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Étude de la répartition de certaines sommes exponentielles courtes

Résumé : Cette thèse porte sur des propriétés d'équirépartition de certaines sommes exponentielles
qui apparaissent naturellement en théorie analytique des nombres. Dans un premier temps, nous éten-
dons des résultats de Duke, Garcia, Hyde et Lutz concernant des sommes de caractères additifs sur Fp,
mais restreintes au groupe µd(Fp) des racines de de l'unité, pour un entier d �xé. Nous démontrons
d'abord un résultat d'équirépartition portant sur des familles de sommes exponentielles paramétrées
par le corps �ni tout entier. Nous montrons ensuite qu'il y a toujours équirépartition si nos familles
sont paramétrées par des �petits� sous-groupes multiplicatifs de F×p . Cette généralisation s'appuie sur
des majorations de sommes exponentielles qui ont été obtenues par Bourgain, Chang, Glibichuk et
Konyagin par des méthodes de combinatoire additive.
Dans un second temps, nous présentons les résultats d'un travail en commun avec Kowalski, où nous
étendons les résultats précédents au cas des sommes exponentielles indexées par l'ensemble des racines
dans Fp d'un polynôme unitaire à coe�cients entiers. Nous montrons que ces sommes s'équirépartissent
par rapport à une mesure qui est liée au groupe des relations additives entre les racines complexes du
polynôme. On établit l'équirépartition des sommes de caractères multiplicatifs indexées par les racines
d'un polynôme, mais cette fois-ci par rapport à une mesure qui est liée au groupe des relations multi-
plicatives entre les racines complexes. Nous présentons également des généralisations à des sommes de
fonctions traces plus générales, ayant pour principal corollaire un résultat d'équirépartition de sommes
de sommes de Kloosterman translatées par les racines d'un polynôme.
En�n, un chapitre de ce manuscrit est dédié à la majoration de la discrépance, qui est une mesure de
la vitesse d'équirépartition.

Mots-clés : équirépartition, sommes exponentielles, relations linéaires entre nombres algébriques,
fonctions traces.

Unité de recherche : Institut de Mathématiques de Bordeaux, UMR 5251, 351 cours de la Libération,
F 33 405 Talence.
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Study of the distribution of some short exponential sums

Abstract: This thesis is about equidistribution properties of some exponential sums which arise
naturally in analytic number theory. First, we generalize results of Duke, Garcia, Hyde and Lutz
concerning sums of additive characters of Fp, but restricted to the group µd(Fp) of d�th roots of unity,
for a �xed integer d. We prove an equidistribution result for families of exponential sums parametrized
by the whole �nite �eld. Then, we show that this result still holds for families solely parametrized
by �small� multiplicative subgroups of F×p . This generalization relies on strong bounds on exponential
sums which were obtained by Bourgain, Chang, Glibichuk and Konyagin using methods from additive
combinatorics.
Then, we present the results obtained as part of a joint work with Kowalski, in which we extend the
previous results to the case of exponential sums over the roots in Fp of an arbitrary monic polynomial
with integral coe�cients. We show that these sums become equidistributed with respect to a measure
that is related to the group of additive relations among the complex roots of the polynomial. Similarly,
sums of multiplicative characters over the roots of a polynomial become equidistributed with respect to
a measure that is related to the group of multiplicative relations among complex roots. We also present
generalizations to sums of more general trace functions. The main corollary is an equidistribution result
concerning sums of Kloosterman sums shifted by roots of a polynomial.
Finally, a chapter of this manuscript is dedicated to the estimation of the discrepancy, which measures
how fast equidistribution happens.

Keywords: equidistribution, exponential sums, linear relations between algebraic numbers, trace func-
tions.
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Résumé étendu en français

Dans ce résumé en français, on présente les contributions de la thèse informellement a�n de limiter
l'introduction de trop nombreuses notations. Des énoncés précis et des références à leur localisation
dans le corps du manuscrit sont fournis dans la section �Outline of the thesis� page 43.

Cette thèse porte sur l'étude du comportement asymptotique de certaines familles de sommes expo-
nentielles5, c'est-à-dire des sommes de la forme∑

j∈J
eiθj ,

où J est un ensemble �ni et les θj sont des nombres réels. En tant que sommes de nombres complexes
de module 1, celles-ci sont de module inférieur ou égal au cardinal de l'ensemble J . Cette borne, dite
triviale, est atteinte lorsque tous les θj sont égaux modulo 2π. Cependant, dans de nombreuses situa-
tions, des compensations entre les arguments θj permettent d'obtenir de bien meilleures majorations.
Les deux illustrations suivantes permettent de visualiser ces deux types de comportement.

Figure 1: Le point z = eiθ1 + eiθ2 + eiθ3 pour des angles θ1, θ2, θ3 �bien répartis� sur le cercle.

Figure 2: Le point z = eiθ1 + eiθ2 + eiθ3 pour des angles θ1, θ2, θ3 presque égaux.

Lorsqu'elles apparaissent dans des problèmes de théorie des nombres, les sommes exponentielles font
généralement intervenir des arguments θj de la forme 2πaj

n pour un certain entier n, et des entiers aj .
Puisque le nombre complexe eiθj ne dépend alors que de la classe de congruence de aj modulo n, on

5Peut-être serait-il plus juste de les nommer sommes d 'exponentielles, mais les deux terminologies semblent être
utilisées.
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parle alors de somme exponentielle �modulo n�, ou �sur Z/nZ�. L'étude des compensations entre les
arguments qui conduisent à des majorations non-triviales du module de ces sommes est alors directe-
ment liée à la répartition des entiers aj dans les classes de congruences modulo n.

Notation. Pour tout t ∈ R, on note e(t) := e2iπt a�n de ne pas encombrer les notations de 2iπ
(autrement dit, on rend l'exponentielle 1-périodique plutôt que 2iπ-périodique, ce qui est bien com-
mode pour travailler avec des entiers).

Parmi les sommes que l'on rencontre fréquemment, on peut citer les sommes de Gauss :

∑
x∈Z/nZ

e

Å
ax2

n

ã
qui sont liées à la répartition des résidus quadratiques, et grâce auxquelles on peut démontrer la célèbre
loi de réciprocité quadratique (voir section 1.1.1). Les sommes de Kloosterman

Kn(a, b) :=
∑

x∈(Z/nZ)×

e

Å
ax+ bx−1

n

ã
, (1)

où x−1 est l'inverse de xmodulo n, ont également fait l'objet de nombreux travaux en théorie analytique
des nombres. Elles apparaissent notamment dans une variante de la méthode du cercle introduite par
Kloosterman pour étudier le nombre de façons dont un entier su�samment grand peut-être représenté
par la forme quadratique ax2 + by2 + cz2 +dt2 (voir section 1.1.3), ainsi que dans la théorie des formes
modulaires (voir section 1.1.4).

On retrouve également des sommes exponentielles dans de nombreux problèmes d'équirépartition,
grâce au célèbre critère de Weyl (voir section 1.2.2). En e�et, ce dernier nous dit que pour prouver
l'équirépartition d'une suite (xn)n>1 dans l'intervalle [0, 1], il faut et il su�t de montrer que pour tout
entier non-nul h,

1

N

N∑
n=1

e(h · xn) −→
N→+∞

0.

Ce critère fait clairement apparaître l'utilité de démontrer des majorations non-triviales du module de
certaines sommes exponentielles.

Cependant, après avoir démontré une majoration, c'est-à-dire après avoir prouvé que les sommes
qui nous intéressent sont contraintes à vivre dans un certain disque du plan complexe, une question
naturelle est : comment se répartissent-elles dans ce disque ? Si par exemple on considère des sommes
de la forme eiθ1 + · · ·+eiθm et que les θj �se comportent comme� des variables aléatoires indépendantes
et uniformément réparties sur [0, 2π], ces sommes vont progressivement remplir tout le disque de centre
0 et de rayon m, donnant lieu à des images comme le cas (a) de l'illustration ci-dessous. Cependant,
ce comportement n'est pas toujours celui qui se produit, car les angles θj peuvent avoir des relations
entre eux. Comme nous le verrons plus en détail dans cette thèse, si l'on considère les sommes de
Kloosterman restreintes au sous-groupe d'ordre 9 pour un premier p ≡ 1 (mod 9) :

Kp(a, b, 9) :=
∑
x∈F×p
x9=1

e

Å
ax+ bx−1

p

ã
alors celles-ci sont majorées en module par 9, mais le cas (b) de l'illustration ci-dessous suggère qu'elles
sont loin de remplir le disque de centre 0 et de rayon 9 lorsque a et b parcourent Fp. Elles semblent
en e�et se répartir suivant une mesure dont le support est strictement inclus dans ce disque.
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(a) Plusieurs tirages d'une somme
X1 + · · · + X5 de variables aléa-
toires indépendantes et uniformé-
ment réparties sur S1.

(b) Les points Kp(a, b, 9) pour
p = 577 et a et b variant dans
Fp.

Figure 3: Deux comportements di�érents de sommes exponentielles dont le module est borné respec-
tivement par 5 et par 9.

Le principal but de cette thèse est de contribuer à la compréhension de la répartition de certaines
sommes exponentielles particulières, notamment en déterminant quelles familles ont un comportement
tel que celui qui est illustré dans le cas (a), et quelles familles ont un comportement tel qu'illustré
dans le cas (b). Dans ce second cas, on se demande également quelles sont les relations de dépendance
algébrique entre les termes de la somme qui la contraignent à tomber dans un certain sous-ensemble
strict du disque, et quel est le lien entre la mesure pour laquelle ces sommes s'équirépartissent et ces
relations algébriques.

Le chapitre 1 consiste en une introduction aux sommes exponentielles et à leurs applications en théorie
des nombres, avant de présenter plus précisément les questions qui nous ont intéressés dans cette thèse.
Le point de départ et la première motivation de ce sujet a été l'article [16], dans lequel les auteurs
prouvent l'équirépartition des sommes de Kloosterman restreintes au sous-groupe d'ordre d :

Kp(a, b, d) :=
∑
x∈F×p
xd=1

e

Å
ax+ bx−1

p

ã
,

pour un entier d �xé et p tendant vers l'in�ni parmi les nombres premiers6 congrus à 1 modulo d (cette
condition assure qu'il y a bien d racines de l'unité distinctes dans Fp). Par exemple, lorsque d = 5, ils
montrent qu'il y a équirépartition dans la région du plan complexe délimitée par une hypocycloïde à
5 branches, comme l'illustre la Figure 4.
Cependant, ils démontrent ce résultat uniquement dans le cas où d est premier ou égal à 9, alors que
dans le cas des sommes de la forme

Sp(a, d) :=
∑
x∈Fp
xd=1

e

Å
ax

p

ã
,

un résultat d'équirépartition analogue est démontré pour tout entier d, voir [32, 44].

Le chapitre 2 comble les cas restant entre [32, 44] et [16], en montrant l'équirépartition des sommes
Kp(a, b, d) pour n'importe quel entier d > 2. De plus, nous étendons les résultats précédemment connus

6le cas des sommes modulo des puissances de tels nombres premiers est aussi traité de la même manière mais, dans
ce résumé, nous n'évoquons que le cas des nombres premiers pour alléger les notations.
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(a) p = 151 (b) p = 631

Figure 4: Les ensembles {Kp(a, b, d); a, b ∈ Fp} pour d = 5 et deux valeurs de p ≡ 1 (mod 5).

au cas des sommes de la forme ∑
x∈Fp
xd=1

e

Å
a1x

m1 + · · ·+ anx
mn

p

ã
(2)

pour des entiers mi quelconques (pouvant être négatifs, comme c'est le cas pour les sommes de Kloost-
erman) et des paramètres ai variant dans Fp. Lorsque les mi sont tous premiers avec d, la mesure par
rapport à laquelle ces sommes s'équirépartissent est la même que celle qui était déjà connue pour les
sommes Sp(a, d) et Kp(a, b, d). En fait, nous montrons que plus généralement les sommes modulo des
puissances de nombres premiers ∑

x∈Z/pαZ
xd=1

e

Å
a1x

m1 + · · ·+ anx
mn

pα

ã
satisfont ce résultat d'équirépartition lorsque pα tend vers l'in�ni (p étant toujours supposé congru à 1
modulo d), sans faire aucune hypothèse sur le fait que la divergence vers l'in�ni soit due à la croissance
de α ou à celle de p, ou à leurs croissances combinées.
Un aspect frappant de la preuve est le fait que les sommes qui apparaissent lorsque l'on applique le
critère de Weyl ne tendent pas seulement vers 0, mais sont stationnaires. Cela est dû au fait que l'on
autorise les paramètres ai à varier dans tout Z/pαZ, ce qui donne des sommes complètes, qui valent
soit 0 soit 1 par orthogonalité des caractères additifs de Z/pαZ. Ainsi, il est naturel de se demander si
l'équirépartition est préservée lorsque l'on restreint les paramètres ai à varier dans des sous-ensembles
de Z/pαZ (avec l'espoir qu'il y ait toujours convergence vers 0 dans le critère de Weyl, mais plus
lentement).

C'est la question abordée au chapitre 3, dans lequel nous montrons que l'on peut restreindre les
paramètres ai à parcourir seulement de �petits� sous-groupes multiplicatifs de (Z/pαZ)×. Pour sim-
pli�er la présentation, supposons que α = 1. Dans un premier temps, des estimations classiques sur
le module des sommes de Gauss nous permettent de montrer qu'il y a toujours équirépartition des
ensembles de sommes

{Sp(a, d), a ∈ Hp}

par rapport à la même mesure que précédemment, à condition que Hp soit un sous-groupe multipli-
catif de F×p tel que |Hp| �

√
p. Dans un second temps, nous utilisons des majorations de sommes

exponentielles obtenues par Bourgain, Chang, Glibichuk et Konyagin par des méthodes de combina-
toire additive pour améliorer le résultat en remplaçant la condition |Hp| �

√
p par |Hp| � pδ pour

n'importe quel δ > 0. Cette généralisation ne se limite pas au cas des sommes de la forme Sp(a, d),
mais est vraie plus généralement pour les sommes du type (2), à condition de laisser les paramètres ai
parcourir des sous-groupes multiplicatifs de F×p su�samment grands.
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Le contenu des chapitres 2 et 3 a donné lieu à la prépublication [103].

Dans le chapitre 4, nous nous intéressons à la question plus générale de l'équirépartition de sommes
exponentielles de la forme ∑

x∈Fp
g(x)≡0 (mod p)

e

Å
a1x

m1 + · · ·+ anx
mn

p

ã
(3)

lorsque g est un polynôme unitaire à coe�cients entiers, et que p tend vers l'in�ni dans une certaine
sous-suite de la suite des nombres premiers. En e�et, dans le cas où g(X) = Xd − 1, nous avions déjà
besoin dans les chapitres précédents de la condition p ≡ 1 (mod d) pour assurer que toutes les sommes
considérées avaient bien le même nombre de termes. De même, dans ce cadre plus général, nous nous
restreignons essentiellement aux valeurs de p pour lesquelles g est scindé à racines simples dans Fp.
Les méthodes employées dans les chapitres précédents s'appuyaient sur le fait que pour le polynôme
Xd− 1, il est possible de choisir une racine primitive puis d'ordonner les racines en les écrivant comme
les puissances successives de celle-ci. Cependant, pour un polynôme g quelconque, nous ne pouvons
plus tirer avantage d'une telle paramétrisation des racines.
Dans le travail en commun [77] avec Emmanuel Kowalski, nous parvenons à franchir cette di�culté et
à conclure à un résultat d'équirépartition pour ces sommes, qui fait apparaître une mesure limite qui
est liée au groupe des relations additives entre les racines de g, c'est-à-dire le groupe

Rg :=

α : Zg → Zg,
∑
x∈Zg

α(x)x


où Zg est l'ensemble des racines complexes de g. Dans certaines situations (notamment lorsque le
groupe de Galois de g est égal à tout le groupe symétrique), ce groupe des relations additives peut-être
déterminé explicitement, et cela donne comme corollaire un résultat d'équirépartition relativement
concret pour les sommes du type (3). Dans ce chapitre, nous traitons également le cas des sommes
modulo des puissances de nombres premiers, et la question de la restriction des paramètres ai à de
petits sous-groupes multiplicatifs. Ce chapitre correspond aux sections 1 à 5 de la prépublication [77],
écrite en collaboration avec Emmanuel Kowalski.

Dans le chapitre 5, nous étudions une notion de discrépance associée aux résultats d'équirépartition
des chapitres précédents, a�n de donner une majoration de la �vitesse d'équirépartition�. Pour cela,
nous avons été amenés à démontrer une généralisation de l'inégalité d'Erdös-Turán-Koksma à des
sous-groupes fermés de (S1)k. La classi�cation de ces sous-groupes est bien connue, et nous dit qu'ils
sont tous isomorphes à (R/Z)d ⊕ F pour un certain d 6 k et un groupe abélien �ni F . Ainsi, notre
généralisation consiste à dé�nir la discrépance via le choix d'un isomorphisme avec un groupe de la
forme (R/Z)d ⊕ F , puis à adapter la preuve classique de l'inégalité d'Erdös-Turán-Koksma pour tenir
compte du facteur abélien �ni qui est d'habitude absent.
Ensuite, en exploitant le fait que les sommes de Weyl sont nulles à partir d'un certain rang que l'on
peut explicitement minorer, nous en déduisons une majoration de la discrépance en p−cg , où cg est une
constante strictement positive ne dépendant que du polynôme g dans la dé�nition des sommes (3).

En�n, le chapitre 6 traite de sommes de fonctions traces indexées par les racines d'un polynôme g
satisfaisant les mêmes hypothèses que précédemment. Les fonctions traces sont des fonctions

tp : Fp → C

�ayant une origine algébrique�, dont l'exemple le plus simple est celui des caractères additifs et multi-
plicatifs de Fp. Ainsi, les sommes de la forme∑

x∈Fp
g(x)≡0 (mod p)

e

Å
ax

p

ã
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peuvent être vues comme un cas particulier de sommes de la forme∑
x∈Fp

g(x)≡0 (mod p)

tp(ax)

et l'on peut se demander si des résultats d'équirépartition analogues à ceux des chapitres précédents
peuvent être démontrés pour des fonctions traces plus générales. En fait, c'est le cas pour des fonctions
traces associés à des faisceaux `-adiques généreux au sens de Fouvry, Kowalski et Michel (�bountiful�
en anglais). Un cas particulier de tel faisceau est le faisceau de Kloosterman, dont la fonction trace
associée prend pour valeurs les sommes de Kloosterman dé�nies en (1) (à une renormalisation près).
En s'appuyant sur des faits déjà connus sur l'équirépartition de ces sommes prises individuellement,
et sur l'indépendance des translatés qui provient du caractère généreux du faisceau, nous obtenons le
résultat suivant :

Soit g ∈ Z[X] un polynôme unitaire séparable n'admettant pas 0 comme racine. Notons Kg le corps de
décomposition de g sur Q, et rappelons la dé�nition des sommes de Kloosterman normalisées :

Kl2(a, p) :=
1
√
p

∑
x∈F×p

e

Å
ax+ x−1

p

ã
.

Alors les sommes ∑
x∈Fp

g(x)≡0 (mod p)

Kl2(ax, p),

paramétrées par a ∈ Fp, s'équirépartissent dans R par rapport à une mesure qui est la loi d'une somme
de deg(g) variables aléatoire indépendantes, chacune suivant la loi de Sato�Tate sur [−2, 2], lorsque p
tend vers l'in�ni parmi les nombres premiers totalement décomposés dans Kg.

Ce chapitre correspond aux sections 6 et 7 de la prépublication [77].

En�n nous concluons cette thèse en évoquant quelques perspectives de recherche qui constituent une
suite naturelle aux questions étudiées jusqu'à présent : le caractère optimal de la condition en pδ

pour l'équirépartition de sous-groupes de F×p , la détermination du module des relations additives ou
multiplicatives entre racines pour d'autres familles de polynômes que celles considérées dans cette thèse,
et en�n les problèmes �horizontaux� correspondant à nos résultats d'équirépartition dits �verticaux�.
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Notations

� The number of elements of a �nite set X is denoted by |X| or #X.

� If a, b ∈ Z, we denote by (a, b) their gcd (greatest (positive) common divisor).

� If a ∈ Z and p is a prime number, we denote by vp(a) the p-adic valuation of a.

� m | n means that the integer m divides the integer n.

� pα || n means that pα | n and pα+1 - n (in other words, α = vp(n)).

� If d is a positive integer, φd denotes the dth cyclotomic polynomial over Q and ϕ(d) its degree.

� If x ∈ R, we denote by {x} := x− bxc its fractional part. If x = (x1, . . . , xm) ∈ Rm, we denote
by {x} := ({x1}, . . . , {xm}) the fractional part of x taken componentwise.

� Let (X,A ) and (Y,B) be two measurable spaces, and let λ be a measure on the former. If
f : X → Y is (A ,B)-measurable, then we denote by f∗λ the pushforward measure of λ via f . It
is de�ned as the measure on (Y,B) such that (f∗λ)(B) = λ(f−1(B)) for all B ∈ B.

� S1 denotes the multiplicative group of complex numbers of modulus 1, while T denotes the
additive group R/Z. We also use the standard notation

e(t) := exp(2iπt) for all t ∈ R.

� If f and g are two functions de�ned on a set X, with values in R+, we write f(x)� g(x) to say
that there exists a positive constant C such that for all x ∈ X, f(x) 6 Cg(x). If we want to
stress that C depends on other constants of the problem, say ε and δ, we write f(x)�ε,δ g(x).

� A ≈ B is used in a very informal sense, it is sometimes used in heuristic reasonings to signify
that A and B have approximately the same size.

� If A is a commutative ring, and n is a positive integer, we denote by An[X] the set of polynomials
with coe�cients in A of degree less than or equal to n.

� µd(K) denotes the set of d-th roots of unity on a �eld K, while µ?d(K) denotes the subset of
primitive d-th roots of unity.

� If G is a group, we denote by G] the space of conjugacy classes of G.
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Chapter 1

Introduction

In the �rst part of this introduction, we present some historical background to show that exponential
sums appear in many di�erent contexts in number theory. For instance, we will see that they play a
role in the study of solutions to polynomial equations over �nite �elds, but also over Z, via the
application of the circle method. One can also be interested in exponential sums for their presence in
the theory of modular and automorphic forms. Then, we give a brief reminder on equidistribution (in
particular equidistribution modulo 1) and we explain that some arithmetic quantities tend to behave
�randomly�, in the sense that they become equidistributed in certain spaces. Finally, we combine
both aspects by stating a few equidistribution results where the arithmetic quantities of interest are
themselves exponential sums.
In a second part, we give an overview of the topics discussed in the thesis, and we state the
contributions that one can �nd in the following chapters.
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Part A: Historical background

1.1. Exponential sums in number theory

In this section, we present several applications of exponential sums in number theory, in order to give
many di�erent motivations for their study. Just for simplicity of exposition in this introduction, what
we will call exponential sums modulo m will be sums of m-th roots of unity of the form∑

x∈A
e

Å
f(x)

m

ã
where A is a �nite set and f is a function de�ned on A, with values in Z/mZ. In a few cases, one can
prove a closed formula for such sums, but generically it is completely out of reach, and we are interested
in �nding good upper and lower bounds for their absolute value, or getting a better understanding
of their distribution when considered in families. For these sums, we always have the so-called trivial
bound: ∣∣∣∣∣∣∑x∈A e

( x
m

)∣∣∣∣∣∣ 6 |A|
which follows from the triangle inequality and the fact that we are summing complex numbers of
modulus 1. Very often, improvements on this trivial bound have consequences in problems of arithmetic
nature, as we will see in the examples below.

1.1.1. Quadratic reciprocity law

If p and q are distinct prime numbers, we tend to think of the arithmetic modulo p and the arithmetic
modulo q as being independent. Indeed, the Chinese Remainder Theorem states for instance that
belonging to a certain residue class modulo p does not impose any restriction on the residue class
modulo q. The quadratic reciprocity law is the surprising fact that the events �p is a quadratic residue
modulo q� and �q is a quadratic residue modulo p� are actually not at all independent!
There are hundreds of proofs of the quadratic reciprocity law, and many of them rely on properties of
exponential sums. Following [69], we will present what is perhaps the most classical proof, which relies
on the explicit evaluation of the quadratic Gauss sums.
But before that, let us recall the de�nition of the Legendre symbol and state the main theorem.

De�nition 1.1. If p is an odd prime number, we de�ne the Legendre symbol
Ä
p

ä
as follows:Ä

p

ä
: Fp → {−1, 0, 1}

a 7→
Ä
a
p

ä
,

where Å
a

p

ã
=


1 if there exists x ∈ F×p such that a = x2

0 if a = 0

−1 otherwise.

In the �rst case, we say that a is a quadratic residue modulo p, while in the last case we say that it is
a quadratic nonresidue.

Actually, one can prove that the Legendre symbol coincides with the map a 7→ a
p−1

2 , hence is a group
homomorphism on F×p .

Theorem 1.2 (Quadratic reciprocity law, Gauss 1796). If p and q are two distinct odd prime numbers,
then Å

p

q

ãÅ
q

p

ã
= (−1)

(p−1)
2

(q−1)
2 .
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In other words,

� if either p or q is congruent to 1 modulo 4, then p is a quadratic residue modulo q if and only if
q is a quadratic residue modulo p.

� if p and q are congruent to 3 modulo 4, then p is a quadratic residue modulo q if and only if q is
a quadratic nonresidue modulo p.

One of the classical proofs of Theorem 1.2 involves the quadratic Gauss sums, de�ned for any integer
m > 2 as follows:

Gm :=
∑

x∈Z/mZ

e

Å
x2

m

ã
.

These sums belong to the small class of examples where a closed formula can be obtained. Namely,
one has the following theorem.

Theorem 1.3 (Gauss). For all odd integers m > 3, we have

Gm =

®√
m if m ≡ 1 (mod 4)

i
√
m if m ≡ 3 (mod 4)

We will come back to this type of sums in Chapter 3, and in particular we give references in Appendix
3.A for the fact that if m is prime, then |Gm| =

√
m (this is fairly elementary). However, proving that

the exact value is
√
m or i

√
m depending on the reduction of m modulo 4 is much more di�cult, see

for instance [53, Chapter 6].

Once we admit the above theorem on quadratic Gauss sums, the proof of Theorem 1.2 is quite short.

Proof of Theorem 1.2. It su�ces to prove that

Gpq = GpGq

Å
p

q

ãÅ
q

p

ã
(1.1)

because then it follows from Theorem 1.3 thatÅ
p

q

ãÅ
q

p

ã
=

®
1 if p ≡ 1 mod 4 or if q ≡ 1 mod 4

−1 if p ≡ q ≡ 3 mod 4.

Now, in order to prove (1.1), we �rst observe that the map

Fp × Fq → Z/pqZ
(x1, x2) 7→ qx1 + px2

is a bijection. Indeed, it is well de�ned because if x1 changes by a multiple of p, the outcome changes
by a multiple of pq, and similarly if x2 changes by a multiple of q. Moreover it is surjective because p
and q are coprime. The conclusion follows from the equality of the cardinalities on both sides.
Thus, we have

Gpq =
∑

x∈Z/pqZ

e

Å
x2

pq

ã
=
∑
x1∈Fp

∑
x2∈Fq

e

Å
(qx1 + px2)2

pq

ã
=

Ñ ∑
x1∈Fp

e

Å
qx2

1

p

ãéÑ ∑
x2∈Fq

e

Å
px2

2

q

ãé
using the fact that 2pqx1x2 ≡ 0 mod pq. Now, we can rewrite the �rst sum as∑

x1∈Fp

e

Å
qx2

1

p

ã
=
∑
y∈Fp

Å
1 +

Å
y

p

ãã
e

Å
qy

p

ã
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because any non-zero square has exactly two square roots and 0 has only one. Besides,∑
y∈Fp

e

Å
qy

p

ã
= 0

by orthogonality of the additive characters of Fp (or more elementarily by summation of a geometric
series), because q is non-zero modulo p. Therefore,

∑
x1∈Fp

e

Å
qx2

1

p

ã
=
∑
y∈Fp

Å
y

p

ã
e

Å
qy

p

ã
=
∑
z∈Fp

Å
q−1z

p

ã
e

Å
z

p

ã
=

Å
q−1

p

ã∑
z∈Fp

Å
z

p

ã
e

Å
z

p

ã
=

Å
q

p

ã∑
z∈Fp

Å
z

p

ã
e

Å
z

p

ã
=

Å
q

p

ã
Gp

Switching the roles of p and q, the same proof shows that

∑
x2∈Fq

e

Å
px2

2

q

ã
=

Å
p

q

ã
Gq

and this �nishes the proof of (1.1).

1.1.2. Point counting on varieties de�ned over �nite �elds

Another number theoretic context in which exponential sums arise is when one is interested in the
number of solutions of polynomial equations over �nite �elds. Indeed, if p is a prime number and we
denote by F̂p the dual of (Fp,+) (i.e. the group of additive characters of Fp), then by orthogonality
of characters we have

1

p

∑
ψ∈”Fp ψ(x) =

®
1 if x = 0

0 otherwise.

In other words, this average over the additive characters gives a functions which detects the residue
class 0 modulo p. Thus, if we are given a polynomial Q ∈ Fp[X1, . . . , Xm], the number of solutions
(x1, . . . , xm) ∈ Fmp to the equation

Q(x1, . . . , xm) = 0

is given by

NQ(p) =
1

p

∑
x1,...,xm∈Fp

∑
ψ∈”Fp ψ(Q(x1, . . . , xm)). (1.2)

Finally, since we have an explicit description of the additive characters of Fp, namely

F̂p = {ψh, h ∈ Fp}

where
ψh : Fp → C∗

x 7→ e
Ä
hx
p

ä
the formula (1.2) indeed gives the number of solutions to a polynomial equation in terms of exponential
sums.

Example 1.4. Let p > 3 be a prime number. For a ∈ Fp, we denote by

S(a, p) := {(x, y, z) ∈ F3
p | x2 + y2 + z2 = a},
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which is an algebraic variety of F3
p, given by the equation of a sphere. Then, thanks to the above

discussion, the cardinality of S(a, p) may be written as

|S(a, p)| = 1

p

∑
x,y,z∈Fp

∑
h∈Fp

e

Å
h

p
(x2 + y2 + z2 − a)

ã
Changing the order of summation, we obtain

|S(a, p)| = 1

p

∑
h∈Fp

τ(h)3e

Å−ah
p

ã
where

τ(h) :=
∑
x∈Fp

e

Å
hx2

p

ã
.

Now, one can show elementarily that for all h ∈ F×p , |τ(h)| = √p (we give references and generalizations
of this fact in Appendix 3.A), and since τ(0) = p, we deduce that

|S(a, p)| =
p→∞

p2 +O(p
3
2 )

where the implied constant is independent of a.

1.1.3. The circle method

This method �rst appeared in a paper of Hardy and Ramanujan in 1918 concerning the number of
partitions of an integer: [48]. In this section, we aim to present the main ideas of the method, and to
show that understanding the order of magnitude of certain exponential sums over �nite �elds or �nite
rings plays a crucial role in the resolution of several additive problems in number theory. We follow
substantial parts of [108] and [54].

Additive problems in number theory. Let us introduce what we will call an additive problem in
number theory. Usually, we are given s subsets of the set of natural numbers, which we will denote by
A1, . . . ,As, and we want to understand whether or not a positive integer N can be written as a sum
a1 + · · ·+ as, where each aj belongs to Aj . In other words, we want to determine whether or not the
set {(a1, . . . , as) ∈ A1× · · · ×As; a1 + · · ·+ as = N} is empty. More generally, one may ask about the
cardinality of this set, and one seeks for exact formulas, or rather asymptotic estimates as N goes to
in�nity when exact formulas are out of reach.

In many famous problems, all the Aj are the same set A, and in that case we will denote by rA(s,N)
the number of representations of N as a sum of s elements of A, that is the cardinality of the set

{(a1, . . . , as) ∈ As; a1 + · · ·+ as = N}.

For example, in what is known as Waring's problem, we �x an integer k and let A be the set of k-th
powers of natural numbers, so the question we are asking is: can we write N as ak1 + · · ·+ aks for some
natural numbers a1, . . . , as? What is the least s for which any positive integer is the sum of s k-th
powers? For instance, when k = 2, Lagrange's four square theorem asserts that for any positive integer
N there are always four integers ai such that N = a2

1 + · · · + a2
4. Moreover it is well-known that not

all positive integers may be written as a sum of one, two or three squares, so this answers Waring's
problem for k = 2: the least number of squares one needs to allow in order to write all natural numbers
as a sum of squares is 4.

Another famous additive problem is called Goldbach's conjecture, and consists in taking s = 2 and for
A the set of prime numbers. The conjecture asserts that any even number larger than 3 can be written
as the sum of two prime numbers. In our notations, this amounts to saying that rA(2, 2m) > 0 for all
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m ∈ Z>2.

Finally, since we are going to use it to illustrate some ideas of the circle method in a simpli�ed setting,
let us discuss one easier problem. We take A to be the set of all non-negative integers, and s > 1.
Then for all N > 1, rA(s,N) counts the number of ways N may be written as a sum of s non-negative
integers. In other words, rA(s,N) is the cardinality of the set

{(a1, . . . , as) ∈ N; a1 + · · ·+ as = N}.

This problem can actually be solved without appealing to the circle method, just by using a combinato-
rial argument. Start by writing N as 1+1+ · · ·+1, and then replace 1's by dots. Then decompositions
of N as sums s of natural numbers correspond to the di�erent choices of positions of (s − 1) bars
between these dots. For instance the decomposition 7 = 4 + 2 + 1 corresponds to • • • • | • •|•, while
7 = 3 + 0 + 4 corresponds to • • •|| • • • •. So counting decompositions of N as sums of s natural
numbers amounts to counting the number of words in the alphabet {•, |} made of N dots and s − 1
bars. Therefore,

rA(s,N) =

Ç
N + s− 1

s− 1

å
.

In the following section, we propose another approach to this problem, which gives a �rst idea of what
the circle method is, and why it bears that name.

A �rst glance at the circle method. In the remainder of this introduction to the circle method,
we will always assume that the set A is in�nite. Let A be such a subset of N. We de�ne the power
series

fA(z) :=
+∞∑
n=0

a(n)zn, (1.3)

where a(n) = 1 if n ∈ A and a(n) = 0 otherwise. For all ρ ∈ [0, 1[, the series

+∞∑
n=0

a(n)ρn

is absolutely convergent, while the series
+∞∑
n=0

a(n)

diverges because of the assumption on the cardinality of A. Therefore, the power series (1.3) has radius
of convergence 1. For all |z| < 1, we have

f sA(z) =

(
+∞∑
n1=0

a(n1)zn1

)
· · ·

(
+∞∑
ns=0

a(ns)z
ns

)

=

+∞∑
n1=0

· · ·
+∞∑
ns=0

a(n1) · · · a(ns)z
n1+···+ns

=

+∞∑
N=0

c(N)zN

where
c(N) =

∑
(n1,...,ns)∈Ns

n1+···+ns=N

a(n1) · · · a(ns) =
∑

(n1,...,ns)∈As
n1+···+ns=N

1 = rA(s,N)

Therefore, the coe�cients c(N) of the Taylor series of the holomorphic function fsA(z) are exactly the
numbers rA(s,N) that we are trying to evaluate!
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The next step, which is the reason why this method is called the circle method, consists in applying
Cauchy's theorem to write these coe�cients in terms of an integral over a circle. Precisely, since

f sA(z) =
+∞∑
N=0

rA(s,N)zN

with radius of convergence 1, we have that for any ρ ∈]0, 1[,

rA(s,N) =
1

2πi

∫
C (0,ρ)

fsA(z)

zN+1
dz. (1.4)

Therefore, the question of evaluating or �nding the asymptotic behaviour of rA(s, n) has been translated
into a question about the integral over a circle on the right-hand side of (1.4). Let us see what this
gives in the simple example where A = N. In that case we have

fA(z) =
+∞∑
n=0

zn =
1

1− z
,

so (1.4) becomes

rA(s,N) =
1

2πi

∫
C (0,ρ)

1

(1− z)szN+1
dz. (1.5)

Now, thanks to the generalized binomial theorem, the following holds for all z in the interior of the
unit disk:

1

(1− z)s
=

+∞∑
k=0

Ç
s+ k − 1

k

å
zk, (1.6)

and the series converges uniformly on any closed disk centered at 0 and of radius ρ < 1. Therefore, in
(1.5), we can replace (1 − z)−s by its series expansion given by equation (1.6), and permute the sum
and the integral. This leads to the equality

rA(s, n) =

+∞∑
k=0

Ç
s+ k − 1

k

å
1

2πi

∫
C (0,ρ)

zk−N−1dz.

Finally, we conclude using the fact that

1

2πi

∫
C (0,ρ)

zk−N−1dz = 1k=N

hence

rA(s,N) =

Ç
s+N − 1

N

å
=

Ç
s+N − 1

s− 1

å
,

which is indeed the result we found using a purely combinatorial argument. However, we have been
extremely lucky, it is not always the case that one can explicitly evaluate the integral (1.4)! One
may also object that we made this look like an analytic method by hiding the combinatorial nature
in the generalized binomial theorem, which we did not prove. However, we hope that this convinces
the reader that Cauchy's formula might be useful to study rA(s,N) with more analytic tools at our
disposition. In the next paragraph, we present Vinogradov's re�nement of the method, and go a little
bit further into the details.

Vinogradov's re�nement and the apparition of exponential sums. In many additive ques-
tions, it is clear that only �su�ciently small� integers will have a contribution in the counting problem.
For instance, if we want to study the number of representations of N as a sum of squares x2

1 + · · ·+x2
s,

we only need to focus our attention on integers xi such that |xi| 6
√
N . Therefore, the generating

series (1.3)
+∞∑
n=0

a(n)zn
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(where a(n) = 1 if n is a square, and equals 0 otherwise) may be replaced by a �nite sum for the study
of the number of representations of N (namely: up to n =

√
N in the current example). This has the

advantage of letting us choose the circle of integration to be always of radius 1, because the issue of
the convergence of the generating series does not arise. Therefore, we can make the change of variables
z = e(α) and the only Cauchy's integral formula we will need is actually∫ 1

0
e(mα)dα =

®
1 if m = 0

0 otherwise,

which is just another writing for ∫
C (0,1)

zmdz =

®
1 if m = −1

0 otherwise.

Let us now give a brief overview of how the circle method can be applied to tackle a Diophantine
problem. The following lines are inspired to a large extent by the presentation of [54].

Let f ∈ Z[X1, . . . , Xs] be a polynomial of degree k. We want to count integral solutions to the equation

f(x1, . . . , xs) = 0

inside a certain bounded box B := [−B,B]s of Rs (for instance, in Waring's problem associated with
k-th powers, one wants to study the number of representations of an integer N in the form xk1 +· · ·+xks ,
hence one is naturally led to consider the polynomial f(X1, . . . , Xs) := Xk

1 + · · ·+Xk
s −N and taking

B ≈ N1/k will ensure that the solutions inside B are actually all solutions).

Remark 1.5. Since there are ≈ Bs possible points (x1, . . . , xs) in B∩Zs and f maps them into a set
of ≈ Bk points (because f has degree k and we hope that generically it will vary enough to reach most
integer points), we expect that if any point in the image gets a fair share of preimages, the point 0 will
have ≈ Bs−k preimages. So we expect that unless there are some obstructions to this pseudo-random
behaviour, the equation f(x1, . . . , xs) = 0 will have ≈ Bs−k solutions in B ∩ Zs. So we see here that
there is hope to prove that solutions exist when s is substantially larger than k, i.e. when the number
of variables is su�ciently larger than the degree of the polynomial.

The �rst step of the circle method consists in writing, for all x = (x1, . . . , xs) ∈ Zs,

1f(x)=0 =

∫ 1

0
e(f(x)α)dα

which implies that the counting function

νf (B) := |{x ∈ B ∩ Zs, f(x) = 0}|

is given by the following integral:

νf (B) =

∫ 1

0

( ∑
x∈B∩Zs

e(f(x)α)

)
︸ ︷︷ ︸

=:Sf (α)

dα. (1.7)

The next step consists in splitting the integral into minor arcs and major arcs. The idea is that the
contributions to the counting function will be handled very di�erently depending on whether α is �close
to� a rational with �small� denominator or not. A motivation for doing this is that when α is close
to a rational a/q, the contribution of Sf (α) to the integral (1.7) is related to the behaviour of f(x)
in residue classes modulo q, a problem which seems more manageable than the original Diophantine
equation, especially if q is not too large. On the other hand, if α is not close to a rational number
with small denominator, we hope that the behaviour of e(αf(x)), as x varies, will be random enough
to ensure cancellations in Sf (α), so that it will give a negligible contribution. This is motivated, for
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instance, by the uniform distribution modulo 1 of the sequence (αn)n>1 when α is irrational.

The precise meaning of �close to� and �small� depends on the problem, so we choose to remain vague
on this point.

De�nition 1.6 (major arcs, minor arcs). Let P and Q be two positive integers satisfying 2Q 6 P . For
any rational number a

q ∈ [0, 1[ with (a, q) = 1 and q 6 Q, denote by

M(q, a) :=

ß
α ∈ [0, 1[,

∣∣∣∣α− a

q

∣∣∣∣ 6 1

qP

™
It is called the major arc centered at a

q . Then we denote by

M :=
⋃

(a,q)=1
q6Q

M(q, a)

the set of all major arcs, and by m := [0, 1[\M the set of minor arcs.

The assumption that 2Q 6 P ensures that two major arcs centered at di�erent rationals do not overlap.

Remark 1.7. The parameters P and Q need to be chosen carefully depending on the speci�c problem
one is interested in, and typically depend on B, hence on N in Waring's problem xk1 + · · ·+ xks = N .
Therefore, whenever we write �error term� in the remainder of this section, one needs to have in mind
that the error terms depend on B,P and Q, and only become error terms after a suitable choice of
dependences between these parameters. Quoting [1]: Applying the Circle Method is all about �nding
the right balance between choosing the minor arcs small enough so their contribution is insigni�cant
and choosing the major arcs small enough such that the integral is easily computable.

Now, let us study the sum Sf (α) when α ∈M. Write α = a
q + θ where q 6 Q, (a, q) = 1 and |θ| 6 1

qP .
Then we have

Sf (α) =
∑

x∈B∩Zs
e(f(x)α) =

∑
u (mod q)

∑
x∈B∩Zs

x≡u (mod q)

e

Å
f(x)

Å
a

q
+ θ

ãã
where the sum ranges over u = (u1, . . . , us) in (Z/qZ)s and the notation x ≡ u (mod q) means that
xi ≡ ui (mod q) for all i ∈ {1, . . . , s}. Thus,

Sf (α) =
∑

u (mod q)

e

Å
a

q
f(u)

ã ∑
x∈B∩Zs

x≡u (mod q)

e (θf(x)) .

Next, by a truncated version of Poisson summation formula (see [54, eq. above (20.31) and Lemma
8.8]), we can replace the inner sum by 1

qsBf (θ), where

Bf (θ) :=

∫
B

e (θf(x)) dx

with a good error term under certain conditions (we need θ to be small, so we need P to be relatively
large, since |θ| 6 1

qP ). This implies that

Sf (α) = Cf (a/q)Bf (θ) + (error term),

with

Cf (a/q) :=
1

qs

∑
u (mod q)

e

Å
a

q
f(u)

ã
.

Therefore, the contribution of the major arcs to the counting function νf (B) is:
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∫
M
Sf (α)dα =

∑
q6Q

∑
a∈(Z/qZ)×

∫
|θ|6 1

qP

Sf

Å
a

q
+ θ

ã
dθ

=
∑
q6Q

∑
a∈(Z/qZ)×

Cf (a/q)

∫
|θ|6 1

qP

Bf (θ)dθ + (error term)

=
∑
q6Q

cf (q)

∫
|θ|6 1

qP

Bf (θ)dθ + (error term)

where

cf (q) =
1

qs

∑
a∈(Z/qZ)×

∑
u (mod q)

e

Å
a

q
f(u)

ã
.

Next, it can be shown that in several applications of the circle method (such as Waring's problem),
|Bf (θ)| �B θ−1−γ for some γ > 0 so that the integral over |θ| 6 1

qP can be approximated by the
integral over the whole real line, with a good error term:∫

|θ|6 1
qP

Bf (θ)dθ =

∫
R
Bf (θ)dθ︸ ︷︷ ︸

=:Vf (B)

+(error term)

Thus, we conclude that the contribution of the integral over the major arcs takes the following form:∫
M
Sf (α)dα = Vf (B)

∑
q6Q

cf (q) + (error term). (1.8)

The singular integral Vf (B) admits an interpretation in terms of density of the real zeros of f in B,
but we will not focus on that, as we wish to shed more light on the places where exponential sums
appear.

Up to this point, we progressively turned the counting problem into an analytic problem involving
integrals and exponential sums, but we did not use any bound on exponential sums. The following
assumption is a �rst example of non-trivial exponential sum estimate which plays a crucial role in the
asymptotic evaluation of the sum of the cf (q).

Assumption 1.8. There exists η > 0 such that for all q > 1, for all a ∈ (Z/qZ)×, Cf (a/q)� q−2−η.

Recall that

Cf (a/q) :=
1

qs

∑
u (mod q)

e

Å
a

q
f(u)

ã
,

so this assumption really is about �nding non-trivial cancellations in an exponential sum. If Assumption
1.8 is satis�ed, then it is easy to deduce that∣∣∣∣∣∣∑q>Q cf (q)

∣∣∣∣∣∣� Q−η.

This implies that in (1.8), we can replace the �nite sum up to Q by the sum of the series, up to an
acceptable error term: ∫

M
Sf (α)dα = Vf (B)Sf + (error term).

where Sf =
∑+∞

q=1 cf (q) is called the singular series. It turns out that this series contains the infor-
mation on the p-adic solutions to the equation f(x) = 0, as we will explain now. Indeed, we have
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cf (q) =
1

qs

∑
u (mod q)

 ∑
a∈(Z/qZ)×

e

Å
a

q
f(u)

ã
and the inner sum is a well known type of exponential sum called a Ramanujan sum. It can be
evaluated explicitly using Möbius inversion formula, and this gives:∑

a∈(Z/qZ)×

e

Å
a

q
f(u)

ã
=
∑
d|q

d|f(u)

µ
(q
d

)
d.

Therefore,

cf (q) =
1

qs

∑
d|q

µ
(q
d

)
d
∑

u (mod q)
d|f(u)

1.

Moreover,

|{u mod q, f(u) ≡ 0 mod d}| = qs

ds
|{x mod d, f(x) ≡ 0 mod d}| ,

so

cf (q) =
∑
d|q

µ
(q
d

) |{x mod d, f(x) ≡ 0 mod d}|
ds−1︸ ︷︷ ︸

=:ωf (d)

= (µ ? ωf )(q),

where the star denotes the Dirichlet convolution of arithmetic functions. Now, since ωf is multiplicative
and the convolution of multiplicative functions is multiplicative, we deduce that

cf (q) =
∏
pα||q

(
ωf (pα)− ωf (pα−1)

)
.

Thus,

Sf =
+∞∑
q=1

cf (q) =
+∞∑
q=1

∏
pα||q

(
ωf (pα)− ωf (pα−1)

)
=
∏
p

δf (p),

where δf (p) = 1 +
∑+∞

α=1

(
ωf (pα)− ωf (pα−1)

)
. Under Assumption 1.8, all the in�nite series and

products converge, and we have
δf (p) = lim

α→+∞
ωf (pα).

As

ωf (pα) =
|{x ∈ (Z/pαZ)s, f(x) ≡ 0 mod pα}|

(pα)s−1
,

the factor δf (p) can be interpreted as the density of p-adic solutions to the equation f(x) = 0. Indeed,
a heuristic reasoning as in Remark 1.5 shows that if all the residue classes modulo pα get a fair share
of preimages under the map induced by f between (Z/pαZ)s and Z/pαZ, then (pα)s−1 is actually the
expected number of solutions, so ωf (pα) should be close to 1 in situations where the heuristic can be
made rigorous.

As a conclusion, the contribution of the major arcs is given by∫
M
Sf (α)dα = Vf (B)Sf + (error term),

where Vf (B) can be interpreted as the density of the real solutions to the equation f(x) = 0, while the
singular series Sf admits a factorization as an in�nite product over the primes, each factor measuring
the density of solutions modulo prime powers.
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The �nal task is to prove that the contribution of the minor arcs is negligible in front of the main term
Vf (B)Sf that was obtained for the major arcs. There also, estimates on exponential sums play a role,
see e.g. [54, Chapter 20].

Kloosterman's variant. In his article [66], Kloosterman introduced a variant of the circle method
to study the question of the number of representations of an integer in the form ax2 + by2 + cy2 + dt2,
under some conditions on the coe�cients a, b, c, d ∈ N. Along the way, he was led to introduce the
following exponential sums (de�ned for any prime number p), which are now named after him:

Kp(a, b) :=
∑
x∈F×p

e

Å
ax+ bx−1

p

ã
for a, b ∈ Fp

These sums are real numbers, and they are trivially bounded by p− 1. However, Kloosterman needed
to prove a non-trivial bound in order to understand what was the main term, and what was negligible
in his variant of the circle method. By considering the 4-th moment of the family of Kloosterman
sums, that is: ∑

a,b∈F×p

|Kp(a, b)|4

he reduced to an elementary counting problem, namely the problem of counting solutions (x1, x2), (y1, y2)
in (F×p )2 to the equations ®

x1 + x2 = y1 + y2

x−1
1 + x−1

2 = y−1
1 + y−1

2 .

He obtained the following non-trivial bound: for all a, b ∈ F×p , |Kp(a, b)| 6 2p3/4, and this allowed him
to conclude on the question of representation of integers by diagoonal quadratic forms in four variables.

1.1.4. Fourier coe�cients of modular forms

Kloosterman sums also arise naturally in the study of modular forms and more generally of automor-
phic forms, and in this section we aim at providing an idea of what those speci�c functions are, why
they are studied by number theorists, and at which place do Kloosterman sum play a role. This section
is mostly based on [54, Chap. 14 & 15] and [15], where a far more detailed introduction to the subject
can be found.

Let H := {z ∈ C | Im(z) > 0} denote the Poincaré upper-half plane. The group SL2(R) acts on H

by Möbius transformations: if γ =

Å
a b
c d

ã
∈ SL2(R) and z ∈ H, then

γ.z =
az + b

cz + d
·

We will be interested in the restriction of this action to discrete subgroups of SL2(R), such as SL2(Z).
For arithmetic applications, one also often encounters the congruence subgroups

Γ0(q) :=

ßÅ
a b
c d

ã
∈ SL2(Z) | c ≡ 0 (mod q)

™
.

Note that Γ0(1) = SL2(Z). We can now de�ne modular forms: they are holomorphic functions on
H which transform nicely under the action of the modular group SL2(Z) or one of its congruence
subgroup.

De�nition 1.9. For two positive integers k, q > 1, a modular form of weight k and level q is a

holomorphic function f : H→ C such that for all γ =

Å
a b
c d

ã
∈ Γ0(q), for all z ∈ H,

f(γ.z) = (cz + d)kf(z)
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and such that it is holomorphic at cusps.

For modular forms of level 1 (i.e. modular forms of the full modular group SL2(Z)), the holomorphy
at the cusp ∞ can be explained in a rather elementary way: since z 7→ z + 1 ∈ SL2(Z), any level 1
modular form is 1-periodic, hence admits a Fourier expansion of the form

+∞∑
n=−∞

af (n)e(nz)

we say that

� f is meromorphic at ∞ if there exits N ∈ Z such that for all n 6 N , af (n) = 0;

� f is holomorphic at ∞ if for all n < 0, af (n) = 0;

� f is a cusp form if it is holomorphic at ∞ and moreover af (0) = 0.

The second condition above is precisely the condition of holomorphy at the cusp ∞ of De�nition 1.9.

Several important questions in the theory of modular forms are related to the order of magnitude of
the Fourier coe�cients af (n). For instance, a motivation can come from the fact that in order to
understand the domain of de�nition of the associated L-function

L(f, s) :=

+∞∑
n=1

af (n)

ns

one needs to have estimates for the growth of the sequence (af (n))n>1. It turns out that for the
de�nition of the L-functions, the following estimate due to Hardy su�ces:

Proposition 1.10 ([15, Proposition 1.3.5]). If f is a cusp form of weight k and level 1, then

af (n)� nk/2.

However a conjecture of Ramanujan of 1916, later called the Ramanujan-Petersson conjecture in a
more general context, asserts that under the same assumptions

af (n)�ε n
k−1

2
+ε.

This was proved by Deligne many years later, as a consequence of his work on the Weil conjectures,
and has found fruitful applications since then. For instance, this bound plays a central role in the
construction of Ramanujan graphs by Lubotzky, Phillips and Sarnak [80] (actually, they do not need
the full generality of the Ramanujan-Petersson conjecture as proved by Deligne, and rather rely on
earlier works of Eichler and Igusa). Such graphs give examples of expander graphs, which are graphs
satisfying certain extremality properties (for instance it is related to the existence of a large spectral
gap: a gap between the trivial eigenvalue and the other eigenvalues of the adjacency matrix of the
graph). This type of estimates on Fourier coe�cients of modular forms also appears in the proof that
a certain graph is an expander in the article [33], which concerns a very concrete number theoretic
question. Namely, they study the distribution of the tuplesß

1√
d

(x, y, z) | (x, y, z) ∈ Z3 such that x2 + y2 + z2 = d

™
on the sphere S2 as d goes to in�nity among the integers which can be represented as a sum of three
squares, and d ≡ ±1 (mod 5). Using a modern reformulation of an ergodic method of Linnik, they
prove the equidistribution of these tuples, and the proof relies on the fact that a certain graph has a
spectral gap. The condition d ≡ ±1 (mod 5) is due to a technical limitation of this speci�c approach,
and it can actually be removed. This was achieved by Duke in [30], by considerations on the Fourier
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coe�cients half-integral weight Maass forms, a generalization of the notion of modular forms which
need not be holomorphic.
In the previous application, estimates of Kloosterman sums play a crucial role in the proof. This comes
from the fact that they appear in many instances of trace formulas, such as Petersson's trace formula
(for holomorphic cusp forms) or Kuznetsov's trace formula (for more general automorphic forms). We
state here a simple form of Petersson's trace formula, which can be seen quasi orthogonality relation
for Fourier coe�cients of cusp forms.

Proposition 1.11 ([54, Proposition 14.5]). Let F be an orthonormal1 basis of the space of cusp forms
of SL2(Z) of weight k. Then for any m,n > 1,

Γ(k − 1)

(4π
√
mn)k−1

∑
f∈F

af (n)af (m) = δm,n + 2πi−k
∑
c>0

Kc(m,n)

c
Jk−1

Å
4π
√
mn

c

ã
where δm,n is the Kronecker symbol, Kc(m,n) is the Kloosterman sum

∑
x∈(Z/cZ)×

e

Å
mx+ nx−1

c

ã
(1.9)

and Jk−1 is a Bessel function.

The idea of the proof is to consider the expansion

Pm =
∑
f∈F
〈f, Pm〉f,

where Pm is a speci�c cusp form called a Poincaré series, and to identify the n-th Fourier coe�cients
of both sides. We refer to [54, Chapter 14] for complete proofs. The reason why Kloosterman sums
appear is because they appear in the Fourier coe�cients of Poincaré series, and it is actually as such
that they �rst made an apparition in the literature (see the article [72] by E. Kowalski).

Generalizations of Proposition 1.11 in the form of what is called Kuznetsov's trace formula are widely
used in questions related to counting geodesics of length less than log(X) on arithmetic surfaces, typi-
cally on the modular surface PSL2(Z)\H. In this context as well, estimates on Kloosterman sums are
important to control the size of the error term in an asymptotic formula (as the length of the geodesics
tends to in�nity) called the prime geodesic theorem. An illustration of that claim is the paper [4], which
improves the error term obtained in earlier works by improving the estimates on sums of Kloosterman
sums.

Finally, let us mention another very concrete number theoretic question which has been answered rely-
ing partially on estimates on Kloosterman sums: the equidistribution of roots of quadratic congruences
modulo primes by Duke, Friedlander and Iwaniec [31]. More precisely, what it this statement about ?
Fix a degree 2 irreducible polynomial P (X) = aX2 + bX+ c ∈ Z[X]. Then for any prime p which does
not divide a, the reduction of P (X) modulo p is a quadratic polynomial with coe�cients in Fp, so it
has at most two roots in Fp. We denote by ρ(p) the number of roots of P (X) in Fp, and by

ρ(x) =
∑
p6x

ρ(p).

For a root ν ∈ Fp of P (X), we denote by
¶
ν
p

©
the fractional part of any rational number of the form

ν̃
p where ν̃ is an integer whose reduction modulo p equals ν. The equidistribution of the roots of P (X)
is the following statement:

1with respect to the Petersson inner product, see e.g. [54, eq. (14.11)]
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Theorem 1.12 (Duke-Friedlander-Iwaniec). for any interval [a, b] ⊆ [0, 1],

1

ρ(x)
#

ß
(p, ν) | p 6 x, P (ν) ≡ 0 (mod p) and a 6

ß
ν

p

™
6 b
™
−→
x→+∞

b− a.

Kowalski's book [70] gives a mostly self-contained exposition of the proof of this theorem, and its
introduction already explains many important ideas. First, one needs to apply Weyl's criterion (we
will discuss it in the next section on equidistribution) and this reduces the question to showing that
certain exponential sums converge to zero. Next, a non-trivial step consists in relating these exponential
sums to certain modular forms. Then one needs to prove that these modular forms have harmonic
properties which guarantee the convergence towards zero of the Weyl sums. These harmonic properties
essentially require us to study again the growth of some Fourier coe�cients, and this part also makes
use of Kuznetsov's trace formula, and of estimates on Kloosterman sums.

Remark 1.13. The analogous statement for roots of polynomial congruences modulo natural numbers
(and not only primes) is actually easier, and was proved by Hooley in [51] for irreducible polynomials
of arbitrary degree. On the other hand, the case of reducible polynomials is still not completely
understood. In [82], Martin and Sitar studied the case of reducible quadratic polynomials, and quite
recently Dartyge and Martin [24] obtained results for reducible polynomials of degree 3 as well as for
polynomials which are a product of an arbitrary number of linear factors.

We hope that all those examples will convince the reader of the relevance of the study of exponential
sums, as they keep on appearing in many places in number theory. In the next section, we give a brief
overview of some facts in the theory of equidistribution, in a more general context than that of the
interval [0, 1].

1.2. Equidistribution

1.2.1. Generalities

In this section we present the necessary de�nitions to speak about equidistribution in compact topo-
logical spaces, a setting which will be su�ciently general to state all the equidistribution results of this
thesis. We have taken inspiration from the presentation of [73].

Given a compact topological space X, we denote by B(X) the σ-algebra of Borel sets, and we call
Borel probability measure any measure µ on (X,B(X)) such that µ(X) = 1. In this setting, assume
that we are also given a sequence (Yn)n>1 of �nite sets together with maps

θn : Yn → X.

De�nition 1.14. We say that (Yn, θn)n>1 becomes equidistributed in X with respect to µ if for all
continuous functions f : X → C, we have

1

|Yn|
∑
y∈Yn

f(θn(y)) −→
n→+∞

∫
X
f(x)dµ(x)

Equivalently, (Yn, θn)n>1 becomes equidistributed with respect to µ if and only if for any Borel set
A ⊆ X whose boundary ∂A satis�es µ(∂A) = 0, we have

|{y ∈ Yn | θn(y) ∈ A}|
|Yn|

−→
n→+∞

µ(A).

Of course, these de�nitions can easily be ajusted to the case of sequences (Yp, θp) indexed by prime
numbers, or even (Ya, θa) indexed by ideals of the ring of integers of a number �eld K (in that case,
the limit is taken as ‖a‖ goes to in�nity, where ‖a‖ is the index of a in OK). We will see an instance
of that in Chapter 4.
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Remark 1.15. Note that saying that the sequence (Yn, θn)n>1 becomes equidistributed in X with
respect to µ is equivalent to saying that the sequence of �empirical� measures

µn :=
1

|Yn|
∑
y∈Yn

δθn(y)

converges weakly to µ. Yet another way of rephrasing this: if we view each �nite set Yn as a proba-
bility space with the normalized counting measure, then the maps θn are viewed as X-valued random
variables, and we are saying that these random variables converge in law to a random variable whose
law is µ.

Finally let us state an easy consequence of the de�nitions concerning pushforward measures which will
be used in many places of the next chapters.

Lemma 1.16. Let X and Y be two compact topological spaces, endowed with their respective Borel
σ-algebras, and let f : X → Y be a continuous map. Let µ be a Borel probability measure on X.
If (An, θn)n>1 becomes equidistributed in X with respect to µ, then (An, f ◦ θn)n>1 becomes equidis-
tributed in Y with respect to the pushforward measure f∗µ.

Proof. Let g : Y → C be a continuous map. We want to prove that

1

|An|
∑
a∈An

g(f(θn(a))) −→
n→+∞

∫
Y
g(y)d(f∗µ)(y).

Since g is continuous, so is g◦f , hence we can use the assumption that (An, θn) becomes equidistributed
in X to deduce that the left hand side converges to∫

X
(g ◦ f)dµ.

But this last integral equals
∫
Y g(y)d(f∗µ)(y) (by a standard argument: one �rst shows that it is true

when g is the characteristic function of a Borel set by de�nition of f∗µ, and then extends the results
to any measurable functions by approximation by step functions).

1.2.2. Equidistribution modulo 1 and Weyl's criterion

We now turn our attention to a particular case: the equidistribution in [0, 1[ with respect to the
Lebesgue measure, which is also called equidistribution modulo 1. It is historically the case considered
by Weyl, in his famous article [107], where he introduced the criterion which bears his name, and has
been generalized to more general settings since then.

A sequence (xn)n>1 of real numbers is said to be uniformly distributed modulo 1 if its fractional parts
{xn} become equidistributed in [0, 1[ with respect to the Lebesgue probability measure: in other words,
if for all subintervals [a, b[⊆ [0, 1[,

# {1 6 n 6 N, {xn} ∈ [a, b[}
N

−→
N→+∞

b− a. (1.10)

With the notations of the previous section, this corresponds to the case where YN = {1, . . . , N} and

θN : YN → [0, 1[
n 7→ {xn}

while (X,µ) is the interval [0, 1[ endowed with its Lebesgue measure.

The following theorem is a well known criterion due to Weyl, which states that one can actually check
uniform distribution modulo 1 only on a nice subset of the continuous functions on [0, 1]: the set of
trigonometric polynomials (which form a dense subset, with respect to the uniform norm, of the set of
continuous and 1-periodic functions).
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Theorem 1.17 (Weyl's criterion). A sequence (xn)n>1 is uniformly distributed modulo 1 if and only
if for all h ∈ Z \ {0},

1

N

N∑
n=1

e(h · xn) −→
N→∞

0. (1.11)

For a proof, see for instance [29, Theorem 1.19]. This criterion reduces the study of uniform distribu-
tion modulo 1 to the problem of estimating exponential sums.

A �rst easy application of this criterion is the uniform distribution modulo 1 of the sequence (nα)n>1

for any given α ∈ R \Q. Here we want to stress that without Weyl's criterion, this �easy� application
is not so easy!

An even more di�cult application is the uniform distribution modulo 1 of the sequence (pα)p prime

for α also irrational. This was proved by Vinogradov, and via Weyl's criterion, it is implied by the
following estimate: if β ∈ R \Q then∑

p6x

e(βp) =
x→+∞

o

Å
x

log(x)

ã
.

We refer to [70, Prop. 5.5.1] for a proof.

Weyl's criterion admits generalizations to far more general settings, where equidistribution with respect
to the Haar measure on a compact group can be proved using sums of characters of the group. We
will come back to this in Appendix 4.A and use these more general versions at several places of this
manuscript. However, the case of equidistribution modulo 1 still plays an important role in this thesis,
as many of the groups we will be interested in are of the form (R/Z)d for some integer d.

1.2.3. A quantitative result: Erdös-Turán inequality

Now, a natural question which comes to mind is to ask what kind of information on the distribution
of the fractional parts {xn} can be deduced from estimates on the exponential sums which appear in
Weyl's criterion? For instance, if we have a good understanding of the rate of convergence towards
zero in (1.11), can we deduce an explicit rank N after which the ratio

# {1 6 n 6 N, {xn} ∈ [a, b[}
N

is close to b− a, up to a well-understood error?
In other words, we would like to �nd a quantitative form of the uniform distribution modulo 1. We
want to replace the qualitative convergence of (1.10) by an explicit upper bound for the gap∣∣∣∣# {1 6 n 6 N, {xn} ∈ [a, b[}

N
− (b− a)

∣∣∣∣
in terms of exponential sums, so that information on the distribution can be derived from quantitative
estimates of the decay towards zero of the exponential sums involved in Weyl's criterion.

Erdös-Turán inequality enables one to achieve this goal, and can be stated as follows:

Theorem 1.18 (Erdös-Turán). For any interval I := [a, b[⊂ R such that b− a 6 1 we denote by I its
image in [0, 1[ obtained by taking the fractional parts of the elements of I. Erdös-Turán inequality is
the following result:
there exist two absolute constants c1 and c2 such that for any sequence (xn)n>1 of real numbers, for
any interval I := [a, b[⊂ R such that b− a 6 1, for any H > 0:∣∣∣∣∣#

{
1 6 n 6 N ; {xn} ∈ I

}
N

− (b− a)

∣∣∣∣∣ 6 c1

H
+ c2

∑
0<|h|<H

Å
1

|h|
− 1

H

ã ∣∣∣∣∣ 1

N

N∑
n=1

e(h · xn)

∣∣∣∣∣ .
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Remark 1.19. The article [92] contains interesting results on the optimal constants c1 and c2 one can
hope for, and gives explicit constants close to the expected optimal ones.

Remark 1.20. We recall that if µ is a Borel measure on [0, 1[, we can de�ne its Fourier coe�cients
as follows:

∀h ∈ Z, µ̂(h) :=

∫ 1

0
e(−ht)dµ(t).

In the case of Theorem 1.18, if one considers the �empirical measure�

µN :=
1

N

N∑
n=1

δ{xn}

then its Fourier coe�cients are ”µN (h) = 1
N

∑N
n=1 e(h · xn) whereas the Fourier coe�cients of the

Lebesgue measure λ are all equal to zero, except λ̂(0) which equals 1. Therefore, one can rewrite
Erdös-Turán inequality as

sup
I=[a,b[⊂R
b−a61

|µN
(
I
)
− λ

(
I
)
| 6 c1

H
+ c2

∑
06|h|<H

Å
1

|h|
− 1

H

ã ∣∣∣”µN (h)− λ̂(h)
∣∣∣ .

The supremum on the left hand side of this inequality is usually called the discrepancy of the sequence
(xn)n>1. Thus, Erdös-Turán inequality is a statement which controls the discrepancy between two
measures by the di�erence between their Fourier coe�cients. More general statements of this type are
proved for instance in [88], where the analogy with Berry-Esseen inequality in probability theory is
also pointed.

1.2.4. Sample of equidistribution results in number theory

Many �arithmetically de�ned� objects happen to show a random-like behaviour, in the sense that they
become equidistributed in certain spaces. In this short section, we wish to give two classical examples
(other than the exponential sums we will be focusing in the next section).

Primes in arithmetic progressions. The prime number theorem of Hadamard and de la Vallée
Poussin states that the prime counting function π(x) := |{2 6 p 6 x | p is prime}| is equivalent, as x
goes to in�nity, to

Li(x) :=

∫ x

2

1

log(t)
dt

(which is itself equivalent to x/ log(x)). An analogous theorem gives the asymptotic for the number of
prime numbers less than or equal to x, in a certain arithmetic progression. In other words, we �x an
integer q > 2 and an invertible residue class a (mod q), and we are interested in

π(x; q, a) := |{p 6 x | p is prime and p ≡ a (mod q)}

The prime number theorem in arithmetic progressions states that

π(x; q, a) ∼
x→+∞

Li(x)

ϕ(q)
·

In other words, if one looks at the proportion of primes less than or equal to x which belong to an
invertible residue class modulo q, then this proportion converges to 1/ϕ(q). For instance, for q = 4 we
have ϕ(q) = 2, and the theorem tells us that the proportion of primes congruent to 1 modulo 4 and
the proportion of primes congruent to 3 modulo 4 both converge to 1/2.

Let us rephrase this theorem in the language of equidistribution. We let Yx denote the set of prime
numbers less than or equal to x and

θx : Yx → Z/qZ
p 7→ p (mod q)
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We endow Z/qZ with the probability measure

µ :=
1

ϕ(q)

∑
a∈(Z/qZ)×

δa.

Then the prime number theorem in arithmetic progressions states that (Yx, θx)x>2 become equidis-
tributed in Z/qZ with respect to µ in the sense of De�nition 1.14.

Sato-Tate law for elliptic curves. This paragraph owes a lot to the survey paper [100] by A.
Sutherland. For background on elliptic curves, we refer to the famous book of Silverman [98] (see also
the book of Cox [23]: even though its title does not mention elliptic curves, it is a great introduction
to the subject!).
An elliptic curve over Q is a curve given by an equation of the form

E : y2 = x3 + ax+ b

with a, b ∈ Z. By introducing a third variable z, and turning the equation de�ning E into a homoge-
neous equation, we can view E as a projective curve in P2(Q). Elliptic curves have been at the heart
of development of the Langlands program, which consists in many conjectures and theorems concern-
ing connections between elliptic curves, modular forms, and Galois representations. For instance, the
modularity conjecture discussed in the book of Diamond and Shurman [27] is a key step in the proof
of Fermat's last theorem by Andrew Wiles.

The Sato-Tate law for elliptic curves we wish to present in this paragraph concerns the distribution of
the error term in the number of points on the reduction modulo p of E. However, we need to exclude
some primes where the reduction modulo p is �bad�. More precisely, there is a notion of discriminant
of an elliptic curve, which is de�ned by the formula ∆ = −16(4a3 + 27b2), and for any prime number
p, we say that E has good reduction at p if p does not divide ∆. For such primes, we can reduce the
equation de�ning E modulo p, and obtain an elliptic curve over the �nite �eld Fp, which we denote
by Ep. The number of Fp-points of Ep satis�es the bound

|#Ep(Fp)− (p+ 1)| 6 2
√
p

(this is called the Hasse bound), so that if we denote by

tp := p+ 1−#Ep(Fp)

the numbers tp/
√
p all belong to the interval [−2, 2], and one may want to understand more precisely

their distribution in this interval.
At this point, we need to one last de�nition in order to state the Sato-Tate theorem: the notion of
curve with or without complex multiplication. Since de�ning the group law on an elliptic curve is far
from the purpose of this introduction, we will just state as a fact that one can endow E with a group
law, so that it makes sense to write P +Q for two points P and Q of the elliptic curve. This turns E
into an abelian group and in particular, for any positive integer n, we can de�ne an endomorphism ϕn
of the curve E which is given by the multiplication by n:

ϕn(P ) = P + · · ·+ P.︸ ︷︷ ︸
n times

If n is negative, we de�ne ϕn(P ) as −P − · · · − P (−n times). This shows that the ring of endomor-
phisms of E contains a subring isomorphic to Z. However, it can happen that the curve admits other
endomorphisms than those of the form ϕn. In that case, one can show that the End(E) is isomorphic
to the ring of integers OK of an imaginary quadratic �eld K. We say that E is a curve with complex
multiplication, or a CM elliptic curve. Otherwise, it is said to be non-CM, or an elliptic curve without
complex multiplication. We can now sate the Sato-Tate conjecture, which is now a theorem, published
in the years 2010-2011 by Barnet-Lamb, Clozel, Gee, Geraghty, Harris, Shepherd-Barron and Taylor
(the precise articles are referenced in the survey [100]).
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Theorem 1.21 (Sato-Tate law for non-CM elliptic curves). Let E be an elliptic curve over Q without
complex multiplication. For all prime numbers p, denote by

tp := p+ 1−#Ep(Fp).

Then for any closed interval [a, b] ⊆ [−2, 2], we have

#
¶
p 6 x | tp√

p ∈ [a, b]
©

π(x)
−→
x→+∞

∫ b

a

1

2π

√
4− t2dt.

In other words, if Yx is again the set of prime numbers less than or equal to x and

θx : Yx → [−2, 2]

p 7→ tp√
p

then (Yx, θx)x>2 become equidistributed in [−2, 2] with respect to the Sato-Tate measure:

dµST(t) =
1

2π

√
4− t2dt. (1.12)

This is another instance of an arithmetic quantity (an error term for the number of points on an
elliptic curve over varying �nite �elds) which shows a random behaviour, and the �randomness� is
well-understood since we know that the limit measure is the Sato-Tate measure.

1.3. Equidistribution of exponential sums

In the two previous sections, we �rst gave several applications of exponential sums to show that
they are indeed arithmetic objects which appear in many parts of number theory, and then we gave
examples of equidistribution results concerning arithmetic quantities. In this section, we want to
combine both aspects, by showing that some exponential sums which arise naturally in number theory
satisfy themselves equidistribution results.

1.3.1. Gauss sums with varying multiplicative character

If ψ is an additive character of Fp and χ a multiplicative character of F×p , the associated Gauss sum
is de�ned as

τ(χ, ψ) :=
∑
x∈F×p

χ(x)ψ(x).

These sums enjoy an equidistribution property, but only after a suitable normalization. Indeed, an
elementary computation of |τ(χ, ψ)|2 shows that as soon as ψ and χ are both non-trivial, we have

|τ(χ, ψ)| = √p

(a proof of this fact can be found in [58, �1.3]). Thus, if for all prime numbers p we �x a non-trivial
additive character ψp of Fp, then the set®

1
√
p
τ(χ, ψp), χ non-trivial character of F×p

´
(1.13)

is a subset of the unit circle S1, and one may ask how its elements distribute on S1. Even though it
only involves elementary objects, this question turns out to be very di�cult. The answer is given by
the following theorem, which is due to Deligne:

Theorem 1.22. As p tends to in�nity, the p− 2 points of the set (1.13) become equidistributed on S1

with respect to the Haar measure on S1.

The proof of this theorem starts with the application of Weyl's criterion, but then the exponential sums
one needs to bound in order to show that there is convergence towards zero are hyper-Kloosterman
sums, which are not so easy to bound. The conclusion follows from the work of Deligne, who proved
the optimal upper bounds for the absolute value of these sums, relying on the construction of an `-adic
sheaf that admits hyper-Kloosterman sums as trace function. We refer to [58, �1.3] for more details
on the proof of this equidistribution theorem.
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1.3.2. Katz' theorem on Kloosterman sums

Let q = pα, where p is an odd prime and α ∈ Z>1. The classical Kloosterman sums modulo q are the
real numbers Kq(a, b) already de�ned at equation (1.9). They �rst appeared in a paper of Poincaré,
but they are named after Kloosterman because he was the �rst to prove a non-trivial upper bound for
their absolute value, a result which was crucial in his work [66] on representation of large integers by
diagonal quadratic forms in 4 variables, as we discussed on page 32.
Many years after Kloosterman's paper, as a consequence of Weil's work on the Riemann hypothesis
for curves over �nite �elds, the best possible upper bound for the absolute value of these sums was
obtained and takes the following form:

|Kp(a, b)| 6 2
√
p for all a, b ∈ F×p .

This only covers the case of Kloosterman sums modulo prime numbers, and not prime powers, but
more generally one can show that these sums satisfy the bound2:

|Kq(a, b)| 6 2
√
q for all a, b ∈ (Z/qZ)× (1.14)

Note that it is a far more elementary problem in the case of prime powers than in the case of primes
(see [64, Corollary 1] for an elementary proof of a slightly more general statement concerning twisted
Kloosterman sums). The bound (1.14) raises the question of the distribution of the sets of sums®

1
√
q

Kq(a, b); a, b ∈ (Z/qZ)×
´

in the interval [−2, 2] as q goes to +∞. When q = p is a prime number, this question is very deep,
and the answer was given by Katz in 1988, using techniques from `-adic étale cohomology introduced
and developed by Grothendieck and Deligne. We will come back to this algebraic point of view on
exponential sums in Chapter 6, but for now let us just state the beautiful result obtained by Katz:

Theorem 1.23 ([59, Example 13.6]). For any odd prime number p, denote by

Kl2(a, p) := − 1
√
p

∑
x∈F×p

e

Å
ax+ x−1

q

ã
the normalized Kloosterman sums modulo p. As p→ +∞ through primes, the sets of sums{

Kl2(a, p); a ∈ F×p
}

become equidistributed with respect to the Sato-Tate measure on [−2, 2] (de�ned at equation (1.12)).

Concretely: for any interval [c, d] contained in [−2, 2] we have

#
{
a ∈ F×p ; Kl2(a, p) ∈ [c, d]

}
p− 1

−→
p→∞

∫ d

c

1

2π

√
4− x2dx,

On the other hand, in the case where q = pα is a non-trivial prime power (i.e. α > 2), one can prove
via elementary methods an equidistribution result for the sets

¶
1√
qKq(a, 1); a ∈ (Z/qZ)×

©
as q goes

to in�nity, see [64, Remark 1.1]. In this case, the measure with respect to which the sums become
equidistributed is the measure µ de�ned as follows:

dµ(x) =
1

2
δ0(x) +

1

2π

1√
4− x2

dx. (1.15)

The following �gure illustrates these two di�erent behaviours.

2Here one really needs to assume that p is an odd prime. When q = 2α with α > 5, the upper bound (1.14) needs to
be replaced by |Kq(a, b)| 6 (2

√
2)
√
q (see the corrigendum [41] to the article [40]).
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(a) Distribution of the values 1√
6007

K6007(a, 1) in

[−2, 2] as a ranges in F×6007. The red curve is the
graph of x 7→ 1

2π

√
4− x2.

(b) Distribution of the values 1
31K312(a, 1) in

[−2, 2] as a ranges in (Z/312Z)×.

Figure 1.1: Distribution of normalized Kloosterman sums modulo a prime and modulo a prime power.

Remark 1.24. (1) Since Katz' equidistribution theorem, �ner results on the asymptotic behaviour of
Kloosterman sums have been obtained, through the study of the asymptotic distribution of Klooster-
man paths. A �rst achievement was made by Kowalski and Sawin, who studied in [76] the distribution
of the polygonal paths connecting the successive partial sums of Kloosterman sums, and proved their
convergence in the sense of �nite distributions towards an explicit random Fourier series. Their article
only focuses on Kloosterman sums modulo prime numbers, but shortly after, Ricotta and Royer [91]
answered the analogous question for Kloosterman sums modulo prime powers pn in the regime where
n > 2 is a �xed integer and p goes to in�nity. Finally, the regime where p is a �xed prime and the
power n goes to in�nity was settled by Mili¢evi¢ and Zhang in [83].

(2) A related question concerning twisted Kloosterman sums was investigated by Kelmer in [64].
Namely, he studied the distribution of sums of the form

1
√
q

∑
x∈(Z/qZ)×

e

Å
a(x− x−1)

q

ã
χ(x)

where χ varies among Dirichlet characters modulo q and a is a �xed non-zero integer. Here q = pk for a
�xed integer k > 2 and a prime p going to in�nity. He obtained that these sums become equidistributed
in [−2, 2] with respect to the same measure µ as in (1.15).
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Part B: Outline of the thesis

Initial motivation. The starting point of this thesis was the study of the article [16], which in-
vestigates certain visual properties of Kloosterman sums restricted to the subgroup of d-th roots of
unity:

Kp(a, b, d) :=
∑
x∈F×p
xd=1

e

Å
ax+ bx−1

p

ã
,

for a �xed d and p tending to in�nity, under the condition that p ≡ 1 (mod d) (this condition ensures
that the group of d-th roots of unity is indeed made of d elements in Fp). Indeed, for a given large
value of p and the parameters a and b varying in Fp, one obtains the following pictures:

(a) p = 151 (b) p = 631

Figure 1.2: The sets {Kp(a, b, d); a, b ∈ Fp} for d = 5 and two di�erent values of p ≡ 1 (mod 5).

In the arXiv version of the article [16], the authors show that there is indeed a density result for such
sums. They prove that when d is prime, the sums Kp(a, b, d) become dense in the region of the complex
plane delimited by a d-cusp hypocycloid. They also prove a density result for d = 9. The �rst question
I tried to answer in my thesis was: is it possible to prove that these sums actually become equidistributed
with respect to some measure?

It turns out that this question was quickly answered, because in the published version of loc. cit., a
remark states that the proof of the density actually shows that there is equidistribution with respect
to an ad hoc pushforward measure. However, the fact that it was only proved for values of d which
were prime or equal to 9 was surprising, as the exact same results were obtained for any value of d for
the simpler sums:

Sp(a, d) :=
∑
x∈Fp
xd=1

e

Å
ax

p

ã
in [32, 44]. I was rather striked by the fact that the sums Sp(a, d) and Kp(a, b, d) became equidistributed
with respect to the same measure. Thus, I tried to understand what was the reason behind this, and
which other sums satisfy the same equidistribution results. The key observation that explains the
similarity of their asymptotic behaviour is that the exponents +1 and −1 which appear in �ax+ bx−1�
in the de�nition of the Kloosterman sums are coprime with d, for any integer d.

In Chapter 2 , we extend certain known equidistribution results from [32, 44] and [16], regarding
sums of the type Sp(a, d) and Kp(a, b, d), to more general families of exponential sums, namely sums
of the form ∑

x∈Fp
xd=1

e

Å
a1x

m1 + · · ·+ anx
mn

p

ã
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for arbitrary integers mi and parameters ai varying in Fp. Here is a sample statement in the special
case where the mi are coprime with d:

Theorem 1.25 ([103, Proposition B (b)], Proposition 2.12 p.59 in this manuscript). Let d > 1 and
let m1, . . . ,mn be integers all coprime with d. Then the sets of sums

∑
x∈Fp
xd=1

e

Å
a1x

m1 + · · ·+ anx
mn

p

ã
; (a1, . . . , an) ∈ (Fp)

n


become equidistributed in the image of an explicit Laurent polynomial gd : (S1)ϕ(d) → C (with respect
to the pushforward measure via gd of the probability Haar measure on (S1)ϕ(d)) as p goes to in�nity
among the prime numbers congruent to 1 modulo d.

Let us stress that the Laurent polynomial gd is the same as the one which appears in the description
of the pushforward measure in the previous articles on the subject.

Example 1.26. If d = ` is a prime number, the Laurent polynomial g` is given by:

z1 + · · ·+ z`−1 +
1

z1 . . . z`−1

and it maps (S1)`−1 to the region of the complex plane delimited by a hypocycloid with ` cusps. For
` = 5, Figure 2.5 p.58 illustrates Theorem 1.25 in the special case of Kloosterman sums restricted to
the subgroup of order 5.

The strategy of the proof of Theorem 1.25 is the following:

� First, we pick a primitive d-th root of unity wp in Fp, write¶
x ∈ Fp | xd = 1

©
=
¶
wkp , 0 6 k 6 d− 1

©
,

and rewrite the sums in terms of the wkp .

� Then, we take into account that there are linear relations with integral coe�cients between the
powers of wp. Indeed, the fact that the d-th cyclotomic polynomial φd vanishes at wp gives such
a linear relation.

� This allows us to rewrite our exponential sums of interest as a Laurent polynomial in ϕ(d)
variables in S1 (where ϕ denotes the Euler totient function), which only depend on the wkp for
k < ϕ(d).

� Finally, it remains to prove the uniform distribution modulo 1 of a tuple in (R/Z)ϕ(d) which only
depends on those small powers of wp. For instance, in the simplest case of the sums Sp(a, d), we
need to prove the uniform distribution of{

xa(p) :=

(
aw0

p

p
,
aw1

p

p
, . . . ,

aw
ϕ(d)−1
p

p

)
; a ∈ Fp

}
⊂ (R/Z)ϕ(d) . (1.16)

We do this using Weyl's criterion, and a striking feature of this problem is that the Weyl sums
are actually stationary (equal to zero for a big enough range of summation)!

Remark 1.27. In the same chapter, we also extend Theorem 1.25 to sums over elements of Z/qZ,
where q is a power of a prime congruent to 1 modulo d. This generalization involves Hensel's lemma
to show that the vanishing of φd at a primitive d-th root of unity still holds (this is proved in Lemma
2.14). Finally, the statement also admits a generalization to the case where the integers mi are not
assumed to be coprime with d, as shown in [103, Proposition B (a)].
The most general form of Theorem 1.25, which gathers these di�erent extensions, can be found at
Proposition 2.20 p.68 of this manuscript.
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After a talk I gave at a seminar in Nancy, G. Tenenbaum suggested that I look into discrepancy
questions related to the equidistribution properties I am interested in. This is the subject of Appendix
2.B. As we already observed, the proof of Theorem 1.25 mostly relies on the uniform distribution
modulo 1 of the sets of tuples (1.16), and there is a classical notion of discrepancy for such subsets of
(R/Z)ϕ(d), which measures how quickly a sequence becomes uniformly distributed modulo 1.

De�nition 1.28. For all p ≡ 1 (mod d), we de�ne the discrepancy of the �nite subset of (R/Z)ϕ(d) of
eq. (1.16) as follows:

Dp := sup
I∈I

∣∣∣∣∣∣1p
p−1∑
a=0

1I(xa(p))− λϕ(d)(I)

∣∣∣∣∣∣
where I denotes the set of products of intervals I = [a1, b1]×· · ·× [aϕ(d), bϕ(d)] of (R/Z)ϕ(d) and λϕ(d)

denotes the probability Haar measure on (R/Z)ϕ(d).

Using the Erdös-Turàn-Koksma inequality combined with arguments adapted from an unpublished
note sent to me by I. Shparlinski, I obtained the following estimate:

Proposition 1.29 (Proposition 2.38 p.86 in this manuscript). For all d > 1, we have that for all
p ≡ 1 (mod d),

Dp �d p
− 1
ϕ(d) .

The fact that the discrepancy decreases quite quickly is due to the very striking fact that the Weyl
sums for the equidistribution of the sets (1.16) are eventually equal to 0, due to an orthogonality of
characters which holds for p large enough.

As a second step, I have been interested in generalizations of Theorem 1.25 to sparser sets, by restrict-
ing the parameters ai to range over �small� subgroups of F×p . This is the content of Chapter 3.
For multiplicative subgroups of F×p whose cardinality grows faster than

√
p, a standard completion

technique3 combined with classical estimates on Gauss sums shows that Theorem 1.25 also holds if the
parameters ai vary in such subgroups (see Theorem 3.9 p.97 of this manuscript).

However, one may ask if the barrier
√
p can be crossed: is there still equidistribution if the parameters

vary in multiplicative subgroups of cardinality smaller than
√
p?

The answer is yes, and actually a su�cient condition is that the cardinality of the multiplicative
subgroups is of size pδ for some (arbitrarily small) δ > 0. This re�nement relies on strong bounds
coming from additive combinatorics, and especially from the work of Bourgain, Chang, Glibichuk and
Konyagin, see e.g. [13] and [11]. For Kloosterman sums for instance, Theorem 1.25 states that the sets

{Kp(a, b, d); (a, b) ∈ Fp × Fp}

become equidistributed in the image of gd with respect to the suitable pushforward measure. The
generalization provided by the results of Chapter 3 allows one to restrict the parameters a and b to
range over very small subgroups of F×p in the following sense:

Theorem 1.30 (special case of [103, Theorem A] and Theorem 3.13 p.105 of this manuscript). For

all p ≡ 1 (mod d), we �x subgroups H(1)
p and H(2)

p of F×p . Then, if there exists δ > 0 such that for all
p,

|H(1)
p ||H(2)

p | > pδ,

the sets
{Kp(a, b, d); (a, b) ∈ H(1)

p ×H(2)
p }

become equidistributed in the image of gd with respect to the same measure as in Theorem 1.25.

The key ingredient is the following theorem of Bourgain, building on previous works with Chang,
Glibichuk and Konyagin:

3for instance, this approach is often used to prove the Pólya-Vinogradov inequality.
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Theorem 1.31 ([11]). For any δ > 0, there exists a constant ε(δ) > 0 such that for any integer q > 2
and for any subgroup H of (Z/qZ)× such that |H| > qδ,

max
a∈(Z/qZ)×

∣∣∣∣∣∣∑x∈H e
Å
ax

q

ã∣∣∣∣∣∣� |H|
qε(δ)
·

This type of estimate is strongly related to sum-product theorems in additive combinatorics. More pre-
cisely, it is related to the question of the existence of approximate subrings, i.e. subsets A ⊆ (Z/qZ)×

such that |A+A| and |A ·A| are not much larger than |A|.

In an appendix to Chapter 3, we also study the question of the optimality of the growth condition
|H| > qδ in the above theorem. We give a more detailed exposition of an argument found in lecture
notes by Konyagin, which explains that if H is a subgroup of F×p such that |H| � log(p) then it cannot
satisfy

max
a∈F×p

∣∣∣∣∣∣∑x∈H e
Å
ax

p

ã∣∣∣∣∣∣ = o(|H|).

This does not give a complete answer because there is still a gap between the regimes log(p) and pδ, but
it explains that it is not su�cient to only ask that |H| grows with p, one really needs some assumption
on the rate of growth.

Let us summarize what we did so far: starting from known equidistribution results for the exponential
sums ∑

x∈Fp
xd=1

e

Å
ax

p

ã
and

∑
x∈Fp
xd=1

e

Å
ax+ bx−1

p

ã
,

we �rst extended them by allowing more general Laurent polynomials inside the exponentials, namely
Laurent polynomials a1x

m1 + · · · + anx
mn for arbitrary integers mi. This generalizes the cases of ax

and ax+ bx−1. Then, we also studied the question of restricting the parameters ai to range over small
multiplicative subgroups, getting equidistribution results for sparser sets of sums. Another aspect
which has not been mentioned yet is changing the condition xd = 1 by another restriction. One could
think of two natural generalizations:

� We could allow d to vary with p. However, it seems like our techniques do not allow us to handle
this case easily. Indeed, the dimension of the torus in which the tuple (1.16) lives would vary
with p, which makes less clear how to apply Weyl's criterion in a �xed compact group.

� We could view the condition xd = 1 as a special case of the condition g(x) = 0 for some polynomial
g ∈ Z[X], and try to generalize our results to this setting. Here also, it seems like our techniques
are not well-suited to handle such a generalization. Indeed, as we see from the strategy of the
proof of Theorem 1.25, we rely a lot on the choice of a primitive root of unity, and on the fact
that all the roots of the polynomial Xd − 1 can be expressed as powers of this primitive root.

However, after I sent the preprint [103] to E. Kowalski, he answered with an idea of a better setting
to handle this second generalization, and this led to the joint work [77], which we present in chapters
4 and 6.

In Chapter 4, we explain how the previous results can be extended to the case of exponential sums
of the form ∑

x∈Fq
g(x)≡0 (mod q)

e

Å
ax

q

ã
, (1.17)

or more generally ∑
x∈Fq

g(x)≡0 (mod q)

e

Å
a1x

m1 + · · ·+ anx
mn

q

ã
,
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for any �xed monic polynomial g ∈ Z[X], and prime numbers q tending to in�nity under certain
conditions (of the same nature as the assumption p ≡ 1 (mod d) in the case of g = Xd − 1). We also
handle the natural continuation of the problem to sums modulo prime powers.

Let us denote by Zg(Fq) the set {x ∈ Fq | g(x) ≡ 0 (mod p)}. To study the distribution of the sums
(1.17), a �rst idea that may come to mind is to introduce the map

a ∈ Fq 7→
Å
e

Å
ax

q

ãã
x∈Zg(Fq)

which we view as a random variable de�ned on the probability space Fq (endowed with the normalized
counting measure), with values in C(Zg(Fq),S

1) (the set of functions from Zg(Fq) to S1). Indeed, if
for instance we are able to show that this random variable behaves like a tuple of independent and
uniformly distributed random variables in S1, then the sum of its values, which is the sum of interest
for us, will behave like a sum X1 + · · · + Xdeg g of such random variables. This is a natural analogue
of the study of the tuple (1.16) for the sums over the roots of Xd − 1, except that we overcame the is-
sue of ordering the roots by introducing the �unordered� version of S1×· · ·×S1 given by C(Zg(Fq),S

1).

However, we cannot easily apply Weyl's criterion in a �xed compact group, as the space C(Zg(Fq),S
1)

depends on q. This is where a small change of point of view will help us: we will work with prime
ideals of the splitting �eld of g rather than prime numbers.
Let us introduce some notations. We let Zg be the set of complex roots of g and more generally we
denote by Zg(K) the set of roots of g in a given �eld K. Since our results only depend on Zg, we
assume without loss of generality that g is separable. We also denote by Kg := Q(Zg) the splitting
�eld of g and by Og its ring of integers. Now for any prime ideal p ⊂ Og (lying above q, say) we have
the canonical projection $p : Og → Og/p, which allows us to map the set of roots of g in C to the set
of roots of g in certain �nite �elds. Assuming that p does not divide the discriminant of g and is of
residual degree 1 (which essentially means that q splits completely in Kg) we show that this gives a
bijection between Zg and Zg(Og/p), so that the study of our sums (1.17) can be reduced to the study
of the random variables

Up : Og/p → C(Zg,S
1)

a 7→ Up(a)

where
Up(a) : Zg → S1

x 7→ e
Ä
a$p(x)

q

ä
and we identi�edOg/p with Fq since p lies over q and has residual degree 1 (we will not make this abuse
of notation in Chapter 4, and check carefully that we can indeed deduce results for sums of Zg(Fq)
from results for sums over the roots of g in Og/p). These random variables do not necessarily converge
in law towards a uniformly distributed random variables on C(Zg,S

1), but we prove the following:

Theorem 1.32 ([77, Prop. 2.2] or Theorem 4.30 p.128 of this manuscript). If we denote by Rg the
submodule of C(Zg,Z) of additive relations between the roots of g:

Rg :=

α : Zg → Z,
∑
x∈Zg

α(x)x = 0

 ;

and by Hg the subgroup of C(Zg,S
1) which is �dual� to Rg in the following sense:

Hg :=

f ∈ C(Zg,S
1), ∀α ∈ Rg,

∏
x∈Zg

f(x)α(x) = 1

 ;

then the random variables Up converge in law, as the norm of the ideal p goes to in�nity, to a random
variable U which is uniformly distributed on Hg.
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As a corollary, we obtain the equidistribution of the sums (1.17) with respect to the suitable pushfor-
ward measure:

Corollary 1.33 (A more general form allowing prime powers is stated at Corollary 4.40 (2), p.132 of
this manuscript). For q prime totally split in Kg, the sums∑

x∈Fq
g(x)≡0 (mod q)

e
(ax
q

)
,

parametrized by a ∈ Fq, become equidistributed in C as q → +∞ with limiting measure µg given by the
law of σ(U), where U is uniformly distributed on Hg and σ : C(Zg,C) → C is the linear form de�ned
by

f 7→
∑
x∈Zg

f(x).

The restriction to primes that split completely in Kg was actually already present in the case of sums
over the roots of Xd − 1 considered in Chapter 2, since a well known result states that a prime q is
totally split in the cyclotomic �eld Q(ζd) if and only if q ≡ 1 (mod d).

Since the above theorem tells us that the measure with respect to which exponentials sums over roots
of g become equidistributed is connected to the group of additive relations between its complex roots,
we present some examples of explicit determination of that group. For instance, when Gal (Kg/Q) is
the full symmetric group, the Z-module of additive relations can only be {0} or of rank 1, generated
by the constant function equal to 1 (in which case we can read it on the coe�cient of Xdeg(g)−1 of the
polynomial, since this corresponds to the sum of the roots being zero). We reproduce a known proof of
this fact based on the representation theoretic approach introduced by Girstmair in Proposition 4.50
p.139.
We also present a proof of the fact that the module of additive relations of the Hilbert class polynomial
is {0} for any negative discriminant not equal to −3. This can be interpreted as the non-existence of
non-trivial Q-linear relations between the j-invariants of elliptic curves with CM by the same given
imaginary quadratic order. The main result is proved in Proposition 4.56 p.144 of this manuscript,
which handles all discriminants less than or equal to −9. Then, the remaining discriminants are easily
handled since they correspond to order with class number one. The key ideas of this proof should
be attributed to Emanuele Tron, with whom I discussed this question, I only checked the details and
looked for explicit bounds for the class number in the literature.

In Chapter 5, which is not included in [77], we go back to the study of the discrepancy related to our
equidistribution results, in the more general setting of Chapter 4.
In Theorem 1.32, we have seen that our random variables Up converge in law to a random variable
which is uniformly distributed on the closed subgroup Hg of C(Zg,S

1) ' (S1)deg g. Therefore, we are
looking for a suitable notion of discrepancy for sequences with values in such closed subgroups. In
order to do this, we use a classi�cation theorem for closed subgroups of a torus, which tell us that
there exists an isomorphism of topologival groups

ϕ : Hg → (R/Z)d ⊕ F

where F is a �nite abelian group. Now, on the right-hand side, there is a natural notion of discrepancy,
de�ned by taking the supremum over rectangles of (R/Z)d and over singletons of F :

De�nition 1.34. If z = (zn)n>1 is a sequence of elements of (R/Z)d ⊕ F , we de�ne its discrepancy
as

DN (z) := sup
I∈Id
y∈F

∣∣∣∣# {1 6 n 6 N, zn ∈ I × {y}}N
− λd(I)

|F |

∣∣∣∣
where Id denotes the set of rectangles I = [a1, b1]× · · · × [ad, bd] of (R/Z)d.
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Via the isomorphism ϕ, we can thus de�ne a natural notion of ϕ-discrepancy of a sequence (xn)n>1

with values in Hg (just by de�nining it as the natural discrepancy of the sequence (ϕ(xn))n>1). Then
by extending the Erdös-Turán-Koksma inequality to the case of a group of the form (R/Z)d ⊕ F , we
can deduce an upper bound for the ϕ-discrepancy associated with the equidistribution of the random
variables Up. We obtain that its decay is upper bounded by

‖p‖−
1

[Kg :Q]

where ‖p‖ denotes the norm of the ideal p. The precise statement is given by Theorem 5.30 p.172 of
this manuscript. Note that this upper bound matches the one obtained in Appendix 2.B in the case
of g = Xd − 1 (because in that case [Kg : Q] = ϕ(d)).

Finally, in Chapter 6, we go back to the exposition of the results of the joint work [77] with E. Kowal-
ski. We show that the equidistribution result stated in Corollary 1.33, concerning sums of additive
characters over the roots of g in Fq, can be extended to more general trace functions over Fq.

To give some motivation for these generalizations, we �rst show that sums of multiplicative characters
also enjoy similar equidistribution properties as sums of additive characters. In that case, the relevant
object which governs the limit measure is the module of multiplicative relations among the roots of g,
i.e. relations of the form ∏

x∈Zg

xβ(x) = 1,

where the powers β(x) are integers.

Next, once we have these two examples of equidistribution results for sums of functions of algebraic na-
ture over Zg(Fq), we try to extend them to trace functions, which are a wide class of functions Fq → C
having an algebraic origin. They were originally studied by Grothendieck and later by Deligne from the
point of view of `-adic cohomology. However, they admit a more concrete interpretation as traces of
some representations, so that the only prerequisite to understand how to apply the work of Deligne in
concrete situations (at least the ones we faced) is some familiarity with the language of representations.
We also rely a lot on di�cult results previously established by Katz and Fouvry, Kowalski and Michel
(especially the determination of the monodromy groups of sheaves which are useful in applications),
but these can be used directly without the need to fully understand the proofs, and this is what we
will do.

Let us give a more precise description of the type of results that we obtain. For a �xed monic polynomial
g ∈ Z[X], we assume that for all prime ideals p ⊂ Og unrami�ed of and of residual degree 1, we are
given a middle-extension sheaf Fp on the a�ne line over the �nite �eld Og/p, with associated trace
function tp. Then we are interested in the asymptotic distribution of the following families of sums of
trace functions:  ∑

x∈Zg(Og/p)

tp(a+ x); a ∈ Og/p


or  ∑

x∈Zg(Og/p)

tp(ax); a ∈ Og/p


and under some conditions on the sheaf Fp, we obtain equidistribution results as the norm of the ideal
p goes to in�nity. More precisely, we ask that the sheaves are bountiful in the sense of Fouvry, Kowalski
and Michel [38]. The most general result of this chapter can be found in Theorem 6.27.
Since Kloosterman sums are trace functions associated with bountiful sheaves, we obtain the following
concrete corollary (adding a little extra step to identify the �nite �eld Og/p with Fq).
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Theorem 1.35 ([77, Th. 1.1 (2)], or Corollary 6.31 p.191 of this manuscript). Let g ∈ Z[X] be a monic
polynomial of degree d > 1. Assume that 0 /∈ Zg. Recall the de�nition of the normalized Kloosterman
sum modulo a prime number q:

Kl2(a, q) :=
1
√
q

∑
x∈F×q

e

Å
ax+ x−1

q

ã
.

Then, as q → +∞ among prime numbers unrami�ed and totally split in Kg, the sums∑
x∈Zg(Fq)

Kl2(ax, q)

parameterized by a ∈ Fq become equidistributed in C with respect to the measure which is the law of
the sum of d independent Sato�Tate random variables.

By taking g = X − 1, we see that we recover Katz' equidistribution theorem (Theorem 1.23 in this
introduction). However, I would say the main input in our proof is still the determination of the
monodromy group of the Kloosterman sheaf by Katz, so even though our statement is more general,
the most di�cult part is due to Katz. We also rely on the study in sums of products [38] by Fouvry,
Kowalski and Michel, where they determined precise conditions under which shifts of Kloosterman
sheaves are �independent�.

We conclude the manuscript with some research perspectives related to the questions addressed in this
thesis. For instance, the study of the optimality of the growth condition in Bourgain's estimate, the
explicit determination of the additive or multiplicative relations between the roots of polynomials, and
�nally the analogous horizontal equidistribution results one could want to prove.
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Chapter 2

Equidistribution of exponential sums

indexed by a subgroup of �xed cardinality

In this chapter, we present the path which led to Proposition B in the article [103]. This proposition
is an equidistribution result for families of exponential sums of the form∑

x∈(Z/qZ)×

xd=1

e

Å
a1x

m1 + · · ·+ anx
mn

q

ã
parametrized by a1, . . . , an ∈ Z/qZ, which extends previous results of Duke, Garcia, Hyde and Lutz
on sums of the form ∑

x∈(Z/qZ)×

xd=1

e

Å
ax

q

ã
and of Burkhardt, Chan, Currier, Garcia, Luca and Suh on∑

x∈(Z/qZ)×

xd=1

e

Å
ax+ bx−1

q

ã
.

The Jupyter Notebook that was written to obtain most of the pictures of this chapter is available in html
format at the URL: http://perso.eleves.ens-rennes.fr/people/theo.untrau/sumssubgroups

The pictures were made with the open-source software sagemath: [102].
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2.1. Presentation of the problem

The equidistribution results stated in the introduction can be seen as a special case of the following
question: for any prime power q := pα, we are given a set Fq of Laurent polynomials with coe�cients
in Z/qZ, and we want to study how the sets of sums ∑

x∈Z/qZ

e

Å
f(x)

q

ã
; f ∈ Fq

 (2.1)

become distributed as p goes to in�nity, or as α goes to in�nity, or both at the same time. Theorem
1.23 for instance, corresponds (up to the normalization factor) to the case where α = 1 and Fp ={
aX +X−1, a ∈ F×p

}
. More generally, one may ask about the distribution of the sets of �restricted�

sums ∑
x∈Aq

e

Å
f(x)

q

ã
; f ∈ Fq

 (2.2)

where the summation is restricted to some subsets Aq of Z/qZ. For example, one can �x an integer d
and take Aq :=

{
x ∈ Z/qZ; xd = 1

}
: the set of d-th roots of unity modulo q. In that case, it is natural

to impose a condition on p to ensure that the subgroup of d-th roots of unity is non-trivial. Namely, we
will only consider values of p which are odd and congruent to 1 modulo d, so that

{
x ∈ Z/pαZ; xd = 1

}
is the unique subgroup of order d of the cyclic group (Z/pαZ)×.

De�nition 2.1. An integer q will be called d-admissible if it is of the form pα for some odd prime
number p congruent to 1 modulo d, and some integer α > 1. We denote by Ad the set of d-admissible
integers.

Moreover, we will need the following notation to describe the sets of Laurent polynomials to be con-
sidered in this chapter.

De�nition 2.2. � Given m = (m1, . . . ,mn) ∈ Zn and q > 1, we denote by Fm,q the following set
of Laurent polynomials with coe�cients in Z/qZ:

Fm,q := {a1X
m1 + a2X

m2 + · · ·+ anX
mn ; (a1, . . . , an) ∈ (Z/qZ)n}

� Given an integer d > 1 we say that a vector m = (m1, . . . ,mn) ∈ Zn is coprime with d if all the
mi are coprime with d.

We now have all the notations needed to introduce the question of interest in this chapter: we will
discuss equidistribution results for the families of exponential sums

∑
x∈(Z/qZ)×

xd=1

e

Å
a1x

m1 + · · ·+ anx
mn

q

ã
; (a1, . . . , an) ∈ (Z/qZ)n

 (2.3)

as q goes to in�nity among the d-admissible integers. In other words, these are sets of exponential
sums of the form (2.2) with Fq equal to Fm,q for some m ∈ Zn and the subset Aq being the subset of
d-th roots of unity.

2.2. Relation to previous works

The study of this type of questions is motivated by the equidistribution results already known for
complete sums, such as the one presented in section 1.3.2, as well as the appealing pictures shown in
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the articles [16, 32] and [44]. In the last two, the authors �x an integer d and introduce the �restricted�
geometric sums:

Sq(a, d) :=
∑

x∈(Z/qZ)×

xd=1

e

Å
ax

q

ã
(2.4)

Then, the equidistribution of the sets Sq(−, d) := {Sq(a, d); a ∈ Z/qZ} as q tends to in�nity is inves-
tigated. Let us remark that this is indeed a special case of the more general sums (2.3) we would like
to study. These sets of sums have striking visual features, as shown in the following pictures. The
pictures below correspond to the choice of three increasing d-admissible values of q, and for each �xed
q, the blue points are all the complex numbers Sq(a, d) as a varies in Z/qZ.

(a) q = 7759 (b) q = 51361 (c) q = 326041 = 5712

Figure 2.1: The sets Sq(−, d) for d = 3 and three 3-admissible values of q.

It seems that the sets Sq(−, 3) become dense in a shape whose boundary is given by what is called a
3-cusp hypocycloid.

De�nition 2.3. The d-cusp hypocycloid is the curve given by the image of:

R 7→ C
θ 7→ (d− 1) exp(iθ) + exp((1− d)iθ)

It is a curve described by a point of a circle of radius 1 rolling inside a circle of radius d.

Figure 2.2: Some hypocycloids (image extracted from the article [16])

De�nition 2.4. For all d > 2, we denote by Hd the compact region of the complex plane of boundary
the d-cusp hypocycloid.
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Note that the 2-cusp hypocycloid is just the interval [−2, 2], so it does not really enclose an area of
the complex plane. Thus H2 is simply the interval [−2, 2] as well.

In [32, Theorem 6.3 and proof of Theorem 1.1] and [44, Theorem 1 and Proposition 1], the density
statement suggested by Figure 2.1 is proved for any prime d, and their proof actually shows a more
precise fact: there is equidistribution with respect to a suitable pushforward measure. Precisely, their
proof shows the following equidistribution result.

Theorem 2.5 (Duke, Garcia, Hyde, Lutz, 2015). Let d be a prime number. Then the sets of sums
{Sq(a, d); a ∈ Z/qZ} become equidistributed in Hd with respect to the pushforward measure of the
probability Haar measure on (S1)d−1 via the map

gd : (z1, . . . , zd−1) 7→ z1 + · · ·+ zd−1 +
1

z1 · · · zd−1

as q goes to in�nity among the d-admissible integers.

This theorem extends to composite values of d, although the region of equidistribution cannot always
be determined as explicitly. In order to state the more general result proved in [32, 44], we need one
last de�nition.

De�nition 2.6. Let d > 1. For all k ∈ {0, . . . , d − 1}, we denote by (cj,k)06j<ϕ(d) the coe�cients of
the remainder in the euclidean division of Xk by φd, the dth cyclotomic polynomial over Q; precisely,
these coe�cients are de�ned by the property

Xk ≡
ϕ(d)−1∑
j=0

cj,kX
j mod φd.

Then, we de�ne the Laurent polynomial

gd : (S1)ϕ(d) → C

(z1, . . . , zϕ(d)) 7→
d−1∑
k=0

ϕ(d)−1∏
j=0

z
cj,k
j+1

With these notations, the main theorem of [32, 44] on the asymptotic behaviour of sums of type (2.4)
can be stated as follows. In loc. cit. the theorem is stated as a density result, but the proof actually
shows that equidistribution holds with respect to the appropriate pushforward measure.

Theorem 2.7 ([32, Theorem 6.3] and [44, Theorem 1] ). Let d > 1. The sets
{Sq(a, d); a ∈ Z/qZ} become equidistributed in the image of gd with respect to the pushforward measure
of the probability Haar measure λ on (S1)ϕ(d) via gd, as q goes to in�nity among the d-admissible
integers. In other words, for any continuous map F : gd

Ä
(S1)ϕ(d)

ä
→ C,

1

q

∑
a∈Z/qZ

F (Sq(a, d)) −→
q→∞
q∈Ad

∫
(S1)ϕ(d)

(F ◦ gd)dλ.

Now, the fact that a more explicit description of the region of equidistribution can be obtained when
d is prime, as shown in Theorem 2.5, simply comes from the knowledge of the coe�cients of the
cyclotomic polynomials associated with prime numbers. Indeed, this allows us to determine explicitly
the polynomial gd of De�nition 2.6.

Proposition 2.8 ([44, Proposition 1]). Let d be a prime number. The polynomial gd from De�nition
2.6 is given by:

gd : (S1)ϕ(d) = (S1)d−1 → C

(z1, . . . , zd−1) 7→ z1 + . . .+ zd−1 +
1

z1z2 . . . zd−1
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Proof. Since d is prime, the dth cyclotomic polynomial φd is given by:

φd = Xd−1 +Xd−2 + · · ·+X + 1.

Given this explicit formula, one can easily compute the coe�cients cj,k that appear in the reduction
modulo φd of Xk. Indeed, we have:

1 ≡ 1 mod φd

X ≡ X mod φd
...

Xd−1 ≡ Xd−1 mod φd

Xd ≡ −1−X − . . . Xd−1 mod φd

so that for all k ∈ {0, . . . , d− 2}, cj,k = δj,k and for k = d− 1, all the cj,d−1 are equal to −1. Replacing
the cj,k by their values in De�nition 2.6 leads to the formula for gd stated in the proposition.

Besides, the image of (S1)d−1 via this explicit Laurent polynomial is well-understood thanks to the
following geometric lemma.

Lemma 2.9. Let d > 2. The image of the map:

f : (S1)d−1 → C
(z1, . . . , zd−1) 7→ z1 + · · ·+ zd−1 + 1

z1...zd−1

is the region Hd from De�nition 2.4, that is: the closed region of boundary the d-cusp hypocycloid.

Proof. See [22, Theorem 3.2.3] or [57, section 3]. Note that this is equivalent to asking the question:
�which complex numbers arise as the trace of a matrix in SUd(C)?�

Combining Theorem 2.7 with Proposition 2.8 and Lemma 2.9 gives the concrete geometric description
of the region of equidistribution stated in Theorem 2.5.
This concrete description, which re�nes a little bit Theorem 2.7 in the case where d is prime, relies
mostly on the fact that in that case, we have an explicit formula for the dth cyclotomic polynomial.
As there is also an explicit formula for the dth cyclotomic polynomial when d = rb is a prime power,
namely

φrb (X) =
r−1∑
j=0

Xjrb−1
Ä
= φr

Ä
Xrb−1

ää
,

it is not surprising that our understanding of the image of gd can also be improved in that case. In
fact, the explicit formula above leads to the following proposition.

Proposition 2.10 ([44, Corollary 1]). Let d := rb be a power of a prime number r. The polynomial
gd from De�nition 2.6 is given by

gd : (S1)ϕ(d) = (S1)(r−1)rb−1 → C

(z1, . . . , z(r−1)rb−1) 7→
(r−1)rb−1∑

j=1

zj +
rb−1∑
m=1

r−2∏
`=0

z−1
m+`rb−1

and the image of (S1)ϕ(d) via gd is the Minkowski sum

rb−1∑
j=1

Hr := {ξ1 + · · ·+ ξrb−1 ; ξ1, . . . , ξrb−1 ∈ Hr} .
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Proof. We have the following expression for the dth cyclotomic polynomial φd:

φrb (X) =

r−1∑
j=0

Xjrb−1

This allows us to perform the reductions modulo φd of the monomials Xk for all k ∈ {0, . . . , d− 1}:

For all k ∈ {0, . . . , (r− 1)rb−1− 1}, we have that Xk is itself the unique polynomial of degree less than
ϕ(d) which is congruent to Xk modulo φd. Thus, (cj,k)06j<ϕ(d) = (δj,k)06j<ϕ(d).

Now, if k ∈ {(r− 1)rb−1, . . . , rb − 1}, we write k = (r− 1)rb−1 +m with m ∈ {0, . . . , rb−1 − 1}. Then,
if we multiply by Xm the congruence:

X(r−1)rb−1 ≡ −
r−2∑
j=0

Xjrb−1
mod φd

we obtain:

Xk = X(r−1)rb−1+m ≡ −
r−2∑
j=0

Xjrb−1+m mod φd

This tells us that for all j ∈ {0, . . . , ϕ(d)− 1}, cj,k = −1 if j ≡ m mod rb−1 and cj,k = 0 otherwise. So
if we replace the exponents cj,k by their values in the de�nition of gd (De�nition 2.6), it gives:

d−1∑
k=0

ϕ(d)−1∏
j=0

z
cj,k
j+1 =

(r−1)rb−1−1∑
k=0

Ñ
(r−1)rb−1−1∏

j=0

z
cj,k
j+1

é
+

rb−1∑
k=(r−1)rb−1

Ñ
ϕ(d)−1∏
j=0

z
cj,k
j+1

é
=

(r−1)rb−1−1∑
k=0

Ñ
(r−1)rb−1−1∏

j=0

z
δj,k
j+1

é
+

rb−1−1∑
m=0

Ñ
(r−1)rb−1−1∏

j=0

z
c
j,(r−1)rb−1+m

j+1

é
Recalling that cj,(r−1)rb−1+m = −1 if j ≡ m mod rb−1 and equals zero otherwise, we obtain:

d−1∑
k=0

ϕ(d)−1∏
j=0

z
cj,k
j+1 =

(r−1)rb−1−1∑
k=0

zk+1 +

rb−1−1∑
m=0

á
∏

06j<(r−1)rb−1

j≡m mod rb−1

z−1
j+1

ë
=

(r−1)rb−1−1∑
k=0

zk+1 +
rb−1∑
m=1

á
∏

16j6(r−1)rb−1

j≡m mod rb−1

z−1
j

ë
(2.5)

=

(r−1)rb−1∑
j=1

zj +

rb−1∑
m=1

r−2∏
`=0

z−1
m+`rb−1

This �nishes the proof of the formula for grb . Now, as we have seen at line (2.5) above, we have: for
all z1, . . . , zϕ(rb) ∈ S1,

grb(z1, . . . , zϕ(rb)) =

(r−1)rb−1∑
j=1

zj +
rb−1∑
m=1

á
∏

16j6(r−1)rb−1

j≡m mod rb−1

z−1
j

ë
56



Hence:

grb(z1, . . . , zϕ(rb)) =

rb−1∑
m=1

á
∑

16j6ϕ(rb)

j≡m mod rb−1

zj

ë
+

rb−1∑
m=1

á
∏

16j6ϕ(rb)

j≡m mod rb−1

z−1
j

ë
=

rb−1∑
m=1

á
∑

16j6ϕ(rb)

j≡m mod rb−1

zj +
∏

16j6ϕ(rb)

j≡m mod rb−1

z−1
j

ë
=

rb−1∑
m=1

gr(zm)

where zm denotes the element (zm+`rb−1)06`6r−2 of (S1)r−1. In other words, zm is the vector obtained
from (z1, . . . , zϕ(rb)) by only keeping the zj with j ≡ m mod rb−1.

By Proposition 2.8, the image of (S1)r−1 via gr is the region Hr of boundary the d-cusps hypocycloid.
Therefore, the image of (S1)ϕ(rb) via grb is:

rb−1∑
j=1

Hr = {ξ1 + · · ·+ ξrb−1 ; ξ1, . . . , ξrb−1 ∈ Hr}

the Minkowski sum of rb−1 copies of Hr. This �nishes the proof.

Example 2.11. For instance, as it is done in [16, Theorem 10], for r = 3 and b = 2 we have:

g9(z1, . . . , z6) = z1 + z4 +
1

z1z4︸ ︷︷ ︸
∈H3

+ z2 + z5 +
1

z2z5︸ ︷︷ ︸
∈H3

+ z3 + z6 +
1

z3z6︸ ︷︷ ︸
∈H3

The following picture shows what the Minkowski sum of three copies of H3 looks like.

Figure 2.3: Image of (S1)6 via g9 (image extracted from the article [44, Figure 11])
.

Since Theorem 2.7 asserts that the sets of sums Sq(−, 9) become equidistributed in the image of g9

with respect to some measure, and Proposition 2.10 tells us that the image of g9 is the Minkowski
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sum of three copies of H3, we expect to observe a shape as in Figure 2.3 when plotting the elements of
Sq(−, 9) for some large q. This is indeed what happens, as the picture below shows.

Figure 2.4: The sets Sq(−, 9) for q = 8112

Besides the case of sums of the form (2.4), Kloosterman sums restricted to the subgroup of order d
have also been studied. These are the sums

Kq(a, b, d) :=
∑

x∈(Z/qZ)×

xd=1

e

Å
ax+ bx−1

q

ã
, (2.6)

which are indeed a particular case of that of sums

∑
x∈(Z/qZ)×

xd=1

e

Å
a1x

m1 + · · ·+ anx
mn

q

ã
introduced in (2.3).

It was proved in [16, Theorem 7 and Theorem 10] that when d is a prime number or d = 9, the same
equidistribution result as Theorem 2.7 holds for the sets of restricted Kloosterman sums

Kq(−,−, d) :=
{

Kq(a, b, d); a, b ∈ (Z/qZ)2
}
.

For instance, when d = 5, the statement [16, Theorem 7] asserts that the sets Kq(−,−, d) become
equidistributed in the region H5 of boundary the 5-cusp hypocycloid, with respect to the same measure
as in Theorem 2.5 (the statement concerns the density, but the remark after their proof explains that
there is equidistribution). Again, this asymptotic behaviour is only true when q goes to in�nity among
the 5-admissible integers, since this condition ensures that the set indexing the sum is not trivial.

The following picture illustrates this asymptotic behaviour. For three di�erent 5-admissible values of
q, we represented the q2 complex numbers Kq(a, b, 5) for a, b ∈ Z/qZ.
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(a) q = 151 (b) q = 631 (c) q = 3721 = 612

Figure 2.5: The sets
{

Kq(a, b, d); a, b ∈ (Z/qZ)2
}
for d = 5 and three 5-admissible values of q.

2.3. Extension to more general families of Laurent polynomials

2.3.1. The case of exponents coprime with d

It is quite striking that the sets of sums of type (2.4) and (2.6) of [16, 32] and [44] satisfy the same
equidistribution result, and so it is natural to ask what is the reason behind this similarity. Actually,
a careful look at their proof shows that the common point between the two is that the exponents of x
appearing inside the exponentials in

Sq(a, d) :=
∑

x∈(Z/qZ)×

xd=1

e

Å
ax

q

ã
and Kq(a, b, d) :=

∑
x∈(Z/qZ)×

xd=1

e

Å
ax+ bx−1

q

ã
are respectively 1 and (1,−1), and these are all coprime with d, for any d. As we will see in the proof, this
is really the reason why these di�erent families of exponential sums satisfy the same equidistribution
result. This observation allows us to state a generalization of the known theorems, by extending
Theorem 2.7 to sets of sums of the form

∑
x∈(Z/qZ)×

xd=1

e

Å
a1x

m1 + · · ·+ anx
mn

q

ã
; (a1, . . . , an) ∈ (Z/qZ)n

 (2.7)

provided the vector m = (m1, . . . ,mn) ∈ Zn is coprime with d in the sense of De�nition 2.2. Theorem
2.7 corresponds to the case m = (1) while Kloosterman sums restricted to the subgroup of order d
corresponds to the casem = (1,−1). Moreover, we noticed that one can �x some of the parameters and
let the others vary, and still obtain the equidistribution result. For instance, in the case of restricted
Kloosterman sums, the same method allows one to prove the equidistribution of the sets

Kq(1,−, d) := {Kq(1, b, d); b ∈ Z/qZ} .

(with respect to the same measure as the sets Kq(−,−, d)).

We state below our �rst extension of Theorem 2.7, and give its proof, which relies on the exact same
arguments as in [32, 44]. The main idea is that the exponential sums we are considering, which are sums
of d particular roots of unity, can in fact be expressed as a Laurent polynomial in a smaller number of
roots to unity. Then it remains to show that this set of roots of unity becomes equidistributed in some
multi-dimensional torus. This step can be translated into a statement on equidistribution modulo 1,
to which standard tools such as Weyl's criterion can be applied.
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Proposition 2.12. Let d > 1 and let m = (m1, . . . ,mn) ∈ Zn be a vector coprime with d. Let
s ∈ {1, . . . , n} and let {i1, . . . , is} ⊆ {1, . . . , n}. We �x n−s integers ai for i ∈ {1, . . . , n}\{i1, . . . , is}.
Then the sets of sums

∑
x∈(Z/qZ)×

xd=1

e

Å
a1x

m1 + · · ·+ anx
mn

q

ã
; (ai1 , . . . , ais) ∈ (Z/qZ)s


become equidistributed in the image of gd (with respect to the pushforward measure via gd of the prob-
ability Haar measure on (S1)ϕ(d)) as q goes to in�nity among the d-admissible integers.

Remark 2.13. Let us stress that the Laurent polynomial gd does not depend on m. This implies
that the region of equidistribution almost does not depend on the shape of the numerators in the
exponentials: it will be the same for any m coprime with d. This explains why [16, Theorem 7] and
[32, Theorem 6.3] give rise to the same kind of pictures, and this leads to many other examples.

Proof. 1. Reduction to a statement on equidistribution modulo 1:

For all d-admissible integers q, let

Ym,q :=
s∏
j=1

Z/qZ

and denote by θm,q : Ym,q → C the map de�ned by

(ai1 , . . . , ais) 7→
∑

x∈(Z/qZ)×

xd=1

e

Å
a1x

m1 + · · ·+ anx
mn

q

ã
. (2.8)

Moreover, let wq be an element of order d in (Z/qZ)× (recall q is d-admissible). Then wq is a
generator of the unique subgroup of order d in (Z/qZ)×. In other words,¶

x ∈ (Z/qZ)× ; xd = 1
©

=
¶
wkq ; k ∈ {0, . . . , d− 1}

©
meaning that we can describe the subgroup of order d in terms of the successive powers of wq.

Then, for all (ai1 , . . . , ais) ∈ Ym,q,

θm,q (ai1 , . . . , ais) =
∑

x∈(Z/qZ)×

xd=1

e

Å
a1x

m1 + · · ·+ anx
mn

q

ã
=

d−1∑
k=0

e

Ç
a1(wkq )m1 + · · ·+ an(wkq )mn

q

å
=

d−1∑
k=0

e

Ç
a1(wm1

q )k + · · ·+ an(wmnq )k

q

å
.

Now, for all i ∈ {1, . . . , n}, since mi is coprime with d (which is the order of wq), wmiq has the
same order as wq. Thus, as an element of order d in (Z/qZ)×, it satis�es φd(w

mi
q ) = 0 in Z/qZ.

This comes from the following lemma, whose proof is included after the proof of Proposition 2.12.

Lemma 2.14. Let d > 2 be an integer, and let φd be the dth cyclotomic polynomial. Let q = pα

be a d-admissible integer. Let x ∈ (Z/qZ)× be an element of order d. Then we have:

φd(x) = 0 in Z/qZ

where φd denotes the polynomial obtained from φd by reducing its coe�cients modulo q.
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Thus, for all k ∈ {0, . . . , d− 1}, if one reduces modulo q the congruence

Xk ≡
ϕ(d)−1∑
j=0

cj,kX
j mod φd

and evaluate it at wmiq , the term φd(w
mi
q ) is equal to zero, hence:

(wmiq )k =

ϕ(d)−1∑
j=0

cj,k(w
mi
q )j in Z/qZ

Replacing this in the expression of θm,q (a1, . . . , an) obtained above, we get:

θm,q (ai1 , . . . , ais) =
d−1∑
k=0

e

Ç
a1(wm1

q )k + · · ·+ an(wmnq )k

q

å
=

d−1∑
k=0

e

(
a1
∑ϕ(d)−1

j=0 cj,k(w
m1
q )j + · · ·+ an

∑ϕ(d)−1
j=0 cj,k(w

mn
q )j

q

)

=
d−1∑
k=0

ϕ(d)−1∏
j=0

e

Ç
a1(wm1

q )j + · · ·+ an(wmnq )j

q

åcj,k
Therefore, if we de�ne for all j ∈ {0, . . . , ϕ(d)− 1},

zj = zj(ai1 , . . . , ais , q, j) := e

Ç
a1(wm1

q )j + · · ·+ an(wmnq )j

q

å
we have:

θm,q (ai1 , . . . , ais) = gd(z0, . . . , zϕ(d)−1)

with the Laurent polynomial gd de�ned at De�nition 2.6 and the zj 's being elements of S1. This
already shows that θm,q (ai1 , . . . , ais) belongs to the image of gd. In order to show that these
sums become equidistributed with respect to the pushforward measure of the probability Haar
measure on (S1)ϕ(d), it su�ces, by Lemma 1.16, to show that the setsßÇ

e

Ç
a1(wm1

q )0 + · · ·+ an(wmnq )0

q

å
, . . . , e

Ç
a1(wm1

q )ϕ(d)−1 + · · ·+ an(wmnq )ϕ(d)−1

q

åå
;

ai1 , . . . , ais ∈ Z/qZ

™
become equidistributed in (S1)ϕ(d) with respect to this measure, as q goes to in�nity among the
d-admissible integers.

To do so, it is equivalent to show that the �angles� which appear in the exponentials become
equidistributed modulo 1. In other words, we will get the conclusion if we are able to show that
the following subsets of (R/Z)ϕ(d):

ß =:x(ai1 ,...,ais ,q)︷ ︸︸ ︷Ç
a1(wm1

q )0 + · · ·+ an(wmnq )0

q
, . . . ,

a1(wm1
q )ϕ(d)−1 + · · ·+ an(wmnq )ϕ(d)−1

q

å
;

ai1 , . . . , ais ∈ Z/qZ

™
become equidistributed modulo 1 as q goes to in�nity among the d-admissible integers.
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2. Proof of the equidistribution modulo 1:

ByWeyl's criterion, these sets become equidistributed if and only if for any y :=
(
y0, . . . , yϕ(d)−1

)
∈

Zϕ(d) \ {0} we have

1

qs
×

Ñ ∑
(ai1 ,...,ais )∈(Z/qZ)s

e (x(ai1 , . . . , ais , q) · y)

é
−→
q→∞
q∈Ad

0. (2.9)

But the left-hand side can be rewritten as:

∏
i∈{i1,...,is}

1

q

∑
ai∈Z/qZ

e

Ç
aif(wmiq )

q

å× ∏
i/∈{i1,...,is}

e

Ç
aif(wmiq )

q

å
(2.10)

where f is the polynomial y0 + y1X + · · ·+ yϕ(d)−1X
ϕ(d)−1.

Now, since (mi, d) = 1, we have that for all i ∈ {1, . . . , n} the element wmiq is still of order d
in (Z/qZ)×. Also, f ∈ Z[X] \ {0} and deg f < ϕ(d). Then we use the following lemma due to
Gerald Myerson (see [86, proof of Theorem 12]), as formulated in [32]. A proof is given below.

Lemma 2.15 (Myerson's lemma, [32, Lemma 6.2]). Let d > 1 be an integer, and let f ∈ Z[X]\{0}
be a polynomial of degree strictly less than ϕ(d). Then there exists an integer mf such that for
all d-admissible integer q such that q > mf , for any element wq of order d in (Z/qZ)×,∑

a∈Z/qZ

e

Å
f(wq)

q
a

ã
= 0.

This lemma tells us that the sums ∑
ai∈Z/qZ

e

Ç
aif(wmiq )

q

å
in (2.10) are eventually equal to zero when q exceeds a certain rank, so the convergence (2.9)
holds, and this gives the conclusion.

Proof of Lemma 2.14. We consider the polynomial P (X) := Xd − 1, seen as an element in Zp[X],
where Zp is the ring of p-adic integers. Let x̃ be a lift in Z of the class x modulo q. Then we have

P (x̃) ≡ 0 mod q

since x has order d. Therefore |P (x̃)|p 6 1
pα , where we denoted by | · |p the standard p-adic absolute

value on the �eld of p-adic numbers Qp. On the other hand, we have P ′(x̃) = dx̃d−1, which has p-adic
valuation zero since (d, p) = 1 (because d divides p− 1) and (x̃, p) = 1 since x is invertible modulo pα.
Thus, |P ′(x̃)|p = 1 and so:

|P (x̃)|p 6
1

pα
=

1

pα
|P ′(x̃)|2p

Therefore, by Hensel's lemma (see [17, chapter II, appendix C]) there exists a unique z̃ ∈ Zp such that{
P (z̃) = 0

|z̃ − x̃|p 6 1
pα

(2.11)

We deduce that:
0 = z̃d − 1 =

∏
m|d

φm(z̃) in Zp (2.12)
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Now since Zp is an integral domain, at least one of the factors φm(z̃) must be zero.
Assume for a contradiction that this happens for an m which is not equal to d. Then this would imply
that z̃m = 1 in Zp, hence:

|x̃m − 1|p = |x̃m − z̃m|p 6 |x̃− z̃|p 6
1

pα

by the second condition in (2.11). Thus, x̃m ≡ 1 mod pα for an m < d, contradicting the fact that x
has order exactly d in (Z/pαZ)×. Therefore, in the product (2.12), it is the term φd(z̃) which equals
zero. Now, since |x̃− z̃|p 6 1

pα we have:

|φd(x̃)|p = |φd(x̃)− φd(z̃)|p 6
1

pα

and this is equivalent to φd(x̃) ≡ 0 mod pα, that is: φd(x) = 0 in Z/pαZ.

Proof of Lemma 2.15. This proof can be found in [32, lemma 6.2], but we include it here because we
will need some precise knowledge brought by the proof in order to prove our generalizations. Besides,
we want to stress the role played by Lemma 2.14.
It is well known that φd is a monic polynomial with coe�cients in Z, that it is irreducible in Q[X], and
that it has degree ϕ(d). On the other hand, the polynomial f has degree less than or equal to ϕ(d)− 1
and is non-zero. Thus, f and φd are coprime in Q[X]. This yields a Bézout relation between them in
Q[X] (which is a principal ideal domain, that is why we viewed the polynomials in Q[X] instead of
staying in Z[X]). Now if we chase the denominators in such a Bézout relation, we get that there exist
n ∈ Z \ {0} and a, b ∈ Z[X] such that:

a(X)φd(X) + b(X)f(X) = n (2.13)

Up to replacing (a, b) by (−a,−b) we can assume that n > 1. Let q > n be a d-admissible integer.
Since the map:

a 7→ e

Å
f(wq)

q
a

ã
is an additive character of Z/qZ, the orthogonality of characters tells us that:

∑
a∈Z/qZ

e

Å
f(wq)

q
a

ã
=

®
0 if f(wq) 6≡ 0 mod q

q if f(wq) ≡ 0 mod q
(2.14)

Let us prove that the choice of q > n implies that f(wq) 6≡ 0 mod q (so that the sum is zero).
First, we evaluate relation (2.13) at any integer w̃q which lifts wq. We obtain an equality in Z, which
we can reduce modulo q. This yields:

a(w̃q)φd(w̃q) + b(w̃q)f(w̃q) ≡ n mod q

Now, thanks to Lemma 2.14 we have that φd(w̃q) ≡ 0 mod q, hence: b(w̃q)f(w̃q) ≡ n mod q. So if we
assume for a contradiction that q divides f(w̃q) then this implies that q divides n, which is impossible

since q > n. Thus, q does not divide f(w̃q) and
∑

a∈Z/qZ e
Ä
f(wq)
q a

ä
= 0 thanks to (2.14). Therefore,

we proved that one can take the integer mf of the statement to be the integer n from (2.13), and that
for all q > mf we indeed have: ∑

a∈Z/qZ

e

Å
f(wq)

q
a

ã
= 0.

Remark 2.16. The name �Myerson's Lemma� comes from the fact that the above proof is used in the
proof of [86, Theorem 12].

63



Some applications. First of all, Proposition 2.12 allows one to recover the equidistribution results
from [32, 44] and [16]. Indeed, the sets

Sq(−, d) :=

Sq(a, d) =
∑

x∈(Z/qZ)×

xd=1

e

Å
ax

q

ã
; a ∈ Z/qZ


and

Kq(−,−, d) :=

Kq(a, b, d) =
∑

x∈(Z/qZ)×

xd=1

e

Å
ax+ bx−1

q

ã
, a, b ∈ Z/qZ


clearly ful�ll the assumptions of Proposition 2.12 for any d, hence become equidistributed in the image
of gd with respect to the suitable pushforward measure, as q goes to in�nity among the d-admissible
integers. Combining this fact with the geometric interpretations of the image of gd provided by Lemma
2.9 and Proposition 2.10 leads to the equidistribution theorems inside explicit regions, as illustrated
in Figure 2.1, Figure 2.4 and Figure 2.5. Moreover, our proposition already re�nes [16, Theorems 7
and 10], because it extends their results on Kloosterman sums restricted to subgroups to any �xed d
(whereas only the cases where d is prime and d = 9 were studied in loc. cit.) and it states the more
precise fact that one can �x one of the two parameters a and b, and still obtain equidistribution. For
instance, in the following picture we illustrate the asymptotic distribution of the sets of sum

Kq(1,−, d) :=

Kq(1, b, d) =
∑

x∈(Z/qZ)×

xd=1

e

Å
x+ bx−1

q

ã
, b ∈ Z/qZ



(a) q = 6673 (b) q = 13591 (c) q = 8772

Figure 2.6: The sets Kq(1,−, d) for d = 3 and three 3-admissible values of q.

Moreover, Proposition 2.12 substantially enlarges the family of exponential sums satisfying the same
asymptotic behaviour as the ones above. Indeed, sums with ax or ax + bx−1 inside the exponentials
may now be replaced by sums with a1x

m1 + . . . anx
mn inside the exponentials, provided the mi are

coprime with d. For instance, one can consider the sums

Qq(a, b, c, d) :=
∑

x∈(Z/qZ)×

xd=1

e

Å
ax4 + bx2 + cx

q

ã
for a, b, c ∈ Z/qZ,

for all d-admissible integer q. In particular, if we look again at the case d = 3 and we draw the sets

Qq(−,−,−, 3) = {Qq(a, b, c, 3); a, b, c ∈ Z/qZ}
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for di�erent 3-admissible values of q, we observe the same equidistribution as for the other types of
sums, inside a 3-cusp hypocycloid.

(a) q = 67 (b) q = 157 (c) q = 307

Figure 2.7: The sets Qq(−,−,−, d) for d = 3 and three 3-admissible values of q.

One could also want to consider sets of Birch sums restricted to a subgroup, that is:

Bq(a, b, d) :=
∑

x∈(Z/qZ)×

xd=1

e

Å
ax3 + bx

q

ã
où a, b ∈ Z/qZ

For instance if we take d = 7 and look at the sets Bq(−,−, 7) := {Bq(a, b, 7); a, b ∈ Z/qZ}, then
Proposition 2.12 (combined with Proposition 2.8 and Lemma 2.9) states that they should become
equidistributed in H7 (the region of boundary the 7-cusp hypocycloid) as q goes to in�nity among the
7-admissible integers. This is indeed what the following pictures suggest:

(a) q = 113 (b) q = 827 (c) q = 1009

Figure 2.8: The sets Bq(−,−, d) for d = 7 and three 7-admissible values of q.

Remark 2.17. Note that in Proposition 2.12, the measure with respect to which the sums become
equidistributed is the pushforward measure via gd of the Haar measure on (S1)ϕ(d). This explains why
one does not observe a �uniform� distribution in the sense of the Lebesgue measure.

On the other hand, one could want to consider Birch sums restricted to the subgroup of order 6 say,
that is sums of the type:

Bq(a, b, 3) :=
∑

x∈(Z/qZ)×

x6=1

e

Å
ax3 + bx

q

ã
où a, b ∈ Z/qZ
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However, this type of sum does not fall inside the range of application of Proposition 2.12 , because
the exponent 3 in the polynomial expression ax3 + bx is not coprime with the order of the subgroup.
In the next section, we address this remaining issue.

2.3.2. The case of exponents not coprime with d

Some experiments. Before stating the general equidistribution result which can be obtained, we
present some experiments on the particular case of Gauss sums, which explain the main ideas that led
to Proposition 2.20. Namely, let us focus on Gauss sums restricted to the unique subgroup of order d:

Gq(a, d) :=
∑

x∈Z/qZ
xd=1

e

Å
ax2

q

ã
for d-admissible values of q. We denote by Gq(−, d) the set {Gq(a, d), a ∈ Z/qZ}. When d is odd,
it is coprime with 2, which is the exponent of x which appears inside the exponential. Therefore,
when d is odd, the sets Gq(−, d) satisfy the assumptions of Proposition 2.12, hence satisfy the same
equidistribution properties as the sets Sq(−, d) or Kq(−,−, d) discussed in the previous section. For
instance when d = 5, these sets become equidistributed in a 5-cusp hypocycloid:

(a) q = 5861 (b) q = 20441 (c) q = 8112

Figure 2.9: The sets Gq(−, 5) and three 5-admissible values of q.

and when d = 9, they become equidistributed in the Minkowski sum of three 3-cusp hypocycloids:

Figure 2.10: The points of the set Gq(−, 9) for q = 250993
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However, they do not only satisfy the same equidistribution properties, they are actually equal to the
sums of type Sq(a, d)! Indeed, if we let wq denote a generator of the unique subgroup of order d in
(Z/qZ)×, then wq is an element of order d. Therefore, w2

q is also an element of order d as soon as d is
odd, thanks to the following classical lemma.

Lemma 2.18. Let G be an abelian group, and let x ∈ G be an element of order d. Then for all n > 1,
the order of xn is d

(n,d) . In particular, if (n, d) = 1, then xn has the same order as x.

Therefore, the subgroup generated by w2
q is also the unique subgroup of order d, so we have

∑
x∈Z/qZ
xd=1

e

Å
ax2

q

ã
=

d−1∑
k=0

e

(
a
(
wkq
)2

q

)
=

d−1∑
k=0

e

(
a
(
w2
q

)k
q

)
=

∑
x∈Z/qZ
xd=1

e

Å
ax

q

ã
,

that is:
Gq(a, d) = Sq(a, d).

This elementary observation that raising an element of order d to some power n may or may not change
its order, depending on the gcd of n and d, is the key observation which led to Proposition 2.20.

Before stating this proposition, let us show on this example what happens when d is even. First,
the sums Sq(a, d) and Kq(a, b, d) from the previous section are real-valued when d is even, because
x 7→ −x is a permutation of the subgroup of order d. However, this is not the case for the Gauss sums
Gq(a, d). Indeed, if we consider for example the sums restricted to the subgroup of order 6, we obtain
the following pictures:

(a) q = 5479 (b) q = 50497 (c) q = 250441

Figure 2.11: The sets Gq(−, 6) and three 6-admissible values of q.

This shows a striking di�erence with the sums previously studied, because theses sums are not always
real-valued. The fact that these sums do not behave as the previous ones is due to the fact that 6 (the
order of the subgroup) is not coprime with 2 (the exponent of x which appears in the exponentials).
However, the picture suggests that one can relate these sums with the previous sums, because there
seems to be equidistribution in a dilated 3-cusp hypocycloid. Indeed, this one seems to be the image
of the standard 3-cusp hypocycloid of Figure 2.1 under the homothety with ratio 2.

This is actually the case. Indeed, when d is even, if we keep on denoting by wq a generator of the unique
subgroup of order d in (Z/qZ)×, we have that w2

q has order d/2 thanks to Lemma 2.18. Therefore, if
we denote by Λd(q) the unique subgroup of order d in (Z/qZ)×, the group homomorphism

Λd(q) → Λd/2(q)

x 7→ x2
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is surjective, with kernel {−1, 1}. Therefore, any y ∈ Λd/2(q) has exactly two square roots in Λd(q),
and this implies the following equality:

Gq(a, d) =
∑

x∈Λd(q)

e

Å
ax2

q

ã
= 2

∑
y∈Λd/2(q)

e

Å
ay

q

ã
= 2Sq(a, d).

As the sums Sq(a, d) on the right-hand side become equidistributed in H3 as a varies in Z/qZ and
q goes to in�nity, this equality explains why the sets of sums Gq(−, d) become equidistributed in
2H3 = {2z, z ∈ H3} with respect to the pushforward measure of the Haar measure on (S1)2 via the
Laurent polynomial 2g3.

The above examples helped us noticing the fact that the key point towards understanding the distri-
bution of more general sums is the change of order of an element, when raised to a power which is not
coprime with its order.

The general result. The �rst step of the proof of Proposition 2.12 relied a lot on the fact that
φd(w

k
q ) = 0 in Z/qZ as soon as wkq is a primitive d-th root of unity, which was ensured by taking for

wq an element of order d and k coprime with d. Now, if we allow k to share some prime factors with d,
the order of wkq may be a strict divisor of d, say d′, in which case the relevant cyclotomic polynomial
to transpose the argument of the proof of Proposition 2.12 will be φd′ , not φd. This is the reason why
the suitable Laurent polynomials in this setting will be the ones introduced in the following de�nition.

De�nition 2.19. Let d > 1 and let m = (m1, . . . ,mn) ∈ Zn. For all i ∈ {1, . . . , n}, we denote by

di :=
d

(d,mi)

and by
Ä
c

(i)
j,k

ä
06j<ϕ(di)

the coe�cients that appear in the reduction modulo φdi of Xk for each k in

{0, . . . , d− 1}. In other words, these are the unique integers such that:

∀k ∈ {0, . . . , d− 1}, Xk ≡
ϕ(di)−1∑
j=0

c
(i)
j,kX

j mod φdi .

Then we de�ne the Laurent polynomial fd,m as follows:

fd,m : (S1)ϕ(d1)+···+ϕ(dn) → C

((z1,j)06j<ϕ(d1), . . . , (zn,j)06j<ϕ(dn)) 7→
d−1∑
k=0

n∏
i=1

ϕ(di)−1∏
j=0

z
c
(i)
j,k

i,j

(2.15)

We can now give the statement of our second generalization:

Proposition 2.20. Let d > 1, and let m = (m1, . . . ,mn) ∈ Zn. The sets of sums
∑

x∈(Z/qZ)×

xd=1

e

Å
a1x

m1 + · · ·+ anx
mn

q

ã
; (a1, . . . , an) ∈ (Z/qZ)n


become equidistributed in the image of the Laurent polynomial fd,m (from De�nition 2.19) with respect
to the pushforward measure via fd,m of the probability Haar measure on (S1)ϕ(d1)+···+ϕ(dn), as q tends
to in�nity among the d-admissible integers.

Remark 2.21. We will see in Section 2.3.3 how the proof of this proposition can be slightly modi�ed
to recover Proposition 2.12 when m is coprime with d.
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Proof of Proposition 2.20. 1. Reduction to a statement on equidistribution modulo 1:

As in the proof of Proposition 2.12, for all d-admissible integer q, we denote by

Ym,q := (Z/qZ)n

and by θm,q : Ym,q → C the map de�ned by

(a1, . . . , an) 7→
∑

x∈(Z/qZ)×

xd=1

e

Å
a1x

m1 + · · ·+ anx
mn

q

ã
.

We also let wq be a generator of the unique subgroup of order d of (Z/qZ)×. Then for all
(a1, . . . , an) ∈ Ym,q,

θm,q (a1, . . . , an)
def
=

∑
x∈(Z/qZ)×

xd=1

e

Å
a1x

m1 + · · ·+ anx
mn

q

ã
=

d−1∑
k=0

e

Ç
a1(wkq )m1 + · · ·+ an(wkq )mn

q

å
=

d−1∑
k=0

e

Ç
a1(wm1

q )k + · · ·+ an(wmnq )k

q

å
Now, for all i ∈ {1, . . . , n}, wmiq has order di, hence φdi(w

mi
q ) = 0 in Z/qZ thanks to Lemma

2.14.
Thus, for all k ∈ {0, . . . , d− 1}, if one reduces modulo q the congruence:

Xk =

ϕ(di)−1∑
j=0

c
(i)
j,kX

j mod φdi

and evaluate it at wmiq , the term φdi(w
mi
q ) is equal to zero, hence:

(wmiq )k =

ϕ(di)−1∑
j=0

c
(i)
j,k(w

mi
q )j in Z/qZ.

Therefore:

∀i ∈ {1, . . . n}, ∀k ∈ {0, . . . , d− 1}, (wmiq )k =

ϕ(di)−1∑
j=0

c
(i)
j,k(w

mi
q )j in Z/qZ.

Replacing this in the expression of θm,q (a1, . . . , an) obtained above, we get:

θm,q (a1, . . . , an) =

d−1∑
k=0

n∏
i=1

e

Ç
ai(w

mi
q )k

q

å
=

d−1∑
k=0

n∏
i=1

ϕ(di)−1∏
j=0

e

Ç
ai(w

mi
q )j

q

åc(i)j,k
Therefore, if we de�ne for all i ∈ {1, . . . , n} and for all j ∈ {0, . . . , ϕ(di)− 1},

zi,j = zi,j(a1, . . . , an, q) := e

Ç
ai(w

mi
q )j

q

å
(2.16)

69



we have:
θm,q (a1, . . . , an) = fd,m

(
(z1,j)06j<ϕ(d1), . . . , (zn,j)06j<ϕ(dn)

)
(2.17)

with the Laurent polynomial fd,m de�ned at De�nition 2.19 and the zi,j 's being elements of S1.
This already shows that the sums θm,q (a1, . . . , an) belongs to the image of fd,m. In order to
show that these sums become equidistributed with respect to the pushforward measure of the
probability Haar measure on (S1)ϕ(d1)+···+ϕ(dn), it su�ces to show that the following subsets of
(R/Z)ϕ(d1)+···+ϕ(dn):

ß =:x(a1,...,an,q)︷ ︸︸ ︷(Ç
a1(wm1

q )j

q

å
06j<ϕ(d1)

, . . . ,

Ç
an(wmnq )j

q

å
06j<ϕ(dn)

)
; (a1, . . . , an) ∈ (Z/qZ)n

™
,

become equidistributed modulo 1 as q goes to in�nity among the d-admissible integers.

2. Proof of the equidistribution modulo 1:

We are interested in the equidistribution modulo 1 of the following sets of (ϕ(d1) + · · ·+ϕ(dn))-
tuples:

{x(a1, . . . , an, q); (a1, . . . , an) ∈ (Z/qZ)n} , (2.18)

with the notation x(a1, . . . , an, q) from above. By Weyl's criterion (see [78, Theorem 6.2]), these
sets become equidistributed modulo 1 if and only if for any y =

(
y0, . . . , yϕ(d1)+···+ϕ(dn)−1

)
∈

Zϕ(d1)+···+ϕ(dn) \ {0}, we have the following convergence towards zero:

1

qn
×

∑
(a1,...,an)∈(Z/qZ)n

e (x(a1, . . . , an, q) · y) −→
q→∞
q∈Ad

0. (2.19)

Let us denote by y1 the vector extracted from y by taking the �rst ϕ(d1) entries, y2 the vector
formed by the next ϕ(d2) entries and so on:

y1 = (y0, . . . , yϕ(d1)−1), y2 = (yϕ(d1), . . . , yϕ(d1)+ϕ(d2)−1) y3 = · · ·

so that y = (y1, . . . ,yn). We also introduce the following notations to decompose the vector
x(a1, . . . , an, q) in a parallel way:

x1(a1, q) :=

Ç
a1(wm1

q )j

q

å
06j<ϕ(d1)

, . . . , xn(an, q) :=

Ç
an(wmnq )j

q

å
06j<ϕ(dn)

Then we have

1

qn
×

∑
(a1,...,an)∈(Z/qZ)n

e (x(a1, . . . , an, q) · y) =
n∏
i=1

1

q

∑
ai∈Z/qZ

e(xi(ai, q) · yi)

 . (2.20)

Now, since y 6= 0, there exists at least one index i ∈ {1, . . . , n} such that yi 6= 0. For such an i,
the factor

1

q

∑
ai∈Z/qZ

e(xi(ai, q) · yi) (2.21)

tends to 0 as q goes to in�nity among the d-admissible integers thanks to Lemma 2.15. Indeed,
we have
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1

q

∑
ai∈Z/qZ

e(xi(ai, q) · yi) =
1

q

∑
a∈Z/qZ

e

Ç
afi(w

mi
q )

q

å
,

where fi is the polynomial associated with yi =
(
yϕ(d1)+···+ϕ(di−1), . . . , yϕ(d1)+···+ϕ(di−1)+ϕ(di)−1

)
as follows: fi = yϕ(d1)+···+ϕ(di−1) + yϕ(d1)+···+ϕ(di−1)+1X + · · ·+ yϕ(d1)+···+ϕ(di−1)+ϕ(di)−1X

ϕ(di)−1.
This is a non-zero polynomial with integer coe�cients and with degree strictly less than ϕ(di),
and wmiq is an element of order di in (Z/qZ)×. Thus, we can apply Lemma 2.15 which states
that there exists a rank mfi such that for all q > mfi such that q is d-admissible,∑

a∈Z/qZ

e

Ç
afi(w

mi
q )

q

å
= 0

and this proves the convergence of (2.21) towards zero. As all the other factors of (2.20) have
absolute value bounded above by 1, the whole product converges to zero, and this concludes the
proof.

Remark 2.22. The proof shows why it is important to let all the ai's vary in Z/qZ, unlike in Propo-
sition 2.12 where we could �x an arbitrary number of them, as long as one varied. Indeed, let us
�x an index j ∈ {1, . . . , n}. Then if we take y = (y1, . . . ,yn) ∈ Zϕ(d1)+···+ϕ(dn) \ {0} de�ned by
yi = (0, . . . , 0) ∈ Zϕ(di) for all i 6= j and yj = (1, . . . , 1) ∈ Zϕ(dj), then the absolute value of the
product (2.20) is equal to the absolute value of the factor corresponding to the index j, since all the
other factors are equal to 1. Therefore, to prove the convergence towards zero in Weyl's criterion for
this speci�c vector y, we have no other choice than proving that the factor corresponding to the index
j tends to 0. In order to achieve that, we really need to be able to apply Lemma 2.15 to this factor,
hence we really need to require that aj varies in Z/qZ. As j was arbitrary, this shows that in general
one cannot �x an arbitrary aj and let the others vary, as this could prevent the equidistribution from
happening. Actually one can be more precise about the conditions under which some parameters may
be �xed, while the others vary in Z/qZ, and this is the content of Remark 2.24 of the following section.

Example 2.23. Let us consider the following sums, for d-admissible values of q:

Gq(a, b, d) :=
∑

x∈(Z/qZ)×

xd=1

e

Å
ax2 + bx

q

ã
with a, b ∈ Z/qZ.

These sums are associated with the vector m = (2, 1) in the notations of Proposition 2.20. If we
take d = 12, then m is not coprime with d, so we really need to use the previous proposition rather
than Proposition 2.12. What Proposition 2.20 tells us is that the Laurent polynomial involved in the
equidistribution result depends on the coe�cients of the remainders of the euclidean divisions of the
monomials Xk by the cyclotomic polynomials φ12 and φ6. Indeed, if wq ∈ (Z/qZ)× is an element of
order 12, then w2

q has order 6, so the relation φ6(w2
q) = 0 will also come into play. Therefore, we write

Xk ≡
ϕ(6)−1∑
j=0

c
(1)
j,kX

j mod φ6

and

Xk ≡
ϕ(12)−1∑
j=0

c
(2)
j,kX

j mod φ12.

Then, by respectively evaluating these congruences at w2
q and wq and using Lemma 2.14, we obtain

w2k
q =

ϕ(6)−1∑
j=0

c
(1)
j,kw

2j
q
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and

wkq =

ϕ(12)−1∑
j=0

c
(2)
j,kw

j
q.

Thanks to these equalities, one can replace high powers of wq by lower powers when writing

Gq(a, b, 12) =

11∑
k=0

e

Ç
a(wkq )2 + bwkq

q

å
Using the explicit formulas for φ6 and φ12 we can calculate the c(1)

j,k and the c(2)
j,k , and this gives the

following equality:

Gq(a, b, 12) = e

Å
a+ b

q

ã
+ e

Ç
aw2

q + bwq

q

å
+ e

Ç
a(w2

q − 1) + bw2
q

q

å
+ e

Ç
−a+ bw3

q

q

å
+ e

Ç
−aw2

q + b(w2
q − 1)

q

å
+ e

Ç
a(1− w2

q) + b(w3
q − wq)

q

å
+ e

Å
a− b
q

ã
+ e

Ç
aw2

q − bwq
q

å
+ e

Ç
a(w2

q − 1)− bw2
q

q

å
+ e

Ç
−a− bw3

q

q

å
+ e

Ç
−aw2

q + b(1− w2
q)

q

å
+ e

Ç
a(1− w2

q) + b(wq − w3
q)

q

å
.

Thus, Gq(a, b, 12) is a Laurent polynomial in the following 6 variables in S1:

z1,0 := e

Å
a

q

ã
, z1,1 := e

Ç
aw2

q

q

å
, z2,0 := e

Å
b

q

ã
, z2,1 := e

Å
bwq
q

ã
, z2,2 := e

Ç
bw2

q

q

å
, z2,3 := e

Ç
bw3

q

q

å
Indeed, we have shown that:

Gq(a, b, 12) = z1,0z2,0 + z1,1z2,1 +
z1,1z2,2

z1,0
+
z2,3

z1,0
+

z2,2

z1,1z2,0
+
z1,0z2,3

z1,1z2,1
+
z1,0

z2,0
+
z1,1

z2,1

+
z1,1

z1,0z2,2
+

1

z1,0z2,3
+

z2,0

z1,1z2,2
+
z1,0z2,1

z1,1z2,3
·

Proposition 2.20 states that the sets of sums

Gq(−,−, 12) =
{

Gq(a, b, 12); (a, b) ∈ (Z/qZ)2
}

become equidistributed in the image of (S1)6 via the Laurent polynomial above, with respect to the
pushforward measure of the Haar measure on (S1)6. The result comes from the fact that the sets®Ç

e

Å
a

q

ã
, e

Ç
aw2

q

q

å
, e

Å
b

q

ã
, e

Å
bwq
q

ã
, e

Ç
bw2

q

q

å
, e

Ç
bw3

q

q

åå
; (a, b) ∈ (Z/qZ)2

´
become equidistributed in (S1)6 as q goes to in�nity among the 12-admissible integers.

The following picture illustrates the equidistribution of the sets Gq(−,−, 12). However, it does not
seem easy to describe the region of equidistribution in other terms than as the image of (S1)6 under
a complicated-looking Laurent polynomial. A description in terms of geometrically meaningful shapes
such as hypocycloids or Minkowski sums of known geometric objects would certainly be very satisfac-
tory, but we did not succeed in obtaining them in this particular case. Appendix 2.A is an exposition
of some cases where we were able to describe the region of equidistribution for the sums Gq(a, b, d).
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(a) q = 433 (b) q = 1297

Figure 2.12: The sets Gq(−,−, 12) for two 12-admissible values of q.

2.3.3. Comparison between the two cases

Proposition 2.20 does not exclude the case where m is coprime with d. Therefore, it is natural to ask
whether it gives the same equidistribution result as Proposition 2.12 in this case. In fact, when the
mi are all coprime with d, all di are equal to d, and so we use a single cyclotomic polynomial to do
all the euclidean divisions of Xk needed in the proof of Proposition 2.20: the polynomial φd. Indeed,
for any i ∈ {1, . . . , n}, wmiq is of order d, so we can use the relation φd(wmiq ) to deduce the number of
powers of wmiq that we must take into account to ensure equidistribution. Thus, for all i ∈ {1, . . . , n},
the sequence of c(i)

j,k is the same as the sequence of c(1)
j,k , and we will simply denote it by (cj,k). Then,

in the rewriting of θm,q (a1, . . . , an) in the form

d−1∑
k=0

n∏
i=1

ϕ(di)−1∏
j=0

e

Ç
ai(w

mi
q )j

q

åc(i)j,k
=

d−1∑
k=0

n∏
i=1

ϕ(d)−1∏
j=0

e

Ç
ai(w

mi
q )j

q

åcj,k
we can interchange the product on i and the product on j to obtain:

θm,q (a1, . . . , an) =

d−1∑
k=0

ϕ(d)−1∏
j=0

e

Ç
a1(wm1

q )j + · · ·+ an(wmnq )j

q

åcj,k
.

In this form, this is exactly what appears in the proof of Proposition 2.12, and we can �nish the
proof the same way. The gain of this rewriting is strong: we pass from a Laurent polynomial in
nϕ(d) variables to a Laurent polynomial in ϕ(d) variables. The fact that the Laurent polynomial is
simpler sometimes makes it easier to interpret geometrically the region inside which the sums become
equidistributed.
Moreover, in the proof of the Proposition 2.20, we had to split the vector y of Weyl's criterion into
�sections� (y0, . . . ,yn) because we had to handle di�erently the terms associated with di�erent mi, due
to the fact that the wmiq do not necessarily have the same order. As a consequence of the fact that an

index i such that yi 6= 0 can be any i ∈ {1, . . . , n} as y varies in Znϕ(d), we had to assume that all the
parameters ai varied in all Z/qZ. In the case where all mi are coprime with d, there is no longer any
need to make this splitting, and so we can �x some ai and only let the others vary in Z/qZ.

Remark 2.24. In the previous paragraph, we did nothing more than group together the terms wmiq
that were of the same order (namely: all of order d). I think that, in general, one can reduce the
dimension of the torus underlying the equidistribution result of Proposition 2.20 by grouping together
the terms wmiq that are of the same order in (Z/qZ)×. This is rather tedious to write in the general
setting, so I have chosen to explain this claim on an example which I hope will be quite convincing.
Consider sums of the type
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Q(a, b, c, q, d) :=
∑

x∈(Z/qZ)×

xd=1

e

Å
ax4 + bx2 + cx

q

ã
for a, b, c ∈ Z/qZ

and let us say that we are interested in the case d = 6. If wq denotes a generator of the unique subgroup
of order 6 of (Z/qZ)× (which exists if we restrict to 6-admissible values of q), then w2

q and w
4
q are both

of order 3. The powers of w2
q and w

4
q that occur in the equidistribution modulo 1 therefore stop at the

same rank (ϕ(3) − 1) and the same coe�cients cj,k give the relations between the larger powers and
the smaller powers. Explicitly, the cj,k are de�ned by congruences:

Xk ≡
ϕ(3)−1∑
j=0

cj,kX
j mod φ3.

We will also use the coe�cients dj,k de�ned by the congruences:

Xk ≡
ϕ(6)−1∑
j=0

dj,kX
j mod φ6

Following the method of proof of the Proposition 2.20 we arrive at the following rewriting:

Q(a, b, c, q, d) =
6−1∑
k=0

ϕ(3)−1∏
j=0

e

Ç
a(w4

q)
j

q

åcj,kϕ(3)−1∏
j=0

e

Ç
b(w2

q)
j

q

åcj,kϕ(6)−1∏
j=0

e

Ç
cwjq
q

ådj,k (2.22)

Viewing the above expression as the evaluation of a Laurent polynomial in 6 variables in

e

Ç
a(w4

q)
0

q

å
, e

Ç
a(w4

q)
1

q

å
, e

Ç
b(w2

q)
0

q

å
, e

Ç
b(w2

q)
1

q

å
, e

Ç
cw0

q

q

å
, e

Ç
cw1

q

q

å
we then show that the sums Q(a, b, c, q, d) become equidistributed in the image of this Laurent polyno-
mial when a, b, c range over Z/qZ and q tends to +∞. This result comes from the uniform distribution
in (S1)6 of the sets:®Ç

e

Ç
a(w4

q)
0

q

å
, e

Ç
a(w4

q)
1

q

å
, e

Ç
b(w2

q)
0

q

å
, e

Ç
b(w2

q)
1

q

å
, e

Ç
cw0

q

q

å
, e

Ç
cw1

q

q

åå
; (a, b, c) ∈ (Z/qZ)3

´
as q goes to in�nity. But in fact, we can bring down the dimension of the torus underlying the
equidistribution phenomenon by grouping the terms in w2

q and w4
q . Indeed, these two elements being

of the same order, we used the same cyclotomic polynomial (here φ3) to reduce the number of powers
of these elements that we have to keep. So we have the same sequence of cj,k for these terms, as we
see in the equality (2.22) above. So we can write:

Q(a, b, c, q, d) =
6−1∑
k=0

ϕ(3)−1∏
j=0

e

Ç
a(w4

q)
j + b(w2

q)
j

q

åcj,kϕ(6)−1∏
j=0

e

Ç
cwjq
q

ådj,k
and this time we see Q(a, b, c, q, d) as the image of the vectorÇ

e

Ç
a(w4

q)
0 + b(w2

q)
0

q

å
, e

Ç
a(w4

q)
1 + b(w2

q)
1

q

å
, e

Ç
cw0

q

q

å
, e

Ç
cw1

q

q

åå
∈ (S1)4

by a Laurent polynomial. Moreover, the sets®Ç
e

Ç
a(w4

q)
0 + b(w2

q)
0

q

å
, e

Ç
a(w4

q)
1 + b(w2

q)
1

q

å
, e

Ç
cw0

q

q

å
, e

Ç
cw1

q

q

åå
; (a, b, c) ∈ (Z/qZ)3

´
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become uniformly distributed in (S1)4. To show this, we apply once again Weyl's criterion to prove the
uniform distribution modulo 1 of the arguments inside the exponentials. Let y = (y0, . . . , y3) ∈ Z4\{0}.
Let f(X) := y0 + y1X and g(X) := y2 + y3X. We want to show that

1

q3

∑
a,b,c∈Z/qZ

e

Ç
af(w4

q) + bf(w2
q) + cg(wq)

q

å
−→
q→+∞

0

Now splitting the sum in terms of a, b and c turns it into:

1

q

∑
a∈Z/qZ

e

Ç
af(w4

q)

q

å
× 1

q

∑
b∈Z/qZ

e

Ç
bf(w2

q)

q

å
× 1

q

∑
c∈Z/qZ

e

Å
cg(wq)

q

ã
and either f is non-zero, in which case the �rst two terms tend to 0, or g is non-zero, in which case it is
the last term that tends to 0. In either case, the product tends to 0 because each term has a modulus
less than or equal to 1.
Let us note in passing that the same phenomenon as in the Proposition 2.12 appears: we can �x a and
let b vary, or conversely, it will always tend towards 0, as long as we leave a free parameter before w2

q

or w4
q .

To summarize the general fact illustrated by this example, we can say that if several mi are such that
the corresponding di are equal, i.e. such that the wmiq have the same order, then they can be grouped
together to reduce the dimension of the underlying torus, and the equidistribution result will remain
true with a slightly simpler Laurent polynomial and fewer variables. Moreover, among these mi that
we group, we can choose to �x an arbitrary number of the corresponding ai, as long as we let one vary
freely, equidistribution will hold. Somewhat informally, we can therefore group the wmiq by �teams�
according to their order, and we need at least one free ai parameter per team, the others being allowed
to be �xed arbitrarily without changing the uniform distribution result.
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2.A. Some extra cases where a geometric description of the region of
equidistribution can be obtained

As in Example 2.23, we consider the sums

Gq(a, b, d) :=
∑

x∈(Z/qZ)×

xd=1

e

Å
ax2 + bx

q

ã
with a, b ∈ Z/qZ.

When d is of the form 2r with r being a positive odd integer, we can obtain a geometric description
of the region of equidistribution of the sets Gq(−,−, d) :=

{
Gq(a, b, d); (a, b) ∈ (Z/qZ)2

}
. This means

that we are able to describe the region of equidistribution in more concrete terms than as the image of
some multi-dimensional torus via some Laurent polynomial. We also obtain such a concrete description
in the case where d = 2β , with β > 2.

2.A.1. Sums associated with m = (2, 1) and d of the form 2r with r odd

In order to state the result, we will need the following notation.

De�nition 2.25. Let r be a positive odd integer. We still denote by gr the Laurent polynomial de�ned
at De�nition 2.6. Then we de�ne the following Laurent polynomial:

gr ⊕ gr : (S1)2ϕ(r) → C
(zj)06j62ϕ(r)−1 7→ gr(z0, . . . , zϕ(r)−1) + gr(zϕ(r), . . . , z2ϕ(r)−1)

Let us stress that since the image of gr has been geometrically interpreted in some cases (see Lemma
2.9 and Proposition 2.10), the image of gr ⊕ gr also admits a concrete geometric description in those
cases, in terms of hypocycloids and Minkowski sums of hypocycloids.

With this notation, we can prove the following proposition.

Proposition 2.26. Let r be a positive odd integer. Consider the sets

Gq(−,−, 2r) :=

Gq(a, b, 2r) :=
∑

x∈(Z/qZ)×

x2r=1

e

Å
ax2 + bx

q

ã
; a, b ∈ Z/qZ


for 2r-admissible values of q. Then, as q goes to in�nity, the sets Gq(−,−, 2r) become equidistributed
in the image of (S1)2ϕ(r) via gr ⊕ gr with respect to the pushforward measure of the probability Haar
measure on (S1)2ϕ(r).

Proof. Let q be a 2r-admissible integer, and let a, b ∈ Z/qZ.

1. Reordering the terms.
As in the previous proofs, we let wq ∈ (Z/qZ)× denote a generator of the unique subgroup of
order 2r of (Z/qZ)×, and we rewrite Gq(a, b, 2r) in terms of this generator. This gives:

Gq(a, b, 2r) =
2r−1∑
k=0

e

Ç
aw2k

q + bwkq
q

å
·

Then, we split the sum into two parts, depending on the parity of k:

Gq(a, b, 2r) =

2r−1∑
k=0
k even

e

Ç
aw2k

q + bwkq
q

å
+

2r−1∑
k=0
k odd

e

Ç
aw2k

q + bwkq
q

å
=

r−1∑
m=0

e

Ç
aw4m

q + bw2m
q

q

å
+

r−1∑
m=0

e

Ç
aw4m+2

q + bw2m+1
q

q

å
=: Geven + Godd.
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2. Each term (Geven and Godd) belongs to the image of gr.

For all m ∈ {0, . . . , r−1}, we perform the reduction modulo φr of Xm and denote the coe�cients
that appear by cj,m as in De�nition 2.6:

Xm =

ϕ(r)−1∑
j=0

cj,mX
j mod φr.

Then we reduce modulo q and evaluate at w4
q and w2

q (which are both elements of (Z/qZ)× of
order r, so that Lemma 2.14 applies). This gives:{

w4m
q =

∑ϕ(r)−1
j=0 cj,mw

4j
q

w2m
q =

∑ϕ(r)−1
j=0 cj,mw

2j
q .

Note that this step relies crucially on the fact that r is odd, otherwise w4
q would have an order

which is half of that of w2
q .

We deduce that

Geven =
r−1∑
m=0

ϕ(r)−1∏
j=0

e

Ç
aw4j

q + bw2j
q

q

åcj,m
et Godd =

r−1∑
m=0

ϕ(r)−1∏
j=0

e

Ç
aw4j+2

q + bw2j+1
q

q

åcj,m
Therefore, if we introduce the notations

yj := e

Ç
aw4j

q + bw2j
q

q

å
and zj := e

Ç
aw4j+2

q + bw2j+1
q

q

å
,

and
y = (yj)06j<ϕ(r) and z = (zj)06j<ϕ(r),

we have
Gq(a, b, 2r) = Geven + Godd = gr (y) + gr (z) = (gr ⊕ gr)(y, z)

Therefore, Gq(a, b, 2r) belongs to the image of gr ⊕ gr.

3. Equidistribution of Gq(−,−, 2r) as q goes to in�nity.
In order to prove that there is equidistribution with respect to the pushforward measure an-
nounced in the statement, we need to prove that the sets{(Ç

e

Ç
aw4j

q + bw2j
q

q

åå
06j<ϕ(r)

,

Ç
e

Ç
aw4j+2

q + bw2j+1
q

q

åå
06j<ϕ(r)

)
; (a, b) ∈ (Z/qZ)2

}

becomes equidistributed in (S1)2ϕ(r).
Now, when j ranges over {0, . . . , ϕ(r) − 1}, 2j ranges over the even integers between 0 and
2ϕ(r) − 2, whereas 2j + 1 ranges over the odd integers between 1 and 2ϕ(r) − 1. Thus, by
reordering the components, it is equivalent to prove that the following sets become equidistributed
in (S1)2ϕ(r): {Ç

e

Ç
aw2k

q + bwkq
q

åå
06k62ϕ(r)−1

; (a, b) ∈ (Z/qZ)2

}
.

We do that using Weyl's criterion. Let y ∈ Z2ϕ(r) \ {0}. Denoting by θq(a, b) the vectorÇ
aw2k

q + bwkq
q

å
06k<2ϕ(r)

∈ (R/Z)2ϕ(r)
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we want to prove that the following exponential sum

1

q2

∑
a,b∈Z/qZ

e(θq(a, b) · y)

converges to 0 as q goes to in�nity. If we write the coordinates of y as follows

y =

Ö
y0
...

y2ϕ(r)−1

è
then we have

1

q2

∑
a,b∈Z/qZ

e(θq(a, b) · y) =
1

q2

∑
a,b∈Z/qZ

e

Ç
af(w2

q) + bf(wq)

q

å
,

where

f := y0 + y1X + y2X
2 + · · ·+ y2ϕ(r)−1X

2ϕ(r)−1 ∈ Z[X] \ {0}.

Now since ψq : (a, b) 7→ e
(
af(w2

q)+bf(wq)

q

)
is an additive character of (Z/qZ)2, we have, by or-

thogonality of characters,

1

q2

∑
a,b∈Z/qZ

e

Ç
af(w2

q) + bf(wq)

q

å
= 1ψq=triv. (2.23)

Moreover, ψq is the trivial character if and only if f(w2
q) and f(wq) are equal to 0 modulo q.

Indeed, the group homomorphism’Z/qZ×’Z/qZ → ÿ�(Z/qZ)2

which maps (χ1, χ2) to the character of (Z/qZ)2 :

(a, b) 7→ χ1(a)χ2(b)

is an isomorphism. Thus, ψq is trivial if and only if the additive characters modulo q

a 7→ e

Ç
f(w2

q)

q
a

å
and b 7→ e

Å
f(wq)

q
b

ã
are both trivial. Therefore, in order to conclude, it su�ces to show that there are only �nitely
many 2r-admissible values of q such that f(wq) and f(w2

q) are simultaneously equal to zero
modulo q. This is what we prove below. The main idea of the proof is to try to reduce to a
situation similar to the one encountered in the proof of Lemma 2.15, which is why we try to
reduce to polynomials of degree strictly less than ϕ(r).

(a) φr and φ2r do not simultaneously divide f(X).

Indeed, φr and φ2r are two distinct irreducible polynomials in Q[X], so if they both divided
f(X), then their product would divide f(X) as well. Since f is non-zero, this would imply

deg(f) > deg(φr) + deg(φ2r) = 2ϕ(r),

contradicting the fact that deg(f) 6 2ϕ(r)− 1.
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(b) Reduction to the case of polynomials of degree strictly less than ϕ(r) through euclidean
division.

Since φr and φ2r are monic polynomials in Z[X], the polynomials that appear in the eu-
clidean divisions below still belong to Z[X]:®

f(X) = φr(X)Qr(X) +Rr(X), 0 6 deg(Rr) < ϕ(r)

f(X) = φ2r(X)Q2r(X) +R2r(X), 0 6 deg(R2r) < ϕ(2r) = ϕ(r)

Then we reduce these equalities modulo q and evaluate the �rst one at w2
q , and the second

one at wq. As wq has multiplicative order equal to 2r, the term φ2r(wq) is equal to zero in
Z/qZ thanks to Lemma 2.14. Similarly, the term φr(w

2
q) is equal to zero in Z/qZ, because

w2
q has order r. Thus,

f(w2
q) ≡ 0 mod q and f(wq) ≡ 0 mod q (2.24)

if and only if
Rr(w

2
q) ≡ 0 mod q and R2r(wq) ≡ 0 mod q. (2.25)

Now, thanks to step (a) above, at least one of the two polynomials Rr and R2r is non-zero,
so we can apply the argument of the proof of Lemma 2.15 (based on a Bézout relation
between Rr and φr, respectively R2r and φ2r) to conclude that there are only �nitely many
q such that (2.25) is satis�ed. Thanks to the equivalence with (2.24), this shows that the
sum (2.23) is eventually equal to zero, and this �nishes the proof.

Example 2.27. � If we take d = 2 = 2 × 1, then the sets Gq(−,−, 2) become equidistributed in
the image of g1 ⊕ g1. Now, since φ1 = X − 1, it is easy to show that

g1 : S1 → C
z 7→ z

hence
g1 ⊕ g1 : (S1)2 → C

(z1, z2) 7→ z1 + z2

Thus, the image of g1 ⊕ g1 is the closed disk with center 0 and radius 2.

(a) q = 193 (b) q = 709

Figure 2.13: The sets Gq(−,−, 2) for two 2-admissible values of q.
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� If we take d = 6 = 2×3, Proposition 2.26 tells us that the sets Gq(−,−, 6) become equidistributed
in the image of g3 ⊕ g3, that is: in H3 + H3 thanks to Lemma 2.9. Equidistribution holds with
respect to the pushforward measure of the Haar measure on (S1)4 via

g3 ⊕ g3 : (S1)4 → C
(z0, . . . , z3) 7→ z0 + z1 + 1

z0z1
+ z2 + z3 + 1

z2z3

(a) q = 229 (b) q = 1021

Figure 2.14: The sets Gq(−,−, 6) for two 6-admissible values of q.

Proposition 2.26 covers the cases where d = 2r for odd values of r. It remains to study what happens
when d is of the form 2βr with β > 2 and r odd. We were not able to �nd a concrete geometric
description of the image of the Laurent polynomial in all of those remaining cases, but the next section
presents what we obtained in the case where d is a power of 2.

2.A.2. Sums associated with m = (2, 1) and d of the form 2β with β > 2

We have the following geometric description of the region of equidistribution for the sums Gq

(
a, b, 2β

)
.

Proposition 2.28. Let β ∈ Z>2 and let d := 2β. The sets Gq(−,−, d) become equidistributed in the
Minkowski sum

2β−2−1∑
j=0

H4 = H4 + · · ·+ H4︸ ︷︷ ︸
2β−2 terms

with respect to the pushforward measure of the Haar measure on (S1)3×2β−2
via h4 ⊕ · · · ⊕ h4, where

h4 : (S1)3 → C
(z1, z2, z3) 7→ z1 + z2 + z3 + 1

z1z2z3

As usual, equidistribution holds as q goes to in�nity among the d-admissible integers.

Proof. Let q be a d-admissible integer and let a, b ∈ Z/qZ.

1. Reordering the terms.
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Denoting by wq a generator of the subgroup of order d of (Z/qZ)×, we have:

Gq(a, b, d) =

d−1∑
k=0

e

Ç
aw2k

q + bwkq
q

å
=

2β−2−1∑
j=0

d−1∑
k=0

k≡j mod 2β−2

e

Ç
aw2k

q + bwkq
q

å
=

2β−2−1∑
j=0

3∑
m=0

e

(
aw

2(j+m2β−2)
q + bwj+m2β−2

q

q

)
︸ ︷︷ ︸

=:Gj

2. Each Gj belongs to H4.
Let j ∈ {0, . . . , 2β−2 − 1}. In order to prove that Gj belongs to H4, we prove that the term
corresponding to m = 3 is equal to the inverse of the product of the terms associated with
m = 0, 1, 2. It is su�cient to show that the following equalities hold in Z/qZ:

{
w

2(j+0×2β−2)
q + w

2(j+1×2β−2)
q + w

2(j+2×2β−2)
q = −w2(j+3×2β−2)

q

wj+0×2β−2

q + wj+1×2β−2

q + wj+2×2β−2

q = −wj+3×2β−2

q .

These are equivalent to: ®
1 + w2β−1

q + w2β
q = −w3×2β−1

q

1 + w2β−2

q + w2β−1

q = −w3×2β−2

q

because one can simplify the �rst equality by w2j
q and the second one by wjq (these are both

invertible modulo q since wq is invertible). Now, both equalities hold because as wq has order
d = 2β , w2β−1

q has order 2, hence w2β−1

q = −1. Thus, each Gj belongs to the image of h4, which
is the hypocycloid H4 thanks to Lemma 2.9.

3. Equidistribution of Gq(−,−, d) as q goes to in�nity.

To conclude the proof, it remains to show that the exponential that are mapped to Gq(a, b, d)

via h4 ⊕ · · · ⊕ h4 become equidistributed in (S1)3×2β−2
. Precisely, the previous step showed that

G(a, b, q, d) =

2β−2−1∑
j=0

Gj

=
2β−2−1∑
j=0

h4

(
e

Ç
aw2j

q + bwjq
q

å
, e

(
aw

2(j+2β−2)
q + bwj+2β−2

q

q

)
, e

(
aw

2(j+2β−1)
q + bwj+2β−1

q

q

))

hence it remains to prove that the sets
(
e

(
aw

2(j+m2β−2)
q + bwj+m2β−2

q

q

))
06j62β−2−1, m∈{0,1,2}

; (a, b) ∈ (Z/qZ)2


become equidistributed in (S1)3×2β−2

as q goes to in�nity among the d-admissible integers. By
reordering the factors (instead of regrouping them by congruence classes) this amounts to showing
the uniform distribution modulo 1 of the following subsets of (R/Z)3×2β−2

:
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®Ç
aw2k

q + bwkq
q

å
06k<3×2β−2

; (a, b) ∈ (Z/qZ)2

´
Through Weyl's criterion, it is equivalent to show that if f ∈ Z[X]\{0} is a polynomial of degree
less than or equal to 3× 2β−2 − 1, then we have

1

q2

∑
a,b∈Z/qZ

e

Ç
af(w2

q) + bf(wq)

q

å
−→
q→∞
q d-adm

0

By the same argument as in the proof of Proposition 2.26, one can prove that there are only
�nitely many d-admissibles integers q such that f(w̃2

q) and f(w̃q) are both equal to zero modulo
q. Indeed, the key argument of the proof was the fact that φd and φd/2 cannot simultaneously
divide f , and this is still the case here, since

deg(φdφd/2) = ϕ(2β) + ϕ(2β−1) = 3× 2β−2 > deg(f).

Example 2.29. � First we illustrate the equidistribution of the sets Gq(−,−, 4) in H4 :

(a) q = 173 (b) q = 1193

Figure 2.15: The sets Gq(−,−, 4) for two 4-admissible values of q.

� Second, we illustrate the equidistribution of the sets Gq(−,−, 8) in H4 + H4 :
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(a) q = 577 (b) q = 1777

Figure 2.16: The sets Gq(−,−, 8) for two 8-admissible values of q.

Proposition 2.26 and Proposition 2.28 do not cover all possible values of d, so there is still work to do to
gain a better geometric understanding of the region of equidistribution for sums of the type Gq(a, b, d)
when d is an arbitrary positive integer.
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2.B. On the discrepancy in Myerson's lemma

In this appendix, we give a non-trivial upper bound for the discrepancy associated with the equidis-
tribution result known as Myerson's lemma:

Lemma 2.30 ([32, Lemma 6.2]). The setsß
a

q

Ä
1, wq, w

2
q , . . . , w

ϕ(d)−1
q

ä
; a ∈ Z/qZ

™
become equidistributed modulo 1 as q goes to in�nity among the d-admissible integers.

Proof. The proof of this lemma is an immediate consequence of Weyl's criterion and of the exponential
sum estimate of Lemma 2.15.

In our study of the discrepancy, we will restrict to prime moduli p for our approach to work. We prove
that the discrepancy is bounded above, up to multiplicative constants, by an explicit negative power
of p.

I wish to thank Gérald Tenenbaum for suggesting me to try to apply Erdös-Turán inequality to turn the
fast decay of the Weyl sums into good discrepancy estimates. I also wish to thank Igor Shparlinski for
the unpublished note he sent me which contained useful ideas.

We will also come back to these questions regarding the discrepancy in our equidistribution results in
a more general setting in Chapter 5.

2.B.1. A short refresher on resultants

Let A be an integral domain, and let f = amX
m+ · · ·+a0 and g = bnX

n+ · · ·+b0 be two polynomials
with coe�cients in A and such that am 6= 0 and bn 6= 0.
Let K := Frac(A), and let F be the K-linear map:

F : Kn−1[X]×Km−1[X] → Kn+m−1[X]
(u, v) 7→ uf + vg

De�nition 2.31. Let B be the basis ((Xn−1, 0), . . . , (1, 0), (0, Xm−1), . . . , (0, 1)) of Kn−1[X]×Km−1[X]
and let C be the basis (Xn+m−1, . . . , 1) of Kn+m−1[X]. Then the Sylvester matrix of f and g is the
matrix MB,C(F ) ∈Mn+m(A). The determinant of this matrix is called the resultant of f anf g, and is
denoted by Res(f, g). Since the Sylvester matrix has coe�cients in A, the resultant of f and g is an
element of A.

One interest of the resultant is that it is an element of A, which can be computed with the sole
knowledge of the coe�cients of f and g, but it detects common roots of f and g in some extension of
K. Indeed, we have the following proposition:

Proposition 2.32. The following are equivalent:

1. The polynomials f and g have a common irreducible factor of degree > 1 in K[X]

2. There exists a �eld extension L/K in which f and g have a common root

3. Res(f, g) = 0.
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2.B.2. A lemma essentially due to I. Shparlinski

De�nition 2.33. For m = (m0, . . . ,mn−1) ∈ Zn, we denote by

� ‖m‖2 :=

Ã
n−1∑
j=0

m2
j its classical `2-norm,

� fm :=
n−1∑
j=0

mjX
j ∈ Z[X] the polynomial whose coe�cients are the entries of m.

Lemma 2.34. Let d > 1, and let m =
(
m0, . . . ,mϕ(d)−1)

)
∈ Zϕ(d) \ {0}. For all p ≡ 1 mod d, let wp

denote a primitive dth root of unity in Fp. Then we have the following implication:

if fm(wp) ≡ 0 mod p, then ‖m‖2 > Cd × p
1

ϕ(d) , where Cd is a constant depending only on d.

Proof. Let us denote by k := max{0 6 j < ϕ(d), mj 6= 0} (so that fm has degree exactly k). The
Sylvester matrix of φd and fm consists of k columns containing the coe�cients of φd plus some zero
entries, followed by ϕ(d) columns containing the coe�cients of fm plus some zero entries. Thus, if
we apply Hadamard's bound to the determinant of this matrix (which states that the absolute value
of the determinant is bounded above by the product of the `2-norms of the columns), we obtain the
following:

|Res(φd, fm)| 6 Bk
d‖m‖

ϕ(d)
2 6 Bϕ(d)−1

d ‖m‖ϕ(d)
2 (2.26)

where Bd =

Õ
ϕ(d)∑
j=0

a2
j if φd =

ϕ(d)∑
j=0

ajX
j (so this constant depends only on d, and can be made more

explicit when φd is well-known, for instance when d is prime). We found the idea of using Hadamard's
bound in [9, Theorem 7], where it was used for the same purpose of giving estimates on resultants.

Now, if fm(wp) ≡ 0 mod p then since we also know that φd(wp) ≡ 0 mod p, we obtain that
Res(φd, fm) ≡ 0 mod p thanks to Proposition 2.32 applied in the �eld Fp. Moreover, as fm is non-
zero and has degree < ϕ(d), it is coprime with φd. Therefore, thanks to Proposition 2.32 (this time
applied in the �eld Q): Res(φd, fm) 6= 0. Also, Res(φd, fm) is an integer since φd and fm have integer
coe�cients. Thus, Res(φd, fm) is a non-zero integer which is divisible by p, hence |Res(φd, fm)| > p.
Combining this with (2.26) gives the inequality

p 6 Bϕ(d)−1
d ‖m‖ϕ(d)

2

from which the result follows. We thank Igor Shparlinski for communicating to us a note which made
use of this argument of reduction modulo p of a non-zero resultant.

2.B.3. Application to the control of the discrepancy in Myerson's lemma

In the proof of Lemma 2.15, the Weyl sums coming from the application of Weyl's criterion not only
converge to zero, but are eventually equal to 0. Gérald Tenenbaum suggested to us that this very
strong convergence towards zero should enable us to deduce a non-trivial estimate on the decay of
the discrepancy, via Erdös-Turán-Koksma inequality. In the remainder of this appendix, we follow his
suggestion and prove a non-trivial upper bound on the discrepancy. But before that, let us introduce
the necessary notations.

De�nition 2.35. Let d > 1 be an integer, and let x1, . . . ,xN ∈ (R/Z)d. We de�ne the discrepancy of
x1, . . . ,xN as follows:

D(x1, . . . ,xN ) := sup
I∈I

∣∣∣∣∣∣ 1

N

N∑
j=1

1I(xj)− λd(I)

∣∣∣∣∣∣
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where I denotes the set of products of intervals [a1, b1] × · · · × [ad, bd] of (R/Z)d and λd denotes the
probability Haar measure on (R/Z)d.

It is well known that a sequence (xj)j>1 becomes equidistributed modulo 1 if and only if D(x1, . . . ,xN )
converges to zero as N goes to in�nity. The Erdös-Turán-Koksma inequality gives an upper bound
which allows one to evaluate the decay of the discrepancy in terms of the Weyl sums. We state it
almost as in [28, Lemma 3.4] (see also [29, Theorem 1.21]).

Lemma 2.36 (Erdös-Turán-Koksma). Let d > 1 be an integer. There exists a constant C such that
for any N > 1, for any x1, . . . ,xN ∈ (R/Z)d, and any H > 0,

D(x1, . . . ,xN ) 6 C

Ü
1

H
+

∑
m∈Zd

0<‖m‖∞<H

1

r(m)

∣∣∣∣∣∣ 1

N

N∑
j=1

e (m · xj)

∣∣∣∣∣∣
ê

where r(m) =
d∏
i=1

max(1, |mi|).

In the setting of Lemma 2.15 above, we will apply this estimate with N = p and the sequence

x0(p),x1(p), . . . ,xp−1(p)

where

xa(p) =

(
aw0

p

p
,
aw1

p

p
, . . . ,

aw
ϕ(d)−1
p

p

)
∈ (R/Z)ϕ(d)

for all a ∈ {0, . . . , p− 1}.

De�nition 2.37. We denote the discrepancy of the xa(p) as follows:

Dp := D(x0(p),x1(p), . . . ,xp−1(p)) = sup
I∈I

∣∣∣∣∣∣1p
p−1∑
a=0

1I(xa(p))− λϕ(d)(I)

∣∣∣∣∣∣
where I denotes the set of products of intervals as in De�nition 2.35 and λϕ(d) denotes the probability

Haar measure on (R/Z)ϕ(d).

Proposition 2.38. For all d > 1, we have that for all p ≡ 1 mod d,

Dp �d p
− 1
ϕ(d)

Proof. By Lemma 2.36, we have that for all p ≡ 1 mod d, for all H > 0,

Dp 6 C

Ü
1

H
+

∑
m∈Zϕ(d)

0<‖m‖∞<H

1

r(m)

∣∣∣∣∣∣1p
p−1∑
a=0

e (m · xa(p))

∣∣∣∣∣∣
ê

, (2.27)

where C is a constant which depends only on d. Now let Cd be a constant as in Lemma 2.34 and
choose H as

H :=
Cd√
ϕ(d)

p
1

ϕ(d) .

If m ∈ Zϕ(d) is such that 0 < ‖m‖∞ < H, then 0 < ‖m‖2 6
√
ϕ(d)‖m‖∞ < Cd × p

1
ϕ(d) . Thus, by

Lemma 2.34, we have fm(wp) 6≡ 0 mod p, and this implies that the Weyl sum

1

p

p−1∑
a=0

e (m · xa(p))
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is equal to zero by orthogonality, because this sum is actually equal to

1

p

p−1∑
a=0

e

Å
fm(wp)

p
a

ã
.

Thus, the second term on the right-hand side of (2.27) is equal to zero with this choice of H, so we
obtain

Dp 6
C

H
6
C
√
ϕ(d)

Cd
p
− 1
ϕ(d) �d p

− 1
ϕ(d)

Remark 2.39. Actually Lemma 2.15 also holds more generally for classes modulo pα for any α > 1.
However, it is not clear whether the approach used here can give good bounds on the discrepancy in the
case α > 2. Indeed, we used properties of the resultant, and I do not know whether the resultant still
satis�es the properties we used when the base ring is Z/pαZ (which is not even an integral domain).

Remark 2.40. In his note, I. Shparlinski was studying a much more general case where d is not
�xed, but is allowed to grow with p. If one can obtain the kind of estimate of the end of the proof
of Proposition 2.38 with a relatively good understanding of the dependancy with respect to d, this
could lead to a range of growth of d with respect to p, for which Myerson's lemma would still hold.
This would have consequences on equidistribution of exponential sums indexed by subgroups whose
cardinality grows with p, that is sums of the type:∑

x∈Fp
xd(p)=1

e

Å
ax

p

ã
, a ∈ Fp

where d(p) should probably satisfy a condition preventing it from growing too fast with respect to p.
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Chapter 3

Restricting the parameters to range over

small subgroups

In this chapter, we prove that in the results of Chapter 2, it is possible to impose strong restrictions on
the set of parameters and still obtain equidistribution. More precisely, we show that one can restrict
the parameters indexing our families of exponential sums to range over small subgroups of (Z/qZ)×,
instead of allowing them to range over the whole additive group Z/qZ. Our main result (Theorem
3.13, which corresponds to Theorem A of [103]) is indeed concerned with sets of sums of the form

∑
x∈(Z/qZ)×

xd=1

e

Å
a1x

m1 + · · ·+ anx
mn

q

ã
; (a1, . . . , an) ∈ H(1)

q × · · · ×H(n)
q

 , (3.1)

where the H(i)
q are su�ciently large (in a sense which will be more precisely stated) subgroups of

(Z/qZ)×. These extensions make use of very strong estimates on exponential sums over multiplicative
subgroups, which were proved to be connected to deep sum-product theorems in additive combinatorics.
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3.1. Motivation

The proofs of Proposition 2.12 and Proposition 2.20 relied crucialy on Lemma 2.15 (Myerson's lemma).
We made the choice to state this lemma in terms of exponential sums, because there are several slightly
di�erent results on equidistribution modulo 1 which can be deduced from this single fact on exponential
sums. However, in [32, Lemma 6.2], Myerson's lemma is stated directly as an equidistribution result,
and it asserts that if wq denotes a primitive d-th root of unity modulo q, then the subsets of (R/Z)ϕ(d)ß

a

q

Ä
1, wq, . . . , w

ϕ(d)−1
q

ä
; a ∈ Z/qZ

™
become equidistributed modulo 1 as q goes to in�nity among the d-admissible integers.

The striking fact about the proof is that when applying Weyl's criterion, they do not only get con-
vergence towards zero, but they obtain Weyl sums which are eventually equal to zero, thanks to the

89



orthogonality of characters (this is the content of Lemma 2.15). Since the convergence towards zero is
so strong, it is natural to ask whether the liberty of the parameter a can be restricted while keeping the
equidistribution property. For instance, one could want to study the question of the equidistribution
modulo 1 of the sets ß

a

q

Ä
1, wq, . . . , w

ϕ(d)−1
q

ä
; a ∈ (Z/qZ)×

™
.

Then, the sums involved when applying Weyl's criterion are controlled by the following lemma:

Lemma 3.1. Let d > 1 be an integer, and let f ∈ Z[X] \ {0} be a polynomial of degree strictly less
than ϕ(d). Then there exists a rank nf such that for all d-admissible integer q, for any element wq of
order d in (Z/qZ)×: ∣∣∣∣∣∣ ∑

a∈(Z/qZ)×

e

Å
af(wq)

q

ã∣∣∣∣∣∣ 6 1.

Proof. As in the proof of Lemma 2.15, we start by choosing a Bézout relation between φd and f :

a(X)φd(X) + b(X)f(X) = n (3.2)

where a, b ∈ Z[X] and n > 1. Now, let q = pα be a d-admissible integer such that q > n2, and let wq
be as in the statement. We have:

∑
a∈(Z/qZ)×

e

Å
af(wq)

q

ã
=

∑
a∈Z/qZ

e

Å
af(wq)

q

ã
−

∑
a∈(Z/qZ)\(Z/qZ)×

e

Å
af(wq)

q

ã
.

Now, we know from Lemma 2.15 that the complete sum
∑

a∈Z/qZ e
Ä
af(wq)

q

ä
is eventually equal to zero.

More precisely, the proof shows that as soon as q > n, the complete sum is equal to zero. Since we are
assuming that q > n2, this condition is satis�ed, hence:∑

a∈(Z/qZ)×

e

Å
af(wq)

q

ã
= −

∑
a∈(Z/qZ)\(Z/qZ)×

e

Å
af(wq)

q

ã
.

Now, we have:

∑
a∈(Z/qZ)\(Z/qZ)×

e

Å
af(wq)

q

ã
=

q−1∑
a=0

(a,q)6=1

e

Å
af(wq)

q

ã
=

q−1∑
a=0
p|a

e

Å
af(wq)

q

ã
=

pα−1−1∑
m=0

e

Å
pmf(wq)

pα

ã
=

pα−1−1∑
m=0

e

Å
mf(wq)

pα−1

ã
,

Let us distinguish between the two following cases:

� If α = 1, then
pα−1−1∑
m=0

e

Å
mf(wq)

pα−1

ã
= 1,

so that ∑
a∈(Z/qZ)×

e

Å
af(wq)

q

ã
= −1.

� If α > 2, then we handle the sum
pα−1−1∑
m=0

e

Å
mf(wq)

pα−1

ã
90



as in the proof of Lemma 2.15, that is: using the orthogonality of characters of Z/pα−1Z. Indeed,
we recognize the sum over all Z/pα−1Z of the values of the additive character:

m 7→ e

Å
f(wq)

pα−1
m

ã
and so the orthogonality of characters tells us that:

pα−1−1∑
m=0

e

Å
f(wq)

pα−1
m

ã
=

®
0 if pα−1 - f(wq)

pα−1 if pα−1 | f(wq)
(3.3)

Now, as in the proof of Lemma 2.15, we can use the relation

a(w̃q)φd(w̃q) + b(w̃q)f(w̃q) ≡ n mod q (3.4)

deduced from (3.2), where w̃q denotes any lift of wq in Z. Then thanks to Lemma 2.14, we have
that q = pα divides φd(w̃q), so φd(w̃q) is a fortiori divisible by pα−1.

Thus, if we assume for a contradiction that pα−1 divides f(w̃q), then pα−1 would divide n, but
this is impossible. Indeed, q = pα > n2, so pα/2 > n, and since α > 2, we have pα−1 > pα/2,
which implies that pα−1 > n.
Therefore, pα−1 does not divide f(w̃q), and the sum:

pα−1−1∑
m=0

e

Å
mf(w̃q)

pα−1

ã
is equal to zero by orthogonality.

Conclusion: We proved that we can take for instance the integer nf of the statement to be n2 (where
n comes from (3.2)), and that for all d-admissible integer q = pα > nf , we have:∣∣∣∣∣∣ ∑

a∈(Z/qZ)×

e

Å
af(wq)

q

ã∣∣∣∣∣∣ =

®
1 if α = 1

0 if α > 2

This shows that in any case, if q ∈ Ad is strictly larger than nf , then:

∣∣∣∣∣∣ ∑
a∈(Z/qZ)×

e

Å
af(wq)

q

ã∣∣∣∣∣∣ 6 1.

Now if we use Weyl's criterion, we see that the bound proved in this Lemma 3.1 establishes the
equidistribution modulo 1 of the setsß

a

q

Ä
1, wq, . . . , w

ϕ(d)−1
q

ä
; a ∈ (Z/qZ)×

™
.

More generally, using Lemma 3.1 instead of Lemma 2.15 in the proofs of propositions 2.12 and 2.20
allows one to prove the equidistribution modulo 1 of the sets¶

x(a1, . . . , an, q); (a1, . . . , an) ∈
(
(Z/qZ)×

)n©
instead of that of the sets (2.18):

{x(a1, . . . , an, q); (a1, . . . , an) ∈ (Z/qZ)n} .

It follows from this improvement that the equidistribution results of propositions 2.12 and 2.20 still
hold if we only let the parameters vary in (Z/qZ)× instead of Z/qZ. This gives equidistribution results
for sets of the form
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
∑

x∈(Z/qZ)×

xd=1

e

Å
a1x

m1 + · · ·+ anx
mn

q

ã
; (a1, . . . , an) ∈

(
(Z/qZ)×

)n


We do not give a precise statement at this point because these results will be superseded in the two
next sections. Nethertheless, this serves as a motivation for further improvements, because if there
is equidistribution when the parameters vary in all Z/qZ, but also when they only vary in (Z/qZ)×,
we can wonder how strong can the restrictions be before these sets no longer become equidistributed.
This is why we asked ourselves the question: what happens if the parameters ai are only allowed to
range over subgroups Hq of (Z/qZ)×? Of course if Hq = {1}, there is no hope, but what if |Hq| tends
to in�nity as q goes to in�nity? Is it su�cient to ensure the equidistribution of

∑
x∈(Z/qZ)×

xd=1

e

Å
ax

q

ã
; a ∈ Hq

 (3.5)

for instance? This is the type of question we are going to address in the two next sections.

3.2. Subgroups of cardinality at least
√
q

In this section, we use estimates on Gauss sums (the necessary facts on these are recalled in Appendix
3.A) to prove an exponential sum estimate which enables us to deduce the equidistribution modulo 1
of the sets ß

a

q

Ä
1, wq, . . . , w

ϕ(d)−1
q

ä
; a ∈ Hq

™
(3.6)

as soon as the subgroups Hq are satisfy the growth condition:

√
q

|Hq|
−→
q→∞

0. (3.7)

In other words, equidistribution is guaranteed provided the cardinality of the subgroup Hq grow faster
than

√
q, in the sense of condition (3.7). Via the same step of reduction to a statement on equidistribu-

tion modulo 1 as in the proof of Proposition 2.12, this kind of result allows us to deduce equidistribution
theorems for sets of exponential sums of type (3.5), or generalizations of these.

Exponential sum estimates. The key exponential sum estimate is given in the following lemma.

Lemma 3.2. Let d > 1 and let f ∈ Z[X]\{0} be a polynomial of degree strictly less than ϕ(d). For all
d-admissible integer q, we choose a subgroup Hq of (Z/qZ)× and an element wq of order d in (Z/qZ)×.
Then:
there exists a rank Nf (depending on f) such that for all q in Ad such that q > Nf ,∣∣∣∣∣∣∑a∈Hq e

Å
af(wq)

q

ã∣∣∣∣∣∣�f
√
q

Remark 3.3. The bound given in this lemma is non-trivial when the subgroup Hq of (Z/qZ)× is
su�ciently large, namely when |Hq| is larger than

√
q (up to the hidden constant in the notation �f ).

Before moving forward to the full proof, let us give a brief overview of it, to underline where there is
a subtlety.
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Overview of the proof of Lemma 3.2. The approach is the one described in the introduction of [79],
but generalized to (Z/qZ)× instead of F×p . The �rst idea is to decompose the map:

ψf(wq) : (Z/qZ)× → C

a 7→ e
Ä
f(wq)a

q

ä
in the orthonormal basis of Maps((Z/qZ)× ,C) made of the multiplicative characters modulo q. In-
deed, the C-vector space of the maps from (Z/qZ)× to C can be endowed with the following hermitian
product:

∀f, g : (Z/qZ)× → C, 〈f, g〉 :=
1

ϕ(q)

∑
x∈(Z/qZ)×

f(x)g(x),

and it can be shown that the multiplicative characters modulo q form an orthonormal basis of this
hermitian space. Therefore, for any map ϕ : (Z/qZ)× → C, we have:

ϕ =
∑
χ

〈ϕ, χ〉χ

where χ runs over the group of multiplicative characters modulo q. In particular, for ϕ = ψf(wq), we
obtain:

∑
a∈Hq

e

Å
af(wq)

q

ã
=
∑
a∈Hq

ψf(wq)(a) =
∑
a∈Hq

∑
χ

〈ψf(wq), χ〉χ(a)

Now, 〈ψf(wq), χ〉 is almost a Gauss sum (see Appendix 3.A for the notation τ(-, -) for Gauss sums).
Indeed,

〈ψf(wq), χ〉 =
1

ϕ(q)

∑
x∈(Z/qZ)×

ψf(wq)(x)χ(x) =
1

ϕ(q)
τ
(
χ, ψf(wq)

)
,

hence ∑
a∈Hq

e

Å
af(wq)

q

ã
=
∑
a∈Hq

∑
χ

1

ϕ(q)
τ
(
χ, ψf(wq)

)
χ(a)

=
1

ϕ(q)

∑
χ

τ
(
χ, ψf(wq)

) ∑
a∈Hq

χ(a).

Now, among the multiplicative characters modulo q, all those who induce (by restriction) a non-trivial
character ofHq have no contribution. Indeed, for such characters, the inner sum is zero by orthogonality
of the multiplicative characters of Hq. Thus,∑

a∈Hq

e

Å
af(wq)

q

ã
=

1

ϕ(q)

∑
χ|Hq=1

τ
(
χ, ψf(wq)

) ∑
a∈Hq

χ(a)

where the �rst sum is indexed by the multiplicative characters modulo q which are trivial on Hq. For
such characters, the inner sum

∑
a∈Hq χ(a) is simply equal to |Hq| (its number of terms).

Therefore,

∑
a∈Hq

e

Å
af(wq)

q

ã
=
|Hq|
ϕ(q)

∑
χ|Hq=1

τ
(
χ, ψf(wq)

)
=
|Hq|
ϕ(q)

∑
χ|Hq=1

τ
(
χ, ψf(wq)

)
(3.8)

Note that this last sum has ϕ(q)/|Hq| terms. Indeed, more generally if G is a �nite abelian group and
H is a subgroup of G, then any character of H can be extended to a character of G. In other words,
the restriction morphism:
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“G → “H
χ 7→ χ|H

is surjective. In our setting, G = (Z/qZ)× andH = Hq, and the surjectivity of the restriction morphism
allows us to compute the cardinality of its kernel, which is exactly the number of χ modulo q satisfying
χ|Hq = 1. Finally, by the triangle inequality, we have:∣∣∣∣∣∣∑a∈Hq e

Å
af(wq)

q

ã∣∣∣∣∣∣ 6 |Hq|
ϕ(q)

∑
χ|Hq=1

|τ
(
χ, ψf(wq)

)
| (3.9)

The end of the proof consists in proving that we can apply this classical bound on Gauss sums (up to
some multiplicative constant which does not cause any issue):

|τ
(
χ, ψf(wq)

)
| 6 √q. (3.10)

Indeed, if we could apply this bound for all χ, inequality (3.9) would immediately give:∣∣∣∣∣∣∑a∈Hq e
Å
af(wq)

q

ã∣∣∣∣∣∣ 6 |Hq|
ϕ(q)

∑
χ|Hq=1

|τ
(
χ, ψf(wq)

)
| 6 |Hq|

ϕ(q)

√
q
∑

χ|Hq=1

1

︸ ︷︷ ︸
ϕ(q)/|Hq |

=
√
q

However, if χ is not primitive, or if f(wq) is not coprime with q, or both, there could be some �bad
collision� between the non-primitivity of χ and that of ψf(wq), leading to a Gauss sum with modulus
larger than

√
q. For instance if χ is the principal character modulo q and f(wq) ≡ 0 mod q, then

τ
(
χ, ψf(wq)

)
=

∑
x∈(Z/qZ)×

1 = ϕ(q) = pα−1(p− 1),

which is larger than
√
q = pα/2. Actually, we already know that this cannot happen for large values of

q because we saw in the proof of Lemma 2.15 that there are only �nitely many q such that f(wq) ≡
0 mod q. But we need to prove that the other possible �bad collisions� do not cause an issue, in order
to apply inequality (3.10) (up to some multiplicative constant) and to conclude the proof. This is what
remains to do in the detailed proof.

The crucial control of the p-adic valuation. As we will see in the proof of the necessary Gauss
sums estimates, it is not su�cient to know that f(wq) is non-zero modulo q = pα, we will actually
need to know something more precise about the p-adic valuation of f(wq). This is the content of the
following very important proposition.

Proposition 3.4. Let d > 1 and let f ∈ Z[X] \ {0} be a polynomial of degree strictly less than ϕ(d).
For all d-admissible integers q, we choose an element wq of order d in (Z/qZ)×. Then there exist two
constants Cf , nf > 1 such that for all q = pα ∈ Ad such that q > nf ,

(a) f(wq) 6≡ 0 mod q

(b) pvp(f(wq)) 6 Cf .

Remark 3.5. Since f(wq) 6≡ 0 mod q in point (a), it makes sense to speak about the p-adic valuation
of f(wq) in point (b), as it does not depend on the choice of an integer w̃q representing the class wq.

Proof. The �rst part of the proof is actually what we already did in the proof of Lemma 2.15, following
closely the arguments of [32, Lemma 6.2]. Let us reproduce brie�y the proof to facilitate the reading
and have all notations on the same page.
First, we use the fact that there exist two polynomials a, b ∈ Z[X] and an integer n > 1 such that

a(X)φd(X) + b(X)f(X) = n, (3.11)
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since f and φd are coprime in the euclidean domain Q[X]. Now, let q = pα be a d-admissible integer.
Reducing equation (3.11) modulo q and evaluating it at wq leads to

a(wq)φd(wq) + b(wq)f(wq) ≡ n mod pα

hence
b(wq)f(wq) ≡ n mod pα (3.12)

by Lemma 2.14. Now, if q = pα > n, then n is non-zero modulo q, hence f(wq) 6≡ 0 mod q. This shows
that nf := n is a suitable constant for assertion (a).

Another way of phrasing what we just proved is that as soon as q > n, the p-adic valuation of f(wq)
is strictly less than α. Let us denote by γ < α the p-adic valuation of f(wq). Then, if we reduce the
congruence (3.12) modulo pγ , we get n ≡ 0 mod pγ . Thus,

γ = vp(f(wq)) 6 vp(n),

hence
pvp(f(wq)) 6 pvp(n) 6 n.

Therefore, we proved that with the choice Cf := n, assertion (b) holds.

We can �nally complete the proof of Lemma 3.2.

Proof of Lemma 3.2. In the overview of the proof, we arrived at the following inequality:∣∣∣∣∣∣∑a∈Hq e
Å
af(wq)

q

ã∣∣∣∣∣∣ 6 |Hq|
ϕ(q)

∑
χ|Hq=1

|τ
(
χ, ψf(wq)

)
|. (3.13)

Our next task consists in �nding upper bounds for the absolute values of the Gauss sums τ
(
χ, ψf(wq)

)
.

We distinguish between the principal character χ0 and the others.

� Contribution of the principal character χ0 in (3.13).

Since χ0(a) = 1 if (a, q) = 1 and χ0(a) = 0 otherwise, we have that τ
(
χ0, ψf(wq)

)
is equal to the

sum: ∑
x∈(Z/qZ)×

e

Å
f(wq)x

q

ã
Now, thanks to Lemma 3.1 we know that there exists a rank nf such that for all q > nf :

|τ
(
χ0, ψf(wq)

)
| 6 1. (3.14)

� Contribution of the characters χ 6= χ0 in (3.13).

These are handled using the following lemma.

Lemma 3.6. Let d > 1 be an integer, and let f ∈ Z[X] \ {0} be a polynomial of degree strictly
less than ϕ(d). There exist two constants Cf and mf , larger than or equal to 1, such that for all
d-admissible integer q strictly larger than mf , for any element wq of order d in (Z/qZ)× and for
any non-principal Dirichlet character χ modulo q,∣∣∣τ(χ, ψf(wq))

∣∣∣ 6 Cf√q.
Proof. As in the proof of Myerson's lemma (Lemma 2.15), we �x a Bézout relation between φd
and f :

a(X)φd(X) + b(X)f(X) = n (3.15)
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where a, b ∈ Z[X] and n > 1. Let q = pα be a d-admissible integer such that q > n. We denote
by wq an element of order d in (Z/qZ)×, and since we assumed that q > n, we know from the
proof of Lemma 2.15 that f(wq) 6≡ 0 mod q. This allows us to speak about the p-adic valuation
of the class f(wq), as it does not depend on the choice of a representative w̃q of wq in Z.
Let χ be a non-principal multiplicative character modulo q, and denote by pβ its conductor (with
0 < β 6 α). In other words, χ is induced by a primitive character modulo pβ . Thanks to
Corollary 3.20 of Appendix 3.A, we have:

∣∣∣τ (χ, ψf(wq)

)∣∣∣ =

®
pα−β/2 if vp(f(wq)) = α− β
0 otherwise.

In particular, the Gauss sum τ
(
χ, ψf(wq)

)
is non-zero if and only if β = α − vp(f(wq)). In this

case, we have: ∣∣∣τ (χ, ψf(wq)

)∣∣∣ = pα−
α−vp(f(wq))

2 = p
α+vp(f(wq))

2 = p
vp(f(wq))

2
√
q (3.16)

Now, we saw in the proof of Proposition 3.4 that

γ = vp(f(wq)) 6 vp(n).

Using this last inequality in (3.16) yields:∣∣∣τ (χ, ψf(wq))

)∣∣∣ = p
vp(n)

2
√
q

and since p
vp(n)

2 6
√
n we get:

∣∣∣τ (χ, ψf(wq))

)∣∣∣ =
√
n
√
q. Thus, mf := n and Cf :=

√
n are

suitable constants for which the statement holds.

We deduce from Lemma 3.6 that for all q > mf :

∑
χ|Hq=1

χ 6=χ0

∣∣∣τ (χ, ψf(wq)

)∣∣∣ 6 Cf√q ∣∣∣{χ 6= χ0 | χ|Hq = 1
}∣∣∣ = Cf

√
q

Å
ϕ(q)

|Hq|
− 1

ã
(3.17)

� Conclusion: If we put Nf := max(nf ,mf ) we have that for all q > Nf , both inequalities (3.14)
and (3.17) hold. Thanks to (3.13), this gives∣∣∣∣∣∣∑a∈Hq e

Å
af(wq)

q

ã∣∣∣∣∣∣ 6 |Hq|
ϕ(q)

ï
Cf
√
q

Å
ϕ(q)

|Hq|
− 1

ã
+ 1

ò
6 Cf

√
q,

and this concludes the proof of Lemma 3.2.

Remark 3.7. A closer look at the proofs of Lemma 3.1 and Lemma 3.6 reveals that one can take Nf

to be n2 and Cf to be
√
n, with the integer n coming from any Bézout relation between f and φd:

a(X)φd(X) + b(X)f(X) = n

where a, b ∈ Z[X] and n > 1.

Remark 3.8. In the proof of Lemma 3.6, we actually saw that |τ
(
χ, ψf(wq)

)
| is non-zero if and only

if the conductor of χ is pβ with β = α− vp(f(wq)). Therefore, in the sum∑
χ|Hq=1

χ 6=χ0

∣∣∣τ (χ, ψf(wq)

)∣∣∣
96



only the characters χ with conductor equal to pα−vp(f(wq)) give a non-zero contribution, and this non-
zero contribution is bounded by Cf

√
q. Thus, the upper bound (3.17) might be improved by counting

precisely the number of characters χ having a prescribed conductor and satisfying χ|Hq = 1. However,
this seems to be di�cult.

Besides, in the case where α = 1 and p goes to in�nity, the bound is tight. Indeed, p eventually becomes
strictly larger than the integer n from the Bézout relation, so that the congruence (3.12) immediately
gives that vp(f(wp)) = 0. Then the condition β = α− vp(f(wp)) is just requiring that χ is primitive,
but modulo p, all non-principal characters are primitive.

Consequences on equidistribution of exponential sums. The above discussion has conse-
quences in our problem of interest, that is: equidistribution of sums of the form

∑
x∈(Z/qZ)×

xd=1

e

Å
a1x

m1 + · · ·+ anx
mn

q

ã
where the parameters ai range over some speci�c subsets of Z/qZ. Precisely, Lemma 3.2 allows us
to prove that the equidistribution results of Proposition 2.12 and 2.20 still hold if we restrict the
parameters ai to range over su�ciently large subgroups of (Z/qZ)×, in a sense which matches the
condition √

q

|Hq|
−→
q→∞

0

in the case of the simplest sums ∑
xd=1

e

Å
ax

q

ã
.

Indeed, we have the following theorem:

Theorem 3.9. Let d > 1 be an integer and let m = (m1, . . . ,mn) ∈ Zn. For all d-admissible integer

q, we �x subgroups H(1)
q , . . . ,H

(n)
q of (Z/qZ)×. Then we have the following equidistribution results:

(a) The general case.

If the subgroups H(1)
q , . . . ,H

(n)
q satisfy the growth condition:

∀i ∈ {1, . . . , n},
√
q

|H(i)
q |
−→
q→∞

0, (3.18)

then the sets
∑

x∈(Z/qZ)×

xd=1

e

Å
a1x

m1 + · · ·+ anx
mn

q

ã
; (a1, . . . , an) ∈ H(1)

q × · · · ×H(n)
q

 , (3.19)

become equidistributed in the image of the Laurent polynomial fd,m (De�nition 2.19) with respect
to the pushforward measure via fd,m of the probability Haar measure λ on (S1)ϕ(d1)+···+ϕ(dn), as
q goes to in�nity among the d-admissible integers. In other words, if we denote by Id,m the image
of fd,m and by µ := (fd,m)∗λ, then for all continuous function F : Id,m → C,

1∏n
i=1 |H

(i)
q |

∑
a1∈H(1)

q

· · ·
∑

an∈H(n)
q

F

Ü ∑
x∈(Z/qZ)×

xd=1

e

Å
a1x

m1 + · · ·+ anx
mn

q

ãê
−→
q→∞
q∈Ad

∫
Id,m

Fdµ.
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(b) When m is coprime with d.
Let s ∈ {1, . . . , n} and let {i1, . . . , is} ⊆ {1, . . . , n}. We �x n− s integers ai for i ∈ {1, . . . , n} \
{i1, . . . , is}. Then if the growth condition

qs/2∏
16j6s

∣∣∣H(ij)
q

∣∣∣ −→q→∞ 0 (3.20)

is satis�ed, the sets of sums
∑

x∈(Z/qZ)×

xd=1

e

Å
a1x

m1 + · · ·+ anx
mn

q

ã
; (ai1 , . . . , ais) ∈ H(i1)

q × · · · ×H(is)
q


become equidistributed in the image of the Laurent polynomial gd (De�nition 2.6) with respect to
the pushforward measure via gd of the probability Haar measure on (S1)ϕ(d), as q goes to in�nity
among the d-admissible integers.

In particular, the case of the sums

Sq(a, d) =
∑

x∈(Z/qZ)×

xd=1

e

Å
ax

q

ã
corresponds to m = (1), which is coprime with d, so that case (b) of the above theorem asserts that
the sets {Sq(a, d); a ∈ Hq} become equidistributed in the image of gd with respect to the suitable
pushforward measure, as soon as Hq is a subgroup of (Z/qZ)× such that

√
q/|Hq| −→

q→∞
0.

Remark 3.10. Condition (3.20) is a weaker requirement than condition (3.18). Instead of asking

for an individual control of the growth of each H
(i)
q , we just ask that they satisfy

√
q/|Hq| −→

q→∞
0

�multiplicatively on average�.

Proof of case (a) of Theorem 3.9. The reduction step is the same as in the proof of Proposition 2.20,

except that one needs to put Ym,q = H
(1)
q × · · · ×H(n)

q instead of (Z/qZ)n. This reduces the proof to
the equidistribution modulo 1 of the following subsets of (R/Z)ϕ(d1)+···+ϕ(dn):

ß =:x(a1,...,an,q)︷ ︸︸ ︷(Ç
a1(wm1

q )j

q

å
06j<ϕ(d1)

, . . . ,

Ç
an(wmnq )j

q

å
06j<ϕ(dn)

)
; (a1, . . . , an) ∈ H(1)

q × · · · ×H(n)
q

™
,

as q goes to in�nity among the d-admissible integers. To prove this, we apply Weyl's criterion, so we let
y =

(
y0, . . . , yϕ(d1)+···+ϕ(dn)−1

)
∈ Zϕ(d1)+···+ϕ(dn) \ {0} and we want to show the following convergence

towards zero:
1∏n

i=1 |H
(i)
q |
×

∑
a1∈H(1)

q...

an∈H(n)
q

e (x(a1, . . . , an, q) · y) −→
q→∞
q∈Ad

0. (3.21)

As in the proof of Proposition 2.20, let us denote by y1 the vector extracted from y by taking the �rst
ϕ(d1) entries, y2 the vector formed by the next ϕ(d2) entries and so on:

y1 = (y0, . . . , yϕ(d1)−1), y2 = (yϕ(d1), . . . , yϕ(d1)+ϕ(d2)−1) y3 = · · ·

so that y = (y1, . . . ,yn). Similarly,
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x1(a1, q) :=

Ç
a1(wm1

q )j

q

å
06j<ϕ(d1)

, . . . , xn(an, q) :=

Ç
an(wmnq )j

q

å
06j<ϕ(dn)

.

Then we have

1∏n
i=1 |H

(i)
q |
×

∑
a1∈H(1)

q...

an∈H(n)
q

e (x(a1, . . . , an, q) · y) =
n∏
i=1

 1

|H(i)
q |

∑
ai∈H

(i)
q

e(xi(ai, q) · yi)

 . (3.22)

Now, since y 6= 0, there exists at least one index i ∈ {1, . . . , n} such that yi 6= 0. For such an i, write

1

|H(i)
q |

∑
ai∈H

(i)
q

e(xi(ai, q) · yi) =
1

|H(i)
q |

∑
a∈H(i)

q

e

Ç
afi(w

mi
q )

q

å
, (3.23)

where fi is the polynomial associated with yi =
(
yϕ(d1)+···+ϕ(di−1), . . . , yϕ(d1)+···+ϕ(di−1)+ϕ(di)−1

)
as

follows: fi = yϕ(d1)+···+ϕ(di−1) + yϕ(d1)+···+ϕ(di−1)+1X + · · ·+ yϕ(d1)+···+ϕ(di−1)+ϕ(di)−1X
ϕ(di)−1. This is

a non-zero polynomial with integer coe�cients and with degree strictly less than ϕ(di), and wmiq is an
element of order di in (Z/qZ)×. Thus, we can apply Lemma 3.2 which states that there exists a rank
Nfi such that for all q > Nfi such that q is d-admissible,∣∣∣∣∣∣∣

∑
a∈H(i)

q

e

Ç
afi(w

mi
q )

q

å∣∣∣∣∣∣∣�fi

√
q,

and this su�ces to prove the convergence of (3.23) towards zero, thanks to assumption (3.18). As all
the other factors of (3.22) have absolute value bounded above by 1, the whole product converges to
zero, and this concludes the proof.

Proof of case (b) of Theorem 3.9. With the same reduction step as in Proposition 2.12 (replacing the

set of parameters Ym,q = (Z/qZ)s by Ym,q = H
(i1)
q × · · · × H(is)

q ) one proves that the statement is
implied by the equidistribution modulo 1 of the sets of ϕ(d)-tuples

ß =:x(ai1 ,...,ais ,q)︷ ︸︸ ︷Ç
a1(wm1

q )0 + · · ·+ an(wmnq )0

q
, . . . ,

a1(wm1
q )ϕ(d)−1 + · · ·+ an(wmnq )ϕ(d)−1

q

å
;

(ai1 , . . . , ais) ∈ H(i1)
q × · · · ×H(is)

q

™
,

By Weyl's criterion, these sets become equidistributed if and only if for any y :=
(
y0, . . . , yϕ(d)−1

)
∈

Zϕ(d) \ {0} we have the following convergence towards zero:

1∏s
j=1 |H

(ij)
q |
×

Ö ∑
(ai1 ,...,ais )∈H(i1)

q ×···×H(is)
q

e (x(ai1 , . . . , ais , q) · y)

è
−→
q→∞
q∈Ad

0

But the left-hand side can be rewritten as:

∏
i∈{i1,...,is}

 1

|H(i)
q |

∑
ai∈H

(i)
q

e

Ç
aif(wmiq )

q

å× ∏
i/∈{i1,...,is}

e

Ç
aif(wmiq )

q

å
(3.24)
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where f is the polynomial y0 + y1X + · · ·+ yϕ(d)−1X
ϕ(d)−1.

Now for all i ∈ {i1, . . . , is}, the element wmiq is still of order d in (Z/qZ)× because (mi, d) = 1. Also,
f ∈ Z[X] \ {0} and deg f < ϕ(d). Therefore, the assumptions of Lemma 3.2 are satis�ed, and we can
�nd an integer Nf such that for all q > Nf such that q is d-admissible, we have:

1

|H(i)
q |

∣∣∣∣∣∣∣
∑

ai∈H
(i)
q

e

Ç
aif(wmiq )

q

å∣∣∣∣∣∣∣�f

√
q

|H(i)
q |

for all i ∈ {i1, . . . , is}. Thus, the �rst product in (3.24) can be bounded above as follows:

∣∣∣∣∣∣∣
∏

i∈{i1,...,is}

 1

|H(i)
q |

∑
ai∈H

(i)
q

e

Ç
aif(wmiq )

q

å∣∣∣∣∣∣∣�f
qs/2

s∏
j=1

∣∣∣H(ij)
q

∣∣∣ ,

so it tends to zero as q goes to in�nity thanks to assumption (3.20). As the remaining factors in (3.24)
have absolute value equal to 1, this concludes the proof.

Illustration of Theorem 3.9 (b). In Figure 2.5, we were interested in the distribution of Kloost-
erman sums restricted to the subgroup of order 5:

Kq(a, b, 5) :=
∑

x∈(Z/qZ)×

x5=1

e

Å
ax+ bx−1

q

ã
.

More precisely, [16, Theorem 7] asserts that the sets Kq(−,−, 5) = {Kq(a, b, 5); (a, b) ∈ (Z/qZ)2}
become equidistributed in the region H5 delimited by the 5-cusp hypocycloid, with respect to the
pushforward measure via g5 of the Haar measure on T4. Theorem 3.9 (b) strengthens this result by
showing that one can impose restrictions on the set of parameters, and still obtain equidistribution.
Namely, we proved that it su�ces that the parameters a and b range over multiplicative subgroups
H

(1)
q and H

(2)
q whose cardinality grows faster than

√
q �multiplicatively on average� in the sense of

(3.20). One can also �x one of the two parameters, and let the other one vary in a subgroup Hq,
and again, equidistribution is ensured provided

√
q/|Hq| −→

q→∞
0. This is what the following pictures

illustrate. We consider the following sets of Kloosterman sums restricted to the subgroup of order 5:


∑

x∈(Z/qZ)×

x5=1

e

Å
ax+ x−1

q

ã
; a ∈ Hq

 (3.25)

for di�erent 5-admissible values of q and the indicated choice of subgroups Hq (which are uniquely
determined by their cardinality, since (Z/qZ)× is cyclic). We chose |Hq| in such a way that

√
q/|Hq|

becomes very small.
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(a) q = 1901
|Hq| = 950√
q/|Hq| ' 0.046

(b) q = 4212

|Hq| = 29470√
q/|Hq| ' 0.014

(c) q = 9712

|Hq| = 941870√
q/|Hq| ' 0.001

Figure 3.1: The sets of the form (3.25) for three 5-admissible integers q and for the indicated choice of
subgroups Hq.

3.3. On crossing the
√
q barrier

Theorem 3.9 is an improvement of propositions 2.12 and 2.20 because equidistribution is proved even
though the parameters are restricted to range over �small� subsets of the whole ring Z/qZ. Precisely,
it allows them to range over multiplicative subgroups |Hq| satisfying

√
q

|Hq|
−→
q→∞

0. (3.26)

In particular, |Hq| �ε q
1/2+ε for some ε > 0 is su�cient to obtain equidistribution.

The proof relies mostly on Lemma 3.2, which is an exponential sum estimate for sums over a multi-
plicative subgroup of (Z/qZ)×. If we forget for a moment about the dependence in q of f(wq) in this
lemma, which adds a little extra di�culty, we can say that it is actually concerned with sums of the
type ∑

x∈Hq

e

Å
ax

q

ã
.

for �xed a ∈ Z/qZ and Hq being a subgroup of (Z/qZ)×. Equidistribution results with parameters
varying in the subgroup will depend on non-trivial estimates for the absolute value of the sum above.
For instance, we would like to obtain a power saving, that is: an estimate of the form∣∣∣∣∣∣∑x∈Hq e

Å
ax

q

ã∣∣∣∣∣∣� |Hq|
qε
·

for some ε > 0. Moreover, one could wish for some uniformity with respect to a and hence seek for
estimates of the form

max
a∈(Z/qZ)×

∣∣∣∣∣∣∑x∈Hq e
Å
ax

q

ã∣∣∣∣∣∣� |Hq|
qε
· (3.27)

It turns out that this question has been extensively studied and is at the intersection of many areas
of mathematics. In [79], Pär Kurlberg gives a brief exposition of the history of the question and of
some important achievements, before giving a detailed overview of the most recent progress and their
connection with additive combinatorics. He focuses mainly on the case where q = p is a prime number
and starts by showing how a standard completion method allows one to get a power saving of the form
(3.27) as soon as |Hp| �ε p

1/2+ε.
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The completion method. In this paragraph, we only consider exponential sums modulo prime
numbers p, and Hp will always denote a subgroup of the multiplicative group F×p . What we call
�completion method� is the approach described in the introduction of [79] that we already applied in
the overview of the proof of Lemma 3.2. It turns sums over the subgroup Hp into sums over all F×p by
testing the condition x ∈ Hp using multiplicative characters. The �rst step is to decompose the map:

ψa : F×p → C

x 7→ e
Ä
ax
q

ä
in the orthonormal basis of Maps(F×p ,C) made of the multiplicative characters modulo p. This gives

∑
x∈Hp

e

Å
ax

p

ã
=
∑
x∈Hp

∑
χ

〈ψa, χ〉χ(x)

Now, 〈ψa, χ〉 can be related to a Gauss sum as follows (see Appendix 3.A for the notation τ(-, -) for
Gauss sums):

〈ψa, χ〉 =
1

ϕ(p)

∑
y∈F×p

ψa(y)χ(y) =
1

p− 1
τ (χ, ψa) ,

hence ∑
x∈Hp

e

Å
ax

q

ã
=

1

p− 1

∑
χ

τ (χ, ψa)
∑
x∈Hp

χ(x).

Now, among the multiplicative characters modulo p, all those who induce (by restriction) a non-trivial
character ofHp have no contribution. Indeed, for such characters, the inner sum is zero by orthogonality
of the multiplicative characters of Hp. On the other hand, for the trivial characters of Hp, the inner
sum is just equal to its number of terms, that is: |Hp|. We deduce that

∑
x∈Hp

e

Å
ax

q

ã
=
|Hp|
p− 1

∑
χ|Hp=1

τ (χ, ψa)

Finally, if χ is the principal character χ0 modulo p, we have τ (χ0, ψa) = τ (χ0, ψa) = −1 for all a ∈ F×p .
If χ is not the principal character modulo p, then τ (χ, ψa) is a Gauss sum associated with a non-trivial
additive character of Fp (provided a ∈ F×p ) and a non trivial multiplicative character modulo p, hence
|τ (χ, ψa) | =

√
p. As the number of multiplicative characters modulo p satisfying χ|Hp = 1 is equal to

p−1
|Hp| , we deduce that ∣∣∣∣∣∣ ∑x∈Hp e

Å
ax

q

ã∣∣∣∣∣∣ < √p.
This shows that we have a power saving of the form (3.27) as soon as |Hp| �ε p

1/2+ε for some ε > 0.

Going below p1/2+ε. Crossing this
√
p barrier is by no means easy, and the �rst achievement is due

to Shparlinski in [97], where a power saving of the form (3.27) is obtained for subgroups satisfying
|Hp| �ε p

3/7+ε. Indeed, Shparlinski [97, Theorem 2] shows that if g ∈ F×p is an element of order τ ,
then

max
(a,p)=1

∣∣∣∣∣
τ∑
x=1

e

Å
agx

p

ã∣∣∣∣∣ 6 2τ5/12p1/4. (3.28)

This upper bound relies on considerations on the 4-th moment and estimates for the number of points
on curves given by an equation of the form xn + yn = λ over �nite �elds, which were studied in
[43]. Once we have the above estimate, it is easy to derive the needed power saving for subgroups of
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cardinality �ε p
3/7+ε. For such a subgroup Hp, it su�ces to take a generator g, whose order τ then

satis�es τ � p3/7+ε, and to apply (3.28) to get:

1

|Hp|
max
a∈F×p

∣∣∣∣∣∣ ∑x∈Hp e
Å
ax

p

ã∣∣∣∣∣∣ 6 2|Hp|5/12p1/4

|Hp|
=

2p1/4

|Hp|7/12
�ε

1

p
7
12
ε
·

Some signi�cative improvements were made by Heath-Brown and Konyagin in [49], using a variation
of Stepanov's polynomial method to handle the point-counting on the underlying curves over �nite
�elds. This allowed them to consider the range |Hp| �ε p

1/3+ε. The best known bound using these
tools from analytic number theory is due to Konyagin [67], where subgroups satisfying |Hp| �ε p

1/4+ε

are allowed. However, the story does not end there, thanks to a fruitful interplay between additive
combinatorics and exponential sums!

A triumph for additive combinatorics. The previous discussion shows that obtaining a power
saving of the form (3.27) for smaller and smaller subgroups required (quoting Green's lecture notes
[47]) �quite sophisticated number-theoretical arguments� (as we have seen, it involved for instance
Stepanov's polynomial method to handle the point counting on certain curves over �nite �elds). Thus,
Theorem 3.11 below �is something of a triumph for additive combinatorics�. It states that one can
replace the growth condition (3.26) by the following one:

|Hq| > qδ

for any �xed δ > 0, which represents a huge improvement!

This theorem is the achievement of a series of article, mainly by Bourgain, Chang, Glibichuk and
Konyagin, in which very strong estimates on sums of additive characters modulo q over subgroups of
(Z/qZ)× were proved for di�erent forms of factorization of q. The case where q is prime is proved
in [13], while the case of prime powers with bounded exponent is settled in [12]. This series of works
culminated with the following theorem, which treats the general case, and includes in particular the
case of small primes raised to high powers.

Theorem 3.11 (Bourgain). For any δ > 0, there exists ε = ε(δ) > 0 such that for any integer q > 2,
and any subgroup H of (Z/qZ)× such that |H| > qδ,

max
a∈(Z/qZ)×

∣∣∣∣∣∣∑x∈H e
Å
ax

q

ã∣∣∣∣∣∣ 6 C |H|qε (3.29)

where C is a constant depending at most on δ.

Proof. See [11, Theorem].

3.4. Subgroups of cardinality at least qδ

In this section, we show that Bourgain's estimate allows us to push further the restriction of the liberty
of the parameters in Theorem 3.9. We prove that the result still holds if the parameters are restricted
to range over very small subgroups of (Z/qZ)×, namely subgroups whose cardinality grows as fast as
an arbitrary small power of q.

Exponential sum estimate. Lemma 2.15 was about estimates for

∑
a∈Z/qZ

e

Å
af(wq)

q

ã
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(and actually showed that these are eventually equal to zero), while Lemma 3.2 provided an estimate
for ∑

a∈Hq

e

Å
af(wq)

q

ã
which was non-trivial as soon as Hq was substantially larger than

√
q, and which allowed us to extend

our equidistribution results to sets of exponential sums with parameters varying in su�ciently large
subgroups of (Z/qZ)× (the condition is essentially |Hq|/

√
q −→
q→∞

∞). Bourgain's estimate (Theorem

3.11) allows us to go further in our reduction of the admissible cardinality of the subgroups, via the
following proposition, which can be seen as an improvement of Lemma 2.15 and Lemma 3.2.

Proposition 3.12. Let d > 1 and let f ∈ Z[X] \ {0} be a polynomial of degree strictly less than ϕ(d).
Let δ > 0. Then, there exists ε = ε(δ) > 0, depending only on δ, such that for all d-admissible integer q
larger than some constant Nf depending only on f , for all subgroup Hq of (Z/qZ)× satisfying |Hq| > qδ,
and for any element wq of order d inside (Z/qZ)×, we have∣∣∣∣∣∣∑a∈Hq e

Å
af(wq)

q

ã∣∣∣∣∣∣�f,δ
|Hq|
qε
· (3.30)

Proof. Let q = pα be a d-admissible integer, and let Hq and wq be as in the statement. Let w̃q be any
lift in Z of the class wq. Assume further that q > nf for any constant nf as in Proposition 3.4. This
ensures that f(wq) 6≡ 0 mod q, but f(wq) could still be non-invertible if q is a non-trivial prime power.
This is why one cannot directly apply Bourgain's theorem to the sum on the left-hand side of (3.30).
In order to reduce to a situation where Bourgain's theorem applies, let us introduce the notation βq
for the p-adic valuation of f(w̃q), and write f(w̃q) := pβqrq. By Proposition 3.4 (a), we know that
βq < α. Then we have: ∑

a∈Hq

e

Å
af(wq)

q

ã
=
∑
a∈Hq

e

Å
arq
pα−βq

ã
(3.31)

Now, each of the terms e
(

arq
pα−βq

)
only depends on the class of a modulo pα−βq . Let us denote by

q′ := pα−βq and by π the group homomorphism (Z/qZ)× → (Z/q′Z)× induced by the reduction modulo
q′. The latter induces a group homomorphism π̃ : Hq → π(Hq) =: H ′q. We denote by k := | ker π̃|.
Then we have the following equality∑

a∈Hq

e

Å
arq
pα−βq

ã
= k

∑
a∈H′q

e

Å
arq
q′

ã
Indeed, any element of H ′q has exactly k pre-images in Hq under the reduction modulo q′.
Since ker π̃ ⊆ kerπ, we have that k 6 | kerπ| = pβq . Therefore:∣∣∣∣∣∣∑a∈Hq e

Å
arq
pα−βq

ã∣∣∣∣∣∣ 6 pβq ∣∣∣∣∣∣∑a∈H′q eÅarqq′ ã∣∣∣∣∣∣ (3.32)

In order to apply Theorem 3.11 to the sum on the right-hand side, we �rst need to check that the
subgroup H ′q of (Z/q′Z)× is large in the following sense: |H ′q| > (q′)δ

′
for some δ′ > 0. Thanks to the

�rst isomorphism theorem, we have:

|H ′q| =
|Hq|
k
>
|Hq|
pβq

and by assumption |Hq| > qδ, therefore:

|H ′q| >
qδ

pβq
=
pαδ

pβq
=
p(α−βq)δ

pβq(1−δ)
=

(q′)δ(
pβq
)1−δ ·
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Now, since q > nf , we have that pβq 6 Cf thanks to Proposition 3.4 (b), where Cf is a positive
constant depending only on f . Thus,

|H ′q| >
(q′)δ

C1−δ
f

Finally, since C1−δ
f is a constant and q′ tends to in�nity as q goes to in�nity, we obtain that (q′)

δ
2

C1−δ
f

eventually becomes greater than 1 as q becomes large, so that:

|H ′q| > (q′)
δ
2 (3.33)

for all q large enough, say larger than some constant Nf which only depends on f . The fact that q′

tends to in�nity as q tends to in�nity is a consequence of the inequality:

q′ = pα−βq =
q

pβq
>

q

Cf
·

Thanks to (3.33), Theorem 3.11 applies to the sum on the right-hand side of (3.32), because we also
have that rq is invertible modulo q′. So there exists a constant ε = ε(δ/2) > 0 and a constant C
depending at most on δ such that: ∣∣∣∣∣∣∑a∈H′q e

Å
arq
q′

ã∣∣∣∣∣∣ 6 C |H ′q|(q′)ε

Thanks to (3.31) and (3.32), this implies the following upper bound:∣∣∣∣∣∣∑a∈Hq e
Å
af(wq)

q

ã∣∣∣∣∣∣ 6 Cpβq |H ′q|(q′)ε

Now we use the fact that |H ′q| 6 |Hq| to obtain the following inequality:

C
pβq |H ′q|

(q′)ε
6 C

pβq |Hq|(
pα−βq

)ε = C
|Hq|pβq(1+ε)

qε
·

Finally, we use again the fact that pβq 6 Cf , which gives us the conclusion of the proof:∣∣∣∣∣∣∑a∈Hq e
Å
af(wq)

q

ã∣∣∣∣∣∣ 6 CC1+ε
f

|Hq|
qε
�f,δ

|Hq|
qε
·

Consequence on equidistribution of exponential sums. By replacing the use of Lemma 3.2 by
the exponential sum estimate of Proposition 3.12, we are able to generalize Theorem 3.9 by allowing
the parameters to range over even smaller subgroup. Precisely, we obtain the following statement.

Theorem 3.13. Let d > 1 be an integer and let m = (m1, . . . ,mn) ∈ Zn. For all d-admissible integer

q, we �x subgroups H(1)
q , . . . ,H

(n)
q of (Z/qZ)×. Then we have the following equidistribution results:

(a) The general case.

If there exists δ > 0 such that the subgroups H(1)
q , . . . ,H

(n)
q satisfy the growth condition:

∀i ∈ {1, . . . , n}, |H(i)
q | > qδ, (3.34)

then the sets
∑

x∈(Z/qZ)×

xd=1

e

Å
a1x

m1 + · · ·+ anx
mn

q

ã
; (a1, . . . , an) ∈ H(1)

q × · · · ×H(n)
q

 , (3.35)
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become equidistributed in the image of the Laurent polynomial fd,m (De�nition 2.19) with respect
to the pushforward measure via fd,m of the probability Haar measure λ on (S1)ϕ(d1)+···+ϕ(dn), as
q goes to in�nity among the d-admissible integers.

(b) When m is coprime with d.
Let s ∈ {1, . . . , n} and let {i1, . . . , is} ⊆ {1, . . . , n}. We �x n− s integers ai for i ∈ {1, . . . , n} \
{i1, . . . , is}. Then if their exists δ > 0 such that

∏
16j6s

∣∣∣H(ij)
q

∣∣∣ > qδ (3.36)

is satis�ed, the sets of sums
∑

x∈(Z/qZ)×

xd=1

e

Å
a1x

m1 + · · ·+ anx
mn

q

ã
; (ai1 , . . . , ais) ∈ H(i1)

q × · · · ×H(is)
q


become equidistributed in the image of the Laurent polynomial gd (De�nition 2.6) with respect to
the pushforward measure via gd of the probability Haar measure on (S1)ϕ(d), as q goes to in�nity
among the d-admissible integers.

For instance, if one takes m = (1,−1), the second case of this theorem states that the sets¶
Kq(a, b, d); (a, b) ∈ H(1)

q ×H(2)
q

©
(3.37)

satisfy the same equidistribution result as the sets of Figure 2.5, as soon as the H(i)
q are subgroups of

(Z/qZ)× such that
|H(1)

q ||H(2)
q | > qδ (3.38)

for some δ > 0. In other words, restricting the parameters a, b to large enough multiplicative (in the
sense of (3.38)) subgroups does not introduce any bias in the distribution of the restricted Kloosterman
sums, and still ensures equidistribution with respect to the same measure as in Theorem 2.5.

The above statement improves a lot Theorem 3.9 because in the latter, condition (3.20) said that we
could only prove equidistribution under the condition

q

|H(1)
q ||H(2)

q |
−→
q→∞

0

so essentially this is the conclusion given by Theorem 3.13 when δ > 1, but this theorem actually
allows any value of δ > 0, hence much smaller subgroups can be taken as sets of parameters.

Proof of case (a) of Theorem 3.13. The beginning of the proof is the same as the proof of Theorem
3.9 (a). If we denote by y any non-zero vector with integer entries (which is needed in the application
of Weyl's criterion), we perform the same splitting as y = (y1, . . . ,yn) and x = (x1, . . . ,xn) as in the
mentioned proof, and we want to show that the product

n∏
i=1

 1

|H(i)
q |

∑
ai∈H

(i)
q

e(xi(ai, q) · yi)

 (3.39)

converges to zero as q goes to in�nity. Now, we have that there exists at least one index i ∈ {1, . . . , n}
such that yi 6= 0. For such an i, write

1

|H(i)
q |

∑
ai∈H

(i)
q

e(xi(ai, q) · yi) =
1

|H(i)
q |

∑
a∈H(i)

q

e

Ç
afi(w

mi
q )

q

å
, (3.40)
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where fi is the polynomial associated with yi =
(
yϕ(d1)+···+ϕ(di−1), . . . , yϕ(d1)+···+ϕ(di−1)+ϕ(di)−1

)
as in

the proof of Theorem 3.9 (a). This is a non-zero polynomial with integer coe�cients and with degree

strictly less than ϕ(di), and wmiq is an element of order di in (Z/qZ)×. Besides, the cardinality of H(i)
q

satis�es the growth assumption (3.34). Thus, we can apply Proposition 3.12, which states that there
exists ε = ε(δ) > 0 and a rank Nfi such that for all q > Nfi such that q is d-admissible,∣∣∣∣∣∣∣

∑
a∈H(i)

q

e

Ç
afi(w

mi
q )

q

å∣∣∣∣∣∣∣�fi

|H(i)
q |
qε

This estimate allows us to conclude on the convergence of the product (3.39) and this �nishes the
proof.

Proof of case (b) of Theorem 3.13. Thanks to the same arguments as in the proof of Theorem 3.9 (b),
it su�ces to show that the following quantity

∏
i∈{i1,...,is}

 1

|H(i)
q |

∑
ai∈H

(i)
q

e

Ç
aif(wmiq )

q

å× ∏
i/∈{i1,...,is}

e

Ç
aif(wmiq )

q

å
(3.41)

converges to zero as q goes to in�nity among the d-admissible integers (we recall that f is the polyno-
mial y0 + y1X + · · · + yϕ(d)−1X

ϕ(d)−1 associated with the vector y ∈ Zϕ(d), whose apparition comes
from the application of Weyl's criterion).

Now, if we assume for a contradiction that for all i ∈ {i1, . . . , is} we have

|H(i)
q | < qδ/s

then this would contradict assumption (3.36). Thus, their exists i ∈ {i1, . . . , is} such that

|H(i)
q | > qδ/s

Let us stress that of course, this i may change as q varies. Then we can apply Proposition 3.12 to this
speci�c i, and deduce that if q is larger than some constant Nf , depending only on f but not on i
(because Proposition 3.12 allows any primitive d-th root in its statement), we have:

1

|H(i)
q |

∣∣∣∣∣∣∣
∑

ai∈H
(i)
q

e

Ç
aif(wmiq )

q

å∣∣∣∣∣∣∣�f
1

qε

where ε = ε(δ/s) in the notations of the proposition. Thus the absolute value of (3.41) can be bounded
above as follows for all q > Nf :∣∣∣∣∣∣∣

∏
i∈{i1,...,is}

 1

|H(i)
q |

∑
ai∈H

(i)
q

e

Ç
aif(wmiq )

q

å× ∏
i/∈{i1,...,is}

e

Ç
aif(wmiq )

q

å∣∣∣∣∣∣∣�f
1

qε
,

so it tends to zero as q goes to in�nity, and this �nishes the proof.

Remark 3.14. As a very special case, the estimate of Theorem 3.11 allows one us to deduce a
generalization of Myerson's lemma, which asserts that the setsß

a

q

Ä
1, wq, . . . , w

ϕ(d)−1
q

ä
; a ∈ Z/qZ

™
, (3.42)

where wq is a primitive d-th root of unity modulo q, become equidistributed modulo 1 as q goes to
in�nity among the d-admissible integers (see Lemma 2.30 of Chapter 2).
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Precisely, it gives a generalization of the equidistribution of the sets of type (3.42) to sets of the formß
a

q

Ä
1, wq, . . . , w

ϕ(d)−1
q

ä
; a ∈ Hq

™
, (3.43)

where Hq is a large enough subgroup of (Z/qZ)×:

Corollary 3.15. Let d > 1 and let δ > 0. For all q ∈ Ad, let wq be an element of order d in (Z/qZ)×.
For each of these values of q, we also �x a subgroup Hq of (Z/qZ)×. If the following growth condition
is satis�ed:

|Hq| > qδ,

then the sets (3.43) become equidistributed modulo 1 as q tends to in�nity among the d-admissible
integers.

Proof. This is a direct consequence of Weyl's equidistribution criterion and the estimate of Proposition
3.12.
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3.A. On Gauss sums modulo prime powers

In this section, we quote some results on the absolute value of Gauss sums associated with possibly
non-primitive Dirichlet characters. These estimates on Gauss sums have played a central role in the
argument to prove Lemma 3.12. Since we are working with sums modulo prime powers, and not neces-
sarily modulo primes, some subtleties arise from the non-primitivity of the characters involved, and we
thought it would be useful to include a few facts in an appendix. Indeed, if χ is a Dirichlet character
modulo m and ψa an additive character modulo m, there are two independent periodicity properties
that come into play: the non-primitivity of χ and the non-primitivity of ψa if a is not coprime with m.

We begin by reviewing a few facts about Dirichlet characters, the reader is also referred to [54, chapter
3] and [85, chapter 9].
Let m > 2 be an integer. A Dirichlet character modulo m is a function χ : Z→ C such that:

|χ(i)| =
®

1 if (i,m) = 1

0 otherwise,

and for all i, j ∈ Z, χ(ij) = χ(i)χ(j).

In other words, it is a function on Z obtained by extending a multiplicative character of the group
(Z/mZ)× to the whole additive group Z/mZ by setting its value at 0 when evaluated at residue classes
not coprime with m, and then composing by the canonical map Z→ Z/mZ.
If n divides m, then we have a canonical ring homorphism

πm,n : Z/mZ→ Z/nZ

so that if χ is a Dirichlet character modulo n, then χ ◦ πm,n is a Dirichlet character modulo m. If a
Dirichlet character modulo m is obtained in this way for n a proper divisor of m, then we say that χ
is not primitive and that it is induced by a character modulo n. Otherwise, it is called primitive.

� If m is an integer larger than or equal to 2, the additive characters modulo m will be denoted by
ψa for a ∈ Z/mZ, where:

ψa : Z/mZ → C×

x 7→ e
(
ax
m

)
� If χ is Dirichlet character modulo m and ψ is an additive character modulo m, we denote their
attached Gauss sum by:

τ(χ, ψ) :=
∑

x∈Z/mZ

χ(x)ψ(x)

Equivalently, one could also de�ne the Gauss sum by summing over the units modulo m, since
χ takes the value 0 outside of this set.

� If ψ = ψ1, we simply denote by τ(χ) the associated Gauss sum, that is:

τ(χ) :=
∑

x∈Z/mZ

χ(x)e
( x
m

)

� The principal Dirichlet character modulo m is denoted by χ0. For all a ∈ Z we have: χ0(a) = 1
if a and m are coprime, and χ0(a) = 0 otherwise.

Lemma 3.16 ([85, theorem 9.12 page 290]). Let χ be a non-principal character modulo m. Assume
that χ is induced by the primitive character χ? modulo m?. Then for all a ∈ Z, if we denote by
d := (m, a) we have:
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τ(χ, ψa) =

{
0 if d does not divide m

m?

χ?
(
a
d

)
χ?
(
m
dm?

)
µ
(
m
dm?

) ϕ(m)
ϕ(m/d)τ(χ?) if d divides m

m?
(3.44)

In particular, if χ is primitive (that is m = m? and χ = χ?), we obtain:

τ(χ, ψa) = τ(χ)χ(a) (3.45)

Remark 3.17. Equality (3.45) above also holds when χ is not primitive in the particular case where
(a,m) = 1. Indeed, in that case it follows from the fact that x 7→ ax permutes Z/mZ, since a ∈
(Z/mZ)×.

When ψa = ψ1, the statement takes a much simpler form, since only the non-primitivity of χ plays a
role.

Lemma 3.18 ([54, lemma 3.1 page 48]). Let χ be a non-principal Dirichlet character modulo m.
Assume that χ is induced by the primitive character χ? modulo m?. Then:

τ(χ) = µ
( m
m?

)
χ?
( m
m?

)
τ(χ?)

Moreover, if χ is primitive then:
|τ(χ)| =

√
m

Remark 3.19. � When m is a prime number p, all the non-principal characters modulo m are
primitive. Therefore the second assertion always holds for non-principal Dirichlet characters
modulo a prime.

� Another case which will be interesting for us is the one where m is a non-trivial prime power.
Let us say that m = pα with α > 2. Then, if χ is a non-primitive and non-principal character
modulo m, its conductor m? divides m, hence it is of the form pβ for some 0 < β < α (the
inequalities are strict because β = 0 would correspond to χ = χ0 and β = α would correspond to
χ primitive). Then p divides m/m? = pα−β , so (m/m?,m?) > 1. We deduce that χ?

(
m
m?

)
= 0

because χ? is a character modulo m?. Thus, τ(χ) = 0 as soon as χ is not primitive (and is not
the principal character modulo m).

This last remark tells us that when m is a prime power, the sums τ(χ) are either zero or associated
with a primitive Dirichlet character χ, in which case |τ(χ)| =

√
m. However, the situation is not as

simple when the additive character can be any ψa. In this case, the specialization of lemma 3.16 to
the case of sums modulo prime powers gives the following corollary:

Corollary 3.20. Let p be a prime number and α > 1 be an integer. Let χ be a non-principal Dirichlet
character modulo pα, induced by the primitive character χ? modulo pβ for some 0 < β 6 α. For all
a ∈ Z, we have τ(χ, ψa) 6= 0 if and only if the p-adic valuation of a equals α − β, in which case we
have:

τ(χ, ψa) = χ?
Å

a

pα−β

ã
pα−βτ(χ?)

In particular:

|τ(χ, ψa)| =

{
pα−

β
2 if vp(a) = α− β

0 otherwise

Proof. We apply lemma 3.16 with m = pα and m? = pβ . We still denote by d := (a,m). Then d is a
power of p, say d = pγ .

� If γ > α− β: then d does not divide m/m? so the Gauss sum τ(χ, ψa) is zero.
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� If γ 6 α− β: then d divides m/m?, hence:

τ(χ, ψa) = χ?
Å
a

pγ

ã
χ?
Ä
pα−β−γ

ä
µ
Ä
pα−β−γ

ä ϕ(pα)

ϕ(pα−γ)
τ(χ?)

= χ?
Å
a

pγ

ã
χ?
Ä
pα−β−γ

ä
µ
Ä
pα−β−γ

ä (p− 1)pα−1

(p− 1)pα−γ−1
τ(χ?)

= χ?
Å
a

pγ

ã
χ?
Ä
pα−β−γ

ä
µ
Ä
pα−β−γ

ä
pγτ(χ?)

Now, as soon as γ < α − β, we have χ?(pα−β−γ) = 0 because then p divides pα−β−γ and χ? is
a Dirichlet character modulo pβ . This shows that τ(χ, ψa) is non-zero if and only if γ = α − β,
that is: d = (a, pα) = pα−β , which is equivalent to vp(a) = α − β since β > 0 (here we use the
fact that χ is not the principal character modulo pα). In this case, we have:

τ(χ, ψa) = χ?
Å

a

pα−β

ã
χ? (1)µ (1) pα−βτ(χ?)

= χ?
Å

a

pα−β

ã
pα−βτ(χ?)

Finally, |τ(χ?)| = pβ/2 thanks to the second part of lemma 3.18 since χ? is a primitive character
modulo pβ . The assertion on |τ(χ, ψa)| follows from that.

Remark 3.21. This last corollary can also be found in [5, section 1.6] with a self-contained proof
which does not rely on the more general case we stated in Lemma 3.16.
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3.B. Some complements on Bourgain-Glibichuk-Konyagin's estimate

I thank Élise Goujard and Pascal Autissier for asking me the question of the optimality of the growth
condition in Bourgain's estimate. This question encouraged me to gain a better understanding of the
state of the art and led to the writing of this appendix.

In the case of prime moduli, Bourgain-Glibichuk-Konyagin's estimate asserts that for any δ > 0, there
exists ε = ε(δ) > 0 such that for all p, for all subgroup G of F×p satisfying

|G| > pδ (3.46)

we have

max
a∈F×p

∣∣∣∣∣∣∑x∈G e
Å
ax

p

ã∣∣∣∣∣∣�δ
|G|
pε
·

In particular,

max
a∈F×p

∣∣∣∣∣∣∑x∈G e
Å
ax

p

ã∣∣∣∣∣∣ =
p→∞

o (|G|) , (3.47)

but this only holds for large enough subgroups, in the sense of condition (3.46). In this section, we
address the question of the optimality of this growth condition. In other words, is there a hope to
obtain (3.47) for subgroups whose cardinality is less than any power of p? In [68], the following theorem
explains that there is no hope for subgroups whose cardinality is at most a constant times log(p). This
does not completely answer our question, but still, this tells us that subgroups that are too small (even
though their cardinality goes to in�nity) cannot satisfy (3.47).

Theorem 3.22 ([68, Theorem 1.8]). For all u > 0, there exist p(u) and η(u) > 0 such that for all
p > p(u), if G is a subgroup of F×p satisfying

|G| 6 u log(p),

then

max
a∈F×p

∣∣∣∣∣∣∑x∈G e
Å
ax

p

ã∣∣∣∣∣∣ > η(u)|G|.

In this section we give the proof of this theorem, following the arguments of loc. cit. and expanding
some details.

Notation. For any prime p and any subgroup G of F×p , we denote by

Mp(G) := max
a∈F×p

∣∣∣∣∣∣∑x∈G e
Å
ax

p

ã∣∣∣∣∣∣
and by Dp(a,G) the discrepancy of the set

¶¶
ax
p

©
, x ∈ G

©
:

Dp(a,G) := sup
I∈I

∣∣∣∣∣∣#
¶
x ∈ G,

¶
ax
p

©
∈ I
©

|G|
− λ(I)

∣∣∣∣∣∣
We start by stating and proving some preparatory lemmas for the proof of Theorem 3.22.
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A consequence of Erdös-Turán inequality.

Lemma 3.23 ([68, p.7 and 8]). For all prime p, for all subgroup G of F×p , for all η ∈
î

1
p , 1
î
, if

Mp(G)

|G|
6 η

then for all a ∈ F×p ,
Dp(a,G) 6 6η

(
ln
(
η−1
)

+ 1
)
.

Proof. Thanks to Erdös-Turán inequality [29, Theorem 1.21], for any sequence z1, . . . , zN of elements
of R/Z, we have that for all H > 1 and all N > 1, the discrepancy of the sequence is bounded above
by

3

2

Ñ
2

H + 1
+

∑
0<|m|6H

1

|m|

∣∣∣∣∣ 1

N

N∑
n=1

e(mzn)

∣∣∣∣∣
é

Applying this inequality to the �nite sequence of the points of the setßß
ax

p

™
, x ∈ G

™
one obtains

Dp(a,G) 6
3

H + 1
+

3

2

∑
0<|m|6H

1

|m|

∣∣∣∣∣∣ 1

|G|
∑
x∈G

e

Å
m
ax

p

ã∣∣∣∣∣∣ .
Now if H < p, then for all 0 < |m| 6 H, ma is invertible modulo p, so∣∣∣∣∣∣∑x∈G e

Å
m
ax

p

ã∣∣∣∣∣∣ 6Mp(G),

from which we deduce

Dp(a,G) 6
3

H + 1
+

3Mp(G)

2|G|
∑

0<|m|6H

1

|m|

=
3

H + 1
+

3Mp(G)

|G|

H∑
m=1

1

m

6
3

H + 1
+

3Mp(G)

|G|
(1 + ln(H))

Now, assume that
Mp(G)

|G|
6 η (3.48)

for some η ∈
î

1
p , 1
î
. Then we can take

H :=

õ
1

η (ln (η−1) + 1)

û
It satis�es 1 6 H < p, so we can use this value of H in the estimate of Dp(a,G) previously obtained,
namely:

Dp(a,G) 6
3

H + 1
+

3Mp(G)

|G|
(1 + ln(H)).

Then,
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� First, we have
3

H + 1
6 3η

(
ln
(
η−1
)

+ 1
)

using 1
bxc+1 6

1
x ·

� Second, we have

1 + ln(H) 6 1 + ln

Å
η−1

1 + ln (η−1)

ã
6 1 + ln

(
η−1
)

using bxc 6 x.

Therefore, remembering that we assumed that (3.48) holds, we conclude that

Dp(a,G) 6 6η
(
ln
(
η−1
)

+ 1
)
.

We now turn to a second preparatory lemma, which belongs to the �eld of diophantine approximation.

Dirichlet's simultaneous approximation theorem. We will introduce the result as a corollary
of the following slightly more general theorem:

Theorem 3.24 ([95, Theorem 1.E]). Let (αi,j)16i6n,16j6m be nm real numbers, and let Q > 1 be an
integer. Then there exist integers a1, . . . , am, b1, . . . , bm such that

1 6 max(|a1|, . . . , |am|) < Qn/m

and for all i ∈ {1, . . . , n},
| (a1αi,1 + · · ·+ amαi,m)− bi| 6

1

Q
·

Moreover, in the remark following the statement of this theorem in [95], it is written that one may
drop the condition that Q is an integer, using a theorem of Blichfeldt [95, Theorem 2.A]. Taking this
remark into account and m = 1 in the previous theorem, one obtains the following corollary, which is
the actual version that we will use in the proof of Theorem 3.22.

Corollary 3.25 (Dirichlet's simultaneous approximation theorem). Let α1, . . . , αn be n real numbers,
and let Q > 1 (not necessarily an integer). Then there exist integers a, b1, . . . , bn such that

1 6 |a| < Qn (3.49)

and for all i ∈ {1, . . . , n},
|aαi − bi| 6

1

Q
·

Remark 3.26. Up to replacing a by −a and bi by −bi, we can always assume that a satis�es 1 6 a <
Qn. In other words, the conclusion of Corollary 3.25 is still true if we remove the absolute value in
(3.49).

In the case where Q is an integer, the above corollary can be proved using only the pigeonhole principle.
However, in the proof of Theorem 3.22, we use the version where Q is not an integer, so we really need
to include this more general statement.

Proof of Corollary 3.25 when Q is an integer. We consider, for 0 6 c < Qn, the Qn points in [0, 1]n:

xc :=

Ö
{cα1}

...
{cαn}

è
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(where {β} denotes the fractional part of a real number β). We denote by 1 the pointÖ
1
...
1

è
of [0, 1]n. Then the set X := {xc, 0 6 c < Qn} ∪ {1} is made of Qn + 1 points in [0, 1]n. Now we split
the unit cube [0, 1]n into Qn smaller cubes of side 1/Q, in the most natural way. By the pigeonhole
principle, there must exist two points of X which belong to the same cube of side 1/Q.

� If one of these points is 1, this means that there exists c ∈ {0, . . . , Qn−1} such that xc belong to
the cube of side 1/Q containing 1. Of course, it cannot be the point x0, which is at the opposite
corner of the unit cube [0, 1]n, hence too far away. Therefore, c belongs to {1, . . . , Qn − 1}, and
the fact that xc belongs to the small cube containing 1 precisely means that there exist integers
b1, . . . , bn such that for all i ∈ {1, . . . , n},

bi − 1/Q 6 cαi 6 bi

because the fractional parts of the cαi are all close to 1. We get the conclusion by taking a = c.

� Otherwise, we have two points xc and xd belonging to the same cube of side 1/Q, associated
with c and d satisfying 0 6 c < d < Qn. This implies that for all i ∈ {1, . . . , n},

|{dαi} − {cαi}| 6 1/Q

Now we use the fact that β = bβc+ {β} for any real number β, to see that

|{dαi} − {cαi}| = |(d− c)αi − bi|,

where bi = bdαic − bcαic ∈ Z. This concludes the proof by taking a = d− c.

Before actually proving the main theorem of this section, we thought that a short preview of the
strategy might be useful.

Strategy of the proof of Theorem 3.22. As far as I understand, the proof is guided by the
following ideas.

1. If the subgroup G of F×p is �small� (in the sense that |G| 6 u log(p)), then

� One can �nd some a ∈ F×p such that most of the fractional parts
¶
ax
p

©
for x ∈ G belong

to some �short� interval. This is essentially the pigeonhole principle, since there are many
a in F×p compared to the size of the subgroup. The quantitative version of this informal
description of this step is provided by Dirichlet's simultaneous approximation theorem.

� The previous step allows one to deduce a lower bound for the discrepancy Dp(a,G) of the

set
¶¶

ax
p

©
, x ∈ G

©
, which is natural because we chose a so that most of the fractional parts

belong to a short interval, so we are in some sense �far from equidistribution�.

So informally:

|G| small =⇒ lower bound for Dp(a,G) for some a ∈ F×p

2. On the other hand, if the exponential sums over G:∑
x∈G

e

Å
bx

p

ã
115



are �small�, in the sense that Mp(G) = o(|G|), then it follows from Erdös-Turán inequality (in
the form of Lemma 3.23) that the discrepancy Dp(a,G) is also small. So informally∣∣∣∣∣∣∑x∈G e

Å
bx

p

ã∣∣∣∣∣∣ small for all b ∈ F×p =⇒ upper bound for Dp(a,G) for all a ∈ F×p

Thus, we see that |G| being small and the exponential sums overG being small can lead to contradictory
inequalities, so that both cannot happen at the same time. This will prove that if |G| is too small, then
the exponential sums over G cannot all be too small. Of course, this was just an informal overview of
the proof, but now we need to turn the word �small� into quantitative estimates in order to make the
argument work.

Proof of Theorem 3.22. Let p be a prime number, and let G be a subgroup of F×p . Let us denote
by t := |G| and let X denote any subset of G, with cardinality T 6 t (to be adjusted later in the
proof). Let x1, . . . , xT ∈ {1, . . . , p− 1} be the unique lifts of the elements of X. For all i ∈ {1, . . . , T},
we let

αi :=
xi
p
·

Then we apply Corollary 3.25 to the real numbers α1, . . . , αT , with Q := p1/T . This gives the existence
of integers a, b1, . . . , bT such that

1 6 a < p

and for all i ∈ {1, . . . , T},
|aαi − bi| 6 p−1/T .

This implies that for all i ∈ {1, . . . , T},

d

Å
axi
p
,Z

ã
6 p−1/T .

We deduce that there exists an interval [α, β[⊂ [0, 1[ with β − α 6 p−1/T and a subset Y of X, with
|Y | > T/2, such that for all y ∈ Y : ß

ay

p

™
∈ [α, β[.

We deduce the following lower bound for the discrepancy of the set
¶¶

ax
p

©
, x ∈ G

©
:

Dp(a,G) := sup
I∈I

∣∣∣∣∣∣#
¶
x ∈ G,

¶
ax
p

©
∈ I
©

|G|
− λ(I)

∣∣∣∣∣∣
>

∣∣∣∣∣∣#
¶
x ∈ G,

¶
ax
p

©
∈ [α, β[

©
|G|

− (β − α)

∣∣∣∣∣∣
>

#
¶
x ∈ G,

¶
ax
p

©
∈ [α, β[

©
|G|

− (β − α)

>
|Y |
t
− p−1/T >

T

2t
− p−1/T .

� If t 6 log(p), we take T to be equal to t (that is: X is equal to the whole subgroup G). Then

Dp(a,G) >
1

2
− exp(− log p

t
) >

1

2
− 1

e
·
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� Otherwise, we have log p < t 6 u log p, so u > 1. Then we take T to be equal to b log p
3u c. For all

p large enough, say larger than some j(u) which can be explicited, we have log p
3u > 1, and the

following inequality holds:

b log p

3u
c > log p

6u

because for all x > 1, bxc > x/2. Therefore, we have the following lower bound for the discrep-
ancy Dp(a,G):

Dp(a,G) >
log p

12ut
− exp

Ç
− log p

b log p
3u c

å
>

1

12u2
− e−3u > 0.

Thus, for all u > 0, there exist j(u) and c(u) > 0 such that for all p > j(u) the discrepancy Dp(a,G)
satis�es

Dp(a,G) > c(u) (3.50)

for any subgroup G of F×p such that |G| 6 u log(p) and for a suitable a ∈ F×p . Indeed, it su�ces to
take

c(u) :=

®
1
2 −

1
e if u 6 1

1
12u2 − e−3u if u > 1.

Now let η := η(u) ∈]0, 1[ be such that 6η
(
ln
(
η−1
)

+ 1
)
< c(u). Suppose that there exists p > p(u) :=

max
Ä
j(u), 1

η(u)

ä
and a subgroup G of F×p such that |G| 6 u log(p) and

Mp(G)

|G|
6 η.

On one hand, since p > j(u), we can apply (3.50). On the other hand, the condition p > 1
η ensures

that we are in the conditions of application of Lemma 3.23. Therefore,

c(u) 6 Dp(a,G) 6 6η
(
ln
(
η−1
)

+ 1
)

for a suitable a ∈ F×p , which gives a contradiction with our choice of η. Thus, for all p > p(u), for all
subgroup G of F×p such that |G| 6 u log(p), we have

Mp(G) > η|G|.

This concludes the proof.

Remark 3.27. The obstruction to equidistribution of Theorem 3.22 may be sharp! Indeed, a conjec-
ture of Montgomery, Vaughan and Wooley, stated in [84], implies the equidistribution modulo 1 of the
{x/p; x ∈ G} as soon as the multiplicative subgroup G satis�es

|G|
log p

−→
p→∞

+∞.

Indeed, the conjecture is the following (we state it as in [14], because it is written in a form which is
more relevant here):
Conjecture.

max
a∈F×p

∣∣∣∣∣∣∑x∈G e
Å
ax

p

ã∣∣∣∣∣∣ < min
Ä
p1/2, C(log p)1/2|G|1/2

ä
.

This conjecture is also cited in [99], where it is not really used, but where it is said that it could be
interesting to study whether it could have some implications in the study of Artin's conjecture on
primitive roots (which states that for a given non-square integer a 6= −1, there is a positive proportion
of primes such that a (mod p) generates the cyclic group F×p ).
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Chapter 4

Equidistribution of exponential sums

indexed by the roots of a polynomial

The two previous chapters consisted of a study of exponential sums over subgroups of �xed cardinality,
which can also be described as sums indexed by the roots of unity in some �nite �elds. In this chapter,
we extend these equidistribution results to the case of exponential sums indexed by the roots of an
arbitrary monic polynomial g ∈ Z[X], such as∑

x∈Fq
g(x)≡0 (mod q)

e

Å
ax

q

ã
.

Under some natural conditions on the prime numbers q (which already appeared in the previous
chapters in the form of the condition p ≡ 1 (mod d)), we show that these sums become equidistributed
in C with respect to a measure µg which is related to the module of additive relations between
the complex roots of g. The study of this module of additive relations can be approached via the
representation theory of the Galois group of the polynomial g. This chapter is part of the article [77],
which is a joint work with E. Kowalski.
We gathered some needed facts on the duality of compact abelian groups in Appendix 4.A. We also
assume some familiarity with the terminology of rami�cation in the number �eld setting, but the
necessary de�nitions are recalled in Appendix 4.B for completeness.
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4.1. A better setting for the previous results on sums indexed by a
subgroup of �xed cardinality

In this �rst section, we recall the method of proof we used in Chapter 2 and explain some of its
limitations. Then we introduce the important change of point of view brought by E. Kowalski, which
overcomes the di�culties of the previous method and opens the door to new generalizations.

4.1.1. De�nition of the new random variables

For any �eld K, we denote by µd(K) the set of d-th roots of unity in K, and we put µd := µd(C).
In Chapter 2, and in the previous references [32] and [44], the sums under consideration were

Sq(a, d) :=
∑

x∈µd(Fq)

e

Å
ax

q

ã
(4.1)

for prime numbers q ≡ 1 (mod d) (and generalizations of these modulo prime powers). More precisely,
the uniform distribution of the sets

{Sq(a, d); a ∈ Fq}

was investigated as q goes to in�nity. The proof went along the following lines: we chose for each q a
primitive d-th root of unity modulo q, which we denoted by wq, and then wrote the sum Sq(a, d) as

d−1∑
k=0

e

Ç
awkq
q

å
.

Then we studied the equidistribution by proving that the tuplesÇ
e

Ç
awkq
q

åå
06k6ϕ(d)−1

∈ (S1)ϕ(d) (4.2)

become equidistributed in (S1)ϕ(d), as a varies in Fq and q goes to in�nity, and that the other terms of
the sum (those involving higher powers of wq) can be expressed as Laurent polynomials in these ϕ(d)
variables.
This �rst approach relies a lot on the choice of the primitive root wq and on the natural ordering of the
roots of unity that comes with it. For that reason, it does not seem clear how to extend the method
to handle sums such as ∑

x∈Fq
g(x)≡0 (mod q)

e

Å
ax

q

ã
for any �xed polynomial g ∈ Z[X].

Question: How can we get around the issue of ordering the roots?

A �rst idea would be to replace the ordered tupleÇ
e

Ç
awkq
q

åå
06k6d−1

∈ (S1)d (4.3)
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by the map
Vq(a) : µd(Fq) → S1

x 7→ e
Ä
ax
q

ä (4.4)

Then, the equidistribution result we are aiming at naturally leads to introducing the random variables

Vq : Fq → C(µd(Fq),S
1)

a 7→ Vq(a)

where Fq is seen as a probability space with the normalized counting measure, and C(µd(Fq),S
1)

denotes the set of (continuous) maps from µd(Fq) to S1.
However, there is still an issue because the random variables Vq do not take values in the same
space (although C(µd(Fq),S

1) ' (S1)d for any q ≡ 1 (mod d)). Indeed, we cannot speak about the
convergence in law of the sequence (Vq)q≡1 (mod d). Instead, we would like to de�ne random variables
Uq : Fq → C(µd,S

1) where µd is always the same set of roots of unity in C for any q, while keeping
track of the arithmetic meaning of taking in fact roots of unity in di�erent �nite �elds.
In order to do this, it is convenient to use some algebraic number theory and to work with ideals of
the cyclotomic �eld K := Q(µd). We denote by OK the ring of integers of K and we introduce two
notions of d-admissible ideals, which will play the role of the condition q ≡ 1 (mod d).

De�nition 4.1. Let us de�ne

� Rd to be the set of prime ideals of OK with residual degree equal to 1, and

� Sd to be the set of prime ideals of OK which are unrami�ed and have residual degree 1 (equivalently:
the ideals which lie above a prime q ∈ Z which is totally split in K).

The restriction to prime ideals living in Rd allows us to de�ne random variables with values in the same
space. Indeed, for each prime ideal p ⊂ OK with residual degree 1 (lying above q, say), the natural
map ιp : Fq → OK/p is an isomorphism, so if we denote by τp : OK/p → Fq its inverse, we have the
following composition of maps

µd ↪→ OK
$p→ OK/p

τp→ Fq

where $p denotes the reduction modulo p from OK to OK/p.

Remark 4.2. If we further assume that q is totally split in K (that is: p ∈ Sd), the above composition
induces a bijection between µd and µd(Fq) (this is proved at Proposition 4.31 in a more general
context). This fact will be useful to derive equidistribution results concerning exponential sums, but
the assumption p ∈ Rd is already su�cient to de�ne the suitable random variables and prove an
equidistribution result.

We now have all the elements to de�ne the random variables which will replace the ordered tuple (4.3).

De�nition 4.3. For all p ∈ Rd we de�ne a random variable Up on the probability space OK/p (endowed
with the discrete σ-algebra and the normalized counting measure) as follows:

Up : OK/p → C(µd,S
1)

a 7→ Up(a)

where
Up(a) : µd → S1

x 7→ e
Ä
τp(a$p(x))

q

ä
.

Remark 4.4. Since p has residual degree 1, the prime q in the de�nition of Up(a) is the norm ‖p‖ of
the ideal p (that is: the cardinality of the residue �eld OK/p). Thus we can de�ne Up only in terms of
the ideal p, by writing

Up(a)(x) = e

Å
τp(a$p(x))

‖p‖

ã
.
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Our next step consists in proving the convergence in law of the random variables Up, as ‖p‖ goes to
in�nity. This step corresponds to the uniform distribution statement for the tuples (4.2) which was
handled in earlier references by the use of Myerson's lemma. Once the convergence of the random
variables Up is proved, the compatibility between convergence in law and continuous mappings allows
one to deduce easily the convergence in law of the random variables

Sp : OK/p → C

a 7→
∑

x∈µd e
Ä
τp(a$p(x))
‖p‖

ä
Finally, to recover the previous results about sums of type (4.1), it remains to prove that τp ◦ $p

induces a bijection between µd and µd(Fq). This holds under the stronger assumption that p ∈ Sd,
and will be proved in Proposition 4.31 in greater generality. This number �eld approach can actually
be generalized to explain uniform distribution phenomena for exponential sums indexed by Zg(Fq) for
any monic polynomial g ∈ Z[X]. Moreover, it also extends to sums indexed by the roots of g modulo
prime powers.

4.1.2. Some preparation for the convergence of the new random variables

As we will see, the object which governs the limiting distribution of the sequence of random variables
(Up)p∈Rd is the module of additive relations with coe�cients in Z between the elements of µd. We
introduce that object and set some extra notations in the following de�nition.

De�nition 4.5. Let d > 1 be an integer. We denote by C(µd, X) the set of maps from µd to any
set X. Moreover,

� Rd denotes the submodule of C(µd,Z) of additive relations between the elements of µd:

Rd :=

{
α : µd → Z,

∑
x∈µd

α(x)x = 0

}
,

� Hd denotes the subgroup of C(µd,S
1) which is �dual� to Rd in the following sense:

Hd :=

{
f ∈ C(µd,S

1), ∀α ∈ Rd,
∏
x∈µd

f(x)α(x) = 1

}

Remark 4.6. As Hd is a closed subgroup of the compact abelian group C(µd,S
1), it is a compact

abelian group, hence has a unique probability Haar measure. Therefore, it makes sense to speak about
uniformly distributed random variables on Hd in the sense of Appendix 4.A.

Now, to prove the desired convergence in law, we will apply Weyl's criterion in the form of Theorem
4.71. In order to do that, we need a good understanding of the characters of the groups C(µd,S

1) and
Hd. Since C(µd,S

1) is nothing more than an unordered version of (S1)d, its characters are described by
a small variation of Proposition 4.72 of the Appendix. More precisely, we have the following de�nition
and proposition.

De�nition 4.7. For all α : µd → Z, we denote by ηα the following character of C(µd,S
1):

ηα : C(µd,S
1) → S1

f 7→
∏
x∈µd

f(x)α(x)

Proposition 4.8. The map

η : C(µd,Z) → Ÿ�C(µd,S1)
α 7→ ηα

(4.5)

is an isomorphism of abelian groups.

122



Proof. Since C(µd,S
1) ' (S1)d via the choice of a primitive root of unity, the surjectivity statement

is a small variation on Proposition 4.72. For the injectivity, assume that α is not the zero map and let
x0 ∈ µd be such that α(x0) = m ∈ Z \ {0}. Then take f : µd → S1 such that f(x0) ∈ S1 \µm and for
all x ∈ µd \ {x0}, f(x) = 1. Then

ηα(f) =
∏
x∈µd

f(x)α(x) = f(x0)m 6= 1

since f(x0) is not an m-th root of unity. Therefore, (α 6= 0 =⇒ ηα 6= 1), which proves the
injectivity.

Proposition 4.9. Let α ∈ C(µd,Z). The character ηα is trivial on Hd if and only if α ∈ Rd.

Proof. We keep the notation η for the isomorphism (4.5). Then by de�nition of Hd, we have

Hd =
{
f ∈ C(µd,S

1), ∀χ ∈ η(Rd), χ(f) = 1
}

= η(Rd)
⊥

with the notation �⊥� from De�nition 4.69. Thus,

ηα is trivial on Hd ⇐⇒ ηα ∈ H⊥d ⇐⇒ ηα ∈
Ä
η(Rd)

⊥
ä⊥

= η(Rd) ⇐⇒ α ∈ Rd

thanks to Proposition 4.70 on �the orthogonal of the orthogonal� and to the injectivity of η.

4.1.3. Convergence in law of the new random variables

The analogue of the result of Chapter 2 about the equidistribution of the tuples (4.2) in a subtorus of
(S1)d is the following proposition. It is the central result, as the equidistribution result for exponential
sums follows easily (as we will see below) by de�nition of the pushforward measure.

Proposition 4.10. The random variables (Up)p∈Rd de�ned at De�nition 4.3 converge in law as ‖p‖ →
∞ to a uniformly distributed random variable on Hd.

Proof. � First, let us prove that the random variables Up take values in Hd. Let us �x a ∈ OK/p
and prove that Up(a) ∈ Hd. It su�ces to prove that for all α ∈ Rd, ηα(Up(a)) = 1. It is indeed
the case, as

ηα(Up(a)) =
∏
x∈µd

e

Å
τp(a$p(x))

‖p‖

ãα(x)

= e

Ç
τp(a$p(

∑
x∈µd α(x)x))

‖p‖

å
and

∑
x∈µd α(x)x = 0 because α ∈ Rd. This proves that for all a ∈ OK/p, Up(a) ∈ Hd.

� Now, let us prove the convergence in law stated in the proposition. As Hd is a compact abelian
group, we can apply the generalized Weyl Criterion for equidistribution: it is enough to check
that, for all non-trivial characters η of Hd, we have

E(η(Up))→ 0

as ‖p‖ → +∞. Now, any character of Hd can be extended to a character of the whole group
C(µd,S

1), so it can be written as ηα for some α ∈ C(µd,Z) (thanks to Theorem 4.68). Moreover,
ηα is trivial on Hd if and only if α ∈ Rd thanks to Proposition 4.9. Therefore, we take α /∈ Rd

and we want to show that
E(ηα(Up))→ 0.

We have

E(ηα(Up)) =
1

‖p‖
∑

a∈OK/p

ηα(Up(a)) =
1

‖p‖
∑

a∈OK/p

∏
x∈µd

(Up(a)(x))α(x) =
1

‖p‖
∑

a∈OK/p

∏
x∈µd

e

Å
τp(a$p(x))

‖p‖

ãα(x)

.
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Therefore, if we introduce the notation Sα :=
∑

x∈µd α(x)x, we have

E(ηα(Up)) =
1

‖p‖
∑

a∈OK/p

e

Å
τp(a$p(Sα))

‖p‖

ã
=

1

‖p‖
∑

b∈Z/‖p‖Z

e

Å
τp($p(Sα))

‖p‖
b

ã
(the last equality is obtained via the change of variables b = τp(a)). By orthogonality of the
additive characters modulo ‖p‖, we obtain

E(ηα(Up)) = 1τp($p(Sα))=0 = 1$p(Sα)=0

since τp is an isomorphism. Now since α /∈ Rd, we have that the ideal SαOK is a non-zero ideal
of the Dedekind ring OK , so there are only �nitely many prime ideals in OK that contain it.
Thus, for all but �nitely many p we have $p(Sα) 6= 0 i.e. 1$p(Sα)=0 = 0. This shows that for all
p ∈ Rd such that ‖p‖ is large enough, E(η(Up)) = 0. In particular,

E(η(Up)) −→
‖p‖→∞
p∈Rd

0.

4.1.4. Recovering the result of Chapter 2

The previous proposition immediately gives the following corollary:

Corollary 4.11. The random variables

Sp : OK/p → C

a 7→
∑
x∈µd

e

Å
τp(a$p(x))

‖p‖

ã
converge in law as ‖p‖ → ∞ (and p ∈ Rd) to a random variable σ(U) where U is a uniformly distributed
random variable on Hd and σ : C(µd,S

1)→ C, f 7→
∑

x∈µd f(x).

Proof. This is just because if a sequence (Xn) of random variables converges in law to X, then for any
continuous map F , we have that (F (Xn)) converges in law to F (X). Here the continuous map is σ
and the convergence in law before composition with σ is given by Proposition 4.10.

Remark 4.12. However, in order to recover a statement in the spirit of Chapter 2, we would rather
not have these homomorphisms τp and $p and replace µd by µd(Fq) for primes q ≡ 1 (mod d). The
reason why we can obtain such a statement comes from the following fact.

Proposition 4.13 ([87, Corollary 10.4]). A prime q 6= 2 is totally split in K = Q(µd) if and only if
q ≡ 1 (mod d).

In particular, if q ≡ 1 (mod d) and if p | q, then p ∈ Rd so that we have some hope that the equidis-
tribution result of Corollary 4.11 may be related to the results of Chapter 2. Let us prove that this is
indeed the case:

Corollary 4.14. For any prime q 6= 2 such that q ≡ 1 (mod d), de�ne (as in Chapter 2)

Sq(b, d) :=
∑

x∈µd(Fq)

e

Å
bx

q

ã
for all b ∈ Fq

Then the set {Sq(b, d); b ∈ Fq} become equidistributed in σ(Hd) with respect to the pushforward measure
σ∗(µHd), where µHd denotes the probability Haar measure on Hd.
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Proof. If q ≡ 1 (mod d), then Proposition 4.13 tells us that any prime ideal above q belongs to Rd.
So for each q, we let p be such an ideal. Then thanks to Corollary 4.11, we know that the random
variables Sp converge in law, as ‖p‖ goes to in�nity, to a random variable σ(U) as in the statement. In
other words, the sets

{Sp(a); a ∈ OK/p}
become equidistributed with respect to the measure σ∗(µHd). Now, we have that for all a ∈ OK/p,

Sp(a) =
∑
x∈µd

e

Å
τp(a)τp($p(x))

‖p‖

ã
and we would like to perform the change of variable y = τp($p(x)) in order to relate these sums to sums
over µd(Fq). In fact, it is true that under the assumption q ≡ 1 (mod d), τp ◦ $p induces a bijection
between µd and µd(Fq). This will be proved at Proposition 4.31 in a more general setting. This part
of the proof really makes use of the fact that q is totally split in K, as it requires the assumption that
p is unrami�ed, and not only has residual degree 1.
Once we know this, we immediately get the following lemma and the conclusion follows.

Lemma 4.15. If q ≡ 1 (mod d) and p is an ideal of OK lying above q, then

{Sp(a); a ∈ OK/p} = {Sq(b, d); b ∈ Fq} .

Remark 4.16. Proposition 4.31 requires the extra assumption that q - disc(g), but in the case of
g = Xd − 1, we have |disc(g)| = dd so that the condition q ≡ 1 (mod d), which we use to ensure that q
is totally split in K, actually also ensures the condition on the non-divisibility of the discriminant.

Now, it remains to check that the measure σ∗(µHd) in Corollary 4.14 is indeed the same as the push-
forward measure which appears in Proposition 2.12. To simplify a little, we will only deal with the
case where d is prime, and check that the measure σ∗(µHd) is indeed the same as the one of Theorem
2.5, that is: the pushforward measure, via the Laurent polynomial

X1 + · · ·+Xd−1 +
1

X1 . . . Xd−1
,

of the Haar probability measure on (S1)d−1. For a prime number d, let us �x a primitive d�th root of
unity ζ. Then µd =

{
ζj ; 0 6 j 6 d− 1

}
and we have

Rd =

α : µd → Z,
d−1∑
j=0

α(ζj)ζj = 0


which corresponds, under the isomorphism of Z-modules

Zd → Zd−1[X]

(a0 . . . , ad−1) 7→
∑d−1

j=0 ajX
j

to
{P ∈ Zd−1[X]; P (ζ) = 0} = {P ∈ Zd−1[X]; φd divides P} .

Now since we assumed that d is prime, φd is monic of degree d− 1, so that the multiples of φd which
belong to Zd−1[X] are exactly the polynomials of the form λφd(X) = λ(1 +X + · · ·+Xd−1) for some
integer λ. Going back to Rd, this means that Rd is the Z-module of constant maps α : µd → Z.
Therefore,

Hd =

{
f : µd → S1; ∀λ ∈ Z,

∏
x∈µd

f(x)λ = 1

}

=

{
f : µd → S1;

∏
x∈µd

f(x) = 1

}
.
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We have a group isomorphism between Hd and the group H′d :=
{
g : µd \ {1} 7→ S1

}
given by

Φ : Hd → H′d
f 7→ f|µd\{1}

and whose inverse is obtained by associating to g ∈ H′d its continuation at 1 de�ned in the only possible
way to create an element of Hd:

g(1) :=
∏

x∈µd\{1}

g(x)−1.

As H′d is isomorphic to (S1)d−1, the Haar measure on H′d is just the product of the uniform measure
on S1. Since Φ is an isomorphism of topological groups, this implies that µHd = Φ−1

∗ (µH′d
), hence

σ∗(µHd) = σ∗
Ä
Φ−1
∗ (µH′d

)
ä
. In other words, for any measurable subset A of C, we have

σ∗(µHd)(A) = µH′d

(
Φ
(
σ−1(A)

))
= µH′d

Ñg ∈ H′d;
∑

x∈µd\{1}

g(x) +
∏

x∈µd\{1}

g(x)−1 ∈ A


é

Thus, we recover that the measure σ∗(µHd) is indeed the pushforward measure via the Laurent poly-
nomial

(z1, . . . , zd−1) 7→ z1 + · · ·+ zd−1 +
1

z1 . . . zd−1

of the Haar measure on (S1)d−1.

4.2. Generalization to exponential sums restricted to the roots of a
�xed polynomial

The number �eld approach of the previous section shows that we can recover the previous results on
sums over subgroups of �xed cardinality, but it also has the advantage of opening the door to many
generalizations. Indeed, since the method no longer relies on the fact that we are working with roots
of unity and that we can choose a primitive root, it is more likely to extend to the case of roots of
arbitrary polynomials. We present those generalizations in this section.

4.2.1. Algebraic number theory prerequisites I

Since we also want to consider exponential sums modulo prime powers, and not only primes, we need
to start with a short section on �residue rings� instead of the more usual residue �elds.

Lemma 4.17. Let A be a Dedekind domain, K its fraction �eld, L/K a �nite and separable extension,
and let B be the integral closure of A in L. Let p be a prime ideal in A and let p be a prime ideal in
B lying above p, with rami�cation index e. Let n > 1.
Then we have

pn ∩A = pdn/ee

where dn/ee denotes the smallest integer larger than or equal to n/e.

Proof. (inspired by the answers on Stack Exchange available at https://math.stackexchange.com/
questions/1526463/prime-ideals-in-extensions-of-dedekind-domains and
https://math.stackexchange.com/questions/2577145/intersection-of-powers-of-prime

-ideals-with-subring).
Since A and B are Dedekind domains, the localizations Ap and Bp are discrete valuation rings. If
we denote by vp and vp the corresponding normalized discrete valuations, then we have (vp)|A = evp
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because the p-adic valuation of p is equal to e by de�nition of the rami�cation index. Therefore, for
all x ∈ B, we have:

x ∈ pn ∩A ⇐⇒ x ∈ A and vp(x) > n ⇐⇒ x ∈ A and evp(x) > n

⇐⇒ x ∈ A and vp(x) > n/e ⇐⇒
(?)

x ∈ A and vp(x) > dn/ee

⇐⇒ x ∈ pdn/ee

where the equivalence (?) comes from the fact that vp(x) is an integer.

Corollary 4.18. Let K/Q be a number �eld, let p be a prime number, and p be a prime ideal of K
which lies above p. Assume that the extension is unrami�ed at p. Then the natural ring homomorphism

Z/pnZ→ OK/p
n

is injective.

Proof. The kernel of Z→ OK/p
n is pn ∩ Z, and the latter is exactly pnZ thanks to Lemma 4.17.

Corollary 4.19. Under the assumptions of the preceding corollary, assume further that the residual
degree fp is equal to 1. Then for any n > 1, the natural ring homomorphism

ιpn : Z/pnZ→ OK/p
n

is an isomorphism.

Proof. Recall that one can de�ne the norm of an ideal a of OK as the index of a in OK . We will denote
it by ‖a‖

‖a‖ := |OK/a| ,

and that this norm is multiplicative (see e.g. [81, Theorem 22 (a)]). Thus,

|OK/pn| = ‖pn‖ = ‖p‖n = |OK/p|n =
Ä
pfp
än

= pn

using the fact that fp = 1. Therefore, the map in the statement is a map between two sets having the
same number of elements, and it is injective thanks to Corollary 4.18, so it is a bijection.

Remark 4.20. When the residual degree fp is equal to 1, the natural homomorphism Z/pZ→ OK/p
is an isomorphism, so the prime p equals the norm ‖p‖ of the ideal p.

Remark 4.21. If p is totally split in K then for all p | p, the assumptions of Corollary 4.19 are ful�lled.

De�nition 4.22. Under the assumptions of Corollary 4.19, we denote by τpn : OK/p
n → Z/pnZ =

Z/ ‖p‖n Z the inverse of ιpn.

We can now set the de�nitions which will give an appropriate framework to handle exponential sums
over the roots of some polynomial.

4.2.2. De�nition and convergence in law of the suitable random variables

Let g ∈ Z[X] be a monic polynomial of degree d > 1.

De�nition 4.23. We will use the following notations:

� Zg denotes the set of roots of g in C,

� Kg := Q(Zg) denotes the splitting �eld of g, and Og the ring of integers of Kg,

� for any ideal a of Og, we denote by $a : Og → Og/a the canonical surjection,

� C(Zg,S
1) is the compact abelian group of (continuous) maps from Zg to the unit circle S1,
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Important note: Since all results in this chapter only depend on Zg, we can assume without loss of
generality that the polynomial g is separable. We will do so in the remainder of the chapter.

We will also need a notion of �admissible ideals� in order to be able to de�ne the random variables of
interest to us.

De�nition 4.24. Let us de�ne Sg as the set of prime ideal p of Og which lie above a prime q ∈ Z
which is totally split in Kg. Equivalently (because Kg/Q is Galois), those are the ideals which are
unrami�ed and of residual degree equal to 1.

We can now de�ne a sequence of random variables indexed by powers of prime ideals in Sg.

De�nition 4.25. De�ne the random variables Upn for all p ∈ Sg and n > 1 as follows:

Upn : Og/p
n → C(Zg,S

1)
a 7→ Upn(a)

where
Upn(a) : Zg → S1

x 7→ e
(
τpn (a$pn (x))

‖p‖n
)

where τpn is the isomorphism of De�nition 4.22.

Note that Zg ⊂ Og because g is a monic polynomial in Z[X], therefore the term $pn(x) in the de�nition
of Upn(a) makes sense.

Finally, the limiting distribution of these random variables will be governed by the additive relations
between the roots of g. Thus, the suitable analogue of De�nition 4.5 is given by the following one:

De�nition 4.26. Let g ∈ Z[X].

� Rg denotes the submodule of C(Zg,Z) of additive relations between the roots of g:

Rg :=

α : Zg → Z,
∑
x∈Zg

α(x)x = 0

 .

� Hg denotes the subgroup of C(Zg,S
1) which is �dual� to Rg in the following sense:

Hg :=

f ∈ C(Zg,S
1), ∀α ∈ Rg,

∏
x∈Zg

f(x)α(x) = 1


De�nition 4.7 and propositions 4.8 and 4.9 transpose to this setting as follows (the proofs are near
copies of the corresponding ones when g was taken to be the polynomial Xd − 1).

De�nition 4.27. For all α ∈ C(Zg,Z), we denote by ηα the following character of C(Zg,S
1):

ηα : C(Zg,S
1) → S1

f 7→
∏
x∈Zg

f(x)α(x)

Proposition 4.28. The map

η : C(Zg,Z) → Ÿ�C(Zg,S1)
α 7→ ηα

is an isomorphism of abelian groups.

Proposition 4.29. Let α ∈ C(Zg,Z). The character ηα is trivial on Hg if and only if α ∈ Rg.
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Then, a proof very close to that of Proposition 4.10 gives the following statement:

Theorem 4.30. The sequence (Upn)p∈Sg ,n>1 converges in law, as ‖p‖n goes to in�nity, to a random
variable U uniformly distributed on Hg. Note that ‖p‖n →∞ includes the case where p if a �xed prime
ideal and only n goes to in�nity.

In other words, the limiting distribution is described as the Haar measure on the orthogonal of the
module of additive relations between the roots of g.

Proof. � First, let us prove that the random variables Upn take values in Hg. Let us �x a ∈ Og/p
n

and prove that Upn(a) ∈ Hg. It su�ces to prove that for all α ∈ Rg, ηα(Upn(a)) = 1. It is indeed
the case, as

ηα(Upn(a)) =
∏
x∈Zg

e

Å
τpn(a$pn(x))

‖p‖n
ãα(x)

= e

Ç
τpn(a$pn(

∑
x∈Zg

α(x)x))

‖p‖n

å
and

∑
x∈Zg

α(x)x = 0 because α ∈ Rg. This proves that for all a ∈ Og/p
n, Upn(a) ∈ Hg.

� Now, let us prove the convergence in law stated in the proposition. As Hg is a compact abelian
group, we can apply the generalized Weyl Criterion for equidistribution: it is enough to check
that, for all non-trivial characters η of Hg, we have

E(η(Upn))→ 0

as ‖p‖n → +∞. Now, any character of Hg can be extended to a character of the whole group
C(Zg,S

1) thanks to the Theorem 4.68 of the appendix, so it can be written as ηα for some
α ∈ C(Zg;Z). Moreover, ηα is trivial on Hg if and only if α ∈ Rg (thanks to Proposition 4.29).
Therefore, we take α /∈ Rg and we want to show that

E(ηα(Upn))→ 0.

We have

E(ηα(Upn)) =
1

‖p‖n
∑

a∈Og/pn

e
(τpn(a)

‖p‖n
τpn
(
$pn

( ∑
x∈Zg

α(x)x
)))

=
1

‖p‖n
∑

b∈Z/‖p‖nZ

e
( b

‖p‖n
τpn($pn(Sα))

)

where we denoted

Sα :=
∑
x∈Zg

α(x)x

(it is a non-zero element of Og because α /∈ Rg). By orthogonality of the additive characters
modulo ‖p‖n, we have

E(ηα(Upn)) = 1 ⇐⇒ τpn($pn(Sα)) = 0 ⇐⇒ $pn(Sα) = 0 ⇐⇒ Sα ∈ pn,

and E(ηα(Upn)) equals 0 otherwise. Now, the condition Sα ∈ pn implies that ‖p‖n divides the
non-zero integer NKg/Q(Sα), so that it cannot be satis�ed for ‖p‖n large enough. This shows
that E(ηα(Upn)) not only converges to zero as ‖p‖n tends to in�nity, but is actually eventually
equal to 0.
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4.2.3. Algebraic number theory prerequisites II

Next, we want to derive from Theorem 4.30 a statement on the equidistribution of sums indexed by
the roots of a polynomial modulo prime powers. In order to do this, we need a few extra facts from
algebraic number theory. The aim of this section is to obtain the following proposition, a special case
of which has already been used without proof in the proof of Corollary 4.14.

Proposition 4.31. Let g ∈ Z[X] be a monic and separable polynomial. Let q be a prime number which
does not divide the discriminant of g. If q is totally split in Kg, then for all p | q and all n > 1, the
composition

Zg ↪→ Og
$pn→ Og/p

n τpn→ Z/qnZ

yields a bijection between Zg and Zg (Z/qnZ) := {x ∈ Z/qnZ; g(x) ≡ 0 mod qn}.

The reason why we need this result is that we want to relate the random variables of De�nition 4.25
(which are de�ned in the number �eld setting), to the more elementary random variables

Z/qnZ → C(Zg(Z/q
nZ),S1)

a 7→ Vqn(a)

where

Vqn(a) : Zg(Z/q
nZ) → S1

x 7→ e
Ä
ax
qn

ä
This is why we need to look more closely at what happens to the roots of g after the identi�cations
through $pn and τpn .

In order to prove the previous proposition, we will need the following famous theorem:

Theorem 4.32 (Dedekind, see [20] or [81, Theorem 27]). Let K be a number �eld of degree n over Q,
and α ∈ OK such that K = Q(α). Let f(T ) be the minimal polynomial of α in Z[T ]. For any prime q
not dividing [OK : Z[α]], write

f(T ) ≡ π1(T )e1 · · ·πg(T )eg (mod q)

where the πi are distinct monic irreducible polynomials in Fq[T ]. Then qOK factors into prime ideals
as

qOK = pe11 · · · p
eg
g

where pi = 〈q, π̃i(α)〉 is the ideal generated by q and π̃i(α) (π̃i denotes any polynomial in Z[T ] which
reduces to πi modulo q). Besides, ‖pi‖ = qdeg(πi).

Remark 4.33. In fact, we have the relation

disc(Z[α]) = disc(1, α, . . . , αn−1) = [OK : Z[α]]2dK

where dK denotes the absolute discriminant of the number �eld K (that is: the discriminant of any
Z-basis of OK). Thus, if q does not divide disc(Z[α]) it does not divide [OK : Z[α]], so the theorem
applies. It is usually more convenient to use this divisibility condition, because it does not require any
knowledge of the full ring OK .

Now, since we want to apply this theorem to Kg = Q(Zg), which is generated by all the roots of g, we
will also need the following theorem to go from the extensions Q(α) generated by a single root of g to
the extension Kg.

Theorem 4.34 ([81, Theorem 31]). Let K be a number �eld, and let L and M be two �nite extensions
of K. Let p be a prime ideal of K. Then p splits completely in L and M if and only if it splits
completely in their compositum LM .
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Remark 4.35. Actually, [81, Theorem 31] only states the direction � =⇒ � but the converse is easier
by multiplicativity of the rami�cation index and residual degree in extensions (if they are both equal
to 1 in the largest extension, they are equal to 1 in the subextensions).

Combining the last two theorems allows us to obtain the following lemma.

Lemma 4.36. Let g ∈ Z[X] be a monic and separable polynomial of degree d > 1. Then for all prime
numbers q not dividing disc(g), we have

q is totally split in Kg ⇐⇒ g splits into distinct linear factors in Fq[X]

In this lemma and its proof, f denotes the reduction modulo q of a polynomial f ∈ Z[X].

Proof. Let q be a prime number not dividing the discriminant of g and let α ∈ Zg. Denote by µα the
minimal polynomial of α over Q, which belongs to Z[X] and is one of the factors of g. Then

disc(µα) | disc(g).

Indeed, it is a general fact that for two polynomial P,Q ∈ Z[X], we have (up to a sign):

disc(PQ) = disc(P )disc(Q)Res(P,Q)2 (4.6)

Therefore, the assumption on q ensures that q does not divide disc(µα) = disc(Z[α]), so we can apply
Theorem 4.32 at q to the extension Q(α)/Q: it tells us that the rami�cation of q in Q(α) is exactly
given by the factorization of µα modulo q. In particular, q is totally split in Q(α) if and only if µα
splits into distinct linear factors mod q.
Now, the irreducible factors of g are the µα, and g has no square factor, because we assumed that it is
separable. Moreover, the assumption that q does not divide disc(g) ensures that g remains separable
after reduction modulo q. Thus, we have that g splits into distinct linear factors mod q if and only if
for all α ∈ Zg, µα splits into distinct linear factors mod q.
Thus, we have proved that g splits into distinct linear factors modulo q if and only if for all α ∈ Zg,
the prime q is totally split in Q(α), and thanks to Theorem 4.34, this is equivalent to q being totally
split in Kg.

Remark 4.37 (inpired by the answer here). There is an elementary way to prove that if P,Q are
two monic polynomials with coe�cients in Z, then disc(P ) | disc(PQ), without knowing the notion of
resultant of two polynomials used in equation (4.6) above. Indeed, if we denote by α1, . . . , αm the (not
necessarily distinct) roots of P in C and by β1, . . . , βn those of Q, then (up to a sign)

disc(PQ) =
∏

16i 6=j6m
(αi − αj)

∏
16k 6=`6n

(βk − β`)
∏

16r6m
16s6n

(αr − βs).

The �rst two factors are respectively equal (again, up to a sign convention) to disc(P ) and disc(Q),
while the last factor can be expressed in terms of the resultant of P and Q once we know the expression
of the resultant in terms of the roots. However, without speaking about resultants, we can prove the
this last factor is an integer. Indeed, if we consider the polynomial

F (Y1, . . . , Yn) :=
∏

16r6m
16s6n

(Xr − Ys),

it belongs to A[Y1, . . . , Yn], where A = Z[X1, . . . , Xm], and it is a symmetric polynomial, so there exists
a polynomial G ∈ A[Y1, . . . , Yn] such that F (Y1, . . . , Yn) = G(σ1, . . . , σn) where σi = σi(Y1, . . . , Yn) is
the i-th elementary symmetric polynomial. Then σi(β1, . . . , βn) is (up to a sign) equal to a coe�cient
of Q, hence is an integer. Thus,

F (β1, . . . , βn) =
∏

16r6m
16s6n

(Xr − βs)

belongs to Z[X1, . . . , Xm], and is a symmetric polynomial, hence by a similar argument we conclude
that its evaluation at α1, . . . , αm is an integer, and this concludes the proof.
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Remark 4.38. Can we remove the assumption q - disc(g) in Lemma 4.36? The answer is no! For
instance, if one takes g := X3 − X2 − 2X − 8 (the �Dedekind's polynomial� mentioned in [20]),
then disc(g) = −22 · 503, so that 2 divides the discriminant of g. On one hand, we have that g ≡
X2(X + 1) (mod 2), so g does not split into distinct linear factor modulo 2. On the other hand, 2 is
totally split in Kg (using PARI-GP).

We now have all the ingredients to �nish the proof of the main proposition of this section.

Proof of Proposition 4.31. Let q be a prime which does not divide the discriminant of g, and which is
totally split in Kg. Let p | q and let n > 1.

� First, the last arrow in the statement (Og/p
n → Z/qnZ) is an isomorphism thanks to Corollary

4.19, and we claim that it induces a bijection between Zg(Og/p
n) and Zg(Z/q

nZ). Indeed, if
α ∈ Og is such that g(α) ≡ 0 mod pn, then:

� First, thanks to Corollary 4.19, there exists an integer x (unique modulo qnZ) such that
x ≡ α mod pn.

� Second, this integer satis�es g(x) ≡ g(α) ≡ 0 mod pn, which means that g(x) ∈ pn∩Z = qnZ
thanks to Lemma 4.17. In other words g(x) ≡ 0 mod qn.

This proves that for any α ∈ Zg(Og/p
n) there exists a unique x ∈ Z/qnZ such that x ≡ α mod pn,

and that this x is a root of g modulo qn. This proves that the natural isomorphism between
Z/qnZ and Og/p

n induces a bijection between Zg(Z/q
nZ) and Zg(Og/p

n). Thus, it just remains
to prove that the natural map Zg → Zg(Og/p

n) is a bijection.

� Thanks to Lemma 4.36, the assumptions on q ensure that g splits in Fq with simple roots. Thus,
the previous point shows that the polynomial g also split in Og/p with simple roots.

Now, let α ∈ Zg(Og/p
n) be the reduction modulo pn of some α ∈ Og.

Then we have ®
g(α) ≡ 0 mod pn

g′(α) 6≡ 0 mod p.

Therefore, by Hensel's lemma, there exists a unique α̂ in the p-adic completion ”Og of Og such
that ®

g(α̂) = 0

α̂ ≡ α mod pn.

Now, we have by assumption that g has d distinct roots inOg ⊆”Og, and it cannot have more roots
than its degree, so α̂ actually belongs to Og. This proves that the natural map Zg → Zg(Og/p

n)
is a bijection.

Remark 4.39. The proof of this proposition is a natural extension of what we did in the case of the
polynomial Xd − 1 in Chapter 2. Indeed, in Lemma 2.14, a completion argument and an application
of Hensel's lemma were also needed.

4.2.4. Equidistribution of exponential sums restricted to the roots of a polynomial

Now that we did all the sanity checks in the previous section, Theorem 4.30 has the following easy
corollary.
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Corollary 4.40. (1) For a taken uniformly at random in Og/p
n with p ∈ Sg not dividing the discrim-

inant of g, the sums ∑
x∈Zg(Og/pn)

e
(τpn(ax)

‖p‖n
)

become equidistributed in C as ‖p‖n → +∞ with limiting measure µg given by the law of σ(U), where
σ : C(Zg,C)→ C is the linear form de�ned by

f 7→
∑
x∈Zg

f(x).

(2) Similarly, for q prime totally split in Kg and not dividing the discriminant of g, the sums∑
x∈Z/qnZ

g(x)≡0 (mod qn)

e
(bx
qn

)

for b ∈ Z/qnZ become equidistributed in C as qn → +∞ with the same limit.

Proof. (1) The �rst statement is a direct application of Theorem 4.30 and of the composition principle
for convergence in law, since σ is continuous (when C(Zg,S

1) has its product topology). Indeed, the
random variables

Spn : Og/p
n → C

a 7→
∑

x∈Zg
Upn(a)(x)

are exactly σ(Upn). Moreover, thanks to Proposition 4.31 (more precisely from the fact that $pn

induces a bijection between Zg and Zg(Og/p
n)) we have that

Spn(a) =
∑

x∈Zg(Og/pn)

e
(τpn(ax)

‖p‖n
)

so the statement follows.
(2) For any prime number q which is totally split in Kg, there exists a prime ideal p ∈ Sg above q.
Moreover, the canonical isomorphism τpn between the residue rings Og/p

n and Z/qnZ induces a bijec-
tion between Zg(Og/p

n) and Zg(Z/q
nZ). Therefore, Spn and the random variable

S̃qn : Z/qnZ → C

b 7→
∑

x∈Z/qnZ
g(x)≡0 (mod qn)

e
(bx
qn

)

share the same law, so that point (1) provides the equidistribution result (2).

Remark 4.41. In [77], we included the condition that p must not divide the discriminant of the
polynomial g in the de�nition of Sg, in order to avoid repeating this assumption in many statements.
However, it is worth noting that the uniform distribution of the unitary random variables (Theorem
4.30) holds without this restriction. The assumption that p must not divide the discriminant of g only
comes into play once we want to deduce corollaries on exponential sums over Zg(Fq), because we need
Proposition 4.31.

Remark 4.42. In [77], we de�ne Sg as the set of prime ideals p ∈ Og such that p does not divide the
discriminant of g and p has residual degree 1, and we claim that such primes are unrami�ed primes in
Og. This is not completely straightforward, so let us give some details here. Indeed, our assumption
is that p does not divide the discriminant of the polynomial g, and the classical theorem of algebraic
number theory rather says that the primes which do not divide the discriminant of the number �eld
Kg are unrami�ed. Thus, we need to spell out more precisely what is the relation between the fact
that a prime divides the discriminant of g and the fact that it divides the discriminant of its splitting
�eld Kg. As far as I know, there is no divisibility relation of the type �disc(g) divides disc(Kg)� or
�disc(Kg) divides disc(g)�. However, there is an inclusion between their sets of prime factors, given by
the following lemma:
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Lemma 4.43. If p divides the discriminant of Kg, then p divides the discriminant of the polynomial g.

Proof. Let p ⊆ Og be a prime ideal that divides the discriminant of g. As the splitting �eld Kg

is the compositum of the extensions Q(z) for z ∈ Zg, [50, Theorem 85] tells us that p must divide
the discriminant of one of the extensions Q(z)/Q. By Remark 4.33, this implies that p divides the
discriminant of Z[z], which equals the discriminant of the minimal polynomial of z over Q, which is
an irreducible factor of g. Thus, p divides the discriminant of g.

Taking the contrapositive, we deduce that indeed, our condition ensures in particular that the prime
ideals which do not divide the discriminant of g are unrami�ed in Kg.

Note that the previous lemma does not imply that disc(Kg) divides disc(g), because of the powers of
the prime ideals which may appear in each factorization. Moreover, the converse of this lemma does
not hold, as one can check by considering Dedekind's polynomial X3 −X2 − 2X − 8 of Remark 4.38.
For this choice of polynomial g, one has disc(g) = −22 · 503 while disc(Kg) = −5033 (using PARI-GP).

Remark 4.44. Since the linear map

C(Zg,S
1) → C

f 7→
∑

x∈Zg
f(x)

is continuous and bounded and the random variables Up converge in law to U , we have that

E(σ(Up)) −→
‖p‖→+∞

E(σ(U)).

Now,

E(σ(Up)) =
1

‖p‖
∑

a∈Og/p

σ(Up(a)) =
1

‖p‖
∑

a∈Og/p

∑
x∈Zg

Up(a)(x)

=
1

‖p‖
∑

a∈Og/p

∑
x∈Zg

e

Å
τp(a$p(x))

‖p‖

ã
(4.7)

=
∑
x∈Zg

1

‖p‖
∑

a∈Og/p

e

Å
τp($p(x))

‖p‖
τp(a)

ã
=
∑
x∈Zg

1

‖p‖
∑

b∈Z/‖p‖Z

e

Å
τp($p(x))

‖p‖
b

ã
︸ ︷︷ ︸

1$p(x)=0

and for all p such that ‖p‖ is large enough, $p(x) = 0 if and only if x = 0, so that eventually we have

E(σ(Up)) =

®
0 if 0 /∈ Zg

1 if 0 ∈ Zg.
(4.8)

As a consequence,

E(σ(U)) =

®
0 if 0 /∈ Zg

1 if 0 ∈ Zg.

In view of (4.7) and (4.8), and using Proposition 4.31 to identify those sums with sums over Zg(Fq),
this shows that if 0 /∈ Zg, then on average over b ∈ Fq, the sums∑

x∈Zg(Fq)

e

Å
bx

q

ã
equal 0 as q tends to in�nity (among the prime numbers q which do not divide the discriminant of g
and are totally split in Kg).
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A natural question one may ask is the horizontal analogue: does the same result hold if we �x a
non-zero integer b and average over primes q? We will come back to this question (and its relation to
famous conjectures regarding the uniform distribution of roots of polynomials) in the �nal chapter of
this thesis, where some research perspectives are sketched.

4.2.5. Sparse equidistribution

As in the case of the sums Sp(a, d) of Chapter 2 and 3, we can get equidistribution of sparser sets of
sums, by changing the probability space in the de�nition of the random variables Upn (De�nition 4.25).
Indeed, if for all prime ideal p ⊂ Sg and all n > 1, we choose a subgroup Hpn of the multiplicative
group (Og/p

n)× and rede�ne the random variables

Upn : Hpn → C(Zg,S
1)

a 7→ Upn(a)

then under some growth conditions on the cardinality of Hpn , the convergence in law of Theorem 4.30
still holds. Indeed, a proposition analogous to Proposition 3.4 allows us to apply the main theorem of
[11] on exponential sums over small multiplicative subgroups.

Proposition 4.45. Let α ∈ C(Zg,Z) be such that α /∈ Rg and let Sα :=
∑

x∈Zg
α(x)x (which is non-

zero by de�nition of Rg).
There exist two constants nα, Cα > 1 such that for all p ∈ Sg (lying above q, say) and for all n > 1, if
‖p‖n > nα, then

(a) τpn($pn(Sα)) 6≡ 0 (mod qn)

(b) qvq(τpn ($pn (Sα))) 6 Cα.

Proof. (a) Since τpn is an isomorphism, we have that τpn($pn(Sα)) ≡ 0 (mod qn) if and only if
$pn(Sα) ≡ 0 (mod pn), that is: if and only if Sα ∈ pn. Now we have seen in the proof of Theorem
4.30 that the fact that Sα ∈ pn implies that ‖p‖n divides the non-zero integer NKg/Q(Sα).
Therefore, it su�ces to take nα := |NKg/Q(Sα)| to ensure that (a) holds for all p and n such that
‖p‖n > nα.

(b) Now we assume that ‖p‖n > nα, so that the q-adic valuation of τpn($pn(Sα)) is well de�ned. We
denote it by γ ∈ {0, . . . , n− 1}, so that we can write

τpn($pn(Sα)) ≡ qγm (mod qn)

where (m, q) = 1. Applying ιpn (the inverse of τpn) to this equality gives

$pn(Sα) ≡ qγm (mod pn)

from which it is easy to see that γ = vp(Sα). Therefore, we have

qγ = qvq(τpn ($pn (Sα))) = qvp(Sα)

and the right-hand side is bounded above by

Cα := max
¶
‖p‖vp(Sα) ; p ∈ Sg such that p | SαOg

©
which is the maximum of a �nite set because Sα 6= 0.

Thanks to this control of the q-adic valuation, we can reduce to a setting where Bourgain's theorem
(Theorem 3.11) can be applied, and prove the convergence in law of the random variables Upn when
de�ned on the probability spaces Hpn which are multiplicative subgroups of cardinality larger than
(‖p‖n)δ for some positive real number delta.
Namely, we have the following re�nement of Theorem 4.30:
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Theorem 4.46. For each p ∈ Sg and n > 1, we �x a multiplicative subgroup Hpn of (Og/p
n)× and

de�ne the random variables Upn as before, but on this smaller probability space:

Upn : Hpn → C(Zg,S
1)

a 7→ Upn(a)

Then, if there exists δ > 0 such that for all p and n,

|Hpn | > (‖p‖n)δ ,

the random variables Upn converge in law to a uniformly distributed random variable U on Hg, as ‖p‖n
tends to in�nity.

Proof. The Weyl sums appearing in the application of Weyl's equidistribution criterion are in this case

1

|Hpn |
∑
a∈Hpn

e

Å
τpn(a$pn(Sα))

‖p‖n
ã

and we want to prove that they converge to zero as ‖p‖n tends to in�nity, for any �xed α ∈ C(Zg,Z)
such that α /∈ Rg (this condition re�ects the fact that we only need to consider non-trivial characters
of Hg). Making the change of variables b = τpn(a), we can write these sums as

1

|H‖p‖n |
∑

b∈H‖p‖n
e

Å
τpn($pn(Sα))

‖p‖n
b

ã
where H‖p‖n denotes the multiplicative subgroup τpn(Hpn) of (Z/ ‖p‖n Z)×. As in the proof of Proposi-
tion 3.12, we cannot directly apply Theorem 3.11 because we do not know if τpn($pn(Sα)) is invertible
modulo ‖p‖n. However, we know that it is non-zero, and that it is not divisible by high powers of ‖p‖,
so that it is not far from being invertible. The precise meaning of this �not far from being invertible�
is given by the control of the q-adic valuation of Proposition 4.45. Then, the rest of the proof is
exactly the same as the proof of Proposition 3.12, with f(wq) replaced by τpn($pn(Sα)) and nf , Cf by
nα, Cα.

Corollary 4.47. Let g ∈ Z[X] be a monic and separable polynomial of degree d > 1. For all q ∈ Sg not
dividing the discriminant of g and all n > 1, suppose we are given a subgroup Hqn of the multiplicative
group (Z/qnZ)×. If there exists δ > 0 such that for all q and n,

|Hqn | > qnδ,

then the sums ∑
x∈Z/qnZ

g(x)≡0 (mod qn)

e
(bx
qn

)

parametrized by b ∈ Hqn , become equidistributed in C as qn goes to in�nity, with respect to the same
measure as in Corollary 4.40 (2).

Remark 4.48. A natural question one may ask is: can we replace subgroups Hqn of (Z/qnZ)× by
arbitrary subsets Aqn of Z/qnZ, and under which condition do we still have equidistribution of the
sets of sums { ∑

x∈Z/qnZ
g(x)≡0 (mod qn)

e
(bx
qn

)
, b ∈ Aqn

}
(4.9)

with respect to the same measure? This question is addressed in Section 4 of [77], where we give a
partial answer to that question. Under a certain condition on the polynomial g, we prove that there is
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an equivalence between the uniform distribution of the sets (4.9) and the uniform equidistribution of
the fractional parts1 of the elements of Aqn , which corresponds to the convergence to zero of

max
h∈Z/qnZ
h6=0

1

|Aqn |

∣∣∣∣∣∣ ∑a∈Aqn e
Å
ah

qn

ã∣∣∣∣∣∣ .
In particular, if n = 1 and we take Aq to be {0, . . . , (q− 1)/2}, then it is easy to see that the fractional
parts of the elements of Aq are not uniformly equidistributed, so that we can �nd polynomials g for
which the sums in (4.9) do not become equidistributed with respect to the measure µg of Corollary
4.40 (2).

4.3. Some explicit determinations of the module of additive relations

4.3.1. A general approach

A fruitful idea to study this type of question was developped by Girstmair in [45, 46], and we describe
here the general idea in the case where the ground �eld is Q. This section also owes a lot to E.
Kowalski's treatment in [74, section 4.7.3].
Given a separable polynomial g ∈ Q[X] (g will even be in Z[X] in the applications we have in mind),
we denote by Zg its set of complex roots, and by Kg := Q(Zg) the splitting �eld of g over Q. We also
denote by QZg the set of maps from Zg to Q, and by G the Galois group of the �eld extension Kg/Q.
Then G acts on Zg, and this gives rise to the permutation representation of G on QZg . Precisely, given
an element α ∈ QZg (that is: a map α : Zg → Q), the action of an element σ ∈ G on α is given by

(σ, α) 7→ α ◦ σ−1

In other words, if we write

α =
∑
x∈Zg

α(x)δx

where δx(y) = 1 if y = x and equals 0 otherwise, the action of σ on α is simply its natural action on
the roots,

σ · α =
∑
x∈Zg

α(x)δσ(x).

We have the evaluation map from QZg to SpanQ(Zg) ⊆ Q(Zg) :

ev : α 7→
∑
x∈Zg

α(x)x

which is easily seen to be a morphism of G-representations when the Q(Zg) on the right-hand side
has the natural Galois action. Therefore, as the kernel of the evaluation, the vector space of Q-linear
relations between the roots of g :

Rg,Q :=

α : Zg → Q,
∑
x∈Zg

α(x)x = 0


is a subrepresentation of QZg . Thus, in order to determine Rg,Q, it can be helpful to determine the
decomposition of QZg as a direct sum of irreducible subrepresentations.

1If a ∈ Z/qnZ, the fractional part
¶
ã
qn

©
of the rational number ã/qn does not depend on the lift ã ∈ Z which

represents the residue class a. This is what we call the �fractional part of a�.
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4.3.2. The case of roots of unity

Although we already recovered the results of Chapter 2 in section 4.1.4 by determining the module of
additive relation with integral coe�cients Rg, let us illustrate how the point of view of representations
can be used in this simple case.

For a prime number `, consider the polynomial g := X` − 1. Then Zg = µ` =
{
ζj ; 0 6 j 6 `− 1

}
where ζ = exp(2iπ/`), and the splitting �eld of g is Kg = Q(ζ). It has degree ` − 1 over Q, and we
have the homomorphism of Gal (Q(ζ)/Q)-representations:

ev : QZg → Q(ζ)

This homomorphism is surjective because Q(ζ) = Q[ζ] = SpanQ(Zg). Therefore, by the rank-nullity
theorem, we have

dim(ker(ev)) = dim(QZg)− dim(Q(ζ)) = `− (`− 1) = 1 (4.10)

But as we explained above, the kernel of the evaluation map is nothing but the module of Q-linear
relations between the roots of g. Thus, Rg,Q has dimension 1 over Q. Moreover, we know that the
sum of the elements of µ` equals 0, so that the constant map 1 (which maps all the elements of Zg to
1) is an element of Rg,Q. From this we conclude that

Rg,Q = Q1 = {α : µ` → Q such that α is constant}

In particular, this implies that the modulo of Z-linear relations, which we denoted by Rg in the previous
sections, is actually a free Z-module of rank 1, generated by the constant map equal to 1.

Remark 4.49. In the general case where g = Xd − 1 for d not necessarily prime, the surjectivity of
the evaluation map is still true, and equation (4.10) gives that the dimension of Rg,Q equals d− ϕ(d).

4.3.3. The case of primitive roots of unity

If we consider the polynomial g := φ` (the `-th cyclotomic polynomial) for some prime number `, then
we have again Kg = Q(ζ) with the notation above, and this time Zg just consists of the primitive
`-th roots of unity. Therefore, QZg and Kg have the same dimension ` − 1 over Q. Moreover, the
linear map ev : QZg → Kg is still surjective because the primitive `-th roots of unity form a Q-basis
of Q(ζ)2. Therefore, the rank-nullity theorem implies that the dimension of the space of Q-linear
relations between the roots of g equals 0. In particular, the module of additive relations Rg is trivial
in this case! In view of Corollary 4.40 (2), this translates into the fact that the sums

S?q(a, `) :=
∑

x∈µ?` (Fq)

e

Å
ax

q

ã
(4.11)

become equidistributed with respect to the measure on C which is the law of `−1 independent random
variables, each uniformly distributed on S1.

2More generally, one can prove that the primitive d-th roots of unity are linearly independent over
Q if and only if d is squarefree, see [55, Satz 3] or https://math.stackexchange.com/questions/87290/

basis-of-primitive-nth-roots-in-a-cyclotomic-extension?noredirect=1&lq=1
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Figure 4.1: The sums S?q(a, d) for d = 5, q = 10151 and a varying in Fq.

These last two examples only relied on arguments on the dimensions ofQZg andKg, but did not involve
any more involved notions of representations. In the following section, we present some special cases
where the decomposition into irreducible subrepresentations plays a role in the study of the additive
relations.

4.3.4. The case where Gal (Kg/Q) ' Sd

In this section, we assume that the Galois group of Kg/Q is isomorphic to Sd, meaning that any
permutation of the roots of g can be realized by the action of an element of Gal (Kg/Q). In this case,
we have the following decomposition as a direct sum of subrepresentations:

QZg = V ⊕W,

where V = Q1 is the 1-dimensional subspace spanned by the constant function equal to 1 and

W :=

α ∈ QZg ;
∑
x∈Zg

α(x) = 0

 .

As V is 1-dimensional, it is an irreducible subrepresentation, and clearly the action of Gal (Kg/Q) is
trivial on V (i.e. for all α ∈ V , for all σ ∈ Gal (Kg/Q), σ · α = α). This implies that the character of
this subrepresentation is constant equal to 1:

∀σ ∈ Gal (Kg/Q) , χV (σ) = 1.

On the other hand, the character of W can be determined from the knowledge of the character of
the full permutation representation on QZg (because QZg = V ⊕W implies that χQZg = χV + χW ).
Gladly, the character of the permutation representation is quite accessible! Indeed, it is not hard to
prove that the character of any permutation representation associated with an action of a �nite group
G on a �nite set X is given by:

χ : σ 7→ |Xσ|

where Xσ denotes the set {x ∈ X,σ · x = x} (the set of points �xed by σ). This implies that the
character of W is given by:

χW : σ ∈ Gal (Kg/Q) 7→ |Zσg | − 1 = #{x ∈ Zg | σ(x) = x} − 1

From this, one can deduce that W is irreducible, because it is absolutely irreducible, meaning that
it is irreducible even after tensorization with C. Indeed, over C, the irreducibility can be proved by
computing the inner product

〈χW , χW 〉 :=
1

d!

∑
σ∈Gal(Kg/Q)

|χW (σ)|2
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and showing that it equals 1 (see [74, Corollary 4.3.14]). Replacing χW (σ) by its explicit expression
determined above and expanding the square, one obtains:

〈χW , χW 〉 =

Ñ
1

d!

∑
σ∈Gal(Kg/Q)

|Zσg |2
é
− 2

Ñ
1

d!

∑
σ∈Gal(Kg/Q)

|Zσg |

é
+ 1.

Thanks to Burnside's lemma, the term 1
d!

∑
σ∈Gal(Kg/Q) |Zσg | equals the number of orbits of Zg under

the action of Gal (Kg/Q), so it is equal to 1 as the action is transitive. On the other hand, the term
with |Zσg |2 counts the number of orbits of Zg × Zg under the diagonal action of the Galois group. The
key argument to conclude is the fact there are two orbits (namely the diagonal {(x, x), x ∈ Zg} and its
complement), and this is due to that fact that the action of the Galois group is doubly transitive. This
proves that 〈χW , χW 〉 = 1, hence the irreducibility of W .

Finally, the subrepresentations V andW are not isomorphic over C because they do not have the same
character for instance.

Let us explain how this decomposition of QZg into two non-isomorphic subrepresentations can help us
understanding the additive relations between the roots of g. As we said before, the vector space of
Q-linear relations is a subrepresentation of QZg = V ⊕W . It follows from the uniqueness of isotypic
components (see e.g. [74, Proposition 2.7.9 (2)]) that

Rg,Q = {0} or V or W or QZg (4.12)

In the proof of the following proposition, which is due to Girstmair, we will see that the last two cases
actually do not occur (we follow the proof of Kowalski's book).

Proposition 4.50 (Girstmair, [74, Proposition 4.7.12]). Let g ∈ Z[X] be a separable polynomial of
degree d > 1 such that its Galois group Gal (Kg/Q) is isomorphic to Sd. Then Rg is either {0} or the
free Z-module generated by the constant function equal to 1.

In other words, either the coe�cient of Xd−1 in g(X) is zero, in which case the sum of the roots of
g equals 0 and it is the only (up to multiplicative constants) additive relation between the roots, or
the coe�cient of Xd−1 is non-zero and there are no non-trivial additive relations between the roots.
Note that as soon as there exists a polynomial with Galois group Sd, then both cases occur because
a simple change of variables can cancel the coe�cient of Xd−1 without a�ecting the splitting �eld.

Proof. Thanks to the above discussion, it su�ces to rule out the last two possibilities in (4.12) to
obtain the conclusion. Assume for a contradiction that W ⊆ Rg,Q. Fixing two distinct roots of g, say
x and y, de�ne the map α : Zg → Q by α(x) = 1, α(y) = −1 and for all z ∈ Zg \ {x, y}, α(z) = 0.
Then by de�nition we have that α ∈ W , which (as we assumed) is contained in Rg,Q, so α ∈ Rg,Q.
This means that

α(x)x+ α(y)y +
∑

zinZg\{x,y}

α(z)z = 0,

i.e. x = y, and this is a contradiction.

Corollary 4.51. Let g ∈ Z[X] be a monic and separable polynomial of degree d > 1 such that its
Galois group Gal (Kg/Q) is isomorphic to Sd. Then the exponential sums∑

x∈Zg(Fq)

e

Å
ax

q

ã
for q totally split in Kg and not dividing the discriminant of g, and a varying in Fq, become equidis-
tributed in C with respect to a measure µg which is either

(1) the law of the sum of d-independent and identically distributed Steinhaus random variables (this
occurs if and only if the coe�cient of Xd−1 of g(X) is non-zero).
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(2) or the pushforward measure via the Laurent polynomial

z1 + · · ·+ zd−1 +
1

z1 . . . zd−1

of the uniform measure on (S1)d−1 (and this occurs if and only if the coe�cient of Xd−1 of g(X)
equals zero).

Proof. This is Corollary 4.40 combined with an explicit determination of the law of the random variable
U , which is provided by the explicit determination of the module of additive relation of Proposition
4.50.

In order to give an illustration of this result, one needs to �nd polynomials with Galois group Sd.
Hilbert proved, as a consequence of his irreducibility theorem that such polynomials exist for any d > 1.

Moreover, for irreducible polynomials of degree 3, there is a very simple criterion to determine whether
the Galois group of a polynomial is S3 or not:

Proposition 4.52 ([21, Theorem 2.1]). Let g ∈ Q[X] be an irreducible polynomial of degree 3. If
disc(g) is a square in Q, then Gal (Kg/Q) is isomorphic to A3, otherwise it is isomorphic to S3.

In the picture below, we chose two irreducible polynomials of degree 3 and checked that their Galois
group is the full symmetric group using this criterion. In the case of the polynomial X3 +2X2 +3, there
are no non-trivial additive relations between the zeros of g (because the sum of the roots is non-zero,
as one can see from the coe�cient of X2), whereas in the case of the polynomial X3 +X + 3, there is
clearly the relation given by the sum of the roots which equals zero (because the coe�cient of X2 is
zero). Thus, these two polynomials illustrate the two possibilities in Corollary 4.51. We see that the
di�erence between their module of additive relations translates into di�erent limiting measures µg for
the associated sums of additive characters.

(a) g = X3 + 2X2 + 3 and
q = 30113.

(b) g = X3 + X + 3 and q =
30223.

Figure 4.2: The sums
∑

x∈Zg(Fq)
e
Ä
ax
q

ä
as a varies in Fq, for two two di�erent polynomials g of degree

3.

Remark 4.53. Although it may look very speci�c to prescribe the Galois group as we did, it is
actually the typical case to have the full symmetric group as Galois group. Indeed, if we denote
by Ed(H) the number of monic polynomials g(X) = Xd + ad−1X

d−1 + · · · + a0 ∈ Z[X] such that
max{|a0|, . . . , |ad−1|} 6 H and Gal (Kg/Q) is not isomorphic to Sd, then

Ed(H) =
H→+∞

o
Ä
Hd
ä
.

This is a consequence of Hilbert's irreducibility theorem. As the total number of polynomials of the
form Xd + ad−1X

d−1 + · · · + a0 with max{|a0|, . . . , |ad−1|} 6 H equals (2H + 1)d, this implies that
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asymptotically, 100% of monic polynomials of degree d with integer coe�cients have their Galois group
isomorphic to Sd.
Moreover, one can easily �nd a lower bound for Ed(H), since all polynomials with a0 = 0 will admit 0
as a rational root, so the Galois group of their splitting �eld over Q will be a subgroup of Sd−1, hence
will not be maximal. Therefore, Ed(H)� Hd−1. In 1936, van der Waerden [105] conjectured that the
latter was the correct order of magnitude, meaning that the upper bound

Ed(H)� Hd−1

should also hold. 86 years later, Bhargava proved this conjecture in a preprint of October 2022: [6]3.
This gives a strong quantitative sense to the sentence �most polynomials of degree d with integer co-
e�cient have Galois group Sd�.
Now that van der Waerden's conjecure has been proved, we can derive without much e�ort a quan-
titative bound for the proportion of polynomials falling in each case of Corollary 4.51. Indeed, the
number of polynomials g(X) = Xd + ad−1X

d−1 + · · ·+ a0 having the sums of their roots equal to zero
is � Hd−1 because one needs ad−1 to be zero. Therefore, the number of polynomials which do not fall
in the �rst case of Corollary 4.51 (either because their Galois group is not Sd or because the sums of
their roots equals 0) is � Hd−1. Thus, writing again

g(X) = Xd + ad−1X
d−1 + · · ·+ a0

we have

# {g(X) | max06i<d |ai| 6 H and g does not fall in case (1) of Corollary 4.51}
(2H + 1)d

� 1/H.

4.3.5. The case where Gal (Kg/Q) ' Wd

This section is inspired by [74, Exercise 4.7.13]. Assume that d = 2n is an even integer, and denote by
X := {−n, . . . ,−1, 1, . . . , n} and by Sd the set of bijective maps from X to X. We de�ne the group
Wd as follows:

Wd := {σ ∈ Sd | σ(−j) = −σ(j) for all j ∈ X}

In other words, it is the set of σ which permute the set of pairs {−j, j}. In loc. cit., it is shown that the
Galois group of an irreducible palindromic4 polynomial of degree d can be seen as a subgroup of Wd.
If the Galois group is the full group Wd, then one can determine the decomposition into irreducible
subrepresentations of the permutation representation induced by the action of Wd on the roots, and
the result is the following:

QZg = V1 ⊕ V2 ⊕ V3.

Here, V1 = Q1 is the 1-dimensional linear subspace spanned by the constant map equal to 1,

V2 =

α ∈ QZg | for all x ∈ Zg, α(1/x) = α(x) and
∑
x∈Zg

α(x) = 0


and

V3 =
¶
α ∈ QZg | for all x ∈ Zg, α(1/x) = −α(x)

©
.

As in the previous section, one can show that this is a decomposition into absolutely irreducible
subrepresentations, and deduce that Rg,Q can only be a direct sum of some of the representations
V1, V2 and V3. In fact, if g is an irreducible palindromic polynomial with Galois group Wd, one can

3I thank my journalist friend Clémentine Laurens for bringing that to my attention! You can click here to read her
article for Le Monde.

4A polynomial g is said to be palindromic if its coe�cients form a palindrome, which is equivalent to the fact that
Xdeg(g)g(1/X) = g(X).

142

https://www.lemonde.fr/sciences/article/2022/06/21/conjecture-de-van-der-waerden-un-probleme-mathematique-presque-centenaire-resolu_6131411_1650684.html


prove that the inclusions V2 ⊆ Rg,Q and V3 ⊆ Rg,Q both lead to contradictions (under the assumption
that n > 2 so that d > 4), so the only possibilities are

Rg,Q = {0} or Q1.

We refer to [71, Proposition 2.4] for more details.

Thus, we have the following analogue of Corollary 4.51:

Corollary 4.54. Let g ∈ Z[X] be a monic, irreducible and palindromic polynomial of even degree d > 4
such that its Galois group Gal (Kg/Q) is isomorphic to Wd. Then the exponential sums∑

x∈Zg(Fq)

e

Å
ax

q

ã
for q totally split in Kg and not dividing the discriminant of g, and a varying in Fq, become equidis-
tributed in C with respect to a measure µg which is either

(1) the law of the sum of d-independent and identically distributed Steinhaus random variables (this
occurs if and only if the coe�cient of Xd−1 of g(X) is non-zero).

(2) or the pushforward measure via the Laurent polynomial

z1 + · · ·+ zd−1 +
1

z1 . . . zd−1

of the uniform measure on (S1)d−1 (and this occurs if and only if the coe�cient of Xd−1 of g(X)
equals zero).

Remark 4.55. The Q-linear relations between the roots of a polynomial with Galois group Wd have
been studied in the paper [71]. Let us describe brie�y the type of questions tackled in this article, to
show the relevance of the study of linear relations in other problems of analytic number theory.
Among others, one motivation is the study of the Chebyshev bias, a particular case of which is the
observation made by Chebyshev that for most x, there are more primes p 6 x that are congruent to 3
modulo 4 than primes p 6 x that are congruent to 1 modulo 4. Denoting by π(x; 4, 3) and π(x; 4, 1)
the number of such primes, Chebyshev observed that for the �rst thousands values of x, one had the
inequality

π(x; 4, 1) < π(x; 4, 3).

Actually, the �rst value of x for which π(x; 4, 3) < π(x; 4, 1) is 26861. Littlewood proved that
π(x; 4, 1) < π(x; 4, 3) actually changes signs in�nitely often, but still, the primes congruent to 3 modulo
4 seem to be ahead �most of the time� in their race against the primes congruent to 1 modulo 4. In
the article [93], Rubinstein and Sarnak gave a conjectural explanation of this phenomenon. The �rst
chapter of Alexandre Bailleul's Ph.D. thesis [3] gives a very detailed description of their approach. In
a few words, they used explicit formulas to relate the prime counting functions involved in the problem
to sums over the zeros of Dirichlet L-functions. To understand the oscillations inside these sums, one
needs (in view of the Kronecker-Weyl theorem) to study the Q-linear relations between the imaginary
parts of the zeros. This led Rubinstein and Sarnak to introduce the linear independence hypothesis,
and conditionally on this assumption (as well as the generalized Riemann hypothesis concerning the
real part of the zeros) they proved that the set

{x > 2 | π(x; 4, 1) < π(x; 4, 3)}

admits a logarithmic density which is approximately 0.9959. . . This gives an explanation to Chebyshev's
observation, and it extends to arbitrary arithmetic progressions. It reveals that in the race between
π(x; q, a) against π(x; q, b), there is a bias if a or b is a square modulo q and the other one is not. The
non-squares are ahead more often than not in logarithmic density.

143



Motivated by the importance of the linear independence hypothesis, Kowalski studied in [71] another
class of L-functions: that of L-functions of algebraic curves over �nite �elds. The following entry on
Kowalski's blog gives a very accessible introduction to the ideas of that paper: https://blogs.ethz.
ch/kowalski/2008/08/14/independence-of-zeros-of-l-functions-over-function-fields/.
The advantage of this setting is that the L-functions are polynomials (so they only have �nitely
many roots) instead of analytic functions which can have in�nitely many zeros, and the Riemann
hypothesis has been proved by Deligne for such L-functions. In this article, Kowalski proves that
the linear independence between the zeros of the L-function associated with an hyperelliptic curve
C is �typically� satis�ed among the curves of a certain family. An estimate quanti�es how rare are
the exceptional curves in the given family whose L-functions fails to satisfy the linear independence
hypothesis.

4.3.6. The Hilbert class polynomial

Another polynomial for which the module of additive relations can be determined is the Hilbert class
polynomial g := H∆, whose roots are the j-invariants of elliptic curves with CM by an imaginary
quadratic order O of given discriminant ∆ (see, e.g., [23, � 13, Prop. 13.2]). This means that we
consider sums ∑

E with CM by O

e
(aj(E)

q

)
(4.13)

(summing over isomorphism classes of elliptic curves with CM by O) for prime numbers q totally split
in the ring class �eld corresponding to the order O (which, for ∆ = −4m with m > 1 a �xed squarefree
integer, means primes of the form x2 + my2, see the book of Cox [23] for details). From Proposition
4.30, and Corollary 4.40, we know that the asymptotic distribution of the sums (4.13), as q tends
to in�nity and a varies in Fq, is governed by the additive relations between the roots of the Hilbert
class polynomial (or in other words: the additive relations between j�invariants of elliptic curves with
CM by O). In fact, in the next proposition we prove that for all discriminants ∆ 6 −9, there are no
non-trivial additive relations, so that the sums (4.13) equidistribute with respect to a measure which
is the law of independent and identically distributed Steinhaus random variables.

Proposition 4.56. Let ∆ be a negative discriminant, that is: a negative integer such that ∆ ≡
0, 1 (mod 4). Let O be the unique imaginary quadratic order of discriminant ∆, with class number
denoted by h. Let j(τ1), . . . , j(τh) be the singular moduli of discriminant ∆, where the imaginary
quadratic integers τk belong to the standard fundamental domain for the action of SL2(Z) on the
Poincaré upper half-plane H.
Then if ∆ 6 −9, the algebraic integers j(τ1), . . . , j(τh) are linearly independent over Q.

Remark 4.57. From the point of view of elliptic curves, the j(τk) are exactly the di�erent j-invariants
of elliptic curves with CM by O.

Proof. The proof relies on the following facts5:

(a) {j(τ1), . . . , j(τh)} is a Galois orbit over Q. This comes from the fact that the Hilbert class
polynomial H∆, which belongs to Z[X] and is irreducible over Q, equals

h∏
k=1

(X − j(τk)).

See [23, �13] for a proof.

(b) We have an e�ective estimate of the absolute value of j(τ) in terms of the imaginary part of τ ,
due to Bilu, Masser and Zannier. Namely, if τ ∈ H is in the standard fundamental domain, then∣∣∣|j(τ)| − e2πIm(τ)

∣∣∣ 6 2079,

see [8, Lemma 1].

5Many thanks to Emanuele Tron for giving the key ideas of the proof, leaving me only a few details to check.
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(c) Finally, for any given negative discriminant, there is a unique so-called dominant singular mod-
ulus of discriminant ∆, which corresponds to a τ with imaginary part

√
|∆|/2, while all others

are associated with complex number τ ′ with imaginary part less than or equal to
√
|∆|/4, see

[2, Section 3.3]. As a consequence of the estimate above, the dominant singular modulus of
discriminant ∆ satis�es

|j(τ)| > eπ
√
|∆| − 2079,

while all the other singular moduli of discriminant ∆ satisfy

|j(τ ′)| 6 eπ
√
|∆|
2 + 2079.

Thanks to these facts combined with classical estimates for the class number of imaginary quadratic
orders, we can now prove Proposition 4.56.

Assume that there exists a non-trivial linear relation over Q:

h∑
k=1

akj(τk) = 0 (4.14)

Then up to reordering the τk, we may assume that |a1| = max16k6h |ak|, and after dividing by a1, we
may assume that a1 = 1 and that for all k > 2 we have |ak| 6 1. Moreover, using the fact that j(τ1) is
a Galois conjugate over Q of the dominant singular modulus of discriminant ∆, we may assume that
j(τ1) is the dominant singular modulus. Then, isolating this term in (4.14) gives:

j(τ1) = −
h∑
k=2

akj(τk).

Taking absolute values and using the estimates from point (c), we get:

eπ
√
|∆| − 2079 6 |j(τ1)| =

∣∣∣∣∣
h∑
k=2

akj(τk)

∣∣∣∣∣
6

h∑
k=2

|j(τk)| 6
Å
eπ
√
|∆|
2 + 2079

ã
h.

Finally, thanks to Dirichlet's analytic class number formula (see e.g. [19, Proposition 5.3.12] in the
case ∆ < −4), we have

h =

√
|∆|
π

L

Å
1,

Å
∆

−

ãã
,

where
Ä

∆
−

ä
is the Kronecker symbol. Besides, the value at 1 of the L-function is classically bounded

above by log(|∆|) + 2 (using summation by parts, see for instance [52, Chapter 12, Theorem 14.3]).
Therefore,

eπ
√
|∆| − 2079 6

Å
eπ
√
|∆|
2 + 2079

ã√|∆|
π

(log(|∆|) + 2) ,

which is contradictory for all |∆| > 9. Thus, there is no non-trivial linear relation over Q between the
singular moduli of a given discriminant ∆ 6 −9.

Now let us state the corollary concerning the distribution of sums of type (4.13):

Corollary 4.58. Fix a negative discriminant ∆ 6= −3 and denote by O the unique imaginary quadratic
order of discriminant ∆, and by h its class number. As q → ∞ among the primes totally split in the
ring class �eld corresponding to the order O, the sums∑

E with CM by O

e
(aj(E)

q

)
parametrized by a ∈ Fq become equidistributed in C with respect to the measure µ which is the law of
the sum X1 + · · ·+Xh of h independent random variables, each uniformly distributed on the unit circle.
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Proof. When ∆ 6 −9, Proposition 4.56 shows that the group of additive relations of the polynomial
g = H∆ is trivial. Therefore, its orthogonal Hg is the full group of functions from Zg to S1 and the
uniform distribution result is a particular case of Corollary 4.40. In the remaining cases, the class
number is equal to 1, and the proof follows from the fact that the unique j-invariant of elliptic curve
of discriminant ∆ is a non-zero integer, as shown in the tables of [23, �12, section C].

Remark 4.59. In the case ∆ = −3, we have j(E) = 0 for the unique class of isomorphism of elliptic
curves with CM by O, so that the sums above are always equal to 1.

4.4. Allowing more general Laurent polynomials instead of ax

In this section, we generalize the previous equidistribution results regarding sums of the type∑
x∈Zg(Fq)

e

Å
ax

q

ã
to allow more general Laurent polynomials inside the exponentials, just as we did in Chapter 2. In
particular, this will allow us to obtain equidistribution results for∑

x∈Zg(Fq)

e

Å
a(x+ x−1)

q

ã
or

∑
x∈Zg(Fq)

e

Å
ax+ bx−1

q

ã
.

Once again, this relies on the uniform distribution of certain unitary random variables inside a subgroup
of C(Zg,S

1) related to the relations between the roots of the polynomial g. Then, uniform distribution
of the corresponding exponential sums follows immediately from composition with the linear form σ.

Proposition 4.60. Let v ∈ Z[X,X−1] be a non-constant Laurent polynomial. Assume that 0 /∈ Zg.
De�ne random variables Wpn on Og/p

n for p ∈ Sg which divides none of the roots of g and n > 1, with
values in C(Zg;S

1), by

Wpn(a)(x) = e
(τpn(av($pn(x)))

‖p‖n
)
.

The random variables Wpn converge in law as ‖p‖n → +∞ to the random function W : Zg → S1 such
that W is uniformly distributed on the subgroup orthogonal to the abelian group Rg,v ⊂ C(Zg;Z) of
additive relations between components of (v(x))x∈Zg , namely

Rg,v = {α : Zg → Z |
∑
x∈Zg

α(x)v(x) = 0}.

Remark 4.61. Let us give some precisions about the condition �which divides none of the roots of g�
in the assumptions above. For all x ∈ Zg, the ideal xOg is a non-zero ideal of the Dedekind ring Og

(thanks to the assumption that 0 /∈ Zg). As such, it can be written as a �nite product

xOg =
∏
p

pep

of powers of prime ideals of Og, where the product is indexed by the (�nitely many) prime ideals
containing xOg. We say that p divides x when p appears in the factorization of the ideal xOg.
Moreover, let us stress that the fact that p ∈ Sg does not ensure that p divides none of the roots
of g, so this extra condition is not super�uous. Indeed, if one considers for instance the polynomial
g := X2+X+3, then disc(g) = −11, so q = 3 is a prime number which does not divide the discriminant
of g. Therefore, 3 is totally split in Kg if and only if g splits into distinct linear factors in F3. But

g(X) ≡ X(X + 1) (mod 3)

So 0 is one of the roots of g modulo 3, which means that if p is an ideal of Kg lying above the prime
number 3, then one of the roots of g belongs to p (although p ∈ Sg because it lies above 3, which is
totally split!)
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Remark 4.62. The assumptions that p divides none of the roots of g is used in the proof, but is is
even necessary to ensure that our random variables are well-de�ned. Indeed, in order to be able to
write v($pn(x)), for a Laurent polynomial v, we need $pn(x) to be invertible in the ring Og/p

n. This
is guaranteed by the fact that for all x ∈ Zg, we have that x /∈ p. Indeed, Og/p

n is a local ring with
unique maximal ideal p/pn (because ideals of Og/p

n correspond to ideals of Og containing pn, which
are pn ⊂ pn−1 ⊂ · · · ⊂ p ⊂ Og), and in a local ring, all the elements which do not belong to the
maximal ideal are units.

This small di�culty on the possibility of some primes dividing a root of g justi�es the writing of the
proof of Proposition 4.60, as it is not a completely immediate adaptation of the proof of Proposition
4.30. Indeed, the issue is that

Sα,v :=
∑
x∈Zg

α(x)v(x)

need not belong to Og (it is an element of Kg, but the fact that we invert roots of the polynomial g in
order to evaluate v(x) can give us an element which no longer belongs to Og). Therefore, we need to
be a little bit more cautious when applying the homomorphism properties of $pn : Og → Og/p

n, since
it is only de�ned on Og. The key argument is the following:

Lemma 4.63. Let p ⊂ Og be an ideal which does not contain any root of g and let P denote the
product ∏

y∈Zg

ym,

where −m is the valuation of the Laurent polynomial v fo Proposition 4.60. Then PSα,v ∈ Og and for
all n > 1, we have

$pn(PSα,v) =
∑
x∈Zg

α(x)v($pn(x)).

Proof. Indeed, if we write

v(X) =
N∑

i=−m
aiX

i

then

$pn(PSα,v) = $pn

Ñ
P
∑
x∈Zg

α(x)

N∑
i=−m

aix
i

é
= $pn

Ñ∑
x∈Zg

α(x)

N∑
i=−m

ai

Ñ ∏
y∈Zg\{x}

ym

é
xm+i

é
=
∑
x∈Zg

α(x)$pn

Ñ ∏
y∈Zg\{x}

ym

é
N∑

i=−m
ai$pn

(
xm+i

)
Next, we use the fact that for all −m 6 i 6 N , we have $pn(xm+i) = $pn(x)m+i because m + i > 0
and $pn is a ring homomorphism. Now, $pn(x)m+i = $pn(x)m$pn(x)i = $pn(xm)$pn(x)i and the
right-hand side makes sense even for negative values of i because $p(x) ∈ (Og/p

n)×, thanks to the
assumption that p does not divide xOg. Therefore,

$pn(PSα,v) =
∑
x∈Zg

α(x)$pn

Ñ ∏
y∈Zg\{x}

ym

é
$pn(xm)

︸ ︷︷ ︸
$pn (P )

N∑
i=−m

ai$pn (x)i︸ ︷︷ ︸
v($pn (x))

= $pn(P )
∑
x∈Zg

α(x)v($pn(x)).
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Proof of Proposition 4.60. � Let us �rst prove that the random variable Wpn takes values in R⊥g,v.
We let a ∈ Og/p

n and we take α ∈ Rg,v. We want to prove that

ηα(Wpn(a)) = 1.

But we have

ηα(Wpn(a)) =
∏
x∈Zg

Wpn(a)(x)α(x)

= e

Ñ
τpn(a)

‖p‖n
τpn

Ñ∑
x∈Zg

α(x)v($pn(x))

éé
Now thanks to Lemma 4.63 we have that∑

x∈Zg

α(x)v($pn(x)) = $pn(PSα,v)

and Sα,v = 0 since α ∈ Rg,v. This gives the conclusion.

� Now, let us prove the convergence in law of the random variablesWpn . We let ηα be a non-trivial
character of R⊥g,v, which means that α /∈ Rg,v, and we want to prove that

E (ηα(Wpn)) −→
‖p‖n→+∞

0.

First, we write

E (ηα(Wpn)) =
1

‖p‖n
∑

a∈Og/pn

ηα(Wpn(a))

=
1

‖p‖n
∑

a∈Og/pn

e

Ñ
τpn(a)

‖p‖n
τpn

Ñ∑
x∈Zg

α(x)v($pn(x))

éé
Next, we use again Lemma 4.63, which tells us that∑

x∈Zg

α(x)v($p(x)) = $p(PSα,v)

But now, Sα,v 6= 0 thanks to the assumption that α /∈ Rg,v, so that PSα,v 6= 0. Thus,
NKg/Q(PSα,v) is a non-zero integer, and if $pn(PSα,v) = 0 then ‖p‖n divides it, so in particular
‖p‖n 6 NKg/Q(PSα,v). Therefore, as soon as ‖p‖n > NKg/Q(PSα,v), we have $pn(PSα,v) 6= 0,
hence

∑
x∈Zg

α(x)v($pn(x)) 6= 0, so that E (ηα(Wpn)) = 0 by orthogonality of characters.

For instance, if v(x) = x+x−1, we have thatW is uniformly distributed in the orthogonal of the group

Rg,v =

α : Zg → Z |
∑
x∈Zg

α(x)

Å
x+

1

x

ã
= 0

 .

Corollary 4.64. For q totally split in Kg and not dividing any root of g nor its discriminant, we have
that the sums ∑

x∈Zg(Fq)

e

Å
a(x+ x−1)

q

ã
parametrized by a ∈ Fq become equidistributed with respect to a measure which is the law of σ(W ), with
W as above.
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Let us now turn our attention to the suitable setting to handle sums of the form

∑
x∈Zg(Fq)

e

Å
ax+ bx−1

q

ã
.

Proposition 4.65. Let k > 1 be an integer and let m = (m1, . . . ,mk) ∈ Zk. For p ∈ Sg dividing
none of the roots of g, and n > 1, de�ne random variables Ypn on the space (Og/p

n)k with uniform
probability measure, with values in C(Zg;S

1), by

Ypn(a1, . . . , ak)(x) = e

Å
τpn (a1$pn(x)m1 + · · ·+ ak$pn(x)mk)

‖p‖n
ã
.

The random variables Ypn converge in law as ‖p‖n → +∞ to the random function Y : Zg → S1 such
that Y is uniformly distributed on the subgroup orthogonal to the abelian group

Rg,m := {α : Zg → Z |
∑
x∈Zg

α(x)xmj = 0 for 1 6 j 6 k}

of common additive relations between powers of elements of Zg.

Proof. For α ∈ C(Zg,Z), a computation shows that

E(ηα(Ypn)) =
k∏
j=1

1

‖p‖n
∑

aj∈Og/pn

e

Ñ
τpn(aj)

‖p‖n
τpn

Ñ∑
x∈Zg

α(x)$pn(x)mj

éé
Now thanks to the assumption that p divides none of the roots of g, Lemma 4.63 applied to the Laurent
polynomial Xmj shows that

∑
x∈Zg

α(x)$pn(x)mj equals zero if
∑

x∈Zg
α(x)xmj = 0, which is the case

for all j if we assume that α ∈ Rg,m. This proves that the random variables Ypn take values in the
subgroup R⊥g,m of C(Zg,S

1).
On the other hand, if α /∈ Rg,m, then there exists a j ∈ {1, . . . , k} such that

∑
x∈Zg

α(x)xmj 6= 0,
and this implies that

∑
x∈Zg

α(x)$pn(x)mj is non-zero as soon as ‖p‖n is su�ciently large. The factor
corresponding to j in E(ηα(Ypn) is then equal to zero for all ‖p‖n su�ciently large. This proves the
desired uniform distribution.

Example 4.66. Consider the case of g = Xd − 1 and the sums

∑
x∈µd(Fq)

e

Å
a(x+ x−1)

q

ã
(4.15)

with a varying in Fq, and ∑
x∈µd(Fq)

e

Å
ax+ bx−1

q

ã
, (4.16)

with a and b varying in Fq for q totally split in Kg. Both satisfy equidistribution, but in general with
di�erent measures. For (4.15), we need to determine the functions α satisfying the relation∑

x∈µd

α(x)(x+ x−1) = 0,

and for (4.16), we need to solve ∑
x∈µd

α(x)x =
∑
x∈µd

α(x)x−1 = 0.
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This last case gives the same relations as in the end of section 4.1.4, since the second sum above is the
complex-conjugate of the �rst. For instance, in the case d = 3, this means that the sums (4.16) will
become equidistributed with respect to the measure on C which is the pushforward measure via

S1 × S1 → C
(y1, y2) 7→ y1 + y2 + 1

y1y2

of the uniform measure on S1 × S1. This is illustrated in Figure 4.3 (b), since the image of the above
map is the closed region delimited by a 3-cusp hypocycloid.
For (4.15), on the other hand, the relation is equivalent to∑

x∈µd

(α(x) + α(x−1))x = 0,

which means that β : x 7→ α(x) +α(x−1) belongs to the module of additive relations of the polynomial
Xd − 1. If d = ` is a prime number, for instance, this means that β is constant.

In the case ` = 3, the group RX`−1,x+x−1 is generated by the constant function 1 and (say) the
function on roots of unity of order ` which gives the sign of the imaginary part (with the imaginary
part 0 mapped to 0). This implies that the sums (4.15) become equidistributed in the image of the
map

S1 → C
y 7→ 2y + 1

y2

with respect to the pushforward measure of the Haar measure on S1. Since the image of this map is
precisely the 3-cusp hypocycloid (see De�nition 2.3) this explains the picture obtained in Figure 4.3
(a).

(a) The sums of type (4.15) for
d = 3, q = 811, and a varying in
Fq.

(b) The sums of type (4.16) for
d = 3, q = 109, and a and b vary-
ing in Fq.

Figure 4.3: Comparison between the regions of equidistribution for sums of type (4.15) and sums of
type (4.16).
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4.A. Duality of compact abelian groups and Weyl's criterion

Duality of compact abelian groups. Let G be a compact abelian group (Theorem 4.68 and
Proposition 4.70 hold more generally for locally compact abelian groups, but we only need the compact
case in the applications of this chapter).

De�nition 4.67. A character of G is a continuous group homomorphim from G to S1 (a more precise
name would be �continuous unitary character�). We denote by “G the group of characters of G. It is
called the dual of G.

If H is a subgroup of G, then we can always restrict to H a character of G, and this gives an element
of “H. A consequence of Pontryagin duality is the fact that when H is closed, all characters of H are
of this form!

Theorem 4.68 ([94, Theorem 2.1.4]). If H be a closed subgroup of G then the restriction homomor-
phism “G → “H

χ 7→ χ|H

is surjective. In other words, any character of H can be extended to a character de�ned on all G.

As in linear algebra, we can use the dual to de�ne the orthogonal or annihilator of a subset of G as
the set of characters which are trivial on it. There is also the dual notion of orthogonal of a subset of“G, and we gather the two de�nitions below:

De�nition 4.69 (Orthogonal of a subset).

� If A is a subset of G, we denote by A⊥ :=
¶
χ ∈ “G; ∀x ∈ A,χ(x) = 1

©
.

� If B is a subset of “G, we denote by B⊥ := {x ∈ G; ∀χ ∈ B,χ(x) = 1}.

Another consequence of Pontryagin duality is the following fact, which is reminiscent of what happens
in �nite dimensional vector spaces.

Proposition 4.70 ([94, Lemma 2.1.3]). If H is a closed subgroup of G then
(
H⊥
)⊥

= H.

Equidistribution and Weyl's criterion. If we have a sequence (Xn) of random variables de�ned
on some probability spaces (Ωn,Fn,Pn) and with values in the compact abelian group G, we say that
the sequence converges in law to a uniformly distributed random variable on G if the distribution of Xn

(which is the pushforward measure of Pn via Xn) converges weakly to the probability Haar measure
µG on G.
In other words

Xn
law−→ U(G) ⇐⇒

∫
Ωn

f(Xn(ω))dPn(ω) −→
n→∞

∫
G
f(x)dµG(x)

for all continuous map f : G→ C. Weyl's criterion states that it su�ces to check this convergence for
maps f which are characters of G. We state it below in the form of [75, Theorem B.6.3]:

Theorem 4.71 (Weyl's criterion). Let G be a compact abelian group. A sequence (Xn) of G-valued
random variables converges in law to a uniformly distributed random variable on G if and only if for
any non trivial character χ of G,

E(χ(Xn)) −→
n→∞

0.

Finally, the group (S1)d and its closed subgroups will be of particular interest for us, so we need a
precise description of their characters.

Proposition 4.72 (Characters of (S1)d). Let G be the compact group (S1)d. The characters of G are
exactly the maps

χm : G → S1

(z1, . . . , zd) 7→ zm1
1 · · · zmdd

for m = (m1, . . . ,md) ∈ Zd. Moreover, χm is the trivial character if and only if m = (0, . . . , 0).
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4.B. On rami�cation in number �elds

Given a number �eld K (that is: a �nite extension of the �eld Q), we denote by OK its ring of integers.
By de�nition, it is the set

{x ∈ K | there exists a monic polynomial P ∈ Z[X] such that P (x) = 0} .

It can be shown that this subset is actually a subring of K. In general, this ring OK is not a unique
factorization domain, but it is always a Dedekind ring. This implies that even though unique factoriza-
tion might fail at the level of elements of OK , there is an essentially unique factorization at the level of
ideals of OK . Namely, for any non-zero ideal a ⊂ OK , there exist a �nite set of prime ideals p1, . . . , pr
and positive integers α1, . . . , αr such that

a = pα1
1 . . . pαrr .

This factorization is unique up to permutation of the pi. The prime ideals which appear in this
decomposition are precisely those which contain a. In particular, if p is a prime number in Z, the ideal
generated by p in OK can be decomposed as a product of the form above. If pOK ⊆ p (i.e. if p appears
at a non-zero power in the factorization of pOK as a product of prime ideals), we say that p lies above
p, or that p divides p and we denote this condition by p | p. We denote by ep the power at which the
ideal p appears in the factorization. With these notations, we have

pOK =
∏
p|p

pep .

De�nition 4.73. The integer ep ∈ Z>0 is called the rami�cation index of p at p.

When p | p, we have the following natural ring homomorphisms:

Z ↪→ OK → κ(p) := OK/p

The composition factorizes through Z/pZ and gives rise to the so-called residual extension:

Fp ↪→ κ(p)

.

De�nition 4.74. The �eld κ(p) is called the residue �eld at p, and we denote by fp the residual degree,
which is de�ned as [κ(p) : Fp] (the degree of the extension of residue �elds).

Finally, let us introduce some terminology regarding the numbers ep and fp.

De�nition 4.75. � If ep = 1, we say that the extension K/Q is unrami�ed at p, or that p is
unrami�ed.

� If for all p | p, the extension K/Q is unrami�ed at p, we say that the prime p is unrami�ed.

� If for all p | p we have ep = fp = 1, we say that p is totally split in K.

An important result to have in mind is that when the extension K/Q is Galois, Gal(K/Q) acts
transitively on the set of prime ideals p dividing a given prime p. A consequence of this fact is that
the numbers ep and fp do not depend on p, they are the same for any ideal p | p. As a consequence,
in the Galois case, a prime p is totally split in K if and only if there exists a prime ideal p dividing p
such that ep = fp = 1.
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Chapter 5

Discrepancy estimates

The aim of this chapter is to study the speed of the convergence in law of the random variables Up

introduced in the previous chapter. In order to do this, we need to generalize the
Erdös-Turán-Koksma inequality to closed subgroups of (S1)k, since the random variables Up take
values in a closed subgroup of C(Zg,S

1) ' (S1)deg g. Using the well-known classi�cation of such
subgroups, we propose a de�nition of the ϕ-discrepancy of a sequence which depends on the choice of
an isomorphism ϕ with (R/Z)d ⊕ F , where F is a �nite abelian group. Then we prove that this

discrepancy decays at least as fast as ‖p‖−
1

[Kg :Q] .
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5.1. Erdös-Turán-Koksma inequality (classical form)

Let (zn)n>1 be a sequence of elements of Tk = (R/Z)k. We say that this sequence becomes equidis-
tributed in Tk if for any continuous function f : Tk → C, we have

1

N

N∑
n=1

f(zn) −→
N→+∞

∫
Tk
fdλk, (5.1)

where λk denotes the probability Haar measure on the compact abelian group Tk. Equivalently, (zn)
becomes equidistributed in Tk if for any �rectangle� I := [a1, b1] × · · · × [ak, bk] ⊆ (R/Z)k (with
0 6 bi− ai 6 1), the right proportion of the terms (zn) falls inside the rectangle (asymptotically), that
is:

#{1 6 n 6 N, zn ∈ I}
N

−→
N→+∞

k∏
j=1

(bj − aj)
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The celebrated Weyl's criterion asserts that one can check the convergence (5.1) only on a certain class
of functions: the trigonometric polynomials. In other words, (zn) becomes equidistributed in Tk if and
only if for all m ∈ Zk \ {0},

1

N

N∑
n=1

e(m · zn) −→
N→+∞

0.

We call the sums on the left-hand side the Weyl sums associated with this equidistribution problem.

Notation: in the remainder of this chapter, χm denotes the character e(m · (−)) of Tk. The dimension
k will always be clear in the context.

The Erdös-Turán-Koksma inequality is a theorem which gives a control of the discrepancy of a sequence
in Tk in terms of the Weyl sums. It allows one to deduce a �rate of equidistribution� from estimates
on the decay of the absolute value of the Weyl sums. Before stating it, let us recall the de�nition of
the discrepancy in this context.

De�nition 5.1. If z = (zn)n>1 is a sequence of elements of Tk, we de�ne its discrepancy at the rank
N as

DN (z) := sup
I∈Ik

∣∣∣∣# {1 6 n 6 N, zn ∈ I}N
− λk(I)

∣∣∣∣
where Ik denotes the set of rectangles I = [a1, b1]× · · · × [ak, bk] of Tk.

We can now state the Erdös-Turán-Koksma inequality:

Theorem 5.2 ([29, Theorem 1.21]). Let z = (zn)n>1 be a sequence of elements of Tk. Then for all
H > 1 and all N > 1,

DN (z) 6
Å

3

2

ãkÜ 2

H + 1
+

∑
m∈Zk

0<‖m‖∞6H

1

r(m)

∣∣∣∣∣ 1

N

N∑
n=1

e(m · zn)

∣∣∣∣∣
ê

where r(m) =
∏k
j=1 max(1, |mj |) for m = (m1, . . . ,mk) ∈ Zk.

The main aim of this chapter is to prove an extension of this result which gives a control of the
discrepancy of a sequence of elements in a closed subgroup G ⊆ Tk in terms of the Weyl sums, that is
sums of the form

1

N

N∑
n=1

χ(zn)

where χ is a character of G. Our �rst step consists in the study of the structure of such closed
subgroups. It is actually quite well understood, and we recall some facts in the next section, borrowing
from [10].

5.2. Generalization to closed subgroups of Tk

5.2.1. Structure of closed subgroups of Tk

If G is a closed subgroup of Tk, then it corresponds (via the canonical map Rk → Rk/Zk) to a closed
subgroup of Rk containing Zk, which we denote by G′. Thanks to [10, Chapter 7], there exists a basis
a1, . . . , ak of Rk such that {

Zk =
⊕k

i=1 Zai

G′ =
Ä⊕d

i=1 Rai
ä
⊕
Ä⊕k

i=d+1 Za
′
i

ä
,
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where each a′i is equal to
1
mi
ai for some integers mi (the mi are the invariant factors of some Z-module,

dual in some sense of the module G′). If we denote by B the basis (a1, . . . , ad, a
′
d+1, . . . , a

′
k) of Rk

and by P := PB,C the change-of-basis matrix which takes the coordinates of a vector x ∈ Rk in the
canonical basis and returns the vector of its coordinates in the basis B, then P induces an isomorphism

ϕP : G→ Td ⊕

(
k⊕

i=d+1

Z/miZ

)
︸ ︷︷ ︸

=:F

=: Td ⊕ F. (5.2)

Explicitly, we start from an element x ∈ G, we lift it to an element x in Rk, and we denote by
(x1, . . . , xk) its coordinates in the canonical basis of Rk, then we multiply that vector by the matrix
P , to obtain the vector (y1, . . . , yk) made of the coordinates of x in the basis B. Now, thanks to the
explicit description of G′ in the basis B, we know that y1, . . . , yd are real numbers and that yd+1, . . . , yk
are integers. Then we reduce the �rst d coordinates modulo 1, and the following coordinates yi each
modulo mi. This describes the isomorphism ϕP .

Sections 5.2.2 and 5.2.3 of this chapter are devoted to proving Theorem 5.13, which generalizes Theo-
rem 5.2 to the case of the group Td ⊕ F , where F is any �nite abelian group.

This will allow us to deduce an inequality of Erdös-Turán-Koksma type for sequences taking values
inside any closed subgroup G of Tk (the inequality will depend in a relatively well-understood way of
the choice of an isomorphism G→ Td ⊕ F as constructed in (5.2)).

Before proving Theorem 5.13, we need to de�ne some convolution kernels and to study their properties
from the point of view of Fourier analysis.

5.2.2. Construction of convolution kernels via Fourier analysis

We will take the following convention for the Fourier transform on R: if f ∈ L1(R), we de�ne its
Fourier transform as

f̂ : x 7→
∫
R
f(t)e(−xt)dt.

With this convention, the Fourier inversion formula takes the following form:

Proposition 5.3. If f ∈ L1(R) and f̂ ∈ L1(R), then

f(t) =
““f(−t) =

∫
R
f̂(x)e(tx)dx.

In [29, section 1.2.2], the following function is introduced

H(z) :=

Å
sin(πz)

π

ã2
(∑
n∈Z

sgn(n)

(z − n)2
+

2

z

)
, (5.3)

and the authors set

J(z) :=
1

2
H ′(z).

This quite complicated de�nition of J is useful in the proofs, but only the properties of Ĵ stated in the
lemma below will be needed to follow our proof, as we will rely on some facts stated in [29] without
reproducing the full arguments.

Lemma 5.4 ([29, Lemma 1.23]). The function J belongs to L1(R) and its Fourier transform is given
by

Ĵ(t) =


1 if t = 0

πt(1− |t|) cot(πt) + |t| if 0 < |t| < 1

0 otherwise
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Moreover, Ĵ is decreasing on [0, 1].

Remark 5.5. Note that there is a typo in [29, Lemma 1.23] (cos is written instead of cot).

On the other hand, the following function K is also introduced:

K(z) =

Å
sin(πz)

πz

ã2

and its Fourier transform is the �triangle function�. More precisely:

Lemma 5.6. For all t ∈ R, we have “K(t) = (1− |t|)1|t|61.

Proof. An elementary calculation shows that for all z ∈ R we have

K(z) =

∫ 1

−1
(1− |t|)e(zt)dt,

and then the result follows from Fourier inversion formula.

(a) Plot of Ĵ on [−2, 2] (b) Plot of “K on [−2, 2]

The two functions Ĵ and “K are then used to de�ne the Fourier coe�cients of two sequences of trigono-
metric polynomials:

De�nition 5.7. For all integers H > 1, we de�ne the two following trigonometric polynomials of
degree H:

� jH(x) :=

H∑
h=−H

Ĵ

Å
h

H + 1

ã
e(hx)

� kH(x) :=

H∑
h=−H

“K Å h

H + 1

ã
e(hx)

To gain some space, we will write ĴH+1(h) and “KH+1(h) for Ĵ
Ä

h
H+1

ä
and “K Ä h

H+1

ä
.

Finally, we will need to calculate the convolution between 1-periodic functions, so we recall a few
notations. For f and g two 1-periodic functions, de�ne f ? g as follows:

(f ? g)(x) =

∫ 1/2

−1/2
f(x− t)g(t)dt.

Similarly, if f is 1-periodic and µ is a 1-periodic measure on R,

(f ? dµ)(x) =

∫ 1/2

−1/2
f(x− t)dµ(t).
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Finally, if f : R→ R, the total variation of f on [a, b] is de�ned as

Vf ([a, b]) := sup
n−1∑
i=0

|f(xi+1)− f(xi)|,

where the supremum is taken over all partitions a = x0 < x1 < · · · < xn−1 < xn = b of [a, b]. This
de�nes a measure Vf on R, which is 1-periodic if the function f is 1-periodic. We say that f is of
bounded variation on [a, b] if Vf ([a, b]) < +∞.

The main theorem on approximation by convolutions, that we are going to use without proof, is the
following result due to Vaaler (see [104, Theorem 19]).

Theorem 5.8 ([29, Theorem 1.25]). Let f be a real function of bounded variation and period 1 satisfying
|2f(x0) − f(x−0 ) − f(x+

0 )| 6 |f(x−0 ) − f(x+
0 )| for all x0 ∈ [0, 1]. Then the trigonometric polynomials

f ? jH and dVf ? kH are at most of degree H and satisfy

|f(x)− f ? jH(x)| 6 1

2H + 2
dVf ? kH(x)

for all x ∈ R.

Applying this result to f = 1I for some interval of R of length 6 1 gives the following corollary.

Corollary 5.9. Let I ⊆ R be an interval of length λ1(I) 6 1. Then for all H > 1 and for all x ∈ R,

|1I(x)− 1I ? jH(x)| 6 1

H + 1

H∑
h=−H

“KH+1(h)Che(hx)

where Ch = 1
2

∫ 1
0 e(−hx)dV1I (x) satis�es |Ch| 6 1 for all h, and C0 = 1.

Proof. It is an application of [29, Theorem 1.25] to the function f = 1I . This particular case is stated
at the beginning of the proof of [29, Corollary 1.26].

Remark 5.10. In this chapter, we only focus on the consequences of the analytic properties of the
functions H,J,K above on Erdös-Turán-Koksma type inequalities, but Vaaler's article [104] gives other
applications, such as one which is important in Selberg's large sieve. The extremality property satis�ed
by the entire function that we denoted by H in (5.3) is already a beautiful result on its own, see [104]
for details.

5.2.3. An extension of Theorem 5.2 to direct sums of a torus with a �nite abelian

group

Let d > 1 and let F be a �nite abelian group. We denote by Γ the group Td ⊕ F . For any character
χm of Td and any character ψ of F , we denote by χm ⊗ ψ the character of Γ de�ned by:

Γ = Td ⊕ F → S1

(x, y) 7→ χm(x)ψ(y)

Then the map
Zd × “F → Γ̂
(m, ψ) 7→ χm ⊗ ψ

is an isomorphism of groups. In other words, any character χ ∈ Γ̂ can be written uniquely as χm ⊗ ψ
for a certain m ∈ Zd and a certain ψ ∈ “F .
De�nition 5.11. Let χ ∈ Γ̂ and let m = (m1, . . . ,md) and ψ be the unique elements of Zd and “F such
that χ = χm⊗ψ. Then we introduce the following quantities which measure the �size� of the character
χ:
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� T (χ) := ‖m‖∞

� r(χ) =
d∏
j=1

max(1, |mj |)

Let us stress that these notions of �size� of a character only take into account the continuous part χm,
without taking into the discrete part ψ into consideration.
Now, let us de�ne the natural notion of discrepancy for a sequence with values in Γ.

De�nition 5.12. If z = (zn)n>1 is a sequence of elements of Γ = Td⊕F , we de�ne its discrepancy as

DN (z) := sup
I∈Id
y∈F

∣∣∣∣# {1 6 n 6 N, zn ∈ I × {y}}N
− λd(I)

|F |

∣∣∣∣
where Id denotes the set of rectangles I = [a1, b1]× · · · × [ad, bd] of Td.

A rather lengthy but simple adaptation of the proof of Theorem 5.2 gives the following extension of
the Erdös-Turán-Koksma inequality.

Theorem 5.13. Let z = (zn)n>1 be a sequence of elements of Γ = Td ⊕ F . Then for all H > 1 and
all N > 1,

DN (z) 6
Å

3

2

ãdá 2

H + 1
+

1

|F |
∑

χ∈Γ̂\{1}
06T (χ)6H

1

r(χ)

∣∣∣∣∣ 1

N

N∑
n=1

χ(zn)

∣∣∣∣∣
ë

Proof. The following proof is an adaptation of the proof of [29, Theorem 1.21].

For all n > 1, we write zn as (xn, yn), where xn =
Ä
x

(1)
n , . . . , x

(d)
n

ä
∈ Td and yn ∈ F . Let us denote by

m := |F | and let us �x an element y ∈ F and a rectangle

I = I1 × · · · × Id = [a1, b1]× · · · × [ad, bd] ∈ Id.

Then for all H > 1, we have

N∑
n=1

(
1I(xn)1{y}(yn)

)
−N λd(I)

m
=

N∑
n=1

Ñ d∏
j=1

1Ij

Ä
x(j)
n

äé
1{y}(yn)−

Ñ
d∏
j=1

fj
Ä
x(j)
n

äé
1{y}(yn)


+

N∑
n=1

Ñ d∏
j=1

fj
Ä
x(j)
n

äé
1{y}(yn)− λd(I)

m

 ,
where fj

Ä
x

(j)
n

ä
:= 1Ij ? jH

Ä
x

(j)
n

ä
. Denote the �rst sum on the right-hand side by SN and the second

one by TN .

Estimation of |SN |. Thanks to the triangle inequality and to Lemma 5.18 to control the inner
di�erence of products, we have

|SN | 6
N∑
n=1

1{y}(yn)

Ñ ∑
Ø6=J⊆{1,...d}

∏
j /∈J

1Ij

Ä
x(j)
n

ä∏
j∈J

∣∣∣fj Äx(j)
n

ä
− 1Ij

Ä
x(j)
n

ä∣∣∣é
6

N∑
n=1

1{y}(yn)

Ñ ∑
Ø6=J⊆{1,...d}

∏
j∈J

∣∣∣fj Äx(j)
n

ä
− 1Ij

Ä
x(j)
n

ä∣∣∣é
=

N∑
n=1

1{y}(yn)

 d∏
j=1

(
1 +

∣∣∣fj Äx(j)
n

ä
− 1Ij

Ä
x(j)
n

ä∣∣∣)− 1


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Now, thanks to Lemma 5.9, we have that for all j ∈ {1, . . . , d},

∣∣∣fj Äx(j)
n

ä
− 1Ij

Ä
x(j)
n

ä∣∣∣ 6 1

H + 1

H∑
hj=−H

“KH+1(hj)Chje
Ä
hjx

(j)
n

ä
,

hence

|SN | 6
N∑
n=1

1{y}(yn)

 d∏
j=1

Ñ
1 +

1

H + 1

H∑
hj=−H

“KH+1(hj)Chje
Ä
hjx

(j)
n

äé
− 1


=

N∑
n=1

1{y}(yn)

 d∏
j=1

Ñ
1 +

1

H + 1
+

1

H + 1

∑
0<|hj |6H

“KH+1(hj)Chje
Ä
hjx

(j)
n

äé
− 1

 ,
using the fact that C0 = “KH+1(0) = 1. Then we develop the product, this gives the following upper
bound:

|SN | 6
N∑
n=1

1{y}(yn)

ñÅ
1 +

1

H + 1

ãd
− 1

ô
+

N∑
n=1

1{y}(yn)

 ∑
J({1,...d}

ÑÅ
1 +

1

H + 1

ã|J | Å 1

H + 1

ãd−|J |∏
j /∈J

∑
0<|hj |6H

“KH+1(hj)Chje
Ä
hjx

(j)
n

äé
Now,

∏
j /∈J

∑
0<|hj |6H

“KH+1(hj)Chje
Ä
hjx

(j)
n

ä
=

∑
h=(h1,...hd)∈Zd
0<|hj |6H if j /∈J
hj=0 if j∈J

Ñ∏
j /∈J

“KH+1(hj)Chj

é
e(h · xn),

so the second sum in the previous upper bound of |SN | may be rewritten as follows:

N∑
n=1

1{y}(yn)
∑

J({1,...d}

Å
1 +

1

H + 1

ã|J | Å 1

H + 1

ãd−|J | ∑
h=(h1,...hd)∈Zd
0<|hj |6H if j /∈J
hj=0 if j∈J

Ñ∏
j /∈J

“KH+1(hj)Chj

é
e(h · xn)

=
∑

J({1,...d}

Å
1 +

1

H + 1

ã|J | Å 1

H + 1

ãd−|J | ∑
h=(h1,...hd)∈Zd
0<|hj |6H if j /∈J
hj=0 if j∈J

Ñ∏
j /∈J

“KH+1(hj)Chj

é
N∑
n=1

1{y}(yn)e(h · xn)

=
∑
h∈Zd

0<‖h‖∞6H

Å
1 +

1

H + 1

ãα(h) Å 1

H + 1

ãd−α(h)

Ü ∏
16j6d
hj 6=0

“KH+1(hj)Chj

ê
N∑
n=1

1{y}(yn)e(h · xn).

where α(h) denotes #{1 6 j 6 d, hj = 0}. Finally, since∣∣∣∣∣∣∣∣
∏

16j6d
hj 6=0

“KH+1(hj)Chj

∣∣∣∣∣∣∣∣ 6 1,
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we conclude that

|SN | 6
N∑
n=1

1{y}(yn)

ñÅ
1 +

1

H + 1

ãd
− 1

ô
+

∑
h∈Zd

0<‖h‖∞6H

Å
1 +

1

H + 1

ãα(h) Å 1

H + 1

ãd−α(h)
∣∣∣∣∣
N∑
n=1

1{y}(yn)e(h · xn)

∣∣∣∣∣ .

Estimation of |TN |. Recall that

TN =

N∑
n=1

Ñ d∏
j=1

fj
Ä
x(j)
n

äé
1{y}(yn)− λd(I)

m


Replacing jH by its de�nition allows one to rewrite fj

Ä
x

(j)
n

ä
as

H∑
hj=−H

1̂Ij (hj)ĴH+1(hj)e
Ä
hjx

(j)
n

ä
.

Thus,

d∏
j=1

fj
Ä
x(j)
n

ä
=

d∏
j=1

H∑
hj=−H

1̂Ij (hj)ĴH+1(hj)e
Ä
hjx

(j)
n

ä
=

∑
h=(h1,...hd)∈Zd

06‖h‖∞6H

Ñ
d∏
j=1

1̂Ij (hj)ĴH+1(hj)

é
e(h · xn).

Now, for all j ∈ {1, . . . , d}, we have 1̂Ij (0) = λ1(Ij) and ĴH+1(0) = 1, so the term corresponding to
h = 0 in the previous sum is equal to the product of the λ1(Ij), that is: λd(I). Thus:

TN =
N∑
n=1

1{y}(yn)

á
∑

h=(h1,...hd)∈Zd
0<‖h‖∞6H

Ñ
d∏
j=1

1̂Ij (hj)ĴH+1(hj)

é
e(h · xn)

ë
+ λd(I)

Å
1{y}(yn)− 1

m

ã .
Thanks to the triangle inequality and to the inequality λd(I) 6 1, we deduce:

|TN | 6
∣∣∣∣∣
N∑
n=1

Å
1{y}(yn)− 1

m

ã∣∣∣∣∣+

∣∣∣∣∣∣∣∣∣
∑

h=(h1,...hd)∈Zd
0<‖h‖∞6H

Ñ
d∏
j=1

1̂Ij (hj)ĴH+1(hj)

é
N∑
n=1

1{y}(yn)e(h · xn)

∣∣∣∣∣∣∣∣∣
6

∣∣∣∣∣
N∑
n=1

(
1{y}(yn)

)
− N

m

∣∣∣∣∣+
∑

h=(h1,...hd)∈Zd
0<‖h‖∞6H

∣∣∣∣∣∣
d∏
j=1

1̂Ij (hj)ĴH+1(hj)

∣∣∣∣∣∣
∣∣∣∣∣
N∑
n=1

1{y}(yn)e(h · xn)

∣∣∣∣∣
Next, we use the upper bounds

∣∣∣ĴH+1(hj)
∣∣∣ 6 1 and

∣∣∣1̂Ij (hj)∣∣∣ 6
{
λ1(Ij) 6 1 if hj = 0

1
π|hj | if hj 6= 0
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to obtain the estimate

|TN | 6
∣∣∣∣∣
N∑
n=1

(
1{y}(yn)

)
− N

m

∣∣∣∣∣+
∑

h=(h1,...hd)∈Zd
0<‖h‖∞6H

1

πd−α(h)r(h)

∣∣∣∣∣
N∑
n=1

1{y}(yn)e(h · xn)

∣∣∣∣∣ .
(we recall here that α(h) denotes #{1 6 j 6 d, hj = 0}, while r(h) =

∏d
j=1 max(1, |hj |)).

Conclusion. We have∣∣∣∣∣
N∑
n=1

(
1I(xn)1{y}(yn)

)
−N λd(I)

m

∣∣∣∣∣ = |SN + TN | 6 |SN |+ |TN |,

so if we use the two previous steps and divide by N , this gives

∣∣∣∣# {1 6 n 6 N, zn ∈ I × {y}}N
− λd(I)

m

∣∣∣∣ 6
ñÅ

1 +
1

H + 1

ãd
− 1

ô
1

N

N∑
n=1

1{y}(yn)

+
∑
h∈Zd

0<‖h‖∞6H

Å
1 +

1

H + 1

ãα(h) Å 1

H + 1

ãd−α(h)
∣∣∣∣∣ 1

N

N∑
n=1

1{y}(yn)e(h · xn)

∣∣∣∣∣
+

∣∣∣∣∣ 1

N

N∑
n=1

1{y}(yn)− 1

m

∣∣∣∣∣
+

∑
h=(h1,...hd)∈Zd

0<‖h‖∞6H

1

πd−α(h)r(h)

∣∣∣∣∣ 1

N

N∑
n=1

1{y}(yn)e(h · xn)

∣∣∣∣∣ .
Finally, we use the inequality

1

N

N∑
n=1

1{y}(yn) 6 1

as well as the two following upper bounds one can �nd at the bottom of [29, p. 22]:
Ä
1 + 1

H+1

äd
− 1 6

(
3
2

)d 2
H+1Ä

1 + 1
H+1

äα(h) Ä 1
H+1

äd−α(h)
+ 1

πd−α(h)r(h)
6
(

3
2

)d 1
r(h) ·

This gives

∣∣∣∣# {1 6 n 6 N, zn ∈ I × {y}}N
− λd(I)

m

∣∣∣∣ 6 Å3

2

ãdá 2

H + 1
+

∑
h=(h1,...hd)∈Zd

0<‖h‖∞6H

1

r(h)

∣∣∣∣∣ 1

N

N∑
n=1

1{y}(yn)e(h · xn)

∣∣∣∣∣
ë

+

∣∣∣∣∣ 1

N

N∑
n=1

1{y}(yn)− 1

m

∣∣∣∣∣ .
Then Theorem 5.13 follows from the trivial bound 1 6 (3/2)d and from writing

1{y}(yn) =
1

m

∑
ψ∈“F ψ(yn)ψ(y).
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5.2.4. Discussion on the de�nition of the discrepancy in a subgroup of a torus

Let G be a closed subgroup of Tk and let z = (zn)n>1 be a sequence of points in G. Once we know
that (zn) becomes equidistributed in G with respect to its Haar measure, one may ask: can we give a
quantitative estimate of a certain notion of discrepancy in terms of the decay of the absolute value of
the Weyl sums?

To answer this question, we must give a precise de�nition of the discrepancy in this context. There
are two ideas we thought about:

De�nition 5.14. We de�ne the discrepancy by intersecting rectangles of Tk (the large ambient group)
with the closed subgroup G. More precisely, if we denote by Ik the set of reductions modulo Zk

of products I = [a1, b1] × · · · × [ak, bk] of intervals of length less than or equal to 1, we de�ne the
discrepancy of (zn) at rank N as:

DN (z) := sup
I∈Ik

∣∣∣∣# {1 6 n 6 N, zn ∈ I}N
− µG(I ∩G)

∣∣∣∣
where µG denotes the Haar measure on G.

Advantage: this de�nition does not depend on any choice, and seems to be adapted to any subgroup
G of Tk.

Drawback: it seems di�cult to understand the intersections I ∩G well enough for any closed subgroup
G, and understanding these intersections seems important to adapt the classical proofs of Theorem 5.2
to this setting.

Therefore, we thought about an alternative de�nition of the discrepancy, which is less intrinsic, but is
easier to work with.

De�nition 5.15. One can �x an isomorphism of topological groups ϕ : G→ Td ⊕ F , and then de�ne
a notion of �ϕ-discrepancy� using this isomorphism:

Dϕ
N (z) := sup

I∈Id
y∈F

∣∣∣∣# {1 6 n 6 N, ϕ(zn) ∈ I × {y}}
N

− λd(I)

|F |

∣∣∣∣
Advantage: this de�nition allows us to use our Theorem 5.13 and still has an interpretation as a mea-
sure of the rate of convergence to the Haar measure on the subgroup G.

Drawback: it depends on the choice of an isomorphism.

An idea to obtain from this last de�nition an intrinsic notion of discrepancy would be to try to take an
average, or even a supremum over all isomorphisms ϕ, and to de�ne the discrepancy as supϕD

ϕ
N (z).

However, as we will see below, the upper bounds we obtain depend on ϕ and I see no reason why they
could be uniformly bounded.

In the next section, we use De�nition 5.15 and prove an Erdös-Turán-Koksma inequality for any closed
subgroup G of Tk, relying on the choice of an isomorphim ϕP with some Td ⊕ F constructed as in
Section 5.2.1, and on Theorem 5.13.

5.2.5. A version of Erdös-Turán-Koksma inequality for subgroups of a torus

Let G be a closed subgroup of Tk, and let ϕP be an isomorphism as in Section 5.2.1, induced by the
change-of-basis matrix P :

ϕP : G→ Td ⊕ F,
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where F =
⊕k

i=d+1 Z/miZ for some positive integers mi. Let z = (zn)n>1 be a sequence of elements
of G. We want to estimate its ϕP -discrepancy (De�nition 5.15). Thanks to Theorem 5.13 applied to
the sequence (ϕP (zn))n>1, we have that for all N > 1 and for all H > 1,

DϕP
N (z) 6

Å
3

2

ãdÜ 2

H + 1
+

1

|F |
∑
χ

06T (χ)6H

1

r(χ)

∣∣∣∣∣ 1

N

N∑
n=1

χ(ϕP (zn))

∣∣∣∣∣
ê

(5.4)

where the sum ranges over all non-trivial characters χ of Td ⊕ F . These characters are of the form
χh ⊗ ψ, where ψ ∈ “F (see the beginning of section 5.2.3), and the condition T (χ) 6 H means that
those which appear in the sum are the ones such that ‖h‖∞ 6 H.

Now, the issue with the sum above is that it is indexed by characters of Td ⊕ F , but we would like to
view it as a sum over the characters of G, with some control of the �size� of those characters. Gladly,
the isomorphism ϕP induces the following isomorphism between the dual groups:”ϕP : ◊�Td ⊕ F → “G

χ 7→ χ ◦ ϕP

Thus, the sum on the right-hand side of (5.4) is easily turned into a sum over characters of G. The
control of a certain notion of �size� is given by the following lemma. The idea is that any character
of the closed subgroup G ⊆ Tk can be extended to a character of Tk, and all such characters are of
the form e (h′ · (−)) for some h′ ∈ Zk. We then control their size by controlling the `∞-norm of such
an h′.

Lemma 5.16. If χ is a character of Td ⊕ F such that 0 6 T (χ) 6 H, then there exists h′ ∈ Zk such
that ‖h′‖∞ 6

∥∥tP∥∥
op
H and ”ϕP (χ) = e

(
h′ · (−)

)
|G .

Here
∥∥tP∥∥

op
denotes the operator norm (associated with the supremum norm on Rk) of the matrix tP .

Proof. Let χ = χh ⊗ ψ be a character of Td ⊕ F such that 0 6 T (χ) 6 H, meaning that ‖h‖∞ 6 H.
Since F =

⊕k
i=d+1 Z/miZ, we can write ψ as⊗k

i=d+1 ψκi :
⊕k

i=d+1 Z/miZ → S1

(yd+1, . . . , yk) 7→
∏k
i=d+1 e

Ä
κi
mi
yi
ä

with κi ∈ {0, . . . ,mi − 1} for all i ∈ {d+ 1, . . . , k}.

Let z ∈ G. We write ϕP (z) as (x, y), where x ∈ Td and y = (yd+1, . . . , yk) ∈ F . Then”ϕP (χ)(z) = χ(ϕP (z)) = χh ⊗ ψ(ϕP (z)) = χh(x)ψ(y) = e(h · x)
k∏

i=d+1

e

Å
κi
mi
yi

ã
If we denote by hψ the vector of Zd ⊕ 1

md+1
Z⊕ · · · ⊕ 1

mk
Zá

h
κd+1

md+1

...
κk
mk

ë
we have ”ϕP (χ)(z) = e (hψ · ϕP (z)) = e (hψ · P z̃)
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where z̃ is a lift in Rk of the element z ∈ G ⊆ Tk. Next, we put the matrix P on the other side of the
dot product, and this gives: ”ϕP (χ)(z) = e

(
tPhψ · z̃

)
Now let h′ := tPhψ. Then, thanks to Lemma 5.19, the vector h′ belongs to Zk, and satis�es∥∥h′∥∥∞ 6 ∥∥tP∥∥op

‖hψ‖∞ 6
∥∥tP∥∥

op
H.

Moreover, we proved that for all z ∈ G, we have”ϕP (χ)(z) = e
(
h′ · z̃

)
which concludes the proof.

Going back to the ϕP -discrepancy of our sequence (zn)n>1 in G, we have

DϕP
N ((zn)n>1) 6

Å
3

2

ãdÜ 2

H + 1
+

1

|F |
∑
χ

06T (χ)6H

1

r(χ)

∣∣∣∣∣ 1

N

N∑
n=1

”ϕP (χ)(zn)

∣∣∣∣∣
ê

thanks to (5.4) and to the de�nition of ”ϕP . Now, as χ ranges over the non-trivial characters of Td⊕F
satisfying 0 6 T (χ) 6 H, ”ϕP (χ) ranges over a subset of“G‖tP‖opH

:=

{
η ∈ “G \ {1} | ∃h′ ∈ Zk,

{
‖h′‖∞ 6

∥∥tP∥∥
op
H

η = e (h′ · (−))|G

}
.

This is the set of non-trivial characters of G which are the restriction to G of a character of Tk
associated with an integral vector h′ which satis�es ‖h′‖∞ 6

∥∥tP∥∥
op
H. Therefore,

DϕP
N ((zn)n>1) 6

Å
3

2

ãdÜ 2

H + 1
+

1

|F |
∑

η∈“G‖tP‖opH

1

r
Ä”ϕP−1(η)

ä ∣∣∣∣∣ 1

N

N∑
n=1

η(zn)

∣∣∣∣∣
ê

Let us sum up what we proved in the following theorem:

Theorem 5.17. Let G be a closed subgroup of Tk and let

ϕP : G→ Td ⊕ F

be an isomorphism as in Section 5.2.1, induced by a change-of-basis matrix P. As before, d 6 k and
F =

⊕k
i=d+1 Z/miZ for some positive integers mi. Let z = (zn)n>1 be a sequence of points in G. We

have the following Erdös-Turán-Koksma type inequality concerning the ϕP -discrepancy: for all N > 1
and all H > 1,

DϕP
N (z) 6

Å
3

2

ãdÜ 2

H + 1
+

1

|F |
∑

η∈“G‖tP‖opH

1

r
Ä”ϕP−1(η)

ä ∣∣∣∣∣ 1

N

N∑
n=1

η(zn)

∣∣∣∣∣
ê

,

where “G‖tP‖opH
:=

{
η ∈ “G \ {1} | ∃h′ ∈ Zk,

{
‖h′‖∞ 6

∥∥tP∥∥
op
H

η = e (h′ · (−))|G

}
.
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5.2.6. Some technical lemmas

Here are two lemmas which are purely technical and would have made the discussions above more
obscure had they been included in the previous sections.

Lemma 5.18. If a1, . . . , ad and b1, . . . , bd ∈ C then∣∣∣∣∣∣
d∏
j=1

bj −
d∏
j=1

aj

∣∣∣∣∣∣ 6 ∑
Ø 6=J⊆{1,...d}

Ñ∏
j /∈J

|aj |
∏
j∈J
|bj − aj |

é
Proof. A way to obtain it is to write

∏d
j=1 bj as

∏d
j=1(bj − aj) + aj and to develop the product. Then

the result follows from the triangle inequality.

Lemma 5.19. the vector tPhψ in the proof of Lemma 5.16 belongs to Zk.

Proof. The matrix P is the change-of-basis matrix which takes the coordinates of a vector in the
canonical basis of Rk and returns its coordinates in the basis B = (a1, . . . , ad, a

′
d+1, . . . , a

′
k), where

a′i = 1
mi
ai (see section 5.2.1). Let us denote by C the canonical basis of Rk and by D the basis

(a1, . . . , ad, ad+1, . . . , ak). Then
P = PB,C = PB,DPD,C.

Now, since C and D are two bases of the lattice Zk, we have that PD,C ∈ GLk(Z). Moreover, PB,D =
diag (1, . . . , 1,md+1, . . . ,mk). Therefore, since

hψ =

á
h

κd+1

md+1

...
κk
mk

ë
it is clear that when multiplying by tP = tPD,C

tPB,D = tPD,CPB,D, the denominators mi cancel out,
and we obtain an integer valued vector.

5.3. Dependence with respect to choices of isomorphisms.

In Theorem 5.17, the de�nition of the discrepancy and the upper bound we obtain both depend on the
isomorphim ϕP , and moreover the proof uses the fact that ϕP is induced by a matrix P . Now, one
may ask what changes are needed in the proof to obtain an Erdös-Turán-Koksma inequality for the
ϕ-discrepancy (De�nition 5.15) for any choice of isomorphism of topological groups G→ Td ⊕ F .

If ϕ : G→ Td⊕F is such an isomorphism and ϕP denotes a well-understood �matrix� isomorphism as
in Section 5.2.1, then we can write ϕ = σ ◦ ϕP , where σ is a continuous automorphism of Td ⊕ F . So
it remains to understand the group of automorphisms, and this is the aim of the following section. As
we will see, these automorphisms are also induced by linear maps, so that we will be able to obtain
estimates depending only on operator norms of matrices.

5.3.1. Automorphisms of Td ⊕ F .

A continuous automorphism of Td ⊕ F is in particular a continuous endomorphism of that group.
Therefore, it is of the form

Td ⊕ F → Td ⊕ F
(y, z) 7→ (f(y, z), g(y, z))

where f : Td ⊕ F → Td and g : Td ⊕ F → F are continuous group homomorphisms. But now, one
can write f(y, z) as α(y) + β(z) where α : Td → Td and β : F → Td are both continuous group
homomorphisms. Indeed, it su�ces to de�ne α(y) as f(y, 0) and β(z) as f(0, z). Similarly, write
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g(y, z) = γ(y) + δ(z) where γ : Td → F and δ : F → F . Thus, if σ is a continuous endomorphism of
Td ⊕ F , it can be represented by a matrix Å

α β
γ δ

ã
acting on Td ⊕ F as Å

α β
γ δ

ãÅ
y
z

ã
=

Å
α(y) + β(z)
γ(y) + δ(z)

ã
.

The aim of this section is to prove that all α, β, γ and δ can be described quite explicitly, mostly in
terms of maps induced by linear maps.

A �rst observation one can make is the following:

Lemma 5.20. If σ is a continuous endomorphism of Td⊕F , then the component γ of the above matrix
representation is trivial.

Proof. The image of γ is a connected subgroup of the �nite group F because γ is continuous and Td
is connected, therefore it must be the subgroup {0}.

Now, if we further assume that σ is bijective, we can get more precise information on α, β and δ.
Namely:

Lemma 5.21. If σ is a continuous automorphism of Td ⊕ F , then

� α is injective and |coker(α)| 6 |F |,

� δ is an automorphism of F .

Proof. � If α is not injective, let y1 6= y2 ∈ Td be such that α(y1) = α(y2). Then

σ

Å
y1

0

ã
=

Å
α β
0 δ

ãÅ
y1

0

ã
=

Å
α(y1)

0

ã
=

Å
α(y2)

0

ã
= σ

Å
y2

0

ã
,

hence σ is not injective. This proves that for σ to be an automorphism, it is necessary that α is
injective. Now, the image of α is a subgroup of Td, and Td is a disjoint union of classes modulo
Im(α):

r⊔
j=1

Im(α) + xj ,

where r = |coker(α)|. So if σ is surjective, this means that any element of Td is of the form
α(y) + β(z) for some y ∈ Td and some z ∈ F , and therefore β must reach all classes modulo α.
This implies that F must have at least as many elements as there are classes modulo Im(α).

� The second coordinate of σ
Å
y
z

ã
is simply given by δ(z), so δ needs to be surjective if we want

σ to be an automorphism. Since δ : F → F , and F is �nite, this is equivalent to saying that δ
must be an automorphism.

Let us now explain why α, β and δ can in fact be written as maps induced by some matrix multipli-
cations. For a vector Y ∈ Rd, we denote by (Y mod 1) the vector of (R/Z)d obtained by reduction
modulo 1 of each coordinate. Let us �rst view α as a map induced by a linear map.

Lemma 5.22. Let α : Td → Td be a continuous group homomorphism. Then there exists a matrix
A ∈ Md(Z) such that for all y ∈ Td = (R/Z)d,

α(y) = (AY mod 1),

where Y denotes any vector in Rd such that (Y mod 1) = y.
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Proof. See [10, Chapter 7, �4].

Next, let us explain why β is also induced by the multiplication with a matrix.

Lemma 5.23. Let

F =
k⊕

j=d+1

Z/mjZ,

and let β : F → Td be a group homomorphism. Then there exist integers λi,j (for 1 6 i 6 d and
d+ 1 6 j 6 k) such that for all z = (zj)d+16j6k ∈ F,

β(z) =

Ü
λ1,d+1

md+1
. . .

λ1,k

mk
...

λd,d+1

md+1
. . .

λd,k
mk

ê
︸ ︷︷ ︸

=:B

Ö
zd+1
...
zk

è
mod 1

Proof. A homomorphism β : F → Td is given by d homomorphisms

βi :

k⊕
j=d+1

Z/mjZ→ T

for i ∈ {1, . . . , d}, and each of them can be decomposed as a sum of homomorphisms

βi,j : Z/mjZ→ T

as follows:

βi ((zj)d+16j6k) =

k∑
j=d+1

βi,j(zj)

(here we think of T as R/Z, hence the additive notation). Now each βi,j is an element of the dual of
Z/mjZ, so it acts as the multiplication by λi,j/mj for some integer λi,j ∈ {0, . . . ,mj − 1}. This gives
the desired matrix representation of the statement.

Finally, let us treat the case of δ : F → F :

Lemma 5.24. If δ is an automorphism of the �nite abelian group F =
⊕k

j=d+1 Z/mjZ, then there
exist integers di,j (with d+ 1 6 i, j 6 k) such that 0 6 di,j < mi and for all z = (zj)d+16j6k ∈ F,

δ(z) =

Ö
dd+1,d+1 . . . dd+1,k

...
dk,d+1 . . . dk,k

è
︸ ︷︷ ︸

=:D

Ö
zd+1
...
zk

è
Proof. As in the previous proof, such an automorphism δ is given by a family (δi,j)d+16i,j6k such that

δi,j : Z/mjZ→ Z/miZ,

and each component of δ is given by δi :=
∑k

j=d+1 δi,j . Now, a group homomorphism f : Z/mZ →
Z/nZ is of the form

Z/mZ → Z/nZ
k mod m 7→ ak mod n

for some integer a ∈ {1, . . . , n − 1}, so we can write each δi,j as the multiplication by some integer
di,j ∈ {0, . . . ,mi−1} (followed by reduction modulomi). We conclude that for all z = (zj)d+16j6k ∈ F ,

δ(z) =

Ö
δd+1(z)

...
δk(z)

è
=

Ö∑k
j=d+1 δd+1,j(zj)

...∑k
j=d+1 δk,j(zj)

è
=

Ö
dd+1,d+1 . . . dd+1,k

...
dk,d+1 . . . dk,k

èÖ
zd+1
...
zk

è
=: Dz.
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Conclusion. Any automorphism σ of Td × F , where F =
⊕k

i=d+1 Z/miZ, is given by a matrixÅ
A B
0 D

ã
where A ∈ Md(Z), D = (di,j)d+16i,j6k ∈ Mk−d(Z) and B is of the formÜ

λ1,d+1

md+1
. . .

λ1,k

mk
...

λd,d+1

md+1
. . .

λd,k
mk

ê
where the λi,j are integers. Moreover we can choose λi,j and di,j such that for all i and j,®

0 6 λi,j < mj

0 6 di,j < mi.

Given an element (y, z) = ((yj), (zj)) ∈ Td ⊕
Ä⊕k

i=d+1 Z/miZ
ä
, its image under σ is given by the

matrix multiplication Å
A B
0 D

ãÅ
y
z

ã
and the appropriate reduction modulo 1 or modulo mj on the suitable coordinates.

5.3.2. Generalization of Theorem 5.17 to any choice of isomorphism

We now let ϕ : G→ Td⊕F =: Γ be any isomorphism of topological groups. Then it can be written as
ϕ = σ ◦ϕP where σ is a continuous automorphism of Γ and ϕP is an explicit isomorphism induced by
a matrix P as constructed in Section 5.2.1. Next, let z = (zn)n>1 be a sequence with values in G, and
consider the ϕ-discrepancy as de�ned in De�nition 5.15. Then Theorem 5.13 applied to the sequence
ϕ(zn) implies the following estimate:

Dϕ
N (z) 6

Å
3

2

ãdá 2

H + 1
+

1

|F |
∑

χ∈Γ̂\{1}
06T (χ)6H

1

r(χ)

∣∣∣∣∣ 1

N

N∑
n=1

ϕ̂(χ)(zn)

∣∣∣∣∣
ë

(5.5)

where ϕ̂ is the isomorphism Γ̂→ “G induced by ϕ.

The adaptation of Lemma 5.16 is as follows:

Lemma 5.25. If F =
⊕k

i=d+1 Z/miZ, we denote by ΣF :=
∑k

i=d+1mi. If we represent the automor-
phism σ by a matrix Å

A B
0 D

ã
as in the previous section, then for all χ ∈ Γ̂ such that T (χ) 6 H, there exists h′ ∈ Zk \ {0} such that
‖h′‖∞ 6

∥∥tP∥∥
op

((
‖tA‖op + d

)
H + ΣF

)
and

ϕ̂(χ) = e
(
h′ · (−)

)
|G .

Proof. First, as in the proof of Lemma 5.16, we write χ as χh ⊗ ψ with ‖h‖∞ 6 H and ψ =⊗k
i=d+1 ψκi ∈ “F . For z ∈ G, we also keep the notation (x, y) for ϕP (z) and introduce the nota-

tion (u, v) for ϕ(z) = (σ ◦ ϕP )(z) = σ(x, y). Then

ϕ̂(χ)(z) = χ(ϕ(z)) = χh ⊗ ψ(ϕ(z)) = χh(u)ψ(v) = e(h · u)

k∏
i=d+1

e

Å
κi
mi
vi

ã
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Denote by κψ the element Ö κd+1

md+1

...
κk
mk

è
of 1

md+1
Z⊕ · · · ⊕ 1

mk
Z. Using the fact thatÅ

u
v

ã
≡
Å
A B
0 D

ãÅ
x
y

ã
(here≡ denotes an equality between the equivalence classes of these elements in Td⊕

Ä⊕k
i=d+1 Z/miZ

ä
),

we get:
ϕ̂(χ)(z) = e(h · (Ax+By))e(κψ ·Dy).

Using the transpose matrices to isolate (x, y) on one side of the scalar product, we obtain

ϕ̂(χ)(z) = e

ÅÅ
tAh

tBh + tDκψ

ã
·
Å
x
y

ãã
.

Now, since (x, y) = ϕP (z), we have Å
x
y

ã
≡ P z̃,

where z̃ is a lift in Rk of the element z ∈ G ⊆ Tk. We deduce that

ϕ̂(χ)(z) = e

Å
tP

Å
tAh

tBh + tDκψ

ã
· z̃
ã

To conclude, it remains to show that the vector

h′ := tP

Å
tAh

tBh + tDκψ

ã
belongs to Zk and that we can estimate its `∞-norm as in the statement of the lemma. The fact that
h′ ∈ Zk follows again from Lemma 5.19. Indeed, it is clear from the description of the matrix B in
section 5.3.1 that the vector tBh belongs to 1

md+1
Z⊕ · · · ⊕ 1

mk
Z. The same holds for Dκψ, and so by

Lemma 5.19, we know that tP cancels those denominators. Finally, we have:

∥∥h′∥∥∞ 6 ∥∥tP∥∥op

∥∥∥∥Å tAh
tBh +Dκψ

ã∥∥∥∥
∞
6
∥∥tP∥∥

op

[
‖tAh‖∞ + ‖tBh‖∞ + ‖tDκψ‖∞

]
and

� ‖tAh‖∞ 6 ‖tA‖op‖h‖∞ 6 ‖tA‖opH,

� ‖tBh‖∞ 6 ‖tB‖op‖h‖∞ 6
Ä
maxd+16j6k

∑d
i=1 |Bi,j |

ä
‖h‖∞ 6 d‖h‖∞ 6 dH

� ‖tDκψ‖∞ 6 ‖tD‖op‖κψ‖∞ 6
Ä
maxd+16j6k

∑k
i=d+1 |di,j |

ä
‖κψ‖∞ 6

Ä∑k
i=d+1mi

ä
× 1 6 ΣF .

and this concludes the proof.

Corollary 5.26. For any choice of isomorphism ϕ : G → Γ, there exists a constant Cϕ such that for
all χ ∈ Γ̂ such that 0 6 T (χ) 6 H, there exists h′ ∈ Zk such that®

‖h′‖∞ 6 CϕH
ϕ̂(χ) = e(h′ · (−))|G
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Once we have this corollary, we get a more general version of Theorem 5.17, where DϕP
N can be replaced

by Dϕ
N for any choice of isomorphism ϕ. This gives the following statement:

Theorem 5.27. Let G be a closed subgroup of Tk and let ϕ : G → Td ⊕ F be an isomorphism of
topological groups, where d 6 k and F =

⊕k
i=d+1 Z/miZ for some positive integers mi. Then there

exists a constant Cϕ > 0 such that for any sequence z = (zn)n>1 of points in G we have the following
Erdös-Turán-Koksma type inequality: for all N > 1 and all H > 1,

Dϕ
N (z) 6

Å
3

2

ãdÖ 2

H + 1
+

1

|F |
∑

η∈“GCϕH 1

r (ϕ̂−1(η))

∣∣∣∣∣ 1

N

N∑
n=1

η(zn)

∣∣∣∣∣
è

,

where “GCϕH :=

{
η ∈ “G \ {1} | ∃h′ ∈ Zk,

{
‖h′‖∞ 6 CϕH
η = e (h′ · (−))|G

}
.

5.4. Application to the discrepancy of the random variables of Chap-
ter 4

Let us recall the setting of Chapter 4. We consider a �xed monic and separable polynomial g ∈ Z[X],
say of degree k > 1. Denote by Zg the set of roots of g in C, by Kg := Q(Zg) the splitting �eld of g,
and by C(Zg,S

1) the compact group of maps from Zg to the unit circle S1. Since the roots of g are all
simple, C(Zg,S

1) is isomorphic to Tk.
Moreover, we denote by Og the ring of integers of Kg. We de�ned in De�nition 4.25 random variables
Up for any prime ideal p ⊂ Og which does not divide the discriminant of g and which has residual degree
1. Those random variables are de�ned on the probability space Og/p, with values in C(Zg,S

1). Actu-
ally, we also de�ned analogous random variables Upn on the probability space Og/p

n, but for simplicity
of exposition, we will just explain how we can deduce information on the discrepancy in the case n = 1.

The motivation for studying this question comes from the striking fact that the sums which appear
in the application of Weyl's criterion in the proof of Theorem 4.30 (which states the convergence in
law of the random variables (Up) as ‖p‖ tends to in�nity) are stationary. During a seminar in Nancy,
G. Tenenbaum suggested to me that this would probably translate into rather strong discrepancy
estimates, via the use of the Erdös-Turán inequality or one of its generalizations. In order to achieve
that goal, it remains to understand more precisely the rank after which the Weyl sums are stationary.
This is the purpose of the following lemma. Recall that a character of the group C(Zg,S

1) is of the
form

ηα : x 7→
∏
x∈Zg

f(x)α(x)

for a unique α ∈ C(Zg,Z).

Lemma 5.28. There exists a constant Cg, depending only on the polynomial g, such that for all
α ∈ C(Zg,Z), if

‖α‖∞ < Cg ‖p‖
1

[Kg :Q]

and ηα induces a non-trivial character of Hg, then the Weyl sum at rank p associated with ηα is equal
to zero:

E(ηα(Up)) =
1

‖p‖
∑

a∈Og/p

e

Å
τp(a$p(Sα))

‖p‖

ã
= 0.

Proof. Let α ∈ C(Zg,Z). The proof of Theorem 4.30 shows that

E(ηα(Up)) =

®
1 if Sα ∈ p

0 otherwise.
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If E(ηα(Up)) = 1, then Sα ∈ p, so the ideal SαOg is contained in the ideal p, hence ‖p‖ divides
‖SαOg‖ = NKg/Q(Sα). Now, if we further assume that ηα is a non-trivial character of Hg, then this is
equivalent to assuming that α /∈ Rg thanks to Proposition 4.29. This means that Sα 6= 0. This implies
that NKg/Q(Sα) is a non-zero integer (because Sα ∈ Og) which is divisible by ‖p‖, hence∣∣∣NKg/Q(Sα)

∣∣∣ > ‖p‖ . (5.6)

On the other hand, we have

NKg/Q(Sα) =
∏

σ∈Gal(Kg/Q)

σ(Sα)

=
∏

σ∈Gal(Kg/Q)

Ñ∑
x∈Zg

α(x)σ(x)

é
Therefore, if we denote by

Bg :=
∏

σ∈Gal(Kg/Q)

max
x∈Zg

|σ(x)|,

we have: ∣∣∣NKg/Q(Sα)
∣∣∣ 6 Bg

Ñ∑
x∈Zg

|α(x)|

é[Kg :Q]

= Bg‖α‖
[Kg :Q]
1 .

Moreover, ‖α‖1 6 k‖α‖∞, so that∣∣∣NKg/Q(Sα)
∣∣∣ 6 Bgk[Kg :Q]‖α‖[Kg :Q]

∞ . (5.7)

Combining (5.6) and (5.7) we deduce that

‖α‖∞ >
1

k

Å‖p‖
Bg

ã 1
[Kg :Q]

.

This proves that there exists a constant Cg := 1
kB

−1
[Kg :Q]
g , depending only on g, such that for all

α ∈ C(Zg,Z) \ Rg, we have that if E(ηα(Up)) = 1 then

‖α‖∞ > Cg ‖p‖
1

[Kg :Q] .

Taking the contrapositive, this means that for all α ∈ C(Zg,Z) which does not belong to Rg, we have

that if ‖α‖∞ < Cg ‖p‖
1

[Kg :Q] , then E(ηα(Up)) = 0.

This lemma gives us an explicit rank (in terms of ‖α‖∞) after which the Weyl sums associated with
the character ηα equals 0. It tells us how large ‖p‖ needs to be to have a sum equal to zero.

We now have almost all the tools to prove an estimate of the discrepancy in the equidistribution result
of Theorem 4.30, it just remain to give a proper de�nition of the discrepancy in this setting!

Recall that the sequence (Up) of Theorem 4.30 takes values in some closed subgroup Hg of C(Zg,S
1).

First, we can take an isomorphism between C(Zg,S
1) and (S1)k (just by choosing an ordering of the

roots of g), and so we can view Hg as a closed subgroup of (S1)k. Moreover, we can just focus on
the fractional parts of the arguments inside of the exponentials, and study their distribution rather
than that of their image under the map e. This way, we can view the random variables Up as random
variables taking values in a closed subgroup of T = R/Z. Therefore, there exists an isomorphism of
topological groups

ϕ : Hg → Td × F
with d > k = deg(g) and F a �nite abelian group. As we did in the previous sections, we then de�ne
a notion of ϕ-discrepancy which depends on the choice of such an isomorphism.
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De�nition 5.29. We de�ne the ϕ-discrepancy of the sequence (Up) at rank p as

Dϕ
p := sup

I∈Id
y∈F

∣∣∣∣#{a ∈ Og/p, ϕ(Up(a)) ∈ I × {y}}
‖p‖

− λd(I)

|F |

∣∣∣∣
where, as before, Id denotes the set of rectangles of Td.

Combining the Erdös-Turán-Koksma type inequality of Theorem 5.17 with Lemma 5.28, we obtain the
following upper bound for the discrepancy:

Theorem 5.30. With the notations of the previous de�nition, we have:

Dϕ
p �g,ϕ

1

‖p‖
1

[Kg :Q]

Proof. Thanks to Theorem 5.17, we have that for all H > 1, for all p unrami�ed of residual degree 1
in Og,

Dϕ
p 6

Å
3

2

ãdÜ 2

H + 1
+

1

|F |
∑

χ∈
Ä”Hgä

CϕH

1

r (ϕ̂−1(χ))

∣∣∣∣∣∣ 1

‖p‖
∑

a∈Og/p

χ(Up(a))

∣∣∣∣∣∣
ê

=

Å
3

2

ãdÜ 2

H + 1
+

1

|F |
∑

χ∈
Ä”Hgä

CϕH

1

r (ϕ̂−1(χ))
|E (χ(Up))|

ê
where Ä

Ĥg

ä
CϕH

:=

{
χ ∈ Ĥg \ {1} | ∃α ∈ C(Zg,Z),

{
‖α‖∞ 6 CϕH
χ = (ηα)|Hg

}
.

Now, we are enclined by Lemma 5.28 to choose

H :=
Cg ‖p‖

1
[Kg :Q]

Cϕ
− 1.

Indeed, this ensures that all characters of Hg taken into account in the sum on the RHS are restrictions

to Hg of some characters ηα associated with α's such that ‖α‖∞ < Cg ‖p‖
1

[Kg :Q] . Therefore, by Lemma
5.28, the whole sum is equal to zero since Ep(χ(Up)) = 0 for all such χ.
Thus, we obtain the upper bound

Dϕ
p 6

Å
3

2

ãd 2

H + 1
=

Å
3

2

ãd 2Cϕ

Cg ‖p‖
1

[Kg :Q]

In other words, once we �x an isomorphism ϕ : Hg → Td × F , we have

Dϕ
p �g,ϕ

1

‖p‖
1

[Kg :Q]

·

Remark 5.31. It is a bit disappointing that we could not obtain an upper bound for a certain notion
of discrepancy which does not depend on the choice of an isomorphism between Hg and some Td ⊕ F .
However, it seems di�cult with our approach to obtain a constant Cϕ independent of ϕ in Corollary
5.26. Indeed, it seems to me that a linear map which induces an isomorphism between a closed subgroup
G of Tk and Td ⊕ F can have arbitrarily large operator norm.
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Chapter 6

Ultra-short sums of trace functions

The aim of this chapter is to give a detailed exposition of the results of Section 7 of the joint work
[77] with E. Kowalski. These results concern short sums of trace functions of `-adic sheaves on the
a�ne line over a �nite �eld. After a short section on short sums of multiplicative characters, which
motivates the study of more general functions �of algebraic nature� de�ned on �nite �elds, the
necessary background on trace functions is introduced in Section 6.2. Following the survey articles on
the subject by Fouvry, Kowalski, Michel and Sawin, we de�ne trace functions using the point of view
of Galois representations, so that no prior knowledge on sheaves or `-adic cohomology is needed. We
use as a blackbox the Riemann hypothesis of Deligne, building on previous works on sums of
products of trace functions, which determined concrete conditions on the Galois representations
which ensure that it can be applied.
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6.1. Motivation: sums of multiplicative characters

Let g ∈ Z[X] be a monic and separable polynomial. In Chapter 4 we presented equidistribution results
for sums of additive characters of the type

∑
x∈Zg(Fq)

e

Å
ax

q

ã
.
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parametrized by a ∈ Fq. Or, in other words, for the family of sums∑
x∈Zg(Fq)

ψ(x)

parametrized by additive characters ψ ∈ F̂q. In this short section, we explain how the method of proof
can be adapted to prove equidistribution results for families of sums of the type∑

x∈Zg(Fq)

χ(x)

parametrized by multiplicative characters modulo q. More generally, we will be interested in the
distribution of sums of the form ∑

x∈Zg(Fq)

χ(v(x))

where χ is a varying multiplicative character of Fq and v is a �xed polynomial. In order to evaluate
χ at v(x) (at least for all q large enough), we add the assumption that v(x) 6= 0 for all x ∈ Zg. For
instance, in the case where v = X, this amounts to requiring that 0 /∈ Zg.
For p ∈ Sg, we now introduce the probability space Xp of multiplicative characters χ : (Og/p)× → S1,
with the uniform probability measure. On this probability space, we will consider the random variables‹Up, taking values in the group C(Zg,S

1), and de�ned by‹Up(χ)(x) = χ(v($p(x))).

Proposition 6.1. The random variables ‹Up converge in law as ‖p‖ → +∞ to the random function‹U : Zg → S1 such that ‹U is uniformly distributed on the subgroup H̃g,v ⊂ C(Zg,S
1) which is orthogonal

to the abelian group R̃g,v ⊂ C(Zg;Z) of multiplicative relations between values of v on Zg, namely we
have

R̃g,v = {α : Zg → Z |
∏
x∈Zg

v(x)α(x) = 1},

and
H̃g,v = {f ∈ C(Zg,S

1) | for all α ∈ R̃g,v, we have
∏
x∈Zg

f(x)α(x) = 1}.

In particular, as q → +∞ among primes totally split in Kg, the sums∑
x∈Zg(Fq)

χ(v(x))

converge in law to the image by the linear form σ of the Haar probability measure on H̃g,v.

Proof. This is very close to the proof of Theorem 4.30, except that now

E(η(‹Up)) =
1

‖p‖ − 1

∑
χ∈Xp

∏
x∈Zg

χ(v($p(x)))α(x)

for a character η of C(Zg,S
1) determined by the function α. This is

E(η(‹Up)) =
1

‖p‖ − 1

∑
χ∈Xp

χ
(
$p

(∏
x∈Zg

v(x)α(x)
))

and for the same reasons as before, if ‖p‖ is large enough, $p

(∏
x∈Zg

v(x)α(x)
)
equals 1 if and only if∏

x∈Zg
v(x)α(x) equals 1. Thus, by orthogonality of the multiplicative characters of Og/p, as soon as

‖p‖ is large enough we have that E(η(‹Up)) equals 1 if α ∈ R̃g,v and equals 0 otherwise. Since non-trivial
characters of H̃g,v correspond to α /∈ R̃g,v, this �nishes the proof thanks to Weyl's criterion.
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Example 6.2. (1) For v = X, the group Rg,v is simply the group of multiplicative relations between
the roots of g. This group has already been studied in the literature. For instance, there are some
interesting examples of applications in [71] and [74]. Another example which has been investigated
in detail is that of the explicit polynomial g with Galois group the Weyl group of E8, which is of
degree 240 but has all roots obtained multiplicatively from 8 of them (see [56]).
(2) For v = X again, the case of g = Xd − 1 is quite degenerate. Indeed, for q ≡ 1 (mod d) and a
multiplicative character χ of Fq, the sum ∑

x∈µd(Fq)

χ(x)

is either d or 0, depending on whether the character χ is trivial on the d-th roots of unity or not. The
former means that χ(q−1)/d = 1, and there are therefore (q − 1)/d such characters. Hence the sum is
equal to d with probability 1/d, and to 0 with probability 1− 1/d.
(3) If we consider the Hilbert class polynomial for elliptic curves with CM (as in Section 4.3.6), we are
led to consider potential multiplicative relations between j-invariants. This seems to be a much more
challenging problem than the additive case, and we do not have a precise answer at the moment (see,
e.g., the papers of Bilu, Luca and Pizarro-Madariaga [7] and Fowler [42] for partial results).

So far, we proved equidistribution results for ultra-short sums of the form∑
x∈Zg(Fq)

tq(x)

for some functions tq : Fq → C which had an algebraic nature (since they were additive of multiplicative
characters). More examples of functions Fq → C of algebraic nature come from the theory of trace
functions, a theory originally developed by Grothendieck and Deligne, which relies on the very deep
formalism of `-adic sheaves with respect to the étale topology. Thanks to the work of Katz and Laumon,
and then Fouvry, Kowalski, Michel and Sawin, this formalism has been made more accessible, and for
many applications to analytic number theory, the deepest results can be used as blackboxes. In the
next section, we give a survey of the main facts one needs to work with trace functions.

6.2. An introduction to the theory of trace functions

6.2.1. The projective line over a �eld

Let us �rst recall some terminology from algebraic geometry. If A is a commutative ring, we denote
by Spec(A) the set of prime ideals of A (i.e. ideals p of A, not equal to A, such that the quotient A/p
is an integral domain).
For any ideal I of A, we denote by

V (I) := {p ∈ Spec(A); I ⊆ p} .

By abuse of notation, if I = (f) is a principal ideal, we denote V (f) for V (I). We also introduce the
notation

D(f) := Spec(A) \ V (f).

It can be shown that there exists a unique topology on Spec(A) such that the V (I) form the family of
closed sets. It is called the Zariski topology, and the D(f) for f ∈ A form a basis of open sets for this
topology.

Example 6.3. If k is a �eld and A = k[T ], then Spec(A) consists of the zero ideal, which is a dense
point for the Zariski topology and is called the generic point, and all the non-zero prime ideals, which
are principal ideals of the form (π), where π is a monic irreducible polynomial with coe�cients in k.
These ideals being maximal, they are closed points of Spec(A). We can speak of the degree of a closed
point by de�ning it as the degree of the extension k[T ]/(π), that is: the degree of the corresponding
irreducible polynomial.
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De�nition 6.4. We denote by A1
k the topological space Spec(k[T ]). It is called the a�ne line over k.

The above construction gives a way to associate to any commutative ring A a topological space,
namely Spec(A). Now, to de�ne a functor from the category of commutative rings to the category of
topological spaces, we also need to associate to any ring homomorphism between two rings a continuous
map between the corresponding topological spaces. It is done as follows: if φ : A → B is a ring
homomorphism, then we de�ne

Spec(φ) : Spec(B) → Spec(A)
p 7→ φ−1(p)

It can be checked that this map is continuous with respect to the Zariski topology, so that Spec de�nes
a contravariant functor from the category of commutative rings to the category of topological spaces.

Example 6.5. if S ⊂ A is a multiplicative set, one can build the localization of A with respect to S.
It is a ring denoted by S−1A where we can make sense of fractions whose denominator belong to S. We
have a canonical homomorphism φ : A→ S−1A, de�ned by a 7→ a

1 . Then Spec(φ) is a homeomorphism
from Spec(S−1A) to {p ∈ Spec(A); p ∩ S = ∅}.
For instance, if f ∈ A is not nilpotent and we take S to be {fn; n > 0}, then S−1A is usually denoted by
Af and one can show that the map Spec(φ) from above induces a homeomorphism between Spec(Af )
and D(f), which is an elementary open subset of Spec(A) (thus, the terminology �localization� is
well-suited).

Remark 6.6. Actually, the functor Spec as we de�ned it is not completely satisfactory, because
many commutative rings have homeomorphic spectra. For instance, all �elds correspond to the same
topological space: the one with only one point. Indeed, they only admit {0} as a prime ideal. To de�ne
a topological object which allows to distinguish between non-isomorphic commutative rings, one needs
to add some extra-structure on Spec(A). Namely, one can endow it with a sheaf of rings OSpec(A) such
that the stalk at each point is a local ring. With this structure of locally ringed topological space,
Spec(A) becomes what is called an a�ne scheme, and this time the functor between the category
of commutative rings to the category of a�ne schemes is an equivalence of categories. Although the
structure sheaf is a very important part of the theory, we will not mention it in the sequel, and focus
only on the topological part.

Let k be a �eld. We are going to de�ne the projective line over k (as a topological space, without
mentioning the whole scheme structure) P1

k by glueing two copies of the a�ne line A1
k = Spec(k[T ]).

To distinguish the two copies, we will denote them by X = Spec(k[x]) and Y = Spec(k[y]). We will
glue them along the following glueing data: the open subsets are U := D(x) ⊂ X and V = D(y) ⊂ Y
and the isomorphisms between U and V are the ones induced by the isomorphism of k-algebras

k[x, x−1] → k[y, y−1]
x 7→ y−1

x−1 7→ y

Indeed, D(x) is canonically homeomorphic to Spec(k[x]x) (the spectrum of the localization of k[x] with
respect to the multiplicative set {xn; n > 0}), and we have that k[x]x = k[x, x−1], and similarly for
D(y).

Note that D(x) = X \{(x)} since V (x) = {p ∈ Spec(k[x]); (x) ⊆ p} = {(x)} because (x) is a maximal
ideal. Therefore, the glueing is done on very large open sets: X and Y are identi�ed along isomor-
phisms everywhere except at one point for each, which remain distinguishable.

Now, the points of degree 1 of X are in bijection with k, by associating with any a ∈ k the degree one
irreducible polynomial x − a. This is why we allow ourselves to denote by 0 the point (x) of X. We
also denote by ∞ the point (y) of Y . This terminology is justi�ed since everywhere outside of these
two points, y is identi�ed with 1/x.
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But the thing is that with this new abstract notion of point, the projective line P1
k contains many

more points that the points of degree 1. Indeed, the copy of X = Spec(k[x]) inside P1
k admits all the

non-zero prime ideals (π) (generated by a monic irreducible polynomial π ∈ k[x]) as closed points.
Thus, we can think of the closed points of X as classes of equivalence of valuations on k(x): the ideal
(π) corresponds to the (class of equivalence of the) valuation vπ on k(x) de�ned by

vπ (πng(x)) = n

for all g ∈ k[x] coprime with π, and extended to k(x) by de�ning vπ(f/g) = vπ(f) − vπ(g). The
corresponding valuation ring is

Oπ :=

ß
f

g
; f, g ∈ k[x], π - g

™
,

its unique maximal ideal is

pπ :=

ß
f

g
; f, g ∈ k[x], π - g and π | f

™
and the residue �eld κπ := Oπ/pπ is isomorphic to k[x]/(π), which is a �nite extension of k of degree
deg(π).
Moreover, there is also the point ∞ coming from the other copy Y of A1

k, which corresponds to the
ideal (y) of k[y]. Since y was identi�ed with 1/x at all the other points, it is natural to de�ne the
corresponding valuation v∞ as the valuation on k(x) given by

v∞(f/g) = deg(g)− deg(f).

Its valuation ring is

O∞ :=

ß
f

g
; f, g ∈ k[x], deg(f) 6 deg(g)

™
,

its unique maximal ideal is

p∞ =

ß
f

g
; f, g ∈ k[x], deg(f) < deg(g)

™
and the residue �eld κ∞ is isomorphic to k.

De�nition 6.7. Given a Zariski open subset U ⊆ P1
k, we denote by U(k) the set of closed points of

degree 1 of U . For instance, if U ⊆ P1
k \ {∞} = A1

k = Spec(k[X]), then U(k) is the set of x ∈ k such
that the ideal generated by the polynomial X − x belongs to U .

6.2.2. Decomposition group and inertia subgroup at a point

Now, we let k be a �nite �eld Fq for a prime number q. We de�ne K := Fq(X), and we �x Ksep a
separable closure of K which contains the algebraic closure Fq of Fq. The most appropriate setting
to de�ne trace functions is that of `-adic sheaves with respect to the étale topology, but these notions
are far beyond the understanding of the author. Quite conveniently, in some cases these objects have
a more concrete interpretation in terms of Galois representations, so we will follow this path, guided
by the survey papers [37, 39]. The reference [36] also helped the author's understanding.

More precisely, we will be interested in representations of the absolute Galois group of K: the group
Gal (Ksep/K), which is de�ned as for �nite extensions as the group of K-algebra automorphisms of
Ksep. If we denote by Λ the set of �nite Galois extensions L/K contained in Ksep, then their Galois
groups together with the natural restriction maps allow us to de�ne an inverse system of �nite groups.
One can then take the limit of this inverse system, and there is the natural restriction homomorphism

Gal (Ksep/K)→ lim←−
L∈Λ

Gal (L/K)
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which turns out to be an isomorphism. Therefore, any σ ∈ Gal (Ksep/K) corresponds to a unique
element

(σL)L∈Λ ∈
∏
L∈Λ

Gal (L/K)

which is compatible with the restriction maps, in the sense that whenever L,M ∈ Λ and L ⊆M , then
the restriction of σM to L equals σL. It can be shown that Gal (Ksep/K) inherits a topology from this
isomorphism, which is called the Krull topology, and with respect to which it is a compact Hausdor�
space. A basis of neighbourhoods of the identity is given by the subsets Gal (Ksep/L) for L ∈ Λ, so
that we can say that σ, τ ∈ Gal (Ksep/K) are close if and only if they coincide on a large �nite Galois
extension L/K. We refer to [87, Chapter IV] for a complete yet concise introduction to in�nite Galois
theory and pro�nite groups.

Given a closed point x in P1
Fq

(which can be viewed an an equivalence class of valuations on K), we
now wish to de�ne two subgroups (de�ned up to conjugation) of Gal (Ksep/K): the decomposition
group at x and the inertia subgroup at x. We �rst de�ne them on �nite Galois extensions, before
passing to the limit.

So let L ∈ Λ and let vx,L be a valuation on L which extends the valuation vx on K corresponding to the
point x ∈ P1

Fq
. We can de�ne the decomposition group at x as the following subgroup of Gal (L/K):

Dx,L := {σ ∈ Gal (L/K) | vx,L ◦ σ = vx,L }

Note that the choice of another extension ṽx,L of vx to L de�nes another decomposition group ‹Dx,L, but
they belong to the same conjugacy class of Gal (L/K). This easily follows from the fact that Gal (L/K)
acts transitively on the set of valuations which extend vx to L (for a proof of this fact, see [87, Chapter
II, �9]). Indeed, if σ ∈ Gal (L/K) is such that ṽx,L = vx,L ◦ σ, then we have ‹Dx,L = σ−1Dx,Lσ.

Now, once we �x a choice of vx,L, we can de�ne as usual the corresponding ring of integers

Ox,L := {f ∈ L | vx,L(f) > 0}

which has maximal ideal
px,L := {f ∈ L | vx,L(f) > 0}

and residue �eld κx,L := Ox,L/px,L. By de�nition, any σ ∈ Dx,L preserves Ox,L and px,L, hence induces
an automorphism σ ∈ Gal (κx,L/κx). The inertia subgroup at x is de�ned as the kernel of the group
homomorphism

Dx,L → Gal (κx,L/κx)
σ 7→ σ

In other words, we have

Ix,L := {σ ∈ Dx,L | for all f ∈ Ox,L, σ(f) ≡ f (mod px,L)}

It is also easy to show that another choice of a valuation ṽx,L gives an inertia subgroup Ĩx,L which is
Galois conjugate to Ix,L. Indeed, if σ ∈ Gal (L/K) is such that ṽx,L = vx,L ◦ σ, then Ĩx,L = σ−1Ix,Lσ.
To sum up, we have the exact sequence

1→ Ix,L → Dx,L → Gal (κx,L/κx)→ 1. (6.1)

Note that κx,L/κx is a �nite extension of a �nite �eld, so Gal (κx,L/κx) is generated by the Frobenius
automorphism:

u 7→ u|κx|.

Now, using Zorn's lemma, one can show that it is possible to make compatible choices of valuations
vx,L for all L ∈ Λ, in the sense that if L ⊆M , then the restriction of vx,M to L must be equal to vx,L.
This essentially amounts to construct a valuation v{x} on K

sep which extends vx. Once we have made
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these compatible choices of extended valuations, we can �pass to the limit� in (6.1), and the sequence
remains exact thanks to [87, Chapter IV, Proposition (2.7)]:

1→ lim←−
L∈Λ

Ix,L → lim←−
L∈Λ

Dx,L → lim←−
L∈Λ

Gal (κx,L/κx)
(?)
' Gal

(
Fq/κx

)
→ 1.

Remark 6.8. The isomorphism (?) is not an obvious fact, as it does not only rely on the fact that
�nite Galois extensions of the residue �eld κx are in one to one correspondence with �nite unrami�ed
Galois extensions of the original �eld, see e.g. [17, Theorem 1 p.26 and the next corollary]. Indeed,
this fact only applies to complete valued �elds. Therefore, one actually needs to �rst view κx as the
residue �eld of the completion “K of K at the place vx, and then to deduce that for any �nite extension
λ/κx, there exists a �nite unrami�ed Galois extension L̂/“K with residue �eld isomorphic to λ thanks
to loc. cit. Finally, one needs to explain that L̂ is actually the completion of a �nite Galois extension
L/K with respect to a valuation which extends vx. This is a consequence of Krasner's lemma, see for
instance [100, Corollary 11.19] in the section entitled �local extensions come from global extensions�.

In view of the canonical isomorphism induced by the restriction map between Gal (Ksep/K) and
lim←−

L∈Λ
Gal (L/K), this tells us that if we de�ne the decomposition group at x as

D{x} :=
{
σ ∈ Gal (Ksep/K) | for all L ∈ Λ, σ|L ∈ Dx,L

}
and its inertia subgroup at x as follows:

I{x} :=
{
σ ∈ Gal (Ksep/K) | for all L ∈ Λ, σ|L ∈ Ix,L

}
,

then they �t in the exact sequence

1→ I{x} → D{x} → Gal
(
Fq/κx

)
→ 1. (6.2)

The arithmetic Frobenius of Gal
(
Fq/κx

)
Frobarith

κx : Fq → Fq
u 7→ u|κx|

satis�es that for all �nite extension λ/κx, its restriction to λ is the Frobenius automorphism of
Gal (λ/κx). We will rather work with the inverse of the arithmetic Frobenius:

De�nition 6.9. The inverse of Frobarith
κx is called the geometric Frobenius at x, and is denoted by

Frobgeom
κx .

Thanks to the exact sequence (6.2), we have that D{x}/I{x} ' Gal
(
Fq/κx

)
, so that Frobgeom

κx can be
lifted to D{x} in several manners which di�er by elements of I{x}:

De�nition 6.10. We denote by Frob{x} the left I{x}-class of D{x} which corresponds to Frobgeom
κx .

If we made another choice of a compatible system of valuations extending vx to all �nite Galois
extensions of K, we would have de�ned another (possibly di�erent) extension of vx to Ksep. But as
Gal (Ksep/K) acts transitively on the extensions of vx to Ksep (see [87, Chapter II, Theorem 9.1]),
all the objects D{x}′ , I{x}′ and Frob{x}′ arising from this other construction would be Gal (Ksep/K)-
conjugates of D{x}, I{x} and Frob{x}.

6.2.3. `-adic Galois representations and their trace functions

Before speaking about `-adic representations, let us introduce some vocabulary about representations
of Gal (Ksep/K) in general, where K := Fq(X) as above. Given a representation

ρ : Gal (Ksep/K)→ GL(V )
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where V is a �nite dimensional L-vector space for some arbitrary �eld L, we denote by

V I{x} :=
{
v ∈ V | ρ(σ)(v) = v for all σ ∈ I{x}

}
the linear subspace of I{x}-invariant vectors. One can show that this subspace is stable under the
action of D{x} (this uses the fact that I{x} is a normal subgroup of D{x}). Therefore, for any σ ∈ D{x},
it makes sense to speak about the automorphism (σ | V I{x}) which is induced by the action of ρ(σ)
on V I{x} .
Besides, if σ′ = σ ◦ i for some i ∈ I{x}, then by de�nition of V I{x} , we haveÄ

σ′ | V I{x}
ä

=
Ä
σ | V I{x}

ä
Therefore, even though Frob{x} is only de�ned up to an element of I{x}, it makes sense to speak

about the automorphism
Ä
Frob{x} | V I{x}

ä
induced on V I{x} . Finally, if we made another choice of

extension of the valuation vx to a valuation on Ksep, the corresponding groups D{x}′ and I{x}′ would
be Gal (Ksep/K)-conjugates to D{x} and I{x}, which implies that

Tr
Ä
Frob{x} | V I{x}

ä
= Tr

Ä
Frob{x}′ | V I{x}′

ä
.

We refer to [36, Lemma 2.1.5] for more detailed proofs.

De�nition 6.11 (Unrami�ed representation). Given a representation ρ : Gal (Ksep/K) → GL(V ) as
above and a closed point x ∈ P1

Fq
, we say that ρ is unrami�ed (or lisse) at x if the inertia subgroup

I{x} acts trivially on V (that is: if V I{x} = V ).
On the other hand, a point where ρ is rami�ed is called a singularity, and we will denote by Sing(ρ)
the set of rami�ed points.

We can now turn our attention to a speci�c kind of representations, where V carries a topology and
continuity plays a role in the de�nitions. Fix a prime number ` 6= q, and an algebraic closure Q` of the
�eld of `-adic numbers. Even though the following de�nitions only use the language of representations,
we will name the objects �`-adic sheaves� to be consistent with the literature (we proceed as in [39]).

De�nition 6.12 (`-adic middle-extension sheaves). � Let U ⊆ P1
Fq

be a non-empty open subset.
An `-adic Galois representation lisse on U is a representation (VF, ρF), where VF is a �nite
dimensional Q`-vector space and

ρF : Gal (Ksep/K)→ GL(VF)

is a continuous representation of Gal (Ksep/K) which is unrami�ed at every closed point x ∈ U .
The dimension of VF is called the rank of F and is denoted by rk(F).

� An `-adic middle extension sheaf is an `-adic Galois representation (VF, ρF) as above such that
Sing(ρF) is �nite. In other words, (VF, ρF) must be unrami�ed at all but �nitely many points.

Sometimes we will just say `-adic sheaf to be brief, but we will only consider `-adic middle-extension
sheaves in the sense of the previous de�nition in this thesis.

Note that in this de�nition, the continuity of ρF refers to the pro�nite topology on the in�nite Galois
group Gal (Ksep/K) and to the unique normed vector space topology on the �nite dimensional Q`-
vector space GL(VF). We can �nally state the de�nition of the trace function associated with an `-adic
sheaf. Recall that an element x ∈ Fq can be viewed as closed point of P1

Fq
by identifying it with the

ideal of Fq[X] generated by the irreducible degree 1 polynomial X − x (see De�nition 6.7, where we
also introduce the notation U(Fq) for the closed points of degree 1 in a certain open subset U of P1

Fq
).

De�nition 6.13. Given an `-adic sheaf lisse on U as in the previous de�nition, we de�ne its associated
trace function as the following map

tF : Fq → Q`

x 7→ Tr
(

Frob{x} | V
I{x}
F

)
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Remark 6.14. Actually, some references only de�ne tF on lisse points, that is: on U(Fq) and not
on all A1(Fq) ' Fq. For a lisse point x ∈ U(Fq), we have that I{x} acts trivially on VF, so that

V
I{x}
F = VF. Then the value of the trace function at x is de�ned as

Tr
(
Frob{x} | V

)
.

There are several possibilities to extend tF to all Fq. The choice we made in the previous de�nition is
probably the most common, but for instance in [39, Remark 3.7] the simplest extension (extending by
0 outside of the lisse points) is also said to work for many analytic purposes.

Remark 6.15. From now on, we assume that we have �xed a �eld isomorphism ι : Q` → C (the exis-
tence of such an isomorphism depends on the axiom of choice). This allows us to view trace functions
as complex-valued functions (which is necessary if we want to say that additive and multiplicative
characters are instances of trace functions). The fact that we are considering representations over Q`

rather than C is crucial for the theory, and comes from their di�erent topological nature, but the
relevance of this choice will not appear clearly in this Chapter, as we are going to admit without proof
some di�cult statements.

6.2.4. Operations on trace functions

Classical transformations on representations can be applied to our speci�c kind of representations, and
we will be interested in the e�ect of these operations on the attached trace functions. We just give
some useful examples, which form a strict subset of the set of examples provided in [39].

Given two `-adic sheaves F and G as in De�nition 6.12, one can form:

� the direct sum sheaf F ⊕ G, which is just de�ned as the usual direct sum of the corresponding
representations (VF, ρF) and (VG, ρG). If F is lisse on U and G is lisse on U ′, then F⊕G is lisse at
least on U ∩U ′. Moreover, the rank of F⊕G equals the sum of the ranks, and on U(Fq)∩U ′(Fq),
we have

tF⊕G(x) = tF(x) + tG(x).

� the tensor product sheaf F⊗G, which is de�ned as the usual tensor product of the representations
(VF, ρF) and (VG, ρG). As in the previous case, this sheaf is lisse at least on U ∩ U ′, its rank is
the product of the ranks, and on U(Fq) ∩ U ′(Fq) we have

tF⊗G(x) = tF(x)tG(x).

� If γ =

Å
a b
c d

ã
∈ GL2(Fq), then the map x 7→ ax+b

cx+d de�nes an automorphism of P1(Fq). Now

if F is a lisse `-adic sheaf on P1
Fq
, there is a construction of a pullback sheaf [γ]∗F, whose trace

function is given by

t[γ]∗F(x) = tF

Å
ax+ b

cx+ d

ã
.

In particular, if γ =

Å
1 b
0 1

ã
, we will denote by [+b] the corresponding automorphism of P1(Fq)

and by [+b]∗F the corresponding pullback sheaf, which has trace function equal to x 7→ tF(x+b).

Similarly, if γ =

Å
a 0
0 1

ã
, we denote by [×a] the corresponding automorphism. The pullback

sheaf [×a]∗F then has trace function equal to x 7→ tF(ax).

We can also speak of isomorphic sheaves just by de�ning this notion as the isomorphism of the corre-
sponding representations. Similarly, we can speak of irreducible representations (representations with
no non-trivial subrepresentations) and isotypic representations (representations with all irreducible
subrepresentations being isomorphic). For all these notions, we can add the word �geometric� be-
fore, and this will mean that we are restricting our representations to the geometric Galois group
Gal

(
Ksep/Fq(X)

)
(which is a subgroup of Gal (Ksep/K)).
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De�nition 6.16. � We will say that two sheaves F and G are geometrically isomorphic if the corre-
sponding representations (VF, ρF) and (VG, ρG) are isomorphic as representations of Gal

(
Ksep/Fq(X)

)
.

� We will say that a sheaf F is geometrically irreducible (reps. geometrically isotypic) if the corre-
sponding representation is irreducible (resp. isotypic) as a representation of Gal

(
Ksep/Fq(X)

)
.

6.2.5. Purity

We now turn to the important notion of weight of an `-adic sheaf, which is an assumption concerning
the modulus of the eigenvalues of the Frobenius automorphisms.

De�nition 6.17. Let w ∈ Z. Let F be an `-adic sheaf as in De�nition 6.12, lisse on U ⊆ P1
Fq
. We

say that F is pure of weight w if for all x ∈ U , the eigenvalues of
(
Frob{x} | VF

)
are complex numbers

of modulus |κx|w/2.

Let us stress that the eigenvalues of
(
Frob{x} | VF

)
are the eigenvalues of ρF

(
Frob{x}

)
∈ GL(VF),

which is an automorphism of a Q`-vector space. Therefore, they belong to Q`, but when we speak
of them as complex numbers of modulus |κx|w/2, what we really mean is that there image under our
�xed isomorphism ι : Q` → C are such complex numbers. To be completely rigorous, we should speak
about ι-pure sheaves of weight w.

Even though the de�nition only takes into account the unrami�ed points, Deligne proved that the
weights of the Frobenius eigenvalues at rami�ed points is well-controlled by the weights at the unram-
i�ed points. Namely (see [39, Remark 3.12]): if F is an `-adic sheaf lisse on U which is pure of weight
w, then for any closed point x ∈ P1

Fq
, the eigenvalues of

Ä
Frob{x} | V I{x}

ä
have modulus less than or

equal to |κx|w/2.

6.2.6. Measuring the complexity of trace functions

Given a trace function, there are possibly many `-adic representations which give the same trace func-
tions. However, we would like to have a way to speak of the �simplest� representation giving rise to this
given trace function. In order to do that, we need to de�ne a quantity which measures the complexity of
an `-adic sheaf. It is the notion of conductor of a trace function, in the sense of Fouvry-Kowalski-Michel.

A �rst naive way to measure the complexity of a representation is its rank, but it turns out that this
is not the suitable notion in applications. One also needs to take into account the number of singular
points, which is assumed to be �nite in our de�nition of an `-adic middle extension sheaf (De�nition
6.12). However, these two notions do not su�ce, and there is a last quantity involved which is rather
di�cult to de�ne: that of the Swan conductor Swanx(F) at a singular point x. We will not de�ne it
(as I acknowledge not knowing the precise de�nition) but let us just say that it measures how wild is
the rami�cation. As in the context of local �elds, we can speak of tamely rami�ed points, as opposed
to wildly rami�ed points, and the Swan conductor can be thought of as an analogue of the jumps in
the rami�cation �ltration of a local �eld. We refer to [65] for a complete introduction. Even though
their de�nition is di�cult, Swan conductors at singular points have been computed for many sheaves
of interest in applications, so we have explicit values of the conductor of those sheaves, that can be
used as blackboxes.

De�nition 6.18 (Conductor of a trace function, see [38]). Given an `-adic middle-extension sheaf F
on P1

Fq
, we de�ne its conductor as:

c(F) := rk(F) + |Sing(ρF)|+
∑

x∈Sing(F)

Swanx(F).
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6.2.7. Bounding trace functions

To prove uniform distribution results, we often need to bound exponential sums, and so we would like
to have good upper bounds for the modulus of those very general exponential sums that arise as sums
of trace functions. The best known general results follow from the Riemann hypothesis for varieties
de�ned over �nite �elds, which is due to Deligne. This theorem involves very deep cohomological
techniques that I am far from understanding, so let me just give some key steps which will hopefully
explain the type of assumptions on F that are needed in order to apply the Riemann hypothesis.

The �rst step is the following cohomological interpretation of a sum of values of a trace function:

Theorem 6.19 (Grothendieck-Lefschetz trace formula, see e.g. [39, Theorem 4.1]). Let F be an `-adic
sheaf lisse on U ⊆ P1

Fq
. There exists three �nite dimensional `-adic representations of Gal

(
Fq/Fq

)
:

Gal
(
Fq/Fq

)
→ H i

c(U × Fq,F)

such that ∑
x∈U(Fq)

tF(x) =
2∑
i=0

(−1)iTr
(
Frobq | H i

c(U × Fq,F)
)

where Frobq denotes the geometric Frobenius of Gal
(
Fq/Fq

)
.

The Q`-vector spaces H
i
c(U ×Fq,F) are called compactly supported étale cohomology groups, and as

far as I understand, it is often easier in applications to understand the ones corresponding to i = 0
and i = 2. Indeed, as soon as U 6= P1

Fq
, we have H0

c (U × Fq,F) = 0. Moreover, if F is geometrically
irreducible or geometrically isotypic (with underlying geometrically irreducible representation being
non-trivial) then we also have H2

c (U ×Fq,F) = 0 (see e.g. [39, �4.1] for statements of those facts). For
instance, if we consider `-adic sheaves on the a�ne line A1

Fq
which are geometrically irreducible, then

we are just left with one term in the Grothendieck-Lefschetz trace formula:∑
x∈U(Fq)

tF(x) = −Tr
(
Frobq | H1

c (U × Fq,F)
)
.

Now, to estimate the term on the right-hand side, one needs to understand the dimension of the Q`-
vector space H1

c (U × Fq,F) and the modulus of the eigenvalues of the geometric Frobenius acting on
that space. The dimension can actually be bounded in terms of the conductor, see e.g. [39, �4.1]:

2∑
i=0

dimH i
c(U × Fq,F)� c(F)2.

However, the question of the size of the eigenvalues of the Frobenius is what is at the heart of the
Riemann hypothesis, and required a tremendous amount of work to be fully proved.

Theorem 6.20 (Deligne, [26]). If F is pure of weight 0, then the eigenvalues of Frobq acting on
H1
c (U × Fq,F) are complex number of modulus 6

√
q.

All this sketchy discussion leads us to the following very concrete form of the Riemann hypothesis,
which is applicable to our trace functions:

Corollary 6.21 (Applying the Riemann hypothesis to trace functions, [39, Corollary 4.7]). Assume
that F is an `-adic middle extension sheaf lisse on U ⊂ P1

Fq
(with U 6= P1

Fq
) which is pure of weight 0.

Assume that F is geometrically isotypic (with underlying geometrically irreducible representation being
non-trivial1), then ∣∣∣∣∣∣ ∑x∈U(Fq)

tF(x)

∣∣∣∣∣∣� c(F)2√q.

1meaning that there must not exist a 1 dimensional linear subspace V of VF such that for all σ ∈ Gal
(
Ksep/Fq(X)

)
,

ρF(σ) acts as the identity on V .
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Remark 6.22. (1) Let us stress that the assumption �geometrically isotypic with no trivial compo-
nent� is crucial to ensure the vanishing of the second étale cohomology group H2

c (U × Fq,F). This
type of assumption will play an important role in the main result of this Chapter (Theorem 6.27).

(2) Actually the isotypic assumption is not very restrictive, because any trace function can be decom-
posed as a sum of trace functions of geometrically isotypic sheaves. This is not at all obvious, as the
representations involved are not necessarily arithmetically semi-simple (i.e. semi-simple as represen-
tations of Gal (Ksep/K)), but Deligne proved that they are geometrically semi-simple. Concretely, we
can use the following consequence:

Proposition 6.23 ([39, Proposition 5.1]). Let F be an `-adic sheaf lisse on U ⊆ P1
Fq

and pure of weight
0. Then there exist `-adic sheaves (Fi)16i6N , lisse on I, pure of weight 0, geometrically isotypic, such
that

� N 6 c(F),

� c(Fi) 6 c(F) for all 1 6 i 6 N ,

� for all x ∈ U(Fq),

tF(x) =

N∑
i=1

tFi(x).

Thanks to this decomposition, in order to apply the Riemann hypothesis to F, it su�ces to check
that the the geometric representation ρF, i.e. the representation ρF viewed as a representation of
Gal

(
Fq(X)sep/Fq(X)

)
, does not admit a geometrically irreducible subrepresentation which is the

trivial one.

6.2.8. Additive and multiplicative characters as trace functions

Let us explain that this deep algebraic formalism actually encompasses the concrete examples of �func-
tions Fq : → C of algebraic nature� that we already encountered, namely additive and multiplicative
characters.

Artin-Schreier sheaf. Given an additive character ψ : Fq → C, one can show that there exists an
`-adic middle extension sheaf Lψ, called an Artin-Schreier sheaf, with the following properties:

� rk(Lψ) = 1,

� Lψ is lisse on P1
Fq
\ {∞} = A1

Fq
,

� Lψ is pure of weight 0,

� c(Lψ) = 3 (the Swan conductor at ∞ is equal to 1),

� For all x ∈ F×q , tLψ(x) = ψ(x).

Kummer sheaf. Given a multiplicative character χ : F×q → C, it can be proved that there exists an
`-adic middle extension sheaf Lχ, called a Kummer sheaf, such that

� rk(Lχ) = 1,

� Lχ is lisse on P1
Fq
\ {0,∞},

� Lχ is pure of weight 0,

� c(Lχ) = 3 (the Swan conductor at the two rami�ed points is equal to 0),

� For all x ∈ F×q , tLχ(x) = χ(x).

We refer to [54, Theorem 11.34] for a sketch of the proof of the existence of a rank 1 sheaf with the
right trace function (without the computation of the conductor).
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6.2.9. Monodromy groups

We have seen that if F is a middle-extension `-adic sheaf lisse on some open subset U ⊆ P1
Fq
, then to

any closed point x ∈ U we can associate a Frobenius automorphism

ρF(Frob{x}) = (Frob{x} | VF) ∈ GL(VF).

Since di�erent choices of extensions of valuations lead to di�erent elements Frob{x} ∈ Gal (Ksep/K),
but all those elements are conjugates inside Gal (Ksep/K), the conjugacy class of ρF(Frob{x}) in-
side GL(VF) does not depend on any choice. Thus, for all such x, we have a well de�ned element
ρF(Frob{x}) ∈ GL(VF)]. After taking an arbitrary basis of VF, we can identify ρF(Frob{x}) with a
conjugacy class in GLr(Q`). Finally, using our isomorphism ι : Q` → C, we can speak of the Frobenius
conjugacy class ι(ρF(Frob{x})) ∈ GLr(C)].

The work of Deligne and Katz allowed for major breakthroughs in the understanding of the distribution
of trace functions. The main point is that they rather studied the uniform distribution of these
conjugacy classes ι(ρF(Frob{x})) inside GLr(C)], before applying the trace and obtain as a corollary
the uniform distribution of the trace functions. But there is actually one last subtlety that we did not
talk about: it is the fact that the suitable space of conjugacy classes is not simply GLr(C)], but rather
the space of conjugacy classes of a maximal compact subgroup inside what is called the monodromy
group associated with the sheaf F. We now de�ne these groups.

De�nition 6.24. let F be an `-adic middle-extension sheaf on P1
Fq
, pure of weight 0. Recall that we

denoted by K := Fq(X).

� The arithmetic monodromy group of F is the Zariski closure of ι(ρF (Gal (Ksep/K))) inside
GLr(C).

� The geometric monodromy group of F is the Zariski closure of ι(ρF(Gal
(
Ksep/Fq(X)

)
)) inside

GLr(C).

They are respectively denoted by GF,arith(C) and GF,geom(C) and satisfy GF,geom(C) ⊆ GF,arith(C).

Let us explain what is the meaning of Zariski closure in this setting: there is a topology on Cr2+1

whose closed sets are those of the form

V (S) :=
¶

((mi,j)16i,j6r, y) ∈ Cr2+1 | for all f ∈ S, f ((mi,j)16i,j6r, y) = 0
©

for subsets S of the polynomial ring C [(Xi,j)16i,j6r, Y ]. We call this topology the Zariski topology,
and GLr(C) can be seen as a closed subset Cr2+1 via the map

GLr(C) → Cr2+1

M = (mi,j) 7→
Ä
(mi,j)16i,j6r,

1
det(M)

ä
which identi�es GLr(C) with the Zariski-closed subset V ({f}) where

f((Xi,j)16i,j6r, Y ) := det((Xi,j)16i,j6r)Y − 1.

Therefore, we can speak of the Zariski topology on GLr(C), whose closed sets are those given by
polynomial equations via the embedding of GLr(C) in Cr2+1. Then, the monodromy groups de�ned
above are Zariski closures, meaning that they are the smallest Zariski closed subsets containing respec-
tively ι(ρF (Gal (Ksep/K))) and ι(ρF

(
Gal

(
Ksep/Fq(X)

))
). As such, they are linear algebraic groups

because they are subgroups of GLr(C) given by polynomial equations. We refer to [74, �7.1] for a
concise introduction to linear algebraic groups.

Remark 6.25. There is a di�erent topology on GLr(C) which is also called the Zariski topology: it is
de�ned by viewing GLr(C) as an open subset of Cr2

, namely the set of points where the determinant
is non-zero. However, it is not this Zariski topology that is used in the context of linear algebraic
groups, because the matrix inversion is not a polynomial map if we make this choice instead of the one
above.
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In general, the determination of the monodromy group is a di�cult problem. In many cases of interest
in analytic number theory however, Katz determined the monodromy groups in several books (e.g. [59,
60, 61, 62]). His work provides many examples where the equidistribution of the Frobenius conjugacy
classes is well-understood, and gives as corollaries beautiful equidistribution results regarding concrete
trace functions.

6.3. Uniform distribution results for sums of trace functions over the
roots of a �xed polynomial

Let us �x for all this section g ∈ Z[X] a monic and separable polynomial. We keep the notations
Kg,Og, Sg from Chapter 4. In the latter, we studied exponential sums of the form∑

x∈Zg(Og/p)

e

Å
τp(ax)

‖p‖

ã
where τp is just the inverse of the canonical isomorphism between Z/ ‖p‖Z and Og/p when p ∈ Sg.
On the other hand, in Section 6.1 we showed that the same techniques lead to equidistribution results
for sums of the form ∑

x∈Zg(Og/p)

χ (x)

where χ is a varying character of the multiplicative group (Og/p)×. Thanks to Section 6.2.8, we see
that we dealt with two instances of sums of trace functions over roots of a polynomial. Thus, it is
natural to try to see whether similar results can be obtained for sums of the form∑

x∈Zg(Og/p)

tp(ax), or
∑

x∈Zg(Og/p)

tp(a+ x),

(or other similar expressions) when tp is, for each p ∈ Sg, a trace function over the �nite �eld Og/p.

6.3.1. De�nition of the unitary random variables

We thus assume that for each p ∈ Sg, we are given an `-adic middle-extension sheaf Fp on the a�ne
line over Og/p. We assume that these sheaves are pure of weight 0, and have the same rank r, and
moreover have bounded conductor in the sense of De�nition 6.18. We also assume that they have the
same geometric monodromy group, and that the arithmetic and the geometric monodromy groups are
equal. Since we make this assumption, we can drop the subscript Fp in the notation of the monodromy
groups, and just denote them as

Garith(C) and Ggeom(C)

which are to be understood as the common monodromy groups of the sheaves Fp.

Let x ∈ Og/p be such that Fp is lisse at x. Then by de�nition, ι(ρFp(Frob{x})) ∈ Garith(C), and its
conjugacy class only depends on x. Thanks to the assumption that the arithmetic and the geometric
monodromy groups coincide, we can associate with x a unique conjugacy class ϑp(x) ∈ Ggeom(C)].
It is represented by a matrix whose eigenvalues are all complex numbers of modulus 1 (due to the
assumption that our sheaves are pure of weight 0). It can be shown in this context of linear alge-
braic groups that this matrix admits a Jordan-Chevalley multiplicative decomposition, so it may be
written as a product of a diagonalizable matrix ϑp(x)ss (called the semi-simple part) by a unipotent one.

Since the eigenvalues have modulus 1, we can say that the semi-simple part ϑp(x)ss belongs to a certain
compact subgroup of Ggeom(C). But any such subgroup is Ggeom(C)-conjugate to a maximal compact
subgroup, say Kgeom(C). Therefore, we can associate to any x ∈ Og/p such that Fp is lisse at x a
unitary matrix which we denote by Θp(x) ∈ Kgeom(C), which is Ggeom(C)-conjugate to the semi-simple
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part of the Frobenius automorphism ι(ρFp(Frob{x})).

If another choice of extension of valuation was made and led us to de�ne Frob{x}′ instead of Frob{x},
then we have seen that these two automorphisms are Gal (Ksep/K)-conjugates, so that their images via
the representation ρFp and the isomorphism ι are two matrices which are Ggeom(C)-conjugates. How-
ever, it is not straightforward that when we �nd an element of Kgeom(C) in the Ggeom(C)-conjugacy
class of their semi-simple part, we obtain two elements of Kgeom(C) which are Kgeom(C)-conjugates
and not only Ggeom(C)-conjugates. It turns out that this is true, as explained in [63, �9.2.4]. This
relies on the fact that Kgeom(C)-conjugacy classes are separated by the traces of �nite dimensional
representations of Kgeom(C) (a consequence of the Peter-Weyl theorem) and that such representations
of Kgeom(C) are restrictions of representations of the whole algebraic group Ggeom(C).

Thus, any x ∈ Og/p such that Fp is lisse at x de�nes properly an element of Kgeom(C)], which we still
denote by Θp(x). Since we will be interested in sums of (additive or multiplicative) shifts, we need to
be cautious with the fact that those shifts might reach non-lisse points. That is why we introduce the
following sets:

Ap :=
{
a ∈ (Og/p)× | for all x ∈ Zg(Og/p), Fp is lisse at ax

}
Bp := {a ∈ Og/p | for all x ∈ Zg(Og/p), Fp is lisse at a+ x}

Note that we always have |Bp| � ‖p‖, and that if we further assume that 0 /∈ Zg, then we also have
|Ap| � ‖p‖.

De�nition 6.26 (Unitary random variables). For p ∈ Sg, we de�ne random variables Up and Vp on
Ap and Bp respectively (with uniform probability measure), with values in the space C

(
Zg,Kgeom(C)]

)
,

by
Up(a)(x) = Θp(ax), Vp(a)(x) = Θp(a+ x),

where x ∈ Zg is viewed as an element of Og/p through the canonical projection $p.

Note that this de�nition is a quite natural extension of De�nition 4.25: in both cases we are viewing
the terms of our exponential sums of interest as traces of certain �random� unitary elements, except
that in De�nition 4.25 we had 1× 1 matrices, so we did not need to take the trace.

More precisely, since the trace function tp of Fp satis�es

tp(x) = Tr(Θp(x))

for x lisse, we see that if one can prove that (Up) and/or (Vp) has a limit, then the sums∑
x∈Zg(Og/p)

tp(ax), and/or
∑

x∈Zg(Og/p)

tp(a+ x),

for a varying inn Ap (respectively Bp) will become equidistributed according to the image of this limit
distribution by the map

f 7→
∑
x∈Zg

Tr(f(x))

for f : Zg → Kgeom(C)].

6.3.2. Convergence in law of the unitary random variables

We will see that the proof of the uniform distribution of the random variables of De�nition 6.26 relies
a lot on estimates of �sums of products� of trace functions, which have been the object of a deep study
in the article [38] by Fouvry, Kowalski and Michel. Relying on their notion of bountiful sheaves, we
will prove the following (concrete examples of trace functions coming from bountiful sheaves will be
given in the next section):
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Theorem 6.27 ([77, Proposition 7.1]). Assume that for all p ∈ Sg, we are given an `-adic middle-
extension sheaf Fp on the a�ne line over the �nite �eld Og/p. Assume that these sheaves all have
the same rank r, are pure of weight 0, have the same geometric monodromy group Ggeom(C), and that
it coincides with their arithmetic monodromy group. Assume further that Fp is bountiful in the sense
of [38] for all p in Sg and that the conductor of Fp is bounded independently of p. Then:
(1) If Ggeom(C) = Spr(C) then (Up) and (Vp) converge in law as ‖p‖ → +∞, with limit uniform on
C(Zg; USpr(C)]).
(2) If Ggeom(C) = SLr(C), and the special involution, if it exists, is not y 7→ −y, then (Up) and (Vp)
converge in law with limit uniform on C(Zg; SUr(C)]).
(3) If Ggeom(C) = SLr(C) and Fp has special involution y 7→ −y for all p, then (Vp) converges in law
as ‖p‖ → +∞ with limit uniform on C(Zg; SUr(C)]), and (Up) converges in law with limit uniform on

{f : Zg → SUr(C)] | f(x) = f(y) if x = −y}.

In all cases, the convergence of (Vp) holds without additional assumptions, while for (Up)
we assume that 0 /∈ Zg.

Proof of (1). We argue with Up, as the case of Vp is identical (one just needs to replace [×x] by [+x] in
the pullback sheaves below). By de�nition, the random variables Up take values in C

(
Zg,Kgeom(C)]

)
,

where Kgeom(C)] is the space of conjugacy classes of a maximal compact subgroup Kgeom(C) of the
common geometric monodromy group Ggeom(C) of the sheaves Fp. Here, since we assume that the
sheaves are of Spr-type, we have that

Ggeom(C) = Spr(C)

and a maximal compact subgroup is given by

Kgeom(C) = USpr(C)(= Spr(C) ∩Ur(C)).

By de�nition of convergence in law, we want to show that for any continuous central function
f : C (Zg,USpr(C))→ C, we have

1

|Ap|
∑
a∈Ap

f(Up(a)) −→
‖p‖→+∞

∫
USpr(C)

fdµ

where µ denotes the Haar probability measure on the compact group USpr(C). Thanks to Peter-Weyl
theorem (and in particular its consequence in the form of [96, Appendix A.1, Cor. 1]), it su�ces
to show that if (πx)x∈Zg is a family of irreducible representations of USpr(C), not all trivial, with
characters χx = Tr(πx), we have

1

|Ap|
∑
a∈Ap

∏
x∈Zg(Og/p)

χx(Θp(ax)) −→
‖p‖→+∞

0. (6.3)

The sum is, up to negligible amount coming from points where Fp is not lisse, the sum of the traces of
Frobenius on the sheaf

G :=
⊗

x∈Zg(Og/p)

πx([×x]∗Fp),

or, from the point of view of representations, the sum of the traces of the representation

ρG =
⊗

x∈Zg(Og/p)

π̃x ◦ ρ[×x]∗Fp
, (6.4)

where π̃x is a representation of Spr(C) which extends πx. Therefore, proving the convergence (6.3) is
equivalent to proving

1

|Ap|
∑
a∈Ap

tG(a) −→
‖p‖→+∞

0.
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If we can apply the Riemann hypothesis to the sheaf G in the form of Corollary 6.21, then we obtain
that

1

|Ap|

∣∣∣∣∣∣∑a∈Ap

tG(a)

∣∣∣∣∣∣� c(G)2 ‖p‖1/2

|Ap|

and this �nishes the proof since c(G) is easily seen to be bounded independently of p and the assump-
tion that 0 /∈ Zg ensures that |Ap| � ‖p‖. So the question is: can we apply Corollary 6.21 to the sheaf G?

Thanks to Corollary 6.21 and Proposition 6.23, it su�ces to show that the representation ρG associated
with the sheaf G has no trivial geometrically irreducible subrepresentation.

If we did not have the composition with the π̃x, we would be considering a sheaf of the form⊗
x∈Zg(Og/p)

[×x]∗Fp,

and for such sheaves [38, Theorem 1.5] gives the conclusion (take h = 0 and the tuple γ to be
(x)x∈Zg(Og/p): the latter is normal in the sense of loc. cit. thanks to the separability of g, and
since the sheaves are assumed to be bountiful, we get the conclusion). However, it remains to explain
why the composition with the irreducible representations π̃x does not create any issue. We isolate this
part of the argument in Lemma 6.28 below.

The proof of (2) is the same, with Spr(C) replaced by SLr(C).

For (3), we have to take into account the fact that if x ∈ (Og/p)×, then [×(−x)]∗Fp is isomorphic to
the dual of [×x]∗Fp (by de�nition of y 7→ −y being a special involution of the sheaf). This implies
that Θp(−ax) = Θp(ax) for all a ∈ Ap (resp. Bp), where the bar denotes the complex conjugate of
the matrix. Indeed, for unitary representations, the dual representation is isomorphic to the conjugate
representation, see e.g. [74, p. 150]. This shows that the random variables Up take values in the
subgroup

{f : Zg → SUr(C) | f(x) = f(y) if x = −y}.

which is isomorphic to C(Zg/{±1},SUr(C)), where Zg/{±1} denotes the quotient of Zg by the equiv-
alence relation ∼ de�ned by:

x ∼ y ⇐⇒ x = y or x = −y.

The end of the proof is the same as in the previous cases, with C(Zg/{±1}, SUr(C)]) playing the role
of C(Zg,SUr(C)]). The idea is that the only obstruction to the independence of shifts which is crucial
in the proof of Lemma 6.28 was the possibility to have two opposite roots of g, but the quotient by
the equivalence relation ∼ removed that issue.

Lemma 6.28. The multiplicity of the trivial representation as a geometrically irreducible representation
of ρG (the representation introduced in equation (6.4) of the proof of Theorem 6.27) equals 0.

Proof. Let us denote by k the �eld Og/p. To simplify notations, we will only prove this lemma in the
case where two representations are involved in the tensor product, but there is no hidden di�culty
when more factors are involved. So we assume that we are given a bountiful sheaf Fp on the a�ne
line over k, two distinct points x, y ∈ k, and two representations πx and πy of a maximal compact
subgroup Kgeom(C) of the geometric monodromy group Ggeom(C) of Fp. We assume that πx and πy
are irreducible representations, and that at least one of them is not the trivial one.

First, thanks to [59, �3.2] (see also the statement in [89, Cor. 3.3]), these representations extend to rep-
resentations π̃x and π̃y of the whole Lie group Ggeom(C) satisfying the same irreducibility assumptions.
Then, we want to show that the representation

λ :=
(
π̃x ◦ ρ[×x]∗Fp

)
⊗
(
π̃y ◦ ρ[×y]∗Fp

)
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does not admit a non-zero vector which is invariant under the action of the geometric Galois group
Gal

(
k(X)sep/k(X)

)
=: Πgeom

k . Assume for a contradiction that such a vector exists. Then for all
σ ∈ Πgeom

k , we have λ(σ)(x) = x, that is[
π̃x
(
ρ[×x]∗Fp

(σ)
)
⊗ π̃y

(
ρ[×y]∗Fp

(σ)
)]

(x) = x (6.5)

where the tensor product inside the brackets is the tensor product of the endomorphisms π̃x
(
ρ[×x]∗Fp

(σ)
)

and π̃y
(
ρ[×y]∗Fp

(σ)
)
in the sense of De�nition 6.36. Now, the bountiful property of Fp ensures that

the image of the map
Πgeom
k → Ggeom(C)×Ggeom(C)
σ 7→

(
ρ[×x]∗Fp

(σ), ρ[×y]∗Fp
(σ)
)

is Zariski dense in Ggeom(C) × Ggeom(C) (informally, this can be interpreted as an �independence of
shifts�). This comes from the Goursat-Kolchin-Ribet criterion, as stated by Katz in [60, Proposition
1.8.2]. Therefore, we can deduce from (6.5) that for all (g, h) ∈ Ggeom(C)×Ggeom(C),

[π̃x (g)⊗ π̃y (h)] (x) = x.

This is equivalent to saying that the external product representation π̃x�π̃y (see Appendix 6.A) admits
a non-zero invariant vector, which contradicts the fact that it is irreducible (thanks to Proposition 6.37)
of dimension > 2.

Remark 6.29. For the general case, the fact that g is a separable polynomial ensures that the tuple
(x)x∈Zg is normal in the sense of [38] because each x appears with multiplicity one. Thus, the bountiful
property of Fp ensures the �independence of shifts�: this gives us the fact that

Πgeom
k →

∏
x∈Zg

Ggeom(C)

σ 7→
(
ρ[×x]∗Fp

(σ)
)
x∈Zg

has dense image and the remainder of the proof works in the same manner.

6.3.3. The example of Kloosterman sums

Let us illustrate cases (1) and (3) of the previous theorem with a concrete example: that of Kloosterman
sums. They are de�ned as follows: For an integer r > 2, and an odd prime q,

Klr(a, q) :=
(−1)r−1

q
r−1

2

∑
x1,...,xr∈F×q
x1···xr=a

e

Å
x1 + · · ·+ xr

q

ã
for all a ∈ F×q .

In the case r = 2, we recover the classical Kloosterman sums of Katz' equidistribution theorem of
Section 1.3.2.

It was proved by Deligne that these sums are also trace functions. Namely, he proved in [25] the
existence of an `-adic middle-extension sheaf K`r (called the Kloosterman sheaf) on P1

Fq
such that

(see [39, Theorem 4.4]):

� rk(K`r) = r,

� K`r is lisse on P1
Fq
\ {0,∞},

� K`r is pure of weight 0

� c(K`r) = r + 3 (with Swan conductor 0 at 0 and 1 at ∞)

� for all a ∈ F×q ,
tK`r(a) = Klr(a, q)
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The Kloosterman sheaf was then studied in more detail by Katz in [59], where (among other things)
he determined the monodromy groups.

Theorem 6.30 (Katz, see [90, Theorem 1.3] for this speci�c statement). For all r > 2, we have

GK`r,geom(C) = GK`r,arith(C) =

®
SLr(C) if r is odd

Spr(C) if r is even.

Finally, K`r is bountiful thanks to the determination of the automorphism group of this sheaf, which
is contained in [38, Proposition 3.6]. It has no special involution when r is even, and one special
involution when r is odd, given by y 7→ −y. All those facts are stated in [38, �3(b) and �3(c)] and
proved further in the article.

Therefore, even rank Kloosterman sheaves satisfy the assumptions of Theorem 6.27 (1), while odd rank
Kloosterman sheaves satisfy the assumptions of point (3).

Even rank Kloosterman sums. Assume that r = 2g is even. Then thanks to case (1) of Theorem
6.27 applied to the bountiful sheaf K`r, we know that the corresponding random variables Up become
equidistributed in C(Zg,USpr(C)]) as ‖p‖ tends to in�nity. Composing this convergence in law with
the continuous mapping

C(Zg,USpr(C)]) → C
M 7→

∑
x∈Zg

Tr(M(x))

we obtain as a corollary the convergence in law of the random variables

Og/p → C
a 7→

∑
x∈Zg

Tr(Up(a)(x))

towards a random variable which is the sum of deg(g) independent random variables, each distributed
as the trace of a uniform element of USpr(C)]. Now, unfolding the de�nition of the random variables
Up and identifying Og/p with Fq for the prime q = ‖p‖, we see that this gives us the equidistribution
of the sums ∑

x∈Zg(Fq)

Klr(ax, q)

with respect to a measure which is the law of deg(g) independant random variables, each distributed
as the trace of a uniform element in USpr(C)]. The distribution of those traces was studied by Katz
in [59, Chapter 13]. In particular, when r = 2, he shows that they are uniformly distributed in [−2, 2]
with respect to the Sato-Tate measure

dµST(x) =
1

2π

√
4− x2dx.

This is a consequence of the fact that USp2(C) is isomorphic to SU2(C) and of the explicit determi-
nation of the Haar measure on the latter (we give a sketch of the proof of this last part in Proposition
6.34 below). Therefore, we have the following concrete corollary of Theorem 6.27:

Corollary 6.31. Let g ∈ Z[X] be a monic polynomial of degree d > 1, and assume that 0 /∈ Zg. As q
goes to in�nity among the prime number totally split in Kg, the sums∑

x∈Zg(Fq)

Kl2(ax, q),

parametrized by a ∈ Fq, become equidistributed in C with respect to a measure which is the law of d
independant and identically distributed Sato-Tate random variables. The same holds for the sums∑

x∈Zg(Fq)

Kl2(a+ x, q)

without the assumption that 0 /∈ Zg.
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Here is an illustration of this statement:

Figure 6.1: Distribution of the values of the sums
∑

x∈Zg(Fq)
Kl2(ax, q) as a varies in Fq, for g =

X3 − 9X − 1 and q = 8089. The red curve is the probability density function of the random variable
X1 +X2 +X3 de�ned as the sum of three independent and identically distributed Sato�Tate random
variables.

Figure 6.2: Distribution of the values of the sums
∑

x∈Zg(Fq)
Kl2(a + x, q) as a varies in Fq, for

g = X3 − 9X − 1 and q = 8089. The red curve is the probability density function of the random
variable X1 +X2 +X3 de�ned as the sum of three independent and identically distributed Sato�Tate
random variables.

Remark 6.32. This last corollary recovers Katz' equidistribution result in the form stated in the
introduction (see Theorem 1.23). Indeed, it su�ces to take the polynomial g to be X − 1.
Moreover, such sums of shifts of Kloosterman sums already appeared in analytic number theory, see
e.g. [35, Proposition 3.2].

Odd rank Kloosterman sums. If r is odd, the Kloosterman sheaf K`r satis�es the assumptions
of case (3) of Theorem 6.27. Therefore, the convergence in law of the random variables (Vp) implies
the uniform distribution of the sums ∑

x∈Zg(Fq)

Klr(a+ x, q)
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as q goes to in�nity and a varies in Fq (provided q splits completely in Kg). The theorem tells us that
the limit measure is the law of the sum of deg(g) random variables, each distributed as the trace of
a uniform matrix in SUr(C). For r = 3, the pushforward measure of the Haar measure on SU3(C)
via the trace is determined in [57], and it is supported inside the 3-cusp hypocycloid that we already
encountered several times along this thesis. The following �gure2 illustrates the limit distribution of
individual Kloosterman sums Kl3(a, q).

Figure 6.3: The sums Kl3(a, q) for q = 40009 and a varying in Fq

Remark 6.33. In Chapter 2, we encountered a measure on the 3-cusp hypocyloid H3 that was de�ned
as the pushforward measure of the Haar measure on S1 × S1 via the map

(z1, z2) 7→ z1 + z2 +
1

z1z2
·

(see e.g. Theorem 2.5 p.53). In terms of matrices in SU3(C), this corresponds to considering the Haar
measure on the maximal torus of diagonal matrices

Ñ
z1 0 0
0 z2 0
0 0 z1.z2

é
; (z1, z2) ∈ S1 × S1


and then taking the pushforward measure via the trace. On the other hand, in the current chapter
we have another measure on H3, which is de�ned as the pushforward of the Haar measure on the full
group SU3(C) (not only on its maximal torus). In this remark, we want to stress that even though
hypocycloids appeared in earlier chapters, the measure with respect to which our exponential sums
become equidistributed only happen to have the same support, but it is not the same.
Let us sketch the argument in the simpler case of SU2(C). In that case, the measure on the 2-cusp
hypocyloid H2 = [−2, 2] that was relevant in the previous chapters was the pushforward of the Haar
measure λ on S1 via the map:

f : z 7→ z +
1

z
= z + z = 2Re(z).

Let us determine this measure explicitly: for any interval [a, b] ⊆ [−2, 2], we have

2The computations of the values Kl3(a, q) have been performed by Bill Allombert using PARI-GP: [101]. It took around
11 hours on 128 cores.
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∫ 2

−2
1[a,b]df∗λ =

∫
S1

(1[a,b] ◦ f) dλ =
1

2π

∫ 2π

0
(1[a,b] ◦ f)(exp(iθ))dθ

=
1

2π

∫ 2π

0
1[a,b](2 cos θ)dθ =

1

2π

∫ 2

−2
1[a,b](x)

dx»
1−

(
x
2

)2 ·
Therefore, the measure on [−2, 2] has probability density function given by

x 7→ 1

2π
»

1−
(
x
2

)2 (6.6)

with respect to the Lebesgue measure on [−2, 2]. On the other hand, the image by the trace of the
Haar measure on SU2(C) can be determined using the following classical result (see e.g. [34]):

Proposition 6.34. Let µ2 denote the Haar probability measure on SU2(C). Then for any central3

function ϕ : SU2(C)→ C which is absolutely integrable, we have

∫
SU2(C)

ϕdµ2 =
2

π

∫ π

0
ϕ

Å
exp(iθ) 0

0 exp(−iθ)

ã
sin2(θ)dθ.

For any interval [a, b] ⊆ [−2, 2], we can apply this proposition to the function ϕ = 1[a,b] ◦ Tr, and this
gives that

∫
SU2(C)

(1[a,b] ◦ Tr) dµ2 =
2

π

∫ π

0
1[a,b](2 cos θ) sin2(θ)dθ

=
1

π

∫ 2

−2
1[a,b](y)

…
1−

(y
2

)2
dy

Thus, the image by the trace of the Haar measure on SU2(C) admits the following probability density
function with respect to the Lebesgue measure on [−2, 2]:

x 7→ 1

π

…
1−

(x
2

)2
(6.7)

(we recognize the Sato-Tate measure, which governs the equidistribution of the classical Kloosterman
sums Kl2(a, q)). Comparing (6.6) et (6.7) clearly shows that the two pushforward measures do not
coincide.

Next, we illustrate Theorem 6.27 in the case of the sum of two Kloosterman sums, shifted additively
by the two roots in Fq of the polynomial X2 + X + 1. As expected, the picture suggests that these
sums behave like a sum of two independent random variables, each following the law of the trace of a
random matrix in SU3(C) (because we can see that the sums will eventually �ll in the Minkowski sum
H3 + H3, even though the length of the computations only allows us relatively small values of q).

3i.e. satisfying ϕ(ghg−1) = ϕ(h) for all g, h ∈ SU2(C).
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Figure 6.4: The sums
∑

x∈Zg(Fq)
Kl3(a+ x, q) for q = 40009, a varying in Fq, and g = X2 +X + 1.

Moreover, since X2 + X + 1 does not admit two roots of opposite sign, the random variables Up also
converge in law to the a random variable uniformly distributed in C(Zg,SU3(C)]), so that the same
type of picture is obtained when we replace additive shifts by multiplicative shifts by the roots of g.

Figure 6.5: The sums
∑

x∈Zg(Fq)
Kl3(ax, q) for q = 40009, a varying in Fq, and g = X2 +X + 1.

However, for other polynomials g, sums of multiplicative shifts can show a di�erent asymptotic be-
haviour than sums of additive shifts. For instance, if we take g to be the polynomial (X − 1)(X + 1),
then in that case the random variables Up become equidistributed in the subgroup¶

f : {±1} → SU3(C) | f(−1) = f(1)
©

which is isomorphic to SU3(C), so it is only half-dimensional compared to the space where the random
variable Vp become equidistributed. The sums Kl3(a, q) + Kl3(−a, q) are equal to Kl3(a, q) + Kl3(a, q),
and they become equidistributed with respect to the measure which is the law of the random variable

Tr(U) + Tr(U)

where U is uniformly distributed in SU3(C). In particular, they are real-valued, so they certainly do
not have the same limit measure as the corresponding sums of additive shifts Kl3(a−1, q)+Kl3(a+1, q).
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The following histogram illustrates what we obtain experimentally for the distribution of these real
numbers for a large value of q.

Figure 6.6: Distribution of the sums
∑

x∈Zg(Fq)
Kl3(ax, q) on the real line, for q = 40009, a varying in

Fq, and g = (X − 1)(X + 1).

Remark 6.35. Examples of bountiful sheaves satisfying the assumptions of case (2) of Theorem 6.27
can also be found. A concrete example is given by sums of the form

tq(x) =
1
√
q

∑
y∈Fq

χ(h(y))e

Å
xy

q

ã
,

where χ is a multiplicative character of F×q and h ∈ Z[X] is a polynomial which must satisfy certain
technical conditions. Indeed, such sums are trace functions associated with a sheaf whose automor-
phism group is not necessarily trivial depending on some properties of h (and we want the automor-
phism group to be trivial, as it is a crucial part of the de�nition of a bountiful sheaf). We refer to
[38, Proposition 3.7] for a precise statement of the conditions on h which ensure the triviality of the
automorphism group.
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6.A. On tensor products of representations

In this appendix, we provide a brief summary on external and internal tensor products of representa-
tions, as both constructions are useful when working with products of trace functions.

First, let k be a �eld, and let V andW be two �nite dimensional k-vector spaces. Given endomorphisms
of V and W respectively, one can de�ne an endomorphism of the vector space V ⊗W as follows:

De�nition 6.36. For A ∈ Endk(V ) and B ∈ Endk(W ), we de�ne

A⊗B : V ⊗W → V ⊗W

on pure tensors by the formula (A⊗B)(v⊗w) := A(v)⊗B(w), and then extend it to the whole vector
space V ⊗W by k-linearity.

Now we let G be a group. We recall that a �nite dimensional k-representation of G is a group homo-
morphism ρ : G→ GL(V ), where V is a �nite dimensional k-vector space. Given two representations of
the same group G, say ρ : G→ GL(V ) and σ : G→ GL(W ), one can construct another representation
ρ⊗ σ of G, called the internal tensor product of ρ and σ, as follows:

ρ⊗ σ : G → GL(V ⊗W )
g 7→ ρ(g)⊗ σ(g).

In other words, it is de�ned on pure tensors v ⊗ w ∈ V ⊗W by

(ρ⊗ σ)(g)(v ⊗ w) = ρ(g)(v)⊗ σ(g)(w) for all g ∈ G,

and is extended by k-linearity to V ⊗W .

On the other hand, there is also a construction of an external tensor product of representations. Given a
representation ρ : G→ GL(V ) of a group G and a representation σ : H → GL(W ) of another group H,
one can de�ne the external tensor product representation ρ�σ as the following representation of G×H:

ρ� σ : G×H → GL(V ⊗W )
(g, h) 7→ ρ(g)⊗ σ(h).

In other words, it is de�ned on pure tensors by

(ρ� σ)(g, h)(v ⊗ w) = ρ(g)(v)⊗ σ(h)(w) for all g ∈ G, h ∈ H,

and extended by k-linearity to V ⊗W .

When the base �eld k is algebraically closed, it can be shown that this construction, if we start from
irreducible representations ρ and σ, actually gives all irreducible representations of G×H. Indeed, we
have the following result:

Proposition 6.37 ([74, Prop. 2.3.23]). Let k be an algebraically closed �eld, and let G and H be two
groups.
(1) If τ is a �nite-dimensional irreducible representation of G × H, then there exists two irreducible
representations ρ of G and σ of H such that τ ' ρ� σ.
(2) Conversely, if ρ is an irreducible representation of G and σ is an irreducible representation of H,
then ρ� σ is an irreducible representation of G×H.
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Research perspectives

Limiting growth condition for the equidistribution of subgroups of F×p

Given a subgroup G of F×p , one can view4 the elements x
p for x ∈ G as elements of R/Z, and ask

whether these elements become equidistributed in R/Z as p goes to in�nity. As we already mentioned
in Remark 3.27 p.117, a conjecture of Montgomery, Vaughan and Wooley in [84] (also mentioned and
stated in the survey [14]) implies that there is equidistribution as soon as

|G|
log(p)

−→
p→∞

+∞

but, to my current knowledge, it has neither been proved nor disproved. In view of the discussion
of Appendix 3.B, this conjecture is very strong, since subgroups that have a cardinality less than a
constant times log(p) do not satisfy

max
a∈F×p

∣∣∣∣∣∣∑x∈G e
Å
ax

p

ã∣∣∣∣∣∣ =
p→∞

o (|G|) .

To my current knowledge, the best result in this direction is the fact that if |G| > pδ for some δ > 0
independent of p, then we have equidistribution: see e.g. [13, Theorem 6], or Bourgain's theorem as
stated in this thesis in Theorem 3.11. However, there is still a gap to bridge between pδ and log(p).
Moreover, it could also be interesting to look for other subsets A ⊂ Fp (not necessarily multiplicative
subgroups) which become equidistributed in R/Z. This would strengthen Corollary 4.40 by allowing
us to prove the equidistribution of the exponential sums∑

x∈Fp
g(x)≡0 (mod p)

e
(bx
p

)
(6.8)

with parameters b varying in the subset A of Fp instead of the whole group.

Additive and multiplicative relations between roots of polynomials

To make the limit measure in the equidistribution of the sums (6.8) of Corollary 4.40 more explicit,
one needs to determine the module of additive relations between the roots of the polynomial g.
I am interested in �nding examples of in�nite families of polynomials with a given module of additive
relations. As we saw in Chapter 4, some are already known, for instance when the Galois group of
Kg/Q is maximal (which is the generic case), but I would like to investigate other possible Galois
groups.

I am also interested in related inverse problems, such as: when is a polynomial (in a certain family,
such as the cyclotomic polynomials) uniquely determined by its module of additive relations?

4simply because the fractional part of x̃/p does not depend on the lift x̃ ∈ Z of the residue class x (mod p).
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Similarly, in Proposition 6.1 the equidistribution of the sums∑
x∈Zg(Fq)

χ(x),

where χ varies over multiplicative characters of Fq, is governed by the multiplicative relations among
the roots of g. Therefore, I would also be interested in understanding more precisely how to apply the
work of Girstmair [46], which gives a general approach based on the study of the rational representa-
tions of Gal(Kg/Q), to this type of questions.

Morover, this may have interactions with other problems in analytic number theory. For instance, in
[71] and [18], multiplicative relations between roots of L-functions of algebraic curves over �nite �elds
were already investigated using this approach. This type of results is motivated for instance by the
study of the Chebyshev bias in the distribution of primes in arithmetic progression (or generalizations
of this question), where the linear independence hypothesis regarding the zeros of Dirichlet L-functions
plays a central role.

Horizontal problems

In Chapter 4, we studied random variables Up de�ned on Og/p (with uniform probability measure)
with values in C(Zg,S

1), de�ned as follows:

Up(a) : x ∈ Zg 7→ e

Å
τp(a$p(x))

‖p‖

ã
.

We proved at Theorem 4.30 that these random variables converge in law to a random variable U ,
uniformly distributed on the subgroup Hg of C(Zg,S

1). This belonged to the class of vertical equidis-
tribution problems, since for any p ∈ Sg, we averaged over a ∈ Og/p.

The corresponding horizontal question would be to �x a non-zero algebraic integer a ∈ Og, and to
consider the random variables U ′T , de�ned on the set Sg(T ) of ideals p ∈ Sg such that ‖p‖ 6 T (with
uniform probability measure), with values in C(Zg,S

1), as follows

U ′T (p) : x ∈ Zg 7→ e

Å
τp($p(ax))

‖p‖

ã
.

The question one may ask is: do the random variables U ′T converge in law as T goes to in�nity, and if
so, do they converge to the same limit U as the random variables Up?

Let us see what this gives if we try to apply Weyl's criterion to this problem. For a character η of the
group C(Zg,S

1),

E
(
η(U ′T )

)
=

1

|Sg(T )|
∑

p∈Sg(T )

η(U ′T (p))

so if η is associated with α ∈ C(Zg,Z), we can write

E
(
η(U ′T )

)
=

1

|Sg(T )|
∑

p∈Sg(T )

∏
x∈Zg

e

Å
τp($p(ax))

‖p‖

ãα(x)

=
1

|Sg(T )|
∑

p∈Sg(T )

e

Å
τp($p(aSα))

‖p‖

ã
where Sα =

∑
x∈Zg

α(x)x. Therefore, the sum of the right-hand side is the type of Weyl sum which
appears in the following problem:

Given a number �eld K/Q and an algebraic integer β ∈ OK , we can reduce it modulo p for any prime
ideal p ⊂ OK , to obtain $p(β). Now, if we further assume that p has residual degree 1, then we can
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identify canonically OK/p with Z/ ‖p‖Z, to see $p(β) as a residue class modulo ‖p‖: this is what is
denoted by τp($p(β)). Then we can wonder whether the fractional parts of

τp($p(β))

‖p‖

become equidistributed in R/Z as p varies among the prime ideals with residual degree 1 and ‖p‖ goes
to in�nity. The application of Weyl's criterion in this setting would give sums of the form

1

S(T )

∑
p∈S(T )

e

Å
h
τp($p(β))

‖p‖

ã
where S(T ) denotes the set of prime ideals of OK with residual degree 1 and satisfying ‖p‖ 6 T . This
equidistribution question is investigated in [106] in the case of the reduction of a �xed algebraic integer
β modulo arbitrary ideals with residual degree 1 (not necessarily prime). However, it is likely that the
level of di�culty will rise when trying to restrict to prime ideals, just as in the case of the theorem
of Duke-Friedlander-Iwaniec on roots of polynomial congruences (Theorem 1.12 of our introduction),
which is only known for quadratic polynomials, while the analogous theorem of Hooley modulo arbi-
trary integers is proved for polynomials of arbitrary degree.

Moreover, we cannot hope that the random variables U ′T converge in law to U in all cases. For instance,
assume that a is a �xed non-zero integer and that g admits a root k ∈ Z \ {0} (as it is the case with
root k = 1 of the polynomial g = Xd − 1). Then for all p ∈ Zg,

U ′T (p)(k) = e

Å
ka

‖p‖

ã
,

so it converges to 1 as ‖p‖ tends to in�nity, which is not the behaviour of a random variable which
converges in law to U . Thus, there are probably some assumptions on g that one needs to add in order
to obtain the horizontal equidistribution (for instance, g probably needs to be irreducible).

Now, if the random variables U ′T converge in law to U , then since the linear map

σ : C(Zg,S
1) → C

f 7→
∑

x∈Zg
f(x)

is continuous and bounded, we have that

E(σ(U ′T )) −→
T→+∞

E(σ(U)).

In particular, if 0 /∈ Zg, we have that E(σ(U)) = 0 (see Remark 4.44) so that we would have

E(σ(U ′T )) =
1

|Sg(T )|
∑

p∈Sg(T )

Ñ∑
x∈Zg

e

Å
τp($p(ax))

‖p‖

ãé
−→

T→+∞
0

Using Proposition 4.31 to relate the inner sums to sums over Zg(Fq), we see that the above limit is
closely related5 to sums of the type

1

π(x)

∑
q6x

∑
y∈Zg(Fq)

e

Å
by

q

ã
which are exactly the type of sums that arise when one applies Weyl's criterion to tackle the problem of
the uniform distribution modulo 1 of the roots of g modulo q, as q goes to in�nity. Thus, the convergence
in law of the random variables U ′T would imply a version of the equidistribution conjecture modulo
totally split primes, on average over prime ideals over q.

5there is just an extra averaging over prime ideals over q.
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