N

N

Formal Guaranties for Safety Critical Code Generation:
the Case of Highly Variable Languages

Arnaud Dieumegard

» To cite this version:

Arnaud Dieumegard. Formal Guaranties for Safety Critical Code Generation: the Case of Highly
Variable Languages. Computation and Language [cs.CL]. Institut National Polytechnique de Toulouse
- INPT, 2015. English. NNT: 2015INPT0016 . tel-04231015

HAL Id: tel-04231015
https://theses.hal.science/tel-04231015
Submitted on 6 Oct 2023

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://theses.hal.science/tel-04231015
https://hal.archives-ouvertes.fr

k

A — .'.—-'\' AT W a,

THES!

En vue de 'obtention du

DOCTORAT DE L’UNIVERSITE DE TOULOUSE

L+

Université
de Toulouse

Délivré par : ['Université Toulouse 3 Paul Sabatier (UT3 Paul Sabatier)

Présentée et soutenue le 30/01/2015 par :

Arnaud Dieumegard

Garanties Formelles pour la Génération de Code Critique : 1’Affaire des
Langages Fortement Variables

Formal Guarantees for Safety Critical Code Generation: The Case of
Highly Variable Languages

JURY
CLAUDE MARCHE rapporteur
RicHARD PAIGE rapporteur
PHiLipPE CUENOT examinateur
PaurL GIBSON examinateur
PuaiLipPE LAHIRE examinateur
VIRGINIE WIELS examinateur

Ecole doctorale et spécialité :

MITT : Domaine STIC : Sureté de logiciel et calcul de haute performance
Unité de Recherche :

IRIT (UMR 5505)
Directeur(s) de These :

Yamine AIT-AMEUR et Marc PANTEL

Abstract

Control and command softwares play a key role in safety-critical embedded systems used for human
related activities such as transportation, healthcare or energy. Their impact on safety makes the assessment
of their correctness the central point in their development activities. Such systems verification activities
are usually conducted according to normative certification guidelines providing objectives to be reached in
order to ensure development process reliability and thus prevent flaws. Verification activities usually relies
on tests and proof reading of the software but recent versions of certification guidelines are taking into
account the deployment of new development paradigms such as model-based development, and formal
methods; or the use of tools in assistance of the development processes.

Automatic code generators are used in most safety-critical embedded systems development in order to
avoid human related software production errors and to ensure the respect of development quality stan-
dards. As these tools are supposed to replace humans in the software code production activities, errors in
these tools may result in embedded software flaws. It is thus in turn mandatory to ensure the same level of
correctness for the tool itself than for the expected produced code. Tools verification shall be done accord-
ing to qualification guidelines. We advocate in our work the use of model-based development and formal
methods for the development of these tools in order to reach a higher quality level.

Critical control and command software are mostly designed using graphical dataflow languages. These
languages are used to express complex systems relying on atomic operations embedded in blocks that are
gathered in block libraries. Blocks may be sophisticated pieces of software with highly variable structure
and semantics. This variability is dependent on the values of the block parameters and of the block’s context
of use.

In our work, we focus on the formal specification and verification of such block based languages. We
experimented various techniques in order to ensure a formal, sound, verifiable and usable specification for
blocks. We developed a domain specific formal model-based language specifically tailored for the specifi-
cation of structure and semantics of blocks. This specification language is inspired from software product
line concepts in order to ensure a correct and scalable management of the blocks variability. We have ap-
plied this specification and verification approach on chosen block examples from common industrial use
cases and we have validated it on tool prototypes.

Blocks are the core elements of the input language of automatic code generators used for control and
command systems development. We show how our blocks formal specification can be translated as code
annotations in order to ease and automate the generated code verification. Code annotations are veri-
fied using specialised static code analysis tools. Relying on synchronous observers to express high level
requirements at the input model level, we show how formal block specification can also be used for the
translation of high level requirements as verifiable code annotations discharged using the same specialised
tooling. We finally target the assistance of code generation tools qualification activities by arguing on the
ability to automatically generate qualification data such as requirements, tests or simulation results for the
verification and development of automatic code generators from the formal block specification.

Resumé

Les fonctions de commande et de contréle sont parmi les plus importantes des systémes embarqués
critiques utilisés dans des activités telles les transports, la santé ou la gestion de Iénergie. Leur impact
potentiel sur la streté de fonctionnement fait de la vérification de leur correction I'un des points les plus
critiques de leur développement. Cette vérification est usuellement effectuée en accord avec les normes
de certification décrivant un ensemble d’objectifs a atteindre afin d’assurer un haut niveau de qualité du
systéme et donc de prévenir I'apparition de défauts. Cette vérification du logiciel est traditionnellement
basée sur de nombreux tests et des activitiés de relectures de code, toutefois les versions les plus récentes
des standards de certification permettent l'utilisation de nouvelles approches de développement telles que
I'ingénierie dirigée par les modeéles et les méthodes formelles ainsi que I'utilisation d’outil pour assister les
processus de développement.

Les outils de génération automatique de code sont exploités dans la plupart des processus de développe-
ment de systémes embarqués critiques afin d’éviter des erreurs de programmation liées '’humain et pour
assurer le respect des regles de production de code. Ces outils ayant pour vocation de remplacer les hu-
mains pour la production de code, des erreurs dans leur conception peuvent causer I'apparition d’erreurs
dans le code généré. Il est donc nécessaire de vérifier que le niveau de qualité de l'outil est le méme que
celui du code produit en s’assurant que les objectifs spécifiées dans les normes de qualification sont cou-
verts. Nos travaux visent a exploiter I'ingénierie dirigée par les mode¢les et les méthodes formelles pour
développer ces outils et ainsi atteindre un niveau de qualité plus élevé que les approches traditionnelles.

Les fonctions critiques de commande et de contrdle sont en grande partie congues a l'aide de langages
graphiques a flot de données. Ces langages sont utilisés pour modéliser des systémes complexes a 'aide
de blocs élémentaires groupés dans des librairies de blocs. Un bloc peut étre un objet logiciel sophistiqué
exposant une haute variabilité tant structurelle que sémantique. Cette variabilité est ala foisliée aux valeurs
des parametres du bloc ainsi qu'a son contexte dutilisation.

Dans notre travail, nous concentrons notre attention en premier lieu sur la spécification formelle de
ces blocs ainsi que sur la vérification de ces spécifications. Nous avons évalué plusieurs approches et tech-
niques dansle but d’assurer une spécification formelle, structurellement cohérente, vérifiable et réutilisable
des blocs. Nous avons finalement congu un langage basé sur I'ingénierie dirigées par les modeéles dédié a
cette tiche. Ce langage s’inspire des approches des lignes de produit logiciel afin d’assurer une gestion de
la variabilité des blocs a la fois correcte et assurant un passage a I'échelle. Nous avons appliqué cette ap-
proche et la vérification associée sur quelques exemples choisis de blocs issus dapplications industrielles
et 'avons validé sur des prototypes logiciels que nous avons développé.

Les blocs sont les principaux éléments des langages d’entrée utilisés pour la génération automatique de
logiciels de commande et de contréle. Nous montrons comment les spécifications formelles de blocs peu-
vent étre transformées en des annotations de code afin de simplifier et d’automatiser la vérification du code
généré. Les annotations de code sont vérifiées par la suite a I'aide d’outils spécialisés d’analyse statique de
code. En utilisant des observateur synchrones pour exprimer des exigences de haut niveau sur les modeéles
en entrée du générateur, nous montrons comment la spécification formelle de blocs peut étre utilisée pour
la génération d’annotations de code et par la suite pour la vérification automatique des exigences. Finale-
ment, nous montrons dans quelle mesure les spécifications de blocs permettent de générer des données
de qualification tel que des exigences, des tests ou des données de simulation utilisées pour la vérification
et le développement de générateurs automatiques de code.

Table of Contents

CONTENTS

LisT oF FIGURES

LisT oF TABLES

1

3

INTRODUCTION

1.1 Embeddedcritical software
1.2 Software verificationand validation
1.3 Model Driven Engineering and Formal Methods
1.4 Automaticcodegenerationo
1.5 The SIMULINKUSE CASE . . « & v v v v v e et e e e e e e e e e e e e e e e e e e
1.6 Researchobjectives
1.7 Contributions e e e
1.8 Plan o e e

Critical embedded systems design and implementation

INDUSTRIAL CONTEXT
2.1 Certification/Qualification
2.1.1 Terminology
2.1.2 DO-178B- Software Considerations in Airborne Systems and Equipment Certifi-
Cation e e e e
2.1.3 DO-178C- Software Considerations in Airborne Systems and Equipment Certifi-
Cation L e e
2.1.4 DO-330- Software Tool Qualification Considerations Companion
2.1.5 DO-331- Model-Based Development and Verification Supplement
2.1.6 DO-332- Object-Oriented Technology and Related Techniques Supplement
2.1.7 DO-333- Formal Methods Supplement
2.2 'The need for domain specificlanguages Lo L0 L.
2.2.1 From DSML to embeddable software through automatic code generation.
2.3 Ourlocal research contributions to the ACG developmentfield.
2.3.1 The GENEAUTOACGexample,
2.32 The ProjeT-P/H1-MoCoapproach
2.3.3 Other research contributions to the ACG developmentfield.
24 Synthesis e

LANGUAGES FORMAL SPECIFICATION - STATE OF THE ART

3.1 Preliminarydefinitions L
3.1.1 Language e
3.12 Formal
3.1.3 Specification

12

13

10

10
11
12
13
13
14
14
15
15
17
18
19

TABLE OF CONTENTS

II

3.14 Variable
3.1.5 Highlyvariablelanguage,
3.2 Model Driven Engineering L L
32.1 Definition
322 Use . . .o e e
3.2.3 State of the art frameworks andlanguages 0L
3.2.4 Software productline engineering L L oL
3.3 Software formal verification L Lo L
3.3.1 Staticanalysisofsourcecode L oL oL
3.3.2 Deductive verification
333 TheWHny3platform L
3.4 Domain analysis: languages variability Lo 0 0oL
3.4.1 Languagesvariabilityexamples 0 0 L.
342 Language variabilityanalysis 0 0 L
3.5 Synthesis

DATAFLOW LANGUAGES

4.1 Dataflowlanguages L L L
41.1 Origins
4.1.2 Dataflow languages for critical systems development
4.1.3 Synchronous dataflowlanguages o 0 0L
4.14 Realisticimplementationof KPN
4.1.5 Dataflowmodel execution L L oL

42 Dataflowmodel structure Lo L Lo
4.2.1 Graphical dataflow model structure L L0
422 Dataflowlanguages L Lo

4.3 Wellfounded dataflowmodel o o Lo
43.1 Causalityerrors
432 Datatypeoverflow L L

4.4 Dataflow languages block semantics variability00 ..

4.5 Challenges to tackle regarding specification

Highly variable languages formal specification

EXPERIMENTS WITH CLASSIC SOFTWARE ENGINEERING TOOLS

5.1 Blockspecificationrequirementso

52 Blockexamples L e
521 MinMaxblock
5.22 Delayblock specification L L Lo

5.3 Mathematical notation for the specification of blocks

5.4 UML for the specificationof blocks
54.1 UMLblock specificationharness
5.4.2 Injectingvariabilityinto UML
5.4.3 Profiled UML + OCL specification for MinMaxblock
5.4.4 Profiled UML + OCL specification for Delayblock
54.5 Choices made regarding UML modeling
5.4.6 Limitations of the UML + profile + OCL specification approach

5.5 SPLE for the specification of blocks o0 0oL
5.5.1 SPLEspecificationapproach
5.5.2 SPLE specification of the MinMaxblock

6

37
37
37
38
38
38
38
40
41
43
44
44
43
45
46

47

TABLE OF CONTENTS

6

7

5.5.3 SPLE specification of the Delay block

5.5.4 Limitation of the SPLE specification approach
5.6 Two complementaryapproaches

5.6.1 Methodology proposal
5.6.2 From SPLE analysis to UML model
5.6.3 Limitations of the methodology
5.7 Synthesis

A DOMAIN SPECIFIC AND PRODUCT LINE EXPERIMENT FOR LANGUAGE SPECIFICATION
6.1 Domain analysis
6.1.1 Domain of study
6.1.2 Variability modeling
6.2 The BLockLiBRARY DSML
6.2.1
6.2.2
6.2.3
6.2.4
6.2.5
6.2.6
6.2.7
6.2.8

Delay block textual specification

Block structural features

6.3.1 Conversion of a BlockType to a feature model

6.3.2 Automatic feature modelanalysis
6.4 From block specification to configurations

6.4.1 Preliminary operations definitions on BLOCKLIBRARY elements
6.4.2
6.4.3
6.4.4 Extraction of Signature elements
6.4.5 Extraction of Configuration elements
6.5 Semantics modeling

6.5.1 Block semantics phases contracts
6.5.2 Block semantics contract encoding with dynamic behaviors . . .

6.6 Specification verification properties
6.6.1 Well-formedness

6.6.2 \Variabilitycoverage oL

BLOCKLIBRARY SPECIFICATIONS FORMAL VERIFICATION

7.1 Verification prerequisites

7.1.1 OCL specification
7.1.2 BAL specification

7.1.3 Way3platform L Lo
7.1.4 Transformation technology choice
7.2 BLOCKLIBRARY specificationexample

7.3 'WHY3 libraries

7.3.1 Primitive datatypestheory

7.3.2 BLoOCKLIBRARY StructuralFeature theory

7.4 OCL expressions transformation
7.4.1 OCL standard library operations
742 Collectionoperations

7.4.3 Logical property assessment iteration operations

7

Delay block interfaces specification
BLockLiBRARY metamodel abstract elements
Annotations L oo
Data types specification
BLockLIBRARY metamodel variability structure
BLockLIBRARY metamodel specification containers
6.3 Relationto featuremodeling 0 L

Configurationand Signature constructs
Operations based on Signature constructs

TABLE OF CONTENTS

7.4.4 Value extraction iteration operations 127

7.5 The BAL expressions transformations L. 130
7.6 BLOCKLIBRARY verification transformations 131
7.6.1 Variability verification transformation L. L. 131

7.6.2 Semantics verification transformationo L oL 135

7.7 Variability verification through SMT solving, 135
7.7.1 Specification extract variability verification Lo 0oL 136
7.7.2 Entire specification verification Lo Lo oL 137
7.7.3 Goals transformation as a mean to ease the verification 137

7.8 Semantics verification through SMT'solving 140
7.8.1 Hoaretripleverification. L Lo Lo 140
7.8.2 Addingloop invariants for the verification L 0L 141
7.8.3 Automatic generation of invariants L L L L 142

7.9 Scalability e 142
7.10 Limitations L 143
7.10.1 Dataflow languages capabilities limitations 143
7.10.2 OCL and BAL Expressiveness limitation 143
7.10.3 BLOCKLIBRARY limitations 143

701 Synthesis 143
III Automatic code generation verification based on the block library specification 145
8 VERIFICATION OF GENERATED CODE 147
8.1 Annotations for code verification o Lo Lo L 147
8.1.1 Configurationmatchingofblock 147
8.1.2 Annotationgeneration L o 148
8.1.3 Annotationverification 152
8.1.4 Toolsupport 152

8.2 Formalverification 154
8.2.1 Synchronousobservers L. 185
8.2.2 Concrete application on the Countersystem 185
8.2.3 Logical expressionextraction Lo 158
8.2.4 Mainmodulegeneration L L L L 160
8.2.5 From specific kind of properties to annotations 161
8.2.6 AparallelworkbasedonSOo oL 161

8.3 Gain wrt classical verification activities o Lo oL 162
8.3.1 A complement to state of the art design verification 162
8.3.2 Current limitations and perspectives Lo oL 162

9 CERTIFICATION/QUALIFICATION DATA GENERATION 163
9.1 BrockLIBRARY for qualification oo 163
9.1.1 DO-331: Model-based technology 164
9.12 DO0-333: Formalmethods 164

9.2 BLOCKLIBRARY use for the certification ofan ACGtool 165
9.2.1 Providing unambiguous expression of requirements and architecture 165
9.2.2 Supporting the use of automatically generatedcode 167
9.2.3 Supporting the use of analysis tools for verification of requirements and architecture. 167

9.2.4

9.2.5

Supporting the use of simulation for partial verification of requirements, architec-
ture, and/or Executable Object Code. 167
Supporting the use of automated test generation, 169

8

TABLE OF CONTENTS

9.3 Additional required verifications Lo L oL oL 169
10 CoNCLUSION & FUTURE WORK 171
10.1 Research objectives fulfillment Lo L. 171
10.1.1 Research objective 1: Formal specification and verification of highly variable lan-
GUAZES & o o v v e e i e 171
10.1.2 Research objective 2: Uses of highly variable language formal specification for au-
tomated generated code verification L o oL 172
10.1.3 Research objective 3: Uses of highly variable language formal specification for ACG
qualification L 172
10.2 Concrete productionsl e 173
10.3 Futureresearch directions 173
10.3.1 BLockLiBRARY-related activities 173
10.3.2 Overall approach futureworks o L. 175
APPENDICES 177
A COMPLETE BLOCK SPECIFICATIONS 179
A.l Delayblockspecifiation 179
A2 MinMaxblock specification L Lo Lo 189
B OCL GRAMMAR 193
C BAL GRAMMAR 199
D WHY3 LIBRARIES 203
D.1 WHy3datatypestheories 203
D.1.1 Numeric data types definition theories 203
D.1.2 Common functions definition theories 208
D.1.3 String data types definition theories 208
D.2 BLoCKLIBRARY StructuralFeature definitiontheory. 212
D.3 Generic functions definitions and general purposelemmas 214
D.4 OCL language operations definitions 216
D.5 OCLiteration operations definitions 227
E ACSL VERIFICATION USING FraMa-C 233
REFERENCES 239

TABLE OF CONTENTS

10

1.1

2.2
24

3.1

4.2
4.5
4.6
4.7
4.8
4.9

5.9

S.10
S.11
5.12
5.14
5.15
521
5.24
5.26
5.33
5.38
541
542
S.44

6.1
6.2
6.5
6.6
6.8
6.11
6.16
6.17

7.1

7.24
7.26
7.27
7.28

List of Figures

Code generation verification strategy L L. S
GENEAUTO toolkit architecture L L o 16
PrOJET-P toolkit architecture 19
Space probe system Feature Model L. 26
MultiRate dataflow model, boolean clock flow and block activation 39
Metamodel for dataflowmodels oo Lo Lo oo 42
GeneAuto DataTypesmetamodel, 43
Simulink model foramodulo3 counter o Lo 44
A causality error exampleina SIMULINKmodelo L. 45
Simulink model with different configurations of the Sumblock 46
Common specificationdatatypes L L oL 54
Common specification for block structural elements 54
Common specification operations of block structural elements SS
Sum allowed inputs specification Lo)
Sum semantics specificationo 56
Specification of the block structural elements value using UML +OCL 57
Generic block specificationusingUML+OCL 61
SMARTY variability UMLprofile 62
MinMax block specification using UML + variability profile+ OCL 63
Semantics variants definition for the MinMaxblock 68
Delay block specificationusingthe UML 71
A feature model for the MinMax block structure and semantics 74
A feature model for the Delay block structure and semantics 76
Delay block specificationusingUML+OCL 81
The BlockLibrarymetamodel L L. 8S
The Delay block specification hierarchy 86
The BLOCKLIBRARY metamodel abstract metaclasses 89
The BlockLibrary Annotations metaclass definition 90
The BLoCKLIBRARY metamodel structural features definition elements 93
The BLOCKLIBRARY metamodel variability structure 9§
FM extracted from the Delay block BlockType specification 100
The Configurationmetaclass 103
MDE architecture of the transformation L., 115
Select lemmas verification with WHY3 through SMT solvers and proof assistants 129
Overview of the BLOCKLIBRARY to WHY3/WHYML transformation 132
Block domain extraction of StructuralFeaturedatatypes 132
Block domain extraction of StructuralFeature INVARIANT Annotation 133

11

LIST OF FIGURES

7.29
7.31
7.36
7.37

8.1
8.2
8.6
8.8
8.9
8.10
8.14

9.1
9.2

10.1

D.11
D.13
D.22
D.24
D.34
D.37
D.47

Signature domain extraction of MODE_INVARIANT Annotation 134
Signature function with contract extraction of BlockMode specification 136
Completeness goal transformation application methodology 139
Disjointness goal transformation application methodology 139
Configuration-specific generated metamodel example 148
Counter SIMULINKmodel 150
GENEAUTO annotations extension metamodel 153
The Observer block, its content and its parameters view in the SIMULINK environment . . 155
The Counter model with its counter _spec synchronous observer 156
The counter_spec synchronous observercontent 156
An abstract synchronousobserver Lo Lo 159
BLoOCKLIBRARY use for ACG verification and development 166
BLOCKLIBRARY use for test procedures generation and verification 168
Generic language variability specification metamodel 176
String theory lemmas verification with WHY3 and SMT solvers 209
InPortGroup theory lemmas verification with WHY3 and SMT solvers 213
CommonFunctions theory lemmas verification with WHY3 and SMT solvers 21§
OclType theory lemma verification with WHY3 and SMT solvers 216
OCL operations theory lemmas verification with WHY3 and SMT solvers 221
OCL operations theory lemmas verification with WHY3 and SMT solvers (II) 22§
OCL operations theory lemmas verification with WuY3 and SMT solvers (III) 231

12

2.1

S.1
5.2
5.3
5S4
S.5
5.6
5.7
5.8
5.13
5.34
5.43

6.3

7.3

7.11
7.13
7.14
7.15
7.16
7.17
7.18
7.20
7.21
7.22
7.25
7.34

8.7
8.12

List of Tables

DALand TQLrelations o i e 11
Block structure specification requirementso 50
Input/Output ports structure specification requirements S0
Parameters structure specification requirements L S0
Memories structure specification requirements L S1
Data type and dimensionality specification requirements 51
Semantics specification requirements S1
Specification verification requirements L L. 52
Related tooling requirements L L 52
Sum allowed parameters specification oL oL L SS
Semantics variation point cross tree constraintso oL 68
Mapping from Delay block feature mode elementsto UML classes 80
Relation between Delay value, U dimension, IC dimension and M dimension 86
Mapping between our type system and the WHY3 types 116
OCL collections characteristics 123
OCL primitive numeric types operations mapping to WHY theories functions 124
OCL String operations mapping to WHY theories functions 124
OCL logical operators mapping to WHY operators 125
OCL arithmetic operators mapping to WHY operators 125
OCL relational operators mapping to WHY operators 126
OCL collection operations mapping to WHY operators 126
OCL logical property verification operations mapping to WHY expressions 127
OCL iteration operations mapping to WHY expressions 128
OCL iteration operations mapping to WHY high order logic functions 128
BAL expressions to WHYML translationrules 131
Some blocks specification verification performances 137
OCLtoACSL translationrules 154
counter_obsblocks post-conditions L L L Lo 1587

13

LIST OF TABLES

14

Acknowledgments

Je souhaite en premier lieu remercier Philippe Cuenot pour m’avoir initié a la recherche, aux concepts de
I'ingénierie dirigée parles modéles et pour avoir suffisamment cru en moi pour me présenter a ses collegues
académiques qui mont permis de faire cette thése.

Cette these naurais bien entendu jamais pu étre possible sans le soutient et 'aide de Marc que je remercie
tout particuliérement. Je souhaite aussi le remercier pour toutes ces discussions que nous avons pu avoir
durant ces quelques années passées au laboratoire, discussions qui ont tendance la plupart du temps a
digresser mais qui ont toujours été trés instructives.

Ces années ont été d’autant plus agréables que j’ai été accueilli dans une équipe qui m'a beaucoup apporté
et avec qui j’ai passe de trés bons moments. Je remercie (et je l'espére sans omission): Yamine, Philippe,
Philippe, Xavier, Xavier, Aurélie, Mamoun, Manuel, Célia, Florent, Guillaume.

Je souhaiterais remercier tout spécialement celles qui ont su supporter ala fois mes boulettes et omission,
les organisations de déplacement et d’évenements quasiment toujours a la derniere minute et ce toujours
avec le sourire (et quelques menaces quand méme): les Sylvies.

Il est bien entendu un grand nombre d’amis qui m'ont soutenu durant ces années, qui ont été la pour
m’aider, me faire changer d’air et me proposer des apéros au bords de I'eau. Pour tout cela, je dis un grand
merci a Stiff, Dédé, Tito, Kaka, Matt, Camille, Fabichou, Jean-Marc, Ben, Juju, Sisi, Nico, Emilie, Benoit,
Annaick, Guido, Minette, Daminou, Julie, Gibon, Morue, Nico, Mawish, Toto, Erell et ceux que joublie.

A mes parents qui mont toujours soutenu et poussé a aller plus loin, et ce malgré le baobab qui peut me
pousser dans la main parfois, je souhaite dédier cette thése.

Finalement, a celle qui partage ma vie, qui a supporté mes sautes d’humeur sans soucis, celle sans qui
tout cela aurais été bien plus difficile, je souhaite dire infiniment merci et je t'aime ma duchesse.

15

Introdu&ion

Industrial size experiments and real products have shown Model Driven Engineering and Formal Meth-
ods to be key assets in the development of complex safety critical systems. Both relies on domain specific
modeling languages and associated verification and generation tools. Language engineering is once again
an enabler to ease the development of these languages. This PhD targets highly variable languages engi-
neering through a key case study in the development of safety critical systems: dataflow languages, also
called block diagrams, like SIMULINK' or SCADE?.

We characterise the high variability of languages through the ability for languages to be composed of
elements of variable structure or semantics. To handle this variability, we provide in this PhD a tooled for-
mal specification methodology for our use case of block diagrams that is representative of such languages.
We also develop on the uses of such formal specification for automatic code generation verification and
for automatic code generators qualification in the context of embedded critical software. This work should
pave the way for more generic methods for specifying high variability languages and deriving generation
and verification tools from such specification.

1.1 EMBEDDED CRITICAL SOFTWARE

Embedded critical software are pieces of software that take part in the global behavior of a complex system
whose function is not limited to this software. For example, the control of actuators in transportation sys-
tems. The purpose of the system is to provide transportation to human, whereas the embedded software
system goal is often to control or command hardware pieces like sensors and actuators that provide trans-
portation. Embedded software systems are used in a wide variety of environment: from everyday devices
like coffee machines to the most complex systems like space probes, planes or magnetic resonance imaging
scanner.

According to the functionality of the controlled/commanded system, its quality must be adapted: if for
some reasons, a coffee machine software enters a wrong state that causes a coffee cup to be over-filled, the
consequences are not as catastrophic as if a plane door control system enters a state causing the doors to
open during a flight. The level of quality of the software in this case is related to the need for safety and
reliability regarding the appearance of system failures that may have a potential impact on human lives or
economic losses.

Embedded safety-critical software systems are software systems that must not experience unhandled
failures leading it to a state where its safe behavior is not ensured. To our knowledge, the need for these

'http://www.mathworks.com/products/simulink/
*http://wuw.esterel-technologies.com/products/scade-suite/

1.2. SOFTWARE VERIFICATION AND VALIDATION

systems reliability is the highest.

Our technology-driven society is in need for an ever increasing improvement, automation and efficiency
of systems and as a consequence of their embedded and control/command software. This leads the sys-
tems complexity to rise, leading to higher reliability concerns. Safety-critical software systems are also
subject to such changes and are thus also affected by these issues. Their nature makes such evolution dif-
ficult to manage and the assurance of safety and reliability a difficult problem to assess.

1.2 SOFTWARE VERIFICATION AND VALIDATION

Safety-critical systems industries have long been aware of the previous problems. Ensuringa certain level of
quality in their developed software is mostly done by relying on highly documented development process
with a very important emphasis put on verification and validation (V&V) activities and on the emphasis
of traceability information. These terms: verification and validation are differently interpreted according
to the application domain. In this document, verification activities aims at ensuring that the developed
software/system is rightly done according to a certain set of rules and criteria (the software is rightly im-
plemented) whereas validation activities aims at ensuring that the developed software/system is the one
that was expected (the right software is implemented). Traceability information provides the links be-
tween the developed artifacts in the different steps of the development process. Traceability informations
are among the most used artifact for highlighting the modifications operated on the software or by the
software. It is thus of primary interest to ensure that traceability is ensured all along the development pro-
cess of safety-critical systems and that traceability informations are provided by tools used during such
development processes.

Ensuring the correctness of the whole development process and V&V activities is achieved according
to regulations by fulfilling qualification or certification objectives. Qualification/Certification objectives
are supposed to enforce a certain level of quality and confidence on the developed system by requiring
the development process actors to provide data on the performed verification and validation activities.
Qualification/Certification is domain and even product specific and the set of objectives to achieve is
defined in domains specific documents among which are: ECSS-Q80A for space, DO-178 for avionics,
CEI62[278|279]425] for railway, ISO26262 for automotive, CEI60880 for nuclear energy management or
CEI60601-1-4 for medical applications. Other documents aims at applying on a wider variety of domain
like ISO61508 dealing with Functional safety of electrical/electronic/programmable electronic safety-related
systems.

In our work, we are targeting aeronautic applications as it is known as being among the more strin-
gent ones with regard to safety regulation. In this domain, establishment of qualification/certification
is required by authorities like the Federal Aviation Administration (FAA?®) in the USA or the European
Aviation Safety Agency (EASA®) that have been granted the authority to allow or not any civil aircraft to
operate on their respective geographic area.

1.3 MoDEL DRIVEN ENGINEERING AND FORMAL METHODS

From the earliest application of mathematics to model the physical world to the modern days of computer
science, Model Driven Engineering (MDE) has grown as an answer to systems design and development
complexity. It allows through the use of models to abstract ourselves from the system complexity and
through the use of model-based tools to manipulate models. From such tools, the MDE user will gain the
ability to perform model analysis, extract informations, transform models to other models, source code
or documentation. The wide adoption of MDE by researchers and industrials has been driven to a large
extend by technology standardisation consortium like the Object Management Group (OMG) * whom
led the way to the definition of standards, or the ECLIPSE community that has developed and provided as

Shttp://www.faa.gov/
“https://www.easa.europa.eu/
Shttp://www.omg.org

1.4. AUTOMATIC CODE GENERATION

open source software many tools implementing these standards.

Formal Methods in computer science have been developed in order provide means to formally rea-
son about the soundness of programs and electronic hardware. Formal reasoning settles on mathematical
logic and has evolved to complex mathematical-based reasoning frameworks. A large nebula of logical
field specific formal methods has since flourished allowing to analyse systems and software against various
requirement domains like for example real-time, concurrency, or run-time.

While the formal nature of these methods was a restrain to its adoption in the computer science com-
munity, the advent of MDE provided the necessary abstraction and automation mechanism in order to
help on their adoption and use. While still not being straightforward to apply on industrial applications,
formal methods advantages are no more discussed and their adoption is well on the way as advocated by
their integration in industrial standards like the aeronautic one.

1.4 AUTOMATIC CODE GENERATION

As system complexity is ever rising, the writing of their software is an activity that suffers from the same
complexity issue. The use of tools such as automatic code generators has been experienced and adopted in
order to tackle this complexity issue. Indeed tools are more likely to avoid errors than humans if they are
used for repetitive activities. This is particularly true for code production activities when the requirements
are precise enough like models.

Automatic code generators (ACG) are tools whose function is to apply transformation (code produc-
tion) rules on input language elements and producing formatted text (such as source code). It is therefore
of particular interest to formally know what are the input language elements in order to specify and de-
velop the ACG itself. SCADE and SIMULINK are widely used in the modeling of safety critical systems in
the transportation domains. ACG like KCG, RTW-EC or TARGET LINK are then used to produce the
software.

1.5 THE SIMULINK USE CASE

Embedded control and command software are designed by engineers whose background is mostly focused
on automation analysis and mathematical modeling of systems. The leading formalism in this domain is
the SIMULINK language which is built on the mathematical scientific computing platform MATLAB®.

SIMULINK models are made up of blocks linked through their ports by signals. While signals are only
carrying data between blocks, the blocks are using the values obtained on their inputs and their internal
state to compute their outputs. Blocks are gathered in block libraries containing their structural and se-
mantics informations. Each block is configurable according to a set of parameters that allow selecting a
specific structure and semantics. The context in which the block is used, defined by the data types and
dimensions (if it is a scalar, a vector, a matrix) of its input ports will also impact the block semantics.

System design models written in SIMULINK are used as specifications for the development of software
that is embedded in the end system. This development is done either by manual software writing leading
to human related unavoidable errors requiring huge testing and review operations, or by automatic code
generation which is more likely to cause less coding errors but whose soundness must be ensured as the
tools can introduce errors.

In this PhD, we will focus on this second option and provide means to ensure such a soundness based
on the formal specification of the SIMULINK language. Both configuration and context of use of the block
implies a high level of variability of the block that must also be specified in order to fulfill this objective.

1.6 RESEARCH OBJECTIVES

We have identified the following three research objectives whose fulfillment will be of principal interest in
this PhD work:

Shttp://www.mathworks.com

1.7. CONTRIBUTIONS

« Research objective 1: Formal specification and verification of highly variable languages

Highly variable languages, like block diagrams, while being widely used in the industry for the design
ofhighly critical control and command software are most of the time under-specified and thus cannot
be used as is during a full software development process based on MDE and formal methods. In
order to limit the number of translation steps in the system development and thus their impact on the
quality and verification of the system; it is required to formally specify the languages including their
variability and to factorise existing common points between tools. Such formalisation must reduce
the misinterpretations of the language and enhance the system development activities quality and as
such is now required in avionics certification and qualification standards.

« Research objective 2: Uses of highly variable language formal specification for automated gen-
erated code verification

Automatic code generation is used as a replacement for traditionally humanly carried out software
writing activities. From a formally defined language, the verification of an automated code genera-
tion must be simplified as we may rely on the specification for a formalisation of the code generation
requirements and may be able to formally reason on them. Two level of requirements are at stake
here, low level requirements (LLR) that are close to the language specification and translation, and
high level requirements (HLR) that may be provided as design language constructs and then trans-
lated as annotations on the code for verification.

 Research objective 3: Uses of highly variable language formal specification for ACG qualifica-
tion
Automatic code generator are sensitive tools whose output and correct operation must be verified.
In the context of their use for safety-critical embedded systems development, their development and
verification must be done according to the system domain certification/qualification standards. Such
standards require the production of detailed data regarding the conducted development and verifica-
tion activities. From the formal specification of the ACG input language and the formal verification
of the generated code, such data production must be simplified, automatised and its reliability might
be improved.

1.7 CONTRIBUTIONS

In this PhD, our purpose is to provide a first approach to the formal specification and verification of high
variability languages by providing a methodology and associated tools focused on the SIMULINK language
specification. From such a specification, we will show how to assist the verification of code automatically
generated from such languages and the certification and qualification activities related to the development
of safety-critical embedded software. The overall architecture of our approach is provided in Figure 1.1.
Our contributions are highlighted in this Figure and detailed in the following:

1. Highly variable languages specification In the block specification approach, we detail
various methodologies and technologies for the specification of highly variable language. We then
discuss their advantages and drawbacks and finally provide a customised approach that better achieves
this objective thanks to a formal, tooled and domain dedicated specification language. This contri-
bution is developed though the case of the SiMULINK dataflow language and the specification of its
functional blocks.

2. Specification verification transformation From a structured highly variable language specification
we provide a verification mechanism translating the specification to formal languages on which man-
ual or automatic formal verification can be done. We also emphasis on the verification criteria used
in order to ensure variability verification correctness. We rely on state of the art verification tech-
nologies having the advantage of being formal, well maintained and under active development: the
WHY3 toolset.

1.8. PLAN

Correction / Verification Input design

Certificate Produces Tool o model
A LLR/HLR

9 Specification 9 Semantics

i Uses

Verification Anmnotation Imports
Transformation Injection
Certification/ Cenlleatl?n/ Highly Variable .
Qualification sl tgsiton Languages Lses Code Generation
e . Tool O
Data Data. Specification
: Generation
4 High Level
Uses Property Generates
: Injection
] Annotations
Correction Verification Output
Certificate \/ Produces Tool o Imports - code

Figure 1.1: Code generation verification strategy

3. Semantics annotation injection We advocate our ability to automatically inject input languages re-
lated semantics informations as annotations on automatically generated code from formally specified
highly variable languages. We then highlight on the formal verification of these semantics annota-
tions on the generated code and on the guarantees it provides on the verification of automatic code
generators outputs.

4. High level properties injection We argue on the possibility to rely on language specifications in or-
der to translate high level properties (HLR) expressed using these languages. Such properties might
then be manually or automatically verified with the help of state of the art verification tools.

5. Certification/Qualification data generation Highly variable languages automated code genera-
tors verification is strongly dependent on the ability to provide a specification for their input lan-
guages. We argue on the wide possibilities offered by a formally verified formal specification of such
languages in order to automatically generate reliable data that can be used in certification/qualifica-
tion activities.

1.8 PranN

We divided this PhD into 2 parts comprising 10 chapters and 5 appendix providing additional informations
on some elements detailed in this PhD:

« Chapter 1: introduces the PhD work and states the challenges we tackle.
o Chapter 2: presents the industrial context in which our PhD work evolves.

« Part 1: Highly variable languages formal specification

— Chapter 3: presents the state of the art in programming languages formal specification.

— Chapter 4: focuses on dataflow languages specificities and presents the challenges for their spec-
ification.

— Chapter 5: proposes dataflow languages symbols specification methodologies using model-
based approaches.

1.8. PLAN

— Chapter 6: defines our BLOCKLIBRARY specification language.
— Chapter 7: describes our BLOCKLIBRARY specifications language formal verification method-
ology and tooling.

« Part 2: Automatic code generation verification based on the block library specification

— Chapter 8: gathers the block library specification use for automatic code generation verification.
— Chapter 9: proposes block library specification uses for certification/qualification activities.

— Chapter 10: concludes the principal part of the PhD and outlines future research directions.

« Appendix

- Appendix A: contains complete examples of block specification.

— Appendix B: depicts the grammar for our implementation of the OCL language.
— Appendix C: provides the grammar for our custom action language.

- Appendix D: contains the WHY3 theories developed during this PhD.

- Appendix E: contains a complete example of generated code verification with observers.

Partl

Critical embedded systems design and
implementation

Industrial context

Establishing the certification of a developed system or the qualification of a tool for the development or
verification of systems is checked by certification authorities. Their mission is to ensure the achievement of
the required objectives according to the assurance level that needs to be reached. Development techniques
and technologies used for system development are assessed by certification authorities in the domain of
interest. These ones will only allow the use of reliable technologies and techniques for safety-critical em-
bedded software systems development.

In this chapter we will go in details on the current status of industrial uses, limitations and constraints
applied on embedded critical software systems development. We will first detail recent updates of qualifi-
cation/certification methodologies in this context and their impact on system development. We will then
emphasize on the use of domain specific languages (DSL) and their interest in this field. Finally, the use of
Automatic Code Generators (ACG) for the development of embedded critical software will be detailed
through two industrial-size ACG tools.

2.1 CERTIFICATION/QUALIFICATION

The development quality of the safety-critical embedded software has been, for many years now, ensured
by applying precise and constraining development processes on each activity of the system development:
from requirements elicitation to concrete embedding of code through software design, code production
and code verification. For each of these activities data are produced aiming at providing evidence of the
means used for the activity achievement. These data are mandatory to provide parts of the informations
required by certification standards.

In this work, we will focus on the application of DO-178 certification document as it is used for the
regulation of aeronautical software systems development activities that are, to our knowledge, the more
stringent ones.

2.1.1 TERMINOLOGY

In the following, we will use both qualification and certification words.

Certification stands for the process of ensuring that a product (system or equipment) is “approved” for
use. It is not the software by itself that is certified. Certified system software components development
must be defined in the Plan for Software Aspects of Certification (PSAC) containing the required infor-
mations about the developed software in order to determine “whether an applicant is proposing software life
cycle that is commensurate with the rigor required for the level of software begin developed” [114].

9

2.1. CERTIFICATION/QUALIFICATION

Qualification is used in the context of tools when these ones are expected to be used for the “elimination,
reduction or automation” of certification activities “without its [the tool] output being verified” [114].

2.1.2 DO-178B- SOFTWARE CONSIDERATIONS IN AIRBORNE SYSTEMS AND EQUIPMENT CERTIFICATION

DO-178B is the reference certification document for most current airborne systems and equipment cer-
tification. It provides a set of objectives to be fulfilled in order to ensure the system development safety
operations. DO-178B defines § level of systems to be certified, these levels reveal the criticality of the sys-
tem with regards to on-board safety. These levels are referred to as Design Assurance Levels (DAL) and
are classified from A to E, A being the most critical one that applies to safety-critical systems like fly-by-
wire, landing gears or doors opening systems; and E being the less critical one that applies to non safety
related systems like entertainment systems for example. Fulfillment of each objective is dependent of the
DAL that must be reached by the certification applicant. DAL levels have first been introduced and stan-
dardized in the Aerospace Recommended Practice Guidelines For Development Of Civil Aircraft and Systems
(ARP4754).

In addition to the DAL, DO-178B defines the degree of independence between activities of the devel-
opment (if needed) that must be applied in order for the objective to be achieved. Objective fulfilment
with independence means that requirements, development and verification activities must be produced
by different mean and persons. The independence may also be related to the developer conducting the
mean itself.

2.1.3 DO-178C- SOFTWARE CONSIDERATIONS IN AIRBORNE SYSTEMS AND EQUIPMENT CERTIFICATION

The work done for the release of DO-178C is a strong revision effort of the previous DO-178B version
to take into account the clarifications provided throughout the years in the Frequently Asked Questions
(FAQ) and the Certification Authority Software Team (CAST) papers released after the DO-178B and to
handle new technologies like object oriented programming, model driven engineering and formal meth-

ods.

DO-330- TOOL QUALIFICATION ACCORDING DO DO-178C

A major shift between DO-178B and DO-178C is on the use of tools for safety-critical systems develop-
ment. Throughout the years, efforts have been done on the development of domain-specific and objective-
centered tools used as an assistance in safety-critical systems developments. They are developed with the
goal of obtaining certification credits for their use. This leads to the natural question of the qualification of
these tools as they are likely to impact the final software quality.

DO-178C defines three tool qualification criterion used to categorize the tools according to their pur-
pose and potential impact. These ones are:

o Criteria 1: A tool whose output is part of the airborne software and thus could insert an error.

« Criteria 2: A tool that automates verification process(es) and thus could fail to detect an error, and
whose output is used to justify the elimination or reduction of:
1. Verification process(es) other than that automated by the tool, or

2. Development process(es) that could have an impact on the airborne software.

« Criteria 3: A tool that, within the scope of its intended use, could fail to detect an error.

Criteria 1 tools are tools that are producing part of the embedded software. Criteria 2 tools aims at au-
tomating the verification of embedded software whose result is used in order to leverage other verification
processes. An example of criteria 2 tool, would be a tool allowing to automate some verifications on the
source code of the developed embedded system and based on this verification and the confidence that is
put on the tool to avoid to insert runtime verification mechanisms. Criteria 3 tools are simple verification

10

2.1. CERTIFICATION/QUALIFICATION

tools used only for verification purpose whose results are not used for the leveraging of other certification

activities.

The previous release from 1992, DO-178B, defined two kind of tools: development tool (criteria 1)
and verification tools (criteria 3). In DO-178C we see that a third kind of tool has been added: Criteria
2 tools. These tools are of specific interest as their results might be used to leverage other verification or
development activities for which certification should be provided. This impact on other activities leads
them to the necessity to provide greater confidence for criteria 2 tools than for criteria 3.

According to the chosen criteria, tools qualification activities will differ. These activities are classified
using Tool Qualification Level (TQL) defined in DO-178C and matches to a pair of tool criteria and soft-
ware Design Assurance Level (DAL). According to the chosen TQL, a specific set of objectives have to be
fulfilled to ensure the tool qualification. “For a tool that can introduce an error in the outputs of a tool, the
applicable TQL is the same as the tool being developed. For a tool that cannot introduce an error in the output
of the tool, but may fail to detect an error in the tool life cycle data, the applicable TQL is TQL-S” [114]. The
lower the TQL is, the stronger is the set of objectives to match. TQL ranges from TQL-1 to TQL-S. The
relations between TQL and embedded software DAL is provided in Table 2.1.

Criteria
DAL i 5 3
A TQL1 | TQL4 | TQLS
B TQL2 | TQL4 | TQLS
¢ TQL3 | TQLS | TQLS
D TQL4 | TQLS | TQLS

Table 2.1: DAL and TQL relations

From the definition of the criterion and the TQL, one can refer to a specific document focused on the
certification of tools. This ‘companion’ document to DO-178C is the DO-330 [115] (Software Tool Qual-
ification Considerations Companion). This document is, in fact, a rewriting of DO-178 focusing on tools

used for the development of safety critical systems.

TECHNOLOGY SPECIFIC APPROACHES IN DO-178C

Since DO-178B release, software design, development and verification techniques have evolved leading to
the emergence and adoption of new technologies and approaches by industrial users. With this adoption
came the necessity to ensure the safety of the use of these techniques in safety-critical software develop-
ment. Considerations regarding the use of these specific technologies during the software development
have been detailed in external 'supplement’ documents: DO-331 [6] on model-based development and
verification; DO-332 [7] on object-oriented technologies and related techniques; and DO-333 [8] on for-
mal methods. The choice to rely on external documents to deal with the use of these approaches instead
of integrating it directly to DO-178C was more reasonable as it eases the transition between DO-178B and
DO-178C whilst allowing the use of alternative techniques for the certification of systems.
Technology-specific supplement’ documents provides the modification to objectives, activities, explana-

tory text, and software life cycle data that can be applied to DO-178C when technology-specific develop-
ment and verification is used. Those documents explain in which context and for which activities linked
to certification, technology-specific approaches can be used instead of classical approaches.

2.14 DO-330- SOFTWARE TOOL QUALIFICATION CONSIDERATIONS COMPANION

In the DO-330 document, guidelines regarding the certification data that must be produced for tools qual-
ification are provided. Data are to be produced according to the level of criticality of the activity the tool
is meant to replace. Indeed, tools ensuring coding standard respect or aiming at limiting the use of tests

does not have the same potential impact on the final produced software.

11

2.1. CERTIFICATION/QUALIFICATION

The DO-330 document is meant to be domain-independent and thus must be applicable on tools used
in any domain where qualification is needed and then not necessarily on DO-178 related systems. Indeed,
other domains like space or automotive seems to agree that DO-330 is also sensible in their context. Tools
are used in their operational environment and thus are qualified according to this environment. Thus, as
soon as a qualified tool environments changes, qualification must be re-considered.

Tool qualification relies on, among other data, providing the Tool Requirements (TR) and the Tool
Operation Requirements (TOR).

o TR “describe all the tool functionality”, this encompasses among others: the description of the tool
functions and features (modes of operation); documentation (user instructions, installation instruc-
tions, error messages, ...); and informations about failure modes, abnormal operations, inconsistent
inputs response.

« TOR “define the tool’s functionality and interface from a software life cycle process perspective” [115]. One
of the main aspects for a criteria 2 or criteria 3 tool qualification is to provide evidences on the respect
of the TOR by the tool implementation.

A tool must be validated according to the tool operational verification and validation process. Both have
the purpose of ensuring that the tool complies with its user requirements.

Here we roughly provided an overview of the tool qualification according to DO-330. Tool qualifica-
tion requires many additional steps that are not mentioned here as it is not our purpose to fully detail the
qualification process. Further details on the use and benefits of the DO-330 document can be found in
Frederic Pothon’s DO-330 focused document [126].

2.1.5 DO-331- MODEL-BASED DEVELOPMENT AND VERIFICATION SUPPLEMENT

The use of models has become a typical approach for the specification and development of complex sys-
tems. These ones provide the benefits of abstraction and formalisation. A model is defined in DO-331
document as “an abstract representation of a set of software aspects of a system that is used to support the soft-
ware development process or the software verification process”.

This supplement’ document provides informations on the use of models in the development process of
safety-critical systems. According to DO-331 document, a model must have the following characteristics:

a The model is completely described using an explicitly identified modeling notation.

b The modeling notation has a precise grammar (also called “syntax”) and meaning (also called “se-
mantics”). The modeling notation may be graphical and/or textual.

¢ The model contains software requirements and/or software architecture definition.

d The modelis of a form and type that are used to direct analysis or behavioral evaluation as supported
by the software development process or the software verification process.

If a model complies with the previous characteristics, one may benefit from its use for: “Providing un-
ambiguous expression of requirements and architecture; Supporting the use of automated code generation; Sup-
porting the use of automated test generation; Supporting the use of analysis tools for verification of requirements
and architecture; Supporting the use of simulation for partial verification of requirements, architecture, and/or
Executable Object Code.”[6]

Models can be well defined and formalised, this makes them interesting artifacts for the specification,
development and verification of safety-critical embedded systems. DO-331 can also be used for the devel-
opment of tools used in the development of such systems and thus benefit to the qualification activities.

For example, a model containing system requirements can be refined until it is expressed as executable
code or as test cases to be checked on the system code; model can be fed to ACG tools in order to automat-
ically generate code or configuration files; it can also be used as a configuration file of the automatic code

12

2.1. CERTIFICATION/QUALIFICATION

generator itself; if a model can be simulated, its simulation results can be used as oracles for the verification
of test cases execution on the final object code; metamodels can be used to model languages in the TOR
and TR documents. This last example, is one of the purpose of the experiments conducted in this PhD.

2.1.6 DO-332- OBJECT-ORIENTED TECHNOLOGY AND RELATED TECHNIQUES SUPPLEMENT

Object-oriented technologies are nowadays widely used in software development. This use for the devel-
opment of safety-critical systems has increased in the last years. As for any other programming paradigm
used in this context, safety and integrity of development techniques need to be ensured.

DO-332 document “provides guidance for the production of software using object-oriented technologies and
related techniques for system and equipment that performs its intended function with a level of confidence in safety
that complies with airworthiness requirements”.

Object-oriented techniques and technologies introduces a set of features and potential issues that does
not exists in traditional embedded systems development approaches. DO-332 defines object-oriented:
basic concepts — classes and object, types and type safety, Liskov substitution principle, hierarchical en-
capsulation, polymorphism, function passing and closures and method dispatch - ; and key concepts — in-
heritance (and related subtyping), parametric polymorphism, overloading (ad hoc polymorphism), type
conversion, exception specification and handling, dynamic memory management, object pooling, acti-
vation frame, manual and automatic heap management and virtualization techniques. This supplement
provides supporting informations and advices on the use of the previously cited concepts such as: ensure
type conversion uses are safe (for example downcasting my cause problems), ensure that overloading is
not confusing. Regarding traceability the supplement provides traceability objectives that are adapted to
object-oriented architecture such as if subtyping is used, traceability has to be done to the sub-classes in
order to, for example, strengthen the traceability by ensuring that traced element are not overloaded.

2.1.7 DO0O-333- FORMAL METHODS SUPPLEMENT

DO-333 deals with the use of a specific family of formal methods in the context of safety-critical software
systems: software-related formal methods. These methods are defined in this document as “mathematically
based techniques for the specification, development, and verification of software aspects of digital systems”

The definition of this formal methods 'supplement’ document has been supported by industrial actors
in the field of safety-critical systems like the Airbus Group or Rockwell Collins. These actors have worked
during the last decades with these approaches brought by computer science research. Improvements in the
usability of formal verification techniques and methods has motivated their use and is providing “the ex-
pectation that, as in other engineering disciplines, performing appropriate mathematical analyses can contribute
to establishing the correctness and robustness of a design”.

DO0-333 document identifies applicability of formal methods in order to replace traditional (DO-178C)
certification activities or objectives. Related activities are identified as “modeling and analysis”. According
to DO-333 document, it is the combination of formal modeling and formal analysis that is producing a
formal method. A formal model is defined as a model that “should have an unambiguous, mathematically
defined syntax and semantics”, a formal analysis is defines as such “if its determination of a property is sound.
Sound analysis means that the method never asserts a property to be true when it is not true.”

Several concrete applications of formal methods in the certification of safety-critical software systems
have been conducted. The Airbus Group applications as presented by Souyris in 2009 [140], Bedin Franga
in 2011 [70] or Moy in 2013 [111] or the Rockwell Collins ones by Cofer in 2014 [43] relates some of
the success stories in this field. An extensive discussion on advances regarding software certification is
provided in a 2013 Dagstuhl report [44].

DO-333 can also be used for the development of tools used in development of safety critical systems.
Assisted or automated proof can be used to assess consistency and completeness of requirements in TOR
and TR, to ensure correctness of tools with regards to TOR and TR. This is one of the purpose of the
experiments conducted in the PhD.

13

2.2. THE NEED FOR DOMAIN SPECIFIC LANGUAGES

2.2 'THE NEED FOR DOMAIN SPECIFIC LANGUAGES

Software development relies on programming languages. Embedded software systems are nowadays mostly
developed using general purpose programming languages like C or ADA. These are selected for their ex-

pressiveness and efficiency (regarding both memory and computing power use). These properties are also

considered as a problem when developing applications for which a high level of confidence is required as

their expressiveness (the variety and number of available code constructs) and efficiency (obtained by

hiding complex memory management operations) makes the verification of their correct operation more

complex.

While embedded software systems became more complex, the necessity for their specification and ac-
curate development arose. Tackling this problem is often done by relying on DSL whose primary purpose
is to provide an higher level more focused view of the developed systems and automated code generators
that bridge the gap with programming languages. High level development of software systems allows to
focus on the functional part of the software development while abstracting from programming languages
complexity. These more abstract description are usually called models even if they can be quite similar
to programs. DSL are then named DSML. We will rely on this wording there after. We detail the DSML
technological viewpoint through the description of Model Driven Engineering (MDE) in Section 3.2.

2.2.1 FroMm DSML TO EMBEDDABLE SOFTWARE THROUGH AUTOMATIC CODE GENERATION

While a DSML may provide an abstract view of the software system, they cannot be usually directly used
as embedded software. It is thus required to translate them to common programming languages used in
embedded software. This phase is related to the compilation used for translating classical low level pro-
gramming language to executable machine code. Compilation of high level conception language to em-
beddable programming languages is done using automatic code generation tools.

ACG ADVANTAGES AND DRAWBACKS

Since a few decades, ACG tools are widely used in industrial applications. Their interest for software de-
velopment is multiple:

« Code production efficiency: Using ACG makes it possible to produce code from a model by relying
on the use of the tool. A modification of the input model can automatically be impacted on the
generated code. During the development process, code is tested at various level and bugs or flaws are
detected. If they are reported as being present at the design level, these errors can be corrected and
then the ACG allows to update them instantly. The efficiency of adding new features is also improved
as the time needed for their development is lowered.

« Code quality improvement: An ACG is producing code according to code production rules. These
rules are developed in order to respect standard coding rules making the generated code cleaner and
respectful regarding standards. The automated production of code also normalises the generated
code structure and content and thus make it easier to verify.

« Code traceability: Code generation rules allows to match sections of generated code with DSML
elements. Each generated element must thus be traceable to a DSML construct. As a model is func-
tionality related, its elements are more easily linked to the software requirements. Through the trace-
ability mechanism, generated code constructs traceability to requirements is by consequence eased.
This is a huge advantage as such a traceability is required by certification/qualification standards.

While ACG are helpful tools for the development of embedded systems, they are still developed by
human beings and thus their reliability must be demonstrated. In it indeed impossible to rely on the code
produced by using an ACG if the ACG itself is not reliable. ACG are complex pieces of software and thus
they need to be reliable, usable and useful. If not, the generated code must be verified.

14

2.3. OURLOCAL RESEARCH CONTRIBUTIONS TO THE ACG DEVELOPMENT FIELD

ACG VERIFICATION

Compilers verification can be done using multiple approaches [SS]. The same ones can be used for the
verification of ACG as their purpose, use and structure are very close:

« Traditional approach: Compiler verification is done in most cases by testing and proofreading. While
having the obvious disadvantage of not being exhaustive, these techniques are widely used and are
considered as being acceptable to some extend in industrial applications. Such traditional verification
is done by first proofreading each translation rule and then by verifying each one with multiple test
cases with a high coverage like MCDC. From these activities, one can get a light assurance of the
ACG correct operation.

« Proved development: At the opposite side of the testing/review use for the verification of an ACG
is the proved development approach providing the proof of correction of the ACG. By relying on
proven development the verification is done once and for all as there is no need for verification while
using the tool. One of the earliest example of proved development was provided by Milner et al.
[109]. The current state of the art is the work done by Leroy et al. [26, 100, 101] around the Com-
PCERT project. These works provides a strong foundation on the feasibility of the approach and its
potential applications [70, 140]. Despite the ground-breaking nature of the CoMmPCERT work, the
approach remains of difficult access for an industrial diffusion because of its technological and the-
oretical complexity. The ABSINT SME, well known for developing the AT Worth Case Execution
Time (WCET) analyser and industrializing the ASTREE static analyser targets to industrialise soon
CoMPCERT.

« Translation validation: During the SACRES and SAFEAIR I and Il research projects, Pnueli proposed
not to rely on the verification of the compiler itself but on the systematic verification of the generated
elements. This approach referred to as Translation Validation (TV) [124], has the advantage of not
verifying the various steps composing the ACG that is complex but has the drawback of necessitating
the verification at each use of the ACG. TV have shown its applicability [95, 159] but suffers from
the fact that it is very complex to automatically verify the ACG without the knowledge of the trans-
lation (compilation, code generation) semantics. It is easier to achieve with the knowledge of the
translation semantics and of a mean to analyse the generated code to prove its semantics matching
to the translated input semantics. COMPCERT relies on TV for the hardest parts like graph coloring
for register allocations[129].

2.3 OURLOCAL RESEARCH CONTRIBUTIONS TO THE ACG DEVELOPMENT FIELD

In the past decades, new approaches regarding the definition and verification of ACG have been inves-
tigated in the ACADIE team where I conducted my PhD. These investigations have been done in coop-
erative projects like TOPCASED, ES_PASS, GENEAuTO, OPEES, QUARTEFT, Hi-MoCo and PROJET-
P, oPENETCS, CESAR or SPACIFY. Most of these are related to the integration of MDE and/or formal
methods in the development and/or verification of the ACG in collaboration with industrial partners and
qualification experts. We will detail here some research projects the ACADIE team has been participating
on.

2.3.1 THE GENEAUTO ACG EXAMPLE

GENEAUTO' is an open code generator project for transforming a set of high-level graphical modelling
languages to selected common textual programming languages (see [28, 76, 148, 149] that describe the
evolution of the toolset in the last 6 years). It currently supports subsets of SIMULINK, STATEFLOW and
Scicos as input and C and Apa language as output. It is intended to be used and certified for critical

'http://www.geneauto.org/

15

2.3. OURLOCAL RESEARCH CONTRIBUTIONS TO THE ACG DEVELOPMENT FIELD

embedded systems. In that purpose, its design follows a clear modular MDE approach allowing to inde-
pendently verify different transformation phases and build easily variants of the toolset depending on the
end user requirements.

GENEAUTO ARCHITECTURE

Figure 2.2 provides an overview of the ACG architecture. After the initial importing step transformations
are carried out as a sequence of refinements of intermediate models. Altogether there are about 50-60
transformation passes in the tool depending on the configuration. Some of them are rather small and sim-
ple structure preserving transformations (such as the Preprocessing), but others are rather complex or
change significantly the model structure (for example the Code Model Generation). For practical pur-
poses, collections of transformations are combined into independent executables called elementary tools.
An elementary tool reads its input model from a file and writes the output model to another file. The ACG
uses two intermediate representations during the whole transformation process: the GASystemModel that
is a generic representation of the possible input model formats and the GACodeModel that is a generic rep-
resentation of the possible output code formats. The GASystemModel contains design informations, the
System term was not a judicious choice leading to potential misleading regarding the content of the model.
This error was corrected in the PROJET-P project (see the following subsection), in the following, we will
use the term DesignModel instead of SystemModel.

Preprocessor | GA Code Model e / @{\
> 7] —
Simuiink! <? /j;” éi// \\\1
Stateflow ——— </ ‘L;.
models im . AST— h
A ‘ Code Model C code \
- F‘ \ Block Sequencer | | S ‘ Lw I_' | Pﬁnm |_y Y
Pl N—
ot
GA System model Il GA System model ')* s GA Code MDdeI o
— Fx AR \ e
) Vi 5 Ak 5.
I~ () & N W
2 e = \%)’ Ada code ¢
Scicos GeneAuto Default Library . Printer -y ‘
models : e— ¢
III‘ Ada code
/
Users Library

Figure 2.2: GENEAUTO toolkit architecture

One of the main phases in the tool process is the translation from the GADesignModel to the GA Code
Model. This translation is done according to block-specific modules of the ACG named code backends.
They provide for each possible configuration of a block the corresponding code model elements that must
be generated. In the GENEAUTO ACG, blocks configurations that are handled by the tool are provided
in an XML file referred to as the block library. Listing 2.3 is an extract of this block library. Its content
provides informations about the blocks handled by the ACG and for each block some information about
its parameters. These informations are used by the ACG to define the allowed parameter names and if the
parameter values must be evaluated or they are literal values (the evaluateEML attribute). It also contains
information about the typer and code backends that correspond to modules of the ACG containing the
required verification (typer) or code model element generation (code backend) operations.

<BlockType name="UnitDelay" type="SequentialBlock" preprocessorPriority="0">
<parameterTypes type="gaxml:collection">
<ParameterType name="InitialValue" evaluateEML="true" fullNormalization="true">
<inputLanguageMappings type="gaxml:collection">
<InputLanguageMapping language="Simulink" version="7.3" name="X0"/>

</inputLanguageMappings>
</ParameterType>

16

2.3. OURLOCAL RESEARCH CONTRIBUTIONS TO THE ACG DEVELOPMENT FIELD

</parameterTypes>
<libraryHandler type="gaxml:object">
<typer type="gaxml:object">
<UnitDelayTyper />
</typer>
<backend type="gaxml:object">
<UnitDelayBackend />
</backend>
</libraryHandler>
</BlockType>

Listing 2.3: GENEAUTO block library exptract for UnitDelay block

GENEAUTO GENERATED CODE

Code generated using GENEAUTO aims at being embedded and thus must comply with common coding
rules applied in industry. The generated code must also be at least as efficient as a code obtained without
the tool with equivalent safety guaranties as requested by certification objectives.

Experimentations done during the GENEAUTO project [12] have shown that the ACG fulfils its require-
ments as a development tool: the code correctness has been verified; generated code size is lesser than
other previously used ACG; traceability between generated code and model has been assessed as sufhi-
cient for an industrial use; code execution has been evaluated as having similar performances as reference
code either generated with industrial dedicated tools or handwritten with the usual coding process.

GENEAUTO ADDED VALUE

The specification for most of the elementary tools in GENEAUTO has been written in the English language
and simple UML diagrams, with a notable exception of the Block Sequencer tool that has been specified
and implemented using the CoQ_proof assistant [77]. This experiment has been pushed up to the certifi-
cation activities with a very positive result [78].

The GENEAUTO ACG is not anymore under active development but its support is still active. The tool
is currently in use by several industrial end users and is freely available* and open source. On a research
point of view, the tool is now mostly used as a sandbox for experimentation on automatic code generation
and relations with formal verification. We will present some of these experiments in this document.

2.3.2 THE PrOJET-P/HI1-M0CO APPROACH

Results gathered throughout the GENEAUTO project provided good informations on the feasibility of the
development of a qualifiable code generator by relying on an MDE-based approach. It was one of the
purpose of the HI-MoCo and PROJET-P projects to carry on these results and use them on a newer ACG
development. The PROJET-P is dedicated to:

a) help industrial partners in the deployment of MDE for the development of real time embedded-
critical systems

b) contribute to interoperability initiatives and cooperationslike CESAR?, INTERESTED*and OPEES®
for the French and European strengthening of their tooling ecosystem. Interoperability must be
achieved through the pivot P formalism as an intermediate format for code generation and prop-
erties verification. This formalism is derived currently from the system and code Models.

¢) position PROJET-P SME’s to become a prominent international actors of the automatic multi-model
code generation stage

*http://www.geneauto.org
Shttp://wuw.cesarproject.eu/
*http://cordis.europa.eu/project/rcn/85281 _en.html
Shttp://www.opees.org/

17

2.3. OURLOCAL RESEARCH CONTRIBUTIONS TO THE ACG DEVELOPMENT FIELD

By contributing to the creation of an open code generation toolset for the embedded world modeling
languages, PROJET-P aims at the creation of an open software product line with the same impact factor as
GCC, the “GNU Compiler Collection”® has for programming languages, with an additional qualification kit.

PROJET-P ACG ARCHITECTURE

The PrROJET-P ACG architecture is derived from on the GENEAUTO ACG one. The P pivot formalism is a
revised version of the GENEAUTO design and code model formalisms.

Contrary to GENEAUTO, PROJET-P ACG was planned to be able to import real-time informations through
asubset of MARTE’ models and architecture informations through a subset of AADL® models along with
the GENEAUTO original inputs system design models.

In our work we choose to focus on automatic code generation from design models. We thus concen-
trated our efforts on the direct evolutions of the GENEAUTO ACG. In both ACG-s, the design models are
imported and parsed to get an internal representation of the imported model (conform to the design part
of the ACG pivot format).

An overview of the PROJET-P ACG internal architecture regarding the design model code generation
is provided in Figure 2.4. While in GENEAUTO block sequencing and typing of the input model is done
in the ACG tools, in the PROJET-P ACG, these informations are directly extracted from the design model
platform. Typing is still checked internally in order to ensure the use of only the restricted allowed blocks
configurations. Relying on informations extracted directly from the design tool first allows to avoid dis-
crepancies between the input model expected sequencing and typing, and the one computed by the ACG
and second to simplify the verification work related to the sequencing and a part of the typing activities.

As in the GENEAUTO ACG, the code model version of the P formalism is produced according to the
P formalism design model and informations about the models elements are gathered in a block library.
Such block library (depicted in Figure 2.4 as the BL Struct and BL Sem elements) are block-specific mod-
ules written according to the blocks specification. As in the GENEAUTO ACG, the block library contains
informations about the block interfaces and parameters (the BL XMI elements in Figure 2.4). These in-
formations are coded as ApA code modules used directly in the ACG. An extract of the block library is
provided in Listing 2.5, for two simple blocks: MinMax and Delay that will be used and detailed in this
document.

PROJET-P ADDED VALUE

The PrOJET-P ACG is currently under active development and ready to conduct qualification when it will
be used for a real industrial project. A first version of a derived product called QGEN has been released by
AdaCore’, one of the leading partner of the project. It thus may become the first open source ACG for em-
bedded critical systems development to achieve such a level of assurance and reliability. This open source
approach is supposed to provide long term support and high quality of both the tool and the generated
code.

2.3.3 OTHER RESEARCH CONTRIBUTIONS TO THE ACG DEVELOPMENT FIELD

Many other research contributions exists regarding automatic code generation. We limit ourselves to the
ones dealing with the same level of quality as previously presented: safety-critical applications. Some
provides insights on the issues related to the approach [116, 142, 155]; others focuses on specific source
formalisms for the automatic code generation such as RSML [155], EvENT-B [108], SIMULINK [18] or
AADL [97]; and finally many focuses on the assurance of correctness [59, 72, 125, 132, 151].

Shttp://gcc.gnu/org
"http://wuw.omgmarte.org/
®http://www.aadl.info
*http://wuw.adacore.com/qgen_demo

18

2.4. SYNTHESIS

2.4 SYNTHESIS

MDL |'A
SL/SF
P Toolset A.mdll l A_decoration.txt
Extra Qualified
—Nf MDLimporter),
, o
—— P API |
XM oxp
Al et | Pre-processor |
1 b o
1
’ v
! AT e
1 [4 \
i i i _>-1\ Typer)
i i l —
1 : ¥
: == %
-
| || struct | | /" Code Model
: 1 I ! . Generator ,f‘
| i = Mg =
| 2
i | Sem ||
[; : = =5,
1 E— [Optimizer)
| L L
; —— —
- i y %
| Adaprinter || Ceprinter |
h o e =
Code
BB el Siad > Internal File
External Internal) Tool
Transformation
Flow Flow

Figure 2.4: PROJET-P toolkit architecture

We have provided here a synthesis on the use of DSML for the design and development of embedded
safety-critical software activities. Safety is ensured by the respect of certification standards. Recent ver-

sions of these standards now handle the use of new technologies and techniques such as models, object

oriented technologies or formal methods for the assistance in these systems development.

Tools are increasingly used in the development of such software systems as they have shown their ability
to be used as an assistance and as a safer mean to achieve systems development. This is at the condition
that their development is as constrained as the system’s development they are supposed to assist. In this
context, ACG are amongst the most used tools and the tools whose qualification is the most challenging.

In the following, we will focus on the specification languages with a special emphasis on highly variable
languages. We will define these elements and we will provide state of the art informations about both

definition and verification of languages through languages factories. Languages variability will finally be

analysed.

19

2.4. SYNTHESIS

pragma Style Checks (Off);
separate (HiMoCo.Block_Library Manager)
3 procedure Load Simulink Lib (Self : in out Manager) is
MinMax : constant Supported Block := Get_Block Type (”MinMax”);
MinMax Map : Block Parameter Maps.Map;
UnitDelay : constant Supported_ Block := Get_Block_Type (”UnitDelay”);
UnitDelay Map : Block Parameter Maps.Map;
8 begin
if MinMax /= Unknown then
Self.Simulink Data (MinMax) := Block Data’(Meta =>
new String '(”ElementaryBlock”));
MinMax Map. Insert (new String ’(”Function”), (new String ’(”Function”),

13 False, False, new String (””)));
Self.Simulink_ Map (MinMax) := MinMax Map;
end if;
if UnitDelay /= Unknown then
Self.Simulink Data (UnitDelay) := Block Data’(Meta =>
18 new String *(”ElementaryBlock”));

UnitDelay_Map.Insert (new String '(”X0”), (new String '(”InitialValue”),
True, True, new String '(””)));
UnitDelay_Map.Insert (new String '(”InitialCondition”), (new String’(”InitialValue”),
True, True, new String '(””)));
23 Self.Simulink_Map (UnitDelay) := UnitDelay Map;
end if;
end Load_Simulink_Lib;

Listing 2.5: PrROJET-P/HI1-M0OCO block library module as an Ada source code file

20

Languages formal specification - State of the art

The specification of languages has always been a core activity in software engineering. Whereas languages
paradigms are not numerous, the number of programming and modeling languages created since the 70’
span of thousands and is ever increasing’. This increase is now mostly due to the advent of domain specific
languages having the advantage of conciseness with opposition to more general ones having the advantage
of expressiveness. In both cases, language definition must be done methodologically and purposefully to
ensure the adoption and usefulness of the language being developed.

In this section, we will first go through some definitions related to the formalisation of languages, their
variability and their use for specification purposes. We will detail elements regarding language factories
and model based approaches for the specification of languages and their verification through formal meth-
ods. Variability of programming languages will then be discussed. We will finally focus on a more domain
specific family of languages which are the key use case in this PhD: dataflow languages expressed as block
diagrams, their specificities and expose the challenges regarding their formal specification.

3.1 PRELIMINARY DEFINITIONS

3.1.1 LANGUAGE

GENERAL DEFINITION
The term Language is defined in the Oxford dictionary as

The method of human communication, either spoken or written, consisting of the use of words
in a structured and conventional way.

This definition, focused on the human languages, has a computer-oriented variant definition (from the
same source):

A system of symbols and rules for writing programs or algorithms.

We highlight two important points in this definition: a) the notions of symbols and rules, referring to
how the language is correctly expressed and structured; and b) the notions of programs and algorithms,
referring to the language use and meaning.

Program and algorithm are most of the time written in order to represent a sequence of actions to be
executed in a specific order and applying to a specific set of elements. The purpose and structure of the
available action and element is language dependent. The ability to be executed is inherent to programs. In
the following, if not specified otherwise, the term language will refer to executable languages.

'http://en.wikipedia.org/wiki/List_of_programming_languages_by_type

21

3.1. PRELIMINARY DEFINITIONS

TECHNICAL DEFINITION

State of the art on language definition [144], split the definition of languages in four parts: concrete syntax,
abstract syntax, static semantics and dynamic semantics:

« Concrete syntax: The human readable version of the language. This can either be a textual, graph-
ical, audio or any medium representation allowing for the transcription of the language. This is re-
lated to the notions of symbols and rules restricting symbols composition. These rules ensure the
concrete syntax structural correction. Concrete languages are most of the time used by humans to
interact with computers. They are also used sometimes to store structured informations or exchange
informations between computers.

« Abstract syntax: The machine usable version of the language. Abstract Syntax Trees (AST) is a
traditional formalism ensuring its representation. AST are derived from textual parsing (or any mean
of concrete syntax analysis like looking, hearing, ...) languages expressed using a concrete syntax.
AST conforms to a specification provided in a tree-shaped data structure where each node is a specific
structure. Structures holding abstract syntax are not necessarily tree structures, more general ones
can be used like graphs. Metamodels are an example of graphs structures allowing for the storage of
structurally more complex abstract syntaxes of languages. Abstract syntaxes are representations of
the data carried by artifacts in the concrete syntax.

« Static semantics: A set of rules providing restrictions on syntactically correct programs in order to
define semantically correct programs. Most of the time these constraints are not easy to (or even
impossible to) enforce using only the concrete or abstract syntaxes of the language. Static semantics
is impacting both the structure of the language and its potential uses. For example, static semantics
verification allows to check the correct typing of the language constructs, or to verify whether or not
all used artifacts are defined.

« Dynamic semantics: Dynamic semantics is meant to describe the interpretation of the language
instances as an action (or event) driven state transition system and how to execute (attach a mean-
ing) to syntactically correct language constructs. It is usually done by either expressing this meaning
according to previously defined languages as for denotational or translational semantics definition;
by writing ad-hoc interpreters as for operational semantics definition; or by providing pre/post-
conditions as for axiomatic semantics.

In the following we will refer to these parts as the building blocks of a language. For the definition
of a language, it is mandatory to first define its purpose to determine which building blocks need to be
implemented. If the language aims at being usable by human beings then it is highly recommended to
define concrete syntaxes. Indeed, manipulation of language instances in order to extract informations or
transform the language are more conveniently done through an abstract syntax. Any language aiming at
being used correctly (according to a set of rules like natural language grammar or spelling) should have
a static semantics providing a set of correctness rules. Finally, if the language constructs aims at being
executed, a dynamic semantics should be provided. Dynamic semantics description process is usually
based on one of the following formal semantics approaches defined in [157]:

« Denotational semantics: It is concerned with giving a mathematical models to languages. The
meaning for languages constructs is defined abstractly as elements of some suitable mathematical
structure (i.e. translational semantics that translates the language to another language that has a more
mathematical nature like "A-calculus, fix point theory, ...).

« Operational semantics: The meaning for languages constructs is defined in terms of the steps of
computation they can take during the their execution.

« Axiomatic semantics: The meaning for language constructs is defined indirectly via the axioms and
rules of some logic of the described language constructs behavior.

22

3.1. PRELIMINARY DEFINITIONS

These approaches have the same purposes. If several ones are used to give the semantics of the same
language, their consistency must be ensured.

3.1.2 ForMAL
Formalis defined in the Oxford dictionary as
Having a conventionally recognized form, structure, or set of rules.

This definition is not totally accurate in our context as what is considered as conventional in this definition
should be defined according to methodology and proven characteristics. Any other definition extracted
from the Merriam-Webster dictionary adds the missing methodological aspect:

Characterized by punctilious respect for form : methodical.

3.1.3 SPECIFICATION
Specification is defined in the Oxford dictionary as
An act of identifying something precisely or of stating a precise requirement

The important information in this definition is the notion of precision. A specification must express all the
mandatory informations related to the specified element allowing to identify the correct conditions for
the use of the specified element. Formal specification would ultimately be the safest way to achieve such
precise description.

A specification is often provided as a set of requirements expressed using natural languages or formal
languages. Formallanguages could be data structuring languages or formally defined expression languages.
Lamsweerde [96] provides a definition for a formal specification:

A specification is formal if it is expressed in a language made of three components: rules for
determining the grammatical well-formedness of sentences (the syntax); rule for interpreting
sentences in a precise, meaningful way within the domain considered (the semantics); and
rules for inferring useful information from the specification (the proof theory). The latter com-
ponent provides the basis for automated analysis of the specification.

According to our previous definitions of a language, the "grammatical well-formedness” referred here is
related to concrete and abstract syntaxes as long as static semantics. Interpretation of sentences is related
to the semantics provided for the specification. Rules for inferring informations from the specification
are additional means to extract informations based on the semantics provided for the specification. These
rules are more related to language transformations or language use according to its axiomatic semantics
that will be detailed further in this document.

3.1.4 VARIABLE
Variable is defined in the Oxford dictionary as
Not consistent or having a fixed pattern; liable to change

This definition, while being general, has the interest of providing the notions of not fixed pattern that is
highly related to computer science terminology. A variable element is characterized as being able to change
according to some criteria. As an extension of the variable nature of an element, we will also refer to the
variability of an element as the causes and effects of its allowed variations.

3.1.5 HIGHLY VARIABLE LANGUAGE

A highly variable language is a language for which building blocks have a structure and/or a semantics that
can vary depending on their configuration and/or context of use. A language variability is qualified as high
if the number of its structural and semantics variants is important.

23

3.2. MODEL DRIVEN ENGINEERING

3.2 MOoDEL DRIVEN ENGINEERING

Model Driven Engineering (MDE) settles on the established fact that systems are of increasing complexity.
Modeling have been found as a solution to complex system design and development by providing layers
of abstraction for model analysis and tooling definition for model manipulation.

3.2.1 DEFINITION

The central concept behind MDE is the one of model: “ An object ‘A’ is a model of an object ‘B’ for an ob-
server ‘C’, if the observer can use ‘A’ to answer questions that interest him about ‘B’ ”[105]. The key purpose of
models is the abstraction of objects/concepts/systems in order to get informations and answers regarding
its properties and characteristics. Models hold a structured abstraction of the modeled elements.

3.2.2 Use

MDE aims at providing means and tools for the manipulation of models. Such tools will allow to analyse
models in order to assess properties about them, extract informations for specific uses like documentation
or testing, transform models into other models or even software/source code to make bridges between
abstraction domains.

The needs for models and their specification led to the requirement to formalise the models themselves
to secure the modeling activities. Formalisation of models have been proposed and expressed as a model
being able to define itself: a metamodel. There is no commonly accepted definition for it. In our un-
derstanding of metamodel we would define it as : “a precise definition of the constructs and rules needed for
creating models” >. Metamodeling is close to the concept of metamathematics [90, 156] with which it is
possible to define mathematics using mathematics (i.e. logic, general algebra, ...).

3.2.3 STATE OF THE ART FRAMEWORKS AND LANGUAGES

STANDARDISATION

Technology standardisation consortium like the Object Management Group (OMG) * led the way to the
definition of modeling standards helping on the adoption of the MDE approach. They provide some of
the most well known and used modeling standards like:

« The Unified Modeling Language (UML) providing “systems architects, software engineers, and soft-
ware developers with tools for analysis, design, and implementation of software-based systems” [120].

« The Meta Object Facility (MOF) providing “means for metamodel definition [... and] core capabil-
ities for model management in general” [117]

« The Object Constraint Language (OCL) [118] is a constraint language that can be used to express
constraints on models conforming to one of the two previous specifications.

« The Query View Transformation (QVT) [119] providing the specification for transformations lan-
guages that can apply on models conforming to MOF.

Standardisation of languages and approaches is important and valuable for industrial users as it provides
additional confidence. Whereas standardisation of a language is not its formalisation, it is a first big step
towards its safe definition. It is notable that in the case of the OCL the standard OMG document does
provides a formalisation of the language based on class diagram and OCL itself that covers the entire set
of the language constructs.

YJohannes Ernst, www.metamodel . com
*http://www.omg.org

24

3.2. MODEL DRIVEN ENGINEERING

IMPLEMENTATIONS

An initiative build around the EcL1PsE platform has seen the definition of the ECORE metamodeling lan-
guage almost conforming to the Essential MOF (EMOF) standard - a subset of MOF. From this MOF
implementation a large ecosystem of MDE tools dedicated to the manipulation of models and metamod-
els have been developed mostly relying on the Java language. We will describe here some of the tools we
have used in our work:

« Eclipse Modeling Framework (EMF): Provides means to create and manipulate metamodels, meta-
models conforming models, and generate automatically API for model manipulation.

« OCL tools: Provides an implementation of the OMG OCL standard that can be used on metamod-
els and models expressed in ECORE.

« XTEXT framework: A grammarware framework allowing to define concrete textual syntaxes and
textual editors based on metamodels. It establishes a duality between language grammars and meta-
models (allowing to transform one into the other). The framework is used in order to automatically
generate lexers, parsers and serializers for textual languages. Other grammarware framework also
exists such as EMFTEexT".

« Sir1US framework: A framework allowing to define concrete graphical syntaxes (and the related
editors) based on metamodels. It is the dual of the XTEXT framework but for graphical syntaxes.

« ATLAS Transformation Language (ATL): A partial prototype implementation of the OMG QVT
standard. It targets the definition of model to model transformations by defining transformation
rules between metamodels elements. Transformations can then be applied on the metamodels con-
forming models.

« ACCELEO model to text facility: A metamodel based framework for the definition of template-
based model to text transformations conforming to the model to text (M2T) standard.

As all these tools rely on the same platform and programming language (Java), it is possible to build
interactions between them. This is used for example as a way to develop model manipulation frameworks
with multiple views of the model and extract scope-specific informations. We relied on this toolset for all
the experiments conducted in this PhD.

Many other platforms have been defined for the same purpose such as the ones defined in the EpsiLoN
project °. In this project a family of languages is built around a core language: the EpsiLoN Object Lan-
guage (EOL). This language is “a standalone generic model management language” [92] but can also be used
as an “infrastructure on which task-specific languages can be built” [92]. The EOL is built on OCL comple-
mented with imperative constructs, and model manipulation features (creation, querying and modifica-
tion). The family of languages built on top of EOL comprises a code generation oriented language: the
ErsiLoN Generation Language (EGL); a model transformation language: the EpsiLon Transformation
Language (ETL); a model validation language: the EpsiLon Validation Language (EVL); and a model
comparison language: the EpsiLon Comparison language (ECL).

Additional platform for the definition of languages and the manipulation of model can be cited such
as GME®, MeTAEDIT+’, MPS®, SOFTWARE FACTORIES® or MONTICORE' [94]. A comparative study of
MDE tools have been done by Achilleos et Al [10]. Many work have been done on the design of DSML.
Interesting ones, including their references, are provided [69, 85, 141].

*http://www.emftext.org/index.php/EMFText
Shttp://eclipse.org/epsilonMod/
Shttp://www.isis.vanderbilt.edu/projects/gme/
"http://www.metacase.com/products.html
8https://www.jetbrains.com/mps/
*http://www.softwarefactories.com
Yhttp://www.monticore.org/

25

3.2. MODEL DRIVEN ENGINEERING

SpaceProbe
— __:F:______;__—==‘":'_'H:T ______“———___ o
- — Furbon e
S W e g N
- \ ol C'; \'“‘ £ 5
SolarPannels HypermatterReactor ﬂuh-'ﬂl Measuring | | Communication Sensor De&a;
J,{$31K~ Jfﬂ\“\
g e / -

Figure 3.1: Space probe system Feature Model

Languages engineering started with grammarware approaches such as the CORNELL PROGRAM SyN-
THESIZER [143] and more evolved language manipulation environment generators like the CENTAUR"
[29] system.

Frameworks for languages development and transformation like STrRATEGO'™ [102] and
ASF+SDF"? [153] provides language design capabilities. Those have respectively evolved to metapro-
gramming languages with automatic language edition environment generation capabilities: the Spoorax'*
[86] and the RascaL's [91].

3.2.4 SOFTWARE PRODUCT LINE ENGINEERING

Both the software system complexity and the demand for specialized versions of systems have always been
increasing. Fulfilment of these two orthogonal requirements in the same deliverable product is difhcult
and have mostly been tackled by Software Product Line Engineering (SPLE) based approaches. SPLE
is a model-based approach aiming at "the development of products from existing assets rather than the
development of separated products one by one from scratch” [19]. It relies on the analysis of the domain
under study resulting in the definition of the features of the system (referred previously as the assets).
Compositions of features leads to products representing a configuration of the system under study and
representing one variant (or a member of the variability domain of the model). Many methodologies have
been defined in order to conduct this domain analysis [39, 145].

We will provide here informations on the SPLE approach based on the highly simplified and hypothet-
ical example of a space probe system.

FEATURE COMPOSITION THROUGH RELATIONS

Features represent atomic components of the studied domain. These features are organised in a Feature
Model (FM). The simplified FM for the space probe system is provided in Figure 3.1. We define two kind
of features: abstract and concrete features, abstract features are placeholders for the specification of other
teatures whereas concrete features are supposed to represent system features and functionalities. In our
space probe figure, abstract features are represented using light boxes, concrete ones are represented using
light blue boxes.

System features are organized according to a hierarchy built by relations like:

« Relations between a parent and its child features defining a tree hierarchy of features. A feature can
only have one parent feature. There are two kind of relationships: those defined between a child

Mhttp://wuw-sop.inria.fr/croap/centaur/centaur.html
2http://strategoxt.org/Stratego/WebHome
Bhttp://wuw.meta-environment.org/
http://metaborg.org/spoofax/
http://www.rascal-mpl.org/

26

3.2. MODEL DRIVEN ENGINEERING

feature and its parent feature among which are the mandatory and optional features and the ones
applying on groups of child features of one parent feature among which are the alternative and or
relationships. We detail them in the following:

- Mandatory: A mandatory child features is present in all the products containing the parent fea-
ture. In Figure 3.1 this is represented using a black filled circle. In the space probe example,
mandatory relations specifies that a SpaceProbe system must contain the Antenna, PowerSource,
Function and Tools features.

- Optional: An optional child features may be present in the products containing the parent fea-
ture. Optional references are represented using a white filled circle. In the space probe example,
optional relations specifies that the Tool feature may be composed of a MagneticSensor or of a
DeathRay or both, or none of them.

— Or: Any number of the child features can be present in the products containing the parent fea-
ture. Or relations are represented on our space probe example as a filled arc between the ref-
erenced sub-features. The space probe system PowerSource is specified to be composed of the
solarPanels or the HypermatterReactor, or both features according to an or relation.

— Alternative: Only one of the child features can be present in the products containing the parent
feature. In our example, alternative relations are represented using an empty arc between the
referenced sub-features. The SolarPanels feature is divided in three alternative features: Some,
More, ALot. If one of these features is selected for a product then the other two will be automat-
ically deselected.

« Cross-tree relations between features defining either dependency or exclusion relations. They allow
the definition of relationships between features having no direct hierarchical relations. In our space
probe model, cross-tree relations will provide additional informations and constraints between fea-
tures. For our space probe, we want to ensure that if the probe is made to measure magnetic fields
then the magnetic sensor must be present in the probe specification. We thus add the (3.1) cross-
tree constraint. Finally the DeathStar function of the probe needs a death ray tool that is usually
powered by an hypermatter reactor or a lot of solar panels. We enforce this with the (3.2) cross-tree
constraints.

MagneticField = MagneticSensor (3.1)

DeathStar <> DeathRay

3.2
DeathRay = HypermatterReactor \V/ ALot (32)

FM AND VARIABILITY ANALYSIS

The FM structure is strongly focused on the analysis of the variability of the system. The previous relations
between features allow to express this variability.

FM can be analysed in order, for example, to detect discrepancies: a cross tree constraint being incoher-
ent with the relations implied by the hierarchy of features; and perform extraction of informations like the
set of all products logically expressible in a FM. An extensive review of existing analyses and treatments
that can be applied to FM is provided in [20], feature models edition languages and tools are detailed in
[9].

For example, in our space probe model, we can extract 60 distinct products based on the relations ex-
pressed on the FM and no incoherence has been found.

27

3.3. SOFTWARE FORMAL VERIFICATION

FM EXTENSIONS

As the modeling of the features variability of a system is of strong interest, extensions of FM have been
studied in order to augment their expressiveness among which are: cardinalities [130] defined as an ex-
tension of relations to limit the number of features instances allowed by a relation; or extended features
[84] allowing to define attributes on features in an extended FM.

FM AS DEVELOPMENT ARTIFACT

Transformations may be applied to FM in order to extract a FM products by attaching to each feature a
software artifacts like model elements or source code. If each feature specification is done by relying on
models, the system specification is further carried on using models and then code generation based on
models can be used for the development of the system. If feature specification is done by relying on source
code, it can be directly used for system development (source code production). Generative programming
approaches proposed by Czarnecki et al [50, 52, 53] focus on the latter approach.

3.3 SOFTWARE FORMAL VERIFICATION

Software verification strongly depends on the nature of the language the software is based on and on the
kind of properties to be verified on it. In embedded critical systems most of the source code is written
using the C language. This work thus focuses on verification techniques for this language.

Classical verification of software relies mostly on tests that target the analysis of the program execution
result according to some input data and expected results. Testing is widely used in industrial applications
but suffers from a major weakness: its non exhaustiveness. Proof-reading is done by humans and thus is
error-prone. Source code verification can also be done without relying on its real execution, for example
by analysing its semantics. Such approaches are referred to as static analysis techniques.

In this section, we will first introduce some of the common approaches used for the verification of soft-
ware, we will then introduce some formal methods used in this context, we will show how these methods
can be used for the verification of software and finally we will introduce the WHY3, and FrRamA-C toolset
that are used in our work. We do not meant to provide a complete literature review about formal methods,
interested readers can refer to [40] for a more complete overview.

3.3.1 STATIC ANALYSIS OF SOURCE CODE

Static analysis of source code aims at the extraction of informations from a source code without executing
it really (i.e. it is usually conducted using a kind of symbolic execution). The extracted informations are
then used for the assessment of potential failures that may appear during the code execution. Various static
analysis methods can be applied on source code among which are model checking, abstract interpretation
and deductive verification (i.e. code interpretation through the use of Floyd-Hoare logic).

MODEL CHECKING

Model checking was introduced by Clarke et al [41] and Queille et al [128]. Model checking aims at
the exhaustive verification of all possible behaviors of a model according to some specified properties. If
the property is proven incorrect, it usually then returns an execution trace violating the property. Model
checking suffers from its exhaustiveness. It can only handle models whose state space is finite and is subject
to combinatorial explosion (i.e. even simple models can lead to prohibitively big state space). It must thus
be adapted in order to be applied on models with too wide or unbounded state spaces. Such adaptation can
be done using various extensions to model checking like bounded model checking or predicate abstraction.

Model checking applied to the verification of source code has alimited use but bounded model checking
has been used in tools like CBMC" for the verification of “array bounds, pointer safety, exceptions and user-
specific assertions”. Some approaches like the one described by Schlich in 2009 [134] also provides some

http://www.cprover.org/cbmc/

28

3.3. SOFTWARE FORMAL VERIFICATION

intelligence on how model checking can be used for the checking of properties on assembly code.

ABSTRACT INTERPRETATION

Abstract interpretation (Al) introduced and formalised by Cousot and Cousot in 1977 [49] is used in
many fields related to software verification. According to verification specific goals, Al allows to statically
analyse software source code and provide goal specific results. These results provide an abstraction of the
source code that can be used either directly as a formal property or to assess the satisfaction of a formal
property.

Al has been successfully used for the verification of many families of software issues like absence of run-
time errors, floating-point computation errors, value bounding (interval analysis), worst case execution
time, and many others. Al has successfully been applied on real industrial applications [21] and led to the
implementation of many industrially successful tools like AIT and ASTREE by ABSINT'” for the analysis
of runtime errors, the FLUCTUAT static analyser for floating-point computation errors or POLYSPACE for
C,C++ and Apa runtime code analysis.

FLoYyD-HOARE LOGIC AND DijksTRA WP

Floyd-Hoare logic was proposed by C.A.R. Hoare [75] after Floyd works on flowcharts [68]. Floyd-Hoare
logic “provide a logical basis for proofs of the properties of a program” [75]. This logic is centered on the use
of the Hoare triple structure (3.3) that models the content of memory during the execution of a program.

{e} P {y} (3.3)

A Hoare triple holds the axiomatic semantics definition (¢ and ¥) of a program (P). In a Hoare triple,
¢ is the pre-condition, P is the program and v is the post-condition, such that if ¢ is verified prior to the
execution of P and if P is proven to terminate then after the execution of P, { will be verified too. If P is
not proven to terminate, then only a partial correctness is proven. Termination is usually proven by relying
on well founded ordering like variants functions from the state of the memory to natural numbers that are
proven to be strictly decreasing with the loop iterations.

Hoare defined a set of deduction rules providing an interpretation of Hoare triples in the context of
programming languages. These rules specify the semantics of programming languages by defining the
required pre and post-conditions for each of their constructs.

Dijkstra Weakest Pre-condition (WP) [62] calculus is widely used and have proven its usefulness in
many concrete applications. WP calculus is applied in order to compute the pre-condition implied by a
Hoare triple providing the program and post-condition parts. Indeed, according to the annotated language
deduction rules, itis possible, if we have the knowledge of the post-condition of a piece of code, to compute
its corresponding pre-condition. Such computed pre-condition is called the weakest pre-condition as any
other pre-condition implying it will be a pre-condition of the whole Hoare triple. By backward applying
WP calculus on sequences of code instructions it is possible to use it to extract pre-conditions on wider
code constructs.

Loop constructs are specific constructs on which the WP is not easily done. Indeed, the exact WP of a
loop is usually an infinite formula as it is the solution to a fixpoint problem. However, theories predict that
as soon as the logic used for the expression of the annotations is sufficiently expressive then there exists
an equivalent finite formula. For loop constructs it is thus needed to provide an invariant that implies the
post conditions in addition to a variant allowing to prove the termination of the loop. If only the invariant
is provided and the proof a success then we speak of partial correctness, if we can add a variant then it
becomes a total correctness proof as we also prove the termination of the loop.

Floyd-Hoare logic and Dijkstra WP has since been used for applications such as the definition of pro-
gramming languages semantics, their analysis or for the verification of programs. They are at the core of
the deductive verification approach as it provides a formalism for the definition of language constructs

http://www.absint.com

29

3.3. SOFTWARE FORMAL VERIFICATION

semantics. It is also used in modeling and analysis languages like the B language for the definition of the
language semantics [33].

3.3.2 DEDUCTIVE VERIFICATION

Deductive verification aims at the generation of proof obligations from the analysis of a software sys-
tem and its specification. The generated proof obligations are then discharged using theorem proving
approaches with manual tools like proof assistants, or automatic ones like boolean satisfiability (SAT)
problem solvers or Satisfiability Modulo Theories (SMT) solvers.

PROOF OBLIGATIONS GENERATION

Proof obligations are generated by relying on previously presented Hoare triples and extensions of Dijkstra
WP calculus.

The software specification must be expressed as a functional specification for which a formal semantics
exists. Such specification is most of the time provided as annotations on the code, written using a speci-
fication language like the ANSI C Specification Language (ACSL) [1] used to express annotations on C
code. Similar annotation languages exists for other languages like SPARK for ADA, SPEC# for C# and F# or
JML for JavA.

From the generated proof obligations and the formalisation of their definition domain, it is thus pos-
sible to apply automated or assisted theorem proving techniques to assess the correctness of the proof
obligations.

PROOF ASSISTANT

In order to assess the correctness of a generated proof obligation, one can apply common mathematical
axioms and theorems in order to prove (discharge) the proof obligations. Proof assistant are formal tools
allowing to formalise the logical mathematical proof process through the use of a computer. By applying
known axioms and previously proven theorems, one can use proof assistants to prove other theorems or
discharge previously generated proof obligations.

Some well known proof assistants are CoQ [48], PVS [121] or IsaBELLE [123]. These tools have al-
ready been used in the verification of both theoretical and concrete applications and are well known to be
formal and expressive enough to tackle concrete complex problem. A significant result is the one obtain
by Leroy et Al. with the development of a C compiler by relying on CoQ: CoMPCERT. Despite these
tools capabilities, their use is difficult and is for know reserved to highly trained scientists in the case of
real industrial systems.

SAT/SMT SOLVERS

SAT solvers are meant to find a solution to boolean problems expressed as formula in Conjunctive Normal
Form (CNF- formula is a conjunction of clauses which are disjunctions of literals). Implementations of
the Davis-Putnam-Logemann-Lovelan (DPLL) procedure [56, 57] allows for the decision of the satisfia-
bility of such formulas. If no solution can be found the problem is then considered as UNSAT.

Evolutions of the original DPLL procedures [136, 161] led to greats improvements in the SAT ap-
proaches efficiency [110]. By relying on these implementations SAT solvers manage to tackle a wide range
of problems among which are fault diagnosis [137], planing in artificial intelligence [87], or cryptography
[139].

While SAT solvers does allow to solve a wide range of problems, its applications are limited to boolean
problems. Whereas dealing with non boolean values can be done using a SAT approach by translating
it to propositional logic, it is not always appropriate to do it because of the complexity of the generated
formulae.

SMT approaches were developed in order to deal with formula expressed using more expressive log-
ics than the propositional one. These logics are defined by extending propositional logic with theories

30

3.3. SOFTWARE FORMAL VERIFICATION

providing data types and operations defined through axioms. Works on proof principles for these theo-
ries [15, 25] and adaptation of DPLL [146] (and their derivatives) procedures have been done in order
to check formula for satisfiability according to theories content and not only according to propositional
logic.

SMT solvers have a wide range of both theoretical and practical applications. Applications are encour-
aged by the accessibility of SMT-based methods and their efficiency. It is considered by many as a conse-
quent breakthrough in the field of formal methods: “The biggest advance in formal methods in last 25 years”*®,
“Most successful academic community related to logics and verification [...] built in the last decade™’.

Some of the most advanced SMT solvers are CVC4?°, Yices?*!, ALT-ERG0?*? or Z3?3. A detailed list of

SMT solvers can be found in the smt-lib web-site?*.

SMT SOLVING AND PROOF ASSISTANTS

SMT solving and proof assistant approaches use for discharging proof obligations are very close. They
both rely on the same logical formalisation: theories. The difference lies in the use of these theories. While
SMT solvers provides efficient automated strategies relying on theories content (theorems, lemmas and
axioms), proof assistants use a mostly manual approach. Proof assistants are also providing tactics (this is
the term in CoqQ)) for the application of, to some extent, automated (scripted) reasoning on proof objec-
tives.

SMT solvers are formal tools but their results are not necessarily proven, this is why an additional con-
fidence is needed. In order to achieve this, a cooperation between both can be done by relying on proof
assistants to verify the proof script generated by the SMT solver.

3.3.3 THE WHY3 PLATFORM

The WHY3 platform has been introduced by Bobot et al. in [27]. According to its authors, “WHY3 is [...]
an environment for logical specification that targets a multitude of automated and interactive theorem provers. It
provides a rich syntax based on first-order language and a highly configurable toolkit to convert specification into
proof obligations”. The full documentation for this platform is available on its website [3].

ORIGINS

Prior to the release of the WHY3 platform, multiple tools were developed in the LRI team focusing on the
verification of programs using multiple solutions such as SMT solving and proof assistants. First version
of the platform was developed in the early 2000’s>.

The CADUCEUS platform [65] was focusing on the verification of C program source code via the use of
multiple provers. The approach evolved during the years and was then applied to different languages such
as Java with the KRAkATOA platform [66] or the B method [58, 106].

The CADUCEUS platform evolved to the FRama-C?® toolset that is the up-to-date version of the C veri-
fication tool. The FRAMA-C toolset is an extensible tool for the analysis of C code. It includes for example
a WP calculus and some static analysis plugins for C code. FRAMA-C relies on the WHY3 platform in order
to tackle the verification using SMT solvers.

‘WHY3 PLATFORM DESCRIPTION

The WHY3 platform supports two languages, WHY and WHYML. The first is a language for the expression
of logical specifications: theories. Theories are populated with types definitions, axioms, lemmas, predi-

¥John Rushby, FMIS 2011

19FMSD special issue on SMT, 2012
20http://cs.nyu.edu/acsys/cved/
2http://yices.csl.sri.com/
22http://ergo.lri.fr/
2http://z3.codeplex.com/
2*http://smt-1ib.org/
http://why.lri.fr
2http://frama-c.com

31

3.4. DOMAIN ANALYSIS: LANGUAGES VARIABILITY

cates and verification goals. The WHYML is an extension of the WHY language allowing to express program
specification. Using a restricted ML-like language, one can write program in modules by relying on previ-
ously defined theories as logical specification foundations. This language extends ML-like language with
annotations capabilities.

From these language instances, the platform provides a proof obligation generation mechanism target-
ing automatic and interactive theorem provers formats:

« the standard SMT-LIB format [16]. This is an input format for many automatic SMT solvers such as
A1rT-ERGO, CVC4, Z3 and many others.

« specific formats used by proof assistants like Coq, PVS or ISABELLE.

Regarding WHYML programs, the tool allows for the extraction of verification conditions expressed
using the WHY language. Bridges to formal tools can then be used for the verification of WHYML programs
through the discharging of the generated verification conditions.

‘WHY3 PLATFORM USES AND SUCCESSES

The WHY3 platform is used in many context for the verification of programs. The WaY3 platform devel-
opment team provides on their website a library of verified programs®” showing the expressiveness power
of the language and the verification capacities of the tool. As an example, we provide in Listing 3.2 the
division program computing the Euclidean division taken from the library of verified programs. On this
program pre (requires clause) and post (ensures clause) conditions are provided and the overall Hoare triple
is proven correct automatically by relying on SMT solvers. It is mandatory to provide both an invariant
clause in order to ensure the verification of the Hoare triple and a variant clause to ensure that the while
loop finishes. This program is proven correct in .02 seconds with the ALT-ERG0o SMT solver.

module Division
use import int.Int
use import ref.Refint

let division (a b: int) : int
requires { 0 <= a && 0 < b }
ensures { exists r: int. result * b + r = a & 0 <= r < b }
let q = ref 0 in
let r = ref a in
while !r >= b do
invariant { !q * b + !r = a && 0 <= !r }
variant {!r %}
incr q;
r -=b
done;
'q
end

Listing 3.2: The Euclidean division algorithm

Recent publications [42, 104] show the applicability of the WuY3 platform in concrete, industrial ap-
plications and in reseach and industrial cooperation projects like the BWARE®® project on the discharging
of B proof obligations or the SPARK*® toolset for the verification of ADA programs.

3.4 DOMAIN ANALYSIS: LANGUAGES VARIABILITY

We have seen a number of formal analysis techniques used for the verification of languages. In this PhD,
we focus on the analysis of languages variability. We will provide in the following a preliminary domain

*"http://toccata.lri.fr/gallery/why3.en.html
28nttp://bware.lri.fr/index.php/BWare_project
Yhttp://wuw.spark-2014.org/

32

3.4. DOMAIN ANALYSIS: LANGUAGES VARIABILITY

analysis on this subject. We will first provide examples and then explain what we mean by language vari-
ability.

3.4.1 LANGUAGES VARIABILITY EXAMPLES

VARIABILITY IN TEXTUAL CONCRETE SYNTAX

Textual programming languages may provide syntactic variability allowing to represent the same concept
with different textual representations. The most common approach to this variability is the use of over-
loading (or ad-hoc polymorphism) used for operators definitions for example where the call to a method
(for example the sum of two integers a and b done with the call to sum(a, b)) can be replaced by an infix
notation like a + b. This mechanism allows for the evolution of the notation for elements without any
changes in the semantics or abstract syntax of the language. The Apa, C++ or HASKELL are example of
languages implementing such overloading on operators under some constraints on the parameter types.
Every language that is on top of the Java virtual machine (JVM) is also an example of textual concrete syn-
tax variability as they all rely on the same object creation and polymorphic call. However, all languages are
translated to assembly code, but the XTEXT is a good example of framework for the definition of multiple
concrete textual syntaxes for the same abstract syntax.

VARIABILITY IN GRAPHICAL CONCRETE SYNTAX

Graphical languages implementations are subject to variability regarding both structure and semantics. As
previously shown, graphical variability can be the result of different graphical representations associated
to the same concept — for example, representing the operation visibility by either public or + in the UML
graphical notation of class diagrams. Such graphical variability is only representation related and therefore
does notimpact the semantics of the language. The representation of interfaces in UML is another example
of graphical variability; an interface might be displayed as an annotated class (thus displaying informations
on its content) or as a circle (and thus hiding its content).

The S1r1us framework is the pendent of the XTEXT framework for graphical concrete syntaxes. As such
it allows for the definition of variant graphical representations of models but with the same semantics and
the same metamodel (abstract syntax). This is widely used in the industry where each domain has its
own notation for the same elements. This has the huge advantage of simplifying communication without
sacrificing the meaning.

PROGRAM EVALUATION VARIABILITY

Execution of a program is done according to evaluation rules. According to these, the result of the program
computation might be different.

The aspect programming technologies [89] allows to dynamically change the semantics of a program
and are thus an entry point for the definition of program execution semantics variations. This variation is
a dynamic variation of the semantics and not a variation of the language semantics itself.

There are many evaluation strategies for programs, the first and more common one is often referred to
as eager or strict evaluation where for example function arguments are evaluated before the function call or
boolean conditions are completely evaluated before the branches; other approaches like left to right, right
to left or lazy evaluation are starting the evaluation of binary expressions or function parameters before the
availability of the results.

Chosen evaluation strategy is likely to influence the language user in its way to write its programs, for
example, using lazy evaluation boolean expressions are not completely evaluated when their overall result
can be known by relying on logical simplifications (short-circuit handling of boolean operations). Evalu-
ation strategy choice may thus impact as, for example, a lazy evaluation may not execute some parts of the
code and thus remove some side effects; or termination of the program may be impossible if a complete
evaluation is done.

33

3.4. DOMAIN ANALYSIS: LANGUAGES VARIABILITY

In real time systems, evaluation of the program result is usually done according to a modeling of the
time. This one can be the real physical time (absolute time) or logical time depending of the machine on
which the program is evaluated. Such a variation may produce different program execution and behavior
if for example the program is supposed to interact with a system whose relation to time (physical/logical)
is not the same.

Semantics variability of graphical languages is the subject of many discussions and the cause for misin-
terpretation or miscommunication. The UML variation points are an example of potential different mean-
ings for the same model according to its interpretation. The purpose of the fUML standard was to ensure
a common understanding of a subset of this too wide modeling language by defining restrictions on the
number of allowed modeling constructs and by explicitly selecting semantics variation points that were not
identified in the previous general UML specification. However, it only provides a sequential interpretation
whereas the language contains concurrency related aspects.

Such programs execution/evaluation variations are grouped according Models of Computation (MoC).

3.4.2 LANGUAGE VARIABILITY ANALYSIS

This PhD work mainly focuses on the specification of highly variable languages and on the uses that can
be made of such a specification for the development of tools in the safety critical embedded systems com-
munity. In this section, we will provide a detail on what part of the language can be variable and to what
extent.

Defining the capabilities of a language regarding variability is not an easy task as it implies to define for
every component and member of the language its ability to vary and the impact of the variation. Instead of
defining the variability for every possible language, it is more accurate to define the variability according
to variability criterion and the language building block they apply on.

In this preliminary study, we identified two criteria to qualify the variability of alanguage: observability
and granularity.

Observable variations of a language are variations of the language representations (Concrete syntax)
and/or the language execution (its semantics in general) that the language user can observe either during
the writing or the evaluation of the model. We chose to define language variability as the variation of one
of the observable source (representation, execution) whereas variation of both observable sources leads
to the definition of a different language. This proposal will require further studies and discussions in the
language community to provide a definitive definition.

Variations may be applied on different levels of the language. This granularity of the variations impacts
on the language definition. Indeed, if the variation applies on the whole language or if it applies only on
some elements the result on the language definition will not be the same. If the variation of the language
impacts on some constructs of the language without impacting the remaining elements we will speak of
fine-grained variations of the language and thus of a variant of the language. On the contrary, if the varia-
tion impact largely the language as for example a switch of MoC, the variation is then defining a different
language. We will speak of large-grained variations of the language and thus of a different language.

In the following we analyse the potential impact of each language building block variability on the other
building blocks and on the overall language according to the previously defined variability criteria. This
analysis is not meant to be exhaustive but rather relies on the definition of languages and on our experience
on dealing with languages definition variability.

LANGUAGES BUILDING BLOCKS VARIABILITY

Concrete syntax variability allows to map different concrete syntaxes to language constructs with the
same semantics. Example of such variable concrete syntaxes is the possibility to define both textual and
graphical concrete syntaxes for a language. The well known embedded systems design language LUSTRE
allows for such a variability as it provides both graphical syntax — through the SCADE tool — and its classi-
cal textual syntax. Simple concrete syntax variations examples can be found in UML class diagrams where
class attributes and operations visibility is set using values: Public, Protected, Private and Package. These

34

3.4. DOMAIN ANALYSIS: LANGUAGES VARIABILITY

can also be set using respectively: +, #, - or ~. In MDE, it is common to use grammarware tooling such as
XTEexT or EMFTEXT, that allows the definition of a textual concrete syntax using a variant of BNF gram-
mars that can be automatically transformed to metamodels; or S1r1us®® allowing to associate a graphical
representation for a metamodel conforming model. Through the definition of a concrete syntax variability,
the language capabilities and semantics remain exactly the same, indeed if only the concrete syntax varies
then the represented language elements are still the same. On the contrary, if the language semantics also
varies then the represented language elements are no more the same and in this case we do not speak of
languages variability but of a different language.

Abstract syntax variability allows to have different abstract representations for meaning-equivalent lan-
guage constructs. This includes the ability to remove or add some constructs in the language according to
the user/implementer needs. In [79], the authors state:

[Abstract syntax variability] refers to the capability of selecting the desired language constructs
for a particular product as long as the dependencies are respected.

Itis also possible to define different AST for the same language as data structure choices made during the
AST creation are up to the AST specifier. In the context of MDE where AST are defined using metamodels,
adifferent AST will mean a different metamodel and thus, in this context, a different AST is likely to define
an observable variant of the language. But it is still possible from various metamodels to associate the same
concrete syntax and the same semantics. Thus, abstract syntax variability by itself is not enough to define
a different language, or even a variant of a language.

As abstract syntax variability may change the language capabilities, there may be an impact of such vari-
ability on the overall language semantics and the way this semantics is implemented. In the same way,
variations of the abstract syntax may influence the concrete syntax especially if some language constructs
are added or removed. Concrete syntax and semantics preservation while having a variable abstract syntax
is not variability as it only points out implementation choices having no observable impact on the language
itself.

Static semantics variability allow for different means to assess the correctness of a program. It would
deal for example with the respect of the scope (dynamic, lexical, ...) of the identifiers defined in a language
or on the typing of the elements of a language. It might be allowed (or not) to: a) redefine identifiers
after their definition in inner blocks; or b) access their inner blocks. Typing of the language might allow
sub-typing, overloading, coercion or the definition of polymorphic (often referred to as generic) language
elements.

As static semantics modification only impacts the language elements interpretation and the allowed
constructs, it may impact the execution of the elements of the language but will not impact on the language
semantics itself. These modifications are thus defining variations of the language and not a new language.

In the MDE methodology, static semantics is partly specified on the metamodel level as OCL con-
straints.

Dynamic semantics variability allows for different executions of the same model. It would for example
define the behavior of a switch construct regarding the execution of the remaining case statements (do we
need a break statement in order to avoid the execution of the other statements or not). In the UML lan-
guage, some semantics variability is identified as for example regarding the event dispatching and schedul-
ing ([4], section 2.3) for state machine or activity diagrams. The semantics variations are defined at the
language construct level and thus are defining variation points of the language.

Languages semantics is often defined from predefined MoC. MoC includes but are not limited to the:
synchronous, asynchronous, concurrency or sequential paradigms. According to the choice of the MoC,
the language semantics might be very different as investigated in the PToLEMY project®’ [99], the MoD-
Her'X framework®? [30, 47] and the recent GEM0C? initiative. In our opinion, MOC variations accom-

3https://projects.eclipse.org/projects/modeling.sirius
3lhttp://ptolemy.eecs.berkeley.edu/
¥nttp://wuwdi.supelec.fr/software/ModHelX/
¥http://gemoc.org/

35

3.5. SYNTHESIS

panied with a concrete syntax variation are defining different languages and not variations of the same
language.

In MDE, dynamic semantics can be provided by generating code from the metamodel conforming mod-
els and thus be expressed relying on a previously defined language. Implementing such semantics variation
point may have an impact on the static semantics and on the syntax definition.

VARIABILITY BY EXTENSION

The EpSILON project®* defines a family of languages[92]. Each language of this family EOL is embedded
and the resulting language is task-specific. The EOL is a language with a well defined syntax and semantics.
Each language of the EPsiLoN family, by embedding the EOL, is including its definition and builds around
it a language extension.

This way of providing extended languages by relying on a core language provides the ability to simplify
the extended languages definition as all the necessary mechanism for the manipulation of model is pro-
vided by EOL. The defined languages family can thus be considered as a set of variations on the use of the
EOL.

Other frameworks and core languages have been defined in this purpose like XBASE [64] that is a core
language providing complex reusable programming language patterns aiming at being extended in the
XTEXT language framework for the definition of DSML.

3.5 SYNTHESIS

We have defined here the variability of language according to two criterion: observability and granularity
of the variability. We defined, in our preliminary generic study on languages variability, that languages
variability should be studied from the point of view of the language building blocks variability and from
the one of the observability and granularity of the variations. According to this, it is our belief that we can
distinguish between variations of the same language and different languages definitions.

Extending a language from a core definition allows to build families of interoperable languages. Ex-
tensions of languages are defining new languages as they introduce new constructs, new syntax, and new
semantics for the new elements.

In the following, we will focus first on the definition of dataflow languages in general as they are the
main use case of this PhD. We will concentrate on the SIMULINK use case as it is the de facto standard
for the design of safety critical embedded systems. This language has a fixed architecture semantics and
syntax but its major components (the blocks) are highly variable as their semantics is varying according
to their configuration. This language defines a fine-grained variability observable only while executing
the language programs. In the following, we will study the variability of the blocks and the difficulties it
involves regarding their specification.

3%http://eclipse.org/epsilon/

36

Dataflow languages

Data Flow language are of strong interest for the design of embedded safety-critical systems. Their com-
plexity is ever increasing and so is the related need for verification of the programs behavior. Some ACG
process for embedded systems relies on dataflow languages and thus it is mandatory to have a full knowl-
edge of their semantics.

In this chapter we will introduce dataflow languages as they will be the use case in this PhD thesis. We
will start by providing historical informations about this language family; we will then define their structure
and semantics; finally we will emphasis on the prominent difficulty that arise regarding their specification.

4.1 DATAFLOW LANGUAGES

4.1.1 ORIGINS

To our knowledge, dataflow languages first appeared with the BLODI language developed at the BELL
laboratories by Kelly in 1961 [88]. This textual language “corresponds closely to an engineer’s block diagram
of a circuit”. Its purpose was to “lighten the programming burden in problems concerning the simulation of signal-
processing devices”. BLODI-based programs are built “from an alphabet of thirty types” each one representing
simple basic electronic circuits. Each “type” (or “box”) has input and output ports, outputs are computed
according to current and previous values of the inputs. Inputs of “types” are connected to other outputs.
BLODI programs were specified using textual notation. An example of program extracted from [88] is
provided in Listing 4.1. In this example, the “Box UV is an amplifier with a gain of 5.28 which feeds box
XY (first input) and the second input of box Z”. This language is considered by many as the ancestor of all
dataflow languages.

UV AMP 5.28, XY, Z/2
Listing 4.1: A BLODI circuit example

Adams early works and Ph.D thesis [11], introduced a model of parallel computation that can be used to
model dataflow languages execution. Latter works by Khan [82] or Dennis [60] formally defined dataflow
languages. The first one studied the analysis capacity of dataflow programs whereas the second one for-
mally defined the semantics of dataflow programs as described below. Relying on [82] and [60] works,
Johnston [80] defined dataflow programs as:

A dataflow program is represented by a directed graph. The nodes of the graph are primitive
instructions such as arithmetic or comparison operations. Directed arcs between the nodes

37

4.1. DATAFLOW LANGUAGES

represent the data dependencies between the instructions[93]. Conceptually, data are ex-
changed as tokens along the arcs [60] which behave like unbounded first-in, first-out (FIFO)
queues[82].

4.1.2 DATAFLOW LANGUAGES FOR CRITICAL SYSTEMS DEVELOPMENT

Dataflow models as defined previously are called Kahn Process Networks (KPN). In these networks,
nodes are executing operations and the arcs between them are behaving like unbounded FIFO queues
holding data. The reading activity on a process inputs is blocking which means that as soon as a process
starts reading on its input, it will wait until the required amount of data is available to go on with its execu-
tion while the writing is never blocking.

Dataflow execution is done either asynchronously or synchronously. In asynchronous dataflow pro-
grams, processes can be executed at any time in a similar way to Petri nets while in synchronous dataflow
programs all the processes are executed at the same time according to a periodic (physical or logical) clock.
Asynchronous processing of dataflow networks is used in parallel computing [80] whereas synchronous
dataflow networks are compilable to sequential programs.

4.1.3 SYNCHRONOUS DATAFLOW LANGUAGES

The use of synchronous logical time is an abstraction allowing to ease the management of time. A correct
synchronous program will execute at each tick of its clock in a null time — the program is supposed to
execute instantaneously: the node executions and the dataflows between nodes are instantaneous. The
execution is deterministic as it removes problems related to concurrent behaviors. This property is very
important while modeling embedded critical systems as it allows formal verification and reasoning on the
program execution.

4.14 REALISTIC IMPLEMENTATION OF KPN

In KPN, unbounded FIFO queues in the arcs have nice properties in theory — every process can execute
an infinite number of time as soon as it has enough input data; but it is impossible to implement it in real
computers as the queues must be bounded. However it is undecidable to determine for any KPN if its
execution can be bounded by some value thus it is impossible in the general case to choose a bound for
the FIFO queues. It is therefore mandatory to define a behavior when — during a real KPN execution -
the queue bound is reached: either the bound is increased at run-time which may use a lot of computing
resources or a blocking write is used. The latter solution can lead to problems as it may introduce dead-
locks in the program that are not present in an unbounded network. A solution for synchronous dataflow
programs was to reduce the size or the FIFO queue to zero. With this additional constraint, every data
that is produced on an output port must be immediately consumed on the input of an other node - this is
allowed by the synchronous management of time. Work was conducted to handle sized queues in [103].

In the following we will refer to synchronous KPN with FIFO queues of size zero as dataflow programs
(textual version) or dataflow models (graphical version). This is a huge language abuse that is common in
the embedded systems community.

4.1.5 DATAFLOW MODEL EXECUTION
During one execution of a dataflow model, each node is activated once and is producing its output data
according to its input data. This execution of the whole model is called an execution cycle.

DATAFLOW MODEL CLOCKS

Execution cycles for synchronous dataflow model are periodic operations done according to a logical or
physical clock. At each clock tick, the dataflow model nodes are activated and then executed.

38

4.1. DATAFLOW LANGUAGES

It is possible to define for each node of the dataflow model a different clock but this clock must be an
integer multiple or divisor of the main clock defined on the system. In concrete dataflow model definition,
the clock is not always specified for each node and is computed at the same time as the sequencing of the
model. Models with multiple clocks are specific and thus introduce some possible semantics variation
points on the language execution.

A clock is defined for each block (by default it is the general clock of the system). When the clock
associated to the block is active (level high) then the block s said to be enabled. If the block is enabled and
it can be executed (its inputs are available), then the block is said to be activated.

Indeed, let us consider three nodes N;, N,,and Nj that are activated according to their respective clocks
Cy, Cyyand C3; C; is twice as fast as C, that is twice as fast as Cs; the output of N is used as an input of N»;
and the output of N, is used as an input of Nj. It is clear that the output of the model that is the output
of node Nj is provided only every 4 clock ticks of C; (every two clock ticks of C, or every clock tick of
C3). By the time that N3 is computed, N; has been activated four times and N, two times. The order of
node activation is constrained by the fact that N3 must be computed after the two others at every tick of
C; and N, must be computed after N at every tick of C, but for all the other clock ticks of C; no order
is constrained. A choice regarding these order must be done and specified in order to ensure the well-
foundedness of the model. The example and ordering of block activations according to clocks is provided
in Figure 4.2.

(1w W —» —m{)

Int M1 Mz N3

time _0 [t T 2 3T 4[5 6 [7 8
G Frerr e rr e e rFrerererere
C, 1
(&5}
In1
N1
N2
N3
Outl

Figure 4.2: MultiRate dataflow model, boolean clock flow and block activation

If we use the example provided in Figure 4.2, the output is computed at time steps 3 and 7. Hence the
final result of the model execution at time 3 can be decomposed as:
Ni, N1, N,, N1, Ny, Ny, N3 or Ny, Ni, N, Ny, N, N, N3 which does not provides the same result.
Clock formalisation as been provided for the LuSTRE [71] dataflow language by Caspi et Al [34]. Some
applications of these clock calculus have been provided for the LusTRE [35] and S1GNAL [112] languages.

DATAFLOW MODEL EXECUTION SEMANTICS

In each execution cycle, the sequenced activated blocks are executed. The execution semantics of a model
consist in three semantic phases: initialisation, computation and update.

A dataflow model needs to be initialised prior to its execution. This initialisation is thus done at the first
execution cycle and before any other execution (compute, update) of any node. Initialisation of a dataflow
model aims at providing the initialisation of the model memories.

As soon as this initialisation phase is done, the cyclic execution of the model can start: at each clock
tick, activated nodes are executed: this is the computation phase. When every node has been executed,

39

4.2. DATAFLOW MODEL STRUCTURE

L = list of all non sequenced nodes of the program
while (L not empty){
oneSequenced = false
4 foreach n in L {
if (all the inputs of node n have been computed) {
sequence n
remove n from L
oneSequenced = true
9 }
}

if (not oneSequenced)q{
signal a DEADLOCK ERROR
}
14 }

Listing 4.3: Example of sequencing algorithm for dataflow models

the execution cycle enters the final execution phase where nodes containing memories see their memories
values updated. Memories update is done without a specific order.

If a value of a block cannot be calculated for a clock tick, its value is set to L (bottom) if its previous
value was never set otherwise it stays at the same value.

DATAFLOW MODEL SEQUENCING

As data produced by a node execution are to be consumed immediately, it is thus mandatory to find the
order in which the nodes must be executed prior to the execution of the network. This is referred to as the
sequencing of the dataflow model. If sequencing of the dataflow model is not possible — for example if a
model is not well founded (Section 4.3) — then the dataflow model will be considered as being incorrect.

There are multiple algorithms for the computation of this sequencing among which is the one presented
in [98]. These are topological ordering algorithms. Sequencing a dataflow model is the process of finding
an execution order for all its nodes. An example algorithm is provided in Listing 4.3 that is based on the
worklist algorithm: a generic conceptual algorithm used for the application of an activity (the execution
order assignment) on a set of elements until it has been successfully applied to all elements or the algorithm
detects an impossibility to go on further with the activity application.

Izerrouken [77] provides a formal definition and implementation for such a variant of the worklist algo-
rithm for the sequencing of the SIMULINK variant of dataflow models. The algorithm proof is done using
the CoQ theorem prover in the context of the GENEAUTO project.

4.2 DATAFLOW MODEL STRUCTURE

Dataflow models are sets of equations that describe elementary computations. Each equation reads and
writes sets of variables. A block of the dataflow model is an equation. It is therefore possible to extract
data dependencies between equations. An equation can be computed as soon as the data that it depends on
becomes available - i.e. as soon as they have been computed in other equations. The order of the equation
writing is not important as their execution order is resolved statically. As an example, we provide a LUSTRE
[71] program in Listing 4.4. This program is composed of one node: Average takingas input two integers
XandY (line 1). The computation resultis an integer: A (line 2). Avariable: Sis declared as alocal variable
of the node (line 3), it can only be used inside this node. Finally, two equations are expressed providing
the required activities for the computation of the average value of the two provided inputs (lines S and 6).
In a LUSTRE program, a variable contains potentially infinite dataflows (data streams) that must satisfy the
equations. This is denoting a fix-point semantics.

40

4.2. DATAFLOW MODEL STRUCTURE

1 node Average(X, Y : int)
2 returns (A : int);

3 wvar S : int;

4 let

S S =X + Y;

6 A =358/ 2;

7 tel

Listing 4.4: A simple LUSTRE program

4.2.1 GRAPHICAL DATAFLOW MODEL STRUCTURE

HIGH LEVEL STRUCTURE

A metamodel for dataflow models, derived from GENEAUTO, is provided in Figure 4.5. In graphical dataflow
models, we refer to blocks (metaclass Block) having inputs (metaclass InputPort) and outputs (meta-
class OutputPort) ports, parameters (metaclass Parameter) and memories (metaclass Memory).
Dataflow between blocks are modeled using signals (metaclass Signal) that links one output port to
one input port.

Each element of a dataflow model is named - through the inheritance to the metaclass
NamedElement - as it should be possible to refer to them. Blocks names should be unique within a
SystemBlock.

BLOCK ELEMENT STRUCTURE

Wheniitis activated, each block performs an operation on its input ports according to its parameters, mem-
ories and special input ports trigger and enable. Memories grant a block with the ability to store one or
more values that will be used during its following activations.

Blocks are categorized according to their capabilities, this is referred to as its category. Categories are:
COMBINATORIAL if the block outputs only depend on the current values of its inputs and current values of
its parameters; SEQUENTIAL ifits outputs also depend on its input values from the past stored in its memo-
ries and thus the computation of the block inputs is independent of the current block inputs; SOURCE if the
block has no input and thus reads data from outside of the system or from shared memories; or SINK if the
block has no output and thus stores or sends data outside of the model or in shared memories. Block are ei-
ther atomic (opaque) — computing a simple operation; or hierarchical — a composition of other blocks and
signals (metaclass SystemBlock). Hierarchical blocks interest are used first to structure a model accord-
ing to system engineering principles (virtual sub-systems), and second to tag a group of blocks and signals
as being executed atomically with respect to the other sub-systems (non-virtual/atomic sub-systems).

BLOCKS PORTS

Port elements have an attribute named kind. It allows to characterise the port and define its use in the
block specification. We emphasis four different kinds for a port: DATA ports carrying data. These are the
most classical ports that receive the data from a signal and provides it to the block to compute its results
and memories (for input ports) and receive the data computed by the block and transmit it to the signal
(for an output port). ENABLE and EDGE_ENABLE ports are ports which according to the value they carry
will activate or not the block and thus make it compute and update its output values and memories. In
the ENABLE case, the block will be activated if the port value is interpreted as a boolean having a True
value. In the EDGE_ENABLE case, the block activation will be conducted if a rising or a falling edge is
detected on the input. This implies to compare the actual value of the input with its previous value. This
port can be replaced by an enable port and a sub-system that detects edges. Only one of the ENABLE and
EDGE_ENABLE input ports are allowed in one block instance. Finally EVENT ports carry events allowing to
explicitly sequence the blocks when the event is produced instead of following the computed sequencing.
These events are provided internally by the model or by other models. For example in a SIMULINK model,

41

4.2. DATAFLOW MODEL STRUCTURE

EnuUmeratior : meratio E NamedElement [#]
= Portkind 2 BlockCategory Trom Generics
= ENABLE = COMEINATORIAL 2 name : E5tring
- DATA = SEQUENTIAL
- EDGE ENABLE = SOURCE ﬁ
= EVENT = SINK ; EIDTE]:-WEEI dataType
1

H 53 1 cignals
H Ssigna sigr
il l E TypedElement[#]

H SystemBlock

1 ksrcort = value : E5tring

H OutputPort

E'.‘

e locks -| Parameter
'gu‘-'pT‘ . parameters - H E

%, H Block
E| PorL £ catEgnr‘;S: BlockCategory
: z 0 type tring
" i
£ kind : Portiind E| Memory

¢ 0.,
EF" memories

1. H InputPort

dstPart {lnputs enable trigoer

Figure 4.5: Metamodel for dataflow models

events might be sent by STATEFLOW models or by specific blocks like control flow logic blocks (if-else, for,
switch, while, enable, ...) and can be used to provide different orders for blocks throughout the execution.
The dual use of EVENT ports might be to drive a STATEFLOW model execution from a SIMULINK block
execution.

DATAFLOW MODEL VALUES

Block parameters, memories and ports are carrying values, a value needs to have a data type. This is
done through the inheritance of the metaclass TypedElement. Every TypedElement instance owns
aDataType value and a string value attribute containing the literal value for the TypedElement that
should be parsed according to the TypedElement data type. A possible hierarchy of data types derived
from SIMULINK is provided in Figure 4.6.

This type system has been derived from the GENEAUTO project results. It provides classical numeric
types specification TRealInteger, TComplexInteger, TRealDouble. Standard programming lan-
guages data types such as TString, TBoolean, TPointer, TEnum are also provided. Finally, structured
types like TArray are present.

The TArray data type has an attribute named dimensions, this vector of positive or null integers val-
ues contains the number and the size of the dimensions of the TArray (the number is the size of the
vector). A TArray conforming element with a dimensions attribute equal to [4,5] will model a ma-
trix value with 4 rows and S columns. It is allowed to set the size of a dimension to zero, in this case the
dimension is set to be unbounded.

Some dataflow languages like SIMULINK allow to apply operations on values with different dimensions
and datatypes. This is allowed only if the values are compatible which means that there is an allowed con-
version between the values. Allowed dimension conversions are those transforming a scalar value into a
vector or a matrix having all their values set to the value of the scalar. Allowed datatypes conversion are
those transforming a value to a datatype whose definition includes the original value datatype definition

42

4.2. DATAFLOW MODEL STRUCTURE

E petsryme

Get_infoString() : EString
15_Singleton&rray() - EBoolean
1s_Scalar(} : EBoalean
15_vector() : EBoolean

1s_Matrix(} : EBoalean

15_SubbypeCfiDataType] : EBoolean

=1 H EnumExpressk =] "
H mermave] TEnum e B . pressi{f] g Tarray
&% dimensions : Ent
ﬁ = @ 4s Column_Matrix(} - TArray
.1 baseType E
@ Ac Row_Matrie) : Tarray
[| I | i Get_dimensionvalues) : Elnt
Ei TEtring E| TEoolean g ThUmEric g TEwert i Get_mfoStringl) : EString
@ et mfostring) : EString @ Get infostring() : EString @ met mfoStringl) : EString

I

H mesivumeric H reompiexsumeric

& &
| | | | |

H reaiFinetngroint

Q TRealFixedPoint

H trealtnieger

H TcompiexFiosongroind

Ei TCompiexInteger

E TComplexFikedPoin

= gain . Ent

@ sceleForEFinat] - TRealFloatingPoint

O nBits : EInt

o nBHs : Eint
o signed : EBoolean

0 nBits : Eint
= signed : EBoolean

= gain : Ent

o offset | EInt

EP o offset | BNt @ Get_mfostring() O sz EInt

| @ sc=lefFor(EInt) © TRealinteger

EString

g TComplexDouble E.I TComplexsingle

Q TrealDrouble Q TRealSingle

@ Get infostring) : EString @ et infostring]) @ EString

Figure 4.6: GeneAuto DataTypes metamodel

domain. The dimension conversion is often referred to as the expansion mechanism in SIMULINK and will
be referred as such in this PhD.

4.2.2 DATAFLOW LANGUAGES

Among successful textual dataflow languages we can cite LUSTRE [71], LUCID-SYNCHRONE [36], SIGNAL
[22] or PRELUDE [122]. These languages are mostly used for the development of real-time embedded con-
trol systems. They have been developed by research teams and formally specified. Their initial end users
were in the academic world but their qualities made them very useful as semantics backend for the model
based development of concrete industrial systems. Some of these languages have been given a graphical
syntaxand interface in order to simplify their adoption by industrial users. We can cite the SCADE" tool and
language which is based on LUSTRE and POLYCHRONY/SME? or RT-BUILDER/SILDEX based on SIGNAL.
Both of these graphical front-ends have been widely used in critical embedded system development.

SiMULINK? is another commercial tool largely adopted in the industry and Scicos/Xcos® is a simi-
lar open source alternative in the SCILAB® community. These graphical languages have been developed
for control and command engineers and their formal definition does not rely on the same dataflow syn-
chronous language background. They have been widely used for control systems development in the Jast
years. To our knowledge, the first one is the de-facto standard for such developments.

As an example, we provide in Figure 4.7 a SIMULINK model for a modulo-three counter. It is composed
of one Input block — reset; one Output block — active; five LogicalOperator blocks — LO and two Unit
Delay blocks — UD. Two variants of the same block are used: the AND LogicalOperator block variant (i.e.
L01) and its NOT variant (i.e. LO). Every signal value in this model has a boolean value evaluated at this
precise execution time. The LO block is a logical not block. The UD block outputs the value of their input at
the previous clock tick. This block can only output an undefined value at the first clock tick, this is handled

'http://www.esterel-technologies.com/products/scade-suite/
*http://www.irisa.fr/espresso/Polychrony/
Shttp://fr.mathworks.com/products/simulink
“http://www.scicos.org/

Shttp://wuw.scilab.org

43

4.3. WELL FOUNDED DATAFLOW MODEL

by providing an initial value as a parameter of each UD block. In our model, both UD blocks have an initial
value set to true. This system behavior is simple, it outputs a true value on the active output port every
three clock ticks. If the reset Input port is set to true then the counter is set back to zero and it should
then wait for 4 clock ticks (a modulo 3 counter), without the reset input port set to true, to produce an
output value set to true. The formal semantics for this system is provided in (8.1) in which ; is the value
of x at the time step t.

]
—
L

o
AND !-f|'> -
MOT [o L4 acihve
ess] Lo
Lo ™! anp
=
EEREE
MOT —
ra
Loz uD

Figure 4.7: Simulink model for a modulo 3 counter

X — 0
Yo =10
x; = reset; A Ty (4.1)

ye = resety N\ X1

active, = x¢ A\ yt

In the following we will refer to the graphical dataflow terminology (blocks, ports and signals) but prin-
ciples and concepts similarly apply to textual dataflow programs. These kind of textual concrete syntaxes
can be associated to the previous metamodel.

4.3 WELL FOUNDED DATAFLOW MODEL

Dataflow models should be conceived according to structural and semantics well-foundedness rules. Some
checks needs to be performed to ensure this correctness and thus ensure the possible execution of the
model.

4.3.1 CAUSALITY ERRORS

Computing the output value of a block first requires the sequencing of the block in the model. The block
input values should then be available and should have been computed by the execution of the blocks where
output ports are connected by signals to the input ports of the block. This backward analysis of block
dependencies may be carried on until an already computed values are available or the required blocks
have no inputs.

In specific cases, this backward analysis may conclude in a causal loop: reaching a block that has already
been traversed. A simple example is provided in Figure 4.8 where the second input of the Sum block de-
pends on the input of the Product block whose first input depends on the output of the Sum block. Such
faulty models are caused by either a wrong conception of the modeled system or by a missing SEQUEN-
TIAL block. Indeed, if there exists a loop in the graph where nodes are the blocks and arcs are the signals
and this loop contains a SEQUENTIAL block then the loop is broken as the inputs are only needed in the

44

4.4. DATAFLOW LANGUAGES BLOCK SEMANTICS VARIABILITY

: +
I . LB
Qutl
S
—
x
y— 3
Froduct Constant

Figure 4.8: A causality error example in a SIMULINK model

update phase, not in the compute phase.

The backward causality loop detection approach provided here is dual to a forward one: if from a block
itis possible by following its outputs to draw a path to its input ports that is not going through a SEQUEN-
TIAL block, then a causalloop is present. If such aloop is present then the previously provided sequencing
algorithm cannot finish as for some blocks the inputs will not be computable and at some point of the com-
putation the error will be raised.

Using multiple clocks in a dataflow model may lead to causality errors. Such problems may also arise if
for a block we do not know the value of its inputs as it depends on a block that has never been activated
before the clock tick of the current block activation and computation. Enabled block are suffering from
the same problem as, depending on the value on this specific input, they may not be computed.

Finally when a dataflow model depends on triggered elements, it is not possible in the general case to
ensure the absence of causal loops as they are modeling explicit control flow depending on the computed
values.

4.3.2 DATA TYPE OVERFLOW

Dataflow blocks are performing operations according to their inputs, parameters and memories. These
operations can be logical, arithmetical or a combination of both. Arithmetics operations on values should
be taken care of as they can lead to overflow problems and thus in some case cause a computation error or
a false result. These kind of errors are most of the time related to the execution of the blocks thus to arith-
metic operations because static assessment can be undecidable but may be verified by over approximation
(using abstract interpretation) and thus cannot be checked at compile time. These are runtime errors.

It is also mandatory to ensure that the inputs of a block is of the allowed dimensions and for example
a block might allow on an input port only scalar or vector or matrix values. This is the common typing
constraints of the static semantics.

4.4 DATAFLOW LANGUAGES BLOCK SEMANTICS VARIABILITY

Beside their classical dataflow execution semantics, dataflow language core semantics mostly rely on the
blocks themselves. The blocks are an important extension point of the core languages and determine the
practical usefulness of the language. The blocks are gathered in block libraries. To reduce the number of
blocks in the library and thus ease their maintenance, the semantics of blocks are often tunable by a number
of static parameters. For example, these ones control the number and data types of inputs/outputs, their
dimensions (scalar, vector, matrix) and the amount and type of memory the block relies on. This results
in a quite complex variability of the blocks.

As an example, Figure 4.9 shows some configurations of the Sum block from the SMULINK standard
library with different parameters, types, dimensions and number of inputs/outputs. This block can com-
pute the sum of inputs (the first Sum block: Sum of inputs), of all the elements of the single input (the

45

4.5S. CHALLENGES TO TACKLE REGARDING SPECIFICATION

second Sum block: Sum of input elements) or of elements along a specified dimension of the single input
(the third Sum block: Subtract by the 2nd dimension). Additional parameters allow to tune the signs at each
input port, rounding and other computational details. The full specification of this block in the SIMULINK
documentation is around twenty pages of natural language. We refer to this one as a semi-formal specifi-
cation as it relies on natural language definitions for the meaning of the block components (parameters,
inputs, outputs and memories) that are supplemented with structured informations like tables or graphs
and on global language definitions provided in other documentation pages. Some elements of blocks se-
mantics are provided using mathematical formulas. Semi-formal specifications provide mandatory infor-
mations for the use of the blocks but may suffer from a lack of details regarding corner cases that can only
be provided with formal specifications, they may also be incomplete and even inconsistent as they are only
proofread by fail prone human beings.

2 11 | + | '
_‘;E] 2]|

1 1) - Sum of inputs
X 21
| 2./
1 1j e Cmerr B -
Sum of input
elements .
L 6|

23"‘ N

| > - T

Subtract by the 2nd dimension

Figure 4.9: Simulink model with different configurations of the Sum block

4.5 CHALLENGES TO TACKLE REGARDING SPECIFICATION

Dataflow language have largely been studied [23, 37, 38, 45, 138] and especially synchronous languages.
On the contrary, the semantics of blocks is most of the time left aside. These blocks can be quite complex
and so is the writing of their specification. There is a lack in formal methodologies ensuring flawless speci-
fication of these languages elements. Both the formalism for the specification writing and the specification
verification techniques should provide formal reasoning capabilities.

The block complexity is mostly related to their structure and semantics variability that needs to be han-
dled in a formal and complete manner in order to simplify the formal specification of the language elements
(blocks). In the following, we provide both methodology and tools in order to formalise block specifica-
tions and to verify the specification correction according to criteria that will also be provided.

46

Part 1l

Highly variable languages formal specification

47

Experiments with classic software engineering tools

The formal block specification activity aims at the production of flawless specification for blocks in dataflow
languages. This specification can be expressed using any required means as soon as its understanding is free
from interpretation (i.e. formal) and its assessment is possible according to predefined criteria.

In this chapter, we will go through the requirements that any block specification methodology should
fulfill. We will detail the elements this method should allow to specify about the blocks structure and
semantics; the detail and kind of informations it should provide; and the possibilities in term of automated
verification and code or documentation generation it should allow.

We will then provide the specification for two blocks, a combinatorial one, the MinMax block and a
sequential one, the Delay block. Three state of the art specification techniques will be used in order to
provide the specification for these blocks: mathematical textual notations, UML diagrams extended with
OCL constraints and a SPLE approach with feature models. Advantages and drawbacks of each method
will be discussed. We will then draw a possible use of combined SPLE and UML, discuss its usability and
finally motivate the use of a DSML for our purpose.

5.1 BLOCK SPECIFICATION REQUIREMENTS

The design of block specifications must provide mandatory informations in order to ensure the useful-
ness of the specification. We detail in the following tables the requirements for the block specification
tooling and approach. A requirement table row is made up of a requirement identifier, its description and
additional informations such as justification or purpose, the requirement definition and additional non-
formalised constraints.

Table 5.1 lists the requirements on the informations to provide for a block specification. Tables 5.2,
5.3 and 5.4 give structural specification requirements about block ports, parameters and memories. Table
5.5 lists requirements about data types and dimensions specification for ports, parameters and memories.
Semantics of blocks must be provided in the design of block specifications and must comply with the re-
quirements of Table 5.6. A block specification must verify some criterion as detailed in Table 5.7. Tooling
used for the design of the block specification must be as accessible as possible for the designer as listed in
Table 5.8. The successful design of block specification satisfying all these requirements will require some
methodology. In the following we investigate the use of existing specification formalisms and methodolo-

49

S.2. BLOCK EXAMPLES

name for each input and output

Identifier Decription Justification, Purpose, Constraints
Block specification must provide
REQ-1.a . pect ! ust provi A block unique identifier is its name
a unique name for each block
Ablock can h Itipl ber of
Block specification must provide +Drock can hiave a mu tp € Umber o
. . input and output ports. Sets of ports
informations about the number of o
REQ-1.b . . may have the same functionality in the
each kind of input and output .)
. block specification and their number
ports this block handles
must be known
Table 5.1: Block structure specification requirements
Identifier Decription Justification, Purpose, Constraints
Input and output port
An input or output port unique
REQ-2.a specification must provide a P put port uniqu

identifier is its name

Every port carries a data value. The

Input and output port allowed value data type must be provided.
REQ-2.b specification must provide the The allowed value data type is not
allowed data types necessarily fixed as multiple data
types are possible for one port value
Input and output port
specification must provide the A port value can have one dimension
REQ-2.c allowed dimensions for each (it is a scalar) or be multi-dimensioned
allowed data type of the (it is a vector or a matrix)
input or output port
Table 5.2: Input/Output ports structure specification requirements
Identifier Decription Justification, Purpose, Constraints
Parameter specification
REQ-3.a must provide a name A parameter unique identifier is its name
for the parameter
Every parameter carries a data value. The
Parameter specification allowed value data types must be provided.
REQ-3.b must provide the allowed The allowed value data type is not
data type of the parameter necessarily fixed as multiple data types
might be possible for one parameter value
Parameter specification . .
. A parameter value can have one dimension
REQ-3.c @ust Prov1de the allowed (it is a scalar) or be multi-dimensioned
dimensions for each allowed . .
(it is a vector or a matrix)
data type of the parameter

gies for this purpose.

5.2 BLOCK EXAMPLES

5.2.1 MINMAX BLOCK

INFORMAL SPECIFICATION

Table 5.3: Parameters structure specification requirements

The MinMax SIMULINK block is a combinatorial block. Its purpose is to compute at each clock cycle the
maximum or the minimum of the values of its input(s) signal(s) in the same cycle and to feed its output
signal with this computed value. Switching between the computation of the minimum or the maximum is

S0

S5.2. BLOCK EXAMPLES

Identifier Decription Justification, Purpose, Constraints
Memory specification must
REQ-4.a . 7P A memory unique identifier is its name
provide a name for the memory
Memory specification must .
. Every memory carries a data value.
provide the allowed data .
. The allowed value and thus its data type
REQ-4.b | types for the memory by relying . . e
. must be provided according to an existing
on the data type of an input .
parameter or input port
port or a parameter
Memory specification must
provide the allowed dimensions .)
A memory value can have one dimension
for each allowed data type of . . .
REQ-4.c) (it is a scalar) or be multi-dimensioned
the memory by relying on the - .
) . : (1t i1savectorora matnx)
dimensions of an input port
or a parameter
Table 5.4: Memories structure specification requirements
Identifier Decription Justification, Purpose, Constraints
Each input port, output port,
parameter and memory specification Input/output ports, parameters and
REQ-S must provide the restrictions on memories allowed values might not be
-S.a
its allowed values. Such restrictions all the allowed values for its
must be computable and expressed data type
using a formal language
Each input port, output port
specification must provide the Input and output port multiplicities
REQ-5.b restrictions on its multiplicities. must be constrained. All multiplicities
Such restrictions must be computable are not necessarily allowed
and expressed using a formal language

Table 5.5: Data type and dimensionality specification requirements

Identifier

Decription

Justification, Purpose, Constraints

REQ-6.a

A block specification must
provide a formal specification
for each phase of the execution
of a block (initialisation,
computation and update)

As ablock is computable its executable
specification should be provided

REQ-6b

A block specification must
provide for each phase of the
execution of a block (initialisation,
computation and update) its semantics
variation points according to the
inputs/outputs/parameters and
memories values

As ablock configuration might vary
the resulting semantics will also vary.

Table 5.6: Semantics specification requirements

done according to the Function parameter having two allowed values: MIN and MAX.

The MinMax block applies its computation on values of data types on which an ordering relation has
been defined. It allows to provide an order between all the possible values of the data types and thus apply
the comparison. If one of the input values is smallest value according to the ordering relation — respectively
the biggest — and the Function parameter value is MIN — respectively MAX —, then the output will be the
smallest — respectively the biggest — value. Whereas this block has a quite simple basic semantics, it can be
used in different settings.

S1

S.2. BLOCK EXAMPLES

constraints and semantics
definitions

Identifier Decription Justification, Purpose, Constraints
Structural correctness check on a
The block specification must ..
. : specification must ensure the
provide means for an automatic
REQ-7.a e e verification of specifications
verification of the specification .
instances structure (syntax and
structural correctness . .
static semantlcs)
The block specification must . P o
rovide mea:s for an automatic This verification criterion must be
REQ-7.b provice . referred to as the completeness of
verification of the exhaustiveness) .
} a block specification
of the block configurations
A block specification must . P o
rovide me fns for an automatic This verification criterion must be
REQ-7.c P] . referred to as the disjointness of
verification of the block] .
) a block specification
configuration redundancy.
A block specification
must provide means for the An automatic verification of the
REQ-8 verification of the semantics semantics must be possible for all
correctness of a block the specified block instances.
configuration.
Table 5.7: Specification verification requirements
Identifier Decription Justification, Purpose, Constraints
Block specification toolin
pec 8 Ensuring the consistent typing of
must provide a safe typing expressions is among the first checks
REQ-9.a | mechanism for formally defined P 5

to be done as it removes a large
amount of errors

REQ-9.b

Block specification tooling

must provide high level
representations of the
specification structure either
by textual or graphical
representation

Using high level representations of an
ongoing design is known as a common
means to provide perspectives and thus
has the potential to improve design quality

REQ-9.c

Block specification formalism
must allow for a convenient
management of the block
specification variability
complexity

This can be done by relying on common
software knowledge concepts (inheritance,
...) for the modeling of the
specification elements. This might
avoid the discovery bottleneck that is
common while using a new DSML

Table 5.8: Related tooling requirements

STRUCTURAL AND SEMANTICS VARIATION POINTS

The MinMax block structure regarding its allowed interface (inputs and outputs) can be split in two struc-

tural variation points, both of them containing 3 variation points.

1. Only one input port is provided: in this setting, the computation is done on the value of each com-

ponent (values contained) of the input.

1.1 The only input is a scalar: the output value is equal to the input value.

1.2 The only input is a vector: the output value is equal to the maximum/minimum value of the

values contained in the input vector (the output value is a scalar).

1.3 The input is a matrix: the output value is equal to the maximum/minimum value of the values

contained in the input matrix (the output value is a scalar).

52

S5.2. BLOCK EXAMPLES

2. Multiple input ports: in this setting the computation is done on the value of each components (values
contained) of the inputs and assigned to the corresponding component of the output.

2.1 All the inputs are scalars: the output value is equal to the maximum/minimum of the inputs
values (the output value is a scalar).

2.2 All the inputs are either scalars or vectors: all the inputs vectors should have the same dimen-
sion. All the input scalars are expanded to vectors (each components of the resulting vectors
are equals to the original scalar) of the same size than the other input vectors. The output is
then a vector of the size of the input vectors. The N component of the output is equal to the
maximum/minimum of the N* components of each inputs.

2.3 All the inputs are either scalars or matrices: all the input matrices should have the same size. All
these input scalars are expanded to matrices of the same size than the other input matrices. The
output is then a matrix of the size of the input matrices. The N** component of the output is
equal to the maximum/minimum value of the Nt components of each input values.

5.2.2 DELAY BLOCK SPECIFICATION

INFORMAL SPECIFICATION

The Delay SIMULINK block is a sequential block. Its purpose is to provide access to the value of an input
signal (called the input data signal) from the previous clock cycles. The value provided on the output of
the block will then be delayed according to a mandatory delay parameter (of value N). This block relies
on a mandatory parameter called initial value that specifies the initial value(s) of the output signal for the
N first outputs of the block — it could thus be a vector if N is greater than 1. Without this parameter, this
block would provide N undefined (the dataflow | value) computed output signal values for the N** first
cycles of the block execution.

STRUCTURAL AND SEMANTICS VARIATION POINTS

This block is mostly used with this simple configuration, however there exists some allowed variations of
its structure and semantics:

« variable delay: The output of the block will be the N preceding input data signal value. The N value
is then provided as an input of the block. It can thus vary during the block execution.

« resettable: according to the value of an optional input port called reset, the block can be reseted (i.e.
the output is set to the first component of the initial value and the next output will be the current
input). An additional optional parameter reset _algo will modify the behavior to adopt regarding the
reset application condition.

— NONE: deactivates the reset_input feature.

— RISING_EDGE: activates the reset on a rising edge of the res_input signal value (when
res_input signal value goes from a value lesser than zero to a value greater or equals to zero).

- FALLING_EDGE: activates the reset on a falling edge of the res_input signal value (when
res_input signal value goes from a value greater than zero to a value lesser or equal to zero).

— EITHER: activates the reset on either a rising or a falling edge (when the value is not stable
around zero).

— LEVEL: activates the reset in both cases:

* Whenres_input signal value is different from zero or

* When the current output signal value is different from zero and the current res_input signal
value is equal to zero.

- LEVEL HOLD: activates the reset when the res_input signal value is different from zero.

S3

S5.3. MATHEMATICAL NOTATION FOR THE SPECIFICATION OF BLOCKS

« external initial value: the initial value parameter can be provided as an optional input of the block
and not as a parameter.

These variations can result in sometime complex but usually numerous combinations of behaviors that
need to be specified. These combinations may result in additional constraints on the input ports, param-
eters and memories data types, dimensions and values that must also be taken into account in the specifi-
cation.

In the following, we will highlight our approach using a simplified version of the Delay block, its input
value can only be a scalar value and we won’t take into account the variable delay semantics variation point.

5.3 MATHEMATICAL NOTATION FOR THE SPECIFICATION OF BLOCKS

Some experiments were conducted together with domain experts in order to find formal means for the
specification of blocks in a manner that is both acceptable by common system and software engineers and
at the same time formal enough to allow automated treatment in different phases of code generation.
Our first experiment was to rely on a standard mathematical notation. Mathematics seemed to be a good
starting point for our purpose as it is an universal formal language. In the following we depict a formalised
specification for the Sum block — computing its output as the sum of its inputs — using a formalism close
to the MATHML' one. This is the usual formal specification provided for those kind of languages in the
academic and industrial communities. Such typical specification could be structured as the following:

a) Definition of common notations:

« Specification data types (as in example in Figure 5.9).

- B: boolean data type.
- Zsg,Zz6, Z3y: 8, 16 and 32 bits relative integers data types — a.k.a. signed integers.
- Ng, Nyg, N3z: 8,16 and 32 bits natural integers data types — a.k.a. unsigned integers.

- C: complex numbers data type.

D double precision floating-point numbers data type.

T data type gathering all the elements contained in all the previously defined data types.

- V,(T): avector data type of size n of elements of type T

- M, (T): a matrix data type of size n, m of elements of type T

Figure 5.9: Common specification data types

« Block structural elements (as in example in Figure 5.10).

T: the set of the block input signals.

- O: the set of the block output signals.

‘P: the set of the block parameters.

— M: the set of the block memories.

Figure 5.10: Common specification for block structural elements

54

S5.3. MATHEMATICAL NOTATION FOR THE SPECIFICATION OF BLOCKS

- card(X): if X is a set then this returns the number of elements contained in X. This is the
cardinal of the set.

— value(e): the value of the block structural element e.
— value(e);: the component at index j of the value of the block structural element e.
- value(e); ;: the component at index j, k of the value of the block structural element e.

— dt(e): the data type of the block structural element e.

Figure 5.11: Common specification operations of block structural elements

« Operations defined in block structural elements (as in example in Figure 5.11).

b) Allowed inputs definitions for the block (see Figure 5.12). This part models REQ-2.[a|b|c] and part
of REQ-S.[a|b];

(@) card(Z) >0, Z = {i: dt(i) C T\B}
(b) card(Z) =1, T ={i: n € Ny, dt(i) C V,(T\B)}
(c) card(Z) =1, T = {i: (n,m) € N3,, dt(i) C M, .(T\B)}

(@) card(T) > 1, T = {{ Zfi)Nézﬁriﬁ HE }}

@ and@) > 1.7={i: { Grm S 1€ MnTD))

Figure 5.12: Sum allowed inputs specification

¢) Allowed parameters definitions for the block (see Figure 5.13). This models REQ-3.[a|b|c] and part
of REQ-S.3;

Parameter name Possible values
Inputs Vi € [1,card(Z)], Jop; € [+, —|, Inputs; = {op;}
“AllDimensions” (Default)
SumOver « . . .
SpecifiedDimension
Dimension lor2

Table 5.13: Sum allowed parameters specification

d) Allowed memories definitions and initial value for the block. This will model REQ-4.[a|b|c] and
part of REQ-S.3;

e) Outputs definitions for the block according to the inputs, parameters and memories (see Figure
5.14). This models part of REQ-6.[a|b] - compute phase of the semantics specification. In this
specification the inputs are implicitly expanded (using the expansion mechanism) in order for all
the input values to have the same dimension; and

*http://www.w3.org/Math/

SS

S.4. UML FOR THE SPECIFICATION OF BLOCKS

(@) card(O) =1, O

{o = Z;Zld(z) value(Inputs;) value(ij)}

(b) card(O) =1, O

{o = Z;’zl value(Inputs;) value(il)j}

if (value(SumOver) = “AllDimensions’") then
0= Z;zl > v, value(Inputsy) value(iy); x
else
if (value(Dimension) = 1) then
(c) card(O) =1, O = Vi€ [1,n],dt(o;) C Vu(n)T\B,
o = >, value(Inputs) value(ir)1
else
Vi€ [1,m], dt(o;) C M, 1(m)T\B,
0= Z;lzl value(Inputs,) value(iy);

(d) card(O) =1, O = {o = Z;Zf(z) value(Inputs;) value(ij)}

(e) card(O) =1, O = {o = Emrd(z) value(Inputs;) value(ij)}

j=1

Figure 5.14: Sum semantics specification

f) Memories initialisation and update specification according to the block inputs, parameters, other
memories and outputs values. This will model part of REQ-6.[a|b] - initialisation and update phases
of the semantics specification. As the Sum does not expose memory constructs, these are not pre-
sented here.

The results of the typesetting of MATHML or BEIEX mathematical notations are easy to read, quite sim-
ilar to common natural language requirement documents and formal. Nevertheless the formalism used to
write them is not structured enough regarding variability management (REQ-9) as we only list the input/-
parameters /memories conﬁguration variants and give the corresponding output computation variants and
reuse for automatic verification (REQ-7 and REQ-8).

One of the major drawbacks of such a specification is on its maintainability, indeed the source that needs
to be written in order to obtain our Sum specification is quite complex (5x more lines of source code
than results line of specification). Maintainability can still be improved by largely commenting and logical
structuring of the source code but its apprehension will remain quite difficult. It thus seems to be too
complicated to ensure the specifications’ sustainability.

As the lack of structure and variability management is the weak point of such specification method-
ologies, we looked at more naturally structured formalisms such as modeling languages. The UML is a
common modeling language targeting universality and a natural candidate for this purpose.

In the following we will detail the specification for the MinMax and Delay blocks by relying first on the
UML extended with a variability profile and then on the SPLE approaches. We finally conclude on the
applicability of both specification methodologies.

5.4 UML FOR THE SPECIFICATION OF BLOCKS

As already stated in Section 3.4.1, the UML has some semantics variation points leading to the necessity
to do some choices prior to any use of this language. The base semantics defined in the fUML specification
[4] has the advantage of defining these choices in its section 2.3. It is not our purpose here to discuss these
choices, we rather want to rely on defined standards and thus we selected this predefined semantics.

56

S.4. UML FOR THE SPECIFICATION OF BLOCKS

«DataTypes Scalarlalue VectorValee MatrixValue Value

TPrimitive I_F“. + dimensions: Integer [1..%]
+ dataType + values + values = value
[1] [1..*] i..4] Ti] 6} + getDataTyme(): TPrimitive

Figure 5.15: Specification of the block structural elements value using UML + OCL

5.4.1 UML BLOCK SPECIFICATION HARNESS

Modeling a block specification using the UML + OCL formalism requires first to select an UML diagram in
order to hold the block specification. For this example, we choose to use the common UML class diagram
asitis well suited for the specification of data structures. Using SysML Block diagrams is also an acceptable
choice in this purpose. The following specifications consist of UML diagrams complemented with OCL
constraints and definitions. In the specification section, we rely on the EcLipsE OCL implementation and
thus are using non-standard OCL operations such as the oc1Container () that is applied on an object
and returns its container element if it exists and oc1Invalid if it does not.

The specification of a block configuration is done through the specification of its structural elements:
input and output ports (REQ-2), parameters (REQ-3) and memories (REQ-4). Each of these elements
should hold a specification regarding its data type (REQ-2.b, REQ-3.b and REQ-4.b) and their related
dimensions (REQ-2.c, REQ-3.c and REQ-4.c). The block specification must contain the semantics oper-
ations description for each semantics variation points of the block as required in REQ-6. In the following,
we propose a specification for these elements using UML class diagrams and OCL constraints.

VALUES SPECIFICATION

In Figure 5.15 and Listing 5.16, we detail the specification for the Value metaclass. A Value instance has
a reference to a MatrixValue element. This element is itself composed of a non-empty set of VectorValue
which is in turn composed of a non-empty set of abstract ScalarValues. A scalar value has a reference to
a TPrimitive data type class instance specifying the type of the scalar value. A hierarchy of types must be
provided under TPrimitive like the one presented in Figure 4.6. It should be extended with primitive value
classes inheriting from ScalarValue. The multiplicities (1..*) on the two values references allows to build
scalar or vector only values. As MatrixValue (respectively VectorValue) elements are specifying matrix
(respectively vector) data structures, additional constraints must be provided:

« MatrixHasSameSizeVectors (constraint MatrixHasSameSizeVectors in Listing 5.16): For any Matrix-
Value element, the size of its containing VectorValue elements should be the same.

« HasSameDataTypeAllScalarValuesInMatrix (constraint HasSameDataTypeAllScalarValuesInMatrix in
Listing 5.16): For any MatrixValue element, all the contained ScalarValues element should be of the
same primitive data type.

« HasSameDataTypeAllScalarValuesInVector (constraint HasSameDataTypeAllScalarValuesInVector in
Listing 5.16): For any VectorValue element, all the contained ScalarValues element should be of
the same primitive data type.

A Value instance contains a dimensions parameter. This parameter is a non empty sequence of non-
unique integer values. These values provide a direct access to the dimensions of the object contained in
the value reference. A Value element containing a Scalar should have a dimension parameter equals to [1]
meaning that a MatrixValue values reference contains one VectorValue itself containing one ScalarValue
in its values reference. A vector of size five will result in a dimension parameter equals to [S] (5 Scalar-
Value elements in reference values of a VectorValue element) and a matrix of size four times three will

57

S.4. UML FOR THE SPECIFICATION OF BLOCKS

context MatrixValue

inv MatrixHasSameSizeVectors:

values->forAll(vl, v2]|
vl.values->size() = v2.values->size()

)

inv HasSameDataTypeAllScalarValuesInMatrix:

values->collect(v| v.values)->forAll(sl,s2]|
sl.o0clType() = s2.0clType()

)

context VectorValue
inv HasSameDataTypeAllScalarValuesInVector:
values->forAll(s1,s2]|
sl.0clType() = s2.0clType()
)

Listing 5.16: MatrixValue and VectorValue size and data type OCL constraints

result in a dimension parameter equals to [4; 3] resulting in three VectorValue elements in MatrixValue
values reference each one containing four scalar ScalarValue elements in each values references. The
zero value in the dimension parameter is not allowed and the -1 (minus one) corresponds to an unbounded
size of data structure. We first define some OCL operations in the context of the Value class in order to
simplify the writing of constraints:

« isUnbounded operation returning true if the provided integer is equals to -1.

def: isUnbounded(i: Integer) : Boolean =
i= -1

« getScalarValue(), getVectorValue() and getMatrixValue () operations are defined in
order to ease the access to the various Value content (Listing 5.17).

context Value
def: getScalarValue() : ScalarValue =
value.values->first () .values->first ()

def: getVectorValue() : VectorValue =
value.values->first ()

def: getMatrixValue() : MatrixValue =
value

Listing 5.17: Accessors OCL operations

« We define some predicates accessors to get size configurations for a) scalar: isScalarSize();b)
vector: isVectorSize (); and c) matrix: isMatrixSize () in Listing S.18.

context Value

def: isScalarSize() : Boolean =
value.values->first().values->size() = 1 and value.values->size() = 1
def: isVectorSize() : Boolean =

([
e

value.values->first().values->size() > 1 and value.values->size()

def: isMatrixSize() : Boolean =
value.values->size() > 1

Listing 5.18: OCL size predicates

58

S.4. UML FOR THE SPECIFICATION OF BLOCKS

context Value
def: isScalarDimension() : Boolean =
dimensions->size() = 1 and dimensions->first() = 1

def: isVectorDimension() : Boolean =
dimensions->size() = 1 and
(dimensions->first() > 1 or isUnbounded(dimensions->first()))

def: isMatrixDimension() : Boolean =
dimensions->size() = 2 and
(dimensions->first() > 1 or isUnbounded(dimensions->first())) and
(dimensions->last() > 1 or isUnbounded(dimensions->last()))

Listing 5.19: OCL dimension predicates

« Finally, the dimension attribute values predicates have been written for each possible combination
of dimensions. They are detailed in Listing 5.19.

OCL invariants are defined on the dimension attribute according to the Value element:

. DimensionValue (Listing 5.20): the dimension attribute must be composed of only positive or
null values

« ScalarDimensions (Listing 5.20): A scalar value should have a dimension sequence composed
of only one element equals to One. The corresponding value reference is composed of one
MatrixValue composed of one VectorValue composed of one ScalarValue.

. VectorDimensions (Listing 5.20): A vector value should have adimension sequence composed
of only one element different from one (equals to N). The corresponding value reference is com-
posed of one MatrixValue composed of one VectorValue composed of N elements.

« MatrixDimensions (Listing 5.20): A matrix value should have a dimension table composed of
two elements where the first element is different from one (the first one is equals to N and the second
one to M). The corresponding value reference is composed of one MatrixValue composed of M
VectorValue objects composed of N ScalarValue objects.

The Value object has an operation: getDataType () returning an Oc1Type instance. Its returned
value should be the common data type of the ScalarValues of the Value element.

GENERIC BLOCK SPECIFICATION

The blocks structure is a static structure containing the block itself, its ports, parameters and memories
and a set of semantics specification elements. We model this structure in Figure 5.21. The elements of this
model are inspired from the ones of Figure 4.5.

The classes presented here are the generic versions of each block structural elements. Block, Port
(InputPort and OutputPort), Parameter and Memory classes have a name attribute inherited from
the NamedElement class modeling REQ-1.a, REQ-2.a, REQ-3.a and REQ-4.a. The specification of pa-
rameters, ports and memories contains also a value attribute inherited from the ValueElement class
referring to a Value object instance as specified in Figure 5.15. Ports specification holds informations
about the kind of the port as defined in 4.2. In addition to these elements, the Memory class contains
the portDataTypeRef reference. This reference refers to an InputPort element. This allows to specify
the memory data type according to a previously defined InputPort. We define this relation using the
MemoryDataTypeFromInPort OCL constraints (Listing 5.22). This reference does not constrain the
dimensions of the memory as it may depend on additional informations. Indeed, we may need to store
multiple values.

S9

S.4. UML FOR THE SPECIFICATION OF BLOCKS

context Value
inv DimensionsValue:
dimensions->forAll1(d| 4 >= -1 and d <> 0)

inv ScalarDimensions:
isScalarDimension() implies isScalarSize ()

inv VectorDimensions:

(isVectorDimension() implies isVectorSize())

and

((dimensions->first() > 1 implies
getVectorValue () .values->size() = dimensions->first())
and

(isUnbounded (dimensions->first()) implies
getVectorValue () .values->size() > 1))

inv MatrixDimensions:
isMatrixDimension ()

implies

((dimensions->last() > 1 implies
value.values->size() = dimensions->last())
and

(isUnbounded (dimensions->last()) implies
value.values->size() > 1)

and

(dimensions->first() > 1 implies
getVectorValue () .values->size() = dimensions->first())
and

(isUnbounded (dimensions->first()) implies
getVectorValue () .values->size() > 1))

Listing 5.20: Value dimension OCL constraints

context Value::getDataType() : 0clType
body: getScalarValue().dataType.oclType ()

« MemoryDataTypeFromInPort (Listing 5.22): If the portDataTypeRef reference is set then the
memory value data type is the same than the one of the InputPort value targeted by the reference.
This constraint model REQ-4.[b|c].

context Memory

inv MemoryDataTypeFromInPort:
(not portDataTypeRef.oclIsUndefined())
implies
value.getDataType () = portDataTypeRef.value.getDataType ()

Listing 5.22: MemoryDataTypeFromInPort OCL constraint

Each Block metaclass instance contains a collection of the abstract Semantics metaclass instances
through the derived semantics reference. A Semantics element has a compute () operation holding
the semantics definition of the specified block. This semantics is either a CombinatorialSemantics
instance inheriting only the compute () operation or a SequentialSemantics instance inheriting the
same operation and providing the init () and update () operations. Both methods are abstract to en-
force their implementation. We provide additional constraints on the semantics part of a block specifica-
tion:

. CombinatorialSemantics (Listing 5.23): If the category attribute (presented in Section 4.2)
of the Block metaclass is set to combinatorial then every semantics specification for the block
must be
CombinatorialSemantics instances.

60

S.4. UML FOR THE SPECIFICATION OF BLOCKS

wyariationPoints Semantics wvarigtionPoints
ValuedE Lement Maneck [ement SeguentialSemantics CombinateriaiSemantics
fue: Value [1 = + t String (1]
Cg +val ue [1] = name ring 'ﬁ' -~ utel
& +initl)
& + updats() ;"
L“_\ 4_\‘ [1.*] | + semantics
Part OutputPort Parameter
st X P i 5+ isMandatory; Boold [1
e ﬁ lﬁ g TR
Block
£ E‘ Ex* category: String [I]
sEnumMErations
[E PortKind InputPort Memory
=1 DATA

= ENABLE L] [*] + imputs ’ + mempries [*
=1 EDGE_ENABLE 1{——————————1
= EVENT

: [1} + portDetaTypeRef

Figure 5.21: Generic block specification using UML 4+ OCL

. SequentialSemantics (Listing 5.23): Ifthe category attribute of the Block metaclass s set to
sequential then every semantics specification for the block must be SequentialSemantics
instances.

context Block

inv CombinatorialSemantics:
category = 'combinatorial' implies
semantics->forAll(s| s.oclIsTypeOf (CombinatorialSemantics))

inv SequentialSemantics:
category = 'sequential' implies
semantics->forAll(s| s.oclIsTypeOf (SequentialSemantics))

Listing 5.23: Block category OCL constraint

5.4.2 INJECTING VARIABILITY INTO UML

Whereas fUML is a good modeling language, it does not provide a dedicated variability management. In
that sense, it does not allow to model a complete system with variation points and then to extract from a
provided configuration of the system the corresponding fUML elements and constraints.

Some extensions of the classical UML language have been defined in this purpose. To our knowledge,
the most advanced activities about the integration of variability capabilities in the UML are those from
[162] and [152] where variability management is integrated in the UML through the definition ofa UML
profile for class diagrams and sequence diagrams — more recent works are applied to other kinds of dia-
grams like use case [31] or activity [74] diagrams. Management of variability for activity diagram is very
handy as it adds to the structural variability management provided in class diagrams the ability to express
behavioral variability.

SMARTY VARIABILITY UML PROFILE

In order to model the variability in UML models, we have used the SMarTY UML profile [81]. Our work
is based on the implementation provided in the github website of the project >. We have extended the

*https://github.com/edipofederle/AGM_1

61

S.4. UML FOR THE SPECIFICATION OF BLOCKS

variability profile. Figure 5.24 provide an incomplete graphical overview.

«Stereatypes +
coenstrainabie] y Ed]
& + implies: String [0..1] UML) Cf“““nt
& + requires: String [0..1] Chn et
[| T
«SrEreptypes «Sterentypes «Sterentypes
variant variationPeint wvariability

B + base Class: Class [1] = + base Class: Class [1] & + base Comment: Comment [1]
B + rootVP: variatienPeint [1] =+ rumberOfariants: Integer [1] = + name: String [1]
& + variabilities: String [1] = + variants:; String [1] = + minSelection: Integer [1]

& + variabilities: String [1] = +max5election: Integer [1]

= + variants: String [1]
N
«Stereotypes «Stereotypes «Sterestypes «Stereotype»
mandatory cpticnal alternative OR alternative_XOR

Figure 5.24: SMARTY variability UML profile

The profile main element is the variationPoint defining a variation point in the variation tree. It ap-
plies on an UML class — base_Class relation; contains a certain number of variant -
numberOfVariants integer attribute; a comma separated list of variant names that is the list of sub-
features of the variationPoint - variants string attribute and; a comma separated list of
variabilities element names containing the relationship informations — variabilities string at-
tribute. The black arrow going from variationPoint to (UML) Class is the extension edge specifying
the applicability of the stereotype. In this case, it is possible to apply the variationPoint stereotype to
UML Class.

Each variationPoint stereotyped UML Class is the root feature for a variant stereotyped UML
Class. variant elements have areference to their container variationPoint — rootVPand; acomma
separated list of variabilities element names containing the relationship informations of its par-
ent variantPoint - variabilities string attribute. This stereotype is realized as four stereotypes:
mandatory,optional,alternative_ORand alternative_XOR respectively modeling the manda-
tory, optional, or and alternative feature modeling relationships.

We have extended the original stereotype with an additional abstract class: constrainable. Both
variant and variationPoint inherits from the abstract constrainable stereotype. It provides
impliesand requires strings containinga list of comma separated variant elements names. It allows
to express feature modeling-like cross tree constraints (implies and requires) on any UML class stereo-
typed with constrainable.

The variability stereotype applies on UML Comment elements. It is named (name string attribute)
and provides a cardinality relation — in the sense of cardinalities in feature models [54, 130] — implemented
with its minSelection and maxSelection integer attributes. between the list of variant elements
provided in the variants comma separated string list of variant stereotyped elements.

SMARTY VARIABILITY UML PROFILE USE

In order to define variability on a domain UML model by relying on the SMarRTY UML profile, it is manda-
tory to first define the variationPoint elements on the domain UML model elements. For each iden-
tified variationPoint one needs to define its variant as UML classes. The attribute variants of

62

S.4. UML FOR THE SPECIFICATION OF BLOCKS

the stereotyped variationPoint element must contains the complete list of names of the identified
variant elements. By analogy with feature models, the variationPoint elements is the parent fea-
ture of its identified variant elements. The relation between them depends on the concrete stereotype
used for the variant elements.

We use the previously defined generic UML model and the SMARTY variability profile as a basis for the
specification of blocks.

5.4.3 ProOrILED UML + OCL SPECIFICATION FOR MINMAX BLOCK

MINMAXBLOCK CLASS

The specification starts with a simple class: MinMaxBlock. This class is the main element of the spec-
ification, all the block specification elements should directly or indirectly be related to this Class. The
diagram containing the specification is provided in Figure 5.26. The MinMaxBlock class implements the
Block class from the generic specification of blocks (Section 5.4.1). The name informations required
in REQ-1.a is the value of the inherited name attribute. We specify its value using the OCL constraint
specified in Listing 5.25. This class is stereotyped as a variationPoint. Its variability is expressed in
semanticsVariability comment.

context MinMaxBlock
inv BlockName:

name = 'MinMax'
Listing 5.25: BlockName OCL constraint
{GenericBiockif] {GenericBlock) 2] — {GenericBlock)2]
Parameter OutputPort """g“;":tm* InputPort
p
wyariability» B
SemantcsWariability ‘Iﬁ‘ Pt
s 5 [1] y —
‘ + DUtpLt wwariabilitys
hmmmﬁ + numberOfirputPorts Y Pl
= @] “variationPoint» | [«alternative XOR» R
[1] MinMaxBlock ScalarQutput [
awariationPoints | -t function — -dli;:?tmrve_ﬁlr
|| Function - «alternative_XOR«
[1] VectorQutput [—
g «yariabilit... ﬁ
Y \ Inpusfy arability
% _ «variabilitys ‘ [,:] «variationPoimts |
“alternative NORw| | ConcienVansniiy Finputs inpat
[eaes <Enumerations £l}. <alternative_XOR~
MinMaxFunction
(GenericBiock] 2] e
«alternative XOR» =1 Min Biock
Mashwcion =1 Max «alternative_XDR» walternative_XOR»
Scalarinput VectorScalarinputs
{GenericBlock) [#]
i nianti E.»
ICombinatorialSemantics + semantics] [1..%] «alternative XORw «alternative XORw»
(GenericBlock) Vectorinput MatrixScalarinputs
Semantics
«alternative XOR» [7] «alternative_XOR»
ComputeMinOnelnputVector 8 + computel) Matrixlnput [—

Figure 5.26: MinMax block specification using UML + variability profile + OCL

63

S.4. UML FOR THE SPECIFICATION OF BLOCKS

INPUT AND OUTPUT PORTS SPECIFICATION

The MinMaxBlock class has two outgoing references directed to its right side: inputs that is a non-
empty sequence of instances of the Input type; and output that is one instance of type Output. These
references holds the specification for the set of input/output ports. The Input abstract class inherits from
the generic InputPort class and the Qutput abstract class inherits from the generic OutputPort class.

Input class has six concrete realisations: ScalarInput, VectorInput, MatrixInput and
ScalarInputs, VectorInputs, MatrixInputs. The first three are for block configurations with a
single input port, the last three are for multiple input ports. It is stereotyped as variationPoint, the
related relationship of cardinality one is detailed in the inputVariability comment; the result of these
constraints is to make these the six concrete classes exclusives. Each of these concrete class is constrained
with OCL constraints to provide the information required in REQ-1.b, REQ-2.b, REQ-2.c and REQ-5.b.

« ScalarInput: An input of this type should be a scalar. It is specified in constraint
ScalarInputValue in Listing 5.27.

« VectorInput: An input of this type should be a vector. It is specified in constraint
VectorInputValue in Listing 5.27.

« MatrixInput: An input of this type should be a matrix. it is specified in constraint
MatrixInputValue in Listing 5.27.

context ScalarInput
inv ScalarInputValue:
value.isScalarDimension ()

context VectorInput
inv VectorInputValue:
value.isVectorDimension ()

context MatrixInput
inv MatrixinputValue:
value.isMatrixDimension ()

Listing 5.27: One input value OCL constraints

« ScalarInputs: For each of these inputs, their values are scalars. It is specified in constraint
ScalarInputsValue in Listing 5.28.

« VectorInputs: For each of these inputs, their values are either scalars or vectors. It is specified in
constraint VectorInputsValue in Listing 5.28.

« MatrixInputs: For each of these inputs, their values are either scalars or matrices. It is specified
in constraint MatrixInputsValue in Listing 5.28.

Two OCL constraints (InputDT and OutputDTRelationToInputDT in Listing 5.29) have been
specified to restrict the allowed Primitive data types of the inputs/outputs of the MinMax block. The
first constraint targets the allowed inputs data types (in this case, the inputs can be of boolean, int or
double data type) whereas the second one specifies the output data type according to the combinations
of input data types. These constraints model REQ-2.b, REQ-2.c and REQ-5.a.

The output port in the block specification is modelled using the abstract Output class. It is imple-
mented with three concrete classes: ScalarOutput, VectorOutput and MatrixOutput. Each of
these three classes models one possible variant of the output dimensionality. The variationPoint

64

S.4. UML FOR THE SPECIFICATION OF BLOCKS

context ScalarInputs
inv ScalarInputsValue:
oclContainer () .inputs->forAl1(il | il.isScalarDimension())

context VectorInputs
inv VectorInputsValue:
oclContainer ().inputs->forAll (il |
il.value.dimensions->size() = 1
) and (
let vectorInputs = oclContainer ().inputs->select (il
(i.value.dimensions->first() > 1)
) in
vectorInputs->size() > 1 implies
vectorInputs->forAll(il,i2]|
il.value.dimensions->first() = i2.value.dimensions->first ()
)
)

context MatrixInputs
inv MatrixInputsValue:

(let scalarInputs = oclContainer ().inputs->select (il
i.value.dimensions->size() = 1
) in
scalarInputs->forAll(i |
i.value.dimensions->first() = 1
)) and (
let matrixInputs = oclContainer().inputs->select (il
i.value.dimensions->size() = 2
) in
matrixInputs->forAll(il1,i2]|
(il.value.dimensions->first() = i2.value.dimensions->first()) and
(il.value.dimensions->last() = i2.value.dimensions->last())

)
)

Listing 5.28: Multiple input values OCL constraints

stereotype has been applied to the Output class, each of the three implemented classes have been stereo-
typedasalternative_XORand avariability comment has been added constraining their relation-
ship as an alternative. The following OCL constraints have been written constraining these three classes.

They model REQ-2.[b|c].

« ScalarOutput: The contained value is a scalar value. It is constrained by the OCL constaint
ScalarQutputValue provided in Listing 5.30.

« VectorOutput: The contained value is a vector value. It is constrained by the OCL constraint
VectorOutputValue provided in Listing 5.30.

« MatrixOutput: The contained value is a matrix value. It is constrained by the OCL constraint
MatrixQOutputValue provided in Listing 5.30.

PARAMETERS SPECIFICATION

The MinMaxBlock class has two references to classes inheriting from the generic Parameter class:
Number0f InputsPorts and Function. For each of these classes, we provide a structural specification
as detailed in Figure 5.26 and OCL constraints for additionally constraining the values of the parameters.

The first parameter allows to set the number of input ports for the block. It is modelled as the
Number0f InputPorts class. The data type and dimensions of this parameter are constrained by the
NumberOf InputPortsParameterDT OCL constraint and its value is constrained by the
Number0Of InputPortsValue OCL constraint (Listing $5.31). A final OCL constraint:
Number0f Inputs (same Listing) states that its value influences the number of Input class instances in

65

S.4. UML FOR THE SPECIFICATION OF BLOCKS

context MinMaxBlock
inv InputDT:
inputs->forAll(i| i.value.getDataType().oclIsTypeOf (boolean)
or
i.value.getDataType().oclIsTypeOf (int)
or
i.value.getDataType () .oclIsTypeOf (double))

inv OutputDTRelationToInputDT:

(inputs->forAll(i| i.value.getDataType().oclIsTypeOf (boolean))

implies output.value.getDataType().oclIsTypeOf (boolean)

) and

(output.value.getDataType () .oclIsTypeOf (boolean)

implies inputs->forAll(il| i.value.getDataType().oclIsTypeOf (boolean))

) and (

(inputs->forAl1(i| i.value.getDataType().oclIsTypeOf (boolean) or

i.value.getDataType().oclIsTypeOf (int)) and
inputs->exists(i| i.value.getDataType().oclIsTypeOf (int)))
implies

output.value.getDataType().oclIsTypeOf (int)

) and (

(inputs->forAll1(i| i.value.getDataType().oclIsTypeOf (boolean) or
i.value.getDataType().oclIsTypeOf (int) or
i.value.getDataType().oclIsTypeOf (double)) and

inputs->exists(i| i.value.getDataType().oclIsTypeOf (double)))

implies

output.value.getDataType () .oclIsTypeOf (double))

Listing 5.29: Allowed data type combinations OCL constraints

context ScalarQOutput
inv ScalarOutputValue:
value.isScalarDimension ()

context VectorOutput
inv VectorOutputValue:
value.isVectorDimension ()

context MatrixOutput
inv MatrixOutputValue:
value.isMatrixDimension ()

Listing 5.30: Output value dimensions OCL constraint

the inputs reference. The first constraints model REQ-3.b and REQ-3.c, whereas the two others model
respectively REQ-5.b and REQ-5.a.

The second parameter holds the computation algorithm choice. This parameter is of type
MinMaxFunctionwhichisan Enumeration (constrained with FunctionParameterDT OCL constraint
(Listing 5.32). The Function class is an abstract class with two concrete realisations: MinFunction and
MaxFunction. The allowed values for these classes are respectively constrained in MinFunctionValue
and MaxFunctionValue (same Listing). These constraints model REQ-3.a; REQ-3.b and REQ-3.c.

SEMANTICS SPECIFICATION

According to REQ-6.a and REQ-6.b, the semantics specification for a block should be provided as a formal
operation and its variability should be modelled according to inputs, outputs, parameters and memories
configurations.

Declaration of a block semantics is done through the realisation of the CombinatorialSemantics or
SequentialSemantics classes. Declaration of semantics in UML class diagrams is done by adding op-
erations in a class. In our setting, each semantics variation point specification is provided as a class inher-
iting either from CombinatorialSemantics or SequentialSemantics. Each Semantics class is
attached to the MinMaxBlock through the semantics relation and the inheritance relation as depicted

66

S.4. UML FOR THE SPECIFICATION OF BLOCKS

context NumberOfInputPorts

inv NumberOfInputPortsParameterDT:
value.getDataType () .oclIsKindOf (Integer) and
value.isScalarDimension ()

inv NumberOfInputPortsParameterValue:
value.getScalarValue () .oclAsType(Integer) >= 1

context MinMaxBlock
inv NumberOfInputsRelationToInput:
number0fInputPorts.value.getScalarValue().oclAsType (Integer) = inputs->size()

Listing 5.31: NumberOfinputPorts parameter OCL constraints

context Function

inv FunctionParameterDT:
value.getDataType () .oclIsKindOf (MinMaxFunction) and
value.isScalarDimension ()

context MinFunction
inv MinFunctionValue:
value.getScalarValue () .oclAsType (MinMaxFunction) = MinMaxFunction::Min

context MaxFunction
inv MaxFunctionValue:
value.getScalarValue () .oclAsType (MinMaxFunction) = MinMaxFunction::Max

Listing 5.32: Function parameter OCL constraint

in Figure 5.26.

The specification of the block semantics is then done by providing for each init (), compute () and
update () operations their pre-conditions, post-conditions and body content. Pre and post conditions

allows to specify the axiomatic semantics of the semantics variation points of the block whereas the body

content speciﬁes an operational semantics.
Semantics specification can be provided in class diagrams using several means:

« OCL constraints: it allows for the expression of complex constructs that may be useful for pre and
post condition expressions but might be of difficult use for body expressions as it lacks imperative
code constructs that are more natural for most users.

UML activity diagrams are well suited for the specification of algorithms. The graphical concrete
syntax does not allow for the specification of complex algorithms as it suffer from its verbosity.

Textual notations like the one provided for the ALF action language. Targeting fUML allows, among
others capabilities, the specification of activity diagrams based on a textual syntax. This overcomes
the previous limitation but it actually lacks from implementation integration in standard UML mod-
eling environments.

Textual action languages like C++ or Java. Constraints can be specified using standard languages al-
lowing to express algorithm specification using well known syntax and semantics. Using these adds a
difficulty as they are disconnected from the modeling world and thus additional verification activities
must be conducted.

All the previously provided semantics specification means relies on structured languages with a defined

semantics. As all these means suffer from flaws regarding our targeted use, adaptations are required in

order for them to be usable.

SEMANTICS VARIABILITY MANAGEMENT

Regarding variability, each Semantics class is decorated with the alternative_XOR stereotype, and
related to the MinMaxBlock class as its variationPoint. The variability comment specifies a

67

S.4. UML FOR THE SPECIFICATION OF BLOCKS

{GerericBiock, P {GerercBiocki?] avariationPoints A
Ny [1.9] = | Semantics (GenericBiock)
+ EEmantics |CombinatoriaiSemantics
@ + computet)
avariationPgint #]
MinMaxBlock

walternative XDRs

IComputeMinDnelnputScal

«a@lternative XOR»
omputeMinMultiplelnputScala

walternative XOR»

IComputeMax OnelnputScal

«@lternative XOR=»
omputeMaxMultiplelinputScalal

walternative_XOR»

IComputeMinD pelnputVecto

sglternative_KOR»
omputeMinMultiplelnputScalarvectol

«alternative_XOR»

[ComputeMaxOnelnputVect

«alternative_XOR=»
omputeMaxMultiplelinputScalarVectol

walternative_XORs

sglternative XOR =

«alternative_XOR»

«alternative_XOR»

omputeMinMultipleirputScalarMatriy IComputeMaxOnelnputMatris——ComputeMaxMultiplelnputScalarMatriy

IComputeMinOpeinputMatri

Figure 5.33: Semantics variants definition for the MinMax block

Semantics variation point class Required variants Implied variants
ComputeMinOneInputScalar MinFunction, ScalarInput ScalarOutput
ComputeMinOnelnputVector MinFunction, VectorInput ScalarOutput
ComputeMinOnelnputMatrix MinFunction, MatrixInput ScalarOutput
ComputeMinMultipleInputsScalar MinFunction, ScalarInputs ScalarOutput
ComputeMinMultipleInputsSclarVector MinFunction, VectorInputs VectorOutput
ComputeMinMultipleInputsScalarMatrix | MinFunction, MatrixInputs MatrixOutput
ComputeMaxOnelnputScalar MaxFunction, ScalarInput ScalarOutput
ComputeMaxOnelnputVector MaxFunction, VectorInput ScalarOutput
ComputeMaxOnelnputMatrix MaxFunction, MatrixInput ScalarOutput
ComputeMaxMultipleInputsScalar MaxFunction, ScalarInputs ScalarOutput
ComputeMaxMultipleInputsScalarVector | MaxFunction, VectorInputs VectorOutput
ComputeMaxMultipleInputsScalarMatrix | MaxFunction, MatrixInputs MatrixOutput

Table 5.34: Semantics variation point cross tree constraints

cardinality of 1 between each of them. Figure 5.33 show the complete set of semantics specification for
the MinMax block.

This semantics configuration of the block supposes a certain configuration of the inputs, outputs and
parameters of the block. Our provided extension of the SMARTY profile including the implies and
requires attributes allows to specify cross-tree constraints between concrete semantics definition classes
and input, output and parameter definition classes (Table 5.34).

SEMANTICS SPECIFICATION EXAMPLE

The previously presented dependencies between semantics variation points and input, output and param-
eter variants allow to extract a set of OCL constraints as a part of the pre and post conditions for the
semantics operations. These constraints tackle the structural part of the specification as the requires re-
lation provides input and parameter values and data type constraints and the implies relation provides
the output values and data types constraints.

According to the previous elements, we choose to specify the pre and post conditions for the axiomatic
semantics using OCL constraints and the operation alone using standard Java syntax. At the time of the
experiment, no ALF implementations integrated in a modeling environment were available, it would how-
ever be an interesting language for our purpose. It is not mandatory to provide both axiomatic and opera-

68

S.4. UML FOR THE SPECIFICATION OF BLOCKS

tional semantics for the block but it may allow formal verification of the specified semantics as required in
REQ-8. The complete set of all semantics definition classes model REQ-6.b.

We provide in the following an example specification for the ComputeMinOneInputVector seman-
tics class. MinMax block.

. computeMinOneInputVector_Pre (Listing 5.35): the precondition in the axiomatic semantics
definition. If this constraint is satisfied on a block instance then the block instance semantics should
be the one specified in computeMinOneInputVector_Body (provided below). It is worth not-
ing that the content of this constraint is already present in the variability specification cross tree con-
straints. Indeed, all the components of the pre-condition expression of Listing 5.35 are specified
in the MinFunction and VectorInput related OCL invariants (Listings 5.32 and 5.28) and the
cross tree constraints specified for the ComputeMinOneInputVector semantics variation point in
Table 5.34 provides the link between semantics and structural elements.

. computeMinOneInputVector_Post (Listing 5.35): the postcondition of the axiomatic seman-
tics. This constraint contains informations on the output of the block. In this case, it states that the
output should be a scalar and its value is the minimum of the input vector components. It is worth
noting that only the final part of the constraint (last three lines) is not provided by the variability
specification through the cross tree constraints. The first part of the constraint expression is implies
by the implies variants for the semantics variation point as defined in Table 5.34.

context ComputeMinOneInputVector::compute

pre:
function = MinMaxFunction::Min and
inputs->size() = 1 and

inputs->first().value.isVectorDimension ()

post:
output.value.isScalarDimension() and
inputs->first().value.getVectorValue().values->forAll(v|
v->o0clAsType (Real) >= output.value.getScalarValue()->oclAsType(Real)
)

Listing 5.35: Pre and post conditions for computeMinOnelnputVector axiomatic semantics using OCL

. computeMinOneInputVector_Body (Listing 5.36): the operational semantics of the block spec-
ified as a Java method. This operation assumes that we have previously defined the mandatory ele-
ments among which are the constructors for ScalarValue, VectorValue and MatrixValue, the list data
type and finally the comparison operation (<=) on ScalarValue. The operational semantics purpose
is to define the block output port value(s) according to the input port(s) value(s).

void computeMinOneInputVector_Body (Block block){
List<ScalarValue> inputVectorValues =
block.inputs.get (0).value.value.values.get (0).values;
4 ScalarValue min = inputVectorValues.get (0);
for (int i=1; i < inputVectorValues.size(); i++){
if (inputVectorValues.get(i) <= min){
min = inputVectorValues.get(i);
¥
9 }
VectorValue outVector = new VectorValue();
outVector.addScalar (min);
MatrixValue outMatrix = new MatrixValue();
outMatrix.addVector (outVector);
14 block.output.value = outMatrix;

Listing 5.36: computeMinOnelnputVector_Body semantics expressed using a JAVA method

69

S.4. UML FOR THE SPECIFICATION OF BLOCKS

Semantics specification elements such as those given in these annotations provides the mandatory in-
formations required in REQ-6.a and REQ-6.b. They also allow for the testing of the specification as it
is possible to compare the specified operational semantics computation with the result of the simulation
with SIMULINK. It is also possible to verify the axiomatization as the output resulting simulation values
should verify the specification post-conditions.

SPECIFICATION VERIFICATION CONSIDERATIONS

REQ-7.a s partially automatically verified as UML diagrams (in general and in our context the UML class
diagram) includes a set of structural correctness rules defined in the UML specification [120] for the ver-
ification of structural consistency of the model elements.

Regarding the other tooling requirements expressed in REQ-7.b, REQ-7.c and REQ-8, it is mandatory
to develop an automatic verifications mechanism.

The first two criteria must be expressed according to the set of all the defined semantics variation points:
on the one hand, the completeness criterion (REQ-7.b) aims at assessing that all the possible structural
features variants combinations have been taken into account in the specification; on the other hand, the
disjointness criterion (REQ-7.c) aims at assessing that all the defined semantics are unique and thus that
they apply on different configurations of structural features variation points. If we declare nbSpec as the
number of semantics variants for a block. From the i semantics of the block: computeSpec_Pre;, the
pre-conditions (Required variant’s constraints in Table 5.34); and computeSpec_Post;, the post-conditions
(Implied variants in Table 5.34); we then express the completeness criterion (REQ-7.b) as (5.1) and the
disjointness criterion (REQ-7.c) as (5.2).

0<i<nbSpec

/\ computeSpec_Pre; (5.1)

Vi,7,0 < i < nbSpec,0 < j < nbSpec,i # j = — (computeSpec_Prei A computeSpec_Prej) (5.2)

REQ-8 requires the correctness verification of the complete block semantics. As in the specification, we
express the axiomatic specification of the semantics as OCL constraints and the operational specification
as JAVA code, the expected verification can be expressed as Hoare triples. We provide an example of such
Hoare triple for the compute semantics of the i specification configuration of a block in (5.3). Such a
verification should be provided for the three phases of the block semantics.

Vi, 0 < i < nbSpec, {computeSpec_Pre;} computeSpec_Body; { computeSpec_Post; } (5.3)

The verification of the block semantics should then be done by proving the correct behavior of the pro-
gram provided in Listing 5.37. These verifications can be done by relying on a mapping from the UML
models with OCL constraints to a convenient formal domain [17] and from the mapping of Java (or ALF)
programs to a convenient formal domain where automatic verification can be done as with the KrakaToa
tool or the KeY platform® [13]. An example of such a formal domain is the SMT solvers one where logical
expressions and programs can be expressed and may be verified automatically. Such transformations and
the related verifications will be the subject of Chapter 7.

5.4.4 ProriLED UML + OCL SPECIFICATION FOR DELAY BLOCK

We will detail here the Delay block specification using the previous approach. This will allow us to cover
the specificities of the Delay block that are not present in the MinMax block.

The specification starts with a simple class: DelayBlock. This class is the main element of the UML
specification. The blockinput, output, parameter and memory specification are similar to the one provided

*http://www.key-project.org/

70

S.4. UML FOR THE SPECIFICATION OF BLOCKS

assume (initSpec_Pre);
initSpec_Body () ;
assert (initSpec_Post);

«

while (true){
assume (computeSpec_Pre) ;
computeSpec_Body () ;
assert (computeSpec_Post);

(o]

assume (updateSpec_Pre) ;
updateSpec_Body () ;
assert (updateSpec_Post) ;

Listing 5.37: Generic block semantics expression

—
&
+ m_memory:

+ ic_parameter

e
1] DelayBlock Sl il

| =il
[1
B 4 o

Reset Algorithm IC_MODE _
=) NONE = INPUT + v 1]
= RISING = PARAMETER
=) FALLING v_output
= LEWEL OutputPort
=) LEVEL HOLD

Figure 5.38: Delay block specification using the UML

for the MinMax block but adapted to the Delay block. A global view of the UML specification for the Delay
block is provided in Figure 5.38.

MEMORIES SPECIFICATION

The Delay blockis a sequential block, it therefore uses some memories in order to compute its output value.
It also uses a memory in its configuration when the reset_algo parameter takes the appropriate value.
We need to provide the required specification elements for these two memories in order to complete their

specification.

The m_memory memory is storing values from the u_input input port and provides the computed
result as the v_output port value. Its allowed data types and dimensions are provided through OCL
constraints given in Listing 5.39:

« The M_Memory_PortDataTypeRef OCL invariant constrains the portDataTypeRef reference
totheu_input and the memory value data type is constrained to be the same as the one of the input
value in the M_Memory_DT OCL invariant.

71

S.4. UML FOR THE SPECIFICATION OF BLOCKS

o TheM_Memory_Dimensions_SimpleDelayandM_Memory_Dimensions_MultipleDelay con-
strain the memory value dimensions according to the portDataTypeRef value dimension and the
delay_parameter value. It is indeed mandatory to add a new dimension to the memory if the
delay_parameter value is greater than 1.

context DelayBlock
inv M_Memory_PortDataTypeRef:
m_memory.portDataTypeRef = u_input

context m_memory
inv M_Memory_DT:
value.getDataType() = portDataTypeRef.value.getDataType ()

inv M_Memory_Dimensions_SimpleDelay:
(oclContainer () .delay_parameter.value.getScalarValue().oclAsType(Integer) = 1)

implies
(let refDimValueValue = portDataTypeRef.value.dimensions) in
((value.dimensions->size() = 1) implies
value.dimensions->first() = refDimValue->first()) and
((value.dimensions->size() = 2) implies
((value.dimensions->first() = refDimValue->first()) and
(value.dimensions->last () = refDimValue->last()))))

inv M_Memory_Dimensions_MultipleDelay:
(oclContainer ().delay_parameter.value.getScalarValue().oclAsType(Integer) > 1)
implies
(let refDimValueValue = portDataTypeRef.value.dimensions->append(
delayValue.oclAsType(Integer)

) in
((value.dimensions->size() = 1) implies
value.dimensions->first() = refDimValue->first()) and
((value.dimensions->size() = 2) implies
((value.dimensions->first() = refDimValue->first()) and

(value.dimensions->last() = refDimValue->last()))))

Listing 5.39: M_Memory data type and dimensions constraining

The same methodology is used for the reset_memory memory. This time its data type and dimension
are computed according to the reset_input input port. OCL constraints in Listing 5.40 provide these
elements. We enforce the value of the portDataTypeRef reference value to the u_input input port
element (OCL invariant M_Memory_PortDataTypeRef). We define the memory data type with the
M_Memory_DT OCL invariant and the final OCL invariant: M_Memory Dimensions

context DelayBlock
inv Reset_Memory_portDataTypeRef:
reset_memory.portDataTypeRef = reset_input

context reset_memory
inv Reset_Memory DT:

value.getDataType() = portDataTypeRef.value.getDataType ()

inv Reset_Memory_Dimensions:

((value.dimensions->size() = 1) implies
value.dimensions->first() = portDataTypeRef.dimensions->first()) and
((value.dimensions->size() = 2) implies
((value.dimensions->first() = portDataTypeRef.dimensions->first()) and
(value.dimensions->last() = portDataTypeRef.dimensions->last())))

Listing 5.40: Reset_Memory data type and dimensions constraining

72

S.5. SPLE FOR THE SPECIFICATION OF BLOCKS

5.4.5 CHOICES MADE REGARDING UML MODELING

We detailed here one possible specification for the MinMax and Delay blocks using UML models. In order
to do this specification, we needed to do some design choices as there is no recommended, standard and
generic pattern for the writing of metamodels (data diagram representing languages).

The main UML model containing the generic specification for a block provided in Figure 5.21 (page
61) is a simple structural decomposition of a block with its content. This makes the model natural and
easy to apprehend. The specialisation for the MinMax and Delay blocks provided in Figures 5.26 (page
63) and 5.38 (page 71) as long as the related semantics decompositions follow this same approach.

To our understanding, the structural approach is the beset for the specification of blocks as it allows
to build, understand and maintain easily specifications. These characteristics are of primary interest for
us as we want to ensure the specification correctness which is more easily achieved with a simple and
straightforward modeling approach.

5.4.6 LimitaTioNs oF THE UML + PROFILE + OCL SPECIFICATION APPROACH

UML + OCL allows an accurate modeling of the block structural components. The main specification
problems is the inability to efficiently express the variability of the block. Block structural variability may
lead to atleast a quadratic number of class definitions for each of which OCL constraints needs to be associ-
ated. This number of elements may increase the risk of mistakes in the writing/reading of the specification
and make the management of variability more difficult (REQ-9).

Each block semantics variation point is specified with a separate UML operation in order to ensure
their independent verification and the conditions for the execution of semantics operations needs to be
added as pre-conditions of these operations. Each pre-condition should contain all the conditions for the
semantics execution. This conditions will not be easy to build especially when the block complexity and
semantics variability increase as the decomposition of the block specification features and the semantics
variants definition and their relation to the structural features variants are done manually. Furthermore,
this is going against REQ-9.

Regarding the automatic verification of UML + profile + OCL specification, the specifier is free to write
it using any UML artifact and any UML diagram. Fortunately for the designer, the UML formalism is wide
and expressive. Unfortunately for the verifier, it makes the automatic verification more complex as all the
UML constructs must be taken into account. Regarding certification activities, this is again going against
feasibility as it multiplies the number of verification activities and certification data to provide.

A methodology is then mandatory to restrict the number of allowed UML constructs and enforce the
use of adequate patterns that can then be fed to tools for automatic analysis. This advocates for the use of
a subset of UML with specific patterns focused on our specification purpose. Restrictions of the number
of allowed UML constructs is difficult to do as each UML user has its own modeling habits, it is therefore
not convenient for users to work with a subset of UML. These constraints usually leads to the definition
of DSML oriented approaches [69, 107].

All these considerations are going against the use of this approach for the specification of blocks. We
will now experiment the use of a SPLE approach and of their respective models for the specification of

blocks.

5.5 SPLE FOR THE SPECIFICATION OF BLOCKS

Aswesawin 3.2.4, SPLE is a dedicated methodology for the management of software variability relying on
a first phase on a detailed domain analysis leading to the definition of feature models. The feature models
are then refined by giving a detailed definition of the identified features in the form of either specification
artifacts like models or development artifacts like source code.

The use of SPLE methodology is the most advised formalism in the purpose of analysing and/or de-
signing software exposing a potential large number of structural and behavioral variation points. Indeed
it provides a convenient, rather simple, formally defined and tooled approach. We will illustrate the use

73

S.5. SPLE FOR THE SPECIFICATION OF BLOCKS

of SPLE, show its abilities and drawbacks and conclude on its usability for the specification of blocks. We
will apply SPLE methodology to provide a specification for the MinMax and Delay blocks and show the
applicability of the SPLE approach to our needs.

5.5.1 SPLE SPECIFICATION APPROACH

Variability modeling of the possible MinMax block semantics has been experimented using SPLE tech-
niques. The first step was the choice of a strategy for the feature modeling analysis of the block to be
specified. There are three possible entry points for a specification using SPLE as advocated by Thim in
[145]: (a) feature-based analysis; (b) family-based analysis and; (c) product-based analysis. One of these
three analysis is first chosen as an entry point of the analysis activity which is then conducted and extended
by a second orientation point analysis. This allow first building a basis for the analysis and then completing
it by analysing the problem using any other point of view.

Analysis of blocks in order to extract a feature model can be based on the same approaches. As it may
be very difficult to know at the time of the specification the full set of valid block configuration (it is the
purpose of writing the specification), a product-based analysis cannot be the starting point of the specifica-
tion. Family-based analysis needs a knowledge of the structural and semantics invariant properties of the
specified blocks in order to extract the families of properties present in the specification. Whereas some of
these invariants might be known, it is not obvious to ensure that our knowledge of the block is complete
enough to get all of these invariants. Feature-based analysis of the blocks on the other side can be done
after a small analysis of the block parameters and inputs as their number is well known and their purpose
can easily be found. We thus selected the feature-based approach.

Regarding the specification of dataflow block, we have already identified the features that cause the prod-
uct variation (input ports number, input port dimensions and function parameters). It seems natural to
use a feature-product-based analysis where we independently analyse the features of the product line and
then we supplement this analysis by detailing the products using cross tree constraints.

5.5.2 SPLE SPECIFICATION OF THE MINMAX BLOCK

We start our analysis by defining a feature model that will contain all the product line variation points.
These variation points will be the potential input ports, output ports and parameters of the block; the
semantics variation points will be modeled in order to attach a structural configuration for the block. We
provide in Figure 5.41 such a feature model for the MinMax block specification.

MinMaxBlock
= ""Fr-_.‘_\--\-""\--.
Legend: ___'_F_a-d'"_ ""--._______
& Mandatory mu:turatfeaﬂ.res semantics
A Biternative __r__rr"’"“"--_______ /xf:\\
Abstract - e i .
= — = .
C " - Pt ;
st inpuﬁ_!u‘q:ms par;geters onelnputSemantics multipleinpuisSemzantics
—_— ‘_,"-\
e S, 2w
e -_""'-.,___ o i,
inp.L—ns Dl.a.ns mﬁ%pm | functinn}aran'leizr
- =
. P = ,*'-\\
o b g | % "l
one_input multiple_inputs | | o scalar | | oowertor | | o _matrix Min | | Max
/"-JI\\H _____-—-"_';\-.'_F\:‘-\.._‘_H_
’ S e
i Pt

iscalar | | iwector | | i matria | | i scalars | | i scalarsndVectors | | | scalarshndMatrices

Figure 5.41: A feature model for the MinMax block structure and semantics

74

S.5. SPLE FOR THE SPECIFICATION OF BLOCKS

DETAILED FM ELEMENTS SPECIFICATION

The root feature of Figure 5.41, is the MinMax block itself, it is named after the specified block (REQ-1.a).
Beneath the root feature, we provide all the mandatory features and their children features:

« structural_features: an abstract feature holding all the structural features of the block speci-
fication (REQ-2.a and REQ-3.a).

« i_scalar,i_vector and i_matrix: these three alternative features model the input port of the
block, in this setting these is only one input port. Each feature models a different input port dimen-
sion (REQ-2.b and REQ-2.c).

o i_scalars,i_scalarsAndVectorsandi_scalarsAndMatrices: these threealternative fea-
tures model the input ports of the block. In this setting there are multiple input ports (REQ-2.b and
REQ-2.c).

« o_scalar, o_vector, o_matrix: these three alternative features model the output port of the

block (REQ-2.b and REQ-2.c).

« nbOfInputPorts_parameter: a mandatory feature modeling the NumberOf InputPorts pa-
rameter (REQ-3.a).

« function_parameter: amandatory abstract feature modeling the MinMaxFunction parameter.
Its two sub-feature model its different allowed values — Min and Max (REQ-3.a, REQ-3.b and REQ-
3.c as it also specifies the data type and dimensions). It is not mandatory to define the two sub-
features as it would be possible to define them through an enumerate type. However in this case, it
is interesting to add them as the enumeration values are part of the variability of the specified block.

- semantics: a mandatory abstract feature holding the block semantics variation point specifica-
tions. Each semantics variation point is specified through a set of cross tree constraints. Each se-
mantics description feature will be explicitly provided in a refinement specification phase.

- oneInputSemantics: models the semantics of the block when there is only one input port.
It is constrained with the 5.4 cross tree constraints.

onelnputSemantics <> one_input (5.4)
one_input = o_scalar '

- multipleInputsSemantics: models the semantics of the block when there are multiple
input ports. It is constrained with the 5.5 cross tree constraints.

multipleInputsSemantics < multiple_inputs

i_scalars = o_scalar

, ~ - (5.5)
i_scalarsAndVectors = o_vector
i_scalarsAndMatrices = o_matrix

ANALYSIS OF THE FEATURE MODEL

Computations can be done on feature models providing metrics for the evaluation of the specification
complexity among which is the calculus of the number of allowed products in the product line. In the
model of Figure 5.41, the result of this computation is twelve. Meaning that there are twelve different
configurations to specify for this block (the same number as in the UML + profile + OCL specification).
The number of semantic pre/post conditions to write can be bigger than that because of the allowed data
types of the inputs that may require to specify multiple times the same semantics with the use of different
operations (for example for the comparison of values).

75

S.5. SPLE FOR THE SPECIFICATION OF BLOCKS

Multiplicities regarding the number of inputs that can be provided using cardinality in feature models.
This provides the ability to specify the number of input ports (REQ-5.b).

Such feature model allows to structure the specification of a block using features and to express the de-
pendencies between semantics variation points and structural features configuration as expected in REQ-

5.5.3 SPLE SPECIFICATION OF THE DELAY BLOCK

In the same setting as for the MinMax block SPLE specification, we provide here the one for the Delay
block. We provide in Figure 5.42 a feature model for its specification.

IR— Y
Winputs outputs ————" e '
[— .
Legend: f‘ by iy i
s R =
@ Mandatory S — i — l_c_wlrhr__qlt
of Gationsl initial_condition —=":._’:____
3 B B 2 ____— i_scalar_parameter
[\ Alernative —{ ic_parameter |———"" .
Abstract . 1 T —— ic_wector_parameter
Concrete _—— ic_mode PARAMETER
R ———— o S il i
T ic_miode_INPUT
— i delay_parsmeter
@ structuraiFeatures -
/ e~
_.-o-""'f}
S S | RISING
/ \ - | NG
/ \ " -@reset_sign_parameter —.
DelayRinck | \ LEVEL
kll\,lll LEWEL_HOLD
\ —— y
‘n‘lernnnes e .m_w
) T TT——(_ireset memary
; ~ ~~ | Scalarinput ListDelay
SBMEntics Q___ : - =
| Scalarinput_SimpleDalzy_Resat

Figure 5.42: A feature model for the Delay block structure and semantics

The root element of Figure 5.42 is the product line itself. It is named after the block (DelayBlock) (REQ-
1.2). Beneath the root element, we provide all the mandatory features and their children features below.

STRUCTURAL FEATURES

The structuralFeatures feature is a mandatory abstract feature holding all the variable structural fea-
tures of the block specification (REQ-2.a, REQ-3.a, REQ-4.a):

« inputs_outputs: a mandatory abstract feature holding the specification for the inputs and out-
puts ports of the block.

- v_output: the output port of the block
- u_input: the input data port of the block

76

S.5. SPLE FOR THE SPECIFICATION OF BLOCKS

initial_condition: a mandatory abstract feature holding an alternative relation between two
features: ic_input and ic_parameter. These two features represent the two possible configura-
tions for providing the initial condition for the block, either dynamically as an input signal or stat-
ically as a parameter. Both variants are abstracts and contain alternative sub-features modeling the
scalar or vector dimension of the initial_condition. It is mandatory for the
initial_condition to be either scalar or vector as it is mandatory to store multiple values in
it for a delay parameter value (N) greater than one.

ic_mode_parameter: a mandatory feature modeling a parameter holding the choice between the
dynamic or static way of providing the initial_condition value.

delay_parameter: a mandatory abstract feature representing the previously specified N value.

resettable: an optional abstract feature holding the res_input optional feature representing
the reset input port and a mandatory parameter reset_algo indicating which algorithm is used to
activate the reset according to the res_input input signal value as defined in Section 5.2.2.

memories: this mandatory abstract feature holds the memories of the block. There are two memo-
ries defined in the block: m_memory that is mandatory and is the output-delaying memory (provides
the output value) and the reset_memory that is optional and activated only if the
reset_algo_parameter is set to RISING_EDGE, FALLING_EDGE, EITHER or LEVEL as these
behavior needs a knowledge of the previous value of the reset_input.

SEMANTICS

The semantics feature is a mandatory abstract feature holding the block semantics variation point spec-
ifications. Each semantics variation point is specified through a set of cross tree constraints

« ScalarInput_SimpeDelay: models the basic semantics of the Delay block with only one input
port (u_input), the delay value set to 1 and the reset input is deactivated. It is constrained with
the (5.6) cross tree constraints.

ScalarInput_SimpleDelay = (ic_scalar_input \ ic_scalar_parameter) AN NONE
reset_input <> RISING V FALLING V EITHER V LEVEL VV LEVEL_HOLD
reset_memory < RISING V FALLING V EITHER V LEVEL
ic_mode_ PARAMETER < ic_parameter
ic_mode_input < ic_input

(5.6)

« ScalarInput_ListDelay: models the basic semantics of the Delay block with only one input
port (u_input), the delay value set to more than one and the reset input is deactivated. It is
constrained with the (5.7) cross tree constraints.

ScalarInput_ListDelay = (ic_vector_input \ ic_vector_parameter) \ NONE
reset_input < RISING V FALLING V EITHER V LEVEL V LEVEL _HOLD
reset_memory < RISING V FALLING V EITHER V LEVEL
ic_mode PARAMETER < ic_parameter
ic_mode_input < ic_input

(5.7)

77

S.5. SPLE FOR THE SPECIFICATION OF BLOCKS

 ScalarInput_SimpleDelay_Reset: models the basic semantics of the Delay block with only
one input port (u_input), the delay value set to 1 and the reset input is activated. It is con-
strained with the (5.8) cross tree constraints.

ScalarInput_SimpleDelay Reset = (ic_scalar_input \V ic_scalar_parameter) A ~“NONE
reset_input < RISING V FALLING V EITHER V LEVEL V LEVEL HOLD

reset_memory < RISING V FALLING V EITHER V LEVEL

ic_mode PARAMETER < ic_parameter
ic_mode_input < ic_input

(5.8)

« ScalarInput_ListDelay_Reset: models the basic semantics of the Delay block with only one
input port (u_input), the delay value set to more than 1 and the reset input is activated. It is
constrained with the (5.9) cross tree constraints.

ScalarInput_ListDelay Reset = (ic_vector_input \ ic_vector_parameter) \ "NONE
reset_input < RISING V FALLING V EITHER V LEVEL V LEVEL _HOLD

reset_memory < RISING V FALLING V EITHER V LEVEL

ic._mode PARAMETER < ic_parameter
ic_mode_input < ic_input

(5.9)

ANALYSIS OF THE FEATURE MODEL

The product line depicted in Figure 5.42 allows twenty four valid configurations. This number is com-
puted based on the number of combinations allowed for the Non-reset semantics (two for each as the
only variation is for the initial_condition that is either a parameter or an input), and the resetted
semantics that have five combinations (five reset algorithms) and also the two combinations related to the
initial_condition. The final number of valid product is then: 2 X 2 + (S x 2) x 2 =24.

In a block specification oriented reading of the feature model, the number of block variants is less than
twenty four as the variability added by the reset_algo parameter can be managed by other means like
the definition of a generic function for the reset input impact according to the reset_algo parameter
value. The number of valid product can then be limited to eight (two products for each semantics sub-
feature).

5.5.4 LiMITATION OF THE SPLE SPECIFICATION APPROACH

SPLE does not allows to specify every dependencies and constraints that must be provided on every fea-
ture of the block. For example, it does not allow to specify that the value potentially held in the
nb0fInputPorts_Parameter feature impacts on the concrete number of input ports instances that
should be provided in the sub-features of the multiple_inputs feature. This kind of cross tree con-
straints linking feature attribute values and feature cardinalities are not standard constraints, they have
been studied by Czarnecki et Al [S1]. To our knowledge, work still needs to be done in order to handle
the complexity of such constraints and their formal semantics especially when dealing with attributes with
a potentially infinite number of values.

Every structural feature should be further specified in order to provide their allowed data types, dimen-
sions (REQ-2.b, REQ-2.c, REQ-3.b, REQ-3.c, REQ-4.b, REQ-4.c) and constrained values (REQ-5.a and
REQ-5.b) like for example only positive value are allowed for the number0f InputPorts parameter. Se-
mantics specification should also be provided (REQ-6.a, REQ-6.b).

78

S.6. TWO COMPLEMENTARY APPROACHES

The specialisation of SPLE for the specification of dataflow blocks needs some substantial tooling and
adaptation in order to be usable as requested in REQ-5, REQ-6, REQ-7, REQ-8 and REQ-9.a. For more
complex specifications, we might also need to refine the structural features to, for example, include more
elements like data types attached to structural features or constraints that limit the allowed values for those
data types. The resulting number of products in the product line would increase drastically making the
specification difficult to manage and analyse.

5.6 TwO COMPLEMENTARY APPROACHES

Use of SPLE methodologies and formalisms allows to improve the variability management and solves
part of the problems raised in the UML + OCL specification proposal. However, it does not allow to
handle completely our domain specification problems. We saw in this section two possible specification
methodologies and formalisms. First, UML + SPLE profile + OCL allowing for an accurate specification
of blocks structures along with block semantics and variability management at a certain granularity. It
suffers from the complexity of the UML model impacting the implementation of automatic verifications.
Second, SPLE allows for an accurate management of variability issues but its expression power is very
limited regarding the structural and semantics specification of blocks.

5.6.1 METHODOLOGY PROPOSAL

An accurate specification formalism for our purpose would inherit from concepts taken from both ap-
proaches. We will illustrate a possible framework for the specification of the Delay block, using SPLE +
UML + OCL. Our proposed methodology relies on the splitting of the block specification into 4 phases.
Each phase is purpose oriented. In the first phase, the variability is analysed (REQ-9.b and REQ-9.c) by
using SPLE and feature modeling, the block structural features are elicited, relations between them are
provided. The overall complexity of the block is analysed. The second phase aims at matching the previ-
ously specified features to UML classes and to generate an UML model. This transformation can either
be manual or generated, the advantage of the automatic generation is obviously about time gain but it
is also about the standardisation of the produced output. In the next phase, the block specification is
constrained by providing OCL constraints for data types and dimensions of structural features (REQ-1,
REQ-2, REQ-3, REQ-4, REQ-5). Finally, the semantics specification can be provided for each generated
semantics instance (REQ-6).

Automatic verification of the specification properties (REQ-7), semantics correctness (REQ-8) and
typing verification of expressions (REQ-9.a) can be done by developing transformations based on both
the feature model and the UML + OCL elements.

5.6.2 From SPLE aNALYSIS TO UML MODEL

Using the extended feature modeling [84], it is possible to provide additional informations for each feature.
We suggest to attach to each feature a UML class name taken from the generic block specification model
of Section 5.4.1. We provide a table for such a mapping in Table 5.43.

By following this mapping table, we can generate an UML model from the Delay block feature model.
Such UML model would be the same as the one provided previously for the Delay block specification
in Figure 5.38. We provide it here for reference in Figure 5.44. The advantage of generating the UML
model from the feature model is to keep the variability management at the feature model level and to use
the UML capabilities for the detailed modeling of the block structure and semantics. In this setting, the
specifier can then use OCL for structural constraints of the block feature values and data types and use any
action language listed in Section 5.4.3 for the semantics specification.

When the block specification is done, it is then possible to extract the valid products from the UML
model according to the extracted models of the feature model.

79

S.6. TWO COMPLEMENTARY APPROACHES

SPLE feature Mapped UML class
DelayBlock Block
ScalarInput_SimpleDelay

ScalarInput_ListDelay . .
ScalarInput_SimpleDelay Reset SequentialSemantics
ScalarInput_ListDelay Reset

u_input

ic_scalar_input Input

ic_vector_input
v_output Output
ic_scalar_parameter

ic_vector_parameter
ic_mode_ parameter Parameter
delay parameter

reselt algo parameter

m_memor
- v Memory

reset_memory

Table 5.43: Mapping from Delay block feature mode elements to UML classes

5.6.3 LIMITATIONS OF THE METHODOLOGY

On the specification part, this proposed approach fits the needs. As we have shown, it allows for an accurate
modeling of the specification variability, structure and semantics. But it suffers from major drawbacks
related to the tooling development required for the verification of block specification: first, the SPLE to
UML transformation and then the specification verification.

SPLE To UML TRANSFORMATION

The first transformation is simple and straightforward. Its verification should be easy regarding its com-
plexity, a simple traceability checking is enough and can even be done to some extend reliably by proof
reading if the number of elements in the specification is not too big. As we saw previously with the Delay
block example, the feature model can become quickly quite complex leading to difficulties in the transfor-
mation verification. This transformation target is an UML model, it should produce correct UML models
and thus rely on an already existing UML implementation which have the drawback of being dependent
of a specific platform or on the OMG-specified XMI format for the UML serialisation [S]. The second
option is better as it allows to rely on common well accepted normative documents but need a consequent
development. Of course current implementations of UML relying on this normative format is the sim-
plest solution. While it is doable to implement this approach one needs to take care of the under-specified
nature of the XMI format leading to incompatibility issues between tools.

AUTOMATIC VERIFICATION

The second tooling development phase is about the verification of the specification itself after it has been
implemented as an UML model and extended with OCL constraints.

REQ-7.a advocates for the structural correctness of the specification. Such correctness can be partially
checked in the UML model itself as it does enforce some structural correctness. Additional structural
verification should be implemented using OCL constraints to be applied on the modified model after gen-
eration.

REQ-7.b and REQ-7.c advocates for the completeness and disjointness of the specification. Such a ver-
ification relies first on the ability to extract from the specification all the valid block configurations. Such
extraction of products from an UML specification is handled in [162]. In this work, the variability infor-
mations are extracted from the profiling informations of the UML model but the same informations can
be extracted from the SPLE informations and the SPLE to UML transformation traceability informations.

80

S$.7. SYNTHESIS

{GenerncBiock) :I [1] rese Y
Block + reset_memeonEee——|

o1 Supmeey
+ _Memory: .

ic parameter + ic_parameter e —|
- - = l

reset_al ara ‘
DelayBlock N TR
= 11 b
\ode Daral — i .TSE‘I_M[I]
1 —
rese ot {GenericBlock)

=Epumerations «Enumerations D . cesicnd
Reset_Algorithm IC_MODE
= NOME = INPUT +v_outpu [1] i iu:_inpu¢[1]
= RISING =i PARAMETER
=) FALLING v_output Ic_input
= EITHER [GenericBiock)
= LEVEL OutputPort
= LEVEL HOLD

Figure 5.44: Delay block specification using UML + OCL

Once this product extraction done, it is then necessary to extract from the products the information for
the completeness and disjointness assessment. We have provided in (5.1) and (5.2) the formalisation of
such operations. Implementation of the verification can be done in many ways, we propose to translate
the model elements (UML classes and references) and the OCL constraints to a formal domain such as
SMT solvers, this approach was not implemented for UML + OCL but for a specific DSML presented in
Chapter 6 and the verification approach from Chapter 7.

REQ-8 advocates the verification of the semantics specified for each possible block configuration. The
structural configuration of the block is then the definition domain of the block containing its inputs, out-
puts, parameters and memories along with their specification. Specified semantics should then be trans-
lated to the same formal domain and verified. Again we propose to use SMT solvers and proof assistants
to do this verification according to its formalisation in (5.3). This approach has been developed from a
DSML presented in Chapter 6 and the verification approach in Chapter 7. The semantics specification
language should be formalised in order to ensure its translation verification. This might not be easily done
especially if the semantics specification language is a complex and expressive language like Java.

5.7 SYNTHESIS

We detailed two propositions for both structural and semantics specification of dataflow blocks. Separated,
each approach has a limited interest but their combinations showed interesting capabilities regarding ex-
pressiveness and verification. These capabilities are diminished by the complexity of the elements under
specification leading to potentially over-constrained specifications (UML models) or surcharged feature
models. We thus propose to rely on the DSML-based approach inspired on the SPLE and feature modeling
principles. DSML are simpler as they are domain focused and it is easier to control the language specifi-
cation and content. This leads to a simplification of the implementation of verification procedures and
their implementation verification. Finally tooling definition is also simplified as we can rely on MDE tech-
niques and automatise parts of the development effort. We will refer to this DSML as the BLocKLIBRARY
specification language and will detail it along with its associated tools in the next chapters.

81

S.7. SYNTHESIS

82

A Domain Specific and Product Line experiment for language
specification

Asseenin Section S, dataflow languages such as SIMULINK or SCADE rely on polymorphic elements (blocks)
with highly variable semantics. The high variability of these blocks makes the writing of precise and com-
plete specifications as well as any implementation and verification based on it very challenging. In order to
ease these activities, we advocate to specify dataflow blocks with a dedicated Domain Specific Modeling
Language (DSML) based on Software Product Line Engineering (SPLE) principles and concepts.

In this chapter, we will first describe the domain on which our DSML must apply. Then in Section 6.2 we
will describe a DSML based on a model driven approach: the BLockLiBRARY DSML. We will rely on the
previously described Delay block for the elicitation and clarification of the specification language elements.
The relation between SPLE methodologies and our specification metamodel will be shown in Section
6.3. Section 6.4 will detail how specific block configurations can be extracted from the BLoCKLIBRARY
metamodel conforming models. Block specific semantics specification is detailed in Section 6.5. We will
finally provide in Section 6.6 a formalisation for BLOCKLIBRARY verification properties.

6.1 DOMAIN ANALYSIS

In the MDE methodology, a DSML definition starts from a domain analysis allowing to emphasize the
key concepts of the domain and the relations between them. Relations are either structural (what are the
properties of each concept, relations between concepts) or behavioral (related to the semantics of exe-
cutable languages). From this analysis should emerge a metamodel along with, if it is required, additional
OCL constraints.

6.1.1 DOMAIN OF STUDY

The domain of study of our work is variable block specification for dataflow languages. A block specifica-
tion is two-fold: a) the allowed structures of the block — or interfaces of the block — containing the allowed
combinations of input ports, output ports, parameters and memories along with the allowed data types
and values specification for each of these structural elements and; b) the semantics specifications that are
attached to each possible block interface.
Structural elements specification should provide their allowed data types and values (REQ-[2|3|4].[b|c]).

In order to do so, a data type must be provided for each StructuralFeature element of the block in-
terface and logical constraints must enrich their specification.

83

6.2. THE BLOCKLIBRARY DSML

A possible structured representation of the blocks has been provided using a class diagram in Section
5.4.1 and Figure 5.21 in pages 59 and 61. We relied on this in order to define the block specification but,
as concluded previously, it does not provide appropriate and simple variability management capabilities.

For one block, all its possible structure variants have most of the time a common set of structure ele-
ments that remain unchanged - in the MinMax block the function parameter holding the function (min
or max) value must be provided. It also seems that groups of structural elements are inextricably linked
— in the Delay block, the delay parameter value impacts on the memory size. So, we suggest to group
structural features in entities representing partial block interfaces. Building of more complete block inter-
faces should then be done by gathering already existing partial block interfaces. This gathering of partial
block interfaces is a composition where overloading is forbidden, the content of the gathered interfaces
are composed into a new interface. Semantics specification then will be attached to block interface(s).

Partial interface specifications are extended with logical properties on the gathered block interface ele-
ments. It is thus mandatory to allow for the expression of such properties in each (partial) interface speci-
fication.

Parameters and input ports may have the same semantic meaning for the block (as we saw for the Delay
block regarding the initial_condition that can be expressed either as a parameter or as an input).
Alternative block interfaces specification capabilities should then be provided and the same behavioral
specification might be attached to different block interfaces.

6.1.2 VARIABILITY MODELING

Dataflow blocks have potentially highly variable configurations of interfaces and semantics. This variability
can be well handled using a SPLE approach. In SPLE, variability is tackled by allowing to express the hier-
archy formed by the domain features — with a hierarchical relation between features — as long as cross-tree
constraints between features. In our block specification, SPLE features will be referred to as the previously
defined partial interface specifications.

The result of this domain analysis is the BLOCKLIBRARY metamodel specified using the ECORE modeling
language. The metamodel is extended with static semantics informations provided as OCL constraints for
the specification of additional correctness properties. It contains all the elements of interest to fulfill the
requirements previously defined in Section 5.1. It is presented in Figure 6.1 where the default color for
metaclasses background is yellow. Other colors are used to provide hints on the metaclasses inheritance
relations (all white metaclasses inherit from the StructuralFeature metaclass and all grey metaclasses
inherit from SpecificationElement metaclass).

In the following, we will first comment on a partial specification structure for the Delay block, then
we will provide a textual example for it using the BLocKLIBRARY DSML textual syntax associated to the
metamodel to ease the writing of examples. Detailed description of the BLockLIBRARY metamodel will
then follow and will be illustrated with the specification of the Delay block.

6.2 THE BrockLIBRARY DSML

We provided a detailed SPLE specification for the Delay block in the previous chapter (Figure 5.42). We
will rely on a simpler specification of the block where: a) the initial condition cannot be provided as an
input of the block; b) the reset input is not allowed; and c) only scalar and vector double are available as
input. Such simplification will ease our language introduction.

6.2.1 DELAY BLOCK INTERFACES SPECIFICATION

We will detail the partial interfaces defined for this block specification. The interfaces hierarchy is dis-
played in Figure 6.2. In this figure, ellipse nodes are partial interfaces while square nodes are semantic
specification.

84

6.2. THE BLOCKLIBRARY DSML

H BlockLibrary

blockTypes@, . *

g Element [BlockType
o name : EString s::ta‘tﬁﬂﬂf . EString
= documentation ; EString variants
8. . *yariants B, .
{
[l BlackVariant
o specifiesDynamic : EBoolean
e - T varianmts |8..* -
® blackType() : BlockType subVariants
enumeration
¥ VariantSetOperator
— AND
- iRpULS | DUTPUTS
[StructurailFeature §.." - AT - s
] variantSet v ..m -Fr’.;n -,;(._.ﬂ!d.
3 pperator : VariantSetOperator Q Dt = CoTERan
ENUMEratlons= o min size : EInt = DATA PORT
@ #nnetatienkind bodes : = [B.. o max size : EInt — EMABLE PORT
- AUTD y, . implements extends e kind : Port¥ind — EDGE EMABLE PORT
— DEFINITION — EVENT PORT
— INVARIANT [BlackMade e e
" MemaryVariabldg
— WODE INVARIANT =1 isDynamic : EBoolean] ¥ " memoryVariables
— PRE
- POST
E| Parameter -
c<ENUMEra L 100 B..1 initSemantics PEATAMELETS
@ appotationlanguage 1 computeSemantics = mandatory : EBoolean
_DCL B..1 updateSemantics
= S E Annotation 1 dataType
- o isDerived : EBoolean 1 length
o isContract : EBcolean outputs 8. .* | BeerationParameter
; 22 kind : Annotationfind inputs @..* '
annotations f..* 2 language : Annotaticnlanguage
o value : EString Wi
annotations

Figure 6.1: The BlockLibrary metamodel

Our simplified Delay block has two mandatory parameters: delay (providing a value containing the
number of clock tick by which an input value is delayed to be provided as an output value) and
initial_condition (the initial condition parameter used as the initial value(s) for the block output).
The first one holds the delay length (the number of clock ticks by which the output value is delayed accord-
ing to the input); the second one holds the initial value for the first output values (the number of values is
equal to the delay value).

The delay parameter has a fixed data type and thus does not have any variation point whereas the IC
one can either be a scalar, a vector or a matrix as it might be necessary to store either one or multiple input
values. We decide to create a specific partial interface for the first parameter: DelayParameter and three
specific ones for the three possible variants of the IC parameter: ICScalar, ICVector and ICMatrix.

The U input port (providing the input value to be delayed) is allowed to take either a scalar or a vector
of double values, it is thus required to create two separated interfaces for these variants: UScalar and
UVector. Dimensionality and data type of the output value depends on the input ones so we can provide
the specification for the V output directly into the corresponding partial interfaces containing the U input
specifications.

Each of those two partial interfaces are related to the DelayParameter one. This provides access to
the StructuralFeature definitions held in DelayParameter in the relating partial interfaces.

We do not relate UScalar and UVector with ICScalar, ICVector and ICMatrix as IC dimen-
sionality depends on the Delay parameter value and on the dimensionality of the U input. These values

85

6.2. THE BLOCKLIBRARY DSML

DelayParameter

DelaySemantics

Figure 6.2: The Delay block specification hierarchy

also impact the size of the memory (M) that stores the delayed values. We detail this dimension relation
in Table 6.3. According to these four possible combinations we see that IC and M dimensions are linked
as IC semantics is to provide the initial value of the memory. We should additionally ensure the values
sizes matching between U and IC. In order to do so, logical properties should be specified for the cases
where U is not a scalar. We propose to insert two additional partial interfaces: UVectorAndICVector
and UVectorAndICMatrix. The first one is related to both UVector and IVCVector and the second
one to UVector and ICMatrix.

’ U dimension ‘ Delay value ‘ IC dimension ‘ M dimension ‘

Scalar 1 Scalar Scalar
Vector 1 Vector Vector
Scalar >1 Vector Vector
Vector >1 Matrix Matrix

Table 6.3: Relation between Delay value, U dimension, IC dimension and M dimension

A memory value should finally be specified according to the data it should store and the amount of
these data, its specification should thus contain these informations. M memory declaration could have
been provided along with the initial_condition interfaces as they are strongly related, but a memory
data type should be specified according to the data it should hold and thus according to the input port
values. We thus defined a partial interface for the memory specification: Mem. It specifies a memory storing
multiple values and should extend either of the four configuration displayed in Table 6.3. These relations
are provided in Figure 6.2 as the combinations of ALT nodes and AND nodes.

The ALT and AND nodes express the semantics according to whom the gathering of block interfaces is
done: ALT nodes expresses an alternative composition whereas AND nodes expresses a mandatory com-
position of the related elements. In Figure 6.2 the composition is to be read bottom up, the element related
by an edge to the lower part of an ALT or AND node is gathering the elements related by an edge to the up-
per part of an ALT or AND node. Edges directly linking partial interfaces and/or semantics specifications

86

6.2. THE BLOCKLIBRARY DSML

have an implicit AND relation, they are not displayed in order to ease the readability of the Figure. The
UVectorAndICMatrix partial interface is thus a composition of the UVector and the ICMatrix par-
tial interfaces. We could also formalise it as in (6.1) with the = operator being the composition operator.
Using the same formalism, the Mem partial interface definition would be as in (6.2).

UVectorAndICMatrix = AND(UVector, ICMatrix) (6.1)

Mem = ALT(AND(ICScalar, UScalar),
UVectorAndICVector,
AND(ICVector, UScalar),
UVectorAndICMatrix)

(62)

Finally we can attach a semantics to these interfaces specification. This is depicted with the DelayMode
semantics specification element.

6.2.2 DELAY BLOCK TEXTUAL SPECIFICATION

Tooling development based on the use of metamodels typically starts with the definition of a concrete
syntax. The kind of concrete syntax to be developed must depend on the user needs and capabilities but
the certification needs must also be taken into account (see Section 2.1). We choose to use a textual syntax
for our purpose as textual syntaxes have good qualities such as scaling, versioning and easy refactoring. We
developed it using the XTEXT framework that allows to define it in an ECLIPSE environment.

We present in Listing 6.4 a simplified specification of the Delay block. Where we only keep a part of the
Mem partial interface dependencies in order to restrict the configurations where the memory has to store
only scalar elements. Again, we choose to restrict the content of the specification for the sake of readability,
interested reader can find the complete specification in Appendix A.

The specification starts with the declaration of the block library name (line 1): BlockLibrary. Some data
types (TInt32, TDouble, TArrayDouble, TMatrixDouble and TString) are then defined in lines 2 to 6.
The remaining elements of the listing (lines 8 to 58) gives the Delay block specification. We can note the
declaration of the delay parameter online 10 along with an invariant stating its allowed values. Online 26,
we declare an invariant expression stating a structural condition on a partial interface. We will detail these
constructs all along this chapter. The concrete textual syntax provided here is only an experimentation
proposal that can be improved.

More advanced concrete syntaxes could have been used, for example a mix of both graphical and tex-
tual syntax allowing to first design a coarse block specification structure in a graphical manner and then
to define for each element its detailed specification using a textual syntax. Our choice of a textual syntax
was related to efficiency as textual syntaxes are more efficient to develop. In order to extend further the
approach and to improve the user experience, an advanced concrete syntax is likely to provide better re-
sults for the product line part. The potential complexity of structural features constraints and semantics
definition will only be handled efficiently with a textual syntax.

6.2.3 BLOCKLIBRARY METAMODEL ABSTRACT ELEMENTS

The BLOoCKLIBRARY metamodel contains three abstract metaclasses that gather common attributes for
some of the metamodel metaclasses. They are presented in Figure 6.5.

Definition 6.2.3.1. StructuralFeature is an abstract metaclass from which all the block specification
structural feature should inherit (ports, parameters and memories). It does not provide any attribute or opera-
tions. Its purpose is to provide a common type for structural features used in various operations as parameters
and return types.

87

6.2. THE BLOCKLIBRARY DSML

1 1library BlockLibrary {
type signed realInt TInt32 of 32 bits
type realDouble TDouble
type array TArrayDouble of TDouble [-1]
type array TMatrixDouble of TDouble [-1,-1]
6 type string TString

blocktype Delay {
variant DelayParameter {
parameter Delay : TInt32 { invariant ocl { Delay.value > 0 } }
11 }
variant UScalar extends DelayParameter {
in data U : TDouble { invariant ocl { U.isScalar() }}
out data V : TDouble { invariant ocl { V.isScalar() }}
}
16 variant ICScalar {
parameter IC isMandatory : TDouble { invariant ocl { IC.isScalar() }}
}
variant ICVector {
parameter IC isMandatory : TArrayDouble { invariant ocl { IC.isVector() }}
21 3
variant Mem extends allof (UScalar, oneof (ICScalar, ICVector))
{
invariant ocl { IC.value.size() = Delay.value }
memory Mem {
26 datatype auto ocl {U.value}
length auto ocl {Delay.value}
¥
}
mode DelaySemantics implements Mem {
31 definition bal = init_Delay {
postcondition ocl { Mem.value = IC.value }
Mem.value = IC.value;
¥
definition bal = compute_Delay {
36 postcondition ocl { Output.value = Mem.value->first() }
Output.value = Mem.value[0];
}
definition bal = update_Delay {
postcondition ocl {
41 Mem.value->last () = Input.value
¥
postcondition ocl {
Mem.value = (Mem.value@pre)->subList(2,Delay.value)->append(Input.value)
¥
46 for (int i=0; i < (Delay.value - 1); i = i + 1) {
Mem.value[i] = Mem.valuel[i + 1];
¥
Mem.value[Delay.value - 1] = Input.value;
¥
S1 init init_Delay
compute compute_Delay
update update_Delay

56}
Listing 6.4: Extract of the Delay block specification using BLOCKLIBRARY textual syntax

88

6.2. THE BLOCKLIBRARY DSML

H Element
o name : EString
o documentation : EString

H SpecificationElement annotations H Annotation
-

& blockType() : BlockType 8..*

E StructuralFeature

Figure 6.5: The BLOCKLIBRARY metamodel abstract metaclasses

Definition 6.2.3.2. SpecificationElement is an abstract metaclass from which all the block specifica-
tion elements must inherit (including StructuralFeature). Itis a 2-tuple ({A}, SpecificationContainer),
where: {A} is a set of annotations constraining the SpecificationElement and SpecificationContainer
is an operation returning the specification holder, i.e. the block specification or the block library — using a SPLE
terminology, this would be the root feature of the current feature model. Its signature is: SpecificationContainer :
SpecificationElement — BLOCKLIBRARY U BlockType

Definition 6.2.3.3. Element is an abstract metaclass from which all the BLOCKLIBRARY metamodel meta-
classes inherits from. It is a 2-tuple (N, D), where: N is the name of the element, provided as a String value. This
attribute is related to requirement REQ-[1|2|3|4].a, as StructuralFeature inherits from Element. D a
String value used to attach documentation to the Element.

6.2.4 ANNOTATIONS

Annotations are of central interest in the BLOCKLIBRARY DSML. They either express constraints or oper-
ations. As a constraint, an annotation is used for structural element value restriction (kind of dependent
type) or interface constraining. As an operation, an annotation is used for the semantics specification of
a block interface. We provide an excerpt of the BLOCKLIBRARY metamodel focused on the Annotation
metaclass in Figure 6.6.

The Annotation metaclass is meant to be extended. It is an entry point for the definition of an an-
notation as a constraint or an operation. Annotation instances should be a container for an AST for a
constraint or an operation expressed using a predefined language.

Definition 6.2.4.1. An OperationParameterisaspecification for an operation parameter. It inherits from
StructuralFeature (and so from Element) and thus has a name. It has one reference to a DataType
element allowing to specify the parameter data type.

Definition 6.2.4.2. An Annotationisa 7-tuple (K,L,V,C,{Op};,{Op}., {A}), where: K (kind at-
tribute) is the kind of the annotation, its value is taken among the AnnotationKind enumeration.
L (language attribute) is the language used to write the annotation, its value is taken among the
AnnotationLanguage enumeration. V (value attribute) is the value of the annotation as a String. This
string must be a correct expression of the concrete syntax of the language selected by L. This expression can access
the elements defined in the Annotation container and the container’s linked Spect ficationElement.

89

6.2. THE BLOCKLIBRARY DSML

H Element g fataType [#
name : EString Fonelllon i bl | i
o docamertation : EString

O

E..1
gefinitionParameterDataType
g OperationParameter

B..*lannotations l ¥ 1
9= g.."

H Annotation o LNDuts outputs
= isCentract : EBoolean -
2 kind AnnatationkKind . n—
& language ApnetationLanguage @ AnnotationKind
o1 value EString — Ao

= PEFINITION
= 3T 1 = INVARIANT
@ Annotationlanguage - MODE INVARIANT

= BCL - PRE
= BAL = PBST

Figure 6.6: The BlockLibrary Annotations metaclass definition

C (isContract attribute) specifies whether the annotation specifies DEFINITION annotations only used in
semantics contracts definition (pre/post annotations). {Op}; (inputs reference) and {Op}, (outputs ref-
erence) contains the definitions of OperationParameter elements, they are the input and output parameters
for the specified Annotation. Finally, {A} (annotations reference) is a set of Annotation elements.
These sub-annotations are used as the contract of their containing Annotation parent.

Examples Annotation elements for the two possible annotation languages can be found in the Delay

block specification of Listing 6.4: line 10 specifies an OCL invariant and line 33 to 36 defines a BAL defini-
tion.
Annotation should be expressed using specific languages. It is defined according to the language at-
tribute. We currently support two languages in Annotation elements: alarge subset of OCL as a general
constraint language and a dedicated simple imperative language called BLocKLIBRARY Action Language
(BAL) used for a more convenient specification of the semantic functions operational semantics (we could
have used an already defined language such as ALF, XTEND or Java but we chose to keep the action lan-
guage simple for this experiment). We provide the specification for both of these languages in Section
7.1.

We distinguish between several kind of annotations according to the kind attribute value. This attribute
defines the interpretation that should be made of the annotation.

« DEFINITION Annotation allows the definition of constants or functions. Constants DEFINITION
are global constant declarations that can be used in other annotations. Function DEFINITION are
meant to gather reusable expressions or parts of programs for the sake of simplification of the specifi-
cation writing and reading. DEFINITION annotations are the only annotations allowed to have input
parameters or outputs that are defined through the {Op}; and {Op}, references. This constraint is
specified in the DefAnnotKindRelTolORef OCL invariant detailed in Listing 6.7. A DEFINITION
Annotation taken from the Delay block specification would be:

definition bal = compute_Delay {
postcondition ocl { Output.value = Mem.value->first() }

OQutput.value = Mem.value[0];

}

90

6.2. THE BLOCKLIBRARY DSML

« PRE/POST Annotation can only be included inside other DEFINITION annotations. They al-
low for the specification of their container definition contract — axiomatic semantics. This contain-
ment constraint is formalised in the PrePostDefAnnotContainedInDefAnnot OCL invariant
detailed in Listing 6.7. A POST Annotation taken from the Delay block specification would be:

postcondition ocl {
Mem.value->last () = Input.value

}

« INVARIANT Annotation are meant to express invariants on StructuralFeature of a block def-
inition. They allow for data types and/or expression of StructuralFeature values constraints.
They are thus to be contained only in StructuralFeature elements as formalised in the
InvAnnotInStructFeatElem OCL invariant detailed in Listing 6.7. An INVARIANT
Annotation taken from the Delay block specification would be:

parameter Delay : TInt32 { invariant ocl { Delay.value > 0 } }

« MODE_INVARIANT: These can only be contained in BlockMode and BlockVariant Element
(formalised in the ModInvAnnot InBMorBV OCL invariant detailed in Listing 6.7). They are used as
block interface constraints expressing conditionals on StructuralFeature elements. A
MODE_INVARIANT Annotation taken from the Delay block specification would be:

invariant ocl { IC.value.size() = Delay.value }

o AUTO: These can be contained everywhere. By defaultitis used asa INVARIANT Annotationitcan
change according to the context of definition of the annotation: inaBlockMode oraBlockVariant
itis interpreted as a MODE_INVARIANT Annotation.

The isContract attribute, targets the specialisation of DEFINITION Annotation elements that can
be referenced only in axiomatic semantics definitions (see Section 6.2.7). Setting this attribute value to true
changes the way the annotation is interpreted and thus its purpose in the specification. The first part of
this definition is formalised in the If IsContractThenDefinition OCL invariant detailed in Listing
6.7.

Finally, {Op}; and {Op}, specifies the OperationParameter elements for a DEFINITION
Annotation. An OperationParameter is a specification for either an input parameter ({Op};) of the
Annotation that contains it or a specification for an output of the Annotation ({Op},). Each
OperationParameter instance has a name (inherited from the Element metaclass) and an optional
reference to a data type. We do not enforce the data type setting for an operation parameter as it might
be possible to infer it from the operation definition. According to the annotation language, the number
of outputs OperationParameter elements should be constrained. In our setting, only action language
operations are allowed to have multiple output values as we want to ensure the coherence with the OCL
specification where operations cannot have multiple output values (this can be done via the use of the
Tuple construct). This constraint is formalised in the NbOutputParamToAnnotLang OCL invariant in
Listing 6.7.

6.2.5 DATA TYPES SPECIFICATION

According to requirement REQ-[2|3|4].[b|c], we want to be able to specify the data types and dimensions
of the blocks structural features. It is therefore mandatory to provide a specification for the data types.

In this purpose, we decided to use the type system presented in Section 4.1.2. Data types instances must
then be provided in the block library specification. A data type instance declaration taken from the Delay
block specification would be the following defining a 32 bits integer data type:

type signed reallnt TInt32 of 32 bits

91

6.2. THE BLOCKLIBRARY DSML

context Annotation

inv DefAnnotKindRelToIORef:
outputs->size() > 0 or inputs->size() > 0 implies
kind = AnnotationKind::DEFINITION

inv PrePostDefAnnotContainedInDefAnnot:
(self.kind = AnnotationKind::PRE or self.kind = AnnotationKind::POST)
implies
(self.oclContainer().oclIsKindOf (Annotation) and
self.oclContainer () .oclAsType (Annotation).kind = AnnotationKind::DEFINITION)

inv InvAnnotInStructFeatElem:
self .kind = AnnotationKind::INVARIANT implies
self.oclContainer ().oclIsKindOf (StructuralFeature)

inv ModInvAnnotInBMorBV:
self.kind = AnnotationKind::MODE_INVARIANT implies
(self.oclContainer ().oclIsKindOf (BlockMode) or
self.oclContainer ().oclIsKindOf (BlockVariant))

inv IfIsContractThenDefinition:
self.isContract implies kind = AnnotationKind::DEFINITION

inv NbOutputParamToAnnotLang:
language = AnnotationLanguage::0CL implies
outputs->size() = 1

Listing 6.7: Annotation metamodel element OCL constraints

6.2.6 BLOCK STRUCTURAL FEATURES

We define here the subset of elements from the BLoCKLIBRARY metamodel used in a block specification
to hold the structural features of the specified block. A detailed diagram of these elements is provided in
Figure 6.8. These structural features are contained in BlockVariant elements that will be detailed in
Section 6.2.7.

Definition 6.2.6.1. A PortGroup defines a group of similar ports with a common purpose that a block in-
stance should be composed of. It would for example model the allowed inputs for an arithmetic operation. It is
a 4-tuple ({DT}, Min, Max, K), where: {DT} is a set of allowed data types taken from the DATATYPES meta-
model, it references to the allowedTypes reference. This attribute is related to requirements REQ-2.[b|c];
Min and Max are integer values specifying how many ports of such a PortGroup may be used in a block in-
stance, they respectively reference the min_size and max_size attributes. These attributes are additionally
constrained according to OCL invariants formalised in Listing 6.9 stating that Min must be a natural number,
Max must be either -1 or a natural number greater or equal to Min. The value -1 means that the bound value
is not known and thus the maximum number of ports in this PortGroup is not limited. These Min and Max
attributes are fulfilling the requirement REQ-1.b. K specifies the kind of port, it references the kind attribute,
this value is an enumeration of type PortKind. According to this attribute value, the specified port behaves as a
data carrying port (DATA_PORT), a port enabling the block computation according to the input boolean value
of the port (ENABLE_PORT), the input rising/falling edge value of the port (EDGE_ENABLE_PORT) or
a port carrying events (EVENT PORT). A PortGroup is a dynamic element of the block specification as its
value can only be concretely known when a block is executed.

There is no example of this kind of multiple input ports in the Delay block. As described in the Min-
Max block specification in Chapter S, all the input ports are used in the same purpose in the computa-
tion. In a BLOCKLIBRARY specification it would have been convenient to represent all the input port in
a PortGroup. A possible declaration using the BLOCKLIBRARY syntax is provided in Listing 6.10. In
this extract we define the input PortGroup named Input as a double value, this PortGroup model a
sequence of at least 1 port (as the provided multiplicity is [1..*]).

92

6.2. THE BLOCKLIBRARY DSML

[BlockLibrary [| Element
—E?“_ o name : EString

&% documentation : EString

variants §._+| variants

8. .*|memoryVariables

H Portiroup H MemoryVariablg H Structuralfeature
o mandatory : EBoolean e win sife : EINE :
et mER - siFe : EInt l ,ﬂ
& kind : PartKind P, p—
i &
H Annotation
<<ETIUMETET 1 D>
o Portkind
(from value) : = HTI-_MT . —-—-
— ERARBLE PORT
— EDGE ENMABLE PORT
— EVENT PORT

Figure 6.8: The BLOCKLIBRARY metamodel structural features definition elements

context PortGroup
inv MaxSizeOne:
max_size = 1 implies min_size = 1

inv MinMaxSizeGTZero:
min_size > 0 and (max_size > 0 or max_size = -1)

inv MaxSizeGTMinSize:
max_size >= min_size or max_size = -1

inv OutputPortThenMinMaxValues:
oclContainer ().outputs->includes(self) implies
(min_size = 1 and max_size = 1)

Listing 6.9: PortGroup min_size and max_size attributes OCL constraints

93

6.2. THE BLOCKLIBRARY DSML

in data Input : TDouble [1 .. x]

Listing 6.10: MinMax block input specification using the BLOCKLIBRARY syntax

Definition 6.2.6.2. A Parameter defines a parameter that a block instance may be composed of in order to
configure the structure and behavior of the block. It is a 3-tuple ({DT}, M, D), where: {DT'} is a set of allowed
data types taken from the DATATYPES metamodel (REQ-3.[b|c]); M specifies, whether the parameter is manda-
tory or not; and D is a container for the default value specified as an Expression element (the Expression
element contains a literal value stored as a String). A constraint is added specifying that if a Parameter is
mandatory then its default value D should be provided. A Parameteris a static element of a block specification
as its value is concretely known when the block is instantiated.

An example of parameter definition for the initial_condition parameter of the Delay block is pro-
vided in the Delay block specification in line 27. In this setting, the IC parameter is declared asa TDouble
value, that is mandatory — isMandatory keyword.

Definition 6.2.6.3. A MemoryVariab ledefines a state variable that a block instance may be composed of in
order to store data between cycles during the execution of sequential blocks. It is a 2-tuple (DT, L), where: DT is
the data type (taken from the DATATYPES metamodel) of the MemoryVariable- modeled as the dataType
reference to an Annotation element in the metamodel (REQ-4.b). L determines the dimension of the
MemoryVariable (adimension value greater than one allows to store multiple values in the memory) modeled
as the Length reference to an Annotation element in the metamodel (REQ-4-c). A memory specification is
not acceptable if its initial value is not provided. This must be provided in the initialisation phase of the seman-
tics specification of the block (detailed in Section 6.5). A MemoryVariableis a dynamic elements of a block
specification.

The Delay block specification needs a memory definition. This memory must store the input value.
Its data type is then the one of the input value. The number of input values stored by this memory is
dependent of the delay parameter that provides this information. A MemoryVariable example taken
from the Delay block specification would be:

memory Mem {
datatype auto ocl {U.value}
length auto ocl {Delay.value}
}

6.2.7 BLOCKLIBRARY METAMODEL VARIABILITY STRUCTURE

A block specification is composed of both structure and behavior specification for one block configura-
tions. These configurations are build from partial interfaces specifications: BlockVariant.
BlockVariant are composed according to a logical language represented in the metamodel by
VariantSet elements derived from SPLE.

A BlockVariant is a container of the information required to describe a correct block instance struc-
ture. Such a structure is referred to as the configuration of a block. ABlockMode element gathers a seman-
tics specification for the block configuration. Each BlockMode can be associated to a set of configurations
using the same VariantSet-based logical language. In the Delay block specification extract, we have one
semantics definition element: DelaySemantics, some partial interfaces holding a MemoryVariable
definition: Mem; PortGroup definitions: UScalar or Parameter definitions: DelayParameter,
ICScalar, ICVector.

In the following, we will define the BlockVariant, BlockMode and VariantSet elements. We pro-
vide an extract of the BLOCKLIBRARY metamodel focused on these elements in Figure 6.11. In this figure,
we provide the complete signatures for the features, signatures and configurations operations
in a yellow note. We decided to do this as the graphical ECORE metamodel does not display correctly the
return types of operations returning multiple elements.

94

6.2. THE BLOCKLIBRARY DSML

{| SpecificationElement

(> @ blockInstance() : PrimitiveBlock 4
4@ blockType() : BlockType

featuresi) : StructwralFeatwre[8..*]
signatures({): Signature[B..*]
configurations(): Configuration[B..=%]

H BlockLibrary

’ sybVariants
blockTypes variants/@. . * B..*

Li BlockType b, | BlockVariant
= categery : EString — o] 7 seecifiesbynamic : EBoolean

. ol sl i g« | @ features{) : StructuralFeature
t variants | @ signatures() : Signature

B..

B..*extends

g VariantSet <ENUTErET10n=>
2 sperater : VariantSetOperster |g, .+ I N lanieiyorwtst

extends | -
i..» - ALT

implements

1..'£\ude;'.
initSemantics @..1
i

L] BleckMode H Annctatien
3 isDynamic : EBoolean _-zcumputﬂerr:antzcs 1 annotatiens
@ signaturesi| updateSemantics 8. .1 a,."

Figure 6.11: The BLOCKLIBRARY metamodel variability structure

Definition 6.2.7.1. A BlockVariant is a partial interface specification for a block.
Itisa 10-tuple ({pt}, {pg}i, {rg}o, {mv}, {vs}, {Invos. }, Dyn, F, S, { Def}), where: {pt} is a possibly empty
set of Parameter; {pg}; is a possibly empty ordered set of input PortGroup; {pg}, is a possibly empty
ordered set of PortGroup; {mv} a possibly empty set of MemoryVariable; {vs} a possibly empty set of
VariantSet (we will detail this later); {Inv,uoq, } is a possibly empty set of MODE_ INVARIANT annotations
constraining the structural elements values in the specification. Dyn specifies, whether the variant is dynamic
meaning that its M{ODE_ INVARIANT annotations are referring to the values of a dynamic element of the specifica-
tion (PortGroup or MemoryVariable) this has an impact on the interpretation of the BlockVariant as
detailed in the BlockMode element specification that follows.
F : BlockVariant — Set(StructuralFeature) is the features () operation that returns the set of
all StructuralFeature clements contained by self (see Section 6.4.1).
S : BlockVariant — Set(Signature) the signatures () operation that returns the set of all
Signature that can be extracted from self (see Section 6.4.2). { Def} is a possibly empty set of DEFINITION
annotations.

In the Delay block specification, the ICScalar and ICVector BlockVariant defines the two partial
interfaces for the block. In the first one, the parameter initial_conditionisof type TDouble whereas
on the second one, the same parameter is of type TArrayDouble. Using the tuples representation, this

95

6.2. THE BLOCKLIBRARY DSML

example would be represented as (6.3).

initial_condition; = (TDouble, 1,1, DATA PORT)

initial_condition, = (TArrayDouble, 1,1, DATA_ PORT)

ICScalar = ({initial_condition,},D, 0,0, 0,), false, features(), signatures(), D)
ICVector = ({initial_conditiomn,},(, D, 0,0, 0, false, features(), signatures(), 0)

(6.3)

Definition 6.2.7.2. A BlockMode represents one possible semantics configuration of a block specification. It
is a 7-tuple (Init, Compute, Update, {vs}, Dyn, S, {Invyoq. }), where: Init, Compute and Update gathers the
respective semantics phases functions of the block that are composed of at least one DEFINITION Annotation
holding operational semantics and optionally composed of PRE/POST Annotation holding axiomatic spec-
ification; {vs} is a non empty set of VariantSet; Dyn specifies, whether the specified semantics is dynamic
— meaning that the specified semantics depends on the verification of a constraint on the value of a dynamic
element (an input PortGroup or a MemoryVariable) (we will detail this just after this definition); S :
BlockMode — Set(Signature) is the signatures () operation that returns the set of all Stgnature
that can be extracted from self (see Section 6.4.2); and {Inv,,,q.} are the MODE_INVARIANT annotations de-
fined in the BlockMode context constraining the St ructuralFeature.

Init, Compute and Update provide the specification of the block configuration semantics. This semantics
is provided as DEFINITION Annotation elements.

DYNAMIC SEMANTICS SPECIFICATIONS

Dynamic semantics specifications are used in order to provide semantics definitions for specific executions
of a block configuration. This will allow to split complex semantics specifications as distinct behaviors.
Such segmentation should be done according to conditions expressed in the {Inv,yo4, } MODE_INVARIANT
Annotation elements.

An example of such a block specification is provided for the Abs block in Listing 6.12. This simple block
outputs the absolute value of its only input port to its only output port. We first declare the block input and
output ports in BlockVariant Abs_Root and then we provide two BlockMode, one for the case when
the input is negative: Abs_Neg; and the other one when the input is positive or null: Abs_PosOrNull.
Both BlockMode specification specifies dynamic behaviors of the block.

PARTIAL INTERFACE BUILDING STRUCTURE

In the Delay block specification, the DelaySemantics BlockMode defines one semantics for the block
as provided in Listing 6.13.

It provides the three phases of a block execution semantics through the DEFINITION Annotation:
init_Delay, compute_Delay and update_Delay.

Definition 6.2.7.3. A VariantSetisa 3-tuple: ({vs}ex, {bv}, Op), where: {vs} . € VariantSet*isa
possibly empty set of VariantSet that the current VariantSet extends; {bv} € BlockVariant® asetof
contained BlockVariant and; Op = AND | ALT, is an operator stating whether the VariantSet referred
in {vs}ex and the BlockVariant referred in {bv} are necessarily (AND) related or alternatively (ALT) -
meaning only one — related to the current VariantSet. AND and ALT relations are the n-ary versions of the
and and zor logical relations applied to a set of BlockVariant and VariantSet. VariantSet relations
link to other VariantSet relations via the ext ends reference making it possible to build complex relations.

We will illustrate the VariantSet elements declaration and use based on the Mem BlockVariant
declaration of the Delay block specification:

96

6.2. THE BLOCKLIBRARY DSML

[8]

12

17

22

27

library SimpleBlocks {
// Primitive types
type realDouble TDouble

}

blocktype Abs is Combinatorial {

}

variant Abs_Root isDynamic{
in data E1 : TDouble
out data S1 : TDouble

¥

mode Abs_Neg implements Abs_Root {
modeinvariant ocl { El.value < 0.0 }
definition bal = compute_Abs_Neg {

postcondition ocl { Si1.value = - El.value }
postcondition ocl { S1l.value >= 0.0 }
S1.value = - El.value;

¥
compute compute_Abs_Neg
¥
mode Abs_PosOrNull implements Abs_Root {
modeinvariant ocl { El.value >= 0.0 }
definition bal = compute_Abs_PosOrNul {
postcondition ocl { Si1.value >= 0.0 }
postcondition ocl { S1.value = El.value }
S1.value = El.value;
}
compute compute_Abs_PosOrNul

}

Listing 6.12: The Abs block specification using BLOCKLIBRARY textual syntax

mode DelaySemantics implements Mem {
definition bal = init_Delay {
postcondition ocl { Mem.value = IC.value }
Mem.value = IC.value;
¥
definition bal = compute_Delay {
postcondition ocl { Output.value = Mem.value->first() }
OQutput.value = Mem.value[0];
}
definition bal = update_Delay {
postcondition ocl {
Mem.value->last() = Input.value
}
postcondition ocl {
Mem.value = (Mem.value@pre)->subList(2,Delay.value)->append(Input.value)

¥

for (int i=0; i < (Delay.value - 1); i = i + 1) {
Mem.value[i] = Mem.valuel[i + 1];

}

Mem.value [Delay.value - 1] = Input.value;

}

init init_Delay
compute compute_Delay
update update_Delay

Listing 6.13: The DelaySemantics BlockMode

97

6.2. THE BLOCKLIBRARY DSML

variant Mem extends allof (UScalar, oneof (ICScalar, ICVector))
¢ invariant ocl { IC.value.size() = Delay.value }
memory Mem {
datatype auto ocl {U.value}
length auto ocl {Delay.value}
) }

Extension relations modeled by VariantSet link BlockVariant elements with other
BlockVariant elements or BlockMode with other BlockVariant elements. These are expressed in
the textual syntax using the extends and implements keywords. These keywords, taken from the Java
language, are followed by either one BlockVariant element name — in this case the modeled VariantSet
hasan AND operator and only one BlockVariant inits variants relation — ora combination of oneof
and allof keywords respectively modeling AND and ALT VariantSet elements — in this case, each
allof or oneof keyword model a VariantSet with respectively an AND or an ALT operator and the
following BlockVariant referenced by their name as the content of their variant relation. Itis possible
to combine these constructs to build complex compositions of VariantSet such as the one previously
provided in Figure 6.2.

In the Delay block specification, the MemSimple BlockVariant (lines 36 to 45) is specified as extend-
ing either the UVectorAndICVector BlockVariant orextendingboth UScalar and ICScalar. The
allof(...) construct(line38) referstoaVariantSet witha AND operator whereas the oneof (. . .)
construct (lines 36 to 39) referstoa VariantSet with an ALT operator. This construction allows to build
two possible partial block interfaces. The first configuration gathers SimpleDelay and
UVectorAndICVector. As these BlockVariant have also been built from other BlockVariant, it
recursively includes UVector and ICVector (line 33) andDelayParameter (line 19). The mechanism
for the resolution of the configurations that we have detailed here will be formalised in Section 6.4.

6.2.8 BLOCKLIBRARY METAMODEL SPECIFICATION CONTAINERS

Definition 6.2.8.1. A BlockType holds the full specification for one block. The BlockMode and
BlockVariant elements are combined to specify BlockType. It is a 3-tuple: ({bv}, {bm}, C), where:
{bv} is a non empty set of BlockVariant elements, {bm} is non empty set of BlockMode elements and
C : BlockType — SetConfiguration the function defined in Section 6.4.5 extracting a set of
Configuration element from a BlockType specification.

It is important to ensure that a BlockType element holds BlockMode elements with different names.
As such, we will ensure that it is possible to refer to a BlockMode according to its name in the context
of a BlockType. This is formalised in the A11BlockModesHaveDifferentNames OCL invariant in
Listing 6.14.

context BlockType
inv AllBlockModesHaveDifferentNames:
self .modes->forAll(ml, m2 | ml <> m2 implies ml.name <> m2.name)

Listing 6.14: AllBlockModesHaveDifferentNames OCL constraint

Definition 6.2.8.2. A BLOCKLIBRARY is a 2-tuple: ({bt}, {bv}), where: {bt} € BlockType' a set of
BlockType elements. {bv} is a non empty set of BlockVariant referred to as global BlockVariant.
Such elements can be declared to hold StructuralFeature elements specification that can then be used in
all BlockType specifications from the same block library.

As previously stated for BlockMode, it is important in a BLOCKLIBRARY context to ensure that all the
BlockVariant elements have a distinct name relatively to the BlockVariant contained in each
BlockType specification. The same property should apply to BlockType names. Thus, is is possible, in
the context of a BlockType to refer to a BlockVariant using its name, and in the BLOCKLIBRARY con-
text to refer to a BlockType element from its names. We formalise them in the

98

6.3. RELATION TO FEATURE MODELING

context BlockLibrary

inv AllBlockVariantsHaveDifferentNamesInBlockType:
self.blockTypes->forAll (bt |
bt.variants->union(self.variants)->forAll (bvl,bv2]|
bvl <> bv2 implies bvl.name <> bv2.name
)
)

inv AllBlockTypesHaveDifferentNames:
self.blockTypes->forAll(btl, bt2 |
btl <> bt2 implies btl.name <> bt2.name
)

Listing 6.15: BLOCKLIBRARY metaclass OCL constraint

Al1BlockVariantsHaveDifferentNamesInBlockType OCL invariant and the
Al11BlockTypesHaveDifferentNames OCL invariant provided in Listing 6.185.

6.3 RELATION TO FEATURE MODELING

A BLOCKLIBRARY element is — on a first approximation — a placeholder for BlockType elements. Each
of these BlockType are meant to contain all the possible structural configurations for a block and their
relative semantics. We have shown the ability — by using the BLockL1BRARY DSML- to segment a block
specification into partial interfaces of blocks (BlockVariant) and to combine these interfaces into more
complex interfaces through the VariantSet relations. We will show how the BlockVariant hierar-
chy, their attached BlockMode and their container BlockType can be related to features in the SPLE
approach. The VariantSet thus corresponds to a set of constraint edges as presented in the FODA ter-
minology by Kang in 1990 [83] and to the consists-of relations as proposed by Schobbens in 2007 [135].

6.3.1 CONVERSION OF A BLOCKTYPE TO A FEATURE MODEL

If a BlockType instance is considered as the root feature for a feature model, then its contained
BlockVariant and BlockMode should then be considered as its sub-features. Each BlockVariant
StructuralFeature can be considered as a sub-feature of their containing BlockVariant. We pro-
vide an informal specification for the transformation taking as input a BLOCKLIBRARY instance specifica-
tion and providing a FM for each of its BlockType elements.

1. ABlockType element is transformed to the root feature of a new FM.
2. A BlockMode elements are transformed to alternative sub-features of the root BlockType feature.

3. A BlockVariant (both the ones contained in the BlockType and the globally used ones) are
transformed to optional sub-features of the root BlockType feature.

4. A StructuralFeature contained in BlockVariant are transformed to mandatory sub-features
of their respective BlockVariant feature.

5. Every relation expressed using the VariantSet logical language is converted to a cross-tree con-
straint.

The application of this transformation by hand to the Delay block specification builds the FM provided
in Figure 6.16 along with the cross tree constraints provided in (6.4).

Such a derived FM is not a typical feature model - at least not as it would have been designed by a
human being. Indeed if we compare it to the one provided for the SPLE specification of the Delay block in
Figure 5.42, we can see that it does not provide a convenient structuring of the block elements nor a model

99

6.3. RELATION TO FEATURE MODELING

DelaySemantics
DelayParameter Hﬂﬂay_ﬂnﬂl
_eumase
Ve

¢ IC_TArrayDouble

oML

—

UScalar = DelayParameter
Mem = UScalar A (ICScalar @ ICVector) (6.4)
DelaySemantics = Mem

Figure 6.16: FM extracted from the Delay block BlockType specification

whose meaning is easy to apprehend for a human being. Refactoring of the model should be done in order
to transform a significant part of the cross-tree constraints to hierarchical relations between features. We
are confident that parts of these refactoring can be done automatically by transforming the VariantSet-
based expressions to hierarchical relations. This would provide the user with a more human readable FM
and help the block specifier on his/her specification design.

Although this raw FM has no interest for human reading, many can be found for automated analysis as
is explained in the next subsection.

6.3.2 AUTOMATIC FEATURE MODEL ANALYSIS

A number of analysis techniques for FM have been developed in the SPLE community over the past 20
years. A summary has been presented by Benavides 2010 [20]. Among these analysis techniques, not all
are relevant for a BLOCKLIBRARY instance analysis. We comment here on some of the most appropriate
ones and provide hints on their use on BLOCKLIBRARY instances:

« Computation of the set of all products. Extracting all the possible products defined through a FM
allows to “identify new valid requirements combinations not considered in the initial scope of the product
line” [20]. This would allow finding all the possible configurations for a BlockType and extracting
them. Such set of configurations could then be used as a basis for the verification of some properties
over the specification such as its disjointness as expected in REQ-7.b or its completeness as expected
in REQ-7.c. Semantics correctness of the specification, as required in REQ-8, must also use this kind
of computations as each extracted block configuration would provide a context for the evaluation of
its contained semantics specification. We have implemented such an automated extraction mecha-
nism for the BLOCKLIBRARY instances (details are provided in Section 6.4).

« Assessment of the conformance of a product to its FM. We must be able to decide whether there
is a BlockMode that corresponds to a given block instance. Such mechanism can be used for the
verification of block configurations according to their specification. Such assessment provides for
each input block a unique possible configuration stored in a Configuration element as specified
in Section 6.4.2. A failure in the matching of the block instance to a Configuration will then be
the result of either flaws in the specification or an invalid block instance writing. As a result, ensuring
the correctness of the specification will grant the ability to check the block instances.

100

6.4. FROM BLOCK SPECIFICATION TO CONFIGURATIONS

« Detection of anomalies in the products specification. In SPLE and feature modeling, the hierar-
chy of features along with the cross-tree constraints might cause the apparition of anomalies in the
model. An example of anomaly in FM is the impossibility for a feature to be allowed in any prod-
uct of the feature model (dead feature). Leaving such anomalies in a FM does not prevent from
the extraction of all products but it is important to ensure their detection as they might cause flaws
in the specification due to the fact that the elements specified in a dead feature are not taken into
account in any product. We apply this detection to our BLOCKLIBRARY instances, it allows us to
find if some BlockVariant are not implemented. The detection of anomalies verification has been
implemented as a verification of the BLOCKLIBRARY instances on the BLOCKLIBRARY editor. Such
verifications are based on the configuration extraction calculus described in Section 6.4 and are for-
malised in Section 6.6.

« Filtering. Filtering of a productline allows to extract from a feature model and a partial configuration
the set of all matching products configurations that contains the provided partial configuration. This
allows for example to extract from a product line the set of all products containing specific features.
Filtering can be applied on the BLOCKLIBRARY elements in order to find the potential configurations
from partial block instance informations. We refer to such filtering in Section 8 while dealing with
automatic code generation verification.

6.4 FROM BLOCK SPECIFICATION TO CONFIGURATIONS

From a block specification, it is mandatory to express the set of all possible configurations. As previously
claimed, this will allow extracting valuable informations in order to perform verifications and data extrac-
tion.

In this section, we provide the specification for the function extracting all the block configurations spec-
ified in a BlockType element. We first give some definitions for operations used in this function. We
describe the Configuration construct and the operations applied to it. We then provide an algorithm
for the extraction of Configuration elements and finally we give some computation examples on the
Delay block specification.

6.4.1 PRELIMINARY OPERATIONS DEFINITIONS ON BLOCKLIBRARY ELEMENTS

« |X]: Set() — integer
Compute the cardinal of a collection.
« SF(e): BlockVariant — Set(StructuralFeature)

Compute the set of StructuralFeature elements held in e. This is implemented as the
features() operation in the BlockVariant metaclass.

Returns a possibly empty set of structural features.

SF(e) = {e.inputs} U {e.outputs} U {e.parameters} U {e.memoryVariables} (6.5)

o SCrxvartant(€) : StructuralFeature — Set(Annotation)

Compute the set of structural constraints of e. Stuctural constraints are the INVARIANT
Annotation gathered through the annotation reference of e.

Returns a possibly empty set of Annotation elements.

Ve, e : StructuralFeature,

6.6
SCrwvartant(€) = {a € e.annotations|a.kind = INVARIANT} (66)

101

6.4. FROM BLOCK SPECIFICATION TO CONFIGURATIONS

« SCuope_mnvarzant(e): BlockMode UBlockVariant — Set(Annotation)
Compute the set of structural constraints of e. Structural constraints are the MODE_INVARIANT

Annotation gathered through the annotations reference of e.
Returns a possibly empty set of Annotation elements.

Ve, e : BlockMode V e : BlockVariant,

6.7
SCMODE_INVARIANT(e) == {a € e.annotations|a.kind - MODE_INVARIANT} ()

. VS*(e): BlockMode UBlockVariant U VariantSet — Set(VariantSet)

Compute the set of VariantSet elements contained in e through the implements refer-
ence (ifeisaBlockMode) or the extends reference (ifeisaBlockVariant oraVariantSet).
Each VariantSet element should have its operator attribute set to X.

Returns a possibly empty set of VariantSet.

VX,X = ANDV X = ALT — Ve.(

(e : BlockMode — VSX(e) = {vs € e.implements|vs.operator = X})
A (e : BlockVariant — VS¥(e) = {vs € e.extends|vs.operator = X})
A (e: VariantSet — VS¥(e) = {vs € e.extends|vs.operator = X}))
(6.8)

« BV(v): VariantSet — Set(BlockVariant)

Compute thesetof BlockVariant elements contained in vs. These arethe BlockVariant
elements referred through the variants reference of the VariantSet metaclass.

Returns a possibly empty set of BlockVariant.

Vv, v : VariantSet, BV(v) = v.variants (6.9)

6.4.2 CONFIGURATION AND SIGNATURE CONSTRUCTS

From a BLOCKLIBRARY instance, we define two data structures: Signature and Configuration both
used in order to store the result of the extraction of all the block specifications from a BlockType element.
These elements are defined in a separate package in the BLOCKLIBRARY metamodel. An extract of the
metamodel package content is provided in Figure 6.17. We will provide in the following the definitions
for these two elements.

Definition 6.4.2.1. The Signature metaclass gathers the mandatory elements for a block interface specifica-
tion. It is a 4-tuple (D, bm, {bv}, F), where D is a derived attribute specifying whether the signature is dynamic
or not (isDynamic attribute); bm is an optional BLockMode element holding a semantics specifications for the
signature; {bv} is a set of BlockVariant elements that are the partial interfaces specifications of the signature;
Fis the features() operation returning all the St ructuralFeature elements contained in the {bv} elements
(defined in Section 6.4.1). Signature instances are created by calling the signatures() operation on either a
BlockVariant or a BlockMode (defined in Section 6.4.4).

A dynamic SignatureisaSignature element holding atleast one BlockVariant element that has
its isDynamic flag set to true. Leading to the interpretation of the Signature as one interface of a block
for which at least one constraint deals with the value of a dynamic StructuralFeature. The isDynamic
derived attribute is defined using the OCL language in Listing 6.18.

102

6.4. FROM BLOCK SPECIFICATION TO CONFIGURATIONS

g Element [#]
from blocklibrary =

= name ; EString
5. documentation : EString

 BleckVariant

! specifiesDynamic : EBoolean

variants .| @& features{) variants
i & signatures{) b
B. . *variants H'_“"' e
0k -
blockType ﬂ,_.!.w: : EBoalean
1 g BlockType [7] @ features()
om blocklibrary) -
o category ;- EString sj_ﬁna*:ures-
@ configurations()

l._IMMES

H BlockMod [#

Trom

modes s mode
1. .° = isDynamic ;. EBoolean B..1

& sigratures()

features|) : StructuralFeature[8. . *]
signaturesy): Signature[8..*]
configurations{): Configuration[d..*]

Figure 6.17: The Configuration metaclass

context Signature::isDynamic : Boolean
derive: variants->exists(var| var.isDynamic)

context Signature
inv SFNamesConflictInSignature:
self.variants->collect (bv|
bv.features ())->forAll(pi,p2|
pl <> p2 implies pl.name <> p2.name

inv MaxOneUnboundedInPGinSignature:
let inputs = self.variants->collect(v| v.inputs) in
inputs->select(in| in.max_size = -1)->size() <=1

Listing 6.18: MaxOneUnboundedlnputPortGroupinSignature OCL constraint

For a Signature element we add a constraint on the uniqueness of the names of the
StructuralFeature it contains. This will allow to ensure the possibility to refer to
StructuralFeature elements from their name in the context of a Signature. We formalise this as
the SFNamesConflictInSignature OCL constraint in Listing 6.18.

Multiple input PortGroup elements are allowed in a single Signature BlockVariant elements. If
more than one of these input PortGroup is unbounded (max_size attribute set to -1) then it will not be
possible anymore to ensure that there is only one match for a block instance according to this Signature.
We thus ensure that there is only one unbounded input PortGroup element in a Signature. This is
formalised as the MaxOneUnboundedInPGinSignature OCL constraints in Listing 6.18.

Definition 6.4.2.2. The Configuration metaclass gathers the required elements for a block configuration
specification. Itis a S-tuple (D, T, {bm}, {bv}, F), where D specifies whether the configuration is dynamic or not
(isDynamic attribute); T is the reference blockType to a BlockType element; {bm} is a set of BlockMode
elements that are the different behaviors specifications for the configuration; {bv} is a set of BlockVariant

103

6.4. FROM BLOCK SPECIFICATION TO CONFIGURATIONS

context Configuration::isDynamic : Boolean
derive: variants->exists(var| var.isDynamic)

context Configuration
inv SFNamesConflictInConfiguration:
self.variants->collect (bv]|
bv.features ()
)->forAll(pl,p2|
pl <> p2 implies pl.name <> p2.name
)

Listing 6.19: Configuration isDynamic definition using OCL

1 /% pre: sigs->collect(s| s.mode)->asSet()->size() = 1
post: result->forAll(s| s.variants->includesAll(bvs))
post: result->forAll(s| s.mode = sigs->first().mode)
post: let varSigs: Collection(Collection(BlockVariant)) =
sigs->collect(s|s.variants) in
6 varSigs->forAll(s|
result->select(r| r.variants)->exists(r|
r->includesAll(s)
)
)

11 =/
includeBV(sigs, bvs) =
sigs' = Set<Signature>{};
foreach sig : Signature in sigs do
s = new Signature();
16 s.mode = sig.mode;

s.variants.addAll(sig.variants);
s.variants.addAll (bvs);
sigs'.add(s);
done;
21 return sigs';

Listing 6.20: includeBV algorithm specification

elements that are the structural elements of the configuration; F is the features() operation returning all the
StructuralFeature elements contained in the {bv} elements. Configuration instances are created by
calling the configurations() operation on a BlockType element (defined in Section 6.4.5).

A dynamic Configuration holds at least one Signature element that has its isDynamic flag set to
true. The isDynamic derived attribute is defined using the OCL language in Listing 6.19.

For each configuration extracted from the BlockMode elements contained in a BlockType, the
StructuralFeature elements name should be unique in order to be able to refer to these elements

by their name. This property is ensured in the SFNamesConflictInConfiguration OCL invariant formalised
in Listing 6.19.

6.4.3 OPERATIONS BASED ON SIGNATURE CONSTRUCTS
We detail here the operations that allow the manipulation of sets of Signature constructs.

o includeBV(sigs, bvs): Set(Signature) — Set(BlockVariant) — Set(Signature)

appends the second argument collection of BlockVariant elementsin each Signature
of the first argument collection. We define this operation with the algorithm provided in
Listing 6.20.

Returns a possibly empty set of Signature.

o distributeBV(sigs, bvs): Set(Signature) — Set(BlockVariant) — Set(Signature)

104

6.4. FROM BLOCK SPECIFICATION TO CONFIGURATIONS

14

19

/* pre: sigs->collect(s| s.mode)->asSet()->size() = 1
post: result->collect(r| r.variants) = bvs->collect (bv]|
sigs.variants->including(bv)
)
post: result->forAll(s| s.mode = sigs->first().mode)
*/
post: result->forAll(r| r.mode = sigs->first().mode)
distributeBV(sigs, bvs) =

sigs' = Set<Signature>{};
foreach sig : Signature in sigs do
foreach bv : BlockVariant in bvs do
s = new Signature();
s.mode = sig.mode;

s.variants.addAll(sig.variants);
s.variants.add(bv);
sigs'.add(s);
done;
done;
return sigs';

Listing 6.21: distributeBV algorithm specification

distributes all the BlockVariant elements of the second argument into the Signature
provided as first argument. We define this operation with the algorithm provided in Listing
6.21.

Returns a possibly empty set of sets of Signature.

6.4.4 EXTRACTION OF SIGNATURE ELEMENTS

We detail here the algorithms for the extraction of Signature instances as they are specified in Figure
6.17. These are created by a call to the signatures() operation. There are two implementations of the signa-
tures() operation, one is specified on the BlockVariant metaclass and the other on BlockMode meta-
classes. We will use a single algorithm for both implementations.

« Signatures(e): BlockVariant UBlockMode — Set(Signature)

Extracts a set of Signature elements starting from e. Each Signature holds a unique
path through the BlockType instance specification tree going from e to the root of the
tree via the relations defined by the VariantSet elements. Detailed specification of this
algorithm is provided in Listing 6.22. We depend on the VS_AND and VS_ALT operations
in this algorithm, they match to their respective VS* operations defined in (6.8).

6.4.5 EXTRACTION OF CONFIGURATION ELEMENTS

« Configurations(e): BLockType — Set(Configuration)

Extracts a set of Configuration elements. Each Configuration holdsa set of at least
one Signature element. The collection of Configuration elements constitutes the
complete set of BlockType instance specifications. Detailed specification of this algo-
rithm is provided in Listing 6.23.

REQ-7.[b|c] verifications are based on the Configuration(Blo ckType) algorithm that extracts the com-

plete set of Configuration elements from a BlockType instance. These verifications are detailed in
Section 6.6.

10S

6.4. FROM BLOCK SPECIFICATION TO CONFIGURATIONS

1 /% post: e.oclIsTypeOf (BlockMode) implies result->forAll(s| s.mode = e)
post: e.oclIsTypeOf (BlockVariant) implies result->forAll(s]|
s.mode.oclIsUndefined())
post: result->collectNested(s| s.variants) =
VS_ALT(e)->collectNested (vsALT|
6 vsALT.variants->union (VS_AND(e)->collect (vsAND| vsAND.variants))) */
Signatures_init(e) =
sigs = Set<Signature>{};
Signature s = new Signature();
sigs.add(s);

11
if (e instanceof BlockMode) then
s.mode = e;
foreach vs : VariantSet in vs_AND(e)
16 sigs = includeBV(sigs, vs.variants);
done;
foreach vs : VariantSet in vs_ALT(e)
sigs = distributeBV(sigs, vs.variants);
21 done;
return sigs;
/* post: Signature_init(e)->collectNested(s|
s.variants->collect (sub| Signature(sub))->collectNested(s2]|
26 s2.variants->union(s.variants)

)
)->isEmpty () implies
(result->collectNested(s| s.variants) =
Signature_init(e)->collectNested(s| s.variants))
31 post: not (Signature_init(e)->collectNested(s]|
s.variants->collect (sub| Signature(sub))->collectNested(s2]|
s2.variants->union(s.variants)
)
)->isEmpty ()) implies
36 result->collectNested(s| s.variants) =
Signature_init (e)->collectNested(s|
s.variants->collect (sub| Signature(sub))->collectNested(s2]|
s2.variants->union(s.variants))) */
Signatures(e) =
41 sigs = Signatures_init(e);

result = Set<Signature>{};

foreach sig : Signature in sigs do
innerSigs = Set<Signature>{};
46 foreach innerBV : BlockVariant in sig.variants do
innerSigs.addAll (Signatures (innerBV));
done;
foreach inSig : Signature in innerSigs do
inSig.variants.addAll(sig.variants);
S1 result.add(inSig) ;
done;
done;

if (result.size() = 0) then
56 return sigs;
else
return result;
endif

Listing 6.22: BlockMode and BlockVariant signature extraction initialisation algorithm specification

106

6.5. SEMANTICS MODELING

1 /% post: return->forAll(c|
c.modes->collect(m| Signatures(m))->oclAsSet()->size() = 1
) */
Configurations(bt) =
sigs = Set<Signature>{};

6 foreach bm : BlockMode in bt.modes do
sigs.addAll(Signatures (bm));
done;

configs = Set<Configuration>{};
11 foreach sig : Signature in sigs do
¢ = new Configuration(bt);
if (sig.mode != null) then
c.modes.add(sig.mode) ;
endif
16 c.variants.addAll(sig.variants);
configs.add(c);
done;

foreach pair: (cl: Configuration, c2: Configuration) in configs do

21 if (cl.variants = c2.variants) then
cl.modes.addAll (c2.modes) ;
c2.delete;

endif
done;

26

return configs;

Listing 6.23: BlockType configuration extraction algorithm specification

6.5 SEMANTICS MODELING

Ina BLOCKLIBRARY instance, extracted configurations hold semantics phases definitions provided through
DEFINITION Annotation. Each semantic DEFINITION Annotation needs to be provided either as
an axiomatic semantics — defining the pre-conditions and post-conditions for each phase of the seman-
tics — or as an operational semantics definition or even both, that must be correct one against the other.
The advantage of providing both axiomatic and operational specification is on the verification capabilities
regarding the specified semantics.

The verification of a block semantics specification cannot be achieved by only relying on the content
of the axiomatic and operational semantics definition. We should also rely on the StructuralFeature
elements defined in the BlockVariant contained in the block configuration. In a configuration, each
StructuralFeature has a defined data type and some additional constraints on its value. Regarding
configurations themselves, BlockVariant elements are extended with MODE_INVARIANT annotations
corresponding to additional constraints on the block configuration. These elements must be used as addi-
tional pre-conditions of the semantics functions.

General purpose programming languages can be extended with annotations like C with ACSL, Java
with JML, C# or F# with SPEc#, ADA 2012, EIFFEL or WHY/WHYML that allows to express programs and
related annotations specifying properties, assertions or contracts to be verified on the language constructs.
As a Configuration element holds at least one semantics definition operations and variables declara-
tions for ports, parameters and memories and their associated data types, we can envision a
Configuration structure operational semantics definition to be translated as a function, its axiomatic
semantics as a contract on the generated function, the StructuralFeature INVARIANT Annotation
as annotations on the variables definitions and the BlockVariant and BlockMode MODE_INVARIANT
as additional contract informations. We provide in Listing 6.24 such a hand-extracted function using the
C programming language and ACSL as an annotation language.

In this section we will provide clarifications on the interpretation of a BLOCKLIBRARY specification in
terms of executable functions. We will rely on the C language complemented with ACSL annotations to
give a formalisation of the BLOCKLIBRARY specifications as function contracts. SIMULINK blocks specified

107

6.5. SEMANTICS MODELING

/*@ requires *delay > 0;

requires *delay = 1; // 1 is taken from the size of iC
3 requires \separated(mem, input, delay, output, iC);

assigns *mem;

ensures *mem == *iC; x/

void init_Delay (
double *mem, double *input, int #*delay, double *output, double *iC)
8 { *mem = *iC; }

/*@ requires *mem == *iC;
requires *delay > 0;
requires \separated(mem, input, delay, output, iC);
13 assigns *output;
ensures *output == *mem; */
void compute_Delay (
double #*mem, double *input, int *delay, double *output, double *iC)
{ *output = *mem; }
18
/*Q@ requires *output == *mem;
requires *delay > 0 ;
requires \separated(mem, input, delay, output, iC);
assigns *mem;
23 ensures *mem == *xinput; */
void update_Delay (
double #*mem, double *input, int *delay, double *output, double *iC)
{ *mem = *input; }

Listing 6.24: Extracted annotation contract and function for the DelaySemantics BlockMode semantics phases

using the BLOCKLIBRARY approach are meant to be used for the verification of automatically generated
code, in this purpose we will reuse the mapping provided here in Chapter 8.

6.5.1 BLOCK SEMANTICS PHASES CONTRACTS

From the specification written for the Delay block provided in Listing 6.4, we shall be able to extract for
each Configuration a function. Listing 6.24 provides an example of such contract for one
Configuration extracted fromthe DelayBlockType (herethe initial_conditionparametervalue
is set to be a scalar). A function is extracted for each semantic phases declared in the DelaySemantics
BlockMode: init_Delay, compute_Delay and update_Delay. Each function contractis then expressed using
pre-conditions (requires ACSL annotations as in line 1) expressed from the INVARIANT Annotation of
the

StructuralFeature elements and the MODE_INVARIANT of the Configuration BlockVariant
(requires ACSL annotations as in line 2). The contract is completed with the pre/post conditions provided
as axiomatic semantics of the BlockMode semantics phases specifications (ensures ACSL annotations as
in line 3).

It is worth noting at this point of the specification that some INVARIANT have not been taken into
account in our extracted annotation contracts: a) Data types: In the specification, the input port group
is of type TDouble. In our translation as a contract clause, we only define this as declaring the input as a
function parameter of type double. This should be specified carefully as the definition of this data type
should be provided including its boundaries (minimum and maximum values) and its allowed precision
(number of digits in the decimal part). Similar informations should be provided for any data type used
in the specification. b) Dimensions: We specify two MODE_INVARIANT Annotation in the UVector
BlockVariant. These constraints seem to be redundant in our specification as they specify that both
input U and output V are vectors elements but they are declared as arrays of double values. This problem
is implementation related and will be detailed in Chapter 7.

From this example we offer a template for the generation of function and their contracts annotation
from a BLOCKLIBRARY specification in Listing 6.25. This shows the generic extracted function contract
and code from configuration ConfZ of BlockMode BlockModeA initialisation computation phase.

108

6.5. SEMANTICS MODELING

/*@ requires ConfZ.BlockVariantl.inputl.invi;

requires ConfZ.BlockVariantl.outputl.invi;
requires ConfZ.BlockVariantl.memoryl.invi;

4 requires ConfZ.BlockVariantP....
requires ConfZ.BlockVariantl.mode_invariantl;
requires ConfZ.BlockVariantP....
requires \separated(input_1,..., input_m,ouput_1,..., output_n,memory_1,..., memory_o) ;
requires ConfZ.BlockModeA.init.prel;

9 500
requires ConfZ.BlockModeA.init.preN;
assigns ...;
ensures ConfZ.BlockModeA.init.postl;
14 ensures ConfZ.BlockModeA.init.postM;
*/
void BlockX_BlockModeA_ConfZ_Init_Semantics(
input_1, ..., input_m,
output_1, ..., output_n,
19 memory_1, ..., memory_o)
{
<initialisation code>;
}

Listing 6.25: Extracted annotation contract and function body for an initialisation phase

6.5.2 BLOCK SEMANTICS CONTRACT ENCODING WITH DYNAMIC BEHAVIORS

As seen previously, some MODE_INVARIANT may apply on dynamic values of input PortGroup or
MemoryVariable producing dynamic Configuration. These may also be specified through multiple
BlockMode. This allows for a more fine grained specification of blocks semantics specially on the spec-
ification of behaviors according to input PortGroup values. The BLOCKLIBRARY structure then allows
to split the specification of a block semantics between multiple BlockMode, each one having a distinct
MODE_INVARIANT. This is translated as distinct behaviors in function contracts.

From the specification of the Abs block in Listing 6.12 (page 97) we can extract only one
Configuration element containing both BlockMode and one BlockVariant. The corresponding
C + ACSL code for this Configuration must be as provided in Listing 6.26. In this listing we see that
we define one behavior for each BlockMode, each one containing assumes clauses (lines 2 and 6) speci-
fying the condition for the behavior to be considered applicable (these are the behaviors’ pre-conditions).
The assumes clauses are extracted from the BlockMode MODE_INVARIANT. For each behavior the post-
conditions are extracted from the post-conditions specified in the semantics phases axiomatic definition
and inserted as ensures clauses (lines 3, 4, 7 and 8). Finally the code for the semantics phase is extracted
according to both the dynamic MODE_INVARIANT (involving the if conditionals) and the operational se-
mantics for the considered semantics phase (involving the code inside each then branch).

We model a generic full dynamic semantics for a block based on the previous examples in Listing 6.27.

The phase function global preconditions (line 1 and 2) are taken from the StructuralFeature ele-
ments INVARIANT. AsaConfigurationiscomposedofasetof Signature elements,eachSignature
holds a behavior definition for the overall block semantics.

Each behavior is characterised according to the MODE_INVARIANT constraints extracted from the
Signature BlockMode and its list of BlockVariant. Constraints from the BlockVariant are com-
mon to all BlockMode according to the Configuration definition, thus these constraints are to be in-
cluded in the global pre-condition specification (as requires clauses — lines 3 and 4).

MODE_INVARIANT Annotation held in each BlockMode are used as pre-conditions for their respec-
tive behaviors, thus they are used as assumes clauses as in line 6 and 11. Pre-conditions specified in the
semantic phase axiomatic specifications are converted to assumes clauses as in line 7. Post-conditions spec-
ified in the semantic phase are used as ensures clauses of their respective behavior as shown in line 8.

The function body is a combination of nested if-then-else constructs. Each then branch holds the code
for a specific behavior. Each if condition is set to the conjunction of the MODE_INVARIANT constraints

109

6.5. SEMANTICS MODELING

/*@ requires \separated(el, si);
assigns *si;
3 behavior abs_Neg:
assumes *el < 0.0;
ensures *sl1 >= 0.0

ensures *sl == - xel;

behavior abs_PosOrNull:
8 assumes *el >= 0.0;
ensures *sl >= 0.0;
ensures *sl == *el;

x/
void compute_Abs_Neg_Abs_PosOrNull (double *el, double *s1){
13 if (xel < 0.0){

*sl = - xel;
} else if (*xel >= 0.0){
*sl = *xel;

¥
18}

Listing 6.26: Extracted annotation contract and function for the Abs BlockType semantics

taken from the BlockMode (lines 20 to 22), the then branch content is then the operational semantics
code related to this behavior (line 23).

/*@ requires ConfZ.BlockVariantl.structuralFeaturel.invl;
2 requires ConfZ.BlockVariantP....
requires \separated(input_1,...,input_m,ouput_1,...,output_n,memory_1,...,memory_o);
requires ConfZ.BlockVariantl.mode_invariantil;
requires ConfZ.BlockVariantP.mode_invariantil;
assigns ...;
7 behavior ConfZ_Step_BlockModeA:
assumes ConfZ.BlockModeA.mode_invariantl;
assumes ConfZ.BlockModeA.prel;
assigns ...;
ensures ConfZ.BlockModeA.posti;

12 C
behavior ConfZ_Step_BlockModeQ:
assumes ConfZ.BlockMode(Q.mode_invariantl;
assigns ...;
17 %/
void BlockX.ConfZ_Semantics (a
input_1, ..., input_m,
output_1, ..., output_n,
memory_1, ..., memory_p)
22 o
if (ConfZ.BlockModeA.mode_invariantl && ... &&
ConfZ.BlockVariantl.mode_invariantl && ... &&
ConfZ.BlockVariantP.mode_invariantl && ...){
<ConfZ.BlockModeA.code>
27 //@ assert ConfZ.BlockModeA.postl &&
} else if (...) {
} else if (ConfZ.BlockModeQ.mode_invariantl && ...){
32 }

}

Listing 6.27: Generic specification for a block dynamic semantics phase for one Configuration (ConfZ)

The transformation depicted here has been implemented in order to translate BLOCKLIBRARY instance
models to semantics functions in a formalism allowing to automatically and formally verify their correc-
tion. This is detailed in Chapter 7 and model REQ-8.

Whereas this phase-specific verification allows to verify each phase of the block semantics correctness, it
does not model the full semantics of the block. In dataflow languages semantics all the initialisation phases
are executed once and then at every clock tick, all the compute phases and then all the update phases are
executed. This verification is equivalent to verifying the generated code for a complete SIMULINK instance
model and will be tackled in the second part of this manuscript.

110

6.6. SPECIFICATION VERIFICATION PROPERTIES

6.6 SPECIFICATION VERIFICATION PROPERTIES

As previously stated, the quality of the specification should be ensured (according to REQ-7.[a|b|c] and
REQ-8) in order for it to be usable for the verification of block instances. Such a verification must ensure
properties based on three different criteria: well-formedness (REQ-7.a), completeness (REQ-7.b) and
disjointness (REQ-7.c) of the block specification variability. In addition to these, semantics correctness
(REQ-8) of the specification must be ensured. In this section, we will focus on the formalisation of the
REQ-7.[a|b|c] verifications while the semantics verification is left aside and will be tackled in Chapter 7.

6.6.1 WELL-FORMEDNESS

Well-formedness of a BLOCKLIBRARY instance is verified according to the defined concrete and abstract
syntaxes of the BLOCKLIBRARY. As our DSML relies on MDE foundations, it is straightforward to ensure
its syntactic correctness. Indeed, the generated editors are based on the metamodel defined for the lan-
guage and so instances will conform to the metamodel. OCL constraints are provided in order to ensure
additional constraints as the one provided all along the current section. These checks ensures REQ-7.a.

6.6.2 VARIABILITY COVERAGE

The variability criterion for the verification of a BLOCKLIBRARY instance is twofold. We should ensure: a)
the completeness of every block specification according to requirement REQ-7.b; and b) the consistency
implied by the disjointness of all the block specification according to requirement REQ-7.c.

Each Configuration element gathers the definition domain for a block instance. This definition do-
main is made up of definitions of StructuralFeature elements contained in the Configuration,
their data types and additional constraints on their values. In the following, we will refer to such a domain
for a configuration C as Dc.

In a configuration C, each MODE_INVARIANT contained in the BlockVariant and BlockMode ele-
ments is a constraint that applies on Dc. In that sense, they are logical predicates applying on
StructuralFeature elements of the domain. As previously defined, this collection of structural con-
straints is provided by (6.7) for each BLockMode and BlockVariant of the configuration.

A configuration can then also be expressed as a predicate using the SCuopr_1nvariant Of every
BlockVariant and BlockMode of a Configuration (6.10). We refer to CP(c) as the configuration
predicate for configuration c.

Ve : Configuration, CP(c) = /\ SCuope_twvariant (c.variants;) | A

1<i<|c.variants|

(6.10)
\/ SCMODE_INVARIANT(C-mOdej)
1<j<|c.modes|

Completeness and disjointness criteria are properties applying on a block Configuration. Their as-
sessment can thus be done in the context of the block specification itself and not only on configuration’s.
Such a domain on which all configurations can be expressed for one block b is referred to as D, and is
formally defined in (6.11).

Vb,b : BlockType, D), = U U D. (6.11)

1<i<|b.modes| \ c€Conf(m;)

111

6.6. SPECIFICATION VERIFICATION PROPERTIES

COMPLETENESS OF THE SPECIFICATION

The completeness criterion (REQ-7.b) aims at ensuring, on the definition domain of a block, that all the
possible configurations have been expressed. This is equivalent to ensuring that the conjunction of all
the possible block configuration predicates can always be satisfied on the block domain. We propose to
formalise this criterion as (6.12).

Vb, b : BlockType, \/ \/ CP(;) (6.12)

1<i<|b.modes| \ 1<i<|Conf(m;)|

DISJOINTNESS OF THE SPECIFICATION

The disjointness criterion (REQ-7.c) aims at ensuring, on the definition domain of a block, that all pairs
of possible configurations are disjoint and thus cannot be satisfied on the same block instance. This is
equivalent to ensuring that every conjunction of two different configuration predicates cannot be verified.
We propose to express this criterion as (6.13).

Vb, b : BlockType, /\ N\ ~(CP(g) A CP(c)) (6.13)

1<i<|b.modes| | 1<j,k<|Conf(m;)|
j<k

We provide a specification and the related implementation for the transformation between a BLockL1-
BRARY instance to a verification formalism in Chapter 7. We will specify in this chapter the transformation
from BLOCKLIBRARY instances to the previously presented predicates. We will highlight some tools allow-
ing to automatically verify the generated predicates and quantify the ability for our approach to be applied
on real size block specifications. We will finally provide hints on the capability of our automated approach
to manually find errors in the specification through the automated proof mechanism.

112

BlockLibrary specifications formal verification

We previously presented the BLOCKLIBRARY language. As a specification dedicated language, confidence
must be provided on its use. This is done through the verification of BLOCKLIBRARY instance correctness,
completeness and consistency according to the defined language structure and semantics.

In the previous chapters, we specified the structure of the BLOCKLIBRARY conforming models by defin-
ing its metamodel and the operations that can be applied on it in order to extract meaningful informa-
tions from it: Configuration elements extraction from a BlockType instance. While this provides
informations on the BLOCKLIBRARY specification content and the assurance of their conformance to the
metamodel and to its static semantics (OCL constraints), it does not ensures its correctness.

BLoCKLIBRARY conforming models correctness must be expressed according to criteria. These criteria
are detailed in REQ-7.[b|c] and REQ-8 defined in page 52. These requirements states: a) from a block
specification, the set of extracted Conf iguration elements is disjoint and complete (REQ-7.[b|c]); and
b) for each Configuration element, its semantics definition can be verified (REQ-8).

Asserting the correctness of a BLOCKLIBRARY instance can be done by language experts and through
experimentation over time or by providing formal foundations for their understanding and analysis. Using
the first approach, test cases could be provided as blocks in an environment model allowing to test all the
Configuration according to the criteria and thus providing confidence on the provided specification. It
has the drawback of not being exhaustive. Using the second approach, the criteria can be expressed using a
formal verification language and thus be formally verified and be exhaustive. It is then required to provide
a translational semantics for the BLOCKLIBRARY language using a transformation to a formal language.

In this chapter, we will apply the second approach as it provides immediate confidence on the BLockL1-
BRARY instances and its formal nature makes it unlikely to be a posteriori proven wrong. In order to do so,
we choose to provide a transformation from BLoCKLIBRARY conforming models to the WHY3 platform
on which formal verification can be done thanks to SMT solvers and/or proof assistants. We will detail
here the aformentioned verification strategy that consists in translating the language conforming models
to a formal domain; extraction of variability correctness properties and block semantics phase function
along with their verification. Verification will be experimented on realistic block examples; and scalability
of the verification approach will be discussed. Finally, limitations of our specification language capabilities

will be highlighted.

7.1 VERIFICATION PREREQUISITES

The BLoCKLIBRARY language aims at structuring block specification and their variability. There are two
aspects regarding the verification of BLOCKLIBRARY instances: 1) variability verification as modeled in

113

7.1. VERIFICATION PREREQUISITES

REQ-7.[b|c]; and 2) semantics verification correctness/consistency of the various semantics aspects as
modeled in REQ-8. We offer to translate BLOCKLIBRARY instances to a formal logical data structure on
which formal reasoning can be performed.

It is thus possible to apply various verification strategies among which are automatic proof via SMT
solvers or the use of proof assistant like CoQ. We choose to rely on the WHY3 platform as it allows from
a single formalism, the WHY language and its WHYML extension, to target both verification strategies.

In the BLoCKLIBRARY language, Annotation elements are specialized as OCL constraints or BAL op-
erations. Both of these languages AST are specified according to a metamodel. In the following we will
quickly describe both languages implementations.

7.1.1 OCL SPECIFICATION

A tight integration of the OCL language in the BLOCKLIBRARY language has been done by relying on a
pre-defined metamodel and grammar for the OCL language [160]. This OCL implementation covers an
extensive part of the OMG OCL standard and includes the TOCL [163] extension done in Faiez Zalila
PhD. As we have no need for the time-related constructs of the TOCL, we decided to lighten the meta-
model and removed the time-related constructs. In a first attempt we planned to reuse the existing XTEXT
OCL grammars from the standard EcLIPSE tools. Most of them rely on the EssENTiaL OCL grammar
which itself relies on other XTEXT grammars in various ECLIPSE plugins. Those must be included if one
wants to embed EsSENTIAL OCL in a custom language. This solution revealed itself to be too heavy to
maintain and we concluded it was easier to rely on a custom light XTEXT grammar for our work.

Annotation elements are used in various BLOCKLIBRARY language constructs. The Annotation
container is the scope or context of the OCL expressions. Its kind attribute is used for the definition of
the specification purpose for the Annotation: for example whether it is specifying a pre/post condition
or an invariant. These informations provided at the BLOCKLIBRARY level allows us to restrict the OCL
language constructs supported in the minimal OCL expressions subset. We provide in Appendix B the
XTEXT grammar we have implemented.

7.1.2 BAL SPECIFICATION

The block semantics is expressed in a BLOCKLIBRARY specification using BAL. This language is a rather
simple imperative language. We could have used general purpose action languages like ALF or fUML, or
more computation related languages like EMBEDDEDMATLAB or SCILAB but we choose to rely on a very
restricted imperative language in order to avoid to cover a too large language. This simple language also
has the advantage of restricting the possibilities regarding the writing of the semantics functions and thus
must enforce the specifier to explicitly detail its implementation. The language constructs are:

« Blocks of imperative code. These can contain:

— Variable declarations: new variables declared and accessible only in the scope of the block con-
taining the declaration. Variables can be shaped as scalar or multidimentional arrays.

— Variable assignments: assign a value to alocally declared variable ortoa StructuralFeature
element.

- Conditional constructs: if-then-else conditional statements.

- Loop constructs: for and while loop statements.

« Logical, relational, arithmetic and literal expressions. Literal expressions values can be defined among
integer, double, string , boolean or enumeration values. These expressions have only been provided
a meaning through scalar values.

We provide a grammar for this language in Appendix C. We defined here a syntaxand the structure of the
AST for this language but no semantics. We choose to define this one in a translational way by providing
a translation to the WHYML language. We will detail this transformation and thus provide a translational
semantics for BAL language in Section 7.5.

114

7.1. VERIFICATION PREREQUISITES

7.1.3 'WHY3 PLATFORM

According to our use, the principal advantages of the WHY and WHYML languages are their expressiveness
— with both logical specification and programs specifications (along with their code) — and their associated
tooling — providing transformation capabilities to build a bridge between specifications and automated or
interactive theorem provers.

G. Babin, M. Carton and myself developed an XTEXT grammar and a metamodel for WHY and WHYML
languages. In this PhD work, I relied on this generated tooling to develop a MDE-based translation of
BLOCKLIBRARY conforming models to WHY theories and WHYML modules.

7.1.4 TRANSFORMATION TECHNOLOGY CHOICE

Our DSML has been implemented using MDE methodologies and tools. We used ECORE as a formalism
for the expression of the OCL and BAL metamodels. Based on these metamodels, services can be defined
and applied on the DSML instances using MDE techniques.

In our case, the transformation targets are the WY and WHYML languages. Both are quite complex
languages. This leads us to rely on the use EMF framework combined with XTEXT for the transformation
implementation.

Using the XTEXT framework capability to act as a bridge between textual and model representations and
the EMF source and target model manipulation API capability to manipulate models, it is thus possible
to develop a model to model transformation. The MDE architecture of the transformation is provided in

Figure 7.1.
: a f generated from generated from 6 f
em . g B : ,f"'_"h\'.”..ue.m“i
; » Sy : 5 B prosssvasassmens W :
SSrnre Xte?-it s java . java : Xt@?{: E .ecore .
BlockLib | : ib | : : :]
ecore || Xtext : } 1] Xtext | ecore
ol | I (AP |]
; ' | grammar | | : : s grammar || model |:
NRERIR Wiped * i i i KB, 7
based on | ” | generated from
jgenerate y
Bis jfrom jgenerated | why [ml]
BlockLib : Blocklib Why[ML] ffom Why[ML]
textual Parser model Transformation model Serialiser textual
instance |™==—==—| instance P instance |=—==—==—=P instance

Figure 7.1: MDE architecture of the transformation

« On the BLOCKLIBRARY side (left side of Figure 7.1: we generate a parser and a textual code editor
based on the BLoCKLIBRARY metamodel for the loading and edition of BLOCKLIBRARY conforming
models.

« On the WHY and WHYML side (right side of Figure 7.1): we generate a serialiser for saving as text
files the generated WHY and WHYML conforming models generated with the model to model trans-
formation.

In the following, we will detail the implementation of the transformation by first providing static WHY3
libraries of theories modeling BLOCKLIBRARY elements, data types and languages constructs. Then, we
will express the two verification approaches: a) transformation from a BLOCKLIBRARY conforming model
to theories held in WHY files for the assessment of the variability verification criteria of REQ-7.[b|c]; and

115

7.2. BLOCKLIBRARY SPECIFICATION EXAMPLE

b) transformation from a BLOCKLIBRARY instance to modules held in WayML files for the assessment of
the semantics verification criterion of REQ-8.

7.2 BLOCKLIBRARY SPECIFICATION EXAMPLE

All over this chapter the transformation mechanism will be illustrated based on the MinMax block spec-
ification example. An extract of its specification can be found in Listing 7.2. This example is focused on
two configurations of the block where the number of inputs ports is greater than one, all input and output
ports are of type TDouble and the function parameter value can be Min or Max.

7.3 WHY3 LIBRARIES

Our implementation of the transformation relies on static libraries specifying: a) WHY3 type definitions
modeling the type system on which the BLOCKLIBRARY specification instances relies on (Section 4.1.2; b)
WaY3 record type definitions modeling the BLoCKLIBRARY StructuralFeature elements; c) WHY3
function interface definitions and attached lemmas modeling OCL.

7.3.1 PRIMITIVE DATA TYPES THEORY

The WHY3 platform and languages provide a library for primitives data types. This library can be found
on the tool web-site'. We specialized it for the modeling of our type system. We provide in Table 7.3 the
mapping between the concrete metaclasses of our type system metamodel, its corresponding type name,
its containing theory, and if applicable the standard WHY3 type and theory it relies on.

’ Meta-class name ‘ WHY3 type name and theory H WHY3 standard library theory ‘
TBoolean boolean_type from blocklibrary scalar.Boolean Bool.bool from bool.Bool
TRealSingle tRealSingle from blocklibrary scalar.RealSingle real from real.RealInfix
TRealDouble tRealDouble from blocklibrary scalar.RealDouble real from real.RealInfix
TReallnteger tReallnteger from blocklibrary scalar.Reallnteger int from int.Int
TString string_type from blocklibrary_string.String -

Table 7.3: Mapping between our type system and the WHY3 types

NUMERIC DATA TYPES DEFINITIONS

The numeric data types definition from the standard library are appropriate for our needs. We decided to
mostly rely on them in our implementation. TBooolean, TRealSingle, and TRealDouble are thus directly
mapped to already existing standard WHY3 types. The data types names choice have been done according
to the GENEAUTO data types terminology.

In the TRealInteger metaclass, the value of an instance is dependent on the nBits and signed
attributes. In dataflow languages like SIMULINK, the type system allows the use of a specific definition of
integer data types. We distinguished between multiple implementations of the integer data type according
to the number of bits required for their representation (8, 16 or 32) and if they are signed of not. As an ex-
ample of type definition, we give the declaration for a 32 bits signed TRealIntegerinthe SignedInt32
theory detailed in Listing 7.4. The RealInteger theoryis holding the definition for the TRealInteger
data type as modeled in the data types metamodel, whereas the SignedInt32 theory is the concrete def-
inition for the 32 bits signed integer. We add a predicate: 1imit_tRealSignedInt32 in the theory
allowing to constrain the allowed maximum and minimum values for an element of this type.

'http://why3.1lri.fr

116

7.3. WHY3 LIBRARIES

12

17

22

27

32

37

42

47

52

library MinMaxExtractInv {
type signed reallnt TIntl16 of 16 bits
type realDouble TDouble
type enum MinMaxFunction {Min,Max}

blocktype MinMax {
variant MinMaxParameters {
parameter FunctionParam MinMaxFunction
parameter NbInputs TInt16 { invariant ocl { NbInputs.value >=
}
variant MinMaxInScalars extends MinMaxParameters {
in data Inil TDouble [1 *] { invariant ocl { Inil->size() =
¥
variant MinMaxOutScalar {
out data Out TDouble
¥
mode MinOutputScalarMultipleInputsScalars implements allof(
MinMaxOutScalar ,MinMaxInScalars)

{
modeinvariant ocl { NbInputs.value > 1 }
modeinvariant ocl { FunctionParam.value = MinMaxFunction::Min }
definition bal = compute_MinOutScalarMultipleInputsScalars {
postcondition ocl {
Inl1->forAl1(i| i.value >= Out.value)
}
var res = In1[0].value;
for (var i = 1; i < (size(In1)); i = i + 1){
if (res > Ini[i].value){
res = Ini[i].value;
}
}
Qut.value = res;
}
compute compute_MinOutScalarMultipleInputsScalars
¥

mode MaxOutputScalarMultipleInputsScalars implements allof (MinMax
MinMaxInScalars) {
modeinvariant ocl { NbInputs.value > 1 }
modeinvariant ocl { FunctionParam.value = MinMaxFunction::Max }
definition bal = compute_MaxOutScalarMultipleInputsScalars {
postcondition ocl {
Inl->forAl1(i| i.value <= QOut.value)
}
var res = In1[0].value;
for (var i = 0; i < (size(Inl1));
if (res < Ini1[i].value){
Ini[i].value;

i=i+ 1)9{
res =
}

}

Out.value =

}

compute compute_MaxOutScalarMultipleInputsScalars

res;

}
}
}

Listing 7.2: MinMax block textual specification extract

117

13}

NbInputs.value } }

QutScalar,

7.3. WHY3 LIBRARIES

1 theory Reallnteger
use import bool.Bool
use import int.Int

type tReallnteger

constant nBits : int
constant signed : bool
constant max_Reallnteger : int
end
11
theory SignedInt32
use import int.Int
use import bool.Bool

16 constant nBits_signed_32 : int = 32
constant signed_signed_32 : bool = True
constant max_Reallnteger_signed_32 : int = 2147483648

type tRealSignedInt32 = int
21
clone export Reallnteger with
constant nBits = nBits_signed_32,
constant signed = signed_signed_32,
constant max_Reallnteger = max_Reallnteger_signed_32,
26 type tReallnteger = tRealSignedInt32

predicate limit_tRealSignedInt32 (x : tRealSignedInt32) =
(-max_Reallnteger_signed_32) <= x <= (max_Reallnteger_signed_32 - 1)
end

Listing 7.4: TReallnteger 32 bits signed definition in Why3

Interested reader can find our complete specification for data types in Appendix D.1.1.

STRING RELATED DATA TYPES DEFINITIONS

At the time we implemented that part, in the WHY3 standard library, the String data type was only avail-
able as a WHYML module. We needed for our purpose to be able to use it also in theories. We thus devel-
oped three theories in this purpose:

« Char theory defining the tChar record type holding the simple definition for a character as a record
type whose single field is an integer value named code. This code refers to the UTFS table values
for the corresponding character. This theory is detailed in Appendix D.1.3. We define two functions
applicable on tChar typed elements:

— toLower char : tChar — tChar returning the value of the parameter as a lower case character.
Its attached lemmas define the conditions for its application, the operation applies only if the
code value is between 32 and 90 (included).

— toUpper_char : tChar — tChar returning the value of the parameter as an upper case character.
As previously its attached lemmas define the conditions for its application.

« Utf8 theory containing relevant UTF8 values mapping as constants. This theory is partly detailed
in Appendix D.1.3.

« String theory containing the definition for the string_type type composed of a list of tChar
elements. String theory is defined in Listings 7.5 and 7.6. We define two specific functions that
can be used on string_type typed elements:

— concat : string type — string type — string type returning the concatenation of the two
parameters (detailed in Listing 7.5). This WHY theory includes both the function definition
and its formalisation through lemmas.

118

7.3. WHY3 LIBRARIES

10

15

20

25

theory String

(¥ see module string.String *)

use import int.Int

use import Char

use import list.Length

use import list.Append

use import list.List

use import list.Mem

use import list.NthNoOpt

use import blocklibrary_common.CommonFunctions

type string_type = list tChar
function concat (sl s2: string_type) : string_type = sl ++ s2

lemma concat_length: forall sl1, s2: string_type.
length (concat sl s2) = length sl + length s2

lemma concat_l_cons: forall sl1, s2: string_type, cl: tChar.
concat (Cons cl1 s1) s2 = Cons cl (concat sl s2)

lemma concat_r_cons: forall sl1, s2: string_type, cl: tChar.
concat s1 (Cons cl s2) = concat (concat sl (Cons cl Nil)) s2

lemma concat_1l_nil: forall s1, s2: string_type.

(sl = Nil -> concat sl s2 = s2)

lemma concat_r_nil: forall sl1, s2: string_type.
(s2 = Nil -> concat sl s2 = sl)
30
lemma concat_l_mem: forall sl1, s2: string_type, cl: tChar.
mem cl s1 -> mem cl (concat sl1 s2)

lemma concat_r_mem: forall sl1, s2: string_type, cl: tChar.
35 mem cl s2 -> mem c1 (concat si1 s2)

function toLower (sl: string_type) : string_type

axiom toLower_content: forall sl: string_type, i: int.
40 0 <= i < length s1 -> nth i (toLower sl1) = toLower_char (nth i s1)

function toUpper (sl: string_type) : string_type

axiom toUpper_content: forall sl: string_type, i: int.
45 0 <= i < length sl -> nth i (toUpper s1) = toUpper_char (nth i s1)

Listing 7.5: String theory definition in WHY

— subString : string_type — int — int — string type returning the subset of elements contained
between two indexes (both included) of the first argument (detailed in Listing 7.6). This WaY
theory includes both the function definition and its formalisation through lemmas.

Char and String theories are highly inspired from their namesake standard library modules available
on the WHY3 platform website.

7.3.2 BLOCKLIBRARY STRUCTURALFEATURE THEORY

Block interfaces are compositions of StructuralFeature elements with constrained data types and
values. In order to model BLoCKLIBRARY conforming models with WHY3, we need to be able to express
those elements at a WHY3 theory level. We choose to model the StructuralFeature elements with
specific WHY3 record types:

119

7.3. WHY3 LIBRARIES

function subString (s: string_type) (lo up:int) : string_type =
if lo >= length s \/ 1o < 0 \/ up < 0 \/
up >= length s \/ up < lo then Nil
else match s with
S | Nil -> Nil
| Cons hd tl1 ->
if lo = 0 then
if up = 0 then
Cons hd Nil
10 else Cons hd (subString tl 0 (up-1))
else subString tl (lo-1) (up-1)
end

lemma subString_nil: forall x,y: int.
15 subString Nil x y = Nil

lemma subString_length_nil: forall x,y: int.
length (subString Nil x y) = 0

20 lemma subString_0_0: forall s: string_type, c: tChar.
subString (Cons c s) 0 0 = Cons c Nil

lemma subString_length_0_0: forall s: string_type, c: tChar.
length (subString (Cons ¢ s) 0 0) =1

25
lemma subString_O_x: forall s: string_ type, c: tChar, x: int.
(0 <= x < length s) ->
subString (Cons c s) 0 x = Cons c¢ (subString s 0 (x-1))
30 lemma subString_length_O_x: forall s: string_type, c: tChar, x: int.

(0 <= x < length s) ->
length (subString (Cons c¢c s) 0 x) = 1 + length (subString s 0 (x-1))

lemma subString_x_y: forall s: string_type, c: tChar, x,y: int.
35 (0 < x <= y < length s) ->
subString (Cons ¢ s) x y = subString s (x-1) (y-1)

lemma subString_length_x_y: forall s: string_type, c: tChar, x,y: int.
(0 < x <= y < length s) ->
40 length (subString (Cons ¢ s) x y) = length (subString s (x-1) (y-1))

lemma subString_OutOfBound: forall 1: string_type, lo up: int.
(lo >= length 1 -> (subString 1 lo up) = Nil) /\
(lo < 0 -> (subString 1 lo up) = Nil) /\
45 (up < 0 -> (subString 1 lo up) = Nil) /\
(up >= length 1 -> (subString 1 lo up) = Nil) /\
(up < lo -> (subString 1 lo up) = Nil)

lemma length_one: forall 1: list 'a, e: 'a.
S0 length (Cons e 1) = 1 + length 1
end

Listing 7.6: String theory definition in WHY (continued)

120

7.3

. WHY3 LIBRARIES

theory InPortGroup
use import String.String
use import int.Int

4
type tInPortGroup 'a
function name_inpg (tInPortGroup 'a) string_type
function min_size_inpg (tInPortGroup 'a) int
9 function max_size_inpg (tInPortGroup 'a) int
function value_inpg (tInPortGroup 'a) 'a
axiom tInPortGroup_min_max_one: forall pg: tInPortGroup 'a.
pg.max_size_inpg = one -> pg.min_size_inpg = one
14
axiom tInPortGroup_min_max_value: forall pg: tInPortGroup 'a.
pg.min_size_inpg >= zero /\ pg.max_size_inpg >= zero
axiom tInPortGroup_min_max_size: forall pg: tInPortGroup 'a.
19 pg.min_size_inpg <= pg.max_size_inpg \/
pg.max_size_inpg = zero
function size_inpg (pg: tInPortGroup 'a) int =
if pg.max_size_inpg = zero then zero else
24 if pg.max_size_inpg = one then one else
pg.max_size_inpg - pg.min_size_inpg
lemma size_inpg_max_zero: forall pg: tInPortGroup 'a.
pg.max_size_inpg = zero -> size_inpg pg = zero
29
lemma size_inpg_min_zero: forall pg: tInPortGroup 'a.
pg.max_size_inpg <> zero /\ pg.min_size_inpg = zero ->
size_inpg pg = pg.max_size_inpg
34 lemma size_inpg_max_one: forall pg: tInPortGroup 'a.
pg.max_size_inpg = one -> size_inpg pg = one
lemma size_inpg_min_non_zero: forall pg: tInPortGroup 'a.
pg.max_size_inpg <> zero /\ pg.min_size_inpg <> zero ->
39 size_inpg pg = pg.max_size_inpg - pg.min_size_inpg

end

Listing 7.7: Input PortGroup definition in Why3

INnPUuT PORTGROUP

Input PortGroup is modeled as the tInPortGroup type. Listing 7.7 contains its formalisation. We
formalise some of the Input PortGroup metaclass attributes as uninterpreted function: name_inpg,
min_size_inpg, max_size_inpg and value_inpg respectively formalizing the name, min_size,
max_size and value attributes. By relying on uninterpreted function, we are then able to provide ad-
ditional axioms expressing constraints on the size values for a port group. These axioms express the same
constraints as the one given at the metamodel level. Finally, we provide the lemmas for the size_inpg
function retrieving the actual size of an input port.

OuTtruT PORTGROUP

Output PortGroup is modeled as the tOutPortGroup type. As previously, the Output PortGroup at-
tributes are formalised as uninterpreted functions. Its definition is very close to the one of t InPortGroup.
Only one predicate is expressed on this record type constraining the minimum and maximum size of the
group to one. This constraint is extracted from the BLockL1BRARY metamodel OCL ones. Listing 7.8

contains the tOutPortGroup definition.

121

7.3. WHY3 LIBRARIES

theory OutPortGroup
use import String.String
use import Scalar.Boolean
use import int.Int

S
type tOutPortGroup 'a
function name_outpg (tOutPortGroup 'a) : string_type
function min_size_outpg (tOutPortGroup 'a) : int
10 function max_size_outpg (tOutPortGroup 'a) : int
function value_outpg (tOutPortGroup 'a) : 'a
axiom tOutPortGroup_min_max_one: forall pg: tOutPortGroup 'a.
pg.max_size_outpg = one /\ pg.min_size_outpg = one
1S end
Listing 7.8: Output PortGroup definition in Why3
theory Parameter
use import String.String
type tParameter 'a = {
S name_pt : string_type ;
isMandatory_pt : boolean_type ;
value_pt 'a
}
end
Listing 7.9: Parameter definition in Why3
PARAMETER

Parameter is modeled as the tParameter type-parametrised record type. Listing 7.9 contains its for-
malisation. We defined the tParameter record type with fields corresponding to the Parameter meta-
class attributes.

MEMORYVARIABLE

MemoryVariable are modeled as the tMemoryVariable type-parametrised record type. Listing 7.10
contains its formalisation. We defined the tMemoryVariable record type with fields corresponding to
the

MemoryVariable metaclass attributes.

For each StructuralFeature type definition, we have declared a value XX field. This field is typed
according to the type parameter of its containing record type. In a BLOCKLIBRARY specification, we refer
to this value_XX field ona StructuralFeature instance sf by calling sf.value.

According to our experiments, it looks like there elements could be generated automatically from the
metamodel definition along with its OCL constraints. Early experiments were conducted by M. Carton
and are a perspective to ease some of our work.

1 theory MemoryVariable
use import String.String

type tMemoryVariable 'a = {
name_mv : string_type ;
6 value_mv : 'a
}

end

Listing 7.10: MemoryVariable definition in Why3

122

7.4. OCL EXPRESSIONS TRANSFORMATION

H Multiple occurrences | Ordered content

Set No No
Bag Yes No
OrderedSet No Yes
Sequence Yes Yes

Table 7.11: OCL collections characteristics

7.4 OCL EXPRESSIONS TRANSFORMATION

OCL is a constraint expression language using first order logic and model navigation constructs. The WHY
language also allows for the expression of first order logic and as such is sufficiently expressive to model
OCL constraints.

OCL is built on a simple set of types called the primitive data types that is a subset of the type system
we used in our BLOCKLIBRARY language. Using OCL, it is possible to gather values through the use of
collections. There are four kind of collections defined in OCL: these collection types differ regarding their
ability to handle (or not) multiple occurrences of the same value and if these values are ordered or not —
when a value is added to the collection, the insertion is done at the right place in the collection allowing to
keep the order of the collection correct. Table 7.11 provides the collection type names according to these
two conditions. Regarding values held in a block, collections can be used for example to gather multiple
values for a memory value. The vectors can contain several time the same value and the contained value
order matters. It is thus mandatory to use an OCL collection type that provides the same behavior. In
the WHY3 standard library, collections are modeled as lists allowing multiple occurrences of the same un-
ordered value. This makes them a direct translation for Bag collections. In our implementation of OCL,
we do not take into account the type of the collections and make the assumption that every collection is
a Bag collection, this allows to simplify the management of collections in our implementation of OCL:
elements are not removed from the collections as multiple occurrences are allowed and elements are not
moved inside the collection as it is not ordered. We defined a WHY theory called OCLCollectionOpera-
tion containing the definition for some basic list accessors and operations. The other three kind of OCL
collections could have been implemented in a similar way.

We provide the definition for the basic list getter operator in Listing 7.12. This definition has been ex-
tracted from the WHY3 array module from the standard WHy3 library.

function ([]) (a: list 'a) (i: int) : 'a = nth i a

Listing 7.12: List getter definition as an operator

OCL defines multiple operations that are to be applied either on primitive values — referred to as stan-
dard language operations — or on collection values — referred to as collection and iteration operations.
These operations are not supposed to be used on Bag collections and explicit conversions between collec-
tions types must be done. We do not enforce this in our implementation of OCL as we provide only one
collection type.

We only implement support for OCL expressions. Indeed, our OCL expressions are defined on various
elements of the BLOCKLIBRARY language that provides the required context informations for the expres-
sions. We also decided not to support messaging related constructs and tuples constructs. Messaging is
related to sequence and state machine diagrams which do not make sense in our case. Tuples could have
been implemented with records.

The translation of OCL expressions to the WHY language can be done using two strategies: either op-
erations are translated to basic first order logic expressions and thus can directly be used in WHY or the
definition for the operations are axiomatized using WHY functions declarations and the OCL constraints
are translated as expressions using these functions.

In our implementation, we choose to use a combination of the two. List getter is used for simple col-

123

7.4. OCL EXPRESSIONS TRANSFORMATION

lection accesses, standard type operations have been defined as functions in WHy, simple collections op-
erations are directly mapped to their logical expression equivalent. This approach has the advantages of
easing the translation work as the semantics of the OCL standard types operations is already defined and
thus avoid to generate too complex expressions. This has the pleasant side effect of easing the transforma-
tion verification activities as the translation itself is simpler.

In the following, we provide the mapping between the source OCL constructs and operations and the
target WHY predicates, functions and expressions.

7.4.1 OCL STANDARD LIBRARY OPERATIONS

In OCL expressions operations can be applied on primitive OCL types. These operations are classical
handling of primitive data types and are gathered in the OCL standard library. They have already been
formalised in the WHY3 library. We thus rely on these formalisation for our translation. Table 7.13 sum-
ups these mappings.

We did not implement the transformation for the div and mod operations on OCL Double elements. The
div operation would have been of particular interest as its behavior on the OCL and on the WHY language
are not the same. Indeed where the OCL implementation of div applied to any number and 0 (division by
zero) returns a null value, the WHY version is simply not defined. The management of specific values like
null and undefined is not done in this thesis and is highlighted as a current limitation of our work in Section
7.4.4. OCL implementation comprises the round and floor operations that we did not implement either.
String operations on Table 7.14 are the one detailed in our String theory provided in Listing 7.5.

’ OCL expression ‘ OCL context H Target WHY code ‘ WaY3 theory name ‘

i.abs() i: Integer abs i int.Abs
d.abs() d: Double abs d real. Abs
i.div(j) i,j: Integer div i j int.EuclideanDivision
i.mod(j) i,j: Integer mod i j int.EuclideanDivision
i.min(j) i,j: Integer min i j int. MinMax
d.min(j) d,j: Double min d j real. MinMax
i.max(j) i,j: Integer max i j int. MinMax
d.max(j) d,j: Double max d j real. MinMax

Table 7.13: OCL primitive numeric types operations mapping to WHY theories functions

OCL expression ‘ OCL context H Target WHY code ‘ WHY3 theory name
s.size() s: String length s list.List
sl.concat(s2) s1,s2: String concat sl s2 blocklibrary _string.String
s.subString(i,j) | ij: Integer;s: String || subString s i j | blocklibrary string.String

Table 7.14: OCL String operations mapping to WHY theories functions

Boolean OCL expressions are implemented using boolean expressions in WHY. xor operator has been
implemented with and, or and not operators. Table 7.15 sum-ups these operators translations. Numeric
operations have been implemented using the standard WaY arithmetic theories and their operators. We
detail OCL numeric operations in Table 7.16. Finally relational operators are also based on standard Wry
constructs. Their mapping can be found in Table 7.17.

124

7.4. OCL EXPRESSIONS TRANSFORMATION

OCL expression OCL context H Target WHY code
a and b a,b: Boolean Expression a /\ b
aorb a,b: Boolean Expression a \/ b
not a a: Boolean expression not a
a xor b a,b: Boolean Expression (a \/ b) /\ not (a /\ b)
a=>b a,b: Boolean expression a=>=
a<>b a,b: Boolean expression a <> b
a implies b | a,b: Boolean Expression a ->b

Table 7.15: OCL logical operators mapping to WHY operators
OCL expression OCL context H Target WHY code
a+b a,b: Integer expression a+b
a,b: Double expression a +. b
a-b a,b: Integer expression a - b
a,b: Double expression a-.b
a*xb a,b: Integer expression a * b
a,b: Double expression a *. b
a/b a,b: Integer expression a /b
a,b: Double expression a /. b
-a a: Integer expression -a
a: Double expression -.a

Table 7.16: OCL arithmetic operators mapping to WHY operators

7.4.2 COLLECTION OPERATIONS

As previously mentioned, there are four types of OCL collections. We only consider the use of the bag
collections in our BLOCKLIBRARY expressions. In Table 7.18, we detail the mapping between standard
OCL collections operations and WHY functions. In our handling of OCL collection operations, we do
not handle OCL generic nature nor subtyping of elements. If the same operation is to be expressed on
different types itis then developed separately for each different type. Whereas this may seem to be a limited
way of handling this problem, in practice, our support restriction of OCL makes this easier as only a few
operations needs to be encoded several times.

The restrictions on the kind of collection we rely on for our constraints have an impact on the translation
we provide for some collection operations. The append and including operations have the same implemen-
tations and so have subOrderedSet and subSequence. According to the OCL specification, some collections
operations are not allowed on bag collections: append, at, first, indexOYf, indexAt, last, prepend, subOrdered-
Set, subSequence. We decided to allow their use in our implementation of OCL. This is a major drift from
the OCL standard but it has the advantage of greatly simplifying the translation mechanism without re-
straining the expressiveness of the language. The formalisation of the usual OCL collections is of additional
complexity as studied by Mentré in 2012 [106] but was not of primary interest for our current work so we
decided not to address the related issues.

Each of these functions are defined through a set of axioms specifying their context of use: on which
element type they are defined and if required restrictions are needed for their definitions; and the result of
their computation according to the provided input values. As sake of example, we provide the definition
for the union collection operation in Listing 7.19.
list 'a

function union (11 12: list 'a) :

lemma union_Presence: forall 11 12: 1list 'a, e: '

4 mem e 11 \/ mem e 12 <-> mem e (union 11 12)

a.

125

7.4. OCL EXPRESSIONS TRANSFORMATION

OCL expression OCL context H Target WHY code
a=> a,b: Numeric expression a=n>
a<>b>o a,b: Numeric expression a <>b
a<b a,b: Integer expressions a<b
a,b: Double expressions a <. b
a>b>b a,b: Integer expressions a>hb
a,b: Double expressions a > b
a<=b5D a,b: Integer expressions a <= b
a,b: Double expressions a <=. b
a>=o>o a,b: Integer expressions a >b
a,b: Double expressions a >=. b

Table 7.17: OCL relational operators mapping to WHY operators

OCL expression

H Target WHY code HH

OCL expression

Target WHY code

a->count (o)

count o a

a->append (o)

append a (Cons o Nil)

a->excludes (o)

not mem o a

a->prepend (o)

Cons o a

a—>excludesAll (o)

list_not_mem o a

a->including(o)

append a (Cons o Nil)

a->includes (o)

mem O a

a->excluding(o)

excluding a o

a->includesAll (o)

list_mem o a

a->index0f (o)

index0f a o

a->isEmpty ()

length a = 0

a->insertAt(i,o)

insertAt a o i

a->notEmpty ()

length a <> 0

a->intersection(c)

intersection a c

a->size() length a a->union(c) union a c
a->first() alo] a->subOrderedSet (1,u) subList a 1 u
a->last () allength al a->subSequence(1,u) subList a 1 u
a->at (i) ali] a->sum(), a: Bag(Integer) sumInt a

a->sum(), a: Bag(Double)

sumReal a

Table 7.18: OCL collection operations mapping to WHY operators

lemma union_Empty:
(union 11 12) = N

Listing 7.19: union collection operation formalisation in WHy

forall 11 12:
il <-> 11 =

list 'a.

Nil /\ 12 = Nil

7.4.3 LOGICAL PROPERTY ASSESSMENT ITERATION OPERATIONS

Iteration operations are the main operations used on OCL collections. They allow to assess a logical prop-
erty verification on: every element of a list (forAll), at least one element of a list (exists), exactly one
element of a list (one). They can express the uniqueness of the result of the application of a function on

every element of a list (isUnique). All these operations returns a boolean value.

In Table 7.20 we provide the translation for the forAll, exists, one and isUnique OCL operations on col-
lections. Unlike the previous translations, we do not rely on predefined functions but we rather map these
operations to simple first order logic expressions. Regarding the translation of the condition expression:
exp, the defined OCL iterators: it, it] and it2 are mapped to a call to the position of the element in the col-
lection via the list getter operator. In practice, references to it or it] are replaced by a[i] and references to it2
are replaced by a[j] in exp. This is expressed using the function application: [a/b]c that does a substitution

ofbbyainc.

126

7.4. OCL EXPRESSIONS TRANSFORMATION

OCL expression H Target WHY code ‘
a—forAll(it: DT | exp) Vi:int. 0 <i < length a — [a[i]/it]exp
a—forAll(it1, it2: DT | exp) || Vij:int. 0 <i<lengtha A0 <j < lengtha — [a[i]/itl,a[j]/it2]exp
a—rexists(it: DT | exp) Ji: int. 0 <i < length a A [a[i]/it]exp

a—exists(itl, it2: DT | exp) || Jij:int. 0 <i<lengtha A0 <j < lengtha A [a[i]/itl,a[j]/it2]exp
Ji:int. 0 <i<lengtha A [ai]/it]exp A
(Vj: int. 0 <j <length a Aj<>i— [ali]/it]exp <> [alj]/it]exp)
Vij:int. 0 <i<lengtha A0 <j<lengtha Ai<>j—

[a[i] /itlexp <> [al]]/it]exp

a—one(it: DT | exp)

a—isUnique(it: DT | exp)

Table 7.20: OCL logical property verification operations mapping to WHY expressions

7.4.4 VALUE EXTRACTION ITERATION OPERATIONS

Iteration operations also allow the extraction of values from a collection: according to their verification
(select) or non-verification (reject) of a property; or by applying a treatment on every element of a list
(collect). Value extraction operations are more complex to model as they do not only provide a single
boolean value as output, they actually compute a list of elements.

ITERATION OPERATIONS SEMANTICS

Iteration operations apply on collections and compute filtering of the collection values and/or mapping
of functions on the collection values. We decide thus to represent a collection as the (c, p, f) tuple. Its
semantics is provided in (7.1).

[{e.p.)] = HfW)v € ¢ p(v)} (7.1)

According to the previous notation, we define the initial value of a collection as in (7.2) where T is the
predicate returning true and id the identity relation.

c={v,...,v,} = {c, T,1id) (7.2)

The definition of iteration operations is hence specified as in (7.3). From these definitions, we extract
implementations for iteration operations using the WHY language. We provide in the following sections
two possible implementations.

o p.f) — select(e

(9 (,p Nf/ele.f)
(c,p.f) — reject(e|¢

(¢

(

<Cap A _'[f/e]‘p7f>
(c,p,f) — select(e|p) — first()
(c,p.fog)

epf) = anyle (73)

)
)
) =
op.f) = collect(g) =

ITERATION OPERATIONS AS FIRST ORDER LOGIC CONSTRUCTS

Providing an implementation for iteration operations can be done using first order logic constructs. It is
then required to generate a different function for each iteration operation call and then in the translated
OCL operation code, to write a call to the generated function. Generated function for the select, reject,
any and collect value extraction operations are provided in Table 7.21. Each generated function name is
post-fixed with an ”_iterator” elements. This must be replaced by a unique value allowing to ensure that
the name of each generated collection function is unique. The first argument to the generated iteration
function is the collection on which the operation applies, the others corresponds to the variables (others
than the iterator itself) used in the iteration operation body.

127

7.4. OCL EXPRESSIONS TRANSFORMATION

OCL expression H Target WHY code
function select_UID (a: list 'b) (varl: type) ... : list 'b =
match a with
| Nil -> Nil
a->select (it:DT| exp) | Cons hd tl ->
if ([hd/it]exp) then Cons hd select_iterator tl
else select_iterator tl
end
function reject_UID (a: list 'b) (varl: type) ... : list 'b =
match a with
| Nil -> Nil
a->reject (it:DT| exp) | Cons hd t1 ->
if not ([hd/it]lexp) then Cons hd select_iterator tl
else select_iterator tl
end
function any_UID (a: list 'b) (varl: type) ... : 'b =
match a with
| Nil -> Nil
a->any(it:DT| exp) | Cons hd tl ->
if ([hd/it]exp) then hd
else any_iterator tl
end
function collect_UID (a: list 'b) (varl: type) ... : 'b =
match a with
a->collect (it:DT| exp) | Nil -> Nil
| Cons hd tl -> union ([hd/itlexp) (collect_UID tl)
end

Table 7.21: OCL iteration operations mapping to WHY expressions

Whereas using first order logic to provide an implementation for iteration operations is quite straight-
forward, the implementation and verification of the generation might be quite complex.

ITERATION OPERATIONS AS HIGHER ORDER LOGIC CONSTRUCT

As an alternative approach, we propose to use higher order logic to represent the operations in WHy. Table
7.22 contains the iteration operations mappings to their respective function defined in WHY. An example
of such formalisation is provided in Listing 7.23 for the select iteration operation. The select function in
WHY takes two arguments, the first one is the collection on which the operation is applied and the second
one is the predicate that must be used in order to select the elements of the collection. In addition to the
function definition, we provide a set of lemmas verified by relying on the WHY3 platform generating proof
obligations discharged using SMT solvers or proof assistants. In the case of the select function, part of the
lemmas are verified using SMT solvers and others have been verified using the CoqQ_proof assistant. We
provide in Figure 7.24 a report generated with the WHY3 toolset for these verifications. We detail these
verifications in Appendix D.

’ OCL expression H Target WHY code ‘
a—rcollect(it: DT | exp) collect a fexp
a—reject(it: DT | exp) reject a fexp
a—select(it: DT | exp) select a fexp

a—any(it: DT | exp) anyAs a fexp

Table 7.22: OCL iteration operations mapping to WHY high order logic functions

In order to use iteration expressions, one must provide a body containing the condition or the operation
to apply on each element of the collection. We refer to this body in Table 7.22 as fexp. The condition body

128

7.4. OCL EXPRESSIONS TRANSFORMATION

10

15

20

25

30

function select (l: list oclType) (p: HO.pred oclType) : list oclType =

match 1 with

| Nil -> Nil

| Cons hd tl -> if p hd then Cons hd (select tl p)
else select tl p

end

lemma select_nil: forall p: HO.pred oclType.
select Nil p = Nil

lemma select_cons_nil_verified: forall e: oclType, p: HO.pred oclType.
p e -> select (Cons e Nil) p = Cons e Nil

lemma select_cons_nil _not_verified: forall e: oclType, p: HO.pred oclType.
not (p e) -> select (Cons e Nil) p = Nil

lemma select_cons_verified: forall e: oclType, 1: list oclType, p: HO.pred oclType.
p e -> select (Cons e 1) p = Cons e (select 1 p)

lemma select_cons_not_verified: forall e: oclType, 1: list oclType, p: HO.pred oclType.
not (p e) -> select (Cons e 1) p = select 1 p

lemma select_mem_reduc: forall 1: list oclType, b: oclType, p: HO.pred oclType.
mem b (select 1 p) -> mem b 1

lemma select_mem: forall 1: list oclType, b: oclType, p: HO.pred oclType.
(mem b 1 /\ p b) -> mem b (select 1 p)

lemma select_not_mem: forall 1: list oclType, b: oclType, p: HO.pred oclType.
(mem b 1 /\ not (p b)) -> not (mem b (select 1 p))

Listing 7.23: Select iteration operation formalisation in WHY using higher order logic

Proof obligations

)
S| Alt-Ergo-Pro (1.0.0)
Coq (8.4pl3)

lemma select_nil
lemma select_cons_nil_verified
lemma select_cons_nil_not_verified | 0.05

o
o
g

lemma select_cons_verified 0.03
lemma select_cons_not_verified 0.04
lemma select_mem_reduc 2.40
lemma select_mem 2.31
lemma select_not_mem 2.01

Figure 7.24: Select lemmas verification with WHY3 through SMT solvers and proof assistants

129

7.5. THE BAL EXPRESSIONS TRANSFORMATIONS

of the reject, select and anyAs operations is translated as an inlined predicate whereas the function body of
the collect operation is translated as an in-lined function. Inlined predicates and functions are provided
as the second argument of their respective WHYML function call. Contrary to the first order operations,
there is no need here to keep track of the variables used in the iteration operation as the inlined nature of
the function call makes their definition directly available.

In the MinMax block specification provided in Listing 7.2, a postcondition is provided for the MinOut-
putScalarMultipleInputsScalars compute semantics phase definition:

postcondition ocl {
In1->forAl1(i | i.value >= Out.value)
i
This post-condition is equivalent to:

postcondition ocl {
2 Inl->select (il i.value < Out.value)->isEmpty ()
}
Which could be translated in WHYML using higher order logic as a call to the select function:

let inl_0 = select inl ((\ bind_i: tInPortGroup (tRealDouble).
2 bind_i.value_inpg >. out.value_outpg)) in
length in1_0 = 0

The declarations for the collect, reject and any operations are provided in Appendix D.4.

ADDITIONAL LIMITATIONS ON THE SUPPORT OF THE OCL LANGUAGE

In the previous sections, we give the translation rules for a subset of the OCL language. OCL provides a
well known syntax for software engineers. In addition, this subset of the language eases and secures the
constraints writing process relying on first order logic by including only well known and standard functions
and operations on classical data types.

A major limitation in our implementation of the OCL language is the absence of the specific values for
data: undefined and null. This enforces the block designer to explicitly set the values for the block structural
teatures. In a block specification, some feature may be optional for some signatures. In these cases, the
specifier must provide a default value for the feature. The reset algo parameter is an example of such a
feature: its special value NONE is the explicit value of the feature when the parameter is not used.

Undefined and null values can be implemented in WHY by relying on option types. Adding the support
for these specific values will have a strong impact on the WHY implementation of the OCL constructs as
these specific values will need to be taken into account in the implementation of the functions and in their
correctness proofs.

7.5 THE BAL EXPRESSIONS TRANSFORMATIONS

The BAL is a simple imperative language. The WHYML language allows for the expression of programs in
an imperative form. The expressiveness of BAL is a subset of WHYML one’s. As such, programs written
using BAL can be converted to WHYML programs. We detail in Table 7.25, the transformation rules we
have defined in order to transform a BAL function body into a WHYML program.

The provided translation rules have been arbitrarily defined. To our understanding; it is the most natu-
ral way of translating BAL expressions as WHYML functions expressions. This translation is not the only
possible mapping and is highly dependent of the choices made in previous translations. As an example, the
value attribute access translation is provided as a field access in WHYML but this is related to the fact that
e (which is a StructuralFeature element) is formalised as a record type in WHY3. Regarding for loop
expressions we only support the provided form of for loop with an iterator increasing (or decreasing) of
one at each iteration, this has the advantage of allowing a direct mapping to the WaYML for loop allowed
constructs and simplifies the verification of loops.

Logical, relation, arithmetic and literal expressions are translated according to the same transformation
rule as in the OCL translation.

130

7.6. BLOCKLIBRARY VERIFICATION TRANSFORMATIONS

BAL expression H Target WHY code
sf.value = exp sf.value_XX <- exp
var e = exp let e = ref exp in
e[i]l[j] = exp e := setAt l'e (setAt !e[i] exp j) i
sf.value <- setAt sf.value
sf.value[il[j] = exp (setAt sf.valuelil exp j)
i
if (cExp) then if cExp then
tExp tExp
else eExp else eExp
for (var i = iExp; i < topExp; i = i + 1) { for i = iExp to topExp - 1 do
exp exp
} done;
for (var i = iExp; i > bottomExp; i = i - 1) { for i = iExp downto topExp + 1 do
exp exp
} done;
while (cExp) { while cExp do
exp exp
} done;

Table 7.25: BAL expressions to WHYML translation rules

7.6 BLOCKLIBRARY VERIFICATION TRANSFORMATIONS

The translation from BLOCKLIBRARY conforming models to WHY aims at ensuring the verification of the
variability completeness and disjointness properties as modeled in REQ-7.[b|c] and the semantics cor-
rectness as modeled in REQ-8. In order to do so, we decided to translate each BlockType specification
to a set of WHY theories for the first verification, to WHYML modules for the second one and to generate
proof goals to ensure these properties. Figure 7.26 provides an overview of these transformations that will
be detailed in the following sections.

7.6.1 VARIABILITY VERIFICATION TRANSFORMATION

Variability verification targets the assessment of the completeness and consistency properties. In order
to ease this assessment, we check the stronger disjointness property instead of consistency properties. In
order to ensure the verifiability of the properties, we need to express the domain on which the verification
needs to be applied. In our case, a different domain is described for each BlockType specification.

This first transformation is split in three steps: block domain transformation, Signature domain trans-
formation and variability verification goals generation.

BLOCK DOMAIN TRANSFORMATION STEP

The block domain is composed of StructuralFeature element definitions composed of their name
and data type. Each StructuralFeature definition is translated to a new type expressed as an alias of
the standard data types we defined in Section 7.3.1. An example of translation from the
StructuralFeature defined in the MinMax BLOCKLIBRARY specification is provided in Figure 7.27.
The last two types generated in the MinMax_FeaturesDT theory are generated from the Inl and Out
StructuralFeature.

These alias types should be constrained according to the INVARIANT expressed on each
StructuralFeature. We chose to implement this by creating a theory for each BlockVariant ele-
ment containing at least one StructuralFeature definition that is constrained by an INVARIANT. This
theory will contain a predicate definition for each INVARIANT defined fora StructuralFeature in this
BlockVariant. We will refer to these theories as the StructuralFeature INVARIANT theories. Each
generated predicate will have as parameters all the types corresponding to the StructuralFeature ac-

131

7.6. BLOCKLIBRARY VERIFICATION TRANSFORMATIONS

BlockLibrary

Block Domain

Why3 theory

5 E
Predicates

Transformati

Transformation
*.USB
Why3 theory
Signature
Domain

(Signature Pmdicate—‘

*Use
Variability Why3 theory
Verification e
Goals Extractiunb C?J':_;’;’"&t::zﬁs
Goals
Why3 module
Semantics Semantics step
Verification Functions
Transformation finiﬁ)? 3
compute
(update)?

Figure 7.26:

variant MinMaxParameters {
2 parameter FunctionParam
parameter NbInputs

I

MinMaxFunction

is translated to

1 theory MinMax_FeaturesDT
use export BlockLibrary_Main.BlockLibraryDataTypes
Max

type minMaxFunction = Min |

Overview of the BLOCKLIBRARY to WHY3/WHYML transformation

TInt16 { invariant ocl { NbInputs.value >= 1 } }

6 type tFunctionParam_MinMaxParameters_MinMaxFunction =
tParameterType (minMaxFunction)
type tNbInputs_MinMaxParameters_TIntl6 = tParameterType (tRealSignedIntil6)
type tInl_MinMaxInScalars_TDouble = list (tInPortGroup (tRealDouble))
type tOut_MinMaxOutScalar_TDouble = tOutPortGroup (tRealDouble)
11 end

Figure 7.27: Block domain extraction of StructuralFeature data types

132

UOIIeLLIOJSURI) UOIIeILLIDA AJI[IGRLIBA

uonewJojsuen

UOIRIYLIDA

SJjjuewasg

7.6. BLOCKLIBRARY VERIFICATION TRANSFORMATIONS

variant MinMaxParameters {
parameter FunctionParam : MinMaxFunction
parameter NbInputs : TInt16 { invariant ocl { NbInputs.value >= 1 } }

4 ¥
variant MinMaxInScalars extends MinMaxParameters {
in data Inl : TDouble [1 .. 0] { invariant ocl { Inl->size() = NbInputs.value } }
}

is translated to

theory MinMaxParameters_PreConditions
use export MinMax_FeaturesDT

predicate minMaxParameters_invO
(nbInputs: tNbInputs_MinMaxParameters_TInt16)
(functionParam: tFunctionParam_MinMaxParameters_MinMaxFunction) =
nbInputs.value_pt >= 1

predicate minMaxParameters_NbInputs_limit
(nbInputs: tNbInputs_MinMaxParameters_TInt16) =
limit_tRealSignedInt16 (nbInputs.value_pt)

13 predicate minMaxParameters_PreConditions

(nbInputs: tNbInputs_MinMaxParameters_TInt16)

(functionParam: tFunctionParam_MinMaxParameters_MinMaxFunction) =
minMaxParameters_invO nbInputs functionParam /\
minMaxParameters_NbInputs_limit nbInputs functionParam

18 end

theory MinMaxInScalars_PreConditions
use export MinMax_FeaturesDT

23 predicate minMaxInScalars_inv_O
(nbInputs: tNbInputs_MinMaxParameters_TInt16)
(inl: tInl_MinMaxInScalars_TDouble)
(functionParam: tFunctionParam_MinMaxParameters_MinMaxFunction)
length inl = nblInputs.value_pt

28
predicate minMaxInScalars_PreConditions
(nbInputs: tNbInputs_MinMaxParameters_TInt16)
(inl: tInl_MinMaxInScalars_TDouble)
(functionParam: tFunctionParam_MinMaxParameters_MinMaxFunction)
33 minMaxInScalars_inv_0O nbInputs inl functionParam
end

Figure 7.28: Block domain extraction of StructuralFeature INVARIANT Annotation

cessible through the current BlockVariant Signature. The body of the predicate will be the expres-
sion provided in the INVARIANT Annotation. An example for this translation from the MinMaxParam-
eters and MinMaxInScalars BlockVariant is provided in Figure 7.28.

SIGNATURE DOMAIN TRANSFORMATION STEP

The Signature domain corresponds to the set of constraints that can be extracted from a Signature
element. We choose to work at the Signature level as each Signature is holding a block specification
that should be verified and as a Signature being behavior-focused, extracted informations should be
easier to manage and thus to automatically verify by opposition to Configuration elements who may
contain multiple behavior and thus will contain more complex function definitions.

From each Signature, we thus generate a theory that imports the definitions provided by the
StructuralFeature INVARIANT theories of the BlockVariant contained in the Signature. In
this theory, we translate every MODE_INVARIANT contained in the Signature (inallitsBlockVariant
and its unique BlockMode), to a predicate definition under the same principle as previously. Finally a
Signature predicateis generated as defined in Listing 6.22 by calling the Signature MODE_INVARIANT

133

7.6. BLOCKLIBRARY VERIFICATION TRANSFORMATIONS

predicates. These theories will be referred to as the Signature theories. An example of such translation

is provided for the Signature extracted from the MinOutputScalarMultipleInputsScalars BlockMode in
Figure 7.29.

1 mode MinOutputScalarMultipleInputsScalars implements allof(
MinMaxOutScalar ,MinMaxInScalars)
{
modeinvariant ocl { NbInputs.value > 1 }
modeinvariant ocl { FunctionParam.value = !!MinMaxFunction::Min }

6

is translated to

theory MinOutputScalarMultipleInputsScalars_sig0
use export MinMax_FeaturesDT

4 predicate minoutputscalarmultipleinputsscalars_modelnv_1

(out: tOut_MinMaxOutScalar_TDouble)

(nbInputs: tNbInputs_MinMaxParameters_TInt16)

(inl: tInl_MinMaxInScalars_TDouble)

(functionParam: tFunctionParam_MinMaxParameters_MinMaxFunction)
9 nbInputs.value_pt > 1

predicate minoutputscalarmultipleinputsscalars_modelnv_2
(out: tOut_MinMaxOutScalar_TDouble)
(nbInputs: tNbInputs_MinMaxParameters_TInt16)
14 (inl: tInil_MinMaxInScalars_TDouble)
(functionParam: tFunctionParam_MinMaxParameters_MinMaxFunction)
functionParam.value_pt = Min

predicate minOutputScalarMultipleInputsScalars_sigO0
19 (out: tOut_MinMaxOutScalar_TDouble)
(nbInputs: tNbInputs_MinMaxParameters_TInt16)
(inl: tInl_MinMaxInScalars_TDouble)
(functionParam: tFunctionParam_MinMaxParameters_MinMaxFunction) =
minoutputscalarmultipleinputsscalars_modeInv_1 out nbInputs inl functionParam /\

24 minoutputscalarmultipleinputsscalars_modeInv_2 out nbInputs inl functionParam
end

Figure 7.29: Signature domain extraction of MODE_INVARIANT Annotation

VARIABILITY VERIFICATION GOALS EXTRACTION STEP

Completeness and disjointness of the specification have to be ensured for the entire BlockType specifica-

tion, meaning that it must be expressed according to every Signature and thus according to every gener-
ated

Signature predicates. It should also take into account the domain on which the verification is done.

Anew theory is generated, it will hold the required goal declarations for the expression of the verification

properties. This theory must import all the StructuralFeature INVARIANT theories extracted from
the

BlockType as long as the Signature theories extracted for each Signature.
Both of the verification goals are built on an implication:

o its premise is the domain defined in the StructuralFeature INVARIANT theories, it is thus a
conjunction of all the predicates declared in these theories.

« its conclusion is the conjunction of the Signature predicate taken from the Signature theories.
We show the generated goals for the MinMax block specification in Figure 7.30.

134

7.7. VARIABILITY VERIFICATION THROUGH SMT SOLVING

theory MinMax_Verif
use import MinOutputScalarMultipleInputsScalars_sig0
use import MaxOutputScalarMultipleInputsScalars_sig0
use import MinMaxParameters_PreConditions
S use import MinMaxInScalars_PreConditions

goal MinMax_completeness
forall out: tOut_MinMaxOutScalar_TDouble,
nbInputs: tNbInputs_MinMaxParameters_TInt16,
10 inl: tInl_MinMaxInScalars_TDouble,
functionParam: tFunctionParam_MinMaxParameters_MinMaxFunction
minMaxParameters_PreConditions nbInputs functionParam /\
minMaxInScalars_PreConditions nbInputs inl functionParam
->
15 minOutputScalarMultipleInputsScalars_sig0 out nbInputs inl functionParam \/
maxOutputScalarMultipleInputsScalars_sigO out nbInputs inl functionParam

goal MinMax_disjointness
forall out: tOut_MinMaxOutScalar_TDouble,
20 nbInputs: tNbInputs_MinMaxParameters_TInti16,
inl: tInl_MinMaxInScalars_TDouble,
functionParam: tFunctionParam_MinMaxParameters_MinMaxFunction
minMaxParameters_PreConditions nbInputs functionParam /\
minMaxInScalars_PreConditions nbInputs inl functionParam
25 ->
not (minOutputScalarMultipleInputsScalars_sig0 out nbInputs inl functionParam /\
maxOutputScalarMultipleInputsScalars_sig0 out nbInputs inl functionParam)
end

Listing 7.30: Completeness and disjointness verification goals

7.6.2 SEMANTICS VERIFICATION TRANSFORMATION

Semantics verification targets the assessment of the correctness of the semantics definition provided in the
BlockMode elements in order to assess the correctness of the operational specification with respect to the
axiomatic one provided in the pre/post conditions. We do not enforce BlockMode semantics definition to
contain both axiomatic and operational semantics but it is mandatory to provide it during the specification
phase in order to be able to perform this verification.

For each BlockMode specification and each Signature that can be extracted from it, we have shown in
Section 6.5 that we can extract functions with contracts. Our semantics verification mechanism is inspired
from this translation but is different as its target language is the WHYML language.

For each Signature extracted from each BlockMode extracted from each BlockType, we can build
one Hoare triple for each semantics phase. Each Hoare triple can then be translated to a WHYML function
and its contract. The function is composed of the operational semantics provided in each semantics phase
definition and of its contract composed of:

« Pre-conditions extracted from: all the INVARIANT provided by all the StructuralFeature; all
the
MODE_INVARIANT contained in the Signature BlockVariant elements and the BlockMode
element; and from the pre-conditions contained in the semantics phase definition.

« Post-conditions extracted from: the post-conditions contained in the semantics phase definition.

We provide in Figure 7.31 the translation for one of the MinMax block semantics definitions.

7.7 VARIABILITY VERIFICATION THROUGH SMT SOLVING

The previously generated WHY theories are fed into the WHY3 tool taking care of their translation to suit-
able formats for verification through SMT solvers or proof assistants. Here we will focus on the use of
SMT solvers as we are targeting fully automated verification activities to ease the writing and verification

135

7.7. VARIABILITY VERIFICATION THROUGH SMT SOLVING

definition bal = compute_MinOutScalarMultiplelInputsScalars {
2 postcondition ocl {
In1->forAll1(i| i.value >= Out.value)
}
var res = In1[0].value;
for (var i = 1; i < (size(Inl1)); i = i + 1){
7 if (res > Ini[i].value){
res = Ini1[i].value;
}
}
Out.value = res;
12}

is translated to

let compute_MinOutScalarMultipleInputsScalars
(out: tOut_MinMaxOutScalar_TDouble)

3 (nbInputs: tNbInputs_MinMaxParameters_TInt16)
(inl: tInl_MinMaxInScalars_TDouble)
(functionParam: tFunctionParam_MinMaxParameters_MinMaxFunction)

requires { nbInputs.value_pt >= 1 }
requires { length inl = nbInputs.value_pt }

8 requires { nbInputs.value_pt > 1 }

requires { functionParam.value_pt = Min }
ensures { forall iO: int.
0 <= i0 < length inl ->
in1[i0] .value_inpg >=. out.value_outpg
13 k=
let res_outer = in1[0].value_inpg in
let res = ref res_outer in
for i = 1 to length inl - 1 do
if ! res >. in1[i].value_inpg then
18 res := ini[i].value_inpg
done ;
out.value_outpg <- ! res

Figure 7.31: Signature function with contract extraction of BlockMode specification

of specification by domain experts. However, in case of automatic verification failure, we could still fall
back on proof assistant for the most complex blocks under the guidance of a proof expert.

7.7.1 SPECIFICATION EXTRACT VARIABILITY VERIFICATION

In the MinMax block specification provided in Listing 7.2, we only extract a part of the specification. Ap-
plying the previously defined extraction mechanism provides the two goals detailed in Listing 7.30.

COMPLETENESS GOAL VERIFICATION

If we simplify the completeness goal and express it using only expressions based on StructuralFeature
elements values (by replacing the predicates calls by their definition and if we remove the duplicates ex-
pressions that can be removed), we obtain the goal of Listing 7.32.

goal MinMax_completeness
1 <= value_pt nbInputs /\ length inl = value_pt nbInputs ->
1 < value_pt nbInputs /\ value_pt functionParam = Min \/
1 < value_pt nbInputs /\ value_pt functionParam = Max

Listing 7.32: Simplified completeness and disjointness goals

It is impossible to prove correct the MinMax_completeness goal to be true. Indeed, in the premises
of the implication, the value_pt nbInputs value is supposed to be greater or equals to 1 and equals
to the length of the in1 PortGroup (the number of these ports groups) but in the conclusion, we must
prove the value_pt nbInputs to be greater than 1.

136

7.7. VARIABILITY VERIFICATION THROUGH SMT SOLVING

1 goal MinMax_disjointness :
1 <= value_pt nbInputs /\ length inl = value_pt nbInputs ->
not ((1 < value_pt nbInputs /\ value_pt functionParam = Min) /\
1 < value_pt nbInputs /\ value_pt functionParam Max)

Listing 7.33: Simplified completeness and disjointness goals

This problem is due to the content of the MinMax block specification part we based our generation on.
This specification only provides BlockMode for the cases where the number of inputs is greater than 1.
If we want to verify this part of the specification, we have to restrain the specification of the NbInputs
parameter to be strictly greater than 1. In this case the verification is done automatically in a few tenth of
a second (0.09 seconds to be exact) by the ALT-ERGO SMT solver”. The example provided here whereas
being simple is very representative of the typical block specification errors.

DIS]OINTNESS GOAL VERIFICATION

Regarding the proof for the MinMax_disjointness, we can also apply the same simplification as pre-
viously and obtain its expression based only on StructuralFeature values expressions as provided in
Listing 7.33. This goal is verified by SMT solvers in 9 tenth of a second using the ALT-ERGO SMT solver.
Verification of the disjointness goal is done easily as the second components of every configuration
predicates are exclusive (value_pt functionParam).
Of course, as our goal is not to verify partial configurations of a block, we applied the verification trans-
formation to full block specifications. Results obtained are discussed in the following section.

7.7.2 ENTIRE SPECIFICATION VERIFICATION

We provide the entire specification in a textual form in Appendix A.2 for the MinMax block. Table 7.34
gives the verification times for some blocks we have written a BLOCKLIBRARY specification for. These
verifications have been done using the ALT-ERGO SMT solver. According to what was previously stated,
it is expected that according to the number of Signature element computed from a block specification,
the verification time increases. This is mostly due to the exponential size of the disjointness goal. With
the goals size increase comes an increase in the verification time and in the system resources needs. It is
worth noting that despite the complexity of the Delay block example, the time required for the verification
remains reasonable.

’ Block name ‘ #BlockMode ‘ #Signature ‘ TimeCompleteness(s) ‘ TimeDisjointness(S) ‘ MemoryMaxuse(I<iB) ‘

MinMax 10 10 0.09 0.09 123,960
Sum 8 8 0.11 0.13 130,844

Lookup 6 6 0.26 1.36 136,808
Delay 12 144 2.45 8.06 1,507,972

Table 7.34: Some blocks specification verification performances

7.7.3 GOALS TRANSFORMATION AS A MEAN TO EASE THE VERIFICATION

Using SMT solvers through the WHY3 platform has some advantages. Among these we can cite the pos-
sibility to apply transformations on the theories to prove, before translating these ones to SMT solvers or
proof assistants inputs.

*The verification has been processed on a Linux Mint laptop with a 2.4 Ghz dual core processor and 4 Gb of Ram

137

7.7. VARIABILITY VERIFICATION THROUGH SMT SOLVING

TRANSFORMATIONS

Transformations allows manipulating the expressions in order to simplify the goals to prove. For exam-
ple, transformations allows to produce one goal for each component of a conjunction; in-line predicates
definitions (replace a predicate call with its definition) or terms definitions, remove let definitions by re-
placing the defined variable by its definitions in each of its use and many other ones. Goals simplifications
done previously are the result of using this transformation mechanism. Further details about available
transformations are provided in the WHY3 manual [3].

APPLICATION TO THE COMPLETENESS VERIFICATION

We take as example the translation for the erroneous part of the MinMax block specification. We will
focus on the MinMax_completeness goal. On this goal, we apply three inline_goal transformations.
These lead to the simplified result that was detailed in Listing 7.32. We then apply the introduce_premises
transformation leading to the introduction of both conjunction components of the premise as axioms.
We finally apply the split_goal full transformation distributing the logical conjunctions over the logical
disjunction leading to four different goals to prove. We give the final goals details in Listing 7.35. The last
goal is trivially proven as it aims at proving the definition of the minMaxFunction type. The other three
are not provable from the informations provided in the H and H1 axioms.

1 constant out : tOutPortGroup real

constant nbInputs : tParameterType int

constant inl : list (tInPortGroup real)
constant functionParam : tParameterType minMaxFunction

6 axiom H : 1 <= value_pt nbInputs
axiom H1 : length inl = value_pt nbInputs

goal MinMax_completeness_1 : 1 < value_pt nbInputs \/ 1 < value_pt nbInputs

goal MinMax_completeness_2 : 1 < value_pt nbInputs \/ value_pt functionParam = Max
11 goal MinMax_completeness_3 : value_pt functionParam = Min \/ 1 < value_pt nbInputs
goal MinMax_completeness_4 : value_pt functionParam = Min \/

value_pt functionParam Max

Listing 7.35: Inlined and split resulting goals for the completeness goal

INTERPRETATION OF THE RESULTS

One main advantage of the use of this tool is the ability, with a minimal knowledge of first order logic and
its manipulation, to actually apply the transformations, see their results and from this either a) manage to
do the proof with SMT solvers and eventually with proof assistant; or b) guess informations on the reasons
why the verification is failing and thus modify the block specification with this new knowledge. We like
to call this a proof "debugging” process. This implies the ability to provide feedback information at the
BLOCKLIBRARY conforming models level.

GENERAL TRANSFORMATION APPLICATION METHODOLOGY PROCESS

The completeness and disjointness goals have specific shapes, it is possible to define transformation ap-
plication methodologies in order to simplify them and then obtain simpler sub-goals that one may try to
prove with SMT solvers or if SMT solvers fails to conclude by relying on proof assistants.

Both completeness and disjointness goals are implications. Their premises are shaped as conjunctions
and their conclusions are shaped according to the goal. We detail in Figure 7.36 (respectively in Figure
7.37) the transformation application methodologies that can be used on the completeness goal (respec-
tively on the disjointness goal). In these figures, arrows denote the application of one or more transforma-
tions. The content of the rectangular notes is the general pattern of the goal on which the transformation
is applied.

138

7.7. VARIABILITY VERIFICATION THROUGH SMT SOLVING

goal completeness: P1 /\ /\ Pn -> C1 \/ \/ ij
intro_premises
axiom H: P1
axiom
axiom Hn: Pn
goal completeness: Cl1 \/ \/ Cm
linline_all
Zzigm H: P1,1 /\ /\ P1,p (eliminate_if V/
axiom Hn: Pn,1 /\ /\ Pn,1 silirr:nlril?te?i)?rn\{ﬂa)*
goal completeness: C1,1 /\ /\ Cl,g \/ \/ Cm,1 /\ /\ Cm,r phty_
split_goal_full
axiom H: P1,1 /\ /\ Pl1,p
axiom
axiom Hn:Pn,1/\ /\ Pn,1 (eliminate_if VV
goal completenessl: C1,1 /\ C2,1 /\ /\ Cm,1 liminate_let \/
goal completeness2: C1,1 /\ C2,2 /\ /\ Cm,1 simplify_formula)*
goal completeness...
goal completenessN: Cl,q /\ /\ Cm,r

Figure 7.36: Completeness goal transformation application methodology

P1T /\ ...

goal disjointness:

/\ Pn -> not (C1 /\ C2) /\ not (C1 /\ C3) /\ ...

/\ not (Cn-1 /\ Cn)j

lintro_premises
A 4

axiom H: P1
axiom ...
axiom Hn: Pn

goal disjointness: not (C1 /\ C2) /\ not (C1 /\ C3) /\ ...

/\ not (Cn-1 /\ Cn)

plit_goal_full
\ 4

axiom H: P1

axiom ...

axiom Hn: Pn

goal disjointness1: not(C1 /\ C2)
goal disjointness. ..

goal disjointnessN: not (Cn-1 /\ Cn)

inline_all
axiom H: P1,1 /\ ... /\ P1,p
axiom
axiom Hn: Pn,1T /\ ... /\ Pn,I (climinate _if V

liminate_let \/
simplify_formula)*

goal disjointness1: not (C1,1 /\ ... /\ Cl,q /\ C2,1 /\ C2,r)

goal disjointness. ..
goal disjointnessN: not (Cn-1,1 /\ ...

/\ Cn-1,s /\ Cn,1 /\ ... /\ Cn,t)

Figure 7.37: Disjointness goal transformation application methodology

139

7.8. SEMANTICS VERIFICATION THROUGH SMT SOLVING

The proposed methodologies allow to split complex goals as multiple simpler goals. This is an applica-
tion of the “Divide and conquer” approach that suits well SMT solvers as they perform better on smaller
goals. This approach is in fact close to the one applied in the first place by SMT solvers to achieve their
verification. The specific shape of our generated goal makes plausible that no SMT solver inner strategy
implements the provided methodologies.

For our work, we used WHY3 in its 0.83 version. In more recent versions (0.85), other transformations
are available. These new transformations may allow for a more efficient process.

VERIFICATION METHODOLOGY PROCESS INTEREST FOR BLOCKLIBRARY INSTANCE VERIFICATION

Sub-goals obtained through the applications of our methodology can be fed to SMT solvers that may prove
them. If this is not a success, then the sub-goals may still be too complex for an SMT solver to solve. In
this case, there are three general solutions available to assess the correctness of the goal: a) we give more
time and memory to the SMT solver to achieve the proof. This may succeed as computing power plays an
important role in the success of SMT solving; b) we try to verify the negation of the goal. The verification
of this goal will then show that the original goal is false; and c) we use a proof assistant that may allow to
discharge some goals and even finish the proof.

If none of these three techniques provides a positive answer, the transformation methodology applica-
tion or the proof assistant results may provide a discrepancy information on the specification that we can
use as verification feedback:

« Discrepancy informations might be provided by some SMT solvers in the form of counter examples
but it is not always possible depending on the toolset.

« The application of the transformations is generating simpler goals, these goals may be simple enough
for the toolset user to detect discrepancies in the specification and then guess a correction to apply
on the specification.

« Proof assistants feedbacks are based on the knowledge the human doing the proof have regarding
the proof result such as a missing hypothesis that may be linked to missing informations (such as
missing invariants for example) on the block specification or a false assumption caused by a faulty
specification. The human operator can then provide the necessary feedbacks and correct the block
specification accordingly.

Verification feedbacks should be expressed on the BLOCKLIBRARY instance specification allowing to
correct it accordingly, one must ensure a tight integration of this feedback in the tooling and especially in
the BLOCKLIBRARY editor environment.

We target to provide an automation of this feedback mechanism but timing constraints made this im-
possible. According to our experiments, it looks possible to provide it but the development work for this
task is not small and thus needs a consequent timing investment.

7.8 SEMANTICS VERIFICATION THROUGH SMT SOLVING

WHYML modules generated from a BLOCKLIBRARY instance contains the definition for a function ex-
tracted from a Signature instance. We have provided in Figure 7.31 the specification of a MinMax block
BlockMode and its translation as a WHYML function with its contract. Here, we will tackle the verification
of this function through the verification of its contract correctness.

7.8.1 HOARE TRIPLE VERIFICATION

This verification targets to show that if the pre-conditions expressed on the function contract of the
compute_MinQutScalarMultipleInputsScalars function are satisfied then the provided func-
tion implementation will satisfy the provided post-conditions. For this function, there is only one post-
condition: the output is smaller or equals to any input.

140

7.8. SEMANTICS VERIFICATION THROUGH SMT SOLVING

goal WP_parameter_compute_MinOutScalarMultipleInputsScalars :
2 forall nbInputs:int, inl:1list (tInPortGroup real), functionParam: minMaxFunction.
nbInputs >= 1 /\ length inl = nbInputs /\ nbInputs > 1 /\ functionParam = Min ->
(let o = length inil - 1 in

(1 >0 ->
(forall out:real. out = value_inpg (nth 0 inl) ->
7 (forall i0O:int. O <= i0 /\ i0 < length inl ->

value_inpg (nth i0 inl) >=. out))) /\
(1 <= 0o >

(forall res:real. forall out:real. out = res ->
(forall iO:int. O <= i0 /\ i0 < length inl ->
12 value_inpg (nth i0 inl) >=. out))))

Listing 7.38: Weakest pre-condition for the compute_MinQutScalarMultipleInputsScalars semantics

From the function contract and specification, the WHY3 tool computes a WP producing a proof obliga-
tion. Its successful verification implies that the function post-condition is verified according to the func-
tion code and its pre-conditions. The WP computed for this BlockMode semantics function is provided
in Listing 7.38. In this WP, we clearly distinguish the pre-conditions (line 3), two cases are then given:
one where in1 is small enough (1 > o) for the loop not to be computed and the other case where in1
is big enough for the loop to be computed (I <= o). For each of these cases the WP expresses that the
computed code must imply the function post-condition.

The first case is trivially verified as its pre-condition is false (the length of in1 cannot be smaller than 1).
Regarding the second case the provided pre-conditions are not sufficient to allow the verification. The use
of SMT solvers provides the same result. The impossibility to prove this contract is not a surprise as the
function code contains a loop and no loop invariant is provided to characterise it.

Verification of function code containing loops is usually done using both loop variants and loop in-
variants. The loop variant provides a condition expressing the finite nature of the loop and the invariants
express properties ensured before, during and after the execution of the loop. Using WHYML for loops,
itis not required to provide a loop variant as it is directly inferred from the loop declaration. We thus only
need to provide the loop invariant.

7.8.2 ADDING LOOP INVARIANTS FOR THE VERIFICATION

The loop invariant that needs to be provided must ensure that at each step of the loop, the actual res
value is smaller than all the values of input ports that have already been compared. We provide the correct
BlockMode semantics phase function code with the loop invariant in line 7 of Listing 7.39.
definition bal = compute_MinOutScalarMultipleInputsScalars {
postcondition ocl {
3 Ini->forAl1(i| i.value >= Qut.value)
}
var res = In1[0].value;
for (var i = 1; i < (size(Inl1)); i =i + 1){
invariant { Inl->subSequence(0,i-1)->forAll(e| res <= e.value) }
8 if (res > In1[i].value){
res = Ini[i].value;
}
}

Out.value = res;

13 3

Listing 7.39: Compute semantics phase with loop invariant

Providing loop invariants for the verification of code containing loop constructs requires the ability for
the language to support annotation writing. We added the support for the writing of simple annotations in
the BAL language loop constructs. Loop invariant annotations body is expressed with OCL. It is advised to
use this language as it allows to express quantified expressions that are usually required in loop invariants.

Technical difficulties linked to the language scoping mechanism provided by the XTexT platform made
impossible to achieve in time the development of the transformation of BAL invariants as loop invariants

141

7.9. SCALABILITY

in the generated WHYML code. This is ongoing work and is expected to be solved shortly.

The addition of loop invariants for the verification of code raises the question of the ability for the block
specifier to actually write these loop invariants. The code to be written in the block specification is sup-
posed to be simple code but this does not necessarily make the loop invariant writing simple.

7.8.3 AUTOMATIC GENERATION OF INVARIANTS

The code constructs handled in the BAL language are limited and we do not allow for too complex data
structures. This advocates for the possibility to augment the BLOCKLIBRARY translation to WHY3 with a
loop invariant generation capability.

This could be done by relying on pre-proven algorithm patterns for which loop invariants are already
provided (this approach is also known as a template based approach [46]). If such patterns are detected
in the code used for the specification then the loop invariants can automatically be integrated in the code.
While this approach has the advantage of being quite straightforward and simple to implement (it still
needs to define the patterns and to provide their loop invariants), it does not guarantee the usefulness of
the loop invariant regarding the verification of the code as the loop invariant is generic for the loop and
might be too weak for the verification of the overall code.

The use of backward propagation of the post-conditions with automatic inference of loop variants and
loop invariants by relying on abstraction [127] or a combination of least and greatest fixed points [147]
might also be applicable to our goal.

We did not experiment on these lines of approach but current works [133] provides interesting tech-
niques and insights on how it can be dealt with.

7.9 SCALABILITY

As was shown previously, the complexity of the MinMax block specification is not really challenging and
does not cause specific problems (as soon as the required loop invariants are provided).

Regarding semantics specification verification, it is our purpose in the BLockL1BRARY DSML to limit
the expressibility of the BAL language to simple constructs as it makes the block specifier more cautious
about what he will express and restrict him in its way to express it.

Regarding the variability analysis, scalability can be at stake as the generated goals size can quickly be-
come important. The completeness goal size is linear in the size of the BLOCKLIBRARY instance as it is a
conjunction of all the configuration predicates. The generated disjointness goal size on the other hand is
not linear in the size of the BLOCKLIBRARY instance structure. Indeed as we are doing two-by-two compar-
ison of configuration predicates, the goal size is exponential. The verification of a full block specification
is thus expensive but the specification of blocks is supposed to be an iterative process and thus it is ex-
pected for the verifications not to be done again every time the specification is modified as some parts of
the specification will not change.

As an illustration of this goal size problem, we will use the full Delay block specification as provided
in Appendix 6.5. In this block specification, we have defined 12 BlockMode. For each BlockMode we
can extract 12 different Signature constructs. This leads to 144 different signatures. The generated
completeness goal is a disjunction of 144 Signature predicates and is discharged by the CVC4 SMT
solver in about 6 seconds. The generated disjointness goal is a conjunction of 10296 comparisons of
two Signature predicates. This complete goal is discharged in about 150 seconds with the CVC4 SMT
solver.

As we can see, the size of the generated goals can quickly grow and so is the verification time. By relying
on the application of transformations, it is possible to split the main completeness and disjointness goal
as multiple goals. Each generated goal is independent and thus can be verified on a different computer or
processor core and thus the intuition of the ability to do this verification in a concurrent way is coming to
mind. Works by Wintersteiger [158] or Déharbe [63] pave the way toward the use of SMT solvers in a
distributed way. In both work, they bring forward the expected but impressive potential performance gain

142

7.10. LIMITATIONS

brought by this approach.

7.10 LIMITATIONS

As we have shown in this chapter, our BLOCKLIBRARY language have some expressiveness and capabilities
limitation. We will highlight here some of these and explain our choice of not tackling them in this PhD.

7.10.1 DATAFLOW LANGUAGES CAPABILITIES LIMITATIONS

We presented dataflow languages in Chapter 3. In this description we mentioned the kind of a port: DATA,
ENABLE, EDGE_ENABLE or EVENT. In our BLOCKLIBRARY DSML, PortGroup are DATA ports.
ENABLE and EDGE_ENABLE ports allow to control the computation of the block according to the
port value. We did not implement specific support for this kind of port as it is possible to implement them
by adding: a) a new MemoryVariable storing the output value ; b) a dynamic BlockMode activated
only if the ENABLE port value is greater or equal to zero and for which the defined compute semantics
will be to output the previously produced output value. Of course this memory asks for a default value
and thus the block configuration should provide it via an additional Parameter. An EDGE_ENABLE
portimplementation will be based on the previous one with the notable difference of declaring yet another
MemoryVariable storing the port value in order to compare it and thus detect the rising or falling edge.

7.10.2 OCL AND BAL EXPRESSIVENESS LIMITATION

We did limit the capabilities of the constraint and action languages in order to ensure the time related
constraint of the PhD work. We did not implement all the rounding operations such as floor and round but
we could have done so by reusing the already defined functions provided in the WHY3 standard library.
We do not allow the use of casting operations in BAL. Such operations can be quite complex to formalise
and needs the development of type checking mechanism to ensure their correct use. Regarding data type
management, we limited the range of data types allowed in our tool as we do not handle types like complex
numbers. Such types could have been managed but no block used by our industrial partners in PROJET-P
do rely on complex numbers.

7.10.3 BLOCKLIBRARY LIMITATIONS

As shown in the different BLOCKLIBRARY specification examples provided in this document, every
StructuralFeature can be declared with only one attached data type. Whereas this forces the de-
signer to model its block specifications carefully and take into account the difficulties related to the various
allowed data types, it is not really convenient as we may want to specify a StructuralFeature value as
being of any possible numeric data type. Adding support for multiple data types in the BLOCKLIBRARY
language is not a problem but it introduces issues on the verification side as every possible combinations
of allowed data types for all the StructuralFeature in a Signature should be verified. According
to the strategy used in order to handle this, the result could be a combinatorial explosion of the number
of generated Signature or a serious increase regarding the complexity of the generated code. Verify-
ing all the data types combinations must also require to provide a feedback to the user on the forbidden
combinations of data types in the block specification he is writing.

7.11 SYNTHESIS

In this chapter we have show how we handle the verification of BLOCKLIBRARY conforming models. We
provide for them a translational semantics based on the WaY language. We also express in this same lan-
guage the verification criteria for the completeness and disjointness of a block specification and show how
they can be verified. We assess the block’s semantics specification by relying on a translation of the block
specification to WHYML functions with contracts.

143

7.11. SYNTHESIS

Variability related verifications provides good results on full block specifications but semantics verifica-
tion suffers from a weakness due to the lack of loop invariants expressed on the semantics. This problem
might be solved by translating manually written invariants but might also be dealt with using automatic
techniques.

In the first part of this PhD, we have analysed and tackled the problem of highly variable dataflow lan-
guages block libraries specification by developing a domain specific specification language. The specifica-
tion verification is done by translating the specification to a formal domain where automatic verification
techniques can be applied to ensure correctness properties. These verifications are backed up by efficient
and reliable tooling.

In the second part of this PhD, we rely on the formal specification of blocks for the verification of auto-
matically generated code. We will show how reliable formal specifications can be used for the verification
of low and high level design properties on the generated code. In the context of tool qualification, we will
show in which cases the formal specification can be considered as a source for the automatic generation of
qualification data for safety critical systems development tools.

144

Part 111

Automatic code generation verification based on
the block library specification

145

Verification of generated code

Automatic code generation is one of the key benefit of the use of model-based development for embedded
critical systems. But, in order to rely on its advantages, one first needs to ensure its correctness. Code
generation verification can either be done by ensuring the correctness of the generator itself or by applying
a translation validation approach (i.e. verification of the correctness of the generated code at each use).
Verification can also be done by using either formal or more traditional techniques.

In this chapter we detail our use of formal methods in a translation validation approach for the verifi-
cation of automatically generated code. We show how the formal informations gathered through the pre-
viously presented BLOCKLIBRARY specification approach can be used in order to decorate the generated
code with behavioral annotations. Verification of the generated code according to the annotations is done
using partly automated deductive verification techniques. Verification of system level properties based on
previously generated annotations is investigated and its concrete implementation detailed. Improvements
in the verification of automatically generated code is tackled by these approaches and their limitations is
finally discussed.

8.1 ANNOTATIONS FOR CODE VERIFICATION

A correct BLOCKLIBRARY conforming model contains the detailed and verified, i.e. complete, exclusive
and behaviorally correct, specification for dataflow blocks. For each block, it contains its structural vari-
ation points and for each one, its corresponding semantics. This semantics is expressed as Hoare triples
including pre/post conditions and related actions. In this part, we focus on the pre/post conditions. Re-
garding ACG, the code generated for a block must comply with the BLOCKLIBRARY pre/post conditions
of the semantics specification provided in the corresponding variation point for the block. Compliance as-
sessment must then result in the verification of the generated code for this block. By translating each block
configuration as annotations on the generated code, we target automatically generated code verification in
a translation validation manner. Our proposal can be related to proof-carrying code (PCC) [113] in the
sense that the generated code will contain annotations required to verify safety properties on the generated
code.

8.1.1 CONFIGURATION MATCHING OF BLOCK

Ablockin a dataflow model has a fixed number of input and output ports, parameters and memories. Each
of these have an attached datatype and parameters have a value. According to the block information, there
is a unique correct configuration that applies for this block as the block specifications are exclusive.

147

8.1. ANNOTATIONS FOR CODE VERIFICATION

E DutputPort [H InputPort [# H Parameter [#
i
]
E. L i E'. R ¥ El. d
butputs inputs parameters

El Block Ed

type : EString

E| 5 | 2 category BlockCategory
o

type = 'SampleBlock’ dataType.oclIsKind0T | TReallnteger)

dataType.oclIsKindOf{TReallnteger) value.oclAsType(TReallnteger]) > B

Figure 8.1: Configuration-specific generated metamodel example

Any block extracted from a dataflow model can be represented as a model conforming to the Block
metaclass from the dataflow metamodel provided in Figure 4.5. This model should then conform first to
the dataflow metamodel itself and to the constraints expressed on its matching configuration. The config-
uration must thus be expressed using the dataflow metamodel elements.

We propose a practical way to deal with this Configuration matching check by relying on a model
transformation generating for each Configuration structure, a metamodel implementing the dataflow
metamodel (the Configuration-specific metamodel) including the Conf iguration Hoare triple pre-
conditions as additional OCL constraints expressed on the metamodel elements. We then have to check
the conformance of a block (a model conforming to the dataflow metamodel), to the generated
Configuration-specific metamodel and its associated constraints.

We provide a simplified example in Figure 8.1 for a simple block Configuration. In this example, we
generate a Configuration-specific dataflow metamodel from the following Conf iguration structure:
the BLockType name is SampleBlock, the block has one integer output port (the S output port) and one
parameter (the P parameter). In addition to these StructuralFeature definitions, an INVARTANT
Annotationis provided on the parameters specifying that its value can only be greater than zero.

Checking the block model according to this generated Configuration-specific metamodel can be
done only if the block model actually conforms to the generated metamodel. The block model conforms
to the dataflow metamodel and not to the Conf iguration-specific one. Itis thus mandatory to adapt the
block model by transforming its StructuralFeature elements to their matching generated metaclasses
in the Configuration-specific metamodel.

We did not implement the Configuration matching mechanism including the Configuration-
specific metamodel generation because of timing constraints. We did not identified any blocking points
regarding its implementation, it shall thus be implemented without major difficulties.

8.1.2 ANNOTATION GENERATION

According to our purpose, we need to generate code annotations corresponding to the informations con-
tained in each block Conf iguration. Annotation generation activity may be integrated with the ACG or
done independently of the ACG with a delayed fusion mechanism. Generated code must then be verified
with respect to the annotations.

According to our ability to modify the code generator and the independence criterion required by the

148

8.1. ANNOTATIONS FOR CODE VERIFICATION

qualification activities, we identified two possible approaches to annotate the ACG generated code whether
the ACG is considered as a white box or as a block box. We will detail these two approaches and the re-
sulting annotated code.

ANNOTATION GENERATION INTEGRATION IN A “WHITE Box” ACG

Considering the ACG as a white box means that we have access to its implementation and can mod-
ify it. This one must be extended in order to: a) handle BLOCKLIBRARY conforming models and ex-
tract all the possible Configuration from it; b) match for each of the input model blocks its corre-
sponding Configuration; and c) generate annotations along with the generated code containing the
Configurationinformations. This “three phases” way to integrate the use of the BLOCKLIBRARY specifi-
cation into the ACG can be lightened by relying only on the third activity. Indeed, one can implement the
annotation generation process without having to implement the BLOCKLIBRARY matching mechanism
depicted in the first two points. This may lighten the ACG development process but is more likely to be
error prone as it includes human in the loop development. Of course, our proposed approach relies on
human development for the previously described three phases but this development must be done only
once and can then be verified extensively.

ANNOTATION GENERATION INTEGRATION IN A “BLACK BoX” ACG

Considering the ACG as a black box means that we are not able to access its implementation and thus to
modify it. The use of an external tool shall be necessary in order to annotate the code. This tool must
be able, based on the generated code and a BLocKLIBRARY conforming model, to identify which part of
the code matches which input block. This leads to the requirement for the ACG itself to provide trace-
ability links between the input dataflow model elements and the output generated code. Traceability is a
qualification prerequisite for the use of an ACG in critical embedded system development activities.

Assuming the presence of traceability informations in the generated code, our external tool must provide
the following capabilities: a) identify for each block its corresponding Conf iguration specification; b)
generate annotations based on the Configuration informations; and c) weave the annotations with the
previously generated code relying on the traceability data.

Each Configuration elements must be matched to the generated code content, pre and post condi-
tions must be added in the code and potential invariants/variants integrated on their corresponding loops
constructs. Whereas matching the configuration’s elements, transforming the annotations to cope with
this matching and integrating pre/post conditions is not complex, the integration of variants/invariants is
more complex. Indeed, if the generated code does not cope with the expected generated code (the one
provided as operational semantics in the block specification), it seems difficult to automatically insert the
loop annotations.

Whereas the generated code shape is not fixed for all ACG, the data structures allowed for use in safety-
critical software generated code, the data types and data structures required to model dataflow models
(scalar, vectors, matrices and if allowed bus structures) are limited. Loop annotations are required for
operations applied on multi-dimensional structures likes matrices, these loops must be decorated by the
developer with the strongest loop invariant and a variant ensuring the loop termination. This could be
done by relying on known loop or multi-dimensional structures operations templates with predefined loop
annotations.

Such an annotation integration suffers of a very limited applicability as soon as optimisations are present
during the code generation; indeed code optimisations may break the structure of the code and the block
segmentation of the generated code. The wide scope of this work made it difficult to tackle during this PhD
and was thus kept as a future work. However, optimisations should also provide traceability elements that
links the model to the optimised code including elements about the applied optimisations.

149

8.1. ANNOTATIONS FOR CODE VERIFICATION

]
- le——»
o : o e
AND -
B T [o L4 acihve
Ese LA
Lo ™! anp
———»
EEREE
NOT fl——————— — M
ra
Loz uD

Figure 8.2: Counter SIMULINK model

typedef struct {

2 BOOL reset;
BOOL active;

} t_Counter_io;

typedef struct {
7 BOOL UD1_memory;
BOOL UD_memory;
} t_Counter_state;

Listing 8.3: GENEAUTO generated code for the counter model data structures declaration

RESULTING ANNOTATED CODE

From the previous step, we get source code files containing functions organised according to the expected
ACG output structure. According to the ACG used, generated code has a specific shape. In the following
examples, we used the GENEAUTO ACG. Adaptations are required for each ACG. However, as these ones
target safety critical systems, we are confident that the safety critical traceability requirements will ease this
aspect.

For each atomic Sub-System, three functions are generated. Two optional containing the initialisation
and update semantics phase code for the memories variables initialisation and update; and the compute
phase code that is mandatory. In each function, blocks of source code are generated for each block of the
enclosing Sub-System. Each block of code is surrounded by traceability informations allowing to link it to
the dataflow block it was generated for.

Figure 8.2 depicts the Counter model that was presented in Chapter 3. It models a modulo 3 counter for
which the output (the active output block) is set to true every three clock tick.

The corresponding code generated with the GENEAUTO ACG for the system data structures is provided
in Listing 8.3. Generated code along with its traceability informations is provided for the initialisation

1 void Counter_init(t_Counter_state *_state_) {
/* START Block: <SystemBlock: name=Counter>/<SequentialBlock: name=UD1> x/
state->UD1_memory = FALSE;
/* END Block: <SystemBlock: name=Counter>/<SequentialBlock: name=UD1> */
/* START Block: <SystemBlock: name=Counter>/<SequentialBlock: name=UD> x/
6 _state_->UD_memory = FALSE;
/* END Block: <SystemBlock: name=Counter>/<SequentialBlock: name=UD> x/

Listing 8.4: GENEAUTO generated initialisation code for the counter model

150

8.1. ANNOTATIONS FOR CODE VERIFICATION

void Counter_compute(t_Counter_io *_io_, t_Counter_state *_state_) {
BOOL reset;
BOOL LO;
BOOL LO02;
BOOL L04;
/* START Block: <SystemBlock: name=Counter>/<SequentialBlock: name=UD1> x/
Counter_UD1 = _state_->UD1_memory;
/* END Block: <SystemBlock: name=Counter>/<SequentialBlock: name=UD1> x/
/* START Block: <SystemBlock: name=Counter>/<SourceBlock: name=reset> */
reset = _io_->reset;
/* END Block: <SystemBlock: name=Counter>/<SourceBlock: name=reset> */
/* START Block: <SystemBlock: name=Counter>/<CombinatorialBlock: name=L0> */
L0 = !reset;
/* END Block: <SystemBlock: name=Counter>/<CombinatorialBlock: name=L0> %/
/* START Block: <SystemBlock: name=Counter>/<CombinatorialBlock: name=L01> %/
Counter_L01 = Counter_UD1 && LO;
/* END Block: <SystemBlock: name=Counter>/<CombinatorialBlock: name=L01> */
/* START Block: <SystemBlock: name=Counter>/<SequentialBlock: name=UD> %/
Counter_UD = _state_->UD_memory;
/* END Block: <SystemBlock: name=Counter>/<SequentialBlock: name=UD> x/
/* START Block: <SystemBlock: name=Counter>/<CombinatorialBlock: name=L02> */
L02 = !Counter_UD;
/* END Block: <SystemBlock: name=Counter>/<CombinatorialBlock: name=L02> x*/
/* START Block: <SystemBlock: name=Counter>/<CombinatorialBlock: name=L03> %/
Counter_LO03 = LO && LO0O2;
/* END Block: <SystemBlock: name=Counter>/<CombinatorialBlock: name=L03> x/
/* START Block: <SystemBlock: name=Counter>/<CombinatorialBlock: name=L04> */
L04 = Counter_LO03 && Counter_LO1;
/* END Block: <SystemBlock: name=Counter>/<CombinatorialBlock: name=L04> */
/* START Block: <SystemBlock: name=Counter>/<SinkBlock: name=active> */
io->active = L04;
/* END Block: <SystemBlock: name=Counter>/<SinkBlock: name=active> */
/* START Block memory write: <SystemBlock: name=Counter>/<SequentialBlock: name=UD> */
state->UD_memory = Counter_LO1;
/* END Block memory write: <SystemBlock: name=Counter>/<SequentialBlock: name=UD> */
/* START Block memory write: <SystemBlock: name=Counter>/<SequentialBlock: name=UD1> x*/
state->UD1_memory = Counter_LO03;
/* END Block memory write: <SystemBlock: name=Counter>/<SequentialBlock: name=UD1> x*/

Listing 8.5: GENEAUTO generated compute and update code for the counter model

151

8.1. ANNOTATIONS FOR CODE VERIFICATION

phase in Listing 8.4 and for the compute and update phases in Listing 8.5.

8.1.3 ANNOTATION VERIFICATION

In the previously provided example, we decided to rely on C code along with ACSL annotations for the
following reasons: this language is widely used as target in the safety-critical systems industry, the GE-
NEAUTO ACG has mainly be used and evaluated in this context and the ACSL annotation language is
supported by formal analysis tools like the code analysis framework FRama-C. This could have been done
by relying on ADA code with SPARK annotations and the SPARK EXAMINER tool.

Using the FRamaA-C framework, one can analyse the C code in order to extract informations provided
by various plugins. These plugins allow to do static analysis of the source code to extract informations like
variables ranges and scope, code metrics, detect dead code, and many others '. The FRama-C framework
analyses ACSL annotations and is also able to automatically generate additional annotations regarding
potential runtime errors that may happen during the analysed program. This mechanism is provided in
the RTE plugin.

We use the FRamA-C framework in order to analyse ACSL annotations and as a bridge toward the use of
SMT solvers and proof assistants for the verification of source code. The framework provides two plugins:
WP and Jessie fitting this purpose. Both plugins implement a weakest precondition calculus on the C source
code annotated using ACSL. These generated logical formula can then be assessed using SMT solvers or
sent to the previously presented WHY3 platform to rely also on SMT solvers and proof assistants. Proof
assistant are used in order to tackle difficult proofs when the SMT solvers fails to achieve the proof.

The provided code verification is done quite easily as the generated code is simple and only implies the
use of scalar Relational Operator and Unit Delay blocks. We experimented on the generation of code for a
model with the same blocks but with vector values. This implies the generation of loops and defining loop
invariants. The result was still automatically verifiable.

8.1.4 ToOL SUPPORT

The aforementioned automatic annotation generation proposals requires a strong tooling development
effort. Regarding the white box approach, the ACG needs to be fitted for annotation generation whereas
regarding the black box approach an external verification tool needs to be developed.

‘WHITE BOX APPROACH IN GENEAUTO

GENEAUTO is our main experimentation platform on ACG development. We added support for annota-
tions manipulation 2. For this purpose, we developed a metamodel based on a subset of the ACSL speci-
fication [1] covering annotations, ghost code and function contracts elements. We give a graphical repre-
sentation of this metamodel in Figure 8.6.

In this metamodel, the main element is the VAElement (standing for Verification Annotation Element) ex-
tending the classical GENEAUTO Annotation element. VAElement is refined as SimpleVAElement and Com-
poundVAElement. Expressions in VAElements are expressed as AnnotationStatement statements extending
GENEAUTO’s Statement metaclass. Sub metaclasses of AnnotationStatement represents the various anno-
tation clauses among which are Assign, Ensures (post-condition), Requires (pre-condition), LoopInvariant,
.... The metaclasses names are clearly inspired from the ACSL terminology.

We relied on the EMF framework to generate the corresponding Java classes. We hence integrated those
into GENEAUTO’s code model. In order to print the annotations on the generated code, we implemented a
printer for ACSL annotations in the GENEAUTO tool. These elements allow developing GENEAUTO code
backend generating annotations along with the code.

1Visit the FRaMA-C framework website for detailed informations: http://frama-c.org
2This work has been done as a partnership with Timothy Wang from Georgia Tech University and with the help of Andres Toom from IB KRATES
and Technical University of Tallinn, one of the main developer of GENEAUTO

152

8.1. ANNOTATIONS FOR CODE VERIFICATION

B Annotation[z]

from genencmodel

E Statement(A]

{from statement)

Figure 8.6: GENEAUTO annotations extension metamodel

BLACK BOX APPROACH THROUGH FrRAMA-C

The FrRaMA-C toolset provides C code manipulation facilities and is extensible by defining plugins. It
would thus be possible to define a new Frama-C plugin to conduct automated annotation of the generated
source code.

This plugin must extract the configurations from a BLOCKLIBRARY specification. The specification is
available as an EMF model. Developing a parser for the BLockLIBRARY models and extracting informa-
tions from these directly in the plugin would be a very time consuming activity. Instead of this approach
we propose to provide, within the BLOCKLIBRARY toolbox, a transformation extracting the required in-
formations as a simple data structure easier to use in a FRAMA-C plugin. Such an approach was used to
bridge the Java XML reader/writer in GENEAUTO and the CAML source code extracted from the Coq
development of the block sequencer (see the work done around the GENEAUTO toolset by Izerrouken et
Al[76,78,149]).

Regarding the configuration matching mechanism, the plugin must be able to extract from the source
code the required informations about the blocks StructuralFeature elements. This can be done re-
lying on the traceability comments provided by the ACG: one can find the corresponding block in the
model source file and thus extract the required informations. Matching between the block configuration
and extracted BLoCKLIBRARY block configurations must then be conducted.

Finally, from the matched configuration, pre and post conditions are attached as a contract to the block
of code and loop variants/invariants to the loops. It is worth noticing that a translation mechanism must
be developed in order to transform BLoCKLIBRARY Annotation expressions to a formalism that can be
used for the verification of code. A first mean will be to generate annotations on the generated code (ACSL

153

8.2. FORMAL VERIFICATION

annotations on C code for example) or to rely on other initiatives like the one currently under development
at CEA targeting the use of WHY3 language constructs through ACSL annotations. Regardless of the
chosen approach, this mechanism must provide translations services to:

« Match input and output ports names to generated source code variables names.
« Remove calls to the value attribute.

« Unfold quantified expressions on PortGroup constructs. Indeed, OCL collection expressions ap-
plied on PortGroup elements cannot be used as such. Each input of the blockis a separated variable.
Assuming I asa PortGroup containing n ports, we provide in Table 8.7 the transformations rules for
collection operations applied on I. In this table, [x/it|exp means the substitution of all occurrences
of it in exp by «.

’ OCL expression H ACSL expression ‘

I — forAll(it|exp) N [L/itlexp
i€[1..n]

I — exists(it|exp) \V [L/itlexp
i€[1..n]

D [/itlexp
I — one(it|exp) jE[L..n]

With €D meaning the xor logical operation
I — isUnique(it|exp) A [I; /itlexp # [I/it|exp

jE€[L..n]AkE([1..n]Aj<k

Table 8.7: OCL to ACSL translation rules

This development could not be conducted during the time frame of this PhD. It is thus kept as a future
work as its application is of wide interest, as will be presented in the following section. The generated an-
notations allow assessing the correctness of the generated code with respect to the language specification.
They are also needed to ease the verification of more complex functional and integration properties and
thus corresponds to a kind of unit properties. The previously provided translation from BLocKLIBRARY
to WHy is targeting a first order logic language and thus provides a good starting point for the transfor-
mation to annotations on code. A similar work has been done by ATOS ORIGIN® and ONERA during
the PhD of A. Fernandez-Pires. This work generates ACSL functions contract from OCL annotated UML
class operation. This transformation is provided as an EcLIPSE plugin.

8.2 FORMAL VERIFICATION

Software verification must be made according to the requirements expressed during its design phase. Start-
ing from high level requirements (HLR) that express the problem to be solved, refinement techniques are
used to design a satisfying solution for these requirements. These refined requirements are often referred
to as low level requirements (LLR). LLR can then be translated to development artifacts.

During common development cycles, when the system has been developed, it is first unit tested , based
on these LLR (this can be related to the previous section annotations use). Then verification goes up to
integration and functional phases in the requirements level up to the HLR.

In this section, we will investigate the use of Synchronous Observers [73] (SO) as a means for the ex-
pression of the system HLR requirement during the design phase and their automatic verification on the
generated code level relying partly on the previously generated block semantics annotations to ease the
verification.

*https://code.google.com/a/eclipselabs.org/p/ocl2acsl/

154

8.2. FORMAL VERIFICATION

8.2.1 SYNCHRONOUS OBSERVERS

Using the SIMULINK toolset, we created a masked sub-system block: the Observer block. A masked block
canbe considered as a specialised sub-system block on which itis possible to attach additional informations
as Parameter. This masked block has one Parameter: AnnotationType. This Parameter value is
of an enumerated type with two possible values: pre-condition or post—-condition. An overview
of the Observer block is given in Figure 8.8. In this figure the top-left part is the view of the Observer block
itself, lower-left part is the content of the Observer block and the right part is its parameter window.

File Eoit View Simuiation Fomat Tools Help |

In1 ouh |
— Observer (mask)
Declares an observer for the system,
The annotaticn type parameter defines if the observer content expresses a
BEETVES VE pre-condition, a post-condition or a property of the comprising. {sub-)system.
FIS m @Ebl,w mm -Fm ?&ﬂl& HE‘F' Observer block shall enly have one output and it should be of boolean data type
— Parameters
Annotation type |pre-c>nnd'rtk}n j
(1} {1)
In1 Outl
ok GCancel v | sy |

Figure 8.8: The Observer block, its content and its parameters view in the SIMULINK environment

The number of inputs for a SO block is not limited and must at least be 1. The observers inputs must be
plugged onto outputs of the observed system blocks.

In the modeling environment, the block behaves exactly as any other Sub-System block. But, its inter-
pretation in the ACG is different and leads to the generation of annotations.

In the following we propose an example of SO for the Counter system, its interpretation as logical prop-
erties and its translation as ACSL annotations. We will then generalise the approach and propose a generic
methodology for the extraction of logical expressions from SO blocks based on BLOCKLIBRARY specifica-
tion.

8.2.2 CONCRETE APPLICATION ON THE COUNTER SYSTEM

As sake of example, we propose a SO for the Counter example model. We depict the use of the observer on
the Counter model in Figure 8.9 and detail its content in Figure 8.10. This block has two inputs plugged
on the observed system input and output. The observer AnnotationType Parameter value is set to
post-condition. In the following, we will detail the observer semantics, its use for verification through
simulation, one possible translation to code annotations and its practical verification.

SO FORMAL SEMANTICS AND EXPLOITATION

The formal semantics for the SO provided in Figure 8.10 is provided by relying on mathematical notations
in (8.1). We set s; as being the value of the output of the Switch block at time ¢ and thus s;_, as the value of

15§

8.2. FORMAL VERIFICATION

—
Obszerver Block o
’_’ counter_spec
>
Ll 1z | 41D
@.* MOT FAND I H]s]] L4 active
reset L
-
L0 " AMND

LO3
MOT M——— 1z M

Loz o

Figure 8.9: The Counter model with its counter_spec synchronous observer

3 I ZEro)
== Switch -
n ™ 0 > £
ree 2. 1i
eptEg o | active
i = ¥ L D
rese ar Feset R N safe
cptEgadctive

1

1 1z
ang Enit Delay

Figure 8.10: The counter_spec synchronous observer content

the output of the UnitDelay block at the same time ¢.

So — 1
st = 0 if ((s;—1 == 3) V reset;) (8.1)
1+ s, else '

safe; = (active, == (s; == 2))

In this semantics formalisation, we can see that s; can never be greater than 3, that its value is resetted
to zero when reset is true or its previous value is 3 and that it is increased by 1 in every other cases. The
observer output value: safeis the comparison between the value of active - which is plugged into the output
of the Counter system and is a boolean value — and the comparison between the value of s and 2. From this
we can conclude that the safe value is true only once every 4 time steps (if reset is not set to true during
these 4 time steps) and 4 time steps after the last time reset is set to true. With this observer we thus are
observing a modulo 3 counter which is the expected semantics for the Counter system.

The safe value is the output of the SO and as such if we consider the SO as a property it must be con-
verted to a logical expression. The SO semantics is twofold as it contains two alternative branches (the s,
value in (8.1)). In order to express this semantics we must expose the alternative branches into the logical
expression as a conjunction. The SO expression is to be expressed according to the SO inputs: safe and
reset but care must also be taken on the fact that the Unit Delay block has a memory so it is holding a value
that must be considered as a variable of the expression. We thus provide the expression as the body of a
WHY predicate in Listing 8.11.

156

8.2. FORMAL VERIFICATION

1 predicate counter_spec (reset: bool) (active: bool) (s: int) =
(((3 = s) \/ reset) -> ((0 = 2) = active)) /\
((not((3 = s) \/ reset)) -> ((s+1 = 2) = active))

Listing 8.11: Counter_obs observer expression as a predicate

By expressing this observer as a Sub-System block in a simulation tool like SIMULINK (as in Figures 8.9
and 8.10), it is possible to first do some testing activities by providing values for the inputs of the system
and by asserting that the SO output value is true for these test values. According to atomic blocks se-
mantics, test cases (test vectors) are automatically generated and can be used in order to verify the design
properties. Design properties and assertions can be expressed on the model with verification blocks. Ver-
ification blocks are special blocks holding properties expressed using SIMULINK blocks (in the same way
as a SO). Verification of the verification blocks properties is done according to automatically generated
test cases. Formal verifications can be applied on the model using SIMULINK design verifier allowing to
formally check (using abstract interpretation) the model for the absence of classical run-time errors such
as division by zero or integer overflow.

TRANSLATION TO CODE ANNOTATIONS

In order to translate the SO as an ACSL annotation, we need to compute the post-condition for each ofits
containing blocks implementation. As specifications take too much space to be displayed here, we provide
only the exact post-condition for each block in Table 8.12. Each of these blocks have been specified in a
BLOCKLIBRARY and are provided on our website [2].

’ Block name ‘ Block post-condition ‘
reset, active out == reset, out == active
zero, one, two, three out==0,out==1,out==2,out==3
cptEq, cptEq2, cptEqActive out == (Inl == In2)
orReset out==1Inl || In2
Sum out ==Inl + In2
Switch if (In2) then out == In1 else out == In3
init: Unit_Delay Memory == IC
UnitDelay compute: out == Unit_Delay Memory
update: Unit Delay Memory == Inl

Table 8.12: counter_obs blocks post-conditions

Listing 8.13 shows the three predicates generated from the counter _spec SO. Each predicate corresponds
to a semantics phase of the SO.

In this example, the extraction of expressions is quite straightforward as we rely on blocks applied only
onscalar elements. This approach can be extended to multi-dimensioned expressions, but time constraints
did not allow to conduct the experiment in the scope of this PhD.

PRACTICAL VERIFICATION

The verification of the previously generated SO may not be successfully done fully automatically using
the FRaMA-C tool. Indeed, in the verification of the compute and update semantics phases, additional
informations about memories initial values are needed from the initialisation phase.

In order to ensure the verifiability of the overall system, including memories, we must provide the en-
compassing code including the call to the three semantics phase functions. The initialisation and update
semantics phases for the SO must also be provided. In the next section, we give an example of such an
automatically generated code and insights on its automatic verification.

157

8.2. FORMAL VERIFICATION

/* START Block: <SystemBlock: name=Counter>/<SystemBlock: name=counter_spec> */
2 /*@ predicate counter_spec_init (t_counter_spec_loc *obsState) =
obsState->Unit_Delay_memory == 0;
*/
/*@ predicate counter_spec_compute (t_counter_spec_io *obsInput,
t_counter_spec_loc *obsState) =

7 ((3 == obsState->Unit_Delay_memory) || obsInput->reset) ==>
((0 == 2) == obsInput->active) &&
(1 ((3 == obsState->Unit_Delay_memory) || obsInput->reset)) ==>
(((obsState->Unit_Delay_memory + 1) == 2) == obsInput->active);
*/

12 /%@ predicate counter_spec_update (t_counter_spec_io *obsInput,
t_counter_spec_loc *obsState) =

((3 == obsState->Unit_Delay_memory) || obsInput->reset) ==>
obsState->Unit_Delay_memory ==
&&

17 (1 ((3 == obsState->Unit_Delay_memory) || obsInput->reset)) ==>
obsState->Unit_Delay_memory == obsState->Unit_Delay_memory + 1 ;

*/

/* END Block: <SystemBlock: name=Counter>/<SystemBlock: name=counter_spec> */

Listing 8.13: counter_spec synchronous observer as a ACSL predicates

8.2.3 LOGICAL EXPRESSION EXTRACTION

The blocks composing any SO-s must be defined in the block library. This provides their formal specifi-
cation including both their operational and axiomatic semantics. The purpose of a SO is to be interpreted
as a logical expression formulating the SO semantics and the system HLR. In dataflow languages, the se-
mantics of a model is held in the blocks. An expression of the SO semantics must thus be based on the
semantics of its contained blocks.

From the BLOCKLIBRARY specification, we obtain the blocks axiomatic semantics, we hence propose
to rely on the expression of this one to express the semantics of the whole SO. We detail in the following
an algorithm for this extraction and provide an example of its application.

SYNCHRONOUS OBSERVER SEMANTICS EXTRACTION

The output port of a SO provides its final value. The expression of the semantics of the SO is thus the
expression of the post-condition of the output block. For every block, the post-condition expression is
provided as a function of the block inputs, parameters and memories. As a block input port must be linked
to another block output port through a signal, this input port value must be expressible according to the
preceding block output port value.

Lets assume the SO provided in Figure 8.14. We can express the output ports values of a block according
to a function of the blocks inputs and internal values (parameters and memories). This function is an
operational semantics of the block. In (8.2) we give functions definitions for the three B1, B2 and B3
blocks composing the SO. The last parameter of the function call (PM(X)) models the parameter and
memory values of the block X.

(bloutl, blout2) = fg;(blinl, blin2, PM(B1))
bout = fiy (b2in, PM(B2)) (82)
b3out = fp3(b3inl, b3in2, b3in3, PM(B3))
The SO output value must be a boolean value as it is supposed to represent a logical expression. The
b3out value can then be considered as a logical expression. The only element to be resolved is then the

definition of the signal’s semantics which was previously presented as a copy of its input value to the output
value.

The definition of the SO as a logical expression can be expressed according to the inputs of the B1 and
B2 blocks and thus according to the SO inputs. The result is detailed in (8.3) where ,, is the projection

158

8.2. FORMAL VERIFICATION

(1 F——mbtint biout

DOhsln .
biinz bioute
Ohsln2 B bsin 1
e]bsinz bsouth——m_ 1
—#*{bsin3 UbsUut
(3 ——mbzin bzout B3
Obslng

B2

Figure 8.14: An abstract synchronous observer

operator providing the n* element of a tuple.

fo3(m1(fp1(ObsInl, ObsIn2, PM(B1))),
75(fp1(ObsInl, ObsIn2, PM(B1))),
f52(ObsIn3, PM(B2)),

PM(B3))

(8.3)

Finally, each SO inputs is plugged onto the observed system inputs and outputs. It is thus possible to
define the (8.3) expression using only values of the observed system.

In the BLOCKLIBRARY specification, we have atleast one logical expression expressed as a post-condition
for each fgx function. We can thus replace these onesin the previous expression. If multiple post-conditions
are specified for a block, the fgx function is the conjunction of these expressions. The transformation must
include the application of the translation rules detailed in Section 8.1.4. The result provides us with the
logical expression for the SO that can be used as its semantics expression.

MANAGEMENT OF MEMORIES

In the previous paragraph, we deliberately omitted the management of memories. Indeed, regarding mem-
ories values, we did not handle the setting of their initial value nor the update of these values.

As for the observed system, the SO memories need to be initialised once during its containing system
initialisation phase and the memory value must be accessible in the whole source code generated for the
observer system. We thus decide to declare specific SO memory variables containing the SO memories val-
ues. Those are initialised after the observed system initialisation code. As this is only used for verification
purpose, this SO initialisation code must not impact the system semantics and thus is held in ghost code. In
the BLOCKLIBRARY, the post-condition expressed on the memory block initialisation phase specification
is used as an additional post-condition of the initialisation phase function as it is mandatory to ensure that
the SO initialisation is done right after the initialisation of the observed system.

Regarding the update semantics phase of the SO memories, its computation is done after the system
update phase code. Again this SO update phase code is expressed as ghost code to avoid any impact on
the semantics of the observed system. The post-condition expressed on the memory block update phase
specification in the BLOCKLIBRARY is used as an additional post-conditions of the update phase function
as it is mandatory to ensure that the SO update is done at each update of the observed system.

The generated code for both initialisation and update semantics phase is the one that would have been
generated by an ACG but it is written on the generated software as ghost code. Its position in the generated
code is the one that is required by the dataflow. Ghost code is supposed not to impact regular code, this
is not yet proven correct but works are in progress in this sense [67]. In addition to that, it is required to

159

8.2. FORMAL VERIFICATION

10

/ *
/*

}
*/

/*

}
*/

//
//

Observers data structures x*/
@ ghost typedef struct {

BOOL reset;

BOOL active;

BOOL safe;
t_counter_spec_io;

@ ghost typedef struct {
UINT8 Unit_Delay_memory;
t_counter_spec_state;

Listing 8.15: SO generated data structure

@ ghost t_counter_spec_io * _counter_spec_input;
@ ghost t_counter_spec_state * _counter_spec_state;

Listing 8.16: SO generated data structure variables

provide a verification ensuring that the SO memories are independent of other memories.

8.2.4 MAIN MODULE GENERATION

Embedded safety-critical systems are systems that must be executed periodically. Using dataflowlanguages
for their development constrains their structure and enforce the use of the three phases semantics pattern.
We can thus automatically infer from this the software for the whole system initialisation and execution.

In our work, we decided to generate a function in a separate module.

We provide in the following the generated main_module_counter for the counter model and its

counter_spec SO using our extension of the GENEAUTO toolset:

o The required data structures for the SO are declared. t counter spec_io contains the SO input and

output variable declarations; and t_counter spec_state contains the SO memory variable declara-
tions. Generated elements are provided in Listing 8.15.

Ghost variables are created for the two previous data structures. Generated elements are provided in
Listing 8.16.

SO semantics is expressed as three predicates, one for each SO semantics phase. These three pred-
icates declarations, as functional generated code, are traceable to the source model via traceability
comments. Generated elements have already been provided in Listing 8.13.

The main_module_compute module is generated and its code is provided in Listing 8.17. The mod-
ules has two inputs, these are system data structures. In the main function body, a call to the ini-
tialisation function is done and then the SO initialisation code is inserted as ghost code. Using an
assert annotation, we ensure the correctness of the ghost initialisation code. The main module loop
is annotated with a simple loop assignation clauses specifying the variables assigned during the loop
computation. In the loop body, the main computation function is called; the SO input values (held
inthe counter spec_input data structure) are updated according to the new values in the system
in ghost code and; the update semantics phase of the SO is added as ghost code. The correctness
of both compute and update SO semantics phases is finally assessed. With the verification of all the
assert clauses, the correctness of the system code will be assessed.

The main module verification is done using FRAMA-C and is successful in a few seconds for this example.

This Counter system is representative of scalar only systems as it contains both sequential and combinato-
rial blocks. The complete code for this example is provided in Appendix E.

160

8.2. FORMAL VERIFICATION

/*@ requires \valid(_state_) && \valid(_io_);
requires \valid(_counter_spec_state) && \valid(_counter_spec_input);

3 requires \separated(_state_, _io_);
assigns _counter_spec_state->Unit_Delay_memory, _io_->active,
state->UD_memory, _state_->UD1_memory;
*/
void main(t_Counter_state *_state_, t_Counter_io *_io_) {
8 Counter_init (_state_);

//@ ghost _counter_spec_state->Unit_Delay_memory = O0;
//@ assert counter_spec_init (_counter_spec_state);
/*@ loop assigns _counter_spec_state->Unit_Delay_memory, _io_->active
state->UD_memory, _state_->UD1_memory; */
13 while (TRUE) {

Counter_compute(_io_, _state_);
//@ ghost _counter_spec_input->reset = _io_->reset;
//@ ghost _counter_spec_input->active = _io_->active;
/*@ ghost
18 if ((3 == _counter_spec_state->Unit_Delay_memory) |
_counter_spec_input—>reset)
_counter_spec_state->Unit_Delay_memory = 0 ;
else
_counter_spec_state->Unit_Delay_memory =
23 _counter_spec_state->Unit_Delay_memory + 1 ;
*/
//@ assert counter_spec_compute (_counter_spec_input, _counter_spec_state);
//@ assert counter_spec_update (_counter_spec_input, _counter_spec_state);
}
28}

Listing 8.17: Counter main module

Regarding the current status of the prototype development, the automatic generation of the main mod-
ule code, ghost predicates, ghost structures and their instantiation is implemented. The future step of this
development is to add support for the synthesizing of the predicates and ghost code body. This implemen-
tation is the more delicate one as it implies to implement the translation of the SO to a predicate according
to the SO block’s Configuration extracted from a BLOCKLIBRARY specification. It thus necessitate a
rather consequent time investment.

8.2.5 FROM SPECIFIC KIND OF PROPERTIES TO ANNOTATIONS

Using the annotation handling extensions to the GENEAUTO ACG, work has been done by Wang et al
[154] in order to handle the verification of control and command algorithms via the assessment of high
level properties of their control laws like robustness. This work tackles the automatic verification of Lya-
punov stability performance measures and is currently being extended for a broader range of applications.
In this work, the verification is also done using SO. Property-specific SO have been created and an exten-
sion of GENEAUTO providing the automatic generation of annotations has been developed. The automatic

verification of the properties on the generated code is tackled by a dedicated PVS backend for linear alge-
bra.

8.2.6 A PARALLEL WORK BASED ON SO

The SO approach is the subject of a publication [61] on which we developed an automatic code generator
derived from GENEAUTO from SIMULINK to LUSTRE and then from LUSTRE to C targeting the verification
of the generated code and of its attached properties (the SO).

The first part of this work has been developed as a model transformation based extension of the GE-
NEAUTO toolset. A LUSTRE extension adding support for annotations has been developed. In our trans-
lation, SIMULINK models and SO are translated as LUSTRE nodes, additional annotations are generated
to ensure the link between the system generated nodes and the SO ones. The LUSTRE to C translation,
based on the translation scheme by Biernacki et Al [24], handles both LUSTRE code and annotations and
translates them to C source code with ACSL annotations.

161

8.3. GAIN WRT CLASSICAL VERIFICATION ACTIVITIES

Generated LUSTRE code is verified against SO annotations using SMT-based model checking tech-
niques allowing to prove the validity of the generated observers. Verification of the C generated code is
done by relying on the FrRama-C toolset.

8.3 GAIN WRT CLASSICAL VERIFICATION ACTIVITIES

The approach detailed here provides the ability to express verification properties on high level design of
systems. Such properties are expressed directly on the model and are then translated as code annotations.
Their verification can be done using the FrRama-C toolset, SMT solvers and if needed proof assistants.

8.3.1 A COMPLEMENT TO STATE OF THE ART DESIGN VERIFICATION

State of the art embedded systems design verification is done by relying first on simulation with tools like
SIMULINK. As was previously detailed, formal verifications can be applied on the design using SIMULINK
design verifier. Automatic test cases generation can also be done. Test cases can also be used on the system
executable code in order to ensure the respect of the behavior previously assessed. Whereas this approach
provides good insights on the correctness of the design, early verification of the design and allows detection
of errors, it does not provides a formal verification of the properties as it is only test based and suffers from
exhaustiveness.

In most safety-critical industries, SCADE is used to express the system after its design and early verifica-
tion using SIMULINK. At the SCADE level, properties can be expressed using SO and as SCADE relies on
LUsTRE, formal verifications can be done using model checking with for example the PROVER plugin* also
usable for the verification of systems specified in languages such as C, StMUuLINK or UML.

These design verification approaches does provide formal verification regarding the system correctness
atadesignlevel. They allow also to generate tests that can be used on the manually written or automatically
generated code but does not provides formal assurance of the properties verification on the code.

On the contrary, by relying on our approach, design level properties (both HLR and LLR) can be gath-
ered on the code level and formally verified. Translation and verification on the code is made possible by
the providing of our formally specified block library.

8.3.2 CURRENT LIMITATIONS AND PERSPECTIVES

The core of our verification approach is based on the ability to generate both LLR and HLR expressed at the
design level as annotations to be verified at the code level. This generation relies on the formal specification
of blocks provided by the BLOCKLIBRARY specification approach. Both LLR and HLR are embedded as
code annotations, LLR as blocks of code contracts and HLR as predicates used in specific locations of
the system computation. We have shown the ability for our annotation generation mechanism to provide
properties verifiable on concrete examples.

As was previously stated, the annotation generation mechanism is currently not fully implemented. We
presented in Chapter 7 a translation mechanism converting OCL constraints as WHY expressions. On
going work at CEA aim at providing the ability to rely on WHY3 formalisation (theories and modules) in
ACSL verification. Providing such a functionality in a tool like FRaAMA-C could ease our translation work
as it might then be possible to rely on the theories generated in Chapter 7 in that purpose.

The block specification and SO are providing the expected behavior of the generated code. As such they
may be used as a source for the automatic generation of test cases. The tests will be used for the runtime
verification of the system ensuring fault detections or to complete the formal verification of the generated
code when the automatic proof fails. We will rely on these in the following for the automatic generation
of certification and qualification data.

*http://www.prover.com/products/prover_plugin/

162

Certification/Qualification data generation

Software certification activities aims at increasing the confidence a user can have on the use of a software
system. Such confidence is often achieved by providing data detailing: the system development activities
and processes; the results of the software verification activities; or data produced by reliable (i.e. qualified)
third party tools used in the development activities.

State of the art techniques for confidence assessment on a software is usually produced by relying on
proof reading and intensive testing. By nature, these approaches, while being widely used, cannot be ex-
haustive and thus cannot be fully trusted especially while developing safety-critical software.

In this chapter, we will show how the BLockLiBRARY DSML and related tools presented in this docu-
ment could be integrated in the qualification process of an ACG. We will detail the possible uses we have
identified for BLOCKLIBRARY instances in order to generate certification data and the (formal) methods
that can be used along these data in order to gain certification credits.

9.1 BLOCKLIBRARY FOR QUALIFICATION

BLOCKLIBRARY specification writing aims at providing detailed and formal specification for an ACG input
language. In order for our approach to be valuable for an ACG qualification use, one should ensure that
the formalism and underlying technologies used are likely to be accepted by certification authorities.

As detailed in this document, our BLockL1BRARY DSML has been designed using a model based de-
velopment approach, its semantics has been defined by formalisation and by model transformation, and
its correctness is ensured using formal methods. Each of these three elements, as the building blocks of
our approach, must be considered in the context of certification.

The BLockL1BRARY DSML may provide confidence in the code generated by an ACG. One may use
the BLockL1BRARY DSML as means to verify the generated code and thus may avoid some verification
activities on the generator.

There is no explicit text in DO-330 stating whether it is possible to apply DO-178C technology related
'supplements’ in the qualification activities of a tool. Indeed, the supplements’ are meant to be applicable
on DO-178C related qualification and DO-330 is meant to be domain agnostic. As this applicability is not
explicit, it is recommended that their application should be justified through the elicitation of the DO-330
document guidance to be satisfied through the use of ’‘supplement’ documents [126]. It is important
to put an emphasis on the fact that as a specialisation of the DO-178 document for tools qualification,
‘supplement’ documents application seems likely to be doable.

In the following sections, we will detail how the BLockLiBRARY DSML definition, formalisation and
verification applies in the context of the certification of an ACG according to DO-178C and DO-330 espe-

163

9.1. BLOCKLIBRARY FOR QUALIFICATION

cially by relying on DO-178C ’supplement’ documents DO-331 and DO-333.

9.1.1 DO-331: MODEL-BASED TECHNOLOGY

We have shown previously that our BLOCKLIBRARY approach is appropriate for the specification and veri-
fication of block libraries for dataflow languages and for the verification of the generated code with respect
to the language semantics and the user requirements. We claim that our BLOCKLIBRARY approach has the
required characteristics expressed in DO-331 (detailed in Section 2.1) in order for a model to be used for
qualification activities:

“The model is completely described using an explicitly identified modeling notation”. The BLOCKLIBRARY
metamodel is specified using ECORE that is a standard (defined after the MOF notation) and a well ac-
cepted modeling notation (highly used in industrial applications). Building models from standard meta-
models (i.e. ECORE) and additional standard constraint languages (i.e. OCL) is one of the strengths of
the model-driven approach as it allows to formally specify a data structure (the model) from an already
specified and accepted formalism.

“The modeling notation has a precise grammar (also called “syntax”) and meaning (also called “semantics”).
The modeling notation may be graphical and/or textual.” From the BLOCKLIBRARY, a grammar has been de-
fined in order to provide a syntax for the definition of BLOCKLIBRARY instances. In Chapter 6, we defined
the content of the language and all its components. For each of them, we detailed their meaning and seman-
tics. In this document, we have defined the overall BLOCKLIBRARY semantics definition as being twofold:
a) the structural semantics composed of the definition of the BlockVariant and StructuralFeature
elements and their composition through the BlockVariant elements. The former elements structure is
defined and constrained using OCL constraints (Section 6.2). The latter elements have been specified in
Sections 6.4.4 and 6.4.5. Formal verifications are applied to them as depicted in Section 6.6 and success-
fully done as detailed in Section 7.7; b) the behavioral semantics of the BLOCKLIBRARY specification is
given through the definition of the BlockMode elements containing functions definition as Hoare triples
as depicted in Section 6.5, their formal verification is provided in Section 7.8. We thus have defined a
precise syntax and a formal semantics to our BLOCKLIBRARY modeling notation.

“The model contains software requirements and/or software architecture definition.” It is the purpose of the
BLOCKLIBRARY specification model to provide the specification for dataflow blocks through the elicitation
of the structural variability and their corresponding semantics. These are related to software requirements
as they are the source for automatic code generation of embedded systems design models. We detail in
Section 9.2 the uses for BLOCKLIBRARY models as a source for automatic generation of requirement and
software development artifacts.

“The model is of a form and type that are used to direct analysis or behavioral evaluation as supported by the
software development process or the software verification process.” As we are working in the context of a tool
qualification, reference to 'software’ in this definition must be replaced by "tool. A BLOCKLIBRARY instance
contains specification for the input elements of an ACG and the expected behavioral informations of the
generated code, it is thus likely to be used as an information source for both tool development and tool
verification process. We will detail these in Section 9.2.

9.1.2 DO0O-333: FORMAL METHODS

According to the DO-333 document, the combination of formal modeling and formal analysis can be used
to produce a formal method that might be used for the replacement of some of the traditionally conducted
verification activities. As we presented previously, BLOCKLIBRARY model instances qualifies for being
considered as a formal model.

The use of theorem provers have already been proven trustworthy and usable as a formal analysis mean.
On the other side, works are in progress in order to bring such a confidence on the use of: SMT solvers
by the formalisation of ALT-ERGO SMT solver for example; and on toolsets like FRaMa-C and WHY3 in
the U3CAT project'. Early works on the use of formal methods for the verification of embedded systems

'http://frama-c.com/u3cat/

164

9.2. BLOCKLIBRARY USE FOR THE CERTIFICATION OF AN ACG TOOL

like the one of Rushby [131] have built the basis of the methods adoption. Formal methods integration
in modern certification/qualification activities are carried on and discussed in seminars grouping both
industrials and academic domain experts like the Dagstuhl seminars®.

Integrating formal methods in the development of embedded safety-critical systems may be used for
leveraging verification activities and for the fulfilment of DO-178C certification objectives like: a) re-
quirements correctness and consistency verification; b) source code review; c) test case replacement; d)
low-level requirements verification; and e) system development process effort reduction (documentation
generation) .

As for DO-178C certification objectives, it is our belief that DO-330 qualification activities might also
be leveraged by the use of formal methods for: a) requirements completeness verification; b) requirement
coverage verification; c) tool source code review; d) tool testing effort; and e) tool development process
effort reduction.

We have shown the applicability of formal analysis on BLOCKLIBRARY instances models and the confi-
dence they bring on the BLOCKLIBRARY specification. We will then show in the following sections how
such a model instance can be used for the generation of certification data helping in the qualification and
verification of an ACG development or the code it generates.

9.2 BLOCKLIBRARY USE FOR THE CERTIFICATION OF AN ACG TOOL

As a development tool, an ACG that generates safety-critical system code must be qualified. Qualification
must be done according to the DO-330 document. The BLoCKLIBRARY approach has been designed and
developed with the objective of formally specifying ACG dataflow input language semantics. As such it
must be used as an input language documentation and specification provider.

In the following we provide credible uses for a BLOCKLIBRARY specification in the context of the qual-
ification of an ACG. We sum-up these uses in Figure 9.1. In this figure, the left part represents a BLock-
LiBRARY model from which automatic generations can be done (green arrows) and on the left side, the
inner structure of the PROJET-P ACG (details on the PROJET-P ACG can be found in Section 2.3.2). In
DO-331, “potential uses” for models are provided as: “Providing unambiguous expression of requirements and
architecture; Supporting the use of automated code generation; Supporting the use of automated test generation;
Supporting the use of analysis tools for verification of requirements and architecture; Supporting the use of simula-
tion for partial verification of requirements, architecture, and/or Executable Object Code”[6]. We will illustrate
these uses in the context of the PROJET-P ACG.

9.2.1 PROVIDING UNAMBIGUOUS EXPRESSION OF REQUIREMENTS AND ARCHITECTURE

A correct BLOCKLIBRARY instance provides the specification for a set of blocks. For each block, it contains
the complete and disjoint set of its Conf iguration elements. From a Conf iguration, we have shown
in Chapter 7 that we can extract and verify the block semantics as a function contract (a Hoare triple).

In the context of a development tool qualification, it is mandatory to provide certification data among
which are the Tool Operational Requirements (TOR). TOR for an ACG are supposed to provide for each
possible element of the input language the expected output of the ACG tool. The semantics verification
transformation provides this information but the generated output code is written using WHYML code
which is not a classical embedded systems source code like C or ADA.

We propose to use the BLOCKLIBRARY semantics transformation as a basis for the development of an
automated code generation providing for a specific Configuration element its expected embedded sys-
tem generated source code.

In addition to the link between the BLOCKLIBRARY specification and the expected generated embedded
code, a BLockLIBRARY Configuration element can be mapped to a concrete dataflow block with a
specific configuration. Indeed, the Configuration element pre-conditions will provide the parameters

?http://wuw.dagstuhl.de/en/program/calendar/semhp/?semnr=15182

165

9.2. BLOCKLIBRARY USE FOR THE CERTIFICATION OF AN ACG TOOL

MDL |"A"
SL/SF |

; A_decoration.txt
P Toolset ~Amdl | 1A
Extra Qualified
%y
—){\ MDL importer ;:
R - P AP |
XMliexp = 7 g, '
AR R | Pre-processor |
| o i
BlockLibrary model : I
|
r |
= BL TR 1. 1E BL £ ~
BlockVariant ! 0 I (Tyt :
BlockType ! i I,,,,*,,,E i o
o |
) p— P | }
I i | Struct i s o
' ' > Code Model
| I f
: i i _ Generator /./'I
BlockMode [! BL ; b -
: | Sem |
| | I
B TRZ ‘Backend|! _ ‘ ~
I o | / | \
P —— : i} [Optimizer |
BLTR 4 _| TOR | Ay
2 (| "QM"Req : -
BLTRS oI Other + \ o Y %
Docs | | Adaprinter | [Cprinter \]
'::::::::::::::::::::.' \\-_ _// = ¥ '
BL TR 6)P Test
| rem—— BLTRS 3»- Annotations |y
BLTR7 _| ~ Simulatior Code
> V&V
Qualification > ———-» [Internal " .
Data Additional External Internal Transiomalion Tool Fe
"""""""""""""""" Transformation Flow Flow

Figure 9.1: BLOCKLIBRARY use for ACG verification and development

values for this block configuration and thus can be mapped to specific block instances.

From the original Configuration semantics verification we obtain the assurance of the semantics
specification correctness (Chapter 7). This assurance, given by the use of annotations must then be pro-
vided on the C code level. This can be done by translating the Annotation elements provided in the
Configuration semantics definition to annotations on the generated source code (ACSL annotations
on C code or SPARK annotations on ADA code). As annotation languages are defined using propositional
logic semantics, the translation of the Configuration pre and post conditions is close to the one pro-
vided for the translation to WHYML. The annotated embedded system source code with annotations can
then be verified using a deductive verification approach through tools like FRama-C for C source code

verification or the SPARK EXAMINER for ADA source code.

Combination of block instance configuration and expected generated code is the exact content expected
for the TOR of an ACG. We thus would be able to automatically produce such elements in various forms
as for example: a model containing the informations that can be used in specific requirements manage-
ment tools like the qualifying machine® or a textual documentation used as a reference documentation of

*http://www.open-do.org/projects/qualifying-machine/

166

9.2. BLOCKLIBRARY USE FOR THE CERTIFICATION OF AN ACG TOOL

the supported blocks for the ACG developers. These generation of documentations are referred to as the
BL TR 4and BL_TR_S transformations in Figure 9.1.

9.2.2 SUPPORTING THE USE OF AUTOMATICALLY GENERATED CODE

The ProJET-P/H1-MoCo and GENEAUTO ACG research projects architecture are sensibly the same as
the first one was strongly inspired by the second one. The ACG parses the model, it sequences and types
the model (only in the GENEAUTO ACG) or extracts these data from the model execution (for the QGEN
toolset), for each input block it matches the generated code according to the code backends containing the
code to generate (the code model in Section 2.3.1) and finally it prints the code to the expected code
formalism (C or ADA languages in our case). Some of these code generation steps rely on the information
contained in the block library: parsing of the input model informations (parameters values of the blocks),
matching the block instances with their allowed configurations in order to verify the block typing and
generate the corresponding block code.

In our example ACG projects, each code backend is a file (aJava class in the GENEAUTO ACG or an ADA
module in the PROJET-P ACG). In a code backend, the block configuration is checked and according to it,
the corresponding code model is generated.

A BrockLIBRARY Configuration contains the expected generated code as a simple function code
(a BAL operation specification). For each Configuration, a set of StructuralFeature are speci-
fied along with some INVARIANT annotations and MODE_INVARIANT additional configurations. These
constraints along with the StructuralFeature definitions are the only information required in order
to match the block instance to its expected configuration and thus its corresponding expected generated
code contained in the BLockMode semantics specification(s). The BAL function body is the expected gen-
erated code for a block Configuration element. From this, it would be possible to generate automati-
cally the corresponding code model structure that must be generated in the code backend (transformation
BL_TR_2.2inFigure9.1). The choice between code backends will be conditioned by the Configuration
Annotation and the StructuralFeature definition (type and allowed values defined by their at-
tached INVARIANT Annotation). Likewise, the automatic generation of annotations on the generated
code as prescribed in Section 8.1 can be done automatically but this will be done according to the anno-
tations written on the BAL code.

Formal verification of completeness and disjointness done on the Conf iguration elements forablock
specification ensures that if the code backend is generated correctly, then the generated code will not contain
any dead code and would be traceable to each Configuration element it was generated from. This will
ease the verification of the code backend and the overall code generated providing additional automatic
traceability information from TOR to developed (generated) ACG code.

Code backend generation is one example of ACG code that might be generated automatically from a
BLOCKLIBRARY instance. We do not provide an implementation example for this generation but we are
confident on its feasibility as the BAL is quite similar to software behavior models.

According to the structure of the ACG tool one might be able to generate different modules of the ACG
used for example to check block typing; or generate ACG configuration files like the block library file (as
provided in Figure 2.3) through the BL_TR_1.1 or BL_TR_1.2 transformations in Figure 9.1.

9.2.3 SUPPORTING THE USE OF ANALYSIS TOOLS FOR VERIFICATION OF REQUIREMENTS AND ARCHITECTURE.

As previously stated, it is the purpose of the BLOCKLIBRARY approach to ensure the correctness of the
ACG input block specification. It is therefore a formal model for the definition of blocks specification and
a formal verification of requirements.

9.2.4 SUPPORTING THE USE OF SIMULATION FOR PARTIAL VERIFICATION OF REQUIREMENTS, ARCHITECTURE, AND/OR
ExecutaBLE OBJECT CODE.

Each BLockL1BRARY instance Configurationiscomposed of asetof StructuralFeature elements
with a defined data type and dimensionality and a set of constraints on the StructuralFeature values.

167

9.2. BLOCKLIBRARY USE FOR THE CERTIFICATION OF AN ACG TOOL

BlockLibrary model
BlockVariant
[
[G
BlockType I
I - BlockMode
*
L
. TestProcedure : :
lemmmmmmmmm == - g Implemented :
Block '! TestCase ; s according to
Configuration 5 'y
(IR Eglﬂ(ﬂ< [
fpurosel 11| Configuration [
2eneration ! - "
—h‘ ACG input model [5| Simulation
Input Data : STy - : Tool
Generation . '
P nputData le!| ...
] L% 4 i using
: Produce
Simulation Result| .

Test Results

.--'Lsmg . | Oracle Expected vl

[t Automatic
Test Results Code
Execute Test — Generation
Procedure ('.DD-IE‘ TGCH
| Generation
| Source code

Figure 9.2: BLOCKLIBRARY use for test procedures generation and verification

In this section, we will show that these elements can be used in order to achieve automatic generation of
test cases and for the verification of ACG development activities.

Each Configuration element can be considered as a complete source for test case generation. Indeed
each Configuration element is a distinct configuration for a block instance. From each
Configuration, according to the StructuralFeature specifications (data types and INVARIANT
Annotation)andthe ConfigurationAnnotation (MODE_INVARIANT),we can extracta Constraint
Satisfaction Problem (CSP). From this CSP, solvers such as MiN1Zinc* or CHOCO® can extract matching
set of values for each StructuralFeature that can be used as the input values for a block execution.

According to a block Configuration element and its previously generated parameters and input val-
ues, we can generate an input model containing a block instance corresponding to the specified block
Configuration element. This model can then be used: a) in a simulation tool (for example the one
used for the usual development of input models) and then be used to simulate the block behavior; and b)

“http://www.minizinc.com
Shttp://choco-solver.org

168

9.3. ADDITIONAL REQUIRED VERIFICATIONS

in an ACG and then be used in order to generate code.

The simulation execution result can be considered as an oracle (expected result) for the test procedure
and be compared with the result of the corresponding execution of the generated code (relying on the
generated input data). This verification transformation is depicted in Figure 9.1 asthe BL_TR_7 transfor-
mation.

9.2.5 SUPPORTING THE USE OF AUTOMATED TEST GENERATION

Using the input model generated from each block Configuration as depicted in Figure 9.2, it is possible
to trace the executions of the ACG for each generated Configuration test procedure of a block. Such
test procedures will allow to verify the following properties: all the possible configurations for a block
are handled in the code generation; each generation is functional for each configuration and; no dead
code exists in the block-specific ACG code. This testing method will be part of the testing approach of
transformation BL_TR_6 of Figure 9.1.

9.3 ADDITIONAL REQUIRED VERIFICATIONS

ACG development is an activity where reliability is of primary importance. Development of the ACG by
relying on automated techniques thus requires to ensure the correctness of the automated techniques.

Most of our proposed credible uses of the BLOCKLIBRARY instance helping the verification or devel-
opment of an ACG are relying on automatic generations. These generations must themselves be verified
in order to be able to benefit from the informations they provide for the gain of certification credits. In
contrary to the ACG itself, these code generations are quite simple and purpose specific. Their complexity
is limited and their formal verification can be expected to be simpler.

Formal and model-based partial verification of an ACG by relying on the formalisation of its input lan-
guage provides additional confidence in the development of safety-critical embedded systems ACG. Their
use in an industrial context is first conditioned to the acceptation of the approach by industrial practition-
ers and must then be prepared for qualification. To our knowledge, both conditions can be fulfilled as
industrial practitioners are more and more accepting and using model-based approaches and to some ex-
tends formal methods; and certification bodies are expected to accept well-founded and justified tooled
approaches.

169

9.3. ADDITIONAL REQUIRED VERIFICATIONS

170

Conclusion & Future work

In this PhD, we targeted a formal and tooled approach for the specification of highly variable languages
structure and semantics. We experimented this approach for block diagrams, a very common DSML for
the design of safety critical systems. We have given formal means to ensure both structural and semantics
specification correctness of block diagrams, and we have shown the usefullness of such specification for
automatic code generators (ACG) development activities like specification, verification, implementation
and qualification activities. Our experiments were conducted on SIMULINK, a highly variable dataflow lan-
guage, that is widely used in concrete, safety-critical and real-size industrial applications. Specification of
these language components is complex in the sense that their semantics and structure may vary according
to their parametrisation and the context they are used on. Every aspect of our proposal was implemented
in the EcLIPSE framework and is freely available in open source’.

In this final chapter, we first sumarize the key elements from our work and review the fulfillment of
the research objectives detailed in Chapter 1. We detail in Section 10.2 its concrete results. Section 10.3
gathers the future works regarding both the BLocKLIBRARY approach and wider scale research directions.

10.1 RESEARCH OBJECTIVES FULFILLMENT

10.1.1 RESEARCH OBJECTIVE 1: FORMAL SPECIFICATION AND VERIFICATION OF HIGHLY VARIABLE LANGUAGES

In order to achieve this objective, we have shown how a combination of modeling and formal approaches
can be used for the definition of a dedicated specification language: the BLOCKLIBRARY specification lan-
guage. By relying on SPLE methodologies, concepts and techniques, the dedicated specification language
approach provides a more accurate handling of the specification complexity than state of the art approaches
that are either too expressive or targets a too wide application domain like the UML or SPLE.

Relying on MDE technologies eases the specification language definition, its formalisation and the de-
velopment of mandatory tools for editing and verifying specifications. The MDE approach for the def-
inition of the BLOCKLIBRARY language grants access to many technologies that ease the manipulation
and transformation of models. We have used these ones in order to provide a model-based transforma-
tion framework for the verification of the correctness of the block library specification. Correctness of a
BLOCKLIBRARY instance is based on three distinct and complementary criteria:

a Structural correctness provided by the MDE formalisation of the specification language. Accord-
ing to the specification language requirements expressed using an ECORE metamodel and OCL con-
straints, the appropriate tools have been developed in order to ensure the structural consistency of

'http://blocklibrary.enseeiht.fr/html/

171

10.1. RESEARCH OBJECTIVES FULFILLMENT

the language instances with respect to this structural specification.

b Variability correctness provided by the model transformation of BLOCKLIBRARY instances to the
WHY3 platform. This transformation provides a translational formal semantics to the specification
language by relying on the formal semantics provided by the WHY3 toolset languages. We expressed
variability correctness with two criterion: completeness and disjointness. Based on the previous
formalisation of the blocks specification we define these criterion using WHY3:

« Completeness: ensure that the set of all expressed structural block configuration variants are
exhaustive relatively to the allowed blocks structural features definitions and their allowed com-
binations.

« Disjointness: ensure that each pair of expressed structural block configuration is disjoint and
thus does not specify twice differently the same configuration.

¢ Semantics specification correctness ensured by the model transformation of BLOCKLIBRARY con-
figurations to their representation as a WHYML function with function contract expressed using an-
notations in WHy.

For each criteria a verification technique is used. Structural correctness is ensured by relying on the usual
MDE conformance mechanism and OCL constraints verification. Variability and semantics specification
correctness are ensured by relying on the verification capabilities of the WHY3 toolset. Variability criterion
are expressed as goals to be proven based on the formalisation of the block specification expressed using
the WHY language; semantics specification is also expressed using WHY. Both verification are then tackled
by relying on automated SMT solvers or manual proof assistants to formally assess the verification goals
or the function contract correctness.

10.1.2 RESEARCH OBJECTIVE 2: USES OF HIGHLY VARIABLE LANGUAGE FORMAL SPECIFICATION FOR AUTOMATED GEN-
ERATED CODE VERIFICATION

As dataflow model semantics is mostly contained in the blocks, their formal specifications may be used as
a formal reference for the verification of the code generated from the block instances.

We detailed an approach for the automatic generation of annotations on the code produced by an ACG.
These annotations will contain each block instance specification embedded in the block-specific generated
code. We have shown the feasibility of such an automated formal verification by relying on language-
specific source code verification tools like FRaMA-C for the verification of C code or SPARK for ADA code.
This approach relies on the translation validation proposal [125] as advocated by Pnueli and applied to the
verification of automated code generators. This formal verification of generated code provides a block-level
low level requirements (LLR) verification of the generated code with respect to the language semantics.

This LLR verification on the code has then been shown useful for the verification of high level require-
ments (HLR). In our setting, HLR are expressed on the ACG input model using synchronous observers
(SO). These ones being expressed using the same language as the observed model, can benefit from their
formal specification. Relying on the axiomatic semantics of the blocks, we provided a methodology for
the conversion of SO as logical properties embeddable as annotations in the generated code.

10.1.3 RESEARCH OBJECTIVE 3: USES OF HIGHLY VARIABLE LANGUAGE FORMAL SPECIFICATION FOR ACG QUALIFICA-
TION

We finally have shown how formal block specifications and code generation verification mechanism could
be used for leveraging tool qualification activities. From a correct and verified BLOCKLIBRARY instance,
we have demonstrated the possibility for the automated generation of safe and formal artifacts used in
ACG qualification activities such as elements of the ACG requirements and architecture or ACG develop-
ment artifacts such as block specific code generation modules; and, in the end, ACG test cases generation
according to all possible block configurations.

172

10.2. CONCRETE PRODUCTIONS

10.2 CONCRETE PRODUCTIONS

The BLoCKLIBRARY metamodel, editors and tools have been developed using the EcL1PSE platform. The
complete set of tools and their associated source code are freely available on our project website? and can
be installed from our update site®. Because of the variety of ECLIPSE platforms configurations, it was not
possible for us to test the deployment of the plugins on every EcLIPSE release. We thus provide the ECLIPSE
configuration on which the toolset installation has been tested and all the instructions on how to install it.

The EcLIPSE update site provides the following features including the plugins developed during this
PhD.

« BlockLibrary editors: contains the BLOCKLIBRARY text and hierarchical editors for BLOCKLIBRARY
models. It also contains an EcLIPSE view (the BLOCKLIBRARY Signature view) providing a struc-
tured dynamic overview of the Signature content (BlockVariant, BlockMode,
StructuralFeature) during BLOCKLIBRARY edition.

« BlockLibrary Examples: contains a set of BLOCKLIBRARY instance models in textual form for a set
of blocks including the ones used in this PhD.

« BlockLibrary model2text generators: contains the model transformations presented in this PhD
including the BLOCKLIBRARY to WHY3 transformations and the BLockL1BRARY to DOT format
transformation that provides a graphical view of models.

These productions are provided including the source code and are licensed according to the terms of
the GPL V3 license provided with the plugins.

10.3 FUTURE RESEARCH DIRECTIONS

10.3.1 BLOCKLIBRARY-RELATED ACTIVITIES

Throughout our PhD work, the BLockLiBRARY DSML application domain has been restricted as choices
were made in order to be able to reach the final stage of the approach and to experiment on the various
concrete applications enabled by this approach. The actual work done on the BLockLiBRARY DSML must
go on in order to ensure its scaling to full size block libraries specification and thus the verification of full
size industrial use cases. The work we have done currently was applied on real size blocks. The verification
of each block is independent, we are confident that their verification cost will be comparable to the one
done on the Delay and MinMax blocks.

We propose here some development lines for the BLOCKLIBRARY specification approach improvement.

BLOCKLIBRARY EDITION CAPABILITIES

BLOCKLIBRARY edition is done by relying on a textual syntax. While this syntaxis easy to read, it is possible
that on a large scale such a representation will not be easy to maintain.

As BLOCKLIBRARY can be seen as a specification of complex block structural features on which it is
possible to express variability information enriched with block semantics informations, we propose to
define a more sophisticated editor mixing both graphical variability management and textual specification.

Graphical variability management will be handled as a classical feature model editor with the possibil-
ity to express complex set of block features and relations between these sets. Each feature of our model,
will be textually editable in order to provide its containing StructuralFeature definitions and, for
each StructuralFeature its additional typing and constraints informations. At this point of the spec-
ification, the specifier can benefit from the automatic verification of both completeness and disjointness
properties and gain early feedbacks on the structural correctness of the specification.

*http://blocklibrary.enseeiht.fr/html
Shttp://dieumegard.perso.enseeiht.fr/plugins/blocklibrary/

173

10.3. FUTURE RESEARCH DIRECTIONS

From the feature model, The extraction of all the products will provide all the products for which a
semantics description must be provided. For each product (or a subset of them if semantics definitions
can apply to multiple ones), the block specifier will have to write the semantics specifications.

We think that such an approach will provide a clear methodology for the definition of the variability
model and a better handling of the block specification complexity relying on the graphical overview of the
block structural variability and the tight integration ot the verification results. In addition to these, the use
of a feature model in the early block specification stages will allow to rely on feature modeling approaches
and verification capabilities as we detailed in Section 6.3.

ENHANCE COVERAGE OF DATAFLOW SPECIFICATION

We decided to limit the amount of informations managed in a BLOCKLIBRARY instance as we wanted to
ensure the applicability of our specification approach.

We limited the data types handling to simple ones and avoided the use of most structured data types.
We thus removed support of complex numbers, floating points numbers and buses (structured data types).
In the specification of StructuralFeature, we decided to limit the number of allowed data types to 1.
This was a huge simplification that enforces us to decompose data types allowance of StructuralFeature
into multiple definitions of the same StructuralFeature held in different variability structure
(BlockVariant).

While these limitations were interesting and allowed us to show the applicability of the BLocKLIBRARY
approach, it will be mandatory to handle every capabilities of a block in order to ensure a large handling of
all possible block specification:

« Allowed data types. The addition of the missing data types (complex and floating point numbers
and buses) in the BLOCKLIBRARY language does not implies deep modification but the difficulty
lies in the BLOCKLIBRARY to WHY3 translation as: on the one hand it is mandatory to provide the
required data types definitions and axioms (that are mostly provided in the WHY3 standard library)
but also the operations (operator and manipulation operations) definitions and the axioms they rely
on; and on the other hand, it makes more complex the translation development itself.

« Multiply typed features. In the BLOCKLIBRARY to WHY3 translation, each StructuralFeature
definition is translated as a type declaration and its invariants as predicates on its values. If a
StructuralFeature is specified to have multiple potential data types, it implies that different
type declarations would be generated for each data type. The result of this generation would be
to produce for each StructuralFeature invariant a different predicate for each of its declared
type. Complexity arise when any other BlockVariant extends a BlockVariant in which such a
StructuralFeature is defined, in this case each StructuralFeature data type would be con-
sidered as a variant of the BlockVariant (it is exponential in the number of generated predicates if
multiple StructuralFeature have multiple data types in the same BlockVariant). It will also
be mandatory to consider only the allowed combinations of data types according to the INVARIANT
and MODE_INVARIANT expressed on the specification. In the end, regarding the semantics defini-
tion, verification must be handled in order to ensure only allowed and correctly typed semantics
specification and thus filter on the available StructuralFeature types combinations.

As the purpose of the BLOCKLIBRARY is to ensure specification correctness, such a wide freedom of
StructuralFeature data types specification must not be allowed and additional rules might be
necessary in order to ensure : a) to manage the data types compositions, (for example by allowing
StructuralFeature definitions with multiple data types only if the data types are from the same
family (integers, floats, ...)); b) ensure typing verification in Annotation expressions for early feed-
back to the user; c) for each data type family ensure the complete definition and axiomatization of
all the possible cross-types operations (for example, the division of an Int16 by an Int32).

174

10.3. FUTURE RESEARCH DIRECTIONS

LANGUAGES TRANSFORMATION VERIFICATION

We detailed in this PhD the transformation of the BLoCKLIBRARY language and its embedded OCL and
BAL languages to the WHY and WHYML languages structures. We provided the translation rules and we
implemented them.

The verification of this implementation has been made by relying only on testing. While we have a
good confidence on the translation correctness, its verification cannot be completely trusted as it is not
exhaustive.

Formal verification approaches applied to model transformations must be used in order to ensure this
translation correctness. A huge amount of work has been done in the past year on the verification of model
transformations [32]. We also provided an approach on the verification of transformation [150] that may
be applied for the verification of our translations.

10.3.2 OVERALL APPROACH FUTURE WORKS

This PhD work focused on the formal specification of dataflow languages, its verification and application
in embedded critical systems development. From the work done in this PhD, we identified several ways
forward in the domain of languages variability specification, software verification and MDE formalisation
that will be detailed further here.

LANGUAGES VARIABILITY SPECIFICATION

We produced our BLocKLIBRARY metamodel from the analysis of the dataflow languages domain and by
relying on a SPLE methodology in order to structure the metamodel. This analysis of our specific domain
variability led us to the distinction of two sources of variability: structural and semantics.

It is natural for system design languages to expose a certain degree of variability. Indeed, design lan-
guages requires to provide a certain abstraction and expressiveness level in order to be usable in real size
industrial developments. High level design languages such as UML or SysML are examples of these. The
formalisation of such high level languages is complex and needs to be tackled in the same way we have con-
ducted in this PhD for the SIMULINK block libraries. For example, state machines have been the subject
of this kind of studies at the implementation level in the POLYGLOT [14] project without relying on SPLE
technologies. The reification of that work would be a good starting point for a new case study.

To illustrate how we could reify our approach and apply it to other use cases, we abstract the BLockL1-
BRARY specification metamodel (Figure 10.1). BlockVariant and BlockMode are respectively replaced
by STRUCTURALSPECIFICATIONELEMENT and SEMANTICSSPECIFICATIONELEMENT; BlockType is re-
placed by its generic pendent: DoMAINMODEL. This generic language specification metamodel still relies
ona SPLE approach and thus provides the same capabilities as the BLOCKLIBRARY one in order to formally
specify language variability.

This metamodel must be specialised for each language to be specified; from such a specialisation of the
metamodel, the verification approaches provided in this PhD thesis shall be applicable and reusable and
provide formal confidence in the language specification. According to the language to be specified (UML,
STATEMACHINES, ...), its application domain (network calculus, system/architecture design, hybrid sys-
tems design, ...) or the primitive elements to be used (specific operations, data types, ...) and the structural
features on which to use them (ports, parameters, interfaces, ...) a support for additional formal language
(TLA, Fiacre, ...) might have to be provided, this would allow to use adapted formal language leading to
more convenient specification writing.

EMBEDDED SYSTEMS AUTOMATIC VERIFICATION

We have provided in Chapter 8 an approach to the verification of HLR on generated code from their ex-
pression using synchronous observers in an ACG input language. We have provided and demonstrated
their verifiability on concrete but rather small examples.

175

10.3. FUTURE RESEARCH DIRECTIONS

E Element <<EMUme ration== <<Enumeration== <=enumeration==
o name : EString = AnnotationLanuuagE: ® RefinementRelationOperatol 2 AnnotationkKind |
5, documentation : EString =480 ~ AND ~ AUTD
= DSOL - ALT = DEFINITION
— INVARIANT
? = STRUCT INVARIANT
| - PRE
H SpecificationElement = POST

@ specificationInstance(}
@ specificationContainer() : SpecificatienContainer

g DataType[#

8.1 | from datatypes |

dataType

pecifications
3. A *

tructuralSpecificationElements
>

semanticsSpecificationElement
:

EubStructuralspecificationElements EtructuralSpecificationElements

structurallyRefines

EemanticallyRefines
B.. h..*

typingConstraints [pemantics E DefinitienParameter]

L..®

B - *
H Arretation
composesiith - 8. .*
o isContract : EBoolean ol b P
F kind : AnnotationKind inputy outputs
F language : Annotationlanguage annotations

B
p.. " annotaticons

Figure 10.1: Generic language variability specification metamodel

This work must go further on in order to provide a more complete set of formal blocks specification using
the BLoCcKLIBRARY language. The expression of more complex high level properties must be assessed on
more complex systems based on the newly provided block specification in order to ensure the scalability
of the automatic verification approach relying on code annotation and static analysis.

Concrete industrial embedded critical software applications are not only designed using dataflow lan-
guages such as SIMULINK, they most of the time rely on a combinations of dataflow and state chart allowing
to design not only the function but also the various modes in which the software must operate. Our speci-
fication and annotation translation approach should be extended to state chart models and combinations
of data and state flow for the verification of their corresponding generated code.

INDUSTRIAL CERTIFICATION/QUALIFICATION

We detailed in Chapter 9 a set of applications for the BLOCKLIBRARY specification language (requirements
specification, ACG components generation, generated code verification tools development, simulation
for verification, automatic test generation). We aim in a close future to be able to work on their concrete
applicability in an industrial certification and/or qualification context in close relation with both industrial
users and certification authorities. This work would contribute to the diffusion of the formal methods and
modeling research approaches to the industrial users.

The content of the BLOCKLIBRARY being the most important part of the ACG (the TOR and their for-
mal verification) we envision to extend these experiment and to rely on the block specification for the
automatic generation of the code generator itself.

176

Appendices

177

Complete block specifications

A.1 DELAY BLOCK SPECIFIATION

library DelayComplet {
2 // Primitive types
type boolean TBoolean
type reallnt TUInt8 of 8 bits
type reallnt TUIntl16 of 16 bits
type reallnt TUInt32 of 32 bits
7 type signed reallnt TInt8 of 8 bits
type signed reallInt TIntl16 of 16 bits
type signed reallnt TInt32 of 32 bits
type realDouble TDouble
type realSingle TSingle
12 type string TString
// Arrays
type array TArrayUInt8 of TUInt8 [0]
type array TArrayDouble of TDouble [0]
type array TMatrixDouble of TDouble [0,0]
17 type array TListMatrixDouble of TDouble [0,0,0]
// Delay Enumerations
type enum TResetAlgo {NONE, RISING, FALLING, EITHER, LEVEL, LEVEL_HOLD}

blocktype Delay {
22 variant ResetParam {
parameter Reset_Algo : TResetAlgo default !!TResetAlgo::NONE
¥
variant InputScalar {
modeinvariant ocl {
27 Input.value.isScalar ()
¥
modeinvariant ocl {
Output.value.isScalar ()
¥
32 in data Input : TDouble
out data Output : TDouble
¥
variant InputVector {
modeinvariant ocl {
37 Input.value.isVector ()
¥
modeinvariant ocl {
Output.value.isVector ()
¥
42 in data Input : TArrayDouble
out data Output : TArrayDouble
¥

variant InputMatrix {

179

A.1. DELAY BLOCK SPECIFIATION

47

52

57

62

67

72

77

82

87

92

97

102

107

112

117

modeinvariant ocl {
Input.value.isMatrix ()
¥
modeinvariant ocl {
Output.value.isMatrix ()
}
in data Input : TMatrixDouble
out data Output : TMatrixDouble
}
variant InternallCScalar {
modeinvariant ocl { IC.value.isScalar()
parameter IC : TDouble default 0.0
}
variant ExternalIlCScalar {
modeinvariant ocl { IC.value.isScalar()
in data IC : TDouble
}
variant InternalIlCVector {
modeinvariant ocl { IC.value.isVector ()
parameter IC : TArrayDouble
}
variant ExternalICVector {
modeinvariant ocl { IC.value.isVector ()
in data IC : TArrayDouble
}
variant InternallCMatrix {
modeinvariant ocl { IC.value.isMatrix()
parameter IC : TMatrixDouble
}
variant ExternallCMatrix {
modeinvariant ocl { IC.value.isMatrix()
in data IC : TMatrixDouble
}
variant InternalICListMatrix {
modeinvariant ocl { IC.value->forAll(el
parameter IC : TListMatrixDouble
}
variant ExternalICListMatrix {
modeinvariant ocl { IC.value->forAll(el
in data IC : TListMatrixDouble
}
variant InternalDelay {
parameter Delay : TInt32 {
invariant ocl { Delay.value > 0 }
¥
}
variant ExternalDelay {
in data Delay : TInt32 {
invariant ocl { Delay.value > 0 }
¥
}

e.isMatrix()) }

e.isMatrix()) }

variant ListDelay_ScalarInput extends allof (

ResetParam,
oneof (InternalDelay, ExternalDelay),
InputScalar,

oneof (InternallCVector, ExternalICVector)

) {
modeinvariant ocl {
Delay.value > 1
¥
modeinvariant ocl {
IC.value.size() = Delay.value
¥
memory Mem {
datatype auto ocl {Input.value}
length auto ocl {0}
}
}

variant ListDelay_VectorInput extends allof (

ResetParam,
oneof (InternalDelay, ExternalDelay),
InputVector,

oneof (InternallCMatrix, ExternalICMatrix)

) o

180

A.1. DELAY BLOCK SPECIFIATION

122

127

132

137

142

147

152

157

162

167

172

177

182

187

192

modeinvariant ocl {
Delay.value > 1

}

modeinvariant ocl
IC.value.size() = Delay.value

}

memory Mem {
datatype auto ocl {Input.value}
length auto ocl {0}

}

~

}
variant ListDelay_MatrixInput extends allof (
ResetParam,
oneof (InternalDelay, ExternalDelay),
InputMatrix,
oneof (InternallCListMatrix, ExternallICListMatrix)
) o
modeinvariant ocl {
Delay.value > 1
¥
modeinvariant ocl {
IC.value.size() = Delay.value
}
memory Mem {
datatype auto ocl {Input.value}
length auto ocl {0}
}
}
variant SimpleDelay_Scalar extends allof (
ResetParam,
oneof (InternalDelay, ExternalDelay),
InputScalar,
oneof (InternallCScalar, ExternalICScalar)
) o
modeinvariant ocl {
Delay.value = 1
}
memory Mem {
datatype auto ocl {Input.value}
length auto ocl {1}
}
}
variant SimpleDelay_Vector extends allof (
ResetParam,
oneof (InternalDelay, ExternalDelay),
InputVector,
oneof (InternallCVector, ExternalICVector)
) o
modeinvariant ocl {
Delay.value = 1
}
memory Mem {
datatype auto ocl {Input.value}
length auto ocl {1}
}
}
variant SimpleDelay_Matrix extends allof (
ResetParam,
oneof (InternalDelay, ExternalDelay),
InputMatrix,
oneof (InternallCMatrix, ExternalICMatrix)
) o
modeinvariant ocl {
Delay.value = 1
}
memory Mem {
datatype auto ocl {Input.value}
length auto ocl {1}
}
}
variant ResetInput {
in data Reset : TDouble
memory MemReset {
datatype auto ocl {Reset.value}

181

A.1. DELAY BLOCK SPECIFIATION

length auto ocl {1}

}
}
197 mode DelayMode_Simple implements oneof (SimpleDelay_Scalar,
SimpleDelay_Vector,
SimpleDelay_Matrix) {
modeinvariant ocl {
Reset_Algo.value = !!TResetAlgo::NONE
202 }
definition bal = init_Delay_Simple {
postcondition ocl { Mem.value = IC.value }
Mem.value = IC.value;
¥
207 definition bal = compute_Delay_Simple {
postcondition ocl { Output.value = Mem.value }
Output.value = Mem.value;
}
definition bal = update_Delay_Simple {
212 postcondition ocl {
Mem.value = Input.value
}
Mem.value = Input.value;
}
217 init init_Delay_Simple
compute compute_Delay_Simple
update update_Delay_Simple
}
mode DelayMode_List implements oneof (ListDelay_ScalarInput,
222 ListDelay_VectorInput,
ListDelay_MatrixInput) {
modeinvariant ocl {
Reset_Algo.value = !!TResetAlgo::NONE
}
227 definition bal = init_Delay_List {
postcondition ocl { Mem.value = IC.value }
Mem.value = IC.value;
}
definition bal = compute_Delay_List {
232 postcondition ocl { Output.value = Mem.value->first() }
Output.value = Mem.valuel[0];
}

definition bal = update_Delay_List {
postcondition ocl {
237 Mem.value = Mem.value->excluding(
Mem.value->first ()
)->append (Input.value)

¥
var iter = 0;
242 while (iter < (Delay.value - 1)){
Mem.value[iter] = Mem.value[iter + 1];
iter = iter + 1;
}
Mem.value [Delay.value - 1] = Input.value;

247 ¥
init init_Delay_List
compute compute_Delay_List
update update_Delay_List

}
252 mode DelayReset_Simple_RISING implements allof (
ResetInput,
oneof (SimpleDelay_Scalar, SimpleDelay_Vector, SimpleDelay_Matrix)
){
modeinvariant ocl {
257 Reset_Algo.value = !!TResetAlgo::RISING
}
definition bal = init_Resettable_Simple_RISING {
postcondition ocl { Mem.value = IC.value }
Mem.value = IC.value;
262 }
definition bal = compute_Resettable_Simple_ RISING {
postcondition ocl {
Output.value = Mem.value or Output.value = IC.value
}
267 postcondition ocl {

182

A.1. DELAY BLOCK SPECIFIATION

272

277

282

287

292

297

302

307

312

322

327

332

337

}

}

definition bal = update_Resettable_Simple_RISING {

}

(MemReset.value <= 0.0 and 0.0 < Reset.value) implies

Output.value = IC.value
}

postcondition ocl {

(not (MemReset.value <= 0.0 and 0.0 < Reset.value)) implies

Output.value = Mem.value

}

if (MemReset.value <= 0.0 &% 0.0 < Reset.value) {
Output.value = IC.value;

} else {
Output.value = Mem.value;

}

postcondition ocl {
Mem.value = Input.value
}
postcondition ocl {
MemReset.value = Reset.value
¥
Mem.value = Input.value;
MemReset.value = Reset.value;

init init_Resettable_Simple_RISING
compute compute_Resettable_Simple_RISING
update update_Resettable_Simple_ RISING

mode DelayReset_Simple_ FALLING implements allof (
ResetInput,
oneof (SimpleDelay_Scalar, SimpleDelay_Vector, SimpleDelay_Matrix)

){

}

modeinvariant ocl {

}

definition bal = init_Resettable_Simple_ FALLING {

}

definition bal = compute_Resettable_Simple_ FALLING {

}

Reset_Algo.value = !!TResetAlgo::FALLING

postcondition ocl { Mem.value = IC.value }
Mem.value = IC.value;

postcondition ocl {

Output.value = Mem.value or Output.value = IC.value

}

postcondition ocl {

(MemReset.value >= 0.0 and 0.0 > Reset.value) implies

Output.value = IC.value
}

postcondition ocl {

(not (MemReset.value >= 0.0 and 0.0 > Reset.value)) implies

Output.value = Mem.value

}

if (MemReset.value >= 0.0 && 0.0 > Reset.value)
Output.value = IC.value;

} else {
Output.value = Mem.value;

}

definition bal = update_Resettable_Simple_ FALLING

}

postcondition ocl {
Mem.value = Input.value
}
postcondition ocl {
MemReset.value = Reset.value
}
Mem.value = Input.value;
MemReset.value = Reset.value;

init init_Resettable_Simple_FALLING
compute compute_Resettable_Simple_FALLING
update update_Resettable_Simple_ FALLING

mode DelayReset_Simple_EITHER implements allof (
ResetInput,
oneof (SimpleDelay_Scalar, SimpleDelay_Vector, SimpleDelay_Matrix)

){

183

A.1. DELAY BLOCK SPECIFIATION

342

347

352

357

362

367

372

377

382

387

392

397

402

407

412

}

mo

) {

modeinvariant ocl {

Reset_Algo.value = !!TResetAlgo::EITHER

}

definition bal = init_Resettable_Simple_EITHER {
postcondition ocl { Mem.value = IC.value }
Mem.value = IC.value;

}

definition bal = compute_Resettable_Simple_ EITHER {
postcondition ocl {
Output.value = Mem.value or Output.value = IC.value
¥
postcondition ocl {
((MemReset .value <= 0.0 and 0.0 < Reset.value) or
(MemReset.value >= 0.0 and 0.0 > Reset.value)) implies
Output.value = IC.value
¥
postcondition ocl {
((not (MemReset.value <= 0.0 and 0.0 < Reset.value)) or
(MemReset.value >= 0.0 and 0.0 > Reset.value)) implies

Output.value = Mem.value

}

if (MemReset.value <= 0.0 && 0.0 < Reset.value) {
Output.value = IC.value;

} else {
Output.value = Mem.value;

¥

¥
definition bal = update_Resettable_Simple EITHER {
postcondition ocl {
Mem.value = Input.value
¥
postcondition ocl {
MemReset .value = Reset.value
¥
Mem.value = Input.value;
MemReset .value = Reset.value;
¥
init init_Resettable_Simple_EITHER
compute compute_Resettable_Simple_EITHER
update update_Resettable_Simple_ EITHER

de DelayReset_Simple_LEVEL implements allof (
ResetInput,
oneof (SimpleDelay_Scalar, SimpleDelay_Vector, SimpleDelay_Matrix)

modeinvariant ocl {
Reset_Algo.value = !!TResetAlgo::LEVEL

¥

definition bal = init_Resettable_Simple_ LEVEL {
postcondition ocl { Mem.value = IC.value }
Mem.value = IC.value;

¥

definition bal = compute_Resettable_Simple_ LEVEL {
postcondition ocl {
Output.value = Mem.value or Output.value = IC.value
}
postcondition ocl {
((Reset.value <> 0.0) or
(Reset.value = 0.0 and MemReset.value <> 0.0)) implies
Output.value = IC.value
}
postcondition ocl {
(not ((Reset.value <> 0.0) or
(Reset.value = 0.0 and MemReset.value <> 0.0))) implies

Output.value = Mem.value
}
if ((Reset.value != 0.0) || ((Reset.value == 0.0) &&
(MemReset .value '= 0.0))) {
Output.value = IC.value;
} else {
Output.value = Mem.value;
¥

}
definition bal = update_Resettable_Simple LEVEL {

184

A.1. DELAY BLOCK SPECIFIATION

417

422

427

432

437

442

447

452

457

462

467

472

477

482

487

}

postcondition ocl {

}

Mem.value =

Input.value

postcondition ocl {

}

Mem.value =

MemReset .value =

MemReset .value

}

Reset.value

Input.value;

= Reset.value;

init init_Resettable_Simple_LEVEL
compute compute_Resettable_Simple_LEVEL
update update_Resettable_Simple_LEVEL

mode DelayReset_Simple LEVEL_HOLD implements allof (
ResetInput,

){

}

oneof (SimpleDelay_Scalar,

SimpleDelay_Vector,

modeinvariant ocl {

Reset_Algo.value =

}

definition bal =

postcondition ocl { Mem.value =
Mem.value =

}

definition bal =
postcondition ocl {

}

Output.value

IC.

!''TResetAlgo: : LEVEL_HOLD
init_Resettable_Simple_LEVEL_HOLD {
IC.value }

value;
compute_Resettable_Simple_LEVEL_HOLD {

= Mem.value or Output.value = IC.value

postcondition ocl {

}

(Reset.value

<> 0.0) implies Output.value =

postcondition ocl {

}

if (Reset.value

}

}
}

(Reset.value

Output.value
else {
Output.value

definition bal =
postcondition ocl {

}

Mem.value =

= 0.0) implies Output.value =

1= 0.0) {
= IC.value;

= Mem.value;

update_Resettable_Simple_ LEVEL_HOLD {

Input.value

postcondition ocl {

}

Mem.value =

MemReset .value =

MemReset.value

}

Reset.value

Input.value;

= Reset.value;

init init_Resettable_Simple_ LEVEL_HOLD
compute compute_Resettable_Simple_LEVEL_HOLD
update update_Resettable_Simple_ LEVEL_HOLD

mode DelayReset_List_RISING implements allof (
ResetInput,
oneof (ListDelay_ScalarInput, ListDelay_VectorInput, ListDelay_MatrixInput)

){

modeinvariant ocl {

Reset_Algo.value =

}

definition bal =

postcondition ocl { Mem.value =
Mem.value =

}

definition bal =
postcondition ocl {

}

Output.value

IC.

!'TResetAlgo: :RISING
init_Resettable_List_RISING {
IC.value }
value;

compute_Resettable_List_RISING {

= Mem.value->first() or Output.value =

postcondition ocl {
(MemReset.value <= 0.0 and 0.0 < Reset.value) implies

}

Output.value

= IC.value->first ()

postcondition ocl {

185

IC.value

Mem.value

SimpleDelay_Matrix)

IC.value->first ()

A.1. DELAY BLOCK SPECIFIATION

(not (MemReset.value <= 0.0 and 0.0 < Reset.value)) implies
OQutput.value = Mem.value->first ()
492 }
if (MemReset.value <= 0.0 && 0.0 < Reset.value) {
Output.value = IC.value[0];
} else {
OQutput.value = Mem.value[0];
497 }
}
definition bal = update_Resettable_List_RISING {
postcondition ocl {
Mem.value = Mem.value->excluding(
502 Mem.value->first ()
)->append (Input.value)
}
postcondition ocl {
MemReset .value = Reset.value
507 }
var iter = 0;
while (iter < (Delay.value - 1)){
Mem.value[iter] = Mem.valuel[iter + 1];
iter = iter + 1;
512 }
Mem.value[Delay.value - 1] = Input.value;
MemReset.value = Reset.value;
¥
init init_Resettable_List_RISING
517 compute compute_Resettable_List_RISING
update update_Resettable_List_RISING
}
mode DelayReset_List_FALLING implements allof (
ResetInput,
522 oneof (ListDelay_ScalarInput, ListDelay_VectorInput, ListDelay_MatrixInput)
){
modeinvariant ocl {
Reset_Algo.value = !!TResetAlgo::FALLING
}
527 definition bal = init_Resettable_List_FALLING {
postcondition ocl { Mem.value = IC.value }
Mem.value = IC.value;
¥
definition bal = compute_Resettable_List_FALLING {
532 postcondition ocl {
Output.value = Mem.value->first() or Output.value = IC.value->first()
¥
postcondition ocl {
(MemReset.value >= 0.0 and 0.0 > Reset.value) implies
537 Output.value = IC.value->first()
}
postcondition ocl {
(not (MemReset.value >= 0.0 and 0.0 > Reset.value)) implies
Output.value = Mem.value->first()
542 }
if (MemReset.value >= 0.0 && 0.0 > Reset.value) {
OQutput.value = IC.valuel[0];
} else {
OQutput.value = Mem.value[0];
547 }
¥
definition bal = update_Resettable_List_FALLING {
postcondition ocl {
Mem.value = Mem.value->excluding(
552 Mem.value->first ()
)->append (Input.value)
}
postcondition ocl {
MemReset.value = Reset.value
587 }
var iter = 0;
while (iter < (Delay.value - 1)){
Mem.value[iter] = Mem.value[iter + 1];
iter = iter + 1;
562 ¥

Mem.value [Delay.value - 1] = Input.value;

186

A.1. DELAY BLOCK SPECIFIATION

MemReset .value = Reset.value;
}
init init_Resettable_List_FALLING
567 compute compute_Resettable_List_FALLING
update update_Resettable_List_FALLING
}
mode DelayReset_List_EITHER implements allof (
ResetInput,
572 oneof (ListDelay_ScalarInput, ListDelay_VectorInput, ListDelay_MatrixInput)
){
modeinvariant ocl {
Reset_Algo.value = !!TResetAlgo::EITHER
}
577 definition bal = init_Resettable_List_EITHER {
postcondition ocl { Mem.value = IC.value }
Mem.value = IC.value;
}
definition bal = compute_Resettable_List_EITHER {
582 postcondition ocl {
Output.value = Mem.value->first() or Output.value = IC.value->first()
}
postcondition ocl {
((MemReset.value <= 0.0 and 0.0 < Reset.value) or
587 (MemReset.value >= 0.0 and 0.0 > Reset.value)) implies
Output.value = IC.value->first()
}
postcondition ocl {
((not (MemReset.value <= 0.0 and 0.0 < Reset.value)) or
592 (MemReset .value >= 0.0 and 0.0 > Reset.value)) implies
OQutput.value = Mem.value->first ()
}
if (MemReset.value >= 0.0 && 0.0 > Reset.value) {
Output.value = IC.valuel[0];
597 } else {
Output.value = Mem.value[0];

}
¥
definition bal = update_Resettable_List_EITHER {
602 postcondition ocl {
Mem.value = Mem.value->excluding(
Mem.value->first ()
) ->append (Input.value)
¥
607 postcondition ocl {
MemReset .value = Reset.value
¥
var iter = 0;
while (iter < (Delay.value - 1)){
612 Mem.value[iter] = Mem.valuel[iter + 1];
iter = iter + 1;
}
Mem.value [Delay.value - 1] = Input.value;
MemReset.value = Reset.value;
617 }

init init_Resettable_List_EITHER
compute compute_Resettable_List_EITHER
update update_Resettable_List_EITHER

}
622 mode DelayReset_List_LEVEL implements allof (
ResetInput,
oneof (ListDelay_ScalarInput, ListDelay_VectorInput, ListDelay_MatrixInput)
){
modeinvariant ocl {
627 Reset_Algo.value = !!TResetAlgo::LEVEL
}
definition bal = init_Resettable_List_LEVEL {
postcondition ocl { Mem.value = IC.value }
Mem.value = IC.value;
632 }
definition bal = compute_Resettable_List_LEVEL {
postcondition ocl {
Output.value = Mem.value->first() or Output.value = IC.value->first()
}
637 postcondition ocl {

187

A.1. DELAY BLOCK SPECIFIATION

((Reset.value <> 0.0) or
(Reset.value = 0.0 and MemReset.value <> 0.0)) implies
Output.value = IC.value->first()
¥
642 postcondition ocl {
(not ((Reset.value <> 0.0) or
(Reset.value = 0.0 and MemReset.value <> 0.0))) implies
OQutput.value = Mem.value->first ()
¥
647 if ((Reset.value != 0.0) || ((Reset.value == 0.0) &&
(MemReset .value !'= 0.0))) {
Output.value = IC.value[0];
} else {
OQutput.value = Mem.value[0];
652 }
¥
definition bal = update_Resettable_List_LEVEL {
postcondition ocl {
Mem.value = Mem.value->excluding(
657 Mem.value->first ()
)->append (Input.value)
¥
postcondition ocl {
MemReset .value = Reset.value
662 ¥
var iter = 0;
while (iter < (Delay.value - 1)){
Mem.value[iter] = Mem.valuel[iter + 1];
iter = iter + 1;
667 }
Mem.value[Delay.value - 1] = Input.value;
MemReset .value = Reset.value;
¥
init init_Resettable_List_LEVEL
672 compute compute_Resettable_List_LEVEL
update update_Resettable_List_LEVEL
}
mode DelayReset_List_LEVEL_HOLD implements allof (
ResetInput,
677 oneof (ListDelay_ScalarInput, ListDelay_VectorInput, ListDelay_MatrixInput)
)1
modeinvariant ocl {
Reset_Algo.value = !!TResetAlgo::LEVEL_HOLD
¥
682 definition bal = init_Resettable_List_LEVEL_HOLD {
postcondition ocl { Mem.value = IC.value }
Mem.value = IC.value;
}
definition bal = compute_Resettable_List_LEVEL_HOLD {
687 postcondition ocl {
Output.value = Mem.value->first() or Output.value = IC.value->first()
}
postcondition ocl {
(Reset.value <> 0.0) implies Output.value = IC.value->first ()
692 }
postcondition ocl {
(not (Reset.value <> 0.0)) implies Output.value = IC.value->first()
}
if (Reset.value != 0.0) {
697 Output.value = IC.value[0];
} else {
OQutput.value = Mem.value[0];
¥
¥
702 definition bal = update_Resettable_List_LEVEL_HOLD {
postcondition ocl {
Mem.value = Mem.value->excluding(
Mem.value->first ()
)->append (Input.value)
707 ¥
postcondition ocl {
MemReset .value = Reset.value
¥

var iter = 0;

188

A.2. MINMAX BLOCK SPECIFICATION

712 while (iter < (Delay.value - 1)){
Mem.value[iter] = Mem.value[iter + 1];
iter = iter + 1;
}
Mem.value [Delay.value - 1] = Input.value;
717 MemReset.value = Reset.value;
}

init init_Resettable_List_LEVEL_HOLD

compute compute_Resettable_List_LEVEL_HOLD

update update_Resettable_List_LEVEL_HOLD
722 ¥

Listing A.1: Delay block specification using the BLOCKLIBRARY language

A.2 MINMAX BLOCK SPECIFICATION

1 1library MinMaxLib {
// Scalar data types
type realDouble TDouble
type reallnt TInt16 of 16 bits
// Multi-dimensional data types
6 type array TArrayIntl6 of TInt16 [0]
type array TArrayDouble of TDouble [0]
type array TMatrixDouble of TDouble [0,0]

type string TString
11 // Enumerations
type enum MinMaxFunction {Min,Max}

blocktype MinMax {
variant MinMaxParameters {
16 parameter FunctionParam : MinMaxFunction

parameter NbInputs : TInt16 { invariant ocl { NbInputs.value >= 1 } }

¥
variant MinMaxInScalars extends MinMaxParameters {
in data Inl : TDouble [1 .. 0]
21 }
variant MinMaxInVectors extends MinMaxParameters {
in data Inl : TArrayDouble [1 .. 0]
}
variant MinMaxInMatrices extends MinMaxParameters {
26 in data Inl : TMatrixDouble [1 .. 0]
¥
variant MinMaxQOutScalar {
out data Out : TDouble

}
31 variant MinMaxOutVector {
out data Out : TArrayDouble
¥

variant MinMaxOutMatrix {
out data Out : TMatrixDouble
36 ¥

mode MinOutputScalarMultipleInputsScalars implements allof (MinMaxOutScalar,

MinMaxInScalars) {

modeinvariant ocl { FunctionParam.value = !!MinMaxFunction::Min }

modeinvariant ocl { NbInputs.value >= 1 }

41 definition bal = compute_MinOutScalarMultipleInputsScalars {

postcondition ocl {
Inl1->forAl1(i| i.value >= Out.value)

}
var res = In1[0].value;
46 for (var i = 0; i < (size(Inl1l)); i =i + 1){
if (res > Ini[i].value){
res = Ini[i].value;
}
¥
51 Qut.value = res;

}
compute compute_MinOutScalarMultipleInputsScalars

}

mode MaxOutputScalarMultipleInputsScalars implements allof (MinMaxOutScalar,

56

189

MinMaxInScalars) {

A.2. MINMAX BLOCK SPECIFICATION

modeinvariant ocl { FunctionParam.value = !!MinMaxFunction::Max }
modeinvariant ocl { NbInputs.value >= 1 }
definition bal = compute_MaxOutScalarMultipleInputsScalars {
postcondition ocl {
61 Inl1->forAl1(il| i.value <= Out.value)
}
var res = In1[0].value;
for (var i = 0; i < (size(In1)); i = i + 1){
if (res < Ini[i].value){

66 res = Inl1[i].value;
}
}
OQut.value = res;
}
71 compute compute_MaxOutScalarMultipleInputsScalars
}

mode MinOutputScalarOnelInputVector implements allof (MinMaxQOutScalar,
MinMaxInVectors) {

modeinvariant ocl { FunctionParam.value = !!MinMaxFunction::Min }
76 modeinvariant ocl { NbInputs.value = 1 }
definition bal = compute_MinOutputScalarOneInputVector {

postcondition ocl {
Inli->forAl1(il| i.value->forAll(v|v >= QOut.value))
¥
81 var res = Ini1[0].value[0];
for (var i = 0; i < (size(In1[0].value)); i = i + 1){
if (res > Ini1[0].valuel[il){
res = In1[0].valuelil;

}
86 }
Out.value = res;
}
compute compute_MinOutputScalarOneInputVector
}
91 mode MaxOutputScalarOneInputVector implements allof (MinMaxQOutScalar,
MinMaxInVectors) A{
modeinvariant ocl { FunctionParam.value = !!MinMaxFunction::Max }
modeinvariant ocl { NbInputs.value = 1 }
definition bal = compute_MaxOutputScalarOneInputVector {
96 postcondition ocl {
Inl->forAll1(i| i.value->forAll(v|v <= Out.value))
}
var res = In1[0].valuel[O];
for (var i = 0; i < (size(In1[0].value)); i =i + 1){
101 if (res < In1[0].valuel[il){
res = In1[0].valuel[i];
}
}
Out.value = res;
106 ¥
compute compute_MaxOutputScalarOneInputVector
}

mode MinOutputScalarOneInputMatrix implements allof (MinMaxOutScalar,
MinMaxInMatrices) {

111 modeinvariant ocl { FunctionParam.value = !!MinMaxFunction::Min }
modeinvariant ocl { NbInputs.value = 1 }
definition bal = compute_MinOutputScalarOneInputMatrix {

postcondition ocl {
In1->forAl1(il i.value->forAll(v|v->forAll(s| s >= Out.value)))
116 }
var res = Inl1[0].value[0][0];
for (var i = 0; i < (size(Ini1[0].value)); i = i + 1){
for (var j = 0; j < (size(In1[0].valuel[01)); j = j + 1){
if (res > In1[0].valuel[il[jl){
121 res = In1[0].valuel[il[j];
}
}
}
Out.value = res;
126 ¥
compute compute_MinOutputScalarOneInputMatrix
}
mode MaxOutputScalarOneInputMatrix implements allof (MinMaxOutScalar,
MinMaxInMatrices) {

190

A.2. MINMAX BLOCK SPECIFICATION

131

136

141

146

151

156

161

166

171

176

181

186

191

196

201

modeinvariant ocl { FunctionParam.value = !!MinMaxFunction::Max }
modeinvariant ocl { NbInputs.value = 1 }
definition bal = compute_MaxOutputScalarOneInputMatrix {
postcondition ocl {
In1->forAl1(il| i.value->forAll(v|v->forAll(s| s <= Out.value)))
}
var res = In1[0].value[0][0];
for (var i = 0; i < (size(In1[0].value)); i =i + 1){
for (var j = 0; j < (size(In1[0].value[0]1)); j = j + 1){
if (res < In1[0].valuel[il[j1){
res = In1[0].valuel[il[j];
}
}
}
Qut.value = res;
¥
compute compute_MaxOutputScalarOneInputMatrix

}

mode MinOutputVectorMultipleInputsVectors implements allof (MinMaxOutVector,
MinMaxInVectors) {

modeinvariant ocl { FunctionParam.value = !!MinMaxFunction::Min }

modeinvariant ocl { NbInputs.value > 1 }

definition bal = compute_MinOutVectorMultipleInputsVectors {
postcondition ocl {

Out.value->forAll(o| Ini->forAll(i| i.value->at(Out.value->index0f (o)) >= o))

}
var res = Ini1[0].value;
for (var i = 0; i < (size(In1)); i =i + 1){
for (var j = 0; j < (size(Inil[i].value)); j = j + 1){
if (res[j] > In1[i].valuel[jl){
res[j]l = Ini1[i].valuelj];
}
}
}
Out.value = res;
}
compute compute_MinOutVectorMultipleInputsVectors

}

mode MaxOutputVectorMultipleInputsVectors implements allof (MinMaxOutVector,
MinMaxInVectors) {

modeinvariant ocl { FunctionParam.value = !!MinMaxFunction::Max }

modeinvariant ocl { NbInputs.value > 1 }

definition bal = compute_MaxOutVectorMultipleInputsVectors {
postcondition ocl {

Out.value->forAll(o| Inl->forAll(i| i.value->at(Out.value->index0f (o)) <= o))

}
var res = In1[0].value;
for (var i = 0; i < (size(Inl)); i =i + 1){
for (var j = 0; j < (size(Inil[il.value)); j = j + 1){
if (res[j] < Ini[i].valuel[jl){
res[j] = Ini[i].valuel[j];
}
}
}
Out.value = res;
}
compute compute_MaxOutVectorMultipleInputsVectors

}

mode MinQOutputMatrixMultipleInputsMatrices implements allof (MinMaxOutMatrix,
MinMaxInMatrices) {

modeinvariant ocl { FunctionParam.value = !!MinMaxFunction::Min }
modeinvariant ocl { NbInputs.value > 1 }
definition bal = compute_MinOutScalarMultipleInputsMatrices {

postcondition ocl {
Out.value->forAll (ov|
ov->forAll (os|
In1->forAll1(il

i.value->at (Out.value->index0f (ov))->at (ov->index0f (os)) >= os

var res = Inl1[0].value;

191

A.2. MINMAX BLOCK SPECIFICATION

for (var i = 0; i < (size(Inl1)); i =i + 1){
206 for (var j = 0; j < (size(Ini[i].value)); j = j + 1){
for (var k = 0; k < (size(Ini[i].valuel[jl)); k = k + 1){
if (res[jl[k] > Ini1[i].valuel[j][k]){
res[jl[k] = In1[i].valuel[j][k];

}
211 }
}
}
Out.value = res;
}
216 compute compute_MinOutScalarMultipleInputsMatrices
}

mode MaxOutputMatrixMultipleInputsMatrices implements allof (MinMaxOutMatrix,
MinMaxInMatrices) {

modeinvariant ocl { FunctionParam.value = !!MinMaxFunction::Max }
221 modeinvariant ocl { NbInputs.value > 1 }

definition bal = compute_MaxOutScalarMultipleInputsMatrices {

postcondition ocl {
Out.value->forAll (ov|
ov->forAll (os|
226 Inl->forAll (il
i.value->at (Out.value->index0f (ov))->at (ov->index0f (os)) <= os

)

231 T
var res = Inl1[0].value;
for (var i = 0; i < (size(Inl1)); i = i + 1){
for (var j = 0; j < (size(Inil[i].value)); j = j + 1{
for (var k = 0; k < (size(Ini[i].valuel[jl)); k = k + 1){
236 if (res[jl[k] < Ini[i].valuel[j][k]){
res[j1[k] = Ini1[il.valuel[j][k];

+
}
}
241 }
OQut.value = res;
}
compute compute_MaxOutScalarMultipleInputsMatrices
+
246 }
Iy

Listing A.2: MinMax block specification using the BLOCKLIBRARY language

192

OCL grammar

We provide in the following the XTEXT grammar for the OCL we embedded in the BLOCKLIBRARY spec-
ification language for the specification of constraints in the specification of blocks.

OclExpression returns ocl::0clExpression
BoolOpCallExp|LetExp;

OclModelElementExp returns ocl::0clModelElementExp:
elem=[Element | UIDENT]

DefinitionCallExp returns ocl::DefinitionCallExp:

annot=[Annotation|LIDENT] '('(arguments+=0clExpression (',
?l)l

' arguments+=0clExpression)*)

5
BoolOpCallExp returns ocl::0clExpression
EqOpCallExp (({ocl::BoolOpCallExp.source=current} operationName=BOOLOP) argument=
EqOpCallExp)*
BOOLOP : 'and'|'or'|'xor'|'implies'|'equivalent';
EqOpCallExp returns ocl::0OperatorCallExp
RelOpCallExp (({ocl::EqOpCallExp.source=current} operationName=EQOP) argument=RelOpCallExp
)%
EQOP 2= lie>
RelOpCallExp returns ocl::0OperatorCallExp
Add0OpCallExp (({ocl::RelOpCallExp.source=current} operationName=RELOP) argument=
Add0pCallExp)*
RELOP RPN RN RPN AP ST
AddOpCallExp returns ocl::0OperatorCallExp
MulOpCallExp (({ocl::AddOpCallExp.source=current} operationName=ADDOP) argument=
MulOpCallExp)*
5
ADDOP : '='|'+';
MulOpCallExp returns ocl::0peratorCallExp
NotOpCallExp (({ocl::MulOpCallExp.source=current} operationName=MULOP) argument=
NotOpCallExp)*
MULOP: 'x'|['/';
NotOpCallExp returns ocl::0OperatorCallExp

({ocl::NotOpCallExp} operationName=UnaryOP source=NotOpCallExp)
| PropertyCallExp

193

UnaryOP: NOTOP | '-';
NOTOP: 'mnot';

PropertyCallExp returns ocl::PropertyCallExp:
source = Primary_OclExpression (calls+=PropertyCall)*

Primary_OclExpression returns ocl::0clExpression:
VariableExp
| SuperExp
| SelfExp
|ResultExp
| StringExp
|BooleanExp
| NumericExp
|CollectionExp
|EnumLiteralExp
|0clUndefinedExp
| IfExp
|BraceExp
|0clModelElementExp
|DefinitionCallExp;

VariableReferencePivot returns pivot::VariableReferencePivot:
Iterator
|LocalVariable
|ActionLocalVariable
| Annotation

VariableExp returns ocl::VariableExp:
referredVariable=[pivot::VariableReferencePivot |LIDENT]

SuperExp returns ocl::SuperExp:
{ocl::SuperExp} 'super'

SelfExp returns ocl::SelfExp:
{ocl::SelfExp} ‘'self'

ResultExp returns ocl::ResultExp:
{ocl::ResultExp} 'result'

StringExp returns ocl::StringExp:
{ocl::StringExp}
stringSymbol=SINGLE_QUOTED_STRING

NumericExp returns ocl::NumericExp:
RealExp|IntegerExp

RealExp returns ocl::RealExp: realSymbol=DOUBLE;

REAL hidden(): INT '.' (EXT_INT | INT);
terminal EXT_INT: INT ('e'|'E')('-'[|'+') INT;

IntegerExp returns ocl::IntegerExp:
{ocl::IntegerExp}
integerSymbol=(INT|DIGIT)

CollectionExp returns ocl::CollectionExp:
SimpleCollectionExp
| IntRangeCollection
| TupleExp
| MapExp

SimpleCollectionExp returns ocl::SimpleCollectionExp:

194

BagExp
|0rderedSetExp
| SequenceExp

| SetExp

BagExp returns ocl::BagExp:
{ocl::BagExp}
'Bag' '{' (elements+=0clExpression ("," elements+=0clExpression)*)? '}'

OrderedSetExp returns ocl::0rderedSetExp:
{ocl::0rderedSetExp}
'OrderedSet' '{' (elements+=0clExpression ("," elements+=0clExpression)*)? '}'

SequenceExp returns ocl::SequenceExp:
{ocl::SequenceExp}
'Sequence' '{' (elements+=0clExpression ("," elements+=0clExpression)*)? '}'

SetExp returns ocl::SetExp:
{ocl::SetExpl}'Set' '{' (elements+=0clExpression ("," elements+=0clExpression)*)? '}'

IntRangeCollection returns ocl::IntRangeCollectionExp:
{ocl::IntRangeCollectionExp} 'Set' '{' from=0clExpression ".." to=0clExpression '}'

TupleExp returns ocl::TupleExp:
{ocl::TupleExp}
'Tuple' '{' (tuplePart+=TuplePart ("," tuplePart+=TuplePart)*)? '}'

TuplePart returns ocl::TuplePart:
varName=SINGLE_QUOTED_STRING (':' type=DataType)? '=' initExpression=0clExpression

MapExp returns ocl::MapExp:
{ocl::MapExp}
'Map' '{' (elements+=MapElement (',' elements+=MapElement)*)? '}'

MapElement returns ocl::MapElement:
'(' key=0clExpression ',' value=0clExpression ')'

EnumLiteralExp returns ocl::EnumLiteralExp:
'11' litValue=[value::LiteralExpression|QUALIFIED_UIDENT]

QUALIFIED _UIDENT:
UIDENT ('::' UIDENT)=*

OclUndefinedExp returns ocl::0clUndefinedExp:
{ocl::0clUndefinedExp}
'0OclUndefined’

LetExp returns ocl::LetExp:
'let' variable=LocalVariable 'in' in_=0clExpression

IfExp returns ocl::IfExp:
'if' condition=0clExpression 'then' thenExpression=0clExpression
'else' elseExpression=0clExpression 'endif'

BraceExp returns ocl::BraceExp:
'(' exp=0clExpression ')'

BooleanExp returns ocl::BooleanExp:

19§

booleanSymbol= 'true'|booleanSymbol= 'false'

PropertyCall returns ocl::PropertyCall:
OperationCall|NavigationOrAttributeCall
|IterateExp|IteratorExp|CollectionOperationCall

OperationCall returns ocl::0OperationCall:
'.' (operationName=SINGLE_QUOTED_STRING|operationName=LIDENT) '('
(arguments+=0clExpression (',' arguments+=0clExpression)*)?

|)|

NavigationOrAttributeCall returns ocl::NavigationOrAttributeCall:
'.' (name=SINGLE_QUOTED_STRING|name=LIDENT)

IterateExp returns ocl::IterateExp:
'->' 'iterate' '(' iterators+=Iterator (',' iterators+=Iterator)x ';'
result=LocalVariable '|' body=0clExpression ')'

Iterator returns ocl::Iterator:
name=LIDENT (':' type=[dt::DataType|UIDENT])?

IteratorExp returns ocl::IteratorExp:
'->' name=LIDENT '(' iterators+=Iterator (',' iterators+=Iterator)x*
'|' body=0clExpression ')'

CollectionOperationCall returns ocl::CollectionOperationCall:
'->' operationName=LIDENT '(' (arguments+=0clExpression
(',' arguments+=0clExpression)*)?

DR

LocalVariable returns ocl::LocalVariable:
name=LIDENT (':' type=[dt::DataType|UIDENT])? '=' initExpression=0clExpression

OclType returns dt::DataType:
CollectionType
| TPrimitive
| OclAnyType
| TupleType
| OclModelElement
| MapType
| OclType_abstractContents

CollectionType returns dt::TArray:
BagType
| OrderedSetType
| SequenceType
| SetType

BagType returns dt::TArray:
'Bag' '(' baseType=[dt::TPrimitive|UIDENT] ')

OrderedSetType returns dt::TArray:
'OrderedSet' '(' baseType=[dt::TPrimitive|UIDENT] ')’

SequenceType returns dt::TArray:
'Sequence' '(' baseType=[dt::TPrimitive|UIDENT] ')'

SetType returns dt::TArray:
'Set' '(' baseType=[dt::TPrimitive|UIDENT] ')'

196

OclAnyType returns dt::DataType:
{ocl::0clAnyTypel}'0OclAny'

OclType_abstractContents returns ocl::0clType
{ocl::0clType} 'OclType'

TupleType returns dt::DataType:
{ocl::TupleType} ('TupleType' | 'Tuple') '(
(attributes+=TupleTypeAttribute (',' attributes+=TupleTypeAttribute)*)?
|)|

TupleTypeAttribute returns ocl::TupleTypeAttribute:
name=LIDENT ':' type=DataType;

OclModelElement returns ocl::0clModelElement:
elem=[Element | LIDENT];

MapType returns ocl::MapType:
'Map' '(' keyType=DataType ',' valueType=DataType ')'

197

198

BAL grammar

We provide in the following the XTEXT grammar for the BAL action language embedded in the BLockLI-
BRARY specification language for the specification of the blocks operational semantics.

ActionBlock returns action::ActionBlock:
(elements+=ActionBlockElement)+

ActionBlockElement returns action::ActionBlockElement:
(ghost?="'ghost ') ?
((localVariable=ActionLocalVariable ';')

I
(expression=ActionExpression ';')
| expression=ActionPrimaryComplexExpression
| expression=AssertExpression

))

ExpressionActionBlock returns action::ActionBlock:
elements+=ActionBlockElement

ActionLocalVariable returns action::LocalVariable:
'var' name=LIDENT '=' init=ActionBoolOpCallExp

ActionExpression returns action::ActionExpression:
ActionAssignVariable

ActionAssignVariable returns action::ActionExpression:
ActionBoolOpCallExp
(({action::VariableAssignmentExp.assignedVariable=current}

'=') exp=ActionBoolOpCallExp)?

ACTIONASSIGNOP g U=lg

ActionBoolOpCallExp returns action::0OperatorCallExp
ActionRelOpCallExp (
({action::Bool0OpCallExp.source=current} operationName=ACTIONBOOLOP)
argument=ActionRelOpCallExp
) *

ACTIONBOOLOP DK== = >
ActionRelOpCallExp returns action::0OperatorCallExp
ActionAddOpCallExp (

({action::RelOpCallExp.source=current} operationName=ACTIONRELOP)
argument=ActionAddOpCallExp

199

) *
ACTIONRELOP g 1S0)0QIIpsi0geli, 1], 01]092,0]0&s,0 3

ActionAddOpCallExp returns action::0OperatorCallExp
ActionMulOpCallExp (
({action::Add0OpCallExp.source=current} operationName=ACTIONADDOP)
argument=ActionMulOpCallExp
) *

ACTIONADDOP : '=‘'['+'|['=."["'+."';

ActionMulOpCallExp returns action::0OperatorCallExp
ActionNotOpCallExp (
({action::MulOpCallExp.source=current} operationName=ACTIONMULOP)
argument=ActionNotOpCallExp
) *

ACTIONMULOP : 's'|'/'|'sx.'"|'/."';

ActionNotOpCallExp returns action::0OperatorCallExp
({action::NotOpCallExp} operationName=ACTIONUNARYOP source=ActionNotOpCallExp)
| ActionPropertyCallExp

ACTIONUNARYOP: ACTIONNOTOP | '-';
ACTIONNOTOP: '!';

ActionPropertyCallExp returns action::PropertyCallExp:
source=ActionPrimaryExpression (calls+=ActionPropertyCall)*

ActionPropertyCall returns action::PropertyCall:
ActionAttributeCall
| ActionSquareBracketCall

ActionAttributeCall returns action::AttributeCall:
'.' name=LIDENT

ActionSquareBracketCall returns action::SquareBracketCall:
'[' exp=ActionExpression ']'

ActionPrimaryExpression returns action::ActionExpression:
ActionOperationCall
| ActionPrimaryComplexExpression
| ActionBLModelElement
| ActionLiteralExpression

ActionOperationCall returns action::0OperationCall:
operationName=LIDENT '(' (
arguments+=ActionExpression
(',' arguments+=ActionExpression)*

)% 0)T

ActionPrimaryComplexExpression returns action::ActionExpression:
ActionITEExpression
| ActionForExpression
| ActionWhileExpression

ActionITEExpression returns action::ITEExpression:
'if' '(' condition=ActionExpression ')'
(
then=ExpressionActionBlock
| ('{'then=ActionBlock'}"')
)
(=>
'else’
(

else=ExpressionActionBlock

200

| ('{' else=ActionBlock '}')
)
)7

ActionForExpression returns action::ForExpression:
'for' |(l

iter=ActionLocalVariable 'j;'

condition=ActionExpression ';'

update=ActionExpression ')' '{'
(spec+=SimpleAnnotationExpression)*
block=ActionBlock

I}I

ActionWhileExpression returns action::WhileExpression:
'while' '(' condition=ActionExpression ')' '{'
(spec+=SimpleAnnotationExpression)*
block=ActionBlock
|}|

AssertExpression returns action::AnnotationExpression:
AssertActionExpression
| AssertOclExpression

AssertActionExpression returns action::AnnotationExpression:
{action::AssertExpression} kind=ASSERTKINDBAL
'{' balExpression=ActionExpression '}'

AssertOclExpression returns action::AnnotationExpression:
{action::AssertExpression} kind=ASSERTKINDOCL
'{' oclExpression=0clExpression '}'

ASSERTKINDBAL : 'bal_assert';
ASSERTKINDOCL : 'ocl_assert';

SimpleAnnotationExpression returns action::AnnotationExpression:
SimpleAnnotationActionExpression
| SimpleAnnotationOclExpression

SimpleAnnotationActionExpression returns action::AnnotationExpression:
{action::SimpleAnnotationExpression} kind=SIMPLEANNOTKINDBAL
'{' balExpression=ActionExpression '}'

SimpleAnnotationOclExpression returns action::AnnotationExpression:
{action::SimpleAnnotationExpression} kind=SIMPLEANNOTKINDOCL
'{' oclExpression=0clExpression '}'

SIMPLEANNOTKINDBAL : 'bal_variant' | 'bal_invariant';
SIMPLEANNOTKINDOCL : 'ocl_variant' | 'ocl_invariant';

ActionBLModelElement returns action::BLModelElementExp:
elem=[Element | UIDENT]

ActionLiteralExpression returns action::ActionExpression:
ActionVariableReferenceExp
| ActionParenthesis
| ActionStringExpression
| ActionRealExpression
| ActionIntExpression
| ActionBoolExpression
| ActionEnumLiteralExp

ActionVariableReferenceExp returns action::VariableExp:
referredVariable=[pivot::VariableReferencePivot |LIDENT]

201

ActionParenthesis returns action::ParenthesisExp:
'(' exp=ActionExpression ')'

ActionStringExpression returns action::StringExp:
stringSymbol=SINGLE_QUOTED_STRING

ActionRealExpression returns action::RealExp:
realSymbol=DOUBLE

ActionIntExpression returns action::IntegerExp:
integerSymbol=(INT|DIGIT)

ActionBoolExpression returns action::BooleanExp:
booleanSymbol= 'true'|booleanSymbol= 'false'

ActionEnumLiteralExp returns action::EnumLiteralExp:
'11' litValue=[value::LiteralExpression|QUALIFIED_UIDENT]

202

WHY3 libraries

D.1 WHY3 DATA TYPES THEORIES

D.1.1 NUMERIC DATA TYPES DEFINITION THEORIES

theory Boolean
use import bool.Bool
type boolean_type = Bool.bool
end
theory RealSingle
use import real.Reallnfix
type tRealSingle = real
end
theory RealDouble
use import real.Reallnfix
type tRealDouble = real
end
theory RealFloatingPoint
use import floating_point.DoubleFull
type tRealFloatingPoint = DoubleFull.double
end

Listing D.1: Scalar data types theories re-definition from standard WHY3 theories

theory Reallnteger
use import bool.Bool
use import int.Int

type tReallnteger

constant nBits : int

constant signed : bool

constant max_Reallnteger : int
end

Listing D.2: General Integer data type theories in WHY3

203

D.1. WHY3 DATA TYPES THEORIES

theory SignedInt8
use import int.Int
use import bool.Bool

constant nBits_signed_8 : int = 8
constant signed_signed_8 : bool = True
constant max_Reallnteger_signed_8 : int = 128

type tRealSignedInt8 = int

clone export Reallnteger with

constant nBits = nBits_signed_8,
constant signed = signed_signed_8,
constant max_Reallnteger = max_Reallnteger_signed_8,

type tReallnteger = tRealSignedInt8
predicate limit_tRealSignedInt8 (x : tRealSignedInt8) =
(-max_Reallnteger_signed_8) <= x <= (max_Reallnteger_signed_8 - 1)
end
theory SignedIntl6
use import int.Int
use import bool.Bool

constant nBits_signed_16 : int = 16
constant signed_signed_16 : bool = True
constant max_Reallnteger_signed_16 : int = 32768

type tRealSignedIntl6 = int

clone export Reallnteger with

constant nBits = nBits_signed_16,
constant signed = signed_signed_16,
constant max_Reallnteger = max_Reallnteger_signed_16,

type tReallnteger = tRealSignedIntil6
predicate limit_tRealSignedIntl16 (x : tRealSignedIntl6) =
(-max_Reallnteger_signed_16) <= x <= (max_Reallnteger_signed_16 - 1)

end

Listing D.3: Signed integers data types theories definition in WHY3

204

D.1. WHY3 DATA TYPES THEORIES

theory SignedInt32

use import int.Int
use import bool.Bool

constant nBits_signed_32 : int = 32

constant signed_signed_32 : bool = True

constant max_Reallnteger_signed_32 : int = 2147483648
type tRealSignedInt32 = int

clone export Reallnteger with

constant nBits = nBits_signed_32,
constant signed = signed_signed_32,
constant max_Reallnteger = max_Reallnteger_signed_32,

type tReallnteger = tRealSignedInt32

predicate limit_tRealSignedInt32 (x : tRealSignedInt32)

(-max_Reallnteger_signed_32) <= x <= (max_Reallnteger_signed_32 - 1)

end
theory SignedInt64

use import int.Int
use import bool.Bool

constant nBits_signed_64 : int = 64
constant signed_signed_64 : bool = True

constant max_Reallnteger_signed_64 : int = 9223372036854775808

type tRealSignedInt64 = int

clone export Reallnteger with

constant nBits = nBits_signed_64,
constant signed = signed_signed_64,
constant max_ReallInteger = max_Reallnteger_signed_64,

type tReallnteger = tRealSignedInt64

predicate limit_tRealSignedInt64 (x : tRealSignedInt64)

(-max_Reallnteger_signed_64) <= x <= (max_Reallnteger_signed_64 - 1)

end

Listing D.4: Signed integers data types theories definition in WHY3

205

D.1. WHY3 DATA TYPES THEORIES

theory UnsignedInt8
use import int.Int
use import bool.Bool

constant nBits_unsigned_8 : int = 8
constant signed_unsigned_8 : bool = True
constant max_Reallnteger_unsigned_8 : int = 256

type tRealUnSignedInt8 = int

clone export Reallnteger with

constant nBits = nBits_unsigned_8,
constant signed = signed_unsigned_8,
constant max_Reallnteger = max_Reallnteger_unsigned_8,

type tReallnteger = tRealUnSignedInt8
predicate limit_tRealUnsignedInt8 (x : tRealUnSignedInt8) =
0 <= x <= (max_Reallnteger_unsigned_8 - 1)
end
theory UnsignedInti16
use import int.Int
use import bool.Bool

constant nBits_unsigned_16 : int = 16
constant signed_unsigned_16 : bool = True
constant max_Reallnteger_unsigned_16 : int = 65536

type tRealUnSignedIntl6 = int

clone export Reallnteger with

constant nBits = nBits_unsigned_16,
constant signed = signed_unsigned_16,
constant max_Reallnteger = max_Reallnteger_unsigned_16,

type tReallnteger = tRealUnSignedIntl6
predicate limit_tRealUnsignedInt16 (x : tRealUnSignedIntl6) =
0 <= x <= (max_Reallnteger_unsigned_16 - 1)
end

Listing D.5: Unsigned integers data types theories definition in WHY3

206

D.1. WHY3 DATA TYPES THEORIES

theory UnsignedInt32
use import int.Int
use import bool.Bool

constant nBits_unsigned_32 : int = 32

constant signed_unsigned_32 bool = True

constant max_Reallnteger_unsigned_32 : int = 4294967296
type tRealUnSignedInt32 = int

clone export Reallnteger with

constant nBits = nBits_unsigned_32,
constant signed = signed_unsigned_32,
constant max_Reallnteger = max_Reallnteger_unsigned_32,

type tReallnteger = tRealUnSignedInt32
predicate limit_tRealUnsignedInt32 (x
0 <= x <= (max_Reallnteger_unsigned_32 - 1)
end
theory UnsignedInt64
use import int.Int
use import bool.Bool

constant nBits_unsigned_64 : int = 64
constant signed_unsigned_64 bool = True

tRealUnSignedInt32)

constant max_Reallnteger_unsigned_64 : int = 18446744073709551616

type tRealUnSignedInt64 = int

clone export Reallnteger with

constant nBits = nBits_unsigned_64,
constant signed = signed_unsigned_64,
constant max_Reallnteger = max_Reallnteger_unsigned_64,

type tReallnteger = tRealUnSignedInt64
predicate limit_tRealUnsignedInt64 (x
0 <= x <= (max_Reallnteger_unsigned_64 - 1)
end

tRealUnSignedInt64)

Listing D.6: Unsigned integers data types theories definition in WHY3

207

D.1. WHY3 DATA TYPES THEORIES

D.1.2 COMMON FUNCTIONS DEFINITION THEORIES

In order to simplify the writing of expressions we introduce in the CommonFunctions theory a getter func-
tion as a shortcut notation for the use of the nth standard WHy3 function. In this theory we add two lem-
mas on the mem standard function. These two lemmas have been defined in order to ease the verification
of more complex lemmas detailed in Sections D.1.3 and D.4.

theory CommonFunctions
use import list.List
use import list.Mem
use import list.NthNoOpt

(* === Getter on lists === x)
function ([]) (a: list 'a) (i: int) : 'a = nth i a

(* mem © 1 *)
lemma mem_nil: forall b: 'a.
mem b Nil = false
lemma mem_cons: forall 1: list 'a, b,c: '
mem b (Cons ¢ 1) -> b =c \/ mem b 1

a.

end

Listing D.7: CommonFunctions theory definition using Why3

D.1.3 STRING DATA TYPES DEFINITION THEORIES

The String data type is used as a standard data type in many formalisms such as OCL, ECORE or SIMULINK
that we use in this PhD. In order to express formal properties using this data type, it was mandatory to
provide a formalisation for this data type. This is what we provide in this section. We start this with the
formalisation for characters in the Char theory as we decided to represent a String as a set of characters.
We finally we provide the formalisation for the String data type based on the Char theory.

It is worth noting that this formalisation is highly inspired from the module provided in the WHY3 stan-
dard library’. As we needed to express properties and to verify them using WHY3, we needed to convert
this module to a theory.

In this formalisation of characters, a character is a record type with one field that is an integer value. Its
formalisation is provided in Listing D.8.

The complete specification for the WHY String theory is provided in Listings D.9 and D.10. We provided
it again here in the interest of clarity. The formal verification report of the related String type lemmas has
been generated with the WHY3 toolset and is provided in Figure D.11.

'http://why3.1lri.fr/std1ib-0.83/

208

D.1. WHY3 DATA TYPES THEORIES

theory Char
(* see module string.Char *)
use import int.Int

type tChar = { code: int }

predicate code_value_limit (c: tChar) =
c.code >= 32 /\ c.code <= 126

function toLower_char (c: tChar) : tChar

axiom ToLower_char_ident : forall c: tChar.

(32 <= c.code < 65 \/ 90 < c.code <= 126) -> toLower_char c = c

axiom ToLower_char_change : forall c: tChar.

(65 <= c.code <= 90) -> toLower_char c = {code=c.code + 32}

function toUpper_char (c: tChar) : tChar

axiom ToUpper_char_ident : forall c: tChar.

(32 <= c.code < 97 \/ 122 < c.code <= 126) -> toUpper_char c = c

axiom ToUpper_char_change : forall c: tChar.

(97 <= c.code <= 122) -> toUpper_char c¢ = {code=c.code - 32}

end

Listing D.8: Char theory definition using Why3

a

S

=

o

Yo

R

o

&0

"

et

Proof obligations <
lemma concat_length 0.01
lemma concat_1_cons 0.01
lemma concat_r_cons 0.03
lemma concat_1_nil 0.01
lemma concat_r_nil 0.00
lemma concat_1_mem 0.01
lemma concat_r_mem 0.01
lemma subString_nil 0.00
lemma subString_length_nil | 0.01
lemma subString_0_0 0.01
lemma subString_length_0_0 | 0.02
lemma subString_0_x 0.03
lemma subString_length_0_x | 0.02
lemma subString_x_y 0.02
lemma subString_length_x_y | 0.02
lemma subString_Out0fBound | 0.01
lemma length_one 0.01

Figure D.11: String theory lemmas verification with WHY3 and SMT solvers

209

D.1. WHY3 DATA TYPES THEORIES

theory String
(¥ see module string.String *)
use import
use import
use import
use import
use import
use import
use import
use import

int.Int
Char

list.Length

list.App

end

list.List

list.Mem

list.NthNoOpt

blocklib

type string_type =

rary_common.CommonFunctions

list tChar

function concat (sl s2: string_type) : string_type = sl ++ s2

lemma concat_length: forall sl1, s2: string_type.
length (concat sl s2) = length sl + length s2

lemma concat_1l_cons: forall sl1, s2: string_type, cl: tChar.
concat (Cons cl1 s1) s2 = Cons cl (concat sl s2)

lemma concat_r_cons: forall sl1, s2: string_type, cl: tChar.

concat s1 (Cons cl s2) = concat (concat sl (Cons cl Nil)) s2
lemma concat_1l_nil: forall s1, s2: string_type.
(sl = Nil -> concat sl s2 = s2)
lemma concat_r_nil: forall s1, s2: string_type.
(s2 = Nil -> concat sl s2 = sl)
lemma concat_l_mem: forall sl1, s2: string_type, cl: tChar.
mem cl s1 -> mem cl (concat si1 s2)
lemma concat_r_mem: forall sl1, s2: string_type, cl: tChar.
mem cl s2 -> mem c1 (concat sl s2)

function toLower (sl: string_type) : string_type

axiom toLower_content: forall sl: string_type, i: int.
0 <= i < length s1 -> nth i (toLower s1) = toLower_char (nth i s1)

function toUpper (sl: string_type) : string_type

axiom toUpper_content: forall sl: string_type, i: int.
0 <= i < length sl -> nth i (toUpper s1) = toUpper_char (nth i s1)

Listing D.9: String theory definition using Why3 (1)

210

D.1. WHY3 DATA TYPES THEORIES

function subString (s: string_type) (lo up:int) : string_type =
if lo >= length s \/ lo < 0 \/ up < 0 \/
up >= length s \/ up < lo then Nil
else match s with
| Nil -> Nil
| Cons hd t1 ->
if lo = 0 then
if up = 0 then
Cons hd Nil
else Cons hd (subString tl 0 (up-1))
else subString tl (lo-1) (up-1)
end

lemma subString_nil: forall x,y: int.
subString Nil x y = Nil

lemma subString_length_nil: forall x,y: int.
length (subString Nil x y) = O

lemma subString 0_0: forall s: string_type, c: tChar.
subString (Cons ¢ s) 0 0 = Cons c Nil

lemma subString_length_0_0: forall s: string_type, c: tChar.
length (subString (Cons ¢ s) 0 0) = 1

lemma subString_O_x: forall s: string_type, c: tChar, x: int.
(0 <= x < length s) ->
subString (Cons c¢ s) 0 x = Cons c (subString s 0 (x-1))

lemma subString_length_O_x: forall s: string_type, c: tChar, x: int.

(0 <= x < length s) ->

length (subString (Cons ¢ s) 0 x) = 1 + length (subString s 0 (x-1))

lemma subString_x_y: forall s: string type, c: tChar, x,y: int.
(0 < x <= y < length s) ->
subString (Cons ¢ s) x y = subString s (x-1) (y-1)

lemma subString_length_x_y: forall s: string_type, c: tChar, x,y:
(0 < x <= y < length s) ->

length (subString (Cons ¢ s) x y) = length (subString s (x-1) (y-1))

lemma subString_OutOfBound: forall 1: string_type, lo up: int.
(lo >= length 1 -> (subString 1 lo up) = Nil) /\
(lo < 0 -> (subString 1 lo up) = Nil) /\
(up < 0 -> (subString 1 lo up) = Nil) /\
(up >= length 1 -> (subString 1 lo up) = Nil) /\
(up < lo -> (subString 1 lo up) = Nil)

lemma length_omne: forall 1: list 'a, e: 'a.
length (Cons e 1) = 1 + length 1

end

theory StringRich

use export Char
use export UTF8Table
use export String

end

Listing D.10: String theory definition using Why3 (II)

211

D.2. BLOCKLIBRARY STRUCTURALFEATURE DEFINITION THEORY

D.2 BLoOCKLIBRARY STRUCTURALFEATURE DEFINITION THEORY

We provide here the definitions for the BLockLiBRARY StructuralFeature. Input port
StructuralFeature is equiped with the size_inpg function (Listing D.12) returning for any input port
data structure its size. This function implementation is verified with some lemmas discharged using the
WHY3 toolset. Verification results are provided in Figure D.13.

theory InPortGroup
use import blocklibrary_string.String
use import blocklibrary_scalar.Boolean
use import int.Int

type tInPortGroup 'a

function name_inpg (tInPortGroup 'a) : string_type

function min_size_inpg (tInPortGroup 'a) : int

function max_size_inpg (tInPortGroup 'a) : int

function isDimensionalizable_inpg (tInPortGroup 'a) : boolean_type
function isVirtual_inpg (tInPortGroup 'a) : boolean_type

function value_inpg (tInPortGroup 'a) : 'a

axiom tInPortGroup_min_max_one: forall pg: tInPortGroup 'a.
pg.max_size_inpg = one -> pg.min_size_inpg = one

axiom tInPortGroup_min_max_value: forall pg: tInPortGroup 'a.
pg.min_size_inpg >= zero /\ pg.max_size_inpg >= zero

axiom tInPortGroup_min_max_size: forall pg: tInPortGroup 'a.
pg.min_size_inpg <= pg.max_size_inpg \/

pg.max_size_inpg = zero

function size_inpg (pg: tInPortGroup 'a) : int =
if pg.max_size_inpg = zero then zero else
if pg.max_size_inpg = one then one else

pg.max_size_inpg - pg.min_size_inpg

lemma size_inpg_max_zero: forall pg: tInPortGroup 'a.
pg.max_size_inpg = zero -> size_inpg pg = zero

lemma size_inpg_min_zero: forall pg: tInPortGroup 'a.
pg.max_size_inpg <> zero /\ pg.min_size_inpg = zero ->
size_inpg pg = pg.max_size_inpg

lemma size_inpg_max_one: forall pg: tInPortGroup 'a.
pg.max_size_inpg = one -> size_inpg pg = one

lemma size_inpg_min_non_zero: forall pg: tInPortGroup 'a.
pg.max_size_inpg > one /\ pg.min_size_inpg <> zero ->
size_inpg pg = pg.max_size_inpg - pg.min_size_inpg

end

Listing D.12: Input port group theory definition using WHY3

212

D.2. BLOCKLIBRARY STRUCTURALFEATURE DEFINITION THEORY

~~
S
<
= <
g ~ | 2
o B T A B S P
) =) 3 i
S| 2 S| 2
=}) & 2 N
- > g I}
.. o [@
Proof obligations < Q)) N
lemma size_inpg_max_zero 0.02
lemma size_inpg_min_zero 0.02
lemma size_inpg_max_one 0.01

lemma size_inpg_min_non_zero | 0.03 | (2s) | (2s) | 0.08 | (2s)

Figure D.13: InPortGroup theory lemmas verification with WHY3 and SMT solvers

theory OutPortGroup
use import blocklibrary_string.String
use import blocklibrary_scalar.Boolean
use import int.Int

type tOutPortGroup 'a

function name_outpg (tOutPortGroup 'a) : string_type

function min_size_outpg (tOutPortGroup 'a) : int

function max_size_outpg (tOutPortGroup 'a) : int

function isDimensionalizable_outpg (tOutPortGroup 'a) : boolean_type
function isVirtual_outpg (tOutPortGroup 'a) : boolean_type

function value_outpg (tOutPortGroup 'a) : 'a

axiom tOutPortGroup_min_max_one: forall pg: tOutPortGroup 'a.

pg.max_size_outpg = one /\ pg.min_size_outpg = one
end

Listing D.14: Output port group theory definition using WHY3

theory Parameter
use import blocklibrary_string.String
use import blocklibrary_scalar.Boolean
use import list.List
use import list.Length

type tParameter 'a = {
name_pt : string_type ;
isMandatory_pt : boolean_type ;
isDimensionalizable_pt : boolean_type ;
value_pt : 'a

end

Listing D.15: Parameter theory definition using WHY3

theory MemoryVariable
use import blocklibrary_string.String
use import int.Int

type tMemoryVariable 'a = {
name_mv : string_type ;
value_mv : 'a
}
end

Listing D.16: MemoryVariable theory definition using WHY3

213

D.3. GENERIC FUNCTIONS DEFINITIONS AND GENERAL PURPOSE LEMMAS

D.3 GENERIC FUNCTIONS DEFINITIONS AND GENERAL PURPOSE LEMMAS

In order to simplify the code generated with our code generation, we decided to introduce the list getter
function. This function has been defined on the WHY3 arrays standard library module. We have decided
to define it here on a theory in order to use it in the OCL predicates and functions definitions.

theory CommonFunctions

use import int.Int

use import list.List

use import list.Mem

use import list.NthNoOpt

(¥ === Getter on lists === %)
function ([]) (a: list 'a) (i: int) : 'a = nth i a

Listing D.17: Getter function definition

In order to ease both manual and automatic proof of OCL functions lemmas, we introduced some ad-
ditional lemmas on some WHY3 standard library functions. We provide here their formalisation. The
following lemmas are verified by relying on the ALT-ERGO theorem prover (version 1.0.0) if not said oth-
erwise. The report provided by the WHY3 tool is provided in Figure D.22.

(¥ predicate mem (z: 'a) (l: list 'a) *)
lemma mem_nil: forall b: 'a.

mem b Nil = false
lemma mem_cons: forall 1: list 'a, b,c: 'a.

mem b (Cons ¢ 1) = (b = ¢ \/ mem b 1)

lemma mem_cons_mem: forall 1: list 'a, b: 'a.
mem b (Cons b 1)

lemma mem_present_not_nil: forall 1: list 'a, b: 'a
mem b 1 -> 1 <> Nil
lemma mem_absent_cons: forall 1: list 'a, a,b: 'a.

not (mem a (Cons b 1)) -> a <> b /\ not (mem a 1)

lemma mem_decidable_presence: forall 1: list 'a, a: 'a.
mem a 1 \/ not (mem a 1)

lemma mem_list_not_mem_and_not_eq: forall 1: list 'a, e,f: '

(not (mem e 1) /\ e <> f) -> not (mem e (Cons f 1))

a.

Listing D.18: Mem predicate additional lemma

214

D.3. GENERIC FUNCTIONS DEFINITIONS AND GENERAL PURPOSE LEMMAS

(* function length (l: list 'a) : int *)
use import list.Length

lemma length_cons: forall 1: list 'a, b: 'a.
length (Cons b 1) = length 1 + 1

lemma length_gt_O0: forall 1: list 'a.
length 1 > 0 -> 1 <> Nil

lemma length_positive: forall 1: list 'a.
length 1 >= 0

lemma length_nil: forall 1: list 'a.
1 = Nil -> length 1 = 0

(* Proof dome using Z3 v4.3.1 *)
lemma length_destruct: forall 1: list 'a.
length 1 > 0 -> exists 12: list 'a, b: 'a. 1 = Cons b 12

Listing D.19: List additional lemmas

(* type option = Some 'a | Nome *)
use import option.Option

lemma option_decidable: forall e: 'a.

Some e <> None

Listing D.20: Option type additional lemma

use import HighOrd as HO

lemma ho_decidable_prop: forall p: HO.pred 'a, a: 'a.
(p a = true) \/ (p a = false)

end

Listing D.21: High order predicate additional lemma

B
S
:1,
°
Yl
A ~
) i
5o)
RN
= (&)
Proof obligations < N
lemmamem_nil 0.00
lemma mem_cons 0.00
lemmamem_cons_mem 0.00
lemmamem_present_not_nil 0.00
lemmamem_absent_cons 0.00
lemmamem_decidable_presence 0.00
lemmamem_list_not_mem_and_not_eq | 0.00
lemma length_cons 0.00
lemma length_gt_0 0.00
lemma length_positive 0.00
lemma length_nil 0.00
lemma length_destruct 0.03 | 0.31
lemma option_decidable 0.00
lemma ho_decidable_prop 0.00

Figure D.22: CommonFunctions theory lemmas verification with WHY3 and SMT solvers

215

D.4. OCL LANGUAGE OPERATIONS DEFINITIONS

D.4 OCL LANGUAGE OPERATIONS DEFINITIONS

We have defined an abstract type named oclType. This type is meant to gather the general properties to be
defined on any type handled in our implementation of the OCL. We decided to grant the oc/Type inhab-
itants with an excluding middle axiom that was necessary in order to prove some of the lemmas expressed
on our implementation of the OCL predicates and functions. In addition to the excluding middle axiom we
add the commutativity of the difference operator for any inhabitant of the ocIType. This lemma is proven
by relying on the ALT-ERGO SMT solver. A report has been generated with the WHY3 tool containing the
name of the prover used for a successful proof of each one of the following lemmas. This report is provided

in Figure D.24.

theory 0clType
type oclType

axiom oclType_decidable_equality: forall a,b: oclType.
a=b\/a<>hb

lemma oclType_diff_comm: forall a,b: oclType.
a <> b <-> b <> a
end

Listing D.23: oc/Type definition and related lemma

5

=)

=

°

Yol

o

§o

i

i

et

Proof obligations <
lemma oc1lType_diff_comm | 0.00

Figure D.24: OclType theory lemma verification with WHY3 and SMT solvers

216

D.4. OCL LANGUAGE OPERATIONS DEFINITIONS

In the following we provide both implementation and lemmas for each OCL operation handled in our
transformation from the BLoCKLIBRARY language to the WHY language. Each lemma is verified once
again by relying on the WHY3 toolset. For some lemmas it was necessary to provide a CoQ proofas SMT
solvers were not able to discharge the generated proof obligations. The WHY3 report on the verification is

provided in Figures D.34, D.37, and D.47.

theory 0OCLCollectionOperation
use import int.Int
use import bool.Bool
use import real.Reallnfix
use import list.List
use import list.Length
use import list.Mem
use import list.NthNoOpt
use import list.HdT1NoOpt
use import option.Option
use import HighOrd as HO
use import blocklibrary_common.CommonFunctions

Listing D.25: OCL operations theory imports section

(* count 1 a
Freely inspired from standard List.NumOcc.
Returns the number of occurrences of a in l. *)

function count (1l: list oclType) (b: oclType) : int =
match 1 with

| Nil -> 0
| Cons hd tl -> (if hd = b then 1 else 0) + count tl b
end

lemma count_nil: forall 1: list oclType. forall b: oclType.
1 = Nil -> count 1 b =0

lemma count_cons_one: forall 1: list oclType, b: oclType.
count (Cons b 1) b = 1 + count 1 b

lemma count_cons_first: forall 1: list oclType, b,c: oclType.
count (Cons b 1) ¢ = (if b = ¢ then 1 else 0) + count 1 ¢

Listing D.26: count function definition

(* list_mem 12 11
Returns wether all 12 elements are part of 1 *)

predicate list_mem (12: list oclType) (1l: list oclType) =
forall i: int. O <= i < length 12 /\ mem 12[i] 1

lemma list_mem_cons_one: forall 1: list oclType, b: oclType.
list_mem (Cons b Nil) 1 -> mem b 1

lemma list_mem_true: forall 11 12: list oclType.
list_mem 11 12 -> (forall i: int. O <= i < length 11 -> mem 11[i]

lemma list_mem_false: forall 11 12: list oclType.
(exists i: int. 0 <= i < length 11 /\ not (mem 11[i] 12)) ->
not (list_mem 11 12)

Listing D.27: list_mem predicate definition

(* list_not_mem 12 11
Returns wether none of 12 elements are part of 11 *)

predicate list_not_mem (12: list oclType) (1: list oclType) =
forall i: int. 0 <= i < length 12 /\ not (mem 12[i] 1)

lemma list_not_mem_true: forall 11 12: list oclType.
list_not_mem 11 12 ->
(forall i: int. 0 <= i < length 11 -> not (mem 11[i] 12))

lemma list_not_mem_false: forall 11 12: list oclType.
(exists i: int. 0 <= i < length 11 /\ mem 11[i] 12) ->

217

12)

D.4. OCL LANGUAGE OPERATIONS DEFINITIONS

not (list_not_mem 11 12)

Listing D.28: list_not_mem predicate definition

(* append 11 12
Returns the result of appending 12 at the end of 11.
Freely tinspired from standard List.Append *)

function append (11 12: 1list oclType) : list oclType = 11 ++ 12

lemma append_assoc: forall 11 12 13: list oclType.
append 11 (append 12 13) = append (append 11 12) 13

lemma append_cons: forall 11 12: list oclType, b: oclType.
Cons b (append 11 12) = append (Cons b 11) 12

lemma append_1l_nil: forall 1: list oclType.
append 1 Nil =1

lemma append_r_nil: forall 1: list oclType.
append Nil 1 =1

lemma append_length: forall 11 12: list oclType.
length (append 11 12) = length 11 + length 12

lemma append_mem: forall x: oclType, 11 12: list oclType.
mem x (append 11 12) <-> (mem x 11 \/ mem x 12)

Listing D.29: append function definition

(* Ezclude element from a list *)
function excluding (1: 1list oclType) (e: oclType) : list oclType =
match 1 with
| Nil -> Nil
| Cons hd tl -> if (hd = e) then excluding tl e
else Cons hd (excluding tl e)
end

lemma excluding_nil: forall elem: oclType.
excluding Nil elem = Nil

lemma excluding_cons_one: forall e,f: oclType.
excluding (Cons f Nil) e = if (e=f) then Nil else Cons f Nil

lemma excluding_cons_present: forall 1: list oclType, e: oclType.
excluding (Cons e 1) e = excluding 1 e

lemma excluding_cons_absent: forall 1: list oclType, e,f: oclType.
e <> f -> excluding (Cons f 1) e = Cons f (excluding 1 e)

lemma excluding_result: forall 1: list oclType, elem: oclType.
not (mem elem (excluding 1 elem))

(* Coq proof script

intros. elim l. rewrite excluding_nil. apply mem_nil. intros.

cut ((elem=a) \/ (elem<>a)). 4ntro. elim HO.

intro. rewrite <- H1. rewrite excluding_cons_present. ezxzact H.

intro. rewrite exzcluding_cons_absent. rewrite mem_cons. intro. elim H2.

intro. absurd (elem = a). ezact HI1. ezact H3. ezact H. ezact HI.
apply oclType_decidable_equality.
*)

Listing D.30: excluding function definition

(* IndexO0f 1 e

Return the indexz of e in 1.

In OCL specification, it is not possible that elem is not in the list,
here we specify an error code (indexzOf returns zero) *)

function indexO0f (1: list oclType) (e: oclType) : int =
if (not mem e 1) then 0 else
match 1 with
| Nil -> 0
| Cons hd tl -> if e = hd then 1 else 1 + index0f tl e

218

D.4. OCL LANGUAGE OPERATIONS DEFINITIONS

end

lemma index0f_not_present: forall 1: list oclType, elem: oclType.
not mem elem 1 -> index0f 1 elem = 0

lemma index0f_first: forall 1: list oclType, elem: oclType.
(index0f (Cons elem 1) elem) = 1

lemma index0f_nth: forall 1: list oclType, el e2: oclType.
el <> e2 /\ mem e2 1 -> (index0f (Cons el 1) e2 = (1 + index0f 1 e2))

Listing D.31: indexOf function definition

(* insertdt 1 e 1%
Returns 1 with element e inserted at indexz % *)

function insertAt (1: list oclType) (e: oclType) (i: int) : list oclType =
if (i < 0) then (Cons e 1) else
if (i >= length 1) then append 1 (Cons e Nil) else
match 1 with
| Nil -> Cons e Nil
| Cons hd t1 -> if i = O then Cons e 1

else Cons hd (insertAt tl e (i-1))
end

lemma insertAt_negative: forall 1: list oclType, a: oclType, i: int.
i < 0 -> insertAt 1 a i = (Cons a 1)

lemma insertAt_nil: forall a: oclType, i: int.
insertAt Nil a i = Cons a Nil

lemma insertAt_cons_0: forall 1: list oclType, a,b: oclType.
insertAt (Cons a 1) b 0 = Cons b (Cons a 1)

lemma insertAt_O: forall 1: list oclType, a: oclType.
insertAt 1 a 0 = Cons a 1

lemma insertAt_cons_n: forall 1: list oclType, a,b: oclType, i: int.
i > 0 -> insertAt (Cons a 1) b i = Cons a (insertAt 1 b (i-1))

lemma insertAt_outofbound: forall 1: list oclType, elem: oclType, i: int.
i >= length 1 -> insertAt 1 elem i = append 1 (Cons elem Nil)

lemma insertAt_outofbound_same: forall 1: list oclType, a: oclType, i: int.
i > length 1 -> (insertAt 1 a i = insertAt 1 a (i-1))

Listing D.32: insertAt function definition

(* setdt 1 e 4
Returns 1 with element at indexz ¢ replaced by e *)

function setAt (1l: list oclType) (e: oclType) (i: int) : list oclType =
if (i < 0) then 1 else
if (i >= length 1) then 1 else
match 1 with
| Nil -> Nil
| Cons hd tl -> if i=0 then Cons e tl

else Cons hd (setAt tl e (i-1))
end

lemma setAt_negative: forall 1: list oclType, e: oclType, i: int.
i <0 ->setht 1 e i =1

lemma setAt_nil: forall e: oclType, i: int.
setAt Nil e i = Nil

lemma setAt_cons_0: forall 1: list oclType, e,b: oclType.
setAt (Cons b 1) e 0 = Cons e 1

lemma setAt_outofbound: forall 1: list oclType, e: oclType, i: int.
i >= length 1 -> setAt 1 e i =1

lemma setAt_cons_n: forall 1: list oclType, e,b: oclType, i: int.

219

D.4. OCL LANGUAGE OPERATIONS DEFINITIONS

0 < i < length 1 -> setAt (Cons b 1) e i = Cons b (setAt 1 e (i-1))

Listing D.33: setAt function definition

(* intersection 11 12
Returns the intersection of 11 and 12 (elements in both 11 and 12) *)

function intersection (11 12: list oclType) : list oclType =
match 11,12 with

| Nil , _ -> Nil

| _ , Nil -> Nil

| (Cons hd tl), _ -> if mem hd 12 then Cons hd (intersection tl 12)
else intersection tl 12

end

lemma intersection_l_nil: forall 1: list oclType.
intersection 1 Nil = Nil

lemma intersection_r_nil: forall 1: list oclType.
intersection Nil 1 = Nil

lemma intersection_cons_nil_cons: forall 1: list oclType, e: oclType.
intersection (Cons e Nil) (Cons e 1) = Cons e Nil

lemma intersection_cons_cons_nil: forall 1: list oclType, e: oclType.
intersection (Cons e 1) (Cons e Nil) = Cons e (intersection 1 (Cons e Nil))

lemma intersection_cons_nil_cons_nil_same: forall e: oclType.
intersection (Cons e Nil) (Cons e Nil) = Comns e Nil

lemma intersection_cons_nil_cons_nil_diff: forall e,f: oclType.
e <> f -> intersection (Cons e Nil) (Cons f Nil) = Nil

lemma intersection_cons_cons_nil_diff: forall 1: list oclType, e,f: oclType.
e <> f -> intersection (Cons e 1) (Cons f Nil) = intersection 1 (Cons f Nil)

lemma intersection_cons_nil_cons_diff: forall 1: list oclType, e,f: oclType.
e <> f -> intersection (Cons e Nil) (Cons f 1) = intersection (Cons e Nil) 1

lemma intersection_cons_nil_cons_1_diff: forall 1: list oclType, e,f: oclType.
e <> f /\ not (mem e 1) -> intersection (Cons e Nil) (Comns f 1) = Nil

lemma intersection_cons_nil_1l_not_mem: forall 1: list oclType, e: oclType.
not (mem e 1) -> intersection (Cons e Nil) 1 = Nil

lemma intersection_l_cons_nil_not_mem: forall 1: 1list oclType, e: oclType.
not (mem e 1) -> intersection 1 (Cons e Nil) = Nil

(* Coq proof script

intros 1l e hl.

induction l. rewrite intersection_r_nil. trivial.

cut (a=e \/ a<>e).

intro H1. elim H1. intro H2. rewrite H2 in hl. contradiction hl. apply mem_cons_mem.
intro. rewrite intersection_cons_cons_nil_diff. rewrite IHL. trivial.

intro. contradiction hl. rewrite mem_cons. right. apply HO. apply H.

apply oclType_decidable_equality.

*)

lemma intersection_cons_O_r_diff: forall 1: list oclType, e,f: oclType.
(e <> £ /\ not (mem f 1)) -> intersection (Cons e 1) (Cons f Nil) = Nil

lemma intersection_mem_cons_0O_1: forall 1: list oclType, e: oclType.
mem e 1 -> intersection (Cons e Nil) 1 = Cons e Nil

(* Coq proof script

intros 1l e hl.

induction 1. contradiction. cut (a=e \/ a <> e). idntro. elim H. intro.

rewrite HO. rewrtite intersection_cons_nil_cons. trivial.

intro. rewrite intersection_cons_nil_cons_diff. rewrite IHL. trivial.

rewrite mem_cons in hl. destruct hl. rewrite H1 <n HO. contradiction HO. trivial. ezact HI.
apply oclType_diff_comm. exzact HO. apply oclType_decidable_equality.

*)

220

D.4. OCL LANGUAGE OPERATIONS DEFINITIONS

0
<
= <
© ~ v
s 132|284
) 3| S| E1S 9
3) o o 2 N
.. = > Q é & =
Proof obligations < Q Q)) N
lemma count_nil 0.00
lemma count_cons_one 0.00
lemma count_cons_first 0.01
lemma list_mem_cons_one 0.01
lemma list_mem_true 0.00
lemma list_mem_false 0.01
lemma list_not_mem_true 0.01
lemma list_not_mem_false 0.01
lemma append_assoc 0.01
lemma append_cons 0.01
lemma append_1_nil 0.00
lemma append_r_nil 0.01
lemma append_length 0.01
lemma append_mem 0.01
lemma excluding_nil 0.01
lemma excluding_cons_one 0.01
lemma excluding_cons_present 0.02
lemma excluding_cons_absent 0.01
lemma excluding_result 1.99
lemma index0f_not_present 0.01
lemma index0f _first 0.01
lemma index0f _nth 0.02
lemma insertAt_negative 0.01
lemma insertAt_nil 0.01
lemma insertAt_cons_O 0.01
lemma insertAt_0 0.03 1.98
lemma insertAt_cons_n 0.01
lemma insertAt_outofbound 0.02
lemma insertAt_outofbound_same | 0.02
lemma setAt_negative 0.02
lemma setAt_nil 0.01
lemma setAt_cons_0 0.02
lemma setAt_outofbound 0.01
lemma setAt_cons_n 0.03

Figure D.34: OCL operations theory lemmas verification with WHY3 and SMT solvers

221

D.4. OCL LANGUAGE OPERATIONS DEFINITIONS

lemma intersection_l_mem_cons_O: forall 1: list oclType, e: oclType.
mem e 1 -> mem e (intersection 1 (Cons e Nil))

(* Coq proof script

tntros 1l e hl.

induction l. apply mem_nil <n hl. contradiction.

cut (a=e \/ a<>e). 4ntro HO. elim HO.

intro. rewrite H. rewrite intersection_cons_cons_nil. apply mem_cons_mem.

intro. rewrite intersection_cons_cons_nil_diff. apply IHL.

rewrite mem_cons in hl. elim hl. intro. apply oclType_diff_comm in H. contradiction. trivial.
eract H. apply oclType_decidable_equality.

*)

lemma intersection_cons_cons_same: forall 11,12: list oclType, e: oclType.
intersection (Cons e 11) (Cons e 12) = Cons e (intersection 11 (Cons e 12))

lemma intersection_cons_cons_diff _mem_1: forall 11,12: list oclType, e,f: oclType.
(mem e 12 /\ e <> f) ->
intersection (Cons e 11) (Cons f 12) = Cons e (intersection 11 (Cons f 12))

lemma intersection_cons_cons_diff_not_mem_1: forall 11,12: list oclType, e,f: oclType.
(not (mem e 12) /\ e <> f) ->
intersection (Cons e 11) (Cons f 12) = intersection 11 (Cons f 12)

lemma intersection_mem_1: forall 1,12: list oclType, e: oclType.
mem e 1 -> mem e (intersection (Cons e 12) 1)

(* Coq proof script

intros 1 12 e hil.

induction 1. apply mem_nil <n hl. contradiction.

cut (a=e \/ a<>e). dntro HO. elim HO. intro HI.

rewrite H1. rewrite intersection_cons_cons_same. apply mem_cons_mem.
intro. rewrtite mem_cons inm hl. elim hl.

intro. rewrite oclType_diff_comm in H. contradiction.

intro. rewrite oclType_diff_comm in H. rewrite intersection_cons_cons_dtff_mem_1.
apply mem_cons_mem. split. exact H1. exzact H.

apply oclType_decidable_equality.

*)

lemma intersection_mem_r: forall 1,12: list oclType, e: oclType.
mem e 1 -> mem e (intersection 1 (Cons e 12))

(* Coq proof script

intros 1 12 e hl.

induction l. apply mem_nil <n hl. contradiction.

cut (a=e \/ a<>e). intro HO. elim HO. intro.

rewrite H. rewrite intersection_cons_cons_same. apply mem_cons_mem.

intro. rewrite mem_cons im hl. elim hl.

intro. rewrite <- H1. rewrite intersection_cons_cons_same. apply mem_cons_mem.
intro. cut (Mem.mem a 12 \/ (not (Mem.mem a 12))). intro H2. elim H2. intro.
rewrite intersection_cons_cons_diff_mem_1l. rewrite mem_cons. right.

apply IHl. exact HI.

split. exact H3. exzact H.

intro. rewrite intersection_cons_cons_diff_mnot_mem_1l. apply IHlL. exzact HI.
split. exact H3. ezxzact H.

apply mem_decidable_presence. apply oclType_decidable_equality.

*)

lemma intersection_cons_not_mem_1l: forall 11,12: list oclType, e: oclType.
not (mem e 12) -> (intersection (Cons e 11) 12 = intersection 11 12)

(* Coq proof script

intros 11 12 e hil.

induction 12. rewrite intersection_l_nil. rewrite intersection_l_nil. trivial.
apply mem_absent_cons in hl.

destruct hl. rewrite intersection_cons_cons_diff_not_mem_1l. trivial.

split. exact HO. ezact H.

*)

lemma intersection_cons_mem_1: forall 11,12: list oclType, e: oclType.
mem e 12 -> (intersection (Cons e 11) 12 = Cons e (intersection 11 12))

(* Coq proof script
intros 11 12 e hil.

222

D.4. OCL LANGUAGE OPERATIONS DEFINITIONS

induction 12. apply mem_nil in hl. contradiction.

rewrite mem_cons in hl. destruct hl. rewrite H.

rewrite intersection_cons_cons_same. trivial.

cut (e=a \/ e<>a). intro HO. destruct HO. rewrite HO.

rewrite intersection_cons_cons_same. trivial.

rewrite intersection_cons_cons_diff_mem_1. trivial. split. exact H. exact HO.
apply oclType_decidable_equality.

*)

lemma intersection_l_cons_not_mem: forall 11,12: list oclType, e: oclType.
not (mem e 11) -> (intersection 11 (Cons e 12) = intersection 11 12)

(*

intros 11 12 e hil.

induction l1. rewrite intersection_r_nil. rewrite intersection_r_nil. trivial.
apply mem_absent_cons in hl.

cut (Mem.mem a 12 \/ not (Mem.mem a 12)). 4ntro HO. elim HO. intro.

destruct hl. rewrite intersection_cons_cons_diff_mem_1l. apply IHlL1 in H2.
rewrite H2. rewrite intersection_cons_mem_1l. trivial. exzact H. split. ezxzact H.
apply oclType_diff_comm in H1. exzact HI.

intro. destruct hl. rewrite intersection_cons_cons_diff_not_mem_1.

rewrite intersection_cons_not_mem_1l. apply IHlL1 in H2. rewrite <- H2. trivial.
exact H. split. exact H. rewrite oclType_diff_comm. exact HI1. apply mem_decidable_presence.

*)

lemma intersection_cons_l_reduc: forall 11, 12: list oclType, e,f: oclType.
e <> f -> (mem e (intersection (Cons f 11) 12) -> mem e (intersection 11 12))

lemma intersection_cons_l_reduc_op: forall 11, 12: list oclType, e,f: oclType.
e <> f -> (mem e (intersection 11 12) -> mem e (intersection (Cons f 11) 12))

lemma intersection_mem_r_op: forall 1,12: list oclType, e: oclType.
mem e (intersection 1 (Cons e 12)) -> mem e 1

(* Coq proof script

intros 1 12 e hil.

induction l. rewrite intersection_r_nil <n hl. exzact hl.

cut (a=e \/ a<>e). intro HO. elim HO.

intro H1. rewrite H1. apply mem_cons_mem.

intro H1. rewrite mem_cons. right. apply IHlL. apply intersection_cons_l_reduc in hl. exzact hl.
apply oclType_diff_comm. exact H1. apply oclType_decidable_equality.

*)

lemma intersection_not_mem_r: forall 1,12: list oclType, e: oclType.
not (mem e 1) -> not (mem e (intersection 1 (Cons e 12)))

lemma intersection_cons_r_reduc: forall 11, 12: list oclType, e,f: oclType.
e <> f -> (mem e (intersection 11 (Cons f 12)) -> mem e (intersection 11 12))

(* Coq proof script

intros 11 12 e f hl h2.

induction 11. rewrite intersection_r_nil in h2. apply mem_nil in h2. contradiction.

cut (a=e \/ a<>e). intro HO. elim HO. intro. rewrite H.

cut (Mem.mem e 12 \/ not (Mem.mem e 12)). intro H1. elim HI.

intro. apply intersection_mem_1l. exzact HZ2.

intro. rewrite H in h2. rewrite intersection_cons_cons_diff_not_mem_1 in h2. apply IHL1 in h2.
rewrite intersection_cons_not_mem_1l. exact h2. ezxzact H2.

split. exact H2. exact hl. apply mem_decidable_presence.

intro. apply intersection_cons_l_reduc_op. apply oclType_diff_comm. exact H. apply IHLI1.
cut (Mem.mem f 11 \/ not (Mem.mem f 11)). intro H1. elim H1. intro H2.

apply oclType_diff_comm in H. apply intersection_cons_l_reduc in h2. ezxzact h2. ezact H.
intro. apply intersection_cons_1l_reduc in h2. exzact h2. apply oclType_diff_comm. ezact H.
apply mem_decidable_presence. apply oclType_decidable_equality.

*)

lemma intersection_mem_1_op: forall 1,12: list oclType, e: oclType.
mem e (intersection (Cons e 12) 1) -> mem e 1

(* Coq proof script

intros 1 12 e hi.

induction l. rewrite intersection_l_nil in hl. exact hl.

cut (a=e \/ a<>e). dntro Hi. elim H1. intro H2. rewrite H2. apply mem_cons_mem.
intro. rewrite mem_cons. right.

apply IHl. apply (intersection_cons_r_reduc _ _ _ a).

223

D.4. OCL LANGUAGE OPERATIONS DEFINITIONS

apply oclType_diff_comm. exzact H. exzact hil.
apply oclType_decidable_equality.
*)

lemma intersection_cons_r_reduc_op: forall 11, 12: list oclType, e,f: oclType.
e <> f -> (mem e (intersection 11 12) -> mem e (intersection 11 (Cons f 12)))

(* Coq proof script
intros 11 12 e f hl h2.

induction 11. rewrite intersection_r_nil in h2. apply mem_nil in h2. contradiction.

cut (e=a \/ e<>a). intro H1. elim H1. intro H2.

rewrite <- H2. cut (Mem.mem e 12 \/ not (Mem.mem e 12)). intro H3. elim H3. intro Hj.
rewrite intersection_cons_cons_diff_mem_1l. apply mem_cons_mem. split. exact H4f. exact hl.

intro H{. rewrite <- H2 in h2. apply intersection_mem_l_op in h2. contradiction.
apply mem_decidable_presence.

intro. apply intersection_cons_l_reduc_op. exact H. apply IHLI.

apply intersection_cons_l_reduc in h2. exact h2. ezxzact H.

apply oclType_decidable_equality.

*)

lemma intersection_presence: forall 11 12: 1list oclType, e: oclType.
mem e 11 /\ mem e 12 <-> mem e (intersection 11 12)

(* Coq proof script

intros 11 12 e.

split. intro. destruct H.

tnduction 11. apply mem_nil in H. contradiction.

rewrite mem_cons in H. elim H.

intro H1. rewrite <- H1. apply intersection_mem_1l. exact HO.
intro H1. cut (a=e \/ a<>e). intro H2. elim H2. intro.
rewrite H3. apply intersection_mem_1l. exzact HO.

intro. cut (Mem.mem a 12 \/ (not (Mem.mem a 12))).

intro H4{. elim H4{. intro.

apply intersection_cons_l_reduc_op. apply oclType_diff_comm. exact H3. apply IHLI.

intro. apply intersection_cons_l_reduc_op. apply oclType_diff_comm.

exact H3. apply IHL1. exzact HI.

apply mem_decidable_presence. apply oclType_decidable_equality.

intro. split. induction 11. rewrite intersection_r_nil in H. exzact H.

cut (a=e \/ a<>e). 4ntro HO. elim HO. intro. rewrite H1. apply mem_cons_mem.
intro. rewrite mem_cons. right.

apply oclType_diff_comm in HI.

apply IHLI1.

apply (intersection_cons_l_reduc _ _ _ _ H1) in H. exwact H.

apply oclType_decidable_equality. induction 12. rewrite intersection_l_nil in H.
cut (a=e \/ a<>e). intro HO. elim HO. intro. rewrite HI. apply mem_cons_mem.
intro. rewrite mem_cons. rTight.

apply oclType_diff_comm in HI.

apply intersection_cons_r_reduc in H. apply IHLZ2 in H. exzact H. exact HI.
apply oclType_decidable_equality.

*)

Listing D.35: intersection function definition

(* union 11 12
Returns the union of two lists *)

function union (11 12: list oclType) : list oclType = 11 ++ 12

lemma union_presence: forall 11 12: list oclType, e: oclType.
mem e 11 \/ mem e 12 <-> mem e (union 11 12)

lemma union_empty: forall 11 12: list oclType.
(union 11 12) = Nil <-> 11 = Nil /\ 12 = Nil

Listing D.36: wunion function definition

(* subList 1 lo up
Returns the subset of elements of | between index lo and index up *)

function subList (1: list oclType) (lo up:int) : list oclType =
if lo >= length 1 \/ 1o < 0 \/ up < 0 \/
up >= length 1 \/ up < lo then Nil
else match 1 with

224

exzact HI.

exzact H.

D.4. OCL LANGUAGE OPERATIONS DEFINITIONS

)
S
Z <
) ~ v
BRI 2|2 R 2
S| S| 28l 2 4
20 S| 8| 8|2
Proof obligations ﬁ B S % & R
lemma intersection_1_nil 0.14
lemma intersection_r_nil 0.14
lemma intersection_cons_nil_cons 0.08
lemma intersection_cons_cons_nil 0.02
lemma intersection_cons_nil_cons_nil_same 0.02
lemma intersection_cons_nil_cons_nil_diff 0.06
lemma intersection_cons_cons_nil_diff 0.07
lemma intersection_cons_nil_cons_diff 0.35
lemma intersection_cons_nil_cons_1_diff 0.04
lemma intersection_cons_nil_1_not_mem 0.10
lemma intersection_1_cons_nil_not_mem 2.18
lemma intersection_cons_O_r_diff 0.03
lemma intersection_mem_cons_0_1 2.20
lemma intersection_1_mem_cons_0 1.87
lemma intersection_cons_cons_same 0.02
lemma intersection_cons_cons_diff_mem_1 0.08
lemma intersection_cons_cons_diff _not_mem_1 | 0.06
lemma intersection_mem_1 2.31
lemma intersection_mem_r 1.94
lemma intersection_cons_not_mem_1 2.25
lemma intersection_cons_mem_1 2.22
lemma intersection_1_cons_not_mem 2.21
lemma intersection_cons_1_reduc 0.09
lemma intersection_cons_1_reduc_op 0.05
lemma intersection_mem_r_op 222
lemma intersection_not_mem_r 0.02
lemma intersection_cons_r_reduc 2.00
lemma intersection_mem_1_op 2.26
lemma intersection_cons_r_reduc_op)
lemma intersection_presence 2.38
lemma union_presence 0.02
lemma union_empty 0.03 0.26

Figure D.37: OCL operations theory lemmas verification with WHY3 and SMT solvers (I1)

225

D.4. OCL LANGUAGE OPERATIONS DEFINITIONS

| Nil -> Nil
| Cons hd tl ->
if lo = O then
if up = 0 then
Cons hd Nil
else Cons hd (subList tl O (up-1))
else subList tl (lo-1) (up-1)
end

lemma subList_nil: forall 1: list oclType, x,y: int.
1 = Nil -> (subList 1 x y = Nil)

lemma subList_length_nil: forall 1: list oclType, x,y: int.
1 = Nil -> length (subList 1 x y) = 0

lemma subList_0_0: forall 1: list oclType, c: oclType.
subList (Cons ¢ 1) 0 0 = Comns c Nil

lemma subList_length_0_0: forall 1: list oclType, c: oclType.
length (subList (Cons c¢ 1) 0 0) = 1

lemma subList_O_x: forall 1: list oclType, c: oclType, x: int.
(0 <= x < length 1) ->
subList (Cons c 1) 0 x = Cons c (subList 1 0 (x-1))

lemma subList_length_O_x: forall 1: list oclType, c: oclType, x: int.
(0 <= x < length 1) ->
length (subList (Cons ¢ 1) 0 x) = 1 + length (subList 1 0 (x-1))

lemma subList_x_y: forall 1: list oclType, c: oclType, x,y: int.
(0 < x <= y < length 1) ->
subList (Cons ¢ 1) x y = subList 1 (x-1) (y-1)

lemma subList_length_x_y: forall 1: list oclType, c: oclType, x,y: int.
(0 < x <= y < length 1) ->
length (subList (Cons c 1) x y) = length (subList 1 (x-1) (y-1))

lemma subList_outofbound: forall 1: list oclType, lo up: int.
(lo >= length 1 -> (subList 1 lo up) = Nil) /\
(lo < 0 -> (subList 1 lo up) = Nil) /\
(up < 0 -> (subList 1 lo up) = Nil) /\
(up >= length 1 -> (subList 1 lo up) = Nil) /\
(up < lo -> (subList 1 lo up) = Nil)

Listing D.38: subList function definition

(* sumReal 1
Returns the sum of the reals contained in 1 *)

function sumReal (1: list real) : real =
match 1 with
| Nil -> 0.0
| Cons hd tl -> hd +. sumReal tl
end

lemma sumReal_Value: forall 11: list real, e: real.
sumReal (Cons e 11) = e +. sumReal 11

lemma sumReal_Empty:
sumReal Nil = 0.0

Listing D.39: sumReal function definition

(* sumInt 1
Returns the sum of the integers contained in 1 *)

function sumInt (1l: list int) : int =
match 1 with
| Nil -> 0
| Cons hd tl1 -> hd + sumInt tl
end

lemma sumInt_Value: forall 11: 1list int, e: int.
sumInt (Cons e 11) = e + sumInt 11

226

D.S. OCLITERATION OPERATIONS DEFINITIONS

lemma sumInt_Empty:
sumInt Nil = O

Listing D.40: sumlint function definition

D.S OCL ITERATION OPERATIONS DEFINITIONS

(* 4isUnique 1 f
Returns true iff the image through f of every element of 1l is the same *)

predicate isUnique (1: list oclType) (f: HO.func oclType 'b) =
forall i,j: int. (0 <= i < length 1 /\ 0 <= j < length 1) -> f 1[i]l = £ 1[j]

lemma isUnique_res: forall 1: list oclType, f: HO.func oclType 'b.
isUnique 1 f -> (forall i j: int. (0 <= i < length 1 /\ 0 <= j < length 1) ->
£ 1[i]1 = £ 1[3D)

lemma isUnique_nil: forall f: HO.func oclType 'b.
isUnique Nil f

Listing D.41: isUnique predicate definition

(* anyds 1 p
Returns one element of 1 wverifying p *)

function anyAs (1: list oclType) (p: HO.pred oclType) : option oclType =
match 1 with
| Nil -> None
| Cons hd tl -> if p hd then Some hd else anyAs tl p
end

lemma anyAs_nil: forall p: HO.pred oclType.
anyAs Nil p = None

lemma anyAs_cons_hd: forall 1: list oclType, p: HO.pred oclType, e: oclType.
p e -> anyAs (Cons e 1) p = Some e

lemma anyAs_cons_tl: forall 1: list oclType, p: HO.pred oclType, e: oclType.
not (p e) -> anyAs (Cons e 1) p = anyAs 1 p

Listing D.42: anyAs predicate definition

(* select 1l p
Returns all elements of 1 wverifying p *)

function select (l: list oclType) (p: HO.pred oclType) : list oclType =
match 1 with
| Nil -> Nil
| Cons hd tl -> if p hd then Cons hd (select tl p)
else select tl p
end

lemma select_nil: forall p: HO.pred oclType.
select Nil p = Nil

lemma select_cons_nil_verified: forall e: oclType, p: HO.pred oclType.
p e -> select (Cons e Nil) p = Cons e Nil

lemma select_cons_nil_not_verified: forall e: oclType, p: HO.pred oclType.
not (p e) -> select (Cons e Nil) p = Nil

lemma select_cons_verified: forall e: oclType, 1: list oclType, p: HO.pred oclType.
p e -> select (Cons e 1) p = Cons e (select 1 p)

lemma select_cons_not_verified: forall e: oclType, 1: list oclType, p: HO.pred oclType.
not (p e) -> select (Cons e 1) p = select 1 p

lemma select_mem_reduc: forall 1: list oclType, b: oclType, p: HO.pred oclType.
mem b (select 1 p) -> mem b 1

227

D.S. OCL ITERATION OPERATIONS DEFINITIONS

(¥ Coq proof script

intros 1 b p hil.

induction l. rewrite select_nil in hl. exzact hil.

rewrite mem_cons. cut (b=a \/ b<>a). intro H1. destruct HI.

left. exact H. right. apply IHL.

cut ((infiz_at p a = true) \/ (infiz_at p a = false)). intro Hi1. destruct HI.

rewrite select_cons_verified in hl. rewrite mem_cons in hl. destruct hl. contradiction.

eract H1. exzact HO. rewrite select_cons_not_wverified in hl. exzact hl. rewrite HO. discriminate.
apply ho_decidable_prop. apply oclType_decidable_equality.

*)

lemma select_mem: forall 1: 1list oclType, b: oclType, p: HO.pred oclType.
(mem b 1 /\ p b) -> mem b (select 1 p)

(*¥ Coq proof script

intros 1 b p (h1,h2).

induction l. apply mem_nil <n hl. contradiction.

cut ((infiz_at p a = true) \/ (infiz_at p a = false)). intro HO. destruct HO.

rewrite select_cons_wverified. rewrite mem_cons. rewrite mem_cons in hl. destruct hil.

left. exact HO. right. apply IHl. exact HO. ezact H.

rewrite select_cons_mnot_wverified. rewrite mem_cons in hl. destruct hl. rewrite <- HO in H.
rewrite H in h2. discriminate h2. apply IHl. exzact HO. rewrite H. discriminate.

apply ho_decidable_prop.

*)

lemma select_not_mem: forall 1: list oclType, b: oclType, p: HO.pred oclType.
(mem b 1 /\ not (p b)) -> not (mem b (select 1 p))

(* Coq proof script

intros 1 b p (h1,h2).

intro. induction 1. apply mem_nil in hl. contradiction.

apply IHl. rewrite mem_cons in hl. destruct hl. rewrite <- HO in H.

rewrite select_cons_not_verified in H.

apply select_mem_reduc in H. exzact H. exact h2. exzact HO.

rewrite mem_cons in hl. destruct hl. rewrite <- HO in H.

rewrite select_cons_not_verified in H. exzact H. exact h2.

cut ((infiz_at p a = true)\/(infiz_at p a = false)). intro H1. destruct HI.
rewrite select_cons_wverified in H. rewrite mem_cons in H.

destruct H. rewrite H in h2. contradiction. exact H. ezxzact HI.

rewrite select_cons_not_verified in H. exzact H. intro. rewrite H2 in H1. discriminate.
apply ho_decidable_prop.

*)

Listing D.43: select predicate definition

(* reject 1 p
Returns all elements of 1l not wverifying p *)

function reject (l: list oclType) (p: HO.pred oclType) : list oclType =
match 1 with
| Nil -> Nil
| Cons hd tl -> if p hd then reject tl p
else Cons hd (reject tl p)
end

lemma reject_nil: forall p: HO.pred oclType.
reject Nil p = Nil

lemma reject_cons_nil_verified: forall e: oclType, p: HO.pred oclType.
p e -> reject (Cons e Nil) p = Nil

lemma reject_cons_nil_not_verified: forall e: oclType, p: HO.pred oclType.
not (p e) -> reject (Cons e Nil) p = Comns e Nil

lemma reject_cons_verified: forall e: oclType, 1: list oclType, p: HO.pred oclType.
p e -> reject (Cons e 1) p = reject 1 p

lemma reject_cons_not_verified: forall e: oclType, 1: list oclType, p: HO.pred oclType.
not (p e) -> reject (Cons e 1) p = Cons e (reject 1 p)

lemma reject_mem_reduc: forall 1: list oclType, b: oclType, p: HO.pred oclType.
mem b (reject 1 p) -> mem b 1

(¥Coq proof script

228

D.S. OCLITERATION OPERATIONS DEFINITIONS

intros 1 b p hil.

induction l. rewrite reject_nil in hl. exzact hl.

rewrite mem_cons. cut (b=a \/ b<>a). 4ntro H1. destruct HI.

left. exact H. right. apply IHL.

cut ((infiz_at p a = true) \/ (infiz_at p a = false)). intro H1. destruct HI.

rewrite reject_cons_verified in hl. exzact hl. exzact HO.

rewrite reject_cons_mnot_werified in hl. rewrite mem_cons in hl. destruct hl. contradiction.
eract H1. rewrite HO. discriminate. apply ho_decidable_prop. apply oclType_decidable_equality.
*)

lemma reject_verified_diff: forall 1: list oclType, a,b: oclType, p: HO.pred oclType.
a <> b -> mem a (reject (Cons b 1) p) = mem a (reject 1 p)

lemma reject_verified: forall 1: list oclType, a: oclType, p: HO.pred oclType.
p a -> not (mem a (reject 1 p))

(*¥ Coq proof script

intros 1 a p hil.

induction l. intro. rewrite reject_nil in H. apply mem_nil in H. contradiction.
intro. cut (a0=a \/ a0O<>a). intro H1. destruct Hi1. rewrite HO in H.

rewrite reject_cons_verified in H. contradiction. exzact hl.

rewrite reject_cons_not_verified in H. rewrite mem_cons in H. destruct H.
rewrite H in HO. auto. contradiction.

apply (reject_verified_diff 1 a a0) in H. contradiction.

intuition. apply oclType_decidable_equality.

*)

lemma reject_mem: forall 1: list oclType, b: oclType, p: HO.pred oclType.
(mem b 1 /\ p b) -> not (mem b (reject 1 p))

Listing D.44: reject predicate definition

(* oneFrom 1 p
Returns true iff only one element of 1 verifies p *)

predicate oneFrom (1: list oclType) (p: HO.pred oclType) =
match 1 with
| Nil -> false
| _ -> length (select 1 p) =1
end

lemma oneFrom_nil: forall p: HO.pred oclType.
not (oneFrom Nil p)

lemma oneFrom_cons_nil_verified: forall e: oclType, p: HO.pred oclType.
p e <-> oneFrom (Cons e Nil) p

lemma oneFrom_cons_nil_not_verified: forall e: oclType, p: HO.pred oclType.
not (p e) <-> not (oneFrom (Cons e Nil) p)

lemma oneFrom_cons_destruct_verified: forall 1: list oclType, e: oclType,
p: HO.pred oclType.
oneFrom (Cons e 1) p -> (oneFrom (Cons e Nil) p \/ oneFrom 1 p)

lemma oneFrom_cons_first_not_verified: forall 1: list oclType, e: oclType,
p: HO.pred oclType.
(not (p e) /\ oneFrom (Cons e 1) p) -> oneFrom 1 p

Listing D.45: oneFrom predicate definition

(* collect 1 f
Returns the image through f of all elements of 1 *)

function collect (1: list oclType) (f: HO.func oclType 'b) : list 'b =
match 1 with

| Nil -> Nil
| Cons hd tl -> Cons (f hd) (collect tl f)
end

lemma collect_nil: forall f: HO.func oclType oclType.
collect Nil f = Nil

lemma collect_cons_nil: forall e: oclType, f: HO.func oclType oclType.
collect (Cons e Nil) f = Cons (f e) Nil

229

D.S. OCL ITERATION OPERATIONS DEFINITIONS

lemma collect_cons: forall 1: list oclType, e: oclType, f: HO.func oclType oclType.
collect (Cons e 1) f = Cons (f e) (collect 1 f)
end

Listing D.46: collect predicate definition

230

D.S. OCLITERATION OPERATIONS DEFINITIONS

B
S
Z <
° ~ v
sl w22 8] =
S| S| &g 2 &
B S| =& 8| &
RN A A
Proof obligations < Q Q) » N
lemma subList_nil 0.07 0.09 | 0.02
lemma subList_length_nil 0.07 0.07 | 0.02
lemma subList_0_0 0.29 0.15
lemma subList_length_0_0 0.10 0.07 | 0.05
lemma subList_0_x 0.12
lemma subList_length_0_x 0.51 0.11
lemma subList_x_y 0.11
lemma subList_length_x_y 0.08 0.11
lemma subList_outofbound 0.11 0.11 | 0.03
lemma sumReal _Value 0.03 | 0.09 0.08 | 0.03
lemma sumReal _Empty 0.03 | 0.04 0.08 | 0.00
lemma sumInt_Value 0.04 | 0.09 0.08 | 0.03
lemma sumInt_Empty 0.04 | 0.05 0.08 | 0.00
lemma isUnique_res 0.03 | 0.09 0.13 | 0.02
lemma isUnique_nil 0.04 | 0.08 0.14 | 0.04
lemma anyAs_nil 0.03 | 0.08 0.07 | 0.03
lemma anyAs_cons_hd 0.03
lemma anyAs_cons_t1l 0.03
lemma select_nil 0.03
lemma select_cons_nil_verified 0.04
lemma select_cons_nil_not_verified 0.0$
lemma select_cons_verified 0.03
lemma select_cons_not_verified 0.04
lemma select_mem_reduc 2.40
lemma select_mem 2.31
lemma select_not_mem 2.01
lemma oneFrom_nil 0.04
lemma oneFrom_cons_nil_verified 0.04
lemma oneFrom_cons_nil_not_verified 0.04
lemma oneFrom_cons_destruct_verified 0.09
lemma oneFrom_cons_first_not_verified | 0.05
lemmareject_nil 0.04
lemmareject_cons_nil_verified 0.04
lemmareject_cons_nil_not_verified 0.04
lemmareject_cons_verified 0.05
lemmareject_cons_not_verified 0.04
lemma reject_mem_reduc 2.43
lemmareject_verified_diff 0.10
lemmareject_verified 2.12
lemma reject_mem 0.04
lemma collect_nil 0.05
lemma collect_cons_nil 0.04
lemma collect_cons 0.05

Figure D.47: OCL operations theory lemmas verification with WHY3 and SMT solvers (1)

231

D.S. OCL ITERATION OPERATIONS DEFINITIONS

232

ACSL verification using FrRama-C

We provide in this appendix the C code generated by the GENEAUTO code generator from the Counter
system with a synchronous observer as presented in Chapter 8.

#ifndef __GATypes__
#define __GATypes__
/* Named Constants */
#define FALSE O
#define TRUE 1

/* Type declarations x*/
typedef char INTS8;

typedef unsigned char UINTS;
typedef short INT16;

typedef unsigned short UINT16;
typedef int INT32;

typedef unsigned int UINT32;
typedef double REAL;

typedef float SINGLE;

typedef unsigned char BOOL;

/* Function-like macros */
#define TO_BOOL(X) ((X) 7 1 : 0)
#endif

Listing E.1: GATypes.h: GENEAUTO generated generic data types definition

#ifndef __Counter_types__
#define __Counter_types_

/* Includes */
#include "GATypes.h"

/* Type declarations x*/
typedef struct {
BOOL reset;
BOOL active;
} t_Counter_io;
typedef struct {
BOOL UD1_memory;
BOOL UD_memory;
} t_Counter_state;

/* Ghost type declarations */
/*@ ghost typedef struct {
BOOL reset;
BOOL active;
BOOL safe;
} t_counter_spec_io;

233

*/
/*@ ghost typedef struct {
UINT8 zero;
UINT8 two;
BOOL cptEq2;
BOOL cptEq;
BOOL orReset;
UINT8 counter_spec_Switch;
UINT8 counter_spec_Unit_Delay;
UINT8 one;
UINT8 Sum;
UINT8 three;
BOOL cptEqActive;
UINT8 Unit_Delay_memory;
} t_counter_spec_loc;

*/
#endif
Listing E.2: Counter_types.h: GENEAUTO generated model specific data types definition
#ifndef __Counter__
#define Counter__

/* Includes */

#include "Counter_main.h"
#include "GATypes.h"
#include "Counter_types.h"

/* Variable Declarations */
extern BOOL Counter_LO1;
extern BOOL Counter_L03;
extern BOOL Counter_UD;
extern BOOL Counter_UD1;

/* Function prototypes */
/*@ requires \valid(_state_);

assigns _state_->UD1_memory, _state_->UD_memory;
*/

extern void Counter_init(t_Counter_state *_state_);

/%@ requires \valid(_io_) && \valid(_state_);

requires \separated(_io_, _state_);
assigns _io_->active, _state_->UD_memory, _state_->UD1_memory,
Counter_L0O1, Counter_L03, Counter_UD, Counter_UD1;
*/
extern void Counter_compute(t_Counter_io *_io_, t_Counter_state *_state_);
#endif

Listing E.3: Counter.h: GENEAUTO generated function prototypes

/* Counter.c
Generated by Gene-Auto toolset ver 2.4.10
(launcher GALauncherObservers)
Generated on: 27/10/2014 11:27:16.873
source model: Counter
model version: 7.2 x/

/* Includes x*/

#include "Counter.h"

/* Variable definitions */
BOOL Counter_L01 = FALSE;
BOOL Counter_L03 = FALSE;
BOOL Counter_UD = FALSE;
BOOL Counter_UD1 = FALSE;

/* Function definitions */
void Counter_init(t_Counter_state *_state_) {
/* START Block: <SystemBlock: name=Counter>/<SequentialBlock: name=UD1> x*/
/*@ ensures _state_->UD1_memory == FALSE;
assigns _state_->UD1_memory; */
{
state->UD1_memory = FALSE;
}
/* END Block: <SystemBlock: name=Counter>/<SequentialBlock: name=UD1> */
/* START Block: <SystemBlock: name=Counter>/<SequentialBlock: name=UD> %/

234

/*@ ensures _state_->UD_memory == FALSE;
assigns _state_->UD_memory; */

{
state->UD_memory = FALSE;
¥
/* END Block: <SystemBlock: name=Counter>/<SequentialBlock: name=UD> x/
}
void Counter_compute(t_Counter_io *_io_, t_Counter_state *_state_) {
BOOL reset;
BOOL LO;
BOOL LO2;
BOOL L04;
/* START Block: <SystemBlock: name=Counter>/<SequentialBlock: name=UD1> x*/
/*@ ensures Counter_UD1 == _state_->UD1_memory;
assigns Counter_UD1; x/
{
Counter_UD1 = _state_->UD1_memory;
¥

/* END Block: <SystemBlock: name=Counter>/<SequentialBlock: name=UD1> x/
/* START Block: <SystemBlock: name=Counter>/<SourceBlock: name=reset> */
/*@ ensures reset == _io_->reset;
assigns reset; x/
{
reset = _io_->reset;
¥
/* END Block: <SystemBlock: name=Counter>/<SourceBlock: name=reset> */
/* START Block: <SystemBlock: name=Counter>/<CombinatorialBlock: name=L0> x/
/*@ ensures L0 == !reset;
assigns LO; */
{
L0 = !reset;
¥
/* END Block: <SystemBlock: name=Counter>/<CombinatorialBlock: name=L0> */
/* START Block: <SystemBlock: name=Counter>/<CombinatorialBlock: name=L01> */
/*@ ensures Counter_LO01 == (Counter_UD1 && LO);
assigns Counter_LO1; x/
{
Counter_L01 = Counter_UD1 && LO;
¥
/* END Block: <SystemBlock: name=Counter>/<CombinatorialBlock: name=L01> x/
/* START Block: <SystemBlock: name=Counter>/<SequentialBlock: name=UD> */
/*@ ensures Counter_UD == _state_->UD_memory;
assigns Counter_UD; */
{
Counter _UD = _state_->UD_memory;
¥
/* END Block: <SystemBlock: name=Counter>/<SequentialBlock: name=UD> x/
/* START Block: <SystemBlock: name=Counter>/<CombinatorialBlock: name=L02> */
/*@ ensures L02 == !Counter_UD;
assigns L02; */
{
L02 = !Counter_UD;
¥
/* END Block: <SystemBlock: name=Counter>/<CombinatorialBlock: name=L02> */
/* START Block: <SystemBlock: name=Counter>/<CombinatorialBlock: name=L03> */
/*@ ensures Counter_L03 == (LO && L02);
assigns Counter_L03; */
{
Counter_L03 = LO && L0O2;
¥
/* END Block: <SystemBlock: name=Counter>/<CombinatorialBlock: name=L03> */
/* START Block: <SystemBlock: name=Counter>/<CombinatorialBlock: name=L04> */
/*@ ensures L04 == (Counter_L03 && Counter_L01);
assigns LO04; */
{
L04 = Counter_LO03 && Counter_LO01;
¥
/* END Block: <SystemBlock: name=Counter>/<CombinatorialBlock: name=L04> x/
/* START Block: <SystemBlock: name=Counter>/<SinkBlock: name=active> */
/*@ ensures _io_->active == L04;
assigns _io_->active; x/
{

io->active = L04;

235

¥
/* END Block: <SystemBlock: name=Counter>/<SinkBlock: name=active> */
/* START Block memory write: <SystemBlock: name=Counter>/
<SequentialBlock: name=UD> */
/*@ ensures _state_->UD_memory == Counter_LO1;
assigns _state_->UD_memory; */
{
state->UD_memory = Counter_LO1;
¥
/* END Block memory write: <SystemBlock: name=Counter>/
<SequentialBlock: name=UD> */
/* START Block memory write: <SystemBlock: name=Counter>/
<SequentialBlock: name=UD1> */
/*@ ensures _state_->UD1_memory == Counter_L03;
assigns _state_->UD1_memory; */
{
state->UD1_memory = Counter_LO03;
¥
/* END Block memory write: <SystemBlock: name=Counter>/
<SequentialBlock: name=UD1> %/

}

Listing E.4: Counter.c: GENEAUTO generated function for the Counter model
#ifndef __Counter_main__
#define __Counter_main__

/* Includes */

#include "Counter.h"
#include "Counter_types.h"
#include "GATypes.h"

/* Function prototypes x*/
void main(t_Counter_state *_state_, t_Counter_io *_io_);
#endif

Listing E.5: Counter_main.h: GENEAUTO generated main function prototype

/* Counter_main.c
Generated by Gene-Auto toolset ver 2.4.10
(launcher GALauncherObservers)
Generated on: 27/10/2014 11:27:16.891
source model: Counter
model version: 7.2 */

/* Includes */

#include "Counter_main.h"

/* Ghost declarations variables x*/
//@ ghost t_counter_spec_io * _counter_spec_input;
//@ ghost t_counter_spec_loc * _counter_spec_state;

/* Observers Predicates definitions */
/* START Block: <SystemBlock: name=Counter>/
<SystemBlock: name=counter_spec> */
/%@ predicate counter_spec_init (t_counter_spec_loc *obsState) =
obsState->Unit_Delay_memory == 0;
*/
/*@ predicate counter_spec_compute (t_counter_spec_io *obsInput,
t_counter_spec_loc *obsState) =

((3 == obsState->Unit_Delay_memory) || obsInput->reset) ==>

((0 == 2) == obsInput->active) &&

(1 ((3 == obsState->Unit_Delay_memory) || obsInput->reset)) ==>
(((obsState->Unit_Delay_memory + 1) == 2) == obsInput->active);

*/
/*@ predicate counter_spec_update (t_counter_spec_io *obsInput,
t_counter_spec_loc *obsState) =

((3 == obsState->Unit_Delay_memory) || obsInput->reset) ==>
obsState->Unit_Delay_memory ==

&&

(1 ((3 == obsState->Unit_Delay_memory) || obsInput->reset)) ==>
obsState->Unit_Delay_memory == obsState->Unit_Delay_memory + 1 ;

*/
/* END Block: <SystemBlock: name=Counter>/
<SystemBlock: name=counter_spec> */

236

/* Function definitions */
/*@ requires \valid(_state_) && \valid(_io_);
requires \separated(_state_, _io_, _counter_spec_input, _counter_spec_state);
requires \valid(_counter_spec_state) && \valid(_counter_spec_input); */
void main(t_Counter_state *_state_, t_Counter_io *_io_){
Counter_init (_state_);
//@ ghost _counter_spec_state->Unit_Delay_memory = O0;
//@ assert counter_spec_init (_counter_spec_state);
/*@ loop assigns _counter_spec_state->Unit_Delay_memory, _io_->active;
loop assigns _state_->UD_memory, _state_->UD1_memory;
*/
while (TRUE) {
Counter_compute(_io_, _state_);

//@ ghost _counter_spec_input->reset = _io_->reset;
//@ ghost _counter_spec_input->active = _io_->active;
/*@ ghost

if ((3 == _counter_spec_state->Unit_Delay_memory) ||

_counter_spec_input—>reset)
_counter_spec_state->Unit_Delay_memory
else
_counter_spec_state->Unit_Delay_memory =
_counter_spec_state->Unit_Delay_memory + 1 ;

]
o

*/
//Q@ assert counter_spec_compute (_counter_spec_input, _counter_spec_state);
//@ assert counter_spec_update (_counter_spec_input, _counter_spec_state);

Listing E.6: Counter_main.c: GENEAUTO generated main function

--- Properties of Function 'Counter_init'

[Valid] Post-condition (file Counter.c, line 28) at block
by Wp.typed.
[Valid] Post-condition (file Counter.c, line 35) at block
by Wp.typed.
[Valid] Pre-condition (file Counter.h, line 19)
by Call Preconditiomns.
[Valid] Assigns (file Counter.c, line 29) at block
by Wp.typed.
[Valid] Assigns (file Counter.c, line 36) at block
by Wp.typed.
[Valid] Assigns (file Counter.h, line 20)
by Wp.typed.
[Valid] Default behavior at block
by Frama-C kernel.
[Valid] Default behavior at block
by Frama-C kernel.
[Valid] Default behavior
by Frama-C kernel.

--- Properties of Function 'Counter_compute'

[Valid] Post-condition (file Counter.c, line 49) at block
by Wp.typed.

[Valid] Post-condition (file Counter.c, line 56) at block
by Wp.typed.

[Valid] Post-condition (file Counter.c, line 63) at block
by Wp.typed.

[Valid] Post-condition (file Counter.c, line 70) at block
by Wp.typed.

[Valid] Post-condition (file Counter.c, line 77) at block
by Wp.typed.

[Valid] Post-condition (file Counter.c, line 84) at block
by Wp.typed.

[Valid] Post-condition (file Counter.c, line 91) at block
by Wp.typed.

[Valid] Post-condition (file Counter.c, line 98) at block
by Wp.typed.

237

[Valid] Post-condition (file Counter.c, line 105) at block

by Wp.typed.

[Valid] Post-condition (file Counter.c, line 112) at block
by Wp.typed.

[Valid] Post-condition (file Counter.c, line 119) at block
by Wp.typed.

[Valid] Pre-condition (file Counter.h, line 24)
by Call Preconditioms.

[Valid] Pre-condition (file Counter.h, line 25)
by Call Preconditions.

[Valid] Assigns (file Counter.c, line 50) at block
by Wp.typed.

[Vvalid] Assigns (file Counter.c, line 57) at block
by Wp.typed.

[Valid] Assigns (file Counter.c, line 64) at block
by Wp.typed.

[Valid] Assigns (file Counter.c, line 71) at block

by Wp.typed.

[Valid 1 Assigns (file Counter.c, line 78) at block
by Wp.typed.

[Valid] Assigns (file Counter.c, line 85) at block
by Wp.typed.

[Valid] Assigns (file Counter.c, line 92) at block
by Wp.typed.

[Valid] Assigns (file Counter.c, line 99) at block
by Wp.typed.

[Valid] Assigns (file Counter.c, line 106) at block
by Wp.typed.

[Vvalid] Assigns (file Counter.c, line 113) at block
by Wp.typed.
[Valid] Assigns (file Counter.c, line 120) at block
by Wp.typed.
[Vvalid] Assigns (file Counter.h, line 26)
by Wp.typed.
[Valid] Default behavior at block
by Frama-C kernel.
[Valid] Default behavior at block
by Frama-C kernel.
[Valid] Default behavior at block
by Frama-C kernel.
[Valid] Default behavior at block
by Frama-C kernel.
[Valid] Default behavior at block
by Frama-C kernel.
[Valid] Default behavior at block
by Frama-C kernel.
[Valid] Default behavior at block
by Frama-C kernel.
[Valid] Default behavior at block
by Frama-C kernel.
[Valid] Default behavior at block
by Frama-C kernel.
[Valid] Default behavior at block
by Frama-C kernel.
[Valid] Default behavior at block
by Frama-C kernel.
[Valid] Default behavior
by Frama-C kernel.

--- Properties of Function 'main'

[-] Pre-condition (file Counter_main.c, line 45)
tried with Wp.typed.

[-] Pre-condition (file Counter_main.c, line 46)
tried with Wp.typed.

[-] Pre-condition (file Counter_main.c, line 47)

tried with Wp.typed.

[Valid] Loop assigns (file Counter_main.c, line 58)
by Wp.typed.

[Valid] Assertion (file Counter_main.c, line 52)
by Wp.typed.

[Valid] Assertion (file Counter_main.c, line 71)

238

by Wp.typed.
[Valid] Assertion (file Counter_main.c, line 72)
by Wp.typed.
[Valid] Default behavior
by Frama-C kernel.
[Valid] Counter_compute_pre: Pre-condition (file Counter.h, line 24)
at call 'Counter_compute' (file Counter_main.c, line 62)
by Wp.typed.
[Valid] Counter_compute_pre_2: Pre-condition (file Counter.h, line 25)
at call 'Counter_compute' (file Counter_main.c, line 62)
by Wp.typed.
[Valid] Counter_init_pre: Pre-condition (file Counter.h, line 19)
at call 'Counter_init' (file Counter_main.c, line 50)
by Wp.typed.

54 Completely validated
3 To be validated
57 Total

Listing E.7: FrRAMA-C WP verification output.

239

240

Bibliography

[1] ACSL: ANSI/ISO C Specification Language. http://frama-c.com/download/acsl.pdf.
[2] Blocklibrary repository. http://block-library.enseeiht.fr/html.
[3] Why3 website at LRIL. http://www.why3.1lri.fr.

[4] Foundational subset for executable uml models (fuml) specification, v1.1. http://www.omng.
org/spec/FUML/1.1/.

[S] Uml xmi serialisation format specification, v2.4.1. http://www.omg.org/spec/UML/2.4.1/.

[6] DO-331 model-based development and verification supplement to do-178c and do-278a. Techni-
cal report, RTCA & EUROCAE, December 2011.

[7] DO-332 object-oriented technology and related techniques supplement to do-178c and do-278a.
Technical report, RTCA & EUROCAE, December 2011.

[8] DO-333 formal methods supplement to do-178c and do-278a. Technical report, RTCA & EURO-
CAE, December 2011.

[9] Mathieu Acher, Raphaél Michel, Patrick Heymans, Philippe Collet, and Philippe Lahire. Languages
and tools for managing feature models. In Julia Rubin, Goetz Botterweck, Andreas Pleuss, and
David M. Weiss, editors, Proceedings of the Third International Workshop on Product LinE Approaches
in Software Engineering, PLEASE 2012, Zurich, Switzerland, June 4, 2012, pages 25-28. ACM, 2012.
ISBN 978-1-4673-1751-1. URL http://dl.acm.org/citation.cfm?id=2666071.

[10] Achilleas Achilleos, Nektarios Georgalas, and Kun Yang. An open source domain-specific tools
framework to support model driven development of oss. In DavidH. Akehurst, Régis Vogel, and
RichardF. Paige, editors, Model Driven Architecture- Foundations and Applications, volume 4530 of
Lecture Notes in Computer Science, pages 1-16. Springer Berlin Heidelberg, 2007. ISBN 978-3-
540-72900-6. doi: 10.1007/978-3-540-72901-3 1. URL http://dx.doi.org/10.1007/
978-3-540-72901-3_1.

[11] Duane Albert Adams. A Computation Model with Data Flow Sequencing. PhD thesis, Stanford, CA,
USA, 1969. AAI6913919.

[12] A.E.Rugina and J.-C.Dalbin. Experiences with the gene-auto code generator in the aerospace in-
dustry. In ERTS, 2010.

[13] Wolfgang Ahrendt, Bernhard Beckert, Daniel Bruns, Richard Bubel, Christoph Gladisch,
Sarah Grebing, Reiner Hihnle, Martin Hentschel, Mihai Herda, Vladimir Klebanov, Wojciech
Mostowski, Christoph Scheben, Peter H. Schmitt, and Mattias Ulbrich. The KeY platform for ver-
ification and analysis of Java programs. In Dimitra Giannakopoulou and Daniel Kroening, editors,
Verified Software: Theories, Tools, and Experiments (VSTIE 2014), Lecture Notes in Computer Sci-
ence. Springer-Verlag, 2014. To appear.

241

BIBLIOGRAPHY

[14]

[20]

Daniel Balasubramanian, Corina S. Pisireanu, Michael W. Whalen, Gabor Karsai, and Michael
Lowry. Polyglot: Modeling and analysis for multiple statechart formalisms. In Proceedings of
the 2011 International Symposium on Software Testing and Analysis, ISSTA °11, pages 45-55, New
York, NY, USA, 2011. ACM. ISBN 978-1-4503-0562-4. doi: 10.1145/2001420.2001427. URL
http://doi.acm.org/10.1145/2001420.2001427.

Clark Barrett, David Dill, and Jeremy Levitt. Validity checking for combinations of theories with
equality. In Mandayam Srivas and Albert Camilleri, editors, Formal Methods in Computer-Aided De-
sign, volume 1166 of Lecture Notes in Computer Science, pages 187-201. Springer Berlin Heidelberg,
1996. ISBN 978-3-540-61937-6. doi: 10.1007/BFb0031808. URL http://dx.doi.org/10.
1007/BFb0031808.

Clark Barrett, Aaron Stump, and Cesare Tinelli. The SMT-LIB Standard: Version 2.0. Tech-
nical report, Department of Computer Science, The University of Iowa, 2010. Available at
www.SMT-LIB.org.

M. Encarnacién Beato, Manuel Barrio-Solérzano, Carlos E. Cuesta, and Pablo de la Fuente. Uml
automatic verification tool with formal methods. Electron. Notes Theor. Comput. Sci., 127(4):3-16,
April 2005. ISSN 1571-0661. doi: 10.1016/j.entcs.2004.10.024. URL http://dx.doi.org/
10.1016/j .entcs.2004.10.024.

Michael Beine, Rainer Otterbach, and Michael Jungmann. Development of safety-critical software
using automatic code generation. Technical report, SAE Technical Paper, 2004.

David Benavides, Pablo Trinidad, and Antonio Ruiz-Cortés. Automated reasoning on feature mod-
els. In Oscar Pastor and Joao Falcao e Cunha, editors, Advanced Information Systems Engineering, vol-
ume 3520 of Lecture Notes in Computer Science, pages 491-503. Springer Berlin Heidelberg, 200S.
ISBN 978-3-540-26095-0. doi: 10.1007/11431855 34. URLhttp://dx.doi.org/10.1007/
11431855 _34.

David Benavides, Sergio Segura, and Antonio Ruiz-Cortés. Automated analysis of feature models
20 years later: A literature review. Information Systems, 35(6):615-636,2010. ISSN 0306-4379.
doi: http://dx.doi.org/10.1016/j.is.2010.01.001.

[21] Julien Bertrane, Patrick Cousot, Radhia Cousot, Laurent Mauborgne Jérome Feret, Antoine Miné,

[22]

and X. Rival. Static analysis and verification of aerospace software by abstract interpretation. In
AIAA Infotech@Aerospace 2010, number ATAA-2010-338S, pages 1-38. American Institue of Aero-
nautics and Astronautics, April 2010.

Loic Besnard, Thierry Gautier, Paul Le Guernic, and Jean-Pierre Talpin. Compilation of poly-
chronous data flow equations. In Sandeep K. Shukla and Jean-Pierre Talpin, editors, Synthesis of
Embedded Software, pages 1-40. Springer US, 2010. ISBN 978-1-4419-6399-4. doi: 10.1007/
978-1-4419-6400-7 1. URLhttp://dx.doi.org/10.1007/978-1-4419-6400-7_1.

Darek Biernacki, Jean-Louis Colaco, Grégoire Hamon, and Marc Pouzet. Clock-directed modular
code generation of synchronous data-flow languages. In ACM International Conference on Lan-
guages, Compilers, and Tools for Embedded Systems (LCTES), Tuscon, Arizona, June 2008.

Dariusz Biernacki, Jean-Louis Colago, Gregoire Hamon, and Marc Pouzet. Clock-directed modular
code generation for synchronous data-flow languages. SIGPLAN Not., 43(7):121-130, June 2008.
ISSN 0362-1340. doi: 10.1145/1379023.1375674. URL http://doi.acm.org/10.1145/
1379023 .1375674.

NikolajS. Bjorner, MarkE. Stickel, and TomdsE. Uribe. A practical integration of first-order reason-
ing and decision procedures. In William McCune, editor, Automated Deduction— CADE-14, vol-
ume 1249 of Lecture Notes in Computer Science, pages 101-115. Springer Berlin Heidelberg, 1997.

242

BIBLIOGRAPHY

ISBN 978-3-540-63104-0. doi: 10.1007/3-540-63104-6 13. URL http://dx.doi.org/10.
1007/3-540-63104-6_13.

[26] Sandrine Blazy, Zaynah Dargaye, and Xavier Leroy. Formal verification of a c compiler front-end. In
In Proceedings of Formal Methods, 2006 (FM 2006), volume 4085/2006, pages 460—475. Springer-
Verlag, 2006.

[27] Frangois Bobot, Jean-Christophe Filliatre, Claude Marché, and Andrei Paskevich. Why3: Shep-
herd your herd of provers. In Boogie 2011: First International Workshop on Intermediate Verifica-
tion Languages, pages 53-64, Wroclaw, Poland, August 2011. URL http://proval.lri.fr/
publications/boogiellfinal.pdf.

[28] Matteo Bordin, Tonu Naks, Andres Toom, and Marc Pantel. Compilation of heterogeneous mod-
els: Motivations and challenges. In ERTS, page (electronic medium), http://www.sia.fr, 2012.
Société des Ingénieurs de 'Automobile.

[29] P.Borras, D. Clement, Th. Despeyroux, J. Incerpi, G. Kahn, B. Lang, and V. Pascual. Centaur: The
system. SIGPLAN Not., 24(2):14-24, November 1988. ISSN 0362-1340. doi: 10.1145/64140.
65005. URL http://doi.acm.org/10.1145/64140.6500S.

[30] Frédéric Boulanger, Cécile Hardebolle, Christophe Jacquet, and Dominique Marcadet. Seman-
tic adaptation for models of computations. In Benoit Caillaud, Josep Carmona, and Kuni-
hiko Hiraishi, editors, Proceedings of the 11th International Conference on Application of Concur-
rency to System Design, pages 153-162. IEEE Computer Society, 2011. ISBN 978-0-7695-4387-
1. doi: http://dx.doi.org/10.1109/ACSD.2011.17. URL /software/downloads/ModHelX/
2011SemAdaptACSD. pdf.

[31] A Braganca and R.J. Machado. Extending uml 2.0 metamodel for complementary usages of the
/spllt/extend/spl gt/ relationship within use case variability specification. In Software Product Line
Conference, 2006 10th International, pages S pp.—130, 2006. doi: 10.1109/SPLINE.2006.1691584.

[32] Daniel Calegari and Nora Szasz. Verification of model transformations: a survey of the state-of-
the-art. Electronic Notes In Theoretical Computer Science, 292:5-25,2013.

[33] Dominique Cansell and Dominique Méry. Foundations of the b method. Computing and informat-
ics, 22(3-4):221-256,2012.

[34] P. Caspi, D. Pilaud, N. Halbwachs, and J. A. Plaice. Lustre: A declarative language for real-time
programming. In Proceedings of the 14th ACM SIGACT-SIGPLAN Symposium on Principles of Pro-
gramming Languages, POPL 87, pages 178—188, New York, NY, USA, 1987. ACM. ISBN 0-89791-
215-2. doi: 10.1145/41625.41641. URL http://doi.acm.org/10.1145/41625.41641.

[35] Paul Caspi. Clocks in dataflow languages. Theor. Comput. Sci., 94(1):125-140, March 1992. ISSN
0304-3975. doi: 10.1016/0304-3975(92)90326-B. URL http://dx.doi.org/10.1016/
0304-3975(92)90326-B.

[36] Paul Caspi and Marc Pouzet. Lucid Synchrone, a functional extension of Lustre. Technical report,
Université Pierre et Marie Curie, Laboratoire LIP6, 2000.

[37] Paul Caspi, Adrian Curic, Aude Maignan, Christos Sofronis, and Stavros Tripakis. Translating
discrete-time simulink to lustre. In Rajeev Alur and Insup Lee, editors, Embedded Software, Third
International Conference, EMSOFT 2003, Philadelphia, PA, USA, October 13-15, 2003, Proceed-
ings, volume 28SS of Lecture Notes in Computer Science, pages 84-99. Springer, 2003. ISBN 3-
540-20223-4. doi: 10.1007/978-3-540-45212-6 7. URL http://dx.doi.org/10.1007/
978-3-540-45212-6_7.

243

BIBLIOGRAPHY

[38] Paul Caspi, Grégoire Hamon, and Marc Pouzet. Real-Time Systems: Models and verification —Theory
and tools, chapter Synchronous Functional Programming with Lucid Synchrone. ISTE, 2007.

[39] Dave Clarke, Nikolay Diakov, Reiner Hihnle, Einar Broch Johnsen, Germéan Puebla, Balthasar
Weitzel, and Peter Y. H. Wong. Hats - a formal software product line engineering methodology.
In SPLC Workshops, pages 121-128,2010.

[40] Edmund M. Clarke and Jeannette M. Wing. Formal methods: State of the art and future directions.
ACM Comput. Surv., 28(4):626-643, December 1996. ISSN 0360-0300.

[41] EdmundM. Clarke and E.Allen Emerson. Design and synthesis of synchronization skeletons using
branching time temporal logic. In Dexter Kozen, editor, Logics of Programs, volume 131 of Lecture
Notes in Computer Science, pages 52-71. Springer Berlin Heidelberg, 1982. ISBN 978-3-540-11212-
9. doi: 10.1007/BFb0025774. URL http://dx.doi.org/10.1007/BFb0025774.

[42] Martin Clochard, Claude Marché, and Andrei Paskevich. Verified programs with binders. In Pro-
gramming Languages meets Program Verification (PLPV). ACM Press, 2014.

[43] Darren Cofer and Steven Miller. Do-333 certification case studies. In JuliaM. Badger and
KristinYvonne Rozier, editors, NASA Formal Methods, volume 8430 of Lecture Notes in Computer
Science, pages 1-1S. Springer International Publishing, 2014. ISBN 978-3-319-06199-3. doi: 10.
1007/978-3-319-06200-6 1. URL http://dx.doi.org/10.1007/978-3-319-06200-6_1.

[44] Darren D. Cofer, John Hatcliff, Michaela Huhn, and Mark Lawford. Software certification: Meth-
ods and tools (dagstuhl seminar 13051). Dagstuhl Reports, 3(1):111-148, 2013. doi: 10.4230/
DagRep.3.1.111. URL http://dx.doi.org/10.4230/DagRep.3.1.111.

[45] Jean-Louis Colago, Grégoire Hamon, and Marc Pouzet. Mixing signals and modes in synchronous
data-flow systems. In ACM International Conference on Embedded Software (EMSOFT’06), Seoul,
South Korea, October 2006.

[46] MichaelA. Colén, Sriram Sankaranarayanan, and HennyB. Sipma. Linear invariant generation us-
ing non-linear constraint solving. In Jr. Hunt, WarrenA. and Fabio Somenzi, editors, Computer
Aided Verification, volume 2725 of Lecture Notes in Computer Science, pages 420-432. Springer
Berlin Heidelberg, 2003. ISBN 978-3-540-40524-5. doi: 10.1007/978-3-540-45069-6 39. URL
http://dx.doi.org/10.1007/978-3-540-45069-6_39.

[47] Benoit Combemale, Cécile Hardebolle, Christophe Jacquet, Frédéric Boulanger, and Benoit
Baudry. Bridging the chasm between executable metamodeling and models of computation.
In Proceedings of the Sth International Conference on Software Language Engineering, 2012. URL
/software/downloads/ModHelX/2012BridgingTheChasm. pdf.

[48] Thierry Coquand and Gérard Huet. The calculus of constructions. Information and Computation,
76, 1988.

[49] P.Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static analysis of pro-
grams by construction or approximation of fixpoints. In Conference Record of the Fourth Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages 238-252, Los
Angeles, California, 1977. ACM Press, New York, NY.

[50] Krzysztof Czarnecki and UlrichW. Eisenecker. Components and generative programming. In
Oscar Nierstrasz and Michel Lemoine, editors, Software Engineering — ESEC/FSE "99, volume
1687 of Lecture Notes in Computer Science, pages 2—19. Springer Berlin Heidelberg, 1999. ISBN
978-3-540-66538-0. doi: 10.1007/3-540-48166-4 2. URL http://dx.doi.org/10.1007/
3-540-48166-4_2

244

BIBLIOGRAPHY

[51] Krzysztof Czarnecki and Chang Hwan Peter Kim. Cardinality-based feature modeling and con-
straints: a progress report. In International Workshop on Software Factories at OOPSLA'0S,
San Diego, California, USA, 2005. ACM, ACM. URL http://softwarefactories.com/
workshops/00PSLA-2005/Papers/Czarnecki . pdf.

[52] Krzysztof Czarnecki, Ulrich Eisenecker, Robert Gliick, David Vandevoorde, and Todd Veldhuizen.
Generative programming and active libraries. In Mehdi Jazayeri, RiidigerG.K. Loos, and DavidR.
Musser, editors, Generic Programming, volume 1766 of Lecture Notes in Computer Science, pages 25—
39. Springer Berlin Heidelberg, 2000. ISBN 978-3-540-41090-4. doi: 10.1007/3-540-39953-4_3.
URL http://dx.doi.org/10.1007/3-540-39953-4_3.

[53] Krzysztof Czarnecki, Thomas Bednasch, Peter Unger, and Ulrich Eisenecker. Generative pro-
gramming for embedded software: An industrial experience report. In Don Batory, Charles Con-
sel, and Walid Taha, editors, Generative Programming and Component Engineering, volume 2487
of Lecture Notes in Computer Science, pages 156-172. Springer Berlin Heidelberg, 2002. ISBN
978-3-540-44284-4. doi: 10.1007/3-540-45821-2 10. URL http://dx.doi.org/10.1007/
3-540-45821-2_10.

[54] Krzysztof Czarnecki, Simon Helsen, and Ulrich Eisenecker. Formalizing cardinality-based feature
models and their specialization. Software Process: Improvement and Practice, 10(1):7-29, 2005.

[55] Maulik A. Dave. Compiler verification: a bibliography. ACM SIGSOFT Software Engineering Notes,
28(6):2, 2003.

[56] Martin Davis and Hilary Putnam. A computing procedure for quantification theory. J. ACM, 7(3):
201-215, July 1960. ISSN 0004-5411. doi: 10.1145/321033.321034. URL http://doi.acm.
org/10.1145/321033.321034.

[57] Martin Davis, George Logemann, and Donald Loveland. A machine program for theorem-proving.
Commun. ACM, 5(7):394—397,July 1962. ISSN 0001-0782. doi: 10.1145/368273.368557. URL
http://doi.acm.org/10.1145/368273.368557.

[58] David Delahaye, Catherine Dubois, Claude Marché, and David Mentré. The BWare project: Build-
ing a proof platform for the automated verification of B proof obligations. pages 290-293.

[59] E.Denney, B. Fischer, andJ. Schumann. Adding assurance to automatically generated code. In High
Assurance Systems Engineering, 2004. Proceedings. Eighth IEEE International Symposium on, pages
297-299, March 2004. doi: 10.1109/HASE.2004.1281768.

[60] JackB. Dennis. First version of a data flow procedure language. In B. Robinet, editor, Pro-
gramming Symposium, volume 19 of Lecture Notes in Computer Science, pages 362—-376. Springer
Berlin Heidelberg, 1974. ISBN 978-3-540-06859-4. doi: 10.1007/3-540-06859-7 145. URL
http://dx.doi.org/10.1007/3-540-06859-7_143.

[61] Arnaud Dieumegard, Pierre-Loic Garoche, Temesghen Kahsai, Alice Taillar, and Xavier Thirioux.
Compilation of synchronous observers as code contracts. In SAC '15, 2015.

[62] Edsger W. Dijkstra. Guarded commands, nondeterminacy and formal derivation of programs.
Commun. ACM, 18(8):453-457, August 1975. ISSN 0001-0782. doi: 10.1145/360933.360975.
URL http://doi.acm.org/10.1145/360933.36097S.

[63] David Déharbe, Silvio Ranise, and Jorgiano Vidal. A prototype implementation of a distributed
satisfiability modulo theories solver in the toolbus framework. Journal of the Brazilian Computer
Society, 14(1):71-86, 2008. ISSN 0104-6500. doi: 10.1007/BF03192553. URL http://dx.
doi.org/10.1007/BF03192553.

245

BIBLIOGRAPHY

[64] Sven Efftinge, Moritz Eysholdt, Jan Kohnlein, Sebastian Zarnekow, Robert von Massow, Wilhelm
Hasselbring, and Michael Hanus. Xbase: Implementing domain-specific languages for java. In Pro-
ceedings of the 11th International Conference on Generative Programming and Component Engineering,
GPCE 12, pages 112-121, New York, NY, USA, 2012. ACM. ISBN 978-1-4503-1129-8. doi:
10.1145/2371401.2371419. URL http://doi.acm.org/10.1145/2371401.2371419.

[65] Jean-Christophe Fillidtre and Claude Marché. Multi-prover verification of C programs. pages 15—
29,2004. URL http://www.lri.fr/~filliatr/ftp/publis/caduceus.ps.gz.

[66] Jean-Christophe Fillidtre and Claude Marché. The Why/Krakatoa/Caduceus platform for deduc-
tive program verification. pages 173-177,2007. URLhttp://www.1lri.fr/~filliatr/ftp/
publis/cav07.pdf.

[67] Jean-Christophe Fillidtre, Léon Gondelman, and Andrei Paskevich. The Spirit of Ghost Code. In
CAV 2014, Computer Aided Verification - 26th International Conference, Vienna Summer Logic 2014,
Austria, July 2014. URL https://hal.inria.fr/hal-00873187.

[68] R.W. Floyd. Assigning meaning to programs. In Proceedings of the Symposium on Applied Maths,
volume 19, pages 19-32. AMS, 1967.

[69] Martin Fowler. Domain Specific Languages. Addison-Wesley Professional, 1st edition, 2010. ISBN
0321712943, 9780321712943.

[70] Ricardo Bedin Franga, Denis Favre-Felix, Xavier Leroy, Marc Pantel, and Jean Souyris. Towards
formally verified optimizing compilation in flight control software. In Philipp Lucas, Lothar Thiele,
Benoit Triquet, Theo Ungerer, and Reinhard Wilhelm, editors, PPES, volume 18 of OASICS, pages
59-68. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany, 2011. ISBN 978-3-939897-
28-6.

[71] Nicolas Halbwachs, Paul Caspi, Pascal Raymond, and Daniel Pilaud. The synchronous dataflow
P Y. Y
programming language lustre. Proceedings of the IEEE, 79(9):1305-1320, September 1991.

[72] Nicolas Halbwachs, Pascal Raymond, and Christophe Ratel. Generating efficient code from data-
flow programs. In Jan Maluszynski and Martin Wirsing, editors, Programming Language Implemen-
tation and Logic Programming, volume 528 of Lecture Notes in Computer Science, pages 207-218.
Springer Berlin Heidelberg, 1991. ISBN 978-3-540-54444-9. doi: 10.1007/3-540-54444-5_100.
URL http://dx.doi.org/10.1007/3-540-54444-5_100.

[73] Nicolas Halbwachs, Fabienne Lagnier, and Pascal Raymond. Synchronous observers and the ver-
ification of reactive systems. In Third Int. Conf. on Algebraic Methodology and Software Technology,
AMAST’93, Twente. Springer Verlag, 1993.

[74] André Heuer, Vanessa Stricker, Christof J. Budnik, Sascha Konrad, Kim Lauenroth, and Klaus Pohl.
Defining variability in activity diagrams and petri nets. Sci. Comput. Program., 78(12):2414-2432,
December 2013. ISSN 0167-6423. doi: 10.1016/j.scic0.2012.06.003. URL http://dx.doi.
org/10.1016/j.scico.2012.06.003.

[75] C.A.R.Hoare. An axiomatic basis for computer programming. CACM, 12(10):576-583, 1967.

[76] Nassima Izerrouken, Xavier Thirioux, Marc Pantel, and Martin Strecker. Certifying an automated
code generator using formal tools : Preliminary experiments in the geneauto project. In ERTS, page
(electronic medium), http://www.sia.fr, 2008. Société des Ingénieurs de 'Automobile.

[77] Nassima Izerrouken, Marc Pantel, and Xavier Thirioux. Machine-checked sequencer for critical
embedded code generator. In Karin Breitman and Ana Cavalcanti, editors, ICFEM, volume 5885
of Lecture Notes in Computer Science, pages 521-540. Springer, 2009. ISBN 978-3-642-10372-8.

246

BIBLIOGRAPHY

[78] Nassima Izerrouken, Marc Pantel, Xavier Thirioux, and Olivier Ssi Yan Kai. Integrated formal
approach for qualified critical embedded code generator. In Maria Alpuente, Byron Cook, and
Christophe Joubert, editors, FMICS, volume 5825 of Lecture Notes in Computer Science, pages 199—
201. Springer, 2009. ISBN 978-3-642-04569-1.

[79] Jean-Marc Jézéquel, David Mendez, Thomas Degueule, Benoit Combemale, and Olivier Barais.
When Systems Engineering Meets Software Language Engineering. In CSD&*M’14 - Complex Sys-
tems Design & Management, Paris, France, November 2014. Springer. URL http://hal.inria.
fr/hal-01024166.

[80] Wesley M. Johnston, J. R. Paul Hanna, and Richard J. Millar. Advances in dataflow programming
languages. ACM Comput. Surv., 36(1):1-34, March 2004. ISSN 0360-0300. doi: 10.1145/
1013208.1013209. URL http://doi.acm.org/10.1145/1013208.1013209.

[81] Edson A. Oliveira Junior, Itana M. S. Gimenes, and José C. Maldonado. Systematic management
of variability in uml-based software product lines. Journal of Universal Computer Science, 16(17):
2374-2393, sep 2010. http://www.jucs.org/jucs_16_17/systematic_management_
of variability.

[82] Gilles Kahn. A Preliminary Theory for Parallel Programs. Rapport de recherche R0006, 1973. URL
http://hal.inria.fr/inria-00177890. Rapport IRIA.

[83] K.C.Kang,S.G. Cohen,J. A. Hess, W. E. Novak, and A. S. Peterson. Feature-oriented domain anal-
ysis (FODA) feasibility study. Technical report, Carnegie-Mellon University Software Engineering
Institute, November 1990.

[84] KyoC. Kang, Sajoong Kim, Jaejoon Lee, Kijoo Kim, Euiseob Shin, and Moonhang Huh. Form: A
teature-oriented reuse method with domain-specific reference architectures. Annals of Software
Engineering, 5(1):143-168, 1998. ISSN 1022-7091. doi: 10.1023/A:1018980625587. URL
http://dx.doi.org/10.1023/A3A1018980625587.

[85] Gabor Karsai, Holger Krahn, Claas Pinkernell, Bernhard Rumpe, Martin Schindler, and Steven
Volkel. Design guidelines for domain specific languages. CoRR, abs/1409.2378, 2014. URL
http://arxiv.org/abs/1409.2378.

[86] Lennart C. L. Kats, Karl Trygve Kalleberg, and Eelco Visser. Generating editors for embedded
languages. integrating SGLR into IMP. In A. Johnstone and J. Vinju, editors, Proceedings of the
Eighth Workshop on Language Descriptions, Tools, and Applications (LDTA 2008), pages 168-173,
Budapest, Hungary, April 2008.

[87] Henry Kautz and Bart Selman. Planning as satisfiability. In Proceedings of the 10th European Con-
ference on Artificial Intelligence, ECAI 92, pages 359-363, New York, NY, USA, 1992. John Wiley
& Sons, Inc. ISBN 0-471-93608-1. URL http://dl.acm.org/citation.cfm?id=145448.
146728S.

[88] John L. Kelly, Carol Lochbaum, and V.A Vyssotsky. A block diagram compiler. Bell System Tech-
nical Journal, The, 40(3):669-678, May 1961. ISSN 0005-8580. doi: 10.1002/j.1538-7305.1961.
tb03236.x.

[89] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Videira Lopes, Jean-
Marc Loingtier, and John Irwin. Aspect-oriented programming. In ECOOP, pages 220-242, 1997.
doi: 10.1007/BFb0053381. URL http://dx.doi.org/10.1007/BFb0053381.

[90] Stephen Cole Kleene. Introduction to metamathematics. Bibl. Matematica. North-Holland, Amster-
dam, 1952.

247

BIBLIOGRAPHY

[91]

[100]

[101]
[102]

P. Klint, T. van der Storm, and J. J. Vinju. Rascal: A Domain Specific Language For Source Code
Analysis And Manipulation. In A. Walenstein and S. Schuppe, editors, Proceedings of IEEE Inter-
national Working Conference on Source Code Analysis and Manipulation 2009. IEEE, 2009. URL
http://oai.cwi.nl/oai/asset/15097/15097A . pdf.

DimitriosS. Kolovos, RichardF. Paige, and FionaA.C. Polack. The epsilon object language (eol).
In Arend Rensink and Jos Warmer, editors, Model Driven Architecture — Foundations and Applica-
tions, volume 4066 of Lecture Notes in Computer Science, pages 128—142. Springer Berlin Heidelberg,
2006. ISBN 978-3-540-35909-8. doi: 10.1007/11787044 11. URLhttp://dx.doi.org/10.
1007/11787044 _11.

Paul R. Kosinski. A data flow language for operating systems programming. SIGPLAN Not., 8(9):
89-94, January 1973. ISSN 0362-1340. doi: 10.1145/390014.808289. URLhttp://doi.acm.
org/10.1145/390014 . 808289.

Holger Krahn, Bernhard Rumpe, and Steven Vélkel. Monticore: Modular development of textual
domain specific languages. In RichardF. Paige and Bertrand Meyer, editors, Objects, Components,
Models and Patterns, volume 11 of Lecture Notes in Business Information Processing, pages 297-318.
Springer Berlin Heidelberg, 2008. ISBN 978-3-540-69823-4. doi: 10.1007/978-3-540-69824-1_
17. URL http://dx.doi.org/10.1007/978-3-540-69824-1_17.

Y. Fang L. D. Zuck, A. Pnueli and B. Goldberg. VOC: A translation validator for optimizing com-
pilers. ENTCS, Elsevier Science, 2002.

Axel van Lamsweerde. Formal specification: A roadmap. In Proceedings of the Conference on The
Future of Software Engineering, ICSE "00, pages 147-159, New York, NY, USA, 2000. ACM. ISBN 1-
58113-253-0. doi: 10.1145/336512.336546. URL http://doi.acm.org/10.1145/336512.
336546.

Gilles Lasnier, Bechir Zalila, Laurent Pautet, and Jérome Hugues. Ocarina : An environment for
aadl models analysis and automatic code generation for high integrity applications. In Fabrice Ko-
rdon and Yvon Kermarrec, editors, Reliable Software Technologies — Ada-Europe 2009, volume 5570
of Lecture Notes in Computer Science, pages 237-250. Springer Berlin Heidelberg, 2009. ISBN 978-
3-642-01923-4. doi: 10.1007/978-3-642-01924-1 17. URL http://dx.doi.org/10.1007/
978-3-642-01924-1_17.

E. Lee and D.G. Messerschmitt. Static scheduling of synchronous data flow programs for digital
signal processing. Computers, IEEE Transactions on, C-36(1):24-35, Jan 1987. ISSN 0018-9340.
doi: 10.1109/TC.1987.5009446.

Edward A. Lee and Haiyang Zheng. Leveraging synchronous language principles for heteroge-
neous modeling and design of embedded systems. In Proceedings of the 7th ACM &Amp; IEEE
International Conference on Embedded Software, EMSOFT °07, pages 114-123, New York, NY,
USA, 2007. ACM. ISBN 978-1-59593-825-1. doi: 10.1145/1289927.1289949. URL http:
//doi.acm.org/10.1145/1289927.1289949.

Xavier Leroy. Formal certification of a compiler back-end or: programming a compiler with a proof
assistant. In J. Gregory Morrisett and Simon L. Peyton Jones, editors, POPL, pages 42-54. ACM,
2006. ISBN 1-59593-027-2.

Xavier Leroy. Formal verification of a realistic compiler. Commun. ACM, 52(7):107-115, 2009.

Bas Luttik and Eelco Visser. Specification of rewriting strategies. In M. P. A. Sellink, editor, 2nd
International Workshop on the Theory and Practice of Algebraic Specifications (ASF+SDF 1997), Elec-
tronic Workshops in Computing, Berlin, November 1997. Springer-Verlag.

248

BIBLIOGRAPHY

[103] Frédéric Mallet, Julien DeAntoni, Charles André, and Robert de Simone. The clock constraint
specification language for building timed causality models. Innovations in Systems and Software
Engineering, 6(1-2):99-106, 2010. ISSN 1614-5046. doi: 10.1007/s11334-009-0109-0. URL
http://dx.doi.org/10.1007/s11334-009-0109-0.

[104] Claude Marché. Verification of the functional behavior of a floating-point program: an industrial
case study. Science of Computer Programming, 96(3):279-296, March 2014. doi: 10.1016/j.scico.
2014.04.003.

[105] Minsky Marvin. Matter, mind and models. Semantic information processing, pages 425-432, 1968.

[106] David Mentré, Claude Marché, Jean-Christophe Fillidtre, and Masashi Asuka. Discharging proof
obligations from Atelier B using multiple automated provers. In Steve Reeves and Elvinia Ric-
cobene, editors, ABZ'2012 - 3rd International Conference on Abstract State Machines, Alloy, B and Z,
volume 7316 of Lecture Notes in Computer Science, pages 238-251, Pisa, Italy, June 2012. Springer.
http://hal.inria.fr/hal-00681781/en/.

[107] Marjan Mernik, Jan Heering, and Anthony M. Sloane. When and how to develop domain-specific
languages. ACM Comput. Surv., 37(4):316-344, December 2005. ISSN 0360-0300. doi: 10.1145/
1118890.1118892. URL http://doi.acm.org/10.1145/1118890.1118892.

[108] Dominique Méry and Neeraj Kumar Singh. Automatic code generation from event-b models. In
Proceedings of the Second Symposium on Information and Communication Technology, SoICT ’11,
pages 179-188, New York, NY, USA, 2011. ACM. ISBN 978-1-4503-0880-9. doi: 10.1145/
2069216.2069252. URL http://doi.acm.org/10.1145/2069216.2069252.

[109] Robin Milner and R. Weyhrauch. Proving compiler correctness in a mechanised logic. Machine
Intelligence, (7), 1972.

[110] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad Malik. Chaff:
Engineering an efficient sat solver. In Proceedings of the 38th Annual Design Automation Conference,
DAC '01, pages 530-535, New York, NY, USA, 2001. ACM. ISBN 1-58113-297-2. doi: 10.1145/
378239.379017. URL http://doi.acm.org/10.1145/378239.379017.

[111] Yannick Moy, Emmanuel Ledinot, Hervé Delseny, Virginie Wiels, and Benjamin Monate. Testing
or formal verification: DO-178C alternatives and industrial experience. IEEE Software, 30(3):50—-
57,2013. doi: 10.1109/MS.2013.43. URL http://doi.ieeecomputersociety.org/10.
1109/MS.2013.43.

[112] Mirabelle Nebut. An overview of the signal clock calculus. Electron. Notes Theor. Comput. Sci., 88:
39-54, October 2004. ISSN 1571-0661. doi: 10.1016/j.entcs.2003.05.005. URL http://dx.
doi.org/10.1016/j.entcs.2003.05.00S.

[113] George C Necula and Peter Lee. Safe kernel extensions without run-time checking. SIGOPS Op-
erating Systems Review, 30:229-244, 1996.

[114] Special C. of RTCA. DO-178C, software considerations in airborne systems and equipment certi-
fication, 2011.

[115] Special C. of RTCA. DO-330, software tool qualification considerations, 2011.

[116] C.O’Halloran. Issues for the automatic generation of safety critical software. 2011 26th IEEE/ACM
International Conference on Automated Software Engineering (ASE 2011), 0:277,2000. ISSN 1527-
1366. doi: http://doi.ieeecomputersociety.org/10.1109/ASE.2000.873677.

[117] OMG. Mof specification. http://www.omg.org/spec/MOF/2.4.2/PDF,.

249

BIBLIOGRAPHY

118] OMG. OCL specification. http://www.omg.org/spec/0CL/,.

[

[119] OMG. Qut specification. http://www.omg.org/spec/QVT/1.1/PDF/,.

[120] OMG. Uml specification. http://www.omg.org/spec/UML/2.5/Beta2/PDF,.
[

]

]

]

121] S. Owre, N. Shankar, and J. M. Rushby. User Guide for the PVS Specification and Verification System.
CSL,1995. URL citeseer.ist.psu.edu/owre93user.html.

[122] Claire Pagetti, Julien Forget, Frédéric Boniol, Mikel Cordovilla, and David Lesens. Multi-task im-
plementation of multi-periodic synchronous programs. Discrete Event Dynamic Systems, 21(3):
307-338,2011. URL http://hal.inria.fr/inria-00638936.

[123] L-C.Paulson. The Isabelle reference manual. Technical Report 283,1993. URL citeseer.ist.
psu.edu/paulson9Sisabelle.html.

[124] A.Pnueli, M. Siegel, and E. Singerman. Translation validation. Tools and Algorithms for Construction
and Analysis of Systems, TACAS 98, 1384:151-166, 1998.

[125] Amir Pnueli, Michael Siegel, and Eli Singerman. Translation validation. In Bernhard Steffen, editor,
TACAS, volume 1384 of Lecture Notes in Computer Science, pages 151-166. Springer, 1998. ISBN
3-540-64356-7.

[126] Frédéric Pothon. Do-330/ed-215 benefits of the new tool qualification document. Technical re-
port, January 2013. URL http://www.open-do.org/?p=2150&preview=true.

[127] CorinaS. Pisireanu and Willem Visser. Verification of java programs using symbolic execution
and invariant generation. In Susanne Graf and Laurent Mounier, editors, Model Checking Soft-
ware, volume 2989 of Lecture Notes in Computer Science, pages 164—181. Springer Berlin Heidel-
berg, 2004. ISBN 978-3-540-21314-7. doi: 10.1007/978-3-540-24732-6_13. URL http:
//dx.doi.org/10.1007/978-3-540-24732-6_13.

[128] J.P. Queille and J. Sifakis. Specification and verification of concurrent systems in cesar. In Mari-
angiola Dezani-Ciancaglini and Ugo Montanari, editors, International Symposium on Programming,
volume 137 of Lecture Notes in Computer Science, pages 337-351. Springer Berlin Heidelberg, 1982.
ISBN 978-3-540-11494-9. doi: 10.1007/3-540-11494-7 22. URL http://dx.doi.org/10.
1007/3-540-11494-7 22.

[129] Silvain Rideauand Xavier Leroy. Validating register allocation and spilling. In Compiler Construction
(CC 2010), volume 6011 of Lecture Notes in Computer Science, pages 224-243. Springer, 2010.

[130] Matthias Riebisch, Kai Béllert, Detlef Streitferdt, and Ilka Philippow. Extending feature diagrams
with uml multiplicities. In Proceedings of the Sixth Conference on Integrated Design and Process Tech-
nology (IDPT 2002), Pasadena, CA, volume 50, 2002.

[131] JohnRushby. Formal methods and the certification of critical systems. Technical Report SRI-CSL-
93-7, Computer Science Laboratory, SRI International, Menlo Park, CA, December 1993. Also
issued under the title Formal Methods and Digital Systems Validation for Airborne Systems as NASA
Contractor Report 4551, December 1993.

[132] Michael Ryabtsevand Ofer Strichman. Translation validation: From simulink to c. In Ahmed Boua-
jjani and Oded Maler, editors, Computer Aided Verification, volume 5643 of Lecture Notes in Com-
puter Science, pages 696-701. Springer Berlin Heidelberg, 2009. ISBN 978-3-642-02657-7. doi: 10.
1007/978-3-642-02658-4 57. URL http://dx.doi.org/10.1007/978-3-642-02658-4_
57.

250

BIBLIOGRAPHY

[133]

[134]

[135]

Sriram Sankaranarayanan, Henny B. Sipma, and Zohar Manna. Non-linear loop invariant gen-
eration using groflner bases. In Proceedings of the 31st ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL 04, pages 318-329, New York, NY, USA, 2004. ACM.
ISBN 1-58113-729-X. doi: 10.1145/964001.964028. URL http://doi.acm.org/10.1145/
964001 .964028.

Bastian Schlich and Stefan Kowalewski. Model checking ¢ source code for embedded systems.
Int. J. Softw. Tools Technol. Transf,, 11(3):187-202, June 2009. ISSN 1433-2779. doi: 10.1007/
$10009-009-0106-5. URL http://dx.doi.org/10.1007/s10009-009-0106-5.

Pierre-Yves Schobbens, Patrick Heymans, Jean-Christophe Trigaux, and Yves Bontemps. Generic
semantics of feature diagrams. Comput. Netw., 51(2):456-479, February 2007. ISSN 1389-1286.

[136] Joao P. Marques Silva and Karem A. Sakallah. Grasp—a new search algorithm for satisfi-

[137]

[138]

[139]

ability. In Proceedings of the 1996 IEEE/ACM International Conference on Computer-aided Design,
ICCAD ’96, pages 220-227, Washington, DC, USA, 1996. IEEE Computer Society. ISBN 0-8186-
7597-7. URL http://dl.acm.org/citation. cfm?id=244522.244560.

Alexander Smith, Andreas Veneris, M Fahim Ali, and Anastasios Viglas. Fault diagnosis and logic
debugging using boolean satisfiability. Computer-Aided Design of Integrated Circuits and Systems,
IEEE Transactions on, 24(10):1606-1621, 2005.

Christos Sofronis, Stavros Tripakis, and Paul Caspi. A memory-optimal buffering protocol for
preservation of synchronous semantics under preemptive scheduling. In Sang Lyul Min and Wang
Yi, editors, Proceedings of the 6th ACM & IEEE International conference on Embedded software, EM-
SOFT 2006, October 22-25, 2006, Seoul, Korea, pages 21-33. ACM, 2006. ISBN 1-59593-542-8.
doi: 10.1145/1176887.1176892. URL http://doi.acm.org/10.1145/1176887.1176892.

Mate Soos, Karsten Nohl, and Claude Castelluccia. Extending sat solvers to cryptographic prob-
lems. In Proceedings of the 12th International Conference on Theory and Applications of Satisfia-
bility Testing, SAT 09, pages 244-257, Berlin, Heidelberg, 2009. Springer-Verlag. ISBN 978-3-
642-02776-5. doi: 10.1007/978-3-642-02777-2_24. URL http://dx.doi.org/10.1007/
978-3-642-02777-2_24.

[140] Jean Souyris, Virginie Wiels, David Delmas, and Hervé Delseny. Formal verification of avion-

[141]

[142]

[143]

[144]

ics software products. In Ana Cavalcanti and DennisR. Dams, editors, FM 2009: Formal Meth-
ods, volume 5850 of Lecture Notes in Computer Science, pages 532-546. Springer Berlin Heidel-
berg, 2009. ISBN 978-3-642-05088-6. doi: 10.1007/978-3-642-05089-3 34. URL http:
//dx.doi.org/10.1007/978-3-642-05089-3_34.

Diomidis Spinellis. Notable design patterns for domain specific languages. Journal of Systems and
Software, 56(1):91-99, February 2001. ISSN 0164-1212. doi: 10.1016/S0164-1212(00)00089-3.

Ingo Stiirmer, Daniela Weinberg, and Mirko Conrad. Overview of existing safeguarding techniques
for automatically generated code. SIGSOFT Softw. Eng. Notes, 30(4):1-6, May 2005. ISSN 0163-
5948. doi: 10.1145/1082983.1083192. URL http://doi.acm.org/10.1145/1082983.
1083192.

Tim Teitelbaum and Thomas Reps. The cornell program synthesizer: A syntax-directed program-
ming environment. Commun. ACM, 24(9):563-573, September 1981. ISSN 0001-0782. doi:
10.1145/358746.358755. URL http://doi.acm.org/10.1145/358746.358755.

R. D. Tennent. The denotational semantics of programming languages. Commun. ACM, 19(8):
437-453, August 1976. ISSN 0001-0782. doi: 10.1145/360303.360308. URL http://doi.
acm.org/10.1145/360303.360308.

251

BIBLIOGRAPHY

[145]

[146]

[147]

[148]

[149]

[150]

[151]

[152]

[153]

[154]

[155]

[156]

[157]

Thomas Thiim, Sven Apel, Christian Kastner, Ina Schaefer, and Gunter Saake. A classification and
survey of analysis strategies for software product lines. ACM Comput. Surv., 47(1):6,2014.

Cesare Tinelli. A dpll-based calculus for ground satisfiability modulo theories. In Sergio Flesca,
Sergio Greco, Giovambattista Ianni, and Nicola Leone, editors, Logics in Artificial Intelligence, vol-
ume 2424 of Lecture Notes in Computer Science, pages 308—319. Springer Berlin Heidelberg, 2002.
ISBN 978-3-540-44190-8. doi: 10.1007/3-540-45757-7_26. URL http://dx.doi.org/10.
1007/3-540-45757-7_26.

A. Tiwari, H. Ruef}, H. Saidi, and N. Shankar. A technique for invariant generation. In Tiziana Mar-
garia and Wang Yi, editors, Tools and Algorithms for the Construction and Analysis of Systems, volume
2031 of Lecture Notes in Computer Science, pages 113-127. Springer Berlin Heidelberg, 2001. ISBN
978-3-540-41865-8. doi: 10.1007/3-540-45319-9 9. URL http://dx.doi.org/10.1007/
3-540-45319-9_9.

Andres Toom, Tonu Naks, Marc Pantel, Marcel Gandriau, and Indra Wati. Gene-Auto - an Auto-
matic Code Generator for a safe subset of Simulink-Stateflow and Scicos. In ERTS, page (electronic
medium), http://www.sia.fr, 2008. Société des Ingénieurs de 'Automobile.

Andres Toom, Nassima Izerrouken, Tonu Naks, Marc Pantel, and Olivier Ssi-Yan-Kai. Towards
reliable code generation with an open tool: Evolutions of the Gene-Auto toolset. In ERTS, page
(electronic medium), http://www.sia.fr, 2010. Société des Ingénieurs de 'Automobile.

Andres Toom, Arnaud Dieumegard, and M.Pantel. Specifying and verifying model transformations
for certified systems using transformation models. In Embedded Real-Time Software and Systems,
ERTS2, 2014. URL http://www.erts2014.org/Site/0R4UXE94/Fichier/erts2014_
8D1.pdf.

S. Vestal. Assuring the correctness of automatically generated software. In Digital Avionics Systems
Conference, 1994. 13th DASC., AIAA/IEEE, pages 111-118, Oct 1994. doi: 10.1109/DASC.1994.
369494.

Valentino Vranic and Jan Snirc. Integrating feature modeling into UML. In Conference Proceedings
NODe 2006, GSEM 2006, Erfurt, Germany, September 18-20, 2006, pages 3—15,2006. URL http:
//subs.emis.de/LNI/Proceedings/Proceedings88/article4672.html.

H. R. Walters. On Equal Terms — Implementing Algebraic Specifications. PhD thesis, University of
Amsterdam, 1991.

Timothy Wang, Romain Jobredeaux, Heber Herencia-Zapana, Pierre-Loic Garoche, Arnaud
Dieumegard, Eric Feron, and Marc Pantel. From design to implementation: an automated, credible
autocoding chain for control systems. CoRR, abs/1307.2641,2013. URL http://arxiv.org/
abs/1307.2641.

MW. Whalen and M.P.E. Heimdahl. An approach to automatic code generation for safety-critical
systems. In Automated Software Engineering, 1999. 14th IEEE International Conference on., pages
315-318, Oct 1999. doi: 10.1109/ASE.1999.802346.

Alfred North Whitehead and Bertrand Russell. Principia Mathematica to *56. Cambridge Univer-
sity Press, second edition, 1997. ISBN 9780511623585. URL http://dx.doi.org/10.1017/
CB09780511623585. Cambridge Books Online.

Professor Glynn Winskel. Lecture notes on denotational semantics for part ii of the computer
science tripos. 2008S.

252

BIBLIOGRAPHY

[158]

[159]

[160]

[161]

[162]

[163]

Christoph M. Wintersteiger, Youssef Hamadi, and Leonardo Moura. A concurrent portfolio
approach to smt solving. In Proceedings of the 21st International Conference on Computer Aided
Verification, CAV ’09, pages 715-720, Berlin, Heidelberg, 2009. Springer-Verlag. ISBN 978-3-
642-02657-7. doi: 10.1007/978-3-642-02658-4 60. URL http://dx.doi.org/10.1007/
978-3-642-02658-4_60.

Anna Zaks and Amir Pnueli. Program analysis for compiler validation. In Shriram Krishnamurthi
and Michal Young, editors, PASTE, pages 1-7. ACM, 2008. ISBN 978-1-60558-382-2.

Faiez Zalila, Xavier Crégut, and Marc Pantel. Formal verification integration approach for dsml.
In Ana Moreira, Bernhard Schitz, Jeff Gray, Antonio Vallecillo, and Peter Clarke, editors, Model-
Driven Engineering Languages and Systems, volume 8107 of Lecture Notes in Computer Science,
pages 336-351. Springer Berlin Heidelberg, 2013. ISBN 978-3-642-41532-6. doi: 10.1007/
978-3-642-41533-3 21. URL http://dx.doi.org/10.1007/978-3-642-41533-3_21.

Hantao Zhang. Sato: An efficient propositional prover. In Proceedings of the 14th International
Conference on Automated Deduction, CADE-14, pages 272-275, London, UK, UK, 1997. Springer-
Verlag. ISBN 3-540-63104-6. URL http://dl.acm.org/citation.cfm?id=648233.
753307.

Tewfik Ziadi and Jean-Marc Jézéquel. Software product line engineering with the UML: deriv-
ing products. In Software Product Lines - Research Issues in Engineering and Management, pages
557-588.2006. doi: 10.1007/978-3-540-33253-4_15. URL http://dx.doi.org/10.1007/
978-3-540-33253-4_15.

Paul Ziemann and Martin Gogolla. An extension of ocl with temporal logic. In Critical Systems
Development with UML, pages 53-62, 2002.

253

