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Titre: Contrôlabilité, illusions visuelles et perception.

Mots clés: Géométrie presque riemannienne, contrôlabilité à zéro, équations paraboliques dégénérées,
inégalités de Carleman, opérateur de Baouendi-Grushin, contrôle en neurosciences, modélisation des
systèmes biologiques, équations des champs neuronaux, système visuel humain, illusions visuelles et
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Résumé: Cette thèse explore deux applications
distinctes de la théorie du contrôle dans différents
domaines scientifiques : la physique et les neuro-
sciences. La première application se concentre sur
la contrôlabilité à zéro de l’équation parabolique
associée à l’opérateur de Baouendi-Grushin sur la
sphère de dimension 2. En revanche, la deuxième
application concerne la description mathématique
des illusions visuelles du type MacKay, et se fo-
calise sur l’effet MacKay et les expériences psy-
chophysiques de Billock et Tsou, via le contrôle
de l’équation des champs neuronaux à une seule
couche du type Amari. De plus, la thèse examine
l’existence d’un équilibre dans un modèle de popu-
lation de champs neuronaux à plusieurs couches de
Wilson-Cowan, plus précisément lorsque l’entrée
sensorielle est un retour d’état proportionnelle agis-
sant uniquement sur l’état des populations de neu-
rones excitateurs.

Dans la première partie, nous étudions
les propriétés de contrôlabilité à zéro de
l’équation parabolique associée à l’opérateur de
Baouendi-Grushin défini par la structure presque-
riemannienne canonique sur la sphère bidimen-
sionnelle. Cet opérateur présente une dégénéres-
cence à l’équateur de la sphère. Nous four-
nissons certaines propriétés de contrôlabilité à
zéro de cette équation dans ce cadre courbé, ce
qui généralise celles de l’équation parabolique de
Baouendi-Grushin définie sur le plan.

Concernant les neurosciences, dans un premier
temps, on s’intéresse à la description des illusions
visuelles pour lesquelles les outils de la théorie de
bifurcation et même de l’analyse multiéchelle sem-
blent inappropriés. Dans notre discussion, nous
utilisons l’équation des champs neuronaux de type
Amari, dans laquelle l’entrée sensorielle est inter-
prétée comme une représentation corticale du stim-
ulus visuel utilisé dans chaque expérience. Elle
contient une fonction de contrôle distribuée local-
isée qui modélise la spécificité du stimulus, par ex-
emple, l’information redondante au centre du motif
en entonnoir de MacKay (“rayons de MacKay”) ou
le fait que les stimuli visuels dans les expériences
de Billock et Tsou sont localisés dans le champ
visuel.

Toujours dans le cadre des neurosciences, nous
étudions l’existence d’un équilibre dans un modèle
de population de champs neuronaux à plusieurs
couches de Wilson-Cowan lorsque l’entrée sen-
sorielle est un retour d’état proportionnelle agis-
sant uniquement sur l’état du système des popu-
lations de neurones excitateurs. Nous proposons
une condition suffisante modérée sur les fonctions
de réponse garantissant l’existence d’un tel point
d’équilibre. L’objectif de cette étude réside dans
son application lors de l’étude de la pertubation des
oscillations cérébrales pathologiques associées à la
maladie de Parkinson lorsqu’on stimule et mesure
uniquement la population de neurones excitateurs.
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Abstract: This thesis explores two distinct control
theory applications in different scientific domains:
physics and neuroscience. The first application fo-
cuses on the null controllability of the parabolic,
spherical Baouendi-Grushin equation. In contrast,
the second application involves the mathematical
description of the MacKay-type visual illusions,
focusing on the MacKay effect and Billock and
Tsou’s psychophysical experiments by controlling
the one-layer Amari-type neural fields equation.
Additionally, the thesis investigates the existence
of equilibrium in a multi-layer neural fields popu-
lation model of Wilson-Cowan, specifically when
the sensory input is a proportional feedback acting
only on the system’s state of the populations of
excitatory neurons.

In the first part, we investigate the null control-
lability properties of the parabolic equation associ-
ated with the Baouendi-Grushin operator defined
by the canonical almost-Riemannian structure on
the 2-dimensional sphere. It presents a degeneracy
at the equator of the sphere. We provide some
null controllability properties of this equation to
this curved setting, which generalize that of the
parabolic Baouendi-Grushin equation defined on
the plane.

Regarding neuroscience, initially, the focus lies
on the description of visual illusions for which the
tools of bifurcation theory and even multiscale
analysis appear unsuitable. In our study, we use
the neural fields equation of Amari-type in which
the sensory input is interpreted as a cortical rep-
resentation of the visual stimulus used in each ex-
periment. It contains a localised distributed con-
trol function that models the stimulus’s specificity,
e.g., the redundant information in the centre of
MacKay’s funnel pattern (“MacKay rays”) or the
fact that visual stimuli in Billock and Tsou’s ex-
periments are localized in the visual field.

Always within the framework of neurosciences,
we investigate the existence of equilibrium in
a multi-layers neural fields population model of
Wilson-Cowan when the sensory input is a propor-
tional feedback that acts only on the system’s state
of the population of excitatory neurons. There,
we provide a mild condition on the response func-
tions under which such an equilibrium exists. The
purpose of this study lies in its application when
studying the disruption of pathological brain oscil-
lations associated with Parkinson’s disease when
stimulating and measuring only the population of
excitatory neurons.
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General Introduction

Control theory, a fundamental branch of mathematics and engineering, plays a crucial role in
understanding and influencing the behaviour of dynamic systems across a wide range of scientific
disciplines, see, for instance, [Cor07]. By providing tools and methodologies to manipulate
system dynamics, control theory has found applications in fields as diverse as physics, biology,
and neuroscience.

The study of partial differential equations and their associated control problems signifi-
cantly contributes to many areas of science and engineering. In particular, understanding the
controllability properties of these equations is essential for designing efficient control strategies.
In this context, the null controllability of parabolic equations associated with the Baouendi-
Grushin type operators has gained considerable attention in the fields of differential geometry
and control theory in recent decades [BCG14; BMM15; BDE20; Koe17; DK20; Mor15; CG14;
Tam22].

With its intricate network of neurons, the brain is a prime example of a complex system
that can be understood through the lens of control theory. Neuroscientists have long been
intrigued by the mechanisms underlying brain function and how neuronal activity gives rise
to perception, cognition, and behaviour. Control theory provides a powerful framework for
investigating these phenomena, enabling researchers to study the controllability and stability
of neuronal networks [Cha+17; Bri+23; ZME19; Det+15]. Moreover, control theory has been
instrumental in developing brain-computer interfaces, allowing individuals with motor disabilities
to regain control over their movements and interact with the external world.

By utilizing control theory principles, researchers aim to uncover the mysteries of brain
function and develop novel therapeutic interventions for neurological disorders. In this regard,
control theory can be used to study how to disrupt pathological brain oscillations associated with
Parkinson’s disease by focusing on stimulation and measurements of the excitatory neuronal
population [Cha+17; Det+15].

An excellent network of neurons called the human visual system makes our ability to see
and understand the world possible. Neuroscientists and psychophysics researchers have been
fascinated by intriguing phenomena like the MacKay effect, which have helped us learn more
about our visual system’s workings. The MacKay-type effect is an interesting discovery in our
visual system that challenges what we thought we knew about perception [Mac57; Mac61;
BT07; BT10; BT12; Nic+21]. It reveals that sometimes, a distracting object that stands out
can help us see and distinguish what we are focusing on. By studying the underlying patterns
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Cyprien TAMEKUE General Introduction

of how neurons interact in the MacKay effect, we can gain valuable insights into how our
visual system combines information from our senses to shape what we perceive in our daily
experiences.

In this thesis, we address two specific applications of control theory in distinct scientific
domains. First, we investigate the null controllability of the parabolic spherical Baouendi-
Grushin equation, which has implications in understanding the controllability properties of partial
differential equations that are degenerate, singular or with non-standard structures. Second, we
explore the mathematical description of the MacKay effect and Billock and Tsou’s experiments
using the Amari-type neuronal field equation, aiming to uncover the underlying mechanisms of
sensory hallucinations and visual illusions.

By delving into these topics, we aim to contribute to the growing body of knowledge in
control theory and its applications, bridging the gap between theoretical frameworks and real-
world phenomena. Through our research, we hope to shed light on fundamental questions,
uncover novel insights, and pave the way for practical applications in physics and neuroscience.

3.1 . Publications

The following publications have arisen from some of the research carried out during my doctoral
studies.

Peer-review journal articles

1. C., Tamekue, (2022). Null controllability of the parabolic spherical Grushin equation.
ESAIM: Control, Optimisation and Calculus of Variations, 28, 70.(see online link).

2. L., Brivadis, C., Tamekue, A., Chaillet, & J., Auriol (2023). Existence of an equilibrium for
delayed neural fields under output proportional feedback. Automatica, 151, 110909. (see
online link).

Conference papers

3. C., Tamekue, D., Prandi, & Y., Chitour, (2022). Cortical origins of MacKay-type visual
illusions: A case for the non-linearity. to appear in IFAC world congress, July 2023. (see
online link).

4. C., Tamekue, D., Prandi, & Y., Chitour, (2022, October). Reproducing sensory induced hal-
lucinations via neural fields. In 2022 IEEE International Conference on Image Processing
(ICIP) (pp. 3326-3330). IEEE. (see online link).
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The complementary GitHub repository containing the relevant code can be found at https:
//github.com/dprn/MacKay-Billock_Tsou-2022/.

3.2 . Publications in Preparation

The first publication-in-preparation in the following represents a significant portion of this
thesis’s research conducted in Chapter 3. Additionally, the second publication-in-preparation
will serve as a complementary contribution to the initial work presented in the first part of this
thesis, which focuses on the null controllability of the parabolic, spherical Baouendi-Grushin
equation discussed in Chapters 1 and 2. Both publications are intended to be submitted
as peer-reviewed journal papers, showcasing the academic rigour and quality of the research
conducted.

6. Y. Chitour, D. Prandi, & C. Tamekue. A mathematical replication of MacKay-type visual
illusions. In preparation, expected soon.

7. C. Tamekue. Parabolic spherical Baouendi-Grushin equation: Minimal time for null con-
trollability. In progress.
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Introduction

1.1 . Purpose and motivation

This part of the thesis focuses on investigating the null controllability properties of the degener-
ate parabolic equation associated with the sub-Laplacian operator defined on a two-dimensional
(2D) sphere equipped with its canonical almost-Riemannian structure known as the Grushin
sphere. When expressed in terms of latitude and longitude coordinates on the sphere, this
sub-Laplacian operator is represented as

∆BG :=
1

cosx
∂x(cosx∂x) + tan2 x∂2y , (x, y) ∈ (−π/2, π/2)× [0, 2π).

Interestingly, near x = 0, the operator ∆BG exhibits behaviour akin to the Baouendi-Grushin
operator G = ∂2x + x2∂2y , which is defined in the Grushin plane, the free almost-Riemannian
structure defined in R2.

In last decades, the operator G appeared as the prototypical example of degenerate elliptic
operators whose associated parabolic equation has interesting null controllability properties. In
this thesis, we aim to investigate whether the degenerate parabolic equation associated with
the sub-Laplacian operator on the Grushin sphere shares similar properties. By understanding
the controllability of this equation, we hope to contribute to the knowledge and understanding
of this mathematical concept, which can help in studying the null controllability on other 2D
compact almost-Riemannian manifolds.

Motivation for being interested in these operators can be related to the connection between
the heat kernel of the sub-Laplacian operator on the three-dimensional Heisenberg group with
that of the operator G as obtained in [FIK12, Section 5]. In representation theory, the three-
dimensional Heisenberg group arises in the description of a one-dimensional quantum mechanical
system generated by the position and momentum of a single particle in motion on a straight
line [Wey50]. In particular, studying the parabolic equation associated with the operator ∆BG

should be physically relevant.
The interest in studying the null controllability properties of parabolic equations can also be

associated with studying thermal diffusion in a homogeneous medium. Since the work by Joseph
Fourier [Fou22], it is well-known that the diffusion of heat and that of chemical species in solids

15



CHAPTER 1. INTRODUCTION Cyprien TAMEKUE

Ω ω

in finite time?
−−−−−−−−− >

Ω

temperature in ω temperature in Ω
↑ ↑

Figure 1.1: Thermal diffusion in a homogenous medium.

or gels evolves according to the same partial differential equation called the heat equation,

∂f

∂t
(t, x)−D∆f(t, x) = 0. (1.1)

For d ∈ N∗, x = (x1, · · · , xd) ∈ Ω models a location in Ω ⊂ Rd, the domain modelling, e.g.,
the medium in which the heat is diffusing, t > 0 is the time elapsed from the initial state, the
state f(t, x) represents the temperature in the medium at x at the time t, D > 0 is the thermal
diffusivity of the medium usually equal to 1 and ∆ is the Laplace operator defined by

∆ = ∂2x1
+ ∂2x2

+ · · ·+ ∂2xd
. (1.2)

In general, the behaviour of the temperature inside a medium for a large time will depend
on several factors, such as the thermal properties of the medium, the boundary conditions,
and the initial temperature distribution.The heat equation’s regularizing effect implies that the
temperature distribution inside the medium becomes increasingly smooth and uniform, with
smaller and smaller temperature gradients that become negligible. Therefore, the temperature
distribution becomes constant throughout the medium. It is worth emphasizing that this thermal
equilibrium, where the temperature is uniformly constant throughout the medium happens in the
particular case of Neumann boundary conditions. In the case of Dirichlet boundary conditions,
it happens if all the boundary surfaces are set to that same constant temperature. It follows
whatever that considering a medium Ω in which the initial temperature is homogeneous (almost)
everywhere will behave in large time as the temperature of the boundary, which is, in turn, equal
to the temperature of the external environment to Ω.

Given now a medium modelled by Ω, a natural question which arises is how can we suitably
choose a subdomain ω of Ω and what is the minimal time of diffusing in whole Ω a given
temperature homogeneously distributed in ω? See, Fig. 1.1. The first answer to this question
was given in dimension one, i.e., when d = 1 by Fattorini and Russell [FR71, Theorem 3.3].

Consider the following control system
∂tf −∆f = u(t, x)1ω(x), (t, x) ∈ (0, T )× Ω,

f(t, x) = 0, (t, x) ∈ (0, T )× ∂Ω,

f(0, x) = f0(x), x ∈ Ω,

(1.3)

16



Cyprien TAMEKUE 1.1. PURPOSE AND MOTIVATION

Ω
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Ω
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↙ zone with diffusion defect

Figure 1.2: Thermal diffusion in a medium with a zone of diffusion defect.

where Ω is an open subset of Rd and f0 is the initial temperature in Ω. The source term u1ω
is localized in the non-empty open subset ω ⊂ Ω through the characteristic function 1ω of ω,
and the function u is the control function.

Providing a positive answer to the above question is somehow equivalent to proving that
Equation (1.3) posed in Ω is null controllable from ω ⊂ Ω in time T ≥ Tmin(ω), where the
minimal time Tmin(ω) ≥ 0 is to determine. Note that equation (1.3) is said to be null controllable
from ω ⊂ Ω in time T > 0 if, for every f0 ∈ L2(Ω), there exists a control u ∈ L2(0, T ;L2(Ω))

supported in (0, T )× ω such that the solution f of (1.3) satisfies f(T, ·) = 0.
Using the moment’s method respectively, Carleman estimates and spectral inequalities, the

null controllability properties for heat control system (1.3) was proved in dimension d = 1 by
Fattorini and Russell [FR71] and in any finite dimension, d ≥ 1 by Imanuvilov [Ima95], Lebeau
and Robbiano [LR95] and Fursikov and Imanuvilov [FI96]. In particular, their results show that
the minimal time Tmin(ω) of null controllability of the heat equation on a smooth bounded
domain Ω equals zero and that the control domain ω ⊂ Ω can be chosen arbitrarily. For a
pedagogical proof of this result using Carleman inequalities, we refer the reader to the amazing
book [Cor07, p. 80].

Given that null controllability of parabolic equations associated with the Laplace operator
(1.2) can be used to answer the question on the thermal diffusion in a homogenous medium,
which parabolic equations could be used to describe heat diffusion in a medium with a diffusion
defect somewhere? See Fig. 1.2. Do these equations have similar null controllability properties
to that of heat control system (1.3)?

The diffusion defect of heat somewhere in a medium Ω, e.g., in a zone Z ⊂ Ω can be
modelled by a parabolic equation associated with an elliptic operator whose coefficients of the
principal symbol vanish inside Z. Such an operator is called a degenerate elliptic operator.
Among operators having this property, the one receiving considerable attention in the field of
differential geometry and control theory is undoubtedly the 2D Baoeundi-Grushin operator G
probably due to its connection with the sub-Riemannian geometry.

17
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1.2 . Presentation of the main result

As announced in the first paragraph of the previous section, we will investigate the null con-
trollability properties of the parabolic equation associated with the degenerate elliptic operator
defined on the Grushin sphere. For clarity in the exposition, let us recall some important notions
about differential geometry that will be used throughout the following. These are widely taken
from [ABB19, Chapter 1] and [BG88, Chapter 2].

1.2.1 . Two-dimensional almost-Riemannian (AR) manifolds

We present a definition of 2D manifold as embedded surfaces in R3, that will be enough for our
purposes. We stress that almost Riemannian structures can be defined on abstract manifolds
(not necessarily embeddable in R3), and we refer to [ABB19] for a general definition.

Definition 1.2.1 A (smooth) surface of R3 is a non-empty subset M ⊂ R3 such that for every
p ∈M , there exists an open neighbourhood U ⊂ R3 of p and a smooth map φ : U → R such
that U ∩M = φ−1(0) and the differential of φ is surjective on U ∩M .

Unless explicitly stated, throughout the following, M ⊂ R3 denotes a 2D smooth manifold
and φ a smooth map having the properties given by Definition 1.2.1. For every p ∈ M , the
tangent space TpM to M at p is defined as the kernel of the differential of φ at p, viz.

TpM = ker(dφ(p)). (1.4)

An element v ∈ TpM is called a tangent vector to M at p. In particular, for every smooth
curve γ : [0, 1] →M in M such that γ(0) = p, one has

γ̇(0) =
d

dt

∣∣∣∣
t=0

γ(t) = v. (1.5)

A smooth vector field on M is a smooth map

X : p ∈M 7−→ X(p) ∈ TpM, (1.6)

that associate with every point p in M a tangent vector to M at p. In particular, a smooth
curve γ : [0, 1] →M satisfying

γ̇(t) = X(γ(t)), ∀t ∈ [0, 1], (1.7)

is called an integral curve of the vector field X. We denote by Vec(M) the set of smooth
vector fields on M . Let X ∈ Vec(M) be such that every integral curve of X is defined on R.
The flow of the vector field X is the map ϕt : p ∈M 7→ ϕt(p) ∈M , t ∈ R satisfying

∂ϕt
∂t

(p) = X(ϕt(p)), ϕ0(p) = p,
∂ϕt
∂t

∣∣∣∣
t=0

(p) = X(p), ∀p ∈M. (1.8)

18



Cyprien TAMEKUE 1.2. PRESENTATION OF THE MAIN RESULT

Given X,Y ∈ Vec(M), we denote by [X,Y ] their Lie bracket. Since we are only using
vector fields as derivations on functions, the following identity will be used as a definition

[X,Y ] = XY − Y X. (1.9)

We say that the pair of smooth vector fields X, Y ∈ Vec(M) is Lie bracket generating (or
satisfy the Hörmander condition), if the following holds for every p ∈M

span{X(p), Y (p), [X,Y ](p), [X, [X,Y ]](p), · · · } = TpM. (1.10)

We can now define a 2D almost-Riemannian manifold, see also [ABS08; BL13; BPS16].

Definition 1.2.2 A 2D trivializable almost-Riemannian manifold is a couple (M, {X1, X2})
where M is a 2D manifold and {X1, X2} ⊂ Vec(M) is a Lie bracket generating family.

Due to Hörmander condition satisfying by the generating frame {X1, X2}, we have that
D(p) = span{X1(p), X2(p)} is one or two-dimensional for every p ∈M . We denote by Z the
set of points p where D(p) is one-dimensional.

We recall that to every 2D trivializable ARS is naturally associated a metric g on the
distribution D, obtained by declaring {X1, X2} to be g-orthonormal.

1.2.2 . The Grushin sphere and associated sub-Laplacian operator

We consider the sphere S2 = {p = (x1, x2, x3) ∈ R3 | x21 +x22 +x23 = 1} which is a (compact)
2D manifold by Definition 1.2.1. We recall that we are using vector fields as derivations on
functions.

Introduce for fixed t ∈ R, the map ϕt : S2 → S2 defined for every p ∈ S2 by ϕt(p) =

(x1, x2 cos t − x3 sin t, x2 sin t + x3 cos t). Indeed, ϕt(p) is the counterclockwise rotation of
angle t of p ∈ S2 around the x1-axis.

Since ϕt is linear with respect to p, one has for every tangent vector u = (u1, u2, u3) ∈ TpS2,
dϕt(p)u = (u1, u2 cos t − u3 sin t, u2 sin t + u3 cos t). Let ⟨·, ·⟩ denotes the scalar product on
R3, then it holds for all v = (v1, v2, v3) ∈ TpS2, ⟨dϕt(p)u, dϕt(p)v⟩ = ⟨u, v⟩. It follows that
dϕt : TpM → TpM is a smooth isometry and

X1(p) =
d

dt

∣∣∣∣
t=0

ϕt(p) = −x3∂x2 + x2∂x3 , p = (x1, x2, x3) ∈ S2, (1.11)

defines the Killing1 vector field on S2 generating the counterclockwise rotations around the
x1-axis. Arguing similarly, we can construct the Killing vector fields X2 and X3 generating the
counterclockwise rotations around the x2 and x3 axes respectively, viz.

X2 = −x3∂x1 + x1∂x3 , X3 = −x2∂x1 + x1∂x2 . (1.12)
1LetX be a vector field on a manifoldM and (ϕt)t∈R denotes the flow ofX . We say thatX is a

Killing vector field onM , if for all t ∈ R and for every p ∈M , the differential dϕt(p) : TpM → TpM
is a smooth isometry.
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Figure 1.3: The Grushin sphere: The vector fields X (in blue) and Y (in red) are generator of this
structure in latitude-longitude coordinates (x, y). The degeneracy set coincides with the equator
E (in green). The red circle (resp. red dot) on the equator (resp. at north pole) means that the vector
field Y vanishes (resp. is singular) there.

These three Killing vector fields have the good properties to generate the tangent space
TpS2 at each p ∈ S2. Observe also that {X1, X2} are linearly independent outside of the
equator E := {x3 = 0}. Nevertheless, since the Lie bracket [X1, X2] = X3, the system
of vector fields {X2, X2} is Lie bracket-generating and determines a 2D almost-Riemannian
structure on S2 (Definition 1.2.2), and S2 endowed with this structure is called the Grushin
sphere, see Figure 1.3. In Section 2.3 of the next chapter, we will see how do this structure
look-like when describing it in spherical coordinates, namely the latitude-longitude coordinates.

Let µ be the standard Riemannian volume form on S2, as induced by the Euclidean Lebesgue
measure. We are interested in the sub-Laplacian operator defined by

L := divµ ◦∇sR = −X+
1 X1 −X+

2 X2. (1.13)

Here, ∇sR is the sub-Riemannian gradient defined by ∇sRϕ = (X1ϕ)X1 + (X2ϕ)X2 for any2

ϕ ∈ C∞(S2), while divµ denotes the divergence w.r.t. µ. More precisely, given a vector field
W ∈ span{X1, X2}, say, W = αX1 + βX2, α, β ∈ C∞(S2), divµ(W ) is the unique C∞(S2)
function satisfying ∫

S2
divµ(W )ϕdµ = −

∫
S2
dϕ(W )dµ, ∀ϕ ∈ C∞(S2), (1.14)

where dϕ(W ) is the differential of ϕ in the direction of W , viz. dϕ(W ) =W (ϕ) = αX1(ϕ) +

2Note that,C∞(S2) is canonically defined as the space of the restrictions to S2 of functions (with
compact support) that are C∞ on an open neighbourhood of S2.
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βX2(ϕ), and3

dµ = x1dx2 ∧ dx3 + x2dx3 ∧ dx1 + x3dx1 ∧ dx2. (1.15)

Moreover, X+
1 := −X1 − divµ(X1) and X+

2 := −X2 − divµ(X2) denote respectively the
formal adjoints of X1 and X2 taken in the space L2(S2;µ), the Hilbert space of measurable
and square-integrable functions over S2 with respect to µ.

As evident from the latitude-longitude coordinate expression we will present in Section 2.3
of the next chapter, L is a degenerate operator on S2 that generalizes the Baouendi-Grushin
operator (BG) on R2. We will refer to L as the intrinsic spherical Baouendi-Grushin operator.

1.2.3 . Parabolic Baouendi-Grushin equation on Grushin sphere and main result

Let ω̃ be a non-empty open subset on S2 and consider the intrinsic parabolic spherical Baouendi-
Grushin (PSBG) equation degenerating on the equator, viz.{

∂tf − Lf = u1ω̃, in (0, T )× S2,
f |t=0 = f0, in S2.

(1.16)

Here, f = f(t, p) is the state describing, e.g. the temperature at p = (x1, x2, x3) ∈ S2 at the
time t > 0, the time horizon T > 0, f0 = f0(p) is the initial datum and u = u(t, p) is the
control function.

We are interested in the null controllability properties of the control system (1.16).

Definition 1.2.3 (Null controllability of the PSBG equation) We say that control system
(1.16) is null controllable from ω̃ ⊂ S2 in time T > 0 if, for every f0 ∈ L2(S2;µ), there exists
a control u ∈ L2(0, T ;L2(S2;µ)) supported in (0, T ) × ω̃ such that the solution f of (1.16)
satisfies f(T, ·) = 0.

The main result is then the following.

Theorem 1.2.1 ([Tam22]) Let ω̃ = {(x1, x2, x3) ∈ S2 | α < |x3| < β} with 0 < α < β ≤ 1.
Then a positive minimal time is required for null controllability of (1.16) from ω̃, namely

Tmin(ω̃) := inf{T > 0 : system (1.16) is null controllable from ω̃ in time T}

satisfies Tmin(ω̃) ≥ log(1/
√
1− α2). Moreover, there exists T ∗ > 0 such that, for every

T ≥ T ∗, system (1.16) is null controllable from ω̃ in time T .

The proof of Theorem 1.2.1 will be expounded in the next chapter. We stress that Theorem
1.2.1 only concerns the case when the control region ω̃ does not touch the degeneracy E =

{x3 = 0} due to the hypothesis α > 0. Moreover, the result given in Theorem 1.2.1 is the
extension of Beauchard et al. [BMM15, Theorem 1.3] in the curved setting of the 2D sphere.
Indeed, the control function u in Theorem 1.2.1 acts on ω̃ which is two spherical crowns

3Actually, dµ = i∗(ıνdV ), where i∗ is the pull-back of the inclusion i : S2 → R3, and ıν is the
interior product (contraction) of the 3-form dV = dx1∧dx2∧dx3 with a smooth unit normal vector
field ν = (x1, x2, x3) to the sphere S2.
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Figure 1.4: The equator E (in green), a control region ω̃ (inmagenta), north and south pole (in blue).

symmetric and non-intersecting the equator E = {x3 = 0}, see Figure 1.4. This is the case
for the control set in [BMM15, Theorem 1.3] giving the result on the null controllability of the
parabolic equation associated with the Baouendi-Grushin operator G = ∂2x + x2∂2y when the
control set is two vertical stripes symmetric and non-intersecting the y-axis Z = {x = 0}.

The system of coordinates that we will use to prove Theorem 1.2.1 have the particularity
to generate singularities at the north and south pole. Therefore, considering the union of two
spherical crowns instead of one spherical crown non-intersecting with the equator is a technical
assumption to deal with these singularities when proving the Carleman estimate in Section 2.7
of the next chapter.

Remark 1.2.1 It is worth emphasizing that the proof we will present in Section 2.5 of the next
chapter shows that Equation (1.16) is not null controllable from ω̃ in time T = log(1/

√
1− α2).

Moreover, this proof also shows that even with a control set ω := {(x1, x2, x3) ∈ S2 | 0 < x3 <

α ≤ 1}, a spherical crown non-intersecting the equator, Equation (1.16) is not null controllable
from ω in time T ≤ log(1/

√
1− α2) showing that Tmin(ω) ≥ log(1/

√
1− α2).

1.3 . Ongoing and further works

1.3.1 . Ongoing works

The result in Theorem 1.2.1 is somewhat restrictive compared to known results on null con-
trollability for 2D parabolic equations of Baouendi-Grushin (PEBG) type. For example, null
controllability for PEBG is known to hold when controlling from one side of the degeneracy
with the precise value of the minimal time [BCG14; Bea+15; BDE20; Koe17; DK20]. It is also
known that PEBG is null controllable in an arbitrarily small time when the control set intersects
the degeneracy, see for instance, [BCG14, Appendix], [Bea+15, Section 3] and [All18, Section
4.2].
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Figure 1.5: The control region ω̃ (in blue), the equator E (in green), and the north and south poles
(in blue).

Therefore, the result in Theorem 1.2.1 is part of ongoing work. We are currently engaged
in [Tam23] on studying the null controllability of Equation (1.16) from ω := {(x1, x2, x3) ∈ S2 |
0 < α < x3 < β ≤ 1}, a spherical crown non-intersecting the equator and by the way determine
the exact minimal time of null controllability from ω, and therefore from ω̃ = {(x1, x2, x3) ∈
S2 | 0 < α < |x3| < β ≤ 1}, which is a union of two spherical crowns symmetric and
non-intersecting the equator.

We are tackling this question by studying the uniform null controllability of the associated
family of one-dimensional non-degenerate and singular parabolic equations using moment meth-
ods. More precisely, we are proving that Equation (1.16) is null controllable from ω and ω̃ in any
time T > log(1/

√
1− α2), showing that Tmin(ω) = log(1/

√
1− α2) = Tmin(ω̃). Moreover,

the same method will allow us to show that Equation (1.16) is null controllable in arbitrarily
small time T > 0 when the control set is a spherical crown having the equator on its boundary.

By establishing suitable Carleman estimates, we are also proving that with a control acting
on a spherical crown with the equator in its interior, Equation (1.16) is null controllable in
arbitrarily small time T > 0.

1.3.2 . Further works

More general geometrical shapes of the control set have been considered in studying the null con-
trollability for the 2D parabolic Baouendi-Grushin equation; see, for instance, [DK20; Koe17].
In particular, when the control set ω is a complement of a horizontal strip intersecting the de-
generacy set, it has been proved in [Koe17, Theorem 2] that the 2D parabolic Baouendi-Grushin
equation is never null controllable from ω.

Natural interesting open questions related to this thesis’s part is to study the null control-
lability properties of control system (1.16) when the control set ω̃ is a subset of the sphere S2

having a more general geometrical shape, see, for instance, Figure 1.5. A starting point for
these questions could be to verify if the control system (1.16) is null controllable from the control
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set ω̃ defined by two distinct meridians.
The techniques we will use to prove Theorem 1.2.1 in the next chapter may be of interest

to further works studying the null controllability properties of similar equations on other general
2D compact, almost-Riemannian manifolds.

Indeed, although the parabolic equation associated with the standard sub-Laplacian on 2D
compact almost-Riemannian manifolds M is never null controllable when the control function
acts on ω, subset of a connected component of M\Z (here Z ⊂ M is the set where the
associated almost-Riemannian metric on the manifold M explodes), see [BL13], it could be
interesting to analyse the null controllability properties for the parabolic equation associated
with Baouendi-Grushin operator on the manifold M . Indeed, if µ is a smooth volume form
everywhere on M (a Riemannian volume form, for instance), we mean by the Baouendi-Grushin
operator on M the operator defined intrinsically by L := divµ ◦∇sR, where ∇sR is the sub-
Riemannian gradient on M and divµ denotes the divergence with respect to µ. Note that the
operator L differs from that studied in [BL13]. Indeed in the latter, the divergence is taken
with respect to ν, the sub-Riemannian area associated with the sub-Riemannian metric g on
M , which explodes on Z.
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CHAPTER 2

Null controllability of the parabolic spherical
Baouendi-Grushin equation

2.1 . Introduction

This chapter essentially contains the results published in the article [Tam22]. As announced in
the introductory chapter 1, the goal is to expound the proof of Theorem 1.2.1 related to the
null controllability properties of the parabolic equation associated with the Baouendi-Grushin
operator defined by the canonical almost-Riemannian structure on the 2D sphere S2, the Grushin
sphere. The chapter is organised as follows:

The first part contained in Section 2.2, recalls some known null controllability results for
2D parabolic equations of Baouendi-Grushin type.

In Section 2.3, we expound the strategy to prove Theorem 1.2.1 . Here we express in
spherical coordinates the Grushin sphere and Theorem 1.2.1, and we relate the proof of the
null controllability with that of observability inequality of the adjoint system. The strategy to
prove the observability inequality is also provided.

Section 2.4 is dedicated to proving that all equations that we will study are well-posed in
convenient Banach spaces.

Section 2.5 starts with the proof of the main result. Here we turn out an argument showing
why the adjoint system to the parabolic, spherical Baoeundi-Grushin equation is not observable
in a small time when the observation set is a spherical crown (or a union of two spherical
crowns) non-intersecting the equator.

Section 2.6 is dedicated to proving the observability result in large time when the obser-
vation set is a union of two spherical crowns non-intersecting the equator. Here we start with
the Hardy-Poincaré inequality necessary to prove Carleman estimates. Section 2.6.1 focuses on
studying the properties of Fourier components of the solution of the adjoint system and their
dissipation rate. In Section 2.6.2, we show how the uniform observability estimate of Fourier
components yields the observability estimate of the solution of the adjoint system. Respectively
in Section 2.6.3 and Section 2.6.4, we recast the equation satisfied by the Fourier component
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for the zero frequency and the Fourier components for non-zero frequencies in spaces L2 with-
out weight (on the Lebesgue measure) using unitary transformations. We provide a uniform
observability inequality for each case’s 1D parabolic equation.

2.2 . Preliminaries results

We begin this chapter by recalling some known results about the null controllability properties
for equations of Baouendi-Grushin type in 2D. Section 2.2.1 focuses on defining the Grushin
plane, the free almost-Riemannian structure defined in R2. In Section 2.2.2, we recall the null
controllability properties of parabolic equations associated with the Baouendi-Grushin operator
(BG) in the Grushin plane.

2.2.1 . The Grushin plane

In recent decades, the following operator appeared as the prototypical example of degenerate
and hypoelliptic operators,

G = ∂2x + x2∂2y , (x, y) ∈ R2. (BG)

It was first evoked by Baoeundi [Bao67] in studying inhomogeneous boundary problems asso-
ciated with elliptic operators degenerating inside a domain and by Grushin [Gru70] where he
proved that this operator is hypoelliptic. This operator also falls into the class of second-order
operators intensively studied by Hörmander [Hör67] known as operators “sum of squares”.

In connection with sub-Riemannian geometry, the operator G can be defined by a global
orthonormal frame {X1, X2} on R2, where X1(x, y) = ∂x and X2(x, y) = x∂y ( here, we are
using the identification of vector fields with derivations). Indeed, one has

G = −X+
1 X1 −X+

2 X2 = X2
1 +X2

2 = ∂2x + x2∂2y , (2.1)

where X+
1 and X+

2 are respectively formal adjoints of X1 and X2 taken in the space L2(R2).
Since the Lie-bracket [X1, X2](x, y) = ∂y, it follows that {X1, [X1, X2]}|(x,y) generates the
tangent space at each point (x, y) ∈ R2. Therefore the system of vector fields {X1, X2} is
bracket-generating and defines a step 2 free almost-Riemannian structure, and R2 endowed
with this frame is called the Grushin plane [ABB19, p. 478], see, Fig. 2.1 for visual illustration.

Finally, observe that operator (BG) is a degenerate elliptic operator on R2 and the degeneracy
set is the y-axis,

Z = {(x, y) ∈ R2 : x = 0} = {0} × R.

2.2.2 . Null controllability of the parabolic Baouendi-Grushin (PBG) equation in the
Grushin plane

In contrast with what happens for the heat control system (1.3), which is null controllable in an
arbitrarily small time, in [BCG14], it has been shown that the minimal time of null controllability
for the parabolic equation associated with Baouendi-Grushin operator (BG) from a control set
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Figure 2.1: The Grushin plane depicted in upper-half plane y ≥ 0: The generating vector fields
X1 and X2 and the degeneracy set Z . The medium Ω and the control set ω, a vertical strip non-
intersecting Z .

ω satisfies Tmin(ω) > 0. More precisely, null controllability may hold true or not depending on
the geometry of the control domain ω and the time horizon T . The authors considered the
following parabolic control system, which presents a degeneracy at x = 0

∂tf − Gf = u(t, x, y)1ω(x, y), (t, x, y) ∈ (0, T )× Ω,

f(t, x, y) = 0, (t, x, y) ∈ (0, T )× ∂Ω,

f(0, x, y) = f0(x, y), (x, y) ∈ Ω,

(2.2)

where T > 0, Ω = (−1, 1)× (0, 1), ω ⊂ Ω is an open subset, f is the state, u is the control
function, f0 is the initial datum. We refer to Fig. 2.1 for the visual illustration of Ω and ω.

Definition 2.2.1 (Null controllability of the PBG equation) We say that equation (2.2) is
null controllable from ω ⊂ Ω in time T > 0 if, for every f0 ∈ L2(Ω), there exists a control u ∈
L2(0, T ;L2(Ω)) supported in (0, T )×ω such that the solution f of (2.2) satisfies f(T, ·) = 0.

Then, we have the following, see [BCG14, Theorem 1].

Theorem 2.2.1 ([BCG14]) Let ω = (a, b) × (0, 1), where 0 < a < b ≤ 1. Then a positive
minimal time is required for null controllability of (2.2) from ω, namely

Tmin(ω) := inf{T > 0 : system (2.2) is null controllable from ω in time T}

satisfies Tmin(ω) ≥ a2

2 . Moreover, there exists T ∗ > 0 such that, for every T ≥ T ∗, system
(2.2) is null controllable from ω in time T .

Remark 2.2.1 In Theorem 2.2.1, if the control set ω intersect the degeneracy set Z, viz.
a = 0, then the control system (2.2) is null controllable in arbitrarily small time T > 0, see
[BMM15, Theorem 1.2]. More precisely, if ω = (0, a) × (0, 1), 0 < a < 1, then the minimal
time of null controllability of PBG Equation (2.2) from ω is Tmin(ω) = 0.
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Remark 2.2.2 When the control set ω is the union of two symmetric vertical stripes located
on both sides of the degeneracy set Z, namely ω = [(−b,−a) ∪ (a, b)] × (0, 1), it is shown
in [BMM15, Theorem 1.3] that Tmin(ω) = a2

2 and that the PBG Equation (2.2) is not null
controllable in time T = a2

2 . This minimal time corresponds to the Agmon “distance” associated
with potential q(x) = x2, between 0 (related to the degeneracy set ω) and a (related to control
set ω). Recall from [BMM15] that, for a given potential q ∈ C1(R,R+), the associated Agmon
“distance” between two points z1 < z2 is defined as

dAg(z1, z2) =

∫ z2

z1

√
q(s)ds. (2.3)

The above two remarks highlight that null controllability properties of PBG Equation (2.2)
strongly depend on the geometrical shape of the control set ω and the time horizon T . When
the control set ω is a complement of a horizontal strip intersecting the degeneracy set Z, we
have the following non-null controllability result obtained by Koenig in [Koe17, Theorem 2].

Theorem 2.2.2 ([Koe17]) Let [a, b] be a non-trivial segment of (0, 1), ωy = (0, 1)\[a, b] and
ω = (−1, 1)× ωy. The control system (2.2) is non-null controllable from ω in any time T > 0.

More general results have been obtained in the literature for the Baouendi-Grushin operator
of the form Gq = ∂2x+q(x)

2∂2y in two-dimension. In [BDE20, Theorem 1.4], Beauchard, Dardé,
and Ervedoza consider a potential q satisfying for some L± > 0 the following

q(0) = 0, q ∈ C3([−L−, L+]), inf
(−L−,L+)

q′ > 0. (2.4)

For the associated parabolic equation on Ω = (−L−, L+)× (0, π) degenerating at x = 0, with
boundary control at the vertical side ω = {L+} × (0, π), and with initial datum f0 ∈ H1

0 (Ω)

the authors were able to obtain the sharp value of the minimal time for null controllability from
ω, namely

Tmin(ω) =
dAg(0, L+)

q′(0)
. (2.5)

This minimal time result for null controllability from the boundary can be successfully used via
a cut-off argument to prove that the lower bound a2/2 on the minimal time in Theorem 2.2.1
is actually the exact minimal time [DK20, Theorem 5.1]. Moreover, the PBG Equation (2.2) is
not null controllable from ω = (a, b)× (0, 1), 0 < a < b ≤ 1, in time a2/2.

We also refer to [DK20] where general assumptions are made on the geometrical shape of
the control set ω for null controllability of the PBG Equation (2.2) to holds true or not. Finally,
for a comprehensive review of the minimal time issue to control the Baouendi-Grushin type
operator, the reader could refer to [All18, Chapter 4].

2.3 . Parabolic Baouendi-Grushin equation in spherical coordinates

This section provides the trick to prove Theorem 1.2.1. To this aim and, by the way, understand
how the operator L is connected with the Baouendi-Grushin operator (BG), we use spherical
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coordinates. It is slightly easier to consider the vector fields X1 and X2 defined respectively in
(1.11) and (1.12) as the restriction on S2 of the vector fields in R3 given by the same formulae.

Let
Ω := (−π/2, π/2)× [0, 2π), and U := R∗

+ × Ω, (2.6)

and consider the latitude x and longitude y coordinates, viz.

F : U −→ R3

(r, x, y) 7−→ F(r, x, y) = (r cosx cos y, r cosx sin y, r sinx). (2.7)

Then F−1(S2\{N,S}) = {1}×Ω ∼= Ω. We let Φ := F |Ω, then the pullback by Φ of the vector
fields X1 and X2 are given for every (x, y) ∈ Ω, by

Φ∗X1 = (dF−1 ·X1)|Φ(r,x,y) = cos
(π
2
− y
)
∂x − sin

(π
2
− y
)
tanx∂y, (2.8)

Φ∗X2 = (dF−1 ·X2)|Φ(r,x,y) = sin
(π
2
− y
)
∂x + cos

(π
2
− y
)
tanx∂y, (2.9)

where dF−1 denotes the inverse of the Jacobian matrix of F. Let Ry−π
2

be the rotation of
angle y − π/2 centred at the origin and set

{X,Y } := Ry−π
2
{Φ∗X1,Φ

∗X2} = {∂x, tanx∂y}. (2.10)

Therefore, the pair of vector fields {X,Y } defines the same AR structure on S2 than {Φ∗X1,Φ
∗X2}

which is the Grushin sphere in these coordinates setting, see Figure 2.2. We may also observe
that, due to the system of coordinates, the vector field Y is singular at ±π/2. Moreover, the
coordinates representation on Ω of the Riemannian area dµ on S2 is given by

dσ(x, y) = cosxdxdy, (x, y) ∈ Ω. (2.11)

Observe finally that the diffeomorphism Φ : Ω → S2\{N,S} induces a unitary transformation1

TΦ : L2(S2\{N,S};µ) −→ L2(Ω;σ) (2.12)
v 7−→ TΦ v = v ◦ Φ,

and that Φ∗X1 = TΦX1T
+
Φ and Φ∗X2 = TΦX2T

+
Φ . Here T+

Φ is the adjoint (which is also its
inverse ) of TΦ. From now on we let the spherical Baouendi-Grushin operator be the coordinate
representation under Φ of L. That is, the operator defined by

∆BG := Φ∗L = TΦ LT+
Φ . (2.13)

In terms of the local generating family of vector fields {X,Y } we have

∆BG = −X+X − Y +Y =
1

cosx
∂x(cosx∂x) + tan2 x∂2y , (2.14)

with X+ and Y + being the formal adjoints of X and Y respectively, taken in the space
L2(Ω;σ).
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Figure 2.2: The Grushin sphere in latitude-longitude coordinates (x, y): The generating vector
fields X and Y and the degeneracy set Z = Φ−1(E) . The medium Ω = Φ−1(S2\{N,S}) and a
control set ω, union of two symmetric vertical stripes non-intersecting Z .

Remark 2.3.1 The intrinsic operator L defined in (2.14) and the spherical Baouendi-Grushin
operator ∆BG defined in (2.13)-(2.14) are formally self adjoint respectively in Hilbert spaces
L2(S2;µ) and L2(Ω;σ).

Remark 2.3.2 The singularity of ∆BG at the north and south poles is due to the latitude-
longitude chart Φ. We stress that whatever chart is chosen, this phenomenon of singularity will
always occur since global coordinates do not exist2 on S2.

The following remark illustrates the connection between the spherical Baouendi-Grushin
operator ∆BG and the Baouendi-Grushin operator (BG).

Remark 2.3.3 Consider (2.14) and take the first order Taylor expansion of cosx and tanx at
x = 0. We observe that dσ = dxdy and ∆BG = ∂2x + x2∂2y , so that ∆BG behaves like the
Baouendi-Grushin operator (BG) in a neighbourhood of the degeneracy set. In other words,
the 2D Baouendi-Grushin operator G can be thought of as a “local model” of the spherical
Baouendi-Grushin operator ∆BG at each point of the equator. As a consequence, we should
expect the same null controllability properties for the parabolic equation associated with ∆BG

as that of parabolic Baouendi-Grushin Equation (2.2).

In these coordinates settings, the intrinsic control system (1.16) is equivalent to{
∂tf −∆BGf = u1ω, in (0, T )× Ω,

f |t=0 = f0, in Ω,
(2.15)

with corresponding underlying boundary conditions satisfying by f , see Lemma 2.4.1. Here
ω ⊂ Ω, f = f(t, x, y) is the state describing, e.g., the temperature at (x, y) ∈ Ω at the time

1Here L2(Ω;σ) is the Hilbert space of measurable and square-integrable functions over Ω with
respect to σ.

2In fact, S2 is not a local surface of R3 in the sense that it can not be defined by a single chart
[BG88, p. 348]. That is, there is no open set U ⊂ R2 and an immersion ϕ ∈ C∞(U ;R3) such that
ϕ is a homeomorphism between U and its image S2 = ϕ(U).
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t > 0, the time horizon T > 0, f0 = f0(x, y) is the initial datum and u = u(t, x, y) is the
control function.

Recall that the control system (2.15) is null controllable from ω ⊂ Ω in time T > 0 if, for
every f0 ∈ L2(Ω;σ), there exists a control u ∈ L2(0, T ;L2(Ω;σ)) supported in (0, T )×ω such
that the solution f of (2.15) satisfies f(T, ·, ·) = 0.

Throughout the following, we let the real numbers 0 < a < b ≤ π/2 be such that α = sin a

and β = sin b with α and β being defined as in Theorem 1.2.1. We therefore set

ω := ωa,b × [0, 2π), with ωa,b = (−b,−a) ∪ (a, b). (2.16)

Then, Theorem 1.2.1 is equivalent to the following [Tam22, Theorem 1.4].
Theorem 2.3.1 Let ω be defined as in (2.16). Then a positive minimal time is required for
null controllability of (2.15) from ω, namely

Tmin(ω) := inf{T > 0 : system (2.15) is null controllable from ω in time T}

satisfies Tmin(ω) ≥ log(1/ cos a). Moreover, there exists T ∗ > 0 such that, for every T ≥ T ∗,
system (2.15) is null controllable from ω in time T .

Remark 2.3.4 If the elevation angle (latitude) a of the control region ω with respect to the
equator is equal to zero, i.e., if ω contains the equator, then the strategy used in Section 2.5 to
obtain the lower bound of the minimal time Tmin(ω) can not be applied. On the other hand, if
the control acts only on one spherical crown (i.e., ω = (a, b)× [0, 2π) with 0 < a < b < π/2),
the proof presented here still applies and shows that the lower bound of minimal time is still
log(1/ cos a).

Constructing a direct control function u, which allows solving a null controllability question
as that of Theorem 2.3.1 is a difficult task in general, mainly when ω ⊂ Ω is a subset of
an Euclidean space of dimension greater than one. As it is now well-used in the literature, a
strategy to deal with this difficulty relies on the link (see, for instance, [DR77; Lio88]) between
null controllability and observability inequality of the same control system with a zero control
in the right-hand side (called the adjoint system), namely,{

∂tg −∆BGg = 0, in (0, T )× Ω,

g|t=0 = g0, in Ω,
(2.17)

with corresponding underlying boundary conditions satisfying by g, see Lemma 2.4.1.

Definition 2.3.1 The system (2.17) is observable in ω ⊂ Ω in time T > 0 if, there exists
C := C(T, ω) > 0 such that, for every g0 ∈ L2(Ω;σ), the solution g of (2.17) satisfies∫

Ω
|g(T, x, y)|2dσ ≤ C

∫ T

0

∫
ω
|g(t, x, y)|2dσdt. (2.18)

The observability inequality (2.18) means that the energy of the solution of (2.17) concentrated
in ω yields an upper bound of the energy in time T everywhere in Ω.

Theorem 2.3.1 is then equivalent to the following [Tam22, Theorem 1.6].
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Theorem 2.3.2 Let ω be defined as in (2.16). Then a positive minimal time is required for
observability of (2.17) in ω, namely

Tmin(ω) := inf{T > 0 : system (2.17) is observable in ω in time T}

satisfies Tmin(ω) ≥ log(1/ cos a). Moreover, there exists T ∗ > 0 such that, for every T ≥ T ∗,
system (2.17) is observable in ω in time T .

The proof of Theorem 2.3.2 is divided into two distinct steps:

1. Prove that for any time T ≤ log(1/ cos a), the equation is not observable in ω in time T .
We achieve this by exploiting an appropriate family of spherical harmonics, concentrating
at the equator, to falsify the observability inequality (2.18);

2. Prove that there exists T ∗ > 0 such that, for every T ≥ T ∗, the equation is observable
in ω in time T . It is done by following the strategy used by [BCG14], which consists of
three distinct steps:

(a) Expansion of solution g(t, x, y) of system (2.17) into the Fourier basis of L2(0, 2π; dy)

to deal with the degeneracy in front of ∂2y in the definition of the operator ∆BG.
So, we let

g(t, x, y) =
∑
n∈Z

gn(t, x)e
iny, (2.19)

where each Fourier coefficient gn(t, x) solves a uniform parabolic equation which
is singular at ±π/2;

(b) Prove a suitable Carleman estimate3 for each parabolic equation solving by gn(t, x).
In contrast to the work done in [BCG14], here we need to deal with the singularity
at ±π/2. To this end, we prove a suitable Hardy-Poincaré inequality and then take
advantage of suitable unitary transformations to obtain these estimates;

(c) With the help of these Carleman estimates, prove a uniform observability inequality
for the family of one-dimensional parabolic equations satisfying gn(t, x) and use
Bessel-Parseval’s equality to recover the observability inequality (2.18).

Before doing these, let us first prove that systems (1.16), (2.15) and (2.17) are well-posed in
appropriate Banach spaces.

2.4 . Well-posedness of Cauchy problems

It is interesting and useful to start with the well-posedness of the parabolic Equation (1.16) associ-
ated with the intrinsic Baouendi-Grushin operator L as defined in (1.13). Since {X1, X2, [X1, X2]}p

3Carleman estimates are exponentially weighted energy estimates named after Torsten Carle-
man [Car39], where he introduced them in studying the unicity of solutions for elliptic equations
with smooth coefficients in two-dimension.
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generates the tangent space TpS2 for any p ∈ S2, it follows from Strichartz [Str86, p.260-261]
that −L with domain

D(L) =
{
u ∈ L2(S2;µ) : Lu := −X+

1 X1u−X+
2 X2u ∈ L2(S2;µ)

}
, (2.20)

is a nonnegative, densely-defined, self-adjoint operator on L2(S2;µ), hypoelliptic [Hör67, The-
orem 1.1] and has a compact resolvent. Therefore, its spectrum is real, discrete and consists
of eigenvalues with finite multiplicity, labelled in increasing order, that is, (λm)m∈N∗ , with
0 = λ1 < λ2 ≤ · · · ≤ · · · , with λm → ∞ as m → ∞. Moreover, there exists an orthonor-
mal Hilbert basis (φm)m∈N∗ of L2(S2;µ) consisting of eigenfunctions of L associated with the
eigenvalues (λm)m∈N∗ .

Remark 2.4.1 It should be noted that the Grushin sphere described in Section 1.2.2 is obtained
as a restriction of complete Riemannian structure on the sphere S2. So, it is complete as metric
space. It follows that, the operator L (a sub-Riemannian Laplacian in fact) defined on C∞(S2) is
essentially self-adjoint in L2(S2;µ) and the domain of its unique self-adjoint extension coincides
with (2.20) (see, Strichartz [Str86, p.261], [Str83, p.50 and Theorem 2.4]).

We define the intrinsic semigroup on L2(S2;µ) denoted (etL)t≥0, as the family of operator
L2(S2;µ) → L2(S2;µ) defined as follows for every t ≥ 0: given f0 ∈ L2(S2;µ), etLf0 is the
unique solution at time t of the homogeneous equation of (1.16), which is C∞ on ]0,+∞[×S2

(by the hypoellipticity4 of operator L) and given by

etLf0 =
∑
m∈N∗

e−tλm⟨f0, φm⟩L2(S2;µ)φm. (2.21)

Let us state the following well-posedness result of the intrinsic parabolic Equation (1.16)
whose proof is classical (see, e.g., [Paz12, Chapter 4]).

Proposition 2.4.1 Given T > 0, f0 ∈ L2(S2;µ) and v := 1ωu ∈ L2(0, T ;L2(S2;µ)), there
exists a unique solution f ∈ C([0, T ];L2(S2;µ)) of Equation (1.16), given by Duhamel’s formula

f(t) = etLf0 +

∫ t

0
e(t−s)Lv(s)ds, t ∈ [0, T ]. (2.22)

We now can provide an argument about the well-posedness of the parabolic Equation (2.15)
associated with the spherical Baouendi-Grushin operator ∆BG defined in (2.13) (or equivalently
in (2.14)).

Let Hσ := L2(Ω;σ), and denote by ⟨·, ·⟩Hσ and ∥ · ∥Hσ , respectively, the scalar product
and norm in Hσ.We have that (L,D(L)) and (∆BG, D(∆BG)) are unitarily equivalent, where
we let

∆BG = TΦ LT+
Φ on D(∆BG) = TΦ(D(L)). (2.23)

4A partial differential operator E defined on a smooth manifoldM is called hypoelliptic if for
every distribution u defined on an open subset Ω ⊂ M such that Eu ∈ C∞(Ω), u must also be
C∞(Ω).
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Here, TΦ is the unitary transformation defined in (2.12), T+
Φ being is adjoint. Therefore, −∆BG

with domain D(∆BG) is a nonnegative, densely-defined, self-adjoint operator on Hσ and has
compact resolvent. We also remark that v ∈ D(∆BG) means v = u ◦ Φ for some u ∈ D(L).
So, we have the following.

Lemma 2.4.1 Let v ∈ D(∆BG). Then, we have that v, ∆BGv ∈ Hσ, the function y 7→
v(π/2, y) (resp. y 7→ v(−π/2, y)) is constant, and y 7→ v(x, y) is 2π-periodic for any x ∈
[−π/2, π/2]. Moreover, the following functions are well-defined and real-valued:

y ∈ [0, 2π) 7→ ∂xv(π/2, y), y ∈ [0, 2π) 7→ ∂xv(−π/2, y), (x, y) ∈ Ω 7→ tanx ∂yv(x, y).

(2.24)

Remark 2.4.2 We stress that boundary conditions of Lemma 2.4.1 are naturally associated
with Cauchy problems (2.15) and (2.17).

Let {Wℓ,n}ℓ∈N,−ℓ≤n≤ℓ denotes the family of spherical harmonics, defined by

Wℓ,n(x, y) =

√
2ℓ+ 1

4π

(ℓ− n)!

(ℓ+ n)!
Pn
ℓ (sinx)e

iny, ∀x ∈ [−π/2, π/2]× [0, 2π), (2.25)

with Pn
ℓ being associated Legendre functions of the first kind. Then we can check that each

Wℓ,n lies in D(∆BG) and the operator ∆BG satisfies (see, [CCM19, p.9] and references within)

−∆BGWℓ,n = λn,ℓWℓ,n, λn,ℓ := ℓ(ℓ+ 1)− n2, ∀ |n| ≤ ℓ ∈ N. (2.26)

Moreover, by using the identification Hσ
∼= L2((−π/2, π/2); cosxdx) ⊗ L2([0, 2π), dy), we

have that {Wℓ,n}ℓ∈N,−ℓ≤n≤ℓ form an orthonormal Hilbert basis of the space Hσ [CH53, p.
512]. In particular, D(∆BG) is a non-empty and dense subspace of Hσ.

The spherical Baouendi-Grushin semigroup on Hσ denoted (et∆BG)t≥0 is then the family of
operators Hσ → Hσ defined as follows for every t ≥ 0: given f0 ∈ Hσ, et∆BGf0 is the unique
solution at time t of the homogeneous Equation (2.17), which is C∞ on ]0,+∞[×Ω and given
by

et∆BGf0 =
∑

|n|≤ℓ∈N

e−tλn,ℓ⟨f0,Wℓ,n⟩HσWℓ,n. (2.27)

We now can state the following well-posedness result of the parabolic Equation (2.15) as-
sociated with the spherical Baouendi-Grushin operator ∆BG (see, e.g., [Paz12, Chapter 4]).

Proposition 2.4.2 Given T > 0, f0 ∈ Hσ and v := 1ωu ∈ L2(0, T ; Hσ), there exists a unique
solution f ∈ C([0, T ]; Hσ) of Equation (2.15), and Duhamel’s formula gives

f(t) = et∆BGf0 +

∫ t

0
e(t−s)∆BGv(s)ds, t ∈ [0, T ]. (2.28)

34



Cyprien TAMEKUE 2.5. NON OBSERVABILITY RESULT IN SMALL TIME

2.5 . Non observability result in small time

As announced at the end of Section 2.3, this section is dedicated to proving that there exist
initial data in L2(Ω;σ) for which the corresponding solutions for Equation (2.17) do not satisfy
observability inequality (2.18) in ω in time T ≤ log(1/ cos a), where ω and a are defined as in
(2.16). We have the following.

Proposition 2.5.1 Let a, b ∈ R be such that 0 < a < b ≤ π/2 and T ≤ log (1/ cos a). Then
system (2.17) is not observable in (a, b)× [0, 2π) in time T .

Proof . We recall that the highest weight spherical harmonics of degree n present extreme
concentration around the equator. These are defined by

Wn,n(x, y) =
(−1)n

2nn!

√
(2n+ 1)!

4π
einy cosn x, (2.29)

where n ∈ N∗, (x, y) ∈ [−π/2, π/2] × [0, 2π). Fix n ∈ N∗ and let g be the solution of (2.17)
corresponding to the initial datum g0(x, y) =Wn,n(x, y). Then one has by (2.27),

g(t, x, y) = e−tλn,n∥Wn,n∥2Hσ
Wn,n(x, y) = e−tnWn,n(x, y), (2.30)

for every t ≥ 0. Indeed, by Wallis’ formula, we have for every n ∈ N∗,∫ π
2

0
cos2n+1 xdx =

22n(n!)2

(2n+ 1)!
.

It follows that for every n ∈ N∗,

∥Wn,n∥2Hσ
=

(2n+ 1)!

22n(n!)2

∫ π
2

0
cos2n+1 xdx = 1,

∫ π
2

−π
2

∫ 2π

0
|g(T, x, y)|2 cosxdxdy = e−2nT .

Observe also that∫ T

0

∫ b

a

∫ 2π

0
|g(t, x, y)|2 cosxdxdydt = (2n+ 1)!

πn22n+2(n!)2
[
1− e−2nT

] ∫ b

a
cos2n+1 xdx.

On the other hand, by Stirling’s formula, one has n! ∼
√
2πnnne−n as n → +∞. It follows

that If g satisfied observability inequality (2.18) in ω = (a, b)×[0, 2π) in time T ≤ log (1/ cos a),
then there will exists a positive constant C := C(T, a, b) > 0 such that the following holds

1 ≤ C
cos a

2π3/2
(2n+ 1)

n3/2
e2n(T+log(cos a))(b− a) −→ 0 as n −→ +∞, (2.31)

which is untrue. This completes the proof of the proposition.

Remark 2.5.1 Notice that the not null observability result provided here remains true in the
observation set [(−b,−a) ∪ (a, b)] × [0, 2π) by symmetry of this domain and parity of Wn,n

with respect to x.
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2.6 . Observability result in large time

In this section, following the strategy explained at the end of Section 2.3, we will split the proof
of the following result for clarity in the presentation. There exists T ∗ > 0 such that, for every
T ≥ T ∗, the adjoint system (2.17) is observable in ω in time T . Here ω is the control set
defined in (2.16).

We recall that H1(−π/2, π/2) is the classical Sobolev space of functions in L2(−π/2, π/2)
whose derivative in the sense of distribution also belongs to L2(−π/2, π/2), andH1

0 (−π/2, π/2)
stands to be the subspace of functions u ∈ H1(−π/2, π/2) such that u(±π/2) = 0. These
Hilbert spaces are endowed with their standard norm.

We admit the following lemma where the detailed proof could be found in [Tam22, Lemma
2.6]. It is a key ingredient for the proof of Carleman estimates in Appendix 2.7.

Lemma 2.6.1 (Hardy-Poincaré inequality) Let w ∈ H1
0 (−π/2, π/2) and w′ its derivative

in the sense of distribution. Then, it holds∫ π
2

−π
2

|w(x)|2

cos2 x
dx ≤ 4

∫ π
2

−π
2

|w′(x)|2dx. (2.32)

2.6.1 . Fourier expansion of the solution of the adjoint system

Using the complete orthonormal eigenbasis (einy)n∈Z of L2([0, 2π); dy), we separate the space
Hσ = ⊕⊥

n∈ZHn, where Hn
∼= L2((−π/2, π/2); cosxdx). Therefore, one has for every t ≥ 0,

et∆BG =
⊥⊕

n∈Z
etLn . (2.33)

Here for any n ∈ Z, the operator Ln is defined on Hn by

D(Ln) =
{
v ∈ Hn | Lnv ∈ Hn, v(±π/2) ∈ R, v′(±π/2) ∈ R

}
, (2.34)

Lnv =
1

cosx
(cosxv′)′ − n2 tan2 xv, v ∈ D(Ln). (2.35)

Remark 2.6.1 The boundary conditions in D(Ln) naturally come from Lemma 2.4.1. More-
over, from (2.33), one deduces that for every n ∈ Z, the operator (Ln, D(Ln)) is the generator
of the one-parameter strongly continuous semigroup of contraction (etLn)t≥0 on Hn.

Since the solution g of adjoint system (2.17) belongs to C([0, T ]; Hσ), the function y 7→
g(t, x, y) belongs to L2([0, 2π); dy) for a.e. (t, x) ∈ (0, T )×(−π/2, π/2). It follows that (2.17)
is formally equivalent to the following family of one-dimensional parabolic equations indexed by
n ∈ Z, {

∂tgn − Lngn = 0, in (0, T )× (−π/2, π/2),
gn|t=0 = g0,n, in (−π/2, π/2).

(2.36)
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Here, the n-th Fourier component gn is given by

gn(t, x) =

∫ 2π

0
g(t, x, y)einydy, (t, x) ∈ (0, T )× (−π/2, π/2), (2.37)

and g0,n is the n-th Fourier coefficients of the initial datum g0 ∈ Hσ in Equation (2.17).
In the following lemmas we derive some useful properties of functions belonging to D(Ln)

as well as their behaviour at ±π/2. We begin by the case n = 0.

Lemma 2.6.2 Let v ∈ D(L0). Then v belongs to the Sobolev space H1(−π/2, π/2) and v
is locally absolutely continuous on [−π/2, π/2]. Moreover, it holds

v′(x) = o(1) as x→ ±π
2
. (2.38)

Proof . Let v ∈ D(L0). Then v and L0v belong to H0
∼= L2((−π/2, π/2); cosxdx) and

v(±π/2) ∈ R, v′(±π/2) ∈ R. It follows by integration by parts that

∥v′∥2H0
= −⟨L0v, v⟩H0 <∞. (2.39)

Since sinxv′, cosxv,
√
cosxv,

√
cosxv′ ∈ H0, the following is finite

∥v∥2H1(−π/2,π/2) = 2
[
⟨L0v,− cosxv + sinxv′⟩H0 + ∥

√
cosxv∥2H0

+ ∥
√
cosxv′∥2H0

]
. (2.40)

It follows that v belongs to the Sobolev space H1(−π/2, π/2) ↪→W 1,1(−π/2, π/2), and then
v is locally absolutely continuous on [−π/2, π/2]. On the other hand, one has∫ π

2

−π
2

|v′(x)|2

cosx
dx ≤

∫ π
2

−π
2

(
|v′′(x)|2 + |v′(x)|2

cos2 x

)
cosxdx

=

∫ π
2

−π
2

|L0v(x)|2 cosxdx+
∣∣v′(π/2)∣∣2 + ∣∣v′(−π/2)∣∣2 <∞. (2.41)

Since cos(±π/2) = 0 this implies (2.38). Moreover (2.41) also shows that v′′ ∈ H0. In
particular, tanxv′ ∈ H0, since L0v ∈ H0 and v′′ ∈ H0.

In the cases n ∈ Z\{0}, we have the following

Lemma 2.6.3 Let n ∈ Z\{0} and v ∈ D(Ln). Then v belongs to the Sobolev space
H1(−π/2, π/2) and v is locally absolutely continuous on [−π/2, π/2]. Moreover, it holds

v(x) = o(1) and
v(x)√
cosx

= o(1) both as x→ ±π
2
. (2.42)

Proof . Let n ∈ Z\{0} and v ∈ D(Ln). Since v, Lnv ∈ Hn
∼= L2((−π/2, π/2); cosxdx),

v(±π/2) ∈ R and v′(±π2) ∈ R, one obtain using integration by parts that the following is
finite

∥v′∥2Hn
≤
∫ π

2

−π
2

(
|v′(x)|2 + |n tanxv|2

)
cosxdx = −⟨v,Lnv⟩Hn . (2.43)
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In particular, tanxv ∈ Hn so that

∥ cos−1 xv∥2Hn
= ∥ tanxv∥2Hn

+ ∥v∥2Hn
<∞, (2.44)

and by Cauchy-Schwarz inequality,

∥v∥2L2(−π/2,π/2) ≤ ∥ cos−1 xv∥Hn∥v∥Hn <∞. (2.45)

Therefore, using sinxv′ ∈ Hn, (2.44) and (2.45) one deduce successively that the following are
finites∫ π

2

−π
2

|v(x)|2

cosx
dx = ∥v∥2L2(−π/2,π/2) +

1

n2

[〈
−Lnv,

v

cosx

〉
Hn

−
∫ π

2

−π
2

tanx|v(x)|2dx

]
, (2.46)

∥v′∥2L2(−π/2,π/2) = −2⟨Lnv, sinxv
′⟩Hn + n2

∫ π
2

−π
2

sin2 x(3 + tan2 x)|v(x)|2dx. (2.47)

Thus v belongs to the Sobolev space H1(−π/2, π/2) ↪→ W 1,1(−π/2, π/2), and then v is
locally absolutely continuous on [−π/2, π/2]. In particular, it holds

v(x2)− v(x1) =

∫ x2

x1

v′(s)ds ∀x1, x2 ∈ [−π/2, π/2]. (2.48)

On the other hand, since tanxv ∈ Hn, the first identity in (2.42) immediately follows. Let us
turn to an argument for the second identity of (2.42). Let ε > 0, then by the first identity of
(2.42), and (2.48) one has for all v ∈ D(Ln), n ̸= 0,

∣∣∣v (−π
2
+ ε
)∣∣∣ ≤ ∫ −π

2
+ε

−π
2

|v′(t)|dt ≤ ∥v′∥∞ε.

Hence,

lim
x→−π

2
+

|v(x)|√
cosx

= lim
ε→0

|v(−π
2 + ε)|√

cos(−π
2 + ε)

≤ ∥v′∥∞ lim
ε→0

ε√
sin ε

= 0.

The proof of the limit at π/2 is similar.

Remark 2.6.2 Lemmas 2.6.2 and 2.6.3 show in particular that, for all v ∈ D(Ln), Lnv has a
meaning a. e. in (−π/2, π/2). Moreover, Lemma 2.6.3 also shows that the domain D(Ln) is
a subspace of the Sobolev space H1

0 (−π/2, π/2) in the case n ∈ Z\{0}, hence Lemma 2.6.1
holds true in D(Ln).

The following proposition is the direct consequence of Section 2.4. We also refer to [Nai68, p.
68] in which the theory of the singular Sturm-Liouville equation is well-elaborated.

Proposition 2.6.1 Let n ∈ Z. Then, −Ln : D(Ln) ⊂ Hn → Hn is a densely defined,
self-adjoint, positive operator and has compact resolvent.
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One can check that the functions vn,ℓ defined for ℓ ∈ N, n ∈ Z and |n| ≤ ℓ by

vn,ℓ(x) =

√
2ℓ+ 1

2

(ℓ− n)!

(ℓ+ n)!
Pn
ℓ (sinx), ∀x ∈ [−π/2, π/2], (2.49)

form a complete orthonormal set of the Hilbert space Hn [CH53, p. 512], with Pn
ℓ being the

associated Legendre function of the first kind. Moreover, each vn,ℓ lies in D(Ln) and we have

−Lnvn,ℓ = λn,ℓvn,ℓ, λn,ℓ = ℓ(ℓ+ 1)− n2.

Therefore, the functions vn,ℓ are the eigenfunctions of operators −Ln with eigenvalues λn,ℓ.
The following result is then an immediate consequence of Proposition 2.6.1.

Proposition 2.6.2 Let T > 0 and g be the solution of the adjoint system (2.17). For every
n ∈ Z, the n-th Fourier component gn of g as given by (2.37), is the unique solution of (2.36)
belonging to the class

C([0, T ];Hn) ∩ C∞((0, T );Hn). (2.50)

Moreover, it can be represented for every t ≥ 0 as

gn(t) = etLng0,n =
∑
ℓ∈N

e−λn,ℓt⟨g0,n, vn,ℓ⟩Hnvn,ℓ, (2.51)

where g0,n ∈ Hn is given by g0,n(x) =
∫ 2π

0
g0(x, y)e

inydy, with g0 being the initial condition

in Equation (2.17).

Remark 2.6.3 We may show by an inductive argument that for all n ∈ Z, gn ∈ C∞((0, T );D(Ln))..
Moreover, gn is C∞ on ]0,+∞[×(−π/2, π/2).

Remark 2.6.4 (Decay rate) Using Proposition 2.6.2, we immediately obtain that the Fourier
component gn satisfies the following dissipation rate

∥gn(T, ·)∥Hn ≤ e−|n|(T−t)∥gn(t, ·)∥Hn , ∀t ∈ (0, T ). (2.52)

Notation 1 In what follows, to simplify the notation, we shall assume n ∈ N. The same
considerations hold for n ∈ Z− by replacing n with |n|.

2.6.2 . Strategy for proving observability inequality in large time

We illustrate in this section how the proof of observability inequality for the adjoint system
(2.17) in large time reduces to the proof of an observability inequality in large time for the 1D

parabolic equations (2.36) that is uniform with respect to n ∈ N. Recall that if g is the solution
of (2.17), then it can be represented by

g(t, x, y) =
∑
n∈Z

gn(t, x)e
iny, for a.e. (t, x, y) ∈ (0, T )× Ω. (2.53)
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We also emphasize that, by Bessel-Parseval’s equality, one has, for a.e. t ∈ (0, T ) and every
−π/2 ≤ a1 ≤ b1 ≤ π/2, that∫ b1

a1

∫ 2π

0
|g(t, x, y)|2dσ =

∑
n∈Z

∫ b1

a1

|gn(t, x)|2 cosxdx. (2.54)

Thus, if there exists a positive constant C > 0, independent of n ∈ N, and such that the
following uniform observability holds for system (2.36)∫ π

2

−π
2

|gn(T, x)|2dx ≤ C

∫ T

0

∫
ωa,b

|gn(t, x)|2 cosxdxdt, (2.55)

then, we can easily show that the observability inequality (2.18) is verified. Indeed, thanks to
(2.53), (2.54) and (2.55), we find∫

Ω
|g(T, x, y)|2dσ =

∑
|n|≤ℓ∈N

∫ π
2

−π
2

|gn(T, x)|2 cosxdx

≤ C
∑

|n|≤ℓ∈N

∫ T

0

∫
ωa,b

|gn(t, x)|2 cosxdxdt = C

∫ T

0

∫
ωa,b

∫ 2π

0
|g(t, x, y)|2dσdt. (2.56)

This immediately yields (2.18). We recall the following.

Definition 2.6.1 (Uniform observability) Let ωa,b be defined as in (2.16). System (2.36) is
observable in ωa,b in time T > 0 uniformly with respect to n ∈ N, if there exists C > 0 such
that, for every n ∈ N, and g0,n ∈ Hn, the solution of (2.36) satisfies (2.55).

We recall that we cannot directly apply existing results in [BCG14; BMM15; BDE20] to
obtain a uniform observability inequality for systems (2.36) due to the singularity at ±π/2. In
particular, in contrast to the classical singularity (at 0) of the form 1/x2, which is frequently
studied in the literature (see, for instance, [CG14; Erv08; Mor15]) using the classical Hardi-
Poincaré inequality [BM97, eq. (0.1)], we have here the singular term 1/ cos2 x at ±π/2 that
we deal with by using the Hardy-Poincaré inequality provided by Lemma 2.6.1.

We shown in Lemmas 2.6.2 and 2.6.3 that function belonging respectively to D(L0) and
D(Ln) (n ̸= 0) have different behaviours at ±π/2. Therefore we will distinguish these two
cases by using a suitable unitary transformation in each case.

2.6.3 . Uniform observability for the one-dimensional parabolic equation for the zero
frequency

We start by recasting when n = 0 the one-dimensional system (2.36) in the space L2(−1, 1)

with the standard Lebesgue measure.
Let us consider the unitary transformation

V : L2((−π/2, π/2); cosxdx) −→ L2(−1, 1)

v 7−→ (V v)(x) = v(arcsinx).
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We define the unbounded operator M0 on the space L2(−1, 1) by

M0 = VL0V
+, D(M0) = V(D(L0)). (2.57)

Here, V+ is the adjoint of the unitary operator V, that is,

V+ : L2(−1, 1) −→ L2((−π/2, π/2); cosxdx)
w 7−→ (V+w)(x) = w(sinx).

We then have the following expression for M0,

M0w = ((1− x2)w′)′, ∀w ∈ D(M0). (2.58)

Since the differential operator ∂t commutes with the unitary transformation V, one deduces
easily that, when n = 0, system (2.36) is equivalent to the following{

∂tg̃0 −M0 g̃0 = 0, in (0, T )× (−1, 1),

g̃0|t=0 = g̃0,0, in (−1, 1).
(2.59)

In particular, the solution g̃0 = V g0 belongs to the class (see Proposition 2.6.2 and Re-
mark 2.6.3)

C([0, T ];L2(−1, 1)) ∩ C∞((0, T );D(M0)). (2.60)

We characterise in the following some useful properties of functions belonging to the domain
D(M0), that is obtained by Lemma 2.6.2.

Lemma 2.6.4 Let w ∈ D(M0). Then w belongs to the Sobolev space H1(−1, 1) and w is
locally absolutely continuous on [−1, 1]. Moreover, it holds

w(±1) ∈ R and w′(x)
√

1− x2 = o(1) as x→ ±1. (2.61)

Proof . Let w ∈ D(M0). Then w(x) = v(arcsinx) for some v ∈ D(L0) and x ∈ (−1, 1).
Since v(±π/2) ∈ R, the first property in (2.61) immediately follows. Similarly, using the fact
that v ∈ H0

∼= L2((−π/2, π/2); cosxdx), and using (2.41), we obtain that the following are
finites∫ 1

−1
|w(x)|2dx =

∫ π
2

−π
2

|v(x)|2 cosxdx and
∫ 1

−1
|w′(x)|2dx =

∫ π
2

−π
2

|v′(x)|2

cosx
dx.

It follows that, w,w′ ∈ L2(−1, 1). Finally, w′(x)
√
1− x2|x=±1 = v′(±π/2) = 0, by (2.38).

Remark 2.6.5 We notice that an observability inequality for Equation (2.59) was established
by Martinez and Vancostenoble in [MV06]. Indeed, thanks to Lemma 2.6.4, we aim to prove
an observability inequality for the following equation

∂tw − ∂x(a(x)∂xw) = 0, a.e. in (0, T )× (−1, 1),

(a(x)∂xw)(t,±1) = 0, t ∈ (0, T ),

w(0, x) = w0(x), x ∈ (−1, 1),

(2.62)
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where a(x) := 1 − x2, w0 ∈ L2(−1, 1) and the solution w belongs to the class (2.60). We
observe that the weight function a satisfies 0 ≤ a ∈ C2([−1, 1]), a(±1) = 0, a > 0 on (−1, 1),
1√
a
∈ L1(−1, 1) and

(1 + x)a′(x)

a(x)
−−−−−→
x→−1+

1 and
(1− x)a′(x)

a(x)
−−−−→
x→1−

−1.

The above remark highlight that we are in the framework of [MV06, Theorem 3.4]. We then
deduce the following.

Lemma 2.6.5 Let T > 0 and a, b ∈ R defined as in (2.16). Let ω̃a,b := (− sin b,− sin a) ∪
(sin a, sin b). Then, there exists a positive constant C0 > 0 such that every solution w of
system (2.62) satisfies ∫ 1

−1
|w(T, x)|2dx ≤ C0

∫ T

0

∫
ω̃a,b

|w(t, x)|2dxdt. (2.63)

Finally, thanks to the Lemma 2.6.5 and the fact that w := V g0 is the solution of system (2.59),
we deduce the following observability inequality for Equation (2.36) when n = 0.

Proposition 2.6.3 Let T > 0 and ωa,b be defined as in (2.16). Then, there exists a positive
constant C0 > 0 such that the first Fourier component g0, which is the solution of Equa-
tion (2.36) when n = 0 satisfies∫ π

2

−π
2

|g0(T, x)|2 cosxdx ≤ C0

∫ T

0

∫
ωa,b

|g0(t, x)|2 cosxdxdt. (2.64)

Remark 2.6.6 We highlight that the result of [MV06, Theorem 3.4] ensures that when n = 0,
system (2.36) is observable in any subset ω ⊂⊂ (−π/2, π/2) and in arbitrary small time T > 0.

2.6.4 . Uniform observability for one-dimensional parabolic equations corresponding
to non-zero frequencies

In the case of a non-zero frequency n ̸= 0, we recast the one-dimensional system (2.36) in the
space L2(−π/2, π/2) with the standard Lebesgue measure.

We consider the unitary transformation

U : L2((−π/2, π/2); cosxdx) −→ L2(−π/2, π/2) (2.65)
v 7−→ (U v)(x) =

√
cosxv(x). (2.66)

We define for all n ∈ N∗ the unbounded operator Mn on the space L2(−π/2, π/2) by

Mn = ULnU
+, D(Mn) = U(D(Ln)), (2.67)

where U+ is the adjoint of the unitary operator U, that is,

U+ : L2(−π/2, π/2) −→ L2((−π/2, π/2); cosxdx)
w 7−→ (U+w)(x) = w(x)/

√
cosx.
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So, we deduce the following expression for Mn,

Mnw = w′′ − qn(x)w, ∀w ∈ D(Mn), (2.68)

where, for all n ∈ N∗, the potential qn is given by

qn(x) = (n2 − 1/4) tan2 x− 1/2, ∀x ∈ (−π/2, π/2). (2.69)

Remark 2.6.7 Let us emphasis that, since U is an unitary transformation, the unbounded
operator (Mn, D(Mn)) defined on the space L2(−π/2, π/2) inherits properties of the operator
(Ln, D(Ln)). That is, the operator (−Mn, D(Mn)) is a densely defined, self-adjoint, and
positive operator with compact resolvent in L2(−π/2, π/2) for all n ∈ N∗.

Since the differential operator ∂t commutes with the unitary transformation U, one deduces
easily that system (2.36) is equivalent to the following{

∂tg̃n −Mn g̃n = 0, in (0, T )× (−π/2, π/2),
g̃n|t=0 = g̃0,n, in (−π/2, π/2).

(2.70)

In particular, the solution g̃n = U gn belongs to the class (see Proposition 2.6.2 and Re-
mark 2.6.3)

C([0, T ];L2(−π/2, π/2)) ∩ C∞((0, T );D(Mn)). (2.71)

In the following, we collect some properties of the functions belonging to the domainD(Mn)

(n ∈ N∗), which will be helpful in the proof of a global Carleman estimate for system (2.70) in
Appendix 2.7.

Lemma 2.6.6 Let n ∈ N∗ and w ∈ D(Mn). Then w′ belongs to L2(−π/2, π/2) and w is
locally absolutely continuous on [−π/2, π/2]. Moreover,

w(x) = o(1) and w′(x) = o(1) both as x→ ±π
2
. (2.72)

Proof . Let n ∈ N∗ and w ∈ D(Mn). Then w =
√
cosxv for some v ∈ D(Ln) and a. e.,

x ∈ (−π/2, π/2). Since v(±π/2) ∈ R, the first identity in (2.72) immediately follows. Similarly,
since tanxv ∈ Hn (see, (2.43)), the following is finite

∥ tanxw∥2L2(−π/2,π/2) = ∥ tanxv∥2Hn
.

By deriving w, we find that w′ + tanxw/2 =
√
cosxv′ belongs to L2(−π/2, π/2), due to

(2.43). Therefore, w′ ∈ L2(−π/2, π/2). Since v′(±π/2) ∈ R, it holds

lim
x→−π

2
+
w′(x) = lim

x→−π
2
+
−1

2

sinx√
cosx

v(x) +
√
cosxv′(x) = 0,

by the second identity in (2.42). The proof of the limit at π/2 is similar. It then follows that w
is locally absolutely continuous on [−π/2, π/2].
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Remark 2.6.8 Lemma 2.6.6 also shows that for all n ∈ N∗, the domain D(Mn) is a subspace
of the Sobolev space H1

0 (−π/2, π/2). In particular, Lemma 2.6.1 holds true in D(Mn).

We now have all ingredients to state the result on a Carleman estimate for system (2.70),
which will allow us, using dissipation rate (2.52) to prove the uniform observability inequality
(2.55) for system (2.36) for non-zero frequencies. We drop the tilde and the index n to simplify
the notations. We will sketch the proof of the following proposition in Appendix 2.7. The
complete explanation can be found in [Tam22, Section 4].

We introduce for every n ∈ N∗ the following parabolic operator, which is singular at
x = ±π/2,

Pn := ∂t − ∂2x + qn(x) with qn(x) =

(
n2 − 1

2

)
tan2 x− 1/2. (2.73)

Proposition 2.6.4 (Carleman estimate) Let ωa,b be defined as in (2.16). Then there exist
a weight function β ∈ C4([−π/2, π/2]) and positive constants R0, R1 > 0 such that for
every T > 0, n ∈ N∗ and s ≥ R0max(T + T 2, T 2n), every g ∈ C([0, T ];L2(−π/2, π/2)) ∩
C2((0, T );D(Mn)) satisfies

R1

∫ T

0

∫ π
2

−π
2

(
s

t(T − t)
|∂xg(t, x)|2 +

s3

(t(T − t))3
|g(t, x)|2

)
e
− 2sβ(x)

t(T−t)dxdt

≤
∫ T

0

∫
ωa,b

s3

(t(T − t))3
|g(t, x)|2e−

2sβ(x)
t(T−t)dxdt+

∫ T

0

∫ π
2

−π
2

|Png(t, x)|2e−
2sβ(x)
t(T−t)dxdt, (2.74)

where, Ri := Ri(β, a, b), i = 0, 1 and Pn is defined in (2.73).

The following proposition shows that the one-dimensional parabolic system (2.36) for non-
zero frequencies n ̸= 0 is uniformly observable from ωa,b in large time.

Proposition 2.6.5 Let a, b ∈ R be such that 0 < a < b ≤ π/2. Then there exists a positive
time T ∗ > 0 such that, for every T ≥ T ∗, system (2.36) is observable in ωa,b = (−b,−a)∪(a, b)
in time T uniformly with respect to n ∈ N∗.

Proof . We obtain the uniform observability inequality (2.55) in large time for system (2.36)
when n ∈ N∗. Let g̃n = U gn ∈ C([0, T ];L2(−π/2, π/2))∩C2((0, T );D(Mn)) be the solution
of system (2.70), where gn is the Fourier component (2.37) and U, the unitary transformation
defined in (2.65). Then by Carleman estimate (2.74), one deduces

R1

∫
Q
θ(t)3|g̃n(t, x)|2e−2φdQ ≤

∫ T

0

∫
ωa,b

θ(t)3|g̃n(t, x)|2e−2φdQ, (2.75)

for all s ≥ R0max(T + T 2, T 2n), and for some constants R0, R1 > 0 independent of n, T
and g̃n. Here we let θ(t) = 1/t(T − t), t ∈ (0, T ) and φ(t, x) = sθ(t)β(x), with β being as in
Proposition 2.6.4.
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From now on, we set
s := R0max(T + T 2, T 2n).

For t ∈ (T/3, 2T/3), we have due to dissipation rate (2.52),

4

T 2
≤ θ(t) ≤ 9

2T 2
and

∫ π
2

−π
2

|g̃n(T, x)|2dx ≤ e−
2
3
nT

∫ π
2

−π
2

|g̃n(t, x)|2dx.

Integrating over (T/3, 2T/3), we find, using (2.75)

T

3

∫ π
2

−π
2

|g̃n(T, x)|2dx ≤ 1

R1

T 6

64

6

8s3β3∗
e−

2
3
nT e

9
T2 sβ

∗
∫ T

0

∫
ωa,b

|g̃n(t, x)|2dxdt, (2.76)

where β∗ := min{β(x) : x ∈ [−π/2, π/2]} and β∗ := max{β(x) : x ∈ [−π/2, π/2]}. Then,
the following two cases may occur.

First case: n < 1 + 1/T . Then s = R0(T + T 2), and thus (2.76) yields∫ π
2

−π
2

|g̃n(T, x)|2dx ≤ 1

R1

T 5

64

18

8R3
0(T + T 2)3β3∗

e
9
T2R0(T+T 2)β∗

∫ T

0

∫
ωa,b

|g̃n(t, x)|2dxdt.

(2.77)
Second case: n ≥ 1 + 1/T . Then s = R0T

2n, and thus (2.76) yields∫ π
2

−π
2

|g̃n(T, x)|2dx ≤ 1

R1

1

64

18

8R3
0T (1 + 1/T )3β3∗

e−
2
3
nT e9nR0β∗

∫ T

0

∫
ωa,b

|g̃n(t, x)|2dxdt.

It then suffices to observe that −2nT/3 + 9nR0β
∗ ≤ 0 as soon as T ≥ T ∗ := 27R0β∗/2.

So, in both cases, there exists a positive constant C ′
0 > 0, which is independent of n ∈ N∗,

such that ∫ π
2

−π
2

|gn(T, x)|2 cosxdx ≤ C ′
0

∫ T

0

∫
ωa,b

|gn(t, x)|2 cosxdxdt, (2.78)

provided T ≥ T ∗.

Remark 2.6.9 To achieve the proof of observability inequality (2.55) in large time for one-
dimensional parabolic equations (2.36) uniformly with respect to n ∈ N, it suffices to consider
inequalities (2.64) and (2.78) and let C := max(C0, C

′
0) > 0.

2.7 . Appendix: Carleman estimates for one-dimensional parabolic equation
for non-zero frequencies

This section aims to give a sketch of the proof of Proposition 2.6.4 about Carleman estimate
(2.74). The main difficulty in proving inequality as (2.74) is identifying a suitable weight function
β which can deal with the specificity of the parabolic operator under consideration. For example,
for the standard parabolic operator, see the pioneering work by Imanuvilov [Ima95] or Fursikov
and Imanuvilov [FI96]; for the standard parabolic operator with interior quadratic singularities
(resp. boundary singularity) see the work by Ervedoza [Erv08] (resp. Cazacu [Caz14] or Biccari
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and Zuazua [BZ16]); for the 2D parabolic Grushin operator, see the work by Beauchard et
al.[BCG14; Bea+15; BDE20] and Koenig [Koe17]; for 2D parabolic Grushin operator with
internal (resp. boundary) singular potential see the work by Morancey [Mor15] (resp. Cannarsa
and Guglielmi [CG14]). We remark that, in general, the function β is chosen to be strictly
monotone outside of the control region and concave so that the term in s3 is the leading one.
Particularly in the singular cases, this choice allows getting rid of the singular terms which
can not be bounded at the singularity, usually by taking advantage of Hardy-Poincaré type
inequalities.

In the case at hand, the potential qn is singular in ±π/2. Thus, we shall apply the Hardy-
Poincaré inequality of Lemma 2.6.1 (see, Remark 2.6.8) to get rid of the singular terms which
can not be bounded at ±π/2.

Notation 2 We introduce notations that will be used in what follows. We let a′ and b′ are
real numbers such that

0 < a < a′ < b′ < b ≤ π/2 and [a′, b′] ⊂ (a, b). (2.79)

We consider the subdomains

ωcon := (−b′,−a′) ∪ (a′, b′), ωdeg := (−a′, a′), ωbdy :=
(
−π/2,−b′

)
∪
(
b′, π/2

)
, (2.80)

so that

(−π/2, π/2) = ωbdy ∪ωdeg ∪ωcon and ωcon ⊂⊂ ωa,b.

We also introduce the weight function

φ(t, x) = sθ(t)β(x), (t, x) ∈ Q := (0, T )× I, I := (−π/2, π/2), (2.81)

where the positive constant s = s(T, n, β) > 0 will be chosen later on and the temporal weight
θ is given by

θ(t) =
1

t(T − t)
, t ∈ (0, T ). (2.82)

Finally, we introduce for all n ∈ N∗ and every g ∈ C([0, T ];L2(−π/2, π/2))∩C2((0, T );D(Mn)),
the change of function

z(t, x) = g(t, x)e−φ(t,x), (t, x) ∈ Q. (2.83)

We can now present the main steps that are necessary to complete the proof of (2.74). As
announced above, we will omit details and refer the reader to [Tam22, Section 4], where detailed
proof is given.

Remark 2.7.1 We stress that these steps follow the classical strategy [FI96] by Fursikov and
Imanuvilov (we also refer to [Cor07, p.79] for a pedagogical presentation of a Carleman estimate
for the heat equation in Euclidean spaces). Let us emphasize that functions in D(Mn) have
the regularity in the space variable that we need to apply integrations by parts (see, e. g.

Lemma 2.6.6).
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Figure 2.3: The spatial weight function β depicted in [−π/2, π/2]. The curves parts in blue, red and
orange correspond respectively to the subcontrol region ωcon, the boundary domain ωbdy contain-
ing the singular points ±π/2 and the region ωdeg intersecting the degeneracy set {x = 0}.

Step 1: design of the spatial weight function β(x), key properties satisfying
the temporal weight θ(t) and the function z(t, x)

In the following lemma, we design the weight function β as depicted in Figure 2.3.

Lemma 2.7.1 The function β ∈ C4([−π/2, π/2]) satisfies

β ≥ 1, on (−π/2, π/2), (2.84)

β(x) =

log | sinx|+A1|x|+A2 if x ∈ ωbdy,

log cosx− x2

2
+A3(x+ 1) if x ∈ ωdeg,

(2.85)

where the positive constants Ai, 1 ≤ i ≤ 3 are such that (2.84) is verified and{
|β′(x)| ≥ η1, x ∈ ωbdy,

β′(x) ≥ η2, x ∈ ωdeg,
(2.86)

for some positive constants η1, η2 > 0.

Remark 2.7.2 We stress that the explicit expression of the weight β is only needed near ±π/2
to eliminate the singular terms that can not be bounded at ±π/2. Apart from this, assuming
that β is strictly monotonous and concave outside the subcontrol region ωcon suffices.

The following lemma gives some useful properties of the temporal weight θ obtained by direct
computations.

Lemma 2.7.2 Let the temporal weight θ be given by (2.82). Then we have for all t ∈ (0, T ),

θ′(t) = (2t− T )θ2(t), θ′′(t) = 2θ2(t)(1 + (2t− T )2θ(t)),

and the following inequalities hold

θ(t) ≤ 2−4T 4θ3(t), |θ′(t)| ≤ 2−2T 3θ3(t), |θ(t)θ′(t)| ≤ Tθ3(t), |θ′′(t)| ≤ 5

2
T 2θ3(t).

Moreover, one has
lim
t→0+

θ(t) = lim
t→T−

θ(t) = +∞.

47



CHAPTER 2. SPHERICAL BAOUENDI-GRUSHIN EQUATION Cyprien TAMEKUE

In the following lemma, we give some useful properties of the function z introduced in (2.83)
which are obtained by direct computations applying Lemmas 2.6.6 and 2.7.2

Lemma 2.7.3 Let n ∈ N∗, then the function z introduced in (2.83) belongs at least in the
class C([0, T ];L2(−π/2, π/2)) ∩ C2((0, T );D(Mn)) and satisfies{

z(0, x) = z(T, x) = ∂xz(0, x) = ∂xz(T, x) = 0, x ∈ [−π/2, π/2],
z(t,±π/2) = ∂tz(t,±π/2) = ∂xz(t,±π/2) = 0, t ∈ (0, T ).

(2.87)

Moreover, one has

P+
n z + P−

n z = e−φPng, (2.88)

where Pn is the parabolic operator introduced in Proposition 2.6.4, and we let

P+
n z = −Mn z + (∂tφ− |∂xφ|2)z and P−

n z = ∂tz − 2∂xz∂xφ− (∂2xφ)z. (2.89)

Step 2: Integration by parts and weight exponential energy estimates satis-
fying the function z(t, x)

Let Q = (0, T )× (−π/2, π/2) and dQ = dxdt. Observe first that, P+
n z and P−

n z defined
in (2.89) belong to L2(Q) by the definition of D(Mn) and Lemma 2.6.6. So, developing the
L2(Q) squared norm in identity (2.88), leads to∫

Q
P+
n zP−

n zdQ ≤ 1

2

∫
Q

∣∣e−φPng
∣∣2 dQ. (2.90)

In the following, we compute the scalar product on the left-hand side of (2.90) using
integration by parts and Fubini’s Theorem.

Lemma 2.7.4 Let n ∈ N∗, then we have∫
Q
P+
n zP−

n zdQ = −2

∫
Q
∂2xφ|∂xz|2dQ+

1

2

∫
Q
∂4xφ|z|2dQ+

∫
Q
∂xφq

′
n(x)|z|2dQ

− 1

2

∫
Q
(∂2t φ− 2∂xφ∂txφ)|z|2dQ+

∫
Q
∂xφ∂x(∂tφ− |∂xφ|2)|z|2dQ. (2.91)

We now bound from below the right-hand side of (2.91). Since Q := (0, T ) × (−π/2, π/2) =
(0, T )× (ωbdy ∪ωcon ∪ωdeg), we separate the integrals of the right hand side over (0, T )× J ,
where J ∈ {ωbdy, ωcon, ωdeg}. Using Lemma 2.7.1 we immediately get

Lemma 2.7.5 Let n ∈ N∗ and assume (2.91). Then one has∫
Q
P+
n zP−

n zdQ =

∫ T

0

∫
ωbdy

Kbdy dQ+

∫ T

0

∫
ωcon

Kcon dQ+

∫ T

0

∫
ωdeg

Kdeg dQ, (2.92)
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where

Kdeg = sθ

{(
2

cos2 x
+ 2

)
|∂xz|2 +

(
sin2 x

2 cos4 x
+

x sinx

2 cos3 x

)
|z|2
}

+

{
2n2sθ

cos2 x
+ 2s3θ3

(
1

cos2 x
+ 1

)
(− tanx− x+A3)

2

}
|z|2

+sθ

{
A3

(2n2 − 1/2)

cos4 x
+ 2sθ′(− tanx− x+A3)

2 − 2n2
x tanx

cos2 x

}
|z|2

−sθ
′′

2
(log cosx− x2

2
+A3(x+ 1))|z|2, (2.93)

Kbdy =
2sθ

sin2 x

{
|∂xz|2 + |z|2

}
+

2s3θ3

sin2 x

(cosx
sinx

+A1 sign(x)
)2

|z|2

+

{
2s2θθ′

(cosx
sinx

+A1 sign(x)
)2

− sθ′′

2
(log | sinx|+A1|x|+A2)

}
|z|2

+

− 3sθ

sin4 x
+
sθ(2n2 − 1/2)

cos2 x
(1 +A1 sign(x) tanx)︸ ︷︷ ︸

singular terms

 |z|2, (2.94)

and

Kcon = s

{
θβ(4)

2
+ θβ′

(
2n2 − 1

2

)
sinx

cos3 x
− θ′′β

2
+ 2sθβ′2(θ′ − sθ2β′′)

}
|z|2

−2sθβ′′|∂xz|2. (2.95)

In the following lemmas, we bound from below (2.93) and (2.94) by positive terms.

Remark 2.7.3 We stress that to get rid of singular terms in (2.94) (that in blue) that cannot
be bounded at ±π/2 we use the Hardy-Poincaré inequality given in Lemma 2.6.1.

Lemma 2.7.6 Let n ∈ N∗. Then there exists a positive constant s1 > 0 such that, for all

s ≥ s1max(T + T 2, T 2n), (2.96)

the following inequality holds∫ T

0

∫
ωdeg

Kdeg dQ ≥
∫ T

0

∫
ωdeg

4sθ|∂xz|2 + η22s
3θ3|z|2dQ, (2.97)

with η2 as in (2.86) and Kdeg be given by (2.93).

Lemma 2.7.7 There exists a positive constant s2 > 0 such that, for all

s ≥ s2(T + T 2), (2.98)
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the following inequality holds∫ T

0

∫
ωbdy

Kbdy dQ ≥
∫ T

0

∫
ωbdy

2sθ|∂xz|2 + 2sθ|z|2 + η21
2
s3θ3|z|2dQ, (2.99)

with η1 as in (2.86) and Kbdy be given by (2.94).

Remark 2.7.4 Observe that the constant s1 in Lemma 2.7.6 depends of n while the constant
s2 in Lemma 2.7.7 does not depend of n.

The following lemma is a straightforward combination of Lemmas 2.7.6 and 2.7.7.

Lemma 2.7.8 Let n ∈ N and R0 = R0(a
′, b′) := max(s1, s2). Then for all

s ≥ R0max(T + T 2, T 2n), (2.100)

it holds∫ T

0

∫
ωbdy

Kbdy dQ+

∫ T

0

∫
ωdeg

Kdeg dQ ≥
∫ T

0

∫
I\ωcon

(2sθ|∂xz|2 + C8s
3θ3|z|2)dQ. (2.101)

We let C8 = C8(a
′, b′) := min(η21, η

2
2) > 0 and I\ωcon := (−π/2, π/2)\ωcon = ωbdy ∪ωdeg.

In the subcontrol region ωcon = (−b′,−a′) ∪ (a′, b′), we have the following

Lemma 2.7.9 Let n ∈ N∗ and assuming (2.95) and (2.100). Then there exist positive con-
stants C9, C12 > 0 such that the following inequality holds

|Kcon | ≤ C9sθ|∂xz|2 + C12s
3θ3|z|2. (2.102)

Thanks to (2.90), (2.92), Lemmas 2.7.8 and 2.7.9, we immediately obtain the following.

Lemma 2.7.10 Let n ∈ N∗. Then for all s ≥ R0max(T + T 2, T 2n), one has∫ T

0

∫
I\ωcon

(2sθ|∂xz|2 + C8s
3θ3|z|2)dQ ≤∫ T

0

∫
ωcon

(C9sθ|∂xz|2 + C12s
3θ3|z|2)dQ+

1

2

∫
Q

∣∣e−φPng
∣∣2 dQ. (2.103)

Step 3: Coming back to the function g(t, x) and completion of the proof
In the following lemma, we come back to g.

Lemma 2.7.11 Let n ∈ N∗ and assume (2.103). Then there exist positive constants C13, C16

and C17 such that for all s ≥ R0max(T + T 2, T 2n), it holds∫
Q
(C13sθ|∂xg|2 + (C8/2)s

3θ3|g|2)e−2φdQ ≤∫ T

0

∫
ωcon

(C16sθ|∂xg|2 + C17s
3θ3|g|2)e−2φdQ+

1

2

∫
Q

∣∣e−φPng
∣∣2 dQ. (2.104)
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In the following lemma we prove that terms similar to the second term of the right-hand side
of (2.104) dominate the first one. We achieve this by the use of a smooth cut-off function.

Lemma 2.7.12 Let n ∈ N∗ and assume (2.104). Then there exists a positive constant C19 > 0

such that for all s ≥ R0max(T + T 2, T 2n), one has∫
Q
(C13sθ|∂xg|2 + (C8/2)s

3θ3|g|2)e−2φdQ ≤
∫ T

0

∫
ωa,b

C19s
3θ3|g|2e−2φdQ+

∫
Q

∣∣e−φPng
∣∣2 dQ.
(2.105)

We can now complete the proof of Carleman estimate (2.74).
Proof . (Proof of Proposition 2.6.4) It suffices to consider Lemma 2.7.12, and let

R1 = R1(β, ρ) :=
min(C13, C8/2)

max(1, C19)
.
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Introduction

1.1 . Purpose and motivation

The second part of the thesis explores a mathematically sound approach to understanding visual
illusions in human perception using neuronal dynamics. Neuronal dynamics refers to the patterns
of activity and interactions among neurons that give rise to our ability to see and understand
the world. Our visual system processes information in different stages, with specialized neurons
at each stage extracting specific details from what we see. The visual system shows dynamic
and widespread activity patterns, from detecting basic features like edges and orientations to
putting everything together and making sense of it.

The brain area which detects basic features such as spatial position, edges, local orientations
and direction in visual stimuli from the retina is the primary visual cortex (hereafter referred
to as V1), [HW59; HW62]. Evidence [EC79a; Bre+01; BC02; GST03; Tas95] suggests that
regular geometrical patterns spontaneously emerge in V1 when its activity is due solely to the
noisy internal fluctuation of its neurons, that is, in the absence of visual stimuli or sensory
inputs. These patterns can be obtained using the Neural Fields (NF) equations modelling the
cortical activity in V1.

In their pioneer work [EC79a], by using bifurcation techniques near a Turing-like instability,
Ermentrout and Cowan found that the 2-dimensional two-layer NF equations derived by Wilson
and Cowan in [WC73] is sufficient to theoretically describe the spontaneous formation (i.e., in
the absence of external stimuli or visual sensory inputs) of some geometric patterns (horizontal,
vertical and oblique stripes, square, hexagonal and rectangular patterns etc.) in V1. These
patterns result from activity spreading over the field and correspond to states of highest cortical
activities in V1. When they are transformed by the inverse of the retino-cortical map existing
between the visual field and V1 [Too+82; Sch77] (refer to Section 2.4.2 of Chapter 2), what
we obtain in the retina in terms of images are geometric visual hallucinations. They correspond
to some of the form constants that Klüver had meticulously classified [Klü66], mainly those
contrasting regions of white and black (funnel, tunnel, spiral, checkerboard, phosphenes), see
Figs. 1.1 and 1.2 for visual illustration of funnel and tunnel patterns. The geometric forms of
spontaneous and hallucinatory patterns are predicted by the neural dynamic equation used to
model the cortical activity in V1 combined with the bijective non-linear retino-cortical mapping
between the visual field and V1. Therefore, while spontaneous patterns that emerge in V1 give
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Figure 1.1: Funnel pattern in the retina (left).
On the right the corresponding pattern in V1
after applying the retino-cortical map.

Figure 1.2: Tunnel pattern in the retina (left).
On the right the corresponding pattern in V1
after applying the retino-cortical map.

us insight into the underlying architecture of the brain’s neural network, little is known about
how precisely the intrinsic circuitry of the primary visual cortex generates the patterns of activity
that underlie the visual illusions induced by visual stimuli from de retina.

We study in this thesis the interaction between retinal stimulation by redundant geomet-
rical patterns and the cortical response in the primary visual cortex focusing on the MacKay
effect [Mac57] and Billock and Tsou’s experiments [BT07]. We propose using the Amari-type
equation combined with the retino-cortical map to reproduce these psychophysical experiments
theoretically. The Amari-type equation (that we will derive in Section 2.3.2 of Chapter 2)
is a mathematical model of neural activity that takes into account the interaction between
excitatory and inhibitory neurons in a cortical tissue.

Roughly speaking, we utilize the Amari-type equation to describe the behaviour of neurons
in V1 when the retina is exposed to visual stimuli. The model successfully replicates the MacKay
effect and Billock and Tsou’s visual illusions provided that the visual stimuli used in each of
theses experiments are well-modelled.

Although our approach differs from that of Nicks et al. [Nic+21] in describing the MacKay-
like effect, it agrees with the latter in emphasizing the role of inhibitory neurons in shaping the
response of excitatory neurons to visual stimuli. This is consistent with the idea that inhibitory
neurons play an important role in shaping the receptive fields of neurons in the visual cortex and
that the interaction between excitatory and inhibitory neurons is crucial for visual processing.

Overall, we provide a novel perspective on the mechanisms underlying the MacKay-type
effect, and highlights the importance of considering both excitatory and inhibitory neurons in
models of visual processing.

1.2 . Strategy of study and presentation of our results

In Section 1.2.1, we present the strategy employed to provide a theoretical description of the
MacKay effect [Mac57] and the psychophysical experiments conducted by Billock and Tsou
[BT07]. Subsequently, in Section 1.2.2, we present and discuss our findings.

Our work originated in [TPC22], where we developed a novel approach to describe the
MacKay effect (specifically, redundant stimulation) [Mac57] and Billock and Tsou’s experi-
ments [BT07]. Instead of relying on traditional mathematical tools such as bifurcation analysis,
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Figure 1.3: “MacKay-rays” [Mac57]: funnel pattern
with hight redundant information in the fovea.

Figure 1.4: “MacKay-target” [Mac57]: tunnel
pattern with hight redundant information.

perturbation theories, or multiscale analysis, commonly used to address neuroscience questions,
we sought alternative methods via control of neural fields equations.

Indeed, these classical mathematical tools are highly suitable for describing phenomena like
spontaneous geometric visual hallucinations that emerge in the visual field due to sudden qual-
itative changes in specific physiological parameters [Bre+01; EC79a; GST03; Tas95]. They
also prove effective in understanding sensory-driven and self-organized cortical activity interac-
tions when the visual stimulus exhibits regular shape and complete distribution across the visual
field, with symmetry respecting a subgroup of the Euclidean group [Nic+21]. In simple terms,
these tools are appropriate when dealing with equations that exhibit complete equivariance
(commutation) with respect to a given group, typically the Euclidean group.

However, the original MacKay stimulus, known as the “MacKay rays” (refer to Figure 1.3),
which plays a key role in the MacKay visual phenomena, consists of funnel patterns with high
levels of redundant information in the fovea. As a result, the Euclidean symmetry of the funnel
patterns is disrupted, rendering the “MacKay rays” visually irregular.

Similarly, the visual stimuli used in Billock and Tsou’s experiments consist of funnel or tunnel
patterns localized either in the fovea or periphery of the visual field (see, for instance, Figure 1.5
for a funnel pattern localized in the fovea). Consequently, Billock and Tsou’s visual stimuli do
not exhibit complete regularity or complete distribution across the visual field. Accordingly,
neither the works of [Bre+01; EC79a] nor [Nic+21] can be directly employed to describe these
complex visual phenomena.

Notice that even though the work made in [Nic+21] provides numerical simulations for
replicating Billock and Tsou’s experiments (including those for rotating solutions that are not
considered in this thesis), it does not theoretically describe Billock and Tsou’s experiments
[BT07] but rather a variant of the MacKay effect where the visual stimulus is not the “MacKay
rays” nor the “MacKay target” (see Figure 1.4) but a regular (symmetric with respect to some
subgroups of the plane Euclidean group) funnel or tunnel patterns, which is fully distributed in
the visual field as that of Figure 1.1 and 1.2.
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Figure 1.5: Billock and Tsou’s experiments: the presentation of funnel pattern stimulus in the
fovea (centre of the visual field) induces an illusory perception of tunnel pattern in surround after
a flickering of the empty region (the white region surrounding the stimulus pattern on the left).
Adapted from [BT07, Fig. 3].

1.2.1 . Strategy of study

In our study, we begin by assuming that neurons in the primary visual cortex (V1) are intercon-
nected in a homogeneous and isotropic manner.

Accordingly, we employ the following Amari-type equation [Ama77, Eq. (3)] to describe
the cortical activity dynamics in V1, which corresponds to the two-dimensional space R2:

∂ta = −a+ µω ∗ f(a) + I. (NF)

Here a : R+ × R2 → R is a function of time t ∈ R+ and the position x ∈ R2, the sensory
input I represents the projection of the visual stimulus into V1 by the retino-cortical map. The
connectivity kernel ω(x, y) = ω(|x − y|) models the strength of connections between neurons
located at positions x ∈ R2 and y ∈ R2. The function f captures the nonlinear response of
neurons after activation, while the parameter µ > 0 characterizes the intra-neural connectivity.
The symbol ∗ denotes spatial convolution, as defined in (1.2) below.

Although the more plausible biological neuronal dynamics in V1 involve considering the
orientation preferences of “simple cells”, as done in [Bre+01, Eq. (1)] when describing contoured
spontaneous cortical patterns, we initially neglect the orientation label entirely and focus on
equation (NF) (which is identical to [Bre+01, Eq. (16)] when the sensory input is zero). This
simplification is motivated by the fact that equation (NF) is sufficient for describing spontaneous
funnel and tunnel patterns, and we expect it also to be suitable for describing psychophysical
experiments involving these patterns. Additionally, our choice aligns with the advice of L.
Nirenberg (Abel Prize 2015): “ If you want to study a high-dimensional phenomenon, start by
considering the dimension 2”.

In these experiments, observers perceive an illusory afterimage in their visual field when
viewing the visual stimulus, and this afterimage persists for a few seconds. Therefore, describing
these intriguing visual phenomena in V1 using equation (NF) relies on explicitly studying the
map Ψ, which associates the sensory input I with its corresponding stationary output Ψ(I).
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The stationary output represents the stationary solution of equation (NF) for a given I. Our goal
is to prove that the cortical activity a(t, ·), which is the solution of equation (NF), exponentially
stabilizes towards Ψ(I) as t → +∞. Then, perform qualitatively and quantitatively study of
this stationary state in a convenient space.

This strategy can be thought of as a controllability approach, firstly because of the asymp-
totic study (qualitatively and quantitatively) of an input-output map and secondly since the
sensory input in equation (NF) contains a control function which models the specificity of visual
stimulus used in each experiment, for instance, the redundant information in the “MacKay rays”
or the fact that funnel pattern in Billock and Tsou’s experiments is localised in the visual field.

While sensory inputs in Billock and Tsou’s experiments are time-varying, we found in our
study that a temporal flicker of the complementary region where the stimulus is not localized is
not necessary to reproduce these intriguing visual phenomena. Notice that this observation was
already made in [Nic+21]. Our interpretation is that the phenomena of Billock and Tsou wholly
result from the underlying non-local and nonlinear properties of neural activity in V1 rather than
the temporal flickering of the complementary region where the stimulus is not localized.

1.2.2 . Presentation of results

To accurately model the visual stimuli used in these experiments, it is crucial to consider the
redundant information present in the center of the funnel patterns known as the “MacKay rays”.
In our previous paper [TPC22], we established the following:

In order to reproduce the MacKay effect associated with this stimulus, equation (NF) needs
to incorporate the redundant information present in the center of the funnel patterns. This
observation arises from the underlying Euclidean symmetry of V1, which imposes restrictions on
the geometric shapes of sensory inputs capable of inducing cortical illusions in V1. Interestingly,
this mathematical evidence supports the observation previously made by MacKay in paragraph
2 of [Mac57]: “[· · · ] in investigations of the visual information system, it might be especially
interesting to observe the effect of highly redundant information patterns since the nervous
system might conceivably have its own ways of profiting from such redundancy [· · · ]” .

To model the redundant information in the center of the funnel pattern, we employed
a control function equal to the characteristic function of a neighboring region of the fovea.
Through numerical simulations, we demonstrated that equation (NF), together with an odd
sigmoidal response function, successfully reproduces the MacKay effect associated with the
“MacKay rays”. We employed a similar approach to reproduce the MacKay effect associated
with the “MacKay target”, except that the control function was chosen as the characteristic
function of two symmetric rays converging towards the fovea.

Simultaneously, we presented numerical results indicating that equation (NF), when com-
bined with a non-symmetric (neither odd nor even) sigmoid response function, can accurately
replicate Billock and Tsou’s psychophysical experiments [BT07].

Having established that equation (NF), with an appropriate modeling of MacKay and Billock
and Tsou’s visual stimuli, reproduces these phenomena, our next objective was to provide
a mathematical proof of the numerical results obtained in [TPC22].Therefore, in the paper
[TPC23a], we addressed this question by heeding another crucial piece of advice from Nirenberg:
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“Have you tried to linearize? ” Surprisingly, we discovered that the linearized of (NF) is sufficient
to describe and replicate the MacKay effect, indicating that the nonlinear nature of the response
function does not play a role in its reproduction. Specifically, the saturation effect only serves to
dampen high oscillations in the field. However, the linearized of (NF) fails to reproduce Billock
and Tsou’s phenomena. Intriguingly, equation (NF) produces either the “strong” (when the
illusory contours in the afterimage does not extend through the physical stimulus) or “weak”
(when the illusory contours in the afterimage extend through the physical stimulus) Billock
and Tsou’s phenomena depending on the shape of the nonlinearity used to model the neuronal
response function.

In the paper [CPT23] (which will be available online soon), we provide a more detailed
mathematical proof of the MacKay effect and the impossibility of reproducing Billock and Tsou’s
phenomena using the linearized version of (NF), employing complex and harmonic analysis tools
and sharp inequality estimates. Specifically, we exploit the advantageous properties of the
Fourier transform of Schwartz functions and tempered distributions. Additionally, by utilizing
equation (NF) with a weak nonlinearity, we present the mathematical description of the “weak”
Billock and Tsou’s experiments, using tools from real and harmonic analysis. To the best
of our knowledge, this is the first instance where such an approach has been employed to
describe biological phenomena in neuroscience. This new approach offers the advantage of
accommodating any geometrical visual stimulus, particularly those localized in the visual field.
We hope that this perspective on the question can serve as a foundation for future investigations,
such as describing other psychophysical phenomena including the apparent motion in quartet
stimulus [GSH96], the flickering wheel illusion [SV13], the spin in the enigma stimulus of Isia
Léviant [ZWF93; Lev96], or other psychophysical phenomena involving spontaneous cortical
patterns such as the Barber pole, Café wall, Fraser spiral illusions, etc..

While much remains to be understood about the mechanisms underlying MacKay-type
visual illusions, our study provides valuable insights into how the visual cortex processes contrast
information from “simple” cortical patterns.

1.3 . Plan of this part

The structure of this thesis part is outlined as follows: Section 1.4 begins by introducing the
general notations that will be utilized throughout the subsequent chapters.

In Chapter 2, we delve into the neural activity of spiking neurons. This chapter provides
a comprehensive overview of the biophysics underlying neural communication in Section 2.2
and revisits the derivation of the Wilson-Cowan model [WC73] and the Amari model [Ama77]
of cortical activity in Section 2.3. In Section 2.4, we present the retinotopic structure of
the primary visual cortex as well as the analytical derivation of the retino-cortical map. We
also overview the mathematical analysis leading to simple geometric visual hallucinations that
spontaneously emerge in the retina, using bifurcation analysis of the Amari-type Equation (NF)
near a Turing-like instability, in Section 2.5.

In Chapter 3, we investigate the mathematical description of MacKay-type visual illusion, fo-
cusing on the MacKay effect [Mac57] and Billock and Tsou’s experiments [BT07]. Section 3.1.1
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and 3.1.2 present the psychophysical experiments reported in these two papers. Section 3.1.3
discusses a preliminary result that describes the MacKay-like effect using neural fields equations
via bifurcation theory and multiscale analysis. In Section 3.2, we highlight a motivation for
using equation (NF) to describe these psychophysical experiments, and we present assumptions
on model parameters used in this equation. In Section 3.3, we recall some preliminary results
about the well-posedness of equation (NF) and define the binary pattern necessary to represent
cortical activity in terms of white and black zones. Using equation (NF), in Sections 3.4 and
3.5, we investigate the description of the MacKay effect and Billock and Tsou experiments,
respectively. In Section 3.4.4 and 3.5.2, we present numerical results to bolster our theoretical
study.

Chapter 4 investigates the existence of equilibrium in a multi-layers neural fields population
model of Wilson-Cowan when the sensory input is a proportional feedback that acts only on
the system’s state of population of excitatory neurons. There, we provide a mild condition on
the response functions under which such an equilibrium exists. The interest of this work comes
when we want to study how to disrupt pathological brain oscillations associated with Parkinson’s
disease by focusing on stimulation and measurements of the excitatory neural population.

In Appendix A, we provide additional mathematical complements that were essential in
describing the MacKay effect visual illusions and the reproducibility of Billock and Tsou’s ex-
periments in Chapter 3.

Finally, in Appendix B, we provide a toolbox implemented with the Julia language to perform
numerical implementation for the MacKay effect and Billock and Tsou’s experiments.

1.4 . General notations

This section introduces general notations that we will use throughout the following.
Unless otherwise stated, p will denote any real number satisfying 1 ≤ p ≤ ∞, and q will

denote the conjugate to p given by 1/p+1/q = 1. We adopt the convention that the conjugate
of p = 1 is q = ∞ and vice-versa.

For d ∈ {1, 2} and Ω ⊂ Rd (with possibility that Ω = Rd) we denote by Lp(Ω) the
Lebesgue space of class of real-valued measurable functions u on Ω such that |u| is integrable
over Ω if p <∞, and |u| is essentially bounded over Ω when p = ∞. We endow these spaces
with their standard norms

∥u∥pp =
∫
Ω
|u(x)|pdx, and ∥u∥∞ = ess sup

x∈Ω
|u(x)|.

We let Xp := C([0,∞);Lp(Rd)) be the space of all real-valued functions u on Rd× [0,∞)

such that, u(x, ·) is continuous on [0,∞) for a.e., x ∈ Rd and u(·, t) ∈ Lp(Rd) for every
t ∈ [0,∞). In Xp, we will use the following norm ∥u∥L∞

t Lp
x
= sup

t≥0
∥u(·, t)∥p.

For x ∈ R2, we denote by |x| its Euclidean norm, and the scalar product with ξ ∈ R2 is
defined by ⟨x, ξ⟩ = x1ξ1 + x2ξ2.

We let S(Rd) be the Schwartz space of rapidly-decreasing C∞(Rd) functions, and S ′(Rd)

be its dual space, i.e., the space of tempered distributions. Then, S(Rd) ⊂ Lp(Rd) and
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Lp(Rd) ⊂ S ′(Rd) continuously. The Fourier transform of u ∈ S(Rd) is defined by

û(ξ) := F{u}(ξ) =
∫
Rd

u(x)e−2πi⟨x,ξ⟩dx, ∀ξ ∈ Rd. (1.1)

We highlight that, for 1 ≤ p ≤ 2, the above definition can be continuously extends to function
u ∈ Lp(Rd) by density and Riesz-Thorin interpolation theorem. Whereas one can extend the
above by duality to S ′(Rd). Therefore, apart from functions in Lp(Rd), 1 ≤ p ≤ 2 whose
Fourier transform may be directly computed by using the formula (1.1), we stress that the
Fourier transform of functions belonging to the space Lp(Rd), 2 < p ≤ ∞ is usually computed
by invoking this duality. We recall that F is a linear isomorphism from S(Rd) to itself and from
S ′(R) to itself.

Finally, due to generalized Young-convolution inequality, the spatial convolution of two
functions u ∈ L1(Rd) and v ∈ Lp(Rd), 1 ≤ p ≤ ∞ is defined by

(u ∗ v)(x) =
∫
Rd

u(x− y)v(y)dy, x ∈ Rd. (1.2)

62



CHAPTER 2

Dynamics of neuronal populations and visual
hallucinations

2.1 . Introduction

The population formulation of neuronal activity is commonly used to elucidate the interactions
between excitatory and inhibitory model neurons using neural fields (NF) equations. These
equations provide a continuous description of the dynamics exhibited by a large population of
synaptically coupled neurons. Consequently, NF equations serve as a valuable tool for studying
and describing various neural processes, including but not limited to working memory [Lai+02],
memory retrieval [Rec+15], motion perception [Gie12], pattern recognition [DR09] and visual
hallucinations [EC79a; Bre+01].

Researchers can gain insights into neuronal populations’ collective behaviour and dynamics
using the neural fields equations. These equations facilitate the exploration of phenomena that
emerge from the interactions and activities of many neurons, enabling a more comprehensive
understanding of complex neural processes. The wide range of applications of NF equations
demonstrates their utility in investigating diverse aspects of neural function and cognition.

Up to our knowledge the first attempt at developing a continuum approximation of neural
activity is attributed to [Beu56]. He considered cells to have some properties similar to those
of neurons. By assuming that those cells are randomly distributed in a given volume of model
brain tissue and that they are only excitatory and sensitive (i.e., non-refractory), he was able
to describe the activity of cells becoming activated per unit time at the instant t. Besides the
inconsideration of refractoriness, Beurle’s modelling of neural activity was over-simplified in the
sense that many findings such as [RH59; HW63; HW65; Fre72; Fre68a; Fre68b] indicated that,
the cells in the brain are both excitatory and inhibitory.

It was [WC72; WC73] who extended Beurles work to include excitatory and inhibitory
neurons and refractoriness. Thus Wilson-Cowan model of neural (synaptic) activity is a two-
layer network of a population of excitatory and inhibitory neurons.

Following the lines of such investigation, [Ama77] studied the dynamics of pattern formation
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in one layer of neural activity, including excitatory and inhibitory neurons, with assumptions of
short-range excitation and long-range inhibition. Moreover, it should be noted that the Amari
model can also be obtained (see, [ET10]) from Wilson-Cowan’s model by assuming that the
inhibition is fast so that we may eliminate its dynamics.

NF equations can also be derived [Bre10; Dec+08; FTC09] from models of interconnected
neural networks (NN). NN can be defined as an aggregate constituted of a large number of
simple elements, neurons, organized in a strongly interconnected network. A first description
of such NN goes up to the work of [MP43] in which they proposed formal neuron as binary
threshold element. The study of NN gained renewed interest, especially among physicists,
following an article by [Hop84] where he showed how specific networks have a structure similar
to that of spin glasses and can be used as memory associative.

Besides the existence of Glia cells in the nervous system and non-spiking neurons in the
mammalian retina [Lli03], throughout this thesis, we concentrate only on neural activity of
spiking neurons, and we refer to [Bre11; Coo05; Coo10; Erm98] for a more detailed review on
NF equations. For a recent advancement in neuronal population models, see [Coo23].

The plan of this chapter is the following: We provide a comprehensive overview of the
biophysics underlying neural communication in Section 2.2 and revisit the derivation of the
Wilson-Cowan model [WC73] and the Amari model [Ama77] of cortical activity in Section 2.3.
In Section 2.4, we present the retinotopic structure of the primary visual cortex as well as the
analytical derivation of the retino-cortical map. We also overview the mathematical analysis
leading to simple geometric visual hallucinations perceived in the retina, associated with cor-
tical patterns that spontaneously emerge in V1, using bifurcation analysis of the Amari-type
Equation (NF) near a Turing-like instability, in Section 2.5.

2.2 . Biophysics of neuronal communication

In this section, we recall some elements of neural systems needed for deriving a spiking neuron’s
neuronal dynamics, such as action potential, spike trains, synaptic processing, and postsynaptic
potential. For a comprehensive introduction to the biophysics of neurons in more detail, we
suggest the books such as [Car12; Kan+00; Pur+04; DA01] primarily devoted to neuroscience,
and [Izh07; ET10; Bre14; Ger+14; GK02] with emphasis on dynamical systems in neuroscience.

2.2.1 . A Spiking Neuron

A neuron is a fundamental cell that comprises the intricate neural circuits of the brain. Just like
other cells (as observed by Ramón y Cajal in his groundbreaking work in neuroscience [Ram09]),
a neuron consists of a cell body, also known as the soma. However, what sets neurons apart
is their unique structure: they possess branching extensions that form a tree-like configuration.
These extensions include receptive dendrites at one end and transmitting axons at the other
end (refer to Figure 2.1).

The dendrites serve as the entry points for information coming from other neurons, func-
tioning as input signals. Conversely, the axon carries the processed information and transmits it
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Figure 2.1: A basic neuron (created in BioRender.com)

to one or more downstream neurons, which then receive these output signals. This bidirectional
flow of information distinguishes neurons as functionally asymmetric entities.

A neuron connects with numerous other nerve cells through specialized junctions known as
synapses. On average, a single nerve cell can form approximately 10,000 connections. While
electrical signals propagate within the nerve cell’s branches, at the synapse, the communication
between neurons primarily occurs through chemical messages called neurotransmitters, which
are stored in specialized structures called synaptic vesicles. The neuron transmitting the message
is commonly called the presynaptic cell, while the neuron receiving the message is known as the
postsynaptic cell.

Input signals a neuron receives generate electrical transmembrane currents, causing changes
in its membrane potential. These synaptic currents produce alterations known as postsynaptic
potentials (PSPs). Small currents result in minor PSPs, while larger currents yield significant
PSPs. The neural membrane contains voltage-sensitive channels that can amplify these PSPs.
In some instances, when the PSPs reach a critical level, they trigger the generation of an action
potential or spike at a specific region called the axon hillock. The action potential represents
an abrupt and transient change in the membrane voltage, which propagates, without distortion,
along the neuron’s axon to the axon terminals. These axon terminals contain the synapses
through which the neuron communicates with its target neurons.

2.2.2 . Synaptic signal transmission between two neurons

When a pulse, often referred to as a spike or action potential, travels along the presynaptic
neuron, it eventually reaches the end of the membrane, known as the axon terminal. This
arrival triggers the influx of calcium ions (Ca2+) into the cell through specialized channels in the
membrane. The increase in calcium concentration prompts the movement and fusion of vesicles
containing neurotransmitters with the cell membrane [FZ85], see Figure 2.2. This process,
known as exocytosis, releases the neurotransmitters into the synaptic cleft. Subsequently,
the neurotransmitters diffuse across the synaptic cleft and bind to receptors situated on the

65



CHAPTER 2. NEURONAL DYNAMICS AND HALLUCINATIONS Cyprien TAMEKUE

Figure 2.2: Process of synaptic signal transmission (Created in BioRender.com)

postsynaptic membrane of the receiving neuron.
The binding of neurotransmitters to their receptors initiates the opening of sodium ion

(Na+) channels on the postsynaptic membrane. This allows sodium ions to enter the cell,
propagating the action potential towards the dendritic or somatic membranes of the postsynaptic
neuron. As a result, currents flow through the dendrites, contributing to the overall electrical
activity of the postsynaptic neuron.

It is important to note that the extent of sodium ion flow into the postsynaptic cell depends
on the amount of neurotransmitter binding to the receptors. Insufficient neurotransmitter bind-
ing may fail to reach the threshold potential required to trigger an action potential. Hence,
the response of the postsynaptic neuron follows an “all or nothing” principle. Sufficient neuro-
transmitter presence leads to initiating the action potential, resulting in impulse transmission
and depolarization of the postsynaptic membrane potential. Conversely, if neurotransmitter
release is inadequate, the neurotransmitters are degraded, and the sodium-potassium pumps
work to restore the resting potential in the postsynaptic cell, causing hyperpolarization of the
postsynaptic membrane potential.

A single synaptic event due to the arrival of an action potential at time T induces a synaptic
current of the form [Erm98],

Isyn(t) = gsyn(t− T )(Vsyn − V (t)). (2.1)

Here V is the voltage of the postsynaptic neuron, Vsyn is the synaptic reversal potential and
gsyn(t) is the change in synaptic conductance with gsyn(t) = 0 for t < 0. A typical form for
gsyn(t) is the difference of exponentials

gsyn(t) = g

(
1

τ d
− 1

τ r

)−1

(e−t/τr − e−t/τd)H(t); (2.2)
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whereH(t) is the Heaviside step function, g is constant conductance, and τd,r are time constants
determining the rise and fall of the synaptic response, respectively. There are two limits that
are usually used:

gsyn(t) = gα2te−αtH(t) as τd → τr = α−1, (2.3)

and
gsyn(t) = ge−t/τd as τr ≪ τd. (2.4)

The sign of Vsyn relative to the resting potential Vrest ≈ −65mV determines whether the
synapse is excitatory (Vsyn > Vrest) or inhibitory (Vsyn < Vrest).

2.3 . Neuronal population models

In the preceding section, we briefly discussed several key properties related to the biophysics of
individual spiking neurons and the synaptic interactions between pairs of such neurons. However,
it is important to recognize that the brain comprises an extensive network of millions of neurons
organized into distinct brain areas. Within each brain area, further subdivisions exist, forming
different subregions, and within these subregions, multiple layers can be identified. Moreover,
each layer consists of diverse cell types with unique characteristics.

Considering the complexity of the brain’s structure, this section provides an overview of two
prominent models that describe the activity of spiking neurons. These models have significantly
influenced the field of neuronal dynamics based on our current understanding.

2.3.1 . Wilson-Cowan equations

Based on a statistical mechanical approach, Wilson-Cowan’s equations are mean-field models,
which describe the average behaviour of a large population of neurons rather than the behaviour
of individual neuron. Despite its simplicity, these equations capture many essential features of
cortical dynamics, such as the emergence of oscillations and the propagation of waves of activity
[Coo05; EC79b]. Let us present the derivation of the model by simplifying the parameters
appearing in the original one (we refer to [WC72; WC73] for more details).

Consider an interacting population of excitatory and inhibitory neurons which are homo-
geneously and isotropically distributed within a two-dimensional nervous tissue. Then, assume
that all possible types of interaction are permitted (excitatory-excitatory, excitatory-inhibitory,
inhibitory-excitatory and inhibitory-inhibitory) so that each type will be taken to be a function
only of the distance between cells on the tissue.

We let ae(x, t) (resp. ai(x, t)) denote the proportion of excitatory (resp. inhibitory) neurons
becoming active per unit time at the instant t at the point x. Assume that an excitatory (resp.
inhibitory) cell is only sensitive (i.e., able to trigger a spike after a supra stimulation) or in its
absolutely refractory period with duration1 re (resp. ri) (the minimum duration between two
spikes, i.e., the period in which it is incapable for the cell to generate an action potential no

1it is assumed that neuron is activated only if it receives a supra-threshold excitation. So, we
may treat the relative refractory period of neurons as the moment it is sensitive.
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matter how intense the stimulus). So neurons will become activated only if their postsynaptic
potentials exceed a threshold and if they are the same time sensitive.

Let ωjj′(x) measure the probability that a postsynaptic neuron of type j′ is connected
with a presynaptic neuron of type j at a distance x away. Here, j and j′ belong to the set of
excitatory and inhibitory neurons.

It is also assumed that excitatory (resp. inhibitory) cells are efferents neurons (resp. in-
terneurons), so excitatory neurons’ activity is transferred from one anatomical region to another.
Then they receive different sensory (external) inputs he(x, t) (resp. hi(x, t)) at time t and po-
sition x from other regions of the brain (e.g. the thalamus etc.).

To average out rapid temporal variations taking place on a time scale shorter than the
neural membrane time constant, it is assumed that the absolutely refractory period re (resp.
ri) of excitatory (resp. inhibitory) neurons is much less than the membrane time constant αe

(resp. αi) of excitatory (resp. inhibitory) cells.
Finally, if the expected number of excitatory (resp. inhibitory) neurons receiving at least

supra-threshold excitation during an interval δt at t is statistically independent of the sensitive
proportion, then at the limiting case when δt→ 0, the dynamics of excitatory (resp. inhibitory)
cells becoming active at time t at position x are governed by the following coupling nonlinear
integrodifferential equations
αe
∂ae
∂t

(x, t) = −ae(x, t) + µe(x, t)Se ((ωee ∗ ae(·, t))(x)− (ωie ∗ ai(·, t))(x) + he(x, t)) ,

αi
∂ai
∂t

(x, t) = −ai(x, t) + µi(x, t)Si ((ωei ∗ ae(·, t))(x)− (ωii ∗ ai(·, t))(x) + hi(x, t)) ,

(2.5)
where

µe(x, t) = 1− reae(x, t) and µi(x, t) = 1− riai(x, t).

Equation (2.5) is a two-layer synaptic activity of interconnected excitatory and inhibitory
neurons in nervous tissue. The functions Se (resp. Si) are the response functions for excitatory
(resp. inhibitory) cells which are also usually called the firing rate functions. They give the
expected proportion of the cells receiving as least threshold excitation per unit of time as a
function of mean integrated excitation generated within excitatory (resp. inhibitory) neurons.

The numerical simulation done in [WC72] provides that a convenient approximation for Sj ,
j = e, i, can be a logistic function.

Sj(z) =
1

1 + exp(−γ(z − κ))
. (2.6)

The parameter γ > 0 determines the slope or sensitivity of the input-output characteristics of
the population, and κ > 0 is the threshold beyond which a spiking neuron triggers a pulse.

68



Cyprien TAMEKUE 2.3. NEURONAL POPULATION MODELS

2.3.2 . The Amari-type equation

The Amari-type equation describes the dynamics of the membrane potential of a neuron, which
is the electrical potential difference across the cell membrane. This nonlinear integrodifferential
equation considers the ion channels and synapses that contribute to the membrane potential
and the neuron’s firing rate.

The Amari-type equation is a mathematical model of neural activity that takes into account
the interaction between excitatory and inhibitory neurons in cortical tissue and can be derived
from the Wilson-Cowan equations (2.5) [ET10, Chapter 12, Section 12.4.1].

In Wilson-Cowan equations (2.5) , the terms reae(x, t) and riai(x, t) are the time-coarse
grained approximations of

Re(x, t) =

∫ t

t−re

ae(x, t
′)dt′ and Ri(x, t) =

∫ t

t−ri

ai(x, t
′)dt′, (2.7)

which represent respectively the excitatory and inhibitory cell proportions, which are absolutely
refractory into time bins of size re and ri at the location x.

The absolute refractory period determines the maximum frequency of action potentials that
can be generated per unit of time at any point along the axon membrane, and the frequency of
the spike train is directly related to the intensity of the stimulus. It follows that the proportion of
absolutely refractory cells is associated with the intensity of the stimulus. Therefore, uniformly
with respect to a location x on the tissue and a given time t, we substitute reae and riai by
parameters that are constants with respect to x and t and which depend only on the intensity
of the stimulus, namely

νe := νe(stimulus intensity) and νi := νi(stimulus intensity). (2.8)

In other words, the parameters 0 ≤ νe, νi ≤ 1 are rates that express how a substance acts
respectively on excitatory and inhibitory activity. Then, Equation (2.5) can be recast as

αe
∂ae
∂t

(x, t) = −ae(x, t) + µeSe ((ωee ∗ ae(·, t))(x)− (ωie ∗ ai(·, t))(x) + he(x, t)) ,

αi
∂ai
∂t

(x, t) = −ai(x, t) + µiSi ((ωei ∗ ae(·, t))(x)− (ωii ∗ ai(·, t))(x) + hi(x, t)) ,

(2.9)
where µe := 1− νe and µi := 1− νi.

Further assumptions on inhibitory cells can contribute to reducing the two-layer equations
(2.9) to single-layer neural activity’s equation of Amari-type [Ama77, Eq. (3)]. Suppose that
the neural membrane time constant of inhibition is much less than that of excitation, αi ≪ αe,
say αi = 0, for instantaneous inhibition.

Supported by experimental data comparing the firing properties of excitatory versus in-
hibitory neurons in the cortex [McC+85], we may assume that the firing rate function for the
inhibitory cells is linear such that Si(x) = γx for some positive constant 0 < γ ≤ 1 being
the gain of the sigmoid function Si. Finally, if we neglect the term describing the interaction
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between inhibitory cells, ωii = 0, to simplify the computations, then one obtains the following
single-layer of synaptic activity of neurons in cortical tissue:

αe
∂ae
∂t

(x, t) = −ae(x, t) + µeSe

(∫
R2

ω(x− y)ae(y, t)dy + h(x, t)

)
, (2.10)

where,
h(x, t) := he(x, t)− γµi(ωie ∗ hi(·, t))(x), (2.11)

ω(x) := ωee(x)− γµi(ωie ∗ ωei)(x). (2.12)

If the response function Se for excitatory cells is placed inside the integral in Equation (2.10)
(can happen in case neuron activation rates are low [BC02]), then we obtain an equation similar
to that analysed Amari [Ama77, Eq. (3)], which he studied the dynamics of pattern formation
in a one-dimensional cortical tissue. Indeed, letting

a(x, t) = (ω ∗ ae(·, t))(x) + h(x, t), (2.13)

one finds after differentiation with respect to t,

∂a

∂t
(x, t) = −αa(x, t) + µ

∫
R2

ω(x− y)f(a(y, t))dy + I(x, t), (2.14)

where α := α−1
e , µ := µe, f : s 7→ αSe(s) and

I(x, t) = αh(x, t) + ∂th(x, t). (2.15)

The Amari-type Equation (2.14) has been used to model a wide range of neural phenomena,
including the generation of action potentials, the propagation of signals along axons, and the
control of waves like activities [ZME19]. It has also been used to study the effects of drugs
induced geometric visual hallucinations [Bre+01, Section 2(c)] and other interventions on neural
activity [CGP14].

Overall, the Amari-type equation is an essential tool for understanding the complex dynamics
of neurons and their interactions in the brain, in particular, thanks to the fact that it is more
amenable for mathematical analysis.

2.4 . The primary visual cortex

The primary visual cortex, also known as V1 or the striate cortex, is a key region in the
occipital lobe at the back of the brain. Its role in analysing basic visual features forms the
foundations of higher-level visual processing and our perception of the visual world. In this
respect, understanding our cortical activity in V1 is modelled, and its implications for visual
behaviour is a fascinating area of research.

By exploring the underlying V1 activity, we can gain valuable insights into visual phenomena,
including hallucinations, illusions, and other aberrant visual behaviour.
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Figure 2.3: Coloured dots in the visual stimulus on the left is mapped into that on the right in V1,
adapted from Tootell et al. [Too+82]. Focusing on the image on the right, one notices that following
the horizontal direction from the left to right, coloured dots describe a log curve, while following
the vertical path from the top to below, they represent the eccentricity.

2.4.1 . Retinotopic structure of V1

The functional architecture of V1 exhibits a remarkable characteristic known as retinotopic
organization. The following key features can describe this organization:

(i) Neural organization: The neurons in the V1 area are arranged orderly, forming a to-
pographic or retinotopic map (well-known as the retino-cortical map). This map represents a
two-dimensional projection of the visual image formed on the retina. Notably, neighbouring
regions of the visual field are represented by neighbouring regions of neurons in V1, establishing
a bijective relationship;

(ii) Foveal representation: Near the fovea, which corresponds to the central region of the
visual field, there is a larger representation of the image in the V1 area compared to the visual
field. This means that the foveal region in V1 exhibits an enlarged representation, essentially
resembling an expansion of the identity map;

(iii) Log-polar transformation: As we move away from the fovea, the retinotopic map in
V1 undergoes a log-polar transformation. This transformation involves a mapping distortion,
resulting in a logarithmic compression of the visual space. It means that regions of the visual
field further away from the fovea are represented in a compressed manner in the V1 area.

These characteristics of retinotopic organization in the V1 striate cortex, as described by
Sereno [Ser+95] and Tootell et al. [Too+82] (see, for instance Figure 2.3), highlight the
systematic and structured nature of how visual information is processed and represented in the
early visual system.
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2.4.2 . Analytical derivation of the retino-cortical map

The retino-cortical map was first represented analytically as a complex logarithmic map in
[Sch77]. In the following we review the representation made in [Bre+01, Section 1(b)].

A point in the visual field or the retina can be represented in polar coordinates by (r, θ) ∈
[0,+∞)× [0, 2π[. From the physiological evidences of [HW59], a local region in V1 is a sheet
of dimension 2 so that spatial position of any neuron in V1 can be represented in Cartesian
coordinates by (x1, x2) ∈ R2.

Let ρR be the number of ganglion cells per solid degree within a given region A of the
visual field and ρ the cortical magnification, i.e., the extent of striate cortex in millimetres
corresponding to a degree of arc in visual space. Supported by the work of [HW74a; HW74b],
ρ is sufficiently closed to unity to be replaced by it, whereas following [Dra77], ρR declines from
the fovea with an inverse square law,

ρR =
1

(ω0 + εr)2
, (2.16)

where ω0 and ε are two physiological constant parameters.
The retino-cortical map R : (r, θ) ∈ [0,+∞) × [0, 2π[7−→ (x1, x2) ∈ R2 is then defined

such that the following holds in a given region A of the visual field∫
A

r

(ω0 + εr)2
drdθ =

∫
A
ρRrdrdθ =

∫
R(A)

ρdxdy =

∫
A
|Jac(R)|drdθ. (2.17)

Note that R is a bijective map which we assume to be bidifferentiable, since cortical magnifi-
cation is a differential quantity [Sch77]. Then one deduces from (2.17) that

|Jac(R)| :=
∣∣∣∣∂x1∂r ∂x2∂θ − ∂x1

∂θ

∂x2
∂r

∣∣∣∣ = r

(ω0 + εr)2
.

Consistent with the physiological evidence of Tootell et al. [Too+82], we assume the existence
of positive constant α such that

∂x1
∂r

=
α

ω0 + εr
and

∂x2
∂θ

=
1

α

r

ω0 + εr
.

It follow that, for some k1 := k1(θ), k2 := k2(r) ∈ R, one has

x1 =
α

ε
log

(
ω0 + εr

k1

)
and x2 =

1

α

rθ

ω0 + εr
+ k2.

Recall that (x1, x2) = (0, 0) when r → 0 so that k1 ≡ ω0 and k2 ≡ 0. Therefore, one finds

x1 =
α

ε
log

(
1 +

ε

ω0
r

)
and x2 =

1

α

rθ

ω0 + εr
.
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Figure 2.4: Visual illustration of the retino-cortical map, reproduced from [BT07]. Funnel pattern
(top-left) in the retina is mapped through the retino-cortical map into pattern of horizontal stripes
(top-right) in V1. Tunnel pattern (bottom-left) in the retina is mapped through the retino-cortical
map into pattern of vertical stripes (bottom-right) in V1.

2.4.3 . Visual illustration of the retino-cortical map

In this section we will visually illustrate how simple patterns in the visual field are mapped into
V1 via the retino-cortical map.

In what follows, consistent with the experiments we aim to describe, we will always accept
that the log-polar transformation is an accurate approximation of the retino-cortical map. After
rescaling physiological parameters, it simply takes the form

R : R>0 × S1 −→ R2

(r, eiθ) 7−→ R(r, θ) = (log(r), θ). (2.18)

Here R>0 × S1 models the retina or the visual field and R2 models V1 striate cortex when
neglecting the orientation label. The following definition will be of interest. The notion of 2D
manifolds and vector field was given in Section 1.2.1 in the first part.

Definition 2.4.1 (Pushforward of a vector field) Let M and N be 2D manifolds, ψ :M →
N a diffeomorphism and X be a vector field on M . The pushforward (or the “image”) of X by
ψ is the vector field ψ∗X on N defined by

(ψ∗X)(ψ(p)) =
d

dt

∣∣∣∣
t=0

ψ(γ(t)), ∀p ∈M, (2.19)

where γ is the integral curve of the vector field X satisfying γ(0) = p.
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Assume that M := R>0 × S1 is endowed with the system of polar coordinates (r, θ) and
N := R2 is endowed with the system of Cartesian coordinates (x1, x2).

Let X1 be the vector field on M generating the counterclockwise rotation around the origin,
X1 = ∂θ. Then the orbit of the flow of X1 describes concentric circles centred at the origin in
the manifold M .

The “image” of the vector fieldX1 by the retino-cortical map R defined in (2.18) is the vector
field X2 on N obtained by pushing forward the vector field X1 by R. Letting (x1, x2) = R(r, θ)

for all (r, θ) ∈M , one has

X2(x1, x2) := (R∗X1)(x1, x2) =
d

dt

∣∣∣∣
t=0

(log(r), θ + t) =
∂

∂x2
, (2.20)

which is the vector field generating vertical translation in N .
The implication of this in visual system is that patterns consisting of concentric circles

around the fovea in the human retina induce patterns of vertical stripes in the primary visual
cortex via the retino-cortical map, see Figure 2.4 for visual illustration.

The above analysis also applies to the vector field Y1 := r∂r on M generating the dilation
that start at the origin. The orbit of the flow of Y1 are rays that start from the origin. One
therefore computes the vector field Y2 on N image of Y1 by the retino-cortical map R as

Y2(x1, x2) := (R∗Y1)(x1, x2) =
d

dt

∣∣∣∣
t=0

(t+ log(r), θ) =
∂

∂x1
, (2.21)

which is the vector field generating horizontal translation in N . It follows that patterns consist-
ing of rays that start from the fovea in the human retina induce patterns of horizontal stripes
in the primary visual cortex via the retino-cortical map, see Figure 2.4 for visual illustration.

2.5 . On visual hallucinations

In this section, using the Amari-type equation, we briefly overview the mathematical exploration
conducted to understand the underlying causes of the spontaneous formation of cortical patterns
in the primary visual cortex.

2.5.1 . Geometric visual hallucinations

Hallucinations can arise in certain psychoses and various pathologies. They can also occur
without any disease, often due to hyperactivation in specific brain regions that no longer receive
sufficient sensory inputs from the retina. Visual hallucinations refer to the perception of objects
or phenomena that do not exist or are not physically present before the individual experiences
them [Ffy04].

When individuals are subjected to pressure on their eyeballs, they may experience a reaction
in the retina after a brief delay of approximately 2 to 3 seconds. This can lead to the perception
of phosphenes in the visual field, which manifests as small geometric shapes interconnected by
curves such as circular arcs or logarithmic spirals. These fundamental geometric shapes are
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Figure 2.5: Artist’s depictions of geometric visual hallucinations. Redrawn from Oster [Ost70],
Siegel [Sie77], Patterson [Pat92], Clottes & Lewis-Williams [CL98].

commonly observed in phosphene experiences. Similarly, individuals (even those with blindness
[KAO63]) influenced by hallucinogenic drugs like marijuana and LSD may encounter successive
unreal visual perceptions such as honeycombs [CL98], funnels, and spirals [Ost70], which emerge
in the visual field, see Figure 2.5.

In addition to these scenarios, spontaneous geometric visual hallucinations can manifest af-
ter exposure to flashing lights [Hel67] and in numerous other conditions documented by Klüver
in [Klü66]. The exploration of these hallucinations from a mathematical standpoint aims to
uncover the underlying mechanisms and shed light on the intricate relationship between neural
activity and the resulting perceptual experiences. By delving into these mathematical inves-
tigations, we can deepen our understanding of the origins and manifestations of spontaneous
geometric visual hallucinations across various contexts and conditions.

While simple cortical patterns can spontaneously emerge in V1 caused by epileptic activity
due to the decrease of the influence of the inhibitory neurons on the excitatory neurons [Tas95],
here, we are primarily concerned with the phenomenon accompanying the early stage of drug-
induced (LSD, marijuana, etc.) simple cortical patterns in V1 [EC79a] due to an increase
in the excitability of excitatory and inhibitory neurons beyond a certain threshold of neural
activity. Then applying the inverse retino-cortical transformation to these patterns will yield
simple geometric visual hallucinations that people experience daily.
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spontaneous cortical patterns

stable

Figure 2.6: Bifurcation diagram. As the parameter µ increases and surpasses the critical value µc,
a significant change occurs in the system’s behaviour. The previously stable state, represented by
the bold line, transitions into an unstable state, as indicated by the dashed lines. This transition
causes the system to branch into other states (stable or unstable depending onmodel parameters)
that we call spontaneous cortical patterns.

2.5.2 . Spontaneous cortical patterns formation in V1

We briefly discuss in this section the results on spontaneous cortical patterns (SCP), which
refer to the bifurcating branches to the trivial stationary state of Equation (NF) in the absence
of external input or sensory input. They can be considered as the paroxismic states of cortical
activity in V1 or, in other words, the states of high cortical activity in V1.

In the absence of external input, that is, when I ≡ 0, one has that a ≡ 0 is a trivial
stationary state to Equation (NF) since f(0) = 0. The linearised equation around it reads

∂ta = −a+ µω ∗ a.

Taking the Fourier transform of the above equation in the space S ′(R2) of tempered distribu-
tions leads to

â(ξ, t) = e(−1+µω̂(ξ))tâ0(ξ), ξ ∈ R2, t ≥ 0, (2.22)

where â0 is the Fourier transform of the initial datum a0 ∈ S ′(R2). It follows that 0 is
exponentially stable in the space of tempered distribution S ′(R2) for small enough µ > 0. It
loses its stability the first time when µ grows beyond the critical value2 µc given as follows,

µc := ω̂(qc)
−1. (2.23)

Here qc > 0 is the wavenumber, the point at which ω̂(|ξ|) reaches its maximum for |ξ| ≥ 0.
Please, refer to Figure 2.6 for visual illustration.

We recall that the threshold parameter µc is called the bifurcation point in the dynamical
system theory or the control parameter in complexity theory to refer to a parameter whose
change can force a sudden qualitative change in pattern formation of the underlying system. In
our context, It corresponds to the value of µ for which the intrinsic (that is, in the absence of
external input) cortical activity in V1 is highest. Observe that for all µ < µc, the kernel of

Lµa = −a+ µω ∗ a, (2.24)
2More precisely, µc := αf ′(0)−1ω̂(qc)

−1, where α > 0 is the time constant of the membrane
potential of cells in V1. Here we assumed that α = 1 and f ′(0) = maxs∈R f

′(s) = 1.
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k1

k3
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k2

k1
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Figure 2.7: Hexagonal lattice (left), square lattice (middle) and rectangular lattice (right). The unit
vectors kj ∈ R2 are generator of these lattices satisfying ̂(ki, kj) = 60◦ for the hexagonal lattice,
̂(k1, k2) = 90◦ for square lattice and ̂(k1, k2) = θ = any acute angle other than 90◦ and 60◦ for
rectangular lattice.

viewed as a linear operator from S ′(R2) to itself is trivial.
Since I ≡ 0, Equation NF is E(2)-equivariant, that is, it commutes with the natural action

of the Euclidean group E(2) = R2 ⋊ O(2). Please, refer for instance to Section 3.3.2 of
Chapter 3. Due to the O(2)-equivariance and the fact that eigenfunctions of the convolution
operator ω∗ in the space S ′(R2) are of the form e2iπ⟨ξ,·⟩, ξ ∈ R2, at the bifurcation point
µ = µc, the kernel of the linear operator Lµc is given by

kerLµc = span
{
e2πi⟨rξc,·⟩

}
r∈O(2)

,

where ξc = qce
iϕc represents the critical wavevector with qc = |ξc| the wavenumber, ϕc = arg ξc,

and O(2) is the orthogonal group of degree 2.
It is important to note that this kernel is infinite-dimensional, resulting in 0 being an

eigenvalue of Lµc with infinite multiplicity, both geometrically and algebraically. Consequently,
the classical local center manifold theory (see, [HI11, Chapter 2] or [CL00, Chapter 8] for
instance) cannot be directly applied to compute the solutions bifurcating from the equilibrium
zero. However, the translation equivariance of the system (NF) allows to address this issue by
restricting the solution space to doubly-periodic functions, also known as planforms. Please,
see for instance, [Sat78] for more details about “planform functions”.

In summary, the stability analysis of the equilibrium a = 0 near the bifurcation point
µ = µc requires the utilization of local center manifold theory, taking into account the E(2)-
equivariance and the infinite-dimensional kernel of the linear operator. By considering the
translation equivariance, we can study the solutions that bifurcate from the zero equilibrium
within the space of planforms.

We will not address this question here since it is not our primary purpose in this thesis, and
we refer the reader, for instance, in [Bre+01; BC02; EC79a] for more details. Nevertheless,
notice that by restricting the plane R2 to hexagonal, square and rectangular lattices, at the
bifurcation point, µ = µc, the kernel of the linear operator Lµc now consists of (finite number
of) spontaneous cortical patterns of the form

SP (x) =

N∑
j=1

zj cos(⟨2πkj , x⟩), kj = (cosϕj , sinϕj), (2.25)
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(a) (b)

(c) (d)

(e) (f)

Figure 2.8: From (a) to (f): Spontaneous cortical patterns on the left and corresponding Hallu-
cinatory patterns on the right after applying the inverse retino-cortical map. They were initially
obtained by Ermentrout & Cowan [EC79a]. See also Bressloff et al. [Bre+01, Figures 19, 20, 29 and
30].

where (zj , ϕj) ∈ R2 and kj ∈ R2 satisfies |kj | = qc for all j ∈ {1, · · · , N}. For the hexagonal
lattice, N = 3 while for the square and rectangular lattices N = 2, refer to Figure 2.7.

Following the convention adopted in [EC79a; Bre+01], we represent spontaneous cortical
patterns (2.25) in cortical coordinates of V1 as binary images, where black corresponds to
negative values of SP (x) and white to positive ones. The retinal representation obtained from
the cortical patterns via the inverse retino-cortical map leads to geometric visual hallucinations
of form constants that Klüver had meticulously classified in his famous book [Klü66]. Please
refer to Figure 2.8 for visual illustration.

The stability of these patterns can also be studied [EC79a; Bre+01], which depends strongly
on the choice of physiological parameters involved in Equation (NF).
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CHAPTER 3

On the description of MacKay-type visual il-
lusions

3.1 . Introduction

Humans often perceive an illusory component not physically present in a visual stimulus. One
of the earliest researchers to explore the visual effects induced by patterns comprising black-
and-white zones was Helmholtz [Hel67]. He specifically associated the perception of rotating
darker and brighter radial zones, following observing a pattern of black and white concentric
rings, with the fluctuation of eye accommodation.

The plan of this chapter, which investigates the mathematical description of MacKay-type
visual illusions, focusing on the MacKay effect [Mac57] and Billock and Tsou’s experiments
[BT07] is the following:

Section 3.1.1 and 3.1.2 present the psychophysical experiments reported in these two papers.
Section 3.1.3 discusses the preliminary result [Nic+21] that describes the MacKay-like effect
using neuronal fields equations via bifurcation theory and multiscale analysis.

In Section 3.2, we highlight a motivation for using equation (NF) to describe these psy-
chophysical experiments, and we present assumptions on model parameters used in this equa-
tion.

In Section 3.3, we recall some preliminary results about the well-posedness of equation (NF)
and define the binary pattern necessary to represent cortical activity in terms of white and
black zones. Using equation (NF), in Sections 3.4 and 3.5, we investigate the description of the
MacKay effect and Billock and Tsou experiments, respectively. In Section 3.4.4 and 3.5.2, we
present numerical results to bolster our theoretical study.

3.1.1 . MacKay visual illusions from redundant stimulation

Around 1960, Donald MacKay made notable observations on the after-effects of visual stimula-
tion using regular geometrical patterns containing highly redundant information. He associated
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Figure 3.1: The MacKay effect results from redundant stimulation [Mac57], showcasing the illu-
sion induced by the stimulus on the left, referred to as “MacKay rays”. This stimulus leads to an
illusory perception of concentric rings superimposed in its background, as illustrated on the right
(artist’s depiction by Isia Leviant [Lev96]). The adaptation of this figure is based on the original
representation from [Mac57, Fig. 1] and [ZWF93, Fig. 1b].

this phenomenon, now known as the “MacKay effect”, with a specific region of the visual cortex
that potentially benefits from such redundancy [Mac57; Mac61].

The psychophysical experiments presented in this paper demonstrate that when a highly
redundant visual stimulus, such as a funnel pattern (fan shapes), is presented at the fovea, an
accompanying illusory tunnel pattern (concentric rings) emerges in the visual field, superimposed
onto the stimulus pattern (see Fig. 3.1). Notably, the distance from the pattern to the retina
or the illumination does not significantly affect these more intricate phenomena. Even a slight
fluctuation in eye accommodation or a minor alteration in the distance from the pattern to the
retina causes the positions of the brighter locations to vary. For most observers, the illusory
contours in the background of the afterimage rotate rapidly at right angles to the stimulus
pattern, either clockwise or counterclockwise.

Similarly, when viewing a tunnel pattern (concentric rings) as that of Figure 1.4, many
observers perceive an illusory funnel pattern (fan shape) superimposed in the afterimage back-
ground. In both cases, observers often note rapidly fluctuating sectors, again rotating either
clockwise or counterclockwise. Notably, the stimulus pattern does not need to fill the entire
visual field; a portion of the stimulus is sufficient to generate a corresponding afterimage in
the same portion. However, in both cases, the nervous system tends to prefer the direction
perpendicular to the regular contours of the visual stimulus. This preference is attributed to
the retino-cortical map, resulting in induced afterimages of superimposed patterns of horizontal
and vertical stripes in V1.

The debate between Zeki [Zek94] and Gregory [Gre95] revolves around the attribution of
illusory motion in the afterimages. Following MacKay’s findings, Zeki attributes the illusory
motion to the cerebral cortex, predominantly due to cortical activity in areas V5 and V1. On
the other hand, Gregory relates the illusory motion to fluctuations in the accommodation of
the eye’s lens, as pointed out by Helmholtz [Hel67].
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Figure 3.2: Billock and Tsou’s experiments: the presentation of funnel pattern stimulus in the
centre (image on the top-left) induces an illusory perception of tunnel pattern in surround (image
on the top-right) after a flickering of the empty region (the white region surrounding the stimulus
pattern on the top-left). We have a reverse effect on the bottom. Adapted from [BT07, Fig. 3].

3.1.2 . Billock and Tsou’s psychophysical experiments

Significant visual effects associated with funnel and tunnel patterns have been observed in the
psychophysical experiments conducted by Billock and Tsou [BT07]. Like the MacKay effects,
the authors discovered that introducing biased stimuli elicits orthogonal responses in the visual
field. When a physical stimulus is positioned at the fovea (the central region of the visual field),
the resulting visual illusion appears in the flickering periphery. Conversely, the visual illusion
emerges in the flickering centre if the physical stimulus is presented in the periphery.

Specifically, when a background flicker is combined with a funnel pattern centered on the
fovea (or periphery), the observer experiences the illusory perception of a tunnel pattern in the
periphery (or fovea, respectively). Similarly, when the periphery (or fovea) of a tunnel pattern
located at the fovea (or periphery) is subjected to flickering, an illusory rotating funnel pattern
is perceived in the periphery (or fovea).

In both cases, the illusory contours in the afterimage appear within the nonflickering region,
depending on whether the flicker does not extend through the physical stimulus or if the empty
region is flickered out of phase. Please refer to Figure 3.2 for a visual illustration. Moreover, we
will refer to the experiments conducted by Billock and Tsou as “strong” (respectively “weak”)
when the illusory contours in the afterimage does not extend (respectively extend) through the
physical stimulus.
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3.1.3 . Preliminary work and comments

Up to our knowledge, the only attempt to theoretically replicate the MacKay-like phenomenon
using neuronal fields equations has been undertaken by Nicks et al. [Nic+21]. They employed
a model of cortical activity in V1, which included spike-frequency adaptation (SFA) of exci-
tatory neurons, and utilized bifurcation and multi-scale analysis near a Turing-like instability
to describe the MacKay-type effect associated with a fully distributed state-dependent exter-
nal input representing cortical representations of funnel and tunnel patterns. By assuming a
balanced condition1 on the interaction kernel, they derived a dynamical equation for the am-
plitude of the stationary solution near the critical value of the parameter µ where spontaneous
cortical patterns emerge in V1. Their theoretical results do not apply to localized inputs, such
as those employed by MacKay and Billock and Tsou, although they provided numerical results
demonstrating the capability of their model to replicate Billock and Tsou’s experiments.

In the present study, to address the specificity of the external inputs utilized in these
two psychophysical experiments (i.e., the redundant information in MacKay’s stimuli and the
localization of funnel and tunnel patterns used by Billock and Tsou within the visual field),
we rely on a central assumption regarding the range of parameter µ. We assume that µ is
smaller than the threshold µc, where cortical patterns spontaneously emerge in V1. From a
neurophysiological standpoint, the corresponding stationary output of Equation (NF) remains
unaltered in the presence of external input, and no spontaneous geometric hallucination occurs.
Consequently, we cannot employ bifurcation techniques, perturbation theory, and multi-scale
analysis. Nevertheless, we introduce a controllability approach that enables us to describe these
phenomena in V1 and, therefore, in the retina due to the retino-cortical map.

We emphasize that under this assumption, we demonstrate that the resulting symmetry
of the system (stemming from the Euclidean symmetry of the interaction kernel) restricts the
geometric shape of visual stimuli capable of inducing illusory perceptions in the afterimage. By
breaking the Euclidean symmetry of funnel and tunnel patterns using localized control functions,
we provide both theoretical and numerical results showcasing the ability of Equation (NF) to
replicate the illusory perceptions reported by MacKay. Similarly, we present numerical results
indicating that Equation (NF) reproduces Billock and Tsou’s experiments.

It should be noted that in the case of the MacKay effect, the localized control function
models the redundant information present in the funnel and tunnel patterns. In contrast, the
localized control function in Billock and Tsou’s experiments models the localization of funnel
and tunnel patterns either on the fovea or in the periphery of the visual field.

The main finding of this study demonstrates that the MacKay effect is essentially a lin-
ear phenomenon, where the nonlinear nature of the response function does not play a role in
its replication. In contrast, Billock and Tsou’s phenomena are entirely nonlinear and strongly
dependent on the shape of the nonlinear function employed to model the neuronal response
following activation. A “strong nonlinearity” replicates the “strong” Billock and Tsou’s experi-
ments, while a “weak nonlinearity” replicates the “weak” Billock and Tsou’s experiments. We

1A kernel ω of “Mexican-hat” type distribution satisfies the balanced condition (between excita-
tory and inhibitory neurons) if its Fourier transform at zero equals 0.
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achieve this through an asymptotic study of the map associating a sensory input with the
corresponding stationary output.

Furthermore, the results presented herein imply that if apparent motion exists in the after-
image reported by MacKay, it moves at a right angle to the stimulus pattern. This observation
arises from the superimposition of static physical stimulus and afterimage in V1, which consist
of horizontal and vertical stripes, combined with the fact that the inverse retino-cortical map
preserves this opponency in the retina.

3.2 . Model and assumptions on parameters

3.2.1 . Neural fields model

In [Gie12], it was demonstrated that a variant of the Amari-type equation for neuronal activity
in the retina could effectively describe the perceptual organization of the motion quartet, which
is a stimulus consisting of two pairs of black and white dots flashing in an alternating sequence.
The model proposed in the study employed a four-dimensional space variable, parameterized
by the position of local motion in Cartesian coordinates (x1, x2) and the perceived motion
vector (ρ, ϕ) in polar coordinates. By utilizing psychophysical data, the author identified the
necessary parameters of the model to accurately capture the dynamic phenomena associated
with the distributed representation of local motion information. Specifically, the model aimed
to reproduce both the perceptual organization and the dynamic properties of the percept.

Moreover, it is well-established (see, for instance, [CE04; LSA11] and references therein)
that neuronal field equations describing travelling waves and motion effects in the sensory cortex
should incorporate the spike-frequency adaptation (SFA) of excitatory neurons to achieve greater
biological realism.

However, this chapter focuses on providing a comprehensive mathematical description of
static psychophysical phenomena related to irregular funnel and tunnel patterns such as the
“MacKay rays” and “MacKay target” or regular funnel and tunnel patterns that do not fill all
the visual field. Here, “static” refers to a physical visual stimulus that induces an afterimage on
the retina, resulting in illusory contours that do not exhibit apparent motion. Considering the
success of Ermentrout and Cowan’s work [EC79a] in utilizing the original Wilson-Cowan model
[WC73] to describe simple patterns such as funnel and tunnel patterns, we anticipate that a
similar model (without incorporation of orientation label that models orientation preference of
“simple cells” in V1 and without incorporating spike-frequency adaptation of excitatory neurons)
will suffice to describe the visual illusions induced by these patterns. Consequently, we adopt
the view that the neural activity in V1 evolves according to the Amari-type Equation (NF).

3.2.2 . Assumption on parameters

We make the following assumption on parameters involved in Equation (NF). The response
function f belongs to the class C2(R), is non-decreasing , satisfying f(0) = 0 and f ′(0) =

maxs∈R f
′(s), please refer to Figure 3.3 (image on the left) for an example of response function.

Unless otherwise stated, we consider f to be a nonlinear and sigmoid function, such that
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Figure 3.3: Possible response functions on the left where erf is the Gauss error function, and on
the right a 2D DoG kernel ω. Here, κ = 2, σ1 = 2, and σ2 = 4.

f ′(0) = 1 and ∥f∥∞ = 1. This assumption is permissible since, as long as f ′(0) ̸= 0, we can
always define a sigmoid function f̃(s) = f(λs)/∥f∥∞ with λ = ∥f∥∞/f ′(0) and s ∈ R.

The interaction kernel ω used in this study is homogeneous and isotropic with respect to the
spatial coordinates (x1, x2). It solely depends on the Euclidean distance between neurons and
exhibits rotational symmetry. We adopt the well-known “Mexican-hat” distribution, which is a
difference of Gaussians (DoG) characterized by two components. The first Gaussian describes
short-range excitation interactions, while the second Gaussian represents long-range inhibition
interactions between neurons in V1.

It is worth noting that these physiological considerations regarding the kernel ω align with
the framework employing Equation (NF) to generate spontaneous cortical patterns in V1. To
generate such patterns using a one-layer neural field Equation (NF), it follows from [EC80,
Section 3] that the Fourier transform ω̂ must reach its maximum at a non-zero wavenumber
qc > 0, known as the critical wavevector magnitude. As a critical wavevector, we refer to any
vector ξc ∈ R2 satisfying |ξc| = qc. Consequently, we define the connectivity function as

ω(x) = [2πσ21]
−1e

− |x|2

2σ2
1 − κ[2πσ22]

−1e
− |x|2

2σ2
2 , x ∈ R2, (3.1)

where κ ≥ 1, 0 < σ1 < σ2, and σ1
√
κ < σ2. The latter condition ensures the computation of

the explicit value of the L1-norm of ω; refer to Equation (3.4) below.

Remark 3.2.1 The choice of centering ω at 0 is a matter of mathematical convenience. It
is used to express the idea that the strength of interactions is maximized when the distance
between interacting points is minimized. In mathematical terms, the point 0 in this context
is just a notational convenience, representing the minimal distance between two interacting
points in the field. When we say ω is “centered at 0”, we mean that interactions are strongest
between points that are closest together, and the strength diminishes as the distance between
them increases. The “centre” could be translated to any other point in the neural field without
changing the overall behaviour of the model, as the essential feature is the relative distance
between interacting points.
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Figure 3.4: A kernel ω on the left and its Fourier transform ω̂ on the right in one space dimension.
Here, κ = 1, 2π2σ2

1 = 1, and 2π2σ2
2 = 2.

It is important to observe that ω(x) = ω(|x|) and that ω belongs to the Schwartz space
S(R2), implying that ω ∈ Lp(R2) for all real numbers 1 ≤ p ≤ ∞. The Fourier transform of
ω can be explicitly expressed as

ω̂(ξ) = e−2π2σ2
1 |ξ|2 − κe−2π2σ2

2 |ξ|2 , ∀ξ ∈ R2, (3.2)

and ω̂ reaches its maximum at every vector ξc ∈ R2 such that |ξc| = qc. In other words, we
have

qc :=

√√√√ log
(
κσ2

2

σ2
1

)
2π2(σ22 − σ21)

and max
r≥0

ω̂(r) = ω̂(qc). (3.3)

Additionally, the explicit expression for the L1-norm of ω is given by

∥ω∥1 = (1− κ) + 2

(
κe

− Θ2

2σ2
2 − e

− Θ2

2σ2
1

)
with Θ := σ1σ2

√√√√2 log
(

σ2
2

κσ2
1

)
σ22 − σ21

. (3.4)

It is important to emphasize that the kernel ω does not necessarily satisfy the balanced2

condition ω̂(0) = 0 between excitation and inhibition. However, this condition is met when
κ = 1.

Please refer to Figure 3.3 (image on the right) for visual illustration of the kernel ω in 2D,
and Figure 3.4 for a visual representation of the kernel ω (left) and its Fourier transform ω̂

(right) in one space dimension. In this particular illustration, we have κ = 1, 2π2σ21 = 1, and
2π2σ22 = 2.

3.2.3 . Binary representation of patterns

Due to the retino-cortical map, funnel, and tunnel patterns are respectively given in Cartesian
coordinates x := (x1, x2) ∈ R2 of V1 by

PF (x) = cos(2πλx2), PT (x) = cos(2πλx1), λ > 0. (3.5)
2For a homogeneous NF equation (i.e., when I = 0), this condition ensures the existence of

a unique stationary state a0 = 0 even if f(0) ̸= 0. It was assumed, for instance, in [Nic+21] for
deriving the amplitude equation of the stationary state near the bifurcation point µc.
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This choice is motivated by analogy with the (spontaneous) geometric hallucinatory patterns
described in [EC79a] and [Bre+01].

Given the above representation of funnel and tunnel patterns in cortical coordinates, to see
how they look in terms of images, we represent them as contrasting white and black regions,
see Figures 1.1 and 1.2. More precisely, define the binary pattern Bh of a function h : R2 → R
by

Bh(x) =

{
0, if h(x) > 0 (black)
1, if h(x) ≤ 0 (white).

(3.6)

It follows that Bh is essentially determined by the zero level-set of h. Since stimuli involved
in the MacKay effect and Billock and Tsou experiments are binary patterns, our strategy in
describing these phenomena consists in characterising the zero level-set of output patterns.
That is, we are mainly devoted to studying the qualitative properties of patterns by viewing
them as binary patterns.

3.3 . Preliminaries results on Amari-type equation

3.3.1 . Well-posedness of the Cauchy problem

We start this section by introducing the definition of stationary state to Equation (NF).

Definition 3.3.1 (Stationary state) Let a0 ∈ Lp(R2). For every I ∈ Lp(R2), a stationary
state aI ∈ Lp(R2) to Equation (NF) is a time-invariant solution, viz.

aI = µω ∗ f(aI) + I. (SS)

Many papers investigating biological phenomena using Amari-type equation usually deal
with the homogeneous equation or posed on a bounded domain. In these cases, by standard
assumptions on the kernel ω or on the response function f , it is straightforward to obtain
the existence of at least one (even non-constant) stationary state to such equations, see for
instance [Bre+01; EC79a; Nic+21; CE04]. In the case of an inhomogeneous equation posed on
an unbounded domain as the case at hand, it can become a little bit more subtle to provide the
existence of (non-constant) stationary state only with assumptions on ω and f . Nevertheless,
in the case of an inhomogeneous equation posed on a bounded domain with a state-dependent
external input, in [Bri+23], under a mild condition on the boundness of the response function,
the existence of at least one stationary state is proved using Schaefer’s fixed point Theorem.

In order to obtain a unique non-constant stationary state to the inhomogeneous Equa-
tion (NF), we will make a reasonable assumption on the parameter µ. As mentioned in the
introduction, consistent with the phenomena that we aim to describe and the strategy used for
that, we introduce the parameter3

µ0 := ∥ω∥−1
1 ≤ µc. (3.7)

3More precisely, µ0 := αL−1
f ∥ω∥−1

1 , where α > 0 and Lf > 0 are defined as in 2.
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Here µc is the bifurcation point defined in (2.23), and ∥ω∥1 is explicitly defined in (3.4). As
we shall see below, given I ∈ Lp(R2), µ0 is the (natural) largest value of µ up to which we
can provide a unique stationary state to Equation (NF) in the space Lp(R2), that is, we will let
µ < µ0. In particular, when p = 2, and under the hypothesis that the kernel ω satisfies the
balanced condition ω̂(0) = 0, we can refine this hypothesis by assuming µ < µc.

The assumption µ < µ0 implies that in the case p = ∞, if the external input I ∈ L∞(R2) is
strong compared with mutual excitation and inhibition, it will dominate the solutions (transient
and stationary). It means that the contribution of the coupling term µω ∗ f(a) will not be
quantitatively significant in the computation of the transient and stationary solutions as soon
as ∥I∥∞ ≫ 1 and for arbitrary a0 ∈ L∞(R2).

We collect in the following lemma some useful estimates that are immediate consequences
of generalised Young-convolution inequality. We provide the proof for sake completeness.

Lemma 3.3.1 Let 1 ≤ p ≤ ∞. The nonlinear operator ω ∗ f(·) is well-defined and Lipschitz
continuous from Xp into itself,

∥ω ∗ f(a)− ω ∗ f(b)∥Lp
xL

∞
t

≤ ∥ω∥1∥a− b∥Lp
xL

∞
t
, ∀a, b ∈ Xp. (3.8)

Moreover,

1. If a ∈ Xp, then ω ∗ f(a) ∈ X∞,

∥ω ∗ f(a)∥L∞
x L∞

t
≤ ∥ω∥q∥a∥Lp

xL
∞
t
, (3.9)

and
∥ω ∗ f(a)∥L∞

x L∞
t

≤ ∥ω∥1; (3.10)

2. If a ∈ X1, then ω ∗ f(a) ∈ Xp,

∥ω ∗ f(a)∥Lp
xL

∞
t

≤ ∥ω∥p∥a∥L1
xL

∞
t
. (3.11)

Proof . Let 1 ≤ p ≤ ∞ and a ∈ Xp. First, of all, by Lebesgue’s Theorem of continuity
under the integral sign, we have that ω ∗ f(a)(·, t) is measurable for any t ∈ [0,∞) and that
ω ∗ f(a)(x, ·) is continuous on [0,∞) for a. e., x ∈ R2. We then obtain by using Hölder
inequality and the 1-Lipschitz continuity of f that

|ω ∗ f(a)(x, t)| ≤
{∫

Ω
|ω(x− y)|dy

} 1
q
{∫

Ω
|ω(x− y)||a(y, t)|pdy

} 1
p

≤ ∥ω∥
1
q

1

{∫
R2

|ω(x− y)||a(y, t)|pdy
} 1

p

.

Taking the p−th power on both sides of the above inequality and integrating it with variable x
over R2, we find∫

R2

|ω ∗ f(a)(x, t)|pdx ≤ ∥ω∥
p
q

1

∫
R2

∫
R2

|ω(x− y)||a(y, t)|pdydx

≤ ∥ω∥
p
q

1 ∥ω∥1
∫
R2

|a(y, t)|pdy = ∥ω∥p1
∫
R2

|a(y, t)|pdy.
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It follows that the operator a 7→ ω ∗ f(a) is well-defined from Xp to itself. So, the proof of
(3.8) immediately follows by arguing as above. If a ∈ Xp, then for a.e. x ∈ R2 and every
t ≥ 0, one obtains on the one hand

|ω ∗ f(a)(x, t)| ≤
{∫

R2

|ω(x− y)|qdy
} 1

q
{∫

R2

|a(y, t)|pdy
} 1

p

≤ ∥ω∥q∥a(·, t)∥p,

which leads to the inequality (3.9). On the other hand, one has

|ω ∗ f(a)(x, t)| ≤
∫
R2

|ω(x− y)||f(a(y, t))|dy ≤ ∥ω∥1,

leading to the inequality (3.10). Finally, if a ∈ X1 then one obtains

|ω ∗ f(a)(x, t)| ≤
{∫

R2

|ω(x− y)|p|a(y, t)|dy
} 1

p
{∫

R2

|a(y, t)|qdy
} 1

q

.

Taking the p−th power on both sides of the above inequality and integrating it with variable x
over R2, we find∫

R2

|ω ∗ f(a)(x, t)|pdx ≤ ∥a(·, t)∥
p
q

1

∫
R2

|ω(x− y)|p|a(y, t)|dydx

≤ ∥ω∥pp∥a(·, t)∥
p
q

1 ∥a(·, t)∥1 = ∥ω∥pp∥a(·, t)∥
p
1,

so that (3.11) immediately follows and completes the proof of the lemma.
In the following theorem, we prove the existence of a unique solution and a unique stationary

state of the Cauchy problem associated with Equation (NF).

Theorem 3.3.1 Let 1 ≤ p ≤ ∞ and I ∈ Lp(R2). For any initial datum a0 ∈ Lp(R2), there
exists a unique a ∈ Xp, solution of Equation (NF). Moreover, if µ < µ0, there exists a unique
stationary state aI ∈ Lp(R2) to (NF) satisfying (SS), and it holds

∥a(·, t)− aI(·)∥p ≤ e−(1−µ∥ω∥1)t∥a0(·)− aI(·)∥p, (3.12)

for every t ≥ 0.

Proof . Let 1 ≤ p ≤ ∞ and I ∈ Lp(R2). The r.h.s. of Equation (NF) is a Lipschitz continuous
map from Xp to itself by Lemma 3.3.1. It is then standard to obtain that for any initial
datum a0 ∈ Lp(R2), Equation (NF) has a unique solution a ∈ Xp (see, for instance, [VF10]).
Moreover, the map ΦI : Lp(R2) → Lp(R2) defined for all u ∈ Lp(R2) by ΦI(u) = I+µω∗f(u)
satisfies

∥ΦI(v)− ΦI(u)∥p ≤
µ

µ0
∥v − u∥p, ∀u, v ∈ Lp(R2),

due to inequality (3.8). Since µ < µ0, the existence of a unique stationary state aI ∈ Lp(R2)

is obtained by invoking the contraction mapping principle.
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We now set
b(x, t) = a(x, t)− aI(x), (x, t) ∈ R2 × [0,∞), (3.13)

where a ∈ Xp (resp. aI ∈ Lp(R2)) is the unique solution (resp. the unique stationary state)
of (NF). It follows that b is the solution of the following initial value Cauchy problem∂tb(x, t) = −b(x, t) + µ

∫
R2

ω(x− y)[f(b(y, t) + aI(y))− f(aI(y))]dy, (x, t) ∈ R2 × [0,∞),

b(x, 0) = a0(x)− aI(x), x ∈ R2,
(3.14)

which belongs to b ∈ C([0,∞);Lp(R2)) ∩ C1((0,∞);Lp(R2)). Moreover, b satisfies the
following variations of the constants formula

b(x, t) = e−tb(x, 0) + µ

∫ t

0
e−(t−s)

∫
R2

ω(x− y)[f(b(y, t) + aI(y))− f(aI(y))]dy, (3.15)

for all (x, t) ∈ R2 × [0,∞).
Taking the Lp(R2)-norm of the above identity, we find for every t ≥ 0,

∥b(·, t)∥p ≤ e−t∥b(·, 0)∥p + µ∥ω∥1
∫ t

0
e−(t−s)∥b(·, s)∥pds. (3.16)

Applying Gronwall’s Lemma to inequality (3.16) one deduces for every t ≥ 0,

∥b(·, t)∥p ≤ e−(1−µ∥ω∥1)t∥b(·, 0)∥p.

This proves the inequality (3.12) and completes the proof of the theorem.

Remark 3.3.1 Note that when p = 2 and the kernel ω satisfies the balanced condition ω̂(0) =
0, Theorem 3.3.1 remains valid under the relaxed assumption µ < µc applying Fourier transform
and Plancherel formula.

Proposition 3.3.1 Let I ∈ L2(R2) and µc be defined in (2.23). For any initial datum a0 ∈
L2(R2), there exists a unique a ∈ X2, solution of Equation (NF). Moreover, if µ < µc, and
ω̂(0) = 0, there exists a unique stationary state aI ∈ L2(R2) to (NF) satisfying (SS), and

∥a(·, t)− aI(·)∥2 ≤ e−(1−µω̂(qc))t∥a0(·)− aI(·)∥2, (3.17)

for every t ≥ 0.

Proof . Let I ∈ L2(R2) and a0 ∈ L2(R2). The same argument as that in the proof of
Theorem 3.3.1 ensures the existence an unicity of a ∈ X2, solution of Equation (NF). Recall
that µc := ω̂(qc)

−1, where ω̂(qc) = max
r≥0

ω̂(r). If ω̂(0) = 0, then the kernel ω as defined in

(3.1) satisfies ω̂(|ξ|) ≥ 0 for all ξ ∈ R2. In particular, ω̂(qc) = max
r≥0

ω̂(r) = ∥ω̂∥∞. Define for
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all u ∈ L2(R2) the map ΦI : L2(R2) → L2(R2) by ΦI(u) = I + µω ∗ f(u). Then for all
v ∈ L2(R2), one gets by Plancherel identity the following,

∥ΦI(v)− ΦI(u)∥2 = ∥Φ̂I(v)− Φ̂I(u)∥2 = µ∥ω̂(f̂(u)− f̂(v))∥2
≤ µ∥ω̂∥∞∥f̂(u)− f̂(v)∥2
= µω̂(qc)∥f(u)− f(v)∥2
≤ µ

µc
∥u− v∥2, (3.18)

due to assumption that f is 1-Lipschitz continuous. Since µ < µc, the existence of a unique
stationary state aI ∈ L2(R2) is obtained by invoking the contraction mapping principle. We
complete the proof by arguing as in that of Theorem 3.3.1 and using the trick to prove Inequal-
ity (3.18).
Due to Theorem 3.3.1, we can introduce the following.

Definition 3.3.2 Let 1 ≤ p ≤ ∞, the nonlinear input-output map Ψ : Lp(R2) → Lp(R2) is
defined by

Ψ(I) = I + µω ∗ f(Ψ(I)), (3.19)

for all I ∈ Lp(R2).

The proof of Part 2. of the following proposition is presented in Theorem A.1.3 in Appendix A.

Proposition 3.3.2 Let 1 ≤ p ≤ ∞, and µ0 be defined by (3.7). If µ < µ0, then,

1. The map Ψ is well-defined, bi-Lipschitz continuous, and it holds

∥Ψ(I)∥p ≤
µ0

µ0 − µ
∥I∥p, for all I ∈ Lp(R2); (3.20)

2. If 2 ≤ p ≤ ∞, then Ψ and Ψ−1 belong to C1(Lp(R2);Lp(R2).

Proof . We only provide the proof of Part 1. Let I1, I2 ∈ Lp(R2). Then using inequality (3.8),
we obtain

∥Ψ(I1)−Ψ(I2)∥p ≤
µ

µ0
∥Ψ(I1)−Ψ(I2)∥p + ∥I1 − I2∥p.

It follows that
∥Ψ(I1)−Ψ(I2)∥p ≤

µ0
µ0 − µ

∥I1 − I2∥p,

provided µ < µ0. This implies that Ψ is Lipschitz continuous from Lp(R2) to itself. On the
other hand,

Ψ(I) = I + µQ(Ψ(I)), ∀I ∈ Lp(R2),

where Q : Lp(R2) → Lp(R2), v 7→ Q(v) = ω ∗ f(v). One deduces from inequality (3.8),

∥Ψ(I1)−Ψ(I2)∥p ≥ |∥I1 − I2∥p − µ∥Q(Ψ(I1))−Q(Ψ(I2))∥p| ≥ ∥I1−I2∥p−
µ

µ0
∥Ψ(I1)−Ψ(I2)∥p.

It follows that

∥I1 − I2∥p ≤
(
1 +

µ

µ0

)
∥Ψ(I1)−Ψ(I2)∥p.

This shows that Ψ is bijective and Ψ−1 is Lipschitz continuous from Lp(R2) to itself.
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3.3.2 . Equivariance of the input to stationary output map with respect to the plane
Euclidean group

Let E(2) denote the Euclidean group, which is the symmetry group of R2. It is well known that
(see, [Vil68, Chapter IV] for instance) E(2) is the cross product of two-dimensional real line
space R2 and O(2) the group of Euclidean rotations and reflections of this space, the so-called
orthogonal group :

E(2) = R2 ⋊O(2).

For g = (a, r) ∈ E(2), one has (a, r) ∈ R2 ×O(2) and the group property is the following
g1 · g2 = (a1, r1) · (a2, r2) = (r1a2 + a1, r1r2),

g−1 = (−r−1a, r−1),

e = (0, Id).

Here, g−1 is the inverse of g = (a, r) ∈ E(2), e is the identity in E(2) and Id is the identity in
O(2).

Definition 3.3.3 (Action of E(2) on R2) For x ∈ R2, the action of g = (a, r) ∈ E(2) on
R2 is defined by

gx = rx+ a.

Definition 3.3.4 (Action of E(2) on Lp(R2)) We define the action of E(2) on Lp(R2) by
the representation

T : E(2) −→ GL(Lp(R2))

g 7−→ Tg, (3.21)

such that, for all v ∈ Lp(R2) and for all x ∈ R2, it holds

(Tgv)(x) = v(g−1x).

Here GL(Lp(R2)) is the group of automorphism from Lp(R2) to itself.

We emphasise that the validity of the following proposition depends solely on the symmetry
properties satisfied by the kernel ω rather than the nonlinear function f . It remains valid
whatever the shape (even linear, etc.) of the response function f .

Proposition 3.3.3 Let µ0 be defined by (3.7). If µ < µ0, then, the map Ψ defined in (3.19)
and its inverse Ψ−1 are E(2)-equivariant, that is Ψ and Ψ−1 commute with E(2).

Remark 3.3.2 As a consequence of Proposition 3.3.3 we have that a subgroup Γ ⊂ E(2) is a
symmetry group of the sensory input I ∈ Lp(R2) if and only if it is a symmetry group of the
stationary output Ψ(I). For example, if an external input depends solely on the x1 variable,
then the associated stationary state will also depend solely on the x1 variable.
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Before starting the proof of Proposition 3.3.3, we need the following lemma.

Lemma 3.3.2 Let 1 ≤ p ≤ ∞. Then the operator Q : Lp(R2) → Lp(R2), v 7→ Q(v) =

ω ∗ f(v) commutes with E(2).

Proof. The fact that Q is well-defined is a consequence of Lemma 3.3.1. Let g = (a, r) ∈ E(2),
we want to show that TgQ = QTg, that is

(Tg(Q(v)))(x) = (Q(Tgv))(x), ∀v ∈ Lp(R2), ∀x ∈ R2.

On the one hand, one has

(Tg(Q(v)))(x) = Q(v)(g−1x) =

∫
R2

ω(|g−1x− y|)f(v(y))dy. (3.22)

On the other hand, one has

(Q(Tgv))(x) =

∫
R2

ω(|x− y|)(f(Tgv))(y)dy =

∫
R2

ω(|x− y|)f(v(r−1(y − a)))dy.

Setting z = r−1(y − a), then dy = | det r|dz = dz, since r ∈ O(2) and

|x− rz − a| = |r(r−1(x− a)− z)| = |g−1x− z|.

It follows that
(Q(Tgv))(x) =

∫
R2

ω(|g−1x− z|)f(v(z))dz, (3.23)

which completes the proof by identifying (3.22) and (3.23).
Proof . (of Proposition 3.3.3) We want to prove that TgΨ = ΨTg and TgΨ−1 = Ψ−1Tg for
all g ∈ E(2). This is equivalent to prove that for all I ∈ Lp(R2), TgΨ(I) = Ψ(TgI) and
TgΨ

−1(I) = Ψ−1(TgI). It follows from Lemma 3.3.2 that

TgΨ(I) = TgI + µTgQ(Ψ(I)) = TgI + µQ(TgΨ(I)).

On the other hand, one has

Ψ(TgI) = TgI + µQ(Ψ(TgI)).

So, by unicity of stationary state provided by Theorem 3.3.1, we obtain TgΨ(I) = Ψ(TgI).
Arguing similarly, we prove that Ψ−1 is also E(2)-equivariant.

3.4 . On the MacKay effect

As mentioned in the introduction, we reiterate that the physical visual stimuli employed in
MacKay’s experiments consist of funnel and tunnel patterns with highly localized redundant
information. Taking into account Equation (3.5) and the retino-cortical map, we incorporate
these patterns as external inputs in Equation (NF), such that I ∈ {PF , PT }+ εv, where ε > 0

and v represents a localized function in the cortical domain intended to model the redundant

92



Cyprien TAMEKUE 3.4. ON THE MACKAY EFFECT

information present in the funnel and tunnel patterns. In this context, the function v can also
be regarded as a localized distributed control, aiming to disrupt the global plane Euclidean
symmetry of the funnel or tunnel pattern.

In Section 3.4.1, assuming that the response function f is linear, we provide a more gen-
eral result showing that spontaneous cortical patterns defined in (2.25) cannot induce illusory
contours in the output pattern. In particular, we deduce that I ∈ {PF , PT } cannot induce
the MacKay effect using Equation (NF) . Then using MacKay’s stimuli I ∈ {PF , PT } + εv,
we prove in Section 3.4.2 that the linearised of (NF) is sufficient to theoretically describes the
MacKay effect. Thus the phenomenon starts in the linear regime, so the effect of saturating f
should only dampen out high oscillations occurring in the system. In Section 3.4.3, we provide
theoretical proof of all these results when the response function f is a nonlinear sigmoid function
satisfying assumptions given in Section 3.2.2.

3.4.1 . A priori analysis

In this section, we prove that it is necessary to break the Euclidean symmetry of funnel and tunnel
pattern by localized control function for replicating the MacKay effect with Equation (NF), both
with a linear and nonlinear response function.

Our first result is the following.

Theorem 3.4.1 Let a0 ∈ L∞(R2) and I ∈ L∞(R2) given by I(·) = cos(2π⟨ξ0, ·⟩), for some
ξ0 ∈ R2. Assume that the response function f is linear. If µ < µ0, it holds

a(·, t) −−−→
t→∞

I(·)
1− µω̂(ξ0)

, exponentially in L∞(R2), (3.24)

where a ∈ X∞ is the solution of (NF) with initial datum a0.

Proof . The stationary state associated with I(·) = cos(2π⟨ξ0, ·⟩) is given by aI(·) = I(·)/(1−
µω̂(ξ0)). Indeed, one has for x ∈ R2,

I(x) + µ(ω ∗ aI)(x) = I(x) +
µ

1− µω̂(ξ0)
(ω ∗ I)(x) = I(x)

1− µω̂(ξ0)
= aI(x), (3.25)

since ω ∗ I = ω̂(ξ0)I. Therefore, if µ < µ0, the result follows by the unicity of stationary state
and exponential convergence of a to aI in the space L∞(R2) provided by Theorem 3.3.1.

Corollary 3.4.1 Assume that the response function f is linear. If µ < µ0, then aF (resp. aP )
is a funnel (resp. tunnel) pattern in shape as PF (resp. PT ). In particular, Equation (NF) with
a linear response function cannot reproduce the MacKay effect starting with an external input
equal to PF or PT .

Proof . Due to Theorem 3.4.1, the stationary states associated with PF and PT are respec-
tively proportional to PF and PT so that they have the same binary pattern respectively (see,
Section 3.2.3), and then the same geometrical shape in terms of images.
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The following notation is needed: if F is a real-valued function defined on R2, we use
F−1({0}) to denote the zero level-set of F .

We provide a similar result as that of Theorem 3.4.1 with the presence of the nonlinear
function f in Equation (SS). This result shows, in particular, that even in the presence of
the nonlinearity, Equation (NF) cannot describe the MacKay effect when the external input is
chosen equal to PF or PT . Since PF and PT play symmetry roles, we focus only on PF . We
recall that they are analytically given in Cartesian cortical coordinates in V1 by (3.5).

Theorem 3.4.2 Assume that the external input in Equation (SS) is given by I = PF ∈
L∞(R2). If µ < µ0, then the stationary state aF := Ψ(PF ) ∈ L∞(R2) associated with
PF explicitly depends solely upon x2. Moreover, one has the following.

1. The function aF is even and 1/λ-periodic with respect to x2;

2. The function aF is infinitely differentiable, and Lipshitz continuous;

3. If in addition µ < µ0/2 and the function f is odd, then aF has a discrete and countable
number of zeroes with respect to x2, identical with that of x2 7→ cos(2πλx2) on R.

Remark 3.4.1 Notice the assumption µ < µ0/2 in part 3. of Theorem 3.4.2 instead of µ < µ0.
We think this is a technical assumption because of the strategy used in our proof since numerical
results suggest that part 3. remains valid for all µ < µ0. Moreover, the assumption on the
parity of f is also technical, and we conjecture that if f is not odd, then aF will still have a
discrete and countable number of zeroes with respect to x2, such that

a−1
F ({0}) = R×

{
zk ∈

]
k

2λ
,
k + 1

2λ

[
| k ∈ Z

}
, (3.26)

and, for all k ∈ Z,

|zk − τk| ≤
arcsin(µµ−1

0 )

2πλ
, where τk :=

2k + 1

4λ
. (3.27)

The gap between the zeroes of aF and those of PF provided by (3.27) shows that on each
interval, zk and τk become arbitrarily closed depending on whether µ is not closed to µ0.
Nevertheless, if λ is taken sufficiently large, zk and τk become arbitrarily close independently
of µ0 − µ.

Proof. (of Parts 1. and 2. of Theorem 3.4.2) For ease of notation, we assume in the sequel that
λ = 1. We know by Part 3. of Proposition 3.3.3 that if PF or aF has a subgroup of E(2) as a
group of symmetry, the other has the same subgroup as a group of symmetry and conversely.
Since PF (x1, x2) is independent on x1, it follows that aF (x1, x2) is also independent on x1 for
all (x1, x2) ∈ R2. Similarly, since PF is invariant under the action of the reflection with respect
to the straight x1 = 0, that is, PF (x1,−x2) = PF (x1, x2) for all (x1, x2) ∈ R2, one deduces
that aF (x1,−x2) = aF (x1, x2). Thus, aF is an even function with respect to x2. Similarly,
since PF is invariant under the translation by vector (0,−1) ∈ R2, it follows that aF is also
invariant under this translation so that aF is 1-periodic with respect to x2.
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The fact that aF is infinitely differentiable on R2 follows immediately from that PF ∈
C∞(R2), the kernel ω ∈ S(R2) ⊂ C∞(R2) ∩ L1(R2) and that f is bounded. Writing now
aF (x2) := aF (x1, x2) for notational ease, we obtain that aF is also given by

aF (x2) = cos(2πx2) + µ[ω1 ∗ f(aF )](x2), x2 ∈ R, (3.28)

where ω1 is a 1D difference of Gaussian kernel . Let a′F := ∂x2aF , then due to (3.28), one
obtains

a′F (x2) = −2π sin(2πx2) + µ[ω′
1 ∗ f(aF )](x2), x2 ∈ R. (3.29)

Since ∥f∥∞ ≤ 1 by assumption, it follows that ∥a′F ∥∞ ≤ 2π + µ∥ω′
1∥1 <∞. Therefore aF is

Lipschitz continuous.
We now present an argument to prove Part 3. of Theorem 3.4.2.

Proof . (of Part 3. of Theorem 3.4.2) Notice that aF = Ψ(PF ) satisfies

aF = PF + µω ∗ f(aF ). (3.30)

In particular, thanks to Parts 1., one has a−1
F ({0}) ⊃ R× {±1/4 + k | k ∈ Z}.

To show the converse inclusion, let x∗ := (x∗1, x
∗
2) verifying aF (x∗) = 0. From (3.30), it

follows
cos(2πx∗1) = −µ

∫
R2

ω(y)f(aF (x∗ − y))dy. (3.31)

On the one hand, by exploiting trigonometric formulae for the cosine, one has for a. e., y ∈ R2,

aF (x∗ − y) = sin(2πx∗1) sin(2πy1) + µ

∫
R2

k(y, z)f(aF (x∗ − z))dz, (3.32)

where k(x, y) := ω(x− y)− cos(2πx1)ω(y), satisfies

K := sup
x∈R2

∫
R2

|k(x, y)|dy = 2∥ω∥1. (3.33)

Since µ < µ0/2, the contracting mapping principle shows that for every I ∈ L∞(R2) there
exists a unique solution b ∈ L∞(R2) to

b(x) = I(x) + µ

∫
R2

k(x, y)f(b(y))dy. (3.34)

By (3.32), function b(y) := aF (x∗ − y) is the unique solution of the above equation associated
with I(y) = sin(2πx∗1) sin(2πy1).

On the other hand, since ω is symmetric and the sigmoid f is an odd function, we have
also for a. e., y ∈ R2,

−aF (x∗ + y) = sin(2πx∗1) sin(2πy1) + µ

∫
R2

k(y, z)f(−aF (x∗ + z))dz, (3.35)

so that, the function b̃(y) = −b(−y) is also solution of Equation (3.34) associated with the
input I(y) = sin(2πx∗1) sin(2πy1). By unicity of solution, one then has b(−y) = −b(y) for
a. e., y ∈ R2. This shows that y 7→ ω(y)f(aF (x∗ − y)) is an odd function on R2, since ω is
symmetric and f is an odd function, which implies that the r.h.s. of (3.31) is equal to 0 and
thus that x∗ ∈ P−1

F ({0}).
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The proof of the following corollary follows the same lines as that of Corollary 3.4.1.

Corollary 3.4.2 Under assumption µ < µ0, aF (resp. aT ) is a funnel (resp. tunnel) pattern
in shape. In particular, Equation (NF) with a sigmoid activation function cannot reproduce the
MacKay effect starting with an external input equal to PF or PT .

3.4.2 . The MacKay effect with a linear response function

The results we provide in this section aim to replicate the MacKay effect using Equation (NF)
when the response function f is linear. The Corollary 3.4.1 shows that, for our model of cortical
activity in V1, one cannot obtain the MacKay effect in the linear regime without breaking the
Euclidean plane symmetry of the external input when chosen equal to PF or PT .

Our purpose now is to show that Equation (NF) with the linear response function and
external input I ∈ {PF , PT } + εv reproduces the MacKay effect. Here v is a suitable control
function which should model the redundant information in MacKay’s stimuli.

Remark 3.4.2 We notice that only the description of the MacKay effect related to the funnel
pattern will be shown for ease of presentation and reader convenience. Then, in the rest of this
section, we focus on describing the MacKay effect related to the “MacKay rays”; see the image
on the left of Fig 3.1.

One of the fundamental properties of the retinotopic projection of the visual field into
V1 is that small objects centred on the fovea (centre of the visual field) have a much larger
representation in V1 than do similar objects in the peripheral visual field. Consistent with that,
a more realistic cortical representation of the “MacKay rays” visual stimulus consists of taking
the external input in Equation (NF) as I(x) = PF (x) + εH(θ − x1), where ε > 0, θ ≥ 0

(typically, θ ≫ 1) and H is the Heaviside step function, modelling the redundant information
in the centre of the funnel pattern. Note that this corresponds to redundant information in
horizontal stripes in the left area of the cortex.

To keep the presentation more clear as possible for reader convenience, we let θ = 0, and
we assume that the cortical representation of the “MacKay rays” visual stimulus is given by

I(x) = cos(2πλx2) + εH(−x1), λ, ε > 0, x := (x1, x2) ∈ R2. (3.36)

Theorem 3.4.3 Assume that the response function f is linear and the input I is given by
(3.36). If µ < µ0, then, the unique stationary state to Equation (NF) is given for all (x1, x2) ∈
R2 by

aI(x1, x2) =
cos(2πλx2)

1− µω̂(ξ0)
+ εg(x1), ξ0 := (0, λ), (3.37)

where g : R → R has a discrete and countable set of zeroes on (0,+∞).

Observe that under the assumption that the response function f is linear, Equation (NF)
becomes linear. It follows that the first term in the r.h.s. of (3.37) is the stationary output
associated with the input PF by using Theorem 3.4.1, and b is the stationary output associated
with the external input v(x1, x2) = H(−x1).
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Since the external input v explicitly depends only upon the variable x1, the associated
stationary output b also depends solely on that variable (a consequence of Remark 3.3.2).
Thus, we are now devoted to computing the solution b of the following equation

b(x) = I(x) + µ(ω1 ∗ b)(x), x ∈ R, (3.38)

where I(x) = H(−x) and the 1-D kernel ω1 is given by

ω1(x) = [σ1
√
2π]−1e

− x2

2σ2
1 − κ[σ2

√
2π]−1e

− x2

2σ2
2 , x ∈ R. (3.39)

ω̂1(ξ) = e−2π2σ2
1ξ

2 − κe−2π2σ2
2ξ

2
. (3.40)

Lemma 3.4.1 Let I ∈ S ′(R) and the kernel ω1 ∈ S(R) be defined by (3.39). Under the
assumption µ < µc, there is a unique solution b ∈ S ′(R) to Equation (3.38), which is given by

b = I + µK ∗ I. (3.41)

Here the kernel K ∈ S(R) is defined of all x ∈ R by

K(x) =

∫ +∞

−∞
e2iπξxK̂(ξ)dξ, where K̂(ξ) =

ω̂1(ξ)

1− µω̂1(ξ)
, ∀ξ ∈ R. (3.42)

Proof . First of all, under assumptions on I and ω1, we have that Equation (3.38) is well-posed
in S ′(R). Then taking respectively the Fourier transform of (3.38) and the inverse Fourier
transform in the space S ′(R), we find that b ∈ S ′(R) is given by (3.41) with K ∈ S(R) defined
as in (3.42). Indeed, observe that K̂ is well-defined on R due to hypothesis µ < µc, with µc
being defined in (2.23), and it belongs to the Schwartz space S(R) as the product of a C∞(R)
function and an element of S(R).
Due to Lemma 3.4.1, inverting the kernel K defined in (3.42) and providing an asymptotic
behaviour of its zeroes on R will helpful to complete the proof of Theorem 3.4.3. To achieve
this, we use tools from complex and harmonic analysis. Let us consider the extension of K̂ in
the set C of complex numbers,

K̂(z) =
ω̂1(z)

1− µω̂1(z)
, z ∈ C. (3.43)

Then K̂ is a meromorphic function on C, and its poles are zeroes of the entire function

h(z) := 1− µe−2π2σ2
1z

2
+ κµe−2π2σ2

2z
2
, z ∈ C. (3.44)

Remark 3.4.3 The holomorphic function h is an exponential polynomial [BG12, Chapter 3]
in −z2 with frequencies α0 = 0, α1 = 2π2σ21 and α2 = 2π2σ22 satisfying α0 < α1 < α2

due to assumptions on σ1 and σ2. It is normalized since the coefficient of 0-frequency equals
1. A necessary condition for h for being factorizable [BG12, Remarks 3.1.5, p. 201] is that
parameters σ1 and σ2 are taken so that it is simple, we refer to [BG12, Definition 3.1.4, p. 201]
for the definition. For h to be simple, α1 and α2 need to be commensurable, i.e., α1/α2 ∈ Q,
which is equivalent to σ21/σ

2
2 ∈ Q. Here Q denote the set of rational numbers.
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Remark 3.4.4 For ease in computation and pedagogical presentation, we assume in the rest
of this section that parameters in the kernel ω defined in (3.1) and then in the 1-D kernel
ω1 defined in (3.39) are given by κ = 1, 2π2σ21 = 1 and 2π2σ22 = 2. In this case, one has
µ0 := ∥ω∥−1

1 = 2 and µc := ω̂(ξc)
−1 = 4. In particular ω satisfies the balanced condition

ω̂(0) = 0. Then, assuming in this particular consideration that µ := 1 < µ0 = 2 is not a loss
of generality.

Consequently, Theorem 3.4.3 follows from the following proposition. The proof is an immediate
consequence of Lemma 3.4.1 and Theorem A.1.1, and Proposition A.1.1 given in Section A.1.1.

Proposition 3.4.1 Let I(x) = H(−x), x ∈ R, H being the Heaviside step function. Under
the considerations of Remark 3.4.4, the solution b ∈ L∞(R) of (3.38) is given, for x > 0, by

e
πx

√
2π
3 b(x) =

√
3

π
cos

(
π

3
+ πx

√
2π

3

)
+O

(
1

x

)
. (3.45)

Moreover, letting (θk)k∈N∗ and (τk)k∈N∗ be respectively zeroes and extrema of x 7→ cos(π/3+

πx
√

2π/3) for x > 0, the zeroes of b in (0,+∞) are a countable sequence (ρk)k∈N∗ such that
ρk is unique in the interval Jk :=]τk, τk+1[ for all k ∈ N∗ and it holds

|θk+1 − ρk| ≤
√
6

2π2
arcsin

(
2
√
5

5π(3k − 1)

)
, ∀k ∈ N∗. (3.46)

Proof . If I(x) = H(−x), x ∈ R, is the input in Equation (3.38), then by Lemma 3.4.1 and
Theorem A.1.1, the solution b ∈ L∞(R) of (3.38) is given for all x > 0 by

b(x)

2
√
π

=

∫ +∞

x
e
−πy

√
2π
3 cos

(
π

12
+ πy

√
2π

3

)
dy

+

∫ +∞

x

+∞∑
k=1

e
−πcky

√
2π
3

ck
cos

(
π

12
+ πcky

√
2π

3

)
dy

+

∫ +∞

x

+∞∑
k=1

e
−πdky

√
2π
3

dk
sin

(
π

12
− πdky

√
2π

3

)
dy, (3.47)

where the sequences (ck)k and (dk)k are defined in (A.2). Since these two sequences are
positives and tend to +∞ as k → +∞, we can commute the integrals and the sums in the
r.h.s of (3.47) for all x > 0. One finds,

b(x) =

√
3

π
cos

(
π

3
+ πx

√
2π

3

)
e
−πx

√
2π
3 +

√
3

π

+∞∑
k=1

e
−πckx

√
2π
3

c2k
cos

(
π

3
+ πckx

√
2π

3

)

−
√
3

π

+∞∑
k=1

e
−πdkx

√
2π
3

d2k
cos

(
π

3
+ πdkx

√
2π

3

)
, (3.48)

and (3.45) immediately follows. Finally, to prove (3.46), it suffices to repeat the proof of
Lemma A.1.1 and Proposition A.1.1 given in Section A.1.1.
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The Proposition 3.4.1 implies that if the external input is the V1 representation of the
“MacKay rays” as defined by (3.36), then the associated stationary state corresponds to the
V1 representation of the afterimage reported by MacKay [Mac57]. Moreover, Theorem 3.3.1
ensures that the average membrane potential a(x, t) of neurons in V1 located at x ∈ R2

at time t ≥ 0 exponentially stabilises on the stationary state when t → ∞. It follows that
Equation (NF) theoretically replicates the MacKay effect associated with the “MacKay rays” at
the cortical level. Due to the retino-cortical map between the visual field and V1, we deduce
the theoretical description of the MacKay effect for the “MacKay rays” at the retinal level.

Remark 3.4.5 We emphasise that a linear combination of the Heaviside step function in the
x2-variable as a perturbation of the V1 representation of the tunnel pattern (called “MacKay
target”) gives rise to the MacKay effect description related to this pattern.

3.4.3 . The MacKay effect with a nonlinear response function

This section aims to show that Equation (NF) with a nonlinear response function f still replicates
the MacKay effect associated with the “MacKay rays” and the “MacKay target”, see Figures 1.3
and 1.4.

Remark 3.4.1 and Corollary 3.4.2 shows that, for our model of cortical activity in V1
modelled by Equation (NF), one cannot replicate the MacKay effect even with a nonlinear
response function (having standard properties in most neural fields model, namely, a sigmoid)
without breaking the Euclidean plane symmetry of the external input when chosen equal to PF

or PT .
In the following, in order to see why a response function with sigmoid shape replicates the

MacKay effect, we assume the following hypothesis.

Hypothesis 3.4.1 The response function f satisfies: f ∈ C2(R), f is odd and f(s) = s for
all |s| ≤ 1. We also assume that maxs∈R f

′(s) = 1.

Let us model the cortical representation of the “MacKay rays” input by the following

I(x) = γPF (x) + εH(−x1), x := (x1, x2) ∈ R2, (3.49)

where γ ≥ 0 is a control parameter, ε > 0 and PF (x) = cos(2π⟨ξ0, x⟩) is an analytical
representation of the funnel pattern in cortical coordinates, where ξ0 = (0, λ) with λ > 0.

The first result of this section is then the following

Proposition 3.4.2 Let the input I be defined by (3.49) with ε > 0 small and γ ≤ 1 −
µω̂(ξ0). Under the assumption, µ < µ0, equation (NF) with a response function satisfying
Hypothesis 3.4.1 replicates the MacKay effect associated with the “MacKay rays”.

Proof . On one hand, the stationary solution associated with I(x) = γPF (x) + εv(x1, x2),
where v(x1, x2) = H(−x1) satisfies (3.19) in L∞(R2), i.e.,

Ψ(γPF + εv) = γPF + εv + µω ∗ f(Ψ(γPF + εv)). (3.50)
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On the other hand, since ∥PF ∥∞ = 1 = ∥v∥∞, 0 < γ ≤ 1 − µω̂(ξ0) ≤ 1 and ε ≪ 1, we can
apply Theorem A.1.3 and obtain

Ψ(γPF + εv) = Ψ(γPF ) + εDΨ(γPF )v + o(ε), (3.51)

where DΨ(γPF )v is the differential of Ψ at γPF in the direction of v. It also follows from
Theorems 3.3.1 and A.1.2 that for some g1 ≥ 0, it holds ∥Ψ(γPF )∥∞ ≤ g1 = γ∥PF ∥∞ +

(µ/µ0)f(g1) < 3/2. Thus, injecting (3.51) into (3.50) and Taylor expansion of f in the first
order leads to

Ψ(γPF ) = γPF +µω ∗f(Ψ(γPF )), DΨ(γPF )v = v+µω ∗ [f ′(Ψ(γPF ))DΨ(PF )v.] (3.52)

Thanks to Hypothesis 3.4.1 and the assumption γ ≤ 1−µω̂(ξ0), one has Ψ(γPF ) = γPF /(1−
µω̂(ξ0)). Indeed, since |γPF /(1− µω̂(ξ0)| ≤ 1 and ω ∗ PF = ω̂(ξ0)PF , one has that

γPF + µω ∗ f
(

γPF

1− µω̂(ξ0)

)
= γPF +

µγω ∗ PF

1− µω̂(ξ0)
=

γPF

1− µω̂(ξ0)
. (3.53)

Therefore, Ψ(γPF ) is also a funnel pattern when represented in term of binary image. Moreover,
since |Ψ(γPF )| ≤ 1, one has f ′(Ψ(γPF )) = 1, and DΨ(γPF )v = v + µω ∗DΨ(PF )v has a
discrete and countable set of zeroes by Proposition 3.4.1. The result then follows at once.

Proposition 3.4.3 Let v ∈ L∞(R2). Under the assumption µ < µ0, the map Π : γ ∈ R≥0 7→
Π(γ) = uγ ∈ L∞(R2), where uγ is the solution of uγ = v + µω ∗ [f ′(Ψ(γPF ))uγ ] is Lipschitz
continuous.

Proof . Let v ∈ L∞(R2) be fixed and γ ∈ R≥0. If uγ ∈ L∞(R2) is the solution of uγ =

v + µω ∗ [f ′(Ψ(γPF ))uγ ], then, under the assumption µ < µ0 and Hypothesis 3.4.1, one has
∥uγ∥∞ ≤ ∥v∥∞µ0/(µ− µ0). Let now γ1, γ2 ∈ R≥0, then using Inequality (3.20), one finds

∥Π(γ1)−Π(γ2)∥∞ ≤ µ∥ω∥1∥f ′(Ψ(γ1PF ))uγ1 − f ′(Ψ(γ2PF ))uγ2∥∞

≤ µ

µ0
∥Π(γ1)−Π(γ2)∥∞ +

µµ0∥v∥∞f ′′∞
(µ0 − µ)2

|γ1 − γ2|, (3.54)

where f ′′∞ is the L∞-norm of the second derivative f ′′. The result then follows at once.
Let us define the positive quantity

γ0 := sup{γ ≥ 0 | ∥Ψ(γ′PF )∥∞ ≤ 1, for all γ′ ∈ [0, γ]}. (3.55)

Observe that γ0 is not necessary finite and that if 0 ≤ γ ≤ γ0, then f ′(Ψ(γPF )) = 1. It follows
that if γ0 = +∞, then ∥Ψ(γPF )∥∞ ≤ 1 for all γ ≥ 0 and therefore, under Assumption µ < µ0,
Equation (NF) with a response function satisfying Hypothesis 3.4.1 and with the input I defined
by (3.49) with ε > 0 will always reproduce the MacKay effect associated with “MacKay rays”
thanks to Proposition 3.4.3.

In the case where γ0 is finite, one has the following.
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Theorem 3.4.4 Let L > 0. If γ0 defined by (3.55) is finite, there exists δ > 0 such that the
stationary solution to Equation (NF) with a response function satisfying Hypothesis 3.4.1 and
with the input I defined by (3.49) with ε > 0 small and |γ − γ0| ≤ δ has the same zeroes
structure as in the linear case in [0, L]×R, under Assumption µ < µ0. In particular, it replicates
the MacKay effect associated with the “MacKay rays”.

Proof . Let ε > 0 be small and γ0 defined by (3.55) be finite. On the one hand, by definition of
γ0 and Proposition 3.4.2, the stationary solution aI(x1, x2) to Equation (NF) with a response
function satisfying Hypothesis 3.4.1 and with the input I defined by (3.49) with γ = γ0 has a
discrete and countable zero-level set with respect to each of its variables x1 > 0 and x2 ∈ R. On
the other hand, one has for all γ ≥ 0, Ψ(γPF+εv) = Ψ(γPF )+εuγ+o(ε) where uγ ∈ L∞(R2)

is the solution of uγ = v + µω ∗ [f ′(Ψ(γPF ))uγ ]. We known from Theorems 3.4.1 and 3.4.2
that Ψ(γPF ) has a discrete set of zeroes with respect to x2 as PF , and from Proposition 3.4.3
that for all η > 0, there exists δ > 0 such that, if |γ − γ0| ≤ δ it holds ∥uγ − uγ0∥∞ ≤ η.
Therefore, since uγ0 has a discrete set of zeroes with respect to x1 > 0, then the zeroes of the
function uγ cannot accumulate at any of those zeroes in a finite interval, that is, the zeroes of
both functions are distributed similarly in [0, L]× R for all finite L > 0.

Remark 3.4.6 Although a sigmoid nonlinearity such as f(s) = tanh(s) or f(s) = erf(s
√
π/2)

does not satisfies the assumption f(s) = s for |s| ≤ 1, it is almost linear in a small interval of
the form (−ε, ε), ε > 0 in such a way that Theorem 3.4.4 should be a theoretical explanation
of why Equation (NF) with this nonlinearity replicates the MacKay effect.

3.4.4 . Numerical results for the MacKay effect

The numerical implementation is performed with Julia, where we coded retino-cortical map for
visualising each experiment, see Section B.1 of Appendix B. Moreover, given a sensory input
I, the associated stationary output aI is numerically implemented via an iterative fixed-point
method, see Section B.3 of Appendix B.

Also, following the convention adopted in [EC79a; Bre+01] for geometric visual hallucina-
tions, we present binary versions of these images, where black corresponds to positive values
and white to negative ones, see Section 3.2.3.

The cortical data is defined on a square (x1, x2) ∈ [−L,L]2, L = 10 with steps ∆x1 =

∆x2 = 0.01. For the reproduction of the MacKay effect (see Section B.4 of Appendix B),
parameters in the kernel ω given by (3.1) are κ = 1, 2π2σ21 = 1, and 2π2σ22 = 2. We also
choose µ := 1. We collected some representative results in Figures 3.5, 3.6, 3.7 and 3.8. Here,
we visualize in the retinal representation obtained from the cortical patterns via the inverse
retino-cortical map. In Figure 3.5, we exhibit the MacKay effect associated with the “MacKay
rays”. In this case, the sensory input is chosen as I(x) = cos(5πx2) + εH(2 − x1), where
ε = 0.025 and H being the Heaviside step function.

Similarly, we exhibit in Figure 3.6 the MacKay effect associated with the “MacKay target”.
In this case, the sensory input is I(x) = cos(5πx1) + ε(H(−x2 − 9.75) + H(x2 − 9.75) +

H(0.25− |x2|)), where ε = 0.025 and H being the Heaviside step function.
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Figure 3.5: MacKay effect (right) on the “MacKay rays” (left). We use the linear response function
f(s) = s. The sensory input is chosen as I(x) = cos(5πx2)+ εH(2−x1), ε = 0.025, whereH is the
Heaviside step function.

We use a linear response function (f(s) = s) for the two figures. However, the phenomenon
can be reproduced with any sigmoid function, see for instance, Figure 3.7 and Figure 3.8.

Figure 3.6: MacKay effect (right) on the “MacKay target” (left).We use the linear response function
f(s) = s. The sensory input is I(x) = cos(5πx1)+ε(H(−x2−9.75)+H(x2−9.75)+H(0.25−|x2|)),
ε = 0.025, whereH is the Heaviside step function.

Remark 3.4.7 Although the Gaussian kernel is usually used in image processing and computer
vision tasks due to its proximity to the visual system, it cannot replicate the MacKay effect if
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Figure 3.7: MacKay effect (right) on the “MacKay rays” (left). We use the nonlinear response func-
tion f(s) = s/(1 + |s|). The sensory input is chosen as I(x) = cos(5πx2) + εH(2− x1), ε = 0.025,
whereH is the Heaviside step function.

we use it as the kernel in Equation (NF). A physiological reason for this is that we used a one-
layer model of NF equations. It is not then biologically realistic to model synaptic interactions
with a Gaussian, which would model only excitatory-type interactions between neurons, see also
Remark A.1.2 in Appendix A.1.1 for a theoretical explanation.

Figure 3.8: MacKay effect (right) on the “MacKay target” (left).We use the nonlinear response func-
tion f(s) = s/(1+ |s|). The sensory input is I(x) = cos(5πx1) + ε(H(−x2 − 9.75)+H(x2 − 9.75)+
H(0.25− |x2|)), ε = 0.025, whereH is the Heaviside step function.

103



CHAPTER 3. MACKAY-TYPE VISUAL ILLUSIONS Cyprien TAMEKUE

3.5 . On Billock and Tsou’s experiments

In this section, we investigate the description of Billock and Tsou’s phenomena using Equa-
tion (NF). We begin by proving that these phenomena are wholly nonlinear in contrast to the
MacKay effect. That is, equation (NF) with a linear response function f cannot reproduce these
psychophysical experiments.

3.5.1 . Unreproducibility of Billock and Tsou experiments: linear response function

In this section, we consider the assumption that the response function f is linear. To simplify
our analysis, we specifically focus on the funnel pattern centered on the fovea within the visual
field. As a result, the corresponding sensory input I consists of a localized pattern of horizontal
stripes in the left area of the V1 cortex by the retino-cortical map.

Previously, in [TPC23a, Proposition 5.], we proved that (NF) with a linear response function
is incapable of reproducing Billock and Tsou’s experiments, as verified through direct Fourier
transform computations. While this finding sufficed to establish our desired outcome, it failed
to offer deeper insights into the qualitative properties of the stationary state associated with the
sensory input utilized in these experiments. Specifically, it did not precisely characterise the zero-
level set of this stationary state. To address this gap, we draw upon the qualitative properties
of the sensory input I and utilize tools from Complex and harmonic analysis. Consequently, we
present the following key result in this section.

Theorem 3.5.1 Let f(s) = s, for all s ∈ R and the sensory input I in (NF) be given for
all (x1, x2) ∈ R2 by I(x1, x2) = cos(2πλx2)H(−x1), λ > 0 and H being the Heaviside
step function. Then, under assumption µ < µ0, the zero-level set Za of the stationary state
a ∈ L∞(R2) satisfies

Za ∩ [(0,+∞)× R] = [X1 × R] ∪ [(0,+∞)×X2], (3.56)

where X1 and X2 are discrete sets, respectively in (0,+∞) and R.

To prove Theorem 3.5.1, we proceed pedagogically in two steps. We also assume without loss
of generality that λ = 1 to keep the presentation clear for reader convenience. Recall that,
under hypotheses of Theorem 3.5.1, the stationary state a ∈ L∞(R2) is given by

a(x1, x2) = cos(2πx2)H(−x1) + µ

∫
R2

ω(x− y)a(y)dy, (x1, x2) ∈ R2, (3.57)

where the kernel ω is defined in (3.1).

Lemma 3.5.1 Under hypotheses of Theorem 3.5.1, the stationary state a ∈ L∞(R2) is 1-
periodic, even, Lipschitz continuous and infinitely derivable with respect to its second variable.

Proof. Using that the convolution operator commutes with translation, that the input I(x1, x2) =
cos(2πx2)H(−x1) and ω are even with respect to x2, one deduces that a is 1-periodic and
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even with respect to x2. The fact that a ∈ L∞(R2) is infinitely derivable with respect to x2
follows from that for a.e. x1 ∈ R, I(x1, ·) ∈ C∞(R) and ω ∈ S(R2) ⊂ C∞(R2) ∩ L1(R2).
Let us turn to an argument to show that a is Lipschitz continuous with respect to x2. Taking
the derivative of (3.57) with respect to x2, one finds

a′(x1, x2) := ∂x2a(x1, x2) = −2π sin(2πx2)H(−x1)+µ
∫
R2

ω(x−y)a′(y)dy, (x1, x2) ∈ R2.

(3.58)
It follows that for a.e. x1 ∈ R,

∥a′(x1, ·)∥L∞(R) ≤
2π

1− µ
µ0

,

showing that a(x1, ·) is Lipschitz continuous for a.e. x1 ∈ R.

Lemma 3.5.2 Under hypotheses of Theorem 3.5.1, the stationary state a ∈ L∞(R2) is given
by

a(x1, x2) = a1(x1) cos(2πx2), (x1, x2) ∈ R2. (3.59)

Here a1 ∈ L∞(R) is given by

a1(x1) = H(−x1) + µ(W1 ∗H(−·))(x1), x1 ∈ R. (3.60)

where W1 ∈ S(R) is defined for all x1 ∈ R by

W1(x1) =

∫ +∞

−∞
e2iπx1ξ ψ̂1(ξ)

1− µψ̂1(ξ)
dξ, ψ̂1(ξ) = e−2π2σ2

1(1+ξ2) − κe−2π2σ2
2(1+ξ2), ξ ∈ R.

(3.61)

Proof . We fix x1 ∈ R. Since x2 7→ a(x1, x2) is 1-periodic and even on R, we expand a(x1, ·)
in term of Fourier series as

a(x1, x2) =

∞∑
n=0

an(x1) cos(2πnx2), x2 ∈ R, (3.62)

a0(x1) =

∫ 1

0
a(x1, t)dt, and an(x1) = 2

∫ 1

0
a(x1, t) cos(2πnt)dt, x1 ∈ R.

(3.63)
Due to Lemma 3.5.1, one has that the derivative a′(x1, ·) of a with respect to x2 is continuous
and bounded on R. Thus a′(x1, ·) belongs to L2([−1, 1]), the space of real-valued measurable
and square-integrable functions over [−1, 1]. Since a(x1, ·) is absolutely continuous (Lipschtiz
continuous by Lemma 3.5.1) on R, it follows from [FK74, Théorème 2.] that its Fourier series
converges uniformly to a(x1, ·) on R. Observe also that (3.63) defines functions an ∈ L∞(R)
for all n ∈ N, so that one gets obviously for all x1 ∈ R and for all σ > 0,

+∞∑
n=0

∫ ∞

−∞

∣∣∣∣ 1

σ
√
2π
e−

(x1−y1)
2

2σ2 e−2π2σ2n2
an(y1) cos(2πnx2)

∣∣∣∣ dy1 ≲ 4 1

1− e−2π2σ2 . (3.64)

4Let γ1, γ2 ≥ 0, then γ1 ≲ γ2 if there existsM > 0 such that γ1 ≤Mγ2.
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By substituting (3.62) into (3.57), one finds that the latter is equivalent to the following family
of one-dimensional linear integral equation indexed by n ∈ N.

an(x1) = δ1,nH(−x1) + µα(ψn ∗ an)(x1), x1 ∈ R, (3.65)

where δ1,n is the usual Kronecker symbol and the kernel ψn is given for every n ∈ N, by

ψn(s) = e−2π2n2σ2
1
e
− s2

2σ2
1

σ1
√
2π

− κe−2π2n2σ2
2
e
− s2

2σ2
2

σ2
√
2π
, s ∈ R. (3.66)

For n ̸= 1, equations (3.65) yields to

(δ − µαψn) ∗ an = 0, in S ′(R), (3.67)

where δ is the Dirac distribution at 0. Taking the Fourier transform of (3.67) in the space
S ′(R), one obtains for all ξ ∈ R,

(1− µψ̂n(ξ))F{an}(ξ) = 0, n ̸= 1. (3.68)

It is not difficult to see that max{ψ̂n(ξ) | ξ ∈ R} ≤ max{ω̂(ξ) | ξ ∈ R2} ≤ ∥ω∥1. Since
µ∥ω∥1 < 1 by assumption, one deduces 1−µψ̂n(ξ) > 0 for all ξ ∈ R, and therefore F{an} ≡ 0.
It follows that

an ≡ 0, for all n ̸= 1. (3.69)

In the case n = 1, one has

a1(x1) = H(−x1) + µ(ψ1 ∗ a1)(x1), x1 ∈ R. (3.70)

Finally, arguing as in the proof of Lemma 3.4.1, we find (3.60) and (3.61).

Remark 3.5.1 To make the presentation more understandable, in the rest of this section, we
let parameters in the kernel ω in (3.1) are such that κ = 1, σ1 = 1/π

√
2 and σ2 = σ1

√
2. The

motivation for this choice is explained in Remark 3.4.3. We also let µ = 1, see Remark 3.4.4.

Remark 3.5.2 Using Theorem (A.2.1), and arguing similarly as in the case of MacKay effect
description in linear case, we can prove that a1 has a discrete and countable set of zeroes in
(0,+∞), refer to Section A.1.1 and Proposition 3.4.1.

Proof . (of Theorem 3.5.1) To complete the proof of Theorem 3.5.1 it suffices to consider
Lemma 3.5.2, Remark 3.5.2 and observe that a given by (3.59) satisfies (3.56).
A consequence of Theorem 3.5.1 is the following.

Corollary 3.5.1 Assume the neurones’ response function is linear. Under the assumption µ <
µ0, equation (NF) does not reproduce Billock and Tsou’s experiments associated with a sensory
input consisting of a pattern of horizontal stripes localised in the left area in the cortex V1.

Proof . Given that the sensory input in equation (NF) is a pattern consisting of horizontal
stripes localised in the left area in the cortex V1, Theorem 3.5.1 shows that the corresponding
stationary state consists of a mixture of patterns of horizontal and vertical stripes in the right
area in V1 instead of vertical stripes only, as Billock and Tsou reported.
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Figure 3.9: Nonlinear response functions fm,α(s) = max(−m,min(1, αs)) for different values of
m and α.

3.5.2 . Reproducibility of Billock and Tsou’s experiments with a sigmoid response
function and numerical results

In Section 3.5.1, we proved that Equation (NF) with a linear response function does not repro-
duce Billock and Tsou’s experiments.

To see how the shape of the nonlinearity f is involved in the reproducibility, we first consider
the family of nonlinear sigmoid functions

fm,α(s) = max(−m,min(1, αs)) =


1, if s ≥ 1

α ,

αs, if − m
α ≤ s ≤ 1

α ,

−m, if s ≤ −m
α ,

, s ∈ R, (3.71)

with m ≥ 0 and α > 0. Please, refer to Figure 3.9 for visual illustration. The goal is to figure
out ranges on parameters m and α where fm,α replicate these phenomena or not. Since the
maximal slope α of fm,α is no longer equal to 1, we let

µα := α−1∥ω∥−1
1 , (3.72)

which will play the role of µ0 in the rest of this section.

Remark 3.5.3 Let I ∈ Lp(R2) and a0 ∈ Lp(R2) be respectively the sensory input and the
initial datum in Equation (NF). Using the contraction mapping principle as soon as µ < µα,
it is straightforward to prove for fixed m ≥ 0 and α > 0 the existence of unique stationary
solution am,α ∈ Lp(R2) to Equation (NF) where f is replaced by fm,α.

It is a straightforward consequence of Theorem A.1.2 in the Appendix A.1.2 that if I ∈
L∞(R2), the solution am,α ∈ L∞(R2) satisfies

∥am,α∥∞ ≤ Cm,α, (3.73)

where Cm,α > 0 is the smaller fixed point of the function x 7→ ∥I∥∞+ µ
µα
fm,α(x) on (0,+∞).

Moreover, thanks to expression of fm,α given by (3.71) it is immediate that Cm,α = Cα, that
is Cm,α does not depend on m.
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We therefore has the following.

Proposition 3.5.1 Let I ∈ L∞(R2) and α > 0 be given. Under the hypothesis µ < µα,
the unique solution am1,α ∈ L∞(R2) of Equation (NF) with fm1,α coincides with the unique
solution am2,α ∈ L∞(R2) of Equation (NF) with fm2,α as soon as m1,m2 ≥ mα, where

mα := αCα. (3.74)

Applied to Billock and Tsou’s experiments, Proposition 3.5.1 implies the following helpful result.

Corollary 3.5.2 Let I ∈ L∞(R2), α > 0 and m1 ≥ mα be given where mα is defined by
(3.74). Under the hypothesis µ < µα, if the sigmoid fm1,α reproduces BT, then any sigmoid
fm,α reproduces BT as soon as m ≥ m1.

In [TPC22, Figs. 5 and 6], we illustrated the capability of Equation (NF) to reproduce Billock
and Tsou experiments with the nonlinear response function

f(s) = (1 + exp(−s+ 0.25))−1 − (1 + exp(0.25))−1.

In Section 3.5.1, we proved that a linear response function does not reproduce these phenomena.
In what follows, for a real function u, the translation τx0u of u by x0 ∈ R is the real

function defined by (τx0u)(x) = u(x− x0).
We recall that one of the fundamental properties of the retinotopic projection of the visual

field into V1 is that small objects centred on the fovea (centre of the visual field) have a much
larger representation in V1 than do similar objects in the peripheral visual field. Consistent with
that, a more realistic cortical representation of the BT visual stimulus associated, e.g., with
the funnel pattern localised in the peripheral visual field consists of taking the sensory input
as I(x1, x2) = cos(2πx2)(τx0H)(x1). Here x0 ≫ 1, and H is the Heaviside step function,
modelling that the funnel pattern is localised in the peripheral visual field. Note that this
corresponds to sensory input consisting of horizontal stripes in the right area of the cortex V1.

For numerical implementation performed with Julia, we assume that the cortical data is
defined on a square (x1, x2) ∈ [−L,L]2, L = 10 with steps ∆x1 = ∆x2 = 0.01, see Sec-
tions B.1, B.3 and B.5 of Appendix B. We exhibit in Figures. 3.10 and 3.11 Billock and Tsou’s
experiments for a funnel-like stimulus localised at the periphery and fovea, respectively. As
images, we have a fan shape pattern at the periphery (resp. fovea) and white in the fovea
(respectively periphery). We use the kernel ω defined in (3.1) with σ1 = 0.1, σ2 = 0.5 and
κ = 4.56.

In Figure. 3.10, the stimulus is I(x) = cos(4πx2)H(x1 − 6), and the nonlinearity is
f(s) = max(−0.2,min(1, 1.7s)). In Fig. 3.11, the stimulus is I(x) = cos(4πx2)H(6−x1) and
the nonlinearity is f(s) = max(−0.2,min(1, 1.2s)). In Figure. 3.12, the stimulus is I(x) =

cos(4πx2)H(6−x1): On the left, the nonlinearity used is f(s) = max(−0.2,min(1, 1.2s)), and
on the right, we use f(s) = max(−1.2,min(1, s)). In the afterimage on the left of Fig. 3.12,
the fan shape does not extend to the periphery, whereas on the right, the fan shape extends
through the periphery.
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Figure 3.10: Billock and Tsou’s experiments: funnel stimulus localised at the periphery (left) and
afterimage (right).

Figure 3.11: Billock and Tsou’s experiments: funnel stimulus localised at the fovea (left) and after-
image (right).
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Figure 3.12: After-images in Billock and Tsou’s experiments: funnel stimulus localised at the fovea
as in Figure 3.11 (left). On the right (respectively left) illusory contours extend (resp. does not) to
the periphery.

In order to see how fm,α is involved on the reproducibility of Billock and Tsou’s experiments
related to the localised funnel pattern on the fovea of the visual field

I(x1, x2) = cos(2πx2)(τ−6H)(−x1) = cos(2πx2)H(6− x1), (x1, x2) ∈ R2, (3.75)

we assume that

(m,α) ∈ {(k/10, ℓ/10) | k = 0, . . . , 30, ℓ = 1, . . . , 30}, (3.76)

due to Corollary 3.5.2. In the Figure 3.13, we depicted regions where fm,α reproduces Billock
and Tsou’s experiments associated with a funnel pattern localised in the fovea of the visual
field or not, depending on the values of parameters m and α. Please, refer to Section B.5.2 in
Appendix B if you want to see how Figure 3.13 is numerically obtained.

Remark 3.5.4 While currently engaged in theoretical justifications for the replication of Billock
and Tsou phenomena using Equation (NF) with a “good” nonlinearity, as it is ongoing in [CPT23],
it is essential to note that the positive outcomes obtained through numerical simulations in
Figure 3.13 should sufficiently substantiate this. Indeed, the code works via a fixed point
arguments. Let a be the exact stationary solution given by the contraction mapping principle
and vNh be the corresponding N -th iteration approximate solution with respect to the spatial
discretisation step h. It should be possible to prove that

∥a− vNh ∥∞ ≤ O(1/N) +O(h), (3.77)

where N ≫ 1 and h ≪ 1. The same argument used in the proof of Theorem 3.4.4 then
guaranteed that vNh captures correctly the structure of zeroes of a.
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Figure 3.13: Range of (m,α) where fm,α reproduce or not Billock and Tsou’s experiments associ-
atedwith a funnel pattern localised in the fovea of the visual field. Themagenta region corresponds
to the values ofm and α where fm,α reproduces the “strong” Billock and Tsou’s experiments (the
illusory contours does not extend through the physical stimulus in the afterimage). The yellow re-
gion corresponds to the values of m and α where fm,α reproduces the “weak” Billock and Tsou’s
experiments (the illusory contours extend through the physical stimulus in the afterimage) and
the black region corresponds to the values ofm and α where fm,α does not reproduce Billock and
Tsou’s experiments, neither “strong” nor “weak”.

3.5.3 . Ongoing works

As mentioned in Remark 3.5.4, we are currently engaged in [CPT23], to

1. understanding theoretically why the well-used non-linearities f1,α(s) = max(−1,min(1, αs))

and f0,α(s) = max(0,min(1, αs)) do not replicate Billock and Tsou’s experiments. At
this stage of our work, it seems that f1,α does not replicate these intriguing visual
phenomena due to some compensation effect related to that f1,α is asymmetric (odd
function).

2. theoretically replicate the “weak” Billock and Tsou’s experiments with the non-linear
response function

f∞,α(s) =

{
1, if s ≥ 1

α ,

αs, if s ≤ 1
α ,

= 1−max(0, 1− αs),

which essentially corresponds to the limiting case m → ∞. Observe that restricting
to this case is consistent with Corollary 3.5.2. In particular, it will be also a great
achievement if we clearly understand why it is necessary required that the slope α ≥ 1

for f∞,α to replicate these phenomena as suggest the numerical results in Figure 3.13.
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Even though Figure 3.13 does not provide information about the unreporducibility of Billock
and Tsou’s experiments using the non-linearity

fm,∞(s) =


1, if s > 0,

0, if s = 0,

−m, if s < 0,

corresponding to the sign function whenm = 1, it does not actually reproduce the phenomenon.
It is also our interest to understand theoretically why this non-linearity does not work.
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CHAPTER 4

Existence of an equilibrium for neural fields
under output proportional feedback

4.1 . Introduction

Investigating the dynamical mechanisms that underlie spatially structured activity states in
cortical tissue is of fundamental importance for understanding a diverse array of neurobiological
phenomena, encompassing both natural processes and pathological conditions.

Beyond using neuronal dynamics to comprehend the interplay between sensory-driven and
self-organizing cortical activity in the primary visual cortex [CPT23; Nic+21; TPC22; TPC23a;
TPC23b], neural field equations offer a valuable tool for advancing our understanding of cerebral
functions characterized by propagating waves, such as the oscillatory instability observed in the
mechanism of epileptic seizures and the generation of pathological oscillations in Parkinson’s
disease [MJ03; Cha+17].

The use of spatiotemporal models to describe the activity of neuronal populations is consid-
erably increasing [Bre11; Tas97]. A fundamental inquiry in the analytical study of neural fields
revolves around the stability of stationary solutions. This inquiry is essential for understanding
the functioning of the brain as modelled by the equilibrium pattern and its implications for
overall brain function.

In the purpose to disrupt pathological brain oscillations associated with Parkinson’s disease,
the authors of [Cha+17] proved that the closed-loop system resulting from the output propor-
tional feedback stabilization of a class of delayed neural fields equation of Wilson-Cowan type
[WC73] is input-to-state stable (ISS) for sufficiently high gain, subject to the existence of an
equilibrium point for the closed-loop system.

This chapter then follows the lines of [Bri+23] providing mild conditions under which such
an equilibrium exists. We show, in particular, that the boundedness of the nonlinear response
functions is enough to guarantee the existence of an equilibrium.
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4.2 . Presentation of the main result

In [Cha+17, Section 4], the following delayed neural fields equations are considered.

τ1(r)
∂z1
∂t

(r, t) = −z1(r, t) + S1

(
I⋆1 (r) + α(r)u(r, t) +

2∑
j=1

∫
Ω
w1j(r, r

′)zj(r
′, t− dj(r, r

′))dr′
)
,

(4.1a)

τ2(r)
∂z2
∂t

(r, t) = −z2(r, t) + S2

(
I⋆2 (r) +

2∑
j=1

∫
Ω
w2j(r, r

′)zj(r
′, t− dj(r, r

′))dr′
)
. (4.1b)

Here Ω ⊂ Rq is a compact set, zi(r, t) is the neural activity at position r ∈ Ω and time t ∈ R+

of population i ∈ {1, 2}, τi : Ω → R>0 is a time constant distribution, Si : R → R is a non-
decreasing continuous function, wij ∈ L2(Ω2;R) represents the synaptic coupling distribution
for i, j ∈ {1, 2}, dj : Ω2 → [0, d̄] for some d̄ ≥ 0, u : Ω × R+ → R is the controlled input,
α : Ω → R+ is a bounded function reflecting the in-homogeneity of the received input, and
I⋆i ∈ L2(Ω;R) is a constant uncontrolled input.

The aim of [Cha+17] is to disrupt pathological brain oscillations related to Parkinson’s
disease by relying on stimulation and measurements of the first neuronal population only. To
that aim, the system is controlled in closed loop with a partial proportional feedback:

u(r, t) = −k(z1(r, t)− zref(r)). (4.2)

where k ∈ R+ denotes the proportional gain and zref : Ω → R is a target distribution.
In order to investigate the robust stability of the closed-loop system, the authors assume1 a

priori the existence of an equilibrium point (z⋆1 , z
⋆
2) ∈ L2(Ω;R)2 for (4.1a)-(4.1b), at which they

aim to stabilize the system. A similar assumption was made in [Det+15], which investigates
the same closed-loop.

The existence of such an equilibrium in the absence of proportional control can be estab-
lished by invoking [FVG09, Theorem 3.6], which exploits compactness arguments. As stressed
in [Cha+17], this result cannot readily be invoked for (4.1a)-(4.1b). As a matter of fact, the
control law (4.2) does not define a compact operator, thus making the use of Schaefer’s fixed
point theorem more delicate.

Our main result is then the following.

Theorem 4.2.1 Let Ω be a compact set of Rq, q ∈ N. Given any i, j ∈ {1, 2}, let I⋆i ∈
L2(Ω,R), τi : Ω → R>0, di : Ω2 → [0, d̄] for some d̄ ≥ 0, wij ∈ L2(Ω2,R), α : Ω → R+

be a bounded function, and zref ∈ L2(Ω,R). If k ≥ 0 and Si : R → R is a continuous
bounded function for each i ∈ {1, 2}, then the closed-loop system (4.1a)-(4.1b) admits at least
one equilibrium in L2(Ω;R)2.

1More precisely, on page 266 of [Cha+17]: “ For now on, we simply assumed that such an equi-
librium exists. ”
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4.3 . Proof of the main result

In order to establish the result in Theorem 4.2.1, we first observe that (z⋆1 , z
⋆
2) is an equilibrium

point of (4.1a)-(4.1b) if and only if it is a fixed point of the nonlinear map T : L2(Ω;R)2 →
L2(Ω;R)2 defined by T (z1, z2) := (T1(z1, z2), T2(z1, z2)), where

T1(z1, z2)(r) := S1

(
I⋆1 (r)− kα(r)(z1(r)− zref(r)) +

2∑
j=1

∫
Ω
w1j(r, r

′)zj(r
′)dr′

)
,

T2(z1, z2)(r) := S2

(
I⋆2 (r) +

2∑
j=1

∫
Ω
w2j(r, r

′)zj(r
′)dr′

)
.

Consider the map T : L2(Ω;R)2 → L2(Ω;R)2 defined by

T (x1, x2) := (T1(x1, x2), T2(x1, x2)),

where

T1(x1, x2)(r) := I⋆1 (r)− kα(r)(S1(x1(r))− zref(r)) +

2∑
j=1

∫
Ω
w1j(r, r

′)S1(xj(r
′))dr′,

T2(x1, x2)(r) := I⋆2 (r) +
2∑

j=1

∫
Ω
w2j(r, r

′)S2(xj(r
′))dr′.

Then (z⋆1 , z
⋆
2) is a fixed point of T if and only if there exists a fixed point (x⋆1, x

⋆
2) of T such

that (z⋆1 , z
⋆
2) = (S1(x

⋆
1), S2(x

⋆
2)). Indeed, if (z⋆1 , z

⋆
2) is a fixed point of T , then (z⋆1 , z

⋆
2) =

(S1(x
⋆
1), S2(x

⋆
2)) for some (x⋆1, x

⋆
2) ∈ L2(Ω,R)2 and direct computations yield that (x⋆1, x

⋆
2) is

a fixed point of T . Conversely, it also follows from the definitions of T and T that if (x⋆1, x
⋆
2)

is a fixed point of T , then (S1(x
⋆
1), S2(x

⋆
2)) is a fixed point of T .

Hence, it is sufficient to find a fixed point of T in L2(Ω,R)2 in order to prove Theorem 4.2.1.
This is ensured by the following lemma.

Lemma 4.3.1 Let X be a Hilbert space, f ∈ X, W : X → X be a continuous nonlinear
compact operator, ρ : X → X be a continuous nonlinear uniformly bounded operator and
σ : X → X be a continuous nonlinear monotone operator that maps bounded sets to bounded
sets. Then the map G : X → X defined by

G(x) :=W (ρ(x))− σ(x) + f

admits at least one fixed point in X.

Proof . The proof is an adaptation of [FVG09, Theorem 3.6], that dealt with the uncontrolled
case (i.e., k = 0). It is based on Schaefer’s fixed point theorem. Since σ is continuous,
monotone, and maps bounded sets to bounded sets, the map x 7→ x/2 + σ(x) is a maximal
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monotone operator on X according to [Bar76, Chapter 2, Corollary 1.1]. Hence the nonlinear
map H : X → X defined by H(x) := x+ σ(x) has a continuous inverse H−1 on X. Consider
the map π : X → X defined by π(x) := H−1(W (ρ(x)) + f). Then π is continuous and
compact, since H−1, ρ and W are continuous and W is compact. Set E := {x ∈ X | ∃λ ∈
(0, 1), x = λπ(x)}. Since ρ is uniformly bounded, there exists a bounded set B ⊂ X such
that ρ(E) ⊂ B. Since W is compact and H−1 is continuous, H−1(W (B) + f) is a relatively
compact set, hence π(E) is bounded and so is E. Thus, according to Schaefer’s fixed point
theorem, π admits at least one fixed point x⋆ in X. Then H(x⋆) = W (ρ(x⋆)) + f , i.e. x⋆ is
a fixed point of G.

We now can present the proof of Theorem 4.2.1.
Proof . (of Theorem 4.2.1) To prove Theorem 4.2.1 from Lemma 4.3.1, we set X = L2(Ω;R)2,
f = (I⋆1 + kαzref , I

⋆
2 ), W (x1, x2)(r) =

∑2
j=1(⟨w1j(r, ·), xj⟩L2 , ⟨w2j(r, ·), xj⟩), ρ(x1, x2)

= (S1(x1), S2(x2)), σ(x1, x2) = (kαS1(x1), 0). Then T = G. The operator W is com-
pact as a Hilbert–Schmidt integral operator (since the maps wij are in L2(Ω2,R)). Moreover,
ρ is continuous and uniformly bounded since each Si is continuous and bounded by assump-
tion. Finally, σ is continuous, monotone and maps bounded sets to bounded sets since S1
is continuous, non-decreasing, and bounded, and kα ≥ 0. Therefore, all the assumptions of
Lemma 4.3.1 are satisfied, which ends the proof of Theorem 4.2.1.

4.4 . Discussion and further works

In [Cha+17], the maps Si are not assumed to be bounded. However, in most neural fields
models, these activation functions are supposed to be bounded (as in [FVG09] for example).
This boundedness reflects the fact that the activity of a given neuronal population cannot
exceed a certain value due to biological considerations. Consequently, the boundedness of
the activation functions does not induce a too demanding additional requirement in practice.
In particular, this boundedness requirement holds naturally for the modeling of the neuronal
populations involved in the generation of pathological oscillations related to Parkinson’s disease,
which is the main scope of [Cha+17; Det+15].

Nevertheless, neural fields are sometimes used with unbounded activation functions Si,
such as Rectified Linear Units (ReLU). Then, Theorem 4.2.1 does not apply but two additional
results can be given. Firstly, if they are linear, then σ, W and ρ in Lemma 4.3.1 are also linear.
Hence the closed-loop (4.1a)-(4.1b) admits an equilibrium if and only if f lies in the range of
the linear operator x 7→ x + σ(x) −W (ρ(x)), and it is unique if and only if the operator is
injective. Secondly, if the map π is a contraction, then the existence of a unique fixed point of
π (hence of G) follows from the Banach fixed-point theorem (instead of Schaefer’s) with no
boundedness assumption on the maps Si.

Note that Lemma 4.3.1 allows to take into account more general neural fields than (4.1)
and more general feedback laws than (4.2). In particular, higher dimensional models (with state
(zi)1≤i≤N , N ∈ N) as well as nonlinear feedback laws can be considered. The only assumption
to check is that σ remains a continuous monotone operator, mapping bounded sets to bounded
sets, or more generally that H : x 7→ x+ σ(x) has a continuous inverse.
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Instead of the partial proportional feedback (4.2), a partial proportional-integral feedback
of the form

ẏ1(r, t) = z1(r, t)− zref(r),

u(r, t) = −kP (z1(r, t)− zref(r))− kIy1(r, t),
(4.3)

where kP and kI denote non-negative gains, can also be considered. In that case, if zref lies
in the image of L2(Ω;R) by S1 and under the conditions of Theorem 4.2.1, the closed-loop
system (4.1)-(4.3) admits at least one equilibrium (z⋆1 , z

⋆
2 , y

⋆
1) ∈ L2(Ω;R)3. Moreover, z⋆1 = zref.

The proof follows directly from applying Theorem 4.2.1 (or [FVG09, Theorem 3.6]) to the
z2-subsystem to find z⋆2 satisfying

z⋆2(r) = S2(I
⋆
2 (r) +

∫
Ω
w21(r, r

′)zref(r
′)dr′ +

∫
Ω
w22(r, r

′)z⋆2(r
′)dr′),

and then setting y⋆1 such that

zref(r) = S1(I
⋆
1 (r)− kIα(r)y

⋆
1(r) +

∫
Ω
w11(r, r

′)zref(r
′)dr′ +

∫
Ω
w12(r, r

′)z⋆2(r
′)dr′).

Note that the asymptotic behaviour of the closed-loop system (4.1)-(4.3) has not been investi-
gated, contrarily to (4.1a)-(4.1b), which is considered in [Cha+17].

Sufficient conditions are given in [Cha+17] for the input-to-state stability (ISS) of (4.1a)-
(4.1b) at some equilibrium point under the assumption of the existence of an equilibrium.
Naturally, this implies the uniqueness of the equilibrium point, hence of the fixed point of T .

Under the additional assumption that Ii, Si, α and zref are continuous maps, it can be
proved that T defines a mapping from C(Ω;R)2 into itself, and admits a fixed point in C(Ω;R)2.
Indeed, following the proof of Lemma 4.3.1, the only missing assumptions are that X =

C(Ω;R)2 is not a Hilbert space but a Banach space, and σ is not monotone. However, the
map H : C(Ω;R)2 → C(Ω;R)2 defined by H(x) := x+σ(x) still admits a continuous inverse.
Therefore, the conclusion of Lemma 4.3.1 remains valid. In particular, if the fixed point given
in Theorem 4.2.1 (a priori lying in L2(Ω;R)2) is unique due to the ISS property shown in
[Cha+17], then it actually lies C(Ω;R)2.

Despite the generality of the fixed-point approach developed in Lemma 4.3.1, our result
does not solve the question of existence of an equilibrium in cases where the maps Si are
unbounded. In particular, ReLU activation functions such as Si : x 7→ max(0, x) (used to
model neurons of the visual cortex for example, see [Hee92]) do not fall within our framework.
This question could be investigated in future works.
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APPENDIX A

Miscellaneous Complements

A.1 . Complement results for the MacKay effect

A.1.1 . Complement results for the MacKay effect description in the linear regime

This section contains various complements used in Section 3.4.2 to describe the MacKay effect
when the response function in Equation (NF) is linear.

The first result is the following.

Theorem A.1.1 Under the considerations of Remark 3.4.4, the kernel K defined in (3.42) can
be recast for all x ∈ R∗ as

K(x)

2
√
π

= e
−π|x|

√
2π
3 cos

(
π

12
+ π|x|

√
2π

3

)
+

∞∑
k=1

e
−πck|x|

√
2π
3

ck
cos

(
π

12
+ πck|x|

√
2π

3

)

+
∞∑
k=1

e
−πdk|x|

√
2π
3

dk
sin

(
π

12
− πdk|x|

√
2π

3

)
, (A.1)

where
ck =

√
1 + 6k k ∈ N and dk =

√
−1 + 6k, k ∈ N∗. (A.2)

Proof . We start by introducing for a fixed x ∈ R, the function

g : z ∈ C 7→ g(z) = e2iπzx
ω̂1(z)

1− ω̂1(z)
= e2iπzxK̂(z), ω̂1(z) = e−z2 − e−2z2 . (A.3)

We have that g is a meromorphic function with simple poles (zeroes of the exponential polyno-
mial h defined in (3.44)) distributed as in Figure A.1 that we enumerate as pk,ℓ and qk,ℓ where
ℓ ∈ {0, · · · , 3}, by

pk,ℓ = cke
iπ
4 iℓ
√
π

3
, k ∈ N and qk,ℓ = dke

iπ
4 iℓ
√
π

3
, k ∈ N∗, (A.4)
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Figure A.1: Zeroes in the complex plane of the exponential polynomial h defined in (3.44). Here
κ = µ = 1, 2π2σ2

1 = 1 and 2π2σ2
2 = 2.

where ck and dk are defined as in (A.2). Since ω̂(pk,ℓ) = 1 = ω̂(qk,ℓ), we find the residues of g
to be given by

Res(g, pk,ℓ) = −e
iπ
4 iℓei(−1)ℓ π

3

2ck
√
π

e2iπxpk,ℓ , k ∈ N, (A.5)

Res(g, qk,ℓ) =
ei

π
4 iℓe−i(−1)ℓ π

3

2dk
√
π

e2iπxqk,ℓ , k ∈ N∗. (A.6)

We now fix x > 0, and we let

Rn :=
√
nπ, n ∈ N∗.

We consider the path Γn straight along the real line axis from −Rn to Rn and then coun-
terclockwise along a semicircle centred at z = 0 in the upper half of the complex plane,
Γn = [−Rn, Rn] ∪C+

n , where C+
n = {Rne

iϕ | ϕ ∈ [0, π]}. Then, by the residue Theorem, one
has for all n ∈ N∗,∫ Rn

−Rn

g(ξ)dξ +

∫
C+

n

g(z)dz = 2πi

ℓ=1∑
ℓ=0

n−1∑
k=0

Res(g, pk,ℓ) + 2πi

ℓ=1∑
ℓ=0

n−1∑
k=1

Res(g, qk,ℓ)

= 2
√
πe

−πx
√

2π
3 cos

(
π

12
+ πx

√
2π

3

)
+

2
√
π

n−1∑
k=1

e
−πckx

√
2π
3

ck
cos

(
π

12
+ πckx

√
2π

3

)
+

2
√
π

n−1∑
k=1

e
−πdkx

√
2π
3

dk
sin

(
π

12
− πdkx

√
2π

3

)
. (A.7)
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We set
An(x) :=

∫
C+

n

g(z)dz.

Then, one obtains,

|An(x)| ≤ Rn

∫ π

0
e−2Rnπx sin(ϕ)|K̂(Rne

iϕ)|dϕ

= Rn

∫ π
4

0
e−2Rnπx sin(ϕ)|K̂(Rne

iϕ)|dϕ︸ ︷︷ ︸
J1

+Rn

∫ 3π
4

π
4

e−2Rnπx sin(ϕ)|K̂(Rne
iϕ)|dϕ︸ ︷︷ ︸

J2

+Rn

∫ π

3π
4

e−2Rnπx sin(ϕ)|K̂(Rne
iϕ)|dϕ︸ ︷︷ ︸

J3

. (A.8)

Since |K̂(Rne
iϕ)| ≤ 1 for all ϕ ∈ [0, π], uniformly w.r.t. n ∈ N∗, one has for all x > 0,

J2 := Rn

∫ 3π
4

π
4

e−2Rnπx sin(ϕ)|K̂(Rne
iϕ)|dϕ ≤ Rn

∫ 3π
4

π
4

e−2Rnπx sin(ϕ)dϕ

≤ πRn

2
e−Rnπx

√
2 −−−−−→

n→+∞
0. (A.9)

On the other hand, there exist a positive constant C > 0 independent of n ∈ N∗ (C := 3/2 is
valid) such that for all ϕ ∈ [0, π], it holds

|K̂(Rne
iϕ)| =

∣∣∣∣ ω̂1(Rne
iϕ)

1− ω̂1(Rneiϕ)

∣∣∣∣ ≤ C|ω̂1(Rne
iϕ)| ≤ C

(
e−R2

n cos(2ϕ) + e−2R2
n cos(2ϕ)

)
, ∀n ∈ N∗.

Since cos(2ϕ) ≥ − 4
πϕ+ 1 for all ϕ ∈ [0, π/4], one deduces

J1 + J3 ≤ 2Rn

∫ π
4

0
e−2Rnπx sin(ϕ)|K̂(Rne

iϕ)|dϕ ≤ 2CRn

∫ π
4

0
e−R2

n cos(2ϕ)dϕ

≤ 4CRne
−R2

n

∫ π
4

0
e

4

π
R2

nϕ
dϕ =

Cπ

Rn

[
1− e−R2

n

]
−−−−−→
n→+∞

0. (A.10)

To summarise, one has for all x > 0,∫
C+

n

g(z)dz −−−−−→
n→+∞

0.

By taking the limit as n→ +∞ in (A.7) we find for all x > 0,

K(x)

2
√
π

= e
−πx

√
2π
3 cos

(
π

12
+ πx

√
2π

3

)
+

+∞∑
k=1

e
−πckx

√
2π
3

ck
cos

(
π

12
+ πckx

√
2π

3

)

+
+∞∑
k=1

e
−πdkx

√
2π
3

dk
sin

(
π

12
− πdkx

√
2π

3

)
. (A.11)

Finally, the result follows at once since K is an even function.
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Remark A.1.1 Since the kernel K is even on R, throughout the following, we restrict its study
to R+.

In the following lines, we aim to prove that K admits a discrete and countable set of zeroes on
R∗
+. It is a consequence of the following.

Lemma A.1.1 For all x ∈ R∗
+, it holds that

e
πx

√
2π
3 K(x)

2
√
π

= cos

(
π

12
+ πx

√
2π

3

)
+
S(x)

x
, (A.12)

where

|S(x)| ≤
√
6

3π2
. (A.13)

Moreover, the derivative of K satisfies

√
3e

πx
√

2π
3 K ′(x)

4π2
= − sin

(
π

3
+ πx

√
2π

3

)
+ T (x), (A.14)

where

|T (x)| ≤
1 + πx

√
2π
3

π3x2
. (A.15)

Proof . Let x > 0, one starts with the equation

K(x)

2
√
π

= e
−πx

√
2π
3 cos

(
π

12
+ πx

√
2π

3

)
+R1(x) +R2(x),

where R1(x) =
+∞∑
k=1

r1(k) cos
(

π
12 + πckx

√
2π
3

)
and R2(x) =

+∞∑
k=1

r2(k) sin
(

π
12 − πdkx

√
2π
3

)
.

The functions r1 and r2 are defined on R+ and [1/3,+∞) respectively by

r1(t) =
e−A

√
1+6t

√
1 + 6t

, r2(t) =
e−A

√
−1+6t

√
−1 + 6t

with A = πx

√
2π

3
.

Since r1 is decreasing on R+ one deduces that

|R1(x)| ≤
+∞∑
k=1

r1(k) ≤
+∞∑
k=1

∫ k

k−1
r1(t) dt =

∫ ∞

0
r1(t) dt =

∫ ∞

0
e−A

√
1+6t dt√

1 + 6t
=
e−A

3A
.

The same argument gives the same inequality for |R2(x)| and inequality (A.13) follows at once.
On the other hand, it is straightforward to observe that the sum S(x) in (A.12) is uniformly
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(normally in fact) convergent on (−∞,−B] ∪ [B,+∞) for all B > 0. Thus, after derivation
under the sum, one finds for all x > 0,

√
3e

πx
√

2π
3 K ′(x)

4π2
= − sin

(
π

3
+ πx

√
2π

3

)
− e

πx
√

2π
3

∞∑
k=1

e
−πckx

√
2π
3 sin

(
π

3
+ πckx

√
2π

3

)

−eπx
√

2π
3

∞∑
k=1

e
−πdkx

√
2π
3 sin

(
π

3
− πdkx

√
2π

3

)

= − sin

(
π

3
+ πx

√
2π

3

)
+ T (x),

where

|T (x)| ≤ e
πx

√
2π
3

∞∑
k=1

(
e
−πckx

√
2π
3 + e

−πdkx
√

2π
3

)
≤ 2e

πx
√

2π
3

∞∑
k=1

e
−πdkx

√
2π
3 ,

since ck ≥ dk for all k ≥ 1. But one has

∞∑
k=1

e
−πdkx

√
2π
3 ≤

∞∑
k=1

∫ k

k− 2
3

e
−πx

√
−1+6t

√
2π
3 dt =

∫ ∞

1
3

e
−πx

√
−1+6t

√
2π
3 dt =

1 + πx
√

2π
3

2π3x2
e
−πx

√
2π
3 ,

so that inequality (A.15) follows at once and completes the proof of the lemma.

Proposition A.1.1 Let (xk)k∈N∗ and (yk)k∈N∗ denote the sequences of zeroes and extrema of
the function x 7→ cos(π/12+ πx

√
2π/3) on R∗

+ respectively. There exists (zk)k∈N∗ , sequence
of zeroes of K in R∗

+ such that zk is the unique zero of K in the interval Ik :=]yk, yk+1[ for
all k ∈ N∗ and

|xk+1 − zk| ≤
√
3

π
√
2π

arcsin

(
8

π(12k − 1)

)
, ∀k ∈ N∗. (A.16)

Proof . We fix k ∈ N∗, then one has

|S(yk)| ≤
2

π
√
6πyk

=
8

π(12k − 1)
≤ 8

11π
< 1,

by Lemma A.1.1. One deduces that

e
πyk

√
2π
3
K(yk)

2
√
π

= (−1)k + S(yk)

{
< 0, if k is odd,
> 0, if k is even.

It follows that K admits at least one zero zk in the interval Ik by the intermediate value
theorem. Let us prove that zk is the unique zero in this interval. We let z̃ be an arbitrary zero
of K in the interval Ik and set ek := z̃ − xk+1. Then one has by Lemma A.1.1

S(z̃) = − cos

(
π

12
+ πz̃

√
2π

3

)
= (−1)k sin

(
πek

√
2π

3

)
, (A.17)
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and ∣∣∣∣∣sin
(
πek

√
2π

3

)∣∣∣∣∣ ≤ 2

π
√
6πz̃

≤ 2

π
√
6πyk

≤ 2

π
√
6πy1

=
8

11π
. (A.18)

On the other hand, using (A.17) and trigonometric identity for sine, one obtains

√
3e

πz̃
√

2π
3 K ′(z̃)

4π2
= − sin

(
π

12
+ πz̃

√
2π

3
+
π

4

)
+ T (z̃)

=
(−1)k+1

√
2

cos

(
πek

√
2π

3

)
+

1√
2
S(z̃) + T (z̃). (A.19)

By using (A.17), (A.18) and (A.15) one finds

cos

(
πek

√
2π

3

)
≥
√
1− 8

11π
>

√
1− 1

2
=

1√
2
,

and ∣∣∣∣ 1√
2
S(z̃) + T (z̃)

∣∣∣∣ ≤ 1√
2

8

11π
+

1 + πy1

√
2π
3

π3y21
<

1

2
.

It follows that

K ′(z̃)

{
> 0, if k is odd,
< 0, if k is even.

Let z̃ and z̃′ be successive zeroes of K in Ik and assume that k is odd to be fixed. Then
K ′(z̃) > 0 and K ′(z̃′) > 0. By Rolle’s theorem, there exists z̃′′ ∈ (z̃, z̃′) such that K(z̃′′) = 0

and K ′(z̃′′) < 0, which is a contradiction of the fact that any zero z̃ in Ik satisfies K ′(z̃) > 0.
Thus zk is the unique zero of K in the interval Ik. Finally, inequality (A.18) applied with z̃ = zk
leads to inequality (A.16), and this completes the proof of the proposition.

Remark A.1.2 Suppose we model the interaction of V1 neurons in Equation (NF) with a
Gaussian kernel ω. In that case, we will obtain that the associated kernel K̂ defined in (A.3)
has two isolated poles located on the imaginary axis of the complex plane. The zero-order terms
which dominate the expansion of K given by (A.1) are only an exponential decreasing function
without a cosine multiplicative factor. Therefore, the kernel K will never have infinitely many
discrete distributed zeroes.

A.1.2 . Complements for the MacKay effect description in the nonlinear regime

The results provided in this section were used in Section 3.4.3 to describe the MacKay effect
when the response function in Equation (NF) is nonlinear.

We recall from Theorem 3.3.1 that, given 1 ≤ p ≤ ∞ and I ∈ Lp(R2), then for any
a0 ∈ Lp(R2), the initial value Cauchy problem associated with Equation (NF) has a unique
solution a ∈ Xp. It is implicitly given for all x ∈ R2, and t ≥ 0 by

a(x, t) = e−ta0(x) +
(
1− e−t

)
I(x) + µ

∫ t

0
e−(t−s)(ω ∗ f(a))(x, s)ds. (A.20)
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Given I ∈ L∞(R2), the following theorem improves the upper bound of the L∞-norm of the
stationary state aI ∈ L∞(R2) provided in (3.20).

Theorem A.1.2 Let a0 ∈ L∞(R2), I ∈ L∞(R2) with ∥I∥∞ = 1 and a ∈ X∞ be the solution
of (NF). It holds

lim sup
t→+∞

∥a(·, t)∥∞ ≤ g1, (A.21)

where g1 > 0 is the smaller fixed point of the following function

g : x ∈ R 7−→ 1 +
µ

µ0
f(x) ∈ R∗

+. (A.22)

Proof . We start by using (A.20) (3.10) and Minkowski’s inequality to obtain for a.e. x ∈ R2

and every t ≥ 0,
|a(x, t)| ≤ e−t∥a0∥L∞ + (1− e−t) +

µ

µ0
(1− e−t). (A.23)

Letting t → ∞ in the last inequality, we find V∞ := lim sup
t→+∞

∥a(·, t)∥∞ ≤ 1 + µ/µ0, showing

in particular that V∞ <∞. It follows that

∀ε > 0, ∃Tε > 0 s.t., ∀t ≥ Tε, ∥a(·, t)∥∞ ≤ V∞ + ε. (A.24)

Applying the variation of constants formula (A.20), starting at Tε > 0, one deduces for every
t > Tε that

∥a(·, t)∥∞ ≤ e−(t−Tε)∥a(·, Tε)∥∞ +
(
1− e−(t−Tε)

)
+ µ∥ω∥1

∫ t

Tε

e−(t−s)f(∥a(·, s)∥∞)ds

≤ e−(t−Tε)(V∞ + ε) + 1 +
µ

µ0
f(V∞ + ε). (A.25)

Letting respectively t→ ∞ and ε→ 0 in the preceding inequality we find

V∞ ≤ 1 +
µ

µ0
f(V∞). (A.26)

Let (un)n be the real sequence defined by

u0 = V∞, un+1 = g(un), ∀n ≥ 1. (A.27)

Then (un)n is a bounded and non-decreasing sequence.
The boundedness of (un)n follows from the boundedness1 of the sigmoid function f . Let

us prove by induction that the sequence (un)n is increasing. Due to the inequality (A.26), one
has

u1 = g(u0) = 1 +
µ

µ0
f(u0) = 1 +

µ

µ0
f(V∞) ≥ V∞ = u0.

1Notice that in the case where the response function f is only Lipschitz continuous (with the
Lipschitz constant equal to f ′(0) = 1) but not bounded, the sequence (un)n is still bounded, via

|un| ≤ V∞ +
µ0

µ0 − µ
, ∀n ∈ N.
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If un ≥ un−1 then, since f is non-decreasing, one obtains

un+1 = g(un) = 1 +
µ

µ0
f(un) ≥ 1 +

µ

µ0
f(un−1) = g(un−1) = un,

showing that (un)n is a non-decreasing sequence. The monotone convergence and fixed point
Theorems, we have that (un)n converges to the smaller fixed point g1 > 0 of the function g,
and (A.21) follows.
Let 1 ≤ p ≤ ∞, we introduce for every I ∈ Lp(R2), the map ΦI : Lp(R2) 7→ Lp(R2) defined
for all v ∈ Lp(R2) by

ΦI(v) = I + µω ∗ f(v). (A.28)

Theorem A.1.3 Let 2 ≤ p ≤ ∞. If µ < µ0, then Ψ belongs to C1(Lp(R2);Lp(R2)) and the
differential at I ∈ Lp(R2) is given by

DΨ(I)h = (Id−DΨ(I))−1h, ∀h ∈ Lp(R2). (A.29)

The proof of Theorem A.1.3 is a consequence of the following two lemmas.

Lemma A.1.2 Let 2 ≤ p ≤ ∞ and I ∈ Lp(R2). If µ < µ0, then ΦI belongs to the space
C1(Lp(R2);Lp(R2)) and the differential at v ∈ Lp(R2) is given by

(DΦI(v)h)(x) = µ

∫
R2

ω(x− y)f ′(v(y))h(y)dy, ∀h ∈ Lp(R2), x ∈ R2, (A.30)

and the following holds
∥DΦI(v)∥L (Lp(R2)) < 1. (A.31)

Proof . It is straightforward to show that for all 1 ≤ p ≤ ∞, and I ∈ Lp(R2), the map ΦI is
Gateau-differentiable at every v ∈ Lp(R2), the Gateau-differential is given for every h ∈ Lp(R2)

by (A.30) and
∥DΦI(v)h∥p ≤

µ

µ0
∥h∥p. (A.32)

Let us now show that for all 2 ≤ p ≤ ∞, the Gateau-differential

DΦI : Lp(R2) −→ L (Lp(R2))

v 7−→ DΦI(v), (A.33)

is continuous. To this end, we will prove that DΦI is Lipschitz continuous. Let v1, v2 ∈ Lp(R2)

and h ∈ Lp(R2), we set

Rh : x ∈ R2 7−→ Rh(x) =

∫
R2

ω(x− y)[f ′(v1(y))− f ′(v2(y))]h(y)dy. (A.34)

Using Hölder inequality, we find

|Rh(x)|p ≤ ∥ω∥q
(∫

R2

|f ′(v1(y))− f ′(v2(y))|q
|ω(x− y)|q

∥ω∥qq
dy

) p
q

∥h∥pp.
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It follows by Jensen inequality’ and f ′′∞-Lipschitz continuity of f ′ (f is at least C2(R) by
assumption), that,

|Rh(x)|p ≤ ∥ω∥1−q
q (f ′′∞)p

(∫
R2

|v1(y)− v2(y)|p|ω(x− y)|qdy
)
∥h∥pp,

provided p/q ≥ 1, i.e., 2 ≤ p ≤ ∞. Therefore,

∥DΦI(v1)h−DΦI(v2)h∥p ≤ µf ′′∞∥ω∥q∥v1 − v2∥p∥h∥p,

and then

∥DΦI(v1)−DΦI(v2)∥L (Lp(R2)) = sup
h∈Lp(R2)
∥h∥p=1

∥DΦI(v1)h−DΦI(v2)h∥p

≤ µf ′′∞∥ω∥q∥v1 − v2∥p.

Finally, using (A.32) we find for all v ∈ Lp(R2),

∥DΦI(v)∥L (Lp(R2)) = sup
h∈Lp(R2)
∥h∥p=1

∥DΦI(v)h∥p ≤
µ

µ0
< 1.

Lemma A.1.3 Let 2 ≤ p ≤ ∞. Under assumption µ < µ0, the map

G : Lp(R2)× Lp(R2)−→ Lp(R2)

(I, a) 7−→ G(I,Ψ(I)) = a− ΦI(a), (A.35)

belongs to C1(Lp(R2) × Lp(R2);Lp(R2)) and the partial derivative DaG(I, a) is invertible in
L (Lp(R2)).

Proof . Since ΦI is differentiable at a ∈ Lp(R2) for all I ∈ Lp(R2), one has for all (J, b) ∈
Lp(R2)× Lp(R2),

G(I + J, a+ b) = a+ b− ΦI+J(a)−DΦI+J(a)b+ o(∥b∥p)
= G(I, a) + (Id−DΦI(a))b− J + o(∥b∥p).

The map L(I,a) : L
p(R2) × Lp(R2) −→ Lp(R2), L(I,a)(J, b) = (Id−DΦI(a))b − J , is linear

and bounded,

∥L(I,a)(J, b)∥Lp(R2) ≤
(
1 +

µ

µ0

)
∥(J, b)∥Lp(R2)×Lp(R2).

It follows that G is differentiable at (I, a) ∈ Lp(R2)× Lp(R2) and

DG(I, a)(J, b) = (Id−DΦI(a))b− J, ∀(J, b) ∈ Lp(R2)× Lp(R2).
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We now show that the map (I, a) ∈ Lp(R2)2 7→ DG(I, a) ∈ L (Lp(R2)2, Lp(R2)) is continu-
ous. Let (I1, a1), (I2, a2) ∈ Lp(R2)× Lp(R2). One has for all (J, b) ∈ Lp(R2)× Lp(R2),

∥DG(I1, a1)(J, b)−DG(I2, a2)(J, b)∥p = ∥DΦI1(a1)b−DΦI2(a2)b∥p
≤ ∥DΦI1(a1)−DΦI1(a2)∥L (Lp(R2))∥(b, J)∥Lp(R2)2 .

It follows by Lemma A.1.2 that

∥DG(I1, a1)−DG(I2, a2)∥L (Lp(R2)2,Lp(R2)) ≤ ∥DΦI1(a1)−DΦI2(a2)∥L (Lp(R2))

≤ µf ′′∞∥ω∥q∥(I1, a1)− (I2, a2)∥Lp(R2)2 ,

showing that G belongs to C1(Lp(R2)×Lp(R2);Lp(R2)). Finally, if I ∈ Lp(R2), aI := Ψ(I) ∈
Lp(R2) then DaG(I, aI) = Id−DΦI(aI), is invertible in L (Lp(R2)) by Neumann expansion
lemma.

We now can present the proof of Theorem A.1.3.
Proof . (of Theorem A.1.3) Let 2 ≤ p ≤ ∞. For fixed I ∈ Lp(R2), aI := Ψ(I) ∈ Lp(R2), we
have G(I, aI) = 0, and DaG(I, aI) is invertible in L (Lp(R2)) by Lemma A.1.3. It follows by
the implicit function Theorem that there is an open neighbourhood V of I in Lp(R2), an open
neighbourhood W of aI in Lp(R2) and a map Σ : V → W of class C1 such that the following
holds

(I ∈ V, a ∈ W and G(I, a) = 0) ⇐⇒ (I ∈ V and a = Σ(I)).

Thereby, Ψ(·)|V = Σ(·) and then Ψ is C1 at I. Since I ∈ Lp(R2) is arbitrary, it follows that Ψ
belongs to C1(Lp(R2);Lp(R2)). Moreover, taking the derivative of G(I,Ψ(I)) = 0 at I, we
deduce that

(Id−DΦI(Ψ(I))) (DΨ(I)h) = h, ∀h ∈ Lp(R2). (A.36)

Thus, (A.29) is an immediate consequence of (A.31), (A.36) and Neumann expansion lemma.

A.2 . Complement result for Billock and Tsou’s

This section contains a result used in Section 3.5.1 to prove that Equation (NF) with linear
response function does not reproduce Billock and Tsou’s experiments.

Theorem A.2.1 Under the considerations of Remark 3.5.1, the kernel W1 defined in (3.61)
can be recast for all x ∈ R∗ and some ϕk := ϕk(mk, nk) ∈ R and θk := θk(mk, nk) ∈ R, as

√
3

2π
W1(x) =

e−2πm0|x|√
n20 +m2

0

cos

(
2πn0|x|+

4π

3
− ϕ0

)
+

n−1∑
k=1

e−2πmk|x|√
n2k +m2

k

cos

(
2πnk|x|+

4π

3
− ϕk

)
+

n−1∑
k=1

e−2πek|x|√
f2k + e2k

cos

(
2πek|x|+

4π

3
− θk

)
. (A.37)
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Here

m2
k =

1 +
√
1 + π2

9 c
4
k

2
, n2k =

−1 +
√

1 + π2

9 c
4
k

2
, k ∈ N, (A.38)

e2k =
1 +

√
1 + π2

9 d
4
k

2
, f2k =

−1 +
√

1 + π2

9 d
4
k

2
, k ∈ N, (A.39)

and ck and dk are given by (A.2).

Proof . We recall that for x1 ∈ R, one has

W1(x1) =

∫ +∞

−∞
e2iπx1ξ ψ̂1(ξ)

1− ψ̂1(ξ)
dξ, ψ̂1(ξ) = e−2(1+ξ2) − e−2(1+ξ2), ξ ∈ R.

We are looking for poles of the following meromorphic function

h(z) =
ψ̂1(z)

1− ψ̂1(z)
e2iπx1ξ, ψ̂1(z) = e−(1+z2) − e−2(1+z2), z ∈ C. (A.40)

Since ψ̂1(z) = ω̂1(
√
1 + z2), where ω̂1 is given as in (A.3), it follows by careful computations

that the poles of h in C are given by Fk,ℓ, Fk,ℓ, Gk,ℓ and Gk,ℓ, where for ℓ ∈ {0, 1}, one has

Fk,ℓ = (−1)ℓnk + imk, k ∈ N, and Gk,ℓ = (−1)ℓfk + iek, k ∈ N∗,

where mk and nk are given by (A.38), and ek and fk are given by (A.39).. Then the residue of
h are given for ℓ ∈ {0, 1} by

Res(h, Fk,ℓ) =
(−1)ℓiFk,ℓe

(−1)ℓiπ
3

2
√

3 + π2

3 c
4
k

e2iπx1Fk,ℓ , Res(h, Fk,ℓ) = Res(h, Fk,ℓ), k ∈ N,

(A.41)

Res(h,Gk,ℓ) =
−(−1)ℓiGk,ℓe

−(−1)ℓiπ
3

2
√
3 + π2

3 d
4
k

e2iπx1Gk,ℓ , Res(h,Gk,ℓ) = Res(h,Gk,ℓ), k ∈ N∗.

(A.42)
We now fix x1 > 0, and we let

Rn :=

√√
1 + π2

9 c
4
n +

√√
1 + π2

9 d
4
n

2
, n ∈ N∗.

We consider the path Γn straight along the real line axis from −Rn to Rn and then coun-
terclockwise along a semicircle centred at z = 0 in the upper half of the complex plane,
Γn = [−Rn, Rn] ∪ C+

n , where C+
n = {Rne

iθ | θ ∈ [0, θ]}. Then, by the residue Theorem, one
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has for all n ∈ N∗,∫ Rn

−Rn

h(ξ)dξ +

∫
C+

n

h(z)dz = 2πi
ℓ=1∑
ℓ=0

n−1∑
k=0

Res(h, Fk,ℓ) + 2πi
ℓ=1∑
ℓ=0

n−1∑
k=1

Res(h,Gk,ℓ)

=
2π√
3

e−2πm0|x|√
n20 +m2

0

cos

(
2πn0|x|+

4π

3
− ϕ0

)
+

2π√
3

n−1∑
k=1

e−2πmk|x|√
n2k +m2

k

cos

(
2πnk|x|+

4π

3
− ϕk

)
+

2π√
3

n−1∑
k=1

e−2πfk|x|√
f2k + e2k

cos

(
2πek|x|+

4π

3
− θk

)
, (A.43)

where ϕk := ϕk(mk, nk) ∈ R and θk := θk(ek, fk) ∈ R are such that

cosϕk =
nk√

m2
k + n2k

, sinϕk =
mk√
m2

k + n2k

, k ∈ N,

cos θk = − fk√
e2k + f2k

, sin θk =
ek√
e2k + f2k

, k ∈ N∗.

Arguing similarly as in the proof of Theorem A.1.1, we can prove that∫
C+

n

h(z)dz −−−−−→
n→+∞

0.

Finally passing in the limit as n→ +∞ in Equation (A.43) completes the proof.
Same-type analysis can be made to prove that the kernel W1 has a countable and discrete

set of zeroes in (0,+∞), as in the case of the kernel K studied in Section A.1.1, refer in
particular to Proposition A.1.1.
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APPENDIX B

A toolbox that replicates the MacKay effect
and Billock and Tsou’s experiments numeri-
cally

In this appendix, we provide a toolbox implemented with the Julia [Bez+17] language to perform
numerical implementation for the MacKay effect [Mac57] and Billock and Tsou’s experiments
[BT07].

B.1 . Numerical implementation of the retino-cortical map

We need to define the retino-cortical map (see, Section 2.4.2) that maps retinal coordinates to
the primary visual cortex V1.

B.1.1 . Point types

We start by defining the type of points we will use. Remembering that coordinates on the visual
field (or in the retina) are polar coordinates (r, θ) ∈ [0,∞) × [0, 2π) from the fovea and that
coordinates on V1 are standard Cartesian coordinates (x, y) ∈ R2.

# Standard cartesian coordinates in the retinal plane
struct CartesianPoint{T<:Real}

x::T
y::T

end

CartesianPoint(x::Real, y::Real) = CartesianPoint(promote(x,y)...)

x(p::CartesianPoint) = p.x
y(p::CartesianPoint) = p.y
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# Polar coordinates in the retinal plane

struct RetinalPoint{T<:Real}
r::T
θ::T

end

RetinalPoint(r::Real, θ::Real) = RetinalPoint(promote(r,θ)...)

r(p::RetinalPoint) = p.r
θ(p::RetinalPoint) = p.θ

# Conversions cartesian <-> polar

Base.convert(::Type{RetinalPoint}, p::CartesianPoint; args...) =
RetinalPoint( sqrt( x(p)^2 + y(p)^2 ), atan(y(p), x(p)) )

Base.convert(::Type{CartesianPoint}, p::RetinalPoint; args...) =
CartesianPoint( r(p)*cos(θ(p)) , r(p)*sin(θ(p)) )

# Coordinates in the cortical plane
struct CorticalPoint{T<:Real}

x::T
y::T

end

CorticalPoint(x::Real, y::Real) = CorticalPoint(promote(x,y)...)
x(p::CorticalPoint) = p.x
y(p::CorticalPoint) = p.y

B.1.2 . Conversion formulas

Recall from Section 2.4.2 that the retino-cortical map is given by

(r, θ) 7→ (x, y) := (log(1 + r), θr/(1 + r)) ,

where we set α = ε = ω0 = 1.

# retinal to cortical
Base.convert(::Type{CorticalPoint}, p::RetinalPoint; far_from_fovea = false
) =
far_from_fovea ? CorticalPoint(log(1+ r(p)) , (r(p)*θ(p))/(1+r(p))) :
CorticalPoint(log(r(p)) , θ(p))

# cortical to retinal
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function Base.convert(::Type{RetinalPoint}, p::CorticalPoint{T};
far_from_fovea = false) where T<:Real

if iszero( x(p) )
return RetinalPoint{T}(0,0)

end
r = far_from_fovea ? exp(x(p))-1 : exp(x(p))
far_from_fovea ? RetinalPoint( r , y(p)*( 1 + 1/r) ) : RetinalPoint( r ,

y(p))
end

# cartesian <-> cortical conversions

Base.convert(::Type{CorticalPoint}, p::CartesianPoint; args...) =
convert(CorticalPoint, convert(RetinalPoint, p; args...); args...)

Base.convert(::Type{CartesianPoint}, p::CorticalPoint; args...) =
convert(CartesianPoint, convert(RetinalPoint, p; args...))

B.2 . Converting an image from retinal to cortical and conversely

We will represent an image in the retinal plane as a function in the square [−10, 10]× [−10, 10].
Let’s find out to what part of the cortical plane this square corresponds.

a = zeros(200,200)

mesh(img) = [ CartesianPoint(x,y) for x in range(-10,10, length = size(img,
1)), y in range(-10,10, length = size(img, 2))]

x.(convert.(CorticalPoint, mesh(a))) |> extrema |> display
y.(convert.(CorticalPoint, mesh(a))) |> extrema |> display

# We should adjust the intervals for the inverse map (cort2res)
x.(convert.(CorticalPoint, mesh(a), far_from_fovea = true)) |> extrema |>
display
y.(convert.(CorticalPoint, mesh(a), far_from_fovea = true)) |> extrema |>
display

We then define the functions to convert images from their retinal to their cortical represen-
tations.

using Images, ImageShow
using Interpolations

function fovea(img)
xs = range(-1,1, length = size(img, 1))
ys = range(-1,1, length = size(img, 2))
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eltype(img)[ xs[i]^2+ys[j]^2 < 1 ? img[i,j] : 1. for i in 1:length(xs), j
in 1:length(ys) ]

end

function res2cort(img; far_from_fovea = false)
# Linear interpolation of starting image

xs = range(-10,10, length = size(img, 1))
ys = range(-10,10, length = size(img, 2))
interp_linear = LinearInterpolation((xs, ys), transpose(convert.(Float64,

img)), extrapolation_bc = Line())

res = similar(img, Gray)
xs = far_from_fovea ? range(0.068, 2.717, length = size(img,1)) : range(

-2.644, 2.649, length = size(img,1))
ys = far_from_fovea ? range(-2.851, 2.851, length = size(img,2)) : range

(-3.136, 3.136, length = size(img,2))
for i in 1:size(img,2), j in 1:size(img,1)

p = convert(CartesianPoint, CorticalPoint(xs[i], ys[j]), far_from_fovea
= far_from_fovea)

res[j,i] = convert(Gray, interp_linear(x(p), y(p)))
end

res
end

function cort2res(img; far_from_fovea = false)
# Linear interpolation of starting image

xs = far_from_fovea ? range(0.068, 2.717, length = size(img,1)) : range(
-2.644, 2.649, length = size(img,1))

ys = far_from_fovea ? range(-2.851, 2.851, length = size(img,2)) : range
(-3.136, 3.136, length = size(img,2))

interp_linear = LinearInterpolation((xs, ys), transpose(convert.(Float64,
img)), extrapolation_bc = Line())

res = similar(img, Gray)
xs = range(-10,10, length = size(img, 1))
ys = range(-10,10, length = size(img, 2))
for i in 1:size(img,2), j in 1:size(img,1)

p = convert(CorticalPoint, CartesianPoint(xs[i], ys[j]), far_from_fovea
= far_from_fovea)

res[j,i] = convert(Gray, interp_linear(x(p), y(p)))
end

res
end
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B.3 . Finding the stationary state to Amari-type equation

The theory tells us that, given an input I, the corresponding stationary state is Ψ(I) that solves
the following equation:

Ψ(I)(x) = µ

∫
ω(x− y)f(Ψ(I)(y)) dy + I(x), x ∈ R2.

We then code an iterative procedure (which converges thanks to contraction mapping principle)
to derive Ψ(I).

Definition of the convolution operator K(a) = ω ∗ a.

using OffsetArrays, ImageFiltering
# define a generic kernel ω
(x,y) -> ω(x,y)

As(∆x; L=10) = centered([∆x^2*ω(x,y) for x in -L:∆x:L, y in -L:∆x:L])

function K(a, As)
imfilter(a,reflect(As),"reflect")

end

Fixed point routine.

using Distances, ForwardDiff
function Ψ(I; ∆x = .01, max_iter = 100, threshold = 1e-11)

# define a generic response function and its derivative
s -> σ(s)
g(s) = ForwardDiff.derivative(s -> σ(s), s)
# As first step we take I
prec = I
ΨI = I
# to keep track of final iteration
final_iter = max_iter
for i in 1:max_iter

ΨI = (µ/g(0))*K(σ.(ΨI), As(∆x)) + I
evaluate(Chebyshev(), prec, ΨI)
if Chebyshev()(prec, ΨI) <= threshold

final_iter = i
break

else
prec = ΨI

end
end
println("Extrema of I: ", extrema(I), ", extrema of ΨI: ", extrema(ΨI))
a = [I[i,j]>0 ? 0. : 1. for i in 1:size(I,1), j in 1:size(I,1)]
b = [ΨI[i,j]>0 ? 0. : 1. for i in 1:size(ΨI,1), j in 1:size(ΨI,1

)]
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A = Gray.(rotl90(a))
B = Gray.(rotl90(b))
A_1 = cort2res(A)
B_1 = cort2res(B)
hcat(A_1, ones(Gray, (size(A_1,1),50)), B_1)

end

B.4 . Toolbox for the MacKay effect

We now replicate the MacKay effect. We first start by setting model parameters.

#################
# MacKay effect #
#################

#interaction kernel ω
ω(x,y) = π*exp(-π^2*(x^2+y^2))-π*exp(-π^2*(x^2+y^2)/2)/2

#Fourier transform of ω
ω_1(r) = exp(-r^2)-exp(-2*r^2)

#wavenumber
q_c = sqrt(log(2))

#parameter µ0
µ_0 = 2

#bifurcation point
µ_c = 1/ω_1(q_c)

#parameter µ
µ = 1

In the following, we show that the MacKay effect can be reproduced with a linear response
function σ(s) = s. On the left we have the external input in the retina and on the right the
illusory after-image perceived.

# MacKay effect for funnel pattern (``MacKay rays'')
∆x = .01
L = 10
λ = 5π
H(r;γ=0.025) = r ≥ 0 ? γ : 0. # Heaviside step function
f(x,y) = cos(λ*y)
χ(x,y) = H(2-x) # localized function
v(x,y) = f(x,y)+χ(x,y)
I = [v(x,y) for x in -L:∆x:L, y in -L:∆x:L]
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#the response function is linear
σ(s) = s
Ψ(I, ∆x=∆x,threshold = 1e-15)

Executing the above code gives images B.1.

Figure B.1: MacKay effect (right) on the “MacKay rays” (left). We use the linear response function
f(s) = s. The sensory input is chosen as I(x) = cos(5πx2)+ εH(2−x1), ε = 0.025, whereH is the
Heaviside step function.

B.5 . Toolbox for Billock and Tsou experiments

B.5.1 . Reproducing Billock and Tsou experiments

We now replicate Billock and Tsou experiments. We first start by setting model parameters.

##################################
# Billock and Tsou's experiments #
##################################

σ1 = 0.1
σ2 = 0.5
κ = (σ1/σ2)^2*exp(2*pi^2*(σ2^2-σ1^2))

#kernel ω
ω(x,y) = (1/(2π*σ1^2))*exp(-(x^2+y^2)/(2*σ1^2))-κ*(1/(2π*σ2^2))*exp(-(x^
2+y^2)/(2*σ2^2))
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#Fourier transform of ω
ω_1(r) = exp(-2*pi^2*σ1^2*r^2)-κ*exp(-2*pi^2*σ2^2*r^2)

#wavenumber
q_c = sqrt(log(κ*σ2^2/σ1^2)/(2π^2*(σ2^2-σ1^2)))

#L^1-norm of ω
Θ = σ1*σ2*sqrt(2*log(σ2^2/(κ*σ1^2))/(σ2^2-σ1^2))
C_1 = (1-κ)+2*(κ*exp(-0.5*Θ^2/σ2^2)-exp(-0.5*Θ^2/σ1^2))

#parameter µ0
µ_0 = 1/C_1

#bifurcation point
µ_c = 1/ω_1(q_c)

#parameter µ
µ = 0.99*µ_0

In the following, we show that Billock and Tsou’s experiments can be reproduced with a
nonlinear response function σ(s) = max(−m,min(1, α ∗ s)). On the left we have the external
input in the retina and on the right the illusory after-image perceived.

# Billock and Tsou's experiments for funnel pattern localised in the
periphery
∆x = .01
L = 10
λ = 4π

# funnel pattern
f(x,y) = cos(λ*y)

#localised function
χ(x,y) = (6 ≤ x ≤ L) && (-L ≤ y ≤ L) ? 1 : 0.
v(x,y) = f(x,y)*χ(x,y)

#external input for funnel pattern localised in the periphery
I = [v(x,y) for x in -L:∆x:L, y in -L:∆x:L]

# response function (m = 0.2, α = 0.8)
σ(r) = max(-0.2,min(1,0.8*r))

Ψ(I, ∆x=∆x,threshold = 1e-11)

Executing the above code gives images B.2.
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Figure B.2: Billock and Tsou’s experiments: funnel stimulus localised at the periphery (left) and
afterimage (right).

B.5.2 . Relation between response function parameters and reproducibility of Billock
and Tsou phenomena

Theorem 3.5.1 tells us that phenomena reported by Billock and Tsou [BT07] are wholly nonlin-
ear. It means, Equation (NF) with a linear response function f do not reproduce the phenomena.

Let us consider the family of “sigmoid” functions

fmα(s) = max(−m,min(1, α ∗ s)), s ∈ R,

where m ≥ 0 and α > 0. We want to provide a range of parameters (m,α) where the sigmoid
fmα reproduces the phenomena or not:

1) In the region in magenta the couple (m,α) reproduces the phenomenon;
2) In the region in yellow the couple (m,α) reproduces the phenomenon and the illusory

contours extend through the surround;
3) In the region in black, the couple (m,α) does not reproduce the phenomenon.
To code these results, we have to slightly modify the procedure Ψ(I, ...) output performed

in Section B.3, which gives the stationary state associated with an input I. Indeed, we only
need the matrix form of the stationary state. Moreover, we consider that the maximal slope α
of fmα is no longer equal to 1.

using Distances
using ForwardDiff
function Ψ(I, m::Model; max_iter = 100, threshold = 1e-15)

@unpack ∆x, σ, µ = m
# derivative of the response function σ
g(s) = ForwardDiff.derivative(s -> σ(s), s)

138



Cyprien TAMEKUE B.5. TOOLBOX FOR BILLOCK AND TSOU EXPERIMENTS

# As first step we take I
prec = I
ΨI = I
# to keep track of final iteration
final_iter = max_iter
for i in 1:max_iter

ΨI = (µ/g(0))*K(σ.(ΨI), m) + I
evaluate(Chebyshev(), prec, ΨI)
if Chebyshev()(prec, ΨI) <= threshold

final_iter = i
break
else

prec = ΨI
end

end
binary.(ΨI) |> rotl90

end

The code which provides the range of (m,α) where fmα reproduces Billock and Tsou’s
experiments or not is then the following.

using ProgressMeter

function BT_reproduction(I, ms, ns, m::Model; max_iter = 100, threshold = 1
e-11, verbose = false)

S = zeros(Int,length(ms), length(ns)) # Storage matrix
@showprogress for k in 1:(length(ms) * length(ns))
i, j = fldmod1(k, length(ns))
cur_model = Model(m; σ = Σ(m = ms[i], α = ns[j]))
mat = Ψ(I, cur_model,threshold = threshold);
a1 = mat[1:size(mat,1),1602:size(mat,2)]
if (a1 == zeros(size(a1)...)) || (a1 == ones(size(a1)...))

S[i,j] = 0
verbose && println("(", ms[i], ";", ns[j], ") does not reproduce the

phenomenon")
else

compteur = 0
for l in 1:size(a1,2)-1

if (a1[:,l] != zeros(size(a1,1))) && (a1[:,l] != ones(size(a1,1)))
compteur += 1

else
break
end

end
verbose && println("compteur = ", compteur)
for l in compteur+1:size(a1,2)
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if (a1[:,l] != zeros(size(a1,1))) && (a1[:,l] != ones(size(a1,1)))
S[i,j] = 0
verbose && println("(", ms[i], ";", ns[j], ") does not reproduce

the phenomenon")
break

elseif (l+1 ≤ size(a1,2))
continue

else
for k in compteur+1:size(a1,2)-1

if (a1[:,k+1:size(a1,2)] == ones(size(a1,1),size(a1,2)-k)) || (a1
[:,k+1:size(a1,2)] == zeros(size(a1,1),size(a1,2)-k))

S[i,j] = 0
verbose && println("(", ms[i], ";", ns[j], ") does not

reproduce the phenomenon")
break

elseif (a1[:,k] != a1[:,k+1]) && ((a1[:,k+1:size(a1,2)] == ones(
size(a1,1),size(a1,2)-k)) || (a1[:,k+1:size(a1,2)] == zeros(size(a1,1),size
(a1,2)-k)))

S[i,j] = 0
verbose && println("(", ms[i], ";", ns[j], ") does not

reproduce the phenomenon")
break

elseif (compteur == 0) && (a1[:,k] != a1[:,k+1]) && (a1[:,k+1:
size(a1,2)] != ones(size(a1,1),size(a1,2)-k)) && (a1[:,k+1:size(a1,2)] !=
zeros(size(a1,1),size(a1,2)-k))

S[i,j] = 1
verbose && println("(", ms[i], ";", ns[j], ") reproduces the

phenomenon")
break

elseif (compteur != 0) && (a1[:,k] != a1[:,k+1]) && (a1[:,k+1:
size(a1,2)] != ones(size(a1,1),size(a1,2)-k)) && (a1[:,k+1:size(a1,2)] !=
zeros(size(a1,1),size(a1,2)-k))

S[i,j] = 2
verbose && println("(", ms[i], ";", ns[j], ") reproduces the

phenomenon but the illusory contours extend through the complementary
region")

break
end

end
end

end
end

end
S
end

140



Bibliography

[ABB19] A. Agrachev, D. Barilari, and U. Boscain. A comprehensive introduction
to sub-Riemannian geometry. Vol. 181. Cambridge University Press, 2019
(cit. on pp. 18, 26).

[ABS08] A. Agrachev, U. Boscain, and M. Sigalotti. “A Gauss-Bonnet-like For-
mula on Two-Dimensional Almost-Riemannian Manifolds”. In: Discrete
& Continuous Dynamical Systems - A 20.4 (2008), pp. 801–822 (cit. on
p. 19).

[All18] D. Allonsius. “Etude spectrale d’opérateurs de Sturm-Liouville et appli-
cations à la contrôlabilité de problèmes paraboliques discrets et con-
tinus”. PhD thesis. Aix Marseille Université, 2018 (cit. on pp. 22, 28).

[Ama77] S.-i. Amari. “Dynamics of Pattern Formation in Lateral-Inhibition Type
Neural Fields”. In: Biological cybernetics 27.2 (1977), pp. 77–87 (cit. on
pp. 58, 60, 63, 64, 69, 70).

[Bao67] M. S. Baouendi. “Sur Une Classe d’opérateurs Elliptiques Dégénérés”.
In: Bul. Soc. Math. France 79 (1967), pp. 45–87 (cit. on p. 26).

[Bar76] V. Barbu.Nonlinear semigroups and differential equations in Banach spaces.
Springer, 1976 (cit. on p. 116).

[BCG14] K. Beauchard, P. Cannarsa, and R. Guglielmi. “Null Controllability of
Grushin-type Operators in Dimension Two”. In: J. Eur. Math. Soc. 16.1
(2014), pp. 67–101 (cit. on pp. 10, 22, 26, 27, 32, 40, 46).

[BDE20] K. Beauchard, J. Dardé, and S. Ervedoza. “Minimal Time Issues for the
Observability of Grushin-type Equations”. In: Annales de l’Institut Fourier
70.1 (2020), pp. 247–312 (cit. on pp. 10, 22, 28, 40, 46).

[Bea+15] K. Beauchard, B. Helffer, R. Henry, and L. Robbiano. “Degenerate Parabolic
Operators of Kolmogorov Type with a Geometric Control Condition”.
In: ESAIM: COCV 21.2 (Apr. 2015), pp. 487–512 (cit. on pp. 22, 46).

[BMM15] K. Beauchard, L. Miller, andM. Morancey. “2d Grushin-type Equations:
Minimal Time and Null Controllable Data”. In: Journal of Differential
Equations 259.11 (Dec. 2015), pp. 5813–5845 (cit. on pp. 10, 21, 22, 27,
28, 40).

141



BIBLIOGRAPHY Cyprien TAMEKUE

[BG12] C. A. Berenstein and R. Gay. Complex analysis and special topics in har-
monic analysis. Springer Science & Business Media, 2012 (cit. on p. 97).

[BG88] M. Berger and B. Gostiaux. Differential geometry: manifolds, curves, and
surfaces. Graduate texts inmathematics 115. Translation of: Géométrie
différentielle Includes indexes. New York: Springer-Verlag, 1988 (cit. on
pp. 18, 30).

[Beu56] R. L. Beurle. “Properties of a Mass of Cells Capable of Regenerating
Pulses”. In: Philosophical Transactions of the Royal Society of London. Se-
ries B, Biological Sciences (1956), pp. 55–94 (cit. on p. 63).

[Bez+17] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah. “Julia: A fresh
approach to numerical computing”. In: SIAM review 59.1 (2017), pp. 65–
98 (cit. on p. 130).

[BZ16] U. Biccari and E. Zuazua. “Null Controllability for aHeat Equationwith a
Singular Inverse-Square Potential Involving theDistance to the Bound-
ary Function”. In: Journal of Differential Equations 261.5 (Sept. 2016), pp. 2809–
2853 (cit. on p. 46).

[BT10] V. A. Billock and B. H. Tsou. “A Special Case of the MacKay Effect Gen-
erates Geometric Hallucinations: Stochastic Resonance in Pattern For-
mationDriven by Fractal (1/f) Noise”. In: Journal of Vision 3.9 (Mar. 2010),
pp. 350–350 (cit. on p. 10).

[BT07] V. A. Billock andB.H. Tsou. “Neural Interactions between Flicker-Induced
Self-Organized Visual Hallucinations and Physical Stimuli”. In: Proceed-
ings of the National Academy of Sciences 104.20 (May 2007), pp. 8490–
8495 (cit. on pp. 10, 56–60, 73, 79, 81, 130, 138).

[BT12] V. A. Billock andB.H. Tsou. “Elementary Visual Hallucinations and Their
Relationships to Neural Pattern-Forming Mechanisms.” In: Psychologi-
cal Bulletin 138.4 (2012), pp. 744–774 (cit. on p. 10).

[BPS16] U. Boscain, D. Prandi, andM. Seri. “Spectral Analysis and theAharonov-
Bohm Effect on Certain Almost-Riemannian Manifolds”. In: Communi-
cations in Partial Differential Equations 41.1 (Jan. 2016), pp. 32–50 (cit. on
p. 19).

[BL13] U. Boscain and C. Laurent. “The Laplace-Beltrami Operator in Almost-
Riemannian Geometry”. In: Ann. inst. Fourier 63.5 (2013), pp. 1739–1770
(cit. on pp. 19, 24).

[BC02] P. C. Bressloff and J. D. Cowan. “Spontaneous Pattern Formation in
Primary Visual Cortex”. In: Institute of Physics: Bristol, 2002. In: Nonlinear
dynamics: where do we go from here? Chap 11 (2002), p. 53 (cit. on pp. 55,
70, 77).

142



Cyprien TAMEKUE BIBLIOGRAPHY

[Bre11] P. C. Bressloff. “Spatiotemporal Dynamics of ContinuumNeural Fields”.
In: Journal of Physics A:Mathematical and Theoretical 45.3 (2011), p. 033001
(cit. on pp. 64, 113).

[Bre10] P. C. Bressloff. “Stochastic Neural Field Theory and the System-Size Ex-
pansion”. In: SIAM Journal on Applied Mathematics 70.5 (2010), pp. 1488–
1521 (cit. on p. 64).

[Bre14] P. C. Bressloff. Waves in Neural Media: From Single Neurons to Neural
Fields. Lecture Notes on Mathematical Modelling in the Life Sciences.
New York: Springer-Verlag, 2014 (cit. on p. 64).

[Bre+01] P. C. Bressloff, J. D. Cowan, M. Golubitsky, P. J. Thomas, and M. C.
Wiener. “Geometric Visual Hallucinations, Euclidean Symmetry and the
Functional Architecture of Striate Cortex”. In: Philosophical Transac-
tions of the Royal Society of London. Series B: Biological Sciences 356.1407
(2001), pp. 299–330 (cit. on pp. 55, 57, 58, 63, 70, 72, 77, 78, 86, 101).

[BM97] H. Brezis andM.Marcus. “Hardy’s inequalities revisited”. In: Annali della
Scuola Normale Superiore di Pisa-Classe di Scienze 25.1-2 (1997), pp. 217–
237 (cit. on p. 40).

[Bri+23] L. Brivadis, C. Tamekue, A. Chaillet, and J. Auriol. “Existence of an equi-
librium for delayed neural fields under output proportional feedback”.
In: Automatica 151 (2023), p. 110909 (cit. on pp. 10, 86, 113).

[CG14] P. Cannarsa and R. Guglielmi. “Null Controllability in Large Time for
the Parabolic Grushin Operator with Singular Potential”. In: Geometric
Control Theory and Sub-Riemannian Geometry. Vol. 5. Cham: Springer
International Publishing, 2014, pp. 87–102 (cit. on pp. 10, 40, 46).

[Car39] T. Carleman. Sur un problème d’unicité pour les systèmes d’équations aux
dérivées partielles à deux variables indépendantes. Almqvist & Wiksell,
1939 (cit. on p. 32).

[Car12] N. R. Carlson. Physiology of Behavior. 11th edition. Boston: Pearson, Jan.
2012 (cit. on p. 64).

[CCM19] V. Casarino, P. Ciatti, and A.Martini. “From refined estimates for spher-
ical harmonics to a sharp multiplier theorem on the Grushin sphere”.
In: Advances in Mathematics 350 (2019), pp. 816–859 (cit. on p. 34).

[Caz14] C. Cazacu. “Controllability of theHeat Equationwith an Inverse-Square
Potential Localized on the Boundary”. In: SIAM J. Control Optim. 52.4
(Jan. 2014), pp. 2055–2089 (cit. on p. 45).

[Cha+17] A. Chaillet, G. I. Detorakis, S. Palfi, and S. Senova. “Robust Stabilization
of Delayed Neural Fields with Partial Measurement and Actuation”. In:
Automatica 83 (Sept. 2017), pp. 262–274 (cit. on pp. 10, 113, 114, 116, 117).

143



BIBLIOGRAPHY Cyprien TAMEKUE

[CPT23] Y. Chitour, D. Prandi, and C. Tamekue. “A mathematical replication of
MacKay-type visual illusions”. In: to appear (2023) (cit. on pp. 60, 110,
111, 113).

[CL00] P. Chossat and R. Lauterbach. Methods in Equivariant Bifurcations and
Dynamical Systems. Advanced Series inNonlinearDynamics v. 15.World
Scientific Publishing Company, 2000 (cit. on p. 77).

[CL98] J. Clottes andD. Lewis-Williams. Shamans of Prehistory. HarryNAbrams
Incorporated, 1998 (cit. on p. 75).

[Coo10] S. Coombes. “Large-scale neural dynamics: simple and complex”. In:
NeuroImage 52.3 (2010), pp. 731–739 (cit. on p. 64).

[Coo23] S. Coombes. “Next generation neural populationmodels”. In: Frontiers
in Applied Mathematics and Statitics (2023), 9::1128224 (cit. on p. 64).

[Coo05] S. Coombes. “Waves, Bumps, and Patterns in Neural Field Theories”.
In: Biological cybernetics 93.2 (2005), pp. 91–108 (cit. on pp. 64, 67).

[CGP14] S. Coombes, P. beim Graben, and R. Potthast. “Tutorial on neural field
theory”. In: Neural fields: theory and applications (2014), pp. 1–43 (cit. on
p. 70).

[Cor07] J.-M. Coron.Control andNonlinearity. Mathematical Surveys andMono-
graphs v. 136. Providence, R.I: American Mathematical Society, 2007
(cit. on pp. 10, 17, 46).

[CH53] R. Courant and D. Hilbert.Methods of Mathematical Physics. Vol.1: ... Lit-
eraturverz. S. 546 - 549. Weinheim: Wiley-VCH, 1953 (cit. on pp. 34, 39).

[CE04] R. Curtu and B. Ermentrout. “Pattern formation in a network of exci-
tatory and inhibitory cells with adaptation”. In: SIAM Journal on Applied
Dynamical Systems 3.3 (2004), pp. 191–231 (cit. on pp. 83, 86).

[DR09] V. K. David and S. Rajasekaran. Pattern Recognition Using Neural and
Functional Networks. Studies in Computational Intelligence vol. 160. Berlin:
Springer, 2009 (cit. on p. 63).

[DA01] P. Dayan and L. F. Abbott. Theoretical Neuroscience: Computational and
Mathematical Modeling of Neural Systems. The MIT Press, 2001 (cit. on
p. 64).

[Dec+08] G. Deco, V. K. Jirsa, P. A. Robinson, M. Breakspear, and K. Friston. “The
Dynamic Brain: From Spiking Neurons to Neural Masses and Cortical
Fields”. In: PLoS Comput Biol 4.8 (2008), e1000092 (cit. on p. 64).

[Det+15] G. I. Detorakis, A. Chaillet, S. Palfi, and S. Senova. “Closed-loop stimu-
lation of a delayed neural fields model of parkinsonian STN-GPe net-
work: a theoretical and computational study”. In: Frontiers in neuro-
science 9 (2015), p. 237 (cit. on pp. 10, 114, 116).

144



Cyprien TAMEKUE BIBLIOGRAPHY

[DR77] S. Dolecki and D. L. Russell. “A general theory of observation and con-
trol”. In: SIAM Journal on Control and Optimization 15.2 (1977), pp. 185–
220 (cit. on p. 31).

[Dra77] N. Drasdo. “The Neural Representation of Visual Space”. In: Nature
266.5602 (Apr. 1977), pp. 554–556 (cit. on p. 72).

[DK20] M.Duprez andA. Koenig. “Control of theGrushin equation: non-rectangular
control region and minimal time”. In: ESAIM: Control, Optimisation and
Calculus of Variations 26 (2020), p. 3 (cit. on pp. 10, 22, 23, 28).

[Erm98] G. B. Ermentrout. “Neural Networks as Spatio-Temporal Pattern-Forming
Systems”. In: Reports on progress in physics 61.4 (1998), p. 353 (cit. on
pp. 64, 66).

[EC79a] G. B. Ermentrout and J. D. Cowan. “A Mathematical Theory of Visual
Hallucination Patterns”. In: Biol. Cybernetics 34.3 (Oct. 1979), pp. 137–
150 (cit. on pp. 55, 57, 63, 75, 77, 78, 83, 86, 101).

[EC80] G. B. Ermentrout and J. D. Cowan. “Large Scale Spatially Organized Ac-
tivity in Neural Nets”. In: SIAM J. Appl. Math. 38.1 (Feb. 1980), pp. 1–21
(cit. on p. 84).

[ET10] G. B. Ermentrout and D. H. Terman. Mathematical Foundations of Neu-
roscience. Interdisciplinary Applied Mathematics. New York: Springer-
Verlag, 2010 (cit. on pp. 64, 69).

[EC79b] G. Ermentrout and J. D. Cowan. “Temporal oscillations in neuronal
nets”. In: Journal of mathematical biology 7 (1979), pp. 265–280 (cit. on
p. 67).

[Erv08] S. Ervedoza. “Control and Stabilization Properties for a Singular Heat
Equation with an Inverse-Square Potential”. In: Communications in Par-
tial Differential Equations 33.11 (Oct. 2008), pp. 1996–2019 (cit. on pp. 40,
45).

[FR71] H. O. Fattorini and D. L. Russell. “Exact controllability theorems for lin-
ear parabolic equations in one space dimension”. In: Archive for Ratio-
nal Mechanics and Analysis 43.4 (1971), pp. 272–292 (cit. on pp. 16, 17).

[FVG09] O. Faugeras, R. Veltz, and F. Grimbert. “Persistent neural states: sta-
tionary localized activity patterns in nonlinear continuous n-population,
q-dimensional neural networks”. In:Neural computation 21.1 (2009), pp. 147–
187 (cit. on pp. 114–117).

[FTC09] O. D. Faugeras, J. D. Touboul, and B. Cessac. “A Constructive Mean-
Field Analysis ofMulti PopulationNeural Networkswith RandomSynap-
tic Weights and Stochastic Inputs”. In: Frontiers in computational neu-
roscience 3 (2009), p. 1 (cit. on p. 64).

145



BIBLIOGRAPHY Cyprien TAMEKUE

[Ffy04] D. Ffytche. “Visual hallucination and illusion disorders: a clinical guide”.
In: Advances in Clinical Neuroscience and Rehabilitation 4.2 (2004), pp. 16–
18 (cit. on p. 74).

[FZ85] A. L. Fogelson and R. S. Zucker. “Presynaptic Calcium Diffusion from
Various Arrays of Single Channels. Implications for Transmitter Re-
lease and Synaptic Facilitation”. In:Biophysical journal 48.6 (1985), pp. 1003–
1017 (cit. on p. 65).

[FK74] S. Fomine and A. N. Kolmogorov. Eléments de la théorie des fonctions et
de l’analyse fonctionnelle. Editions Mir, 1974 (cit. on p. 105).

[Fou22] J. B. J. Fourier. Théorie analytique de la chaleur. Firmin Didot, 1822 (cit.
on p. 15).

[Fre68a] W. J. Freeman. “Analog Simulation of Prepyriform Cortex in the Cat”.
In: Mathematical Biosciences 2.1-2 (1968), pp. 181–190 (cit. on p. 63).

[Fre68b] W. J. Freeman. “Effects of Surgical Isolation and Tetanization onPrepyri-
form Cortex in Cats.” In: Journal of neurophysiology 31.3 (1968), pp. 349–
357 (cit. on p. 63).

[Fre72] W. J. Freeman. “Waves, Pulses, and the Theory of Neural Masses”. In:
Progress in Theoretical Biology 2.1 (1972), pp. 1–10 (cit. on p. 63).

[FI96] A. Fursikov and O. Y. Imanuvilov. “Controllability of Evolution Equa-
tions. In vol. 34, Lect. Notes Ser. Seoul National University, Seoul”. In:
Korea (1996) (cit. on pp. 17, 45, 46).

[FIK12] K. Furutani, C. Iwasaki, and T. Kagawa. “An action function for a higher
step Grushin operator”. In: Journal of Geometry and Physics 62.9 (2012),
pp. 1949–1976 (cit. on p. 15).

[GK02] W. Gerstner and W. M. Kistler. Spiking Neuron Models: Single Neurons,
Populations, Plasticity. Cambridge, U.K. ; New York: Cambridge Univer-
sity Press, 2002 (cit. on p. 64).

[Ger+14] W. Gerstner, W. M. Kistler, R. Naud, and L. Paninski. Neuronal Dynam-
ics: FromSingle Neurons toNetworks andModels of Cognition. Cambridge
University Press, 2014 (cit. on p. 64).

[GSH96] M. A. Giese, G. Schöner, and H. S. Hock. “Neural field dynamics for
motion perception”. In: International Conference on Artificial Neural Net-
works. Springer. 1996, pp. 335–340 (cit. on p. 60).

[Gie12] M. A. Giese. Dynamic Neural Field Theory for Motion Perception. Vol. 469.
Springer Science & Business Media, 2012 (cit. on pp. 63, 83).

[GST03] M. Golubitsky, L. J. Shiau, and A. Török. “Bifurcation on the Visual Cor-
texwithWeakly Anisotropic Lateral Coupling”. In: SIAM J. Appl. Dyn. Syst.
2.2 (Jan. 2003), pp. 97–143 (cit. on pp. 55, 57).

146



Cyprien TAMEKUE BIBLIOGRAPHY

[Gre95] R. L. Gregory. “Brain-created visual motion: an illusion?” In: Proceed-
ings of the Royal Society of London. Series B: Biological Sciences 260.1358
(1995), pp. 167–168 (cit. on p. 80).

[Gru70] V. Grušin. “On a class of hypoelliptic operators”. In:Mathematics of the
USSR-Sbornik 12.3 (1970), p. 458 (cit. on p. 26).

[HI11] M. Haragus and G. Iooss. Local Bifurcations, Center Manifolds, and Nor-
mal Forms in Infinite-Dimensional Dynamical Systems. London: Springer
London, 2011 (cit. on p. 77).

[Hee92] D. J. Heeger. “Half-squaring in responses of cat striate cells”. In: Visual
neuroscience 9.5 (1992), pp. 427–443 (cit. on p. 117).

[Hel67] H. L. F. Helmholtz. Optic physiologique. Masson, 1867 (cit. on pp. 75, 79,
80).

[Hop84] J. J. Hopfield. “Neurons with Graded Response Have Collective Compu-
tational Properties like Those of Two-State Neurons”. In: Proceedings
of the national academy of sciences 81.10 (1984), pp. 3088–3092 (cit. on
p. 64).

[Hör67] L. Hörmander. “Hypoelliptic Second Order Differential Equations”. In:
Acta Math. 119.0 (1967), pp. 147–171 (cit. on pp. 26, 33).

[HW59] D. H. Hubel and T. N. Wiesel. “Receptive Fields of Single Neurones in
the Cat’s Striate Cortex”. In: The Journal of Physiology 148.3 (Oct. 1959),
pp. 574–591 (cit. on pp. 55, 72).

[HW62] D. H. Hubel and T. N. Wiesel. “Receptive Fields, Binocular Interaction
and Functional Architecture in the Cat’s Visual Cortex”. In: The Journal
of Physiology 160.1 (Jan. 1962), pp. 106–154 (cit. on p. 55).

[HW65] D. H. Hubel and T. N.Wiesel. “Receptive Fields and Functional Architec-
ture in Two Nonstriate Visual Areas (18 and 19) of the Cat”. In: Journal
of neurophysiology 28.2 (1965), pp. 229–289 (cit. on p. 63).

[HW63] D. H. Hubel and T. N. Wiesel. “Receptive Fields of Cells in Striate Cor-
tex of Very Young, Visually Inexperienced Kittens”. In: Journal of Neu-
rophysiology 26.6 (Nov. 1963), pp. 994–1002 (cit. on p. 63).

[HW74a] D. H. Hubel and T. N. Wiesel. “Sequence Regularity and Geometry of
Orientation Columns in theMonkey Striate Cortex”. In: J. Comp. Neurol.
158.3 (Dec. 1974), pp. 267–293 (cit. on p. 72).

[HW74b] D. H. Hubel and T. N. Wiesel. “Uniformity of Monkey Striate Cortex:
A Parallel Relationship between Field Size, Scatter, and Magnification
Factor”. In: J. Comp. Neurol. 158.3 (Dec. 1974), pp. 295–305 (cit. on p. 72).

[Ima95] O. Y. Imanuilov. “Controllability of Parabolic Equations”. In: Sb. Math.
186.6 (June 1995), pp. 879–900 (cit. on pp. 17, 45).

147



BIBLIOGRAPHY Cyprien TAMEKUE

[Izh07] E. M. Izhikevich. Dynamical Systems in Neuroscience: The Geometry of Ex-
citability and Bursting. Computational Neuroscience. Cambridge,Mass:
MIT Press, 2007 (cit. on p. 64).

[Kan+00] E. R. Kandel, J. H. Schwartz, T. M. Jessell, S. Siegelbaum, A. J. Hudspeth,
and S. Mack. Principles of Neural Science. Vol. 4. McGraw-hill New York,
2000 (cit. on p. 64).

[Klü66] H. Klüver. Mescal and Mechanisms of Hallucinations. Chicago: Univ. of
Chicago Press, 1966 (cit. on pp. 55, 75, 78).

[Koe17] A. Koenig. “Non-null-controllability of the Grushin operator in 2D”. In:
Comptes RendusMathematique 355.12 (2017), pp. 1215–1235 (cit. on pp. 10,
22, 23, 28, 46).

[KAO63] A. E. Krill, H. J. Alpert, and A. M. Ostfeld. “Effects of a Hallucinogenic
Agent in Totally Blind Subjects”. In: Archives of Ophthalmology 69.2 (Feb.
1963), pp. 180–185 (cit. on p. 75).

[Lai+02] C. R. Laing,W. C. Troy, B. Gutkin, andG. B. Ermentrout. “Multiple Bumps
in a Neuronal Model of Working Memory”. In: SIAM Journal on Applied
Mathematics 63.1 (2002), pp. 62–97 (cit. on p. 63).

[LR95] G. Lebeau and L. Robbiano. “Contrôle ExactDe L’équationDe LaChaleur”.
In: Communications in Partial Differential Equations 20.1-2 (Jan. 1995),
pp. 335–356 (cit. on p. 17).

[Lev96] I. Leviant. “Does ‘brain-power’ make Enigma spin?” In: Proceedings of
the Royal Society of London. Series B: Biological Sciences 263.1373 (1996),
pp. 997–1001 (cit. on pp. 60, 80).

[Lio88] J.-L. Lions.Contrôlabilité exacte, perturbations et stabilisation de systemes
distribues. Tome 1. Vol. 8. Masson, Paris, 1988 (cit. on p. 31).

[Lli03] R. R. Llinás. “The contribution of Santiago Ramon y Cajal to functional
neuroscience”. In: Nature Reviews Neuroscience 4.1 (2003), pp. 77–80
(cit. on p. 64).

[LSA11] Y. Lu, Y. Sato, and S.-i. Amari. “Traveling Bumps and Their Collisions
in a Two-Dimensional Neural Field”. In: Neural Computation 23.5 (May
2011). In this paper, author use external inputs to control stationary
solutions to Neural field equation., pp. 1248–1260 (cit. on p. 83).

[Mac57] D. M. MacKay. “Moving Visual Images Produced by Regular Stationary
Patterns”. In: Nature 180.4591 (Oct. 1957), pp. 849–850 (cit. on pp. 10,
56, 57, 59, 60, 79, 80, 99, 130).

[Mac61] D. M. MacKay. “Visual Effects of Non-redundant Stimulation”. In: Na-
ture 192.4804 (Nov. 1961), pp. 739–740 (cit. on pp. 10, 80).

148



Cyprien TAMEKUE BIBLIOGRAPHY

[MV06] P.Martinez and J. Vancostenoble. “Carlemanestimates for one-dimensional
degenerate heat equations”. In: Journal Of Evolution Equations 6 (2006),
pp. 325–362 (cit. on pp. 41, 42).

[McC+85] D. A. McCormick, B. W. Connors, J. W. Lighthall, and D. A. Prince. “Com-
parative Electrophysiology of Pyramidal and Sparsely Spiny Stellate
Neurons of the Neocortex”. In: Journal of Neurophysiology 54.4 (Oct.
1985), pp. 782–806 (cit. on p. 69).

[MP43] W. S. McCulloch and W. Pitts. “A Logical Calculus of the Ideas Imma-
nent in Nervous Activity”. In: The bulletin of mathematical biophysics 5.4
(1943), pp. 115–133 (cit. on p. 64).

[MJ03] J. Milton and P. Jung. Epilepsy as a dynamic disease. Springer Science &
Business Media, 2003 (cit. on p. 113).

[Mor15] M. Morancey. “Approximate Controllability for a 2D Grushin Equation
with Potential Having an Internal Singularity”. In: Annales de l’Institut
Fourier 65.4 (2015), pp. 1525–1556 (cit. on pp. 10, 40, 46).

[Nai68] M. A. Naimark. Linear differential operators. Part II: Linear differential
operators in Hilbert space. Frederick Ungar Publishing Company, 1968
(cit. on p. 38).

[Nic+21] R. Nicks, A. Cocks, D. Avitabile, A. Johnston, and S. Coombes. “Under-
standing Sensory Induced Hallucinations: From Neural Fields to Am-
plitude Equations”. In: SIAM J. Appl. Dyn. Syst. 20.4 (2021), pp. 1683–1714
(cit. on pp. 10, 56, 57, 59, 79, 82, 85, 86, 113).

[Ost70] G. Oster. “Phosphenes”. In: Sci Am 222.2 (Feb. 1970), pp. 82–87 (cit. on
p. 75).

[Pat92] A. Patterson. A field guide to rock art symbols of the greater Southwest.
Big Earth Publishing, 1992 (cit. on p. 75).

[Paz12] A. Pazy. Semigroups of linear operators and applications to partial differ-
ential equations. Vol. 44. Springer Science & Business Media, 2012 (cit.
on pp. 33, 34).

[Pur+04] D. Purves, G. J. Augustine, D. Fitzpatrick, W. Hall, A.-S. LaMantia, and
L. White, eds. Neuroscience. 3rd ed. Sunderland, Mass: Sinauer Asso-
ciates, Publishers, 2004 (cit. on p. 64).

[Ram09] S. Ramón yCajal.Histologie Du SystèmeNerveux de l’homme et Des Vertébrés.
Ed. française rev. & mise à jour par l’auteur, tr. de l’espagnol par L.
Azoulay. Vol. 1. Paris : Maloine, 1909, pp. 1–1012 (cit. on p. 64).

[RH59] F. Ratliff and H. K. Hartline. “The Responses of Limulus Optic Nerve
Fibers to Patterns of Illumination on the ReceptorMosaic”. In: The Jour-
nal of general physiology 42.6 (1959), pp. 1241–1255 (cit. on p. 63).

149



BIBLIOGRAPHY Cyprien TAMEKUE

[Rec+15] S. Recanatesi, M. Katkov, S. Romani, and M. Tsodyks. “Neural Network
Model ofMemory Retrieval”. In: Frontiers in computational neuroscience
9 (2015), p. 149 (cit. on p. 63).

[Sat78] D. Sattinger. “Group Representation Theory, Bifurcation Theory and
Pattern Formation”. In: Journal of Functional Analysis 28.1 (Apr. 1978),
pp. 58–101 (cit. on p. 77).

[Sch77] E. L. Schwartz. “Spatial Mapping in the Primate Sensory Projection:
Analytic Structure and Relevance to Perception”. In: Biol. Cybern. 25.4
(Dec. 1977), pp. 181–194 (cit. on pp. 55, 72).

[Ser+95] M. Sereno, A. Dale, J. Reppas, K. Kwong, J. Belliveau, T. Brady, B. Rosen,
and R. Tootell. “Borders of Multiple Visual Areas in Humans Revealed
by Functional Magnetic Resonance Imaging”. In: Science 268.5212 (May
1995), pp. 889–893 (cit. on p. 71).

[Sie77] R. K. Siegel. “Hallucinations”. In: Sci Am 237.4 (Oct. 1977), pp. 132–139
(cit. on p. 75).

[SV13] R. Sokoliuk and R. VanRullen. “The Flickering Wheel Illusion: When α
RhythmsMake a Static Wheel Flicker”. In: Journal of Neuroscience 33.33
(2013) (cit. on p. 60).

[Str83] R. S. Strichartz. “Analysis of the Laplacian on the complete Riemannian
manifold”. In: Journal of functional analysis 52.1 (1983), pp. 48–79 (cit. on
p. 33).

[Str86] R. S. Strichartz. “Sub-Riemannian Geometry”. In: J. Differential Geom.
24.2 (Jan. 1986) (cit. on p. 33).

[Tam22] C. Tamekue. “Null controllability of the parabolic spherical Grushin
equation”. In: ESAIM: Control, Optimisation and Calculus of Variations 28
(2022), p. 70 (cit. on pp. 10, 21, 25, 31, 36, 44, 46).

[Tam23] C. Tamekue. “Parabolic spherical Baouendi-Grushin equation: Mini-
mal time for null controllability”. In: to appear (2023) (cit. on p. 23).

[TPC23a] C. Tamekue, D. Prandi, and Y. Chitour. “Cortical origins ofMacKay-type
visual illusions: A case for the non-linearity”. In: 2023 IFAC. 2023 (cit. on
pp. 59, 104, 113).

[TPC23b] C. Tamekue, D. Prandi, and Y. Chitour. “MacKay-Type Visual Illusions
via Neural Fields”. In: International Conference on Geometric Science of
Information. Springer. 2023, pp. 501–508 (cit. on p. 113).

[TPC22] C. Tamekue, D. Prandi, and Y. Chitour. “Reproducing sensory induced
hallucinations via neural fields”. In: 2022 IEEE-ICIP. 2022, pp. 3326–3330
(cit. on pp. 56, 59, 108, 113).

150



Cyprien TAMEKUE BIBLIOGRAPHY

[Tas95] P. Tass. “Cortical Pattern Formation during Visual Hallucinations”. In: J
Biol Phys 21.3 (1995), pp. 177–210 (cit. on pp. 55, 57, 75).

[Tas97] P. Tass. “Sscillatory Cortical Activity during Visual Hallucinations”. In:
Journal of biological physics 23 (1997), pp. 21–66 (cit. on p. 113).

[Too+82] R. Tootell, M. Silverman, E. Switkes, and R. De Valois. “Deoxyglucose
Analysis of Retinotopic Organization in Primate Striate Cortex”. In: Sci-
ence 218.4575 (Nov. 1982), pp. 902–904 (cit. on pp. 55, 71, 72).

[VF10] R. Veltz and O. Faugeras. “Local/global analysis of the stationary solu-
tions of some neural field equations”. In: SIAM Journal on Applied Dy-
namical Systems 9.3 (2010), pp. 954–998 (cit. on p. 88).

[Vil68] N. Vilenkin. Special Functions and the Theory of Group Representations.
Trans. by V. Singh. Vol. 22. Translations of Mathematical Monographs.
Providence, Rhode Island: American Mathematical Society, Dec. 1968
(cit. on p. 91).

[Wey50] H. Weyl. The theory of groups and quantum mechanics. Courier Corpo-
ration, 1950 (cit. on p. 15).

[WC73] H. R.Wilson and J. D. Cowan. “AMathematical Theory of the Functional
Dynamics of Cortical and Thalamic Nervous Tissue”. In: Kybernetik 13.2
(1973), pp. 55–80 (cit. on pp. 55, 60, 63, 64, 67, 83, 113).

[WC72] H. R. Wilson and J. D. Cowan. “Excitatory and Inhibitory Interactions in
Localized Populations of Model Neurons”. In: Biophysical journal 12.1
(1972), pp. 1–24 (cit. on pp. 63, 67, 68).

[ZWF93] S. Zeki, J. D. G.Watson, and R. S. J. Frackowiak. “Going beyond the Infor-
mation given: The Relation of Illusory Visual Motion to Brain Activity”.
In: Proc. R. Soc. Lond. B 252.1335 (June 1993), pp. 215–222 (cit. on pp. 60,
80).

[Zek94] S. Zeki. “The cortical Enigma: a reply to Professor Gregory”. In: Proceed-
ings of the Royal Society of London. Series B: Biological Sciences 257.1350
(1994), pp. 243–245 (cit. on p. 80).

[ZME19] A. Ziepke, S. Martens, and H. Engel. “Control of Nonlinear Wave So-
lutions to Neural Field Equations”. In: SIAM J. Appl. Dyn. Syst. 18.2 (Jan.
2019), pp. 1015–1036 (cit. on pp. 10, 70).

151


	Dedicate
	Acknowledgments
	General Introduction
	Publications
	Publications in Preparation

	I Controllability of degenerate parabolic equations
	Introduction
	Purpose and motivation
	Presentation of the main result
	Two-dimensional almost-Riemannian (AR) manifolds
	The Grushin sphere and associated sub-Laplacian operator
	Main result

	Ongoing and further works
	Ongoing works
	Further works


	Spherical Baouendi-Grushin equation
	Introduction
	Preliminaries results
	The Grushin plane
	Null controllability of the parabolic Baouendi-Grushin (PBG) equation in the Grushin plane

	PBG equation in spherical coordinates
	Well-posedness of Cauchy problems
	Non observability result in small time
	Observability result in large time
	Fourier expansion of the solution of the adjoint system
	Strategy for proving observability inequality in large time
	Uniform observability for the one-dimensional parabolic equation for the zero frequency
	Uniform observability for one-dimensional parabolic equations corresponding to non-zero frequencies

	Carleman estimate for 1D parabolic equations


	II Control in Neurosciences
	Introduction
	Purpose and motivation
	Strategy of study and results
	Strategy of study
	Presentation of results

	Plan of this part
	General notations

	Neuronal dynamics and hallucinations
	Introduction
	Biophysics of neuronal communication
	A Spiking Neuron
	Synaptic signal transmission between two neurons

	Neuronal population models
	Wilson-Cowan equations
	The Amari-type equation

	The primary visual cortex
	Retinotopic structure of V1
	Analytical derivation of the retino-cortical map
	Visual illustration of the retino-cortical map

	On visual hallucinations
	Geometric visual hallucinations
	Spontaneous cortical patterns formation in V1


	MacKay-type visual illusions
	Introduction
	MacKay visual illusions from redundant stimulation
	Billock and Tsou's psychophysical experiments
	Preliminary work and comments

	Model and assumptions on parameters
	Neural fields model
	Assumption on parameters
	Binary representation of patterns

	Preliminaries results on Amari-type equation
	Well-posedness of the Cauchy problem
	Equivariance of the input to stationary output map with respect to the plane Euclidean group

	On the MacKay effect
	A priori analysis
	The MacKay effect with a linear response function
	The MacKay effect with a nonlinear response function
	Numerical results for the MacKay effect

	On Billock and Tsou's experiments
	Unreproducibility of Billock and Tsou experiments: linear response function
	Reproducibility of Billock and Tsou's experiments with a sigmoid response function and numerical results
	Ongoing works


	Equilibrium for neural fields under output proportional feedback
	Introduction
	Presentation of the main result
	Proof of the main result
	Discussion and further works

	Miscellaneous Complements
	Complement results for the MacKay effect
	Complement results for the MacKay effect description in the linear regime
	Complements for the MacKay effect description in the nonlinear regime

	Complement result for Billock and Tsou's

	Toolbox for visual illusions
	Implementation of the retino-cortical map
	Point types
	Conversion formulas

	Image from retinal to cortical and conversely
	Stationary state to Amari-type equation
	Toolbox for the MacKay effect
	Toolbox for Billock and Tsou experiments
	Reproducing Billock and Tsou experiments
	Relation between response function parameters and reproducibility of Billock and Tsou phenomena




