

for its low resistance states. As MRAM is confined to only two states, this architecture has been

utilized to implement a binary neural network model for image classification tasks. The archi-

tecture’s bit-cell combines two parallel paths, each comprising an MRAM tunnel junction (MTJ)

and a MOSFET in series (See Fig. 1.18c). In this configuration, one path’s FET gate is driven by

a binary input voltage, while the other is driven by the complement of the input voltage. Each

path stores a synaptic resistance weight, with one path holding the weight and the other its

complement. The chosen path, determined by the input voltage, results in the bit-cell output,

thus implementing an analog XNOR operation—the multiply operation for the binary neural

network (see Fig. 1.18d). The bit-cell output resistances are connected in series in each col-

umn of the array and their sum yields the column resistance. This process replaces the current

sum in conventional crossbar arrays, with the column resistance being the dot product of the

input vector and the weight vector. The column resistance is read via a time-domain method;

a lumped capacitor and distributed parasitic capacitors in the array are charged, and the time

taken for the voltage at the end of the column to reach a reference voltage is measured, corre-

lating to the column resistance (see Fig. 1.18b). This time delay is captured by a time-to-digital

converter (TDC) that extracts the resistance.

Despite MRAM’s low resistances, this architecture promises lower power consumption, as

computations are based on charge and discharge currents rather than steady summed cur-

rents. A limitation, however, is the binary nature of the MRAM, which may necessitate an

increased network size or longer computing time to achieve desired performance. An effec-

tive countermeasure is the integration of memristors, which, unlike binary MRAM, can store

a broader range of resistance states, enhancing the precision of stored weight values and pro-

moting more accurate computations within the neural network model.
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1.2 The Concept of Near-Memory Compute Architecture

for a Bayesian Machine

As delineated in the introduction of this thesis, positioning AI at the edge could mitigate cer-

tain trust concerns associated with artificial intelligence. Bayesian reasoning, or Bayesian in-

ference, is an artificial intelligence approach that could better adapt than neural networks to

safety-critical applications, where explainable decisions with uncertainty-quantification are re-

quired [82, 187]. Bayesian reasoning is a probabilistic framework that permits decision-making

in situations with incomplete information, maximally incorporating all available evidence, as-

sumptions, and prior knowledge [188, 189]. Within this approach, reasoning is fully explainable

and excels at ‘small data’ situations, as it is able to incorporate prior expert knowledge [190]. It

can also estimate the certainty of its prediction [187], which is a challenge for neural networks.

Bayesian models are not directly brain-inspired but have been connected to biological intelli-

gence [191–196].

However, although Bayesian reasoning requires considerable memory access, implement-

ing it near-memory is more challenging than for neural networks. In a Bayesian approach,

networks feature a topological nature, but in a way that is more subtle than neural networks.

Bayesian reasoning is usually implemented on conventional computers [197], microcontroller

units [198, 199], or graphics processing units [200]. Several works have also implemented it

on large field-programmable gate arrays [201–204], and CMOS-based application-specific in-

tegrated circuits [205]. However, the energy efficiency of such approaches is always limited by

the cost of memory access to the external dynamic random-access memory.

Because Bayesian inference does not use multiply-and-accumulate operations, strategies

commonly used in neural networks accelerators, such as relying on analogue computation (see

section 1.1.3.5), do not bring the same benefit and would have a very high cost in terms of pe-

riphery circuit. Therefore, we chose to use a strategy in which memristors are used in a binary

fashion and read by tiny, robust and highly energy-efficient sense amplifiers. As a result, we

developed hardware systems that we call Bayesian machines. Based on memristors and near-

memory computing, those machines offer features not commonly seen in neural network ac-

celerators: they do not need any calibration process; they are robust to device imperfection

without the need for any compensation circuitry; and they can function over a broad range of

voltage without any adjustment, making them particularly useful in environments with unreli-

able power supply, such as those based on energy harvesting.

The foundation of our Bayesian system is Bayes’ theorem, which is a fundamental concept

in Bayesian statistics that allows for the updating of probabilities based on new observed evi-

dence:

P (Y |O) =
P (O|Y )P (Y )

P (O)
. (1.1)
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The theorem states that the posterior probability of a hypothesis or event given some ob-

served evidence P (Y |O) is proportional to the product of the likelihood of the observed ev-

idence given the hypothesis P (O|Y ) and the prior probability of the hypothesis P (Y ). Since

calculating the probability of evidence P (O) can be challenging, and this factor only acts as a

uniform multiplicative coefficient, the product of the prior and likelihood is often considered

as a simplified approach to computation:

P (Y |O) ∝ P (O|Y )P (Y ). (1.2)

The probabilities updating process enables us to revise our beliefs about a hypothesis as we

receive new evidence. Interestingly, this updating process mirrors how humans learn and un-

derstand new concepts. When humans encounter new information, they update their beliefs

to reflect this new knowledge. This process of updating beliefs based on new information is a

crucial aspect of the learning process and is analogous to the Bayesian updating of probabilities

using Bayes’ theorem.

Bayesian programming is a complex and broad discipline that cannot be fully summarized

in a subsection of a chapter. For a comprehensive understanding, we recommend reading the

“Probabilistic Graphical Models”[206] and “Bayesian Programming” [189] books. In this sec-

tion, we focus on the adaptation of Bayesian inference models to a near-memory hardware

architecture that we call the Bayesian machine architecture.

Let us take an example where we try to evaluate the probability of an event Y , e.g., the

occurrence of a medical emergency, based on a collection of observations. A value of one for Y

might represent the occurrence of a minor stroke, a value of two a major stroke, and a value of

zero the absence of any stroke. Bayes’ law then provides the probability that these situations are

currently occurring, based on their probability to happen at any time (the prior p(Y = y)) and

likelihood factors p(O1,O2, ...,On |Y = y) that model the behavior of the sensors O1, O2,...,On in

the absence or presence of a stroke:

p(Y = y |O1,O2, ...,On) ∝ p(O1,O2, ...,On |Y = y)×p(Y = y). (1.3)

The likelihood factors feature a prohibitive memory cost, which grows exponentially with

the number of observations n. In real-life settings, this cost can be alleviated. In our example,

sensors that measure distinct aspects of the patients (e.g., heart rate and body temperature)

may often be considered conditionally independent (meaning that once given the knowledge

that a stroke is currently happening, the heart rate and body temperature values can be re-

garded as statistically independent processes). If all observations are conditionally indepen-

dent, equation 1.3 simplifies to

p(Y = y |O1,O2, ...,On) ∝ p(O1|Y = y)×p(O2|Y = y)×p(O3|Y = y)...×p(On |Y = y)×p(Y = y),

(1.4)
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with a memory cost for the likelihood now growing linearly with n, and likelihood factors now

becoming easy to model based on measurements of the sensor values, e.g., during the occur-

rence or in the absence of a stroke.

Figure 1.19: General architecture of the Bayesian machine. The likelihoods are stored in like-
lihood memory arrays implemented by memristor arrays. Observations from the
real world choose the appropriate probability values from likelihood memory ar-
rays, based on which the probability values are red from likelihood arrays, which
are multiplied by multipliers. At the output, the generated results encode the pos-
terior distribution.

Our memristor-based Bayesian machine concept, presented in Fig. 1.19, implements equa-

tions such as eq. 1.4 in a topological manner. Each likelihood factor is implemented using inde-

pendent memory arrays, and multiplications are performed physically close to these memory

arrays. The multiplication result is then passed to the next memory array. The observations O1,

..., On effectively act as addresses for the memory arrays, telling which likelihood values should

be read.

The architecture in Fig. 1.19 presented a case where all observations can be considered

conditionally independent, which is not always the case. In particular, When two redundant

sensors measure the same phenomenon, they may not be regarded as independent in a good

model, even conditionally to the inferred variable. For example, if observations O2 and O3 are

not conditionally-independent, the p(O2,O3|Y = y) likelihood may not be factorized, and an

appropriate Bayesian inference model may read such as eq. 1.5

p(Y = y |O1,O2, ...,On) ∝ p(O1|Y = y)×p(O2,O3|Y = y)×= ...×p(On |Y = y)×p(Y = y). (1.5)

This model can still be implemented by a memristor-based Bayesian machine. In that case,
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observations O2 and O3 should be pooled into a single column, and their joint value should be

used to address the likelihood arrays of this column, as presented in Fig. 1.20. Nevertheless, it

should be highlighted that the memory cost of the Bayesian machine grows with the number

of non-conditionally independent variables.

It should also be noted that in the case of a uniform prior, the prior blocks of the Bayesian

machine may be removed entirely.

Figure 1.20: Architecture of the Bayesian machine with non-conditionally independent ob-

servations. This architecture performs non-naive Bayesian inference following
eq. 1.5, by pooling observations O2 and O3 into the same column.

An important challenge of the memristor-based Bayesian machine is that multiplications

are normally an area-expensive operation in CMOS, raising a concern if a multiplier is associ-

ated with each likelihood memory array. For this reason, we adopted two promising computing

approaches to implement several Bayesian machines with different computing styles:

• Stochastic computing [207, 208] (see Chapter 3): a computing paradigm encodes prob-

abilities as streams of random bits, where, at each clock cycle, the probability for the bit

to be one is just the encoded probability. The multiplication of probabilities can then be

achieved using simple AND gates, with an extremely minimal area cost [207].

• Logarithmic computing [209, 210] (see Chapter 4): a computing paradigm that encodes

probabilities in the logarithmic domain. The multiplication of probabilities can then be

achieved using simple addition operation.

An important aspect shared by both these models of computation is that the memristor-

based Bayesian machine reduces data movement considerably. Due to its simplicity, the Bayesian

machine just looks like a memory chip – we call it a “natively intelligent” memory.
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1.3 Steps of the Bayesian Machine projects

Making a chip, whether in an industrial company or in a research lab, is a complex and de-

manding process that requires a combination of technical expertise, advanced manufacturing

techniques, and significant resources. For industry, the need for advanced engineering, so-

phisticated manufacturing techniques, and significant investment has led to a limited supply

chain dominated by a few companies at the forefront of cutting-edge technology. Meanwhile,

research labs often face greater challenges due to limited resources, including funding, per-

sonnel, and equipment, making it difficult for them to access the necessary advanced tools

and techniques to produce high-quality chips.

The focus on exploring new ideas and technologies in research labs often involves taking

risks and experimenting with novel approaches, such as new hardware architectures, devices,

and computing paradigms, which can increase the risk of having errors or defects on the fab-

ricated chip and make the design and verification process more complex using less mature

Electronic Design Automation tools. Thus, the challenges faced in projects involving chip fab-

rication highlight the importance of a productive multidisciplinary collaboration. Our projects

involving the Bayesian machines are the result of the successful collaboration of a group of re-

searchers from four research entities: Centre for Nanosciences and Nanotechnologies (C2N)

in the Paris-Saclay territory, Institut Matériaux Microélectronique Nanosciences de Provence

(IM2NP) in Marseille, CEA-Leti in Grenoble, Institute of Intelligent Systems and Robotics (ISIR)

in Paris, and a start-up company (HawAI.tech) based in Grenoble.

Figure 1.21: Affiliation of collaborating research entities in the Bayesian machine project. In-
cluding C2N, IM2NP, CEA-Leti, ISIR, and HawAI.tec. Along with image of our paper
on the cover of Nature Electronics Journal [14].
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The aim of a Bayesian machine project is to develop a highly optimized and efficient Bayesian

machine by incorporating memristors into an integrated circuit. To achieve this, a collaborative

approach is taken, with experts in Bayesian theory, memristor device modeling and character-

ization, and integrated circuit design working together. The project consists of several main

steps.

The theory and early model of the Bayesian machine were developed by Tifenn Hirtzlin

(then at C2N) under the supervision of Damien Querlioz (C2N) , in collaboration with Bayesian

theory experts Jacques Droulez and Pierre Bessiere (ISIR). Then, an intensive study of design

choices and computing paradigms was performed in collaboration with Marc Bocquet (IM2NP),

who specializes in memristor device modeling and characterization, and Jean-Michel Portal

(IM2NP), an expert in integrated circuit design. I did the actual design of the first Bayesian

machine ”The stochastic Bayesian machine”, in collaboration with Tifenn Hirtzlin, and of the

second Bayesian machine ”The logarithmic Bayesian machine”, in collaboration with Clement

Turck (C2N), all under the supervision of Jean-Michel Portal and Damien Querlioz.

After the design was finalized, the chip was sent to a foundry for fabrication, with Elisa

Vianello (CEA-Leti) leading the process. The fabrication process is based on a hybrid CMOS/memristor

technology, which goes through two phases. The first phase involves the fabrication of the

CMOS part using a conventional silicon-based process with a 130-nanometer commercial tech-

nology. The second phase involves the integration of memristor devices using an emerging

technology process from the CEA-Leti research center.

Once the chips are received, the electrical characterization of the stochastic machine was

performed by Marc Bocquet and Tifenn Hirtzlin; the electrical characterization of the logarith-

mic machine was performed by Clement Turck and I, under the supervision of Marc Bocquet

and Damien Querlioz. Both systems were tested using a custom-designed measurement setup,

and in parallel, we designed scaled-up versions of the Bayesian systems with Clement Turck

to implement applications based on Bayesian inference models, adapted to the Bayesian ma-

chines.

Using the scaled-up system and a homemade energy analysis framework developed by

Clement Turck and I, an energy versus performance study is conducted, and the results are

benchmarked with conventional computing units. Finally, the performance of the Bayesian

machine is evaluated in real-world application, a hand gesture recognition task, the task was

developed by Raphael Laurent (HawAI.tech). The potential benefits and limitations of the

Bayesian machine are evaluated. Our works were rewarded by one published article in the

Nature Electronics journal [14], and one article presented at the DATE 2023 conference [86].

1.3.1 Design Flow for Memristor-based Chips

The Bayesian machine is an application-specific integrated circuit (ASIC), i.e., an integrated

circuit designed for a particular use and. To design these circuits, a complex design flow needs

to be respected. A conventional design flow of a chip using mature technologies (available
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for industries) is a multi-step process that starts from a concept or idea to the creation of a

Graphic Design System (GDS) mask of a functional integrated circuit ready to be sent to fabri-

cation. In this multi-step process, several software tools provided by EDA companies such as

Cadence and Synopsys are used. Technology libraries are needed, provided by the design kit of

the foundry.

As shown in Fig. 1.22, the design flow begins with system specifications, where the defi-

nition of concept and requirements for the chip is defined, including the intended use case,

performance requirements, and power constraints. The next step is the architectural design,

where the overall architecture of the chip is determined, including the number and types of

components, the connections and the data flow between them. The digital logic of the chip is

then designed using a high-level hardware description language in the RTL (register-transfer

level) design stage. This is followed by the logic synthesis step, where the RTL design is trans-

formed into a gate-level representation. The physical design step involves laying out the com-

ponents of the chip and defining the interconnections between components. Verification is

an important part of the design flow, where the chip design is tested and validated at various

stages to ensure that it meets the specifications. The final step is generating the GDS file to

be sent for fabrication, where the chip is manufactured using specialized techniques such as

photolithography.

Figure 1.22: Overview of an Integrated Circuit Design Flow. a Computer-aided steps per-
formed with EDA Tools. At the end, GDS mask layouts are obtained, ready for the
fabrication process (Reproduced from [15]). b Diagram of the main steps for mak-
ing a chip from system specification to ready-to-use chip (Reproduced from wiki-
media).

The memristor-based Bayesian machines are hybrid CMOS/memristor integrated circuits

that embed memory arrays within logic. Due to the lack of a foundry design kit that supports
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such designs, and the need to use multi-supply voltages, we developed a semi-automated de-

sign flow for our first Bayesian machine (the stochastic Bayesian machine). The memristor

arrays and their mixed-signal peripheral circuitry were manually designed, placed, and routed

using the Cadence Virtuoso electronic design automation (EDA) tool. To enable the exploration

of various programming regimes for the memristors, we designed the programming circuitry

with wide transistors and large safety margins. Analog simulations were performed using the

Siemens Eldo and Cadence Spectre simulators.

On the other hand, we described all digital computation blocks using the SystemVerilog

hardware description language and verified their logical correctness using the Cadence NC-

Verilog Simulator. The digital circuits were synthesized using either the Cadence Encounter

RTL Compiler (stochastic Bayesian machine) or Cadence Genus Synthesis Solutions (logarith-

mic Bayesian machine), and then placed and routed using the Cadence Encounter RTL-to-

GDSII tool (stochastic Bayesian machine) or the Cadence Innovus system (logarithmic Bayesian

machine). The digital circuits employed thin gate oxide high-threshold transistors.

In the case of the stochastic Bayesian machine, the resulting computation blocks’ layouts,

as well as those of memory blocks, were manually placed and routed in a full-custom fashion.

We performed design rule checks, layout-versus-schematic comparison, and antenna effects

design rule checks using dedicated Calibre EDA tools to ensure the final design’s physical veri-

fications.
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Figure 1.23: Diagram illustrating our custom-developed automated design flow for integrat-

ing mixed digital and memory circuits.
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To expedite the physical design process for the Logarithmic Bayesian machine, the next

generation of Bayesian machines, we developed a fully-automated place and route flow, shown

in Fig. 1.23. This flow automatically places and routes the memory blocks, which consist of

a memristor array with its mixed-signal peripheral circuitry, alongside digital logic standard

cells. This significantly reduces the time and effort required for the design process. Prior to

the synthesis step, we developed a Liberty Timing File for the memory cell, which represents

the timing and power parameters associated with the cell. In addition, we generated an ab-

stract view of the memory cell, which is necessary for automatic layout tools. We then only

need to do some modifications to the standard automated place and route scripts and use a

custom-designed floor plan. With these changes, we are able to complete the physical design

process of any digital hybrid CMOS/memristor-based chip, from the placement stage (step 7

in Fig. 1.22) to the generation of a GDSII file (step 11 in Fig. 1.22) using the Cadence Innovus

Implementation System. We then perform further physical verifications of the final design, in-

cluding design rule checks, layout-versus-schematic comparison, and antenna effects design

rule checks, using dedicated Calibre EDA tools. By implementing this automated flow, we were

able to reduce the time required for the physical design process from over a month to less than

two days, which significantly sped up our research and development efforts.

Once the design was finalized, the chip was sent to fabrication. The CMOS part of our test

chip was fabricated using a low-power foundry 130-nanometer process with four layers of met-

als. The memristors were fabricated on top of exposed vias and composed of a TiN/HfOx /Ti/TiN

stack. The active HfOx layer was deposited using atomic layer deposition and is 10-nanometers

thick. The Ti layer was also 10-nanometers thick, and the memristor structure had a diameter

of 300 nanometers. Finally, a fifth layer of metal was deposited on top of the memristors.

1.3.2 Measurement Setup for Memristor-based Chips

When preparing a measurement setup for a memristor-based die, the choice of packaging is

critical. Packaging, which involves enclosing an integrated circuit in a protective case or en-

closure, is primarily aimed at safeguarding the fragile silicon chip from mechanical damage,

moisture, corrosion, and other environmental factors that could impair or destroy its perfor-

mance. Additionally, it facilitates the mounting of electrical contacts for connecting the die to

the printed circuit board (PCB).

Our hybrid CMOS/memristor chips are fabricated in two phases, including the input/output

pads that are primarily intended for a characterization task, without built-in electrostatic dis-

charge (ESD) protection. To overcome this limitation, we designed and implemented our own

custom ESD protection circuit, necessitating additional precautions during measurements.

However, packaging a chip with only custom ESD protection is a risky decision, so we pro-

duced two batches of chips: one non-packaged batch (Fig. 1.24a-b) and one packaged batch

(Fig. 1.24e), which required two different measurement setups.

We used a custom-made 25-pads probe card (Fig. 1.24c) and a dedicated printed circuit
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Figure 1.24: Packaging or probe testing of Bayesian machine dies. a Non-Packaged batch
(Logarithmic chip) and b a zoom-in on one die. c The custom-made 25-pads probe
card, used within the probe station to connect the pads of the non-packaged dies
to SMA connectors. d The operation of connecting the 25 micro-probes to the 25
chip pads. e Packaged die with a J-Lead Ceramic Chip Carrier of 52 pins (JLCC52)
and f a plastic leaded chip carriers (PLCC) sockets, a chip carrier used to form con-
nections between packaged chips and PCB. Chips can be easily exchanged or re-
moved.

board (PCB) with level shifters and other discrete elements connected via SubMiniature A (SMA)

connectors (Fig. 1.25b) to probe test the non-packaged dies. The PCB connects the inputs and

outputs of our test chip to an ST Microelectronics STM32F746ZGT6 microcontroller unit, two

Keysight B1530A waveform generator/fast measurement units, and a Tektronix DPO 3014 os-

cilloscope. While the microcontroller is connected to a computer via a serial connection, other

equipment is connected to the computer via a National Instruments GPIB connection.

For packaged dies, we designed a custom PCB that differs from the one used for non-

packaged dies (Fig. 1.25a). The packaged dies can be easily plugged and unplugged into a pack-

age adapter (socket) soldered on the PCB. The inputs and outputs of this PCB are connected to

the same hardware and use the same software as the non-packaged die setup. For both mea-

surement setups, the tests are conducted using Python within a single Jupyter notebook that

controls the entire setup (Fig. 1.25).

Before using the Bayesian machine, the memristors must undergo a unique “forming” op-

eration to create conductive filaments. This is done memristor-by-memristor. Once formed,

the memristors can be programmed in low-resistance or high-resistance states (LRS or HRS).

We need to conduct characterization experiments to explore the digital programming condi-

tions and identify the appropriate programming voltages. Once we determined the correct

programming voltages, we can program the likelihoods in the memristor arrays. High program-

ming voltages are no longer necessary once the likelihoods are programmed, and the test chip

can be used in its normal mode to perform Bayesian inference based on observations (more

details about chip testing will be reported in the next chapter).
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Figure 1.25: Measurement setups for Bayesian machine systems. a Setup for the packaged
dies. b Setup for the non-packaged dies.

1.3.3 Task Implementation and Energy analysis

The characterization and testing of the Bayesian chip were essential components of our re-

search project. After successfully verifying programming and inference, it was crucial to con-

duct an energy and performance analysis of the system. To achieve this, we worked on a real-

world task, the hand gesture recognition task, based on inputs measured by an inertial mea-

surement unit (IMU). The ultimate objective of the system was to accurately identify the hand

gestures performed by a user wearing the IMU. All details about this part of the work are pro-

vided in the next chapter.

Fig. 1.26 recapitulates the different steps of the hand gesture recognition implementation

on the Bayesian machine, from training to on-chip operation:

• Collect training data. Any project starts by collecting training data.

• Implement the likelihood model. The likelihoods of the Bayesian models are computed.

In our sample gesture recognition task, likelihoods are modeled by fitting Gaussian laws

on the training data. In other situations, likelihood models may also be obtained based

on expert knowledge or prior information [189].

• Normalize and quantize likelihoods. For improving the efficiency of stochastic com-

puting, likelihoods are normalized per column by the maximum likelihood value of the

column. Likelihoods are then discretized as eight-bit integers, and models are quantized

to the number of observation values supported by the Bayesian machine.

• Program the Bayesian machine. Likelihood values are programmed to the memristors

of the Bayesian machine following the methodology described in the next chapter.

• Use the Bayesian machine to do inference. The Bayesian machine can finally be used

to infer variables based on observations, using the methodology described in the next

chapter.
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Figure 1.26: The different steps of a project with the Bayesian machine, from training to on-

chip inference. a Diagram summarizing the main steps of a project involving the
Bayesian machine, from Bayesian model building to using the Bayesian machine
to perform on-chip inference.
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1.4 Comparison of our Bayesian Machines with Other

Nanotechnology-Based Machine Learning Accelera-

tors

1.4.1 Our Bayesian Machines vs. Nanodevice-Based Neural Networks

We saw in section 1.1.3.5 that in recent years, there have been significant advancements in

the use of memristors and emerging resistive memories such as phase-change memory (PCM)

and spin-torque magnetic random access memory (MRAM) for machine learning accelerators.

These implementations aim to closely associate memory and computing functions to eliminate

the energy cost of the von Neumann bottleneck. While these approaches differ in their use of

memory devices, they all show great potential for improving machine learning performance.

Since 2020, several high-profile machine learning accelerators that employ in- or near-

memory computing based on emerging memories have been published. Table 1.1 provides

an overview of some of these accelerators, as well as our own Bayesian machine accelerators.

While these published works target neural network implementation, our work is focused on

the first fully fabricated memristor-based Bayesian machine. Unlike neural networks, Bayesian

computing requires higher precision for storing likelihood, and does not require multiply-and-

accumulate (MAC) operations, which limits the benefits of analog computation in neural net-

works.

The memristor-based neural network accelerators have reached better technological ma-

turity than memristor-based Bayesian system, with several systems implemented in sub-30-

nm CMOS [13, 186, 211]. The memory array in [186], based on a fully commercial technology,

possesses an impressive number of 2M devices. At the same time, state-of-the-art memristor-

based network accelerators usually feature a single memory array [13, 186, 211–213], or in the

case of [214], three independent memory arrays.

Some neural network implementations exploit the analog storage feature of memristive

technologies and phase change memories ([214], [212], [213] and [211]). Others rely on single-

bit basic cells to simplify periphery circuitry [186] or due to device limitations. Note that [13]

relies on single-bit-per-cell storage, but still uses analog computation to compute neuronal

activation function (using resistance sum, as we explained in subsubsec:Inmemmoryanalog).

Despite the inherent complexity of analog or mixed-signal circuitry, utilizing analog stor-

age can be advantageous for neural network implementations for two primary reasons. Firstly,

the fundamental operation of neural networks, namely multiply-and-accumulate (MAC), can

be naturally realized through the use of Ohm’s law and Kirchhoff’s current law when memris-

tors are utilized in this way. As a result, several devices can be read simultaneously during in-

memory computing, utilizing the same periphery circuitry, which significantly decreases the

energy cost of analog and mixed-signal periphery circuitry through parallelism. Secondly, neu-
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ral network inference only requires low precision for synaptic weights, further enhancing the

suitability of analog storage for this purpose.

This work Yao et al., 2020[212] Wan et al., 2020[213]

Application Bayesian inference Neural Network Neural Network/RBM
Computations Bayes’ law MAC MAC

Device HfOx memristor HfOx/TaOx memristor HfOx/TaOx memristor
CMOS node 130 nm 130 nm 130 nm

Basic cell 2T2R 1T1R 1T1R
Levels per cell SLC Analog Analog

Read circuit PCSA Analog + ADC Analog + CDS
Number of arrays 16 (connected) 1 1

Number of devices 16×8×8 16×128 256×256
Inference voltage 0.62-1.2V Predet. Predet.

Need for calibration No ND Yes

Xue et al., 2021[186] Jung et al., 2022[13] Khaddam et al., 2022[211]

Application Neural Network Neural Network Neural Network
Computations MAC MAC MAC

Device Proprietary RRAM MRAM PCM
CMOS node 22 nm 28 nm 14 nm

Basic cell 1T1R 2T2R 8T4R
Levels per cell SLC SLC Analog

Read circuit Sense amplifier Analog + TDC Analog + ADC
Number of arrays 1 1 1

Number of devices 1,024×2,048 64×64 256×256
Inference voltage Predet. Predet. (array) Predet.

0.8V-1.0V(TDC)
Need for calibration Yes Yes Yes

Table 1.1: Comparison of the design choices of the Bayesian machine with leading emerging
memory-based realizations of neural network hardware blocks. Abbreviations. RBM:
restricted Boltzmann machine. MAC: multiply and accumulate. PCM: Phase Change
Memory. ADC: analog-to-digital converter. CDS: correlated double sampling. SLC:
single-level cell. TDC: time-to-digital converter. Predet.: Predetermined. ND: not
discussed.

The situation is different for Bayesian inference. Unlike in neural networks, the multiply-

and-accumulate operation is not needed, which limits the main benefit of analog computation

and increases the energy cost due to periphery circuits. Moreover, higher precision is required

for storing likelihood than for synaptic weights in neural networks. For instance, our machine

uses eight-bit precision, which is not achievable with analog memristors. Therefore, our design

relies on single-level bit cells read with extremely simple and highly energy-efficient precharge

sense amplifiers (more details are provided in Chapter 2).

Our approach using sense amplifiers has several advantages over analog methods. The
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sense amplifiers apply a current to the memristors only as long as necessary, while the ana-

log approach needs to apply a current long enough for the voltages to stabilize, which usu-

ally involves a relatively slow feedback circuit. Furthermore, our approach avoids the need for

energy-hungry analog-to-digital or time-to-digital converters, as the sense amplifiers naturally

provide a digital output. This reliance on digital read with PCSA circuit distinguishes our work

from other neural network implementations.

The digital read with PCSA circuit is highly flexible in terms of supply voltage, unlike ana-

log approaches that require calibration and compensation mechanisms to eliminate circuit

and device imperfections (e.g., voltage offsets due to circuit variability). Due to its differen-

tial nature, the sense amplifier functions over a wide range of voltage, without any need for

recalibration or adjustment of any reference. This feature can be particularly useful in envi-

ronments with little energy available (e.g., relying on variable energy harvesting) or in conjunc-

tion with dynamic voltage scaling. In contrast, neural network accelerators employing ana-

log and/or mixed-signal circuitry usually require calibration and compensation mechanisms

to eliminate circuit and device imperfections (e.g., voltage offsets due to circuit variability)

[13, 186, 211, 213]. Overall, our simple read circuit does not need any calibration or compensa-

tion mechanisms, greatly simplifying circuit operation and increasing its flexibility in all types

of conditions.

1.4.2 Other Bayesian Concepts Involving Nanodevices

This work Dalgaty et al. Dalgaty et al.
2021[88] 2021[24]

Current status Fully HW Hybrid SW/HW exp. Hybrid SW/HW exp.
Device HfOx memristor HfOx memristor HfOx memristor

Use of the device Local digital memory Local analog memory Local analog memory
Concept L-E Bayesian inference Bayesian learning Bayesian NN inference

Gao et al., Vodenicarevic et al., Faria et al.,
2021[215] 2017[19] 2018[216]

Current status Simulated Hybrid SW/HW exp. Simulated
Device Memristor Stochastic MTJ Stochastic MTJ

Use of the device Local analog memory RNG RNG
Concept Resilient NN inference L-E Bayesian inference L-E Bayesian inference

Table 1.2: Comparison of our work with approaches of the literature associating nanoelectron-
ics with Bayesian concepts. Abbreviations. SW: software. HW: hardware. L-E: Low-
Energy. NN: Neural Network. MTJ: magnetic tunnel junction. RNG: random number
generation.

In recent years several works have explored connections between emerging memories (such

as memristors) and Bayesian inference. Most of those works from the state of the art either re-
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lied on computer simulations [215, 216], or on hybrid hardware/software realizations, where

experimental nanodevices are used, and the rest of the system is simulated on a computer

[19, 24, 88].

The works of [24, 88] focus on the implementation of Bayesian neural networks, a special

class of Bayesian model that can model uncertainty much better than conventional neural net-

works, but do not feature the comprehensive explainability of the more traditional Bayesian

inference addressed by our machine. These two works use memristors as main memory, as in

our machine, and exploit the variability of memristors as a source of random variable. On the

other hand, our machine focuses on reliability by eliminating the impact of memristor variabil-

ity.

Bayesian inference in the work of [215] is used in a very different way. Unlike all other works

reported in Table 1.2, the final goal of this work is to implement non-Bayesian machine learn-

ing model (a conventional neural network). By treating these networks as Bayesian neural net-

works modeling memristor variability, the authors are able to tolerate memristor imperfection

better than more conventional approaches. In this work, memristors also implement memory.

References [19, 216] differ from all other works of Table 1.2, in that the nanodevices are not

used as memory, but as random bit generators (replacing the linear feedback shift registers).

These works are not full-system studies, as they do not address the memory question. Also,

they focus on random variables with binary values, unlike our Bayesian machine that deals

with multiple-valued inputs and outputs. On the other hand, we see at the end of the next

chapter that incorporating some ideas from these works is a natural prospect for our Bayesian

machine.

In our work on Bayesian Machines, we aim to advance the state-of-the-art of nanodevice-

based Bayesian inference by developing fully fabricated Bayesian systems that improve the ma-

turity of memristor-based Bayesian accelerators. These systems consist of locally distributed

memory arrays that operate in parallel to perform Bayesian inference. Importantly, our ap-

proach differs conceptually from other proposals in the literature (Table 1.2), and here we aim

to clearly define our contributions to the field:

• Our integrated circuits are the first fully fabricated memristor-based Bayesian inference

systems.

• Compared with memristor-based neural network accelerators, our systems allow flexi-

bility and simplicity (possibility to vary supply voltage, absence of calibration or com-

pensation), and high robustness to read disturb (see Section 3.2.3), device variability,

and outstanding robustness to single-upset events. All these features are due to the use

of single-level cells read with particularly simple, robust, and energy-efficient precharge

sense amplifiers.

• Our integrated circuits is a full system that features an array memory blocks that perform

Bayesian inference in parallel, therefore solving the challenge of the distribution of the
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various voltages to program and read memristors.

1.5 Conclusion

This chapter has presented the architecture of a Bayesian machine with distributed memristors

that allows for local computation and minimal data movement for energy-efficient Bayesian

inference. The unique requirements of Bayesian inference, which do not require multiply-and-

accumulate operations like those commonly used in neural network accelerators, were taken

into consideration in the design.

The goal of this work is to advance nanodevice-based Bayesian inference and develop fully

fabricated systems that improve the maturity of memristor-based Bayesian accelerators. Col-

laboration between experts in Bayesian theory, memristor device modeling and characteriza-

tion, and integrated circuit design is crucial for success. The project involves several steps,

including theory development, design, fabrication, electrical characterization, and evaluation

of real-world applications.

The Bayesian machine has the potential to be embedded at the edge with low power con-

sumption, providing a practical solution for dealing with highly uncertain situations with little

data and making predictions using an explainable mode. Additionally, the explainability of

Bayesian inference is desirable in critical situations for ethical and regulatory reasons, and the

Bayesian machine can recognize situations where it cannot provide a reliable answer, which

could be useful for medical devices to prevent wrong decisions with serious consequences.

Overall, the developed integrated circuits, the stochastic Bayesian machine (see chapter

2) and the logarithmic Bayesian machine (see chapter 3) offer flexibility, simplicity, and high

robustness to device variability and single-upset events. our work on those projects have been

published in a Nature Electronics article [14] and presented at the DATE 2023 conference [86].





Chapter 2

A Stochastic Bayesian Machine

Anyone who attempts to generate random

numbers by deterministic means is, of course,

living in a state of sin.

John VON NEUMANN
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Real-world information, which consists of continuous-valued analog signals, requires con-

version to digital data via quantization for digital circuits to process. However, high precision

in quantization can be costly in terms of energy consumption and memory requirements. To

address this issue, a recent trend in the literature has been to reduce precision and to imple-

menting “approximate” computing.

These ideas have been massively applied to simplify coding schemes and optimize hard-

ware for neural network-based algorithms in recent years. However, less attention has been de-

voted to the Bayesian approach, which involves successive product of probabilities. The main

potential influences on energy consumption in Bayesian computation are access to probabil-

ities data, multiplication operations between probabilities, and data movement. To address

these challenges, we have employed stochastic computing, which uses random bit streams to

perform computations and requires far fewer transistors and minimal data movement com-

pared to traditional arithmetic.

In this chapter, we present a memristor-based stochastic Bayesian system that is fully im-

plemented in hardware. Our prototype circuit incorporates 2,048 memristors and 30,080 tran-

sistors on the same chip, using a hybrid CMOS/memristor process. The architecture of the

machine uses fully distributed memory, and due to the locality of computations and reliance

on stochastic computing, minimum data movement is performed between different parts of

the system. We provide a detailed explanation of the design, fabrication, and characteriza-

tion of the Bayesian system, followed by an energy vs. accuracy performance study for a hand

gesture recognition task. Our study shows that our system has an energy improvement of sev-

eral orders of magnitude compared with a standard implementation of Bayesian inference on

a microcontroller unit fabricated in a similar CMOS technology. Moreover, our system has an

instant on/off feature due to the use of non-volatile memory and is inherently resilient to soft

errors, making it suitable for use in extreme environments.

The primary energy expenditure in our machine was found to be due to random number

generation. To mitigate this, we also considered using nanodevices for local generation of ran-

dom bits, with the potential for farther energy reduction of our Bayesian machine. This led

us to design and fabricate prototype circuits, which utilized unstable SMTJ devices and PCSA

sensing circuitry for random bit generation.

The following Sections provide further details on the implementation and performance of

our developed system.

This chapter, with the exception of section 2.5, is adapted from an article published in Na-

ture Electronics [14].
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2.1 Bayesian Inference with Stochastic Computing

An important challenge of the memristor-based Bayesian machine is that the classical compu-

tation circuitry, and particularly multiplications are normally an area-expensive operation in

CMOS (Figs. 2.1a-b), raising a concern if a multiplier is associated with each likelihood memory

array. For this reason, we rely on stochastic computing [207, 208]. Stochastic computing repre-

sents data as a bitstream of 1s and 0s, with the proportion of 1s representing the encoded data

between 0 and 1. This unique method of representation limits all values in the stochastic ap-

proach to the range of 0 to 1. Integrating stochastic computing into the design of a memristor-

based Bayesian machine with near-memory computing offers several advantages, particularly

in terms of processing efficiency.
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Figure 2.1: Architectures of adders and multipliers. Basic architecture of a a floating-point
adder and b a floating-point multiplier. Both images are reproduced from [16]. c

A simple multiplexer can perform the sum in stochastic computing, the output is
z = px+ (1− p)y. If p = 1/2, z = (x + y)/2. d A logical AND gate can perform the
stochastic multiplication between two bit-streams. (Reproduced from[17])

The simple logic circuitry of stochastic computing operations, such as stochastic adders

(as shown in Figure 2.1c) and stochastic multipliers (as shown in Figure 2.1d), is well-suited for

co-location with memory circuitry. The multiplication of probabilities can be achieved using

basic AND gates, resulting in minimal area cost [207] and efficient replication of the elemen-

tary processing circuit, the likelihood circuit in the Bayesian system. This enables the parallel
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computation of a large number of computations, simplifying the overall design and increasing

processing efficiency.

In addition, stochastic computing also reduces data size and data movement. While it may

require a larger number of clock cycles compared to conventional calculation methods, the use

of a single wire to encode data significantly reduces data size. An important aspect of this model

of computation is that, as in most practical settings, probabilities tend to be low, and the output

of stochastic computing AND gates is a zero value at most clock cycles. Therefore, the different

blocks of the memristor-based Bayesian machine only need to pass single bits (Fig. 2.2) that

are zeros at most clock cycles: the memristor-based Bayesian machine limits data movement

considerably.

Figure 2.2: General architecture of the Stochastic Bayesian machine. Optimization of the
Bayesian machine for hardware. Random numbers (RND) are generated using lin-
ear feedback shift registers (LFSRs), shared by column, and converted using digital
“Gupta” circuits to a series of random bits proportional to the appropriate probabil-
ity. Additionally, the likelihoods are normalized by the maximum likelihood value
of the column to maximize the convergence speed of the machine. The stochastic
multiplication is implemented by a single-bit AND gate.

The memristor-based Bayesian machine is an elegant concept, but its design faced signif-

icant challenges related to the use of stochastic computing. To ensure a consistent result on

mathematical operations, stochastic computing requires high-quality random number gener-

ators that can encode uncorrelated bitstream data. Random number generators can be divided

into two categories: PRNGs (Pseudo Random Number Generators) and TRNGs (True Random

Number Generators). TRNGs derive random bits from physical sources that have intrinsic en-

tropy, such as thermal noise, whereas PRNGs implement a deterministic system with a specific

algorithm. For our Bayesian architecture, which uses near-memory computing, the genera-

tion of random numbers is a design choice that is subject to the algorithmic constraints of the
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system.

For our stochastic Bayesian machine, we have chosen to employ digital pseudorandom

number generators, specifically linear-feedback shift registers (LFSRs), to generate uniformly

distributed numbers. In our design, a single LFSR is used per column (Fig. 2.2) so that each

row can perform an independent stochastic computation, and different rows can rely on the

same pseudorandom numbers. At each clock cycle, each likelihood block generates a random

bit with the probability p by comparing the number generated by the vertical LFSR with the

value of the probability p read from the likelihood memory array. After a defined number of

clk cycles, the resulting bitstream has a ratio of 1 to 0 proportional to a probability stored in

the memories. We use a special comparator circuit in our design, proposed by Gupta in 1988

[208, 217], for the comparator.

Additionally, stochastic computing converges slowly when multiplying low probabilities,

and likelihoods in Bayesian models tend to be very low. To optimize the operation of the

Bayesian machine without any loss of accuracy, we normalize the probabilities in a column

so that the maximum likelihood in a column is one.
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2.2 Design of the Stochastic Bayesian machine

2.2.1 The Big Pïcture

Figure 2.3: Fabricated memristor-based Bayesian machine. a Optical microscopy photograph
of the Bayesian system die. b Detail of the likelihood block, which consists of digital
circuitry and memory block with its periphery circuit. c Photograph of the 2T2R
memristor array. d Scanning electron microscopy image of a memristor in the back
end of line of our hybrid memristor/CMOS process. All subfigures use consistent
color codes.

To validate the feasibility of memristor-based Bayesian inference, we designed and fab-

ricated a prototype circuit in the hybrid CMOS/RRAM process described in Chapter 1. The

CMOS part of the circuit is fabricated using a low-power foundry 130-nanometer process with

four layers of metals. Hafnium oxide memristors are fabricated on top of the CMOS foundry

layers, effectively taking the place of vias between metal layers four and five. Fig. 2.3a shows

the fabricated die with the superimposed structure of the Bayesian machine. This test chip im-

plements a system with 16 likelihood memory arrays, organized in four rows and four columns,

connected through horizontal and vertical wires, and controlled by an on-chip digital control

unit. As explained in Chapter 1, it was designed using an original semi-automatic homemade

design flow.

The topology of the die follows closely the conceptual schematic of the Bayesian machine

of Fig. 2.2. Figs. 2.3b-c show the details of one of the likelihood memory arrays and its periphery

circuitry (Fig. 2.4a shows the associated schematic). Fig. 2.3d shows an electron microscopy im-

age of a memristor integrated into the back end of line of the die. The hybrid CMOS/memristor

fabrication process features some constraints due to its partially academic nature: only four

levels of metals are available for interconnection (the fifth level being used only to access mem-
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ristors). Still, this test chip allows us to demonstrate all the challenges associated with the fab-

rication of the Bayesian machine.

The first considerable challenge to design a reliable Bayesian machine is that memristors

are prone to errors. Industrial applications of memristors use strong formal error-correcting

codes (ECC) [218]. Using ECC in the Bayesian machine is inappropriate, as error detecting and

correcting circuits would dominate both area and energy consumption if they needed to be

replicated for each likelihood memory array [219]. Therefore, we use an alternative strategy:

memristors are used as single-level cells, and bits are programmed in a complementary fash-

ion, and read differentially by sense amplifiers comparing the resistance of two memristors (see

Fig. 2.4b-c and their description below). This technique has been shown previously to reduce

errors as efficiently as single error-correcting, double error-detecting codes (extended Ham-

ming), using the same degree of memristor redundancy, and necessitating no error decoding

circuit [26]. It is used here within a full system for the first time. The likelihoods themselves are

coded in binary representation as eight-bit integers.

Figure 2.4: The designed memristor-based likelihood circuit. a Schematic of the likelihood
block presented in Fig. 2.3b. b Schematic of the differential precharge sense ampli-
fier used to read the binary memristor states. c Principle of complementary pro-
gramming of the 2T2R bit cell memristors.

Programming the memristors within the Bayesian machine is a second major challenge.

The nominal voltage of our foundry CMOS process is only 1.2 volts for the digital functions,

whereas the forming and programming operations of the memristors require several volts. The

distribution of the higher-than-nominal voltages is a challenge in systems such as this one with
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massively distributed memory blocks that each need access to all voltage supplies. For this

reason, in our circuit, the signals controlling the forming and programming operations are dis-

tributed as nominal-voltage logic signals. They are raised to higher voltages by level shifters

distributed locally all around the memristor arrays. Fig. 2.5c-d shows the schematic of the level

shifters implemented in our circuit. Section 2.2.2 details specifically how the memristors can

be formed and programmed to zero or one state using these level shifters.

In each likelihood memory array, each row includes the eight bits of one likelihood value,

and the different rows correspond to the different values of the observation. When new obser-

vations are presented to the system, a whole row needs to be read in each of the 16 likelihood

memory arrays (the observations presented through vertical wires, acting as a row address for

each memory array see Fig. 2.2). Fig. 2.4b shows the differential precharge amplifier used for

reading the memory bits. This circuit precharges the two complementary bitlines to the sup-

ply voltage, and naturally detects the bitline that discharges the fastest using cross-coupled

inverters. This very compact circuit is highly energy-efficient, as it involves no direct current

between ground and the supply voltage. It is also highly robust due to its differential nature and

requires no calibration. Each column of each likelihood memory arrays features a precharge

sense amplifier, and during a read operation all 128 sense amplifiers of the Bayesian machine

function simultaneously (corresponding to the simultaneous read of 8 bits for each of the 16

likelihood memory arrays). Section 2.2.3 explains in more details the operation of precharge

sense amplifiers.

After this read operation, the Bayesian machine can perform Bayesian inference using stochas-

tic computing. The four LFSRs generating pseudorandom numbers each clock cycle are situ-

ated within the digital control unit and their output are distributed to the likelihood memory

arrays through vertical wires. Each likelihood block uses the GUPTA comparator circuit to gen-

erate random bits with a probability equal to the value read in their likelihood memory array,

based on the output of the LFSRs. This circuit gives equivalent results than a comparator, but

with lower area cost [217]. The resulting bits are combined by AND gates, all happening during

a single clock cycle. An important aspect of the design is the clock is only necessary in the dig-

ital control circuitry block, outside the core machine, to operate the LFSRs. This feature limits

the energy cost of clock distribution. Section 2.2.4 presents in more detail the operation of

the Bayesian machine.

2.2.2 Programming methodology of the Bayesian machine

Memristors are programmed with voltages higher than the nominal voltage used for digital cir-

cuitry. The higher-than-nominal programming voltage requirement of memristors is a minor

concern in systems that separate memory from computing, as a single dedicated high-voltage

circuitry can be associated with the memory array. The Bayesian machine, by contrast, features

multiple small memory arrays fully embedded within logic. The programming of memristors,

therefore, requires the distribution of higher-than-nominal programming voltages locally and
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an appropriate programming strategy. Managing this complexity is the largest design challenge

for obtaining a functional Bayesian machine.

The Bayesian machine stores bits using a 2T2R structure (see Fig. 2.6a): the bit cell is com-

posed of a “bit line” and a “bit line bar” memristor (R and Rb), positioned on the same row, and

each associated with a selection nMOSFET. The two memristors are connected to two different

bit lines (BL and BLb) on their bottom electrode side. Conversely, the top electrode of the two

memristors is connected to the same source line (SL), to limit wiring and programming cir-

cuitry. This shared source line requires careful attention when programming the memristors.

The gates of the control transistor of all memristors on the same row are connected to the same

word line (WL).

Programming operation is controlled by nominal-voltage signals (CBL, CSL, and CWL) and

an address, all provided by the digital control unit of the Bayesian machine. Decoders select

the addressed row and column (Fig. 2.6a)). Then, local level shifters apply either ground or

higher-than-nominal voltages (VDDR and VDDC) to the crossbar arrays, where needed:

• Each memory row features one level shifter (LS, commanded by CWL), which controls

the word line that feeds the gates of nMOS selection transistors of the memory rows.

Depending on the value of CWL, the level shifter of the addressed row connects its world

line either to ground or to the VDDR power supply (see Figs. 2.5b and c).

• Correspondingly each memory column features two level shifters (regular LS, commanded

by CSL and tri-state TLS, commanded by CBL), which control the source lines and the

bit lines. These level shifters connect the source line and the two bit lines either to the

ground or to the VDDC power supply. Notice that the two-bit lines BL and BLb are con-

nected to the same level shifter, and therefore always receive complementary voltage (see

Figs. 2.5b and d).

When the system is first characterized, the memristors need to be formed. Fig. 2.6a shows

the voltages that need to be applied on the memristors during the forming step. The Table

in Fig. 2.6c lists the associated CSL, and CBL values. Note that when one memristor is being

formed, the other memristor is unaffected, due to the fact that the bit line and bit line bar

always see complementary voltages (as they are connected to the complementary outputs of

the BL level shifter). Once the proper address, CSL, and CBL values have been set, CWL is raised

to one, and forming occurs during the CWL pulse (of one-microsecond duration, see Fig. 2.6b).

Once the memristors are formed, they are all in a low resistance state. The memristors

can then be programmed and reprogrammed at will, either in low resistance state (LRS) by a

SET operation, or to a high resistance state (HRS) by a RESET operation. In our 2T2R bit cells,

the two memristors are always programmed in a complementary fashion: this complementary

technique allows high robustness to memristor variability and read disturb effects [26, 220].

To program a zero value in the bit cell, the bit line memristor is programmed to high resis-

tance (RESET) and the bit line bar memristor to low resistance (SET). The opposite is done to
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program a one value. Fig. 2.6a shows the required voltages to program one and zero values, and

the Table in Fig. 2.6c lists the corresponding CSL and CBL value. The voltage levels of VDDR and

VDDC used for the SET and RESET operations are shown in Fig. 2.6b.
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Figure 2.5: Programming circuitry for the likelihood memory arrays. a Detailed schematics
of the likelihood memory array, with its programming and reading periphery cir-
cuitry, displaying the voltages needed to perform a SET operation on the first row,
last column left memristor R. b Schematics of the 2T2R bit cell connections to the
reading and programming circuitry. Two level shifters (conventional level shifter LS
and three-state level shifter TLS) and one sense amplifier (PCSA) are implemented
in each column. One level shifter is implemented in each row. The digital signal
BLEN allows choosing between the reading or programming mode. c Transistor-
level schematics of the level shifter (LS) and d the three-state level shifter (TLS) cir-
cuits.
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Figure 2.6: Programming methodology for the 2T2R bit cell. a Voltages that need to be applied
on the bit line BL, bit line bar BLb, and source line SL for forming, programming a
zero, and programming a one in a 2T2R Bit cell. b Programming voltage levels and
timings used for the Forming, RESET, and SET operations (mentioned in the Meth-
ods section of the main article). c Table summarizing the configuration of program-
ming signals (level shifters) for the different programming operations supported by
the memory array (forming, programming a zero, and programming a one).
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2.2.3 Reading strategy and Read disturb on the Bayesian machine

Figure 2.7: Read operation for the likelihood memory array: Precharge phase. b The read
scheme involves a precharge and a discharge phase. a Schematic and c circuit sim-
ulation of the precharge phase. BL and BLb are charged to VDD.

During the read mode, the bit lines are disconnected from the programming level shifter

circuit (using the tri-state level shifter TLS, see Fig. 2.5d) and connected to the precharge sense

amplifier (PCSA) circuit using analog transmission gates. The source line and word line level

shifters then act as buffers supplied by nominal voltage VDD (see Fig. 2.7a). The read operation

functions in two phases: precharge and discharge (see Fig. 2.7b).

The PCSA is an energy-efficient sense amplifier that operates without any direct current

path between the ground and the power supply, thanks to the initial precharge phase. The de-

tails of the operation of this circuit are reported in [221, 222], and we summarize them here. The

precharge pulls up all voltages of the sense amplifier and the bit lines to the digital power sup-

ply VDD (Figs. 2.7a and c). In the actual read operation, the two bit lines discharge (Figs. 2.8a,b).

The bit line with the lowest-resistance discharges faster unit its associated inverter output dis-

charges to ground, which latches the complementary inverter output to the supply voltage

(Fig. 2.9a,b). The two output voltages, therefore, represent the comparison of the two com-

plementary resistance values, which gives the bit stored in the 2T2R bit cell.
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Figure 2.8: Read operation for the likelihood memory array: discharge phase. a Schematic
and b circuit simulation of the discharge phase, BL and BLb are discharged to GND
with different speed.

Figure 2.9: Read operation for the likelihood memory array: Precharge phase. a Schematics
and b circuit simulation of the outputs of the PCSA converging to a stable state,
while BL and BLb are completely discharged to GND. c Experimental measurement
of the read disturb on likelihood memory arrays, with a VDD value of 1.2 volts. Even
after 5.7M read operations of the whole array, no error is seen.
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2.2.4 Inference Using a Bayesian machine

Figure 2.10: Detailed operation of the Bayesian machine. a Schematic illustrating the detailed
architecture of a likelihood elementary block. b Flowchart of the different opera-
tions to perform a Bayesian inference computation in the Bayesian machine. c

Time diagram illustrating the operation of the Bayesian machine.

To understand the inference operation of the Bayesian machine, we focus more on the de-

sign and functionality of the likelihood elementary block and its detailed schematics (taking

an example of likelihood at row m and column n). The function of this block is to output a bit

stream with a probability proportional to the likelihood P (On |Ym). Fig. 2.10a shows the detailed

schematics of this elementary block, which has two input vectors, one input representing the

observations POn in form of memory addresses of probability values, and another input of 8

bits random numbers generated by LFSR. The likelihood block consists of: an 8x8 memristor

array of 2T 2R structure, including all read and program circuitry, and a GUPTA comparator

circuitry. In addition, Fig. 2.10b shows a flow chart of the stochastic Bayesian inference in the

Bayesian machine, and Fig. 2.10c shows a time diagram of the machine operation The color

code throughout Fig. 2.10 is as follows: the blue color corresponds to random number genera-
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tion, the orange color to memory read, and the green color to the actual stochastic inference.

Before starting Bayesian inference operations, we first need to load the LFSR seeds. In our

design, the input seeds are loaded from input pads and routed to the four LFSRs of the Bayesian

machine by the Bayesian machine digital control unit. Being able to choose the LFSR seed is

important for our study (see section 2.3.3). In a final design, optimal LFSR seed values could

be loaded automatically by the control unit. As the LFSRs have a periodical output, the seed

initialization needs to be performed only once as long as the digital power supply VDD remains

on.

The Bayesian machine then performs inference in two main phases:

• Memory read. Likelihood values are read from the memristor arrays, based on the in-

put observations (acting as row addresses). Observations O1, ...,On are off-chip inputs

loaded from dedicated input pads, then addressed to the likelihood memory arrays by

the Bayesian machine digital control unit (one observation for each column, see Fig. 2.2).

All likelihood memory arrays are read simultaneously.

• Iterative stochastic inference phase. At each clock cycle, LFSRs generate new eight-bits

pseudo-random numbers. These numbers feed the Gupta comparator circuits to com-

pute the stochastic bits based on the read likelihood values. Outputs of Gupta compara-

tor circuits from the same row are fed to a chain of AND gates, to perform the stochastic

multiplications; the results of those multiplications represent the Bayesian machine out-

puts. All these operations are performed by purely combinational circuits in one clock

cycle. As the periodicity of the LFSRs is 255 cycles, the maximum number of iterations is

255 cycles.

The Bayesian machine can operate in two modes. In the conventional stochastic inference

mode, computation is performed for a pre-chosen number of cycles. The machine decision is

based on bit streams counting of outputs (the number of generated one values). In the“power-

conscious mode”, the Bayesian machine stops the stochastic inference iterations as soon as

one of the outputs produces a bit value of one; the decision is made based on that result (see

section 2.4).
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2.3 Characterization of the Stochastic Bayesian Chip

Stochastic Bayesian machines hold great promise as a means of implementing Bayesian infer-

ence tasks, and as such, it is imperative to experimentally verify the reliability of memristor-

based chips for such computations. In this section, we present a series of on-chip experiments

and simulations that aimed to optimize the performance of a stochastic Bayesian machine.

To this end, we conducted most of our experiments using non-packaged dies, employing a

custom-made 25-pads probe card for probe testing (shown in Chapter 1), with the exception of

read-disturb experiments which were conducted on packaged dies.

We first emphasize the importance of exploring the forming and programming conditions

of memristors, given their process-to-process variability and generation-to-generation changes.

The fabrication of new memristor-based chips with improved processes renders the forming

and programming voltages potentially different from those of previously tested chips. These

first results are reported in section 2.3.1.

Subsequently, we conducted an experimental study on the effect of LFSR seed choices on

the on-chip inference results following successful programming of the likelihoods in the mem-

ristor arrays. These measurements are shown in section 2.3.2. Our findings underscore the

considerable improvement achieved with optimal seeds as compared to the imperfections and

deviations observed with non-optimal seeds.

To optimize the performance of the stochastic Bayesian machine, we carried out stochastic

Bayesian inference simulations aimed at searching for optimal seeds for the linear feedback

shift registers. This exploration is detailed in section 2.3.3.

2.3.1 Forming, Programming, and Read-Disturb Experiments

The first results of the electrical characterization of the test chip are presented in Fig. 2.11.

Fig. 2.11a shows the measured results of reading the likelihood memory arrays of the chip,

before forming and programming, naturally showing random values (as bits are stored in a

complementary manner using two memristors, reading the memory with unformed bitcells

leads to random results). Fig. 2.11b presents the same measurements after programming: the

intended patterns are obtained without errors, showing the efficiency of the complementary

programming technique. These artificial patterns were chosen so that performing Bayesian

with random inputs allows exploring the whole range of possible output probabilities, allowing

to test the functionality of the demonstrator.

The programmed bits are very stable. When remeasuring the die five months after pro-

gramming, no error was seen. The demonstrator was stored at room temperature during these

five months

The typical operation of a Bayesian machine requires frequent read operation on the like-

lihood arrays, with rare reprogramming: the memristors need to be reprogrammed only when
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Figure 2.11: Measurements of the fabricated memristor-based Bayesian machine. a Mea-
surements of the likelihood stored in the memristors, before they have been
formed. As the bits are programmed in a complementary fashion involving two
memristors, the result of the measurement appears random. b Measurements
of the likelihood stored in the memristors, after they have been formed and pro-
grammed. No bit error is seen.

the model is changed (e.g., after a recalibration based on new training data). It is therefore

critical that read operations cannot accidentally change the state of the memory devices (read

disturb effect).

To evaluate the existence of read disturb, we performed repeated read operations on one

likelihood memory block of the fabricated memristor machine. The read operations are per-

formed by the on-chip precharge sense amplifiers. We used a digital power supply voltage

of 1.2 volts, as it is the highest digital supply voltage supported by our system, and the more

at-risk of read disturb effects. Our experimental setup allows reading the likelihood array ap-

proximately one million times per day. We observed that after five days of continuous read

operations, i.e. a total of 5.7 million read operations of a complete likelihood memory array, no

likelihood bit had changed (see Fig. 2.9c), suggesting a high immunity to read disturb effects.

The immunity to read disturb of our machine can be explained by three main reasons:

• Hafnium oxide memristors are naturally resilient to read disturb effects due to the highly

nonlinear nature of their switching process [223].

• The complementary 2T2R approach not only reduces the impact of device variability,

but also read disturb effects. Even if the read disturb effect increased the resistance of a

low resistance state device, the stored likelihood would be affected only if the disturbed

device ends up in a resistance higher than its complementary high resistance device.

• The precharge sense amplifier used to read the devices naturally mitigates read disturb

effects. When the sense amplifier has identified the stored bit, the nodes connecting the
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sense amplifier to the memristor array are rapidly pulled down to the ground, and the

read memristors therefore see zero voltage. Therefore, current is applied to the memris-

tors only during the time needed for the sense amplifier to differentiate between the two

possible memory states. This mode of operation contrasts with conventional current-

mode sense amplifiers where current is applied during a fixed time that has to be chosen

in a worst-case scenario [224].

2.3.2 Bayesian Inference Experiments

The actual results of the stochastic Bayesian machine operation are shown in Fig. 2.12a-b. In

Fig. 2.12a, the LFSRs were initialized using random seeds. The x-axis represents the theoretical

result expected from Bayes’ law (i.e., the desired output for the Bayesian machine), while the

y-axis represents results measured experimentally by counting bits at the output of the die. The

different points in the Figure are obtained by randomly changing the inputs O1, O2, O3, and O4

of the circuit, and by changing the nominal supply voltage VDD . For each random set of input,

the system was operated 255 clock cycles (i.e., the periodicity of the LFSRs). The number of

ones outputted at each row is counted and divided by 255 to be converted as a probability, and

plotted in the Figure.

Figure 2.12: Measured output of the Bayesian machine. a measured posterior probability as
a function of the expected value from Bayes’ law. The different points correspond
to random observation inputs. The different rows are pooled in the same graph.
The points are obtained with various supply voltages VDD ranging between 0.5
and 1.2 volts. This graph is obtained with non-optimal LFSR seeds. The measured
probabilities are obtained by averaging the experimental measurements over the
full LFSR period (255 cycles). b Same as a, using optimal LFSR seeds. The symbols
indicate which row of the Bayesian machine was used (circle, up triangle, down
triangle, square: first, second, third, and fourth row).

In Fig. 2.12a, we see that the measured probabilities closely follow Bayes’ law, with some

deviation. This deviation can be attributed to the imperfect nature of LFSR-generated pseudo-
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random numbers. The numbers generated on the different columns have correlations, which

prevent stochastic computing from being perfectly accurate.

Fortunately, this imperfection can be avoided by an intelligent choice of the LFSR seeds. In

the measurements of Fig. 2.11b, the chip was initially programmed by an optimal seed choice.

We see that the measurements follow Bayes’ law perfectly for all possible inputs, which high-

lights the high potential of stochastic computing for Bayesian inference. Section 2.3.3 of this

document details how the optimal LFSR seeds were chosen, their value, and the reason for

their existence. This result shows that the Bayesian machine is able to produce accurate out-

puts, despite its reliance on very simple pseudorandom numbers. The methodology for finding

this optimal seed values is presented in the next subsection.

In addition to its limited data movement, which we analyze further in the section 2.4, our

approach offers two significant opportunities for low-energy operation. First, as the likelihoods

are stored in non-volatile memristors, the system provides an instant on/instant off feature.

Therefore, the power supply can be turned off any time the system is not used. Second, due to

its fully digital nature, the system is flexible in terms of supply voltage. Figs. 2.11a-b highlight

that the system remains fully functional when reducing the power supply down to a value of

0.6 volts, although the nominal supply of our CMOS technology is 1.2 volts. This operation

allows reducing power consumption by a factor of approximately four. At lower voltages (light

blue points), the Bayesian inference becomes less accurate. This voltage limit is due to the

threshold voltage value of the thick oxide transistors used within the memory array, around

0.6 volts. Even lower supply voltages could therefore be used by using lower threshold-voltage

transistors.

2.3.3 The search for Optimal LFSR seeds

In its original form, stochastic computing relies on high-quality and non-correlated random

numbers. Generating high-quality random bits and maintaining the independence of stochas-

tic bits after they have been processed by stochastic computing circuits is a major challenge,

leading to costly strategies like randomness isolation and regeneration [225]. However, in prac-

tice, multiple works have shown that pseudorandomness and correlations are not necessarily

a fundamental issue for stochastic computing, if they are properly considered in the system

design [208]. In the particular case of our Bayesian machine, we found that we could rely on

low-quality, low-cost LFSR-generated random numbers, and still get accurate Bayesian infer-

ence, under the condition of initializing the LFSRs with well-chosen seeds.

Our design exploits one eight-bit LFSR per column, which generates pseudorandom num-

bers with a periodicity of only 255 clock cycles. Fig. 2.13a highlights the correlation between the

random numbers generated by the LFSRs, by plotting the 255 values generated by each LFSR

as a function of the 255 values generated by each other LFSR at the same time. This Figure is

plotted with initially random-chosen LFSR seeds, as in Figs. 2.11a. Obvious correlations are ob-

served between some LFSR. These correlations cause some inputs to the stochastic computing
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Figure 2.13: Correlations of the random numbers generated by four LFSRs. Each graph
presents the output of one of the four LFSRs of the Bayesian machine, as a func-
tion of the output of another LFSR. Each graph contains 255 points corresponding
to the 255 cycles of operation of the Bayesian machine. Graphs on the diagonal
(LFSR1/LFSR1, LFSR2/LFSR2, LFSR3/LFSR3, LFSR4/LFSR4) appear as x=y lines,
by definition. a The random numbers generated with initially randomly chosen
seeds used in in Fig. 2.12a. The presence of very discernible patterns in some of the
graphs (LFSR1/LFSR3, LFSR1/LFSR4), indicates the existence of a strong correla-
tion between the output of some LFSRs. On the other hand, the outputs of some
LFSRs appear largely uncorrelated (LFSR1/LFSR2, LFSR2/LFSR3, LFSR2/LFSR4).
The seeds for the four LFSRs are, respectively, in hexadecimal representation: 50,
E9, 10, and C6. b The random numbers generated with the optimal seeds used in
Fig 2.12b. The results show an absence of evident correlation between all outputs
of the different LFSRs. The seeds for the four LFSRs are, respectively, in hexadeci-
mal representation: EB, FB, 7F, and 5C.

AND gates of the Bayesian machine to be correlated, leading to the deviations between Bayes’

law and measurements in Figs. 2.11a.

This type of correlation is observed with most choices of LFSR seeds. However, the choice

of seeds used to generate Fig. 2.13b, referred to as “optimal” throughout the thesis, shows dra-

matically reduced correlations. This allows obtaining the highly accurate results of Figs. 2.11b,

and suggests that these seeds should be used for all computations. Due to the periodicity of the

LFSR, LFSR initialization needs to be performed only once, when the system is turned on. The

gesture recognition task, which we analyze further in the next section, requires six LFSRs. We

also used eight-bit LFSRs and optimized the seed choice for this situation.
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2.4 Energy efficiency of the Stochastic Bayesian machine

Our test chip allows validating the possibility to address the challenges of designing and fabri-

cating the memristor-based Bayesian machine. This system is, however, not adapted to evalu-

ate the power consumption of a final system, as the test chip is too small to implement real-life

applications. Additionally, the constraints of the semi-academic process and the wide transis-

tors that we employed cause a high increase of the dynamic capacitive energy consumption.

To evaluate power consumption, we switch to a larger design and a realistic application, and

use industry-standard integrated circuit design tools to assess energy consumption with a fine

granularity.

We focus on an application of gesture recognition. The input to the Bayesian machine is

a selection of features extracted from the time traces on an inertial measurement unit (IMU,

see Appendix section of this chapter). The goal of the system is to recognize the hand gesture

performed by a user wearing the IMU (see Fig. 2.14a): the gesture of writing the digit one, the

digit two, the digit three, or a signature (see Appendix section of this chapter). This task is

performed by a scaled-up version of the Bayesian machine, using 24 (six columns, four rows)

four-kilobits likelihood memory arrays.

Figure 2.14: Application of the Bayesian machine on a practical gesture recognition task.

a Setup with inertial measurement unit used to record the gesture recognition
dataset. b Masks of the placed-and-routed Bayesian machine design used to per-
form the design-level gesture recognition analysis.

We designed and laid out this system in our reference process (low-power foundry 130-

nanometer process) and evaluated its energy usage based on simulations. We can see in the

image of the masks shown in Fig. 2.14b that in this scaled design, the area of the memristor

arrays is now dominant, with regard to the memory periphery circuitry and the wiring of the

Bayesian machine. The energy consumption is based on an exact scenario using value change

dump files, and required adapting the standard flow of energy analysis, which is not naturally
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adapted for systems where the memory is as distributed as ours (see Appendix section of this

chapter). The energy consumption of the memory arrays and the digital circuits is evaluated

independently using circuit (Spice) simulation and digital circuits analysis tools. In both cases,

parasitic capacitances were extracted based on a complete layout and were included in the

energy analysis (see Appendix section of this chapter).

Fig. 2.15a shows the energy consumption of the different elements of the system in the

three operation phases (after the likelihoods have been programmed). The LFSR initialization

consists in loading the seeds of the six LFSRs of the circuit. This operation consumes 0.38 nano-

joules; it needs to be performed once when the system is turned on, and does not need to be

repeated as long as the power remains on. It, therefore, remains a minor contribution to en-

ergy consumption. This energy could also substantially be reduced by hardwiring the value of

the optimal seeds (whereas seeds are loaded from external inputs in our design). By contrast,

the memory read operation needs to be performed each time a new input is presented to the

system, and consumes a total of 0.3 nanojoules, including both the energy associated with the

memory circuit themselves and the digital control circuitry. The actual stochastic inference,

corresponding to the stochastic computation, consumes 2.2 nanojoules (assuming that all 255

cycles of the LFSRs have been operated). Therefore, in sharp contrast with von Neumann-type

architectures [162], the energy consumption of the computation is dominant with regards to

the energy for accessing data, highlighting the benefits of computing close to memory.

Figure 2.15: Energy analysis of the Bayesian machine on a gesture recognition task. a Energy
consumption of the system (Dynamic consumption and memory arrays) during
the three phases of computing: loading the seeds into the LFSR, reading the mem-
ories, and the actual inference of 255 cycles. b Energy consumption of the system’s
important points during the inference phase for 255 cycles. All energy numbers are
given for a supply voltage of 1.2 volts.

To further analyze the energy usage of our architecture, Fig. 2.15b details the different sources

of energy consumption during the stochastic computation. The clock distribution represents

11% of the energy consumption. This number remains relatively modest, because the clock is
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not distributed within the Bayesian machine itself, but only to the external digital control cir-

cuitry. The probability multiplication itself (AND gates) and the transfer of the output of the

blocks to the next block, through horizontal wires, represent only 1% of the total energy con-

sumption. Random number generation (LFSRs, Gupta circuits) represents 60% of the energy

consumption, and their distribution through vertical wires 28%. Future efforts should therefore

focus on this part (see Section 3.5 and Conclusions).

Figure 2.16: Energy and recognition accuracy analysis of the Bayesian machine on a gesture

recognition task. a Mean accuracy according to the number of cycles in the infer-
ence for two types of computation: using a “power conscious” method by taking
into account only the first one out for the decision (in red) and using the conven-
tional stochastic computing by using the maximum number of one out for the de-
cision (in blue). The shadows around the graph show one standard deviation of the
mean accuracy over the ten subjects. b Energy consumption during the inference
phase as a function of the accuracy for gesture recognition for the two methods.
The stars correspond to the same point in both graphs a and b. All energy num-
bers are given for a supply voltage of 1.2 volts.

Before that, an obvious technique to lower the energy consumption is to reduce the num-

ber of cycles computed during stochastic inference. This reduction naturally impacts accuracy,

as highlighted in Fig. 2.16a. This Figure shows, for the gesture recognition task, the accuracy of

the Bayesian machine, as a function of the number of considered cycles. Numbers higher than

255 serve no purpose, as 255 is the periodicity of the eight-bits LFSRs. We consider the tradi-

tional stochastic computing strategy, as well as a “power-conscious” strategy. In the traditional

approach, the system is operated for a fixed number of cycles, and the recognized gesture is

chosen as the output that generated the highest number of ones. In the simplified power-

conscious strategy, computation is stopped as soon as any of the circuit outputs produces a

one, and this output gives the recognized gesture. We see that in both cases, cycle numbers

as low as 50 allow approaching the accuracy obtained with 255 cycles. Based on these results,

Fig. 2.16b shows the interplay between accuracy and energy consumption, using both strate-

gies. The power-conscious approach consumes less energy than the conventional approach

at equivalent accuracy. However, the power-conscious approach is limited to an accuracy of
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86%, while the conventional approach can reach 89%. Overall reducing the number of cycles

appears a highly effective strategy: in the conventional approach, accepting an accuracy re-

duction of only one percentage point allows reducing the energy consumption by a factor of

2.9.

To benchmark the energy efficiency of our approach, we also implemented the Bayesian

gesture recognition task on a microcontroller unit (MCU), with an optimized approach using

integer computation solely (see section Appendix section of this chapter). MCUs are tiny com-

puters incorporating all their logic, volatile, and non-volatile memory on a single chip. They are

currently the mainstream approach for providing AI at the edge in energy-constrained contexts

[226]. Experimental measurements showed that recognizing one gesture with the MCU used

2.0 microjoules. Comparatively, the Bayesian machine, even when using 255 cycles, is using a

total of 2.5 nanojoules to recognize one digit using the conventional approach, and 0.4 nano-

joules using the power-conscious approach (with the maximum supply voltage of 1.2 volts).

This is particularly impressive as our reference MCU is fabricated in a 90-nanometer CMOS

node, comparable but more energy-efficient than the 130-nanometer CMOS node used for our

Bayesian machine.
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2.5 Nanodevice-Based True Random Number Generation

The energy efficiency of the stochastic Bayesian machine could significantly improve in the

future. Fig. 2.15b reveals that in the current design, 75% of the energy is spent for the ran-

dom number generation by the LFSRs and their distribution to the likelihood blocks (“vertical

wires”). Several recent works have shown the possibility of generating random bits at a very low

energy cost using stochastic nano-devices such as superparamagnetic tunnel junction (SMTJ)

[18, 19, 216, 227] or random telegraph noise in RRAMs [228]. These proposals rely on natural

fluctuations of the devices due to thermal or random telegraph noise and can therefore gener-

ate random bits relying only on read operation, at a very low cost. They could be distributed

within likelihood arrays, thanks to their small area, and generate random bits at a much lower

energy cost than LFSR (in the order of femtojoule/bit) and without requiring vertical wires. In

the particular case of probabilistic bit, or“p-bits”, the Gupta circuit, which consumes in our de-

sign 22% of the inference energy could also be avoided, as this concept provides random bits

with easily adjustable probabilities [18, 227].

In this section we introduce our work in collaboration with one of the leading spintronics

research laboratories worldwide, SPINTEC, and CEA-Leti to design and fabricate several proto-

type circuits of True Random Number Generator and P-bits circuits based on the SMTJ devices

and PCSA sensing circuitry.

2.5.1 Random Number Generation with MTJs

Random number generation refers to the process of generating a sequence of numbers that are

intended to be random or unpredictable and do not follow a predictable pattern. The gener-

ation of high-quality random numbers is crucial for various applications, including not only

probabilistic computing, but also cryptography, simulations, statistical sampling, and game

programming.

In most cases, the generated numbers must be independent and decorrelated in time to en-

sure consistent results in mathematical operations. There are two main categories of random

number generators: Pseudo-Random Number Generators (PRNGs) and True Random Number

Generators (TRNGs). TRNGs are generated from physical sources that exhibit intrinsic entropy,

such as thermal noise, while PRNGs are obtained through a deterministic system using a spe-

cific algorithm. TRNGs are considered more secure than Pseudo-Random Number Generators

(PRNGs) as they are not based on deterministic algorithms and are therefore less susceptible

to predictability and potential security flaws.

Various approaches and technologies have been used to generate true random numbers

based on several types of entropy sources. Some works have proposed to generate random bits

by exploiting the write operations of emerging memories (e.g., in spin-torque MRAM [229] or in

RRAM [230]). These proposals can generate high-quality random bits at high speed, but would
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Figure 2.17: Stochastic superparamagnetic tunnel junctions. a Representation of the bistable
magnetic states, and the associated low energy barrier(adapted from [18]). b Ex-
perimental resistance trace and thresholding operation (Reproduced from [19]).

not necessarily be adapted for the Bayesian machine. Due to the need for a write operation to

generate a random bit, their energy consumption is comparable or higher than the LFSRs used

in the current version of the machine.

Another interesting approach is to use the thermal noise as an entropy source, the unstable

resistance state of a resistive device due to thermal noise is converted to a current or a voltage,

and then processed by a comparator to compare the unstable voltage or current levels with the

reference level to obtain a digital random signal. Some works have proposed to exploit the ther-

mal noise effect on unstable spintronic nano-devices [18, 19, 216, 227], such as superparamag-

netic tunnel junctions (SMTJs). SMTJs consist of a pinned nanomagnet and a free nanomagnet

separated by a tunnel oxide layer. The free magnet can be in one of two states, parallel (P) or

antiparallel (AP), with respect to the pinned magnet. The electrical resistance of the junction

in the AP state is higher than that in the P state due to the tunnel magneto-resistance (TMR)

effect.

The unstable SMTJ is designed with a low effective energy barrier between the two states

compared to thermal noise, which causes the free magnet to spontaneously switch its magne-

tization direction between the two states, due to thermal noise (see Fig. 2.17a). This random

switching can be observed as two-state fluctuations in the electrical resistance of the junction,

which resembles a random telegraph signal. Resistance versus time measurements can be used

to study the dynamics of these fluctuations (see Fig. 2.17b). These truly unpredictable resis-

tance fluctuations can be converted to voltage or current fluctuations in the SMTJ device, then

using a specific sensing circuitry those voltage or current fluctuations are converted to random

digital bits.

To perform stochastic computation, such as in our Bayesian machine, we need a stream of

random bits with a configurable probability distribution of 1s and 0s, to obtain a sum of 1s that

is proportional to the binary value stored in the memory. For this purpose, our Bayesian ma-
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Figure 2.18: Comparison table between conventional Digital, Probabilistic and Quantum

computing paradigms. Each column shows the specifications and a simple il-
lustration of the computational paradigms, based on basic computational units:
respectively,the bit, the p-bit and the qubit. (Adapted from [20]).

chine used LFSR for random number generation and GUPTA comparator for bitstream weight-

ing. However, having one circuit based on nanodevices that can do both functions will lead

to a considerable energy reduction in our system. The operation of generating a weighted (bi-

ased) probability of the random bit stream is related to the concept of probabilistic bit (p-bit).

A probabilistic bit, or p-bit, is a two-level state system that can exhibit probabilistic behavior.

Unlike classical bits, which can only be either 0 or 1, p-bits are represented by a distribution of

0s and 1s (see the table in Fig. 2.18).

Like TRNGs, a p-bit stream generation can be implemented through the use of magnetic

tunnel junctions (MTJs). However, here a third terminal need is added to the sensing operation

to bias the distribution of the outcome bitstream. The MTJs can be operated at room tempera-

ture, which is important for implementing them with classical computers.

2.5.2 Randomness Sensing With Precharge Sense Amplifier

True random number generators based on physical phenomena (such as thermal noise) are

more desirable for stochastic computing but also challenging to implement with minimal en-

ergy consumption due to the energy cost of triggering random events. A hardware true ran-

dom number generator typically consists of several consecutive steps to convert some aspect

of the physical phenomena to a digital bit-stream. The simplified structure of a TRNG based on

SMTJs consist of four main modules as shown in Fig. 2.19: (1) random signal is obtained from

the unstable devices; (2) sensing and converting the random signal to digital signals; (3) if the

obtained raw sequences does not satisfy a the uniform distribution, a feedback calibration sig-

nal is sent to the sensing circuitry; and (4) when a statistically-accepted sequence is obtained,

the digital processing can be performed. Almost the same structure is applied for P-bits based
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on SMTJs; the only difference is that the sensing circuitry has a biasing parameter to control

the weighted probabilistic P-bit distribution.

Figure 2.19: Hardware structure for TRNG. a Simplified hardware structure for TRNG with
uniform distribution. b Simplified hardware structure for P bit generator. (Adapted
from [21]).

Extracting random numbers that function by triggering random events (random program-

ming of devices) or by amplifying the noise comes with large circuits and a non-negligible en-

ergy cost, making it less efficient. However, [19] proposed the use of a superparamagnetic tun-

nel junctions, which intrinsically amplify thermal noise without external energy supply. In the

same work [19], the authors showed that SMTJ can generate high-quality random bits with min-

imal readout circuitry. In this work, and based on circuit simulations, the energy-efficient PCSA

circuit was used to sense the outcomes (see Fig. 2.20a). The advantages of this approach are:

no need for programming operation or programming circuitry for triggering random events,

no need for circuits to amplify the noise, and use a low energy reading operation, and a fully

compatible with standard CMOS fabrication processes.

In the work of [18], the authors proposed presented an Embedded MTJ-based p-bit; they

show that the concept of a probabilistic bit can be implemented using a three-terminal circuit,

based on a standard two-terminal MTJ with low barrier magnet (LBM) connected to the drain

of NMOS transistors (see Fig. 2.20b). This structure is a voltage divider circuit with the MTJ

resistance in series with a transistor resistance. The fluctuation of MTJ resistance (between

Rp and Rap) will lead to drain voltage fluctuation Vm, to covert this fluctuation to digital bits,

the Vm voltage is thresholded using an inverter. Based on SPICE models and simulation and

using the transistor gate terminal, they have a tuned p-bit outcomes. While the concept cer-

tainly presents an intriguing and straightforward approach, it may benefit from a more com-

prehensive experimental exploration, particularly with regards to the read disturb effect. The

observed steady current and voltages appear to be on the higher side, which might merit fur-

ther investigation. In addition, the continuous application of sensing voltages, inherent to this

concept, could potentially introduce concerns related to device longevity and increased energy
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consumption. These considerations are shared with a view to enhancing the robustness and

efficiency of the concept.

Figure 2.20: Sensing circuitry for Stochastic magnetic tunnel junctions. a PCSA based sens-
ing circuit for reading the state of a SMTJ (Adapted from [19]). b a circuit for MTJ
based P bit (Reproduced from [18]).

Finding the correct method and circuitry for sensing randomness is a crucial part of the

TRNG process. Because many entropy sources are often quite fragile, applying inappropriate

sensing current or voltages often accelerates the degradation of the quality of randomness, of

even leads to failure to generate randomness. For this reason, continuous hardware or software

statistical tests are suggested, but this leads to overwhelming circuitry and energy. the ideal

solution is to design a sensing circuitry with minimum effects on the random phenomena and

on the stochastic device.

Although most MTJ-based random number generator (RNG) approaches are compatible

with conventional CMOS technology, it is rare to find experimental results based on fully silicon-

fabricated solutions. Most works rely on SPICE simulations based on models derived from ex-

perimental data obtained from only MTJ device measurements.

In this work, we have addressed this issue by designing and fabricating hybrid MTJ-CMOS

solutions for SMTJ-based RNG and SMTJ-based P-bit demonstrators. Our work encompasses

the entire design process, including specification, circuit design, simulation, verification, and

tape-out.

2.5.3 Design of SMTJ-Based RNG

In partnership with Spintec and CEA-Leti, we have collaborated on the design and the fabrica-

tion of a demonstrator chip for both True Random Number Generator (TRNG) and P-bit. These

devices are based on SMTJs as the source of randomness and use, Precharge Sense Amplifier

(PCSA), the same as circuit as the one used for reading memristors in the Bayesian machine

(see section 2.2.3) as the sensing circuitry. Using PCSAs in this context was initially proposed in
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a simulation study in [19].

The PCSA read scheme involves two phases: charge and discharge. This read scheme is par-

ticularly advantageous for fragile devices like SMTJs as it applies instant charge and discharge

currents rather than continuous currents. Additionally, it maintains a low voltage difference

between the device terminals, which increases the device’s lifespan. However, it is crucial to

limit the instant charge and discharge currents to avoid biasing the device’s randomness.

Figure 2.21: Schematics of the designed TRNG and P-bit prototypes. a Schematics of the first
prototype TRNG circuit based on two SMTJs and a PCSA. b Schematics of the sec-
ond prototype TRNG circuit based on two SMTJs, two biasing transistors and a
PCSA, it can function as P-bit as well.

Our first design is a True Random Number Generator (TRNG) that produces a bitstream

with an equal probability of 0s and 1s. Instead of using an unstable SMTJ in one side and a

reference resistor in the other side like initially proposed in [19], we used unstable SMTJs on

each side (see Fig. 2.21a). By using two sources of randomness, we can achieve a joint prob-

ability distribution, which increases the speed of fluctuations and is expected to improve the

quality of the bitstream. The main challenge in this design was reducing the mismatch effect

of transistors N1 and N2 (in Fig. 2.20a). Increasing their sizes led to relatively high instant cur-

rent through the SMTJs, which is biasing the outcomes, thus limited the maximum size we can

reach. Another idea was to reduce the size of transistor N3 (in Fig. 2.20a) or reduce its gate

voltage to limit the maximum flowing current. However, this solution led to noisy discharging,

which biased again the outcomes and affected the quality of the bitstream. We performed an

investigation using SPICE simulations to find the best performance based on sizing compro-

mises, and we validated the final design for tape-out and fabrication.

The investigation for the first design was based without taking into consideration the vari-

ability that occurs during the fabrication process of nano-devices. As devices shrink to the

nanometer scale, process variations have a more pronounced impact on device performance

and yield. Variability in the dimensions of magnetic tunnel junctions, for instance, can lead to

changes in the device’s resistance and switching behavior. In our case, device-to-device vari-
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ability can cause a mismatch between the two SMTJ devices, resulting in a biased bitstream.

To overcome this variability challenge, a second version of the design was developed, which

added a biasing NMOS transistor in series with each SMTJ (see Fig. 2.21b). By controlling the

gate voltage of these transistors (Vb1 and Vb2), we could calibrate the circuit to reduce mis-

match between the two devices and control the maximum instant current through them.

In addition to reducing device variability, the biasing voltages also allow us to control the

outcome probabilities by manipulating the Vb1 and Vb2 values to bias the bitstream towards

one state more than the other. This additional functionality turns our design into a P-bit gen-

erator. Based on SPICE simulations, we selected the optimal transistor sizes and validated the

design for tape-out and fabrication.

Figure 2.22: Schematics of a designed P-bit prototype, and the XOR whitening technique. a

Schematics of the third prototype TRNG circuit based on two SMTJs, two biasing
transistors and a PCSA, it can function as P-bit as well. b Schematics of the XOR2
whitening circuit using two basic RNG circuits and one XOR2 circuit. c Schematics
of the XOR4 whitening circuit using four basic RNG circuits and three XOR2 cir-
cuits.

Our third design was inspired by a concept presented in [19] that been presented in Fig. 2.20a,

which uses an unstable SMTJ on one side and a reference resistive device on the other side.

However, in our design, we chose to use a transistor as the reference resistive device (see Fig. 2.22a).

By controlling the gate voltage Vb2 of this transistor (N5), we can calibrate the circuit for TRNG

or manipulate the outcome probabilities to turn it into a P-bit generator.

Similar to our second design, we also incorporated the two transistors to control the maxi-

mum instant current through the SMTJ. Using SPICE simulations, we optimized the transistor

sizes and validated the design for tape-out and fabrication.

In case our basic designs could not generate random bits with high enough quality, a “whiten-

ing” technique can be applied on the raw random bit outcomes. The whitening process in-

volves transforming a set of raw or biased random bits into a more uniform and unbiased set of

random bits. This is typically achieved by combining multiple independent bitstreams using
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Figure 2.23: Classification table of the designed prototypes. The table lists and classify the
designs . First row for the basic designs and second row for the designs with the
XOR whitening technique. and Based on the type of the design. One column per
prototype.

XOR gates. The XOR2, XOR4 and XOR8 whitening methods are methods that combines respec-

tively two, four and eight independent bitstreams (from RNG) using XOR gates (see Fig. 2.22b).

This technique reduces auto-correlation exponentially and brings the mean state closer to

a perfect balance. The more bitstreams combined, the greater the reduction in auto-correlation

and bias, and the more the sampling frequency is increased.

Whitening can eliminate biases in the raw random bit outcomes of our three basic RNG

designs using off-chip (software or hardware XOR) or on-chip XOR circuitry. Although off-chip

XOR is easier to implement, it is less accurate in terms of energy estimation. On-chip XOR im-

plementation allows for more precise real-world experiments and energy measurements. We

implemented XOR2 and XOR4 whitening circuits based on our three RNG designs. We created

new derivative designs with XOR2 whitening circuits based on design one and design three,

and new derivative designs with both XOR2 and XOR4 whitening circuits based on design one

and design three (see table in Fig. 2.23).

We have designed seven prototyping circuits, the designs tested by simulations than are

taped out for fabrication. Because we use 25 input/output pads designed for characterization

by a custom probe card, we needed to set of pads to route all of our designs (see Fig. 2.24a).

The tapeout of our designs was fabricated in a hybrid CMOS/SMTJ process (see Fig. 2.24b).

The CMOS part of the circuit is fabricated using a low-power foundry 130-nanometer process

with four layers of metals. SMTJ devices are fabricated on top of the CMOS foundry layers by

our partners in Spintec and CEA-Leti.

At the time of writing this thesis, we are expecting the delivery of the fabricated dies any

day.
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Figure 2.24: The SMTJ Based RNG and P-bit demonstrator chip. a Layout view of the chip with
the seven designs, using two sets of 25 IO pads. b Optical microscopy photograph
of the fabricated die.

2.6 Conclusion

In this chapter, we have shown that a Bayesian machine can be implemented in a system with

distributed memristors, performing computation locally and with minimal energy movement.

This allows it to perform Bayesian inference with an energy efficiency orders of magnitude

higher than that of a standard microcontroller unit. Due to its reliance on non-volatile mem-

ory, and its sole use of read operations once the likelihoods have been programmed, the sys-

tem can be powered down while regaining functionality instantly. It can also be operated at

low, and possibly varying, supply voltages. While Bayesian models are usually considered com-

putationally expensive, our results suggest that complex models could be embeddable at the

edge, with low power consumption. This could allow edge systems to benefit from the quali-

ties of Bayesian inference to deal with highly uncertain situations with little data, and to make

predictions using an explainable mode.

Explainability is desirable in many critical situations for ethical and regulatory reasons[77].

The fact that Bayesian inference takes decisions based on explainable models also has prac-

tical consequences, in particular when we use them with inputs that differ from those used

for training the model: the Bayesian machine excels at recognizing situations where it cannot

provide a reliable answer. For example, Supplementary Note 10 of our published work [14]

shows that when we present a gesture from a different subject than the one for which it has

been trained, the Bayesian machine provides a clear signature that it cannot provide a certain

output. This feature could be particularly useful for medical devices, where wrong decisions

can have dramatic consequences. Supplementary Note 11 of our published work [14] also il-

lustrates the possibility to train the Bayesian machine with little data: a mean accuracy of 78%

can be obtained on gesture recognition using only two examples per gesture. This possibility

originates in the natural capacity of Bayesian models to generalize and also in the possibility to
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incorporating prior assumptions on the model into the likelihood training process.

The design choices of the Bayesian machine were led by the specificities of Bayesian infer-

ence. The need for eight-bit likelihood, a precision higher than what analogue memristors can

provide, and the fact that Bayes’ law does not require multiply-and-accumulate, led to a digital

design. In contrast, most memristor-based neural network accelerators use analogue compu-

tation, at least to some extent. This allowed us to rely on a simple sense amplifier for reading

memristors, which brings multiple advantages: it is highly flexible in terms of supply voltage,

functions without needing any calibration, mitigates read disturb, and is largely immune to de-

vice variation. The simplicity of the sense amplifier also allowed us to demonstrate a complete

system featuring 16 small memory blocks, whereas analogue memristor-based neural networks

usually have a single memory block.

In addition, a benefit of the use of stochastic computing by the Bayesian machine is that

our system is naturally resilient to soft errors: bit errors can make one cycle wrong, but will be

averaged throughout the computation. (This point is illustrated in Supplementary Note 9 of

our published work [14], which demonstrates the resilience of the gesture recognition tasks to

single-event upsets.) As memristor storage is also more resilient to radiation than static RAM

[231], this feature can make the Bayesian machine appropriate for extreme environments. All

these features make the Bayesian machine robust and flexible, and it can therefore be par-

ticularly useful for monitoring difficult environments with variable or unstable power supply.

This capability maps well with the fact that Bayesian excels at dealing with the highly uncer-

tain situations encountered in such environments (see Supplementary Notes 10 and 11 of our

published work [14]).

The results achieved in this study, as shown by the measurements performed on the demon-

strator chip and the energy estimates based on the scaled-up design, have encouraged us to

take the project further. Specifically, by creating a system that has both larger memory and

higher computing capacity, which will allow us to implement real tasks on the chip. To achieve

this goal, a modified version of the scaled-up system was designed and sent for fabrication (see

Section 3.5).

Our research utilized a 130-nanometer process, demonstrating that inexpensive technol-

ogy can achieve energy efficiency. Since digital circuitry dominates energy consumption, scal-

ing the design to more advanced technology nodes can further reduce energy consumption.

Our energy analysis indicated that during the inference phase, 88% of energy consumption re-

sulted from random number generation and distribution. The cost of generation is due to the

use of LFSRs, while the non-local nature of random number generation leads to distribution

cost. Our system employed a single 8 bits LFSR per column, which was shared by all the likeli-

hood blocks of the column.

The energy of random number generation could be reduced by again using nanodevices

(see section 2.5), based on the study in [19] about using stochastic nanodevices to generate

high-quality random bits locally, at a very low area and energy cost, using read operations, we
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Figure 2.25: Suggested integration of TRNG and P-bit to the Bayesian machine. a Schematics
of likelihood with embedded TRNG. b Schematics of likelihood with embedded P-
bit, the likelihhods are stored in analog values, the analog read of memory outputs
analog biasing voltages corresponding the stored probability.

have designed and fabricated several prototyping circuits, that uses unstable SMTJs and PCSA

sensing circuitry for generation random bits (RNG or P-bit).

Anticipating future experimental results and future advancements in device integration, we

propose several ideas for integrating our circuits into the Bayesian machine to reduce energy

costs. One idea is to replace the 8-bit LFSR circuit with an 8-bit TRNG circuit. While this will

reduce the energy cost of the LFSR, the energy of the GUPTA circuit and distribution will still

remain. Another idea is to embed an 8-bit TRNG circuit as shown in Fig. 2.25a, which will

reduce distribution costs at the expense of increasing the total number of TRNG circuits.

If we completely change the design of the Bayesian machine by adopting analog memory

for storing likelihoods, we could embed a P-bit circuit with the analog biasing voltage for each

likelihood, as shown in Fig. 2.25b. The probability value is read from the analog memory, con-

verted to analog voltage that will bias the P-bit to generate random numbers proportional to

the read probability. This approach improves memory density because of using the analog ap-

proach and eliminates the need for energy-hungry ADCs. Additionally, only one P-bit cell is

required instead of 8 TRNGs, and eliminating the need for the GUPTA circuit. While this ap-

proach offers many advantages, challenges remain due to the lack of technological maturity of

the devices, high noise and variability problems with analog storage, and the ongoing explo-

ration of the behavior of unstable SMTJs.
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Appendix: Methods for the Evaluation of the Scaled-Up Bayesian

Machine (section 2.4)

Gesture recognition task on a Bayesian machines

The gesture recognition task is realized on a dataset collected in-lab, including ten subjects.

Each subject was asked to perform four gestures (writing the digits one, two, three, and a signa-

ture specific to each person) in the air. The subjects were not given any instruction on how to

perform the gestures, leading to a high diversity within the dataset. The gestures were recorded

using the three-axis accelerometer of a standard inertial measurement unit. Each subject re-

peated the same move between 25 to 27 times. The recording time varied by subject and ges-

ture, and ranged from 1.3 to 3 seconds. We extracted ten features, named F0 to F9, from each

recording, after filtering of the gravity: mean acceleration, maximum acceleration on the three

axis, variance of the acceleration on the three axis, mean value of the jerk of the acceleration,

and maximum value of the jerk of the acceleration on the three axis.

We train the system using 20 of the 25-27 recordings for each subject, and the last 5-7

recordings are used to test it. Our model assumes a uniform prior, and the resulting machine,

therefore, features no prior block. Training consists in adjusting the likelihoods p(On |Y = y) to

the training data. As the training data is very limited, we fitted these likelihoods by Gaussian

functions (using the fitdist MathWorks MATLAB function). We then discretized the resulting

Gaussian distributions to the 512 possible input values of the observations in the scaled-up

Bayesian machine. We then normalize the probabilities in each column of the Bayesian ma-

chine so that the maximum value is one. Finally, we quantified the normalized probability

values to eight-bit integers, with the value zero equivalent to 1/256 and 255 to 256/256.

To optimize further the energy consumption of the system, we use only six of the extracted

ten features in the Bayesian machine. Based on a systematic study, the features deleted for the

experiment are F0, F2, F3, F8. Additionally, we realized that broadening the Gaussians obtained

when fitting the data allowed stochastic computing to converge faster, allowing the system to

reach better accuracy. Therefore, in all our results, the standard deviation of the Gaussian in

the fitted likelihoods is multiplied by a broadening coefficient of 1.3 with regards to the initial

fit.

In the conventional technique, the answer of the Bayesian machine to an output is given by

the argmax of the number of ones outputted by each row. In the power-conscious method, the

answer is the row that produced the first one. In both cases, if no output produced a one, the

answer is considered an error.
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2.6.1 Energy Estimation of a scaled stochastic Bayesian machine

In order to implement the Gesture recognition task, the memory capacity of the fabricated

Bayesian machine was not enough. A scaled-up Bayesian machine need to be designed. The

scaled-up machine features six columns and four rows of likelihood blocks. Each likelihood

block features an array of 128×64 memristors arranged using the same differential structures

as our test chip, therefore implementing four kilobits per array. We developed a behavioral

MathWorks MATLAB model of the machine, a synthesizable SystemVerilog description, and

test benches for both models using consistent input files. Both models were verified to be

equivalent for all possible inputs and for all cycles. We synthesized the SystemVerilog de-

scription and placed and routed the whole Bayesian machine in our reference technology (see

Fig. 2.14b). Post-place-and-route simulation, including the delays due to the gates and the par-

asitic capacitances, gave results that still matched perfectly the MATLAB model of the Bayesian

machine.

The energy estimation of the Gesture recognition task on the scaled Bayesian machines

was performed using a homemade framework using a hybrid methodology. These estimates

focus on the inference phase, i.e., the actual operation of the Bayesian machine when var-

ious inputs are presented, after the memristors have been formed and the likelihoods pro-

grammed. The energy consumptions of the memristor arrays themselves are obtained using

circuit simulations (based on the Siemens Eldo simulator), including the parasitic capacitance

extracted from the memory array layout. The energy consumption of the rest of the system is

obtained using the Cadence Voltus power integrity solution framework. These estimates use

value change dump (VCD) files obtained from our test bench, ensuring that the energy esti-

mates correspond to a realistic situation.

A challenge of these estimates is that when estimating energy consumption, it is crucial

that Cadence Voltus models the behavior of the memristor arrays properly, as the energy con-

sumption of the system depends directly on the output of these blocks. However, as they are

custom blocks, and not included in the standard library of the foundry, special developments

were required. We programmed, using MATLAB, a memristor array to liberty file compiler, pro-

viding, based on the likelihoods programmed in a memory block, a file describing to Cadence

Voltus the functionality of the array. During the MATLAB simulation, we extract the interme-

diates values of the inference, and we include them as a memory output. For that purpose,

we create a new liberty file that will be used in the place-and-route operation. This liberty file

specifies the output for each memory as a function of the input and addresses. This method

can only be used to estimate the energy consumption during the inference phase as the outputs

are tailor-made for this phase.

As a benchmark, we also implemented the gesture recognition task on an ST Microelectron-

ics STM32F746ZGT6 microcontroller unit (MCU, integrated on a test Nucleo-F746ZG board).

This type of MCU, manufactured in a 90-nanometer CMOS process, is commonly used for

edge artificial intelligence. Our implementation was programmed in the C language using the
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ST Microelectronics STM32 Cube integrated development environment and was optimized for

running on the MCU (the stochastic computation of our test chip is replaced by standard in-

teger addition, and the likelihoods were replaced by log-likelihoods to avoid multiplications).

To perform the benchmark, the MCU computes gesture recognition for all possible inputs se-

quentially and blinks an LED on the board every one-million inference to allow precise timing.

The energy consumption of the MCU was measured using a standard Ampere meter (the en-

ergy consumption of solely the MCU was measured, excluding all other components on the

board). To isolate the energy consumption strictly due to Bayesian inference, we also mea-

sured the energy consumption of a control program that includes all operations performed by

the gesture recognition program (looping inputs, LED blinking...), except the actual Bayesian

inference. Then, we subtract the energy consumption of the full gesture recognition program

(2.4µJ/gesture) and the one of the control program (0.4µJ/gesture) to get the energy used by

the MCU strictly for Bayesian inference (2.0µJ/gesture).





Chapter 3

A Logarithmic Bayesian Machine

“There’s a Way To Do It Better — Find It”

Thomas EDISON
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Mathematics is a cornerstone of engineering, with a plethora of techniques available for

modeling, analyzing, and solving complex problems. By altering the computational domain,

a range of benefits can be obtained, such as improved security and efficiency in cryptography

by employing different number fields, optimization of control systems by altering matrix space

or eigenvalue, signal processing by analyzing in the frequency domain, and reduced power

consumption through the use of probabilistic or logarithmic representations.

To address the area and energy-intensive nature of classical computation circuitry in memristor-

based Bayesian machines, stochastic computing has been successfully employed, as outlined

in the previous chapter, with minimal area requirements and low energy consumption. How-

ever, stochastic machines suffer from limitations in precision, inference speed, and complexity

with random number generation. In response, in this chapter, we turn to the logarithmic com-

puting approach, which offers increased precision and faster inference operations.

Logarithmic computing is particularly suitable for Bayesian inference, as it allows comput-

ing the product of the prior distribution and the likelihoods using simple addition and subtrac-

tion operations. This makes it an ideal choice for hardware implementation, where speed and

efficiency are crucial factors. Logarithmic probability representation also provides an advan-

tage over traditional arithmetic, preventing numerical underflow and loss of precision when

dealing with small probabilities or large datasets.

This chapter examines the use of logarithmic computing in our Bayesian machine archi-

tecture, utilizing the same design choices as the stochastic version, such as memristors and

near-memory computing architecture. We demonstrate how logarithmic computing can be

implemented and why it is poised to improve the energy efficiency and accuracy of Bayesian

inference. Moreover, we present a newly fabricated logarithmic Bayesian machine integrated

circuit, which has undergone recent testing. On-chip measurements on both machines, the

logarithmic and the stochastic, reveal the viability of our Bayesian machine approach, even in

the presence of memristor imperfections. Our Bayesian machines can operate at low supply

voltages, and scaled-up versions are capable of performing a gesture recognition task using or-

ders of magnitude less energy than a microcontroller unit. Additionally, we provide the first

explicit comparison of stochastic and logarithmic computing in a near-memory computing in-

tegrated circuit with nanodevices, comparing their energy efficiency.

The results in this chapter are adapted from an article presented at the DATE 2023 confer-

ence [86].
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3.1 Bayesian Inference with Logarithmic computing

The invention of logarithms by John Napier in 1614 revolutionized the way that calculations

were performed, making them faster and easier. Although calculators have replaced humans

for calculation, the concept of simplifying calculations is continued to be used in the mod-

ern era of calculators and computers in the context of emerging non-conventional computing

paradigms [104, 168, 232], due to the need for area and energy-efficient computation [233–236]

for wearable and energy-constrained IoT devices [237]. The use of logarithms has once again

been employed to simplify and streamline computations [209, 210], specially for improving the

energy efficiency of the artificial intelligence edge systems.

As most of the research on energy-efficient AI systems has focused on deep neural networks

(DNNs), logarithmic computing has already been used to improve the efficiency of those neural

networks [238–242]. The logarithmic number representation has been employed in convolu-

tional neural networks in the work of [238]. Based on the results in this work, the logarithmic

approach can handle non-uniform distributions of weights and activations, and enables state-

of-the-art networks to be encoded in an extremely reduced bits representation with negligible

loss in classification performance, improving on fixed-point representations. For some specific

applications, logarithmic data representation is more robust to quantization than fixed-point,

eliminates bulky digital multipliers, and reduces memory requirements, area, and energy con-

sumption. Similarly, [239] proposed using logarithmic encoding of non-uniformly distributed

weights and activations to reduce power consumption and increase inference speed. The au-

thors of this work demonstrated their ideas in LogNet, an inference engine using only bitshift-

add convolutions and weights distributed across the computing fabric.

Although logarithmic arithmetic simplifies multiplication and division, it can render addi-

tions and subtractions more complex, which poses challenges for deep neural networks that

depend heavily on multiply and accumulate (MAC) operations. However, Bayesian inference is

particularly well-suited for the logarithmic computing approach as it relies on computing the

product of the prior distribution and the likelihoods, followed by normalizing the result to ob-

tain the posterior distribution. With logarithmic arithmetic, Bayesian inference requires only

simple addition and subtraction operations, making it easier to implement in hardware. This

makes it a preferred option for implementing Bayesian inference in hardware, where speed and

efficiency are paramount. Furthermore, the use of the logarithmic representation for probabil-

ities offers another advantage over traditional arithmetic. Specifically, it prevents numerical

underflow and loss of precision when dealing with small probabilities or large datasets, which

can occur when using low-precision fixed-point representation.

In the stochastic Bayesian design (explained in Chapter 2), the probability values of the

likelihood range between 0 and 1 and are represented with an unsigned eight-bit fixed-point

format, which quantizes only the fractional part in the linear scale, resulting in a loss of pre-

cision for small probability values due to fixed step-size between all representation levels. A
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a b c

Figure 3.1: Quantization functions. a Linear quantization of probabilities represented by an
unsigned four-bit fixed point format. b Logarithmic quantization of probabilities
represented by an unsigned four-bit fixed point format. c Logarithmic quantization
of probabilities represented by an unsigned one’s complement four-bit fixed point
format.

four-bit fixed-point representation, for instance (see Fig 3.1a), can only represent probability

values down to 0.0625, leading to a loss of precision for smaller probability values.

A logarithmic representation with log-scale quantization can overcome this limitation by

assigning more code values to smaller probability values on a logarithmic scale, resulting in an

increased resolution in lower probability regions. To apply this representation, the number of

bits (N) used to store the probability and the logarithmic base (B) must be determined. As the

base represents probabilities, it must fall within the range of 0 < B < 1 and be approximated

with respect to the logarithmic quantization function f (n):

f (n) = B (K−n)/m . (3.1)

The binary probability value of f (n) is stored as n, where K = 2n −1 is the maximum num-

ber in the digital representation. To maximize the system’s accuracy for specific use cases, the

number of quantized probabilities m that satisfy f (n) > f (m) = B is determined. For example,

Fig 3.1b shows a function f (n) used with 4-bits numbers, B = 1/2 as the logarithmic base, and

m = 2. This configuration allows 14 binary values to represent probabilities between 1/2 and 0,

with the smallest possible probability value of f (0) = 0.0055 (close to the eighth-bit fixed-point

resolution of 0.0039), and only two binary values for probabilities between 1 and 1/2.

Although the function f (n) in equation 3.1 represents an increasing function where binary

values increase with probability values, it is not practical for converting multiplication to addi-

tion. For example, adding the binary numbers n1 = 1 and n2 = 2 results in n3 = 3, but the prod-

uct of f (n1)× f (n2) ̸= f (n3). This is because f (1)× f (2) = B (K−1)/m ×B (K−2)/m = B (2K−3)/m ̸=

B (K−3)/m . Thus, the product cannot be implemented by a simple adder. One solution to this

problem is to use the one’s complement representation n* of the digital number n (without the

use of sign bit), where K = 2n −1 = n+n*. By replacing K −n with n* in equation 3.1, we obtain

the new quantization function g (n*):
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g (n*) = B n*/m . (3.2)

The function g (n*) in eq 3.2 represents probability as a decreasing function, where the

probability values decrease with increasing binary values. For instance, Fig 3.1c displays a

function g (n*) with N = 4 bits, base B = 1/2, and m = 2, where the smallest possible proba-

bility value is represented by the biggest binary value 1111, which corresponds to the prob-

ability value g (15) = 0.0055. Using the new function, adding the binary numbers n*
1 = 1 and

n*
2 = 2 results in n*

3 = 3, and the product of g (n*
1)× g (n*

2) = g (n*
3), as explained by g (1)× g (2) =

B 1/m ×B 2/m = B 3/m = g (n*
3). This means that the product can be implemented using a simple

fixed-point adder.

a b

Figure 3.2: Determining the Logarithmic Quantization Parameters. This Figure explores the
impact of two parameters on quantized probabilities: (a) the logarithmic base and
(b) the m parameter. Increasing either parameter leads to a better representation
of high probability values at the cost of reduced precision and increased minimum
encoded probability value.

The function g (n*) has two parameters, B and m, which need to be determined for better

approximation and precision of encoded probabilities. In Fig 3.2a, the effect of the base B was

studied, with m fixed at 2 and three chosen base values of B = 0.5,0.6,0.7. As illustrated in

Fig 3.2a, the base B has an impact on the quantized probabilities. For higher base values, the

quantization function becomes more linear. On the other hand, it also affects the minimum

encoded value, which increases with the increasing base values (0.0055 for B = 0.5, 0.021 for

B = 0.6, and 0.069 for B = 0.7), leading to a loss of precision for low probabilities.

Based on the parameter m, we create another parameter M = Round(m/2N ), which rep-

resents the percentage of encoded probability values with g (n*) > g (m) over the number of

represented levels. In Fig. 3.2b, the effect of choosing M was studied, with B fixed at 1/2 and

three chosen base values M = 5%,10%,20%. As illustrated in Fig. 3.2b, by increasing M, we

achieve better approximation for probabilities higher than 1/2. However, it gradually increases

the minimum encoded probability. For example, with M = 30%(m = 5), the minimum encoded

probability is g (15) = 0.125, which means that all probabilities less than that minimum are rep-
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resented with the same value, leading to an increase in rounding errors.

The determination of the logarithmic quantization parameters depends on the applica-

tion, the computation model, and the data distribution. In the case of the Bayesian machine,

it is recommended to set this value in such a way as to have more probabilities between 1/2

and 0 than between 1 and 1/2. The main reason for this is that some events have quite low

probabilities of occurring, and therefore, to increase the accuracy of the system, a low value is

needed. Therefore, in a Bayesian system, probabilities between 1/2 and 0 are more important

than those between 1 and 1/2. While the logarithmic quantization method does not allow us

to encode the exact probability of an event, it provides a reliable approximation of the most

probable event, this approximation is made in such a way as to minimize the risk of errors.
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3.2 Design of a Logarithmic Bayesian Machine

The successful implementation of the memristor-based Bayesian machine with a stochastic

computing approach has prompted us to utilize the same architecture and design choices for

the logarithmic computing approach. As a reminder, Bayesian inference aims to evaluate the

probability of an event Y based on a collection of observations O1, . . . ,On , using Bayes’ law

[188, 189]. If all observations are conditionally independent, Bayes’ law simplifies to the prod-

uct of prior probability p(Y ) and likelihood factors p(Oi |Y ), known as the naive Bayes’ law as

presented in Chapter 1 (see Equation 1.4). By applying a logarithmic function with a base B

to the naive Bayesian equation, we obtain the logarithmic form of the naive Bayesian equation

in 3.3:

logB p(Y |O1, . . . ,On) ∝ logB p(O1|Y )+ . . .+ logB p(On |Y )+ logB p(Y ). (3.3)

The logarithmic form of Bayes’ law simplifies the product of prior probability and likeli-

hood factors to the sum of logarithmic likelihoods. The idea of applying the logarithm to the

likelihoods (log-likelihood) is already been used in the maximum of likelihood method for pa-

rameters estimation (used for fitting the likelihood distributions). This is because the logarith-

mic function is monotonically increasing, ensuring that the maximum value of the logarithm

of the probability occurs at the same point as the original probability function. The decision-

making in our Bayesian machine relies on the maximum of the posterior probabilities of an

event, making our machine unaffected by the logarithmic transformation of the probabilities.

Therefore, we can implement the simpler log-likelihoods in our Bayesian machine instead of

the original likelihoods.

Figure 3.3: General architecture of the Logarithmic Bayesian machine.
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Our logarithmic representation has the base B = 1/2 and m = 32 (M = 12.5%), and it is

approximated with respect to the logarithmic quantization function g (n*) in Equation 3.2. Be-

cause this function represents probability as a decreasing function, where highest probability

value are represented by lowest binary values, the decision-making in our Bayesian machine

relies on finding the minimum of the digital values.

The memristor-based Bayesian machines architecture for logarithmic design is similar to

the one used for the stochastic design (see Fig 3.3): it is obtained by implementing equation 3.3

topologically, using near memory computing paradigm. Each likelihood factor is stored in an

independent memory array using the logarithmic representation of eight-bit, and computa-

tions are performed physically near these memory arrays. The computation result is then

passed to the following memory array. The observations O1, ...,On act as addresses for the

memory arrays, telling the likelihood value to be read. The concept of distributed near-memory

computation allows the circuit to function with minimal energy consumption due to minimal

data movement.

Figure 3.4: Detailed operation of the logarithmic Bayesian machine. a Schematic illustrating
the detailed architecture of a Log-likelihood elementary block. b Flowchart of the
different operations to perform a Bayesian inference computation in the logarith-
mic Bayesian machine.

In the logarithmic design, the probabilities are stored in the memory arrays in the logarith-

mic domain. Fig. 3.4a detailed schematics of the log-likelihood elementary block, which has

one input vector representing the observations On in form of memory addresses of probability

values, and an eight-bits output vector. The log-likelihood block consist of: an 8×8 memristor

array of 2T 2R structure, including all read and program circuitry, and an eight-bits unsigned

fixed-point adder. Because addition is limited to eight bits, the adder was designed with an
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overflow detect and saturate output: if the adder detects overflow, the output is saturated to

the maximum digital output "11111111" (or n* = 255). This means that the maximum digital

output represents the minimum encoded probability p(255) = 0.004 (the same as minimum

encoded by unsigned 8 bits fixed point with linear quantization).

Similar to the stochastic design, we use a two-transistor-two-resistor (2T2R) strategy in

which memristors are used in a binary fashion. We also adopt the same memristor read and

write strategies explained in Chapter 2.

Fig. 3.4c shows a time diagram of the machine operation. The color code throughout Fig. 3.4

is as follows: the orange color is used for memory read, and the green color for the actual loga-

rithmic inference. The inference operation in the logarithmic Bayesian machine is much easier

than the stochastic one, the inference performed in three main phases:

• Memory read. Likelihood values are read from the memristor arrays, based on the in-

put observations (acting as row addresses). Observations O1, ...,On are off-chip inputs

loaded from dedicated input pads, then addressed to the likelihood memory arrays by

the Bayesian machine digital control unit (one observation for each column). All likeli-

hood memory arrays are read simultaneously.

• Logarithmic Bayesian inference phase. In one clock cycle, all addition operations are

performed; the results of those additions represent the logarithmic Bayesian inference

outputs. Those outputs are sent to the read-out shift registers.

• Read Data Out. Inference Outputs are stored in read-out shift registers with parallel in-

puts and serial outputs. Each row of the logarithmic Bayesian machine has an eight-bit

output. Due to the limited number of IO pads, we needed an eight-bit shift register for

each row, to convert the parallel eight-bit outputs to one-bit serial outputs. Therefore, it

takes eight clock cycles for the machine to read the outputs.

The design process for the logarithmic Bayesian machine was accomplished with a signifi-

cantly reduced time and effort compared to the stochastic version, thanks to the implementa-

tion of a homemade complete automated place and route design flow, as described in Chapter

1. This flow automates the placement and routing of memory blocks, in addition to digital logic

standard cells. The memory block is considered a standard cell in this flow, and as such, it has a

Liberty Timing File (.lib) that represents the timing and power parameters associated with the

memory cell. Furthermore, an abstract view of the memory cell shown in Fig. 3.5b is generated

based on the layout view of the memory block, as shown in Fig. 3.5a. This abstract view is cru-

cial for the automatic placement and routing of the memory block to the multi-supply voltages

(see Fig. 3.5c) and to other standard cells.

To ensure the reliability of the new design flow, all physical verification of the final design

was conducted using dedicated Calibre EDA tools. This included design rule checks, layout-

versus-schematic comparison, and antenna effects design rule checks. Still, it is imperative to
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a b c

Figure 3.5: Physical views of the memory block used in the Bayesian machines. a Masks of
the memory block with five routing metal layers. b Abstract view of the memory
block, consisting of metal blockage masks to avoid routing above the memory block
and pin masks to define the routing position of In and Out pins, and c the routing
position of the supply voltages, which are easily distributed and routed.

conduct experimental verification on a fabricated chip to validate the functionality of our flow.

As this was the first chip designed using our in-house automatic place and route design flow,

successful experimental measurements can enable its use in future-generation designs.

We fabricated a fully-functional prototype circuit of a logarithmic Bayesian machine (see

Fig. 3.6), using the hybrid CMOS/Memristor fabrication process (see Chapter 1), with 2,048

memristors and 35,400 transistors, using a the same special low-power 130-nanometer CMOS

process as in Chapter 2, where hafnium-oxide memristors are fabricated in place of vias be-

tween metal layers 4 and 5.
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Figure 3.6: Fabricated memristor-based logarithmic Bayesian machine. Optical microscopy
photograph of the Bayesian system die.

3.3 Measurements on the Logarithmic Bayesian machine

First, it is crucial to explore the forming and programming conditions of memristors, particu-

larly given that the logarithmic Bayesian chip was fabricated during the next CMOS/memristor

tapeout after the one of the stochastic Bayesian chip. With improved fabrication processes,

the forming and programming voltages of new memristor-based chips may differ from those

of previously tested chips, making it essential to investigate these conditions for optimal chip

performance.

We designed an experimental setup at C2N, as illustrated in Fig.3.7, that incorporates a

custom PCB to route an STM32 microcontroller unit with a probe station and power supply

sources. The experimental setup was automated using Python scripts to streamline and ex-

pedite testing procedures. To conduct the measurements, we utilized an STM32 microcon-

troller unit to send and receive input and output signals from the non-packaged die, which was

probed tested. This method is similar to the stochastic Bayesian machine described in Chap-

ter 2.

After examining the forming and programming conditions, we obtained a likelihood mem-

ory array. We again verified that over 5 million consecutive readings with a 1.2 V supply voltage,

no changes in memory values were detected. This finding led us to conclude that, similar to
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Figure 3.7: The experimental setup for on-chip measurements on the logarithmic Bayesian

machine. The setup includes a custom PCB to route an MCU with a probe station
and several power supply sources.

the stochastic case, the memristors did not suffer from read disturb issues.

In Fig. 3.8a,b, we present the inference measurement results for both the logarithmic and

the stochastic Bayesian machines, respectively (the results for the stochastic machine are re-

produced from Chapter 2, taken in the case with optimized LFSR seeds). The x-axis denotes

the theoretical result anticipated from Bayes’ law, while the y-axis denotes the experimentally

measured results from the die’s outputs. The different points in the Figure were obtained by

randomly altering the observation inputs O1, O2, O3, and O4 of the circuit (For the logarith-

mic circuit, some observations were chosen to better sweep all probabilities) and by varying

the supply voltage VDD between 0.65 and 1.2 V. Ideally, the experimental measurements should

follow the x=y curve.

Figure 3.8: Inference measurements on the fabricated Bayesian machines. Measured output
as a function of expected result on the fabricated a logarithmic and b stochastic
Bayesian machine. In the logarithmic case, all points for supply voltages ranging
from 0.7 to 1.2 V are superimposed.

As illustrated in Fig.3.8a.b, the measurements conducted on both chips display a remark-
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able adherence to the ideal x=y curve for supply voltages ranging from 0.7 to 1.2V . The mea-

sured probabilities closely align with Bayes’ law, with negligible deviations for measurements

conducted with supply voltages ranging from 0.7 to 1.2V . Notably, in Fig. 3.8a, only the mea-

surement points of supply voltage 1.2V are visible, as all measurements conducted within the

range of 0.7 to 1.2 V yielded identical results, rendering them superimposed. (In the stochastic

case of Fig. 3.8b, we chose to use different inputs for the different supply voltage to avoid this

superimposition of results).

At supply voltages below 0.7V (light blue points), the measurements on both chips of Fig. 3.8a,b

exhibit considerable deviations, resulting in less accurate Bayesian inference. This is attributed

to the threshold voltage value of the thick oxide transistors used within the memory array,

which is approximately 0.6 volts. Utilizing lower threshold-voltage transistors, available in

many CMOS processes, could overcome this limitation. Interestingly, the errors manifest dif-

ferently for each chip: while the stochastic Bayesian machine’s errors can occur for any proba-

bility value, the logarithmic Bayesian machine only shows errors for small probabilities in the

form of saturated values (represented as "11111111" due to overflow of the logarithmic repre-

sentation). These errors cause the adders to detect overflow and saturate outputs. Ongoing

investigations aim to uncover the reasons behind these errors and their occurrence specifically

for small probabilities.

The accurate measurement results obtained from both Bayesian machines highlight their

high potential. These machines are capable of producing precise outputs with high flexibility in

terms of power supply. Furthermore, the systems remain fully functional even when reducing

the power supply to 0.7 volts, which is a considerable reduction from the nominal supply of our

CMOS technology, which is 1.2 volts. This feature allows for a significant reduction in power

consumption, by a factor of approximately three.

The logarithmic machine provides an instant-on/instant-off feature, whereby the system

is ready to perform Bayesian inference as soon as the power supply is turned on, without the

need to load any data from memory. As a result, the power supply can be turned off anytime the

system is not in use, without any penalty, offering an excellent opportunity for energy-saving.

Although both Bayesian machines share many design choices, they still differ in their com-

puting approaches. Unlike the stochastic machine, the logarithmic machine does not require

loading LFSR seeds or optimizing those seeds, making it easier to operate and immediately

perform inference computation, thus reducing the complexity of the system’s starting configu-

ration. Additionally, the logarithmic machine performs inference in one clock cycle compared

to the 255 clock cycles (i.e., the periodicity of the LFSRs) required for the stochastic machine,

resulting in lower latency for inference. However, it takes eight clock cycles to read the output

data from a logarithmic machine, compared to only one clock cycle needed for the stochastic

machine. The readout latency for the logarithmic machine is due to the limited number of IO

pads used in our chip; this issue is fixed in our next-generation chips.

Although the measurements show excellent results on both machines, the logarithmic ma-
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chine produces more accurate results than the stochastic machine. This is because the stochas-

tic computing is a conceptually approximate computing approach whose performance relies

on the quality of the randomness generation, which is affected by used a pseudo-random num-

ber generator, leading to reduced quality of the randomness.

Regarding robustness, the stochastic machine is naturally resilient to soft errors. Bit errors

can make one cycle wrong but will be averaged throughout the computation. This point is illus-

trated in Supplementary Note 9 of our published work [14]. However, the logarithmic machine

is more prone to soft errors, especially when the errors occur in the most significant bits, which

drastically change the probability values.
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3.4 Energy Efficiency of the Bayesian Machines

The stochastic and logarithmic test chips utilized in our experiments serve as demonstrator

chips that verify the feasibility of memristor-based Bayesian machines. However, their small

size in terms of memory and computing capabilities prohibits their implementation in real-

world tasks, and they are not suitable for accurate power consumption evaluations. In re-

sponse, we developed a scaled-up version of the logarithmic Bayesian machine with 6x4 like-

lihoods, each comprising 4,096 bits of memory, to perform a gesture recognition task, much

like the approach we employed in Chapter 2 with the stochastic Bayesian machine. To ac-

complish this, we designed and laid out the system utilizing the reference low-power foundry

130-nanometer process and subsequently evaluated its energy consumption.

Figure 3.9: Placed-and-Routed Logarithmic Bayesian Machine Masks for Gesture Recogni-

tion Analysis at the Design Level.

Table 3.1 presents a comparison of the accuracy in gesture recognition and energy con-

sumption for different situations for both stochastic and logarithmic Bayesian machines. The

energy estimation method, based on the Cadence Voltus power integrity solution framework,

is detailed in Chapter 2. This table utilizes the stochastic computing concepts introduced in

Chapter 2. Conventional stochastic computing involves performing the computation for a cer-

tain number of cycles and then deciding based on the maximum number of ones. In the power-

conscious mode, computation is stopped when the first one is encountered. Table 3.1 demon-

strates that the logarithmic architecture performs better in accuracy, achieving 90.6% accu-

racy compared to 90% for conventional stochastic architecture and 86.9% for power-conscious

stochastic architecture.

The logarithmic architecture also has a low energy consumption of 0.5 nJ, with the energy

being dominated by the reading operation at 0.3 nJ (60%). Still, in terms of energy efficiency,

the power-conscious stochastic architecture performs the best, consuming only 0.4 nJ with a

full periodicity (255 clock cycles per inference), resulting in a 20% improvement in energy per-
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formance over the logarithmic architecture at the cost of reducing accuracy to 86.9%. However,

if the clock periodicity is reduced further, as in the case of 20 clock cycles per inference, the

energy performance is improved to 0.34 nJ with a drastic loss in accuracy to 80.2%. This choice

is not profitable, as it improves only the energy effect of the inference operation (0.04 nJ or 12%

of total energy), which has limited impact on the total energy consumption of 0.34 nJ, which

is dominated by read energy. On the other hand, the conventional stochastic architecture has

accuracy comparable to the logarithmic architecture (90%) with a full periodicity (255 clock

cycles per inference) but consumes considerably more energy, 2.47 nJ (5 times the energy of

logarithmic inference). Reducing the clock periodicity to 25 clock cycles per inference results

in energy performance similar to the logarithmic inference at 0.51 nJ with a drastic loss in ac-

curacy to 82.9%.

Architecture CLKs Accuracy E (nJ) E (nJ)

Inf. (%) Inf. Inf. & Rd

Stoch Conv. 255 90.0 2.17 2.47
Stoch Conv. 50 86.7 0.43 0.73
Stoch Conv. 25 82.9 0.21 0.51

Stoch PC 255 86.9 0.10 0.40
Stoch PC 50 84.4 0.06 0.36
Stoch PC 20 80.2 0.04 0.34

Logarithmic 1 90.6 0.20 0.50

Table 3.1: Comparison of the two Bayesian machines on the gesture recognition task. Conv:
conventional stochastic computing. PC: power-conscious stochastic computing. Inf:
inference

Based on the results presented in Table 3.1, we conclude that logarithmic computing per-

forms better in energy consumption than both stochastic computing approaches, for accura-

cies higher than 86.9%. This is due to the fact that logarithmic computing reduces the infer-

ence operation to simple addition operations in one clock cycle, whereas stochastic inference

requires multiple clk cycles with energy consumption dominated by random number genera-

tion, random number distribution, and clock distribution (as shown in the energy estimation

results presented in Chapter 2).

We have shown in Chapter 2 that stochastic computing energy consumption could be re-

duced by using another type of random number generator. In our design, the consumption

related to random number generation is 60% of the total consumption. However, even if we

subtract this cost entirely (which is not a realistic assumption), we obtain an energy consump-

tion of 1.18nJ (2.5 × 0.4 + 0.3). Logarithmic computing still outperforms conventional stochas-

tic computing in terms of both accuracy and energy consumption for higher accuracies. In

addition to its accuracy performance, logarithmic computing also has a shorter latency (one

cycle) than stochastic computing. On the other hand, the stochastic machine has an inherent

tolerance to single-event upsets (SEUs) [14].
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3.5 Large Scale Multi-computing Mode Bayesian machine

Our Bayesian machine studies in this Chapter and in Chapter 2 have shown promising results

based on measurements taken from demonstrator chips and energy estimates on scaled-up

designs. These findings have inspired us to take the project further and fabricate a scaled-up

system with larger memory and higher computing capacity that can handle real tasks on the

chip. To achieve this goal, we implemented a large-scale chip that provides both logarithmic

and stochastic computing modes. The logarithmic computing mode offers high accuracy at a

lower computational cost, while the stochastic computing mode is well-suited for low-power,

harsh environment applications. By using a multi-computing mode Bayesian machine, we can

take advantage of the benefits of both computing modes in one chip. To make this possible,

we used a mechanism that allows the Bayesian machine to switch between the logarithmic

computing mode and stochastic computing mode depending on the specifications of the task.
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Figure 3.10: Schematic illustrating the architecture of a multi-mode likelihood elementary

block. The likelihood elementary block used in the large-scale Bayesian version
features two computing modes, the logarithmic and the stochastic. The mode
needs to be decided before memristor programming.

In this section, we introduce our large-scale version of the Bayesian machine, which has

been designed and taped out (see Fig. 3.11). This chip features 4x4 likelihoods elementary

blocks with a 64x128 memristor array (8k-memristor) and approximately 143k memristor de-

vices (131k for memory and 12k for dummies) and 285k transistors. This capacity is sufficient

for testing real-life applications and enabling practical demos such as smart sensors, smart

cameras, or simple robots.

Although both modes share the same memory arrays, read and write circuitry, the comput-

ing circuitry is separated. The stochastic version uses LFSRs circuitry and likelihoods with a

comparator and AND gate circuitry, while the logarithmic version uses log-likelihood with the



116 CHAPTER 3: A LOGARITHMIC BAYESIAN MACHINE

adder circuitry (see Fig. 3.10). Since the probabilities are stored differently in each computing

mode, the mode needs to be determined before memristor programming time.

a b

Figure 3.11: The fabricated large-scale Bayesian machine. a Masks of the placed-and-routed
large-scale Bayesian machine design sent for fabrication. b Optical microscopy
photograph of the large-scale Bayesian machine.

After successfully testing the packaged dies (with some dies damaged due to the packaging

process), we were freed from the limitation of using only 25 IO pads in our designs (due to

the custom probe card). As a result, the large-scale Bayesian machine includes 48 IO Pads, as

shown in the layout view (see Fig.3.11a) and the optical-microscopy photograph (see Fig.3.11b).

Therefore, the measurement setup for this chip is fixed to the packaged measurement option

(see Chapter 1).

The circuit has already been fabricated, and at the time of writing of this thesis, it is cur-

rently undergoing the packaging process.
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3.6 Conclusion

In this chapter, we have addressed the limitations of stochastic computing in memristor-based

Bayesian machines and presented logarithmic computing as a solution to these limitations. We

have shown that logarithmic computing offers increased precision and faster inference oper-

ations while retaining the same architecture and design choices as the general Bayesian ma-

chine (see Table 3.2). We have demonstrated that the logarithmic Bayesian machine can be

implemented with distributed memristors, performing computation locally and with minimal

energy movement. The logarithmic machine also inherits all the advantages of the Bayesian

inference approach, such as explainable models, uncertainty information, and training with

limited data. Our new approach targets being embeddable at the edge, with low power con-

sumption, enabling edge systems to benefit from the qualities of Bayesian inference to deal

with highly uncertain situations with little data and to make predictions using an explainable

mode.

We reported the design and fabrication of the logarithmic Bayesian inference circuits, then

the testing of the two prototype Bayesian inference circuits – the stochastic and logarithmic

computing ones. We showed that both machines have accurate measurement results, high-

lighting the high potential of our Bayesian inference machines, with high flexibility in terms

of supply voltage. Using a homemade energy estimation framework, we showed that both

designs can perform a gesture recognition task using orders of magnitude less energy than a

microcontroller unit. Each design can be more suitable for specific applications based on en-

ergy and accuracy constraints. Based on the energy estimation results, we conclude that log-

arithmic computing performs better in energy consumption than both stochastic computing

approaches, for accuracy higher than 86.9%. Stochastic computing is more energy-efficient

for lower-accuracy inference up to 86.9% for our gesture recognition task, due to the power-

conscious inference strategy.

Our results show that memristor-based near-memory Bayesian computing is a viable so-

lution for energy-efficient machine learning systems. These results highlight the potential of

memristor-based near-memory Bayesian computing, even with inexpensive technology such

as the 130-nanometer process we utilized. Scaling up the design to more advanced technology

nodes can help to further reduce energy consumption.

Overall, the logarithmic Bayesian machine approach provides a promising solution to the

limitations of stochastic computing in memristor-based Bayesian machines. The potential of

this approach for energy-efficient and accurate machine learning systems motivates us to cre-

ate a larger and more powerful system capable of implementing real tasks on the chip.
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Features Stochastic Logarithmic

Machine Machine

Area Requirements Minimal Minimal
Energy Consumption Low Low

Precision Limited Increased
Inference Speed Slow Fast

Complexity with RNG Yes No
Suitability for Bayesian Inf. Yes Better

Underflow and Loss of Precision Yes Less
Soft Error Resilience Resilient Susceptible

Ease of Inf. Operation LFSRs Configuration No Configuration
Inference Time 255 clock cycles 1 clock cycle

Accuracy Near-Perfect Accurate
Energy for Accuracy > 86.9% More Less
Energy for Accuracy < 86.9% Less More

Table 3.2: Comparison between Stochastic and Logarithmic Machines
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Multimode Memristor-based

Prototyping Platform

If it disagrees with experiment, it’s wrong. In that simple

statement is the key to science.

Richard FEYNMAN
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Memristors offer fantastic opportunities in the field of computing for implementing new

paradigms [243, 244], such as analog computing[245], neuromorphic computing[104], stochas-

tic computing [228], and In or Near memory computing [11, 246]. However, memristors are

based on emerging technologies that are still in the research and exploration stage, and several

challenges and imperfections need to be addressed. Such challenges emphasize the impor-

tance of experimental platforms for prototyping new computing paradigms. These platforms

enable the implementation, exploration, and experimental validation of new ideas, as well as

the validation and optimization of reading, programming, and computing techniques.

The purpose of this chapter is to present an integrated circuit that provides a prototyping

platform for projects involving memristors. This circuit includes periphery circuitry for using

memristors within digital circuits and an analog mode with direct access to memristors. This

platform allows for developing and testing innovative memristor-based neuromorphic con-

cepts that address specific challenges and requirements.

In the following sections, we will first discuss memristor imperfections and the challenges

in implementing new computing paradigms using memristors. This discussion will naturally

lead to the potential solutions for using imperfect memristors and the importance of memristor-

based experimental platforms. Then we discuss the design, fabrication, testing, and potential

projects for our experimental multimode memristor-based platform.

The integrated circuit presented in this chapter was presented at The ASPDAC 2023 confer-

ence [87].
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4.1 Imperfect Memristors for Building New Computing

Paradigms

Data storage in physical devices relies on underlying physical phenomena, such as magnetic or

electronic processes. To ensure accurate programming, retention, modification, and readout of

device states, these phenomena must be well understood and controllable. Different memory

technologies rely on distinct physical phenomena and use varied approaches and methods.

For example, in volatile memories like DRAM and SRAM, data is stored by manipulating electric

charge movement and storage. On the other hand, mature non-volatile memories such as flash

memory utilize the charge storage method, wherein the floating gate is charged with trapped

electrons using the quantum tunneling phenomenon to shift the transistor threshold voltage

and implement the memory effect.

Emerging non-volatile memory technologies like memristors control the resistance state

of the device to store data. The resistive switching mechanism differs depending on the spe-

cific technology used. For example, OxRAM-based RRAM or memristor uses oxygen vacancy

filaments in the oxide layer to store data, while PCM uses changes in the material phase to

store data. MTJ and FRAM use spin orientation of magnetic fields and electric polarization of

ferroelectric materials, respectively, to store and retrieve data.

However, due to the emerging nature of memristor technologies, challenges and imper-

fections still exist. For example, OxRAM-based memristors exhibit non-linearity, asymmetry,

instability (drift), and variability. These issues can negatively impact performance, increase

energy consumption, and make system design more complex. In this section, we will discuss

the non-idealities and imperfections of OxRAM-based memristors, the implications of these

imperfections for non-conventional computing, and potential solutions to mitigate these is-

sues. Finally, we will explore new computing models that embrace imperfection and leverage

non-idealities.

4.1.1 Non-Ideal Behavior of OxRAM-Based Memristor

The main operation for programming OxRAM devices involves the SET and RESET processes,

which result in resistance switching through the formation and dissolution of the oxygen vacancy-

based conducting filament (see Fig. 4.1a). However, the exact mechanism underlying the switch-

ing process is not fully understood. This has led to several challenges in exploiting these devices

for both storage and computing applications.

One such challenge is the asymmetry in the SET and RESET programming processes, as

shown in Fig. 4.1a, where the current-voltage (I-V) characteristics of the memristor is depen-

dent on the direction of the applied voltage. This asymmetry results in up and down conduc-

tance changes that are not directly symmetrical, making it difficult to direct the switching be-

tween states. Especially for multi-level states, programming memristor typically requires extra
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a b

c d

RTN

Figure 4.1: Imperfections of OxRAM-based memristors. a Current–voltage OxRAM character-
istics for FORMING, SET, and RESET operations. An asymmetry in the SET and RE-
SET programming voltages is seen (reproduced from [22]). b Progressive evolution
of the resistance of two measured devices with consecutive weak RESET pulses. We
see non-linearity and instability of the resistance change with consecutive applied
voltage (reproduced from [23]). c Cycle-to-cycle programming variability in resis-
tance states, Distribution of the low resistance state for different SET programming
conditions (reproduced from [24]). d Cumulative distributions of OxRAM devices
in eight different conductance levels, after standard iterative programming, a resis-
tance drift can be seen (reproduced from [25]).

set and reset operations to achieve the desired state.

Another challenge is non-linearity, which refers to the fact that the resistance of an OxRAM-

based memristor does not change in a linear fashion with applied voltage, as shown in Fig. 4.1b.

The resistive states exhibit stochastic and non-linear incremental resistance changes, with two

progressive increase regimes observed in the cell resistance: an initial more progressive in-

crease followed by a subsequent noisier increase that suffers from Random Telegraph Noise

(RTN). This result confirms the idea that higher resistance states are less stable. During the

reading operation, a noisy reading of the resistance state may occur when a steady reading

current is applied over a period of time, which can also disturb the device state if the reading

conditions are harsh.

The OxRAM is advantageous because it can be programmed in single-level or multiple-level

states in a non-volatile fashion. However, resistive states obtained after programming are im-
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perfect even under identical programming conditions. This imperfection is called variability,

with two main types distinguished in the OxRAM: device-to-device variability, which refers to

the variation between different devices, as seen in Fig. 4.1b, where the progress of the resistance

state of two devices differs even under the same programming conditions; and cycle-to-cycle

programming variability, which refers to the programmed resistance state differing over suc-

cessive programming cycles for the same device. Fig. 4.1c shows the probability distributions

of cycle-to-cycle conductance variability of a single device programmed under three different

SET programming conditions, with the distributions fitted using a normal distribution.

Even if the programming process is optimized to achieve ideal resistive states, OxRAM-

based memristors are still prone to resistance instability, called the drift effect, which refers

to the fact that the resistance state of the memristor can change over time, even without any

external stimuli, potentially leading to data loss. This effect can be more pronounced in the

high resistance state (or low conductance state, LCS), as shown in Fig. 4.1d.

Despite the non-idealities and imperfections present in memristors, they are still consid-

ered a highly promising technology for energy-efficient computing systems. Ongoing research

and development aim to better understand the switching mechanism, mitigate the impact

of imperfections, and even leverage them for improved performance. Various techniques for

characterizing and modeling imperfect memristors have been developed, and novel algorithms,

architectures, and techniques are being explored. Understanding and mitigating the impact of

imperfections in memristors is crucial for building new computing paradigms.

4.1.2 Mitigating Imperfections for Non-Conventional Computing

Imperfections and non-ideal behaviors of OxRAMs have implications for using those devices

on both conventional and non-conventional computing paradigms. If those devices are to be

utilized as a conventional digital storage memory, the programming imperfection, both Single-

Level Cell or Multi-Level Cell, can be solved using conventional EECs. However, ECCs are not

compatible solutions for near-memory computing. For this type of computing, other solu-

tions have been suggested, such as using 2T2R bit-cell structure with complimentary program-

ming as we did in our Bayesian machines (Chapters 2 and 3). Another solution is using 1T1R

structure with intense programming conditions to increase the gap between LRS and HRS for

Single-Level Cell storage, with the cost of decreasing device endurance, or the use of iterative

programming strategy to improve the programmed states distribution.

We have also seen in Chapter 1 that memristors are being explored for in-memory comput-

ing, which involves performing computational tasks directly within the memory devices, rather

than in a separate processing unit. In particular, memristors can implement multiply and accu-

mulate (MAC) operations (deep learning’s basic operation) in an analog fashion, relying only on

Kirchhoff laws. However, variability has a high impact on this type of computing, as it leads to

decreasing the computing accuracy. This is because memristor’s conductance state is used for

both analog storage and analog computing: this limits the possibility of using error correcting
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a b

c

Figure 4.2: Optimizing memristor programming algorithms. a Optimized iterative program-
ming algorithm. b Conductance cumulative probability distribution for eight dis-
tinct conductance levels programmed using the standard iterative programming al-
gorithm. c Conductance cumulative probability distributions for eight conductance
levels programmed using the optimized programming technique in a, stable resis-
tance states read after 60s and 12h. (reproduced from [25])

techniques. Therefore, the need for more accurate and stable analog states is an important as-

pect. To overcome the programming variability problems, an iterative programming algorithm

was used for the purpose of the programmed conductance state distribution (decreasing the

distribution’s STD). This algorithm relies on a program-and-verify strategy: memristor devices

are programmed multiple times, with a target conductance interval. This programming strat-

egy has successfully improved the multi-state device programming. In Fig. 4.2b (black curve),

we can see the separated programmed conductance states. However, this is only a short-term

strategy, as OxRAM conductance states suffer from instability over time ’drift effect’, as it can be

seen Fig. 4.2b (blue curve) reading the devices after 60 s from programming, the distributions

worsen, specially for the high resistance states.

To overcome the conductance instability effect (conductance drift), an optimized program-

and-verify technique was recently proposed (see Fig. 4.2a), with the addition of a wait time

of δt before the conductance verification step. This technique ensures that the verification

step will check both cases: the imperfect programmed devices and the unstable drifted states

before the next program iteration. Fig. 4.2c shows that the resulting programmed cells have

highly stable states: the conductance distributions were stable after 1 min and after 12 h. Over-

all, the non-ideal behaviors such as variability of memristors can potentially be compensated

with optimised programming techniques or a proper design choices of the bit-cells. However,

those optimizations need to be adopted in hardware, and this requires changes in the periph-
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eral circuitry, which will lead, typically, in increased circuit complexity and operational time

and energy. All of those compromises need to be studied to confirm the advantages of the

non-conventional computing in terms of energy and performance than the equivalent digital

implementations.

Finally, in neuromorphic computing, the field of research that seeks to develop brain-inspired

artificial intelligence systems, memristors have been proposed as a key element due to their

ability to implement artificial synapses. However, the non-ideal characteristics of memristors

can pose challenges to implementing accurate and reliable neural networks, especially to per-

form learning on chip. As synaptic or weight values are stored in a form of a conductance or

resistance, the non-linearity and the asymmetry effects make changing device resistance or

conductance during learning very difficult, as resistance variation is not the same when apply-

ing positive and negative voltage pulses. These imperfections are problematic as learning rules

tend to require uniform and precise weight update operations (Fig. 4.3c). The presence of noise

or device-to-device variability is contradictory to that.

One approach to mitigating the impact of imperfections in memristors for neuromorphic

computing is to develop novel algorithms and architectures that are inherently robust to im-

perfections. A hardware-aware algorithm is needed, requiring a co-design approach between

hardware and software. Overall, while imperfections in memristors can pose challenges for

building reliable computing systems, researchers are actively working on developing novel ap-

proaches to mitigate these imperfections and unlock the full potential of memristors for non-

conventional computing applications.

4.1.3 Embracing Imperfection for Non-Conventional Computing

Rather than trying to eliminate the imperfections of memristors, some research embraces those

imperfections and explores new computing approaches that leverage non-idealities. These ap-

proaches aim to take advantage of the inherent variability, non-linearity, and complexity of

memristors to enable new computing paradigms that are more efficient, robust, and adapt-

able. Some examples of such models include neural networks with stochastic synapses, brain-

inspired computing systems, and reservoir computing.

In this subsection, we report an example of embracing the device imperfection [88]. We

present a project where we were collaborating with a team from CEA-leti, about a novel ma-

chine learning approach that exploits the variability of memristors to implement in-memory

Markov chain Monte Carlo (MCMC) sampling algorithms [247] in a fabricated array of 16,384

devices configured as a Bayesian machine learning model. The algorithmic and experimental

work was performed mainly by first author Thomas Dalgaty, while I contributed to system-level

evaluations and benchmarking aspects of the paper. The approach is experimentally demon-

strated for tasks such as malignant tissue recognition, heart arrhythmia detection, and the

cartpole reinforcement learning task. We showed that cycle-to-cycle conductance variability

in memristors (see Fig. 4.3b) can be viewed as a physical random variables, which offers ran-



126 CHAPTER 4: MULTIMODE MEMRISTOR-BASED PROTOTYPING PLATFORM

dom conductance updates deriving from a known probability distribution. This feature allows

memristors to perform in-situ MCMC sampling operations; the random samples make local-

ized random jumps on the posterior distribution (see Fig. 4.3d), giving us an approximation

of the posterior distribution. The Bayesian model parameters are stored in the same devices

as conductance states. This eliminates the need to transport information between processing

and memory. Those Bayesian conductance-based models, g, can be inferred by performing the

analog dot product between the input voltage vector V, and the conductance vector g resulting

in a current flow equivalent to V.g (see Fig 4.3 a).

a b

c

d

Figure 4.3: Analog in-memory computing with imperfect memristors. a A single array row
that can perform in analog fashion a dot product V.g operation. b Probability den-
sity of the cycle-to-cycle variability for a single memristor. It follows a normal dis-
tribution, which makes memristors serve as a random variable. c (left) Gradient-
based learning algorithms iteratively compute the derivative of an error metric with
respect to a conductance model g, multiplied by a learning rate α, to determine up-
dates to be applied to the g parameters. The ideal memristor device should be capa-
ble of high precision and linear conductance updates. (right) The three panels show
the gradient descent algorithm for an increasing number of model updates (green
crosses). From an initial model, the algorithm performs gradient-based updates
until it converges to a local minimum in error. d In our work, memristor random
conductance updates are used by the sampling algorithm to perform, local random
jumps on the posterior distribution, then an approximation of this distribution is
stored.

To prove the concept of memristor-based MCMC sampling, we implement an experimen-
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tal system that consists of a computer-in-the-loop with a fabricated memristor array with 1T1R

configuration. We train the system to recognize cancerous mammographies. Benchmarked

against deterministic software-based neural network models, we find that the resulting Bayesian

models perform better,and that memristor-based MCMC trains a full model with orders of

magnitude fewer programming operations compared to existing memristor-based backpropa-

gation approaches. Finally, through the design and simulation of a fully-integrated implemen-

tation of our approach, we compare the training energy of our approach with that required

using only CMOS technology with conventional architecture approaches (MCU), and observe

an energy reduction of several orders of magnitude. Our approach could also support the im-

plementation of several Bayesian learning algorithms. This prospect is supported by the fact

that Bayesian network topologies are already employed in some biomedical machine learning

applications [248].

After the publication of our work [88], I continued to work on the design of a standalone and

fully integrated memristor-based MCMC sampling chip, which incorporates additionally to the

memristor array, analog programming, and inference circuitry. Using a new 2T1R memory

configuration (see Fig 4.4c), the chip can perform the sampling operation by realizing sensing

and programming simultaneously. The chip has been designed, fabricated, and it is at the

packaging stage now (this chip is not directly related to the one described later in this chapter).

A common feature of all ongoing research and development for the purpose of exploring,

optimizing, mitigating the impact of imperfections, or leveraging them for improved perfor-

mance is the need for an experimental platform. Our research and projects on those subjects

were due to a successful collaboration with teams that own experimental platforms. The in-

creased need for experimental validation of our ideas and for accelerating the research process

pushed us to work on developing an internal experimental platform with the help of the exper-

tise of our collaborators.



128 CHAPTER 4: MULTIMODE MEMRISTOR-BASED PROTOTYPING PLATFORM

4.2 Description of the Hybrid CMOS/Memristor Die

Memristor-based computing projects are made easier through the use of simulations based on

memristor behavioral models. Alas, these models fail to provide a perfect description of mem-

ristor non-ideal behaviors and imperfections for all programming conditions. As each project

involves the exploration of new ideas, specific programming conditions and strategies are re-

quired. This means that researchers can either use a specific model for each project or rely

on accessible experimental data based on desired programming conditions from a collabora-

tor. Alternatively, they can employ an experimental platform for the on-chip implementation

of new ideas. While the latter is the most challenging option, the use of memristor-based ex-

perimental platforms is an essential tool for researchers exploring and validating new com-

puting paradigms. Experiments allow us to collect high-quality data that would be difficult or

impossible to obtain otherwise, providing precise measurements and insights into the underly-

ing mechanisms that govern complex phenomena. Moreover, experimental platforms enable

to optimize the conditions and techniques for reading, programming, and computing using

memristors, as well as developing and testing innovative memristor-based neuromorphic con-

cepts that address specific challenges and requirements. Although it can be challenging to

design, fabricate, or gain access to cutting-edge technologies, the benefits of utilizing experi-

mental platforms cannot be overstated.
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Figure 4.4: Memory cell structures. a 1 Transistor 1 Resistor (1T1R) structure, for analog mode
computing. b 2 Transistor 2 Resistor (1T1R) structure, for digital mode computing.
c 1 Transistor 1 Resistor (1T1R) structure, for MCMC sampling.

The design choices for memristor-based integrated circuits (ICs) used in research depend

on the specific goals of the project. For instance, the memristor-based IC can be designed

as a memristor array serving as a platform for characterization, analog computing, or imple-

mentation of novel ideas such as in-situ learning algorithms. This approach offers researchers

increased flexibility, allowing direct access to memristor devices while utilizing the computa-

tional power of a computer for implementing reconfigurable logic and arithmetic functions.

Alternatively, for projects focused on demonstrating performance, complete memristor-based

Application-Specific Integrated Circuits (ASICs) can be developed to test and analyze the per-

formance of memristor-based ICs for specific tasks, such as artificial neural networks [249] and
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Bayesian inference models [14].

a b

Figure 4.5: Fabricated Multimode Hybrid Memristor-CMOS Prototyping Platform. a simpli-
fied schematic of a 1T1R cell connected to analog multiplexers, illustrating the con-
cept of switching the access mode. b schematic of the hybrid Memristor-CMOS die,
consisting of two-mode circuitry: analog mode (orange color) supplied by nominal
voltage VDD5, and digital mode (blue color) supplied by VDD, VDDC, and VDDR.

As a research group interested in brain-inspired computing and utilizing both analog and

digital computing concepts, we designed a platform capable of implementing both analog

and digital projects. For this purpose, the structure of the memory cell requires careful de-

sign. Fig. 4.4 illustrates the three basic memory cell structures that we used in designing our

memristor-based chips. Fig. 4.4a shows the 1T1R structure that can be used for analog storage

or for dense digital storage cell: we adopt this structure for the analog mode in our platform.

Fig. 4.4b illustrates the 2T2R structure that is used for reliable digital storage, which we used in

the Bayesian machines presented in Chapters 2 and 3. We also adopted this structure for the

digital mode in our platform. Fig 4.4c shows the 2T1R structure used in our new design of a

Markov Chain Monte Carlo sampling machine. In addition to analog computing, this structure

enables reading a device conductance and programming another device conductance from the

same memristor array at the same time, which is essential for the sampling process from the

memristor cycle to cycle distribution. This last structure is not implemented in our platform.

Fig. 4.5a shows a simplified schematic of 1T1R cell connected to analog multiplexers: it

illustrates the mode-switching of our platform. Each cell of the array is connected to three

mode-switching MUXs: one for the source line, one for the bit line, and one for the word line.

The designed integrated circuit embeds periphery circuitry enabling the use of memristors

within the two modes. Fig. 4.5b shows a simplified schematic for the global circuit. It uses

consistent color codes. Grey-colored blocks are the shared circuitry. They consist of 128×64

1T1R memristor array (8k devices) and the mode switching MUXs, designed using thick oxide

transistors to be compatible with high voltages. Blue-colored blocks are digital-mode circuits,
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designed using thin oxide low-power transistors and supplied by digital nominal voltage (ex-

cept for level shifters). Orange-colored blocks are analog-mode circuits, also designed using

thick oxide transistors.

4.2.1 Digital Mode Circuitry

The digital mode circuitry (Fig 4.6a) mirrors the read and program strategies used for the Bayesian

machines, as detailed in Chapters 2 and 3. In addition to the digital read and program cir-

cuits—which include row and column decoders, level shifters, and precharge sense ampli-

fiers—each column incorporates a logic-in-memory feature based on an idea orginally intro-

duced in [222].

a b

c

Figure 4.6: Digital Mode Circuitry. a Schematic of the digital mode circuitry. It consists of ad-
dress decoders, level shifters, PCSA sense and XNOR compute circuitry, input and
output shift registers. The design adopts the 2T2R structure for storing one bit. b

Schematics of the sensing circuitry with XNOR logic-in-memory feature, the pass
transistor logic XNOR, the differential precharge sense amplifier used to read the
binary memristor states and the SR Latch. c Error rate of the 2T2R approach as a
function of the error rate of the 1T1R approach, in simulations assuming a perfect
PCSA (black line) or experimentally measured on the integrated circuit of [26] (light
blue points). Blue line: error rate of a SECDED ECC using the same number of de-
vices as our 2T2R

The precharge sense amplifiers allow reading the binary states of memory cells in a highly

energy-efficient fashion while optionally performing XNOR logic operations at the same time

(Fig 4.6 b). The 2T2R memory cell with complementary approach of [220] is used in our array

for reducing the bit error rate. The total digital memory that can be stored with the complemen-
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tary approach is 4 kilobits. Because of the limitation in the number of IO pads, shift registers

are used for both logic-in-memory inputs and Data Outputs, creating limitations for data read

latency.

The efficiency of the 2T2R approach to reduce bit errors is confirmed in Fig 4.6c. This Fig-

ure plots the bit error rate of the 2T2R approach as a function of the one of the 1T1R approach,

obtained experimentally and theoretically. The theoretical result assumes a perfect sense am-

plifier. The experimental results are reproduced from [26] and were obtained on a different

integrated circuit based on the same memristor technology. We also plotted the error rate that

would be obtained when using a conventional Single Error Correcting/Double Error Detecting

correction code (SECDED, or extended Hamming) that doubles the number of memristors, as

our approach. We see that our approach reduces the number of bit errors almost equivalently

to the SECDED code. However, the SECDED code requires area, delay, and energy-costly error

decoding circuits, while, in our approach, error correction happens naturally within the sense

amplifier without any additional cost.

4.2.2 Analog Mode Circuitry

a b c

BL_ANA1, WL_ANA1, 
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Figure 4.7: Analog Mode Circuitry. a Simplified schematic of 1T1R cell in analog mode, illus-
trating the switching of analog InOuts. b Schematic of the analog mode circuitry,
with shift registers selecting inputs via Multiplexers, which consist of analog MUXs
connected to SL, BL, and WL terminals. Each MUX is controlled by a shift register,
to choose one of two analog inputs. c An example of measurement of memristor
conductance from the memristor array.

When activating the analog mode, digital circuits are deactivated, and the memristors ar-

ray connections are switched to the analog circuitry (Fig. 4.7a). In this mode, shift registers

configure input multiplexers permitting direct access to the analog state of memristors, using

low-resistance transmission gates used in the analog MUXs (Fig 4.7b). Hence, shift registers

have an equivalent function of addressing the accessed device. Each word line, bit line, and

source line is then connected to one of two analog InOut Pads (most of time, one of two ana-
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log InOuts is connected to the ground), which can be connected to external equipment, e.g.,

Keysight B1530, a pulse source and measurement unit widely used to characterize memory de-

vices. Fig. 4.7c shows an example of configuration allowing the measurement of a memristor

conductance from the array.

The analog mode has access to the 8k memristor devices that can serve as analog storage.

However, because we are limited to only two analog inputs, the array can implement analog

MAC operation only for Binarized Neural Network. Multi-level analog MAC operation can be

implemented virtually using a computer-in-the-loop experiment, based on the measurements

on each device.

4.2.3 Design Signoff and Measurement Setup

The memristor array and all analog and mixed-signal circuits were designed in a full custom

fashion. All digital circuits were placed and routed automatically using an HDL description

and the Cadence Encounter flow. Then, all circuits of the system were assembled manually and

routed automatically using a Cadence Encounter flow developed in-house using a homemade

abstract view of the memory array (see Chapter 1).

VDD5 VDDa b c

Figure 4.8: Fabricated Multimode Hybrid Memristor-CMOS Prototyping Platform. a layout
view, b Supply voltages connections and c Optical microscopy photograph.

A photograph and a layout view of our integrated circuit are presented in Figs. 4.8a-c. To

reduce the risk of damaging the dies during the packaging, we integrated complete ESD pro-

tection in this chip. We used tow sets of IO pads: foundry pads, which embed appropriate

ESD protection (Figs. 4.8a, yellow region) but that are limited to metal four, and the IO pads

provided by our partner with metal five layer (Figs. 4.8a, grey region). This is because the die

needs to be post-processed by our CEA-Leti partner to add memristors and metal five; then it

is wirebonded at metal level five during the packaging process.

Another important design choice for this chip was to have a full separation between the

supply voltages of digital circuitry and the supply voltages of the analog circuitry, from device to

the IO pads level (Figs. 4.8b). The advantage here is to reduce any kind of interference between
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the modes during measurements.

To make the system re-configurable for different projects, we developed the experimental

setup of Fig. 4.9: a PCB routes a microcontroller unit and measurement equipment with our

packaged die. To make the platform accessible to users without extensive knowledge of elec-

tronics, digital and mixed-signal circuits, interfacing Python scripts were developed to imple-

ment the basic analog and digital operations, such as read and program devices from the array.

Those scripts control all the measurement equipment, and the user only needs to develop a

specific script for implementing the functions related to the defined experiment.

Python

script
GPIBGPIB

SMABanana

USB

VDD, VDDR, VDDC, GND SL_AN, BL_AN, WL_AN

Analog 

Measurements 

Instrument

DC Supply 

Source

PCB test board

µC

Figure 4.9: Measurements setup of the prototyping platform.
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4.3 Uses of the Platform

This section briefly discusses the potential applications of our prototyping platform for both

analog and digital computing projects, highlighting its versatility and potential impact for fu-

ture research.

4.3.1 Digital Prototyping Projects

Several potential digital computing projects could be implemented on our platform. Optimiz-

ing read and programming strategies using the digital mode can allow the successful imple-

mentation of digital applications. Memristors feature a complex interplay between program-

ming energy, reading speed, read disturb effects, and device endurance, which our platform

allows understanding.

A Binarized Neural Network (BNN) can be implemented using memristors as digital storage

and the in-memory XNOR circuitry from our platform to implement the BNN multiplication

[250]; with adding memory digital or analog popcount [251] and threshold circuitry outside of

the platform, all needed computation are fulfilled.

Synaptic metaplasticity in binarized neural networks [252] is another interesting project

that could be implemented using the platform, for attempting to overcome the “catastrophic

forgetting” problem of neural networks. The hidden weights used by binarized neural net-

works, can be used as metaplastic variables, and memristors can store the analog values of

those weights.
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Figure 4.10: Principle of logic-in-memory ternary input weight multiplication. The input is
voltage IN, the weight is stored in the 2T2R cells, the multiplication is done in two
cycles.
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Another project idea concerns memristor-based Ternary Neural Networks (TNN). It would

extend the basic approach of storing ternary values in the 2T2R structure shown in [253]. In

this approach, weights are programmed using two memristors per weight. Discharge rates

reveal memristor states: slow discharge occurs when both memristors are in high resistance

state (HRS), representing zero weight; if one memristor is in low resistance state (LRS) and the

other in HRS, either the output or the complimentary discharges in a few ns depending on the

programmed weight being 1 or -1. I have proposed an update of this concept, which can be

implemented in the platform, where this behavior enables logic-in-memory operations in two

cycles (see table in Fig. 4.10): the sense amplifier output reflects the product of input IN and

the programmed weight.

4.3.2 Analog Prototyping Projects

Figure 4.11: Measurement of memristor resistance as a function of number of RESET pro-

gramming pulses. A characterization experiment for implementing a synaptic
learning rule.

The analog mode of the platform can be used to prototype computing concepts where

memristors are used in an analog fashion, e.g., as artificial synapses in machine learning or

neuromorphic circuits [103]. Fig. 4.11 shows measurements on a memristor in our platform

when applying a succession of 15,000 1V 1.5-µs programming pulses: the memristor resistance

progressively increases, a feature that permits the memristor to implement a synaptic learning

rule. This use is particularly appealing due to its compactness, but the imperfections of mem-

ristors (thermal and random telegraph noise, cycle-to-cycle, and device-to-device variability)
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pose challenges that make it necessary to test ideas experimentally. Our platform supports pro-

totyping various neuromorphic experiments, targeting inference, deterministic or probabilistic

learning [88].

In fact, a Ph.D. student of the group, Marie Drouhin, is currently utilizing the platform to

demonstrate the training of a memristor-based neural network using equilibrium propagation,

a hardware-friendly alternative to the widely-used backpropagation algorithm [254]. Equilib-

rium propagation addresses some of the hardware limitations associated with backpropaga-

tion, such as the need for complex weight update computations and excessive data movement,

making it an attractive choice for implementation on neuromorphic hardware like our plat-

form. The student’s research aims to showcase the potential of memristor-based neuromor-

phic systems in efficiently executing learning tasks and to provide insights into the practical

challenges and performance trade-offs associated with this innovative approach.

The concept of mortal computation and the new Forward-Forward Algorithm (FFA) have

been recently suggested by Geoffrey Hinton [255]. These new concepts have promising im-

plications for the future of computing, as they offer hardware-friendly algorithms, energy, and

cost savings. Memristors are particularly well-suited for implementing the FFA and support-

ing mortal computation. Our memristor-based experimental platform is an ideal candidate

for projects of implementing the FFA, as it allows for the exploration and optimization of the

unique properties of individual memristors.
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4.4 Conclusion

In conclusion, memristors offer unique characteristics that make them a promising hardware

solution for implementing new computing paradigms. However, several challenges, memristor

imperfections, need to be addressed to fully utilize their potential. Experimental platforms are

crucial for addressing these challenges and developing and testing innovative memristor-based

concepts.

We have presented a multimode memristor-based prototyping platform that enables the

implementation and exploration of new ideas and the validation and optimization of reading,

programming, and computing techniques. Our hybrid CMOS/memristor integrated circuit in-

cludes periphery circuitry for using memristors within digital circuits and an analog mode with

direct access to memristors. The platform has been designed, fabricated, and tested for both

digital and analog computing concepts.

Future research directions and opportunities for using memristor-based experimental plat-

form in energy-efficient AI applications are vast. Currently, we are using the platform to vali-

date multiple digital logic-in-memory and analog neuromorphic concepts within two research

laboratories, and we plan to make the platform available to other research groups.





Conclusions and Future work

“The future depends on some graduate student who is

deeply suspicious of everything I have said.”

Geoffrey HINTON
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Summary

Revisiting the research objectives laid out in the introduction, this thesis tackles two key chal-

lenges in the field of AI: energy consumption and trustworthiness. As AI becomes increas-

ingly integrated into our daily lives, it is imperative to follow a mindful and cautious develop-

ment strategy. This approach ensures the preservation of human safety, natural resources, and

the environment. The primary focus of this thesis was the development of specialized inte-

grated circuits capable of supporting low-energy AI models, particularly for edge applications

in resource-constrained environments. The incorporation of Bayesian inference – an AI tech-

nique celebrated for its transparency and explainability – was a crucial aspect of our approach,

as it addresses trust issues in AI. This integration promotes the creation of applications that are

not only transparent but also reliable.

Inspired by the astounding energy efficiency and intelligence of the human brain, we uti-

lized the near-memory computing architecture, facilitated by cutting-edge nanoelectronic tech-

nology. This endeavor called for an interdisciplinary approach, merging fields such as artificial

intelligence, computer architecture, and emerging technologies. A key focus was the exploita-

tion of the non-volatility and near-memory capabilities of memristors, along with their other

non-ideal characteristics. The designs we created associate logic and memory, resulting in high

energy efficiency, ideally suited for edge computing. The first three chapters directly served

the thesis’s objectives, while the fourth chapter ventured further to address the fundamental

challenges associated with memristors, a promising emerging nanodevice for new computing

paradigms.

In Chapter 1, we set out a comprehensive exploration into the potential of near-memory

computing architecture for edge AI applications. We began by investigating the evolution of

making efficient chip, before discussing the limitations of von Neumann Machines with re-

spect to the new computing and energy efficiency demands. We emphasized the shift to-

wards In/Near-Memory Computing using emerging memories, such as memristors. The core

of this chapter was the creation of a basic Bayesian machine architecture leveraging mem-

ristor technology. Our project aims to make substantial contributions to nanodevice-based

Bayesian inference by bringing fully developed, efficient memristor-based accelerators to re-

ality. This chapter laid a solid foundation for developing energy-efficient Bayesian machines

using memristors and set the stage for the subsequent development of two specific integrated

circuits—stochastic and logarithmic Bayesian machines—discussed in Chapters 2 and 3, re-

spectively.

In Chapter 2, we reported considerable progress in developing, fabricating, and measuring

a Bayesian machine implemented with a stochastic computing approach in a system with dis-

tributed memristor arrays. The machine showcases its ability to perform local computations,
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minimizing energy movement, leading to far superior energy efficiency compared to a conven-

tional microcontroller unit for a gesture recognition task. We opted for a digital computing-

based design, driven by the specificities of Bayesian inference and the near-memory comput-

ing approach. This decision facilitated the deployment of a simple sense amplifier for reading

memristors, yielding several benefits, including supply voltage flexibility, calibration-free oper-

ation, mitigation of read disturbances, and immunity to device variation. The digital approach

also allowed us to demonstrate a complete system comprising 16 small memory blocks. The

machine’s use of stochastic computing offers natural resilience to soft errors and radiation,

making our machine well-suited for deployment in extreme environments. The results of our

work on this project have been successfully published in the Nature Electronics journal [14].

We further explored strategies to decrease the dominant energy consumption in our machine,

associated with random number generation. Our proposition involved utilizing nanodevices

to locally generate high-quality random bits, which could potentially result in significant en-

ergy cost reduction. We ventured into fabricating several prototype circuits employing unsta-

ble SMTJ devices with PCSA sensing circuitry to generate random bits. The progress made in

this chapter paves the way for further exploration in the field of Bayesian machines, stochastic

computing, and the efficient use of nanodevices.

In Chapter 3, we addressed the limitations of stochastic computing in memristor-based Bayesian

machines and presented logarithmic computing as an effective solution. This method en-

hances precision and accelerates inference operations, all while preserving the architecture

and design choices of the original Bayesian machine. The Logarithmic machine, also imple-

mented with distributed memristor arrays, inherits all the benefits of our Bayesian inference

approach, including reduced data movement, explainable models, uncertainty information,

and efficient training with limited data. We conducted a comparative study based on measure-

ments from two prototype Bayesian machines we fabricated: the logarithmic and the stochas-

tic Bayesian machines. Both machines produced accurate measurement results under a vari-

ety of supply voltages, demonstrating the high robustness and supply voltage flexibility of our

Bayesian inference machines. Further energy estimation, performed using a homemade en-

ergy estimation framework, confirmed that both designs could execute a gesture recognition

task using significantly less energy than a microcontroller unit. The choice between the two

designs ultimately hinges on specific applications and their respective energy and accuracy

constraints. Our findings underscore the potential of memristor-based near-memory Bayesian

computing as a promising solution for energy-efficient machine learning systems, even when

using affordable technology such as the 130-nanometer process. The results of our work on

this project have been successfully presented in the DATE 2023 conference [86]. Inspired by

the encouraging results of our Bayesian machine studies, as presented in Chapters 2 and 3, we

were motivated to develop a larger, more competent system capable of handling real tasks on-

chip. Consequently, we designed and fabricated a large-scale, multi-computing mode chip that
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features both logarithmic and stochastic computing modes. This dual-mode chip allows us to

harness the benefits of both computing modes. These promising developments have set a solid

foundation for us to continue working on several practical tasks for future research directions.

In Chapter 4, we addressed the inherent challenges associated with the use of memristors.

Recognizing memristors’ imperfections as significant hurdles to overcome, we underscored

the crucial role of experimental platforms for confronting these issues and fostering the de-

velopment and testing of innovative memristor-based concepts. To this end, we introduced

our multimode memristor-based prototyping platform, designed to facilitate the implementa-

tion of both analog and digital projects. Following successful design, fabrication, and testing

phases, the platform emerged as a promising conduit for the exploration of new ideas, along-

side the validation and optimization of reading, programming, and computing techniques.

The platform has been presented in the ASP-DAC 2023 conference for the university design

contest [87]. Looking to the future, the potential for using this memristor-based experimental

platform in energy-efficient AI applications is vast. Currently, the platform is employed in two

research laboratories, it is being utilized to validate an array of digital logic-in-memory and

analog neuromorphic concepts.

Implications of the Research. Our research signifies additional steps on the evolving path

of emerging computing paradigms using cutting-edge technologies. This aligns with the ob-

jective of our research group, “IntegNano”, aimed at incorporating nanodevice technologies

to address real-world issues. Our work bridges the gap between theoretical concepts, device

demonstrations, and simulations, and actual integrated system demonstrations. During this

thesis, we functioned as an intermediary between two research realms: the material and de-

vice world and the algorithms and computing world. Throughout our projects, we successfully

incorporated devices, especially memristors, into energy-efficient systems, demonstrating the

potential viability of our approaches, such as in-near memory computing with memristors, in

addressing real-world problems like AI energy efficiency and trustworthiness. This propels the

field of research forward, edging closer to more mature deployment in the near future.

Limitations. Much like an iceberg, the visible success of research is always underpinned by

invisible hard work in overcoming limitations. During our research, we encountered numerous

difficulties inherent to working in emerging research fields, utilizing immature technologies,

design tools, and methodologies. A substantial portion of our work focused on resolving these

issues. Given our young research group, it was initially challenging to develop sophisticated

systems. We chose to progress incrementally, enhancing the complexity of our designs and

projects in tandem with our accumulating experience.

Reflection. Reflecting on our journey, it is evident that our research, albeit challenging, has

been immensely rewarding. It underscored the understanding that innovative solutions re-
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quiring multidisciplinary knowledge is a complex and demanding task, necessitating a mix of

technical expertise, advanced manufacturing techniques, and substantial resources. This is es-

pecially true for research laboratories, which often face significant constraints due to limited

resources. This journey has personally transformed my perspective on developing innovative

technologies and solutions, and it has been a truly enriching journey to undertake.

Perspectives

The journey through this thesis has led to notable advancements in integrating nanoelectronic

technology in energy-efficient AI demonstrator circuits. However, these achievements are not

endpoints but stepping stones leading to a multitude of new research avenues, particularly in

an age where energy-efficient and trustworthy AI applications are of paramount importance.

Several potential research directions, outlined below, emerge from the major contributions of

this thesis.

Scaling up Memristor-based Systems: The large-scale Bayesian machine, presented in Chap-

ter 3, offers one of the most immediate opportunities for continued research. With its de-

sign and fabrication incorporating 143k memristors and 285k transistors, thorough testing and

characterization of this machine are essential next steps. The potential of this machine to tackle

real-world tasks is a fascinating aspect waiting to be explored, particularly given its dual-mode

(stochastic and logarithmic) functionality. Furthermore, it is worth investigating the develop-

ment of more advanced technology nodes to further reduce the energy consumption of our

Bayesian machines. While the 130nm CMOS process was employed in this thesis due to its

accessibility and affordability, transitioning to more advanced nodes such as 28nm or 22nm

could significantly decrease energy consumption and boost the performance of memristor-

based circuits. Looking further ahead, an aspiration is to develop a core-level demonstrator,

integrating a RISC-V processor for standalone control and computing capabilities. This would

entail augmenting the memory hierarchy, such as adding SRAMs to the system, and expand-

ing the memory size, such as using memristors’ analog capabilities, for enabling the core to

handle more complex tasks. The ultimate goal would be to develop a standalone research or

open-source platform, akin to the Arduino prototyping platform, replete with IOs, near-sensors

integration, and embedded solar power cells. This platform could advance research in smart

devices and edge AI, serving potential application areas like edge computing, Internet of Things

(IoT) devices, and wearable technology.

Expanding Integration of Nanodevice and Nanophysics in Computing: Our research also

paves the way for the integration of other emerging nanodevices into our Bayesian machine

architecture or other AI models. While memristors were primarily chosen for their in-memory

and near-memory capabilities, other nanodevices might offer additional benefits or superior
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performance under certain conditions. The SMTJ prototypes developed in Chapter 2 for RNG

and P-bits could be the starting point for exploring these possibilities. Characterization and

modeling of these devices and circuits could lead to the development of an array-level system

as an experimental platform for probabilistic computing projects.

Tackling Memristor Imperfections for analog In-Memory Computing: The challenge of ad-

dressing device imperfections remains despite the promising potential of the In/Near-memory

computing approach with memristor devices for building energy-efficient AI systems. The

multimode memristor-based prototyping platform developed in Chapter 4 provides an invalu-

able tool for future research. It can be used to test new designs, refine existing concepts, and

deepen our understanding of memristor properties and non-ideal characteristics. Moreover, it

creates an opportunity to explore memristor-based Binary Neural Networks and Ternary Neu-

ral Networks, with brain-inspired synaptic plasticity feature, which could be optimized further

with an enhanced understanding. We plan to extend the availability of this platform to other

research groups, fostering further advancements in this exciting field.

Addressing On-chip Learning Challenges: The integrated circuit developed for prototyping

memristor-based projects also lays the foundation for future research in developing and test-

ing new neuromorphic concepts and algorithms, which are hardware-friendly or adopt local

learning rules for experimental implementation and testing. The Markov chain Monte Carlo

(MCMC) sampling machine, a separate chip we developed as part of the MCMC project [88]

(not discussed in this thesis), provides an additional platform. This platform incorporates ad-

vanced analog circuitry, paving the way for addressing in-situ learning challenges. It opens up

the possibility of integrating more sophisticated Bayesian techniques, such as Bayesian neu-

ral networks, into our current Bayesian AI research direction. This could potentially lead to

substantial improvements in both accuracy and uncertainty quantification. Furthermore, the

hybrid Memristor/FeFET arrays in the BEOL of the 22nm FDSOI process, developed in col-

laboration with our partners (IM2NP and CEA-Leti), present another significant opportunity.

By harnessing the potential of two promising emerging devices in tandem with the energy ef-

ficiency of 22nm FDSOI transistors, we may be able to implement in-memory learning and

computing in innovative ways. For instance, one device could store the weight and the other

the updates, or one could store the mean and the other the standard deviation of a Gaussian

distribution.

In summary, our future research directions will explore a multidimensional solution space.

This will range from the technological dimension, incorporating several emerging nanodevice

technologies, to the conceptual dimension, which embraces diverse approaches, learning and

inference methods, and computing approaches (analog, digital, stochastic). From an archi-

tectural perspective, this includes near-memory and in-memory architectures, while from a

system scale perspective, it ranges from the device to the system level (See last Figure in this
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Ph.D. thesis Fig. 4.12).
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Résumé de Thése en Français

Introduction

L’Intelligence Artificielle (IA) se trouve à l’épicentre d’une révolution technologique, détenant un pouvoir
transformateur dans de nombreux secteurs de la société. Cependant, l’ascension de l’IA apporte avec elle
deux défis centraux qui nécessitent notre attention urgente : l’efficacité énergétique et la fiabilité. D’une
part, les exigences énergétiques croissantes de l’industrie de l’IA, alimentées par les besoins computationnels
élevés des modèles d’IA, exercent une pression sur les émissions mondiales de carbone. Cela, à son tour,
pose des menaces à la durabilité environnementale et limite le déploiement de l’IA dans des contextes à
ressources limitées tels que les dispositifs de bordure. D’autre part, la nature "boîte noire" de nombreux
systèmes d’IA et leurs processus de prise de décision opaques suscitent des préoccupations quant à leur
fiabilité. Ces problèmes représentent un obstacle considérable à l’acceptation généralisée et à l’application
responsable de l’IA.

Pour répondre à ces défis, cette thèse suit une approche interdisciplinaire, chevauchant les domaines
de l’intelligence artificielle, de l’architecture informatique et des technologies émergentes (Fig 1). L’objectif
principal est d’exploiter le potentiel de la technologie nanoelectronique nouvelle, spécifiquement les memris-
tors, pour soutenir des paradigmes de calcul à faible énergie pour les modèles d’IA, permettant ainsi leur mise
en œuvre dans des contextes à ressources limitées. En parallèle, nous utilisons l’inférence bayésienne, une
technique d’IA entièrement explicative, pour résoudre les problèmes de confiance inhérents à l’IA, favorisant
ainsi le développement d’applications d’IA transparentes et fiables.

Figure 1: Calcul Bio-inspiré. La convergence des avancements dans les algorithmes d’IA,
les architectures informatique, et les nanodispositifs contribue à l’émergence du calcul neu-
romorphique, offrant des solutions potentielles aux défis prédominants en IA, tels que
l’efficacité énergétique.

Cette thèse est le produit d’une collaboration complète impliquant neuf projets de recherche avec des



équipes de C2N, CEA Leti, IM2NP et Spintec (Fig 2). Ces projets ont cherché à explorer plusieurs solutions,
y compris le développement de circuits intégrés, qui servent de base à nos modèles d’IA basés sur les mem-
ristors. Ces circuits spécialisés incorporent une variété de technologies nanoelectroniques émergentes telles
que la RAM résistive (ReRAM), la RAM magnétorésistive (MRAM) et la RAM ferroélectrique (FeRAM).

La thèse est structurée en quatre chapitres clés. Le chapitre 1 offre un aperçu du calcul dans la mémoire
proche en utilisant les memristors comme une solution viable au défi de l’efficacité énergétique en IA,
tandis que le chapitre 2 approfondit la mise en œuvre d’un système bayésien stochastique basé sur des
memristors. Dans le chapitre 3, nous adoptons le calcul logarithmique dans l’architecture de la machine
bayésienne et ses implications pour l’efficacité énergétique. Le chapitre 4 introduit un circuit intégré conçu
pour le prototypage de projets basés sur les memristors. Chaque chapitre fournit une analyse approfondie
des processus de conception, de fabrication et de test et les implications des résultats pour le domaine.
Ce travail de thèse souligne le potentiel de la technologie des memristors et de l’inférence bayésienne pour
relever les deux défis centraux de l’IA : l’efficacité énergétique et la fiabilité.
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Figure 2: Infographie dema Thèse de Doctorat. Durant ma thèse, j’ai été incorporé princi-
palement oupartiellement dans neuf projets de recherche, aboutissant à six publications et à
la conception de sept circuits intégrés basés sur des nanotechnologies émergentes (1, 2, 3, 4
et 5 sont basés sur la RRAM, 6 est basé sur laMRAM, et 7 sur la FRAM). Les numéros représen-
tent les projets, le code couleur est jaune pour le design déposé (envoyé pour fabrication),
orange pour les circuits fabriqués et les tests commencés, et bleu pour la publication de
l’article. La plupart des designs sont fabriqués dans un processus hybride CMOS-Nanodevice
de 130nm ; seul le design 7 est basé sur un processus hybride FDSOI-Nanodevice de 22nm.



Résumé des Chapitres

Résumé du Chapitre 1: Machine Bayesienne à base du Calcul Proche de la Mémoire
Ce premier chapitre met l’accent sur l’application du raisonnement bayésien (Eq 1) à une architecture de

calcul proche de la mémoire pour l’intelligence artificielle en périphérie (Fig 3). Il décrit en détail comment
construire des Machines Bayésiennes à l’aide de memristors. Une courte revue de l’évolution de la conception
des puces sert de préambule à cette discussion, soulignant les motivations qui ont conduit à l’élaboration
de nos Machines Bayésiennes. Cette section fournit une explication approfondie des choix de conception
et du processus de développement nécessaires pour implémenter ces Machines Bayésiennes proches de la
mémoire.

P (Y |O) =
P (O|Y )P (Y )

P (O)
. (1)

L’ambition ultime de ce projet est de repousser les frontières de l’inférence bayésienne basée sur les
nanodispositifs et de réaliser des systèmes entièrement fabriqués qui renforcent la maturité des accélérateurs
bayésiens basés sur les memristors. Pour y parvenir, le projet mobilise une approche collaborative rassemblant
des compétences issues de domaines tels que la théorie bayésienne, la modélisation et la caractérisation des
dispositifs à memristor, ainsi que la conception de circuits intégrés.

Figure 3: Architecture générale de lamachinebayésienne. Les probabilités sont stockées
dans des matrices de mémoire de probabilités implémentées par des réseaux de memris-
tors. Les observations du monde réel sélectionnent les valeurs de probabilité appropriées à
partir des matrices de mémoire de probabilités, en fonction desquelles les valeurs de prob-
abilité sont lues à partir des matrices de probabilités, qui sont ensuite multipliées par des
multiplicateurs. En sortie, les résultats générés codent la distribution a posteriori.

Le chapitre s’achève en préparant le terrain pour les discussions futures sur la Machine Bayésienne
Stochastique (Chapitre 2) et la Machine Bayésienne Logarithmique (Chapitre 3). Ces circuits intégrés se



distinguent par leur flexibilité, leur simplicité et leur grande robustesse face à la variabilité des dispositifs et
aux événements uniques perturbateurs. Ces caractéristiques établissent une base solide pour les recherches
présentées dans cette thèse.

Résumé du Chapitre 2: Une Machine Bayesienne Stochastique à base de Memristors
Le Chapitre 2 décrit en détail le développement et les implications potentielles d’un système bayésien

stochastique innovant basé sur des memristors. Une combinaison unique de processus CMOS/memristor
forme le cœur de ce système (Fig 4.d), intégrant plus de deux mille memristors et trente mille transistors dans
une seule puce (Fig 4.a). Le récit débute par l’exploration de l’architecture révolutionnaire du système. Ce
design exploite les avantages de la mémoire entièrement distribuée et de le calcule stochastique, réduisant
de façon significative le mouvement des données en effectuant des calculs localement (Fig 5.a). De ce
fait, le système bayésien dépasse de manière substantielle les implémentations traditionnelles de l’inférence
bayésienne sur une unité de microcontrôleur en termes de consommation d’énergie. Ces découvertes sont
étayées par une comparaison exhaustive de la consommation d’énergie par rapport à la précision dans une
tâche de reconnaissance de gestes de la main.

Figure 4: La Machine bayésienne fabriquée basée sur des memristors. a Photographie
en microscopie optique de la puce du système bayésien. b Détail du bloc de vraisemblance,
qui se compose de circuits numériques et du bloc demémoire avec son circuit périphérique.
c Photographie de la matrice de memristors 2T2R. d Image de microscopie électronique à
balayage d’unmemristor à l’arrière du processus hybridememristor/CMOS. Toutes les sous-
figures utilisent des codes couleurs cohérents.

La performance supérieure du système repose sur son utilisation de la mémoire non volatile. Cette
caractéristique offre au système bayésien une fonction marche/arrêt instantanée précieuse, validant son utilité
même dans les environnements les plus extrêmes. Les décisions de conception de la machine bayésienne ont



été guidées par les exigences spécifiques de l’inférence bayésienne. Requérant une précision supérieure à ce
que les memristors analogiques pourraient offrir, la conception numérique a évité le besoin d’opérations de
multiplication et d’accumulation. Cette déviation par rapport aux accélérateurs de réseau neuronal basés
sur des memristors courants a conduit à une conception plus flexible qui accueille de multiples petits blocs
de mémoire. L’un des attributs notables de ce système bayésien est sa résilience intrinsèque aux erreurs
logicielle, une conséquence directe de sa dépendance à le calcule stochastique. Cette caractéristique, couplée
à la robustesse du stockage de memristors contre les radiations, rend le système bayésien idéal pour une
utilisation dans des environnements difficiles.

Figure 5: Analyse de l’énergie de lamachine bayésienne lors d’une tâche de reconnais-
sance de gestes. a Consommation d’énergie du système (consommation dynamique et des
block de mémoire) lors des trois phases de calcul : chargement des valeurs de départ dans
le LFSR, lecture des mémoires, et l’inférence réelle de 255 cycles. b Consommation d’énergie
des points importants du système lors de la phase d’inférence de 255 cycles. Toutes les
valeurs d’énergie sont données pour une tension d’alimentation de 1,2 volt.

Bien que la performance énergétique du système soit notable, la consommation d’énergie principale a
été attribuée à la génération de nombres aléatoires (Fig 5.b). Comme contre-mesure, nous avons envisagé
la possibilité de générer localement des bits aléatoires en utilisant des nanodispositifs. Le développement
ultérieur de circuits prototypes, utilisant des dispositifs SMTJ instables et un circuit de détection PCSA, a
ouvert une voie prometteuse pour des économies d’énergie supplémentaires dans notre machine bayésienne.

Le chapitre se conclut en envisageant l’évolution future de ce projet. La poursuite d’un système doté
d’une mémoire plus grande et d’une capacité de calcul supérieure, capable de gérer des tâches réelles sur
la puce, est à l’horizon. Couplée à la perspective de réduire encore plus la consommation d’énergie en
redimensionnant la conception à des nœuds technologiques plus avancés, l’avenir de ce système bayésien
innovant semble prometteur.



Résumé du Chapitre 3: Une Machine Bayesienne Logarithmique à base de Memristors
Ce chapitre entreprend une exploration à travers le dédale du calcul stochastique au sein des machines

bayésiennes basées sur les memristors. Confronté aux limites de précision, de vitesse d’inférence et de
complexité de la génération de nombres aléatoires inhérentes à ces machines, il présente une alternative
significative : le calcul logarithmique. Cette alternative se distingue par sa capacité à améliorer la précision,
à accélérer les opérations d’inférence, et à gérer efficacement les problèmes liés à l’underflow numérique et à
la perte de précision, notamment lorsqu’il s’agit de petites probabilités ou de grands ensembles de données.

Un aspect essentiel du calcul logarithmique réside dans sa compatibilité avec l’inférence bayésienne. Cette
compatibilité repose en grande partie sur le fait qu’elle transforme le calcul du produit de la distribution
a priori et des vraisemblances en opérations d’addition et de soustraction élémentaires, améliorant ainsi
l’efficacité et la vitesse de l’implémentation matérielle. Le récit se concentre donc sur l’intégration du
calcul logarithmique dans l’architecture existante de la machine bayésienne, tout en respectant les principes
de conception fondamentaux tels que l’utilisation de memristors et d’une architecture de calcul proche
de la mémoire, qui sont également présents dans le modèle stochastique. La mise en œuvre pratique de
ces théories et concepts est illustrée par l’introduction et le test d’un circuit intégré de machine bayésienne
logarithmique récemment développé. Soumis à des tests rigoureux, ce circuit démontre le potentiel du calcul
logarithmique pour améliorer l’efficacité énergétique et la précision de l’inférence bayésienne. Une validation
supplémentaire de ce potentiel est obtenue grâce à des mesures comparatives sur les machines logarithmiques
et stochastiques. Malgré les imperfections des memristors, ces mesures confirment la faisabilité de l’approche
de la machine bayésienne (Fig 6).

Figure 6: Mesures d’inférence sur lesmachines bayésiennes fabriquées. Sortiemesurée
en fonction du résultat attendu sur la machine bayésienne fabriquée a logarithmique et b
stochastique, Pour des tensions d’alimentation allant de 0,5 à 1,2 V sont superposés.

En soulignant les avantages offerts par l’approche d’inférence bayésienne, tels que les modèles explicables
et la capacité à fonctionner avec des données limitées, le chapitre fait l’éloge des vertus de la machine
bayésienne logarithmique. Cette machine se distingue par sa capacité à effectuer des calculs localement
à l’aide de memristors distribués avec un minimum de mouvement d’énergie. Cela en fait un candidat
prometteur pour gérer les situations incertaines dans les systèmes embarqués. Dans le but de résoudre le



problème de la consommation d’énergie, une étude comparative de l’énergie entre le calcul stochastique
et logarithmique est présentée (Tableau 1). L’étude indique qu’une mise à l’échelle de la conception vers
des nœuds technologiques plus avancés pourrait encore réduire la consommation d’énergie, soulignant le
potentiel du calcul logarithmique pour des systèmes d’apprentissage automatique écoénergétiques.

Le chapitre se conclut sur une note inspirante, montrant le potentiel prometteur du calcul logarithmique
dans la création de systèmes d’apprentissage automatique non seulement écoénergétiques, mais aussi plus
précis. Motivés par les résultats obtenus, l’objectif futur est de développer un système plus grand et plus
robuste, capable de gérer des tâches réelles sur la puce, nous rapprochant ainsi de la réalisation de cet
objectif ambitieux.

Architecture CLKs Précision E (nJ) E (nJ)
Inf. (%) Inf. Inf. & Rd

Stoch Conv. 255 90.0 2.17 2.47
Stoch Conv. 50 86.7 0.43 0.73
Stoch Conv. 25 82.9 0.21 0.51
Stoch PC 255 86.9 0.10 0.40
Stoch PC 50 84.4 0.06 0.36
Stoch PC 20 80.2 0.04 0.34

Logarithmique 1 90.6 0.20 0.50

Table 1: Comparaison des deux machines bayésiennes sur la tâche de reconnaissance de
gestes. Conv : calcul stochastique conventionnel. PC : calcul stochastique conscient de la
puissance. Inf : inférence.

Résumé du Chapitre 4: Une Plateforme de Prototypage Multimode à Base de Memristors
Le chapitre 4 explore le domaine innovant et stimulant de la technologie des memristors. Bien que

prometteurs pour faciliter l’émergence de nouveaux paradigmes de calcul tels que le calcul analogique,
neuromorphique, stochastique, et calcule Proch ou dans le memoire, les memristors se trouvent encore en
phase exploratoire, avec des défis intrinsèques et des imperfections. Ce contexte souligne la nécessité de
plateformes expérimentales pour le prototypage efficace, les tests et la validation de nouveaux concepts
basés sur les memristors.

Le chapitre aborde ces défis de front, en commençant par une exploration perspicace des imperfections
des memristors et de leur impact sur la mise en œuvre de nouveaux paradigmes de calcul. Il dévoile des
stratégies potentielles pour exploiter ces memristors imparfaits, mettant ainsi en évidence le rôle indispensable
des plateformes expérimentales basées sur les memristors (Fig 7). Suite à cette exploration théorique,
le chapitre se focalise sur les applications pratiques. Il présente un circuit intégré, conçu comme une
plateforme de prototypage à double mode pour les projets de memristors (Fig 8). Cette plateforme intègre
un circuit périphérique pour l’intégration des memristors dans les systèmes de calcule numériques et un
mode analogique pour une interaction directe avec les memristors (Fig 7). Ainsi, elle offre une base pour le
développement et la validation empirique de nouveaux concepts neuromorphiques basés sur les memristors.

Poursuivant le voyage de la théorie à la pratique, le chapitre illustre la conception, la fabrication, les tests



a b

Figure 7: Schematique de Plateforme de Prototypage Hybride Multimode Memristor-
CMOS. a Schéma simplifié d’une cellule 1T1R connectée à des multiplexeurs analogiques,
illustrant le concept de changement du mode d’accès. b Schéma de la puce hybride
Memristor-CMOS, composée de deux modes de circuit : le mode analogique (en orange)
alimenté par la tension nominale VDD5, et le mode numérique (en bleu) alimenté par VDD,
VDDC, et VDDR.

et les applications potentielles de cette plateforme polyvalente basée sur les memristors. La plateforme, un
hybride de circuit intégré CMOS et de memristor, témoigne de la valeur de ces plateformes expérimentales
pour surmonter les défis et affiner les concepts basés sur les memristors.

En regardant vers l’avenir, le chapitre anticipe une multitude de directions de recherche et d’opportunités,
en particulier dans le domaine des applications d’IA économes en énergie. Des plans sont actuellement en
cours pour valider de multiples concepts de logique numérique en mémoire et neuromorphiques analogiques
dans deux laboratoires de recherche. De plus, l’intention de rendre la plateforme disponible à d’autres
groupes de recherche marque un pas encourageant vers une expérimentation et une adoption plus larges des
technologies basées sur les memristors.



VDD5 VDDa b c

Figure 8: Plateforme de Prototypage Hybride Multimode Memristor-CMOS Fabriquée.
a Vue en plan, b Connexions des tensions d’alimentation et c Photographie parmicroscopie
optique.

Conclusion et Projets Futurs

Cette recherche offre un examen rigoureux des problèmes de consommation d’énergie et de fiabilité en
IA, mettant en évidence la nécessité de stratégies minutieuses et réfléchies pour l’intégration de l’IA dans
la vie de tous les jours. L’étude s’est focalisée sur le développement de circuits intégrés spécialisés pour
soutenir les modèles d’IA économes en énergie, en particulier pour les applications de bord.

Un élément central de cette stratégie était l’incorporation de l’inférence bayésienne, une technique d’IA
reconnue pour sa transparence et sa responsabilité, renforçant ainsi la confiance dans les applications d’IA.
S’inspirant de l’efficacité énergétique exceptionnelle du cerveau humain, nous avons utilisé une architecture
de calcul proche de la mémoire, rendue possible par la technologie nanoelectronique avancée. Cette approche
a intégré divers domaines, dont l’IA, l’architecture des systèmes de calcul et les technologies émergentes,
en exploitant principalement la non-volatilité et les capacités de mémoire proche des memristors.

La contribution de cette recherche à de nouveaux paradigmes de calcul, notamment ceux utilisant des
technologies émergentes, est significative. En créant des liens entre les matériaux et les dispositifs, les
algorithmes et les systèmes de calcul, elle fournit une voie concrète pour intégrer des dispositifs tels que
les memristors dans des systèmes économes en énergie. Elle ouvre la voie à de futures avancées en matière
d’efficacité énergétique et de fiabilité de l’IA.

Orientations pour la recherche future :
Plusieurs pistes prometteuses se dessinent pour la recherche future :
Optimisation des systèmes basés sur les memristors : Il est intéressant d’explorer davantage les tests

et l’amélioration de la machine bayésienne à grande échelle conçue dans cette étude, avec une attention
particulière portée aux nœuds de technologie avancée pour l’efficacité énergétique.

Intégration de nanodispositifs et de la nanophysique dans les systèmes de calcul : Il y a place pour une
intégration supplémentaire de nanodispositifs émergents dans notre architecture de machine bayésienne et
d’autres modèles d’IA, en commençant par les prototypes SMTJ.



Surmonter les imperfections des memristors : Les imperfections des dispositifs persistent comme un
défi important, et la plateforme de prototypage multimode basée sur les memristors développée dans cette
recherche offre un outil unique pour relever ce défi.

Aborder les défis de l’apprentissage sur puce : Le circuit intégré développé ouvre une voie pour l’examen
de nouveaux concepts et algorithmes neuromorphiques, en exploitant la machine d’échantillonnage MCMC
et les réseaux hybrides Memristor/FeFET.
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Figure 9: Un graphique des perspectives Un graphique prospectif illustrant la croissance
projetée de nos efforts de recherche, l’axe des X représentant l’échelle des démonstrateurs
du dispositif au circuit complet, et l’axe des Y indiquant le nombre de dispositifs dans les
circuits. La ligne linéaire symbolise l’évolution de nos conceptions, des projets existants aux
projets futurs, démontrant une augmentation anticipée à la fois de l’échelle et de la com-
plexité.


