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Sous la direction de Florent JOUVE et Guillaume RICOTTA outenue le IH juillet PHPQ à l9snstitut de wthémtiques de fordeuxF wemres du jury X wme géile heqi wîtresse de onféreneD niversité de vorrine pportrie wF immnuel yi rofesseurD niversité glermont euvergne pporteur wF sl essi rofesseurD niversité de fordeux résident wF prrell fwvi wître de onféreneD niversité oronne ris xord ixminteur wF plorent tyi rofesseurD niversité de fordeux hireteur de thèse wF quillume sgye wître de onféreneD niversité de fordeux hireteur de thèse P Étude de la répartition de certaines sommes exponentielles courtes Résumé : gette thèse porte sur des propriétés d9équiréprtition de ertines sommes exponentielles qui pprissent nturellement en théorie nlytique des nomresF hns un premier tempsD nous étenE dons des résultts de hukeD qriD ryde et vutz onernnt des sommes de rtères dditifs sur F p D mis restreintes u groupe µ d (F p ) des rines d e de l9unitéD pour un entier d (xéF xous démontrons d9ord un résultt d9équiréprtition portnt sur des fmilles de sommes exponentielles prmétrées pr le orps (ni tout entierF xous montrons ensuite qu9il y toujours équiréprtition si nos fmilles sont prmétrées pr des petits sousEgroupes multiplitifs de F × p F gette générlistion s9ppuie sur des mjortions de sommes exponentielles qui ont été otenues pr fourginD ghngD qliihuk et uonygin pr des méthodes de omintoire dditiveF hns un seond tempsD nous présentons les résultts d9un trvil en ommun ve uowlskiD où nous étendons les résultts préédents u s des sommes exponentielles indexées pr l9ensemle des rines dns F p d9un polynôme unitire à oe0ients entiersF xous montrons que es sommes s9équiréprtissent pr rpport à une mesure qui est liée u groupe des reltions dditives entre les rines omplexes du polynômeF yn étlit l9équiréprtition des sommes de rtères multiplitifs indexées pr les rines d9un polynômeD mis ette foisEi pr rpport à une mesure qui est liée u groupe des reltions multiE plitives entre les rines omplexesF xous présentons églement des générlistions à des sommes de fontions tres plus générlesD ynt pour prinipl orollire un résultt d9équiréprtition de sommes de sommes de uloostermn trnsltées pr les rines d9un polynômeF in(nD un hpitre de e mnusrit est dédié à l mjortion de l disrépneD qui est une mesure de l vitesse d9équiréprtitionF

Mots-clés : équirépartition, sommes exponentielles, relations linéaires entre nombres algébriques, fonctions traces. Unité de recherche : snstitut de wthémtiques de fordeuxD w SPSID QSI ours de l viértionD p QQ RHS leneF Q Study of the distribution of some short exponential sums Abstract: his thesis is out equidistriution properties of some exponentil sums whih rise nturlly in nlyti numer theoryF pirstD we generlize results of hukeD qriD ryde nd vutz onerning sums of dditive hrters of F p D ut restrited to the group µ d (F p ) of d!th roots of unityD for (xed integer dF e prove n equidistriution result for fmilies of exponentil sums prmetrized y the whole (nite (eldF henD we show tht this result still holds for fmilies solely prmetrized y smll multiplitive sugroups of F × p F his generliztion relies on strong ounds on exponentil sums whih were otined y fourginD ghngD qliihuk nd uonygin using methods from dditive omintorisF henD we present the results otined s prt of joint work with uowlskiD in whih we extend the previous results to the se of exponentil sums over the roots in F p of n ritrry moni polynomil with integrl oe0ientsF e show tht these sums eome equidistriuted with respet to mesure tht is relted to the group of dditive reltions mong the omplex roots of the polynomilF imilrlyD sums of multiplitive hrters over the roots of polynomil eome equidistriuted with respet to mesure tht is relted to the group of multiplitive reltions mong omplex rootsF e lso present generliztions to sums of more generl tre funtionsF he min orollry is n equidistriution result onerning sums of uloostermn sums shifted y roots of polynomilF pinllyD hpter of this mnusript is dedited to the estimtion of the disrepnyD whih mesures how fst equidistriution hppensF Keywords: equidistribution, exponential sums, linear relations between algebraic numbers, trace functions. R te tiens en premier lieu à remerier mes direteurs de thèseD plorent touve et quillume iottD pour m9voir proposé e sujet de thèse qui s9est révélé plein de elles surprisesD et qui m9 permis de tâtonner en dessinnt les sommes ve un ordinteurD e qui me donnit l9impression de pouvoir vner sur des exemples onrets ssez tôt dns m thèseD m9évitnt insi le déourgement qu9urit pu provoquer l néessité d9pprendre un lourd gge théorique vnt de rentrer dns le vif du sujetF weri pour tout le temps que vous vez dédié à nos rendezEvousD pour vos releturesD et pour votre ide et votre soutien onstntD tout en me lissnt l9utonomie néessire pour que je me sente (er de mon trvilF v longueur 1 des phrses préédentes donne un perçu de m tendne à rédiger euoupD et don du trvil qu9 dû représenter l leture de e mnusritF our el je remerie sinèrement géile hrtyge et immnuel oyer pour leur releture ttentive et pour leurs rpports très positifsF in(nD meri à sl eutissier et prrell frumley pour leur intérêt pour mon trvil et pour voir églement epté de fire prtie de mon jury de thèseF te tiens ensuite à remerier toutes les personnes ve qui j9i disuté de mths u ours de m thèseD et plus prtiulièrement émi et tenEprnçois pour le temps qu9ils m9ont ordé qund mes questions se rpprohient de l géométrieY mes grnds frères de thèse elexndre et gorentin @noE tmment pour m9voir suggéré de regrder l9errtum d9un ertin livreD e qui m9 fit réliser que j9utilisis l9un des lemmes ontennt une typoAY insi qu9imnuele pour les disussions sur les nomres premiers délits et pour son ide préieuse sur l question de l9indépendne linéire des jEinvrints @senz di te i vrei pensto per T mesi e non so se e l9vrei fttAF wes remeriements mthémtiques vont ussi à edrienD enneEidgrD finD ten et wrtin pour leur investissement dns le groupe de trvil sur l théorie du orps de lsse @j9i euoup ppris grâe à vous 3AY à mes oureux qui m9ont élirés à de nomreuses reprisesD et qui lissient souvent e qu9ils étient en trin de fire pour que l9on ré)éhisse ensemle @ne vous inquiétez psD je vous remerie plus loin pour tout un ts d9utres hoses que les mths 3AY et à mon frère de thèse wounirD qui ien voulu m9éouter répéter des exposésF te suis églement reonnissnt envers géile hrtyge et homs toll pour l9opportunité de présenter mon trvil à xnyD et envers qérld enenum qui m9 suggéré de m9intéresser ux questions de disrépnesF yn this sujetD s would lso like to thnk sgor hprlinski for sending me n unpulished note from whih s orrowed some idesF weri euoup à égis de l fretèhe pour son invittion ux renontres de théorie nlytique et élémentire des nomresD où j9i eu grnd plisir à ller que e soit en tnt qu9orteur ou en tnt que spetteurF te remerie églement fill ellomert pour ses réponses à mes questions sur le nomre de lsse d9un ordre et pour voir fit tourner les luls de sommes de uloostermn de rng 3 qui m9ont permis de fire les illustrtions les onernnt dns le dernier hpitreF in(nD ette thèse doit euoup à immnuel uowlskiD à trvers ses notes de ours qui ont fortement in)uené m formtion en théorie nlytique et proiliste des nomresD et à trvers les éhnges que nous vons eus qui ont onduit à notre rtile en ommunF v ellule informtique souvent été d9un grnd seours pendnt ette thèse X meri de m9voir toujours ueilli ve le sourire même qund mes questions vient déjà leur réponse sur votre siteF weri à ndrineD ylvin et hilippe d9voir été si moteurs pour l ourse du run roseD j9i minE tennt un très eu Eshirt grâe à vousF weri à homs pour son ide à plusieurs reprises églementF gomptez sur moi pour fire l puliité des servies de l vwD je suis un utilisteur onquisF te reE 1 peut-être même lourdeur ? S merie églement gyril de l fws pour son dévouement et s gentillesseF weri à sd et egnès d9voir orgnisé ve une telle e0ité les déplements durnt ette thèse et pour leur ide inestimle dns l9orgnistion des journées wrguxD ompgnées de wuriel wF in(nD meri à urine et wuriel rF @à qui je souhite une elle retrite 3A pour leur investissement en fveur des dotornts et des stgiiresD notmment leurs e'orts pour omprendre le système omE plexe d9otention des rtes du rutEgrré @meri églement à xiols pour son ide dns e omtA 3 insuiteD même si j9en onnis un qui v dire que j9ime vriment ien psser pour un grnd lessé @que je ne suis psD j9en onviensA X je remerie très sinèrement mon kiné elexndreD qui m9 remis sur pieds plus d9une fois et été une prt importnte de m vie soile pendnt l9un des on(nements 3 te suis ussi reonnissnt ux étudints que j9i onnus en tnt que hrgé de h à l9niversité de fordeuxD leur onne humeur @ertesD ni permnente ni uniformément distriuéeD mis mlgré tout présente ssez souventA et leur intérêt pour e que je fisis qund je n9étis ps en h ve eux étient néessires à mon morlF frvo à vous pour votre prours dns es nnées prtiulières de déon(nements G reon(nementsD et onne ontinution 3 te remerie tout prtiulièrement welvine et eless de m9voir fit on(ne pour leurs stges mlgré m file expériene d9endrnt X je suis heureux de vous onnîtreD et je vous souhite le meilleur pour l suite 3 te remerie églement ghntl wenini et Éri flndrud qui étient responsles d9i pour m première nnée d9enseignementD et ve qui j9i eu plisir à éhnger ette nnée là et les suivntesF s m grteful to the fsgyw group of the niversity of yulu for weloming me severl timesD espeilly to teve vvlle for elieving in the usefulness of mthemtiinsD nd to imo yjl for his help on my pplitions in pinlndF s m lso very hppy to know elessndroD ennD f³kD utherineD ulleD nd ietu nd s hope to see you soon3 weri à mes mis de toujoursD les liornes de ierrevert @qui n9y hitent plus euoupA X même si je n9i ps réussi à suivre toutes les évolutions de vos heks et de vos expressionsD vous me fites sentir omme quelqu9un de l nde à hque fois que l9on se revoitD mlgré mes retours ssez spoE rdiques dns le sudD lors meri pour ç @insi que pour les déouvertes musilesA 3 weri à eurore et istelle pour leur mitié depuis le lyéeD pour les sorties à isprron et pout le ontt que l9on rrive à grder mlgré le temps et l distneF weri ux mis de prép de l onverstion Ex-incarcéré.e.s de ThiersD notmment hny qui m9 presque fit imer l physique et qui m9 ppris à toujours dire ç v être super vnt une olleD ph pour l déouverte de l série Over the Garden Wall et pour les pssges piétons d9eixEenE roveneD et eurine pre que te voir deux jours me donner toujours l ptte pour deux moisF weri ux mis de ennes et tout d9ord à eux de l onverstion Belote de la galère X hvid pour ses notes hors ontexte que j9ime tnt relireD io pour m9voir fit vivre mes nnées de ollégien qui vrde en ours ve un peu de retrdD et homs pour son ide à plein de momentsF weri à toute l troupe de l omuzeD pour l9nnée en questionD mis ussi pour tous les souvenirs de vnesD les interminles prties de loupEgrouD l motivtion pour le pino que je n9uris jmis eue sns vousF hes remeriements prtiuliers à ierre pour les répétitions sous l9rre devnt l iliothèqueD et pour notre préprtion ommune du seond onoursD à Émilie pour s visite à fordeux et pour son ueil à villeD à glémentine pour son pssge à fordeux églementD et à wthis pour The OceD Parks and RecreationD Brooklyn 99 et son humour qui les surpsseF weri ux mis de l9swf X muel et imon r je me suis un peu senti un runner en vous suivnt sur trv lors que je n9i ps ouru depuis T moisD ten pour les disussions de dminton @désolé que nous n9yons jmis pu fire e tournoi de douleAD edrienD iyeD ierreEtenD tenEprédériD quthierD tulienD qutierD véo pour toutes les onverstions u rutEgrréF weri à wrtin et enneEidgr pour vos déts sns (n qui m9ont fit rire et m9ont ppris euoupF in prtiulierD meri wrtin de m9voir ppris un peu de politique sns juger trop sévèrement mon ignorne voire m pssivitéD et T meri enneEidgr pour le prtge de tes onnissnes impressionnntes en mthsD je ggnis prfois plus de reul en un reps u rutEgrré qu9en plusieurs semines de trvilF in(nD meri sss d9voir epté de oendrer le stge d9eless ve moiD j9étis rssuré de pouvoir ompter sur quelqu9un de plus solide que moi en proilitésD et d9ussi ienveillntF v9swf non sree l9swf senz tutti gli itliniX grzie qiuseppeD qiorgiD immD fetrieF È sempre un piere prlre on voiF oglio ringrzire imone 2 per l9espressione mi fi perdere le st'eD e mi dispie he non ho nor visto MediterraneoF oglio ringrzire i miei oureux in un misto di frnese e d9itlinoD perhé i prlimo osi omunqueF finD finD finF F F xon smettere mi di fre n9importe quoiD meri pour ton énergie ommunitiveD grzie nhe per questo on(nement l oltireD pour nos synhronistions de oursesD per le tue invitzione mngireD per l tu tort dell nonn per il mio omplenno on l shien lotD et pour tnt d9utres hosesF qrzie wro pour tes jeux de mots soulignés d9un g osillnt fit ve P doigtsD pour le mot regazzD pour l déouverte du fontionnement de l dynmo de mon véloD et pour les souvenirs que je grderi de tes mnières originles de t9sseoir sur une hise de ureuF weri egthe pour tous tes ons gâteuxD pour tes vrdges qund tu orriges des opiesD pour ton éoute ussiD et pour t fore et ton équilire inspirnts entre le sportD les mthsD les misD le sommeil X j9imeris un jour être ussi ple que toi de jouer sur tnt de tleuxF in(nD même si tu n9étis ps o0iellement un oureuD je pense que 9est dns e prgrphe que tu te trouvers le mieux X grzie ul d9voir été présent pour me fire des petites ourses à ertins momentsD meri pour toutes les sorties iném pour se frotter u ôté rsif de l rélitéD rvo pour t omtivité u tennis @désolé de ne ps toujours ien jouer dns le terrinA et pour tes imittions légendires qui me font toujours rireF weri à toute m fmille d9else et de prnheEgomté pour leur porte toujours ouverte et pour leur ompréhension qund je n9étis ps de toutes les sorties r je me disis que je devis réviserF weri à mes prents pour leur ide tout u long de mes études pour que je n9ie qusiment qu9à m9inquiéter des hoses soliresF weri pp d9voir toléré m prtiiption prfois file u rtissge des feuillesD et on ourge pour les feuilles à venirF weri mmn de t9être pssionnée pour les mots ongru et moduloD tu verrs que j9en i mis euoup dns ette thèseF weri à elix de ne ps s9être trop pressée de soutenirD histoire que je reste un petit instnt de plus son grnd frèreD et ps juste son frèreF sn(neD grzie xiolett per tutte le ose he sono più elle on teX per esempio il slmone l fornoD i pommesEnoisettesD gli 3 spiniD tornre s piedi perhé non i sono più usD gurdre un wihelD piegre ene eneD i loli on le mtriiD vinrsiD ntreD fre miniEfootingsD montre un lettoD ndre nei rD ouper les légumes en tout petits outs. . . weri pour tous les surnoms que l9on se donneD et pour eux qu9il nous reste à inventerF i voglio eneF 2 l'unico italiano che conosce più canzoni di Brassens di tutti francesi.

3 Avevo scritto i spinaci, come un stupido 4

4 Aaa, uno stupido! U V

Résumé étendu en français

Dans ce résumé en français, on présente les contributions de la thèse informellement an de limiter l'introduction de trop nombreuses notations. Des énoncés précis et des références à leur localisation dans le corps du manuscrit sont fournis dans la section Outline of the thesis page 43.

gette thèse porte sur l9étude du omportement symptotique de ertines fmilles de sommes expoE nentielles 5 D 9estEàEdire des sommes de l forme j∈J e iθ j , où J est un ensemle (ni et les θ j sont des nomres réelsF in tnt que sommes de nomres omplexes de module 1D ellesEi sont de module inférieur ou égl u rdinl de l9ensemle JF gette orneD dite trivileD est tteinte lorsque tous les θ j sont égux modulo 2πF gependntD dns de nomreuses situE tionsD des ompenstions entre les rguments θ j permettent d9otenir de ien meilleures mjortionsF ves deux illustrtions suivntes permettent de visuliser es deux types de omportementF pigure IX ve point z = e iθ 1 + e iθ 2 + e iθ 3 pour des ngles θ 1 , θ 2 , θ 3 ien réprtis sur le erleF pigure PX ve point z = e iθ 1 + e iθ 2 + e iθ 3 pour des ngles θ 1 , θ 2 , θ 3 presque éguxF vorsqu9elles pprissent dns des prolèmes de théorie des nomresD les sommes exponentielles font générlement intervenir des rguments θ j de l forme 2πa j n pour un ertin entier nD et des entiers a j F uisque le nomre omplexe e iθ j ne dépend lors que de l lsse de ongruene de a j modulo nD on 5 Peut-être serait-il plus juste de les nommer sommes d'exponentielles, mais les deux terminologies semblent être utilisées.

W prle lors de somme exponentielle modulo nD ou sur Z/nZF v9étude des ompenstions entre les rguments qui onduisent à des mjortions nonEtriviles du module de es sommes est lors direteE ment liée à l réprtition des entiers a j dns les lsses de ongruenes modulo nF Notation. our tout t ∈ RD on note e(t) := e 2iπt (n de ne ps enomrer les nottions de 2iπ @utrement ditD on rend l9exponentielle 1Epériodique plutôt que 2iπEpériodiqueD e qui est ien omE mode pour trviller ve des entiersAF rmi les sommes que l9on renontre fréquemmentD on peut iter les sommes de quss X x∈Z/nZ e Å ax 2 n ã qui sont liées à l réprtition des résidus qudrtiquesD et grâe uxquelles on peut démontrer l élère loi de réiproité qudrtique @voir setion IFIFIAF ves sommes de uloostermn

K n (a, b) := x∈(Z/nZ) × e Å ax + bx -1 n ã , @IA
où x -1 est l9inverse de x modulo nD ont églement fit l9ojet de nomreux trvux en théorie nlytique des nomresF illes pprissent notmment dns une vrinte de l méthode du erle introduite pr uloostermn pour étudier le nomre de fçons dont un entier su0smment grnd peutEêtre représenté pr l forme qudrtique ax 2 + by 2 + cz 2 + dt 2 @voir setion IFIFQAD insi que dns l théorie des formes modulires @voir setion IFIFRAF yn retrouve églement des sommes exponentielles dns de nomreux prolèmes d9équiréprtitionD grâe u élère ritère de eyl @voir setion IFPFPAF in e'etD e dernier nous dit que pour prouver l9équiréprtition d9une suite (x n ) n 1 dns l9intervlle [0, 1]D il fut et il su0t de montrer que pour tout entier nonEnul hD

1 N N n=1 e(h • x n ) -→ N →+∞ 0.
ge ritère fit lirement pprître l9utilité de démontrer des mjortions nonEtriviles du module de ertines sommes exponentiellesF gependntD près voir démontré une mjortionD 9estEàEdire près voir prouvé que les sommes qui nous intéressent sont ontrintes à vivre dns un ertin disque du pln omplexeD une question nturelle est X omment se réprtissentEelles dns e disque c i pr exemple on onsidère des sommes de l forme e iθ 1 + • • • + e iθm et que les θ j se omportent omme des vriles létoires indépendntes et uniformément réprties sur [0, 2π]D es sommes vont progressivement remplir tout le disque de entre 0 et de ryon mD donnnt lieu à des imges omme le s @A de l9illustrtion iEdessousF gependntD e omportement n9est ps toujours elui qui se produitD r les ngles θ j peuvent voir des reltions entre euxF gomme nous le verrons plus en détil dns ette thèseD si l9on onsidère les sommes de uloostermn restreintes u sousEgroupe d9ordre 9 pour un premier p ≡ 1 (mod 9) X K p (a, b, 9) := pigure QX heux omportements di'érents de sommes exponentielles dont le module est orné respeE tivement pr 5 et pr 9F

ve prinipl ut de ette thèse est de ontriuer à l ompréhension de l réprtition de ertines sommes exponentielles prtiulièresD notmment en déterminnt quelles fmilles ont un omportement tel que elui qui est illustré dns le s @AD et quelles fmilles ont un omportement tel qu9illustré dns le s @AF hns e seond sD on se demnde églement quelles sont les reltions de dépendne lgérique entre les termes de l somme qui l ontrignent à tomer dns un ertin sousEensemle strit du disqueD et quel est le lien entre l mesure pour lquelle es sommes s9équiréprtissent et es reltions lgériquesF ve hpitre I onsiste en une introdution ux sommes exponentielles et à leurs pplitions en théorie des nomresD vnt de présenter plus préisément les questions qui nous ont intéressés dns ette thèseF ve point de déprt et l première motivtion de e sujet été l9rtile ITD dns lequel les uteurs prouvent l9équiréprtition des sommes de uloostermn restreintes u sousEgroupe d9ordre d X pour des entiers m i quelonques @pouvnt être négtifsD omme 9est le s pour les sommes de uloostE ermnA et des prmètres a i vrint dns F p F vorsque les m i sont tous premiers ve dD l mesure pr rpport à lquelle es sommes s9équiréprtissent est l même que elle qui étit déjà onnue pour les sommes S p (a, d) et K p (a, b, d)F in fitD nous montrons que plus générlement les sommes modulo des puissnes de nomres premiers

x∈Z/p α Z x d =1 e Å a 1 x m 1 + • • • + a n x mn p α
ã stisfont e résultt d9équiréprtition lorsque p α tend vers l9in(ni @p étnt toujours supposé ongru à 1 modulo dAD sns fire uune hypothèse sur le fit que l divergene vers l9in(ni soit due à l roissne de α ou à elle de pD ou à leurs roissnes ominéesF n spet frppnt de l preuve est le fit que les sommes qui pprissent lorsque l9on pplique le ritère de eyl ne tendent ps seulement vers 0D mis sont sttionniresF gel est dû u fit que l9on utorise les prmètres a i à vrier dns tout Z/p α ZD e qui donne des sommes omplètesD qui vlent soit 0 soit 1 pr orthogonlité des rtères dditifs de Z/p α ZF einsiD il est nturel de se demnder si l9équiréprtition est préservée lorsque l9on restreint les prmètres a i à vrier dns des sousEensemles de Z/p α Z @ve l9espoir qu9il y it toujours onvergene vers 0 dns le ritère de eylD mis plus lentementAF g9est l question ordée u hpitre QD dns lequel nous montrons que l9on peut restreindre les prmètres a i à prourir seulement de petits sousEgroupes multiplitifs de (Z/p α Z) × F our simE pli(er l présenttionD supposons que α = 1F hns un premier tempsD des estimtions lssiques sur le module des sommes de quss nous permettent de montrer qu9il y toujours équiréprtition des ensemles de sommes {S p (a, d), a ∈ H p } pr rpport à l même mesure que préédemmentD à ondition que H p soit un sousEgroupe multipliE tif de F × p tel que |H p | √ pF hns un seond tempsD nous utilisons des mjortions de sommes exponentielles otenues pr fourginD ghngD qliihuk et uonygin pr des méthodes de ominE toire dditive pour méliorer le résultt en remplçnt l ondition |H p | √ p pr |H p | p δ pour n9importe quel δ > 0F gette générlistion ne se limite ps u s des sommes de l forme S p (a, d)D mis est vrie plus générlement pour les sommes du type @PAD à ondition de lisser les prmètres a i prourir des sousEgroupes multiplitifs de F × p su0smment grndsF IP ve ontenu des hpitres P et Q donné lieu à l prépulition IHQF hns le hpitre RD nous nous intéressons à l question plus générle de l9équiréprtition de sommes exponentielles de l forme x∈Fp g(x)≡0 (mod p) e Å a 1 x m 1 + • • • + a n x mn p ã @QA lorsque g est un polynôme unitire à oe0ients entiersD et que p tend vers l9in(ni dns une ertine sousEsuite de l suite des nomres premiersF in e'etD dns le s où g(X) = X d -1D nous vions déjà esoin dns les hpitres préédents de l ondition p ≡ 1 (mod d) pour ssurer que toutes les sommes onsidérées vient ien le même nomre de termesF he mêmeD dns e dre plus générlD nous nous restreignons essentiellement ux vleurs de p pour lesquelles g est sindé à rines simples dns F p F ves méthodes employées dns les hpitres préédents s9ppuyient sur le fit que pour le polynôme X d -1D il est possile de hoisir une rine primitive puis d9ordonner les rines en les érivnt omme les puissnes suessives de elleEiF gependntD pour un polynôme g quelonqueD nous ne pouvons plus tirer vntge d9une telle prmétristion des rinesF hns le trvil en ommun UU ve immnuel uowlskiD nous prvenons à frnhir ette di0ulté et à onlure à un résultt d9équiréprtition pour es sommesD qui fit pprître une mesure limite qui est liée u groupe des reltions dditives entre les rines de gD 9estEàEdire le groupe

R g :=    α : Z g → Z g , x∈Zg α(x)x  
 où Z g est l9ensemle des rines omplexes de gF hns ertines situtions @notmment lorsque le groupe de qlois de g est égl à tout le groupe symétriqueAD e groupe des reltions dditives peutEêtre déterminé expliitementD et el donne omme orollire un résultt d9équiréprtition reltivement onret pour les sommes du type @QAF hns e hpitreD nous tritons églement le s des sommes modulo des puissnes de nomres premiersD et l question de l restrition des prmètres a i à de petits sousEgroupes multiplitifsF ge hpitre orrespond ux setions 1 à 5 de l prépulition UUD érite en ollortion ve immnuel uowlskiF hns le hpitre SD nous étudions une notion de disrépne ssoiée ux résultts d9équiréprtition des hpitres préédentsD (n de donner une mjortion de l vitesse d9équiréprtitionF our elD nous vons été menés à démontrer une générlistion de l9inéglité d9irdösEuránEuoksm à des sousEgroupes fermés de (S 1 ) k F v lssi(tion de es sousEgroupes est ien onnueD et nous dit qu9ils sont tous isomorphes à (R/Z) d ⊕ F pour un ertin d k et un groupe élien (ni F F einsiD notre générlistion onsiste à dé(nir l disrépne vi le hoix d9un isomorphisme ve un groupe de l forme (R/Z) d ⊕ F D puis à dpter l preuve lssique de l9inéglité d9irdösEuránEuoksm pour tenir ompte du fteur élien (ni qui est d9hitude sentF insuiteD en exploitnt le fit que les sommes de eyl sont nulles à prtir d9un ertin rng que l9on peut expliitement minorerD nous en déduisons une mjortion de l disrépne en p -cg D où c g est une onstnte stritement positive ne dépendnt que du polynôme g dns l dé(nition des sommes @QAF in(nD le hpitre T trite de sommes de fontions tres indexées pr les rines d9un polynôme g stisfisnt les mêmes hypothèses que préédemmentF ves fontions tres sont des fontions t p : F p → C ynt une origine lgériqueD dont l9exemple le plus simple est elui des rtères dditifs et multiE plitifs de F p F einsiD les sommes de l forme x∈Fp g(x)≡0 (mod p) e Å ax p ã IQ peuvent être vues omme un s prtiulier de sommes de l forme x∈Fp g(x)≡0 (mod p) t p (ax) et l9on peut se demnder si des résultts d9équiréprtition nlogues à eux des hpitres préédents peuvent être démontrés pour des fontions tres plus générlesF in fitD 9est le s pour des fontions tres ssoiés à des fiseux Ediques généreux u sens de pouvryD uowlski et wihel @ountiful en nglisAF n s prtiulier de tel fiseu est le fiseu de uloostermnD dont l fontion tre ssoiée prend pour vleurs les sommes de uloostermn dé(nies en @IA @à une renormlistion prèsAF in s9ppuynt sur des fits déjà onnus sur l9équiréprtition de es sommes prises individuellementD et sur l9indépendne des trnsltés qui provient du rtère généreux du fiseuD nous otenons le résultt suivnt X Soit g ∈ Z[X] un polynôme unitaire séparable n'admettant pas 0 comme racine. Notons K g le corps de décomposition de g sur Q, et rappelons la dénition des sommes de Kloosterman normalisées :

Kl 2 (a, p) := 1 √ p x∈F × p e Å ax + x -1 p ã .
Alors les sommes x∈Fp g(x)≡0 (mod p) Kl 2 (ax, p), paramétrées par a ∈ F p , s'équirépartissent dans R par rapport à une mesure qui est la loi d'une somme de deg(g) variables aléatoire indépendantes, chacune suivant la loi de SatoTate sur [-2, 2], lorsque p tend vers l'inni parmi les nombres premiers totalement décomposés dans K g . ge hpitre orrespond ux setions T et U de l prépulition UUF in(n nous onluons ette thèse en évoqunt quelques perspetives de reherhe qui onstituent une suite nturelle ux questions étudiées jusqu9à présent X le rtère optiml de l ondition en p δ pour l9équiréprtition de sousEgroupes de F × p D l détermintion du module des reltions dditives ou multiplitives entre rines pour d9utres fmilles de polynômes que elles onsidérées dns ette thèseD et en(n les prolèmes horizontux orrespondnt à nos résultts d9équiréprtition dits vertiuxF IR
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SFI irdösEuránEuoksm inequlity @lssil formA F F F F F F F F F F F F F F F F F F F F F F ISQ SFP qenerliztion to losed sugroups of T k F F F F F F F F F F F F F F F F F F F F F F F F F F ISR SFPFI truture of losed sugroups of T k F F F F F F F F F F F F F F F F F F F F F F F F F ISR SFPFP gonstrution of onvolution kernels vi pourier nlysis F F F F F F F F F F F F F ISS SFPFQ en extension of heorem SFP to diret sums of torus with (nite elin group ISU SFPFR hisussion on the de(nition of the disrepny in sugroup of torus F F F F ITP SFPFS e version of irdösEuránEuoksm inequlity for sugroups of torus F F F F F F ITQ SFPFT ome tehnil lemms F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F ITS SFQ hependene with respet to hoies of isomorphismsF F F F F F F F F F F F F F F F F F F F ITS SFQFI eutomorphisms of T d ⊕ F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F ITS SFQFP qenerliztion of heorem SFIU to ny hoie of isomorphism F F F F F F F F F F ITV SFR epplition to the disrepny of the rndom vriles of ghpter R F F F F F F F F F F IUH Ultra-short sums of trace functions 173 TFI wotivtionX sums of multiplitive hrters F F F F F F F F F F F F F F F F F F F F F F F IUQ TFP en introdution to the theory of tre funtions F F F F F F F F F F F F F F F F F F F F F F IUS TFPFI he projetive line over (eld F F F F F F F F F F F F F F F F F F F F F F F F F F F IUS TFPFP heomposition group nd inerti sugroup t point F F F F F F F F F F F F F F F IUU TFPFQ Edi qlois representtions nd their tre funtions F F F F F F F F F F F F F F IUW TFPFR ypertions on tre funtions

F F F F F F F F F F F F F F F F F F F F F F F F F F F F IVI TFPFS urity F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F IVI
TFPFT wesuring the omplexity of tre funtions F F F F F F F F F F F F F F F F F F F F IVP TFPFU founding tre funtions F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F IVP TFPFV edditive nd multiplitive hrters s tre funtions F F F F F F F F F F F F F IVR TFPFW wonodromy groups F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F IVR TFQ niform distriution results for sums of tre funtions over the roots of ( sf f nd g re two funtions de(ned on set XD with vlues in R + D we write f (x) g(x) to sy tht there exists positive onstnt C suh tht for ll x ∈ XD f (x) Cg(x)F sf we wnt to stress tht C depends on other onstnts of the prolemD sy ε nd δD we write f (x) ε,δ g(x).

A ≈ B is used in very informl senseD it is sometimes used in heuristi resonings to signify tht A nd B hve pproximtely the sme sizeF sf A is ommuttive ringD nd n is positive integerD we denote y A n [X] the set of polynomils with oe0ients in A of degree less thn or equl to nF µ d (K) denotes the set of dEth roots of unity on (eld KD while µ d (K) denotes the suset of primitive dEth roots of unityF sf G is groupD we denote y G the spe of onjugy lsses of GF Chapter 1 Introduction sn the (rst prt of this introdutionD we present some historil kground to show tht exponentil sums pper in mny di'erent ontexts in numer theoryF por instneD we will see tht they ply role in the study of solutions to polynomil equtions over (nite (eldsD ut lso over ZD vi the pplition of the irle methodF yne n lso e interested in exponentil sums for their presene in the theory of modulr nd utomorphi formsF henD we give rief reminder on equidistriution @in prtiulr equidistriution modulo 1A nd we explin tht some rithmeti quntities tend to ehve rndomlyD in the sense tht they eome equidistriuted in ertin spesF pinllyD we omine oth spets y stting few equidistriution results where the rithmeti quntities of interest re themselves exponentil sumsF sn seond prtD we give n overview of the topis disussed in the thesisD nd we stte the ontriutions tht one n (nd in the following hptersF sn this setionD we present severl pplitions of exponentil sums in numer theoryD in order to give mny di'erent motivtions for their studyF tust for simpliity of exposition in this introdutionD wht we will ll exponentil sums modulo m will e sums of mEth roots of unity of the form
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x∈A e Å f (x) m ã
where A is (nite set nd f is funtion de(ned on AD with vlues in Z/mZF sn few sesD one n prove losed formul for suh sumsD ut generilly it is ompletely out of rehD nd we re interested in (nding good upper nd lower ounds for their solute vlueD or getting etter understnding of their distriution when onsidered in fmiliesF por these sumsD we lwys hve the soElled trivil oundX

x∈A e x m |A|
whih follows from the tringle inequlity nd the ft tht we re summing omplex numers of modulus 1F ery oftenD improvements on this trivil ound hve onsequenes in prolems of rithmeti ntureD s we will see in the exmples elowF 1.1.1. Quadratic reciprocity law sf p nd q re distint prime numersD we tend to think of the rithmeti modulo p nd the rithmeti modulo q s eing independentF sndeedD the ghinese eminder heorem sttes for instne tht elonging to ertin residue lss modulo p does not impose ny restrition on the residue lss modulo qF he qudrti reiproity lw is the surprising ft tht the events p is qudrti residue modulo q nd q is qudrti residue modulo p re tully not t ll independent3 here re hundreds of proofs of the qudrti reiproity lwD nd mny of them rely on properties of exponentil sumsF pollowing TWD we will present wht is perhps the most lssil proofD whih relies on the expliit evlution of the qudrti quss sumsF fut efore thtD let us rell the de(nition of the vegendre symol nd stte the min theoremF 

Ä p ä : F p → {-1, 0, 1} a → Ä a p ä , where Å a p ã =      1 if there exists x ∈ F × p such that a = x 2 0 if a = 0 -1 otherwise.
sn the (rst seD we sy tht a is quadratic residue modulo pD while in the lst se we sy tht it is quadratic nonresidueF etullyD one n prove tht the vegendre symol oinides with the mp a → a p-1

2 D hene is group homomorphism on F × p F
Theorem 1.2 @udrti reiproity lwD quss IUWTA. If p and q are two distinct odd prime numbers, then

Å p q ã Å q p ã = (-1) (p-1) 2 
(q-1) 2

.

PP sn other wordsD if either p or q is ongruent to 1 modulo 4D then p is qudrti residue modulo q if nd only if q is qudrti residue modulo pF if p nd q re ongruent to 3 modulo RD then p is qudrti residue modulo q if nd only if q is qudrti nonresidue modulo pF yne of the lssil proofs of heorem IFP involves the qudrti quss sumsD de(ned for ny integer m 2 s followsX

G m := x∈Z/mZ e Å x 2 m ã .
hese sums elong to the smll lss of exmples where losed formul n e otinedF xmelyD one hs the following theoremF Theorem 1.3 @qussA. For all odd integers m 3, we have

G m = ® √ m if m ≡ 1 (mod 4) i √ m if m ≡ 3 (mod 4)
e will ome k to this type of sums in ghpter QD nd in prtiulr we give referenes in eppendix QFe for the ft tht if m is primeD then |G m | = √ m @this is firly elementryAF roweverD proving tht the ext vlue is √ m or i √ m depending on the redution of m modulo 4 is muh more di0ultD see for instne SQD ghpter TF yne we dmit the ove theorem on qudrti quss sumsD the proof of heorem IFP is quite shortF Proof of Theorem 1.2. st su0es to prove tht

G pq = G p G q Å p q ã Å q p ã @IFIA
euse then it follows from heorem IFQ tht

Å p q ã Å q p ã = ® 1 if p ≡ 1 mod 4 or if q ≡ 1 mod 4 -1 if p ≡ q ≡ 3 mod 4.
xowD in order to prove @IFIAD we (rst oserve tht the mp

F p × F q → Z/pqZ (x 1 , x 2 ) → qx 1 + px 2
is ijetionF sndeedD it is well de(ned euse if x 1 hnges y multiple of pD the outome hnges y multiple of pqD nd similrly if x 2 hnges y multiple of qF woreover it is surjetive euse p nd q re oprimeF he onlusion follows from the equlity of the rdinlities on oth sidesF husD we hve y orthogonlity of the dditive hrters of F p @or more elementrily y summtion of geometri seriesAD euse q is nonEzero modulo pF hereforeD

G pq = x∈Z/pqZ e Å x 2 pq ã = x 1 ∈Fp x 2 ∈Fq e Å (qx 1 + px 2 ) 2 pq ã = Ñ x 1 ∈Fp e Å qx 2 1 p ã é Ñ x 2 ∈Fq e Å px 2
x 1 ∈Fp e Å qx 2 1 p ã = y∈Fp Å y p ã e Å qy p ã = z∈Fp Å q -1 z p ã e Å z p ã = Å q -1 p ã z∈Fp Å z p ã e Å z p ã = Å q p ã z∈Fp Å z p ã e Å z p ã = Å q p ã G p
withing the roles of p nd qD the sme proof shows tht

x 2 ∈Fq e Å px 2 2 q ã = Å p q ã G q
nd this (nishes the proof of @IFIAF 1.1.2. Point counting on varieties dened over nite elds enother numer theoreti ontext in whih exponentil sums rise is when one is interested in the numer of solutions of polynomil equtions over (nite (eldsF sndeedD if p is prime numer nd we denote y F p the dul of (F p , +) @iFeF the group of dditive hrters of F p AD then y orthogonlity of hrters we hve

1 p ψ∈ " Fp ψ(x) = ® 1 if x = 0 0 otherwiseF
sn other wordsD this verge over the dditive hrters gives funtions whih detets the residue lss 0 modulo pF husD if we re given polynomil Q

∈ F p [X 1 , . . . , X m ]D the numer of solutions (x 1 , . . . , x m ) ∈ F m p to the eqution Q(x 1 , . . . , x m ) = 0 is given y N Q (p) = 1 p x 1 ,...,xm∈Fp ψ∈ " Fp ψ(Q(x 1 , . . . , x m )).
@IFPA pinllyD sine we hve n expliit desription of the dditive hrters of F p D nmely where the implied onstnt is independent of aF 1.1.3. The circle method his method (rst ppered in pper of rrdy nd mnujn in IWIV onerning the numer of prtitions of n integerX RVF sn this setionD we im to present the min ides of the methodD nd to show tht understnding the order of mgnitude of ertin exponentil sums over (nite (elds or (nite rings plys ruil role in the resolution of severl dditive prolems in numer theoryF e follow sustntil prts of IHV nd SRF Additive problems in number theory. vet us introdue wht we will ll n dditive prolem in numer theoryF sullyD we re given s susets of the set of nturl numersD whih we will denote y A 1 , . . . , A s D nd we wnt to understnd whether or not positive integer N n e written s sum a 1 + • • • + a s D where eh a j elongs to A j F sn other wordsD we wnt to determine whether or not the set {(a 1 , . . . , a s )

F p = {ψ h , h ∈ F p } where ψ h : F p → C * x → e Ä
∈ A 1 × • • • × A s ; a 1 + • • • + a s = N }
is emptyF wore generllyD one my sk out the rdinlity of this setD nd one seeks for ext formulsD or rther symptoti estimtes s N goes to in(nity when ext formuls re out of rehF sn mny fmous prolemsD ll the A j re the sme set AD nd in tht se we will denote y r A (s, N ) the numer of representtions of N s sum of s elements of AD tht is the rdinlity of the set

{(a 1 , . . . , a s ) ∈ A s ; a 1 + • • • + a s = N }.
por exmpleD in wht is known s ring9s prolemD we (x n integer k nd let A e the set of kEth powers of nturl numersD so the question we re sking isX n we write N s a k 1 + • • • + a k s for some nturl numers a 1 , . . . , a s c ht is the lest s for whih ny positive integer is the sum of s kEth powersc por instneD when k = 2D vgrnge9s four squre theorem sserts tht for ny positive integer N there re lwys four integers a i suh tht N = a 2 1 + • • • + a 2 4 F woreover it is wellEknown tht not ll positive integers my e written s sum of oneD two or three squresD so this nswers ring9s prolem for k = 2X the lest numer of squres one needs to llow in order to write ll nturl numers s sum of squres is 4F enother fmous dditive prolem is lled qoldh9s onjetureD nd onsists in tking s = 2 nd for A the set of prime numersF he onjeture sserts tht ny even numer lrger thn 3 n e written s the sum of two prime numersF sn our nottionsD this mounts to sying tht r A (2, 2m) > 0 for ll PS m ∈ Z 2 F pinllyD sine we re going to use it to illustrte some ides of the irle method in simpli(ed settingD let us disuss one esier prolemF e tke A to e the set of ll nonEnegtive integersD nd s 1F hen for ll N 1D r A (s, N ) ounts the numer of wys N my e written s sum of s nonEnegtive integersF sn other wordsD r A (s, N ) is the rdinlity of the set

{(a 1 , . . . , a s ) ∈ N; a 1 + • • • + a s = N }.
his prolem n tully e solved without ppeling to the irle methodD just y using omintoE ril rgumentF trt y writing N s 1 + 1 + • • • + 1D nd then reple 19s y dotsF hen deompositions of N s sums s of nturl numers orrespond to the di'erent hoies of positions of (s -1) rs etween these dotsF por instne the deomposition

7 = 4 + 2 + 1 orresponds to • • • • | • •|•D while 7 = 3 + 0 + 4 orresponds to • • •|| • • • •F o ounting deompositions of N s sums of s nturl numers mounts to ounting the numer of words in the lphet {•, |} mde of N dots nd s -1 rsF hereforeD r A (s, N ) = Ç N + s -1 s -1 å .
sn the following setionD we propose nother pproh to this prolemD whih gives (rst ide of wht the irle method isD nd why it ers tht nmeF

A rst glance at the circle method. sn the reminder of this introdution to the irle methodD we will lwys ssume tht the set A is in(niteF vet A e suh suset of NF e de(ne the power series

f A (z) := +∞ n=0 a(n)z n , @IFQA where a(n) = 1 if n ∈ A nd a(n) = 0 otherwiseF por ll ρ ∈ [0, 1[D the series +∞ n=0 a(n)ρ n
is solutely onvergentD while the series

+∞ n=0 a(n)
diverges euse of the ssumption on the rdinlity of AF hereforeD the power series @IFQA hs rdius of onvergene 1F por ll |z| < 1D we hve

f s A (z) = +∞ n 1 =0 a(n 1 )z n 1 • • • +∞ ns=0 a(n s )z ns = +∞ n 1 =0 • • • +∞ ns=0 a(n 1 ) • • • a(n s )z n 1 +•••+ns = +∞ N =0 c(N )z N where c(N ) = (n 1 ,...,ns)∈N s n 1 +•••+ns=N a(n 1 ) • • • a(n s ) = (n 1 ,...,ns)∈A s n 1 +•••+ns=N 1 = r A (s, N )
hereforeD the oe0ients c(N ) of the ylor series of the holomorphi funtion f s A (z) re extly the numers r A (s, N ) tht we re trying to evlute3 PT he next stepD whih is the reson why this method is lled the irle methodD onsists in pplying guhy9s theorem to write these oe0ients in terms of n integrl over irleF reiselyD sine

f s A (z) = +∞ N =0 r A (s, N )z N with rdius of onvergene 1D we hve tht for ny ρ ∈]0, 1[D r A (s, N ) = 1 2πi C (0,ρ) f s A (z) z N +1 dz. @IFRA
hereforeD the question of evluting or (nding the symptoti ehviour of r A (s, n) hs een trnslted into question out the integrl over irle on the rightEhnd side of @IFRAF vet us see wht this gives in the simple exmple where A = NF sn tht se we hve

f A (z) = +∞ n=0 z n = 1 1 -z , so @IFRA eomes r A (s, N ) = 1 2πi C (0,ρ) 1 (1 -z) s z N +1 dz.
@IFSA xowD thnks to the generlized inomil theoremD the following holds for ll z in the interior of the unit diskX

1 (1 -z) s = +∞ k=0 Ç s + k -1 k å z k , @IFTA
nd the series onverges uniformly on ny losed disk entered t 0 nd of rdius ρ < 1F hereforeD in @IFSAD we n reple (1 -z) -s y its series expnsion given y eqution @IFTAD nd permute the sum nd the integrlF his leds to the equlity

r A (s, n) = +∞ k=0 Ç s + k -1 k å 1 2πi C (0,ρ) z k-N -1 dz.
pinllyD we onlude using the ft tht

1 2πi C (0,ρ) z k-N -1 dz = 1 k=N hene r A (s, N ) = Ç s + N -1 N å = Ç s + N -1 s -1 å ,
whih is indeed the result we found using purely omintoril rgumentF roweverD we hve een extremely lukyD it is not lwys the se tht one n expliitly evlute the integrl @IFRA3 yne my lso ojet tht we mde this look like n nlyti method y hiding the omintoril nture in the generlized inomil theoremD whih we did not proveF roweverD we hope tht this onvines the reder tht guhy9s formul might e useful to study r A (s, N ) with more nlyti tools t our dispositionF sn the next prgrphD we present inogrdov9s re(nement of the methodD nd go little it further into the detilsF Vinogradov's renement and the apparition of exponential sums. sn mny dditive quesE tionsD it is ler tht only su0iently smll integers will hve ontriution in the ounting prolemF por instneD if we wnt to study the numer of representtions of N s sum of squres x 2 1 + • • • + x 2 s D we only need to fous our ttention on integers x i suh tht |x i | √ N F hereforeD the generting series @IFQA +∞ n=0 a(n)z n PU @where a(n) = 1 if n is squreD nd equls 0 otherwiseA my e repled y nite sum for the study of the numer of representtions of N @nmelyX up to n = √ N in the urrent exmpleAF his hs the dvntge of letting us hoose the irle of integrtion to e lwys of rdius 1D euse the issue of the onvergene of the generting series does not riseF hereforeD we n mke the hnge of vriles z = e(α) nd the only guhy9s integrl formul we will need is tully

1 0 e(mα)dα = ® 1 if m = 0 0 otherwise,
whih is just nother writing for

C (0,1) z m dz = ® 1 if m = -1 0 otherwise.
vet us now give rief overview of how the irle method n e pplied to tkle hiophntine prolemF he following lines re inspired to lrge extent y the presenttion of SRF vet f ∈ Z[X 1 , . . . , X s ] e polynomil of degree kF e wnt to ount integrl solutions to the eqution

f (x 1 , . . . , x s ) = 0
inside ertin ounded ox B := [-B, B] s of R s @for instneD in ring9s prolem ssoited with kEth powersD one wnts to study the numer of representtions of n integer N in the form

x k 1 +• • •+x k s D hene one is nturlly led to onsider the polynomil f (X 1 , . . . , X s ) := X k 1 + • • • + X k s -N nd tking B ≈ N 1/k
will ensure tht the solutions inside B re tully all solutionsAF Remark 1.5. ine there re ≈ B s possile points (x 1 , . . . , x s ) in B ∩ Z s nd f mps them into set of ≈ B k points @euse f hs degree k nd we hope tht generilly it will vry enough to reh most integer pointsAD we expet tht if ny point in the imge gets fir shre of preimgesD the point 0 will hve ≈ B s-k preimgesF o we expet tht unless there re some ostrutions to this pseudoErndom ehviourD the eqution f (x 1 , . . . , x s ) = 0 will hve ≈ B s-k solutions in B ∩ Z s F o we see here tht there is hope to prove tht solutions exist when s is sustntilly lrger thn kD iFeF when the numer of vriles is su0iently lrger thn the degree of the polynomilF he (rst step of the irle method onsists in writingD for ll

x = (x 1 , . . . , x s ) ∈ Z s D 1 f (x)=0 = 1 0 e(f (x)α)dα
whih implies tht the ounting funtion

ν f (B) := |{x ∈ B ∩ Z s , f (x) = 0}|
is given y the following integrlX

ν f (B) = 1 0 x∈B∩Z s e(f (x)α) =:S f (α)
dα. @IFUA he next step onsists in splitting the integrl into minor rs nd mjor rsF he ide is tht the ontriutions to the ounting funtion will e hndled very di'erently depending on whether α is lose to rtionl with smll denomintor or notF e motivtion for doing this is tht when α is lose to rtionl a/qD the ontriution of S f (α) to the integrl @IFUA is relted to the ehviour of f (x) in residue lsses modulo qD prolem whih seems more mngele thn the originl hiophntine equtionD espeilly if q is not too lrgeF yn the other hndD if α is not lose to rtionl numer with smll denomintorD we hope tht the ehviour of e(αf (x))D s x vriesD will e rndom enough to ensure nelltions in S f (α)D so tht it will give negligile ontriutionF his is motivtedD for PV instneD y the uniform distriution modulo 1 of the sequene (αn) n 1 when α is irrtionlF he preise mening of lose to nd smll depends on the prolemD so we hoose to remin vgue on this pointF Denition 1.6 @mjor rsD minor rsA. Let P and Q be two positive integers satisfying 2Q P . For any rational number a q ∈ [0, 1[ with (a, q) = 1 and q Q, denote by

M(q, a) := ß α ∈ [0, 1[, α - a q 1 qP

™

It is called the major arc centered at a q . Then we denote by

M := (a,q)=1 q Q M(q, a)
the set of all major arcs, and by m := [0, 1[\M the set of minor arcs.

he ssumption tht 2Q P ensures tht two mjor rs entered t di'erent rtionls do not overlpF Remark 1.7. he prmeters P nd Q need to e hosen refully depending on the spei( prolem one is interested inD nd typilly depend on BD hene on N in ring9s prolem

x k 1 + • • • + x k s =
N F hereforeD whenever we write error term in the reminder of this setionD one needs to hve in mind tht the error terms depend on B, P nd QD nd only eome error terms fter suitle hoie of dependenes etween these prmetersF uoting IX Applying the Circle Method is all about nding the right balance between choosing the minor arcs small enough so their contribution is insignicant and choosing the major arcs small enough such that the integral is easily computable.

xowD let us study the sum S f (α) when α ∈ MF rite α = a q + θ where q QD (a, q) = 1 nd |θ|

1 qP F hen we hve S f (α) = x∈B∩Z s e(f (x)α) = u (mod q) x∈B∩Z s x≡u (mod q) e Å f (x) Å a q + θ ãã
where the sum rnges over u = (u 1 , . . . , u s ) in (Z/qZ) s nd the nottion x ≡ u (mod q) mens tht x i ≡ u i (mod q) for ll i ∈ {1, . . . , s}F husD

S f (α) = u (mod q) e Å a q f (u) ã x∈B∩Z s x≡u (mod q) e (θf (x)) .
xextD y trunted version of oisson summtion formul @see SRD eqF ove @PHFQIA nd vemm VFVAD we n reple the inner sum y 1 q s B f (θ)D where

B f (θ) := B e (θf (x)) dx
with good error term under ertin onditions @we need θ to e smllD so we need P to e reltively lrgeD sine |θ|

1 qP AF his implies tht S f (α) = C f (a/q)B f (θ) + @error termA, with C f (a/q) := 1 q s u (mod q) e Å a q f (u) ã .
hereforeD the ontriution of the mjor rs to the ounting funtion

ν f (B) isX PW M S f (α)dα = q Q a∈(Z/qZ) × |θ| 1 qP S f Å a q + θ ã dθ = q Q a∈(Z/qZ) × C f (a/q) |θ| 1 qP B f (θ)dθ + @error termA = q Q c f (q) |θ| 1 qP B f (θ)dθ + @error termA where c f (q) = 1 q s a∈(Z/qZ) × u (mod q) e Å a q f (u) ã .
xextD it n e shown tht in severl pplitions of the irle method @suh s ring9s prolemAD |B f (θ)| B θ -1-γ for some γ > 0 so tht the integrl over |θ|

1
qP n e pproximted y the integrl over the whole rel lineD with good error termX

|θ| 1 qP B f (θ)dθ = R B f (θ)dθ =:V f (B)
+@error termA husD we onlude tht the ontriution of the integrl over the mjor rs tkes the following formX

M S f (α)dα = V f (B) q Q c f (q) + @error termA.
@IFVA he singular integral V f (B) dmits n interprettion in terms of density of the rel zeros of f in BD ut we will not fous on thtD s we wish to shed more light on the ples where exponentil sums pperF p to this pointD we progressively turned the ounting prolem into n nlyti prolem involving integrls nd exponentil sumsD ut we did not use ny ound on exponentil sumsF he following ssumption is (rst exmple of nonEtrivil exponentil sum estimte whih plys ruil role in the symptoti evlution of the sum of the c f (q)F Assumption 1.8. There exists η > 0 such that for all q 1, for all a ∈ (Z/qZ) × , C f (a/q) q -2-η .

ell tht

C f (a/q) := 1 q s u (mod q) e Å a q f (u) ã ,
so this ssumption relly is out (nding nonEtrivil nelltions in n exponentil sumF sf essumption IFV is stis(edD then it is esy to dedue tht

q>Q c f (q) Q -η .
his implies tht in @IFVAD we n reple the (nite sum up to Q y the sum of the seriesD up to n eptle error termX

M S f (α)dα = V f (B)S f + @error termA.
where S f = +∞ q=1 c f (q) is lled the singular seriesF st turns out tht this series ontins the inforE mtion on the pEdi solutions to the eqution f (x) = 0D s we will explin nowF sndeedD we hve

QH c f (q) = 1 q s u (mod q)   a∈(Z/qZ) × e Å a q f (u) ã  
nd the inner sum is well known type of exponentil sum lled Ramanujan sumF st n e evluted expliitly using wöius inversion formulD nd this givesX

a∈(Z/qZ) × e Å a q f (u) ã = d|q d|f (u) µ q d d. hereforeD c f (q) = 1 q s d|q µ q d d u (mod q) d|f (u)
1.

woreoverD

|{u mod q, f (u) ≡ 0 mod d}| = q s d s |{x mod d, f (x) ≡ 0 mod d}| , so c f (q) = d|q µ q d |{x mod d, f (x) ≡ 0 mod d}| d s-1 =:ω f (d) = (µ ω f )(q),
where the str denotes the hirihlet onvolution of rithmeti funtionsF xowD sine ω f is multiplitive nd the onvolution of multiplitive funtions is multiplitiveD we dedue tht

c f (q) = p α ||q ω f (p α ) -ω f (p α-1 ) . husD S f = +∞ q=1 c f (q) = +∞ q=1 p α ||q ω f (p α ) -ω f (p α-1 ) = p δ f (p),
where

δ f (p) = 1 + +∞ α=1 ω f (p α ) -ω f (p α-1
) F nder essumption IFVD ll the in(nite series nd produts onvergeD nd we hve

δ f (p) = lim α→+∞ ω f (p α ).
es

ω f (p α ) = |{x ∈ (Z/p α Z) s , f (x) ≡ 0 mod p α }| (p α ) s-1 ,
the ftor δ f (p) n e interpreted s the density of pEdi solutions to the eqution f (x) = 0F sndeedD heuristi resoning s in emrk IFS shows tht if ll the residue lsses modulo p α get fir shre of preimges under the mp indued y f etween (Z/p α Z) s nd Z/p α ZD then (p α ) s-1 is tully the expeted numer of solutionsD so ω f (p α ) should e lose to 1 in situtions where the heuristi n e mde rigorousF es onlusionD the ontriution of the mjor rs is given y

M S f (α)dα = V f (B)S f + @error termA,
where V f (B) n e interpreted s the density of the rel solutions to the eqution f (x) = 0D while the singulr series S f dmits ftoriztion s n in(nite produt over the primesD eh ftor mesuring the density of solutions modulo prime powersF QI he (nl tsk is to prove tht the ontriution of the minor rs is negligile in front of the min term V f (B)S f tht ws otined for the mjor rsF here lsoD estimtes on exponentil sums ply roleD see eFgF SRD ghpter PHF Kloosterman's variant. sn his rtile TTD uloostermn introdued vrint of the irle method to study the question of the numer of representtions of n integer in the form ax 2 + by 2 + cy 2 + dt 2 D under some onditions on the oe0ients a, b, c, d ∈ NF elong the wyD he ws led to introdue the following exponentil sums @de(ned for ny prime numer pAD whih re now nmed fter himX

K p (a, b) := x∈F × p e Å ax + bx -1 p ã for a, b ∈ F p
hese sums re rel numersD nd they re trivilly ounded y p -1F roweverD uloostermn needed to prove nonEtrivil ound in order to understnd wht ws the min termD nd wht ws negligile in his vrint of the irle methodF fy onsidering the 4Eth moment of the fmily of uloostermn sumsD tht isX

a,b∈F × p |K p (a, b)| 4
he redued to n elementry ounting prolemD nmely the prolem of ounting solutions

(x 1 , x 2 ), (y 1 , y 2 ) in (F × p ) 2 to the equtions ® x 1 + x 2 = y 1 + y 2 x -1 1 + x -1 2 = y -1 1 + y -1 2 . re otined the following nonEtrivil oundX for ll a, b ∈ F × p D |K p (a, b)| 2p 3/4
D nd this llowed him to onlude on the question of representtion of integers y digoonl qudrti forms in four vrilesF 1.1.4. Fourier coecients of modular forms uloostermn sums lso rise nturlly in the study of modulr forms nd more generlly of utomorE phi formsD nd in this setion we im t providing n ide of wht those spei( funtions reD why they re studied y numer theoristsD nd t whih ple do uloostermn sum ply roleF his setion is mostly sed on SRD ghpF IR 8 IS nd ISD where fr more detiled introdution to the sujet n e foundF vet H := {z ∈ C | Im(z) > 0} denote the oinré upperEhlf plneF he group SL 2 (R) ts on H

y wöius trnsformtionsX if γ = Å a b c d ã ∈ SL 2 (R) nd z ∈ HD then γ.z = az + b cz + d •
e will e interested in the restrition of this tion to disrete sugroups of SL 2 (R)D suh s SL 2 (Z)F por rithmeti pplitionsD one lso often enounters the congruence sugroups

Γ 0 (q) := ßÅ a b c d ã ∈ SL 2 (Z) | c ≡ 0 (mod q) ™ .
xote tht Γ 0 (1) = SL 2 (Z)F e n now de(ne modulr formsX they re holomorphi funtions on H whih trnsform niely under the tion of the modulr group SL 2 (Z) or one of its ongruene sugroupF Denition 1.9. For two positive integers k, q 1, a modular form of weight k and level q is a holomorphic function f :

H → C such that for all γ = Å a b c d ã ∈ Γ 0 (q), for all z ∈ H, f (γ.z) = (cz + d) k f (z)
QP and such that it is holomorphic at cusps.

por modulr forms of level 1 @iFeF modulr forms of the full modulr group SL 2 (Z)AD the holomorphy t the usp ∞ n e explined in rther elementry wyX sine z → z + 1 ∈ SL 2 (Z)D ny level 1 modulr form is 1EperiodiD hene dmits pourier expnsion of the form

+∞ n=-∞ a f (n)e(nz)
we sy tht

f is meromorphi t ∞ if there exits N ∈ Z suh tht for ll n N D a f (n) = 0Y f is holomorphi t ∞ if for ll n < 0D a f (n) = 0Y f is usp form if it is holomorphi t ∞ nd moreover a f (0) = 0F
he seond ondition ove is preisely the ondition of holomorphy t the usp ∞ of he(nition IFWF everl importnt questions in the theory of modulr forms re relted to the order of mgnitude of the pourier oe0ients a f (n)F por instneD motivtion n ome from the ft tht in order to understnd the domin of de(nition of the ssoited LEfuntion

L(f, s) := +∞ n=1 a f (n) n s
one needs to hve estimtes for the growth of the sequene (a f (n)) n 1 F st turns out tht for the de(nition of the LEfuntionsD the following estimte due to rrdy su0esX

Proposition 1.10 @ISD roposition IFQFSA. If f is a cusp form of weight k and level 1, then

a f (n) n k/2 .
rowever onjeture of mnujn of IWITD lter lled the mnujnEetersson onjeture in more generl ontextD sserts tht under the sme ssumptions

a f (n) ε n k-1 2 +ε .
his ws proved y heligne mny yers lterD s onsequene of his work on the eil onjeturesD nd hs found fruitful pplitions sine thenF por instneD this ound plys entrl role in the onstrution of mnujn grphs y vuotzkyD hillips nd rnk VH @tullyD they do not need the full generlity of the mnujnEetersson onjeture s proved y heligneD nd rther rely on erlier works of iihler nd sgusAF uh grphs give exmples of expander graphsD whih re grphs stisfying ertin extremlity properties @for instne it is relted to the existene of lrge spetrl gpX gp etween the trivil eigenvlue nd the other eigenvlues of the djeny mtrix of the grphAF his type of estimtes on pourier oe0ients of modulr forms lso ppers in the proof tht ertin grph is n expnder in the rtile QQD whih onerns very onrete numer theoreti questionF xmelyD they study the distriution of the tuples

ß 1 √ d (x, y, z) | (x, y, z) ∈ Z 3 suh tht x 2 + y 2 + z 2 = d ™
on the sphere S 2 s d goes to in(nity mong the integers whih n e represented s sum of three squresD nd d ≡ ±1 (mod 5)F sing modern reformultion of n ergodi method of vinnikD they prove the equidistriution of these tuplesD nd the proof relies on the ft tht ertin grph hs spetrl gpF he ondition d ≡ ±1 (mod 5) is due to tehnil limittion of this spei( pprohD nd it n tully e removedF his ws hieved y huke in QHD y onsidertions on the pourier QQ oe0ients half-integral weight wss formsD generliztion of the notion of modulr forms whih need not e holomorphiF sn the previous pplitionD estimtes of uloostermn sums ply ruil role in the proofF his omes from the ft tht they pper in mny instnes of trace formulasD suh s etersson9s tre formul @for holomorphi usp formsA or uuznetsov9s tre formul @for more generl utomorphi formsAF e stte here simple form of etersson9s tre formulD whih n e seen qusi orthogonlity reltion for pourier oe0ients of usp formsF Proposition 1.11 @SRD roposition IRFSA. Let F be an orthonormal 1 basis of the space of cusp forms of SL 2 (Z) of weight k. Then for any m, n 1,

Γ(k -1) (4π √ mn) k-1 f ∈F a f (n)a f (m) = δ m,n + 2πi -k c>0 K c (m, n) c J k-1 Å 4π √ mn c ã where δ m,n is the Kronecker symbol, K c (m, n) is the Kloosterman sum x∈(Z/cZ) × e Å mx + nx -1 c ã @IFWA and J k-1 is a Bessel function.
he ide of the proof is to onsider the expnsion

P m = f ∈F f, P m f,
where P m is spei( usp form lled oinré seriesD nd to identify the nEth pourier oe0ients of oth sidesF e refer to SRD ghpter IR for omplete proofsF he reson why uloostermn sums pper is euse they pper in the pourier oe0ients of oinré seriesD nd it is tully s suh tht they (rst mde n pprition in the literture @see the rtile UP y iF uowlskiAF qenerliztions of roposition IFII in the form of wht is lled uuznetsov9s tre formul re widely used in questions relted to ounting geodesis of length less thn log(X) on rithmeti surfesD typiE lly on the modulr surfe PSL 2 (Z)\HF sn this ontext s wellD estimtes on uloostermn sums re importnt to ontrol the size of the error term in n symptoti formul @s the length of the geodesis tends to in(nityA lled the prime geodesic theoremF en illustrtion of tht lim is the pper RD whih improves the error term otined in erlier works y improving the estimtes on sums of uloostermn sumsF pinllyD let us mention nother very onrete numer theoreti question whih hs een nswered relyE ing prtilly on estimtes on uloostermn sumsX the equidistriution of roots of qudrti ongruenes modulo primes y hukeD priedlnder nd swnie QIF wore preiselyD wht it this sttement out c pix degree 2 irreduile polynomil P (X) = aX 2 + bX + c ∈ Z[X]F hen for ny prime p whih does not divide aD the redution of P (X) modulo p is qudrti polynomil with oe0ients in F p D so it hs t most two roots in F p F e denote y ρ(p) the numer of roots of P (X) in F p D nd y 

ρ(x) = p x ρ(p

QR

Theorem 1.12 @hukeEpriedlnderEswnieA. for any interval

[a, b] ⊆ [0, 1], 1 ρ(x) # ß (p, ν) | p x, P (ν) ≡ 0 (mod p) and a ß ν p ™ b ™ -→ x→+∞ b -a.
uowlski9s ook UH gives mostly selfEontined exposition of the proof of this theoremD nd its introdution lredy explins mny importnt idesF pirstD one needs to pply eyl9s riterion @we will disuss it in the next setion on equidistriutionA nd this redues the question to showing tht ertin exponentil sums onverge to zeroF xextD nonEtrivil step onsists in relting these exponentil sums to ertin modulr formsF hen one needs to prove tht these modulr forms hve hrmoni properties whih gurntee the onvergene towrds zero of the eyl sumsF hese hrmoni properties essentilly require us to study gin the growth of some pourier oe0ientsD nd this prt lso mkes use of uuznetsov9s tre formulD nd of estimtes on uloostermn sumsF Remark 1.13. he nlogous sttement for roots of polynomil ongruenes modulo nturl numers @nd not only primesA is tully esierD nd ws proved y rooley in SI for irreducible polynomils of ritrry degreeF yn the other hndD the se of reducible polynomils is still not ompletely understoodF sn VPD wrtin nd itr studied the se of reduile qudrti polynomilsD nd quite reently hrtyge nd wrtin PR otined results for reduile polynomils of degree 3 s well s for polynomils whih re produt of n ritrry numer of liner ftorsF e hope tht ll those exmples will onvine the reder of the relevne of the study of exponentil sumsD s they keep on ppering in mny ples in numer theoryF sn the next setionD we give rief overview of some fts in the theory of equidistriutionD in more generl ontext thn tht of the intervl [0, 1]F 1.2. Equidistribution 1.2.1. Generalities sn this setion we present the neessry de(nitions to spek out equidistriution in ompt topoE logil spesD setting whih will e su0iently generl to stte ll the equidistriution results of this thesisF e hve tken inspirtion from the presenttion of UQF qiven ompt topologil spe XD we denote y B(X) the σElger of forel setsD nd we ll Borel probability measure ny mesure µ on (X, B(X)) suh tht µ(X) = 1F sn this settingD ssume tht we re lso given sequene (Y n ) n 1 of (nite sets together with mps

θ n : Y n → X.
Denition 1.14. We say that (Y n , θ n ) n 1 becomes equidistributed in X with respect to µ if for all continuous functions f : X → C, we have

1 |Y n | y∈Yn f (θ n (y)) -→ n→+∞ X f (x)dµ(x) iquivlentlyD (Y n , θ n ) n 1 eomes equidistriuted with respet to µ if nd only if for ny forel set A ⊆ X whose oundry ∂A stis(es µ(∂A) = 0D we hve |{y ∈ Y n | θ n (y) ∈ A}| |Y n | -→ n→+∞ µ(A).
yf ourseD these de(nitions n esily e justed to the se of sequenes (Y p , θ p ) indexed y prime numersD or even (Y a , θ a ) indexed y idels of the ring of integers of numer (eld K @in tht seD the limit is tken s a goes to in(nityD where a is the index of a in O K AF e will see n instne of tht in ghpter RF Remark 1.15. xote tht sying tht the sequene (Y n , θ n ) n 1 eomes equidistriuted in X with respet to µ is equivlent to sying tht the sequene of empiril mesures

µ n := 1 |Y n | y∈Yn δ θn(y)
onverges wekly to µF et nother wy of rephrsing thisX if we view eh (nite set Y n s proE ility spe with the normlized ounting mesureD then the mps θ n re viewed s XEvlued rndom vrilesD nd we re sying tht these rndom vriles onverge in lw to rndom vrile whose lw is µF pinlly let us stte n esy onsequene of the de(nitions onerning pushforwrd mesures whih will e used in mny ples of the next hptersF Lemma 1.16. Let X and Y be two compact topological spaces, endowed with their respective Borel σ-algebras, and let f : X → Y be a continuous map. Let µ be a Borel probability measure on X.

If (A n , θ n ) n 1 becomes equidistributed in X with respect to µ, then (A n , f • θ n ) n 1 becomes equidis- tributed in Y with respect to the pushforward measure f * µ.
Proof. vet g : Y → C e ontinuous mpF e wnt to prove tht

1 |A n | a∈An g(f (θ n (a))) -→ n→+∞ Y g(y)d(f * µ)(y).
ine g is ontinuousD so is g•f D hene we n use the ssumption tht (A n , θ n ) eomes equidistriuted in X to dedue tht the left hnd side onverges to

X (g • f )dµ.
fut this lst integrl equls Y g(y)d(f * µ)(y) @y stndrd rgumentX one (rst shows tht it is true when g is the hrteristi funtion of forel set y de(nition of f * µD nd then extends the results to ny mesurle funtions y pproximtion y step funtionsAF 1.2.2. Equidistribution modulo 1 and Weyl's criterion e now turn our ttention to prtiulr seX the equidistriution in [0, 1[ with respet to the veesgue mesureD whih is lso lled equidistribution modulo 1F st is historilly the se onsidered y eylD in his fmous rtile IHUD where he introdued the riterion whih ers his nmeD nd hs een generlized to more generl settings sine thenF e sequene (x n ) n 1 of rel numers is sid to e uniformly distributed modulo 1 if its frtionl prts {x n } eome equidistriuted in [0, 1[ with respet to the veesgue proility mesureX in other wordsD if for ll suintervls

[a, b[⊆ [0, 1[D # {1 n N, {x n } ∈ [a, b[} N -→ N →+∞ b -a. @IFIHA
ith the nottions of the previous setionD this orresponds to the se where

Y N = {1, . . . , N } nd θ N : Y N → [0, 1[ n → {x n }
while (X, µ) is the intervl [0, 1[ endowed with its veesgue mesureF he following theorem is well known riterion due to eylD whih sttes tht one n tully hek uniform distriution modulo 1 only on nie suset of the ontinuous funtions on [0, 1]X the set of trigonometri polynomils @whih form dense susetD with respet to the uniform normD of the set of ontinuous nd 1Eperiodi funtionsAF QT Theorem 1.17 @eyl9s riterionA. A sequence (x n ) n 1 is uniformly distributed modulo 1 if and only if for all h ∈ Z \ {0},

1 N N n=1 e(h • x n ) -→ N →∞ 0. @IFIIA
por proofD see for instne PWD heorem IFIWF his riterion redues the study of uniform distriuE tion modulo 1 to the prolem of estimting exponentil sumsF e (rst esy pplition of this riterion is the uniform distriution modulo 1 of the sequene (nα) n 1 for ny given α ∈ R \ QF rere we wnt to stress tht without eyl9s riterionD this esy pplition is not so esy3 en even more di0ult pplition is the uniform distriution modulo 1 of the sequene (pα) p prime for α lso irrtionlF his ws proved y inogrdovD nd vi eyl9s riterionD it is implied y the following estimteX if

β ∈ R \ Q then p x e(βp) = x→+∞ o Å x log(x)
ã .

e refer to UHD ropF SFSFI for proofF eyl9s riterion dmits generliztions to fr more generl settingsD where equidistriution with respet to the rr mesure on ompt group n e proved using sums of hrters of the groupF e will ome k to this in eppendix RFe nd use these more generl versions t severl ples of this mnusriptF roweverD the se of equidistriution modulo 1 still plys n importnt role in this thesisD s mny of the groups we will e interested in re of the form (R/Z) d for some integer dF 1.2.3. A quantitative result: Erdös-Turán inequality xowD nturl question whih omes to mind is to sk wht kind of informtion on the distriution of the frtionl prts {x n } n e dedued from estimtes on the exponentil sums whih pper in eyl9s riterionc por instneD if we hve good understnding of the rte of onvergene towrds zero in @IFIIAD n we dedue n expliit rnk N fter whih the rtio

# {1 n N, {x n } ∈ [a, b[} N is lose to b -
aD up to wellEunderstood errorc sn other wordsD we would like to (nd quantitative form of the uniform distriution modulo 1F e wnt to reple the qulittive onvergene of @IFIHA y n expliit upper ound for the gp

# {1 n N, {x n } ∈ [a, b[} N -(b -a)
in terms of exponentil sumsD so tht informtion on the distriution n e derived from quntittive estimtes of the dey towrds zero of the exponentil sums involved in eyl9s riterionF irdösEurán inequlity enles one to hieve this golD nd n e stted s followsX Theorem 1.18 @irdösEuránA. sn the se of heorem IFIVD if one onsiders the empiril mesure

# 1 n N ; {x n } ∈ I N -(b -a) c 1 H + c 2 0<|h|<H Å 1 |h| - 1 H ã 1 N N n=1
µ N := 1 N N n=1 δ {xn} then its pourier oe0ients re " µ N (h) = 1 N N n=1 e(h • x n )
wheres the pourier oe0ients of the veesgue mesure λ re ll equl to zeroD exept λ(0) whih equls 1F hereforeD one n rewrite irdösEurán inequlity s sup

I=[a,b[⊂R b-a 1 |µ N I -λ I | c 1 H + c 2 0 |h|<H Å 1 |h| - 1 H ã " µ N (h) -λ(h) .
he supremum on the left hnd side of this inequlity is usully lled the discrepancy of the sequene (x n ) n 1 F husD irdösEurán inequlity is sttement whih ontrols the disrepny etween two mesures y the di'erene etween their pourier oe0ientsF wore generl sttements of this type re proved for instne in VVD where the nlogy with ferryEisseen inequlity in proility theory is lso pointedF 1.2.4. Sample of equidistribution results in number theory wny rithmetilly de(ned ojets hppen to show rndomElike ehviourD in the sense tht they eome equidistriuted in ertin spesF sn this short setionD we wish to give two lssil exmples @other thn the exponentil sums we will e fousing in the next setionAF Primes in arithmetic progressions. he prime numer theorem of rdmrd nd de l llée oussin sttes tht the prime ounting funtion π(x) := |{2 p x | p is prime}| is equivlentD s x goes to in(nityD to

Li(x) := x 2 1 log(t) dt
@whih is itself equivlent to x/ log(x)AF en nlogous theorem gives the symptoti for the numer of prime numers less thn or equl to xD in a certain arithmetic progressionF sn other wordsD we (x n integer q 2 nd n invertile residue lss a (mod q)D nd we re interested in π(x; q, a) := |{p x | p is prime nd p ≡ a (mod q)} he prime numer theorem in rithmeti progressions sttes tht π(x; q, a)

∼ x→+∞ Li(x) ϕ(q) •
sn other wordsD if one looks t the proportion of primes less thn or equl to x whih elong to n invertile residue lss modulo qD then this proportion onverges to 1/ϕ(q)F por instneD for q = 4 we hve ϕ(q) = 2D nd the theorem tells us tht the proportion of primes ongruent to 1 modulo 4 nd the proportion of primes ongruent to 3 modulo 4 oth onverge to 1/2F vet us rephrse this theorem in the lnguge of equidistriutionF e let Y x denote the set of prime numers less thn or equl to x nd

θ x : Y x → Z/qZ p → p (mod q)
QV e endow Z/qZ with the proility mesure

µ := 1 ϕ(q) a∈(Z/qZ) × δ a .
hen the prime numer theorem in rithmeti progressions sttes tht (Y x , θ x ) x 2 eome equidisE triuted in Z/qZ with respet to µ in the sense of he(nition IFIRF Sato-Tate law for elliptic curves. his prgrph owes lot to the survey pper IHH y eF utherlndF por kground on ellipti urvesD we refer to the fmous ook of ilvermn WV @see lso the ook of gox PQX even though its title does not mention ellipti urvesD it is gret introdution to the sujet3AF en ellipti urve over Q is urve given y n eqution of the form

E : y 2 = x 3 + ax + b
with a, b ∈ ZF fy introduing third vrile zD nd turning the eqution de(ning E into homogeE neous equtionD we n view E s projetive urve in P 2 (Q)F illipti urves hve een t the hert of development of the vnglnds progrmD whih onsists in mny onjetures nd theorems onernE ing onnetions etween ellipti urvesD modulr formsD nd qlois representtionsF por instneD the modulrity onjeture disussed in the ook of himond nd hurmn PU is key step in the proof of permt9s lst theorem y endrew ilesF he toEte lw for ellipti urves we wish to present in this prgrph onerns the distriution of the error term in the numer of points on the redution modulo p of EF roweverD we need to exlude some primes where the redution modulo p is dF wore preiselyD there is notion of discriminant of n ellipti urveD whih is de(ned y the formul ∆ = -16(4a 3 + 27b 2 )D nd for ny prime numer pD we sy tht E has good reduction at p if p does not divide ∆F por suh primesD we n redue the eqution de(ning E modulo pD nd otin n ellipti urve over the (nite (eld F p D whih we denote y E p F he numer of F p Epoints of E p stis(es the ound

|#E p (F p ) -(p + 1)| 2
√ p @this is lled the rsse oundAD so tht if we denote y

t p := p + 1 -#E p (F p )
the numers t p / √ p ll elong to the intervl [-2, 2]D nd one my wnt to understnd more preisely their distriution in this intervlF et this pointD we need to one lst de(nition in order to stte the toEte theoremX the notion of urve with or without omplex multiplitionF ine de(ning the group lw on n ellipti urve is fr from the purpose of this introdutionD we will just stte s ft tht one n endow E with group lwD so tht it mkes sense to write P + Q for two points P nd Q of the ellipti urveF his turns E into n elin group nd in prtiulrD for ny positive integer nD we n de(ne n endomorphism ϕ n of the urve E whih is given y the multiplition y nX ϕ n (P ) = P + • • • + P.

n times sf n is negtiveD we de(ne ϕ n (P ) s -P -• • • -P @-n timesAF his shows tht the ring of endomorE phisms of E ontins suring isomorphi to ZF roweverD it n hppen tht the urve dmits other endomorphisms thn those of the form ϕ n F sn tht seD one n show tht the End(E) is isomorphi to the ring of integers O K of n imginry qudrti (eld KF e sy tht E is urve with complex multiplicationD or gw ellipti urveF ytherwiseD it is sid to e nonEgwD or an elliptic curve without complex multiplicationF e n now ste the toEte onjetureD whih is now theoremD pulished in the yers PHIHEPHII y frnetEvmD glozelD qeeD qerghtyD rrrisD hepherdEfrron nd ylor @the preise rtiles re referened in the survey IHHAF QW Theorem 1.21 @toEte lw for nonEgw ellipti urvesA. Let E be an elliptic curve over Q without complex multiplication. For all prime numbers p, denote by

t p := p + 1 -#E p (F p ).
Then for any closed interval [a, b] ⊆ [-2, 2], we have

# ¶ p x | tp √ p ∈ [a, b] © π(x) -→ x→+∞ b a 1 2π 4 -t 2 dt.
sn other wordsD if Y x is gin the set of prime numers less thn or equl to x nd 2] with respet to the toEte mesureX

θ x : Y x → [-2, 2] p → tp √ p then (Y x , θ x ) x 2 eome equidistriuted in [-2,
dµ ST (t) = 1 2π 4 -t 2 dt. @IFIPA
his is nother instne of n rithmeti quntity @n error term for the numer of points on n ellipti urve over vrying (nite (eldsA whih shows rndom ehviourD nd the rndomness is wellEunderstood sine we know tht the limit mesure is the toEte mesureF 

® 1 √ p τ (χ, ψ p ), χ nonEtrivil hrter of F × p ´@IFIQA
is suset of the unit irle S 1 D nd one my sk how its elements distriute on S 1 F iven though it only involves elementry ojetsD this question turns out to e very di0ultF he nswer is given y the following theoremD whih is due to heligneX Theorem 1.22. As p tends to innity, the p -2 points of the set @IFIQA become equidistributed on S 1 with respect to the Haar measure on S 1 . he proof of this theorem strts with the pplition of eyl9s riterionD ut then the exponentil sums one needs to ound in order to show tht there is onvergene towrds zero re hyperEuloostermn sumsD whih re not so esy to oundF he onlusion follows from the work of heligneD who proved the optiml upper ounds for the solute vlue of these sumsD relying on the onstrution of n Edi shef tht dmits hyperEuloostermn sums s tre funtionF e refer to SVD IFQ for more detils on the proof of this equidistriution theoremF RH 1.3.2. Katz' theorem on Kloosterman sums vet q = p α D where p is n odd prime nd α ∈ Z 1 F he lssil uloostermn sums modulo q re the rel numers K q (a, b) lredy de(ned t eqution @IFWAF hey (rst ppered in pper of oinréD ut they re nmed fter uloostermn euse he ws the (rst to prove nonEtrivil upper ound for their solute vlueD result whih ws ruil in his work TT on representtion of lrge integers y digonl qudrti forms in 4 vrilesD s we disussed on pge QPF wny yers fter uloostermn9s pperD s onsequene of eil9s work on the iemnn hypothesis for urves over (nite (eldsD the est possile upper ound for the solute vlue of these sums ws otined nd tkes the following formX

|K p (a, b)| 2 √ p for ll a, b ∈ F × p .
his only overs the se of uloostermn sums modulo prime numersD nd not prime powersD ut more generlly one n show tht these sums stisfy the ound 2 X

|K q (a, b)| 2 √ q for ll a, b ∈ (Z/qZ) × @IFIRA
xote tht it is fr more elementry prolem in the se of prime powers thn in the se of primes @see TRD gorollry I for n elementry proof of slightly more generl sttement onerning twisted uloostermn sumsAF he ound @IFIRA rises the question of the distriution of the sets of sums 2] s q goes to +∞F hen q = p is prime numerD this question is very deepD nd the nswer ws given y utz in IWVVD using tehniques from Edi étle ohomology introdued nd developed y qrothendiek nd heligneF e will ome k to this lgeri point of view on exponentil sums in ghpter TD ut for now let us just stte the eutiful result otined y utzX Theorem 1.23 @SWD ixmple IQFTA. 

® 1 √ q K q (a, b); a, b ∈ (Z/qZ) × ín the intervl [-2,
# a ∈ F × p ; Kl 2 (a, p) ∈ [c, d] p -1 -→ p→∞ d c 1 2π 4 -x 2 dx,
yn the other hndD in the se where q = p α is nonEtrivil prime power @iFeF α 2AD one n prove vi elementry methods n equidistriution result for the sets ¶ 1 √ q K q (a, 1); a ∈ (Z/qZ) × © s q goes to in(nityD see TRD emrk IFIF sn this seD the mesure with respet to whih the sums eome equidistriuted is the mesure µ de(ned s followsX

dµ(x) = 1 2 δ 0 (x) + 1 2π 1 √ 4 -x 2 dx. @IFISA
he following (gure illustrtes these two di'erent ehvioursF 2 Here one really needs to assume that p is an odd prime. When q = 2 α with α 5, the upper bound (1. pigure IFIX histriution of normlized uloostermn sums modulo prime nd modulo prime powerF Remark 1.24. @IA ine utz9 equidistriution theoremD (ner results on the symptoti ehviour of uloostermn sums hve een otinedD through the study of the symptoti distriution of Kloosterman pathsF e (rst hievement ws mde y uowlski nd winD who studied in UT the distriution of the polygonl pths onneting the suessive prtil sums of uloostermn sumsD nd proved their onvergene in the sense of (nite distriutions towrds n expliit rndom pourier seriesF heir rtile only fouses on uloostermn sums modulo prime numersD ut shortly fterD iott nd oyer WI nswered the nlogous question for uloostermn sums modulo prime powers p n in the regime where n 2 is (xed integer nd p goes to in(nityF pinllyD the regime where p is (xed prime nd the power n goes to in(nity ws settled y wili¢evi¢ nd hng in VQF @PA e relted question onerning twisted uloostermn sums ws investigted y uelmer in TRF xmelyD he studied the distriution of sums of the form

1 √ q x∈(Z/qZ) × e Å a(x -x -1 ) q ã χ(x)
where χ vries mong hirihlet hrters modulo q nd a is (xed nonEzero integerF rere q = p k for (xed integer k 2 nd prime p going to in(nityF re otined tht these sums eome equidistriuted in [-2, 2] with respet to the sme mesure µ s in @IFISAF Part B: Outline of the thesis Initial motivation. he strting point of this thesis ws the study of the rtile ITD whih inE vestigtes ertin visul properties of uloostermn sums restrited to the sugroup of dEth roots of unityX 

       x∈Fp x d =1 e Å a 1 x m 1 + • • • + a n x mn p ã ; (a 1 , . . . , a n ) ∈ (F p ) n       
become equidistributed in the image of an explicit Laurent polynomial g d : (S 1 ) ϕ(d) → C (with respect to the pushforward measure via g d of the probability Haar measure on (S 1 ) ϕ(d) ) as p goes to innity among the prime numbers congruent to 1 modulo d.

vet us stress tht the vurent polynomil g d is the sme s the one whih ppers in the desription of the pushforwrd mesure in the previous rtiles on the sujetF Example 1.26. sf d = is prime numerD the vurent polynomil g is given yX

z 1 + • • • + z -1 + 1 z 1 . . . z -1
nd it mps (S 1 ) -1 to the region of the omplex plne delimited y hypoyloid with uspsF por = 5D pigure PFS pFSV illustrtes heorem IFPS in the speil se of uloostermn sums restrited to the sugroup of order 5F he strtegy of the proof of heorem IFPS is the followingX pirstD we pik primitive dEth root of unity

w p in F p D write ¶ x ∈ F p | x d = 1 © = ¶ w k p , 0 k d -1 © ,
nd rewrite the sums in terms of the w k p F henD we tke into ount tht there re liner reltions with integrl oe0ients etween the powers of w p F sndeedD the ft tht the dEth ylotomi polynomil φ d vnishes t w p gives suh liner reltionF his llows us to rewrite our exponentil sums of interest s vurent polynomil in ϕ(d) vriles in S 1 @where ϕ denotes the iuler totient funtionAD whih only depend on the w k p for k < ϕ(d)F pinllyD it remins to prove the uniform distriution modulo 1 of tuple in (R/Z) ϕ(d) whih only depends on those smll powers of w p F por instneD in the simplest se of the sums S p (a, d)D we need to prove the uniform distriution of

x a (p) := aw 0 p p , aw 1 p p , . . . , aw ϕ(d)-1 p p ; a ∈ F p ⊂ (R/Z) ϕ(d) .
@IFITA e do this using eyl9s riterionD nd striking feture of this prolem is tht the eyl sums re tully sttionry @equl to zero for ig enough rnge of summtionA3

Remark 1.27. sn the sme hpterD we lso extend heorem IFPS to sums over elements of Z/qZD where q is power of prime ongruent to 1 modulo dF his generliztion involves rensel9s lemm to show tht the vnishing of φ d t primitive dEth root of unity still holds @this is proved in vemm PFIRAF pinllyD the sttement lso dmits generliztion to the se where the integers m i re not ssumed to e oprime with dD s shown in IHQD roposition f @AF he most generl form of heorem IFPSD whih gthers these di'erent extensionsD n e found t roposition PFPH pFTV of this mnusriptF RR efter tlk s gve t seminr in xnyD qF enenum suggested tht s look into disrepny questions relted to the equidistriution properties s m interested inF his is the sujet of eppendix PFfF es we lredy oservedD the proof of heorem IFPS mostly relies on the uniform distriution modulo 1 of the sets of tuples @IFITAD nd there is lssil notion of disrepny for suh susets of (R/Z) ϕ(d) D whih mesures how quikly sequene eomes uniformly distriuted modulo 1F

Denition 1.28. For all p ≡ 1 (mod d), we dene the discrepancy of the nite subset of (R/Z) ϕ(d) of eq. @IFITA as follows:

D p := sup I∈I 1 p p-1 a=0 1 I (x a (p)) -λ ϕ(d) (I)
where I denotes the set of products of intervals

I = [a 1 , b 1 ] × • • • × [a ϕ(d) , b ϕ(d) ] of (R/Z) ϕ(d) and λ ϕ(d)
denotes the probability Haar measure on (R/Z) ϕ(d) .

sing the irdösEurànEuoksm inequlity omined with rguments dpted from n unpulished note sent to me y sF hprlinskiD s otined the following estimteX Proposition 1.29 @roposition PFQV pFVT in this mnusriptA. For all d 1, we have that for all p ≡ 1 (mod d),

D p d p -1 ϕ(d) .
he ft tht the disrepny dereses quite quikly is due to the very striking ft tht the eyl sums for the equidistriution of the sets @IFITA re eventually equal to 0D due to n orthogonlity of hrters whih holds for p lrge enoughF es seond stepD s hve een interested in generliztions of heorem IFPS to sprser setsD y restritE ing the prmeters a i to rnge over smll sugroups of F × p F his is the ontent of Chapter 3F 

{K p (a, b, d); (a, b) ∈ H (1)
p × H (2) p } become equidistributed in the image of g d with respect to the same measure as in Theorem 1.25.

he key ingredient is the following theorem of fourginD uilding on previous works with ghngD qliihuk nd uonyginX Theorem 1.31 @IIA. For any δ > 0, there exists a constant ε(δ) > 0 such that for any integer q 2 and for any subgroup H of (Z/qZ) × such that |H| q δ , max his does not give omplete nswer euse there is still gp etween the regimes log(p) nd p δ D ut it explins tht it is not su0ient to only sk tht |H| grows with pD one relly needs some ssumption on the rte of growthF vet us summrize wht we did so frX strting from known equidistriution results for the exponentil sums

a∈(Z/qZ) × x∈H e Å ax q ã |H| q ε(δ) •
x∈Fp x d =1 e Å ax p ã nd x∈Fp x d =1 e Å ax + bx -1 p ã ,
we (rst extended them y llowing more generl vurent polynomils inside the exponentilsD nmely vurent polynomils a 1 x m 1 + • • • + a n x mn for ritrry integers m i F his generlizes the ses of ax nd ax + bx -1 F henD we lso studied the question of restriting the prmeters a i to rnge over smll multiplitive sugroupsD getting equidistriution results for sprser sets of sumsF enother spet whih hs not een mentioned yet is hnging the ondition x d = 1 y nother restritionF yne ould think of two nturl generliztionsX e ould llow d to vry with pF roweverD it seems like our tehniques do not llow us to hndle this se esilyF sndeedD the dimension of the torus in whih the tuple @IFITA lives would vry with pD whih mkes less ler how to pply eyl9s riterion in (xed ompt groupF e ould view the ondition x d = 1 s speil se of the ondition g(x) = 0 for some polynomil g ∈ Z[X]D nd try to generlize our results to this settingF rere lsoD it seems like our tehniques re not wellEsuited to hndle suh generliztionF sndeedD s we see from the strtegy of the proof of heorem IFPSD we rely lot on the hoie of primitive root of unityD nd on the ft tht ll the roots of the polynomil X d -1 n e expressed s powers of this primitive rootF roweverD fter s sent the preprint IHQ to iF uowlskiD he nswered with n ide of etter setting to hndle this seond generliztionD nd this led to the joint work UUD whih we present in hpters R nd TF sn Chapter 4D we explin how the previous results n e extended to the se of exponentil sums of the form x∈Fq g(x)≡0 (mod q) e Å ax q ã , @IFIUA or more generlly

x∈Fq g(x)≡0 (mod q) e Å a 1 x m 1 + • • • + a n x mn q ã ,

RT

for ny (xed moni polynomil g ∈ Z[X]D nd prime numers q tending to in(nity under ertin onditions @of the sme nture s the ssumption p ≡ 1 (mod d) in the se of g = X d -1AF e lso hndle the nturl ontinution of the prolem to sums modulo prime powersF vet us denote y Z g (F q ) the set {x ∈ F q | g(x) ≡ 0 (mod p)}F o study the distriution of the sums @IFIUAD (rst ide tht my ome to mind is to introdue the mp

a ∈ F q → Å e Å ax q ãã x∈Zg(Fq)
whih we view s rndom vrile de(ned on the proility spe F q @endowed with the normlized ounting mesureAD with vlues in C(Z g (F q ), S 1 ) @the set of funtions from Z g (F q ) to S 1 AF sndeedD if for instne we re le to show tht this rndom vrile ehves like tuple of independent nd uniformly distriuted rndom vriles in S 1 D then the sum of its vluesD whih is the sum of interest for usD will ehve like sum X 1 + • • • + X deg g of suh rndom vrilesF his is nturl nlogue of the study of the tuple @IFITA for the sums over the roots of X d -1D exept tht we overme the isE sue of ordering the roots y introduing the unordered version of S 1 ו • •×S 1 given y C(Z g (F q ), S 1 )F roweverD we nnot esily pply eyl9s riterion in (xed ompt groupD s the spe C(Z g (F q ), S 1 ) depends on qF his is where smll hnge of point of view will help usX we will work with prime idels of the splitting (eld of g rther thn prime numersF vet us introdue some nottionsF e let Z g e the set of omplex roots of g nd more generlly we denote y Z g (K) the set of roots of g in given (eld KF ine our results only depend on Z g D we ssume without loss of generlity tht g is seprleF e lso denote y K g := Q(Z g ) the splitting (eld of g nd y O g its ring of integersF xow for ny prime idel p ⊂ O g @lying ove qD syA we hve the nonil projetion p : O g → O g /pD whih llows us to mp the set of roots of g in C to the set of roots of g in ertin (nite (eldsF essuming tht p does not divide the disriminnt of g nd is of residul degree 1 @whih essentilly mens tht q splits ompletely in K g A we show tht this gives ijetion etween Z g nd Z g (O g /p)D so tht the study of our sums @IFIUA n e redued to the study of the rndom vriles

U p : O g /p → C(Z g , S 1 ) a → U p (a)
where

U p (a) : Z g → S 1 x → e Ä a p(x)
q ä nd we identi(ed O g /p with F q sine p lies over q nd hs residul degree 1 @we will not mke this use of nottion in ghpter RD nd hek refully tht we n indeed dedue results for sums of Z g (F q ) from results for sums over the roots of g in O g /pAF hese rndom vriles do not neessrily onverge in lw towrds uniformly distriuted rndom vriles on C(Z g , S 1 )D ut we prove the followingX Theorem 1.32 @UUD ropF PFP or heorem RFQH pFIPV of this mnusriptA. If we denote by R g the submodule of C(Z g , Z) of additive relations between the roots of g:

R g :=    α : Z g → Z, x∈Zg α(x)x = 0    ;
and by H g the subgroup of C(Z g , S 1 ) which is dual to R g in the following sense:

H g :=    f ∈ C(Z g , S 1 ), ∀α ∈ R g , x∈Zg f (x) α(x) = 1    ;
then the random variables U p converge in law, as the norm of the ideal p goes to innity, to a random variable U which is uniformly distributed on H g .

RU es orollryD we otin the equidistriution of the sums @IFIUA with respet to the suitle pushforE wrd mesureX Corollary 1.33 @e more generl form llowing prime powers is stted t gorollry RFRH @PAD pFIQP of this mnusriptA. For q prime totally split in K g , the sums x∈Fq g(x)≡0 (mod q) e ax q , parametrized by a ∈ F q , become equidistributed in C as q → +∞ with limiting measure µ g given by the law of σ(U ), where U is uniformly distributed on H g and σ : C(Z g , C) → C is the linear form dened by

f → x∈Zg f (x).
he restrition to primes tht split ompletely in K g ws tully lredy present in the se of sums over the roots of X d -1 onsidered in ghpter PD sine well known result sttes tht prime q is totlly split in the ylotomi (eld

Q(ζ d ) if nd only if q ≡ 1 (mod d)F
ine the ove theorem tells us tht the mesure with respet to whih exponentils sums over roots of g eome equidistriuted is onneted to the group of dditive reltions etween its omplex rootsD we present some exmples of expliit determintion of tht groupF por instneD when Gal (K g /Q) is the full symmetri groupD the ZEmodule of dditive reltions n only e {0} or of rnk 1D generted y the onstnt funtion equl to 1 @in whih se we n red it on the oe0ient of X deg(g)-1 of the polynomilD sine this orresponds to the sum of the roots eing zeroAF e reprodue known proof of this ft sed on the representtion theoreti pproh introdued y qirstmir in roposition RFSH pFIQWF e lso present proof of the ft tht the module of dditive reltions of the rilert lss polynomil is {0} for ny negtive disriminnt not equl to -3F his n e interpreted s the nonEexistene of nonEtrivil QEliner reltions etween the jEinvrints of ellipti urves with gw y the sme given imginry qudrti orderF he min result is proved in roposition RFST pFIRR of this mnusriptD whih hndles ll disriminnts less thn or equl to -9F henD the remining disriminnts re esily hndled sine they orrespond to order with lss numer oneF he key ides of this proof should e ttriuted to imnuele ronD with whom s disussed this questionD s only heked the detils nd looked for expliit ounds for the lss numer in the litertureF sn Chapter 5D whih is not inluded in UUD we go k to the study of the disrepny relted to our equidistriution resultsD in the more generl setting of ghpter RF sn heorem IFQPD we hve seen tht our rndom vriles U p onverge in lw to rndom vrile whih is uniformly distriuted on the losed sugroup H g of C(Z g , S 1 ) (S 1 ) deg g F hereforeD we re looking for suitle notion of disrepny for sequenes with vlues in suh losed sugroupsF sn order to do thisD we use lssi(tion theorem for losed sugroups of torusD whih tell us tht there exists n isomorphism of topologivl groups

ϕ : H g → (R/Z) d ⊕ F
where F is (nite elin groupF xowD on the rightEhnd sideD there is nturl notion of disrepnyD de(ned y tking the supremum over retngles of (R/Z) d nd over singletons of F X Denition 1.34. If z = (z n ) n 1 is a sequence of elements of (R/Z) d ⊕ F , we dene its discrepancy as D N (z) := sup

I∈I d y∈F # {1 n N, z n ∈ I × {y}} N - λ d (I) |F | where I d denotes the set of rectangles I = [a 1 , b 1 ] × • • • × [a d , b d ] of (R/Z) d .
RV i the isomorphism ϕD we n thus de(ne nturl notion of ϕEdisrepny of sequene (x n ) n 1 with vlues in H g @just y de(nining it s the nturl disrepny of the sequene (ϕ(x n )) n 1 AF hen y extending the irdösEuránEuoksm inequlity to the se of group of the form (R/Z) d ⊕ F D we n dedue n upper ound for the ϕEdisrepny ssoited with the equidistriution of the rndom vriles U p F e otin tht its dey is upper ounded y

p -1 [Kg :Q]
where p denotes the norm of the idel pF he preise sttement is given y heorem SFQH pFIUP of this mnusriptF xote tht this upper ound mthes the one otined in eppendix PFf in the se of g = X d -1 @euse in tht se

[K g : Q] = ϕ(d)AF
pinllyD in Chapter 6D we go k to the exposition of the results of the joint work UU with iF uowlE skiF e show tht the equidistriution result stted in gorollry IFQQD onerning sums of dditive hrters over the roots of g in F q D n e extended to more generl trace functions over F q F o give some motivtion for these generliztionsD we (rst show tht sums of multiplitive hrters lso enjoy similr equidistriution properties s sums of dditive hrtersF sn tht seD the relevnt ojet whih governs the limit mesure is the module of multiplitive reltions mong the roots of gD iFeF reltions of the form

x∈Zg x β(x) = 1,
where the powers β(x) re integersF xextD one we hve these two exmples of equidistriution results for sums of functions of algebraic nature over Z g (F q )D we try to extend them to tre funtionsD whih re wide lss of funtions F q → C hving n lgeri originF hey were originlly studied y qrothendiek nd lter y heligne from the point of view of Edi ohomologyF roweverD they dmit more onrete interprettion s tres of some representtionsD so tht the only prerequisite to understnd how to pply the work of heligne in onrete situtions @t lest the ones we fedA is some fmilirity with the lnguge of representtionsF e lso rely lot on di0ult results previously estlished y utz nd pouvryD uowlski nd wihel @espeilly the determintion of the monodromy groups of sheves whih re useful in pplitionsAD ut these n e used diretly without the need to fully understnd the proofsD nd this is wht we will doF vet us give more preise desription of the type of results tht we otinF por (xed moni polynomil g ∈ Z[X]D we ssume tht for ll prime idels p ⊂ O g unrmi(ed of nd of residul degree 1D we re given middleEextension shef F p on the 0ne line over the (nite (eld O g /pD with ssoited tre funtion t p F hen we re interested in the symptoti distriution of the following fmilies of sums of tre funtionsX

   x∈Zg(Og/p) t p (a + x); a ∈ O g /p    or    x∈Zg(Og/p) t p (ax); a ∈ O g /p   
nd under some onditions on the shef F p D we otin equidistriution results s the norm of the idel p goes to in(nityF wore preiselyD we sk tht the sheves re bountiful in the sense of pouvryD uowlski nd wihel QVF he most generl result of this hpter n e found in heorem TFPUF ine uloostermn sums re tre funtions ssoited with ountiful shevesD we otin the following onrete orollry @dding little extr step to identify the (nite (eld O g /p with F q AF RW Theorem 1.35 @UUD hF IFI @PAD or gorollry TFQI pFIWI of this mnusriptA. Let g ∈ Z[X] be a monic polynomial of degree d 1. Assume that 0 / ∈ Z g . Recall the denition of the normalized Kloosterman sum modulo a prime number q:

Kl 2 (a, q) := 1 √ q x∈F × q e Å ax + x -1 q ã .
Then, as q → +∞ among prime numbers unramied and totally split in K g , the sums x∈Zg(Fq)

Kl 2 (ax, q)

parameterized by a ∈ F q become equidistributed in C with respect to the measure which is the law of the sum of d independent SatoTate random variables.

fy tking g = X -1D we see tht we reover utz9 equidistriution theorem @heorem IFPQ in this introdutionAF roweverD s would sy the min input in our proof is still the determintion of the monodromy group of the uloostermn shef y utzD so even though our sttement is more generlD the most di0ult prt is due to utzF e lso rely on the study in sums of produts QV y pouvryD uowlski nd wihelD where they determined preise onditions under whih shifts of uloostermn sheves re independentF e onlude the mnusript with some reserh perspetives relted to the questions ddressed in this thesisF por instneD the study of the optimlity of the growth ondition in fourgin9s estimteD the expliit determintion of the dditive or multiplitive reltions etween the roots of polynomilsD nd (nlly the nlogous horizontl equidistriution results one ould wnt to proveF Chapter 2

Equidistribution of exponential sums indexed by a subgroup of xed cardinality sn this hpterD we present the pth whih led to roposition f in the rtile IHQF his proposition is n equidistriution result for fmilies of exponentil sums of the form

x∈(Z/qZ) × x d =1 e Å a 1 x m 1 + • • • + a n x mn q
ã prmetrized y a 1 , . . . , a n ∈ Z/qZD whih extends previous results of hukeD qriD ryde nd vutz on sums of the form

x∈(Z/qZ) × x d =1 e Å ax q ã nd of furkhrdtD ghnD gurrierD qriD vu nd uh on x∈(Z/qZ) × x d =1 e Å ax + bx -1 q ã .
he tupyter xoteook tht ws written to otin most of the pitures of this hpter is ville in html formt t the vX http://perso.eleves.ens-rennes.fr/people/theo.untrau/sumssubgroups he pitures were mde with the openEsoure softwre sagemathX IHPF Contents 2.1. Presentation of the problem he equidistriution results stted in the introdution n e seen s speil se of the following questionX for ny prime power q := p α D we re given set F q of vurent polynomils with oe0ients in Z/qZD nd we wnt to study how the sets of sums

   x∈Z/qZ e Å f (x) q ã ; f ∈ F q    @PFIA
eome distriuted s p goes to in(nityD or s α goes to in(nityD or oth t the sme timeF heorem IFPQ for instneD orresponds @up to the normliztion ftorA to the se where α = 1 nd F p = aX + X -1 , a ∈ F × p F wore generllyD one my sk out the distriution of the sets of restrited sums

   x∈Aq e Å f (x) q ã ; f ∈ F q    @PFPA
where the summtion is restrited to some susets A q of Z/qZF por exmpleD one n (x n integer d nd tke A q := x ∈ Z/qZ; x d = 1 X the set of dEth roots of unity modulo qF sn tht seD it is nturl to impose ondition on p to ensure tht the sugroup of dEth roots of unity is nonEtrivilF xmelyD we will only onsider vlues of p whih re odd nd ongruent to 1 modulo dD so tht x ∈ Z/p α Z;

x d = 1
is the unique sugroup of order d of the yli group (Z/p α Z) × F Denition 2.1. An integer q will be called d-admissible if it is of the form p α for some odd prime number p congruent to 1 modulo d, and some integer α 1. We denote by A d the set of d-admissible

integers.

woreoverD we will need the following nottion to desrie the sets of vurent polynomils to e onE sidered in this hpterF Denition 2.2.

Given m = (m 1 , . . . , m n ) ∈ Z n and q 1, we denote by F m,q the following set of Laurent polynomials with coecients in Z/qZ:

F m,q := {a 1 X m 1 + a 2 X m 2 + • • • + a n X mn ; (a 1 , . . . , a n ) ∈ (Z/qZ) n }
Given an integer d 1 we say that a vector m = (m 1 , . . . , m n ) ∈ Z n is coprime with d if all the m i are coprime with d.

e now hve ll the nottions needed to introdue the question of interest in this hpterX we will disuss equidistriution results for the fmilies of exponentil sums

       x∈(Z/qZ) × x d =1 e Å a 1 x m 1 + • • • + a n x mn q ã ; (a 1 , . . . , a n ) ∈ (Z/qZ) n        @PFQA
s q goes to in(nity mong the dEdmissile integersF sn other wordsD these re sets of exponentil sums of the form @PFPA with F q equl to F m,q for some m ∈ Z n nd the suset A q eing the suset of dEth roots of unityF

Relation to previous works

he study of this type of questions is motivted y the equidistriution results lredy known for omplete sumsD suh s the one presented in setion IFQFPD s well s the ppeling pitures shown in SP the rtiles ITD QP nd RRF sn the lst twoD the uthors (x n integer d nd introdue the restrited geometri sumsX

S q (a, d) := x∈(Z/qZ) × x d =1 e Å ax q ã @PFRA
henD the equidistriution of the sets S q (-, d) := {S q (a, d); a ∈ Z/qZ} s q tends to in(nity is invesE tigtedF vet us remrk tht this is indeed speil se of the more generl sums @PFQA we would like to studyF hese sets of sums hve striking visul feturesD s shown in the following pituresF he pitures elow orrespond to the hoie of three inresing dEdmissile vlues of qD nd for eh (xed qD the lue points re ll the omplex numers S q (a, d) s a vries in Z/qZF

(a) q = 7759 (b) q = 51361 (c) q = 326041 = 571 2
pigure PFIX he sets S q (-, d) for d = 3 nd three 3Edmissile vlues of qF st seems tht the sets S q (-, 3) eome dense in shpe whose oundry is given y wht is lled 3-cusp hypocycloidF SQ xote tht the 2Eusp hypoyloid is just the intervl [-2, 2]D so it does not relly enlose n re of the omplex plneF hus H 2 is simply the intervl [-2, 2] s wellF sn QPD heorem TFQ nd proof of heorem IFI nd RRD heorem I nd roposition ID the density sttement suggested y pigure PFI is proved for ny prime dD nd their proof tully shows more preise ftX there is equidistriution with respet to suitle pushforwrd mesureF reiselyD their proof shows the following equidistriution resultF Theorem 2.5 @hukeD qriD rydeD vutzD PHISA. Let d be a prime number. Then the sets of sums {S q (a, d); a ∈ Z/qZ} become equidistributed in H d with respect to the pushforward measure of the probability Haar measure on (S 1 ) d-1 via the map

g d : (z 1 , . . . , z d-1 ) → z 1 + • • • + z d-1 + 1 z 1 • • • z d-1
as q goes to innity among the d-admissible integers.

his theorem extends to omposite vlues of dD lthough the region of equidistriution nnot lwys e determined s expliitlyF sn order to stte the more generl result proved in QPD RRD we need one lst de(nitionF Denition 2.6. Let d 1. For all k ∈ {0, . . . , d -1}, we denote by (c j,k ) 0 j<ϕ(d) the coecients of the remainder in the euclidean division of X k by φ d , the d th cyclotomic polynomial over Q; precisely, these coecients are dened by the property

X k ≡ ϕ(d)-1 j=0 c j,k X j mod φ d .
Then, we dene the Laurent polynomial

g d : (S 1 ) ϕ(d) → C (z 1 , . . . , z ϕ(d) ) → d-1 k=0 ϕ(d)-1 j=0 z c j,k j+1
ith these nottionsD the min theorem of QPD RR on the symptoti ehviour of sums of type @PFRA n e stted s followsF sn loc. cit. the theorem is stted s density resultD ut the proof tully shows tht equidistriution holds with respet to the pproprite pushforwrd mesureF Theorem 2.7 @QPD heorem TFQ nd RRD heorem I A. Let d 1. The sets {S q (a, d); a ∈ Z/qZ} become equidistributed in the image of g d with respect to the pushforward measure of the probability Haar measure λ on (S 1 ) ϕ(d) via g d , as q goes to innity among the d-admissible integers. In other words, for any continuous map F :

g d Ä (S 1 ) ϕ(d) ä → C, 1 q a∈Z/qZ F (S q (a, d)) -→ q→∞ q∈A d (S 1 ) ϕ(d) (F • g d )dλ.
xowD the ft tht more expliit desription of the region of equidistriution n e otined when d is primeD s shown in heorem PFSD simply omes from the knowledge of the oe0ients of the ylotomi polynomils ssoited with prime numersF sndeedD this llows us to determine expliitly the polynomil g d of he(nition PFTF Proposition 2.8 @RRD roposition IA. Let d be a prime number. The polynomial g d from Denition

2.6 is given by:

g d : (S 1 ) ϕ(d) = (S 1 ) d-1 → C (z 1 , . . . , z d-1 ) → z 1 + . . . + z d-1 + 1 z 1 z 2 . . . z d-1 SR Proof. ine d is primeD the d th ylotomi polynomil φ d is given yX φ d = X d-1 + X d-2 + • • • + X + 1.
qiven this expliit formulD one n esily ompute the oe0ients c j,k tht pper in the redution modulo φ d of X k F sndeedD we hveX

1 ≡ 1 mod φ d X ≡ X mod φ d F F F X d-1 ≡ X d-1 mod φ d X d ≡ -1 -X -. . . X d-1 mod φ d so tht for ll k ∈ {0, . . . , d -2}D c j,k = δ j,k nd for k = d -1D
ll the c j,d-1 re equl to -1F epling the c j,k y their vlues in he(nition 2.6 leds to the formul for g d stted in the propositionF fesidesD the imge of (S 1 ) d-1 vi this expliit vurent polynomil is wellEunderstood thnks to the following geometri lemmF Lemma 2.9. Let d 2. The image of the map:

f : (S 1 ) d-1 → C (z 1 , . . . , z d-1 ) → z 1 + • • • + z d-1 + 1 z 1 ...z d-1
is the region H d from Denition 2.4, that is: the closed region of boundary the d-cusp hypocycloid.

Proof. ee PPD heorem QFPFQ or SUD setion QF xote tht this is equivlent to sking the questionX whih omplex numers rise s the tre of mtrix in SU d (C)c gomining heorem PFU with roposition PFV nd vemm PFW gives the onrete geometri desription of the region of equidistriution stted in heorem PFSF his onrete desriptionD whih re(nes little it heorem PFU in the se where d is primeD relies mostly on the ft tht in tht seD we hve n expliit formul for the d th ylotomi polynomilF es there is lso n expliit formul for the d th ylotomi polynomil when d = r b is prime powerD nmely

φ r b (X) = r-1 j=0 X jr b-1 Ä = φ r Ä X r b-1 ää ,
it is not surprising tht our understnding of the imge of g d n lso e improved in tht seF sn ftD the expliit formul ove leds to the following propositionF Proposition 2.10 @RRD gorollry IA. Let d := r b be a power of a prime number r. The polynomial g d from Denition 2.6 is given by

g d : (S 1 ) ϕ(d) = (S 1 ) (r-1)r b-1 → C (z 1 , . . . , z (r-1)r b-1 ) → (r-1)r b-1 j=1 z j + r b-1 m=1 r-2 =0 z -1 m+ r b-1
and the image of (S 1 ) ϕ(d) via g d is the Minkowski sum

r b-1 j=1 H r := {ξ 1 + • • • + ξ r b-1 ; ξ 1 , . . . , ξ r b-1 ∈ H r } .

SS

Proof. e hve the following expression for the

d th ylotomi polynomil φ d X φ r b (X) = r-1 j=0 X jr b-1
his llows us to perform the redutions modulo φ d of the monomils X k for ll k ∈ {0, . . . , d -1}X

por ll k ∈ {0, . . . , (r -1)r b-1 -1}D we hve tht X k is itself the unique polynomil of degree less thn ϕ(d) whih is ongruent to

X k modulo φ d F husD (c j,k ) 0 j<ϕ(d) = (δ j,k ) 0 j<ϕ(d) . xowD if k ∈ {(r -1)r b-1 , . . . , r b -1}D we write k = (r -1)r b-1 + m with m ∈ {0, . . . , r b-1 -1}F henD if we multiply y X m the ongrueneX X (r-1)r b-1 ≡ - r-2 j=0 X jr b-1 mod φ d
we otinX

X k = X (r-1)r b-1 +m ≡ - r-2 j=0 X jr b-1 +m mod φ d his tells us tht for ll j ∈ {0, . . . , ϕ(d) -1}D c j,k = -1 if j ≡ m mod r b-1 nd c j,k = 0 otherwiseF o
if we reple the exponents c j,k y their vlues in the de(nition of g d @he(nition PFTAD it givesX

d-1 k=0 ϕ(d)-1 j=0 z c j,k j+1 = (r-1)r b-1 -1 k=0 Ñ (r-1)r b-1 -1 j=0 z c j,k j+1 é + r b -1 k=(r-1)r b-1 Ñ ϕ(d)-1 j=0 z c j,k j+1 é = (r-1)r b-1 -1 k=0 Ñ (r-1)r b-1 -1 j=0 z δ j,k j+1 é + r b-1 -1 m=0 Ñ (r-1)r b-1 -1 j=0 z c j,(r-1)r b-1 +m j+1 é elling tht c j,(r-1)r b-1 +m = -1 if j ≡ m mod r b-1 nd equls zero otherwiseD we otinX d-1 k=0 ϕ(d)-1 j=0 z c j,k j+1 = (r-1)r b-1 -1 k=0 z k+1 + r b-1 -1 m=0 á 0 j<(r-1)r b-1 j≡m mod r b-1 z -1 j+1 ë = (r-1)r b-1 -1 k=0 z k+1 + r b-1 m=1 á 1 j (r-1)r b-1 j≡m mod r b-1 z -1 j ë @PFSA = (r-1)r b-1 j=1 z j + r b-1 m=1 r-2 =0 z -1 m+ r b-1
his (nishes the proof of the formul for g r b F xowD s we hve seen t line @PFSA oveD we hveX for ll z

1 , . . . , z ϕ(r b ) ∈ S 1 D g r b (z 1 , . . . , z ϕ(r b ) ) = (r-1)r b-1 j=1 z j + r b-1 m=1 á 1 j (r-1)r b-1 j≡m mod r b-1 z -1 j ë ST reneX g r b (z 1 , . . . , z ϕ(r b ) ) = r b-1 m=1 á 1 j ϕ(r b ) j≡m mod r b-1 z j ë + r b-1 m=1 á 1 j ϕ(r b ) j≡m mod r b-1 z -1 j ë = r b-1 m=1 á 1 j ϕ(r b ) j≡m mod r b-1 z j + 1 j ϕ(r b ) j≡m mod r b-1 z -1 j ë = r b-1 m=1 g r (z m )
where z m denotes the element (z m+ r b-1 ) 0 r-2 of (S 1 ) r-1 F sn other wordsD z m is the vetor otined from (z 1 , . . . , z ϕ(r b ) ) y only keeping the z j with j ≡ m mod r b-1 F fy roposition PFVD the imge of (S 1 ) r-1 vi g r is the region H r of oundry the dEusps hypoyloidF hereforeD the imge of (S 1 ) ϕ(r b ) vi g r b isX

r b-1 j=1 H r = {ξ 1 + • • • + ξ r b-1 ; ξ 1 , . . . , ξ r b-1 ∈ H r } the winkowski sum of r b-1 opies of H r F his (nishes the proofF Example 2.11. por instneD s it is done in ITD heorem IHD for r = 3 nd b = 2 we hveX g 9 (z 1 , . . . , z 6 ) = z 1 + z 4 + 1 z 1 z 4 ∈H 3 + z 2 + z 5 + 1 z 2 z 5 ∈H 3 + z 3 + z 6 + 1 z 3 z 6 ∈H 3
he following piture shows wht the winkowski sum of three opies of H 3 looks likeF pigure PFQX smge of (S 1 ) 6 vi g 9 @imge extrted from the rtile RRD pigure IIA F ine heorem PFU sserts tht the sets of sums S q (-, 9) eome equidistriuted in the imge of g 9 with respet to some mesureD nd roposition PFIH tells us tht the imge of g 9 is the winkowski SU sum of three opies of H 3 D we expet to oserve shpe s in pigure PFQ when plotting the elements of S q (-, 9) for some lrge qF his is indeed wht hppensD s the piture elow showsF pigure PFRX he sets S q (-, 9) for q = 811 2 fesides the se of sums of the form @PFRAD uloostermn sums restrited to the sugroup of order d hve lso een studiedF hese re the sums

K q (a, b, d) := x∈(Z/qZ) × x d =1 e Å ax + bx -1 q ã , @PFTA
whih re indeed prtiulr se of tht of sums

x∈(Z/qZ) × x d =1 e Å a 1 x m 1 + • • • + a n x mn q ã introdued in @PFQAF
st ws proved in ITD heorem U nd heorem IH tht when d is prime numer or d = 9D the sme equidistriution result s heorem PFU holds for the sets of restrited uloostermn sums

K q (-, -, d) := K q (a, b, d); a, b ∈ (Z/qZ) 2 .
por instneD when d = 5D the sttement ITD heorem U sserts tht the sets K q (-, -, d) eome equidistriuted in the region H 5 of oundry the 5Eusp hypoyloidD with respet to the sme mesure s in heorem PFS @the sttement onerns the densityD ut the remrk fter their proof explins tht there is equidistriutionAF eginD this symptoti ehviour is only true when q goes to in(nity among the 5-admissible integersD sine this ondition ensures tht the set indexing the sum is not trivilF he following piture illustrtes this symptoti ehviourF por three di'erent 5Edmissile vlues of qD we represented the q 2 omplex numers st is quite striking tht the sets of sums of type @PFRA nd @PFTA of ITD QP nd RR stisfy the sme equidistriution resultD nd so it is nturl to sk wht is the reson ehind this similrityF etullyD reful look t their proof shows tht the ommon point etween the two is tht the exponents of x ppering inside the exponentils in

K q (a, b, 5) for a, b ∈ Z/qZF SV (a) q = 151 (b) q = 631 (c) q = 3721 = 61 2 pigure PFSX he sets K q (a
S q (a, d) := x∈(Z/qZ) × x d =1 e Å ax q ã nd K q (a, b, d) := x∈(Z/qZ) × x d =1
e Å ax + bx -1 q ã re respetively 1 nd (1, -1)D nd these re ll coprime with dD for ny dF es we will see in the proofD this is relly the reson why these di'erent fmilies of exponentil sums stisfy the sme equidistriution resultF his oservtion llows us to stte generliztion of the known theoremsD y extending heorem PFU to sets of sums of the form

       x∈(Z/qZ) × x d =1 e Å a 1 x m 1 + • • • + a n x mn q ã ; (a 1 , . . . , a n ) ∈ (Z/qZ) n        @PFUA
provided the vetor m = (m 1 , . . . , m n ) ∈ Z n is oprime with d in the sense of he(nition PFPF heorem PFU orresponds to the se m = (1) while uloostermn sums restrited to the sugroup of order d orresponds to the se m = (1, -1)F woreoverD we notied tht one n (x some of the prmeters nd let the others vryD nd still otin the equidistriution resultF por instneD in the se of restrited uloostermn sumsD the sme method llows one to prove the equidistriution of the sets

K q (1, -, d) := {K q (1, b, d); b ∈ Z/qZ} .
@with respet to the sme mesure s the sets K q (-, -, d)AF e stte elow our (rst extension of heorem PFUD nd give its proofD whih relies on the ext sme rguments s in QPD RRF he min ide is tht the exponentil sums we re onsideringD whih re sums of d prtiulr roots of unityD n in ft e expressed s vurent polynomil in smller numer of roots to unityF hen it remins to show tht this set of roots of unity eomes equidistriuted in some multiEdimensionl torusF his step n e trnslted into sttement on equidistriution modulo 1D to whih stndrd tools suh s eyl9s riterion n e ppliedF SW Proposition 2.12. Let d 1 and let m = (m 1 , . . . , m n ) ∈ Z n be a vector coprime with d. Let s ∈ {1, . . . , n} and let {i 1 , . . . , i s } ⊆ {1, . . . , n}. We x n -s integers a i for i ∈ {1, . . . , n} \ {i 1 , . . . , i s }.

Then the sets of sums

       x∈(Z/qZ) × x d =1 e Å a 1 x m 1 + • • • + a n x mn q ã ; (a i 1 , . . . , a is ) ∈ (Z/qZ) s       
become equidistributed in the image of g d (with respect to the pushforward measure via g d of the probability Haar measure on (S 1 ) ϕ(d) ) as q goes to innity among the d-admissible integers.

Remark 2.13. vet us stress tht the vurent polynomil g d does not depend on mF his implies tht the region of equidistriution lmost does not depend on the shpe of the numertors in the exponentilsX it will e the sme for ny m oprime with dF his explins why ITD heorem U nd QPD heorem TFQ give rise to the sme kind of pituresD nd this leds to mny other exmplesF Proof.

IF Reduction to a statement on equidistribution modulo 1:

por ll dEdmissile integers qD let Y m,q := s j=1 Z/qZ
nd denote y θ m,q : Y m,q → C the mp de(ned y

(a i 1 , . . . , a is ) → x∈(Z/qZ) × x d =1 e Å a 1 x m 1 + • • • + a n x mn q ã . @PFVA
woreoverD let w q e n element of order d in (Z/qZ) × @rell q is dEdmissileAF hen w q is genertor of the unique sugroup of order d in (Z/qZ) × F sn other wordsD ¶ x ∈ (Z/qZ) × ;

x d = 1 © = ¶ w k q ; k ∈ {0, . . . , d -1}
© mening tht we n desrie the sugroup of order d in terms of the suessive powers of w q F henD for ll

(a i 1 , . . . , a is ) ∈ Y m,q D θ m,q (a i 1 , . . . , a is ) = x∈(Z/qZ) × x d =1 e Å a 1 x m 1 + • • • + a n x mn q ã = d-1 k=0 e Ç a 1 (w k q ) m 1 + • • • + a n (w k q ) mn q å = d-1 k=0 e Ç a 1 (w m 1 q ) k + • • • + a n (w mn q ) k q å .
xowD for ll i ∈ {1, . . . , n}D sine m i is oprime with d @whih is the order of w q AD w m i q hs the sme order s w q F husD s n element of order d in (Z/qZ) × D it stis(es φ d (w m i q ) = 0 in Z/qZF his omes from the following lemmD whose proof is inluded fter the proof of roposition PFIPF Lemma 2.14. Let d 2 be an integer, and let φ d be the d th cyclotomic polynomial. Let q = p α be a d-admissible integer. Let x ∈ (Z/qZ) × be an element of order d. Then we have:

φ d (x) = 0 in Z/qZ
where φ d denotes the polynomial obtained from φ d by reducing its coecients modulo q.

TH husD for ll k ∈ {0, . . . , d -1}D if one redues modulo q the ongruene

X k ≡ ϕ(d)-1 j=0 c j,k X j mod φ d nd evlute it t w m i q D the term φ d (w m i q ) is equl to zeroD heneX (w m i q ) k = ϕ(d)-1 j=0 c j,k (w m i q ) j in Z/qZ
epling this in the expression of θ m,q (a 1 , . . . , a n ) otined oveD we getX

θ m,q (a i 1 , . . . , a is ) = d-1 k=0 e Ç a 1 (w m 1 q ) k + • • • + a n (w mn q ) k q å = d-1 k=0 e a 1 ϕ(d)-1 j=0 c j,k (w m 1 q ) j + • • • + a n ϕ(d)-1 j=0 c j,k (w mn q ) j q = d-1 k=0 ϕ(d)-1 j=0 e Ç a 1 (w m 1 q ) j + • • • + a n (w mn q ) j q å c j,k hereforeD if we de(ne for ll j ∈ {0, . . . , ϕ(d) -1}D z j = z j (a i 1 , . . . , a is , q, j) := e Ç a 1 (w m 1 q ) j + • • • + a n (w mn q ) j q å we hveX θ m,q (a i 1 , . . . , a is ) = g d (z 0 , . . . , z ϕ(d)-1 )
with the vurent polynomil g d de(ned t he(nition PFT nd the z j 9s eing elements of S 1 F his lredy shows tht θ m,q (a i 1 , . . . , a is ) elongs to the imge of g d F sn order to show tht these sums eome equidistriuted with respet to the pushforwrd mesure of the proility rr mesure on (S 1 ) ϕ(d) D it su0esD y vemm IFITD to show tht the sets d) with respet to this mesureD s q goes to in(nity mong the dEdmissile integersF o do soD it is equivlent to show tht the ngles whih pper in the exponentils eome equidistriuted modulo 1F sn other wordsD we will get the onlusion if we re le to show tht the following susets of (R/Z) ϕ(d) X

ß Ç e Ç a 1 (w m 1 q ) 0 + • • • + a n (w mn q ) 0 q å , . . . , e Ç a 1 (w m 1 q ) ϕ(d)-1 + • • • + a n (w mn q ) ϕ(d)-1 q åå ; a i 1 , . . . , a is ∈ Z/qZ ™ eome equidistriuted in (S 1 ) ϕ(
ß =:x(a i 1 ,...,a is ,q) Ç a 1 (w m 1 q ) 0 + • • • + a n (w mn q ) 0 q , . . . , a 1 (w m 1 q ) ϕ(d)-1 + • • • + a n (w mn q ) ϕ(d)-1 q å ; a i 1 , . . . , a is ∈ Z/qZ
™ eome equidistriuted modulo 1 s q goes to in(nity mong the dEdmissile integersF TI PF Proof of the equidistribution modulo 1: fy eyl9s riterionD these sets eome equidistriuted if nd only if for ny y := y 0 , . . . , y ϕ(d)-1 ∈ Z ϕ(d) \ {0} we hve

1 q s × Ñ (a i 1 ,...,a is )∈(Z/qZ) s e (x(a i 1 , . . . , a is , q) • y) é -→ q→∞ q∈A d 0. @PFWA fut the leftEhnd side n e rewritten sX i∈{i 1 ,...,is}   1 q a i ∈Z/qZ e Ç a i f (w m i q ) q å   × i / ∈{i 1 ,...,is} e Ç a i f (w m i q ) q å @PFIHA
where f is the polynomil y

0 + y 1 X + • • • + y ϕ(d)-1 X ϕ(d)-1 F xowD sine (m i , d) = 1D we hve tht for ll i ∈ {1, . . . , n} the element w m i q is still of order d in (Z/qZ) × F elsoD f ∈ Z[X] \ {0} nd deg f < ϕ(d)F
hen we use the following lemm due to qerld wyerson @see VTD proof of heorem IPAD s formulted in QPF e proof is given elowF Lemma 2.15 @wyerson9s lemmD QPD vemm TFPA. Let d 1 be an integer, and let f ∈ Z[X]\{0} be a polynomial of degree strictly less than ϕ(d). Then there exists an integer m f such that for all d-admissible integer q such that q > m f , for any element w q of order d in (Z/qZ) × ,

a∈Z/qZ e Å f (w q ) q a ã = 0.
his lemm tells us tht the sums

a i ∈Z/qZ e Ç a i f (w m i q ) q å
in @PFIHA re eventully equl to zero when q exeeds ertin rnkD so the onvergene @PFWA holdsD nd this gives the onlusionF Proof of Lemma 2.14. e onsider the polynomil P (X) := X d -1D seen s n element in Z p [X]D where Z p is the ring of pEdi integersF vet x e lift in Z of the lss x modulo qF hen we hve P (x) ≡ 0 mod q sine x hs order dF herefore |P (x)| p 1 p α D where we denoted y | • | p the stndrd pEdi solute vlue on the (eld of pEdi numers Q p F yn the other hndD we hve

P (x) = dx d-1 D whih hs pEdi vlution zero sine (d, p) = 1 @euse d divides p -1A nd (x, p) = 1 sine x is invertile modulo p α F husD |P (x)| p = 1 nd soX |P (x)| p 1 p α = 1 p α |P (x)| 2 p
hereforeD y rensel9s lemm @see IUD hpter ssD ppendix gA there exists unique z ∈ Z p suh tht

P (z) = 0 |z -x| p 1 p α @PFIIA e dedue thtX 0 = zd -1 = m|d φ m (z) in Z p @PFIPA TP
xow sine Z p is n integrl dominD t lest one of the ftors φ m (z) must e zeroF essume for ontrdition tht this hppens for n m whih is not equl to dF hen this would imply

tht zm = 1 in Z p D heneX |x m -1| p = |x m -zm | p |x -z| p 1 p α
y the seond ondition in @PFIIAF husD xm ≡ 1 mod p α for n m < dD ontrditing the ft tht x hs order extly d in (Z/p α Z) × F hereforeD in the produt @PFIPAD it is the term φ d (z) whih equls zeroF xowD sine |x -z| p 1 p α we hveX

|φ d (x)| p = |φ d (x) -φ d (z)| p 1 p α nd this is equivlent to φ d (x) ≡ 0 mod p α D tht isX φ d (x) = 0 in Z/p α ZF
Proof of Lemma 2.15. his proof n e found in QPD lemm TFPD ut we inlude it here euse we will need some preise knowledge rought y the proof in order to prove our generliztionsF fesidesD we wnt to stress the role plyed y vemm PFIRF st is well known tht φ d is moni polynomil with oe0ients in ZD tht it is irreduile in Q[X]D nd tht it hs degree ϕ(d)F yn the other hndD the polynomil f hs degree less thn or equl to ϕ

(d) -1 nd is nonEzeroF husD f nd φ d re oprime in Q[X]F his yields fézout reltion etween them in Q[X] @whih is prinipl idel dominD tht is why we viewed the polynomils in Q[X] insted of stying in Z[X]
AF xow if we hse the denomintors in suh fézout reltionD we get tht there exist

n ∈ Z \ {0} nd a, b ∈ Z[X] suh thtX a(X)φ d (X) + b(X)f (X) = n @PFIQA
p to repling (a, b) y (-a, -b) we n ssume tht n 1F vet q > n e dEdmissile integerF ine the mpX a → e Å f (w q ) q a ã is n dditive hrter of Z/qZD the orthogonlity of hrters tells us thtX

a∈Z/qZ e Å f (w q ) q a ã = ® 0 if f (w q ) ≡ 0 mod q q if f (w q ) ≡ 0 mod q @PFIRA
vet us prove tht the hoie of q > n implies tht f (w q ) ≡ 0 mod q @so tht the sum is zeroAF pirstD we evlute reltion @PFIQA t ny integer wq whih lifts w q F e otin n equlity in ZD whih we n redue modulo qF his yieldsX a( wq )φ d ( wq ) + b( wq )f ( wq ) ≡ n mod q xowD thnks to vemm PFIR we hve tht φ d ( wq ) ≡ 0 mod qD heneX b( wq )f ( wq ) ≡ n mod qF o if we ssume for ontrdition tht q divides f ( wq ) then this implies tht q divides nD whih is impossile sine q > nF husD q does not divide f ( wq ) nd a∈Z/qZ e Ä f (wq) q a ä = 0 thnks to @PFIRAF hereforeD we proved tht one n tke the integer m f of the sttement to e the integer n from @PFIQAD nd tht for ll q > m f we indeed hveX

a∈Z/qZ e Å f (w q ) q a ã = 0.
Remark 2.16. he nme wyerson9s vemm omes from the ft tht the ove proof is used in the proof of VTD heorem IPF TQ Some applications. pirst of llD roposition PFIP llows one to reover the equidistriution results from QPD RR nd ITF sndeedD the sets

S q (-, d) :=        S q (a, d) = x∈(Z/qZ) × x d =1 e Å ax q ã ; a ∈ Z/qZ        nd K q (-, -, d) :=        K q (a, b, d) = x∈(Z/qZ) × x d =1 e Å ax + bx -1 q ã , a, b ∈ Z/qZ       
lerly ful(ll the ssumptions of roposition PFIP for ny dD hene eome equidistriuted in the imge of g d with respet to the suitle pushforwrd mesureD s q goes to in(nity mong the dEdmissile integersF gomining this ft with the geometri interprettions of the imge of g d provided y vemm PFW nd roposition PFIH leds to the equidistriution theorems inside expliit regionsD s illustrted in pigure PFID pigure PFR nd pigure PFSF woreoverD our proposition lredy re(nes ITD heorems U nd IHD euse it extends their results on uloostermn sums restrited to sugroups to any xed d @wheres only the ses where d is prime nd d = 9 were studied in loc. cit.A nd it sttes the more preise ft tht one n (x one of the two prmeters a nd bD nd still otin equidistriutionF por instneD in the following piture we illustrte the symptoti distriution of the sets of sum

K q (1, -, d) :=        K q (1, b, d) = x∈(Z/qZ) × x d =1 e Å x + bx -1 q ã , b ∈ Z/qZ        (a) q = 6673 (b) q = 13591 (c) q = 877 2
pigure PFTX he sets K q (1, -, d) for d = 3 nd three 3Edmissile vlues of qF woreoverD roposition PFIP sustntilly enlrges the fmily of exponentil sums stisfying the sme symptoti ehviour s the ones oveF sndeedD sums with ax or ax + bx -1 inside the exponentils my now e repled y sums with a 1 x m 1 + . . . a n x mn inside the exponentilsD provided the m i re oprime with dF por instneD one n onsider the sums

Q q (a, b, c, d) := x∈(Z/qZ) × x d =1 e Å ax 4 + bx 2 + cx q ã for a, b, c ∈ Z/qZ,
for ll dEdmissile integer qF sn prtiulrD if we look gin t the se d = 3 nd we drw the sets

Q q (-, -, -, 3) = {Q q (a, b, c, 3); a, b, c ∈ Z/qZ}
TR for di'erent 3Edmissile vlues of qD we oserve the sme equidistriution s for the other types of sumsD inside 3Eusp hypoyloidF (a) q = 67 (b) q = 157 (c) q = 307 pigure PFUX he sets Q q (-, -, -, d) for d = 3 nd three 3Edmissile vlues of qF yne ould lso wnt to onsider sets of firh sums restrited to sugroupD tht isX

B q (a, b, d) := x∈(Z/qZ) × x d =1 e Å ax 3 + bx q ã où a, b ∈ Z/qZ
por instne if we tke d = 7 nd look t the sets B q (-, -, 7) := {B q (a, b, 7); a, b ∈ Z/qZ}D then roposition PFIP @omined with roposition PFV nd vemm PFWA sttes tht they should eome equidistriuted in H 7 @the region of oundry the 7Eusp hypoyloidA s q goes to in(nity mong the 7Edmissile integersF his is indeed wht the following pitures suggestX (a) q = 113 (b) q = 827 (c) q = 1009 pigure PFVX he sets B q (-, -, d) for d = 7 nd three 7Edmissile vlues of qF Remark 2.17. xote tht in roposition PFIPD the mesure with respet to whih the sums eome equidistriuted is the pushforwrd mesure vi g d of the rr mesure on (S 1 ) ϕ(d) F his explins why one does not oserve uniform distriution in the sense of the veesgue mesureF yn the other hndD one ould wnt to onsider firh sums restrited to the sugroup of order 6 syD tht is sums of the typeX

B q (a, b, 3) := x∈(Z/qZ) × x 6 =1 e Å ax 3 + bx q ã où a, b ∈ Z/qZ
TS roweverD this type of sum does not fll inside the rnge of pplition of roposition PFIP D euse the exponent 3 in the polynomil expression ax 3 + bx is not oprime with the order of the sugroupF sn the next setionD we ddress this remining issueF

The case of exponents not coprime with d

Some experiments. fefore stting the generl equidistriution result whih n e otinedD we present some experiments on the prtiulr se of quss sumsD whih explin the min ides tht led to roposition PFPHF xmelyD let us fous on quss sums restrited to the unique sugroup of order dX

G q (a, d) := x∈Z/qZ x d =1
e Å ax 2 q ã for dEdmissile vlues of qF e denote y G q (-, d) the set {G q (a, d), a ∈ Z/qZ}F hen d is oddD it is oprime with 2D whih is the exponent of x whih ppers inside the exponentilF hereforeD when d is oddD the sets G q (-, d) stisfy the ssumptions of roposition PFIPD hene stisfy the sme equidistriution properties s the sets S q (-, d) or K q (-, -, d) disussed in the previous setionF por instne when d = 5D these sets eome equidistriuted in 5Eusp hypoyloidX (a) q = 5861 (b) q = 20441 (c) q = 811 2 pigure PFWX he sets G q (-, 5) nd three 5Edmissile vlues of qF nd when d = 9D they eome equidistriuted in the winkowski sum of three 3Eusp hypoyloidsX pigure PFIHX he points of the set G q (-, 9) for q = 250993 TT roweverD they do not only stisfy the sme equidistriution propertiesD they re tully equl to the sums of type S q (a, d)3 sndeedD if we let w q denote genertor of the unique sugroup of order d in (Z/qZ) × D then w q is n element of order dF hereforeD w 2 q is lso n element of order d s soon s d is oddD thnks to the following lssil lemmF Lemma 2.18. Let G be an abelian group, and let x ∈ G be an element of order d. Then for all n 1, the order of x n is d (n,d) . In particular, if (n, d) = 1, then x n has the same order as x.

hereforeD the sugroup generted y w 2 q is lso the unique sugroup of order dD so we hve

x∈Z/qZ x d =1 e Å ax 2 q ã = d-1 k=0 e a w k q 2 q = d-1 k=0 e a w 2 q k q = x∈Z/qZ x d =1 e Å ax q ã , tht isX G q (a, d) = S q (a, d).
his elementry oservtion tht rising n element of order d to some power n my or my not hnge its orderD depending on the gd of n nd dD is the key oservtion whih led to roposition PFPHF fefore stting this propositionD let us show on this exmple wht hppens when d is evenF pirstD the sums S q (a, d) nd K q (a, b, d) from the previous setion re relEvlued when d is evenD euse x → -x is permuttion of the sugroup of order dF roweverD this is not the se for the quss sums G q (a, d)F sndeedD if we onsider for exmple the sums restrited to the sugroup of order 6D we otin the following pituresX (a) q = 5479 (b) q = 50497 (c) q = 250441 pigure PFIIX he sets G q (-, 6) nd three 6Edmissile vlues of qF his shows striking di'erene with the sums previously studiedD euse theses sums re not lwys relEvluedF he ft tht these sums do not ehve s the previous ones is due to the ft tht 6 @the order of the sugroupA is not oprime with 2 @the exponent of x whih ppers in the exponentilsAF roweverD the piture suggests tht one n relte these sums with the previous sumsD euse there seems to e equidistriution in dilted 3Eusp hypoyloidF sndeedD this one seems to e the imge of the stndrd 3Eusp hypoyloid of pigure PFI under the homothety with rtio 2F

his is tully the seF sndeedD when d is evenD if we keep on denoting y w q genertor of the unique sugroup of order d in (Z/qZ) × D we hve tht w 2 q hs order d/2 thnks to vemm PFIVF hereforeD if we denote y Λ d (q) the unique sugroup of order d in (Z/qZ) × D the group homomorphism

Λ d (q) → Λ d/2 (q) x → x 2
TU is surjetiveD with kernel {-1, 1}F hereforeD ny y ∈ Λ d/2 (q) hs extly two squre roots in Λ d (q)D nd this implies the following equlityX

G q (a, d) = x∈Λ d (q) e Å ax 2 q ã = 2 y∈Λ d/2 (q) e Å ay q ã = 2S q (a, d).
es the sums S q (a, d) on the rightEhnd side eome equidistriuted in H 3 s a vries in Z/qZ nd q goes to in(nityD this equlity explins why the sets of sums G q (-, d) eome equidistriuted in 2H 3 = {2z, z ∈ H 3 } with respet to the pushforwrd mesure of the rr mesure on (S 1 ) 2 vi the vurent polynomil 2g 3 F he ove exmples helped us notiing the ft tht the key point towrds understnding the distriE ution of more generl sums is the hnge of order of n elementD when rised to power whih is not oprime with its orderF

The general result. he (rst step of the proof of roposition PFIP relied lot on the ft tht φ d (w k q ) = 0 in Z/qZ s soon s w k q is primitive dEth root of unityD whih ws ensured y tking for w q n element of order d nd k oprime with dF xowD if we llow k to shre some prime ftors with dD the order of w k q my e strit divisor of dD sy d D in whih se the relevnt ylotomi polynomil to trnspose the rgument of the proof of roposition PFIP will e φ d D not φ d F his is the reson why the suitle vurent polynomils in this setting will e the ones introdued in the following de(nitionF Denition 2.19. Let d 1 and let m = (m 1 , . . . , m n ) ∈ Z n . For all i ∈ {1, . . . , n}, we denote by

d i := d (d, m i ) and by Ä c (i) j,k ä 0 j<ϕ(d i )
the coecients that appear in the reduction modulo φ d i of X k for each k in {0, . . . , d -1}. In other words, these are the unique integers such that:

∀k ∈ {0, . . . , d -1}, X k ≡ ϕ(d i )-1 j=0 c (i) j,k X j mod φ d i .
Then we dene the Laurent polynomial f d,m as follows:

f d,m : (S 1 ) ϕ(d 1 )+•••+ϕ(dn) → C ((z 1,j ) 0 j<ϕ(d 1 ) , . . . , (z n,j ) 0 j<ϕ(dn) ) → d-1 k=0 n i=1 ϕ(d i )-1 j=0 z c (i) j,k i,j
@PFISA e n now give the sttement of our seond generliztionX Proposition 2.20. Let d 1,

and let m = (m 1 , . . . , m n ) ∈ Z n . The sets of sums        x∈(Z/qZ) × x d =1 e Å a 1 x m 1 + • • • + a n x mn q ã ; (a 1 , . . . , a n ) ∈ (Z/qZ) n       
become equidistributed in the image of the Laurent polynomial f d,m (from Denition 2.19) with respect to the pushforward measure via f d,m of the probability Haar measure on (S 1 ) ϕ(d 1 )+•••+ϕ(dn) , as q tends to innity among the d-admissible integers.

Remark 2.21. e will see in etion PFQFQ how the proof of this proposition n e slightly modi(ed to reover roposition PFIP when m is oprime with dF TV Proof of Proposition 2.20.

IF Reduction to a statement on equidistribution modulo 1:

es in the proof of roposition PFIPD for ll dEdmissile integer qD we denote y Y m,q := (Z/qZ) n nd y θ m,q : Y m,q → C the mp de(ned y

(a 1 , . . . , a n ) → x∈(Z/qZ) × x d =1 e Å a 1 x m 1 + • • • + a n x mn q ã .
e lso let w q e genertor of the unique sugroup of order d of (Z/qZ) × F hen for ll

(a 1 , . . . , a n ) ∈ Y m,q , θ m,q (a 1 , . . . , a n ) def = x∈(Z/qZ) × x d =1 e Å a 1 x m 1 + • • • + a n x mn q ã = d-1 k=0 e Ç a 1 (w k q ) m 1 + • • • + a n (w k q ) mn q å = d-1 k=0 e Ç a 1 (w m 1 q ) k + • • • + a n (w mn q ) k q å xowD for ll i ∈ {1, . . . , n}D w m i q hs order d i D hene φ d i (w m i q ) = 0 in Z/qZ thnks to vemm PFIRF husD for ll k ∈ {0, . . . , d -1}D if one redues modulo q the ongrueneX X k = ϕ(d i )-1 j=0 c (i) j,k X j mod φ d i nd evlute it t w m i q D the term φ d i (w m i q ) is equl to zeroD heneX (w m i q ) k = ϕ(d i )-1 j=0 c (i) j,k (w m i q ) j in Z/qZ. hereforeX ∀i ∈ {1, . . . n}, ∀k ∈ {0, . . . , d -1}, (w m i q ) k = ϕ(d i )-1 j=0 c (i) j,k (w m i q ) j in Z/qZ.
epling this in the expression of θ m,q (a 1 , . . . , a n ) otined oveD we getX

θ m,q (a 1 , . . . , a n ) = d-1 k=0 n i=1 e Ç a i (w m i q ) k q å = d-1 k=0 n i=1 ϕ(d i )-1 j=0 e Ç a i (w m i q ) j q å c (i) j,k
hereforeD if we de(ne for ll i ∈ {1, . . . , n} nd for ll j ∈ {0, . . . , ϕ(d i ) -1}D

z i,j = z i,j (a 1 , . . . , a n , q) := e Ç a i (w m i q ) j q å @PFITA TW we hveX θ m,q (a 1 , . . . , a n ) = f d,m (z 1,j ) 0 j<ϕ(d 1 ) , . . . , (z n,j ) 0 j<ϕ(dn) @PFIUA
with the vurent polynomil f d,m de(ned t he(nition PFIW nd the z i,j 9s eing elements of S 1 F his lredy shows tht the sums θ m,q (a 1 , . . . , a n ) elongs to the imge of f d,m F sn order to show tht these sums eome equidistriuted with respet to the pushforwrd mesure of the proility rr mesure on (S 1 ) ϕ(d 1 )+•••+ϕ(dn) D it su0es to show tht the following susets of

(R/Z) ϕ(d 1 )+•••+ϕ(dn) X ß =:x(a 1 ,...,an,q) Ç a 1 (w m 1 q ) j q å 0 j<ϕ(d 1 )
, . . . , Ç a n (w mn q ) j q å 0 j<ϕ(dn)

; (a 1 , . . . , a n ) ∈ (Z/qZ) n ™ ,
eome equidistriuted modulo 1 s q goes to in(nity mong the dEdmissile integersF PF Proof of the equidistribution modulo 1:

e re interested in the equidistriution modulo 1 of the following sets of (ϕ

(d 1 ) + • • • + ϕ(d n ))E tuplesX {x(a 1 , . . . , a n , q); (a 1 , . . . , a n ) ∈ (Z/qZ) n } , @PFIVA
with the nottion x(a 1 , . . . , a n , q) from oveF fy eyl9s riterion @see UVD heorem TFPAD these sets eome equidistriuted modulo I if nd only if for ny y = y 0 , . . . , y ϕ(d

1 )+•••+ϕ(dn)-1 ∈ Z ϕ(d 1 )+•••+ϕ(dn) \ {0}D
we hve the following onvergene towrds zeroX

1 q n × (a 1 ,...,an)∈(Z/qZ) n e (x(a 1 , . . . , a n , q) • y) -→ q→∞ q∈A d 0.
@PFIWA vet us denote y y 1 the vetor extrted from y y tking the (rst ϕ(d 1 ) entriesD y 2 the vetor formed y the next ϕ(d 2 ) entries nd so onX

y 1 = (y 0 , . . . , y ϕ(d 1 )-1 ), y 2 = (y ϕ(d 1 ) , . . . , y ϕ(d 1 )+ϕ(d 2 )-1 ) y 3 = • • •
so tht y = (y 1 , . . . , y n )F e lso introdue the following nottions to deompose the vetor x(a 1 , . . . , a n , q) in prllel wyX

x 1 (a 1 , q) := Ç a 1 (w m 1 q ) j q å 0 j<ϕ(d 1 ) , . . . , x n (a n , q) := Ç a n (w mn q ) j q å 0 j<ϕ(dn)
hen we hve

1 q n × (a 1 ,...,an)∈(Z/qZ) n e (x(a 1 , . . . , a n , q) • y) = n i=1   1 q a i ∈Z/qZ e(x i (a i , q) • y i )   . @PFPHA
xowD sine y = 0D there exists t lest one index i ∈ {1, . . . , n} suh tht y i = 0F por suh n iD the ftor 1 q a i ∈Z/qZ e(x i (a i , q) • y i ) @PFPIA tends to 0 s q goes to in(nity mong the dEdmissile integers thnks to vemm PFISF sndeedD we hve UH 1 q

a i ∈Z/qZ e(x i (a i , q) • y i ) = 1 q a∈Z/qZ e Ç af i (w m i q ) q å ,
where f i is the polynomil ssoited with

y i = y ϕ(d 1 )+•••+ϕ(d i-1 ) , . . . , y ϕ(d 1 )+•••+ϕ(d i-1 )+ϕ(d i )-1 s followsX f i = y ϕ(d 1 )+•••+ϕ(d i-1 ) + y ϕ(d 1 )+•••+ϕ(d i-1 )+1 X + • • • + y ϕ(d 1 )+•••+ϕ(d i-1 )+ϕ(d i )-1 X ϕ(d i )-1 F
his is nonEzero polynomil with integer oe0ients nd with degree stritly less thn ϕ(d i )D nd w m i q is n element of order d i in (Z/qZ) × F husD we n pply vemm PFIS whih sttes tht there exists rnk m f i suh tht for ll q > m f i suh tht q is dEdmissileD a∈Z/qZ e Ç af i (w m i q ) q å = 0 nd this proves the onvergene of @PFPIA towrds zeroF es ll the other ftors of @PFPHA hve solute vlue ounded ove y 1D the whole produt onverges to zeroD nd this onludes the proofF Remark 2.22. he proof shows why it is importnt to let ll the a i 9s vry in Z/qZD unlike in ropoE sition PFIP where we ould (x n ritrry numer of themD s long s one vriedF sndeedD let us (x n index j ∈ {1, . . . , n}F hen if we tke y = (y 1 , . . . ,

y n ) ∈ Z ϕ(d 1 )+•••+ϕ(dn) \ {0} de(ned y y i = (0, . . . , 0) ∈ Z ϕ(d i )
for ll i = j nd y j = (1, . . . , 1) ∈ Z ϕ(d j ) D then the solute vlue of the produt @PFPHA is equl to the solute vlue of the ftor orresponding to the index jD sine ll the other ftors re equl to 1F hereforeD to prove the onvergene towrds zero in eyl9s riterion for this spei( vetor yD we hve no other hoie thn proving tht the ftor orresponding to the index j tends to 0F sn order to hieve thtD we relly need to e le to pply vemm PFIS to this ftorD hene we relly need to require tht a j vries in Z/qZF es j ws ritrryD this shows tht in general one nnot (x n ritrry a j nd let the others vryD s this ould prevent the equidistriution from hppeningF etully one n e more preise out the onditions under whih some prmeters my e (xedD while the others vry in Z/qZD nd this is the ontent of emrk PFPR of the following setionF Example 2.23. vet us onsider the following sumsD for dEdmissile vlues of qX

G q (a, b, d) := x∈(Z/qZ) × x d =1 e Å ax 2 + bx q ã with a, b ∈ Z/qZ.
hese sums re ssoited with the vetor m = (2, 1) in the nottions of roposition PFPHF sf we tke d = 12D then m is not oprime with dD so we relly need to use the previous proposition rther thn roposition PFIPF ht roposition PFPH tells us is tht the vurent polynomil involved in the equidistriution result depends on the oe0ients of the reminders of the euliden divisions of the monomils X k y the ylotomi polynomils φ 12 nd φ 6 F sndeedD if w q ∈ (Z/qZ) × is n element of order 12D then w 2 q hs order 6D so the reltion φ 6 (w 2 q ) = 0 will lso ome into plyF hereforeD we write

X k ≡ ϕ(6)-1 j=0 c (1) j,k X j mod φ 6 nd X k ≡ ϕ(12)-1 j=0 c (2) j,k X j mod φ 12 .
henD y respetively evluting these ongruenes t w 2 q nd w q nd using vemm 2.14D we otin

w 2k q = ϕ(6)-1 j=0 c (1) j,k w 2j q UI nd w k q = ϕ(12)-1 j=0 c (2) j,k w j q .
hnks to these equlitiesD one n reple high powers of w q y lower powers when writing

G q (a, b, 12) = 11 k=0 e Ç a(w k q ) 2 + bw k q q å
sing the expliit formuls for φ 6 nd φ 12 we n lulte the c

(1)

j,k nd the c (2) 
j,k D nd this gives the following equlityX

G q (a, b, 12) = e Å a + b q ã + e Ç aw 2 q + bw q q å + e Ç a(w 2 q -1) + bw 2 q q å + e Ç -a + bw 3 q q å + e Ç -aw 2 q + b(w 2 q -1) q å + e Ç a(1 -w 2 q ) + b(w 3 q -w q ) q å + e Å a -b q ã + e Ç aw 2 q -bw q q å + e Ç a(w 2 q -1) -bw 2 q q å + e Ç -a -bw 3 q q å + e Ç -aw 2 q + b(1 -w 2 q ) q å + e Ç a(1 -w 2 q ) + b(w q -w 3 q ) q å . husD G q (a, b, 12) is vurent polynomil in the following 6 vriles in S 1 X z 1,0 := e Å a q ã , z 1,1 := e Ç aw 2 q q å , z 2,0 := e Å b q ã , z 2,1 := e Å bw q q ã , z 2,2 := e Ç bw 2 q q å , z 2,3 := e Ç bw 3 q q å sndeedD we hve shown thtX G q (a, b, 12) = z 1,0 z 2,0 + z 1,1 z 2,1 + z 1,1 z 2,2 z 1,0 + z 2,3 z 1,0 + z 2,2 z 1,1 z 2,0 + z 1,0 z 2,3 z 1,1 z 2,1 + z 1,0 z 2,0 + z 1,1 z 2,1 + z 1,1 z 1,0 z 2,2 + 1 z 1,0 z 2,3 + z 2,0 z 1,1 z 2,2 + z 1,0 z 2,1 z 1,1 z 2,3 • roposition PFPH sttes tht the sets of sums G q (-, -, 12) = G q (a, b, 12); (a, b) ∈ (Z/qZ) 2
eome equidistriuted in the imge of (S 1 ) 6 vi the vurent polynomil oveD with respet to the pushforwrd mesure of the rr mesure on (S 1 ) 6 F he result omes from the ft tht the sets

®Ç e Å a q ã , e Ç aw 2 q q å , e Å b q ã , e Å bw q q ã , e Ç bw 2 q q å , e Ç bw 3 q q åå ; (a, b) ∈ (Z/qZ) 2
eome equidistriuted in (S 1 ) 6 s q goes to in(nity mong the 12Edmissile integersF he following piture illustrtes the equidistriution of the sets G q (-, -, 12)F roweverD it does not seem esy to desrie the region of equidistriution in other terms thn s the imge of (S 1 ) 6 under omplitedElooking vurent polynomilF e desription in terms of geometrilly meningful shpes suh s hypoyloids or winkowski sums of known geometri ojets would ertinly e very stisfE toryD ut we did not sueed in otining them in this prtiulr seF eppendix PFe is n exposition of some ses where we were le to desrie the region of equidistriution for the sums G q (a, b, d)F UP (a) q = 433 (b) q = 1297 pigure PFIPX he sets G q (-, -, 12) for two 12Edmissile vlues of qF 2.3.3. Comparison between the two cases roposition PFPH does not exlude the se where m is oprime with dF hereforeD it is nturl to sk whether it gives the sme equidistriution result s roposition PFIP in this seF sn ftD when the m i re ll oprime with dD ll d i re equl to dD nd so we use single ylotomi polynomil to do ll the euliden divisions of X k needed in the proof of roposition PFPHX the polynomil φ d F sndeedD for ny i ∈ {1, . . . , n}D w m i q is of order dD so we n use the reltion φ d (w m i q ) to dedue the numer of powers of w m i q tht we must tke into ount to ensure equidistriutionF husD for ll i ∈ {1, . . . , n}D the sequene of c (i) j,k is the sme s the sequene of c

(1) j,k D nd we will simply denote it y (c j,k )F henD in the rewriting of θ m,q (a 1 , . . . , a n ) in the form

d-1 k=0 n i=1 ϕ(d i )-1 j=0 e Ç a i (w m i q ) j q å c (i) j,k = d-1 k=0 n i=1 ϕ(d)-1 j=0 e Ç a i (w m i q ) j q å c j,k
we n interhnge the produt on i nd the produt on j to otinX

θ m,q (a 1 , . . . , a n ) = d-1 k=0 ϕ(d)-1 j=0 e Ç a 1 (w m 1 q ) j + • • • + a n (w mn q ) j q å c j,k .
sn this formD this is extly wht ppers in the proof of roposition PFIPD nd we n (nish the proof the sme wyF he gin of this rewriting is strongX we pss from vurent polynomil in nϕ(d) vriles to vurent polynomil in ϕ(d) vrilesF he ft tht the vurent polynomil is simpler sometimes mkes it esier to interpret geometrilly the region inside whih the sums eome equidistriutedF woreoverD in the proof of the roposition PFPHD we hd to split the vetor y of eyl9s riterion into setions (y 0 , . . . , y n ) euse we hd to hndle di'erently the terms ssoited with di'erent m i D due to the ft tht the w m i q do not neessrily hve the sme orderF es onsequene of the ft tht n index i suh tht y i = 0 n e ny i ∈ {1, . . . , n} s y vries in Z nϕ(d) D we hd to ssume tht ll the prmeters a i vried in ll Z/qZF sn the se where ll m i re oprime with dD there is no longer ny need to mke this splittingD nd so we n (x some a i nd only let the others vry in Z/qZF Remark 2.24. sn the previous prgrphD we did nothing more thn group together the terms w m i q tht were of the sme order @nmelyX ll of order dAF s think thtD in generlD one n redue the dimension of the torus underlying the equidistriution result of roposition PFPH y grouping together the terms w m i q tht re of the sme order in (Z/qZ) × F his is rther tedious to write in the generl settingD so s hve hosen to explin this lim on n exmple whih s hope will e quite onviningF gonsider sums of the type

UQ Q(a, b, c, q, d) := x∈(Z/qZ) × x d =1 e Å ax 4 + bx 2 + cx q ã for a, b, c ∈ Z/qZ
nd let us sy tht we re interested in the se d = 6F sf w q denotes genertor of the unique sugroup of order 6 of (Z/qZ) × @whih exists if we restrit to 6Edmissile vlues of qAD then w 2 q nd w 4 q re oth of order 3F he powers of w 2 q nd w 4 q tht our in the equidistriution modulo 1 therefore stop t the sme rnk @ϕ(3) -1A nd the sme oe0ients c j,k give the reltions etween the lrger powers nd the smller powersF ixpliitlyD the c j,k re de(ned y ongruenesX

X k ≡ ϕ(3)-1 j=0 c j,k X j mod φ 3 .
e will lso use the oe0ients d j,k de(ned y the ongruenesX

X k ≡ ϕ(6)-1 j=0 d j,k X j mod φ 6
pollowing the method of proof of the roposition PFPH we rrive t the following rewritingX

Q(a, b, c, q, d) = 6-1 k=0   ϕ(3)-1 j=0 e Ç a(w 4 q ) j q å c j,k     ϕ(3)-1 j=0 e Ç b(w 2 q ) j q å c j,k     ϕ(6)-1 j=0 e Ç cw j q q å d j,k   @PFPPA
iewing the ove expression s the evlution of vurent polynomil in 6 vriles in

e Ç a(w 4 q ) 0 q å , e Ç a(w 4 q ) 1 q å , e Ç b(w 2 q ) 0 q å , e Ç b(w 2 q ) 1 q å , e Ç cw 0 q q å , e Ç cw 1 q q å
we then show tht the sums Q(a, b, c, q, d) eome equidistriuted in the imge of this vurent polynoE mil when a, b, c rnge over Z/qZ nd q tends to +∞F his result omes from the uniform distriution in (S 1 ) 6 of the setsX

®Ç e Ç a(w 4 q ) 0 q å , e Ç a(w 4 q ) 1 q å , e Ç b(w 2 q ) 0 q å , e Ç b(w 2 q ) 1 q å , e Ç cw 0 q q å , e Ç cw 1 q q åå ; (a, b, c) ∈ (Z/qZ) 3
s q goes to in(nityF fut in ftD we n ring down the dimension of the torus underlying the equidistriution phenomenon y grouping the terms in w 2 q nd w 4 q F sndeedD these two elements eing of the sme orderD we used the sme ylotomi polynomil @here φ 3 A to redue the numer of powers of these elements tht we hve to keepF o we hve the sme sequene of c j,k for these termsD s we see in the equlity (2.22) oveF o we n writeX

Q(a, b, c, q, d) = 6-1 k=0   ϕ(3)-1 j=0 e Ç a(w 4 q ) j + b(w 2 q ) j q å c j,k     ϕ(6)-1 j=0 e Ç cw j q q å d j,k   nd this time we see Q(a, b, c, q, d) s the imge of the vetor Ç e Ç a(w 4 q ) 0 + b(w 2 q ) 0 q å , e Ç a(w 4 q ) 1 + b(w 2 q ) 1 q å , e Ç cw 0 q q å , e Ç cw 1 q q åå ∈ (S 1 ) 4
y vurent polynomilF woreoverD the sets

®Ç e Ç a(w 4 q ) 0 + b(w 2 q ) 0 q å , e Ç a(w 4 q ) 1 + b(w 2 q ) 1 q å , e Ç cw 0 q q å , e Ç cw 1 q q åå ; (a, b, c) ∈ (Z/qZ) 3
ÚR eome uniformly distriuted in (S 1 ) 4 F o show thisD we pply one gin eyl9s riterion to prove the uniform distriution modulo I of the rguments inside the exponentilsF vet y = (y 0 , . . . , y 3 ) ∈ Z 4 \{0}F vet f (X) := y 0 + y 1 X nd g(X) := y 2 + y 3 XF e wnt to show tht

1 q 3 a,b,c∈Z/qZ e Ç af (w 4 q ) + bf (w 2 q ) + cg(w q ) q å -→ q→+∞ 0
xow splitting the sum in terms of aD b nd c turns it intoX

1 q a∈Z/qZ e Ç af (w 4 q ) q å × 1 q b∈Z/qZ e Ç bf (w 2 q ) q å × 1 q c∈Z/qZ
e Å cg(w q ) q ã nd either f is nonEzeroD in whih se the (rst two terms tend to HD or g is nonEzeroD in whih se it is the lst term tht tends to HF sn either seD the produt tends to 0 euse eh term hs modulus less thn or equl to 1F vet us note in pssing tht the sme phenomenon s in the roposition PFIP ppersX we n (x a nd let b vryD or onverselyD it will lwys tend towrds 0D s long s we leve free prmeter efore w 2 q or w 4 q F o summrize the generl ft illustrted y this exmpleD we n sy tht if severl m i re suh tht the orresponding d i re equlD iFeF suh tht the w m i q hve the sme orderD then they n e grouped together to redue the dimension of the underlying torusD nd the equidistriution result will remin true with slightly simpler vurent polynomil nd fewer vrilesF woreoverD mong these m i tht we groupD we n hoose to (x n ritrry numer of the orresponding a i D s long s we let one vry freelyD equidistriution will holdF omewht informllyD we n therefore group the w m i q y tems ording to their orderD nd we need t lest one free a i prmeter per temD the others eing llowed to e (xed ritrrily without hnging the uniform distriution resultF US 2.A. Some extra cases where a geometric description of the region of equidistribution can be obtained es in ixmple PFPQD we onsider the sums

G q (a, b, d) := x∈(Z/qZ) × x d =1 e Å ax 2 + bx q ã with a, b ∈ Z/qZ.
hen d is of the form 2r with r eing positive odd integerD we n otin geometri desription of the region of equidistriution of the sets G q (-, -, d) := G q (a, b, d); (a, b) ∈ (Z/qZ) 2 F his mens tht we re le to desrie the region of equidistriution in more onrete terms thn s the imge of some multiEdimensionl torus vi some vurent polynomilF e lso otin suh onrete desription in the se where d = 2 β D with β 2F

2.A.1. Sums associated with m = (2, 1) and d of the form 2r with r odd sn order to stte the resultD we will need the following nottionF Denition 2.25. Let r be a positive odd integer. We still denote by g r the Laurent polynomial dened at Denition 2.6. Then we dene the following Laurent polynomial:

g r ⊕ g r : (S 1 ) 2ϕ(r) → C (z j ) 0 j 2ϕ(r)-1 → g r (z 0 , . . . , z ϕ(r)-1 ) + g r (z ϕ(r) , . . . , z 2ϕ(r)-1 )
vet us stress tht sine the imge of g r hs een geometrilly interpreted in some ses @see vemm PFW nd roposition PFIHAD the imge of g r ⊕ g r lso dmits onrete geometri desription in those sesD in terms of hypoyloids nd winkowski sums of hypoyloidsF ith this nottionD we n prove the following propositionF Proposition 2.26. Let r be a positive odd integer. Consider the sets

G q (-, -, 2r) :=        G q (a, b, 2r) := x∈(Z/qZ) × x 2r =1 e Å ax 2 + bx q ã ; a, b ∈ Z/qZ       
for 2r-admissible values of q. Then, as q goes to innity, the sets G q (-, -, 2r) become equidistributed in the image of (S 1 ) 2ϕ(r) via g r ⊕ g r with respect to the pushforward measure of the probability Haar measure on (S 1 ) 2ϕ(r) .

Proof. vet q e 2rEdmissile integerD nd let a, b ∈ Z/qZF IF Reordering the terms. es in the previous proofsD we let w q ∈ (Z/qZ) × denote genertor of the unique sugroup of order 2r of (Z/qZ) × D nd we rewrite G q (a, b, 2r) in terms of this genertorF his givesX

G q (a, b, 2r) = 2r-1 k=0 e Ç aw 2k q + bw k q q å •
henD we split the sum into two prtsD depending on the prity of kX

G q (a, b, 2r) = 2r-1 k=0 k even e Ç aw 2k q + bw k q q å + 2r-1 k=0 k odd e Ç aw 2k q + bw k q q å = r-1 m=0 e Ç aw 4m q + bw 2m q q å + r-1 m=0 e Ç aw 4m+2 q + bw 2m+1 q q å =: G even + G odd .
UT PF Each term (G even and G odd ) belongs to the image of g r .

por ll m ∈ {0, . . . , r -1}D we perform the redution modulo φ r of X m nd denote the oe0ients tht pper y c j,m s in he(nition PFTX

X m = ϕ(r)-1 j=0 c j,m X j mod φ r .
hen we redue modulo q nd evlute t w 4 q nd w 2 q @whih re oth elements of (Z/qZ) × of order rD so tht vemm PFIR ppliesAF his givesX

w 4m q = ϕ(r)-1 j=0 c j,m w 4j q w 2m q = ϕ(r)-1 j=0 c j,m w 2j q .
xote tht this step relies ruilly on the ft tht r is oddD otherwise w 4 q would hve n order whih is hlf of tht of w 2

q F e dedue tht

G even = r-1 m=0 ϕ(r)-1 j=0 e Ç aw 4j q + bw 2j q q å c j,m et G odd = r-1 m=0 ϕ(r)-1 j=0 e Ç aw 4j+2 q + bw 2j+1 q q å c j,m
hereforeD if we introdue the nottions

y j := e Ç aw 4j q + bw 2j q q å nd z j := e Ç aw 4j+2 q + bw 2j+1 q q å , nd y = (y j ) 0 j<ϕ(r) nd z = (z j ) 0 j<ϕ(r) ,
we hve G q (a, b, 2r) = G even + G odd = g r (y) + g r (z) = (g r ⊕ g r )(y, z)

hereforeD G q (a, b, 2r) elongs to the imge of g r ⊕ g r F QF Equidistribution of G q (-, -, 2r) as q goes to innity. sn order to prove tht there is equidistriution with respet to the pushforwrd mesure nE nouned in the sttementD we need to prove tht the sets

Ç e Ç aw 4j q + bw 2j q q åå 0 j<ϕ(r) , Ç e Ç aw 4j+2 q + bw 2j+1 q q åå 0 j<ϕ(r) ; (a, b) ∈ (Z/qZ) 2
eomes equidistriuted in (S 1 ) 2ϕ(r) F xowD when j rnges over {0, . . . , ϕ(r) -1}D 2j rnges over the even integers etween 0 nd 2ϕ(r) -2D wheres 2j + 1 rnges over the odd integers etween 1 nd 2ϕ(r) -1F husD y reordering the omponentsD it is equivlent to prove tht the following sets eome equidistriuted in (S 1 ) 2ϕ(r) X Ç e

Ç aw 2k q + bw k q q åå 0 k 2ϕ(r)-1 ; (a, b) ∈ (Z/qZ) 2 .
e do tht using eyl9s riterionF vet y ∈ Z 2ϕ(r) \ {0}F henoting y θ q (a, b) the vetor

Ç aw 2k q + bw k q q å 0 k<2ϕ(r) ∈ (R/Z) 2ϕ(r)
UU we wnt to prove tht the following exponentil sum 1 q 2 a,b∈Z/qZ e(θ q (a, b) • y) onverges to 0 s q goes to in(nityF sf we write the oordintes of y s follows

y = Ö y 0 F F F y 2ϕ(r)-1 è then we hve 1 q 2 a,b∈Z/qZ e(θ q (a, b) • y) = 1 q 2 a,b∈Z/qZ e Ç af (w 2 q ) + bf (w q ) q å ,
where

f := y 0 + y 1 X + y 2 X 2 + • • • + y 2ϕ(r)-1 X 2ϕ(r)-1 ∈ Z[X] \ {0}.
xow sine ψ q : (a, b) → e af (w 2 q )+bf (wq) q

is n dditive hrter of (Z/qZ) 2 D we hveD y orE thogonlity of hrtersD

1 q 2 a,b∈Z/qZ e Ç af (w 2 q ) + bf (w q ) q å = 1 ψq=triv. @PFPQA
woreoverD ψ q is the trivil hrter if nd only if f (w 2 q ) nd f (w q ) re equl to 0 modulo qF sndeedD the group homomorphism

' Z/qZ × ' Z/qZ → ÿ (Z/qZ) 2 whih mps (χ 1 , χ 2 ) to the hrter of (Z/qZ) 2 X (a, b) → χ 1 (a)χ 2 (b) is n isomorphismF husD ψ q is trivil if nd only if the dditive hrters modulo q a → e Ç f (w 2 q ) q a å nd b → e Å f (w q ) q b
ã re oth trivilF hereforeD in order to onludeD it su0es to show tht there re only (nitely mny 2rEdmissile vlues of q suh tht f (w q ) nd f (w 2 q ) re simultneously equl to zero modulo qF his is wht we prove elowF he min ide of the proof is to try to redue to sitution similr to the one enountered in the proof of vemm PFISD whih is why we try to redue to polynomils of degree stritly less thn ϕ(r)F @A φ r and φ 2r do not simultaneously divide f (X)F sndeedD φ r nd φ 2r re two distint irreduile polynomils in Q[X]D so if they oth divided f (X)D then their produt would divide f (X) s wellF ine f is nonEzeroD this would imply

deg(f ) deg(φ r ) + deg(φ 2r ) = 2ϕ(r), ontrditing the ft tht deg(f ) 2ϕ(r) -1F
UV @A Reduction to the case of polynomials of degree strictly less than ϕ(r) through euclidean divisionF ine φ r nd φ 2r re moni polynomils in Z[X]D the polynomils tht pper in the euE liden divisions elow still elong to Z

[X]X ® f (X) = φ r (X)Q r (X) + R r (X), 0 deg(R r ) < ϕ(r) f (X) = φ 2r (X)Q 2r (X) + R 2r (X), 0 deg(R 2r ) < ϕ(2r) = ϕ(r)
hen we redue these equlities modulo q nd evlute the (rst one t w 2 q D nd the seond one t w q F es w q hs multiplitive order equl to 2rD the term φ 2r (w q ) is equl to zero in Z/qZ thnks to vemm 2.14F imilrlyD the term φ r (w 2 q ) is equl to zero in Z/qZD euse w 2 q hs order rF husD f (w 2 q ) ≡ 0 mod q nd f (w q ) ≡ 0 mod q @PFPRA if nd only if R r (w 2 q ) ≡ 0 mod q nd R 2r (w q ) ≡ 0 mod q. @PFPSA xowD thnks to step (a) oveD t lest one of the two polynomils R r nd R 2r is nonEzeroD so we n pply the rgument of the proof of vemm PFIS @sed on fézout reltion etween R r nd φ r D respetively R 2r nd φ 2r A to onlude tht there re only (nitely mny q suh tht @PFPSA is stis(edF hnks to the equivlene with @PFPRAD this shows tht the sum @PFPQA is eventully equl to zeroD nd this (nishes the proofF Example 2.27.

sf we tke d = 2 = 2 × 1D then the sets G q (-, -, 2) eome equidistriuted in the imge of g 1 ⊕ g 1 F xowD sine φ 1 = X -1D it is esy to show tht

g 1 : S 1 → C z → z hene g 1 ⊕ g 1 : (S 1 ) 2 → C (z 1 , z 2 ) → z 1 + z 2
husD the imge of g 1 ⊕ g 1 is the losed disk with enter 0 nd rdius 2F (a) q = 193 (b) q = 709 pigure PFIQX he sets G q (-, -, 2) for two 2Edmissile vlues of qF UW sf we tke d = 6 = 2×3D roposition PFPT tells us tht the sets G q (-, -, 6) eome equidistriuted in the imge of g 3 ⊕ g 3 D tht isX in H 3 + H 3 thnks to vemm PFWF iquidistriution holds with respet to the pushforwrd mesure of the rr mesure on (S 1 ) 4 vi

g 3 ⊕ g 3 : (S 1 ) 4 → C (z 0 , . . . , z 3 ) → z 0 + z 1 + 1 z 0 z 1 + z 2 + z 3 + 1 z 2 z 3 (a) q = 229 (b) q = 1021
pigure PFIRX he sets G q (-, -, 6) for two 6Edmissile vlues of qF roposition 2.26 overs the ses where d = 2r for odd vlues of rF st remins to study wht hppens when d is of the form 2 β r with β 2 nd r oddF e were not le to (nd onrete geometri desription of the imge of the vurent polynomil in ll of those remining sesD ut the next setion presents wht we otined in the se where d is power of 2F 2.A.2. Sums associated with m = (2, 1) and d of the form 2 β with β 2 e hve the following geometri desription of the region of equidistriution for the sums G q a, b, 2 β F Proposition 2.28. Let β ∈ Z 2 and let d := 2 β . The sets G q (-, -, d) become equidistributed in the Minkowski sum

2 β-2 -1 j=0 H 4 = H 4 + • • • + H 4 2 β-2 terms
with respect to the pushforward measure of the Haar measure on (S 1

) 3×2 β-2 via h 4 ⊕ • • • ⊕ h 4 , where h 4 : (S 1 ) 3 → C (z 1 , z 2 , z 3 ) → z 1 + z 2 + z 3 + 1 z 1 z 2 z 3
As usual, equidistribution holds as q goes to innity mong the dEdmissile integers. VH henoting y w q genertor of the sugroup of order d of (Z/qZ) × D we hveX

G q (a, b, d) = d-1 k=0 e Ç aw 2k q + bw k q q å = 2 β-2 -1 j=0 d-1 k=0 k≡j mod 2 β-2 e Ç aw 2k q + bw k q q å = 2 β-2 -1 j=0 3 m=0 e aw 2(j+m2 β-2 ) q + bw j+m2 β-2 q q =:G j
PF Each G j belongs to H 4 . vet j ∈ {0, . . . , 2 β-2 -1}F sn order to prove tht G j elongs to H 4 D we prove tht the term orresponding to m = 3 is equl to the inverse of the produt of the terms ssoited with m = 0, 1, 2F st is su0ient to show tht the following equlities hold in Z/qZX

w 2(j+0×2 β-2 ) q + w 2(j+1×2 β-2 ) q + w 2(j+2×2 β-2 ) q = -w 2(j+3×2 β-2 ) q w j+0×2 β-2 q + w j+1×2 β-2 q + w j+2×2 β-2 q = -w j+3×2 β-2 q .
hese re equivlent toX

® 1 + w 2 β-1 q + w 2 β q = -w 3×2 β-1 q 1 + w 2 β-2 q + w 2 β-1 q = -w 3×2 β-2
q euse one n simplify the (rst equlity y w 2j q nd the seond one y w j q @these re oth invertile modulo q sine w q is invertileAF xowD oth equlities hold euse s w q hs order d = 2 β D w 2 β-1 q hs order 2D hene w 2 β-1 q = -1F husD eh G j elongs to the imge of h 4 D whih is the hypoyloid H 4 thnks to vemm 2.9F QF Equidistribution of G q (-, -, d) as q goes to innity.

o onlude the proofD it remins to show tht the exponentil tht re mpped to G q (a, b, d)

vi h 4 ⊕ • • • ⊕ h 4 eome equidistriuted in (S 1 ) 3×2 β-2 F reiselyD the previous step showed tht G(a, b, q, d) = 2 β-2 -1 j=0 G j = 2 β-2 -1 j=0 h 4 e Ç aw 2j q + bw j q q å , e aw 2(j+2 β-2 ) q + bw j+2 β-2 q q , e aw 2(j+2 β-1 ) q + bw j+2 β-1 q q
hene it remins to prove tht the sets

   e aw 2(j+m2 β-2 ) q + bw j+m2 β-2 q q 0 j 2 β-2 -1, m∈{0,1,2} ; (a, b) ∈ (Z/qZ) 2   
eome equidistriuted in (S 1 ) 3×2 β-2 s q goes to in(nity mong the dEdmissile integersF fy reordering the ftors @insted of regrouping them y ongruene lssesA this mounts to showing the uniform distriution modulo 1 of the following susets of

(R/Z) 3×2 β-2 X ®Ç aw 2k q + bw k q q å 0 k<3×2 β-2 ; (a, b) ∈ (Z/qZ) 2 hrough eyl9s riterionD it is equivlent to show tht if f ∈ Z[X] \ {0} is polynomil of degree less thn or equl to 3 × 2 β-2 -1D then we hve 1 q 2 a,b∈Z/qZ e Ç
af (w 2 q ) + bf (w q ) q å -→ q→∞ q d-adm 0 fy the sme rgument s in the proof of roposition 2.26D one n prove tht there re only (nitely mny dEdmissiles integers q suh tht f ( w2 q ) nd f ( wq ) re oth equl to zero modulo qF sndeedD the key rgument of the proof ws the ft tht φ d nd φ d/2 nnot simultneously divide f D nd this is still the se hereD sine

deg(φ d φ d/2 ) = ϕ(2 β ) + ϕ(2 β-1 ) = 3 × 2 β-2 > deg(f ).
Example 2.29. pirst we illustrte the equidistriution of the sets G q (-, -, 4) in H 4 X (a) q = 173 (b) q = 1193 pigure PFISX he sets G q (-, -, 4) for two 4Edmissile vlues of qF eondD we illustrte the equidistriution of the sets

G q (-, -, 8) in H 4 + H 4 X VP (a) q = 577 (b) q = 1777
pigure PFITX he sets G q (-, -, 8) for two 8Edmissile vlues of qF roposition PFPT nd roposition PFPV do not over ll possile vlues of dD so there is still work to do to gin etter geometri understnding of the region of equidistriution for sums of the type G q (a, b, d) when d is n ritrry positive integerF VQ 2.B. On the discrepancy in Myerson's lemma sn this ppendixD we give nonEtrivil upper ound for the disrepny ssoited with the equidisE triution result known s wyerson9s lemmX Lemma 2.30 @QPD vemm TFPA. The sets ß a q Ä 1, w q , w 2 q , . . . , w ϕ(d)-1 q ä ; a ∈ Z/qZ ™ become equidistributed modulo 1 as q goes to innity among the d-admissible integers.

Proof. he proof of this lemm is n immedite onsequene of eyl9s riterion nd of the exponentil sum estimte of vemm PFISF sn our study of the disrepnyD we will restrit to prime moduli p for our pproh to workF e prove tht the disrepny is ounded oveD up to multiplitive onstntsD y n expliit negtive power of pF I wish to thank Gérald Tenenbaum for suggesting me to try to apply Erdös-Turán inequality to turn the fast decay of the Weyl sums into good discrepancy estimates. I also wish to thank Igor Shparlinski for the unpublished note he sent me which contained useful ideas.

e will lso ome k to these questions regrding the disrepny in our equidistriution results in more generl setting in ghpter SF

2.B.1. A short refresher on resultants

vet A e n integrl dominD nd let 

f = a m X m + • • • + a 0 nd g = b n X n + • • • + b 0 e
F : K n-1 [X] × K m-1 [X] → K n+m-1 [X] (u, v) → uf + vg
Denition 2.31. Let B be the basis ((X n-1 , 0), . . . , (1, 0), (0, X m-1 ), . . . , (0, 1)

) of K n-1 [X]×K m-1 [X]
and let C be the basis (X n+m-1 , . . . , 1) of K n+m-1 [X]. Then the Sylvester matrix of f and g is the matrix M B,C (F ) ∈ M n+m (A). The determinant of this matrix is called the resultant of f anf g, and is denoted by Res(f, g). Since the Sylvester matrix has coecients in A, the resultant of f and g is an element of A.

yne interest of the resultnt is tht it is n element of AD whih n e omputed with the sole knowledge of the oe0ients of f nd gD ut it detets ommon roots of f nd g in some extension of KF sndeedD we hve the following propositionX Proposition 2.32. The following are equivalent:

1. The polynomials f and g have a common irreducible factor of degree 1 in K[X] 

m 2 := Ã n-1 j=0 m 2 j its classical 2 -norm, f m := n-1 j=0 m j X j ∈ Z[X]
if f m (w p ) ≡ 0 mod p, then m 2 C d × p 1 ϕ(d)
, where C d is a constant depending only on d.

Proof. vet us denote y k := max{0 j < ϕ(d), m j = 0} @so tht f m hs degree extly kAF he ylvester mtrix of φ d nd f m onsists of k olumns ontining the oe0ients of φ d plus some zero entriesD followed y ϕ(d) olumns ontining the oe0ients of f m plus some zero entriesF husD if we pply rdmrd9s ound to the determinnt of this mtrix @whih sttes tht the solute vlue of the determinnt is ounded ove y the produt of the 2 Enorms of the olumnsAD we otin the followingX

|Res(φ d , f m )| B k d m ϕ(d) 2 B ϕ(d)-1 d m ϕ(d) 2 @PFPTA
where

B d = Õ ϕ(d) j=0 a 2 j if φ d = ϕ(d) j=0
a j X j @so this onstnt depends only on dD nd n e mde more expliit when φ d is wellEknownD for instne when d is primeAF e found the ide of using rdmrd9s ound in WD heorem UD where it ws used for the sme purpose of giving estimtes on resultntsF st is well known tht sequene (x j ) j 1 eomes equidistriuted modulo 1 if nd only if D(x 1 , . . . , x N ) onverges to zero s N goes to in(nityF he irdösEuránEuoksm inequlity gives n upper ound whih llows one to evlute the dey of the disrepny in terms of the eyl sumsF e stte it lmost s in PVD vemm QFR @see lso PWD heorem IFPIAF Lemma 2.36 @irdösEuránEuoksmA. Let d 1 be an integer. There exists a constant C such that for any N 1, for any x 1 , . . . , x N ∈ (R/Z) d , and any H > 0,

D(x 1 , . . . , x N ) C Ü 1 H + m∈Z d 0< m ∞<H 1 r(m) 1 N N j=1 e (m • x j ) ê where r(m) = d i=1 max(1, |m i |).
sn the setting of vemm PFIS oveD we will pply this estimte with N = p nd the sequene

x 0 (p), x 1 (p), . . . , x p-1 (p) where x a (p) = aw 0 p p , aw 1 p p , . . . , aw ϕ(d)-1 p p ∈ (R/Z) ϕ(d)
for ll a ∈ {0, . . . , p -1}F Denition 2.37. We denote the discrepancy of the x a (p) as follows:

D p := D(x 0 (p), x 1 (p), . . . , x p-1 (p)) = sup I∈I 1 p p-1 a=0 1 I (x a (p)) -λ ϕ(d) (I)
where I denotes the set of products of intervals as in Denition PFQS and λ ϕ(d) denotes the probability Haar measure on (R/Z) ϕ(d) .

Proposition 2.38. For all d 1, we have that for all p ≡ 1 mod d,

D p d p -1 ϕ(d)
Proof. fy vemm PFQTD we hve tht for ll p ≡ 1 mod dD for ll H > 0D

D p C Ü 1 H + m∈Z ϕ(d) 0< m ∞<H 1 r(m) 1 p p-1 a=0 e (m • x a (p)) ê , @PFPUA
where C is onstnt whih depends only on dF xow let C d e onstnt s in vemm PFQR nd hoose H s

H := C d ϕ(d) p 1 ϕ(d) . sf m ∈ Z ϕ(d) is suh tht 0 < m ∞ < HD then 0 < m 2 ϕ(d) m ∞ < C d × p 1 ϕ(d)
F husD y vemm PFQRD we hve f m (w p ) ≡ 0 mod pD nd this implies tht the eyl sum

1 p p-1 a=0 e (m • x a (p))
VT is equl to zero y orthogonlityD euse this sum is tully equl to

1 p p-1 a=0 e Å f m (w p ) p a ã .
husD the seond term on the rightEhnd side of @PFPUA is equl to zero with this hoie of HD so we otin

D p C H C ϕ(d) C d p -1 ϕ(d) d p -1 ϕ(d)
Remark 2.39. etully vemm PFIS lso holds more generlly for lsses modulo p α for ny α 1F roweverD it is not ler whether the pproh used here n give good ounds on the disrepny in the se α 2F sndeedD we used properties of the resultntD nd s do not know whether the resultnt still stis(es the properties we used when the se ring is Z/p α Z @whih is not even n integrl dominAF Restricting the parameters to range over small subgroups sn this hpterD we prove tht in the results of ghpter PD it is possile to impose strong restritions on the set of prmeters nd still otin equidistriutionF wore preiselyD we show tht one n restrit the prmeters indexing our fmilies of exponentil sums to rnge over smll sugroups of (Z/qZ) × D insted of llowing them to rnge over the whole dditive group Z/qZF yur min result @heorem QFIQD whih orresponds to heorem e of IHQA is indeed onerned with sets of sums of the form

       x∈(Z/qZ) × x d =1 e Å a 1 x m 1 + • • • + a n x mn q ã ; (a 1 , . . . , a n ) ∈ H (1) q × • • • × H (n) q        , @QFIA
where the H (i) q re su0iently lrge @in sense whih will e more preisely sttedA sugroups of (Z/qZ) × F hese extensions mke use of very strong estimtes on exponentil sums over multiplitive sugroupsD whih were proved to e onneted to deep sumEprodut theorems in dditive omintorisF he proofs of roposition PFIP nd roposition PFPH relied ruily on vemm PFIS @wyerson9s lemmAF e mde the hoie to stte this lemm in terms of exponentil sumsD euse there re severl slightly di'erent results on equidistriution modulo 1 whih n e dedued from this single ft on exponentil sumsF roweverD in QPD vemm TFPD wyerson9s lemm is stted diretly s n equidistriution resultD nd it sserts tht if w q denotes primitive dEth root of unity modulo qD then the susets of (R/Z) ϕ(d) ß a q Ä 1, w q , . . . , w ϕ(d)-1 q ä ; a ∈ Z/qZ ™ eome equidistriuted modulo 1 s q goes to in(nity mong the dEdmissile integersF he striking ft out the proof is tht when pplying eyl9s riterionD they do not only get onE vergene towrds zeroD ut they otin eyl sums whih re eventually equal to zeroD thnks to the VW orthogonlity of hrters @this is the ontent of vemm PFISAF ine the onvergene towrds zero is so strongD it is nturl to sk whether the lierty of the prmeter a n e restrited while keeping the equidistriution propertyF por instneD one ould wnt to study the question of the equidistriution modulo 1 of the sets ß a q Ä 1, w q , . . . , w ϕ(d)-1 q ä ; a ∈ (Z/qZ) × ™ .

henD the sums involved when pplying eyl9s riterion re ontrolled y the following lemmX Lemma 3.1. Let d 1 be an integer, and let f ∈ Z[X] \ {0} be a polynomial of degree strictly less than ϕ(d). Then there exists a rank n f such that for all d-admissible integer q, for any element w q of order d in (Z/qZ) × :

a∈(Z/qZ) × e Å af (w q ) q ã 1.
Proof. es in the proof of vemm PFISD we strt y hoosing fézout reltion etween

φ d nd f X a(X)φ d (X) + b(X)f (X) = n @QFPA
where a, b ∈ Z[X] nd n 1F xowD let q = p α e dEdmissile integer suh tht q > n 2 D nd let w q e s in the sttementF e hveX

a∈(Z/qZ) × e Å af (w q ) q ã = a∈Z/qZ e Å af (w q ) q ã - a∈(Z/qZ)\(Z/qZ) × e Å af (w q ) q ã .
xowD we know from vemm 2.15 tht the omplete sum a∈Z/qZ e Ä af (wq) q ä is eventully equl to zeroF wore preiselyD the proof shows tht s soon s q > nD the omplete sum is equl to zeroF ine we re ssuming tht q > n 2 D this ondition is stis(edD heneX

a∈(Z/qZ) × e Å af (w q ) q ã = - a∈(Z/qZ)\(Z/qZ) × e Å af (w q ) q ã .
xowD we hveX

a∈(Z/qZ)\(Z/qZ) × e Å af (w q ) q ã = q-1 a=0 (a,q) =1 e Å af (w q ) q ã = q-1 a=0 p|a e Å af (w q ) q ã = p α-1 -1 m=0 e Å pmf (w q ) p α ã = p α-1 -1 m=0 e Å mf (w q ) p α-1 ã ,
vet us distinguish etween the two following sesX sf α = 1D then

p α-1 -1 m=0 e Å mf (w q ) p α-1 ã = 1, so tht a∈(Z/qZ) × e Å af (w q ) q ã = -1.
sf α 2D then we hndle the sum

p α-1 -1 m=0 e Å mf (w q ) p α-1 ã WH
s in the proof of vemm PFISD tht isX using the orthogonlity of hrters of Z/p α-1 ZF sndeedD we reognize the sum over ll Z/p α-1 Z of the vlues of the dditive hrterX m → e Å f (w q ) p α-1 m ã nd so the orthogonlity of hrters tells us thtX

p α-1 -1 m=0 e Å f (w q ) p α-1 m ã = ® 0 if p α-1 f (w q ) p α-1 if p α-1 | f (w q ) @QFQA
xowD s in the proof of vemm 2.15D we n use the reltion a( wq )φ d ( wq ) + b( wq )f ( wq ) ≡ n mod q @QFRA dedued from @QFPAD where wq denotes ny lift of w q in ZF hen thnks to vemm PFIRD we hve tht q = p α divides φ d ( wq )D so φ d ( wq ) is fortiori divisile y p α-1 F husD if we ssume for ontrdition tht p α-1 divides f ( wq )D then p α-1 would divide nD ut this is impossileF sndeedD q = p α > n 2 D so p α/2 > nD nd sine α 2D we hve p α-1 p α/2 D whih implies tht p α-1 > nF hereforeD p α-1 does not divide f ( wq )D nd the sumX

p α-1 -1 m=0 e Å mf ( wq ) p α-1
ã is equl to zero y orthogonlityF

Conclusion: e proved tht we n tke for instne the integer n f of the sttement to e n 2 @where n omes from @QFPAAD nd tht for ll dEdmissile integer q = p α > n f D we hveX

a∈(Z/qZ) × e Å af (w q ) q ã = ® 1 if α = 1 0 if α 2 his shows tht in ny seD if q ∈ A d is stritly lrger thn n f D thenX a∈(Z/qZ) × e Å af (w q ) q ã 1F
xow if we use eyl9s riterionD we see tht the ound proved in this vemm QFI estlishes the equidistriution modulo 1 of the sets

ß a q Ä 1, w q , . . . , w ϕ(d)-1 q ä ; a ∈ (Z/qZ) × ™ .
wore generllyD using vemm QFI insted of vemm PFIS in the proofs of propositions PFIP nd PFPH llows one to prove the equidistriution modulo 1 of the sets ¶ x(a 1 , . . . , a n , q); (a 1 , . . . , a n ) ∈ (Z/qZ) × n © insted of tht of the sets @PFIVAX {x(a 1 , . . . , a n , q); (a 1 , . . . , a n ) ∈ (Z/qZ) n } .

st follows from this improvement tht the equidistriution results of propositions PFIP nd PFPH still hold if we only let the prmeters vry in (Z/qZ) × insted of Z/qZF his gives equidistriution results for sets of the form

WI        x∈(Z/qZ) × x d =1 e Å a 1 x m 1 + • • • + a n x mn q ã ; (a 1 , . . . , a n ) ∈ (Z/qZ) × n       
e do not give preise sttement t this point euse these results will e superseded in the two next setionsF xetherthelessD this serves s motivtion for further improvementsD euse if there is equidistriution when the prmeters vry in ll Z/qZD ut lso when they only vry in (Z/qZ) × D we n wonder how strong n the restritions e efore these sets no longer eome equidistriutedF his is why we sked ourselves the questionX wht hppens if the prmeters a i re only llowed to rnge over sugroups H q of (Z/qZ) × c yf ourse if H q = {1}D there is no hopeD ut wht if |H q | tends to in(nity s q goes to in(nityc ss it su0ient to ensure the equidistriution of

       x∈(Z/qZ) × x d =1 e Å ax q ã ; a ∈ H q        @QFSA
for instnec his is the type of question we re going to ddress in the two next setionsF

Subgroups of cardinality at least

√ q sn this setionD we use estimtes on quss sums @the neessry fts on these re relled in eppendix QFeA to prove n exponentil sum estimte whih enles us to dedue the equidistriution modulo 1 of the sets ß a q Ä 1, w q , . . . , w ϕ(d)-1 q ä ; a ∈ H q ™ @QFTA s soon s the sugroups H q re stisfy the growth onditionX

√ q |H q | -→ q→∞ 0. @QFUA
sn other wordsD equidistriution is gurnteed provided the rdinlity of the sugroup H q grow fster thn √ qD in the sense of ondition @QFUAF i the sme step of reduction to a statement on equidistribution modulo 1 s in the proof of roposition PFIPD this kind of result llows us to dedue equidistriution theorems for sets of exponentil sums of type @QFSAD or generliztions of theseF Exponential sum estimates. he key exponentil sum estimte is given in the following lemmF Lemma 3.2. Let d 1 and let f ∈ Z[X] \ {0} be a polynomial of degree strictly less than ϕ(d). For all d-admissible integer q, we choose a subgroup H q of (Z/qZ) × and an element w q of order d in (Z/qZ) × .

Then:

there exists a rank N f (depending on f ) such that for all q in A d such that q > N f , a∈Hq e Å af (w q ) q ã f √ q

Remark 3.3. he ound given in this lemm is nonEtrivil when the sugroup H q of (Z/qZ) × is su0iently lrgeD nmely when |H q | is lrger thn √ q @up to the hidden onstnt in the nottion f AF fefore moving forwrd to the full proofD let us give rief overview of itD to underline where there is sutletyF WP Overview of the proof of Lemma 3.2. he pproh is the one desried in the introdution of UWD ut generlized to (Z/qZ) × insted of F × p F he (rst ide is to deompose the mpX

ψ f (wq) : (Z/qZ) × → C a → e Ä f (wq)a q ä
in the orthonorml sis of Maps((Z/qZ) × , C) mde of the multiplitive hrters modulo qF snE deedD the CEvetor spe of the mps from (Z/qZ) × to C n e endowed with the following hermitin produtX

∀f, g : (Z/qZ) × → C, f, g := 1 ϕ(q) x∈(Z/qZ) × f (x)g(x),
nd it n e shown tht the multiplitive hrters modulo q form n orthonorml sis of this hermitin speF hereforeD for ny mp ϕ : (Z/qZ) × → CD we hveX

ϕ = χ ϕ, χ χ
where χ runs over the group of multiplitive hrters modulo qF sn prtiulrD for ϕ = ψ f (wq) D we otinX

a∈Hq e Å af (w q ) q ã = a∈Hq ψ f (wq) (a) = a∈Hq χ ψ f (wq) , χ χ(a)
xowD ψ f (wq) , χ is lmost quss sum @see eppendix QFe for the nottion τ (-, -) for quss sumsAF sndeedD

ψ f (wq) , χ = 1 ϕ(q) x∈(Z/qZ) × ψ f (wq) (x)χ(x) = 1 ϕ(q) τ χ, ψ f (wq) , hene a∈Hq e Å af (w q ) q ã = a∈Hq χ 1 ϕ(q) τ χ, ψ f (wq) χ(a) = 1 ϕ(q) χ τ χ, ψ f (wq) a∈Hq χ(a).
xowD mong the multiplitive hrters modulo qD ll those who indue @y restritionA nonEtrivil hrter of H q hve no ontriutionF sndeedD for suh hrtersD the inner sum is zero y orthogonlity of the multiplitive hrters of

H q F husD a∈Hq e Å af (w q ) q ã = 1 ϕ(q) χ |Hq =1 τ χ, ψ f (wq) a∈Hq χ(a)
where the (rst sum is indexed y the multiplitive hrters modulo q whih re trivil on H q F por suh hrtersD the inner sum a∈Hq χ(a) is simply equl to |H q | @its numer of termsAF hereforeD

a∈Hq e Å af (w q ) q ã = |H q | ϕ(q) χ |Hq =1 τ χ, ψ f (wq) = |H q | ϕ(q) χ |Hq =1
τ χ, ψ f (wq) @QFVA xote tht this lst sum hs ϕ(q)/|H q | termsF sndeedD more generlly if G is (nite elin group nd H is sugroup of GD then ny hrter of H n e extended to hrter of GF sn other wordsD the restrition morphismX

WQ " G → " H χ → χ |H is surjetiveF sn our settingD G = (Z/qZ) × nd H = H q D nd
the surjetivity of the restrition morphism llows us to ompute the rdinlity of its kernelD whih is extly the numer of χ modulo q stisfying χ |Hq = 1F pinllyD y the tringle inequlityD we hveX

a∈Hq e Å af (w q ) q ã |H q | ϕ(q) χ |Hq =1 |τ χ, ψ f (wq) | @QFWA
he end of the proof onsists in proving tht we n pply this lssil ound on quss sums @up to some multiplitive onstnt whih does not use ny issueAX

|τ χ, ψ f (wq) | √ q.
@QFIHA sndeedD if we ould pply this ound for ll χD inequlity @QFWA would immeditely giveX

a∈Hq e Å af (w q ) q ã |H q | ϕ(q) χ |Hq =1 |τ χ, ψ f (wq) | |H q | ϕ(q) √ q χ |Hq =1 1 ϕ(q)/|Hq| = √ q roweverD if χ is not primitiveD or if f (w q )
is not oprime with qD or othD there ould e some d ollision etween the nonEprimitivity of χ nd tht of ψ f (wq) D leding to quss sum with modulus lrger thn √ qF por instne if χ is the prinipl hrter modulo q nd f (w q ) ≡ 0 mod qD then

τ χ, ψ f (wq) = x∈(Z/qZ) × 1 = ϕ(q) = p α-1 (p -1),
whih is lrger thn √ q = p α/2 F etullyD we lredy know tht this nnot hppen for lrge vlues of q euse we sw in the proof of vemm 2.15 tht there re only (nitely mny q suh tht f (w q ) ≡ 0 mod qF fut we need to prove tht the other possile d ollisions do not use n issueD in order to pply inequlity @QFIHA @up to some multiplitive onstntA nd to onlude the proofF his is wht remins to do in the detiled proofF

The crucial control of the p-adic valuation. es we will see in the proof of the neessry quss sums estimtesD it is not su0ient to know tht f (w q ) is nonEzero modulo q = p α D we will tully need to know something more preise out the pEdi vlution of f (w q )F his is the ontent of the following very importnt propositionF Proposition 3.4. Let d 1 and let f ∈ Z[X] \ {0} be a polynomial of degree strictly less than ϕ(d).

For all d-admissible integers q, we choose an element w q of order d in (Z/qZ) × . Then there exist two constants C f , n f 1 such that for all q = p α ∈ A d such that q > n f , (a) f (w q ) ≡ 0 mod q (b) p vp(f (wq)) C f .

Remark 3.5. ine f (w q ) ≡ 0 mod q in point @AD it mkes sense to spek out the pEdi vlution of f (w q ) in point @AD s it does not depend on the hoie of n integer wq representing the lss w q F Proof. he (rst prt of the proof is tully wht we lredy did in the proof of vemm PFISD following losely the rguments of QPD vemm TFPF vet us reprodue rie)y the proof to filitte the reding nd hve ll nottions on the sme pgeF pirstD we use the ft tht there exist two polynomils a, b ∈ Z[X] nd n integer n 1 suh tht

a(X)φ d (X) + b(X)f (X) = n, @QFIIA
WR sine f nd φ d re oprime in the euliden domin Q[X]F xowD let q = p α e dEdmissile integerF eduing eqution @QFIIA modulo q nd evluting it t w q leds to a(w q )φ d (w q ) + b(w q )f (w q ) ≡ n mod p α hene b(w q )f (w q ) ≡ n mod p α @QFIPA y vemm PFIRF xowD if q = p α > nD then n is nonEzero modulo qD hene f (w q ) ≡ 0 mod qF his shows tht n f := n is suitle onstnt for ssertion @AF enother wy of phrsing wht we just proved is tht s soon s q > nD the pEdi vlution of f (w q ) is stritly less thn αF vet us denote y γ < α the pEdi vlution of f (w q )F henD if we redue the ongruene @QFIPA modulo p γ D we get n ≡ 0 mod p γ F husD

γ = v p (f (w q )) v p (n), hene p vp(f (wq)) p vp(n) n.
hereforeD we proved tht with the hoie C f := nD ssertion @A holdsF e n (nlly omplete the proof of vemm QFPF Proof of Lemma 3.2. sn the overview of the proofD we rrived t the following inequlityX

a∈Hq e Å af (w q ) q ã |H q | ϕ(q) χ |Hq =1
|τ χ, ψ f (wq) |. @QFIQA yur next tsk onsists in (nding upper ounds for the solute vlues of the quss sums τ χ, ψ f (wq) F e distinguish etween the prinipl hrter χ 0 nd the othersF Contribution of the principal character χ 0 in @QFIQA.

ine χ 0 (a) = 1 if (a, q) = 1 nd χ 0 (a) = 0 otherwiseD we hve tht τ χ 0 , ψ f (wq) is equl to the sumX x∈(Z/qZ) × e Å f (w q )x q ã xowD thnks to vemm QFI we know tht there exists rnk n f suh tht for ll q > n f X |τ χ 0 , ψ f (wq) | 1. @QFIRA Contribution of the characters χ = χ 0 in @QFIQA.

hese re hndled using the following lemmF Lemma 3.6. Let d 1 be an integer, and let f ∈ Z[X] \ {0} be a polynomial of degree strictly less than ϕ(d). There exist two constants C f and m f , larger than or equal to 1, such that for all d-admissible integer q strictly larger than m f , for any element w q of order d in (Z/qZ) × and for any non-principal Dirichlet character χ modulo q, τ (χ, ψ f (wq) ) C f √ q.

Proof. es in the proof of wyerson9s lemm @vemm PFISAD we (x fézout reltion etween

φ d nd f X a(X)φ d (X) + b(X)f (X) = n @QFISA
where a, b ∈ Z[X] nd n 1F vet q = p α e dEdmissile integer suh tht q > nF e denote y w q n element of order d in (Z/qZ) × D nd sine we ssumed tht q > nD we know from the proof of vemm PFIS tht f (w q ) ≡ 0 mod qF his llows us to spek out the pEdi vlution of the lss f (w q )D s it does not depend on the hoie of representtive wq of w q in ZF vet χ e nonEprinipl multiplitive hrter modulo qD nd denote y p β its ondutor @with 0 < β αAF sn other wordsD χ is indued y primitive hrter modulo p β F hnks to gorollry QFPH of eppendix QFeD we hveX

τ χ, ψ f (wq) = ® p α-β/2 if v p (f (w q )) = α -β 0 otherwiseF sn prtiulrD the quss sum τ χ, ψ f (wq) is nonEzero if nd only if β = α -v p (f (w q ))F sn this seD we hveX τ χ, ψ f (wq) = p α-α-vp(f (wq )) 2 = p α+vp(f (wq )) 2 = p vp(f (wq )) 2
√ q @QFITA xowD we sw in the proof of roposition QFR tht

γ = v p (f (w q )) v p (n).
sing this lst inequlity in @QFITA yieldsX

τ χ, ψ f (wq)) = p vp(n) 2 √ q nd sine p vp(n) 2 √ n we getX τ χ, ψ f (wq)) = √ n √ qF husD m f := n nd C f := √
n re suitle onstnts for whih the sttement holdsF e dedue from vemm QFT tht for ll q > m f X

χ |Hq =1 χ =χ 0 τ χ, ψ f (wq) C f √ q χ = χ 0 | χ |Hq = 1 = C f √ q Å ϕ(q) |H q | -1 ã @QFIUA
Conclusion: sf we put N f := max(n f , m f ) we hve tht for ll q > N f D oth inequlities @QFIRA nd @QFIUA holdF hnks to @QFIQAD this gives

a∈Hq e Å af (w q ) q ã |H q | ϕ(q) ï C f √ q Å ϕ(q) |H q | -1 ã + 1 ò C f √ q,
nd this onludes the proof of vemm QFPF Remark 3.7. e loser look t the proofs of vemm QFI nd vemm QFT revels tht one n tke N f to e n 2 nd C f to e √ nD with the integer n oming from ny fézout reltion etween

f nd φ d X a(X)φ d (X) + b(X)f (X) = n where a, b ∈ Z[X] nd n 1F
Remark 3.8. sn the proof of vemm QFTD we tully sw tht |τ χ, ψ f (wq) | is nonEzero if nd only if the ondutor of χ is p β with β = α -v p (f (w q ))F hereforeD in the sum

χ |Hq =1 χ =χ 0 τ χ, ψ f (wq)
WT only the hrters χ with ondutor equl to p α-vp(f (wq)) give nonEzero ontriutionD nd this nonE zero ontriution is ounded y C f √ qF husD the upper ound @QFIUA might e improved y ounting preisely the numer of hrters χ hving presried ondutor and stisfying χ |Hq = 1F roweverD this seems to e di0ultF fesidesD in the se where α = 1 nd p goes to in(nityD the ound is tightF sndeedD p eventully eomes stritly lrger thn the integer n from the fézout reltionD so tht the ongruene @QFIPA immeditely gives tht v p (f (w p )) = 0F hen the ondition β = α -v p (f (w p )) is just requiring tht χ is primitiveD ut modulo pD ll nonEprinipl hrters re primitiveF Consequences on equidistribution of exponential sums. he ove disussion hs onseE quenes in our prolem of interestD tht isX equidistriution of sums of the form

x∈(Z/qZ) × x d =1 e Å a 1 x m 1 + • • • + a n x mn q ã
where the prmeters a i rnge over some spei( susets of Z/qZF reiselyD vemm QFP llows us to prove tht the equidistriution results of roposition PFIP nd PFPH still hold if we restrit the prmeters a i to rnge over su0iently lrge sugroups of (Z/qZ) × D in sense whih mthes the ondition √ q

|H q | -→ q→∞ 0
in the se of the simplest sums

x d =1 e Å ax q ã .
sndeedD we hve the following theoremX Theorem 3.9. Let d 1 be an integer and let m = (m 1 , . . . , m n ) ∈ Z n . For all d-admissible integer q, we x subgroups H

(1) q , . . . , H

(n) q of (Z/qZ) × . Then we have the following equidistribution results:

(a) he generl seF

If the subgroups H

(1) q , . . . , H

(n) q satisfy the growth condition:

∀i ∈ {1, . . . , n}, √ q 

|H (i) q | -→ q→∞ 0, @QFIVA then the sets        x∈(Z/qZ) × x d =1 e Å a 1 x m 1 + • • • + a n x mn q ã ; (a 1 , . . . , a n ) ∈ H (1) q × • • • × H (n) q        , @QFIWA
1 n i=1 |H (i) q | a 1 ∈H (1) q • • • an∈H (n) q F Ü x∈(Z/qZ) × x d =1 e Å a 1 x m 1 + • • • + a n x mn q ã ê -→ q→∞ q∈A d I d,m F dµ.
WU (b) hen m is oprime with dF Let s ∈ {1, . . . , n} and let {i 1 , . . . , i s } ⊆ {1, . . . , n}. We x n -s integers a i for i ∈ {1, . . . , n} \ {i 1 , . . . , i s }. Then if the growth condition q s/2

1 j s H (i j ) q -→ q→∞ 0 @QFPHA is satised, the sets of sums        x∈(Z/qZ) × x d =1 e Å a 1 x m 1 + • • • + a n x mn q ã ; (a i 1 , . . . , a is ) ∈ H (i 1 ) q × • • • × H (is) q       
become equidistributed in the image of the Laurent polynomial g d (Denition 2.6) with respect to the pushforward measure via g d of the probability Haar measure on (S 1 ) ϕ(d) , as q goes to innity among the d-admissible integers.

sn prtiulrD the se of the sums

S q (a, d) = x∈(Z/qZ) × x d =1
e Å ax q ã orresponds to m = (1)D whih is oprime with dD so tht se @A of the ove theorem sserts tht the sets {S q (a, d); a ∈ H q } eome equidistriuted in the imge of g d with respet to the suitle pushforwrd mesureD s soon s H q is sugroup of (Z/qZ) × suh tht

√ q/|H q | -→ q→∞ 0F
Remark 3.10. gondition @QFPHA is weker requirement thn ondition @QFIVAF snsted of sking for n individul ontrol of the growth of eh

H (i)
q D we just sk tht they stisfy √ q/|H q | -→ q→∞ 0 multiplitively on vergeF Proof of case (a) of Theorem 3.9. he redution step is the sme s in the proof of roposition PFPHD exept tht one needs to put Y m,q = H (1)

q × • • • × H (n) q
insted of (Z/qZ) n F his redues the proof to the equidistriution modulo 1 of the following susets of (R/Z) ϕ(d 1 )+•••+ϕ(dn) X ß =:x(a 1 ,...,an,q) Ç a 1 (w m 1 q ) j q å 0 j<ϕ(d 1 )

, . . . , Ç a n (w mn q ) j q å 0 j<ϕ(dn)

; (a 1 , . . . , a n ) ∈ H (1) q × • • • × H (n) q ™ ,
s q goes to in(nity mong the dEdmissile integersF o prove thisD we pply eyl9s riterionD so we let y = y 0 , . . . , y ϕ(d

1 )+•••+ϕ(dn)-1 ∈ Z ϕ(d 1 )+•••+ϕ(dn)
\ {0} nd we wnt to show the following onvergene towrds zeroX

1 n i=1 |H (i) q | × a 1 ∈H (1) q . . . an∈H (n) q e (x(a 1 , . . . , a n , q) • y) -→ q→∞ q∈A d 0. @QFPIA
es in the proof of roposition PFPHD let us denote y y 1 the vetor extrted from y y tking the (rst ϕ(d 1 ) entriesD y 2 the vetor formed y the next ϕ(d 2 ) entries nd so onX y 1 = (y 0 , . . . , y ϕ(d 1 )-1 ), y 2 = (y ϕ(d 1 ) , . . . , y ϕ(d 1 )+ϕ(d 2 )-1 )

y 3 = • • • so tht y = (y 1 , . . . , y n )F imilrlyD WV x 1 (a 1 , q) := Ç a 1 (w m 1 q ) j q å 0 j<ϕ(d 1 )
, . . . , x n (a n , q) := Ç a n (w mn q ) j q å 0 j<ϕ(dn)

.

hen we hve

1 n i=1 |H (i) q | × a 1 ∈H (1) q . . . an∈H (n) q e (x(a 1 , . . . , a n , q) • y) = n i=1    1 |H (i) q | a i ∈H (i) q e(x i (a i , q) • y i )    . @QFPPA
xowD sine y = 0D there exists t lest one index i ∈ {1, . . . , n} suh tht y i = 0F por suh n iD write 1

|H (i) q | a i ∈H (i) q e(x i (a i , q) • y i ) = 1 |H (i) q | a∈H (i) q e Ç af i (w m i q ) q å , @QFPQA
where f i is the polynomil ssoited with

y i = y ϕ(d 1 )+•••+ϕ(d i-1 ) , . . . , y ϕ(d 1 )+•••+ϕ(d i-1 )+ϕ(d i )-1 s followsX f i = y ϕ(d 1 )+•••+ϕ(d i-1 ) + y ϕ(d 1 )+•••+ϕ(d i-1 )+1 X + • • • + y ϕ(d 1 )+•••+ϕ(d i-1 )+ϕ(d i )-1 X ϕ(d i )-1
F his is nonEzero polynomil with integer oe0ients nd with degree stritly less thn ϕ(d i )D nd w m i q is n element of order d i in (Z/qZ) × F husD we n pply vemm QFP whih sttes tht there exists rnk

N f i suh tht for ll q > N f i suh tht q is dEdmissileD a∈H (i) q e Ç af i (w m i q ) q å f i √ q,
nd this su0es to prove the onvergene of @QFPQA towrds zeroD thnks to ssumption @QFIVAF es ll the other ftors of @QFPPA hve solute vlue ounded ove y 1D the whole produt onverges to zeroD nd this onludes the proofF Proof of case (b) of Theorem 3.9. ith the sme redution step s in roposition PFIP @repling the set of prmeters Y m,q = (Z/qZ) s y Y m,q = H

(i 1 ) q × • • • × H (is)
q A one proves tht the sttement is implied y the equidistriution modulo 1 of the sets of ϕ(d)Etuples

ß =:x(a i 1 ,...,a is ,q) Ç a 1 (w m 1 q ) 0 + • • • + a n (w mn q ) 0 q , . . . , a 1 (w m 1 q ) ϕ(d)-1 + • • • + a n (w mn q ) ϕ(d)-1 q å ; (a i 1 , . . . , a is ) ∈ H (i 1 ) q × • • • × H (is) q ™ ,
fy eyl9s riterionD these sets eome equidistriuted if nd only if for ny y := y 0 , . . . , y ϕ(d)-1 ∈ Z ϕ(d) \ {0} we hve the following onvergene towrds zeroX

1 s j=1 |H (i j ) q | × Ö (a i 1 ,...,a is )∈H (i 1 ) q ו••×H (is) q e (x(a i 1 , . . . , a is , q) • y) è -→ q→∞ q∈A d 0 fut the leftEhnd side n e rewritten sX i∈{i 1 ,...,is}    1 |H (i) q | a i ∈H (i) q e Ç a i f (w m i q ) q å    × i / ∈{i 1 ,...,is} e Ç a i f (w m i q ) q å @QFPRA WW
where f is the polynomil y

0 + y 1 X + • • • + y ϕ(d)-1 X ϕ(d)-1 F xow for ll i ∈ {i 1 , . . . , i s }D the element w m i q is still of order d in (Z/qZ) × euse (m i , d) = 1F elsoD f ∈ Z[X] \ {0} nd deg f < ϕ(d)
F hereforeD the ssumptions of vemm QFP re stis(edD nd we n (nd n integer N f suh tht for ll q > N f suh tht q is dEdmissileD we hveX 1

|H (i) q | a i ∈H (i) q e Ç a i f (w m i q ) q å f √ q |H (i) q |
for ll i ∈ {i 1 , . . . , i s }F husD the (rst produt in @QFPRA n e ounded ove s followsX

i∈{i 1 ,...,is}    1 |H (i) q | a i ∈H (i) q e Ç a i f (w m i q ) q å    f q s/2 s j=1 H (i j ) q
, so it tends to zero s q goes to in(nity thnks to ssumption @QFPHAF es the remining ftors in @QFPRA hve solute vlue equl to 1D this onludes the proofF Illustration of Theorem 3.9 (b). sn pigure PFSD we were interested in the distriution of uloostE ermn sums restrited to the sugroup of order 5X K q (a, b, 5) :=

x∈(Z/qZ) × x 5 =1 e Å ax + bx -1 q ã .
wore preiselyD ITD heorem U sserts tht the sets K q (-, -, 5) = {K q (a, b, 5); (a, b) ∈ (Z/qZ) 2 } eome equidistriuted in the region H 5 delimited y the 5Eusp hypoyloidD with respet to the pushforwrd mesure vi g 5 of the rr mesure on T 4 F heorem QFW @A strengthens this result y showing tht one n impose restritions on the set of prmetersD nd still otin equidistriutionF xmelyD we proved tht it su0es tht the prmeters a nd b rnge over multiplitive sugroups H

(1) q nd H

(2) q whose rdinlity grows fster thn √ q multiplitively on verge in the sense of @QFPHAF yne n lso (x one of the two prmetersD nd let the other one vry in sugroup H q D nd ginD equidistriution is ensured provided

√ q/|H q | -→ q→∞ 0F
his is wht the following pitures illustrteF e onsider the following sets of uloostermn sums restrited to the sugroup of order 5X

       x∈(Z/qZ) × x 5 =1 e Å ax + x -1 q ã ; a ∈ H q        @QFPSA
for di'erent 5Edmissile vlues of q nd the indited hoie of sugroups H q @whih re uniquely determined y their rdinlityD sine (Z/qZ) × is yliAF e hose |H q | in suh wy tht

√ q/|H q | eomes very smllF IHH (a) q = 1901 |H q | = 950 √ q/|H q | 0.046 (b) q = 421 2 |H q | = 29470 √ q/|H q | 0.014 (c) q = 971 2 |H q | = 941870 √ q/|H q | 0.001
pigure QFIX he sets of the form @QFPSA for three 5Edmissile integers q nd for the indited hoie of sugroups H q F 3.3. On crossing the √ q barrier heorem QFW is n improvement of propositions PFIP nd PFPH euse equidistriution is proved even though the prmeters re restrited to rnge over smll susets of the whole ring Z/qZF reiselyD it llows them to rnge over multiplitive sugroups |H q | stisfying √ q

|H q | -→ q→∞ 0.
@QFPTA sn prtiulrD |H q | ε q 1/2+ε for some ε > 0 is su0ient to otin equidistriutionF he proof relies mostly on vemm QFPD whih is n exponentil sum estimte for sums over multiE plitive sugroup of (Z/qZ) × F sf we forget for moment out the dependene in q of f (w q ) in this lemmD whih dds little extr di0ultyD we n sy tht it is tully onerned with sums of the type

x∈Hq e Å ax q ã .
for (xed a ∈ Z/qZ nd H q eing sugroup of (Z/qZ) × F iquidistriution results with prmeters vrying in the sugroup will depend on nonEtrivil estimtes for the solute vlue of the sum oveF por instneD we would like to otin power svingD tht isX n estimte of the form

x∈Hq e Å ax q ã |H q | q ε •
for some ε > 0F woreoverD one ould wish for some uniformity with respet to a nd hene seek for estimtes of the form

max a∈(Z/qZ) × x∈Hq e Å ax q ã |H q | q ε • @QFPUA
st turns out tht this question hs een extensively studied nd is t the intersetion of mny res of mthemtisF sn UWD är uurlerg gives rief exposition of the history of the question nd of some importnt hievementsD efore giving detiled overview of the most reent progress nd their onnetion with dditive omintorisF re fouses minly on the se where q = p is prime numer nd strts y showing how stndrd ompletion method llows one to get power sving of the form @QFPUA s soon s

|H p | ε p 1/2+ε F IHI
The completion method. sn this prgrphD we only onsider exponentil sums modulo prime numers pD nd H p will lwys denote sugroup of the multiplitive group F × p F ht we ll ompletion method is the pproh desried in the introdution of UW tht we lredy pplied in the overview of the proof of vemm QFPF st turns sums over the sugroup H p into sums over ll F × p y testing the ondition x ∈ H p using multiplitive hrtersF he (rst step is to deompose the mpX

ψ a : F × p → C x → e Ä ax q
ä in the orthonorml sis of Maps(F × p , C) mde of the multiplitive hrters modulo pF his gives

x∈Hp e Å ax p ã = x∈Hp χ ψ a , χ χ(x)
xowD ψ a , χ n e relted to quss sum s follows @see eppendix QFe for the nottion τ (-, -) for quss sumsAX

ψ a , χ = 1 ϕ(p) y∈F × p ψ a (y)χ(y) = 1 p -1 τ (χ, ψ a ) , hene x∈Hp e Å ax q ã = 1 p -1 χ τ (χ, ψ a ) x∈Hp χ(x).
xowD mong the multiplitive hrters modulo pD ll those who indue @y restritionA nonEtrivil hrter of H p hve no ontriutionF sndeedD for suh hrtersD the inner sum is zero y orthogonlity of the multiplitive hrters of H p F yn the other hndD for the trivil hrters of H p D the inner sum is just equl to its numer of termsD tht isX |H p |F e dedue tht x∈Hp e Å ax q

ã = |H p | p -1 χ |Hp =1 τ (χ, ψ a )
pinllyD if χ is the prinipl hrter χ 0 modulo pD we hve τ (χ 0 , ψ a ) = τ (χ 0 , ψ a ) = -1 for ll a ∈ F × p F sf χ is not the prinipl hrter modulo pD then τ (χ, ψ a ) is quss sum ssoited with nonEtrivil dditive hrter of F p @provided a ∈ F × p A nd non trivil multiplitive hrter modulo pD hene |τ (χ, ψ a ) | = √ pF es the numer of multiplitive hrters modulo p stisfying χ |Hp = 1 is equl to

p-1 |Hp| D we dedue tht x∈Hp e Å ax q ã < √ p.
his shows tht we hve power sving of the form @QFPUA s soon s |H p | ε p 1/2+ε for some ε > 0F

Going below p 1/2+ε . grossing this √ p rrier is y no mens esyD nd the (rst hievement is due to hprlinski in WUD where power sving of the form @QFPUA is otined for sugroups stisfying

|H p | ε p 3/7+ε F sndeedD hprlinski WUD heorem P shows tht if g ∈ F × p is n element of order τ D then max (a,p)=1 τ x=1 e Å ag x p ã 2τ 5/12 p 1/4 . @QFPVA
his upper ound relies on onsidertions on the 4Eth moment nd estimtes for the numer of points on urves given y n eqution of the form x n + y n = λ over (nite (eldsD whih were studied in RQF yne we hve the ove estimteD it is esy to derive the needed power sving for sugroups of IHP rdinlity ε p 3/7+ε F por suh sugroup H p D it su0es to tke genertor gD whose order τ then stis(es τ p 3/7+ε D nd to pply @QFPVA to getX

1 |H p | max a∈F × p x∈Hp e Å ax p ã 2|H p | 5/12 p 1/4 |H p | = 2p 1/4 |H p | 7/12 ε 1 p 7 12 ε
• ome signi(tive improvements were mde y rethEfrown nd uonygin in RWD using vrition of tepnov9s polynomil method to hndle the pointEounting on the underlying urves over (nite (eldsF his llowed them to onsider the rnge |H p | ε p 1/3+ε F he est known ound using these tools from nlyti numer theory is due to uonygin TUD where sugroups stisfying |H p | ε p 1/4+ε re llowedF roweverD the story does not end thereD thnks to fruitful interply etween dditive omintoris nd exponentil sums3

A triumph for additive combinatorics. he previous disussion shows tht otining power sving of the form @QFPUA for smller nd smller sugroups required @quoting qreen9s leture notes RUA quite sophistited numerEtheoretil rguments @s we hve seenD it involved for instne tepnov9s polynomil method to hndle the point ounting on ertin urves over (nite (eldsAF husD heorem QFII elow is something of triumph for dditive omintorisF st sttes tht one n reple the growth ondition @QFPTA y the following oneX

|H q | q δ
for ny (xed δ > 0D whih represents huge improvement3 his theorem is the hievement of series of rtileD minly y fourginD ghngD qliihuk nd uonyginD in whih very strong estimtes on sums of dditive hrters modulo q over sugroups of (Z/qZ) × were proved for di'erent forms of ftoriztion of qF he se where q is prime is proved in IQD while the se of prime powers with ounded exponent is settled in IPF his series of works ulminted with the following theoremD whih trets the generl seD nd inludes in prtiulr the se of smll primes rised to high powersF Theorem 3.11 @fourginA. For any δ > 0, there exists ε = ε(δ) > 0 such that for any integer q 2, and any subgroup H of (Z/qZ) × such that |H| q δ , max

a∈(Z/qZ) × x∈H e Å ax q ã C |H| q ε @QFPWA
where C is a constant depending at most on δ.

Proof. ee IID heoremF 3.4. Subgroups of cardinality at least q δ sn this setionD we show tht fourgin9s estimte llows us to push further the restrition of the lierty of the prmeters in heorem QFWF e prove tht the result still holds if the prmeters re restrited to rnge over very smll sugroups of (Z/qZ) × D nmely sugroups whose rdinlity grows s fst s n ritrry smll power of qF Exponential sum estimate. vemm PFIS ws out estimtes for a∈Z/qZ e Å af (w q ) q ã IHQ @nd tully showed tht these re eventully equl to zeroAD while vemm QFP provided n estimte for a∈Hq e Å af (w q ) q ã whih ws nonEtrivil s soon s H q ws sustntilly lrger thn √ qD nd whih llowed us to extend our equidistriution results to sets of exponentil sums with prmeters vrying in su0iently lrge sugroups of (Z/qZ) × @the ondition is essentilly |H q |/ √ q -→ q→∞ ∞AF fourgin9s estimte @heorem QFIIA llows us to go further in our redution of the dmissile rdinlity of the sugroupsD vi the following propositionD whih n e seen s n improvement of vemm PFIS nd vemm QFPF Proposition 3.12. Let d 1 and let f ∈ Z[X] \ {0} be a polynomial of degree strictly less than ϕ(d).

Let δ > 0. Then, there exists ε = ε(δ) > 0, depending only on δ, such that for all d-admissible integer q larger than some constant N f depending only on f , for all subgroup H q of (Z/qZ) × satisfying |H q | q δ , and for any element w q of order d inside (Z/qZ) × , we have

a∈Hq e Å af (w q ) q ã f,δ |H q | q ε • @QFQHA
Proof. vet q = p α e dEdmissile integerD nd let H q nd w q e s in the sttementF vet wq e ny lift in Z of the lss w q F essume further tht q > n f for ny onstnt n f s in roposition QFRF his ensures tht f (w q ) ≡ 0 mod qD ut f (w q ) ould still e nonEinvertile if q is nonEtrivil prime powerF his is why one nnot diretly pply fourgin9s theorem to the sum on the leftEhnd side of @QFQHAF sn order to redue to sitution where fourgin9s theorem ppliesD let us introdue the nottion β q for the pEdi vlution of f ( wq )D nd write f ( wq ) := p βq r q F fy roposition QFR @AD we know tht β q < αF hen we hveX a∈Hq e Å af (w q ) q ã = a∈Hq e Å ar q p α-βq ã @QFQIA xowD eh of the terms e arq p α-βq only depends on the lss of a modulo p α-βq F vet us denote y q := p α-βq nd y π the group homomorphism (Z/qZ) × → (Z/q Z) × indued y the redution modulo q F he ltter indues group homomorphism π : H q → π(H q ) =: H q F e denote y k := | ker π|F hen we hve the following equlity a∈Hq e Å ar q p α-βq ã = k a∈H q e Å ar q q ã sndeedD ny element of H q hs extly k preEimges in H q under the redution modulo q F ine ker π ⊆ ker πD we hve tht k | ker π| = p βq F hereforeX a∈Hq e Å ar q p α-βq ã p βq a∈H q e Å ar q q ã @QFQPA sn order to pply heorem QFII to the sum on the rightEhnd sideD we (rst need to hek tht the sugroup H q of (Z/q Z) × is lrge in the following senseX |H q | (q ) δ for some δ > 0F hnks to the (rst isomorphism theoremD we hveX

|H q | = |H q | k |H q | p βq nd y ssumption |H q | q δ D thereforeX |H q | q δ p βq = p αδ p βq = p (α-βq)δ p βq(1-δ) = (q ) δ p βq 1-δ • IHR xowD sine q > n f D we hve tht p βq
C f thnks to roposition QFR @AD where C f is positive onstnt depending only on f F husD

|H q | (q ) δ C 1-δ f pinllyD sine C 1-δ f
is onstnt nd q tends to in(nity s q goes to in(nityD we otin tht (q ) δ 2

C 1-δ f eventully eomes greter thn 1 s q eomes lrgeD so thtX

|H q | (q ) δ 2 @QFQQA
for ll q lrge enoughD sy lrger thn some onstnt N f whih only depends on f F he ft tht q tends to in(nity s q tends to in(nity is onsequene of the inequlityX

q = p α-βq = q p βq q C f •
hnks to @QFQQAD heorem QFII pplies to the sum on the rightEhnd side of @QFQPAD euse we lso hve tht r q is invertile modulo q F o there exists onstnt ε = ε(δ/2) > 0 nd onstnt C depending t most on δ suh thtX

a∈H q e Å ar q q ã C |H q | (q ) ε
hnks to @QFQIA nd @QFQPAD this implies the following upper oundX

a∈Hq e Å af (w q ) q ã C p βq |H q | (q ) ε
xow we use the ft tht |H q | |H q | to otin the following inequlityX

C p βq |H q | (q ) ε C p βq |H q | p α-βq ε = C |H q |p βq(1+ε)
q ε • pinllyD we use gin the ft tht p βq C f D whih gives us the onlusion of the proofX

a∈Hq e Å af (w q ) q ã CC 1+ε f |H q | q ε f,δ |H q | q ε •
Consequence on equidistribution of exponential sums. fy repling the use of vemm QFP y the exponentil sum estimte of roposition QFIPD we re le to generlize heorem QFW y llowing the prmeters to rnge over even smller sugroupF reiselyD we otin the following sttementF Theorem 3.13. Let d 1 be an integer and let m = (m 1 , . . . , m n ) ∈ Z n . For all d-admissible integer q, we x subgroups H

(1) q , . . . , H

(n) q of (Z/qZ) × . Then we have the following equidistribution results:

(a) he generl seF

If there exists δ > 0 such that the subgroups H

(1) q , . . . , H

(n) q satisfy the growth condition:

∀i ∈ {1, . . . , n}, |H (i) q | q δ , @QFQRA then the sets

       x∈(Z/qZ) × x d =1 e Å a 1 x m 1 + • • • + a n x mn q ã ; (a 1 , . . . , a n ) ∈ H (1) q × • • • × H (n) q        , @QFQSA
IHS become equidistributed in the image of the Laurent polynomial f d,m (Denition 2.19) with respect to the pushforward measure via f d,m of the probability Haar measure λ on (S 1 ) ϕ(d 1 )+•••+ϕ(dn) , as q goes to innity among the d-admissible integers.

(b) hen m is oprime with dF Let s ∈ {1, . . . , n} and let {i 1 , . . . , i s } ⊆ {1, . . . , n}. We x n -s integers a i for i ∈ {1, . . . , n} \ {i 1 , . . . , i s }. Then if their exists δ > 0 such that

1 j s H (i j ) q
q δ @QFQTA is satised, the sets of sums

       x∈(Z/qZ) × x d =1 e Å a 1 x m 1 + • • • + a n x mn q ã ; (a i 1 , . . . , a is ) ∈ H (i 1 ) q × • • • × H (is) q       
become equidistributed in the image of the Laurent polynomial g d (Denition 2.6) with respect to the pushforward measure via g d of the probability Haar measure on (S 1 ) ϕ(d) , as q goes to innity among the d-admissible integers.

por instneD if one tkes m = (1, -1)D the seond se of this theorem sttes tht the sets

¶ K q (a, b, d); (a, b) ∈ H (1) q × H (2)
q © @QFQUA stisfy the sme equidistriution result s the sets of pigure PFSD s soon s the

H (i)
q re sugroups of (Z/qZ) × suh tht

|H (1) q ||H (2) q | q δ @QFQVA
for some δ > 0F sn other wordsD restriting the prmeters a, b to lrge enough multiplitive @in the sense of @QFQVAA sugroups does not introdue ny is in the distriution of the restrited uloostermn sumsD nd still ensures equidistriution with respet to the sme mesure s in heorem PFSF he ove sttement improves lot heorem QFW euse in the ltterD ondition @QFPHA sid tht we ould only prove equidistriution under the ondition q

|H

(1)

q ||H (2) q | 
-→ q→∞ 0 so essentilly this is the onlusion given y heorem QFIQ when δ > 1D ut this theorem tully llows ny vlue of δ > 0D hene muh smller sugroups n e tken s sets of prmetersF Proof of case (a) of Theorem 3.13. he eginning of the proof is the sme s the proof of heorem QFW @AF sf we denote y y ny nonEzero vetor with integer entries @whih is needed in the pplition of eyl9s riterionAD we perform the sme splitting s y = (y 1 , . . . , y n ) nd x = (x 1 , . . . , x n ) s in the mentioned proofD nd we wnt to show tht the produt

n i=1    1 |H (i) q | a i ∈H (i) q e(x i (a i , q) • y i )    @QFQWA
onverges to zero s q goes to in(nityF xowD we hve tht there exists t lest one index i ∈ {1, . . . , n} suh tht y i = 0F por suh n iD write 1

|H (i) q | a i ∈H (i) q e(x i (a i , q) • y i ) = 1 |H (i) q | a∈H (i) q e Ç af i (w m i q ) q å , @QFRHA
IHT where f i is the polynomil ssoited with

y i = y ϕ(d 1 )+•••+ϕ(d i-1 ) , . . . , y ϕ(d 1 )+•••+ϕ(d i-1
)+ϕ(d i )-1 s in the proof of heorem QFW @AF his is nonEzero polynomil with integer oe0ients nd with degree stritly less thn ϕ(d i )D nd w m i q is n element of order d i in (Z/qZ) × F fesidesD the rdinlity of H (i) q stis(es the growth ssumption @QFQRAF husD we n pply roposition QFIPD whih sttes tht there exists ε = ε(δ) > 0 nd rnk N f i suh tht for ll q > N f i suh tht q is dEdmissileD a∈H

(i) q e Ç af i (w m i q ) q å f i |H (i) q | q ε
his estimte llows us to onlude on the onvergene of the produt @QFQWA nd this (nishes the proofF Proof of case (b) of Theorem 3.13. hnks to the sme rguments s in the proof of heorem QFW @AD it su0es to show tht the following quntity

i∈{i 1 ,...,is}    1 |H (i) q | a i ∈H (i) q e Ç a i f (w m i q ) q å    × i / ∈{i 1 ,...,is} e Ç a i f (w m i q ) q å
@QFRIA onverges to zero s q goes to in(nity mong the dEdmissile integers @we rell tht f is the polynoE mil y 0 + y 1 X + • • • + y ϕ(d)-1 X ϕ(d)-1 ssoited with the vetor y ∈ Z ϕ(d) D whose pprition omes from the pplition of eyl9s riterionAF xowD if we ssume for ontrdition tht for ll i ∈ {i 1 , . . . , i s } we hve

|H (i) q | < q δ/s
then this would ontrdit ssumption @QFQTAF husD their exists i ∈ {i 1 , . . . , i s } suh tht

|H (i) q | q δ/s
vet us stress tht of ourseD this i my hnge s q vriesF hen we n pply roposition QFIP to this spei( iD nd dedue tht if q is lrger thn some onstnt N f D depending only on f ut not on i @euse roposition QFIP llows any primitive dEth root in its sttementAD we hveX 1

|H (i) q | a i ∈H (i) q e Ç a i f (w m i q ) q å f 1 q ε
where ε = ε(δ/s) in the nottions of the propositionF hus the solute vlue of @QFRIA n e ounded ove s follows for ll

q > N f X i∈{i 1 ,...,is}    1 |H (i) q | a i ∈H (i) q e Ç a i f (w m i q ) q å    × i / ∈{i 1 ,...,is} e Ç a i f (w m i q ) q å f 1 q ε ,
so it tends to zero s q goes to in(nityD nd this (nishes the proofF Remark 3.14. es very speil seD the estimte of heorem QFII llows one us to dedue generliztion of wyerson9s lemmD whih sserts tht the sets

ß a q Ä 1, w q , . . . , w ϕ(d)-1 q ä ; a ∈ Z/qZ ™ , @QFRPA
where w q is primitive dEth root of unity modulo qD eome equidistriuted modulo 1 s q goes to in(nity mong the dEdmissile integers @see vemm PFQH of ghpter PAF IHU reiselyD it gives generliztion of the equidistriution of the sets of type @QFRPA to sets of the form

ß a q Ä 1, w q , . . . , w ϕ(d)-1 q ä ; a ∈ H q ™ , @QFRQA
where H q is lrge enough sugroup of (Z/qZ) × X Corollary 3.15. Let d 1 and let δ > 0. For all q ∈ A d , let w q be an element of order d in (Z/qZ) × .

For each of these values of q, we also x a subgroup H q of (Z/qZ) × . If the following growth condition is satised:

|H q | q δ ,
then the sets @QFRQA become equidistributed modulo 1 as q tends to innity among the d-admissible integers.

Proof. his is diret onsequene of eyl9s equidistriution riterion nd the estimte of roposition QFIPF IHV 3.A. On Gauss sums modulo prime powers sn this setionD we quote some results on the solute vlue of quss sums ssoited with possily nonEprimitive hirihlet hrtersF hese estimtes on quss sums hve plyed entrl role in the rgument to prove vemm QFIPF ine we re working with sums modulo prime powersD nd not neesE srily modulo primesD some sutleties rise from the nonEprimitivity of the hrters involvedD nd we thought it would e useful to inlude few fts in n ppendixF sndeedD if χ is hirihlet hrter modulo m nd ψ a n dditive hrter modulo mD there re two independent periodiity properties tht ome into plyX the nonEprimitivity of χ nd the nonEprimitivity of ψ a if a is not oprime with mF e egin y reviewing few fts out hirihlet hrtersD the reder is lso referred to SRD hpter Q nd VSD hpter WF vet m 2 e n integerF e hirihlet hrter modulo m is funtion χ : Z → C suh thtX

|χ(i)| = ® 1 if (i, m) = 1 0 otherwise, nd for ll i, j ∈ ZD χ(ij) = χ(i)χ(j)F
sn other wordsD it is funtion on Z otined y extending multiplitive hrter of the group (Z/mZ) × to the whole dditive group Z/mZ y setting its vlue t 0 when evluted t residue lsses not oprime with mD nd then omposing y the nonil mp Z → Z/mZF sf n divides mD then we hve nonil ring homorphism π m,n : Z/mZ → Z/nZ so tht if χ is hirihlet hrter modulo nD then χ • π m,n is hirihlet hrter modulo mF sf hirihlet hrter modulo m is otined in this wy for n proper divisor of mD then we sy tht χ is not primitive nd tht it is induced y hrter modulo nF ytherwiseD it is lled primitiveF sf m is n integer lrger thn or equl to 2D the dditive hrters modulo m will e denoted y ψ a for a ∈ Z/mZD whereX In particular, if χ is primitive (that is m = m and χ = χ ), we obtain:

ψ a : Z/mZ → C × x → e ax
τ (χ, ψ a ) = τ (χ)χ(a) @QFRSA Remark 3.17. iqulity @QFRSA ove lso holds when χ is not primitive in the prtiulr se where (a, m) = 1F sndeedD in tht se it follows from the ft tht x → ax permutes Z/mZD sine a ∈ (Z/mZ) × F hen ψ a = ψ 1 D the sttement tkes muh simpler formD sine only the nonEprimitivity of χ plys roleF Lemma 3.18 @SRD lemm QFI pge RVA. Let χ be a non-principal Dirichlet character modulo m.

Assume that χ is induced by the primitive character χ modulo m . Then:

τ (χ) = µ m m χ m m τ (χ ) Moreover, if χ is primitive then: |τ (χ)| = √ m Remark 3.19.
hen m is prime numer pD ll the nonEprinipl hrters modulo m re primitiveF herefore the seond ssertion lwys holds for nonEprinipl hirihlet hrters modulo primeF enother se whih will e interesting for us is the one where m is nonEtrivil prime powerF vet us sy tht m = p α with α 2F henD if χ is nonEprimitive nd nonEprinipl hrter modulo mD its ondutor m divides mD hene it is of the form p β for some 0 < β < α @the inequlities re strit euse β = 0 would orrespond to χ = χ 0 nd β = α would orrespond to χ primitiveAF hen p divides m/m = p α-β D so (m/m , m ) > 1F e dedue tht χ m m = 0 euse χ is hrter modulo m F husD τ (χ) = 0 s soon s χ is not primitive @nd is not the prinipl hrter modulo mAF his lst remrk tells us tht when m is prime powerD the sums τ (χ) re either zero or ssoited with primitive hirihlet hrter χD in whih se |τ (χ)| = √ mF roweverD the sitution is not s simple when the dditive hrter n e ny ψ a F sn this seD the speiliztion of lemm QFIT to the se of sums modulo prime powers gives the following orollryX Corollary 3.20. Let p be a prime number and α 1 be an integer. Let χ be a non-principal Dirichlet character modulo p α , induced by the primitive character χ modulo p β for some 0 < β α. For all a ∈ Z, we have τ (χ, ψ a ) = 0 if and only if the p-adic valuation of a equals α -β, in which case we have:

τ (χ, ψ a ) = χ Å a p α-β ã p α-β τ (χ )
In particular:

|τ (χ, ψ a )| = p α-β 2 if v p (a) = α -β 0 otherwise
Proof. e pply lemm QFIT with m = p α nd m = p β F e still denote y d := (a, m)F hen d is power of pD sy d = p γ F sf γ > α -βX then d does not divide m/m so the quss sum τ (χ, ψ a ) is zeroF

IIH sf γ α -βX then d divides m/m D heneX τ (χ, ψ a ) = χ Å a p γ ã χ Ä p α-β-γ ä µ Ä p α-β-γ ä ϕ(p α ) ϕ(p α-γ ) τ (χ ) = χ Å a p γ ã χ Ä p α-β-γ ä µ Ä p α-β-γ ä (p -1)p α-1 (p -1)p α-γ-1 τ (χ ) = χ Å a p γ ã χ Ä p α-β-γ ä µ Ä p α-β-γ ä p γ τ (χ )
xowD s soon s γ < α -βD we hve χ (p α-β-γ ) = 0 euse then p divides p α-β-γ nd χ is hirihlet hrter modulo p β F his shows tht τ (χ, ψ a ) is nonEzero if nd only if γ = α -βD tht isX d = (a, p α ) = p α-β D whih is equivlent to v p (a) = α -β sine β > 0 @here we use the ft tht χ is not the prinipl hrter modulo p α AF sn this seD we hveX ut this only holds for lrge enough sugroupsD in the sense of ondition @QFRTAF sn this setionD we ddress the question of the optimlity of this growth onditionF sn other wordsD is there hope to otin @QFRUA for sugroups whose rdinlity is less thn ny power of pc sn TVD the following theorem explins tht there is no hope for sugroups whose rdinlity is t most onstnt times log(p)F his does not ompletely nswer our questionD ut stillD this tells us tht sugroups tht re too smll @even though their rdinlity goes to in(nityA nnot stisfy @QFRUAF Theorem 3.22 @TVD heorem IFVA. For all u > 0, there exist p(u) and η(u) > 0 such that for all p p(u), if G is a subgroup of F × A consequence of Erdös-Turán inequality.

τ (χ, ψ a ) = χ Å a p α-β ã χ (1) µ (1) p α-β τ (χ ) = χ Å a p α-β ã p α-β τ (χ ) pinllyD |τ (χ )| = p β/
Lemma 3.23 @TVD pFU nd VA. For all prime p, for all subgroup G of F × p , for all η ∈

î 1 p , 1 î , if M p (G) |G| η
then for all a ∈ F × p , D p (a, G) 6η ln η -1 + 1 .

Proof. hnks to irdösEurán inequlity PWD heorem IFPID for ny sequene z 1 , . . . , z N of elements of R/ZD we hve tht for ll H 1 nd ll N 1D the disrepny of the sequene is ounded ove y

3 2 Ñ 2 H + 1 + 0<|m| H 1 |m| 1 N N n=1
e(mz n ) é epplying this inequlity to the (nite sequene of the points of the set

ßß ax p ™ , x ∈ G ™ one otins D p (a, G) 3 H + 1 + 3 2 0<|m| H 1 |m| 1 |G| x∈G e Å m ax p ã .
xow if H < pD then for ll 0 < |m| HD ma is invertile modulo pD so 

D p (a, G) 3 H + 1 + 3M p (G) 2|G| 0<|m| H 1 |m| = 3 H + 1 + 3M p (G) |G| H m=1 1 m 3 H + 1 + 3M p (G) |G| (1 + ln(H)) xowD ssume tht M p (G) |G| η @QFRVA for some η ∈ î 1 p , 1 î F hen we n tke H := õ 1 η (ln (η -1 ) + 1)
û st stis(es 1 H < pD so we n use this vlue of H in the estimte of D p (a, G) previously otinedD nmelyX

D p (a, G) 3 H + 1 + 3M p (G) |G| (1 + ln(H)).
henD IIQ pirstD we hve

3 H + 1 3η ln η -1 + 1 using 1 x +1 1 x • eondD we hve 1 + ln(H) 1 + ln Å η -1 1 + ln (η -1 ) ã 1 + ln η -1 using x xF
hereforeD rememering tht we ssumed tht @QFRVA holdsD we onlude tht

D p (a, G) 6η ln η -1 + 1 .
e now turn to seond preprtory lemmD whih elongs to the (eld of diophntine pproximtionF Dirichlet's simultaneous approximation theorem. e will introdue the result s orollry of the following slightly more generl theoremX Theorem 3.24 @WSD heorem IFiA. Let (α i,j ) 1 i n,1 j m be nm real numbers, and let Q > 1 be an integer. Then there exist integers a 1 , . . . , a m , b 1 , . . . , b m such that

1 max(|a 1 |, . . . , |a m |) < Q n/m
and for all i ∈ {1, . . . , n},

| (a 1 α i,1 + • • • + a m α i,m ) -b i | 1 Q •
woreoverD in the remrk following the sttement of this theorem in WSD it is written tht one my drop the ondition tht Q is n integerD using theorem of flihfeldt WSD heorem PFeF king this remrk into ount nd m = 1 in the previous theoremD one otins the following orollryD whih is the tul version tht we will use in the proof of heorem QFPPF Corollary 3.25 @hirihlet9s simultneous pproximtion theoremA. Let α 1 , . . . , α n be n real numbers, and let Q > 1 (not necessarily an integer). Then there exist integers a, b 1 , . . . , b n such that

1 |a| < Q n @QFRWA
and for all i ∈ {1, . . . , n},

|aα i -b i | 1 Q •
Remark 3.26. p to repling a y -a nd b i y -b i D we n lwys ssume tht a stis(es 1 a < Q n F sn other wordsD the onlusion of gorollry QFPS is still true if we remove the solute vlue in @QFRWAF sn the se where Q is n integerD the ove orollry n e proved using only the pigeonhole prinipleF roweverD in the proof of heorem QFPPD we use the version where Q is not n integerD so we relly need to inlude this more generl sttementF Proof of Corollary 3.25 when Q is an integer. e onsiderD for 0 c <

Q n D the Q n points in [0, 1] n X x c := Ö {cα 1 } F F F {cα n } è IIR @
where {β} denotes the frtionl prt of rel numer βAF e denote y 1 the point 

Ö 1 F F F 1 è of [0, 1] n F hen the set X := {x c , 0 c < Q n } ∪ {1} is mde of Q n + 1 points in [0, 1] n F xow
¶ ax p © , x ∈ G © X D p (a, G) := sup I∈I # ¶ x ∈ G, ¶ ax p © ∈ I © |G| -λ(I) # ¶ x ∈ G, ¶ ax p © ∈ [α, β[ © |G| -(β -α) # ¶ x ∈ G, ¶ ax p © ∈ [α, β[ © |G| -(β -α) |Y | t -p -1/T T 2t -p -1/T .
sf t log(p)D we tke T to e equl to t @tht isX X is equl to the whole sugroup GAF hen

D p (a, G) 1 2 -exp(- log p t ) 1 2 - 1 e •
IIT ytherwiseD we hve log p < t u log pD so u > 1F hen we tke T to e equl to log p 3u F por ll p lrge enoughD sy lrger thn some j(u) whih n e expliitedD we hve log p 3u 1D nd the following inequlity holdsX log p 3u > log p 6u euse for ll x 1, x

x/2F hereforeD we hve the following lower ound for the disrepE ny

D p (a, G)X D p (a, G) log p 12ut -exp Ç - log p log p 3u å 1 12u 2 -e -3u > 0.
husD for ll u > 0D there exist j(u) nd c(u) > 0 suh tht for ll p j(u) the disrepny D p (a, G) stis(es

D p (a, G) c(u) @QFSHA for ny sugroup G of F × p suh tht |G| u log(p) nd for suitle a ∈ F × p F sndeedD it su0es to tke c(u) := ® 1 2 -1 e if u 1 1 12u 2 -e -3u if u > 1. xow let η := η(u) ∈]0, 1[ e suh tht 6η ln η -1 + 1 < c(u)F uppose tht there exists p p(u) := max Ä j(u), 1 η(u) ä nd sugroup G of F × p suh tht |G| u log(p) nd M p (G) |G| η.
yn one hndD sine p j(u)D we n pply @QFSHAF yn the other hndD the ondition p sndeedD the onjeture is the following @we stte it s in IRD euse it is written in form whih is more relevnt hereAX Conjecture.

max a∈F × p x∈G e Å ax p ã < min Ä p 1/2 , C(log p) 1/2 |G| 1/2 ä .
his onjeture is lso ited in WWD where it is not relly usedD ut where it is sid tht it ould e interesting to study whether it ould hve some implitions in the study of ertin9s onjeture on primitive roots @whih sttes tht for given nonEsqure integer a = -1D there is positive proportion of primes suh tht a (mod p) genertes the yli group

F × p AF Chapter 4
Equidistribution of exponential sums indexed by the roots of a polynomial he two previous hpters onsisted of study of exponentil sums over sugroups of (xed rdinlityD whih n lso e desried s sums indexed y the roots of unity in some (nite (eldsF sn this hpterD we extend these equidistriution results to the se of exponentil sums indexed y the roots of n ritrry moni polynomil g ∈ Z[X]D suh s

x∈Fq g(x)≡0 (mod q) e Å ax q ã .
nder some nturl onditions on the prime numers q @whih lredy ppered in the previous hpters in the form of the ondition p ≡ 1 (mod d)AD we show tht these sums eome equidistriuted in C with respet to mesure µ g whih is relted to the module of dditive reltions etween the omplex roots of gF he study of this module of dditive reltions n e pprohed vi the representtion theory of the qlois group of the polynomil gF his hpter is prt of the rtile UUD whih is joint work with iF uowlskiF e gthered some needed fts on the dulity of ompt elin groups in eppendix RFeF e lso ssume some fmilirity with the terminology of rmi(tion in the numer (eld settingD ut the neessry de(nitions re relled in eppendix RFf for ompletenessF Contents e Å ax q ã @RFIA for prime numers q ≡ 1 (mod d) @nd generliztions of these modulo prime powersAF wore preiselyD the uniform distriution of the sets {S q (a, d); a ∈ F q } ws investigted s q goes to in(nityF he proof went long the following linesX we hose for eh q primitive dEth root of unity modulo qD whih we denoted y w q D nd then wrote the sum S q (a, d) s

d-1 k=0 e Ç aw k q q å .
hen we studied the equidistriution y proving tht the tuples

Ç e Ç aw k q q åå 0 k ϕ(d)-1 ∈ (S 1 ) ϕ(d) @RFPA
eome equidistriuted in (S 1 ) ϕ(d) D s a vries in F q nd q goes to in(nityD nd tht the other terms of the sum @those involving higher powers of w q A n e expressed s vurent polynomils in these ϕ(d) vrilesF his (rst pproh relies lot on the hoie of the primitive root w q nd on the nturl ordering of the roots of unity tht omes with itF por tht resonD it does not seem ler how to extend the method to hndle sums suh s x∈Fq g(x)≡0 (mod q) e Å ax q ã for ny (xed polynomil g ∈ Z[X]F

Question: How can we get around the issue of ordering the roots? e (rst ide would e to reple the ordered tuple

Ç e Ç aw k q q åå 0 k d-1 ∈ (S 1 ) d @RFQA IPH y the mp V q (a) : µ d (F q ) → S 1 x → e Ä ax q ä @RFRA
henD the equidistriution result we re iming t nturlly leds to introduing the rndom vriles

V q : F q → C(µ d (F q ), S 1 ) a → V q (a)
where F q is seen s proility spe with the normlized ounting mesureD nd C(µ d (F q ), S 1 ) denotes the set of @ontinuousA mps from µ d (F q ) to S 1 F roweverD there is still n issue euse the rndom vriles V q do not tke vlues in the sme spe @lthough C(µ d (F q ), S 1 ) (S 1 ) d for ny q ≡ 1 (mod d)AF sndeedD we nnot spek out the onvergene in lw of the sequene (V q ) q≡1 (mod d) F snstedD we would like to de(ne rndom vriles U q : F q → C(µ d , S 1 ) where µ d is lwys the sme set of roots of unity in C for ny qD while keeping trk of the rithmeti mening of tking in ft roots of unity in di'erent (nite (eldsF sn order to do thisD it is onvenient to use some lgeri numer theory nd to work with idels of the ylotomi (eld K := Q(µ d )F e denote y O K the ring of integers of K nd we introdue two notions of dEdmissile idelsD whih will ply the role of the ondition q ≡ 1 (mod d)F Denition 4.1. Let us dene R d to be the set of prime ideals of O K with residual degree equal to 1, and S d to be the set of prime ideals of O K which are unramied and have residual degree 1 (equivalently: the ideals which lie above a prime q ∈ Z which is totally split in K).

he restrition to prime idels living in R d llows us to de(ne rndom vriles with vlues in the sme speF sndeedD for eh prime idel p ⊂ O K with residul degree 1 @lying ove qD syAD the nturl mp ι p : F q → O K /p is n isomorphismD so if we denote y τ p : O K /p → F q its inverseD we hve the following omposition of mps

µ d → O K p → O K /p τp → F q
where p denotes the redution modulo p from O K to O K /pF Remark 4.2. sf we further ssume tht q is totlly split in K @tht isX p ∈ S d AD the ove omposition indues ijetion etween µ d nd µ d (F q ) @this is proved t roposition RFQI in more generl ontextAF his ft will e useful to derive equidistriution results onerning exponentil sumsD ut the ssumption p ∈ R d is lredy su0ient to de(ne the suitle rndom vriles nd prove n equidistriution resultF e now hve ll the elements to de(ne the rndom vriles whih will reple the ordered tuple @RFQAF Denition 4.3. For all p ∈ R d we dene a random variable U p on the probability space O K /p (endowed with the discrete σ-algebra and the normalized counting measure) as follows:

U p : O K /p → C(µ d , S 1 ) a → U p (a)
where U p (a) :

µ d → S 1 x → e Ä τp(a p(x)) q ä .
Remark 4.4. ine p hs residul degree 1D the prime q in the de(nition of U p (a) is the norm p of the idel p @tht isX the rdinlity of the residue (eld O K /pAF hus we n de(ne U p only in terms of the idel pD y writing

U p (a)(x) = e Å τ p (a p (x)) p ã .
yur next step onsists in proving the onvergene in lw of the rndom vriles U p D s p goes to in(nityF his step orresponds to the uniform distriution sttement for the tuples @RFPA whih ws hndled in erlier referenes y the use of wyerson9s lemmF yne the onvergene of the rndom vriles U p is provedD the omptiility etween onvergene in lw nd ontinuous mppings llows one to dedue esily the onvergene in lw of the rndom vriles

S p : O K /p → C a → x∈µ d e Ä τp(a p(x))
p ä pinllyD to reover the previous results out sums of type @RFIAD it remins to prove tht τ p • p indues ijetion etween µ d nd µ d (F q )F his holds under the stronger ssumption tht p ∈ S d D nd will e proved in roposition RFQI in greter generlityF his numer (eld pproh n tully e generlized to explin uniform distriution phenomen for exponentil sums indexed y Z g (F q ) for ny moni polynomil g ∈ Z[X]F woreoverD it lso extends to sums indexed y the roots of g modulo prime powersF

4.1.2. Some preparation for the convergence of the new random variables es we will seeD the ojet whih governs the limiting distriution of the sequene of rndom vriles (U p ) p∈R d is the module of dditive reltions with oe0ients in Z etween the elements of µ d F e introdue tht ojet nd set some extr nottions in the following de(nitionF 

H d := f ∈ C(µ d , S 1 ), ∀α ∈ R d , x∈µ d f (x) α(x) = 1
Remark 4.6. es H d is losed sugroup of the ompt elin group C(µ d , S 1 )D it is ompt elin groupD hene hs unique proility rr mesureF hereforeD it mkes sense to spek out uniformly distriuted rndom vriles on H d in the sense of eppendix RFeF xowD to prove the desired onvergene in lwD we will pply eyl9s riterion in the form of heorem RFUIF sn order to do thtD we need good understnding of the hrters of the groups C(µ d , S 1 ) nd

H d F ine C(µ d , S 1
) is nothing more thn n unordered version of (S 1 ) d D its hrters re desried y smll vrition of roposition RFUP of the eppendixF wore preiselyD we hve the following de(nition nd propositionF Denition 4.7. For all α : µ d → Z, we denote by η α the following character of C(µ d , S 1 ):

η α : C(µ d , S 1 ) → S 1 f → x∈µ d f (x) α(x)
Proposition 4.8. The map

η : C(µ d , Z) → Ÿ C(µ d , S 1 ) α → η α @RFSA
is an isomorphism of abelian groups.

IPP

Proof. ine C(µ d , S 1 ) (S 1 ) d vi the hoie of primitive root of unityD the surjetivity sttement is smll vrition on roposition RFUPF por the injetivityD ssume tht α is not the zero mp nd let

x 0 ∈ µ d e suh tht α(x 0 ) = m ∈ Z \ {0}F hen tke f : µ d → S 1 suh tht f (x 0 ) ∈ S 1 \ µ m nd for ll x ∈ µ d \ {x 0 }D f (x) = 1F hen η α (f ) = x∈µ d f (x) α(x) = f (x 0 ) m = 1
sine f (x 0 ) is not n mEth root of unityF hereforeD (α = 0 =⇒ η α = 1)D whih proves the injetivityF Proposition 4.9. Let α ∈ C(µ d , Z). The character η α is trivial on H d if and only if α ∈ R d .

Proof. e keep the nottion η for the isomorphism @RFSAF hen y de(nition of H d D we hve

H d = f ∈ C(µ d , S 1 ), ∀χ ∈ η(R d ), χ(f ) = 1 = η(R d ) ⊥
with the nottion ⊥ from he(nition RFTWF husD

η α is trivil on H d ⇐⇒ η α ∈ H ⊥ d ⇐⇒ η α ∈ Ä η(R d ) ⊥ ä ⊥ = η(R d ) ⇐⇒ α ∈ R d
thnks to roposition RFUH on the orthogonl of the orthogonl nd to the injetivity of ηF 4.1.3. Convergence in law of the new random variables he nlogue of the result of ghpter P out the equidistriution of the tuples @RFPA in sutorus of (S 1 ) d is the following propositionF st is the entrl resultD s the equidistriution result for exponentil sums follows esily @s we will see elowA y de(nition of the pushforwrd mesureF Proof. his is just euse if sequene (X n ) of rndom vriles onverges in lw to XD then for ny ontinuous mp F D we hve tht (F (X n )) onverges in lw to F (X)F rere the ontinuous mp is σ nd the onvergene in lw efore omposition with σ is given y roposition RFIHF Remark 4.12. roweverD in order to reover sttement in the spirit of ghpter PD we would rther not hve these homomorphisms τ p nd p nd reple µ d y µ d (F q ) for primes q ≡ 1 (mod d)F he reson why we n otin suh sttement omes from the following ftF Proposition 4.13 @VUD gorollry IHFRA. A prime q = 2 is totally split in K = Q(µ d ) if and only if q ≡ 1 (mod d).

sn prtiulrD if q ≡ 1 (mod d) nd if p | qD then p ∈ R d so tht we hve some hope tht the equidisE triution result of gorollry RFII my e relted to the results of ghpter PF vet us prove tht this is indeed the seX Corollary 4.14. For any prime q = 2 such that q ≡ 1 (mod d), dene (as in Chapter 2) nd we would like to perform the hnge of vrile y = τ p ( p (x)) in order to relte these sums to sums over µ d (F q )F sn ftD it is true tht under the ssumption q ≡ 1 (mod d)D τ p • p indues ijetion etween µ d nd µ d (F q )F his will e proved t roposition RFQI in more generl settingF his prt of the proof relly mkes use of the ft tht q is totlly split in KD s it requires the ssumption tht p is unrmi(edD nd not only hs residul degree 1F yne we know thisD we immeditely get the following lemm nd the onlusion followsF Lemma 4.15. If q ≡ 1 (mod d) and p is an ideal of O K lying above q, then {S p (a);

S q (b, d) := x∈µ d (Fq) e Å bx q ã for all b ∈ F q Then the set {S q (b, d); b ∈ F q } become
a ∈ O K /p} = {S q (b, d); b ∈ F q } .
Remark 4.16. roposition RFQI requires the extr ssumption tht q disc(g)D ut in the se of g = X d -1D we hve |disc(g)| = d d so tht the ondition q ≡ 1 (mod d)D whih we use to ensure tht q is totlly split in KD tully lso ensures the ondition on the nonEdivisiility of the disriminntF xowD it remins to hek tht the mesure σ * (µ H d ) in gorollry RFIR is indeed the sme s the pushE forwrd mesure whih ppers in roposition PFIPF o simplify littleD we will only del with the se where d is primeD nd hek tht the mesure σ * (µ H d ) is indeed the sme s the one of heorem PFSD tht isX the pushforwrd mesureD vi the vurent polynomil

X 1 + • • • + X d-1 + 1 X 1 . . . X d-1 ,
of the rr proility mesure on (S 1 ) d-1 F por prime numer dD let us (x primitive d!th root of unity ζF hen µ d = ζ j ; 0 j d -1 nd we hve

R d =    α : µ d → Z, d-1 j=0 α(ζ j )ζ j = 0    whih orrespondsD under the isomorphism of ZEmodules Z d → Z d-1 [X] (a 0 . . . , a d-1 ) → d-1 j=0 a j X j to {P ∈ Z d-1 [X]; P (ζ) = 0} = {P ∈ Z d-1 [X]; φ d divides P } .
xow sine we ssumed tht d is primeD φ d is moni of degree d -1D so tht the multiples of φ d whih elong to Z d-1 [X] re extly the polynomils of the form λφ d (X) = λ(1

+ X + • • • + X d-1
) for some integer λF qoing k to R d D this mens tht R d is the ZEmodule of onstnt mps α : µ d → ZF hereforeD

H d = f : µ d → S 1 ; ∀λ ∈ Z, x∈µ d f (x) λ = 1 = f : µ d → S 1 ; x∈µ d f (x) = 1 .
IPS e hve group isomorphism etween H d nd the group

H d := g : µ d \ {1} → S 1 given y Φ : H d → H d f → f |µ d \{1}
nd whose inverse is otined y ssoiting to g ∈ H d its ontinution t 1 de(ned in the only possile wy to rete n element of H d X g(1) :=

x∈µ d \{1} g(x) -1 .
es H d is isomorphi to (S 1 ) d-1 D the rr mesure on H d is just the produt of the uniform mesure on S 1 F ine Φ is n isomorphism of topologil groupsD this implies tht µ

H d = Φ -1 * (µ H d )D hene σ * (µ H d ) = σ * Ä Φ -1 * (µ H d )
ä F sn other wordsD for ny mesurle suset A of CD we hve

σ * (µ H d )(A) = µ H d Φ σ -1 (A) = µ H d Ñ   g ∈ H d ; x∈µ d \{1} g(x) + x∈µ d \{1} g(x) -1 ∈ A    é
husD we reover tht the mesure σ * (µ H d ) is indeed the pushforwrd mesure vi the vurent polyE nomil

(z 1 , . . . , z d-1 ) → z 1 + • • • + z d-1 + 1 z 1 . . . z d-1
of the rr mesure on (S 1 ) d-1 F 4.2. Generalization to exponential sums restricted to the roots of a xed polynomial he numer (eld pproh of the previous setion shows tht we n reover the previous results on sums over sugroups of (xed rdinlityD ut it lso hs the dvntge of opening the door to mny generliztionsF sndeedD sine the method no longer relies on the ft tht we re working with roots of unity nd tht we n hoose primitive rootD it is more likely to extend to the se of roots of ritrry polynomilsF e present those generliztions in this setionF 4.2.1. Algebraic number theory prerequisites I ine we lso wnt to onsider exponentil sums modulo prime powersD nd not only primesD we need to strt with short setion on residue rings insted of the more usul residue (eldsF Lemma 4.17. Let A be a Dedekind domain, K its fraction eld, L/K a nite and separable extension, and let B be the integral closure of A in L. Let p be a prime ideal in A and let p be a prime ideal in B lying above p, with ramication index e. Let n 1.

Then we have

p n ∩ A = p n/e
where n/e denotes the smallest integer larger than or equal to n/e.

Proof. @inspired y the nswers on tk ixhnge ville t https://math.stackexchange.com/ questions/1526463/prime-ideals-in-extensions-of-dedekind-domains nd https://math.stackexchange.com/questions/2577145/intersection-of-powers-of-prime -ideals-with-subringAF ine A nd B re hedekind dominsD the loliztions A p nd B p re disrete vlution ringsF sf we denote y v p nd v p the orresponding normalized disrete vlutionsD then we hve (v p ) |A = ev p IPT euse the pEdi vlution of p is equl to e y de(nition of the rmi(tion indexF hereforeD for ll x ∈ BD we hveX

x ∈ p n ∩ A ⇐⇒ x ∈ A nd v p (x) n ⇐⇒ x ∈ A nd ev p (x) n ⇐⇒ x ∈ A nd v p (x) n/e ⇐⇒ ( ) x ∈ A nd v p (x) n/e ⇐⇒ x ∈ p n/e
where the equivlene @ A omes from the ft tht v p (x) is n integerF Corollary 4.18. Let K/Q be a number eld, let p be a prime number, and p be a prime ideal of K which lies above p. Assume that the extension is unramied at p. Then the natural ring homomorphism 

Z/p n Z → O K /p n is injective. Proof. he kernel of Z → O K /p n is p n ∩ ZD
C(Z g , S 1
) is the compact abelian group of (continuous) maps from Z g to the unit circle S 1 , IPU Important note: ine ll results in this hpter only depend on Z g D we n ssume without loss of generlity tht the polynomil g is separableF e will do so in the reminder of the hpterF e will lso need notion of dmissile idels in order to e le to de(ne the rndom vriles of interest to usF Denition 4.24. Let us dene S g as the set of prime ideal p of O g which lie above a prime q ∈ Z which is totally split in K g . Equivalently (because K g /Q is Galois), those are the ideals which are unramied and of residual degree equal to 1.

e n now de(ne sequene of rndom vriles indexed y powers of prime idels in S g F Denition 4.25. Dene the random variables U p n for all p ∈ S g and n 1 as follows:

U p n : O g /p n → C(Z g , S 1 ) a → U p n (a)
where

U p n (a) : Z g → S 1
x → e

τ p n (a p n (x)) p n
where τ p n is the isomorphism of Denition 4.22. R g denotes the submodule of C(Z g , Z) of additive relations between the roots of g:

xote tht Z g ⊂ O g euse g is moni polynomil in Z[X]
R g :=    α : Z g → Z, x∈Zg α(x)x = 0    .
H g denotes the subgroup of C(Z g , S 1 ) which is dual to R g in the following sense:

H g :=    f ∈ C(Z g , S 1 ), ∀α ∈ R g , x∈Zg f (x) α(x) = 1   
he(nition RFU nd propositions RFV nd RFW trnspose to this setting s follows @the proofs re ner opies of the orresponding ones when g ws tken to e the polynomil X d -1AF

Denition 4.27. For all α ∈ C(Z g , Z), we denote by η α the following character of C(Z g , S 1 ):

η α : C(Z g , S 1 ) → S 1 f → x∈Zg f (x) α(x)
Proposition 4.28. The map sn other wordsD the limiting distriution is desried s the rr mesure on the orthogonl of the module of dditive reltions etween the roots of gF Proof.

η : C(Z g , Z) → Ÿ C(Z g , S 1 ) α → η α
pirstD let us prove tht the rndom vriles U p n tke vlues in H g F vet us (x a ∈ O g /p n nd prove tht U p n (a) ∈ H g F st su0es to prove tht for ll α ∈ R g D η α (U p n (a)) = 1F st is indeed the seD s

η α (U p n (a)) = x∈Zg e Å τ p n (a p n (x)) p n ã α(x) = e Ç τ p n (a p n ( x∈Zg α(x)x)) p n å nd x∈Zg α(x)x = 0 euse α ∈ R g F his proves tht for ll a ∈ O g /p n D U p n (a) ∈ H g F
xowD let us prove the onvergene in lw stted in the propositionF es H g is ompt elin groupD we n pply the generlized eyl griterion for equidistriutionX it is enough to hek thtD for ll nonEtrivil hrters η of H g D we hve

E(η(U p n )) → 0
s p n → +∞F xowD ny hrter of H g n e extended to hrter of the whole group C(Z g , S 1 ) thnks to the heorem RFTV of the ppendixD so it n e written s η α for some α ∈ C(Z g ; Z)F woreoverD η α is trivil on H g if nd only if α ∈ R g @thnks to roposition RFPWAF hereforeD we tke α / ∈ R g nd we wnt to show tht

E(η α (U p n )) → 0.
e hve

E(η α (U p n )) = 1 p n a∈Og/p n e τ p n (a) p n τ p n p n x∈Zg α(x)x = 1 p n b∈Z/ p n Z e b p n τ p n ( p n (S α ))
where we denoted

S α := x∈Zg α(x)x
@it is nonEzero element of O g euse α / ∈ R g AF fy orthogonlity of the dditive hrters modulo p n D we hve

E(η α (U p n )) = 1 ⇐⇒ τ p n ( p n (S α )) = 0 ⇐⇒ p n (S α ) = 0 ⇐⇒ S α ∈ p n ,
nd E(η α (U p n )) equls 0 otherwiseF xowD the ondition S α ∈ p n implies tht p n divides the nonEzero integer N Kg/Q (S α )D so tht it nnot e stis(ed for p n lrge enoughF his shows tht E(η α (U p n )) not only onverges to zero s p n tends to in(nityD ut is tully eventully equl to 0F IPW 4.2.3. Algebraic number theory prerequisites II xextD we wnt to derive from heorem RFQH sttement on the equidistriution of sums indexed y the roots of polynomil modulo prime powersF sn order to do thisD we need few extr fts from lgeri numer theoryF he im of this setion is to otin the following propositionD speil se of whih hs lredy een used without proof in the proof of gorollry RFIRF Proposition 4.31. Let g ∈ Z[X] be a monic and separable polynomial. Let q be a prime number which does not divide the discriminant of g. If q is totally split in K g , then for all p | q and all n 1, the composition

Z g → O g p n → O g /p n τ p n → Z/q n Z
yields a bijection between Z g and Z g (Z/q n Z) := {x ∈ Z/q n Z; g(x) ≡ 0 mod q n }.

he reson why we need this result is tht we wnt to relte the rndom vriles of he(nition RFPS @whih re de(ned in the numer (eld settingAD to the more elementry rndom vriles

Z/q n Z → C(Z g (Z/q n Z), S 1 ) a → V q n (a)
where

V q n (a) : Z g (Z/q n Z) → S 1 x → e Ä ax q n ä
his is why we need to look more losely t wht hppens to the roots of g fter the identi(tions through p n nd τ p n F sn order to prove the previous propositionD we will need the following fmous theoremX Theorem 4.32 @hedekindD see PH or VID heorem PUA. Let K be a number eld of degree n over Q,

and α ∈ O K such that K = Q(α). Let f (T ) be the minimal polynomial of α in Z[T ]. For any prime q not dividing [O K : Z[α]], write f (T ) ≡ π 1 (T ) e 1 • • • π g (T ) eg (mod q)
where the π i are distinct monic irreducible polynomials in F q [T ]. Then qO K factors into prime ideals as

qO K = p e 1 1 • • • p eg g
where p i = q, πi (α) is the ideal generated by q and πi (α) (π i denotes any polynomial in Z[T ] which reduces to π i modulo q). Besides, p i = q deg(π i ) .

Remark 4.33. sn ftD we hve the reltion

disc(Z[α]) = disc(1, α, . . . , α n-1 ) = [O K : Z[α]] 2 d K
where d K denotes the solute disriminnt of the numer (eld K @tht isX the disriminnt of ny

ZEsis of O K AF husD if q does not divide disc(Z[α]) it does not divide [O K : Z[α]
]D so the theorem ppliesF st is usully more onvenient to use this divisiility onditionD euse it does not require ny knowledge of the full ring O K F xowD sine we wnt to pply this theorem to K g = Q(Z g )D whih is generted y all the roots of gD we will lso need the following theorem to go from the extensions Q(α) generted y single root of g to the extension K g F Theorem 4.34 @VID heorem QIA. Let K be a number eld, and let L and M be two nite extensions of K. Let p be a prime ideal of K. Then p splits completely in L and M if and only if it splits completely in their compositum LM .

IQH

Remark 4.35. etullyD VID heorem QI only sttes the diretion =⇒ ut the onverse is esier y multiplitivity of the rmi(tion index nd residul degree in extensions @if they re oth equl to 1 in the lrgest extensionD they re equl to 1 in the suextensionsAF gomining the lst two theorems llows us to otin the following lemmF Lemma 4.36. Let g ∈ Z[X] be a monic and separable polynomial of degree d 1. Then for all prime numbers q not dividing disc(g), we have q is totally split in K g ⇐⇒ g splits into distinct linear factors in F q [X] sn this lemm nd its proofD f denotes the redution modulo q of polynomil f ∈ Z[X]F

Proof. vet q e prime numer not dividing the disriminnt of g nd let α ∈ Z g F henote y µ α the miniml polynomil of α over QD whih elongs to Z[X] nd is one of the ftors of gF hen

disc(µ α ) | disc(g).
sndeedD it is generl ft tht for two polynomil P, Q ∈ Z[X]D we hve @up to signAX

disc(P Q) = disc(P )disc(Q)Res(P, Q) 2 @RFTA
hereforeD the ssumption on q ensures tht q does not divide disc(µ α ) = disc(Z[α])D so we n pply heorem RFQP t q to the extension Q(α)/QX it tells us tht the rmi(tion of q in Q(α) is extly given y the ftoriztion of µ α modulo qF sn prtiulrD q is totlly split in Q(α) if nd only if µ α splits into distint liner ftors mod qF xowD the irreduile ftors of g re the µ α D nd g hs no squre ftorD euse we ssumed tht it is seprleF woreoverD the ssumption tht q does not divide disc(g) ensures tht g remins seprle fter redution modulo qF husD we hve tht g splits into distint liner ftors mod q if nd only if for ll α ∈ Z g D µ α splits into distint liner ftors mod qF husD we hve proved tht g splits into distint liner ftors modulo q if nd only if for ll α ∈ Z g D the prime q is totlly split in Q(α)D nd thnks to heorem RFQRD this is equivlent to q eing totlly split in K g F Remark 4.37 @inpired y the nswer hereA. here is n elementry wy to prove tht if P, Q re two moni polynomils with oe0ients in ZD then disc(P ) | disc(P Q)D without knowing the notion of resultnt of two polynomils used in eqution @RFTA oveF sndeedD if we denote y α 1 , . . . , α m the @not neessrily distintA roots of P in C nd y β 1 , . . . , β n those of QD then @up to signA

disc(P Q) = 1 i =j m (α i -α j ) 1 k = n (β k -β ) 1 r m 1 s n (α r -β s ).
he (rst two ftors re respetively equl @ginD up to sign onventionA to disc(P ) nd disc(Q)D while the lst ftor n e expressed in terms of the resultnt of P nd Q one we know the expression of the resultnt in terms of the rootsF roweverD without speking out resultntsD we n prove the this lst ftor is n integerF sndeedD if we onsider the polynomil

F (Y 1 , . . . , Y n ) := 1 r m 1 s n (X r -Y s ), it elongs to A[Y 1 , . . . , Y n ]D where A = Z[X 1 , . . . , X m ]D nd it is symmetri polynomilD so there exists polynomil G ∈ A[Y 1 , . . . , Y n ] suh tht F (Y 1 , . . . , Y n ) = G(σ 1 , . . . , σ n ) where σ i = σ i (Y 1 , . . . , Y n ) is the iEth elementry symmetri polynomilF hen σ i (β 1 , . . . , β n ) is @up to signA equl to oe0ient of QD hene is n integerF husD F (β 1 , . . . , β n ) = 1 r m 1 s n (X r -β s )
elongs to Z[X 1 , . . . , X m ]D nd is symmetri polynomilD hene y similr rgument we onlude tht its evlution t α 1 , . . . , α m is n integerD nd this onludes the proofF IQI Remark 4.38. gn we remove the ssumption q disc(g) in vemm RFQTc he nswer is no3 por instneD if one tkes g := X 3 -X 2 -2X -8 @the hedekind9s polynomil mentioned in PHAD then disc(g) = -2 2 • 503D so tht 2 divides the disriminnt of gF yn one hndD we hve tht g ≡ X 2 (X + 1) (mod 2)D so g does not split into distint liner ftor modulo 2F yn the other hndD 2 is totlly split in K g @using PARI-GPAF e now hve ll the ingredients to (nish the proof of the min proposition of this setionF Proof of roposition RFQI. vet q e prime whih does not divide the disriminnt of gD nd whih is totlly split in K g F vet p | q nd let n 1F pirstD the lst rrow in the sttement @O g /p n → Z/q n ZA is n isomorphism thnks to gorollry RFIWD nd we lim tht it indues ijetion etween

Z g (O g /p n ) nd Z g (Z/q n Z)F sndeedD if α ∈ O g is suh tht g(α) ≡ 0 mod p n D thenX
pirstD thnks to gorollry RFIWD there exists n integer x @unique modulo q n ZA suh tht

x ≡ α mod p n F eondD this integer stis(es g(x) ≡ g(α) ≡ 0 mod p n D whih mens tht g(x) ∈ p n ∩Z = q n Z thnks to vemm RFIUF sn other words g(x) ≡ 0 mod q n F his proves tht for ny α ∈ Z g (O g /p n ) there exists unique x ∈ Z/q n Z suh tht x ≡ α mod p n D nd tht this x is root of g modulo q n F his proves tht the nturl isomorphism etween Z/q n Z nd O g /p n indues ijetion etween Z g (Z/q n Z) nd Z g (O g /p n )F husD it just remins to prove tht the nturl mp Z g → Z g (O g /p n ) is ijetionF hnks to vemm RFQTD the ssumptions on q ensure tht g splits in F q with simple rootsF husD the previous point shows tht the polynomil g lso split in O g /p with simple rootsF xowD let α ∈ Z g (O g /p n ) e the redution modulo p n of some α ∈ O g F hen we hve ® g(α) ≡ 0 mod p n g (α) ≡ 0 mod p.

hereforeD y rensel9s lemmD there exists unique α in the pEdi ompletion "

O g of O g suh tht ® g( α) = 0 α ≡ α mod p n .
xowD we hve y ssumption tht g hs d distint roots in O g ⊆ " O g D nd it nnot hve more roots thn its degreeD so α tully elongs to O g F his proves tht the nturl mp

Z g → Z g (O g /p n ) is ijetionF
Remark 4.39. he proof of this proposition is nturl extension of wht we did in the se of the polynomil X d -1 in ghpter PF sndeedD in vemm PFIRD ompletion rgument nd n pplition of rensel9s lemm were lso neededF 4.2.4. Equidistribution of exponential sums restricted to the roots of a polynomial xow tht we did ll the snity heks in the previous setionD heorem RFQH hs the following esy orollryF IQP Corollary 4.40. @IA For a taken uniformly at random in O g /p n with p ∈ S g not dividing the discriminant of g, the sums x∈Zg(Og/p n ) e τ p n (ax) p n become equidistributed in C as p n → +∞ with limiting measure µ g given by the law of σ(U ), where σ : C(Z g , C) → C is the linear form dened by

f → x∈Zg f (x).
@PA Similarly, for q prime totally split in K g and not dividing the discriminant of g, the sums

x∈Z/q n Z g(x)≡0 (mod q n ) e bx q n
for b ∈ Z/q n Z become equidistributed in C as q n → +∞ with the same limit.

Proof. @IA he (rst sttement is diret pplition of heorem RFQH nd of the omposition priniple for onvergene in lwD sine σ is ontinuous @when C(Z g , S 1 ) hs its produt topologyAF sndeedD the rndom vriles

S p n : O g /p n → C a → x∈Zg U p n (a)(x)
re extly σ(U p n )F woreoverD thnks to roposition RFQI @more preisely from the ft tht p n indues ijetion etween Z g nd Z g (O g /p n )A we hve tht

S p n (a) = x∈Zg(Og/p n ) e τ p n (ax) p n
so the sttement followsF @PA por ny prime numer q whih is totlly split in K g D there exists prime idel p ∈ S g ove qF woreoverD the nonil isomorphism τ p n etween the residue rings O g /p n nd Z/q n Z indues ijeE tion etween Z g (O g /p n ) nd Z g (Z/q n Z)F hereforeD S p n nd the rndom vrile

S q n : Z/q n Z → C b → x∈Z/q n Z g(x)≡0 (mod q n ) e bx q n
shre the sme lwD so tht point @IA provides the equidistriution result @PAF Remark 4.41. sn UUD we inluded the ondition tht p must not divide the disriminnt of the polynomil g in the de(nition of S g D in order to void repeting this ssumption in mny sttementsF roweverD it is worth noting tht the uniform distriution of the unitry rndom vriles @heorem RFQHA holds without this restritionF he ssumption tht p must not divide the disriminnt of g only omes into ply one we wnt to dedue orollries on exponentil sums over Z g (F q )D euse we need roposition RFQIF Remark 4.42. sn UUD we de(ne S g s the set of prime idels p ∈ O g suh tht p does not divide the disriminnt of g nd p hs residul degree 1D nd we lim tht suh primes re unrmi(ed primes in O g F his is not ompletely strightforwrdD so let us give some detils hereF sndeedD our ssumption is tht p does not divide the disriminnt of the polynomial gD nd the lssil theorem of lgeri numer theory rther sys tht the primes whih do not divide the disriminnt of the number eld K g re unrmi(edF husD we need to spell out more preisely wht is the reltion etween the ft tht prime divides the disriminnt of g nd the ft tht it divides the disriminnt of its splitting (eld K g F es fr s s knowD there is no divisiility reltion of the type disc(g) divides disc(K g ) or disc(K g ) divides disc(g)F roweverD there is n inlusion etween their sets of prime ftorsD given y the following lemmX IQQ Lemma 4.43. If p divides the discriminant of K g , then p divides the discriminant of the polynomial g.

Proof. vet p ⊆ O g e prime idel tht divides the disriminnt of gF es the splitting (eld K g is the ompositum of the extensions Q(z) for z ∈ Z g D SHD heorem VS tells us tht p must divide the disriminnt of one of the extensions Q(z)/QF fy emrk RFQQD this implies tht p divides the disriminnt of Z[z]D whih equls the disriminnt of the miniml polynomil of z over QD whih is n irreduile ftor of gF husD p divides the disriminnt of gF king the ontrpositiveD we dedue tht indeedD our ondition ensures in prtiulr tht the prime idels whih do not divide the disriminnt of g re unrmi(ed in K g F xote tht the previous lemm does not imply tht disc(K g ) divides disc(g)D euse of the powers of the prime idels whih my pper in eh ftoriztionF woreoverD the onverse of this lemm does not holdD s one n hek y onsidering hedekind9s polynomil X 3 -X 2 -2X -8 of emrk RFQVF por this hoie of polynomil gD one hs disc(g) = -2 2 • 503 while disc(K g ) = -503 3 @using PARI-GPAF Remark 4.44. ine the liner mp

C(Z g , S 1 ) → C f → x∈Zg f (x)
is ontinuous nd ounded nd the rndom vriles U p onverge in lw to U D we hve tht nd for ll p suh tht p is lrge enoughD p (x) = 0 if nd only if x = 0D so tht eventully we hve

E(σ(U p )) -→ p →+∞ E(σ(U )).
E(σ(U p )) = ® 0 if 0 / ∈ Z g 1 if 0 ∈ Z g . @RFVA
es onsequeneD

E(σ(U )) = ® 0 if 0 / ∈ Z g 1 if 0 ∈ Z g .
sn view of @RFUA nd @RFVAD nd using roposition RFQI to identify those sums with sums over Z g (F q )D this shows tht if 0 / ∈ Z g D then on average over b ∈ F q D the sums x∈Zg(Fq) e Å bx q ã equl 0 s q tends to in(nity @mong the prime numers q whih do not divide the disriminnt of g nd re totlly split in K g AF IQR e nturl question one my sk is the horizontl nlogueX does the sme result hold if we (x nonEzero integer b nd verge over primes qc e will ome k to this question @nd its reltion to fmous onjetures regrding the uniform distriution of roots of polynomilsA in the (nl hpter of this thesisD where some reserh perspetives re skethedF 4.2.5. Sparse equidistribution es in the se of the sums S p (a, d) of ghpter P nd QD we n get equidistriution of sprser sets of sumsD y hnging the proility spe in the de(nition of the rndom vriles U p n @he(nition RFPSAF sndeedD if for ll prime idel p ⊂ S g nd ll n 1D we hoose sugroup H p n of the multiplitive group (O g /p n ) × nd rede(ne the rndom vriles

U p n : H p n → C(Z g , S 1 ) a → U p n (a)
then under some growth onditions on the rdinlity of H p n D the onvergene in lw of heorem RFQH still holdsF sndeedD proposition nlogous to roposition QFR llows us to pply the min theorem of II on exponentil sums over smll multiplitive sugroupsF Proposition 4.45. Let α ∈ C(Z g , Z) be such that α / ∈ R g and let S α := x∈Zg α(x)x (which is nonzero by denition of R g ). There exist two constants n α , C α 1 such that for all p ∈ S g (lying above q, say) and for all n 1, if

p n > n α , then (a) τ p n ( p n (S α )) ≡ 0 (mod q n ) (b) q vq(τ p n ( p n (Sα))) C α . Proof. (a) ine τ p n is n isomorphismD we hve tht τ p n ( p n (S α )) ≡ 0 (mod q n ) if nd only if p n (S α ) ≡ 0 (mod p n )D tht isX if nd only if S α ∈ p n F xow
we hve seen in the proof of heorem RFQH tht the ft tht S α ∈ p n implies tht p n divides the nonEzero integer N Kg/Q (S α )F hereforeD it su0es to tke n α := |N Kg/Q (S α )| to ensure tht @A holds for ll p nd n suh tht p n > n α F (b) xow we ssume tht p n > n α D so tht the qEdi vlution of τ p n ( p n (S α )) is well de(nedF e denote it y γ ∈ {0, . . . , n -1}D so tht we n write

τ p n ( p n (S α )) ≡ q γ m (mod q n )
where (m, q) = 1F epplying ι p n @the inverse of τ p n A to this equlity gives

p n (S α ) ≡ q γ m (mod p n )
from whih it is esy to see tht γ = v p (S α )F hereforeD we hve

q γ = q vq(τ p n ( p n (Sα))) = q vp(Sα)
nd the rightEhnd side is ounded ove y

C α := max ¶ p vp(Sα) ; p ∈ S g suh tht p | S α O g ©
whih is the mximum of (nite set euse S α = 0F

hnks to this ontrol of the qEdi vlutionD we n redue to setting where fourgin9s theorem @heorem QFIIA n e ppliedD nd prove the onvergene in lw of the rndom vriles U p n when de(ned on the proility spes H p n whih re multiplitive sugroups of rdinlity lrger thn ( p n ) δ for some positive rel numer deltF xmelyD we hve the following re(nement of heorem RFQHX IQS Theorem 4.46. For each p ∈ S g and n 1, we x a multiplicative subgroup H p n of (O g /p n ) × and dene the random variables U p n as before, but on this smaller probability space:

U p n : H p n → C(Z g , S 1 ) a → U p n (a)
Then, if there exists δ > 0 such that for all p and n,

|H p n | ( p n ) δ ,
the random variables U p n converge in law to a uniformly distributed random variable U on H g , as p n tends to innity.

Proof. he eyl sums ppering in the pplition of eyl9s equidistriution riterion re in this se

1 |H p n | a∈H p n e Å τ p n (a p n (S α ))
p n ã nd we wnt to prove tht they onverge to zero s p n tends to in(nityD for ny (xed α ∈ C(Z g , Z) suh tht α / ∈ R g @this ondition re)ets the ft tht we only need to onsider non-trivial hrters of H g AF wking the hnge of vriles b = τ p n (a)D we n write these sums s

1 |H p n | b∈H p n e Å τ p n ( p n (S α )) p n b ã
where H p n denotes the multiplitive sugroup τ p n (H p n ) of (Z/ p n Z) × F es in the proof of roposiE tion QFIPD we nnot diretly pply heorem QFII euse we do not know if τ p n ( p n (S α )) is invertile modulo p n F roweverD we know tht it is nonEzeroD nd tht it is not divisile y high powers of p D so tht it is not fr from eing invertileF he preise mening of this not fr from eing invertile is given y the ontrol of the qEdi vlution of roposition RFRSF henD the rest of the proof is extly the sme s the proof of roposition QFIPD with f (w q ) repled y τ p n ( p n (S α )) nd n f , C f y n α , C α F Corollary 4.47. Let g ∈ Z[X] be a monic and separable polynomial of degree d 1. For all q ∈ S g not dividing the discriminant of g and all n 1, suppose we are given a subgroup H q n of the multiplicative group (Z/q n Z) × . If there exists δ > 0 such that for all q and n,

|H q n | q nδ , then the sums x∈Z/q n Z g(x)≡0 (mod q n ) e bx q n
parametrized by b ∈ H q n , become equidistributed in C as q n goes to innity, with respect to the same measure as in Corollary 4.40 (2).

Remark 4.48. e nturl question one my sk isX n we reple sugroups H q n of (Z/q n Z) × y ritrry susets A q n of Z/q n ZD nd under whih ondition do we still hve equidistriution of the sets of sums x∈Z/q n Z g(x)≡0 (mod q n ) e bx q n , b ∈ A q n @RFWA with respet to the sme mesurec his question is ddressed in etion R of UUD where we give prtil nswer to tht questionF nder ertin ondition on the polynomil gD we prove tht there is IQT n equivlene etween the uniform distriution of the sets @RFWA nd the uniform equidistribution of the frtionl prts 1 of the elements of A q n D whih orresponds to the onvergene to zero of

max h∈Z/q n Z h =0 1 |A q n | a∈A q n e Å ah q n ã .
sn prtiulrD if n = 1 nd we tke A q to e {0, . . . , (q -1)/2}D then it is esy to see tht the frtionl prts of the elements of A q re not uniformly equidistriutedD so tht we n (nd polynomils g for whih the sums in @RFWA do not eome equidistriuted with respet to the mesure µ g of gorollry 4.40 (2)F 4.3. Some explicit determinations of the module of additive relations 4.3.1. A general approach e fruitful ide to study this type of question ws developped y qirstmir in RSD RTD nd we desrie here the generl ide in the se where the ground (eld is QF his setion lso owes lot to iF uowlski9s tretment in URD setion RFUFQF qiven seprle polynomil g ∈ Q[X] @g will even e in Z[X] in the pplitions we hve in mindAD we denote y Z g its set of omplex rootsD nd y K g := Q(Z g ) the splitting (eld of g over QF e lso denote y Q Zg the set of mps from Z g to QD nd y G the qlois group of the (eld extension K g /QF hen G ts on Z g D nd this gives rise to the permutation representation of G on Q Zg F reiselyD given n element α ∈ Q Zg @tht isX mp α : Z g → QAD the tion of n element σ ∈ G on α is given y

(σ, α) → α • σ -1
sn other wordsD if we write

α = x∈Zg α(x)δ x
where δ x (y) = 1 if y = x nd equls 0 otherwiseD the tion of σ on α is simply its nturl tion on the rootsD

σ • α = x∈Zg α(x)δ σ(x) .
e hve the evlution mp from

Q Zg to Span Q (Z g ) ⊆ Q(Z g ) X ev : α → x∈Zg α(x)x
whih is esily seen to e morphism of GErepresenttions when the Q(Z g ) on the rightEhnd side hs the nturl qlois tionF hereforeD s the kernel of the evlutionD the vetor spe of QEliner reltions etween the roots of g X

R g,Q :=    α : Z g → Q, x∈Zg α(x)x = 0    is surepresenttion of Q Zg F husD in order to determine R g,Q D it n e helpful to determine the deomposition of Q Zg s diret sum of irreduile surepresenttionsF 1 If a ∈ Z/q n Z, the fractional part ¶ ã q n
© of the rational number ã/q n does not depend on the lift ã ∈ Z which represents the residue class a. This is what we call the fractional part of a. IQU 4.3.2. The case of roots of unity elthough we lredy reovered the results of ghpter P in setion RFIFR y determining the module of dditive reltion with integrl oe0ients R g D let us illustrte how the point of view of representtions n e used in this simple seF por prime numer D onsider the polynomil g := X -1F hen Z g = µ = ζ j ; 0 j -1 where ζ = exp(2iπ/ )D nd the splitting (eld of g is

K g = Q(ζ)F st hs degree -1 over QD nd we hve the homomorphism of Gal (Q(ζ)/Q)ErepresenttionsX ev : Q Zg → Q(ζ) his homomorphism is surjetive euse Q(ζ) = Q[ζ] = Span Q (Z g )F hereforeD y the rnkEnullity theoremD we hve dim(ker(ev)) = dim(Q Zg ) -dim(Q(ζ)) = -( -1) = 1 @RFIHA
fut s we explined oveD the kernel of the evlution mp is nothing ut the module of QEliner reltions etween the roots of gF husD R g,Q hs dimension 1 over QF woreoverD we know tht the sum of the elements of µ equls 0D so tht the onstnt mp 1 @whih mps ll the elements of Z g to 1A is n element of R g,Q F prom this we onlude tht

R g,Q = Q1 = {α : µ → Q suh tht α is onstnt}
sn prtiulrD this implies tht the modulo of ZEliner reltionsD whih we denoted y R g in the previous setionsD is tully free ZEmodule of rnk 1D generted y the onstnt mp equl to 1F

Remark 4.49. sn the generl se where g = X d -1 for d not neessrily primeD the surjetivity of the evlution mp is still trueD nd eqution @RFIHA gives tht the dimension of R g,Q equls d -ϕ(d)F

The case of primitive roots of unity

sf we onsider the polynomil g := φ @the Eth ylotomi polynomilA for some prime numer D then we hve gin K g = Q(ζ) with the nottion oveD nd this time Z g just onsists of the primitive Eth roots of unityF hereforeD Q Zg nd K g hve the sme dimension -1 over QF woreoverD the liner mp ev : Q Zg → K g is still surjetive euse the primitive Eth roots of unity form QEsis of Q(ζ) 2 F hereforeD the rnkEnullity theorem implies tht the dimension of the spe of QEliner reltions etween the roots of g equls 0F sn prtiulrD the module of dditive reltions R g is trivil in this se3 sn view of gorollry RFRH @PAD this trnsltes into the ft tht the sums S q (a, ) := x∈µ (Fq) e Å ax q ã @RFIIA eome equidistriuted with respet to the mesure on C whih is the lw of -1 independent rndom vrilesD eh uniformly distriuted on S 1 F IQV pigure RFIX he sums S q (a, d) for d = 5D q = 10151 nd a vrying in F q F hese lst two exmples only relied on rguments on the dimensions of Q Zg nd K g D ut did not involve ny more involved notions of representtionsF sn the following setionD we present some speil ses where the deomposition into irreduile surepresenttions plys role in the study of the dditive reltionsF 4.3.4. The case where Gal (K g /Q) S d sn this setionD we ssume tht the qlois group of K g /Q is isomorphi to S d D mening tht ny permuttion of the roots of g n e relized y the tion of n element of Gal (K g /Q)F sn this seD we hve the following deomposition s diret sum of surepresenttionsX

Q Zg = V ⊕ W,
where V = Q1 is the 1Edimensionl suspe spnned y the onstnt funtion equl to 1 nd

W :=    α ∈ Q Zg ; x∈Zg α(x) = 0    . es V is 1EdimensionlD it is n irreduile surepresenttionD nd lerly the tion of Gal (K g /Q) is trivil on V @iFeF for ll α ∈ V D for ll σ ∈ Gal (K g /Q)D σ • α = αAF his implies tht the hrter of this surepresenttion is onstnt equl to 1X ∀σ ∈ Gal (K g /Q) , χ V (σ) = 1.
yn the other hndD the hrter of W n e determined from the knowledge of the hrter of the full permuttion representtion on

Q Zg @euse Q Zg = V ⊕ W implies tht χ Q Zg = χ V + χ W AF
qldlyD the hrter of the permuttion representtion is quite essile3 sndeedD it is not hrd to prove tht the hrter of ny permuttion representtion ssoited with n tion of (nite group G on (nite set X is given yX

χ : σ → |X σ |
where X σ denotes the set {x ∈ X, σ • x = x} @the set of points (xed y σAF his implies tht the hrter of W is given yX

χ W : σ ∈ Gal (K g /Q) → |Z σ g | -1 = #{x ∈ Z g | σ(x) = x} -1
prom thisD one n dedue tht W is irreduileD euse it is absolutely irreducibleD mening tht it is irreduile even fter tensoriztion with CF sndeedD over CD the irreduiility n e proved y omputing the inner produt

χ W , χ W := 1 d! σ∈Gal(Kg/Q) |χ W (σ)| 2
IQW nd showing tht it equls 1 @see URD gorollry RFQFIRAF epling χ W (σ) y its expliit expression determined ove nd expnding the squreD one otinsX

χ W , χ W = Ñ 1 d! σ∈Gal(Kg/Q) |Z σ g | 2 é -2 Ñ 1 d! σ∈Gal(Kg/Q) |Z σ g | é + 1.
hnks to furnside9s lemmD the term 1 d! σ∈Gal(Kg/Q) |Z σ g | equls the numer of orits of Z g under the tion of Gal (K g /Q)D so it is equl to 1 s the tion is trnsitiveF yn the other hndD the term with |Z σ g | 2 ounts the numer of orits of Z g × Z g under the digonl tion of the qlois groupF he key rgument to onlude is the ft there re two orits @nmely the digonl {(x, x), x ∈ Z g } nd its omplementAD nd this is due to tht ft tht the tion of the qlois group is doubly transitiveF his proves tht χ W , χ W = 1D hene the irreduiility of W F pinllyD the surepresenttions V nd W re not isomorphi over C euse they do not hve the sme hrter for instneF vet us explin how this deomposition of Q Zg into two nonEisomorphi surepresenttions n help us understnding the dditive reltions etween the roots of gF es we sid eforeD the vetor spe of QEliner reltions is surepresenttion of Q Zg = V ⊕ W F st follows from the uniqueness of isotypi omponents @see eFgF URD roposition PFUFW @PAA tht

R g,Q = {0} or V or W or Q Zg @RFIPA
sn the proof of the following propositionD whih is due to qirstmirD we will see tht the lst two ses tully do not our @we follow the proof of uowlski9s ookAF Proposition 4.50 @qirstmirD URD roposition RFUFIPA. Let g ∈ Z[X] be a separable polynomial of degree d 1 such that its Galois group Gal (K g /Q) is isomorphic to S d . Then R g is either {0} or the free Z-module generated by the constant function equal to 1.

sn other wordsD either the oe0ient of X d-1 in g(X) is zeroD in whih se the sum of the roots of g equls 0 nd it is the only @up to multiplitive onstntsA dditive reltion etween the rootsD or the oe0ient of X d-1 is nonEzero nd there re no nonEtrivil dditive reltions etween the rootsF xote tht s soon s there exists polynomil with qlois group S d D then oth ses our euse simple hnge of vriles n nel the oe0ient of X d-1 without 'eting the splitting (eldF Proof. hnks to the ove disussionD it su0es to rule out the lst two possiilities in @RFIPA to otin the onlusionF essume for ontrdition tht W ⊆ R g,Q F pixing two distint roots of gD sy x nd yD de(ne the mp α :

Z g → Q y α(x) = 1D α(y) = -1 nd for ll z ∈ Z g \ {x, y}D α(z) = 0F
hen y de(nition we hve tht α ∈ W D whih @s we ssumedA is ontined in e Å ax q ã for q totally split in K g and not dividing the discriminant of g, and a varying in F q , become equidistributed in C with respect to a measure µ g which is either @IA the law of the sum of d-independent and identically distributed Steinhaus random variables (this occurs if and only if the coecient of X d-1 of g(X) is non-zero).

R g,Q D so α ∈ R g,Q F his mens tht α(x)x + α(y)y + z i nZg\{x,y} α(z)z = 0, iFeF x = yD
IRH @PA or the pushforward measure via the Laurent polynomial

z 1 + • • • + z d-1 + 1 z 1 . . . z d-1
of the uniform measure on (S 1 ) d-1 (and this occurs if and only if the coecient of X d-1 of g(X) equals zero).

Proof. his is gorollry RFRH omined with n expliit determintion of the lw of the rndom vrile U D whih is provided y the expliit determintion of the module of dditive reltion of roposition RFSHF sn order to give n illustrtion of this resultD one needs to (nd polynomils with qlois group S d F rilert provedD s onsequene of his irreduiility theorem tht suh polynomils exist for ny d 1F woreoverD for irreduile polynomils of degree 3D there is very simple riterion to determine whether the qlois group of polynomil is S 3 or notX Proposition 4.52 @PID heorem PFIA. Let g ∈ Q[X] be an irreducible polynomial of degree 3.

If disc(g) is a square in Q, then Gal (K g /Q) is isomorphic to A 3 , otherwise it is isomorphic to S 3 .
sn the piture elowD we hose two irreduile polynomils of degree 3 nd heked tht their qlois group is the full symmetri group using this riterionF sn the se of the polynomil X 3 +2X 2 +3D there re no nonEtrivil dditive reltions etween the zeros of g @euse the sum of the roots is nonEzeroD s one n see from the oe0ient of X 2 AD wheres in the se of the polynomil X 3 + X + 3D there is lerly the reltion given y the sum of the roots whih equls zero @euse the oe0ient of X 2 is zeroAF husD these two polynomils illustrte the two possiilities in gorollry RFSIF e see tht the di'erene etween their module of dditive reltions trnsltes into di'erent limiting mesures µ g for the ssoited sums of dditive hrtersF (a) g = X 3 + 2X 2 + 3 and q = 30113.

(b) g = X 3 + X + 3 and q = 30223.

pigure RFPX he sums x∈Zg(Fq) e Ä ax q ä s a vries in F q D for two two di'erent polynomils g of degree 3F

Remark 4.53. elthough it my look very spei( to presrie the qlois group s we didD it is tully the typil se to hve the full symmetri group s qlois groupF sndeedD if we denote y E d (H) the numer of moni polynomils g

(X) = X d + a d-1 X d-1 + • • • + a 0 ∈ Z[X] suh tht max{|a 0 |, . . . , |a d-1 |} H nd Gal (K g /Q) is not isomorphi to S d D then E d (H) = H→+∞ o Ä H d ä .
his is onsequene of rilert9s irreduiility theoremF es the totl numer of polynomils of the form

X d + a d-1 X d-1 + • • • + a 0 with max{|a 0 |, . . . , |a d-1 |} H equls (2H + 1) d D this implies tht
IRI symptotillyD 100% of moni polynomils of degree d with integer oe0ients hve their qlois group isomorphi to S d F woreoverD one n esily (nd lower ound for E d (H)D sine ll polynomils with a 0 = 0 will dmit 0 s rtionl rootD so the qlois group of their splitting (eld over Q will e sugroup of S d-1 D hene will not e mximlF hereforeD E d (H) H d-1 F sn IWQTD vn der erden IHS onjetured tht the ltter ws the orret order of mgnitudeD mening tht the upper ound

E d (H) H d-1
should lso holdF VT yers lterD fhrgv proved this onjeture in preprint of ytoer PHPPX T3 F his gives strong quntittive sense to the sentene most polynomils of degree d with integer oE e0ient hve qlois group S d F xow tht vn der erden9s onjeure hs een provedD we n derive without muh e'ort qunE tittive ound for the proportion of polynomils flling in eh se of gorollry RFSIF sndeedD the numer of polynomils g(X) = X d + a d-1 X d-1 + • • • + a 0 hving the sums of their roots equl to zero is H d-1 euse one needs a d-1 to e zeroF hereforeD the numer of polynomils whih do not fll in the (rst se of gorollry RFSI @either euse their qlois group is not S d or euse the sums of their roots equls 0A is 

H d-1 F husD writing gin g(X) = X d + a d-1 X d-1 + • • • + a 0 we hve # {g(X) | max 0 i<d |a i | H nd g does not fll in se @IA of gorollry RFSI} (2H + 1) d 1/H.
Q Zg = V 1 ⊕ V 2 ⊕ V 3 . rereD V 1 = Q1 is the 1Edimensionl liner suspe spnned y the onstnt mp equl to 1D V 2 =    α ∈ Q Zg | for ll x ∈ Z g , α(1/x) = α(x) nd x∈Zg α(x) = 0    nd V 3 = ¶ α ∈ Q Zg | for ll x ∈ Z g , α(1/x) = -α(x) © .
es in the previous setionD one n show tht this is deomposition into solutely irreduile surepresenttionsD nd dedue tht R g,Q n only e diret sum of some of the representtions

V 1 , V 2 nd V 3 F sn ftD if g is n irreduile plindromi polynomil with qlois group W d D one n prove tht the inlusions V 2 ⊆ R g,Q nd V 3 ⊆ R g,Q
oth led to ontrditions @under the ssumption tht n 2 so tht d 4AD so the only possiilities re

R g,Q = {0} or Q1.
e refer to UID roposition PFR for more detilsF husD we hve the following nlogue of gorollry RFSIX Corollary 4.54. Let g ∈ Z[X] be a monic, irreducible and palindromic polynomial of even degree d 4 such that its Galois group Gal (K g /Q) is isomorphic to W d . Then the exponential sums x∈Zg(Fq) e Å ax q ã for q totally split in K g and not dividing the discriminant of g, and a varying in F q , become equidistributed in C with respect to a measure µ g which is either @IA the law of the sum of d-independent and identically distributed Steinhaus random variables (this occurs if and only if the coecient of X d-1 of g(X) is non-zero).

@PA or the pushforward measure via the Laurent polynomial

z 1 + • • • + z d-1 + 1 z 1 . . . z d-1
of the uniform measure on (S 1 ) d-1 (and this occurs if and only if the coecient of X d-1 of g(X) equals zero).

Remark 4.55. he QEliner reltions etween the roots of polynomil with qlois group W d hve een studied in the pper UIF vet us desrie rie)y the type of questions tkled in this rtileD to show the relevne of the study of liner reltions in other prolems of nlyti numer theoryF emong othersD one motivtion is the study of the gheyshev isD prtiulr se of whih is the oservtion mde y gheyshev tht for most xD there re more primes p x tht re ongruent to 3 modulo 4 thn primes p x tht re ongruent to 1 modulo 4F henoting y π(x; 4, 3) nd π(x; 4, 1) the numer of suh primesD gheyshev oserved tht for the (rst thousnds vlues of xD one hd the inequlity π(x; 4, 1) < π(x; 4, 3).

etullyD the (rst vlue of x for whih π(x; 4, 3) < π(x; 4, 1) is PTVTIF vittlewood proved tht π(x; 4, 1) < π(x; 4, 3) tully hnges signs in(nitely oftenD ut stillD the primes ongruent to 3 modulo 4 seem to e hed most of the time in their re ginst the primes ongruent to 1 modulo 4F sn the rtile WQD uinstein nd rnk gve onjeturl explntion of this phenomenonF he (rst hpter of elexndre filleul9s hFhF thesis Q gives very detiled desription of their pprohF sn few wordsD they used expliit formuls to relte the prime ounting funtions involved in the prolem to sums over the zeros of hirihlet LEfuntionsF o understnd the osilltions inside these sumsD one needs @in view of the uronekerEeyl theoremA to study the QEliner reltions etween the imginry prts of the zerosF his led uinstein nd rnk to introdue the linear independence hypothesisD nd onditionlly on this ssumption @s well s the generlized iemnn hypothesis onerning the rel prt of the zerosA they proved tht the set {x 2 | π(x; 4, 1) < π(x; 4, 3)} dmits logrithmi density whih is pproximtely HFWWSWF F F his gives n explntion to gheyshev9s oservtionD nd it extends to ritrry rithmeti progressionsF st revels tht in the re etween π(x; q, a) ginst π(x; q, b)D there is is if a or b is squre modulo q nd the other one is notF he nonEsqures re hed more often thn not in logrithmi densityF IRQ wotivted y the importne of the liner independene hypothesisD uowlski studied in UI nother lss of LEfuntionsX tht of LEfuntions of lgeri urves over (nite (eldsF he following entry on uowlski9s log gives very essile introdution to the ides of tht pperX https://blogs.ethz. ch/kowalski/2008/08/14/independence-of-zeros-of-l-functions-over-function-fields/F he dvntge of this setting is tht the LEfuntions re polynomils @so they only hve (nitely mny rootsA insted of nlyti funtions whih n hve in(nitely mny zerosD nd the iemnn hypothesis hs een proved y heligne for suh LEfuntionsF sn this rtileD uowlski proves tht the liner independene etween the zeros of the LEfuntion ssoited with n hyperellipti urve C is typilly stis(ed mong the urves of ertin fmilyF en estimte qunti(es how rre re the exeptionl urves in the given fmily whose LEfuntions fils to stisfy the liner independene hypothesisF 4.3.6. The Hilbert class polynomial enother polynomil for whih the module of dditive reltions n e determined is the rilert lss polynomil g := H ∆ D whose roots re the jEinvrints of ellipti urves with gw y n imginry qudrti order O of given disriminnt ∆ @seeD eFgFD PQD IQD ropF IQFPAF his mens tht we onsider sums E with CM by O e aj(E) q @RFIQA @summing over isomorphism lsses of ellipti urves with gw y OA for prime numers q totlly split in the ring lss (eld orresponding to the order O @whihD for ∆ = -4m with m 1 (xed squrefree integerD mens primes of the form x 2 + my 2 D see the ook of gox PQ for detilsAF prom roposition RFQHD nd gorollry RFRHD we know tht the symptoti distriution of the sums @RFIQAD s q tends to in(nity nd a vries in F q D is governed y the dditive reltions etween the roots of the rilert lss polynomil @or in other wordsX the dditive reltions etween j!invrints of ellipti urves with gw y OAF sn ftD in the next proposition we prove tht for ll disriminnts ∆ -9D there re no nonEtrivil dditive reltionsD so tht the sums @RFIQA equidistriute with respet to mesure whih is the lw of independent nd identilly distriuted teinhus rndom vrilesF Proposition 4.56. Let ∆ be a negative discriminant, that is: a negative integer such that ∆ ≡ 0, 1 (mod 4). Let O be the unique imaginary quadratic order of discriminant ∆, with class number denoted by h. Let j(τ 1 ), . . . , j(τ h ) be the singular moduli of discriminant ∆, where the imaginary quadratic integers τ k belong to the standard fundamental domain for the action of SL 2 (Z) on the Poincaré upper half-plane H.

Then if ∆ -9, the algebraic integers j(τ 1 ), . . . , j(τ h ) are linearly independent over Q.

Remark 4.57. prom the point of view of ellipti urvesD the j(τ k ) re extly the di'erent jEinvrints of ellipti urves with gw y OF Proof. he proof relies on the following fts 5 X @A {j(τ 1 ), . . . , j(τ h )} is qlois orit over QF his omes from the ft tht the rilert lss polynomil

H ∆ D whih elongs to Z[X] nd is irreduile over QD equls h k=1 (X -j(τ k )).
ee PQD IQ for proofF @A e hve n e'etive estimte of the solute vlue of j(τ ) in terms of the imginry prt of τ D due to filuD wsser nd nnierF xmelyD if τ ∈ H is in the stndrd fundmentl dominD then + 2079.

|j(τ )| -e 2πIm(τ
hnks to these fts omined with lssil estimtes for the lss numer of imginry qudrti ordersD we n now prove roposition RFSTF essume tht there exists nonEtrivil liner reltion over QX h k=1 a k j(τ k ) = 0 @RFIRA hen up to reordering the τ k D we my ssume tht |a 1 | = max 1 k h |a k |D nd fter dividing y a 1 D we my ssume tht a 1 = 1 nd tht for ll k 2 we hve |a k | 1F woreoverD using the ft tht j(τ 1 ) is qlois onjugte over Q of the dominnt singulr modulus of disriminnt ∆D we my ssume tht j(τ 1 ) is the dominnt singulr modulusF henD isolting this term in @RFIRA givesX

j(τ 1 ) = - h k=2 a k j(τ k ).
king solute vlues nd using the estimtes from point @AD we getX

e π √ |∆| -2079 |j(τ 1 )| = h k=2 a k j(τ k ) h k=2 |j(τ k )| Å e π √ |∆| 2 + 2079 ã h.
pinllyD thnks to hirihlet9s nlyti lss numer formul @see eFgF IWD roposition SFQFIP in the se ∆ < -4AD we hve

h = |∆| π L Å 1, Å ∆ - ãã ,
where Ä ∆ -ä is the uroneker symolF fesidesD the vlue t 1 of the LEfuntion is lssilly ounded ove y log(|∆|) + 2 @using summtion y prtsD see for instne SPD ghpter IPD heorem IRFQAF hereforeD

e π √ |∆| -2079 Å e π √ |∆| 2 + 2079 ã |∆| π (log(|∆|) + 2) ,
whih is ontrditory for ll |∆| 9F husD there is no nonEtrivil liner reltion over Q etween the singulr moduli of given disriminnt ∆ -9F

xow let us stte the orollry onerning the distriution of sums of type @RFIQAX Corollary 4.58. Fix a negative discriminant ∆ = -3 and denote by O the unique imaginary quadratic order of discriminant ∆, and by h its class number. As q → ∞ among the primes totally split in the ring class eld corresponding to the order O, the sums E with CM by O e aj(E) q parametrized by a ∈ F q become equidistributed in C with respect to the measure µ which is the law of the sum X 1 + • • • + X h of h independent random variables, each uniformly distributed on the unit circle.

Proof. hen ∆ -9D roposition RFST shows tht the group of dditive reltions of the polynomil g = H ∆ is trivilF hereforeD its orthogonl H g is the full group of funtions from Z g to S 1 nd the uniform distriution result is prtiulr se of gorollry RFRHF sn the remining sesD the lss numer is equl to 1D nd the proof follows from the ft tht the unique jEinvrint of ellipti urve of disriminnt ∆ is nonEzero integerD s shown in the tles of PQD IPD setion gF Remark 4.59. sn the se ∆ = -3D we hve j(E) = 0 for the unique lss of isomorphism of ellipti urves with gw y OD so tht the sums ove re lwys equl to 1F 4.4. Allowing more general Laurent polynomials instead of ax sn this setionD we generlize the previous equidistriution results regrding sums of the type

x∈Zg(Fq)
e Å ax q ã to llow more generl vurent polynomils inside the exponentilsD just s we did in ghpter PF sn prtiulrD this will llow us to otin equidistriution results for

x∈Zg(Fq) e Å a(x + x -1 ) q ã or x∈Zg(Fq) e Å ax + bx -1 q ã .
yne ginD this relies on the uniform distriution of ertin unitry rndom vriles inside sugroup of C(Z g , S 1 ) relted to the reltions etween the roots of the polynomil gF henD uniform distriution of the orresponding exponentil sums follows immeditely from omposition with the liner form σF Proposition 4.60. Let v ∈ Z[X, X -1 ] be a non-constant Laurent polynomial. Assume that 0 / ∈ Z g . Dene random variables W p n on O g /p n for p ∈ S g which divides none of the roots of g and n 1, with values in C(Z g ; S 1 ), by W p n (a)(x) = e τ p n (av( p n (x))) p n .

The random variables W p n converge in law as p n → +∞ to the random function W : Z g → S 1 such that W is uniformly distributed on the subgroup orthogonal to the abelian group R g,v ⊂ C(Z g ; Z) of additive relations between components of (v(x)) x∈Zg , namely

R g,v = {α : Z g → Z | x∈Zg α(x)v(x) = 0}.
Remark 4.61. vet us give some preisions out the ondition whih divides none of the roots of g in the ssumptions oveF por ll x ∈ Z g D the idel xO g is nonEzero idel of the hedekind ring O g @thnks to the ssumption tht 0 / ∈ Z g AF es suhD it n e written s (nite produt

xO g = p p ep
of powers of prime idels of O g D where the produt is indexed y the @(nitely mnyA prime idels ontining xO g F e sy tht p divides x when p ppers in the ftoriztion of the idel xO g F woreoverD let us stress tht the ft tht p ∈ S g does not ensure tht p divides none of the roots of gD so this extr ondition is not super)uousF sndeedD if one onsiders for instne the polynomil g := X 2 +X +3D then disc(g) = -11D so q = 3 is prime numer whih does not divide the disriminnt of gF hereforeD 3 is totlly split in K g if nd only if g splits into distint liner ftors in F 3 F fut g(X) ≡ X(X + 1) (mod 3) o 0 is one of the roots of g modulo 3D whih mens tht if p is n idel of K g lying ove the prime numer 3D then one of the roots of g elongs to p @lthough p ∈ S g euse it lies ove 3D whih is totlly split3A IRT Remark 4.62. he ssumptions tht p divides none of the roots of g is used in the proofD ut is is even neessry to ensure tht our rndom vriles re wellEde(nedF sndeedD in order to e le to write v( p n (x))D for vurent polynomil vD we need p n (x) to e invertile in the ring O g /p n F his is gurnteed y the ft tht for ll x ∈ Z g D we hve tht x / ∈ pF sndeedD O g /p n is lol ring with unique mximl idel p/p n @euse idels of O g /p n orrespond to idels of O g ontining p n D whih re p n ⊂ p n-1 ⊂ • • • ⊂ p ⊂ O g AD nd in lol ringD ll the elements whih do not elong to the mximl idel re unitsF his smll di0ulty on the possiility of some primes dividing root of g justi(es the writing of the proof of roposition RFTHD s it is not ompletely immedite dpttion of the proof of roposition RFQHF sndeedD the issue is tht

S α,v := x∈Zg α(x)v(x)
need not elong to O g @it is n element of K g D ut the ft tht we invert roots of the polynomil g in order to evlute v(x) n give us n element whih no longer elongs to O g AF hereforeD we need to e little it more utious when pplying the homomorphism properties of where -m is the valuation of the Laurent polynomial v fo Proposition 4.60. Then P S α,v ∈ O g and for all n 1, we have

p n : O g → O g /p n D
p n (P S α,v ) = x∈Zg α(x)v( p n (x)).
Proof. sndeedD if we write

v(X) = N i=-m a i X i then p n (P S α,v ) = p n Ñ P x∈Zg α(x) N i=-m a i x i é = p n Ñ x∈Zg α(x) N i=-m a i Ñ y∈Zg\{x} y m é x m+i é = x∈Zg α(x) p n Ñ y∈Zg\{x} y m é N i=-m a i p n x m+i
xextD we use the ft tht for ll -m i N D we hve

p n (x m+i ) = p n (x) m+i euse m + i 0 nd p n is ring homomorphismF xowD p n (x) m+i = p n (x) m p n (x) i = p n (x m ) p n (x)
i nd the rightEhnd side mkes sense even for negtive vlues of i euse p (x) ∈ (O g /p n ) × D thnks to the ssumption tht p does not divide xO g F hereforeD

p n (P S α,v ) = x∈Zg α(x) p n Ñ y∈Zg\{x} y m é p n (x m ) p n (P ) N i=-m a i p n (x) i v( p n (x)) = p n (P ) x∈Zg α(x)v( p n (x)).

IRU

Proof of Proposition 4.60.

vet us (rst prove tht the rndom vrile W p n tkes vlues in R ⊥ g,v F e let a ∈ O g /p n nd we tke α ∈ R g,v F e wnt to prove tht

η α (W p n (a)) = 1. fut we hve η α (W p n (a)) = x∈Zg W p n (a)(x) α(x) = e Ñ τ p n (a) p n τ p n Ñ x∈Zg α(x)v( p n (x))
éé xow thnks to vemm RFTQ we hve tht

x∈Zg α(x)v( p n (x)) = p n (P S α,v ) nd S α,v = 0 sine α ∈ R g,v F
his gives the onlusionF xowD let us prove the onvergene in lw of the rndom vriles W p n F e let η α e nonEtrivil hrter of R ⊥ g,v D whih mens tht α / ∈ R g,v D nd we wnt to prove tht

E (η α (W p n )) -→ p n →+∞ 0.
pirstD we write

E (η α (W p n )) = 1 p n a∈Og/p n η α (W p n (a)) = 1 p n a∈Og/p n e Ñ τ p n (a) p n τ p n Ñ x∈Zg α(x)v( p n (x))
éé xextD we use gin vemm RFTQD whih tells us tht

x∈Zg α(x)v( p (x)) = p (P S α,v ) fut nowD S α,v = 0 thnks to the ssumption tht α / ∈ R g,v D so tht P S α,v = 0F husD N Kg/Q (P S α,v ) is nonEzero integerD nd if p n (P S α,v ) = 0 then p n divides itD so in prtiulr p n N Kg/Q (P S α,v )F hereforeD s soon s p n > N Kg/Q (P S α,v )D we hve p n (P S α,v ) = 0D hene x∈Zg α(x)v( p n (x)) = 0D so tht E (η α (W p n )) = 0 y orthogonlity of hrtersF por instneD if v(x) = x + x -1 D we hve tht W is uniformly distriuted in the orthogonl of the group R g,v =    α : Z g → Z | x∈Zg α(x) Å x + 1 x ã = 0    .
Corollary 4.64. For q totally split in K g and not dividing any root of g nor its discriminant, we have that the sums x∈Zg(Fq) e Å a(x + x -1 ) q ã parametrized by a ∈ F q become equidistributed with respect to a measure which is the law of σ(W ), with W as above.

IRV vet us now turn our ttention to the suitle setting to hndle sums of the form

x∈Zg(Fq) e Å ax + bx -1 q ã .
Proposition 4.65. Let k 1 be an integer and let m = (m 1 , . . . , m k ) ∈ Z k . For p ∈ S g dividing none of the roots of g, and n 1, dene random variables Y p n on the space (O g /p n ) k with uniform probability measure, with values in C(Z g ; S 1 ), by

Y p n (a 1 , . . . , a k )(x) = e Å τ p n (a 1 p n (x) m 1 + • • • + a k p n (x) m k ) p n ã .
The random variables Y p n converge in law as p n → +∞ to the random function Y : Z g → S 1 such that Y is uniformly distributed on the subgroup orthogonal to the abelian group

R g,m := {α : Z g → Z | x∈Zg α(x)x m j = 0 for 1 j k}
of common additive relations between powers of elements of Z g .

Proof. por α ∈ C(Z g , Z)D omputtion shows tht

E(η α (Y p n )) = k j=1 1 p n a j ∈Og/p n e Ñ τ p n (a j ) p n τ p n Ñ x∈Zg α(x) p n (x) m j éé
xow thnks to the ssumption tht p divides none of the roots of gD vemm RFTQ pplied to the vurent polynomil X m j shows tht x∈Zg α(x) p n (x) m j equls zero if x∈Zg α(x)x m j = 0D whih is the se for ll j if we ssume tht α ∈ R g,m F his proves tht the rndom vriles Y p n tke vlues in the sugroup R ⊥ g,m of C(Z g , S 1 )F yn the other hndD if α / ∈ R g,m D then there exists j ∈ {1, . . . , k} suh tht x∈Zg α(x)x m j = 0D nd this implies tht x∈Zg α(x) p n (x) m j is nonEzero s soon s p n is su0iently lrgeF he ftor orresponding to j in E(η α (Y p n ) is then equl to zero for ll p n su0iently lrgeF his proves the desired uniform distriutionF Example 4.66. gonsider the se of g = X d -1 nd the sums

x∈µ d (Fq) e Å a(x + x -1 ) q ã @RFISA with a vrying in F q D nd x∈µ d (Fq) e Å ax + bx -1 q ã , @RFITA
with a nd b vrying in F q for q totlly split in K g F foth stisfy equidistriutionD ut in generl with di'erent mesuresF por @RFISAD we need to determine the funtions α stisfying the reltion

x∈µ d α(x)(x + x -1 ) = 0,
nd for @RFITAD we need to solve

x∈µ d α(x)x = x∈µ d α(x)x -1 = 0.
IRW his lst se gives the sme reltions s in the end of setion RFIFRD sine the seond sum ove is the omplexEonjugte of the (rstF por instneD in the se d = 3D this mens tht the sums @RFITA will eome equidistriuted with respet to the mesure on C whih is the pushforwrd mesure vi

S 1 × S 1 → C (y 1 , y 2 ) → y 1 + y 2 + 1 y 1 y 2
of the uniform mesure on S 1 × S 1 F his is illustrted in pigure RFQ @AD sine the imge of the ove mp is the losed region delimited y 3Eusp hypoyloidF por @RFISAD on the other hndD the reltion is equivlent to

x∈µ d (α(x) + α(x -1 ))x = 0,
whih mens tht β : x → α(x) + α(x -1 ) elongs to the module of dditive reltions of the polynomil X d -1F sf d = is prime numerD for instneD this mens tht β is onstntF sn the se = 3D the group R X -1,x+x -1 is generted y the onstnt funtion 1 nd @syA the funtion on roots of unity of order whih gives the sign of the imginry prt @with the imginry prt 0 mpped to 0AF his implies tht the sums @RFISA eome equidistriuted in the imge of the mp

S 1 → C y → 2y + 1 y 2
with respet to the pushforwrd mesure of the rr mesure on S 1 F ine the imge of this mp is preisely the 3Eusp hypoyloid @see he(nition PFQA this explins the piture otined in pigure RFQ @AF (a) The sums of type (4.15) for d = 3, q = 811, and a varying in F q .

(b) The sums of type (4.16) for d = 3, q = 109, and a and b varying in F q .

pigure RFQX gomprison etween the regions of equidistriution for sums of type @RFISA nd sums of type @RFITAF ISH 4.A. Duality of compact abelian groups and Weyl's criterion Duality of compact abelian groups. vet G e ompt elin group @heorem RFTV nd roposition RFUH hold more generlly for lolly ompt elin groupsD ut we only need the ompt se in the pplitions of this hpterAF Denition 4.67. A character of G is a continuous group homomorphim from G to S 1 (a more precise name would be ontinuous unitry hrter). We denote by " G the group of characters of G. It is called the dual of G.

sf H is sugroup of GD then we n lwys restrit to H hrter of GD nd this gives n element of " HF e onsequene of ontrygin dulity is the ft tht when H is losedD ll hrters of H re of this form3 Theorem 4.68 @WRD heorem PFIFRA. If H be a closed subgroup of G then the restriction homomorphism

" G → " H χ → χ |H is surjective.
In other words, any character of H can be extended to a character dened on all G.

es in liner lgerD we n use the dul to de(ne the orthogonal or annihilator of suset of G s the set of hrters whih re trivil on itF here is lso the dul notion of orthogonl of suset of " GD nd we gther the two de(nitions elowX Denition 4.69 @yrthogonl of susetA.

If A is a subset of G, we denote by A ⊥ := ¶ χ ∈ " G; ∀x ∈ A, χ(x) = 1 © . If B is a subset of " G, we denote by B ⊥ := {x ∈ G; ∀χ ∈ B, χ(x) = 1}.
enother onsequene of ontrygin dulity is the following ftD whih is reminisent of wht hppens in (nite dimensionl vetor spesF Proposition 4.70 @WRD vemm PFIFQA. If H is a closed subgroup of G then H ⊥ ⊥ = H.

Equidistribution and Weyl's criterion. sf we hve sequene (X n ) of rndom vriles de(ned on some proility spes (Ω n , F n , P n ) nd with vlues in the ompt elin group GD we sy tht the sequene onverges in lw to uniformly distriuted rndom vrile on G if the distriution of X n @whih is the pushforwrd mesure of P n vi X n A onverges wekly to the proility rr mesure µ G on GF sn other words

X n law -→ U(G) ⇐⇒ Ωn f (X n (ω))dP n (ω) -→ n→∞ G f (x)dµ G (x)
for ll ontinuous mp f : G → CF eyl9s riterion sttes tht it su0es to hek this onvergene for mps f whih re hrters of GF e stte it elow in the form of USD heorem fFTFQX Theorem 4.71 @eyl9s riterionA. Let G be a compact abelian group. A sequence (X n ) of G-valued random variables converges in law to a uniformly distributed random variable on G if and only if for any non trivial character χ of G,

E(χ(X n )) -→ n→∞ 0.
pinllyD the group (S 1 ) d nd its losed sugroups will e of prtiulr interest for usD so we need preise desription of their hrtersF Proposition 4.72 @ghrters of (S 1 ) d A. Let G be the compact group (S 1 ) d . The characters of G are exactly the maps

χ m : G → S 1 (z 1 , . . . , z d ) → z m 1 1 • • • z m d d for m = (m 1 , . . . , m d ) ∈ Z d .
Moreover, χ m is the trivial character if and only if m = (0, . . . , 0). ISI 4.B. On ramication in number elds qiven numer (eld K @tht isX (nite extension of the (eld QAD we denote y O K its ring of integersF fy de(nitionD it is the set {x ∈ K | there exists moni polynomil P ∈ Z[X] suh tht P (x) = 0} .

st n e shown tht this suset is tully suring of KF sn generlD this ring O K is not unique ftoriztion dominD ut it is lwys Dedekind ringF his implies tht even though unique ftorizE tion might fil t the level of elements of O K D there is n essentilly unique ftoriztion t the level of idels of O K F xmelyD for ny nonEzero idel a ⊂ O K D there exist (nite set of prime idels p 1 , . . . , p r nd positive integers α 1 , . . . , α r suh tht

a = p α 1 1 . . . p αr r .
his ftoriztion is unique up to permuttion of the p i F he prime idels whih pper in this deomposition re preisely those whih ontin aF sn prtiulrD if p is prime numer in ZD the idel generted y p in O K n e deomposed s produt of the form oveF sf pO K ⊆ p @iFeF if p ppers t nonEzero power in the ftoriztion of pO K s produt of prime idelsAD we sy tht p lies above pD or tht p divides p nd we denote this ondition y p | pF e denote y e p the power t whih the idel p ppers in the ftoriztionF ith these nottionsD we hve

pO K = p|p p ep .
Denition 4.73. The integer e p ∈ Z >0 is called the ramication index of p at p. pinllyD let us introdue some terminology regrding the numers e p nd f p F Denition 4.75.

If e p = 1, we say that the extension K/Q is unramied at p, or that p is unramied.

If for all p | p, the extension K/Q is unramied at p, we say that the prime p is unramied.

If for all p | p we have e p = f p = 1, we say that p is totally split in K.

en importnt result to hve in mind is tht when the extension K/Q is qloisD Gal(K/Q) ts trnsitively on the set of prime idels p dividing given prime pF e onsequene of this ft is tht the numers e p nd f p do not depend on pD they re the sme for any idel p | pF es onsequeneD in the qlois seD prime p is totlly split in K if nd only if there exists prime idel p dividing p suh tht e p = f p = 1F

ISP

Chapter 5

Discrepancy estimates he im of this hpter is to study the speed of the onvergene in lw of the rndom vriles U p introdued in the previous hpterF sn order to do thisD we need to generlize the irdösEuránEuoksm inequlity to closed subgroups of (S 1 ) k D sine the rndom vriles U p tke vlues in losed sugroup of C(Z g , S 1 ) (S 1 ) deg g F sing the wellEknown lssi(tion of suh sugroupsD we propose de(nition of the ϕEdisrepny of sequene whih depends on the hoie of n isomorphism ϕ with (R/Z) d ⊕ F D where F is (nite elin groupF hen we prove tht this disrepny deys t lest s fst s p 

1 N N n=1 f (z n ) -→ N →+∞ T k f dλ k , @SFIA
where λ k denotes the proility rr mesure on the ompt elin group

T k F iquivlentlyD (z n ) eomes equidistriuted in T k if for ny retngle I := [a 1 , b 1 ] × • • • × [a k , b k ] ⊆ (R/Z) k @with 0 b i -a i 1AD the right proportion of the terms (z n ) flls inside the retngle @symptotillyAD tht isX #{1 n N, z n ∈ I} N -→ N →+∞ k j=1 (b j -a j )
ISQ he elerted eyl9s riterion sserts tht one n hek the onvergene @SFIA only on ertin lss of funtionsX the trigonometri polynomilsF sn other wordsD

(z n ) eomes equidistriuted in T k if nd only if for ll m ∈ Z k \ {0}D 1 N N n=1 e(m • z n ) -→ N →+∞ 0.
e ll the sums on the leftEhnd side the eyl sums ssoited with this equidistriution prolemF Notation: in the remainder of this chapter, χ m denotes the character e(m • (-)) of T k . The dimension k will always be clear in the context.

he irdösEuránEuoksm inequlity is theorem whih gives ontrol of the disrepny of sequene in T k in terms of the eyl sumsF st llows one to dedue rte of equidistriution from estimtes on the dey of the solute vlue of the eyl sumsF fefore stting itD let us rell the de(nition of the disrepny in this ontextF Denition 5.1. If z = (z n ) n 1 is a sequence of elements of T k , we dene its discrepancy at the rank

N as D N (z) := sup I∈I k # {1 n N, z n ∈ I} N -λ k (I)
where I k denotes the set of rectangles

I = [a 1 , b 1 ] × • • • × [a k , b k ] of T k .
e n now stte the irdösEuránEuoksm inequlityX Theorem 5.2 @PWD heorem IFPIA. Let z = (z n ) n 1 be a sequence of elements of T k . Then for all

H 1 and all N 1,

D N (z) Å 3 2 ã k Ü 2 H + 1 + m∈Z k 0< m ∞ H 1 r(m) 1 N N n=1 e(m • z n ) ê where r(m) = k j=1 max(1, |m j |) for m = (m 1 , . . . , m k ) ∈ Z k .
he min im of this hpter is to prove n extension of this result whih gives ontrol of the disrepny of sequene of elements in losed sugroup G ⊆ T k in terms of the eyl sumsD tht is sums of the form

1 N N n=1 χ(z n )
where χ is hrter of GF yur (rst step onsists in the study of the struture of suh losed sugroupsF st is tully quite well understoodD nd we rell some fts in the next setionD orrowing from IHF

Generalization to closed subgroups of

T k 5.2.1. Structure of closed subgroups of T k sf G is losed sugroup of T k D then it orresponds @vi the nonil mp R k → R k /Z k A to losed sugroup of R k ontining Z k D
whih we denote y G F hnks to IHD ghpter UD there exists sis a 1 , . . . , a k of R k suh tht

Z k = k i=1 Za i G = Ä d i=1 Ra i ä ⊕ Ä k i=d+1 Za i ä ,
where eh a i is equl to 1 m i a i for some integers m i @the m i re the invrint ftors of some ZEmoduleD dul in some sense of the module G AF sf we denote y B the sis (a 1 , . . . , a d , a d+1 , . . . , a k ) of R k nd y P := P B,C the hngeEofEsis mtrix whih tkes the oordintes of vetor x ∈ R k in the nonil sis nd returns the vetor of its oordintes in the sis BD then P indues n isomorphism

ϕ P : G → T d ⊕ k i=d+1 Z/m i Z =:F =: T d ⊕ F.
@SFPA ixpliitlyD we strt from n element x ∈ GD we lift it to n element x in R k D nd we denote y (x 1 , . . . , x k ) its oordintes in the nonil sis of R k D then we multiply tht vetor y the mtrix P D to otin the vetor (y 1 , . . . , y k ) mde of the oordintes of x in the sis BF xowD thnks to the expliit desription of G in the sis BD we know tht y 1 , . . . , y d re rel numers nd tht y d+1 , . . . , y k re integersF hen we redue the (rst d oordintes modulo 1D nd the following oordintes y i eh modulo m i F his desries the isomorphism ϕ P F etions SFPFP nd SFPFQ of this hpter re devoted to proving heorem SFIQD whih generlizes heoE rem SFP to the se of the group T d ⊕ F D where F is ny (nite elin groupF his will llow us to dedue n inequlity of irdösEuránEuoksm type for sequenes tking vlues inside ny losed sugroup G of T k @the inequlity will depend in reltively wellEunderstood wy of the hoie of n isomorphism G → T d ⊕ F s onstruted in @SFPAAF fefore proving heorem SFIQD we need to de(ne some onvolution kernels nd to study their properties from the point of view of pourier nlysisF 5.2.2. Construction of convolution kernels via Fourier analysis e will tke the following onvention for the pourier trnsform on RX if f ∈ L 1 (R)D we de(ne its pourier trnsform s

f : x → R f (t)e(-xt)dt.
ith this onventionD the pourier inversion formul tkes the following formX

Proposition 5.3. If f ∈ L 1 (R) and f ∈ L 1 (R), then f (t) = " " f (-t) = R f (x)e(tx)dx.
sn PWD setion IFPFPD the following funtion is introdued

H(z) := Å sin(πz) π ã 2 n∈Z sgn(n) (z -n) 2 + 2 z , @SFQA nd the uthors set J(z) := 1 2 H (z).
his quite omplited de(nition of J is useful in the proofsD ut only the properties of J stted in the lemm elow will e needed to follow our proofD s we will rely on some fts stted in PW without reproduing the full rgumentsF Lemma 5.4 @PWD vemm IFPQA. The function J belongs to L 1 (R) and its Fourier transform is given by

J(t) =      1 if t = 0 πt(1 -|t|) cot(πt) + |t| if 0 < |t| < 1 0 otherwise ISS Moreover, J is decreasing on [0, 1].
Remark 5.5. xote tht there is typo in PWD vemm IFPQ @cos is written insted of cotAF yn the other hndD the following funtion K is lso introduedX

K(z) = Å sin(πz) πz ã 2
nd its pourier trnsform is the tringle funtionF wore preiselyX Lemma 5.6. For all t ∈ R, we have "

K(t) = (1 -|t|)1 |t| 1 .
Proof. en elementry lultion shows tht for ll z ∈ R we hve he two funtions J nd " K re then used to de(ne the pourier oe0ients of two sequenes of trigonoE metri polynomilsX Denition 5.7. For all integers H 1, we dene the two following trigonometric polynomials of degree H:

K(z) = 1 -1 (1 -|t|)e(zt)
j H (x) := H h=-H J Å h H + 1 ã e(hx) k H (x) := H h=-H " K Å h H + 1 ã e(hx)
To gain some space, we will write J H+1 (h) and " K H+1 (h) for J Ä h H+1 ä

and " K Ä h H+1 ä . pinllyD we will need to lulte the onvolution etween 1Eperiodi funtionsD so we rell few nottionsF por f nd g two 1Eperiodi funtionsD de(ne f g s followsX

(f g)(x) = 1/2 -1/2 f (x -t)g(t)dt. imilrlyD if f is 1Eperiodi nd µ is 1Eperiodi mesure on RD (f dµ)(x) = 1/2 -1/2 f (x -t)dµ(t). IST pinllyD if f : R → RD the totl vrition of f on [a, b] is de(ned s V f ([a, b]) := sup n-1 i=0 |f (x i+1 ) -f (x i )|,
where the supremum is tken over ll prtitions a =

x 0 < x 1 < • • • < x n-1 < x n = b of [a, b]F his de(nes mesure V f on RD whih is 1Eperiodi if the funtion f is 1EperiodiF e sy tht f is of ounded vrition on [a, b] if V f ([a, b]) < +∞F
he min theorem on pproximtion y onvolutionsD tht we re going to use without proofD is the following result due to ler @see IHRD heorem IWAF Theorem 5.8 @PWD heorem IFPSA. Let f be a real function of bounded variation and period 1 satisfying

|2f (x 0 ) -f (x - 0 ) -f (x + 0 )| |f (x - 0 ) -f (x + 0 )| for all x 0 ∈ [0, 1].
Then the trigonometric polynomials f j H and dV f k H are at most of degree H and satisfy

|f (x) -f j H (x)| 1 2H + 2 dV f k H (x)
for all x ∈ R.

epplying this result to f = 1 I for some intervl of R of length 1 gives the following orollryF Corollary 5.9. Let I ⊆ R be an interval of length λ 1 (I) 1. Then for all H 1 and for all x ∈ R,

|1 I (x) -1 I j H (x)| 1 H + 1 H h=-H " K H+1 (h)C h e(hx)
where C h = 1 2 1 0 e(-hx)dV 1 I (x) satises |C h | 1 for all h, and C 0 = 1.

Proof. st is n pplition of PWD heorem IFPS to the funtion f = 1 I F his prtiulr se is stted t the eginning of the proof of PWD gorollry IFPTF Remark 5.10. sn this hpterD we only fous on the onsequenes of the nlyti properties of the funtions H, J, K ove on irdösEuránEuoksm type inequlitiesD ut ler9s rtile IHR gives other pplitionsD suh s one whih is importnt in elerg9s lrge sieveF he extremlity property stis(ed y the entire funtion tht we denoted y H in @SFQA is lredy eutiful result on its ownD see IHR for detilsF 5.2.3. An extension of Theorem 5.2 to direct sums of a torus with a nite abelian group vet d 1 nd let F e (nite elin groupF e denote y Γ the group T d ⊕ F F por ny hrter χ m of T d nd ny hrter ψ of F D we denote y χ m ⊗ ψ the hrter of Γ de(ned yX

Γ = T d ⊕ F → S 1 (x, y) → χ m (x)ψ(y)
hen the mp F such that χ = χ m ⊗ ψ. Then we introduce the following quantities which measure the size of the character χ:

Z d × " F → Γ (m, ψ) → χ m ⊗ ψ is n isomorphism
T (χ) := m ∞ r(χ) = d j=1 max(1, |m j |)
vet us stress tht these notions of size of hrter only tke into ount the ontinuous prt χ m D without tking into the disrete prt ψ into onsidertionF xowD let us de(ne the nturl notion of disrepny for sequene with vlues in ΓF Denition 5.12. If z = (z n ) n 1 is a sequence of elements of Γ = T d ⊕ F , we dene its discrepancy as

D N (z) := sup I∈I d y∈F # {1 n N, z n ∈ I × {y}} N - λ d (I) |F | where I d denotes the set of rectangles I = [a 1 , b 1 ] × • • • × [a d , b d ] of T d .
e rther lengthy ut simple dpttion of the proof of heorem SFP gives the following extension of the irdösEuránEuoksm inequlityF Theorem 5.13. Let z = (z n ) n 1 be a sequence of elements of Γ = T d ⊕ F . Then for all H 1 and all N 1, 

D N (z) Å 3 2 ã d á 2 H + 1 + 1 |F | χ∈ Γ\{1} 0 T (χ) H 1 r(χ) 1 N N n=1 χ(z n ) ë Proof. he following proof is n dpttion of the proof of PWD heorem IFPIF por ll n 1D we write z n s (x n , y n )D where x n = Ä x (1) n , . . . , x (d) n ä 
I = I 1 × • • • × I d = [a 1 , b 1 ] × • • • × [a d , b d ] ∈ I d .
hen for ll H 1D we hve

N n=1 1 I (x n )1 {y} (y n ) -N λ d (I) m = N n=1   Ñ d j=1 1 I j Ä x (j) n ä é 1 {y} (y n ) - Ñ d j=1 f j Ä x (j) n ä é 1 {y} (y n )   + N n=1   Ñ d j=1 f j Ä x (j) n ä é 1 {y} (y n ) - λ d (I) m   , where f j Ä x (j) n ä := 1 I j j H Ä x (j) n ä
F henote the (rst sum on the rightEhnd side y S N nd the seond one y T N F Estimation of |S N |. hnks to the tringle inequlity nd to vemm SFIV to ontrol the inner di'erene of produtsD we hve

|S N | N n=1 1 {y} (y n ) Ñ Ø =J⊆{1,...d} j / ∈J 1 I j Ä x (j) n ä j∈J f j Ä x (j) n ä -1 I j Ä x (j) n ä é N n=1 1 {y} (y n ) Ñ Ø =J⊆{1,...d} j∈J f j Ä x (j) n ä -1 I j Ä x (j) n ä é = N n=1 1 {y} (y n )   d j=1 1 + f j Ä x (j) n ä -1 I j Ä x (j) n ä -1   ISV
xowD thnks to vemm SFWD we hve tht for ll j ∈ {1, . . . , d}D

f j Ä x (j) n ä -1 I j Ä x (j) n ä 1 H + 1 H h j =-H " K H+1 (h j )C h j e Ä h j x (j) n ä , hene |S N | N n=1 1 {y} (y n )   d j=1 Ñ 1 + 1 H + 1 H h j =-H " K H+1 (h j )C h j e Ä h j x (j) n ä é -1   = N n=1 1 {y} (y n )   d j=1 Ñ 1 + 1 H + 1 + 1 H + 1 0<|h j | H " K H+1 (h j )C h j e Ä h j x (j) n ä é -1   ,
using the ft tht C 0 = " K H+1 (0) = 1F hen we develop the produtD this gives the following upper oundX

|S N | N n=1 1 {y} (y n ) ñ Å 1 + 1 H + 1 ã d -1 ô + N n=1 1 {y} (y n )   J {1,...d} Ñ Å 1 + 1 H + 1 ã |J| Å 1 H + 1 ã d-|J| j / ∈J 0<|h j | H " K H+1 (h j )C h j e Ä h j x (j) n ä é  xowD j / ∈J 0<|h j | H " K H+1 (h j )C h j e Ä h j x (j) n ä = h=(h 1 ,...h d )∈Z d 0<|h j | H if j / ∈J h j =0 if j∈J Ñ j / ∈J " K H+1 (h j )C h j é e(h • x n ),
so the seond sum in the previous upper ound of |S N | my e rewritten s followsX

N n=1 1 {y} (y n ) J {1,...d} Å 1 + 1 H + 1 ã |J| Å 1 H + 1 ã d-|J| h=(h 1 ,...h d )∈Z d 0<|h j | H if j / ∈J h j =0 if j∈J Ñ j / ∈J " K H+1 (h j )C h j é e(h • x n ) = J {1,...d} Å 1 + 1 H + 1 ã |J| Å 1 H + 1 ã d-|J| h=(h 1 ,...h d )∈Z d 0<|h j | H if j / ∈J h j =0 if j∈J Ñ j / ∈J " K H+1 (h j )C h j é N n=1 1 {y} (y n )e(h • x n ) = h∈Z d 0< h ∞ H Å 1 + 1 H + 1 ã α(h) Å 1 H + 1 ã d-α(h) Ü 1 j d h j =0 " K H+1 (h j )C h j ê N n=1 1 {y} (y n )e(h • x n ).
where α(h) denotes #{1 j d, h j = 0}F pinllyD sine

1 j d h j =0 " K H+1 (h j )C h j 1,

ISW

we onlude tht

|S N | N n=1 1 {y} (y n ) ñ Å 1 + 1 H + 1 ã d -1 ô + h∈Z d 0< h ∞ H Å 1 + 1 H + 1 ã α(h) Å 1 H + 1 ã d-α(h) N n=1 1 {y} (y n )e(h • x n ) .
Estimation of |T N |. ell tht

T N = N n=1   Ñ d j=1 f j Ä x (j) n ä é 1 {y} (y n ) - λ d (I) m  
epling j H y its de(nition llows one to rewrite

f j Ä x (j) n ä s H h j =-H 1 I j (h j ) J H+1 (h j )e Ä h j x (j) n ä . husD d j=1 f j Ä x (j) n ä = d j=1 H h j =-H 1 I j (h j ) J H+1 (h j )e Ä h j x (j) n ä = h=(h 1 ,...h d )∈Z d 0 h ∞ H Ñ d j=1 1 I j (h j ) J H+1 (h j ) é e(h • x n ).
xowD for ll j ∈ {1, . . . , d}D we hve 1 I j (0) = λ 1 (I j ) nd J H+1 (0) = 1D so the term orresponding to h = 0 in the previous sum is equl to the produt of the λ 1 (I j )D tht isX λ d (I)F husX

T N = N n=1      1 {y} (y n ) á h=(h 1 ,...h d )∈Z d 0< h ∞ H Ñ d j=1 1 I j (h j ) J H+1 (h j ) é e(h • x n ) ë + λ d (I) Å 1 {y} (y n ) - 1 m ã      .
hnks to the tringle inequlity nd to the inequlity λ d (I) 1D we dedueX

|T N | N n=1 Å 1 {y} (y n ) - 1 m ã + h=(h 1 ,...h d )∈Z d 0< h ∞ H Ñ d j=1 1 I j (h j ) J H+1 (h j ) é N n=1 1 {y} (y n )e(h • x n ) N n=1 1 {y} (y n ) - N m + h=(h 1 ,...h d )∈Z d 0< h ∞ H d j=1 1 I j (h j ) J H+1 (h j ) N n=1 1 {y} (y n )e(h • x n )
xextD we use the upper ounds J H+1 (h j ) 1 nd

1 I j (h j ) λ 1 (I j ) 1 if h j = 0 1 π|h j | if h j = 0 ITH to otin the estimte |T N | N n=1 1 {y} (y n ) - N m + h=(h 1 ,...h d )∈Z d 0< h ∞ H 1 π d-α(h) r(h) N n=1 1 {y} (y n )e(h • x n ) .
@we rell here tht α(h) denotes #{1 j d, h j = 0}D while r(h) = d j=1 max(1, |h j |)AF

Conclusion. e hve

N n=1 1 I (x n )1 {y} (y n ) -N λ d (I) m = |S N + T N | |S N | + |T N |,
so if we use the two previous steps nd divide y N D this gives

# {1 n N, z n ∈ I × {y}} N - λ d (I) m ñ Å 1 + 1 H + 1 ã d -1 ô 1 N N n=1 1 {y} (y n ) + h∈Z d 0< h ∞ H Å 1 + 1 H + 1 ã α(h) Å 1 H + 1 ã d-α(h) 1 N N n=1 1 {y} (y n )e(h • x n ) + 1 N N n=1 1 {y} (y n ) - 1 m + h=(h 1 ,...h d )∈Z d 0< h ∞ H 1 π d-α(h) r(h) 1 N N n=1 1 {y} (y n )e(h • x n ) .
pinllyD we use the inequlity

1 N N n=1 1 {y} (y n ) 1
s well s the two following upper ounds one n (nd t the ottom of PWD pF PPX

         Ä 1 + 1 H+1 ä d -1 3 2 d 2 H+1 Ä 1 + 1 H+1 ä α(h) Ä 1 H+1 ä d-α(h) + 1 π d-α(h) r(h) 3 2 d 1 r(h) • his gives # {1 n N, z n ∈ I × {y}} N - λ d (I) m Å 3 2 ã d á 2 H + 1 + h=(h 1 ,...h d )∈Z d 0< h ∞ H 1 r(h) 1 N N n=1 1 {y} (y n )e(h • x n ) ë + 1 N N n=1 1 {y} (y n ) - 1 m .
hen heorem SFIQ follows from the trivil ound 1 (3/2) d nd from writing 

1 {y} (y n ) = 1 m ψ∈ " F ψ(y n )ψ(y
I = [a 1 , b 1 ] × • • • × [a k , b k ]
of intervals of length less than or equal to 1, we dene the discrepancy of (z n ) at rank N as:

D N (z) := sup I∈I k # {1 n N, z n ∈ I} N -µ G (I ∩ G)
where µ G denotes the Haar measure on G.

Advantage: this de(nition does not depend on ny hoieD nd seems to e dpted to ny sugroup G of T k F Drawback: it seems di0ult to understnd the intersetions I ∩ G well enough for ny losed sugroup GD nd understnding these intersetions seems importnt to dpt the lssil proofs of heorem SFP to this settingF hereforeD we thought out n lterntive de(nition of the disrepnyD whih is less intrinsiD ut is esier to work withF Denition 5.15. One can x an isomorphism of topological groups ϕ : G → T d ⊕ F , and then dene a notion of ϕ-discrepancy using this isomorphism:

D ϕ N (z) := sup I∈I d y∈F # {1 n N, ϕ(z n ) ∈ I × {y}} N - λ d (I) |F |
Advantage: this de(nition llows us to use our heorem SFIQ nd still hs n interprettion s meE sure of the rte of onvergene to the rr mesure on the sugroup GF Drawback: it depends on the hoie of n isomorphismF en ide to otin from this lst de(nition n intrinsi notion of disrepny would e to try to tke n vergeD or even supremum over ll isomorphisms ϕD nd to de(ne the disrepny s sup ϕ D ϕ N (z)F roweverD s we will see elowD the upper ounds we otin depend on ϕ nd s see no reson why they ould e uniformly oundedF sn the next setionD we use he(nition SFIS nd prove n irdösEuránEuoksm inequlity for ny losed sugroup G of T k D relying on the hoie of n isomorphim ϕ P with some T d ⊕ F onstruted s in etion SFPFID nd on heorem SFIQF 5.2.5. A version of Erdös-Turán-Koksma inequality for subgroups of a torus vet G e losed sugroup of T k D nd let ϕ P e n isomorphism s in etion SFPFID indued y the hngeEofEsis mtrix P X ϕ

P : G → T d ⊕ F,
where F = k i=d+1 Z/m i Z for some positive integers m i F vet z = (z n ) n 1 e sequene of elements of GF e wnt to estimte its ϕ P Edisrepny @he(nition SFISAF hnks to heorem SFIQ pplied to the sequene (ϕ P (z n )) n 1 D we hve tht for ll N 1 nd for ll H 1D

D ϕ P N (z) Å 3 2 ã d Ü 2 H + 1 + 1 |F | χ 0 T (χ) H 1 r(χ) 1 N N n=1 χ(ϕ P (z n )) ê @SFRA
where the sum rnges over ll nonEtrivil hrters χ of T d ⊕ F F hese hrters re of the form χ h ⊗ ψD where ψ ∈ " F @see the eginning of setion SFPFQAD nd the ondition T (χ) H mens tht those whih pper in the sum re the ones suh tht h ∞ HF xowD the issue with the sum ove is tht it is indexed y hrters of T d ⊕ F D ut we would like to view it s sum over the hrters of GD with some ontrol of the size of those hrtersF qldlyD the isomorphism ϕ P indues the following isomorphism etween the dul groupsX

" ϕ P : ◊ T d ⊕ F → " G χ → χ • ϕ P
husD the sum on the rightEhnd side of @SFRA is esily turned into sum over hrters of GF he ontrol of ertin notion of size is given y the following lemmF he ide is tht ny hrter of the losed sugroup G ⊆ T k n e extended to hrter of T k D nd ll suh hrters re of the form e (h • (-)) for some h ∈ Z k F e then ontrol their size y ontrolling the ∞ Enorm of suh n h F Lemma 5.16. If χ is a character of T d ⊕ F such that 0 T (χ) H, then there exists h ∈ Z k such that h ∞ t P op H and " ϕ P (χ) = e h • (-) |G .

Here t P op denotes the operator norm (associated with the supremum norm on R k ) of the matrix t P . woreoverD we proved tht for ll z ∈ GD we hve

" ϕ P (χ)(z) = χ(ϕ P (z)) = χ h ⊗ ψ(ϕ P (z)) = χ h (x)ψ(y) = e(h • x) k i=d+1 e Å κ i m i y i ã sf we denote y h ψ the vetor of Z d ⊕ 1 m d+1 Z ⊕ • • • ⊕ 1 m k Z á h κ d+1 m d+1 F F F κ k m k ë we hve " ϕ P (χ)(z) = e (h ψ • ϕ P (z)) = e (h ψ • P z) ITQ where z is lift in R k of the element z ∈ G ⊆ T k F xextD
" ϕ P (χ)(z) = e h • z
whih onludes the proofF qoing k to the ϕ P Edisrepny of our sequene (z n ) n 1 in GD we hve

D ϕ P N ((z n ) n 1 ) Å 3 2 ã d Ü 2 H + 1 + 1 |F | χ 0 T (χ) H 1 r(χ) 1 N N n=1 " ϕ P (χ)(z n ) ê
thnks to @SFRA nd to the de(nition of " ϕ P F xowD s χ rnges over the nonEtrivil hrters of T d ⊕ F stisfying 0 T (χ) HD " ϕ P (χ) rnges over suset of

" G t P op H := η ∈ " G \ {1} | ∃h ∈ Z k , h ∞ t P op H η = e (h • (-)) |G .
his is the set of nonEtrivil hrters of G whih re the restrition to G of hrter of T k ssoited with n integrl vetor h whih stis(es h ∞ t P op HF hereforeD

D ϕ P N ((z n ) n 1 ) Å 3 2 ã d Ü 2 H + 1 + 1 |F | η∈ " G t P op H 1 r Ä " ϕ P -1 (η) ä 1 N N n=1 η(z n ) ê
vet us sum up wht we proved in the following theoremX Theorem 5.17. Let G be a closed subgroup of T k and let

ϕ P : G → T d ⊕ F
be an isomorphism as in Section 5.2.1, induced by a change-of-basis matrix P. As before, d k and F = k i=d+1 Z/m i Z for some positive integers m i . Let z = (z n ) n 1 be a sequence of points in G. We have the following Erdös-Turán-Koksma type inequality concerning the ϕ P -discrepancy: for all N 1 and all H 1,

D ϕ P N (z) Å 3 2 ã d Ü 2 H + 1 + 1 |F | η∈ " G t P op H 1 r Ä " ϕ P -1 (η) ä 1 N N n=1 η(z n ) ê ,
where 

" G t P op H := η ∈ " G \ {1} | ∃h ∈ Z k , h ∞ t P op H η = e (h • ( 
h ψ = á h κ d+1 m d+1 F F F κ k m k ë
it is ler tht when multiplying y t P = t P D,C t P B,D = t P D,C P B,D D the denomintors m i nel outD nd we otin n integer vlued vetorF 5.3. Dependence with respect to choices of isomorphisms.

sn heorem SFIUD the de(nition of the disrepny nd the upper ound we otin oth depend on the isomorphim ϕ P D nd moreover the proof uses the ft tht ϕ P is indued y mtrix P F xowD one my sk wht hnges re needed in the proof to otin n irdösEuránEuoksm inequlity for the ϕEdisrepny @he(nition SFISA for any hoie of isomorphism of topologil groups G → T d ⊕ F F sf ϕ : G → T d ⊕ F is suh n isomorphism nd ϕ P denotes wellEunderstood mtrix isomorphism s in etion SFPFID then we n write ϕ = σ • ϕ P D where σ is ontinuous utomorphism of T d ⊕ F F o it remins to understnd the group of utomorphismsD nd this is the im of the following setionF es we will seeD these utomorphisms re lso indued y liner mpsD so tht we will e le to otin estimtes depending only on opertor norms of mtriesF Z/m j Z, and let β : F → T d be a group homomorphism. Then there exist integers λ i,j (for 1 i d and d + 1 j k) such that for all z = (z j ) d+1 j k ∈ F,

β(z) = Ü λ 1,d+1 m d+1 . . . λ 1,k m k . . . λ d,d+1 m d+1 . . . λ d,k m k ê =:B Ö z d+1 . . . z k è mod 1
Proof. e homomorphism β : F → T d is given y d homomorphisms

β i : k j=d+1 Z/m j Z → T
for i ∈ {1, . . . , d}D nd eh of them n e deomposed s sum of homomorphisms

β i,j : Z/m j Z → T s followsX β i ((z j ) d+1 j k ) = k j=d+1 β i,j (z j )
@here we think of T s R/ZD hene the dditive nottionAF xow eh β i,j is n element of the dul of Z/m j ZD so it ts s the multiplition y λ i,j /m j for some integer λ i,j ∈ {0, . . . , m j -1}F his gives the desired mtrix representtion of the sttementF pinllyD let us tret the se of δ : F → F X Lemma 5.24. If δ is an automorphism of the nite abelian group F = k j=d+1 Z/m j Z, then there exist integers d i,j (with d + 1 i, j k) such that 0 d i,j < m i and for all z = (z j ) d+1 j k ∈ F,

δ(z) = Ö d d+1,d+1 . . . d d+1,k . . . d k,d+1 . . . d k,k è =:D Ö z d+1 . . . z k è Proof.
es in the previous proofD suh n utomorphism δ is given y fmily (δ i,j ) d+1 i,j k suh tht

δ i,j : Z/m j Z → Z/m i Z,
nd eh omponent of δ is given y δ i := k j=d+1 δ i,j F xowD group homomorphism f : Z/mZ → Z/nZ is of the form Z/mZ → Z/nZ k mod m → ak mod n for some integer a ∈ {1, . . . , n -1}D so we n write eh δ i,j s the multiplition y some integer d i,j ∈ {0, . . . , m i -1} @followed y redution modulo m i AF e onlude tht for ll z = (z j )

d+1 j k ∈ F D δ(z) = Ö δ d+1 (z) F F F δ k (z) è = Ö k j=d+1 δ d+1,j (z j ) F F F k j=d+1 δ k,j (z j ) è = Ö d d+1,d+1 . . . d d+1,k F F F d k,d+1 . . . d k,k è Ö z d+1 F F F z k è =: Dz. ITU Conclusion. eny utomorphism σ of T d × F D where F = k i=d+1 Z/m i ZD is given y mtrix Å A B 0 D ã where A ∈ M d (Z)D D = (d i,j ) d+1 i,j k ∈ M k-d (Z) nd B is of the form Ü λ 1,d+1 m d+1 . . . λ 1,k m k F F F λ d,d+1 m d+1 . . . λ d,k m k ê
where the λ i,j re integersF woreover we n hoose λ i,j nd d i,j suh tht for ll i nd jD

® 0 λ i,j < m j 0 d i,j < m i .
qiven n element (y, z) = ((y j ), (z j )) Proof. pirstD s in the proof of vemm SFITD we write χ s χ h ⊗ ψ with h ∞ H nd ψ = k i=d+1 ψ κ i ∈ " F F por z ∈ GD we lso keep the nottion (x, y) for ϕ P (z) nd introdue the notE tion (u, v) for ϕ(z) = (σ

∈ T d ⊕ Ä k i=d+1 Z/m i Z ä D its
D ϕ N (z) Å 3 2 ã d á 2 H + 1 + 1 |F | χ∈ Γ\{1} 0 T (χ) H 1 r(χ) 1 N N n=1 ϕ(χ)(z n ) ë @SFSA
• ϕ P )(z) = σ(x, y)F hen ϕ(χ)(z) = χ(ϕ(z)) = χ h ⊗ ψ(ϕ(z)) = χ h (u)ψ(v) = e(h • u) k i=d+1 e Å κ i m i v i ã ITV henote y κ ψ the element Ö κ d+1 m d+1 F F F κ k m k è of 1 m d+1 Z ⊕ • • • ⊕ 1 m k ZF sing the ft tht Å u v ã ≡ Å A B 0 D ã Å x y
ã @here ≡ denotes n equlity etween the equivlene lsses of these elements in

T d ⊕ Ä k i=d+1 Z/m i Z ä AD we getX ϕ(χ)(z) = e(h • (Ax + By))e(κ ψ • Dy).
sing the trnspose mtries to isolte (x, y) on one side of the slr produtD we otin

ϕ(χ)(z) = e ÅÅ t Ah t Bh + t Dκ ψ ã • Å x y ãã .
xowD sine (x, y) = ϕ P (z)D we hve Å x y

ã ≡ P z, where z is lift in R k of the element z ∈ G ⊆ T k F e dedue tht ϕ(χ)(z) = e Å t P Å t Ah t Bh + t Dκ ψ ã
• zã o onludeD it remins to show tht the vetor h := t P Å t Ah t Bh + t Dκ ψ ã elongs to Z k nd tht we n estimte its ∞ Enorm s in the sttement of the lemmF he ft tht h ∈ Z k follows gin from vemm SFIWF sndeedD it is ler from the desription of the mtrix B in setion SFQFI tht the vetor t Bh elongs to 1 m d+1 Z ⊕ • • • ⊕ 1 m k ZF he sme holds for Dκ ψ D nd so y vemm SFIWD we know tht t P nels those denomintorsF pinllyD we hveX

h ∞ t P op Å t Ah t Bh +Dκ ψ ã ∞ t P op t Ah ∞ + t Bh ∞ + t Dκ ψ ∞ nd t Ah ∞ t A op h ∞ t A op H, t Bh ∞ t B op h ∞ Ä max d+1 j k d i=1 |B i,j | ä h ∞ d h ∞ dH t Dκ ψ ∞ t D op κ ψ ∞ Ä max d+1 j k k i=d+1 |d i,j | ä κ ψ ∞ Ä k i=d+1 m i ä × 1 Σ F .
nd this onludes the proofF Corollary 5.26. For any choice of isomorphism ϕ : G → Γ, there exists a constant C ϕ such that for all χ ∈ Γ such that 0 T (χ) H, there exists h ∈ Z k such that

® h ∞ C ϕ H ϕ(χ) = e(h • (-)) |G
ITW yne we hve this orollryD we get more generl version of heorem SFIUD where D ϕ P N n e repled y D ϕ N for ny hoie of isomorphism ϕF his gives the following sttementX Theorem 5.27. Let G be a closed subgroup of T k and let ϕ : G → T d ⊕ F be an isomorphism of topological groups, where d k and F = k i=d+1 Z/m i Z for some positive integers m i . Then there exists a constant C ϕ > 0 such that for any sequence z = (z n ) n 1 of points in G we have the following Erdös-Turán-Koksma type inequality: for all N 1 and all H 1,

D ϕ N (z) Å 3 2 ã d Ö 2 H + 1 + 1 |F | η∈ " G CϕH 1 r ( ϕ -1 (η)) 1 N N n=1 η(z n ) è , where " G CϕH := η ∈ " G \ {1} | ∃h ∈ Z k , h ∞ C ϕ H η = e (h • (-)) |G .
5.4. Application to the discrepancy of the random variables of Chapter 4

vet us rell the setting of ghpter RF e onsider (xed moni nd seprle polynomil g ∈ Z[X]D sy of degree k 1F henote y Z g the set of roots of g in CD y K g := Q(Z g ) the splitting (eld of gD nd y C(Z g , S 1 ) the ompt group of mps from Z g to the unit irle S 1 F ine the roots of g re ll simpleD C(Z g , S 1 ) is isomorphi to T k F woreoverD we denote y O g the ring of integers of K g F e de(ned in he(nition RFPS rndom vriles U p for ny prime idel p ⊂ O g whih does not divide the disriminnt of g nd whih hs residul degree 1F hose rndom vriles re de(ned on the proility spe O g /pD with vlues in C(Z g , S 1 )F etuE llyD we lso de(ned nlogous rndom vriles U p n on the proility spe O g /p n D ut for simpliity of expositionD we will just explin how we n dedue informtion on the disrepny in the se n = 1F

he motivtion for studying this question omes from the striking ft tht the sums whih pper in the pplition of eyl9s riterion in the proof of heorem RFQH @whih sttes the onvergene in lw of the rndom vriles (U p ) s p tends to in(nityA re stationaryF huring seminr in xnyD qF enenum suggested to me tht this would proly trnslte into rther strong disrepny estimtesD vi the use of the irdösEurán inequlity or one of its generliztionsF sn order to hieve tht golD it remins to understnd more preisely the rnk fter whih the eyl sums re sttionryF his is the purpose of the following lemmF ell tht hrter of the group C(Z g , S 1 ) is of the form

η α : x → x∈Zg f (x) α(x)
for unique α ∈ C(Z g , Z)F Lemma 5.28. There exists a constant C g , depending only on the polynomial g, such that for all

α ∈ C(Z g , Z), if α ∞ < C g p 1 [Kg :Q]
and η α induces a non-trivial character of H g , then the Weyl sum at rank p associated with η α is equal to zero:

E(η α (U p )) = 1 p a∈Og/p e Å τ p (a p (S α )) p ã = 0.
Proof. vet α ∈ C(Z g , Z)F he proof of heorem RFQH shows tht

E(η α (U p )) = ® 1 if S α ∈ p 0 otherwiseF
IUH sf E(η α (U p )) = 1D then S α ∈ pD so the idel S α O g is ontined in the idel pD hene p divides S α O g = N Kg/Q (S α )F xowD if we further ssume tht η α is non-trivial hrter of H g D then this is equivlent to ssuming tht α / ∈ R g thnks to roposition RFPWF his mens tht S α = 0F his implies tht N Kg/Q (S α ) is nonEzero integer @euse S α ∈ O g A whih is divisile y p D hene

N Kg/Q (S α )
p . @SFTA yn the other hndD we hve

N Kg/Q (S α ) = σ∈Gal(Kg/Q) σ(S α ) = σ∈Gal(Kg/Q) Ñ x∈Zg α(x)σ(x) é hereforeD if we denote y B g := σ∈Gal(Kg/Q) max x∈Zg |σ(x)|,
we hveX

N Kg/Q (S α ) B g Ñ x∈Zg |α(x)| é [Kg:Q] = B g α [Kg:Q] 1 . woreoverD α 1 k α ∞ D so tht N Kg/Q (S α ) B g k [Kg:Q] α [Kg:Q] ∞ . @SFUA
gomining @SFTA nd @SFUA we dedue tht

α ∞ 1 k Å p B g ã 1 [Kg :Q] .
his proves tht there exists onstnt

C g := 1 k B -1 [Kg :Q] g D depending only on gD suh tht for ll α ∈ C(Z g , Z) \ R g D we hve tht if E(η α (U p )) = 1 then α ∞ C g p 1 [Kg :Q] .
king the ontrpositiveD this mens tht for ll α ∈ C(Z g , Z) whih does not elong to R g D we hve

tht if α ∞ < C g p 1 [Kg :Q] D then E(η α (U p )) = 0F
his lemm gives us n expliit rnk @in terms of α ∞ A fter whih the eyl sums ssoited with the hrter η α equls 0F st tells us how lrge p needs to e to hve sum equl to zeroF e now hve lmost ll the tools to prove n estimte of the disrepny in the equidistriution result of heorem RFQHD it just remin to give proper de(nition of the disrepny in this setting3 ell tht the sequene (U p ) of heorem 4.30 tkes vlues in some losed sugroup H g of C(Z g , S 1 )F pirstD we n tke n isomorphism etween C(Z g , S 1 ) nd (S 1 ) k @just y hoosing n ordering of the roots of gAD nd so we n view H g s losed sugroup of (S 1 ) k F woreoverD we n just fous on the frtionl prts of the rguments inside of the exponentilsD nd study their distriution rther thn tht of their imge under the mp eF his wyD we n view the rndom vriles U p s rndom vriles tking vlues in losed sugroup of T = R/ZF hereforeD there exists n isomorphism of topologil groups ϕ : H g → T d × F with d k = deg(g) nd F (nite elin groupF es we did in the previous setionsD we then de(ne notion of ϕEdisrepny whih depends on the hoie of suh n isomorphismF IUI Denition 5.29. We dene the ϕ-discrepancy of the sequence (U p ) at rank p as D ϕ p := sup

I∈I d y∈F #{a ∈ O g /p, ϕ(U p (a)) ∈ I × {y}} p - λ d (I) |F |
where, as before, I d denotes the set of rectangles of T d .

gomining the irdösEuránEuoksm type inequlity of heorem SFIU with vemm SFPVD we otin the following upper ound for the disrepnyX Theorem 5.30. With the notations of the previous denition, we have:

D ϕ p g,ϕ 1 p 1 [Kg :Q]
Proof. hnks to heorem SFIUD we hve tht for ll H 1D for ll p unrmi(ed of residul degree

1 in O g D D ϕ p Å 3 2 ã d Ü 2 H + 1 + 1 |F | χ∈ Ä " Hg ä CϕH 1 r ( ϕ -1 (χ)) 1 p a∈Og/p χ(U p (a)) ê = Å 3 2 ã d Ü 2 H + 1 + 1 |F | χ∈ Ä " Hg ä CϕH 1 r ( ϕ -1 (χ)) |E (χ(U p ))| ê where Ä H g ä CϕH := χ ∈ H g \ {1} | ∃α ∈ C(Z g , Z), α ∞ C ϕ H χ = (η α ) |Hg .
xowD we re enlined y vemm SFPV to hoose

H := C g p 1 [Kg :Q] C ϕ -1.
sndeedD this ensures tht ll hrters of H g tken into ount in the sum on the r re restritions to H g of some hrters η α ssoited with α9s suh tht α ∞ < C g p 1 [Kg :Q] F hereforeD y vemm SFPVD the whole sum is equl to zero sine E p (χ(U p )) = 0 for ll suh χF husD we otin the upper ound

D ϕ p Å 3 2 ã d 2 H + 1 = Å 3 2 ã d 2C ϕ C g p 1 [Kg :Q]
sn other wordsD one we (x n isomorphism ϕ : H g → T d × F D we hve

D ϕ p g,ϕ 1 p 1 [Kg :Q] •
Remark 5.31. st is it disppointing tht we ould not otin n upper ound for ertin notion of disrepny whih does not depend on the hoie of n isomorphism etween H g nd some T d ⊕ F F roweverD it seems di0ult with our pproh to otin onstnt C ϕ independent of ϕ in gorollry SFPTF sndeedD it seems to me tht liner mp whih indues n isomorphism etween losed sugroup G of T k nd T d ⊕ F n hve ritrrily lrge opertor normF IUP Chapter 6

Ultra-short sums of trace functions he im of this hpter is to give detiled exposition of the results of etion U of the joint work UU with iF uowlskiF hese results onern short sums of tre funtions of Edi sheves on the 0ne line over (nite (eldF efter short setion on short sums of multiplitive hrtersD whih motivtes the study of more generl funtions of lgeri nture de(ned on (nite (eldsD the neessry kground on tre funtions is introdued in etion TFPF pollowing the survey rtiles on the sujet y pouvryD uowlskiD wihel nd winD we de(ne tre funtions using the point of view of qlois representtionsD so tht no prior knowledge on sheves or Edi ohomology is neededF e use s lkox the iemnn hypothesis of heligneD uilding on previous works on sums of produts of tre funtionsD whih determined onrete onditions on the qlois representtions whih ensure tht it n e ppliedF IUQ prmetrized y a ∈ F q F yrD in other wordsD for the fmily of sums

x∈Zg(Fq) ψ(x)
prmetrized y additive characters ψ ∈ F q F sn this short setionD we explin how the method of proof n e dpted to prove equidistriution results for fmilies of sums of the type

x∈Zg(Fq) χ(x)
prmetrized y multiplicative characters modulo qF wore generllyD we will e interested in the distriution of sums of the form

x∈Zg(Fq) χ(v(x))
where χ is vrying multiplitive hrter of F q nd v is (xed polynomilF sn order to evlute χ t v(x) @t lest for ll q lrge enoughAD we dd the ssumption tht v(x) = 0 for ll x ∈ Z g F por instneD in the se where v = XD this mounts to requiring tht 0 / ∈ Z g F por p ∈ S g D we now introdue the proility spe X p of multiplitive hrters χ : (O g /p) × → S 1 D with the uniform proility mesureF yn this proility speD we will onsider the rndom vriles ‹ U p D tking vlues in the group C(Z g , S 1 )D nd de(ned y

‹ U p (χ)(x) = χ(v( p (x))).
Proposition 6.1. The random variables ‹ U p converge in law as p → +∞ to the random function

‹ U : Z g → S 1 such that ‹ U is uniformly distributed on the subgroup H g,v ⊂ C(Z g , S 1
) which is orthogonal to the abelian group R g,v ⊂ C(Z g ; Z) of multiplicative relations between values of v on Z g , namely we have

R g,v = {α : Z g → Z | x∈Zg v(x) α(x) = 1},
and

H g,v = {f ∈ C(Z g , S 1 ) | for all α ∈ R g,v , we have x∈Zg f (x) α(x) = 1}.
In particular, as q → +∞ among primes totally split in K g , the sums

x∈Zg(Fq) χ(v(x))
converge in law to the image by the linear form σ of the Haar probability measure on H g,v .

Proof. his is very lose to the proof of heorem RFQHD exept tht now

E(η( ‹ U p )) = 1 p -1 χ∈Xp x∈Zg χ(v( p (x))) α(x)
for hrter η of C(Z g , S 1 ) determined y the funtion αF his is

E(η( ‹ U p )) = 1 p -1 χ∈Xp χ p x∈Zg v(x) α(x)
nd for the sme resons s eforeD if p is lrge enoughD p x∈Zg v(x) α(x) equls 1 if nd only if x∈Zg v(x) α(x) equls 1F husD y orthogonlity of the multiplitive hrters of O g /pD s soon s p is lrge enough we hve tht E(η( ‹ U p )) equls 1 if α ∈ R g,v nd equls 0 otherwiseF ine non-trivial hrters of H g,v orrespond to α / ∈ R g,v D this (nishes the proof thnks to eyl9s riterionF IUR Example 6.2. @IA por v = XD the group R g,v is simply the group of multiplitive reltions etween the roots of gF his group hs lredy een studied in the litertureF por instneD there re some interesting exmples of pplitions in UI nd URF enother exmple whih hs een investigted in detil is tht of the expliit polynomil g with qlois group the eyl group of E 8 D whih is of degree 240 ut hs ll roots otined multiplitively from 8 of them @see STAF @PA por v = X ginD the se of g = X d -1 is quite degenerteF sndeedD for q ≡ 1 (mod d) nd multiplitive hrter χ of F q D the sum

x∈µ d (Fq) χ(x)
is either d or 0D depending on whether the hrter χ is trivil on the dEth roots of unity or notF he former mens tht χ (q-1)/d = 1D nd there re therefore (q -1)/d suh hrtersF rene the sum is equl to d with proility 1/dD nd to 0 with proility 1 -1/dF @QA sf we onsider the rilert lss polynomil for ellipti urves with gw @s in etion RFQFTAD we re led to onsider potentil multiplitive reltions etween jEinvrintsF his seems to e muh more hllenging prolem thn the dditive seD nd we do not hve preise nswer t the moment @seeD eFgFD the ppers of filuD vu nd izrroEwdrig U nd powler RP for prtil resultsAF o frD we proved equidistriution results for ultrEshort sums of the form x∈Zg(Fq)

t q (x)
for some funtions t q : F q → C whih hd n lgeri nture @sine they were dditive of multiplitive hrtersAF wore exmples of funtions F q → C of lgeri nture ome from the theory of tre funtionsD theory originlly developed y qrothendiek nd heligneD whih relies on the very deep formlism of Edi sheves with respet to the étle topologyF hnks to the work of utz nd vumonD nd then pouvryD uowlskiD wihel nd winD this formlism hs een mde more essileD nd for mny pplitions to nlyti numer theoryD the deepest results n e used s lkoxesF sn the next setionD we give survey of the min fts one needs to work with tre funtionsF 6.2. An introduction to the theory of trace functions 6.2.1. The projective line over a eld vet us (rst rell some terminology from lgeri geometryF sf A is ommuttive ringD we denote y Spec(A) the set of prime idels of A @iFeF idels p of AD not equl to AD suh tht the quotient A/p is n integrl dominAF por ny idel I of AD we denote y

V (I) := {p ∈ Spec(A); I ⊆ p} .
fy use of nottionD if I = (f ) is prinipl idelD we denote V (f ) for V (I)F e lso introdue the nottion D(f ) := Spec(A) \ V (f ).

st n e shown tht there exists unique topology on Spec(A) suh tht the V (I) form the fmily of losed setsF st is lled the Zariski topologyD nd the D(f ) for f ∈ A form sis of open sets for this topologyF Example 6.3. sf k is (eld nd A = k[T ]D then Spec(A) onsists of the zero idelD whih is dense point for the riski topology nd is lled the generi pointD nd ll the nonEzero prime idelsD whih re prinipl idels of the form (π)D where π is moni irreduile polynomil with oe0ients in kF hese idels eing mximlD they re losed points of Spec(A)F e n spek of the degree of losed point y de(ning it s the degree of the extension k[T ]/(π)D tht isX the degree of the orresponding irreduile polynomilF IUS Denition 6.4. We denote by A 1 k the topological space Spec(k[T ]). It is called the ane line over k. he ove onstrution gives wy to ssoite to ny ommuttive ring A topologil speD nmely Spec(A)F xowD to de(ne funtor from the tegory of ommuttive rings to the tegory of topologil spesD we lso need to ssoite to ny ring homomorphism etween two rings ontinuous mp etween the orresponding topologil spesF st is done s followsX if φ : A → B is ring homomorphismD then we de(ne

Spec(φ) : Spec(B) → Spec(A) p → φ -1 (p)
st n e heked tht this mp is ontinuous with respet to the riski topologyD so tht Spec de(nes ontrvrint funtor from the tegory of ommuttive rings to the tegory of topologil spesF Example 6.5. if S ⊂ A is multiplitive setD one n uild the loliztion of A with respet to SF st is ring denoted y S -1 A where we n mke sense of frtions whose denomintor elong to SF e hve nonil homomorphism φ : A → S -1 AD de(ned y a → a 1 F hen Spec(φ) is homeomorphism from Spec(S -1 A) to {p ∈ Spec(A); p ∩ S = ∅}F por instneD if f ∈ A is not nilpotent nd we tke S to e {f n ; n 0}D then S -1 A is usully denoted y A f nd one n show tht the mp Spec(φ) from ove indues homeomorphism etween Spec(A f ) nd D(f )D whih is n elementry open suset of Spec(A) @thusD the terminology loliztion is wellEsuitedAF Remark 6.6. etullyD the funtor Spec s we de(ned it is not ompletely stisftoryD euse mny ommuttive rings hve homeomorphi spetrF por instneD ll (elds orrespond to the sme topologil speX the one with only one pointF sndeedD they only dmit {0} s prime idelF o de(ne topologil ojet whih llows to distinguish etween nonEisomorphi ommuttive ringsD one needs to dd some extrEstruture on Spec(A)F xmelyD one n endow it with shef of rings O Spec(A) suh tht the stlk t eh point is lol ringF ith this struture of lolly ringed topologil speD Spec(A) eomes wht is lled n ane schemeD nd this time the funtor etween the tegory of ommuttive rings to the tegory of 0ne shemes is n equivlene of tegoriesF elthough the struture shef is very importnt prt of the theoryD we will not mention it in the sequelD nd fous only on the topologil prtF vet k e (eldF e re going to de(ne the projetive line over k @s topologil speD without mentioning the whole sheme strutureA P 1 k y glueing two opies of the 0ne line A 1 k = Spec(k[T ])F o distinguish the two opiesD we will denote them y X = Spec(k[x]) nd Y = Spec(k[y])F e will glue them long the following glueing dtX the open susets re U := D(x) ⊂ X nd V = D(y) ⊂ Y nd the isomorphisms etween U nd V re the ones indued y the isomorphism of kElgers k

[x, x -1 ] → k[y, y -1 ] x → y -1 x -1 → y sndeedD D(x) is nonilly homeomorphi to Spec(k[x] x ) @the spetrum of the loliztion of k[x] with respet to the multiplitive set {x n ; n 0}AD nd we hve tht k[x] x = k[x, x -1 ]D nd similrly for D(y)F xote tht D(x) = X \ {(x)} sine V (x) = {p ∈ Spec(k[x]); (x) ⊆ p} = {(x)} euse (x)
is mximl idelF hereforeD the glueing is done on very lrge open setsX X nd Y re identi(ed long isomorE phisms everywhere exept t one point for ehD whih remin distinguishleF xowD the points of degree I of X re in ijetion with kD y ssoiting with ny a ∈ k the degree one irreduile polynomil x -aF his is why we llow ourselves to denote y 0 the point (x) of XF e lso denote y ∞ the point (y) of Y F his terminology is justi(ed sine everywhere outside of these two pointsD y is identi(ed with 1/xF IUT fut the thing is tht with this new strt notion of pointD the projetive line P 1 k ontins mny more points tht the points of degree 1F sndeedD the opy of X = Spec(k[x]) inside P 1 k dmits ll the nonEzero prime idels (π) @generted y moni irreduile polynomil π ∈ k[x]A s losed pointsF husD we n think of the losed points of X s lsses of equivlene of vlutions on k(x)X the idel (π) orresponds to the @lss of equivlene of theA vlution v π on k(x) de(ned y

v π (π n g(x)) = n for ll g ∈ k[x] oprime with πD nd extended to k(x) y de(ning v π (f /g) = v π (f ) -v π (g)F he orresponding vlution ring is O π := ß f g ; f, g ∈ k[x], π g ™ ,
its unique mximl idel is

p π := ß f g ; f, g ∈ k[x], π g nd π | f ™ nd the residue (eld κ π := O π /p π is isomorphi to k[x]/(π)D whih is (nite extension of k of degree deg(π)F
woreoverD there is lso the point ∞ oming from the other opy Y of A 1 k D whih orresponds to the idel (y) of k[y]F ine y ws identi(ed with 1/x t ll the other pointsD it is nturl to de(ne the orresponding vlution v ∞ s the vlution on k(x) given y

v ∞ (f /g) = deg(g) -deg(f ). sts vlution ring is O ∞ := ß f g ; f, g ∈ k[x], deg(f ) deg(g) ™ ,
its unique mximl idel is

p ∞ = ß f g ; f, g ∈ k[x], deg(f ) < deg(g) ™ nd the residue (eld κ ∞ is isomorphi to kF Denition 6.7. Given a Zariski open subset U ⊆ P 1 k , we denote by U (k) the set of closed points of degree 1 of U . For instance, if U ⊆ P 1 k \ {∞} = A 1 k = Spec(k[X]), then U (k)
is the set of x ∈ k such that the ideal generated by the polynomial X -x belongs to U . 6.2.2. Decomposition group and inertia subgroup at a point xowD we let k e (nite (eld F q for prime numer qF e de(ne K := F q (X)D nd we (x K sep seprle losure of K whih ontins the lgeri losure F q of F q F he most pproprite setting to de(ne tre funtions is tht of Edi sheves with respet to the étle topologyD ut these notions re fr eyond the understnding of the uthorF uite onvenientlyD in some ses these ojets hve more onrete interprettion in terms of qlois representtionsD so we will follow this pthD guided y the survey ppers QUD QWF he referene QT lso helped the uthor9s understndingF wore preiselyD we will e interested in representtions of the solute qlois group of KX the group Gal (K sep /K)D whih is de(ned s for (nite extensions s the group of KElger utomorphisms of K sep F sf we denote y Λ the set of (nite qlois extensions L/K ontined in K sep D then their qlois groups together with the nturl restrition mps llow us to de(ne n inverse system of (nite groupsF yne n then tke the limit of this inverse systemD nd there is the nturl restrition homomorphism

Gal (K sep /K) → lim ←- L∈Λ Gal (L/K)
IUU whih turns out to e n isomorphismF hereforeD ny σ ∈ Gal (K sep /K) orresponds to unique element

(σ L ) L∈Λ ∈ L∈Λ Gal (L/K)
whih is omptile with the restrition mpsD in the sense tht whenever L, M ∈ Λ nd L ⊆ M D then the restrition of σ M to L equls σ L F st n e shown tht Gal (K sep /K) inherits topology from this isomorphismD whih is lled the urull topologyD nd with respet to whih it is ompt rusdor' speF e sis of neighourhoods of the identity is given y the susets Gal (K sep /L) for L ∈ ΛD so tht we n sy tht σ, τ ∈ Gal (K sep /K) re lose if nd only if they oinide on lrge (nite qlois extension L/KF e refer to VUD ghpter s for omplete yet onise introdution to in(nite qlois theory nd pro(nite groupsF qiven losed point x in P 1 Fq @whih n e viewed n n equivlene lss of vlutions on KAD we now wish to de(ne two sugroups @de(ned up to onjugtionA of Gal (K sep /K)X the deomposition group t x nd the inerti sugroup t xF e (rst de(ne them on (nite qlois extensionsD efore pssing to the limitF o let L ∈ Λ nd let v x,L e vlution on L whih extends the vlution v x on K orresponding to the point x ∈ P 1

Fq F e n de(ne the decomposition group t x s the following sugroup of Gal (L/K)X

D x,L := {σ ∈ Gal (L/K) | v x,L • σ = v x,L }
xote tht the hoie of nother extension v x,L of v x to L de(nes nother deomposition group ‹ D x,L D ut they elong to the sme onjugy lss of Gal (L/K)F his esily follows from the ft tht Gal (L/K) ts trnsitively on the set of vlutions whih extend v x to L @for proof of this ftD see VUD ghpter

ssD WAF sndeedD if σ ∈ Gal (L/K) is suh tht v x,L = v x,L • σD then we hve ‹ D x,L = σ -1 D x,L σF
xowD one we (x hoie of v x,L D we n de(ne s usul the orresponding ring of integers

O x,L := {f ∈ L | v x,L (f ) 0} whih hs mximl idel p x,L := {f ∈ L | v x,L (f ) > 0}
nd residue (eld κ x,L := O x,L /p x,L F fy de(nitionD ny σ ∈ D x,L preserves O x,L nd p x,L D hene indues n utomorphism σ ∈ Gal (κ x,L /κ x )F he inertia subgroup t x is de(ned s the kernel of the group homomorphism

D x,L → Gal (κ x,L /κ x ) σ → σ
sn other wordsD we hve

I x,L := {σ ∈ D x,L | for ll f ∈ O x,L , σ(f ) ≡ f (mod p x,L )}
st is lso esy to show tht nother hoie of vlution v x,L gives n inerti sugroup I x,L whih is qlois onjugte to

I x,L F sndeedD if σ ∈ Gal (L/K) is suh tht v x,L = v x,L • σD then I x,L = σ -1 I x,L σF
o sum upD we hve the ext sequene

1 → I x,L → D x,L → Gal (κ x,L /κ x ) → 1. @TFIA
xote tht κ x,L /κ x is (nite extension of (nite (eldD so Gal (κ x,L /κ x ) is generted y the proenius utomorphismX u → u |κx| .

xowD using orn9s lemmD one n show tht it is possile to mke omptile hoies of vlutions v x,L for ll L ∈ ΛD in the sense tht if L ⊆ M D then the restrition of v x,M to L must e equl to v x,L F his essentilly mounts to onstrut vlution v {x} on K sep whih extends v x F yne we hve mde IUV these omptile hoies of extended vlutionsD we n pss to the limit in @TFIAD nd the sequene remins ext thnks to VUD ghpter sD roposition @PFUAX

1 → lim ←- L∈Λ I x,L → lim ←- L∈Λ D x,L → lim ←- L∈Λ Gal (κ x,L /κ x ) ( ) Gal F q /κ x → 1.
Remark 6.8. he isomorphism ( ) is not n ovious ftD s it does not only rely on the ft tht (nite qlois extensions of the residue (eld κ x re in one to one orrespondene with (nite unrmi(ed qlois extensions of the originl (eldD see eFgF IUD heorem I pFPT nd the next orollryF sndeedD this ft only pplies to complete vlued (eldsF hereforeD one tully needs to (rst view κ x s the residue (eld of the ompletion " K of K t the ple v x D nd then to dedue tht for ny (nite extension λ/κ x D there exists (nite unrmi(ed qlois extension L/ " K with residue (eld isomorphi to λ thnks to loc. citF pinllyD one needs to explin tht L is tully the ompletion of (nite qlois extension L/K with respet to vlution whih extends v x F his is onsequene of ursner9s lemmD see for instne IHHD gorollry IIFIW in the setion entitled lol extensions ome from glol extensionsF sn view of the nonil isomorphism indued y the restrition mp etween Gal (K sep /K) nd lim ←- L∈Λ Gal (L/K)D this tells us tht if we de(ne the deomposition group t x s

D {x} := σ ∈ Gal (K sep /K) | for ll L ∈ Λ, σ |L ∈ D x,L
nd its inerti sugroup t x s followsX

I {x} := σ ∈ Gal (K sep /K) | for ll L ∈ Λ, σ |L ∈ I x,L ,
then they (t in the ext sequene

1 → I {x} → D {x} → Gal F q /κ x → 1.
@TFPA he arithmetic Frobenius of Gal F q /κ x Frob arith κx : F q → F q u → u |κx| stis(es tht for ll (nite extension λ/κ x D its restrition to λ is the proenius utomorphism of Gal (λ/κ x )F e will rther work with the inverse of the rithmeti proeniusX Denition 6.9. hnks to the ext sequene @TFPAD we hve tht D {x} /I {x} Gal F q /κ x D so tht Frob geom sf we mde nother hoie of omptile system of vlutions extending v x to ll (nite qlois extensions of KD we would hve de(ned nother @possily di'erentA extension of v x to K sep F fut s Gal (K sep /K) ts trnsitively on the extensions of v x to K sep @see VUD ghpter ssD heorem WFIAD ll the ojets D {x} , I {x} nd Frob {x} rising from this other onstrution would e Gal (K sep /K)E onjugtes of D {x} , I {x} nd Frob {x} F 6.2.3. -adic Galois representations and their trace functions fefore speking out Edi representtionsD let us introdue some voulry out representtions of Gal (K sep /K) in generlD where K := F q (X) s oveF qiven representtion

ρ : Gal (K sep /K) → GL(V )
IUW where V is (nite dimensionl LEvetor spe for some ritrry (eld LD we denote y

V I {x} := v ∈ V | ρ(σ)(v) = v for ll σ ∈ I {x}
the liner suspe of I {x} Einvrint vetorsF yne n show tht this suspe is stle under the tion of D {x} @this uses the ft tht I {x} is norml sugroup of D {x} AF hereforeD for ny σ ∈ D {x} D it mkes sense to spek out the utomorphism (σ | V I {x} ) whih is indued y the tion of ρ(σ) on V I {x} F fesidesD if σ = σ • i for some i ∈ I {x} D then y de(nition of V I {x} D we hve 

Ä σ | V I {x} ä = Ä σ | V I {x} ä hereforeD even
Tr Ä Frob {x} | V I {x} ä = Tr Ä Frob {x} | V I {x} ä .
e refer to QTD vemm PFIFS for more detiled proofsF Denition 6.11 @nrmi(ed representtionA. Given a representation ρ : Gal (K sep /K) → GL(V ) as above and a closed point x ∈ P 1 Fq , we say that ρ is unramied (or lisse) at x if the inertia subgroup I {x} acts trivially on V (that is: if V I {x} = V ). On the other hand, a point where ρ is ramied is called a singularity, and we will denote by Sing(ρ) the set of ramied points.

e n now turn our ttention to spei( kind of representtionsD where V rries topology nd ontinuity plys role in the de(nitionsF pix prime numer = qD nd n lgeri losure Q of the (eld of Edi numersF iven though the following de(nitions only use the lnguge of representtionsD we will nme the ojets Edi sheves to e onsistent with the literture @we proeed s in QWAF Denition 6.12 @ Edi middleEextension shevesA.

Let U ⊆ P 1 Fq be a non-empty open subset.

An -adic Galois representation lisse on U is a representation (V F , ρ F ), where V F is a nite dimensional Q -vector space and

ρ F : Gal (K sep /K) → GL(V F )
is a continuous representation of Gal (K sep /K) which is unramied at every closed point x ∈ U . The dimension of V F is called the rank of F and is denoted by rk(F).

An -adic middle extension sheaf is an -adic Galois representation (V F , ρ F ) as above such that Sing(ρ F ) is nite. In other words, (V F , ρ F ) must be unramied at all but nitely many points. ometimes we will just sy Edi shef to e riefD ut we will only onsider Edi middleEextension sheves in the sense of the previous de(nition in this thesisF xote tht in this de(nitionD the ontinuity of ρ F refers to the pro(nite topology on the in(nite qlois group Gal (K sep /K) nd to the unique normed vetor spe topology on the (nite dimensionl Q E vetor spe GL(V F )F e n (nlly stte the de(nition of the tre funtion ssoited with n Edi shefF ell tht n element x ∈ F q n e viewed s losed point of P 1 Fq y identifying it with the idel of F q [X] generted y the irreduile degree 1 polynomil X -x @see he(nition TFUD where we lso introdue the nottion U (F q ) for the losed points of degree 1 in ertin open suset U of P 1 Fq AF Denition 6.13. Given an -adic sheaf lisse on U as in the previous denition, we dene its associated trace function as the following map

t F : F q → Q x → Tr Frob {x} | V I {x} F
IVH Remark 6.14. etullyD some referenes only de(ne t F on lisse pointsD tht isX on U (F q ) nd not on ll A 1 (F q ) F q F por lisse point x ∈ U (F q )D we hve tht I {x} ts trivilly on V F D so tht V I {x} F = V F F hen the vlue of the tre funtion t x is de(ned s

Tr Frob {x} | V .

here re severl possiilities to extend t F to ll F q F he hoie we mde in the previous de(nition is proly the most ommonD ut for instne in QWD emrk QFU the simplest extension @extending y 0 outside of the lisse pointsA is lso sid to work for mny nlyti purposesF Remark 6.15. prom now onD we ssume tht we hve (xed (eld isomorphism ι : Q → C @the exisE tene of suh n isomorphism depends on the xiom of hoieAF his llows us to view tre funtions s omplexEvlued funtions @whih is neessry if we wnt to sy tht dditive nd multiplitive hrters re instnes of tre funtionsAF he ft tht we re onsidering representtions over Q rther thn C is ruil for the theoryD nd omes from their di'erent topologil ntureD ut the relevne of this hoie will not pper lerly in this ghpterD s we re going to dmit without proof some di0ult sttementsF 6.2.4. Operations on trace functions glssil trnsformtions on representtions n e pplied to our spei( kind of representtionsD nd we will e interested in the e'et of these opertions on the tthed tre funtionsF e just give some useful exmplesD whih form strit suset of the set of exmples provided in QWF qiven two Edi sheves F nd G s in he(nition TFIPD one n formX the diret sum shef F ⊕ GD whih is just de(ned s the usul diret sum of the orresponding representtions

(V F , ρ F ) nd (V G , ρ G )F sf F is lisse on U nd G is lisse on U D then F ⊕ G is lisse t lest on U ∩ U F woreoverD the rnk of F ⊕ G equls the sum of the rnksD nd on U (F q ) ∩ U (F q )D we hve t F⊕G (x) = t F (x) + t G (x).
the tensor produt shef F ⊗GD whih is de(ned s the usul tensor produt of the representtions (V F , ρ F ) nd (V G , ρ G )F es in the previous seD this shef is lisse t lest on U ∩ U D its rnk is the produt of the rnksD nd on U (F q ) ∩ U (F q ) we hve

t F⊗G (x) = t F (x)t G (x). sf γ = Å a b c d ã ∈ GL 2 (F q )D then the mp x → ax+b cx+d de(nes n utomorphism of P 1 (F q )F xow if F is lisse Edi shef on P 1
Fq D there is onstrution of pullback sheaf [γ] * FD whose tre funtion is given y e n lso spek of isomorphi sheves just y de(ning this notion s the isomorphism of the orreE sponding representtionsF imilrlyD we n spek of irreduile representtions @representtions with no nonEtrivil surepresenttionsA nd isotypi representtions @representtions with ll irreduile surepresenttions eing isomorphiAF por ll these notionsD we n dd the word geometri eE foreD nd this will men tht we re restriting our representtions to the geometri qlois group Gal K sep /F q (X) @whih is sugroup of Gal (K sep /K)AF IVI Denition 6.16.

t [γ] * F (x) = t F Å ax + b cx + d ã . sn prtiulrD if γ = Å 1 b 0 
We will say that two sheaves F and G are geometrically isomorphic if the corresponding representations (V F , ρ F ) and (V G , ρ G ) are isomorphic as representations of Gal K sep /F q (X) .

We will say that a sheaf F is geometrically irreducible (reps. geometrically isotypic) if the corresponding representation is irreducible (resp. isotypic) as a representation of Gal K sep /F q (X) . 6.2.5. Purity e now turn to the importnt notion of weight of n Edi shefD whih is n ssumption onerning the modulus of the eigenvlues of the proenius utomorphismsF Denition 6.17. Let w ∈ Z. Let F be an -adic sheaf as in Denition 6.12, lisse on U ⊆ P 1 Fq . We say that F is pure of weight w if for all x ∈ U , the eigenvalues of Frob {x} | V F are complex numbers of modulus |κ x | w/2 . vet us stress tht the eigenvlues of Frob {x} | V F re the eigenvlues of ρ F Frob {x} ∈ GL(V F )D whih is n utomorphism of Q Evetor speF hereforeD they elong to Q D ut when we spek of them s omplex numers of modulus |κ x | w/2 D wht we relly men is tht there imge under our (xed isomorphism ι : Q → C re suh omplex numersF o e ompletely rigorousD we should spek out ιEpure sheves of weight wF iven though the de(nition only tkes into ount the unrmi(ed pointsD heligne proved tht the weights of the proenius eigenvlues t rmi(ed points is wellEontrolled y the weights t the unrmE i(ed pointsF xmely @see QWD emrk QFIPAX if F is n Edi shef lisse on U whih is pure of weight wD then for ny losed point x ∈ P 1 Fq D the eigenvlues of Ä Frob {x} | V I {x} ä hve modulus less thn or equl to |κ x | w/2 F 6.2.6. Measuring the complexity of trace functions qiven tre funtionD there re possily mny Edi representtions whih give the sme tre funE tionsF roweverD we would like to hve wy to spek of the simplest representtion giving rise to this given tre funtionF sn order to do thtD we need to de(ne quntity whih mesures the omplexity of n Edi shefF st is the notion of conductor of tre funtionD in the sense of pouvryEuowlskiEwihelF e (rst nive wy to mesure the omplexity of representtion is its rnkD ut it turns out tht this is not the suitle notion in pplitionsF yne lso needs to tke into ount the numer of singulr pointsD whih is ssumed to e (nite in our de(nition of n Edi middle extension shef @he(nition TFIPAF roweverD these two notions do not su0eD nd there is lst quntity involved whih is rther di0ult to de(neX tht of the wn ondutor Swan x (F) t singulr point xF e will not de(ne it @s s knowledge not knowing the preise de(nitionA ut let us just sy tht it mesures how wild is the rmi(tionF es in the ontext of lol (eldsD we n spek of tmely rmi(ed pointsD s opposed to wildly rmi(ed pointsD nd the wn ondutor n e thought of s n nlogue of the jumps in the rmi(tion (ltrtion of lol (eldF e refer to TS for omplete introdutionF iven though their de(nition is di0ultD wn ondutors t singulr points hve een omputed for mny sheves of interest in pplitionsD so we hve expliit vlues of the ondutor of those shevesD tht n e used s lkoxesF Denition 6.18 @gondutor of tre funtionD see QVA. Given an -adic middle-extension sheaf F on P 1 Fq , we dene its conductor as:

c(F) := rk(F) + |Sing(ρ F )| + x∈Sing(F)
Swan x (F). IVP 6.2.7. Bounding trace functions o prove uniform distriution resultsD we often need to ound exponentil sumsD nd so we would like to hve good upper ounds for the modulus of those very generl exponentil sums tht rise s sums of tre funtionsF he est known generl results follow from the iemnn hypothesis for vrieties de(ned over (nite (eldsD whih is due to heligneF his theorem involves very deep ohomologil tehniques tht s m fr from understndingD so let me just give some key steps whih will hopefully explin the type of ssumptions on F tht re needed in order to pply the iemnn hypothesisF he (rst step is the following ohomologil interprettion of sum of vlues of tre funtionX Theorem 6.19 @qrothendiekEvefshetz tre formulD see eFgF QWD heorem RFIA. Let F be an -adic sheaf lisse on U ⊆ P1 Fq . There exists three nite dimensional -adic representations of Gal F q /F q :

Gal F q /F q → H i c (U × F q , F) such that x∈U (Fq) t F (x) = 2 i=0 (-1) i Tr Frob q | H i c (U × F q , F)
where Frob q denotes the geometric Frobenius of Gal F q /F q . he Q Evetor spes H i c (U × F q , F) re lled omptly supported étle ohomology groupsD nd s fr s s understndD it is often esier in pplitions to understnd the ones orresponding to i = 0 nd i = 2F sndeedD s soon s U = P 1 Fq D we hve H 0 c (U × F q , F) = 0F woreoverD if F is geometrilly irreduile or geometrilly isotypi @with underlying geometrilly irreduile representtion eing nonEtrivilA then we lso hve H 2 c (U × F q , F) = 0 @see eFgF QWD RFI for sttements of those ftsAF por instneD if we onsider Edi sheves on the 0ne line A 1 Fq whih re geometrilly irreduileD then we re just left with one term in the qrothendiekEvefshetz tre formulX

x∈U (Fq) t F (x) = -Tr Frob q | H 1 c (U × F q , F) .
xowD to estimte the term on the rightEhnd sideD one needs to understnd the dimension of the Q E vetor spe H 1 c (U × F q , F) nd the modulus of the eigenvlues of the geometri proenius ting on tht speF he dimension n tully e ounded in terms of the ondutorD see eFgF QWD RFIX

2 i=0 dim H i c (U × F q , F) c(F) 2 .
roweverD the question of the size of the eigenvlues of the proenius is wht is t the hert of the iemnn hypothesisD nd required tremendous mount of work to e fully provedF Theorem 6.20 @heligneD PTA. If F is pure of weight 0, then the eigenvalues of Frob q acting on H 1 c (U × F q , F) are complex number of modulus √ q.

ell this skethy disussion leds us to the following very onrete form of the iemnn hypothesisD whih is pplile to our tre funtionsX Corollary 6.21 @epplying the iemnn hypothesis to tre funtionsD QWD gorollry RFUA. Assume that F is an -adic middle extension sheaf lisse on U ⊂ P 1 Fq (with U = P 1 Fq ) which is pure of weight 0. Assume that F is geometrically isotypic (with underlying geometrically irreducible representation being non-trivial 1 ), then

x∈U (Fq) t F (x) c(F) 2 √ q.
Remark 6.22.

(1) vet us stress tht the ssumption geometrilly isotypi with no trivil ompoE nent is ruil to ensure the vnishing of the seond étle ohomology group H 2 c (U × F q , F)F his type of ssumption will ply n importnt role in the min result of this ghpter @heorem TFPUAF (2) etully the isotypi ssumption is not very restritiveD euse ny tre funtion n e deomE posed s sum of tre funtions of geometrilly isotypi shevesF his is not t ll oviousD s the representtions involved re not neessrily rithmetilly semiEsimple @iFeF semiEsimple s represenE ttions of Gal (K sep /K)AD ut heligne proved tht they re geometrically semiEsimpleF gonretelyD we n use the following onsequeneX Proposition 6.23 @QWD roposition SFIA. Let F be an -adic sheaf lisse on U ⊆ P 1 Fq and pure of weight 0. Then there exist -adic sheaves (F i ) 1 i N , lisse on I, pure of weight 0, geometrically isotypic, such that

N c(F), c(F i ) c(F) for all 1 i N , for all x ∈ U (F q ), t F (x) = N i=1 t F i (x).
hnks to this deompositionD in order to pply the iemnn hypothesis to FD it su0es to hek tht the the geometri representtion ρ F D iFeF the representtion ρ F viewed s representtion of Gal F q (X) sep /F q (X) D does not dmit geometrilly irreduile surepresenttion whih is the trivil oneF 6.2.8. Additive and multiplicative characters as trace functions vet us explin tht this deep lgeri formlism tully enompsses the onrete exmples of funE tions F q : → C of lgeri nture tht we lredy enounteredD nmely dditive nd multiplitive hrtersF Artin-Schreier sheaf. qiven n dditive hrter ψ : F q → CD one n show tht there exists n Edi middle extension shef L ψ D lled n ertinEhreier shefD with the following propertiesX

rk(L ψ ) = 1D L ψ is lisse on P 1 Fq \ {∞} = A 1 Fq D L ψ is pure of weight 0D c(L ψ ) = 3 @the wn ondutor t ∞ is equl to 1AD por ll x ∈ F × q D t L ψ (x) = ψ(x)F
Kummer sheaf. qiven multiplitive hrter χ : F × q → CD it n e proved tht there exists n Edi middle extension shef L χ D lled uummer shefD suh tht rk(L χ ) = 1D L χ is lisse on P 1 Fq \ {0, ∞}D L χ is pure of weight 0D c(L χ ) = 3 @the wn ondutor t the two rmi(ed points is equl to 0AD por ll x ∈ F × q D t Lχ (x) = χ(x)F e refer to SRD heorem IIFQR for sketh of the proof of the existene of rnk 1 shef with the right tre funtion @without the omputtion of the ondutorAF IVR 6.2.9. Monodromy groups e hve seen tht if F is middleEextension Edi shef lisse on some open suset U ⊆ P 1 Fq D then to ny losed point x ∈ U we n ssoite proenius utomorphism

ρ F (Frob {x} ) = (Frob {x} | V F ) ∈ GL(V F ).
ine di'erent hoies of extensions of vlutions led to di'erent elements Frob {x} ∈ Gal (K sep /K)D ut ll those elements re onjugtes inside Gal (K sep /K)D the onjugy lss of ρ F (Frob {x} ) inE side GL(V F ) does not depend on ny hoieF husD for ll suh xD we hve well de(ned element ρ F (Frob {x} ) ∈ GL(V F ) F efter tking n ritrry sis of V F D we n identify ρ F (Frob {x} ) with onjugy lss in GL r (Q )F pinllyD using our isomorphism ι : Q → CD we n spek of the proenius onjugy lss ι(ρ F (Frob {x} )) ∈ GL r (C) F he work of heligne nd utz llowed for mjor rekthroughs in the understnding of the distriution of tre funtionsF he min point is tht they rther studied the uniform distriution of these onjugy lsses ι(ρ F (Frob {x} )) inside GL r (C) D efore pplying the tre nd otin s orollry the uniform distriution of the tre funtionsF fut there is tully one lst sutlety tht we did not tlk outX it is the ft tht the suitle spe of onjugy lsses is not simply GL r (C) D ut rther the spe of onjugy lsses of mximl ompt sugroup inside wht is lled the monodromy group ssoited with the shef FF e now de(ne these groupsF Denition 6.24. let F be an -adic middle-extension sheaf on P 1 Fq , pure of weight 0. Recall that we denoted by K := F q (X).

The arithmetic monodromy group of F is the Zariski closure of ι(ρ F (Gal (K sep /K))) inside GL r (C).

The geometric monodromy group of F is the Zariski closure of ι(ρ F (Gal K sep /F q (X) )) inside GL r (C). vet us explin wht is the mening of riski losure in this settingX there is topology on C r 2 +1 whose losed sets re those of the form

V (S) := ¶ ((m i,j ) 1 i,j r , y) ∈ C r 2 +1 | for ll f ∈ S, f ((m i,j ) 1 i,j r , y) = 0 ©
for susets S of the polynomil ring C [(X i,j ) 1 i,j r , Y ]F e ll this topology the riski topologyD nd GL r (C) n e seen s losed suset C r 2 +1 vi the mp

GL r (C) → C r 2 +1 M = (m i,j ) → Ä (m i,j ) 1 i,j r , 1 det(M ) ä whih identi(es GL r (C) with the riskiElosed suset V ({f }) where f ((X i,j ) 1 i,j r , Y ) := det((X i,j ) 1 i,j r )Y -1.
hereforeD we n spek of the riski topology on GL r (C)D whose losed sets re those given y polynomil equtions vi the emedding of GL r (C) in C r 2 +1 F henD the monodromy groups de(ned ove re riski losuresD mening tht they re the smllest riski losed susets ontining respeE tively ι(ρ F (Gal (K sep /K))) nd ι(ρ F Gal K sep /F q (X) )F es suhD they re linear algebraic groups euse they re sugroups of GL r (C) given by polynomial equationsF e refer to URD UFI for onise introdution to liner lgeri groupsF Remark 6.25. here is di'erent topology on GL r (C) whih is lso lled the riski topologyX it is for f : Z g → K geom (C) F 6.3.2. Convergence in law of the unitary random variables e will see tht the proof of the uniform distriution of the rndom vriles of he(nition TFPT relies lot on estimtes of sums of produts of tre funtionsD whih hve een the ojet of deep study in the rtile QV y pouvryD uowlski nd wihelF elying on their notion of bountiful shevesD we will prove the following @onrete exmples of tre funtions oming from ountiful sheves will e given in the next setionAX IVU Theorem 6.27 @UUD roposition UFIA. Assume that for all p ∈ S g , we are given an -adic middleextension sheaf F p on the ane line over the nite eld O g /p. Assume that these sheaves all have the same rank r, are pure of weight 0, have the same geometric monodromy group G geom (C), and that it coincides with their arithmetic monodromy group. Assume further that F p is bountiful in the sense of QV for all p in S g and that the conductor of F p is bounded independently of p. Then: @IA If G geom (C) = Sp r (C) then (U p ) and (V p ) converge in law as p → +∞, with limit uniform on C(Z g ; USp r (C) ). @PA If G geom (C) = SL r (C), and the special involution, if it exists, is not y → -y, then (U p ) and (V p ) converge in law with limit uniform on C(Z g ; SU r (C) ). @QA If G geom (C) = SL r (C) and F p has special involution y → -y for all p, then (V p ) converges in law as p → +∞ with limit uniform on C(Z g ; SU r (C) ), and (U p ) converges in law with limit uniform on

{f : Z g → SU r (C) | f (x) = f (y) if x = -y}.
In all cases, the convergence of (V p ) holds without additional assumptions, while for (U p ) we assume that 0 / ∈ Z g .

Proof of (1). e rgue with U p D s the se of V p is identil @one just needs to reple 

G geom (C) = Sp r (C)
nd mximl ompt sugroup is given y [×x] * F p , nd for suh sheves QVD heorem IFS gives the onlusion @tke h = 0 nd the tuple γ to e (x) x∈Zg(Og/p) X the ltter is norml in the sense of loc. cit. thnks to the seprility of gD nd sine the sheves re ssumed to e ountifulD we get the onlusionAF roweverD it remins to explin why the omposition with the irreduile representtions π x does not rete ny issueF e isolte this prt of the rgument in vemm TFPV elowF he proof of (2) is the smeD with Sp r (C) repled y SL r (C)F

K geom (C) = USp r (C)(= Sp r (C) ∩ U r (C)).
por @QAD we hve to tke into ount the ft tht if x ∈ (O g /p) × D then [×(-x)] * F p is isomorphi to the dul of [×x] * F p @y de(nition of y → -y eing speil involution of the shefAF his implies tht Θ p (-ax) = Θ p (ax) for ll a ∈ A p @respF B p AD where the r denotes the omplex onjugte of the mtrixF sndeedD for unitry representtionsD the dul representtion is isomorphi to the onjugte representtionD see eFgF URD pF ISHF his shows tht the rndom vriles U p tke vlues in the sugroup {f :

Z g → SU r (C) | f (x) = f (y) if x = -y}.
whih is isomorphi to C(Z g /{±1}, SU r (C))D where Z g /{±1} denotes the quotient of Z g y the equivE lene reltion ∼ de(ned yX x ∼ y ⇐⇒ x = y or x = -y.

he end of the proof is the sme s in the previous sesD with C(Z g /{±1}, SU r (C) ) plying the role of C(Z g , SU r (C) )F he ide is tht the only ostrution to the independene of shifts whih is ruil in the proof of vemm TFPV ws the possiility to hve two opposite roots of gD ut the quotient y the equivlene reltion ∼ removed tht issueF Lemma 6.28. The multiplicity of the trivial representation as a geometrically irreducible representation of ρ G (the representation introduced in equation @TFRA of the proof of Theorem 6.27) equals 0.

Proof. vet us denote y k the (eld O g /pF o simplify nottionsD we will only prove this lemm in the se where two representtions re involved in the tensor produtD ut there is no hidden di0ulty when more ftors re involvedF o we ssume tht we re given ountiful shef F p on the 0ne line over kD two distint points x, y ∈ kD nd two representtions π x nd π y of mximl ompt sugroup K geom (C) of the geometri monodromy group G geom (C) of F p F e ssume tht π x nd π y re irreduile representtionsD nd tht t lest one of them is not the trivil oneF pirstD thnks to SWD QFP @see lso the sttement in VWD gorF QFQAD these representtions extend to repE resenttions π x nd π y of the whole vie group G geom (C) stisfying the sme irreduiility ssumptionsF henD we wnt to show tht the representtion his is equivlent to sying tht the externl produt representtion π x π y @see eppendix TFeA dmits nonEzero invrint vetorD whih ontrdits the ft tht it is irreduile @thnks to roposition TFQUA of dimension 2F Remark 6.29. por the generl seD the ft tht g is seprle polynomil ensures tht the tuple (x) x∈Zg is normal in the sense of QV euse eh x ppers with multipliity oneF husD the ountiful property of F p ensures the independene of shiftsX this gives us the ft tht

λ := π x • ρ [×x] * Fp ⊗ π y • ρ [
Π geom k → x∈Zg G geom (C) σ → ρ [×x] * Fp (σ) x∈Zg
hs dense imge nd the reminder of the proof works in the sme mnnerF 6.3.3. The example of Kloosterman sums vet us illustrte ses (1) nd (3) of the previous theorem with onrete exmpleX tht of uloostermn sumsF hey re de(ned s followsX por n integer r 2D nd n odd prime qD Kl r (a, q) := (-1) r-1 q r-1 2

x 1 ,...,xr∈F × q

x 1 •••xr=a e Å x 1 + • • • + x r q ã for ll a ∈ F × q .
sn the se r = 2D we reover the lssil uloostermn sums of utz9 equidistriution theorem of etion IFQFPF st ws proved y heligne tht these sums re lso tre funtionsF xmelyD he proved in PS the existene of n Edi middleEextension shef K r @lled the uloostermn shefA on P 1 Fq suh tht @see QWD heorem RFRAX rk(K r ) = rD K r is lisse on P 1 Fq \ {0, ∞}D K r is pure of weight 0 c(K r ) = r + 3 @with wn ondutor 0 t 0 nd 1 t ∞A for ll a ∈ F × q D t K r (a) = Kl r (a, q)

IWH he uloostermn shef ws then studied in more detil y utz in SWD where @mong other thingsA he determined the monodromy groupsF Theorem 6.30 @utzD see WHD heorem IFQ for this spei( sttementA. For all r 2, we have

G K r ,geom (C) = G K r ,arith (C) = ® SL r (C) if r is odd Sp r (C) if r is even.
pinllyD K r is ountiful thnks to the determintion of the utomorphism group of this shefD whih is ontined in QVD roposition QFTF st hs no speil involution when r is evenD nd one speil involution when r is oddD given y y → -yF ell those fts re stted in QVD Q@A nd Q@A nd proved further in the rtileF hereforeD even rnk uloostermn sheves stisfy the ssumptions of heorem TFPU @IAD while odd rnk uloostermn sheves stisfy the ssumptions of point his is onsequene of the ft tht USp 2 (C) is isomorphi to SU 2 (C) nd of the expliit determiE ntion of the rr mesure on the ltter @we give sketh of the proof of this lst prt in roposition TFQR elowAF hereforeD we hve the following onrete orollry of heorem TFPUX Corollary 6.31. Let g ∈ Z[X] be a monic polynomial of degree d 1, and assume that 0 / ∈ Z g . As q goes to innity among the prime number totally split in K g , the sums x∈Zg(Fq) Kl 2 (ax, q), parametrized by a ∈ F q , become equidistributed in C with respect to a measure which is the law of d independant and identically distributed Sato-Tate random variables. The same holds for the sums x∈Zg(Fq) Kl 2 (a + x, q) without the assumption that 0 / ∈ Z g .

IWI

rere is n illustrtion of this sttementX pigure TFIX histriution of the vlues of the sums x∈Zg(Fq) Kl 2 (ax, q) s a vries in F q D for g = X 3 -9X -1 nd q = 8089F he red urve is the proility density funtion of the rndom vrile X 1 + X 2 + X 3 de(ned s the sum of three independent nd identilly distriuted to!te rndom vrilesF pigure TFPX histriution of the vlues of the sums x∈Zg(Fq) Kl 2 (a + x, q) s a vries in F q D for g = X 3 -9X -1 nd q = 8089F he red urve is the proility density funtion of the rndom vrile X 1 + X 2 + X 3 de(ned s the sum of three independent nd identilly distriuted to!te rndom vrilesF Remark 6.32. his lst orollry reovers utz9 equidistriution result in the form stted in the introdution @see heorem IFPQAF sndeedD it su0es to tke the polynomil g to e X -1F woreoverD suh sums of shifts of uloostermn sums lredy ppered in nlyti numer theoryD see eFgF QSD roposition QFPF Odd rank Kloosterman sums. sf r is oddD the uloostermn shef K r stis(es the ssumptions of se (3) of heorem TFPUF hereforeD the onvergene in lw of the rndom vriles (V p ) implies the uniform distriution of the sums x∈Zg(Fq) Kl r (a + x, q) IWP s q goes to in(nity nd a vries in F q @provided q splits ompletely in K g AF he theorem tells us tht the limit mesure is the lw of the sum of deg(g) rndom vrilesD eh distriuted s the tre of uniform mtrix in SU r (C)F por r = 3D the pushforwrd mesure of the rr mesure on SU 3 (C) vi the tre is determined in SUD nd it is supported inside the 3Eusp hypoyloid tht we lredy enountered severl times long this thesisF he following (gure 2 illustrtes the limit distriution of individul uloostermn sums Kl 3 (a, q)F pigure TFQX he sums Kl 3 (a, q) for q = 40009 nd a vrying in F q Remark 6.33. sn ghpter PD we enountered mesure on the 3Eusp hypoyloid H 3 tht ws de(ned s the pushforwrd mesure of the rr mesure on S 1 × S 1 vi the mp (z 1 , z 2 ) → z 1 + z 2 + 1 z 1 z 2 • @see eFgF heorem PFS pFSQAF sn terms of mtries in SU 3 (C)D this orresponds to onsidering the rr mesure on the mximl torus of digonl mtries

   Ñ z 1 0 0 0 z 2 0 0 0 z 1 .z 2 é ; (z 1 , z 2 ) ∈ S 1 × S 1   
nd then tking the pushforwrd mesure vi the treF yn the other hndD in the urrent hpter we hve nother mesure on H 3 D whih is de(ned s the pushforwrd of the rr mesure on the full group SU 3 (C) @not only on its mximl torusAF sn this remrkD we wnt to stress tht even though hypoyloids ppered in erlier hptersD the mesure with respet to whih our exponentil sums eome equidistriuted only hppen to hve the sme supportD ut it is not the smeF vet us sketh the rgument in the simpler se of SU @TFUA @we reognize the toEte mesureD whih governs the equidistriution of the lssil uloostermn sums Kl 2 (a, q)AF gompring @TFTA et @TFUA lerly shows tht the two pushforwrd mesures do not oinideF xextD we illustrte heorem TFPU in the se of the sum of two uloostermn sumsD shifted dditively y the two roots in F q of the polynomil X 2 + X + 1F es expetedD the piture suggests tht these sums ehve like sum of two independent rndom vrilesD eh following the lw of the tre of rndom mtrix in SU 3 (C) @euse we n see tht the sums will eventully (ll in the winkowski sum H 3 + H 3 D even though the length of the omputtions only llows us reltively smll vlues of qAF 3 i.e. satisfying ϕ(ghg -1 ) = ϕ(h) for all g, h ∈ SU2(C).

IWR pigure TFRX he sums x∈Zg(Fq) Kl 3 (a + x, q) for q = 40009D a vrying in F q D nd g = X 2 + X + 1F woreoverD sine X 2 + X + 1 does not dmit two roots of opposite signD the rndom vriles U p lso onverge in lw to the rndom vrile uniformly distriuted in C(Z g , SU 3 (C) )D so tht the sme type of piture is otined when we reple dditive shifts y multiplitive shifts y the roots of gF pigure TFSX he sums x∈Zg(Fq) Kl 3 (ax, q) for q = 40009D a vrying in F q D nd g = X 2 + X + 1F roweverD for other polynomils gD sums of multiplitive shifts n show di'erent symptoti eE hviour thn sums of dditive shiftsF por instneD if we tke g to e the polynomil (X -1)(X + 1)D then in tht se the rndom vriles U p eome equidistriuted in the sugroup ¶ f : {±1} → SU 3 (C) | f (-1) = f (1) © whih is isomorphi to SU 3 (C)D so it is only hlfEdimensionl ompred to the spe where the rndom vrile V p eome equidistriutedF he sums Kl 3 (a, q) + Kl 3 (-a, q) re equl to Kl 3 (a, q) + Kl 3 (a, q)D nd they eome equidistriuted with respet to the mesure whih is the lw of the rndom vrile

Tr(U ) + Tr(U )

where U is uniformly distriuted in SU 3 (C)F sn prtiulrD they re relEvluedD so they ertinly do not hve the sme limit mesure s the orresponding sums of dditive shifts Kl 3 (a-1, q)+Kl 3 (a+1, q)F IWS he following histogrm illustrtes wht we otin experimentlly for the distriution of these rel numers for lrge vlue of qF pigure TFTX histriution of the sums x∈Zg(Fq) Kl 3 (ax, q) on the rel lineD for q = 40009D a vrying in F q D nd g = (X -1)(X + 1)F Remark 6.35. ixmples of ountiful sheves stisfying the ssumptions of se (2) of heorem TFPU n lso e foundF e onrete exmple is given y sums of the form t q (x) = 1 √ q y∈Fq χ(h(y))e Å xy q ã , where χ is multiplitive hrter of F × q nd h ∈ Z[X] is polynomil whih must stisfy ertin tehnil onditionsF sndeedD suh sums re tre funtions ssoited with shef whose utomorE phism group is not neessrily trivil depending on some properties of h @nd we wnt the utomorE phism group to e trivilD s it is ruil prt of the de(nition of ountiful shefAF e refer to QVD roposition QFU for preise sttement of the onditions on h whih ensure the trivility of the utomorphism groupF IWT 6.A. On tensor products of representations sn this ppendixD we provide rief summry on externl nd internl tensor produts of representE tionsD s oth onstrutions re useful when working with produts of tre funtionsF pirstD let k e (eldD nd let V nd W e two (nite dimensionl kEvetor spesF qiven endomorphisms of V nd W respetivelyD one n de(ne n endomorphism of the vetor spe V ⊗ W s followsX Denition 6.36. sn other wordsD it is de(ned on pure tensors y (ρ σ)(g, h)(v ⊗ w) = ρ(g)(v) ⊗ σ(h)(w) for ll g ∈ G, h ∈ H, nd extended y kElinerity to V ⊗ W F hen the se (eld k is lgerilly losedD it n e shown tht this onstrutionD if we strt from irreduile representtions ρ nd σD tully gives all irreduile representtions of G × HF sndeedD we hve the following resultX Proposition 6.37 @URD ropF PFQFPQA. Let k be an algebraically closed eld, and let G and H be two groups.

(1) If τ is a nite-dimensional irreducible representation of G × H, then there exists two irreducible representations ρ of G and σ of H such that τ ρ σ.

(2) Conversely, if ρ is an irreducible representation of G and σ is an irreducible representation of H, then ρ σ is an irreducible representation of G × H.

IWU
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Research perspectives

Limiting growth condition for the equidistribution of subgroups of F × p qiven sugroup G of F × p D one n view 4 the elements x p for x ∈ G s elements of R/ZD nd sk whether these elements eome equidistriuted in R/Z s p goes to in(nityF es we lredy mentioned in emrk QFPU pFIIUD onjeture of wontgomeryD ughn nd ooley in VR @lso mentioned nd stted in the survey IRA implies tht there is equidistriution s soon s o my urrent knowledgeD the est result in this diretion is the ft tht if |G| p δ for some δ > 0 independent of pD then we hve equidistriutionX see eFgF IQD heorem TD or fourgin9s theorem s stted in this thesis in heorem QFIIF roweverD there is still gp to ridge etween p δ nd log(p)F woreoverD it ould lso e interesting to look for other susets A ⊂ F p @not neessrily multiplitive sugroupsA whih eome equidistriuted in R/ZF his would strengthen gorollry RFRH y llowing us to prove the equidistriution of the exponentil sums Additive and multiplicative relations between roots of polynomials o mke the limit mesure in the equidistriution of the sums @TFVA of gorollry RFRH more expliitD one needs to determine the module of dditive reltions etween the roots of the polynomil gF s m interested in (nding exmples of in(nite fmilies of polynomils with given module of dditive reltionsF es we sw in ghpter RD some re lredy knownD for instne when the qlois group of K g /Q is mximl @whih is the generi seAD ut s would like to investigte other possile qlois groupsF s m lso interested in relted inverse prolemsD suh sX when is polynomil @in ertin fmilyD suh s the ylotomi polynomilsA uniquely determined y its module of dditive reltionsc where χ vries over multiplitive hrters of F q D is governed y the multiplitive reltions mong the roots of gF hereforeD s would lso e interested in understnding more preisely how to pply the work of qirstmir RTD whih gives generl pproh sed on the study of the rtionl representE tions of Gal(K g /Q)D to this type of questionsF woroverD this my hve intertions with other prolems in nlyti numer theoryF por instneD in UI nd IVD multiplitive reltions etween roots of LEfuntions of lgeri urves over (nite (elds were lredy investigted using this pprohF his type of results is motivted for instne y the study of the gheyshev is in the distriution of primes in rithmeti progression @or generliztions of this questionAD where the liner independene hypothesis regrding the zeros of hirihlet LEfuntions plys entrl roleF Horizontal problems sn ghpter RD we studied rndom vriles U p de(ned on O g /p @with uniform proility mesureA with vlues in C(Z g , S 1 )D de(ned s followsX where S(T ) denotes the set of prime idels of O K with residul degree 1 nd stisfying p T F his equidistriution question is investigted in IHT in the se of the redution of (xed lgeri integer β modulo ritrry idels with residul degree 1 @not neessrily primeAF roweverD it is likely tht the level of di0ulty will rise when trying to restrit to prime idelsD just s in the se of the theorem of hukeEpriedlnderEswnie on roots of polynomil ongruenes @heorem IFIP of our introdutionAD whih is only known for qudrti polynomilsD while the nlogous theorem of rooley modulo riE trry integers is proved for polynomils of ritrry degreeF woreoverD we nnot hope tht the rndom vriles U T onverge in lw to U in ll sesF por instneD ssume tht a is (xed nonEzero integer nd tht g dmits root k ∈ Z \ {0} @s it is the se with root k = 1 of the polynomil g = X d -1AF hen for ll p ∈ Z g D U T (p)(k) = e Å ka p ã , so it onverges to 1 s p tends to in(nityD whih is not the ehviour of rndom vrile whih onverges in lw to U F husD there re proly some ssumptions on g tht one needs to dd in order to otin the horizontl equidistriution @for instneD g proly needs to e irreduileAF xowD if the rndom vriles U T onverge in lw to U D then sine the liner mp

σ : C(Z g , S 1 ) → C f → x∈Zg f (x)
is ontinuous nd oundedD we hve tht E(σ(U T )) -→

T →+∞ E(σ(U )).

sn prtiulrD if 0 / ∈ Z g D we hve tht E(σ(U )) = 0 @see emrk RFRRA so tht we would hve sing roposition RFQI to relte the inner sums to sums over Z g (F q )D we see tht the ove limit is losely relted 5 to sums of the type 1 π(x) q x y∈Zg(Fq) e Å by q ã whih re extly the type of sums tht rise when one pplies eyl9s riterion to tkle the prolem of the uniform distriution modulo 1 of the roots of g modulo qD s q goes to in(nityF husD the onvergene in lw of the rndom vriles U T would imply version of the equidistriution onjeture modulo totlly split primesD on verge over prime idels over qF 

E(σ(U T )) = 1 |S g (T )|

  THÈSE PRÉSENTÉE POUR OBTENIR LE GRADE DE DOCTEUR DE L'UNIVERSITÉ DE BORDEAUX École Doctorale de Mathématiques et d'Informatique Spécialité : Mathématiques pures par Théo UNTRAU Étude de la répartition de certaines sommes exponentielles courtes

x∈F × p x 9

 9 =1 e Å ax + bx -1 p ã lors ellesEi sont mjorées en module pr 9D mis le s @A de l9illustrtion iEdessous suggère qu9elles sont loin de remplir le disque de entre 0 et de ryon 9 lorsque a et b prourent F p F illes semlent en e'et se réprtir suivnt une mesure dont le support est stritement inlus dns e disqueF IH (a) Plusieurs tirages d'une somme X 1 + • • • + X 5 de variables aléatoires indépendantes et uniformément réparties sur S 1 . (b) Les points K p (a, b, 9) pour p = 577 et a et b variant dans F p .

K

  p (a, b, d) := x∈F × p x d =1 e Å ax + bx -1 p ã , pour un entier d (xé et p tendnt vers l9in(ni prmi les nomres premiers 6 ongrus à 1 modulo d @ette ondition ssure qu9il y ien d rines de l9unité distintes dns F p AF r exempleD lorsque d = 5D ils montrent qu9il y équiréprtition dns l région du pln omplexe délimitée pr une hypoyloïde à 5 rnhesD omme l9illustre l pigure RF gependntD ils démontrent e résultt uniquement dns le s où d est premier ou égl à 9D lors que dns le s des sommes de l forme S p (a, d) nlogue est démontré pour tout entier dD voir QPD RRF ve hpitre P omle les s restnt entre QPD RR et ITD en montrnt l9équiréprtition des sommes K p (a, b, d) pour n9importe quel entier d 2F he plusD nous étendons les résultts préédemment onnus (a) p = 151 (b) p = 631 pigure RX ves ensemles {K p (a, b, d); a, b ∈ F p } pour d = 5 et deux vleurs de p ≡ 1 (mod 5)F u s des sommes de l forme x∈Fp x d =1 e Å a 1 x m 1 + • • • + a n x mn p ã @PA

  xed polynomilIVT TFQFI he(nition of the unitry rndom vriles F F F F F F F F F F F F F F F F F F F F F IVT IT TFQFP gonvergene in lw of the unitry rndom vrilesF F F F F F F F F F F F F F F F IVU TFQFQ he exmple of uloostermn sums F F F F F F F F F F F F F F F F F F F F F F F F F IWH eppendix TFe yn tensor produts of representtions F F F F F F F F F F F F F F F F F F F F F elements of (nite set X is denoted y |X| or #XFsf a, b ∈ ZD we denote y (a, b) their gd @gretest @positiveA ommon divisorAF sf a ∈ Z nd p is prime numerD we denote y v p (a) the pEdi vlution of aF m | n mens tht the integer m divides the integer nF p α || n mens tht p α | n nd p α+1 n @in other wordsD α = v p (n)AF sf d is positive integerD φ d denotes the d th ylotomi polynomil over Q nd ϕ(d) its degreeF sf x ∈ RD we denote y {x} := x -x its frtionl prtF sf x = (x 1 , . . . , x m ) ∈ R m D we denote y {x} := ({x 1 }, . . . , {x m }) the frtionl prt of x tken omponentwiseF vet (X, A ) nd (Y, B) e two mesurle spesD nd let λ e mesure on the formerF sf f : X → Y is (A , B)EmesurleD then we denote y f * λ the pushforwrd mesure of λ vi f F st is de(ned s the mesure on (Y, B) suh tht (f * λ)(B) = λ(f -1 (B)) for ll B ∈ BF S 1 denotes the multiplitive group of omplex numers of modulus 1D while T denotes the dditive group R/ZF e lso use the stndrd nottion e(t) := exp(2iπt) for ll t ∈ R.
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  ft tht 2pqx 1 x 2 ≡ 0 mod pqF xowD we n rewrite the (rst sum s squre hs extly two squre roots nd 0 hs only oneF fesidesD

ä

  the formul @IFPA indeed gives the numer of solutions to polynomil eqution in terms of exponentil sumsF Example 1.4. vet p 3 e prime numerF por a ∈ F p D we denote yS(a, p) := {(x, y, z) ∈ F 3 p | x 2 + y 2 + z 2 =a}, PR whih is n lgeri vriety of F 3 p D given y the eqution of sphereF henD thnks to the ove disussionD the rdinlity of S(a, p) my e written s |S(a, p)| = 1 p x,y,z∈Fp h∈Fp e Å h p (x 2 + y 2 + z 2 -a) ã ghnging the order of summtionD we otin |S(a, p)show elementrily tht for ll h ∈ F × p D |τ (h)| = √ p @we give referenes nd generliztions of this ft in eppendix QFeAD nd sine τ (0) = pD we dedue tht |S(a, p)| = p→∞ p 2 + O(p 3 2 )

  For any interval I := [a, b[⊂ R such that b -a 1 we denote by I its image in [0, 1[ obtained by taking the fractional parts of the elements of I. Erdös-Turán inequality is the following result: there exist two absolute constants c 1 and c 2 such that for any sequence (x n ) n 1 of real numbers, for any interval I := [a, b[⊂ R such that b -a 1, for any H > 0:

2 √ 2 )

 22 14) needs to be replaced by |Kq(a, b)| (√ q (see the corrigendum [41] to the article [40]). RI (a) Distribution of the values 1 √ 6007 K 6007 (a, 1) in [-2, 2] as a ranges in F × 6007 . The red curve is the graph of x → 1 2π √ 4 -x 2 . (b) Distribution of the values 1 31 K 31 2 (a, 1) in [-2, 2] as a ranges in (Z/31 2 Z) × .

K

  p (a, b, d) := x∈F × p x d =1 e Å ax + bx -1 p ã , for (xed d nd p tending to in(nityD under the ondition tht p ≡ 1 (mod d) @this ondition ensures tht the group of dEth roots of unity is indeed mde of d elements in F p AF sndeedD for given lrge vlue of p nd the prmeters a nd b vrying in F p D one otins the following pituresX (a) p = 151 (b) p = 631 pigure IFPX he sets {K p (a, b, d); a, b ∈ F p } for d = 5 nd two di'erent vlues of p ≡ 1 (mod 5)F sn the riv version of the rtile ITD the uthors show tht there is indeed density result for suh sumsF hey prove tht when d is primeD the sums K p (a, b, d) eome dense in the region of the omplex plne delimited y dEusp hypoyloidF hey lso prove density result for d = 9F he (rst question s tried to nswer in my thesis wsX is it possible to prove that these sums actually become equidistributedwith respect to some measure?

Denition 2 .

 2 3. The d-cusp hypocycloid is the curve given by the image of: R → C θ → (d -1) exp(iθ) + exp((1 -d)iθ) It is a curve described by a point of a circle of radius 1 rolling inside a circle of radius d. pigure PFPX ome hypoyloids @imge extrted from the rtile ITA Denition 2.4. For all d 2, we denote by H d the compact region of the complex plane of boundary the d-cusp hypocycloid.

  , b, d); a, b ∈ (Z/qZ) 2 for d = 5 nd three 5Edmissile vlues of qF 2.3. Extension to more general families of Laurent polynomials 2.3.1. The case of exponents coprime with d

  Proof. vet q e dEdmissile integer nd let a, b ∈ Z/qZF IF Reordering the terms.

  two polynomils with oe0ients in A nd suh tht a m = 0 nd b n = 0F vet K := Frac(A)D nd let F e the KEliner mpX

  the polynomial whose coecients are the entries of m.Lemma 2.34. Let d 1, and let m = m 0 , . . . , m ϕ(d)-1) ∈ Z ϕ(d) \ {0}. For all p ≡ 1 mod d, let w p denote a primitive d th root of unity in F p . Then we have the following implication:

  xowD if f m (w p ) ≡ 0 mod p then sine we lso know tht φ d (w p ) ≡ 0 mod pD we otin tht Res(φ d , f m ) ≡ 0 mod p thnks to roposition PFQP pplied in the (eld F p F woreoverD s f m is nonE zero nd hs degree < ϕ(d)D it is oprime with φ d F hereforeD thnks to roposition PFQP @this time pplied in the (eldQAX Res(φ d , f m ) = 0F elsoD Res(φ d , f m ) is n integer sine φ d nd f m hve integer oe0ientsF husD Res(φ d , f m ) is nonEzero integer whih is divisile y pD hene |Res(φ d , f m )| pF gomining this with @PFPTA gives the inequlity p B ϕ(d)-1 d m ϕ(d) 2from whih the result followsF e thnk sgor hprlinski for ommuniting to us note whih mde use of this rgument of redution modulo p of nonEzero resultntF 2.B.3. Application to the control of the discrepancy in Myerson's lemma sn the proof of vemm PFISD the eyl sums oming from the pplition of eyl9s riterion not only converge to zeroD ut re eventually equal to 0F qérld enenum suggested to us tht this very strong onvergene towrds zero should enle us to dedue nonEtrivil estimte on the dey of the disrepnyD vi irdösEuránEuoksm inequlityF sn the reminder of this ppendixD we follow his suggestion nd prove nonEtrivil upper ound on the disrepnyF fut efore thtD let us introdue the neessry nottionsF Denition 2.35. Let d 1 be an integer, and let x 1 , . . . , x N ∈ (R/Z) d . We dene the discrepancy of x 1 , . . . , x N as follows: D(x 1 , . . . , x N ) := sup I∈I 1 N N j=1 1 I (x j ) -λ d (I) VS where I denotes the set of products of intervals [a 1 , b 1 ] × • • • × [a d , b d ] of (R/Z) d and λ d denotes the probability Haar measure on (R/Z) d .
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  become equidistributed in the image of the Laurent polynomial f d,m (Denition 2.19) with respect to the pushforward measure via f d,m of the probability Haar measure λ on (S 1 ) ϕ(d 1 )+•••+ϕ(dn) , as q goes to innity among the d-admissible integers. In other words, if we denote by I d,m the image of f d,m and by µ := (f d,m ) * λ, then for all continuous function F : I d,m → C,

m

  sf χ is hirihlet hrter modulo m nd ψ is n dditive hrter modulo mD we denote their tthed quss sum yX τ (χ, ψ) := x∈Z/mZ χ(x)ψ(x) iquivlentlyD one ould lso de(ne the quss sum y summing over the units modulo mD sine χ tkes the vlue 0 outside of this setF sf ψ = ψ 1 D we simply denote y τ (χ) the ssoited quss sumD tht isX τ (χ) := x∈Z/mZ χ(x)e x m he prinipl hirihlet hrter modulo m is denoted y χ 0 F por ll a ∈ Z we hveX χ 0 (a) = 1 if a nd m re oprimeD nd χ 0 (a) = 0 otherwiseF Lemma 3.16 @VSD theorem WFIP pge PWHA. Let χ be a non-principal character modulo m. Assume that χ is induced by the primitive character χ modulo m . Then for all a ∈ Z, if we denote by d := (m, a) we have: τ (χ, ψ a ) = 0 if d does not divide m m d) τ (χ ) if d divides m m @QFRRA

  u)|G|. sn this setion we give the proof of this theoremD following the rguments of loc. cit. nd expnding some detilsF Notation. por ny prime p nd ny sugroup G of F × p D we denote y p (a, G) the disrepny of the set ¶ ¶ ax p

  we split the unit ue [0, 1] n into Q n smller ues of side 1/QD in the most nturl wyF fy the pigeonhole prinipleD there must exist two points of X whih elong to the sme ue of side 1/QF sf one of these points is 1D this mens tht there exists c ∈ {0, . . . , Q n -1} suh tht x c elong to the ue of side 1/Q ontining 1F yf ourseD it nnot e the point x 0 D whih is t the opposite orner of the unit ue [0, 1] n D hene too fr wyF hereforeD c elongs to {1, . . . , Q n -1}D nd the ft tht x c elongs to the smll ue ontining 1 preisely mens tht there exist integers b 1 , . . . , b n suh tht for ll i ∈ {1, . . . , n}Db i -1/Q cα i b ieuse the frtionl prts of the cα i re ll lose to 1F e get the onlusion y tking a = cF ytherwiseD we hve two points x c nd x d elonging to the sme ue of side 1/QD ssoited with c nd d stisfying 0 c < d < Q n F his implies tht for ll i ∈ {1, . . . , n}D|{dα i } -{cα i }| 1/Qxow we use the ft tht β = β + {β} for ny rel numer βD to see tht|{dα i } -{cα i }| = |(d -c)α i -b i |, where b i = dα i -cα i ∈ ZFhis onludes the proof y tking a = d -cF fefore tully proving the min theorem of this setionD we thought tht short preview of the strtegy might e usefulF Strategy of the proof of Theorem 3.22. es fr s s understndD the proof is guided y the following idesF IF sf the sugroup G of F × p is smll @in the sense tht |G| u log(p)AD then yne n (nd some a ∈ F × p suh tht most of the frtionl prts ¶ ax p © for x ∈ G elong to some short intervlF his is essentilly the pigeonhole prinipleD sine there re mny a in F × p ompred to the size of the sugroupF he quntittive version of this informl desription of this step is provided y hirihlet9s simultneous pproximtion theoremF he previous step llows one to dedue lower ound for the disrepny D p (a, G) of the set nturl euse we hose a so tht most of the frtionl prts elong to short intervlD so we re in some sense fr from equidistriutionF o informllyX |G| smll =⇒ lower ound for D p (a, G) for some a ∈ F × p PF yn the other hndD if the exponentil sums over GX x∈G e Å bx p ã IIS re smllD in the sense tht M p (G) = o(|G|)D then it follows from irdösEurán inequlity @in the form of vemm QFPQA tht the disrepny D p (a, G) is lso smllF o informlly x∈G e Å bx p ã smll for ll b ∈ F × p =⇒ upper ound for D p (a, G) for ll a ∈ F × p husD we see tht |G| eing smll nd the exponentil sums over G eing smll n led to ontrditory inequlitiesD so tht oth nnot hppen t the sme timeF his will prove tht if |G| is too smllD then the exponentil sums over G nnot ll e too smllF yf ourseD this ws just n informl overview of the proofD ut now we need to turn the word smll into quntittive estimtes in order to mke the rgument workF Proof of Theorem 3.22. vet p e prime numerD nd let G e sugroup of F × p F vet us denote y t := |G| nd let X denote ny suset of GD with rdinlity T t @to e djusted lter in the proofAF vet x 1 , . . . , x T ∈ {1, . . . , p -1} e the unique lifts of the elements of XF por ll i ∈ {1, . . . , T }D we let α i := x i p • hen we pply gorollry QFPS to the rel numers α 1 , . . . , α T D with Q := p 1/T F his gives the existene of integers a, b 1 , . . . , b T suh tht 1 a < p nd for ll i ∈ {1, . . . , T }D |aα i -b i | p -1/T . his implies tht for ll i ∈ {1, . . . , T }D d Å ax i p , Z ã p -1/T . e dedue tht there exists n intervl [α, β[⊂ [0, 1[ with β -α p -1/T nd suset Y of XD with |Y | T /2D suh tht for ll y ∈ Y X ß ay p ™ ∈ [α, β[. e dedue the following lower ound for the disrepny of the set ¶

  we re in the onditions of pplition of vemm QFPQF hereforeD c(u) D p (a, G) 6η ln η -1 + 1 for suitle a ∈ F × p D whih gives ontrdition with our hoie of ηF husD for ll p p(u)D for ll sugroup G of F × p suh tht |G| u log(p)D we hve M p (G) > η|G|. his onludes the proofF Remark 3.27. he ostrution to equidistriution of heorem QFPP my e shrp3 sndeedD onjeE ture of wontgomeryD ughn nd ooleyD stted in VRD implies the equidistriution modulo 1 of the {x/p; x ∈ G} s soon s the multiplitive sugroup G stis(es

  Denition 4.5. Let d 1 be an integer. We denote by C(µ d , X) the set of maps from µ d to any set X. Moreover, R d denotes the submodule of C(µ d , Z) of additive relations between the elements of µ d : R d := α : µ d → Z, x∈µ d α(x)x = 0 , H d denotes the subgroup of C(µ d , S 1 ) which is dual to R d in the following sense:

Proposition 4 .

 4 10. The random variables (U p ) p∈R d dened at Denition 4.3 converge in law as p → ∞ to a uniformly distributed random variable on H d . Proof. pirstD let us prove tht the rndom vriles U p tke vlues in H d F vet us (x a ∈ O K /p nd prove tht U p (a) ∈ H d F st su0es to prove tht for ll α ∈ R d D η α (U p (a)) = 1F st is indeed the seD sη α (U p (a)) = x∈µ d e Å τ p (a p (x)) p ã α(x) = e Ç τ p (a p ( x∈µ d α(x)x)) p å nd x∈µ d α(x)x = 0 euse α ∈ R d Fhis proves tht for ll a ∈ O K /pD U p (a) ∈ H d F xowD let us prove the onvergene in lw stted in the propositionF es H d is ompt elin groupD we n pply the generlized eyl griterion for equidistriutionX it is enough to hek thtD for ll nonEtrivil hrters η of H d D we hve E(η(U p )) → 0 s p → +∞F xowD ny hrter of H d n e extended to hrter of the whole group C(µ d , S 1 )D so it n e written s η α for some α ∈ C(µ d , Z) @thnks to heorem RFTVAF woreoverD η α is trivil on H d if nd only if α ∈ R d thnks to roposition RFWF hereforeD we tke α / ∈ R d nd we wnt to show tht E(η α (U p )) → 0.e hveE(η α (U p )) = 1 p a∈O K /p η α (U p (a)) = 1 p a∈O K /p x∈µ d (U p (a)(x)) α(x) = 1 p a∈O K /p x∈µ d e Å τ p (a p (x)) p ã α(x) .IPQ hereforeD if we introdue the nottion S α := x∈µ d α(x)xD we hveE(η α (U p )) = 1 p a∈O K /p e Å τ p (a p (S α )) p ã = 1 p b∈Z/ p Z e Å τ p ( p (S α )) p b ã@the lst equlity is otined vi the hnge of vriles b = τ p (a)AF fy orthogonlity of the dditive hrters modulo p D we otinE(η α (U p )) = 1 τp( p(Sα))=0 = 1 p(Sα)=0sine τ p is n isomorphismF xow sine α / ∈ R d D we hve tht the idel S α O K is non-zero idel of the hedekind ring O K D so there re only (nitely mny prime idels in O K tht ontin itF husD for ll ut (nitely mny p we hve p (S α ) = 0 iFeF 1 p(Sα)=0 = 0F his shows tht for ll p ∈ R d suh tht p is lrge enoughD E(η(U p )) = 0F sn prtiulrDE(η(U p )) -→ p →∞ p∈R d 0.4.1.4. Recovering the result of Chapter 2 he previous proposition immeditely gives the following orollryX Corollary 4.11. The random variables S p : O K /p → C a → x∈µ d e Å τ p (a p (x)) p ã converge in law as p → ∞ (and p ∈ R d ) to a random variable σ(U ) where U is a uniformly distributed random variable on H d and σ : C(µ d , S 1 ) → C, f → x∈µ d f (x).

  D therefore the term p n (x) in the de(nition of U p n (a) mkes senseF pinllyD the limiting distriution of these rndom vriles will e governed y the dditive reltions etween the roots of gF husD the suitle nlogue of he(nition RFS is given y the following oneX Denition 4.26. Let g ∈ Z[X].

4. 3

 3 .5. The case where Gal (K g /Q) W d his setion is inspired y URD ixerise RFUFIQF essume tht d = 2n is n even integerD nd denote y X := {-n, . . . , -1, 1, . . . , n} nd y S d the set of ijetive mps from X to XF e de(ne the group W d s followsX W d := {σ ∈ S d | σ(-j) = -σ(j) for ll j ∈ X} sn other wordsD it is the set of σ whih permute the set of pirs {-j, j}F sn loc. cit.D it is shown tht the qlois group of n irreduile palindromic 4 polynomil of degree d n e seen s sugroup of W d F sf the qlois group is the full group W d D then one n determine the deomposition into irreduile surepresenttions of the permuttion representtion indued y the tion of W d on the rootsD nd the result is the followingX

  hen p | pD we hve the following nturl ring homomorphismsX Z → O K → κ(p) := O K /p he omposition ftorizes through Z/pZ nd gives rise to the soElled residual extension X F p → κ(p) F Denition 4.74. The eld κ(p) is called the residue eld at p, and we denote by f p the residual degree, which is dened as [κ(p) : F p ] (the degree of the extension of residue elds).
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  dt, nd then the result follows from pourier inversion formulF (a) Plot of J on [-2, 2] (b) Plot of " K on [-2, 2]

  of groupsF sn other wordsD ny hrter χ ∈ Γ n e written uniquely s χ m ⊗ ψ for ertin m ∈ Z d nd ertin ψ ∈ " F F Denition 5.11. Let χ ∈ Γ and let m = (m 1 , . . . , m d ) and ψ be the unique elements of Z d and "

  ∈ T d nd y n ∈ F F vet us denote y m := |F | nd let us (x n element y ∈ F nd retngle

  Proof. vet χ = χ h ⊗ ψ e hrter of T d ⊕ F suh tht 0 T (χ) HD mening tht h ∞ HF ine F = k i=d+1 Z/m i ZD we n write ψ s k i=d+1 ψ κ i : k i=d+1 Z/m i Z → S 1 (y d+1 , . . . , y k ) → k i=d+1 e Ä κ i m i y i ä with κ i ∈ {0, . . . , m i -1} for ll i ∈ {d + 1, . . . , k}Fvet z ∈ GF e write ϕ P (z) s (x, y)D where x ∈ T d nd y = (y d+1 , . . . , y k ) ∈ F F hen

é

  -)) |G . ITR 5.2.6. Some technical lemmas rere re two lemms whih re purely tehnil nd would hve mde the disussions ove more osure hd they een inluded in the previous setionsF Lemma 5.18. If a 1 , . . . , a d and b 1 , . . . , b d ∈ C then Proof. e wy to otin it is to write d j=1 b j s d j=1 (b j -a j ) + a j nd to develop the produtF hen the result follows from the tringle inequlityF Lemma 5.19. the vector t P h ψ in the proof of Lemma 5.16 belongs to Z k . Proof. he mtrix P is the hngeEofEsis mtrix whih tkes the oordintes of vetor in the nonil sis of R k nd returns its oordintes in the sis B = (a 1 , . . . , a d , a d+1 , . . . , a k )D where a i = 1 m i a i @see setion SFPFIAF vet us denote y C the nonil sis of R k nd y D the sis (a 1 , . . . , a d , a d+1 , . . . , a k )F hen P = P B,C = P B,D P D,C . xowD sine C nd D re two ses of the lttie Z k D we hve tht P D,C ∈ GL k (Z)F woreoverD P B,D = diag (1, . . . , 1, m d+1 , . . . , m k )F hereforeD sine

  5.3.1. Automorphisms ofT d ⊕ F . e ontinuous utomorphism of T d ⊕ F is in prtiulr ontinuous endomorphism of tht groupF hereforeD it is of the form T d ⊕ F → T d ⊕ F (y, z) → (f (y, z), g(y, z)) where f : T d ⊕ F → T d nd g : T d ⊕ F → F re ontinuous group homomorphismsF fut nowD one n write f (y, z) s α(y) + β(z) where α : T d → T d nd β : F → T d re oth ontinuous group homomorphismsF sndeedD it su0es to de(ne α(y) s f (y, 0) nd β(z) s f (0, z)F imilrlyD write ITS g(y, z) = γ(y) + δ(z) where γ : T d → F nd δ : F → F F husD if σ is ontinuous endomorphism of T d ⊕ F D it n e represented y mtrix Å ) + β(z) γ(y) + δ(z) ã . he im of this setion is to prove tht ll α, β, γ nd δ n e desried quite expliitlyD mostly in terms of mps indued y liner mpsF e (rst oservtion one n mke is the followingX Lemma 5.20. If σ is a continuous endomorphism of T d ⊕F , then the component γ of the above matrix representation is trivial. Proof. he imge of γ is onneted sugroup of the (nite group F euse γ is ontinuous nd T d is onnetedD therefore it must e the sugroup {0}F xowD if we further ssume tht σ is ijetiveD we n get more preise informtion on α, β nd δF xmelyX Lemma 5.21. If σ is a continuous automorphism of T d ⊕ F , then α is injective and |coker(α)| |F |, δ is an automorphism of F . Proof. sf α is not injetiveD let y 1 = y 2 ∈ T d e suh tht α(y 1 ) = α(y 2 )F hen σ hene σ is not injetiveF his proves tht for σ to e n utomorphismD it is neessry tht α is injetiveF xowD the imge of α is sugroup of T d D nd T d is disjoint union of lsses modulo Im(α)X r j=1 Im(α) + x j , where r = |coker(α)|. o if σ is surjetiveD this mens tht ny element of T d is of the form α(y) + β(z) for some y ∈ T d nd some z ∈ F D nd therefore β must reh ll lsses modulo αF his implies tht F must hve t lest s mny elements s there re lsses modulo Im(α)F he seond oordinte of σ Å y z ã is simply given y δ(z)D so δ needs to e surjetive if we wnt σ to e n utomorphismF ine δ : F → F D nd F is (niteD this is equivlent to sying tht δ must e n utomorphismF vet us now explin why α, β nd δ n in ft e written s mps indued y some mtrix multipliE tionsF por vetor Y ∈ R d D we denote y (Y mod 1) the vetor of (R/Z) d otined y redution modulo 1 of eh oordinteF vet us (rst view α s mp indued y liner mpF Lemma 5.22. Let α : T d → T d be a continuous group homomorphism. Then there exists a matrix A ∈ M d (Z) such that for all y ∈ T d = (R/Z) d , α(y) = (AY mod 1), where Y denotes any vector in R d such that (Y mod 1) = y. ITT Proof. ee IHD ghpter UD RF xextD let us explin why β is lso indued y the multiplition with mtrixF Lemma 5.23. Let F = k j=d+1

imge under σ is given y

  redution modulo 1 or modulo m j on the suitle oordintesF 5.3.2. Generalization of Theorem 5.17 to any choice of isomorphism e now let ϕ : G → T d ⊕ F =: Γ e ny isomorphism of topologil groupsF hen it n e written s ϕ = σ • ϕ P where σ is ontinuous utomorphism of Γ nd ϕ P is n expliit isomorphism indued y mtrix P s onstruted in etion SFPFIF xextD let z = (z n ) n 1 e sequene with vlues in GD nd onsider the ϕEdisrepny s de(ned in he(nition SFISF hen heorem SFIQ pplied to the sequene ϕ(z n ) implies the following estimteX
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  to D {x} in severl mnners whih di'er y elements of I {x} X Denition 6.10. We denote by Frob {x} the left I {x} -class of D {x} which corresponds to Frob geom κx .

1 ã

 1 D we will denote y [+b] the orresponding utomorphism of P 1 (F q ) nd y [+b] * F the orresponding pullk shefD whih hs tre funtion equl to x → t F (x + b)F imilrlyD if γ = y [×a] the orresponding utomorphismF he pullk shef [×a] * F then hs tre funtion equl to x → t F (ax)F

  They are respectively denoted by G F,arith (C) and G F,geom (C) and satisfy G F,geom (C) ⊆ G F,arith (C).

  fy de(nition of onvergene in lwD we wnt to show tht for ny ontinuous entrl funtion f : C (Z g , USp r (C)) → CD we hve1 |A p | a∈Ap f (U p (a)) -→ p →+∞ USp r (C) f dµwhere µ denotes the rr proility mesure on the ompt group USp r (C)F hnks to eterEeyl theorem @nd in prtiulr its onsequene in the form of WTD eppendix eFID gorF IAD it su0es to show tht if (π x ) x∈Zg is fmily of irreduile representtions of USp r (C)D not ll trivilD with hrters χ x = Tr(π x )D we hve1 |A p | a∈Ap x∈Zg(Og/p) χ x (Θ p (ax)) -→ p →+∞ 0.@TFQA he sum isD up to negligile mount oming from points where F p is not lisseD the sum of the tres of proenius on the shefG := x∈Zg(Og/p) π x ([×x] * F p ),orD from the point of view of representtionsD the sum of the tres of the representtionρ G = x∈Zg(Og/p) π x • ρ [×x] * Fp , @TFRAwhere π x is representtion of Sp r (C) whih extends π x F hereforeD proving the onvergene @TFQA is equivlent to proving1 |A p | a∈Ap t G (a) -→ p →+∞ 0.IVV sf we n pply the iemnn hypothesis to the shef G in the form of gorollry TFPID then we otin tht1 |A p | a∈Ap t G (a) c(G) 2 p 1/2 |A p |nd this (nishes the proof sine c(G) is esily seen to e ounded independently of p nd the ssumpE tion tht 0 / ∈ Z g ensures tht |A p | p F o the question isX n we pply gorollry TFPI to the shef Gc hnks to gorollry TFPI nd roposition TFPQD it su0es to show tht the representtion ρ G ssoited with the shef G hs no trivil geometrilly irreduile surepresenttionF sf we did not hve the omposition with the π x D we would e onsidering shef of the form x∈Zg(Og/p)

  ×y] * Fp IVW does not dmit nonEzero vetor whih is invrint under the tion of the geometri qlois group Gal k(X) sep /k(X) =: Π geom k F essume for ontrdition tht suh vetor existsF hen for llσ ∈ Π geom k D we hve λ(σ)(x) = xD tht is π x ρ [×x] * Fp (σ) ⊗ π y ρ [×y] * Fp (σ) (x) = x @TFSAwhere the tensor produt inside the rkets is the tensor produt of the endomorphisms π x ρ [×x] * Fp (σ) nd π y ρ [×y] * Fp (σ) in the sense of he(nition TFQTF xowD the ountiful property of F p ensures tht the imge of the mpΠ geom k → G geom (C) × G geom (C) σ → ρ [×x] * Fp (σ), ρ [×y] * Fp (σ)is riski dense in G geom (C) × G geom (C) @informllyD this n e interpreted s n independene of shiftsAF his omes from the qourstEuolhinEiet riterionD s stted y utz in THD roposition IFVFPF hereforeD we n dedue from @TFSA tht for ll (g, h) ∈ G geom (C) × G geom (C)D[ π x (g) ⊗ π y (h)] (x) = x.

  (3)F Even rank Kloosterman sums. essume tht r = 2g is evenF hen thnks to se (1) of heorem TFPU pplied to the ountiful shef K r D we know tht the orresponding rndom vriles U p eome equidistriuted in C(Z g , USp r (C) ) s p tends to in(nityF gomposing this onvergene in lw with the ontinuous mppingC(Z g , USp r (C) ) → C M → x∈Zg Tr(M (x))we otin s orollry the onvergene in lw of the rndom vrilesO g /p → C a → x∈Zg Tr(U p (a)(x))towrds rndom vrile whih is the sum of deg(g) independent rndom vrilesD eh distriuted s the tre of uniform element of USp r (C) F xowD unfolding the de(nition of the rndom vriles U p nd identifying O g /p with F q for the prime q = p D we see tht this gives us the equidistriution of the sumsx∈Zg(Fq)Kl r (ax, q)with respet to mesure whih is the lw of deg(g) independnt rndom vrilesD eh distriuted s the tre of uniform element in USp r (C) F he distriution of those tres ws studied y utz in SWD ghpter IQF sn prtiulrD when r = 2D he shows tht they re uniformly distriuted in [-2, 2] with respet to the toEte mesure dµ ST (x) = 1 2π 4 -x 2 dx.

2 - 2 1 2 •sin 2 = 2 π π 0 1 2 dy

 222202 2 (C)F sn tht seD the mesure on the 2Eusp hypoyloid H 2 = [-2, 2] tht ws relevnt in the previous hpters ws the pushforwrd of the rr mesure λ on S 1 vi the mpXf : z → z + 1 z = z + z = 2Re(z).vet us determine this mesure expliitlyX for ny intervl [a, b] ⊆ [-2, 2]D we hve 2 The computations of the values Kl3(a, q) have been performed by Bill Allombert using PARI-GP: [101]. It took around 11 hours on 128 cores. IWQ [a,b] df * λ = hereforeD the mesure on [-2, 2] hs proility density funtion given y the veesgue mesure on [-2, 2]F yn the other hndD the imge y the tre of the rr mesure on SU 2 (C) n e determined using the following lssil result @see eFgF QRAX Proposition 6.34. Let µ 2 denote the Haar probability measure on SU 2 (C). Then for any central 3 function ϕ : SU 2 (C) → C which is absolutely integrable, we have SU 2 (C) (θ)dθ. por ny intervl [a, b] ⊆ [-2, 2]D we n pply this proposition to the funtion ϕ = 1 [a,b] • TrD nd this gives tht SU 2 (C) (1 [a,b] • Tr) dµ 2 [a,b] (2 cos θ) sin 2 (husD the imge y the tre of the rr mesure on SU 2 (C) dmits the following proility density funtion with respet to the veesgue mesure on [-2,

  For A ∈ End k (V ) and B ∈ End k (W ), we deneA ⊗ B : V ⊗ W → V ⊗ W on pure tensors by the formula (A ⊗ B)(v ⊗ w) := A(v) ⊗ B(w), and then extend it to the whole vector space V ⊗ W by k-linearity.xow we let G e groupF e rell tht (nite dimensionl kErepresenttion of G is group homoE morphism ρ : G → GL(V )D where V is (nite dimensionl kEvetor speF qiven two representtions of the sme group GD sy ρ : G → GL(V ) nd σ : G → GL(W )D one n onstrut nother representtion ρ ⊗ σ of GD lled the internal tensor product of ρ nd σD s followsXρ ⊗ σ : G → GL(V ⊗ W ) g → ρ(g) ⊗ σ(g).sn other wordsD it is de(ned on pure tensors v ⊗ w ∈ V ⊗ W y(ρ ⊗ σ)(g)(v ⊗ w) = ρ(g)(v) ⊗ σ(g)(w) for ll g ∈ G,nd is extended y kElinerity to V ⊗ W F yn the other hndD there is lso onstrution of n external tensor product of representtionsF qiven representtion ρ : G → GL(V ) of group G nd representtion σ : H → GL(W ) of nother group HD one n de(ne the externl tensor produt representtion ρ σ s the following representtion of G×HX ρ σ : G × H → GL(V ⊗ W ) (g, h) → ρ(g) ⊗ σ(h).

  urrent knowledgeD it hs neither een proved nor disprovedF sn view of the disussion of eppendix QFfD this onjeture is very strongD sine sugroups tht hve rdinlity less thn onstnt times log(p) do not stisfy max

  prmeters b vrying in the suset A of F p insted of the whole groupF

4

  simply because the fractional part of x/p does not depend on the lift x ∈ Z of the residue class x (mod p). IWW imilrlyD in roposition TFI the equidistriution of the sums x∈Zg(Fq) χ(x),

U

  p (a) : x ∈ Z g → e Å τ p (a p (x)) p ã .e proved t heorem RFQH tht these rndom vriles onverge in lw to rndom vrile U D uniformly distriuted on the sugroup H g of C(Z g , S 1 )F his elonged to the lss of vertical equidisE triution prolemsD sine for ny p ∈ S g D we verged over a ∈ O g /pF he orresponding horizontal question would e to x a non-zero algebraic integer a ∈ O g D nd to onsider the rndom vriles U T D de(ned on the set S g (T ) of idels p ∈ S g suh tht p T @with uniform proility mesureAD with vlues in C(Z g , S 1 )D s followsU T (p) : x ∈ Z g → e Å τ p ( p (ax)) p ã .he question one my sk isX do the rndom vriles U T onverge in lw s T goes to in(nityD nd if soD do they onverge to the sme limit U s the rndom vriles U p c vet us see wht this gives if we try to pply eyl9s riterion to this prolemF por hrter η of the group C(Z g , S 1 )DE η(U T ) = 1 |S g (T )| p∈Sg(T ) η(U T (p)) so if η is ssoited with α ∈ C(Z g , Z)D we n write E η(U T ) = 1 |S g (T )| p∈Sg(T ) x∈Zg e Å τ p ( p (ax)) p ã α(x) = 1 |S g (T )| p∈Sg(T ) e Åτ p ( p (aS α )) p ã where S α = x∈Zg α(x)xF hereforeD the sum of the rightEhnd side is the type of eyl sum whih ppers in the following prolemX qiven numer (eld K/Q nd n lgeri integer β ∈ O K D we n redue it modulo p for ny prime idel p ⊂ O K D to otin p (β)F xowD if we further ssume tht p hs residul degree 1D then we n PHH identify nonilly O K /p with Z/ p ZD to see p (β) s residue lss modulo p X this is wht is denoted y τ p ( p (β))F hen we n wonder whether the frtionl prts of τ p ( p (β)) p eome equidistriuted in R/Z s p vries mong the prime idels with residul degree 1 nd p goes to in(nityF he pplition of eyl9s riterion in this setting would give sums of the form

  

  

  For any odd prime number p, denote by

	Kl 2 (a, p) := -	1 √ p	p x∈F ×	e	q Å ax + x -1	ã
	the normalized Kloosterman sums modulo p. As p → +∞ through primes, the sets of sums
	Kl 2 (a, p); a ∈ F × p	
	become equidistributed with respect to the Sato-Tate measure on [-2, 2] (dened at equation @IFIPA).
	gonretelyX for ny intervl [c, d] ontined in [-2, 2] we hve	

  m i nd prmeters a i vrying in F p F rere is smple sttement in the speil se where the m i re oprime with dX Theorem 1.25 @IHQD roposition f @AD roposition PFIP pFSW in this mnusriptA. Let d 1 and let m 1 , . . . , m n be integers all coprime with d. Then the sets of sums

	for ritrry integers				
	st turns out tht this question ws quikly nsweredD euse in the pulished version of loc. cit.D
	remrk sttes tht the proof of the density tully shows tht there is equidistriution with respet
	to n d ho pushforwrd mesureF roweverD the ft tht it ws only proved for vlues of d whih
	were prime or equl to 9 ws surprisingD s the ext sme results were otined for any vlue of d for
	the simpler sumsX				
		S p (a, d) :=	x∈Fp	e	p Å ax	ã
					x d =1
	in QPD RRF s ws rther striked y the ft tht the sums S p (a, d) nd K p (a, b, d) eme equidistriuted
	with respet to the sme mesureF husD s tried to understnd wht ws the reson ehind thisD nd
	whih other sums stisfy the sme equidistriution resultsF he key oservtion tht explins the
	similrity of their symptoti ehviour is tht the exponents +1 nd -1 whih pper in ax + bx -1
	in the de(nition of the uloostermn sums re oprime with dD for ny integer dF
	sn Chapter 2 D we extend ertin known equidistriution results from QPD RR nd ITD regrding
	sums of the type S p (a, d) nd K p (a, b, d)D to more generl fmilies of exponentil sumsD nmely sums
	of the form	x∈Fp	e	p Å a 1 x m 1 + • • • + a n x mn	ã
		x d =1			
					RQ

  Remark 2.40. sn his noteD sF hprlinski ws studying muh more generl se where d is not (xedD ut is llowed to grow with pF sf one n otin the kind of estimte of the end of the proof of roposition PFQV with reltively good understnding of the dependny with respet to dD this ould led to rnge of growth of d with respet to pD for whih wyerson9s lemm would still holdF his would hve onsequenes on equidistriution of exponentil sums indexed y sugroups whose rdinlity grows with pD tht is sums of the typeX

	x∈Fp	e	Å ax p	ã	, a ∈ F
	x d(p) =1				

p where d(p) should proly stisfy ondition preventing it from growing too fst with respet to pF VU VV Chapter 3

  thank Élise Goujard and Pascal Autissier for asking me the question of the optimality of the growth condition in Bourgain's estimate. This question encouraged me to gain a better understanding of the state of the art and led to the writing of this appendix.

	sn the se of prime moduliD fourginEqliihukEuonygin9s estimte sserts tht for ny δ > 0D there
	exists ε = ε(δ) > 0 suh tht for ll pD for ll sugroup G of F × p stisfying
			|G| p δ	@QFRTA
	we hve					
	max a∈F × p x∈G	e	Å ax p	ã	δ	|G| p ε •
	sn prtiulrD					
	max a∈F × p x∈G	e	Å ax p	ã	=

2 thnks to the seond prt of lemm QFIV sine χ is primitive hrter modulo p β F he ssertion on |τ (χ, ψ a )| follows from thtF Remark 3.21. his lst orollry n lso e found in SD setion IFT with selfEontined proof whih does not rely on the more generl se we stted in vemm QFITF III 3.B. Some complements on Bourgain-Glibichuk-Konyagin's estimate I p→∞ o (|G|) , @QFRUA
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  then roposition RFIQ tells us tht any prime idel ove q elongs to R d F o for eh qD we let p e suh n idelF hen thnks to gorollry RFIID we know tht the rndom vriles S p onverge in lwD s p goes to in(nityD to rndom vrile σ(U ) s in the sttementF sn other wordsD the sets {S p (a); a ∈ O K /p} eome equidistriuted with respet to the mesure σ * (µ H d )F xowD we hve tht for ll a ∈ O K /pD

	S p (a) =	x∈µ d	e	p Å τ p (a)τ p ( p (x))	ã

equidistributed in σ(H d ) with respect to the pushforward measure σ * (µ H d ), where µ H d denotes the probability Haar measure on H d .

IPR

Proof. sf q ≡ 1 (mod d)D

  nd the ltter is extly p n Z thnks to vemm RFIUF Corollary 4.19. Under the assumptions of the preceding corollary, assume further that the residual degree f p is equal to 1. Then for any n 1, the natural ring homomorphism ι p Under the assumptions of Corollary 4.19, we denote by τ p n : O K /p n → Z/p n Z = Z/ p n Z the inverse of ι p n .

	e n now set the de(nitions whih will give n pproprite frmework to hndle exponentil sums
	over the roots of some polynomilF
	4.2.2. Denition and convergence in law of the suitable random variables
	vet g ∈ Z[X] e monic polynomil of degree d 1F
	Denition 4.23. We will use the following notations:

n : Z/p n Z → O K /p n is an isomorphism.

Proof. ell tht one n de(ne the norm of n idel a of O K s the index of a in O K F e will denote it y a a := |O K /a| , nd tht this norm is multiplitive @see eFgF VID heorem PP @AAF husD

|O K /p n | = p n = p n = |O K /p| n = Ä p fp ä n = p n

using the ft tht f p = 1F hereforeD the mp in the sttement is mp etween two sets hving the sme numer of elementsD nd it is injetive thnks to gorollry RFIVD so it is ijetionF Remark 4.20. hen the residul degree f p is equl to 1D the nturl homomorphism Z/pZ → O K /p is n isomorphismD so the prime p equls the norm p of the idel pF Remark 4.21. sf p is totlly split in K then for ll p | pD the ssumptions of gorollry RFIW re ful(lledF Denition 4.22.

Z g denotes the set of roots of g in C, K g := Q(Z g ) denotes the splitting eld of g, and O g the ring of integers of K g , for any ideal a of O g , we denote by a : O g → O g /a the canonical surjection,

  very lose to tht of roposition RFIH gives the following sttementX Theorem 4.30. The sequence (U p n ) p∈Sg,n 1 converges in law, as p n goes to innity, to a random variable U uniformly distributed on H g . Note that p n → ∞ includes the case where p if a xed prime ideal and only n goes to innity.

is an isomorphism of abelian groups.

Proposition 4.29. Let α ∈ C(Z g , Z). The character η α is trivial on H g if and only if α ∈ R g .

IPV henD proof

  nd this is ontrditionF Corollary 4.51. Let g ∈ Z[X] be a monic and separable polynomial of degree d 1 such that its Galois group Gal (K g /Q) is isomorphic to S d . Then the exponential sums

	x∈Zg(Fq)

  for ny given negtive disriminntD there is unique soElled dominant singulr modE ulus of disriminnt ∆D whih orresponds to τ with imginry prt |∆|/2D while ll others re ssoited with omplex numer τ with imginry prt less thn or equl to |∆|/4D see PD etion QFQF es onsequene of the estimte oveD the dominnt singulr modulus of disriminnt ∆ stis(es |j(τ )| e π

	√	|∆| -2079,
	while ll the other singulr moduli of disriminnt ∆ stisfy
	|j(τ )| e π	√ 2 |∆|
			)	2079,
	see VD vemm IF	

5 Many thanks to Emanuele Tron for giving the key ideas of the proof, leaving me only a few details to check. IRR @A pinllyD

  sine it is only de(ned on O g F he key rgument is the followingX Lemma 4.63. Let p ⊂ O g be an ideal which does not contain any root of g and let P denote the

	product
	y m ,
	y∈Zg

  ). Discussion on the denition of the discrepancy in a subgroup of a torus vet G e losed sugroup of T k nd let z = (z n ) n 1 e sequene of points in GF yne we know tht (z n ) eomes equidistriuted in G with respet to its rr mesureD one my skX n we give quntittive estimte of ertin notion of disrepny in terms of the dey of the solute vlue of the eyl sumsc o nswer this questionD we must give preise de(nition of the disrepny in this ontextF here re two ides we thought outX Denition 5.14. We dene the discrepancy by intersecting rectangles of T k (the large ambient group) with the closed subgroup G. More precisely, if we denote by I k the set of reductions modulo Z k of products

	5.2.4.
	ITI

  we put the mtrix P on the other side of the dot produtD nd this givesX " ϕ P (χ)(z) = e t P h ψ • z xow let h := t P h ψ F henD thnks to vemm SFIWD the vetor h elongs to Z k D nd stis(es

	h ∞	t P op h ψ ∞	t P op H.

  though Frob {x} is only de(ned up to n element of I {x} D it mkes sense to spek out the utomorphism Ä Frob {x} | V I {x} ä indued on V I {x} F pinllyD if we mde nother hoie of extension of the vlution v x to vlution on K sep D the orresponding groups D {x} nd I {x} would e Gal (K sep /K)Eonjugtes to D {x} nd I {x} D whih implies tht

  the determintion of the monodromy group is di0ult prolemF sn mny ses of interest in nlyti numer theory howeverD utz determined the monodromy groups in severl ooks @eFgF SWD THD TID TPAF ris work provides mny exmples where the equidistriution of the proenius onjugy lsses is wellEunderstoodD nd gives s orollries eutiful equidistriution results regrding onrete tre funtionsF 6.3. Uniform distribution results for sums of trace functions over the roots of a xed polynomial vet us (x for ll this setion g ∈ Z[X] moni nd seprle polynomilF e keep the nottions K g , O g , S g from ghpter RF sn the ltterD we studied exponentil sums of the form is just the inverse of the nonil isomorphism etween Z/ p Z nd O g /p when p ∈ S g F yn the other hndD in etion TFI we showed tht the sme tehniques led to equidistriution results for sums of the form where χ is vrying hrter of the multiplitive group (O g /p) × F hnks to etion TFPFVD we see tht we delt with two instnes of sums of tre funtions over roots of polynomilF husD it is nturl to try to see whether similr results n e otined for sums of the form Edi middleEextension shef F p on the 0ne line over O g /pF e ssume tht these sheves re pure of weight 0D nd hve the sme rnk rD nd moreover hve ounded ondutor in the sense of he(nition TFIVF e lso ssume tht they hve the sme geometri monodromy groupD nd tht the rithmeti nd the geometri monodromy groups re equlF ine we mke this ssumptionD we n drop the susript F p in the nottion of the monodromy groupsD nd just denote them sG arith (C) nd G geom (C)whih re to e understood s the common monodromy groups of the sheves F p F vet x ∈ O g /p e suh tht F p is lisse t xF hen y de(nitionD ι(ρ Fp (Frob {x} )) ∈ G arith (C)D nd its onjugy lss only depends on xF hnks to the ssumption tht the rithmeti nd the geometri monodromy groups oinideD we n ssoite with x unique onjugy lss ϑ p (x) ∈ G geom (C) F st is represented y mtrix whose eigenvlues re ll omplex numers of modulus 1 @due to the ssumption tht our sheves re pure of weight 0AF st n e shown in this ontext of liner lgeE ri groups tht this mtrix dmits tordnEghevlley multiplitive deompositionD so it my e written s produt of digonlizle mtrix ϑ Fp (Frob {x} ))F sf nother hoie of extension of vlution ws mde nd led us to de(ne Frob {x} insted of Frob {x} D then we hve seen tht these two utomorphisms re Gal (K sep /K)EonjugtesD so tht their imges vi the representtion ρ Fp nd the isomorphism ι re two mtries whih re G geom (C)EonjugtesF rowE everD it is not strightforwrd tht when we (nd n element of K geom (C) in the G geom (C)Eonjugy lss of their semiEsimple prtD we otin two elements of K geom (C) whih re K geom (C)Eonjugtes nd not only G geom (C)EonjugtesF st turns out tht this is trueD s explined in TQD WFPFRF his relies on the ft tht K geom (C)Eonjugy lsses re seprted y the tres of (nite dimensionl representtions of K geom (C) @ onsequene of the eterEeyl theoremA nd tht suh representtions of K geom (C) re restritions of representtions of the whole lgeri group G geom (C)F husD ny x ∈ O g /p suh tht F p is lisse t x de(nes properly n element of K geom (C) D whih we still denote y Θ p (x)F ine we will e interested in sums of @dditive or multiplitiveA shiftsD we need to e utious with the ft tht those shifts might reh nonElisse pointsF ht is why we introdue the following setsX A

	x∈Zg(Og/p)	e	p Å τ p (ax)	ã
	where τ p x∈Zg(Og/p)	χ (x)
	t p (ax),	or	
	x∈Zg(Og/p)				x∈Zg(Og/p)
	t p (ax),	ndGor	t p (a + x),
	x∈Zg(Og/p)				x∈Zg(Og/p)
	for a vrying inn A p @respetively B p A will eome equidistriuted ording to the imge of this limit
	distriution y the mp			
	f →	Tr(f (x))
		x∈Zg	

de(ned y viewing GL r (C) s n open suset of C r 2 D nmely the set of points where the determinnt is nonEzeroF roweverD it is not this riski topology tht is used in the ontext of liner lgeri groupsD euse the mtrix inversion is not polynomil mp if we mke this hoie insted of the one oveF IVS sn generlD t p (a + x), @or other similr expressionsA when t p isD for eh p ∈ S g D tre funtion over the (nite (eld O g /pF 6.3.1. Denition of the unitary random variables e thus ssume tht for eh p ∈ S g D we re given n p (x) ss @lled the semiEsimple prtA y unipotent oneF ine the eigenvlues hve modulus 1D we n sy tht the semiEsimple prt ϑ p (x) ss elongs to ertin ompt sugroup of G geom (C)F fut ny suh sugroup is G geom (C)Eonjugte to mximl ompt sugroupD sy K geom (C)F hereforeD we n ssoite to ny x ∈ O g /p suh tht F p is lisse t x unitry mtrix whih we denote y

Θ p (x) ∈ K geom (C)D whih is G geom (C)Eonjugte to the semiEsimple IVT prt of the proenius utomorphism ι(ρ p := a ∈ (O g /p) × | for ll x ∈ Z g (O g /p), F p is lisse t ax B p := {a ∈ O g /p | for ll x ∈ Z g (O g /p),

F p is lisse t a + x} xote tht we lwys hve |B p | p D nd tht if we further ssume tht 0 / ∈ Z g D then we lso hve |A p | p F Denition 6.26 @nitry rndom vrilesA. For p ∈ S g , we dene random variables U p and V p on A p and B p respectively (with uniform probability measure), with values in the space C Z g , K geom (C) , by

U p (a)(x) = Θ p (ax), V p (a)(x) = Θ p (a + x),

where x ∈ Z g is viewed as an element of O g /p through the canonical projection p .

xote tht this de(nition is quite nturl extension of he(nition RFPSX in oth ses we re viewing the terms of our exponentil sums of interest s tres of ertin rndom unitry elementsD exept tht in he(nition RFPS we hd 1 × 1 mtriesD so we did not need to tke the treF wore preiselyD sine the tre funtion t p of F p stis(es t p (x) = Tr(Θ p (x))

for x lisseD we see tht if one n prove tht (U p ) ndGor (V p ) hs limitD then the sums

  [×x] y [+x] in the pullk sheves elowAF fy de(nitionD the rndom vriles U p tke vlues in C Z g , K geom (C) D where K geom (C) is the spe of onjugy lsses of mximl ompt sugroup K geom (C) of the ommon geometri monodromy group G geom (C) of the sheves F p F rereD sine we ssume tht the sheves re of Sp r EtypeD we hve tht
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le cas des sommes modulo des puissances de tels nombres premiers est aussi traité de la même manière mais, dans ce résumé, nous n'évoquons que le cas des nombres premiers pour alléger les notations. II

for instance, this approach is often used to prove the Pólya-Vinogradov inequality.RS
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A polynomial g is said to be palindromic if its coecients form a palindrome, which is equivalent to the fact that X deg(g) g(1/X) = g(X).

meaning that there must not exist a 1 dimensional linear subspace V of V F such that for all σ ∈ Gal K sep /Fq(X) , ρ F (σ) acts as the identity on V . IVQ
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