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ABSTRACT

THERE is a growing research interest in Autonomous Underwater Vehicles (AUV), due to

the need for increasing our knowledge about the deep sea and understanding the effects

the human way of life has on it. This need has pushed the development of new technologies

to design more efficient and more autonomous underwater vehicles. Autonomy refers, in the

context of this thesis, to the “decisional autonomy”, i.e. the capability of taking decisions, in

uncertain, varying and unknown environments.

A more recent concern in AUV area is to consider a fleet of vehicles (AUV, ASV, etc). Indeed,

multiple vehicles with heterogeneous capabilities have several advantages over a single vehicle

system, and in particular the potential to accomplish tasks faster and better than a single vehicle.

Underwater target localization using several AUVs (Autonomous Underwater Vehicles) is a

challenging issue. A systematic and exhaustive coverage strategy is not efficient in term of ex-

ploration time: it can be improved by making the AUVs share their information and cooperate

to optimize their motions. The contribution of this thesis is the definition of an architecture that

integrates such a strategy that adapts each vehicle motions according to its and others’ sensory

information. Communication points are required to make underwater vehicles exchange infor-

mation: for that purpose the system involves one ASV (Autonomous Surface Vehicle), that helps

the AUVs re-localize and exchange data, and two AUVs that adapt their strategy according to

gathered information, while satisfying the associated communication constraints. Each AUV is

endowed with a sensor that estimates its distance with respect to targets, and cooperates with

others to explore an area with the help of an ASV. To provide the required autonomy to these ve-

hicles, we build upon an existing system (T-REX) with additional components, which provides

an embedded planning and execution control framework. Simulation results are carried out to

evaluate the proposed architecture and adaptive exploration strategy.
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1
INTRODUCTION

1.1 MOTIVATIONS AND CONTRIBUTIONS

In general, most of robotic systems such as spacecraft, rovers, or underwater vehicles execute

predefined commands that are sequenced and monitored by remote operators. But communica-

tions between the surface and a spacecraft or underwater vehicles, are highly constrained, and

affect the efficiency of the mission if the operators are in the control loop: to improve this effi-

ciency, researchers embed decisional autonomy to plan the robot activities, control the execution

of goals and monitor the state of the system.

In this thesis, we focussed on underwater vehicles, whose objective is to explore large under-

sea areas. The problem of exploring an unknown area is a central issue in mobile robotics. In

general, the coverage of the entire terrain is required, but this is not practical due to resource costs

(e.g. energy, execution time of the mission). This resource constraint creates an important issue

in designing an exploration strategy for an underwater vehicle; how does the underwater vehicle

decide where to explore next? In this thesis we present an adaptive exploration strategy based

on sensed data. In contrast to several exploration strategies that are non adaptive [Rahimi04],

our approach tries to modify the trajectory of the vehicle by maximizing the information gain to

localize the maximal number of marine targets.

To improve the capabilities of one underwater vehicle, we choose to use several underwater

vehicles. Nowadays, there is an increase in the use of multiple autonomous vehicles: several

vehicles bring robustness, allow for faster and more efficient missions, and achieve missions

that intrinsically require the use of a fleet of vehicles. When it comes to information gathering

missions (e.g. exploration, surveillance, target detection and localization) synergies occur when

robots effectively communicate to merge information gathered on the environment and to coor-

dinate their observation plans. In the robotics community, several studies have been done in this

direction and there is an extensive literature on communicating robot fleets, e.g. [Stenz04].

In our context, we are interested in exploration scenarios where a fleet of vehicles survey an

unknown area and try to localize targets (plume, hot-spot, mapping, etc) as fast as possible. The

acoustic nature of the water greatly restricts the communication range and bandwidth [Meyer06]:

communication between two vehicles can only be reliably established when both are inside a

vertical acoustic cone with respect to each other. Using an ASV (Autonomous Surface Vehicle)

as a communication hub reduces the AUVs energy consumption and the overall mission duration,

3



4 Chapter 1. Introduction

as the AUVs do not go to the surface to exchange data. Furthermore, the ASV can correct the

AUV position drift that eventually occurs.

So each AUV gathers information to locate these targets, while the ASV acts as a com-

munication hub between all AUVs and refines their localization estimate. Every AUV has

autonomous control abilities that enables it to achieve a given pre-planned sequence of tasks and

motions. Rendezvous with the ASV are required to exchange data between the AUVs – and for

the operator to supervise the mission. From an operational point of view, an AUV cannot be let

freewheeling under the surface, depending entirely on the data it gathers to define its motions.

In this context, information-driven strategies have to be integrated within a pre-planned scheme

that contains communication rendezvous, i.e. spatio-temporal constraints.

Our thesis aims at defining an architecture that allows each vehicle to direct itself according

to the collected information and satisfy pre-defined spatio-temporal constraints. Our contribu-

tions can be summarized as follows :

– Introduction of a data driven approach that allows each vehicle to take into account the

measured data during the exploration and to reason about this data for more precise local-

ization of the target.

– Integration of this approach with a task planner and an execution controller that takes into

account temporal constraints for each vehicle.

1.2 THESIS OVERVIEW

This document is organized along the following chapters:

Chapter 2 is an introduction to the different types of underwater vehicles, the types of mission

that they can achieve and their various levels of autonomy. We discuss different constraints

related to the water environment, present existing work on exploration strategies, and end the

chapter by depicting the objectives of our work and our overall approach.

Chapter 3 introduces the models of the target and sensors we consider, and the way they are

exploited to build probabilistic maps of the target locations. Our models lead to the definition of

two types of sensors: range-only and bearing-only sensors. Illustrations of map building using

one or two communicating AUVs are provided.

Chapter 4 introduces the adaptive strategies: according to the built map, the vehicles choose

the next cell to explore. Two adaptive strategies are defined, and illustrated with a single AUV

and with two communicating AUVs.

Chapter 5 presents the implemented system. Our algorithms are integrated within the T-ReX
architecture that deals with time constraints, to which we have added two components to manage

the map building and the communications between the AUVs.

Chapter 6 provides various simulation results for different configurations of target mapping

missions. The integration of our overall architecture with the hardware-in-the-loop simulator

developed at Ifremer is also presented.
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Finally, we make a general conclusion that shows the panorama of our work and possible

future extensions, and appendix A summarises our work in french.

1.3 PUBLICATIONS

The following publications are related to this work:

. Cooperative-Adaptive Algorithms for Targets Localization in Underwater Environment -

A. Belbachir, F. Ingrand, S. Lacroix, M. Perrier. International Conference on Autonomous

Underwater Vehicle IEEE / Oceanic Engineering Society (AUV2010), Monterey, CA,

USA, September 1-3, 2010.

. Localizing Underwater Targets using a Cooperative AUV Architecture - A. Belbachir,

F. Ingrand, S.Lacroix. International Conference on Machine and Web Intelligence

(ICMWI’2010), USTHB University, Algiers, October 3 - 5, 2010.

. A Cooperative Architecture for Target Localization with Underwater Vehicles - A. Bel-

bachir, F. Ingrand, S.Lacroix. International Symposium on Unmanned Untethered Sub-

mersible Technology (UUST), NH, USA, August 23 - 26, 2009.

. Architecture pour la planification et l’exécution d’une flotte de véhicules marins et sous-
marins. A.Belbachir, F.Ingrand and S.Lacroix. 4th National Conference on “Control

Architectures of Robots” ONERA – Toulouse, France, April 23 - 24, 2009.





2
CONTEXT, STATE OF THE ART AND

OVERALL APPROACH

A lot of research has dealt with ground and underwater ve-

hicles for exploration missions. In this chapter, we present

the existent work in the literature and the specific con-

straints associated to underwater vehicles. We end the

chapter by presenting the general idea of the proposed ap-

proach.

ANTHONY ROBBINS, SAYS: «To effectively communicate, we must realize that we are all

different in the way we perceive the world and use this understanding as a guide to our

communication with others.» [Unlimited power: The New science of Personal Achievement

(1987) p.237]

7
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2.1 INTRODUCTION

There is a growing research interest in using Autonomous Underwater Vehicles (AUV) to

better understand the deep sea biological and chemical phenomena as well as the effects the hu-

man way of life has on them. This need has pushed the development of new technologies to

design more efficient and more autonomous underwater vehicles. A recent concern in this area

is to consider not only one vehicle, but a fleet of cooperating vehicles (Autonomous Underwa-

ter Vehicles (AUV), Autonomous Surface Vehicles (ASV), etc). Indeed, multiple robots (with

heterogeneous capabilities) have several advantages over a single robot system [Burgard05]. Co-

operative robots, when properly managed, have the potential to accomplish tasks faster and bet-

ter than robots evolving independently. Numerous studies propose interesting architectures for

robots cooperation, but most of them are focused on terrestrial robots for which the communi-

cation among the vehicles is reliable and permanent, whereas underwater environment is very

limiting with respect to communication.

This chapter presents an overview of the literature using cooperative vehicles and the differ-

ent problems encountered for underwater vehicles exploration. Section 2.2 presents the different

types of existing underwater vehicles and the associated constraints. In Section 2.3 we briefly

describe existing work on cooperating terrestrial vehicles and show the limitations of these ap-

proaches in the context of underwater vehicles. In Section 2.4 we show the associated constraints

for cooperative underwater vehicles and present the main approaches for exploration. Finally,

section 2.5 outlines the main characteristics of our approach.

2.2 UNDERWATER VEHICLES

2.2.1 Types of underwater vehicles
There are two classes of underwater vehicles, depending if the human is on-board the vehicle

or not. The two classes are presented as follow, with a surface underwater vehicle:

a. Populated submarines The vehicle is controlled by an onboard human. An example of

these vehicles is the Nautile, developed at IFREMER for marine exploration, with a maximal

depth of 6000m.

b. Unmanned Underwater Vehicles (UUV) These vehicles do not have humans on-board,

and are classified according to a variation of their degree of autonomy:

b.1. Remotely Operated Vehicles (ROV) A ROV is a tele-operated engine, linked with

the surface by a tether. This tether (or umbilical) is a set of cables that carry to the vehi-

cle electrical power, control data from the surface, and bring back to the surface various data.

Victor6000 [Michel03] is a ROV equipped with cameras and different sensors dedicated to
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Figure 2.1 – Victor6000, a Remotely Operated Vehicle used at IFREMER. (1) 8500 meters long umbilical
of 20 mm diameter a 30 tons weight, (2) the 4 tons vehicle, (3) and (4) a jetsam located within 100 to 300
meters depth, and (5) the 20 feet container that fuels the vehicle with energy.

oceanography (Figure 2.1). VORTEX [Rigaud94] is also an experimental ROV used at IFRE-

MER, that can be used as an AUV when it is on automatic mode. The main drawback of ROVs

is the umbilical, that restricts its progress.

b.2. Autonomous Underwater Vehicles (AUV) To get rid of the umbilical, new kinds of

vehicles called “Autonomous Underwater vehicles” (AUVs) have been designed. Contrary to a

ROV, and AUV embeds all its energy source and its mission controller.

For a specific mission, an AUV communicates with the surface ship to correct its localization,

send collected data or receive new commands, etc. Two types of communication can be used:

radio or acoustic. Radio communication are only effective when the vehicle is at the surface level,

whereas acoustic communications can be used when the vehicle is diving, in a volume roughly

restricted to a cone beneath the surface communication point, and with a small bandwidth.

Figure 2.2 shows the AUV Asterix used at IFREMER. The main devices that equip this

vehicle are:

– Sound sediments sensor and Obstacle sounders sensor are respectively used to measure the

proximity of the ground or obstacles from the vehicle by using an acoustic signal 1.

– GAPS (Global Acoustic Positioning System) and DGPS are used to estimate the vehicle

position.

– Acoustic communication device (MATS: Multimodulation Acoustic Telemetry System),

that allows the vehicle to communicate with the surface.

– Radio antenna to communicate with the surface ship.

The central unit (Vehicle Control Computer or VCC) embeds the control architecture of the

vehicle.

1. The distance is computed by the time taken to the acoustic to propagate until it returns back to the vehicle.



2.2. Underwater vehicles 11

Figure 2.2 – The AUV Asterix used at IFREMER and its components.
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c. Autonomous Surface Vehicles (ASV). These boat vehicles are autonomous vehicles in term

of energy and control, but remain at the surface.

For an ASV the localization and communication with the ship is less constrained than for

an AUV – the acoustic communications with a diving AUV are however similar to ship/AUV

communications.

Figure 2.3 shows the ASV ROAZ II, mainly designed for bathymetry, security, search and

rescue support operations at the Autonomous System Laboratory in Porto (Portugal).

Figure 2.3 – ROAZ II: an autonomous surface vehicle used at LSA’s lab

2.2.2 Types of mission
Underwater vehicles can be used for various missions, which can be gathered into the fol-

lowing three types.

– Exploration missions. Exploration consists in surveying the environment and transmit data

back to the surface (e.g. for scientific analyzes). A fundamental challenge in exploration

is the limited bandwidth available to transmit data, thus motivating the development of

novel techniques for analyzing data on board the underwater vehicles and only transmitting

necessary information. The exploration has as objective: targets localization, sea-floor

mapping or water sampling.

1. Target localization consists in localizing particular features on the sea floor, like algal

blooms, hydrothermal vents [German08], wrecks, flight recorder systems, etc.

2. Mapping is used to gather knowledge about the ocean-floor. In general, scientists first

use sonar from surface ships to map areas of potential interest. They plant transpon-

ders along the ocean floor to allow pinpoint navigation. Using the signals from the

transponders a camera is towed along the bottom to automatically take photographs.

Finally, scientists study the photos to choose a few places of further observations.

Even with all this preparation, scientists do not always find what they are looking for

in the darkness of the deep sea. Another kind of mapping is the bathymetry referring

to the measurement of ocean depth through depth sounding.
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3. Water sampling is used to detect and analyze various phenomena that impact some

physico-chemical parameters of water (e.g. vents on the sea-floor can be detected and

localized by detecting the associated plume). In general, the AUV has a restricted

number of gulpers. This makes the choice of the sampling location important.

– Intervention missions. ROVs are generally used for this kind of missions, that often come

to object manipulation. The operators tele-operate the ROV manipulators from the ship

and try, for example, to contain oil outflows.

– Formation missions. These types of missions are used to survey a region with each ve-

hicle exploring the area at a certain distance to each other. The formation can be used to

re-localize vehicles [Alexander2009], and the redundant collected data can enhance the

overall information gathered.

2.2.3 Main constraints associated to underwater environments
Up to now, most robotics vehicles have been terrestrial vehicles designed to move on land,

the various kinds of sensors deployed on these vehicles being adapted to such environments. The

environment naturally has an important impact a vehicle design: in underwater environments,

besides the vehicle itself, the sensors and communication devices must be adapted to specific

constraints that we briefly review here.

Communications The constraints and limitations associated to underwater acoustic commu-

nications are essential. They are due to the slow propagation velocity of sound through sea water

(around 1500 m/s) and to various phenomena such as scattering that deviates the signal prop-

agation, or shadow zones that can hinder the signal propagation. As a consequence, acoustic

communications have limited bandwidth (few tens of bits/s up to few kbits/s). They are also very

sensitive to the presence of noise (ambient and generated by the vehicles motors and propellers),

to the vehicles relative positions, and to the environmental conditions (pressure, temperature,

etc.).

An acoustic communication channel can only be established under particular conditions, and

especially when the two communicating nodes locations satisfy some geometric constraints.

Akyildiz et al [Akyildiz04] have studied the relation between the range of the acoustic signal

and the bandwidth in underwater vehicles, summarized in Figure 2.4.

In multiple AUVs applications, these considerations imply that the communication network

management must take into account the relative configuration of the fleet members when at-

tempting to transfer data, in order to maximize the potential of success.

Positioning While the absolute position of an ASV is easily known thanks to GPS, AUV posi-

tioning remains a difficult issue. Inertial navigation systems have witnessed vast improvements,

but with time the localization error eventually increases. Absolute positioning can be obtained

thanks to dedicated acoustic means. The two main methods include Long Base Line (LBL) sys-

tems, or Ultra-Short Base Line systems that enable the estimation of the absolute position of

an AUV, ASV or ship. Figure 2.5 illustrates how a ROV can estimate its position using LBL.
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Figure 2.4 – Available bandwidth for different ranges in Underwater Acoustic Channels

Four transponders are deployed at known locations on the seabed. The positioning technique

employed is trilateration, a method that determines the relative positions using the geometry of

triangles. As all observations are prone to errors, a positioning system should be designed to

minimize the effect of those errors and to eliminate error where possible. Here, three reference

points is the minimum number required to compute a unique solution, but the introduction of

a additional observations enables the detection of inconsistencies in observed values and the

minimization of the computed pose error.

Figure 2.5 – Illustration of the use of LBL with a ROV.
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Energy limitation Finally, the last stringent constraint for AUVs is energy, which is naturally

limited and has to be taken into account while planning and executing the mission. AUVs are

equipped with on-board energy monitoring devices.

2.2.4 Levels of autonomy
AUVs are fitted with a control software architecture, that defines their level of autonomy.

Classically, these levels are set according to a hierarchy of controls (figure 2.6):

– Mission control: The vehicle is provided with a mission plan and controls the execution

of the pre-defined mission goals. In general, AUVs have the ability to control the tasks

execution.

– Navigation control: generation of high-level commands (waypoints) and equipment com-

mands (for example data acquisition triggering). This corresponds to external closed-loop

control.

– Motion control: generation of low-level commands (heading, speed, depth, etc.) according

to the current navigation goal (go from a waypoint to another, go-to a point, etc.). This

corresponds to internal closed-loop control. In the major case, ROVs use just this type of

control to execute the given commands from the operators.

– Finally the lowest control level is the closed-loop control of the actuators.
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Figure 2.6 – Illustration of different levels of underwater vehicles’ autonomy.

2.2.5 Overview of AUV related work
In [Ferri08] the authors localize hydrothermal vents using an autonomous underwater vehi-

cle called the ABE (Autonomous Benthic Explorer vehicle, from Woods Hole Oceanographic

Institution). The mission of the vehicle is split in two phases: (1) ABE has to move to pre-

defined places (e.g. waypoints), (2) when some conditions are met the vehicle begin to do a

spiral trajectory. The authors consider the Eh potential 2 anomalies as a signal to trigger spiral

movements.

2. Eh is the reduction potential, whose variations provide information on the variation of the chemicals in the

water
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This exploration strategy is interesting as it mixes a pre-defined plan with reactively defined

trajectories. But this kind of strategy does not deal with time constraints and does not exploit a

realistic vent model.

There are other robotic applications for chemical plume tracing pollution and environmental

monitoring, search and rescue and deep sea hydrothermal vent prospecting. In [Sinha09], the

authors estimate the shape of the dispersion of a chemicals pollution. The pollution represents

a transparent gas of nuclear, biological or chemical contaminants. Some contributions use other

plume parameters to localize existent plumes [Christopoulos05] or construct a maps of probable

target location [Pang06]. These solutions do not address the problem when the number of targets

is unknown.

Farrell et al. [Farrell03] experiment a tracing plume algorithm implemented on a REMUS

AUV. The proposed algorithm is defined on the basis of six interchangeable behaviors according

to chemical detection events and timeouts.

A different approach to plume source localization followed by some authors requires the

estimation of the parameters of a model of plume formation, which is exploited to assess the

source location. The results quality depend strongly on the realism of the model that represents

the environment.

Ishida et al. [Ishida01] developed a terrestrial system that estimates the parameters (includ-

ing source location) of a time-averaged model of plume dispersal in a uniform propagation field.

Their robot is able to successfully locate an ethanol source a few meters away from its starting

location in several minutes. The slow convergence time and limited range are a consequence of

the time required to average concentrations in the actual plume to converge to those predicted

by the model. Christopoulos et al. [Christopoulos05] describe an algorithm for optimally adapt-

ing the robot trajectory to estimate the parameters of a diffusion model of plume evolution and

present simulation results.

Several approaches to chemical source localization specific to hydrothermal plumes have

been proposed. Veirs et al. [Veirs99] propose a method based on CTD measures. This method

successfully identifies the locations of several known vent fields and suggested locations that

might contain undiscovered sites.

The authors in [Dearden07] localize a vent according to several measures and a predefined

model. First, the vehicle explores the area using its predefined model and POMDP (Partially

Observable Markov Decision Process) approach to choose the next cell to explore. Second,

the scientists analyze the collected data and evaluate the target location. In the case where the

scientists do not localize the target, the vehicle can do another mission.

Jakuba et al. [Jakuba08] localize a hydrothermal vent by inferring the location of the sea floor

vent from the water column measurement. This includes an exploration task and at the same time

estimate the location of the target. The authors use a grid to represent the environment. Rather

than localize one target, they try to localize a maximal number of target using different map

updates.

Patron et al. [Patron08] consider that the vehicle can learn from its measure: according to

a measure the vehicle can evaluate a plan (more precisely an action). The authors try to find

a balance between a data driven and a task driven approaches: they use the collected data to

evaluate an action. This approach is an adaptive mission planning that deals with time.
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2.2.6 Synthesis
Missions using underwater vehicles have focused on exploration, target localization, water

sampling, etc. In most of the cases, the exploration strategies are predefined (pre-planed) and the

vehicle tries to execute the pre-defined mission as closely as possible. In other cases, the plan

adaptation is kept simple.

As compared to a single robot, multi-robot fleets bring robustness with respect to robot fail-

ures, allow to achieve more efficient missions (more rapidly, or with a greater spatial extent), and

to fulfill missions or tasks that intrinsically require the use of several robots. When it comes to

information gathering missions, e.g. exploration, surveillance, target detection and localization,

synergies naturally occur if the robots effectively communicate to merge information gathered

on the environment and to coordinate their observation plans. A large amount of work has been

done in the robotics community, and the literature abounds with contributions on communicat-

ing robot fleets – see e.g. [Konolige03, Burgard05, Howard06]. In the next section we review the

main used approaches for multiple ground or underwater vehicles.

2.3 PARADIGMS FOR DISTRIBUTED INTELLIGENCE

Various types of distributed intelligent interacting systems have been proposed in the litera-

ture. Distributed intelligent systems are inherently multi-agent systems [Woolridge01] although

not always described as such. Some interactions schemes are inspired from insect societies, hu-

man behaviors, etc. On the basis of the classification proposed by [Parker08], we outline here

three paradigms for distributed intelligence.

2.3.1 Bio-inspired paradigms
Bio-inspired paradigms are related with social behavior and emergence. They often involve

specifying a set of simple rules that are iteratively applied and that implicitly specify an organiza-

tion. As an example, ants search for food by first randomly exploring the environment. Once an

ant found food, it returns to its colony while leaving pheromones on its way. Repeatedly, other

ants follows the trail and also leave pheromones when returning back. Pheromones evaporate

over time: the longer it takes for an ant to travel a path, the more the pheromones evaporate. As

a result, a shortest path from the colony to the food place is eventually defined.

Parunak et al. [Parunak01] use a technique based on the quantity of sensed pheromone in the

environment to track targets. Here, each vehicle puts and/or evaporates pheromone and choose

the next cell to explore according to this quantity of pheromone. Such approaches are called

“sigmergy”, and have been adapted for robotics, e.g. in [Kube93] or [Masao94].

2.3.2 Organizational and social paradigms
These paradigms are derived from the way humans organize themselves, as studied in the

fields of sociology or economics. Several organizational theories are applied to robotics:
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Organization by assigning roles. Each robot has a specific role in the robot community, where

each role defines a specific task to accomplish. With each assigned role, each robot has specific

tasks to achieve. For example, in multi-robot soccer [Veloso98] each robot has a predefined

assigned role as left defender or right defender.

In another work, [Kim08] defines optimal groups of mobile robots (ad hoc) that can cooper-

ate. The approach has to define groups and select their leader. They use the notion of entropy

to define the relation between the robots, whose organization depends on transmission range 3.

The more the robot is in the communication range of another robot, the higher the probability

that it belongs to its group and the smaller the entropy between vehicles inside the group is.

At the end, a group leader is selected based on optimizing power consumption, where the role

of the leader is to to give order to the other vehicles that has to execute the task. Burgard et

al. [Burgard05, BurgardJ05, Burgard02] propose an algorithm where each vehicle computes a

utility and a cost to go to a target. This utility is obtained by the distance to that target. At the

end, each vehicle will be assigned to a nearest target. These approaches can be considered as a

role assignment, when a target is assigned to a robot, the role of the robot is to localize it.

Market economies. In general, Marked-based approach (e.g. in [Stentz04] or in [Goldberg02])

are used to allocate tasks for each robot by using measures. This measure can be the contribution

of a robot to a specific task, or can be represented as a cost function. For instance, the use of

a market-based approach specifically for multi-robot task allocation was developed in the M+

architecture [Botelho00]. In the M+ approach, robots plan their own individual plans for the task

they have been assigned. Then, they negotiate with other teammates to incrementally adapt their

actions to suit the team as a whole, through the use of social rules that facilitate the merging of

plans.

Moorehead et al. [Moorehead01], to explore unknown areas, use also an approach that opti-

mize a utility/cost ratio. Ogren et al. [Ogren04] present a control strategy for a team of vehicles

to move and rely on a gradient descent (potential field).

In [Tambe02], the authors consider the problem of disaster mitigation in the RoboCup Rescue

Simulation [Kitano99] to allocate tasks. The authors use a greedy search method to explore the

world, where each robot has to visit nodes the least number of times.

Meier et al. [Meier06] use a polygon to simplify the information transmission to the other

vehicles. The main used algorithm assigns a target to a robot according to its distance (the

closer the robot is near to the target, the more it can be assigned to go to this target). The authors

reduce communication between vehicles by using a geometrical reasoning. Similarly, the authors

in [Konolige06] were interested by the unknown region mapping problem. The authors divided

the area into static 4 clusters, where each robot belongs to a cluster and can exchange information

only with vehicles that belong to the same cluster.

3. The entropy is computed on the basis of the distance from one vehicle to the other. The higher the distance is,

the less the transmission range is, than the higher the entropy is between two vehicles

4. The cluster is fixed and over time cannot be rebuild.
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2.3.3 Knowledge-based paradigms
The knowledge-based approach aims at sharing the knowledge of each robot to develop the

system evolution. There has been considerable work done on target localization by robot teams.

In [Stroupe05], each robot motion is defined on the basis of the current knowledge of the targets

locations, where regularly each robot broadcasts its observations.

The knowledge-based approach is also used for task allocation in multi-robot teams, such as

in the ALLIANCE approach [Parker98], in which robots model the ability of team members to

perform the tasks of the system by perceiving team member functioning and collecting relevant

task quality, such as time to task completion. Robots then use these models to choose tasks to

achieve having as objective to benefit the group of robots.

In general, these approaches need permanent, long range and large bandwidth communica-

tions, three properties that are not satisfied with underwater vehicles.

Stone et al. [Stone99] introduce Periodic Team Synchronization (PTS). In robotic soccer,

teams can plan strategies before the game, at halftime, or at other breakpoints, but during the

course of the game, communication is limited. This synchronization for the authors [Stone99] is

called PTS. Their work consists of a general team member agent architecture suitable for creating

teams of agent in PTS domains. This architecture define pre-determined multi-agent protocols

accessible to the entire team, called "locker-room agreements". They define a flexible teamwork

structure that allows for task decomposition and dynamic role assignment in PTS domains. When

there is no communication the agent acts autonomously.

2.3.4 Synthesis and problematic
Numerous studies propose interesting architectures for robot cooperation. For bio-inspired

paradigms the coordination between vehicles is implicit. The communication bandwidth is not

taken into account by organizational and social paradigms. The same thing for knowledge based

paradigms, where broadcasting each new collected data can affect the effectiveness of AUVs

mission.

Nevertheless most of them are focused on terrestrial robots for which the communication

among vehicles is, in most cases, reliable and permanent. For underwater vehicles, it is a different

story. The water acoustic greatly restricts the communication range and bandwidth. As a result,

the general robot cooperation problem has to be reconsidered to take this particular constraint

into account.

2.4 MULTIPLE UNDERWATER VEHICLES EXPLORATION

Fleets of AUVs have the potential to explore the ocean and increase the spatial and temporal

coverage of a single research team. The use of various AUVs allows new types of missions but

also raises new challenges for communication, coordination, navigation and localization.

Additionally to the constraints mentioned in section 2.2.3, the communication with the sur-

face, energy limitation and the embedded control, there is a constraint of communicating between
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underwater vehicles. It may be required that each AUV has information about each fleet member

position. This can be the absolute position of each vehicle, or the relative position between all.

For instance, when using acoustic communication devices, the time of signal flight measure-

ment can give range and possibly bearing for navigation purposes during the AUVs coordination.

Considering the fact that in an heterogeneous fleet of AUVs, the navigation accuracy of each in-

dividual member may vary from others, the information exchange between the vehicles may

improve the positioning of vehicles featuring less performing navigation systems by benefiting

from the ones able to estimate more accurately their position.

Additionally to that, the communication allows each vehicle to exchange collected data for a

better mission execution (e.g. target localization).

2.4.1 Exploration strategies with task control
The project MAUV (Multiple Autonomous Underwater Vehicles [Herman88]) controls sev-

eral vehicles. The architecture is divided hierarchically into several layers: the mission layer, the

group layer, the vehicle state layer, the e-move layer, the primitive layer and the servo layer. The

highest layer is the mission layer, that decomposes the mission into a set of commands for a fleet

of vehicles. The other layer is the group layer that assigns for each vehicle the associated task.

The vehicle state, the e-move, primitive and servo are also other layers dedicated each one to do

one task in a hierarchical way. In this project the communication between vehicles is intensive,

when each vehicle measures a modification of its environment, it has to communicate it to others.

But in general, the communication between vehicles is hard and cannot occur at any time. This

is why the authors propose to make a leader team for each fleet of vehicles and communications

occur just between leaders.

The objective of CoDA (Cooperative Distributed Autonomous oceanographic sampling net-

works control Turner [TurnerJ01]) is to make a cooperative protocol for intelligent control. Sev-

eral autonomous underwater vehicles (AUVs) and other instrument platforms are gathering data

over long term in an area. In this article two levels are designed, called: MLO (meta-level orga-

nization) and TLO (task-level organization). The MLO is a loose organization of multiple AUVs

that self-organizes to analyze the mission and the resources available and the TLO is focused on

efficient organization to carry out the mission. So the MLO will most of the time looks like a

consensus-based group of vehicles, while the TLO might be a hierarchy, a committee, a team,

a market, or any other organizational type that seems to fit the situation. This protocol design

is interesting in term of the freedom to choose the desired protocol of cooperation. In fact, the

proposed protocol is scalable but each vehicle has to broadcast its organization when it enters in

the MLO. This is why this protocol can induce a bottleneck that can affect the waiting time of

each vehicle, then for the whole mission execution.

Rahimi et al. [Rahimi04] propose an approach that randomly samples the environment, in a

systematic way which does not take into account any measured data.

The authors in [You05] investigate their efforts on developing a market based framework for

multiple underwater vehicles. In this framework, the tasks are allocated to each vehicle for the

winner of the cautions.
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Finally, much research deals with the use of wireless sensor networks for target detection,

localization and tracking [Liu02, Biao08]: the nature of the considered sensors (often bearings-

only or range-only) turns the problem into an estimation problem and a deployment problem

where the quality of the localization depends strongly on the sensor placement. Such systems

are suited to monitor dynamic events, i.e. that evolve overtime.

2.4.2 Exploration strategies with navigation control
In [Maurizio07], each vehicle controls its trajectory in a cooperative manner, with the ob-

jective to maintain the desired formation and drive the fleet to a desired average value. Two

approaches are developed, the first needs a common virtual leader, while the second needs de-

centralized estimation of the virtual leader by each vehicle. The control is here a two-level

consensus problem. Each agent reach agreement on the virtual leader state at one level and at the

other level reach formation about the virtual leader. The decentralized approach is effective even

when communication among agents is limited.

Contributions that deal with multiple AUVs (sometimes involving ASVs) deal with various

tasks. [Haraksim09, Brignone09] deal with formations, in which the objective is to make the

vehicles follow each other, while maintaining permanent communications.

A leader-follower algorithm is used for AUV formation by Edwards et al. [Edwards04]. The

leader is the one that broadcasts the collected information and makes decisions. The mission

is a navigation in formation, where the leader controls the distance between vehicles. In the

case where the leader is not available each vehicle acts autonomously using the inertial baseline

information. Also in the same research area, [Fiorelli06] or [Bhatta05] describe a methodology

for cooperative control.

The authors in [Sotzing08] define a control architecture for a fleet of underwater vehicles. The

coordination between vehicles is given by broadcasting all the collected data to all the vehicles.

As a result, this architecture does not deal with restricted bandwidth.

In the project GREX [Ghabchello09], the objective is to coordinate the trajectory of each ve-

hicle with the other. The mission is the exploration by formation, where a minimal and maximal

distance between vehicles has to be respected.

2.4.3 Adaptive exploration strategies
The authors in [Zhang08] propose an adaptive sampling strategy for a team of ASVs. The

approach relies on the partition of ”equal gain” areas, that are then explored by individuals.

Popa et al. [Popa04] developed an adaptive sampling algorithms, that uses information mea-

sured to direct the vehicle to the most likely information about the target. The authors use a

routing algorithm to minimize the motion cost of the vehicle. At the same time, the vehicle has

to compare its entropy, before and after moving. The adaptive sampling algorithm will then seek

to sample at a new location such to minimize the cost function.

The authors in [Meliou07] present a new non myopic algorithm, that uses the collected infor-

mation. In general, the authors take a greedy algorithm and they transform it into a non myopic

by adding values on the path of each vehicle.
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Low et al. [Low09] drive the AUVs according to the sensed measures, directing the vehicles

to the detecting targets: the approach yields finer localization of targets than systematic sampling.

The authors in [Low08] describes an adaptive multi-robot exploration strategy for performing

both wide-area coverage and hotspot sampling using non-myopic path planning, based on a dy-

namic programming formulation called MASP (Multi-robot Adaptive Sampling Problem). They

apply Gaussian and log-Gaussian processes, and analyze if the resulting strategies are adaptive

and maximize wide-area coverage and hostspot sampling. The robot chooses the next cell to ex-

plore by maximizing the information gain. Only one robot can choose to sample a new location

at each stage while the rest of the robots remain still, a sequential approach.

2.5 OVERVIEW OF OUR APPROACH

In this chapter we have reviewed different types of underwater vehicles and their main char-

acteristics with respect to terrestrial vehicles. Underwater vehicles are subject to several con-

straints, the most important being on the communications. Thus, the task planner of these ve-

hicles needs to take into account these communication constraints. But in general if there are

several tasks to achieve the planner can take a long time to plan and re-plan for the whole mis-

sion. In this sense, dividing the system into subcomponents can be a solution for this temporal

reactivity problem.

Another objective is to improve the efficiency of the mission, i.e. is the number of found

targets in our scenarios. This efficiency depends on the way the vehicle explores the area. For

target localization, the location of targets are unknown, predefined missions can sometimes be

inefficient. Our proposed solution is to make underwater vehicles adapt their exploration mission
according to their perception. This kind of approaches are called reactive approaches, while most

of the proposed approaches in the AUV literature does not take into account the measured data

during the mission execution.

The trade-off is then to find an architecture that uses a task planner and at the same time

remains reactive. We propose to divide the system into several subcomponents with different

deliberation times, the higher the deliberation time is in a subcomponent the lower the reactivity

is.

To improve the mission execution time, we choose to use several underwater vehicles that

share their data to localize targets. The data can be exchanged only at communication points

with low rate.

This is why the general embedded system for underwater vehicles requires :

– An embedded control architecture that controls at any time the mission execution.

– An embedded mission planner that can deal with time. It is important to control the

execution of the mission by using a temporal delay, that helps when we deal with a coop-

eration approach. For example, a communication between two vehicles, using an acoustic

channel, can only occur if the vehicles are at a certain distance to each other and at the

same time. It is also interesting to have different deliberative time for each subcomponent,
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that makes the subcomponent more reactive or more deliberative.

– A hierarchical architecture. To improve the reactivity of the system, we choose to divide

the system into subcomponents that are able to work separately with different role. This

division is interesting to improve the vehicle reactivity.

– A reactive approach. Each vehicle can be able to react with its environment at any time

during the mission execution.

To validate our cooperative architecture, we applied it to the target localization problem. In

our case, the target is a hot spot characterized by a hot temperature: the model of the target

and the way to use the collected data to build a map of target presence and to localize them are

presented in the next chapter, and the way to adapt the trajectories to the the built map in order

to maximize the number of mapped targets is presented in chapter 4.





3
BUILDING TARGET MAPS

This chapter presents the way the perceived information

are gathered to build a map in which the probabilities of

target presence at given locations is encoded. The model

of the considered targets and sensors are given, and the ap-

proach to fuse the data is presented. Illustrations are pro-

vided, and the mapping process with several AUVs that

sporadically communicate is considered.

BROOKS SAYS: «The world is its own best model.»

25
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3.1 INTRODUCTION

In an exploration and mapping mission, the representation of the environment is naturally

of essential importance. On the one hand it is the goal of the mission, and in the other hand it

is the mean to define the exploration strategies (figure 3.1). To build such maps, models of the

observed phenomenon (the targets) and of the sensors are required : these models are respectively

presented in sections 3.2 and 3.3. Section 3.4 presents the process that integrates the gathered

data into a target map, that represents for each position of the environment the probability that it

contains a target. Finally, setions 3.5 and 3.6 illustrate the proposed approach in the single robot

and multiple robot cases.
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Figure 3.1 – Illustration of the mapping process.

3.2 REALISTIC TARGET MODEL

Targets can be static (e.g. flight recorder, hotspot without marine current), mobile (e.g. fishes)

or static with mobile properties (e.g. hydrothermal vents). The model of the target is important

for defining how to choose the next action. In our case, the target is a vent on the seabed,

emitting either clearwater, hot water, chemicals, etc. The emission of the vent expands as it

raises higher from the sea floor. Hydrothermal vents are the result of thermal and chemical input

from hot spring systems in the oceans, due to magma flows. When cold sea-water contacts with

the magma, it dissolves minerals and metals from the nearby rocks and forms an hydrothermal

vent.

The venting fluid is combined with cold sea water, and continues rising until it reaches a

height where it has the same buoyancy as the nearby water (see figure 3.2).

The intrinsic properties of hydrothermal vents have interested researchers for several reasons:

(1) the movement of hydrothermal at the seawater through the oceanic crust influences many

geological and oceanographic processes such as loss of heat from the earth, geochemical cycling

of the elements, biogeochemistry of deep ocean waters [Lonsdale77] and (2) the biology of

hydrothermal vents gives special features [Ferri08] some of them are the presence of manganese,

iron and other metals.

Hydrothermal vents are hard to localize for the following reasons:
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Figure 3.2 – Illustration of the diffusion model of hydrothermal vent with marine current.

1. Propagation properties: The vent is mixed with sea water and the temperature, which

smoothes the difference from the adjacent water.

2. Current: The current flow is not constant, and can change its direction over time and depth.

3. Water density: Sea water often has different densities for different vertical layers and

hydrothermal fluid can not easily cross these layer boundaries. Hydrothermal vents can

sometimes become trapped at a depth depending on the water density.

In general, searching for vents is made as follows:

– First, the location of the target is detected with low resolution (Global exploration strat-

egy). In order to do this, bathymetry data is required, because it can be used to identify

likely locations for vents based on the topology of the area, and can guide the deployment

of sensors. Bathymetry data is captured on the boat using bathymetry sensors that are able

to map a region several kilometers wide.

– Vents are then precisely located by using underwater vehicles ROVs/AUVs. These vehi-

cles use adequate sensors to track down vents (see section 3.3).

We consider the general case, where the property of the molecule’s concentration at the

hotspot is very dense, and where the propagation of these molecules depends on the water density,

the location and the instant. The equation of the fluid diffusion relies on the diffusion coefficient

and the water density as follows [Philibert06]:

∂T (r, t)
∂ t

= ∇[D(T,r)∇T (r, t)] (3.1)

where, T (r, t) is the diffusion density of the temperature at location r and time t. D(T,r) is



3.3. Sensors 29

the coefficient of the diffusion at the location r. In the case where this coefficient depends on the

density, the equation (3.1) is nonlinear.

Several studies aimed at modeling hydrothermal vents. For example, Stracey et

al. [Stracey00] express the plume concentration as a function of radial distance from the

source and the coefficient of dispersion.

3.3 SENSORS

3.3.1 Existent sensors for target localization
There are various kinds of sensors that can be used for vent localization [Baker95]:

1. Optical backscattering: When the hydrothermal fluid meets cold sea water, many of the

minerals precipitate into particle form, making the vent water very cloudy. The particle

concentration in the water can be estimated by measuring the amount of light reflected back

using a Light Scattering Sensor (e.g. LSS developed at IFREMER [Vangriesheim92]).

2. Methane: Dissolved methane is an unambiguous indicator of vent activity and is easily

measured.

3. Reduction potential (often referred as Eh): Redox potential measures the chemical reac-

tivity of the water; hydrothermal water has low redox potential, as it is low in oxygen. Eh
is useful as strong changes in it are only observed close to a vent, within a few hundred

meters.

4. Manganese, iron, and other metals: Manganese concentration in particular is enriched by

several orders of magnitude in hydrothermal fluid compared to normal seawater.

5. Potential temperature versus salinity anomalies: Conductivity, Temperature, and Depth

is a sensor that measures water temperature, salinity, and density. While the temperature

of hydrothermal fluid far from the vent is indistinguishable from that of the surrounding

water, it is identifiable by a change in the linear relationship between potential temperature

and salinity in a given region of ocean. Such anomalies can be found by examining a

series of CTD data, as salinity and potential temperature are just functions of conductivity,

temperature and density.

3.3.2 Classification of existent sensors
For external sensors, we can define three family of sensors: range-only sensors, bearing-only

sensors and the range-and-bearing sensors.



30 Chapter 3. Building target maps

1. Range-only sensors: This type of sensors perceive the distance to the target. As an exam-

ple, we can take the scenario of target localization (e.g. vent), where we know the maximal

temperature of the target. Using the vent model and the measured value, the vehicle can

compute the distance to the target.

2. Bearing-only sensors: This type of sensor indicates the direction of the target without

knowing its distance. Several types of bearing-only sensor exists in the literature (e.g.

vision), in our case we are going to use a CTD sensor in the case where the maximum

temperature of the vent is unknown. This sensor can measure the temperature of the place

and according to the past and present value of the temperature, the vehicle can infer the

target’s direction (see section 3.4.2 for more details).

3. Range and bearing sensors: For example sonar (sound navigation and ranging) provides

to the vehicle, in one measurement, the distance and the direction to the target. This kind

of sensors are used for bathymetry. Sonars propagate the sound in the water to detect

the contents of the water, for vehicle’s localization using LongBaseLine sonar or for

fishing. According to the transmitted signal and the taken time to get back the signal, the

sonar allows the vehicle to compute the distance and bearing between its position and the

target/ground/fishes.

3.4 TARGET DETECTION MODELS

We defined two target models: in the first model, the maximal temperature is known, whereas

in the second one the maximal temperature is not known.

Figure 3.3 – Illustration of the temperature evolution within a thermal plume in stationary waters: the
temperature, here represented in red (the redder the hotter), decreases with the elevation and with the
distance to the vertical of the emitting vent.
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3.4.1 Target detection model with known maximal temperature
We consider the case of hot spring localization according only to the temperature properties.

The density of the temperature T within the plume is a decreasing function of the horizontal dis-

tance ρ with respect to the plume center and of the elevation z above the seabed. This function

is the model of the plume, which is an approximation of the actual diffusion phenomenon: the

model is a probabilistic one, that expresses the probability density function (pdf) of the tempera-

ture T as a function of the distance ρ and the elevation z:

P(T = t|ρ,z) (3.2)

Figure 3.4 shows the behavior of the model for two different elevations: the dispersion of the

temperature is also an increasing function of the distance and the elevation. Note that multiple

sources do not interfere if they intersect, the water temperature being a function of the closest

source (this assumption would not hold in the case of the emission of chemicals, whose concen-

tration augments within the intersection of plumes: such cases call for a different modeling of

the pdf).

Figure 3.4 – Evolution of the temperature as a function of the horizontal distance ρ for the two depths z1

and z2 defined in figure 3.3. Dashed line represent the dispersion of the temperature.

Tmean =

{
Tmax(z)−ρ Tmax(z)−T0

ρmax(z) if ρ ≤ ρmax(z)
T0 if ρ > ρmax(z)

(3.3)

where
ρmax(z) = αz

Tmax(z) =
{

TMAX − zTMAX−T0
zMAX

if z≤ zMAX

T0 if z > zMAX

(3.4)

These equations model the plume as a cone, the parameters ZMAX and α respectively defining

its height and aperture. This is certainly a simplification of the actual diffusion phenomenon. In

particular, it makes the assumption that there are no current: a stationary current independent of

the depth would simply generate an oblique cone, and the consideration of dynamic currents that

are a function of depth would require a more complex parametrization.

In the case were there is a marine current. For a permanent and constant speed of the vent at

all target altitudes, the target model is represented in the figure 3.5. The distance “G1” represents

the gap between the real location of the target and the actual target properties.
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Figure 3.5 – (a). Evolution of the temperature as a function of the horizontal distance ρ for one depth z1.
G1 represents the gap between the hottest temperature and the real position of the target. (b) Illustration
of the real target properties propagation at different depths with a steady current.

When the marine current is not known (that is, in general, the case) by vehicles, a fleet of

underwater vehicles can be used. At different exploration depths and sharing the collected data,

underwater vehicles can find the corresponding gap (we give more details on the chapter 6).

Finally, for a given position (ρ,z) in the plume, the probabilistic variations of the temperature

is modeled by a Gaussian: T = N (Tmean,σ(ρ,z)), where σ(ρ,z) is an increasing function of ρ
and z.

We can model temperature sensors with a probability density function P(Tsensor|T ) that mod-

els its errors (e.g. a Gaussian). The overall source perception model is a convolution of the source

and sensor model, which results in a pdf akin to (3.2), the associated variations being “blurred”

by the sensor model– we therefore neglect the sensor errors (since most of the uncertainty comes

from the model of the observed phenomenon, not from the sensor errors).

Knowing the maximal temperature of the target is equivalent to the use of a range-only sensor:

on the basis of temperature measure the vehicle can compute the distance to the target.

3.4.2 Target detection model with unknown maximal temperature
In this case, TMAX is not known: according to two temperature measures a direction of the

target can be computed (we consider this example as if the vehicle has a bearing-only sensor).

The direction of the target is computed by the algorithm 1, where the difference between the

precedent and the current measure yields an estimate of the target direction.

The variable Direction contains the direction of the target. The more the distance to this

direction is, the lower the probability to contains the target is (Figure 3.6).

The used temperature model of the target is represented in figure 3.7. The direction has an

error that augment with the distance from the target direction. The model function is expressed

by the probability density function (pdf) of the temperature T as a function of a direction (dir)

and the elevation z:
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(a) (b)

(c)

Figure 3.6 – (a). Illustration of the target model at a given depth. The colors here indicate the temperature.
(b) and (c): application of the bearing only and the range only target detection models. The colors
represent here the probability of the target presence (The detection models are represented in a grid
structure, see section 3.4).
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Algorithm 1: Algorithm to compute the target direction.

Require: T k: the actual measured temperature;

T k−1: the precedent measured temperature;

Direction: the direction of the target;

Posk: the actual position of the vehicle;

Posk−1: the precedent position of the vehicle.

1: δT ← T k−T k−1;

2: if (δT > 0) then
3: Direction←

−−−−−−−→
Posk−1Posk

4: else
5: if (δT < 0) then
6: Direction←

−−−−−−−→
PoskPosk−1

7: else
8: Direction← Posk−1 ⊥ Posk

9: end if
10: end if
11: return Direction

P(T = t|dir,z) (3.5)

This model is specified by a simple Gaussian where T = (Tmean,ρ(dir,z)).
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Figure 3.7 – Evolution of the temperature as a function of degrees “deg” for two depths z1 and z2 (defined
in the figure 3.3).

3.5 MAP BUILDING

A common representation to map the environment is the occupancy grids [Elfes89]. The

environment is subdivided into a grid. To each grid square, a probability that the cell contains an

obstacle [S.Moorehead01] or a target [Low09] is associated. The probability meaning depends

on the mission type.
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In our case, the AUVs gather temperature measures, they are fused into a map that represents

the probability of the target locations. The map is a N×M grid, that discretizes the environment

into a set of cells {xi, j}, i ∈ [0,N[, j ∈ [0,M[. We do not use a volumetric voxel representation

because on one hand this would be too costly to memorize, and on the other hand the AUVs can

be constrained to evolve within a small set of depths P, P 2D grids are therefore defined. Each

cell xi, j contains two types of information:

– A boolean value, equal to 1 if it has been visited by one AUV,

– The estimated probability Pk(xi, j) at time k that the cell is at the vertical of a vent.

The probability Pk(xi, j) integrates the various measurements made so far (Pk(xi, j) = P(xi, j =
vent|T 0, . . . ,T k)), and is computed incrementally according to a classical bayesian paradigm

under a markovian assumption:

Pk(xi, j) =
P(T k|xi, j = vent)Pk−1(xi, j)

P(T k)
(3.6)

Figure 3.8 – Real world temperature map of the target and three different location of the vehicle.

3.5.1 Range-only sensor update
If the sensor is a range-only one then the formulation is equivalent to the update of an obsta-

cle uncertainty grid [Elfes89] using a range-only sensor that returns the distance to the closest

obstacle.

Figure 3.9 illustrates the update of the source map in an environment containing a single

source, considering three measures taken at three different positions.

The map implicitly contains two information: the probability Pk(xi, j) that the cell xi, j is

located above a source, the probability value implicitly representing the precision of the source

location (a probability equal to 1 meaning that the source is perfectly localized).
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(a)                                                     (b)                                                  (c) 

Figure 3.9 – Evolution of the cell probability to contain a source, derived from 3 measures made at the
same depth in the environment shown in figure 3.8 – the positions where the measures are taken are
denoted by a cross. (a) is the map using one measure and (b) and (c) are the resulting map using two and
three measures in order.

(a)

(b) (c) (d)

Figure 3.10 – (a) Illustration of the initial target model and the fourth different location of the vehicle
path. (b), (c) and (d) Illustrate the obtained map using a bearing-only sensor with two, three and fourth
measures.
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3.5.2 Bearing-only sensor update
If the vehicle uses a bearing-only sensor, the probability Pk(xi, j = vent) is computed as a

distance to the computed direction. The closer the cell xi, j is to the direction axis, the higher the

probability is (see figure 3.10b). The direction of the target is computed using the algorithm 1.

Figure 3.10 illustrates a couple of measures taken at different location for the same depth. Fig-

ure 3.10b is the map using one measure and the figure 3.10c and 3.10d are the resulting map

using two and three measures in order.

3.5.3 Illustration of map building with a single robot

(a) (b)

Figure 3.11 – (a). Illustration of predefined waypoints for one underwater vehicle. (b). Illustration of the
obtained path. The time intervals to reach the waypoints (e.g. The vehicle can reach the point A between
4 until 400 ut) are large enough to allow the AUV explores a bit further, hence the resulting saw path.

We defined eight points (A, B, C, D, E, F, G and H) that represent a trajectory for the vehicle

(figure 3.11). Each point is defined along the three dimensions (x, y, z). In our case, all points

are in the same plane and have the same depth (z = 10 meters), except the initial point where the

vehicle is at surface (z = 0 meters). There are some waypoints that the vehicle has to visit within

a particular time interval. For example for the point A, the vehicle has to be in A at the earliest

at 4 ut 1 and at the latest at 400 ut.
Figure 3.11 shows the executed path of the AUV. All predefined points are achieved on time.

Some of waypoints are achieved before the end time of the interval. Rather than staying at the

same waypoint (that is impossible for underwater vehicles), we choose to let the vehicle explore

the area with limited range, until a new waypoint has to be reached.

The existing target in this area and the obtained map at the end of the execution are repre-

sented in figure 3.12. In the next chapter we are going to make the vehicle adapt its predefined

exploration strategy according to its measured data. This adaptive exploration strategy has to

1. ut stands for unit of time.
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take into account predefined points and at the same time get more information about the target

location.

(a) (b)

Figure 3.12 – (a). Actual temperatures in an environment containing one target. (b) Illustration of the
obtained map using a range-only sensor.

3.6 MULTI ROBOT MAP BUILDING

In this section we discuss the interest of communication with other vehicles. First, we present

the communication model between vehicles. After, we discuss how vehicles can fuse their maps.

Then, we explain what is the communication bandwidth and the amount of exchanged data.

Finally, we illustrate the map building process with two vehicles.

3.6.1 Communication model
Communications are established between the ASV and the AUVs for the proper monitoring

of the mission execution, to exchange data (target maps) between the AUVs and positioning the

AUV. Underwater communications are very constrained and quite complex to model [Meyer06]:

we choose a conservative model, that states that an AUV and the ASV can communicate if and

only if they are located within the same grid cell in the horizontal plane and with a vertical dis-

tance of 10 meters. [Akyildiz04] gives all different range and distance between vehicles that can

be used to allow the communication. In our case, we choose the very short type of communica-

tion, where the “bandwidth” is equal to 100 bps and the communication distance between two

vehicles varies from 10 to 100 meters.

At each communication point, the AUV uploads the information gathered since the last com-

munication. Should the maps from various AUVs be fused, this fusion is performed on-board the

AUVs, where the ASV acts as centralized information hub. Also, these communication points

plays an important role on re-localizing the AUV.



3.6. Multi robot map building 39

3.6.2 Fusing maps among underwater vehicles

Figure 3.13 – Evolution of the cell probability to contain a source, derived from a map fusion between the
AUV1 and the ASV. At the first communication point with the AUV1, AUV1 sends its new map to the ASV,
receives the latest map of the AUV2 and updates its map.

At each communication point, the AUV sends its new observed probability grid and receives

the observed probability grid from the other AUVs by means of the ASV. To avoid data re-

dundancy, the vehicle sends its observed grid from the latest communication point to this new

communication point. Figure 3.13 represents the first communication point (RDV1) between

the AUV1 and the ASV. The AUV1 sends its data to the ASV. The data here is a couple of the

vehicle location and the sensed measure (the data is represented by dt , where t is the instant).

The ASV keeps the latest map of the AUV2 and sends it to the AUV1. At the second commu-

nication point (see figure 3.14), the AUV2 is communicating with the ASV. At the top left and

right the maps sent from the AUV2 and AUV1 respectively to the ASV. The ASV keeps the latest

map of each vehicle. In this example, AUV2 is sending its map to the ASV and then receives

AUV1 map which can then be merged. The new map has some relevant target locations that

appear in fair color. To update the AUV map, the probabilities are computed incrementally using

equation (3.6).

3.6.3 Communication bandwidth and amount of exchanged data
The effectiveness of a cooperative approach depends on the way the sensed data is treated

and forwarded. One way to send the strict sufficient minimum data to other vehicles to let the

vehicle take more time for exploration.

We want to know what is the communication time duration between two vehicles. Knowing

that the size of the sensed data (|d0|) for each cell is equal to 40bits and the bandwidth L is

equal to 100 bps. nd represents the number of explored cells. The communication time (comt) is
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Figure 3.14 – Evolution of the cell probability to contain a source, derived from a map fusion between the
AUV2 and the ASV. At the first communication point with the AUV2, AUV2 sends its new map to the ASV,
receives the latest map of the AUV1 and updates its map.

computed as follow:

comt =
nd ∗ |d0|

L
.

Where the data size is calculated as follows:

|d0|= |d1|= · · ·= |di|= |< x0;zx0
> |= |x0|+ |zx0

|= 2∗16bits + 8bits = 40bits.

Replacing the data size by 40bits and the used bandwidth by 100bps, the communication time is

equal to comt = 0.4∗nd . If the communication time is bounded by 2 minutes, it means that the

vehicle can explore less than 150 cells (each cell represents 100m2). In general, because of the

localization error of the vehicle, the vehicle can explore at maximum a distance of 1.2 km (12

cells) with a speed of 1.5m/s. This limit indicates that the vehicle will communicate less than 2

minutes, which is a reasonable communication time.

Algorithm complexity To avoid data redundancy, the vehicle sends its observed grid from the

latest communication point to this new communication point. The ASV keeps the latest map

of each vehicle. To update the ASV map a simple algorithm is used. The complexity of the

algorithms for the AUVs and the ASV at each communication point comi is the following:

– The ASV get the map of one underwater vehicle: the maximal number of cells that can be

exchanged is nd = 150 cells. After getting all the new cells information, the ASV updates

the global map with at most N ∗M ∗Nrobots operations. Once this map is updated, the ASV

sends to each AUV all the maps of other AUVs (Nrobots ∗nd cells). The total operations for

the ASV are N ∗M ∗Nrobots + Nrobots ∗nd .

– Each AUV sends its new measured data (nd) and get from the AUV Nrobots ∗nd new cells.

The AUV updates its map by using at most N ∗M ∗Nrobots operations.
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Two targets 

(a)

AUV1 

(b)

AUV2 

(c)

(d)

AUV1 

(e)

AUV2 

(f)

Figure 3.15 – (a): Illustration of the real world and the predefined exploration strategy for each AUV.
(b), (c): represent the obtained map for each AUV1 and AUV2 before communication. (d): represents the
obtained map of each AUV1 and AUV2 after communicating. (e), (f): represent the obtained map of AUV1
and AUV2 at the end of the mission execution.
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3.6.4 Illustration
We designed an example to illustrate how vehicles exchange collected data to localize targets.

In this example, we are using two AUVs that explore an area that contains two targets. Each AUV

has a predefined exploration strategy and there is a communication point defined between these

AUVs as shown in figure 3.15a.

Before they begin communicating, the obtained map of AUV1 and AUV2 are as shown in

figure 3.15b and figure 3.15c respectively. They then exchange data to synchronize theirs maps

and finish their communication. The resulting map for each AUV after this process is shown in

figure 3.15d. The obtained map at the end of the mission of each underwater vehicle is shown in

figure 3.15e and figure 3.15f.

CONCLUSION

Modelling real phenomenon is a difficult task, especially when several criterions are to be

taken into consideration. We have given a simple model of a marine hotspot. We take into

account temperature criteria only and leave other important criterion like marine currents etc.,

which require rigorous mathematical analysis and are out of scope of our work. Our chosen

model yields the definition of range sensors and bearing sensors. The map updating of each

under water vehicle is done differently based on the type of sensor used.

The communication mechanism used in underwater vehicles plays an important role for mis-

sion execution. We have shown our communication model and the amount of exchanged data

between underwater vehicles, and illustrated the cooperative mapping process with two commu-

nicating AUVs.



4
ADAPTIVE EXPLORATION STRATEGIES

In this chapter we define an adaptive exploration strategy,

and compare it to a non adaptive strategy in term of the

number of found targets. Other experiments illustrate the

influence of the sensor range and the transect width on the

number of found targets.

CARL GUSTAV JUNG, SAYS: «The meeting of two personalities is like the contact of two

chemical substances. If there is any reaction, both are transformed.»
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4.1 INTRODUCTION

In our context, the cooperation is related to the way the vehicles communicate and the way

the sensed data are treated. This chapter defines the used motion model of the vehicle (sec-

tion 4.2), and defines exploration strategies that adapts the vehicle path according to the built

map (section 3.4). To evaluate the cooperative approach, some statistical results are presented in

section 4.4.

4.2 MOTION MODEL

The motion model is simply defined on the map grid: an elementary motion shifts the vehicle

from one cell to one of the 8 neighboring cells. A time proportional to the distance is associated

to the motions 1. Each motion also yields a drift on the AUV position estimate. This drift is

defined as a maximum distance below which the resulting position uncertainty is bounded by

the map cell size. This distance is exploited to define the rendez-vous with the ASV, to ensure

that the rendez-vous will actually occur, so that the drift is then corrected thanks to the ASV that

corrects the AUV drift.

4.3 EXPLORATION STRATEGIES

With an adaptive strategy, the AUVs select the next motion in order to confirm the presence of

a target. Given a source presence hypothesis (a local maxima of P(xi, j) in the mapped vicinity of

the current AUV position), the motion that maximizes the source detection is straightforwardly

the one that drives the AUV towards the direction of this maxima. This is true only in the case

where we use the target model with known maximal temperature, i.e. with a range only sensor.

The vehicle follows the maxima to reduce the target location error (see section 3.4.1). In the case

where the maximal temperature of the target is unknown, the strategy is the one that maximize

the information gain, as presented in section 4.3.3.

Two thresholds can be defined to consider the source as “treated”. A high value denoted Ploc
leads to a confirmed well localized source, whereas a lower value Pcon f , leads to the confirmation

of a source presence, but not precisely localized. Two types of strategies can be considered with

respect to the more global mission: a non adaptive strategy simples leads the AUVs towards their

waypoints regardless of the information they gather, and an adaptive strategy drives the AUVs in

order to enhance their information, according to what they gathered so far.

4.3.1 Non adaptive exploration strategy
This strategy has predefined waypoints and does not adapt the AUV motion to build the

source map. There is a time window to reach each waypoint. The order of these waypoints

implicitly defines exploration transects. Even for this simple strategy, one can consider the two

1. Diagonal motions cost
√

2 times the cost of motions along the grid axes.
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thresholds defined above: Pcon f and Ploc to analyze the built map in order to assess the presence

or the position of target.

4.3.2 Adaptive strategies
This strategy has also predefined waypoints with the possibility to redirect the vehicle ac-

cording to the acquired information. We define two adaptive exploration strategies:

a. Greedy Information Driven (G.I.D)
The vehicle heads toward the path that collects the more information about the source hy-

pothesis until its probability exceeds Ploc. This greedy strategy focuses on the nearest target until

it is considered localized. Figure 4.2 shows the result of the G.I.D exploration strategy applied

in the environment shown in figure 4.1.

Figure 4.1 – Illustration of the real world.

(a) (b)

Figure 4.2 – (a) Illustration (on the environment with one target shown in figure 4.1) of the obtained map
using G.I.D strategy for one underwater vehicle. (b) Illustrates the obtained map at the end of the mission
execution.
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b. Global Information Gain driven (G.I.G)
The vehicle heads toward the path that collects the more information about the source hy-

pothesis until its probability exceeds Pcon f : with respect to the G.I.D strategy, this strategy favors

the reduction in the number of vehicle actions, at the cost of less precisely localized sources.

Figure 4.3 shows the result of the G.I.G exploration strategy.

(a) (b)

Figure 4.3 – (a) Illustration of the obtained path using the G.I.G exploration strategy. (b) Illustration of
the obtained map at the mission execution end.

Figure 4.4 shows another example comparing the non-adaptive and the adaptive exploration

strategy. The dark circles upper dark/fair lines, represent the communication points with the

ASV. The dark line represents the adaptive G.I.G strategy and the white one represents the non-

adaptive. In this experiment, using the non-adaptive strategy the number of localized targets is 6

out of 23 (26%). However, the G.I.G strategy localize 14 (60%): unsurprisingly, G.I.G detects

more targets.

4.3.3 Adaptive Cooperative Exploration Strategy (ACES): Algorithm
We summarize the general procedure that is used to generate and choose the next cell to

explore as follows:

1. Representation of the environment: To reduce the amount of collected data, we have rep-

resented the environment as a map that discretizes the environment into a collection of

ordered cells in a regular pattern N ∗M (see section 3.5).

2. Updating the grid: At each new measure the vehicle has to update its grid. The update is

computed incrementally according to the equation (3.6).

3. Making decisions (the strategies of exploration): This allows to define adaptive strategies

in which the AUVs select the next motions in order to confirm the presence of a target.

Given a source presence hypothesis (a local maxima of P(xi, j) in the mapped vicinity

of the current AUV position), two types of motions are defined depending on the sensor

model.
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Figure 4.4 – Illustration of the two strategies. Fig. (a) represents the real target positions. Predefined
waypoints (black X) and communication points (blue dots) are represented in fig. (b) and (c), the black
and white squares respectively represent the starting and ending point of the mission. Fig. (b) shows the
vehicle swathing pattern of the vehicle as initially set, without any adaptation, and Fig. (c) shows the
trajectory resulting from the adaptive strategy: 6 targets out of 23 were localized in the first case, and 14
targets are localized in the second case.
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Algorithm 2: Algorithm that generates opportunistic goal.

Require: D: the diameter of the target ;

Targetx,y: the coordinate of the target ;

P(xi, j): the probability that xi, j is the target;

a: an action ;

τ: a transition function. From an action and a cell it can generate the next cell.

1: Update grid using equation (A.1).

2: if (∃i, j : i ∈]0,N], j ∈]0,M],P(xi, j)≥ Pcon f ) then
3: <Target Found>: Clear around

4: for (∀i, j : i ∈]0,N], j ∈]0,M]) do
5: if (0 < |xi, j−Targetx,y|< D) then
6: P(xi, j)← 0;

7: P(Targetx,y)← 1;

8: end if
9: end for

10: end if
11: if (∃i, j : i ∈]0,N], j ∈]0,M],P(xi, j)≥ Ploc) then
12: <Target Found>: Clear around when there is not another target around.

13: for (∀i, j : i ∈]0,N], j ∈]0,M]) do
14: if ((0 < |xi, j−Targetx,y|< D) and

(∀k, l : k ∈]0,N], l ∈]0,M] : i f � ∃xl,k|P(xl,k) = 1∧|Targetx,y− xl,k|> D)) then
15: P(xi, j)← 0;

16: P(Targetx,y)← 1;

17: end if
18: end for
19: end if
20: <Choose Next Cell>
21: a← using the equation (4.1) or (4.2).

22: x′i, j ← τ(a,xi, j)
23: return x′i, j
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(a) Using the range-only sensor, the motion that maximizes the source detection is the one

that drives the AUV towards the direction of this maxima. A threshold can be defined

to consider the source as “treated”. A value Pcon f , leads to the confirmation of a source

presence, but not precisely localized. The algorithm 2 explains for each measured data of

one vehicle, what is the next chosen cell x′i, j. To choose the next cell the vehicle follows

the maximal value of the target. This is why in the algorithm 2 line 21 the next cell is

chosen as follows:

Maxai∈{actions}P(xi,i/xi, j=NotExplored) (4.1)

actions ∈ {le f t,right,behind, f ront,behindle f t ,behindright , f rontle f t , f rontright}

where ai is the action that allows the vehicle to move at different grid cell. This equation

shows that the vehicle is following the direction of the maximal probability value in the

map.

(b) Using the bearing-only sensor defines another exploration strategy where to localize a

target is not to drive the AUV towards the direction of the maximum but is to go in another

direction that can collect more information for the exact target location.

In the algorithm 2 line 21, the vehicle uses this function to choose the next cell to explore:

Maxai∈{actions} f (zτ(xi,ai)) (4.2)

actions ∈ {le f t,right,behind, f ront,behindle f t ,behindright , f rontle f t , f rontright}

where f (zτ(xi,ai)) is a function that predicts the future values in the Map, when the chosen

action is ai. For example, we suppose that the target is on the left side of the vehicle. If the

ai = le f t that implies that the next values of the cells have the same values as precedent,

but if ai = f ront the probability for next cells differs. Based on this reasoning the vehicle

chooses its next explored cells.

4. Adaptive Cooperative Exploration Strategy (ACES): In the case where the vehicles ex-

change data, the function of exploration (see Algorithm 2 line 21) depends on three crite-

ria:

(a) Predefined waypoints represent a passage point that the vehicle has to achieve (with

priority equal to 1).

(b) Opportunistic goals are generated according to the vehicle measurement. The point

is chosen according to the maximal value of the probability in the grid (with priority

equal to 2).

(c) Predefined communication points are important for the vehicle positioning and also

for data exchange. Due to the time delay, the vehicle has to choose between the

waypoint, the opportunistic goal and the communication point, where the last one

has a priority equal to 3.
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The higher the priority, the higher the criterion is taken into account. If the vehicle cannot

achieve all the three different criteria at a specific time, it has to achieve at least a maximal

number of them with a higher priority.

4.4 STATISTICAL RESULTS USING DIFFERENT COOPERATIVE

SCENARIOS

We constructed two groups of cooperative scenarios for statistical assessment. The first group

aims at showing that the adaptive exploration strategy is more interesting than non-adaptive strat-

egy. These scenarios consist of using two AUVs and one ASV to localize a maximal number of

targets. The second group, on the other hand, aims at showing the importance of the coverage

different cooperative scenarios. In this sense, they show the importance of the predefined sensor

range and the transect width.

4.4.1 Adaptive vs. Non-adaptive Exploration Strategies
We conducted fifty experiments to show that adaptive exploration strategy locates more tar-

gets. We setup two vehicles to explore the same area and sharing their maps to cooperate. Fig-

ure 4.5.(a) represents all the targets in the area (23 targets). The black dots on the diagonal

represents the communication points where the AUVs share data with the ASVs. These commu-

nication points aim to exchange maps and correct the vehicle drift. Due to the restricted energy

of each underwater vehicle and the use of energy when communicating, these rendezvous have to

be reduced. This is why the vehicle can explore areas without communication until some maxi-

mal distance is reached. This maximal distance is defined by the motion model, and is set so that

the position uncertainty remain below the cell size. The idea is to find a minimal number of these

rendezvous to extend mission exploration. It is a complex problem, and we proposed a simple

way to generate communication points for two orthogonal swathing patterns. For that, we define

a matrix, that has the same dimensions as the exploration map, for each vehicle. This matrix

Ak(i, j) represents the time that the vehicle “k” will be at the position (i, j). The communication

point between two (or more) vehicles is defined when two (or more) vehicles are at the same

place at the same time (i.e. if (Al(i, j) = Am(i, j)) then the vehicle “l” will meet the vehicle “m”

at the place (i,j)). After defining all communication points between vehicles (i.e. Comx,y), the

second objective is to reduce the number of rendezvous. Taking into account that each vehicle

cannot exceed a maximal distance of exploration without communicating, some communication

points cannot be removed. The main idea of the resolution is that a communication point is

removed, when it is not needed by the other vehicle.

Example : Consider the following two matrices of two AUVs.

A1(x,y) =

⎛
⎝0 1 2

5 4 3

6 7 8

⎞
⎠, A2(x,y) =

⎛
⎝0 5 6

1 4 7

2 3 8

⎞
⎠, Com(x,y) =

⎛
⎝0 0 0

0 1 0

0 0 1

⎞
⎠
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(a)

(b) (c) (d)

(e) (f) (g)

(h) (i) (j)

Figure 4.5 – Illustration of two vehicles sharing data for the same area. For the other figures: the left column repre-
sents the target detected by the first UAV, the middle column the target detected by the second UAV, and right column
the targets detected when merging both maps. Times goes downwards, each line corresponds to a communication
point.



4.4. Statistical results using different cooperative scenarios 53

We suppose that the maximal exploration distance of the vehicle “1” is 8 moves and for the

vehicle “2” is 5 moves. The intersection matrix Comx,y = 1 i f A1(x,y) = A2(x,y), otherwise

Comx,y = 0. The proposed algorithm explores the Comx,y using the exploration strategy of the

AUV1, and removes the additional communication points, but does not remove the necessary

communication points like Com2,2 that is necessary for the AUV2. So the matrix of communica-

tion points becomes Com(x,y) =

⎛
⎝0 0 0

0 1 0

0 0 0

⎞
⎠.

Figure 4.5.(b) represents the adaptive exploration strategy of the first AUV. Using the adaptive

exploration strategy, 10 targets are found by the first AUV. Figure 4.5.(c) represents the adaptive

exploration strategy for the second AUV. The number of found targets for the second AUV is 9.

In this experiment, if we combine found targets by both vehicles, the percentage of found targets

raises up to 82% at the end of the mission. The adaptive exploration strategy (G.I.G) works also

with cooperative exploration approaches and improve the results of the nonadaptive exploration

strategy (in this case, it is 54%).

���

����

����

����

����

����

����

����

����

 ���

��!���"���	"#�$
���%� ��!���"���	"#�$�!�"%�

�&'�'������

�&'�'�'�'��

Figure 4.6 – Average percentage of found targets for the adaptive and non-adaptive strategies, in the
single UAV and two-UAVs cases.

We have performed the experiments with different initial target distributions and computed

the average coverage for each exploration strategy. The average results are gathered in figure 4.6:

for the number of found targets criterion, the best strategy is the G.I.G, using multiple vehicles

(81%). The overall mission execution time for each mono robot and multi robots in our experi-

ments is naturally reduced by a factor of two when using two AUVs.

In general, for mission execution, each criterion (the number of found targets, the precision

and the exploration time) is weighted to favor one strategy or another. In the case where all the

criteria have the same weight, the best strategy is the Adaptive G.I.G for multiple vehicles.

4.4.2 Importance of the Coverage
Each AUV has a sensor range r and an transect width W (see figure 4.7a), which define the

coverage r/W . This coverage value naturally impacts the obtained results.

We conducted fifteen experiments to assess the influence of this coverage rate for the non-

adaptive and adaptive G.I.G strategies. The strategies are compared for given values of r and

W with respect to the execution time, the precision of the target location and the number of

confirmed targets.
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Figure 4.7b represents two coverage percentages. The white bars represent the found targets

using 100% coverage 2, and the black bars represent found targets using 125% coverage.

The figure shows that the more effective strategy is the G.I.D for a coverage of 125%. This

percentage means that there is a redundant information at the vehicle sensor. This redundancy is

useful to localize targets. For each strategy, we have to find the best percentage to avoid unused

redundancy.
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(b)

Figure 4.7 – figure 4.7a : Definition of the vehicle sensor range r and the transect width W. figure 4.7b:
Illustration of the various strategies percentage of found targets for two different values of coverage per-
centage.

CONCLUSION

In this chapter we presented two types of exploration strategies. The evaluation of the two

exploration strategies is based on the number of found targets, where cooperative adaptive ex-

ploration strategy naturally imporves the number of found targets. To improve our results we

wanted to see what is the effect of the sensor range and the transect width in the percentage of

found targets, where these two help the vehicle to improve the number of found targets.

2. which was the case of the results shown figure 4.6.



5
PROPOSED ARCHITECTURE AND

DEPLOYED SYSTEM

In this chapter we discuss the requirements of our system

and explain the used architecture. It relies on the T-ReX
architecture, to which we add two components to allow

the system to achieve these requirements. All the details

about our cooperative system are presented in this chapter.

DAVID HUME, SAYS: «Nothing appears more surprising to those who consider human affairs

with a philosophical eye, than the ease with which the many are governed by the few.»
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5.1 INTRODUCTION

The SPA (Sense-Plan-Act) paradigm uses an embedded planner and an execution control

loop. The planner is the most costly, in terms of computation time, and can limit the reactivity of

the system. Nevertheless, the planner reactivity is important when the world is highly dynamic.

When the planner deliberates for the whole mission time, it can affect the reactivity of the system.

In such cases, distributing the tasks to several subcomponents can be used as a method to reduce

the planner workload. This suggests that each subcomponent has its own control loop and its

own world perception. Due to that, the need is to synchronize each subcomponent perception

with the other.

The T-ReX architecture is inspired by the SPA paradigm with the possibility to run at dif-

ferent rates of reactivity. Each subcomponent is associated to a specific objective. We give more

details about T-ReX architecture in section 5.3, after presenting the requirements of a control

architecture and existing work on control architectures in section 5.2. In section 5.4, we present

the two components we added in this architecture. One allows to generate opportunistic goals

during mission execution, the second component allows the cooperation between vehicles.

5.2 ROBOT CONTROL ARCHITECTURES

A control architecture can be defined as an organization of components for controlled dy-

namic systems.

5.2.1 Control architecture requirements
Several requirements aim to make autonomous robots accomplish their missions. We detail

some requirements for each robot to control the execution of a given mission [Ingrand07]:

Reactivity: The robot has to take into account events with time bounds compatible with effi-

cient achievement of its goals and deal with the dynamics of the environment.

Robustness: The robot system should be able to exploit the redundancy of the processing

functions.

Versatility: At any time, the robot system can work with one or more robots, the reactivity of

the robot being not dependable on the number of robots.

Autonomy and adaptability: The robot system should be able to modify actions and refine

the tasks according to current goal and execution context. New goals can be generated based on

on-line measurements, that the robot takes into account to adapt its initial plan.
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Goal driven execution: The vehicle tries to accomplish mission objectives given available

time, resources and system constraints. All these mission objectives produce a plan that the

vehicle will execute.

Flexibility: During the plan execution, some failures can occur and the robot in most of the

cases aborts the mission. The objective is to maintain the flexibility of a plan for a given mission.

Passive/Active/Automatic fault detection: When a fault detection and identification does not

require perturbation of the system, the fault detection is passive. The active fault detection allows

the possibility to issue actions to perturb the system in a manner that will help discrimination

between possible fault states. The automatic fault recovery is able to modify the mission plan for

the vehicle and safely continue with a modified mission, which is feasible under a new vehicle

configuration.

In the next subsection, we discuss different existing control architectures.

5.2.2 Different control architectures
The control architecture for underwater vehicles should be able to perform most of the prece-

dent requirements. Valavanis et al. [Valavanis97] classified different existent control architec-

tures for underwater vehicles. Our classification is inspired by their work.

a. Subsumption architecture
This architecture is a set of behaviors that are working together. The behavior-based control

architecture is organized along predefined behaviors [Dudenhoeffer00], that interact with the

world. The behavior-based architecture does not create a central world model. This architecture

was introduced by Rodney Brooks [Brooks91]: it was one of the first attempts to describe a

mechanism to develop behavior-based systems. A subsumption architecture is a decomposition

from behaviors into smaller behaviors used to execute one task (e.g. follow a straight line).

Each behavior has a hierarchical bottom-up design, where each higher behavior in the hierarchy,

takes into account the decision of the lower layer behavior. An example of a behavior-based

architecture was deployed in the ADVOCATE II project (ADVanced On-Board Diagnosis and

Control of Autonomous Systems II [Sotelo03]).

ADVOCATE II is an on-board diagnosis and control system for an underwater or ground

vehicle. The system has several modules where each of them is responsible to execute one task

(e.g. diagnosis module, robot piloting module). ADVOCATE II has a system of diagnostic that

results from conditional rules.

Similarly, DAMN (a Distributed Architecture for Mobile Navigation [Rosenblatt95]) is a

distributed architecture, where several modules concurrently share the control over the robot by

sending votes. These votes are weighed and the winning vote is executed by a central DAMN
Arbiter. This architecture divides the behaviors into five focussed behaviors, represented in
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Figure 5.1 – Illustration of the DAMN architecture [Rosenblatt95]

figure 5.1. Each behavior requires only a part of the world knowledge and receives the sensory

data which is directly relevant to its decision needs.

This architecture is interesting for centralized decision making, but at the same time if the

Arbiter fails, the decision will never occur at all (this is the case for all centralized architectures).

The Orca architecture [Turner95] uses procedural schemas also called p-schemas, to manage

different goals. A p-schema is a predefined schema 1 that helps the planner to find the associated

schema and then send the associated commands. Figure 5.2 shows different components that

manage the vehicle. Given an input from a user or other vehicles, the Event Handler handles this

input and sends it to the Agenda Manager list. The Schema Applier takes one event at a time and

applies a p-schema using the Schema Memory.
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Figure 5.2 – Illustration of the Orca architecture [Turner95]

After finding an executable action, the Schema Applier sends the action to the communication
module. This architecture appears to have been used for simulation only. It is not clear how

the approach is scalable with respect to the number of schemas. Moreover, it does not reason

explicitly about time and resources. An evolution of Orca has been done in 2008 by Albert et

1. It is a set of predefined programs, that plays the role of reactive actions.
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al. [Albert08], where a p-schema planner was included. This planner is reactive and it is possible

to plan using temporal tasks. IDEA [Muscettola02] is the first architecture to use a time-based

representation, with an unified declaration model and an hybrid executive that integrates planning

and execution in one framework. This architecture has been used for different robotic missions.

For underwater vehicles, we can discuss the architecture used for the Eric AUV [Yuh96] and

the Odyssey II AUV [Bellingham94]. Eric AUV is used at the Key Center Robotics Laboratory

at the University of Technology at Sydney. It is a three-layered architecture (see figure 5.3):

the preservation layer, the exploration layer and the socialization layer. The preservation layer

has as objective to avoid obstacles, the exploration layer perform high level navigation and the

socialization layer makes object following behavior.
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Figure 5.3 – Illustration of the Eric AUV control architecture

Behavior-based systems facilitate highly reactive execution but lack a systematic framework

for coordination across behaviors. As a consequence, it is difficult to synchronize behaviours

and the scalability of the system depends on the number of behaviours. Also, these architectures

do not take into account durative actions, which is crucial when one deal with limited mission

execution time or cooperative approaches (e.g. to communicate, both underwater vehicles need

to be in a specific location at a fixed time).

b. Hierarchical architecture
Hierarchical architectures divide the system into several layers, where the highest layer is

responsible of the whole mission execution. The lower the layer is, the more specific is the

role attributed to the layer. The structure is hierarchical, where the communication between two

levels can occur only with adjacent layers. The higher layer sends commands to the lower layer

and receives observations from the lower layer.

As example of underwater control architectures, we can refer the ABE architec-

ture [Yoerger94] (autonomous Benthic Explorer). This architecture has two layers, where
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each layer has different embedded energy and different computational capabilities. The

EAVE [Blidberg90], MARIUS [Pascoal95], and OTTER [Rock95] are also hierarchical ar-

chitectures used for underwater vehicles.

Figure 5.4 – Illustration of the LAAS architecture [Ingrand07].

The LAAS architecture [Alami98] is a three-levels architecture which consists of functional,

decisional and executive layers (figure 5.4):

– The Functional layer: This layer contains the perception and action functional components

of the robot. Control loops and data interpretation are encapsulated into GenoM [Fleury97]

modules. The modules have direct access to the robot hardware. These modules are acti-

vated by requests sent by the decisional layer, according to the task to be executed. They

send reports upon completion and may export data in posters to be used by other modules.



62 Chapter 5. Proposed Architecture and Deployed System

This layer provides a level of modularity and generality that eases modules integration.

– Decisional layer: This layer provides decision capabilities to the robot. A task planner

IxTeT [Gallien06] and a supervisor (OpenPRS [Ingrand96]) are located in this layer. Ix-

TeT is a temporal constraint-based causal link planner. It uses CSP techniques (Constraint

Satisfaction Problem) to maintain the consistency of the plan constraints. In particular, the

planner uses a Simple Temporal Network [Dechter91] for the temporal constraints, where

the plan is a series of state variables over finite symbolic and numerical domains.

– The execution control: It is the interface between the decisional and the functional layer.

It controls and coordinates the execution of the functions distributed over the various

functional layer modules according to the task requirements. It achieves this by filtering

the requests according to the current state of the system and a formal model of allowed

and forbidden states.
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Figure 5.5 – Illustration of the differences between reactive and delibrative control architectures.

5.2.3 Summary
In this section we briefly presented different existing control architectures. The reactive or

the deliberative architectures are the most used in the literature. Each architecture has different

characteristics with respect to the speed of response, model dependence, and predictability (see

figure 5.5).

Both reactivity and deliberation are essential to design a control architecture. To deal with

these two notions, we have to find a threshold that can make both work together in harmony.

The T-ReX architecture (Teleo-Reactive EXecutive) [McGann07] is a goal-oriented archi-

tecture, with embedded automated planning and adaptive execution. This architecture provides
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to each vehicle the capability to generate and execute its plan onboard. Rather than being ex-

clusively deliberative or exclusively reactive, this architecture incorporates planners that can deal

with different planning horizons and deliberation times. These different times make T-ReX both

reactive and deliberative. In the next section, we present the T-ReX architecture in more details.

5.3 THE T-REX ARCHITECTURE

To endow each vehicle with some autonomy, we propose to use an architecture for planning

and execution control called T-REX [McGann07], originally developed at MBARI (Monterey

Bay Aquarium Research Institute). This Architecture is inspired by the IDEA [Muscettola02] ar-

chitecture. The T-ReX architecture provides to each vehicle the capability to plan and execute its

plan onboard. Before explaining the different components deployed for the T-ReX architecture,

we explain the used planning system.

5.3.1 Planning system in the T-ReX Architecture
The EUROPA [Frank03] planner is the main component of the T-ReX architecture. This

planner supposes that the world is fully observable. The world is described by a set of state vari-

ables/tokens/activities, that are functions of time. During planning, the evolution of the tokens is

specified in a timeline.

a. Tokens and timelines
The basic data structures used in T-ReX are timelines that represent the evolution of state

variables over time. These timelines have an ordered set of activities called tokens that are

mutually exclusive. Each state variable or token can take only one value at a time.

For example :

holds(Path,10,20,Going(WaterPlace1,WaterPlace2)) (1)

Path represents a timeline and Going(WaterPlace1, WaterPlace2) from 10 to 20 is a

token. It means that the robot will move from the WaterPlace1 location to the Wa-
terPlace2 location between 10 ut 2 to 20 ut. Temporal constraints can be associated

to tokens.

b. Configuration rules
These rules define a set of constraints of precedence or exclusion between tokens. These

constraints can be compatibilities (temporal constraints taken among the thirteen temporal rela-

tions of [Allen83]) or guards (conditional compatibilities similar to the conditional statement in

traditional programming language).

2. unit of time
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Figure 5.6 – An example that illustrates the use of timelines, activities and constraints in T-ReX.

A compatibility represents all Allen’s temporal relationships: meets, contains, met_by, starts,
equals, parallels, start_before_end, starts_during, starts_before, starts_after, ends, con-
tains_start, contains_end.

A disjunction of compatibilities can be defined, where a variable regulates the choice between

disjunctions. This variable is called a guard.

Figure 5.6 represents the implemented timeline for the precedent example. To per-

form a Going from the WaterPlace1 location to the WaterPlace2 location, the robot

has to be At the WaterPlace1 place before doing the Going. So, the associated

compatibility between At(WaterPlace1) and Going(WaterPlace1, WaterPlace2) is

Met_by.

The activity Going(WaterPlace1, WaterPlace2) starts. At the end of the Going token

execution, the vehicle should be At the WaterPlace2 or Around WaterPlace2. This

disjunction of constraints can be written as follow:

case γ = 0 : At(WaterPlace2) meets Going(WaterPlace1,WaterPlace2)
case γ = 1 : Around(WaterPlace2) meets Going(WaterPlace1,WaterPlace2)

γ is called a guard. All these components (timelines, activities and constraints)

are implemented in NDDL (New Domain Description Language [Bernardini08])

developed at NASA Ames.

We want to add more constraints in the precedent example, where the ve-

hicle can only move in the case where its gulper 3 is off, represented by:

holds(Instrument, t ′b, t
′
e,O f f ()).

Generally, the rule will state that for any interval of the form

holds(Path, tb, te,Going(A,B))

3. A gulper is used to take water sample.
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there exists another interval holds(Instrument, t ′b, t
′
e,O f f ()). The associated con-

straint is written as O f f () contains Going(A,B).

This constraint is represented in the temporal constraint by t ′b ≤ tb and te ≤ t ′e (see

figure 5.7).
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Figure 5.7 – Illustration of a compatibility using EUROPA and the associated constraint network.

5.3.2 Planning problem and plan resolution in the T-ReX architecture
The planner is given a planning domain (D) and a planning problem (P). The planning

domain consists in the declaration of tokens, timelines and configuration rules. The planning
problem represents the initial world state tokens to achieve and variables declaration (e.g. in the

previous example WaterPlace1 is a variable).

a. Planning instance
A planning instance (I) is represented as a pair of planning domain (D) and planning problem

(P) where I =< D,P >.

b. A valid plan
We define a valid plan as a solution if all timelines are filled with tokens without any gap 4

(see figure 5.8) and all the associated configuration rules are satisfied 5.

c. Plan resolution
Given a planning instance, EUROPA starts the resolution from the planning problem and

incrementally refines the plan by adding and ordering tokens on timelines until finding a valid

plan. This resolution is a search in the space of partial plans [McAllister91]. Using the planning
instance EUROPA finds a final plan following these steps (see figure 5.9):

4. In IxTeT a causal link between state variables is imposed

5. The configuration rule is satisfied if all the constraints are in the resulting plan.
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Figure 5.8 – Illustration of location timeline with and without a gap.
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Figure 5.9 – Illustration of a plan construction using the EUROPA planner

1. Planning problem: We define a candidate plan as an ordered or unordered tokens

intervals. A plan is valid when all the constraints are satisfied. The plan is repre-

sented as a constraint network, each token interval is generalized by variables (e.g.

Going(WaterPlace1,WaterPlace2) is generalized by Going(Variable1,Variable2)),

which generate a set of constraints on the temporal variables. So, at each new token in

the timeline, several constraints are added to the constrained network (see figure 5.7).

To find a valid plan according to a candidate plan, the planner has to: detect the flaws,

choose the flaw to resolve and apply the flaw resolver to the plan resolution (see figure 5.9).

2. Flaw detection: EUROPA defines three types of flaws:

– A threat or object flaw: This flaw occurs when an order is required for tokens in an

associated timeline. This occurs when two mutually exclusive tokens are in the same

plan. For example, if this two tokens Going and InactiveGoing are in the plan, that

means they have to be ordered in an exclusive way (i.e. the execution interval of the

Going is excluded of the executed before the execution interval of the InactiveGoing).

– An open condition or token flaw: When a token is required to satisfy another token but

not ordered yet in the plan, there is an open condition. Token flaws are resolved by

inserting the new token in the plan.

– An unbound variable or variable flaw: This occurs if there are variables of tokens al-

ready in the plan with unspecified values. The resolution of variable flaws are addressed
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by specifying values from variable’s domain.

These three flaws that can occur in the partial plan should be selected and then resolved

by the planner to complete the plan. When there are no flaws left (the plan database is not

inconsistent), the plan is considered valid and the search is complete.

3. Flaw selection: It establishes the order in which flaws are treated for resolution. An

algorithm is defined to make flaw selection, where this selection will depend on the type

of the flaw. This algorithm gives priorities on the timelines, and chooses to resolve the

flaw that is on the priority timeline. It can also choose the flaw according to its execution,

for example the earliest first. In our case, the priority is given for the PathController
(discussed in section 5.4.1).

4. Flaw resolution: when the flaw is selected, the planner executes appropriate proce-

dures to solve a flaw. These procedures include token activation, token merging, token

ordering, variable binding. For the IxTeT planner, the flaw selection strategy proposed

in [Ghallab94] extends the principle of least commitment to temporal planning. A least-

commitment strategy defines a selection criterion applicable to all types of flaw. The flaw

preferably chosen at a search step is the one for which the branching factor in the search

tree is minimal, i.e. the flaw with fewest resolvers (more details about the flaw resolution

can be found in [Lemai-Chenevier04]).

5.3.3 The deployed T-ReX architecture
To ease the work of the planner, the idea is to divide its work into subcomponents called re-

actors (R = {r1 . . .rn}), according to the principles initially introduced in IDEA [Muscettola02].

Each reactor is associated to achieve specific goals and needs to be synchronized with the other

reactors. Every reactor has a planner with a different planning horizon λr, that represents the

time to deliberate and a look-ahead π that represents the window of planning, where the planner

can order tokens. Every reactor can be deliberative or reactive, depending on the horizon length

and the deliberation time. Each reactor owns a number of timelines called internal timelines and

a number of observable timelines called external timelines (which are internal to another reac-

tor). To avoid incompatibilities between timelines and to guarantee a converging update process,

each of them is owned by only one reactor. For internal timelines, the reactor can modify the

execution order of the tokens. For external timelines, the reactor cannot modify the execution

order and can just observe the values on the timeline.

The reactor: Figure 5.10 shows the architecture of one reactor in the T-ReX architecture.

The main elements of the reactor are the following:



68 Chapter 5. Proposed Architecture and Deployed System

���������

DeliberativeReactor 

��		�
�

���������
����
����
�

������
�

�����
�����
������
�����


���

�������
Scheduler  

commands 

Goals  

Goals 

Figure 5.10 – The structure of a reactor in theT-ReX architecture

– Buffer: It records goal requests and observations. This is important to clearly distinguish

observations from planner choices.

– Plan database: It stores the partial plan.

– Planner: It is an algorithm to resolve flaws in the plan. The planner looks out in the future

by a specified horizon that is defined in the reactor configuration. The T-ReX architecture

uses the EUROPA planner [Frank03].

– Synchronizer: The synchronizer is a second instance of the EUROPA solver, configured

to only solve a restricted set of flaws at the current tick.

– Dispatcher: It is an algorithm to dispatch goals to internal timelines and observations to

external timelines. Goals are dispatched according to the timing capabilities of the server.

At each clock time the dispatcher send goals from one external timeline to the owner of

the timeline.

– Controller. It implements methods invoked by the agent for handling clock start and stop

events. It controls the planner, synchronizer and dispatcher.

We now explain in details the main used components in the T-ReX architecture.

5.3.4 A database
A database is the planning instance which holds the current plan, all the tokens to the planner,

the constraints between tokens and the associated timelines.

5.3.5 A deliberative (planner)
A planner is used to populate timelines with tokens according to what is defined in the

database. Each reactor has a planner with a different planning horizon λr and look-ahead π .
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The EUROPA [Frank03] planner is composed by the planning domain (D) and the planning

problem P that are defined in the database. Additionally, the planning instance (I) has a planning
horizon (H). This horizon means that the planner only cares about tokens of the system in

the temporal window (or the look-ahead) between [0,H]. The initial configuration I is a set of

tokens placed on their associated timeline. The figure 5.11 shows different time scopes used in

the T-ReX architecture. The following example explains the different reactors and the associated

time scope of the figure 5.11.

Figure 5.11 – Illustration of different temporal scopes and tokens used in the T-ReX architecture at
MBARI. Three different reactors are shown, with different look-ahead and planning horizon. The dark
color represents the internal timeline and the fair color represents the external timeline [McGann08].

The Mission Manager reactor has to execute a transect 6 with a look-ahead of 22

hours (the whole mission) and a planning horizon of 60 seconds. The Mission Man-
ager reactor can send goals to the Executive reactor. This last reactor has less time

to deliberate (equal to 1 second) and a lower planning horizon (equal to 5 seconds)

than the Mission Manager (see figure 5.11). In this example, the Mission Manager
reactor is the deliberative reactor and the Executive reactor is the reactive reactor

with less deliberation time.

In the figure 5.11 the Mission Manager can modify the transect timeline but it can just send

goals to the Go timeline.

The planner is responsible for producing a consistent plan to accomplish the goals in this

horizon, for a given observed system state.

The planner solver contained in the planner (see figure 5.10) is an instance of the EUROPA

Solver. In the T-ReX, the configuration of a solver is easy to change.

6. It is a straight line, defined by a beginning and end point.
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5.3.6 A dispatcher and a synchronizer
The dispatcher allows goals(Gr) to be transmitted to other reactors. This is done at each unit

of time called a tick.

The synchronizer coordinates observations (Or) from other reactors. These observations are

given by external timelines (Er). These external timelines can be observed but cannot be modified

by this reactor. This synchronizer is a second instance of the EUROPA solver, configured to

resolve a restricted set of flaws at the current tick. If a consistent update for a token is possible,

the synchronization will be done very quickly. When there is a failure (inconsistency), it will

force the controller to throw away prior planner commitments.

The dispatcher is an algorithm that sends goals and facts to external and internal timelines

respectively. Goals are dispatched according to the timing capabilities of the server. Observations

(facts) are dispatched to all observers (i.e. any reactors referencing this timeline as an external

timeline) if the value changed at that tick.
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Figure 5.12 – Illustration of the T-ReX Architecture with two reactors. The Mission Manager reactor is
a deliberative reactor and the Executive reactor is the reactive reactor.

5.3.7 The developed reactors in the T-ReX architecture
The T-ReX architecture at MBARI uses two reactors and the VCS (Vehicle Control Subsys-

tem). The different used reactors (see figure 5.12) are:

– The Mission Manager represents the high level reactor that satisfy the scientific objectives.

This reactor has a look-ahead of the whole mission.



5.3. The T-ReX Architecture 71

– The Executive reactor is the reactive reactor. It takes into account all generated goals from

the Mission Manager, plan and sends behaviors to the vehicle controller. The planning

horizon of this reactor is smaller than the Mission Manager reactor; that is why it is

considered as a reactive reactor.

– The Vehice Control Subsystem (VCS) gives an interface to the existing AUV functional

layer and encapsulates access to commands and vehicle state variables. The VCS has a

latency equal to zero.
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Figure 5.13 – Illustration of the T-ReX Architecture used at Willow Garage.

5.3.8 The T-ReX architecture for PR2
The T-ReX architecture has been also used at Willow Garage by Connor McGann for the

PR2 (Personal Robot 2) robot [Meeussen10]. This robot is able to move all around the office,

open doors and when it needs energy, it can plug in a power source in the laboratory. The T-ReX
architecture is used as an executive controller that executes and integrates these high level tasks.

The T-ReX architecture of PR2 is composed by (see figure 5.13):

– master: this reactor is the high level planner. It is responsible of breaking the navigation

into traverses of open regions and doorways. These regions are helpful when the robot

needs to plugin or to open doors.

– driver: this reactor is responsible of driving the vehicle from one place to another, depend-

ing on the high level tasks given by the master reactor.

– doorMan: this reactor detect the door and can compute the distance between the robot and

the door.

– recharger: this reactor is related to management of the battery power.
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– safety: this reactor ensures safety during navigation, for example obstacle avoidance, or

checking that the robot arm or power plug are stowed before the robot moves.

5.4 DESCRIPTION OF THE IMPLEMENTED MODEL AND THE AL-

GORITHMS IN THE COT-REX ARCHITECTURE

To find a cooperative architecture that is reactive and deliberative the robot has to achieve its

mission and adapt its plan. In the scenario we consider, the objective is to detect and localize

targets. We assume that the vehicle has a predefined ordered set of goals to achieve (way points,

communication rendezvous) that defines a priori exploration strategy. We added the MapReactor

as a new reactor in the T-ReX architecture: it is the component that takes into account the

perception of the vehicle and generates new goals for the Mission Manager, using the processes

presented in chapter 3 and 4.

To make each vehicle cooperative we added a CoopReactor that gets sensory data from other

vehicles and passes them to the MapReactor and vice versa. Figures 5.14 and 5.15 show our

proposed architecture respectively in simulation and real mode, where each reactor has a specific

role. The new architecture is called CoT-ReX, where the first two reactors are similar to the one

proposed by the MBARI (see figure 5.12). This architecture consists of the following reactors:
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Figure 5.14 – Illustration of the proposed architecture in simulation mode

– The Mission Manager represents the deliberative reactor. It manages high level goals of

all the mission. This reactor has a look-ahead of the whole mission.

– The Executer (Functional level) is the reactive reactor. The planning horizon of this reactor
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Figure 5.15 – Illustration of the proposed architecture on the real platform

is smaller than the Mission Manager reactor.

– The MapReactor (Generation of opportunistic goals) has the role to generate opportunistic

goals. These goals are taken into account by the Mission Manager.

– The CoopReactor (Collaborative mechanism) is the cooperative reactor which communi-

cates with the other vehicles through the ASV.

– The Simulator: This reactor simulates the vehicle motion by defining maximum and

minimum limits of the vehicle speed, pitch, heading, depth, etc.

5.4.1 The timelines in the Mission Manager
The different timelines in the mission manager reactor (see figure 5.14) are explained below:

– MissionGoals: This internal timeline contains three different tokens: Inactive, Pickup and

PathSurvey. The Inactive token does not do anything. The Pickup token lets the vehicle

to take sample of a specific area. The PathSurvey is a token that defines according to

two points the survey that the vehicle can do. For example, in figure 5.16 the use of the

PathSurvey defines the two points A, B and the transect width for the exploration. The

PathSurvey will generate the other waypoints according to a specified distance of transect.

Each waypoint is represented by a Going from the beginning of the transect to the ending

point. Between each generated waypoint there are other constraints of precedences that

should be also taken into account. For this example the PathSurvey contains different
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Going(x,y) tokens that achieve the required path (x and y are the computed waypoints,

represented in figure 5.16 by fair circles).

Transect width Generated points 

Pre-defined points 

A 

B 

Figure 5.16 – Illustration of an example using a PathSurvey. The points A and B are the parameter points
defined at the PathSurvey and the other points are the generated points using the PathSurvey according to
a predefined transect width.

– PathController: It is an external timeline that implements the constraints of the navigation

path. PathController is used for general vehicle positioning and to deal with the path

constraints. Note that this is not designed to spatially constrain the vehicle motion in

general, but only make the vehicle traverse a path when required to do it. This timeline is

active when the token Going is active otherwise the associated token is Inactive.

5.4.2 The timelines in the Executer
The executer reactor has less look-ahead (5 ut) and planning horizon (1 ut) than the Mission

Manager reactor. The used timelines and the associated tokens are:

– Actions: This timeline is an internal timeline, that is executed on one unit of time. Two

tokens are associated to this timeline: Idle that does nothing and DoBehavior that is

used to give properties to other tokens. For example, if a token is preceded by the token

DoBehavior, at the end of the execution of the DoBehavior, the token can be directly

executed. In another case, if the token is not preceded by this DoBehavior, the token will

be executed at the last time of the token interval.

– PathController: This timeline is an internal timeline that allows the vehicle to move and

control its path.

– Mutex: It is an internal timeline used to execute one token at time. Two tokens are defined:

InUse means that there are tokens that are executed, Free means that there are no tokens

that are executed.

– Communication: This timeline is an external timeline that allows the vehicle to com-

municate or not. Communication timeline contains a token called Active and another

Inactive. When the token is Active, then the vehicle has to communicate, otherwise the

communication is not allowed.
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– VehicleState: It is an external timeline that gives the state of the vehicle at any time. The

state of the vehicle is represented by the depth, northing, easting, etc.

– SetPoint, Ascend, Descend and Waypoint: All these timelines are external and they give

the location of the ascend/decscent/setpoint. In the simulation case, the path is computed

with predefined functions and values.

5.4.3 The architecture of the MapReactor
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Figure 5.17 – Illustration of different function in the MapReactor

The MapReactor (see figure 5.17) component is composed of a synchronizer, a database and

a dispatcher. The database contains the map of the whole exploration zone and the different

associated timelines. According to the computed map and the existing timelines, the vehicle

changes its strategy of exploration by generating goals.

timelines: The implemented timelines are (figure 5.18):

– Communication: This timeline is an external timeline used to know the next nearest

communication point. This timeline can be Active or Inactive depending on the defined

execution time. When the MapReactor generates an opportunistic goal, it estimates the

needed time to reach both communication point and the opportunistic goal (see chapter 4

for more details). To validate the new goal, the MapReactor needs to know the predefined

time of the communication token. This is why the communication token is necessary for

the MapReactor.

– VehicleState: This timeline is external to the MapReactor and is used to provide the

vehicle state for example heading, nothing, etc.

– SetPoint, Ascend and Descend are the behaviors of the vehicle, that are external timelines.
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Algorithms: To allow the vehicle to change its exploration strategy we have to represent the

perception of the vehicle, the used timelines, the fusion of the measured data with preceding

measurement, and finally find a function to compute the next goal (see chapter 4). The algorithm

for exploring a discrete environment (grid) is outlined below:

1. Update the grid using the measured data.

2. Make decisions: This allows to define adaptive strategies, in which the AUVs selects the

next motions in order to confirm the presence of a target.

3. Adaptive Cooperative Exploration Strategy (ACES) (see chapter 4).
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Figure 5.18 – Illustration of different timelines used at each reactor in the T-ReX architecture
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5.4.4 The architecture of the CoopReactor
To allow the cooperation between vehicles, they have to be at predefined rendezvous points to

communicate with the ASV. These rendezvous points allow vehicles to exchange information. To

manage these exchanges we added a new reactor called “CoopReactor”. This reactor is composed

of a synchronizer, a dispatcher and a database. This database contains predefined rendezvous

points for the whole mission. The internal timeline of this reactor is the Communication timeline,

when the used token is Active than the communication is active otherwise the token Inactive is

used (see figure 5.18).

In our experiments a client/server protocol is implemented where data can be exchanged

between vehicles. The exchanged data can be the explored grid or the failed tasks. All these

exchanged information can help the vehicle to localize the target.

CONCLUSION

In this chapter we presented a cooperative architecture for multiple robots with the possi-

bility to communicate. This architecture allows each vehicle to be autonomous and to use the

collected information by the fleet of vehicles to localize the target. We used an existing architec-

ture for planning and execution control (T-ReX) which allows for deliberation as well as reactive

behaviors.

Two new reactors were implemented to improve the predefined strategy for area coverage

exploration and to allow for cooperation.

The MapReactor was tested using a simulator platform at IFREMER. This is an “hardware

in the loop” simulator which uses the same controller than the one used on Asterix (one of

IFREMER’s AUVs): these tests are presented in section 6.3 of the next chapter.

In the next chapter, we show the realization of various target detection cases to illustrate the

capability of our architecture to embed cooperative algorithms.





6
SIMULATION RESULTS

We illustrate the capacities of our system for a target de-

tection scenario in different configurations. We then show

the integration of our architecture with the simulation en-

vironment at IFREMER. The results we get are encourag-

ing in terms of portability of our system.

EDWARD DEBONO, SAYS: « Creativity involves breaking out of established patterns in order

to look at things a different way.»
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6.1 INTRODUCTION

To prove the flexibility, extensibility and efficiency of the Adaptive Cooperative Exploration

Strategy (ACES), it is necessary to evaluate the cooperative algorithms by using different case

studies. For this purpose, we defined different cases that uses two AUVs and one ASV. All of the

cases are for target localization and are evaluated in terms of number of located targets, the errors

between the constructed map and the real world, and the type of exploration strategy (adaptive

or not).

We begin this chapter by first describing the obtained results in our testbed. The obtained

results using the IFREMER simulator are then explained in section 6.3. Finally, we conclude the

chapter by discussing the obtained results and the future extensions.

6.2 SIMULATION RESULTS FOR TARGET DETECTION

6.2.1 Simulation environment

Figure 6.1 – An example of an obtained map and trajectory using one underwater vehicle.

The architecture we used is a cooperative T-ReX architecture that includes the exploration

strategy ACES. Each cooperative T-ReX architecture represents one underwater vehicle. Every

vehicle simulation is run in a MAC OSX, 2GHz Intel Core 2 Duo processor and a memory of 2

Go.

We use Gnuplot to show the path evolution of the vehicle and the final map obtained for

each vehicle. Figure 6.1 shows an example of an obtained map (represented in the upper right

of the figure) and the trajectory of the AUV (represented at the bottom part of the figure). The

upper left part of figure 6.1 represents the real world (the darker the color, the lower the target

presence is).
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Moreover, in our experiments we represent, in figures, waypoints as cross points and com-

munication points as circles. In our studies the marine target is a hotspot, and we only considered

its temperature properties.

6.2.2 Mission definition and role of each underwater vehicle
We simulate how underwater vehicles collaboratively locate the targets. In the first case

study, our aim is to find the best predefined exploration strategy for underwater vehicles and

trying different strategies that can be used for underwater vehicles. The ASV moves at the

surface and the AUVs explore the deep sea to locate targets. The ASV is both used to help the

communication between AUVs at predefined communication points and to re-localize AUVs.

The AUVs, on the other hand, are used to execute pre-defined missions with a possibility of

modifying the trajectory.

In the second case study, our aim is to evaluate the best exploration strategy during mission

execution. In this sense, two AUVs are required to explore the same area to localize and sample

a maximum number of targets. AUV2 explores the area at a deeper depth than AUV1. AUV1

explores and localizes targets, and also plays the role of the ASV to re-localize AUV2.

In the last case study, three underwater vehicles are deployed to localize one single target.

Two AUVs are at different levels and the ASV is at the surface but can also collect data at the

surface to localize the target. In the first and the second case of study, the ASV is replaced by the

AUV1. This AUV is at 10 meters deep from the surface, that makes it easy to re-localize itself

and the other vehicle.

6.2.3 The phases of case studies
All case studies are composed of two main phases:

1. Mission preparation: The operator specifies the exploration strategy of each vehicle (e.g.

waypoints). In this manner, the operator can use different kinds of predefined strategies as

shown in figure 6.2. We will evaluate these types of exploration strategies in the first case

study.

2. Mission execution: The AUVs explore the area using a predefined exploration strategy

(defined at the mission preparation phase). This strategy can then be modified by using

the data collected from the deep sea to have a precise location of the targets. The second

and third case studies show the obtained target detection using two and three underwater

vehicles respectively.

6.2.4 Case 1: Evaluation of cooperative predefined exploration strategies
In the first experiment, we use the predefined exploration strategy shown in figure 6.2.(a).

Figure 6.3 represents the mission preparation, where predefined waypoints are shown as crosses

and RDV points as black circles.
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Figure 6.2 – Different predefined exploration strategies that can be used for underwater vehicles.

Waypoint  

End mission point 

Start mission point 

Time precedence between two waypoints (<) 

Waypoint  

End mission point

Start mission point

Time precedence between two waypoints (<) 

Communication point (RDV) 

Figure 6.3 – All predefined waypoints and communication points for each underwater vehicle. Arrows
represent the temporal execution precedence between two waypoints. This precedence determines the
transects of each underwater vehicle.

(a) (b)

Figure 6.4 – Illustration of a map that results from an exploration strategy of two underwater vehicles
using the predefined mission described in figure 6.3. (a) shows the real world. (b) shows the resulting
trajectory and the obtained map at the end of the mission execution of both vehicles.

Figure 6.4b shows the obtained exploration strategy and the map at the end of the mission

execution using a non-adaptive exploration strategy. The map resulting from an adaptive cooper-

ative exploration strategy is not different than an adaptive exploration strategy without coopera-
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(a) (b)

(c)

Figure 6.5 – Illustration of the obtained results using two AUVs. The AUVs share the exploration area and
communication points. (a) and (b) are the predefined path for AUV1 and AUV2 respectively. (c) represents
the obtained path and map after execution
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Figure 6.6 – Statistical results comparing two types of predefined exploration strategies with separated
and a common space. The two criterions of comparison are: (a) the percentage of found targets (b) and
the error of the obtained map at the end of the mission exploration.

tion. This result is a consequence of the separated exploration space of each AUV: an AUV does

not add any information to the other vehicle measures.

That is why, we want to show that other predefined types of exploration strategies can help

each vehicle for a better map construction and in general it is the same with cooperative ap-

proaches.

In the second experiment, we use the predefined exploration strategy shown in figure 6.2.(c).

Figure 6.5a and figure 6.5b, respectively, shows a predefined exploration strategy for both AUV1

and AUV2. Two communication points are represented with white circles on each path of AUV1

and AUV2. At the first communication point AUV2 has more information about the left area than

AUV1. After communication, the AUV1 modifies its exploration strategy to verify and find more

precision on what the AUV2 has found. Figure 6.5c represents the obtained map at the end of

the mission execution. Comparing this map with the precedent obtained map (see figure 6.4b),

we can see that the actual map is more precise about the target location than the other map.

This result justifies the importance of sharing collected information, when each vehicle share

a common explored area. To prove this result, we have performed experiments with different

initial exploration areas. The constructed map, when using the exploration strategy with separate

exploration area is less precise than using a common exploration strategy.

Figure 6.6 shows statistical results comparing the map error between the exploration strategy

shown in figure 6.2.(a) and the one shown in figure 6.2.(c). The map error reprensent the differ-

ences between the world map and the obtained probability map at the end of the mission. It is

computed as follows:

∑N
i=1 ∑M

j=1 |P(Xrealk
i, j)−P(xk

i, j)|
N + M

P(Xrealk
i, j) is the real value of the target propagation at (i, j) place. The k value represents the

end time of the mission. P(xk
i, j) is the measured or the predicted value of the target propagation

at (i, j) place at the end of the mission (k). N and M are the dimension of the grid.
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In figure 6.6 a comparison between the separated exploration space strategy and the common

space exploration strategy. For the separated space exploration strategy, the number of found

targets is 31% where the error is 71%. For the common space exploration, the number of found

targets is 40% and the error is 63%.

These results clearly show that the best exploration strategy is the one with common explo-

ration space. These results confirm that for exploration strategies the cooperation is useful when

the exploration space is in common or, in other words, when there is redundant exploration

coverage.

For the other scenarios, we use this common exploration space as a predefined exploration

strategy.

(a) (b)

Figure 6.7 – Illustration of the obtained results using two AUVs. Each AUV has a common exploration
area and communication points. Figure 6.7a is the predefined path for AUV1 and AUV2. Figure 6.7b
represents the obtained path and the constructed map, after execution, for both AUVs.

6.2.5 Case 2: Evaluation of cooperative exploration strategies at different
depths

In this simulation results, we compare three kinds of exploration strategies as follows:

1. Non-adaptive exploration strategy: This strategy has predefined waypoints and does not

adapt its strategy to build a source map. There is a time window to reach each waypoint.

The order of these waypoints implicitly defines exploration transects.

2. Adaptive G.I.D exploration strategy: The vehicle heads toward the closest source hypoth-
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esis until its probability exceeds Ploc. A high value denoted Ploc leads to a confirmed well

localized target.

3. Adaptive G.I.G exploration strategy: The vehicle heads toward the closest source hypoth-

esis until its probability exceeds Pcon f . This probability is a lower value that leads to the

confirmation of a source presence, but not precisely localized. This strategy favors the

reduction in the number of vehicle actions, at the cost of less precisely localized sources.

Each predefined strategy has a common exploration space with another vehicle. Figure 6.7

illustrates the predefined mission and the obtained map for each AUV1 and AUV2. Figure 6.7a

is the predefined exploration strategy for AUV1 and AUV2 at different depth with different target

model. The target model is more precise for AUVs that are deeper and in our case, the AUV2 has

a more precise location than the AUV1.Figure 6.7b shows the obtained map at mission execution

end of AUV1 and AUV2. In this example, seven targets are defined and all of them are localized.

To generalize precedent experiments, different target locations are generated, where the av-

erage error and the number of targets found for each exploration strategy are shown in figure 6.8.
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Figure 6.8 – Evaluation of three different exploration strategies according to the percentage of found
targets and the error between the obtained map and the real world map.

The non-adaptive exploration strategy found 40% of the existent targets. This result is less

than the G.I.D and G.I.G exploration strategy. We can conclude from this statistical results that

the best exploration strategy is the G.I.G exploration strategy with 80% of found targets with

27%of error.

From these results a question rises that is how can we get 100% of found targets?

To improve the result to a 100% of target found, we have given other experiments, where we

changed two criterions as follow:

– The sensor range (r): It is the predefined range of a given sensor.

– The transect width (W ): This value is related to the predefined transect in the mission.

To evaluate these two criterion relatively with each other, we generate a new criterion called

coverage rate (CR). This coverage represents the percentage of redundant exploration area and

is computed as r/W . Figure 6.9a and figure 6.9b represent the error and the percentage of found

targets for a coverage rate of 100% and 125% respectively. We can conclude from these two

figures that the number of found targets for a percentage of coverage rate (CR) equal to 125% is
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100%, with a negligent error of 0.1%. This redundancy is useful, to localize targets, where for

each strategy we should find the best percentage to avoid unused redundancy.
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Figure 6.9 – Illustration of different obtained results varying the coverage rate (CR) from 100% to 125%.

6.2.6 Case 3: Exploration strategies at three different depths
Figure 6.10a shows the evaluated case to find one target. The target shape in this figure is

without any marine current, but at different depths the target model changes, according to the

model presented in chapter 3, figure 3.3. Three layers are represented in this figure. The upper

layer is the real world for the ASV, the second layer is the real world for the AUV1 and the

last layer is the real world for the AUV2. For each underwater vehicle, a predefined exploration

strategy and RDVs points are shown in figure 6.10b, where black circles are the RDVs with the

ASV. White and black rectangles represent the beginning and the ending mission of underwater

vehicles respectively. The dashed lines represent the predefined path for each underwater vehicle.

ASV 

AUV1 

AUV2 

(a)

ASV 

AUV1 

AUV2 

(b)

r

Figure 6.10 – Illustration of the predefined exploration strategy for each underwater vehicle to shape one
target. Communication points are represented with black circles and the beginning and end point with
white and black rectangle in oder.
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The figure 6.11 shows the obtained maps at the end of the mission of each underwater vehicle.

On the basis of these maps, one could reconstruct a fairly faithful model the temperature plume.

Figure 6.11 – Illustration of the obtained map using three underwater vehicles.

Figure 6.12a shows an example of a result of the target model with an heterogeneous marine

current. In this example, the vehicles do not know that there is a marine current. Nevertheless,

the integration of these maps can yield the estimation of the plume model, as illustrated figure

6.12b.

6.3 SIMULATION RESULTS USING IFREMER SIMULATOR

6.3.1 Simulation environment
We integrated our architecture with the AUV simulator developped at Ifremer. The consid-

ered AUV is Asterix, for which the following characteristics are set:

– Maximum depth = 3000 meters

– Drift = 2m/h

– Min/Max speed = [0.8, 1.5] meters per seconds.

– Min/Max pitch = [-10.0, 10.0] degrees.

(a) (b)

Figure 6.12 – Illustration of the target shape (with marine current) and the obtained map using three
underwater vehicles.
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– Min/Max roll = [-10.0, 10.0] degrees.

– Maximum exploration distance for one mission = 100 km.

6.4 IMPLEMENTATION AT IFREMER

6.4.1 Mission definition and simulation
Three steps for the mission definition are used at IFREMER [Manual]:

1. Offline mission programming: this mission preparation is done at the surface. The mission

is programmed for one AUV using the MIMOSA tool (detailed in the next subsection).

At the end the mission is uploaded in the vehicle. In the simulation case, the mission is

uploaded to the VCC (Vehicle Control Computer).

2. Mission execution: During mission execution the mission is executed and all the collected

data are saved for the next step. The VCC (Vehicle Control Computer) behaves exactly

like the real vehicle, this is why, the simulation is hardware in the loop.

3. Recovery and processing the collected data: This allows to collect the gathered data from

the underwater vehicle from the mission preparation until the mission execution.

MIMOSA (Mission Management fOr Subsea Autonomous vehicles)
MIMOSA is a tool that manage the definition of missions for an AUV. This tool allows

the operator to define the mission using the information contained by a GIS 1. A navigation is

composed by a set of missions, operational constraints and constraints related to the environment

(e.g. forbidden regions). Each mission contains a set of used underwater vehicles characterized

by (figure 6.13):

– Mission plan: the plan is represented by dives and trajectories.

– Payloads: this is allows the definition of different types of payloads that can the vehicle

carry for example a camera.

– Parameters: these parameters are the available energy for the vehicle, the maximal distance

between waypoints, maximal and minimal vehicle speed, etc.

6.4.2 Mission experimentation
In our case, we defined several waypoints that the vehicle has to achieve during intervals.

The used architecture is represented in figure 6.14. The goals and the position of the vehicle are

given by the commands sendWaypointToVehicle() and getPositionFromVehicle() respectively.

The used protocol to communicate between T-ReX and the VCC is TCP/IP.

The predefined and the executed mission execution of the Asterix is represented in fig-

ure 6.15. The red line represents the predefined mission execution of the underwater vehicle.

1. Geographic Information System.



6.4. Implementation at IFREMER 91

Figure 6.13 – Illustration of the link between different mission tasks.
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Figure 6.14 – Illustration of the used architecture to link between our implemented T-ReX architecture
and the used architecture at IFREMER.

The orange line represents the executed mission of the underwater vehicle. The execution path

takes into account the real vehicle ability presented in the subsection 6.3.1.

In this section, we show that our system can be connected into the VCC used at IFREMER

to send commands and control the execution of the vehicle. However, a real experimentation is
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needed to validate our approach.

Figure 6.15 – The path of the vehicle display on IFREMER simulator.

DISCUSSION

In this section, we have presented different simulation results. Three case studies were eval-

uated in our simulator and another case was validated at IFREMER’s simulator.

In the first case study the importance of predefined exploration strategy for a cooperative

exploration is shown. In the second case study three exploration strategies are evaluated to

localize a maximal number of targets, where some criterion has to be taken into account to

improve the exploration strategy. These criterion are the sensor range and the transect width. At

the end of this case, the G.I.G exploration strategy gives improvement in term of the number of

found targets than the other strategies. The third case study uses three underwater vehicles to

locate in 3D one target with or without marine current.

As a result, we have shown that our architecture has evaluated different types of exploration

strategies and can be used to evaluate other different scenarios involving more than one ASV

and two AUVs. Moreover, the use of an already deployed architecture is very encouraging to

consider deploying the proposed approach and the selected strategies on real systems.



CONCLUSION AND PERSPECTIVES

DALAI LAMA, SAYS: « Old friends pass away, new friends appear. It is just like the days.

An old day passes, a new day arrives. The important thing is to make it meaningful: a

meaningful friend - or a meaningful day.»

Our contribution aims at defining an architecture and a framework to evaluate various types

of scenarios for multiple autonomous underwater vehicles.

In our experiments, an autonomous surface vehicle is used to collect and redistribute sensor

maps, to help the AUVs to relocalize without surfacing, and to act as a communications relay

with an operator. Each AUV produces a probabilistic sensor map of possible interesting sources

using different types of sensors (range-only or bearing-only), and shares them with the other

vehicles to improve their perception of the environment, and find the sources of interest. We

propose a mechanism to allow the vehicles to share these maps. We used for our experiments

an extension to the T-ReX architecture, which has already been used at MBARI to control one

vehicle. The architecture T-ReX (Teleo-Reactive EXecutive) [McGann07], is a goal-oriented

system, with embedded automated planning and adaptive execution. This architecture provides to

each vehicle the capability to generate and execute a plan onboard. Rather than being exclusively

deliberative or exclusively reactive, this architecture incorporates planners that can deal with

different planning horizons and deliberation times. These different times make T-ReX both

reactive and deliberative.

To extend the T-ReX architecture we added two new components (reactors), one for com-

munication with the other vehicles and one to establish new opportunistic goals with respect

to the chosen strategy. An exploration strategy is presented where each vehicle has to weight

the advantage of accurately localizing sources while respecting time constrained navigation

waypoints and communication rendez-vous. Our main contributions are the following:

1. Models: We give in this manuscript a model of the target or the hotspot and the different

types of sensors used by vehicles (range-only sensors and bearing-only sensors). We also

consider simplified models of AUVs motions and AUV/ASV communications.

2. Adaptive exploration strategy: We implemented different types of adaptive exploration

strategies that use the collected data of the vehicle to direct its path. We found that G.I.G

(Global Information Gain driven) has improved non adaptive strategies and other adaptive

93
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approaches in terms of target error location and the number of targets found.

3. Cooperative architecture: We deployed a system that can make two underwater vehicles

cooperate and exchange collected data at predefined communication points with a reduced

amount of data.

4. Deliberative and reactive system: We wanted to give a compromise between the data

driven approaches and the task driven approaches. In this architecture priorities are given

between tasks and generated goals. For example, rendezvous points (considered here as a

task driven) is favored over opportunistic goals (these goals have as objective to get more

information about the target), but at the same time the approach favors opportunistic goals

over waypoints (considered as task driven).

At this point we have shown that the framework is ready and can now be effectively used to

evaluate more complex strategies involving the ASV. We have implemented our system to evalu-

ate three case studies. All these case studies prove that our framework is versatile. Moreover, the

use of an already deployed architecture is very encouraging to consider deploying the proposed

approach and the selected strategies on real systems.

PERSPECTIVES

Buddha says, « I never see what has been done; I only see what remains to be done. »

In the context of our approach that mixes adaptive motions with predefined constraints for

autonomous underwater vehicles, there are several directions for future work.

First, since the position information is essential in sensor networks, the use of AUVs to

locate sensors once they are deployed according to target seeking strategies makes sense: our

work could readily be applied to this problem.

Second, our target localisation use case can also be extended in other contexts. Other sensor

types and use cases could also benefit from the proposed approach, such as mapping scenario

(e.g.bathymetry, localization of algal blooms), or fish localization (we need here to predict their

future location according to the actual fish location). For these purposes, one must adapt the

target and sensor models to fit the tackled problem. For dynamic targets the ability of computing

a predictive model of the environment online, for vehicles, can yield the definition of adaptive

navigation strategies.

Finally, to improve the realism of the approach, one must more explicitly consider the posi-

tion error of the AUVs, and exploit the rendezvous with the ASV to refine the position estimate.

An important point to tackle is then the automatic generation of rendezvous points to plan the

mission, and also their dynamic generation during mission execution. This can be interesting

when rendezvous points are restricting the collection of the data from the target. The dynamic

rendezvous generation has nevertheless to be restricted, to satisfy pre-defined constraints.
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A.1 INTRODUCTION

Nous nous intéressons à l’architecture de robots marins et sous-marins autonomes dans le

cadre de missions nécessitant leur coopération. Cette coopération s’avère difficile du fait que la

communication (acoustique) est de faible qualité et de faible portée. Afin d’illustrer notre travail,

nous nous intéressons à un scénario de localisation d’une source d’eau chaude sous-marine. Pour

cela, le véhicule sous marin parcourt des segments de droite et rejoint des points de rendez-vous

(points de communication). Ces derniers sont importants car ils permettent la mise en œuvre

d’une coopération entre les véhicules sous-marins. Au fur et à mesure du déplacement d’un

véhicule, celui ci détecte (grâce à ses capteurs) sa distance à une zone pouvant contenir une

source d’eau chaude. Afin de localiser une source, on doit permettre au véhicule de modifier

sa trajectoire initiale, tout en s’assurant d’atteindre le point de rendez-vous. D’autre part, les

rendez-vous permettent à chaque véhicule d’échanger ses données pour une coopération. Vu

que le débit de communication accoustique est réduit, chaque véhicle doit extraire les informa-

tions utiles pour les communiquer. Nous présentons nos travaux effectués dans ce contexte, et

une proposition d’architecture qui permet de trouver un compromis entre la modification de la

trajectoire et l’atteinte de points de rendez-vous.

A.2 CONTRIBUTIONS

Les missions d’exploration sous-marines poussent les scientifiques à concevoir des véhicules

sous marins de plus en plus performants, en termes de capacités technologique et aussi en

termes d’autonomie. Pour des missions d’exploration, l’utilisation de plusieurs robots présente

naturellement des avantages sur l’utilisation d’un seul [Burgard05], les robots coopératifs ayant

le potentiel d’accomplir des tâches plus rapidement qu’un seul robot, notamment en partageant

les informations qu’ils acquièrent.

Dans le contexte de notre travail, les robots utilisés sont des véhicules sous-marins, où la

portée et les débit des communications accoustiques sont particulièrement contraints [Meyer06].

Ainsi un véhicule de surface ne peut communiquer efficacement avec un robot sous-marin que

s’il est situé proche de la verticale de celui-ci. De telles contraintes imposent la définition de

“rendez-vous” entre les engins, définis par des contraintes géométriques entre leurs positions et

naturellement des contraintes temporelles (Voir figure A.1).

Nous nous intéressons à explorer une zone inconnue pour la localisation d’une cible le plus

rapidement possible. Pour cela, on considère une flottille de véhicules hétérogènes, composée

d’au moins un véhicule de surface (ASV pour Autonomous Surface Vehicles) et deux robots

sous-marins (AUV pour Autonomous Underwater Vehicles). Un AUV parcourt une zone de

recherche, atteint les points de rendez-vous pour la transmission des données collectées et lo-

caliser la cible en utilisant les données des autres AUVs. L’ASV joue le rôle d’un “hub” (nœud

de communication) entre les véhicules sous-marins.



98 Appendix A. Résumé des travaux

Figure A.1 – Representation de la zone de communication entre AUV1 et ASV1. L’intersection des zones de
communication entre les deux véhicules (de couleur noir) représente l’emplacement que l’un des véhicule
peut avoir afin de communiquer, à ce moment, avec l’autre véhicule.

Pour résoudre ce problème, nous proposons une approche pour la coopération entre les véhi-

cules centrée sur la réalisation de rendez-vous, pendant lesquels ils échangent des informations

dans le but de localiser la plus rapidement la cible. L’approche se base sur un algorithme qui

permet un compromis entre l’exploration et l’atteinte de points de rendez-vous, en utilisant

plusieurs fonctions qui mesurent l’importance des informations collectées, dans le but de répon-

dre à ces deux questions: quand communiquer ces informations ? Et comment les exploiter ?

Le chapitre est composé de quatre sections: une discussion sur les travaux existants constitue

la section 3. Dans la section 4, nous présentons le scénario utilisé ainsi que nos objectifs. Dans

la section 5 nous détaillons l’architecture utilisée. Dans le section 6 nous présentons l’approche

proposée. Nous détaillons les résultats obtenus dans diffÈrents cas dans le chapitre 7. Le chapitre

se conclut par une discussion sur les travaux effecutés et perspectives.

A.3 ETAT DE L’ART

Les recherches en intelligence artificielle distribuée ont suscité de nombreuses contributions :

plus de 900 publications selon Lynne E.Parker [Parker08], qui propose une classification des

différents axes de recherches sur l’intelligence distribuée, basée sur le type d’interactions entre

les différentes entités.

Dans le projet Martha [Alami98], les robots utilisent un paradigme de fusion de plan de

déplacement entre les robots appelé “plan merging”. D’autres auteurs utilisent des approches

“market-based” pour allouer les tâches aux différents robots [Stentz04]. Van Dyke Parunak

et al. [Parunak01] utilisent les algorithmes basés sur les colonies de fourmis pour guider les

véhicules vers une cible. La plupart de ces approches se focalisent sur des robots terrestres, où il

y a peu de contraintes de communication entre les robots.

Plusieurs méthodes de parcours ont été élaborées pour des véhicules afin de localiser et

d’atteindre une cible dans des terrains inconnus. Certains auteurs proposent l’utilisation des
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méthodes basées sur la perception du véhicule où ils utilisent le gain sur les données collectées

pour diriger le véhicule. D’autres utilisent la notion d’ordonnancement des tâches, où pour

accomplir une tâche on doit satisfaire toutes ses contraintes. Dans [Thompson08], les auteurs

proposent un algorithme qui permet au robot d’explorer une zone selon les données acquises.

Dudek et al. [Dudek07], utilisent un graphe pour l’exploration d’une zone, où le choix du

prochain nœud à explorer se fait en fonction du nombre existants d’arêtes. Des chercheurs se

sont intéressés à localiser une cible en utilisant une technique basée sur la quantité de phéromones

[Parunak01]. Chaque véhicule dépose de la phéromone sur une cellule, la quantité de phéromone

détectée dirigeant les véhicules vers la prochaine cellule à explorer. D’autres auteurs proposent

un algorithme d’exploration où chaque véhicule calcule une utilité et un coût de déplacement

vers une cible. La distance du véhicule au point cible constitue son coût. L’approche proposée

dans [Burgard05] permet de répartir les points cibles à explorer aux différents véhicules.

Toutes ces approches sont considérées de type “data driven”, ce qui signifie que c’est la

perception du véhicule qui guide l’exécution de la mission. Elles sont intéressantes si la mis-

sion est constituée d’une seule tâche. D’autres approches de type “Task driven” permettent

d’ordonnancer des buts donnés et de générer d’autres tâches pour atteindre les buts. Plusieurs

types de planificateurs permettent cet ordonnancement comme IxTeT [Laborie95, Lemai04], EU-

ROPA [Frank03], etc. Des techniques d’allocation de tâches aux différents robots par des algo-

rithmes de Market-based ont été mis en œuvre dans [Stentz04] et [Goldberg02]. L’approche

“Task driven” prend en considération deux aspects :

1. La communication entre les véhicules est continue, ce qui n’est pas le cas dans notre con-

texte de travail.

2. Les tâches à accomplir sont pré-définies, ce qui n’est pas le cas de la détection d’une cible

qui n’a pas d’emplacement connu.

Dans le cas où la mission contient plusieurs tâches à effectuer et que la stratégie de recherche

est inconnue, alors les deux types d’approches “data driven” et le “task driven” doivent être

exploitées en même temps. La première approche permet la gestion de plusieurs tâches et la

seconde permet d’exploiter les données collectées pour diriger la recherche du véhicule.

A.4 CONTEXTE DE TRAVAIL

A.4.1 Scénario considéré
Dans notre scénario nous définissons trois véhicules : un ASV et deux AUVs. Chaque AUV

a comme rôle de localiser la source d’eau chaude et d’atteindre les points de communication

avec l’ASV. Les points de communication sont prédéfinis à l’avance et sont fixes. Ils permettent

à l’AUV de réduire sa consommation d’énergie (éviter de remonter à la surface) mais aussi de

transmettre les informations collectées à l’ASV. L’ASV est considéré comme un nœud de com-

munication entre les différents véhicules. C’est lui qui détient toutes les informations collectées

par les deux véhicules et les transmet d’un véhicule à un autre lors rendez-vous (RDVs).
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A.4.2 Proposition
Nous nous intéressons à accomplir la mission d’une manière coopérative, en considérant

l’incertitude sur l’environnement sous-marin, l’ignorance de la localisation de la cible et les

restrictions des communications entre les véhicules sous-marins. Pour cela, nous proposons :

– Une autonomie décisionnelle de chaque véhicule : Chaque véhicule est capable

d’accomplir sa tâche malgré l’incertitude du terrain, mais aussi de modifier sa trajec-

toire en fonction des informations collectées, pour une localisation rapide de la cible. Pour

cela, nous utilisons l’architecture T-ReX [McGann07], détaillée dans la section suivante.

– Une coopération entre véhicules : Chaque véhicule doit être capable de fusionner ses

données collectées avec les autres pour une rapide localisation de la cible. Pour que la

communication ne dure pas longtemps, chaque véhicule doit réduire son débit d’envoi de

données en n’envoyant que les données utiles.

A.5 L’ARCHITECTURE MONO-ROBOT

T-ReX est une architecture logicielle utilisée au sein du MBARI. Celle-ci permet d’affiner,

de décomposer et d’ordonnancer des tâches (planifier), tout en prenant en considération

l’exécution de celles-ci. T-ReX est composé de plusieurs réacteurs. Chaque réacteur contient

une base de données (Database) où le modèle des tâches est défini, un planificateur (Planner)

qui utilise un horizon de planification, un synchroniseur (Synchronizer) et un répartiteur (Dis-

patcher).

1. Structures de données : Les données que T-ReX manipule sont de type “timelines”. Ces

dernières représentent un ordonnancement de tâches instanciées. Chaque tâche instanciée

est appelée “token”. Pour ordonnancer des tokens un ensemble de contraintes peut être

mis en place en utilisant NDDL (New Domain Definition Language). La représentation

des tokens et de ses contraintes est appelée “modèle de la tâche”.

2. La base de données (Database) : C’est une structure de données où les buts sont des

tokens. Elle fournit au planificateur tous les buts à atteindre et le modèle des tâches à

exécuter.

3. Le planificateur (Planner) : Celui-ci permet d’ordonnancer les tâches en utilisant sa base

de données. Chaque réacteur possède un planificateur mais avec différents horizons de

planification. Plus on descend dans la hiérarchie, plus l’horizon de planification se réduit.

Par conséquent, chaque réacteur peut être délibératif (horizon de planification lointain) ou

réactif (horizon de planification proche). Le planificateur utilisé est EUROPA [Frank03].

Celui-ci permet d’ordonnancer des tokens sur des timelines. Le système est composé de :
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– Attributs (timelines) : A chaque attribut est associé un ensemble de valeurs qu’il peut

prendre et qui sont décrites à travers des intervalles. Chaque attribut peut prendre une

seule valeur à un instant donné. Ce qui correspond à des exclusions mutuelles entre

intervalles de mêmes attributs.

– Un intervalle décrit un état ou une activité avec une extension temporelle. Cet intervalle

est décrit par:

holds(Att, td, t f ,P)

Att est un attribut, td est le temps début, t f est le temps fin et P est un prédicat de

l’attribut.

Exemple : si on possède un attribut Location qui permet de situer un robot,

et que cet attribut possède plusieurs prédicats appelé aussi état ou activité. Le

prédicat Going(x,y) signfie que le robot peut se déplacer d’un emplacement x
vers un autre y. On peut définir un intervalle:

holds(Location,10,20,Going(Hill,Lander))

Cela signifie que le robot va se déplacer de la colline vers le sol et cela de la

dixième unité de temps à la vingtième.

– Et un ensemble de règles de configurations décrivant comment les sous-systèmes agis-

sent et interagissent entre eux, et qui sont des contraintes sur le domaine de planification

(planning domain contraints).

Chaque règle de configuration concerne un intervalle. Elle associe à un intervalle une

disjonction de configurations Oi. Chaque Oi définit une conjonction d’autres intervalles

Jik qui doivent exister dans un plan valide contenant l’intervalle I.

4. Le répartiteur (Dispatcher). Il permet de gérer l’envoi des buts vers un autre réacteur.

5. Le synchroniseur (Synchronizer). Il permet la coordination des observations effectuées par

d’autres réacteurs. Ces observations permettent au réacteur de suivre l’exécution d’une

tâche. Cette coordination est faite à chaque tick (unité temporelle utilisé, de l’ordre d’une

seconde).

D’une manière plus formelle, T-ReX définit le monde (W ) par un ensemble d’agents :

W = {A1 . . .Am}

Les agents possèdent plusieurs variables d’état Sw = {s1 . . .sn} qui représentent les états que

peut prendre le système (véhicule), des réacteurs : R = {r1 . . .rn}, un temps de vie : H = [0,Π]
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Figure A.2 – Architecture de T-ReX

où Π représente le temps total de la mission et une représentation du temps actuel d’exécution : τ .

Les réacteurs possèdent un temps de délibération λr, un “look-ahead” (jusqu’où le planifica-

teur peut ordonner ses tâches) : π < Π, des timelines internes que le planificateur peut modifier :

Ir = {I1 . . . Ik} ou externes que le planificateur ne peut qu’observer : Er = {E1 . . .El}, des buts :

Gr et des observations : Or.

En résumé, un réacteur est décrit de la manière suivante : ri = {λr,π, Ir,Er,Gr,Or}. La

Figure A.2 représente schématiquement les variables utilisées dans T-ReX.

Chaque réacteur peut poster des buts ou des observations à un autre réacteur d’une manière

synchrone. C’est le “dispatcher” qui coordonne l’envoi des buts et le “synchronizer” qui

coordonne la réception des observations. Cette architecture possède une forte notion de synchro-

nisation entre les réacteurs, ce qui leur permet de percevoir, au fur et à mesure de l’exécution,

toutes les modifications faites sur les timelines. Elle propose par ailleurs une notion de hiérarchie

de délibération entre les réacteurs, ce qui permet à certain réacteurs d’être délibératif ou réactif.

A.6 PROPOSITION D’ARCHITECTURE

On veut permettre à chaque véhicule d’avoir une autonomie décisionnelle d’action, pouvant

modifier sa trajectoire mais aussi coopérer avec d’autres véhicules. On utilise l’architecture

T-ReX au sein de laquelle nous avons implémenté de nouveaux réacteurs illustrés dans la Fig-

ure A.3.

– Le MapReactor génère des buts selon la perception du véhicule (voir Figure A.4).



A.6. Proposition d’architecture 103

Generate opportunistic 

goals according to the 

sensing g

MapReactor 
�������	
��

���	�����
�� ����������� �

������	

unist

o th

�

CoopReactor 

�������	
�����	�����
��

or
���������

eacto


��

or 
�

���

Mission Manager 

�������	
�����	�����
�� ���������� � ���

ger ger 
�
���
�����
�

�����


���
���

Executive 

�������	
�����	�����
�� ���������� � ���

�
���
�����
�

�����


���
���

	�����
�

ti

tic 

e 

�

Mi
plan 

act sense 

T
-R

E
X

  

A
g

e
n

t 

Figure A.3 – L’architecture de T-ReX modifiée

1. La database contient une carte de toute la zone de mission, grille cartésienne appelée

Grid de dimension N×M. L’idée est de générer des buts pour changer la stratégie

initiale de parcours quand l’information est pertinente. La grille est de deux dimen-

sions :

– Une valeur Booléenne : Quand le véhicule explore une cellule de la grille, la

valeur Booléenne est mise à 1, dans le cas contraire cette valeur est de 0.

– La deuxième valeur Pk(xi, j) représente la probabilité perçue du véhicule d’être

à côté de la cible à l’emplacement i, j où i ∈ [0,N[, j ∈ [0,M[. On suppose que

cette probabilité est calculée selon un modèle. Ce dernier permet d’associer pour

chaque perception une probabilité d’être proche de la cible. Par exemple dans

[McGann08] les auteurs utilisent des HMM pour générer cette probabilité.

��	
���	���� ��������� ������������	
���

MapReactor 

������
����

���������	�

������


Grid 

TimeLines 

Figure A.4 – Description du MapReactor

La database contient aussi les timelines et les contraintes associées aux timelines.

2. Fusion de données (DataFusion) : Cette fusion permet de mettre à jour les mesures

de la grille. L’équation de fusion de données est calculée pour chaque cellule i, j de

la grille comme suit :
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Pk(xi, j) =
P(T k|xi, j = vent)Pk−1(xi, j)

P(T k)
(A.1)

Pk−1(xi, j) est l’ancienne valeur de probabilité de la grille à l’emplacement i, j.
La probabilité Pk(xi, j) intègre les différentes mesures faite durant l’exploration

(Pk(xi, j) = P(xi, j = vent|T 0, . . . ,T k)) qui est calculé d’une manière incrémentale en

utilisant un paradigme bayésien avec une assomption markovienne. T 0, . . . ,T k étant

les différentes mesures de températures aux différents instants 0, . . . ,k.

Selon le type de senseur, la probabilité Pk(xi, j = vent) sera mise à jour :

(1) Si le senseur est un range-only la formule sera analogue à celle utilisée par Elfes

et al. [Elfes89] pour la cartographie d’obstacles à l’aide de télémètres.

La figure A.5 représente la mise à jour de la grille dans un environnement

contenant une seule cible marine en utilisant un capteur de type “range-

only”. Trois mesures sont illustrées : La figure A.5.(a), décrit la grille

obtenue pour une mesure, la figure A.5.(b) et la figure A.5.(c) montrent le

résultat de deux et trois mesures du véhicule.

Figure A.5 – Représente l’évolution de la probabilité de contenir la cible pour chaque cellule de la grille,
en utilisant trois mesures sur une même profondeur. Les trois emplacements du véhicule sont représentés
par des croix.

(2) Dans un autre cas, si le véhicule utilise un senseur bearing-only, la probabilité

Pk(xi, j = vent) est calculée par rapport à la distance de la direction. Où plus une

cellule xi, j est loin de la direction calculé de la cible, plus sa probabilité est moindre

(voir figure A.6a).
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(a) (b)

Figure A.6 – Illustration de la grille obtenue en utilisant un senseur bearing-only, pour un emplacement

Quand la grille est mise à jour, le véhicule doit choisir la prochaine cellule à explorer.

Ce choix de cellule est la stratégie d’exploration du véhicule.

3. Calcul de la prochaine cellule à explorer (ComputeGoal) : Plusieurs types de

stratégie d’exploration peuvent être définis. Nous avons choisi de définir deux types

de stratégies d’exploration : stratégie d’exploration non adaptative et une stratégie

d’exploration adaptative.

(a) Statégie d’exploration non adaptative : Cette stratégie d’exploration possède des

buts prédéfinis, dans notre cas appelé waypoints, où le véhicule ne rallie que ses

buts prédéfinis. Chaque waypoint est un emplacement dans la grille, où il lui est

associé un intervalle temporel. Cet ordre de waypoints est implicitement donné

par ces intervalles temporels.

(b) Stratégie d’exploration adaptative : Cette stratégie a des buts prédéfinis mais

avec la possibilité de rediriger le véhicule selon ses propres mesures. Deux

seuils sont définis pour considérer la cible comme “détectée”. Une valeur élevée

dénotée par Ploc mène à bien confirmer la cible et l’autre valeur Pcon f a une

valeur inférieure à la précédente et qui permet de confirmer sa présence sans

toute fois la localiser. Sur la base de ces deux seuils, nous avons définit deux

types de stratégies d’exploration adaptatives comme suit :

– G.I.D (Greedy Information Driven) : Le véhicule suit le plus proche hy-

pothèse d’une source, jusqu’à ce que la probabilité exede celle définit sur Ploc.

Cette stratégie se focalise sur la cible la plus proche jusqu’à ce qu’elle soit

considéré comme localiser.

– G.I.G (Global Information Gain driven) : Le véhicule se dirige sur la source

la plus proche jusqu’à ce qu’il atteigne la probabilité Pcon f . Cette stratégie

d’exploration favorise la réduction d’actions au coût d’une moins bonne pré-

cision que la stratégie G.I.D.
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– “Mission Manager” et l’“Executive” : Le Mission Manager prend en considération tous

les buts de la mission de haut niveau et les buts envoyés par le MapReactor pour ensuite

envoyer des sous buts à l’exécutif. Le Mission Manager ayant un horizon de planifica-

tion et une latence plus grande que celle de l’exécutif, il est considéré comme le niveau

délibératif. Cependant, l’exécutif est un composant plus réactif où son horizon et la latence

du planificateur sont moins importantes. Ces deux composants permettent à l’architecture

d’être réactive et en même temps délibérative.

– “CooperativeReactor” : Ce réacteur doit permettre de gérer l’envoi et la réception de mes-

sages d’autres véhicules. Celui-ci peut recevoir deux types de messages : des données qui

seront fusionnées par le MapReactor et d’autres de type tâches qui seront utilisées par le

Mission Manager. Ce qui est important au niveau de ce réacteur est de réduire le débit

d’envoi de messages entre véhicules. De ce fait, chaque véhicule n’envoie que ses mesures

perçues au fur et à mesure de l’exploration au lieu d’envoyer toute la grille. L’efficacité

de la communication dépend des données transmises. Dans notre cas, nous prenons une

bande passante de 100 bps 1. Nous détaillons en premier lieu, la dimension des données

échangées entre chaque véhicule, en second lieu nous allons calculer la complexité de la

mise à jour de la grille par chaque véhicule après avoir collecté les données des autres

véhicules.

La compléxité des mises à jour de la grille après communication : A chaque point

de communication, le véhicule envoi ses probabilités et les données reçues des autres

véhicules. Pour éviter la redondance d’envoie de données, le véhicule envoie toutes ses

observations entre l’instant de son dernier point de communication et cet actuel point de

communication. L’ASV met à jour sa grille dédiée au véhicule. Le nombre d’opérations

dépend du nombre de cellules explorées nd , où le nombre d’opérations est calculé par

nd ∗N ∗M. Cela implique que la complexité de la mise à jour de la grille est de O(N ∗M).

A.7 IMPLEMENTATIONS ET RÉSULTATS

Nous avons utilisé l’architecture inspirée de l’architecture T-ReX. Notre CoT-ReX archi-

tecture a été évaluée en utilisant plusieurs types de scenarios de détection de cibles.

A.7.1 Scenario I
Ce scénario utilise deux AUVs et un ASV en surface. L’objectif de ce scénario est d’évaluer

les stratégies prédéfinies. L’ASV est utilisé comme un hub de communication entre les deux

AUVs, et chaque AUV a une mission prédéfinie avec la possibilité de modifier sa trajectoire en

fonction de ses mesures.

1. bits per seconds
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Comme première expérimentation, on définit pour chaque véhicule une stratégie

d’exploration avec un espace d’exploration séparée, comme représenté dans la figure A.7b.

La figure A.7a représente la diffusion de température de la cible, qui est une source d’eau

chaude: plus la couleur du terrain est foncée plus la tempÈrature est basse.

(a) (b)

Figure A.7 – Illustration du résultat de la carte construite par deux AUVs en utilisant une stratégie
d’exploration à terrain distinct (a) représente le monde réel. (b) représente le résultat des stratégies
d’exploration des deux véhicules.

La séparation de terrain d’exploration fait que l’échange des cartes entre les deux véhicules

n’a aucun impact sur l’exécution de la mission des AUVs. Afin de voir l’intérêt de la coopération,

nous avons évalué une autre stratégie prédéfinie d’exploration, représentée figures A.8a et A.8b.

Deux points de communications sont définis pour pouvoir faire communiquer les deux UAVs

entre eux. Nous pouvons remarqué que la précision de construction du terrain est plus grande

qu’à l’issue de la première stratégie: le fait d’utiliser des zones d’exploration communes permet

d’augmenter la connaissance des véhicules, et donc d’améliorer le résultat de l’exploration.

A.7.2 Scenario II
L’objectif de ce scénario est de localiser un nombre maximal de cibles, avec deux AUVs et

un ASV. Trois types de stratégies d’explorations sont évaluées :

1. Stratégie d’exploration non adaptative : Cette stratégie d’exploration ne prend pas en con-

sidération les mesures des véhicules, qui exécutent simplement les t‚ches prédéfinies.

2. Stratégie d’exploration adaptative : Cette stratégie d’exploration prend en considération

les mesures et génère des buts pour obtenir plus d’information sur les cibles. Deux types

de stratégies d’exploration adaptatives sont évaluées : G.I.D et G.I.G expliqués dans la

section A.6.

Chaque stratégie d’exploration à un espace d’exploration en commun. La figure A.9 représente

une étude statistique sur le nombre de cibles trouvées et l’erreur entre la carte et le monde réel

des trois types de stratégies d’exploration.

Nous remarquons que d’après les deux critères de selection (pourcentage de cibles trouvées

et l’erreur de la map), la meilleure stratégie d’exploration est la G.I.G.
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Communication points 

(a) (b)

(c)

Figure A.8 – Illustration de la carte obtenue par les deux AUVs. Chaque AUV a une stratégie
d’exploration commune avec l’autre AUV. (a) et (b) sont les stratégies prédéfinies d’exploration des deux
véhicules AUV1 et AUV2. (c) montre la trajectoire rÈalisée par les deux véhicules ainsi que la carte finale
obtenue.
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Figure A.9 – Evaluation de trois différentes stratégies d’exploration en fonction du pourcentage de cibles
trouvées et de l’erreur entre le monde réel et la carte construite.

CONLUSION ET PERSPECTIVES

Dans ce document, nous avons mis en place une architecture pour la coopération multi robots

dans un contexte marin et sous marin. Cette architecture est basée sur T-ReX où nous avons

rajouté des composants pour l’étendre en une architecture coopérative. Cette architecture multi

véhicules donne une autonomie d’action pour le véhicule tout en lui permettant d’accomplir sa

mission. L’architecture proposée permet de prendre en considération la perception du véhicule

(au fur et à mesure de son parcours) et de modifier sa stratégie initiale sans affecter l’atteinte de

ses points de rendezvous. Nous avons validé notre approche dans différents scénarios, qui sont :

(1) l’évaluation de stratégies prédéfinis (2) la localisation d’un nombre maximal de cibles marine

avec une étude statistique. Ces scénarios nous ont permis de valider notre approche et de valider

sa diversité d’action. Pour les travaux avenir, l’implémentation de cette architecture dans des

réels véhicules sous marins validera nos simulations.
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