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Abstract 

This present thesis deals with the development of active olefin polymerization 

catalysts based on late transition metal (nickel and iron) imino-pyridine complexes 

supported on nanomaterial. Chapter I gives a comprehensive literature review of 

unsupported and supported ethylene polymerization catalyst. In Chapter II we report 

the ethylene polymerization studies using nickel complexes containing an –NH2 group 

for covalent immobilization on multi-walled carbon nanotubes (MWCNTs) of the 

corresponding precatalysts. Comparison of the homogeneous catalysts with their 

supported counterparts evidenced higher catalytic activity and higher molecular 

weights for the polymers produced. In Chapter III, iron complexes containing a 

pyrene group have been synthesized and immobilized on MWCNTs through 

non-covalent π-π interactions between pyrene group and surface of MWCNTs. 

Activated by MMAO, both the iron complexes and immobilized catalysts show high 

activities for ethylene polymerization. It was possible to evidence that MWCNTs have 

a great influence on the catalytic activity and on the structure of the resulting 

polyethylenes. Imino-pyridine nickel complexes containing various kinds of aromatic 

groups have been synthesized in Chapter IV and polymerization conditions in the 

presence and in the absence of nanocarbon materials, such as MWCNTs or few layer 

graphene (FLG), are discussed. For those nickel catalysts bearing 

1-aryliminoethylpyridine ligands, the presence of MWCNTs in the catalytic mixture 

allows the formation of waxes of lower molecular weight and polydispersity, whereas 

the presence of FLG proved to be beneficial for the catalytic activity. In Chapter V, 

isoprene polymerization catalyzed by iron complexes containing polyaromatic groups 

and non-covalently supported on nanoparticles and confined into the inner cavity of 
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MWCNTs (Cat@NPs and Cat@NPs@MWCNTs) are investigated. Iron complexes 

show excellent activity for the isoprene polymerization and produced high glass 

temperature polyisoprene with a high cis-1,4-polyisoprene selectivity. Polymer 

nanocomposites are produced by supported catalysts and, transmission electron 

microscopy (TEM) evidenced efficient coating of the resulting polyisoprene around 

the oxygen sensitive iron0 nanoparticles.  

 

Keywords: ethylene polymerization, isoprene polymerization, late transition metal 

catalyst, muti-walled carbon nanotubes, muti-walled carbon nanotubes supported 

catalyst, few layer graphene, iron particles, particles supported catalyst, protective 

ability, nanocomposites.   
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Résumé 

Le présent travail de thèse décrit le développement de systèmes actifs de 

polymérisation d’oléfines basés sur des métaux de fin de transition (nickel et fer) 

supportés sur des nanomatériaux. Le chapitre I décrit l’état de l’art des systèmes 

catalytiques supportés ou non pour la polymérisation d’oléfines. Dans le chapitre II, 

nous décrivons la polymérisation de l’éthylène en utilisant des catalyseurs de nickel 

contenant un groupement –NH2 pour leur immobilisation covalente sur nanotubes de 

carbone ; montrant l’influence positive de l’immobilisation : les catalyseurs ainsi 

supportés sont en effet à la fois plus actifs et conduisant à des polymères de plus haut 

poids moléculaire.  

Dans le chapitre III, des complexes de fer contenant un groupement pyrène sont 

décrits et immobilisés sur nanotubes de carbone par interaction non covalente π-π. 

Dans ce cas, à la fois les systèmes homogènes et leurs analogues supportés catalysent 

la réaction de polymérisation de l’éthylène avec des activités particulièrement élevées. 

Il a également pu être mis en évidence l’importante influence du support carboné sur 

les performances du système catalytique ainsi que sur la structure des polymères 

obtenus.  

Différents types de complexes de nickel contenant un ligand imino-pyridine et 

différents groupes polyaromatiques ont été synthétisés et leur utilisation en 

polymérisation de l’éthylène est décrite dans le chapitre IV. L’influence de l’addition 

de faibles quantités de matériaux nanocarbonés (nanotubes de carbone ou graphène) 

au milieu réactionnel a ainsi été étudiée. Le graphène s’est dans ce cas révélé 

particulièrement bénéfique sur les performances du catalyseur.  

Enfin, le chapitre V décrit la polymérisation de l’isoprène à l’aide de catalyseurs 
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de fer contenant des groupements polyaromatiques permettant leur immobilisation à 

la surface de nanoparticules de fer. Ces systèmes ont ensuite pu être confinés dans des 

nanotubes de carbone. Les systèmes catalytiques décrits sont particulièrement actifs 

produisant des polyisoprènes à température de transition vitreuse élevée et avec une 

haute sélectivité cis-1,4-polyisoprène.  
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General introduction 

Polyolefins, in particular polyethylene and polyisoprene, have been used to make 

different kinds of daily used products, so they are seen as one of the great innovation 

of the last century. To discover and synthesize an effective catalyst for ethylene 

polymerization is critical for both the academy and the industry. After several 

generations, the late transition catalysts have drawn more attention because of their 

interesting catalytic behaviors towards ethylene and the easily controlled polyethylene 

produced. However, this kind of catalyst has the same disadvantages as other 

homogeneous catalysts, such as a short life time of active sites and the limitations of 

use in large scale processes. In order to pass those challenges and develop suitable 

systems for most of the industrial processes (slurry or gas-phase reactors), the 

immobilization of such catalysts is required. Nanomaterials (carbon nanotubes, few 

layer graphene or nanoparticles), are attractive candidates as support to immobilize 

homogeneous ethylene polymerization catalysts. Moreover, nanocarbons, due to their 

outstanding and unique mechanical, thermal and electronic properties, are hoped to 

have a positive influence on the catalytic activity and produce advanced polymer 

nanocomposites. 

The present manuscript is composed of five chapters. Chapter I gives a 

comprehensive literature review of unsupported and supported ethylene 

polymerization catalysts. In Chapter II, a family of nickel complexes containing an 

-NH2 function and muti-walled carbon nanotubes (MWCNTs)-supported nickel 

diimine complexes via covalent bonds have been synthesized and used in catalytic 

ethylene polymerization process. For the homogeneous catalysts, the position of the 

-NH2 group has a strong influence on the catalytic activity. The activities of these 
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covalently-attached supported catalysts are higher than for the homogeneous catalysts 

and higher molecular weight polymers are produced. In addition, the kind of the 

CNTs used as support can affect directly the catalytic activity. In Chapter III, iron 

complexes containing at least one pyrene group have been synthesized and been 

immobilized on MWCNTs via π-π interactions between the pyrene group and the 

surface of MWCNTs. Activated by MMAO, the effects of catalyst ligand (pyrene 

group) and of the support have been investigated in ethylene polymerization. The 

homogeneous catalysts promote the formation of polyethylene with high activity, 

evidencing the positive influence of the π-conjugated pyrene substituents on the 

ligand backbone. Immobilization onto the surface of MWCNTs has a great influence 

on the catalytic activity and resulting polyethylene. Nickel complexes bearing 

1-aryliminoethylpyridine ligands or arylimino-(5,6,7-trihydroquinolin-8-ylidene) 

ligands, containing a polyaromatic substituent, have been synthesized and 

polymerization conditions in the presence or not of nanocarbon materials, such as 

MWCNTs or FLG, are discussed in Chapter IV. When activated by MAO, nickel 

catalysts bearing 1-aryliminoethylpyridine ligands exhibit high activities for ethylene 

polymerization producing polyethylene waxes of lower molecular weight and narrow 

molecular weight distribution. The presence of MWCNTs in the catalytic mixture 

allows the formation of waxes of lower molecular weight and polydispersity, whereas 

the presence of FLG proved to be beneficial for the catalytic activity. Compared to 

these nickel complexes, the ones bearing arylimino-(5,6,7-trihydroquinolin-8-ylidene) 

ligands displayed lower activity and produced higher molecular weight polyethylene. 

The presence of MWCNTs did not change significantly the performances in terms of 

activity and the nature of the resulting polyethylene. FLG is also investigated in 

catalytic system and had a positive influence on the catalytic activity. Finally, a series 



 

 3 

of iron complexes bearing 1-aryliminoethylpyridine ligands have been synthesized 

and fully characterized in Chapter V. Using triisopropylaluminum as co-catalyst, 

those iron complexes show excellent activity for isoprene polymerization and 

produced high glass temperature polyisoprene with a high selectivity towards cis 

1,4-polyisoprene. Supporting one of the iron complexes onto Fe0 nanoparticles (NPs) 

via π-π interactions (Cat@NPs) to prepare polyisoprene nanocomposites through 

in-situ polymerization is described. Furthermore, Cat@NPs@MWCNT is produced 

by the confinement of Cat@NPs into the inner cavity of MWCNTs and then used for 

isoprene polymerization. The TEM images of Cat@NPs@PI samples shown that 

NPs are surrounded by the resulting polyisoprene and homogeneously dispersed 

inside. The polyisoprene produced by Cat@NPs@MWCNT are located inside the 

cavities of the MWCNTs and offer effective protection of the particles against air 

oxidation.   
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1.1 General introduction on olefin polymerization catalysts 

Polyolefins are one of the most important discoveries in human life and thus the 

most produced synthetic polymer today [1-2]. Due to the importance of their 

broad-ranging material properties, such as mechanical, thermodynamic and crystalline 

characteristics, and outstanding resistance to oxygen, heat, weathering, chemicals and 

ozone, polyolefins are indispensable materials in the modern living and impact our 

daily lives in countless beneficial ways, including food packages, squeeze bottles, 

containers, plastic shopping bags, storage boxes, gasoline tanks, toys and car bumpers.  

It is reported that the requirement of the plastic production is increasing every year 

(see Figure 1.1), and the requirement will be increased to close to 400 million tons in 

2050 according to the research from the Plastics Europe Market Research Group. 

 

Figure 1.1 Annual world plastic production. 

1.1.1 Background of the homogeneous olefin polymerization catalysts 

One of the major sources of plastic is polyethylene which is produced by 

ethylene polymerization. The polymerization of ethylene was firstly discovered in 
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1933 [3-4], however, the operation was accomplished under harsh conditions with a 

pressure up to 300 MPa and a temperature of 300 °C. Under these reaction conditions 

the process could not be used industrially field. Therefore, finding a useful catalyst is 

the “key” step for the polymerization process, in order to decrease the reaction 

difficulty and the cost of the production. The stability, activity, selectivity and 

regeneration ability are the most important properties to be considered in catalyst 

design. The first key was the combination of TiCl4 and alkylaluminum respectively 

discovered by Ziegler and Natta [5]. Compared with the high-pressure and 

high-temperature free-radical polymerization process, the ethylene polymerization 

conditions using the Ziegler catalyst are milder and activities higher. 20 years later, 

MgCl2 as a support was introduced for TiCl4-based catalytic systems [6]. These 

MgCl2-supported TiCl4 exhibited catalysts activities two orders of magnitude greater 

than Ziegler’s original catalysts, and led to continuous significant improvements in 

the performances of the activity, stereoselectivity, ability to control both the molecular 

parameters and morphology of the resulting polymers, and they opened the way to its 

tremendous recent and still ongoing expansion.  

The catalysts currently used in industrial processes are still dominated by the 

multi-sited heterogeneous Ziegler-Natta catalysts represented by MgCl2-supported 

TiCl4 catalysts. Chromium-based Phillips catalyst [7-8], the group 4 metallocene 

catalysts [9-13] (see Scheme 1.1, A-C) and constrained-geometry catalysts (CGCs) 

(see Scheme 1.1, D) [14-18] have also been investigated as ethylene polymerization 

catalysts and succesfully used in industry process. The firstly discovered group 4 

metallocene catalysts are half-sandwich (Scheme1.1, A), which have been seen as 

derivatives of the Ziegler-Natta catalysts. In the early 1980s, sandwich metallocene 

Cp2MCl2 (M=Ti or Zr) (Scheme1.1, B) catalysts have been discovered by Sinn and 
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Kaminsky [19]. Due to the high activity of those catalysts, different models of group 4 

metallocene catalysts have been developed on the basis of Cp2MCl2 (Scheme1.1, C). 

Using these homogeneous and better-defined metallocenes, products with attractive 

properties could be obtained, such as well-defined structure, little branching and very 

narrow molar mass distribution. Another family of ethylene polymerization catalysts, 

CGCs, has been developed by exchanging one cyclopentadienyl ring by an amido 

moiety (Scheme 1.1, D) [14-15]. Due to the less crowded coordination sphere, this 

kind of catalyst is preferred for copolymerization of ethylene and α-olefins. In 

addition, three major classes of polyethylene are produced by those catalysts: 

high-density polyethylene (HDPE), linear low-density polyethylene (LLDPE) and 

low-density polyethylene (LDPE) [20]. Clearly, these different kinds of polymer have 

their own characteristics and can be used in different fields.  
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Cl
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Scheme 1.1 Group 4 metallocenes catalysts and CGC catalysts. 

Late-transition metal complexes were also proved as catalysts for the 

polymerization in 1978 [21], and attracted the researcher’s attention from then on. 

Those late-transition metal complexes showed some superiorities: 1. The complexes 

are displaying higher activity for ethylene polymerization, or at least similar activity 

with the single-site group 4 metallocene catalysts, 2. The synthetic procedure of those 
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late transition metal complexes is easier, 3. The starting chemical material is cheaper, 

so the use of those catalysts in industry can reduce the production costs and 4. The 

lower oxophilicity and the greater functional group tolerance of late transition metals 

compared to early transition metals, such as Ti, Zr, and Hf, make them likely targets 

for the development of catalysts for the copolymerization of ethylene with polar 

comonomers under mild conditions. 

1.1.2 Background of the homogeneous late transition metal olefin 

polymerization catalysts 

1.1.2.1 Background of nickel complexes as polymerization catalysts  

The first late-transition metal catalysts are the well-known nickel systems used in 

the Shell Higher Olefin Process (SHOP), bearing monoanionic P^O ligands (Scheme 

1.2, A) [22-24]. These catalysts are very selective for the insertion of ethylene versus 

α-olefins, and β-hydride elimination is competitive with olefin insertion, giving 

high-quality, linear α-olefins (C6–C20) from ethylene. 
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Scheme 1.2 Model of the bi-dentate nickel complexes for olefin polymerization. 
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Scheme 1.3 α-diimine nickel complexes catalytic mechanism for ethylene 

polymerization. 

In 1995, a new type of highly active pro-catalysts, a family of new cationic Ni(II) 

and Pd(II) α-diimine catalysts (Scheme 1.2, B), for ethylene polymerization was 

reported by Brookhart’s group [25]. This kind of Ni(II) complexes display high 

activity for the ethylene polymerization, which can compete with the metallocene 

catalysts. In addition, high molecular weight polymer was produced by this kind of 

complexes. The fact that these complexes produce high molecular weight polymer is a 

consequence of slow chain transfer relative to chain propagation. Chain transfer is 

proposed to occur by associative olefin displacement and is hindered by the axial 

bulkiness provided by the ortho-substituents of the aryl rings [20, 26-28]. It is 
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reasonable that modifying the imino carbon and nitrogen substituents of the α-diimine 

ligands can adjust the steric and electronic properties of these nickel complexes. A 

large number of variations have been reported in the academic literature [29–34]. The 

polymers produced by those catalysts are not only high-molecular-weight polymer but 

also lower molecular weight polyolefin, e.g. oligomers and waxes. The catalytic 

mechanism for those α-diimine nickel complexes was also investigated by Brookhart 

[35] and other researchers [36-37] (Scheme 1.3).  

The catalytic mechanism includes 4 steps: 1. Initiation step. The active center 

should be produced by reaction of the nickel complexes with the proper co-catalyst, 

like Methylaluminoxane (MAO) and Diethylaluminium chloride (AlEtCl2), and 

unsaturated cationic species are generated with nickel-alkyl bonds (Scheme 1.3, a). 

Then, a new alkyl nickel complex is produced by the coordination of an ethylene 

molecule to the active center through a Π-nickel intermediate (Scheme 1.3, b). 2. 

Migratory insertion. The coordinated ethylene can migrate and insert into the 

nickel-alkyl bond. 3. β-hydride elimination and chain migration. In this process, 

β-hydride elimination first yields a putative hydride olefin Π-nickel complex. Metal 

migration (chain walking) along the alkyl chain can occur in these species via β-H 

elimination and re-insertion reactions (to species f and g). These migration reactions 

occur without chain transfer. Successive migratory insertion and ethylene trapping 

cycle from species d leads to linear polymer chains, while insertion following chain 

walking leads to the introduction of short branches in the polymer chain [38]. A high 

extent of chain walking leads to the formation of highly branched polymer. It was also 

reported that a decrease of the steric bulkiness of the α-diimine ligand results in a 

lower polymer branching, and formation of high molecular weight polymer [37]. In 

addition, polymer can be tailored through changes in the reaction parameters like 
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reaction temperature, ethylene pressure and reaction time. 4. Termination step. In this 

last step, the polymeric chain is released and the catalytic active species is regenerated. 

Termination occurs mainly by β-hydride elimination or chain transfer.  

Encouragingly, the microstructure of the polyethylene, including the molecular 

weight and polydispersity, could be finely tuned by employing different substituents 

on the ligands [20, 24]. This endows those nickel complexes with possibilities of 

synthesizing new polymers with special microstructures, envisage the 

(co)polymerization of polar monomers and synthesis of value-added products, such as 

linear α-olefins, waxes, and polyethylenes. 

Additionally, some N^N^N [40–44], N^N^O [45-46], N^P^N [47] tridentate 

nickel complexes have been synthesized and used as catalyst for polymerization. 

Those tridentate nickel complexes also displayed high activities for either ethylene 

oligomerization or polymerization. However, the nickel complexes bearing bi-dentate 

ligands exhibit better performances for the production of polyethylene. Therefore 

different kind of bi-dentate N^N nickel complexes were investigated and discussed in 

this thesis. 

1.1.2.2 Background of iron complexes as olefin polymerization catalysts  

Some N^N^N iron (II) and cobalt (II) dihalides complexes bearing 

2,6-bis(arylimino)pyridyl ligand have been reported independently by Bookhart 

[48-49] and Gibson [50-51] groups in 1998. Activated by MAO or EtAlCl2, these 

tri-dentate iron complexes promote ethylene oligomerization or polymerization with 

high activity. The related publications reported that the nature of the metal center have 

a great influence on catalytic productivity and the iron complexes show higher 

activity that their corresponding cobalt analogues. Therefore, publications about the 
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N^N^N iron(II) catalysts based on this ligand framework for ethylene oligomerization 

and polymerization have not stopped. Some examples of those iron complexes are 

shown in Scheme 1.4. 
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Scheme 1.4 Symmetrical or unsymmetrical bis(imino)pyridine iron(II) 

complexes. 

The catalytic mechanism for those bis(arylimino)pyridyl iron(II) complexes is 

similar to the above-mentionned nickel complexes based on the α-diimine ligands. 

However, the polyethylenes produced by those iron complexes are linear unlike the 

branched polyethylene produced by nickel complexes. The size, nature and 

regiochemistry of the substituents in the iminoaryl groups are of crucial importance in 

controlling the polymerization and oligomerization of ethylene. Consequently, 

changes in the aryl group of the ligand on those iron complexes can affect their 

catalytic performances. Bookhart group reported [43] that increasing the steric 

bulkiness of the aryl substituents can increase the molecular weight of the obtained 
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polymers. In the structures A in Scheme 1.4, if the R = isopropyl not only the catalytic 

activity but also the molecular weight are higher than that for R = ethyl. Moreover, 

when one of the ortho substituents is replaced by H (Scheme 1.4, B), the activity of 

the iron complexes decreases immediately, and the products have a broad molecular 

weight range which can change from olefin to wax to lower molecular weight 

polymer [48, 52-53]. However, the alkyl group in the para position on the aryl ring 

has little effect on the catalytic performances [52, 54]. On the other side, the 

electronic density of the ligand surrounding the iron center can also affect products 

formed. Qian reported a series of iron complexes bearing 2,6-bis(imino)pyridyl 

ligands with fluoro substituents in different positions on the aryl group [55]. With the 

modified methylaluminoxane (MMAO) as co-catalyst, all of those iron complexes 

promoted ethylene oligomerization with high α-olefin selectivity. 

Some unsymmetrical bisimino-pyridyl iron(II) complexes were also synthesized, 

where one of the bulky 2,6-diisopropylphenyl groups was replaced by an alkyl or aryl 

substituent. The catalysts derived from such iron complexes are still very active but if 

one of the aryl groups is replaced by an alkyl one (Scheme 1.4, D and E), the catalysts 

typically gave ethylene oligomers instead of polyethylene [56-57]. When an 

anthracenyl polyaromatic ring is introduced as substitutuent of the imino nitrogen 

(Scheme 1.4, E), oligomers are produced with molecular weight from 300-600 g/mol 

[52, 58]. Because all of these unsymmetrical bisimino-pyridyl iron(II) complexes 

have a lower degree of steric hindrance at the axial position, the chain transfer 

reaction is more favored, which results in low-molecular-weight polymers or 

oligomers. 
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1.1.2 Immobilization of homogeneous olefin polymerization catalysts 

After decades of domination by the classic Ziegler-Natta and Phillips catalysts in 

catalytic production of polyolefin, metallocenes and other homogeneous catalysts, 

based on transition metals are now presenting new opportunities for the polyolefin 

industry. Moreover, due to their superiority, like easy synthetic procedure, cheaper 

starting materials and high catalytic activity, some people believe that the 

homogeneous catalysts will replace the established catalyst systems in the near future. 

However, these new polymerization catalysts are soluble systems [59]. The biggest 

problem concerning the homogeneous systems is that during polymerization, 

uncontrollable polymer growth takes place, which causes undesired depositions of 

polymer on the walls and other components of the reactor [60-61]. This is a large 

disadvantage that limits their use in large scale processes. 

A gas phase process is lower in cost and energy consumption in comparison with 

a solution process. As most of the existing polymerization plants run a slurry- and 

gas-phase process with heterogeneous catalysts, the homogeneous catalysts must be 

heterogenized on a support in order to be applied in those processes. In addition, the 

heterogenization of the polymerization catalysts is necessary to avoid reactor fouling 

with finely dispersed polymer crystals, to prevent excessive swelling of polymers, and 

to produce polymer particles of a desired regular morphology. Therefore, various 

inorganic materials, such as silica gel [62-64], MgCl2 [65-67], Al2O3 [68-70], MgO 

[70], carbon nanotubes (CNTs) [71-74] etc. have been used as support to immobilize 

homogeneous polyolefin catalysts. 

The immobilization routes reported in the literature for supported catalysts can be 

described as follow (Figure 1.2): Path 1. Immobilization of the co-catalyst, like 

methylaluminoxane (MAO), on the support, followed by reaction with the metal 
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compound [75]; Path 2. Direct impregnation of metal complex on the support [60-61, 

70]. This second method is the most widely used; and Path 3. Immobilization of the 

ligands on the support, then reaction with a metal salt [61, 76]. Moreover, using 

different preparation routes for supported homogeneous catalysts can have a great 

influence on catalytic activity and on the polymer properties. 

 

Figure 1.2 Classical methods for immobilization of ethylene polymerization 

catalysts. 

1.1.2.1 Silica supported homogeneous ethylene polymerization catalysts  

According to the literature of the heterogeneous polymerization catalysts, silica 

gel is a support of choice for the immobilization of homogeneous catalysts [63]. One 

of the major reasons is that it has a large surface area and silanol groups on the silica 

surface offer a high degree of surface functionality [60], which can be an advantage to 

immobilize catalyst components. Moreover, other properties like good mechanical 

properties [77] and stable behavior under reaction conditions made silica a good 

candidate as support. 

Since the end of the last century, group 4 metallocene derivatives have been 

supported on silica gel and used as catalysts for ethylene polymerization [60, 78]. 
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Later, as the late transition metal complexes display high activity, silica supported 

nickel (II) [61, 79-80] and iron (II) [81] catalyst have been investigated. However, the 

catalytic activity of the supported catalysts is always lower than their soluble 

counterpart [59, 61], with few exceptions reporting that silica has a positive effect on 

the polymerization activity [82-84]. There are several parameters influencing the 

activity, such as the type of the silica [85], particle size of silica [86], pore volume 

[87], pore diameter [85], particle size distribution [88] etc. Moreover, the reaction 

conditions, which are used to produce the immobilized catalysts are also important for 

homogeneous catalysis grafted density and catalytic activity, such as: 1) The 

temperature which is used to activate the silica has a great influence of the –OH group 

on the surface; and 2) The immobilization route used to prepare the silica supported 

system is an important parameter for the catalytic activity. 

1.1.2.2 Spherical MgCl2-supported homogeneous ethylene polymerization 

catalyst  

After SiO2, MgCl2 has been used as support to support homogeneous catalysts 

like group 4 metallocene catalysts [65, 89], non-metallocene group 4 catalysts [65, 67, 

90-91] and late transition metal catalysts [67, 92-97]. Unlike SiO2, there are no 

hydroxyl groups on the surface of MgCl2, so it is difficult to support the homogeneous 

catalyst or MAO onto its surface. One useful way reported was the preparation of 

spherical MgCl2·nEtOH adducts by reaction of MgCl2 with ethanol. Before 

supporting the homogeneous catalyst, formation of the Mg-O-Al active product is the 

necessary step to immobilize the MAO on the surface of MgCl2 (Figure 1.3).  
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Figure 1.3 MgCl2 supported MAO. 

According to literature reports, the spherical MgCl2·nEtOH adducts are a simple 

and effective support for the immobilization of homogeneous catalysts, facilitating 

their potential use in industrial process for ethylene polymerization. Chadwick 

reported that narrow molecular weight distribution polyethylene was obtained by the 

heterogeneous catalysts supported by MgCl2 [90, 93]. Polymerization activity 

produced by the MgCl2–supported catalyst at lower grafted homogeneous catalyst 

content is higher than that of the corresponding homogeneous catalyst. At the same 

time, the presence of the MgCl2 is relatively extending the lifetime of the catalyst. 

Similar to SiO2, the –OH density on the support surface and the method to graft the 

homogeneous catalyst on the surface of the support are important parameters for the 

catalytic activity. 

1.1.2.3 Other inorganic Supports supported homogeneous ethylene 

polymerization catalyst  

As we know, each support has its own nature and textural properties,  

immobilization of the homogeneous catalyst onto different support aim to determining 

the best supports for the development of a supported catalyst for ethylene 

polymerization. In addition to the above-mentioned SiO2 and MgCl2, other inorganic 

supports, like MgO [98-100], Al2O3 [98-99, 101], etc., were also used to immobilize 

ethylene polymerization catalysts. Similar to SiO2, the temperature has a great 

influence of the -OH groups on the surface of the MgO and Al2O3. It means that the 
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temperature can affect the basicity of the supports surface as well as the weight 

percent of the homogeneous catalyst in the immobilized system. Zirconium 

complexes were supported by MAO-modified MgO and Al2O3 and investigated in 

polymerization process by Basso et al. [70]. It was reported that, under the same 

conditions, MgO and Al2O3 supported zirconium complexes show lower catalytic 

activities compared to their silica analogues. Similar results have been observed for 

other non-metallocene supported catalysts [98]. The reason for this observation was 

attributed to the textural properties of the support. 

Zeolites, which are characterized by narrow pore size distribution and large 

surface area, have also been studied as support to support ethylene polymerization 

catalysts [102-103]. Unlike amorphous silica, zeolites have a more regular structure, 

pore size and supercages. Metallocene catalysts have been immobilized on various 

zeolites varying the metal or the groups on their surface [59, 63, 102-105]. These 

studies evidenced that these supported catalysts show a large decrease in activity but 

an increase in polymer molecular weight when compared to the corresponding 

homogeneous systems. Moreover, diffusion effects seem to be a limiting factor of the 

performance of zeolite-supported polymerization catalysts. Higher amounts of 

homogeneous catalysts fixed on the support led to lower activity and the 

accommodation of the homogeneous catalysts can by controlled by pore size and the 

initial bulk Si/Al ratio of the zeolite [59, 63]. Therefore, other mesoporous materials 

like molecular sieves, MCM-41, ZSM zeolites and VPI-5, were investigated to reduce 

the zeolite bulk Si/Al ratio in order to immobilize a various range of homogeneous 

catalysts and improve their polymerization activity [102, 105-109].  
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1.2 Literature review of carbon nanomaterial supported 

catalysts 

1.2.1 General introduction on carbon nanomaterial supported 

catalysts 

 

Figure 1.4 Structure of a) fullerenes; b) carbon nanotubes; c) graphene. 

Since fullerenes (Figure 1.4, a) have been discovered by Smalley et al. in the 

mid-1980s [110], researchers have focused on the area of carbon nanomaterials. A few 

years later, carbon nanotubes (Figure 1.4, b) [111] and graphene (Figure 1.4, c) 

[112-114] have been synthesized and investigated. It is the chemical genius of carbon 

that it can bond in different ways to create structures with entirely different properties. 

Two kinds of carbon nanomaterials are described and used in this thesis. Few 
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layer graphene is a layered structure with pure carbon, which is made out of carbon 

atoms arranged on a honeycomb structure made out of hexagons (Figure 1.4, c) and 

can be thought of as composed of benzene rings stripped out from their hydrogen 

atoms. Carbon nanotubes can be considered as a rolled-up sheet of graphene. Carbon 

nanotubes can be divided in two categories. Multi-walled carbon nanotubes 

(MWCNTs) were the first to be discovered by Iijima in 1991 [111], then single-walled 

carbon nanotubes (SWCNT) [72, 115] were synthesized two years later (Figure 1.5). 

 

 

Figure 1.5 Single walled-carbon nanotube (SWCNT, left) and multi 

walled-carbon nanotube (MWCNT, right). 

Due to their unique properties such as extremely high mechanical strength, high 

electrical, and thermal conductivity [111, 116-119], carbon nanomaterial are expected 

to have a great impact in a wide range of advanced technological applications [117, 

120], including mechanical [117-118], sensors [121], probes [122], automotive [123], 

aerospace engineering [120], high-strength composites [73, 120, 124-126], gas 

storage [127-130] and energy storage [131-133]. Moreover, carbon nanomaterials 

have been attractive as fillers in polymer-based nanocomposites [71, 73-74, 124, 126, 

134-136]. The properties of these composites are dependent on the structure, degree 

of concentration and dispersion of nanocarbons, and interactions between polymer 
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and nanofiller loads. 

Along with the price fall down and derived by the commercial process, carbon 

nanomaterial instead of the conventional silica or alumina is reported to be a new 

support to produce supported catalyst. Like inorganic support, carbon nanomaterials 

have a large surface area, which serves as the support, to form supported catalyst. 

Moreover, carbon nanomaterials have other exceptional physical and chemical 

properties, like good thermal conductivity, small size, electron mobility, relatively 

high temperature, oxidation, basic and acid stability, making them useful support 

material for heterogeneous catalysis. For those reasons, the presence of carbon 

nanomaterial can be expected to increase the catalytic activity, enhance the catalytic 

life time and reduce the reaction time.  

Considering these advantages, carbon nanomaterial immobilized molecular 

catalysts have been prepared. Transition metals complexes, like Co [137], Ni [138], 

Ru [139-140], Ti [141-142], Zr [143-148], Mn [149-150], Au [151], Cu [152] have 

been supported on carbon nanomaterial and used in different catalytic reactions. 

According to the investigations, the presence of the carbon nanomaterial affords the 

possibility to increase the catalytic activity, improve the reaction selectivity. This is 

partly since, in a supported catalytic system, the significance of using the carbon 

nanomaterial as support are to increase the dispersion of the active phases and have an 

influence on the active center. In addition, carbon materials have also been widely 

used as support for metallic nanoparticles as catalysts. One example for this is CNTs 

supported platinum and nickel catalysts used in dehydrogenation reactions [153]. 

As trends in technological and scientific progress, there is an increasing number 

of publications dealing with polymerization catalysts immobilized on carbon 

nanomaterial [143–144]. Smaller particle sizes, more finely dispersed to optimize 
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yields, decrease in reaction times, possibility to run gas-slurry processes, are reasons 

why nanomaterial supported catalysts have received attention and they are known to 

offer the possibility to display higher catalytic activity. In addition they represent a 

new way to produce polymer nanocomposites [154]. To obtain a carbon nanomaterial 

supported catalyst, the first step is to load the catalytic materials on the surface of 

nanocarbon. Similar to the heterogeneized catalysts supported on other inorganic 

support, like SiO2 or Al2O3, several factors affect the heterogeneous catalysts prepared 

as well as their activity. 1) The kind of the carbon nanomaterial used to support the 

homogeneous catalyst; 2) the method to graft the homogeneous catalyst onto 

nanocarbon; 3) the particle size and the homogeneous catalyst distribution on the 

surface of nanocarbon. In order to display high activity, well dispersed homogeneous 

catalysts on the nanomaterial is necessary (Figure 1.6). A variety of synthetic 

strategies for nanocarbon/metal catalyst can be used and they can be classified into 

two categories: immobilization through covalent or non-covalent interactions. 

 

Figure 1.6 Carbon nanomaterial supported catalyst. 
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1.2.2 Covalent and non-covalent functionalization of carbon 

nanomaterial and applications in catalysis 

1.2.2.1 Covalent functionalization 

Covalent functionalization involves formation of covalent bond(s) between 

various functional groups and the sidewalls or defect sites on tips of carbon 

nanomaterials. Purified and oxidized nanocarbons bear functional groups such as 

hydroxyl and carboxyl on their surface [117]. Those groups can react with some 

complexes with polar groups and the immobilization catalysts are produced through 

covalent bonding.  

1.2.2.1.1 Carbon nanomaterial supported catalyst through an amide linkage 

Amide bond is a typical way to covalently attach organic compounds to the 

functional group of nanocarbons [155-159]. It is reported in the literature that the 

oxidized nanocarbons are the most promising for the coating process. The important 

step before “grafting” is to oxidize the purified carbon nanomaterial. As shown in 

Scheme 1.5, after oxidation by HNO3, some sp2 C=C bonds are opened and more 

carboxylic groups are introduced on the surface. The purpose of this step is to 

increase the coating sites on the support surface. This treatment can also shorten the 

length of CNTs. Before reaction of the compound containing the amine group with the 

oxidized nanocarbon, a necessary step is the reaction of the carboxylic function of the 

nanocarbon with thionyl chloride (see Scheme 1.6) [157]. 
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HNO3
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Scheme 1.5 Oxidation of carbon nanomaterial. 

   

 

Scheme 1.6 Amide functionalization of oxidized carbon nanomaterial. 

Instead of the amine group, compounds containing an alcohol function can link to 

the nanocarbon sidewalls by carboxylic group [74, 160-161]. According to the above 

reaction mechanism, some ring-opening polymerization catalytic systems was 

investigated and nanocarbon composites have been produced [156, 162]. Covalent 

functionalization is irreversible and the covalent bond is relatively strong, so that the 

polymer produced can load well around the surface of the carbon nanomaterial. 

This grafting-form strategy is the normal way to catch the catalyst on the sidewall 

of the nanocarbon. The method is also an useful way to prepare ethylene 

polymerization heterogeneous catalysts. Due to the covalent bond and the 

nanocarbon’s unique physical and chemical properties, the nanocarbon as a support 

ligand can have a great influence on the polymerization activity. 
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1.2.2.1.2 Carbon nanomaterial supported catalyst through alkylaluminum  

Alkylaluminums such as MAO or modified methylaluminoxane (MMAO) were 

reported by several groups as the medium to produce heterogeneized catalysts. This 

approach has been successfully applied for producing CNTs supported ethylene 

polymerization catalysts [154, 163-167]. Most of the supported catalysts are group 

IV-based homogeneous catalyst, in particular catalysts containing cyclopentadienyl 

(Cp) as ligand. The distinct features of this method are: (1) Co-catalysts, MAO, for 

example, react with well dispersed CNts. This leads to the immobilization of MAO 

molecules on nanocarbon surface by loose ionic interactions and, to a lesser extent, by 

virtue of covalent bonding (Scheme 1.7) to −COOH or −OH groups, which are 

inherent to partially oxidized nanocarbon, and (2) The formation of catalytic active 

sites is accomplished by means of heterogenization of the metallocene catalyst 

precursor on nanocarbon surface owing to chemical interaction of metallocene with 

MAO. Then the active sites formed directly during the initial stage of polymerization 

at lowered temperature.  
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Scheme 1.7 Immobilization of the catalyst on nanocarbon through MAO.  

MAO molecules chemically grafted to CNTs surface form catalytic active 

species, yielding polymer chains attached directly to nanotubes. This represents an 

excellent way to improve the metallocene/alkylaluminoxane catalytic system and a 
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new method to cover the carbon nanomaterial by polymer. Moreover, nanocarbons 

unique physical and chemical properties are hoped to have a positive influence on the 

activity of the metallocene/alkylaluminoxane catalytic system, due to the covalent 

bonding between MAO and carbon nanomaterial.  

1.2.2.1.3 Carbon nanomaterial supported catalyst through other methods 

Similar to the above-mentionned MAO, some other inorganic oxides were used to 

functionalize the sidewall of the carbon nanomaterial. About ten years ago, it was 

reported that the nanocarbon could support the Ziegler-Natta catalyst though 

MgCl2/nOH [168]. Even though, the mechanism of this supported catalyst is not clear, 

the polymerization process have successfully been accomplished. Later, inorganic 

support Fe3O4/nOH was used to functional the sidewall of the nanocarbon and support 

[Sn(Oct)2] (Oct = octanoate) for the ring-opening polymerization [169].  

It is well known that the nanocarbons contain many deviations from pure 

hexagonal structure, which are potentially reactive and can be attacked by 

nucleophiles such as lithium metal and its alkyls. The lithium is a good leaving group, 

so, the lithium-functionalized nanocarbon can link to an halogenated compound 

through a chemically bond (Scheme 1.8, top). Fluorination is a new method for the 

functionalization of nanocarbons, and an excellent way to locate the compound onto 

the sidewall of nanocarbons [170]. During the grafting, HF is easy to produce in 

defluorination and the sp3 carbon-carbon bonds are created between carbon 

nanomaterial and the organic compound (Scheme 1.8, bottom). Until now, those 

methods have not been used to form ethylene polymerization heterogeneous catalysts. 

However, it can’t be denied that those methods are worth being considered in the 

polymerization field. 
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Scheme 1.8 Catalyst covalent immobilization on Li-nanocarbon (up) and 

F-nanocarbon (bottom). 

1.2.2.2 Non-covalent functionalization 

Non-covalent functionalization is based on attraction between the hydrophobic 

end of an adsorbed molecule and the sidewalls of nanocarbon via van der Waals 

forces or π–π interactions. Non covalent functionalization can also be performed 

using cation- π electrostatic interactions. This type of functionalization does not 

interfere with the electronic structure of nanocarbons, as it does not involve covalent 

bonds. The technique is useful for the production of surfactant to exfoliate bundles of 

CNTs. The main drawback of non-covalent bonding is that it is difficult to control the 

functionalized system and to characterize the product.  
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1.2.2.2.1 Carbon nanomaterial supported catalysts via van der Waals forces or π–π 

interactions 

Carbon materials differ in their structure, which results in the variation of surface 

free energy characteristics and ultimately in altered adsorption profiles. Moreover, to 

functionalize without damaging the π-electronic structure of nanocarbons, 

non-covalent attachments seem to be more promising than the covalent attachments. 

Among the available non-covalent functionalization approaches, the simplest method 

involves direct π-π stacking of compounds containing aromatic groups. This method 

has been successfully reported in lots of publications about the π–π interaction 

between the sidewalls of the nanocarbons and the aromatic moieties of various 

compounds [138, 140, 151-152, 171-179]. Different polycyclic aromatics rings were 

investigated in those publications and the most used aromatic moieties are Cp ring 

[174], benzene ring [179], naphthalene ring [171, 179], anthracene ring [152, 178] 

and pyrene ring [138-140, 151-152, 171-172]. It is reported that those aromatic 

moieties can locate very well on the surface of the nanocarbon through π–π 

interactions, which are possible since those aromatic moieties are electron-rich groups 

and have similar structures than the one of nanocarbons (Figure 1.7, up). However, 

compared to a covalent bond, the π–π interaction is weaker. Therefore the 

incorporation procedure will be greatly influenced by the reaction conditions, like the 

solvent used and the reaction temperature. 
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Figure 1.7 Schematic representation of the interaction between a nanotube 

surface and polycyclic aromatic compounds. 

Pyrene moiety is the mostly used to interact with carbon supports through π–π 

interactions. These reversible interactions have already been used for various 

applications: 1) Nickel complexes containing a pyrene group have been immobilized 

through these non-covalent interactions on CNTs and used for catalytic purposes, 

specifically for H2 evolution and uptake [138]; 2) Reiser et al. have prepared carbon 

coated cobalt nanoparticles to non-covalently maintain a pyrene-modified palladium 

complex on the carbon shell to perform the hydroxycarbonylation of aryl halides in 

water [180]; 3) A pyrene-tagged ruthenium complex was also immobilized via π–π 

stacking on SWCNTs to achieve stable and recyclable catalytic species to promote 

ring-closing metathesis reactions [139]; and 4) This strategy was also used to produce 

heterogeneous catalysts for ethylene polymerization by Park et al. [144, 181-182], 

which reported that the intimate interaction of the nanocarbon with the 

cyclopentadienyl ring catalyst has a great influence on the catalytic nature in their 

polymerization performances.  

1.2.2.2.2 Carbon nanomaterial supported catalyst via π–ionic interaction 

Compounds containing an ionic part can locate on the surface of the nanocarbons 

via π–ionic interaction, due to the specific electrical properties of the nanocarbons. 
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This method, which is used to functionalize the nanocarbons, is easier and greener, 

most of the reactions can be carried out mixing the nanocarbons with an aqueous salt 

solution. 

Most of the investigations in this field are about nanocarbons functionalized by 

ionic liquids [183-186]. Usually, the ionic liquids are N-containing cations. The π–

ionic interactions between the N-containing cation and the π-electrons of nanocarbons 

have been certified by the Raman and IR spectrocopy. Subramaniam et al. [183] 

reported that both D and G bands in the Raman spectra are shifted for MWCNTs 

physically modified by an ionic liquid, which they attributed to π– ionic interactions. 

Above all, the nanocarbons have the ability to attach a wide range of chemical 

species at active sites, such as the sidewall, tubular tips or the defect areas, via 

covalent or non-covalent bonds. Furthermore, the resulting heterogeneous catalysts 

supported by nanocarbons have been investigated in different areas such as hydrogen 

evolution and uptake [138], hydrogenation reaction [153] and so on.  

1.2.3. Nanocarbons supported ethylene polymerization catalyst  

No doubt that how important the catalyst it is for a chemical reaction, the finding 

of an effective catalyst is also the key step for the polymerization. As already stated, 

heterogeneous catalysts supported by inorganic support have been reported. Moreover, 

some of them have been successfully used into industrial processes. It is worth 

mentioning that nanocarbons have the key properties, similar to the inorganic support 

used, such as large surface area, high thermal conductivity, porosity, etc. Moreover, 

nanocarbons are much more stable to the pH, temperature and oxygen. Therefore, 

nanocarbons have the potential possibility to support the homogeneous catalysts for 

applications in polymerization processes.  
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Nanocarbon supported heterogeneous catalysts for the polymerization have been 

studied. Various publications reported different kinds of polymerization processes for 

a wide variety of monomers, such as the ethylene polymerization [136, 154-164], 

propylene polymerization [134, 163], norbornene polymerization [143], styrene 

polymerization [187] and the caprolactone ring-opening polymerization [169]. Among 

them, the catalysts for the ethylene polymerization represent the most important part.  

As described above, the coordination catalysts, which were used for the ethylene 

polymerization have been produced using different methods. In the last decade, some 

of the classic homogeneous catalysts have been anchored to nanocarbons and then 

investigated in polymerization reactions. It is reported that the presence of the 

nanocarbons can affect the activity and has a great influence on the produced polymer. 

During the polymerization reaction, the polymer produced is around these 

heterogeneous catalysts. In this way, high grafting density can be achieved and the 

ethylene can be polymerized from the nanocarbon’s surface. This represents a new 

way to produce polymer nanocomposites. Moreover, the nanocarbons are uniformly 

dispersed and no aggregation is observed in those nanocomposites produced by in-situ 

polymerization (Figure. 1.8). 
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Figure 1.8 Process of the polymerization by nanocarbon immobilized catalyst. 

Ziegler-Natta catalyst is well-known as a classic catalyst for the ethylene 

polymerization. New catalytic systems where CNTs are coated by the Ziegler-Natta 

catalyst through MgCl2/nOH were synthesized and investigated as polymerization 

catalysts [134, 168]. It is reported that the polymer is effectively coating the CNTs, 

and that the presence of the CNTs can increase the polymer’s mechanical properties 

and its melting point or glass temperature. Half-sandwich catalysts (CpMCl3, M = Ti, 

Zr and Sc) [71, 182], the sandwich catalysts (Cp2MCl2, M = Ti, Zr and Sc) [143-144, 

163] and their derivatives are reported to be supported on CNTs and graphene [181]. 

Two different methods are used to anchor these catalysts to nanocarbons: 1. Simple 

mixing of the nanocarbon and the catalyst, the latter is then is absorbed on the 

nanocarbon’s surface via Cp ring; and 2. Anchoring of the catalyst on the sidewall of 
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the nanocarbon through co-catalyst by covalent bonds. Whatever the method used to 

support the catalyst, the presence of the nanocarbon was reported to have an influence 

on the polymer properties, such as high molecular weight and melting point. Results 

concerning data obtained using nanocarbon-supported Cp2MCl2 (M = Ti or Zr) 

catalysts are summarized in Table 1.1 [143-144, 163]. In addition, few reports 

mentionned the effect of the nanocarbons on the ethylene polymerization and showed 

that the presence of the CNTs or graphene can be beneficial to the catalytic activity 

(Table 1.1). It is necessary to mention that if those supported catalysts not only 

polymerize ethylene, some of them have been successfully used to co-polymerize 

ethylene with other monomers, such as norbornene [143] and α-olefin [164]. 

 

Table 1.1 Activity and properties of resulting polymer obtained by 

nanocarbon-suported Cp2MCl2, M= Ti or Zr catalysts 

Entry Support Cat. Activity a 

106 

Mw
b 

(kg·mol-1) 

Tm
c 

(°C) 

1 MWCNTs Cp2ZrCl2 1.0 314-538 132-135 

2 MWCNTs Cp2TiCl2 - 266-2270 131-136 

3 MWCNTs Cp*2TiCl2 - 229-1060 133-136 

4 graphene Cp2ZrCl2 3.5 700-1070 132-133 

5 graphene Cp2TiCl2 2.4 520-1490 128-131 

a g/(mol (metal) h·atm)-1; b determined by GPC; c determined by DSC. 

In addition to the catalysts based on group IV metals, late transition metal 

catalysts can also be grafted on nanocarbons and be investigated in the ethylene 

polymerization reaction. These catalysts can be supported by nanocarbons through 

non-covalent or covalent, approaches depending on which kind of group is used to 
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anchor on to the nanocarbon. A series of nickel complex with the amino group have 

been synthesized and grafted on carbon nanotubes by Kemp at al. [155]. Both the 

supported catalysts and unsupported catalysts showed good activity, with the 

supported catalysts being more active.  

Due to their extraordinary properties, nanocarbons can provide excellent 

advantages in polymerization catalytic system, such as, increase the catalytic activity, 

boost the reaction selectivity and change the produced polymer and nanocomposite’s 

properties. One question must come to our mind is how the nanocarbon affect the 

reaction activity? Before answering this question, one must remember that the great 

factors which influence the catalytic activity of the homogeneous systems are the 

electronic density and the bulkiness around metal center provided by the ligand. 

Therefore, how the nanocarbon affects the catalytic activity as well as the properties 

of the nano/polymer composites are discussed as follow. 

1.2.3.1 Electronic properties affecting the polymerization 

Whether one considers SWCNTs, MWCNTs or graphene, the arrangement of the 

carbon atoms determines the surface and the electronic properties of those 

nanocarbons. When the homogeneous catalyst anchored on these nanocarbons 

through non-covalent or covalent interaction, there should be a strong interaction 

between the homogeneous compound and the nanocarbons. This naturally has an 

effect on the electron properties of the metal loaded onto the support [154] and 

therefore will have a further influence on the catalytic activity.  

Moreover, the π-electron of the support has an effect on the produced 

nano/polymer composites. As mentioned above, after the polymerization, the polymer 

produced by the supported catalyst coats the surface of the nanocarbon. The 
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interaction that emerged between them can affect the properties of polymer.  

1.2.3.2 The large bulkiness affects the polymerization 

As mentioned before, the steric hindrance around of the metal center is one of the 

important factors influencing the catalytic reaction. The heterogeneous catalysts have 

a direct interaction between the active center and the nanocarbons support. The 

nanocarbon is a huge group compared to the organic species. Nanocarbon supports, 

which can be considered as macro-ligands, are then introduced into the 

polymerization process. The large bulkiness of this macro-ligand has a great influence 

of the chain walking and the monomer insertion during the polymerization reaction. 

By this way, the presence of the nanocarbon plays an important role in the catalytic 

activity and the branching of the polyethylene as well as their molecular weight. 

1.2.3.3 Thermal conductivity affects the polymerization 

 The productivity of the catalysts is intimately tied to the temperature, which can 

affect the life time of the active species as well as the feature of the resulting 

polyolefin, like molecular weights, molecular weight distributions, and degree of 

branching [20, 28]. Olefin polymerization is a highly exothermic reaction and the 

formation of hot spot in the reaction mixture is generally not beneficial to the stability 

of the supported catalytic active species. This is particularly true for the oxide 

supports. This means that the reaction temperature could locally increase during the 

reaction and then accelerate the active species decay. Nanocarbon supported catalysts 

can slow down the decay of catalysts and increase the lifetime of the catalytic active 

species due to the high thermal conductivity property of nanocarbon materials 

(between 200 and 600 w/m·K). Moreover, the presence of the nanocarbons can 
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enhance the thermal conductivity of resulting nanocomposites, then, improve their 

industrial applicability 

1.2.3.4 Other unique properties affecting the polymerization 

One reason to consider nanocarbons as suitable supports for metal catalyst is the 

high surface to volume ratio. High surface areas and a well-developed porosity are 

essential for achieving large metal dispersions, which usually result in a high catalytic 

activity. On the other hand, the surface areas and porosity offer the possibility to 

adsorb the ethylene gas via π-π interaction. The in-situ polymerization is carried out in 

gas-slurry processes. So the unique property of the nanocarbon can increase the rate 

of monomer insertion. In another word, ethylene monomer adsorption on the surface 

of the nanocarbon can increase the effectiveness of the catalyst. 

The nanocarbons are reported to be harder than iron, at the same time 

nanocarbons are flexible and can be bent several times at 90° without undergoing 

structural changes. The covalent sp2 bond and the porosity of the material result in the 

high strength of the nanocarbon (Figure 1.9), which is not only positive for the 

vigorously stirred liquid phase reaction, but favorable in producing polymer 

nanocomposites. The presence of the nanocarbon has a great influence in the 

polymer’s properties, and can increase the polymer technical property, raise the 

polymer thermal conductivity, enhance the polymer resistance to the stress, and so on. 

Therefore polymer nanocomposites are seen as a material for future that can be used 

in some high-tech fields. 
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Figure 1.9 Mechanical properties of nanocarbons. 

1.3 Conclusions  

Polyethylene has been used to make different kinds of daily used products, so it is 

seen as one of the great innovation of the last century. To discover and synthesize an 

effective catalyst for ethylene polymerization is critical for both the academy and the 

industry. After several generations, the late transition catalysts have drawn more 

attention because of their interesting catalytic behaviors towards ethylene and the 

easily controlled polyethylene produced. However, this kind of catalyst has the same 

disadvantages as other homogeneous catalysts, such as a short life time of active sites 

and the limitations of use in large scale processes. In order to pass those challenges 

and develop suitable systems for most of the industrial processes (slurry or gas-phase 

reactors), the immobilization of such catalysts is required. 

In the last decade, due to their high surface area, dispersed functionalized groups 

on the surface and good mechanical properties, various kinds of the supports, such as 

silica gel, MgCl2, Al2O3 MgO and zeolites, were investigated in the field of olefin 

polymerization. Catalysts based on both early and late transition metals were 

supported on those inorganic supports. Detailed studies evidenced a strong correlation 

between the polymerization activity of those supported catalysts and both the nature 

of the supporting material and the size, diameter and distribution of the pores.  
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Nanocarbons (CNTs or FLG) were also used as support in catalysis in recent 

years, due to the characteristics of nanocarbons, such as interness, stability under 

reaction and regeneration conditions, high surface area and porosity, etc. Moreover, 

naonocarbons have some of unique properties, e.g. high thermal conductiviy, 

mechanical and electronic properties. Most of the typical homogeneous catalysts have 

been anchored via non-covalent or covalent interactions. As shown in Table 1.1, the 

best activities are observed for CNTs or graphene supported Cp2MCl2 (M= Zr or Ti) 

catalysts systems producing high molecular weight polymer. In addition, during the 

polymerization, the olefins can be polymerized from the nanocarbon’s surface that can 

thus be covered by the resulting polymers. In this way, the nanocarbons can be 

homogeneously dispersed into resulting polymers and non aggregated polymer 

nanocomposites could be obtained.  
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Chapter 2: Carbon nanotubes supported nickel 

catalysts via covalent bonds for ethylene polymerization 
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2.1 Introduction 

In addition to the non-covalent approaches, functionalization of carbon nanotubes 

via covalent bond formation is a useful strategy. Due to their unique chemical and 

physical properties, the chemical modification of the carbon nanotubes via covalent 

bonds has been the subject of intense recent interest. Covalent functionalization can 

be realized by chemical modification of carboxylic acid group introduced on the 

carbon nanotubes by acidic treatment, typically using nitric acid.  For instance, 

amide or ester linkage between the compound and the defect-derived carboxylic acid 

moiety on the carbon nanotube surface can be used to perform covalent anchoring 

[1-5]. Besides that, direct addition of reagents to the sidewalls of carbon nanotubes is 

also a possible alternative [6-8]. Polymeric nanocomposites were reported to be 

prepared by simply reacting butyllithium-functionalized carbon nanotubes with 

halogenated polymers [7]. 

Carboxylic groups are introduced by nitric acid oxidation that occurs first on the 

CHn groups [9]. This means that the carboxylic groups are more easily produced at 

the sidewall, defected areas and the open ends of the carbon nanotubes [10]. Therefore, 

in order to get more coating sites, mechanical cutting of purified carbon nanotubes by 

ball-milling is necessary. In rational functionalization strategies used to modify 

carbon nanotubes using surface chemistry, oxygen containing functional groups are 

often subjected to chemical transformations; for example, -COOH groups are 

transformed to acid chlorides as a route to create aminated carbon nanotubes [4, 11]. 

Hence, organic compounds [1, 4], metal complexes [12], or particles [13] containing 

an NH2 group can be covalently anchored to carbon nanotubes. In addition, the 

surface of carbon nanotubes used in reinforced polymer composites is often modified 
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covalently by the addition of polar functional groups, not only to improve dispersion 

properties but also to enhance chemical interactions with the resin matrix [2-4]. 

The covalent bond formed is irreversible and stronger than non-covalent 

interactions. The presence of the carbon nanotubes has a great effect on the electronic 

density of complexes. Carbon nanotubes which have an important steric bulkiness can 

act as a macro-ligand for the catalyst. In other words, the presence of the carbon 

nanotubes offers the possibility to tune, electronically and sterically, the reactivity of 

the grafted metal catalytic species. 

Nickel complexes as olefin polymerization catalysts were firstly investigated in 

the 1980s [14-15], and were sublimated by Brookhart and Gibson in the 1990s 

[16-17]. From then on, nickel-based ethylene polymerization catalysts have been 

synthesized by varying the ligand surrounding the nickel center [18-19]. Recently, a 

series of nickel catalysts have been supported on carbon nanotubes via covalent bond 

(C–N) and were investigated in catalytic polymerization [20]. To the best of our 

knowledge, this example is the only report up to date of late transition metal complex 

supported on CNTs for ethylene polymerization.  

In this chapter, we describe the synthesis of a series of task-specific nickel(II) 

complexes containing an amino group. Those nickel complexes were immobilized on 

the surface of the MWCNTs via covalent amide bonds. It is clear that for those nickel 

complexes, both the steric and electronic environment are modified by the carbon 

nanotubes through direct interaction between the complexes and the CNTs surface. 

Our research focus is to explore the effect of the CNTs as macro-ligand in ethylene 

polymerization. The detailed catalytic results and the influence of CNTs on the 

activity are discussed below.  
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2.2 Results and discussions 

2.2.1 Characterization of the nickel complexes Ni1–Ni4 and the 

supported catalyst  

Nickel complexes (Ni1–Ni4) were synthesized in a one-step procedure with 

5,6,7-trihydroquinolin-8-one, the corresponding anilines and NiCl2·6H2O in ethanol 

with a catalytic amount of acetic acid (Scheme 2.1). All complexes are obtained as 

yellow and stable solids. Ni1–Ni4 show in the IR spectra, strong bands in the range 

1593−1599 cm-1 region, that can be ascribed to the stretching vibration of C=N. An 

amino group is introduced into those nickel complexes, in order to carry out their 

covalent immobilization on the MWCNTs surface. 
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Scheme 2.1 Synthetic procedure of Ni1–Ni4. 

Two kinds of MWCNTs (Figure 2.1) have been used in this study in order to 

compare their effect on the polymerization activity. The pristine multi-walled carbon 

nanotubes CNTC were obtained from Cnano (97% purity) and multi-walled nanotubes 
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CNTF (98% purity, 2% iron catalyst) were synthesized in our laboratory by chemical 

vapor deposition according to previously reported procedures [21]. 

 

Figure 2.1 TEM micrographs of pristine (a) CNTF and (b) CNTC.  

The textural properties of those MWCNTs are summarized in Table 2.1. 

 

Table 2.1 Textural properties of CNTs. 

Samples BET 

(m2/g) 

Mean pore diameter 

(nm) 

ID/IG
a dex 

(nm)b 

din 

(nm)c 

CNTC 200 - 1.57 10 5 

CNTF 180 13 1.27 14 7 

a Determined by Raman spectroscopy; b external diameter from TEM; c inner diameter 

from TEM.  

Before grafting the nickel complexes on the surface of CNTs through an amide 

link, it is necessary to fonctionalize the CNT surface with nitric acid at 120 °C for 3h 

to produce carboxylic acid functions (Scheme 2.2). The functionalized samples were 

named CNTC1 and CNTF1.  
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120 °C, 3h
COOH

HNO3

CNT1CNTs  

Scheme 2.2 Functionalization the MWCNTs. 

 

Figure 2.2 IR spectra of the pristine CNTs and the functionalized CNT2: a) 

CNTC and b) CNTF. 

Pristine and functionalized CNTs were characterized by infrared spectroscopy. 

Compared with the pristine nanotubes, an additional peak at 1725 cm-1 is observed in 

the spectra of functionalized samples, which was assigned to the asymmetric CO 

stretching (νasym(C=O)) of the carboxylic groups (Figure 2.2). The functionalization 

was also confirmed by Raman spectroscopy. Due to the presence of sp3 and sp2 

carbon on the carbon nanotube, the ratio ID/IG of the two kinds of CNTs changed from 
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1.57 (CNTC) to 2.03 (CNTC1) and 1.27 (CNTF) to 1.58 (CNTF1). The presence of a 

higher concentration of defects on CNTC compared to CNTF allows a higher degree of 

functionalization. This was confirmed by chemical titration of surface –COOH groups 

[22]. CNTC1 contains 0.1 mol COOH/gC, while CNTF1 contain 0.01 mol COOH/gC.  

An additional functionalization was performed using thionyl chloride in order to 

produce the acetyl chloride groups on the surface of the CNTs (Scheme 2.3). Acetyl 

chloride groups being easily hydrolyzed, acylation of the CNTs must be accomplished 

under inert atmosphere. The supported catalysts Ni1–Ni4/CNT were produced by 

mixing the nickel complexes with the above functionalizated CNTs containing the 

acetyl chloride groups. The weight percent of those anchored homogeneous nickel 

complexes were determined by ICP-MS and the results are collected in Table 2.2. 

0.08%- 0.26% nickel complexes have been respectively grafted onto the CNT surface. 

Moreover, the Ni weight percent of the CNTC supported catalysts are slightly higher 

than CNTF supported catalysts, in accordance with a higher concentration defects.  
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Scheme 2.3 Synthetic procedure for CNT-supported nickel complexes.  

These supported catalysts have also been analyzed by X-ray photoelectron 

spectroscopy (XPS). Results obtained for Ni1/CNTC as a typical example are shown 

in Figure 2.3. The peak around 400.1 eV can be attributed to the N (1s). Moreover, 
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peaks at 199.5 and 855.7 eV are observed as signals characteristics of the Cl (2p) and 

Ni (2p) respectively. The peak observed at 855.7 eV corresponds to the typical Ni2+ 

(2p) binding energy signal. This means that the ligand as well as the NiCl2 fragment 

are present on the surface of CNTs. In other words, XPS analysis shows the presence 

of the nickel(II) complexes on the surface of the CNTs and no Ni0 is observed, 

evidencing that efficient anchoring of the complexes was achieved without precatalyst 

decomposition.  

 

Table 2.2 ICP-MS results for CNTF and CNTC supported Ni catalysts 

Support Complex Sample Ni Nia 

  (mg/kg) (µmol) 

CNTF 

Ni1 Ni1/CNTF 828.45 1.41 

Ni2 Ni2/CNTF 1 367.37 2.33 

Ni3 Ni3/CNTF 1 366.12 2.32 

Ni4 Ni4/CNTF 1 642.71 2.80 

CNTC 

Ni1 Ni1/CNTC 2 118.10 3.61 

Ni2 Ni2/CNTC 2 567.07 4.37 

Ni3 Ni3/CNTC 1 898.58 3.23 

Ni4 Ni4/CNTC 1 855.79 3.16 

a  
µmol of Ni in 100 mg of sample  
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Figure 2.3 XPS spectra of the Ni1/CNTC: a) Ni 2p, b) N 1s and c) Cl 2p. 

2.2.2 Ethylene polymerization catalyzed by the nickel complexes and 

CNT-supported nickel complexes 

2.2.2.1 Polymerization with nickel complexes Ni1–Ni4 

Prior to the study of the catalytic behavior of the supported nickel complexes, we 

carried out an investigation of their behavior under homogeneous conditions and an 

optimization of the reaction conditions. Under 10 atm ethylene pressure, the influence 

of various alkylaluminums such as MAO, MMAO, diethylaluminum chloride 

(Et2AlCl) and ethylaluminum sesquichloride (EASC) was evaluated on activation of 

c) 

a) 

b) 
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Ni3 (Table 2.3). This activator screening evidenced MAO as the best choice for this 

precatalyst (Table 2.3, Entries 1–4).  

 

Table 2.3 Ethylene polymerization with Ni3 and different co-catalyst a 

Entry Co-Cat. Al/Ni Prod. 
 

(g) 

Activityb 

 
Tm

 c 
 

(ºC) 

Mw
d 

 
(g mol-1) 

Mw/Mn
d 

1 MMAO 1000 Traces - - - - 

2 MAO 1000 1.9 0.8 114.1 8 117 4.0 

3 Et2AlCl 200 Traces - - - - 

4 EASC 200 Traces - - - - 
a Reaction conditions: 5 µmol Ni3; 10 atm ethylene; 20 ºC; 30 min; 100 mL toluene. 

b106 g (PE)·mol–1(Ni)·h–1. c Determined by DSC. d Determined by GPC. 

 

The influence of reaction parameters such as Al/Ni molar ratio as well as reaction 

temperature on ethylene polymerization activity was investigated using MAO as 

co-catalyst. Detailed data are collected in Table 2.4. Upon increasing of the Al/Ni 

ratio from 1000 to 1500, the polymerization rate was increased, and then the activity 

decreases when the ratio Al/Ni > 1500. The optimum condition for the Al/Ni ratio is 

1500, for which a maximum activity of 1.3 × 106 g (PE)·mol–1(Ni)·h–1 is reached 

(Table 2.4, Entry 3). The reaction temperature is also an important factor for the 

catalytic reaction. When the reaction temperature is increased from 20 ºC to 30 ºC 

(Table 2.4, Entries 3 vs 6), the catalytic activity shows a slight decrease. Moreover, an 

incerase of the temperature up to 50 ºC leads to a clear decrease of the catalytic 

activity (Table 2.4, Entry 7). This is partly because higher reaction temperatures are 

detrimental to the stability of the active species. At the same time, the molecular 
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weight of the polymer that are produced at 30 ºC and 50 ºC are lower than that of the 

polyethylene obtained at 20 ºC. It is known that there is a relationship between the 

molecular weight and the life time of the active center, that is longer life time of the 

catalyst prefers to produce higher molecular weight polymer.  

 

Table 2.4 Ethylene polymerization with Ni3/MAO system a 

Entry Al/Ni T 
 

(ºC) 

Prod. 
 

(g) 

Activityb Tm
c 

 
(ºC) 

Mw
d 

 

(g mol-1) 

Mw/Mn
d 

1 1000 20 1.9 0.8 114.1 8 117 4.0 

2 1250 20 2.2 0.9 113.2 9 977 3.6 

3 1500 20 3.3 1.3 116.7 9 934 3.8 

4 1750 20 2.5 1.0 114.5 12 696 4.0 

5 2000 20 1.6 0.6 113.1 11 152 4.1 

6 1500 30 2.2 0.9 119.8 4 094 2.8 

7 1500 50 0.5 0.2 120.1 5 596 3.9 
a Reaction conditions: 5 µmol Ni3; 10 atm ethylene; MAO; 30 min; 100 mL toluene. 

b106 g (PE)·mol–1(Ni)·h–1. c Determined by DSC. d Determined by GPC. 

 

In addition, the branch information of two representative polyethylenes (Table 2.4, 

Entries 3 and 6) were confirmed by 13C NMR (Figure 2.4) using CDCl3 as solvent. 

The number of branches was calculated according to a literature method [23]. The 

numbers of branches is 43/1000 C at 20 ºC. Compared to literature reports, the branch 

number is slightly higher than that obtained with other nickel complexes bearing 

5,6,7-dihydroquinoline-based ligand [24], but lower than nickel complexes bearing 

2-iminopyridine [25-26]. Generally, an increase of the temperature results in a faster 
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chain walking, leading to a higher branching [27-30]. The opposite trend is observed 

with the systems reported here since the branching number decreases to 32/1000 C 

when the reaction is carried out at 30 ºC. 

 

Figure 2.4 13C-NMR spectrum of polyethylene prepared using Ni3/MAO at 

20 °C (Table 2.4, Entry 3). 

The other nickel complexes were then investigated at 20 ºC in the presence of 

MAO with an Al/Ni ratio of 1500. As shown in Table 2.5, the activity of those nickel 

complexes decreases in the order is Ni3>Ni2>Ni1. This means that the larger steric 

hindrance on the ligand has a slight positive effect on the polymerization activity. 

Such tendency is similar with that observed for other nickel complexes [18, 24].  

Moreover, the molecular weight of the polymer produced by Ni3 is higher that 

the polymer produced by Ni2 and Ni1. According to reports from the literature, large 

bulky alkyl substituents help to solubilize the pre-catalysts thereby enhancing the 

activity. In addition, bulky substituents group increase catalyst lifetime and yield high 

molecular weight polyethylene [29]. The additional amino group has also an influence 

of the catalytic activity. Compared to previously reported nickel complexes [18-19] 
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also based on the 5,6,7-trihydroquinolin-8-one ligand framework, those title 

complexes perform ethylene polymerization with lower activity.   

A significant influence of the amino-group position is also observed by 

comparing the activities obtained using complexes Ni3 (Table 2.5, Entry 3) and Ni4 

(Table 2.5, Entry 4) containing the di-isopropyl group. The catalyst containing the 

amino-substituent in the para-position of the N-aryl group showed lower activity than 

the catalyst bearing the ligand where the –NH2 group occupies the meta-position of 

the N-aryl group. Catalyst Ni4 shows low activity which is just ten percent of the Ni3. 

It is clear that the position of the -NH2 group on the aryl ring affects the activity of 

ethylene polymerization.  

 

Table 2.5 Ethylene polymerization with Ni1–Ni4/MAO system a 

Entry Cat. Prod. 
 

(g) 

Activityb 

 
Tm

c 

 
(ºC) 

Mw
d 

 

(g mol-1) 

Mw/Mn
d 

1 Ni1 2.1 0.8 121.6 1 662 1.9 

2 Ni2 2.7 1.1 118.8 2 819 2.5 

3 Ni3 3.3 1.3 116.7 9 934 3.8 

4 Ni4 0.2 0.1 120.6 1 086 1.4 
a Reaction conditions: 5 µmol; 20 ºC; 10 atm ethylene; MAO; Al/Ni = 1500 ; 30 min; 

100 mL toluene. b 106 g (PE)·mol–1(Ni)·h–1. c Determined by DSC. d Determined by 

GPC. 

2.2.2.2 Heterogeneous ethylene polymerization 

As mentioned above, two kinds of MWCNTs have been used as support to 

support nickel complexes Ni1–Ni4. Therefore, the polymerization results obtained 
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using those heterogeneous catalysts are divided two parts, Ni1–4/CNTF and Ni1–

4/CNTC. Those complexes being immobilized on the surface of CNTs via covalent 

(C–N) bonds, the following discussion is to explore the effect of CNTs as 

macro-ligands in polymerization. 

2.2.2.2.1 Ethylene activation by the Ni1-4/CNTF 

As shown in Table 2.6, all of the Ni /CNTF catalysts have been investigated in 

ethylene polymerization with the MAO as co-catalyst at 20 °C and under an ethylene 

pressure of 10 atm. Different amounts of MAO were used to activate the Ni1/CNTF 

catalysts (Al/Ni = 3500 and 1500). However, there is no significant change for the 

polymerization activities using different Al/Ni ratios (Table 2.6, Entry 1 vs 2). 

Compared to its corresponding homogeneous precatalyst Ni1, the Ni1/CNTF 

system displays higher activity, up to 6.52 × 106 g (PE)·mol–1(Ni)·h–1. Therefore, 

CNTF have a positive influence on the catalytic performances of Ni1. In addition, the 

molecular weight and the molecular weight distribution of the polymer produced by 

Ni1/CNTF are higher than that produced by Ni1. This phenomenon was also reported 

in some literature articles which are about the early transition metal catalysts 

immobilized on CNTs [31-34]. One example described by Choi et al. that the 

molecular weight is increased more than ten-fold just because the half-titanocene 

catalysts are supported on MWCNTs [32]. This can also be attributed to an enhanced 

stability of the catalytic active species due to the presence of CNTs as macro-ligand.  
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Table 2.6 Ethylene polymerization by CNTF supported catalystsa 

Entry Sample Ni 

(μmol) 

Al/Ni Polymer 

(g) 

Activityb 

 

Tm
c 

(ºC) 

Mw
d 

(g mol-1) 

Mw/Mn
d 

1 Ni1/CNTF 1.41 3500 4.4 6.24 121.6 3 669 3.2 

2 Ni1/CNTF 1.41 1500 4.6 6.52 120.8 4 233 3.7 

3 Ni2/CNTF 2.33 3500 3.3 2.83 119.4 3 890 3.5 

4 Ni2/CNTF 2.33 1500 1.8 1.55 120.5 6 135 4.8 

5 Ni3/CNTF 2.32 3500 7.5 6.47 121.9 15 295 4.2 

6 Ni3/CNTF 2.32 1500 6.9 5.95 121.0 13 759 3.1 

7 Ni4/CNTF 2.80 3500 0.1 0.07 125.9 5 651 3.9 

8 Ni4/CNTF 2.80 1500 0.4 0.29 123.5 4 011 3.1 
a Reaction conditions: MAO, 10 atm ethylene; 20 °C ; 30 min; 100 mL toluene, 100 

mg support catalyst. b 106 g (PE)·mol–1(Ni)·h–1. c Determined by DSC. d Determined 

by GPC. 

 

Concerning the Ni2/CNTF/MAO system (Table 2.6, Entries 3 and 4), upon 

increasing the Al/Ni ratio from 1500 to 3000, and unlike what was observed for 

Ni1/CNTF/MAO, activity was also doubled (form 1.55 to 2.83 × 106 g (PE)·mol–

1(Ni)·h–1). Compared to the Ni2 unsupported system, Ni2/CNTF shows higher activity. 

Moreover, the molecular weight of the polymer produced by the Ni2/CNTF is higher 

than its corresponding homogeneous catalyst Ni2, evidencing a positive influence of 

the presence of the CNTF on the catalytic activity as well as the polymer’s molecular 

weight.  

As observed for Ni1–2/CNTF, either at Al/Ni = 1500 (Table 2.6, Entry 5) or 
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Al/Ni = 3500 (Table 2.6, Entry 6), high activities are obtained using the 

Ni3/CNTF/MAO catalytic system. The activity of 6.47 × 106 g (PE)·mol–1(Ni)·h–1 is 

higher than that of its corresponding homogeneous catalyst Ni3. Moreover, the 

molecular weight increased up to 15 295 g mol-1 due to the presence of the CNTF. The 

representative polyethylene obtained using Ni3/CNTF (Table 2.6, Entry 5) was 

characterized by 13C NMR measurements, and showed 44 branches/1000 carbons 

(Figure 2.5) according to the interpretation reported by Galland et al [23]. Compared 

to its corresponding homogeneous counterpart Ni3, 10 branches more for 1000 

carbons are shown in 13C NMR spectra of Ni3/CNTF.  

The polymerization takes place close to the CNTs surface, due to the covalent 

bond between the nanotubes and the immobilized catalyst. Therefore it is likely that 

the polymer chain grows directly from the nanotube surface leading to coverage 

around CNTs during the polymerization process. The polymer samples produced by 

the Ni3/CNTF catalyst have been characterized by scanning electron microscopy 

(SEM). As shown in Figure 2.6, the CNTF are homogeneously dispersed inside of the 

polymer matrix. Moreover, the diameter of the CNTF is about 14 nm and the diameter 

of the CNTF dispersed into the polymer is about 54 nm. So, it is clear that the CNTF is 

completely covered by the polymer layer after the coating process. 
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Figure 2.5 13C NMR spectrum of polyethylene prepared by system Ni3/CNTF 

(Table 2.6, Entry 5). 

 

Figure 2.6 SEM micrographs for the CNT/Polymer sample produced by 

Ni3/CNTF (Table 2.6, Entry 6). 

Unlike for the other nickel catalysts, comparison of the performances of the 

Ni4/CNTF system (Table 2.6, Entry 7–8) with the Ni4 (Table 2.5, Entry 4) evidenced 

that the presence of the CNTF has a negative influence on the activity. However, the 

immobilized catalyst produced polymeric chains of higher molecular weight than the 
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polymer produced by Ni4. 

2.2.2.2.2 Ethylene activation by the Ni1–4/CNTC 

The catalysts Ni1–4/CNTC were also investigated in polymerization using the 

MAO as the co-catalyst. Ni1/CNTC and Ni2/CNTC shown higher activity at lower 

Al/Ni ratio (Al/Ni = 1500, Table 2.7, Entries 2, 4) than at higher ratio (Al/Ni = 3500, 

Table 2.7, Entries 1, 3). Using CNTC as support, the activities of the immobilized 

catalysts Ni1/CNTC and Ni2/CNTC are higher than that of their corresponding 

homogeneous catalysts (increase respectively from 0.8 to 2.16 × 106 g (PE)·mol–

1(Ni)·h–1 for Ni1 and Ni1/CNTC and 1.1 to 2.61 × 106 g (PE)·mol–1(Ni)·h–1 for  Ni2 

and Ni2/CNTC). Moreover, high molecular weight and the high molecular weight 

distribution polymers are produced by those immobilized catalysts. 

  Unlike for Ni1/CNTC and Ni2/CNTC, the activity of the Ni3/CNTC is similar 

to that of the corresponding Ni3 unsupported catalyst. Moreover, considering the 

polymer properties, the molecular weight of the polymer produced by Ni3/CNTC is 

lower than that produced by Ni3 unlike what observed for the other immobilized 

catalysts described above. Similar with the Ni4/CNTF system, the CNTC supported 

Ni4 catalyst shown poor activity for the ethylene polymerization. 

In summary, compared to the homogeneous catalysts (Ni1–Ni3), immobilized 

catalytic systems Ni1–Ni3/CNT(F or C) shown higher activity. It is possible that thermal 

conductivity of the CNTs can be used to manage the exothermicity of the 

polymerization reaction and hence induce an increased stability of the active species. 

In addition, the activities increased from 2.16 (Table 2.7, Entry 2) to 6.52 (Table 2.6, 

Entry 2) (more than three-fold increase) for Ni1/CNT by only changing the support 

from CNTC to CNTF. This can be also observed for the Ni3/CNT(F or C) systems (Table 
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2.7, Entry 5, 6 and Table 2.6, Entry 5, 6). The reactive mechanism for those supported 

catalysts is not very clear; however, one can mentioned that the nature of the CNT 

supports has a great influence in polymerization. This could be due to a lower defect 

concentration of CNTF, and thus to the higher electrical and thermal conductivity of 

those samples.  

 

Table 2.7 Ethylene polymerization by CNTC supported catalystsa 

Entry Sample Ni 

(μmol) 

Al/Ni Polymer 

 (g) 

Activityb 

 

Tm
c 

(ºC) 

Mw
d 

(g mol-1) 

Mw/Mn
d 

1 Ni1/CNTC 3.61 3500 2.5 1.39 121.1 5 631 5.2 

2 Ni1/CNTC 3.61 1500 3.9 2.16 120.9 5 109 4.3 

3 Ni2/CNTC 4.37 3500 5.1 2.33 121.1 5 268 4.3 

4 Ni2/CNTC 4.37 1500 5.7 2.61 122.1 4 384 4.0 

5 Ni3/CNTC 3.23 3500 1.9 1.18 121.8 4 140 3.1 

6 Ni3/CNTC 3.23 1500 1.2 0.74 122.1 4 034 2.6 

7 Ni4/CNTC 3.16 3500 0.1 0.06 - - - 

8 Ni4/CNTC 3.16 1500 0.1 0.06 - - - 
a Reaction conditions: MAO, 10 atm ethylene; 20 °C ; 30 min; 100 mL toluene, 100 

mg support catalyst. b 106 g (PE)·mol–1(Ni)·h–1. c Determined by DSC. d Determined 

by GPC. 

2.2.2.2.3 Ethylene activation by the Ni5 

Above all, the Ni1–3/CNTF and Ni1–3/CNTC show the highest activity increase 

compared to their conresponding homogeneous catalysts. An uncertainty should come 
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in mind concerning the factor responsible for the activity increase: the presence of the 

CNT or the disappearance of the NH2 group. In oder to clarify this point, Ni5 was 

synthesized by reacting Ni3 with benzene chloride (Scheme 2.4). 
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Scheme 2.4 Synthetic procedure of Ni5. 

Using MAO as co-catalyst, the optimization of the reaction parameters was 

conducted with pre-catalyst Ni5, and the results are shown in Table 2.8. The 

polymerization reactions were conducted under different conditions by changing the 

Al/Ni ratio and the reaction temperature. The polymerization activities of Ni5 are in 

the range of 0.92 to 6.04 × 105 g (PE)·mol–1(Ni)·h–1, which is lower than the above 

CNT supported catalyst and even lower than the homogeneous catalysts Ni1–Ni3. Up 

to this point, it is clear that the disappearance of the NH2 group has no positive for the 

activity of catalyst Ni3. In other words, the presence of the CNT (CNTC and CNTF) as 

support for the homogeneous catalysts has a great influence on ethylene 

polymerization activity. 
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Table 2.8 Ethylene polymerization catalyzed by Ni5a 

Entry Al/Ni T 

(°C) 

Polymer 

 (g) 

Activityb 

 

1 1500 20 0.77 3.08 

2 2000 20 1.44 5.76 

3 2500 20 1.51 6.04 

4 3000 20 1.03 4.12 

5 2500 30 1.20 4.80 

6 2500 40 0.88 3.52 

7 2500 50 0.23 0.92 

a Reaction conditions: 5 μmol Ni5, 10 atm ethylene, 100 mL toluene, 30 min, MAO. 

b106 g (PE)·mol–1(Ni)·h–1. 

2.3 Conclusions 

A family of nickel complexes (Ni1–Ni4) containing an -NH2 function have been 

synthesized by a one-step procedure. Two kinds of multi-walled carbon nanotubes, 

CNTF and CNTC, are used to immobilize those homogeneous nickel complexes via 

covalent bonds. According to the ICP-MS results, the weight percent of those 

anchored homogeneous nickel complexes are in the range of 0.08%- 0.21%. In 

addition, the nickel complexes grafted on the CNTs have been characterized by XPS, 

evidencing the presence of Ni2+ species and no Ni0 observed. Using MAO as 

co-catalyst, those homogeneous catalysts and supported catalysts have been 

investigated in the ethylene polymerization reaction. All of the homogeneous catalysts 

show moderate activity. Using CNTs as support, the activities of these immobilized 

catalysts are higher than those of the homogeneous systems. The activities of 
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precatalysts (Ni1 and Ni3) increase remarkably with the CNTF as the support, much 

more than with CNTC. Moreover, the presence of the CNTs can also be efficient for 

increasing the molecular weight of the produced polymer. In addition, according to 

the SEM analysis, the CNTs are uniformly dispersed into the polymeric matrix, and 

completely covered by a polymer layer.  

2.4 Experimental Section 

2.4.1 Synthesis and characterization of nickel complexes 

The nickel complexes (Ni1–Ni4) were prepared using a similar procedure. The 

typical complex Ni1 was synthesized as follow: using acetic acid as catalyst, a 

mixture of 5,6,7-dihydroquinolin-8-one (3.0 mmol), 

2,6-dimethylbenzene-1,3-diamine (3.0 mmol) and NiCl2∙6H2O (3.0 mmol) in ethanol 

(10 mL) was refluxed for 3 h. Ethanol was evaporated under reduced pressure, and the 

residue was dissolved in 10 mL of dichloromethane. Unreacted NiCl2 was removed by 

filtration. 50 mL of diethyl ether was added to precipitate the complex Ni1. After 

filtration and washing with diethyl ether under N2, the collected solid was dried under 

vacuum. The yellow powder was obtained in 62.7% yield. IR (KBr; cm-1): 2864, 1597 

(υ C=N), 1458, 1422, 1283, 1208, 1130, 1208, 825, 797, 659.  

Using the same procedure, Ni2 was obtained as a green powder in 51.3%. IR 

(KBr; cm-1): 2832, 1599 (υ C=N), 1481, 1412, 1168, 1107, 1026, 872, 678. 

Ni3 (green powder, 59.4%): IR (KBr; cm-1): 2957, 1597 (υ C=N), 1480, 1424, 

1338, 1209, 1130, 1047, 826, 796, 678.  

Ni4 (green powder, 58.4 %): IR (KBr; cm-1): 2792, 1593 (υ C=N), 1465, 1407, 

1281, 1206, 1133, 859, 802, 657.  
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Ni5 is prepared from Ni3. A flask was charged under argon with 0.09 g of Ni3 

(0.2 mmol), 0.03 g benzyl chloride and 10 mL CH2Cl2, then stirred 12h at room 

temperature. The precipitation was completed by addition of 80 mL of diethyl ether 

and the solid was collected by filtration, washed with diethyl ether until the solvent 

was colourless, and dried under reduced pressure to afford a brown solid with a yield 

of 93.1%. IR (KBr; cm-1): 1657 (υ C=O), 1625, 1593(υ C=N), 1578, 1517, 1428, 

1356, 1291, 1208, 1106, 915, 797, 647.    

2.4.2 Synthesis and characterization of CNTs supported nickel 

complexes 

The pristine multi-walled carbon nanotubes CNTC were obtained from Cnano (97% 

purity). Multi-walled carbon nanotubes CNTF (98% purity, 2% iron catalyst) were 

synthesized by chemical vapor deposition according to a previously reported 

procedure [9]. The textural properties of the two kinds of CNTs are collected in Table 

2.1. Surface functionalization was performed prior to the chemical anchoring of the 

complex onto the CNTs. The functionalization of CNT surface with carboxylic groups 

was achieved by nitric acid oxidation at 120 ºC for 3h, yielding CNTC1 and CNTF1 

respectively. 

CNT supported nickel complex Ni1/CNT was prepared as followed. Fistly, 1g of 

dry oxydized CNT (CNTC1 and CNTF1) were reacted with thionyl chloride for 24h 

under inert atmosphere at 70 ºC to produce acetyl chloride species. CNTC2 and CNTF2 

were obtained after SOCl2 evaporation under reduced pressure. Then CNTC2 and 

CNTF2 were contacted with a solution of Ni1 (0.2 g) in 20 mL CH2Cl2 and stirred for 

6 h at room temperature. The slurry was then filtered through a glass frit. The  

resulting solids were washed several times with CH2Cl2 and toluene and then dried 
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under vacuum for 24 h at room temperature. All the other CNT supported nickel 

complexes were prepared according to a similar procedure. 
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Chapter 3: Ethylene polymerization catalyzed by 

pyrene-tagged iron complexes: positive effect of 

-conjugation and immobilization on multi-walled carbon 

nanotubes  



 

 96 

  



 

 97 

3.1 Introduction 

Due to a unique structure and surface free energy characteristics [1], carbon 

nanotubes ultimately have been used as support in catalytic system [2-3]. A valuable 

and elegant approach for catalytic systems involves the non-covalent immobilization 

on CNTs of complexes via π-stacking interactions. The benefits are obvious: pristine 

CNTs can be used without any pretreatment or functionalization, and the grafting 

proceeds simply by mixing catalyst solution and the CNTs. The non-covalent 

modification of the CNTs is of growing interest and different types of molecular 

structures can be immobilized onto the CNTs surface, such as pyrene [4-9], 

anthracene [10-11], naphthalene [9, 12] and cyclopentadienyl [13].  

Recently, CNTs immobilized catalysts through non-covalent interactions have 

been described in some publications and successfully used for different catalytic 

applications. Hermans et al. reported the immobilization on CNTs of pyrene-tagged 

gold catalysts as enyne cyclisation catalyst [4]. CNTs modified ruthenium catalyst has 

been investigated as water oxidation catalyst by Sun et al. [6]. Moreover, CNTs can 

also adsorb polymerization catalysts based on polycyclic aromatic groups via 

π-stacking interactions for norbornene polymerization [5], ethylene polymerization 

[14-15] and its co-polymerization with norbornene [16]. 

As already stated before, the catalytic performances of olefin polymerization 

catalysts depend on the electronic and the steric interactions between the active center 

[17] and the ligand surrounding the metallic center [18-19]. Carbon nanotubes as 

support for homogeneous catalysts can affect the electronic properties due to their 

π-electron structure. Moreover, the CNTs are huge ligands compared to common 

organic ligands. Through non-covalent immobilization, CNTs can be seen as 
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macro-ligands to the metal center. Above all, CNTs are potential supports which offer 

the possibility to improve the performances of homogeneous catalysts. The researches 

published by Park and Choi showed that CNTs as support, for metallocene catalysts, 

dramatically changed the catalytic performances [14-15], and those immobilized 

catalysts prefer to produce polyethylene with the high molecular weight. In addition, 

this approach would be beneficial in industrial processing and is also seen as a new 

efficient way to produce polymer nanocomposites. 

Since the typical bisiminopyridine structure for iron complexes reported by 

Brookhart showed excellent performances in ethylene polymerization [19-20], two 

iron complexes with a ligand containing the 2,6-bisiminopyridyl framework and 

pyrene group(s) have been synthesized in our work. Simple mixing of the iron 

complex and the pristine CNTs in an appropriate solvent produced immobilized 

catalyst thought non-covalent interactions. These homogeneous catalysts and 

immobilized catalysts show high activity for the ethylene polymerization, providing 

highly linear polyethylene (PE).  

3.2 Results and discussions 

3.2.1 Synthesis and characterization of ligands and iron complexes  

Pyrene-tagged ligands L1 and L2 (Scheme 3.1) were synthesized using a modified 

published procedure for 2,6-bis(arylimino)pyridine [21]. The synthesis of L1 was 

carried out by reaction of a1 with 1.5 eq. of 1-aminopyrene and a catalytic amount of 

p-TsOH in refluxing toluene for 2 days. Ligand L2 was synthesized by the 

condensation reaction of 2,6-diacetylpyridine and 3 eq. of 1-aminopyrene (Scheme 

3.1). Iron complexes Fe1 and Fe2 were prepared by reacting FeCl2 with one
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Scheme 3.1 Synthetic procedure for ligands L1–L2 and complexes Fe1–Fe2. 

equivalent of the corresponding ligand in THF (Scheme 3.1). All iron complexes were 

isolated as air-stable solids but slowly turn from blue to yellow in solution upon air 

exposure, probably due to oxidation from Fe(II) to Fe(III). Compared to the IR 

spectra of the free ligands, the C=N stretching vibrations in complexes Fe1 and Fe2 

are shifted to lower frequencies (1586 cm–1 vs 1639 and 1638 cm–1), indicating 

effective coordination between the imino nitrogen atoms and the iron center. The 

molecular structure of complex Fe1 was further confirmed by single-crystal X-ray 

diffraction (Figure 3.1).  
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Figure 3.1 ORTEP molecular structure of Fe1. Thermal ellipsoids are shown at 

30% probability. Hydrogen atoms have been omitted for clarity. Selected bond 

lengths (Å) and angles (º): Fe1–N1 2.296(5), Fe1–N2 2.083(4), Fe1–N3 2.247(5), 

Fe1–Cl1 2.2723(18), Fe1–Cl2 2.3000(19), N1–Fe1–N2 73.28(19), N1–Fe1–N3 

146.22(19), N2–Fe1–N3 73.05(17), Cl1–Fe1–Cl2 115.82(7). 

The coordination geometry around the iron center can be described as distorted 

square-pyramidal, with the basal plane composed of N1, N2, N3, and Cl1. The iron 

center deviates from the basal plane by 0.6574 Å, and the Cl2 deviates by 2.9465 Å 

on the same side. The equatorial plane formed by N1, N2 and N3, is almost 

perpendicular to the imino-pyrene ring (86.1º) and to the 2,6-diisprolphenyl group 

(79.1 º). The chlorine atoms are setting on the different sites from the basal plane with 

distance of 1.6508 Å for Cl1 and 2.1830 Å for Cl2. Concerning the bond lengths 

around the iron center, Fe1–Cl2 (2.3000(19) Å) is longer than Fe1–Cl1 (2.2723(18) 

Å); the bond Fe1–N1 is similar to the Fe1–N3 but longer than Fe1–N2 (about 0.2 Å). 

This is partly due to N1 and N3 belonging to imino groups but N2 belonging to the 

pyridine ring. A similar geometry was also observed for analogous tridentate iron (II) 

complexes [22-29]. Details of the X-ray structure determinations and refinements are 
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provided in Table 3.1. 

 

Table 3.1 Crystal data and structure refinement for Fe1 

 Fe1 

Empirical formula C37H35Cl2 FeN3 

Formula weight 648.43 

Temperature [K] 173(2) K 

Wavelength [Å] 0.71073 

Crystal system Tetragonal 

Space group I4(1)/a 

a [Å] 23.447(3) 

b [Å] 23.447(3) 

c [Å] 29.697(6) 

α [°] 90 

β [°] 90 

γ [°] 90 

V [Å3] 16326(5) 

Z, Dcalcd. [g·cm–3] 16, 1.055 

μ [mm–1] 1.345 

F(000) 5408 

Crystal size [mm] 0.17× 0.03 × 0.03 

θ range [°] 1.11–25.32 

 

Limiting indices 

-13 ≤ h ≤ 28 

-15 ≤ k ≤ 28 

-35 ≤ l ≤ 24 
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Reflections collected 15655 

Independent reflections 7443, [R(int) = 0.0623] 

No. of parameters 416 

Completeness to θ [%] 99.8 % 

Goodness of fit on F2 1.012 

Final R indices [I>2σ(I)] R1 = 0.0933, wR2 = 0.2243 

R indices (all data) R1 = 0.1547, wR2 = 0.2551 

Max./min. Δρ[a] [eÅ–3] 0.384 and -0.263 

3.2.2 Synthesis and characterization of MWCNTs supported iron 

complexes  

Immobilization of the iron complexes Fe1 and Fe2 on MWCNTs was carried out 

under nitrogen atmosphere by stirring a CH2Cl2 solution containing the corresponding 

complex and a suspension of the purified MWCNTs (Scheme 3.2). The suspension 

was filtrated and washed several times with toluene and CH2Cl2 until the filtrate was 

colourless. XPS analysis confirmed the presence of Fe(II) species on the MWCNTs 

surface. The absence of peak corresponding to Fe(0) also proved that the iron 

complexes did not suffered from reduction during the anchoring process. Since the 

amount of iron complex is too low to allow semi-quantitative analysis by XPS, the 

exact amount of iron immobilized on the MWCNTs was determined using ICP-MS 

(2657.83 mg Fe/kg for Fe1 and 2908.65 mg Fe/kg for Fe2).  
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Scheme 3.2 Schematic representation of the immobilization of Fe1 on 

MWCNTs. 

3.2.3 Ethylene polymerization  

3.2.3.1 Ethylene polymerization by iron complexes 

Prior studying the catalytic behavior of the MWCNT-supported iron catalysts, we 

carried out an investigation of the homogeneous behavior of the iron complexes Fe1 

and Fe2 in the ethylene polymerization reaction in order to both optimize reaction 

conditions and ensure that the introduction of the pyrene moiety on the ligands was 

not detrimental to the catalyst performances.  

As shown in Table 3.2, pre-catalyst Fe1 was investigated for determining the 

optimum reaction conditions under 10 atm of ethylene. In order to find the best 

co-catalyst for Fe1, MAO and MMAO were used with a Al/Fe molar ratio of 1000 

(Table 3.2, Entries 1–2). The highest activity was observed employing MMAO as 

co-catalyst (Table 3.2, Entry 2), which was selected for further investigation. 

Evaluation of the catalytic behavior of Fe1 was then carried out varying the Al/Fe 

molar ratio (Table 3.2, Entries 2–6). When the Al/Fe molar ratio is increased from 

1000 to 3000 (Table 3.2, Entries 2–6), the activity of the polymerization is firstly 

increased and then decreased, the best Al/Fe molar ratio being 2000. Interestingly, the 

 

      ＋             

 

 

 

 

 

CH2Cl2 
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molecular weight (Mw) and molecular weight distribution (Mw/Mn) values of the PE 

increased with the molar Al/Fe ratio. 

 

Table 3.2 Ethylene polymerization with Fe1 pre-catalysta 

Entry Co-Cat. Al/Fe PE 

(g) 

Act.b Tm
c 

(ºC) 

Mw
d 

(kg mol-1) 

Mw/Mn
d 

1 MAO 1000 5.7 2.3 128.7 108 80.3 

2 MMAO 1000 10.5 4.2 124.6 21.6 10.2 

3 MMAO 1500 15.9 6.4 124.7 16.3 9.30 

4 MMAO 2000 19.8 7.9 124.4 30.4 19.8 

5 MMAO 2500 17.3 7.0 124.2 39.5 30.9 

6 MMAO 3000 15.3 6.1 125.3 145 163 
a Reaction conditions: 5 µmol of Fe1; 30 min; 30 °C; 10 atm ethylene; 100 mL 

toluene. b 106 g (PE)·mol–1(Fe)·h–1. c Determined by DSC. d Determined by GPC.  

 

The influence of reaction temperature (Table 3.3, Entries 1–3) and reaction time 

(Table 3.3, Entries 1, 4–8) for precatalyst Fe1 were also investigated under the best 

Al/Fe ratio. The catalytic activity shows a slight decrease (from 7.9 to 5.5 × 106 g 

(PE)·mol–1(Fe)·h–1) when the reaction temperature is increased form 30 °C to 50 °C 

(Table 3.3, Entries 1–3). However, the molecular weights and the molecular weight 

distributions of PE are increased at higher temperatures (Mw ranging from 30.4 to 

127.6 kg mol-1 and between Mw/Mn 19.8 and 75.6, Figure 3.2). Data concerning the 

effect of the reaction time on the catalytic activity show that the highest value of 2.74 

× 107 g (PE)·mol-1(Fe)·h -1 was reached within 5 min (Table 3.3, Entry 4) and that the 
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reaction was almost finished after 30 minutes which can be certified by the ethylene 

absorption curve (Figure 3.3). 
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Figure 3.2 GPC traces of polyethylene produced by Fe1 catalyst at different 

temperatures (Table 3.3, Entries 1–3). 

The pre-catalyst Fe2 was also evaluated using MMAO as co-catalyst (Table 3.4, 

Entries 1–5). The best activity is observed with the optimal Al/Fe molar ratio of 2000 

at 30 ºC (Table 3.4, Entry 2) and the best activity is 1.15 × 107 g (PE)·mol-1(Fe)·h-1, 

making Fe2 ca. 1.5 more active than Fe1 under similar conditions (Table 3.4, Entry 4). 

It appears therefore that the pyrene ring has a beneficial influence in terms of activity 

for ethylene polymerization. The ethylene absorption curve showed that the 

precatalyst Fe2 has a remarkable activity in the first 15 min and that the reaction is 

almost finished after 30 min (Figure 3.4). As for Fe1, an increase of the reaction 

temperature from 30 °C to 50 °C led to a remarkable decrease of activity (from 11.5 

to 5.4 × 106 g (PE)·mol–1(Fe)·h–1 , Table 3.4, Entries 2, 4, 5), however, the Mw and 

Mw/Mn values of the PE obtained are less sensible to temperature increase (Figure 3.5, 

Mw ranging from 2.71 to 6.12 kg mol-1 and Mw/Mn between 2.9 and 5.1). These 
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narrower molecular polydispersities of obtained PEs can probably be attributed to the 

symmetric structure of the Fe2 pre-catalyst, leading to a lower number of different 

active species after activation by the co-catalyst.  

 

Table 3.3 Ethylene polymerization with Fe1 /MMAO systema 

Entry T 

(ºC) 

t 

(min) 

PE 

(g) 

Act.b Tm
c 

(ºC) 

Mw
d 

(kg mol-1) 

Mw/Mn
d 

1 30 30 19.8 7.9 124.4 30.4 19.8 

2 40 30 16.7 6.7 122.1 38.1 22.4 

3 50 30 13.8 5.5 127.6 112 75.6 

4 30 5 11.4 27.4 122.4 4.32 2.40 

5 30 10 13.4 16.1 123.8 14.1 7.50 

6 30 15 15.2 12.2 124.0 12.4 8.20 

7 30 45 21.3 5.7 125.8 71.2 66.5 

8 30 60 22.8 4.6 125.1 38.8 32.2 
a Reaction conditions: 5 µmol of Fe1; MMAO; Al/Fe = 2000; 10 atm ethylene; 100 

mL toluene. b 106 g (PE)·mol–1(Fe)·h–1. c Determined by DSC. d Determined by GPC. 
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Figure 3.3 Ethylene absorption curve of the catalyst Fe1 (Table 3.3, Entry 1). 

 

Table 3.4 Ethylene Polymerization with Fe2 pre-catalysta 

Entry Al/Fe T 

(ºC) 

t 

(min) 

PE 

(g) 

Act.b Tm
c 

(ºC) 

Mw
d 

(kg mol-1) 

Mw/Mn
d 

1 1500 30 30 23.7 9.5 120.1 3.57 2.9 

2 2000 30 30 28.9 11.5 119.9 2.71 3.0 

3 2500 30 30 22.3 8.9 119.5 3.38 4.1 

4 2000 40 30 15.5 6.2 122.0 4.39 3.3 

5 2000 50 30 13.6 5.4 122.7 6.12 5.1 
a Reaction conditions: 5 µmol of Fe2; MMAO; 10 atm ethylene; 100 mL toluene. b 

106 g (PE)·mol–1(Fe)·h–1. c Determined by DSC. d Determined by GPC. 
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Figure 3.4 Ethylene absorption curve of the catalyst Fe2 (Table 3.4, Entry 2). 

The steric and electronic effects of the aromatic groups on the ligand clearly 

affect the molecular weight of the obtained polyethylenes. According to the observed 

data, the current complex pre-catalysts generally showed higher activities than their 

analogs [30-35], illustrating the positive influences of pyrene-tagged ligands on their 

iron complexes. Though PEs with lower molecular weights were reported for iron 

complexes bearing ligands lacking ortho-substituted aryl groups [20, 22, 24, 34] and 

there is no substituent on 1-aminopyrene, the current pre-catalysts produced PEs with 

higher molecular weights than their analogs [22, 34]. The pyrene played an important 

role as a bulky aryl group but the lack of substituent in the ortho position, which was 

confirmed by the replacement of the 2,6-diisopropylphenyl fragment forming Fe1 by 

the pyrene moiety within Fe2, resulting in a higher activity for ethylene 

polymerization. 
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Figure 3.5 GPC traces of polyethylene produced by Fe2 catalyst at different 

temperatures (Table 3.4, Entries 2, 4, 5). 

3.2.3.2 Polymerization using MWCNT-supported iron pre-catalysts 

Subsequently, the polymerization behavior of MWCNT-supported iron catalysts 

was investigated using MMAO as co-catalyst. The influence of the reaction 

parameters, including the Al/Fe molar ratio and reaction temperature, was studied 

using the MWCNT-Fe1/MMAO system. Increasing the Al/Fe from 1500 to 4000 

(Table 3.5, Entries 1–5), the activities sharply increase to reach a maximum when 

Al/Fe = 3000. This optimum ratio for the MWCNTs supported iron catalyst is 

significantly higher than the one of the corresponding homogeneous catalyst. This can 

be attributed: 1) to the interaction force between the MWCNTs and the iron complex 

requiring a larger amount of co-catalyst for activation and/or 2) to partial co-catalyst 

deactivation by adsorption on the MWCNTs surface. On the other side, the best 

catalytic activity reached by the MWCNT-Fe1 system after 30 min. (9.11 × 106 g 

(PE)·mol–1(Fe)·h–1) is higher than of Fe1 used under homogeneous conditions (Table 
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3.5, Entry 3 vs Table 3.2, Entry 4) thus evidencing a beneficial influence of the 

nanocarbon support on the catalyst’s performances. Indeed, the immobilization of the 

catalytic system leads to an increase of the steric hindrance around the active centre 

due to the presence of the MWCNTs acting as a macro-ligand. Moreover, charge 

transfer between the CNTs surface and the pyrene group through π-π interaction can 

also have a significant influence on the electronic environment of the iron. Indeed, 

charge transfer between CNTs and various adsorbed species has already been reported 

in the literature [36-38], including for immobilized ethylene polymerization catalysts 

[14].  

 

Table 3.5 Ethylene polymerization with MWCNT-Fe1/MMAOa 

Entry Al/Fe T 

(ºC) 

PE  

(g) 

Act.b Tm
c 

(ºC) 

Mw
d 

(kg mol-1) 

Mw/Mn
d 

1 1500 30 3.8 3.21 124.4 18.8 12.1 

2 2500 30 5.4 4.57 124.0 6.59 3.50 

3 3000 30 10.8 9.11 126.4, 27.6 12.6 

4 3500 30 6.7 5.65 124.8 5.07 2.20 

5 4000 30 5.1 4.30 123.7 18.6 11.2 

6 3000 40 6.2 5.23 127.5 55.5 23.6 

7 3000 50 2.4 2.03 127.9 67.9 27.2 
a Reaction conditions: MWCNT/Fe1 (50 mg); MMAO; 10 atm ethylene; 30 min; 100 

mL toluene. b 106 g (PE)·mol–1(Fe)·h–1. c Determined by DSC. d Determined by GPC. e 

DSC value of the polymer with MWCNTs. 
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By changing the Al/Fe molar ratio, the PEs obtained by the MWCNT-Fe1 

system showed adaptable molecular weights (Mw from 5.07 to 27.6 kg mol-1). A 

narrower molecular polydispersity (Mw/Mn from 2.2 to 12.1) than that of 

homogeneous system is observed. However, the best activity for the MWCNT-Fe2 is 

8.35 × 106 g (PE)·mol–1(Fe)·h–1 (Table 3.6, Entry 2), which is lower than for its 

corresponding homogeneous counterpart (Table 3.6, Entry 2). The two pyrene rings 

present within the framework of complex Fe2, can interact with the MWCNT surface, 

thus resulting in a too high steric hindrance around the iron center, reducing its 

accessibility and therefore leading to a lower activity compared to its non-supported 

counterpart.  

 

Table 3.6 Ethylene polymerization with MWCNT-Fe2 /MMAOa 

Entry Al/Fe T 

(ºC) 

PE  

(g) 

Act.b Tm
c 

(ºC) 

Mw
d 

(kg mol-1) 

Mw/Mn
d 

1 2500 30 7.41 5.70 122.4 11.5 8.48 

2 3000 30 10.86 8.35 122.4 8.32 5.61 

3 4000 30 5.38 4.14 122.9 8.76 6.29 

4 3000 40 6.03 4.64 121.0 4.13 2.99 

5 3000 50 2.58 1.98 122.2 3.88 2.38 
a Reaction conditions: MWCNT-Fe2 (50 mg); MMAO; 10 atm ethylene; 30 min; 100 

mL toluene. b 106 g (PE)·mol–1(Fe)·h–1. c Determined by DSC. d Determined by GPC. e 

DSC value of the polymer with MWCNTs. 

 

Using the optimum molar ratio of Al/Fe (3000), the influence of reaction 
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temperature was investigated (Table 3.5, Entries 3, 6 and 7 for MWCNT-Fe1 and 

Table 3.6, Entries 2, 4 and 5 for MWCNT-Fe2). The elevated reaction temperature 

resulting in lower catalytic activity is even more pronounced in the case of the 

supported systems, evidencing that MWCNTs are not able to stabilize the active 

species when operating at higher temperature. In addition, assuming that at least a part 

of the MMAO introduced in the catalytic system can be adsorbed on the MWCNTs 

surface, temperature has an impact on the adsorption process and therefore on the 

catalytic performances. Moreover, the Mw and Mw/Mn values are also influenced by the 

temperature: higher molecular weights and broader distributions are observed at 

elevated reaction temperature for MWCNT-Fe1 (Figure 3.6).  
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Figure 3.6 GPC traces of polyethylene produced by MWCNT-Fe1 catalyst at 

different temperatures (Table 3.5, Entries 3, 6 and 7). 

Interestingly, Mw and Mw/Mn values for the PEs obtained employing 

MWCNT-Fe2 slightly decrease at higher reaction temperatures because two pyrene 

groups had interactions with MWCNTs. One advantage was the production of 
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polyethylenes with narrower polydispersity (Figure 3.7). This phenomenon is just 

opposite to the trend observed for MWCNT-Fe1. 
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Figure 3.7 GPC traces of polyethylene produced by MWCNT-Fe2 catalyst at 

different temperatures (Table 3.6, Entries 2, 4 and 5). 

During the polymerization process, polyethylene nanocomposites are produced 

by direct growth of the polymeric chains from the MWCNT surface due to its 

interaction with the catalytically active species. Surface-initiated polymerization 

processes have been reported in some cases as an efficient way to homogeneously 

disperse CNTs into polyethylene matrices [14-15, 17, 39-44]. Moreover, the presence 

of the MWCNTs has the possibility to enhance the resulting polyethylene properties. 

According to the DSC values, under the same condition, the melting point of the 

polymer without MWCNTs (the MWCNTs were removed from the resulting 

polyethylene), which is produced by MWCNT-Fe1 is 126.4 °C (Table 3.5, Entry 3), 

however, the melting point of polymer with MWCNTs is increased to 131.7 °C. This 

means that, owing to the effect of 0.46% MWCNTs on the polyethylene, the melting 
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point of the resulting polymer has increased of 5.3 °C. The same results can be 

observed with the MWCNT-Fe2 catalytic system. Compared to the melting point 

values of polymer without MWCNTs (Table 3.5, Entry 3), in the presence of 0.46% 

MWCNTs inside of the polymer, an increase of 5.5 °C is measured from the DSC 

values. 

 

 

 

Figure 3.8. a) SEM images of MWCNT/PE composites; and b) TEM images of 

the MWCNT/PE composites after partial polyethylene removal.  

 

The polymeric materials obtained using MWCNT-supported iron catalysts were 

analyzed by scanning electron microscopy (SEM) and evidenced a good level of 

dispersion inside the polyethylene matrix of the MWCNTs, which are individually 
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separated (Figure 3.8 a). When some of the polymeric material is removed from the 

samples, a particular lamellar structure is observed, showing regular dispersion of 

small quantities of polymeric material along the MWCNTs (Figure 3.8 b), similar to 

that observed for crystallization of polyethylene around CNTs acting as nucleating 

agents [45]. 

3.3 Conclusions 

Two iron complexes based on the 2,6-bis(imino)pyridyl framework and 

containing a pyrenyl moiety have been synthesized and characterized. Activated by 

MMAO, all of the iron pre-catalysts promote ethylene polymerization with high 

activities, comparable to that of the most efficient systems described in the literature 

[25, 27-28], evidencing a beneficial influence of the pyrene substituent(s) introduced 

on the ligands. Using - stacking interactions, MWCNT-supported catalysts are 

efficiently produced by impregnating the iron complexes on MWCNTs in 

dichloromethane. Efficient anchoring is confirmed by IR, XPS and ICP-MS analysis. 

The catalytic screening of these heterogenized systems evidenced in one case a 

significant increase of the productivity compared to the analogous unsupported 

system. Meanwhile, in another case, the lower production of polyethylene is due to 

the presence of two pyrene moieties on the iron complex for interaction, but leads to 

narrower polydispersities; thus evidencing a non-innocent role of CNTs in the 

polymerization process. Finally, the resulting materials show good dispersion of the 

MWCNTs into the polyethylene matrix, resulting from the surface initiated 

polymerization reaction.  
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3.4 Experimental Section 

Synthesis of ligand L1, 2-(2,6-diisopropylphenyliminoethyl)-6-(pyren-1-yliminoethyl) 

pyridine  

The monoamine compound a1 was synthesized by the condensation reaction of 

2,6-diacetylpyridine with 2,6-diisopropylaniline according to a previously reported 

procedure [21]. A mixture of a1 (0.97 g, 3 mmol), 1.5 equivalent of 1-aminopyrene 

(b1, 0.98 g, 4.5 mmol) and a catalytic amount of p-toluenesulfonic acid (0.1 g) in 

toluene (50 mL) was refluxed for 10h. After solvent evaporation, the crude product 

was purified by column chromatography on silica gel with petroleum ether/ethyl 

acetate (50/1: v/v) as eluent to afford the product as a yellow powder in 68% yield. IR 

(KBr, cm−1): 3029 (m), 1639 (s), 1597 (w), 1454 (m), 1362 (m), 1228 (m), 1105 (s), 

840 (m), 765 (m). 

1H NMR (400 MHz, acetone-d6, TMS): 8.72 (dd, 1H, 3J = 4.5 Hz, 4J = 0.8 Hz 

pyridine), 8.59 (dd, 1H, 3J = 4.4 Hz, Py), 8.33 (d, 1H, J = 4.1Hz, pyrene), 8.03- 8.28 

(m, 8H, pyrene, Ar), 7.60 (d, 1H, J = 4.1 Hz, Ar), 7.22 (d, 2H, J = 4.1, Ar), 7.11 (t, 1H, 

J = 4.5 Hz, Ar), 2.83–2.91 (m, 2H, CH), 2.48 (s, 3H, CH3), 2.33( s, 3H, CH3), 

1.16-1.22 (m, 12H, CH(CH3)2). 

13C NMR (100 MHz, acetone-d6, TMS): 165.4, 164.9, 148.2, 137.9, 137.4, 135.5, 

131.8, 127.5, 126.9, 126.3, 125.9, 124.8, 124.6, 123.7, 123.6, 122.9, 122.8, 122.7, 

122.6, 122.3, 22.6, 22.1, 16.5, 16.1.  

Synthesis of ligand L2, 2,6-di(pyren-1-yliminoethyl)pyridine  

A mixture of 2,6-diacetylpyridine (0.97 g, 2 mmol), 3 equivalent of 

1-aminopyrene (b1, 1.27 g, 6 mmol) and a catalytic amount of p-toluenesulfonic acid 

(0.1 g) in toluene (50 mL) was refluxed for 3 days. After solvent evaporation, the 
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crude product was purified by column chromatography on silica gel with petroleum 

ether/ethyl acetate (50/1: v/v) as eluent to afford the product as a yellow powder. 

Yield :52%. IR (KBr, cm−1): 3045 (m), 1638 (s), 1621 (m), 1566 (m), 1449 (w), 

1362 (s), 1226 (s), 1119 (m), 848(s), 758 (s), 711 (m). 

1H NMR (400 MHz, CDCl3, TMS): 8.72 (d, 2H, J = 3.8 Hz, Py), 8.20 (d, 2H, J = 

4.0 Hz, Py), 8.14–8.17 (m, 4H, Ar), 8.05–8.09 (m, 3H, Py H, Ar H), 8.04–8.07 (m, 6H, 

Ar), 8.03 (d, 2H, J = 3.8 Hz, Ar), 7.39 (d, 2H, J = 4.0 Hz, Ar), 2.36 (s, 6H, CH3). 

13C NMR (100 MHz, CDCl3, TMS): 168.8, 155.5, 145.6, 137.2, 131.7, 131.5, 

127.9, 127.4, 126.9, 126.1, 125.9, 125.4, 124.8, 124.6, 122.9, 122.8, 116.6, 17.0. 

Synthesis of iron complexes Fe1 and Fe2. 

The iron complexes were prepared by reacting FeCl2 with one equivalent of the 

corresponding ligand (L1 or L2) in THF at room temperature for 12 h (Scheme 3.1). 

The obtained precipitate was collected by filtration and washed with diethyl ether, 

followed by drying under reduced pressure. Fe1. Yield: 88 %. IR (KBr, cm−1): 1621 

(w), 1586 (s), 1463 (m), 1436 (m), 1371 (s), 1104 (m), 845 (s), 799 (m), 713 (m). 

Anal. Calcd for C37H35Cl2FeN3 (647.16): C, 68.53; H, 5.44; N, 6.48. Found C: 68.83; 

H: 5.43 N: 6.38. Fe2. Yield: 82 %. IR (KBr, cm−1): 1623 (w), 1586 (s), 1504 (w), 

1486 (w), 1369 (m), 1265(m), 1186 (w), 843 (s), 710 (m).  

Immobilization of iron complexes on CNT  

Prior to use, MWCNTs were purified and mechanical cut 6h by ball-milling. 

Under N2 atmosphere, CH2Cl2 (100 mL) was added to a mixture of MWCNTs (3 g) 

and the iron complex (Fe1 or Fe2) (0.15 g). The resulting suspension was stirred for 6 

h at room temperature. After filtration, the remaining black powder was fully washed 

by toluene and CH2Cl2, and then dried under vacuum for 2 days. The amount of iron 

complex anchored on the MWCNTs (2657.83 mg Fe/kg for Fe1 and 2908.65 mg 
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Fe/kg for Fe2) was determined by ICP-MS taking into account the amount of iron 

present (residual catalyst) in the unfunctionalized samples. 
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Chapter 4: Nickel complexes behavior in ethylene 

polymerization in the presence of nanocarbons (MWCNTs 

or FLG) 
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4.1 Introduction 

 Carbon nanotubes and graphene are two typical representatives of the carbon 

nanomaterial family, which offers an unparalleled flexibility for tailoring catalysts 

repertories to special needs, due to their uniform carbon made surface and porous 

structure [1-2]. Due to their unique physical and chemical properties, CNTs [3] have 

widely been used since their emergence in 1991 [4] and shown to exhibit various 

bonding modes [5-8] and influence the behavior of the resultant complex system 

[9-16]. Within the family of carbon nanomaterials, graphene is another emerging class 

of material that has been intensively studied since its direct observation and 

characterization reported in 2004 [17]. Graphene, a one-atom-thick planar sheet of sp2 

hybridized carbon [17], has similar properties with CNTs and every functionalization 

and dispersion approach applicable to CNTs can also be applied to graphene. 

Therefore, graphene has emerged as a promising new nanomaterial for a variety of 

potential applications, including electronic devices, as energy-storage materials, in 

chemical-bio-sensors and for bio-medical application [18-22]. Moreover, graphene 

has been successfully used as catalyst [23-24] or as support in catalytic reaction 

[25-26]. Similarly to CNTs, excellent electrical and thermal conductivity [27] (~5000 

W/(s.m), even higher than CNTs) and mechanical properties made that graphene was 

used as nanofiller in composites [24, 28]. In addition, single-layer graphene which 

offer a high surface area [18, 21] (2630 m2/g) for the dispersion of the catalytic phases 

has been used as support to immobilize ethylene polymerization catalysts [29-30]. 

Cr-based single-site catalysts were supported on graphene, and high molecular weight 

polyethylenes were produced by the graphene immobilization catalysts [29]. Classic 

ethylene polymerization catalysts (Cp2MCl2, M = Zr, Ti) were also supported by 
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graphene through π-π interactions and successfully used as catalysts in ethylene 

polymerization process [30]. 

Since the discovery that α-diiminonickel complexes were found to be highly 

active pre-catalysts for ethylene polymerization [31], extensive studies have been 

conducted on such systems [32-38]. It is reported that the modification of existing 

ligand sets is necessary to finely tune the catalytic behavior of their metal complex 

pre-catalysts in ethylene polymerization. Moreover, different types of aromatic groups, 

such as pyrene [10, 12, 39-42], anthracene [43-44], naphthalene [42, 45] and 

cyclopentadienyl [46], are reported to be immobilized onto the surface of CNTs via 

noncovalent bonds. Therefore, the catalysts having those common aromatic 

frameworks could be considered to potentially provide the π-π interactions with the 

CNTs and have a further inference in their activity. In order to extend the properties 

and to create hybrids of polyethylene, the influence of aryl groups based on 

naphthalene, anthracene and pyrene in the 2-iminopyridylnickel and 

N-(5,6,7-trihydroquinolin-8-ylidene)arylaminenickel complex pre-catalysts have been 

considered with particular focus on their slightly different interactions with MWCNTs 

and FLG. Their influence was reflected by the catalytic behavior of the nickel 

complexes. All the nickel complexes performed well for ethylene polymerization, and 

additionally, a positive influence in relation with the presence of MWCNTs or FLG 

was observed. The catalytic performances and reaction parameters of the nickel 

complex pre-catalysts during ethylene polymerization were explored and are 

discussed in detail.  
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4.2 Results and discussion 

4.2.1 Synthesis and characterization of ligands and their nickel 

complexes  
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Scheme 4.1 Synthetic procedure of ligands L6–L8 and nickel complexes Ni6–

Ni8. 

By employing established synthetic procedures [34, 36-37], the condensation 
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reaction of 2-acetylpyridine with three different aromatic amines in toluene provided 

the corresponding 2-imino-ethylpyridines (L6–L8) (Scheme 4.1). All of the ligands 

are yellow solids, and were fully characterized by FT-IR, 1H-NMR and 13C-NMR 

spectroscopy. The nickel complexes (Ni6–Ni8) were prepared by combining 

NiCl2·6H2O with two equivalents of the corresponding ligand in ethanol, and stirring 

at room temperature for 6 h (Scheme 4.1). Complexes (Ni6–Ni8) were isolated as 

air-stable powders in high yield (> 80%). On comparison with the IR spectra of the 

free ligands, the v C=N stretching vibrations in complexes Ni6–Ni8 are shifted to 

lower frequencies (around 1598–1600 cm–1), indicative of an effective coordination 

interaction between the amino nitrogen atom and the nickel center. The molecular 

structures of complexes Ni6 and Ni8 were further confirmed by single-crystal X-ray 

diffraction studies (see Section 4.2.2).  

Ligands L9–L13 were synthesized by reaction of 5,6,7-trihydroquinolin-8-one 

with the corresponding aniline in toluene (Scheme 4.2). As detailed before for 

analogous ligand sets[34, 37-38], L9–L11 are a mixture of isomers with a ratio of the 

major and the minor of 5:1. Unlike for L9–L11, the quinoline group ligands L12 and 

L13 are obtained as a unique isomer due to the electron-withdrawing N atom in the 

quinoline ring. Similar phenomena were investigated and discussed before [34]. 

Interestingly, L12 and L13 showed a different structure. Due to the different position 

of the N atom on the quinoline ring, ligand L12 produced by 

5,6,7-trihydroquinolin-8-one and 5-amino-quinoline shows a structure with the 

enolization of the imine (like the minor structure of the ligands L9–L11, Scheme 4.2). 

However, only the sp2-N (imine bond C=N) exists in ligand L13. The nickel 

complexes (Ni9–Ni13) were obtained by blending NiCl2·6H2O with one equivalent of 

the corresponding ligand in ethanol, and stirring at room temperature for 6h (Scheme 
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4.2). All these complexes were isolated as air-stable powders in high yields. 
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Scheme 4.2 Synthetic procedure of ligands L9–L13 and nickel complexes Ni9–

Ni13. 

4.2.2 Molecular structures 

Crystals of complexes Ni6 and Ni8 suitable for single crystal X-ray analysis 

were grown by laying diethyl ether onto their methanol solutions at room temperature. 



 

 132 

As revealed by the molecular structure of Ni6 (Figure 4.1), the nickel center was 

surrounded by two bidentate ligands and two chlorides to afford a distorted octahedral 

geometry around the metal center. The nickel atom deviates by 0.0182 Ǻ from the 

equatorial plane, which contains N2, N4, Cl1 and Cl2. This equatorial plane and the 

plane formed by N1, N3 and Ni1 are almost perpendicular with a dihedral angle of 

95.9°. The dihedral angle comprising the pyridine ring of one ligand and the 

amino-naphthalene ring of another ligand is 24.9°. However, the dihedral angle 

comprising the pyridine ring of the ligand and the amino-naphthalene ring belonging 

to the same ligand is 77.9°. Additionally, the distance between the pyridine ring of one 

ligand and the amino-naphthalene ring of the other ligand is 3.5972 Å, indicating the 

effective - interactions induced by the naphthalene ring. Considering the bond 

lengths around the nickel center, the Ni1–Cl2 (2.3724(9) Å is shorter than the bond of 

Ni1–Cl1 (2.4356(9) Å), whilst the bond length of Ni1–N1 (pyridine) is 2.067(2) Å 

and Ni–N2 (imino) is 2.135(2) Å.  

 

 

Figure 4.1 ORTEP molecular structure of Ni6. Thermal ellipsoids are shown at 

30 % probability. Hydrogen atoms and solvent molecules have been omitted for 

clarity. Selected bond lengths (Å) and angles (°): Ni1−N1 = 2.067(2); Ni1−N2 = 
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2.135(3); Ni1−N3 = 2.065(2); Ni1−N4 = 2.129(3); Ni1−Cl1 = 2.4356(9); Ni1−Cl2 = 

2.3724(9); N2−C6 = 1.293(4); N4−C23 = 1.278(4). N1−Ni1−N2 = 77.50(10); 

N1−Ni1−N3 = 164.09(10); N1−Ni1−N4 = 91.34(10); N2−Ni1−N3 = 91.80(10); 

N2−Ni1−N4 = 93.14(10); N3−Ni1−N4 = 77.37(10); N1−Ni1−Cl1 = 96.53(8); 

N2−Ni1−Cl1 = 173.83(7); N3−Ni1−Cl1 = 93.72(7); N4−Ni1−Cl1 = 85.40(8); 

N1−Ni1−Cl2 = 93.28(7); N2−Ni1−Cl2 = 90.28(7); N3−Ni1−Cl2 = 98.57(7); 

N4−Ni1−Cl2 = 174.76(8); Cl1−Ni1−Cl2 = 91.61(3). 

 

The molecular structure of Ni8 (Figure 4.2) comprises a dimer in which the two 

nickel centers are linked by two bridging chloride atoms. There is no direct bonding 

between two nickel atoms, for which the intra-molecular distance is 3.575 Å, which is 

slightly longer than that observed in other iminopyridylnickel dimers (3.475 Å) [35]. 

Similar to Ni6, the Ni centres of Ni8 are also bound by two bi-dentate ligands, with 

Ni–N (belonging to the pyridine ring) bond lengths similar to those of Ni6. However, 

the Ni–N bond lengths (belonging to the amino ring) of the Ni8 are quite different 

from Ni6. Also, Ni–N2 (2.099(3) Å) and Ni–N4 (2.083(3) Å) are shorter than for Ni6. 

Moreover, the distance between the pyridine ring of one ligand and the amino-pyrene 

ring of the other ligand is 3.3767 Å, showing that the - interactions induced by the 

pyrene ring in Ni8 are stronger than that of naphthalene ring in Ni6. This could be 

considered in terms of the increased potential of the Ni8 for effective immobilization 

on MWCNTs or FLG through - interactions. The X-ray structure detail of 

complexes Ni6 and Ni8 determinations and refinement is provided in Table 4.1. 
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Figure 4.2 ORTEP molecular structure of Ni8. Thermal ellipsoids are shown at 

30 % probability. Hydrogen atoms and solvent molecules have been omitted for 

clarity. Selected bond lengths (Å) and angles (°): Ni1−N1 = 2.066(2); Ni1−N2 = 

2.099(3); Ni1−N3 = 2.062(2); Ni1−N4 = 2.083(3); Ni1−Cl1 = 2.4093(8); Ni1−Cl2 = 

2.4546(8); N2−C6 = 1.282(4); N4−C29 = 1.280(4). N1−Ni1−N2 = 78.43(10); 

N1−Ni1−N3 = 168.06(9); N1−Ni1−N4 = 93.02(9); N2−Ni1−N3 = 94.52(9); 

N2−Ni1−N4 = 96.28(10); N3−Ni1−N4 = 78.05(10); N1−Ni1−Cl1 = 92.95(7); 

N2−Ni1−Cl1 = 88.61(7); N3−Ni1−Cl1 = 96.54(7); N4−Ni1−Cl1 = 172.94(7); 

N1−Ni1−Cl2 = 95.71(7); N2−Ni1−Cl2 = 171.38(7); N3−Ni1−Cl2 = 92.28(7); 

N4−Ni1−Cl2 = 90.29(7); Cl1−Ni1−Cl2 = 85.36(3). 
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Table 4.1 Crystal data and structure refinement for Ni6 and Ni8 

 Ni6 Ni8 

empirical formula C34H28Cl2N4Ni C46H32Cl2N4Ni 

formula weight 622.19 770.37 

T (K) 180(2)  110(2)  

wavelength (Å) 0.71073 0.71073 

cryst syst Orthorhombic Monoclinic 

space group p 21 21 21 C2/c 

a (Å) 8.2375(3) 29.0288 

b (Å) 14.6511(5) 11.6481 

c (Å) 28.2388(10) 28.0664 

α (°) 90 90  

β (°) 90 97.125(2) 

γ (°) 90 90 

V (Å3) 3408.1(2) 9416.8(6) 

Z 4 8 

Dcalcd. (gcm–3) 1.213 1.087 

μ (mm–1) 0.753 0.557 

F(000) 1288 3184 

cryst size (mm) 0.28 × 0.26 × 0.16 0.42 × 0.30 × 0.18 

θ range (°) 2.57–24.27 1.41–28.15 

 

limiting indices 

−9 ≤ h ≤ 9 

−16 ≤ k ≤ 16 

−32 ≤ l ≤ 32 

−34 ≤ h ≤ 38 

−15 ≤ k ≤ 15 

−37 ≤ l ≤ 36 

no. of rflns collected 41120 47554 
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no. unique rflns [R(int)] 5520(0.0407) 11397 

completeness to θ (%) 99.7% 98.6% 

data/ restraints/ params 5520 / 0 / 373 11397 / 0 / 479 

Goodness of fit on F2 1.081 1.123 

Final R indices [I>2σ(I)] R1 = 0.0344 

wR2 = 0.0882 

R1 = 0.0701  

wR2 = 0.2142 

R indices (all data) R1 = 0.0370 

wR2 = 0.0897 

R1 = 0.0877 

wR2 = 0.2240 

largest diff peak and hole (e Å−3) 0.406 and −0.296 1.176 and −2.113 

 

4.2.3 Ethylene polymerization 

4.2.3.1 Ethylene polymerization from Ni6–Ni8 

 Ethylene polymerization catalyzed by these nickel complexes has been 

investigated at 10 atm ethylene. As shown in Table 4.2, Ni6 was subjected to a study 

under different reaction parameters by varying the co-catalyst, the molar ratio of 

Al/Ni, the temperature and the reaction time. Several alkylaluminium reagents 

(Et2AlCl, MAO and MMAO) were initially used to activate complex Ni6 at 30 °C 

(Table 4.2, Entries 1, 2, 4). Given the highest activity obtained with the Ni6/MAO 

system (Table 4.2, Entry 4), MAO was employed as the co-catalyst in the subsequent 

screening of the other nickel complexes. The molar ratio of Al/Ni was found to play 

an important role on the catalytic performances. On increasing the Al/Ni from 500 to 

2500 (Table 4.2, Entries 3−7), the optimum ratio for best activity was Al/Ni = 1500 

(Table 4.2, Entry 5). Interestingly, when the Al/Ni = 500 and 1000, the Mw and Mw/Mn 

values of the polyethylene possessed the same values, suggesting that similar 
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polyethylene was produced (Table 4.2, Entries 3−4). On using an Al/Ni ratio as high 

as 1500, the Mw and Mw/Mn values of the obtained polyethylene increase; however, on 

further increasing the Al/Ni ratio to 2000, the resulting polyethylene has slightly 

smaller values of Mw and Mw/Mn. Such phenomena are different from other nickel 

complexes derived from the 2-acetylpyridine, for which the resulting polyethylene 

showed lower molecular weight but higher polydispersity on increasing the Al/Ni 

ratio [48-49]. To investigate the influence of the Al/Ni ratio on the degree of 

branching in the polymer, the branch information of some representative polyethylene 

was confirmed by 13C NMR spectroscopic analysis (shown in Figure 4.3) [50]. As 

shown in Table 4.2 (Entries 4−6), the branch number is similar at different Al/Ni 

ratios. 

 
Table 4.2 Ethylene polymerization with Ni6a 

Entry Co-cat Al/Ni PE 

(g) 

Actb Tm
c 

(ºC) 

Mw
d 

(kg mol-1) 

Mw/Mn
d Branches 

/1000Ce 

1 Et2AlCl 200 2.51 1.00 59.77 0.60 1.30 nd 

2 MMAO 1000 trace nd nd nd nd nd 

3 MAO 500 4.78 1.91 63.82 0.60 1.38 nd 

4 MAO 1000 6.93 2.77 62.78 0.60 1.38 78.7 

5 MAO 1500 7.78 3.11 61.07 0.90 1.74 82.0 

6 MAO 2000 5.45 2.18 61.49 0.80 1.56 81.4 

7 MAO 2500 4.49 1.80 56.92 0.50 1.39 nd 
a Reaction conditions: 5 µmol Ni6; 30 min; 30 ºC; 10 atm ethylene; 100 mL toluene. b 

106 g (PE)·mol–1(Ni)·h–1. c Determined by DSC. d Determined by GPC. e Determined 

by 13C NMR. 
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The catalytic system Ni6/MAO was then investigated over different reaction 

temperatures and the life-time of the nickel complexes was evaluated. Similar to other 

iminopyridine catalytic systems [51-52], the activity for polymerization decreased 

sharply when the reaction temperature increased from 30 °C to 50°C (Table 4.3, 

Entries 1–3), partly due to the instability of the active species at higher temperatures. 

However, the degree of branching in the PE waxes produced at 40 °C increased 

sharply [32, 53]. As far as the lifetime of Ni6 is concerned, it was found that the 

activity decreased on increasing the reaction time. In addition, the Mw and Mw/Mn 

values of the polyethylene waxes showed only a slight variation on extending the 

reaction time, whilst the narrow molecular distributions (1.28−1.94) were indicative 

of single-site active species. Examination of the 13C NMR spectra indicated that the 

branch number slightly decreased on prolonging the reaction time (Table 4.3, Entries 

1, 4–6) 

 

.  

Figure 4.3 13C-NMR spectrum of the polyethylene prepared using the system 

Ni6/MAO (Table 4.3, Entry 2). 
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Table 4.3 Ethylene polymerization with Ni6/ MAOa 

Entry T 

(ºC) 

t 

(min) 

PE 

(g) 

Actb Tm
c 

(ºC) 

Mw
d 

(kg mol-1) 

Mw/Mn
d Branches 

/1000Ce 

1 30 30 7.78 3.11 61.07 0.90 1.74 82.0 

2 40 30 4.72 1.89 60.47 0.60 1.39 191 

3 50 30 1.87 0.75 62.04  1.00 1.52 nd 

4 30 15 3.91 3.13 57.85 0.50 1.28 87.8 

5 30 45 10.13 2.70 60.46 0.80 1.94 76.8 

6 30 60 11.64 2.33 62.85 0.80 1.74 62.0 
a Reaction conditions: 5 µmol Ni6; 10 atm ethylene; 100 mL toluene. b 106 g 

(PE)·mol–1(Ni)·h–1. c Determined by DSC. d Determined by GPC. e Determined by 13C 

NMR. 

 

The polymerization behaviour of Ni7 and Ni8 were also investigated using MAO 

as co-catalyst. The optimum Al/Ni ratio for Ni7 (Table 4.4, Entries 1−3) and Ni8 

(Table 4.4, Entries 5−7) were the same as for Ni6. Typically, the higher temperatures 

also proved to be detrimental to the polymerization activity (Table 4.4, Entry 4 for 

Ni7 and Table 4.4, Entry 8 for Ni8). Considering the molecular weight and molecular 

weight distributions, the catalyst system employing Ni7 was similar to that of Ni6 

with the range of Mw values observed from 0.6 kg mol-1 to 0.8 kg mol-1 and with 

Mw/Mn at about 1.4. However, the Mw and Mw/Mn values of the PE waxes obtained via 

the use of Ni8 were larger than those from the other two catalyst systems. 
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Table 4.4 Ethylene polymerization with nickel pre-catalysts / MAOa 

Entry cat Al/Ni T 

(ºC) 

PE 

(g) 

Actb Tm
c 

(ºC) 

Mw
d 

(kg mol-1) 

Mw/Mn
d Branches 

/1000Ce 

1 Ni7 1000 30 0.99 0.40 73.31 0.80 1.49 nd 

2 Ni7 1500 30 2.29 0.92 71.71 0.70 1.37 76.5 

3 Ni7 2000 30 1.67 0.67 70.34 0.60 1.37 nd 

4 Ni7 1500 40 0.93 0.37 67.15 0.70 1.41 87.1 

5 Ni8 1000 30 6.32 2.53 67.48 1.30 2.03 nd 

6 Ni8 1500 30 8.54 3.42 64.39 1.50 2.39 55.8 

7 Ni8 2000 30 7.05 2.82 64.90 1.10 2.10 nd 

8 Ni8 1500 40 6.03 2.41 65.22 3.10 2.57 64.6 
a Reaction conditions: 5 µmol; 30 min; 10 atm ethylene; 100 mL toluene. b 106 g 

(PE)·mol–1(Ni)·h–1. c Determined by DSC. d Determined by GPC. e Determined by 13C 

NMR. 

4.2.3.2 Ethylene polymerization in the presence of MWCNTs or FLG 

 The use of either MWCNTs or FLG (Figure 4.4) was studied; each of them was 

separately added to the reaction mixture. We wanted to evaluate if their good electron 

conductivity could allow to manage the exothermicity of the reaction, thus providing 

extended catalyst lifetime. 
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Figure 4.4 TEM micrographs of a) FLG and b) MWCNTs used in this study. 

Typically, MAO was used as the co-catalyst to generate the active nickel species. 

The polymerization reactions were conducted under the conditions Al/Ni = 1500, 

30 °C, 30 min and 10 atm ethylene. In the presence of different amounts of MWCNTs, 

Ni6 and Ni8 were studied. As shown in Table 4.5, the MWCNTs produced a 

contrasted effect on the ethylene polymerization. Indeed, at low MWCNTs content the 

activity does not change significantly compare to the homogenous catalysts, but the 

observed activity decreased as the amount of the MWCNTs was raised (Table 4.5, 

Entries 1−5 for Ni6 and Entries 6−8 for Ni8). However, polyethylene waxes 

characterization by GPC and 13C NMR spectroscopy analysis indicated that the 

polyethylene waxes in the presence of the MWCNTs were different from those 

produced by the nickel systems above. For the Ni6/MWCNT/MAO system, the Mw, 

Mw/Mn and the number of branches were higher than for the polyethylene produced by 

Ni6 in the absence of MWCNTs. Similarly, when compared with Ni8 without 

MWCNTs, the polyethylene waxes obtained via the Ni8/MWCNT/MAO system 

exhibited lower Mw and Mw/Mn values. In general, the catalytic activities of the nickel 

pre-catalysts decrease in the presence of MWCNTs along with producing 
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polyethylenes of lower molecular weight and narrower polydispersity, suggesting that 

there was effective immobilization of the nickel complex on the MWCNTs. These 

results suggest that the immobilizing support occupied some pathways to slightly 

decrease the coordination of ethylene on active sites, which will result in the slower 

propagation reaction for polyethylenes with lower molecular weights. Meanwhile, the 

immobilized nickel catalysts had a better stability with better controlling active 

species for the polyethylenes with narrow polydispersity. In addition, the slower 

propagation reaction with ethylene polymerization favoured its chain transfer reaction, 

therefore higher branched polyethylenes were obtained. 
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Table 4.5 Ethylene polymerization with nickel pre-catalysts / MAO in the presence of 

the MWCNTs a 

Entry Cat. CNT 

(mg) 

PE 

(g) 

Actb Tm
c 

(ºC) 

Mw
d 

(kg mol-1) 

Mw/Mn
d Branches 

/1000Ce 

1 Ni6 - 7.78 3.11 61.07 0.90 1.74 82.0 

2 Ni6 5 7.96 3.18 58.05 0.90 1.78 86.2 

3 Ni6 10 6.74 2.70 59.65 0.80 1.65 112 

4 Ni6 20 5.85 2.34 58.15 0.60 1.45 93 

5 Ni6 0.04 4.41 1.76 62.85 0.90 1.61 nd 

6 Ni8 - 8.54 3.42 64.39 1.50 2.39 55.8 

7 Ni8 5 8.18 3.27 67.78 0.70 1.37 nd 

8 Ni8 10 7.21 2.88 72.19 1.00 1.78 80.1 

9 Ni8 20 6.25 2.50 66.91 1.40 2.26 nd 
a Reaction conditions: 5 µmol Ni; Al/Ni = 1500; 30 min; 30 °C; 10 atm ethylene; 100 

mL toluene. b 106 g (PE)·mol–1(Ni)·h–1. c Determined by DSC. d Determined by GPC. e 

Determined by 13C  

 

By contrast, the use of FLG was positive in terms of activity for ethylene 

polymerization. As shown in Table 4.6, using Ni6, the best catalyst performance was 

observed with an amount of graphene at 0.01 g, and the molecular weight observed 

was 3.00 kg mol-1 (Table 4.6, Entry 2). In presence of graphene, the molecular weight 

of the result PE waxes were in range of 2.40−3.53 kg mol-1 (Table 4.6, Entries 1−4), 

which was higher than that produced by Ni6 and also Ni6/MWCNT. According to the 

GPC/13C NMR data for the polyethylene waxes, higher branching was produced along 
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with higher distribution molecular weight. Interestingly, increasing the amount of 

FLG (from 0.005 g to 0.04 g) led to higher molecular weight and molecular weight 

distribution. Such phenomenon could probably be interpreted as stabilization of the 

active sites achieved by the graphene.  

 

Table 4.6 Ethylene polymerization with Ni6/ MAO in the presence of FLG a 

Entry FLG 

(g) 

PE 

(g) 

Actb Tm
c 

(ºC) 

Mw
d 

(kg mol-1) 

Mw/Mn
d Branches 

/1000Ce 

1 0.005 9.55 3.82 51.84 3.53 6.95 163.7 

2 0.01 10.6 4.22 69.31 3.00 5.41 141.1 

3 0.02 8.87 3.55 53.57 2.82 5.02 nd 

4 0.04 8.47 3.39 63.39 2.40 4.85 nd 
a Reaction conditions: 5 µmol Ni6; Al/Ni = 1500; 30 min; 30 °C; 10 atm ethylene; 

100 mL toluene. b 106 g (PE)·mol–1(Ni)·h–1. c Determined by DSC. d Determined by 

GPC. e Determined by 13C NMR. 

 

 

 

 

 

 

 

Figure 4.5 TGA curves of PE waxes. a) derivative of the weight loss along with 

the temperature; b) weight loss along with the temperature. 
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The quality of the polyethylene waxes produced from the different pre-catalysts 

can be determined from TGA. As shown in Figure 4.5, the curves for the polyethylene 

waxes are quite different. The decomposition temperature of the polyethylene waxes 

made via the nickel complexes is around 275 °C. The decomposition temperature of 

the polyethylene waxes formed in the presence of MWCNTs is around 250 °C, and 

the polyethylene waxes with FLG start to decompose at 235 °C. However, if 

MWCNTs are removed from the polyethylene waxes/MWCNT system, the 

decomposition temperature of the polyethylene waxes returns to 275 °C. This 

suggests that the presence of nanocarbons can lower the polyethylene wax 

decomposition temperature. DSC data produced the same results. In order to 

characterize the polyethylene wax coatings around the nano-carbons, SEM 

observations have been carried out (Figure 4.6). The polyethylene wax have a regular 

flower-like shape, as depicted on Figure 4.6-a. The aspect of the PE wax coating on 

MWCNTs is drastically different (Figure 4.6-b), and it appears that the MWCNTs are 

well dispersed into the polyethylene waxes. Several MWCNTs make bridges with the 

polyethylene wax, thus acting as nodes. Since MWCNTs should interact with the 

nickel pre-catalysts, the ethylene polymerization should operate around the MWCNTs, 

resulting in an homogeneous dispersion of MWCNTs within the formed polyethylene. 

For the FLG/ polyethylene wax samples (Figure 4.6-c), it was difficult to visualize the 

FLG into the polyethylene wax, but no segregation was observed, suggesting there 

also a homogeneous dispersion. The morphology of the polymer particles is uniform, 

and different from the previous ones. 
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Figure 4.6 SEM images of a) PE wax; b) PE wax with MWCNTs; and c) PE 

wax with FLG. 

4.2.3.3 Ethylene polymerization by Ni9–Ni13 

Considering the activity performance of the nickel complexes bearing the 

5,6,7-trihydroquinolin-8-imino ligands, we investigated the performances of Ni9–

Ni13 with or without nanocarbons for ethylene polymerization process and the detail 
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of the result are discussed below. 

As shown in Table 4.7, pre-catalyst Ni9 was typically studied using various 

alkylaluminum reagents such as MAO, MMAO, and Et2AlCl as co-catalysts in 

ethylene polymerization (Table 4.7, Entries 1–3). The highest activity was observed 

by employing MAO as co-catalyst (Table 4.7, Entry 2). So, MAO was selected for 

further investigation.  

 

Table 4.7 Selection of Suitable Alkylaluminum for activate of Ni9 a 

Entry Co-Cat. Al/Ni PE 
 

(g) 

Actb Tm
c 

 
(ºC) 

Mw
d 

 

(kg mol-1) 

Mw/Mn
d Branches 

 
/1000C 

1 MMAO 1000 1.43 0.57 80.17 1.1 1.63 39e 

2 MAO 1000 5.12 2.05 78.56 1.1 1.72 54f 

3 Et2AlCl 200 0.63 0.25 69.31 0.80 1.48 13e 
a Reaction conditions: 5 µmol; 10 atm ethylene; 30 min; 30 ºC; 100 mL toluene. b106 

g (PE)·mol–1(Ni)·h–1. c Determined by DSC. d Determined by GPC. e Determined by 

IR. f Determined by 13C NMR. 

 

In order to evaluate the influence of the reaction conditions on the 

polymerization activity, Ni9/MAO system was fully investigated under different 

reaction conditions, such as Al/Ni ratio, temperature and reaction time. Increasing the 

Al/Ni from 500 to 2000 (Table 4.8, Entries 1–6), the activities showed the best value 

with an optimum ratio of 1000 (Table 4.8, Entry 3). The Mw values of the 

polyethylene formed showed little variation (from 0.8 kg mol-1 to 1.2 kg mol-1). 

Moreover, the Mw/Mn values of the polyethylene which produced under different 

Al/Ni ratio are closed to 2. This means that catalyst Ni9 is a single-site active species 
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catalyst. 

 

Table 4.8 Ethylene polymerization with Ni9/MAO systema 

Entry Al/Ni PE 

(g) 

Actb Tm
c 

(ºC) 

Mw
d 

(kg mol-1) 

Mw/Mn
d Branches 

/1000C 

1 500 3.12 1.25 70.78 1.00 1.68 29e 

2 750 3.43 1.37 70.21 1.10 1.73 26e 

3 1000 5.12 2.05 78.56 1.10 1.72 54 f 

4 1250 3.87 1.55 78.45 0.80 1.36 20e 

5 1500 2.83 1.13 67.73 1.20 1.72 25e 

6 2000 2.52 1.01 63.41 1.00 1.62 - 
a Reaction conditions: 5 µmol; 30 °C ; 30 min; 10 atm ethylene; 100 mL toluene. b 106 

g (PE)·mol–1(Ni)·h–1. c Determined by DSC. d Determined by GPC. e Determined by 

IR. f Determined by 13C NMR.  

 

Considering the influence of the reaction temperature, the activity decreased 

sharply with of an increase the temperature from 30 °C to 50 °C (Table 4.9, Entries 1–

3). Increasing the reaction temperature, the Mw and Mw/Mn values of the resulting 

polyethylenes show a slight decrease. The branching of those polyethylenes were also 

characterized by infrared spectroscopy and 13C NMR and calculated according to the 

literature methods reported before [50, 54]. As shown in Table 4.9, the branching 

number of the same polyethylene determined by infrared is lower than by NMR. This 

is partly because of the quality of the film made for the infrared is an important factor 

for the calculation. A nice film is difficult to make due to the low molecular weight 
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polyethylene produced by pre-catalyst Ni9. Therefore, the branching number 

calculated by NMR is more accurate. Moreover, the branching number is highly 

dependent on the reaction temperature. The highly branched polyethylene is produced 

at high temperature due to β-hydrogen migration. The same phenomena are also 

observed for other nickel catalyst system [32, 35, 46, 51, 55]. To understand the 

lifetime of the active species, trials of Ni9/MAO were carried out over different 

reaction times (Table 4.9, Entries 1, 4–6) under the optimum Ni/Al ratio and 

temperature. The catalytic activities slowly decreased with prolonged reaction time.  

 

Table 4.9 Selection of other reaction parameters (T and t) for Ni9/MAO systema 

Entry T  

(°C) 

t 

(min) 

PE 

(g) 

Actb Tm
c 

(ºC) 

Mw
d 

(kg mol-1) 

Mw/Mn
d Branches 

/1000C 

1 30 30 5.12 2.05 78.56 1.10 1.72 54f 

2 40 30 2.19 0.88 79.12 0.90 1.44 34e,61f 

3 50 30 1.23 0.49 87.25 0.90 1.45 - 

4 30 15 2.70 2.16 85.60 1.00 1.52 15e,39f 

5 30 45 6.61 1.76 91.51 1.00 1.44 20e,31f 

6 30 60 6.98 1.40 93.43 1.20 1.59 - 

7g 30 30 4.37 1.75 75.34 0.90 1.43 7e,43f  
a Reaction conditions: 5 µmol; 10 atm ethylene; 100 mL toluene. b 106 g (PE)·mol–

1(Ni)·h–1. c Determined by DSC. d Determined by GPC. e Determined by IR. f 

Determined by 13C NMR. g 0.01 g MWCNTs. 

 

The influence of MWCNTs on the ethylene polymerization activity of Ni9 was 
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investigated by adding 0.01 g of MWCNTs into the polymerization reaction (Table 

4.9, Entry 7). MWCNTs were stirred with Ni9 in toluene before MAO co-catalyst was 

injected, in order to immobilize the pre-catalyst Ni9 on the surface of the support. The 

activity in the presence of MWCNTs is 1.75 × 106 g (PE)·mol–1(Ni)·h–1, which is 

lower than the corresponding reaction without MWCNTs (Table 4.9, Entry 1). The Mw
 

and the Mw/Mn values of the polyethylenes produced in the presence or not of 

MWCNTs are not changed significantly. However, lower branching number 

polyethylenes are obtained from the catalytic system with the MWCNTs as support, 

which are bulky ligands and can increase the barrier of the chain walking [32].    

The catalytic performance of the Ni10 having the anthracene group was studied 

and showed the same tendency as the Ni9/MAO system. Due to the effect of the 

ligand, the best activity of the Ni10 (Table 4.10, Entry 3) is higher than that performed 

by the Ni9 containing the naphthalene ring (Table 4.8, Entry 3). Lower molecular 

weight and molecular weight distribution polyethylenes were produced by the 

Ni10/MAO system. Moreover, the same molecular weight (600 g/mol) polyethylenes 

were obtained under different Al/Ni ratio and the Mw/Mn values is in the range of 1.30 

to 1.47 (Table 4.10, Entries 1–4). Increasing the temperature from 30 °C to 40 °C, the 

activity decrease from 2.45 to 1.44 × 106 g (PE)·mol–1(Ni)·h–1 and the Mw value fall 

down from 600 to 500 g mol-1 (Table 4.10, Entries 3, 5).  

In the presence of MWCNTs, the activities show a slight increase (Table 4.10, 

Entries 6–9) and changed with the amount of MWCNTs introduced. The best activity 

3.16 × 106 g (PE)·mol–1(Ni)·h–1 is reached by addition of 10 mg MWCNTs. Similar to 

the Ni9/MAO/MWCNT system, narrow Mw polyethylenes were produced by the 

Ni10/MAO/MWCNT system. However, lower molecular weight polyethylenes were 

obtained when the MWCNTs were used.  
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Table 4.10 Ethylene Polymerization with Ni10 Pre-catalysts / MAOa 

Entry Al/Ni CNT 

(mg) 

T  

(°C) 

PE 

(g) 

Act.b Tm
c 

(ºC) 

Mw
d 

(g mol-1) 

Mw/Mn
d Branches 

/1000Ce 

1 500 0 30 4.46 1.78 69.23 600 1.41 - 

2 750 0 30 4.98 1.99 68.76 600 1.30 - 

3 1000 0 30 6.13 2.45 68.97 600 1.47 52 

4 1500 0 30 5.17 2.07 66.72 600 1.36 - 

5 1000 0 40 3.60 1.44 64.92 500 1.26 - 

6 1000 5 30 6.37 2.55 64.09 400 1.34 - 

7 1000 10 30 7.89 3.16 71.44 400 1.42 48 

8 1000 20 30 6.69 2.67 67.26 400 1.30 51 

9 1000 30 30 6.23 2.49 63.78 500 1.46 - 
a Reaction conditions: 5 µmol; 30 min; 10 atm ethylene; 100 mL toluene. b 106 g 

(PE)·mol–1(Ni)·h–1. c Determined by DSC. d Determined by GPC. e Determined by 13C 

NMR.  

 

Pre-catalyst Ni11 having the pyrene group has also been investigated in ethylene 

polymerization. The best activity is shown at the Al/Ni = 1000, which is lower than 

for Ni9 and Ni10. Upon increasing of the reaction temperature to 40 °C, the catalytic 

activity decreases from 1.82 (Table 4.11, Entry 2) to 0.63 × 106 g (PE)·mol–1(Ni)·h–1 

(Table 4.11, Entry 4) as well as the Mw/Mn of the polyethylene decreases from 1.1 to 

0.8 kg mol-1. Similar phenomena were discussed and attributed to higher reaction 

temperatures being detrimental to the stability of the active species [38, 53]. However, 

highly branched polyethylene is produced at 40 °C, due to favoured chain 
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isomerization at high temperature. This phenomenon was observed in the above 

mentioned Ni6–Ni8/MAO systems and other publications [32, 35, 46, 51, 55].   

 

Table 4.11 Ethylene polymerization with Ni11 Pre-catalysts / MAOa 

Entry Al/Ni T 

(°C) 

PE 

(g) 

Act.b Tm
c 

(ºC) 

Mw
d 

(kg mol-1) 

Mw/Mn
d Branches 

/1000Ce 

1 500 30 3.89 1.56 91.74 1.10 1.67 - 

2 1000 30 4.55 1.82 88.78 1.00 1.46 32.1 

3 1500 30 3.01 1.20 102.36 1.30 1.63 32 

4 1000 40 1.57 0.63 62.49 0.80 1.34 79.3 
a Reaction conditions: 5 µmol; 30 min; 10 atm ethylene; 100 mL toluene. b 106 g 

(PE)·mol–1(Ni)·h–1. c Determined by DSC. d Determined by GPC. e Determined by 13C 

NMR.  

 
Two kinds of nanocarbons, MWCNTs and FLG, have been used for the 

Ni11/MAO system. Similar with the Ni10/MAO system, the catalytic activity 

increased in the presence of MWCNTs and the best activity is 2.39 × 106 g (PE)·mol–

1(Ni)·h–1 when 10 mg of MWCNTs were added into the catalytic mixture (Table 4.12, 

Entry 2). Unlike the Ni10/MAO system, Ni11/MAO/MWCNT prefers to produce high 

molecular weight polyethylene. This phenomenon was also reported in some literature 

articles about group 4 based catalysts immobilized on CNTs [13-14, 16, 56]. At the 

same time, the melting points and the Mw/Mn values of the polyethylene produced by 

the Ni11/MAO/MWCNT (Table 4.12, Entries 1–4) are higher than that produced by 

Ni11/MAO (Table 4.11).  

Under the same conditions, adding 10 mg FLG into the Ni11/MAO system, the 
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activity increased from 1.82 to 3.14 × 106 g (PE)·mol–1(Ni)·h–1. Higher amounts of 

FLG in catalytic system, result in the actvities showing a slight decrease (Table 4.12, 

Entries 7–8). Unfortunately, the FLG cannot be removed clearly from the resulting 

polyethylenes. Therfore, the molecular weight and the molecular weight distribution 

values of the polyethylenes produced by the Ni11/MAO/FLG system could not be 

measured by GPC. However, from the DSC and NMR data, the melting point and the 

branching number of the results polyethylenes are lower when the support was 

changed from MWCNTs to FLG. 

 
Table 4.12 Ethylene polymerization with Ni11/MAO in the presence of MWCNTs or 

FLGa 

Entry CNT 

or FLG 

 

(mg) 

PE 

(g) 

Act.b Tm
c 

(ºC) 

Mw
d 

(kg mol-1) 

Mw/Mn
d Branches 

/1000Ce 

1 CNT 5 4.66 1.86 102.90 2.40 2.01 - 

2 CNT 10 5.98 2.39 101.24 2.10 2.47 82.1 

3 CNT 20 5.37 2.15 104.28 2.80 2.61 - 

4 CNT 40 4.74 1.90 103.19 2.70 2.78 - 

5 FLG 5 7.15 2.96 102.22 - - - 

6 FLG 10 7.85 3.14 94.60 - - 25.9 

7 FLG 20 7.54 3.00 99.63 - - 30.9 

8 FLG 40 7.30 2.92 98.17 - - - 
a Reaction conditions: 5 µmol; 30 °C; 30 min; 10 atm ethylene; 100 mL toluene. b 106 

g (PE)·mol–1(Ni)·h–1. c Determined by DSC. d Determined by GPC. e Determined by 

13C NMR.  
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Finally, complexes Ni12 and Ni13 with quinoline groups were used as the 

pre-catalysts for the ethylene polymerization. Using the MAO as the co-catalyst, only 

traces of polymers were obtained. This suggested that quinoline group is not a good 

choice to modify the ethylene polymerization catalysts. 

4.3 Conclusions 

A series of nickel complexes (Ni6–Ni8) bearing 1-aryliminoethylpyridine ligands 

have been synthesized and characterized. When activated by MAO, such nickel 

catalysts exhibit high activities for ethylene polymerization producing polyethylene 

waxes of low molecular weight and narrow molecular weight distribution. 

Furthermore, in the presence of either MWCNTs or FLG, the obtained polyethylenes 

are highly branched. The presence of MWCNTs in the catalytic mixture allows the 

formation of waxes of lower molecular weight and polydispersity, whereas the 

presence of FLG proved to be beneficial for the catalytic activity. The SEM 

observations of the polyethylene waxes produced in the presence of nanocarbons 

show a homogeneous dispersion of these carbon nanomaterials in the polyethylene 

matrix. 

Complexes Ni9–Ni13 bearing arylimino-(5,6,7-trihydroquinolin-8-ylidene) 

ligands were efficiently prepared by an optimized and high yield route. These 

complexes were successfully used as a new catalyst to perform polymerization of 

ethylene in the presence or not of nanocarbons. The microstructure of the 

polyethylene and the activities behavior could be controlled and tailor-made by ligand 

design and the presence of the nanocarbons. The complex Ni10 bearing the 

anthracene group shows higher activity than the other complexes Ni9 and Ni11, but 

produced lower molecular weight polyethylenes. The presence of MWCNTs did not 
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changed significantly the performances in terms of activity and of resulting 

polyethylene of the Ni9 and Ni10 pre-catalysts. However, the activity of complex 

Ni11 is increased and the molecular weight of the resulting polyethylenes is raised 

when MWCNTs are added into the catalytic mixture. FLG have a positive effect on 

the catalytic activity of the Ni11/MAO system.  

4.4 Experimental Section 

4.4.1 Synthesis of the ligands L6–L13 

2-(1-(1-naphthalenylimino)ethyl)pyridine (L6). A mixture of 2-acetylpyridine 

(2.0 mmol), 1.5 eq. 1-aminonaphtalene (3.0 mmol) and a catalytic amount of 

p-toluenesulfonic acid were refluxed in toluene for 15 h. After the reaction, the black 

solid was separated by filtration and most of the solvent was removed under reduced 

pressure, until black–red oil was obtained. Pentane was then added into the solution 

drop-wise, and the color of the solution changed from black-red to yellow. The yellow 

solution was transferred to a new flask and kept at 0 oC for 15 h. 

2-(1-(1-naphthalenylimino)ethyl)pyridine (L6) was isolated as a yellow precipitate, 

yield 0.25 g (1.02 mmol, 51 %). FT−IR (KBr, cm−1): 3054, 1642 (C=N), 1585, 1573, 

1507, 1466, 1390, 1363, 1300, 1263, 1226, 1104, 1089, 805, 778, 743, 619. 1H NMR 

(400 MHz, CDCl3, TMS): δ 8.74 (d, J = 2.0 Hz, 1H, Py H); 8.50 (d, J = 4.0 Hz, 1H, 

Py H); 8.87-7.90 (m, 2H, Py H); 7.80 (d, J = 4.2 Hz, 1H, Ph H); 7.65 (d, J = 4.2 Hz, 

1H, Ph H); 7.47-7.52 (m, 3H, Ph H); 7.43 (d, J = 3.4 Hz, 1H, Ph H); 6.84 (d, J = 3.2 

Hz, 1H, Ph H); 2.36 (s, 3H, CH3). 13C (100 MHz, CDCl3, TMS): δ 168.4, 156.6, 

148.7, 136.5, 128.6, 128.0, 126.4, 126.2, 125.9, 125.5, 125.0, 123.7, 123.5, 121.6, 

120.8, 119.0, 16.8. Anal. Calcd for C17H14N2 (246.31): Calcd. C 82.90, H 5.73, N 
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11.37; Found C 82.58, H 5.85, N 11.56 %.  

The yellow solid ligands 2-(1-(2-anthracenylimino)ethyl)pyridine (L7) and 

2-(1-(1-pyrenylimino)ethyl)pyridine (L8) were prepared using a similar produce.  

The yield of the ligand L7 is 67 %. FT−IR (KBr, cm−1): 3209, 3046, 1624 (C=N), 

1584, 1562, 1463, 1430, 1406, 1257, 1140, 1106, 994, 880, 786, 745, 708. 1H NMR 

(400 MHz, CDCl3, TMS): δ 8.77 (d, J = 2.4 Hz, 1H, Py H); 8.57 (d, J = 2.4 Hz, 1H, 

Py H); 8.20 (s, 1H, Ph H); 8.79-7.84 (m, 2H, Py H); 7.71 (d, J = 3.8 Hz, 1H, Ph H); 

7.62 (t, J = 5.0 Hz, 1H, Ph H); 7.51 (t, J = 5.0 Hz, 1H, Ph H); 7.25-7.30 (m, 2H, Ph 

H); 7.15 (d, J = 4.0 Hz, 1H, Ph H); 7.05 (d, J = 4.0 Hz, 1H, Ph H); 6.31 (s, 1H, Ph H); 

1.79 (s, 3H, CH3). 13C (100 MHz, CDCl3, TMS): δ 164.9, 159.8, 149.5, 148.7, 137.7, 

135.9, 130.7, 128.9, 128.5, 127.8, 127.7, 126.8, 125.2, 124.0, 123.9, 123.4, 122.0, 

121.9, 120.7, 119.4, 29.2. Anal. Calcd for C21H16N2 (296.37): Calcd. C 85.11, H 5.44, 

N 9.45; Found C 84.83, H 5.57, N 9.60 %.  

For the ligand L8, the yield is 40 %. FT−IR (KBr, cm−1): 3039, 2963, 1638 

(C=N), 1597, 1564, 1512, 1485, 1464, 1433, 1362, 1262, 1226, 1180, 1102, 1019, 

880, 857, 710, 678. 1H NMR (400 MHz, CDCl3, TMS): δ 8.77 (d, J = 2.4 Hz, 1H, Py 

H); 8.58 (d, J = 4.0 Hz, 1H, Ph H); 8.14-8.21 (m, 2H, Py H); 8.06-8.09 (m, 2H, Ph H); 

7.99-8.03 (m, 3H, Ph H); 7.92 (t, J = 1.8 Hz, 1H, Ph H); 7.46-7.49 (m, 2H, Ph H); 

7.41 (d, J = 4.0 Hz, 1H, Ph H); 2.39 (s, 3H, CH3). 13C (100 MHz, CDCl3, TMS): δ 

168.9, 156.6, 147.3, 134.9, 126.9, 126.4, 125.4, 124.5, 124.2, 123.8, 123.3, 122.0, 

121.9, 119.1, 117.3, 15.1. Anal. Calcd for C23H16N2 (320.39): Calcd. C 86.22, H 5.03, 

N 8.74; Found 85.92, H, 5.01; N 9.07%.  

8-(1-naphthalenylimino)-5,6,7-trihydroquinoline (L9). A solution of 

5,6,7-trihydroquinolin-8-one (0.45 g, 3 mmol), 1-aminonaphthalene (0.87 g, 4.5 

mmol), and a catalytic amount of p-toluenesulfonic acid in toluene (50 mL) was 
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refluxed for 1 h. The colour of the solution was changed from colourless to orange. 

Most of the solvent was removed under reduced pressure and pentane was added into 

the solution drop by drop. The yellow solution was transferred to a clean flask and 

keeps at -20 °C for one night, then the yellow solid was obtained. The yield of the 

ligand L9 is 62 %. For combined isomers: FT−IR (KBr, cm−1): 3048, 1697, 1632 

(C=N), 1574, 1527, 1496, 1406, 1384, 1283, 1195, 1088, 789, 771, 697. For the major 

ligand: 1H NMR (400 MHz, CDCl3, TMS): δ 8.81 (d, 1H, J = 2.2 Hz, Py H); 

7.81-7.87 (m, 2H, Py H, Ph H); 7.60-7.64 (m, 2H, Ph H); 7.44-7.51 (m, 2H, Ph H); 

7.41 (d, J = 3.6 Hz, 1H, Ph H); 7.37 (m, 1H, J = 4.0 Hz, Ph H); 6.87 (d, 1H, J = 3.6 

Hz, Ph H); 2.98 (t, 2H, J = 6.0 Hz, CH2); 2.55 (t, 2H, J = 6.4Hz, CH2), 1.91-1.95 (m, 

2H, CH2). 13C (100 MHz, CDCl3, TMS): δ 166.3, 149.1, 128.4, 127.9, 126.0, 125.9, 

125.8, 125.3, 125.1, 123.9, 123.2, 113.2, 30.6, 29.4, 22.5. For the minor ligand: 1H 

NMR (400 MHz, CDCl3, TMS): δ 8.47 (d, 1H, J = 2.0 Hz, Py H); 8.20 (d, 1H, J = 3.4 

Hz, Py H); 7.81-7.83 (m, 1H, Py H); 7.65 (d, 1H, J = 4.4 Hz, Ph H); 7.44-7.51 (m, 

3H, Ph H); 7.33 (d, 1H, J = 1.8 Hz, Ph H); 7.16-7.19 (m, 1H, Ph H); 6.81 (d, 1H, J = 

4.2 Hz, Ph H); 5.65 (t, 1H, J = 4.6 Hz, CH); 2.93 (t, 2H, J = 8.0 Hz, CH2); 2.43-2.48 

(m, 2H, CH2). 13C (100 MHz, CDCl3, TMS): δ 150.1, 146.0, 134.9, 134.1, 128.6, 

126.3, 125.9, 125.4, 124.9, 122.3, 122.2, 121.9, 120.8, 119.0, 116.5, 101.3, 27.6, 21.5.  

8-(2-anthracenylimino)-5,6,7-trihydroquinoline (L10). The yellow ligand L10 

was obtained using the same procedure as for the synthesis of L9 with a yield 73 %. 

For combined isomers: FT−IR (KBr, cm−1): 3049, 2941, 1690, 1630 (C=N), 1539, 

1523, 1462, 1442, 1421, 1329, 1295, 1196, 1113, 883, 801, 740, 619. For the major 

ligand: 1H NMR (400 MHz, CDCl3, TMS): δ 8.72 (d, 1H, J = 4.6Hz, Py H); 8.32 (d, 

1H, J = 4.6Hz, Py H); 8.24 (s, 1H, Ph); 7.94 (d, 1H, J = 3.8Hz, Ph H); 7.91-7.97 (m, 

2H, Py, Ph H); 7.65 (d, 1H, J = 4.6Hz, Ph H); 7.32-7.44 (m, 5H, Ph H); 3.04 (t, 2H, J 
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= 6.4 Hz, CH2); 2.83 (t, 2H, J = 6.6Hz, CH2), 2.18-2.25 (m, 2H, CH2). 13C (100 MHz, 

CDCl3, TMS): δ 165.5, 149.2, 145.9, 137.6, 135.0, 129.1, 128.2, 127.6, 126.9, 125.9, 

125.3, 124.1, 123.7, 122.7, 122.4, 109.4, 39.7, 29.2, 22.7. For the minor ligand: 1H 

NMR (400 MHz, CDCl3, TMS): δ 8.43 (d, 1H, J = 3.0 Hz, Py H); 8.02 (d, 1H, J = 4.2 

Hz, Py H); 7.81 (s, 1H, Ph H); 7.71 (d, 1H, J = 3.0 Hz, Py H); 7.50 (d, 1H, J = 3.6 Hz, 

Ph H); 7.32-7.44 (m, 5H, Ph H);7.15-7.17 (m, 1H, Ph H); 6.16 (t, 1H, J = 5.0 Hz, Ph 

H); 2.97 (t, 2H, J = 8.0 Hz, CH2); 2.56-2.60 (m, 2H, CH2). 13C (100 MHz, CDCl3, 

TMS): δ 160.4, 149.1, 137.4, 134.1, 129.0, 127.8, 126.2, 125.5, 125.2, 125.1, 124.8, 

122.1, 122.2, 103.1, 29.4, 27.5.  

8-(1-pyrenylimino)-5,6,7-trihydroquinoline (L11). Using the same procedure as 

for the synthesis of L9, yellow solid L11 was obtained. Yield: 61 %. For combined 

isomers: FT−IR (KBr, cm−1): 3037, 2917, 1634 (C=N), 1600, 1549, 1520, 1488, 1437, 

1321, 1289, 1185, 1111, 1019, 835, 817, 798. For the major ligand: 1H NMR (400 

MHz, CDCl3, TMS): δ 8.85 (d, J = 3.0 Hz, 1H, Py H); 8.18 (d, J = 4.2 Hz, 1H, Py H); 

8.12-8.15 (m, 2H, Py H, Ph H); 8.05 (d, 1H, J = 4.4 Hz, Ph H); 7.98-8.00 (m, 4H, Ph 

H); 7.66 (d, J = 3.6 Hz, 1H, Ph H); 7.51 (d, 1H, J = 4.0 Hz, Ph H); 7.41 (t, J = 3.8 Hz, 

1H, Ph H);  2.97-3.04 (m, 2H, CH2), 2.53-2.57 (m, 2H, CH2), 1.91-1.98 (m, 2H, 

CH2). 13C (100 MHz, CDCl3, TMS): δ 166.6, 149.2, 146.0, 137.6, 137.4, 131.7, 127.4, 

126.7, 126.0, 125.9, 125.7, 125.3, 125.2, 124.6, 124.4, 124.2, 123.2, 121.9, 119.9, 

116.7, 31.1, 29.4, 22.4. For the minor ligand: 1H NMR of the minor (400 MHz, 

CDCl3, TMS): δ 8.72 (d, J = 2.2 Hz, 1H, Py H); 8.37 (d, J = 4.4 Hz, 1H, Py H); 

8.09-8.11 (m, 2H, Py H, Ph H); 8.03-8.09 (d, 1H, J = 2.0 Hz, Ph H); 7.92-7.97 (m, 

3H, Ph H); 7.83 (d, 1H, J = 4.4 Hz, Ph H); 7.53 (d, J = 5.2 Hz, 1H, Ph H); 7.38 (d, J = 

2.2 Hz, 1H, Ph H); 7.20 (t, J = 3.8 Hz, 1H, Ph H); 5.71 (t, J = 4.8 Hz, 1H, CH); 

2.81-2.84 (m, 2H, CH2); 2.19-2.25 (m, 2H, CH2). 13C (100 MHz, CDCl3, TMS): δ 
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166.0, 150.1, 146.5, 137.5, 134.9, 131.5, 127.6, 126.9, 126.7, 126.1, 125.9, 125.4, 

125.3, 124.5, 124.2, 122.4, 121.9, 120.3, 119.9, 100.6, 29.2, 22.7.  

8-(5-quinolinylimino)-5,6,7-trihydroquinoline (L12). 1H NMR (400 MHz, CDCl3, 

TMS): δ 8.49 (d, J = 2.2 Hz, 1H, Py H); 8.31 (d, J = 2.6 Hz, 1H, Py H); 7.59 (d, J = 

3.8 Hz, 1H, Py H); 7.47 (t, J = 8.4 Hz, 1H, Py H); 7.38 (d, J = 4.2 Hz, 1H, Py H); 

7.27-7.31 (m, 2H, Py H); 6.71 (d, J = 3.8 Hz, 1H, Py H); 6.42 (d, J = 2.8 Hz, 1H, Py 

H);.3.09 (t, J = 7.8 Hz, 2H, CH2); 2.68 (t, J = 8.0 Hz, 2H, CH2). 13C NMR (100 MHz, 

CDCl3, TMS): 152.4, 150.3, 146.9, 145.8, 142.9, 138.3, 135.8, 135.7, 132.4, 130.3, 

124.1, 122.0, 116.6, 109.6, 104.9, 103.3, 26.2, 19.9. FT−IR (KBr, cm−1): 2919, 1605, 

1575, 1543, 1407, 1345, 1286, 1174, 1122, 1095, 862, 787, 764, 660.  

8-(8-quinolinylimino)-5,6,7-trihydroquinoline (L13).1H NMR (400 MHz, 

CDCl3, TMS): δ 8.76 (d, J = 2.8 Hz, 1H, Py H); 8.71 (d, J = 2.2 Hz, 1H, Py H); 8.07 

(d, J = 4.8 Hz, 1H, Py H); 7.65 (d, J = 3.8 Hz, 1H, Py H); 7.32-7.40 (m, 3H, Py H); 

7.15 (d, J = 4.0 Hz, 1H, Py H); 6.93 (d, J = 4.2 Hz, 1H, Py H); 3.03 (t, J = 6.0 Hz, 2H, 

CH2); 2.81 (d, J = 6.6 Hz, 2H, CH2); 2.17-2.24 (m, 2H, CH2). 13C NMR (400 MHz, 

CDCl3, TMS): 152.8, 150.4, 149.3, 147.5, 144.3, 140.8, 137.7, 136.2, 129.2, 127.5, 

127.1, 121.5, 116.2, 110.2, 106.3, 39.8, 29.3, 22.8. 

4.4.2 Synthesis of the nickel complexes  

All the nickel complexes were prepared using a similar procedure: NiCl2·6H2O 

was reacted with one or two equivalents of the corresponding ligand in ethanol, and 

was stirred at room temperature for 6 h. The precipitate was collected by filtration, 

washed several times with diethyl ether, and dried under reduced pressure. The 

desired complex was obtained as a powder in good yield. All complexes were isolated 

as air-stable powders and characterized by FT−IR spectroscopy and elemental 
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analyses. 

The complex Ni6 was isolated as a light green solid with a yield of 83 %. FT−IR 

(KBr, cm−1): 3047, 1633, 1598, 1573, 1509, 1442, 1391, 1372, 1319, 1265, 1165, 

1022, 815,781, 646. Anal. Calcd for C34H28Cl2N4Ni (622.21): Calcd. C 65.63, H 4.54, 

N 9.00; Found C 65.33, H 4.90, N 8.79 %.  

The complex Ni7 was isolated as a brown solid with a yield of 80 %. FT−IR 

(KBr, cm−1): 3054, 1628, 1600, 1543, 1480, 1439, 1377, 1257, 1163, 1025, 886, 780, 

752, 647. Anal. Calcd for C42H32Cl2N4Ni (722.33): Calcd. C 69.84, H 4.47, N 7.76; 

Found 69.55, H 4.29, N 8.04 %. 

The yield of the yellow solid Ni8 was 87 %. FT−IR (KBr, cm−1): 3046, 1626, 

1597, 1569, 1441, 1372, 1321, 1257, 1185, 1049, 1021, 849, 784. Anal. Calcd for 

C46H32Cl2N4Ni (770.37): Calcd. C 71.72, H 4.19, N 7.27; Found 71.36, H 3.92, N 

7.52 %. 

The yield of the red solid Ni9 was 80 %. FT−IR (KBr, cm−1): 3035, 1631, 1593 

(C=N), 1508, 1462, 1392, 1334, 1288, 1216, 1131, 1014, 925, 784. MS-ESI: 

C19H16Cl2N2Ni m/z 402, 403; (C19H16Cl2N2Ni·NH4)+ m/z 420.0, 418.0; 

C19H16Cl2N2NiCl·NH4 m/z 384.0, 382.0; C19H16Cl2N2Ni·HCl m/z 367.0, 365.0; 

(C19H16Cl2N2Ni·NH4)2+ m/z 347.1. 

The yield of the red solid Ni10 was 78 %. FT−IR (KBr, cm−1): 3033, 2937, 1622, 

1588 (C=N), 1531, 1459, 1431, 1352, 1332, 1285, 1217, 1195, 1129, 968, 893, 795, 

742. MS-ESI: C23H18Cl2N2Ni m/z 452, 454; (C23H18Cl2N2Ni·NH4)+ m/z 470.1, 470.2; 

(C23H18N2NiCl)+ m/z 415.1, 417.0; C23H18N2NiCl·NH4 m/z 432.0, 434.0. 

The yield of the red solid Ni11 was 71 %. FT−IR (KBr, cm−1): 3036, 2952, 1625, 

1587 (C=N), 1502, 1486, 1459, 1353, 1333, 1288, 1217, 1185, 1130, 1116, 932, 850, 

796, 771, 713, 682. MS-ESI: C25H18Cl2N2Ni m/z 476, 474; (C25H18Cl2N2Ni·NH4)+ 
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m/z 494.0, 488.0; (C25H18N2NiCl)+ m/z 437.0, 435.0. 

The yield of the red solid Ni12 was 77 %. FT−IR (KBr, cm−1): 3199, 2145, 2029, 

1611, 1584, 1496, 1467, 1218, 1128, 1083, 837, 801,774, 679.  

The yield of the yellow solid Ni13 was 84 %.FT−IR (KBr, cm−1): 3196, 3130, 

1612, 1572, 1550, 1473, 1415, 1376, 1340, 1298, 1220, 1182, 1123, 10885, 1052, 791, 

761, 717, 684.  
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Chapter 5: Catalytic isoprene polymerization around 

iron nanoparticles confined into multi-walled carbon 

nanotubes 
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5.1 Introduction 

Rubber, a kind of rugged polymer which can be obtained from rubber tree, is 

popular for packaging and labeling, textiles, plastic parts, stationery, car parts, 

laboratory equipment, and reusable containers. Interestingly, natural rubber is resistant 

to many chemical solvents and displays high-performance mechanical properties [1-2]. 

In particular, it can undergo much more elastic deformations under stress than most 

materials and still return to its previous size without permanent deformation. 

Therefore, rubber is preferred to be used in elastomer application and special industry, 

such as in automotive and aircraft industries for door and window profiles, hoses, 

belts, matting, flooring and dampeners (anti-vibration mounts). Moreover, in the last 

few years, the requirement of the rubber has been increased with the rapid industrial 

development. Polydienes, especially polyisoprene, which can be produced by 

polymerization of diene monomers have the same molecular structure and properties 

as natural rubber. It is reported that 15 billion kilograms of rubbers are produced 

annually and of that amount two thirds is synthetic [3]. Moreover, global revenues 

will rise to approximately US$56 billion in 2020 [4]. Therefore, dienes 

polymerization has attracted interest in both academy and industry.  

Polymerization of isoprene offers several possible isomeric structures for 

polyisoprene, such as trans-1,4-polyisoprene, cis-1,4-polyisoprene, 3,4-polyisoprene 

and 1,2-polyisoprene (Scheme 5.1) [5-6]. Moreover, cis-1,4-polyisoprene has a 

structure similar to that of the rubber produced from the latex of the rubber trees and 

the nature of the isomers has a great influence on the properties of resulting materials 

[7]. Therefore, the selectivity of the polyisoprene catalysts is crucial.  

 

http://www.polymersolutions.com/blog/plastics-polymers-rubbers/
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n n

cis-1,4-polyisoprenetrans-1,4-polyisoprene

n
1,2-polyisoprene

n
3,4-polyisoprene  

Scheme 5.1 Isomers of the polyisoprene. 

Dienes polymerization can be carried out in different ways, such as radical 

polymerization [8] and cationic polymerization [5, 9-17]. Industrial polydienes are 

dominated by alkyllithium-based cationic polymerization [5, 9, 18]. Polydienes can 

also be obtained by combing metal complexes with alkylaluminiums. Catalysts based 

on titanium catalyzed the butadiene or isoprene polymerization, using MAO as 

co-catalyst with rather low activity [19-21]. Vanadium-MAO system were reported by 

Ricci as catalysts for polyisoprene with high selectivity toward trans-1,4-polyisoprene 

[22-23]. Recently, rare earth metal complexes were also investigated as polydienes 

catalysts and the stereospecific polydienes were obtained through controlling the 

structure of the ligand [14-17, 24]. Living polymerization of isoprene with a high 

3,4-selectivity was reported using rare earth metal complexes bearing fluorenyl 

N-heterocyclic carbene ligands [15]; the highly cis-1,4-selective polymerization of 

isoprene or butadiene were obtained by the rare earth metal complexes bearing imino 

ligands [14, 16-17, 24].  

Bisiminopyridine late-transition metal complexes are of interest in 

polymerization since the works of Gibson and Brookhart at the end of last century 
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[25-27]. Immediately, those kinds of catalysts have been used and investigated in 

polymerization of dienes. Cobalt catalysts play a very important role in butadiene 

polymerization. Different microstructure of polybutadiene were produced by cobalt 

complexes bearing bidentate phosphorus ligands [25, 28-30] and two kinds of 

polybutadiene; cis-1,4-polybutadiene and syndiotactic 1,2-polybutadiene; have been 

produced on an industrial scale [31]. Iron complexes have been studied in the field of 

dienes polymerization [5, 10-13, 32-35]. In particular, iron complexes based on the 

iminopyridine ligand were used for dienes polymerization and performed high activity 

for 1,3-butadiene [9, 13] and isoprene [5, 9-10, 12, 34-35]. According to those 

investigations, it is clear that not only the nature of the ligand around the iron center 

but also the number of ligands present in the coordination sphere can affect both 

catalytic activity and stereoselectivity [32].  

Carbon nanotubes (CNTs) are one of the most intensively studied class of 

nanomaterials due to their outstanding properties and potential use in a number of 

high value applications [36]. As mentioned in the previous chapters, CNTs can be 

considered as an excellent support [37] and can be covalently or non-covalently 

functionalized to immobilize a wide variety of catalysts. Especially, CNTs have been 

successfully used and investigated in polymerization reactions [38-42]. It was 

reported that the presence of CNTs can affect the activity, moreover, a 

“super-materials” polymer nanocomposites have been produced by this method. Due 

to the unique properties of CNTs, the obtained composite materials are stronger, stiffer, 

more thermally conductive, and more electrically conductive than anything that is 

used today [43-45]. This could be reached by a better control of CNT alignment in the 

polymer matrix [46-47]. In addition, catalysis utilizing the interior surface of CNTs 

has been explored recently [48-50]. The CNTs channels are anticipated to provide an 
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intriguing confinement environment for metal catalysts and catalytic reaction. Besides, 

functionalized CNTs are emerging as new tools in the field of nanobiotechnology and 

nanomedicine due to the fact that they can be easily manipulated and modified by 

encapsulation with biopolymers or by covalent or non-covalent functionalization [51]. 

Indeed, CNTs have optical, electronic, and mechanical properties that can be 

exploited in biological or biomedical applications [52]. Such as, CNTs can be used in 

the field of treatment of the kidney tumors [53] and CNTs are used to delivery drug 

chage for cancer therapeutics [54] and to bind blood proteins or DNA [55].  

On the other hand, metallic magnetic nanoparticles (MMNPs) of the 3d series and 

their alloys are some of the most important targets in nanoscience research. The long 

and medium term applications targeted range from ultra-high density magnetic 

recording [56] to multifunctional magnetic probes and transport media for 

biomedicine [57], which are domains that hold promises of important innovation and 

therefore economic impact. Up to now, if iron based magnetic oxides are often 

preferred [58-60] due to their biocompatibility, MMNPs possess magnetic properties 

that differentiate them from oxides quantitatively as well as qualitatively: they 

combine a large magnetization, which guarantees a more efficient response to 

magnetic field stimuli, and a tunable anisotropy, which may be optimized depending 

on the target application. Both advantages, if properly exploited, may open new 

markets [61]. These unique properties, which may significantly deviate from those of 

their bulk counterparts, can be further tailored by interaction with CNTs in order to 

meet the demand of novel versatile materials [62]. A major issue in the use of 

MMNPs in numerous applications is their low biocompatibility coupled with their 

sensitivity towards oxidation. Many approaches to protect MMNPs from air and water 

have been reported, including: i) a controlled oxidation of the pure metal core, a 
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technique long known for the passivation of air sensitive supported catalysts [63]; 

however, it has been documented that nonmetallic surface layers negatively influence 

the desired magnetic properties; ii) coating of the metallic core by a noble metal as 

gold; however, many of the reported metallic shells do not provide sufficient 

protection of the magnetic core because of non-uniform coating; iii) carbon 

encapsulation; however this technique requires harsh reaction conditions that can 

affect MMNPs size; iv) the coating of the metal core with surfactants or polymer [64]; 

however robust synthetic routes to controllably functionalize high moment/coercivity 

magnetic colloids remains an important challenge or v) the formation of alloys [65]; 

however, controlling the composition of magnetic alloy nanoparticles can be difficult 

when they are produced from two or more precursors. 

Recently, confinement effects coming from specific interactions of nanoparticles 

with the internal walls of CNTs have become the object of a research domain that 

makes use of CNTs as nanoreactors [49-50]. As part of our continuous effort to 

develop new synthesis strategies to confined metallic nanoparticles in CNTs and to 

study confinement effects in these nanostructures [66], we intend to produce air 

protected and confined iron NPs in CNTs. The CNTs will become the nanoreactors in 

which we will perform reactions aiming at: i) tuning the structural and magnetic 

properties of MMNPs, and ii) protecting them from oxidation by an air-barrier 

polymer coating. These two independent modifications (structure and chemical 

reactivity) may answer to main drawbacks of the implementation of MMNPs in 

biological applications such as hyperthermia or transport media for biomedicine. It 

should also be possible to take advantage of the magnetic properties of the MMNPs 

confined in CNTs in order to manipulate the CNTs. Indeed, these MMNPs can serve 

as magnetic “handles” for the alignment of CNTs which could facilitate their 
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integration in composite materials.  

Polyisoprene, a kind of high crosslink material, is a widely used biopolymer in 

the manufacture of medical products [2] and could be applied in protection of 

sensitive particles. As part of this strategy, we have therefore developed iron based 

catalytic systems to promote polyisoprene synthesis. According to the literature 

reported by the Ritter group [5], iron iminopyridine complexes shown high activity 

for the isoprene polymerization and produced various high-performance rubbers 

through effectively controlled polymerization conditions. In this chapter, we report the 

investigation of iron complexes keeping the iminopyridine framework and 

introducing polyaromatic groups, which can be immobilized on the surface of 

particles via π-interactions. One of them, [Fe(C17H14N2)2Cl2] was chosen for 

immobilization on the surface of iron MMNPs (Cat@NPs) through π-π interactions. 

Furthermore, Cat@NPs@MWCNT was obtained by confining the Cat@NPs into 

the internal cavity of CNTs. The catalytic properties of Cat@NPs and 

Cat@NPs@MWCNT were also explored and are described below. The general 

synthesis strategy we have followed to produce such multifunctional hybrid 

nanomaterial combined both molecular and surface chemistry; and is depicted on 

Scheme 5.2. 
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Scheme 5.2 Bottom-up approach to produce air-protected magnetic 

nanoparticles confined in CNTs: (1) synthesis of Fe NPs; (2) synthesis of Fe NPs 

modified with a Fe polymerization catalyst (Cat@NPs); (3) selective confinement of 

Cat@NPs in CNTs; and (4) Polymerization of isoprene in a confined space to 

produce Cat@NPs@MWCNT@PI. 

5.2 Results and discussion 

5.2.1 Synthesis and characterization of ligands and iron complexes  

The ligands (L6–L8) in Scheme 5.3 were synthesized and prepared according to 

the procedure described in Chapter IV [67]. Iron complexes Fe6–Fe8 (Scheme 5.3) 

were prepared by reacting under inert atmosphere FeCl2 with two equivalents of the 

corresponding ligand in EtOH (Scheme 5.3). All iron complexes were isolated as 

air-stable solids but slowly turn from blue to yellow in solution upon air exposure, 

probably due to oxidation of Fe(II) to Fe (III). Compared to the IR spectra of the free 

ligands, the C=N stretching vibrations in complexes Fe6–Fe8 are 
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Scheme 5.3 Synthetic procedure for iron complexes Fe6–Fe8 from ligands L6–L8. 

shifted to lower frequencies (1596 cm–1, 1597 and 1596 cm–1), indicating effective 

coordination between the imino nitrogen atoms and the iron center. Single crystals of 

complexes Fe6–Fe8, grown by laying diethyl ether onto their methanol solutions at 
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room temperature under argon, further confirmed the complex structure through 

X-ray diffraction analysis.  

5.2.2 X-ray crystallographic studies  

As shown in Figure 5.1, similar to its analogous complex Ni6 described in 

Chapter IV [67], the iron center in Fe6 is surrounded by two bidentate L6 and two 

chloride ligands to afford a distorted octahedral geometry around the metal center. 

The pyridine ring of one ligand is almost perpendicular to the amino-naphthalene ring 

belonging to the same ligand with a dihedral angle of 93.6°. However, the dihedral 

angle comprising the pyridine ring of one ligand and the amino-naphthalene ring of 

another ligand is 19.3° and the distance between them is 3.4821 Å which is shorter 

than in its analogous complex Ni6 (3.5972 Å), indicating a stronger - interaction 

induced by the naphthalene ring. Concerning the bond lengths around the iron center, 

the Fe–Cl1 (2.3530 (7) Å) is shorter than the Fe–Cl2 (2.4681 (7) Å), whereas the 

bonds lengths of Fe–N showed a slight difference. The bonds lengths of Fe–N 

(Pyridine); Fe1−N1 2.1612(19) Å and Fe1−N3 2.157(2) Å; are shorter than the Fe–N 

(imino) bond length, due to the conjugation inside of the pyridine ring. 
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Figure 5.1 ORTEP molecular structure of Fe6. Thermal ellipsoids are shown at 

30 % probability. Hydrogen atoms have been omitted for clarity. Selected bond 

lengths (Å) and angles (°): Fe(1)−N(1) = 2.1612(19); Fe(1)−N(2) = 2.272(2); 

Fe(1)−N(3) = 2.157(2); Fe(1)−N(4) = 2.274(2); Fe(1)−Cl(1) = 2.3530(7); Fe(1)−Cl(2) 

= 2.4681(7); N(1)−C(1) = 1.325(3); N(1)−C(5) = 1.360(3); N(2)−C(6) = 1.292(3); 

N(3)−C(18) = 1.342(3); N(3)−C(22) = 1.342(3); N(4)−C(23) = 1.271(3). 

N(1)−Fe(1)−N(2) = 73.40(7); N(3)−Fe(1)−N(4) = 73.11(7); N(1)−Fe(1)−N(4) = 

84.77(7); N(2)−Fe(1)−N(4) = 88.76(7); N(3)−Fe(1)−Cl(1) = 102.78(6); 

N(1)−Fe(1)−Cl(1) = 99.75(5); N(2)−Fe(1)−Cl(1) = 93.05(5);  N(4)−Fe(1)−Cl(1) = 

175.45(5);  N(3)−Fe(1)−Cl(2) = 97.67(6); N(1)−Fe(1)−Cl(2) = 99.05(6); 

N(2)−Fe(1)−Cl(2) = 171.00(5); N(4)−Fe(1)−Cl(2) = 85.63(6); Cl(1)−Fe(1)−Cl(2) = 

93.08(3). 

 

Complex Fe7 (Figure 5.2) adopts six-coordination numbers with six N atoms 

belonging respectively to three ligands around the iron atom displaying an octahedral 

coordination environment. A free FeCl4
2- anion was observed away from the main 

cationic part FeL3
2+, as counteranion. A similar structure was observed in other 
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 Figure 5.2 ORTEP molecular structure of Fe7. Thermal ellipsoids are shown at 30 

% probability. Hydrogen atoms have been omitted for clarity. Selected bond lengths 

(Å) and angles (°): Fe(1)−N(1) = Fe(1)−N (1i) = Fe(1)−N(1ii) = 1.9697(19); 

Fe(1)−N(2) = Fe(1)−N (2i) = Fe(1)−N (2ii) = 1.9855(18); Fe(2)−Cl(1) = 2.3152(14); 

Fe(2)−Cl (2) = Fe(2)−Cl (2i) = Fe(2)−Cl (2ii) = 2.3175(8). N(1)−Fe(1)−N(1i) = 

N(1)−Fe(1)−N(1ii) = N(1i)−Fe(1)−N(1ii) = 94.55(8); N(1)−Fe(1)−N(2) = 

N(1i)−Fe(1)−N(2i) = N(1ii)−Fe(1)−N(2ii) = 80.18(8); N(1i)−Fe(1)−N(2) = 

N(1ii)−Fe(1)−N(2i) = N(1)−Fe(1)−N(2ii) = 174.22(8); N(2)−Fe(1)−N(2i) = 

N(2)−Fe(1)−N(2ii) = N(2i)−Fe(1)−N(2ii) = 97.18(7); N(1)−Fe(1)−N(2i) = 

N(1i)−Fe(1)−N(2ii) = N(1ii)−Fe(1)−N(2) = 88.28(8). 

 

reported iron complexes coordinated by six nitrogen atoms from three bipyridine 

ligands and with a free FeCl4
2- anion [68]. The molecular structure of the complex 

Fe7 is completely symmetrical as the iron atom is the center and the iron atom 
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deviates by 0.0255 Ǻ from the equatorial plane which contains N1, N2, N1i and N2ii. 

Pyridine rings are nearly perpendicular to each other with the dihedral angles being: 

81.5° between the ring containing N1 and the pyridine ring with the N1i, between the 

ring containing N1i and the pyridine ring with the N1ii ; and 85.1° between the rings 

containing N1 and N1ii. The dihedral angles are 120.2°, 60.2° and 60.2° between 

those anthracene rings in the order of C8–C21, C8i–C21i and C8ii-C21ii. A cavity is 

produced by the three anthracene rings held together and the FeCl4
2- anion is located 

at the extremity of this cavity.  

 

 

Figure 5.3 ORTEP molecular structure of Fe8. Thermal ellipsoids are shown at 

30 % probability. Hydrogen atoms and solvent molecules have been omitted for 

clarity. Selected bond lengths (Å): Fe(1)−N(1) = 2.161; Fe(1)−N(2) = 2.231; 

Fe(1)−N(3) = 2.256; Fe(1)−N(4) = 2.178; Fe(1)−Cl(1) = 2.450; Fe(1)−Cl(2) = 2.369.  

 

Similar with the Fe6, the iron center of the Fe8 (see Figure 5.3) is coordinated 

with four N-atoms belong to two bidentate ligands and two chloride, possesses a 

distorted octahedral environment. The Fe–N bond lengths (belonging to the amino 

ring) of the Fe8 are than same bonds of Fe6. It is probably because of more π-electron 



 

 185 

of the pyrene rings. The pyridine ring of one ligand is almost perpendicular with the 

amino-pyrene ring belonging to the same ligand with dihedral angles of 92.7° and 

80.9, severally. Two pyridine rings are perpendicular to each other with a dihedral 

angle of 89.4°, and the dihedral angle of two pyrene rings is 75.4°. The X-ray 

structure details for complexes Fe6–Fe8 determinations and refinement are provided 

in Table 5.1. 

 

Table 5.1 Crystal data and structure refinement for Fe6–Fe8  

 Fe6 Fe7 Fe8 

empirical formula C34H28Cl2FeN4 C63H48FeN6·Cl4Fe (C46H32Cl2FeN4)4, 

(CH3OH) 3 

Formula weight 619.35 1142.57 3166.15 

T (K) 180(2)  180(2)  180(2) 

wavelength (Å) 0.71073 0.71073 0.71073 

cryst syst orthorhombic trigonal   triclinic 

space group p 21 21 21 R-3 p1 

a (Å) 8.4829(2) 13.0947(3) 12.3471(10) 

b (Å) 13.8918(5) 13.0947(3) 14.6278(11) 

c (Å) 28.3144(9) 62.8986(19) 23.956(2) 

α (°) 90 90  94.307(3) 

β (°) 90 90 94.077(3) 

γ (°) 90 120 112.721(2) 

V (Å3) 3336.65(18) 9340.3(6) 3961.5 

Z 4 6 1 

Dcalcd.  1.233 1.213 1.329 
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(gcm–3) 

μ (mm–1) 0.639 0.679 0.557 

F(000) 1280 3528 1638 

cryst size (mm) 0.6 × 0.1 × 0.1 0.16 × 0.14 × 0.04 0.26 × 0.18 × 0.04 

θ range (°) 1.44–25.35 1.94–27.77 1.52–23.29 

 

limiting indices 

−10 ≤ h ≤ 10 

−16 ≤ k ≤ 16 

−34 ≤ l ≤ 31 

−17 ≤ h ≤ 17 

−14 ≤ k ≤ 17 

−82≤ l ≤ 82 

−13 ≤ h ≤ 13 

−15 ≤ k ≤ 16 

−26 ≤ l ≤ 26 

no. of rflns collected 43381 21989  78695 

no. unique rflns [R(int)] 6092 (0.0367) 4826 (0.0477) 19234(0.0378) 

Comp. to θ (%) 99.8% 98.2% 94.5 % 

data/restraints/params 6092 / 0 / 373 4826 / 0 / 227 19234 / 3 / 1978 

Goodness of fit on F2 1.102 0.953 1.039 

Final R indices [I>2σ(I)] R1 = 0.035 

wR2 = 0.0855 

R1 = 0.0470 

wR2 = 0.1273 

R1 = 0.0412,  

wR2 = 0.1032 

R indices (all data) R1 = 0.0365 

wR2 = 0.0880 

R1 = 0.0721 

wR2 = 0.1347 

R1 = 0.0483, 

wR2 = 0.1067 

Max./min. Δρ[a] [eÅ–3] 0.301 and −0.271 0.577 and −0.548 0.943 and -0.534 

 

5.2.3 Isoprene polymerization with iron complexes Fe6–Fe8 

Isoprene polymerization catalyzed by iron complexes Fe6–Fe8 was carried out in 

a glovebox under argon. As shown in Table 5.2, Fe6 was subjected to a study under 

different reaction conditions by varying the temperature and the reaction time. 

Triisobutylaluminum was used as co-catalyst to abstract the chloride from the 
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dichloride iron complexes and produce the active species. In absence of this 

co-catalyst no polymer was formed. Moreover, trityl 

tetrakis(pentafluorophenyl)borate can be used as the dealkylating reagent to abstract 

one alkyl group in order to increase the reaction rate (Table 5.2, Entries 1–2).  

Concerning the reaction temperature, low temperatures are detrimental to the 

polymerization (Table 5.2, Entries 2–4). More than 99% isoprene (5.1 g) is converted 

into polyisoprene in half an hour at room temperature. This activity is higher than that 

of other isoprene catalysts based on iron [5, 10] and rare-metal complexes [16-17, 24] 

previously reported. For comparative purpose, 1 μmol of the iron catalysts reported by 

Ritter can convert 0.08 g of isoprene into polyisoprene in 2 h; the molecular weight of 

the resulting polymer was 125 kg mol-1 and a 91% trans-1,4-polyisoprene selectivity) 

[5]. Lower molecular weight polymers are produced from Fe6 which is probably due 

to the absence of ortho-substituted aryl groups on the ligand. 

The conversion is decreased to 96% at 0 °C and 78% at -33 °C. The molecular 

weight (Mw) and the molecular weight distribution (Mw/Mn) are also changed with the 

reaction temperature. As shown in Table 5.2 (Entries 2–4), Mw of the produced 

polyisoprene increased from 32.7 kg mol-1, 37.8 to kg mol-1 to 38.6 kg mol-1 when the 

reaction temperature decreased from 25 °C to 0 °C and to -33 °C. This phenomenon is 

just opposite to the trend observed for iron catalysts reported by Ritter [5] for which 

lower molecular weight obtained at lower temperature. In addition, lower reaction 

temperature resulted in the lower polydispersity Mw/Mn, partly because of the lower 

concentration of catalytic active sites produced by the co-catalyst at lower reaction 

temperature. The resulting polymers were characterized by 1H and 13C NMR (Figure 

5.4) and DSC (Table 5.2). According to the 1H NMR data, using the equations 1–3 [5, 

14], the selectivity toward 1,4-polyisoprene vs 3,4-polyisoprene is slightly in favor of 
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the 1,4 motive and is not much affected by reaction temperature variations. Moreover, 

according to the 1H NMR data and the equations 2 and 3, the cis 1,4-polyisoprene 

content is raised up to more than 99% at and below 0 °C (Table 5.2, Entries 3–4). 

High glass temperature polyisoprenes are produced by Fe6 due to the high content of 

3,4-motive inside the polymer [7-8]. Reduction of the reaction time evidenced that 

after 15 minutes an isoprene conversion of 86% is already reached (Table 2, Entry 5).  

 

 

 

The effect of the ligand on the polyisoprene synthesis was also investigated by 

studying, under the optimum conditions determined for catalyst Fe6, the catalytic 

polymerization behaviour of Fe7 and Fe8 bearing different aromatic groups. The 

conversion of the isoprene reached by Fe7 in half an hour is 93% with a molecular 

weight of 59.7 kg mol-1 which is higher compared to the polyisoprene produced by 

iron complexes Fe6 and the complexes based on rare earth metal [15-17, 24], but still 

lower than that of the iron complexes reported by Ritter [5] and Porri [10]. Therefore, 

compared to Fe6, Fe7 is less active under similar conditions but leads to the 

formation of polymers of higher molecular weights (Table 5.2, Entries 2 and 6).  
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Figure 5.4 1H NMR (top) and 13C NMR (bottom) spectra of polyisoprene (Table 

5.2, Entry 2). 

Concerning Fe8, 97% isoprene was converted into polymer in 30 minutes. In this 

1,2-polyisoprenene 3,4-polyisoprene 

 

cis-1,4-polyisoprene 

trans-1,4-polyisoprene 
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case, and unlike observed for Fe7, lower molecular weight and molecular weight 

distributions are observed for the polymer obtained.   

 

Table 5.2 Isoprene polymerization with iron Fen / Al(iPr)3
a 

Entry Cat. T 
 

(°C) 

t 
 

(min) 

Conv. 
 

(%) 

Tg
b 

 
(°C) 

Mw
c 

 
(kg mol-1) 

Mw/Mn
c 

 
1,4/3,4d 1,4 (%)d 

 
cis/trans 

1 Fe6e 25 30 65 -29.3 33.0 15.9 27:23 >99 

2 Fe6 25 30 >99 -31.8 32.7 17.5 11:9 19:1 

3 Fe6 0 30 96 -30.8 37.8 16.7 57:43 >99 

4 Fe6 -33 30 78 -28.8 38.6 8.6 14:11 >99 

5 Fe6 25 15 86 -33.9 17.0 15.1 11:9 24:1 

6 Fe7 25 30 93 -31.6 59.7 15.1 27:23 >99 

7 Fe8 25 30 97 -31.0 21.3 10.2 57:43 23:2 

a Reaction conditions: 3 µmol Fen; 7.5 mL isoprene (M), [Al]/[Ph3C+]/[Fe]/[M] = 

12:1:1:25000; 100 mL toluene. b Determined by GPC. c Determined by DSC. d 

Determined by 1H NMR and 13C NMR. e No Ph3C+.  

 

Regarding the catalytic results of different efficiency isoprene catalysts Fe6–Fe8, 

Fe6 shows higher activity than others. Therefore, catalyst Fe6 was further used to be 

immobilized on the iron particles and in catalytic systems. 
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5.2.4 Preparation of nanoparticles supported catalysts (Cat@NPs) 

 

Scheme 5.4 Synthetic procedure for iron particles.  

The iron particles used in this study were synthesized according to previously 

reported procedures [69-70] and as depicted in Scheme 5.4. The iron precursor 

[Fe{N(SiMe3)2}2]2 is reduced under 3 bar H2 in the presence of an acid 

(2-benzylbenzonic acid) and an amine (4-(3-phenylpropyl)pyridine), which are the 

stabilizing ligands to control the particles size during the growth process [70]. Iron 

complex Fe6, which appeared to be the most efficient system tested in isoprene 

polymerization (vide supra) was selected to carry out the immobilization on magnetic 

iron nanoparticles. The naphthalene ring contained in the ligand structure was used to 

interact with the surface of iron-particle though - interactions. The anchoring of 

Fe6 proceeds by exchange with stabilizing agents around the NPs as depicted in 

Scheme 5.2. Immobilization of the iron complex Cat@NPs was carried out in a 

glovebox by stirring a 10 mL THF solution of Fe6 and iron particles (NPs) for 1 day. 

Pentane was then added into the solution; which was kept for one night until the 

particles deposited on the bottom of the flask. The particles were there recovered by 

removal of the solvent, and washed twice with toluene.  

Comparison of the infra-red spectrum of the particles containing the iron complex 

with the one of the orignal particles (Figure 5.5) evidenced an additional vibration at 

1615 cm-1 belonging to the C=N of the iron complex supported by the particles. The 
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corresponding C=N stretching vibrations of the free iron complex is observed at 1596 

cm–1; therefore indicating an effective interaction between the iron complex and the 

surface of the particles. The success of the ligand exchange was also confirmed by 

TEM. As shown in Figure 5.6, either before or after ligand exchange, the iron NPs 

and Cat@NPs are homogeneously dispersed. However, compared to the original NPs, 

the mean diameter shows a slight increase for the Cat@NPs, d = 4.82 ± 0.58 nm for 

Cat@NPs vs d = 4.44 ± 0.32 nm for NPs.  

 

 

Figure 5.5 IR spectra of NPs (bottom) and Cat@NPs (top).  
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Figure 5.6 TEM images a) iron nanoparticles (NPs), b) Cat@NPs and c) 

Cat@NPs@MWCNT. 
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5.2.5 Confinement of Cat@NPs inside f-MWCNTs 

Prior to confinement of Cat@NPs into the inner cavity of MWCNTs, a surface 

functionalization of MWCNTs is necessary in order to selectively drive the 

nanoparticles inside the MWCNTs, as previously reported in our research group [66]. 

This procedure was carried out in two steps (Scheme 5.5): 1) reaction of the 

MWCNTs with nitric acid at 120 °C for 3h to produce carboxylic acid functions; 2) 

formation of amide fonctionality by reaction of those carboxylic acid groups with 

SOCl2 and long alkyl groups amines (hexadecylamine, HDA).  

HNO3

140 oC, 3 h

C
HO O

SOCl2

HDA

CHN O

 

Scheme 5.5 CNTs functionalization. 

Cat@NPs@MWCNT system was produced by stirring a Cat@NPs THF 

solution with the MWCNTs functionalized with the long chain alkyl groups 

(f-MWCNT) at room temperature for 1 day. The TEM image (Figure 5.6, c) showed 

that most of the Cat@NPs (4.63±0.64 nm) are effectively confined inside the tubes. 

Then Cat@NPs@MWCNT was used as the catalyst for isoprene polymerization 

(Scheme 5.2).  
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5.2.6 Cat@NPs and Cat@NPs@MWCNT behavior in isoprene 

polymerization 

The catalytic polymerization of isoprene was then investigated using the 

above-describes Cat@NPs and Cat@NPs@MWCNT systems (Table 5.3). Al(iPr)3 

was used as co-catalyst for generation of the active species. Since the amount of 

complex Fe6 effectively immobilized could not be determined, the isoprene 

polymerization activities for those immobilized catalysts could not be calculated. 

Moreover, the resulting polymers produced by these immobilized catalysts could not 

be analyzed by gel permeation chromatography (GPC) due to impossible separation 

of the particles from the polymer. Interestingly, the DSC analysis of the resulting 

polymer showed some differences with the polymer produced by the homogeneous 

catalysts. The glass temperature values are -37.2 °C and -40.2 °C for the polymers 

produced respectively by Cat@NPs and Cat@NPs@MWCNT, which are lower than 

that of the polyisoprene obtained by the homogeneous iron complexes (-29.3 to -33.9 

°C). This means that the presence of the NPs and the confinement have an influence 

on the properties of the produced polymer. In order to characterize the gum coating 

the nanoparticles, TEM observations have been carried out (Figure 5.7). As shown in 

the micrographs (Figure 5.7a), the particles are dispersed homogeneously inside of the 

resulting polyisoprene surrounding them. Figure 5.7b shows that the resulting 

polyisoprene is effectively surrounding the NPs confined into the MWCNTs. This 

means that the iron complex Fe6 is still grafted to the NPs after Cat@NPs was 

introduced inside of MWCNTs. On the other hand, the resulting polyisoprene coating 

the NPs and the MWCNTs have the functions to keep the oxygen away from those 

sensitive NPs.   
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Table 5.3 Isoprene polymerization promoted by supported iron catalystsa 

Entry Cat. Isoprene 

(mL) 

Amount of Cat. 

(mg) 

Conv. 

 (%) 

Tg
b 

(°C) 

1 Cat@NPs 7.5 10 45 - 

2 Cat@NPs 1.0 10 >99 -37.2 

3 Cat@NPs@MWCNT 1.0 20 >99 -40.6 
a Reaction conditions: 2 mL (0.02 M in toluene) Al(iPr)3; 20 mg trityl 

tetrakis(pentafluorophenyl)borate; 30 min; 25 °C; 100 mL toluene. b Determined by 

DSC.  

 

The aim of the project is the use of the resulting polyisoprene to protect NPs 

against oxidation. Therefore, we carried out magnetic measurements on these systems 

(Figure 5.8). The left part of Figure 5.8 shows results for Cat@NPs@MWCNT and 

the red curve evidences a shift respected to the black curve, indicative of the 

formation of oxide of NPs. The right image in Figure 5.8 is the result for a sample of 

Cat@NPs@MWCNT@PI exposed to air for 10 min. The overlap of the two curves 

(black and red) indicates the absence of oxidation. It means that the resulting 

polyisoprene can effectively protect NPs against oxidation. 
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Figure 5.7 TEM images of: a) Cat@NPs@PI (Table 5.3, Entry 2) and b) 

Cat@NPs@MWCNT@PI (Table 5.3, Entry 3). 
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Figure 5.8 Magnetic measurement: Cat@NPs@MWCNT (left) and 

Cat@NPs@MWCNT@PI (right). 

5.3 Conclusions 

A series of iron complexes (Fe6–Fe8) bearing 1-aryliminoethylpyridine ligands 

have been synthesized and fully characterized. With triisopropylaluminum as 

co-catalyst, these iron complexes shown excellent activity for the isoprene 

polymerization and produced high glass temperature polyisoprene with a high 

cis-1,4-polyisoprene selectivity. Furthermore, the immobilized catalysts Cat@NPs 

and Cat@NPs@MWCNT were produced and used in polymerization. DSC values 

show that the presence of the NPs has an influence on the properties of the resulting 

polymer. The TEM images of the Cat@NPs@PI shown that NPs are surrounded by 

the resulting polyisoprene and homogeneously dispersed. In the case of the 

polyisoprene produced by the Cat@NPs@MWCNT system, the produced polymer is 

effectively located inside the MWCNTs and coated the nanoparticles. Moreover, the 

size of the iron particles is not changed significantly after both ligands exchanged and 

polymerization. The efficiency of the resulting polyisoprene to protect NPs against 

oxidation has been measured by Squid and the NPs showed no oxidation after air 

exposure. 
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5.4 Experimental Section 

5.4.1 Synthesis of the iron complexes Fe6–Fe8 

Ligands L6-L8 were produced as reported in Chapter IV [67]. Under argon, a 

mixture of FeCl2 (63.5 mg, 0.5 mmol) and two equivalents of the corresponding 

ligand (1 mmol) was stirred in ethanol (5 mL) at room temperature for 6 h. 20 mL of 

diethyl ether were then added into the solution and the resulting precipitate was 

collected by filtration, washed several times with diethyl ether, and dried under 

reduced pressure. The desired iron complex was obtained as a brown powder.  

Fe6. Yield: 86% (266 mg). FT−IR (KBr, cm−1): 3058 (w), 1629 (m), 1596 (s), 

1572 (w), 1508 (m), 1474 (w), 1439 (m), 1391 (m), 1372 (m), 1316 (m), 1263 (m), 

1165 (m), 1019 (m), 812 (m), 780 (s). 

Fe7. Yield: 69%. FT−IR (KBr, cm−1): 3057 (w), 1620 (s), 1597 (s), 1477 (w), 

1436 (m), 1370 (m), 1318(m), 1259 (s), 1174 (m), 1017 (m), 895 (s), 796 (m), 749 (s), 

644 (m), 470 (s). 

Fe8. Yield: 74%. FT−IR (KBr, cm−1): 3039 (w), 1626 (s), 1596 (s), 1502 (w), 

1487 (w), 1441(m), 1371 (m), 1319(m), 1256 (s), 1184 (m), 1019 (m), 849 (s), 779 

(m), 714 (m). 

5.4.2 Immobilization on the surface of iron nanoparticles (Cat@NPs) 

10 mg of nanoparticles are added to a THF (10 mL) solution of iron complex (3 

μmol, 1.9 mg) and stirred for 1 day. 5 mL of pentane are then added into the solution. 

After one night, the particles deposited on the bottom of the flask were collected by 

removal of the solvent. They were then washed with toluene twice.  
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5.4.3 Confinement of Cat@NPs inside MWCNTs 

(Cat@NPs@MWCNT) 

10 mg of the preformed Cat@NPs were dispersed in 5 mL of THF by 

ultrasonication for 5 min. 50 mg MWCNTs were then added into this suspension. The 

mixture was submitted to ultrasonication for 5 min. After a subsequent stirring for 1 

day, the mixture was filtered and washed with 20 mL THF. The black solid was finally 

dried under vacuum.  
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Conclusions 

Olefins, particularly ethylene and isoprene, are the basic building block of the 

petrochemical industry, while olefin-based polymers are by far the most important and 

thus the most produced synthetic polymers today. Catalysts which revolutionized the 

polyolefin manufacturing industry play important role in polymerization. Beside the 

Ziegler-Natta and Phillips catalysts which are the main catalyst successfully used in 

industrial, the 4 groups-based metallocene catalysts and single-site late transition 

metal catalysts based on imino-pyridine ligands have attracted interest in industrial 

and academy since the end of last century, due to either higher activity or easily 

controlled resulting polyolefin. Maintaining an elevated catalytic activity and the 

development of suitable systems for most of the industrial processes, using slurry or 

gas-phase reactors, require a necessary support for those homogeneous catalysts. A 

variety of inorganic supports, such as silica gel, MgCl2, Al2O3, MgO etc., have been 

used to immobilize those homogeneous catalysts in decades. Nanocarbon materials 

(carbon nanotubes, CNTs and few layer graphene, FLG) were also used and 

investigated to support group 4-based metallocene catalysts and higher molecular 

weight nanometer morphology polyethylenes were obtained. However, only one 

family of CNTs supported late transition metal catalysts has been reported to date and 

was not investigated in detail. The research work of this PhD thesis intends to fill this 

gap: nanomaterials (CNTs, FLG and iron particles) covalently or non-covalently 

supported late transition metal catalysts and their use in olefin polymerization. 

Nanocarbons or particles, that can be considered as a bulky macro-ligand have a great 

influence in catalyst activities towards olefin polymerization and polymer coated 

polymer nanocomposites are obtained by those supported catalysts.  
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During this work, late transition metal catalysts based on imino-pyridine ligand 

and nanomaterial (CNTs, FLG and iron particles) covalently or non-covalently 

supported catalysts have been developed and employed in olefin polymerization.  

Nickel complexes containing an -NH2 function have been synthesized and 

supported by two kinds of functionalized multi-walled carbon nanotubes, CNTF and 

CNTC, via covalent bonds (O=C–N). Both those homogeneous catalysts and 

supported catalysts have been investigated in the ethylene polymerization reaction and 

shown moderate activity. Using carbon nanotubes as support, the activities of these 

immobilized catalysts are higher than these homogeneous catalysts. Besides that, the 

nature of the support has a great influence on the catalytic performances. The results 

of the ethylene polymerization promoted by immobilized catalysts show that the 

CNTF as the support increase remarkably the homogeneous catalyst activity, and more 

than CNTC. This study evidenced that not only CNTs can be beneficial to the 

polymerization reaction, but also that the nature of the nanomaterial used is also of 

importance. Moreover, the presence of the carbon nanotubes can also be efficient for 

increasing the molecular weight of the produced polymer. 

Two iron complexes based on the 2,6-bis(imino)pyridyl framework and 

containing a pyrenyl moiety have been synthesized and immobilized catalysts have 

been produced by MWCNTs grafting of those iron complexes via - stacking 

interactions between the pyrene group and the surface of the support. Activated by 

MMAO, all of the iron homogeneous pre-catalysts promote ethylene polymerization 

with excellent activities and the iron complex with two pyrene groups showed higher 

activity and lower molecular weight distribution than the one having only one pyrene 

group, which evidenced a beneficial influence of the pyrene substituent introduced on 

the ligands. The catalytic screening of the heterogenized systems evidenced in one 
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case a significant increase of the productivity compared to the analogous unsupported 

system. Moreover, according to TEM and SEM images, the resulting materials show 

good dispersion of the MWCNTs into the polyethylene matrix resulting from the 

surface initiated polymerization reaction.  

Imino-pyridine nickel complexes containing various kinds of aromatic groups 

(naphthalene, anthracene and pyrene) have also been synthesized and characterized. 

The polymerization conditions in the presence and in the absence of nanocarbon 

materials, such as MWCNTs or few layer graphene (FLG), were fully investigated 

using MAO as the co-catalyst. The microstructure of the polyethylene and the 

activities behavior could be controlled and tailor-made by ligand design and the 

presence of the nanocarbons. Without the nanocarbon materials, all of the nickel 

complexes are single-site catalysts which show high activity for the ethylene 

polymerization to afford low molecular weight and highly branched polyethylene. 

Furthermore, the presence of either MWCNTs or FLG in the catalytic mixture has an 

influence both on catalytic activity and on the properties of resulting polyethylene. 

Moreover, compared to the MWCNTs, the presence of FLG proved to be more 

beneficial for the catalytic activity. The SEM observations of the PE waxes produced 

in the presence of nanocarbons show a homogeneous dispersion of these carbon 

nanomaterials in the polymer matrix. 

A series of iron complexes bearing 1-aryliminoethylpyridine ligands have been 

synthesized and been used as the catalysts for isoprene polymerization. With the 

triisopropylaluminum as the co-catalyst, those iron complexes shown excellent 

activity for the isoprene polymerization with the high cis-1,4-polyisoprene selectivity. 

Furthermore, the iron complex containing the naphthalene group has been 

immobilized on iron particles via - stacking interactions and then the immobilized 
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catalysts Cat@NPs were confined into the cavity of MWCNTs. The immobilized 

catalysts Cat@NPs and Cat@NPs@MWCNT were then used in isoprene 

polymerization. From the infrared spectroscopy, the iron complex are effectively 

immobilized at the surface of the nanoparticles, however, data concerning the amount 

effectively immobilized could not be determined. The TEM images of the 

Cat@NPs@IP shown that NPs are surrounded by the resulting polyisoprene and 

homogeneously dispersed inside. The polyisoprene produced by 

Cat@NPs@MWCNT are located inside the inner cavity of the MWCNTs. The goals 

of the project, which is the use of these resulting polyisoprene to protect NPs against 

oxidation, have been measured by Squid and the NPs showed no oxidation after air 

exposure. 

 

Perspectives 

For the research work of this PhD thesis, both the homogeneous late transition 

metal catalysts with nitrogen-donor ligands and their analogues covalently or 

non-covalently supported on nanomaterials (CNTs, FLG and iron particles) shown 

good or excellent activities for the olefin polymerization. Interestingly, the presence 

of the nanomaterials has a great influence on catalyst activities and properties of the 

resulting polymer nanocomposites. An important extension of this work would be to 

use these homogeneous and supported catalysts to synthesize other polymers or 

ethylene/olefin monomer copolymers. Late transition metal catalysts with diimine 

ligands were indeed also reported as the catalyst for the other monomers, such as 

propylene, butadiene, styrene, norbornene, …. Therefore, one of the further works 

could investigate the polymerization behaviour of nanocarbon material supported late 
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transition catalysts in those kinds of polymerization and co-polymerization. 

Selection of the best nanocarbon support is also a promising issue. According to 

the results of the work described here, the nature of the carbon nanotubes have an 

influence on catalytic activity and polymer properties can be controlled by the 

chemical composition supported catalysts. Therefore, it is suggested that various 

nanocarbon materials (MWCNTs and FLG) with different size and diameters, are 

used to support homogeneous catalyst and investigated in polymerization procedures. 

The resulting polymer morphology and the properties of the resulting polymer 

nanocomposites (mechanical, thermal conductivity, flexibility, …) are worth to be 

comprehensively studied. Indeed, the efficient immobilization of single-site 

polymerization catalysts is a promising approach for the development of polymer 

nanocomposites containing a higly dispersed filler into a controlled polymeric matrix, 

an important issue in this research field of material science.  

Concerning the polyisoprene part, polymerization conditions should be further 

investigated in order to improve the selectivity between cis-1,4-polyisoprene, 

trans-1,4-polyisoprene and 3,4-polyisoprene. Toluene was used as the solvent and 

other apolar solvents (heptane and methylcyclohexane) could be considered to be 

used in polymerization system and to study the effect of those solvent on the catalytic 

performances. For those immobilized catalysts, data concerning the amount of iron 

complexes which were effectively immobilized on the particles and their isoprene 

polymerization activity should be investigated.  
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Experimental details 

1. Materials 

Multi-walled nanotubes MWCNTs (98% purity, 2% iron catalyst, XRD: d002 = 

0.3405, BET: 177 m2/g) were synthesized by chemical vapor deposition and purified 

according to previously reported procedures [1]. FLG were synthesized by chemical 

vapor deposition according to reported procedures [2]. FeCl2, NiCl2, 2-acteylpridine, 

2,6-diacetylpyridine 1-aminonaphthalene, 2-aminoanthracene, and 1-aminopyrene 

were purchased from Alfa Chemicals. 5,6,7-dihydroquinolin-8-one, 

2,6-dimethylbenzene-1,3-diamine, 2,6-diethylbenzene-1,3-diamine, 

2,6-diisopropylbenzene-1,3-diamine and 2,6-dimethylbenzene-1,4-diamine were 

purchased from AstaTech (Chengdu, China). Isoprene (99 % contains < 1000 ppm 

p-ter-butylcatechol), α-Phenyl-o-toluic acid (97%) and triisobutylaluminum (Al(iPr)3, 

1.0 M solution in toluene) were purchased from Aldrich. 

Trityltetrakis(pentafluorophenyl)borate (97 %) was purchased from Strem chemicals.  

[Fe{N(SiMe3)2}2]2 were purchased from NanoMeps. 4-(3-phenylpropyl)pyridine 

(98%) were purchased from Alfa Aesar. Methylaluminoxane (MAO, 1.46 M solution 

in toluene) and modified methylaluminoxane (MMAO, 1.93 M in heptane, 3A) were 

purchased from Akzo Nobel Corp. Diethylaluminum chloride (Et2AlCl, 0.79 M in 

toluene) was purchased from Acros Chemicals. High-purity ethylene was obtained 

from Beijing Yansan Petrochemical Co. Toluene was refluxed over 

sodium-benzophenone and distilled under nitrogen prior to use. All other solvents 

were used as received from Aldrich or Acros Chemicals. 
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2. Experimental procedures  

All manipulations of air and/or moisture sensitive compounds were carried out 

under a nitrogen atmosphere using standard Schlenk techniques or in glove-boxes. 

2.1 Procedure for Ethylene Polymerization 

2.1.1 Homogeneous polymerization 

Ethylene polymerization at 10 atm ethylene pressure was carried out in a 250 mL 

stainless steel autoclave equipped with a mechanical stirrer and a temperature 

controller. Toluene, the desired amount of iron pre-catalyst and a toluene solution of 

the co-catalyst (for total volume of 100 mL) were added to the reactor in this order 

under an ethylene atmosphere. When the desired reaction temperature was reached, 

the ethylene pressure was increased to 10 atm, and maintained at this level by 

constant feeding of ethylene. After the desired reaction time, the reaction was 

quenched by addition of acidic ethanol. The precipitated polymer was washed with 

ethanol and water several times, and then dried under vacuum. 

2.1.2. Polymerization using the MWCNTs supported complexes  

Heterogeneous polymerizations were carried out by first adding desired amount 

of MWCNT-supported catalyst into the reactor. Then toluene and the desired amount 

of co-catalyst (total volume 100 mL) were added to the reactor under an ethylene 

atmosphere. The following procedure was the same as the one used for homogeneous 

polymerization. 
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2.1.3. Polymerization in the presence of MWCNTs or FLG  

The desired amount of MWCNTs or FLG was placed into the reactor and the 

reactor was dried under vacuum. When the temperature stabilized at the required 

temperature, a 50 mL toluene solution of the nickel complex (5 μmol) was added to 

the reactor at 1 atm ethylene. The solution was stirred for 10 min at 1 atm ethylene, 

and then the desired mount of MAO was injected into the reactor as well as 50 mL 

toluene. The pressure of ethylene was immediately increased to 10 atm. After the 

desired duration, the reaction was quenched by addition of acidic ethanol. The 

precipitated polymer was washed with ethanol several times and dried under vacuum. 

2.2. Procedure for isoprene polymerization 

2.2.1. Homogeneous isoprene polymerization 

3 μmol iron complex, 12 eq. Al(iPr)3 (36 μmol) and the same eq. 

trityltetrakis(pentafluorophenyl)borate (3 μmol) were dissolved in 50 mL toluene. The 

solution was stirred for 5 min in a glove-box. When the colour of the solution turned 

to blue, isoprene (5.3 g, 7.5 mL) and the toluene were added into the solution, for a 

total volume of 100 mL. The reaction mixture was intensively stirred for the desired 

time under different temperature. The reaction was quenched by the addition of acidic 

ethanol. The precipitated polymer was washed with ethanol several times and dried 

under reduced pressure.  

2.1.2. Isoprene polymerization using the iron particles supported iron complexes 

(Cat@NPs and Cat@NPs@MWCNT)  

The procedure for heterogeneous polymerization is similar to that used for the 
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homogeneous iron complexes: Immobilized catalyst (10 mg Cat@NPs or 20 mg 

Cat@NPs@MWCNT), the desired volume of isoprene, 2 mL Al(iPr)3 (0.02 M in 

toluene), 20 mg trityl tetrakis(pentafluorophenyl)borate and 100 mL toluene were 

added into a Schlenk flask. The reaction mixture was intensively stirred for 30 min at 

25 °C. The toluene was removed under reduced pressure.  

2.3. X-ray Crystallographic Studies 

All of the crystals suitable for X-ray diffraction analysis were obtained by 

layering diethyl ether onto methanol at room temperature. With 

graphite-monochromated MoKα radiation (λ = 0.71073 Å) at 173(2) K, cell 

parameters were obtained by global refinement of the positions of all collected 

reflections. Intensities were corrected for Lorentz and polarization effects and 

empirical absorption. The structures were solved by direct methods and refined by 

full-matrix least squares on F2. All hydrogen atoms were placed in calculated 

positions. Structure solution and refinement were performed by using the 

SHELXL-97 package [3]. 

3. Instruments and measurements 

Transmission electron microscope (TEM) images were obtained using a JEOL 

JEM 2100F FEG at 200 kV or JEOL JEM-1400 at 120 kV. Samples were prepared by 

suspending the samples in solution (ethanol, acetone, THF or distilled water) under 

ultrasonic vibration. Some drops of the thus produced suspensions were deposited 

onto carbon-coated copper grids. Scanning electron microscope (SEM) images were 

obtained on a JEOL JSM 6700 Field Emission Gun scanning electron microscope. 

Thermogravimetric analysis (TGA) in air was conducted on a Setaram apparatus 
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using a temperature program of 30–800 °C, with a heating rate of 10 °C/min. The 

elemental analyses for C, H, O and N were performed on a Perkin Elmer 2400 series 

II microanalyser. The analyses of Al and Fe, were carried out by the “Service central 

d’analyse du CNRS” in Solaize, France. X-ray photoelectron (XPS) measurements 

were carried out using a K-alpha Thermo Scientific instrument operating with an Al 

Kα source (1486.6 eV). The binding energies were corrected with respect to the C1s 

core level fixed at 284.4 eV. ICP-MS measurements were carried out by Antellis. 

NMR spectra for the ligands were recorded on a Brucker AV 400 MHz instrument, 

NMR spectra for the polyethylene were recorded on a Bruker DMX 300 MHz 

instrument and NMR spectra for the polyisoprene were recorded on an Bruker 300 

MHz instrument at ambient temperature using TMS as an internal standard. IR spectra 

were recorded on Perkin Elmer spectra one spectrometer using KBr salt for solid 

pellet analysis. Molecular weights (Mw) and molecular weight distribution (Mw/Mn) of 

polyethylenes were determined by a PL-GPC220 at 150 °C with 

1,2,4-trichlorobenzene as the solvent and molecular weights (Mw) and molecular 

weight distribution (Mw/Mn) of polyisoprene were determined by performed on a 

size-exclusion chromatography (SEC) system equipped with a refractive index 

detector (RI 2000) using CHCl3 as the solvent. DSC trace and melting points of 

polyethylene were obtained from the second scanning run on Perkin-Elmer DSC-7 at 

a heating rate of 10 °C min-1. DSC trace and glass temperature of polyisoprene were 

determined by Netzsch DSC 204 with the TASC 414/4 controller scanning 

calorimeter under nitrogen atmosphere (flow rate = 50 ml min−1). 
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Résumé 

 

Le présent travail de doctorat est consacré à l’étude de l’immobilisation, 

covalente ou non covalente, sur différents nanomatériaux de catalyseurs moléculaires 

de polymérisation à base de fer et de nickel et comportant des ligands spécifiques 

azotés. Les polyoléfines sont à l’heure actuelle de loin les polymères le plus produits 

dans le monde et sont devenus indispensables à la vie quotidienne. De part un certain 

nombre de propriétés physico-chimiques, ils trouvent des applications dans différents 

domaines et l’on estime à environ 400 millions de tonnes d’ici 2050.  

Parmi les polyoléfines, le polyéthylène, produit de la polymérisation de l’éthylène, 

représente à lui seul environ 50 % de la production industrielle. Ceci a été rendu 

possible grâce au développement de catalyseurs efficaces capables d’activer 

l’éthylène. Au niveau industriel, les catalyseurs hétérogènes de type Ziegler-Natta 

restent les plus utilisés pour la production de polyéthylène. Cependant, les recherches 

dans ce domaine ont vu l’émergence d’un certain nombre de systèmes aux propriétés 

catalytiques intéressantes, notamment dans l’optique de la synthèse contrôlée de 

polymères à polydispersité faible. Outre le catalyseur de Phillips, système hétérogène 

à base de chrome, différents systèmes homogènes ont également été développés et 

sont utilisés au niveau industriel, notamment les dérivés des métaux du groupe 4 de 

type métallocènes, permettant de produire différents type de polyéthylènes 

(Polyéthylène haute densité, polyéthylène basse densité, …).  

Les composés des métaux de la droite du tableau périodique ont également attiré 
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l’attention comme catalyseurs de polymérisation d’oléfines depuis la fin des années 

1990. En effet ces derniers présentent un certain nombre d’avantages par rapport à 

leurs homologues du groupe 4 comme par exemple une meilleure tolérance aux 

groupements fonctionnels (permettant la copolymérisation de monomères polaires), 

une activité catalytique élevée, une facilité de synthèse plus intéressante et une plus 

grande stabilité. Parmi ces derniers, citons notamment les complexes du fer et du 

nickel, conduisant respectivement à des polymères linéaires et branchés. Différents 

types de ligands, bidente ou tridente, ont été développés pour ces catalyseurs 

permettant l’obtention de systèmes parfois très actifs et très sélectifs, offrant ainsi de 

nouvelles opportunités pour l’industrie des polyoléfines. Cependant, ces systèmes 

catalytiques solubles dans le milieu réactionnel présentent certaines limitations à leur 

utilisation à un niveau industriel. Le principal problème lié à l’emploi de catalyseur 

homogène à grande échelle est la croissance contrôlée du polymère qui finit par se 

déposer sur les parois du réacteur. De plus, la plupart des sites de production 

industrielle utilisent des procédés en phase gaz ou « slurry ». En conséquence, pour 

pouvoir être utilisés dans de tels procédés, les catalyseurs moléculaires doivent être 

hétérogéneisés sur un support. Dans ce but, différents types de matériaux 

inorganiques ont été utilisés comme la silice, l’alumine ou l’oxyde de magnésium. 

Ces études ont montré qu’à la fois la nature du support et le procédé utilisés pour 

l’immobilisation du catalyseur ont un rôle crucial sur l’activité finale du système 

supporté. Dans la plupart des cas, l’immobilisation se traduit par une perte 

significative d’activité, limitant donc l’intérêt de l’utilisation des systèmes 

moléculaires supportés. En conséquence, la découverte de supports efficaces ne 
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nuisant pas aux performances initiales du site catalytique, reste toujours un enjeu de 

taille pour aller vers un développement industriel à grande échelle des systèmes 

moléculaires supportés.  

D’autre part, dans la famille des polyoléfines, les polymères obtenus par 

polymérisation de diènes, et en particulier de l’isoprène, représentent également une 

part importante de l’activité industrielle dans ce domaine.  

De par leurs propriétés particulières, les nanomatériaux comme les nanotubes de 

carbone, le graphène ou les nanoparticules métalliques nous ont alors semblé être un 

choix pertinent pour l’immobilisation de ces catalyseurs de polymérisation d’oléfine à 

base de nickel et de fer.  

Quelques études récentes ont montré que, dans différents types de réactions 

catalytiques, l’immobilisation d’espèces moléculaires, en particulier à la surface de 

nanotubes de carbone, peut conduire à des performances catalytiques améliorées en 

termes d’activité, de sélectivité et/ou de recyclage. Dans le cas de catalyseurs de 

polymérisation, quelques études ont porté sur l’immobilisation sur nanotubes de 

carbone de catalyseurs à base de métaux de la gauche du tableau périodique, mettant 

en évidence une influence bénéfique de ce matériau nanocarboné sur l’activité ou la 

longueur des chaînes polymériques obtenues.  

L’immobilisation de ces espèces moléculaires à la surface de nanomatériaux peut 

être effectuée selon deux grandes voies : la fonctionnalisation covalente, mettant en 

jeu la formation de liaisons chimiques entre le support et l’espèce immobilisée ou la 

fonctionnalisation non-covalente, mettant en jeu, dans le cas de matériaux 
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graphitiques, essentiellement des interactions π.  

Dans les travaux décrits dans la littérature scientifique, un seul exemple 

mentionne l’utilisation de nanotubes de carbone pour l’immobilisation d’un complexe 

d’un métal de la droite du tableau périodique et son utilisation en catalyse de 

polymérisation d’oléfine.  

Nous nous sommes donc intéressés au cours des travaux décrits dans ce 

manuscrit, à l’étude de l’influence de l’immobilisation de complexes du fer et du 

nickel sur des nanotubes de carbone, du graphène et des nanoparticules de fer. Nous 

avons ensuite testé leur activité catalytique dans la polymérisation d’oléfines 

(éthylène et isoprène) afin de développer des systèmes catalytiques physiquement 

hétérogènes mais possédant une réactivité de type homogène, en nous efforçant de 

rationaliser l’influence du support et de la méthode d’immobilisation sur les 

performances catalytiques.  

 

Le chapitre I de ce manuscrit décrit l’état de l’art de la polymérisation d’oléfines 

à l’aide de catalyseurs contenant un métal de la droite du tableau périodique ainsi que 

les avancées concernant leur immobilisation sur différents supports. Nous y décrivons 

également les récents travaux portant sur l’utilisation de matériaux nanocarbonés 

(graphène et nanotubes de carbone) comme support de catalyseurs moléculaires ainsi 

que l’apport parfois bénéfique de ce type de support dans les différentes réactions 

catalytiques où ils ont été utilisés. Les différentes méthodes possibles 

d’immobilisation, et le type d’interactions mises en jeu au cours de ces processus 

d’immobilisation, sont également décrits. Enfin, l’analyse de ces travaux antérieurs, 
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nous conduit à conclure sur les différentes propriétés des nanosupports en termes de 

modifications des performances catalytiques et sur leurs potentiels apports à la 

catalyse de polymérisation d’oléfines.  

Le chapitre II est consacré à l’étude d’une famille de composés du nickel, 

spécifiquement préparés et modifiés en vue de leur immobilisation covalente sur des 

nanotubes de carbones fonctionnalisés (Figure 1). Tous ces composés moléculaires 

ont été caractérisés et la structure de deux d’entre eux confirmée par diffraction des 

rayons X. Tous ces dérivés contiennent sur la structure de leur ligand un groupement 

fonctionnel amino –NH2  ayant permis la formation d’un lien covalent de type amide 

avec des groupements carboxyliques préalablement introduits à la surface des 

nanotubes de carbone par un traitement à l’acide nitrique. Cette approche covalente, 

complémentaire de la fonctionnalisation non-covalente, a été largement étudiée pour 

le greffage de différents types d’espèces moléculaires ou macromoléculaires à la 

surface de matériaux nanocarbonés, en particulier de nanotubes de carbone. La 

formation d’une liaison covalente de type amide, comme dans les travaux décrits ici, 

reste à ce jour de loin la plus utilisée. La caractérisation des systèmes hybrides ainsi 

obtenus a ensuite été effectuée à l’aide de différentes techniques analytiques. La 

spectroscopie infra-rouge a permis de mettre en évidence la diminution de l’intensité 

de la vibration caractéristique des fonctions carboxyliques et la formation d’un lien 

amide a été confirmée grâce à l’apparition d’une bande caractéristique dans les 

systèmes où le catalyseur homogène a été greffé sur le nanotube. La spectroscopie 

Raman montre également une modification du système suite à cette fonctionnalisation. 

Enfin, les analyses par spectroscopie de photoélectrons XPS ont montré la présence 
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de signaux caractéristiques des atomes contenus dans le ligand, azote notamment, 

ainsi que du nickel à la surface des nanotubes de carbone fonctionnalisés. Du fait des 

faibles taux de fonctionnalisation, l’analyse semi-quantitative par XPS est 

relativement difficile à effectuer, c’est pourquoi la quantification précise de métal 

catalytiquement actif a été effectuée par dosage ICP-MS. Différents types de 

nanotubes de carbone ont été utilisés dans cette étude, mettant en évidence une très 

nette influence de la nature du support (porosité, diamètre et surtout pureté) à la fois 

sur l’efficacité de l’immobilisation (taux de fonctionnalisation de la surface) et sur les 

performances catalytiques des systèmes supportés dans la réaction de polymérisation 

de l’éthylène.  

 

 

Figure 1. Catalyseurs à base de nickel synthétisés en vue d’une immobilisation 

covalente sur nanotubes de carbone 

 

 

Dans un premier temps, les précatalyseurs Ni1-Ni4 (Figure 1) ont fait l’objet d’un 

screening catalytique afin d’évaluer leurs performances pour la polymérisation de 

l’éthylène et d’optimiser les conditions de réactions. Ainsi l’influence de la nature de 

l’activateur, ainsi que des quantités introduites, celle de la température, du temps de 
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réaction ont été étudiés. Comme pour ceux décrits dans les chapitres suivants, tous les 

polymères obtenus ont ensuite été également analysés par chromatographie 

d’exclusion stérique, par calorimétrie différentielle à balayage et par spectroscopie de 

résonance magnétique nucléaire (RMN) afin d’étudier l’influence des conditions de 

réactions non seulement sur l’activité du système catalytique mais également sur les 

propriétés des polyéthylènes obtenus, notamment le poids moléculaire (longueur de la 

chaîne), la polydispersité, la température de fusion et le degré de branchement de la 

chaîne.  

Cette étude a ainsi permis d’identifier le méthylaluminoxane (MAO) comme le 

meilleur activateur pour ces systèmes, les performances catalytiques en terme 

d’activité étant maximales pour un rapport Al/Ni de 1500. Une légère élévation de la 

température de réaction, de 20 à 50 °C, a montré une très nette diminution de 

l’activité catalytique.  

Les précatalyseurs de nickel ainsi préparés présentent, dans des conditions de 

catalyse homogène, des activités raisonnables, comparés à celles d’autres composés 

analogues décrits dans la littérature. Les systèmes étudiés présentent différentes 

activités catalytiques et il a été possible de mettre en évidence l’ordre suivant : Ni3 > 

Ni2 > Ni1 >> Ni4. La comparaison avec des systèmes analogues met en évidence une 

influence négative de la présence du groupement fonctionnel –NH2 sur l’activité 

catalytique, probablement pour des raisons électroniques plus que stériques et/ou la 

possibilité de réactions secondaires au niveau de ce groupement. Les mauvaises 

performances du système Ni4 montrent également que la position de ce groupement 

amino joue un rôle important dans la catalyse de polymérisation de l’éthylène.  
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En revanche, l’optimisation du choix du support et des conditions de réactions a 

conduit à l’amélioration des performances catalytiques pour les systèmes immobilisés 

de manière covalente sur des nanotubes de carbone multi-paroi.  

Activés à l’aide du MAO, les systèmes comprenant les composés Ni1-Ni3 

supportés de manière covalente sur les nanotubes de carbone sont tous plus actifs que 

leurs analogues non supportés. Ces améliorations incluent non seulement une 

influence positive sur l’activité catalytique, mais se traduisent également par des 

modifications au niveau des polymères obtenus. Ainsi les polyéthylènes formés à 

l’aide des systèmes supportés sur nanotube de carbone sont de poids moléculaire plus 

élevés que ceux obtenus dans des conditions homogènes. Concernant le taux de 

branchement de la chaîne polymérique, on note également à ce niveau une influence 

du support puisque les polymères obtenus avec les systèmes immobilisés contiennent 

tous un nombre de branches plus élevés. Enfin, notons également que la 

polydispersité des polymères est aussi plus élevée dans le cas des systèmes contenant 

le support carboné, ce qui pourrait indiquer la formation dans ce cas de plusieurs 

types d’espèces catalytiquement actives, contrairement à ce qui est observé pour les 

systèmes homogènes qui conduisent à des polyéthylènes de polydispersité plus faible 

et plus proche de 2. Toutes ces observations mettent donc en évidence le rôle 

important joué par le support carboné sur différents facteurs influençant l’activité et la 

sélectivité de l’espèce catalytique comme la stabilité de l’espèce active, le nombre de 

sites activés, les vitesses relatives de propagation de chaîne, d’isomérisation et de 

terminaison. En effet la proximité du nanotube de carbone et du site catalytiquement 

actif dans les systèmes décrits ici, ainsi que l’interaction covalente mise en jeu, 
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conduit à une influence importante du support sur les performances catalytiques du 

système pour lequel le support joue le rôle de « macro-ligand » et influence donc sa 

réactivité à la fois de manière stérique et électronique. D’autre part la synthèse d’un 

dérivé moléculaire analogue aux systèmes supportés, contenant un lien amide et un 

groupement aromatique, a permis de montrer, lors de l’étude de son comportement 

catalytique, que l’amélioration observée était bien due à la présence du nanotube de 

carbone et non à la formation du lien amide et/ou la disparition du groupement amine 

sur le ligand. Notons que dans la plupart des cas, l’utilisation d’un support pour 

l’immobilisation d’une espèce moléculaire conduit généralement, et pour différentes 

raisons liées à des paramètres physico-chimiques comme décrit dans le chapitre I, à 

une diminution de l’activité catalytique. En revanche, il existe plusieurs cas où les 

études ont permis de montrer que cette tendance n’est pas généralisable à tous les 

systèmes et en particulier, quelques catalyseurs supportés contenant des métaux de la 

gauche du tableau périodique ont montré des améliorations notoires, aussi bien en 

termes d’activité que de poids moléculaire des polymères formés, dans les réactions 

de polymérisations d’oléfines comme l’éthylène ou le propylène. L’origine de cette 

amélioration n’est certes pas encore très claire. Nous pouvons évoquer la nature et les 

propriétés du nanotube utilisé comme support. En particulier la conductivité 

thermique de ce dernier pourrait conduire à une évacuation efficace de la chaleur 

dégagée par la réaction de polymérisation exothermique et donc éviter la formation de 

points chauds, conduisant à une meilleure stabilité de l’espèce active. Nous avons 

montré que l’utilisation de tubes contenant plus de défauts au niveau de leur structure, 

et donc une moins bonne conductivité, augmentait également les performances du 
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système mais dans une bien moindre mesure.    

Enfin, la caractérisation par microscopie électronique à balayage des matériaux 

polymériques obtenus a mis en évidence une très bonne dispersion des nanotubes de 

carbone au sein de la matrice polymérique. Tous les nanotubes sont complétement 

recouverts d’une couche de polyéthylène. Ainsi, l’approche décrite dans ce travail 

peut également ouvrir la voie à la préparation de matériaux nanocomposites 

polyéthylène/nanotubes de carbone aux propriétés contrôlées. En effet, 

l’immobilisation d’un catalyseur moléculaire permet à la fois, du fait que la 

polymérisation est initiée depuis la surface du nanotube, de casser les agrégats et 

l’espèce catalytique permet un contrôle précis de la morphologie du polymère obtenu, 

de manière beaucoup plus efficace que pour un polymère obtenue par une voie non 

contrôlée comme la polymérisation radicalaire ou anionique, fréquemment utilisée 

pour la préparation de nanomatériaux composites de ce type.   

 

Dans le chapitre III, différents complexes de fer, basés sur des ligands à squelette 

de type bis-iminopyridine, et contenant un ou deux groupement(s) polyaromatique(s) 

de type pyréniques ont été synthétisés (Figure 2), en vue cette fois-ci de leur 

immobilisation non covalente sur des nanomatériaux carbonés (nanotubes de carbone 

et graphène). Dans cette approche, l’interaction entre l’espèce immobilisée et le 

support est moins forte qu’une liaison covalente mais présente l’avantage de pouvoir 

être effectuée sans modification chimique préalable de la surface. Les ligands 

correspondants ainsi que leurs complexes de fer ont été caractérisés en utilisant la 

spectroscopie infra-rouge, RMN, ainsi que par analyse élémentaire. La structure 
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moléculaire du complexe Fe1 a également pu être confirmée grâce à une analyse par 

diffraction des rayons X sur monocristal. Le processus d’immobilisation met en jeu 

des interactions faibles entre le groupe polyaromatique porté par le catalyseur 

moléculaire et la surface graphitique du nanomatériau, ces dernières sont grandement 

dépendante des conditions dans lesquelles est réalisée cette immobilisation. L’analyse 

de ces systèmes supportée par différentes techniques a permis de mettre en évidence 

son efficacité lors qu’elle est effectuée à température ambiante dans le 

dichlorométhane. Les données obtenues par spectroscopie XPS mettent en évidence la 

présence de fer au degré d’oxydation II et l’absence de Fe métallique au degré 

d’oxydation 0, montrant ainsi la stabilité du complexe au cours du processus 

d’immobilisation. Comme précédemment décrit, les quantités de complexes 

immobilisés étant relativement faibles, l’analyse semi-quantitative par XPS n’a pas 

été possible. La détermination quantitative de la quantité de complexes effectivement 

adsorbés à la surface a donc été effectuée par ICP-MS.  

 

 

Figure 2. Catalyseurs moléculaires à base de fer synthétisés en vue d’une 

immobilisation non covalente sur nanotubes de carbone 
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Pour les deux complexes Fe1 et Fe2, une étude préalable de leur comportement 

catalytique dans ces conditions homogènes, a permis de mettre en évidence le rôle 

bénéfique du groupement pyrénique introduit dans la structure du ligand. Dans un 

premier temps, nous avons conduit une étude paramétrique afin d’optimiser les 

conditions de réactions pour ces systèmes. Il a ainsi été possible d’identifier le 

meilleur activateur, le rapport Fe/Al le plus efficace pour cet activateur, ainsi que la 

meilleure température de réaction. Une fois activés par le MMAO 

(méthylaluminoxane modifié), ces complexes catalysent la polymérisation de 

l’éthylène avec des activités particulièrement élevées, comparables à celles des 

meilleurs systèmes décrits dans la littérature. Cette influence bénéfique du 

groupement pyrénique est également confirmée par la comparaison des activités de 

Fe1 et Fe2, ce dernier étant encore plus actif que son homologue ne contenant qu’un 

seul fragment pyrénique. De plus, une étude cinétique a permis de montrer que pour 

Fe2 la réaction est pratiquement terminée au bout de 15 minutes environ contre 30 

pour Fe1.  L’influence du nombre de groupements pyréniques portés par le 

complexe est également observée au niveau de la nature des polymères formés. Ainsi 

le complexe Fe2 conduit à des polyéthylènes de plus faible poids moléculaire ainsi 

qu’à une polydispersité plus faible, probablement due à la nature symétrique de 

l’espèce catalytique, contrairement au cas du complexe Fe1.  

Notons également que pour les deux systèmes une augmentation de la 

température conduit à une baisse significative de l’activité catalytique mais à une 
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augmentation de la longueur des chaînes de polyéthylène formées ainsi que de la 

polydispersité.   

L’immobilisation de ces systèmes sur nanotubes de carbone multi-paroi a conduit 

également dans un cas (Fe1) au développement d’un système encore plus actif que 

son analogue non supportée, mettant en évidence le rôle non innocent du support 

carboné dans la catalyse de polymérisation. Dans le cas de Fe2, l’influence bénéfique 

du support se traduit par une diminution significative de la polydispersité des 

polyéthylènes formés, probablement due à la formation d’un nombre moindre 

d’espèces actives et/ou à un encombrement stérique beaucoup trop important dans ce 

cas, le complexe possédant deux groupements pyréniques susceptibles d’interagir 

avec la surface des nanotubes pouvant en effet réduire de manière importante 

l’accessibilité du site actif. De manière surprenante, l’étude catalytique a montré une 

influence différente de la température selon le système considéré. En effet, pour le 

systèmes Fe1 supporté sur nanotubes de carbone, comme pour les systèmes 

homogènes, une augmentation de la température conduit à une augmentation 

importante du poids moléculaire des polymères obtenus alors que pour Fe2, cette 

même élévation de la température de réaction conduit à une diminution des longueurs 

de chaînes.  

L’analyse par microscopie électronique à balayage a montré que dans les 

échantillons polyethylène/nanotube de carbone formés, ces derniers sont 

individuellement séparés, montrant l’efficacité de cette approche d’immobilisation 

non covalente pour obtenir des nanocomposites où le matériau nanocarboné est 

dispersé au sein de la matrice polymérique. Ces résultats montrent également qu’au 
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cours de la réaction catalytique, l’espèce active reste en contact intime avec la surface 

du support et que le processus de désorption est limitée voire inexistant.  

 

Le chapitre IV décrit la synthèse et la caractérisation de deux familles de 

complexes de nickel. Ces complexes comportent tous un ligand bidente de type 

imino-pyridine et un substituent polyaromatique dérivé soit de l’anthracène, du 

naphtalène ou du pyrène. L’objectif de cette partie est d’étendre à des composés du 

nickel les résultats obtenus précédemment avec les complexes de fer décrits dans le 

chapitre III concernant l’immobilisation non covalente. Ainsi, il a été possible de  

développer des systèmes actifs en polymérisation de l’éthylène (fragment 

nickel-iminopyridine) et capables d’interagir (partie polyaromatique) de manière 

non-covalente avec la surface graphitique de nanomatériaux carbonés (graphène et 

nanotubes de carbone). La première famille de complexes (Ni6-Ni8) est basée sur des 

ligands à squelette imino-pyridine, la seconde famille de complexes décrit (Ni9-Ni13) 

est basée sur le squelette 5,6,7-trihydroquinoline (Figure 3). Au sein de ces deux 

familles, différents types de substituants polyaromatiques, capables de former des 

interactions avec la surface de nanomatériaux carbonés, ont été introduits afin de 

déterminer leur influence à la fois sur le processus d’immobilisation et dans la 

réaction catalytique de polymérisation de l’éthylène.  
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Figure 3. Catalyseurs moléculaires à base de nickel synthétisés en vue d’une 

immobilisation non covalente sur nanotubes de carbone et graphène 

 

 

La structure moléculaire de deux de ces complexes a été confirmée par diffraction 

des rayons X, mettant en évidence que, selon la nature du ligand utilisé, les structures 

des complexes formés peuvent exister sous forme monomérique ou dimérique. Dans 

ce dernier cas, les ligands chlorures sont pontants entre deux atomes de nickel.  

L’étude du comportement catalytique en conditions homogènes de ces 

précurseurs de nickel a montré une activité modérée pour la polymérisation de 

l’éthylène, conduisant à la formation de polyéthylènes branchés de faible poids 

moléculaire. Une étude détaillée de ces systèmes homogènes a été menée, permettant 

d’optimiser les conditions de réactions. Ainsi il a été montré que pour ces dérivés, le 

méthylaluminoxane (MAO) est le meilleur activateur, conduisant à la meilleur activité 

pour un rapport Al/Ni de 1000 ou 1500 selon les systèmes considérés. Contrairement 

à ce qui a été décrit pour d’autres systèmes catalytiques à base de nickel, ce rapport 

correspond également à un maximum pour le poids moléculaire des polyéthylènes 
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formés. De plus, et comme décrit pour les systèmes étudiés au cours des chapitres 

précédents, une augmentation de la température de réaction conduit généralement à 

une baisse significative de l’activité catalytique. Notons que généralement, les 

précatalyseurs de la première famille sont globalement plus actifs que ceux 

appartenant à la seconde.  

Les réactions de polymérisation ont ensuite été testées en ajoutant au sein du 

réacteur différentes quantités de matériau nanocarboné (graphène ou nanotubes de 

carbone multi-parois). Ces études ont permis de montrer que l’effet de l’addition de 

nanotubes de carbone produit un effet contrasté sur les performances catalytiques du 

système. En effet, de faibles quantités ne modifient pas significativement l’activité du 

système alors que l’augmentation de la quantité de nanotubes conduit à une 

diminution des performances catalytiques pour la première famille de catalyseurs. De 

plus, l’augmentation des quantités de nanotubes ajoutées conduit également à une 

diminution du poids moléculaire des polymères formés ainsi qu’à une augmentation 

importante du nombre de branches présentes au sein de ces chaînes polymériques. La 

tendance est légèrement différente pour les catalyseurs de la seconde famille pour 

lesquels il a été observé généralement une légère augmentation de l’activité 

catalytique en présence de faibles quantités de nanotubes de carbone. Dans ce cas, une 

augmentation des longueurs de chaînes des polymères, obtenus en présence de 

nanotubes de carbone, a également été observée. En revanche, l’addition de petites 

quantités de graphène s’est avérée plus bénéfique, conduisant à une augmentation 

significative de l’activité ainsi qu’à la formation de polymères dont le poids 

moléculaire est plus élevé par rapport à celui des polyéthylènes obtenus à partir des 
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catalyseurs analogues non supportés, et ce pour les deux familles de catalyseurs 

étudiées.  

L’analyse thermogravimétrique des matériaux hybrides (polymère/nanocarbone) 

ainsi obtenus a montré une diminution significative de la température de 

décomposition due à la présence du support, graphène ou nanotubes.  

Les analyses microscopiques (microscopie électronique en transmission et 

microscopie électronique à balayage) ont montré, comme pour les systèmes décrits 

précédemment, un bon taux de dispersion des nanotubes de carbone au sein des 

matrices polymériques, mettant en évidence une probable interaction entre les espèces 

catalytiques et la surface des tubes au sein du milieu réactionnel. Cette interaction 

engendrant la croissance de la chaîne polymérique depuis la surface du nanotube, 

conduisant ainsi à leur séparation individuelle. Dans le cas des échantillons contenant 

le graphène, ce dernier est difficilement observable sur les clichés de microscopie 

mais l’absence de ségrégation semble suggérer dans ce cas également une dispersion 

effective du support carboné au sein du polymère formé.  

 

Dans le chapitre V, les ligands décrits précédemment dans le chapitre IV ont été 

utilisés pour préparer de nouveaux composés de fer pour la polymérisation de 

l’isoprène (Figure 4). Cette partie s’inscrit dans le cadre d’un projet plus vaste, visant 

au confinement de nanoparticules magnétiques métalliques de fer à l’intérieur de la 

cavité de nanotubes de carbone. Afin de préserver intactes les propriétés magnétiques 

de ces particules, particulièrement sensibles à l’oxydation au contact de l’oxygène, il 

est indispensable de pouvoir les protéger de l’air. C’est pourquoi nous avons 
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développé les composés décrits dans ce chapitre (Figure 4) dont la partie 

polyaromatique portée par le ligand peut interagir efficacement avec la surface des 

nanoparticules métalliques. Cette interaction nous a alors permis d’envisager la 

formation catalytique de polyisoprène directement depuis la surface de la particule 

métallique à protéger de l’oxydation. La stratégie générale utilisée est représentée 

schématiquement dans la Figure 5.  

  

 

Figure 4. Catalyseurs moléculaires à base de fer synthétisés en vue d’une 

immobilisation non covalente à la surface de nanoparticules magnétiques 
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Figure 5. Approche “Bottom-up” pour la production de nanoparticules 

magnétiques confinées dans des nanotubes de carbone multi-parois et protégées de 

l’air. (1) synthèse de nanoparticules de fer; (2) synthèse de nanoparticules de fer 

modifies par un catalyseur de polymérisation; (3) confinement sélectif dans des 

nanotubes de carbone et (4) polymérisation de l’isoprène en milieu confiné 

 

Tous ces complexes ont été caractérisés par spectroscopie et analyse élémentaire. 

De plus, les composés Fe6-Fe8 (Figure 4) synthétisés ont pu tous être caractérisés 

également par diffractions des rayons X sur monocristaux. Cette étude a permis de 

mettre en évidence deux types de structures différentes pour ces composés. En effet, si 

dans deux cas la structure est bien celle attendue, à savoir un centre métallique portant 

deux ligands chlorures et deux ligands bidentes azotés, dans le cas du ligand 

contenant le fragment anthracényl, la structure révèle un cation du fer(II) comportant 

trois ligands bidente et un contre-anion FeCl4
2- (Figure 4). Au sein de cette structure, 

les trois groupements aromatiques anthracényles sont orientés du même côté de la 
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molécule formant une structure particulière présentant une cavité tubulaire au bout de 

laquelle est placée le contre-anion.  

Avant d’effectuer leur incorporation à la surface des nanoparticules métalliques, 

ces composés ont tous été testés dans des conditions homogènes en tant que 

catalyseurs de la polymérisation de l’isoprène. Ce screening catalytique a permis, une 

fois encore, de montrer l’effet bénéfique du substituant polyaromatique porté par le 

ligand sur l’activité catalytique. En effet, activés par le triisopropylaluminum, tous les 

systèmes décrits se sont révélés être particulièrement actifs, rivalisant avec les 

meilleurs systèmes décrits jusqu’à présent dans la littérature. D’autre part, une analyse 

complète des polymères obtenus, notamment par calorimétrie différentielle à balayage 

et spectroscopie RMN, a montré la formation de polyisoprènes à température de 

transition vitreuse élevée ainsi que la formation majoritaire du motif cis-1,4 (jusqu’à 

plus de 99 %) au sein de la chaîne polymérique. Au cours de cette étude, nous avons 

également étudié l’influence de la température et de la présence ou non d’activateur 

sur les performances des systèmes. Ceci nous a permis d’identifier le complexe Fe6 

comme étant le plus actif. Il a donc ensuite été sélectionné pour être immobilisé à la 

surface de nanoparticules de fer par échange de ligand. Ces particules ont ensuite été 

introduites sélectivement dans la cavité interne de nanotubes de carbone, selon une 

procédure développée précédemment au sein du laboratoire. Cette étape nécessite un 

fonctionnalisation préalable de la surface des nanotubes de carbone par une fonction 

amide portant une longue chaîne carbonée. L’efficacité de cette méthodologie a pu 

être confirmée, y compris dans le cas des systèmes décrits dans ce travail, par 

microscopie électronique qui montre bien que la grande majorité des particules 
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formées se situent à l’intérieur de la cavité des nanotubes de carbone. Ces deux 

systèmes hybrides ont ensuite été testés comme catalyseurs pour la polymérisation de 

l’isoprène. Dans les deux cas, la formation de polymère est observée, montrant 

l’échange efficace du catalyseur Fe6 à la surface des nanoparticules et leur maintien 

sur cette surface au cours du confinement dans les nanotubes. Les analyses 

microscopiques ont également montré que ces systèmes permettent la formation d’une 

couche de polyisoprène autour des nanoparticules, y compris pour le système où ces 

dernières sont confinées à l’intérieur de la cavité du nanotube de carbone. D’autre part, 

l’observation de ces systèmes par microscopie électronique en transmission a montré 

qu’au cours du processus les particules initiales restent bien dispersées et l’analyse de 

la distribution de taille n’a pas montré de modifications significatives. Enfin, des 

mesures magnétiques sur ces systèmes nanocomposites (nanoparticules de fer 

entourées de polyisoprène) après exposition à l’air ont été effectuées et ont montré un 

maintien des propriétés magnétiques de particules, mettant en évidence la validité de 

notre approche et l’efficacité de la couche de polyisoprène pour protéger de 

l’oxydation les particules magnétiques.  

 

En conclusion, au cours de ce travail, différents complexes des métaux de la 

droite du tableau périodique, nickel et fer, basés sur des ligands à squelette 

imino-pyridine ont été préparés et immobilisés, de manière covalente ou non, sur 

différents types de nanomatériaux comme des nanotubes de carbone multi-parois, du 

graphène ou encore des nanoparticules magnétiques. Ces systèmes ont ensuite été 

étudiés en détail pour leur comportement catalytique dans la polymérisation d’oléfines 
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comme l’éthylène ou l’isoprène. Dans tous les cas, une étude préalable des 

performances des systèmes a été menée dans des conditions homogènes (systèmes 

non supportés) afin d’une part, d’optimiser les paramètres de la réaction catalytique et 

de pouvoir ainsi identifier les meilleures conditions de réactions et d’autre part de 

pouvoir essayer au mieux de comparer les performances des systèmes immobilisés et 

donc l’influence du support sur le comportement catalytique de ces systèmes. Ces 

performances ont été évaluées non seulement en termes d’activité catalytique mais 

également en nous intéressant aux caractéristiques de polymères obtenus comme leur 

poids moléculaire, la polydispersité, leur température de fusion ou de transition 

vitreuse, ou encore le taux de branchement de la chaîne.  

Les différents systèmes moléculaires étudiés ont été spécifiquement modifiés en 

introduisant différentes fonctionnalités chimiques en vue d’une interaction avec les 

supports considérés. Ainsi, des groupements amino ont été introduits sur le squelette 

des ligands pour une interaction covalente par formation de liaison de type amide 

avec le support. D’autre part, différents groupes polyaromatiques ont été introduits 

afin de favoriser les interactions faibles avec la surface graphitique des supports.  

Nous avons ainsi pu mettre en évidence la validité des deux approches, covalente 

ou non, pour favoriser les performances du système. Dans différents cas, il a été 

possible de développer des systèmes dont l’activité est plus élevée à la suite de 

l’immobilisation. Cette dernière pouvant également conduire à des modifications 

structurale notables des polymères formés (longueur de chaînes, taux de branchement, 

etc…). Nous avons également pu mettre en évidence le rôle important joué par la 

nature du support. Ainsi par exemple, différents types de nanotubes multi-parois 
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conduisent à des comportements catalytiques notablement différents. De la même 

manière, l’influence du graphène s’est avérée être plus bénéfique dans les cas où elle 

a été comparée à celle des nanotubes de carbone. Ces résultats offrent des 

perspectives intéressantes dans le domaine du développement de systèmes 

catalytiques qui peuvent potentiellement être utilisés dans des procédés industriels de 

polymérisation nécessitant l’emploi de catalyseurs hétérogénéisés. En effet, la plupart 

du temps les processus d’immobilisation conduisent à une réduction non négligeable 

et non souhaitée de l’activité catalytique, inconvénient qui peut être contourné grâce 

aux systèmes décrits dans ce travail. D’autre part, comme nous l’avons montré, un 

choix judicieux de combinaison support/catalyseurs ainsi que des conditions 

opératoires optimisées permettent également un contrôle de la morphologie des 

polyéthylènes obtenus et donc de leurs propriétés physiques.  

Enfin, dans tous les cas étudiés, ces systèmes supportés sur nanomatériaux 

carbonés ont conduit à la formation de nanocomposites de polyéthylène pour lesquels 

le support initial se retrouve au sein de la matrice polymérique avec un taux de 

dispersion important, ouvrant ainsi la voie à de nouvelles méthodes de préparation de 

polymères à structure contrôlée et modifiés par de petites quantités de nanotubes de 

carbone ou de graphène.  

Enfin, nous avons également pu développer des systèmes qui peuvent permettre 

la formation d’une couche protectrice autour de nanoparticules magnétiques confinées 

au sein de la cavité de nanotubes de carbone et sensibles à l’oxydation par l’air. Ces 

travaux devraient pouvoir permettre l’utilisation de ces nouveaux systèmes hybrides 

dans différents domaines. 
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Abstract 

This present thesis deals with the development of active olefin polymerization catalysts based on late 
transition metal (nickel and iron) imino-pyridine complexes supported on nanomaterial. Chapter I gives 
a comprehensive literature review of unsupported and supported ethylene polymerization catalyst. In 
Chapter II we report the ethylene polymerization studies using nickel complexes containing an –NH2 
group for covalent immobilization on multi-walled carbon nanotubes (MWCNTs) of the corresponding 
precatalysts. Comparison of the homogeneous catalysts with their supported counterparts evidenced 
higher catalytic activity and higher molecular weights for the polymers produced. In Chapter III, iron 
complexes containing a pyrene group have been synthesized and immobilized on MWCNTs through 
non-covalent π-π interactions between pyrene group and surface of MWCNTs. Activated by MMAO, 
both the iron complexes and immobilized catalysts show high activities for ethylene polymerization. It 
was possible to evidence that MWCNTs have a great influence on the catalytic activity and on the 
structure of the resulting polyethylenes. Imino-pyridine nickel complexes containing various kinds of 
aromatic groups have been synthesized in Chapter IV and polymerization conditions in the presence 
and in the absence of nanocarbon materials, such as MWCNTs or few layer graphene (FLG), are 
discussed. For those nickel catalysts bearing 1-aryliminoethylpyridine ligands, the presence of 
MWCNTs in the catalytic mixture allows the formation of waxes of lower molecular weight and 
polydispersity, whereas the presence of FLG proved to be beneficial for the catalytic activity. In 
Chapter V, isoprene polymerization catalyzed by iron complexes containing polyaromatic groups and 
non-covalently supported on nanoparticles and confined into the inner cavity of MWCNTs (Cat@NPs 
and Cat@NPs@MWCNTs) are investigated. Iron complexes show excellent activity for the isoprene 
polymerization and produced high glass temperature polyisoprene with a high cis-1,4-polyisoprene 
selectivity. Polymer nanocomposites are produced by supported catalysts and, transmission electron 
microscopy (TEM) evidenced efficient coating of the resulting polyisoprene around the oxygen 
sensitive iron0 nanoparticles.  

Résumé 

Le présent travail de thèse décrit le développement de systèmes actifs de polymérisation d’oléfines 
basés sur des métaux de fin de transition (nickel et fer) supportés sur des nanomatériaux. Le chapitre I 
décrit l’état de l’art des systèmes catalytiques supportés ou non pour la polymérisation d’oléfines. Dans 
le chapitre II, nous décrivons la polymérisation de l’éthylène en utilisant des catalyseurs de nickel 
contenant un groupement –NH2 pour leur immobilisation covalente sur nanotubes de carbone ; 
montrant l’influence positive de l’immobilisation : les catalyseurs ainsi supportés sont en effet à la fois 
plus actifs et conduisant à des polymères de plus haut poids moléculaire. Dans le chapitre III, des 
complexes de fer contenant un groupement pyrène sont décrits et immobilisés sur nanotubes de 
carbone par interaction non covalente π-π. Dans ce cas, à la fois les systèmes homogènes et leurs 
analogues supportés catalysent la réaction de polymérisation de l’éthylène avec des activités 
particulièrement élevées. Il a également pu être mis en évidence l’importante influence du support 
carboné sur les performances du système catalytique ainsi que sur la structure des polymères obtenus. 
Différents types de complexes de nickel contenant un ligand imino-pyridine et différents groupes 
polyaromatiques ont été synthétisés et leur utilisation en polymérisation de l’éthylène est décrite dans 
le chapitre IV. L’influence de l’addition de faibles quantités de matériaux nanocarbonés (nanotubes de 
carbone ou graphène) au milieu réactionnel a ainsi été étudiée. Le graphène s’est dans ce cas révélé 
particulièrement bénéfique sur les performances du catalyseur. Enfin, le chapitre V décrit la 
polymérisation de l’isoprène à l’aide de catalyseurs de fer contenant des groupements polyaromatiques 
permettant leur immobilisation à la surface de nanoparticules de fer. Ces systèmes ont ensuite pu être 
confinés dans des nanotubes de carbone. Les systèmes catalytiques décrits sont particulièrement actifs 
produisant des polyisoprènes à température de transition vitreuse élevée et avec une haute sélectivité 
cis-1,4-polyisoprène.  
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