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-Introduction

Quantum spin chains provide a captivating arena for exploring numerous physical phenomena in quantum mechanics, ranging from magnetism and quantum phases of matter to quantum information processing and quantum simulation. As such, they attract a lot of interest for both fundamental science and technological advancements.

A quantum spin chain is a specific instance of quantum many-body systems. It can be thought as a line of particles that interact with each other due to their spin. This thesis is exclusively devoted to closed systems, thereby assuming that the system is described by a time-independent Hamiltonian and undergoes unitary time evolution. Additionally, we always assume that the interactions are of short range. Our primary focus lies in exploring quantum spin chains in non-equilibrium conditions, paying special attention to the effects of inhomogeneities on the correlations and entanglement structure.

An important class of quantum spin chains are the integrable ones, which are models with a specific algebraic structure [START_REF] Faddeev | Algebraic Aspects of Bethe Ansatz[END_REF]. The integrable chains that we consider present a number of local conservation laws that grows at least linearly in system size. From the point of view of time evolution, integrable models are special, since their dynamics is heavily constrained by the large number of conservation laws, resulting in peculiar properties such as the absence of thermalization [START_REF] Kinoshita | A quantum Newton's cradle[END_REF][START_REF] Rigol | Relaxation in a Completely Integrable Many-Body Quantum System: An Ab Initio Study of the Dynamics of the Highly Excited States of 1D Lattice Hard-Core Bosons[END_REF][START_REF] Cazalilla | Effect of Suddenly Turning on Interactions in the Luttinger Model[END_REF][START_REF] Eisert | Quantum many-body systems out of equilibrium[END_REF][START_REF] Polkovnikov | Colloquium: Nonequilibrium dynamics of closed interacting quantum systems[END_REF]. The interest in integrable models is mainly motivated by the existence of some methods that in principle allow one to get explicit expressions for many of their important quantities. This has in turn proved extremely useful to gain fundamental insights on both equilibrium and dynamical properties of quantum many-body systems. Moreover, despite the fact that integrable models are special, phenomena identified in them are always potentially observable, although not necessarily exactly as predicted. Prethermalisation is a remarkable example of this kind: generic systems, which typically thermalize [START_REF] Deutsch | Eigenstate thermalization hypothesis[END_REF], may be close enough to integrable ones to take an anomalously long time to thermalize, exhibiting prethermalisation plateaux [START_REF] Bertini | Pre-relaxation in weakly interacting models[END_REF][START_REF] Langen | Prethermalization and universal dynamics in near-integrable quantum systems[END_REF]. Many of our results fall under the framework of integrable systems and reveal properties shared by generic integrable models. Among the integrable models, a special place is occupied by non-interacting quantum spin chains. Those are systems with a very specific structure that allows one to carry out many computations that are unfeasible for other models. However, they still present a degree of complexity that makes them the perfect playground for a first investigation of potentially any physical phenomenon. For example, one can already provide examples of quantum phase transitions and show that relaxation in isolated quantum systems occurs at the level of local properties, with appropriate statistical ensembles.

We are mostly interested in the large-time dynamics of system. In the context of integrable models prepared in translationally-invariant setups, it has been established that the generalized Gibbs ensemble (GGE) accurately describes the limit of expectation values of local observables, i.e. observables acting only on a few adjacent 2 Chapter 1. Introduction spins. Conveniently, the GGE is a state determined without solving explicitly the equations of motion, under the assumption that the only property of the initial state that matters in the large-time limit is the value of the conservation laws (cf. Review [START_REF] Vidmar | Generalized Gibbs ensemble in integrable lattice models[END_REF] and references therein). In inhomogeneous setups, instead, the expectation value of local observables is well described by the theory of generalized hydrodynamics (GHD). GHD is based on the assumption that, despite the initial state being inhomogeneous, we can still achieve an efficient late-time description of local subsystems in terms of homogeneous states, each described by a GGE. GHD has been successfully applied to compute the expectation value of local observables in integrable quantum spin chains prepared in partitioning protocols, where two chains prepared in different homogeneous states are joined at time zero and let evolve as a whole . Remarkably, GHD has also been shown to describe experimental setups of cold atomic gases constrained to one dimension [START_REF] Schemmer | Generalized hydrodynamics on an atom chip[END_REF][START_REF] Malvania | Generalized hydrodynamics in strongly interacting 1d bose gases[END_REF][START_REF] Møller | Extension of the generalized hydrodynamics to the dimensional crossover regime[END_REF].

However, GHD comes with some limitations. Among those, we are mostly concerned with the following two issues. In both cases, relying solely on conservation laws proves inadequate when making predictions in the large-time limit.

1. Connected correlations are an important object to study, since they contain crucial information about the inner structure of the system. GHD is however primarily designed to address the behavior of expectation values of local observables, and, as such, it may not fully capture situations where correlations are examined on large scales. This includes in particular the study of how connected correlations go to zero as the distance(s) between the spins involved goes to infinity. Such a problem is not only theoretical, but it also has practical applications: in numerical and experimental scenarios, time and distances are large but finite, and GHD's applicability is limited to a finite spatial scale; consequently, using GHD to analyze correlations in the large-distance limit becomes questionable.

2. Macroscopic effects from local perturbations (MELP), where by local perturbation we mean a local action on the initial state such as a local measurement, also go beyond the framework of GHD. In ordinary systems, local perturbations do not change the macroscopic properties of a state whatever long the time is. The naive expectation is that their effects spread out across the chain but fade away with time, meaning that, in the large-time limit, the state of the model is indistinguishable from the initial unperturbed state for what concerns the expectation value of any local observable. Pictorially, the situation is analogous to what happens when a rock is thrown into a lake: some ripples form around the point where the rock hits the surface, but then dynamics spreads them all over the lake's surface and eventually, waiting a long time, they cannot be distinguished anymore. Recently, three circumstances have been pointed out in which this picture can break down. The first realization of this phenomenon in quantum spin chains is found in presence of spontaneous symmetry breaking, and it was observed first numerically in Ref. [START_REF] Zauner-Stauber | Time evolution within a comoving window: scaling of signal fronts and magnetization plateaus after a local quench in quantum spin chains[END_REF], then described analytically in Ref. [START_REF] Eisler | Front dynamics in the XY chain after local excitations[END_REF]. Here a local perturbation, linking different physical (i.e. symmetry-breaking) ground states, leads to the reconfiguration of a number of spins that grows linearly with time and such that the effect does not disappear even in the infinite-time limit; in this sense, the effects of the perturbation are macroscopic. We mention also Refs. [START_REF] Eisler | Front dynamics in the XY chain after local excitations[END_REF][START_REF] Eisler | Universal front propagation in the quantum Ising chain with domain-wall initial states[END_REF][START_REF] Gruber | Entanglement spreading after local fermionic excitations in the XXZ chain[END_REF][START_REF] Eisler | Entanglement spreading after local and extended excitations in a free-fermion chain[END_REF], where MELP were considered in fermionic chains. MELP were observed also in quantum spin chains with Hilbert space fragmentation [START_REF] Bidzhiev | Macroscopic effects of localized measurements in jammed states of quantum spin chains[END_REF], where the Hilbert space is split into an exponentially-large number of dynamically disconnected sectors [START_REF] Sala | Ergodicity Breaking Arising from Hilbert Space Fragmentation in Dipole-Conserving Hamiltonians[END_REF][START_REF] Khemani | Localization from Hilbert space shattering: From theory to physical realizations[END_REF][START_REF] Moudgalya | Quantum manybody scars and Hilbert space fragmentation: a review of exact results[END_REF][START_REF] Moudgalya | Hilbert Space Fragmentation and Commutant Algebras[END_REF]. In this case the perturbation is applied to jammed states, a striking feature found in fragmented models [START_REF] Moudgalya | Thermalization and Its Absence within Krylov Subspaces of a Constrained Hamiltonian[END_REF][START_REF] Yang | Hilbert-Space Fragmentation from Strict Confinement[END_REF][START_REF] Turner | Weak ergodicity breaking from quantum many-body scars[END_REF][START_REF] Joseph | Exact solution of the Floquet-PXP cellular automaton[END_REF][START_REF] Bastianello | Fragmentation and emergent integrable transport in the weakly tilted ising chain[END_REF][START_REF] Gautam | Conservation laws and integrability of a one-dimensional model of diffusing dimers[END_REF], where dynamics is hindered by the density of particles being so large that they cannot move. Finally, the third class of models presenting MELP are those with semi-local conservation laws [START_REF] Fagotti | Global quenches after localized perturbations[END_REF], which were linked to symmetry-protected topological order [START_REF] Fagotti | Nonequilibrium symmetry-protected topological order: emergence of semilocal Gibbs ensembles[END_REF].

The exotic occurrence of MELP is relevant from a fundamental point of view: beside going beyond GHD, it is always the symptom of a compelling physical phenomenon, as seen in the three examples above. Moreover, as we will see, it also offers a convenient framework to make highly-non-trivial entanglement structures naturally emerge from local time evolution. Let us clarify that in our analysis, the term local perturbation refers exclusively to perturbations applied to the state: local perturbations on the Hamiltonian can also have macroscopic effects [START_REF] Torres-Herrera | Local quenches with global effects in interacting quantum systems[END_REF], but it is a separate phenomenon that will not be considered here.

In this thesis, we address the two limitations of GHD mentioned above.

1. Specializing to non-interacting theories, we develop a theoretical framework to include connected correlations in the framework of hydrodynamics, answering the question of how local is local enough for a correlation to be described by GHD. A promising approach is to scale the distance between spins with time, which allows one to consider the large-time limit and the large-distance limit simultaneously. This approach also enables a reliable comparison between analytical predictions and numerical results when studying the decay of correlations with distance. As a byproduct, we also discuss Gaussianification in partitioning protocols. Gaussianification is a phenomenon that happens quite generally in non-interacting systems and predicts that a state becomes locally indistinguishable from a Gaussian state in the large-time limit. Gaussianification was addressed mainly for states evolving under a translationally-invariant short-range Hamiltonian, with initially finite correlation length that relax to a GGE in the large-time limit [START_REF] Gluza | Equilibration towards generalized Gibbs ensembles in non-interacting theories[END_REF][START_REF] Murthy | Relaxation to Gaussian and generalized Gibbs states in systems of particles with quadratic Hamiltonians[END_REF]. That excludes from the picture any partitioning protocol, for which the Lieb-Robinson bound [START_REF] Lieb | The finite group velocity of quantum spin systems[END_REF] prevents global relaxation. We show Gaussianification for partitioning protocols, discussing also how local the observable should be for the phenomenon to happen.

2. Then we focus on MELP. First of all, we take a step further in the description of the phenomenon for jammed states started in Ref. [START_REF] Bidzhiev | Macroscopic effects of localized measurements in jammed states of quantum spin chains[END_REF]. So far, this effect was reported in a class of jammed states that allow for an exact analytic analysis Chapter 1. Introduction but are, however, not simple enough to make us gain a clear understanding of the phenomenon. Our results are first of all a solution to that problem: we study such an effect in a setup that stands out for its clarity. After that, we discuss a new class of models in which MELP are observed. In particular, we consider quantum spin-chains whose Hamiltonian has a trivial separable excited eigenstate that is not related to any conservation law. We show that, typically, not only a single projective measurement of just one spin in the trivial eigenstate has macroscopic effects, but it even causes the natural growth of a macroscopically-entangled state, which is a special kind of entanglement of the same kind of the one described in the "Schrödinger's cat" paradox [START_REF] Fröwis | Macroscopic quantum states: Measures, fragility, and implementations[END_REF].

Remarkably, in both instances of MELP described above (in jammed states and in trivial product states not related to symmetries), the initial state is a highlyexcited eigenstate of the Hamiltonian with low entanglement properties. For generic Hamiltonians, those states represent quantum scars [START_REF] Serbyn | Quantum many-body scars and weak breaking of ergodicity[END_REF]. The last part of this thesis deals with some natural questions stemming from that observation, such as for which model should we expect quantum scars and how many.

The conjecture about the behavior of eigenstates in generic quantum systems is known as eigenstate thermalization hypothesis (ETH), formulated to explain the process of thermalization. It predicts that individual eigenstates of generic quantum systems act as thermal ensembles and therefore the system's relaxation does not depend strongly on the initial conditions [START_REF] Deutsch | Quantum statistical mechanics in a closed system[END_REF][START_REF] Srednicki | Chaos and quantum thermalization[END_REF]. Quantum scars are eigenstates that, being strongly non-thermal with low bipartite entanglement, violate ETH. However this violation is weak, since quantum scars constitute a negligible portion of the Hilbert space and coexist within a much larger collection of thermal eigenstates. Quantum scars have recently attracted a lot of attention [START_REF] Moudgalya | Quantum manybody scars and Hilbert space fragmentation: a review of exact results[END_REF][START_REF] Dooley | Robust quantum sensing in strongly interacting systems with many-body scars[END_REF][START_REF] Zhang | Many-body Hilbert space scarring on a superconducting processor[END_REF], also in connection with their macroscopic-entanglement properties [START_REF] Desaules | Extensive multipartite entanglement from su(2) quantum many-body scars[END_REF]. The entanglement of excited states have been largely studied , as well as the special properties of lowentangled ones [START_REF] Castilho Alcaraz | Entanglement of Low-Energy Excitations in Conformal Field Theory[END_REF][START_REF] Ibáñez Berganza | Entanglement of excited states in critical spin chains[END_REF][START_REF] Storms | Entanglement in ground and excited states of gapped free-fermion systems and their relationship with Fermi surface and thermodynamic equilibrium properties[END_REF][START_REF] Herwerth | Excited states in spin chains from conformal blocks[END_REF][START_REF] Jafarizadeh | Bipartite entanglement entropy of the excited states of free fermions and harmonic oscillators[END_REF][START_REF] Zhang | Corrections to universal Rényi entropy in quasiparticle excited states of quantum chains[END_REF][START_REF] Zhang | Rajabpour. Entanglement of magnon excitations in spin chains[END_REF]. It was proved by Hastings that, if the Hamiltonian is gapped and non-degenerate, then, considering the ground state, the entropy of any block of spins has only a sub-leading dependence on the block's length [START_REF] Hastings | An area law for one-dimensional quantum systems[END_REF]. This is known as "area law" and applies to systems in higher dimensions as well [START_REF] Eisert | Colloquium: Area laws for the entanglement entropy[END_REF]. In 1D the area law generally breaks down at quantum phase transitions, where the entropy of a spin block can develop a logarithmic dependence on the block's length [START_REF] Calabrese | Entanglement entropy and conformal field theory[END_REF]. The statements about excited states are instead less precise. In general, consistently with ETH, excited states are expected to follow a volume-law [START_REF] Hayden | Aspects of Generic Entanglement[END_REF], meaning that the entropy of a block of spins is proportional to the block's length. But that does not have to hold for all excited states. For example, integrable systems exhibit infinitely many excited states with sub-extensive entropies and energies that are extensively larger than the one of the ground state [START_REF] Alba | Entanglement entropy of excited states[END_REF][START_REF] Beugeling | Global characteristics of all eigenstates of local many-body Hamiltonians: participation ratio and entanglement entropy[END_REF]. There is a simple heuristic argument to understand that. By definition, integrable systems have a macroscopic number of conserved charges with (quasi)local densities, so the entropy their ground states is expected to scale logarithmically. Those ground states are also eigenstates of the original Hamiltonian and therefore, assuming that a finite fraction of the ground states do not coincide, they represent a macroscopic number of states with sub-extensive entropies. A relevant question, even in integrable systems, is the following. How many locally-different excited states satisfy the area law? This question has been either overlooked or addressed just incidentally and/or carelessly and it is somewhat ill-defined in general, since the answer could depend on the basis chosen to diagonalize the Hamiltonian.

We specialize to non-interacting models, which come with a natural choice of basis. They are one of the few setups where the asymptotic behavior of entropies can be computed analytically, and they have already been exploited to quantify the picture summarized above [START_REF] Alba | Entanglement entropy of excited states[END_REF][START_REF] Jafarizadeh | Bipartite entanglement entropy of the excited states of free fermions and harmonic oscillators[END_REF][START_REF] Ares | Excited state entanglement in homogeneous fermionic chains[END_REF]. In particular, it was shown that there are infinitely many excited states where the entropy has a logarithmic dependence on the subsystem size. We show that only a very limited set of locally-distinct excited states appear to satisfy the area law and that certain notable instances, like the critical Ising model, do not exhibit such states at all. Remarkably, this result applies to any translationally-invariant non-interacting Hamiltonian, and it can therefore serve as a basis for any further consideration on the bipartite entanglement in excited states of quantum spin chains.

Overview of the thesis

The two chapters that follow are devoted to introduce the main concepts and techniques that we need. Chapter 2 is an overview of time evolution and entanglement in quantum spin chains. It also serves as an introduction to the notations and formalism to describe this kind of models. Chapter 3 illustrates the free-fermions techniques, that are the main methods used to deal with non-interacting systems, the starting point for many of our investigations. The remaining chapters are devoted to the original results of this thesis.

In Chapter 4, based on [START_REF] Bocini | Connected correlations in partitioning protocols: A case study and beyond[END_REF], we discuss the notion of locality behind GHD in non-interacting models. In particular, we investigate what happens when we relax the assumption that our observable is strictly local, meaning that its support does not scale with time. To achieve that, we study how connected correlations approach zero with the distance(s) of the operators in a class of initial states known as partitioning protocols.

In Chapter 5, based on [START_REF] Zadnik | Measurement catastrophe and ballistic spread of charge density with vanishing current[END_REF], we consider one of the classes of models in which local perturbations may lead to macroscopic effects: models exhibiting quantum jamming. The simplicity of the considered protocol, combined with the rich Hilbertspace structure of the interacting integrable model known as dual folded XXZ, enables exact analytical and numerical analysis of important quantities, such as local magnetization and spin-spin entanglement.

In Chapter 6, based on [START_REF] Bocini | Growing Schrödinger's cat states by local unitary time evolution of product states[END_REF], we study the effects of a local perturbation on a trivial product eigenstate of several Hamiltonians. Despite the interactions in the model being local, we show that the state typically evolves to a macroscopicallyentangled state, providing a new class of setups in which local perturbations may have macroscopic effects. We also identify the conditions under which such a state is a Schrödinger's cat. Our analysis does not reveal any particular requirement for the entangled state to develop, provided that the trivial eigenstate does not minimize/maximize a local conservation law. We consider here also instances of interacting models, both integrable and generic.

In Chapter 7, based on [START_REF] Bocini | No eigenstate of the critical transversefield Ising chain satisfies the area law[END_REF], we perform an exhaustive study of bipartite entanglement in the standard eigenstates of non-interacting translationally-invariant quantum spin chains. In particular, we identify a class of models exhibiting only two states obeying an area law that are distinguishable in the thermodynamic limit, and we show that all the rest of the models, including notable instances such as the critical Ising chain, have none.

-Time evolution and entanglement

This chapter offers a broad examination of the central physical subjects addressed in this thesis, without delving into specific details. We first review the general notion of quantum spin chains, then introduce quantum quenches as our main protocol to study the dynamics of spin chains in both homogeneous and inhomogeneous setups. Next, we discuss entanglement, presenting measures for both bipartite and macroscopic entanglement. We conclude with some remarks on the numerical techniques employed throughout the remainder of the thesis.

. Quantum spin chains

Quantum 1 2 -spin chains are models defined on a 1-dimensional lattice. We denote L the number of lattice sites and we assign a spin variable to each of them. Assuming for convenience that L is even, we identify each site with an index ∈ {-

L 2 + 1, • • • , L 2 }.
In classical statistical physics, 1 2 spins are variables that can take two different values, e.g. 1 and -1 or up and down. In quantum mechanics all the linear combinations (with complex coefficients) of the two states are also allowed, implying that the space associated to each spin variable is 2-dimensional; it will be referred to as local spin space. The full Hilbert space thus corresponds to the tensor product of L local spin spaces. Note that the dimension of the full Hilbert space grows as 2 L . This exponential growth in system size is one of the features that makes this kind of models hard to tackle, both analytically and a numerically.

Operators acting on the spin chain will be expressed in terms of the Pauli matrices

σ x := Å 0 1 1 0 ã , σ y := Å 0 -i i 0 ã , σ z := Å 1 0 0 -1 ã , (2.1) 
which, together with the 2 × 2 identity matrix I 2 , form a basis of the operators acting on the local spin space. Therefore, any operator acting on the full Hilbert space can be written in the basis formed by tensor products of Pauli matrices and identities.

It is convenient to introduce the extension of each Pauli matrix to the full Hilbert space as the operator that acts as the identity everywhere except on one local space, i.e.

σ α := Ñ -1 j=-L/2+1 I 2 é ⊗ σ α ⊗ Ñ L/2 j= +1 I 2 é (2.2)
where α ∈ {x, y, z}. In order to make the distinction between operators acting on local or global Hilbert spaces, we will use a bold font for the latter. From the Pauli commutation relations, the following canonical commutation relations can be derived:

[σ α m , σ β n ] = 2iδ m,n α,β,γ σ γ , (2.3) 
where δ m,n is the Kronecker delta and α,β,γ is the totally anti-symmetric tensor.
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Each quantum spin chain is defined by a Hamiltonian H. We only consider isolated systems, i.e. only time-independent Hamiltonians. We specialize to spin chains whose Hamiltonian can be written as

H = L/2+1 =-L/2+1 h , (2.4) 
where h is the so-called Hamiltonian density, acting on the sites { , +1, ..., +R-1}, R is the interaction range, and we assume periodic boundary conditions σ α L/2+ = σ α -L/2+ for any α ∈ {x, y, z}. When we will consider the limit L → +∞, we will not scale R with L, but instead we will keep it finite, meaning that we assume our Hamiltonian to describe local interactions. We also assume the model to be translationally invariant, implying that h m and h n , for m = n, have the same formal expression and differ only in the space they act on. Finally, we assume Tr(H) = 0, which implies that the spectrum of H is centered in zero (we do not lose in generality since we can always shift the initial Hamiltonian with the operator 2 -L Tr(H)I, where I is the identity operator; since that commutes with everything, the physics of the system is not affected).

We usually work directly in the infinite-size limit L → +∞. This typically does not lead to inconsistencies in our work, and we will restore the finite size L whenever we will need it.

. Quantum quenches

. General time-evolution protocol

We prepare our quantum spin chain in a given initial state described by the density matrix ρ(0), then we consider unitary time evolution generated by the Hamiltonian H in such a way that the state of the system at time t is given by the von Neumann equation

i ∂ρ(t) ∂t = [H, ρ(t)] ⇒ ρ(t) = e -itH ρ(0)e itH . (2.5) 
We always assume that the initial state is weakly correlated, in the sense that it should satisfy an exponential clustering of correlations:

σ α 1 1 • • • σ αn n c ∼ e -| i -j | , for | i -j | → ∞ , (2.6) 
where the index ... c means connected correlation and α j ∈ {x, y, z} for any j. This holds e.g. in product states and in non-zero-temperature thermal states (we will define them precisely later on). We point out that, even if we always consider translationally-invariant Hamiltonians, the state |Ψ(t) is generally inhomogeneous (i.e. not translationally invariant). This kind of setups is generally known as quantum quenches. The name comes from the way in which the system is initialized in a thought experiment: to construct the initial state we may consider for example the ground state of some Hamiltonian that depends on a given parameter; at time zero we suddenly change the value of that parameter in such a way that the initial state is not an eigenstate of the new Hamiltonian; as the change is assumed to be instantaneous, we posit that the state describing the system is not affected. The final result is that the system, originally in equilibrium, is brought to a non-equilibrium situation and undergoes a non-trivial time evolution.

It is natural to wonder what happens to the state of the system after we wait for a long time and if there is a way to predict that without solving explicitly the dynamical equations. We address those questions in the rest of the section, discussing how some form of relaxation is locally possible.

. Homogeneous quantum quenches

First of all, we consider homogeneous quantum quenches, where not only the Hamiltonian, but the entire setup, i.e. the initial state ρ(0), is translationally invariant. 1 In order to probe the system only locally, we look at expectation values of local observables O , i.e. observables acting non-trivially only on a few spins around position . Then we look for a stationary state ρ S such that [H, ρ S ] = 0 and

lim t→+∞ O t ≡ lim t→+∞ Tr(O ρ(t)) = Tr(O ρ S ) (2.7) 
for any local operator O . If this limit exists, we say that the system relaxes to the stationary state ρ S . Determining ρ S , or at least the value of some simple local observable over this state, is one of the main goals when studying homogeneous quantum quenches. One important observation is that ρ S should be consistent with the conservation laws of the model. However, not all conservation laws have the same importance. We define extensive observables as those written in the form

O = ∈Z O , (2.8) 
where the local operators O are referred to as the density of the extensive operator O. Then we call local charge an extensive observable that commutes with the Hamiltonian. One typically assumes that in the process of relaxation for local observables in a system with short-range interactions, only local charges (and not any conserved operator) matter. 2 Under that assumption, ρ S is chosen as a typical state that is consistent with the expectation values of the local charges; more precisely, it can be taken as the state maximizing entropy under the constraints imposed by the 1 States that are invariant under translations of a finite number of spin sites larger than one, such as the Néel state • • • ↑↓↑↓ • • • , can actually be included in the homogeneous framework [START_REF] Fagotti | Relaxation after quantum quenches in the spin-1 2 Heisenberg XXZ chain[END_REF][START_REF] Fagotti | On conservation laws, relaxation and pre-relaxation after a quantum quench[END_REF], but we will not consider them here. 2 We should mention that local charges are actually not the only ones that should be considered. Other types of charges with similar properties, such as quasi-local charges, may be relevant [START_REF] Ilievski | Quasilocal charges in integrable lattice systems[END_REF]. For simplicity, however, at this stage we overlook their existence.
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local conservation laws (the quantum version of entropy will defined later on in the chapter, but its role in this discussion is the same of its classical counterpart).

In the generic case, in which the Hamiltonian is the only local charge, the state we are looking for is the Gibbs ensemble

ρ S = 1 Tr(e -βH ) e -βH .
(2.9)

If this is indeed the stationary state describing the infinite-time limit of local observables expectation values, we say that the system thermalizes, where the inverse temperature β is fixed in such a way to match the expectation value of H over the initial state. In integrable theories, instead, time evolution is constrained by the extensive number of local charges, that, by definition, characterize those models.

Because of that, the information loss in integrable systems is heavily reduced and the model is generally not expected to thermalize. However, the limit (2.7) still exists in general. When that happens, we say that the system relaxes, and the stationary state maximizing entropy under the appropriate constraints is typically specified using the generalized Gibbs ensemble (GGE)

ρ S = 1 Tr(e i λ i Q i ) e i λ i Q i , (2.10) 
where the sum goes over all the relevant conserved charges Q i and λ i are real parameters that are fixed so to match the expectation value Q i over the initial state (see e.g. Ref. [START_REF] Foini | Measuring effective temperatures in a generalized gibbs ensemble[END_REF]). Note that the condition (2.7) does not specify a state uniquely, since it only requires ρ(t → +∞) and ρ S to have the same local properties by definition. However, all states fulfilling it are equivalent when reduced to finite subsystems. Therefore they can be regarded as different representations of the same local asymptotic state, analogously to the different ensembles of classical statistical mechanics.

To summarize, after a given transient, which depends on the details of the initial state and the Hamiltonian, finite subsystems approach a stationary state that can be determined without solving the dynamics. For integrable models it is generally non-thermal. We point out that, if the Hamiltonian for time evolution H is noninteracting (in a sense that we will define precisely in Chapter 3) and the initial state is Gaussian with respect to H, relaxation to GGE can be proved [START_REF] Fabian | Quench dynamics and relaxation in isolated integrable quantum spin chains[END_REF], while the problem of relaxation for interacting Hamiltonian is generally much harder, although the picture above has been shown repeatedly to hold (see e.g. Ref. [START_REF] Wouters | Quenching the anisotropic heisenberg chain: Exact solution and generalized gibbs ensemble predictions[END_REF][START_REF] Pozsgay | Correlations after Quantum Quenches in the XXZ Spin Chain: Failure of the Generalized Gibbs Ensemble[END_REF][START_REF] Ilievski | Complete generalized gibbs ensembles in an interacting theory[END_REF][START_REF] Piroli | Exact steady states for quantum quenches in integrable heisenberg spin chains[END_REF]).

. Partitioning protocols

Moving to quantum quenches from a non-translationally-invariant initial state, also known as inhomogeneous quantum quenches, the simplest setups are arguably partitioning protocols. We use the term partitioning protocol to denote a setup where the system is prepared in a state that is indistinguishable from a given homogeneous state when considered far to the left of the origin and is indistinguishable from a second homogeneous state when considered far to the right of the origin. As usual, Figure 2.1 -Example of the light-cone structure for a partitioning protocol in the transverse-field Ising model between two thermal state with inverse temperatures β = 0 to the left of the origin (i.e. for < 0) and β = 0.9 to the right (i.e. for > 0). We report the expectation value for the nearest-neighbor spin-spin connected correlation S z , +1 (t) in function of position and time.

connected correlations between spins are assumed to decay to zero exponentially with distance. Often, in the literature, partitioning protocol actually refers to the special case in which the correlations between any spin on the left half of the chain and any spin on the right half are exactly zero -see e.g. Refs. [START_REF] Eisler | Universal front propagation in the quantum Ising chain with domain-wall initial states[END_REF][START_REF] Karevski | Scaling behaviour of the relaxation in quantum chains[END_REF][START_REF] Platini | Scaling and front dynamics in Ising quantum chains[END_REF][START_REF] Platini | Out of equilibrium process in ising quantum chains[END_REF][START_REF] Platini | Relaxation in the xx quantum chain[END_REF][START_REF] Calabrese | Entanglement and correlation functions following a local quench: a conformal field theory approach[END_REF][START_REF] De Luca | Nonequilibrium thermal transport in the quantum Ising chain[END_REF][START_REF] Bertini | Determination of the nonequilibrium steady state emerging from a defect[END_REF][START_REF] Kormos | Inhomogeneous quenches in the transverse field Ising chain: scaling and front dynamics[END_REF][START_REF] Bertini | Entanglement evolution and generalised hydrodynamics: noninteracting systems[END_REF] for some specific examples. In this work, we consider also partitioning protocols in which the junction between the two homogeneous states is not sharp.

A distinctive feature of partitioning protocols is the so called light-cone dynamics. Due to the bounds on propagation of information known as Lieb-Robinson bound [START_REF] Lieb | The finite group velocity of quantum spin systems[END_REF][START_REF] Bravyi | Lieb-robinson bounds and the generation of correlations and topological quantum order[END_REF], for large times, only a region that grows linearly around the junction, called light-cone, is affected by the inhomogeneity of the state, while the effects of the inhomogeneity on local observables outside this region are exponentially suppressed. More precisely, the Lieb-Robinson bounds state that the Heisenberg representation of a local operator is exponentially close to an operator with support in a finite region including the support of the operator, the argument of the exponential being proportional to dv LR |t|, where d is the smallest distance between the observable and the boundary of the region and v LR is the Lieb-Robinson velocity. The Lieb-Robinson bounds imply that information travels not faster than linearly throughout the spin chain. In Fig. 2.1 we report an example of light-cone for the local observable

S z , +1 (t) := σ z σ z +1 -σ z σ z +1 in the transverse-field Ising model with Hamilto- nian H = ∈Z σ x σ x +1 2 + σ z ,
where the partitioning protocol is made by two thermal states of the form (2.9), with different inverse temperature β.

The two halves of the chain in a partitioning protocol are sometimes prepared in stationary states, in such a way that the non-trivial time evolution takes place only in proximity of the junction (modulo corrections exponentially small with the distance from the light-cone). To distinguish such a situation from the one where the system evolves everywhere, we say that the system undergoes a global quench if the state evolves in every point of the chain, local quench if the evolution takes place only inside a light-cone.

Let us turn to the problem of relaxation in partitioning protocols in the infinitesize limit. Because of the Lieb-Robinson bounds, it is clear that the system cannot relax to a homogeneous state: for any time t, the spins outside the light-cone are generally in different states, depending on their relative position with respect to the origin. However, it is still reasonable to expect that dynamics locally smoothens out the inhomogeneities of the initial state, in the sense that, for large time, the system looks homogeneous at small spacial scales. Hence it is expected that at large times, to get the leading order of the expectation value of local observables, the state can be replaced by a homogeneous state ρ S ( , t):

O t ≡ Tr(O ρ(t)) ∼ Tr(O ρ S ( , t)) , (2.11) 
for any local operator O , where the dependence on time t and position means that a different homogeneous state is used to describe the system for different space-time points. In order for this assumption to be consistent, the state ρ S ( , t) must vary slowly in the spacial variable . This description of the leading order is an instance of local-density approximation.

In integrable models there exists a quasi-particle picture (that we will not describe this thesis) which suggests that, for the bipartite geometry of the initial state, true stationarity can still emerge in the scaling limit t → +∞, /t = const. In particular, we can expect the following form of stationarity to hold:

lim t→+∞, x/t=ζ Tr(O A ρ(t)) = Tr(O A ρ S (ζ)) , (2.12) 
where the ray-dependent stationary state was called locally quasi-stationary state (LQSS) [START_REF] Bertini | Determination of the nonequilibrium steady state emerging from a defect[END_REF]. This scaling limit is also known as Euler scale or ballistic scale The LQSS is typically computed via hydrodynamic arguments, which will be the topic of Section 2.3.

For non-integrable models, instead, the natural scale is expected to be diffusive. That is related to the expected local relaxation to Gibbs states, in which the expectation value of the energy-current operator (i.e. the current of the only conserved quantity in the system), needed to support a ballistic scale, vanishes (see e.g. Ref. [START_REF] Joã | Ballistic-to-diffusive transition in spin chains with broken integrability[END_REF]). In this thesis we will only consider integrable models, except for one small exception in Chapter 6.

. Brief overview of generalized hydrodynamics

In general, the idea behind hydrodynamics is to simplify complex behaviors of many particles to a much smaller set of equations than those for the individual trajectories of each particle. The reduced set of equations is typically related to the continuity equations of the conservation laws of the system. Hydrodynamics relies on the idea of local-density approximation described in Section 2.2, trading the exact description of the model for an asymptotic one, where the conservation laws play a fundamental role.

Obtaining a set of hydrodynamic equations from the laws of quantum mechanics is not trivial. The theory that does that for integrable quantum systems is called generalized hydrodynamics (GHD). The fundamental features of integrable short-range systems is the existence of an infinite number of local charges. In integrable systems, all the information about a homogeneous stationary state is encoded in a scalar function ρ(p) called root density, 3 introduced in a framework known as thermodynamic Bethe Ansatz [START_REF] Yang | Thermodynamics of a one-dimensional system of bosons with repulsive delta-function interaction[END_REF][START_REF] Takahashi | Thermodynamics of One-Dimensional Solvable Models, chapter Finite temperature integral equations for un-nested systems[END_REF]. Knowing the root density, one can in principle compute the expectation value of any local observable in the stationary state. Following the prescription that we introduced in Section 2.2, in the limit of large times, the system can be described locally by specifying a stationary state for each space-time point. In this way, we can describe the asymptotic state in partitioning protocols using a space-time-dependent generalization of the root density ρ x,t (p) [START_REF] Caux | The quench action[END_REF][START_REF] Alba | Generalized-hydrodynamic approach to inhomogeneous quenches: correlations, entanglement and quantum effects[END_REF].

The main result of GHD is an equation to determine ρ x,t (p). By using a continuity equation for each conserved charge and the completeness of the set of conserved charges in integrable systems, it can be shown that the root density under local density approximation satisfies

∂ t ρ x,t (p) + ∂ x (v x,t (p)ρ x,t (p)) = 0 , (2.13) 
where v x,t (p) is the effective velocity in the system, which in general is a non-trivial functional of ρ x,t (p). Importantly, in the derivation of this equation one only needs to assume that a complete set of conserved charges exists, without ever needing their explicit form. In this thesis, we will consider this equation only in connection with partitioning protocols. The specific geometry and the form of the equation above suggest that we can look for solutions of the form ρ x,t (p) ≡ ρ x/t (p): the system is described by a ray-dependent LQSS. Once ρ x/t (p) is known, we can evaluate in principle the expectation value of any local observable along a given ray. The boundary conditions for Eq. (2.13) are found by noting that, far from the junction, the system does not see the inhomogeneity because of Lieb-Robinson bounds, and therefore it undergoes a homogeneous quench. One can then solve first the two homogeneous quenches connected with the two components of the partitioning protocol, determining the root density describing the two corresponding stationary states, then impose those root densities as the boundary conditions of the GHD equation. We should mention, however, that solving the homogeneous quenches, i.e. deriving the appropriate GGEs, in interacting scenarios has been done only for ad-hoc cases, where e.g. one considers partitioning protocols joining two pre-defined GGEs. A pure state is said to be entangled with respect to a given partition of the full space whenever it is not possible to write it as the tensor product of one state per set in the partition. In particular, let us denote {A j }, for j ∈ {1, ..., N }, a partition of the full chain, where the A j 's are non-overlapping sets. A pure state |ψ is entangled with respect to the partition {A j } if it cannot be written in the form

|ψ = N j=1 |ψ A j , (2.14) 
where |ψ A j is a state of the Hilbert space A j . For mixed state, this definition should be extended to take into account the existence of classical mixtures: a state described by a density matrix ρ is entangled with respect to the partition {A j } j=1,...,N if it cannot be written in the form

ρ = k i=1 p i N j=1 ρ i A j (2.15) 
for any k, where ρ i A j , ∀i, is a density matrix for the Hilbert space A j . Note that in many-body quantum systems, where the components of the system are by definition many, there is a very large number of partitions that one can consider and the classification of entangled states is extraordinarily rich.

After confirming that a specific state is entangled, our focus shifts towards determining the strength of its entanglement. To achieve this, various measures are available, depending on the type of entanglement being assessed. Here we do not provide a comprehensive review of the topic and we will focus only on the types and measurements of entanglement that we will use in this thesis.

. Bipartite entanglement

The first notion of entanglement that we investigate is bipartite entanglement for pure states. The name is self-explanatory: we consider a pure state |ψ defined on the full chain, and the partition of the full chain into the subsystems A and its complement Ā. In this case, a good (and the most used) measure of entanglement is the von Neumann entropy [START_REF] Bennett | Concentrating partial entanglement by local operations[END_REF] 

S 1 (A) := -Tr(ρ A log(ρ A )) , (2.16) 
where ρ A = Tr Ā(|ψ ψ|) is the reduced density matrix, obtained from a partial trace of the state of the system ρ = |ψ ψ| over Ā. Of great importance is also the generalization of S 1 , called Rényi entropy α [START_REF] Rényi | Probability theory[END_REF]: 

S α (A) := 1 1 -α log (Tr(ρ α A )) , (2.17 

Overview of entanglement

that gives back the von Neumann entropy in the limit α → 1. Like the von Neumann entropy, Rényi entropies also measure bipartite entanglement in pure states.

If we now consider the bipartite entanglement in mixed states, the situation becomes immediately more complicated. The main reason is that the entropies above are not a good measure of entanglement anymore because they cannot distinguish between quantum and classical correlations. To understand that, we can consider a chain of size L = 2 in the state described by the density matrix ρ = |↑↑ ↑↑|+|↓↓ ↓↓|

2

.

According to the definition that we gave around Eq. (2.15), this state is not entangled (with respect to the only possible bipartition), and yet its von Neumann entropy measures log 2.

A sensible measure of bipartite entanglement for a mixed state ρ in the case the system consists in only two spins is the entanglement of formation E [START_REF] Hill | Entanglement of a Pair of Quantum Bits[END_REF][START_REF] William | Entanglement of Formation of an Arbitrary State of Two Qubits[END_REF]:

E(ρ) := h Ç 1 + 1 -C 2 (ρ) 2 å . (2.18) Here h(x) := -x log 2 (x) -(1 -x) log 2 (1 -x), and C(ρ) is the concurrence, defined as C(ρ) := max{0 , λ 1 -λ 2 -λ 3 -λ 4 } , (2.19) 
where λ j are the square roots of the eigenvalues of ρ(σ y ⊗ σ y )ρ * (σ y ⊗ σ y ) in descending order, and ρ * is the complex conjugate of ρ. Note that, even though ρ(σ y ⊗ σ y )ρ * (σ y ⊗ σ y ) is not necessarily self-adjoint, its eigenvalues are real and non-negative, since it is a product of two positive semi-definite matrices. The entanglement of formation of the state ρ = |↑↑ ↑↑|+|↓↓ ↓↓| 2 is zero, correctly highlighting that the state is not entangled. Incidentally, note that the concurrence (and hence the entanglement) is automatically zero whenever the density matrix is diagonal because the matrix ρ(σ y ⊗ σ y )ρ * (σ y ⊗ σ y ) has two pairs of degenerate positive eigenvalues and hence C(ρ) = 0. In the general case with more than two spins, there is not a generally accepted measure of entanglement: several exist, each highlighting a different feature of entanglement. We well not review them here.

. Macroscopic entanglement

The idea of macroscopic entanglement goes back to Schrödinger's famous cat paradox [START_REF] Schrödinger | Die gegenwärtige Situation in der Quantenmechanik[END_REF], which questions the superposition principle. The superposition principle states that, for any two possible quantum states |a and |b , the complex linear combination α |a +β |b , with |α| 2 +|β| 2 = 1, is also a valid quantum state. When |a and |b represent states that cannot coexist in classical physics, such as the paradoxical example of a cat being simultaneously dead and alive, the superposition principle takes on a perplexing nature. We can readily ascertain the fundamental vital function of a cat, and that poses a challenge to our acceptance of quantum mechanics at macroscopic scales: this is what Schrödinger referred to as the blurriness of quantum mechanics. We will refrain from delving into the discussion of how this paradox is explained, namely, how the absence of cats exhibiting both dead and alive conditions in ordinary life is reconciled with the validity of the superposition principle: this Chapter 2. Time evolution and entanglement explanation is an active area of research in the fields of quantum measurement and decoherence (see e.g. Ref. [START_REF] Arndt | Testing the limits of quantum mechanical superpositions[END_REF] and references therein). However, we use the paradox to build intuition on what is macroscopic entanglement: the defining property of the state involved in the cat paradox is that it is superposition of very different states.

In the following we formalize such an intuition.

We start by defining macroscopically-different states [START_REF] Leggett | Macroscopic quantum systems and the quantum theory of measurement[END_REF]. As for bipartite entanglement, we restrict to pure states. Let us assume to be able to define all the states that we are interested in for any size L in an infinite sequence of chain lengths. We say that two states |a and |b are macroscopically different if there exists an extensive observable O such that the quantity a| O |a -b| O |b scales with system size [START_REF] Morimae | Macroscopic entanglement of many-magnon states[END_REF]. After that, using the notations of Ref. [START_REF] Fröwis | Macroscopic quantum states: Measures, fragility, and implementations[END_REF] but following also Refs. [START_REF] Shimizu | Stability of quantum states of finite macroscopic systems against classical noises, perturbations from environments, and local measurements[END_REF][START_REF] Hyllus | Fisher information and multiparticle entanglement[END_REF][START_REF] Tóth | Multipartite entanglement and high-precision metrology[END_REF], we introduce the quantumness N eff of a pure state as its maximal variance per unit length with respect to all extensive observables:

N eff = 1 L max O extensive Var(O) , (2.20) 
where

Var(O) := O 2 -O 2 .
Since it can be shown that the variance of any operator cannot grow more than quadratically in system size, we have that the quantumness grows at most linearly with system case, in which case we say that the state is macroscopically entangled. The idea behind this definition is understood as follows. If the quantumness of the state scales linearly in system size, it means that there is an extensive observable O whose probability distribution on our state is very broad. In turn, that means that the state has non-negligible overlap with macroscopically-different states, which are nothing but the eigenvectors of the operator O. The overlaps are non-negligible because the standard deviation, i.e. the square root of the variance, of the probability distribution of O scales as the expectation value.

It can be shown that macroscopic entanglement is a special kind of multipartite entanglement: a macroscopically-entangled state is entangled with respect to any partition whose components do not scale with system size [START_REF] Morimae | Necessity of macroscopic operation for the creation of superpositions of macroscopically distinct states[END_REF]. On the other hand, the vice versa does not hold: being entangled with respect to any partition whose components do not scale with system size does not imply macroscopic entanglement; indeed, the (generalized) W state [START_REF] Dür | Three qubits can be entangled in two inequivalent ways[END_REF], defined as

|W := 1 √ L (|↑↓↓ • • • ↓ + |↓↑↓ • • • ↓ + • • • + |↓↓↓ • • • ↑ ) , (2.21) 
is entangled with respect to any partition, but it is not macroscopically entangled. From a fundamental point of view, the study of macroscopic entanglement helps gain insight into the quantum-to-classical transition and allows one to investigate the limits of quantum theories, addressing e.g. the cat paradox. From a more applied perspective, it plays an important role in general mechanisms for quantum enhancement in applications such as quantum computing and metrology (see Ref. [START_REF] Fröwis | Macroscopic quantum states: Measures, fragility, and implementations[END_REF] and references therein).

Simulation of dynamics

. Cat states

A cat state is a special kind of macroscopically-entangled state. Restricting our discussion to pure states, the defining property of a cat state is the fact that all the extensive operators whose variance scales quadratically in system size present a bimodal distribution, where the two peaks are well separated and, when considered separately, have a variance that scales more slowly than quadratically. Physically, this definition means that a cat state can be written as the superposition of just two macroscopically-different states, which, when considered separately, are not macroscopically entangled.

The most famous cat state is the (generalized) Greenberger-Horne-Zeilingerin state (GHZ) [START_REF] Daniel | Going Beyond Bell's Theorem[END_REF], defined as

|GHZ := |↑↑ • • • ↑ + |↓↓ • • • ↓ √ 2 . (2.22)
Considering the extensive operator S z :=

L/2 =-L/2+1 σ z
2 , i.e. the total magnetization, its probability distribution in the GHZ state exhibits two Kronecker deltas at the maximum and minimum magnetization. This is the most simple bimodal distribution of the kind described above that one can think of.

As all macroscopically-entangled state, cat states are rare and generally shortlived for their fragility under real experimental conditions, which include decoherence, noise and particle loss [START_REF] Shimizu | Stability of quantum states of finite macroscopic systems against classical noises, perturbations from environments, and local measurements[END_REF][START_REF] Kwon | Disturbance-based measure of macroscopic coherence[END_REF][START_REF] López-Incera | All macroscopic quantum states are fragile and hard to prepare[END_REF]. Several protocols have been proposed to contain the latter problems [START_REF] Girish | Atomic Schrödinger cat states[END_REF][START_REF] Lombardo | Deterministic Creation of Macroscopic Cat States[END_REF][START_REF] Wang | A Schrödinger cat living in two boxes[END_REF][START_REF] Hacker | Deterministic creation of entangled atom-light Schrödinger-cat states[END_REF][START_REF] Alexander | Generating Greenberger-Horne-Zeilinger states with squeezing and postselection[END_REF][START_REF] Zhao | Creation of Greenberger-Horne-Zeilinger states with thousands of atoms by entanglement amplification[END_REF][START_REF] Cosacchi | Schrödinger cat states in quantum-dot-cavity systems[END_REF][START_REF] Wang | A flying Schrödinger's cat in multipartite entangled states[END_REF][START_REF] Comparin | Multipartite entangled states in dipolar quantum simulators[END_REF] and some of them have been experimentally realized [START_REF] Gao | Experimental demonstration of a hyper-entangled ten-qubit Schrödinger cat state[END_REF][START_REF] Etesse | Experimental generation of squeezed cat states with an operation allowing iterative growth[END_REF][START_REF] Omran | Generation and manipulation of Schrödinger cat states in Rydberg atom arrays[END_REF][START_REF] Song | Generation of multicomponent atomic Schrödinger cat states of up to 20 qubits[END_REF][START_REF] Bild | Schrödinger cat states of a 16-microgram mechanical oscillator[END_REF].

. Simulation of dynamics

The dimension of the Hilbert space in a quantum spin chain is exponentially large in the chain's length. Therefore, representing a quantum state by giving the coefficients of the wave function in some given basis is an inefficient representation. For generic quantum spin chains, one of the most efficient and versatile ensembles of techniques are tensor networks. We do not review all those techniques here (see e.g. [START_REF] Paeckel | Time-evolution methods for matrixproduct states[END_REF]), limiting ourselves to the introduction of matrix product states (MPS), the most popular encoding of quantum states used in tensor networks. This will be enough to discuss when tensor-networks techniques are expected to be efficient.

As usual, we restrict to systems with even size L, but the generalization to any size is straightforward. Assume that our system is described by the state |ψ . We can decompose it as

|ψ = 1 s -L/2+1 ,...,s L/2 =0 c s -L/2+1 ,...,s L/2 |s -L/2+1 , ..., s L/2 , (2.23) 
where |s -L/2+1 , ..., s L/2 ≡ L/2 =-L/2+1 |s , and |s , for s ∈ {0, 1}, is a basis of the local spin space associated to the -th lattice site. We say that the state above is Chapter 2. Time evolution and entanglement an MPS if each coefficient is specified as a matrix product, i.e. if the coefficient are expressed as

c s -L/2+1 ,...,s L/2 = χ -L/2+1 m -L/2+1 =1 • • • χ L/2-1 m L/2-1 =1 M s -L/2+1 -L/2+1;m -L/2 ,m -L/2+1 • • • M s L/2 L/2;m L/2-1 ,m L/2 , (2.24)
where M s is a matrix of size χ × χ , the χ 's are referred to as bond dimensions and m ±L/2 are dummy indices that can assume only one value.

The way we bring any state (2.23) to an MPS form is via (compact) single value decomposition (SVD), which states that any m × n complex matrix A can be decomposed as A = U ΣV † , where Σ is a r × r diagonal matrix with positive values sorted in descending order on the diagonal, U is a m × r semi-unitary matrix and V is a n × r semi-unitary matrix, in the sense that U † U = V † V = I r . One commonly refers to r as the rank of the SVD. The fundamental observation is that any number of different indices can always be reorganized so to be interpreted as a single index. For example, we can treat the indices s -L/2+2 , ..., s L/2 as a single index, and use SVD to obtain

c s -L/2+1 ,...,s L/2 = χ -L/2+1 m -L/2+1 =1 M s -L/2+1 -L/2+1;m -L/2 ,m -L/2+1 c s -L/2+2 ,...,s L/2 m -L/2+1 , (2.25) 
where M

s -L/2+1
-L/2+1 is the contraction of the left semi-unitary matrix and the diagonal matrix obtained from the SVD (we introduced the dummy index m -L/2 ), the bond dimension χ -L/2+1 is the rank of the SVD, and c

s -L/2+2 ,...,s L/2 m -L/2+1
is the right semiunitary matrix obtained from the SVD. This process can be reiterated. The second SVD is applied to the tensor c

s -L/2+2 ,...,s L/2 m -L/2+1
, reorganizing the indices in the two groups {m -L/2+1 , s -L/2+2 } and the rest. After the second SVD we obtain

c s -L/2+2 ,...,s L/2 m -L/2+1 = χ -L/2+2 m -L/2+2 =1 M s -L/2+2 -L/2+2;m -L/2+1 ,m -L/2+2 c s -L/2+3 ,...,s L/2 m -L/2+2 , (2.26) 
and so on until we reach the MPS form. Note that this procedure is exact, but it is also convenient to derive an approximate representation of the state |ψ . The natural way to do that is to set a maximum value χ max for the bond dimensions. In this way, we are keeping at most the χ max largest eigenvalues of each SVD. Of course, if χ max is larger or equal to the ranks of all the SVDs, the MPS representation is exact. The lower χ max is, the more efficient the MPS representation, since we have fewer tensor elements to specify.

It can be shown that the von Neumann entropy for the subsystem {s -L/2+1 , ..., s j } is bounded by log(χ j ). Hence, the required χ max to represent a quantum state exactly grows exponentially with bipartite entanglement between any partition obtained dividing the sites of the chain in {s -L/2+1 , ..., s j } and its complement. Therefore, MPS efficiently represent lowly-entangled states. We point out that the presence or absence of macroscopic entanglement, instead, has nothing to do with how efficiently the system can be represented as an MPS. Indeed, the state |GHZ defined in Eq. (2.22) is macroscopically entangled, but at the same time it allows for an MPS description with χ max = 2.

Since we typically prepare our systems in lowly entangled states, the MPS description of our initial state is generally exact. Once we have represented our initial state as an MPS, the tensor-networks framework provides techniques to time-evolve it under local Hamiltonians and to compute efficiently expectation values of local observables. The limitation is that, as we will see in the next section, time evolution typically generates entanglement, making the MPS description of the state less and less accurate, so that at some point we are forced to halt our simulation.

From a practical point of view, we perform numerical simulations with Julia ITensor library [START_REF] Fishman | The ITensor Software Library for Tensor Network Calculations[END_REF]. For time evolution, we use a time-evolving block decimation (TEBD) algorithm [START_REF] Vidal | Efficient simulation of one-dimensional quantum many-body systems[END_REF][START_REF] Verstraete | Matrix product density operators: Simulation of finite-temperature and dissipative systems[END_REF] and, in all data reported, time evolution is discretized in time steps of length 0.01 with 2nd order Trotter-Suzuki gates [START_REF] Hatano | Finding Exponential Product Formulas of Higher Orders[END_REF].

. Entanglement in time evolution

In Section 2.2 we specified that we initialize our system in a state where connected correlations decay exponentially with distance. This kind of states satisfy an area law of entanglement, meaning that the von Neumann entropy of a given subset of our chain does not scale with the size of the subset. This, in turn, implies that the state is easily represented numerically with an MPS. But then we let the system evolve, and this typically generates entanglement. In this section we summarize how entanglement is expected to grow in quantum quenches.

The von Neumann entropy of a subsystem A containing a number |A| of adjacent spins in a quantum quench in non-interacting and interacting integrable chains grows linearly in time until it reaches a plateau at a value proportional to |A|, the coefficient depending on the initial state [START_REF] Calabrese | Evolution of entanglement entropy in one-dimensional systems[END_REF]. For non-integrable systems corrections scaling as t 1/3 are expected on top of the linear behavior [START_REF] Nahum | Quantum entanglement growth under random unitary dynamics[END_REF].

Entanglement growth is an essential part of relaxation, since, as we have discussed in Section 2.2, the GGE to describe stationary states is obtained maximizing the von Neumann entropy.

For what concerns numerical simulations, note that local quenches, where nontrivial time evolution takes place only inside a light-cone, are generally more convenient to simulate with respect to global quenches. That is because, thanks to the Lieb-Robinson bounds, the bond dimension of spins far from the junction stays low.

In this chapter, we embark in a journey through the fundamental techniques employed in the study of non-interacting quantum spin chains: free-fermions techniques. We present the diagonalization process of non-interacting models, developed first in Ref. [START_REF] Lieb | Two soluble models of an antiferromagnetic chain[END_REF], then we derive convenient analytical representations to describe quantum states in those models and discuss how to compute time evolution and entanglement in this framework.

. Jordan-Wigner transformation

What defines non-interacting theories is the existence of a mapping to a quadratic theory. In this thesis we consider only cases in which the mapping is performed by what is known as Jordan-Wigner transformation. We define the Jordan-Wigner transformation for Hamiltonians H that commute with the operator

Π α := L/2 j=-L/2+1 σ α j (3.1)
for some α ∈ {x, y, z}. Without loss of generality, we choose α = z, so that Π z and H can be diagonalized simultaneously. The operator Π z has eigenvalues ±1, which implies that the eigenstates of H are split in two sectors, depending on their eigenvalue under Π z . Then we introduce the Jordan Wigner transformation

σ z = -ia 2 -1 a 2 , σ x = Ñ -1 j=-L/2+1 σ z j é a 2 -1 , σ y = Ñ -1 j=-L/2+1 σ z j é a 2 , (3.2)
where the operators a j are Majorana fermions and satisfy the Majorana anti-commutation relations [a i , a j ] + ≡ a i a j + a j a i = 2δ i,j I ,

where I is the identity operator. For the sake of this thesis, a non-interacting quantum spin chain is one whose Hamiltonian, after the mapping to Majorana fermions, reads

H = 1 -Π z 2 H + + 1 + Π z 2 H -, (3.4) 
where H + and H -are two quadratic fermionic Hamiltonians

L m,n=-L+1 a m H ± m,n a n , (3.5) 
with H ± purely-imaginary Hermitian matrices with indices in {-L + 1, ..., L}. 1
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Since the original spin Hamiltonian H is translationally-invariant, the Hamiltonians H ± are invariant under 2-site shifts in the Majorana index (modulo boundary conditions that will be discussed in a moment). That implies

H ± 2m+i,2n+j = H ± i,j (m -n) , (3.6) 
where m, n ∈ {-L 2 , ..., L 2 -1}, i, j ∈ {1, 2}, and H ± (z) are two functions from z ∈ {-L + 1, ..., L -1} to the space of 2 × 2 matrices. The periodic boundary conditions on the original spin Hamiltonian imply that the Hamiltonian H + has periodic boundary conditions and the Hamiltonian H -has anti-periodic ones. In terms of the matrices H ± , that means

H ± i,j (z) = ±H ± i,j (z -L) , if z ≥ L 2 ±H ± i,j (z + L) , if z < -L 2 .
(3.7)

The fermionic theory described by H + (resp. H -) is called Ramond sector (resp. Neveu-Schwartz sector ) of the initial spin chain. Given the two conditions above, we say that H + is a block-circulant matrix and H -is an anti-block-circulant matrix, both with 2 × 2 blocks. We point out that, for these conditions to be consistent with the fact that H ± is anti-symmetric, the following condition should hold

H ± i,j (-L 2 ) = ∓H ± j,i (-L 2 ) . (3.8) 
Typically, since we consider only short-range interactions, H ± (-L 2 ) = 0, hence the condition above is trivially satisfied, but it will become relevant when we will consider (anti)block-circulant matrices in general. Note that, in the end, all the information about the matrix H ± is contained in the function H ± (z) for z ∈ {-L 2 , ..., L 2 -1} (combined with boundary conditions): all the other elements can be determined by symmetry.

Like H, the Hamiltonians H ± commute with Π z , which in fermions reads Π z = (-i) L L j=-L+1 a j . Furthermore, when considered separately, the two Hamiltonians H ± describe two quadratic fermionic chains that differ only in boundary conditions. The eigenstates of the original Hamiltonian H and those of the Hamiltonians H ± are of course strictly related: the eigenstates of H consist in the eigenstates of H + and H -such that they are also eigenstates of Π z with eigenvalues -1 and 1 respectively. The fact that the eigenstates of H can be found by considering quadratic fermionic theories makes the task quite convenient, as shown in the next sections.

Before moving on, we mention that there is an alternative way to write the Jordan-Wigner transformation, where the fermions involved in the transformation are Dirac fermions and not Majorana's. While the two kinds of fermions are easily related,2 Dirac fermions are probably easier to visualize from a physicist perspective, while Majorana's are arguably more convenient to discuss free-fermions techniques in general.

EXAMPLE. One of the most common examples of translationally-invariant noninteracting quantum spin chain is the transverse-field Ising chain (TFIC)

H T F IC (h) := - L/2 =-L/2+1 σ x σ x +1 + hσ z . (3.9)
We also introduce the Dzyaloshinskii-Moriya interaction

H DM := L/2 =-L/2+1 σ x σ y +1 -σ y σ x +1 , (3.10) 
and we combine the two terms into

H = J 1 H T F IC (h) + J 2 H DM , (3.11) 
assuming L = 4. This Hamiltonian commutes with the operator Π z and it is easy to show that it can be written in the form (3.4) via a Jordan-Wigner transformation, where in this case

H ± = 2i              0 J 1 h -J 2 0 0 0 ±J 2 ∓J 1 -J 1 h 0 J 1 -J 2 0 0 0 ±J 2 J 2 -J 1 0 J 1 h -J 2 0 0 0 0 J 2 -J 1 h 0 J 1 -J 2 0 0 0 0 J 2 -J 1 0 h -J 2 0 0 0 0 J 2 -J 1 h 0 J 1 -J 2 ∓J 2 0 0 0 J 2 -J 1 0 J 1 h ±J 1 ∓J 2 0 0 0 J 2 -J 1 h 0              . (3.12)
Note the (anti)block-circulant structure and how the matrices H + and H - only differ in the boundary terms. As already pointed out, the whole matrix can be reconstructed by symmetry simply from the knowledge of the

L 2 = 2 blocks 2i Å 0 J 1 h -J 1 h 0 ã and 2i Å J 2 -J 1 0 J 2 ã .

. Spectrum and symbol of (anti)block-circulant matrices

Finding the spectrum of the (anti)block-circulant matrix H ± is the first step to obtain the spectrum of the spin Hamiltonian H. The first thing to point out is that, since H ± is purely-imaginary and Hermitian, its eigenvalues come in pairs. Indeed, consider an eigenvector w of H ± with eigenvalue ; then we have

H ± w = w ⇒ (H ± w) * = w * ⇒ H ± w * = -w * . (3.13)
Then, because of translation invariance, we can look for eigenvectors of the form

w 2m+i (p) = v i (p)e imp , m ∈ {-L 2 , ..., L 2 -1} , i ∈ {1, 2} , (3.14) 
where p ∈ (-π, π], to be determined, is interpreted as the momentum, since e ip is the eigenvalue of the one-site-shift operator. Denoting (p) the eigenvalue of w(p), the equation that the eigenvector w(p) has to satisfy is

(H ± w(p)) 2m+i = (p)w 2m+i (p), ∀m ∈ {-L 2 , • • • , L 2 -1}, i ∈ {1, 2} . (3.15) 
Setting m = 0, the equation above implies

Ĥ± (p)v(p) = (p)v(p) , (3.16) 
where

Ä Ĥ± (p) ä i,j := L/2-1 z=-L/2 H ± 2z+i,j (z)e -izp (3.17)
is a 2 × 2 matrix called symbol of the (anti)block-circulant matrix H ± . Therefore, in our ansatz for the eigenvectors, we need v(p) to be one of the eigenvectors of the symbol and the eigenvalue (p) coincides with the corresponding eigenvalue of the symbol. We point out that this is a necessary but not sufficient condition, since so far we have imposed Eq. (3.15) only for m = 0.

It is clear that the symbol plays an important role in our search for the eigenvectors, so let us pause a moment for a few considerations about it. From its definition it follows that it is a 2 × 2 Hermitian matrix that satisfies Ĥi,j (p) = -Ĥ * i,j (-p) = -Ĥj,i (-p) .

(3.18)

The most general parametrization is hence

Ĥ(p) = f 0 (p)I 2 + f 1 (p)σ x + f 2 (p)σ y + f 3 (p)σ z = f 0 (p)I 2 + » f 2 1 (p) + f 2 2 (p) + f 2 3 (p) e -i φ 2 σ y e -i θ 2 σ z σ y e i θ 2 σ z e i φ 2 σ y , (3.19) 
where f i (p), i ∈ {0, 1, 3}, are odd real scalar function, and f 2 (p) is an even real scalar function. Here θ(p) ∈ (-π, π], called the Bogoliubov angle, and φ(p) ∈ [0, π] are defined in such a way that The eigenvectors of Ĥ(p) can be computed by rotating those of σ y : they are

       - » f 2 1 (p) + f 2 2 (p) + f 2 3 (p) sin(θ(p)) cos(φ(p)) = f 1 (p) » f 2 1 (p) + f 2 2 (p) + f 2 3 (p) cos(θ(p)) = f 2 (p) » f 2 1 (p) + f 2 2 (p) + f 2 3 (p) sin(θ(p)) sin(φ(p)) = f 3 (p) , (3.20 
v(p) := 1 √ 2 e -i φ(p) 2 σ y e -i θ(p) 2 σ z Å 1 i ã = 1 √ 2 Ç cos( φ(p)-θ(p) 2 ) -i sin( φ(p)+θ(p) 2 ) i cos( φ(p)+θ(p) 2 ) + sin( φ(p)-θ(p) 2 ) å (3.21) and 1 √ 2 e -i φ(p) 2 σ y e -i θ(p) 2 σ z Å 1 -i ã = v * (-p) . (3.22)
By construction, the two eigenvectors v(p) and v * (-p) are orthonormal for any value of the angles θ(p) and φ(p). The eigenvector with largest eigenvalue is v(p), and its eigenvalue (p) is the dispersion relation 

(p) = f 0 (p) + » f 2 1 (p) + f 2 2 (p) + f 2 3 (p) . ( 3 
(H ± w(p)) 2m+i = ±e -i sign(m)Lp ( Ĥ(p)v(p)) i e imp = = ±e -i sign(m)Lp (p)w 2m+i (p) , (3.24) so that Eq. (3.15) is implemented ∀m by imposing p ∈ ® π(2k -1∓1 2 ) L ´, k ∈ {-L 2 + 1, ..., L 2 } . (3.25) 
In short, the momentum's quantization condition for H ± can be written as e iLp = ±1, where p ∈ (-π, π] is implied. Summarizing, there are L eigenvectors of H ± given by the ansatz (3.14), where v(p) is the eigenvector with largest eigenvalue of the symbol Ĥ(p), reported in Eq. (3.21), and p is quantized as in Eq. (3.25). The eigenvalues of the eigenvectors w(p) are given by the dispersion relation (p), reported in Eq (3.23). The other L eigenvectors of H ± are the complex conjugate w * (p) of the first and have eigenvalues -(-p). Using the representation of the Kronecker delta

δ p,q = 1 L L/2-1 m=-L/2
e iqm , where q ∈ (-π, π] ,

it can be shown that the 2L eigenvectors {w(p), w * (p)}, with e iLp = ±1, are orthogonal, which means that this is a complete set of eigenvectors for H ± . Similarly, it can also be shown that they are normalized to √ L. Note that the symbol, associated to a quantized set of momenta, encodes all the information about the corresponding (anti)block-circulant matrix; indeed, the latter can be reconstructed from the symbol inverting Eq. (3.17), using the representation of the Kronecker delta above. As we will see in the following, the symbol often gives a convenient alternative description of the Hamiltonian, e.g. Ref. [START_REF] Fagotti | Charges and currents in quantum spin chains: late-time dynamics and spontaneous currents[END_REF] used it to derive the local conservation laws of a generic non-interacting system. 

. Bogoliubov transformation and momentum basis

Once the eigenvectors of H ± are known, the next step towards the spectrum of H is the Bogoliubov transformation. We can define a new set of operators

{b † p , b p } p|e ipL =±1 , called Bogoliubov fermions, as b † p = 1 √ 2L L j=-L+1 w j (p)a j b p = 1 √ 2L L j=-L+1 w * j (p)a j , where p ∈ (-π, π] | e ipL = ±1 , (3.29) 
with inversion relation

a j = … 2 L p|e iLp =±1 Ä w * j (p)b † p + w j (p)b p ä ,
where j ∈ {-L + 1, ..., L} . (3.30)

Bogoliubov transformation and momentum basis

Given the definition above and the orthogonality of the eigenvectors w(p), it can be proved easily that the new operators are Dirac fermions, in the sense that they satisfy canonical anti-commutation relations

[b p , b † q ] + = δ p,q I, [b p , b q ] + = [b † p , b † q ] + = 0.
The fermionic Hamiltonians after the new transformation read

H ± = p|e iLp =±1 (p) Å b † p b p - 1 2 ã , (3.31) 
which is the diagonal form of the Hamiltonian.

From the diagonal expression of H ± , we can easily find its eigenstates. The first step is to define a reference state |∅ such that b p |∅ = 0 for any p. We assume the reference state to be normalized to one, i.e. ∅|∅ = 1. Then, for any subset {p} of all the possible momenta, we define the vector

|{p} = Ñ p∈{p} b † p |∅ é , (3.32) 
where, to solve the ambiguity about the overall sign, we impose that the operators b † p are applied in decreasing order of momentum. Using the canonical anti-commutation relations of Bogoliubov fermions, one can show that |{p} is eigenstate of H ± with energy

E(|{p} ) = p|e iLp =±1 (p) Å χ {p} (p) - 1 2 ã , (3.33) 
where χ {p} (p) is the indicator function of the subset {p} (it equals 1 if p ∈ {p}, 0 otherwise). The states |{p} are a total of 2 L orthonormal states and therefore they specify a complete set of eigenstates for H ± ; that is what we refer to as momentum basis. We can understand now how convenient quadratic fermionic theories are: from the knowledge of the 2L eigenvectors of H ± we were able to find the 2 L eigenstates of H ± . By definition, the momentum basis is the one that also diagonalizes all the occupation-number operators n p := b † p b p , which leads us to the following physical interpretation of such a basis. If the eigenvalue of n p on the eigenstate |{p} is 1, we say that the elementary excitation, a.k.a. quasi-particle, with momentum p is present in the state, while it is not if the eigenvalue is 0. Essentially, we made a choice of reference state which is a state that is empty of elementary excitations. By acting on it with an operator b † p we create a quasi-particle with momentum p, which brings an energy contribution to the state equal to (p). That is why those operators are referred to as creation operators. Note that each elementary excitation brings to the state a contribution that is independent from the presence or absence of the other quasi-particles: this is a signature of the absence of interactions. That explains why we are calling the models under consideration non-interacting. The operators b p are instead called annihilation operators because, if we act with b p on a state containing the quasi-particle with momentum p, we remove the quasi-particle from Chapter 3. Free-fermions techniques the eigenstate. To conclude, we point out that there are other representations of the momentum basis that one can obtain changing the reference state and the definition of creation and annihilation operators; we will see an example of that in Chapter 7.

EXAMPLE. Consider a chain of length L = 2. The L = 2 allowed momenta for H + are 0 and π, so that the 2 L = 4 eigenstates of

H + are |∅ , |{0} ≡ b † 0 |∅ , |{π} ≡ b † π |∅ , |{0, π} ≡ b † 0 b † π |∅ , (3.34) 
with energies

E(|∅ ) , E(|∅ ) + (0) , E(|∅ ) + (π) , E(|∅ ) + (0) + (π) (3.35)
respectively, where

E(|∅ ) = -(0)+ (π) 2
and (p) is the dispersion relation of the model.

. The full spectrum of the spin Hamiltonian

After the full spectrum of both H + and H -has been derived, one can infer the spectrum of the initial spin Hamiltonian H from the relation (3.4) between Hamiltonians. As already pointed out, we need to look what eigenvalue the eigenstates of

H + and H -have under Π z .
First of all, note that the momentum basis also diagonalizes Π z . That is because the set of commuting operators b † p b p completely specifies the basis of eigenstates (modulo an irrelevant phase for each state) and, therefore, any operator that commutes with all of them, such as Π z , is also diagonal in that basis. Then, one only has to evaluate the eigenvalue of Π z in the reference state of each sector: all the states with an even number of quasi-particles have the same eigenvalue of Π z , and those with an odd number of quasi-particles have opposite eigenvalue. Indeed, since [Π z , a j ] + = 0 for any j and b † p is linear in the Majorana fermions,

[Π z , b † p ] + = 0 for all p, implying Π z |{p} = (-1) #{p} Ñ p∈{p} b † p é Π z |∅ , (3.36) 
where #{p} is the number of elements in {p}. Note that, assuming as usual that the length of the chain L is even, this implies that half the eigenstates of H + have the right parity to be also eigenstates of H, and the same thing holds for the eigenstates of H -. Therefore, the spectrum of H is composed by 2 L-1 eigenstates of H + and 2 L-1 eigenstates of H -.

. Diagonalization without translation invariance

While we only consider translationally-invariant Hamiltonians, sometimes we will be interested in quadratic fermionic operators

A = 1 4 L m,n=-L+1 a m A m,n a n , (3.37) 

Definition of Gaussian states
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where A is a purely-imaginary Hermitian matrix which is not in general (anti)blockcirculant (as H is). The operator A allows for a diagonal form, which can be derived following the same idea behind the diagonalization of the Hamiltonian. Following what we did for H, we denote

{w (k) , w (k) * }, with k ∈ {-L 2 +1, ..., L 2 }, a full set of orthogonal eigenvectors of A normalized to √ L, such that Aw (k) = λ k w (k)
and Aw (k) * = -λ k w (k) * . In the notations used for the Hamiltonian, i.e. for A = H ± , we have w

(k) = w( π L (2k -1±1 2 )). Then we introduce a set of operators {d k , d † k } as d † k = 1 √ 2L L j=-L+1 w (k) j a j d k = 1 √ 2L L j=-L+1 w (k) * j a j ⇔ a j = … 2 L L/2 k=-L/2+1 Ä w (k) * j d † k + w (k) j d k ä , (3.38) 
which is essentially the Jordan-Wigner transformation (3.2) adapted to the present case. It can be shown that they also satisfy canonical anti-commutation relations

[d p , d † q ] + = δ p,q I , [d p , d q ] + = [d † p , d † q ] + = 0 , (3.39) 
implying that they are Dirac fermions. The operator A in the new fermions reads

A = L/2 k=-L/2+1 λ k Å d † k d k - 1 2 ã , (3.40) 
which is the diagonal form of the operator A.

As before, the diagonal form comes with a reference state |∅ A , which is the eigenstate of A annihilated by all the operators d k . All the other eigenstates of A are obtained applying any combination of d † k on |∅ A . This is what we call the canonical basis of the operator A, which coincides with the momentum basis if A = H ± . The only difference with respect to the translationally-invariant case is that in the latter case an explicit expression of the eigenvectors of A ≡ H ± is available, in the form of the ansatz (3.14); without translation invariance, the eigenvectors should be computed in some other way, but the diagonal form (3.40) is still extremely useful in many applications.

. Definition of Gaussian states

We define Gaussian states as those states described by a density matrix of the form

ρ = 1 Tr[e βW ] e βW , (3.41) 
where

β ∈ R and W = 1 4 L/2
i,j=-L/2+1 a i W i,j a j is a quadratic fermionic operator, with W a purely-imaginary Hermitian matrix. We include in the definition of Gaussian states also the limit β → +∞. Note that, if W 2m+i,2n+j only depends on the difference mn, the Gaussian state is invariant under a 2-sites shift on Chapter 3. Free-fermions techniques the fermionic lattice, i.e. the state is homogeneous. Note also that in all Gaussian states the expectation value of the product of an odd number of Majorana fermions is always zero because of symmetry. Indeed, considering as usual the length of the chain to be even, the density matrix (3.41) commutes with the operator

Π z = L/2 =-L/2+1 σ z ∝ L
j=-L+1 a j , while odd strings of Majorana fermions anti-commute with it.

The most important property of Gaussian states, which makes them so convenient to deal with, is Wick's theorem [START_REF] Gaudin | Une démonstration simplifiée du théorème de Wick en mécanique statistique[END_REF], stating what follows.

Consider a set of operators L 1 , ..., L 2m such that every operator L j is a linear combination of the Majorana operators a j with complex coefficients. Consider a state with density matrix (3.41). Define an antisymmetric 2m × 2m matrix M such that M j,k = L j L k for j < k. The following property holds:

L 1 • • • L 2m = Pf(M ) , (3.42) 
where the Pfaffian Pf is defined as

Pf(M ) ≡ σ∈S 2N (-1) σ 1 2 N N ! M σ(1),σ(2) • • • M σ(2N -1),σ(2N ) , (3.43) 
with S n the set of permutations of n elements and (-1) σ the signature of the permutation σ (the signature of a permutation is -1 to the number of exchanges between couples of elements in the original sequence to get the particular permutation).

The 2n-point connected correlations for states with vanishing odd correlations are defined as

a 1 a 2 c := a 1 a 2 a 1 a 2 a 3 a 4 c := a 1 a 2 a 3 a 4 -a 1 a 2 a 3 a 4 + + a 1 a 3 a 2 a 4 -a 1 a 4 a 2 a 3 , (3.44) 
and similar definitions for n > 2, where the expectation values are computed over the state under consideration. 3 From Wick's theorem, it follows that any 2n-point 3 In general, the N -point connected correlation function can be written via the generating function Z({η}) = log e i ηiai as

a 1 • • • a N c = ∂ ∂η N • • • ∂ ∂η 1 Z({η})| ηi=0 , (3.45) 
where the η i 's are Grassmann variables. This definition holds also for states with nonzero odd correlations. Incidentally, we recall that: the chain rule for Grassmann vari-

ables is ∂ ∂η f (θ(η)) = ∂θ ∂η ∂f (θ)
∂θ , where the order of the factors matters; the Leibniz rule is

∂ ∂ηj (f ({η})g({η})) = ∂f ({η}) ∂ηj g({η}) + P (f ({η})) ∂g({η}) ∂ηj
, where P is an operator that changes the sign of each term with odd degree in the polynomial expansion of the function.

connected correlation function of Majorana operators is zero in a Gaussian state for n > 1, or, equivalently, that any correlation function can be expressed as a sum of products of 2-point correlation functions.

Importantly, the definition (3.41) of Gaussian states includes also all the eigenstates of the canonical basis of any quadratic fermionic operator A written as in Eq. (3.37). To show that, we use the results of Section 3.5, that allow us to recast A in its diagonal form (3.40) by introducing appropriate Dirac fermions {d k , d † k }.

Given an eigenstate of A written as |ψ

:= d † k1 • • • d † kN |∅ A ,
with kj < kj+1 , the corresponding density matrix ρ can be written in the Gaussian form (3.41) by choosing

W = β k∈{ k} d † k d k -β k / ∈{ k} d † k d k and taking β → +∞.
Indeed, it can be shown that the overlap Tr(ρ |ψ ψ|) between ρ and any other element of the canonical basis

d † p1 • • • d † pM |∅ A goes as 1 e βN e β#p∈{ k} (β#p / ∈ { k})
, where # means "number of". So, in the limit, the only eigenstate of the canonical basis with non-zero overlap with e βW / Tr(e βW ) is precisely ψ.

Note however that not all the eigenstates of non-interacting operators are Gaussian: those of the canonical bases are, but the elements of any other potential basis are generally not. That is because the sum of two Gaussian states is in general non-Gaussian. For example, if we sum two independent elements of the canonical basis (hence Gaussian) with the same (degenerate) eigenvalue, their combination is still an eigenstate, but it is not Gaussian in general. Indeed, consider for example the Hamiltonian eigenstate

(αb † -p b † -q + βb † q b † p ) |∅
, where p and q are two momenta different from 0 and π and we assume the dispersion relation to satisfy (-p) = (p). This is an eigenstate of the Hamiltonian with eigenvalue (p) + (q)k (k) 2 . However, b † -q b † -p b p b q = α * β, while all the 2-point correlations of Bogoliubov fermions are zero, implying that Wick's theorem does not hold (unless, of course, α = 0 or β = 0).

Finally, we point out that the Gaussianity of a state is defined in terms of a set of Majorana fermions, and therefore it is always connected to a given fermionic theory. For this reason, talking about Gaussianity for states defined in terms of spin operators may be ambiguous. Basically, one needs to apply first the Jordan-Wigner transformation, whose precise expression is typically chosen depending on the Hamiltonian of the model under consideration, and only then one can determine if the state is Gaussian or not. For example, the definition of the Jordan-Wigner transformation changes if the non-interacting Hamiltonian commutes with Π x or Π z , and the state ρ ∝ e σ z σ z +1 is Gaussian in the former case (neglecting the distinction in fermionic sectors), but not in the latter. This example will be considered in much more detail in Chapter 4.

. Correlation matrix

. Definition

We can exploit the fact that Gaussian states are completely described by the 2-point correlation function to encode all the information about the state in the Chapter 3. Free-fermions techniques correlation matrix, defined as

Γ i,j := δ i,j -a i a j , (3.46) 
where the expectation value is evaluated with respect to the exact state of the system. Provided that Wick's theorem holds, the correlation matrix is all we need to compute any correlation function of fermionic operators. This makes Gaussian states rather convenient to deal with, both analytically and numerically, because it allows one to work with a 2L × 2L matrix instead of a 2 L × 2 L one. Incidentally, note that the correlation matrix can be defined also for non-Gaussian states, although, in that case, it is not sufficient to describe any higher-order correlation functions.

The correlation matrix of homogeneous states is (anti)block-circulant, so we can describe it with a symbol, precisely as we did for the Hamiltonian in Eq. (3.17). Let us introduce

( Γ(p)) i,j = L/2-1 z=-L/2 Γ 2z+i,j e -izp , (3.47) 
where i, j ∈ {1, 2}, and p is quantized according to the specific fermionic sector under consideration. As in the case of the Hamiltonian, the symbol contains full information about the translationally-invariant Gaussian state. We will discuss how to generalize the symbol to generic inhomogeneous Gaussian states in Section 3.10.

. Explicit expression given a Gaussian state

Let us consider a Gaussian state

ρ = 1 Tr[e βW ] e βW , (3.48) 
where

β ∈ R and W = 1 4 L/2
i,j=-L/2+1 a i W i,j a j is a quadratic fermionic operator, with W a purely-imaginary Hermitian matrix. Since W is quadratic in fermions, we can diagonalize it as described in Section 3.5, rewriting it as

W = L/2 k=-L/2+1 λ k Å d † k d k - 1 2 ã , (3.49) 
where

{d k , d † k }, k ∈ {-L 2 + 1, ..., L 2 
} is a set of Dirac fermions defined in terms of Majorana fermions via Eq. (3.38), and λ k is a scalar.

Using the connection (3.38) between Dirac and Majorana fermions, we can express the correlation matrix as

Γ i,j = 1 L L/2 p=-L/2+1 w (p) * i w (p) j -w (p) i w (p) * j - 2 L L/2 p,q=-L/2+1 w (p) * i w (q) * j d † p d † q + + (w (p) * i w (q) j -w (q) i w (p) * j ) d † p d q + w (p) i w (q) j d p d q , (3.50)
where {w (k) , w (k) * }, are the eigenvectors of W with eigenvalues {λ k , -λ k } normalized to √ L. This expression is convenient because it is easy to compute the two point functions of the operators {d k , d † k } in the state under consideration. In particular, we have

d j d k = 0 = d † j d † k , d † j d k = 1 1 + e -βλ k δ j,k , (3.51) 
leading to

Γ i,j = L/2 p=-L/2+1 tanh Å βλ p 2 ã w (p) i w (p) * j -w (p) * i w (p) j L = Å tanh Å βW 2 ãã i,j , (3.52) 
which is arguably one of the most useful formulae in non-interacting theories.

. Eigenvalues and connection with the density matrix

Eq. (3.52) implies that the eigenvalues of the correlation matrix of Gaussian states are in [-1, 1]. Moreover, the eigenvalues are all in {-1, 1} if and only if we consider the limit β → ∞ for a matrix W with non-zero eigenvalues, i.e. if the Gaussian state under consideration is in the canonical basis of a quadratic fermionic operator.

From Eq. (3.52), we can also derive the connection between the eigenvalues of the correlation matrix and those of the density matrix. Let us consider a generic Gaussian state in the form (3.48). Since the operators d † k d k commute among each other for any k, we can express

ρ = 1 Tr L/2 k=-L/2+1 e λ k (d † k d k -1/2) L/2 k=-L/2+1 e λ k (d † k d k -1/2) . (3.53)
The trace at the denominator can be computed and it gives

L/2 k=-L/2+1 (e βλ k /2 + e -βλ k /2 ). So, using e βd † k d k = 1 + (e β -1)d † k d k , we get ρ = L/2 k=-L/2+1 ρ k , (3.54) 
with

ρ k := 1 1 + e -βλ k d † k d k + 1 1 + e βλ k d k d † k . (3.55) Calling {ν k , -ν k }, k ∈ {-L 2 + 1, . . . , L 2 }, the eigenvalues of Γ, from Eq. (3.52) we have ν k = tanh( βλ k
2 ), leading to

ρ k = 1 + ν k 2 d † k d k + 1 -ν k 2 d k d † k . (3.56)
In the end, the density matrix's eigenvalues are given by

L/2 k=-L/2+1 1+σ k ν k 2
, for any combination of σ k ∈ {-1, 1}. 

p b q = b † p b † q = 0 , b † p b q = δ p,q χ {p} (p) , (3.57) 
where χ {p} (p) is the indicator function of the set {p}, equal to 1 if p ∈ {p} and zero otherwise. Plugging that in Eq. (3.50) specialized to Bogoliubov fermions, we obtain

Γ 2m+i,2n+j = i 2 L p|e iLp =±1 Im Ä v * i (p)v j (p)e i(n-m)p ä (1 -2χ {p} (p)) , (3.58) 
where m, n ∈ {-L 2 , . . . , L 2 -1}, i, j ∈ {1, 2}, and we have used the representation (3.14) of the eigenvectors w(p) of H ± , while the expression of the vectors v(p) can be found in Eq. (3.21). Consistently with the physical picture drawn in Section 3.3, we see that specifying the quasi-particle content, i.e. knowing b † p b p = χ {p} (p) for all possible momenta, fully specifies any eigenstate of the momentum basis. Using

e ipL/2 = -(-i) 1∓1 2
and e ipL/2 = -(i)

1∓1 2 , one can check that the matrix that we obtain is (anti)block-circulant with boundary conditions that are consistent with the sector under consideration, showing that the state is, as expected, translationally invariant.

Thanks to the correlation matrix, we can conveniently assess the fermionic sector of a given eigenstate of the momentum basis. Indeed, we can use

Π z ≡ L/2 j=-L/2+1 σ z j = i L Pf(Γ) , (3.59) 
derived using Wicks' theorem. Finally, we can plug the expression above into the definition of the symbol (3.47), obtaining that the eigenstate |{p} is described by the symbol

Γ(p) = e -i φ(p) 2 σ y e -i θ(p) 2 σ z (χ {p} (p) -χ {p} (-p))I 2 + + (χ {p} (p) + χ {p} (-p) -1)σ y e i θ(p) 2 σ z e i φ(p) 2 σ y , (3.60)
where θ(p) and φ(p) are the angles defined in Eq. (3.19). Note that, in the formula above, χ {p} (-π) = 0 for any set of momenta {p}, since we chose our quantized momenta to be in the interval (-π, π].

. Entanglement entropies

In this section we express the entanglement entropies (2.16) and (2.17) for a Gaussian state in terms of its correlation matrix.

First of all, following [START_REF] Peschel | Calculation of reduced density matrices from correlation functions[END_REF], we derive a description of the reduced density matrix of a given sub-system. Consider a quantum spin chain in a Gaussian state described by the density matrix ρ. Let us define the subsystem A of the quantum spin chain as the set containing the lattice sites { -|A|/2+1 , ..., |A|/2 }, j ∈ {-L 2 + 1, ..., L 2 }, where we assume for convenience the number of sites |A| to be even (the odd case requires only minor adjustments). The state of the subsystem A is also Gaussian (the expectation values of the operators acting on A do no change), with correlation matrix

Γ A i,j := Γ i , j , (3.61) 
where we have indexed the correlation matrix for the subsystem in such a way that it is centered in zero. Using Eq. (3.52) we can define W A such that Γ A = tanh( βW A 2 ), so that the reduced density matrix can be written as

ρ A = 1 Tr(e βW A ) e βW A , W A = 1 4 |A|/2 i,j=-|A|/2 (a A ) i W A i,j (a A ) j , (3.62) 
where the operators (a A ) j 's are the set of Majorana fermions acting on A. Essentially, we can almost forget that Γ A describes a subsystem and not a full quantum spin chain, the only difference being boundary conditions (e.g. homogeneous states are not described by block-circulant matrices but by block-Toeplitz matrices). This is not a big complication and most of the results derived so far for the correlation matrix Γ of the full chain translate directly to that of the subsystem Γ A .

In Section 3.7, we expressed the eigenvalues of the density matrix of a Gaussian state in terms of those of the correlation matrix. In the present case, that implies that the eigenvalues of the density matrix ρ A are

|A|/2 k=-|A|/2+1 1+σ k ν k 2
for any combination of σ k ∈ {-1, 1}, where {ν k , -ν k } are the eigenvalues of the correlation matrix Γ A . This allows us to simplify the expressions of the entropies (2.16) and (2.17). Let us start with the Rényi entropy:

S α (A) = 1 1 -α log Ñ σ -|A|/2+1 ,...,σ |A|/2 =±1 |A|/2 j=-|A|/2+1 Å 1 + σ j ν j 2 ã α é = = 1 1 -α log Ñ |A|/2 j=-|A|/2+1 ÅÅ 1 + ν j 2 ã α + Å 1 -ν j 2 ã α ã é = = 1 2(1 -α) log det ÅÅ 1 + Γ 2 ã α + Å 1 -Γ 2 ã α ã , (3.63) 
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Analogously,

S 1 (A) = - σ -|A|/2+1 ,...,σ |A|/2 =±1 |A|/2 j=-|A|/2+1 Ñ |A|/2 i=-|A|/2+1 1 + σ i ν i 2 é log Å 1 + σ j ν j 2 ã = - |A|/2 j=-|A|/2+1 σ -|A|/2+1 ,...,σ |A|/2 =±1 1 + σ j ν j 2 log Å 1 + σ j ν j 2 ã i|i =j 1 + σ i ν i 2 = = - |A|/2 j=-|A|/2+1 Å 1 + ν j 2 log Å 1 + ν j 2 ã + 1 -ν j 2 log Å 1 -ν j 2 ãã = = - 1 + Γ 2 log Å 1 + Γ 2 ã , (3.64) 
where we have used

σ -|A|/2+1 ,...,σ j-1 ,σ j+1 ,...,σ |A|/2 =±1 i|i =j 1+σ i ν i 2 = 1.
Note that each eigenvalue of the correlation matrix Γ A contributes to the entropies independently, and that the expressions that we have derived are consistent with the fact that, if Γ only has eigenvalues ±1, i.e. when it represents a (pure) eigenstate of the canonical basis of a quadratic fermionic operator, the entropies of the state are zero.

. Thermodynamic limit

Until this point in the chapter, we have assumed the size of the chain L to be finite. However, in all our applications, we are interested in studying what happens in the limit L → +∞. In the previous sections we have nonetheless presented the finite-size case because, on one hand, it is formally more precise and, on the other hand, it is extremely useful when we want to simulate numerically our systems. Indeed, in the latter case, the size of the system is often assumed to be large but finite.

We define the thermodynamic limit via the following identifications:

L/2 m=-L/2+1 -→ m∈Z , p ∈ { π L (2k -1∓1 2 )}, k ∈ -L 2 + 1, ..., L 2 -→ p ∈ (-π, π] , 1 L p -→ π -π dp 2π , Lδ p,q -→ 2πδ(p -q) , √ Lb p , √ Lb † p -→ b(p), b † (p) , (3.65) 
where δ(p) is the Dirac delta and b(p), b † (p) are the infinite-size version of Bogoliubov fermions, that now satisfy the canonical anti-commutation relations

[b(p), b † (q)] + = 2πδ(p -q)I , [b(p), b(q)] + = [b † (p), b † (q)] + = 0 , (3.66) 
for any p, q ∈ (-π, π].

The identifications above allow us to easily recast the majority of this chapter results in the thermodynamic limit. However, there are a few subtleties that we need to discuss. The first one concerns the distinction of fermionic sectors. An apparent issue here is that the expectation value of the infinite string Π z , which distinguishes the Ramond and Neveu-Schwartz sectors, is not well defined, since it is influenced by spins at infinity. But the distinction into sectors actually looses importance in the limit, since, as already pointed out, the two Hamiltonians H ± only differ in the boundary conditions, which now do not affect the physics of any observable that is local in fermions. So, in many applications, we can just write H = 1 4 m,n∈Z a m H m,n a n , where

H := lim L→+∞ H + = lim L→+∞ H - (3.67)
is an infinite block-Toeplitz matrix. Problems may arise when considering operators that are local in the original spin theory but not in the corresponding fermionic theory. Those are represented by spin operators that do not commute with Π z , such as σ x . To properly address the thermodynamic limit of those observables, one typically computes physical properties in finite size and only then takes the thermodynamic limit.

The second issue we need to address is the divergence of the expectation value of the Hamiltonian (and similar observables). Indeed, applying the identifications (3.65), we have that H typically diverges linearly in L. That is not surprising and it is a feature of the thermodynamic limit even in classical statistical mechanics. In this case, the sensible quantities to look at are either differences of expectation value on different states, or expectation value per unit length H L . For example, the energy per unit length of the reference state

|∅ is ∅|H|∅ L = - π -π dp 2π (p) 2 .
Finally, we have to discuss how we represent the momentum basis. The first step is typically to introduce the so called root distribution (see e.g. Ref. [START_REF] Caux | The quench action[END_REF] for more details)

ρ p := b † p b p 2π , (3.68) 
which, in finite size, is in one to one correspondence with the eigenstate |{p} of the momentum basis thanks to Eq. (3.58) and using

ρ p = χ { p} (p)
2π . The root distribution is a real scalar function and its importance is due to the fact that it is used also in interacting integrable models to describe eigenstates (although in that case it is defined differently, since there is no notion of Bogoliubov fermions) [START_REF] Yang | Thermodynamics of a one-dimensional system of bosons with repulsive delta-function interaction[END_REF][START_REF] Takahashi | Thermodynamics of One-Dimensional Solvable Models, chapter Finite temperature integral equations for un-nested systems[END_REF]. Note that, because of canonical anti-commutation relations, ρ p ∈ [0, 1 2π ] for any state. In the thermodynamic limit, however, the root distribution is not well defined, as can be understood by noting that, after the substitutions (3.65), it diverges as L. Physically, that is due to the fact that, in the limit, a continuum of momenta is allowed, while in finite size we only have a discrete finite set of them. So, in the thermodynamic limit, we trade the root distribution for the root density ρ(p), that Chapter 3. Free-fermions techniques can be defined as the smooth real function such that, for any q ∈ (-π, π],

1 L p|e ipL =±1 and p<q ρ p = q -π dp 2π ρ(p) , (3.69) 
for L → +∞. Note that, as ρ p ∈ [0, 1 2π ], also ρ(p) ∈ [0, 1 2π ] for any state. However, the correspondence between eigenstates and root density is not one-to-one, as it was for the root distribution via Eq. (3.58). Indeed, a given root density corresponds to a number of eigenstates of the Hamiltonian that is exponentially-large in the chain's length [START_REF] Yang | Thermodynamics of a one-dimensional system of bosons with repulsive delta-function interaction[END_REF]. This can be intuitively understood by noting that small changes to the distribution of momenta do not change the root density: the definition (3.69) only cares about the leading order in L, so e.g. two eigenstates that differ only in a finite number of elementary excitations have the same root density. Moreover, for the same reasons, the same root density that describes an eigenstate can be shared by other states that are neither eigenstates nor pure.

EXAMPLE. The symbol of a (anti)block-circulant matrix A with 2 × 2 blocks in the limit becomes

Ä Â(p) ä i,j = z∈Z A 2z+i,j e -izp , (3.70) 
with inversion relation

A 2m+i,2n+j = π -π dp 2π e i(m-n)p Âi,j (p) , (3.71) 
where i, j ∈ {1, 2}. Note that, unlike for the finite symbol, the distinction in fermionic sectors has disappeared (the momentum is not quantized anymore), consistently with what we have discussed in this section.

. Inhomogeneous symbol

In this section, following Refs. [START_REF] Bocini | Connected correlations in partitioning protocols: A case study and beyond[END_REF][START_REF] Fagotti | Locally quasi-stationary states in noninteracting spin chains[END_REF], we generalize the symbol for the correlation matrix introduced in Eq. (3.47) for translationally-invariant Gaussian states to generic correlation matrices, which are not block-circulant in general. The goal is to give a phase-space formulation of quantum mechanics for what concerns Gaussian states [START_REF] Wigner | On the Quantum Correction For Thermodynamic Equilibrium[END_REF][START_REF] Moyal | Quantum mechanics as a statistical theory[END_REF][START_REF] Bettelheim | Nonlinear Quantum Shock Waves in Fractional Quantum Hall Edge States[END_REF][START_REF] Bettelheim | Quantum ripples over a semiclassical shock[END_REF][START_REF] Protopopov | Dynamics of waves in one-dimensional electron systems: Density oscillations driven by population inversion[END_REF]. We consider directly the thermodynamic limit, which allows us to overlook some complications. Moreover, for simplicity, we restrict ourselves to the case in which the symbol of the Hamiltonian has only components along σ x and σ y ; this implies that (p) ≥ 0 and, in the notations of Eq. (3.19), f 0 (p) = f 3 (p) = 0 (or, equivalently, φ(p) = 0), for all possible momenta p.

Using the matrix notation

Γ m-n m+n 2 i,j ≡ Γ 2m+i,2n+j , (3.72) 
where m, n ∈ Z and i, j ∈ {1, 2}, we introduce the physical inhomogeneous symbol of the correlation matrix as 

(p + π) = -(-1) 2x Γgauge x (p): Γ z x = π -π dp 2π e izp ( Γphys x (p) + Γgauge x (p)) , (3.76) 
since the gauge part gives zero under integration. Moreover, since the symbol is always evaluated in x ∈ Z/2, we can work with an extension to x ∈ R of the physical symbol that assumes arbitrary values in x / ∈ Z/2 and coincides with the physical symbol modulo a gauge part when x is evaluated over the lattice sites. Since it is the correlation matrix, and not the symbol, to be directly linked to physical observables, two symbols that differ in the gauge part Γgauge x (p) and/or in x / ∈ Z/2 describe the same physics. Such a freedom can be used to define a new symbol, which we simply call inhomogeneous symbol Γx (p), that is a smooth function in x and that in the homogeneous limit (i.e. when Γ 2m+i,2n+j = Γ 2(m-n)+i,j ), gives back exactly the homogeneous symbol. We also require the symbol to remain Hermitian and periodic in p. For example, a possible choice for the inhomogeneous symbol is

Γx (p) = y∈Z/2 sin(2π(x -y)) 2π(x -y) ( Γphys y (p) + Γphys y+1/2 (p)), (3.77) 
which is an smooth function of x, gives the matrix Γ via the same inversion formula (3.74), i.e.

Γ z x = π -π dp 2π e izp Γx (p) , (3.78) 
where x ∈ Z/2 and z ∈ 2(Z + x), and coincides with the homogeneous symbol, i.e. Γx (p) = Γ(p), when the state is homogeneous and the symbol is evaluated in

x ∈ Z/2.
It can be shown that the composition rule for the inhomogeneous symbol is

AB x (p) = ( Â B) x (p) , (3.79) 
where the star (or Moyal ) product is defined as

(f g)(p, x) := f (p, x)e i ← - ∂ x - → ∂ p- ← - ∂ p - → ∂ x 2 g(p, x) ≡ e i ∂x∂q -∂p∂y 2 f (p, x)g(q, y) (y,q)→(x,p) .
(3.80) Note that Moyal product allows also for an integral representation that involves only the symbol(s) evaluated in semi-integer positions. In particular, it is worth writing down the following Moyal products, where only one of the factors depends on both x and p:

f (p) Γx (p) = π -π dk 2π y∈Z/2 f (p + k) Γy (p)e 2i(x-y)k , (3.81) Γx (p) g(p) = π -π dk 2π y∈Z/2
Γy (p)g(pk)e 2i(x-y)k , (3.82)

f (p) Γx (p) g(p) = π -π dk 2π y∈Z/2 f (p + k) Γy (p)g(p -k)e 2i(x-y)k . (3.83)
These expressions are convenient because they do not rely on the symbol Γx (p) to be smooth in x, and can therefore be applied also to the physical inhomogeneous symbol. We will see explicit examples of inhomogeneous symbols for Gaussian states in Chapter 4.

It is convenient, especially when dealing with time evolution, to express the inhomogeneous symbol of the correlation matrix in terms of expectation values of Bogoliubov fermions. We can do that resuming from Eq. (3.50), specialized to the Bogoliubov fermions, then plugging it in the definition of the inhomogeneous physical symbol (3.73). In the end one gets

Γphys x (p) = Γρ;phys x (p) + Γψ;phys x (p) , (3.84) 
where the two components of the symbol are defined as Γρ;phys

x (p) = i 2 Ç 0 e -iθ(p) -e iθ(p) 0 å + (-1) 2x i 2 Ç 0 e -iθ(p+π) -e iθ(p+π) 0 å + + 4π y∈Z/2 π -π
dq 2π e 2iq(x-y) ρ phys y;o (p)e i θ(p-q)-θ(p+q)

2

-iρ phys y;e (p)e -i θ(p-q)+θ(p+q) 2 iρ phys y;e (p)e i θ(p-q)+θ(p+q)

2 ρ phys y;o (p)e -i θ(p-q)-θ(p+q) 2 (3.85)
and Γψ;phys (3.87)

x (p) = y∈Z/2 π -π dq 2π e 2iq(x-y) × × Ñ Re Ä ψ phys y (p) ä e i θ(p-q)-θ(p+q) 2 -Im Ä ψ phys y (p) ä e -i θ(p-q)+θ(p+q) 2 -Im Ä ψ phys y (p) ä e i θ(p-q)+θ(p+q) 2 -Re Ä ψ phys y (p) ä e -i θ(p-q)-θ(p+q) 2 é , (3.86 
Here the indices e and o refer respectively to the even and odd part of the function in the variable p, i.e.

f e (p) := f (p) + f (-p) 2 , f o (p) := f (p) -f (-p) 2 , (3.88) 
and the expectation values are computed with respect to the exact state of the system. Note that ρ phys x (p) is a real function and ψ phys x (p) is a complex function obeying ψ phys x (p) = -ψ phys x (-p). Moreover, both the fields are even (resp. odd) under k → k + π when x is integer (resp. half-odd-integer), i.e.

ρ x (p + π) = (-1) 2x ρ x (p) , ψ x (p + π) = (-1) 2x ψ x (p) , (3.89) 
as a consequence of the property Γphys

x (p + π) = (-1) 2x Γphys x (p)
. The discussion about the symbol gauge freedom applies to the dynamical fields as well: we can introduce the dynamical fields ρ x (p) and ψ x (p) that parametrize the (general) inhomogeneous symbol and coincide with ρ phys x (p) and ψ phys x (p) for x ∈ Z/2, modulo a gauge transformation, which in this case consists in adding a function g x (p) such that g x (p + π) = -(-1) 2x g x (p). We always choose a gauge such that ρ x (p) remains a real function and ψ x (p) remains a complex function obeying ψ x (p) = -ψ x (-p). The parametrization of the inhomogeneous symbol in terms of the dynamical fields reads

Γx (p) = Γρ x (p) + Γψ x (p) , (3.90) 
where

Γρ x (p) := e -i θ(p) 2 σ z Å (4πρ x;e (p) -1) σ y + 4πρ x;o (p)I 2 ã e i θ(p) 2 σ z , Γψ x (p) := e -i θ(p) 2 σ z Å Re ψ x (p)σ z -Im ψ x (p)σ x ã e i θ(p) 2 σ z , (3.91) 
and the star product is defined in Eq. (3.80). Importantly, if we compute ρ x (p) on a homogeneous state, it reduces to the thermodynamic limit of the root distribution

ρ k = b † k b k
2π , i.e. the root density (note that the root density's space dependence disappears, as a consequence of the homogeneity assumption). We will see when dealing with time evolution in the next section that this observation, together with the equations of motion, leads to identify ρ x (p) as the main object to describe the asymptotic dynamical properties of local observables, i.e. the space-time dependent root density in the local-density approximation introduced in Section 2.3. Because of that, in the following, we refer to it as root density. The field ψ x,t (p), instead, will be referred to as auxiliary field, to highlight the fact that ρ x,t (p) and ψ x,t (p) are the only two fields needed to describe exactly any Gaussian state.

. Non-interacting time evolution

We have already seen that Gaussian states are closely related to non-interacting models (e.g. the eigenstates of a non-interacting Hamiltonian are Gaussian). What makes this connection even stronger is the property of Gaussian states to stay Gaussian when evolving under a quadratic fermionic Hamiltonian. That is the feature that enables one to fully leverage the benefits offered by Wick's theorem. Often, by non-interacting time evolution one refers to situations in which not only the Hamiltonian is non-interacting, but also the state is Gaussian. In this section we take this point of view and we discuss time evolution from initial Gaussian states. Going beyond Gaussian states will be one of the main topics of Chapter 4.

First of all, note how Bogoliubov fermions evolve in time. In the Heisenberg picture

b † p (t) = e it (p) b † p (0) , (3.92) 
where we have used e cb † p bp = 1 + (e c -1)b † p b p , for any scalar c. By conjugation, we also have b p (t) = e -it (p) b p . The simplicity of the evolution of Bogoliubov fermions is a signature of the absence of interactions: the elementary excitations evolve independently one from the other. From here, the evolution of Majorana operators is straightforward:

a j (t) = i∈Z (e -itH ) j,i a i (0) , (3.93) 
leading to

Γ(t) = e -itH Γ(0)e itH , (3.94) 
with associated equation of motion

i ∂Γ ∂t = [H, Γ] . (3.95)
We can rewrite the dynamical equation above in terms of symbols and study how they evolve. Since a symbol contains full information about the corresponding matrix, studying the symbol also specifies completely the problem. As in the previous section, we will restrict for simplicity to Hamiltonians whose symbol has only components along σ x and σ y , which allows us to express the symbol of the Hamiltonian as where we have introduced the Moyal brackets {{f, g}} := f gg f . Finally, by expanding the Moyal brackets, we end up with the equation of motion for the dynamical fields:

Ĥ(p) = (p)e -i θ(p) 2 σ z σ y e i θ(p) 2 σ z . ( 3 
i ∂ ∂t ρ x,t (p) = (p) ρ x (p, t) -ρ x,t (p) (p) ≡ {{ (p), ρ x,t (p)}}, i ∂ ∂t ψ x,t (p) = (p) ψ x,t (p) + ψ x,t (p) (p) ≡ {{ (p), ψ x,t (p)}} + , (3.99) 
allowing for the integral solution

ρ x,t (p) = y∈Z/2 +π -π dq 2π e 2iq(x-y) e -it[ (p+q)-(p-q)] ρ y,0 (p), ψ x,t (p) = y∈Z/2 +π -π dq 2π e 2iq(x-y) e -it[ (p+q)+ (-p+q)] ψ y,0 (p) . (3.100) 
Note that the two fields are decoupled, meaning that they evolve independently. This implies that they describe independent sub-spaces. Importantly, the first order of the homogeneous expansion of the equation of motion for ρ x,t (p), representing the local-density approximation, is

∂ t ρ x,t (p) + (p)∂ x ρ x,t (p) = 0, (3.101) 
which is precisely Eq. (2.13), describing the leading order of GHD, where the effective velocity in this case is (p). This property, combined with the homogeneous limit discussed in Section 3.10, allows us to treat ρ x,t (p) as the space-time dependent generalization of the root density that describes the system in the framework of the local density approximation; the difference is that now, together with ψ x,t (p), it is an exact description of the state. This enables many interesting computations, such as the investigation of the conditions for which the (space-time-dependent) root density gives the leading contribution (see Chapter 4). Incidentally, note that the fact that the effective velocity in this case does not depend on the root density is yet another signature of non-interaction: quasi-particles move at a speed that is independent from their density. cols

In this chapter we address the question of when the large-time limit is correctly described by a space-time dependent root density like in GHD, providing insights into the local-density approximation. New analytic results about long-range correlations, i.e. correlations decaying as power laws of the distance, will also be provided. For simplicity, we focus on the 2-point spin-spin connected correlation function in partitioning protocols, specializing to non-interacting spin chains, and we consider only initial states in which the expectation value of a (finite) odd number of fermionic operators is zero. Moreover, we do not investigate observables at the edge of the light-cone, which in general are affected by different corrections [START_REF] Kormos | Inhomogeneous quenches in the transverse field Ising chain: scaling and front dynamics[END_REF][START_REF] Alba | Generalized-hydrodynamic approach to inhomogeneous quenches: correlations, entanglement and quantum effects[END_REF][START_REF] Eisler | Full counting statistics in a propagating quantum front and random matrix spectra[END_REF][START_REF] Viti | Inhomogeneous quenches in a free fermionic chain: Exact results[END_REF]. We start by extending the representation of Gaussian states in terms of classical fields given in Section 3.10 also to non-Gaussian states. This allows us to study separately all the independent contributions to the large-time limit of any observable and compare them with the contribution given by the root density. Then we report the asymptotic results from Ref. [START_REF] Bocini | Connected correlations in partitioning protocols: A case study and beyond[END_REF] for spin-spin correlations and, finally, we mention how to include higher-order correlations in such a framework.

. Hamiltonian

We specialize to the non-critical transverse-field Ising chain (TFIC), described by the Hamiltonian

H = -J ∈Z σ x σ x +1 + hσ z , (4.1) 
where J > 0, h = 1 and we consider directly the infinite-size limit. We already encountered this Hamiltonian in the examples of Chapter 3. We remind the reader that it has dispersion relation

(p) = 2J » 1 + h 2 -2h cos(p) (4.2)
and Bogoliubov angle such that

e iθ(p) = 2J e ip -h (p) , (4.3) 
both introduced in general in Section 3.2.

. Beyond Gaussian states

All the initial states that we consider in this chapter are assumed to be invariant under spin flip: the density matrix describing the state commutes with Π z ∝ ∈Z a . Such a property implies that the expectation value of any product of an odd number Chapter 4. Correlations in partitioning protocols of Majorana fermions is zero (recall that those operators are non-local in the original spin theory). Recall that this always holds for Gaussian states of the from (3.41), as already pointed out. Importantly, spin-flip invariance is preserved by time evolution, since we are considering non-interacting Hamiltonians that commute with Π z (see discussion in Section 3.1).

. A step beyond Gaussian states

Our goal is to extend the phase-space description of quantum mechanics formulated in Section 3.10 for Gaussian states to any kind of state. To go beyond Gaussian states, we have to consider nonzero 2n-point connected correlation functions also for n > 1. We start by discussing the 4-point connected correlation.

Similarly to the correlation matrix, let us define

C m,n,r,s := a m a n a r a s c ≡ a m a n a r a s -a m a n a r a s + a m a r a n a s -a m a s a n a r . (4.4)
We remark that C m,n,r,s = 0 for a Gaussian state as a trivial consequence of Wick's theorem. The dynamical fields that we introduced in the previous section are obviously not enough to describe the 4-point connected correlation of Majorana operators, so we introduce a set of new fields. We start by defining a new kind of physical inhomogeneous symbol, adapted to the present situation:

Ä Ĉphys x 1 ,x 2 (p 1 , p 2 ) ä 2(j 1 -1)+j 3 ,2(j 2 -1)+j 4 := z 1 ∈2(Z+x 1 ) z 2 ∈2(Z+x 2 ) e -ip 1 z 1 e -ip 2 z 2 C 2(x 1 + z 1 2 )+j 1 ,2(x 1 - z 1 2 )+j 2 ,2(x 2 + z 2 2 )+j 3 ,2(x 2 - z 2 
2 )+j 4 ,

which is a 4 × 4 matrix. The inversion relation is

C 2(x 1 + z 1 2 )+j 1 ,2(x 1 - z 1 2 )+j 2 ,2(x 2 + z 2 2 )+j 3 ,2(x 2 - z 2 
2

)+j 4 = = π -π d 2 p (2π) 2 e iz 1 p 1 e iz 2 p 2 Ä Ĉphys x 1 ,x 2 (p 1 , p 2 ) ä 2(j 1 -1)+j 3 ,2(j 2 -1)+j 4 , (4.6 
)

with z i ∈ 2(Z + x i ).
In order to parametrize the new symbol with a set of new dynamical fields, we decompose it in a similar way to what we did for Γx (p). This allows us to identify all the invariant sub-spaces, i.e. the independent components of Ĉphys

x 1 ,x 2 (p 1 , p 2 ). We get

Ĉphys x 1 ,x 2 ,t (p 1 , p 2 ) = Ĉξ;phys x 1 ,x 2 ,t (p 1 , p 2 ) + ĈΩ;phys x 1 ,x 2 ,t (p 1 , p 2 ) + ĈΥ;phys x 1 ,x 2 ,t (p 1 , p 2 ) , (4.7) 
where 

e i θ(p 1 ) 2 σ z ⊗ e i θ(p 2 ) 2 σ z Ĉξ;phys x 1 ,x 2 (p 1 , p 2 ) e -i θ(p 1 ) 2 σ z ⊗ e -i θ(p 2 ) 2 σ z = 4ξ phys x 1 ,
e i θ(p 1 ) 2 σ z ⊗ e i θ(p 2 ) 2 σ z ĈΩ;phys x 1 ,x 2 (p 1 , p 2 ) e -i θ(p 1 ) 2 σ z ⊗ e -i θ(p 2 ) 2 σ z = 2 Re(Ω phys x 1 ,x 2 (p 1 , p 2 ))e 11 -2 Re(Ω phys x 1 ,x 2 (p 1 , p 2 ))e 33 + + 2 Im(Ω phys x 1 ,x 2 (p 1 , p 2 ))e 13 + 2 Im(Ω phys x 1 ,x 2 (p 1 , p 2 
))e 31 , (4.9) 

e i θ(p 1 ) 2 σ z ⊗ e i θ(p 2 ) 2 σ z ĈΥ;phys x 1 ,x 2 (p 1 , p 2 ) e -i θ(p 1 ) 2 σ z ⊗ e -i θ(p 2 ) 2 σ z = 4 Im(Υ phys x 1 ,x 2 ;o (
and we are using the following notations. The indices e and o of ξ refer respectively to the symmetrization and the antisymmetrization in the corresponding momentum, e.g.

f eo (p 1 , p 2 ) := f (p 1 , p 2 ) + f (-p 1 , p 2 ) -f (p 1 , -p 2 ) -f (-p 1 , -p 2 ) 4 , (4.11) 
the indices e and o of Υ refer respectively to a symmetrization and an antisymmetrization in the first momentum, e αβ := σ α ⊗ σ β , the fields are defined as

ξ phys x 1 ,x 2 (p 1 , p 2 ) := +π -π d 2 q (2π) 2 e 2ix 1 q 1 e 2ix 2 q 2 b † (p 1 -q 1 )b(p 1 + q 1 )b † (p 2 -q 2 )b(p 2 + q 2 ) c , (4.12 
)

Ω phys x 1 ,x 2 (p 1 , p 2 ) := - +π -π d 2 q (2π) 2 e 2ix 1 q 1 e 2ix 2 q 2 b(q 1 + p 1 )b(q 1 -p 1 )b(q 2 + p 2 )b(q 2 -p 2 ) c , (4.13) Υ phys x 1 ,x 2 (p 1 , p 2 ) := +π -π d 2 q (2π) 2 e 2ix 1 q 1 e 2ix 2 q 2 b † (-q 1 + p 1 )b(q 1 + p 1 )b(q 2 + p 2 )b(q 2 -p 2 ) c , (4.14) 
and the star product was defined in Eq. (3.80). We did not include the dynamical field ω phys in the definitions above because it depends on ξ phys via

ω phys x 1 ,x 2 (p 1 , p 2 ) = +π -π d 2 q (2π) 2 e 2ix 1 q 1 e 2ix 2 q 2 b(q 1 + p 1 )b(q 1 -p 1 )b † (-q 2 -p 2 )b † (-q 2 + p 2 ) c = 1 2 y∈Z/2 +π -π dq 2π e 2iq(x 1 -x 2 ) e 2iy(p 1 -p 2 ) ξ phys x 1 +y,x 2 -y (q -p 1 , q + p 2 )+ + (-1) 2x 2 2 y∈Z/2 +π -π dq 2π e 2iq(x 1 -x 2 ) e 2iy(p 1 -p 2 +π) ξ phys x 1 +y,x 2 -y (q -p 1 , q + p 2 + π), (4.15) 
derived from the symmetry properties of the original correlation function (4.4). The symmetries of the symbol yield several properties of the dynamical fields, such as the fact that ξ is real.

As in the Gaussian case, we have a gauge freedom linked to the symmetry

Ĉphys x 1 ,x 2 (p 1 , p 2 ) = (-1) 2x 1 Ĉphys x 1 ,x 2 (p 1 + π, p 2 ) = (-1) 2x 2 Ĉphys x 1 ,x 2 (p 1 , p 2 + π). (4.16) 
In particular, if we replace Ĉphys

x 1 ,x 2 (p 1 , p 2 ) with Ĉphys x 1 ,x 2 (p 1 , p 2 ) + Ĉgauge x 1 ,x 2 (p 1 , p 2 ), where Ĉgauge x 1 ,x 2 (p 1 , p 2 ) = -(-1) 2x 1 Ĉgauge x 1 ,x 2 (p 1 + π, p 2 ) or Ĉgauge x 1 ,x 2 (p 1 , p 2 ) = -(-1) 2x 2 Ĉgauge x 1 ,x 2 (p 1 , p 2 + π) , (4.17) 
the inversion relation still holds. We define the homogeneous symbol Ĉx 1 ,x 2 (p 1 , p 2 ) as a smooth function of x 1 , x 2 ∈ R that coincides with Ĉphys x 1 ,x 2 (p 1 , p 2 ) for x 1 , x 2 ∈ Z/2, modulo a gauge term, and choose the gauge term in such a way that all the properties of the physical fields are conserved. Ĉx 1 ,x 2 (p 1 , p 2 ) is parameterized in an analogous way to Ĉphys

x 1 ,x 2 (p 1 , p 2 ) in Eq. (4.7), with the only difference that the physical fields are substituted by new ones, that differ only in a gauge part in x 1 , x 2 ∈ Z/2 and are continuous in x 1 and x 2 . The dynamical equations satisfied by the new fields are

i∂ t ξ x 1 ,x 2 ,t (p 1 , p 2 ) ={{ (p 1 ), ξ x 1 ,x 2 ,t (p 1 , p 2 )}} + {{ (p 2 ), ξ x 1 ,x 2 ,t (p 1 , p 2 )}} , i∂ t Ω x 1 ,x 2 ,t (p 1 , p 2 ) ={{ (p 1 ), Ω x 1 ,x 2 ,t (p 1 , p 2 )}} + + {{ (p 2 ), Ω x 1 ,x 2 ,t (p 1 , p 2 )}} + , i∂ t Υ x 1 ,x 2 ,t (p 1 , p 2 ) ={{ (p 1 ), Υ x 1 ,x 2 ,t (p 1 , p 2 )}} + {{ (p 2 ), Υ x 1 ,x 2 ,t (p 1 , p 2 )}} + , (4.18 
) where the notation for the Moyal brackets is the same as in Eq. (3.99), and in the brackets with (p 1 ) (resp. (p 2 )) the conjugated variables for the Moyal products are p 1 and x 1 (resp. p 2 and x 2 ). These dynamical equations allow for the integral solutions

ξ x 1 ,x 2 ,t (p 1 , p 2 ) = y 1 ,y 2 ∈Z/2 +π -π d 2 k (2π) 2 e 2ik 1 (x 1 -y 1 ) e 2ik 2 (x 2 -y 2 ) × × e -it[ (p 1 +k 1 )-(p 1 -k 1 )] e -it[ (p 2 +k 2 )-(p 2 -k 2 )] ξ y 1 ,y 2 ,0 (p 1 , p 2 ) , (4.19)
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Ω x 1 ,x 2 ,t (p 1 , p 2 ) = y 1 ,y 2 ∈Z/2 +π -π d 2 k (2π) 2 e 2ik 1 (x 1 -y 1 ) e 2ik 2 (x 2 -y 2 ) × × e -it[ (k 1 +p 1 )+ (k 1 -p 1 )] e -it[ (k 2 +p 2 )+ (k 2 -p 2 )] Ω y 1 ,y 2 ,0 (p 1 , p 2 ) , (4.20) Υ x 1 ,x 2 ,t (p 1 , p 2 ) = y 1 ,y 2 ∈Z/2 +π -π d 2 k (2π) 2 e 2ik 1 (x 1 -y 1 ) e 2ik 2 (x 2 -y 2 ) × × e it[ (-k 1 +p 1 )-(k 1 +p 1 )] e -it[ (k 2 +p 2 )+ (k 2 -p 2 )] Υ y 1 ,y 2 ,0 (p 1 , p 2 ) . (4.21)
To summarize, we encoded the full information about the 4-point connected correlations in a set of three independent dynamical fields.

. General non-Gaussian state

The inclusion of higher-order non-zero connected correlation functions is straightforward: to account for the 2n-point connected correlation function we shall introduce a 2 n × 2 n inhomogeneous symbol, which can be described in terms of a finite set of dynamical fields. In order to count the fields corresponding to such a symbol, we have to think of all the possible correlation functions that can be defined using the Bogoliubov fermions b and b † , following three rules: the argument of the operators is irrelevant; correlations that are obtained as a permutation of the fermionic operators one from the other count as one; a correlation and its complex conjugate count as one. So the number of independent fields introduced by the 2n-point connected correlation function is n + 1. The way in which they can be defined is a generalization of what we did above, as are the equations of motion that one obtains. In the main part of this work, we consider observables involving at most 4-point connected correlations, leaving some general considerations for the final discussion.

. Spin-spin correlation function

The simplest local observable that involves also some non-Gaussian fields is the spin-spin connected correlation function

S z m,n (t) := σ z m σ z n t -σ z m t σ z n t , (4.22) 
where we let the lattice indices m and n and the distance between spins scale with time as m ∼ n ∼ t and mn ∼ t α , with α ∈ [0, 1].

In the following, we want to see how each field contributes to the spin-spin connected correlation. To do so, it is convenient to rewrite our observable as

S z m,n = -a 2m-1 a 2m a 2n-1 a 2n + a 2m-1 a 2m a 2n-1 a 2n = -C 2(m-1)+1,2(m-1)+2,2(n-1)+1,2(n-1)+2 + Γ 2(m-1)+1,2(n-1)+1 Γ 2(m-1)+2,2(n-1)+2 + Γ 2(m-1)+1,2(n-1)+2 Γ 2(m-1)+2,2(n-1)+1 (4.23)
and split the correlation matrix in the two parts accounted for by the dynamical fields for Gaussian states ρ x,t (p) and ψ x,t (p) as done for the inhomogeneous symbol in Eq. (3.90), i.e. Γ = Γ ρ + Γ ψ . The idea is to study independently the behavior of C, Γ ρ and Γ ψ in the scaling limit above. In this way, by knowing the value of the fields in the initial state, we also know how the spin-spin connected correlation behaves and where the leading contribution comes from. In practice, we engineer three different partitioning protocols, each presenting just one among the contributions C, Γ ρ and Γ ψ . To construct such examples, we proceed by introducing a homogeneous state for each of the cases we want to study and combine it with an infinite-temperature thermal state to create a partitioning protocol; we choose the infinite-temperature state to be on the left. The peculiarity of the infinite-temperature state which makes it convenient to consider is that all the 2n-point connected correlation functions are zero, which implies that all the dynamical field in this state are zero, except for the root density, that equals 1 4π .

. Partitioning protocols

In this section we consider three examples of partitioning protocols of the kind introduced in Section 2.2, that we will use as initial states.

. Root-density partitioning protocol

The first example of partitioning protocol that we consider is described solely by the root density:

ρ x,0 (p) = 1 -Θ x 4π + Θ x ρ R (p) , Γ ψ = 0 , (4.24) 
where ρ R (p) = 1 2π 1 1+e β (p) and (p) is the dispersion relation (4.2). Here Θ x is the discrete step function defined for x ∈ Z/2, whose integral representation is given by

Θ x = +π -π dτ 2π e 2ixτ 1 -e -i(τ -i0) = C dz 2πi z 2x z -1 , (4.25) 
where C is a closed path winding once around the origin and enclosing the unitary circle (note that Θ 0 = 1). Note that, since the homogeneous states that form the partitioning protocols are defined in terms of the root density only and the root density of homogeneous states does not evolve in time, the non-trivial dynamics happens only in the proximity of the junction. In Appendix 4.A we show that this state is a smooth version of the sharplyseparated two-temperature state, defined by the density matrix I ⊗ ρ R , where I is the identity operator acting on the left half of the chain and ρ R is a thermal state with inverse temperatures β for the right half of the chain. Here, by smooth we mean that there are spin to the left of the origin whose correlation with some spin to the right of the origin is not exactly zero. In particular, Appendix 4.A shows that the difference between the correlation matrices of the two two-temperature states goes to zero exponentially with the distance from the junction. It also shows that the offdiagonal elements of correlation matrix Γ ρ considered here go to zero exponentially with the distance from the diagonal, implying that the initial state has only shortrange correlations.

In Ref. [START_REF] Bocini | Connected correlations in partitioning protocols: A case study and beyond[END_REF] an integral representation of Γ ρ in this protocol was derived:

(Γ z;ρ x ) 1+ 1∓1 2 ,1+ 1∓1 2 = -2πi Im C 1 dw 1 2π C 2 dw 2 2πw 2 (w 1 -w 2 ) Å ρ R (-i log(w 1 w 2 )) - 1 4π ã e ±i θ(-2i log w 2 )-θ(-2i log w 1 ) 2 e tS (x+ z 2 )/t (w 1 )-tS (x-z 2 )/t (w 2 ) -e tS (x-z 2 )/t (w 1 )-tS (x+ z 2 )/t (w 2 ) (4.26) (Γ z;ρ x ) 2,1 = -Γ -z;ρ x 1,2 = -2πi C 1 dw 1 2π C 2 dw 2 2πw 2 (w 1 -w 2 ) Å ρ R (-i log(w 1 w 2 )) - 1 4π ã Å e tS (x+ z 2 )/t (w 1 )-tS (x- z 
2 )/t (w 2 ) e i θ(-2i log w 2 )+θ(-2i log w 1 )

2 + + e tS (x-z 2 )/t (w 1 )-tS (x+ z 2 )/t (w 2 ) e -i θ(-2i log w 2 )+θ(-2i log w 1 ) 2 ã , (4.27) 
where

S ζ (w) := 2ζ log(w) -iE(w 2 ) , (4.28) 
and

E(w) := 2J » (1 -hw)(1 -h/w) (4.29)
is the dispersion relation in complex variables. Here C 1 and C 2 are closed curves with winding number 1 around the origin, in an annulus around the unit circle, and such that C 2 is inside the region delimited by C 1 . For the function E(w), we choose the branch cut to be on the real axis in the interval [0, min{1/h, h}]∪[max{1/h, h}, +∞), 1 where we recall that we assumed that the model is gapped, and hence h = 1; in this way the function is analytic in the annulus. Note that 2x ± z ∈ 2Z, so that the functions w s 1 2x+s 2 z do not have any branch cut ∀s 1 , s 2 ∈ {±1}. As for ρ R (-i ln w) and e iθ(-i ln w) , they are also analytic in the annulus, since they are analytic function of (p). That is in general true for any noncritical state satisfying clustering. We also mention that the computation could be carried out also without introducing complex variables and sticking to the momentum space, in a similar fashion to what was done in Ref. [START_REF] Bocini | Non-probabilistic fermionic limit shapes[END_REF] for a similar asymptotics. In the following we discuss how to compute the leading contribution to the integral in the different regimes defined by α.

1 To choose the branch cuts, here it is convenient to isolate the singular point, i.e. the origin, so we write E(w) = 2J »

(1-hw)(w-h) w

. We can choose the branch cut of the numerator to be on the real axis in the interval [min{1/h, h}, max{1/h, h}] and the branch cut of the denominator to be in [0, +∞).

. Auxiliary-field partitioning protocol

We set here

Γ ρ = 0 , ψ x,0 (p) = Θ x ψ R (p) , (4.30) 
where ψ R (p) := -i 2 sin(p) 1 + h 2 -2h cos(p), and h is the magnetic field in the Hamiltonian (4.1). We refer to this state as auxiliary-field partitioning protocol. Note that the correlation matrix of the homogeneous state defined by ρ x,0 (p) = 1 4π and ψ x,0 (p) = ψ R (p) has elements

Γ 0 = σ y /4 , Γ ±1 = ∓iσ x /4 , Γ ±2 = ±iσ ± /4 , Γ z = 0 if |z| > 2 , (4.31) 
which describe an initial state with local correlations (for the sake of our discussion, the only important thing is that the correlations decay at least exponentially with distance). Unlike the previous example, this state evolves also far from the junction. Indeed, whenever there is a non-zero field that is not the root density, the homogeneous part evolves too, so we effectively have a global quench far to the right of the junction, while around the junction a light-cone structure still emerges, as we will discuss in more details later on. In Ref. [START_REF] Bocini | Connected correlations in partitioning protocols: A case study and beyond[END_REF] an integral representation of Γ ψ in this protocol was derived:

Ä Γ z;ψ x ä 11 = - Ä Γ z;ψ x ä 2,2 = i 2 Re i C 1 dw 1 2π C 2 dw 2 2πw 2 ψ R (-i log(w 1 w 2 ))× × e i θ(-2i log w 2 )-θ(-2i log w 2 ) 2 e tS (x+ z 
2 )/t (w 1 )+tS (-x+ z

2 )/t (w 2 ) -e tS (x-z 2 )/t (w 1 )+tS (-x-z 2 )/t (w 2 )

w 1 -w 2 (4.32) Ä Γ z;ψ x ä 2,1 = - Ä Γ -z;ψ x ä 1,2 = - i 2 Im i C 1 dw 1 2π C 2 dw 2 2πw 2 ψ R (-i log(w 1 w 2 )) w 1 -w 2 × × Å e tS (x+ z 2 )/t (w 1 )+tS (-x+ z 
2 )/t (w 2 ) e i θ(-2i log w 1 )+θ(-2i log w 2 )

2 + -e tS (x-z 2 )/t (w 1 )+tS (-x-z 2 )/t (w 2 ) e -i θ(-2i log w 1 )+θ(-2i log w 2 ) 2 ã , (4.33) 
where the curves C 1 and C 2 and the function S ζ (w) are defined as in the analogous equations for the root-density protocol -Eqs. (4.26) and (4.27). The considerations about the singularities of the function under integration still hold.

. Non-Gaussian partitioning protocol

The last partitioning protocol that we introduce is a partitioning protocol in which the state is described only in terms of the non-Gaussian fields. We define it via the density matrix

ρ = 1 Tr e β R +∞ =0 σ z σ z +1 e β R +∞ =0 σ z σ z +1 . (4.34) 
This state has already been studied in Ref. [START_REF] Alba | Prethermalization at low temperature: The scent of long-range order[END_REF] and we denote it as rotated-Ising thermal state (RITS), since it is the thermal state of an Ising model with the axis of the nearest-neighbor interaction that is rotated with respect to the one in our Hamiltonian.

What is convenient about the RITS is that the computation of the expectation value of any string of σ z is essentially classic, since everything is diagonal in the z basis. In particular, σ z t=0 = 0 ∀ , and

σ z m σ z n t=0 = (tanh(β)) |m-n| Θ m Θ n . (4.35) 
Note also that all the odd correlations of Majorana fermions are zero by symmetry, since they anti-commute with the operator Π z = ∈Z σ z and the density matrix (4.35) commutes with it. It can be shown that the Gaussian part of the state, i.e. the correlation matrix, is zero throughout the whole chain, or, equivalently, ρ x,t (p) = 1 4π and ψ x,t (p) = 0, but the connected 4-point function is non-zero. Note that, differently from the Gaussian partitioning protocols above, the partitioning protocol that we have just defined is sharp, in the sense that the correlations between spins belonging to different halves of the chain are zero. The downside is that the state excites all the non-Gaussian fields (so it is not described by one field only), but this is not a problem, since we are mainly interested in comparing the non-Gaussian contribution as a whole with the one from the root density.

The contribution from each field can be computed as illustrated in Ref. [START_REF] Bocini | Connected correlations in partitioning protocols: A case study and beyond[END_REF]. In short, the simplicity of the initial state can be exploited to compute all the connected 4-point functions in Bogoliubov fermions, which are then plugged in the definitions of the fields, and connected to the observable via the parametrization (4.7). For example, the contribution of the field ξ x 1 ,x 2 ,t (p 1 , p 2 ) to the spin-spin connected correlation reads

S z,ξ m,n (t) = π -π d 2 pd 2 qdk (2π) 5 e -ik e -2iq 2 e 2iq 1 (m-n) e imk e 2inq 2 e -it( (p 1 +q 1 +k)-(p 1 -q 1 )+ (p 2 -q 1 +2q 2 )-(p 2 +q 1 )) (1 -e -i(k-i0) )(1 -e -i(2q 2 -i0) ) cos Ä θ(p 1 -q 1 )+θ(p 1 +q 1 +k) 2 ä cos Ä θ(p 2 +q 1 )+θ(p 2 -q 1 +2q 2 ) 2 ä G β (p 1 , p 2 , q 1 , 2q 2 , k) , (4.36) 
where

G β (p 1 , p 2 , q 1 , q 2 , k) := T β (k + p 1 + p 2 ) sin Ä θ(p 1 -q 1 )-θ(p 2 +q 1 ) 2 ä sin Ä θ(p 1 +q 1 +k)-θ(p 2 -q 1 +q 2 ) 2 ä + + T β (2q 1 ) cos Ä θ(p 1 -q 1 )+θ(p 1 +q 1 +k) 2 ä cos Ä θ(p 2 +q 1 )+θ(p 2 -q 1 +q 2 ) 2 ä + -T β (k + p 1 -p 2 -q 2 ) cos Ä θ(p 1 -q 1 )+θ(p 2 -q 1 +q 2 ) 2 ä cos Ä θ(p 1 +q 1 +k)+θ(p 2 +q 1 ) 2 ä , (4.37) 
and

T β (k) := 1 cosh 2 (β) 1 tanh 2 (β) -2 tanh(β) cos(k) + 1 . (4.38)
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Similar computations can be carried out also for the other non-Gaussian fields Υ and Ω. We will not report them here, since, as discussed below, the leading order from the non-Gaussian part comes from the field ξ.

. Numerical simulations

Numerical simulations are performed considering finite-size chains of length L, in which H is a 2L × 2L matrix. Time-evolution is computed exactly using

Γ m,n (t) = L m ,n =-L+1 (e -itH ) m,m (e -itH ) n,n Γ m ,n (0) (4.39)
and

C m,n,r,s (t) = L m ,n ,r ,s =-L+1 (e -itH ) m,m (e -itH ) n,n (e -itH ) r,r (e -itH ) s,s C m ,n ,r ,s (0), (4.40 
) derived from Eq. (3.93), which allow us to compute the spin-spin connected correlation via Eq. (4.23). We always stop the simulation at a time such that the finite size effects give only exponentially-small corrections to the expectation values that we are looking at, which is always possible thanks to the Lieb-Robinson bounds. In the case of Gaussian protocols, the initial state has been actually considered sharp, and not smooth as described in Section 4.4.1, since it is easier to construct. Therefore the state that we are simulating differs from the one described in the main text around the junction. However, the discrepancy between the two protocols in exponentially small in the distance from the origin, as shown in Appendix 4.A.

. Results of asymptotic analysis

. Root-density partitioning protocol

The leading order of the integrals (4.26) and (4.27) in the scaling limit t → +∞, with x = ζt and z = ct α > 0, for α ∈ [0, 1], was derived in Ref. [START_REF] Bocini | Connected correlations in partitioning protocols: A case study and beyond[END_REF]. We report here the result.

A light-cone structure emerges, with the edges of the light-cone determined by v max := max p (p). If at least one ray is outside the light-cone, meaning that |ζ + z t | > v max or |ζ -z t | > v max , the integrals are exponentially suppressed for any value of α. If both rays are inside the light-cone we have different regimes, depending on α.

For α = 1, the leading order can be reduced to a standard application of the saddle-point method. We do not report the explicit result because it is not particularly insightful, but it can be shown to decay as t -1 .

For 0 < α < 1/2, (Γ z;ρ x ) 1,1 ∼ (Γ z;ρ x ) 2,2 ∼ -i 2 j=1 (-1) j 2 z cos(2z pj ) Å ρ R (2p j ) - 1 4π ã , (Γ z;ρ x ) 2,1 = -Γ -z;ρ x 1,2 ∼ -i 2 j=1 (-1) j 2 z sin(2z pj + θ(2p j )) Å ρ R (2p j ) - 1 4π
ã , (4.41) where (p) and θ(p) are the dispersion relation and the Bogoliubov angle, ρ R (p) is defined by the partitioning protocol (4.24), and p1 and p2 are the stationary points of the function s x/t (p) := 2 x t p -(2p) that go respectively to π/2 and π when x/t is continuously sent to zero. Therefore the elements of the correlation matrix scale as z -1 ∼ t -α . Note that there is an implicit dependence on x, since pj depends on x/t.

For 1/2 < α < 1, we have

(Γ z;ρ x ) 1,1 ∼ (Γ z;ρ x ) 2,2 ∼ ∼ -i 2 j=1 Å ρ R (2p j ) - 1 4π ã cos Ä ts (x+ z 2 )/t (p j + δp j ) -ts (x-z 2 )/t (p j -δp j ) ä 2t| x/t (e ip j )|δp j , (4.42) 
(Γ z;ρ x ) 2,1 = -Γ -z;ρ x 1,2 ∼ ∼ i 2 j=1 Å ρ R (2p j ) - 1 4π ã sin Ä ts (x+ z 2 )/t (p j + δp j ) -ts (x-z 2 )/t (p j -δp j ) + θ(2p j ) ä 2t| x/t (e ip j )|δp j , (4.43) 
where pj + δp j are the saddle points of s (x+ z 2 )/t (p), with p1 and p2 defined as above. Importantly, δp j ∼ t α-1 , so that the elements of the correlation matrix scale as (tδp j ) -1 ∼ t -α .

For α = 0, the leading order gives the standard GHD result. In this case the contribution of the root density to the correlation-matrix's elements is finite. As we will see, this is the only case in which one field can give a non-zero contribution in the scaling limit.

We can summarize everything saying that the contribution to the correlation matrix accounted for by the root density behaves as Γ ρ ∼ t -α , for any α ∈ [0, 1]. From this result and using Eq. (4.23), we get directly a prediction for the spin-spin connected correlation S z m,n (t), with x ≡ m+n 2 ≡ ζt and z ≡ mn ≡ ct α , for α ∈ [0, 1], obtaining an explicit result that decays as t -2α . A comparison with numerical simulation is reported in Fig. 4.1. We point out that the spin-spin correlation in the case α = 0 was already discussed in Ref. [START_REF] Kormos | Inhomogeneous quenches in the transverse field Ising chain: scaling and front dynamics[END_REF]. ) i,j in the partitioning protocol (4.30), that we denoted Γ ψ . We are interested in the scaling limit t → +∞, with x := m+n 

z := m -n ≡ ct α > 0, for α ∈ [0, 1].
Here we just summarize the asymptotic study performed in Ref. [START_REF] Bocini | Connected correlations in partitioning protocols: A case study and beyond[END_REF], going through all the different regimes.

Consistently with the Lieb-Robinson bound, Γ m-n;ψ m+n 2 is exponentially suppressed if the distance mn is larger than 2v max t, i.e. when the matrix element refers to components of the system that are causally disconnected. Same thing when at least one of the rays m/t and n/t is to the left of the light-cone, where the state is locally indistinguishable from an infinite-temperature thermal state (up to exponentially small corrections). Therefore, in the following we assume mn < 2v max t and both m/t and n/t larger than -v max .

For -v max < ζ < 0 or for -v max < ζ < v max and α < 1/2, the leading order scales as t -1 and it is given by a standard application of the saddle-point method to a double integral.

For 0 < ζ < v max and α > 1/2 or for ζ > v max we have and p1 and p2 are the stationary points of s z 2t (p) that continuously go to π/2 and π when z → 0. Note that these matrix elements are not exponentially suppressed even outside (to the right) of the light-cone, consistently with the fact that a homogeneous state for which at least one field that is not the root density is different from zero undergoes a global quench. Importantly, because ψ R (p) is periodic, smooth and odd, it is always zero when evaluated in 0 and π. This leads to ψ R (2p j ) ∼ t α-1 , which gives an overall scaling t α-3/2 . Note that for generic dispersion relations, the saddle points of s z 2t (p) do not collapse to π/2 and π, which means that ψ R (2p j ) ∼ const in the generic case and the overall scaling is simply t -1/2 instead of t α-3/2 of the Ising model.

Ä Γ z;ψ x ä 1,1 = - Ä Γ z;ψ x ä 2,2 ∼ - i 2 √ πt Re 2 j=1 e i π 4 (5-2j) e 2its z 2t (p j ) ψ R (2p j ) | (2p j )| , Ä Γ z;ψ x ä 2,1 = - Ä Γ -z;ψ x ä 1,2 ∼ i 2 √ πt Im 2 j=1 e i π 4 (5-2j) e 2its z 2t (p j ) e iθ(2p j ) ψ R (2p j ) | (2p j )| , (4.44 
We can plug these results in Eq. (4.23) to get the prediction for the spin-spin connected correlation, which is of order t -2 for -v max < ζ < 0, t -min(3-2α, 2) for 0 < ζ < v max and t -3+2α for ζ > v max . See Fig. 4.2 for a comparison with a numerical simulation. Note that the light-cone can be inferred by looking at the qualitative behavior of local observables, despite the global quench on the right: the connected correlation between nearest neighbors decays as t -2 inside the light-cone and as t -3 to its right. As a byproduct, we have recovered the special case considered in Ref. [START_REF] Calabrese | Quantum quenches in the transverse field Ising chain: II. Stationary state properties[END_REF], where it is shown that the relaxation to a stationary state in a global quench from a generic Gaussian state in the TFIC is attained with corrections t -3/2 to the local elements of the correlation matrix.

. Non-Gaussian partitioning protocol

The asymptotic study of the integral (4.36) for the contribution of the field ξ to the spin-spin connected correlation S z m,n (t) in the scaling limit t → +∞, with m+n 2

∼ t and mn ∼ t α , for α ∈ [0, 1], is performed in Ref. [START_REF] Bocini | Connected correlations in partitioning protocols: A case study and beyond[END_REF]. We do not report here the explicit result since it is lengthy and it would not add much to our discussion, but we show a comparison between analytic predictions and numerical simulations in Fig. 4.3. In conclusion, S z m,n (t) ∼ t -1 for any ray inside or to the right of the light-cone. The simulation for the case α = 1 was done considering a partitioning protocol between a RITS on the right and a thermal state with finite (and not infinite as usual) temperature on the left to show that the leading order does not change. As a matter of fact a thermal state is accounted for by the root density and we have shown previously that the contribution from the root density to the spin-spin connected correlation in this regime goes to zero as t -2 , so it is Figure 4.2 -Spin-spin connected correlation matrix for the partitioning protocol defined in the main text in terms of the auxiliary field only. Here J = 1/2 and h = 2. On the left we report both the numerical and the analytical prediction. On the right we report the absolute value of the difference between the two, rescaled by the behavior of the leading order. A reference curve is plotted to help the reader identify how fast it goes to zero. The positions (m, n) that we used are (ζt + ct α 2 , ζtct α 2 ), rounded to the closest integer. Top:

ζ = 1/3, c = 2, α = 3/4. Bottom: ζ = 7/3, c = 1, α = 1.
sub-leading with respect to the non-Gaussian contribution.

. Beyond the 2-point spin correlation

So far we have restricted our discussion to the spin-spin connected correlation (4.22). For any spin-flip-invariant initial state, the only fields that give a contribution to such an observable (and to any observable that is written using connected correlations of Majorana fermions of order not higher than 4) are the ones we discussed. So, given any state, we know how the correlation S z m,n (t), with mn ∼ t α , decays for any α, depending on which fields are non-zero in the homogeneous states that form the partitioning protocol. However, if we want to consider higher-order correlation functions, we have to consider the higher-order fields discussed in Section 4.2.2. In particular, to study 2n-point connected correlations of σ z operators, we generally need to introduce n + 1 new fields with respect to the 2(n -1)-point function. In this section we sketch how one would proceed to describe the generic Figure 4.3 -Spin-spin connected correlation matrix for the partitioning protocol between a thermal state with inverse temperature β L on the left and a RITS with β = 0.5 on the right. Here J = 1/2, h = 2 and β L equals 0 for the top line and 0.5 for the bottom line. On the left we report both the numerical and the analytical prediction. On the right we report the absolute value of the difference between the two, re-scaled by the behavior of the leading order. A reference curve is plotted to help the reader identify how fast it goes to zero. The positions (m, n) that we used are (ζt + ct α 2 , ζtct α 2 ), rounded to the closest integer. Top:

ζ = 1/2, c = 1, α = 0. Bottom: ζ = 1/2, c = 1/6, α = 1.

case.

Let us first consider the homogeneous case assuming that the relative distance between any two spins does not scale in time, which is the generalization of the regime α = 0 in the spin-spin correlation. A qualitative study of the integral that defines each field suggests that, among the new fields that are introduced, the dominant one for large time is the one corresponding to the Bogoliubov correlation function where there are as many dagger operators as normal ones, which we denote ξ (n) :

ξ (n)phys x 1 ,...,xn (p 1 , . . . , p n ) := π -π d n q (2π) n e 2ix 1 q 1 • • • e 2ixnqn b † (p 1 -q 1 )b(p 1 + q 1 ) • • • b † (p n -q n )b(p n + q n ) c . (4.45)
So far we have discussed the case n = 1 and n = 2, where ξ (1) = ρ dominates over the auxiliary field and ξ (2) = ξ dominates over the other fields of the case n = 2, namely Ω and Υ. Let us focus on the dominant field.

To give physical predictions, the field ξ (n) has to be linked to a specific observable, which is an operation that involves additional phases proportional to the Bogoliubov angle, the coordinates z i that generalize the ones we have seen so far, and an integration over all momenta p i . However, the assumption that the relative distance between spins is fixed implies that x i -x n and z i do not scale with time ∀i ∈ {1, ..., n}. So the time dependence of the resulting integral comes only from b(p, t) = e -it (p) b(p, 0). Then we can conclude that the stationary points satisfy the system of 2n -1 equations

     (p i + q i ) = (p i -q i ) (p n + n-1 j=1 q j ) = (p n -n-1 j=1 q j ) (p i + q i ) + (p i -q i ) = (p n + n-1 j=1 q j ) + (p n -n-1 j=1 q j ) , (4.46) 
where i ∈ {1, ..., n -1} and we have used that the homogeneity of the state enforces n i=1 q i = 0. The system has to be solved for the 2n -

1 variables {p i } n i=1 , {q i } n-1 i=1
and it has stationary curves for solution. For instance, a possible solution is q i = 0 ∀i ∈ {1, ..., n-1}, p i = p j ∀i, j ∈ {1, ..., n}. Intuition based on the stationary phase approximation tells that the corresponding multiple integral is expected to decay as t -(n-1) , that is a power t -1/2 for each of the 2n -1 integrals except one, that is compensated by having stationary curves. This allows us to identify the part of the state that gives the leading order for a given connected correlation. For example, ξ (n) is expected to give in general a contribution t -(n-1) to the 2n-point fermionic connected correlation and t -2(n-1) to the 4n-point one.

Let us also comment what we expect in the inhomogeneous case, still under the assumption that the relative distance between spins is fixed. We expect something similar to what we saw for n = 2, namely that the qualitative behavior of the inhomogeneous case is the same as in the homogeneous one. Note that, according to this argument, the root density is the only field that can ever give a finite contribution to local observables.

Finally, to study what happens to the regime α > 0 one should first of all look at what happens to the stationary curves. We will not go beyond this heuristic qualitative argument, but we point out that the asymptotic analysis would be a direct generalization of what is done in Ref. [START_REF] Bocini | Connected correlations in partitioning protocols: A case study and beyond[END_REF].

. Discussion of the results

In the main part of the chapter we have reported the asymptotic results for the spin-spin connected correlation function S z m,n (t) ≡ σ z m (t)σ z n (t) -σ z m (t) σ z n (t) in the scaling limit t → +∞, with m + n ∝ t, mn ∼ t α and α ∈ [0, 1]. We have focused on three partitioning protocols in the transverse-field Ising chain (TFIC), specifically designed to isolate the independent contributions to S z m,n , whose behavior is summarize in Table 4.1. This study not only describes these specific protocols but also sheds light on generic partitioning protocols, as the independent contributions are simply summed together in the general case. We saw that the leading order for large time is obtained by considering the root density only, and neglecting all the other dynamical fields, not only for α = 0, when the support of the observable is ρ part. prot. ψ part. prot. non-Gauss. part. prot. TFIC t -2α t -3+2α t -1 generic non-interacting t -2α t -1 t -1 Table 4.1 -Summary of the three partitioning protocols considered in the chapter. We report how S z m,n decays with time inside the light-cone in the scaling limit m+n ∼ t, mn ∼ t α , with α ∈ [0, 1]. fixed and finite (i.e. the GHD's regime of validity), but also for α < 1/2. We also gave an argument according to which the crossover α = 1/2 does not depend on the special observable we are looking at. Indeed, when considering observables with larger (but finite) support in the fermionic representation, the higher-order fields needed to describe it give a contribution that decays faster to zero than the one coming from the root density.

Note the important role of non-Gaussian correlations in the initial state on the relaxation process (α = 0) in the TFIC: in global homogeneous quenches from a Gaussian state, the GGE value of the spin-spin correlation function in the Ising model is attained with corrections decaying as t -3 . Non-Gaussian correlations slow this process down to t -1 .

The results above also show how Gaussianification takes place in partitioning protocols. We argued that the expectation value of local observables at the Euler scale (α = 0) can be described using a Gaussian state that depends on the position of the observable. We also answered the question how local is "local enough" for the spinspin connected correlation to Gaussianize. The answer is that the distance between the spins should grow more slowly than t 1/2 , since otherwise the non-Gaussian fields become dominant.

As for the generality of our arguments, the generalization to any translationallyinvariant quadratic model with short-range interactions is quite straightforward. As a matter of fact one needs to change the dispersion relation, the Bogoliubov angle and, at most, introduce other angles to diagonalize the Hamiltonian as described in Chapter 3, but the definition of the dynamical fields would stay the same. Although we did not carry out the computation in the general case, we argued that the qualitative behaviors of the independent contributions to the spin-spin connected correlation would not change, except at most, the one linked to the auxiliary field, which may decay as t -1 instead of t -3+2α (this happens e.g. in the XY quantum spin chain when the external magnetic field is such that the dispersion relation has more than two stationary points). Note that this implies that a Gaussian partitioning protocol in the Ising chain attains its locally quasi-stationary state faster than in those other spin chains.

The generalization to other observables with 4-sites support in fermions is also straightforward: the precise expression of the observable would change, but, since our arguments rely only on the structure of time evolution and the singularities that define the partitioning protocol, the conclusions would be the same. We also discussed how any observable written in terms of a finite number of higher-order connected correlations can be included in the picture: n + 1 new independent dynamical fields should be introduced to account for the 2n-point fermionic connected correlation. We also gave a qualitative argument for computing their scaling.

It remains the question of what happens to local observables that are not local in fermions, such as σ x . We cannot apply our arguments to those observables because infinitely-many (in the thermodynamic limit) dynamical fields are involved. The situation is generally more complicated and it even turns out that there are situations in which the usual GGE/GHD is not enough to describe the late-time behavior of those observable, despite the model being free [START_REF] Zauner-Stauber | Time evolution within a comoving window: scaling of signal fronts and magnetization plateaus after a local quench in quantum spin chains[END_REF][START_REF] Eisler | Front dynamics in the XY chain after local excitations[END_REF]. We leave the inclusion of this case in our description as a prospect for a future work.

We point out that the problem of how to compute correlations in a GHD framework was recently tackled in Refs. [START_REF] Ruggiero | Quantum generalized hydrodynamics[END_REF][START_REF] Ruggiero | Quantum generalized hydrodynamics of the Tonks-Girardeau gas: density fluctuations and entanglement entropy[END_REF], but with a different approach: in those works, fluctuations are quantized on top of the GHD solution in a similar fashion to Landau's theory of superfluidity [START_REF] Landau | Theory of the Superfluidity of Helium II[END_REF], while our approach is somewhat closer to a microscopic theory, in the sense that we start from an exact description of the system and, from there, we derive leading order and corrections in a given scaling limit (accordingly, Refs. [START_REF] Fagotti | Locally quasi-stationary states in noninteracting spin chains[END_REF][START_REF] Fagotti | Higher-order generalized hydrodynamics in one dimension: The noninteracting test[END_REF] dubbed our kind of approach higher-order GHD). We also point out the collection of works reviewed in Ref. [START_REF] De Nardis | Correlation functions and transport coefficients in generalised hydrodynamics[END_REF], in which the authors study correlation functions in quantum quenches. However, they focus on correlations between observables at different times, related to Drude weight and Onsager matrix, that are accounted for by a hydrodynamic description. In this work we consider correlations between observables evaluated at the same time, assuming that their distance diverges, which a priori goes beyond any standard hydrodynamic description. Finally, we point out that long-range correlations similar to the ones that we study here were recently considered in Ref. [START_REF] Doyon | Emergence of hydrodynamic spatial long-range correlations in nonequilibrium many-body systems[END_REF] in the case of interacting system, starting directly from a locally quasi-stationary state (LQSS); here we consider a different setup, in which the (potential) relaxation to the LQSS still has to take place.

4.A . Smooth two-temperature state

A sharp two-temperature state is defined by the density matrix I ⊗ ρ R , where ρ R is a thermal state for the right half of the chain with inverse temperature β. Its correlation matrix is given by

Γ th 2m+i,2n+j = Θ m Θ n π -π dp 2π tanh Å β (p) 2 ã × × Ä v * i (p)v j (p)e i(n-m)p -v i (p)v * j (p)e i(m-n)p ä , (4.47) 
where

Θ x := ß 1 , if x ≥ 0 0 , if x < 0
and we used Eq. (3.52) specialized to the present case.

The expression for v(p) is reported in general in Eq. (3.21); by plugging it in the equation above we get

Γ th 2m+1,2n+1 = Γ th 2m+2,2n+2 = = iΘ m Θ n π -π dp 2π tanh Å β (p) 2 ã sin((n -m)p) = 0 ⇒ (Γ z;th x ) 1,1 = (Γ z;th x ) 2,2 = 0 , (4.48) 
(Γ z;th x ) 2,1 = -(Γ -z;th x ) 1,2 = -iΘ x+ z 2 Θ x-z 2 π -π dp 2π tanh Å β (p) 2 ã cos(zp + θ(p)) .
(4.49) This is the state that we want to compare with our root-density partitioning protocol.

Consider the partitioning protocol (4.24), where the correlation matrix is given by Eqs. (4.26) and (4.27). In the following, we show that, at time t = 0, the difference between the correlation matrices in this state and in the sharp two-temperature state goes to zero exponentially with the distance from the origin. More precisely, Γ ρ and Γ th coincide in the limit x → ∞, z = const, modulo corrections that are exponentially small in x.

First of all, note that at time zero

(Γ z;ρ x ) 1,1 = (Γ z;ρ x ) 2,2 = 0 (4.50)
for any x and z, so we only need to focus on

(Γ z;ρ x ) 2,1 = -Γ -z;ρ x 1,2 = C 1 dw 1 2π C 2 dw 2 2π e 2x(log(w 1 )-log(w 2 )) (w 1 -w 2 ) f (w 1 , w 2 ) w 2 , (4.51) 
where

f (w 1 , w 2 ) := - i 2
Å e z(log(w 1 )+log(w 2 )) e i θ(-2i log w 2 )+θ(-2i log w 1 )

2

+ + e -z(log(w 1 )+log(w 2 )) e -i θ(-2i log w 2 )+θ(-2i log w 1 )

2 ã Ä 4πρ R (-i log(w 1 w 2 )) -1 ä (4.52) 64 
Chapter 4. Correlations in partitioning protocols and ρ R (p) is defined in Section 4.4.1.

We perform the asymptotic study via the same methods used in [START_REF] Bocini | Connected correlations in partitioning protocols: A case study and beyond[END_REF] for the large-time limit. Since Re(log(w 1 ) -log(w 2 )) > 0, the function under integration goes exponentially to zero for x → -∞, which allows us to focus on x → +∞. In this case, we deform the contours C 1 and C 2 respectively to C 1 and C 2 in such a way that they are still two circles in an annulus around the unit circle, but now C 1 is inside the region delimited by C 2 (the vice versa holds for C 1 and C 2 ). In the deformation process, we get a residue contribution

i C 1 dw 2π f (w, w) w = - π -π dp 2π f (e ip , e ip ) = i π -π dp 2π cos(2zp + θ(2p)) Ä 4πρ R (2p) -1 ä = i π -π dp 2π cos(zp + θ(p)) Ä 4πρ R (p) -1 ä = -i π -π dp 2π cos(zp + θ(p)) tanh Å β (p) 2 ã , (4.53) 
which is exactly the same limit that we get from (Γ z;th x ) 2,1 . The function under double integration after the deformation is exponentially suppressed for x → +∞ in any point of the integration domain, and this concludes our proof.

The limit z → ∞, x = const is simpler, although the underlying idea is the same. We can consider separately the two pieces in the function f (w 1 , w 2 ). We can always deform the two integration contours in such a way that the real part of the exponent including z is negative for any point of the integration domain. Importantly, this can be done without ever crossing the contours of integration, nor passing through the origin, so we do not get any residue contribution. This shows that (Γ z;ρ x ) 2,1 goes exponentially to zero in this limit.

-Local perturbations in a jammed state

In this chapter, we introduce the concept of quantum jamming, specializing to the dual folded XXZ chain. Then we consider a family of jammed states for which time evolution after a spin flip can be solved exactly, and focus on observables whose expectation value can be predicted with minimal information about the initial state, such as the local magnetization. This allows us to describe more explicitly than what has been done in Ref. [START_REF] Bidzhiev | Macroscopic effects of localized measurements in jammed states of quantum spin chains[END_REF] how a single spin flip may lead to macroscopic effects when applied to a jammed state. We conclude by studying the entanglement spreading after a spin flip in a special class of jammed states. We point out that the only overlap between this chapter and the results of Ref. [START_REF] Bidzhiev | Macroscopic effects of localized measurements in jammed states of quantum spin chains[END_REF] are Sections 5.1 and 5.3, while the rest of the chapter reports original material presented (for the most part) in Ref. [START_REF] Zadnik | Measurement catastrophe and ballistic spread of charge density with vanishing current[END_REF].

. Overview of the model

The starting point in this chapter is the Hamiltonian

H = 1 4 ∈Z 1 -σ z +1 2 (σ x σ x +2 + σ y σ y +2 ) , (5.1) 
which describes a model known as dual folded XXZ chain. Although we will consider it as an independent model, we mention that it was obtained in Ref. [START_REF] Zadnik | The Folded Spin-1/2 XXZ Model: I. Diagonalisation, Jamming, and Ground State Properties[END_REF] via a strong coupling expansion [START_REF] Macdonald | t U expansion for the Hubbard model[END_REF] to describe the large-anisotropy limit ∆ → +∞ of the Heisenberg XXZ chain

H xxz ∝ ∈Z σ x σ x +1 + σ y σ y +1 + ∆σ z σ z +1 . (5.2) 
The origin of the name dual folded is clarified in Ref. [START_REF] Zadnik | The Folded Spin-1/2 XXZ Model: I. Diagonalisation, Jamming, and Ground State Properties[END_REF], where it is also shown that the model is integrable and interacting. Furthermore, we also mention that this is a special point of an integrable model known as two-component Bariev model [START_REF] Bariev | Integrable spin chain with two-and three-particle interactions[END_REF][START_REF] Bariev | Excitations in the integrable model with two-and three-particle interactions[END_REF]. The dual folded Hamiltonian describes constrained hopping on a lattice, summarized by the following local dynamical rule in the basis of local magnetization:

|↑↓↓ ↔ |↓↓↑ , (5.3) 
where |↑ (resp. |↓ ) denotes the eigenvector of the Pauli matrix σ z with eigenvalue 1 (resp. -1). This dynamical rule means that the only move allowed is an exchange of a spin up with two adjacent spins down. In particular, given the decomposition of any state in the basis of local magnetization, if each component neither presents the fragment ↑↓↓ nor ↓↓↑, then the state is in the kernel of the Hamiltonian (this is easily checked from the expression (5.1) of the Hamiltonian). In other words, a state is in the kernel of the Hamiltonian if each of its components in the magnetization basis, except at most the one where all the spins point down, does not present the fragment ↓↓. This kind of states are called jammed (the motivation behind of the name will be clarified in Section 5.3), and are special eigenstates of the Hamiltonian that break in general the invariance under the shift of any number of lattice sites.

. Initial state and spin-flip protocol

The protocol that we consider consists of the following steps:

1. We prepare the system in a jammed state with spins aligned along the z-axis (in either direction)

In particular, we pick a state where at least one spin up and one spin down are present. Note that this is a product state.

2. We flip the spin at the origin.

By convention, we set the origin of our lattice in correspondence of a spin up that has a spin down to its left. Note that the spin to the right of the origin can be either up or down, while the spin in position -2 is necessarily a spin up. Then we flip the spin at the origin. This operation can be interpreted as a double projective measurement. For instance, one possible outcome of the subsequent measurements of operators σ x and σ z on the state |↑ of a single spin is |↓ , where, at each step, the result of the measurement has been read off the measurement device and the state of the spin has collapsed accordingly.

The probability of such an outcome is irrelevant for our discussion. Note that the choice of the origin is in general not unique and we should choose as the origin precisely the spin up that we want to flip.

3. We let the state evolve in time under H.

After the spin flip, the state contains the fragment ↓↓, so it is not jammed anymore and it evolves in time. The Hamiltonian is interacting, but, as we will see, the simplicity of the initial state allows for a convenient mapping to a non-interacting time evolution. We anticipate, however, that not all the effects of interaction will be lost.

. Quasi-particle picture

A very convenient way to describe the system is the mapping to a quasi-particle picture. The first step is to group couple of lattice sites to form macro-sites. In particular, we define the macro-site as the couple of lattice sites (2 -1, 2 ). Next, note that, since time evolution is ruled by a two-site hopping, the parities of the positions of spins up are preserved by the dynamics: the number of spins up occupying odd positions and that of spins up occupying even positions are constants of motions. This allows us to define two species of quasi-particles living on the macro-sites as follows. Given a macro-site, we define its quasi-particle content by 5.3. Quasi-particle picture 67 e.g. looking at its spins up: if the spin in position 2 -1 (resp 2 ) is up, we say that the macro-site contains a quasi-particle of the species 1 (resp. 0). Note that it is possible that two quasi-particles of different species occupy the same macro-site. Fig. 5.1 reports a summary of the rules and an example the mapping To complete the mapping, we should discuss how the dynamical rule (5.3) translates to this new picture. It is easy to see that it corresponds to a hard-core shift of a quasi-particle to any neighboring site, where by hard-core we mean that the shift is hindered by the presence of other quasi-particles in the way. The triangular shape of the quasi-particles reported in Fig. 5.1 plays a fundamental role for time evolution, e.g. a quasi-particle of the species 0 can move to the left (not to the right!) to a macro-site that already contains a quasi-particle of species 1. Importantly, the dynamics preserves the configuration of quasi-particle labels, as seen, for example, in the following sequence of hoppings:

• • • ↑ ↑ 1 ↓ ↓ ↓ ↓ ↑ ↑ 0 ↓ ↓ ↓ ↓ ↑ ↑ 1 ↑ ↑ 0 • • • → • • • ↓ ↓ ↓ ↓ ↑ ↑ 1 ↑ ↑ 0 ↓ ↓ ↓ ↓ ↑ ↑ 1 ↑ ↑ 0 • • • → • • • ↓ ↓ ↓ ↓ ↑ ↑ 1 ↓ ↓ ↓ ↓ ↑ ↑ 0 ↑ ↑ 1 ↑ ↑ 0 • • •
(5.4) Note that if only one species of quasi-particles is present in our initial state, the model is completely equivalent to a single species of particles hopping to nearest neighbors with hard-core constraint, which is a non-interacting model. Basically, interaction reflects itself in the fact that particles of different species may occupy the same macro-site.

In this quasi-particle picture, jammed states are those where the quasi-particles are so packed that, because of the hard-core constraint, they cannot move (hence the name jammed ). In the protocol described in Section 5.2, the initial spin flip destroys a quasi-particle, making some space for the neighboring quasi-particles to move.

Before going on, note the arbitrariness in the definition of macro-sites: instead of defining the macro-site as the couple of sites (2 -1, 2 ), we could have defined it as the couple (2 , 2 + 1). That would affect the definition of quasi-particle species, leading to an apparent breaking of translation invariance. However, this is just a 68 Chapter 5. Local perturbations in a jammed state convention and the underlying physics is not affected by this choice.

. Impurity picture

Initially, the macro-site = 0 is the only point where the state is not jammed (after the spin flip). Since the dynamical rule only exchanges spins, time evolution takes place in the space generated by the linear combinations of states that are jammed everywhere but in one point: the set of such states is closed with respect to the application of the Hamiltonian. This observation allows for yet another convenient mapping, that we describe in this section.

Given a state that is jammed everywhere but in one point, we call impurity the excess of spins down, and we introduce the notation |n, b to describe the state as follows. The background b is a vector containing only zeros and ones, indexed in Z; it represents the quasi-particle content of our state. In particular, the i-th component of b tells us the species associated to the i-th spin up (or, equivalently, to the i-th quasi-particle), where we count spins up from left to right, identifying the 0-th spin up with the spin up occupying the lattice site -2 (that spin is always up by construction). The impurity position n locates the impurity, indicating that the n-th quasi-particle is free to move to the right (and the n + 1-th quasi-particle to the left), while the rest of the state is assumed to be jammed. In this way, |n, b unequivocally identifies a spin configuration (up to an overall phase that we set to zero). For example, the state at time zero reads |0, b , where b depends on the specific state under consideration. Note that the sequence of quasi-particles species b does not change during time evolution: time evolution only acts on the position n of the impurity. More precisely, the dynamical rule (5. (5.5)

Summarizing, the original problem is mapped into the problem of two species of hard-core particles hopping on a lattice, which is in turn mapped into the one-body problem of an impurity hopping on the effective lattice defined by b. We will see in the next section how this allows one to solve explicitly the dynamics.

. Exact solution to the dynamics

In the previous section we defined a mapping that allows one to treat our protocol as a single quasi-particle jumping over an effective lattice, which depends on the specific quasi-particle content of the initial state. In general, the problem of a single particle jumping to nearest neighbors in quantum mechanics is described by the Hamiltonian

H xx = 1 2 j∈Z Ä c † j c j+1 + c † j+1 c j ä , (5.6) 

Exact solution to the dynamics

69

where {c j , c † j } is a set of Dirac fermions, satisfying the canonical anti-commutation relations

[c i , c † j ] + = δ i,j , [c † i , c † j ] + = [c i , c j ] + = 0 . (5.7)
This model is known as the XX chain 1 and, since it is quadratic in fermions, it can be solved with the techniques introduced in Chapter 3. The Hamiltonian (5.6) comes with a reference state |∅ , defined as the state that is annihilated by all operators c j . The state with the particle in position n is identified with c † n |∅ . The correspondence to our problem is given by

c † n |∅ ≡ |n, b , (5.8) 
consistently with the Hamiltonians' action

H |n, b = 1 2 |n + 1, b + 1 2 |n -1, b , H xx c † n |∅ = 1 2 c † n+1 |∅ + 1 2 c † n-1 |∅ . (5.9)
Essentially, the space of the states that are jammed everywhere except for one impurity is equivalent to the space of a single particle on a lattice. Given that the impurity can be interpreted as a fermion freely hopping in the background b of quasi-particles, its dynamics is exactly solvable. More precisely, the free-fermions techniques described in Chapter 3 allow us to write explicitly time evolution:

|Ψ(t) = e -iHt |n, b = e -iHxxt c † 0 |∅ = n∈Z (-i) n J n (t) |n, b . (5.10) 
where J n (t) are Bessel functions, defined as

J n (t) := π -π
dk 2π e i(nk-t sin(k)) (5.11)

for n ∈ Z, and they are real. Consider now the expectation value of an observable O. We have

O t ≡ Ψ(t)| O |Ψ(t) = m,n∈Z e i π 2 (m-n) J m (t)J n (t) m, b| O |n, b .
(5.12)

Specializing to the local magnetization σ z , the expression above can be simplified, using that the operator is diagonal in the basis |n, b and therefore the only nonvanishing matrix elements are n, b|σ z |n, b . We get

σ z t = n∈Z J 2 n (t) n, b| σ z |n, b , (5.13) 
which holds not only for σ z , but also for any operator that is diagonal in this basis. Since the model gets mapped into a non-interacting one, one may ask what is the role played by interactions. Essentially, interaction is hidden in the mapping, which, as will be shown in the following, has striking effects on the dynamics of local observables.

1 More precisely, the Hamiltonian (5.6) is mapped into the XX quantum spin chain H xx = 

. Local magnetization

In Appendix 5.A, using Eq. (5.13), we derive the following explicit expression for local magnetization in our protocol:

σ z t =                                1 -2 +∞ n=x( ) J 2 n (t) , |• • • • • • • ↑ ↑↓ • • • 1 -2J 2 x( ) (t) -2J 2 x( )+1 (t) , |• • • • • • • ↑ ↑↑ • • • 1 -2J 2 x( ) (t) , |• • • • • • • ↑ ↓↑ • • • -1 + 2 +∞ n=x( )+1 J 2 n (t) , |• • • • • • • ↓ ↑↑ • • • -1 , |• • • • • • • ↓ ↑↓ • • • , (5.14) 
for > 0, and a similar one for < -1. Here the right column stands for fragments of the initial state containing the site , while • shows the initial position of the impurity (or, equivalently, of the origin) with respect to the site . The quantity x( ) is defined with respect to the initial state as

x( ) := ® 1 + (number of spins ↑ between sites 0 and ) , if > 0 -(number of spins ↑ between sites and -1) , if < -1 , (5.15) 
where the site is excluded from the counting of spins up: if corresponds to a spin up, x( ) gives the corresponding particle index; if is a spin down, x( ) gives the particle index of the spin up in position + sign( ). We are not considering the sites ∈ {-1, 0} since they are special at time zero (that is the initial position of the impurity) and we are anyway mostly interested in the limit → ±∞, but it would not be hard to include them in our description. The remarkable feature of the equation above is that the asymptotic value of the local magnetization at site is determined solely by a configuration of three consecutive spins around that site and the variable x( ), which contains information of the full content of the state.

From the exact result above and using the asymptotic formula derived in Appendix 5.A, we can also give an expression of the local magnetization in the scaling limit in which t → +∞, x( )/t → const. In particular, we have

σ z t ∼          1 , |• • • • • • • ↑ ↑ • • • ∨ |• • • ↑ ↑ • • • • • • • 1 -2 π arccos x( ) t , |• • • • • • • ↑ ↑↓ • • • ∨ |• • • ↑↑↓ • • • • • • • -1 + 2 π arccos x( ) t , |• • • • • • • ↓ ↑↑ • • • ∨ |• • • ↓↑↑ • • • • • • • -1 , |• • • • • • • ↓ ↑↓ • • • ∨ |• • • ↓↑↓ • • • • • • • , (5.16)
where The initial jammed state (before the spin flip is) given by the infinite repetition of the segment ↑↑↓, for which x( ) ∼ 2 /3. The blue line (barely visible, given the good match with numerics) is the analytic asymptotic result, reported only for those spins with a non-trivial asymptotic profile. The orange and green points correspond to the numerical simulation.

|• • • • • • • ↑ ↑ • • • ∨ |• • • ↑ ↑ • • • • • • • means that the value to its left holds if the initial spin is in one of the configurations |• • • • • • • ↑ ↑↑ • • • , |• • • • • • • ↑ ↓↑ • • • , |• • • ↑↑↑ • • • • • • • , |• • • ↑↓↑ • • • • • • • ,
Note that the only sites in which the spins are asymptotically not aligned along the z-axis are those that start in one of the following spin configurations:

• • • • ↑ ↑↓, • • • • ↓ ↑↑, ↑↑↓ • • • •, and ↓↑↑ • • • •.
Their common feature is the existence of both species of quasi-particles, which, as mentioned in Section 5.3, signals the presence of interaction (see Ref. [START_REF] Zadnik | The Folded Spin-1/2 XXZ Model: I. Diagonalisation, Jamming, and Ground State Properties[END_REF][START_REF] Zadnik | The Folded Spin-1/2 XXZ Model: II. Thermodynamics and Hydrodynamics with a Minimal Set of Charges[END_REF] for a more thorough discussion), so what we see is a genuine effect of interaction. Another sign of interaction is that the maximal velocity that defines the edges of the light-cone depends on the quasi-particle content of the state. Indeed, v max = ¯ /t, where ¯ is defined in such a way that x( ¯ )/t ∼ 1 in the scaling limit . The analytical prediction is compared to a numerical simulation in Fig. 5.2.

. Emergence of a locally quasi-jammed state

Since the spin flip at time t = 0 creates an excess of spins down, for t > 0 the state is not jammed anymore. However, as we will demonstrate shortly, a weaker condition holds. To define it, we introduce the quantity

P ↓↓ ( , t) := 1 -σ z 2 1 -σ z +1 2 t , (5.17) 
which corresponds to the probability that in the state at time t the adjacent spins and + 1 are simultaneously found to point downwards. In a jammed state it is Chapter 5. Local perturbations in a jammed state for > 0 and -2 and -1 for < -2. We do not report here the result for ∈ {-2, -1, 0}. We remind the reader that x( ) is defined in Eq. (5.15) equal to zero by definition. Ref. [START_REF] Bidzhiev | Macroscopic effects of localized measurements in jammed states of quantum spin chains[END_REF] defined locally quasi-jammed states (LQJS) as those states for which P ↓↓ ( , t) t→∞ -→ 0 for all . Such a condition indicates that the probability for a quasi-particle to move approaches zero, and hence at long time after the spin flip the state becomes locally jammed in each finite subsystem.

P ↓↓ ( , t) = > 0 < -2 ↑↑↓↑ J 2 x( )+1 (t) J 2 x( ) (t) ↑↑↑↓ J 2 x( )+1 (t) J 2 x( )-1 (t) ↑↑↑↑ J 2 x( )+1 (t) J 2 x( )-1 (t) ↑↓↑↑ J 2 x( ) (t) J 2 x( )-1 (t) ↑↓↑↓ J 2 x( ) (t) J 2 x( )-1 (t) ↓↑↑↑ J 2 x( ) (t) J 2 x( )-1 (t) ↓↑↑↓ J 2 x( ) (t) J 2 x( )-1 (t) ↓↑↓↑ J 2 x( ) (t) J 2 x( ) (t)
Expressed in the basis of states |n, b , in which the projectors of the form 1 2 (1-σ z ) are diagonal, the expectation value used in the LQJS condition reads

P ↓↓ ( , t) = n∈Z J 2 n (t) n, b| 1 -σ z 2 |n, b n, b| 1 -σ z +1 2 |n, b .
(5.18)

We have already reported the matrix elements of σ z in Eq. (5.14) and we have seen that they depend only on the initial orientation of three spins close to the -th site. Therefore, since for P ↓↓ ( ) we need the matrix elements of both σ z and σ z +1 , the value of P ↓↓ ( ) will depend only on the initial orientation four spins close to the -th site, implying that we have to distinguish eight possible configurations for spins to the right of the impurity and other eight configurations for spins to the left. Considering each of those configurations separately and, using the matrix element's expressions computed in Appendix 5.A, we obtain all the possible values of P ↓↓ ( , t), which are reported in Table 5.1. Note that this result is exact and does not assume any scaling limit.

We can finally consider the scaling limit t → +∞, /t = const. In Appendix 5.A, Eq. (5.41), we derive the asymptotic expression of the squared Bessel functions in this limit. In the end we get that P ↓↓ ( , t) inside the light-cone has envelope

2 πt √ 1-(n/t) 2
, implying that the jamming condition is satisfied as 1/t -see Fig 5 .3. It is instead exponentially suppressed outside the light-cone, consistently with the Lieb-Robinson bounds. This result was only conjectured in Ref. [START_REF] Zadnik | Measurement catastrophe and ballistic spread of charge density with vanishing current[END_REF], although it directly follows from the matrix elements computed therein. Figure 5.3 -Re-scaled jamming condition profile tP ↓↓ ( , t) as a function of the ballistic ray coordinate /t. The initial jammed state (before the spin flip) is given by the infinite repetition of the segment ↑↑↓. The blue line is the analytic asymptotic result for the envelope of the jamming condition inside the light-cone. The orange and green points correspond to the numerical simulation.

. Entanglement in a weakly interacting scenario

In this section we consider an example of a spin flip performed in a weaklyinteracting jammed state and study how entanglement spreads in time. In particular, we consider the initial jammed state obtained from the Néel state, which is an alternating sequence of spins up and down, modified in such a way that all the spins from 2m to 2m + 2M -2 point up, where we assume m > 0:

|Ψ(0 -) = |• • • ↓↑↓↑ ↑↑ m ↑↑ • • • ↑↑ ↑↑ ↓↑ m +M-1 ↓↑ • • • . (5.19)
Note that this specific state contains only quasi-particles of species 0, except for the macro-sites from m to m + M -1, each containing both species of quasiparticles. As we have already pointed out in Section 5.3, interaction comes from the interplay between quasi-particles of different species. Since we are interested in the thermodynamic limit and the number of quasi-particles of the species 1 is finite, with refer to this setup as weakly interacting.

By flipping the spin in position 0 according to the protocol described in Section 5.2, we end up with the state

|Ψ(0) = |• • • ↓↑ ↓↓ 0 ↓↑ • • • ↓↑↓↑ ↑↑ m ↑↑ • • • ↑↑ ↑↑ ↓↑ m +M-1 ↓↑ • • • , (5.20)
which is no longer jammed, but evolves in time towards a locally quasi-jammed state. Note from Eq. (5.16) that, except for ∈ {2m -3, 2m + 2M -3}, the longtime limit of the expectation value of the local magnetization σ z is either 1 or -1. The asymptotic behavior of σ z in sites 2m -3 and 2m + 2M -3, instead, is non-trivial, and can be computed from Eq. (5.14), using x(2m -3) = m -1, x(2m + 2M -3) = m + 2M -2. Note that, since M does not scale with time, the local magnetization of both the special spins goes to zero for t → +∞, as reported in Fig. 5.4. All those observations imply that, in the infinite-time limit, the reduced density matrix of any spin with site index j / ∈ {2m -3, 2m + 2M -3} describes a pure state: it corresponds either to |↑ ↑| or |↓ ↓|. The reduced density matrix of each of the two spins in sites 2m -3 and 2m +2M -3 describes instead a maximallymixed state in the infinite-time limit. Indeed, since σ α = 0 for all α ∈ {x, y, z} for those spins, the reduced density matrix describing the site 2m -3 and the one describing the site 2m + 2M -3 are proportional to the identity. In particular, this implies that the von Neumann entanglement of their reduced density matrices is maximal. It is therefore interesting to understand if those spins are entangled or not (recall that, if the state is mixed like in this case, the von Neumann entropy is not a good measure of entanglement).

To compute entanglement properties, we derive the reduced density matrix ρ m,n describing the two spins in positions m and n, using

ρ m,n = 1 4 α,β∈{0,x,y,z} σ α m σ β n σ α m σ β n , (5.21) 
so we need to compute first all the possible two-point functions. Note that all the two-point functions that are odd under spin flip σ x → -σ x , σ y → -σ y are zero by symmetry (indeed, that is a symmetry both of the Hamiltonian and of the initial state). Moreover, we have already discussed σ z m and σ z n . All the other two-point functions are reported in Ref. [START_REF] Zadnik | Measurement catastrophe and ballistic spread of charge density with vanishing current[END_REF]. Once we have the density matrix, we can use the entanglement of formation introduced in Eq. (2.18) to quantify the entanglement between any two spins. Expanding for large t, we observe that the entanglement of formation approaches zero as log(t)/(t) 2 . Nonetheless, the two spins at sites 2m -3 and 2m +2M -3 are special, since they are maximally correlated: in the infinite-time limit their reduced density matrix reads

ρ 2m -3,2m +2M -3 t→∞ -→ |↑↓ ↑↓| + |↓↑ ↓↑| 2 , (5.22)
which is a classical mixture.

In general, the spread of the re-scaled spin-spin entanglement with time is shown in Fig. 5.5. At t = 0 there are no entangled spins (the initial state is a product state). For t > 0 the region containing entangled spins grows linearly in time, consistently with the light-cone dynamics. At first the entanglement spreads from the initial position of the impurity in all directions -cf. Fig. 5.5(a). At this stage, the maximal velocity v max = 2 is obtained using x( ) ∼ /2 and v max = /x( ). When the edge of the light-cone reaches macro-site m, a "leakage" of the entanglement between the wedges occurs through a corridor, in which only the next-nearest neighbor spins become entangled -cf. Fig. 5.5(b,c). We observe that the couples of spins (i, j) with i, j < 2m -1 are not affected by the presence of the domain wall in the initial state: their behavior is the same as if the initial state were a Néel state. Instead, the entanglement properties of the pairs of spins (i, j) with i, j > 2m +M -5 are shifted: their entanglement corresponds to that in the Néel state in which the impurity is initially located at macro-site -M . Finally, all the spins outside those two regions are decoupled unless they are next-nearest neighbors, which would not be the case if we had initialized the system in the Néel state.

. Discussion of the results

The simplicity of the calculations carried out in this work is rather surprising in view of the fact that we are dealing with a genuinely interacting model. Such a simplicity stems from the specific setting: locally perturbed jammed states, in which quasi-particles are closely packed. Such a scenario can be mapped into the problem of a free particle moving in a jammed background. We have exploited this mapping to solve the measurement catastrophe discussed in Ref. [START_REF] Bidzhiev | Macroscopic effects of localized measurements in jammed states of quantum spin chains[END_REF], i.e. the macroscopic change of spin profiles after a localized perturbation. Interactions play a key role in the setting we studied: the phenomenon is not observed if quasi-particles do not interact.

We provided an example of how a local perturbation (or measurement) performed over an otherwise-stationary state can lead to macroscopic effects under time evo- lution. This kind of setup for local perturbations with macroscopic effects stands as a separate category: we have not find semi-local charges that could describe the phenomenon in the way described in Ref. [START_REF] Bidzhiev | Macroscopic effects of localized measurements in jammed states of quantum spin chains[END_REF].

The spreading of spin-spin entanglement was also discussed via a simple setup. It was found that a change in particle species in the initial state acts as a sort of block for entanglement spreading: only neighboring spins get entangled. That should be compared with the case in which only one species of quasi-particles is present in the model: in that case entanglement spreads homogeneously through the full chain. However, we should point out that the spin-spin entanglement in this simple setup goes to zero with time. We have also shown that perturbing a weakly interacting initial state enables isolation of classically correlated pairs of spins.

We conclude remarking that jammed states typically arise in kinetically constrained models, and it remains unclear whether the effect described in this work is a universal feature of such models [START_REF] Garrahan | Kinetically Constrained Models[END_REF]. where the site is excluded from the counting of spins up. Let us start with the case > 0. For n < x( ), the impurity affects only the position of the spins to the left of site , so that
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> 0, n < x( ) ⇒ n, b|σ z |n, b = 0, b|σ z |0, b .
(5.24)

To get the matrix element for n ≥ x( ) the idea is to increase it one by one and compute the matrix element for all the possible configurations, until n is so large that increasing it cannot affect the matrix element. It turns out that it is sufficient to consider only the three spins , + 1 and + 2 to cover all the possibilities. For example, assume that in the initial state the three spins are in the configuration ↓ ↑↑, where the first spin is in position . Comparing with the state with n = x( ) -1, we have that, for n = x( ), the spin up in position + 1 swaps with the spin down in position -1; this does not affect the orientation of the -th spin. But when n = x( ) + 1, we have that the spin up in position + 2 moves to position . For n > x( ), the configuration of the -th spin does not change anymore, so that, in the end, the case under consideration gives n, b| σ z |n, b = -1 + 2Θ n-x( )-1 , where Θ x is the step function acting on integers, such that Θ x = 1 if x ≥ 0 and it is zero otherwise. With the same arguments, we can derive the matrix elements for all the possible configurations and for < -1:

n, b| σ z >0 |n, b =                1 -2Θ n-x( ) , |• • • • • • • ↑ ↑↓ • • • 1 -2δ n,x( ) -2δ n,x( )+1 , |• • • • • • • ↑ ↑↑ • • • 1 -2δ n,x( ) , |• • • • • • • ↑ ↓↑ • • • -1 + 2Θ n-x( )-1 , |• • • • • • • ↓ ↑↑ • • • -1 , |• • • • • • • ↓ ↑↓ • • • , (5.25) n, b| σ z <-1 |n, b =                1 -2Θ n-x( )+1 , |• • • ↑↑↓ • • • • • • • 1 -2δ n,x( )-1 -2δ n,x( )-2 , |• • • ↑↑↑ • • • • • • • 1 -2δ n,x( )-1 , |• • • ↑↓↑ • • • • • • • -1 + 2Θ n-x( ) , |• • • ↓↑↑ • • • • • • • -1 , |• • • ↓↑↓ • • • • • • • , (5.26) 
where the right column represents the spin configuration of the state at time zero and the bullet represents the initial position of the impurity with respect to the site . We have left out the spins ∈ {-1, 0}, since they require a separate treatment, pointing both down at initial time. Since eventually we are interested in the largelimit, we will ignore them, although one could compute their matrix elements in the same way.

We can now turn to the expectation value of local magnetization (5.13). Plugging in the matrix elements, we get Eq. (5.14).

5.A.2 . Asymptotics of the semi-infinite sum of Bessel functions

So far everything is exact, but let us now look at the scaling limit t → +∞, with x( )/t → const.

First of all we derive the asymptotic value of a semi-infinite sum of Bessel functions in this limit. We can use similar techniques to the ones that we have seen in Chapter 4. The first step is to rewrite the sum as an integral:

+∞ n=x |J n (t)| 2 = n∈Z dkdpdq (2π) 3 e i(nk-t sin(k)) e -i(np-t sin(p)) e i(n-x)q 1 -e -i(q-i0) = = π -π dkdp (2π) 2 e ip e it(sin(p)-sin(k))+ix(k-p) e ip -e i(k+i0) , (5.27) 
where x ∈ Z and we used the integral representation of the step function for integers

Θ x = +π -π dq 2π e ixq 1 -e -i(q-i0) = ß 1 , if x ≥ 0 0 , if x < 0 (5.28)
and the representation of Dirac's delta

m∈Z e i(p-q)m = 2πδ(p -q) , (5.29) 
for p, q ∈ (-π, π]. Then we change variables to the complex plane as w 1 = e ip , w 2 = e i(k+i0) , obtaining

C 1 dw 1 2πi C 2 dw 2 2πiw 2 e t(S x/t (w 1 )-S x/t (w 2 )) w 1 -w 2 , (5.30) 
where

S ζ (w) := w 2 -1 2w -ζ log(w) , (5.31) 
and C 1 and C 2 are closed curves with winding number 1 around the origin, in an annulus around the unit circle, and such that C 2 is inside the region delimited by C 1 .

The main idea is to deform the contours C 1 and C 2 respectively to C 1 and C 2 , in such a way that Re(S x/t (w 1 )-S x/t (w 2 )) < 0 almost everywhere for

w 1 ∈ C 1 , w 2 ∈ C 2 .
In this way, the function under integration is exponentially suppressed everywhere, except at most in a zero-measure set of points (w 1 , w 2 ). During the deformation, we have to pay attention to two things: first, we do not want the contours to pass over the essential singularity at the origin; second, each time the contours exchange we get a contribution from the pole in w 1 = w 2 . A convenient way to compute the residue contribution is the following. First, we deform C 1 to a path C 1 that contains both C 2 and C 2 . Second, we deform C 2 to C 2 ; this can be done without hitting the singularity w 1 = w 2 because of how C 1 is defined. Finally, we deform C 1 to C 1 ; in this deformation we may hit the singularity w 1 = w 2 . To compute the contribution coming from the singularity we can consider w 2 ∈ C 2 as fixed and use

C 1 dw 1 F (w 1 , w 2 ) w 1 -w 2 = C 1 dw 1 F (w 1 , w 2 ) w 1 -w 2 + 2πi Res w 2 F (w 1 , w 2 ) w 1 -w 2 = = C 1 dw 1 F (w 1 , w 2 ) w 1 -w 2 + 2πiF (w 2 , w 2 ), (5.32) 
for any function F (w 1 , w 2 ) that is analytic for w 1 and w 2 in a connected region containing both C 1 and C 1 . Here we used that w 2 is inside the region delimited by C 1 and outside the one delimited by C 1 .

As shown in Fig. 5.6, the envisaged deformation exists and we should distinguish three cases. In the case ζ > 1, there is no need to deform the contours, since the condition is already satisfied everywhere. In the case ζ < -1, the contours fully exchange during the deformation, so that eventually the envisaged condition is satisfied everywhere, but we get the residue contribution

C 1 dw 1 2πi 1 w = 1 . (5.33) 
Finally, for |x/t| < 1, the two contours are only partially exchanged, the resulting double integral satisfies our condition everywhere except in the stationary points w = e ip ± , p ± = ± arccos(x/t), and we get a residue contribution

p + p - dp 2π = 1 π arccos(x/t) . (5.34) 
The only thing left is to study the contribution to the double integral in C 1 and C 2 around the saddle points for |x/t| < 1.

We parametrize the contour C j around the saddle points as e ip ± + s ± j e iφ ± j , with

s ± j ∈ (-∆, ∆), ∆ ∼ t -ω with ω ∈ ( 1 3 , 1 
2 ), and the phases φ ± j are determined in such a way to select the steepest descent path. In particular, the latter should satisfy e i arg S x/t (e ip ± )+2iφ ± 1 = -1 e i arg S x/t (e ip ± )+2iφ ± 2 = 1 .

(5.35)

However, these conditions specify the phases only up to an additional ±π, which should be set by looking at Fig. 5.6 and considering that the contours are oriented counter-clockwise. In the end we have leading to

φ + 1 = p + + π 4 , φ + 2 = p + + 3π 4 , φ - 1 = p -+ 3π 4 , φ - 2 = p -+ π 4 , (5.36) 
C 1 dw 1 2πi C 2 dw 2 2πiw 2 e t(S x/t (w 1 )-S x/t (w 2 )) w 1 -w 2 ∼ ∼ - e i 3π 4 √ t +∞ -∞ ds + 1 ds + 2 (2π) 2 e -| sin(p + )| 2 ((s + 1 ) 2 +(s + 2 ) 2 ) s + 1 -is + 2 × × (1 + e iπ/4 6 √ t (cos(p + ) -3i sin(p + ))(i(s + 1 ) 3 -(s + 2 ) 3 ) - s + 2 √ t e i 3π 4
)

- e 2it(sin(p + )-x t p + ) t e ip + 2 sin(p + ) +∞ -∞ ds + 1 ds - 2 (2π) 2 e -| sin(p + )| 2 ((s + 1 ) 2 +(s - 2 ) 2 ) - e -2it(sin(p + )-x t p + ) t e -ip + 2 sin(p + ) +∞ -∞ ds - 1 ds + 2 (2π) 2 e -| sin(p + )| 2 ((s - 1 ) 2 +(s + 2 ) 2 ) - e i π 4 √ t +∞ -∞ ds - 1 ds - 2 (2π) 2 e -| sin(p + )| 2 ((s - 1 ) 2 +(s - 2 ) 2 ) s - 1 + is - 2 × × (1 + e iπ/4 6 √ t (cos(p + ) + 3i sin(p + ))((s - 1 ) 3 -i(s - 2 ) 3 ) - s - 2 √ t e i π 4 ) , (5.37) 
where we have used p -= -p + . By symmetry, some terms give zero under inte-gration. In particular, the function e -x 2 -y 2 x±iy gets mapped into minus itself by the transformation x → -x, y → -y and the function e -x 2 -y 2 x±iy (x 3 ∓ iy 3 ) gets mapped into minus itself by the transformation x → y, y → -x. So we have

C 1 dw 1 2πi C 2 dw 2 2πiw 2 e t(S x/t (w 1 )-S x/t (w 2 )) w 1 -w 2 ∼ 2 t +∞ -∞ ds 1 ds 2 (2π) 2 e -sin(p + ) 2 (s 2 1 +s 2 2 ) s 2 1 + s 2 2 s 2 2 + - cos(2t(sin(p + ) -x t p + ) + p + ) 2t sin(p + ) +∞ -∞ ds 1 ds 2 (2π) 2 e -sin(p + ) 2 (s 2 1 +s 2 2 ) . (5.38) 
The integrals can now be carried out explicitly and we finally get

C 1 dw 1 2πi C 2 dw 2 2πiw 2 e t(S x/t (w 1 )-S x/t (w 2 )) w 1 -w 2 ∼ ∼ 1 2πt sin(x/t) - cos(2t sin(p + -2xp + + p + ) 2πt sin 2 (p + ) . (5.39) 
Summarizing,

+∞ n=x |J n (t)| 2 = =                        0 + O(e -t ) , for x t > 1 1 + O(e -t ) , for x t < -1 1 π arccos x t + 1 2πt 1 -(x/t) 2 + - cos Ä 2t 1 -(x/t) 2 -(2x -1) arccos(n/t) ä 2πt(1 -(x/t) 2 ) + o(t -1 ) , for | x t | < 1 . (5.40) 
Note that the singularity of the integral along C 1 and C 2 in w 1 = w 2 is only apparent and the integral is finite. We can also derive the asymptotic value of the square of a Bessel function in this limit. This is an easier task, for which a simple application of the stationary-phase method suffices. The limit is non-trivial only inside the light-cone |x/t| < 1, in which

J x (t) ∼ 2 πt 1 -(x/t) 2 cos x arccos(x/t) -t » 1 -(x/t) 2 + π/4 . (5.41) 
Finally, we can plug the two asymptotic expansions in Eq. (5.14) to obtain Eq. (5.16).

-Growing a cat state from unitary evolution of a product state

In the previous chapter we considered local perturbations of jammed states and we showed how they can lead to macroscopic effects. In this chapter we examine another class of setups in which that is possible, namely local perturbations of quantum scars. Instead of local observables, here we focus on the entanglement structure generated by the local perturbation. In Section 2.4 we mentioned how macroscopic entanglement, including the special case of cat states, is a precious resource for applications in quantum technologies. Macroscopically-entangled states, however, are unnatural unstable states of matter, in which fundamental physical properties such as cluster decomposition are lost. Engineering them requires therefore a lot of control of the system, which, in turn, results in fine-tuned protocols designed with the clear goal of generating such exceptional states. In this chapter we propose a theoretical protocol to generate a cat state that stands out for its naturalness, in the sense that the growth of macroscopic entanglement is a manifestation of an intriguing physical phenomenon rather than of clever manipulations of a system.

. Setup

The most general system that we consider is described by a quantum spin- 1 2 chain Hamiltonian H with local interactions and a trivial separable eigenstate. Without loss of generality, the latter can be set equal to

|Ψ(0) = |⇑ ≡ |↑ • • • ↑ , (6.1) 
where |↑ denotes the eigenvector of the Pauli matrix σ z with eigenvalue 1 and ⇑ represents a generic number of spins in the state |↑ . Often the presence of such a trivial eigenstate is a consequence of a U (1) symmetry, e.g. the conservation of magnetization S z = 1 2 σ z , where, as usual, σ α are local operators acting like Pauli matrices σ α on site and like the identity elsewhere. As we will see before long, the most interesting cases are however those in which S z is not conserved. If there are no additional relevant conserved operators, either |⇑ is the ground state or it is an exact quantum scar [START_REF] Turner | Weak ergodicity breaking from quantum many-body scars[END_REF][START_REF] Bernien | Probing manybody dynamics on a 51-atom quantum simulator[END_REF][START_REF] Moudgalya | Quantum manybody scars and Hilbert space fragmentation: a review of exact results[END_REF]: its properties contrast with those of the eigenstates with similar energy.

The basic idea is that the separable eigenstate is meta-stable and can be transmuted into a state with macroscopic entanglement just by a local perturbation. Specifically, we consider the effect of a projective measurement of the tilted magnetization e -iθσ y 0 σ z 0 e iθσ y 0 , with θ ∈ (0, π], so that the state is projected into

|Ψ θ (0 + ) = e -iθσ y 0 |⇑ = cos(θ) |⇑ + sin(θ) |⇑↓⇑ (6.2)
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Chapter 6. Growing a cat state with probability cos2 (θ). 1 Since |⇑ is an eigenstate of the Hamiltonian, time evolution affects only the second term on the right hand side of Eq. (6.2), hence

|Ψ θ (t) = cos(θ) |⇑ + sin(θ)e -iHt |⇑↓⇑ , t > 0 . (6.3) 
The Lieb-Robinson bounds [START_REF] Lieb | The finite group velocity of quantum spin systems[END_REF] ensure that the perturbation is irrelevant outside a light-cone emerging from the space-time point of the measurement (see Section 2.2). Therefore, the state outside the light-cone is well approximated by |⇑ and tracing it out does not significantly affect the purity of the state. We call Ω (t) the smallest spin block for which

Tr Ω (t) [e -iHt |⇑↓⇑ ⇑↓⇑| e iHt ] -(|⇑ ⇑|) Ω (t) < , (6.4) 
i.e. Ω (t) is the smallest subsystem containing the initially-perturbed spin that can be considered pure at time t with accuracy 1 -. Note that Ω (0) contains only the spin at the origin for any choice of . In the following, most of our considerations, including the use of terms such as "macroscopic" and "extensive", will be referred to the subsystem Ω (t). This allows us to treat on the same footing infinite systems, which are arguably more interesting from a theoretical point of view, and finite ones (provided that the actual system size is larger than Ω (t)), which are instead more relevant for the experiments. The situation is pictorially described in Fig. 6.1: after the spin flip at the origin, the component |⇑↓⇑ of the state evolves in time, while the component |⇑ stays constant; the effective size of the system is given by the spins that are inside the light-cone originating from the local perturbation, while the rest of the spins are neglected.

. Examples of Hamiltonians

We investigate a variety of Hamiltonians with local densities. Our requirement of |⇑ being eigenstate of the Hamiltonian allows for any kind of interactions that commute with the total magnetization S z = 1 2 σ z (such as the hopping term σ x σ x +n + σ y σ y +n or the longitudinal Dzyaloshinskii-Moriya interaction σ x σ y +nσ y σ x +n ), but not only that. The constraint is much weaker than a U (1) symmetry and the Hamiltonian density can feature any term of the form

1-σ z 2 O 1-σ z 2 ,
where O is a local operator with support in a region around .

. A system with hidden U (1) symmetry

The first class of Hamiltonians we consider has recently sparked some attention because it describes systems that are macroscopically sensitive to local perturbations [START_REF] Fagotti | Global quenches after localized perturbations[END_REF][START_REF] Fagotti | Nonequilibrium symmetry-protected topological order: emergence of semilocal Gibbs ensembles[END_REF]. Such a sensitivity is triggered by the so-called "semi-local charges"; we provide an illustration of the concept below.

Examples of Hamiltonians
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Consider a Hamiltonian H and transform it applying the Kramers-Wannier duality, defined as

σ x = j=-∞ τ x j , σ z = τ z τ z +1 , (6.5) 
where the transformation rules for the other Pauli matrices can be derived from the two definitions above. This transformation is non-local, but, in case the original Hamiltonian commutes with Π z ≡ j∈Z σ z , the dual Hamiltonian is local. If that is the case and if the dual Hamiltonian commutes with the magnetization in the new model, defined as S := 1 2 j∈Z τ z j , we say that the original model has a hidden U (1) symmetry. In the original basis, the hidden U (1) symmetry means that the operator

S = 1 2 j∈Z Π z (j) (6.6) 
is conserved, where Π z (j) := j =-∞ σ z . Refs. [START_REF] Fagotti | Global quenches after localized perturbations[END_REF][START_REF] Fagotti | Nonequilibrium symmetry-protected topological order: emergence of semilocal Gibbs ensembles[END_REF] argued that Sz is an example of semi-local charge.

Acting with σ x 0 on the state |⇑ splits the latter in two parts where the expectation value of semi-local operators takes opposite signs:

Π z (j) |⇑↓⇑ = ® |⇑↓⇑ , if j < 0 -|⇑↓⇑ , if j ≥ 0 . (6.7)
This is at the origin of the macroscopic effects of local perturbations pointed out in Ref. [START_REF] Fagotti | Global quenches after localized perturbations[END_REF]. The sensitivity of local observables to a single spin flip is a strong indication that the quantum measurement of a local observable such as σ x j could result in macroscopically entangled states.

As a specific example, we consider the Hamiltonian

H 1 = ∈Z 1 -σ z 8 [J σ -1 S • σ +1 + D • ( σ -1 × σ +1 )] - ∈Z h 2 • σ (6.8)
where

a S • b = a • (S b
). This Hamiltonian commutes with the semi-local charge Sz , defined in Eq. (6.6), provided that

S =   1+γ 2 w 0 w 1-γ 2 0 0 0 ∆   D =   0 0 D z   h =   0 0 h z   . (6.9) 
It is known that H 1 has infinitely many conserved operators with quasilocal [START_REF] Ilievski | Quasilocal charges in integrable lattice systems[END_REF] or semi-local [START_REF] Fagotti | Nonequilibrium symmetry-protected topological order: emergence of semilocal Gibbs ensembles[END_REF] densities in the following regions of the parameter space:

1. If the only nonzero coupling constants are J, γ, and h z , and γ = ±1, the model is dual to the (integrable) Heisenberg spin-1 2 XXZ one [START_REF] Fagotti | Global quenches after localized perturbations[END_REF][START_REF] Zadnik | The Folded Spin-1/2 XXZ Model: I. Diagonalisation, Jamming, and Ground State Properties[END_REF];

2. If the only nonzero coupling constants are J, ∆, and h z , the model belongs to the family of hard-rod deformations of XXZ studied in Ref. [START_REF] Pozsgay | Integrable hard-rod deformation of the Heisenberg spin chains[END_REF]. In particular, for ∆ = 0 the dual folded XXZ chain that we introduced in Chapter 5.

For generic values of the parameters, the system is expected to be non-integrable.

. A generic model

We establish contact with the systems currently studied in quantum simulators, for example with trapped ions [START_REF] Monroe | Programmable quantum simulations of spin systems with trapped ions[END_REF], by considering the following Hamiltonian

H 2 = 1 4 ∈Z +∞ r=1 J r σ Sr • σ +r + D r • ( σ × σ +r ) - h 2 • σ . (6.10) 
This is the most general Hamiltonian where spins interact in pairs: there is a Heisenberg exchange term, a Dzyaloshinskii-Moriya interaction, and a coupling with an external field. The trivial quantum scar |⇑ appears when

S r =   1 0 1 2 γ x r 0 1 1 2 γ y r 1 2 γ x r 1 2 γ y r 1 + γ z r   , h =   1 2 r=1 J r γ x r 1 2 r=1 J r γ y r h z   , (6.11) 
while D r = (D x r , D y r , D z r ) can take generic values. The parameter γ incorporates both an anisotropy in the Heisenberg interaction and a rotation of the axes (which is relevant because we have fixed the orientation of the spins of the separable eigenstate). As will be clarified before long, the effect we exploit to generate macroscopically entangled states requires a U (1)-breaking interaction, therefore we will only consider systems in which some coupling constants among D x r , D y r , γ x r , γ y r are nonzero. We point out some special regions of the parameter space: 6.3. Hidden U (1) symmetry
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• If the only nonzero coupling constants are J 1 , γ z 1 , and h z , the system is integrable and known as XXZ model, which is arguably the most important paradigm of quantum magnetism in 1D [START_REF] Mikeska | One-dimensional magnetism[END_REF].

• More generally, if D r = 0 and γ r = γ 1 , the system describes an XYZ Heisenberg model with a tilted orientation. The integrable case corresponds to h = 0 and J r = δ r,1 J 1 . See also Ref. [START_REF] Müller | Implications of direct-product ground states in the one-dimensional quantum XYZ and XY spin chains[END_REF] for a special region of the parameter space in which |⇑ becomes the symmetry-breaking ground state.

• If the only nonzero coupling constants are J 1 , γ x 1 , D y 1 , and h z , in the limit J 1 → 0 at fixed γ x 1 J 1 = -2D y 1 the system approaches the so-called quantum East model [START_REF] Merlijn Van Horssen | Dynamics of many-body localization in a translation-invariant quantum glass model[END_REF], which has recently attracted a lot of attention for its unusual properties [START_REF] Pancotti | Quantum east model: Localization, nonthermal eigenstates, and slow dynamics[END_REF].

In such a generic setting there is no a-priori reason to expect the localized perturbation to produce macroscopic effects; for example, the system does not exhibit semi-local charges or special constraining interactions. Is the presence of a simple quantum scar sufficient to trigger the phenomenon?

. Hidden U (1) symmetry

We start with H 1 -Eq. (6.8). In the first integrability region, Ref. [START_REF] Fagotti | Global quenches after localized perturbations[END_REF] has already shown that, for large time, |Ψ π/2 (t) is macroscopically different from |⇑ . More precisely, we have

|Ω(t)| ∼ t and | ⇑↓⇑ |e iH 1 t O e -iH 1 t | ⇑↓⇑ -⇑ |O| ⇑ | ∼ t , (6.12) 
where O is an extensive observable (e.g. the total magnetization). This is expected as long as the initial state |⇑ is in the middle of the spectrum of H 1 . 2 In such an integrable setting, there is just one piece of information missing, which is the behavior of fluctuations: if the variance of extensive observables in |Ψ π/2 (t) is O(t), we can readily conclude that the projective measurement generates a genuine cat state.

We the measure macroscopic entanglement of |Ψ θ (t) with the quantumness, introduced in Section 2.4. In fact, we only compute a lower bound of it, N

eff , resulting from reducing the space of observables over which we maximize. This investigation was performed numerically with the methods described in Appendix 6.A. An example is reported in Fig. 6.2, where we plot N 

= 2.8, γ = 1, w = ∆ = D z = h z = 0. Top left: ∆S z (θ) = ⇑ |S z | ⇑ -Ψ θ (t)|S z |Ψ θ (t) . Top right: macroscopic quantumness N (1)
eff as a function of the effective system size |Ω (t)|, with = 0.001. Bottom: probability density P θ (m) for θ = π 2 and θ = π 4 .

size |Ω (t)|. To study the asymptotic behavior of N

eff we fit the data with a curve parametrized as

β 0 + β 1 |Ω (t)| + β 2 1 |Ω (t)|
, where the term 1 |Ω (t)| stands for a potential sub-leading term. The estimated leading order is consistent with a constant (β 1 ≈ 0) in the case θ = π/2 and with a linear growth (β 1 = 0) in the generic case. The figure also shows how the difference of magnetization between flipping or not the spin is proportional to |Ω (t)|, confirming that the two states |⇑ and |Ψ π/2 (t) are macroscopically different. Fig. 6.2 also reports the probability density P θ (m) to get m from a measurement of S z given that the system is in the state |Ψ θ (t) ; the case θ = π 2 shows standard fluctuations, while the more general case θ = π 4 shows the bimodal distribution that is characteristic of a cat state, as discussed in Section 2.4. We have shifted m by the expectation value of S z (t) so as to exhibit plots that are independent of the system size (incidentally, this also makes it equivalent to consider either the full chain or Ω (t)).

We have checked that, as long as the initial state is in the bulk of the spectrum, the qualitative behavior remains the same even moving away from integrability. An example is reported in Fig. 6.3. Remarkably, even in this non-integrable case, the change in the total magnetization is consistent with a ballistic scale. A priori, one would not expect ballistic spreading in generic models, but rather diffusive (see e.g. [START_REF] Joã | Ballistic-to-diffusive transition in spin chains with broken integrability[END_REF]). In Ref. [START_REF] Bidzhiev | Macroscopic effects of localized measurements in jammed states of quantum spin chains[END_REF], in particular, a preliminary analysis of the effect of some integrability-breaking perturbations pointed to a non-ballistic spreading. In contrast, we find numerical evidence that ballistic behavior extends to a wide range of parameters, at least, within the time window investigated.

. Generic model

We have considered several models without a hidden U (1) symmetry in which |⇑ is still a quantum scar. We see quite generally that, also in those cases, the spin flip has everlasting effects arbitrarily far from the origin, and, again, we conclude that our protocol leads to the formation of a macroscopically entangled state. However, this time the macroscopically-entangled state is not a cat state.

In Fig. 6.4 we report an example using the Hamiltonian H 2 . The plot of the magnetization shows that the states |⇑ and |Ψ π/2 (t) are macroscopically different, indeed the difference of the magnetization in the two states grows linearly with the effective system size. Concerning the quantumness, we have fitted the data for the lower bound N [START_REF] Faddeev | Algebraic Aspects of Bethe Ansatz[END_REF] eff with the same Ansatz as before β 0 + β 1 |Ω (t)| + β 2 1 |Ω (t)| ; the analysis points to an asymptotic linear growth for any θ = 0, including this time also θ = π 2 .

. U (1) symmetry

If the total magnetization S z is conserved, the states |⇑ and |Ψ π/2 (t) cannot become macroscopically different. Specifically, we proved in Ref. [START_REF] Bocini | Growing Schrödinger's cat states by local unitary time evolution of product states[END_REF] that a state |Ψ obtained by time evolution under a U (1)-symmetric Hamiltonian after a local perturbation to |⇑ is macroscopically equivalent to |⇑ . That is to say, the quantity Ψ|O|Ψ -⇑ |O| ⇑ is sub-extensive for any translationally-invariant operator O = O , with O local operators. We also proved that the variance of any such operator O with respect to the state |Ψ grows at most linearly with system size |Ω (t)|, ruling out the possibility to obtain a macroscopically entangled state from time-evolution of a locally-perturbed |⇑ . And this holds true for any local Figure 6.4 -The same as in the top plots of Fig. 6.2 for Hamiltonian H 2 with

J 1 = J 2 = 1, J r>2 = 0, γ z 1 = γ z 2 = -0.6, D y r>1 = h z = γ z r>2 = 0, D y 1 = -0.9, γ x r = γ y r = D x r = D z r = 0, ∀r.
perturbation, not only those acting on one site. Physically, we can understand this result from the fact that, first, a local operator can only flip a finite number of spins, and, second, the initial state, |⇑ , has maximal S z . As a result, the Hilbert space accessible to time evolution is too small for macroscopic entanglement to develop. Therefore, in order to build up macroscopic entanglement, |⇑ cannot be the ground state of a local charge. In generic systems, we can read this as a condition for |⇑ to be a quantum scar.

. Imperfections in the preparation of the state

We investigate the effect of perturbing the state |⇑ by time evolution under a homogeneous Hamiltonian H 0 for a fixed time t 0 , i.e. |Ψ 0 (0 -) = e -iH 0 t 0 |⇑ , before studying the time evolution of |Ψ θ (0 + ) = e iθσ y 0 |Ψ 0 (0 -) . The case studied so far in Eq. (6.2) corresponds to t 0 = 0. We warn the reader of a complication: the initial evolution affects the whole chain, so, strictly speaking, there is no approximatelypure subsystem Ω(t). If we insist on considering the subsystem associated with the spreading of the local perturbation (corresponding to the sharp change of behavior in the profile of the magnetization), computing macroscopic entanglement is more challenging, since it should be done via the quantumness for mixed states (different from the variance). In this preliminary study of the stability of our protocol, we limit ourselves to check the qualitative behavior of the magnetization's probability distribution.

We distinguish two classes of perturbations. In the first class, the perturbation is spin-flip symmetric (thus the hidden U (1) symmetry is preserved), e.g. H 0 could be the integrable Ising Hamiltonian

H 0,1 = - 1 4 σ x σ x +1 + h z 0 σ z . (6.13)
In the second class, the pre-measurement Hamiltonian breaks the spin-flip invariance Figure 6.5 -Time evolution under H 1 after perturbing the state |⇑ with H 0,2 for a time t 0 = 0.4. The parameters are set to J = 2.8, γ = 1, w = ∆ = D z = h z = 0, for H 1 , and h z 0 = 0.7 and h x 0 = 0.5 for H 0,2 . Left: the difference in magnetization with or without the spin flip grows linearly in time, at least for the times reached by our simulation. Right: probability density of total magnetization; for each time slice, we report two continuous curves representing the probability distribution for even and odd magnetizations (the full probability distribution is the combination of the two).

behind the hidden U (1) symmetry, e.g.

H 0,2 = - 1 4 σ x σ x +1 + h z 0 σ z + h x 0 σ x , (6.14) 
which is a non-integrable version of the Ising model. Note that, in both cases, the larger h z 0 , the smaller the expected effect, and therefore h z 0 can be used as a control parameter.

The first class of perturbations is not expected to destabilize the growth of a cat state: On the one hand, Ref. [START_REF] Fagotti | Global quenches after localized perturbations[END_REF] showed that the macroscopic effects from local perturbations survive even after global quenches from a spin-flip invariant initial state. On the other hand, Ref. [START_REF] Marić | Universality in the tripartite information after global quenches: (generalised) quantum XY models[END_REF] indirectly confirms clustering in |Ψ π/2 (t) at long times in non-interacting Hamiltonians with hidden U (1); indeed the mutual information approaches zero at large distances. Our numerical analysis is consistent with these expectations, indeed we still see the formation of a bimodal probability distribution (with two well-separated peaks).

On the contrary, for the second class of perturbations the probability density does not present two well-separated peaks, as shown e.g. in Fig. 6.5. This rules out the formation of a cat state, but the basic features pointing to macroscopic entanglement (such as the linear growth in time of the difference of magnetization between flipping or not the spin) are still present for times longer than our maximum simulation times.

. Discussion of the results

By studying models with a fully separable quantum scar, we presented a new protocol showing macroscopic effects from local perturbations. This novel scenario has two advantages: first, the product state |⇑ can be easily prepared experimentally, and, second, the fact that it is separable and stationary gives the freedom to stop the (virtual) experiment at any time without compromising the outcome.

First we showed that, quite generally, the perturbation has everlasting effects on the expectation values of local observables arbitrarily far from the position of the measurement. This was the starting point of our investigation into the multipartite entanglement properties of |Ψ θ (t) . Being |Ψ π/2 (t) macroscopically different from |⇑ , we were already able to conclude that the projective measurement generates a state with macroscopic entanglement. But the situation is even more interesting. We provided evidence and then conjectured that, if the model has a hidden U (1) symmetry, |Ψ π/2 (t) is not macroscopically entangled; under those conditions, the projective measurement generates a genuine Schrödinger cat's state consisting of an (ideally) arbitrarily large number of sites.

Remarkably, our numerics suggests that it is common for the perturbation to generate macroscopic entanglement even for models without a hidden U (1) symmetry (integrable and generic). In this case, |Ψ θ (t) still exhibits macroscopic entanglement for generic θ, but, in contrast to the case with hidden U (1), also |Ψ π/2 (t) is macroscopically entangled, undermining in turn the formation of a cat state. The underlying cause of this effect is still unclear.

We emphasize that the hidden U (1) symmetry ensures that the effect of the spin flip does not fade away at long time [START_REF] Fagotti | Global quenches after localized perturbations[END_REF][START_REF] Fagotti | Nonequilibrium symmetry-protected topological order: emergence of semilocal Gibbs ensembles[END_REF], but it is not sufficient to exclude the effect to remain confined around the position of the measurement. This is indeed what happens when the Hamiltonian exhibits localized excitations. The possible but improbable Hamiltonians breaking that rule, however, can be cured by the addition of a local operator that does not change the excited state -e.g. σ z for our initial state |⇑ .
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Chapter 6. Growing a cat state 2. Extract from w (n) a vector satisfying the proper normalization conditions; this also allows one to get a prediction for the diagonal matrix; in practice, we can do that by imposing [D (n) ] j = w

(n) j -1 and v (n+1) = (D (n) ⊗ I 3 ) w (n) .
In most of the cases this procedure worked well without particular stabilizers. This method is inspired by Ref. [START_REF] Morimae | Macroscopic entanglement of many-magnon states[END_REF].

6.A.2 . Numerical analysis of the probability distribution

Beside the quantumness, the other numerical evidence of macroscopic entanglement that we investigate numerically is the probability distribution of the total magnetization, which is computed as follows. We define the probability P θ (m) as the probability to get m from a measurement of S z given that the system is in the state |Ψ θ (t) . For convenience, we assume L to be divisible by 4, hence m ∈ {-L 2 , -L 2 + 1, ..., L 2 }. The generating function of the moments of the probability distribution is defined as

G θ (k) := e i 2πk 2L+1 S z . (6.19)
The probability P θ (m) is then the Fourier transform of the generating function:

P θ (m) = 1 2L + 1 L/2 k=-L/2 e -i 2πk 2L+1 m G θ (k). (6.20) 
In practice, we compute numerically G θ (k) for all the possible values of k using tensor-network techniques, then we use the equation above to reconstruct the probability distribution. Note that, if the model is invariant under spin flip σ x,y → -σ x,y , the state |Ψ π/2 (t) belongs to the sector in which the parity operator Π z ≡ σ z has eigenvalue -1, which means P π/2 (m) = 0 for any even m. This implies that, in the generic case of |Ψ θ (t) with θ = π 2 , P θ (m) = 0 for any even m except for P θ (L/2) = cos 2 θ. This is why, in the plots of the probability density for models with spin-flip invariance, we report only odd values of m and m = L 2 .

-Half-chain entropy in the spectrum of noninteracting spin chains

In this chapter we consider non-interacting short-range quantum spin chains and we draw a rather complete picture of bipartite entanglement in eigenstates of what we called the momentum basis in Chapter 3. In particular, we investigate the existence of locally-distinct eigenstates satisfying the area law, where locally-distinct means distinguishable via the expectation value of a local observable. We argue that there are three distinct classes of one-site-shift-invariant non-interacting models: the elements of one class have two eigenstates of the sought type, while the elements of the other two classes have none. We show it in two steps. First, we specialize to three different quantum spin chains. We then prove that every translationally-invariant non-interacting Hamiltonian can be mapped into a translationally-invariant conservation law of one of those three Hamiltonians by a discrete and/or a continuous local unitary transformation. Such transformations do not affect the asymptotic dependency of the bipartite entropies on the subsystem length, hence the generality of our findings.

. The three reference Hamiltonians

We start by considering three Hamiltonians: the XX model (XX)

H xx = 1 4 L/2 =-L/2+1 σ x σ x +1 + σ y σ y +1 , (7.1) 
the critical Ising model (CI)

H ci = - L/2 =-L/2+1 σ x σ x +1 + σ z , (7.2) 
and the strongly anisotropic XY model (X-X)

H x-x = 1 4 L/2 =-L/2+1 σ x σ x +1 -σ y σ y +1 , (7.3) 
where L is the size of the system and all the Hamiltonians are considered with periodic boundary conditions. They are all non-interacting and, as such, they can be diagonalized by a Jordan-Wigner transformation followed by a Bogoliubov transformation (see Chapter 3): denoting H any one of the Hamiltonians above, In Chapter 3 we have introduced the momentum basis, which is a complete set of eigenstates of the Hamiltonian H ± , represented as

H = 1 -Π z 2 H + + 1 + Π z 2 H -, (7.4 
|{p} = Ñ p∈{p} b † p é |∅ , {p} ⊂ {p ∈ (-π, π]|e iLp = ±1} , (7.6) 
where |∅ is the reference state, annihilated by all the operators b p , and the order in which the operators b † p are applied is irrelevant.

. A convenient expression for entanglement entropies

To compute the entropy of half chain, we use the representation of the Rényi entropy for non-interacting systems reported in Eq. (3.63), that we repeat here for convenience:

S α (A) = 1 2(1 -α) log det ÇÇ 1 + Γ A 2 å α + Ç 1 -Γ A 2 å α å , (7.7) 
where Γ A is the correlation matrix of our state restricted to the subsystem A.

First of all, it is useful to derive an alternative expression of the Rényi entropy. We start by noting that the solutions to the equation Ä 1+y 2

ä α + Ä 1-y 2
ä α is a polynomial of degree αmod 2 (α) and its roots are

y j = i tan Å π(2j + 1) 2α ã , j ∈ {-floor(α/2), . . . , floor(α/2) -1} . (7.8) 
Since we have all its roots, we can write the polynomial in its factorized form

Å 1 + y 2 ã α + Å 1 -y 2 ã α = α α mod 2 2 α-1 floor(α/2)-1 j=-floor(α/2) Å y -i tan Å π(2j + 1) 2α ãã . (7.9) 
Consider now the polynomial

floor(α/2)-1 j=-floor(α/2) Ä y cos Ä π(2j+1) 2α ä -i sin Ä π(2j+1) 2α ää
. This polynomial has the same roots of the polynomial above, so they differ at most for an overall constant. We can determine such a constant by evaluating the polynomials in y = 1: since they are both 1 for y = 1, it follows that

Å 1 + y 2 ã α + Å 1 -y 2 ã α = floor(α/2)-1 j=-floor(α/2) Å y cos Å π(2j + 1) 2α ã -i sin Å π(2j + 1) 2α 
ãã .

(7.10)
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We can apply this identity to the Rényi entropy, obtaining

S α (A) = floor(α/2)-1 j=-floor(α/2) log det sin Ä π(2j+1) 2α ä I 2|A| + i cos Ä π(2j+1) 2α ä Γ A 2(1 -α) = = floor(α/2)-1 j=-floor(α/2) log det A ( π(2j+1) 2α ) 2(1 -α) , (7.11) 
where (φ) := sin(φ)I 2L + i cos(φ)Γ , (7.12)

and the 2|A| × 2|A|-matrix A is obtained from the 2L × 2L matrix A by keeping only the rows and columns that define Γ A from Γ. This expression allows us to compute entropies of large subsystems on the basis of the asymptotic behaviors of determinants of Toeplitz and block-Toeplitz matrices [START_REF] Its | The Fisher-Hartwig Formula and Entanglement Entropy[END_REF], which have been thoroughly investigated (see e.g. Refs [START_REF] Deift | Asymptotics of Toeplitz, Hankel, and Toeplitz+Hankel determinants with Fisher-Hartwig singularities[END_REF][START_REF] Basor | Asymptotics of determinants of block Toeplitz matrices[END_REF]). Note also that this formula allows us to make some general remarks about bipartite entanglement without specifying the Rényi index α.

. XX model

The XX model has the U (1) symmetry of rotations around z, i.e. the Hamiltonian H xx commutes with S z = 1 2 σ z . This is enough to conclude that there are at least two locally different eigenstates satisfying the area law:

|• • • ↑↑ • • • and |• • • ↓↓ • • • ,
which can be shown to belong to the momentum basis. Our goal in this case is to establish that any other state of that kind is locally equivalent to one or to the other.

For this model, it can be shown |∅ , which is an alternative way to specify all the eigenstates of the momentum basis. We are essentially changing point of view: we describe excitations on top of the state |∅ instead of |∅ . The only thing that is missing to complete the mapping is to express the correlation matrix for the state |{p} according to the new conventions. One way to do that is to start from the representation of |{p} derived in Eq. (3.58), i.e.

Ĥ(p) = -cos(p)σ y , (p) 
Γ 2m+1,2n+2 = i L p|e iLp =±1 cos(θ(p)) cos((m -n)p)(1 -2χ {p} (p)) = -Γ 2m+2,2n+1 , Γ 2m+i,2n+i = 2i L p|e iLp =±1 sin((m -n)p)χ {p} (p) , (7.16 
) where m, n ∈ {-L + 1, ..., L} and i ∈ {1, 2}. Such a correlation matrix is described by the (homogeneous) symbol reported in Eq. (3.60):

Γ(k) = (χ {p} (k) + χ {p} (-k) -1) cos(θ(k))σ y + (χ {p} (k) -χ {p} (-k))I 2 . (7.17)
It can be shown that the symbol of the eigenstate |{p} is

Γ(k) = (χ {p} (k) + χ {p} (-k) -1)σ y + (χ {p} (k) -χ {p} (-k))I 2 = = Σ(1) { p} (k)- Σ(1) { p} (-k) 2 I 2 + Σ(1) { p} (k)+ Σ(1) { p} (-k) 2
σ y , (7.18) where Σ(1) {p} (k) := 2χ {p} (k) -1 takes values in {-1, 1}. Note that the symbol of the reference state |∅ , obtained setting {p} = ∅ in the equation above, has no singularity, contrary to the ground state, obtained setting {p} = ∅ in Eq. (7.14). That is a convenient property for the asymptotic study of the entropy in the following.

Let us now consider Eq. (7.11) for the entropy. We need the determinant of the matrix

A (φ) = sin(φ)I 2|A| + i cos(φ)Γ A (k) = = Ä sin(φ)I |A| + i cos(φ)Σ A ä ⊗ I 2 + σ y 2 - Ä sin(φ)I |A| + i cos(φ)Σ A ä T ⊗ I 2 -σ y 2 , (7.19) 
where Σ A is the restriction to the set A of the L × L matrix with elements

Σ m,n = 1 L p|e iLp =±1 e ip(m-n) Σ(1) {p} (p) , (7.20) 
where m, n ∈ {-L 2 + 1, ..., L 2 }. Importantly, Σ A is a Toeplitz matrix (not just block -Toeplitz like Γ A ). The projectors I 2 ±σ y 2 imply that the 2|A| eigenvalues of A (φ) coincide with the |A| eigenvalues of sin(φ)I |A| + i cos(φ)Σ A and the |A| eigenvalues of its transpose; since the two sets are exactly the same, we get det A (φ) = det 2 sin(φ)I |A| + i cos(φ)Σ A .

(7.21)

In the thermodynamic limit we can apply the result proved by Szegö in Ref. [START_REF] Szegő | Beiträge zur Theorie der Toeplitzschen Formen[END_REF], and obtain the asymptotic behavior as |A| → ∞

log det A (φ) |A| ∼ π -π dk 2π log | sin 2 (φ) + cos 2 (φ)[ Σ(1) (k)] 2 | . (7.22)
We point out that, in the thermodynamic limit, Σ(1) (k) can assume any value in [-1, 1] and it is the symbol of a macro-state, representing infinitely many locallyequivalent eigenstates: two eigenstates |{p} and |{p } are described by the same Σ(1) (k) if {p} and {p } differ only in a finite number of elements (see Section 3.9 for an extended discussion on the thermodynamic limit).

The excited states with minimal entropy are sub-extensive, hence their Σ(1) (k) should make the right hand side of (7.22) vanish, implying Σ(1) (k) ∈ {-1, 1}. All sequences of excited states with sub-extensive entropy are therefore characterized by a piece-wise constant symbol Σ(1) (k) with a given number n of discontinuities in k ∈ (-π, π] (if Σ(-π + ) = Σ(π -), it also counts as a singularity). If the latter is finite, the discontinuities are simple examples of Fisher-Hartwig singularities [START_REF] Deift | Asymptotics of Toeplitz, Hankel, and Toeplitz+Hankel determinants with Fisher-Hartwig singularities[END_REF][START_REF] Basor | Toeplitz and Wiener-Hopf determinants with piecewise continuous symbols[END_REF]. Specifically, each discontinuity gives the additive asymptotic contribution -( φ π -

sign(φ) 2 ) 2 log |A| to log(det | sin(φ)I |A| + i cos(φ)Σ A |) . (7.23) 
For example, in this case we get

S 2 (A) = n 8 log |A| + const , (7.24) 
where the constant term does not depend on |A|. The area law can be satisfied only if there are no discontinuities at all, i.e. Σ(1) (k) = 1 ∀k or Σ(1) (k) = -1 ∀k. These are the symbols of the states that are locally equivalent to

|• • • ↑↑ • • • and |• • • ↓↓ • • • .
For any other (finite) number n of discontinuities the entropy grows logarithmically with the subsystem size. Note that, in this case, the state can be interpreted as the ground state of a gapless charge, described by a conformal field theory (CFT) with central charge n 2 (see e.g. Ref. [START_REF] Calabrese | Entanglement entropy and conformal field theory[END_REF]). Since the number of discontinuities n is always even, all these CFTs are described by even central charges.

. Critical Ising model

The critical Ising model is special as H ± is not only block-(anti)circulant, but it is (anti)circulant. As such, it can be described both with the usual 2 × 2 symbol

Ĥ(p) = -2 sin(p)σ x -2(1 -cos(p))σ y , (7.25) 
and by the scalar symbol Ĥ(1) (p) = 2 sin(p) , (7.26) meaning that

H 2m+i,2n+j = 1 2L p|e 2iLp =±1 e i(2m+i-2n-j)p Ĥ(1) (p) = 1 L p|e iLp =±1 e i(m-n)p Ĥi,j (p) , (7.27) 
where m, n ∈ {-L 2 + 1, ..., L 2 }, i, j ∈ {1, 2} and p ∈ (-π, π]. Note the difference in the quantization of momenta for the scalar symbol with respect to the one that we have for the usual 2 × 2 symbol. One may hope that the correlation matrix of the momentum-basis eigenstates can also be described by a scalar symbol. In the following we show that this is possible up to corrections of order 1/L.

First of all, we can write down the symbol of the correlation matrix of the eigenstate |{p} from Eq. (3.60), adapting it to the system under consideration. We get for p = 0.

Γ(p) = (χ {p} (p) -χ {p} (-p))I 2 -sign sin( p 2 ) (χ {p} (p) + χ {p} (-p) -1) Ç 0 e -i p
On the other hand, if we write in general the 2L × 2L matrix that we get from a scalar symbol Â(1) (p), we get

A 2m+i,2n+j = 1 2L p∈(-π,π]|e 2iLp =±1 e i(2m+i-2n-j)p Â(1) (p) = = 1 L p∈(-π,π]|e iLp =±1 e i(m-n)p Â(1) ( p 2 ) + Â(1) ( p 2 + π) 2 δ i,j + + 1 L p∈(-π,π]|e iLp =±1 e i(m-n)p Â(1) ( p 2 ) -Â(1) ( p 2 + π) 2 Ç 0 e -i p 2 e i p 2 0 å i,j , (7.30) 
which shows that the matrix A can equivalently be described via the 2 × 2 symbol

Â(p) = Â(1) ( p 2 ) + Â(1) ( p 2 + π) 2 I 2 + Â(1) ( p 2 ) -Â(1) ( p 2 + π) 2 Ç 0 e -i p 2 e i p 2 0 å . (7.31) 
If we now take

Â(1) (p) = ® 1 -2χ {p} (-2p) , for p ∈ (0, π) 2χ {p} (2p) -1 , for p ∈ (-π, 0) , (7.32) 
we have Â(p) = Γ(p) for all p = 0. However, despite the freedom that we still have in defining the elements Â(1) (0) and Â(1) (π), there is no choice of Â(1) (p) that could make Â(p) coincide with Γ(p) for p = 0. Indeed, Γ(0) has a non-zero component along σ y , while the component of Γ(0) along σ y is zero. Therefore, in the Ramond sector, all the matrix elements Γ 2m+i,2n+j and A 2m+i,2m+j with i = j differ for the zero mode, which gives a contribution 1/L.

In the following, we consider the matrix generated by the scalar symbol (7.32), with Â(1) (0) and Â(1) (π) set to zero. This is a mixed state, since the 2 × 2 symbol in p = 0 has zero eigenvalues. But this is not a problem in our study of how the 2 at most. Then, once again, we can apply Eq. (7.11) for the entropy, considering det A (φ) = det sin(φ)I 2|A| + i cos(φ)A A .

(7.33)

In the thermodynamic limit the Szegö lemma gives

log det A (φ) |A| ∼ π -π dk 2π log | sin 2 (φ) + cos 2 (φ)[A (1) (k)] 2 |, (7.34) 
which matches the expression for the XX model provided that Σ(1) (k) is replaced by Â(1) (k). The qualitative analysis is therefore almost identical, but there are two important differences:

• First, while Σ(1) (k) could be any function with image in [-1, 1], Â(1) (k) is odd by construction. Consequently, the smallest number of discontinuities in the symbol Â(1) (k) is 2 (one at k = 0 and one at k = π) and corresponds either to the ground state or to the state with maximal energy. Contrary to the XX model, there is no excited state satisfying the area law, implying that every quasilocal charge of the critical Ising model is gapless.

• In this case, S 2 (A) = n 16 log |A| + const, where n is the number of singularities of Â(1) (k). The possible values of n are obtained by comparing Â(1) (k) to χ {p} (k), which is also a piece-wise constant for eigenstates with sub-extensive entropy. From the definition (7.32) of Â(1) (k), we get

n = ® 2m + 1 , if χ {p} (k) is not singular in π 2m , if χ {p} (k) is singular in π , (7.35) 
where m is the number of singularities of χ {p} (k). Therefore, the central charges of the CFTs describing the low-entangled excited states of CI can be both half-integer and (nonzero) integer (see e.g. Ref. [START_REF] Calabrese | Entanglement entropy and conformal field theory[END_REF]), as already pointed out in Ref. [START_REF] Jafarizadeh | Bipartite entanglement entropy of the excited states of free fermions and harmonic oscillators[END_REF].

. X-X model

The X-X model, described by Hamiltonian (7.3), is mapped into the XX model by a unitary transformation: H X-X = Π zy H XX Π zy , where Π zy = j σ z 2j-1 σ y 2j . Therefore, the two models have the same spectrum. However, this similarity transformation breaks one-site shift invariance, implying that the momentum bases of the two models do not coincide. Thus, we are forced to treat the X-X model independently of the XX one.

Chapter 7. Eigenstates' entropy

It can be shown that the symbol of the Hamiltonian for this model reads 

Ĥ(p) = sin(p)σ x . ( 7 
Γ(p) = ω(1) + (p)+ω (1) 
-(p) 2 I 2 + ω(1) + (p)-ω (1) -(p) 2 σ x . (7.40) 
If we neglect the modes p ∈ {0, π}, as we did for the mode p = 0 in critical Ising, the situation is analogous to what we had for the XX chain in Eq. (7.18). In particular, we can rewrite the entropy as the product of two determinants of Toeplitz matrices (in the XX case, the two matrices had the same determinant, while here they differ):

det A (φ) = s=±1 det sin(φ)I |A| + i cos(φ)ω A s .

(7.41)

The right hand side is the product of two determinants of the Ising kind (7.33), therefore the entanglement entropies are the sum of the entropies of two excited states of the Ising model. The absence of a state satisfying the area law in the critical Ising model implies in turn the same in the X-X model. Note that, as in critical Ising, also here the central charges of the CFTs describing the low-entangled excited states can be both half-integer and integer.

. Numerical analysis

Although persuasive, our analytical hints are based on the assumption that the local properties of any excited state can be described with a symbol that does not depend on the subsystem length; but this is too restrictive. We can indeed easily imagine exotic sequences of excited states that do not fit in the classification above, e.g. states in which the density of excitations scales with system size. In order to rule out unconventional states satisfying the area law, we resort to numerical analysis.

We start considering finite chains and evaluate the half-chain von Neumann entropy of all excited states. Those satisfying the area law correspond to minima of such an entropy landscape that remain bounded even increasing the chain's length L. For small L, we can recognize the global minima by a brute-force search. This is shown in Fig. 7.1 for CI, which suggests that the ground state and the maximal energy state have the lowest bipartite entanglement and points, in turn, at the absence of excited states satisfying the area law. A real quantitative difference between states satisfying or breaking the area law appears however only in much larger chains. The number of eigenstates, on the other hand, diverges exponentially with L, thus computing the entropy of all eigenstates becomes soon unfeasible.

We circumvent this problem by means of simulated annealing, an algorithm to approximate the global minimum of a function defined in a large search space. Since it does not rely on evaluating any gradient, it is particularly suited to our discrete search space, made by all the eigenstates. In practice, we initialize the system in a random eigenstate |{p} , where the set of occupied momenta {p} is generated from a uniform distribution. Given the symbol associated with the excited state, we reconstruct its correlation matrix via Eq. (3.58) and we compute the half-chain von Neumann entropy using Eq. (3.64). At each step we make a particle-hole transformation at a random momentum, i.e. we either add or subtract an element to {p}, and accept the new excited state |{p } with probability

P (|{p} → |{p } ) = min ® exp Ç S 1 ( L 2 ; {p}) -S 1 ( L 2 ; {p }) s å , 1 
´, (7.42) in analogy with the Metropolis-Hastings algorithm. Here s is a parameter that depends on the iteration and is chosen so as to approach 0 at the end of the simulation. The reference entropy s we use to re-scale the entropies and define the acceptance probability is not constant during the algorithm, but depends on the number of iteration: at the beginning we set it large enough not to significantly affect the probability to jump from one state to the other, and it goes to 0 when approaching the maximum number of iterations. In this way, the algorithm initially explores the full landscape, ignoring small features of the entropy, then it drifts towards lowentropy regions and, once one of those regions has been chosen, it finally moves to its local minimum in a (quasi)deterministic way; the state that is finally reached is a candidate for being the global minimum. For the sake of generality, we have run the algorithm several times, also varying how s is updated; in particular, we used power-law decays of the form

s = s 0 Å iteration tot -iteration current iteration tot ã α , (7.43) 
where iteration tot is the (chosen) total number of iterations, iteration current is the current iteration and α and s 0 are arbitrary positive real numbers.

We have numerically searched for the state with minimal entropy in each fermionic sector (Neveu-Schwarz and Ramond) separately. Those eigenstates are shared by the original spin Hamiltonian if they have the right eigenvalue of Π z , as described in Section 3.4, evaluated with Eq. (3.59). Fig. 7.2 shows a run of it in CI. In a reasonable number of iterations the excited state becomes of the form that we investigated analytically (i.e. the number of discontinuities in its symbol becomes independent of L) and finally the algorithm selects the ground state or the maximal energy state. Similar analyses for XX and X-X have confirmed the pictures drawn before and are reported in Appendix 7.A.

. Equivalence of translationally-invariant quasilocal models

We can summarize the distinction in equivalence classes, derived in Appendix 7.B, as follows.

First, we recognize four families of topologically different models, such that the elements of each of those families are mapped into one another by unitary transformation with (quasi)local generators. This kind of transformations preserve the asymptotic dependency of the bipartite entropies on the subsystem length.

After that, we apply some discrete transformations that, like the previous ones, do not affect the entropies' asymptotic behaviors. In this way, we are able to map each family into a translationally-invariant charge of either XX, CI, or X-X model. All possible translationally-invariant spin chains are reduced to three equivalence classes, such that the spectra of the models in each class show the same entanglement properties.

Since only in XX there are excited states satisfying the area law but there are no quasilocal conserved operators whose ground state is described by a half-integer central charge, we can conclude that, quite generally, there are no excited states satisfying the area law when the ground state of a translationally-invariant noninteracting Hamiltonian is described by a CFT with half-integer central charge.

. Discussion of the results

In one dimension, the area law is of particular interest also because, as we have seen in Section 2.5, it is related to how well a quantum system can be represented on a classical computer. We have shown that, given the momentum basis of any translationally-invariant non-interacting Hamiltonian, only a finite small number of its elements satisfy an area law. Moreover, we have reported a no-go theorem connecting the central charge of the conformal field theory describing the low-energy properties of a non-interacting spin chain with the existence of excited states satisfying the area law: no excited state that adheres to the area law exists when the ground state is characterized by a CFT with a central charge that is a half-integer. All (quasi)local one-site shift invariant conserved operators are gapless in that case.

In so-called super-integrable (or, non-Abelian integrable) models such as the X-X one, the answer to our question is generally basis dependent. In the class of models that can be mapped into critical Ising, however, we have not been able to exploit the degeneracies to construct excited states satisfying the area law, and the question of whether this is possible relaxing the hypothesis of one-site shift invariance is still open.

Concerning the generality of our findings, there are several open questions. Can the assumption of one-site shift invariance be partially relaxed? Does something similar apply also in the presence of interactions? In the thermodynamic limit any linear combination of excited states in a collapsing energy shell is conserved to all intents and purposes; does the result hold true also in such quasi-stationary states? (in operator norm) that decreases exponentially with its range. Such transformations are used to define topological phases of matter [START_REF] Zeng | Quantum Information Meets Quantum Matter[END_REF]. They are relevant to us because they preserve the asymptotic dependency of the bipartite entropies on the subsystem length. To that aim, however, one can also consider discrete transformations that do not have a local generator but act as the first class of transformations on local operators. An example is a shift by a finite number of sites. Moreover, since we are studying the entropies of connected blocks, we can overlook the difference between spins and fermions [START_REF] Vidal | Entanglement in quantum critical phenomena[END_REF][START_REF] Fagotti | Entanglement entropy of two disjoint blocks in XY chains[END_REF] and preserve locality in whichever of the two spaces; this allows us to include also transformations such as a shift by one pseudo-site, i.e. a shift by one site in the Majorana fermions index.

It can also be argued that there should not be exceptions in the presence of infinitely many discontinuities in the symbol, as the bipartite entanglement tends to increase with their number (such states can also be interpreted as ground states of long-range Hamiltonians [START_REF] Gori | Explicit Hamiltonians inducing volume law for entanglement entropy in fermionic lattices[END_REF]).

We say that two models are equivalent if they can be mapped into one another by a unitary transformation that preserves the locality properties of either the spins or the underlying fermions. We identify such pseudo-local classes of equivalence within non-interacting spin chains and exhibit what is arguably the simplest representative of each class. We consider one-site shift invariant non-interacting Hamiltonians with short-range or exponentially-fast decaying interactions. Their most general 2-by-2 symbol reads, as in Eq. (3.19),

Ĥ(k) = f 0 (k)I 2 + f 1 (k)σ x + f 2 (k)σ y + f 3 (k)σ z (7.44)
where all the coefficients are smooth functions of k and they are all odd in k except f 2 (k), which is even. Since any operator with symbol proportional to the identity (such as the quadratic Dzyaloshinskii-Moriya interaction) commutes with the Hamiltonian, without loss of generality we can set f 0 (k) = 0 (it does not affect the definition of the momentum basis).

7.B.1 . Only components along σ x and σ y

We start considering the case f 3 (k) = 0. The most general symbol of a model with local interaction is therefore

(k)e i θ(k) 2 σ z σ y e -i (θ(k)) 2 σ z = (k) cos(θ(k))σ y -(k) sin(θ(k))σ x , (7.45) 
where the coefficients of σ x and σ y should both be smooth functions, (p) is even and θ(p) is odd. By construction (p) and θ(p) are periodic with period 2π and they are even and odd respectively. Because both coefficients should be smooth, we need 2 (k) to be smooth (just take the sum of the squared coefficients) and θ(p) to be smooth up to jumps of π, which can be compensated by changes of sign in (k). In fact, we can always redefine θ(k) so as to remove the jumps in (-π, 0) ∪ (0, π), using the transformation ß

θ(p) → θ(p) ± π (p) → -(p) for p ∈ [p 0 , p 1 ] ⊂ (0, π] , ß θ(p) → θ(p) ∓ π (p) → -(p) for p ∈ [-p 1 , -p 0 ] ⊂ (-π, 0) , (7.46) 
which does not change the symbol for any p 0 , p 1 . We are left with potential jumps at k = 0 and k = π. With the same transformation we can also shrink the discontinuity at k = 0 as much as possible, which means that it will become either 0 (hence, θ(k) continuous in its neighborhoods) or π (the discontinuity at k = π can instead be any multiple of π). Importantly, two symbols (7.45) that differ only in (p) describe two commuting Hamiltonians and they share the momentum basis, so they are equivalent for our purposes. For this reason we will focus on the other part of the symbol, that we will rewrite as σ y e iθ(p)σ z . Given another term of the same form but with a different angle θ (p), we can map one term into the other by applying the unitary transformation e iQ , where Q is a non-interacting operator with symbol θ(p)-θ (p) 2 σ z . Such an operator is quasi-local if and only if the function θ(p) -θ (p) is smooth, i.e. if the two angles have the same discontinuities. Then we can say that the two symbols are topologically equivalent, and their eigenstates have approximately the same entropies in the large-L limit. Therefore, we have reduced all the non-interacting translationally-invariant short-range Hamiltonians to a numerable set of classes that are equivalent in terms of the entropy of their eigenstates. Those classes are identified simply by the discontinuities of θ(p) in p = 0 and p = π. But this is not the end of the story.

First of all, for each "topological" class, we consider only one representative element (all the elements of one class can be mapped one into the other with the transformations considered so far), and we choose it such that

θ(p) = θ(p) + xp , (7.47) 
where x ∈ Z/2 and θ(p) has at most one π jump in p = 0 (but it is continuous in p = π). Let us now consider local unitary transformations that are not generated by operators with exponentially decaying interactions. A relevant example is the Kramers-Wannier duality corresponding to shifting the Majorana fermions by one pseudo-site a j → a j+1 . One can show that, for symbols with components only along σ x and σ y like the one we are considering here, the effect of this transformation on the symbol is an overall change of sign and θ(p) → pθ(p). We consider also the transformation obtained by shifting the Majorana fermions as a 2 +1 → a 2( +m)+1 , a 2 +2 → a 2( -m)+2 . It can be shown that, in terms of the symbol, this transformation implies θ(p) → θ(p) + 2mp. Combining these two transformations, we realize that we can restrict just to x ∈ {0, 1 2 } in the expression for θ(p) above. In this way, we find a total of four equivalent classes.

We can now write down a representative symbol for each class. We choose the following four symbols: We highlight that the angle θ(p) considered here is not the same of that in Eq. (3.19), since here we are absorbing some of the singularities of θ(p) in the dispersion relation. For instance, the usual Bogoliubov angle for the XX model would be θ(p) = sign(-cos(p)).

Finally, note that the sign of the field in the third case can be changed by a spin flip in the x direction. This transformation is not captured by those considered so far in the section because its symbol does not have a 2-by-2 representation, but it still allows us to study only the other three models.

7.B.2 . Component also along σ z

We now address the problem of the generality of the symbol we started from, i.e. the fact that we assumed f 3 (k) = 0. In particular, we wonder whether the more generic symbol with f 3 (k) = 0 can always be mapped into the one we considered. We parametrize the most generic symbol as follows

e i φ(k) 2 σ y Ĥ(k)e -i φ(k) 2 σ y = cos(φ(k)) Ĥ(k) + sin(φ(k)) (k) sin(θ(k))σ z , (7.48) 
where Ĥ(k) belongs to the family of symbols considered above. Analogously to the previous case, the smoothness of the right hand side of the equation translates into φ(k) being smooth up to π discontinuities, which can again be fixed by a proper choice of the sign of (k). Since φ(k) is even by the symmetry constraints on the symbol, all the discontinuities are removable and hence the operator with symbol φ(k) 2 σ y , which generates the desired transformation, can always be chosen quasilocal. This shows that, without loss of generality, we can impose 3 (k) = 0, and concludes the derivation of the result reported in the main text.

Our research has contributed to new results on the physics of quantum spin chains, concerning in particular non-equilibrium inhomogeneous dynamics and entanglement. In the main part of this thesis, we addressed two scenarios that go beyond the scope of standard generalized hydrodynamics (GHD), one of the theories that best describe the large-time dynamics of inhomogeneous states evolving in a quantum spin chain.

In the first scenario, we examined the behavior of correlations between spins in which the distance(s) involved are so large that the application of a local-density approximation is not justified. In particular, we focused on the connected spin-spin correlation σ z m σ z n -σ z m σ z n , where the distance between spins is assumed to scale with time t as mn ∼ t α . By computing the limit of this observable in partitioning protocols for α > 0, we were able to study the system in an inhomogeneous setup at a non-local scale. The most intriguing discovery was the identification of a critical exponent, namely α = 1 2 . For α < 1 2 , the problem potentially aligns with the standard GHD framework, while for α > 1 2 the root density, which encodes all the information of asymptotic predictions in GHD, cannot be used to compute the leading order of the large-time limit. Furthermore, we argued that this critical exponent is likely to be shared by other observables.

The second phenomenon that was considered involves macroscopic effects from local perturbations (MELP), another scenario surpassing the conventional framework of GHD. This is a less developed area of research, and we had a twofold goal. On one hand, we aimed to expand the analytic description of MELP in quantum jammed states, that had been previously investigated to some extent. To achieve this, we identified a specific class of jammed states in the dual folded XXZ chain, which enabled us to obtain an explicit solution of the dynamics through a convenient mapping to a quasi-particle picture. This approach allowed us to compute the profiles of magnetization and other local observables, as well as analyze the spreading of spin-spin entanglement in these MELP. On the other hand, we presented an entirely novel class of models exhibiting MELP. Specifically, we considered perturbations applied to a trivial product state, which we assumed, without loss of generality, to be the state with all spins aligned up. Additionally, we assumed that this state is a highly-excited eigenstate of a Hamiltonian that does not conserve magnetization. Under these assumptions, such a state can be regarded as a quantum scar. We showed that the measurement of the local magnetization of a single spin along an axis different from the vertical direction triggers a dynamics that affects a number of spins that grows linearly in time, regardless of whether the model is integrable or generic. We also showed that, in general, time evolution generates macroscopic entanglement, despite the locality of interactions, and we identified a hidden U (1) symmetry which generally implies that the resulting macroscopically-entangled state is a cat state.

Chapter 8. Conclusion

Since both classes of MELP considered in our work are based on initial states that are highly-excited eigenstates satisfying the area law (even stronger: they are product states), we were inspired to study the entanglement in the spectrum of non-interacting spin chains. Although the question itself is ambiguous due to the non-uniqueness of basis choices in the presence of degeneracy, non-interacting models naturally offer a preferred basis, which we considered in our study. The first step was to reduce all possible translationally-invariant spin chains to three equivalence classes, such that the spectra of the models in each class show the same entanglement properties. This was done applying unitary transformations that preserve the locality properties of either the spins or the underlying fermions, and allowed us to study the problem only for three specific models (one for each class). We chose the XX chain, the critical Ising chain and the large-anisotropy limit of the XY chain. We showed that, among them, only the XX chain has states satisfying area law, while the rest of the models do not. Furthermore, in the case of XX, there are only two classes of locally-distinct eigenstates satisfying area law.

Our work opens up new potential directions. For example, it remains the problem of developing a suitable framework to deal with non-local correlations in inhomogeneous systems out of equilibrium. This could involve extending existing hydrodynamic arguments or exploring new theoretical approaches. Our work can serve as a starting point for any effort that aims at expanding GHD beyond the expectation value of local observables, also in the broader context of interacting integrable models.

Another natural progression of this work involves seeking a unified framework to describe all the known classes of MELP. So far, they have all been addressed individually and it would be highly valuable to develop a common description, since it would give a better understanding and characterization of this exotic phenomenon. Moreover, the investigation on entanglement in MELP phenomena presented in this thesis represents just the beginning: many questions regarding the stability of the protocols and their potential applicability to generate macroscopic entanglement in real-world setups remain open. It is also worth exploring the possibility of other classes of systems that exhibit MELP, which, as we have seen, would likely be linked to intriguing physical effects.

Finally, our classification of the non-interacting models without eigenstates satisfying area law and their organization in classes of equivalence is potentially useful to any work that involves entanglement of excited states in non-interacting systems.

Les chaînes quantiques de spins fournissent un cadre fascinant pour l'étude de nombreux phénomènes physiques en mécanique quantique, allant du magnétisme et des phases quantiques de la matière au traitement de l'information quantique et à la simulation quantique. En tant que telles, elles suscitent donc beaucoup d'intérêt, à la fois pour la science fondamentale et les avancées technologiques.

Une chaîne quantique de spins est un modèle spécifique de système quantique à plusieurs corps, constitué de particules positionnées sur un réseau unidimensionnel et qui interagissent les unes avec les autres en raison de leur spin. Cette thèse est exclusivement consacrée aux systèmes fermés, décrits par un Hamiltonien indépendant du temps et subissant une évolution unitaire dans le temps. De plus, nous supposons toujours que les interactions sont de courte portée. Notre principal objectif réside dans l'exploration des chaînes quantiques de spins hors de l'équilibre, en accordant une attention particulière aux effets des inhomogénéités sur les corrélations et la structure d'intrication.

Une catégorie importante de chaînes quantiques de spin est celle des chaînes intégrables, qui sont des modèles dotés d'une structure algébrique spécifique [START_REF] Faddeev | Algebraic Aspects of Bethe Ansatz[END_REF]. Les chaînes intégrables que nous considérons possèdent un nombre de lois de conservation locales qui croît au moins linéairement avec la taille du système. Du point de vue de l'évolution temporelle, les modèles intégrables sont particuliers, car leur dynamique est fortement contrainte par leur grand nombre de lois de conservation, ce qui entraîne des propriétés spécifiques telles que l'absence de thermalisation [START_REF] Kinoshita | A quantum Newton's cradle[END_REF][START_REF] Rigol | Relaxation in a Completely Integrable Many-Body Quantum System: An Ab Initio Study of the Dynamics of the Highly Excited States of 1D Lattice Hard-Core Bosons[END_REF][START_REF] Cazalilla | Effect of Suddenly Turning on Interactions in the Luttinger Model[END_REF][START_REF] Eisert | Quantum many-body systems out of equilibrium[END_REF][START_REF] Polkovnikov | Colloquium: Nonequilibrium dynamics of closed interacting quantum systems[END_REF]. L'intérêt pour les modèles intégrables est principalement motivé par l'existence de certaines méthodes qui permettent en principe d'obtenir des expressions explicites pour bon nombre de leurs quantités importantes. Cela s'est avéré extrêmement utile pour acquérir des connaissances fondamentales sur les propriétés à la fois d'équilibre et dynamiques des systèmes quantiques à plusieurs corps. De plus, bien que les modèles intégrables soient spéciaux, les phénomènes identifiés en leur sein sont toujours potentiellement observables, même si ce n'est pas nécessairement exactement sous la forme prédite. La préthermalisation en est un exemple remarquable : des systèmes génériques, qui ont tendance à thermaliser [START_REF] Deutsch | Eigenstate thermalization hypothesis[END_REF], peuvent être suffisamment proches des modèles intégrables pour mettre un temps anormalement long à thermaliser, en présentant des plateaux de préthermalisation [START_REF] Bertini | Pre-relaxation in weakly interacting models[END_REF][START_REF] Langen | Prethermalization and universal dynamics in near-integrable quantum systems[END_REF]. Bon nombre de nos résultats relèvent du cadre des systèmes intégrables et révèlent des propriétés partagées par les modèles intégrables génériques.

Parmi les modèles intégrables, une place spéciale est occupée par les chaînes de spins quantiques qui sont équivalentes à des modèles sans interactions. Ces systèmes ont une structure très spécifique qui permet d'effectuer de nombreux calculs qu'on ne saurait actuellement pas faire pour d'autres modèles. Cependant, ils présentent encore un degré de complexité qui en fait potentiellement le terrain de jeu parfait pour une première exploration de n'importe quel phénomène physique. Par exemple, 135 136 Resumé en français on peut déjà fournir des exemples de transitions de phase quantique dans le cadre de ces modèles simples, et montrer que la relaxation dans les systèmes quantiques isolés se produit au niveau des propriétés locales, avec des ensembles statistiques appropriés.

Nous nous intéressons principalement à l'évolution du système dans la limite de temps long. Dans le contexte des modèles intégrables préparés dans des configurations invariantes par translation, il a été établi que l'ensemble généralisé de Gibbs (GGE, de generalized Gibbs ensemble) décrit avec précision la limite des valeurs attendues des observables locales, c'est-à-dire des observables agissant uniquement sur quelques spins adjacents. De manière pratique, le GGE est un état déterminé sans résoudre explicitement les équations du mouvement, en supposant que la seule propriété de l'état initial qui importe dans la limite de temps long est la valeur des lois de conservation (cf. Revue [START_REF] Vidmar | Generalized Gibbs ensemble in integrable lattice models[END_REF] et les références qui y sont mentionnées).

En revanche, dans les configurations inhomogènes, la valeur attendue des observables locales est habituellement décrite par la théorie de la dynamique généralisée (GHD, de generalized hydrodynamics). La GHD est basée sur l'hypothèse que, bien que l'état initial soit inhomogène, nous pouvons toujours obtenir une description efficace à temps long des sous-systèmes locaux en termes d'états homogènes, chacun décrit par un GGE. La GHD a été appliquée avec succès pour calculer la valeur attendue des observables locales dans les chaînes de spins quantiques intégrables préparées selon des protocoles de partitionnement, où les deux chaînes préparées dans différents états homogènes sont jointes au temps zéro et évoluent ensemble . Remarquablement, il a également été démontré que la GHD décrit des configurations expérimentales de gaz atomiques froids contraints à une dimension [START_REF] Schemmer | Generalized hydrodynamics on an atom chip[END_REF][START_REF] Malvania | Generalized hydrodynamics in strongly interacting 1d bose gases[END_REF][START_REF] Møller | Extension of the generalized hydrodynamics to the dimensional crossover regime[END_REF].

Cependant, la GHD présente certaines limitations. Parmi celles-ci, nous nous sommes principalement intéressés aux deux problèmes suivants, pour lesquels se fier uniquement aux lois de conservation se révèle insuffisant pour faire des prédictions dans la limite de temps long.

1. Les corrélations connectées sont un objet important à étudier, car elles contiennent des informations cruciales sur la structure interne du système. Cependant, la GHD est principalement conçue pour aborder le comportement des valeurs attendues des observables locales, et en tant que telle, elle peut ne pas capturer pleinement les situations où les corrélations sont examinées sur de grandes échelles. Cela inclut notamment l'étude de la manière dont les corrélations connectées tendent vers zéro lorsque la distance (ou les distances) entre les spins impliqués tend vers l'infini. Ce problème n'est pas seulement théorique, mais il a également des applications pratiques : dans des scénarios numériques et expérimentaux, le temps et les distances sont grands mais finis, et l'applicabilité de la GHD est limitée à une échelle spatiale finie ; par conséquent, l'utilisation de la GHD pour analyser les corrélations dans la limite des grandes distances devient discutable.

2. Les Effets Macroscopiques à partir de Perturbations Locales (MELP, de ma-croscopic effects from local perturbations), où par perturbation locale nous entendons une action locale sur l'état initial telle qu'une mesure locale, vont également au-delà du cadre de la GHD. Dans les systèmes ordinaires, les perturbations locales ne modifient pas les propriétés macroscopiques d'un état, quelle que soit la durée. L'attente naïve est que leurs effets se propagent le long de la chaîne mais s'atténuent avec le temps, ce qui signifie que, dans la limite de temps long, l'état du modèle est indiscernable de l'état initial non perturbé en ce qui concerne la valeur attendue de n'importe quelle observable locale. De manière imagée, la situation est analogue à ce qui se passe lorsqu'une pierre est jetée dans un lac : des ondes se forment autour du point où la pierre touche la surface, mais la dynamique les répand sur toute la surface du lac et finalement, lorsqu'on attend suffisamment longtemps, elles ne peuvent plus être discernées. Récemment, trois circonstances ont été identifiées dans lesquelles cette image peut ne pas être valable. La première réalisation de ce phénomène dans les chaînes quantiques de spins se trouve en présence de brisure spontanée de symétrie, et il a été observé d'abord numériquement dans la référence [START_REF] Zauner-Stauber | Time evolution within a comoving window: scaling of signal fronts and magnetization plateaus after a local quench in quantum spin chains[END_REF], puis décrit analytiquement dans la référence [START_REF] Eisler | Front dynamics in the XY chain after local excitations[END_REF]. Ici, une perturbation locale, reliant différents états fondamentaux physiques (c'est-à-dire ceux brisant la symétrie), conduit à la reconfiguration d'un nombre de spins qui croît linéairement avec le temps et dont l'effet ne disparaît pas même dans la limite de temps infini ; en ce sens, les effets de la perturbation sont macroscopiques. Nous mentionnons également les références [START_REF] Eisler | Front dynamics in the XY chain after local excitations[END_REF][START_REF] Eisler | Universal front propagation in the quantum Ising chain with domain-wall initial states[END_REF][START_REF] Gruber | Entanglement spreading after local fermionic excitations in the XXZ chain[END_REF][START_REF] Eisler | Entanglement spreading after local and extended excitations in a free-fermion chain[END_REF], où les MELP ont été considérés dans les chaînes de fermions. Les MELP ont également été observés dans les chaînes quantiques de spins avec fragmentation de l'espace de Hilbert [START_REF] Bidzhiev | Macroscopic effects of localized measurements in jammed states of quantum spin chains[END_REF], où l'espace de Hilbert est divisé en un nombre exponentiellement grand de secteurs dynamiquement déconnectés [START_REF] Sala | Ergodicity Breaking Arising from Hilbert Space Fragmentation in Dipole-Conserving Hamiltonians[END_REF][START_REF] Khemani | Localization from Hilbert space shattering: From theory to physical realizations[END_REF][START_REF] Moudgalya | Quantum manybody scars and Hilbert space fragmentation: a review of exact results[END_REF][START_REF] Moudgalya | Hilbert Space Fragmentation and Commutant Algebras[END_REF]. Dans ce cas, la perturbation est appliquée aux états bloqués (jammed states), une caractéristique frappante trouvée dans les modèles fragmentés [START_REF] Moudgalya | Thermalization and Its Absence within Krylov Subspaces of a Constrained Hamiltonian[END_REF][START_REF] Yang | Hilbert-Space Fragmentation from Strict Confinement[END_REF][START_REF] Turner | Weak ergodicity breaking from quantum many-body scars[END_REF][START_REF] Joseph | Exact solution of the Floquet-PXP cellular automaton[END_REF][START_REF] Bastianello | Fragmentation and emergent integrable transport in the weakly tilted ising chain[END_REF][START_REF] Gautam | Conservation laws and integrability of a one-dimensional model of diffusing dimers[END_REF], où la dynamique est entravée par la densité de particules étant si grande qu'elles ne peuvent pas se déplacer. Enfin, la troisième classe de modèles présentant des MELP sont ceux avec des lois de conservation semi-locales [START_REF] Fagotti | Global quenches after localized perturbations[END_REF], qui ont été liées à l'ordre topologique protégé par symétrie [START_REF] Fagotti | Nonequilibrium symmetry-protected topological order: emergence of semilocal Gibbs ensembles[END_REF]. L'occurrence exotique de MELP est pertinente d'un point de vue fondamental : en plus d'aller au-delà de la GHD, elle est toujours le symptôme d'un phénomène physique captivant, comme on peut le voir dans les trois exemples ci-dessus. De plus, comme nous le verrons, elle offre également un cadre pratique pour faire émerger naturellement des structures d'intrication quantique très non triviales à partir de l'évolution temporelle locale. Précisons que dans notre analyse, le terme perturbation locale se réfère exclusivement aux perturbations appliquées à l'état : les perturbations locales sur le Hamiltonien peuvent également avoir des effets macroscopiques [START_REF] Torres-Herrera | Local quenches with global effects in interacting quantum systems[END_REF], mais c'est un phénomène distinct qui ne sera pas considéré ici.

Dans cette thèse, nous abordons les deux limitations de la GHD mentionnées précédemment.

1. En nous spécialisant dans les théories sans interactions, nous développons un cadre théorique pour inclure les corrélations connectées dans le cadre de l'hydrodynamique, répondant ainsi à la question de savoir jusqu'à quel point la localité est suffisante pour qu'une corrélation soit décrite par la GHD. Une approche prometteuse consiste à introduire une dépendance temporelle dans la distance entre les spins, ce qui permet de considérer simultanément la limite à temps long et la limite à grande distance. Cette approche permet également une comparaison fiable entre les prédictions analytiques et les résultats numériques lors de l'étude de la décroissance des corrélations en fonction de la distance.

En tant que résultat secondaire, nous discutons également la gaussification dans les protocoles de partitionnement. La gaussification est un phénomène qui se produit assez généralement dans les systèmes non interactifs et prédit qu'un état devient localement indiscernable d'un état gaussien dans la limite de temps long. La gaussification a été principalement abordée pour les états évoluant sous l'action d'un Hamiltonien à courte portée invariant par translation, avec une longueur de corrélation initialement finie, qui se relaxent vers un GGE dans la limite de temps long [START_REF] Gluza | Equilibration towards generalized Gibbs ensembles in non-interacting theories[END_REF][START_REF] Murthy | Relaxation to Gaussian and generalized Gibbs states in systems of particles with quadratic Hamiltonians[END_REF]. Cela exclut de l'image tout protocole de partitionnement, pour lequel la borne de Lieb-Robinson [START_REF] Lieb | The finite group velocity of quantum spin systems[END_REF] empêche la relaxation globale. Nous montrons la gaussification pour les protocoles de partitionnement, discutant également à quel point l'observable doit être locale pour que le phénomène se produise.

2. Ensuite, nous nous concentrons sur les MELP. Tout d'abord, nous approfondissons la description du phénomène des états bloqués commencée dans la référence [START_REF] Bidzhiev | Macroscopic effects of localized measurements in jammed states of quantum spin chains[END_REF]. Jusqu'à présent, cet effet a été signalé dans une classe d'états bloqués permettant une analyse analytique exacte, mais qui ne sont cependant pas assez simples pour nous permettre de comprendre clairement le phénomène. Nos résultats sont avant tout une solution à ce problème : nous étudions cet effet dans une configuration qui se distingue par sa clarté. Ensuite, nous discutons une nouvelle classe de modèles dans lesquels les MELP sont observés. En particulier, nous considérons des chaînes quantiques de spins dont le Hamiltonien possède un état propre excité séparable qui n'est pas lié à une quelconque loi de conservation. Nous montrons que, en général, non seulement une seule mesure projective d'un seul spin dans l'état propre trivial a des effets macroscopiques, mais elle provoque même la croissance naturelle d'un état macroscopiquement intriqué, qui est une forme spéciale d'intrication du même type que celui décrit dans le paradoxe du chat de Schrödinger [START_REF] Fröwis | Macroscopic quantum states: Measures, fragility, and implementations[END_REF].

Remarquablement, dans les deux cas de MELP décrits ci-dessus (dans les états bloqués et dans les états produits triviaux non liés aux symétries), l'état initial est un état propre très excité du Hamiltonien avec de faibles propriétés d'intrication. Pour les Hamiltoniens génériques, ces états représentent des cicatrices quantiques [START_REF] Serbyn | Quantum many-body scars and weak breaking of ergodicity[END_REF]. La dernière partie de cette thèse aborde certaines questions naturelles découlant de cette observation, telles que pour quel modèle devrions-nous nous attendre à des cicatrices quantiques et combien de cicatrices devrions-nous attendre.

La conjecture sur le comportement des états propres dans les systèmes quantiques génériques est connue sous le nom d'hypothèse de thermalisation des états propres (ETH, de eigenstate thermalization hypothesis), formulée pour expliquer le processus de thermalisation. Elle prédit que les états propres individuels des systèmes quantiques génériques agissent comme des ensembles thermiques, et donc que la relaxation du système ne dépend pas fortement des conditions initiales [START_REF] Deutsch | Quantum statistical mechanics in a closed system[END_REF][START_REF] Srednicki | Chaos and quantum thermalization[END_REF]. Les cicatrices quantiques sont des états propres qui, étant fortement non thermiques avec une faible intrication bipartite, violent l'ETH. Cependant, cette violation est faible, car les cicatrices quantiques représentent une portion négligeable de l'espace de Hilbert et coexistent au sein d'une collection beaucoup plus importante d'états propres thermiques. Les cicatrices quantiques ont récemment attiré beaucoup d'attention [START_REF] Moudgalya | Quantum manybody scars and Hilbert space fragmentation: a review of exact results[END_REF][START_REF] Dooley | Robust quantum sensing in strongly interacting systems with many-body scars[END_REF][START_REF] Zhang | Many-body Hilbert space scarring on a superconducting processor[END_REF], également en relation avec leurs propriétés d'intrication macroscopique [START_REF] Desaules | Extensive multipartite entanglement from su(2) quantum many-body scars[END_REF]. L'intrication des états excités a été largement étudiée , ainsi que les propriétés spéciales des états à faible intrication [START_REF] Castilho Alcaraz | Entanglement of Low-Energy Excitations in Conformal Field Theory[END_REF][START_REF] Ibáñez Berganza | Entanglement of excited states in critical spin chains[END_REF][START_REF] Storms | Entanglement in ground and excited states of gapped free-fermion systems and their relationship with Fermi surface and thermodynamic equilibrium properties[END_REF][START_REF] Herwerth | Excited states in spin chains from conformal blocks[END_REF][START_REF] Jafarizadeh | Bipartite entanglement entropy of the excited states of free fermions and harmonic oscillators[END_REF][START_REF] Zhang | Corrections to universal Rényi entropy in quasiparticle excited states of quantum chains[END_REF][START_REF] Zhang | Rajabpour. Entanglement of magnon excitations in spin chains[END_REF]. Hastings a démontré que, si le Hamiltonien est non-critique et non-dégénéré, alors, en considérant l'état fondamental, l'entropie de n'importe quel bloc de spins dépend de manière sous-dominante de la longueur du bloc [START_REF] Hastings | An area law for one-dimensional quantum systems[END_REF]. Cela est connu sous le nom de loi de l'aire et s'applique également aux systèmes en dimensions supérieures [START_REF] Eisert | Colloquium: Area laws for the entanglement entropy[END_REF]. En 1D, la loi de l'aire ne s'applique généralement plus aux transitions de phase quantiques, où l'entropie d'un bloc de spins peut développer une dépendance logarithmique en fonction de la longueur du bloc [START_REF] Calabrese | Entanglement entropy and conformal field theory[END_REF]. Les affirmations concernant les états excités sont cependant moins précises. En général, en accord avec l'ETH, on s'attend à ce que les états excités suivent une loi de volume [START_REF] Hayden | Aspects of Generic Entanglement[END_REF], ce qui signifie que l'entropie d'un bloc de spins est proportionnelle à la longueur du bloc. Cependant, cela n'a pas à être vrai pour tous les états excités. Par exemple, les systèmes intégrables présentent une infinité d'états excités avec des entropies sous-extensives et des énergies qui sont beaucoup plus grandes que celle de l'état fondamental [START_REF] Alba | Entanglement entropy of excited states[END_REF][START_REF] Beugeling | Global characteristics of all eigenstates of local many-body Hamiltonians: participation ratio and entanglement entropy[END_REF]. Il existe un argument heuristique simple pour comprendre cela. Par définition, les systèmes intégrables ont un nombre macroscopique de charges conservées avec des densités (quasi) locales. On s'attend à ce que l'entropie de leur état fondamental croisse au plus de façon logarithmique, alors que cet état fondamental est également un état propre du Hamiltonien original. Donc, en supposant qu'une fraction finie des états fondamentaux ne coïncident pas, ces états représentent un nombre macroscopique d'états avec des entropies sous-extensives. Une question pertinente, même dans les systèmes intégrables, est la suivante : combien d'états excités localement différents vérifient la loi de l'aire ? Cette question a été soit négligée, soit abordée de manière incidente et/ou peu précise, et elle est quelque peu mal définie en général, car la réponse pourrait dépendre de la base choisie pour diagonaliser le Hamiltonien.

Nous nous spécialisons dans les modèles non interactifs, qui viennent avec un choix naturel de base. Ce sont parmi les rares systèmes où le comportement asymptotique des entropies peut être calculé analytiquement, et ils ont déjà été exploités pour quantifier l'image résumée ci-dessus [START_REF] Alba | Entanglement entropy of excited states[END_REF][START_REF] Jafarizadeh | Bipartite entanglement entropy of the excited states of free fermions and harmonic oscillators[END_REF][START_REF] Ares | Excited state entanglement in homogeneous fermionic chains[END_REF]. En particulier, il a été mon-tré qu'il existe une infinité d'états excités où l'entropie dépend logarithmiquement de la taille du sous-système. Nous montrons que seul un ensemble très limité d'états excités localement distincts semble satisfaire la loi de l'aire et que certains exemples remarquables, comme le modèle d'Ising critique, n'exhibent pas du tout de tels états. Remarquablement, ce résultat s'applique à n'importe quel Hamiltonien non interactif invariant par translation, et il peut donc servir de base à toute considération ultérieure sur l'intrication bipartite dans les états excités des chaînes quantiques de spins.

Les résultats originaux obtenus dans cette thèse sont présentés comme suit. Dans le chapitre 4, basé sur [START_REF] Bocini | Connected correlations in partitioning protocols: A case study and beyond[END_REF], nous discutons de la notion de localité derrière la GHD dans les modèles non interactifs. En particulier, nous examinons ce qui se produit lorsque nous relâchons l'hypothèse que notre observable est strictement locale, c'està-dire que son support ne croît pas avec le temps. Pour y parvenir, nous étudions comment les corrélations connectées tendent vers zéro avec la distance des opérateurs dans une classe d'états initiaux connus sous le nom de protocoles de partitionnement. Dans le chapitre 5, basé sur [START_REF] Zadnik | Measurement catastrophe and ballistic spread of charge density with vanishing current[END_REF], nous examinons l'une des classes de modèles dans lesquels des perturbations locales peuvent entraîner des effets macroscopiques : les modèles présentant un phénomène de blocage quantique. La simplicité du protocole considéré, combinée à la riche structure de l'espace de Hilbert du modèle intégrable interactif appelé dual folded XXZ, permet une analyse analytique et numérique exacte de quantités importantes, telles que la magnétisation locale et l'intrication spin-spin. Dans le chapitre 6, basé sur [START_REF] Bocini | Growing Schrödinger's cat states by local unitary time evolution of product states[END_REF], nous étudions les effets d'une perturbation locale sur un état propre avec intrication faible d'une classe spécifique de Hamiltoniens. Bien que les interactions dans le modèle soient locales, nous montrons que l'état évolue généralement vers un état macroscopiquement intriqué, fournissant une nouvelle classe de configurations dans lesquelles des perturbations locales peuvent avoir des effets macroscopiques. Nous identifions également les conditions dans lesquelles un tel état est un chat de Schrödinger. Notre analyse ne révèle pas de conditions particulières pour que l'état intriqué se développe, à condition que l'état propre trivial ne minimise/maximise pas une loi de conservation locale. Nous considérons ici également des exemples de modèles interactifs, qu'ils soient intégrables ou génériques. Dans le chapitre 7, basé sur [START_REF] Bocini | No eigenstate of the critical transversefield Ising chain satisfies the area law[END_REF], nous effectuons une étude exhaustive de l'intrication bipartite dans les états propres standard des chaînes de spin quantiques non interactives invariantes par translation. En particulier, nous identifions une classe de modèles ne présentant que deux états obéissant à une loi de surface et pouvant être distingués dans la limite thermodynamique, tandis que tous les autres modèles, y compris des exemples notables tels que la chaîne critique d'Ising, n'en ont pas.

  )

  ) implying θ(-p) = -θ(p), ∀θ(p) ∈ (-π, π), and φ(-p) = φ(p), ∀φ(p) ∈ [0, π]. Note that the definition of φ(p) is ambiguous for p such that θ(p) ∈ {0, π}, i.e. when f 1 (p) = f 2 (p) = 0, so in this case we set φ(p) = 0 by convention. There is also an ambiguity in the definition of the angle θ(p) for p such that f 1 (p) = f 2 (p) = f 3 (p) = 0, in which case we set by convention θ(p) = φ(p) = 0.

Chapter 3 .

 3 Free-fermions techniques EXAMPLE. Let us consider again the Hamiltonian (3.11) of the previous example. From Eq. (3.19), its symbol reads Ĥ(p) = 4J 2 sin(p)I 2 -2J 1 sin(p)σ x -2J 1 (hcos(p))σ y , (3.27) which leads to the dispersion relation (p) = 4J 2 sin(p) + 2|J 1 | » 1 + h 2 -2h cos(p) . (3.28) We report the dispersion relation in Fig. 3.1, highlighting the values of the momenta (3.25) that give the correct eigenvalues of H ± .

Figure 3 . 1 -

 31 Figure 3.1 -Dispersion relation (3.28) for the Hamiltonian (3.11) of the examples reported in the text, with J 1 = 1, J 2 = 0.5, h = 1.5 and L = 8. We highlight the quantized momenta that give the right eigenvalues of H ± for the Ramond (R) and Neveu-Schwartz (NS) fermionic sectors.

Chapter 3 .

 3 Free-fermions techniques 3.7.4 . Correlation matrix for momentum-basis eigenstates Let us consider the eigenstate |{p} of the momentum basis. It can be shown that in this state b

  Γphysx (p) := where x ∈ Z/2 and p ∈ (-π, π], with inversion relation x ∈ Z/2 and z ∈ 2(Z + x).The physical inhomogeneous symbol satisfiesΓphys x (p + π) = (-1) 2x Γphys x (p) (3.75)and it does not reduce to the homogeneous one, obtained from Eq. (3.70), in the case Γ is block-Toeplitz. Indeed, if we apply the definition (3.73) of the physical inhomogeneous symbol to a block-Toeplitz matrix, we get Γphysx (p) = Γ(p)+(-1) 2x Γ(p+π) 2, where Γ(p) is the homogeneous symbol of the correlation matrix. However, the inversion relation(3.74) still holds if we replace the inhomogeneous physical symbol with the more general symbol Γphys x (p) + Γgauge x (p), where Γgauge x

  ) θ(p) is the Bogoliubov angle defined in Eq. (3.19), and the fields ρ phys x (p) and ψ phys x 2 e 2ixp b † (kp)b(k + p) , ψ phys x (k) := -2 +π -π dp 2π e 2ixp b(p + k)b(pk) .
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 62 Auxiliary-field partitioning protocol Eqs. (4.32) and (4.33) provide an integral representation of the correlation-matrix element Γ 2m+i,2n+j ≡ (Γ m-n m+n 2
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 41 Figure 4.1 -Spin-spin connected correlation for the partitioning protocol between two thermal states. We set J = 1/2, h = 2, and inverse temperatures 0 and 0.9 on the left and right halves of the chain respectively. On the left we report both the numerical and the analytical prediction. On the right we report the absolute value of the difference between the two ∆S z m,n := |analytical S z m,n (t) -numerical S z m,n (t)|, re-scaled by the behavior of the leading order. A reference curve is plotted to help the reader identify how fast it goes to zero. The positions (m, n) that we use are (ζt + ct α , ζtct α ), rounded to the closest integer. Top: ζ = 1/3, c = 3, α = 1/3. Bottom: ζ = -1/3, c = 2, α = 3/4.

  ) where ψ R (p) enters the definition of the partitioning protocol (4.30), (p) and θ(p) are the dispersion relation and the Bogoliubov angle respectively, s ζ (p) := 2ζp -(2p),
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 51 Figure 5.1 -Rules and example of mapping to quasi-particles. The quasi-particles are represented as triangles, which helps to visualize time evolution. Yellow (resp. blue) triangles represent quasi-particles of species 1 (resp. 0).

  3) simply becomes |n, b ↔ |n + 1, b .

1 4 L/ 2 = 2 . 5 .

 14225 -L/2+1 σ x σ x +1 + σ y σ y +1 via the Jordan-Wigner transformation (3.2), where Dirac and Majorana fermions are linked by c † = a 2 -1 +ia 2 Chapter Local perturbations in a jammed state

  and similar notations for the other cases. The equality holds up to O(1/t) corrections that are computed in Appendix 5.A.
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 52 Figure 5.2 -Local-magnetization profile as a function of the ballistic ray coordinate/t. The initial jammed state (before the spin flip is) given by the infinite repetition of the segment ↑↑↓, for which x( ) ∼ 2 /3. The blue line (barely visible, given the good match with numerics) is the analytic asymptotic result, reported only for those spins with a non-trivial asymptotic profile. The orange and green points correspond to the numerical simulation.
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 54 Figure 5.4 -Magnetization profile for the initial state described in Eq. (5.20) in the ray coordinate x/t. Here m = 9 and M = 10. Orange and green points correspond to numerical simulation. The spins at sites 2m -3 and 2m + 2M -3 are the only ones for which the z-components of the magnetization are not asymptotically equal to ±1. The blue lines represent their analytic trajectories.
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 55 Figure5.5 -Spin-spin entanglement for an initial state with m = 12, M = 9 at different times, re-scaled by log(t)/(t)2 . The numbers on both axes refer to spin indices: the element (i, j) of the plot characterizes the entanglement between the spins at the sites i and j. The plot is symmetric w.r.t. the bisector, i.e. the line containing the points (i, i), since the entanglement between the spins i and j equals that between the spins j and i. The blue (orange) lines refer to the spin 2m -1 (resp. 2m + 2M -5), i.e. the one close to the start (resp. end) of the domain wall of spins up. They delimit the nonzero entanglement regions. Panels (a), (b), and (c) show the spread of the entanglement before the domain of spins up is reached by the light-cone, during the spread of the entanglement through the domain, and after the edge of the light-cone has passed through the domain, respectively.

  5.A . Computing the local magnetization5.A.1 . Exact local magnetization First, we compute the diagonal matrix elements n, b|σ z |n, b , i.e. the local magnetization of the -th spin in the state |n, b , restricting to the case / ∈ {-1, 0}. We remind the definition (5.15): x( ) := ® 1 + (number of spins ↑ between sites 0 and ) , if > 0 -(number of spins ↑ between sites and -1) , if < -1 , (5.23)
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 56 Figure 5.6 -Deformation of the contours of integration in the complex plane (real axis is horizontal, imaginary axis is vertical). Example of deformation for each of the three regimes defined by x/t (from top to bottom, x/t equals 1.1, 0.7, -1.1). The blue-shaded region represents the region where Re(S ζ (w)) > 0. The green (resp. orange) curves represent C 1 (resp. C 2 ) before the deformation and C 1 (resp. C 2 ) after the deformation.
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 61 Figure 6.1 -Cartoon of the protocol. The state with a single spin down time evolves into a state that can be macroscopically different from the pre-measurement state.The scissors represent the fact that we ignore the region outside Ω (t).
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 162 Figure 6.2 -Time evolution of |Ψ θ (t) under Hamiltonian H 1 with J= 2.8, γ = 1, w = ∆ = D z = h z = 0. Top left: ∆S z (θ) = ⇑ |S z | ⇑ -Ψ θ (t)|S z |Ψ θ (t) . Top right: macroscopic quantumness N
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 63 Figure 6.3 -The same as in the top plots of Fig. 6.2 for Hamiltonian H 1 with J = 1, γ = 0.5, w = 0.7, ∆ = 0, D z = 0.6, h z = 0.
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 9675 Eigenstates' entropy where H ± = p∈(-π,π]|e iLp =±1 {b p , b † p } are Bogoliubov fermions, whose definition varies from one Hamiltonian to the other, and (p) is the dispersion relation of the model.

  = | cos(p)| , cos(θ(p)) = sign(-cos(p)) .(7.13) Then, from Eq.(3.60) we get that the symbol of the correlation matrix for the eigenstate |{p} of the momentum basis isΓ(p) = (χ {p} (p) + χ {p} (-p) -1) cos(θ(p))σ y + (χ {p} (p) -χ {p} (-p))I 2 ,(7.14)where χ {p} (p) is the indicator function of the set {p} and we have already plugged in the values corresponding to the XX chain. This symbol is not particularly convenient for our purpose because it contains the discontinuous function cos(θ(p)). A way to fix that is to change the representation of the momentum basis that we are using.In particular, we introduce a new set of Dirac fermions {b p , b p † } defined in such a way thatb p = b p , if cos(θ(p)) = 1 b † -p , if cos(θ(p)) = -1 (7.15) and a new reference state |∅ = Ä p| cos(θ(p))=-1 b † p ä |∅ . Since cos(θ(p)) = -1 ⇔ cos(θ(-p)) = -1, we see that |∅ is annihilated by all the operators b p . We introduce the notation |{p} := Ä p∈{p} b p † ä

2 e i p 2 0 å( 7

 07 .[START_REF] Bertini | Universal broadening of the light cone in low-temperature transport[END_REF]) for p = 0, and Γ(p) = (2χ {p} (0) -1)σ y (7.29)

7. 5 .

 5 X-X model 101 half-chain von Neumann entropy scales for the eigenstate, since the correction with respect to the original correlation matrix is bounded by log 2. Indeed, consider 1+ν 2 log 1+ν 2 , from the expression of the von Neumann entropy (3.64); a correction of ν of the order 1/L gives a contribution of log 2

7. 6 . Numerical analysis 103 Figure 7 . 1 -

 610371 Figure 7.1 -Entropy of all the momentum eigenstates of CI as a function of their energy for L = 16.

Figure 7 .

 7 Figure 7.2 -A single run of simulated annealing converging to the ground state of CI in the Neveu-Schwarz sector with L = 200. In yellow the particle momenta: in each horizontal slice we report a point for each of the L possible momenta and we color it in yellow if the state at that iteration contains it, in black if it does not.
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 75 Figure 7.5 -Annealing history of several runs of the simulated annealing algorithm for L = 200 and s ∈ [0.5, 1.5]. Top-left: CI in Ramond; top-right: XX in Neveu-Schwartz; bottom: X-X in Neveu-Schwartz.
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 761107 Figure 7.6 -Occupation numbers during a simulated annealing in a chain of length L = 200. Assuming that the state at a given iteration is described by the set of momenta {p}, the color code is: yellow if k ∈ {p}, black if k / ∈ {p}. Top-left: CI in Ramond; top-right: XX in Neveu-Schwartz; bottom: X-X in Neveu-Schwartz.

•

  Ĥ(p) = -cos(p)σ y , i.e. the XX model, whose θ(p) = 1 has no discontinuity; • Ĥ(p) = sin(p)σ x , i.e. the X-X model, whose θ(p) = π 2 sign(sin(p)) has a π discontinuity both in p = 0 and p = π; • Ĥ(p) = 2(cos(p) + 1)σ y -2 sin(p)σ x , i.e. the critical Ising model with negative magnetic field, whose θ(p) = arctan 2(-sin(p), cos(p) + 1) is continuous in p = 0 and has a π jump in p = π; • Ĥ(p) = 2(cos(p) -1)σ y -2 sin(p)σ x , i.e. the critical Ising model (with positive magnetic field), which has θ(p) = arctan 2(-sin(p), cos(p) -1). This θ(p) has a π jump in p = 0 and a 2π jump in p = π (we could have chosen an element of the class without discontinuity in p = π, but the Ising model is more familiar).

  

  Then, using the composition rule of inhomogeneous symbols (3.79), the properties of the Moyal product (3.81), and the explicit expression of Γx (p) (3.90), we get

	i	∂Γ x,t (p) ∂t	= e -i θ(p) 2 σ

.96) By applying the definition of inhomogeneous symbol we get i ∂ Γx,t (p) ∂t = ( HΓ) x,t (p) -( ΓH) x,t (p) . (3.97) 3.11. Non-interacting time evolution z {{ (p)σ y , (4πρ x,t;e (p) -1) σ y + 4πρ x,t;o (p)I 2 + + Re ψ x,t (p)σ z -Im ψ x,t (p)σ x }} e i θ(p) 2 σ z , (3.98)

  x 2 ;oo (p 1 , p 2 )e 00 + 4ξ phys x 1 ,x 2 ;eo (p 1 , p 2 )e 20 + 4ξ phys x 1 ,x 2 ;oe (p 1 , p 2 )e 02 + + 4ξ phys x 1 ,x 2 ;ee (p 1 , p 2 )e 22 + 2 Re(ω phys x 1 ,x 2 (p 1 , p 2 ))e 11 + 2 Re(ω phys x 1 ,x 2 (p 1 , p 2 ))e 33 + -2 Im(ω phys x 1 ,x 2 (p 1 , p 2 ))e 13 + 2 Im(ω phys x 1 ,x 2 (p 1 , p 2 ))e 31 , (4.8)

Table 5 .

 5 1 -P ↓↓ ( , t) depends only on the initial configuration of four spins including those in positions , + 1. The other two spins are those in positions + 2 and + 3

For generic models, multiple root densities might be needed. For the sake of this qualitative discussion, we assume that one is enough.

We point out that, in our convention, the matrix indices can be negative. This will be convenient for the thermodynamic limit.

The Dirac fermions can be defined as f † = a 2l-1 +ia 2l 2 and f = a 2l-1 -ia 2l

z∈2(Z+x) e -izp Γ z x ,(3.73)

The other outcome of the measurement, namely the statesin(θ) |⇑ + cos(θ) |⇑↓⇑ , with probability sin

(θ), would be equivalent for our purposes, but we focus for simplicity on the first one.

The necessity of this condition can be understood in the dual XXZ model in which, for |h z | large enough, |⇑ becomes the ground state (or the maximum energy state). By applying the Kramers-Wannier duality (6.5), the system is mapped into the time evolution of a domain wall in the XXZ model, where the magnetic field h z plays the role of the anisotropy. As proven in Ref.[START_REF] Mossel | Relaxation dynamics in the gapped XXZ spin-1/2 chain[END_REF], the domain wall does not spread when the anisotropy is larger than a critical value, which is equivalent to say that the perturbation remains localized when |h z | is large enough to move |⇑ at the boundaries of the energy spectrum.
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6.A . Numerical methods

6.A.1 . Numerical analysis of the quantumness

We recall that the quantumness of our (approximately) pure state can be computed maximizing the variance over all extensive operators as described in Section 2.4. In fact, for the sake of simplicity, we follow the approach of Refs [START_REF] Hyllus | Fisher information and multiparticle entanglement[END_REF][START_REF] Tóth | Multipartite entanglement and high-precision metrology[END_REF][START_REF] Fröwis | Measures of macroscopicity for quantum spin systems[END_REF] and restrict ourselves to examining a necessary condition. Specifically, we investigate the quantumness (2.20) for pure states, but instead of maximizing over all possible extensive observables, we consider only those whose densities have support on a single site, i.e. we consider the class of operators

We denote by N

eff the maximization restricted to the observables with single-site density as introduced above. N eff was interpreted as an effective size of the macroscopic quantum state, thus N [START_REF] Faddeev | Algebraic Aspects of Bethe Ansatz[END_REF] eff is a lower bound for the effective size.

To proceed, we introduce the covariance matrix

where n, m ∈ {-L 2 + 1, • • • , L 2 } and α, β ∈ {x, y, z}. This is a 3L × 3L matrix, that allows us to write

We have to maximize the quantity above with the constraint

}, which is done introducing L Lagrange multipliers λ i . Setting to zero the gradient of the Lagrangian function we get the conditions β∈{x,y,z}

for all i ∈ {-L 2 + 1, ..., L 2 }. We can recast those conditions in the matrix form

where D is a diagonal matrix containing the Lagrange multipliers and v is the 3Lcomponent vector obtained concatenating all the n i . We solve Eq. (6.18) numerically starting with a random 3L-component vector v (0) and iterating the following steps until convergence:

1. Apply the covariance matrix w (n) = K v (n) .

7.A . Additional numerical evidence

In this section we provide additional numerical data in support of the picture drawn in the main text.

We recall that our goal is to find the minima of the entropy in the XX, critical Ising, and strongly anisotropic XY model. The full entropy landscapes in a small chain are reported in Fig 7 .3. In Fig. 7.4 we also show a special combination of entropies c ef f := (S 1 ( L 2 )-S 1 ( L 4 )) 6 log 2 (analogous combinations have been considered, e.g. in Ref. [START_REF] Andreas | Spreading of correlations and entanglement after a quench in the one-dimensional Bose-Hubbard model[END_REF]) that remains finite in low-entangled excited states. Specifically, it asymptotically gives 0 in the excited states minimizing gapped operators with quasilocal densities; it instead gives the central charge in the gapless case whenever it can be described by a conformal field theory. The low-entangled excited states that differ from the aforementioned states in just a finite number of excitations have generally higher c ef f , as one can deduce from Refs [START_REF] Castilho Alcaraz | Entanglement of Low-Energy Excitations in Conformal Field Theory[END_REF][START_REF] Ibáñez Berganza | Entanglement of excited states in critical spin chains[END_REF] for the states with a CFT description. Indeed we see that in XX only a finite number of excited states exhibit c ef f = 0 whereas all the others have c ef f 1. 

)) 6 log 2 for each eigenstate of a spin chain with L = 16 in CI (top-left), XX (top-right), X-X (bottom). Circles (crosses) correspond to eigenstates belonging to the Ramond (Neveu-Schwartz) sector. Fig. 7.5 shows the variation of the entropy during several runs of simulated annealing. As the number of iterations increases, the entropy approaches a minimum. The algorithm does not always converge to what we have identified as the absolute minimum: when it does not, we have checked that it gets stuck in a configuration with few domain walls, whose entropy is well described in the thermodynamic limit and grows logarithmically with the system size. Fig. 7.6 reports the occupation number of all momenta during single runs of simulated annealing. Here, we have chosen the ground state as the reference state. In all the three models the ground state is critical and its entropy grows logarithmically with the system size. We see that the occupation numbers are completely uncorrelated as long as s, defined in Eq. (7.43), is large enough, then they start forming clusters as s decreases. In the specific run, the final state in CI belongs to the ground-state eigenspace. The final state in XX is the one with all spins aligned along the z direction: the Fermi sea appearing in the panel exactly compensates the Fermi sea of the ground state. The final state in X-X is the maximally excited state.

7.B . Proof of equivalence between non-interacting models

Ref. [START_REF] Bravyi | Lieb-robinson bounds and the generation of correlations and topological quantum order[END_REF] showed that a local operator that time evolves for a finite time under a local Hamiltonian can still be approximated by another local operator with an error