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Résumé 
 

L'hydrogène produit à partir de sources renouvelables et utilisé dans les piles à combustible pour 

diverses applications, tant mobiles que stationnaires, constitue un vecteur énergétique très prometteur, 

dans un contexte de développement durable. Les « feuilles de route » stratégiques, élaborées au niveau 

européen, national ou régional, consacrées aux potentialités énergétiques de l’hydrogène, ainsi que 

l’analyse des publications scientifiques ont cependant identifié le manque d'infrastructures, comme 

l'un des principaux obstacles au développement de l'économie « hydrogène ». Cette étude s’inscrit 

dans le cadre du développement d’une méthodologie de conception d'une chaîne logistique 

« hydrogène » (production, stockage et transport). La formulation, basée sur une procédure de 

programmation mathématique linéaire en variables mixtes, implique une approche multicritère 

concernant la minimisation du prix de revient de l’hydrogène, l’impact sur le réchauffement 

climatique et un indice de risque, en prenant en compte une échelle tant régionale que nationale. 

L’optimisation multi-objectif repose sur une stratégie Ɛ-contrainte développée à partir d’une méthode 

lexicographique menant à la construction de fronts de Pareto offrant un grand nombre de solutions. La 

procédure d’aide à la décision M-TOPSIS est ensuite utilisée pour choisir le meilleur compromis. Le 

modèle est appliqué à une étude de cas en Grande-Bretagne, issue de la littérature spécialisée, qui sert 

de référence pour comparer les approches mono- et multi-objectif. Ensuite, la modélisation et 

l'optimisation de la chaîne d'approvisionnement d'hydrogène pour la région Midi-Pyrénées ont été 

étudiées  dans le cadre du projet «H2 vert carburant». Un problème mono/multi-période est traité selon 

des scénarios d'optimisation basés sur la stratégie Ɛ-contrainte développée à partir d’une méthode 

lexicographique. Le système d’information ArcGIS® est ensuite utilisé pour valider les solutions 

obtenues par optimisation multi-objectif. Cette technologie permet d'associer une période de temps 

aux configurations de la chaîne logistique hydrogène et d’analyser plus finement les résultats de la 

conception du réseau H2. L’extension au cas de la France répond à un double objectif : d'une part, 

tester la robustesse de la méthode à une échelle géographique différente et, d’autre part, examiner si 

les résultats obtenus au niveau régional sont cohérents avec ceux de l'échelle nationale. Dans cette 

étude de cas, l'outil spatial ArcGIS® est utilisé avant optimisation pour identifier les contraintes 

géographiques. Un scénario prenant en compte un cycle économique est également traité. Les 

optimisations mono et multi-objectif présentent des différences relatives au mode de déploiement de 

filière, centralisé ou décentralisé, et au type de technologie des unités production, ainsi qu’à leur taille. 

Les résultats confirment l'importance d'étudier différentes échelles spatiales. 

MOTS CLÉS : Optimisation multi-objectif ; chaîne logistique ; hydrogène ; Ɛ-contrainte ;  

méthode lexicographique ; MILP ; ArcGIS®. 



Abstract 
 

Hydrogen produced from renewable sources and used in fuel cells both for mobile and stationary 

applications constitutes a very promising energy carrier in a context of sustainable development. Yet 

the strategic roadmaps that were currently published about the energy potentialities of hydrogen at 

European, national and regional level as well as the analysis of the scientific publications in this field 

have identified the lack of infrastructures as a major barrier to the development of a « hydrogen » 

economy. This study focuses on the development of a methodological framework for the design of a 

hydrogen supply chain (HSC) (production, storage and transportation). The formulation based on 

mixed integer linear programming involves a multi-criteria approach where three objectives have to be 

optimised simultaneously, i.e., cost, global warming potential and safety risk, either at national or 

regional scale. This problem is solved by implementing lexicographic and Ɛ-constraint methods. The 

solution consists of a Pareto front, corresponding to different design strategies in the associated 

variable space. Multiple choice decision making based on M-TOPSIS (Modified Technique for Order 

Preference by Similarity to Ideal Solution) analysis is then selected to find the best compromise. The 

mathematical model is applied to a case study reported in the literature survey and dedicated to Great 

Britain for validation purpose, comparing the results between mono- and multi-objective approaches. 

In the regional case, the modelling and optimisation of the HSC in the Midi-Pyrénées region was 

carried out in the framework of the project “H2 as a green fuel”. A mono/multi period problem is 

treated with different optimisation scenarios using Ɛ-constraint and lexicographic methods for the 

optimisation stage. The geographic information system (GIS) is introduced and allows organising, 

analysing and mapping spatial data. The optimisation of the HSC is then applied to the national case of 

France. The objective is twofold: on the one hand, to examine if the methodology is robust enough to 

tackle a different geographic scale and second to see if the regional approach is consistent with the 

national scale. In this case study, the ArcGIS® spatial tool is used before optimisation to identify the 

geographic items that are further used in the optimisation step. A scenario with an economic cycle is 

also considered. Mono- and multi-objective optimisations exhibit some differences concerning the 

degree of centralisation of the network and the selection of the production technology type and size. 

The obtained results confirm that different spatial and temporal scales are required to encompass the 

complexity of the problem. 

 

KEYWORDS: Multi-objective optimisation; supply chain; hydrogen; Ɛ-constraint;  

                        lexicographic method; MILP; ArcGIS®. 

 



 

Resumen 
 

El hidrógeno obtenido a partir de fuentes renovables puede ser utilizado en las pilas de combustible 

para diversas aplicaciones tanto móviles como estacionarias y constituye un vector energético muy 

prometedor en un contexto de desarrollo durable. Las hojas de ruta estratégicas elaboradas a nivel 

Europeo, nacional o regional  se han dedicado a estudiar las potencialidades del hidrógeno. Tanto las 

hojas de ruta como las publicaciones científicas han identificado la falta de infraestructura como uno 

de los principales obstáculos en el desarrollo de la economía del hidrógeno. Este estudio se sitúa en el 

marco de desarrollo de una metodología de diseño de la cadena de suministro del hidrógeno 

(producción, almacenamiento y transporte). La formulación está basada en un procedimiento de 

programación matemática lineal en variables mixtas (MILP) que implica un enfoque multi-criterio 

relacionado a la minimización de costo, el impacto ambiental y el índice de riesgo, tomando en cuenta, 

una escala tanto regional como nacional. La optimización multi-objetivo se lleva a cabo a través de 

una estrategia de Ɛ-restricciones para obtener los frentes de Pareto ofreciendo un gran número de 

soluciones. La metodología de ayuda a la toma de decisiones M-TOPSIS es enseguida utilizada para 

encontrar el mejor compromiso. El modelo es aplicado primeramente a un caso de estudio en Gran 

Bretaña tomado de la literatura especializada que sirve de referencia para comparar los enfoques 

mono- y multi-objetivo. En seguida, la modelización y la optimización de la cadena de suministro del 

hidrógeno son aplicados a la región Midi-Pyrénées en el marco del proyecto “H2 carburante verde”. 

Un problema mono/multi-periodo es tratado dependiendo el tipo de escenario. La resolución se basa 

en las estrategias del método lexicográfico y Ɛ-restricciones. Posteriormente, el sistema de 

información  ArcGIS® es utilizado para validar las soluciones obtenidas por optimización multi-

objetivo. Esta herramienta permite asociar un periodo de tiempo a las distintas configuraciones de la 

cadena de suministro del hidrógeno y analizar más detalladamente los resultados de la red. La 

extensión del modelo matemático al caso nacional Francés responde a un doble objetivo: de una parte, 

probar la robustez del método a diferentes escalas geográficas; por otro lado, examinar si los 

resultados obtenidos a nivel regional son coherentes con los de escala nacional. En este estudio de 

caso, la herramienta ArcGIS® es utilizada previa optimización para identificar restricciones 

geográficas. También en este caso se estudia un escenario de optimización siguiendo el ciclo 

económico. Las optimizaciones mono- y multi-objetivo presentan diferencias relacionadas al tipo de 

configuración (centralizada o descentralizada), al tipo de producción y al tamaño de las unidades. Los 

resultados confirman la importancia de estudiar diferentes escalas espaciales. 

 

PALABRAS CLAVE : Optimización multi-objetivo; cadena de suministro; hidrógeno;  

                                            Ɛ-restricciones; método lexicográfico; MILP; ArcGIS®.
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INTRODUCTION GÉNERALE 

L'hydrogène produit à partir de sources renouvelables et utilisé dans les piles à combustible pour 

diverses applications, tant mobiles que stationnaires, mais également pour des usages de niche (engins 

de manutention, groupes électriques de secours, fourniture de courant pour des sites isolés, 

applications nomades…), constitue un vecteur énergétique très prometteur, dans un contexte de 

développement durable. Certes, à l’heure actuelle, le coût de production d'hydrogène reste encore 

prohibitif par rapport au prix des combustibles fossiles utilisés dans les transports, mais les dernières 

avancées de la technologie, conjuguées au prix élevé du pétrole, ont amélioré sa compétitivité. Un 

point clé du développement de la filière hydrogène repose sur la démonstration de faisabilité de 

l’infrastructure pour produire, stocker et distribuer l’hydrogène, en surmontant de nombreux obstacles 

à la fois techniques, économiques, et sociaux. 

 

Un certain nombre de « feuilles de route » stratégiques, élaborées au niveau européen, national ou 

régional ont été consacrées aux potentialités énergétiques de l’hydrogène et seront mentionnées dans 

le cadre de ce travail. Elles ont pour objectif majeur d’éclairer les enjeux industriels, technologiques, 

environnementaux et sociétaux et de mettre en avant les verrous associés concernant l’hydrogène. 

Leur analyse, ainsi que la synthèse des publications scientifiques récentes du domaine, s’accordent sur 

la nécessité de développer des études systémiques de démonstration de faisabilité de la filière, pour 

valider l’intérêt technico-économique de la production et de la valorisation de l’hydrogène produit à 

partir de sources renouvelables : ces travaux impliquent le développement de modèles basés sur des 

scénarios économiques de déploiement de la filière. 

 

Ce travail de doctorat, qui s’inscrit dans ce contexte, est exclusivement consacré à des applications de 

l’hydrogène à des fins d’électromobilité. Mais au-delà de son intérêt comme carburant propre et 

viable, l’hydrogène pourrait également devenir une des pierres angulaires du système énergétique dans 

le cadre de l’accroissement des énergies renouvelables et intermittentes : l’hydrogène est identifié 

comme un moyen flexible de stocker l’énergie électrique pour les applications transport et 

stationnaire, sur le réseau et hors réseau. Le stockage d’énergie par le vecteur hydrogène a non 

seulement du potentiel pour le marché du stockage, mais également pour la valorisation de ces 

énergies stockées dans d’autres marchés, notamment celui du transport de masse. L’hydrogène a donc 

de sérieux atouts à faire valoir, qui dépassent les aspects qui seront spécifiquement abordés dans ce 

manuscrit et qui renforcent la portée de ce travail. 



L’étude proposée dans ce mémoire est dédiée au développement d’un modèle de chaîne logistique de 

l’hydrogène, basé sur une procédure de programmation mathématique linéaire en variables mixtes, 

prenant en compte une approche multicritère impliquant le prix de revient de l’hydrogène, l’impact sur 

le réchauffement climatique et un indice de risque. Elle analyse l’impact de différentes sources 

d’énergies et de divers procédés de production d’hydrogène, de différents modes de stockage et de 

distribution. Plusieurs scénarios de demande basés sur des études prospectives récentes seront étudiés 

sur l’horizon 2020-2050, selon des approches mono- et multi-périodes. L’analyse s’inscrit dans 

l’objectif global de division par quatre des émissions de gaz à effet de serre à l’horizon 2050 par 

rapport à leur niveau de 1990 (facteur 41). Les stratégies étudiées seront précisées et justifiées au fur et 

à mesure de la présentation des études. Le modèle développé a été conçu de façon générique et 

évolutive pour s’adapter, par exemple à l’extension à d’autres sources d’énergies ou à la modification 

du découpage des territoires. Si les études ont impliqué nécessairement un aspect temporel, des 

caractéristiques d’ordre territorial se sont avérées déterminantes (disponibilité de ressources 

renouvelables, contraintes géographiques…). Différentes analyses ont ainsi été menées à deux niveaux 

d’échelle spatiale, régionale (cas de la région Midi-Pyrénées) et nationale (cas de la France). 

 

Les travaux de doctorat présentés dans ce mémoire ont été menés de janvier 2011 à janvier 2014 au 

Laboratoire de Génie Chimique, LGC UMR CNRS INPT UPS 5503 au sein de l’équipe COOP 

(Conception, Optimisation et Ordonnancement des Procédés) du département PSI (Procédés et 

Systèmes Industriels. Le thème général de recherche de l’équipe COOP concerne l’optimisation et la 

conception de procédés. La bourse de thèse associée a été octroyée par CONACYT (Consejo Nacional 

de Ciencia y Tecnología, México). Ce travail a d’ores et déjà donné lieu à un certain nombre de 

publications (De-Léon Almaraz et al., 2012, 2013a, 2013b, 2014). Elles seront référencées dans les 

chapitres auxquels elles se rapportent. 

 

Nous avons eu l’opportunité de participer au cours de ce travail au projet hydrogène vert au sein de la 

région Midi-Pyrénées. Il a impliqué différents professionnels issus de secteurs distincts (entreprises, 

collectivités, universitaires) pour analyser le potentiel de déploiement de la filière hydrogène à des fins 

d’électromobilité en Midi-Pyrénées (PHyRENEES2, Midi-Pyrénées Innovation (MPI)3, WH2
4 et 

                                                      
1 Cet objectif est mentionné dans l’article 2 de la loi de programme fixant les orientations de la politique 

énergétique française (13 juillet 2005). 
2L’Association PHyRENEES a été créée en octobre 2007 autour de plusieurs partenaires (Ecole des Mines 

d’Albi, Trifyl, N-GHY, Airbus, GDF, INPT, ARAMIP,  Conseil Général du Tarn...). 
3MPI est une association loi 1901, financée par la Région Midi-Pyrénées, l'état et l'Europe. Elle a été créée en 

2006 à l'initiative du Conseil régional avec le concours de l'Etat et d'Oséo, pour améliorer la visibilité du 
paysage institutionnel et guider les entreprises dans leur démarche d'innovation. 

4 WH2est une société créée en 2011, qui se positionne comme société de courtage en énergie « H2 vert » en 
France. 



 

Trifyl5). Nous avons également présenté les résultats du projet hydrogène vert dans deux réunions de 

restitution avec les membres de PHyRENEES et MPI (12 juillet et 25 septembre 2012).  

 

Par ailleurs, le travail proposé dans le cadre de ce doctorat sur ce projet a été sélectionné pour 

participer au Débat National sur la Transition Energétique6 le 3 Juin 2013 à Toulouse, organisé en 

région par MPI. 

 

Nous avons également participé de façon active à des manifestations scientifiques et des événements 

de vulgarisation scientifique qu’il convient de mentionner dans le cadre de ce sujet sur l’hydrogène 

dont les actions de promotion sont importantes en phase de transition énergétique : « Fête de la 

science : les énergies pour tous » (présentation de la voiture à pile à combustible le 14 octobre 2012 à 

Toulouse); « Journées H2 dans les territoires » du 16-17 mai 2013 organisée par Trifyl ; « HyVolution 

2013, consacré à la filière hydrogène et piles à combustible (http://hyvolution.fr/fr) », organisé par 

Seiya Consulting du 5 au 8 septembre 2013 (Albi). 

 

Le mémoire de thèse, qui synthétise l’ensemble des travaux menés pendant ces trois années, est 

organisé en sept chapitres. La présentation de leur contenu est donnée à la fin du premier chapitre qui 

permet de poser les éléments motivant cette étude et d’introduire de façon plus détaillée les chapitres 

de ce document : 

 

Chapitre 1 Motivation de l'étude: l'hydrogène comme carburant alternatif pour le transport. Ce 

chapitre introductif a pour but de présenter le contexte énergétique. 

Chapitre 2 Conception de la chaîne logistique « hydrogène ». L'objectif de ce chapitre est de 

présenter le concept de la chaîne logistique de l’hydrogène et les principales activités qui y sont 

impliquées, i.e., production, stockage, transport et distribution.  

Chapitre 3 Méthodes et outils pour la conception de la chaîne logistique « hydrogène ». Ce 

chapitre présente les méthodes et outils utilisés dans le cadre de ce travail pour la conception optimale 

de la chaîne logistique de l’hydrogène.  

Chapitre 4 Optimisation multi-objectif pour la chaîne d’approvisionnement « hydrogène ». .Ce 

chapitre est consacré à la modélisation de la chaîne logistique « hydrogène ».  

Chapitre 5 Optimisation de la chaîne logistique « hydrogène » pour les scénarios de déploiement 

dans la région Midi-Pyrénées. La modélisation et l'optimisation de la chaîne d'approvisionnement 

                                                      
5Trifyl est un syndicat départemental de valorisation des déchets ménagers du Tarn. Dans sa mission de service 

public, elle développe le projet production d'hydrogène à partir de biogaz (50-100 m3/h) pour alimenter 2 
véhicules. 

6http://www.mp-i.fr/2013/05/debat-national-transition-energetique-production-decentralisee-dhydrogene-vert-
en-midi-pyrenees/ 



d'hydrogène vis-à-vis des caractéristiques spécifiques de la région et de ses sources d'énergie est 

décrite dans ce chapitre.  

Chapitre 6 Conception de la chaîne logistique « hydrogène » à l’échelle nationale. Dans ce 

chapitre, l'optimisation de la chaîne d'approvisionnement « hydrogène » est appliquée au cas de la 

France. 

Chapitre 7 Conclusions et perspectives. 

 

Quatre annexes seront présentées à la fin de ce travail qui correspondent d’une part aux bases de 

données et aux résultats détaillés pour chaque étude de cas et d’autre part aux concepts mis en œuvre 

dans la méthodologie d’aide à la décision M-TOPSIS. 

 



 

GENERAL INTRODUCTION 

Hydrogen produced from renewable sources and used in fuel cells both for mobile and stationary 

applications constitutes a very promising energy carrier in a context of sustainable development. 

Nowadays, the hydrogen cost is considered as prohibitive compared to the fossil fuels used in the 

transportation system, but the development of some technologies associated to hydrogen coupled with 

high oil prices has improved its competitiveness. 

 

A key point in the development of the hydrogen supply chain is the demonstration of feasibility of its 

infrastructure while many technical, economic and social obstacles must be overcome. Some strategic 

roadmaps were currently published about the energy potentialities of hydrogen at European, national 

and regional levels. Their main objective is to evaluate some industrial, technological, environmental 

and social issues and to identify the main obstacles associated to the hydrogen economy. The literature 

review of recent dedicated scientific publications, agree on the need to develop systemic studies in 

order to demonstrate the feasibility of the sector, to validate the technical and economic interest in the 

production and recovery of hydrogen produced from renewable sources. Such works involve the 

development of models based on economic scenarios for hydrogen deployment. 

 

In that context, this work only focuses on H2-mobility applications. Besides its interest as a clean and 

economically viable fuel, hydrogen can not only be viewed as a cornerstone of the energetic system in 

the general context of the increased use of renewable and intermittent energies, but also as a flexible 

storage vector that can be used for transport and stationary applications, both on- and off-grid systems. 

These various applications reinforce the scope of the proposed work. 

 

This study focuses on the development of a methodological framework for the design of a hydrogen 

supply chain (HSC) (production, storage and transportation). The formulation, based on mixed integer 

linear programming involves a multi-criteria approach where three objectives have to be optimised 

simultaneously, i.e., cost, global warming potential and safety risk. In the case of the environmental 

objective, ambitious targets are proposed in some countries: e.g. the French government adopted a 

Climate Plan (“Plan climat”) in 2004 presenting a strategy for technological research to divide by 4 

the GHG emissions by 2050 compared to current levels. Several demand scenarios based on recent 

prospective studies will be considered on the horizon 2020-2050 in a mono- or multi-period approach, 

either at national or regional scale. 



The different strategies that have been investigated will be specified and justified along this study. The 

model was designed in a generic way to be adapted to different scenarios, for example the addition of 

new energy sources or the modification in the geographic breakdown. The temporal aspect has an 

impact in the territorial features adding geographic constraints (e.g. availability of renewable resources 

per grid, district or region in a specific time period). In this study, two analyses have been conducted 

at spatial level, i.e., regional (for the Midi-Pyrenees region in France) and national (France). 

 

The doctoral research presented in this thesis was conducted from January 2011 to January 2014 at the 

Laboratory of Chemical Engineering, LGC UMR CNRS 5503 INPT UPS in the Design, Optimisation 

and Scheduling Process team (COOP- Conception, Optimisation et Ordonnancement des Procédés) 

belonging to the Process Systems Engineering department. The general scope of the COOP team 

concerns the optimisation and design of processes.  

 

The PhD scholarship was financially supported by CONACYT (Consejo Nacional de Ciencia y 

Tecnología, México). This work has already led to some publications that will be referenced in the 

chapters to which they are related (De-Léon Almaraz et al., 2012, 2013a, 2013b, 2014). 

 

During this thesis work, we had the opportunity to participate in the “Green H2 fuel” project. This 

study emerged as an initiative to evaluate the hydrogen economy in the Midi-Pyrénées region to 

enhance renewable energies and at the same time to evaluate the potential CO2 reductions. It involved 

various professionals from different sectors (industry, government and academia), e.g. PHyRENEES 

association7, the Regional Innovation Agency (Midi-Pyrénées Innovation-MPI)8, WH2
9, the Chemical 

Engineering Laboratory, Trifyl, etc.). The mathematical model developed in this thesis was adapted to 

this specific case study and the optimisation results were presented at two feedback meetings with 

members of PHyRENEES and MPI (12 July and 25 September 2012). In addition, the results of this 

project were selected to take part in the National Debate on Energy Transition (Toulouse, June 3rd, 

2013). 

 

The PhD manuscript is organised into seven chapters. A brief description of the content of each 

chapter is presented hereafter. A more detailed presentation will be given at the end of the first 

chapter: 

                                                      
7 PHyRENEES Association was established on October 2007 around several partners (Ecole des Mines, Trifyl, 

N-GHY, Airbus, GDF INPT, ARAMIP and the General Council of the Tarn ...). 
8 MPI was created in 2006 at the initiative of the Regional Council to improve the visibility of the institutional 

landscape and guide companies in their innovation projects. 
9 WH2: start-up 2011, green H2 energy broker in France. 



 

Chapter 1 Motivation for the study: hydrogen as an alternative fuel for transportation. This first 

chapter aims to present energy context. 

 

Chapter 2 Hydrogen supply chain design. The objective of this chapter is to introduce the 

concept of hydrogen supply chain and its main activities, i.e., energy sources, production, storage, 

transportation and distribution. 

 

Chapter 3 Methods and tools for HSC design. The methods and tools that are selected to develop 

the methodology of optimal design of a hydrogen supply chain are proposed in this chapter. 

 

Chapter 4 A multi-objective optimisation framework for hydrogen supply chain. This chapter is 

devoted to the modelling of the hydrogen supply chain. 

 

Chapter 5 Hydrogen supply chain optimisation for the deployment scenarios in the Midi-

Pyrénées region. Modelling and optimisation of the hydrogen supply chain is applied to the largest 

region in France considering its specific features, e.g. the available renewable energy sources. 

 

Chapter 6 Extending the frontiers: design of a hydrogen supply chain in France. In this chapter, 

a national case is considered to propose the optimal hydrogen supply chain. 

 

Chapter 7 General conclusions and perspectives. 

 

Four appendices are presented at the end of this work, which correspond on the one hand both to the 

databases and to the detailed results for each case study and on the other hand to the key concepts of 

the M-TOPSIS methodology.  





 

1. MOTIVATION FOR THE STUDY: HYDROGEN AS AN 

ALTERNATIVE FUEL FOR TRANSPORTATION 

Résumé 
Ce chapitre introductif a pour but de présenter le contexte énergétique lié au domaine du transport et les 
motivations qui conduisent à retenir l’hydrogène comme un vecteur alternatif d’énergie dans la transition 
énergétique. Nous exposons dans un premier temps la problématique liée au système de transport actuel : 
émission de gaz à effet de serre et effet sur le réchauffement climatique, pollution locale dans les villes et 
dépendance aux carburants issus de ressources fossiles. Nous présentons ensuite les alternatives aux 
carburants actuels comme les biocarburants ou l'hydrogène, qui sont comparés notamment en termes 
d’efficacité du puits à la roue. Le cas de l’hydrogène, retenu dans cette étude, fait l’objet d’une attention 
particulière vis-à-vis de ses atouts, des cibles à atteindre en termes de prix et de potentiel de réchauffement 
climatique, notamment à travers son mode de production. Les aspects liés à la sécurité et à son acceptabilité 
sociale sont également abordés. La problématique du déploiement de la chaîne logistique hydrogène, qui 
est le cœur de ce travail, est largement présentée, notamment à travers les nombreuses « feuilles de route » 
et scénarios du plan de transition qu’elle a suscités. L’ensemble de l’analyse justifie les motivations de ce 
travail dédié à la conception de la chaîne logistique de l’hydrogène mettant en œuvre une approche 
d’optimisation multi-objectif, et à l’étude de scénarios pertinents en vue d’une aide à la décision pour le 
développement de la chaîne. 
 
Abstract 
This first chapter presents the transportation energy context and the motivations to consider hydrogen as an 
alternative energy carrier in the transition towards a new energetic paradigm. The current transportation 
system is first presented with its typical features: global warming potential, air pollution in big cities and 
fossil dependency associated with the production and use of products such as oil and diesel. Some fuel 
alternatives are proposed to replace fossil products (e.g. biofuels, electricity, etc.). Particular emphasis is 
paid to hydrogen which is the core of this study. The different energy sources and production modes to 
obtain hydrogen are briefly reviewed, with specific focus on their associated efficiencies. The safety issues 
and the social acceptability are also briefly discussed as well as the problems associated with the start-up of 
a hydrogen economy and particularly those related to the lack of infrastructure. In order to overcome these 
barriers that have been reported in the roadmaps and energy transition plan scenarios, this work aims to 
model and design the hydrogen supply chain through a multi-objective optimisation framework to aid-
decision making. 
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2 Multi-objective optimisation of a hydrogen supply chain 

 

    Acronyms 

 
 
ADEME Agence de l'environnement et de la maîtrise de l'énergie (Agency 

for Environment and Energy Management) 
AFHYPAC Association Française pour l'Hydrogène et les Piles à Combustible 

(French Association for Hydrogen and Fuel Cells) 
BEV Battery Electric Vehicle 
CaFCP California Fuel Cell Partnership 
CCS Carbon Capture and Storage 
CNG Compressed Natural Gas 
DOE Department of Energy 
FCEV Fuel Cell Electric Vehicle 
GHG Greenhouse gas 
GIS Geographic Information System 
GWP Global Warming Potential 
ICE Internal Combustion Engine 
JHFC Japan Hydrogen and Fuel Cell demonstration project 
LPG Liquefied Petroleum Gas 
NEDO New Energy and Industrial Technology Development Organisation 
NIP National Innovation Program 
PEM Proton Exchange Membrane 
PHEV Plug-in Hybrid Electric Vehicle 
TOPSIS Technique for Order Preference by Similarly to Ideal Solution 
TtW Tank-to-Wheel 
WtT Well-to-Tank 
WtW Well-to-Wheel 
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1.1 Introduction 
Crude oil and petroleum products continue to dominate the energy mix in Europe, representing 35% 

(617 M tonne of oil equivalent (toe)) of the Gross Inland Consumption in 2010 (Eurostat. European 

Commission, 2012) (see Figure 1.1a). In the same year, transportation was the largest consumer (32%) 

of the total energy, followed by households and industry (see Figure 1.1b). Oil is still the largest 

primary fuel with more than 95% of transport energy demand (Ball and Wietschel, 2008) from which 

petroleum products such as gasoline and diesel are produced.  

 
a)                                                                                     b) 

Figure 1.1a) EU-27 Gross Inland Consumption (as % of total Mtoe) 2010 

1.1b) EU-27 Total final energy consumption (1995-2010) (Eurostat. European Commission, 2012). 

 

The main advantages of producing gasoline and diesel are related to the existing infrastructure, know-

how and experience as well as a huge demand allowing efficiency improvement. Prices in fossil fuel 

vary in each country. The dependency in the current fossil fuel system constitutes a main issue with 

the antecedent of two oil crises in the 70’s and 80’s. Any oil supply disruption would cause 

tremendous impacts in fuel prices.  

 

The use of petroleum products has also significant impacts in health and environment, especially in the 

big cities. Approximately, 800,000 deaths annually worldwide can be attributed to urban pollution 

from which a significant portion is generated by vehicles (Braun Martin, 2009). The transport sector 

today accounts 17% of global CO2 emissions, with the vast majority of emissions coming from road 

transport. It is also responsible for 20% of the projected increase in both global energy demand and 

greenhouse gas (GHG) emissions until 2030 (Ball and Wietschel, 2008). As mobility is one of the 

major drivers of economic growth and societal development, reducing energy demand and CO2 

emissions from transport is a particular challenge. Vehicle industry is trying to improve fuel efficiency 

and to decrease tail pollution.  

 

Mtoe 
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The potential economic and geopolitical implications of all these problems are triggering the search 

for alternative fuels such as hydrogen. To ensure energy security, a large diversified portfolio of 

energy sources and energy carriers10, new propulsion systems and a more efficient energy 

management constitute complementary and alternative actions. This research work is devoted to 

explore the potential of hydrogen as an alternative fuel used for transportation. More particularly, this 

thesis intends to provide a comprehensive study of the feasibility of hydrogen as a transportation fuel 

from a supply chain point of view.  

 

The remainder of this chapter is organised as follows. The next section is dedicated to the main issues 

of the current transportation system (fossil fuel dependency, air pollution and global warming) and 

lists some initiatives associated with climate change.  Section 1.3 presents some alternatives to current 

fuels as compressed natural gas, biofuels, hydrogen, etc. and compares their Well-to-Wheel (WtW) 

efficiencies. The introduction of hydrogen as an alternative fuel is the core of section 1.4. The targets 

related to fuel prices and global warming potential (GWP) are presented in the same section where 

also safety and acceptability issues are discussed. Section 1.5 then presents the roadmaps that have 

been reported for hydrogen deployment. They are often used by international organisations, business 

and industry to address the challenges of new technologies, taking generally different approaches and 

varying in the depth and intensity of their analyses. They are presented at this level since they 

generally provide useful insights into how stakeholders envision a hydrogen economy development. 

For example, how hydrogen will be produced in the short, medium and long terms? How will it be 

distributed and stored? The second part of this section is devoted to transition plan scenarios. It has 

been highlighted that more precise analyses are necessary to design the hydrogen supply chain. This 

chapter ends with the presentation of the scientific objective and motivation of the study in section 1.6. 

1.2 Main issues of the current transportation system 

1.2.1 Fossil fuel dependency 

There will always be considerable uncertainty concerning how much oil still exists under the Earth’s 

surface and how much can be recovered. There is a long history of failed forecasts regarding the 

peaking of oil production and experience shows that reserves are usually underestimated (Ball and 

Wietschel, 2008). The BP Statistical Review (BP Stat, 2013) reported oil to last for approximately 53 

years (see Table 1.1).  

 

In Europe, 59% of the total energy imports consisted of crude oil and petroleum products in 2010 

(Eurostat. European Commission, 2012). Moreover, there is a high geographic concentration of oil as 

                                                      
10According to ISO 13600, an energy carrier is either a substance (energy form) or a phenomenon (energy 

system) that can be used to produce mechanical work or heat or to operate chemical or physical processes. 
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well as a growing import dependency on few countries (i.e. Russia, Norway and Libya were the main 

oil suppliers for Europe in 2010, exporting almost 60% of the total oil demand). 

 

Table 1.1 Global reserves of fossil sources at end 2012 (BP Stat, 2013). 
 Reserves-to-production (R/P) ratio (years)11 
Oil 52.9 
Natural gas 55.7 
Coal 109 

 

Oil scarcity has led to make big efforts to postpone the "peak oil", for example, the recovery rate 

improvement in the already exploited deposits, the deep offshore production, the exploitation of extra-

heavy oil reserves, or even unconventional resources, such as oil shale (Direction générale de la 

compétitivité, de l’industrie et des services, 2011). 

 

Renewable energy seems to be a promising option to reduce the fossil fuel dependency. The 

fluctuating and intermittent renewable energy makes necessary to strengthen the control of energy 

flows between the supply and demand of electricity. The implementation of flexible and efficient 

storage facilities appears as a key answer to this problem. In this context, hydrogen could be produced 

to store energy and manage the intermittency of the renewable energy sites as a way to optimise the 

efficiency of the systems. As transportation uses an important ratio of the fossil sources, new 

propulsion systems and fuels are in R&D stage.  

 

1.2.2 Air pollution 

Some of the effects of the transport emissions are respiratory and cardiovascular diseases, damage to 

construction and surface materials and visibility reduction due to the smog. Besides the ecologic 

aspect, there is a sanitary problem to be solved. Some governments have been strongly motivated for 

air-quality improvement (e.g. Great Britain, Korea), and adopted comprehensive programs to reduce 

CO2 through the energy tax (known as BTU tax in the US). Also some car devices have been adapted 

and introduced to the market to try to decrease air pollution, for example, with the use of Particle Filter 

(FAP)12 in diesel vehicles, but this effort seems not to be enough to tackle all the above mentioned 

problems. 

 

                                                      
11If the reserves remaining at the end of any year are divided by the production in that year, the result is the 

length of time that those remaining reserves would last if production was to continue at that rate. 
12The Particle Filter is an additional filter fitted in the exhaust system that is designed to filter out harmful soot 

particles from the exhaust gases and helps protect the environment. The Particle Filter is fitted exclusively to 

diesel engines, and reduces emissions of such particles to below the Euro V emissions regulation that came into 

place in 2009 of 5mg per km (Renault UK, 2013). 
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1.2.3 Global warming 

Greenhouse gas emissions from the transport sector and from fuel production represent a major 

problem and are increasingly subject to regulation around the world. Since the 1970s, GHG emissions 

from mobility have grown by more than 120% worldwide, and most scenarios predict that this trend 

will continue in the future (Ball and Wietschel, 2008). Carbon dioxide is the most important 

anthropogenic GHG.  Its annual emissions have grown between 1970 and 2004 by about 80%, from 21 

to 38 giga tonnes (Gt), and represented 77% of total anthropogenic GHG emissions in 2004 as 

presented in Figure 1.2 (IPCC, 2007).  

 

 
Figure 1.2 Global annual emissions of anthropogenic GHGs from 1970 to 2004 (IPCC, 2007) 

 
The indicator of the overall effect of the process related to the heat radiation absorption of the 

atmosphere due to emissions of greenhouse gases is the global warming potential (GWP) (Utgikar and 

Thiesen, 2006) and its reference unit is the CO2 equivalent (CO2-equiv).  

 

The GWP impacts all the aspects of the sustainable development. Economic and population growth in 

developing countries such as China, India or Brazil, cause a significant increase in energy demand 

(Bento, 2010) and pollution. In the future, the world could face higher costs and major risks associated 

with climatic change and massive movements of population (e.g. people moved by environmental 

reasons) (UNFCCC, 2010). Sustainable development can reduce these vulnerabilities. The increasing 

levels of emissions from transport suggest that stronger mitigation efforts may be necessary for this 
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sector. This may be difficult to accomplish for several reasons, including issues related to 

globalization and development, as well as the difficulty of assigning responsibility for emissions from 

international transport. A crucial first step in designing an efficient mitigation policy is to quantify the 

extent to which emissions from transport affect the climate system. 

 

The force of the regulations should not be underestimated. The Brazilian case of support for biofuels is 

a good example (Bento, 2010). Although the signed Kyoto Protocol was not legally binding, some 

international initiatives supported this treaty. By its part, the International Energy Agency (IEA) has 

studied some scenarios to face the problems associated with climate change. More precisely, the 

scenario "Blue Map" is the optimistic scenario, in which global CO2 emissions related to energy will 

be reduced by half by 2050, compared to 2005 levels: for the most industrialized countries, the GHG 

emissions are expected to be divided by four GHG by 2050.  According to these projections, 53% of 

the observed difference is due to energy efficiency and changes in fuels. The other two main 

contributions come from the carbon capture and storage (CCS) and the use of renewable energy 

(Direction générale de la compétitivité, de l’industrie et des services, 2011). 

 

Carbon taxes can also be used as a policy tool for CO2 abatement. Despite significant price increases 

for some fuel types as adopted in some countries, the carbon tax effect on emissions was modest in the 

transport sector according to (Bento, 2010).  To reduce GHG emissions, a portfolio of technologies 

and mitigation activities across all sectors such as improving energy efficiency, CCS and the use of 

renewable energies or fuels are required. Some mobility alternatives are treated in the next section. 

1.3 Mobility alternatives 
Nowadays, gasoline and diesel are the easiest and cheapest fuels to be produced and handled. ICEs 

have the potential to reduce their CO2 footprint significantly through an average 30% improvement in 

energy efficiency by 2020 and the additional blending of biofuels. After 2020, however, further engine 

efficiency improvements are limited and relatively costly, while the amount of biofuels that will be 

available may be limited (McKinsey & Company, 2010). 

 

In the near and medium term, smaller cars, more lightweight and aerodynamic construction as well as 

better drive train efficiency through improved conventional internal combustion engines (ICEs), 

hybridisation or dieselisation can all further improve the fuel economy of vehicles and help reduce 

fuel consumption and emissions (Ball and Wietschel, 2008). Other alternatives have been suggested to 

address energy-related issues, including methanol, ethanol, methane, liquefied petroleum gas, 

electricity and hydrogen. In order to compare some of these options, well-to-wheel (WtW) efficiency 

for transport fuels will be distinguished.  
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The WtW efficiency can be appreciated through two stages, i.e., well-to-tank (or upstream stage) and 

tank-to-wheel (also known as downstream stage). The well-to-tank (WtT) energy efficiency is defined 

as the ratio of the lower heating value of a fuel that is available for propulsion to the total energy 

consumed in production, handling (compression/liquefaction), distributing and refuelling. The tank-to-

wheel (TtW) evaluates the vehicle/fuel combination ratio. In this section, the WtW efficiency for 

different fuels presented by (McKinsey & Company, 2010) is taken as a basis (see Figure 1.3).  

 

Primary energy carrier Fuel production Vehicle Well-to-wheel efficiency 

Oil 

Gasoline 86% ICE 30%  

 

Diesel 84% ICE 35% 

Power 51% BEV 68% 

Power -> H2 34% FCEV 56% 

H2 51% FCEV 56% 

Gas 

CNG 94% ICE 30%  

 

Diesel13 63% ICE 35% 

Power 58% BEV 68% 

Power -> H2 39% FCEV 56% 

H2 70% FCEV 56% 

Coal 

Gasoline5 40% ICE 30%  

 

Diesel5 40% ICE 35% 

Power 50% BEV 68% 

Power -> H2 34% FCEV 56% 

H2 41% FCEV 56% 

Biomass 

Ethanol 35% ICE 30%  

 

Biodiesel 35% ICE 35% 

Power 35% BEV 68% 

Power -> H2 24% FCEV 56% 

H2 31% FCEV 56% 

Renewable power 
Power -> H2 100% BEV 68%  

 H2 68% FCEV 56% 

Figure 1.3 FCEV well-to-wheel efficiency adapted from(McKinsey & Company, 2010)14 

 

It must be highlighted that the efficiencies reported in this study are rather optimistic for all the 

technologies; for example, the efficiency of gas-to-power for the production stage has a favorable 

yield of 58% whatever the technology used. These orders of magnitudes will not be used in the 

                                                      
13Gasoline and diesel production through Fischer-Tropsch process 
14Distribution stays for all fuels above 89% efficiency and in the retail case is 99% except for hydrogen (90%). 
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remaining chapters of this manuscript. Fuel cell electric vehicle (FCEV) WtW efficiency appears to be 

competitive with ICE, with a flexible use of feedstock, while battery electric vehicle (BEV) remains 

the most efficient power-train. Then, a brief description of the fossil fuels and their competitors is 

given below to present their main features, WtW efficiency, advantages and challenges. 

1.3.1 Gasoline and diesel 

The overall energy efficiency is around 25% for gasoline (McKinsey & Company, 2010) 

(respectively, about 29% for diesel) (see Figure 1.3). In this sense, today’s vehicles are actually 

producing more heat than propulsion energy. Besides, higher priced, conventional oil resources can be 

replaced by high carbon alternatives such as oil sands, oil shale or synthetic fuels from coal and gas, 

which result in increasing GHG emissions unless production plants are equipped with CCS (Ball and 

Wietschel, 2008). They can also be replaced by the options listed below. 

1.3.2 Compressed natural gas (CNG) 

Natural gas achieves one of the greatest reduction in vehicle emissions of CO2 (20–25%) (Ball and 

Wietschel, 2008). One example of the CNG development can be found in Europe, with reference to 

commercial vehicles: in 2012, Germany had some 1200 medium and heavy duty CNG trucks and 1600 

CNG buses, all of them working in urban services. There are around 900 filling stations (German 

initiative for natural gas-based mobility, 2012). The benefits of CNG, as well as LPG (Liquefied 

Petroleum Gas), are unlikely to offset the costs associated with further development of the refuelling 

infrastructure, vehicle conversions and safety issues. In addition, in the long term, natural gas will face 

the same resource-economic constraints as crude oil (Ball and Wietschel, 2008). 

1.3.3 Biofuels 

There is also a significant push for biofuels taking place around the world. The interest in these 

alternatives is also motivated by energy security concerns which tend to stimulate a greater reliance on 

indigenous energy resources which often result in increased GHG emissions. Nevertheless, all these 

fuels have in common that they are simple to handle, have a high volumetric energy density, are easy 

to store on board a vehicle and can use the existing distribution and refuelling infrastructure (Ball and 

Wietschel, 2008). The biofuels are produced from biomass, which can be converted through thermal, 

chemical or biochemical processes. Some examples are:  

• ethanol, produced from sugar or starch crops, corn and sugarcane, can be used as a fuel in its 

pure form (widely used in US and Brazil). WtW efficiency is 10% (McKinsey & Company, 

2010); 

• biodiesel, from vegetable oils and animal fats can also be used as a fuel in its pure form., with 

WtW efficiency of 12% (McKinsey & Company, 2010); 

• biogas/bio-methanol from biodegradable waste materials is produced by anaerobic digestion 

process. 
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There is still uncertainty related to the amount of biofuels that will be available for passenger cars in 

the medium and long term in Europe (sustainably produced). A comprehensive analysis on the true 

global potential of biofuels is needed to determine both their availability and for which sectors and 

regions they may be most effectively used (McKinsey & Company, 2010). 

 

1.3.4 Electric vehicles 

The switch to electricity reduces the oil dependency by opening transports up to a much wider 

portfolio of primary energy sources of the power sector. Electric vehicles thus help reduce CO2 

emissions and local air pollution while at the same time offer a potential storage option for surplus 

electricity from intermittent renewable energies (Ball and Wietschel, 2008). Electric vehicles have 

substantially lower pollution from noise, NO2 and particles (McKinsey & Company, 2010). They can 

be classified as: BEVs, FCEVs and Plug-in Hybrid Electric Vehicles (PHEVs). They have zero tail-

pipe emissions while driving, resulting in significantly improving local air quality.    

 
1.3.4.1 Battery electric vehicle (BEV) 

Owing to limits in battery capacity and driving range (currently 100-200 km for a medium sized car) 

and a current recharging time of several hours, BEVs are ideally suited to smaller cars and shorter 

trips, i.e. urban driving. The most promising battery technology is the Lithium-Ion battery but some 

technical and economic issues, in particular the availability of lithium resources have to be analysed. If 

battery performance was to improve markedly and at the same time costs could be reduced, BEV 

could represent a complete solution to decarbonising the transport sector, thus making the discussion 

about other alternatives such as hydrogen largely obsolete (Ball and Wietschel, 2008). The maximum 

WtW efficiency is for the BEV 61% (Figure 1.3) when electricity is obtained via renewable sources 

and even if the power is obtained by non-renewable sources, it results the most promising option in 

terms of efficiency (31-35%). Yet at this time, BEVs have a shorter range than FCEVs, PHEVs and 

ICEs. Fast charging may become widespread, but the impact on battery performance degradation over 

time and power grid stability is unclear. 

 

1.3.4.2 Plug-in electric vehicle (PHEV) 

With a smaller battery capacity than BEVs, PHEVs have an electric driving range of 40-60 km. 

Combined with the additional blending of biofuels, they could result in emission reductions for longer 

trips. PHEVs have a similar range and performance to ICEs, but electric driving only applies to shorter 

distances, while the amount of biofuels available for longer trips is uncertain. PHEVs are more 

economic than BEVs and FCEVs in the short term (McKinsey & Company, 2010). However, the 

influence of large-scale electrification of the transport sector on the electricity system must be 

analysed and understood; for instance, if network extensions are necessary, this could be a major 

economic barrier for BEV and PHEV (Ball and Wietschel, 2008). 
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1.3.4.3 Fuel cell electric vehicle (FCEV) 

The dominant fuel cell type is the Proton Exchange Membrane (PEM). H2 is fuelled into the gas tanks 

under pressure, from 350 to 700 bars. H2 fuel requires a purity of 99.99%; this quality level is higher 

compared to the level for industrial applications (99.95%) (ISO/TS 14687-2:2008 in (PHyRENEES, 

2009)). The storage is made in a carbon fiber fuel tank. In fuel cells, electricity and water are usually 

produced from hydrogen and oxygen in an electrochemical reaction, which also releases heat. 

According to the American Academy of Sciences (Bento, 2010), the cost of platinum represents 57% 

of the final cost of the battery. In (McKinsey & Company, 2010), it is reported that 69% of the fuel 

cell power train cost is related to the fuel cell system and the H2 tank and 25% to electric drive. FCEVs 

have a driving performance (similar acceleration), range (around 600 km) and refuelling time (< 5 

minutes) comparable to ICEs. They are therefore a feasible low-carbon substitute for ICEs in longer 

trips. The emerging FCEV market (2010-20) requires close value chain synchronization and external 

stimulus in order to overcome the first-mover risk of building hydrogen retail infrastructure. The fuel 

cells exhaust produces zero emissions when fuelled by hydrogen. Road transport noise in urban areas 

would also be significantly reduced (Ball and Wietschel, 2008). Figure 1.3 shows a FCEV efficiency 

around 56% and H2 could achieve 11-31% of WtW efficiency depending of the energy source. H2 

critics mainly base themselves on the energetic inferiority of hydrogen as an energy carrier compared 

to electricity (Haeseldonckx and D’haeseleer, 2011). However, hydrogen WtW efficiency is higher to 

that of gasoline in most of cases.  

 

Even if BEV offers the best efficiency as vehicle with 68% its low km range is its main constraint 

associated. Then, the FCEV could be considered as a more flexible option in terms of km range at 

good vehicle efficiency (56%). 

1.4 Hydrogen 
Hydrogen occurs naturally in the form of chemical compounds, most frequently in water and 

hydrocarbons. It is a type of high-quality carbon-free energy carrier. Until the 1960s, hydrogen was 

used in many countries in the form of town gas for street lighting as well as for home energy supply 

(cooking, heating, lighting), and the idea of a hydrogen-based energy system was already formulated 

in the aftermath of the oil crises in the 1970s (Ball and Wietschel, 2008). In Europe, 80% of the total 

hydrogen was consumed by mainly two industrial sectors: the refinery (50%) and the ammonia 

industry (32%), which are both captive users (Dagdougui, 2011a). Currently only about 5% of 

hydrogen is considered as “marketable” and delivered elsewhere as a liquid or gas by truck or pipeline 

(Guillén Gosálbez et al., 2010). Hydrogen produced worldwide is about 700 billion Nm3 per year (50 

million t of H2, enough to fuel more than 600 million FCEV) (Ball and Wietschel, 2008). 
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Hydrogen offers several advantages. It cannot be depleted and it can be stored over relatively long 

periods of time, compared to electricity. One kilogram of hydrogen is approximately equivalent to one 

gallon of gasoline based on lower heating value energy content (Midilli and Dincer, 2008)(Hugo et al., 

2005)(Hake et al., 2006)(Heracleous, 2011)(Li et al., 2008)(Bartels et al., 2010). H2 can be obtained 

from a number of primary energy sources, such as natural gas, coal, biomass and solar, wind and 

hydro energies, contributing towards greater energy security and flexibility (Hugo et al., 2005)(Midilli 

and Dincer, 2008). Another advantage is the variety of the production processes (Heracleous, 2011) 

and the distribution options in a variety of forms using different technologies: gaseous hydrogen, 

liquefied hydrogen (Li et al., 2008) and finally, it offers easy disposal and/or recycling of the reaction 

products (Hake et al., 2006).  

 

Despite the potential benefits, and the previous attempts towards a hydrogen economy, its full 

realization faces a number of social, technical and economic obstacles. The establishment of a new 

hydrogen infrastructure for FCEV is difficult because no smart transition from gasoline/diesel to 

hydrogen can be expected due to the lack of bivalent operation modes for such vehicles (Hake et al., 

2006).  

 

Large investments are needed, these costs will play a major role on the final price of hydrogen (Bento, 

2010). In many studies, the current lack of hydrogen infrastructure is noted as the most important 

barrier to develop the hydrogen economy (Kim et al., 2008)(Hugo et al., 2005)(Murthy Konda et al., 

2011a)(Li et al., 2008). Special issues are noted in the storage-and-delivery infrastructure (Kim et al., 

2008). Different configurations and options are being studied, for example, (Haeseldonckx and 

D’haeseleer, 2011) propose the use of existing natural gas and electricity infrastructures to power the 

hydrogen production units. 

 

According to (Ball and Wietschel, 2008), the critical element is the cost development of the fuel cell 

propulsion system, whose forecasts are a major source of uncertainty. The end use technologies’ 

manufacturers require a high density hydrogen demand before investing in the mass production of the 

end use technologies, while energy companies are hesitant to install hydrogen production, distribution 

and other infrastructures without having the assurance of profitable demand levels (Hugo et al., 

2005)(Qadrdan et al., 2008). This problem is addressed as ‘‘chicken and egg’’ enigma, a real barrier to 

hydrogen economy. The introduction of any new fuel requires a significant capital investment and 

long-term commitment, while facing high risks of low demand, and accordingly, poor short-term 

returns. Timing of the investment over the next 10–30 years will be critical (Hugo et al., 2005). 
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The investment cost affects directly the H2 fuel cost. The way to produce (according to a certain 

energy source), store and transport hydrogen will affect the CO2 emission related to the WtT. Some 

questions must to be answered:  

− is hydrogen competitive with current fuel prices? 

− does hydrogen offer a real benefit in reduction of GWP?  

 

Many studies and roadmaps focusing on hydrogen have been developed in which the targets to be 

reached for H2 fuel price and CO2 emissions are highlighted. These targets are briefly presented below.  

 

1.4.1 H2 cost 

A kilogram of hydrogen has the approximate energy content of one gallon of gasoline; therefore the 

cost of hydrogen per kilogram is directly comparable to the gasoline cost per gallon (while there is a 

possibility that H2 may receive some green tax benefits or tax exemption on environmental grounds 

(Murthy Konda et al., 2011a).  

 

In US, in 2013 the prices varies from 3.00-4.00 US$/gallon (U.S. Energy Information Administration, 

2013), see Table 1.2. In France, the gasoline price (unleaded 95) on July 2013 was 7.73 US$/gallon 

(1.55 €/L)15 and for the Diesel 6.73 US$/gallon (1.35 €/L) (U.K. Drive Alive, 2013)16.  

 

Some studies have proposed or determined the hydrogen cost to be competitive in different time 

periods. (Ball and Wietschel, 2008) presented their targets trying to be representative for both the 

European Union and North America: around 2030, hydrogen costs range from 3.6–5.3 US$/kg in 

above mentioned regions, mainly depending on the feedstock. In the long term until 2050, hydrogen 

supply costs stabilize around this level, but with an upward trend due to the assumed increase in 

energy prices and CO2 certificate prices.  

 

The HyWays roadmaps (European Commission, 2008) propose that long-term hydrogen costs of 4.71-

7.11 US$/kg (3.6–5.4 €/kg) can be achieved. The set of data is summarised in Table 1.3. From these 

data, the targets of hydrogen cost can be classified as follows, in periods 2020 and 2030, the cost must 

be lower than 5.3 US$/kg and in 2050 H2 must cost less than 7.11 US$/kg. 
 

 

 

                                                      
1519 March 2012 US$1.317 = 1.00 Euro. 
16Date: July 18th 2013. The data is collected from various sources, some from official government websites, 

some from fuel companies' sites, and some from price comparison sites in the respective countries. 
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Table 1.2 Conventional fuel prices and H2cost targets. 
Year Fuel US$ €6 Reference  

2013 Gasoline in US (gallon) 3.00-4.00 2.2-3 
(U.S. Energy Information 
Administration, 2013) 

2013 Gasoline in France (gallon)  7.73 5.8 (U.K. Drive Alive, 2013) 
2013 Diesel in France (gallon)  6.73 5 (U.K. Drive Alive, 2013) 
2020 H2 (kg)  5.3 4 HyWays. (European Commission, 2008) 
2030 H2 (kg)  3.6-5.3 2.73-4.02 (Ball and Wietschel, 2008) 
2030 H2 (kg)  3.95 4 HyWays. (European Commission, 2008) 
2050 H2 (kg)  4-4.6 3-3.5 (Ball and Wietschel, 2008) 
2050 H2 (kg)  4.74 3.6 (Patay, 2008) 
2050 H2 (kg)  4.74-7.11 3.6 – 5.4 HyWays. (European Commission, 2008) 
2050 H2 (kg)  4.5-6.8 3.41-5.16 (Murthy Konda et al., 2011a) 
 

1.4.2 CO2 emissions 

To get an idea of the potential CO2 reduction achievable in the transport sector from the introduction 

of hydrogen vehicles, CO2 emissions from hydrogen supply have to be compared on a WtW basis (i.e. 

energy source, producing, distributing and using the fuel, including primary production, extraction, 

transportation, refining, and finally vehicle operation) with conventional gasoline/diesel fuels. For 

example, in France, the WtW for an average ICE-Gasoline is 220 g CO2/km and for the ICE-Diesel the 

total emissions are 196 g CO2/km (TtW~ 188 and 176 g per km respectively)(ADEME, 2010). These 

numbers could then be compared to the life cycle of the FCEV-H2 in order to better appreciate the 

advantages in terms of CO2 emissions (see Table 1.3). 

 

Table 1.3 Tank-to-wheel emission targets for vehicles 2010 and 2050 (g/km). 
 Tank-to-wheel 2010   

(g CO2/km) 

Tank-to-wheel 2050 

(g CO2/km) 

Source 

ICE Gasoline France  188.8 - (ADEME, 2010)17 
ICE Diesel France 176.1 - (ADEME, 2010) 
ICE Gasoline EU ~ 190 ~ 100 (McKinsey & Company, 2010) 
ICE Diesel EU ~ 165 ~ 95 (McKinsey & Company, 2010) 
FCEV ~ 120 0 (McKinsey & Company, 2010) 
BEV ~ 60 0 (McKinsey & Company, 2010) 
PHEV ~ 150 ~ 20 (McKinsey & Company, 2010) 

 

BEVs and FCEVs are commonly improperly considered as zero emissions (only TtW considered)18. 

GHG emissions from the life cycle of fuels for electric vehicles and FCEV must measure the upstream 

emissions related to the production of electricity or hydrogen. The emissions from these vehicles are 

thus entirely dependent on the manner in which the electricity and/or hydrogen is produced, along with 
                                                      
17Average TtW, not only for new cars. 
18No emission from the vehicles themselves (except for water vapour in the case of FCEVs, and any emissions 

related to heating and cooling systems) (Institute of transportation studies (ITS UC DAVIS), 2011). 
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the energy efficiency of the vehicle (typically expressed in watt hours per mile or kilometre for BEVs, 

and miles or kilometres per kilogram for hydrogen-powered vehicles)(Institute of transportation 

studies (ITS UC DAVIS), 2011).  

 

In 2009, a regulation setting binding targets on reducing the tailpipe CO2 emissions (g/km) of new cars 

was brought into force within the European Union (EC Regulation No. 443/2009, 2009). This 

regulation sets a target for an overall average of 130 g/km tailpipe CO2 from 2012 onwards. There are 

plans for further reductions of TtW emissions by 2020 to 95 g/km (equivalent to 113 g CO2 per km –

WtW-)(Boretti, 2011)(McKinsey & Company, 2010). Hydrogen should be below these targets in a 

WtW perspective. 

 

1.4.3 Safety 

In 1990, the International Standard Organisation (ISO) has established a technical committee to 

develop standards in the field of production, storage, transport and various applications of hydrogen as 

for example, the European Integrated Hydrogen Project (EIHP), which makes proposals for the 

regulation of FCEV and the hydrogen activities (CEA, 2013). Another project that works with the 

issues regarding safety is addressed by the European Network of Excellence HySafe on a technical 

level (European Commission, 2008). Hydrogen storage is regarded as one of the most critical issues, 

which must be solved before a technically and economically viable hydrogen infrastructure 

implementation. In fact, without effective storage systems, a hydrogen economy will be difficult to 

achieve (Dagdougui, 2011a). 

 

To ensure the safely use of hydrogen, it must essentially prevent leakage, since hydrogen is flammable 

and explosive, and any "confined" situation can be dangerous. This involves the use of appropriate 

safety devices19 (fans, sensors ...). A good knowledge of these dangers and their consequences is 

intended to implement a safe design of systems using hydrogen. Besides, hydrogen is non-toxic and is 

very volatile. 

 

Although the H2 is commonly used in industry, it is often considered as a hazardous gas. Hydrogen is 

actually no more dangerous than other flammable fuels such as gasoline and natural gas. Nevertheless, 

under specific conditions, hydrogen can behave dangerously. The burning or explosion of hydrogen 

causes most fatal accidents. Therefore, when hydrogen infrastructure design strategies are established, 

safety considerations are of paramount importance for the sustainable hydrogen economy (Kim and 

Moon, 2008),(Hake et al., 2006). 

                                                      
19 It is difficult to detect without appropriate sensors because it is colorless, odorless and airborne flame is almost 

invisible. 



16 Multi-objective optimisation of a hydrogen supply chain 

 

In the transition to a hydrogen economy, the public perception of safety is a critical issue. Although 

the public view on hydrogen is in general positive, an early large accident could change this quickly. 

As the new hydrogen applications cover new operational domains, like high pressures or cryogenic 

temperatures, the successful and safe usage in industrial processes might not be translated directly to 

all these cases. All the stages of the hydrogen fuel network must be studied to try assuring the best 

conversion to this economy.   

 

1.4.4 Social perception and acceptability 

To better understand the term acceptability, we had an opportunity to have an interview with 

Christophe BESLAY, Professor in Sociology (Toulouse University), who is an expert in the field of 

energy and issues of acceptability. According to his experience, it does not represent a market problem 

by now; the real problem is the lack of political and industrial mobilization. There are technological 

advances which could help the hydrogen economy and also scientific and technical research is done to 

overpass the technical problems such those related to storage. In this moment to focus on the use and 

acceptability of hydrogen would be a false debate.  

 

Government and industry must be convinced and take the first step. Communication between them is 

the key point to understand the benefits of this technology. The general process for the social 

integration of new technologies is given in three phases: the first is the stage where the manoeuvres of 

the major players (government and industrials) work with the strategy related to the technology. The 

second is the experiment period with smaller stakeholders. In this stage, it is possible to compare the 

design and real usage. A lot of tension between these two phases could exist. Finally the last step is the 

appropriation (related to use) and diffusion of innovation to the major public.  

 
The study AIDHY/CEA (Le Duigou, 2010) conducted in 2010 was a decision support for the 

identification and support to societal changes brought by new hydrogen technologies. It analysed the 

acceptability among users and experts. According to this presentation, the public is not worried by 

safety issues about the use of hydrogen. Potential 77% of people said to be interested in this fuel, 

strong acceptability appeared in highly urban areas. 

 
The public debates before a project on a particular topic can be convenient because the potential 

options must be sufficiently explained (e.g. BEV vs. FCEV); one of the challenges is to demonstrate 

that they are part of a long-term vision. In France, the National Debate for the Energy Transition 

(“Débat national sur la transition énergétique 2013”) allows to discuss some questions like: How can 

France move towards energy efficiency and energy conservation? How to achieve the energy mix 

targets? Which renewable energies should France rely on? These points, and others, are discussed by 

the civil society and experts. The Regional Innovation Agency MPI (Midi-Pyrénées Innovation) 
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organised this debate on June 3rd, 2013 in Toulouse, treating the “hydrogen as fuel” topic based on the 

results obtained in this work in a case study of the Midi-Pyrénées region that will be treated in the fifth 

chapter of this thesis. 

 

Communication efforts will always be important in the transition phase, since each stakeholder has its 

own “language” and a large quantity of analysis about potential scenarios regarding the H2 economy is 

mandatory. In this sense some roadmaps and transition plan scenarios have been developed all around 

the world but the pertinence of each study depends in the general or particular focus of the approach 

(for example a company study vs. a national study), the limits of the system treated, etc. The most 

representative works are briefly presented in the next section. 

1.5 Roadmaps and transition plan scenarios 

1.5.1 Roadmaps 

A roadmap provides a blueprint (program, project) for the coordinated, long-term, public and private 

efforts required for hydrogen energy development: some objectives are fixed for a determined time 

period. The roadmaps for the hydrogen economy are widely deployed by many countries around the 

world. Roadmaps have been generally used to aid decision-making and business planning.  

 

In Europe, in the HyWays project (2007-2008), over 50 member state (MS) workshops were 

conducted with key stakeholders. The HyWays combine technology databases and socio-techno-

economic analyses to evaluate selected stakeholder scenarios for future sustainable hydrogen energy 

systems. In this project, market scenarios20 for hydrogen end-use applications were also developed. 

Each country outlined its own preferences (Finland, France, Germany, Greece, Italy, the Netherlands, 

Norway, Poland, Spain and the United Kingdom). The HyWays project differs from other road 

mapping exercises as it integrates stakeholder preferences, obtained from multiple member state 

workshops, with extensive modelling in an iterative way. The stakeholder validation process, which 

takes into account country specific conditions, is a key element of the road mapping process. In 

Europe, the prospect of hydrogen economy plays a major role, especially because of two main 

conditions: the aggregation of many countries that have various specific institutional, opportunities, 

conditions, territorial and socio-economic barriers (Dagdougui, 2011b). Another well-known roadmap 

is H2 Mobility (2010), fixing a plan to introduce the use of FCEV in Europe, starting in Germany and 

UK (Williamson, 2010) whereas H2 Mobility France began in 2013. In this program, the main car 

manufacturers and gas producers are involved.  

                                                      
20 The planning of scenarios can be considered as a systematic tool that supports designing the HSC. The main 
objective of scenarios is to think about what will be the decisions making process under a certain situation that 
usually cannot be determined with precision. The use of scenarios can serve as guidance for the implementation 
of certain policies and measures to obtain a desirable future position (Dagdougui, 2011b). 
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Iceland can be identified as the first hydrogen economy in the world. The Icelandic New Energy is a 

partnership that was established between the Icelandic government, Shell, Norsk Hydro, Ford and the 

University of Reykjavik. It is a pioneering initiative to create the first hydrogen economy in the world 

by 2040 (Dunn, 2000). The project aims to promote energy independence by exploiting the vast 

renewable resources of the island such as geothermal and hydropower. In 2003, the country 

inaugurated the first hydrogen station in the world to supply the three hydrogen buses that ran through 

the ECTOS program until the end of 2006. In 2007, a new demonstration phase began with 13 

SMART-H2 model cars and boats to hydrogen (Bento, 2010). 

 

World Energy Network (WE-Net, 1993) established in Japan as the first major national program for 

hydrogen and fuel cells. This was made possible by cooperation between government, research 

institutes and industry, managed by the 'New Energy and Industrial Technology Development 

Organisation" (NEDO). This program had a goal planning and implementation of R&D for hydrogen 

technologies. In the first phase (1993-1998), the program was oriented research, and building a vision 

for hydrogen in Japan. In the second phase (1999-2002), the project has also been a priority for the 

technology demonstration and infrastructure. R&D expensed during the two phases were in the range 

of $200 million (Solomon and Banerjee, 2006)(Bento, 2010). In 2008, the Japan Hydrogen and Fuel 

Cell demonstration project (JHFC) was launched. The objective was to improve energy efficiency by 

30% between 2003 and 2030, to reduce CO2 emissions by 50% in 2050 as well as to decrease 

dependence regarding imports of oil from 47% to 40% by 2030 (from 97% to 80% in transport). 

 

The U.S. Department of Energy (DOE) has been managing the hydrogen program in cooperation with 

industry, national laboratories, universities, and government agencies since 2007. The marketing 

decision should be taken by the industry as the competitiveness of FCEV and hydrogen. This decision 

is planned for 2015 subject to the achievement of technological goals (Bento, 2010)(Patay, 2008). 

 

The National Innovation Program (NIP) is a program for the development of hydrogen and fuel cells 

combining industrial and German scientists, initiated in 2007 with support from the government. In the 

Clean Energy Partnership, Germany plans to build large-scale public stations with the goal of 2020. 

1,000 stations by the German government claims invest 1.5 to € 2 billion until 2017 and hopes to have 

enough gas stations by 2013 to make possible to link the north and south of the country by car, about 

870 km. (CEP). Berlin is the main city for this international cooperation between BMW Group, 

Berliner Verkehrsbetriebe BVG, Daimler, Ford, GM, Hamburger Hochbahn, Linde, Shell, 

StatoilHydro, Total, Vattenfall Europe and Volkswagen. The programs in Germany are run by a 

dedicated independent structure: NOW GmBH (National Organisation Wasserstoff-und 

Brennstoffzellentechnologie)(NOW). 
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Norway, Sweden and Denmark participate at the Scandinavian Hydrogen Highway Partnership that 

was founded by 133 companies, national associations and hydrogen programs in Norway (HyNor), 

Sweden (Hydrogen Sweden) and Denmark (HydroLink). The goal is to drive the transition in this 

region by the validation of the viability of the use of hydrogen in everyday life. The demonstration 

includes 500 hydrogen cars, 100 buses and 500 cars during the period 2012-2015. The flagship project 

is the establishment of hydrogen stations along the highway between the cities of Oslo and Stavanger, 

Norway, and widening the road to Sweden and Denmark (Scandinavian Hydrogen Highway 

Partnership). 

 

In France, the French Association for Hydrogen and Fuel Cells (Association Française pour 

l'Hydrogène et les Piles à Combustible: AFHYPAC) started a French study on H2 power and mobility 

on May 2013. This association is working with more than twenty consortium partners in the H2 

Mobility in France roadmap to produce a competitive implementation plan, supported by private and 

public hydrogen infrastructure stakeholders over the period 2015-2030. Private and public actors, 

regional, national and international, coordinated by the AFHYPAC and under the aegis of the Ministry 

of Ecology, Sustainable Development and Energy will develop a roadmap with the basis of different 

deployment scenarios for FCEV and refuelling stations, showing the benefits and costs of the 

transition data (AFHYPAC). The results will be soon published. Seiya Consulting21 in partnership with 

the AFHYPAC organised HyVolution, a French event dedicated to hydrogen technology and fuel cells, 

(5-8 September 2013) in Albi. 

 

The Agency for Environment and Energy Management (Agence de l'environnement et de la maîtrise 

de l'énergie: ADEME) takes part in the implementation of public policies in the areas of environment, 

energy and sustainable development. ADEME roadmap was lanced in 2010 where 5 strategic pillars to 

the vision 2020 related FCEV and H2 were developed: a) hydrogen and renewable energy 

convergence; b) electro-mobility new generation; c) batteries and hydrogen for sustainable 

development in the cities; d) hydrogen and batteries as vectors for international growth; e) transverse 

support of the industry measures. The necessity of research priorities and demonstrators was clearly 

highlighted. By 2015, 5000 FCEV for captive fleet use and 2-5 cities equipped with fuelling stations 

are planned (ADEME, 2011). 

 

At a regional level, one of the most famous H2 plans can be found in California. Since 1999, 

demonstration projects are managed by the partnership for the promotion of hydrogen in the 

California Fuel Cell Partnership (CaFCP). This partnership was established between the company 

Ballard Power Systems, Daimler Chrysler and Ford Motor Company, Shell Hydrogen, and Chevron 

                                                      
21 http://seiya-consulting.com/ 
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(formerly ARCO), and the California agencies (California Air Resources Board and California Energy 

Commission). Its mission is to facilitate the commercialization of fuel cells for transportation. Since 

then, the CaFCP supported the establishment of stations and experienced more than 170 hydrogen 

vehicles. Stations are normally financed by the state government (Bento, 2010). More recently, two 

programs, California Fuel Cell Partnership and California Energy Commission and Air Resources 

Board are in effect. The former is a roadmap for fuel cell vehicles and hydrogen stations and the latter 

is a program of incentives for vehicles and fuelling infrastructure from state agencies (Yang and 

Ogden, 2013). 

 

In the Midi-Pyrénées region (which has a one-tenth area of that of California), PHyRENEES 

association was established in October 2007 around several partners (Ecole des Mines d’Albi, INPT, 

Trifyl, N-GHY, Airbus, GDF, ARAMIP and the General Council of the Tarn). One of its missions was 

to contribute to a national roadmap for the development of the program « H2 mobility » as presented in 

November 2012 (Dupin-Janson, 2012). French car manufacturers (Renault, PSA /Peugeot-Citroën/ 

and Mia Electric), Michelin for equipment and the energy actors (CEA, Air Liquide and Total) are 

involved in this contribution. The Midi-Pyrénées roadmap projects a forecast of 200 FCEV for captive 

fleet use in the region with 5 refuelling stations and 20 logistics handling equipment fuel cell powered 

by renewable hydrogen in 2015 (Grano, 2011). This plan is consistent with the ADEME roadmap. In 

the Midi-Pyrénées region, the first H2 refuelling station was installed in Albi in September 2013. In the 

same month, a demonstration site of production of hydrogen by bio-methane started to operate in 

Trifyl22.  

 

In 2013, the « Journées H2 dans les territoires » took place from 16 to 17 May 2013 in Albi, France. 

One of the main objectives of the session was to inform and try to link the National and European 

policies to local (regional) actions. We had the opportunity to attend this event. In France, various 

regions are working in roadmaps to the development of H2 for electro-mobility, some examples are 

Midi Pyrénées (PHyRENEES and Midi-Pyrénées Innovation), Nord-Pas-de-Calais (Roadmap 2014-

2020), Lorraine (Nancy project and Livre blanc Alphea), Pays de Loire (Navy-bus project), Bretagne, 

Provence-Alpes-Côte d’Azur, Franche-Comté, Rhône Alpes, Corse (Myrthe project), Nord-Pas-de-

Calais and Haute-Normandie (AFHYPAC et al., 2013). 

 

Finally, it must be highlighted that the value of the road mapping process lies in the development of 

the comprehensive review of the identification of the research needs, threats and opportunities (a kind 

of SWOT analysis) and they also establish the targets to be reached. The roadmaps show that there is a 

                                                      
22 http://www.trifyl.com/ 
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crucial need to describe more precisely the “how” and the ”who” for a range of technological 

components involved in the whole supply chain. 

 

1.5.2 Transition plan scenarios 

Other authors/institutions have presented transition models to the future HSC. The transition plan 

scenarios are usually accompanied with the cost estimation of the hydrogen pathways and even if 

environmental impacts could be also estimated, they are not optimised. They report the cost for each 

demand scenario with various hypotheses. The objective here is not to model the hydrogen 

infrastructure from the mathematical viewpoint, but to understand the behaviour of the hydrogen 

supply chain in certain areas assuming specific scenarios. These transition models are implemented on 

national or/and regional scales, aggregating simultaneously territorial information and specific data 

such as local policies and regulations (Dagdougui, 2011b).  

 

In (Bento, 2010), the objective is to understand what are the positive factors and the barriers in the 

transition from a large carbon emitter energy system based on fossil fuels to a hydrogen economy in 

Europe, and to figure out how it can be arranged. In this study, different demand scenarios are 

analysed. 

 

A recent study entitled “A portfolio of power-trains for Europe: a fact-based analysis” (McKinsey & 

Company, 2010) provides a factual comparison of four different power-trains – BEVs, FCEVs, 

PHEVs and ICEs – on economics, sustainability and performance across the entire supply chain 

(WtW) between now and 2050, based on confidential and proprietary industry data. Various scenarios 

with different potential hydrogen demand behaviour (three scenarios 5, 25 and 50% at 2050) were 

built. The study was conducted at a continental level. This study considered the interconnection with 

many stakeholders of the HSC including vehicle producers (i.e. BMW AG, Daimler AG, Ford, 

General Motors LLC, Honda R&D, Hyundai Motor Company, Kia Motors Corporation, Nissan, 

Renault and Toyota Motor Corporation), industrial gas companies (Linde and Air Liquide). From 

2010 to 2020, all cost and performance projections are based on proprietary industry data and on 

projected learning and annual improvement rates after 2020.  

 

Transition plan scenarios can be taken as an important basis for more precise studies where the 

different potential activities of the network can be measured and analysed (e.g. mathematical 

optimisation to design the hydrogen supply chain). The different roadmaps and transition plan 

scenarios that already exist and that have been presented represent necessary information and can be 

considered as the starting point to launch more detailed analysis because of the definition of general 

targets and of the coordination and communication efforts from which valuable information is shared.  
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Table 1.4 Roadmaps and transition plan scenarios 

 
Program or 
institution 

Scale Year Description Source 

HyWays Europe 2007-
08 

Some market scenarios for hydrogen end-use applications are 
developed (Finland, France, Germany, Greece, Italy, the 
Netherlands, Norway, Poland, Spain and the United 
Kingdom).  

(Dagdougui, 

2011b)(European 

Commission, 2008) 

H2Mobility Europe 2010 This roadmap plans to introduce the use of FCEV in Europe, 
starting in Germany and UK.  

(Williamson, 2010) 

Université de Grenoble Europe 2010 The objective of this thesis is to understand the positive 
factors and the barriers in the transition to a hydrogen 
economy in Europe. 

(Bento, 2010) 

 

A portfolio of power-
trains for Europe: a 
fact-based analysis 

Europe 2010 It provides a factual comparison of four different power-
trains – BEVs, FCEVs, PHEVs and ICEs – on economics, 
sustainability and performance across the entire supply chain 
(well-to-wheel) between now and 2050, based on confidential 
and proprietary industry data.  

(McKinsey & 

Company, 2010) 

 

The Icelandic New 
Energy  

Iceland 1999 This is the first hydrogen economy in the world. A 
partnership was established between the Icelandic 
government, Shell, Norsk Hydro, Ford and the University of 
Reykjavik. The project aims to promote energy independence 
by exploiting the vast RES of the island such as geothermal 
and hydropower. 

(Bento, 2010) 

 

World Energy Network 
(WE-Net) (2003) / 
Japan Hydrogen and 
fuel cell demostration 
project (JHFC) (2008) 

Japan 2003-
08 

The WE-Net was the first major national program for 
hydrogen and fuel cells managed by the 'New Energy and 
Industrial Technology Development Organisation "(NEDO). 
The objective of the JHFC: improving energy efficiency by 
30% between 2003 and 2030, reducing CO2 emissions by 
50% in 2050. 

(Solomon and 
Banerjee, 2006) in 
(Bento, 2010) 

Clean Energy 
Partnership 

Germany 2007 Plans to build large-scale public stations with the goal of 
2020. 1,000 stations by the German government claims invest 
1.5 to € 2 billion until 2017 and hopes to have enough gas 
stations by 2013 to make possible to link the north and south 
of the country by car, about 870 km. 

(CEP; NOW.) 

ADEME roadmap  France 2010 By 2015, 5000 FCEV for captive fleet use and 2-5 cities 
equipped with fuelling stations are planned in France 

(ADEME, 2011) 

H2 power and mobility  France 2013 AFHYPAC is working with more than twenty consortium 
partners in the H2 Mobility roadmap to produce a competitive 
implementation plan, supported by private/public 
stakeholders over the period 2015-2030. 

(AFHYPAC et al., 
2013) 

California Hydrogen 
Highway 

California 1999 This partnership was established among Ballard Power 
Systems, Daimler Chrysler, Ford Motor Company, BP, Shell 
Hydrogen, Chevron, and the California agencies (California 
Air Resources Board and California Energy Commission). Its 
mission is to facilitate the commercialization of fuel cells for 
transportation. Stations are normally financed by the state 
government 

(Bento, 2010) 

 

California Fuel Cell 
Partnership - California 
Energy Commission 
and Air Resources 
Board 

California 2009 The former is a roadmap for fuel cell vehicles and hydrogen 
stations and the latter is a program of incentives for vehicles 
and fuelling infrastructure from state agencies 

(Bento, 2010; Yang 
and Ogden, 2013) 

PHyRENEES Midi-
Pyrénées 

2010 According to the Midi-Pyrénées roadmap,  a first step will be 
reached in 2015: 200 FCEV for captive fleet use in the region 
with 5 refuelling station and 20 forklifts fuel cell powered by 
renewable hydrogen.  

(Grano, 2011) 

Scandinavian 
Hydrogen Highway 
Partnership  

Scandinavia 2012 Founded by 133 companies, national associations and 
hydrogen national programs in Norway (HyNor), Sweden 
(Hydrogen Sweden) and Denmark (HydroLink). The goal is 
to drive the transition in this region by the validation of the 
viability of the use of hydrogen in everyday life.  The 
demonstration includes 500 hydrogen cars, 100 buses and 
500 cars during the special period 2012-2015.  

(Scandinavian 
Hydrogen Highway 
Partnership) 

 



1. Motivation for the study: hydrogen as an alternative fuel for transportation 23 
 

The principal limitations related to these macro studies are yet the difficulty to generate specific 

results related to the location, size and number of production, storage or transport units and also the 

lack of interconnection between the different objectives. Their principal advantage is that they provide 

valuable information that can be used to implement scenarios of interest, thus demonstrating or not the 

potential of hydrogen infrastructure. They will be particularly useful to define the scenarios of interest 

that will be used in the implementation of this work. The main references that will serve as a useful 

basis are summarised in Table 1.4. 

1.6 Scientific objective and motivation of the study 
Driven by concerns over energy security, urban air quality and global warming potential, a transition 

from the current energy system has become an urgent and essential task that receives significant 

attention. To get the new boundaries related to transport issues, different worldwide options started to 

be studied, i.e. the carbon tax, the incorporation of CCS in the processes to obtain petroleum products, 

the improvement in the internal combustion engine efficiency, the promotion of public transport and 

also the development of new fuel alternatives and propulsion engines. The introduction to the market 

of new propulsion systems such as BEV, PHEV and FCEV can treat the abovementioned problems.  

 

Among these options, the FCEV fuelled by hydrogen may offer benefits in terms of reducing CO2 and 

harmful pollutant emissions. FCEV power trains are competitive to ICE in the WtW efficiency point 

of view.  The use of hydrogen can also improve the security of primary energy supplies. The FCEV 

could be considered as a flexible option in terms of km range at good fuel and vehicle efficiencies 

(competitive with conventional fuels). 

 

Hydrogen offers many advantages as a potential fuel. More precisely it is capable to treat the main 

energy problems presented in the first section of this chapter. Many energy sources, production 

processes, transportation and storage modes exist. Then, the way as hydrogen economy could be 

developed is very flexible. At the same time, all these options are not really interconnected and well-

studied; then, the lack of infrastructure constitutes one of the main challenges in the hydrogen and 

FCEV path. The way as this network is developed will affect the cost, the CO2 emissions and some 

safety conditions. By 2020, hydrogen should be below to 95 g/km to be competitive with ICE (Boretti, 

2011)(McKinsey & Company, 2010). One of the most significant obstacles to achieve the hydrogen 

transition is the general perception that the cost associated to the infrastructure would be prohibitory 

expensive compared to the current fuels. According to the dedicated literature, H2 cost must be lower 

than 5.3 US$/kg in periods 2020 and 2030, and H2 will cost less than 7.11 US$/kg in 2050. Regarding 

safety, hydrogen is actually no more dangerous than other flammable fuels such as gasoline and 

natural gas. Nevertheless, under specific conditions, hydrogen can behave dangerously. To ensure the 

safely use of hydrogen, it must be essential to know how to manage the risks. In terms of acceptability 
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the study AIDHY/CEA found that the public is not close and/or worried about the use of hydrogen. 

Communication is important in the early stage, so that a large quantity of analysis and information 

about potential scenarios regarding the H2 economy is mandatory.  

 

Currently, a large amount of literature related to hydrogen can be found. The roadmaps as HyWays 

and H2 mobility are guiding many projects in Europe. They establish a certain number of targets in a 

very general perspective. In some cases, not all the network is considered but a particular activity (e.g. 

to install a certain number of filling stations). Moreover, some transition plan scenarios study different 

ways as the hydrogen economy could be reached and they evaluate external variables as competitors 

and demand. It can been highlighted that a study which considers the whole hydrogen supply chain 

that can be shared with the government, industrials and universities seems pertinent in this stage to aid 

decision-making. This work lies in this perspective and the scientific objective is to develop a generic 

framework that can take into account the design of a hydrogen supply chain with many energy sources 

and that can embed the various production and storage technologies, while considering the 

transportation modes to link hydrogen demand to its supply. More practically, the aim is to develop an 

optimisation tool that could allow the generation of quantitative information when all the nodes of the 

supply chain are defined and integrated. The general literature survey clearly highlights that the design 

of the hydrogen supply chain involves a multi-criteria formulation in which cost, environmental 

impact and safety must be simultaneously taken into account at the earlier design stage. Particular 

emphasis will thus be devoted in this work to address the multi-objective formulation and solution of 

the design of the hydrogen supply chain. 

 

More specifically the developed tool intends to answer the following questions: 

− is hydrogen competitive with current fuel prices? 

− does hydrogen offer a real benefit in reduction of GWP?  

− which is the safest option for the hydrogen supply chain? 

− what is the best option for production and storage of hydrogen? 

− what are the most cost effective transportation modes and pathways to connect hydrogen 

demand with its supply? 

 

To bring insight to this issue, this manuscript is organised as depicted in Figure 1.4.  

− The supply chain management seems relevant because it integrates suppliers, manufacturers, 

warehouses, and stores, so that hydrogen is produced and distributed at the right quantities, to 

the right locations, and at the right time, in order to optimise the whole system. This approach 

is presented in Chapter 2 following this chapter that positions the general energy context in 

the transportation sector and that justifies the interest of using hydrogen as an energy vector. 
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Chapter 2 also involves a brief description of the hydrogen supply chain activities. A 

literature review related to supply chain optimisation is then conducted. This analysis leads to 

propose the key points that motivated this work and that positions the proposed modelling 

framework based on a multi-objective approach as an original one. 

− Chapter 3 presents the modelling and optimisation methods and tools that will be used and 

developed throughout this work. The general methodology that will be applied at the different 

levels of approach and that will be tackled is developed for hydrogen supply chain 

deployment, either at national or regional scales.  

− The mathematical model with the considered constraints and objectives is presented in 

Chapter 4. This model is applied to a case study reported in the literature survey and 

dedicated to Great Britain for validation purpose. This chapter compares the mono- and multi-

objective approaches and clearly highlights the benefits of a multi-objective approach.   

− Chapter 5 is dedicated to the modelling and optimisation of the HSC in the Midi-Pyrénées 

region through the project “Green H2 fuel” initiated by PHyRENEES, Midi-Pyrénées 

Innovation (MPI) and the LGC. The mathematical model presented in Chapter 4 is adapted to 

the specific features of the region and its energy sources. A mono/multi period problem is 

treated. Optimisation scenarios are performed first through mono-objective cases considering 

the three objective functions (cost, CO2 and risk) and then the multi-objective cases are 

tackled using Ԑ-constraint and lexicographic methods for the optimisation stage. The so-called 

TOPSIS (Technique for Order Preference by Similarly to Ideal Solution) multiple criteria 

decision making follows the optimisation step. The geographic information system (GIS) is 

introduced in the last section of this chapter, technology that allows organising, analysing and 

mapping spatial data. 

− The optimisation of the HSC is then applied to the national case of France in Chapter 6. The 

objective is twofold in this chapter: on the one hand, to examine if the methodology is robust 

enough to tackle a different geographic scale and second to see if the regional approach is 

consistent with the national scale. New data collection, demand prediction and assumptions 

are involved but the same model as the one applied to the Midi-Pyrénées region is used here 

with minor differences. In this case study, the GIS spatial tool is used before optimisation to 

identify the geographic items that are further used in the optimisation step. First, the mono-

objective optimisation strategy is presented. Second, the multi-optimisation approach with Ԑ-

constraint is analysed and discussed. Finally, a new scenario considering the decision maker 

preferences is described following the economic cycle.   

− Conclusions and perspectives are presented in Chapter 7. 
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Figure 1.4 Schematic description of the manuscript 

 



 

2. HYDROGEN SUPPLY CHAIN DESIGN  

Résumé 

L'objectif de ce chapitre est de présenter le concept de la chaîne logistique de l’hydrogène et les 

principales activités qui y sont impliquées, i.e., production, stockage, transport et distribution. Elles 

serviront de briques élémentaires dans la modélisation globale de la chaîne et de son optimisation. Une 

analyse de la littérature dédiée à la modélisation de la chaîne logistique hydrogène est ensuite 

proposée. L’ensemble de ces éléments conduit au développement d’un modèle basé sur une 

formulation de type optimisation multi-objectif en variables mixtes prenant en compte trois types de 

critères : économique, environnemental et lié à la sécurité du procédé. Un point clé consistera à 

prendre en compte les aspects spatio-temporels, mono/multi-période et échelle régionale/nationale. 

Une attention particulière sera aussi apportée aux contraintes géographiques, à travers l’utilisation 

d’un outil de géolocalisation. 

 

Abstract 

The aim of this chapter is to present the concept of hydrogen supply chain with its associated 

activities, i.e. production, storage, transportation and distribution. These items are the elementary 

bricks of the global modelling the network. The current state of the art related to the hydrogen supply 

chain design is also presented. The formulation of a multi-objective optimisation model is then 

proposed taking into account economic, environmental and safety criteria. A key point concerns the 

consideration of spatial-temporal aspects involving either mono or multi-period approaches and 

different geographic scales and breakdowns. A particular attention is paid to the geographic 

constraints, which can be analysed through a dedicated geographic information system (GIS). 
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    Acronyms 

 
ASU Air separation unit  
BG Biomass gasification 
CCS Carbon capture and storage 
CG Coal gasification 
CH2 Compressed hydrogen 
CSP Concentrating solar power 
GIS Geographic Information System 
HSC Hydrogen supply chain 
LH2 Liquid hydrogen 
LP Linear programming 
MILP Mixed Integer Linear Programming 
MOREHyS  Model for Optimisation of Regional Hydrogen Supply 
PEM Proton Exchange Membrane 
PSA Pressure swing adsorption 
PV Photovoltaic 
RES Renewable energy sources 
SCM Supply chain management 

SMR 
WtW 

Steam methane reforming 
Well-to-wheel 
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2.1 Introduction 
Chapter 1 highlighted the lack of existing infrastructure for hydrogen deployment that is largely 

reported in the dedicated literature. One contribution of this thesis is to model the supply chain 

management (SCM) for hydrogen. SCM generally uses a set of approaches to efficiently integrate 

suppliers, manufacturers, warehouses, and stores, so that merchandise is produced and distributed at 

the right quantities, to the right locations, and at the right time, in order to minimise system wide cost 

while satisfying service level requirements (Papageorgiou, 2009) while taking into account other 

constraints. As previously explained in chapter 1, the pathway towards a hydrogen economy and more 

particularly here towards the use of hydrogen as an energy vector must encompass a broad range of 

items concerning the three pillars of sustainability based on economic, environmental and social 

impacts. SCM models can be used to design improved business pathways which could result in 

reduced environmentally impact while satisfying local regulations and international treaties for 

greenhouse gas emissions while being also economically achievable.  

 

The management of supply chains is a complex task mainly due to large size of the physical supply 

network and inherent uncertainties and decisions (Papageorgiou, 2009): 

− number, size and location of manufacturing sites, warehouses and distribution centers, and the 

resources inside them; 

− production decision related to plant production planning and scheduling; 

− network connectivity (e.g. allocation of suppliers to plants, warehouses to markets, etc.); 

− management of inventory levels and replenishment policies; 

− transportation decisions concerning mode of transportation (e.g. road, rail, etc.) and also sizes 

of material shipments. 

 

The SCM can broadly be divided into three main categories: 

(i) supply chain design; 

(ii) supply chain planning and scheduling; 

(iii) supply chain control (real-time management). 

 

A supply chain network refers to a network of firms engaged in manufacturing, assembly or storage of 

parts to create a product. The firms are grouped in nodes that represent the functionality that the 

finished product must perform, with the arcs between the nodes capturing the precedence constraints 

among them (see some examples in Figure 2.1 and 2.3). Each node typically has several ways to 

accomplish its function and is a potential stock point for inventory. Deciding what option should be 

employed at each node and where inventory should be placed among these nodes is called “supply 

chain configuration” (Nepal et al., 2011). These decisions may depend upon many factors such as lead 

time, cost, relationships and other constraints. The procurement nodes are those that do not have any 
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incoming arcs (i.e., they represent the purchase of components outside the supply chain).  The 

assembly/manufacturing/transferring nodes represent nodes where one or more components are 

combined together.  

 

Instead of selecting the lowest cost bidder as that used to be the standard industry practice in the past, 

companies are now considering other performance indicators to improve their systems. Cost, 

operability, reliability, environmental impacts, safety and social implications are all performance 

measures that should be considered when assessing the different pathways as viable long-term 

alternatives (Hugo et al., 2005)(Li et al., 2008). Research opportunities are evident in the appearance 

of new types of supply chain associated with sustainability and resource efficiency.  

 

SCM can be based either on mathematical programming or on simulation techniques and their 

application depends on the type of problem or task. The distribution of hydrogen as a fuel for the 

entire population of a region, a country and a continent, will require the gradual deployment and long-

term major infrastructure. 

 

The systemic consideration of a hydrogen supply chain (HSC) in a general perspective can be divided 

into different phases: technologic development and/or improvement, implementation assessments, 

implementation phase, operation, maintenance and dismantling (Patay, 2008). Currently not all the 

potential technologies to be used in the HSC are mature. Studies on the design of these technologies 

are then required. The whole life cycle of the system is out of the limits of this thesis but a general 

review of the current status of such technologies is needed in order to contextualize and design 

scenarios that will be further used. The core of this study concerns the implementation assessment or 

supply chain design where different potential scenarios of the HSC are analysed at a strategic stage. 

 

The remainder of this chapter is organised as follows; in the next section (2.2), the HSC for an 

industrial and mobility use is introduced. The system is represented by nodes and connections and a 

general HSC is displayed. Different hydrogen activities (production, storage, transportation, etc.) are 

involved in a HSC and will be presented. Hydrogen can be produced from both fossil and renewable 

resources (section 2.3). Section 2.4 reviews the different technologies related to the various sources. It 

is highlighted that hydrogen can provide storage options for intermittent renewable technologies such 

as solar and wind and might thus facilitate the large-scale introduction in the energy mix. The 

centralisation degree according the plant capacity is introduced, and processes such as steam methane 

reforming, gasification and electrolysis are presented.  Finally the issue related to CO2 capture and 

storage is mentioned. Hydrogen conditioning and storage are the core of section 2.5. Section 2.6 is 

devoted to transportation with different modes as pipeline, tube trailer and tanker truck to supply H2 

fuel to the refuelling stations (section 2.7). All these activities need to be integrated in a systematic 
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modelling framework that allows a more precise approach than roadmaps and planning scenarios (as 

previously explained in chapter 1). Then, the modelling approaches of the HSC are described in 

section 2.8 and a literature review is performed in section 2.9. This analysis emphasizes that achieving 

the potential benefits of a hydrogen system requires careful integration of production, storage and end-

use components with minimised cost and maximised efficiency, and a strong understanding of 

environmental impact, reliability and opportunities. These positions this work in a system modelling 

approach based on a multi-objective optimisation framework (section 2.10). The developed system 

tool will provide the platform for standardised comparisons of energy systems for specific 

applications.  

2.2 Hydrogen supply chain 

2.2.1 H2 supply chain for industrial uses 

H2 production was 90 billion Nm3 in Europe and 7 billion Nm3 in France in 2007 (PHyRENEES, 

2009). While most of it is produced onsite for captive uses, a significant portion of H2 produced today 

is a by-product in the chemical industry (e.g. chloralkali electrolysis) and, since there is no specific 

purpose, this is sometimes wasted, flared or treated by gas industries. The production of chlorine is a 

key industry. France has the second ranking place just after Germany. Three main chlorine producers 

share the market in 10 sites all around the country: Arkema (before Atofina), Solvay and Chloralp 

(exportations of 4.3 million of t in 2007). 

 

In current schemes, the logic of industrial distribution is generally as follows: hydrogen is produced in 

centralised plants or produced onsite for captive uses. H2 is obtained mainly from Steam Methane 

Reforming (SMR) and coal gasification and also obtained as a by-product in from the chloralkali 

electrolysis plants. It is used on-site or transported (short distances) by pipelines. The option to be 

liquefied or compressed and then transported via tube trailers or tanker trucks also exists but is less 

frequent. Ammonia production plants, oil processing units, methanol and metal industries are 

customers with high demand volume (see Figure 2.1). 

 

2.2.2 H2 supply chain for mobility 

The hydrogen supply chain for H2 as fuel is defined as a system of activities from suppliers to 

costumers. These activities are: energy source, production, storage, transportation, and dispensation of 

hydrogen to refuelling stations. Unlike most other fuel infrastructures, hydrogen can be produced 

either centrally (similar to existing gasoline supply chains) or distributed (as small scale units that can 

produce H2 close to the use point in small quantities) modes at forecourt refuelling stations, therefore 

significantly reduces the distribution cost.  
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The stakeholders can be addressed as economic, social or institutional agents, business enterprises and 

cultural groups of en specific country or region related to the hydrogen economy as displayed in 

Figure 2.2. 

 
Figure 2.1 Hydrogen supply chain for captive uses  

 

The selection of the “best” hydrogen pathway involves comparison of the various technological 

options in terms of multiple performance criteria, with the ultimate goal being to define a strategy 

whereby the infrastructure investment can be planned with confidence (Hugo et al., 2005). Several 

options are presented in Figure 2.3. 

 

 
Figure 2.2 The hydrogen supply chain related to demand and supply with the stakeholders. 
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In that context, some questions arise and the scientific objective of this work is to bring them an 

answer: 

− which is the environmental impact of the energy source used to produce H2? 

− which production option is more cost effective?  

− is centralised production or decentralised production (small-scale production at local fuelling 

more cost effective? 

− what are the most cost effective transportation modes and pathways to connect hydrogen 

demand with its supply? 

− does the well-to-wheel (WtW) of the HSC result in less CO2 emission than those related to 

gasoline and diesel? 

− what is the safest configuration of the HSC and which quantitative criterion can be used to 

evaluate safety? 

 

HSC modelling requires the identification of the main characteristics of its activities. A general review 

of the well-known options is displayed in Figure 2.3. It must be emphasized that the degree of 

maturity is not the same among the technologies. 

 

 
Figure 2.3 Hydrogen supply chain for mobility uses. 
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2.3 Energy sources 
The local market conditions and availability of regional primary energy feedstock have a large impact 

on selection of supply chains pathways. As previously explained, hydrogen has the benefits of 

improving security of fuel supplies since it can be produced from diverse primary energy sources, such 

as fossil fuels (such as natural gas, naphtha, heavy oil, and coal) and renewable energy sources (RES) 

(i.e. wind, biomass, water, or solar energy). Currently, almost 95% of hydrogen is produced from 

fossil fuels via steam reforming, gasification and partial oxidation processes (Heracleous, 2011). 

According to (Murthy Konda et al., 2011a), feedstock remains the biggest contributor in the cost of H2 

fuel with 40% share. 

 

RES are playing an ever-increasing role in European electricity generation. Their share increased from 

14% in 1995 to 21% in 2010. Hydro-power plays by far the most important role in electricity 

generation. Nevertheless, the importance of RES other than hydro has grown considerably; in 1995 

they contributed only 8% of green electricity, in 2010, solar, wind, geothermal energy and biomass 

had generated 43% of the electricity in the EU (see Figure 2.4) (Eurostat. European Commission, 

2012). 

 
Figure 2.4 EU-27 gross electricity generation by fuel (in TWh) (1995-2010) (Eurostat. European 

Commission, 2012). 
 

Concerning the evolution in the energy mix, several scenarios can be found in the literature: some are 

more optimistic in the rate projected for the use in the RES as (WWF, 2011) and (EREC, 2010) reports 

that consider a 100% production rate from RES by 2050. The Renewable Energy Association in 

France presented a RES roadmap for 2020 and 2030(Syndicat des énergies renouvelables, 2012). In 

the French energy report 2050 (Percebois and Center d’analyse stratégique., 2012), some scenarios 

(CEA, AREVA, Global chance, RTE, etc.) regarding the nuclear and RES are presented in Appendix 

C1. Some of these projections will be used in the next chapters. 
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2.3.1 Natural gas 

Natural gas is a fuel consisting mostly of methane produced through the decay of organic materials. 

Further, most natural gas is obtained from wells, although it can be produced from organic waste 

through the use of digesters (Bartels et al., 2010). Natural gas is typically found near areas with large 

oil or coal reserves. Worldwide, there are 187.8 trillion cube meters of proved reserves, which is 

expected to last about 56 years at the current consumption rate (BP Stat, 2013). The existing natural 

gas infrastructures can be used to power the hydrogen production units. 

2.3.2 Coal 

Coal reserves are abundant and relatively well distributed globally; it will continue to play a leading 

role until 2050 and beyond. It should nevertheless be noted that, as pointed out by the European 

Directive of 2009, a key level in the short term, to reduce GHG emissions is to improve energy 

efficiency in end-use in different sectors: construction, transport and industry. In this regard, using 

coal as energy source is not without problems in that it releases carbon dioxide and other pollutants 

when combusted. Mining of coal causes topographical and ecological changes, especially with the 

mountaintop removal method used in the Appalachian Mountains. Coal gasification and carbon 

sequestration (see also Section 2.4.5) may be able to minimise pollutants and greenhouse gases while 

changes in mining practices can reduce the environmental concerns. 

2.3.3 Biomass 

Biomass consists of biological material that can be used for industrial purposes, such as plants, wood, 

or waste. Biomass has historically been used as a heating fuel through the use of combustion furnaces. 

There are four main categories of biomass resources that have the potential to be used as a feedstock. 

The first is energy crops, which as the name implies are specifically grown for energy content. 

Examples are corn, soybeans, poplar trees, and algae. Agricultural waste is the second category, which 

includes crop and animal waste. The third is forestry waste from harvesting trees and clearing land, 

while the fourth category is industrial and municipal waste (Bartels et al., 2010). 

 

Many countries around the world have allocated the research and development towards the hydrogen 

production from biomass but some limitations exist. One issue with biomass is whether there is 

enough land to produce the amount of fuel and food needed in the world (Bartels et al., 2010). Other 

limitation is that the processes of hydrogen production from biomass are still in the development stage 

and require a strong effort in terms of R&D and demonstration activities (Balat and Balat, 2009). Also, 

the characteristics of biomass are very important since they can vary greatly from location to location, 

seasonally and yearly. So that the hydrogen production via biomass route may not be competitive with 

the hydrogen production with fossil fuels (Dagdougui, 2011b). However, the waste-to-energy 

application has received much attention due to its potential to become a major hydrogen source. 
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Biomass has been by far the largest source of RES consumed in the EU. Consumption of biomass was 

up 13% in 2010, accounting for 69% of the total consumption of renewables. Most of this was used for 

power generation and in households (Eurostat. European Commission, 2012). If it is true that biomass 

plays a significant role in the current French energy mix, this use is mainly for combustion and heat 

production (Direction générale de la compétitivité, de l’industrie et des services, 2011). 

 

2.3.4 Electricity as energy carrier for hydrogen production 

Depending of the energy mix of each country, the use of electricity to produce hydrogen (via 

electrolysis) could determine the environmental impact of the H2 fuel. For example, the French energy 

mix is dominated by nuclear power (78%) when the USA and China main source to produce electricity 

is coal, with 47% and 79% respectively, these numbers are displayed in Figure 2.5 that also shows the 

GWP per kWh of electricity for each particular production mix based on the Ecoinvent unit processes 

database with the method IMPACT 2002+ V2.10. France has the lowest GWP impact. The existing 

electricity infrastructures can then be used to power the hydrogen production units. 

     
 

 

                        
 

Figure 2.5 Comparison among USA, Great Britain, France and China energy mixes (SimaPro 7.3 

database consulted 28/06/2013) 

GWP= 0.085 kg CO2-equiv per kWh 

a) 

c) d) 

b) 

GWP= 0.578 kg CO2-equiv per kWh GWP= 0.7331 kg CO2-equiv per kWh 

GWP= 1.048 kg CO2-equiv per kWh 
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H2 can be considered as a “clean” energy carrier (if produced solely from renewable energies) and is 

emission-free at the point of final use (avoiding the transport-induced CO2 emissions) (Ball and 

Wietschel, 2008). Through the production of H2, the losses resulted from the intermittence of solar, 

wind and hydro sources can be reduced. Also, if electricity offer increases and electrolysers are 

installed next to the renewable energy site, no need to invest in new electric grid would be another 

advantage. Development of renewable sources for electricity production in the next years is uncertain 

and will vary depending on the regional condition and politic strategies.  

 

2.3.4.1 Nuclear 

Nuclear power could produce hydrogen by either electrolysis of water, or by direct thermal 

decomposition of water using heat from high temperature reactors. No greenhouse gas emissions are 

created directly during the generation of nuclear power. But nuclear plants depend of uranium and the 

world proved reserves of uranium are approximately 3,622,000 tonnes, and current annual usage is 

65,000 tonnes (Bartels et al., 2010). Therefore, the world has approximately 56 years of uranium 

supply, assuming no new sources are found and demand remains the same. The nuclear sector has the 

advantage of producing a kWh with a relatively stable price.  

 

Nuclear fission produces dangerous waste that remains highly toxic for thousands of years and there is 

nowhere in the world where it can be stored safely.  In 2011, Germany has made important energetic 

strategic changes regarding the role of nuclear power following the Fukushima accident. Its 

Energiekonzept project, prior to the events of Fukushima, was already based on a halving energy 

demand by 2050 and substantial use of renewable energy (Percebois and Center d’analyse stratégique., 

2012). Germany has established the ambitious target to abandon nuclear energy completely between 

now and 2022.  In France, the energy mix is lead by nuclear power (see Figure 2.5c); this topic is 

discussed in forums as the National Debate for the Energy Transition (“Débat national sur la transition 

énergétique,” 2013). In this country, currently there are 58 nuclear reactors that produce more than 

three-quarters of the electricity demand of the country. The report "Energy 2050" (Percebois and 

Center d’analyse stratégique., 2012) evaluates presents scenarios according to the operating life of 

French  nuclear plants.  

 

2.3.4.2 Solar 

The sun provides an effectively supply of energy that can be used to generate electricity and heat. 

Today, solar energy technology contributes only to 2% of our total energy supply, but this proportion 

is growing fast. In the Ecofys scenario presented by (WWF, 2011), solar energy could supply around 

half of the total electricity, half of the building heating and 15% of the industrial heat and fuel by 

2050. In this context, two technologies have reached an advanced degree of maturity: photovoltaic 

(PV) cells and concentrating solar power (CSP). 
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There are many types of PV cells produced, being more commonly silicon based. These have a quite 

high efficiency, but very pure silicon is needed so the manufacturing process requires a large amount 

of energy. Efficiencies of more than 20% (for commercialised cells) have been obtained with silicon 

cells already produced in mass production (EPIA, 2011). Thin film panels, which either do not require 

silicon or use much smaller amounts, are starting to be mass produced and commercially available. 

Even if thin films can be packaged into flexible and light-weight structures, the main disadvantage is 

their low commercial module efficiency (7-12%) which differs of the record lab efficiency, e.g. for the 

cooper, indium, gallium, (di) selenite/ (di) sulphide (CIGS) and cooper, indium, (di) selenite/ (di) 

sulphide (CIS) offer a record commercial efficiency of 12.1% and a record lab efficiency of 20.3% 

(EPIA, 2011) (Pérez Gallardo, 2013). Among commercial photovoltaic technologies, concentrating 

photovoltaic (CPV) has the highest solar energy-to-electricity conversion efficiency; in (Vossier et al., 

2012), efficiencies over 40% resulted from CPV technology. One obvious drawback of solar power is 

that the supply varies. PV cells do not function after dark and are less efficient on cloudy days. 

 

CSP uses mirrors or lenses to focus the sun’s rays onto a small area where the heat can be collected for 

example to heat water, which can be used to generate electricity via a steam turbine or for direct heat. 

The central location is best in hot deserts. This is both an advantage (because the visual impact is 

minimised) and a disadvantage (because very long cables are required for transit to the point of 

consumption). The overall system efficiency depends on the efficiencies of the receiver, storage 

system, turbines, etc. The work of (Ortega et al., 2008) presents an overall efficiency comparison 

among different technologies for a 50 MWe plants: parabolic trough oil (14%), central receiver system 

(CRS) + steam (13.6%) and CRS+ molten salts (14%). According to (Montenon, 2013), this 

technology is stable and has an efficiency over 20% with the advantage to produce at night periods. 

Recently, ambitious projects are in development, the PEGASE (Production of Electricity from Gas 

and Solar Energy) project was leaded by CNRS-PROMES (2006-2013) in partnership with the 

General Council of Pyrénées Orientales (CG 66). This project aims to set up and test a high 

performance solar plant prototype based on a Combined Cycle Gas Turbine added to a solar receiver, 

on the site of the old central tower in Thémis France. High conversion efficiency and low cost of 

electricity are expected (30% conversion efficiency sun / electricity through a combined cycle -gas + 

steam turbine-)(PROMES-CNRS) 

 

Several different technologies can be used for solar energy to hydrogen conversion. One approach 

involves electrolysis of water by using PV or CSP with a thermal power cycle. Another approach uses 

a thermo-chemical process to break water into hydrogen and oxygen by using high-temperature heat 

from concentrating solar energy (Bartels et al., 2010).  
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2.3.4.3 Wind 

Wind turbines are typically constructed in large groups of individual wind turbines in order to form a 

large wind farm (Bartels et al., 2010). On-shore wind has now reached a certain maturity, even if the 

intermittent nature of the production makes it difficult integration into power grid systems, and the 

technical improvements are mostly incremental. However, off-shore wind power has emerged recently 

(the first field of 500 MW in 2003 in Denmark), but faces some technical barriers: keeping equipment 

in harsh environments (saline, weather) and grid power connection (Direction générale de la 

compétitivité, de l’industrie et des services, 2011). 

 

Wind-to-hydrogen may allow wind energy to be harnessed in areas without electrical transmission 

capacity, or it could provide an energy storage medium for the intermittent wind resource in order to 

provide a more constant renewable electricity supply (Bartels et al., 2010). 

 

2.3.4.4 Hydro 

Hydropower is currently the world’s largest renewable power source. Large-scale hydropower plants 

store water in a reservoir behind a dam, and then regulate the flow according to electricity demand. 

Hydropower can provide a relatively reliable source of power on demand. The Ecofys scenario reflects 

a relatively small increase in hydropower. In this scenario, hydropower would provide 12% of the 

electricity in 2050 compared with 15% today (WWF, 2011). Nowadays, highly efficient turbines that 

generate electricity by spinning water are installed. Small hydropower, defined by installed capacity of 

up to 10 MW, is the backbone of electricity production in many countries in the European Union 

(EREC, 2010). Small hydropower is based on a simple process, taking advantage of the kinetic energy 

and pressure freed by falling water or rivers, canals, streams and water networks.  

 

Regarding the type of operation, hydropower can be classified as run-of-river or pumped hydro. Run-

of-river stations have no reservoir capacity, so that the water coming from upstream must be used for 

generation at that moment, or must be allowed to bypass the dam. Pumped hydro produces electricity 

to supply high peak demands by moving water between reservoirs at different elevations.  

2.4 Production 
In this section, the production technologies and the centralisation levels are briefly analysed. Steam 

methane reforming and gasification have been largely mentioned in the literature and currently they 

can be used to mass production. Electrolysis is a promising route to obtain H2 especially from 

renewable sources such as wind, solar and hydro. 
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2.4.1 Centralisation degree 

To classify the degree of centralisation of the HSC two categories will be used either centralised or 

decentralised (on-site) units. A centralised production option would be analogous to current gasoline 

supply chains, where the economies of scale are capitalised upon within an industrial context and large 

quantities are produced at a central site and then distributed (Hugo et al., 2005)(Murthy Konda et al., 

2011a). Centralised plants promise higher hydrogen production efficiency but also some difficulties 

are associated in high-volume hydrogen to be transported. 

 

Decentralised production consists in small regional plants or even local filling stations that could 

generate hydrogen. While hydrogen generation efficiency for decentralised is lower than those for 

centralised plants, losses in hydrogen transport can make such a scheme more efficient (Kim et al., 

2008)(Haeseldonckx and D’haeseleer, 2011). There is a tendency in the literature to argue that 

decentralised production plants could overcome many of the infrastructural barriers facing a transition 

to hydrogen (Ball and Wietschel, 2008). Most studies consider the decentralised route as the key to by-

passing the infrastructural problem (Haeseldonckx and D’haeseleer, 2011). A decentralised approach 

often results in higher costs as efficiencies are generally lower and because on-site production 

facilities are often dimensioned to cover peak demand (especially when no storage is foreseen or 

possible). However, a further increase of demand will require larger pipelines, which thus implies new 

investment costs (Haeseldonckx and D’haeseleer, 2011).  

2.4.2 Steam methane reforming 

Most of the hydrogen (97%) is made by steam reforming of natural gas also known as SMR 

(Koroneos et al., 2004). SMR is used in the chemical and petro-chemical industries; it is currently the 

cheapest production method and has the lowest CO2 emissions of all fossil production routes (Ball and 

Wietschel, 2008).  

 
Figure 2.6 Steam methane reforming block diagram and governing reaction. 

 

The main steps during the production of hydrogen from natural gas are (Hajjaji, 2011): a) production 

of the synthesis gas, b) conversion of carbon monoxide to hydrogen (Water Shift Gas) and c) 

purification. 
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Figure 2.7 Simplified process flow diagram for hydrogen production by steam methane reforming 

(Rajesh et al., 2001). 
 

 

The first stage (Figure 2.6 and 2.7)is a catalysed endothermic reaction between methane (natural gas) 

with water vapour at high temperature (steam reforming) to produce synthetic gas, which mainly 

consists of carbon monoxide and hydrogen along with some water, carbon dioxide, and methane 

(Bartels et al., 2010). During steam reforming hydrocarbons are catalytically split in the presence of 

steam at temperatures of 800–900◦C (Landucci et al., 2007). Then, carbon monoxide is converted to 

carbon dioxide following the exothermic shift reaction. In the purification stage pressure swing 

adsorption (PSA) is the prevailing process (Koroneos et al., 2004) in which the reactive gas mixture, 

containing methane and hot steam, is fed to the tube side of a catalytic furnace reactor. Since the 

reaction is endothermic, the combustion of methane with air in the furnace side of the reactor provides 

the required reaction heat. The exhausted beds are regenerated via hydrogen washing, so even if a high 

purity product is obtained, about 25% of hydrogen is lost. The hydrogen-enriched purge gas is 

recycled to the furnace side of the reactor and burned together with the combustion methane (Landucci 

et al., 2007). 

 

2.4.3 Biomass and coal gasification (BG/CG) 

Biomass gasification for hydrogen production, still at an early stage today, is expected to become the 

cheapest renewable hydrogen supply option in the coming decades although biomass has restricted 

potential and competes with other biofuels as well as heat and power generation (Ball and Wietschel, 

2008). The biomass gasification process is explained according the NREL report (National Renewable 

Energy Laboratory, 2011) in three main types of processes: fixed bed (downdraft and updraft), 

fluidized bed (bubbling fluidized bed, circulating fluidized bed) and entrained flow gasifiers.  
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Figure 2.8 Gasification block diagram and governing reaction. 

 

Each type can use one or a combination of gasification agents, including steam, air, and oxygen, to 

promote conversion. Gasification is an endothermic process and requires a heat source to promote 

reaction (Figure 2.8). Indirect gasification typically uses steam and direct gasification uses high-

pressure air or oxygen as agents. Indirect gasifier temperatures are 750°–900°C and produce syngas, 

char, and tars. One disadvantage of this approach is that a char combustor, a steam reformer, and an 

extra compressor are needed to boost the syngas pressure before the acid gas is cleaned up. During 

direct gasification, biomass under pressure in the presence of oxygen and steam produce medium 

thermal energy syngas and heat via an exothermic process. The heat is captured in the gasifier and 

combined with oxygen to maintain temperatures of 850°–1100°C. One disadvantage of this process is 

that it needs an expensive air separation unit (ASU) for oxygen supply (see Figure 2.9). 

 

 
Figure 2.9 Simplified process flow diagram for H2 production by gasification (NETL, 2007) 

 

2.4.4 Water electrolysis 

Water electrolysers can be divided into two categories, alkaline and proton exchange membrane 

(PEM) electrolysers. According to (Ball and Wietschel, 2008), electrolysis processes are more 

expensive than SMR  and only applied if high-purity hydrogen is required but a recent work (Bartels 

et al., 2010) reports that H2 production from electrolysis may become economically competitive 

because fossil fuel feedstock costs also increase, and technological advancements decrease the cost of 

alternative energy types (Murthy Konda et al., 2011a). Significant cost reductions are also expected 

for many materials, and catalysts and cell components used in PEM electrolysers could benefit from 

large scale production of PEM fuel cell of similar concept and design (Grigoriev et al., 2009). 
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Figure 2.10 Electrolysis block diagram and governing reaction. 

 
The governing reaction of electrolysis is shown in Figure 2.10. PEM technology provides an example 

of ‘‘zero-gap’’ configuration, in which electrodes are in direct contact with the surface of the ion 

exchange membrane. This cell concept offers some significant advantages compared to more 

conventional ‘‘gap-cells’’: (i) no circulating electrolyte is required, pure water being the only reactant 

supplied to the anodes; (ii) gaseous products H2 and O2 are produced at the backside of the interpolar 

field, offering the possibility of reducing ohmic drops and increasing current densities. As a result, low 

energy consumption (4.0–4.2 kW/Nm3 H2) and high hydrogen purity (>99.99%) are obtained 

(Grigoriev et al., 2009)(Dagdougui, 2011a). The flow chart of an electrolyser unit is presented in 

Figure 2.11. 

 

 
Figure 2.11 Flow chart of an electrolyser unit (Making-hydrogen.com, 2013). 

 

PEM electrolysis is a viable alternative for generating hydrogen from RES. As long as electricity 

comes from a clean source, electrolysis is a clean process. But producing hydrogen via electrolysis and 

then using hydrogen to produce electricity again is associated with considerable losses (Hake et al., 

2006). In addition, a PEM electrolyser can deliver hydrogen at high pressure, which will in turn be 

attractive for the application where hydrogen needs to be transported or stored (injected to a hydrogen 

tank or a pipeline network or be transferred to the liquefaction process). A power consumption of 52.5 

kWh/kg is used by the PEM (which is equivalent to about 75% in efficiency) (Dagdougui, 2011a). 
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2.4.5 Carbon capture and storage (CCS) 

H2 supply chains offer the possibility of capturing most of the CO2 emissions (~90%) and sequestering 

them (Murthy Konda et al., 2011a). CCS is an energy intensive and costly process involving several 

steps: CO2 capture, pressurisation, transportation and final disposal into geological formations or in 

aquifers (Haeseldonckx and D’haeseleer, 2011)(Direction générale de la compétitivité, de l’industrie 

et des services, 2011). There are three main technology options for CO2 capture and storage: pre-

combustion capture, post-combustion capture, and oxy fuel combustion. 

2.4.5.1 Pre-combustion capture 

Pre-combustion capture processes can be used in coal or natural-gas based plants. The fuel is reacted 

first with oxygen and/or steam and then further processed in a shift reactor to produce a mixture of H2 

and CO2. The CO2 is captured from a high-pressure gas mixture that contains between 15% and 40% 

CO2 (Haeseldonckx and D’haeseleer, 2011)(Direction générale de la compétitivité, de l’industrie et 

des services, 2011). 

2.4.5.2 Post-combustion capture 

The post-combustion process is commercially applied to produce high-purity CO2 from the exhaust of 

coal and gas fired boilers, furnaces and turbines. The CO2 is captured typically through the use of 

solvents and subsequent solvent regeneration, sometimes in combination with membrane separation 

(Direction générale de la compétitivité, de l’industrie et des services, 2011)(Haeseldonckx and 

D’haeseleer, 2011). The basic technology, using mono ethanolamine, has been used on an industrial 

scale for decades, but the challenge is the massive up scaling for power plants and to recover the CO2 

with a minimum energy penalty and at acceptable cost. At present, the largest operating unit has a 

capacity of 800 t CO2/day. To put this into perspective, large coal-fired units produce up to roughly 

10,000 t CO2/day (Haeseldonckx and D’haeseleer, 2011). 

2.4.5.3 Oxygen combustion 

In this technology the fuel is combusted using (nearly) pure oxygen, which is produced by a cryogenic 

ASU, although new technologies such as ion transport membranes are being worked on. The flue gas, 

containing primarily CO2, is partially recycled to the boiler to control the combustion temperature. The 

main advantage of oxy fuel combustion is that it enables nearly 100% CO2 capture (Haeseldonckx and 

D’haeseleer, 2011). 

 

After the CO2 is captured via physical absorption, it is compressed to supercritical pressure at 15 MPa, 

which permits efficient pipeline transmission of the CO2. Energy use and CO2 emissions from CO2 

sequestration are assumed to be predominately associated with compression (Johnson et al., 2008). 

2.5 Hydrogen conditioning and storage 
Hydrogen is a very low density gas (0.08988 kg/Nm3 at 273°K) (Patay, 2008). The physical limits for 

the storage density of compressed and liquid hydrogen have more or less been reached, while there is 
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still potential in the development of solid materials for hydrogen storage, such as systems involving 

metal hydrides (Ball and Wietschel, 2008). Designing tanks both compact, lightweight, safe and cheap 

is crucial since this is the possibility of making hydrogen storage particularly attractive compared to 

electricity (CEA, 2013). 

 

Hydrogen contains a lot of energy per unit of weight while the content of energy per unit of volume is 

quite low. This poses a potential problem in terms of storing large amounts of hydrogen. The 

traditional means of storage such as pressure tanks and cryogenic tanks have improved dramatically, 

and a number of new storage technologies are currently under development. The least complex 

method of storing pure hydrogen is as a compressed gas in a high-pressure cylinder (Dagdougui, 

2011a). The lack of storage implies that enough production capacity needs to be installed in order to 

cover the peak demand for hydrogen (Haeseldonckx and D’haeseleer, 2011). 

2.5.1 Liquefaction 

Liquefaction can greatly increase the volumetric density of hydrogen, as compared to compressed gas, 

but the liquefaction process itself is very capital and energy intensive (Johnson et al., 2008). Hydrogen 

liquefaction and use of liquid hydrogen is usually practiced only when high storage density is required, 

for example, in aerospace applications (Dagdougui, 2011a). But H2 can also be liquefied for being 

transported in larger volumes by cryogenic trucks. It is then about 800 times denser than the gaseous 

state where, a priori, the obvious interest of this liquid for storage and transportation. However, a 

certain level of cryogenic technology is needed to be implemented, either to liquefy or to keep in the 

liquid state (Patay, 2008). The extensive isolation technology and fuelling process, as well as the loss 

of hydrogen by evaporation effects during storage periods are further disadvantages of liquid hydrogen 

(LH2) storage system (Hake et al., 2006). 

 

The first liquefaction of hydrogen was obtained by James Dewar in 1898. The process was improved a 

few years later by the method of Georges Claude (the founder of Air Liquide) which improves the 

compression refrigeration machine designed by Linde (AFH2, 2011). Hydrogen is after helium, the 

most difficult gas to liquefy. A temperature of 20.3°K or -253°C is required. It is not obtained only by 

supplying cold gas but by the combined effect of cooling and clean the adiabatic expansion of the gas 

after it has been previously compressed (AFH2, 2011).  

 

The electricity use in a liquefier (kWh/kg H2) is estimated as a function of size with a minimum 

electricity use of around 9 kWh/kg H2 for the most efficient, large liquefiers (Johnson et al., 2008) 

compared to 4.1 kWh/kg H2 needed for compression (Grol et al., 2005). 

 

There are currently around thirty liquefaction units worldwide (see an example in Figure 2.12). Their 

daily productions range from a few tonnes to 54 tonnes for the largest (Sacramento, USA, Union 
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Carbide). World production of LH2 would reach 355 tonnes. The majority (84%) of this production 

lies in the USA: its main use is the petrochemical industry (33.5%) followed by aerospace applications 

(18.6%) (e.g. the first factory was built for the Apollo program in 1960) (AFH2, 2011). 

 

 

Figure 2.12 Liquefier Linde in Leuna, Germany (2008) (AFH2, 2011) 

 

The liquefaction system can turn the hydrogen gas to medium pressure liquid hydrogen. A condenser 

can be located on the same site a production unit. It is designated hereafter as "liquefier attached". If 

not attached, a condenser can be located anywhere in the country. Each of liquefier can supply several 

filling stations (Patay, 2008). 

2.5.2 Liquid H2 storage 

Like all liquids at low temperature, called cryogenic liquids, liquid hydrogen is stored in cryostats 

containers double insulation whose purpose is to limit the inevitable heat outside contributions. The 

former is a thermal insulation barrier against the flow of heat by direct conduction, provided by the 

vacuum maintained in the double wall of the cryostat. The latter, against the flow of heat by radiation 

is provided by a multi-reflecting sheet metal disposed in the space between the walls. A cryostat is not 

sealed so that a continuous evolution of hydrogen gas (precisely vapour hydrogen), which avoids 

excessive pressure increase. This constant evaporation, which corresponds to a weight loss of 0.5 to 

1% per day depending on the technology used, is one of the major disadvantages of storing hydrogen 

in its liquid form (AFH2, 2011). Liquid hydrogen plays an important role during the transition phase 

(until 2030) and in connecting outlying areas, such as along motorways or in rural areas (Ball and 

Wietschel, 2008). The works of (Almansoori and Shah, 2006)(Almansoori and Shah, 2009) concluded 

that from an economical viewpoint, designing a liquid hydrogen based supply network is extensively 

cheaper than designing a gaseous-based network.  
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2.5.3 Compression 

The production of hydrogen and conversion to gaseous form is less expensive than producing it and 

converting to liquid form. However this difference in production costs does not come close to bridge 

the gap of higher transportation cost of gaseous hydrogen compared to liquid hydrogen (Ingason et al., 

2008). 

 

The conditioning system can turn the medium pressure hydrogen gas to a high pressure hydrogen gas 

or compressed hydrogen (CH2). Currently, 200 or 350 bar pressure bottles are distributed in the 

industry and developments now concern tanks can withstand pressures of 700 bar (CEA, 2013). A 

conditioning center can be located on the same site a production unit. It is designated hereafter as 

"attached conditioning center". If not attached, a conditioning center can be located anywhere in the 

country. Each conditioning centers can supply several groups of filling stations (Patay, 2008). 

 

2.5.4 Gaseous H2 storage 

The required space of gaseous storage could be an important issue. Given the fact that large storage 

facilities can only maintain pressures up to 12-16 bar, this means that up to 1 million m3 of space is 

required for storage capacity for 10 million Nm3 H2 (Haeseldonckx and D’haeseleer, 2011). In 

addition, storing such large quantities of hydrogen also brings along serious safety issues. Large 

hydrogen storage facilities are unlikely to be located near densely-populated areas. 

 

The risk of leakage of hydrogen must also be considered in light of flammable and explosive nature of 

the gas under certain conditions. However, due to the small size of the molecule, hydrogen is able to 

penetrate many materials, including certain metals. It weakens, moreover, some making brittle. The 

study of high-pressure storage is therefore essentially to test the resistance of materials to hydrogen 

pressure. These materials must be resistant but relatively light (mobility requires). The metal tanks 

currently used, still prove expensive and heavy in relation to the amount of gas they can take. Non-

metallic tanks but most of polymeric materials (non-load-bearing non-metal liner axial and hoop 

wrapped with resin-impregnated continuous filament23) are being developed to address these 

constraints (CEA, 2013).  

 

                                                      
23One of the most advanced lightweight storage systems for the case of compressed gas consists of a 

vessel, which is actually an advanced composite tank using a non-load-bearing metallic. The plastic 

liner axial and hoop wrapped with resin-impregnated continuous filaments is another advanced vessel 

(Tzimas et al., 2003) 
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2.5.5 Metal hydrides 

An alternative to the traditional storage methods (liquid and gas) is proposed through the use of 

advanced solid materials. Certain materials absorb hydrogen under moderate pressure at low 

temperatures, forming reversible hydrogen compounds called hydrides. This type of hydrogen storage 

is often called “solid” hydrogen storage since hydrogen becomes part of the solid material through 

some physicochemical bonding (Dagdougui, 2011a). This kind of storage works like a sponge; it 

absorbs H2 and stocks it. Is therefore recovered at the outlet of H2 gas, high purity, low pressure. For 

use in cars, it will be compressed to 700 bar (350 bar or, depending on the model selected), and put in 

the filling station. This technology is well adapted for on-site applications. More information about 

this kind of storage can be found in (“McPhy - Solid hydrogen storage”). 

2.6 Transportation 
Conceptually, transportation is divided into two parts: transmission and distribution. Transmission 

refers to H2 transportation from a plant to other regions without-plant units and distribution refers to 

H2 transportation to the refuelling stations from a plant or regional conditioning center in any region 

(Murthy Konda et al., 2011a).  

 

There are various methods for transporting hydrogen, but choosing the best one depends on different 

parameters such as the distance of the demand center from the production site (Ball and Wietschel, 

2008)(Qadrdan et al., 2008), the amount of transferred hydrogen, and the existing infrastructure such 

as natural gas pipeline, road, and rail (Qadrdan et al., 2008).  

 

Note also that the choice of transportation mode is correlated with the architecture of the distribution 

network. Indeed, a supply chain including liquid hydrogen requires trucks, while a supply chain not 

including condensers or compressors requires pipelines (Figure 2.13)(Patay, 2008). 

 

Since the volumetric energy density of H2 is low, transportation costs can be significant (Ball and 

Wietschel, 2008)(Murthy Konda et al., 2011a)(Almansoori and Shah, 2006). For (Ball and Wietschel, 

2008), as transport is so expensive, hydrogen should be produced close to the user centers.  

 

 
 

Figure 2.13 Tanker truck, tube trailer and cylinder trailer (Patay, 2008) 
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The costs could be considerably reduced if the natural gas pipeline could be adapted to hydrogen. As 

hydrogen can diffuse quickly through most materials and seals and can cause severe degradation of 

steels, mainly due to the embrittlement, the use of existing natural gas pipelines could be problematic 

and has to be investigated on a case-by-case basis. Coating or lining the pipelines internally, or adding 

minor amounts of oxygen could solve the problems in using existing long-distance transmission 

pipelines made from steel. In addition, valves, manifolds, and in particular compressors would need to 

be modified, as they are optimised to work under a certain range of conditions, such as gas 

composition (Ball and Wietschel, 2008). Another possibility could be to blend hydrogen with natural 

gas up to a certain extent and either separate the two at the delivery point, or use the mixture, e.g. in 

stationary combustion applications (Ball and Wietschel, 2008)(Li et al., 2008).  

 

2.6.1 Pipeline 

Pipelines have been used to transport hydrogen for more than 50 years (Ball and Wietschel, 2008). 

The longest hydrogen pipeline in the world to supply chemical and petrochemical industries (about 

1050 km in France, Germany and the Benelux countries) is operated by Air Liquide (CEA, 2013). The 

United States has more than 720 km of hydrogen pipelines concentrated along the Gulf Coast and 

Great Lakes, the estimation of the capital cost of hydrogen transmission pipelines range from 200,000 

to 1,000,000 US$/km (Dagdougui, 2011a). 

 

From a production unit, the gas is transported through a transmission line medium pressure (100 

bar)(Patay, 2008)(Haeseldonckx and D’haeseleer, 2011). This means that less space is required to 

store the same amount of hydrogen. In addition, as hydrogen is stored throughout the entire pipeline 

network, there are no large concentrations of hydrogen at the same location, improving the overall 

safety. The exact amount of hydrogen that can be stored, depends on the maximum and minimum 

pressure, the hydrogen flow and the length and diameter of the pipeline (Haeseldonckx and 

D’haeseleer, 2011). 

 

Pipelines for medium and large fuelling stations may become relevant once a significant market 

penetration of hydrogen vehicles has been achieved, but these are mostly used for local distribution in 

highly populated areas and for large-scale interregional energy transport according to the HyWays 

roadmap (European Commission, 2008). In (Ball and Wietschel, 2008), a pipeline network could be 

constructed after 2030 when the potential demand can justify the high investment. 

 

2.6.2 Tube trailer 

From a conditioning center, compressed hydrogen is being transported at around 200 bar by tube 

trailers according to Praxair. With the appearance of decentralised, regional production, tube trailers 

use is a solution for the transition phase towards the use of pipelines (European Commission, 2008). 
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Commercial tube trailers are well established. Generally, transporting CH2 over the road in high-

pressure tube trailers is expensive and used primarily for short distances; it becomes cost-prohibitive 

when transporting farther than about 321 km from the point of production in the study of (Dagdougui, 

2011a). Compressed gas truck delivery is not considered as a long-term delivery solution because their 

low hydrogen capacity would necessitate too many deliveries (Yang and Ogden, 2013). 

 

2.6.3 Tanker truck 

From the liquefaction unit, LH2 is transported by tanker trucks (cryogenic liquid hydrogen tankers) 

(Patay, 2008). This transportation mode is the most economical pathway for medium market 

penetration (Dagdougui, 2011a). They could transport relatively large amounts of hydrogen and reach 

markets located throughout large geographic areas. Fourty ton trucks can carry 3500 kg of LH2. So 

that, the transport of liquid hydrogen is limited by volume, not by weight (Bossel, 2006). 

 

2.7 Refuelling stations 
At the end of the chain, the hydrogen fuel must be distributed to end users. This distribution is in 

refuelling stations. Research has shown that drivers would be willing to switch to another fuel only if 

the new fuel is available at approximately 15-25% of the existing retail stations (Haeseldonckx and 

D’haeseleer, 2011). The problem of refuelling stations installation could face two scenarios: 

• Scenario 1: conversion of existing gasoline/diesel stations to hydrogen stations. This scenario 

has been implemented assuming that oil companies will represent one of the major 

stakeholders of hydrogen production.  

• Scenario 2: installation of new hydrogen stations.  

 

The development of refuelling stations does not seem to represent specific technical problems. 

Currently, 208 refuelling stations already exist in the world ((Avere France, 2012) consulted 

16/08/2013), established principally in the United States, Japan, Germany and Iceland. However, it 

will take time for these stations to cover a whole country, which could hinder the development of 

hydrogen in transport. To overcome this difficulty, some car manufacturers plan to use current fuels 

and hydrogen (hybrid cars) (CEA, 2013). 

 

(Patay, 2008) identified four types of refuelling stations according to their main mode of supply, 

allowing the filling station vehicles equipped with tanks for hydrogen gas at high pressure to about 

700 bar24 (a priori these tanks will be dominant in the market): 

                                                      
24 In cases where the FCEV has 350 bar onboard storage tanks, H2 has to be compressed up to 400 bar 

before being dispensed (Murthy Konda et al., 2011a) 
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• Type 1. Stations receiving liquid hydrogen require evaporation and compression facilities 

• Type 2. Stations receiving compressed hydrogen (200 bar) from tube trailers require a high 

compression unit (400-700 bar) 

• Type 3. Stations with a piped gaseous H2 supply require a high compression unit (from 100 to 

400-700 bar) 

• Type 4. Stations with on-site H2 production by small electrolysis units require compression 

(from 15 to 400-700 bar) 

 

Hydrogen refuelling stations must be as safe as gasoline stations. The main safety aspects at the user 

interface are related to the risk associated with a potential ignition of a hydrogen leakage at the station 

or at the vehicle. Hydrogen refuelling station may be a complex architecture since; it must include 

additional devices that are essential to deliver the hydrogen to customers, such as compressor unit that 

is required to compress hydrogen to a required pressure. Refuelling station risk must be well evaluated 

and the code and standards for safety must be updated in order to take into account hydrogen features. 

Safety issues may affect the public perception of installing a hydrogen refuelling station, especially for 

those that live close to the facility (Dagdougui, 2011a). 

 

The items that have presented in the previous sections, energy sources-production technologies-

storage-transportation-refuelling, constitute the elementary building bricks of the supply chain. In 

what follows, the review of HSC modelling is proposed to position this work. 

2.8 Modelling approaches 
A literature review shows that the most common approach in designing and modelling the HSC are the 

optimisation methods through mathematical models. As opposed to simulation based approaches these 

models utilize formal optimisation techniques to allow advanced decisions to be captured and to 

provide comprehensive integrated solutions recommendations (Hugo et al., 2005). The aim of such 

methods is to find out optimal configurations according to some specific criteria (e.g. economic, 

safety, environmental aspects). One of the main advantages of this type of modelling is that 

mathematical models form a bridge to the use of high-powered mathematical techniques and computer 

to analyse the problems (Hillier and Lieberman, 2001). 

 

The inputs of such models are constituted by a set of options for the production, storage and 

transportation, while the outputs are relative to the type, numbers, location and capacity of the 

production, storage, transportation (Dagdougui, 2011b). This approach matches with the previous 

definition of the HSC explained in the section 2.1. 

 

The network design problem can be characterized according to different levels of interest; 
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− type of problem: location, allocation, routing, location-allocation, location routing,  

− planning level considering strategic, tactical or operational aspects,  

− temporal dimension for example either static or dynamic,  

− type of data (i.e. deterministic, stochastic),  

− type of approach (optimisation, simulation),  

− horizon time (short, medium or long term),  

− geographic dimension according to the problem definition.  

 

The use of mathematical programming for designing a supply chain, consists of three major steps as 

reported in (Grossman et al, 2000; Boix, 2011): 

i. The representation of all possibilities from which the optimal solution is extracted by defining 

the so-called superstructure: a superstructure is defined as the set of all possible connections in 

a network.  

ii. The formulation of a mathematical model includes generally discrete and continuous 

variables. The main components of a model are:  

a) the optimisation criteria which are expressed as mathematical functions, and  

b) the constraints which can be either of equality or inequality type.  

iii. The resolution of the mathematical model to determine one or more optimal solutions. 

 

There are also geographic tools to design the HSC. The Geographic Information System (GIS) is a 

package that can be usefully integrated with a modelling system for supply chain management. The 

typical GIS contains an extensive database of geographic census information plus graphical 

capabilities of displaying maps with overlays pertaining to the company’s supply chain activities 

(Shapiro, 2001). Besides the use of GIS, additional enhancements could be projected by coupling the 

GIS component to an additional mathematical model thus leading to an integrated approach. This 

coupling could favour the exploitation of two different decision support systems. It must be 

highlighted that by contrast to the mathematical optimisation approaches, the spatial or GIS based 

approach cannot be considered as a general methodology for finding the optimal HSC configuration. 

In fact, the results of the approach are depending on national or regional specific conditions, that are 

strongly related to the local territorial conditions, such as transportation network, population, available 

resources, local policies and others (Dagdougui, 2011b). 

2.9 Literature review 
In the mathematical formulation, Mixed Integer Linear Programming (MILP) approaches have been 

widely used. (Almansoori and Shah, 2006) have clearly introduced a general model that determines 

the optimal design of a network (production, transportation and storage) for vehicle use where the 

network is demand-driven. The model was applied to a Great Britain case study. The same authors 
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extended the model in 2009 (Almansoori and Shah, 2009), to consider the availability of energy 

sources and their logistics, as well as the variation of hydrogen demand over a long-term planning 

horizon leading to phased infrastructure development as well as the possibility of selecting different 

scales of production and storage technologies. Other works (Almansoori and Shah, 2012) take into 

account demand uncertainty arising from long-term variation in hydrogen demand using a scenario-

based approach: the model adds another echelon including refuelling stations and local distribution of 

hydrogen minimising the total daily cost. 

 

(Hugo et al., 2005) developed an optimisation-based formulation that investigates different hydrogen 

pathways in Germany. The model identifies the optimal infrastructure in terms of both investment and 

environmental criteria for many alternatives of H2 configurations. This model has been extended and 

considered as a basis for other works such as Li et al. (Li et al., 2008) for the case study in China. At 

the same time in Iran, a model for investigation of optimal hydrogen pathway and evaluation of 

environmental impacts of hydrogen supply system was examined by (Qadrdan et al., 2008). Another 

study also considered hydrogen from water, using electricity from hydro and geothermal power in 

Iceland for exportation (Ingason et al., 2008). 

 

Several perspectives of the HSC have been integrated in (Kim et al., 2008) models as deterministic vs. 

stochastic approach to consider demand uncertainty in the new model.  The model they proposed 

determines a configuration that is the best for a given set of demand scenarios with known 

probabilities. The stochastic programming technique used is based on a two-stage stochastic linear 

programming approach with fixed recourse, also known as scenario analysis. A strategic design of 

hydrogen infrastructure was later developed to consider cost and safety using multi-objective 

optimisation where the relative risk of hydrogen activities is determined by risk ratings calculated 

based on a risk index method (Kim and Moon, 2008). 

 

(Patay, 2008) has developed a strategic and tactical model for the French territory and Benelux region 

in cooperation with Air Liquide Company. In this thesis, the demand and energy costs are exogenous 

parameters given the uncertainty on these parameters for a long-term horizon. This work studies the 

transportation and distribution nodes taking into account an economic criterion. The multi-period 

model is to scale the infrastructure in each time period of a time horizon (horizon year 2050). The 

originality of (Patay, 2008) problem results from the time horizon considered and the dynamic 

dimension, as well as the size of the supply chain considered.  

 

(Guillén Gosálbez et al., 2010) proposed a bi-criterion formulation that considers simultaneously the 

total cost and life cycle impact of the hydrogen infrastructure and to develop an efficient solution 

method that overcomes the numerical difficulties associated with the resulting large scale MILP. 
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(Sabio et al., 2010) also developed an approach, which allows controlling the variation of the 

economic performance of the hydrogen network in the space of uncertain parameters examined the 

case study of Spain.   

 

More recently, (Murthy Konda et al., 2011a) considered the technological diversity of the H2 supply 

pathways together with the spatial-temporal characteristics to optimise a large-scale HSC. They 

calculate the transportation costs based in (Almansoori and Shah, 2006) and (Almansoori and Shah, 

2009) approaches. The original models are modified (e.g., inclusion of existing plants, capacity 

expansion and pipeline features) and analysis is extended to incorporate the computation of delivered 

cost of H2, well-to-tank emission and energy efficiency analyses. In (Haeseldonckx and D’haeseleer, 

2011), the objective is not only to find the optimal set of activated hydrogen production plants but also 

to implement a hydrogen infrastructure optimisation algorithm that has to decide which hydrogen-

production plants will be invested in and which plants will not.  

 

The thesis work of (Dagdougui, 2011a) describes the risk hazards (delimitation and explanation of 

potential risks in some parts of the hydrogen infrastructure: pipeline and storage tank) to demonstrate 

the consequence of hydrogen accident in case of a future infrastructure operation. The risk is 

integrated into the HSC to minimise the global risk to population and environment. The model is 

applied to regional case studies to the region of Liguria (North of Italy) and Morocco. A GIS based 

methodology was coupled based on the clean feedstock for hydrogen production. Then, the 

minimisation of the cost of installation of new onsite hydrogen refuelling stations, the cost of 

conversion of existing gasoline to hydrogen stations and the cost of transporting hydrogen fuel to 

offsite stations is done. The objective of this work was to develop a decision support system for the 

localization of hydrogen refuelling stations taking into account the potential of production within a 

specific boundary region.  

 

(Sabio et al., 2011) take into account eight environmental indicators in a two-step method based on a 

combination of MILP multi-objective optimisation with a post-optimal analysis by Principal 

Component Analysis (PCA) to detect and omit redundant environmental indicators. 

 

More recently,(Liu et al., 2012) focuses on the analysis of hydrogen demand from hydrogen FCEVs in 

Ontario, Canada, and the related cost of hydrogen. Three potential hydrogen demand scenarios (2015-

2050) are considered. Costs associated with the hydrogen production (electrolysis), storage (LH2 and 

CH2) and distribution (tanker truck and pipeline) were also calculated. A sensitivity analysis was 

implemented to investigate the uncertainties of some parameters on the design of the future hydrogen 

infrastructure.  
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Finally,(Yang and Ogden, 2013) describes the development and use of a hydrogen infrastructure 

optimisation model using the H2TIMES modelling framework to analyse hydrogen development in 

California to 2050. H2TIMES is a quasi-spatial model that develops the infrastructure to supply 

hydrogen fuel in order to meet demand in eight separate California regions in a least cost manner 

subject to various resource, technology and policy constraints. H2TIMES uses modelling to identify 

the least-cost method of meeting the exogenously-specified regional H2 demand and minimise the 

discounted total system cost over the modelling horizon subject to the various policy and resource 

constraints specified in the model using linear programming (LP) and MILP.  

 

It can be highlighted that several mono-objective optimisation approaches have been developed or 

extended as in (Qadrdan et al., 2008)(Almansoori & Shah, 2006, 2009, 2012; Ball et al., 2006; Hugo et 

al., 2005; Kamarudin et al., 2009; Kim et al., 2008)(Patay, 2008)(Liu et al., 2012)(Yang and Ogden, 

2013). In these studies, the cost is the objective to be minimised. Multi-objective optimisation studies 

are relatively scarce and criteria to be analysed are based on economic and environmental 

performances; some examples are presented in (Guillén Gosálbez et al., 2010)(Hugo et al., 2005)(Li et 

al., 2008)(Sabio et al., 2011): minimising the expected total discounted cost and the associated 

financial risk (Sabio et al., 2010) and minimising the total cost of the network and the total relative 

risk of the network (Kim and Moon, 2008)(Dagdougui, 2011a). 

 

Literature review reveals that few researchers have used the spatial dimension to construct the 

infrastructure for hydrogen. Some examples of geographic approaches include the study of (Ball et al., 

2006) who developed the MOREHyS (Model for Optimisation of Regional Hydrogen Supply) 

approach of the energy system with the integration of geographic aspects in the analysis by the GIS-

based method for Germany. This model identifies the cost-optimal way for constructing and 

implementing an (initial) hydrogen supply infrastructure as well as possible trade-offs between 

hydrogen production and electricity generation within a country-specific context (high degree of 

regionalization)(Ball et al., 2006). 

 

(Johnson et al., 2008) used also GIS for modelling regional hydrogen infrastructure deployment using 

detailed spatial data and applied the methodology to a case study of a potential coal-based hydrogen 

transportation system in Ohio with CCS. The objective in this work was to optimise hydrogen 

infrastructure design for the entire state. The MARKAL model has been applied to the UK and 

developed a GIS based spatial model to represent the layout of hydrogen infrastructure (Yang and 

Ogden, 2013).   

 

In the case of the mathematical works, they are limited to a bi-criteria assessment, generally based on 

either cost-environment or cost-safety. This is not enough when sustainable development must be 
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taken into account in the strategic stage of any new project, when social, economic and environmental 

impacts are interconnected. Moreover, the multi-period issue is not systematically tackled in all the 

reported works. Finally, the spatial or GIS based approach cannot be considered as a general 

methodology for finding the optimal HSC configuration but it can be coupled to mathematical 

programming to design the HSC. 

 

2.10 Discussion and work orientation 
As highlighted in chapter 1, the scientific objective of this thesis is to design of a HSC for fuel use in 

the horizon time 2020-2050 considering national and regional scales with three performance 

indicators: cost, environmental impact and safety, these criteria will be formulated and explained in 

the chapter 4. 

 

Mathematical programming provides a way of describing a problem and the methods to solve it. The 

work reported in (Almansoori and Shah, 2006) constitutes a consistent way to model the typical items 

of the supply chain and its interconnection in a mono-objective way considering only minimising the 

cost. The underlying idea of our work is to extend the model to new constraints and objectives related 

to environmental and safety aspects in order to treat the multi-objective problem. In the model 

developed by (Almansoori and Shah, 2006), the problem corresponds to a location routing type to 

design at a strategic level the HSC in a static mono-period mode using deterministic data with 

extrapolation for the long term scenario defined to the year 2050 to treat a national case. The problem 

is referred as MILP with minimisation of the total daily cost.  

 

The problem strategy will include different spatial-temporal scales, the mono- and multi-period 

formulation for time horizon and will be able to embed national and regional cases. The objective is to 

propose a generic framework that can also take into account the geographic and infrastructure 

constraints through the use of a GIS. 

 

In this chapter, the concept of SCM was introduced and defined as the tool to be used to model the 

hydrogen network to analyse the relevance of the infrastructure necessary to be established to cover a 

defined demand of hydrogen fuel. This study lies in a strategic phase, i.e. supply chain design. The 

HSC for fuel application results in a more complex network than that for on-site industrial 

applications. A HSC involves energy sources, production, storage, transportation, and supply of 

hydrogen to the refuelling stations. Obviously, the individual component models form the framework 

by which these system designs can be formulated and evaluated. The resulting network would heavily 

depend on the country/region-specific conditions. All the items of the HSC that will be used in the 

following will be presented in the dedicated chapters. 
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Indeed, some technologies that are considered in the literature as possible technologies are only at the 

stage of development and technical and/or economic viability is not proven or available (for storage 

via metal hydrides). This explains why they have not been considered. Sequestration and capture 

methods could be used to reduce emissions, but will induce additional costs. Pipelines will not 

considered in this work because pipelines may become relevant once a significant market penetration 

of hydrogen vehicles and they have a high capital cost associated. The following chapter presents the 

methods and tools that will be used in this work. 

 

 



 



 

3. METHODS AND TOOLS FOR HSC DESIGN 

Résumé 

Ce chapitre présente les méthodes et outils utilisés dans le cadre de ce travail pour la conception 

optimale de la chaîne logistique de l’hydrogène. Il doit être considéré comme un complément 

méthodologique pour les chapitres 4, 5 et 6. En effet, la formulation détaillée des problèmes qui seront 

traités dans la suite sera explicitée au fur et à mesure. Les aspects principaux abordés ici concernent le 

choix de la stratégie d’optimisation dans un cadre mono et multi-objectif et d’une méthode d’aide à la 

décision pour générer une solution de compromis à partir de l’ensemble des solutions issues du front 

de Pareto. L’utilisation consécutive des techniques d’optimisation et d’aide à la décision permet de 

déterminer le type, le nombre, la capacité de traitement des unités de production, de stockage et de 

transport au sein de la maille retenue lors de  la discrétisation du territoire. Pour positionner 

géographiquement les sites et les voies d’acheminement, l’utilisation complémentaire d’un logiciel de 

géolocalisation est proposée. 

 

Abstract 

This chapter presents the methods and tools used in this work for the hydrogen supply chain design. It 

should be seen as a methodological supplement to chapters 4, 5 and 6. The detailed problem 

formulation will be treated gradually in the following chapters. The main issues addressed here 

concern the choice of the optimisation strategy in mono and multi-objective frameworks as well as 

decision-aid methods to find a trade-off solution from the Pareto front. Consecutive use of 

optimisation and decision making techniques can determine the type, number and capacity of 

production plants, storage and transportation units within a specific territorial breakdown. The spatial 

design is performed using the ArcGIS® software to locate sites and routes. 
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     Acronyms 

 
HSC 
LP 
MILP 
MINLP 
MCDM 
ELECTRE 
TOPSIS 
M-TOPSIS 
RHS 
AUGMECOM 

Hydrogen supply chain 
Linear Programming  
Mixed Integer Linear Programming  
Mixed Integer Nonlinear Programming  
Multi-criteria Decision Making 
Elimination and Choice Translating Reality 
Technique for Order Preference by Similarly to Ideal Solution 
Modified TOPSIS  
Right-hand-side  
Augmented ε-constraint method 
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3.1 Introduction 
This work deals with the analysis and design of the HSC for fuel use by the horizon time to 2050 at 

national and regional scales with three performance indicators: cost, environmental impact and safety. 

The decisions that would be made in the model are the following. What are the best places to build 

hydrogen production facilities? How large should the facilities be? Where does each facility get its 

feedstock from? What kind of energy sources and production technology constitute the best choice? 

What demand centers are served by each production facility? Which mode of hydrogen delivery is 

used for each demand center? These questions must be answered by considering simultaneously the 

abovementioned criteria. 

 

The ultimate practical goal of this research will be to develop a prototype to guide decision-makers in 

their strategic choices in the market positioning of hydrogen fuel.  

 

Let us remember that a model is a description of a system by a theory or by a symbolic language with 

which the world of the objects, also a system can be expressed (Monsef, 1996). In the case of HSC, 

the basic structure definition is the base of modelling that allows quantifying, visualizing and 

simulating different scenarios. The HSC can be modelled according different perspectives, so that 

conceptual, operation, mathematical and graphical models can be distinguished (Prawda, 2004).   

 

This chapter presents the different approaches that can be tackled in order to choose the methods to be 

used for the abovementioned problem and justifies the selected ones that will be utilized throughout 

this manuscript. The reader must be aware that this short chapter constitutes a companion paper to the 

following chapters of this manuscript. The objective is to propose the guidelines of the methodological 

choices that emerge as the best options for solution strategies. Yet, some of the formulations 

describing the problems are out the scope of this chapter and will be explained in the dedicated 

chapters. 

 

This chapter is divided into 8 sections. Section 3.2 first presents the description of some optimisation 

frameworks according to the type of problem (e.g. linear, nonlinear) and some significant solution 

strategies that can be used. As highlighted in the section 2.9 of the previous chapter, the HSC problem 

can be viewed as an optimisation problem with both integer (number of production plants, storage 

facilities and transport units) and continuous variables (e.g. hydrogen production and flow rates). The 

formal presentation of all the constraints and criteria that will be involved in the whole problem will 

be performed in the following chapter and will demonstrate that the problem can be expressed as a 

linear one. Section 3.3 distinguishes the mono- and multi-objective formulations. Section 3.4 focuses 

on multi-objective optimisation methods since they are well suited to the HSC problem. Special 

attention is paid to the chosen techniques. Section 3.5 reviews the approaches for decision support 

orientation based on multicriteria decision aid following the multi-objective optimisation step. More 
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practically, the algorithm, solver and software issues are discussed in section 3.6. In the section 3.7, 

we examine how the HSC design optimisation framework can be linked with a spatially-detailed 

infrastructure model. This analysis leads us to implement the spatial design of the HSC using 

ArcGIS® software. Finally, this chapter ends with the methodological framework that will be used in 

this study. 

3.2 Optimisation frameworks 
Some of the most common optimisation frameworks for capturing problems are summarised in Figure 

3.1. There can be classified as either linear or non-linear programming. 

 

 
Figure 3.1  Classification of the main optimisation methods (adapted from Garcia et al., 2005). 

 

3.2.1 Linear formulation 

Linear formulation is used to obtain an optimal solution to problems where the mathematical functions 

in both the objective function and the constraints are all linear functions (Hillier and Lieberman, 

2001). These methods can be Linear Programming (LP) or Mixed Integer Linear Programming 

(MILP) depending of the kind of the involved variables. 

 

LP models are used for the efficient allocation of limited resources in known activities in order to meet 

the desired goals (for instance maximising profits or minimising costs). Linear programming problems 

can involve decision variables that can take integer values. When integer variables are restricted to the 

binary variables (0-1), the corresponding problem is called the binary integer programming problem. 

An integer variable can be defined such that it determines whether a processing unit should be 

invested in or not. Because of its capability to naturally capture logical conditions, applications of 

MILP have been widespread in areas of investment planning, supply chain and logistics management, 

energy industry planning, engineering design and production scheduling (Hugo et al., 2005). In the 

case of both integer and continuous variables, the problem is referred as a mixed-integer linear 

programming one. 
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The MILP method consists of maximising or minimising an objective function as a function of 

parameters, variables and several constraints on these variables (Haeseldonckx and D’haeseleer, 

2011). The use of integer variables in general and in particular binary dramatically broadens the 

capabilities of linear programming modelling, enabling the disjunction of constraints, the logical 

implication and general restrictions to the model incorporating certain nonlinear behaviours of reality. 

Many practical optimisation problems lead to consider an extremely large number of feasible 

solutions, so that the problem can be viewed as a combinatorial one. 

 

The solution of the system of linear equations that are involved in the problem formulation can be 

performed by using the Gauss-Jordan method. When problems become larger (more parameters, 

variables and constraints), the Gauss-Jordan method is generally combined with a branch-and-bound 

method in order to converge to an optimal solution as quickly as possible (Haeseldonckx and 

D’haeseleer, 2011).  

Mathematically, the MILP problem can be expressed as follows:  

Min  cx + dy 
subject to   
Ax + By> b 
L <x< U 
y = {0,1,2,..} 
 

 

where x is a vector of variables that are continuous real numbers, and y is a vector composed of 

variables that can only take integer values. In this expression, cx + dy is the objective function, and Ax 

+ By> b represents the set of constraints. L and U are vectors of lower and upper bounds on the 

continuous variables, and y={0,1,2,..} represents the integer variables.  

 

Various advantages of linear modelling can be found (Boix, 2011):  

a) short resolution time compared to other methods,  

b) a quick and almost automatic convergence towards a global optimum,  

c) the initialization phase is not necessary (as in the case of nonlinear models).  

 

3.2.2 Nonlinear formulation 

The nonlinear formulation can be tackled by two main methods, either deterministic or stochastic 

algorithms procedures. In the non-linear deterministic models, no randomness is associated. Then, 

given a particular input, a deterministic algorithm will obviously produce the same type of output 

(Prawda, 2004).  
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Mixed Integer Nonlinear Programming (MINLP) refers to mathematical programming with on the one 

hand continuous and discrete variables and on the other hand nonlinearities in the objective function 

and constraints. The use of MINLP is a natural approach of formulating problems where it is 

necessary to simultaneously optimise the system structure (discrete) and parameters (continuous). 

MINLP problems are precisely so difficult to solve, because they combine all the difficulties of both 

of their subclasses: the combinatorial nature of mixed integer programs and the difficulty in solving 

non-convex (and even convex) nonlinear programs (Bussiec and Pruessner, 2003). 

 

Stochastic programming is used when random-valued parameters and objective functions subject to 

statistical perturbations are part of the problem formulation (Coello et al., 2007). The stochastic 

models can incorporate uncertainty in parameters such as demand, costs, potential sites, distances and 

then fall into probabilistic approaches and scenarios (Patay, 2008). Metaheuristics cannot guarantee to 

obtain an optimum. The stochastic methods are divided into neighbourhood techniques such as 

Simulated Annealing, Tabu Search and evolutionary algorithms comprising genetic algorithms, 

evolutionary strategies and evolutionary programming (Tabkhi, 2007). 

 

The formulation of all the constraints and criteria that will be involved in the whole HSC problem will 

be the core of the following chapter and will demonstrate that the problem can be expressed as a linear 

one. This is consistent with the results of the literature review performed in chapter 2. 

3.3 Mono- and multi-objective optimisation frameworks 

3.3.1 Mono-objective optimisation 

Mono-objective problems usually take into account economic aspects such as cost minimisation, and 

then a myopic optimal solution can be found because this formulation is very far of real problems 

where many objectives need to be considered at the same time. The mono-objective formulation can 

be written as follows (Bierlaire, 2006) (Boix, 2011): 

0=h(x)
0g(x)

f(x)Min 
≤   

where f is a function , g(x) ∈ ℜm, h(x) ∈ ℜp . 

Here, f(x) is the objective function; vectors g(x) and h(x) are respectively m inequality constraints and 

p equality constraints. This set of constraints defines a restricted search space for the optimal solution. 

Optimisation problems are linear or nonlinear depending on the type of equations they contain and by 

continuous or discrete variable type, as explained in the previous sections. 

 

RRn  dans1] [0, n21 ×
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3.3.2 Multi-objective optimisation 

In multi-objective problems, it is not possible to find a unique optimal solution but a compromise 

among various objectives, since there is a conflict among antagonist criteria. The general formulation 

of a multi-objective optimisation problem is: 

[ ]

Sx
0=h(x)
0g(x)

(x)f (x),...,f (x),fMin 21

∈

≤
k

 

where fi (i =1, k) is a function of , g(x) ∈ ℜm, h(x) ∈ ℜp  and x is an element 

of S. 
Such an optimisation scheme is implied when there is a conflict between two or more objectives, even 

if the most profitable infrastructure may not be necessarily the least environmentally damaging. 

Because of this trade-off, there is not a single solution to this class of problem but has a set of non-

dominated solutions called Pareto front. A solution belonging to the Pareto front is said to be Pareto-

optimal if there are no other solutions that can better satisfy all of the objectives simultaneously any 

improvement in one objective leads to the worsening of at least one other objective. As it was 

abovementioned, the HSC problem involves three objectives to be minimised (cost, environmental 

impact and risk criterion). Multi-objective methods are briefly described in the next section. 

3.4 Multi-objective optimisation methods 
Several solution methods have been developed for multi-objective optimisation problems. In these 

methods, the concept of optimality is replaced with that of efficiency or Pareto optimality. The 

efficient (or Pareto optimal, non-dominated, non-inferior) solutions are the solutions that cannot be 

improved in one objective function without deteriorating their performance in at least one of the rest. 

Weakly efficient solutions are not usually pursued in multi-objective problems because they may be 

dominated by other efficient solutions (Mavrotas, 2009, 2007). These methods can be classified as the 

a priori, a posteriori and hybrid methods (based on Collette and Siarry, 2003) including scalar, 

interactive, fuzzy and meta-heuristic methods (see Figure 3.2). 

 

   
 

Figure 3.2 Multi-objective optimisation methods 
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3.4.1 A priori preference methods 

With these methods, the decision maker defines the trade-off to be applied (preferences) before 

running the optimisation method. The aggregative methods belong to this family (where the objective 

functions are gathered into one objective function). More precisely, the weighted-sum, goal 

programming and lexicographic methods (among others) can be mentioned (Collette and Siarry, 

2003). The drawback is that the decision maker never sees the whole picture (the set of efficient 

solutions) or an approximation of it. Hence, the most preferred solution is “most preferred” in relation 

to what he/she has seen and compare so far (Mavrotas, 2009, 2007). 

 

3.4.1.1 Weighted sum 

The goal of the weighted sum is to transform the problem so that it turns into a mono-objective 

optimisation problem, for which there exist various methods of solution. The simplest way to proceed 

is to take each objective function, associate a weight with the objective function and then take a 

weighted sum of objective functions. Hence, we obtain a new, unique objective function. The 

weighting factors are assigned a priori, then is modified to obtain the Pareto front, with all non-

dominated solutions (or satisfactory solutions). The major problem with this method is the variation of 

the weighting factors which often leads to Pareto fronts with a low density of solutions (Hernandez-

Rodriguez, 2011)(Boix, 2011). It can be used only when the feasible space of values of the objective 

function is convex. In the weighting method, the weighted sum of the objective functions is optimised. 

The problem is stated as follows: 

min (w1×f1(x) + w2×f2(x) + . . . + wp×fp(x)) 

subject to 

Sx
0=h(x)
0g(x)

∈

≤
 

By varying the weights wi it is possible to obtain different efficient solutions.  

 

3.4.1.2 Lexicographic method 

Lexicographic problems arise naturally when conflicting objectives exist in a decision problem but for 

reasons outside the control of the decision maker the objectives have to be considered in a hierarchical 

manner (Khorram et al., 2010). This method can be viewed as an “a priori” approach with aggregation 

using constraints in a decoupled method. In the lexicographic ordering, the objectives are ranked 

according to the order of importance. The optimisation process starts minimising the most important 

objective and proceeds according to the assigned order of importance of the criteria. An alternative is 

to select randomly an objective when there is no more rank available. One disadvantage of this method 

is that it tends to favour certain objectives, making the Pareto front converge to a particular region. 

The main advantage is its simplicity and computational efficiency, making it competitive with other 
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ideas such as weighted sum of objectives (Collette and Siarry, 2003). In general, the lexicographic 

problem can be expressed as follows:               

Lexmin{f1(x),f2(x),…,fr(x)}         (3.1) 

subject to 

0=h(x)
0g(x) ≤

 

In order solve (3.1), the following procedure known as the sequential method is adopted. First, 

minimise f1(x), and determines an optimal solution x* (f1(x*) = β1). Next, the problem is solved 

minimising f2(x) subject to f1(x*) = β1, and so on at the q iteration:  

Lexmin{fq(x): fi(x)<βi, i=1,….,q-1}        (3.2) 

subject to 

Sx 
0=h(x)
0g(x)

∈

≤
 

If either (3.2) has a unique optimum or q = r, then the optimal solution to (3.2) is a pre-emptive 

optimum. Otherwise, one proceeds to iteration q + 1 (Khorram, 2010). 

 

3.4.2 A posteriori preference methods 

With these methods, the decision maker chooses the solution by examining solutions computed by the 

optimisation model. Methods which belong to this family produce, at the end of the optimisation, a 

trade-off surface (Collette and Siarry, 2003). This kind of methods produce many solutions when only 

one will be chosen by the decision maker, it is possible to consider that a lot of time is invested to find 

the Pareto front. But also, the value of using this kind of methods within a multi-criteria optimisation 

framework is that it does not require the a priori articulation of preferences by the decision-maker. 

Instead, the aim is to generate the full set of trade-off solutions and not to present only one single 

“best” alternative. From the set of alternatives, the decision maker can then further investigate 

interesting trade-offs and ultimately select a particular strategy that satisfies his/her willingness to 

compromise (Hugo et al., 2005). In a posteriori method, the solutions of the problem are generated and 

then the decision maker is involved, in order to select among them, the most preferred one. 

 

3.4.2.1 Metaheuristic methods  

Metaheuristic methods can be used as a non-aggregative approach. They are particularly useful to treat 

problems known as "black box" ones where no mathematical property of the problem is known (Boix, 

2011). This category includes the genetic algorithms, tabu search, simulated annealing, ant colonies, 

neural networks, etc. In the case of the HSC, this method has been rarely used (Nepal et al., 2011) 

because of the type of linear constraints and the deterministic input data (the balance equations must 
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be satisfied with a small tolerance, gap<0.001%). Another main drawback of these methods is that 

they could consume a large computation time (Boix, 2011). 

 

3.4.2.2 The ε-constraint method  

In the Ɛ-constraint method, introduced by (Haimes et al., 1971) all but one objective are converted into 

constraints by setting an upper or lower bound to each of them, and only one objective is to be 

optimised (Liu and Papageorgiou, 2013). 

 

By varying the numerical values of the upper bounds, a Pareto front can be obtained. ε-constraint fits 

in the family of “a posteriori” approach with aggregation using constraints in a decoupled method 

(Collette and Siarry, 2003). This method present some advantages compared to the a priori methods, 

for example, for linear problems, the weighting method is applied to the original feasible region and 

results to a corner solution (extreme solution), thus generating only efficient25 extreme solutions. Yet, 

the ε-constraint method alters the original feasible region and is able to produce non-extreme efficient 

solutions. An additional advantage of the ε-constraint method is that we can control the number of the 

generated efficient solutions by properly adjusting the number of grid points in each one of the 

objective function ranges.  

 

In the ε-constraint method we optimise one of the objective functions using the other objective 

functions as constraints, incorporating them in the constraint part of the model as shown below: 

min f1(x) 

subject to 

f2(x) <e2  

f3(x) <e3 

fp(x) <ep 

x ∈ S 

By parametrical variation in the right-hand-side (RHS) of the constrained objective functions (ei) the 

efficient solutions of the problem are obtained. This method is yet easy to implement but in some 

cases an intensive computation time is required. 

 

However, one of its key disadvantages is that the generated solution largely depends on the selected 

vector e (Liu and Papageorgiou, 2013), the main difficulty of this method lies in determining Nadir 

points (where the criteria are their worst values). To tackle this problem, a hybrid method can be used 

as the augmented ε-constraint method (AUGMECON) proposed by (Mavrotas, 2009, 2007), presented 

in the next section. 

                                                      
25A feasible solution x*

∈S is called efficient or Pareto optimal if there is no other x∈S such that 

f(x*)<f(x) and f(x*) ≠ f(x)(Khorram, 2010). 
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3.4.3 Hybrid methods 

A recent work (Mavrotas, 2009, 2007) shed new light on determining Nadir points combining the Ɛ-

constraint method with the lexicographic one. Also (Liu and Papageorgiou, 2013), noted that for some 

multi-objective optimisation problems, the decision makers do not have preference to any objective, 

i.e., all the objectives are equally important. In this case, it is crucial to generate a fair solution, in 

which all normalised objective function values are as much close to each other as possible. In order to 

generate such solutions, the lexicographic can easily be coupled to the Ɛ-constraint method to create a 

hybrid method which could result in fair solutions.  

 

The AUGMECON method (Mavrotas, 2009, 2007) is an effort to effectively implement the ε-

constraint method for producing the efficient solutions. To determine utopia and nadir points in the 

classical Ɛ-constraint method, the most common approach is to take upper and lower bounds from the 

payoff table (the table with the results from the individual optimisation of the p objective functions). 

In a minimisation problem, the nadir value is usually approximated with the maximum of the 

corresponding column. However, even in this case, it must be sure that the obtained solutions from the 

individual optimisation of the objective functions are efficient solutions. In order to overcome this 

limitation, the AUGMECON method propose the use of lexicographic optimisation for every objective 

function in order to construct the payoff table with only efficient solutions. A simple remedy in order 

to bypass the difficulty of estimating the nadir values of the objective functions is to define reservation 

values for the objective functions. The reservation value acts like a lower (or upper for minimisation 

objective functions) bound. Values worse than the reservation value are not allowed. 

 

3.4.4 Choice of the multi-objective optimisation method 

The weighted-sum method was not selected in this work because some preliminary optimisation runs 

lead to Pareto fronts with a too low density of solutions. The lexicographic method minimising the 

most important objective and then proceeding according to the assigned rank of importance of the 

criteria can be an interesting option because of its simplicity and computational efficiency but its 

efficiency is better when coupled to another method to obtain the Pareto Front. As reported in the 

literature survey, the original HSC model has been defined as a deterministic MILP, involving a large 

number of inequality constraints and equality ones (mass balances that must be rigorously solved). 

These are the main reasons to discard metaheuristic methods. The main difficulty related to the Ɛ-

constraint method lies in determining Nadir points (where the criteria take their worst values) but the 

work of (Mavrotas, 2009, 2007) shed new light on this problem combining this method with the 

lexicographic one which can easily be coupled to the , Ɛ-constraint  method to create a hybrid method 

which could result in fair solutions. Then, lexicographic, Ɛ-constraint and hybrid “lexicographic+ Ɛ-

constraint” methods are explored in this study and will be used in the following chapters to tackle the 

different case studies. 
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3.5 Multi-Criteria Decision Making (MCDM): decision aid methods 
The “classical” multi-objective methods previously presented are based on the domination relation 

and leads to a set of compromise solutions that have been filtered through the optimisation process. 

The problem is now to the select the best choice among these compromise solutions. This can be 

performed by use of a multi-criteria decision making methods (Boix, 2011; Bonnin, 2013; Hernandez-

Rodriguez, 2011; Morales Mendoza, 2013; Ouattara, 2011; Pérez Gallardo, 2013). In the case of the 

decision aid methods, they consider the order relation between various elements. With the order 

relation it is possible to obtain a set of solutions (with a partial order relation) or one and only one 

solution (with a complete order relation). The other major difference is that the decision aid methods 

work only with discrete sets of points. These methods can treat choice, sorting and arranging methods 

(Collette and Siarry, 2003). A variety of methods exists (Morales Mendoza et al., 2011). For the sake 

of illustration, the methods of ELECTRE, TOPSIS and M-TOPSIS are briefly presented. 

 

3.5.1 ELECTRE 

The ELECTRE (Elimination and Choice Translating Reality); method was introduced by Roy in 1968 

(Roy, 1968). The basic concept of the ELECTRE method is to deal with “outranking relations” by 

using pair wise comparisons among alternatives under each one of the criteria separately. The decision 

maker is requested to assign weights or importance factors in order to express their relative 

importance. The ELECTRE method elicits the so-called concordance index defined as the amount of 

evidence to support the conclusion that alternative Aj outranks or dominates, alternatives Ai, as well as 

the discordance index the counter-part of the concordance index. ELECTRE method is sometimes 

unable to identify the most preferred alternative. It only produces a core of leading alternatives. This 

method has a clearer view of alternatives by eliminating less favourable ones. This method is 

especially convenient when there are decision problems that involve a few criteria with a large number 

of alternatives saving much time. 

3.5.2 TOPSIS 

TOPSIS (Technique for Order Preference by Similarly to Ideal Solution) was developed by Hwang 

and Yoon in 1981 (Hwang, and Yoon, 1981) as an alternative to the ELECTRE method and can be 

considered as one of its most widely accepted variants. The basic concept of this method is that the 

selected alternative should have the shortest distance from the Positive Ideal Solution (PIS) and the 

farthest distance from the Negative Ideal Solution (NIS) in a geometrical sense. This approach is used 

for four main reasons (García-Cascales and Lamata, 2012): 

a) TOPSIS logic is rational and understandable; 

b) the computation processes are straight forward; 

c) the concept permits the pursuit of the best alternatives for each criterion depicted in a simple 

mathematical form; 

d) the importance weights are incorporated into the comparison procedures. 
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However, the TOPSIS method presents certain drawbacks. One of the problems related to TOPSIS is 

that it can cause the phenomenon known as rank reversal (García-Cascales and Lamata, 2012). In this 

phenomenon, the alternative order of preference changes when an alternative is added to or removed 

from the decision problem. To deal with this problem, the method M-TOPSIS is proposed.  

 

3.5.3 M-TOPSIS 

Ren et al (Ren et al., 2007) presented a novel, modified TOPSIS (M-TOPSIS) method to evaluate the 

quality of the alternative and to deal the rank reversal problem. In M-TOPSIS, the positive ideal 

solution (D+i ) and negative ideal solution (D−i ) in finite planes are found (as in the TOPSIS Method) 

at first; and then, the D+ D− plane is constructed.  D+ is the x-axis and D− is the y-axis (see Appendix 

D). The point (D+
i,D−

i) represents each alternative (i = 1, 2 . . . , n). The point A (min(D+
i), max(D−

i)) 

is the “optimised ideal reference point”. Finally, the relative distance from each evaluated alternative 

to the ideal reference point (A) is calculated to determine the ranking order of all alternatives. 

 

3.5.4 Choice of the MCDC 

A comparative study on the application of MCDM methods for design purpose in Process Systems 

Engineering problems can be found in (Azzaro-Pantel and Zaraté, 2009) and (Morales Mendoza et al., 

2011). Several works have used these methods for multi-objective problems (Boix, 2011; Hernandez-

Rodriguez, 2011; Ouattara, 2011; Pérez Gallardo, 2013) (Bonnin, 2013; Morales Mendoza, 2013). 

Based on these results, our choice fell on the TOPSIS and M-TOPSIS methods. 

3.6 Algorithm and software 
The GAMS environment, which offers a wide variety of optimisation procedures and allows using 

different solvers has been used in this study. GAMS has many updates and a wide range of solvers 

available, it can treat the problems of large sizes. In addition, complex models can be written 

compactly and changes in the program are relatively simple to make. Model coding is generic and can 

easily change the solver depending on the nature of the problem (linear, nonlinear, continuous, mixed) 

without changing its formulation. This software had been widely used (Almansoori and Shah, 2012, 

2009, 2006; Boix, 2011; Guillén Gosálbez et al., 2010; Kim et al., 2008; Sabio et al., 2010; Tabkhi, 

2007).  

 

GAMS includes well known algorithms for the solution of MILP (Geletu, 2008): Branch & Bound, 

Benders Decomposition, Cutting Plane (Gomory) algorithm and Branch & Cut. Usually these 

algorithms are used in combination with the simplex algorithm and/or the interior-point method. For 

instance, some of the solvers that can solve MILP problems are BARON, BDMLP, LINDO GLOBAL, 

MOSEK, OSL, XPRESS and CPLEX.  
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Besides all the advantages previously described, the base model (Almansoori and Shah, 2006) was 

coded in GAMS using the CPLEX solver. The same solver choice can thus be useful at preliminary 

validation step and has thus been adopted in this study.  

3.7 Spatial-based approach 
This work pretends to use real-world data from GIS databases along with an optimisation model 

MILP. The ArcGIS® software (developed by ESRI, Environmental Systems Research Institute) is a 

GIS used to organise, analyse and map spatial data. A typical GIS project contains an extensive 

database of geographic information, graphical capabilities of displaying maps with overlays pertaining 

to the company’s supply chain activities (Shapiro, 2001). Literature review shown in chapter 2 reveals 

that few researchers have used the spatial dimensions to build the infrastructure of HSC. Some 

examples of geographic approaches include the studies (Ball et al., 2006; Dagdougui, 2011a; Johnson 

et al., 2008).  

 

It must be highlighted that by contrast to the mathematical optimisation approaches, a spatial or GIS-

based study cannot be considered as a general methodology for the design of the optimal HSC. In a 

GIS analysis project, an analyst faces a variety of tasks that can be grouped into four basic steps 

(Booth and Mitchell, 1999):  

1. to convert a question, such as “where is the best place for a new production plant?” or “how 

many potential refuelling stations are near a particular energy source?” into a GIS database 

design and an analysis plan. This involves breaking the question into logical parts, identifying 

what layers of data will be needed to answer each part and developing a strategy for 

combining the answers to each part of the question into a final answer. 

2. to create a database that contains the geographic data required to answer the questions. This 

may involve digitizing existing maps, obtaining and translating electronic data from a variety 

of sources and formats, making sure the layers are of adequate quality for the task, making 

sure the layers are in the same coordinate system and will overlay correctly, and adding items 

to the data to track analysis result values. Personal workspaces of file based data and personal 

geo databases are used to organise project GIS geo databases. 

3. to analyse the data. This usually involves overlaying different layers, querying attributes and 

feature locations to answer each logical part of the question, storing the answers to the logical 

parts of the question, and retrieving and combining those answers to provide a complete 

answer to the question. 

4.  to communicate the results of the analysis. Maps, reports, and graphs are all used, often 

together, to communicate the answer to the question. 

 

Figure 3.3 shows how the model is integrated in a flow chart. In the optimisation model, the territory 

under study for HSC implementation will be divided into grids, regions or districts in which the 
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number, size and type of production and storage units have to be determined with the considered 

objective functions and constraints. Models of hydrogen delivery need distances over the road network 

between the supply points, the production and conditioning sites and the demand centers. To calculate 

the delivery distances over the road network, an average distance between the main cities is considered 

in the optimisation model. Yet, it does not allow locating precisely the involved units and delivery 

paths because only potential site could be proposed. The energy sources maps are produced using the 

GPS coordinates in Arc Map 10.2. In the case of roads and geographic breakdown, maps from the 

national geographic institute are used. Shortest path routing will be performed. The data was then 

entered into the GAMS model. The input data to be used in the GAMS MILP model is as follows: 

- energy source location 

- initial conditioning centers and production plants. 

- distances between main cities (national roads; intracity delivery of hydrogen is not consider in 

this work) 

- refuelling stations 

 

The engineering-technical, financial and environmental data as well as demand are embedded in the 

model as input parameters (calculated in excel). Results are exported to Excel and new layers are 

created in ArcGIS® 10.2 to display the HSC locating the new production and storage sites defining 

also the flow rate links. We use diverse layers and constrains previously defined for a specific case 

study (see chapter 6 section 6.2) to create the maps or snapshots, we manually select the potential 

locations following the geographic restrictions.  

 

 

Figure 3.3 Model flow chart 
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3.8 Conclusions 
To summarise the scope of this thesis, the four main stages of our approach are presented. The study 

involves data collection and mono-objective optimisation in a preliminary stage to allow the 

application of multi-objective methodologies. These are then followed by the use of a MCDM. These 

stages are briefly explained and will be followed in the case studies treated in chapters 4-6. 

A. Data collection. In this stage, the potential technologies are reviewed, the geographic 

breakdown is defined and the databases using technical, financial and environmental 

information are also created. The geographic database can be created by ArcGIS®. 

B. Mono-objective optimisation. The mathematical model described in (Almansoori and Shah, 

2006) work addressed the optimal design of a steady-state HSC network with cost as an 

optimisation criterion. This model served as a validation step in the GAMS environment with 

the CPLEX solver. The model was extended to the consideration of safety and environmental 

criteria. 

C. Multi-objective optimisation. When the minimal values of each objective function are found, 

it is possible to generate a pay-off table through lexicographic optimisation. This way the 

utopia and nadir points are also found and it is possible to create the Pareto Front via Ԑ-

constraint method. 

D. MCDM. The last step consists in the choice of the best compromise option. For this purpose, 

the widely used M-TOPSIS methodology and the comparison of mono- and multi-objective 

optimisation results are analysed. Depending on the case study, the geographic constraints 

motivate the utilisation of a specific tool as ArcGIS® to map the HSC. 

 

 



 

4. A MULTI-OBJECTIVE OPTIMISATION FRAMEWORK 

FOR HYDROGEN SUPPLY CHAIN 

 

Résumé 

Ce chapitre est consacré à la modélisation de la chaîne logistique « hydrogène ». Elle est basée sur une 
formulation de type programmation linéaire en variables mixtes dans une approche multi-objectif et 
mono-période. Les trois critères impliqués sont explicités et concernent le prix de revient de 
l’hydrogène, l’impact sur le réchauffement climatique et un indice de risque. Le problème multi-
objectif est résolu par la mise en œuvre d'une méthode lexicographique et d’une méthode ε-contrainte. 
L’ensemble des solutions du problème est visualisé à travers un front de Pareto, correspondant à 
différentes stratégies de conception. La méthode M-TOPSIS est ensuite utilisée comme outil d’aide à 
la décision pour trouver la solution qui offre le meilleur compromis. Le modèle est appliqué à une 
étude de cas en Grande-Bretagne issue de la littérature spécialisée, qui sert de référence pour comparer 
les approches mono- et multi-objectif. Les résultats obtenus dans les deux cas diffèrent par le degré de 
centralisation du réseau et par le type de technologie de production. 
 
Abstract 

This chapter is focused on the design of a hydrogen supply chain based on mixed integer linear 
programming used to find the best solutions for one time period in a multi-objective optimisation 
problem in which three objectives are involved, i.e., cost, global warming potential and safety risk. 
This problem is solved by implementing lexicographic and ε-constraint methods. The solution consists 
of a Pareto front, corresponding to different design strategies in the associated variable space. Multiple 
choice decision-making is then implemented to find the best solution through an M-TOPSIS analysis. 
The model is applied to the Great Britain case study previously treated in the dedicated literature. 
Mono and multicriteria optimisations exhibit some differences concerning the degree of centralisation 
of the network and the selection of the production technology type. 
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Nomenclature 

Abbreviations 
FMEA Failure Modes and Effects Analysis 
GB Great Britain 
GWP Global warming potential 
HSC Hydrogen supply chain 
LCA Life Cycle Assessment 
LH2 Liquid hydrogen 
MILP Mixed Integer Linear Programming 
SMR Steam methane reforming 
TDC Total daily cost 

 

Indices 

g: grid squares g and g': grid squares such that g' ≠ g 
i: product physical form 
l: type of transportation modes 
p: plant type with different production technologies  
s: storage facility type with different storage technologies 
 

Parameters  

α Network operating period (days per year) 
β Storage holding period-average number of days worth of stock (days) 
βg Adjacency level weight factor of a region g in which the route is located   
ADgg’ Average delivery distance between g and g’ by transportation l (km per trip) 
CCF Capital change factor -payback period of capital investment (years) 
DTig Total demand for product form i in grid g (kg per day) 
DWl Driver wage of transportation mode l (dollars per hour) 
FEl Fuel economy of transportation mode l (km per liter) 
FPl Fuel price of transportation mode l (dollars per liter) 
GEl General expenses of transportation mode l (dollars per day) 
GWProdp Production GWP by plant type p (g CO2-eq per kg of H2) 
GWStocki Storage global warming potential form i (g CO2-eq per kg of H2) 
GWTransl Global warming potential of transportation mode l   (g CO2 per ton-km) 
LUTl Load and unload time of product for transportation mode l (hours per trip) 
MEl  Maintenance expenses of transportation mode l (dollars per km) 
PCapminpi Minimum production capacity of plant type p for product form i (kg per day) 
PCapmaxpi Maximum production capacity of plant type p for product form i (kg per day) 
PCCpi Capital cost of establishing plant type p producing product form i (dollars) 
Qmaxil Maximum flow rate of product form i by transportation mode l (kg per day) 
Qminil Minimum flow rate of product form i by transportation mode l (kg per day) 
RLg Risk level of the grid g (units) 
RPp Risk level of the production facility p (units) 
RRgg’ Road risk between grids g and g' (units) 
RSs Risk level in storage facility s (units) 
RTl  Risk level of transportation mode l (units) 
SCapminsi Minimum storage capacity of storage type s for product form i (kg) 
SCapmaxsi Maximum storage capacity of storage type s for product form i (kg) 
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SCCsi Capital cost of establishing storage type s storing product form i (dollars) 
SPl Average speed of transportation mode l (km per hour) 
TMAl  Availability of transportation mode l (hours per day) 
TMCil  Cost of establishing transportation mode l for product form i (dollars) 
TCapil Capacity of transportation mode l transporting product form i (kg per trip) 
UPCpi Unit production cost for product i produced by plant type p (dollars per kg) 
USCsi Unit storage cost for product form i at storage type s (dollar per kg-day) 
Wl Weight of  transportation mode l (tons) 
WFPg Weigh factor risk population in each grid (units) 
  
Variables  

Continuous variables 

DI
ig  Imported demand of product form i to grid g (kg per day) 

DL
ig Demand for product i in grid g satisfied by local production (kg per day) 

FC Fuel cost (dollars per day) 
FCC Facility capital cost (dollars) 
FOC Facility operating cost (dollars per day) 
GC General cost (dollars per day) 
GWPTot Total global warming potential of the network (g CO2-eq per day) 
LC Labour cost (dollars per day) 
MC  Maintenance cost (dollars per day) 
PGWP Total daily GWP in the production facilities p (g CO2-eq per day) 
PR

pig  Production rate of product i produced by plant type p in grid g (kg per day) 
PT

ig Total production rate of product i in grid g (kg per day) 
Qilgg’ Flow rate of product i by transportation mode l between g and g’(kg per day) 
SGWP Total daily GWP in the storage technology s (g CO2-eq per day) 
ST

ig  Total average inventory of product form i in grid g (kg) 
TCC Transportation capital cost (dollars) 
TDC   Total daily cost of the network (dollars per day) 
TGWP  Total daily GWP in the transportation mode l (g CO2-eq per day) 
TOC Transportation operating cost (dollars per day) 
TotalRisk Total risk of this configuration (units) 
TPRisk Total risk index for production activity p (units) 
TSRisk Total risk index for storage activity s (units) 
TTRisk Total risk index for transport activity (units) 
Vilgg’ Artificial variable with values between 0 and 1 
Integer variables 

NPpig Number of plants of type p producing product form i in grid g 
NSsig Number of storage facilities of type s for product form i in grid g 
NTUilgg’  Number of transport units between g and g’ 
Binary variables 

Xilgg’ 1 when the product form i is to be transported from grids g to g’ 
Yig      1 if product form i is to be exported from grid g or 0 otherwise 
Zig   1 if product form i is to be imported into grid g or 0 otherwise 

 



78 Multi-objective optimisation of a hydrogen supply chain 

 

4.1 Introduction 
The aim of this chapter is to present the multi-objective framework that has been adopted in this work 

for hydrogen deployment in a mono-period problem. This work led to two publications (De-León 

Almaraz et al., 2012)26 and (De-León Almaraz et al., 2013a)27.  

 

The remainder of this chapter is organised as follows; Section 4.2 is dedicated to problem formulation. 

Section 4.3 presents the general structure of the hydrogen supply chain. The mathematical model is the 

core of section 4.4 and considers demand, production, transportation and storage constraints. The 

formulation of the criteria that are considered in this work, i.e., cost, global warming potential and risk 

objectives is described in sections 4.5 to 4.7. Section 4.8 is dedicated to the solution strategy: first the 

mono-objective problem is solved and will serve as a reference case, then, the lexicographic and Ԑ-

constraint methods are used to solve the multi-objective problem. The multi-criteria decision-making 

process that is used to select the best compromise among the optimisation results is then presented. 

This chapter ends with the validation of the proposed model in an academic case study of Great 

Britain (Almansoori and Shah, 2006) in section 4.9: the geographic breakdown is given in grid squares 

and only steam methane reforming and gasification are evaluated in this first case study. The obtained 

results between the mono- and multi-objective approaches are finally analysed and discussed in 

section 4.10 and 4.11. 

 

4.2 Methodology 
In this section, the main principles of the proposed methodology are presented. Firstly, the problem 

statement, assumptions and objectives are defined with the associated decision variables. The 

hydrogen supply chain (HSC) is then presented to establish the general structure of the network. The 

problem dimension is examined to compare mono- and multi-criteria approaches. Finally, the solution 

strategy phases are also developed. 

 

4.2.1 Problem statement 

As aforementioned, current designs of the HSC reviewed in the dedicated literature are generally 

based to a multi-objective strategy with two criteria, either cost-environment or cost-safety. A three-

                                                      
26De-León Almaraz, S., Azzaro-Pantel, C., Montastruc, L., Pibouleau, L., Senties, O.B., 2012. Design of a 

hydrogen supply chain using multiobjective optimisation, in: 22nd European Symposium on Computer Aided 

Process Engineering. Elsevier, pp. 292–296. 
27De-León Almaraz, S., Azzaro-Pantel, C., Montastruc, L., Pibouleau, L., Senties, O.B., 2013a. Assessment of 

mono and multi-objective optimization to design a hydrogen supply chain. Int. J. Hydrog. Energy 38, 14121–

14145. 
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criteria optimisation model is proposed here considering the interconnection of social, economic and 

environmental impacts. Their relationship will result in the global balance of the system.  

4.2.2 Objective 

This work is focused on the design of a three-echelon HSC (production, storage and transportation), 

considering the minimum cost, the lower environmental impact and the lower safety risk. The model is 

validated through a well-known example concerning Great Britain and presented in (Almansoori and 

Shah, 2006) and results for mono-objective optimisations will be compared with the multi-objective 

solution. 

4.2.3 Given data 

Problem data involve hydrogen demand data (each grid has its own deterministic demand), techno-

economic, environmental and risk data of the components in the HSC (they are presented in detail in 

Appendix A1). 

4.2.4 Design decisions 

Design decisions are based on the number, type, capacity, and location of production and storage 

facilities. More precisely, they involve the number and type of transport units required as well as the 

flow rate of hydrogen between locations. Cities or grids are also considered. 

4.2.5 Operational decisions 

Operational decisions concern the total production rate of hydrogen in each grid, the total average 

inventory in each grid, the demand covered by imported hydrogen and the H2 demand covered by local 

production. 

4.2.6 Assumptions 

• A deterministic demand of hydrogen for the transportation system (particular-light cars and 
buses) is considered; 

• A mono-period problem is assumed. 

• Relative risk of production plant, storage facilities and transportation modes are assumed not to 
change under the various demand scenarios. 

• The model is assumed to be demand driven. 

4.3 Formulation of the HSC  

4.3.1 General structure of the HSC 

In this formulation, hydrogen can be delivered in specific physical form i, such as liquid or/and 

gaseous, produced in a plant type with different production technologies p (i.e. steam methane 

reforming (SMR), biomass or coal gasification); distributed by a specific type of transportation modes 

l going from the location g to g’ referred as grid squares; such that g' is different than g; this grid 

squares are obtained by dividing the total area of the country or region into n grid squares of equal 
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size, a general HSC is shown in Figure 4.1. This supply chain is demand driven and it is a reverse 

logic network because we assume there are no flows from the market to the facilities or suppliers. 

 
Figure 4.1 The HSC treated by (Almansoori and Shah, 2006) 

 

4.3.2 Supply chain decision database 

Several data are necessary to design the HSC as the base investment and operational costs for a given 

facility that will be used for extrapolation purpose, the throughput associated with a given technology, 

the quantities of input and output products associated with unit operations of the transformation types, 

etc. The whole list is presented in Appendix A1. 

 

4.3.3 Model variables 

The definition of continuous, integer and binary variables is necessary for the mathematical 

formulation of the HSC (detailed classification is shown in the nomenclature section of this chapter). 

The problem is then captured in a mixed-integer linear programming (MILP) framework. All 

continuous and integer variables must be non-negative. Output data will include optimal locations and 

capacities of new facilities, levels for transformation and process activities at each facility, outbound 

flows of finished products from production facilities to markets, etc. 
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4.4 Mathematical model   
The model presented in this work has been inspired by the previous approach of Almansoori and Shah 

(2006, 2009 and 2012) dedicated to the optimal total daily cost of the HSC through mixed-integer 

linear programming (MILP). The safety study takes into account the work of Kim and Moon (2008 

and 2011). Environmental impact calculations have also been introduced. Even the original model can 

be found in the bibliography it is important to write it here in order to show the main changes and the 

introduction of new constraints, also with the intention to easily appreciate the different constraints 

features (i.e. equality or inequality, binding and nonbinding).  

4.4.1 Demand constraints  

As previously mentioned, each grid has its own deterministic demand. This demand must be fulfilled 

eventually by production facilities established within a particular grid, i.e., local production, or by 

importing products from other neighbouring grids. Therefore, the demand satisfied by local production 

of a product form i in grid g (DL
ig) is expressed by the following constraint: 

giPD T
ig

L
ig ,∀≤          (4.1)  

 
On the other hand, the demand for a product form i in grid g satisfied by neighbouring grids (DI

ig) is 

equal to the total flow imported to that grid by all types of transportation modes (Qilg’g): 
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The total grid demand (DT

ig) must equal the demand satisfied by the local production plus the demand 

imported from other grids: 
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4.4.2 Production facilities constraints 

A total mass balance on a grid must be written to determine the total daily production rate of a 

particular grid. Since we assume a steady-state operation, the sum of the total flow rate of each 

product entering grid g (Qilg’g) plus the total production rate of the same grid (PT
ig) must equal the total 

flow rate leaving this grid (Qilgg’) plus the total demand required by grid g itself (DT
ig): 
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The total production rate of a product form i in grid g is equal to the production rate of all plants of 

type p established in that same grid: 

∑ ∀=
p

pig
T

ig giPRP ,          (4.5)   

The production rate of a product form i produced by any plant of type p in grid g (PRpig) cannot exceed 

certain limits. Thus, there is always a maximum production capacity for any product (PCappi
max ). 
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Moreover, there is often a minimum production rate (PCappi
min) that must be maintained while the 

plant is operating: 

gipNPPCapPRNPPCap pigpipigpigpi ,,maxmin ∀≤≤      (4.6) 
 
 

Constraint (4.6) means that the maximum daily production rate of product form i produced by plant 

type p is constrained by the number of production facilities NPpig. Likewise, the total production rate 

of each product form i in grid g (PT
ig) cannot exceed certain limits. Therefore, PT

ig is bound between 

the minimum and maximum production capacities of all plants that are established in this particular 

grid: 
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4.4.3 Transportation constraints 

There must be a continuous flow of product between different grids in order to satisfy the required 

demand. The flow of a product form i from grid g to a different grid g’ will only exist if the 

transportation mode is established. Thus, there is always a minimum and a maximum flow rate of 

products (Qil
min and Qil

max) needed to justify the establishment of a transportation mode between two 

grids in the network: 

';',,,'lg
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Flow of a product form i between different grids can only occur in one direction. This is because if a 

grid can only satisfy its needs by importing from other grids it would not make sense for that grid to 

export to other grids: 

';',,,1lg''lg ggggliXX gigi ≠∀≤+        (4.9)  

 

A particular grid can only import product from neighbouring grids or export product to other grids, or 

neither but not both for the same reason stated earlier: 

';',,,'lg ggggliXY giig ≠∀≥         (4.10)  

';',,,lg' ggggliXZ giig ≠∀≥         (4.11) 

giZY igig ,1∀≤+          (4.12) 

 

4.4.4 Storage facilities constraints 

An important issue in the operation of this network is the ability of the storage facilities to hold the 

product for a certain period of time in order to accommodate for any demand and supply fluctuations. 

Therefore, storage facilities could be built either locally within a specific grid next to the production 
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facility—if established—or outside the grid boundary away from the production source. During 

steady-state operation, the total inventory of a product form i in grid g (ST
ig) is equal to a function of 

the corresponding demand (DT
ig) multiplied by the storage period (β), days of cover: 

giDS T
ig

T
ig ,∀= β          (4.13) 

The parameter β is introduced to cover fluctuations in both supply and demand as well as plant 

interruptions. The capacity of each storage facility of type s storing product form i (SCapsi
max) cannot 

exceed certain limits. This consideration will guarantee that the total inventory of each product in each 

grid will be bound within certain limits: 

giNSSCapSNSSCap sigsi
s

T
igsigsi

s

,maxmin ∀≤≤ ∑∑      (4.14) 

4.4.5 Non-negativity constraints 

All continuous and integer variables must be non-negative: 
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4.5 Cost objective 
The total daily cost (TDC) of the network is determined in the same way as in the linear model of 

(Almansoori and Shah, 2006). The TDC ($ per day) of the whole HSC is a function calculated by the 

addition of four main costs: 

 

4.5.1 Facility capital cost 

The facility capital cost is related to the establishment of production plants and storage facilities at 

candidate locations. It is calculated by multiplying the number of new plants and new storage facilities 

by their capital cost as follows: 
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4.5.2 Transportation capital cost 

One modification was made to the original model (Almansoori and Shah, 2006). It consists in the way 

to calculate the number of transport units (NTU) because it did not take an integer value. Values of 

transportation capital cost (TCC) and transportation operating cost (TOC) were lower than the real cost 

considering integer values. Equations 4.24 and 4.25 were added to the model and Eq.(4.26) is 

modified to allow rounding the NTU value. 

',,,0'lg ggliV gi ∀≥          (4.24) 

',,,*1 'lg'lg ggliXV gigi ∀≤          (4.25) 

 

where V ilgg’ is a continuous variable with values between 0 and 1 related to the binary value of Xilgg’ 

which takes the value of 1 when the product form i is to be transported from grids g to g’. 

 

Then NTUilgg’ depends significantly on the average distance travelled between different grids (ADgg’), 

the capacity of a transport container (TCapil), the flow rate of products between various grids (Qilgg’), 

the transportation mode availability (TMAl), the average speed (SPl), and loading/unloading time 

(LUTl) . Finally, the V ilgg’ is added and an integer value is found. 
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It can be noted from equation (4.26) that ADgg’ is multiplied by two to account for the return journey. 

Finally, the transportation capital cost is given by the following equation: 
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4.5.3 Facility operating cost  

The facility operating cost is related to the cost required to operate the production plants and storage 

facilities efficiently. It is obtained by multiplying the unit cost of production and storage by the 

corresponding amount of production and storage: 
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4.5.4 Transportation operating cost  

The transportation operating cost consists of fuel, labour, maintenance, and general costs. The daily 

fuel cost contributes significantly to the total operating cost. It is a function of daily fuel usage and 

fuel price: 
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where the first and second terms of the multiplication in equation (4.29) represent fuel price and daily 

fuel usage, respectively. The daily labour cost associated with transporting the hydrogen between 

different grids is given as a function of the total delivery time and driver wage: 
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Again, the first and second terms of the multiplication in equation (4.30) represent driver wage and 

total delivery time, respectively. The maintenance cost includes general maintenance of the 

transportation systems. It is a function of the total daily distance driven and the cost per unit distance 

travelled: 
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The general cost consists of transportation insurance, license and registration, and outstanding 

finances. It depends on the number of transport units and the corresponding expenses: 
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Finally, the total transportation operating cost is equal to the sum of fuel, labour, maintenance and 

general costs: 

GCMCLCFCTOC +++=         (4.33) 

 

4.5.5 Objective function 1  

The TDC represents the cost expressed in $ per day of the entire HSC where FCC is the facility capital 

cost ($), TCC is the transportation capital cost ($), α is the network operating period (days per year) 

related to the capital charge factor (CCF, in years). Then, the facility operating cost (FOC, $ per day) 

and the transportation operating cost (TOC, $ per day) are also associated in Eq. 4.34. 

TOCFOC
CCF

TCCFCC
TDC ++






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.α

       (4.34)  

 

The addition of new constraints to find global warming potential and safety risks values are necessary 

to implement the proposed multi-objective approach. The definition of the additional objective 

functions considered is presented below.  
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4.6 Global warming potential (GWP) objective 
The total daily production GWP (PGWP, in g CO2-eq per day) is associated with the production rate 

of product type i produced by each plant of type p in grid g (PRpig, in kg per day) and the total daily 

GWP in the production facility type p (GWi
prod, in g CO2-eq per kg):  

)( prod
i

pig
pigGWPRPGWP ∑=          (4.35) 

 

The total daily storage GWP (SGWP, in g CO2-eq per day) is given by Eq. (4.36) where the PRpig is 

related to the total daily GWP for the storage technology (GWi
stock, in g CO2-eq per kg):  

)( stock
i

pig
pigGWPRSGWP ∑=          (4.36) 

 

The total daily transport GWP (TGWP, in g CO2-eq per day) is determined as follows: 
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where the average delivery distance between g and g’ by transportation mode l (km trip-1) is multiplied 

by the flow rate of product form i transported by the mode l between g and g' and divided by the 

transportation capacity for product form i (kg trip-1). These three terms allow the computation of the 

number of km per day that must be run to cover the demand taking into account the round trip. Finally 

those terms are related to the global warming potential (GWi
Trans, in g CO2-eq per tonne-km) associated 

to the transportation mode l and its weight (Wl, in tons). 

 

Eqs. (4.35), (4.36) and (4.37) enable the calculation of the total GWP (GWPTot, in g CO2-eq per day) 

as indicated by:  

TGWPSGWPPGWPGWPTot ++=       (4.38) 

4.7 Safety objective 
Kim and Moon (Kim and Moon, 2008)(Kim et al., 2011) developed expressions to evaluate the total 

risk of production and storage facilities (TPRisk  and TSRisk respectively) as well as the total transport 

risk (TTRisk) where the relative risk of hydrogen activities is determined by risk ratings calculated 

based on a risk index method. The TPRisk is calculated as follows:  

( )∑=
pig

gppig WFPRPNPTPRisk ..         (4.39) 

where NPpig is the number of plants of type p producing product form i in grid g, RPp is the risk level 

of the production facility p and WFPg is the population weight factor in g in which a production or 

storage facility is located. The TSRisk is related to the number of storage facilities of type s for 

products form i in grid g (NSsig), the risk level in storage facility s (RSs) and the WFPg as indicated by: 

( )∑=
sig

gssig WFPRSNSTSRisk ..         (4.40) 
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The TTRisk is associated with the number of transport units from g to g' (NTUilgg’) in each grid, the 

safety risk level of transportation mode l (RTl) and the road risk between grids g and g' (RRgg’). The 

equation adopted in what follows is: 

'
'lg

'lg . ggl
gi

gi RRRTNTUTTRisk ∑=         (4.41) 

By combining Eqs. (4.39), (4.40) and (4.41), the total relative risk (TR) is given by: 

TTRiskTSRiskTPRiskTR ++=                          (4.42) 

4.8 Solution strategy 

4.8.1 Problem dimension  

The mono-objective problem dimension treated in (Almansoori and Shah, 2006) was compared with 

the multi-objective approach considered in our work to analyse the statistics and main differences (see 

Table 4.1). The problem was solved minimising TDC for both cases but the new constraints presented 

in section 4.6 and 4.7 were added for the multi-objective case. Then, the number of constraints was 

doubled and similar results were observed for the number of integer and continuous variables.  The 

computational time increased by a factor of 37% in the multi-objective case optimising the TDC when 

the GWP and risk are constraints. The model dimension involves 12464 constraints and 6242 variables 

(among them, 2516 are integer).  

 

Table 4.1 Statistics for Mono- and multi-objective approaches. 

Type of optimisation Mono-objective Multi-objective 
Number of constraints 6197 12464 
Number of integer variables 1326 2516 
Number of continuous variables 1369 3726 
CPU time (s) 717 987 
Optimal gap (%) 0,01%   

 

In a preliminary phase, each mono-criterion problem was optimised separately to analyse how its 

optimal values are decreased when making a multi-criteria optimisation. 

 

4.8.2 Mono-objective optimisation and lexicographic optimisation 

The geographic area (country or region) to be studied is selected and divided in grids or sub-regions. 

The possible configurations of the HSC to be located in that place are defined (such as product 

physical form, viable production processes, transportation type, etc…). The mathematical model is 

then formulated within the GAMS 23.9 (Brooke et al., 1988) environment and solved using CPLEX. 

Each independent objective function is to be minimised using a lexicographic optimisation strategy 

that produces only efficient solutions when all the objectives are considered.   

(Mavrotas, 2009) proposes the use of lexicographic optimisation for every objective function in order 

to construct the pay-off table with only efficient solutions. A simple remedy in order to bypass the 

difficulty of estimating the nadir values of the objective functions is to define reservation values for 
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the objective functions. The reservation value acts like a lower (or upper for minimisation objective 

functions) bound.  Practically, the lexicographic optimisation is performed as follows: an objective 

function (of higher priority) is first optimised, obtaining min TDC=z1*. Then, a second objective 

function is optimised (total GWP) by adding the constraint TDC=z1* in order to keep the optimal 

solution of the first optimisation, in order to obtain min GWP= z2*. Subsequently, the third objective 

function is optimised by adding the constraints TDC=z1* and GWP= z2* in order to keep the previous 

optimal solutions and so on until all the objective functions are treated in a more general case 

involving more objective functions. 

 

4.8.3 Solution phase: multi-objective optimisation 

The pay-off table designed from the application of the lexicographic optimisation allows defining the 

solution. In this approach which tries to minimise all objective functions, the optimal values represent 

the lower bounds (utopia points) of each objective in the feasible space and the nadir points are 

relative to values corresponding to the upper bounds on the Pareto surface, and not in any feasible 

space (values worse than the reservation value are not allowed).  

 

The tri-objective optimisation problem is solved by implementing the ε-constraint method. Once the 

epsilon points (intermediate equidistant grid points) are defined, the objective function TDC has to be 

minimised. The GWP and TR objective functions are then transformed into inequalities constraints. 

 

The global model can be formulated in a more concise manner as follows: 

Minimise {TDC} 

Subject to: 

h(x,y)= 0 

g(x,y)< 0 

}{ +∈=∈∈ ZzYyRx mn ,1,0,  
),...,2,1,0( NnRisk n =≤ ε  

),...,2,1,0( MmTotalGWP m =≤ ε   

 

The objective of this formulation is to find values of the operational xЄRn, and strategic yЄY={0,1}m, 

zЄZ+ decision variables, subject to the set of equality h(x,y)= 0 and inequality constraints g(x,y)< 0.  

In this model, the continuous operational variables concern decisions dedicated to production, storage 

and transportation rate, whereas the discrete strategic variables capture the investment decisions such 

as the selection of activity types and transportation links.  

 

All costs, emissions and risk equations occur as linear functions of the associated decision variables 

levels. That means the production, storage and transportation costs, GWP and safety risk levels are 

Demand satisfaction 
Overall mass balance 
Capacity limitations 
Distribution network design 
Site allocation 
Cost, environmental and risk 
correlations 
Non-negativity constraints 
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linear values of the associated decision variables. The solution consists of a Pareto front composed of 

solutions that represent different possibilities of supply chain configurations. 

 

4.8.4 Multiple Choice Decision Making (MCDM) 

An M-TOPSIS (Modified Technique for Order Preference by Similarity to Ideal Situation (Ren et al., 

2007)) analysis is carried out on the Pareto front with the same weighting factor for the cost, safety 

and environmental criteria since it is particularly efficient to avoid rank reversals (unacceptable 

changes in the ranks of the alternatives (Maleki and Zahir, 2012)) and to solve the problem on 

evaluation failure that may occur in the original TOPSIS version.  

4.9 Case study (Great Britain) 
A general HSC is presented in Figure 4.1, where the hydrogen form could be liquid or gaseous and 

some transportation modes and storage facilities are available. A case study of Great Britain (GB) 

treated by (Almansoori and Shah, 2006) has also been analysed to illustrate the main capabilities of 

the new proposed model.  GB is divided into 34 grid squares of equal size. Three different production 

processes are evaluated: SMR, biomass and coal gasification. Hydrogen has to be liquefied before 

being stored or distributed. Liquid hydrogen (LH2) is stored in super-insulated spherical tanks then 

delivered via tanker trucks. (Almansoori and Shah, 2006) estimated the total hydrogen demand in 

Great Britain as a function of the total number of vehicles, average total distance travelled and vehicle 

fuel economy (see Appendix A.1.1). The estimated demand is assumed to supply private-and-light 

goods vehicles and buses at 2002 levels. This is based on the assumption that 100% of the 

abovementioned vehicles would be powered by proton exchange membrane fuel cells (13392 tons per 

day). Four cases will be analysed (see Table 4.2) and compared with those of the base case 

(Almansoori and Shah, 2006). Case 1 consists in the minimisation of the total daily cost both with a 

variant approach to compute NTU and a more recent solver version, CPLEX 12 versus CPLEX 9 as 

the approach used in (Almansoori and Shah, 2009). Case 2 minimises the total Global Warming 

Potential (CO2 emissions) of the network. Case 3 is devoted to the minimisation of safety risk. Finally, 

Case 4 concerns the simultaneous optimisation of the three-abovementioned criteria.  

 
Table 4.2 Different case studies and objectives to be analysed. 

Minimisation of Total daily cost Global warming potential Total risk 

Base case X   
Case 1 X   
Case 2  X  
Case 3   X 
Case 4 X X X 
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4.9.1 Techno-economic data 

A large amount of input data is required to solve the problem. All the techno-economic parameters 

(i.e., minimum and maximum production and storage capacities, average delivery distance between 

grids and capacity of each transportation mode, etc.) are defined in Appendix A1. 

 

4.9.2 Environmental data 

As new constraints are integrated to the model, new data was collected to compute the emission of 

each activity of the supply chain. It must be emphasized that an exhaustive Life Cycle Assessment 

(LCA studies the impact and effects of a product from the purchase of the raw material until its 

utilization and elimination. ISO 14040) was not performed. Only CO2 emissions relative to 

production, storage and transportation were evaluated. Strømman and Hertwich in (Rivière, 2007) 

reported that the GWP for the SMR (without CO2 capture and depository) process was of 10100 

gCO2-equiv per kg H2 produced. The same indicator results in 10540 gCO2-equiv per kg when 

hydrogen is produced via coal gasification (underground mined coal) (Grol et al., 2005). Biomass 

gasification leads to 3100 gCO2-equiv per kg (Utgikar and Thiesen, 2006). After liquefaction process, 

H2 storage in spherical tanks results in 5251 gCO2-equiv per kg H2 according to the Detailed 

California Modified in 2009 (Detailed California Modified GREET Pathway for Compressed Gaseous 

Hydrogen from North American Natural Gas, 2009) including manufacture, construction facilities, 

fuel consumption, flare combustion and methane venting. Moreover, an amount of 62 g CO2-equiv per 

ton-km is emitted by tanker truck transportation (McKinnon and Piecyk, 2011) and the weight of the 

transportation taken into account is 40 ton (AFH2, 2011). 

 

4.9.3 Safety data 

The evaluation of the safety risk takes as parameters three indicators, i.e., the risk level of each 

activity, the population weight factor and the adjacency level in transportation links. For the risk level 

of each activity (H2 production-storage facilities and transportation units), (Kim and Moon, 2008) and  

(Kim et al., 2011) have developed a risk assessment methodology through the hazard identification 

using the failure modes and effects analysis (FMEA) and the consequence-likelihood analysis to 

complete the risk evaluation (each hazard is plotted on a frequency vs. consequence matrix (risk 

binning matrix), that indicates its level of risk as high, moderate, low, or negligible).  

 

The risk-binning matrix in (Kim and Moon, 2008) summarises the individual risk and relative risk 

level according to its remark raking and is taking into account for our data base. All hydrogen 

activities considered are marked as Levels II–IV according to harmfulness for people, the environment 

and facilities. The acceptance criterion of these levels is described in Appendix A.1.5. A risk level III 

corresponds to SMR, tanker truck and liquid storage. Values for biomass and coal gasification were 

not found, then, they were assumed to have the same risk level as SMR.  
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The population risk weight factors for each grid are classified in Table 4.3, i.e., when the population of 

a particular grid is over 2 million, we assume that this region has a score of 5, from 1 to 2 million the 

score is 4 and so on. According to this classification, a higher weighting rate for grids corresponds to a 

higher population density.  

 

Table 4.3 Relative impact level of grids based on the population density. 

Population level (persons per grid) Grids 
Level 1 (under 2.5E+05)  2,5,8,9,12,16,20,21,26,34 
Level 2 (2.5E+05-5E+05 )  1,3,4,6,7,15,30,31,32,33 
Level 3 (5E+05 -1E+06 )  10,11,17,19,25,27 
Level 4 (1E+06 – 2E+06 )  13,22 
Level 5 (over 2E+06 ) 14,18,23,24,28,29 

 

The adjacency level in transportation links was calculated as a function of the crossed grids or those 

close to the road. If hydrogen is transported through some intermediate grids, the impacts on these 

regions must be taken into account as indicated in the following equation: 

)...( '3322' gggggg
g

gg RLRLRLRLRR ++++=∑ ββ       (4.41) 

where subscripts g and g’ represent the first and last regions and g1, g2, .., gn represent the intermediate 

regions through which hydrogen is transported;  βg  is the weight factor that indicates the adjacency 

level of a region in which the route is located. It takes a rating value between 0.1 and 1.0 according to 

the adjacency level. For a transiting grid, the value is 1, for a close region, the value is 0.5, this value 

is multiplied by the risk level of the grid (RLg) classified according to the grid size -by population 

density- (i.e., small=1, medium=2 or large=3). This calculation is detailed in the method proposed by 

(Kim et al., 2011). Due to the geographic division of the original case study (Almansoori and Shah, 

2006), some difficulties were encountered to precisely locate the roads. The following method was 

then adopted: if hydrogen produced in region 1 is transported to region 33, this transportation arc has 

to penetrate nine grids (g1, g4, g7, g10, g13, g17, g23, g28 and g33) and is close to four grids (g2, g3, 

g18 and g22); applying Eq.4.41, the external effect factor of the transportation arc from region 1 to 33 

is 25.5 (see Appendix A.1.6). Appendix A.1.4 shows the total relative risk matrix for impact on city 

transportation between grids. The highest risk line is the hydrogen transportation from grid 31 (565) 

and the lowest risk line concerns hydrogen transportation from grid 17 (335). If decision-makers 

design the hydrogen supply chain by considering only transportation safety, it is safer to completely 

avoid transportation from grid 31. 

4.10 Results and discussion 
The different stages of the proposed methodology were developed and applied in the abovementioned 

case study. In this section, the results and corresponding configurations are analysed and discussed in 

detail. In a preliminary phase, the three criteria were optimised separately to analyse how their optimal 
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values decrease when making a multicriteria optimisation. The ε-constraint method is applied and the 

best compromise solution is then chosen from the Pareto front via M-TOPSIS. 

 

4.10.1 Preliminary phase. Mono-objective optimisation and lexicographic optimisation 

The preliminary phase allowed finding the pay-off table through lexicographic optimisation (see 

section 4.9). Thus, it is possible to obtain as the solution that minimises TDC as the one that 

corresponds to point that is a non-dominated solution also for Total GWP and Total Risk. The 

optimisation runs were performed for cases 1, 2 and 3 where cost, CO2 emissions and safety risk are to 

be minimised. The results of each independent optimisation can be seen in Table 4.4. The optimisation 

runs were implemented with a Pentium (R) Dual-core CPU E6600 @ 3.06 GHz processor machine.  

 

Table 4.4 Comparison between conventional (mono-objective) and lexicographic optimisation results 

  (a) Pay-off table obtained by a 
conventional MILP optimiser 

 (b) Pay-off table obtained by the 
lexicographic optimisation 

Case  1 2 3  1 2 3 
Minimise  TDC GWP TR  TDC28 GWP1 TR1 
Total network cost  
(M$ per day)  

64.57 135.92 77.57  64.57 132.05 73.65 

Total GWP   
(103 ton CO2-equiv per 
day)  

205.86 111.85 203.35  205.86 111.85 205.6 

Total Risk  
(units)  

10,363 6005 5970  10,292 5970 5970 

TDC: total daily cost  

GWP: global warming potential  

TR: total risk    

 

Following the conventional optimisation we first calculate the pay-off table by simply calculating the 

individual optima of the objective functions. The conventional MILP optimiser will produce the pay-

off table shown in Table 4.4 (a). However, it is almost sure that a conventional MILP optimiser will 

calculate the solution of the first point and will stop the searching giving this solution as output. In 

order to avoid this situation, the lexicographic optimisation of the objective functions is performed and 

the results are shown in Table 4.4 (b).  

 

It can be highlighted that the optimal solution obtained through conventional optimisation of TDC 

(TDC=64.57 $ per day, Total GWP=205.86 thousand tons CO2 per day and Total risk=10363 units) is 

a dominated solution in the problem due to alternative optima resulted through the lexicographic 

optimisation (TDC=64.57 $ per day, Total GWP=205.86 103 tons CO2 per day and Total risk=10292 

units) the total risk is decreased by 71 units. The same analysis can be made for the two other 

objective functions. The bold characters in Tables 4.4, 4.5 and 4.6, are relative to the values of the 

optimised criterion for the mono-objective optimisation and in the case of the lexicographic 
                                                      
28 This criterion is the first optimised through the lexicographic approach for this case. 
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optimisation are related to the first optimised objective (higher priority). Information concerning the 

decision variables is presented in Table 4.5. The values of flow rates between grids, total production 

and storage per day in each location can be found in Appendix A.2.1. All the mono-objective cases are 

analysed in the next section. 

 

Table 4.5 Mono-objective and lexicographic optimisation results of the hydrogen supply chain. 

Case Base case [17] 1 2 3 
Minimise Cost29 Cost30 GWP2 Risk2 

Number of production facilities 28 28 47 47 
Number of storage facilities 265 265 265 265 
Number of transport units - 171 3 3 
Capital cost     
Plants and storage facilities (M$) 47,310 47,310 98,694 57,475 
Transportation modes (M$)          80.22 85.50 1.50 1.50 
Total daily capital cost (M$ per day)31 43.28 43.28 90.13 52.49 
Operating cost     
Plants and storage facilities (M$ per day) 21.16 21.16 41.92 21.16 
Transportation modes (M$ per day)          0.126 0.126 0.001 0.001 
Total operating cost (M$ per day) 21.29 21.29 41.92 21.16 
Total cost     
Total network cost (M$ per day) 64.57 64.57 132.05 73.65 
Production facilities (103 t CO2-equiv per day) - 135.27 41.52 135.27 
Storage facilities (103 t CO2-equiv per day) - 70.33 70.33 70.33 
Transportation modes (103 t CO2-equiv per day) - 0.261 0.002 0.002 
Total GWP (103 t CO2-equiv per day) - 205.86 111.85 205.60 
Transportation modes risk - 4557 40 40 
Production facilities risk  - 580 775 775 
Storage facilities risk - 5155 5155 5155 
Total risk (units) - 10292 5970 5970 

 

4.10.1.1 Base case and case 1 (minimal TDC) 

The results obtained in case 1 are in agreement with the base case (Almansoori and Shah, 2006). The 

minimal number of 28 production plants is obtained with SMR technology dispersed throughout GB 

territory. Production of LH2 via SMR has also been found in previous works (Sabio et al., 

2011)(Kamarudin et al., 2009), with cost as an objective function. The number of storage units is 265 

when adopting the same value for demand and with a storage period of 10 days.  Case 1 involves 171 

tanker trucks to cover the demand between grids which represents a transportation capital cost of 

85.5M$ as compared with 80.2M$ in (Almansoori and Shah, 2006) where the number of transport 

units is not reported. Transportation costs (i.e., fuel, labour, maintenance and general costs) are 

directly influenced by the number of trips, trip distances and number of transport units for each case. 

Among all the case studies, the higher transportation cost is observed for case 1 when minimising 

TDC: less plants are installed but more transport units are required to cover all the national demand, 

                                                      
29 Mono-objective optimisation. 
30 This criterion is the first optimised through the lexicographic approach for this case. 
31 Assuming a capital charge factor-payback period of capital investment of 3 years and the network operating 

value in 365 days per day. Demand 13 392 360 kg per day. 
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consequently, the transportation operating cost is also higher and the network results in a centralised 

HSC with the minimal total daily cost for the network of 64.57 M$.  The configurations that can be 

obtained are presented in Figures 4.2 and 4.3 and exhibit low differences in the distribution links and 

liquid hydrogen amounts to be transported between base case and case 1. The minor variations that 

can be observed could be attributed to the solver version. In case 1, less distribution links are found 

but the amount of LH2 transported keeps the same value. The imported part of demand of LH2 

between grids and the flow rates is listed in Appendix A.2.1.  

 

           

     
 

4.10.1.2 Case 2 (minimal GWP) 

Case 2 is relative to the minimisation of the global warming potential. Minimal total GWP resulted in 

111.85 103 of tons CO2 per day in which the main contribution is given by the liquid storage process 

(62%), followed by the amount emitted by the production facilities (37%) and a minimal impact of 

transportation (only three tanker trucks are considered in this network).  In the case of storage 

facilities, the solver does not change the amount of facilities installed since there is only one size of 

Figure 4.2 Network structure of liquid 

hydrogen produced via medium-to-large SMR 

plants, stored in medium-to-large storage 

facilities, and distributed via tanker trucks. 

Cost minimisation (Almansoori and Shah, 

2006).  

 

Figure 4.3 Network structure of liquid 

hydrogen produced via medium-to-large SMR 

plants, stored in medium-to-large storage 

facilities, and distributed via tanker trucks for 

the case 1 (cost minimisation).  
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storage tank, so that the optimisation is only performed with the number of production facilities and 

transportation units as significant decision variables. The number of production plants increase 

considerably (from 28 plants in case 1 to 47 in this case) and all of them are biomass gasification 

facilities.  

 

          

     
 

The kind of technology plays a key role in the CO2 emissions: biomass gasification technology 

decreases GWP but represents also a higher investment affecting the total daily cost of the HSC which 

is more than two times higher compare to the case 1.  Guillén et al. (Guillén Gosálbez et al., 2010) 

also found that the most promising alternative to achieve significant environmental savings consisted 

in replacing SMR by biomass gasification. In Figure 4.4, it can be highlighted that only three 

transportation links are established (from grids 9 to 12, 11 to 8 and from 16 to 17). As mentioned in 

Guillén et al. (Guillén Gosálbez et al., 2010), case 2 HSC design results in a decentralised network 

where almost all the grids are autonomous in LH2 production. 

 

Figure 4.4 Network structure of liquid 

hydrogen produced via medium-to-large 

biomass gasification plants, stored in medium-

to-large storage facilities, and distributed via 

tanker trucks for the case 2 (CO2 

minimisation).  

 

Figure 4.5 Network structure of liquid 

hydrogen produced via medium-to-large SMR 

plants, stored in medium-to-large storage 

facilities, and distributed via tanker trucks for 

the case 3 (risk optimisation).  
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4.10.1.3 Case 3 (minimal relative risk)  

Case 3 minimises the total relative risk. The optimal configuration is shown in Figure 4.5. Figures 4.4 

and 4.5 show similarity in the degree of decentralisation with only three distribution links and three 

tanker trucks assigned for the whole supply chain. Less links and transport units are assigned and are 

related to a higher number of installed production facilities, which is consistent with the results of 

cases 1 and 2. Specific features for case 3 can be highlighted for production units with a total of 47 

facilities located in all the grids except in grid 8 and 12; even though (Kim et al., 2011) found that the 

installation of plants changed in those grids with less population density, this was not found here (i.e. 

grid 29 involves a total of 6 production units). The main difference between case 2 and 3 is the 

production technology which results in 100% of installed SMR plants when risk is minimised.  

 

The total relative risk for this case is of 5970 units and is basically influenced by the storage risk 

(86%) since storage is scattered in each grid to cover a volume equivalent to 10 days of demand of 

LH2 per grid. Yet, from the results of this case study, it cannot be deduced that safety risk will be 

lower if more small storage units are installed since the different storage sizes were not considered. A 

variation in the number of storage units was not found. The production risk is the second major risk 

(13%). The transportation relative risk was reduced to find a more safety configuration considering at 

the same time the links and distance to be run. It must be pointed out that the number of tanker trucks 

was dramatically reduced from case 1 to cases 2 and 3 (from 171 to 3 units); in the second case this 

was made to decrease GWP but in this case the transportation risk represented 44% in case 1 and 

represents less than 1% for case 3. Through analysis of production plants and the transportation 

modes, (Kim and Moon, 2008) determined that changing the type of plant or mode does not offer 

additional financial benefits or safety guarantees. Yet, in our case, we find that the production 

technology mix of case 3 represents a financial benefit of 44% as compared to the second case where 

100% of biomass gasification plants were installed. 

4.11 Multi-objective optimisation 
From the three independent mono-objective cases, each objective function range can be obtained so 

that, the ε-constraint method can be applied. From the lexicographic optimisation results of Table 

4.4(b), the utopia and nadir points of each criterion can be found. The total risk can be divided into 

three intervals to make the interpretation easier: low risk=5970 corresponding to the best possible 

obtained, medium risk=8132 (the intermediate value defined by the epsilons εn) and high risk=10292 

units corresponding to the nadir point according the pay-off table. Similarly, 15 epsilon points were 

defined for GWP. Then, the objective function TDC has to be minimised while Total GWP and total 

risk are considered as inequality constraints. The solution consists of a Pareto front composed of 

solutions for supply chain configurations (see Figure 4.6). The cost of both high and medium risks is 

similar since these two levels of risks have close impacts of CO2 emissions, that is because of the 

degree of centralisation higher in the high risk network and also with longer route links and with more 
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trips per day. This represents a benefice in TDC compared with the low risk. In Figure 4.7 lines of 

medium and high risks options are very close, according to this result if the decision maker prefers to 

decrease the safety risk from high to medium, this decision will not represent a high cost affectation 

compared to the investment cost that would be necessary to change from high to low risk. The degree 

of decentralisation in the low risk is the main difference and at the same time the impact of the 

technology type that impacts directly the cost and the GWP (i.e. the capital cost of establishing 

biomass gasification plant is of M$ 1412  vs. M$ 535 for the SMR technology (Almansoori and Shah, 

2006)). Then if the risk level is to be low and to assure to emit less CO2 a higher investment is 

necessary. 

 
Figure 4.6 Pareto solutions for the multi-objective model 

 

Five points are plotted (A to E) in the Pareto front (see Figure 4.6) to give an example of the difference 

in the degree of decentralisation. The point A is the most centralised configuration with 36 distribution 

links and 171 tanker trucks assigned for the whole supply chain. The flow rate for this configuration 

can be seen in Table C.1. This solution corresponds to a high risk with low cost with a maximum of 

CO2 emissions. At the same time, the point B is connected by 26 links and 115 tanker trucks, similar 

results are found for the other solutions of medium risk. Finally, a low degree of centralisation is found 

for solutions with low risk, points C-E require only 3 transport units to distribute less than 1% of the 

total daily demand of hydrogen, the remaining part is produced on-site. The 43 possible set solutions 

in the Pareto front were evaluated via TOPSIS and M- TOPSIS analysis (Ren et al., 2007)(Morales 

Mendoza et al., 2011) carried out with the same weighting factor for the cost, safety and 

environmental factors (see Appendix A.2.3).   
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4.11.1 Multi-objective optimisation results  

Based on the data and assumptions, the optimal configuration of the future HSC involves 47 

production plants as a mix of production technologies (i.e. 66% for SMR and 34% for biomass 

gasification) located in a decentralised configuration. This network uses tanker trucks to deliver liquid 

LH2 to storage facilities. This option involves a TDC of 97.97 M$ per day, a GWPTot of 153.63 103 

tons CO2 per day and a low safety risk.   

 

The results concerning the decision variables for the multi-objective optimisation problems are 

displayed in Table 4.6 and Figure 4.7 shows the corresponding configuration. The analysis of the 

network is quite different from the mono-objective configuration of Figure 4.2. In the base case, it can 

be observed that long transportation links are installed between grids because such an option is 

cheaper than building a new production facility. It must be emphasized that the degree of 

decentralisation increases in the multicriteria solution and is similar in cases 2 and 3.  

 

The change from a centralised to a decentralised supply chain is the main difference observed when 

the safety risk and the CO2 emissions are taken into account in the optimisation phase. The production 

plants work with less efficiency because they have a maximum capacity of 480 tons per day and in 

some cases they are producing only 10 tons per day. Different plant sizes could be studied in a future 

approach.  

 

Table 4.7 shows that the best value obtained for TDC in the multi-objective approach (case 1) is 

higher (an increase by 34% is observed) than for mono-objective case (case 4). Moreover, the CO2 

emissions and the risk are improved in case 4 reducing GWP by 34% and the total risk by 72%. The 

total GWP decreases by 27% in case 2 as compared with case 4 while the reduction in CO2 emissions 

implies a higher cost (35%) while not affecting the risk. Finally, the minimal risk was found in cases 3 

and 4 (best results are shown in Table 4 for the lexicographic optimisation) but the other two criteria 

are different. The TDC increases by 25% in case 4 but the CO2 emissions are decreased by 34% as 

compared with case 3. 

 

Finally, the unitary cost of hydrogen per case is presented in Figure 4.8. It must be highlighted that no 

refuelling station is included in this optimisation of the HSC, even though these results could give us 

an idea about the competitiveness of H2 with fossil fuels. One kilogram of hydrogen is approximately 

equivalent to one gallon of gasoline based on its lower heating value energy content (Bartels et al., 

2010). Any hydrogen source that has a hydrogen cost below the current cost of gasoline has an 

economic advantage over gasoline. Gasoline prices in 2012 are 3.5-4.0 $/gallon (retail price range 

(“U.S. Gasoline and Diesel Retail Prices”.)). 
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According to (Ball and Wietschel, 2008), the specific hydrogen supply costs are estimated at around 

4–4.6 $/kg for being representative for both the European Union and North America in the early 

phase. They are mainly due to the required overcapacity of the supply and refuelling infrastructure as 

well as to the higher initial costs for new technologies because of the early phase of technology 

learning. Around 2030, hydrogen costs range from 3.6–5.3 $/kg in the abovementioned regions, 

mainly depending on the feedstock. In the long term until 2050, hydrogen supply costs will stabilize 

around this level, but with an upward trend due to the assumed increase in energy prices and CO2 

certificate prices. The average H2 delivered cost found in (Hugo et al., 2005) varies from 4.5 - 6.8 $/kg 

(prices in 2008). According to these references, it can be concluded that the cost of the HSC defined in 

this problem is still high for the problem that was considered and it will not be competitive to the 

current fossil fuel system unless some parameters (e.g. the capital change factor-payback period) are 

modified. 

 

 

Case 4  
Number of production facilities 47 
Number of storage facilities 265 
Number of transport units 3 
Capital cost   
Plants and storage facilities (M$) 71,507 
Transportation modes (M$)          1.5 
Total daily capital cost (M$ per day) 65.30 
Operating cost  
Plants and storage facilities (M$ per day) 32.67 
Transportation modes (M$ per day)          0.001 
Total operating cost (M$ per day) 32.67 
Total cost  
Total network cost (M$ per day) 97.97 
Production facilities  
(103 t CO2-equiv per day) 83.30 
Storage facilities   
(103 t CO2-equiv per day) 70.33 
Transportation modes   
(103 t CO2-equiv per day) 0.002 
Total GWP  (103 t CO2-equiv per day) 153.63 
Transportation modes risk 40 
Production facilities risk  775 
Storage facilities risk 5155 
Total Risk (Units-level) 5970 
 
Table 4.6 Multi-objective optimisation results 

of the hydrogen supply chain. 

 

Figure 4.7 Network structure of liquid 

hydrogen produced via medium-to-large SMR 

and biomass gasification plants, stored in 

medium-to-large storage facilities, and 

distributed via tanker trucks for the case 4 

(multi-objective optimisation).  
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Table 4.7 Comparison of results among treated cases. 
  Total daily cost 

(M$ d-1) 
Total  GWP (103 t CO2-
equiv d-1) 

Total risk 
(units) 

Multi-objective optimisation (Case 4) 97.97 153.6 5970 
Minimal TDC (Case 1) 64.57 205.86 10,292 
Difference between Case 4 vs Case 1 34% -34% -72% 
Minimal GWP (Case 2) 132.05 111.85 5970 
Difference between Case 4 vs Case 2 -35% 27% 0% 
Minimal risk (Case 3) 73.65 205.6 5970 
Difference between Case 4 vs Case 3 25% -34% 0% 

 

 
Figure 4.8 Hydrogen cost ($ per kg). 

 

4.12 Conclusions and comments 
This chapter has presented a general methodology for the design of a HSC using multi-objective 

optimisation. The model developed is an extension of the approach developed in (Almansoori and 

Shah, 2006). In this work, while total daily cost is minimised, investment strategies have been found 

for designing a sustainable hydrogen economy based on careful analysis that takes into account other 

critical issues such as safety and environmental impact. The solution strategy is based on the ε-

constraint method as a multi-objective optimisation technique for considering three objectives to be 

minimised simultaneously, involving economic, environmental and safety indicators. From the case 

study analysis, it must be highlighted that the model can identify the optimal HSC including the 

number, location, capacity, and type of production, transport and storage facilities, production rate of 

plants and average inventory in storage facilities, hydrogen flow rate and type of transportation links 

to be established. The main differences found between the two approaches are related to the degree of 

the production decentralisation that starts to increase as the risk and CO2 emissions are taken into 

account. This means that the demand of hydrogen will be supplied by a number of production facilities 

scattered throughout GB and the number of transport units will decrease under the assumptions made 

considering no intra grid transport. Production plants resulted only in SMR type for the base case but 

when multi-objective optimisation is performed, a mix of technologies is involved, i.e. SMR and 

biomass gasification.  Some further works are proposed in order to improve the model within this 
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scope: demand variation in different time periods needs to be considered; the energy sources and the 

fuelling stations nodes to the hydrogen supply chain must be included in the model; a geographic 

division based on states or regions instead of grid squares would be more realistic to facilitate data 

collection; the model must be extended to treat a panel of renewable energy sources, these point are 

treated in the next chapter. 



 

 



 

5. HYDROGEN SUPPLY CHAIN OPTIMISATION FOR THE 

DEPLOYMENT SCENARIOS IN THE MIDI-PYRÉNÉES REGION 

Résumé 
Ce chapitre est consacré à la modélisation et l'optimisation de la chaîne d'approvisionnement 
d'hydrogène pour la région Midi-Pyrénées à travers le projet « H2 vert carburant » initié par 
PHyRENEES, Midi-Pyrénées Innovation et le LGC. Le modèle mathématique présenté dans le 
chapitre 4 est adapté aux caractéristiques spécifiques de la région et de ses sources d'énergie. Un 
problème mono/multi-objectif est traité. Des scénarios d'optimisation sont effectués d'abord pour le 
cas mono-objectif, considérant de façon séparée les trois fonctions objectifs (coût, CO2 et risque), puis 
le cas multi-objectif est résolu. Comme cela a déjà été observé sur l’exemple du chapitre précédent, les 
résultats montrent des différences significatives, concernant principalement le degré de centralisation 
et le type de technologie ainsi que la taille des nouvelles installations. Le système d’information 
ArcGIS® est ensuite utilisé pour valider les solutions obtenues par optimisation multi-objectif. Cette 
technologie permet d'associer une période de temps aux configurations de la chaîne logistique 
hydrogène et d’analyser plus finement les résultats de la conception du réseau H2. 
 
Abstract 
This chapter is dedicated to the modelling and optimisation of the hydrogen supply chain in the Midi-
Pyrénées region through the “Green H2 fuel” project initiated by PHyRENEES, Midi-Pyrénées 
Innovation and the LGC. The mathematical model presented in Chapter 4 is adapted to the specific 
features of the region and its energy sources. A mono/multi period problem is treated. Optimisation 
scenarios are performed first through mono-objective cases considering the three objective functions 
(cost, CO2 and risk) and then the multi-objective case is tackled. The obtained results exhibit 
significant differences in the optimised networks concerning mainly the centralisation degree and the 
technology type as well as the size of the new facilities. A geographic information system (GIS) is 
introduced in the last section of this chapter. This technology provides a better insight in the design of 
the hydrogen supply chain. 
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Abbreviations 

AFHYPAC French Association for Hydrogen and Fuel Cells 
BEV  Battery Electric Vehicle 
CCS  Carbon Capture and Storage 
CH2  Compressed Gaseous Hydrogen  
FCEV   Fuel Cell Electric Vehicles  
GHG  Greenhouse gas 
H2   Hydrogen  
HSC  Hydrogen Supply Chain  
ICE  Internal Combustion Engine  
LGC  Laboratoire de Génie Chimique (Chemical Engineering Laboratory) 
LH2  Liquid hydrogen 
MILP  Mixed Integer Linear Programming  
MPI  Midi-Pyrénées Innovation (Regional Innovation Agency) 
PHEV  Plug-in Hybrid Electric Vehicle 
RES  Renewable Energy Sources  
WtW  Well-to-Wheel 
 
Nomenclature and units 
Indices 
g: grid squares  and g': grid squares such that g' ≠ g 
e: energy source 
p: plant type with different production technologies 
i: product physical form 
s: storage facility type with different storage technologies 
l: type of transportation modes 
j: size of the production facilities 
t: time periods of the planning horizon 

 
Parameters and variables 
α     Network operating period (days per year) 

γepj 
Rate of utilization of primary energy source e by plant type  p and size j (unit 
resource/unit product) 

A0egt 
Initial average availability of primary energy source e in grid g during time 
period t (units per day)  

CCF      Capital change factor -payback period of capital investment (years) 
DTigt Total demand for product form i in grid g during time period t (kg per day) 
ESCt Primary energy source cost during time period t (US$ per day) 
Fcapi Capacity of fuelling station for product form i (kg  per day) 
FCCt               Facility capital cost during time period t (US$) 
FOCt               Facility operating cost during time period t (US$ per day) 
GWProd

ep Production global warming potential by plant type p (g CO2-equiv per kg of H2) 

IPpijgt    
Investment of plants of type p and size j producing product form i in grid g 
during time period t 

IPESegt 
Import of primary energy source e to grid g from overseas during time period t 
(units per day) 

ISsijgt 
Investment of storage facilities of type s and size j storing product form i in grid 
g during time period t 

LRt 
Learning rate - cost reductions as technology manufacturers accumulate 
experience during time period t (%) 

NFSt 
Number of fuelling stations dispensing product form i in grid g during time 
period t (units) 

NPpijgt       
Number of plants of type p and size j producing product form i in grid g during 
time period t 

NP0pjig 
Initial number of plants of type p and size j producing product form i in grid g 
(units) 
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NSsijgt       
Number of storage facilities of type s and size j for product form i in grid g 
during time period t 

NS0sjig 
Initial number of storage facilities of type s and size j storing product form i in 
grid g (units) 

NTUilgg’t Number of transport units between g and g’ during time period t 
PCCpji Capital cost of establishing plant type p size j producing product form i (US$) 

PRpijgt       
Production rate of product form i produced by plant type p size j in grid g during 
time period t (kg per day) 

RPpj Risk level of the production facility p size j (units) 
SCCsij Capital cost of establishing storage type s size j storing product form i (US$) 
SSF Safety stock factor of primary energy sources within a grid (%) 
TCCt              Transportation capital cost during time period t (US$) 
TDC               Total daily cost of the network (US$ per day) 
TOCt               Transportation operating cost during time period t (US$ per day) 

UDCe 
Unit cost of distributing primary energy source e between grids (US$ per unit / 
km) 

UFCi Unit fuelling cost of product form i ($ per kg) 
UICe  Unit import cost of energy source ($ per unit) 

UPCpij 
Unit production cost for product form i produced by plant type p and size j (US$ 
per kg) 
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5.1 Introduction 
Chapter 4 of this manuscript was devoted to the HSC design with multi-objective. The solution 

strategy was validated for a mono-period case with lexicographic and ε-constraint methods.  This 

chapter tackles the HSC design for the case study of the Midi-Pyrénées region: a multi-period problem 

is considered (2020-2050) and a geographic division based on districts instead of grid squares which is 

more consistent with administrative data thus facilitating data collection is used.  

 

Midi-Pyrénées, the largest region of mainland France (similar to the surface of Denmark), is located in 

the South West corner of the country, next to Spain. The Midi-Pyrénées region counts with a large 

number of stakeholders and has great potential for producing hydrogen based on renewable sources 

which represented over than 25% in the region and 14% of national production in 2008 (Le Schéma 

Régional Climat Air Energie, 2012). In this context, the Climate Plan has as targets to divide by 4-5 

the French GHG emissions by 2050 (Patay, 2008). This policy of "Factor 4" then requires a 75% 

reduction in GHG emissions by 2050 compared to current levels (Bento, 2010): these objectives 

enhance the region to study new scenarios related to the transportation system.  

 

The “Green H2 fuel” project (Hydrogène vert carburant) was initiated by the PHyRENEES32 

association, the Regional Innovation Agency (Midi-Pyrénées Innovation-MPI)33 and the Chemical 

Engineering Laboratory (Laboratoire de Génie Chimique-LGC) on February 2012. This study 

emerged as an initiative to evaluate the hydrogen economy in the Midi-Pyrénées region to enhance 

renewable energies and at the same time to evaluate the potential CO2 reductions. More specifically, 

the objectives of the project are based on the following items: 

• identification of the key stakeholders in Midi-Pyrénées. 

• scenarios definition.  

• data collection and assumptions. 

• model adaptation and validation. 

• results analysis. 

 

Three main themes were identified during project development. The first item concerned the technical 

issue: the methodological framework presented in the previous chapter served as a basis. The 

adaptation of the multi-objective optimisation tool developed in chapter 4 requires the definition of 

energy transition planning in agreement with the renewable energy potential of Midi-Pyrénées. It 

required field visits, interviews, data collection and analysis/ synthesis of information. The second axis 

                                                      
32 PHyRENEES Association was established on October 2007 around several partners (Ecole des Mines, Trifyl, 

N-GHY, Airbus, GDF INPT, ARAMIP and the General Council of the Tarn ...). 
33 MPI was created in 2006 at the initiative of the Regional Council to improve the visibility of the institutional 

landscape and guide companies in their innovation projects.  
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was related to human resources: a multidisciplinary team supported the management of the project for 

planning activities among all the stakeholders associated with the project. The steering committee was 

composed of regional organisations and industrials (PHyRENEES, MPI, WH2
34, ENSIACET and 

Mobilelec35). This committee validated the assumptions. The third axis consisted in the monitoring of 

the project (meetings with the steering committee, reports, etc.): the project management implemented 

for this hydrogen study was presented in detail in (Dupin-Janson, 2012) and will not be developed 

here. The results of the project were selected to be presented in the National Debate for the Energy 

Transition (“Débat national sur la transition énergétique,” 2013) the last 3rd June 2013 in Toulouse 

organised by MPI. This work led to two publications (De-León Almaraz et al., 2013b) and (De-Léon 

Almaraz et al., 2014). 

 

The methodological framework of the study is proposed in Figure 5.1. The input block corresponds to 

all the databases, hypothesis and scenarios chosen by the steering committee. The integration of the 

mathematical model and the multi-objective optimisation approach constitute the core of the approach. 

The snapshots and the results concerning the decision variables and objective functions are the main 

outputs.    

 

The remainder of this chapter is organised as follows: in the next section, the methodology and the 

problem definition are explained. The parameters and typical features of the Midi-Pyrénées case are 

described in section 5.3.  It must be highlighted that current information available related to hydrogen 

activities were obtained from part of the main stakeholders in the hydrogen field.  As the HSC is still 

in the study phase, not all data is available, the missing data to build the model was obtained through 

bibliographic sources. In section 5.4, the extended version of the mathematical model presented in 

chapter 4 is proposed.  Section 5.5 is dedicated to the solution strategy. Due to the multi-period 

problem involving four time periods, three approaches are used to solve the problem: first, three 

mono-objective optimisations (referred as case A) are carried out in section 5.6; the methodology is 

then applied for multi-criteria approaches (cases B1 and B2). The case B1 treats the multi-objective 

problem in section 5.7 as a multi-period one (the four-time periods are integrated) and the solution is 

based on the so-called Ԑ-constraint methodology. The case B2 solves four mono-period problems with 

the lexicographic optimisation and then applies the Ԑ-constraint methodology and TOPSIS to each 

time period in section 5.8. The optimisation results and subsequent discussion for all cases are given in 

section 5.9. Moreover, in section 5.10 the ArcGIS® tool is introduced to allow a more precise spatial 

analysis. Finally, some highlights conclude this chapter. 

                                                      
34 WH2: start-up 2011, green H2 energy broker in France. 
35 Mobilelec: Company placed in Toulouse. They are placed in the electronic engineering for mobility (study, 

design and development of electrical and electronic architectures (embedded or otherwise) for vehicles (trucks, 

cars, bicycles, scooters, motorcycles).   
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Figure 5.1 Methodology framework for the “Green H2 fuel” project (Midi-Pyrénées). 

5.2 Methodology 

5.2.1 Problem definition 

The optimisation approach of HSC proposed by (De-León Almaraz et al., 2013a, 2012) and presented 

in Chapter 4 has been adapted to the Midi-Pyrénées region to answer the following questions: 

• what is the best option for production and storage of hydrogen in Midi-Pyrénées? 

• is centralised production or decentralised production (small-scale production at local fuelling) 

more cost effective? 

• what are the most cost effective transportation modes and pathways to connect hydrogen 

demand with its supply? 

• is it possible to find competitive targets for a region? 

• does the WtW of the HSC result in less CO2 emission than those related to gasoline and 

diesel? 

• what is the safest configuration of the HSC in Midi-Pyrénées? 

5.2.2 Objective 

This work focuses on the design of a HSC for the Midi-Pyrénées region in five levels: energy sources, 

production, storage, transport and market (Figure 5.2). There are three objectives to be minimised: the 

cost, the environment impact expressed in terms of GWP (CO2 emissions) and the safety risk. 
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Figure 5.2 The HSC studied for Midi-Pyrénées 

 

5.3 Data collection 
As abovementioned, the division of the territory into districts is adopted and a deterministic demand is 

assumed. The data set includes information relating to the hydrogen demand, technical, environmental, 

economic and risk data associated with each component of the HSC. Some values have been collected 

from recent publications (ADEME, INSEE, CNRS, etc.), visits to sites, and interviews with 

professionals in the energy region and professors (sociologists and researchers specialized in the field 

energy). In this approach, the demand for hydrogen is assumed fixed. The problem is defined as multi-

period and the time horizon considered is 2020-2050 with a time step of 10 years. 

5.3.1 Techno-economic data 

A large amount of input data is required to solve the problem. All the techno-economic parameters 

(i.e., minimum and maximum production and storage capacities, average delivery distance between 

grids and capacity of each transportation mode, etc.) are defined in Appendix B1. In this section we 

present only the main specific issues linked to the Midi-Pyrénées region. 

5.3.2 The geographic division 

According to its geographic and administrative segmentation, Midi-Pyrénées is divided into 

prefectures and sub-prefectures: this represents 22 zones (see Figure 5.3). This division has been used 

to obtain a realistic path between districts with the existence of major roads and to estimate the 

potential demand from regional statistics INSEE 2012. 
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Figure 5.3 Geographic division of the Midi-Pyrénées region 

 

5.3.3 Energy sources and production facilities. 

The availability of renewable energy sources used for this study was gathered from the investigation 

carried out by (Salingue, 2012). Figure 5.4 takes into account the large RES sites for wind power with 

a capacity higher than 0.5 MW, for PV more than 1 MWp and hydropower of more than 0.5 MW. The 

data was in agreement with the study of the Regional Climate Air Energy forecasting for Midi-

Pyrénées (Le Schéma Régional Climat Air Energie, 2012) approved in June 2012 by the region. This 

report presents the strategic objectives for the development of renewable energy in 2020.  

 

The zones with potential development of RES are presented in Figure 5.5. Based on this study and 

considering the current energy situation, the initial average availability of primary energy source e in 

grid g during time period t (kWh per day) from 2020 to 2050 is presented in the Appendix B.1.11. For 

hydropower, only facilities “run-of-river” are considered (based on data collection from EDF), which 

represent 28.6% of the total hydropower in the region against 71.4% for the “pumped-storage 

hydroelectricity” facilities. Because of the potential of renewable energy (wind, solar and hydro) in the 

region, production of hydrogen by electrolysis of water was selected. The potential use of nuclear 

electricity is also considered. However, the commercial production technology used today is mainly 

based on steam methane reforming: the comparison of this method with those using renewable sources 

appears relevant. 
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Figure 5.4 Segmentation and geographic distribution of production sites Renewable Energy 

 

 
Figure 5.5 Projection of renewable energy production capacity in 2020 in Midi-Pyrénées. 
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The RES evolution in the region is shown in Figure 5.6 from 2012 to 2050. A big difference in the 

proportion of energy sources is highlighted in 2012, 2020 and 2030 (e.g. hydro ratio is 78% in 2012, 

48% in 2020 and 39% in 2030); this change is due to the projections of the Regional Climate Air 

Energy forecasting for Midi-Pyrénées. For 2040-50 no projections were found and we made the 

hypothesis of 2% of augmentation in the total production capacity but the percentage per type of RES 

remains the same.  

 
Figure 5.6 Evolution of selected RES 2012-2050 

 

5.3.4 Conditioning, storage and transportation 

This study focuses only on the conditioning, storage and distribution of liquid hydrogen (LH2) that is 

considered instead of compressed gaseous hydrogen (CH2) because it has several advantages over gas. 

LH2 has a very high energy density, it is easier to handle, transport and store (Almansoori and Shah, 

2009). From the economic point of view, transportation of LH2 is cheaper than from a gas network, as 

highlighted by (Almansoori and Shah, 2006). Storage could be performed in liquid phase with 

stainless steel tanks (cryostats) by the Claude cycle which lowers the temperature to -253°C 

(liquefaction temperature) (Agator et al., 2008) with a density of 70.85 kg/m3 vs. 0.0899 kg/m3 for the 

CH2. 

 

5.3.5 Refuelling stations 

The final step is the refuelling station for the vehicles supply. The model only computes the number of 

fuelling stations to be installed. (McKinsey & Company, 2010) considered 3 types of refuelling 

stations where H2 is considered as liquid at 30 bar pressure or gaseous at 250 or 450 bar. Then, H2 is 

compressed to 350 or 700 bar; for this case, only one size of refuelling station with 10 dispensers to 

provide maximum 2.5 t H2 per day is considered. 
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5.3.6 Demand estimation 

A deterministic demand of hydrogen for FCEV is considered, including fleets such as buses, private 

and light-good-vehicles and forklifts at 2010 levels. Market demand scenarios selected for this project 

were based on two main studies: (i)- a prospective study conducted by (McKinsey & Company, 2010) 

entitled «A portfolio of power-trains for Europe» and (ii)- Bento’s thesis manuscript (Bento, 2010). 

From these studies and the involved assumptions, two scenarios concerning two levels of demand for 

fuel cell electric vehicles penetration were developed (see Figure 5.7 and Table 5.1). The scenario S1 

refers to a low demand scenario and the S2 is an optimistic one. 

 

 
Figure 5.7 Development phases of the hydrogen economy in Midi-Pyrénées based on (Bento, 2010) 

 

Table 5.1 Demand scenarios of fuel cell electric vehicles penetration by period 

Scenario/year 2020 2030 2040 2050 
S1: Scenario  1 (buses, private and light-good-vehicles) 1% 7.50% 17.50% 25% 
S2: Scenario  2 (buses, private and light-good-vehicles) 2% 15% 35% 50% 
S1/S2: Scenarios 1 and 2 (forklifts) 4% 30% 70% 100% 
Total S1 (t H2 per day) 7.9 59.4 138.7 198.1 
Total S2 (t H2 per day)                  15.5 116.9 272.8 389.8 

 

The demand potential for hydrogen in these two scenarios is computed according to Eq. 5.1 as in the 

works of (Almansoori and Shah, 2006) and (Murthy Konda et al., 2011b).  

Dig
T = FE.d.Qcg

 5.1  

 

where the total demand in each district (DT
ig) results from the product of the fuel economy of the 

vehicle (FE) (Table 5.2), the average total distance travelled (d) and the total number of vehicles in 

each district (Qcg) (see Appendix B.1.1). The demand of LH2 for each scenario and type of vehicle can 

be found in (Salingue, 2012). 
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Table 5.2 H2 fuel economy of different types of FCEV and the average total distance travelled for 

gasoline and diesel cars 

Type of vehicles FCEV 
Kg H2/100 km 

Gasoline vehicle 
(km/year) 

Diesel vehicle 
(km/year) 

Private vehicles36  0.98 8 730 15 799 
Bus6 11.7 - 35 879 
Light-good-vehicles  (GVWR37< 1,5 T)2 1.00 7 000 11 400 
Light-good-vehicles (1,5 T > GVWR < 2,5 T)2 1.14 8 700 17 600 
Light-good-vehicles  (GVWR<  3,5 T)38 1.56 9 100 17 500 
Forklifts2 1.44 kg per day       

 

 

5.3.7 Assumptions 

The study is based on the following assumptions: 

� a capital change factor of 12 years is introduced; 

� several sizes and types of production units and storage facilities are considered; 

� a minimum capacity of production and storage equal to 50 kg of H2 per day is taken into 

account; 

� renewable energy is directly used on-site because of grid saturation. This allows to allocate  

the CO2 impact to each source;  

� inter-district transport is allowed; 

� the maximum capacity of transportation is fixed at 3500 kg liquid-H2 (Dagdougui et al., 

2012); 

� a 10-days LH2 safety stock is considered;  

� the risk index is calculated by the methodology proposed by (Kim and Moon, 2008) (Kim et 

al., 2011); 

� a RES increase of 2% in each period from 2030 to 2050; 

� the number of plants is initialized at a null value: the H2 plants that exist are supposed to 

provide exclusively the demand for chemical industry  requirements (i.e., Linde in Boussens); 

� the cost of migrating a current refuelling station to H2 fuel is not considered; 

� the learning rate cost reductions due the accumulated experience is considered as 2% per 

period (McKinsey & Company, 2010); 

� the scenario 1 (low demand) is solved.  

 

                                                      
36 (Almansoori and Shah, 2006) 
37 GVWR: Gross vehicle weight rating 
38 (Salingue, 2012, pp,29-30) 
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5.4 Mathematical model 
The elements of a HSC are shown in Table 5.2. In the proposed formulation, the hydrogen can be 

produced from an energy source e, delivered in a specific physical form i, such as liquid or gaseous, 

produced in a factory type involving different production technologies p, stored in a reservoir unit s 

and distributed by a transportation mode l from one district or grid g to another g' (with g' ≠g). 

 

To model the HSC for the region, constraints used are similar to that of the previous chapter and 

(Almansoori and Shah, 2009). The model remains as mixed integer linear programming (MILP). 

However, for the Midi-Pyrénées case study, a multi-period optimisation approach was carried out with 

the objective of minimising the criteria on the entire time horizon t. Another specific feature for this 

case is the integration of renewable energy constraints. The indices t (time period) and j (facility size) 

are added to all the constraints of the model presented in chapter 4, in this section only the new 

constraints are presented. 

 

5.4.1 Energy source constraint  

The average availability of primary energy sources e in a grid g during time period t is given as a sum 

of three terms. These are the initial average availability of primary energy sources, the import of 

primary energy sources and the rate of consumption of these sources. γepj is the rate of utilisation of 

primary energy source e by plant type  p and size j and is multiplied by the safety stock factor (SSF = 

5%) for storing a small inventory of primary energy sources. The terms are expressed respectively by 

the following constraint: 

';,,0 gggtePRSSFIPESAA pijgt
pji

epjegtegtegt ≠∀−+= ∑ γ  5.2 

5.4.2 Production facilities constraints 

The number of production facilities type p and size j installed in g in the first time period NPpijgt1 is 

determined by the sum of the total initial number of production facilities (N0pjjg), and the number of 

new plants of type p producing product form i in grid g in the period one (IPpijg1): 

1,,,,0
11

=∀+= tgjipIPNPNP pjigtpjigpijgt  
5.3  

 

For all the other periods, the definition of the number of new production facilities takes into account 

the production plants established in the previous time period. 

1,,,,1 ≠∀+= − tgjipIPNPNP pjigtpjigtpijgt  
5.4  

 

In the case of new electrolysis plants that use renewable energy (IPelectrolysis-RES,i,j,g,t) they can be 

established only when renewable energy e is available in the grid g. For the Midi-Pyrénées region, 

exportation of renewable energy between grids g to g’ is not considered due to network saturation, 
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then, if the initial availability of renewable energy source A0egt  in g is zero, non-electrolysis plants can 

be installed in this district g. 

gAifIP gtRESeijgtRESiselectrolys ∀== 000 )()(  5.5  

 

The number of storage (NSsijgt) is determined by the sum of the total initial number of storage facilities 

of type s and size j storing product form i in grid g established in the previous time period t-1(NS0sjig 

or NSsigt-1) and the number of new storage units of type s producing product form i in grid g during the 

time period t (ISsigt): 

1:,,,,0
11

tgjisISNSNS sijgtsjigsijgt ∀+=
 

5.6  

1,,,,1 ≠∀+= − tgjisISNSNS sijgtsjigtsijgt  
5.7  

 

5.4.3 Refuelling stations 

The number of refuelling stations within a grid g dispensing a product form i depends on the total 

equivalent demand and the installed capacity of the fuelling stations, as follows: 

∑ ∀=
gi i

T
igt

t t
FCap

D
NFS

,  

5.8  

 

5.4.4 Objective function: total daily cost  

5.4.4.1 Facility capital cost 

Constraint 4.23 from chapter 4 should be replaced by the constraint 5.9. The facility capital cost is 

calculated by multiplying the number of new plants and new storage facilities by their capital cost and 

the learning rate as the cost reductions when technology manufacturers accumulate experience during 

time period t.  

∑ ∑ ∑ 









∀+=

gi jp js
sijgtsijpjigtpij

t
t tISSCCIPPCC

LR
FCC

, , ,

1

 

5.9  

  

5.4.4.2 Primary energy sources transportation cost 

The cost of transportation of primary energy sources for all scenarios during the entire planning 

horizon is equal to: 

tIPESUICESC
ge

egtet ∀=∑
,  

5.10  
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5.4.4.3 Economic objective function 

Constraint 4.34 from chapter 4 should be replaced by the constraint 5.11. By combining the cost terms 

derived earlier presented in section 4.5 (chapter 4) and the new element introduced in constraint 5.10, 

we obtain the total daily cost (TDC) of the hydrogen supply chain: 

∑ +++
+

=
t

ttt
tt ESCTOCFOC

CCF

TCCFCC
TDC

α  
5.11 

 

The first term of the right-hand-side of this objective function (facility and transportation capital costs, 

FCCt and TCCt in the time period t) is divided by the network operating period (α) and the annual 

capital charge factor (CCF) to find the cost per day in US dollars. This result is added to the facility 

and transportation operating (FOCt, TOCt) costs and to the cost of transportation of the energy source 

ESCt.   

5.5 Solution strategy 
This problem is treated in GAMS 23.9 and solved by CPLEX 12. Two main cases are analysed here: 

case A for mono-objective optimisation and B for multi-objective approaches (see Figure 5.8). 

 
Figure 5.8 Optimisation approaches for the Midi-Pyrénées region. 

 

5.5.1 Case A. Mono-objective approach. 

Each mono-objective problem is optimised for the entire time horizon (multi-period). The geographic 

Midi-Pyrénées region is selected and divided in districts. The possible configurations of the HSC to be 

located in the region are defined (such as product physical form, viable production processes, 

transportation type, etc…).  

5.5.2 Case B1. Multi-objective optimisation through ε-constraint method.  

In this case, the nadir and utopia points resulted from the pay-off table in the case A are considered. 

The problem is treated as a multi-period one. The tri-objective optimisation problem is solved by 

implementing the ε-constraint method. Once the epsilon points are defined, the objective function 
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TDC has to be minimised. The GWP and risk objective functions are transformed into inequalities 

constraints. 

5.5.3 Case B2. Multi-objective optimisation based on lexicographic and ε-constraint 

methods.  

The hybrid strategy coupling lexicographic and ε-constraint method was also used in the previous 

chapter for a mono-period problem. At the beginning we made some efforts to solve the Midi-

Pyrénées case as multi-period to construct the pay-off table through lexicographic optimisation but the 

multi-period problem turns out to be a difficult problem due to the problem size and the use of binary 

variables so that a feasible solution was not obtained. In order to overcome this limitation, the problem 

is treated here as four mono-period problems. We optimise the time period t1 for the 3 objectives 

through lexicographic optimisation, the pay-off allows the application of the  ε-constraint method; a 

TOPSIS analysis is then carried out for each Pareto front with the same weighting factor for cost, 

safety and environmental criteria. The optimised network configuration then serves as initialising 

existing network for the period t+1 and the same procedure is applied until the four time periods are 

solved.  

5.6 Mono-objective optimisation results (case A) 
The first results for scenario 1 "low demand" are presented in this section. The single-objective 

optimisation was performed and considered as a preliminary step to the multi-objective stage. In each 

case, the calculation of other criteria was done without be optimised. There results were presented in 

the XIV congress organised by SFGP, 2013 in Lyon, France (De-León Almaraz et al., 2013b). 

 

5.6.1 Case A1. Minimising the total daily cost 

Figure 5.9 shows the evolution of the supply chain for a period of 10 years by optimising the cost of 

hydrogen. Specifically, Figure 5.9 (year 2020) shows a distributed configuration with a mix of 

productions plants with different energy sources such as wind, solar, hydro and gas. It may be noted 

that the transport is not considered due to weak demand in LH2. The minimal cost in this period is 

$16.2/kg H2 with 6.9 kg CO2-equiv/kg H2 and a risk of 35 units (see Table 5.3). The capital 

investment in 2020 is very high due in this transition phase each district with regard to both production 

units and storage facilities needed to develop the network. 

 

The total daily cost decreases strongly in the period 2030-2050, due to a decrease in capital costs, 

reaching $3.7/kg H2 in 2050. In this period, a centralised network is found operating with steam 

methane reforming as the major production technology.  

 

The increase in demand in 2050 (198 t vs. 7.9 t in 2020) promotes the use of transportation units. A 

total of twenty-two tanker trucks are necessary to supply LH2 to different districts from the grids 4 and 
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22 where the plants have a sufficient installed capacity to export hydrogen. Eighty six percent of the 

total LH2 demand is imported from these two districts and 14% of the request is provided on-site by 

the electrolysis production units. The configuration of the chain in 2050 increased the risk (263 units) 

related to transportation, the size of the storage units and the district where they are located. The 

results lead to 44% risk related to the transport and 50% to the storage. Finally, in Figure 5.9 for the 

year 2050, there are 43 plants of small and medium sizes (43% of these plants using steam reforming 

process). SMR produces 99% of the regional total demand of hydrogen, which leads to relatively high 

emissions of CO2 (10.9 kg CO2-equiv/kg H2 for the year 2050). 

 

Table 5.3 Cost optimisation results of the hydrogen supply chain (case A1) 

Year 2020 2030 2040 2050 
Demand (t per day) 7.9 59.4 138.8 198.2 
Number of total production facilities 25 43 43 43 
Number of new production facilities installed in this period 25 18 0 0 
Number of total storage facilities 22 41 71 116 
Number of new storage facilities installed in this period 22 19 30 45 
Number of transport units - 5 14 22 
Capital cost         
Plants and storage facilities (103 $) 338 554 1 081 476 171 154 127 793 
Transportation modes  (103 $)         0 2 500 7 000 11 000 
Total daily capital cost (103 $ per day) 77 247 41 32 
Operating cost 
Plants and storage facilities (103 $ per day) 50 245 496 676 
Transportation modes (103 $ per day)          0 2 7 11 
Total operating cost (103 $ per day) 50 247 503 686 
Cost of transportation of energy source  (103 $ per day)  0 3 6 8 
Total network cost (103 $ per day) 127.67 496.63 549.28 726.58 

Cost per kg H2 ($) 16.17 8.36 3.96 3.67 
Production facilities (t CO2-equiv per day) 48.8 584.2 1 393.0 1 992.8 
Storage facilities (t CO2-equiv per day) 5.6 41.8 97.7 139.5 
Transportation modes (t CO2-equiv per day) 4.0 14.2 22.8 
Total GWP (t CO2-equiv per day) 54.4 630.1 1 504.9 2 155.1 
Kg CO2-equiv per kg H2 6.9 10.6 10.8 10.9 
Production facilities  6 12 12 12 
Storage facilities  29 67 99 134 
Transportation modes 34 75 116 
Total Risk (Units-level) 35 113 186 263 
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Figure 5.9 Network structure of liquid hydrogen distributed via tanker trucks. Case A1: Cost 

minimisation in a low demand scenario in the Midi-Pyrénées region. 
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5.6.2 Case A2. Minimising the global warming potential 

Figure 5.10 shows the possible configurations of the infrastructure for the Midi-Pyrénées region where 

CO2 emissions are minimised. For the 2020 period, a fully decentralised configuration with wind as 

primary energy source is obtained (see Table 5.4) GWP is 2.1 kg CO2-equiv per kg H2, which 

represents 30% of CO2 that would be issued for the same period in the scenario of cost minimisation. 

Conversely, the price is $24 per kg H2 in 2020 (see all results in Table 5.5), this represents an increase 

of 52% compared to the minimal cost. The cost is logically higher in the first period mainly due to 

weak demand, which limits production capacity with electrolysis technology without transportation 

links. The existence of 24 storage units also contributes to a higher risk. The year 2030 requires the 

installation of several production and storage units with similar CO2 emissions, but the total daily cost 

decreases to $14 per kg H2, the risk takes a relatively average value over this period and the years to 

come.  

Table 5.4 Distribution Use ratio of energy sources for hydrogen 

production by electrolysis for the scenario 1 minimising CO2 emissions. 

Energy source/Period 2020 2030 2040 2050 
Wind 70% 76% 83% 90% 
Hydraulic 22% 16% 13% 7% 
Nuclear 8% 8% 3% 3% 

 

Table 5.5 GWP optimisation results of the hydrogen supply chain (case A2) 
Year 2020 2030 2040 2050 
Demand (t per day) 7.9 59.4 138.8 198.2 
Number of total production facilities 23 42 43 48 
Number of new production facilities installed in this period 23 19 1 5 
Number of total storage facilities 24 40 46 46 
Number of new storage facilities installed in this period 24 16 6 0 
Number of transport units   1 3 6 
Capital cost         
Plants and storage facilities (103 $) 610 449 2 020 692 913 462 2 559 434 
Transportation modes  (103 $ )         0 500 1 500 3 000 
Total daily capital cost (103 $ per day) 139 461 209 585 
Operating cost 
Plants and storage facilities (103 $ per day) 54 369 856 1 216 
Transportation modes (103 $ per day) 0 0 1 2 
Total operating cost (103 $ per day) 54 370 857 1 218 
Cost of transportation of energy source  (103 $ per day) 0 2 10 19 
Total network cost (103 $  per day) 193.25 832.66 1 075.85 1 821.45 
Cost per kg H2 ($) 24.47 14.01 7.75 9.19 
Production facilities (t CO2-equiv per day) 11.3 81.3 172.0 231.9 
Storage facilities (t CO2-equiv per day) 5.6 41.8 97.7 139.5 
Transportation modes (t CO2-equiv per day) 0.1 1.3 3.1 
Total GWP (t CO2-equiv per day) 16.9 123.2 271.0 374.4 
Kg CO2-equiv per kg H2 2.1 2.1 2.0 1.9 
Production facilities  6 13 14 19 
Storage facilities  36 78 98 98 
Transportation modes 7 13 24 
Total Risk (Units-level) 42 98 124 141 
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In 2040 and 2050, the cost is significantly lower, $7.8 and $9.2 per kg H2 respectively, so that the cost 

increases in the period 2050 with the installation of five new plants for providing LH2. CO2 emissions 

are minimal in 2050: 1.9 kg CO2 per kg H2 and the final configuration leads to 97% of electrolysis 

production using renewable energy (see Table 5.4). The allocation of emissions is as follows: 62% for 

production, 37% for liquefaction and only 1% for transportation. 

 
Figure 5.10 Network structure of liquid hydrogen distributed via tanker trucks. Case A2: CO2 

minimisation in a low demand scenario in the Midi-Pyrénées region. 
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5.6.3 Case A3. Minimising the total relative risk. 

Figure 5.11 shows the possible configurations obtained by minimising the risk with a mix of 

production technologies (SMR and electrolysis) that includes all the available energy sources in the 

region. The main production technology involves steam reforming of natural gas (99%) and only 1% 

electrolysis using electricity from nuclear sources, solar, wind and hydro. For this mono-objective 

optimisation, the network is 100% decentralised. The four storage sizes are used in the four considered 

periods. 

Table 5.6 Risk optimisation results of the hydrogen supply chain (case A3) 

Year 2020 2030 2040 2050 
Demand (t per day) 7.9 59.4 138.8 198.2 
Number of total production facilities 22 38 38 44 
Number of new production facilities  22 16 0 6 
Number of total storage facilities 22 40 48 52 
Number of new storage facilities  22 18 8 4 
Number of transport units - - - - 
Capital cost 
Plants and storage facilities (103 $) 401395.8 1603921.6 204807.7 156247.5 
Transportation modes  (103 $) 
Total daily capital cost (103 $ per day) 91.6 366.2 46.8 35.7 

Operating cost 
Plants and storage facilities (103 $ per day) 45.8 303.3 730.2 1043.9 
Transportation modes (103 $ per day)         0.0 0.0 0.0 0.0 
Total operating cost (103 $ per day) 45.8 303.3 730.2 1043.9 
Cost of transportation of energy source  (103 $ per day) 0.7 5.4 16.9 24.4 
Total network cost (103 $ per day) 138.2 674.8 793.9 1104.0 
Cost per kg H2 ($) 17.5 11.4 5.7 5.6 
Production facilities (t CO2-equiv per day) 64.0 525.7 1092.5 1553.8 
Storage facilities (t CO2-equiv per day) 5.6 41.8 97.7 139.5 

Transportation modes (t CO2-equiv per day) 
Total GWP (t CO2-equiv per day) 69.6 567.6 1190.2 1693.3 
Kg CO2-equiv per kg H2 8.8 9.6 8.6 8.5 
Production facilities 6 12 12 15 
Storage facilities 29 77 95 97 

Transportation modes 
Total Risk (Units-level) 35 89 107 112 

 

The minimal risk of the HSC in 2020 is 35 units (Table 5.6), with cumulative risks for production 

units and storage: the obtained values of the risk index are equal to 89, 107 and 112 units for 2030, 

2040 and 2050, respectively. The risk scale was calculated with the lowest value obtained from the 

minimisation of this objective for all periods. The calculations for the Midi-Pyrénées case are shown 

in Appendix B.2. The total daily cost of LH2 for this scenario is lower than in the environmental 

scenario but logically higher than the economic scenario for all periods. In 2050 (see Figure 5.11) the 

cost is $5.6 per kg H2 and emissions of 8.5 kg CO2 per kg H2. The main risks in this configuration are 

mainly due to storage 85% and production 15%. 
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Figure 5.11 Network structure of liquid hydrogen distributed via tanker trucks. Case A3: risk 

minimisation in a low demand scenario in the Midi-Pyrénées region. 
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5.6.4 Conclusions for the mono-objective optimisation 

Table 5.7 displays the main differences among the three mono-objective cases. This first approach 

gives a reference for the various criteria considered separately over several periods. The cost criterion 

in the first time period is prohibitive. The multi-objective optimisation seems to be an alternative to 

address these antagonist objectives and to find a better compromise based on lexicographic and ε-

constraint methods. 

 
Table 5.7 Summary of each mono-objective optimisation case. 

Minimising TDC GWP Risk 
Centralisation 
degree 

Centralised production 
network supplied by tanker 
trucks 

Decentralised production 100% decentralised 
production 

Cost Significant cost declining 
until 2040 and 2050 

High investment capital cost in 2020, 
lower over next time periods but 
double than the scenario of cost 
minimisation in 2040 

Digressive cost over 
the time, $5.7 per kg 
H2 in 2040 

Energy sources Natural gas is the main 
energy source with a small 
share of RES 

Choice of RES for the production of 
H2 

Choice of fossil 
energy sources 

Risk Very significant risks 
associated with the 
intensification of transport 

Moderate risk and lower than the cost 
scenario  

Low risk (mainly due 
to the lack of 
transportation) 

Emissions Significant environmental 
impact and especially strong 
increases over time until 
2040. 

Use of hydrogen as an energy carrier 
(storage) to optimise the performance 
of renewable energy, which focuses on 
the H2-RES coupling. 

High environmental 
impact 

 

5.7 Multi-objective optimisation through Ԑ-constraint method (case B1) 
The best and worst values for each criterion obtained from the results of case A lead to the nadir and 

utopia points for the whole time horizon: 25 ε-points were defined (combining intervals as shown in 

Figure 5.12); the lower and upper bounds for the GWP correspond to the total GWP divided by the 

total demand resulted in 1.94 (case A2) and 10.7 kg CO2-equiv per kg H2 (case A1). Similarly, lower 

risk limit is related to the case A3 and higher bound to the case A1. The ε-constraint methodology was 

applied adding inequality constraints related to the GWP and the risk values in the mathematical 

model and then optimising the TDC. The multi-period approach was applied. 

 
Figure 5.12 Epsilons definition for the multi-period problem with the average values 2020-2050 

 



126 Multi-objective optimisation of a hydrogen supply chain 

 

The solution consists of a Pareto front composed of 22 feasible solutions for supply chain 

configurations (Figure 5.13). The top solution (see Appendix B.3.1) corresponds to the option with the 

average cost of $7.81 per kg H2, GWP of 1.94 kg CO2 per kg H2 (average values are obtained dividing 

the TDC and the total GWP by the total demand for the 4 time periods) and a total risk of 406 units. 

The detailed configurations in each time period are presented in Figure 5.14 and decision/operating 

variables are displayed in Table 5.8. 

 

 
Figure 5.13 Pareto solutions for the multi-objective model for the case B1 

 

Renewable energy is used to produce hydrogen from 2020. The cost is yet extremely high ($23.4 per 

kg H2) with a huge benefice in environmental impact. The risk of this configuration remains low for 

all the time periods because of the low level of transportation. Electrolysis is the main production 

technology using mainly wind power especially from 2030 to 2050. Once again, the change from a 

centralised to a decentralised supply chain is the main difference observed when the three criteria are 

taken into account in the optimisation phase compared to the cost minimal network. The production 

and storage sizes are mainly small-distributed units. Exported demand represents 6% in 2030 and 20% 

in 2050. Hydrogen is transported from districts 4, 12 and 19. The cost of the multi-objective approach 

is close to the targets set by the HyWays roadmap (European Commission, 2008) by 2050 in the range 

$4.74-$7.11 per kg H2. In the optimisation, the obtained costs per kg H2 are $7.2 and 6.7 for 2040 and 

2050 respectively. Not surprisingly, Table 5.9 shows that the best value obtained for cost in the multi-

objective approach (case B1) is higher than for mono-objective case minimising TDC (an increase by 

80% is observed by 2040-50). Besides, the unitary cost in 2020 is higher by 44%, which is a non-

competitive cost of $23.4 per kg H2. The associated risk for this network is 42% lower by 2050. 

Besides, it was found that the GWP decreases by 70-80% comparing multi-objective vs. cases A1 and 

A3 because of the production mix. 
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Table 5.8 Multi-objective optimisation results of the hydrogen supply chain for the case B1 
Year 2020 2030 2040 2050 
Demand (kg per day) 7898 59430 138790 198170 
Number of production facilities 23 44 56 70 
Number of storage facilities 22 40 55 75 
Number of transport units   1 3 6 
Capital cost 

 Plants and storage facilities (103 $) 5724485 1161990.3 512401.5 335000.9 
Transportation modes (103 $) 0 500 1500 3000 
Operating cost 

 
Plants and storage facilities (103 $ per day) 53.7 375.9 867.9 1239.6 
Transportation modes (103 $ per day)  0 0.1 0.7 1.6 
Total operating cost (103 $ per day) 53.7 376.0 868.6 1241.1 
Total cost 

 
Total network cost (103 $ per day) 184.6 643.0 995.3 1333.7 
Cost per kg H2 ($) 23.4 10.8 7.2 6.7 
Production facilities (103 t CO2-equiv per day) 11.3 81.3 172.0 231.9 
Storage facilities  (103 t CO2-equiv per day) 5.6 41.8 97.7 139.5 
Transportation modes  (103 t CO2-equiv per day) 0 0.1 1.3 3.1 
Total GWP  (103 t CO2-equiv per day) 16.9 123.2 271.0 374.4 
Kg CO2-equiv per kg H2 2.1 2.1 2.0 1.9 
Production facilities risk  6 12 17 25 
Storage facilities risk 29 73 95 105 
Transportation modes risk 0 7 13 24 
Total Risk (Units-level) 35 92 125 154 

 

Table 5.9 Comparison of results among mono-objective cases and multi-objective results through Ԑ-

constraint methodology 

    Mono-objective Multi-objective   

  Solution strategy 
Case A: Pay-off table obtained 

by mono-objective 
optimisation (multi-period) 

Case B1, ε-constraint 
+ TOPSIS (multi-
period) 

Difference 
between 
B1 and A1  

Difference 
between 
B1 and A2  

Difference 
between 
B1 and A3  

Year Case A1 A2  A3 All criteria       

2020 

Cost per kg H2 ($) 16.2 24.5 17.5 23.4 44% -4% 34% 
Kg CO2 per Kg H2 6.9 2.1 8.8 2.1 -70% 0% -76% 
Total Risk (Units) 35 42 35 35 1% -17% 1% 

2030 

Cost per kg H2 ($) 8.4 14 11.4 10.8 29% -23% -5% 
Kg CO2 per Kg H2 10.6 2.1 9.6 2.1 -80% 0% -78% 
Total Risk (Units) 113 98 89 92 -19% -6% 4% 

2040 

Cost per kg H2 ($) 3.9 7.8 5.7 7.2 80% -8% 26% 
Kg CO2 per Kg H2 10.8 2.0 8.6 2 -81% 0% -77% 
Total Risk (Units) 187 125 107 125 -33% 0% 17% 

2050 

Cost per kg H2 ($) 3.7 9.2 5.6 6.7 81% -27% 20% 
Kg CO2 per Kg H2 10.9 1.9 8.5 1.9 -83% 0% -78% 
Total Risk (Units) 263 141 112 152 -42% 8% 36% 

 
It must be highlighted that similar trends are observed for GWP between cases A2 and B1 but a 

benefice in cost resulted in B1 being hydrogen cheaper in 2030 (23%) and 2050 (27%). The use of 
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renewable energy has a ratio of 92% in 2020, wind power is the predominant energy source followed 

by hydropower. Nuclear energy starts with a rate of 8% in 2020 but decreases to 3% by 2050. A 

moderate risk can be observed due to the lack of transportation. 

 
 

Figure 5.14 Network structure of liquid hydrogen distributed via tanker trucks. Case B1: Multi-

objective optimisation through Epsilon constraint in a low demand scenario in the Midi-Pyrénées 

region. 
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The main problem that can be found in this approach is that the integration of the four time periods 

leads to a high cost value in 2020 that may be viewed as prohibitive and thus may hinder the 

development of hydrogen deployment in the region. For this reason, another strategy was adopted 

assessing the whole problem as a mono-period problem in order to find if more competitive results can 

be reached.  

5.8 Multi-objective optimisation through lexicographic and Ɛ-constraint 

methods (case B2) 
An alternative to solve the multi-objective problem involves the lexicographic optimisation to build 

the pay-off table (see Table 5.10) of only non-dominated solutions minimising one objective function 

but also to find the best values for the two other criteria.  

 

We tried to apply the lexicographic optimisation for the multi-period problem but the large problem 

size involving especially a high number of binary variables was computationally prohibitive and no 

feasible solution was obtained after 48 hours with GAMS version 23.9. Then, we changed the multi-

period approach for the mono-period one. 

 

Table 5.10 Pay-off table obtained by the lexicographic optimisation 

2020 2030 2040 2050 
Minimise TDC GWP RISK TDC GWP RISK TDC GWP RISK TDC GWP RISK 

Cost per kg H2 ($) 13.4 15.6 14.7 7.8 10.1 8.4 5.7 9.1 8.4 5.0 8.0 6.7 
Kg CO2-equiv per kg 

H2 5.1 2.1 5.6 8.7 2.1 9.5 9.4 2.0 6.5 9.1 2.0 5.8 
Total Risk  

(Units-level) 42 34 34 117 92 91 258 177 167 372 259 246 
 

In the lexicographic optimisation, the first time period (2020) was treated for the three objective 

functions. The pay-off table was built and Ԑ-constraint method was applied with 3 risk levels and 10 

GWP points (see intervals in Figure 5.15). The Pareto fronts are proposed in Figure 5.15 for the 2020-

2050 periods. The TOPSIS analysis was then carried out and the top option selected (see Appendix 

B.3.2). The decision variables are inserted as the initial number of production/storage facilities of type 

s and size j storing product form i in grid g in period t.  Then, it is possible to optimise the next period 

time and so on until 2050. 

 

Table 5.10 displays that the cost of $13.9 per kg H2 in 2020 in the lexicographic optimisation is lower 

than the value obtained from mono-objective and B1 optimisation approaches. A significant cost 

reduction is obtained for B2 compared to B1, i.e., 41% (see Table 5.12): this is the main advantage of 

the case B2 because this cost reduction in the introduction phase of the H2 fuel can be viewed as a 

limiting factor. 
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Figure 5.15 Pareto solutions for the multi-objective model for the case B2 

 

 

The cost is gradually reduced in the case of the lexicographic optimisation and in 2050 exhibit a 

similar value to case B2 but it is twice the cost of the TDC minimisation in the same year. The list of 

the decision variables is presented in Table 5.11 and the network structure of liquid hydrogen 

distributed via tanker trucks for this case B2 in Figure 5.16. Electrolysis is the production technology, 

in 2050, 82% of H2 is produced from wind, 15% from hydro and 3% from nuclear power. In the same 

year, 12% of the total demand is exported (district 18 is the main importer). 

 

a) b) 

c) d) 
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Table 5.11 Multi-objective optimisation results of the hydrogen supply chain (case B2) 

 

Year 2020 2030 2040 2050 
Demand (kg per day) 7898 59430 138790 198170 
Number of production facilities 24 59 89 120 
Number of storage facilities 44 90 159 213 
Number of transport units - - 2 3 
Capital cost 

 Plants and storage facilities 103 $) 235231.9 632143.9 963670.4 671306.4 
Transportation modes (103 $) 0 0 100 1500 
Operating cost 

 Plants and storage facilities (103 $ per day) 56.2 395.1 896.3 1282 
Transportation modes (103 $ per day) 0 0 0.5 0.9 
Total operating cost (103 $ per day) 56.2 395.1 896.8 1282.9 
Total cost 

 Total network cost (103 $ per day) 110.1 540.1 1125.7 1450.8 
Cost per kg H2 ($) 13.9 9.1 8.1 7.3 
Production facilities (103 t CO2-equiv per day) 11.3 85.2 179.1 249.8 
Storage facilities  (103 t CO2-equiv per day) 5.6 41.8 97.7 139.5 
Transportation modes  (103 t CO2-equiv per day) 0 0 0.9 1.6 
Total GWP  (103 t CO2-equiv per day) 16.9 127 277.6 390.9 
Kg CO2-equiv per Kg H2 2.1 2.1 2.0 2.0 
Production facilities risk  6 16 29 40 
Storage facilities risk 32 86 167 223 
Transportation modes risk 0 0 10 13 
Total Risk (Units-level) 38 102 206 277 

 

 

Similar values for GWP are found for CO2 minimisation and for cases B1 and B2, this represents a 

benefit in cost compared to cases A. Higher values for the relative risk index are obtained in the 

approach B2 because more production and storage units are established; the functions of relative risk 

are directly related to the number of these units. The partial vision regarding the demand only for one 

period promotes the design of small units only to be used in the defined time period instead of 

designing larger production plants to cover demand increments.  

 

Yet, the flexibility of this method is that each period can be analysed in detail and that some 

parameters can be changed to reflect the preferences of the decision maker. Finally, the necessity to 

run each optimisation separately and to capture the decision variables (NP, NS and NTU) to optimise 

the next period could represent a risk in data capture and processing.  
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Figure 5.16 Network structure of liquid hydrogen distributed via tanker trucks. Case B2: Multi-

objective optimisation through Lexicographic+ Ɛ-constraint in a low demand scenario in the Midi-

Pyrénées region. 

 



5. Hydrogen supply chain optimisation for the deployment scenarios in the Midi-Pyrénées region 133 
 

5.9 Results comparison 
The best option for the 2020 period is given by the case B2 which exhibits very good results for all 

criteria. Yet a cost of $13.9 per kg H2 may still be viewed as prohibitive. In 2050, three scenarios are 

under the maximal target of the HyWays roadmap concerning cost: the cost and risk minimisation 

cases and the multi-objective approach B1, however case B2 is very close to the limit (see Figure 

5.17).  

 
Figure 5.17 Cost per case in 2050 ($ per kg H2). 

 

The results show that considering all the time periods, hydrogen remains expensive compared to the 

targets. A different geographic division could be treated in order to study other possibilities. 

Moreover, the potential in RES promotes its use in the region. M-TOPSIS ranking leads to a 

significant decrease in CO2 emission, for example,  the gain is of a factor 5 on CO2 in 2050 with a cost 

of $7.3 per kg H2 with respect to the cheapest option (around $5 per kg H2), (see Figure 5.15d)). Let us 

remember in this context that the French government adopted a Climate Plan to divide by 4-5 the 

French GHG emissions by 2050.  

 

In Figure 5.18, the emissions related to HSC are compared to those of gasoline and diesel fuels. Only 

well-to-tank emissions need to be considered for FCEV. The average emissions of vehicles in France 

from gasoline and diesel cars are taken from (ADEME, 2010). The hydrogen would fulfil with the 

planned EU regulation being under 113 g CO2 per km but an important contribution would result from 

the configuration from the GWP minimisation as well as the multi-objective cases B1 and B2 with 

emissions of 19 g CO2 per km for H2 fuel against 220 g CO2 per km for the diesel cycle, implying a 

reduction of 91%. For the case of cost minimisation, emissions are under the target: let us remember 

that the CCS has not being considered in the input configuration and this could constitute an option to 

be explored to reduce the environmental impact. 
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Figure 5.18 Comparison of emissions by sector in 2050 (Data from gasoline and diesel: (ADEME, 

2010)) 

 

In Table 5.12 all results between mono- and multi-objective cases are listed. The bold characters in 

table are relative to the value of the optimised criterion for the mono-objective optimisation and in the 

case of the lexicographic optimisation are related to the first optimised objective (higher priority).  

 

Table 5.12 Comparison of results among mono-objective cases and multi-objective results for 

approaches B1 and B2 
  Solution strategy Case A: Pay-off table 

obtained by mono-
objective optimisation. 
(multi-period) 

Case B1. 
All criteria 
(multi-
period) 

Case B2. Pay-off table 
obtained by the 
lexicographic optimisation 
(mono-period)  

Case B2. 
(mono-
period)  

Difference 
between B2 
and B1 

2020 

Cost per kg H2 ($) 16.2 24.5 17.5 23.4 13.4 15.6 14.7 13.9 -41% 
Kg CO2 per Kg H2 6.9 2.1 8.8 2.1 5.1 2.1 5.6 2.1 0% 
Total Risk (Units) 35 42 35 35 42 35 35 37.5 7% 

2030 

Cost per kg H2 ($) 8.4 14.0 11.4 10.8 7.9 9.6 8.1 9.1 -16% 
Kg CO2 per Kg H2 10.6 2.1 9.6 2.1 8.9 2.1 9.7 2.1 0% 
Total Risk (Units) 113 98 89 93 123 84 83 102 11% 

2040 

Cost per kg H2 ($) 4.0 7.8 5.7 7.2 5.2 8.3 6.9 8.1 13% 
Kg CO2 per Kg H2 10.8 2.0 8.6 2 10.1 2.0 8.5 2 0% 
Total Risk (Units) 187 125 107 125 283 133 117 206 65% 

2050 

Cost per kg H2 ($) 3.7 9.2 5.6 6.7 4.3 7.6 5.8 7.3 9% 
Kg CO2 per Kg H2 10.9 1.9 8.5 1.9 10.3 2.0 8.5 1.9 4% 
Total Risk (Units) 263 141 112 152 360 163 146 277 82% 
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If cases B1 and B2 are now compared, option B2 is better in 2020 and 2030 with a cost reduction of 

41% and 16% respectively, while no variation in CO2 is observed but the associated risk increases due 

to the presence of more production and storage units that are installed in the region. The highest 

impact for the risk lies in 2040 and 2050. 

 

In Figure 5.19a, the discrepancies are more marked in 2020 and 2030 with costs ranging from $13 per 

kg H2 to more than $23 per kg H2. By 2050, the cost lies between $3.7-9.2 per kg H2. Figure 5.19 b 

shows that multi-objective optimisation (both cases: B1 and B2) presents similar results than the case 

A2 (CO2 minimisation). Finally, 5.19c attributes the high level of risk to transportation. 

 

    

 
Figure 5.19 Results comparison between mono-objective cases and multi-objective results for 

approaches B1 and B2. 

 

The multi-objective problem dimension treated in the case B1 was compared with the case B2 

considered in our work (see Table 5.13). The criterion of computational time is not sufficient to select 

a method: the computational effort is also required for the creation of the pay-off tables. For the case 

B1, three mono-objective optimisation needed around 13 hours (mainly due to the TDC minimisation), 

then the Ԑ-constraint method with five epsilons for the GWP and five for the risk took around 3 hours 

for calculation. The Pareto front and TOPSIS analysis finally took around 1 hour. Globally, we needed 

a) b) 

c) 
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around 18 hours for obtaining results in case B1. For the case B2, three optimisations for each 

criterion to create the pay-off table through lexicographic optimisation were executed (36 

calculations). The application of the Ԑ-constraint method took several hours to solve the four mono-

period problems. Globally, around 3 days are necessary for obtaining results in case B2.  

 

Table 5.13 Statistics for multi-objective approaches (Mono- and multi-period). 

Case B1 B2 
Number of constraints 205057 50564 
Number of continuous variables 31255 7816 
Number of integer variables 11088 2772 
Computational time (hour) 18 72 

 

Figures 5.9-11, 5.14, and 5.16 show the HSC configurations in an approximated way locating the NP, 

NS and flow rate via tanker truck in the corresponding grid but not in the precise place. If a more 

detailed study would be needed, a spatial-based approach could be used and with this tool, a more 

realistic snapshot can be built. In addition, new constraints concerning the geographic features might 

help the decision making. This issue will be treated in the next section where the maps are confronted 

with those constructed with ArcGIS® that contains all the geographic and demographic data of the 

region. To illustrate the use of the geographic information system, the case B2 has been chosen 

because of the low environmental impact, the more competitive cost in 2020 and de decentralisation 

degree.  

5.10 Spatial-based approach of the HSC in the Midi-Pyrénées region, France 
The aim of this section is to use a Geographic Information System (GIS) as a new tool for multi-

criteria decision making after the optimisation step. The ArcGIS® software (developed by ESRI, 

Environmental Systems Research Institute) is a GIS used to organise, analyse and map spatial data. A 

typical GIS project contains an extensive database of geographic information, graphical capabilities of 

displaying maps with overlays pertaining to the company’s supply chain activities (Shapiro, 2001). 

Literature review shown in chapter 3 reveals that few researchers have used the spatial dimensions to 

build the infrastructure of HSC. Some examples of geographic approaches include the studies (Ball et 

al., 2006; Dagdougui, 2011a; Johnson et al., 2008).  

 

It must be highlighted that by contrast to the mathematical optimisation approaches, a spatial or GIS-

based study cannot be considered as a general methodology for the design of the optimal HSC. In 

order to analyse some optimised configurations, the spatial-based approach is applied to represent the 

network structure in the Midi-Pyrénées region resulted from the case B2 and previously displayed in 

Figure 5.16. In this figure, refuelling stations are not considered and renewable sources are not 

connected to their production facility. Before optimisation, the distances between each district were 

defined with Mappy® by considering all types of routes. However, it must be highlighted that for 
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heavy transportation (e.g. tanker truck), only highways must be taken into account. The post-

optimisation step by ArcGIS® allows analysing the feasible and the best solutions considering 

geographic criteria. All these geographic constraints motivate the utilization of a specific tool as 

ArcGIS®.  
 

5.10.1 Spatial analysis with ArcGIS® 

The main question to be answered is: where is the best place for new hydrogen production plants and 

storage units? Then, some layers of data are needed. The first step is to map the energy source units 

(Salingue, 2012) the main roads (IGN) and the refuelling stations according to the databases. The 

region remains divided into 22 districts. The spatial analysis leads to localize very precisely the 

different components of the HSC. The refuelling stations and renewable energy production sites are 

positioned with the GPS coordinates of the main existing stations of each district. Only main roads are 

represented so that the transportation by heavy truck is allowed. The projection Lambert93 is the 

official projection for maps in metropolitan France since December 2000; it is related to RGF93 

datum. This is the projection used to geo-reference all our layers in this work (De-Léon Almaraz et al., 

2014) . 
 

5.10.2 Midi-Pyrénées snapshot HSC with ArcGIS® 

Resulted snapshot is presented in Figures 5.20 and 5.21. Renewable energy sites were located by 

importing the GPS coordinates (Salingue, 2012) for each point which represents one photovoltaic 

plant, one wind farm or one hydroelectric power plant. The Golfech nuclear power plant was also 

located. The road network connects all the districts of the region, but the distances between the 

districts could vary from this approach where only motorways are considered and the distances 

obtained by Mappy where mainly roads for particular vehicles are displayed.   

 

The new production facilities are placed near the energy source and in the case of exporters, the 

production unit should be placed next to the main roads. For electrolysis plants using renewable 

energy, the facility must be close to the energy source and to the main road. For electrolysis plant 

using nuclear energy, the main constraint is related to the refuelling station to assure the on-site 

production. Storage centers (small, medium and large) are near to production plants, to the main road 

and refuelling stations.  

 

Refuelling stations close to the motorways and national roads and/or in a city are shown. The 

coordinates of current refuelling station are presented by (Esso, 2013) and (Total, 2013). For the Midi-

Pyrénées case, at least 1 station is considered per district. This analysis tool reveals the need to 

consider real field constraints in the implementation of the optimal solution. 
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Figure 5.20 Detailed map of the HSC in Midi-Pyrénées region in 2020 and 2030 after the spatial 

analysis. 

 

2030 
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Figure 5.21 Detailed map of the HSC in Midi-Pyrénées region in 2040 and 2050 after the spatial 

analysis. 
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5.11 Conclusions 
In this chapter, the HSC was designed for the Midi-Pyrénées region through the “Green H2 fuel” 

project to evaluate the potential of H2 to be used in FCEV in the time horizon from 2020 to 2050. The 

mathematical model presented in Chapter 4 was adapted to the region and considered for energy 

sources and refuelling stations. Two approaches were taken into account involving mono- and multi-

objective optimisation. For the latter one, case B1 (ε-constraint method in a multi-period problem) and 

case B2 (lexicographic+ ε-constraint method in four mono-period problems) were compared when 

three objectives (cost, CO2 and risk) were optimised.  

 

In the mono-period phase, a centralised production network supplied by tanker trucks was obtained for 

TDC minimisation, producing H2 from natural gas via SMR with a significant environmental impact. 

From the given data it was observed that if all the RES would be available to produce H2, 89% of them 

would be necessary in 2050 to cover H2 fuel demand. This could represent an electric demand 

affectation, then some previsions should be taken and the political strategy would require more RES 

investment or the use of other type of energy to cover the electrical grid need. This topic was also 

treated in the National Debate of the Energetic Transition. For GWP and risk optimisations, 

decentralised configurations resulted. In the first one, the use of RES had a good impact in the 

environmental criterion but cost is very high. In the case of risk, that lack of transportation decreases 

the risk, but the use of fossil sources has a high environmental impact.  

 

For case B1, cost in the first time period is prohibitive. One of the main problems found in this 

approach is that the integration of the four time periods does not allow treating a specific time period. 

A better option for the 2020 period is given by the case B2 having good results for GWP and risk but 

the cost is still high ($13.9 per kg H2). In case B2, the TOPSIS chose seems to give preference to the 

GWP criterion but results are logical because of the reduction of CO2 emission (the gain is of a factor 

5 on CO2) with a low impact in the cost. It can be concluded that the risk is affected mainly to 

transportation.  

 

A spatial-based approach was used to have a more realistic snapshot. ArcGIS® allowed the integration 

of geographic and demographic data of the region: the results show that the production centers (small, 

medium and large) and the refuelling stations are near as possible from the main road. This post-

optimisation step allows analysing the feasible and the best solutions considering geographic criteria. 

One interesting perspective could be to optimise again the solution obtained with ArcGIS® by 

considering the real distances between each plant in order to evaluate a more realistic value of the 

optimal cost of the H2. Another perspective is to evaluate different region/district sizes to know if 

more competitive cost could be reached. These two perspectives will be treated in the next chapter. 

 



 

6. EXTENDING THE FRONTIERS: DESIGN OF A 

HYDROGEN SUPPLY CHAIN IN FRANCE 

Résumé 
Dans ce chapitre, l'optimisation de la chaîne d'approvisionnement « hydrogène » est appliquée au cas 
de la France. L'objectif est double : d'une part, tester la robustesse de la méthode à une échelle 
géographique différente et, d’autre part, examiner si les résultats obtenus au niveau régional sont 
cohérents avec ceux de l'échelle nationale. Une nouvelle phase de collecte de données est effectuée et 
des scénarios de prédiction de la demande adaptés au cas de la France sont utilisés en se basant sur 
l’analyse des feuilles de route. Le même modèle que celui appliqué à la région Midi-Pyrénées est 
utilisé avec des différences mineures qui sont exposées. Dans cette étude de cas, l'outil spatial 
ArcGIS® est utilisé avant optimisation pour identifier les éléments géographiques. Dans un premier 
temps, la stratégie d'optimisation mono-objectif pour les trois critères indépendants (coût, empreinte 
environnementale et risque) est menée (cas A). Dans un deuxième temps, l'approche multicritère (cas 
B1, voir chapitre 5) mettant en œuvre la méthode ε-contrainte est analysée et discutée. Enfin, un 
nouveau scénario prenant en compte un cycle économique (cas B2) est traité. Ce chapitre se termine 
par une brève comparaison entre les résultats obtenus avec les trois approches. 
 
Abstract 
In this chapter, the optimisation of the hydrogen supply chain is applied to the case of France. The 
objective is twofold: first, to test the robustness of the method at a different geographic scale and, 
second, to examine whether the results at regional level are consistent with those at national scale. A 
new phase of data collection and demand scenarios are performed to be adapted to the French case 
based on the analysis of roadmaps. The same model applied to the Midi-Pyrénées region was used 
here with minor differences. In this case study, the Arc-GIS® spatial tool was used to consider the 
geographic constraints before optimisation. Then, three case studies are analysed. First, the mono-
objective optimisation for three criteria is presented (case A).  Then, the multi-optimisation approach 
(as presented in case B1 in chapter 5) by ε-constraint method is analysed and discussed. Finally, a new 
scenario which considers the decision-maker preferences is described following the economic cycle of 
case B2.  This chapter ends with a brief comparison between the results of these three approaches. 
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 Abbreviations 

 
CH2 Compressed hydrogen 
FCEV Fuel cell electric vehicle 
GB Great Britain 
GHG Greenhouse gas 
GWP Global warming potential 
HSC Hydrogen supply chain 
LH2 Liquid hydrogen 
MILP Mixed Integer Linear Programming 
NSU Number of storage units 
NTU Number of transportation units 
SMR Steam methane reforming 
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6.1 Introduction and context 
One of the main questions arising from the Midi-Pyrénées case is whether or not the geographic 

segmentation that was adopted, i.e., the regional scale is consistent to ensure a competitive cost. From 

an economic viewpoint, an average cost of hydrogen of  US$ 4.74 per kg H2 (3.6 €/kg) could be 

considered as acceptable by 2050 if not subject to excessive taxes (Patay, 2008), which exhibits a 

similar order of magnitude to the value reported in HyWays roadmap (European Commission, 2008). 

 

Even if in some countries such as the United States, California has noticeably taken a key role as a 

pilot state, the future of the hydrogen supply chain (HSC) obviously depends on the interconnection 

between big cities and countries. Intercontinental analysis seems here premature but a national study 

similar to that treated in Chapter 4 for Great Britain (GB) can be considered with real constraints and 

data. As reported in the H2 Mobility roadmap, Germany and GB have already introduced the use of 

fuel cell electric vehicle (FCEV) (Williamson, 2010) while H2 mobility initiatives have now started in 

France, in 2013. A new geographic scale is thus considered in this chapter in order to study the 

feasibility of large-scale hydrogen production in France. 

 

France is the largest country in Western Europe and the European Union, and the third-largest in 

Europe as a whole with a total population of around 65.5 million (Insee, 2010). Transportation is a 

major contributor to greenhouse gas (GHG) emissions in France. In 2009, the final energy 

consumption due to transportation was 49.8 Mtoe and the associated GHG emissions resulted in 132 

Mt CO2-equiv. In general terms, the total emissions in France decreased (mainly due to electricity mix 

based on very low carbon emission technologies as nuclear and hydropower) between 1990 and 2009 

but those associated to the transport sector increased in the same period (Direction générale de la 

compétitivité, de l’industrie et des services, 2011).  

 

The French government adopted a Climate Plan (“Plan climat”) in 2004 presenting a strategy for 

technological research to divide by 4-5 the French GHG emissions by 2050. The Factor 4 target then 

requires a 75% reduction in GHG emissions by 2050 compared to current levels. Hydrogen is 

considered as a potential fuel in France to decrease pollution but also to fall the fossil fuel dependency.  

 

If H2 is able to gain an important market share, its availability must be guaranteed at an 

intercontinental supply chain. France has a strategic location because Spain, Andorra, Italy, 

Switzerland, Germany, Luxemburg and Belgium are all neighbouring countries. French hydrogen 

production was of 7 billion Nm3 in 2007 and there are 10 production sites already installed throughout 

the territory (PHyRENEES, 2009). The most of hydrogen is produced onsite for captive uses for the 

chemical industry by steam methane reforming (SMR). Besides, a significant portion of H2 is produced 

today as a by-product in the chemical industry (e.g. chloralkali electrolysis) but, since there is no 

specific purpose, this is sometimes wasted, flared or treated by gas industries. France has the second 
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ranking place in chlorine production just after Germany; the main producers are Arkema, Solvay and 

Chloralp. 

 

Recently, regional, national and international, private and public stakeholders were brought together 

by the French Association for Hydrogen and Fuel Cells (“AFHyPaC”) and supported by the Ministry 

of Ecology, Sustainable Development and Energy, to share their knowledge and expertise in order to 

develop coordinated deployment scenarios for hydrogen vehicles and refuelling stations, and to 

identify the strengths and costs of this transition. The results of the report are currently unavailable. 

 

Several regions aim at developing hydrogen energy roadmaps for electromobility: some examples are 

Midi Pyrénées (PHyRENEES and Midi-Pyrénées Innovation), Nord-Pas-de Calais (Roadmap 2014-

2020), Lorraine (Nancy project and Livre blanc Alphea), Pays de Loire (Navy-bus project), Bretagne, 

Provence-Alpes-Côte d’Azur, Franche-Comté, Rhône Alpes, Corse (Myrthe project), Nord Pas de 

Calais and Haute-Normandie (AFHYPAC et al., 2013). In this chapter, an overall approach integrating 

all the French regions has been considered. 

 

The remainder of this chapter is organised as follows: section 6.2 is devoted to the methodology 

aspects and formulation of the HSC problem followed in this work. The objectives are presented and 

the solution strategy is briefly explained including the Arc-GIS approach. The definition of the case 

study is presented in section 6.3 with explanation of new parameters such as: demand, energy sources, 

initial production plants and storage units, refuelling stations and roads. The results of the mono- and 

multi-objective optimisations are analysed and discussed in section 6.4 following for the multi-

objective problem to solving strategies: B1 (Ԑ-constraint in multi-period approach) and B2 (economic 

cycle in mono-period approach). This chapter ends with conclusions and perspectives. 

6.2 Methodology and formulation of the HSC problem 
In this chapter, the guidelines of the methodology proposed in Chapters 4 and 5 are used. For brevity, 

only the problem statement, assumptions and objectives that were adopted are presented. The 

considered items of the HSC are mentioned to establish the general structure of the network. Finally, 

the solution strategy phase is also developed. 

6.2.1 Problem definition 

The optimisation approach for HSC design proposed in chapter 5 has been adapted to the case study 

France in order to address the following questions: 

− what is the best option for production and storage of hydrogen in France? 

− what are the main product flow rate and transportation modes to supply the hydrogen demand? 

− is it possible to find competitive targets for a national case compared to a regional study? 
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6.2.2 Objective 

This work is focused on the design of a five-echelon HSC (energy, source, production, storage, 

transportation and fuelling station), taken into account cost, environmental impact and risk 

consideration. The model that was previously developed in chapter 5 is adapted to French case studies 

and results for mono-objective optimisations are compared with the multi-objective solution. 

 

6.2.3 Given data 

Several data sets are necessary to design the HSC including demand volume, availability of energy 

sources, initial number of production plants and storage facilities, techno-economic, environmental 

and risk data of the components in the HSC. A group of students of the Eco-energy Master NTE in the 

ENSIACET University carried out data collection and analysis during an internship from February to 

May 2013. The set of parameters is presented in Appendix B.1 and C.2. 

 

6.2.4 Design decisions 

Design decisions are based on the number, type, capacity, and location of production and storage 

facilities. More precisely, they involve the number and type of transport units required as well as the 

flow rate of hydrogen between locations as well as the number of refuelling station. Cities or regions 

are also considered. 

 

6.2.5 Operational decisions 

Operational decisions concern the total production rate of hydrogen in each region, the total average 

inventory in each region, the demand covered by imported hydrogen and the H2 demand covered by 

local production. 

 

6.2.6 Assumptions 

− a deterministic demand of hydrogen for the transportation system (particular-light cars and 

buses) is considered; 

− the computed risk associated with production plant, storage facilities and transportation modes 

are assumed to be independent of the considered demand scenario. 

− the model is assumed to be demand driven. 

 

6.2.7 General structure of the HSC 

In this formulation, hydrogen can be delivered in specific physical form i, such as liquid, produced in a 

plant type with different production technologies p (i.e. SMR, gasification and electrolysis); using 

energy source e (i.e. natural gas, biomass, nuclear, solar, wind and hydro powers) distributed by a 

specific type of transportation modes l (tanker truck) going from the location g to g’ referred as 
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regions; such that g' is different than g; for storage facility type s, different storage sizes j (mini, small, 

medium and large) are involved (see Figure 6.1). Once more, the administrative segmentation has 

been taken into account, so that the granularity level that is considered is the regional one (the 21 

French regions are involved).  

 
Figure 6.1  The HSC studied for France 

6.2.8 Mathematical model 

The model presented in Chapter 5 is used here for the national case study. As previously, the problem 

is then captured in a mixed-integer linear programming (MILP) framework. All continuous and integer 

variables must be non-negative. No major changes are required. It must be mentioned that new 

electrolysis plants that use renewable energy are allowed to be implemented when renewable energy e 

is available in the region g. Then, as for Midi-Pyrénées, the exportation of renewable energy between 

regions g to g’ is not considered for France. These two items are introduced as constraints in the 

problem formulation.  

 

6.2.9 Optimisation solution strategy 

The problem is treated by three different approaches using the mathematical model developed in this 

work and formulated within the GAMS version 24 (Brooke et al., 1988) and solved using CPLEX. 

The solution strategy is similar to that presented in Figure 5.8 in Chapter 5 (section 5.5). It yet embeds 

some minor changes in the case B2 due to the typical features of the French case study.  

 

6.2.9.1 Case A. Mono-objective approach 

Case A corresponds to the mono-objective optimisation. Each objective function is optimised 

separately in a multi-period treatment corresponding to the optimisation cases A1 (cost), A2 (GWP) 
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and A3 (risk). The multi-period problem is addressed. Case B is related to multi-objective 

optimisation. Two sub-cases are studied here. 

 

6.2.9.2 Case B.1. Multi-objective optimisation through ε−constraint method 

Case B1 refers the treatment of a multi-period problem through ε−constraint method as previously 

explained in chapter 5 (section 5.5.2). Once the Pareto front is built, the TOPSIS method is applied. 

The model dimension for B1 involves 175,667 constraints and 31,943 variables (among them, 11,088 

are integer).  

 

6.2.9.3 Case B2. Multi-objective optimisation through lexicographic+Ԑ-constraint methods. 

For case B2, the HSC is evaluated following an economic cycle logic for decision making instead of 

applying an M-TOPSIS analysis. For this purpose, four mono-period problems are considered: 

− in 2020, a lexicographic optimisation prioritising cost is carried out. The resulting 

configuration is then integrated for the following periods. 

− in 2030,  a lexicographic optimisation prioritising GWP is carried out. 

− in 2040 and 2050, the cost and GWP are respectively optimised.  

−  

The risk is not considered here assuming that the decision maker has not preference for this criterion. 

The robustness of the model is studied using different input configurations in each time period 

considering the decision maker preferences. The model dimension for B2 involves 43,226 constraints 

and 7,988 variables (among them, 2772 are integer). 

 

6.2.10 Spatial-based approach through ArcGIS® 

A spatial-based approach was used to allow the integration of geographic and demographic data of the 

country.  Figure 5.2 shows the integration of the ArcGIS® database to the optimisation approach and 

the hydrogen supply chain design. As a first step, ArcGIS® is used to locate: initial conditioning 

centers, initial hydrogen production plants, by-product plants, refuelling stations, roads, hydro sites, 

biomass centers and nuclear centrals. All these elements are displayed in Table 6.1. In the case of PV 

sites and wind farms, the precise GPS coordinates were not collected, but the most important regions 

in terms of availability of these sources were detected according (Rte, 2013). The optimisation step is 

then carried out for different scenarios.  
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Figure 6.2 Methodology framework for the French case study 

 

Table 6.1 ArcGIS® database layers 

Pre-optimisation data treatment 
Layer Layer description Source 

Regional limit 21 regions (IGN, 2013) 
Initial conditioning centers Current Air-Liquide and LINDE and PRAXAIR 

sites. 
(PHyRENEES, 2009) 

 
Initial production plants Current Air-Liquide and LINDE plants. (PHyRENEES, 2009) 

 
Refuelling stations Minimum distance between refuelling stations = 

300 km 
(ESSO, 2013) 

By product plants Chloralkali electrolysis (Arkema, Solvay and 
Chloralp) 

(Arkema, 2013; UIC, 2013) 

Roads Only motorways and national roads are 
considered 

(IGN, 2013) 

Hydro sites Approximate location for small sites (EDF, 2011) 
Biomass Biomass installed capacity in 2012, two centers 

sizes (small and big)  
(Observ’ER, 2012) 

Nuclear centrals Classified in 3 sizes (less than 2000 MW, from 
2000 to 4000 MW or more than 4000 MW) 

(EDF, 2013) 

 
Wind sites Precise GPS coordinates were not collected (Rte, 2013, see Figure 6.3) 
PV Sites Precise GPS coordinates were not collected (Rte, 2013, see Figure 6.3) 
Post-optimisation data treatment 
New layers Constraints 
New conditioning centers To locate the conditioning centers close to the production plants or the 

refuelling stations. 
New SMR plants The production unit should be placed next to the main roads 
New electrolysis plants To place production sites near the energy source and in the case of exporters, 

next to the main roads. Small decentralised units, PV and wind electrolysers 
(from which not precise GPS coordinates were collected), are placed near to 
the refuelling stations and main roads. 

New gasification plants To place production sites near the biomass centers and the main roads.  
Transportation links Using main roads 
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Finally, the last step is to locate the decision variables in the map. As previously explained in chapter 

3, section 3.7, the ArcGIS® database design and an analysis plan involves breaking the problem into 

logical parts, identifying what layers of data will be needed. This may involve digitizing existing 

maps, obtaining and translating electronic data from a variety of sources and formats. These layers are 

listed in Table 6.1 in the pre-optimising data treatment. When optimisation results are obtained, the 

decision variables are located following defined constraints that are listed in the same table in the post-

optimisation data treatment section.   

6.3 Case study (France) 
France is divided into 21 regions (metropolitan France) without the territorial region of Corsica (see 

Figure 6.3). Three different production processes are evaluated: SMR, electrolysis and biomass 

gasification (not considered in the Midi-Pyrénées case). Hydrogen has to be liquefied before being 

stored or distributed. Liquid hydrogen (LH2) is stored in super-insulated spherical tanks then delivered 

via tanker trucks. The whole parameters list is presented in Appendix B.1 and C.2 but the main data 

collected or calculated for France is explained below.  

 

6.3.1 Demand 

The total hydrogen demand in France has been estimated as in Chapter 5 (see Appendix C.2.1). A 

deterministic demand of hydrogen for FCEV is considered, including fleets such as buses, private and 

light-good-vehicles at 2012 levels. Following the prospective study conducted by (McKinsey & 

Company, 2010) and (Bento, 2010), the scenario S1 is considered: 1% (160 t per day) of market 

penetration in 2020, 7.5% (1202 t per day) in 2030, 17.5% (2805 t per day) in 2040 and 25% (4007 t 

per day) in 2050.  

 

6.3.2 Energy sources 

Four renewable energy sources are considered:  

- the projection of solar and wind energies to 2017  (Rte, 2013) 

- the biomass installed capacity in 2012 (Observ’ER, 2012), see Figure 6.3 

- hydropower capacity (EDF, 2011) where only facilities “run-of-river” are considered with two 

ranges for plant sizes: small (50-100 MW) and medium (100-250 MW), see Figure 6.3 

 

The current installed capacity expressed in MWh per day is available from databases for the 

geographic division in regions, but the information are not as detailed in the Midi-Pyrénées case. The 

model does not consider the cost of RES capacity extension. From the aforementioned sources, it must 

be highlighted that some differences regarding the amount of energy sources in the Midi-Pyrénées 

region exist compared to the dedicated study to Midi-Pyrénées that was conducted in the previous 

chapter. The order of magnitude leads to less power availability for PV and wind energies (-13.6% and 
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-37% respectively) and to an increase in hydropower (76%) than observed in the database of the 

previous chapter. We are aware that this difference could influence the results. No correction was yet 

performed in order to maintain the same orders of magnitude for all the regions. An average working 

horizon of 1200h/year is considered for photovoltaic panels and 2500h/year for wind energy 

(Salingue, 2012). For hydropower plants run of river, a working period of 3500h/year is considered 

(Observ’ER, 2012) based on the (Le Schéma Régional Climat Air Energie, 2012). The potential use of 

nuclear electricity is also considered as energy source for the electrolysis process (nuclear sites are 

displayed in Figure 6.3). However, the commercial production technology used today is the SMR and 

that is why the comparison of this method with those using renewable appears relevant. Scenarios 

WWF, SER and Global chance were studied (see Appendix C.1) without any impact in the 

optimisation results (even if some scenarios are more optimistic) because the big impact of the energy 

source cost (low impact results from the RES transportation and let us remember that wind, hydro and 

PV electricity are not allowed to be exported) that is included in the parameter of production cost. If 

the production cost calculation is more detailed, it is possible to find different HSC configurations for 

different availability energy sources scenarios. 

 

6.3.3 Production plants and conditioning centers 

Ten production plants using mostly SMR are already installed in France (see Figure 6.3), seven plants 

are Air-Liquide and three of Linde gas according to (PHyRENEES, 2009) and also 15 conditioning 

centers. These sites are located in Figure 6.3.  In the case of the by-product plants, Arkema, Solvay 

and Chloralp are located but its potential capacities are not considered by the moment because of the 

lack of information regarding the investment cost necessary to add purification steps for hydrogen in 

these plants. However, they are located in the territory to see potential sites for future facilities. 

 

6.3.4 Roads and refuelling stations 

For roads, only motorways and national roads are considered (IGN, 2013) in Figure 6.3.  More than 

12000 refuelling stations exist in France. Their location was carried out from  (Esso, 2013) data base 

using the GPS coordinates locating only 300 of these units in ArcGIS® because of graphic readability 

considering stations close to the main roads, the other stations have been filtered and can be added.  

The Directive of the European Commission (European Commission, 2013) on the deployment of 

infrastructure for alternative fuels, recommend a H2 refuelling station every 300 km.  
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Figure 6.3  Elements of the HSC in France before optimisation in ArcGIS® 
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6.4 Results and discussion 
The optimisation runs were performed for cases A and B with a Pentium (R) Dual-core CPU E6600 @ 

3.06 GHz processor machine. All the mono- and multi-objective cases are analysed in this section. 

 

6.4.1 Case A1. Cost optimisation. 

The total daily cost optimisation is useful to find the values to build the pay-off table through 

conventional optimisation. In this case, the solution that minimises the TDC objective function 

without taking into account the non-dominated solutions can be obtained. The same approach is also 

valid for the GWP and risk criteria. The configurations that can be obtained are presented in Figure 6.4 

and 6.5. They show how the number and types of the facilities as well as the distribution links evolve 

along the four time periods.  

 

The results obtained in case A1 are in agreement with the centralised configurations obtained in the 

cost minimisation cases in chapters 4 and 5. A total number of 16 production plants in 2050 is 

obtained. In this result, only 6 plants are built in the period 2020-30, the other 10 plants are currently 

in operation with the SMR technology dispersed throughout France territory. In the new production 

facilities, the SMR plants are installed in regions n° 9, 11, 13, 18, 19 and 21(see the regions numbers 

in Figure 6.3). The production of LH2 via SMR turns out to the best production option with cost as an 

objective function as it was previously observed (Almansoori and Shah, 2006; De-León Almaraz et 

al., 2013a).  

 

The number of storage units (NSU) in 2020 is 38 (among them, 23 new units). The increase in demand 

in 2050 (4007 t vs. 160 t in 2020) promotes the use of more transportation units (NTU). Case A1 

involves 25 tanker trucks to cover the demand by 2020 between regions and by 2050 transportation 

increases to 363 trucks (vs. 265 for GB case). Among all the case studies, the highest transportation 

cost is observed for case A1 as in the previous chapters. Since the number of installed plants is 

relatively low, more transport units are required to cover all the national demand. This results in a 

higher transportation operating cost with a centralised HSC network leading to a minimal average 

hydrogen cost of $3.44 per kg. 

 

A minimal cost in 2020 of $4.7/kg H2 with 11.1 kg CO2/kg H2 and a risk of 285 units is observed in 

Table 6.2. The cost value obtained in the national approach is 70% lower the value corresponding to 

the Midi-Pyrénées case in 2020. This result is related to the introduction of 10 production facilities 

currently in operation in the French territory. This cost could still be improved if the chloralkali 

electrolysis potential was also considered in the initial configuration (it was not the case because of 

lack of information related to the purity process). The high value capital investment in 2020 for 

renewable energy hinders the development of such energy sources with regard to both production units 
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and storage facilities needed to develop the network. The total daily cost is lower than $4 per kg H2 

since 2040, due to a reduction in capital costs associated with production plants and technology type, 

reaching in 2050 (see Table 6.2) $3.2/kg H2 while CO2 emissions do not decrease because only fossil 

fuels are used to produce H2. The risk is mainly attributed to the transportation and storage. The 

highest level of demand in the “Ile de France” region requires the introduction of several storage units 

and the adaptation of refuelling stations to cover local demand, which implement a large SMR plant in 

the region.  

 

The regions which export the most of hydrogen are n° 19 (35% of the overall exported demand), 18 

(25%), 21 (24%) and 11 (15%) of all of them, only region n° 11 is the most populated region, from 

region 19 and 21, the transportation occurs mainly from the boundaries to the center. Surprisingly, 

Midi-Pyrénées (region 15) imports H2 in all the time periods for two reasons: first, the SMR plant that 

is installed in the region cannot cover the whole demand and second the RES are not selected when 

cost is the optimisation criterion so that the region depends of its neighbour suppliers.  

 

Table 6.2  Min TDC. Mono-objective optimisation results of the hydrogen supply chain. 

Year 2020 2030 2040 2050 
Demand (t per day) 160.30 1202.24 2805.23 4007.47 
Number of total production facilities 12 16 16 16 
Number of new production facilities  2 4 0 0 
Number of total storage facilities 38 94 184 261 
Number of new storage facilities  23 56 90 77 
Number of transport units 25 117 268 363 
Capital cost  
Plants and storage facilities (103 $) 817000.0 5674509.8 3540384.6 2225865.4 

Transportation modes  (103 $) 12500.0 58500.0 134000.0 181500.0 

Operating cost  
Plants and storage facilities (103 $ per day) 530.1 3549.5 8261.3 11831.7 
Transportation modes (103 $ per day)         19.9 108.8 258.3 353.8 
Total operating cost (103 $ per day) 550.0 3658.3 8519.6 12185.5 
Total network cost (103 $ per day) 746.2 5015.3 9470.5 12895.4 

Cost per kg H2 ($) 4.7 4.2 3.4 3.2 

Production facilities (t CO2-equiv per day) 1618.7 12142.3 28332.4 40475.1 
Storage facilities (t CO2-equiv per day) 112.9 846.4 1974.9 2821.3 
Transportation modes (t CO2-equiv per day) 47.0 253.1 600.6 822.7 
Total GWP (t CO2-equiv per day) 1778.6 13241.7 30907.9 44119.0 

Kg CO2-equiv per kg H2 11.1 11 11 11 

Production facilities 18 40 40 40 
Storage facilities 108 369 807 1098 
Transportation modes 159 745 1714 2298 
Total Risk (Units-level) 285 1153 2561 3436 
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Figure 6.4 Network structure of liquid hydrogen distributed via tanker trucks for the case A1 (cost 

minimisation) in 2020 and 2030. 

 

2020) 

2030) 
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Figure 6.5 Network structure of liquid hydrogen distributed via tanker trucks for the case A1 (cost 

minimisation) in 2040-50. 

 

 

2040) 

2050) 
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6.4.2 Case A2. GWP optimisation. 

Case A2 is relative to the minimisation of the global warming potential (GWP). The pay-off table is 

then implemented by computing the individual optima of the objective functions. Results presented in 

Table 6.3) represent a dominated solution. In the logic of the mapping task it makes no sense to place 

such quantity of storage facilities, then, a bi-objective optimisation was executed considering the 

minimisation of the GWP and risk. The results are presented in Table 6.4. It can be highlighted that 

the optimal solution obtained through conventional optimisation of GWP (average cost= $7.7 per kg 

H2, average GWP=2.2 kg CO2 per day and Total risk=14230 units) is a dominated solution in the 

problem due to alternative optima obtained by the lexicographic optimisation (average cost= $7.04 per 

kg H2, average GWP=2.2 kg CO2 per day and Total risk=4454 units). The number of production plants 

is reduced by 2050 in the mono-objective optimisation (in Table 6.3) from 317 to 67 facilities in the 

bi-criteria optimisation (Table 6.4), as well as the number storage facilities (1748 vs 118 storage 

units). The production mix remains the same for both solutions with wind-electrolysis as the main 

producer followed by hydro-electrolysis (see Table 6.5).  

 

Table 6.3 Min GWP. Mono-objective optimisation results of the hydrogen supply chain. 

Year 2020 2030 2040 2050 
Demand (t per day) 160.30 1202.24 2805.23 4007.47 
Number of production facilities 35 64 123 317 
Number of new production facilities installed  25 29 59 194 
Number of storage facilities 1024 1640 1764 1784 
Number of new storage facilities installed  1009 616 124 20 
Number of transport units 7 64 154 196 
Total network cost (thousand $ per day) 1957.6 12068.4 20318.1 26519.0 
Cost per kg H2 ($) 12.2 10.0 7.2 6.6 
Kg CO2 per kgH2 4.7 2.2 2.1 2.1 
Total Risk (Units-level) 1221 3330 4664 5014 

 

The results of the bi-objective optimisation are analysed in what follows. The number of production 

plants strongly increases (from 16 plants in case A1 to 68 in this case in 2050) and all of them are 

electrolysis facilities as it can be seen in Figures 6.6 and 6.7. The type of technology plays a key role 

in the CO2 emissions: electrolysis technology decreases GWP but also induces a higher investment 

affecting the average cost of the HSC which is 51% higher than the value obtained in case A1. This 

minimisation case leads to a large number transportation links; that was not observed for GB and 

Midi-Pyrénées cases. The main exporters are the regions n°18 (26% of the total H2 transported), 8 

(23%) and 12 (15%). Since some regions have a low potential in wind and hydro energy sources, 

transportation turns out to be less environmental damaging than installing other production technology 

types in each region. An important demand in the national case also fits with the capacity of transport 

units (the capacity of a tanker truck is 3500 kg per trip). 
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Table 6.4  Min GWP+RISK. Mono-objective optimisation results of the hydrogen supply chain. 

Year 2020 2030 2040 2050 
Demand (t per day) 160.30 1202.24 2805.23 4007.47 
Number of total production facilities 29 46 59 67 
Number of new production facilities  19 17 13 8 
Number of total storage facilities 37 63 92 118 
Number of new storage facilities  22 26 29 26 
Number of transport units 7 63 153 195 
Capital cost 

 Plants and storage facilities (103 $) 3064052.8 13454902 10831557.9 7347739.9 
Transportation modes  (103 $) 3500 31500 76500 97500 
Operating cost 

 Plants and storage facilities (103 $ per day) 841.2 7185.7 16943.4 24265.0 
Transportation modes (103 $ per day)         4.1 58.0 148.4 187.4 
Total operating cost (103 $ per day) 845.3 7243.7 17091.8 24452.4 
Total network cost (103 $ per day) 1547.8 10325.0 19584.4 26154.4 
Cost per kg H2 ($) 9.7 8.6 7.0 6.5 
Production facilities (t CO2-equiv per day) 630.0 1707.4 3687.1 5345.2 
Storage facilities (t CO2-equiv per day) 112.9 846.4 1974.9 2821.3 
Transportation modes (t CO2-equiv per day) 9.3 133.8 347.2 435.9 
Total GWP (t CO2-equiv per day) 752.2 2687.6 6009.2 8602.3 
Kg CO2-equiv per kg H2 4.7 2.2 2.1 2.1 
Production facilities 31 61 86 102 
Storage facilities 105 253 432 581 
Transportation modes 39 390 1104 1270 
Total Risk (Units-level) 175 703 1622 1953 

 

For the 2020 period, a decentralised configuration is obtained importing less than 26% of the total H2 

demand (Figure 6.6-2020) with wind as the major primary energy source (see Table 6.5). GWP is 4.7 

kg CO2 per kg H2, which represents 70% of CO2 obtained for the same period in the scenario of cost 

minimisation. Conversely, the price is $9.7 per kg H2 in 2020; this represents a 30% increase 

compared to the minimal cost. The cost is logically higher in the first period mainly due to the 

investment in 19 new electrolysis facilities and 22 storage units. The year 2030 (Figure 6.6--2030) 

requires the installation of several production and storage units with similar CO2 emissions, but the 

total daily cost decreases to $8.6 per kg H2, with halved CO2 emissions. The risk is mainly due first to 

transportation and second to storage. In 2040 (respectively 2050) (Figure 6.7), the cost is lower than 

$7.0 per kg H2 ($6.5respectively) (see Table 6.4).  

 

Table 6.5  Use ratio of energy sources for hydrogen production by electrolysis min CO2 emissions. 
Energy source/Period 2020 2030 2040 2050 
SMR 32% 4% 2% 1% 
Wind 68% 96% 87% 81% 
Hydro 0% 0% 11% 18% 

 

CO2 emissions are minimal since 2040, 2.1 kg CO2 per kg H2 and the final configuration by 2050 leads 

to 99% of electrolysis production using renewable energy. The emissions are distributed as follows: 

62% for production, 33% for liquefaction and 5% for transportation. 
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Figure 6.6 Network structure of liquid hydrogen distributed via tanker trucks for the case A2 (GWP 

minimisation) in 2020-30. 

 

2030) 

2020) 
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Figure 6.7 Network structure of liquid hydrogen distributed via tanker trucks for the case A2 (GWP 

minimisation) in 2040-50. 

 

 

2050) 
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6.4.3 Case A3. Risk optimisation. 

Case A3 minimises the total relative risk. The optimal configurations in Figures 6.8 and 6.9 show a 

high degree of decentralisation with only three distribution links and three tanker trucks assigned for 

the whole supply chain in 2020. No link and transport unit are assigned from 2030-2050 periods and a 

high number of installed production facilities is observed, which is consistent with the results from 

chapters 4 and 5 for the optimisation of the same criterion.  

 

Some specific features for case A3 (see Table 6.6) can be highlighted for production units with a total 

of 60 facilities located in all the regions in 2050. The main difference between cases A1-A2 and risk 

minimisation is the degree of decentralisation and the production technology which results in a mix of 

SMR plants and electrolysis units operating with nuclear electricity when risk is minimised. This can 

be explained by the inherent risk factor of electrolysis facilities that considers an inherent risk 

depending the production type and size regardless of the source used. 

 

The total relative risk for this case considering the four periods is of 1598 units and is logically 

influenced by the storage risk since storage is scattered in each region to cover a volume equivalent to 

10 days of LH2 demand. From the results of this case study where different storage sizes were 

considered, it must be emphasized that surprisingly a lot of medium and large units of production and 

storage are presented in the final configuration. Production is the second major risk.  

 

The transportation relative risk was reduced to find a safer configuration considering at the same time 

the links and distances to be travelled. Yet, production technology mix of case A3 represents a 

financial benefit of 8% ($6.45 per kg H2) as compared to case A2 considering the minimisation the 

average cost ($7.04 per kg H2) (average values are obtained dividing the TDC  and the total GWP by 

the total demand for the 4 time periods).   

 

In Figures 6.8 and 6.9 the selected production technology mainly involves SMR in 2020 and 

electricity from nuclear source since 2030. Wind, hydro and solar sources are also used. For this 

mono-objective optimisation, the network is 100% decentralised. The four storage sizes are used in the 

four periods. 

 

The minimal risk of the HSC in 2020 amounts to142 units, with cumulative risks for production units 

and storage: the obtained values of the risk index are equal to 301, 493 and 663 units for the years 

2030, 2040 and 2050, respectively. The risk scale is calculated with the lowest value obtained from the 

minimisation of this objective for all periods. The computations for the French case are presented in 

detail in Appendix C.2.4-6. 
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The total daily cost of LH2 for this scenario is lower than in the environmental scenario but logically 

higher than the economic scenario for all periods. In 2050 (Table 6.6), the cost is $6.1 per kg H2 and 

emissions of 4.7 kg CO2 per kg H2. The main risks in this configuration are mainly due to storage 88% 

and production 12%. 

 

 

 

Table 6.6 Risk optimisation results of the hydrogen supply chain. 

Year 2020 2030 2040 2050 
Demand (t per day) 160.30 1202.24 2805.23 4007.47 
Number of total production facilities 20 36 43 60 
Number of new production facilities  10 16 7 17 
Number of total storage facilities 37 63 92 118 
Number of new storage facilities  22 26 29 26 
Number of transport units 3 0 0 0 
Capital cost     
Plants and storage facilities (103 $) 1739000 12773529.4 5806540.5 6397739.9 
Transportation modes  (103 $) 1500 0 0 0 
Operating cost     
Plants and storage facilities (103 $ per day) 715.2 6251.4 15853.1 22519.7 
Transportation modes (103 $ per day)         1.5 0 0 0 
Total operating cost (103 $ per day) 716.8 6251.4 15853.1 22519.7 

Total network cost (103 $ per day) 1127.2 9352.4 17627.5 24596.5 
Cost per kg H2 ($) 7.0 7.8 6.3 6.1 
Production facilities (t CO2-equiv per day) 1450.7 6008.5 10583.1 16058.6 
Storage facilities (t CO2-equiv per day) 112.9 846.4 1974.9 2821.3 
Transportation modes (t CO2-equiv per day) 3.4 0 0 0 
Total GWP (t CO2-equiv per day) 1567.0 6854.9 12558.0 18879.8 
Kg CO2-equiv per kg H2 9.8 5.7 4.5 4.7 
Production facilities 24 48 61 82 
Storage facilities 105 253 432 581 
Transportation modes 13 0 0 0 
Total Risk (Units-level) 142 301 493 663 
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Figure 6.8 Network structure of liquid hydrogen distributed via tanker trucks for the case A3 (risk 

minimisation) in 2020-30. 

 

2020) 

2030) 
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Figure 6.9  Network structure of liquid hydrogen distributed via tanker trucks for the case A3 (risk 

minimisation) in 2040-50. 
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6.4.4 Conclusion of the mono-objective stage 

This preliminary approach gives a reference for the different criteria over several periods. In the cost 

minimisation, the SMR process remains as the production process. This optimisation follows the same 

trends as for Great Britain and Midi-Pyrénées cases. A competitive cost can yet be reached very early 

due to the consideration of current production plants and conditioning centers. In the case of risk 

minimisation, no transportation link is observed while at the same time the size of the production 

plants and storage units has not a significant weight in the final decision. For example in densely 

populated “Ile de France”, the implementation of large size storage units is allowed. The main 

difference is found when considering GWP optimisation: a decentralised network is obtained with 

small units scattered throughout all the territory; significant discrepancies exist among the regions 

since some of them do not have enough installed capacity to supply their own demand; the use of 

tanker trucks is thus needed and the emissions related to the transportation are found to be less 

pollutant than the production of hydrogen via another production process for the demand levels of the 

case study. Table 6.7 summarises the highlights of the three mono-objective cases.  
 

Table 6.7  Summary of each mono-objective optimisation case. 

  TDC GWP RISK 
Centralisation 
degree 

Centralised production 
network supplied by tanker 
trucks 

Centralised production 
network supplied by tanker 
trucks 

Decentralised network 

Cost Competitive since 2020 High investment capital cost 
in 2020, low digressive cost 
over the time period. 

Low digressive cost 
over the time period 

Energy sources Natural gas  RES for H2 production Natural gas and nuclear 
electricity 

Risk Very significant risks 
associated with the 
intensification of transport 

Significant risk associated to 
transportation 

Low risk mainly due to 
the lack of 
transportation 

Emissions Significant environmental 
impact due to production 
via SMR  

The major benefit obtained 
from the high volume 
produced via wind 
electrolysis 

High environmental 
impact, due to the use of 
natural gas 

 

One issue related the methodology is the need to apply bi-or three criteria lexicographic optimisation 

for the case A2 (GWP minimisation) for the solution of the multi-period problem. As for the Midi-

Pyrénées case, the number of variables leads to prohibitive computation time for the application of the 

bi-criteria lexicographic method for cases A1 and A3. 

 

6.4.5 Case B1. Multi-objective optimisation (ε-constraint) 

From the three independent mono-objective cases, each objective function range can be obtained so 

that the ε-constraint method can be applied (as presented in chapter 5 section 5.7). From the 

optimisation results of Table 6.8, the utopia and nadir points of each criterion can be found.  
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Table 6.8 Pay-off table obtained by the mono-objective optimisations for all periods 
Case A1 A2 A3 
Decision variables 

   Total production plants (installed in 2050) 16 317 60 
Total storage units (installed in 2050) 261 1784 118 
Number of transport units in 2050 363 196 0 
Objectives 

   Average cost per kg H2 ($) 3.4 7.4 6.5 
Average kg CO2-equiv per kg H2 11.0 2.2 4.9 
Total risk (units) 7435 14229 1598 

 

The total risk can be divided into five intervals to make the interpretation easier: low risk is lower than 

4600 units, moderate risk lower than 4800, medium risk, 7900, significant risk lower than 11000 and 

high risk lower than 14200. Similarly, 10 epsilon points are defined for GWP (2.2, 3.1, 4.1, 5.1, 6.1, 

7.1, 8, 9, 10 and 11 average kg CO2 per kg H2). Then, the objective function TDC has to be minimised 

while the total GWP and total risk are considered as inequality constraints. The solution consists of a 

Pareto front composed of solutions for supply chain configurations (see Figure 6.10). The cost of 

medium, high and medium risks is similar since these two levels of risks have close values for CO2 

emissions. It can be seen in Figure 6.10 that moderate-to-high risk options are very close. The 47 

solutions in the Pareto front are evaluated via M-TOPSIS analysis with the same weighting factor for 

cost, safety and environmental factors (see Appendix C.3.4). The resulting M-TOPSIS solution is 

shown in Table 6.9 and Figures 6.11- 6.12. 

 

According to these results, the future HSC involves 21 production plants in 2020 (see Figure 6.11-

2010) from which 10 are already installed and 11 wind-electrolysis plants are established (38% of the 

hydrogen is produced via electrolysis in this period). To cover the demand, this network uses 9 tanker 

trucks to deliver liquid H2 to medium storage facilities. This option involves a cost of $6.5 per kg H2, 

an environmental impact of 7.5 kg CO2 per kg H2 and a low risk. It must be emphasized that even if 

SMR plants are initial installed facilities in this period, the cost remains high because of the initial 

investment. This configuration differs from the three mono-criterion cases especially in the production 

technology type and a lower number of tanker trucks and flow rate links compared to the cost mono-

optimisation case. Average 30% of the total demand is imported from one region to another one.  

 

By 2030 (Figure 6.11-2030), a mix of production technologies such as biomass gasification, wind 

electrolysis and SMR is involved. Gasification produces 86% of the total demand, electrolysis 3% and 

SMR 11%. This option leads to a cost of $6.1 per kg H2, an environmental impact of 4.7 kg CO2 per 

kg H2 and a low risk. The cost slightly increases because of the investment on 5 new gasification 

production plants and 26 storage units, but at the same time, an important decrease in the GWP results 

from this configuration (7.5 kg CO2-equiv per kg H2 in 2020 to 4.7 in 2030). By 2040 and 2050 

(Figure 6.12), biomass gasification produces more the 97% of the total demand. In 2050, the chosen 
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solution involves a cost of $3.9 per kg H2, an environmental impact of 4 kg CO2 per kg H2 (as in 2040) 

and a low risk. 

 
Figure 6.10 Pareto solutions for the multi-objective optimisation to the French case Pareto solutions 

for the multi-objective optimisation to the French case 

 

Table 6.9 Multi-objective optimisation results of the hydrogen supply chain 

Year 2020 2030 2040 2050 
Demand (t per day) 160.30 1202.24 2805.23 4007.47 
Number of total production facilities 21 26 31 31 
Number of new production facilities 11 5 5 0 
Number of total storage facilities 37 63 94 127 
Number of new storage facilities 22 26 31 33 
Number of transport units 9 83 104 140 
Capital cost     
Plants and storage facilities (103 $) 1352414 11995098 11977694.4 2031702.2 

Transportation modes  (103 $) 4500 41500 52000 70000 

Operating cost     
Plants and storage facilities (103 $ per day) 728.8 4417.1 10284.1 14675.9 
Transportation modes (103 $ per day) 6.0 78.7 95.1 129.4 
Total operating cost (103 $ per day) 734.9 4495.8 10379.2 14805.2 
Total network cost (103 $ per day) 1049.7 7311.6 13250.1 15457.1 
Cost per kg H2 ($) 6.5 6.1 4.7 3.9 
Production facilities (t CO2-equiv per day) 1072.7 4618.0 9037.9 12859.5 
Storage facilities (t CO2-equiv per day) 112.9 846.4 1974.9 2821.3 
Transportation modes (t CO2-equiv per day) 13.9 182.5 217.0 293.6 
Total GWP (t CO2-equiv per day) 1199.4 5646.8 11229.8 15974.4 
Kg CO2-equiv per kg H2 7.5 4.7 4.0 4.0 
Production facilities 24 54 83 83 
Storage facilities 105 253 435 595 
Transportation modes 46 443 452 601 
Total Risk (Units-level) 174 750 971 1280 
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Figure 6.11 Network structure of liquid hydrogen distributed via tanker trucks for the case B1 (multi-

objective, Ԑ-constraint) in 2020-30. 
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Figure 6.12  Network structure of liquid hydrogen distributed via tanker trucks for the case B1 (multi-

objective, Ԑ-constraint) in 2040-50. 

 

 

2050) 

2040) 
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6.4.6 Case 3: Economic cycle. Multi-objective optimisation (Lexicographic method) 

The underlying idea is here to examine if a strategy based on cost minimisation in the first period in 

order to launch the hydrogen market without being penalized by a high initial cost due to the 

investment phase is consistent with the target of low CO2 emissions in the following periods. Then, for 

2030, the objective is to optimise GWP. TDC and GWP are again optimised in 2040 and 2050 

respectively (see Figure 6.13). For this approach, the lexicographic optimisation is applied. Then, the 

priority objective in each period is first optimised and the optimised result is then used as a constraint 

to optimise the two other objective functions.   

 
Figure 6.13. Economic cycle approach. 

 

The results show a cost of $4.5 per kg H2 with 11.1 kg CO2-equiv kg H2 and a risk of 306 units (see 

Table 6.10) for 2020. Two new production plants are installed in regions nº 9 and 13 corresponding to 

small SMR units while the 10 already installed plants produce 99% of H2. Seventy new storage units 

are positioned and 25 tanker truck transport 65% of the total demand. Exporter regions are nº 10 

(60%), 21 (16%) and 20 (14%) while regions nº 11 and 15 export low amounts (see Figure 6.14-2020). 

Even if the cost can be viewed as competitive from this period, the environmental impact is high due 

to the production from natural gas and the risk is also high because of the important number of 

transportation links. 

 

The obtained network is inserted as an initial configuration in 2030, for this stage, the GWP is 

optimised. The cost for this minimisation is $8.5 per kg H2 with 1.9 kg CO2 per kg H2 and a risk of 

802 units. The cost impact is significant and almost the double of that in 2020. How could the society 

accept to pay two times more for a kg of H2 fuel ten years after of its launch and when demand is 

higher? The investment cost that is necessary to change the production technology type in the second 

period will postpone the depreciation phase but if the environmental regulations forces the diminution 

of GHG, the SMR established in 2020 will be underutilized. To cope with this problem, an 

optimisation run is carried out in order to minimise GWP in 2030 with a boundary value for cost set at 
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$4.5 per kg H2 (see Table 6.10). In this case, the HSC has one large size gasification plant in region nº 

11 which is the main exporter in 2030 (see Figure 6.14-2030). Then, 78 new storage units are 

distributed (all sizes) and 148 tanker truck deliver almost 60% of the demand. The total risk is 1799 

units and 80% of this risk is due to transportation. The gasification plant produces 70% of hydrogen, 

for this reason, the CO2 emissions (6.2 kg CO2-equiv per kg H2) represent a 37% decrease compared to 

2020. 92% of the imported demand is supplied from region nº 11 even if a high population density is 

established. 

 

In 2040, GWP is set at 6.2 kg CO2 per kg H2 and the cost is optimised. The cost ranges from $4.5 to 

$4.1 per kg H2. Five new production plants, 124 storage units and 271 tanker trucks are installed. The 

risk is 2980 and 70% is due to transportation. Three of the new production plants are small size 

electrolysis units using wind energy, one is a large size gasification plant and the other is of SMR type. 

The imported demand is 58% and the suppliers are regions nº 21 (40%), 11 (33%) and 17 (27%) (see 

Figure 6.15-2020). 

 

Finally, in 2050, the GWP minimisation with an upper bound for cost equal to $4.1 per kg H2 is carried 

out. The CO2 emissions decrease of 22% from the previous period resulting in 4.1 kg CO2-equiv per 

kg H2. Two new large size gasification plants are installed, with 106 storage units and 368 tanker 

trucks distribute H2. The total risk of the network is 3621 units from which 66% is associated to 

transportation. Exportation regions are nº 1 (34%), 21 (23%), 2 (22%), 11 (15%) and 17 (6%). 

 

Table 6.10 Results of the multi-objective optimisation of the HSC for a economic cycle in a mono-

period treatment. 
Mono-period Min cost Min GWP + 

constraint 
cost 

Min cost + 
constraint 

GWP 

Min GWP + 
constraint 

cost 
Year 2020 2030 2040 2050 
Demand (t per day) 160.30 1202.24 2805.23 4007.47 
Number of production facilities 12 13 18 20 
Number of new production facilities  2 1 5 2 
Number of storage facilities 85 163 287 381 
Number of new storage facilities  70 78 124 106 
Number of transport units 25 148 271 368 
Total network cost (103 $ per day) 717.1 5410.1 11595.6 16430.6 
Cost per kg H2 ($) 4.5 4.5 4.1 4.1 

Production facilities (t CO2-equiv per day) 1618.67 6275.37 14794.36 15364.18 
Storage facilities  (t CO2-equiv per day) 112.85 846.38 1974.88 2821.26 
Transportation modes  (t CO2-equiv per day) 47.04 345.23 623.16 855.49 
Total GWP  (t CO2-equiv per day) 1778.56 7466.98 17392.41 19040.92 
kg CO2-equiv per kg H2 11.1 6.2 6.2 4.8 

Production facilities risk  18 26 41 49 
Storage facilities risk 130 383 836 1156 
Transportation modes risk 159 1390 2103 2416 
Total risk (units) 306 1799 2980 3621 
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Figure 6.14 Network structure of liquid hydrogen distributed via tanker trucks for the case B2 (multi-

objective-mono-period) in 2020-30. 
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Figure 6.15 Network structure of liquid hydrogen distributed via tanker trucks for the case B2 (multi-

objective-mono-period) in 2040-50. 
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6.4.7 Comparison 

All the results are summarised in Table 6.11. In economic terms, the most interesting option to 

promote the hydrogen economy in 2020 is found in the case B2 (economic cycle) followed by case A1 

(cost minimisation) (see Figure 6.16). In both cases, the environmental and safety criteria exhibit high 

values.  

 

Table 6.11 Comparison between mono-objective and multi-objective results for approaches B1 and B2 

    Mono-objective Multi-objective 

  Solution strategy 
Case A: Pay-off table 

obtained by mono-
objective optimisation.  

Case B1.  
Ԑ-
constraint 

Difference between B.1 
and A1-3 

Case B2. 
Economic 
cycle 

Difference 
between 
cases B2 
and B1 

Year Minimise: TDC 
GWP

39 
Risk All 

criteria TDC GWP Risk TDC and 
GWP   

2020 

Cost per kg H2 ($) 4.7 9.7 7.0 6.5 41% -32% -7% 4.5 -31% 
Kg CO2-equiv per kg H2 11.1 4.7 9.8 7.5 -33% 59% -23% 11.1 48% 
Total risk (Units) 285 175 142 174 -39% 0% 23% 306 76% 

2030 

Cost per kg H2 ($) 4.2 8.6 7.8 6.1 46% -29% -22% 4.5 -26% 
Kg CO2-equiv per kg H2 11.0 2.2 5.6 4.7 -57% 110% -17% 6.2 32% 
Total risk (Units) 1153 703 301 750 -35% 7% 149% 1799 140% 

2040 

Cost per kg H2 ($) 3.4 7.0 6.3 4.7 40% -32% -25% 4.1 -13% 
Kg CO2-equiv per kg H2 11.0 2.1 4.6 4.0 -64% 87% -12% 6.2 55% 
Total risk (Units) 2561 1622 493 971 -62% -40% 97% 2980 207% 

2050 

Cost per kg H2 ($) 3.2 6.5 6.1 3.9 20% -41% -37% 4.1 6% 
Kg CO2-equiv per kg H2 11.0 2.1 4.7 4.0 -64% 86% -15% 4.8 20% 
Total risk (Units) 3436 1953 663 1280 -63% -34% 93% 3621 183% 

 

Number of production 
plants (2050) 16 67 60 31       20   
Number of storage units 
(2050) 261 118 118 127       106   
Number of transport 
units (2050) 363 195 0 140       368   
% Imported demand 
(2050) 61% 32% 0% 31%       58%   

 

The multi-objective solution selected in case B1 offers a compromise between the three objectives. 

The cost in the first period is compared for the different cases in Figure 6.16. Four of five analysed 

cases are under the maximal target defined in the HyWays roadmap since 2020. This is a very 

optimistic scenario compared to the Midi-Pyrénées case where the target is reached only in the latest 

maturity date of 2050. The national scale and the consideration of initial number of storage and 

production plants have impacted the final results for case B1. Case A2 (CO2 minimisation) is the more 

expensive but it can reach the economic targets in 2040. In France, the gasoline price (unleaded 95) on 

July 2013 was US$7.73 per gallon)40 and for Diesel US$/6.73  per gallon) (U.K. Drive Alive, 2013)41. 
                                                      
39 Bi-criteria results, see Table 6.3. 
4019 March 2012 US$1.317 = 1.00 Euro. 
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Let us remember that one kilogram of hydrogen is approximately equivalent to one gallon of gasoline 

based on lower heating value energy content. 

 
Figure 6.16  Average cost ($ per kg H2) per case in 2020. 

 

Figure 6.17 compares CO2 emissions with gasoline and diesel fuels. Only well-to-tank emissions are 

considered for FCEV and they have been computed from the integration of all the HSC items at each 

optimisation stage. The HSC would fulfil with the planned EU regulation for all the studied cases 

(under 113 g CO2 per km) as it was already observed in Midi-Pyrénées case: the most important 

contribution results from configuration obtained from the GWP minimisation. In this case, the values 

relative to approaches B1 and B2 are very high compared to the Midi-Pyrénées case where the 

production mix promotes the use of RES. For France, the production mix starts with the use of SMR in 

2020 and the installation of different types of technologies but the total GWP is higher than in Midi-

Pyrénées. This impact decreases over the time horizon and reaches its minimal value by 2050 for both 

cases with 4 kg CO2 per kg H2 for case B1 and 4.8 kg CO2 per kg H2 in case B2 (using biomass 

gasification). 

 

Besides, the risk is mainly associated to transportation. The degree of centralisation can be measured 

here by the percentage of imported demand. Cases A1 and B2 are the more centralised networks with 

around 60% of hydrogen to be transported (more than 360 tanker truck are needed by 2050). Similar 

results for case A2 and B1 are observed with around 32% of hydrogen to be transported. A 100% 

decentralised network is involved when risk minimisation is considered. In a national case study, the 

transportation via pipeline could represent an interesting option.  

                                                                                                                                                                      
41Date: July 18th 2013. The data is collected from various sources, some from official government websites, 

some from fuel companies' sites, and some from price comparison sites in the respective countries. 
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Figure 6.17 Comparison of emissions by sector in 2020 (Data from gasoline and diesel: (ADEME, 

2010)) 

 

The comparison between approaches is given in Table 6.12. For the studied scenarios, we can 

conclude that the multi-objective optimisation treated in case B1 offers a good trade-off among the 

three objectives and is almost competitive since 2020 with low risk and a medium to low digressive 

environmental impact.  

 

Table 6.12 Comparison between mono-objective and multi-objective results for approaches B1 and B2 

Case TDC GWP Risk B1 B2 
Centralisation 
degree 

Centralised 
production network  

Centralised 
production network  

Decentralised 
network 

Mostly 
decentralised 
network 

Centralised 
production 
network  

Cost Competitive since 
2020 

High investment 
capital cost in 2020, 
low digressive cost 
over the time period. 

Low 
digressive 
cost over the 
time period 

Almost 
competitive in 
2020  

Most 
competitive cost 
in 2020 

Energy 
sources 

Natural gas  RES for H2 
production 

Natural gas 
and nuclear 
electricity 

Biomass, 
natural gas 
and wind 

Natural gas and 
biomass and 
wind 

Risk Very significant 
risks associated with 
the intensification of 
transport 

Significant risk 
associated to 
transportation 

Low risk 
mainly due to 
the lack of 
transportation 

Low risk Very significant 
risks  

Emissions Significant 
environmental 
impact due to 
production via SMR  

The major benefit 
obtained from the 
high volume 
produced via wind 
electrolysis 

High 
environmental 
impact, due to 
the use of 
natural gas 

Medium-low 
environmental 
impact due to 
the use of 
biomass and 
wind 

High to medium 
environmental 
impact 
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This configuration resulted in production via biomass gasification (producing 97% of the total demand 

in 2050) followed by SMR and wind-electrolysis. This is mostly a decentralised network because only 

the 30% of the total demand is exported from one region to other. 

6.5 Conclusion 
In this chapter, the optimisation of the HSC was applied to the case of France. The objective was 

twofold: on the one hand, to examine if the methodology is robust enough to tackle a different 

geographic scale and second, to see if the regional approach is consistent with the national scale. 

 

New data collection, demand prediction and assumptions were involved but the same model as the one 

applied to the Midi-Pyrénées region was used here with minor differences. In this case study, the 

ArcGIS® spatial tool was used before optimisation to identify the geographic items that were further 

used in the optimisation step. The GIS approach was used to assess potential HSC configurations, by 

using detailed GIS data, and this database is input as parameters in the MILP model. The mapping of 

the snapshot solution per time period was also done by Arc-GIS.  

 

Several cases have been analysed. First, the mono-objective optimisation strategy defined as case A 

(three cases: cost, GWP and risk). Second, the multi-optimisation approach referred to case B1 with Ԑ-

constraint. Finally, a new scenario considering the decision maker preferences was described 

following the economic cycle (case B2).   

 

This chapter ends with a brief comparison between the results obtained with these three approaches. It 

was concluded that the multi-objective optimisation treated in case B1, offers the best option for 

production and storage of hydrogen in France because of the good trade-off among the three optimised 

objectives. In this option, hydrogen is competitive since 2020 with low risk and a medium to low 

environmental impact. This configuration resulted in production mix lead by biomass gasification 

(producing 97% of the total H2 demand by 2050) and followed by SMR and wind-electrolysis. This is 

a mostly decentralised network which exports 30% of the total demand from one region to other.  

 

In the case B2 that followed the economic cycle simulating the decision maker preferences, even if the 

cost can be viewed as competitive, the environmental impact is high due to the production from 

natural gas and the risk is also high because of the important number of transportation links. In the 

next years, the use of biomass gasification will decrease the CO2 emissions in the future periods but 

the optimisation preference given in 2020 impacted strongly the next periods. We have highlighted 

that if the optimisation preference change in 2030 to GWP, the cost impact is almost the double of that 

in 2020 (the second period will postpone the depreciation phase because of the change of production 

technology) but if the environmental regulations forces the diminution of GHG, the SMR established 
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in 2020 will be underutilized. To cope with this problem, an optimisation run was carried out in order 

to minimise GWP in 2030 with a boundary value for cost. 

 

One question asked at the beginning of this chapter was: is it possible to find competitive targets for a 

national case compared to a regional study? Effectively, in the national case, a competitive cost can be 

found since 2020 for all the analysed cases except for the GWP minimisation. This can be related 

firstly to the consideration of initial production plants and storage units in the French case and in a 

second place to the bigger geographic scale divided into regions because this division represents a 

higher demand volume per region than in the Midi-Pyrénées case. The region/district size represents 

an important issue for the flow rate and the use of trucks because the tanker truck capacity per trip is 

3500 kg of H2 and in the Midi-Pyrénées case study (divided in districts), the demand per district was 

lower than the 3.5 t in the first time periods, then, instead to established a distribution link, the 

optimiser found the installation of a decentralised production plant. This result could change if other 

transportation modes are assessed. It was surprising that for the national case, results locate plants 

even in very densely populated regions (e.g. Ile de France). This point needs to be studied in detail 

before next optimisation to verify if the weight given to the region size is adequate. 

 

The methodology probed that is robust enough to tackle different geographic scales but some 

differences between the regional and national cases were found:  

 

1. Input data. The amount of energy sources in the Midi-Pyrénées region exists compared to the 

dedicated study to Midi-Pyrénées that was conducted in the previous chapter. The order of 

magnitude about the availability for RES is different in regional and national cases. We are 

aware that this difference could influence the results. No correction was yet performed in 

order to maintain the same orders of magnitude for all the regions. 

2. Output data. In order to compare main results for regional and national cases, we contrast only 

the chosen option for each case: Case B2 for Midi-Pyrénées and B1 for France (see Table 

6.13). 

 

In the French case, multiple regions tend to assume that each geographic area in the model follows 

exactly the same evolution in demand and energy source evolution. This is a questionable assumption, 

both because it ignores regional differences in economic and physical geography, and also because it 

ignores the infrastructure and marketing strategies already being developed by business, which focus 

planning on clusters around certain locations (Agnolucci and McDowall, 2013). Finding uniform data 

for all regions is also difficult but it remains an essential task because this will influence the final 

configuration as shown in the Midi-Pyrénées-France cases where the potential RES of the Midi-

Pyrénées region are not used. 
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Table 6.13 Comparison between regional and national cases. 

Case Midi-Pyrénées France 
Energy sources Wind, hydro, nuclear (biomass was 

not evaluated in the regional case 
because of the lack of data) 

Biomass, natural gas and wind 

Production type Electrolysis Gasification, SMR and electrolysis 
Cost High investment capital cost in 2020 

($13.9 per kg H2), competitive in 
2050 ($7.3 per kg H2)  

Almost competitive since 2020 ($6.5 per kg 
H2 in 2020 and $3.9 per kg H2 in 2050) 

Risk Low risk Low risk 
Emissions The major benefit obtained from the 

high volume produced via wind and 
hydro electrolysis 

Medium to low environmental impact 

Centralisation 
degree 

Decentralised network (15% of the 
demand is exported) 

Mostly decentralised network (30% of the 
demand is exported) 

Flow rate Demand independent region In 2020, the Midi-Pyrénées region import H2 
from Rhône-Alpes, in 2030-40 is demand 
independent exporting product to other 
regions and in 2050 is demand independent 
without H2 exportation. 

ArcGIS®   tool Post-optimal spatial analysis Pre and post-optimal spatial analysis 
 

These differences support the importance to study different spatial scales. Focussing on a single sub-

national geographic region as Midi-Pyrénées, allowed to find more refined results because the 

collected data was more detailed and consistent for all districts but, the use of the ArcGIS® tool only 

in the post-optimal stage is incomplete.  

 

 

 

 

 

 

 





 

 

 

 



 

 

7. GENERAL CONCLUSIONS AND PERSPECTIVES 

7.1 Conclusions 
The introduction to the market of new propulsion systems such as the fuel cell electric vehicle (FCEV) 

can be one of promising alternatives to treat problems as energy security, urban air quality and global 

warming potential. The FCEV power trains use hydrogen as fuel and are competitive to the internal 

combustion engines in the well-to-wheel efficiency point of view and kilometre range. Hydrogen 

offers many advantages as a potential fuel and the way as hydrogen economy could be developed is 

very flexible because many energy sources, production processes, transportation and storage modes 

exist. It must be yet emphasized that to our knowledge these options are not really interconnected and 

well-studied and one of the main objective of this research work was to propose a generic modelling 

framework to embed all these items since the lack of infrastructure may constitute one of the main 

barriers in the hydrogen and FCEV path. One of the most significant obstacles to achieve the hydrogen 

transition is the general perception that the cost associated to the infrastructure would be prohibitory 

expensive compared to the current fuels. According to the HyWays roadmap (European Commission, 

2008), H2 cost must be lower than US$5.3 per kg in periods 2020 and 2030, and H2 must cost less than 

US$7.11 per kg in 2050 to reach competitive targets. This fuel can offer a CO2 reduction in a well-to-

wheel comparison with other fossil fuels. One of the main advantages of the FCEV is that is zero 

pollutant at consumer use. Regarding safety, hydrogen is actually no more dangerous than other 

flammable fuels such as gasoline and natural gas. Nevertheless, under specific conditions, hydrogen 

can behave dangerously. To ensure the safely use of hydrogen, risk management must be rigorously 

appreciated. 
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Currently, a large amount of literature related to hydrogen can be found. The roadmaps as HyWays 

and H2 mobility are guiding many projects in Europe. They establish a certain number of targets in a 

very general perspective. In some cases, not all the network is considered but a particular activity (e.g. 

to install a certain number of refuelling stations). Moreover, some transition plan scenarios study 

different ways as the hydrogen economy could be reached and they evaluate external variables as 

competitors and demand. Engineering tools can be linked to the abovementioned studies to give 

detailed results. 

 

The scientific objective of this thesis was to model the whole hydrogen supply chain (HSC) and to 

consider the different objectives that are involved in the design problem, i.e. cost, environmental 

impact, safety. The scientific aim was to develop a generic framework that can take into account the 

design of a HSC for fuel use in the time horizon 2020-2050 considering national and regional scales 

with many energy sources and that can embed the various production and storage technologies while 

considering the transportation modes to link hydrogen demand to its supply. More practically, an 

optimisation tool that could allow the generation of quantitative information when all the nodes of the 

supply chain are defined and integrated was developed. Particular emphasis was devoted to address 

the multi-objective formulation in which cost, environmental impact and safety must be 

simultaneously taken into account at the earlier design stage. 

 

Problem formulation is based on mathematical programming. The work reported in (Almansoori and 

Shah, 2006) constitutes a consistent way to model the typical items of the supply chain and their 

interconnection in a mono-objective way considering only cost minimisation. The novelty of our work 

was to extend the model to new constraints and objectives related to environmental and safety aspects 

in order to treat the multi-objective problem. To our knowledge, these aspects have not yet been 

simultaneously treated in the dedicated HSC literature. The problem corresponds to a location-routing 

type to design at a strategic level the HSC using deterministic data in multi-period formulations for the 

long term scenario defined to the year 2050. The problem is referred to a mixed integer linear 

programming (MILP).The proposed framework takes into account the geographic and infrastructure 

constraints through the use of a geographic information system (GIS). Very few contributions have 

reported to date considering hydrogen infrastructure modelling across spatial scales; we address here 

the national and regional scale by linking geographic constraints found by GIS model to the MILP 

model. The resulting hydrogen network would heavily depend on the country/region-specific 

conditions.  

 

All the activities of the HSC (i.e. energy source, production, storage, transportation and refuelling 

stations) used in this manuscript were presented in the dedicated chapters. The steam methane 

reforming is the leader process nowadays. Some technologies that are considered in the literature as 

possible technologies are only at a development stage and technical and/or economic aspects are not 
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proven or available (for example the thermo-chemical cycles or storage via metal hydrides). This 

explains why they have not been considered in this thesis. Sequestration and capture methods could be 

used to reduce emissions, but will induce additional costs. Pipelines were not considered in this work 

mainly for two reasons: first, they are considered to become relevant once a significant market 

penetration of hydrogen vehicles and second they are associated with a high capital cost.  

The developed methodology is described below: 

A. Mono-objective optimisation. The mathematical model described in (Almansoori and Shah, 

2006) work addressed the optimal design of a steady-state HSC network with cost as an 

optimisation criterion. This model served as a validation step in the GAMS environment with 

the CPLEX solver. The model was extended to the consideration of safety and environmental 

criteria. 

B. Multi-objective optimisation. This constitutes a key point of the proposed methodological 

framework: the minimal values of each objective function allow generating a pay-off table 

through lexicographic optimisation. The utopia and nadir points are also found and the Pareto 

front via Ԑ-constraint method can be built in order to analyse the compromise solutions. 

C. Multi criteria decision making (MCDM) via M-TOPSIS technique to identify a good 

compromise solution.  

D. The last step consists in the spatial analysis using ArcGIS® to design the HSC. 

 

Three case studies were treated as summarised in Table 7.1. The case study proposed in (Almansoori 

and Shah, 2006) is relative to a HSC in Great Britain. As abovementioned, this case study serves to 

validate the developed model for mono-objective optimisation in a mono-period problem. It is then 

extended to the multi-optimisation case. From the case study analysis, it must be highlighted that the 

model can identify the optimal HSC including the number, location, capacity, and type of production, 

transport and storage facilities, production rate of plants and average inventory in storage facilities, 

hydrogen flow rate and type of transportation links to be established. The main differences found 

between the mono- and multi-objective approaches are related to the degree of the production 

decentralisation that increases as risk criterion and CO2 emissions are taken into account. We 

concluded that a geographic division based on states, regions or districts instead of grid squares would 

be more realistic to facilitate data collection and that the model must be extended to treat electrolysis 

production process and a panel of renewable energy sources. According to the data, compressed 

hydrogen turned out to be cost prohibitive due to high transportation and storage costs (without 

considering the possibility to use pipeline) under low demand rates. 
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Table 7.1 Comparison between multi-objective case studies. 

Case Great Britain Midi-Pyrénées France 

Energy sources Natural gas and 
biomass 

Wind, hydro, nuclear 
(biomass was not 
evaluated in the 
regional case because 
of the lack of data) 

Biomass, natural gas 
and wind 

Production technology SMR and gasification 
(electrolysis was not 
evaluated) 

Electrolysis Gasification, SMR and 
electrolysis 

Cost Competitive in 2050 
($7.1 per kg H2)  

High investment 
capital cost in 2020 
($13.9 per kg H2), 
almost competitive in 
2050 ($7.3 per kg H2)  

Almost competitive 
since 2020 ($6.5 per kg 
H2, HyWays target= 
$5.3 per kg H2) but 
competitive in 2050 
($3.9 per kg H2) 

Risk Low risk Low risk Low risk 
Emissions Medium environmental 

impact 
Low environmental 
impact 

Medium to low 
environmental impact 

Centralisation degree Decentralised network Decentralised network  Mostly decentralised 
network  

Geographic division Grids Districts Regions 
ArcGIS®  tool - Post-optimal spatial 

analysis 
Pre and post-optimal 
spatial analysis 

Data base Academic case More precision Less precision 
Approach type Process engineering 

approach, different 
from the roadmaps and 
planning scenarios 

Process engineering 
approach, with regional 
real application and 
spatial analysis 

Process engineering 
approach in a national 
scale with spatial 
analysis before and 
after optimisation 

Scale National Regional National 
Difficulties Data collection Problem size, data 

collection 
Data collection and 
problem size 

Use type Multi-objective 
validation 

Model augmentation, 
scale validation and 
communication 

Scale validation, 
different scenarios 
including decision 
maker preferences and 
communication. 

 

At the regional level, the HSC was designed for the Midi-Pyrénées region through the project “Green 

H2 fuel” in the time horizon from 2020 to 2050. The mathematical model presented in Chapter 4 was 

adapted to the region and considered two new nodes: energy sources and refuelling stations. Two 

approaches were taken into account involving mono- and multi-objective optimisation. For the latter 

one, case B1 (Ԑ-constraint method in a multi-period problem) and case B2 (lexicographic+Ԑ -

constraint method in four mono-period problems) were compared when three objectives (cost, CO2 

and risk) were optimised. From the given data, it was observed that if all the RES would be available 

to produce H2, 89% of them would be necessary in 2050 to cover H2 fuel demand: more RES 

investment or the use of other type of energy to cover the electrical grid need are then required. This 

topic was also tackled in the National Debate of the Energetic Transition. For case B1, cost in the first 
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time period is prohibitive in Midi-Pyrénées. A better option for the 2020 period is given by the case 

B2 exhibiting good results for GWP and risk while hydrogen cost remains high ($13.9 per kg H2). It 

must be highlighted that the risk is mainly attributed to transportation. The use of PV energy source 

for hydrogen production is not so developed because of the CO2 emissions linked to the grey energy 

involved in the panel design and does not succeed in the competition with wind, hydro or nuclear-

electrolysis. 

 

A spatial-based approach was used to have a more realistic snapshot in the Midi-Pyrénées HSC. 

ArcGIS® allowed the integration of geographic and demographic data of the region: the results show 

that the production centers (small, medium and large) and the refuelling stations are near as possible 

from the main road. This post-optimisation step allows analysing the feasible and the best solutions 

considering geographic criteria. We concluded that it would be better to use ArcGIS® in the pre-

optimising stage by considering the real distances between each main city in order to evaluate a more 

realistic value of the optimal HSC. Based on these results, this regional scale case is then compared to 

the case of France.  

 

For the national case study, the ArcGIS® spatial tool was used before optimisation to identify the 

geographic items that were further used in the optimisation step. The mapping of the snapshot solution 

per time period was also carried out. Several cases were analysed. The multi-optimisation approaches 

were referred as case B1 (Ԑ-constraint) and new scenarios considering the decision-maker preferences 

were considered following an economic cycle (case B2).  It was emphasized that the multi-objective 

optimisation treated in case B1 offers the best option for production and storage of hydrogen in France 

because of the good trade-off among the three optimised objectives. In this option, hydrogen is almost 

competitive since 2020 with low risk and a medium to low environmental impact. In the case B2, the 

optimisation preference of 2020 impacted strongly the next periods.   

 

One question asked was if is it possible to find competitive targets for a national case compared to a 

regional study: in the national case, a lower cost can be found in 2020 for all the analysed cases except 

for the GWP minimisation. This can be related firstly to the consideration of initial production plants 

and storage units in the French case and second to the larger geographic scale divided into regions. 

The region/district size represents an important issue for the flow rate and the use of trucks because 

the tanker truck capacity per trip is 3500 kg of H2 and in the Midi-Pyrénées case study (divided in 

districts), the demand per district was lower than the 3.5 t in the first time periods. This explains a 

decentralised production plant network is found by optimisation. This result could change if other 

transportation modes are assessed. Surprisingly, for the national case, optimisation results lead to 

locate plants even in very populated regions (e.g. Ile de France). Hydrogen and FCEV reach the 

environmental targets for all the treated cases.  



186 Multi-objective optimisation of a hydrogen supply chain 

 

7.2 Lessons learned 
The multi-period problem is larger and difficult to be solved by the lexicographic methodology but 

this difficulty led us to seek new ways of solution. The four mono-period problem turns out to be an 

interesting option that helps also in the first investment stage. We are aware that the analysis was 

performed with constant cost and that a discounted analysis would be more consistent. This could be 

further improved for investment assessment.  

 

The input configuration requires a hard and detailed analysis and needs to be validated by an expert 

diversified team. The current hydrogen infrastructure must be integrated to find competitive costs in 

the first time period and to launch the market. 

 

The geographic scale strongly influences the decision:  

- the Midi-Pyrénées case provides a more optimistic assessment of renewable energy sources 

(RES) based on electrolysis due to the detailed technical and locating data for RES sites and 

energy availability; 

- in the national case, the scale economy plays a major role in making biomass hydrogen 

competitive.  

 

Compared to the reported roadmaps and transition plan scenarios, the work presented here gives a 

more reliable estimation of cost, CO2 emissions and risk due to the systemic approach involving the 

supply chain management. 

 

The methodology proved to be robust enough to tackle different geographic scales but some 

inconsistencies between the regional and national cases were found. The order of magnitude about the 

availability for RES is different in regional and national cases. We are aware that this difference could 

influence the results. No correction was yet performed in order to maintain the same order of 

magnitude for all the regions. 

 

In the French case, multiple regions tend to assume that each geographic area in the model follow 

exactly the same evolution in demand and energy source evolution. This is a questionable assumption, 

both because it ignores regional differences in economic and physical geography, and also because it 

ignores the infrastructure and marketing strategies already being developed by business, which focus 

planning on clusters around certain locations (Agnolucci and McDowall, 2013). Finding uniform data 

for all regions was difficult but it remains an essential task because this will influence the final 

configuration as shown in the Midi-Pyrénées/France cases. 
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These differences support the importance to study different spatial scales. Focussing on a single sub-

national geographic region as Midi-Pyrénées allowed finding more refined results because the 

collected data was more detailed and consistent for all districts. 

 

From Table 7.1, it can be observed that the multi-objective optimisation tends to the decentralisation 

of the network so that the transportation risk is decreased.  Depending on the input configuration, the 

technology mix leads to the use of renewable energy. Yet, the input configuration and assumptions are 

a limiting factor in the optimisation process. A competitive cost can be found in 2050 for all cases. 

The geographic scale affects the cost, but also the consideration of current production and storage H2 

facilities. The investment phase can be minimised for the first time by solving four mono-period 

problems. The use of ArcGIS is highly recommended both in pre- and post-optimisation phases. 

 

7.3 Main contributions 
The main contributions of this research work can be highlighted as follows: 

- a multi-objective model addressing three objective functions to take into account sustainability 

minimising cost, CO2 emissions and risk was developed. 

-  as the HSC problem is very large, three different solution approaches were proposed: mono-

objective optimisation, multi-objective through Ԑ-constraint and finally multi-objective 

through a hybrid method (lexicographic+Ԑ-constraint). 

- the optimisation framework was applied across a range of spatial scales. We have compared 

regional and national models. To our knowledge and as reported in (Agnolucci and 

McDowall, 2013), a few infrastructure optimisation studies tested the sensitivity of their 

analysis to assumptions about the spatial and temporal dynamics of demand. Yet the transition 

rate has an important effect on both costs and choice of the infrastructure, and there is some 

evidence from historical analogies that the transition rates widely assumed in the literature 

may be optimistic. The coupling of ArcGIS® analysis in pre- and post-optimisation stages can 

be very useful for this purpose. 

- Time evolution constraints (related to the initial production plants and storage units) allow for 

the transfer of production and storage plants across time periods.  

- The developed tool can be useful to assess different HSC scenarios and gives detailed results 

to aid the decision-making process.  

7.4 Perspectives 
Finally, several perspectives can be suggested in order to improve the proposed framework. 

- This study was devoted to strategic planning.  An operational HSC level integrating the three 

criteria using ArcGIS® could be investigated considering the intra grid/region transport. This 

issue will be addressed in the thesis of Christophe Salingue (October 2013).  



188 Multi-objective optimisation of a hydrogen supply chain 

 

- Demand modelling can be improved. The spatial model considered here takes an exogenously 

demand scenario as an input.  Spatial variations in hydrogen demand have simply assumed 

constant penetration rates across regions. 

- New energy sources such as biogas can be taken into account. The consideration in future 

periods of new technologies that currently are in development stage can be suggested: for 

instance carbon capture and storage, pipelines for high volume scenarios using the current 

natural gas pipeline to inject a H2 percentage. The possibility to use the by-produced hydrogen 

integrating the additional costs associated to the purification step can be studied. 

- The Power-to-Gas system modelling can be a natural extension to H2 supply chain, in this 

system, hydrogen produced can be fed into the existing natural gas network for further use and 

replace natural gas on a like-for-like basis. Gas storage is not subject to the same limitations 

associated with hydrogen storage. 

- Concerning optimisation, the use of dynamic programming (DP) can be a more appropriate 

way to model the problem. 

- A rigorous treatment of uncertainty, going beyond the attempts we have seen so far in the 

literature, would a very useful improvement for policy maker and private investors alike. 

- Concerning the production cost in the mathematical model, the unit production cost (UPC) 

remains static for all the time periods for a production plants p varying only for the size j. In 

the reality, the cost and availability of feedstock are critical and not fixed. We propose to 

change the UPC considering: fixed facilities costs (maintenance, labour cost), electricity cost 

and feedstock cost with variations for each time period.   

 

 



 

A. DATABASE AND RESULTS FOR GREAT BRITAIN CASE 

APPENDIX A.1 SUPPLY CHAIN DECISION DATABASE 

Table A.1.1 –  Total demand for product form i in grid g (kg per day) 
Grid 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

Liquid H2 102000 80000 158000 198000 41000 130000 173000 7000 85000 316000 385000 9000 635000 902000 

Grid 15 16 17 18 19 20 21 22 23 24 25 26 27 28 

Liquid H2 143000 24000 489000 997000 500000 41000 63000 624000 1000000 861000 356000 63000 394000 879000 

Grid 29 30 31 32 33 34 Total (kg per day)           

Liquid H2 3000000 200000 208000 252000 200000 136000 13395000           

 
Table A.1.2 – Parameters for hydrogen supply chain components: (a) general data, (b) production, (c) storage, 

and (d) transportation modes. 

 (a) General data  
α     Network operating period  365 days per year 
CCF      Capital change factor -payback period of capital investment  3 years 
WFPg           Weigh factor risk population in each grid units (see Table A.2.6) 

 

(b) Production plants 
Plant type, p Steam methane 

reforming 
Biomass 

gasification 
Coal gasification Reference 

Minimum production capacity of plant type 
p for product form i . Pcapminpi (t/d) 

10 10 10 (Almansoori and Shah, 
2006) 

Maximum production capacity of plant type 
p for product form i . Pcapmaxpi  (t/d) 

480 480 480 (Almansoori and Shah, 
2006) 

Capital cost of establishing plant type p 
producing product form i. PCCpi  ($10+6) 

535 1412 958 (Almansoori and Shah, 
2006) 

Unit production cost for product form i 
produced by plant type p. UPCpi  ($ per kg) 

1,53 3,08 1,71 (Almansoori and Shah, 
2006) 

Production global warming potential by 
plant type p. GWProd

p   gCO2-eq per kg H2  

10100 3100 10540 

(Detailed California 
Modified GREET Pathway 
for Compressed Gaseous 

Hydrogen from North 
American Natural Gas, 

2009; Rivière, 2007; 
Utgikar and Thiesen, 

2006) 
Risk level of the production facility p. RPp  
level 

III III III (Kim and Moon, 2008) 
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(c) Storage data 
Storage type, s Liquid storage Reference 
Minimum storage capacity of storage type s for product form i . Scapmin

si (kg) 10000 (Almansoori and Shah, 2006) 

Maximum storage capacity of storage type s for product form i. Scapmax
si, (kg) 540000 (Almansoori and Shah, 2006) 

Capital cost of establishing storage type s storing product form i. SCCsi ($) 122000000 (Almansoori and Shah, 2006) 

Unit storage cost for product form i at storage type s. USCsi ($ per kg per day) 0.005 (Almansoori and Shah, 2006) 

Storage holding period-average number of days worth of stock . β  (days)  10 (Almansoori and Shah, 2006) 

Storage global warming potential form i. GWStock
i  (g CO2-eq per kg of H2)    5241 

(Detailed California Modified 
GREET Pathway for Compressed 
Gaseous Hydrogen from North 
American Natural Gas, 2009) 

Risk level in storage facility s. RSs  (units) III (Kim and Moon, 2008) 
(d) Transportation Modes 
Transportation mode, l Tanker truck Reference 
Transport unit capacity, Tcapil  (kg/mode) 4082 (Almansoori and Shah, 2006) 
Fuel economy between grids, FEl  (km/L) 2.55 (Almansoori and Shah, 2006) 

Average speed between grids, SPl  (km/hr) 55 (Almansoori and Shah, 2006) 
Tanker truck weight, wl tons 40 (McKinnon and Piecyk, 2011) 

Mode availability between grids, TMAl  (hr/d) 18 (Almansoori and Shah, 2006) 
Load/unload time, LUTl  (hr)  2 (Almansoori and Shah, 2006) 
Driver wage, DWl  ($/hr) 23 (Almansoori and Shah, 2006) 

Fuel price,  FPl  ($/L)  1.16 (Almansoori and Shah, 2006) 
Maintenance expenses, MEl  ($/km)  0.0976 (Almansoori and Shah, 2006) 

General expenses,  GEl ($/d)  8.22 (Almansoori and Shah, 2006) 
Transport mode cost, TMCil  ($/mode) 500 (Almansoori and Shah, 2006) 

Minimum flow rate of product form i , Qminil (kg/d) 4082 (Almansoori and Shah, 2006) 
Maximum flow rate of product form i, Qmaxil ( t/d) 960 (Almansoori and Shah, 2006) 

Global warming potential GWTransl (g CO2 per ton-km  )  62 (McKinnon and Piecyk, 2011) 

Risk level of transportation mode l, RTl (Level) III (Kim and Moon, 2008) 
 
Table A.1.3 Delivery distances within and between different grids squares (km per trip). 

 

 
                                   
Grid 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 
1 65 108 108 152 206 216 241 344 328 341 415 404 446 482 536 664 587 580 631 730 706 682 682 723 831 791 788 785 821 843 972 899 837 852 
2 108 65 152 152 197 247 247 352 346 351 459 408 457 492 529 673 597 587 648 746 715 691 691 749 835 802 795 795 827 853 983 909 848 861 
3 108 152 65 108 162 108 152 248 222 241 323 298 344 389 421 563 487 482 539 637 655 581 580 628 736 743 689 685 723 749 870 796 735 751 
4 152 152 108 65 54 152 108 216 222 216 282 290 323 349 390 533 457 449 496 596 577 553 552 590 663 663 656 656 688 710 843 769 709 722 
5 206 197 162 54 65 194 120 228 241 228 291 314 332 361 399 548 471 461 509 609 590 566 565 602 675 677 670 670 701 723 856 783 723 735 
6 216 247 108 152 194 65 108 170 120 152 241 197 248 305 345 476 400 389 457 551 510 492 484 539 617 606 597 597 629 658 787 713 650 662 
7 241 247 152 108 120 108 65 108 120 108 174 194 216 241 283 427 351 341 389 488 469 445 444 482 555 556 550 550 580 602 736 662 602 614 
8 344 352 248 216 228 170 108 65 120 76 76 194 170 170 194 368 292 275 314 415 403 381 381 410 482 502 488 488 511 531 679 605 542 550 
9 328 346 222 222 241 120 120 120 65 54 162 76 130 194 241 359 283 271 345 435 401 375 366 421 502 489 448 480 514 540 670 596 533 537 
10 341 351 241 216 228 152 108 76 54 65 108 54 108 152 194 323 247 241 305 399 365 343 341 389 466 451 444 444 482 508 629 555 497 511 
11 415 459 323 282 291 241 174 76 162 108 65 222 152 108 130 323 247 216 248 344 361 341 323 341 411 451 444 431 444 460 629 555 485 488 
12 404 408 298 290 314 197 194 194 76 54 222 65 162 228 278 390 314 302 377 467 423 406 406 453 533 507 500 500 542 571 686 612 552 568 
13 446 457 344 323 332 248 216 170 130 108 152 162 65 108 162 229 152 152 241 323 271 247 247 305 390 359 351 351 389 421 540 466 404 410 
14 482 492 389 349 361 305 241 170 194 152 108 228 108 65 54 229 152 108 152 248 271 241 216 241 361 349 341 323 341 361 522 448 377 381 
15 536 529 421 390 399 345 283 194 241 194 130 278 162 54 65 269 194 120 120 224 305 269 222 222 343 381 361 328 328 341 535 461 381 377 
16 664 673 563 533 548 476 427 368 359 323 323 390 229 229 269 65 76 170 275 323 54 76 170 275 381 130 170 229 314 361 389 315 269 305 
17 587 597 487 457 471 400 351 292 283 247 247 314 152 152 194 76 65 108 216 276 120 108 152 241 341 197 216 241 305 345 416 343 290 314 
18 580 587 482 449 461 389 341 275 271 241 216 302 152 108 120 170 108 65 108 174 194 152 108 152 241 269 241 216 241 269 416 343 269 275 
19 631 648 539 496 509 457 389 314 345 305 248 377 241 152 120 275 216 108 65 108 290 241 152 108 174 361 305 241 216 224 464 389 290 275 
20 730 746 637 596 609 551 488 415 435 399 344 467 323 248 224 323 276 174 108 65 328 275 170 76 76 392 314 229 170 162 464 381 269 241 
21 706 715 655 577 590 510 469 403 401 365 361 423 271 271 305 54 120 194 290 328 65 54 162 269 377 76 120 194 290 341 347 273 229 269 
22 682 691 581 553 566 492 445 381 375 343 341 406 247 241 269 76 108 152 241 275 54 65 108 216 323 120 108 152 241 290 315 241 194 229 
23 682 691 580 552 565 484 444 381 366 341 323 406 247 216 222 170 152 108 152 170 162 108 65 108 216 222 152 108 152 194 315 241 162 170 
24 723 749 628 590 602 539 482 410 421 389 341 453 305 241 222 275 241 152 108 76 269 216 108 65 108 328 241 152 108 120 389 305 194 170 
25 831 835 736 663 675 617 555 482 502 466 411 533 390 361 343 381 341 241 174 76 377 323 216 108 65 434 341 241 152 130 484 415 269 229 
26 791 802 743 663 677 606 556 502 489 451 451 507 359 349 381 130 197 269 361 392 76 120 222 328 434 65 120 222 328 381 365 291 247 290 
27 788 795 689 656 670 597 550 488 448 444 444 500 351 341 361 170 216 241 305 314 120 108 152 241 341 120 65 108 216 269 248 174 130 174 
28 785 795 685 656 670 597 550 488 480 444 431 500 351 323 328 229 241 216 241 229 194 152 108 152 241 222 108 65 108 162 241 174 54 76 
29 821 827 723 688 701 629 580 511 514 482 444 542 389 341 328 314 305 241 216 170 290 241 152 108 152 328 216 108 65 54 341 276 120 76 
30 843 853 749 710 723 658 602 531 540 508 460 571 421 361 341 361 345 269 224 162 341 290 194 120 130 381 269 162 54 65 392 329 170 120 
31 972 983 870 843 856 787 736 679 670 629 629 686 540 522 535 389 416 416 464 464 347 315 315 389 484 365 248 241 341 392 65 108 222 275 
32 899 909 796 769 783 713 662 605 596 555 555 612 466 448 461 315 343 343 389 381 273 241 241 305 415 291 174 174 276 329 108 65 162 216 
33 837 848 735 709 723 650 602 542 533 497 485 552 404 377 381 269 290 269 290 269 229 194 162 194 269 247 130 54 120 170 222 162 65 54 
34 852 861 751 722 735 662 614 550 537 511 488 568 410 381 377 305 314 275 275 241 269 229 170 170 229 290 174 76 76 120 275 216 54 65 
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Table A.1.4. Total relative road risk matrix (units). 
 

 
 

 
Table A.1.5 – Level risk according to harmfulness for people, the environment and facilities for hydrogen 
activities. 
Harmfulness for Level II Level III Level IV 
People Medical treatment and lost time 

injury 
 

Permanent disability Several fatalities 

Environment Damage of short duration (<1 
month) 

Time for restitution of 
ecological resource 
(<1 year) 

Time for restitution of 
ecological resource 
(1–3 years) 

Facilities Minor structural damage and 
minor influence on operations. 

Considerable structural damage 
and operation 
interrupted for weeks 

Loss of main part of system and 
operation interrupted for 
months. 

Weighted scoring method 3 5 7 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

Grid 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

1 0 3 4 6 7 6 8 9 7 9 11 8 13 15 17 16 15 18 20 22 19 18 21 23 25 20 20 24 27 29 24 22 26 28
2 3 0 5 3 4 7 5 6 8 7 9 9 10 12 14 16 15 15 17 21 19 18 21 24 26 20 20 24 27 29 30 28 26 28
3 4 5 0 4 5 4 6 7 5 8 10 6 11 13 15 16 15 16 18 24 19 18 21 22 24 20 20 24 25 27 30 28 26 26
4 6 3 4 0 3 6 4 5 7 6 8 8 9 12 14 14 13 15 17 23 17 16 18 20 22 19 18 21 23 25 27 25 23 24
5 7 4 5 3 0 7 5 6 9 7 9 10 10 12 14 18 17 15 17 22 21 20 18 21 23 23 21 21 24 26 27 25 23 25
6 6 7 4 6 7 0 4 5 3 6 8 4 9 11 13 12 11 14 16 22 15 14 17 20 22 16 16 20 23 25 19 18 22 24
7 8 5 6 4 5 4 0 3 5 4 6 6 7 10 12 10 9 13 14 20 13 12 16 19 21 15 14 19 22 24 24 23 24 23
8 9 6 7 5 6 5 3 0 6 5 3 7 8 6 8 11 10 9 11 17 14 13 12 15 17 16 15 15 18 20 21 19 17 19
9 7 8 5 7 9 3 5 6 0 3 5 2 6 8 10 9 8 11 13 19 12 11 14 17 19 13 13 17 20 22 23 21 19 20
10 9 7 8 6 7 6 4 5 3 0 4 5 5 8 10 8 7 11 13 19 11 10 14 17 19 13 12 17 20 22 22 21 19 20
11 11 9 10 8 9 8 6 3 5 4 0 6 8 5 7 11 10 8 10 16 15 14 11 14 16 17 16 14 17 19 20 18 16 18
12 8 9 6 8 10 4 6 7 2 5 6 0 7 10 12 10 9 13 15 21 20 19 16 19 21 22 21 19 22 24 25 23 21 23
13 13 10 11 9 10 9 7 8 6 5 8 7 0 6 8 6 5 9 11 17 16 15 12 15 17 18 17 15 18 20 21 19 17 19
14 15 12 13 12 12 11 10 6 8 8 5 10 6 0 5 9 8 6 8 14 13 12 9 12 14 15 14 12 15 17 18 16 14 16
15 17 14 15 14 14 13 12 8 10 10 7 12 8 5 0 11 10 8 4 10 15 14 11 7 9 17 16 14 10 12 20 18 16 11
16 16 16 16 14 18 12 10 11 9 8 11 10 6 9 11 0 3 6 8 14 7 6 9 12 14 9 8 11 14 16 15 13 13 14
17 15 15 15 13 17 11 9 10 8 7 10 9 5 8 10 3 0 5 7 13 6 5 8 11 13 8 7 10 13 15 14 12 12 13
18 18 15 16 15 15 14 13 9 11 11 8 13 9 6 8 6 5 0 5 11 9 8 6 9 11 11 10 9 12 14 15 13 13 14
19 20 17 18 17 17 16 14 11 13 13 10 15 11 8 4 8 7 5 0 8 11 10 8 5 7 13 12 11 8 10 17 15 13 14
20 22 21 24 23 22 22 20 17 19 19 16 21 17 14 10 14 13 11 8 0 13 12 9 6 3 14 14 12 9 5 18 16 14 15
21 19 19 19 17 21 15 13 14 12 11 15 20 16 13 15 7 6 9 11 13 0 4 7 10 12 2 4 7 10 12 11 9 9 10
22 18 18 18 16 20 14 12 13 11 10 14 19 15 12 14 6 5 8 10 12 4 0 6 9 11 6 5 9 12 14 15 13 11 12
23 21 21 21 18 18 17 16 12 14 14 11 16 12 9 11 9 8 6 8 9 7 6 0 6 8 9 8 6 9 11 12 10 8 9
24 23 24 22 20 21 20 19 15 17 17 14 19 15 12 7 12 11 9 5 6 10 9 6 0 5 12 11 9 6 8 15 13 11 7
25 25 26 24 22 23 22 21 17 19 19 16 21 17 14 9 14 13 11 7 3 12 11 8 5 0 14 13 11 8 10 17 15 13 9
26 20 20 20 19 23 16 15 16 13 13 17 22 18 15 17 9 8 11 13 14 2 6 9 12 14 0 3 6 9 11 10 8 8 9
27 20 20 20 18 21 16 14 15 13 12 16 21 17 14 16 8 7 10 12 14 4 5 8 11 13 3 0 5 8 10 9 7 7 8
28 24 24 24 21 21 20 19 15 17 17 14 19 15 12 14 11 10 9 11 12 7 9 6 9 11 6 5 0 6 8 9 7 5 6
29 27 27 25 23 24 23 22 18 20 20 17 22 18 15 10 14 13 12 8 9 10 12 9 6 8 9 8 6 0 5 12 10 8 4
30 29 29 27 25 26 25 24 20 22 22 19 24 20 17 12 16 15 14 10 5 12 14 11 8 10 11 10 8 5 0 14 12 10 6
31 24 30 30 27 27 19 24 21 23 22 20 25 21 18 20 15 14 15 17 18 11 15 12 15 17 10 9 9 12 14 0 4 6 7
32 22 28 28 25 25 18 23 19 21 21 18 23 19 16 18 13 12 13 15 16 9 13 10 13 15 8 7 7 10 12 4 0 4 5
33 26 26 26 23 23 22 24 17 19 19 16 21 17 14 16 13 12 13 13 14 9 11 8 11 13 8 7 5 8 10 6 4 0 3
34 28 28 26 24 25 24 23 19 21 20 18 23 19 16 11 14 13 14 14 15 10 12 9 7 9 9 8 6 4 6 7 5 3 0
Total 531 526 515 469 514 434 414 372 386 374 377 462 402 373 390 367 335 360 385 492 391 389 378 428 487 421 400 420 472 530 565 507 475 487
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Table A.1.6 – Example of external effect factors gained during transportation from grid 1 to 33. 

 

From grid 1 to 33 
grid size grid safety level weight factor of adjacency level total 

1 Med 2 1 2 

2 Small 1 0.5 0.5 
3 Med 2 0.5 1 
4 Med 2 1 2 

5 Small 1  0 
6 Med 2   0 

7 Med 2 1 2 

8 Small 1   0 
9 Small 1 0 

10 Med 2 1 2 
11 Med 2 0 

12 Small 1   0 
13 Large 3 1 3 
14 Large 3   0 

15 Med 2 0 
16 Small 1   0 

17 Med 2 1 2 
18 Large 3 0.5 1.5 
19 Med 2 0 

20 Small 1   0 
21 Small 1 0 

22 Large 3 0.5 1.5 
23 Large 3 1 3 

24 Large 3   0 
25 Med 2 0 
26 Small 1   0 

27 Med 2 0 
28 Large 3 1 3 

29 Large 3 0 
30 Med 2   0 
31 Med 2 0 

32 Med 2   0 
33 Med 2 1 2 

34 Small 1   0 
      Total 25.5 
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APPENDIX A2: DETAILED RESULTS 

 

Table A.2.1 - Flow rate of liquid hydrogen via tanker truck for cases 1 to 4. 
       
Case 1. Mono-objective optimisation. Min 
TDC.  Case 2. Mono-objective optimisation. Min GWP. 
From 
grid 

To  
grid 

Flow rate, Qilgg'  
(kg d-1)  

From 
grid 

To 
grid 

Flow rate, Qilgg'  
(kg d-1) 

3 1 102130  9 12 9480 
3 2 80020  11 8 7370 
3 4 12396  16 17 8520 
3 6 123203    TOTAL 25370 
7 4 185544     
7 5 41060     
7 6 6297     
7 8 7370     
7 9 67059  Case 3. Mono-objective optimisation. Min Risk. 
10 9 18221  From 

grid 
To 
grid 

Flow rate, Qilgg'  
(kg d-1) 10 12 9480  

10 13 136359  9 12 9480 
11 13 9761  11 8 7370 
11 15 87377  16 17 8520 
14 13 8910    TOTAL 25370 
14 15 48850     
22 16 24450     
22 17 8520     
22 18 36640  Case 4. Multi-objective optimisation.                      

Min TDC+GWP+Risk. 22 21 63170  
22 23 87490  From 

grid 
To 
grid 

Flow rate, Qilgg'  
(kg d-1) 22 26 62810  

22 33 14101  9 12 9480 
24 15 6693  11 8 7370 
24 19 11453  16 17 8520 
24 30 80824    TOTAL 25370 
25 19 5977     
25 20 40610     
25 30 74212     
27 33 86270     
28 33 66036     
28 34 15424     
29 30 32924     
29 34 120506     
32 31 207720     
32 33 18623     
  TOTAL 2008490     
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Table A.2.2 - Summary of results for cases 1 to 4 
 
 
 
Case 1.  Case 2, 3 and 4 

Variable DLig 
(kg d-1) 

DIig 
(kg d-1) 

PTig 
(kg d-1) 

ST ig 
(t)*  

DLig 
(kg d-1) 

DIig 
(kg d-1) 

PTig 
(kg d-1) 

G.1         - 102130 -  1021.3  102130 - 102130 
G.2         - 80020 - 800.2  80020 - 80020 
G.3           157930 -  475679 1579.3  157930 -  157930 
G.4            - 197940 - 1979.4  197940 - 197940 
G.5             - 41060 -  410.6  41060 -  41060 
G.6             - 129500 - 1295  129500 - 129500 
G.7         172670 -  480000 1726.7  172670 -  172670 
G.8             - 7370 - 73.7  - 7370  
G.9          - 85280 -  852.8  85280 -  94760 
G.10        315940 - 480000 3159.4  315940 - 315940 
G.11        382810 - 479948 3828.1  382810 - 390180 
G.12           - 9480   94.8  -  9480   
G.13        480000 155030 480000 6350.3  635030 - 635030 
G.14        902240 -  960000 9022.4  902240 -  902240 
G.15          -  142920 - 1429.2  142920 - 142920 
G.16          -   24450 -  244.5  24450 -  32970 
G.17        480000 8520 480000 4885.2  480000 8520 480000 
G.18        960000 36640 960000 9966.4  996640 -  996640 
G.19        480000 17430 480000 4974.3  497430 - 497430 
G.20          -   40610 - 406.1  40610 - 40610 
G.21          -   63170 -  631.7  63170 -  63170 
G.22        623950 - 921131 6239.5  623950 - 623950 
G.23        960000 87490 960000 10474.9  1047490 -  1047490 
G.24        861030 - 960000 8610.3  861030 - 861030 
G.25        356500 -  477299 3565  356500 -  356500 
G.26          -   62810 - 628.1  62810 - 62810 
G.27        393730 -  480000 3937.3  393730 -  393730 
G.28        878540 - 960000 8785.4  878540 - 878540 
G.29        2726570 - 2880000 27265.7  2726570 - 2726570 
G.30          -   187960 -  1879.6  187960 -  187960 
G.31          -   207720 - 2077.2  207720 - 207720 
G.32        252230   478573 2522.3  252230 -  252230 
G.33          -   185030 - 1850.3  185030 - 185030 
G.34          -   135930  - 1359.3  135930 -  135930 
*STig is only given for network case 1 since networks 2, 3 and 4 have the same values. 
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Table A.2.3 - Comparison between results in TOPSIS and M-TOPSIS 

  CRITERIA VALUE  TOPSIS  M-TOPSIS 

Alternatives Total risk 
(units) 

TDC            
(M$ per day) 

Total GWP (Thousand tons 
CO2-eq per day)  

Ratio 
TOPSIS 

Rank 
 

Ratio   
M-TOPSIS 

Rank 

1 5970 132.05 111.85  0.4539 25  0.0462 24 
2 5970 126.86 113.59  0.4363 22  0.0494 21 
3 5970 124.07 115.33  0.4272 14  0.0513 16 
4 5970 122.09 117.07  0.4212 11  0.0525 13 
5 5970 120.10 118.81  0.4148 8  0.0540 11 
6 5970 118.11 120.55  0.4081 7  0.0555 8 
7 5970 116.93 122.29  0.4053 6  0.0562 6 
8 5970 109.01 132.74  0.3838 3  0.0617 3 
9 5970 103.49 143.19  0.3786 1  0.0632 2 
10 5970 97.97 153.63  0.3790 2  0.0634 1 
11 5970 93.26 164.08  0.3896 4  0.0608 4 
12 5970 88.54 174.52  0.4039 5  0.0568 5 
13 5970 83.83 184.97  0.4197 9  0.0522 14 
14 5970 79.11 195.41  0.4350 20  0.0479 23 
15 5970 73.65 205.60  0.4459 23  0.0460 26 
16 8132 110.89 113.59  0.4321 19  0.0492 22 
17 8132 109.70 115.33  0.4297 16  0.0501 20 
18 8132 109.01 117.07  0.4299 17  0.0503 19 
19 8132 108.30 118.81  0.4301 18  0.0505 18 
20 8132 107.11 120.55  0.4278 15  0.0514 15 
21 8132 105.42 122.29  0.4227 12  0.0531 12 
22 8132 100.22 132.74  0.4210 10  0.0555 9 
23 8132 95.50 143.19  0.4262 13  0.0558 7 
24 8132 90.79 153.63  0.4356 21  0.0544 10 
25 8132 86.57 164.08  0.4505 24  0.0506 17 
26 8132 81.36 174.52  0.4609 26  0.0460 25 
27 8132 76.68 184.89  0.4732 27  0.0402 27 
28 8132 71.92 195.41  0.4837 28  0.0347 28 
29 8132 67.05 205.75  0.4913 29  0.0318 29 
30 10293 108.88 113.59  0.5104 30  0.0262 35 
31 10293 108.02 115.33  0.5114 32  0.0260 36 
32 10293 106.81 117.07  0.5111 31  0.0264 32 
33 10293 106.47 118.81  0.5142 34  0.0258 37 
34 10293 105.26 120.55  0.5139 33  0.0262 33 
35 10293 104.91 122.29  0.5170 35  0.0258 38 
36 10293 99.87 132.74  0.5247 36  0.0266 31 
37 10293 95.13 143.19  0.5340 37  0.0268 30 
38 10293 89.93 153.63  0.5402 38  0.0262 34 
39 10293 85.29 164.08  0.5475 40  0.0236 39 
40 10293 80.51 174.47  0.5517 43  0.0197 41 
41 10293 75.43 184.40  0.5510 41  0.0159 42 
42 10293 70.72 194.70  0.5513 42  0.0140 43 
43 10293 64.57 205.86  0.5461 39  0.0201 40 

 
 
 
 
 
 





 

B. DATABASE AND RESULTS FOR MIDI-PYRÉNÉES 

REGION 

APPENDIX B1: SUPPLY CHAIN DECISION DATABASE 

Table B.1.1 - Number of vehicles in Midi-Pyrénées by district 
(Insee, 2010; Ministère du développement durable et de l’énergie, 2010; Salingue, 2012) 

                
District Main city Population Private 

vehicles 

Buses Light-good-vehicles Forklifts 

GVWR< 1,5 t 1,5 t < GVWR < 2.5 t GVWR<  3.5 t 

1 Gourdon  43831 23903 62 369 2506 1433 57 

2 Figeac  53847 29775 123 453 3079 1760 112 

3 Cahors  75884 41540 171 639 4338 2480 156 

4 
Villefranche de 

Rouergue  
64200 37367 89 476 3772 2207 81 

5 Rodez  141753 81559 282 1050 8329 4872 257 

6 Millau  71095 41261 151 526 4177 2444 138 

7 Castres  191394 102664 301 1117 8733 5346 275 

8 Albi  182624 94940 287 1065 8333 5102 262 

9 Montauban  164825 92857 328 1252 8135 5582 299 

10 Castelsarrasin  74466 42780 138 565 3675 2522 126 

11 Condom  65102 37403 169 666 4138 2316 154 

12 Auch  83805 44114 217 857 5327 2982 198 

13 Mirande  38274 22044 99 391 2434 1362 90 

14 Tarbes  143348 78429 306 883 6167 4286 279 

15 Argelès-Gazost  39858 22575 83 246 1715 1192 76 

16 
Bagnères de 

Bigorre  
46464 26235 97 286 1998 1389 89 

17 Saint Gaudens  77373 42528 97 466 3272 2021 89 

18 Muret  198376 109038 281 1194 8389 5183 256 

19 Toulouse  955071 524957 1370 5750 40387 24953 1250 

20 Pamiers  70833 38205 132 459 3129 2236 120 

21 Saint Girons  27819 15665 51 180 1229 878 47 

22 Foix  52465 28457 97 340 2317 1656 89 

  Total 2862707 1578296 4931 19230 135579 84202 4500 
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Table B.1.2 - Total demand for product form i in district g during time period t -DT
igt- (kg per day) 

Scenario  1  2 

District/ Period  2020 2030 2040 2050  2020 2030 2040 2050 
1  124 910 2140 3050  235 1800 4220 6040 
2  157 1200 2800 3990  318 2360 5480 7820 
3  221 1670 3910 5570  442 3280 7650 10930 
4  196 1430 3340 4790  378 2810 6600 9430 
5  428 3230 7570 10810  841 6380 14880 21250 
6  219 1660 3840 5500  431 3240 7550 10790 
7  509 3840 8970 12820  1002 7570 17650 25220 
8  468 3570 8360 11950  951 7060 16450 23510 
9  480 3660 8520 12170  964 7180 16750 23930 
10  229 1660 3880 5540  440 3270 7630 10880 
11  211 1570 3660 5210  403 3070 7150 10210 
12  243 1910 4440 6330  496 3710 8670 12400 
13  116 940 2160 3070  237 1810 4210 6000 
14  398 3000 7000 10000  781 5900 13720 19600 
15  115 850 1990 2850  225 1670 3900 5570 
16  126 1000 2320 3320  257 1940 4540 6490 
17  196 1500 3520 5010  398 2970 6920 9910 
18  518 3900 9110 12990  1021 7670 17920 25610 
19  2507 18780 43840 62620  4943 37030 86390 123430 
20  208 1470 3450 4920  379 2910 6780 9680 
21  93 590 1400 1990  154 1180 2760 3910 
22  136 1090 2570 3670  277 2160 5030 7200 

Total  7898 59430 138790 198170  15573 116970 272850 389810 

 
Table B.1.3 – Parameters for hydrogen supply chain components: general data 

α Network operating period 365 days / year 
CCF Capital change factor -payback period of capital investment 12 years 
LRt Learning rate Increasing 2% each period* 
WFPg Weigh factor risk of population in each grid or district Table B.2.2 
* Assumption based on McKinsey & Company, 2010 

 
Table  B.1.4a –  Production (Almansoori and Shah, 2011) 

Liquid H2 (i)  PCapmin
pij Minimum production capacity of plant 

type p size j for product form i 
 PCapmax

pij Maximum production capacity of plant 
type p size j for product form i 

Technology (p)  small medium large unit  small medium large unit 
Steam methane reforming   300 10000 200000 (kg per 

day) 

 9500 150000 960000 
(kg per day) Electrolysis   300 10000 0  9500 150000 0 

Electrolysis (distributed)  50* 450* 1050*  400* 1000* 2500* 
Biomass gasification  - 10000 200000   - 150000 960000  
           
Liquid H2 (i)  PCCpji Capital cost of establishing plant type p size j 

producing product form i 
 

 UPCpij Unit production cost for product form i 
produced by plant type p and size j   

Technology (p)  small medium large unit  small medium large unit 
Steam methane reforming   29000000 224000000 903000000 

($) 
  3.36        1.74     1.43 

($ per kg) Electrolysis   61000000 663000000 0      4.69▲ 4.59 ▲   0 
Electrolysis (distributed)  4026385● 9018000● 20198000●  6.24        5.38     4.94 
Biomass gasification  - 575000000 1836000000   - 3.52 2.15  
           
Liquid H2 (i)  RPpj  Risk level of the production facility p size j  ◙  γepj  Rate of utilization of primary energy source e by 

plant type  p and size j 
Technology (p)  small medium large unit  small medium large unit 
Steam methane reforming   0.27 1.33 2.70 

units 
 4.02     3.34 3.16 kgs/kg H2 

Electrolysis   0.30 0.75 0  52.49    52.49 0 kWhelec/kg H2 
Electrolysis (distributed)  0.15 0.23 0.30      

       

NP0pjig Initial number of plants of 
type p and size j producing 
product form i in grid g 

0 units 

 
* Size suggested in this study, similar to that provided in the McKinsey and Co. (2010) 
▲McKinsey&Co, 2010 (4,4-5,5€/KgH2)  
● We extrapolated the formula presented by Murthy Konda et al. (2011) for determining the cost of distributed electrolysis plants for the 
proposed capacity:   

These costs generally include facilities, permits and start engineering, contingencies and working capital, land and other costs. 
◙ Calculated using the methodology of Kim and Moon (2011) (see Table Appendix B2) 
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/2500
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Table  B.1.4b –  Production global warming potential by plant type p - GWProd
ep - (g CO2-eq 

per kg of H2) 
 

Production type / 
energy source 

Gaz naturel PV Wind Hydro Nuclear Biomass 

SMR 10100 - - - - - 
Electrolysis - 6206* 1034* 2068* 3100* - 
Gasification - - - - - 3100 
Ref. Stromman and Hertwich 

(2004) reported in (Rivière, A. 
2007)  

(Utgikar & Thiesen, 2006) *approximate values  

 
Table B.1.5 - Storage (Almansoori and Shah 2011) 

Liquid H2  (i) mini small medium large 
SCapmin

sji - Minimum storage capacity of storage type s size j for 
product form i (kg) 50* 500* 10000 200000 
SCapmax

sji - Maximum storage capacity of storage type s size j for 
product form i (kg) 450* 9500 150000 540000 
SCCsij  - Capital cost of establishing storage type s size j storing 
product form i  ($) 802165* 5000000 33000000 122000000 
USCsij - Unit storage cost for product form i at storage type s size j 
($ per kg per d) 0.064 0.032 0.01 0.005 
RSsj  - Risk level in storage facility s size j   ◙ 0.3 0.9 2.1 3 
 

GWStock
i     Storage global warming potential form i                                                                                            (704 g CO2-eq per kg of H2) ▲ 

 β              Storage holding period-average number of days worth of stock                                                        (10 days)  
NS0sjig       Initial number of storage facilities of type s and size j storing product form i in grid g                    (0 units) 
* Size suggested in this study, similar to that provided in the McKinsey and Co. (2010) 
◙  Calculated using the methodology of Kim and Moon (2011)  
▲ This value was calculated for the French energy mix based on data base of liquefaction and compresion presented in Grol et al. NETL 
(2005) based on Bossel U. : 
1 kWh � 0.083 kg CO2, fossil (Ecoinvent Database v2.2)  
For liquefaction of H2 � 8.42 kWh/kgH2 � 0.704 kg CO2/kgH2  
For compression of H2  �  4.17 kWh/kgH2   �  0.349 kg CO2/kgH2  

 
Table B.1.6 -  Transportation data base (tanker truck). 

Parameter units Reference 

Wl Weight of  transportation mode l  40 ton (AFH2, 2011, p. 2) 

DWl    
Driver wage of transportation 
mode l  14.57 US$ per hour CNR - Enquête Longue Distance 2010 

FEl    
Fuel economy of transportation 
mode l  2.3 km per liter Almansoori and Shah, 2011 

FPl    Fuel price of transportation mode l  1.5 US$ per liter 
Almansoori and Shah, 2011=1,16$/L. Murthy Konda, 
2011 =1,3$/L 

GEl    
General expenses of transportation 
mode l  8.22 US$ per day 

 Almansoori and Shah, 2011= US$ 8.22 per day. Murthy 
Konda, 2011 =$8,22/d 

LUTl   
Load and unload time of product 
for transportation mode l  2 hours per trip Almansoori and Shah, 2011 

MEl    
Maintenance expenses of 
transportation mode l  0.126* US$ per km CNR - Enquête Longue Distance, 2010 

SPl    
Average speed of transportation 
mode l  66.8 km per hour CNR - Enquête Longue Distance, 2010 

TMAl   
Availability of transportation mode 
l 18 hours per day Almansoori and Shah, 2011 

GWTrans
l     

Global warming potential of 
transportation mode l 62 g CO2 per tonne-km   McKinnon, A., Piecyk M. 2011. 

RTl   Risk level of transportation mode l 1.33 Units 
Calculated using the methodology of Kim and Moon 
(2011) (see Appendix B.2) 

TCapil 
Capacity of transportation mode l 
transporting product form i  3500 kg per trip Dagdougui, 2012 

Qmin
il 

Minimum flow rate of product 
form i by transportation mode l  3500 kg per day As the capacity of the transportation mode 

Qmax
il 

Maximum flow rate of product 
form i by transportation mode l  960000 kg per day Almansoori and Shah, 2011 

TMCil 
Cost of establishing transportation 
mode l transporting product form i 500000 US$ 

Based on : Almansoori and Shah (2011)=500000$; 
Hawkins (2006) ; AIE (2006a) ; Ogden (1999a); Amos 
(1998))=590000$; Nagore et al. (2011): 434236€ or 
355931,14$;  Bento (2010)=300000-400000$; Murthy 
Konda et al. (2011) = 800 000$  

     
* Definition of maintenance expenses of transportation mode l:  repair=0,0919 $/km (0,072 €/km)+ pneumatic=0,0345 $/km (0,027 €/km). 
Total 0,126 $/km (0,099 €/km) 
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Table B.1.7 Average delivery distance between districts g and g’ (km per trip). MAPPY. March 2012. 
District 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 

1 - 63 46 97 128 197 198 175 102 139 148 191 222 306 338 297 243 174 155 222 246 240 

2 63 - 70 34 65 134 146 103 133 170 220 226 293 341 373 332 278 205 186 253 277 242 

3 46 70 - 59 112 173 156 133 60 97 127 148 180 264 295 254 201 132 113 180 204 198 

4 97 34 59 - 53 114 111 69 76 113 192 165 197 280 312 271 218 148 131 197 220 232 

5 128 65 112 53 - 70 115 71 131 208 287 230 262 309 341 300 247 177 151 216 249 234 

6 197 134 173 114 70 - 135 104 186 261 339 266 300 345 377 336 289 216 187 312 292 330 

7 198 146 156 111 115 135 - 43 99 140 214 157 189 226 258 217 164 94 71 124 180 141 

8 175 103 133 69 71 104 43 - 75 133 187 155 186 234 266 225 172 102 75 141 174 158 

9 102 133 60 76 131 186 99 75 - 23 117 88 112 206 238 197 143 73 55 123 146 140 

10 139 170 97 113 208 261 140 133 23 - 83 75 100 218 250 209 156 87 68 135 159 152 

11 148 220 127 192 287 339 214 187 117 83 - 43 54 102 137 125 141 135 146 188 169 205 

12 191 226 148 165 230 266 157 155 88 75 43 - 24 73 108 91 86 83 80 147 124 136 

13 222 293 180 197 262 300 189 186 112 100 54 24 - 49 84 68 72 92 104 135 138 145 

14 306 341 264 280 309 345 226 234 206 218 102 73 49 - 35 23 66 135 158 163 111 173 

15 338 373 295 312 341 377 258 266 238 250 137 108 84 35 - 35 99 168 191 196 144 206 

16 297 332 254 271 300 336 217 225 197 209 125 91 68 23 35 - 58 134 150 155 103 165 

17 243 278 201 218 247 289 164 172 143 156 141 86 72 66 99 58 - 72 93 100 49 102 

18 174 205 132 148 177 216 94 102 73 87 135 83 92 135 168 134 72 - 23 51 75 102 

19 155 186 113 131 151 187 71 75 55 68 146 80 104 158 191 150 93 23 - 70 94 87 

20 222 253 180 197 216 312 124 141 123 135 188 147 135 163 196 155 100 51 70 - 55 20 

21 246 277 204 220 249 292 180 174 146 159 169 124 138 111 144 103 49 75 94 55 - 44 

22 240 242 198 232 234 330 141 158 140 152 205 136 145 173 206 165 110 102 87 20 44 - 

 
Table B.1.8 RRgg’: Road risk between grids g and g' (units) 

District 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 
1 - 3 2 3 4 5 9 6 4 5 3 5 6 9 10 9 8 9 7 9 11 10 
2 3 - 2 2 3 4 6 4 4 5 6 7 8 12 13 11 10 9 7 9 10 10 
3 2 2 - 2 3 4 8 5 3 4 5 5 6 11 12 10 9 8 6 8 9 9 
4 3 2 2 - 2 3 5 3 3 4 5 4 5 11 12 10 9 8 5 6 9 7 
5 4 3 3 2 - 2 5 3 4 5 6 7 8 11 12 10 9 8 6 7 9 8 
6 5 4 4 3 2 - 3 3 5 6 10 7 8 11 12 10 9 8 6 7 9 8 
7 9 6 8 5 5 3 - 4 7 8 9 6 7 10 11 9 8 7 5 5 8 6 
8 6 4 5 3 3 3 4 - 4 5 6 6 7 10 11 9 8 7 5 6 8 7 
9 4 4 3 3 4 5 7 4 - 3 4 5 6 10 11 9 8 7 5 6 8 7 

10 5 5 4 4 5 6 8 5 3 - 2 2 3 9 10 8 7 6 4 5 7 6 
11 3 6 5 5 6 10 9 6 4 2 - 2 3 3 4 4 3 9 7 8 10 9 
12 5 7 5 4 7 7 6 6 5 2 2 - 2 3 4 4 3 6 4 5 7 6 
13 6 8 6 5 8 8 7 7 6 3 3 2 - 2 3 3 3 3 4 5 4 6 
14 9 12 11 11 11 11 10 10 10 9 3 3 2 - 2 2 2 5 8 5 4 5 
15 10 13 12 12 12 12 11 11 11 10 4 4 3 2 - 2 4 6 9 6 5 7 
16 9 11 10 10 10 10 9 9 9 8 4 4 3 2 2 - 2 4 7 4 3 5 
17 8 10 9 9 9 9 8 8 8 7 3 3 3 2 4 2 - 3 6 3 2 3 
18 9 9 8 8 8 8 7 7 7 6 9 6 3 5 6 4 3 - 5 5 5 5 
19 7 7 6 5 6 6 5 5 5 4 7 4 4 8 9 7 6 5 - 4 6 5 
20 9 9 8 6 7 7 5 6 6 5 8 5 5 5 6 4 3 5 4 - 2 2 
21 11 10 9 9 9 9 8 8 8 7 10 7 4 4 5 3 2 5 6 2 - 2 
22 10 10 9 7 8 8 6 7 7 6 9 6 6 5 7 5 3 5 5 2 2 - 

Total 136 144 130 118 132 139 145 127 122 114 117 98 100 145 165 134 118 133 121 116 138 132 
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Table B.1.9 –Refuelling stations 
Fcapi Capacity of fuelling station for 
product form i (kg  per day) 

2500 McKinsey and Co (2010) considered 3 types of refuelling stations where 
the H2 is taken as liquid (30 bar) or gaseous (250 or 450bar) and is 
compressed to 350 or 700 bar ; the stations sizes are : small (2 
dispensers) = 0.4 t H2 /d, medium (4 dispensers) = 1 t H2/d, large (10 
dispensers) = 2.5 t H2/d 

UFCi  Unit fuelling cost of product form i 
($ / kg) 

0,39 Almansoori and Shah, 2011 

 

 
Table B.1.10  -  Installed capacity in 2010 and strategic objectives 2020  

in Midi-Pyrénées (Salingue, 2012 and SRCAE, 2012). 

 

Objective per type Situation 
2010 

Objective min.2020 Objective maxi.2020 

Hydraulic 5000 MW 5300 MW 5400 MW 
PV 80 MW 750 MW 1000 MW 
Wind 322 MW 850 MW 1600 MW 

 



202 Multi-objective optimisation of a hydrogen supply chain 

 

Table B.1.11 – Initial availability of energy sources in Midi-Pyrénées (2020-2050) (Salingue 2012) 
 

 
 

Renewable 
energy/district

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 kWh/d

PV (kWh/d) 148691 148691 173896 178691 156252 148691 148691 148691 155540 148691 228691 148691 148691 0 0 0 4726 162253 197595 26575 0 0 2473747

Wind (kWh/d) 0 0 0 529148 685860 1242901 1444490 675175 529148 529148 529148 529148 0 0 0 0 0 0 840080 0 0 0 7534246

Hydraulic (kWh/d) 0 177275 379786 189923 95402 0 0 550197 92937 1019786 0 0 0 0 2281507 999726 1019178 775129 120060 86575 500164 1067424 9355069

Renewable 
energy/district

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 kWh/d

PV (kWh/d) 203486 203486 228691 233486 211047 203486 203486 203486 210335 203486 283486 203486 203486 0 0 0 4726 217048 252390 26575 0 0 3295672

Wind (kWh/d) 0 0 0 871614 1028326 1585367 1786956 1017641 871614 871614 871614 871614 0 0 0 0 0 0 1182546 0 0 0 10958906

Hydraulic (kWh/d) 0 177275 379786 189923 95402 0 0 550197 92937 1019786 0 0 0 0 2281507 999726 1019178 775129 120060 86575 500164 1067424 9355069

Renewable 
energy/district

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 kWh/d

PV (kWh/d) 207556 207555 233264 238155 215267 207555 207555 207555 214541 207555 289155 207556 207556 0 0 0 4726 221388 257437 26575 0 0 3360959

Wind (kWh/d) 0 0 0 889046 1048892 1617074 1822695 1037993 889046 889046 889046 889046 0 0 0 0 0 0 1206196 0 0 0 11178085

Hydraulic (kWh/d) 0 177275 379786 189923 95402 0 0 550197 92937 1019786 0 0 0 0 2281507 999726 1019178 775129 120060 86575 500164 1067424 9355069

Renewable 
energy/district

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 kWh/d

PV (kWh/d) 211706 211706 237930 242918 219573 211706 211706 211706 218832 211706 294938 211706 211706 0 0 0 4726 225816 262586 26575 0 0 3427552

Wind (kWh/d) 0 0 0 906827 106987 1649415 1859149 1058753 906827 906827 906827 906827 0 0 0 0 0 0 1230320 0 0 0 11401646

Hydraulic (kWh/d) 0 177275 379786 189923 95402 0 0 550197 92937 1019786 0 0 0 0 2281507 999726 1019178 775129 120060 86575 500164 1067424 9355069

* Team assumptions
+ Nuclear is available in district 4=  51210000 (kWh/d) 
**Natural gas is available in all grids  

Scenario in 2020:

Scenario 2020

Scenario 2030 (increasing PV (250 MWc) and wind (500 MW)*

Scenario 2040 (increasing PV and wind 2%)*

Scenario 2050 (increasing PV and wind 2%)*

Increase of wind production from 380MW in 2012 to a maximum of 1600 MW in 2020 (will be used in the calculations 1100 MW).  Production is estimated based on an annual schedule of  2500 h (ICPE classification of turbines)
Increase of PV  from 80 MW  to 750 MWp (minimum capacity ) or 1000 MWp (maximum). For this study, calculation for 750 MWp (minimum) is used. Production is estimated on an hourly annual basis of 1200 h
Increase of hydro  + 200 GWh in 2020 (initially 600 GWh in 2020, but only 28.5% taking into account because it corresponds to "run of river" centrals
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APPENDIX B2: SAFETY  RELATIVE RISK (DETAILED CALCULATION)  

 
(Kim and Moon, 2008)(Kim et al., 2011) proposed a methodology to determine the relative safety risk of a 

hydrogen supply chain (HSC). They assesed risks for the different HSC activities and we have integrated their 

results to our mathematical model to measure the total relative risk of the network and that way, it is possible to 

optimise the HSC minimising the safety risk. The steps of the analysis are: 

• process specification and breakdown; 

• hazard identification with FMEA. With the help of an FMEA (failure mode effect analysis), the safety 

plan identifies failure modes of equipment and processes and establishes the consequences of such 

failures frequency and consequence estimation; 

• risk evaluation with relative risk index matrix (see Table B.2.1). he results presented in the risk ranking 

matrix of (Kim et al., 2011) were taken into account in our database; 

• total relative risk index (TRRI) calcultation (This last step is the only one considered in our 

mathematical model). 

 
Table B.2.1. Risk ranking matrix (Kim et al. 2011)  

 
 
The equations to calculate the relative risk level of production, storage and transport units are: 
 
 

Production        Storage      Transportation 

                

 
 
where 
f :       potential risks (example in Kim et al. 2011)  
p:        production technology 
s:        storage technology 
t:        transport type 
c :       constant  which is the number of the selected failure modes used to compare H2 activities with the same 

basis. 
RPpj :  inherent risk factor of plant type p size j (see Table    B.2.4) 
RSsj :  inherent risk factor of storage type s size j (see Table    B.2.4) 
RTl :   inherent risk factor of transportation mode l (see Table    B.2.4) 
RVf :  ranking value assessed with the risk ranking method (based on Table B.2.1, see Table    B.2.6) 
α :    weight factor according to the production and storage units scale, values between 0-1; the value one is 

assigned to the plant producing the maximum flow rate of hydrogen at any given time –see Table B.2.3.  
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Table B.2.2 –Weigh factor risk of population in each grid or district in the 
Midi-Pyrénées region -WFPg- (calculated similarly to that of Kim and Moon (2011). 

District Main city Population (1) Size WFPg (units) (2) 

1 Gourdon  43831 Small 1 
2 Figeac 53847 Small 1 
3 Cahors 75884 Small 1 
4 Villefranche de Rouergue 64200 Small 1 
5 Rodez  141753 Small 1 
6 Millau 71095 Small 1 
7 Castres 191394 Medium 2 
8 Albi 182624 Medium 2 
9 Montauban 164825 Medium 2 
10 Castelsarrasin 74466 Small 1 

11 Condom 65102 Small 1 
12 Auch 83805 Small 1 
13 Mirande 38274 Small 1 
14 Tarbes 143348 Small 1 
15 Argelès-Gazost 39858 Small 1 
16 Bagnères de Bigorre 46464 Small 1 
17 Saint Gaudens 77373 Small 1 
18 Muret 198376 Medium 2 
19 Toulouse 955071 Large 3 
20 Pamiers 70833 Small 1 
21 Saint girons 27819 Small 1 
22 Foix 52465 Small 1 
(1) INSEE 2009:http://www.insee.fr/fr/ppp/bases-de-donnees/recensement/populations-legales/ 
(2) > 201000=3; 151000-200000=2; 0-150000=1    

 
 

Table B.2.3 - Factor α defined for the different production and storage technologies and sizes (units). 
 α mini small medium large 
Steam methane reforming   - 0.1 0.5 1 
Electrolysis - 0.2 0.5 - 
Electrolysis distributed   - 0.1 0.15 0.2 
Storage 0.1 0.3 0.7 1 

 
 

Table B.2.4 - Results of inherent risks factors for the activities of the hydrogen supply chain.  
Midi-Pyrénées case study (units). 

Size mini small medium large 

RP Steam methane reforming - 0.27 1.33 2.67 

RP Electrolysis (distributed) - 0.15 0.23 0.3 

RP Electrolysis - 0.3 0.75 - 

RS Super-insulated spherical tanks 0.3 0.9 2.1 3 

RT Tanker truck 1.33 
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Table B.2.5 - Example of calculation of the road risk between grids g and g' 
 
 

 
            * It takes a rating value between 0.1 and 1.0 according to the adjacency level. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

District Size WFPg (units)   
(see table B.2.2) 

Weight factor that 
indicates the 

adjacency level * 

Road risk between 
districts 2 and 19 

1 Small 1  0 
2 Small 1 1 1 
3 Small 1  0 
4 Small 1 1 1 
5 Small 1  0 
6 Small 1  0 
7 Medium 2  0 
8 Medium 2  0 
9 Medium 2 1 2 

10 Small 1  0 
11 Small 1  0 
12 Small 1  0 
13 Small 1  0 
14 Small 1 1 1 
15 Small 1  0 
16 Small 1 1 1 
17 Small 1 1 1 
18 Medium 2 1 2 
19 Large 3 1 3 
20 Small 1  0 
21 Small 1  0 
22 Small 1  0 

   Total 12 
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Table B.2.6 - Calculation of the Risk Value (RV) 

Technology Electrolysis Steam methane 
reforming 

Super-insulated 
spherical tanks 

Pressurized cylindrical 
vessels 

Tanker trucks Tube trailers  

Failure mode Combined 
risk 

RV Combined 
risk 

RV  Combined 
risk 

RV Combined 
risk 

RV Combined 
risk 

RV Combined 
risk 

RV 

1 C1xF1 1 C1xF1 1 C1xF1 1             
2 C2xF2 3                     
3 C2xF1 1                     
4 C2xF1 1         C2xF1 1         
5 C3xF1 3 C3xF1 3 C3xF1 3     C3xF1 3 C3xF1 3 
6 C3xF1 3                     
7     C2xF2 3     C2xF2 3         
8     C3xF1 3                 
9     C1xF3 3                 
10     C2xF2 3                 
11         C3xF2 5             
12         C2xF3 5 C2xF3 5         
13         C2xF1 1             
14         C3xF1 3             
15             C2xF2 3         
16             C2xF2 3         
17             C1xF3 3         
18                 C1xF1 1 C1xF1 1 
19                 C1xF2 1 C1xF2 1 
20                 C2xF1 1 C2xF1 1 
21                 C1xF2 1 C1xF2 1 
22                 C1xF1 1     
23                     C2xF3 5 

 Total   12   16   18   18   8 Total 12 
                          

                
  Level The combinations 

(consequence x likelihood) : 
Index 

                RV1 High-risk C3xF2, C2xF3 and C3xF3 5 

                RV2 Moderate-risk C3xF1, C1xF3 and C2xF2 3 

                RV3 Low-risk C2xF1, C1xF2 and C1xF1 1 
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APPENDIX B3: DETAILED RESULTS 

B.3.1. Results for case B1. Midi-Pyrénées. 
 
 
 

Table B.3.1a - Comparison between results in M-TOPSIS. Case B.1: Midi-Pyrénées (2020-2050) 

CRITERIA VALUE MCDM 
Altern. Cost GWP Risk  MATRIZ V 

[A*wj] 
D+ D- Ratio   

 M-Topsis 
Rank 

($ per kg H2) (kg CO2 per kg H2) (units) 

x1 - - - - - - - - - - 

x2 - - - - - - - - - - 

x3 - - - - - - - - - - 

x4 6.58 8.51 342 0.22 0.25 0.16 0.14 0.2 0.09 13 

x5 6.5 9.18 341.8 0.22 0.27 0.16 0.13 0.22 0.07 17 

x6 7.81 1.94 405.9 0.26 0.06 0.19 0.27 0.11 0.25 1 

x7 7.06 4.15 395 0.24 0.12 0.18 0.22 0.1 0.22 5 

x8 6.54 6.24 400.6 0.22 0.18 0.18 0.17 0.14 0.16 10 

x9 5.76 8.54 399.9 0.19 0.25 0.18 0.13 0.2 0.09 14 

x10 5.26 10.74 397.9 0.18 0.32 0.18 0.12 0.26 0.03 19 

x11 7.76 1.94 459.8 0.26 0.06 0.21 0.27 0.11 0.24 2 

x12 6.88 4.15 468.4 0.23 0.12 0.21 0.21 0.11 0.2 6 

x13 6.35 5.96 459.3 0.21 0.18 0.21 0.16 0.14 0.16 9 

x14 5.61 8.57 469.2 0.19 0.25 0.21 0.11 0.21 0.08 15 

x15 5.03 10.61 457 0.17 0.31 0.21 0.11 0.26 0.03 20 

x16 7.76 1.94 459.8 0.26 0.06 0.21 0.27 0.11 0.24 2 

x17 6.88 4.15 521.8 0.23 0.12 0.24 0.2 0.13 0.19 7 

x18 6.31 6.36 493.9 0.21 0.19 0.23 0.15 0.16 0.14 11 

x19 5.49 8.38 529.5 0.18 0.25 0.24 0.11 0.21 0.07 16 

x20 4.77 10.74 528.2 0.16 0.32 0.24 0.11 0.27 0.01 21 

x21 7.76 1.94 459.8 0.26 0.06 0.21 0.27 0.11 0.24 2 

x22 6.88 4.15 521.8 0.23 0.12 0.24 0.2 0.13 0.19 7 

x23 6.31 6.36 493.9 0.21 0.19 0.23 0.15 0.16 0.14 11 

x24 5.39 8.57 572.9 0.18 0.25 0.26 0.1 0.22 0.06 18 

x25 4.9 10.68 594.2 0.16 0.32 0.27 0.1 0.28 0 22 

A+=max 0.26 0.32 0.27 

A-=min 0.16 0.06 0.16 
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Table B.3.1b - Summary of results for Case B.1 
 

Variable 
DLig (kg d-1) Dlig (kg d-1) 

2020 2030 2040 2050 2020 2030 2040 2050 
G.1         124 910 2140 3050 - - - - 
G.2         157 1200 2800 350 - - - 3640 
G.3            221 1670 250 250 - - 3660 5320 
G.4             196 1430 3340 4790 - - - - 
G.5              428 3230 7570 10810 - - - - 
G.6              219 1660 3840 5500 - - - - 
G.7         509 3840 8970 12820 - - - - 
G.8              468 3570 8360 11950 - - - - 
G.9         480 3660 8520 12170 - - - - 
G.10        229 1660 3880 5540 - - - - 
G.11        211 1570 3660 5210 - - - - 
G.12             243 1910 4440 6330 - - - - 
G.13        116 940 2160 3070 - - - - 
G.14        398 3000 300 300 - - 6700 9700 
G.15             115 850 1990 2850 - - - - 
G.16             126 1000 2320 3320 - - - - 
G.17        196 1500 3520 350 - - - 4660 
G.18        518 100 100 100 - 3800 9010 12890 
G.19        2507 18780 43840 62620 - - - - 
G.20             208 1470 3450 350 - - - 4570 
G.21             93 590 1400 1990 - - - - 
G.22        136 1090 2570 3670 - - - - 

 
 

Table B.3.1c - Flow rate of liquid hydrogen via tanker truck for  

the multi-objective optimisation (2020-2050). Case B.1 
From district To district Flow rate, Qilgg' (kg d-1) 

 2020 2030 2040 2050 
4 2 - - - 3640 
4 3 - - 3660 5320 

12 14 - - 6700 9700 
12 17 - - - 4660 
19 18 - 3800 9010 12890 
19 20 - - - 4570 
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B.3.2. Results for case B2. Midi-Pyrénées. 
 

Table B.3.2a - Comparison between results in M-TOPSIS. Case B.2. Midi-Pyrénées (2020). 

CRITERIA VALUE MCDM 
Altern. Cost GWP Risk  MATRIZ V [A*wj] D+ D- Ratio M-Topsis Rank 

($ per kg H2) (kg CO2 per kg H2) (units) 

x1 15.52 2.14 34.5 0.168 0.261 0.199 0.025 0.165 0 2 

x2 15.51 2.51 34.5 0.168 0.222 0.199 0.046 0.127 0.05 8 

x3 15.51 2.5 34.5 0.168 0.223 0.199 0.045 0.128 0.04 7 

x4 15.51 2.23 34.5 0.168 0.25 0.199 0.027 0.154 0.01 3 

x5 15.51 3.09 34.5 0.168 0.18 0.199 0.084 0.088 0.1 14 

x6 15.51 3.98 34.5 0.168 0.14 0.199 0.123 0.053 0.15 20 

x7 15.51 4.13 34.5 0.168 0.135 0.199 0.128 0.05 0.16 22 

x8 15.6 3.35 34.5 0.167 0.166 0.199 0.098 0.075 0.12 16 

x9 14.18 5.14 34.4 0.184 0.108 0.199 0.153 0.04 0.18 23 

x10 14.68 5.6 34.1 0.177 0.099 0.201 0.162 0.039 0.19 26 

x11 13.94 2.14 37.7 0.187 0.261 0.182 0.02 0.164 0 1 

x12 13.93 2.24 37.7 0.187 0.249 0.182 0.023 0.152 0.01 4 

x13 13.94 2.28 37.7 0.187 0.244 0.182 0.026 0.147 0.02 6 

x14 13.93 2.88 37.7 0.187 0.193 0.182 0.07 0.098 0.08 11 

x15 13.93 3.22 37.7 0.187 0.173 0.182 0.09 0.078 0.11 15 

x16 13.94 3.36 37.7 0.187 0.166 0.182 0.097 0.072 0.12 17 

x17 13.94 3.93 37.7 0.187 0.142 0.182 0.12 0.05 0.15 21 

x18 13.84 4.83 37.6 0.188 0.115 0.183 0.147 0.032 0.18 24 

x19 13.68 5.19 37.7 0.19 0.107 0.182 0.155 0.03 0.19 27 

x20 13.68 5.19 37.7 0.19 0.107 0.182 0.155 0.03 0.19 27 

x21 13.79 2.14 41.6 0.189 0.261 0.165 0.036 0.163 0.02 5 

x22 13.79 2.52 41.6 0.189 0.221 0.165 0.054 0.124 0.05 9 

x23 13.79 2.78 41.6 0.189 0.2 0.165 0.07 0.103 0.08 10 

x24 13.95 2.98 41.8 0.187 0.187 0.164 0.083 0.09 0.1 12 

x25 13.81 3.52 41.7 0.188 0.158 0.165 0.109 0.063 0.14 18 

x26 13.84 3.73 41.9 0.188 0.15 0.164 0.117 0.054 0.15 19 

x27 13.84 2.99 41.9 0.188 0.186 0.164 0.084 0.089 0.1 13 

x28 13.64 4.83 41.5 0.191 0.115 0.165 0.15 0.029 0.19 25 

x29 13.53 5.19 41.6 0.192 0.107 0.165 0.158 0.027 0.2 29 

x30 13.53 5.19 41.6 0.192 0.107 0.165 0.158 0.027 0.2 29 

A+=max 0.192 0.261 0.201 

A-=min 0.167 0.099 0.164 
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Table B.3.2b - Summary of results for case B.2 (2020) 

 
 

Variable DLig DIig PTig ST ig (kg)* 
(kg d-1) (kg d-1) (kg d-1) 

G.1         124 - 124 1240 
G.2         157 - 157 1570 
G.3            221 - 221 2210 
G.4             196 - 196 1960 
G.5              428 - 428 4280 
G.6              219 - 219 2190 
G.7         509 - 509 5090 
G.8              468 - 468 4680 
G.9         480 - 480 4800 
G.10        229 - 229 2290 
G.11        211 - 211 2110 
G.12             243 - 243 2430 
G.13        116 - 116 1160 
G.14        398 - 398 3980 
G.15             115 - 115 1150 
G.16             126 - 126 1260 
G.17        196 - 196 1960 
G.18        518 - 518 5180 
G.19        2507 - 2507 25070 
G.20             208 - 208 2080 
G.21             93 - 93 930 
G.22        136 - 136 1360 
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Table B.3.2c - Comparison between results in M-TOPSIS. Case B.2. Midi-Pyrénées (2030). 

 

CRITERIA VALUE MCDM 
Altern. Cost GWP Risk  MATRIZ V [A*wj] D+ D- Ratio 

M-Topsis 
Rank 

($ per kg H2) (kg CO2 per kg H2) (units) 

x8 8.7 7.88 91 0.2 0.12 0.24 0.31 0.06 0.39 14 

x9 8.49 8.7 91 0.2 0.11 0.24 0.33 0.06 0.4 16 

x10 8.43 9.52 90.9 0.21 0.1 0.24 0.33 0.06 0.4 18 

x11 9.09 2.14 102.2 0.19 0.43 0.22 0.04 0.33 0 1 

x12 8.9 2.96 104 0.2 0.31 0.21 0.13 0.22 0.15 3 

x13 8.71 3.78 103.3 0.2 0.24 0.22 0.19 0.15 0.24 5 

x14 8.51 4.6 102 0.2 0.2 0.22 0.23 0.11 0.3 7 

x15 8.33 5.42 103.9 0.21 0.17 0.21 0.26 0.08 0.34 9 

x16 8.2 6.24 103.5 0.21 0.15 0.21 0.28 0.06 0.37 11 

x17 8.09 6.96 103.1 0.21 0.13 0.22 0.3 0.05 0.38 13 

x18 7.98 7.87 101.8 0.22 0.12 0.22 0.31 0.04 0.4 17 

x19 7.93 8.67 104 0.22 0.11 0.21 0.33 0.04 0.41 20 

x20 7.92 9.28 103.9 0.22 0.1 0.21 0.33 0.04 0.42 21 

x21 9.14 2.14 116.3 0.19 0.43 0.19 0.06 0.33 0.02 2 

x22 8.83 2.96 116.9 0.2 0.31 0.19 0.13 0.21 0.15 4 

x23 8.64 3.78 116.9 0.2 0.24 0.19 0.2 0.15 0.24 6 

x24 8.45 4.6 116.7 0.21 0.2 0.19 0.24 0.1 0.3 8 

x25 8.25 5.42 116.8 0.21 0.17 0.19 0.27 0.08 0.34 10 

x26 8.09 6.24 116.7 0.21 0.15 0.19 0.29 0.06 0.37 12 

x27 7.94 7.06 117 0.22 0.13 0.19 0.31 0.04 0.39 15 

x28 7.82 7.88 116.9 0.22 0.12 0.19 0.32 0.04 0.41 19 

x29 7.8 8.7 116.6 0.22 0.11 0.19 0.33 0.03 0.42 22 

x30 7.8 8.75 116.6 0.22 0.11 0.19 0.33 0.03 0.42 23 

A+=max 0.22 0.43 0.24 

A-=min 0.19 0.1 0.19 
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Table B.3.2e - Summary of results for case B.2 (2030) 

 

Variable 
DLig DIig PTig 

ST ig (kg)* 
(kg d-1) (kg d-1) (kg d-1) 

G.1         910 - 910 9100 

G.2         1200 - 1200 12000 

G.3            1670 - 1670 16700 

G.4             1430 - 1430 14300 

G.5              3230 - 3230 32300 

G.6              1660 - 1660 16600 

G.7         3840 - 3840 38400 

G.8              3570 - 3570 35700 

G.9         3660 - 3660 36600 

G.10        1660 - 1660 16600 

G.11        1570 - 1570 15700 

G.12             1910 - 1910 19100 

G.13        940 - 940 9400 

G.14        3000 - 3000 30000 

G.15             850 - 850 8500 

G.16             1000 - 1000 10000 

G.17        1500 - 1500 15000 

G.18        3900 - 3900 39000 

G.19        18780 - 18780 187800 

G.20             1470 - 1470 14700 

G.21             590 - 590 5900 

G.22        1090 - 1090 10900 
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Table B.3.2f - Comparison between results in M-TOPSIS. Case B.2. Midi-Pyrénées (2040). 

 

CRITERIA VALUE MCDM 
Altern. Cost  GWP  Risk   MATRIZ V [A*wj] D+ D- Ratio M-Topsis Rank 

($ per kg 
H2) 

(kg CO2 per 
kg H2) 

(units) 

x1 - - - - - - - - - - 

x2 - - - - - - - - - - 

x3 - - - - - - - - - - 

x4 - - - - - - - - - - 

x5 - - - - - - - - - - 

x6 - - - - - - - - - - 

x7 8.62 5.28 167.1 0.16 0.16 0.26 0.28 0.12 0.3 9 

x8 8.42 6.1 167.1 0.17 0.14 0.26 0.3 0.1 0.32 11 

x9 8.35 6.54 167.1 0.17 0.13 0.26 0.31 0.1 0.33 13 

x10 8.37 7.74 167.1 0.17 0.11 0.26 0.33 0.09 0.35 15 

x11 8.11 2 206.4 0.17 0.43 0.21 0.09 0.34 0 1 

x12 7.76 2.82 212.4 0.18 0.31 0.2 0.15 0.22 0.14 3 

x13 7.52 3.64 212.3 0.19 0.24 0.21 0.21 0.15 0.23 5 

x14 7.14 4.46 212.4 0.2 0.19 0.2 0.25 0.11 0.28 7 

x15 6.8 5.28 210.2 0.21 0.16 0.21 0.28 0.09 0.31 10 

x16 6.52 6.1 212.1 0.21 0.14 0.21 0.3 0.08 0.33 14 

x17 6.26 6.92 212.5 0.22 0.12 0.2 0.31 0.08 0.35 16 

x18 6.05 7.74 212.2 0.23 0.11 0.21 0.32 0.08 0.35 17 

x19 5.95 8.56 212 0.23 0.1 0.21 0.33 0.08 0.36 20 

x20 5.88 9.33 211.8 0.24 0.09 0.21 0.34 0.08 0.36 22 

x21 8.11 2 213 0.17 0.43 0.2 0.09 0.34 0 2 

x22 7.73 2.82 252.3 0.18 0.31 0.17 0.17 0.21 0.15 4 

x23 7.49 3.64 256.1 0.19 0.24 0.17 0.22 0.15 0.24 6 

x24 7.12 4.46 242.9 0.2 0.19 0.18 0.26 0.11 0.29 8 

x25 6.75 5.28 255.5 0.21 0.16 0.17 0.28 0.08 0.32 12 

x26 6.15 6.92 249.6 0.23 0.12 0.17 0.32 0.07 0.35 18 

x27 6.15 6.92 249.6 0.23 0.12 0.17 0.32 0.07 0.35 18 

x28 5.91 7.7 254.8 0.24 0.11 0.17 0.33 0.08 0.36 21 

x29 5.8 8.56 253.4 0.24 0.1 0.17 0.34 0.08 0.36 23 

x30 5.72 9.38 257.7 0.24 0.09 0.17 0.35 0.08 0.37 24 

A+=max 0.24 0.43 0.26 

A-=min 0.16 0.09 0.17 
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Table B.3.2g – Summary of results case B.2. Midi-Pyrénées (2040). 

 

Variable DLig DIig PTig ST ig (kg)* 

(kg d-1) (kg d-1) (kg d-1) 
G.1         2140 - 2140 21400 
G.2         2800 - 2800 28000 
G.3            3910 - 3910 39100 
G.4             3340 - 3340 33400 
G.5              7570 - 7570 75700 
G.6              3840 - 3840 38400 
G.7         8970 - 8970 89700 
G.8              8360 - 8360 83600 
G.9         8520 - 8520 85200 
G.10        3880 - 3880 38800 
G.11        3660 - 3660 36600 
G.12             4440 - 10290 44400 
G.13        2160 - 2160 21600 
G.14        1150 5850 1150 70000 
G.15             1990 - 1990 19900 
G.16             2320 - 2320 23200 
G.17        3520 - 3520 35200 
G.18        1550 7560 1550 91100 
G.19        43840 - 51399 438400 
G.20             3450 - 3450 34500 
G.21             1400 - 1400 14000 
G.22        2570 - 2570 25700 

 

 

Table B.3.2h - Flow rate of liquid hydrogen via tanker truck for the multi-objective optimisation (2040). 

    
From grid To grid Flow rate, Qilgg' (kg d-1)  

12 14 5850  
19 18 7560  
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Table B.3.2i - Comparison between results in M-TOPSIS. Case B.2. Midi-Pyrénées (2050). 

 

CRITERIA VALUE MCDM 
Altern. Cost  GWP  Risk   MATRIZ V [A*wj] D+ D- Ratio M-Topsis Rank 

($ per kg 
H2) 

(kg CO2 per 
kg H2) 

(units) 

x1 - - - - - - - - - - 

x2 - - - - - - - - - - 

x3 7.16 3.55 246 0.16 0.22 0.23 0.19 0.16 0.2 5 

x4 6.89 4.34 246 0.17 0.18 0.23 0.23 0.12 0.24 8 

x5 6.75 5.13 246 0.17 0.15 0.23 0.25 0.1 0.28 11 

x6 6.66 5.83 246 0.18 0.14 0.23 0.27 0.09 0.29 13 

x7 6.64 6.14 246 0.18 0.13 0.23 0.28 0.09 0.3 18 

x8 6.64 6.09 246 0.18 0.13 0.23 0.28 0.09 0.3 16 

x9 6.66 6.04 246 0.18 0.13 0.23 0.28 0.09 0.3 14 

x10 6.64 6.13 246 0.18 0.13 0.23 0.28 0.09 0.3 17 

x11 7.32 1.97 276.6 0.16 0.4 0.2 0.08 0.32 0 1 

x12 7.25 2.76 307.7 0.16 0.29 0.18 0.14 0.2 0.13 3 

x13 6.8 3.55 308.8 0.17 0.22 0.18 0.19 0.14 0.21 6 

x14 6.4 4.34 309 0.18 0.18 0.18 0.23 0.1 0.26 9 

x15 6.25 5.13 307.3 0.19 0.15 0.18 0.25 0.08 0.29 12 

x16 5.92 5.91 307.3 0.2 0.13 0.18 0.27 0.07 0.31 19 

x17 5.8 6.7 307.9 0.2 0.12 0.18 0.29 0.06 0.33 23 

x18 5.31 7.49 308.4 0.22 0.11 0.18 0.3 0.07 0.33 22 

x19 5.2 8.28 308.6 0.22 0.1 0.18 0.31 0.07 0.33 25 

x20 5.41 8.66 308.7 0.22 0.09 0.18 0.31 0.06 0.34 27 

x22 7.15 2.76 366.7 0.16 0.29 0.15 0.15 0.2 0.14 4 

x23 6.72 3.55 335.6 0.17 0.22 0.17 0.2 0.14 0.21 7 

x24 6.36 4.34 355.8 0.18 0.18 0.16 0.23 0.1 0.27 10 

x25 6.11 5.13 351 0.19 0.15 0.16 0.26 0.07 0.3 15 

x26 5.94 5.91 339.7 0.2 0.13 0.16 0.28 0.06 0.32 20 

x27 5.49 6.7 325.6 0.21 0.12 0.17 0.29 0.07 0.33 21 

x28 5.23 7.49 325.6 0.22 0.11 0.17 0.3 0.07 0.33 24 

x29 5.24 8.28 371.4 0.22 0.1 0.15 0.31 0.06 0.34 28 

x30 4.96 9.06 362.7 0.24 0.09 0.15 0.32 0.08 0.34 26 

A+=max 0.24 0.4 0.23 

A-=min 0.16 0.09 0.15 
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Table B.3.2j - Summary of results for case B.2: Midi-Pyrénées (2050). 

 

Variable DLig DIig PTig ST ig (kg)* 

(kg d-1) (kg d-1) (kg d-1) 
G.1 3050 - 3050 30500 
G.2 3990 - 3990 39900 
G.3 1600 3970 1600 55700 
G.4 4790 - 8760 47900 
G.5 10810 - 10810 108100 
G.6 5500 - 5500 55000 
G.7 12820 100 12820 128200 
G.8 11950 - 11950 119500 
G.9 12170 - 12170 121700 
G.10 5540 - 5540 55400 
G.11 5210 - 5210 52100 
G.12 6330 - 15180 63300 
G.13 3070 - 3070 30700 
G.14 1150 8850 1150 100000 
G.15 2850 - 2850 28500 
G.16 3320 - 3320 33200 
G.17 5010 - 5010 50100 
G.18 1550 11440 1550 129900 
G.19 62620 - 74060 626200 
G.20 4920 - 4920 49200 
G.21 1990 - 1990 19900 
G.22 3670 - 3670 36700 

. 
 

 

Table B.3.2k - Flow rate of liquid hydrogen via tanker truck for the multi-objective optimisation (2050). 

 
From grid To grid Flow rate, Qilgg' (kg d-1)  

4 3 3970  
9 7 100  

12 14 8850  
19 18 11440  

 



 

 

C. DATABASE AND RESULTS FOR FRANCE 

APPENDIX C1: ENERGY SOURCES (analysed scenarios for France). 

Table C.1.1- Global energy per sector per period (%) (WWF, 2011) 

Source 2000 2010 2020 2030 2040 2050 

Total electricity 17% 18% 20% 27% 37% 49%* 

Industry fuels and heat 23% 24% 23% 23% 23% 23% 

Building fuels and heat 28% 26% 25% 21% 17% 9% 

Transport fuels 32% 31% 32% 29% 23% 19% 

Grand total 100% 100% 100% 100% 100% 100% 

*Higher electricity demand is listed for 2050 

 

Table C.1.2 - Gross electricity production in France reference 2010. Projection 2020-2050 under different 

scenarios (TWh / year). 

 201042 202043 203044 204041 205045 

Scénario de base (RTE) 564 543 545 756 967 

RTE ref 2030 564 576 610 788 967 

Global Chance-sortir du nuc, 564 438 335 651 967 

AREVA prolong nuclear 564 582 623 795 967 

AREVA sortie nuc ENR fort 564 551 561 764 967 

CEA sortie du nuc 564 526 510 738 967 

 
                                                      
42 Annual statistics RTE (2010) 
43 Hypothesis 
44 (Percebois & Centre d’analyse stratégique., 2012) 
45 (European Climate Fondation; GIEC 2011)  
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Table C.1.3 – Scenarios analysed to project the initial availability of the energy source for France (2020-2050) 
                

Pessimistic regarding the RES in France: Optimistic regarding the RES in France: 
 
1. RTE 2030 
3. AREVA prolongation nucléaire 
 

 
2. Global Chance46 
(81% RES in France in 2050) 

Promote the use of biomass, hydro and wind: Promote the use of PV: 
 
4. AREVA (nuclear off) 
5. CEA (nuclear off) (60% wind in 2050 and 12% 
PV)  
 

 
2. Global Chance 
7. WWF 44 

(29% of the electricity is produced by PV in 2050)  

Projection close to Midi-Pyrénées (%): Average development of PV and wind 
technologies in France: 

 
2. Global Chance 
(15% PV, 35% wind and 31% hydro)  
Midi-Pyrénées 
(14% PV, 47% wind and 39% hydro) (Salingue, 
2012) 
 

 
6. Syndicat des Energies Renouvelables44 

(PV, wind and biomass) 
8. Project Master 3A44 

(19% PV, 45% wind, 22% hydro and 14% biomass) 

 
 

 
Figure C.1.1 - Scenario for electricity production from Global Chance based on (Percebois and Centre d’analyse 

stratégique., 2012) 

 

                                                      
46 Scenarios analysed. 
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Figure C.1.2 - Scenario for RES electricity production  (WWF, 2011). 

 

 

 
Figure C.1.3 - Scenario for RES electricity production based on the SER roadmap (2020-2030) (Syndicat des 

énergies renouvelables, 2012). 
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Figure C.1.4 - Scenario for RES electricity production. Researched by a group of students of the Eco-energy 

Master NTE in the ENSIACET University (2013) 

Table C.2.1 - Total demand for product form i in district g during time period t -DT
igt- (kg per day) 

  kg per day in each time period 

Region/time  2020 2030 2040 2050 

1 4653 34898 81430 116328 
2 9091 68183 159093 227276 
3 3682 27618 64441 92059 
4 3934 29504 68842 98346 
5 4483 33620 78448 112068 
6 8823 66172 154402 220575 
7 6805 51035 119081 170116 
8 3791 28434 66345 94779 
9 3192 23940 55860 79800 
10 5130 38477 89779 128256 
11 24040 180303 420707 601010 
12 7140 53548 124945 178493 
13 2088 15660 36539 52199 
14 6089 45670 106564 152234 
15 8070 60528 141232 201759 
16 9189 68919 160811 229730 
17 9484 71128 165966 237094 
18 5728 42958 100235 143193 
19 4854 36409 84953 121362 
20 13108 98312 229394 327706 
21 16923 126925 296159 423085 

Total 160299 1202240 2805227 4007467 
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Table C.2.2 Average delivery distance between districts g and g’ (km per trip). ArcGIS 

 
 
 

Table C.2.3 RRgg’: Road risk between grids g and g' (units) 

 

 

 

Main city Nº 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Strasbourg 1 0 1099 682 797 500 681 693 363 253 632 551 730 891 156 956 601 1003 534 872 820 490

Bordeaux 2 1099 0 536 686 603 505 410 807 750 851 595 562 220 1002 263 913 406 783 227 721 580
Clermont-
ferrand

3
682 536 0 669 465 681 272 669 428 670 457 238 310 680 274 753 582 768 430 521 191

Caen 4 797 686 669 0 370 181 397 399 617 164 212 907 587 640 861 392 280 262 459 1066 860

Dijon 5 500 603 465 370 0 602 193 204 247 371 158 724 383 352 657 442 503 329 387 635 484

Rennes 6 681 505 681 181 602 0 409 554 849 345 319 919 398 761 672 573 99 443 278 1078 757

Orléans 7 693 410 272 397 193 409 0 397 440 398 185 510 190 545 464 486 310 356 194 793 677
Châlons-en-
Champagne

8
363 807 669 399 204 554 397 0 377 400 187 928 587 207 861 238 549 171 591 944 614

Besançon 9 253 750 428 617 247 849 440 377 0 728 405 477 630 252 904 615 750 548 634 567 237

Rouen 10 632 851 670 164 371 345 398 400 728 0 213 908 588 607 862 228 444 98 623 1027 697

Paris 11 551 595 457 212 158 319 185 187 405 213 0 695 375 394 649 301 362 171 379 972 642

Montpellier 12 730 562 238 907 724 919 510 928 477 908 695 0 548 729 299 1166 820 866 789 159 240

Limoges 13 891 220 310 587 383 398 190 587 630 588 375 548 0 794 274 676 300 546 120 831 501

Metz 14 156 1002 680 640 352 761 545 207 252 607 394 729 794 0 954 445 756 378 739 819 489

Toulouse 15 956 263 274 861 657 672 464 861 904 862 649 299 274 954 0 1099 573 820 394 458 465

Lille 16 601 913 753 392 442 573 486 238 615 228 301 1166 676 445 1099 0 672 130 697 1182 852

Nantes 17 1003 406 582 280 503 99 310 549 750 444 362 820 300 756 573 672 0 533 179 979 773

Amiens 18 534 783 768 262 329 443 356 171 548 98 171 866 546 378 820 130 533 0 550 1115 785

Poit iers 19 872 227 430 459 387 278 194 591 634 623 379 789 120 739 394 697 179 550 0 951 621

Marseille 20 820 721 521 1066 635 1078 793 944 567 1027 972 159 831 819 458 1182 979 1115 951 0 330

Lyon 21 490 580 191 860 484 757 677 614 237 697 642 240 501 489 465 852 773 785 621 330 0

Main city Nº 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Strasbourg 1 0 7 4 9 3 13 9 4 3 8 8 13 9 3 11 7 10 5 10 8 7

Bordeaux 2 7 0 5 7 6 7 5 7 7 9 9 6 4 11 4 13 5 10 4 9 7
Clermont-
ferrand

3
4 5 0 6 2 7 2 5 4 6 6 5 2 6 5 10 6 8 4 9 4

Caen 4 9 7 6 0 7 3 5 7 8 2 6 13 7 9 10 6 5 3 8 15 10

Dijon 5 3 6 2 7 0 11 5 2 2 6 5 7 5 4 6 6 7 3 5 9 4

Rennes 6 13 7 7 3 11 0 6 12 12 4 10 14 7 14 9 8 4 5 5 15 10

Orléans 7 9 5 2 5 5 6 0 6 6 3 5 10 3 8 6 8 5 6 3 10 8
Châlons-en-
Champagne

8
4 7 5 7 2 12 6 0 3 6 5 9 7 3 9 5 9 2 6 8 5

Besançon 9 3 7 4 8 2 12 6 3 0 7 6 8 4 3 10 7 8 4 7 9 5

Rouen 10 8 9 6 2 6 4 3 6 7 0 5 11 4 5 7 5 4 2 7 13 9

Paris 11 8 9 6 6 5 10 5 5 6 5 0 13 6 7 9 7 8 4 6 12 8

Montpellier 12 13 6 5 13 7 14 10 9 8 11 13 0 8 13 4 17 9 14 7 5 8

Limoges 13 9 4 2 7 5 7 3 7 4 4 6 8 0 9 4 10 4 7 2 9 5

Metz 14 3 11 6 9 4 14 8 3 3 5 7 13 9 0 10 7 12 4 8 10 7

Toulouse 15 11 4 5 10 6 9 6 9 10 7 9 4 4 10 0 12 7 10 5 7 9

Lille 16 7 13 10 6 6 8 8 5 7 5 7 17 10 7 12 0 12 4 9 14 10

Nantes 17 10 5 6 5 7 4 5 9 8 4 8 9 4 12 7 12 0 5 3 12 9

Amiens 18 5 10 8 3 3 5 6 2 4 2 4 14 7 4 10 4 5 0 9 13 9

Poitiers 19 10 4 4 8 5 5 3 6 7 7 6 7 2 8 5 9 3 9 0 11 7

Marseilles 20 8 9 9 15 9 15 10 8 9 13 12 5 9 10 7 14 12 13 11 0 7

Lyon 21 7 7 4 10 4 10 8 5 5 9 8 8 5 7 9 10 9 9 7 7 0

148 140 104 146 102 173 116 117 120 122 144 192 114 149 153 176 140 126 124 204 146Total
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SAFETY  RELATIVE RISK (DETAILED CALCULATION)  

Table C.2.4 –Weigh factor risk of population in each grid or district in the Midi-Pyrénées region -WFPg- 
(calculated similarly to that of Kim and Moon (2011). 
 

N° Region Population Type Score 

1 Alsace 1,845,687.00 small 1 

2 Aquitaine 3,232,352.00 medium 2 

3 Auvergne 1,347,387.00 small 1 

4 Basse-Normandie 1,473,494.00 small 1 

5 Bourgogne 1,642,115.00 small 1 

6 Bretagne 3,199,066.00 medium 2 

7 Centre 2,548,065.00 medium 2 

8 Champagne-Ardenne 1,335,923.00 small 1 

9 Franche-Comté 1,171,763.00 small 1 

10 Haute-Normandie 1,836,954.00 small 1 

11 Île-de-France 11,786,234.00 large 3 

12 Languedoc-Roussillon 2,636,350.00 medium 2 

13 Limousin 742,771.00 small 1 

14 Lorraine 2,350,920.00 medium 2 

15 Midi-Pyrénées 2,881,756.00 medium 2 

16 Nord - Pas-de-Calais 4,038,157.00 large 3 

17 Pays de la Loire 3,571,495.00 medium 2 

18 Picardie 1,914,844.00 small 1 

19 Poitou-Charentes 1,770,363.00 small 1 

20 Provence-Alpes-Côte d'Azur 4,899,155.00 large 3 

21 Rhône-Alpes 6,230,691.00 large 3 

 
Table C.2.5 - Factor α defined for the different production and storage technologies and sizes (units). 
 α mini small medium large 
Steam methane reforming   - 0.1 0.5 1 
Electrolysis - 0.2 0.5 - 
Electrolysis distributed   - 0.1 0.15 0.2 
Storage 0.1 0.3 0.7 1 

 
 

Table C.2.6 - Results of inherent risks factors for the activities  
of the hydrogen supply chain. Midi-Pyrénées case study (units). 

  mini small medium large 
RP steam methane reforming - 0.27 1.33 2.67 
RP Gasification* - - 1.33 2.67 
RP Electrolysis (distributed) - 0.20 0.30 0.40 
RP Electrolysis - 0.40 1.00 - 
RS Super-insulated spherical tanks 0.30 0.90 2.10 3 
RS Pressurized cylindrical vessels - - - 3 

        
RT Tanker truck 1.33       
RT Tube Trailer 2.00       
          
*Assumption         
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APPENDIX C3: DETAILED RESULTS 
Table C.3.1a - Summary of results for case A.1 cost minimisation. France (2020-2050) 

 

Variable 

DLig (kg d-1) Dlig (kg d-1) 

2020 2030 2040 2050 2020 2030 2040 2050 

G.1         4653 34898 81430 116328 - - - - 

G.2         300 300 300 300 8791 67883 158793 226976 

G.3           - - - - 3682 27618 64441 92059 

G.4            - - - - 3934 29504 68842 98346 

G.5             300 300 300 300 4183 33320 78148 111768 

G.6             - - - - 8823 66172 154402 220575 

G.7         - - - - 6805 51035 119081 170116 

G.8             - - - - 3791 28434 66345 94779 

G.9         3192 300 300 300 - 23640 55560 79500 

G.10        5130 10000 10000 10000 - 28477 79779 118256 

G.11        50 180303 420707 601010 23990 - - - 

G.12            - - - - 7140 53548 124945 178493 

G.13        2088 300 300 300 - 15360 36239 51899 

G.14        - - - - 6089 45670 106564 152234 

G.15            300 300 300 300 7770 60228 140932 201459 

G.16            9189 10000 10000 10000 - 58919 150811 219730 

G.17        - - - - 9484 71128 165966 237094 

G.18          42958 100235 143193 5728 - - - 

G.19          36409 84953 121362 4854 - - - 

G.20            13108 10000 11974 131498 - 88312 217420 196208 
G.21            16923 126925 296159 423085 - - - - 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



224 Multi-objective optimisation of a hydrogen supply chain 

 

Table C.3.1b - Flow rate of liquid hydrogen via tanker truck for the cost minimisation (2020-2050). 

Case A.1. France 

From region To region Flow rate, Qilgg' (kg d-1) 

2020 2030 2040 2050 

1 14 6089       

10 4 3934       
10 5 4183       

10 6 8823       
10 7 6805       

10 11 23990       
10 17 9484       
10 18 5728       

11 4   29504 68842   
11 5   33320 78148 111768 
11 6       77156 
11 7   51035 119081 170116 

11 8   3500     
16 8 3791       
18 4       98346 
18 6       22209 
18 8   24934 66345 94779 
18 10   28477 79779 118256 
18 14   45670 106564 152234 
18 16   58919 150811 219730 
19 2   67883 158793 226976 
19 6   66172 154402 121210 
19 13   15360 36239 51899 
19 15   60228 140932 201459 
19 17   71128 165966 237094 
20 12 7140       
20 15 7770       
21 2 8791       
21 3 3682 27618 64441 92059 
21 9   23640 55560 79500 
21 12   53548 124945 178493 
21 19 4854       
21 20   88312 217420 196208 
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Table C.3.2a - Summary of results for case A.2 GWP minimisation. France (2020-2050) 
 

Variable 

DLig (kg d-1) Dlig (kg d-1) 

2020 2030 2040 2050 2020 2030 2040 2050 

G.1         4653 11484 12806 102672 - 23415 68624 13656 

G.2         300 300 300 300 8791 67883 158793 226976 

G.3           3682 27618 49126 65217 - - 15315 26842 

G.4            3934 29504 60294 80043 - - 8548 18304 

G.5             4483 33620 78448 112068 - - - - 

G.6             8823 66172 154402 220575 - - - - 

G.7         6805 51035 119081 170116 - - - - 

G.8             3791 28434 66345 94779 - - - - 

G.9         3192 4451 6395 8489 - 19489 49465 71311 

G.10        5130 38477 89779 116743 - -   11513 

G.11        4794 5984 8577 11896 19246 174319 412130 589114 

G.12            7140 53548 124945 178493 - - - - 

G.13        2088 4896 7035 9338 - - - - 

G.14        742 45670 106564 152234 - 10764 29505 42861 

G.15            8070 60528 141232 201759 5347 - - - 

G.16            9189 68919 160811 229730 - - - - 

G.17        9484 71128 129538 171960 - - 36428 65134 

G.18        2228 42958 100235 143193 3500 - - - 

G.19        4854 36409 84953 121362 - - - - 

G.20            13108 30194 79034 105187 - 68117 150360 222519 
G.21            16923 41376 296159 423085 - 85549 - - 
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Table C.3.2b - Flow rate of liquid hydrogen via tanker truck for the GWP minimisation (2020-2050). 

Case A.2. France 

From 
region 

To 
region 

Flow rate, Qilgg' (kg d-1) 
2020 2030 2040 2050 

1 14 5347       
3 21   6567     
5 2       3870 
5 11 14376 18721     
5 20     8965   
5 21   7641     
6 2     12418   
6 17     36428 49232 
7 2     75232 87831 
7 13   4300     
8 2     5574 5178 
8 9     45965   
8 11     223851 353685 
10 11 4870       
12 20   68117 125210 153581 
12 21   52427     
14 1   23415 68624 13656 
14 9   19489 3500 71311 
14 21   18914     
15 2   47020 26757 116422 
16 3     15315   
16 10       6228 
16 11     11353 17163 
16 13     5666   
16 18 3500       
18 2     32186 9831 
18 4     8548 18304 
18 10       5285 
18 11   155598 176926 218266 
18 13     23839 42861 
18 17       15902 
19 2 8791 20863 6626   
19 13   6464     
21 2       3844 
21 3       26842 
21 20     16186 68938 
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Table C.3.3a - Summary of results for case A.3 risk minimisation. France (2020-2050) 
 

Variable 

DLig (kg d-1) Dlig (kg d-1) 

2020 2030 2040 2050 2020 2030 2040 2050 

G.1         4653 34898 81430 116328 - - - - 

G.2         9091 68183 159093 227276 - - - - 

G.3            3682 27618 64441 92059 - - - - 

G.4             3934 29504 68842 98346 - - - - 

G.5              4483 33620 78448 112068 - - - - 

G.6              8823 66172 154402 220575 - - - - 

G.7         6805 51035 119081 170116 - - - - 

G.8                28434 66345 94779 3791 - - - 

G.9         3192 23940 55860 79800 - - - - 

G.10        5130 38477 89779 128256 - - - - 

G.11        24040 180303 420707 601010 - - - - 

G.12             7140 53548 124945 178493 - - - - 

G.13        2088 15660 36539 52199 - - - - 

G.14          45670 106564 152234 6089 - - - 

G.15             8070 60528 141232 201759 - - - - 

G.16             9189 68919 160811 229730 - - - - 

G.17        9484 71128 165966 237094 - - - - 

G.18          42958 100235 143193 5728 - - - 

G.19        4854 36409 84953 121362 - - - - 

G.20             13108 98312 229394 327706 - - - - 

G.21             16923 126925 296159 423085 - - - - 
 
 

Table C.3.3b - Flow rate of liquid hydrogen via tanker truck for the risk minimisation (2020-2050). 

Case A.3. France 

 

From region To region Flow rate, Qilgg' (kg d-1) 
2020 2030 2040 2050 

1 14 6089 - - - 
10 18 5728 - - - 
16 8 3791 - - - 
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Table C.3.4a - Comparison between results in M-TOPSIS. Multi-objective optimisation. 
Case B.1: France (2020-2050) 

 
 

Altern. Total daily cost GWP Risk  MATRIZ V [A*wj] D+ D- Ratio   Rank 

($ per day) (kg CO2 per day) (units)  M-Topsis 

x1 35331096.33 50049494.13 2410 
 

0.145 0.124 0.038 0.232 0.084 0.267 6 
x2 34097042.29 58049033.29 2405 

 
0.139 0.144 0.038 0.227 0.102 0.311 8 

x3 29287859.15 88658847.48 2405 
 

0.120 0.220 0.038 0.222 0.175 0.441 19 
x4 37068448.13 34050415.79 3175 

 
0.152 0.085 0.051 0.240 0.055 0.186 1 

x5 32016854.79 66048572.46 3175 
 

0.131 0.164 0.051 0.214 0.121 0.361 12 
x6 29508145.32 87941588.61 3175 

 
0.121 0.218 0.051 0.211 0.174 0.452 21 

x7 44665143.88 26050876.63 3782 
 

0.183 0.065 0.060 0.236 0.073 0.236 3 
x8 30571006.05 74048111.62 4600 

 
0.125 0.184 0.073 0.194 0.144 0.425 17 

x9 43992770.42 26050876.63 4769 
 

0.180 0.065 0.076 0.226 0.077 0.254 4 
x10 36216445.19 34050415.79 4797 

 
0.148 0.085 0.076 0.223 0.064 0.222 2 

x11 35301449.54 42049954.96 4795 
 

0.144 0.104 0.076 0.213 0.076 0.264 5 
x12 33628612.8 50049494.13 4791 

 
0.138 0.124 0.076 0.206 0.091 0.306 7 

x13 32845777.86 58049033.29 4798 
 

0.134 0.144 0.076 0.199 0.108 0.352 10 
x14 32008776.58 66048572.46 4700 

 
0.131 0.164 0.075 0.195 0.126 0.392 14 

x15 30707979.88 74048111.62 4760 
 

0.126 0.184 0.076 0.192 0.144 0.429 18 
x16 30087373.73 81999321.73 4783 

 
0.123 0.204 0.076 0.190 0.163 0.463 23 

x17 28631590.14 89485308.7 4799 
 

0.117 0.222 0.076 0.192 0.181 0.485 27 
x18 57364478.75 18051337.46 7901 

 
0.235 0.045 0.126 0.205 0.148 0.418 16 

x19 44033617.4 26050876.63 7907 
 

0.180 0.065 0.126 0.197 0.111 0.360 11 
x20 35704038.6 34050415.79 7994 

 
0.146 0.085 0.127 0.194 0.102 0.345 9 

x21 34179800.45 42049954.96 7900 
 

0.140 0.104 0.126 0.184 0.109 0.371 13 
x22 33090863.3 50049494.13 7900 

 
0.135 0.124 0.126 0.174 0.120 0.407 15 

x23 32286971.6 58049033.29 7900 
 

0.132 0.144 0.126 0.166 0.133 0.446 20 
x24 31119055.72 65910159.69 7900 

 
0.127 0.164 0.126 0.161 0.148 0.480 25 

x25 30391522.96 74048111.62 7900 
 

0.124 0.184 0.126 0.156 0.164 0.513 29 
x26 29391752.46 82023341.73 7900 

 
0.120 0.204 0.126 0.156 0.181 0.538 31 

x27 29074544.42 88501745.95 7900 
 

0.119 0.220 0.126 0.155 0.196 0.557 36 
x28 57412447.01 18051337.46 11000 

 
0.235 0.045 0.175 0.186 0.181 0.494 28 

x29 45645401.52 26050876.63 11020 
 

0.187 0.065 0.176 0.174 0.156 0.472 24 
x30 35901418.76 34050415.79 11002 

 
0.147 0.085 0.175 0.174 0.146 0.457 22 

x31 34584531.15 42049954.96 11000 
 

0.141 0.104 0.175 0.161 0.152 0.485 26 
x32 33253483.08 50049494.13 11000 

 
0.136 0.124 0.175 0.151 0.160 0.514 30 

x33 32306117.79 58049033.29 11001 
 

0.132 0.144 0.175 0.141 0.170 0.546 34 
x34 31379205.49 66048572.46 11000 

 
0.128 0.164 0.175 0.134 0.182 0.575 38 

x35 30397115.1 74048111.62 11000 
 

0.124 0.184 0.175 0.130 0.195 0.600 40 
x36 29525747.51 82047650.79 11000 

 
0.121 0.204 0.175 0.129 0.210 0.620 41 

x37 28311473 90047189.96 11000 
 

0.116 0.224 0.175 0.132 0.225 0.631 43 
x38 57954947.47 18051337.46 14200 

 
0.237 0.045 0.226 0.179 0.224 0.556 35 

x39 44794626.85 26050876.63 14229 
 

0.183 0.065 0.227 0.168 0.201 0.545 33 
x40 36156572.94 34050415.79 14200 

 
0.148 0.085 0.226 0.165 0.195 0.541 32 

x41 34761377.23 42049954.96 14200 
 

0.142 0.104 0.226 0.152 0.199 0.566 37 
x42 33787340.33 50049494.13 14200 

 
0.138 0.124 0.226 0.140 0.205 0.594 39 

x43 32632169.27 58049033.29 14200 
 

0.133 0.144 0.226 0.131 0.213 0.620 42 
x44 31307709.47 66048572.46 14200 

 
0.128 0.164 0.226 0.124 0.223 0.642 44 

x45 30876060.69 74048111.62 14202 
 

0.126 0.184 0.226 0.118 0.234 0.665 45 
x46 29628363.27 82029177.07 14200 

 
0.121 0.204 0.226 0.118 0.246 0.677 46 
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Table C.3.4b - Summary of results for case B1: multi-objective optimisation.  France (2020-2050) 
 

Variable 

DLig (kg d-1) Dlig (kg d-1) 

2020 2030 2040 2050 2020 2030 2040 2050 

G.1         4653 34898 10000 12440     71430 103888 

G.2         9091 300 159093 227276   67883     

G.3           - - - - 3682 27618 64441 92059 

G.4            - - - - 3934 29504 68842 98346 

G.5             4483 1719 3565 9105   31901 74883 102964 

G.6             8823 2716 154402 220575   63456     

G.7         6805 17528 119081 170116   33506     

G.8             3791 1888 4405 300   26546 61940 94479 

G.9         3192 3161 3057 1500   20779 52803 78300 

G.10        5130 10000 10000 10000   28477 79779 118256 

G.11        400 180303 420707 601010 23640       

G.12            7140 1777 9963 10753   51771 114982 167740 

G.13        2088 3311 300 3036   12349 36239 49164 

G.14            106564 152234 6089 45670     

G.15            3210 60528 141232 201759 4860       

G.16            9189 15459 11122 15889   53460 149689 213841 

G.17        9484 71128 165966 237094 - - - - 

G.18          42958 100235 143193 5728       

G.19        4854 300 4335 6574   36109 80618 114788 

G.20            13108 62485 229394 327706   35827     

G.21            16923 126925 296159 423085 - - - - 
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Table C.3.4c - Flow rate of liquid hydrogen via tanker truck case B1: multi-objective optimisation. 

France (2020-2050) 
 

 
From region To region Flow rate, Qilgg' (kg d-1) 

2020 2030 2040 2050 

1 14 6089       
2 13     36239   
2 19     5050   
6 4     68842 98346 
7 3 3682   57314 92059 
7 13       49164 
7 19     24205 3500 
8 11 5709       

10 4 3934       
10 11 14432       
10 18 5728       
11 5   28081 74883 102964 
12 15 4860       
14 1     71430 103888 
14 9     52803 78300 
15 2   67883     
15 12   51771 59068   
15 13   12349     
15 19   3760     
15 20   4010     
16 11 3500       
17 6   63456     
17 7   33506     
17 19   32348 51364 111288 
18 4   29504     
18 8   26546 61940 94479 
18 10   28477 79779 118256 
18 14   45670     
18 16   53460 149689 213841 
20 12     55913 167740 
21 3   27618 7127   
21 5   3820     
21 9   20779     
21 20   31818     
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Table C.3.5a - Summary of results for case B2: economic cycle. France (2020-2050) 
 

Variable 

DLig (kg d-1) Dlig (kg d-1) 

2020 2030 2040 2050 2020 2030 2040 2050 

G.1         4653 34898 81430 10000 - - - 106328 

G.2         300 300 300 227276 8791 67883 158793 - 

G.3           - - - - 3682 27618 64441 92059 

G.4            - - - - 3934 29504 68842 98346 

G.5             300 300 300 300 4183 33320 78148 111768 

G.6             - - - - 8823 66172 154402 220575 

G.7         - - - - 6805 51035 119081 170116 

G.8             - - - - 3791 28434 66345 94779 

G.9         3192 300 300 300 - 23640 55560 79500 

G.10        5130 10000 10140 10000 - 28477 79639 118256 

G.11        50 180303 420707 601010 23990 - - - 

G.12            - - - - 7140 53548 124945 178493 

G.13        2088 300 300 300 - 15360 36239 51899 

G.14        - - 10819 853 6089 45670 95745 151381 

G.15            300 300 300 300 7770 60228 140932 201459 

G.16            9189 38878 150000 10000 - 30042 10811 219730 

G.17        - - 165966 237094 9484 71128 - - 

G.18        - - - 143193 5728 42958 100235 - 

G.19        - - - - 4854 36409 84953 121362 

G.20            13108 98312 20635 10073 - - 208759 317633 
G.21            16923 126925 296159 423085 - - - - 
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Table C.3.5b - Flow rate of liquid hydrogen via tanker truck for case B2:economic cycle. 
France (2020-2050) 

From region To region Flow rate, Qilgg' (kg d-1) 
2020 2030 2040 2050 

1 14 6089 - - - 

2 6 - - - 3680 

2 7 - - - 4179 

2 12 - - - 120469 

2 13 - - - 51899 

2 15 - - - 201459 

2 19 - - - 121362 

10 4 3934 - - - 

10 5 4183 - - - 

10 6 8823 - - - 

10 7 6805 - - - 

10 11 23990 - - - 

10 17 9484 - - - 

10 18 5728 - - - 

11 2 - 67883 - - 

11 3 - 27618 - - 

11 4 - 29504 68842 - 

11 5 - 33320 78148 111768 

11 6 - 66172 

 

81335 

11 7 - 51035 119081 165937 

11 8 - 28434 66345 - 

11 9 - 23640 - - 

11 10 - 28477 79639 - 

11 13 - 15360 - - 

11 14 - 45670 16242 - 

11 15 - 60228 - - 

11 16 - 30042 10811 - 

11 17 - 71128 - - 

11 18 - 42958 100235 - 

11 19 - 36409 - - 

17 2 - - 158793 - 

17 6 - - 154402 131432 

17 13 - - 36239 - 

17 19 - - 84953 - 

18 1 - - - 106328 

18 4 - - - 98346 

18 6 - - - 4128 

18 8 - - - 94779 

18 10 - - - 118256 

18 14 - - - 151381 

18 16 - - - 219730 

20 12 7140 50048 - - 

20 15 7770 - - - 

21 2 8791 - - - 

21 3 3682 - 64441 92059 

21 9 - - 55560 79500 

21 12 - 3500 124945 - 

21 14 - - 79504 - 

21 15 - - 140932 - 

21 19 4854 - - - 

21 20 - - 208759 - 

21 12 - - - 58023 

21 20 - - - 317633 



 

 

D. M-TOPSIS METHODOLOGY 

 

TOPSIS is based upon the concept that the chosen alternative should have the shortest distance from 

the Positive Ideal Solution (PIS) and the furthest from the Negative Ideal Solution (NIS) (García-

Cascales & Lamata, 2012) (Ren et al., 2007). The steps are: 

   

1. Data treatment (max max or min min, all objectives in the same sence): 

(i) the reciprocal ratio method (X’ij=1/Xij) 

(ii) the difference method (X’ij=1-Xij) 

2. Calculation of the normalized decision matrix. Different ways to normalize: 

(i) [ ] )'(/'
, ijiijijnxmij XMaxXaaA ==   

(ii) [ ] ( ) ( ))'()'(/)'('
, ijiijiijiijijnxmij XMinXMaxXMinXaaA −−==   

(iii)   [ ] ∑
=

==
n

i
ijijijnxmij XXaaA

1

2
,

)'(/'   

3. Calculation of  the weighted normalized decision matrix 

 ijjij awv ⊗=  

4. Determination of the positive ideal and negative ideal. 

{ } ( )( ){ }',min,max,..., 11 JjvJjvvvA ijiiji ∈∈== +++  

{ } ( )( ){ }',max,min,..., 11 JjvJjvvvA ijiiji ∈∈== −−−  

Where J is associated with benefit criteria and J’ is associated with cost criteria 

5. Calculatation of the separation measures, using the n-dimensional Euclidean distance. The 

separation from the positive and negative ideals solution is given as 

A
p

p
e

n
d

ix
 

D 
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6. Calculation of the relative closeness to the ideal solution 

  (i)  −+

−

+
=

ii

i
i dd

d
R  � Topsis 

  (ii)  ( )[ ] ( )[ ]22
maxmin −−++ −+−= iiiii DDDDR  � M-Topsis 

 

Rank reversal is a phenomenon that occurs when a decision maker, in the process of selecting an 

alternative from a set of choices, is confronted with new alternatives that were not thought about when 

the selection process was initiated. It depends on the relationship between this new alternative and the 

old ones under each criterion (García-Cascales and Lamata, 2012). 
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