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Thèse présentée et soutenue à Palaiseau le 12/09/2023

YOUNÈS YOUSSFI

Composition du Jury :

Emmanuel Bacry
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Abstract

Sudden cardiac death (SCD) is defined as a sudden natural death presumed to be of cardiac

cause, heralded by abrupt loss of consciousness in the presence of witness, or in the ab-

sence of witness occurring within an hour after the onset of symptoms. Despite progress

in clinical profiling and interventions, it remains a major public health problem, accounting

for 10 to 20% of deaths in industrialised countries, with survival after SCD below 10%. The

annual incidence is estimated 350,000 in Europe, and 300,000 in the United States. Efficient

treatments for SCD management are available. One of the most effective options is the use

of implantable cardioverter defibrillators (ICD). However, identifying the best candidates

for ICD implantation remains a difficult challenge, with disappointing results so far.

This thesis aims to address this problem, and to provide a better understanding of SCD in

the general population, using statistical modeling. We analyze data from the Paris Sudden

Death Expertise Center and the French National Healthcare System Database to develop

three main works:

1. The first part of the thesis aims to identify new subgroups of SCD to improve current

stratification guidelines, which are mainly based on cardiovascular variables. To this

end, we use natural language processing methods and clustering analysis to build a

meaningful representation of medical history of patients. This work is described in

Chapter 3.

2. The second part aims to build a prediction model of SCD in order to propose a person-

alized and explainable risk score for each patient, and accurately identify very-high

risk subjects in the general population. To this end, we train a supervised classifica-

tion algorithm, combined with the SHapley Additive exPlanation method, to analyze

all medical events that occurred up to 5 years prior to the event. This work is de-

scribed in Chapter 4.

3. The last part of the thesis aims to identify the most relevant information to select in

large medical history of patients. We propose a bi-level variable selection algorithm

for generalized linear models, in order to identify both individual and group effects

from predictors. Our algorithm is based on a Bayesian approach and uses a Sequential

Monte Carlo method to estimate the posterior distribution of variables inclusion. This

work is described in Chapter 5.
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Résumé

La mort subite de l’adulte est définie comme une mort inattendue sans cause extracardiaque

évidente, survenant avec un effondrement rapide en présence d’un témoin, ou en l’absence

de témoin dans l’heure après le début des symptômes. Son incidence est estimée à 350,000

personnes par an en Europe et 300,000 personnes aux Etats-Unis, ce qui représente 10 à 20%

des décès dans les pays industrialisés. Malgré les progrès réalisés dans la prise en charge,

le pronostic demeure extrêmement sombre. Moins de 10% des patients sortent vivants de

l’hôpital après la survenue d’une mort subite. Les défibrillateurs automatiques implantables

offrent une solution thérapeutique efficace chez les patients identifiés à haut risque de mort

subite. Leur identification en population générale demeure donc un enjeu de santé publique

majeur, avec des résultats jusqu’à présent décevants.

Cette thèse propose des outils statistiques pour répondre à ce problème, et améliorer

notre compréhension de la mort subite en population générale. Nous analysons les données

du Centre d’Expertise de la Mort Subite et les bases médico-administrati-ves de l’Assurance

Maladie, pour développer trois travaux principaux :

1. La première partie de la thèse vise à identifier de nouveaux sous-groupes de mort

subite pour améliorer les modèles actuels de stratification du risque, qui reposent es-

sentiellement sur des variables cardiovasculaires. Nous utilisons desmodèles d’analyse

du langage naturel et de clustering pour construire une nouvelle représentation per-

tinente de l’historique médical des patients. Ce travail est décrit dans le Chapitre

3.

2. La deuxième partie vise à construire un modèle de prédiction de la mort subite, ca-

pable de proposer un score de risque personnalisé et explicable pour chaque patient,

et d’identifier avec précision les individus à très haut risque en population générale.

Nous entraînons pour cela un algorithme de classification supervisée, combiné avec

l’algorithme SHapley Additive exPlanations, pour analyser l’ensemble des consom-

mations de soin survenus jusqu’à 5 ans avant l’événement. Ce travail est décrit dans

le Chapitre 4.

3. La dernière partie de la thèse vise à identifier le niveau optimal d’information à sélec-

tionner dans des bases médico-administratives de grande dimension. Nous proposons

un algorithme de sélection de variables bi-niveaux pour desmodèles linéaires général-

isés, permettant de distinguer les effets de groupe des effets individuels pour chaque

variable. Cet algorithme repose sur une approche bayésienne et utilise une méthode

de Monte Carlo séquentiel pour estimer la loi a posteriori de sélection des variables.

Ce travail est décrit dans le Chapitre 5.
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Chapter 1

General Introduction, Motivations
and Contributions

Contents
1.1 Sudden Cardiac Death . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.2 Description of the Data . . . . . . . . . . . . . . . . . . . . . . . . . 40
1.3 Objective of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 46
1.4 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . 46

This Chapter provides an overview of the main concepts covered in the thesis. First, Section
1.1 explains the basics of sudden cardiac death, including the physio-pathology and epidemiol-
ogy of SCD, as well as the current research challenges in this field. Then, Section 1.2 describes
the data used in this work. Finally, Section 1.4 gives a summary of the main contributions of
this thesis.

1.1 Sudden Cardiac Death

The Cardiovascular System

A broad introduction to the basic anatomy and physiology of the heart, as well as the key

functions of the cardiovascular system is first needed for non-medical experts to understand

the underlying mechanisms of sudden cardiac death. The human cardiovascular system is

a closed circuit network, primarily responsible for distributing oxygen, nutrients, and hor-

mones to the body’s tissues and organs, while removing metabolic waste products. It plays

a critical role in maintaining a constant internal state in our body, such as blood pressure,

pH levels and body temperature. The central component of the cardiovascular system is

the heart, a muscular organ located within the thoracic cavity. The heart pumps blood

throughout the vascular network, composed of arteries, arterioles, capillaries, venules, and

veins (see Figure Figure 1.1):

• Arteries are thick-walled, large vessels that are part of the systemic circuit, and carry

blood away from the heart. They subdivide into smaller arterioles that ultimately lead

to capillaries. Capillaries are the smallest of blood vessels where gas exchange occurs

between the blood and the surrounding tissues. Exchange of nutrients, electrolytes,

and metabolic waste products also takes place at the capillary level.

• Venules and veins are part of the pulmonary circuit. They transport deoxygenated

blood from the body organs and tissues to the lungs, where it is oxygenated and

carbon dioxide is eliminated.
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Chapter 1. General Introduction, Motivations and Contributions

Figure 1.1: Scheme of the circulatory system

The pulmonary circulation picks up oxygen from the lungs, and the systemic circulation

delivers oxygen to the body

Source: The Cardiovascular System, Pearson Education

The heart is composed of four chambers, two atria and two ventricles, which play a

unique role in the heart’s function (see Figure 1.2). The atria are the two upper chambers and

receive blood from the veins. The ventricles are the two lower chambers and pump blood

out of the heart. This unique arrangement allows for efficient blood circulation throughout

the body, which is a complex but synchronized event:

1. Deoxygenated blood from all the tissues in the body enters the right atrium via two

large veins known as the superior vena cava and inferior vena cava.

2. Upon entry, the right atrium contracts, and blood flows through the tricuspid valve

into the relaxed right ventricle.

3. Subsequently, the right ventricle contracts, and blood is pumped through the pul-

monary valve into the pulmonary artery, which carries it to the lungs for oxygena-

tion.

18
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4. Once the blood is oxygenated, it returns to the heart, entering the left atrium from

the pulmonary veins.

5. The left atrium contracts, and the oxygenated blood flows through the mitral valve

into the relaxed left ventricle.

6. Finally, when the left ventricle contracts, the blood is pumped through the aortic valve

and into the aorta, which carries blood to all parts of the body.

Figure 1.2: Circulation of blood through the heart

This process ensures that the heart efficiently supplies oxygen and nutrients to all the

tissues in the body.

Source: The Cardiovascular System, Pearson Education

The rhythm and timing of the heart’s contractions are controlled by the conduction

system, which is composed of specialized cells located throughout the heart: the sinoatrial

(SA) node, the atrioventricular (AV) node, the bundle of His, and the Purkinje fibers (see

Figure 1.3). The SA node, located in the right atrium, serves as the natural pacemaker of

the heart. It generates electrical impulses that propagate through the atria and trigger their

contractions. This contraction, in turn, facilitates the movement of blood into the ventricles.

The impulse then reaches the AV node, located in the lower right atrium, and briefly delays

the signal, allowing the ventricles to fill with blood. After the delay, the electrical impulse

19
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travels down the bundle of His, which divides into two branches travelling down the left

and right sides of the heart. The branches split into smaller Purkinje fibers, which distribute

the impulse throughout the ventricles, causing them to contract and pump blood out of the

heart.

Figure 1.3: Electrical conduction system of the heart

The pulmonary circulation picks up oxygen from the lungs, and the systemic circulation

delivers oxygen to the body.

Source: Ganesan, P., et al. (2016). Computer-Aided Clinical Decision Support
Systems for Atrial Fibrillation

The conduction system ensures that the heart’s contractions are coordinated and syn-

chronous, preventing any disruption in blood flow to vital organs. Any abnormalities or

dysfunction in the conduction system can lead to significant health issues, including ar-

rhythmias, heart block, and heart failure. In the worst cases, these disorders can result in

sudden cardiac death.

20
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Sudden Cardiac Death

Definition

Cardiac arrest is a life-threatening medical emergency that occurs when the heart suddenly

stops beating efficiently, leading to the cessation of blood flow to vital organs such as the

brain and lungs. It is the ultimate mode of any death, regardless of its initial cause. In most

cases, it occurs as a terminal complication of a pre-existing condition such as cancer, res-

piratory failure, or severe infection. However, some of cardiac arrests occur unexpectedly,

without any known pre-morbid conditions. When there is no obvious circumstantial cause

(such as trauma, suicide, drowning or choking), it is referred to as sudden death, and the

underlying cause is presumed to be cardiac. Sudden cardiac death (SCD) is therefore de-

fined as a sudden natural death presumed to be of cardiac cause [Zeppenfeld et al., 2022].

Out-of-hospital cardiac arrest (OHCA) is also often used in the medical litterature to refer

to SCD. More precisely, two possible definitions of SCD are admitted:

• SCD is certain when it occurs with a sudden collapse witnessed by others, or in the

absence of witnesses occurring less than an hour after the onset of the first symptoms.

• SCD is probable when it occurs less than 24 hours after the last contact with the

patient.

Mechanism

The underlying mechanism of SCD is usually an abnormal heart rhythm (arrhythmia), that

arises from an electrical disturbance in the heart’s conduction system. This can result in

rapid, irregular, or disorganized electrical activity in the heart that impairs its ability to

contract and pump blood effectively. The most common arrhythmias that lead to SCD are

ventricular fibrillation (VF) and ventricular tachycardia (VT). VF is characterized by rapid

and disorganized electrical activity that results in an erratic and ineffective contraction of

the heart muscle (see Figure 1.4), while VT is characterized by a fast and regular heartbeat

originating from the lower chambers of the heart. Both of these arrhythmias are consid-

ered "shockable" rhythms, as they can be treated with defibrillation, a process in which an

electric shock is delivered to the heart to restore its normal rhythm. Prompt defibrillation is

crucial in restoring a shockable rhythm and improving survival rates. In this context, public

access defibrillation programs have been established in many communities to ensure that

bystanders are trained in their use.
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Figure 1.4: Ventricular fibrillation

Electrocardiogram of ventricular fibrillation vs normal sinus rythm.

Source: Cleveland Clinic

In contrast, other arrhythmias such as asystole (absence of heartbeat), pulseless elec-

trical activity, and bradyarrhythmias are considered as "non-shockable" rhythms (see Fig-

ure 1.5). They do not respond to defibrillation and require other interventions including

cardiopulmonary resuscitation (CPR) and advanced life support. The goal of CPR is to pro-

vide oxygenated blood to vital organs, such as the brain and heart, until more definitive

treatment can be provided. The progression from a shockable to a non-shockable rhythm

during SCD can occur due to various reasons, such as delayed or inadequate CPR or an

underlying disease process that is not responsive to defibrillation. For instance, VT can

progress to pulseless VF and then to asystole if CPR is not initiated or is not successful.

Figure 1.5: Asystole

Electrocardiogram of asystole vs normal sinus rythm.

Source: Cleveland Clinic

Underlying cardiac causes

The most common underlying cardiac causes of SCD are coronary artery disease (CAD) and

structural heart disease, although other less common causes such as inherited arrhythmia

syndromes and ion channelopathies may also be implicated.
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CAD, also called ischemic heart diseases, account for approximately 75% of SCD cases

[Zeppenfeld et al., 2022]. They occur when the coronary arteries, which supply blood to the

heart, become narrowed or blocked due to the buildup of cholesterol (atherosclerosis) and

other substances in the artery walls. Over time, this buildup of plaque can restrict blood

flow to the heart muscle, leading to a variety of symptoms such as chest pain or discomfort

(angina), shortness of breath, fatigue, and weakness. If left untreated, CAD can progress to

myocardial infarction (also called heart attack), which occurs when a blood clot forms in

a coronary artery and completely cuts off blood flow to a portion of the heart muscle (see

Figure 1.6). As a result, that portion of the heart muscle begins to die due to a lack of oxygen

and nutrients.

Structural heart diseases such as hypertrophic cardiomyopathy (HCM), dilated cardiomy-

opathy (DCM), and arrhythmogenic right ventricular cardiomyopathy (ARVC) are less com-

mon but also important causes of SCD, particularly in younger individuals [Zeppenfeld

et al., 2022]. HCM is characterized by thickening of the heart muscle which can impair the

heart’s ability to pump blood effectively. DCM is characterized by dilation and thinning

of the heart chambers, leading to impaired cardiac function and increased susceptibility to

arrhythmias. ARVC is a rare inherited condition characterized by replacement of normal

heart muscle with fibrous and fatty tissue, leading to arrhythmias and an increased risk of

SCD.

Inherited arrhythmia syndromes such as long QT syndrome (LQTS), Brugada syndrome

(BrS), and catecholaminergic polymorphic ventricular tachycardia (CPVT) are caused by ge-

netic mutations that disrupt the heart’s electrical activity, and also increase the risk of SCD.

They are increasingly recognized as important underlying causes of SCD, particularly in

young individuals with structurally normal hearts. These conditions can be often diagnosed

through specific tests, such as genetic testing and electrocardiogram evaluation.
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In the early 1990s, a French cardiologist (Pr. Coumel) proposed a new concept, referred

to as “Coumel’s triangle of arrhythmogenesis” [Coumel, 1999], to explain the relationship

between the trigger, the substrate, and vulnerability for the development of arrhythmias

that can lead to SCD:

• The trigger refers to the acute event that can initiate the arrhythmia. It can be a

variety of factors, such as emotional stress, physical exertion, or exposure to certain

drugs or toxins. The trigger alone is not sufficient to cause SCD, but it can set the

stage for the development of an arrhythmia in a susceptible individual.

• The substrate refers to the underlying cardiac condition or abnormality that can pro-

mote the development of arrhythmias. It includes factors such as ischemic heart dis-

ease, structural heart disease, or inherited arrhythmia syndromes. The substrate can
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make the heart more vulnerable to the effects of the trigger.

• The vulnerability refers to the individual’s susceptibility to developing an arrhythmia

in response to a trigger and substrate. It can be influenced by various factors, such as

age, sex, genetics, and comorbidities.

The Coumel’s triangle highlights the complex interplay between factors that lead to

SCD, and the importance of considering them to improve preventive strategies. Standard-

ized international tools are also essential to provide a complete understanding of the epi-

demiology, etiology, and outcomes of SCD. In this context, a set of guidelines for reporting

and evaluating OHCA has been proposed. These guidelines, called the Utstein criteria, were

developed by an international group of experts in 1991 and have since been updated and

refined to improve the consistency and quality of OHCA data [Jacobs et al., 2004]. They

outline specific data elements that should be reported for OHCA, including:

• Patient demographics

• Location and time of the event

• Response times of emergency medical services

• Cardiac rhythm at presentation

• Survival outcomes

These criteria also provide guidelines for defining and measuring important variables

such as time to defibrillation and quality of CPR [Cummins et al., 1991]. They have facili-

tated the collection of consistent and reliable OHCA data, allowed for the identification of

disparities in survival rates across different regions [Kitamura et al., 2018], and has led to

the development of new targeted interventions to improve OHCA management [Gräsner

et al., 2016].

Incidence of Sudden Cardiac Death

3 million people are estimated to die from SCD annually, accounting for approximately 15%

of all deaths worldwide [Chugh et al., 2008]. The incidence of SCD varies depending on

the population studied, but is generally higher in older individuals, men, and those with

underlying cardiac disease [Priori et al., 2015]. SCD accounts for approximately 50% of all

cardiovascular deaths, with up to 50% being the first manifestation of cardiac disease [Zep-

penfeld et al., 2022]. In the Western countries, the epidemiology of SCD is closely related

to CAD, which is responsible for up to 75–80% of SCD cases. The incidence also increases

markedly with age. It is very low during infancy and childhood (1 per 100,000 person-years

(PY)), approximately 50 per 100,000 PY in middle-aged individuals (50-60 years), and at least

200 per 100,000 PY in the eighth decade of life. At any age, males have higher SCD rates

compared with females, even after adjustment for risk factors of CAD. Ameta-analysis of 27

studies found that the odds ratio for SCD in men compared to women was 2.4 (95% CI, 2.1-

2.8) [Chugh et al., 2009]. Although regular physical activity benefits cardiovascular health,

sport, particularly when practiced vigorously, has also been shown to be associated with

SCD during or shortly after, with an incidence estimated to be around 1 in 50,000 to 1 in

80,000 athletes per year [Chugh et al., 2008].

In the United States, the incidence of SCD is estimated to be approximately 300,000 to

350,000 cases per year [Mozaffarian et al., 2015]. In Europe, 300,000 people have OHCA

treated by emergency medical systems every year. Empana et al. [2022] aimed to estimate
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the incidence of SCD in the European Union (EU) and to assess the variation in incidence

rates between EU countries. The study found that the average annual incidence of SCD in

the 4 European registries existing on SCD ranged from 36.8 to 39.7 per 100,000. When ex-

trapolating to each European country and accounting for age and sex, this yields to 249,538

SCD cases per year (see Figure 1.7).

Figure 1.7: Average incidence rates of SCD estimated in each European

country

Source: Empana et al. [2022]

The prognosis of SCD is terrible, with less than 10% surviving to hospital discharge.

Survival rates following SCD depend on several factors, including the underlying cause

of cardiac arrest, the duration of CPR, and the time to defibrillation. A recent systematic

review and meta-analysis of 79 studies found that the overall survival rate to hospital dis-

charge following OHCA was 8.3% [Gräsner et al., 2016], with higher rates observed in pa-

tients with shockable rhythms (29.8%) compared to non-shockable rhythms (4.6%). Another

study reported that survival rates following OHCA varied widely depending on the loca-

tion of cardiac arrest, with higher survival rates observed in urban areas and in patients who

received bystander CPR [Nichol et al., 2008]. The use of automated external defibrillators

and advanced cardiac life support protocols have also been shown to improve survival rates

[Meaney et al., 2013].

Risk Factors for Sudden Cardiac Death

A broad range of risk factors for SCD have been described in the medical litterature. Most

of them are common to other cardiovascular diseases, such as advancing age, male sex,

26



Chapter 1. General Introduction, Motivations and Contributions

smoking, diabetes and obesity. Indeed, these risk factors have been shown to increase the

risk of atherosclerosis, which in turn can increase the risk of SCD. So far, only a few specific

risk factors for SCD in the general population have been identified, including family history

and heart rate at rest and during exercise.

Family history

Jouven et al. [1999] aimed to investigate whether a family history of SCD was associated

with an increased risk of SCD in the general population. The study included a total of

5, 243 individuals aged 45-64 years who participated in a prospective French cohort. They

found that individuals with a family history of SCD had a significantly increased risk of

SCD compared to those without a family history. Specifically, the risk of SCD was 2.4 times

higher in individuals with a first-degree relative who had died of SCD compared to those

without a family history. They also found that the association between family history and

SCD was stronger in individuals with no prior history of cardiovascular disease. A meta-

analysis of 10 case-control studies [Winkel et al., 2011] found that a family history of SCD

was associated with a significantly increased risk of SCD, with an odds ratio of 1.9 (95% CI:

1.5-2.5). Chugh et al. [2004] found that the risk of SCD was increased in individuals with

a family history of premature CAD, which may be a marker of genetic predisposition to

heart disease. Finally, a family history of inherited cardiac disorders such as HCM, ARVC

and LQTS has been associated with an increased risk of SCD [Ackerman et al., 2011].

Heart rate

Elevated heart rate at rest and during exercise have also been identified as specific risk

factors for SCD. Jouven et al. [2005] investigated the association between heart rate and

the risk of SCD in a population-based cohort of 5, 713 men and women who were 42 to 53

years old at baseline. The study found that higher resting heart rate was associated with

an increased risk of SCD, even after adjusting for other risk factors such as smoking, blood

pressure, and cholesterol levels. Specifically, each increase in heart rate by 10 beats per

minute (bpm) was associated with a 1.2-fold increase in the risk of SCD in men and a 1.6-

fold increase in women. The study also found that the association between heart rate and

SCD was stronger among individuals with no history of cardiovascular disease at baseline.

Similarly, an elevated heart rate during exercise has been associated with an increased risk

of SCD. A study of over 3,000 men found that individuals with an exercise-induced heart

rate of greater than 150 bpm had a significantly increased risk of SCD compared to those

with a heart rate of less than 120 bpm [Albert et al., 2000].

Genetic factors

Several results have highlighted the role of genetic factors in the pathogenesis of SCD. In-

herited cardiac disorders such as HCM, ARVC and LQTS are well-established risk factors for

SCD. These disorders are caused by mutations in genes encoding proteins involved in the

structure and function of the heart, leading to abnormalities in the heart’s electrical system

and an increased risk of arrhythmias [Maron, 2009, Basso et al., 2009]. In addition to rare

mutations causing inherited cardiac disorders, several common genetic variants have been

identified as risk factors for SCD. These variants may influence the structure and function of

the heart or its electrical properties, leading to an increased risk of arrhythmias. Genome-

wide association studies have also identified loci (positions on a chromosome where a gene

or Deoxyribonucleic Acid (DNA) sequence is located) associated with an increased risk of

SCD, including variants near genes encoding ion channels and structural proteins of the

heart [Bezzina et al., 2010]. Finally, epigenetic modifications, such as DNAmethylation and
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histone modification, can influence gene expression and contribute to the pathogenesis of

SCD.
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A summary of age distribution when SCD occurs, and its association with gender, dom-

inant arrhythmia subtypes, triggers and genetic factors are presented in Figure 1.8.

Figure 1.8: Risk factors for SCD

Source: Zeppenfeld et al. [2022]
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Reduced left ventricular ejection fraction

Reduced left ventricular ejection fraction (LVEF) is one of the most established risk factor

for SCD. The LVEF is a quantitative measure of the heart’s ability to pump blood out of

the left ventricle with each contraction (see Figure 1.9). A reduced LVEF indicates impaired

cardiac function, which can be a sign of heart disease or other cardiac conditions. Several

studies have investigated the role of depressed LVEF in predicting SCD, and this association

is particularly strong in patients with heart failure, where a reduced LVEF is a key feature

of the disease.

Moss et al. [2002] evaluated the use of LVEF to predict SCD in patients with coronary

artery disease. The study found that patients with an LVEF less than 30% had a significantly

higher risk of SCD compared to those with an LVEF of 30% or greater. Similarly, Pocock

et al. [2006] evaluated the use of LVEF in patients with heart failure. They found that pa-

tients with an LVEF less than 35% had a significantly higher risk of SCD compared to those

with an LVEF of 35% or greater.
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Figure 1.9: The role of ejection fraction

Source: The American Heart Association

Current medical guidelines recommend therefore the use of LVEF as a key parame-

ter in the decision-making process as a primary criterion for implantable cardio-verter-

defibrillator (ICD) therapy in patients with chronic CAD and DCM. These devices are im-

planted subcutaneously and are designed to detect and terminate potentially fatal arrhyth-

mias through the delivery of an electrical shock (see Figure 1.10).
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Figure 1.10: Implantable cardioverter-defibrillator

Source: Mayo foundation for medical foundation and research

The American College of Cardiology/American Heart Association guidelines recom-

mend ICD therapy for primary prevention in patients with LVEF ≤ 35% [Kusumoto et al.,

2019]. However, the use of LVEF as a unique criterion for ICD therapy has several limi-

tations. Indeed, LVEF is a static measurement that may not reflect changes in myocardial

function over time, and may not accurately predict the risk of SCD in all patients with re-

duced LVEF. In addition, recent studies have suggested that the standard threshold of 35% in

determining eligibility for ICD therapy may be not optimal. Narayanan et al. [2013] found

that only 20% had a prior indication for implantation of a defibrillator, meaning that the ma-

jority of patients would not have been identified as candidates based on current guidelines.

LVEF should be therefore used in conjunction with other relevant clinical parameters.

Risk stratification

Myerburg et al. [1992] proposed a conceptual model for risk stratification to highlight the

complex relation between the numerous SCD risk factors. TheMyerburg pyramid is divided

into four levels, each representing an increasing level of risk for SCD:

1. The first level of the pyramid includes population-based risk factors that are preva-

lent in the general population and contribute to an increased risk of SCD. These risk

factors include age, gender, family history of SCD, race/ethnicity, and socioeconomic

status. They cannot be modified but they help identify individuals who may be at

increased risk for SCD.

2. The second level includes clinical risk factors that are identifiable through medical

history, physical examination, and diagnostic tests. These risk factors include under-

lying cardiac diseases such as CAD, heart failure, valvular heart disease, and genetic

cardiac disorders. Other factors that increase the risk of SCD include hypertension,

diabetes, smoking, and high cholesterol. Identification of these risk factors allows for

targeted interventions to prevent SCD.

3. The third level includes inducible arrhythmia risk factors that are identified through

electrophysiological testing. These tests include exercise stress testing, electrocardio-

gram monitoring, and electrophysiology studies. The presence of inducible arrhyth-

mias during these tests increases the risk of SCD and may indicate the need for ICD

placement or other interventions.
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4. The fourth and final level of the pyramid includes symptoms and events that may

indicate an increased risk of SCD. These include syncope (fainting), palpitations, and

cardiac arrest. Identification of these symptoms and events is critical as they may

indicate the need for immediate intervention to prevent SCD.

The Myerburg pyramid emphasizes the need for a more comprehensive approach to SCD

risk assessment and prevention, that takes into account multiple risk factors at various

stages of the pyramid.

Management and Prevention of Sudden Cardiac Death

Several tools have been developed to improve the prognosis of SCD, with particular focus

on enhancing prehospital management through the chain of survival (see Figure 1.11). This

concept emphasizes the importance of rapid intervention and coordinated care to improve

the chances of survival in SCD patients. It comprises four key links:

• Early recognition and activation of the emergency medical services

• Early CPR

• Prompt defibrillation

• Effective post-resuscitation care

Each link is essential and can significantly impact the survival and neurological outcomes

of patients.

Figure 1.11: The chain of survival

In addition to prehospital interventions, effective hospital management is also critical

for improving the survival and neurological outcomes of SCD. Early coronary care, includ-

ing percutaneous coronary intervention and revascularization, can significantly improve

survival rates in patients with acute coronary syndromes.

Predicting sudden cardiac death in the population

Despite these interventions, survival rates after SCD remain low, with reported rates rang-

ing from 5% to 20% depending on the patient population. Preventive strategies are therefore

needed to identify individuals who are themost at risk of SCD. This population could benefit

from antiarrhythmic treatments and ICDs. However, ICDs also carry risks and complica-

tions, and their use should be guided by careful patient selection and appropriate follow-up.

In this context, prediction of SCD is still a major research challenge, with disappointing re-

sults so far. Preventive strategies have mainly focused on using ICD in the highest risk sub-

groups of the population, such as those with an advanced cardiomyopathy and depressed
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LVEF [Moss et al., 2002]. While preventing the onset of SCD in these populations is clini-

cally relevant, the impact on the number of preventable cardiac arrests is small since SCD in

high-risk populations represent a small proportion of the total SCD. Most cases, indeed, oc-

cur in the general population, with no clinically recognized heart disease prior to the event.

Myerburg [2001] described the inverse relationship between the incidence of SCD and

the absolute numbers of events in the various epidemiological and clinical categories (see

Figure 1.12). The nominal incidence of SCD increases from the general population aged

older than 35 years to specific high-risk post-myocardial infarction patients, while the as-

sociated risk accounts for a decreasing absolute number of events annually. Improving

prediction in the general population may therefore have a real impact on the total burden

of SCD.

Figure 1.12: Risk stratification of SCD

Source: Myerburg [2001]

Litterature Review of Prediction Models for Sudden Cardiac Death

Several prediction models for SCD in the general population have been proposed. Most

of them use community-based cohorts and consist in estimating the 10 year-risk of SCD

according to risk factors measured at study entry. We conducted a litterature review on

Pubmed on prediction models of SCD. We searched for a combination of keywords related

to SCD and prediction models between 01/01/1976 and 01/03/2023. 1,948 related citations

were identified. After screening titles, abstracts, and results of articles, 20 studies were

considered eligible as prediction models. Of those, 16 models predict SCD only few minutes

or hours before the onset, and were excluded, resulting in 5 eligible studies [Deo et al., 2016,

Waks et al., 2016, Aro et al., 2017, Bogle et al., 2018, Holkeri et al., 2020].

1. Deo et al. [2016] used data from the Atherosclerosis Risk in Communities (ARIC)

study (13,677 participants including 171 SCD cases), a prospective cohort study that

followed a large sample of individuals from four communities in the United States

since 1985. The authors identified a set of risk factors for SCD, including age, sex,

race, smoking status, body mass index, diabetes, hypertension, prior myocardial in-

farction, heart rate, and QT interval. These risk factors were used to develop a 10-year

prediction model for SCD based on a competing risk regression analysis. The final

33



Chapter 1. General Introduction, Motivations and Contributions

prediction model included five risk factors: age, sex, race, smoking status, and QT

interval, with a C-statistic (which measures the discrimination performance) of 0.82

in the ARIC study cohort and 0.74 in an external validation cohort from the Cardio-

vascular Health Study (CHS) (4,207 participants including 174 SCD cases).

2. Waks et al. [2016] aimed at developing and validating a 10-year risk score, called the

Global Electric Heterogeneity Risk Score (GEHRS), for predicting SCD in the general

population. The study used data from the ARIC study (14,609 participants including

291 SCD cases) and the CHS (5,568 participants including 195 SCD cases). The GEHRS

is based on a non-invasive measurement of ventricular repolarization heterogeneity,

which is a marker of electrical instability in the heart that has been shown to be asso-

ciated with SCD risk. It includes five independent predictors of SCD: QRS duration,

spatial QRS-T angle, heart rate, sex, and serum potassium levels. The GEHRS score

was able to accurately identify individuals at high risk of SCD in both the ARIC and

CHS cohorts (C-statistic = 0.79). It outperformed traditional risk factors, such as age,

sex, smoking status, and history of cardiovascular disease, and remained a strong pre-

dictor even after adjusting for these variables.

3. Aro et al. [2017] aimed at developing and validating a 10-year risk score that could

predict SCD beyond LVEF. The study analyzed data from the Oregon Sudden Unex-

pected Death Study (1,258 participants including 522 SCD cases) and the ARIC study

(3,567 participants including 260 SCD cases). The electrical risk score included four

electrocardiographic markers: QRS duration, QTc interval, Tpeak-Tend interval, and

spatial QRS-T angle. The electrical risk score was found to be a strong predictor of

SCD, even after adjusting for other clinical and demographic factors, with a C-statistic

of 0.75 for the Oregon study and 0.77 for the ARIC study.

4. Bogle et al. [2018] used data from the ARIC study (11,335 participants including 145

SCD cases) and the Framingham Heart Study (FHS) (5,626 participants including 64

SCD cases) to identify potential predictors of SCD. They developed a 10-year risk

score which is based on age, sex, cholesterol, lipid-lowering medication use, hyper-

tension, systolic and diastolic blood pressures, smoking status, diabetes and body

mass index. The C-statistic of the final model was 0.82 in white ARIC participants,

0.75 in black ARIC participants, and 0.82 in white FHS participants.

5. Holkeri et al. [2020] aimed to develop and validate an electrocardiographic 10-year

risk score for predicting SCD from two Finnish population-based cohorts: The Mini-

Finland Health Survey (6,830 participants including 123 SCD cases) and the Coro-

nary Heart Disease (CHD) Study (10,617 participants including 115 SCD cases). The

study identified ECG parameters that were associated with an increased risk of SCD,

including prolonged QT interval, fragmented QRS complex, and abnormal T-wave

morphology. The study then developed an ECG risk score that incorporated these

parameters and assessed its predictive ability for SCD. They found that the ECG risk

score was able to accurately predict SCD in both cohorts. In the Mini-Finland Health

Survey cohort, the risk score had a C-statistic of 0.86, while in the CHD study, the

risk score had a C-statistic of 0.89.

These predictionmodels demonstrated excellent discrimination capacities, with C-statistic

ranging between 0.74 and 0.89. However, several limitations hinder their broad applicability
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in the general population. Although these studies have been derived from large community-

based cohorts, populations of controls are often not randomly selected in the general pop-

ulation, and the number of SCD cases is often limited, typically ranging between 100 to 500

subjects, which may limit their statistical power and generalizability. Additionally, these

models have relied on clinical variables that can be challenging to collect, such as elec-

trocardiogram signals, or not routinely measured, such as potassium, serum albumin, or

glomerular filtration rate. Furthermore, these models typically consider risk factors mea-

sured at a single time point and do not integrate trajectories of risk factors and treatments

over time, which can lead to inaccuracies and misclassification of risk. Finally, these mod-

els lack specificity since they predict equally well SCD and acute coronary syndrome. One

possible explanation is that most risk factors considered in these models are related only

to the development of atherosclerosis and not specific to the susceptibility of arrhythmias.

New preventive strategies are therefore needed in the field to improve prediction of SCD in

the general population.
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The Challenge of Artificial Intelligence in Cardiology

Artificial intelligence (AI) has recently emerged as a powerful tool for transforming health-

care and medicine by enabling more accurate diagnosis, personalized treatment, and dis-

ease prevention [Rajpurkar et al., 2022]. The use of AI in healthcare is rapidly evolving,

with significant potential for improving patient outcomes and reducing healthcare costs.

New statistical approaches based on machine learning and deep learning, including natural

language processing and computer vision, can now process vast amounts of data and gen-

erate insights that were previously difficult or impossible to obtain so far (see Figure 1.13).

The use of AI could be therefore a promising avenue towards developing new preventive

strategies for SCD.

Figure 1.13: AI in health

Overview of the progress, challenges and opportunities for AI in health

Source: Rajpurkar et al. [2022]

AI demonstrated particular promise in medical imaging, with algorithms being trained

to detect and classify abnormalities in specialties that rely heavily on the interpretation of

images, such as radiology, pathology, gastroenterology and ophthalmology. For instance,

these models make accurate survival predictions for a wide range of cancer types compared
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to conventional histopathological subtyping [Rajpurkar et al., 2022].

AI also offers promising opportunities to expand the limit of our knowledge in car-

diovascular diseases. Krittanawong et al. [2020] performed a meta-analysis of 82 stud-

ies, including over 200,000 patients, to assess the performance of machine learning and

deep learning models in predicting cardiovascular diseases. The results revealed that they

demonstrated superior predictive performance compared to traditional models in predicting

cardiovascular diseases, including CAD, heart failure, and atrial fibrillation. Notably, these

approaches have achieved considerable improvements in the analysis of electrocardiogram

signals to predict SCD few minutes before the onset [Houshyarifar and Chehel Amirani,

2016, Ebrahimzadeh et al., 2019, Amezquita-Sanchez et al., 2018]. Multiple studies used AI

to predict cardiac arrest in high-risk populations including patients suffering from heart

failure [Meng et al., 2019], critically-ill patients admitted to the emergency department or

intensive care units [Jang et al., 2020, Kim et al., 2019], or focused on intra hospital cardiac

arrest [Kwon et al., 2018]. However, so far, no studies have examined if machine learning

can enhance risk prediction over clinical risk models for SCD in the general population.

This question remains an important challenge that we aim to address in this thesis.

Among current statistical learning methods, natural language processing (NLP) tech-

niques have advanced significantly in recent years, enabling the exploitation of vast medical

text databases and electronic health records (EHR) beyond standard predictive approaches.

Newmodels based on contextual word embeddings have indeed improved the ability to con-

sider the surrounding context when analyzing complex medical information. They achieve

remarkable success across a wide range of tasks, such as named entity recognition, sen-

tence classification, or question answering (see Figure 1.14). Notable examples are the

transformers-based models neural networks, which allow to handle long-range dependen-

cies between words, and have become the state-of-the-art in many NLP benchmarks.
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Figure 1.14: Various tasks covered by NLP in medicine

Source: Li et al. [2022]

Word embeddings methods can be used to improve current clinical prediction models.

For instance, Choi et al. [2017] applied NLP algorithms to develop an early prediction model

for heart failure. The authors trained a neural network to represent patients by mapping

hospital diagnoses and outpatient drugs collected in their medical history into a continu-

ous vector space. This medical embedding allowed them to capture complex relationships

between diagnosis codes, that may have been difficult to capture using traditional methods.

By processing the embeddings over time, the model was able to identify relevant patterns

and trends to predict the onset of heart failure. In this thesis, we explore such approaches,

to assess the extent to which it could provide a better understanding of SCD.

These methods also highlight the potential value of electronic health records, and the

current paradigm shift towards incorporating new data sources into standard epidemio-

logical approaches. EHR routinely collect data from millions of patients across diverse

healthcare institutions, including demographic information, diagnoses, laboratory test re-

sults, medication, prescriptions, clinical notes, and medical images. EHR have changed the

data analyticmodeling paradigm formany biomedical applications, comparedwith standard

data sources such as cohort studies or randomised controlled trials. Indeed, they reduce ad-

ministrative efforts and costs to collect data. They are also more representative of the total

target population and less subject to inclusion bias than randomised controlled trials, be-

cause they are obtained from all individuals who interact with health systems. Over the

past few years, an increasing body of literature confirmed the success of epidemiological

models derived from large EHR databases [Xiao et al., 2018]. Notable examples of such data

sources include:

• The Medical Information Mart for Intensive Care III (MIMIC-III): a publicly available

database of de-identified EHR data from over 40,000 patients who were admitted to
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critical care units at Beth Israel Deaconess Medical Center in Boston (United States).

• The UK Biobank: a large-scale prospective cohort study that includes genetic and

EHR data from over 500,000 participants in the United Kingdom.

• The SNDS database (Système National des Données de Santé): the database of the

French Universal Health Insurance System, which manages all reimbursements of

healthcare for all people affiliated to a health insurance scheme in France, resulting

in one of the largest EHR databases in the world. This database is used in this thesis,

and is described in detail in Section 1.2.
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1.2 Description of the Data

This thesis is based on a large retrospective case-control investigation, using two main data
sources: a unique population-based registry on SCD, and a large database of electronic health
records (see Figure 1.15). This section describes in detail each data source.

Figure 1.15: Data sources

The Paris Sudden Death Expertise Center

The Paris Sudden Death Expertise Center (SDEC) registry is a multicenter population-based

registry system which collects every case of unexpected OHCA occurring among adults

(aged 18 years and older) in Paris (France) and its inner suburbs (Hauts-de-Seine, Seine-

Saint-Denis, Val-de Marne) since 16 may 2011, covering a population of 6.7 million inhab-

itants (10% of the French population) [Bougouin et al., 2014]. It records prospectively and

continuously information on the occurrence (Utstein criteria), management (pre- and in-

hospital) and patient outcomes (regarding survival and neurological outcomes) of all cases.

Exclusion criteria are a prior terminal condition, no attempt at advanced cardiac life support

by the emergency medical service personnel, or an obvious non cardiac cause according to

the Utstein templates. The SDEC registry therefore includes only cases who experienced

SCD.
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SCD cases included in the SDEC registry aremanaged by the emergencymedical service,

which is composed of a two-tiered physician-manned system. The first tier is known as the

basic life support tier and is staffed by the Brigade des Sapeurs Pompiers de Paris (BSPP).

They provide essential first-aid treatment, including stabilizing patients and transporting

them to the appropriate medical facility. The second tier is the advanced cardiac life support

(ACLS) tier, which is staffed by physicians who are specially trained in advanced medical

techniques. They are equipped with the knowledge and technology necessary to provide

rapid and effective treatment in critical situations, such as cardiac arrest, stroke, and severe

trauma. The SDEC registry is derived with the following procedure:

1. First, a nominative case report form is sent daily for every cardiac arrest supported

by BSPP.

2. Second, an electronic query algorithm is performed in the ACLS computer system to

identify every case of SCD.

3. Third, retrospective controls based on diagnostic codes are conducted in selected in-

tensive care units.

This method therefore involves every link of the chain of survival, to ensure complete-

ness of the registry. (Bougouin et al. [2014]) performed a retrospective control among a

sample of 3 intensive care units, and combination of both sources (BSPP and ACLS) de-

tected 99% of cases of cardiac arrests admitted alive in this sample. In addition, each case is

reviewed separately by two investigators of the SDEC, to ensure accuracy of classification

and to avoid the over-estimation often experienced in retrospective collection.

The SDEC registry has been described in multiple studies [Bougouin et al., 2014, Mau-

pain et al., 2016, Jabre et al., 2016, Bougouin et al., 2018, 2020]. For instance, Marijon et al.

[2020] used it during the COVID-19 pandemic as a real-time multisource surveillance sys-

tem set up to assess the incidence and outcomes of OHCA. The study found that the max-

imum weekly OHCA incidence during the pandemic period increased from 13.4 to 26.6

per million inhabitants, compared to the same weeks in the non-pandemic period, with a

survival rate to hospital admission reduced from 22.8% to 12.8%. The results demonstrated

therefore a major rise in OHCA-related deaths during the pandemic period (see Figure 1.16).
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Figure 1.16: The SDEC registry

Weekly incidences of OHCA during the first 17 weeks of years 2012 to 2020.

Source: Marijon et al. [2020]

The French National Healthcare Insurance Database

The French healthcare system was established in 1945 and is defined by a mix of public

and private healthcare providers. It ensures a comprehensive healthcare coverage to all in-

dividuals through a public health insurance scheme, called Social Security. The system is

funded through payroll taxes, contributions from employers and employees, and govern-

ment subsidies. To ensure efficient reimbursement processes, a dedicated national database

was established and collects individual data on all healthcare expenses for all people af-

filiated to a health insurance scheme, covering 98% of the French population (67 million

inhabitants). It includes:

• Outpatient visits, procedure, and reimbursed drugs relative to outpatient medical care

claims.

• Information from hospital discharge summaries.

• Chronic conditions.

• Paramedical activities such as nursing or physiotherapy, lab tests, and devices.

This database enables the system to monitor and manage healthcare costs effectively.

Data acquisition is permanent, from birth to death, irrespective of wealth, age, or work sta-

tus, resulting in one of the largest electronic health records databases in the world. The data

are anonymized but individually linked, which allows individual longitudinal follow-up. As

individuals are identified in the database by a unique identifier, double counting of medical

information documented from multiple sources is avoided.
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The SNDS database links 3 existing databases:

• SNIIRAM (Système National d’Informations Inter-Régimes de l’Assurance Maladie) is

the nationwide claims database of the French National Healthcare System. It contains

exhaustive, anonymous, and individual data on outpatient healthcare reimbursements.

Main data includes data on ambulatory care with reimbursed drugs from community

pharmacies and reimbursedmedical interventions. It also includes long-term diseases

and chronic conditions as well as information about occupational accidents and dis-

eases.

• PMSI (Programme de Médicalisation des Systèmes d’Information) is the national hos-

pital discharge database, concerning both French public- and private-sector hospitals.

Main data includes admission and discharge dates, duration of stay, diagnoses (main,

related, and associated), as well as procedures (medical acts and biology) and espe-

cially costly drugs administered in hospital. Some specific databases exist and depend

on the type of hospital admission : medical surgical, and obstetrical wards (PMSI-

MCO), home hospitalizations (PMSI-HAD), psychiatric hospitalizations (PMSI-PSY)

and rehabilitation centers (PMSI-SSR). Main hospital diagnosis are defined as the con-

dition which occasioned the admission to the hospital, and secondary diagnoses (re-

lated and associated) are conditions that coexist at the time of admission, that develop

subsequently, or that affect the treatment received and/or length of stay.

• CepiDC (Centre d’épidémiologie sur les causes médicales de décès) is the French

national database that collects and analyzes information on the causes of death in

France, based on death certificates and hospital records. The registry is managed by

the French National Institute of Health and Medical Research and is used for public

health research, policy-making, and epidemiological surveillance. The primary pur-

pose of the CepiDC is to provide a comprehensive and accurate record of all deaths

in France and their causes.

Hospital diagnoses are coded according to the International Classification of Diseases,

10th revision (ICD-10), which is a classification tool developed by the World Health Or-

ganization for epidemiology, health management and clinical purposes. Drugs are coded

according to the Anatomical Therapeutic Chemical (ATC) system, that classifies drugs ac-

cording to the organ or system on which they act and their therapeutic, pharmacological,

and chemical properties. Results relating to biological tests and other medical procedures

are not recorded, andmedical indications are not specified for the reimbursed medical cares.

Demographic (age, sex) and socioeconomic (affiliate insurance scheme, universal healthcare

coverage and state medical assistance) information are available in the SNDS database. No-

tably, the universal healthcare coverage is obtained for all individuals whose income is be-

low a specific threshold and was used as a proxy variable for social deprivation in this work.

The SNDS database is managed by the Health Data Hub, a French initiative launched

in 2019 to centralize and make available healthcare data for research purposes. The French

National Health Insurance Fund (CNAM) is responsible for ensuring that data is collected,

processed, and used in compliance with data privacy regulations. The SNDS has been in-

creasingly used for research in recent years. It was described in many studies [Moulis et al.,

2015, Bezin et al., 2017, Tuppin et al., 2017, Revet et al., 2022] and has been used to conduct

multiple studies in cardiovascular epidemiology [Tuppin et al., 2016, Weill et al., 2016, Giral

et al., 2019, Feldman et al., 2021, Piot et al., 2022, Lecoeur et al., 2023].
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Importantly, the CNAM developed a standardized tool, called the Healthcare Expendi-

tures and Conditions Mapping (HECM) algorithm, to describe the national annual preva-

lence of 58 health conditions, grouped into 15 categories and including treated diseases,

chronic treatments (without a specific diagnosis identified), and episodes of care (such as

maternity) (see Figure 1.17). In 2019, 66.3 million people were identified by the HECM al-

gorithm, including 52% women and 21% people aged 65 years or older, with a median age

of 42 years [Rachas et al., 2022]. We used this algorithm to identify several comorbidities in

our work.

Figure 1.17: HECM algorithm

Expenditures by health condition category in 2019 and their components: number of

patients and mean expenditure per patient. The size of the bubbles is proportional to the

expenditure.

Source: Rachas et al. [2022]
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Definition of the populations

In this thesis, we performed a case-control analysis using data extracted from the SNDS

database between January 1, 2006 and December 31, 2020. The main group studied was

23,958 SCD (60.4% men, mean age 70.6±17years) cases collected from the SDEC registry

between May 16, 2011 and December 31, 2020. Among them, 4,336 (18.1%) SCD occurred

in a public area. A bystander was present in 15,667 (66.6%) of cases and performed CPR

in 9,376 (59.5%) of cases. 3,737 (18.8%) had an initial shockable rhythm, 5,167 (21.6%) were

transported alive to the hospital and 1,261 (5.3%) patients survived at hospital discharge.

SCD cases were matched by age, sex and residence area with control groups through an

individual case-control matching:

• A group of 71,919 controls were randomly sampled from the French general popu-

lation, using the French National Health Insurance database. The endpoint of this

group was the day on which SCD occurred among their corresponding cases.

• A group of 71,919 controls experienced myocardial infarction and was identified us-

ing the HECM algorithm. The endpoint of this group was defined as the day of the

occurrence of the MI event.

• A group of 71,919 has been diagnosed with heart failure and was identified using the

HECM algorithm. The primary endpoint for this group was defined as the first day

of hospitalization due to heart failure.

• A group of 71,919 has been diagnosed with chronic coronary disease and was identi-

fied using the HECM algorithm. The primary endpoint for this group was defined as

the first day of hospitalization due to chronic coronary disease.

For each SCD case, 3 corresponding subjects were included in each control group. These

groups were selected to identify specific risk factors for SCD, compared to other main car-

diovascular diseases, and the general population as well. The work described in this the-

sis focuses on the two first control groups, while the three last ones were also involved in

other related works. Overall, we collected EHR data for 311,634 participants, that represents

282,255,786 medical data points over a period of 15 years (see Figure 1.18).

Figure 1.18: Data extracted from the SNDS database
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1.3 Objective of the Thesis

In this thesis, we aim to provide a better understanding of SCD using statistical modeling.

The main goal is to improve current risk stratification guidelines and decrease the global

burden of SCD in the population. Three related problems are addressed:

• Problem 1: identifying clinical subgroups of SCD, which may provide new insights

about the heterogeneity of profiles and risk factors in the population. To achieve this

objective, we use unsupervised learningmethods. Thesemethods refer to the analysis

of data without the use of a target variable. The underlying goal is to identify hidden

patterns in the unlabelled data. One of the most commonly employed unsupervised

techniques is called clustering, which involves grouping observations with similar

features. Mathematically, we can define occurrence of SCD as a random variable X ,

and consider a datasetD = {x1, . . . , xn} of n observations (i.e patients). Each patient

xi is represented by a vector xi = (xi1, . . . , xip) ∈ Rp
which describes its medical

history prior to the event. Given the dataset D, we want to to find a partition of the

observations into K clusters C = {C1, . . . , CK} (the optimal number of groups is

not known a priori), which should be both mathematically and clinically relevant.

• Problem 2: predicting SCD in the general population, to identify high-risk subjects

who could benefit from specific interventions. To achieve this objective, we use su-

pervised classification methods, which aim to explain the value of a categorical vari-

able Y , based on a set of predictors X . We suppose that we have collected a dataset

D = {(x1, y1), . . . , (xn, yn)} of n patients, where xi = (x1i , . . . , x
p
i ) ∈ Rp

is the

medical history of patients, and yi ∈ {0, 1} is a binary outcome that represents SCD

occurrence. The goal of the classification task is to find the function F : Rp → {0, 1}
which minimizes the expected loss L(F ) = E(L(y, F (x))) where L(., .) is a given

loss function. Generally, the data are separated in two sets: the training set is used to

build and train the model, while the test set is used to measure its predictive perfor-

mance on new and unseen observations.

• Problem 3: selecting the most relevant information in large medical history of pa-

tients, in order to identify multi-level effects of drugs and diseases associated with

SCD. To achieve this objective, we use variable selection methods, which aim to find

the optimal subset S =⊆ {1, . . . , p} of predictors for our binary regression model,

defined in Problem 2. In this work, we suppose that the predictorsX belong to some

groups (according to medical classification systems) and could affect SCD through

individual and/or group effects.

The work proposed for Problem 1 and Problem 2 are based on models that have been al-

ready developed, and are commonly used in various statistical learning tasks. The objective

is therefore to assess to which extent these models can provide additional insights on SCD,

as compared to the current medical litterature. For Problem 3, we propose a new model of

variable selection, using a Bayesian approach and Monte Carlo methods.

1.4 Summary of Contributions

Clustering Model of Sudden Cardiac Death

Context and objective

Current classifications of SCD are primarily based on cardiovascular phenotypes, and the

underlying mechanism is often explained by arrhythmias which occur in patients with car-

diomyopathies, mostly from ischemic coronary origin (see section 1.1). However, these
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classifications fail to explain numerous cases, and a significant proportion of SCD cases re-

main unidentified until the event occurs. In many cases, no clear cause is identified despite

exhaustive medical and para-medical examinations, including autopsies and genetic analy-

ses. In order to improve the current risk stratification guidelines, we should assess to which

extent non-cardiovascular conditions and variables could also play a role in the occurrence

of SCD. To this end, we developed a data-driven approach, based on unsupervised statisti-

cal models, that can identify new relevant clusters of SCD. We used a wide range of both

cardiovascular and non-cardiovascular variables extracted from the SNDS database up to

15 years before the event.

Methodology

The main challenge of this work was to create a meaningful representation of SCD cases

based on massive amounts of electronic health records, comprising both structured and

unstructured medical information. To this end, we used word embedding methods, which

have become a major reference to tackle the issue of medical concepts representation. Each

medical code of the patients’ medical history was treated as a word, such that a patient can

be represented by a sentence whose number of words is equal to the number of medical

events that occurred before SCD. We then built a model that transforms the medical codes

to numerical vectors of fixed dimensionality, whose relative geometrical positions reflect

the medical proximities. Words that co-occurred more frequently should be close together

in this embedding space. For this task, we used the Skip-gram architecture of the Word2Vec

algorithm, a neural network-based approach, to exploit the co-occurrence information of

the medical trajectories.

Word2Vec algorithm

Word2Vec is a word embedding model proposed by Mikolov et al. [2013] that is trained

to reconstruct linguistic contexts of words. It takes a corpus of text as input and produces

a vector space, called embedding space, as output. Each unique word is assigned a corre-

sponding vector in the embedding space, and word vectors are positioned such that words

sharing common contexts in the corpus are located close to one another in the embedding

space. There are 2 different types of Word2Vec (see Figure 1.19):

• The continuous bag of words model is trained to predict a word given its surrounding

words, called context.

• The Skip-gram model does the opposite and tries to predict the context of a single

word.
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Figure 1.19: architectures of Word2Vec

The main objective of these models is to find word representations that are useful for

semantic analysis. In our work, we used the Skip-gram version, which works well with a

small amount of data, and represents well even rare words or sentences.

We consider a sequence of words (w1, . . . , wn) of size n, and composed of r unique

elements. These elements are defined in a dictionary D. The objective of Skip-gram is to

maximize the conditional probability:

r∏
i=1

P (wi−m, . . . , wi−1, wi+1, . . . , wi+m|wi) =
r∏

i=1

∏
−m≤j≤m

j ̸=0

P (wi+j |wi) (1.1)

where (wi−m, . . . , wi−1, wi+1, . . . , wi+m) are the m nearest neighbors of the word wi (i.e

its context). The model supposes that maximizing Equation 1.1 will result in good word

embedding in the sense that similar words will have similar vectors.

The Skip-gram model is a neural network built with a single hidden layer, and trained

with all pairs of words / contexts. The input of the model is a word wi of the dictionaryD,

and the outputs are itsm corresponding neighbors (wi−m, . . . , wi−1, wi+1,
. . . , wi+m). The model is defined as follows:

1. In the input layer, the word wi is converted into a vector xi ∈ Rr
using one hot

encoding, such that ∀ j ∈ J1, rK:

xij =

{
1 if wi = wj

0 otherwise

2. The one-hot vector xi is passed to the hidden layer, which performs the dot product

between the embedding matrix Wxh and the vector xi. The output is H = xTi Wxh

where Wxh ∈ Mr,d and d is the number of nodes in the hidden layer. The ith row

represents the weights of the ith word of the dictionary D.
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3. H is directly passed to the output layer, which performs the dot product between H
and the context matrixWhy ∈Md,r , whose the ith column represents the embedding

weights of the ith word in the dictionaryD. The corresponding output isO = HWhy .

4. The outputs of the model are the one hot vectors (yi−m, . . . , yi−1, yi+1, . . . ,
yi+m) ∈ Rr

that represent the context of the wordwi, such that ∀ −m ≤ j ≤ m, j ̸=
0, z ∈ J1, rK

yijz =

{
1 if the word wz is a neighbor of the word wi

0 otherwise

The probability thatwz is a neighbor ofwi is then computed with the softmax function:

P (wi+j = wz|wi) =
eWhyz

r∑
z′=1

eW
′
hyz

whereWhyz represents the zth column of the context matrixWhy . The weights of themodel

are updated such that the loss functionL of the neural network is minimized using gradient

descent and backpropagation methods:

L =

r∑
i=1

∑
−m≤j≤m

j ̸=0

logP (wi+j |wi)

Once the embedding matrixWxh has been obtained, we can use it to perform semantic

analysis and measure the similarity between 2 words (for instance by calculating the cosine

similarity between there corresponding word vectors). If 2 words have very similar contexts

(i.e similar surrounding words), the model should generate similar vectors for these words.

Such representation can capture many linguistic regularities. For instance, the representa-

tion of theword "Rome" can be obtainedwith the vector operation "Paris" - "France" + "Italy".

In our work, the medical embedding space obtained from the Word2Vec algorithm cor-

responds to the hidden representation learned by the model at the end of the training. It

represents each medical code by a vector of length 100 (the size of the vector is chosen

when we build the model), which was used to represent patients, by computing the mean

of vectors corresponding to their medical events occurred before SCD. These vectors there-

fore summarize their temporal information, such that 2 patients who have similar medical

trajectories are expected to be close to each other in the embedding space. We finally used

this new representation to perform a clustering analysis, based on the K-Means algorithm,

in order to find subgroups of SCD with homogeneous clinical characteristics.

K-Means algorithm

The K-Means clustering is an unsupervised algorithm that aims to partition a set of

data points X = (x1, x2, . . . , xn) into K clusters S = {S1, S2, . . . , SK}, with K ≤ n.
The objective is to generate clusters of patients with a high degree of similarity within each

cluster, and a low degree similarity between clusters. It is a very popular method because of

its ease of implementation, computational efficiency and low memory consumption. It was

proposed for the first time in 1956 by Steinhaus [1956] and developed by Selim and Ismail
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[1984]. Formally, the objective is to find S that minimizes the intra-class variance:

S∗ = argmin
S

K∑
k=1

∑
i∈Sk

||xi − µk||2

where µk is the mean of data points in Sk, also called centroid, and defined by:

µk =
1

|Sk|
∑
xi∈Sk

xi

Finding an exact solution to the K-Means problem is difficult. Several approximate so-

lutions have been proposed to address this issue. Lloyd’s algorithm is the most standard

approach. Given an initial set of K centroids (µ1, . . . , µK), the algorithm proceeds by al-

ternating between 2 steps:

1. Assignment step: assign each datapoint to the cluster with the nearest mean, i.e with

the least squared Euclidean distance

∀ k ∈ 1, . . . ,K Sk = {xi : ||xi − µk||2 ≤ ||xi − µk′ ||
2 ∀ 1 ≤ k

′ ≤ k}

Each data point xi is assigned exactly 1 cluster.

2. Update step: recacultate the means of the cluster Sk obtained with the assignment

step:

∀ k ∈ 1, . . . ,K µk =
1

|Sk|
∑
xi∈Sk

xi

Steps 1 and 2 are repeated until the data points assignments (step 1) no longer change. Given

enough time, K-Means will always converge. However, this procedure does not guarantee

convergence to the global optimum. The result highly depends on the initialization of the

clusters. Two main methods have been proposed to initialize the clusters:

• The Forgy method randomly choosesK data points and uses these as the initial cen-

troids.

• The Random Partition method randomly assigns a cluster to each observation and

the proceeds to the update step.

In our work, we used the K-Means++ procedure [Arthur and Vassilvitskii, 2007], which

is another popular and faster procedure to initialize the cluster centers:

1. We choose one center uniformly at random among the datapoints.

2. For each datapoint xi not chosen yet, we compute the Euclidean distance di between
xi and the nearest center that has already been chosen.

3. We choose one new datapoint xj as new center, with probability proportional to dj .

Steps 2 and 3 are then repeated untilK centers have been chosen.

The K-Means algorithm is summarized in Algorithm 1:
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Algorithm 1: K-Means algorithm

Input : Observations (x1, . . . , xn), number of clustersK
1 Choose µ1, . . . , µK centers.

2 t = 0
3 while Stopping criteria has not been met do
4 for i← 1 to n do
5 for k← 1 to K do
6 di,k = ||xi − µk||2

7 c
(t)
i → argmin

k
di,k

8 for k← 1 to K do

9 N
(t)
k =

n∑
i=1

1
[c

(t)
i =k]

10 µ
(t+1)
k = 1

N
(t)
k

n∑
i=1

xi1[c(t)i =k]

11 t = t+ 1

The K-Means algorithm is a simple and efficient clustering method that has been widely

used in many fields of machine learning, especially in medical applications. However it has

some limitations and drawbacks. One of the main limitations is that it assumes that the

clusters are spherical, equally sized, and have similar densities. This assumption may not

hold for all datasets, and could therefore lead to suboptimal clustering results. In addition,

the algorithm requires the user to specify the number of clusters, which is often challeng-

ing, especially for high-dimensional datasets.

To overcome the limitations of K-Means, various clustering algorithms have been pro-

posed in the literature. One popular alternative to is hierarchical clustering, which does not

require the user to specify the number of clusters and can handle non-spherical clusters.

Hierarchical clustering builds a tree-like structure, called a dendrogram, that represents the

hierarchy of clusters in the dataset. Spectral clustering have been introduced more recently,

and is based on the eigenvectors of the data’s similarity matrix. One of its main advantages

is its ability to handle non-linearly separable data, which is a common challenge in many

clustering problems. Another popular clustering algorithm is DBSCAN (Density-Based Spa-

tial Clustering of Applications with Noise) which groups datapoints based on their density

and efficiently identifies outliers and noise.

Main results

This work, which combines aword embeddingmethodwith a clustering analysis, provides a

new relevant medical representation of SCD cases, that were difficult or impossible to obtain

so far with standard statistical approaches. We show that SCD patients can be classified into

8 relevant clinical clusters:

• Cardiovascular diseases (30% of cases)

• Mainly aged women with multiple comorbidites (27% of cases)

• No apparent risk factor (22% of cases)

• Psychiatric and neurologic diseases (7% of cases)

• Respiratory diseases (6% of cases)
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• Oncologic diseases (4% of cases)

• Kidney diseases (2% of cases)

• Social deprivation (2% of cases)

The first 2 clusters explain more than 50% of all SCD and are part of the cardiovascular

phenotypes already known. The third cluster represents 22% of all SCD and is composed of

relatively young subjects without known cardiovascular risk factor, that were very difficult

to identify until now. The other 5 clusters are smaller and much less expected. By extend-

ing far beyond cardiovascular pathology, our approach provides a global picture of SCD,

revealing the involvement of other medical fields that might eventually lead to discover

new pathways and help identifying high risk subjects in the general population.

Prediction Model of Sudden Cardiac Death

Context and objective

Despite decades of research, the prognosis of SCD remains poor, with a survival rate below

10%. Recent therapeutic trials have been disappointing, leading to a paradigm shift towards

new preventive strategies. In this context, Efficient treatments for SCD management are

available. One of the most effective options is the use of implantable cardioverter defibril-

lators. However, identifying the best candidates for ICD implantation remains challenging.

Some very-high risk patients (survivors of SCD, high-risk cardiomyopathies) are clearly

identified in current risk stratification guidelines. However, these patients only account for

a small proportion of the overall burden of SCD, whereas most patients who experience SCD

emerge from the general population without previously known heart disease (see Section

1.1).

Current prediction models in the general population remain disappointing. Improv-

ing their performance would require to analyze larger SCD populations, to include more

exhaustive patient characteristics (both cardiovascular and non- cardiovascular) and to pro-

pose individualized prevention strategies. To this end, we developed and validated a populat-

ion-based model of SCD prediction, using all cases collected from the SDEC registry, and

large-scale data analysis of electronic health records extracted from the SNDS database.

Methodology

In this work, we developed a 3-month prediction model of SCD in the general population,

using a supervised learning classification model. The prediction model was trained on SCD

cases and matched controls collected between 2011 and 2015 (derivation cohort), with a

cross-validation approach, and was then validated on SCD cases and matched controls col-

lected between 2016 and 2020 (validation cohort). We assessed to which extent machine

learning approaches could outperform standard statistical methods and compared the Logis-

tic Regression model with 3 ensemble methods (Random Forest, Extreme Gradient Boosting

and CatBoost).

CatBoost algorithm

We suppose that we have collected a dataset D = {(x1, y1), . . . , (xn, yn)} where xi =
(x1i , . . . , x

p
i ) ∈ Rp

is a vector of p predictors and yi ∈ {0, 1} is a binary outcome. In our

case, yi corresponds to the occurrence of SCD, and xi is related to the drugs and hospital

diagnoses that are observed before the event. The goal of the classification task is to find

52



Chapter 1. General Introduction, Motivations and Contributions

the function F : Rp → {0, 1} which minimizes the expected loss L(F ) = E(L(y, F (x)))
where L(., .) is a given loss function.

Gradient boosting models are a family of procedures which build iteratively a sequence

of functions F t : Rp → {0, 1}, ∀ t = 1, . . . , T . Each function F t
is obtained from the

previous approximation F t−1
in an additive manner:

F t = F t−1 + αht (1.2)

where α is a well-chosen step size and ht : Rp → {0, 1} is a base predictor chosen from a

family of functionsH. ht is chosen fromH in order to minimize the expected loss:

ht = argmin
h∈H

L(F t−1 + h) (1.3)

= argmin
h∈H

E(L(y, F t−1 + h))

In practice, the expectation in Equation 1.2 is unknown and is approximated with gradi-

ent descent by taking a gradient step. The gradient step is chosen in such a way that ht(x)
approximates −gt(x, y) defined by:

gt(x, y) =
∂L(y, s)

∂s

∣∣∣
s=F t−1(x)

One common family often chosen for H is binary decision trees. A decision tree is

a model defined by a recursive partition of the predictors space Rp
into several disjoint

regions (tree nodes) according to the values of some splitting attributes. These attributes are

usually binary variables that identify when predictors xji exceeds some threshold t, where

xji is either numerical or binary. Each final region (leaf of the tree) is assigned to a value,

which corresponds to the majority class label of the region in the case of a classification

problem. A decision tree h can therefore be summarized as:

h(xi) =

p∑
j=1

bj1{x∈Rj}

where {(bj ,Rj)}i=1,...,n are the labels attributed to the leaves of the tree and their corre-

sponding disjoint regions respectively.

CatBoost is a popular implementation of gradient boosting proposed by Dorogush et al.

[2018] which uses binary decision trees as base predictor and provides a method called

ordered boosting to prevent overfitting. Standard gradient boosting models provide an un-

biased estimate of the true outcome y = f∗(x)when they use independent datasets at each

gradient step. However, in most cases, the same dataset is used at each step, that affects the

generalization ability of the model. Dorogush et al. [2018] proposed a boosting algorithm

which does not suffer from such a bias. At the start, CatBoost generates s + 1 indepen-

dent random permutations of the training dataset. The permutation (σ1, . . . , σs) are used
for building the new tree at each step, while σ0 serves for choosing the leaf values of the

obtained trees. The final estimatorM is obtained following Algorithm 2.
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Algorithm 2: CatBoost classification model

Input : Data {(xi, yi)}i=1,...,n, number of trees I , step size α, number of

permutations s, number of leaves F
1 for t← 0 to I do
2 if t = 0 then
3 for r← 0 to s do
4 σr ← random permutation of [1, n]
5 for i← 0 to n do
6 Mr,0(xσr(i))← 0 [initialize the s models Mr]

7 else
8 r′ ← random(1, s) [select randomly a permutation to build the tree Tt]

9 for i← 0 to n do
10 G(i)← ∂L(yσr(i),s)

∂s

∣∣∣
s=Mt−1,r(xσr(i))

[compute the gradient of the loss]

11 Tt ← empty tree

12 for each step of top-down procedure do
13 for each candidate split c do
14 for i← to n do
15 Ei = {m ∈ σr′/m ∈ leaf(σr′(i)) and m < σr′(i)}

16 ∆(i)← 1
|Ei|

∑
m∈Ei

∂L(ym,z)
∂z

∣∣∣
z=Tt,c(xm)

17 c∗ = argmin
c

cos (∆, G)

18 Tt ← add split c∗ to Tt [build Tt]

19 for f← 1 to F do
20 Ef ← {m ∈ σ0/m ∈ f }

21 lt,f ← 1
|Ef |

∑
m∈Ef

∂L(ym,z)
∂z

∣∣∣
z=Tt(xm)

[compute the leaves of Tt]

22 for i← 1 to n do

23 Mσ0,t(xσ0(i))←Mσ0,t−1(xσ0(i))− α
F∑

f=1

lt,f1{leaf(xσ0(i)
)=f} [update

modelM0]

24 for r← 1 to s do
25 for i← 0 to n do
26 Ei = {m ∈ σr/m ∈ leaf(σr(i)) and m < σr(i)}

27 Mr,t(xσr(i))←Mr,t−1(xσr(i))− α 1
|Ei|
∑

p∈Ei

∂L(ym,z)
∂z

∣∣∣
z=Tt(xm)

[update models Mr, r ̸= 0]
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Our prediction model is based on outpatient drugs and hospital diagnoses that occurred

up to 5 years before SCD. To investigate whether non-cardiovascular variables could en-

hance predictive performance beyond standard risk factors of SCD, we compared 2 differ-

ent strategies for variable inclusion. The first approach includes only medical codes that

attempt to represent traditional risk factors for cardiovascular diseases, based on an ex-

haustive literature review of SCD prediction models. The second approach, more agnostic,

includes all medical codes that occurred up to 5 years before SCD, without any prior selec-

tion.

Once the prediction model was trained and optimized, we used the Shapley additive

explanations (SHAP) algorithm to explain how the variables relate to the predicted risk at

the individual level. SHAP is a model-agnostic representation of variable importance where

the impact of each variable on a particular prediction is represented using Shapley values,

inspired by cooperative game theory.

Shapley values

Shapley values belong to the class of Additive Feature Attribution methods. Let f be

the original prediction model and g a local method designed to explain a prediction f(xi)
based on the predictors xi of the instance i, ∀i ∈ J1, nK. Local explanation models often

use simplified inputs zi that map to the original inputs xi through a function xi = h(zi),
such that:

∀ w ≈ zi, g(w) ≈ f(h(zi))

The explanation model g is assumed to be a linear function of binary variables:

∀i ∈ J1, nK, g(zi) = ϕ0 +

p∑
j=1

ϕijzij (1.4)

where ϕ0 ∈ R, ϕij ∈ R , p is the number of predictors and zi ∈ {0, 1}p with xi = h(zi).

Classic methods of the Additive Feature Attribution class come from the cooperative

game theory to compute explanations of model prediction. They use a method called Shap-

ley values, defined as follows. We suppose a coalition of players that cooperate and obtain an

overall gain from that cooperation. Since some players may contribute more to the coalition

than others, we want to know the fairest way to divide the gain among the players. Shap-

ley values answer this question by computing the average marginal contribution for each

player over all possibilities of coalitions. In the context of machine learning, the players are

the variables of the model that cooperate to make a prediction, and the gain is the variable

importance. It can be theoretically proved that Shapley values are the only additive feature

attribution method that satisfies the following properties:

1. Efficiency: the sum of the Shapley values of all variables for a given instance equals

the value of the prediction for this instance, so that all the prediction’s value is dis-

tributed among the variables:

f(xi) = g(h(zi))

= ϕ0 +

p∑
j=1

ϕijzij

where ϕij is the Shapley values of the variable j for the instance i.
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2. Symmetry: the contribution of two variables should be the same if they contribute

equally to all possible coalitions. Let F be the set of all variables included in the

model. ∀i ∈ J1, nK,∀j, k ∈ J1, pK2

fS
⋃
{j}(xi) = fS

⋃
{k}(xi) ∀ S ⊆ F \ {j, k} ⇒ ϕij = ϕik

3. Dummy: a variable j that does not change the predicted value of an instance, regard-

less of which coalition of variables it is added to, should have a Shappley values of

0

fS
⋃
{j}(xi) = fS(xi) ∀ S ⊆ F \ {j} ⇒ ϕj = 0

4. Linearity: ∀i ∈ J1, nK,∀j, k ∈ J1, pK2 and α ∈ R, let xij+k = xij + xik and xi(αj) =
αxj . Then: {

ϕi(j+k) = ϕij + ϕik

ϕi(αj) = αϕij

To compute the contribution of the variable j on the model prediction of the instance

i, we train the models fS
⋃
{j} (with the variable j) and fS (without the variable j), and

compute the difference between fS
⋃
{j}(xi) and fS(xi) for any subset S ⊆ F \ {j}. The

Shapley value ϕij is then defined by the weighted average of all possible differences:

ϕi =
∑

S⊆F\{j}

(
|S|
|F | − 1

)
(fS

⋃
{j}(xi)− fS(xi)) (1.5)

However, Equation 1.5 has an exponential time complexity which makes the method

infeasible for practical use. Lundberg and Lee [2017] proposed a solution called SHapley

Additive Explanation, using the following assumption:

fS(xi) = E(f(xi|xiS))

wherexiS corresponds to the input values of the subsetS for the instance i. This assumption

means that the prediction fS(xi) is the expected value of the prediction f(xi) (with all

variables) given xiS . SHAP values attributes to each variable the change in the expected

model prediction when conditionning on that variable, in an additive way:

ϕ0 = E(f(xi))

ϕi1 = E(f(xi|xi1)− E(f(xi))

.

.

.

ϕip = E(f(xi|xi1:p)− E(f(xi))

When the prediction model is non-linear or the variables are not independent, the or-

der in which the variables are added to the expectation matters. In these cases, the SHAP

values are computed by averaging the ϕij values across all possible orderings. The exact

computation of SHAP is still therefore computationally challenging. We can use sampling

procedures to approximate them. Shapley sampling values apply sampling approximation

to Equation 1.5. We start by writting a different by but equivalent formulation of Equation
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1.5:

ϕi =
∑

S⊆F\{j}

(
|S|
|F | − 1

)
(fS

⋃
{j}(xi)− fS(xi)) (1.6)

=
1

|F |!
∑
S∈EF

(fPS
⋃
{j}(xi)− fPS

(xi))

where EF is the set of all ordered permutations of the variable indices {1, . . . , |F |} and PS

is the set of all indices that precede j in the permutationS ∈ EF . EF could be approximated

using a simple sampling procedure, where (fPS
⋃
{j}(xi)− fPS

(xi)) would be one sample.

However, the computational complexity of computing these terms is still exponential. We

can simplify Equation 1.6 using:

fS(xi) =
1

n

∑
l∈n

f(xl[xlj = xij , j ∈ S])

where the notation xl[xlk = xij , j ∈ S] denotes the values of the instance l with xlj
replaced with xij . In this case, Equation 1.6 becomes:

ϕi =
1

|F |!
∑
S∈Ef

∑
l∈n

(f(xl[xlj = xij , j ∈ S
⋃
{j}])− f(xl[xlj = xij , j ∈ S]))︸ ︷︷ ︸
(d)S,l

(1.7)

We can then use a sampling procedure to approximate Equation 1.7. Let (d)S,l be the
sampling population. We drawM samples d1, . . . , dM with probability

1
n with replacement

and define ϕ̂ij =
1
M

M∑
m=1

dm. It follows that ϕ̂ij is approximately normally distributed with

mean ϕij and variance

σ2
j

M , where σ2
j is the variance of the population. ϕ̂ij is therefore an

unbiased and consistent estimator of ϕij .

Main results

Our prediction model was trained on 23,958 SCD cases against 23,958 controls, and selected

188 medical codes to predict SCD, both cardiovascular and non-cardio-vascular, among

9,460 potential predictors. The CatBoost algorithm offered the best performance in the

cross-validation results. We achieved an AUC of 0.80 (95% CI 0.78 - 0.82) in the derivation

cohort, with a positive predictive value of 77% and a sensitivity of 68%. Notably, our model

demonstrated excellent discrimination performance in the highest deciles of predicted risk.

We detected 2,908 (24%) SCD cases with a predicted risk exceeding 90%, achieving a pos-

itive predictive value of 94% in this range. In the validation cohort, we obtained an AUC

of 0.80 (0.77 - 0.81), a positive predictive value of 73% and a sensitivity of 71%, which was

consistent with the results of the derivation cohort. For each patient, we then identified the

most important variables that drive its predicted risk, based on SHAP values. These scores

could be used to improve preventive strategies at the individual level. Our model provides

therefore a new efficient and personalized approach to accurately identify subjects who are

the most at risk of SCD in the general population.
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Bi-level Variable Selection for Generalized Linear Models

Context and objective

Themain challenge that ariseswhenwe analyze heterogeneous data from the SNDS database

is the large number of potential drugs and diseases observed, and their infrequent occur-

rence in the medical history of patients. Indeed, their incidence in the studied populations

vary a lot, which makes it difficult to assess the impact of medical codes that are rarely pre-

scribed or observed. On the other hand, recognized nomenclatures for drugs (ATC system)

and diseases (ICD-10 classification) exist (see Section 1.2). They facilitate the classification

of medical entities into groups with shared properties. For instance, "ST elevation myocar-

dial infarction involving left main coronary artery" is a medical diagnose reported at hos-

pitals by the ICD-10 nomenclature, and which can be classified into 5 hierarchical groups,

as follows:

1. ST elevationmyocardial infarction involving leftmain coronary artery (ICD-10 I21.01)

2. ST elevation myocardial infarction of anterior wall (ICD-10 I21.0)

3. Acute myocardial infarction (ICD-10 I21)

4. Ischemic heart diseases (ICD-10 I20-I25)

5. Diseases of the circulatory system (ICD-10 I00-I99)

However, the complexity of these classifications makes it challenging for physicians to

identify the optimal level of information to select for each medical code. Therefore, there

is clear medical interest in determining automatically whether a particular drug or disease

affects SCD, or, if not, whether the groups it belongs to does. To this end, we developed

a bi-level variable selection procedure, based on a binary regression model, which should

work reliably for a fairly large number of individuals, variables and groups. We wanted this

procedure to be Bayesian, in order to be able to obtain posterior probabilities of inclusion

(rather than simply 0/1 answers). While this work was initially motivated by SCD predic-

tion models, it can be useful more generally, and applied to other datasets where similar

challenges are encountered.

Model

In this work, we suppose that we have collected a datasetD = {X,U,Z, y}with sample size

n, where y ∈ {0, 1}n is a vector of binary responses,X = (xij) ∈ Rn×p
,U = (uij) ∈ Rn×q

,

and Z = (zij) ∈ Rn×r
, are design matrices that contain, respectively, individual variables,

group variables (both subject to variable selection), and extra variables that one may want

to include systematically (e.g. the intercept, socio-demographic effects such as sex, age, etc.).

We suppose that each of the p variables belongs to one (and only one) of the q groups,
whichmay represent different types of group effects. For instance, in ourwork, the variables

in group k may be the indicator that the patient was delivered a certain outpatient drug in

the last 5 years before SCD, and the group variable may be the indicator that the patient

took any drug in that group in the same period. Let g(j) be the group of variable j. We

propose a general approach to capture sparsity at both the group and variable levels. To

this end, we introduce a set of two types of binary variables θ = (γ, η):

• γk indicates whether group k is active (γk = 1) or not (γk = 0).

• ηj indicates whether individual variable j, which is in group g(j), is active (ηj = 1)
or not (ηj = 0).
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We consider a hierarchical structure such that the variable j may be selected only if

then group it belongs to, g(j), is selected, that is:

P (ηj = 1|γg(j) = 0) = 0

As compared to existing models, we propose to keep the flexibility of selecting variables

within a group. For example, when a group of drugs is related to SCD, it does not neces-

sarily mean that all drugs of this group are related to SCD. Therefore, we may want to not

only remove unimportant groups effectively, but also identify important variables within

important groups as well.

The distribution of each data point is defined by:

∀ i = 1, . . . , n, P (Yi = 1|β, θ) = F

 p∑
j=1

ηjβ
x
j xij +

q∑
k=1

γkβ
u
kuik +

r∑
l=1

βz
l zil

 (1.8)

where β = (βx, βu, βz) is the vector of regression parameters andF is the link function (e.g.

F = Φ, the unit Gaussian cumulative distribution function for a probit model). We assign

independent Gaussian priors to β, and suppose that the prior density of γ is a product of

Bernoulli distributions with probabilities pγj . For the predictors, we introduce a spike-and-
slab prior defined by:

P (ηj = 1|γ) =

{
pηj if γg(j) = 1

0 otherwise.

(1.9)

The objective is to perform Bayesian bi-level variable selection in order identify both

groups and individuals effects, and therefore to approximate the posterior distribution of

θ = (γ, η) defined by π(θ) = p(θ|D) ∝ p(θ)L(θ), where L(θ) is the integrated likelihood

obtained by integrating out β:

L(θ) =

∫
L(β, θ)p(β)dβ, L(β, θ) =

{
N∏
i=1

P (Yi = yi|β, θ)

}

To this end, we use a tempering waste-free Sequential Monte Carlo (SMC) sampler

proposed by Dau and Chopin [2022] to approximate the joint posterior distribution π(θ).
SMC methods are iterative stochastic algorithms that approximate a sequence of probabil-

ity distributions through successive importance sampling, resampling and Markov steps. In

Bayesian modeling, this sequence can be used to interpolate between a distribution p(θ)
which is easy to sample from (e.g. the prior distribution) and a distribution of interest π(θ)
which may be difficult to simulate directly (i.e. the posterior distribution). A standard SMC

sampler is described in Algorithm 3:
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Algorithm 3: SMC sampler

Input : Prior distribution p(θ), likelihood function θ → L(θ), integers N ,M , P
such that N = MP , sequence 0 = λ0 < . . . < λT = 1, Markov kernels

Kt that leave invariant πt−1 ∀t ≥ 1
1 for t← 0 to T do
2 if t = 0 then
3 for n← 1 to N do
4 θn0 ∼ p(θ)

5 else
6 A1:N

t ∼ resample (N,W 1:N
t−1 ) (Draw IID variables such that

P (Ak
t = n) = Wn

t−1 for n = 1, . . . , N )

7 for n← 1 to N do
8 θnt ∼ Kt(θ

An
t

t−1, dθt)

9 for n← 1 to N do
10 wn

t ← L(θnt )
λt−λt−1

11 for n← 1 to N do
12 Wn

t ← wn
t /
∑N

m=1w
m
t

We also replace the marginal likelihood L(θ)with the approximate Laplace approxima-

tion (ALA) approach proposed by Rossell et al. [2021], which offers reliable performance on

large datasets, and is less expensive than the standard Laplace approximation.

Main results

Our bi-level variable selection approach based on a waste-free SMC sampler and the ALA

approximation demonstrated good performance on both large simulated data and real data-

sets, within a reasonable computation time. Importantly, this approach offers greater flex-

ibility than most of existing schemes, which impose only “all-in” or “all-out” selection for

variables in the same group. To evaluate our model, we applied it on 23,958 SCD cases

against 23,958 controls, using all outpatient drugs and hospital diagnose that occurred up

to 5 years before SCD. This resulted in a dataset with q = 36 groups and p = 337 binary

variables (using the first 2 levels of ATC and ICD-10 classifications), from which the algo-

rithm selected 16 groups (44%) and 55 variables (16%). The majority of these variables were

previously established as well-known risk factors for SCD and described in the medical

literature, illustrating the quality of our approach.
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Ce chapitre introduit et présente les concepts principaux abordés dans cette thèse. La Section
2.1 définit le concept de mort subite de l’adulte, et les enjeux de recherche qui y sont associés. La
section 2.2 décrit les données utilisées pour ce travail. Enfin, la section 2.3 présente les différents
travaux réalisés dans le cadre de cette thèse.

2.1 La Mort Subite de l’Adulte

L’arrêt cardiaque est le mécanisme final de tout décès, quelle qu’en soit la cause. Dans la plu-

part des cas, il survient comme la complication terminale d’une pathologie pré-existante,

mais certains arrêts cardiaques sont subis, sans condition prémorbide connue. Lorsqu’il

n’existe pas de cause circonstancielle évidente, il s’agit alors d’une mort subite, définie

comme une mort inattendue sans cause extracardiaque évidente, survenant avec un effon-

drement rapide en présence d’un témoin, ou en l’absence de témoin survenant dans l’heure

après le début des symptômes.

Cette pathologie touche 30,000 à 40,000 personnes par an en France, et environ 300,000

par an en Europe. Malgré les progrès réalisés dans la prise en charge, la pronostic demeure

extrêmement sombre. Moins de 10% des patients sortent en effet vivants de l’hôpital après

la survenue d’une mort subite. Son incidence varie fortement en fonction de l’âge et du

sexe, et bien qu’elle soit en baisse ces dernières années, notamment du fait d’un meilleur

contrôle des facteurs de risque cardiovasculaire et de l’amélioration de la prise en charge

des patients atteints de cardiopathie, la mort subite reste responsable de 10% de la mortalité

globale et de 50% des décès d’origine cardiovasculaire dans le monde.

Plusieurs outils ont été proposés pour améliorer le pronostic, concernant la prise en

charge pré-hospitalière, notamment via la chaîne de survie, le massage cardiaque précoce

par les témoins, la défibrillation précoce ou la prise en charge hospitalière (par la prise en

charge coronaire précoce ou l’application d’une hypothermie thérapeutique). Les résultats

en terme de survie restent néanmoins décevants. Considérant ces résultats modestes sur le

versant thérapeutique, plusieurs alternatives préventives ont été proposées pour prévenir la

survenue de tels événements. Ainsi, le développement des traitements antiarythmiques et

des défibrillateurs automatiques implantables ont permis une prévention significative chez
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des patients identifiés à haut risque de mort subite. L’optimisation de l’usage de ces traite-

ments préventifs repose néanmoins sur l’identification préalable des patients à risque de

survenue de mort subite. L’amélioration des outils de prédiction, en particulier en popu-

lation générale, demeure donc un enjeu de recherche majeur. Les travaux réalisés dans le

cadre de cette thèse tente d’y apporter des réponses, à travers l’utilisation d’outils statis-

tiques et d’analyses épidémiologiques.

2.2 Description des Données

Le travail réalisé dans cette thèse repose sur l’analyse de deux sources de données princi-

pales : le registre du Centre d’Expertise de la Mort Subite, situé au Centre de Recherche

Cardiovasculaire de Paris, et le Système National des Données de Santé, qui regroupe les

données médico-administratives de l’Assurance Maladie.

Le Centre d’Expertise de la Mort Subite

Le Centre d’Expertise de la Mort Subite (CEMS) collecte depuis mai 2011 l’ensemble des cas

de morts subites survenus dans une zone géographique donnée (Paris et les 3 départements

adjacents, Hauts de Seine, Seine-Saint-Denis et Val de Marne), qui représente au total un

bassin de population de 6.7 millions d’habitants soit 10% de la population française. Cette

collection est rendue possible par une collaboration étagée entre les services de secours

préhospitaliers (Brigade des Sapeurs-pompiers de Paris, SAMU), hospitaliers (services de

réanimation et de cardiologie) et l’Institut Médico-Légal de Paris. Pour l’ensemble des cas

inclus, les informations relatives à la survenue de l’événement (critères Utstein), à la prise

en charge (pré et intra hospitalière) et au devenir des patients (en termes de survie et de

pronostic neurologique) sont recueillies prospectivement, avec des sources multiples et des

contrôles qualité fréquents, permettant d’évaluer l’exhaustivité à 99% des cas dans la zone

d’intérêt. Cette collection a fait l’objet de plusieurs publications internationales [Bougouin

et al., 2014, Maupain et al., 2016, Jabre et al., 2016, Bougouin et al., 2018, 2020].

Le Système National des Données de Santé

Le Système National des Données de Santé (SNDS) est un entrepôt de données médico-

administratives pseudonymisées créé en 2016, couvrant l’ensemble de la population française

et contenant l’ensemble des soins présentés au remboursement par l’Assurance Maladie. Il

vise à améliorer la santé des patients et l’analyse des dépense publiques en santé. Le SNDS

est géré par la Caisse Nationale de l’Assurance Maladie (CNAM) et par la Plateforme des

données de santé (Health Data Hub), qui en propose une documentation détaillée et que

nous résumons ici. Il contient ainsi les grandes catégories de données suivantes :

• Les consommations de soins de ville : consultationsmédicales, prescriptions demédica-

ments, actes techniques, . . .

• Les soins et séjours hospitaliers.

• Les affections de longue durée.

• Les indemnités journalières : maladie, accidents du travail et maladies profession-

nelles, maternité et invalidité.

• Des informations socio-démographiques sur les bénéficiaires : âge, sexe, commune et

département de résidence, Couverture Maladie Universelle Complémentaire, Aide à

la Complémentaire Santé et Aide Médicale d’Etat.
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• Des informations sur le décès : date, commune et causes médicales de décès.

• Des informations sur les professionnels de santé : médecin traitant, spécialité, mode

d’exercice, sexe, âge et département d"implantation

Ces données représentent un flux annuel de 1,2 milliards de feuilles de soins, 1 millions

de séjours hospitaliers et 500 millions d’actes, dont la collecte vise à faire de la France l’un

des pays pionniers dans le domaine de la promotion et de la valorisation des données de

santé. Trois sources principales alimentent le SNDS :

• Le SNIIRAM(Système National d’Information Inter-Régimes de l’Assurance Maladie)

contient les données relatives à toutes les dépenses de l’assurance maladie.

• Le PMSI (Programme deMédicalisation des Systèmes d’Information) contient les don-

nées relatives à l’activité des établissements hospitaliers.

• Les données duCépiDc (Centre d’épidémiologie sur les causesmédicales de décès) con-

tient les données relatives aux causes de décès.

Le Système National d’Information Inter-Régimes de l’Assurance Maladie

Le SNIIRAM est un entrepôt de données anonymes regroupant les informations issues des

remboursements effectués par l’ensemble des régimes d’assurance maladie pour les soins du

secteur libéral. Il comporte le codage détaillé desmédicaments délivrés, des actes techniques

réalisés, des dispositifs médicaux et des prélèvements biologiques. Il renseigne également

les dates de soin ainsi que les montants remboursés par l’assurance maladie et payés par le

patient. 3 sources de données alimentent le SNIIRAM :

• Une base de données individuelles des bénéficiaires, appelée DCIR (Datamart de Con-

sommation Inter Régime) pour réaliser des études sur la consommation de soins des

bénéficiaires et les pratiques des professionnels de santé. Le DCIR contient l’ensemble

des soins de ville remboursés pour les bénéficiaires de l’Assurance Maladie.

• 15 bases de données thématiques de données agrégées, appelées datamarts et ori-

entées vers une finalité particulière : suivi des dépenses, analyse de l’offre de soins

libérale, biologie, pharmacie, dispositifs médicaux, établissements privés.

• 1 échantillon général des bénéficiaires (ENSD), représentant 2/100e de la population

protégée : l’ESND permet de réaliser des études longitudinales et d’analyser le par-

cours individuel de près de 1,280,000 bénéficiaires en ville et à l’hôpital.

Le Système National d’Information Inter-Régimes de l’Assurance Maladie

L’objectif principal du PMSI est d’analyser l’activité médicale des établissements hospital-

iers à des fins d’allocation budgétaire. Les données relatives à l’ensemble des séjours réalisés

dans un établissement de santé, public ou privé, font l’objet d’un recueil systématique, et

sont utilisées pour le financement des établissements de santé (tarification à l’activité) ainsi

que l’organisation de l’offre de soins. Ce recueil systématique couvre l’ensemble des hospi-

talisations regroupées en 4 secteurs distincts :

• Les hospitalisations de courte durée (médecine, chirurgie, obstétrique).

• Les soins de suite et de réadaptation.

• Les hospitalisations à domicile.
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• Les données relatives à la psychiatrie.

Les informations recueillies par les établissements sont centralisées au niveau national

sur la forme d’un résumé de sortie anonyme (RSA). Chaque RSA contient des informa-

tions médicales (diagnostics et actes médicaux réalisés) et administratives (identification de

l’établissement, durée de séjour, mode d’entrée et de sortie dont, éventuellement, le décès).

Description des Populations

Le travail réalisé dans cette thèse repose sur l’analyse comparative de 23,958 cas de mort

subite collectés au CEMS, et de témoins appariés individuellement (à partir du SNDS) selon

l’âge, le sexe, et le département de résidence. 4 groupes contrôles ont ainsi été définis:

• 71,919 individus ayant présenté un syndrome coronaire aigu (infarctus du myocarde).

• 71,919 individus atteints d’une insuffisance cardiaque chronique.

• 71,919 individus présentant un antécédent de cardiopathie ischémique.

• 71,919 individus sélectionnés aléatoirement au sein de la population générale.

Au sein des groupes contrôles, 3 témoins ont été appariés pour chaque cas de mort

subite. Ces groupes contrôles ont été choisis afin d’identifier des facteurs de risque spéci-

fiques de la mort subite, en comparaison des principales autres maladies cardiovasculaires,

ainsi que de la population générale. Les travaux décrits dans cette thèse se concentrent sur

les 2 premiers groupes, bien que les 3 derniers aient également été étudiés dans des travaux

secondaires. Pour les 5 groupes ainsi définis, nous analysons l’ensemble des données du

SNDS collectées entre 2006 et 2020, ce qui représente pour l’ensemble de l’étude :

• 311,634 individus

• 219,639,296 délivrances de médicaments

• 41,588,634 examens médicaux

• 20,079,775 diagnostics hospitaliers

• 948,081 affections de longue durée

2.3 Résumé des Contributions

Clustering de la Mort Subite

Objectif

Les modèles actuels de classification de la mort subite de l’adulte reposent essentiellement

sur des causes cardiovasculaires, dont le mécanisme sous-jacent est le plus souvent ex-

pliqué par des troubles du rythme survenant chez des individus atteints de cardiopathies

ischémiques. Toutefois, ces modèles présentent des limites certaines, et restent insuffisants

pour expliquer de nombreux cas observés en population générale. La majorité des morts

subites demeure en effet non identifée jusqu’à leur survenue, et pour lesquelles aucune

cause cardiaque n’est souvent clairement établie, malgré un nombre important d’examens

médicaux réalisés, incluant notamment des autopsies et des analyses génétiques. Dans

ce contexte, il apparaît nécessaire d’évaluer dans quelle mesure l’ajout de facteurs non-

cardiovasculaires pourrait permettre demieux comprendre la pathogénèse de lamort subite.
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L’objectif de ce travail consiste donc à développer une nouvelle approche non-supervisée

et agnostique, s’affranchissant des classsifications actuelles, pour identifier de nouveaux

sous-groupes homogènes de morts subites. Ce modèle repose sur l’analyse de l’ensemble

de consommations de soin observées jusqu’à 15 ans avant la survenue de l’événements, à

partir du SNDS.

Méthode

Le principal enjeu de ce travail consiste à représenter de façon pertinente les trajectoires de

soin observées avant la mort subite. Ces trajectoires contiennent des variables hétérogènes

et interdépendantes (délivrances de médicaments et hospitalisations), collectées par des

sources de données multiples. L’objectif est donc d’en extraire l’information essentielle, tout

en occultant le bruit "clinique" n’apportant aucune valeur ajoutée pour l’identification de

groupes homogènes de patients. Pour répondre à ce problème, nous nous sommes appuyés

sur l’analyse du langage naturel, dont le principe et les méthodes s’appliquent aujourd’hui à

de nombreuses problématiques médicales. Nous avons utilisé un modèle de représentation

de mots (word embedding), en entraînant un réseau de neurones artificiels appeléWord2Vec.

Word2Vec est un modèle de traitement du langage qui représente les mots d’un cor-

pus de texte sous une forme vectorielle. Ces vecteurs renseignent des informations sur les

relations sémantiques et syntaxiques du corpus, dans un nouvel espace mathématique ap-

pelé embedding. 2 architectures possibles du modèle existent : skip-gram et bag-of-words.
L’architecture skip-gram, que nous avons choisie dans ce travail, consiste à prédire le con-

texte d’un mot donné, c’est-à-dire les mots qui apparaissent dans son voisinnage, en analy-

sant l’ensemble des paires contexte-mot contenues dans le corpus de texte. Cette tâche

prédictive est réalisée par un réseau de neurones contenant une couche cachée dont les

poids estimés lors de l’entraînement permettent de générer les vecteurs associés aux mots.

Dans notre contexte médical, les délivrances de médicaments et les diagnostics hos-

pitaliers observés dans les trajectoires de soins correspondent à une suite d’événements

ordonnés dans le temps. Chacun de ces évenement peut être considéré comme un mot, per-

mettant de représenter un patient par une phrase dont le nombre demots est égal au nombre

d’événements survenus avant sa mort subite. Cette approche méthodologique permet ainsi

de mesurer la proximité temporelle et médicale de ces événements, et de construire une

nouvelle représentation pertinente de son histoire médicale.

L’étape suivante du travail consiste à générer un vecteur pour chaque patient, en cal-

culant la moyenne des vecteurs associés à sa trajectoire de soin. Nous avons utilisé cette

dernière représentation vectorielle comme variable d’entrée dans un algorithme de cluster-
ing, appelé K-Means, afin d’identifier des sous-groupes d’individus partageant des carac-

téristiques cliniques homogènes. L’algorithme K-Means est l’une des techniques les plus

couramment utilisées en apprentissage non-supervisé. Son objectif est de partitionner un

ensemble de données enK groupes homogènes, oùK est un nombre pré-défini de groupes.

L’initialisation du K-Means consiste le plus souvent à sélectionner aléatoirement des indi-

vidus, servant de barycentres initiaux pour les K groupes. Chaque individu est ensuite

affecté au groupe dont le barycentre est le plus proche en termes de distance euclidienne.

Les barycentres sont alors recalculés, en effectuant la moyenne des individus qui lui sont at-

tribués. Ce processus d’affectation et de mise à jour se répète jusqu’à ce que les barycentres

ne se déplacent plus. La Figure 2.1 résume les différentes étapes de notre modèle.

65



Chapter 2. Introduction (en français)

Figure 2.1: Schéma méthodologique du modèle de clustering
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Résultats

Ce travail combine unmodèle d’analyse du langage naturel avec un algorithme de clustering.
Il nous a permis de construire une nouvelle représentation médicale pertinente des trajec-

toires de soin observées avant la mort subite. Cette représentation était en effet jusqu’a

présent difficile à obtenir en utilisant des modèles statistiques plus conventionnels. Nous

montrons ainsi que la population de morts subites peut être répartie en 8 groupes cliniques

homogènes :

• Un groupe principalement atteint de maladies cardiovasculaires (30% de la popula-

tion).

• Un groupe principalement constitué de femmes âgées (27% de la population).

• Un groupe d’individus jeunes ne présentant aucun facteur de risque apparent (22% de

la population).

• Un groupe atteints de troubles psychiatriques et neurologiques (7% de la population).

• Un groupe atteints de maladies respiratoires (6% de la population).

• Un groupe d’individus atteints de cancer (4% de la population).

• Un groupe atteints de maladies rénales (2% de la population).

• Un groupe principalement décrit par des désavantages socio-économiques (2% de la

population).

Les deux premiers sous-groupes constituent plus de la moitié de la population de mort

subite (57%), et se caractérisent par des facteurs cardiovasculaires bien décrits dans la lit-

térature médicale. Le troisième groupe, qui représente 22% des cas, est composé d’individus

relativement jeunes, sans facteur de risque cardiovasculaire connus, et qu’il était jusqu’à

présent difficile d’identifier en population générale. Enfin, les 5 groupes suivant contienent

des effectifs plus modestes, et dont les caractéristiques sont beaucoup moins décrits dans la

littérature médicale. Notre modèle pourrait donc permettre de mieux identifier les facteurs

de risque qui leurs sont associés.

En conclusion, ce travail propose une nouvelle classification plus fine des individus vic-

times de mort subite. Les résults obtenus pourraient permettre, à terme, d’améliorer leur

prise en charge clinique et d’individualiser les stratégies de prévention. Elle offre égale-

ment de nouvelles perspectives de recherche pour mieux comprendre les causes et mécan-

ismes sous-jacents à la mort subite, et ainsi identifier les sujets à haut risque en population

générale.

Prédiction de la Mort Subite

Objectif

Si de nombreuses recherches sur lamort subite ont étémenées sur le versant post-évènement,

notamment sur le soin apporté aux victimes, la prédiction de la survenue d’un tel événement

reste difficile. L’identification d’individus à risque de mort subite est donc un enjeu de santé

publique majeur, avec des résultats jusqu’à présent décevants. Certains groupes de patients

à très haut risque ont été identifiés, mais ils ne constituent qu’une fraction très restreinte de

l’ensemble de la population concernée. Ces patients bénéficient d’ores et déjà d’une prise en

charge rythmologique spécialisée, visant à la prévention de tels évènements. D’un point de
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vue épidémiologique, la grande majorité des victimes d’une mort subite ne font cependant

pas partie de ces populations à très haut risque. Le principal pourvoyeur de morts subites

demeure en effet la cardiopathie ischémique, que ce soit à l’occasion d’un évènement aigu

(infarctus du myocarde) ou lors du suivi de ces malades. La cohorte des patients atteints

d’une cardiopathie ischémique est très importante, et seule une faible proportion d’entre

eux présentera une mort subite au cours de son évolution. Il existe par conséquent une

discordance entre une population à très haut risque individuel mais d’effectif limité (les car-

diopathies pro-arythmogènes spécifiques, structurelles ou électriques) et une population à

faible risque individuel mais d’effectif très important (les cardiopathies ischémiques), qui

constitue l’essentiel des patients victimes de mort subite en population générale.

Le défi de la prédiction de la mort subite demeure donc entier. Dans ce contexte, ce tra-

vail vise à développer unmodèle de prédiction en population générale, à partir de l’ensemble

des cas inclus dans le CEMS, en les comparant à des témoins appariés. Contrairement

aux modèles existants, nous souhaitons proposer un score de risque personnalisé pour

chaque individu, et qui intègre un grand nombre de facteurs cardiovasculaires et non-

cardiovasculaires collectés à partir du SNDS.

Méthode

Nous avons développé un modèle permettant de prédire la survenue de la mort subite à

un horizon temporel de 3 mois, en utilisant un algorithme de classification supervisée. Ce

modèle a été entraîné par validation croisée sur les cas collectés au CEMS entre 2011 et

2015 (population de dérivation), et validé sur les cas collectés entre 2015 et 2020 (population

de validation). Pour chaque cas, nous avons inclu un témoin apparié individuellement, et

sélectionné en population générale.

Afin de mesurer l’apport prédictif des modèles d’apprentissage automatique par rapport

aux approches statistiques plus conventionnelles, nous avons comparé le modèle de régres-

sion logistique à 3 algorithmes de classification : Random Forest, Extreme Gradient Boosting
et CatBoost :

• L’algorithme Random Forest (forêts aléatoires) appartient à un ensemble de méthodes

appelée Bagging (Bootstrap Aggregating). Elles consistent à entraîner plusieurs mod-

èles de classification sur des échantillons aléatoires de données, et à les combiner

pour obtenir une prédiction finale plus performante que celle obtenue par chacun des

modèles séparemment, tout en minimisant le risque de surapprentissage. Le Random
Forest agrège un ensemble d’arbres de décision. Chaque arbre est défini par une suite

de critères visant à maximiser la séparation entre les différentes classes à prédire,

en choisissant à chaque étape la variable qui offre la meilleure séparation possible.

La prédiction finale du Random Forest est obtenue en moyennant les prédictions de

l’ensemble des arbres de décision.

• Les algorithmes Extreme Gradient Boosting et CatBoost appartiennent la famille du

boosting. De la même manière que le bagging, ces méthodes s’appuient sur une com-

binaison de modèles faibles (weak learner) pour construire unmodèle plus robuste. La

principale différence réside dans la façon dont les modèles sont construits et combinés

entre eux. Dans le cas du boosting, ces derniers sont construits de façon itérative, de

telle sorte que chaque modèle corrige les erreurs commises par le précédent, en ac-

cordant plus de poids aux observations mal classées. L’algorithme CatBoost est une
version particulièrement performante du boosting qui utilise une technique appelée

"boosting ordonné" (ordered boosting). Cette technique prend en compte l’ordre des
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variables dans la construction de l’algorithme: les variables sont classées et ajoutées

séquentiellement selon leur ordre d’importance dans le modèle, générant des arbres

de décision moins complexes et plus rapides à construire, tout en réduisant le risque

de surapprentissage.

Notre modèle de prédiction a été entraîné à partir de l’ensemble des délivrances de

médicaments et diagnostics hospitaliers observés sur une période de 5 ans avant la sur-

venue de la mort subite. Pour déterminer dans quelle mesure l’ajout de facteurs non-

cardiovasculaires améliore l’identification des sujets à risque, nous comparons deux straté-

gies différentes d’inclusion des variables :

• La première approche se limite à l’inclusion de variables uniquement cardiovascu-

laires, en s’appuyant sur les facteurs de risques de mort subite décrits dans la littéra-

ture médicale.

• La seconde approche, plus agnostique, s’affranchit de ces hypothèses et inclut l’ense-

mble des codes médicaux observés dans les trajectoires de soin.

Après avoir entraîné et validé le modèle en comparant les 2 stratégies décrites ci-dessus

ainsi que les différents algorithmes de classification supervisée, nous proposons d’expliquer

à l’échelle individuelle les scores de risque ainsi générés. Pour chaque patient, nous identi-

fions les variables les plus importantes qui sont associées à son risque, en utilisant l’algorith-

me SHAP. Cet algorithme produit pour chaque variable et pour chaque individu donné, un

score d’importance, appelé valeur de Shapley, à partir du modèle de prédiction préalable-

ment entraîné. Les valeurs de Shapley reposent sur la théorie des jeux collaboratifs, et per-

mettent d’estimer la contribution marginale d’un joueur qui réalise une action avec d’autres

joueurs. Dans le cadre d’un modèle de prédiction :

• Le joueur correspond à une variable explicative.

• L’action correspond à la prédiction réalisée par le modèle auquel il appartient.

• La contribution correspond au score d’importance qui lui est associé.

Pour un patient donné, les valeurs de Shapley se calculent en considérant l’ensemble des

intéractions possibles que les variables génèrent entre elles pour réaliser la prédiction. Pour

chaque permutation, la contribution marginale d’une variable correspond à la différence

obtenue en comparant le score de risque généré avec, et sans cette variable. Ainsi, la

valeur de Shapley associée s’obtient en calculant la moyenne de toutes les contributions

marginales, en tenant compte de l’ensemble des permutations possibles. En pratique, des

solutions existent pour approximer cette méthode combinatoire, qui est souvent impossible

à calculer lorsque le nombre de variables et d’individus est important.

La méthode SHAP, et de façon générale les méthodes d’explicabilités, sont particulière-

ment utiles pour expliquer des prédictions réalisées par des modèles complexes et peu in-

teprétables, tels que les réseaux de neurones ou les algorithmes de boosting. Elles présen-
tent un intérêt tout particulier pour la prédiction de la mort subite, car elles permettraient

d’identifer les facteurs de risquesmodifiables à l’échelle individuelle, et ainsi d’individualiser

les stratégies de prévention. La Figure 2.2 résume les différentes étapes de notre modèle.

69



Chapter 2. Introduction (en français)

Figure 2.2: Schéma méthodologique du modèle de prédiction
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Résultats

Nous avons entraîné notre modèle de prédiction sur 23,958 cas de morts subites et 23,958

témoins individuellement appariés et sélectionnés en population générale. L’algorithme

CatBoost, combiné à une stratégie agnostique d’inclusion des variables (non restreinte aux

facteurs cardiovasculaires) obtient les meilleures performances prédictives en validation

croisée. Ce modèle a sélectionné 188 codes médicaux d’intérêt, cardiovasculaires et non

cardiovasculaires, parmi 9,460 prédicteurs potentiels. Nous avons obtenu une AUC de 0,80

(CI 95% 0,78 - 0,82) dans la population de dérivation, avec une valeur prédictive positive

de 77% et une sensibilité de 68%. Par ailleurs, notre modèle présente une excellente perfor-

mance prédictive dans les déciles les plus élevés du risque prédit. En effet, 2,908 (24%) des

cas de mort subites ont été identifiés avec un risque supérieur à 90%, atteignant une valeur

prédictive positive de 94% dans cet intervalle. Dans la population de validation, nous avons

obtenu une AUC de 0,80 (CI 95% 0,77 - 0,81), une valeur prédictive positive de 73% et une

sensibilité de 71%, validant les résultats décrits précedemment. Pour chaque individu, nous

avons ensuite identifié les variables les plus importantes qui expliquent son risque prédit,

à partir des valeurs de Shapley. En conclusion, notre modèle fournit donc une nouvelle

approche efficace et individualisée permettant d’identifier avec précision les individus qui

sont les plus à risque de mort subite en population générale.

Modèle de Sélection de Variables Bi-Niveaux

Objectif

La principale difficulté méthodologique que pose l’analyse des données du SNDS est liée au

nombre très important de codes médicaux qu’il est possible d’observer dans les trajectoires

de soins. En effet, la fréquence d’apparition de ces variables est très hétérogène, et leur

incidence dans les populations étudiées varie beaucoup. Cela rend ainsi difficile l’analyse

des effets associés à certains médicaments ou diagnostics hospitaliers rarement prescrits ou

observés avant la mort subite.

Par ailleurs, il existe aujourd’hui des nomenclatures reconnues dans la littérature médi-

cale qui permettent de regrouper les médicaments (classification ATC) ou les diagnostics

(classification CIM-10) en groupes d’entités partageant des propriétés et caractéristiques

communs. A titre d’exemple, l’infarctus du myocarde avec sus-décalage du segment ST im-
pliquant l’artère coronaire principale gauche est un diagnostic codé dans les hôpitaux selon

la nomenclature CIM-10, et qui peut-être regroupé en 5 classes hiérarchiques :

1. Infarctus dumyocarde avec sus-décalage du segment ST impliquant l’artère coronaire

principale gauche (CIM-10 I21.01)

2. Infarctus du myocarde avec sus-décalage du segment ST de la paroi antérieure (CIM-

10 I21.0)

3. Infarctus aigu du myocarde (CIM-10 I21)

4. Cardiopathies ischémiques (CIM-10 I20-I25)

5. Maladies de l’appareil circulatoire (CIM-10 I00-I99)

Dans les approches de clustering et de prédiction décrites précedemment, nous avons

choisi d’appliquer des stratégies systématiques (i.e non individualisées) de regroupement

des codes, reposant sur des critères uniquement médicaux. Tous les codes ont ainsi été re-

groupés au niveau 3 ou 4 des nomenclatures médicales, selon les modèles considérés. Cette
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stratégie est facile à mettre en oeuvre et présente l’avantage de pouvoir facilement com-

parer les variables entre elles. Cependant, elle n’est pas toujours pertinente du point de vue

clinique, car certains actes de soin doivent être analysés à un niveau détaillé, tandis que

d’autres peuvent être considérés dans des groupes plus larges.

L’objectif de ce travail consiste donc à proposer une méthode automatique et invidid-

ualisée pour discriminer les effets de groupes des effets individuels, et ainsi identifier le

niveau optimal d’information. Nous avons développé un algorithme de sélection de vari-

ables bi-niveaux pour un problème de régression binaire et pouvant s’appliquer à un grand

nombre d’individus et de variables en entrée. Nous construisons cette approche dans un

cadre bayésien afin de proposer, dans un souci d’interprétabilité, des probabilités a posteri-
ori d’inclusion plutôt que de simples réponses binaires. Enfin, bien que ce travail soit mo-

tivé par le développement d’outils pour la prédiction de la mort subite, il peut-être utilisé

et adapté pour un grand nombre d’autres situations, où les mêmes enjeux méthodologiques

se posent.

Modèle

Nous supposons disposer d’un ensemble de données D = {X,U,Z, y} de taille n, où y ∈
{0, 1}n est un vecteur de réponses binaires, et où X = (xij) ∈ Rn×p

, U = (uij) ∈ Rn×q

, et Z = (zij) ∈ Rn×r
correspondent respectivement aux p variables individuelles, aux q

variables de groupe, et aux r variables supplémentaires que l’on souhaite inclure systéma-

tiquement dans l’analyse (par exemple des variables socio-démographiques tels que l’âge

ou le sexe).

Nous supposons que chacune des p variables appartient à un (et seulement un) des q
groupes précédemment définis. Ces variables peuvent représenter différents types d’effet.

Par exemple, dans notre contexte médical, les variables individuelles du groupe k peuvent

indiquer que le patient a reçu un certain médicament au cours des 5 dernières années avant

la survenue de la mort subite, et la variable de groupe peut indiquer que le patient a pris

n’importe quel médicament de ce groupe au cours de la même période. Soit g(j) le groupe
contenant la variable j. Nous proposons un modèle permettant de sélectionner simultané-

ment les effets de groupes et les effets individuels. Pour cela, nous introduisons deux vari-

ables binaires θ = (γ, η), définies de la façon suivante :

• γk indique si le groupe k est actif (γk = 1) ou non (γk = 0).

• ηj indique si la variable individuelle j, appartenant au groupe g(j), est active (ηj = 1)
ou non (ηj = 0).

Nous considérons une structure hiérarchique définie telle que la variable j ne peut être
sélectionnée que si le groupe g(j), auquel elle appartient, est également sélectionné, c’est-à-

dire P (ηj = 1|γg(j) = 0) = 0. Nous proposons également de conserver une flexibilité dans

la sélection des variables au sein d’un même groupe, par rapport à l’approche dite all-in all-
out des modèles existants. Cela signifie qu’au sein d’un groupe sélectionné, toutes les vari-

ables ne sont pas nécessairement conservées par le modèle. Cette flexibilité est pertinente

du point de vue clinique, car il est souvent peu probable que l’effet de tous les médicaments

au sein d’une classe donnée soit identique.
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Notre modèle est ainsi défini de la façon suivante :

∀ i = 1, . . . , n, P (Yi = 1|β, θ) = F

 p∑
j=1

ηjβ
x
j xij +

q∑
k=1

γkβ
u
kuik +

r∑
l=1

βz
l zil

 (2.1)

où β = (βx, βu, βz) est le vecteur des paramètres de régression et F est la fonction de lien

(par exemple, la fonction de réparation gaussienne F = Φ d’un modèle Probit). Dans le

cadre bayésien, nous assignons des lois a priori gaussiennes indépendantes aux paramètres

β, et nous supposons que la densité a priori de γ est un produit de distributions de Bernoulli

avec des probabilités individuelles pγj . Pour les paramètres de sélection de variables, nous

introduisons une loi a priori de type spike-and-slab définie par

P (ηj = 1|γ) =

{
pηj si γg(j) = 1

0 sinon

(2.2)

L’objectif est de réaliser une sélection de variables bi-niveaux, en estimant la loi a pos-
teriori jointe de θ = (γ, η) définie par π(θ) = p(θ|D) ∝ p(θ)L(θ), où L(θ) correspond à la

la vraisemblance marginale obtenue en intégrant selon β :

L(θ) =

∫
L(β, θ)p(β)dβ, L(β, θ) =

{
N∏
i=1

P (Yi = yi|β, θ)

}

Nous utilisons un échantillonneur de Monte-Carlo Séquentiel (SMC), et plus partic-

ulièrement la version waste-free développée par Dau and Chopin [2022], pour estimer la

loi π(θ), combinée avec la méthode approximate Laplace approximation (ALA) proposée

par Rossell et al. [2021] pour approximer la vraisemblance marginale à chaque étape de

l’algorithme. Les méthodes SMC sont des algorithmes itératifs permettant d’estimer une

suite de distributions de probabilités en appliquant des étapes succesives d’échantillonnage

préférentiel (importance sampling) et de Monte-Carlo par chaîne de Markov (MCMC). Elles

sont particulièrement utiles en analyse bayésienne pour estimer une loi a posteriori multi-

modale et complexe à obtenir, en générant des distributions intermédiaires à partir de la loi
a priori. A chaque étape t de l’algorithme, l’échantillonneur SMC génère un ensemble de

particules θt = {θ1t , . . . , θNt } permettant d’estimer πt. Chaque particule est pondérée selon
des poidsW 1

1 , . . . ,W
N
1 , calculés en fonction de la vraisemblance marginale L(θt). Les par-

ticules les plus probables sont conservées par un processus de ré-échantillonnage, tandis

que les autres sont éliminées. Toutefois, ce ré-échantillonn-age présente l’inconvénient

de créer des groupes de particules identiques, ce qui appauvrit l’échantillon généré. Pour

remédier à ce problème, les particules conservées après ré-échantillonnage sont injectées

dans un noyau MCMC laissant invariante la loi πt, sur plusieurs itérations, afin de produire

un échantillon de meilleure qualité. Les particules restantes à la fin de l’algorithme perme-

ttent d’estimer les quantités d’intérêt de la loi π, en utilisant l’estimateur

N∑
i=1

W i
Tϕ(θ

i
t) pour

π(ϕ) := Eπ(ϕ(θ)).

Résultats

Nous avons développé un algorithme de sélection de variables bi-niveaux dans un cadre

bayésien, à partir d’un échantillonneur SMC et pour un problème de régression binaire. Cet

algorithme offre notamment une plus grande flexibilité de sélection de variables au sein
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des groupes, par rapport aux modèles existants. Notre approche obtient de bonnes perfor-

mances sur de grands jeux de données, à la fois réels et simulés, dans un temps de calcul

raisonnable. En particulier, nous l’avons évalué sur les données du SNDS pour la prédiction

de la mort subite, en incluant 23,958 cas du CEMS, 23,958 témoins, ainsi que l’ensemble

des variables représentant les médicaments et les diagnostics hospitaliers observés sur une

période de 5 ans avant l’événement. En agrégant ces variables selon les niveaux 1 et 2 des

classifications médicales, cela représente q = 36 groupes et p = 337 variables individuelles.
Notre algorithme a sélectionné 16 groupes (44% du total) et 55 variables individuelles (16%

du total). La majorité de ces codes médicaux sélectionnés étaient pertinents du point de

vue clinique, et bien décrits comme des facteurs de risque associés à la mort subite dans la

littérature médicale, démontrant ainsi l’intérêt de notre approche.
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This Chapter comes from a joint work with Patricia Jabre, Wulfran Bougouin, Frankie
Beganton, Yseult Masson, Matthieu Bricaire, Jean-Philippe Empana, Nicolas Chopin and Xavier
Jouven, and was submitted in Nature Journal in April 2023.

3.1 Introduction

Sudden death is an unexpected and natural death that occurs within one hour after the

occurrence of the first symptoms [Fishman et al., 2010]. After exclusion of obvious extra

cardiac causes, about 90% of sudden death are considered from cardiovascular origin, and

the term of sudden cardiac death (SCD) or sudden cardiac arrest is generally used [Fishman

et al., 2010, Hinkle and Thaler, 1982]. SCD is a major public health burden estimated to

account for 10-20% of all deaths [Myerburg and Castellanos, 2009]. The presumption based

on epidemiological studies, is that such rapid deaths are often because of lethal ventricu-

lar arrhythmias [Hayashi et al., 2015]. Ventricular fibrillation (VF), followed by asystole,

is the most frequent cause of SCD and is definitely a cardiovascular event, sometimes the

first and usually the last [Weisfeldt et al., 2010]. According to the current classification,

VF and asystole occur in patients with underlying cardiomyopathies, mostly from ischemic

coronary origin [Myerburg and Junttila, 2012]. However, in many cases of SCD, no cause is

clearly found despite numerous medical and para medical examinations including autopsia

and genetics [Hayashi et al., 2015, Fishman et al., 2010]. The prevention is even worse since

the identification of high risk subjects is very difficult and limited, even among high level

athletes with many cardiac investigations [Jouven et al., 1999, 2017, Malhotra and Sharma,

2018].

Obviously, something is missing precluding to explain properly the possible diagnosis

and mechanisms. One possible reason is that the current approach tries to explain these

last cardiovascular events (VF and asystole) by cardiovascular causes essentially neglecting

the overall past medical history. We might have to relax this strong hypothesis and to

consider to a larger extent that non cardiovascular conditions and variables could play a

role in the occurrence of SCD. To address this issue, we assessed whether a data-driven
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non-supervised approach based on artificial intelligence could identify new clusters of SCD,

using an unselectedwide range of cardiovascular and non-cardiovascular variables collected

from electronic health records up to 10 years before the occurrence of SCD.

3.2 Methods

Data acquisition

This study was conducted in accordance with all relevant French regulatory requirements.

Access to the French National Health Insurance Database is regulated by the Committee

of Expertise for Research, Studies and Evaluations in the field of Health (CEREES) and the

French National Data Protection Agency (CNIL). The study protocol was submitted and

approved in 2016 for SCD cases collected between 2011 and 2015 (Institut des Données de

Santé, approval N°183, 2016; CCTIRS approval N°12-336, 2016; CNIL authorization DR-2016-

401, 2016) and in 2022 for cases collected between 2016 and 2020 (CEREES, approval 2785673,

2020). The Paris Sudden Death registry was also approved by the CNIL (CNIL authorization

DR-2012-445, 2012). In accordance with the regulations in force, informed patient consent

was not required due to the retrospective and observational nature of the study.

The Paris Sudden Death Expertise Center

Every case of unexpected out-of-hospital cardiac arrest in persons older than 18 years that

occurred between 16May 2011 and 31 December 2020 in Paris (France) and its inner suburbs

(Hauts-de-Seine, Seine-Saint-Denis, Val-de Marne) was collected throughout the Paris Sud-

den Death Expertise Center (SDEC). The SDEC is a multidisciplinary consortium dedicated

to research, education, and care of SCD [Bougouin et al., 2014, Maupain et al., 2016, Jabre

et al., 2016, Bougouin et al., 2018, 2020]. Exclusion criteria are a prior terminal condition,

no attempt at advanced cardiac life support by Emergency Medical System personnel, or

an obvious noncardiac cause according to Utstein templates for resuscitation registries re-

porting data on cardiac arrest [Jacobs et al., 2004, Perkins et al., 2015]. Hence, the included

subjects in this study were SCD cases.

The SDEC registry is a multicenter population-based registry system covering a popula-

tion of 6.7 million inhabitants (10% of the French population). It records prospectively and

continuously information on the occurrence (Utstein criteria), management (pre- and in-

hospital) and patient outcomes (regarding survival and neurological outcomes) of all SCD

cases. This includes information about age, sex, location of SCD, presence of a bystander,

initial cardiac rhythm, cardiopulmonary resuscitation, alive transportation to the hospital,

coronary angiogram and survival.

To ensure completeness of collection in the area, an intensive and prospective epidemi-

ological case-ascertainment programme was applied. In France, the emergency medical

service is a two-tiered physician-manned system, with a basic life support tier served by

firefighters of the Brigade de Sapeurs Pompiers de Paris (BSPP), and an advanced cardiac

life support tier (ACLS) [Adnet and Lapostolle, 2004]. The SDEC Registry is derived with

the following procedure. First, a nominative case report form is sent daily for every car-

diac arrest supported by BSPP. Second, an electronic query algorithm is performed in the

advanced cardiac life support computer system to identify every case of SCD. Third, retro-

spective controls based on diagnostic codes are conducted in selected intensive care units.

This method therefore involves every link of the chain of survival, to ensure completeness

of the registry. We performed a retrospective control among a sample of 3 intensive care
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units, and combination of both sources (BSPP and ACLS) detected 99% of cases of cardiac

arrests admitted alive in this sample [Bougouin et al., 2014]. In addition, each case is re-

viewed separately by two investigators of the SDEC, to ensure accuracy of classification

and to avoid the over-estimation often experienced in retrospective collection. Our clus-

tering analysis was derived from cases of the Paris SDEC registry collected between 2011

and 2015, and validated on cases collected between 2016 and 2020 to assess the temporal

transportability of our approach.

The French National Healthcare System Database

The SDEC registry was linked with the French National Health Insurance Database (SNDS)

[Tuppin et al., 2017, Moulis et al., 2015, Bezin et al., 2017]. The French Universal Health

Insurance System manages all reimbursements of healthcare for all people affiliated to a

health insurance scheme in France, covering 98% of the population (67 million inhabitants).

It provides information on all healthcare expenses, on an individual level, including out-

patient visits, procedure, and reimbursed drugs relative to outpatient medical care claims;

information from hospital discharge summaries; chronic conditions. Data acquisition is

permanent, from birth to death, irrespective of wealth, age, or work status, resulting in one

of the largest electronic health records databases in the world. The data are anonymized

but individually linked, which allows individual longitudinal follow-up. As individuals are

identified in the database by a unique identifier, double counting of medical information

documented from multiple sources is avoided.

The SNDS database links 2 existing databases:

• The nationwide claims database of the FrenchNational Healthcare System (SNIIRAM)

contains exhaustive, anonymous, and individual data on outpatient healthcare re-

imbursements. It includes data on ambulatory care with all reimbursed drugs from

community pharmacies and all reimbursed medical interventions. It also includes

long-term diseases and chronic conditions as well as information about occupational

accidents and diseases.

• The national hospital database (PMSI) is the national hospital discharge database, con-

cerning both French public- and private-sector hospitals. Main data includes admis-

sion and discharge dates, duration of stay, diagnoses (main, related, and associated),

as well as procedures (medical acts and biology) and especially costly drugs adminis-

tered in hospital. Specific databases exist for hospital admissions in medical, surgical,

and obstetrical wards (PMSI-MCO), home hospitalizations (PMSI-HAD), psychiatric

hospitalizations (PMSI-PSY) and rehabilitation centers (PMSI-SSR). In this study, we

only collected principal and secondary hospital diagnosis codes from the PMSI-MCO

database. Principal diagnosis is defined as the condition, after study, which occa-

sioned the admission to the hospital, and secondary diagnoses are conditions that

coexist at the time of admission, that develop subsequently, or that affect the treat-

ment received and/or length of stay.

Hospital diagnoses and long-term diseases are coded according to the International

Classification of Diseases, 10th revision (ICD-10), which is a classification tool developed

by the World Health Organization for epidemiology, health management and clinical pur-

poses. Drugs are coded according to the Anatomical Therapeutic Chemical (ATC) system,

that classifies drugs according to the organ or system on which they act and their thera-

peutic, pharmacological, and chemical properties. Results relating to biological tests and

other medical procedures are not recorded, and medical indications are not specified for the
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reimbursed medical cares.

Demographic (age, sex, place of residence) and socioeconomic (affiliate insurance scheme,

universal healthcare coverage and state medical assistance) information are available in the

SNDS database. The universal healthcare coverage is obtained for all individuals whose in-

come is below a specific threshold and was used as a proxy variable for low income. The

state medical assistance covers the healthcare costs of foreigners who do not meet the re-

quirement of legal residence allowing them access to the universal healthcare coverage.

The SNDS database has been described in detail previously [Tuppin et al., 2017, Moulis

et al., 2015, Bezin et al., 2017, Revet et al., 2022] and has been used to conduct multiple

studies in cardiovascular epidemiology [Tuppin et al., 2016, Weill et al., 2016, Giral et al.,

2019, Feldman et al., 2021, Piot et al., 2022]. More details are available at https://www.
health-data-hub.fr/.

Data processing

To perform our clustering analysis, we analyzed all reimbursed drugs relative to outpatient

medical care claims and all hospital diagnoses relative to medical, surgical, and obstetrical

wards that occurred up to 15 years before SCD.

Drugs were grouped according to their pharmacological subgroups, corresponding to

the fourth level of the ATC system. For instance, the combination of nadolol and thiazides

(ATC C07BA12) was labeled as selective beta blocking agents, non-selective, and thiazides

(ATC C07BA) as follows :

• C: Cardiovascular system

• C07: Beta blocking agents

• C07B: Beta blocking agents and thiazides

• C07BA: Beta blocking agents, non-selective, and thiazides

• C07BA12: Nadolol and thiazides

Hospital diagnoses were grouped according to the fourth level of the ICD-10 classifi-

cation. For instance, atherosclerotic heart disease of native coronary artery with unstable

angina pectoris (ICD-10 I25.110) was labeled as atherosclerotic heart disease of native coro-

nary artery (ICD-10 I25.1) as follows:

• I00-I99: Diseases of the circulatory system

• I20-I25: Ischemic heart diseases

• I25: Chronic ischemic heart disease

• I25.1: Atherosclerotic heart disease of native coronary artery

• I25.11: Atherosclerotic heart disease of native coronary artery with angina pectoris

• I25.110 Atherosclerotic heart disease of native coronary artery with unstable angina

pectoris
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Construction of the medical embedding

We performed a non-supervised approach to identify relevant clinical clusters of SCD, using

NLP and clustering methods. A key challenge was to create a meaningful representation of

patients based on massive amounts of electronic health records, comprising both structured

and unstructured information. For this task, we used word embeddingmethods, which have

become a major reference to tackle the issue of medical concepts representation [Li et al.,

2022]. We treated each medical code (outpatient drug or hospital diagnosis) as a word, such

that a patient can be represented by a sentence whose number of words is equal to the num-

ber of medical events that occurred before SCD.

We built a model that transforms all medical codes to numerical vectors of fixed di-

mensionality, whose relative geometrical positions reflect medical proximities. Words that

co-occurred more frequently should be close together in the embedding space. For instance,

antidepressant drugs (ATC N06) are expected to be close to mood affective disorders (ICD-

10 F30-F39), and beta-blocking agents (ATC C07) should be close to hypertensive diseases

(ICD-10 I10-I16). But this unsupervised approach also allows to learn new medical rela-

tionships, that could be useful to find unknown groups of patients and to highlight the

heterogeneity of SCD, especially for non-cardiovascular risk factors.

We used the Skip-gram architecture of the Word2Vec algorithm [Mikolov et al., 2013],

a neural network-based approach, to exploit the co-occurrence information of the medical

trajectories. It consists of training a shallow neural network to predict the nearest neighbor-

ing words within the context window of a single input word. We fed it with all combinations

of medical codes and associated surrounding contexts observed in the medical trajectories

before SCD. The medical embedding space then corresponds to the hidden representation

(weights of the input layer) learned by the model at the end of the training. Each medical

code is finally represented by a vector of length 100.

We used the open-source Python library Gensim (see https://radimrehurek.com/
gensim version 4.2.0) to train our model. We followed the default options proposed by the

authors for the hyperparameters, except for the min count parameter (min count = 1) and

for the window size, which corresponds to the mean number of medical codes observed

within a 3 month time window among all medical trajectories (window = 186).

Patients with no hospital diagnoses or outpatient drugs before SCD were not used to

feed the model and therefore were excluded from the whole clustering analysis. Infor-

mation on the occurrence, management, and patient outcomes of SCD, as well as socio-

demographic information were not used to build the medical embedding space.

Representation of the patients in the medical embedding space

Once the medical embedding space had been obtained, each patient was mapped to this

space and represented by a vector of length 100, by computing the mean of vectors corre-

sponding to its medical events occurred before SCD. Patient’s vectors therefore summarize

their temporal information, such that two patients who have similar medical trajectories

are expected to be close to each other in the embedding space.
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Clustering analysis

The patients’ vectors computed from the medical embedding space were used to perform a

clustering analysis, in order to find subgroups of SCDwith homogeneous clinical character-

istics. We used the K-Means method [Arthur and Vassilvitskii, 2007] available in the open-

source Python library Scikit-Learn (see https://scikit-learn.org/, version 1.1.3). This
method identifies homogeneous subgroups, such that patients in each cluster are as similar

as possible according to the Euclidean distance. We applied the Elbow method to find the

optimal clustering setting. We varied the number of clusters between 2 and 20 and selected

the one above which the total intra-class variance did no longer improve [Satopaa et al.,

2011].

Visualization of the clusters

We visualized the clusters of patients in a 2-dimensional space, using the t-distributed

stochastic neighbor embedding algorithm [Van der Maaten and Hinton, 2008] available in

the Python library Scikit-Learn. This method first computes a probability distribution over

the vectors of patients in their original 100-dimensional embedding space, and assigns ran-

dom coordinates for each patient in the target 2-dimensional map. These coordinates are

then iteratively updated based on the objective to minimize the Kullback-Leibler divergence

between the probability distribution computed in the high- and low-dimensional spaces. Pa-

tients who are close to each other in the t-SNE map can be considered more similar than

others.

Evaluation and validation of the clusters

The evaluation of the clusters was based on hospital diagnoses and outpatient drugs that

occurred up to 5 years before SCD. For each cluster, we identified the medical codes that

are under or overrepresented, compared to their average occurrence in the whole popu-

lation, using the Cramer’s V test score. Cluster labels were then assigned by examining

the most under or overrepresented medical codes. For each cluster, we also described in-

formation that was not used to build the clustering model, including age, sex, universal

healthcare coverage, and characteristics of SCD. In order to assess the temporal validity of

our approach, we finally applied our model (Word2Vec and K-Means algorithms) trained

with the 2011-2015 SDEC Registry, to SCD cases collected between 2016 and 2020 in the

same geographic area.

3.3 Results

The Paris Sudden Death Expertise Center Registry and the French National
Health Insurance Database

In this study, we combined data from a large population-based registry on SCD with the

French National Health Insurance Database (SNDS). Every case of SCD in persons older

than 18 years that occurred between 16 May 2011 and 31 December 2020 in Paris (France)

and its inner suburbs (Hauts-de-Seine, Seine-Saint-Denis, Val-de Marne) was included. The

cases were collected throughout the Paris Sudden Death Expertise Center (SDEC), a mul-

tidisciplinary consortium dedicated to research, education and care of SCD2. For all SCD

cases, we collected data from the SNDS database, which provides information on healthcare

expenses, on an individual level, for all people affiliated to an insurance scheme in France.

The SDEC Registry and the SNDS database are described more fully in the Methods section.
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First, we analyzed hospital diagnoses and outpatient drugs that occurred up to 15 years

before SCD in the derivation cohort (2011-2015 SDEC population). This population includes

12,189 SCD patients (60.1% men, mean age 69.5±18 years) who had at least 1 hospital di-

agnosis or 1 outpatient drug up to 15 years before SCD. Among them, 2,403 (19.8%) SCD

occurred in a public area. A bystander was present in 8,528 (70.8%) of cases and performed

cardiopulmonary resuscitation (CPR) in 4,432 (50.4%) of cases. An initial shockable rhythm

was performed in 1,802 (16.5%) patients and 2,714 (22.3%) patients were transported alive

to the hospital and 621 (5.1%) patients survived at hospital discharge. We performed a non-

supervised statistical approach to identify relevant clinical clusters of SCD in the derivation

cohort based on their medical trajectories. A methodological overview of the study is pro-

vided in Figure 3.1. Our clustering analysis was then validated on the 2016-2020 SDEC

registry to assess the temporal transportability of the results. The validation cohort (2016-

2020 SDEC population) included 11,485 SCD patients (60.3% men, mean age 71.9±17 years)

who had at least 1 hospital diagnosis or 1 outpatient drug up to 15 years before SCD. Among

these 11,485 SCD, 1,835 (16.0%) SCD occurred in a public area. A bystander was present in

6,941 (62.0%) of cases and performed CPR in 4,810 (71.0%) of cases. 1,846 (21.3%) had an

initial shockable rhythm, 2,336 (20.3%) patients were transported alive to the hospital and

589 (5.1%) patients survived at hospital discharge.
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Figure 3.1: Methodological overview of the clustering study
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Clustering analysis

We used natural language processing (NLP) and clustering methods to identify clusters of

SCD based on 676,930 hospital diagnoses and 5,461,318 outpatient drugs that occurred up

to 15 years before SCD for the 12,189 patients in the derivation cohort. We first applied the

Word2Vec algorithm [Mikolov et al., 2013], a neural network-based embedding model, to

exploit the co-occurrence information ofmedical trajectories before SCD. Eachmedical code

was treated as a word, such that a patient can be represented by a sentence whose number

of words is equal to the number of medical events that occurred before SCD. Our model

transformed all medical codes into numerical vectors of length 100 using the Skip-gram ar-

chitecture of Word2Vec. This approach builds a new representation of medical knowledge,

in which relative geometrical positions reflect medical proximities between diseases and

treatments. Information on the occurrence, management, and patient outcomes of SCD, as

well as socio-demographic information were therefore not used to build the medical em-

bedding space.

Once the medical embedding space had been obtained, each patient was mapped to this

space, by computing the mean of vectors corresponding to its medical events. The patients’

vectors were then used to perform a clustering analysis in order to find clusters of SCDwith

homogeneous clinical characteristics. We used the K-Means method and applied the Elbow

method to find the optimal clustering setting. Eight distinct homogeneous clusters of SCD

were identified in the 2011-2015 SDEC population. We visualized the clusters of patients

in a 2-dimensional space, using the t-distributed stochastic neighbor embedding algorithm

(t-SNE) [Van der Maaten and Hinton, 2008] (see Figure 3.2). Patients who are close to each

other in the t-SNE map can be considered more similar than others. We identified 3 large

central groups and 5 small peripheral groups (Figure 3.2). Baseline characteristics of each

cluster are presented in Table 3.5). Figures 3.3 and 3.4 describe the hospital diagnoses and

outpatient drugs that were under or overrepresented in each cluster up to 5 years before

SCD. We assigned a label to each cluster based on these clinical determinants, age, sex, uni-

versal healthcare coverage and characteristics of SCD.
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Figure 3.2: Visualization of the clusters (derivation cohort)

Cluster 1, including 3,638 (30%) of the 12,189 patients, with mainly circulatory system

diseases and cardiovascular drugs, located at the right side of the map was the largest group

identified in the SCD population (Figures 3.2, 3.3 and 3.4). Patients of this cluster were older

(74.1 years vs. 69.5 years, p<0.001) and over-represented by men (74.3% vs 60.1%, p<0.001)

as compared to the total population. It was labelled as SCD cluster with cardiovascular dis-

eases (CVD) because of the old age, the over-representation of men and the cardiovascular

comorbidities and drugs associated with this cluster. Among cardiovascular diseases, coro-

nary heart disease was already known to be the most common pathology underlying SCD,

followed by cardiomyopathies, inherited arrhythmia syndromes, and valvular heart disease

[Hayashi et al., 2015].

Cluster 2, including 3,307 (27%) patients, was located in the center of the map. Patients

of this cluster were older (81.3 y. vs 69.5 y, p<0.001) and over-represented by women (62.0%

vs. 39.9%, p<0.001) as compared to the total population. It was labelled as SCD cluster with

mainly aged women (MAW). Previous studies have shown that women are considerably

older than men at the time of SCD. They have more often nonischemic causes such as pri-

mary myocardial fibrosis. Women are also more likely to have a normal electrocardiogram

(ECG) prior to SCD than men, but more women have ECG markers of left ventricular hy-

pertrophy than do men who have SCD [Haukilahti et al., 2019].

Cluster 3, including 2,645 (22%) patients, composed of young subjects (54.8 y. vs. 69.5

y, p<0.001) over-represented by men (64.6% vs. 60.1%, p<0.001) who had few comorbidities

and drugs before SCD, was located under the MAW cluster and at the left side of the CVD

cluster. It was labelled as SCD cluster with no apparent risk factor (NARF) since the sub-

jects do not have the usual cardiovascular risk factors, conditions and related drugs. It is

usually very difficult to identify these high risk subjects before the occurrence of their SCD.

Here, our approach, collecting micro signals over the 15 years before the event permitted

their identification. Since they represent more than one fifth of the total number of SCD,

the present result is of peculiar importance and will require additional works. The NARF

cluster, like the CVD cluster, had the most frequent proportion of patients with an initial
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shockable rhythm (n = 606, 25%) and was associated with a better survival rate (n = 234,

8.8%, p<0.001). SCD in young athletes < 35 years old can match well with SCD with NARF

subjects. Hypertrophic cardiomyopathy is the most common cardiac abnormality impli-

cated in SCD in young athletes < 35 years old in the United States followed by congenital

anomalies of the coronary artery and arrhythmogenic right ventricular cardiomyopathy.

Hence, athletic pre participation screening has been made essential for minimizing the risk

for SCD in them [Kumar et al., 2021].

On the periphery of these 3 big clusters, the model identified 5 small and lesser known

clusters.

Cluster 4, including 862 (7%) patients, was associated with mental, behavioral, and neu-

rodevelopmental disorders and with drugs of the nervous system. Patients of this cluster

were younger (54.4 y. vs. 69.5 y., p<0.001) as compared to the total population. It was

labelled as SCD with neurologic diseases (ND). Some studies have suggested that clinical

depression, phobic anxiety and antipsychotic drugs may be associated with a higher risk of

SCD independently of established coronary heart disease risk factors [Empana et al., 2006,

Albert et al., 2005, Whang et al., 2009, Weeke et al., 2014]. Other studies have suggested that

acute stroke can disturb central autonomic control, resulting in myocardial injury, electro-

cardiographic abnormalities, cardiac arrhythmias, and ultimately sudden death21,22. Simi-

larly, myocardial damage and an increase of troponins and Takotsubo syndrome have been

reported in humans suffering from epileptic seizures23–25. Finally, McMillan and Teasdale

reported a high incidence of sudden death in humans who had mild traumatic brain injury

years ago [McMillan and Teasdale, 2007].

Cluster 5, including 688 (6%) patients, was associated with diseases and drugs of the

respiratory system, while Cluster 6, including 518 (4%) patients, was characterized by tu-

mors and their associated medical codes, without one cancer being identified more than

another. These two clusters were well separated from the other ones and located at the

top of the map for Cluster 5 and at the bottom of the map for Cluster 6. Cluster 5 was la-

belled as SCD with respiratory diseases (RD) and Cluster 6 as SCD with oncologic diseases

(OD). Indeed, cumulating evidence associates chronic obstructive pulmonary disease with

an increased risk of SCD both in cardiovascular patient groups and in community-based

studies, independent from cardiovascular risk profile. Underlying mechanisms explaining

this association require further investigation [Empana et al., 2006, Van den Berg et al., 2016].

Similarly, patients with bronchial asthma may die unexpectedly and with no obvious cause

for the severity of this process [Robin and Lewiston, 1989]. Finally, cardiac involvement

and fibrosis in sarcoidosis occur in 5-10% of cases and lead to congestive heart failure, ar-

rhythmias and sudden cardiac death [Markatis et al., 2020]. In cancer patients, SCD differs

significantly when compared to non-cancer patients. Coronary events are less prominent

whereas respiratory causes (pulmonary embolism and hypoxia) are common etiologies in

cancer30. There is variability in the incidence of corrected QT prolongation of various

cancer drugs (0%-22%); however, the clinical consequence, as defined by arrhythmias or

sudden cardiac death, remains rare [Weeke et al., 2014, Porta-Sanchez et al., 2017]. As for

primary defibrillator therapy in patients with cancer, its relative benefit is limited because

of competing risk of nonarrhythmic mortality and a personalized cardiologic and oncologic

coevaluation is needed [Itzhaki Ben Zadok et al., 2023].

Cluster 7, including 279 (2%) patients, was associated with kidney diseases and over-

represented by men (72.4% vs. 60.1%, p<0.001). Indeed, chronic kidney disease (CKD) pa-

tients demonstrate an increased incidence of SCDwith declining kidney failure, mainly from
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cardiovascular causes33. Current evidence suggests that coronary artery disease (CAD) as-

sociated risk factors may play a lesser role in CKD patients. Complex relationships between

CKD-specific risk factors, structural heart disease, and VA contribute to the high risk of

SCD. In dialysis patients, the occurrence of VA and SCD could be exacerbated by electrolyte

shifts, divalent ion abnormalities, sympathetic overactivity, inflammation and iron toxicity

[Di Lullo et al., 2016].

Finally, Cluster 8, including 252 (2%) patients, composed of young subjects (51.0 y. vs.

69.5 y, p<0.001) over-represented by men (82.5% vs. 60.1%, p<0.001), was associated with

mental, behavioral, and neurodevelopmental disorders (like in the ND cluster), but also with

infectious diseases including human immunodeficiency virus infection and socioeconomic

disadvantages. We found that 21.1% of patients in this cluster had access to the universal

healthcare coverage (vs. 6.1% in the total population, p<0.001). It was labelled as SCD with

social deprivation (SD) because of the young age, the high rate of subjects with universal

healthcare coverage, the over-representation of men and the comorbidities associated with

this cluster. Lower socioeconomic status, depression, anxiety, social isolation, and psycho-

logical stress have all been linked to an increase in cardiovascular mortality in diverse pop-

ulations [Mensah et al., 2005, Rozanski et al., 1999]. As for HIV-infected patients37, there is

biologic plausibility that the following mechanisms may be contributing to the significantly

heightened risk of sudden cardiac death in HIV to varying degrees: VA, myocardial fibrosis

and scar, prolonged corrected QT interval (both as a direct effect of HIV on repolarization as

well as a result of concurrent medications/antiretroviral therapies), substance abuse, struc-

tural heart disease, and premature atherosclerosis. Further studies are needed to assess the

relative contribution of each of these mechanisms and risk factor.

SCD occurred in a public place more frequently for the SD, NARF and ND clusters (39.4%

p<0.001, 32.1% p<0.001 and 31.0% p<0.001 respectively) as compared to the total population

(19.8%) (Table 1a). Bystander presence was almost the same in all clusters except for the

SD and ND clusters in which bystanders were less present when cardiac arrest occurred

(p<0.001). Bystander CPR was almost the same in all clusters except for the MAW and OD

clusters where CPR was less performed by bystanders.
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Figure 3.3: Main outpatient drugs in each cluster (derivation cohort)

Figure 3.4: Main hospital diagnoses in each cluster (derivation cohort)
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Figure 3.5: Socio-demographics, SCD characteristics and outcomes of

patients in the total derivation cohort and in each cluster
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Validation of the model

In order to assess the temporal validity of the results, we validated our model on the 2016-

2020 SDEC population. 5,751,323 outpatient drugs and 979,639 hospital diagnoses were col-

lected for the 11,485 SCD patients of the validation cohort up to 15 years before SCD. These

patients were represented with the medical embedding space obtained from the derivation

cohort. They were then classified into the 8 clusters described in the previous section. We

evaluated the stability of the clusters by comparing the results obtained in the 2 cohorts. We

found that the clusters were located exactly at the same place in the 2-dimensional space

(Figure 3.6), except for the ND and SD clusters. These 2 clusters were on the left of the NARF

cluster in the derivation cohort although they were found below in the validation cohort.

We also found that baseline characteristics (Table 1b) and under or overrepresented medical

codes (Figures 3b and 4b) were very similar to those obtained in the derivation cohort. As

in the derivation cohort, survival was the highest in NARF cluster and the lowest in MAW

cluster.

Figure 3.6: Visualization of the clusters (validation cohort)
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Figure 3.7: Main outpatient drugs in each cluster (validation cohort)

Figure 3.8: Main hospital diagnoses in each cluster (validation cohort)

90



Chapter 3. Identifying Subgroups of SCD with Clustering Analysis

Figure 3.9: Socio-demographics, SCD characteristics and outcomes of

patients in the total validation cohort and in each cluster
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3.4 Discussion

For the first time to our knowledge, AI combined with an agnostic approach allowed the

identification of new clusters of SCD in the general population, using unselected cardiovas-

cular and non-cardiovascular variables, providing finally a global picture of SCD subjects.

Moreover, our approach permitted to identify a large group of relatively young subjects

without known cardiovascular risk factors which were very difficult to identify until now.

Considering the heterogeneity between the groups helps us to understand why it was so

difficult until now to find the causes of SCD with the classical approach restricted to car-

diovascular variables and conditions. The use of AI was necessary but overall it was the

choice to open to unselected medical variables that permitted to provide this global picture.

This was made possible thanks to a widely available, low-cost, exhaustive population-based

data pertaining to the large Paris Sudden Death Expertise Center registry and the French

National Health Insurance Database.

The validation of our model on a more recent population allows us to ensure that our

AI technology did not inadvertently incorporated bias. However, careful attention should

be paid to the social context in which the data have been collected; our results based on

French data may not be generalized elsewhere. We believe further deliberations on the

lesser known clusters identified in this study may eventually have practical implications,

help in guiding management decisions, tailoring and targeting early treatment to patients

who would benefit most, and most probably improve patient outcome. Further investi-

gations within each cluster will require the involvement of other medical specialties in

addition to cardiology. By extending far beyond cardiovascular pathology, our approach

provides a global picture of SCD that might eventually lead to discover new pathways and

help identifying high risk subjects who need specific individualized preventive strategies.
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This Chapter comes from a joint work with Wulfran Bougouin, Frankie Beganton, Jean-
Philippe Empana, Nicolas Chopin and Xavier Jouven, and will be submitted in The Lancet
Journal in May 2023.

4.1 Introduction

Sudden Cardiac Death (SCD) remains a major public health challenge worldwide, account-

ing for 10% to 20% of all deaths in industrialized countries [Chugh et al., 2008, Zeppenfeld

et al., 2022]. Resuscitation is difficult, and despite decades of research, prognosis remains

poor, with survival after SCD below 10%. Considering disappointing results of recent ther-

apeutic trials, a paradigm shift toward SCD prevention is essential from a public health per-

spective. Efficient tools for SCD prevention are available, such as implantable cardioverter

defibrillators (ICD) which have proven their efficacy for both secondary and primary pre-

vention. However, identifying the best candidates for ICD implantation remains challeng-

ing.

Some very-high risk patients (survivors of SCD, high-risk cardiomyopathies) are clearly

identified for ICD implantation in both European and American guidelines [Zeppenfeld

et al., 2022]. However, these patients only account for a small proportion of SCD burden,

whereas most cases arise from the general population without any prior known heart dis-

ease [Myerburg and Junttila, 2012]. Identification of patients at risk of SCD as their first car-

diac event remains a difficult challenge to address, with somehow disappointing results so

far. Several prediction models for SCD in the general population have been proposed [Deo

et al., 2016, Waks et al., 2016, Aro et al., 2017, Bogle et al., 2018, Holkeri et al., 2020], but they

focused only on cardiac-related risk factors, and are not designed for individual-level predic-

tion. Improving their broad applicability in the population would require a comprehensive

assessment of medical history, including both cardiovascular and non-cardiovascular con-

ditions. In addition, it should be combined with a new methodological approach to provide

personalized and explainable risk score for each patient. Finally, optimal model should not
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only offer high discrimination but also adequate calibration to identity accurately the top

deciles of predicted risk, which could benefit for specific preventive strategies.

To this end, we developed and validated a population-based model of SCD prediction,

usingmachine learning algorithms, and large-scale data analysis of electronic health records

of every SCD occurred in Greater Paris (10% of the French population) during 10 years.

4.2 Methods

Study Design

This study was designed as a retrospective study for the development and validation of a

clinical prediction model. Data collection and analyses were conducted in accordance with

all relevant French regulatory requirements. Access to the French National Health Insur-

ance database is regulated by the Committee of Expertise for Research, Studies and Eval-

uations in the field of Health (CEREES) and the French National Data Protection Agency

(CNIL). The study protocol was approved in 2016 for SCD cases collected between 2011 and

2015 (CEREES approval N°12-336; CNIL authorization DR-2016-401) and approved in 2022

for SCD cases collected between 2016 and 2020 (CEREES approval N°2785673). The Paris

Sudden Death registry was also approved by the CNIL (authorization DR-2012-445). In ac-

cordance with the regulations in force, informed patient consent was not required due to

the retrospective and observational nature of the study. We used the Transparent Reporting

of a Multivariable Prediction Model for Individual Prognosis or Diagnosis (TRIPOD) guide-

lines [Moons et al., 2015] for reporting the development and validation of the prediction

model.

Population

Sudden Cardiac Death Cases

Every case of unexpected out-of-hospital cardiac arrest in persons older than 18 years that

occurred between 16May 2011 and 31 December 2020 in Paris (France) and its inner suburbs

(Hauts-de-Seine, Seine-Saint-Denis, Val-de Marne) was collected throughout the Paris Sud-

den Death Expertise Center (SDEC). The SDEC registry is a multicenter population-based

registry system covering a population of 6.7 million inhabitants (10% of the French popu-

lation) [Bougouin et al., 2014, Maupain et al., 2016, Jabre et al., 2016, Bougouin et al., 2018,

2020]. It records prospectively and continuously information on the occurrence (Utstein cri-

teria), management (pre- and in hospital) and patient outcomes (survival and neurological

outcomes) of all SCD cases. Exclusion criteria of the SDEC registry are a prior terminal con-

dition, no attempt at advanced cardiac life support by emergency medical system personnel

or an obvious non-cardiac cause according to Utstein templates for resuscitation registries

reporting data on cardiac arrest [Jacobs et al., 2004, Perkins et al., 2015]. Our study therefore

included only cases who experienced SCD.

To ensure the completeness of collection in the area, an intensive and prospective epi-

demiological case-ascertainment programme was applied, involving all components of the

emergencymedical system. We performed a retrospective control on a sample of 3 intensive

care units and the SDEC registry detected 99% of SCD cases admitted alive in this sample

[Bougouin et al., 2014]. In addition, each case was independently reviewed by two inves-

tigators of the SDEC to ensure the accuracy of classification and to avoid over-estimation

often encountered in retrospective data collection.
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Controls

SCD cases included in this study were matched by age, sex and residence area with a control

group which had no SCD and was randomly sampled from the French general population,

using the FrenchNational Health Insurance database. One control was selected for each case

of SCD through an individual case-control matching. The endpoint for the control group

was the day on which SCD occurred among their corresponding cases. Exclusion criteria

from the sampling procedure were individuals already included in the SDEC registry, aged

under 18 years or who lived outside the area of interest.

Myocardial Infarction

SCD cases collected between 2016 and 2020 were also matched by age, sex and residence

area with a group of controls who had myocardial infarction, with no SCD, and who were

identified using the French National Health Insurance database. The endpoint for this group

was the day on which myocardial infarction occurred. As for the general population, one

control was selected for each case of SCD through an individual case-control matching.

Data Sources

For SCD cases and controls, we collected data from the French National Health Insurance

database (SNDS) [Moulis et al., 2015, Bezin et al., 2017, Tuppin et al., 2017]. The French

Universal Health Insurance System manages all reimbursements of healthcare for all peo-

ple affiliated to a health insurance scheme in France, covering 98% of the population (67

million inhabitants). It provides information on all healthcare expenses, on an individual

level, including outpatient visits, procedures and drugs as well as information from hospital

discharge summaries and chronic conditions. Data acquisition is permanent, from birth to

death, irrespective of wealth, age, or work status, resulting in one of the largest electronic

health records databases in the world. The data are anonymized but individually linked,

which allows an individual longitudinal follow-up of participants over time.

The SNDS database links 2 main existing databases, the nationwide claims database

of the French National Healthcare System (SNIIRAM) and the National Hospital database

(PMSI). The SNIIRAMdatabase contains exhaustive and individual data on outpatient health-

care reimbursements. It includes data on ambulatory care with all reimbursed drugs from

community pharmacies and all reimbursed medical interventions. It also includes long-

term diseases and chronic conditions as well as information about occupational accidents

and diseases. The PMSI database is the national hospital discharge database, concerning

both French public- and private-sector hospitals. Main data includes dates of admission

and discharge, type of diagnoses, duration of stay as well as procedures (medical acts and

biology) and especially costly drugs administered in hospital.

Hospital diagnoses are coded according to the International Classification of Diseases,

10th revision (ICD-10), which is a classification tool developed by the World Health Or-

ganization for epidemiology, health management and clinical purposes. Drugs are coded

according to the Anatomical Therapeutic Chemical (ATC) system, that classifies drugs ac-

cording to the organ or system on which they act and their therapeutic, pharmacological,

and chemical properties. Results relating to biological tests and other medical procedures

are not recorded, andmedical indications are not specified for the reimbursed medical cares.

Demographic (age, sex) and socioeconomic (affiliate insurance scheme, universal healthcare

coverage and state medical assistance) information are available in the SNDS database. The
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universal healthcare coverage is obtained for all individuals whose income is below a spe-

cific threshold and was used as a proxy variable for social deprivation in this study.

The SNDS database has been described in detail previously [Moulis et al., 2015, Bezin

et al., 2017, Tuppin et al., 2017, Revet et al., 2022] and has been used to conduct multiple

studies in cardiovascular epidemiology Giral et al. [2019], Piot et al. [2022], Lecoeur et al.

[2023]. More details are available at https://www.health-data-hub.fr.

Model Development and Validation

We developed a 3-month prediction model of SCD in the general population, using a su-

pervised learning classification model. The prediction model was derived on SCD cases

and matched controls collected between 2011 and 2015 (derivation cohort), and was then

validated on SCD cases and matched controls collected between 2016 and 2020 (validation

cohort). To evaluate to which extent our approach was specific for SCD and not only related

to risk factors for coronary atherosclerosis development, our model was also validated on

cases of myocardial infarction, as sensitivity analysis.

We assessedwhethermachine learning approaches outperform standard statisticalmeth-

ods, and compared the Logistic Regressionmodel with 3 ensemble methods (Random Forest,

Extreme Gradient Boosting and CatBoost) which aggregate multiple learning algorithms to

obtain more accurate and robust prediction. We also applied a Soft Voting Classifier which

averages the prediction generated by the 4 aforementioned models.

To deal with overfitting in model selection, hyper-parameters and model settings were

chosen using a cross validation on the derivation cohort. The derivation cohort was splitted

in 10 non-overlapping subsets of equal size, such that all sets contained the same proportion

of SCD cases. The models were then trained 10 times, and each time one of the subsets was

left out from training to be used as a test set. The final performance of the cross-validation

was given by the average of the 10 estimates in the test sets. Once the best model was se-

lected, we trained it on the full derivation cohort and applied it on the validation cohort. All

themodels were trainedwith the open source Python library Scikit-Learn (see https://scikit-

learn.org,/, version 1.1.3).

The prediction model is based on outpatient drugs and hospital diagnoses that occurred

up to 5 years before SCD. To investigate whether non-cardiovascular variables could en-

hance predictive performance beyond standard risk factors of SCD, we compared 2 dif-

ferent strategies for variable inclusion. The first approach (CVD model) includes medical

codes that attempt to represent traditional risk factors for cardiovascular diseases, based on

an exhaustive literature review of SCD prediction models. We selected 8 variables as sur-

rogate markers for coronary artery disease, stroke, diabetes, hypertension, smoking status,

obesity, lipid disorders and chronic renal failure (see Supplementary material, Table A.1).

Other main risk factors, including left ventricular ejection fraction, electrocardiogram sig-

nals and blood pressure were unfortunately not available in the SDNS database. The second

approach (EHR model) includes all medical codes that occurred up to 5 years before SCD,

without any prior selection. However, given the infrequent occurrence of some drugs or di-

agnoses in the medical history of participants, we grouped the codes according to the third

level of the ATC and ICD-10 classification systems. For instance, acebutolol (ATC C07AB04)

was labeled as selective beta blocking agents (ATC C07AB), and atherosclerotic heart dis-

ease of native coronary artery (ICD-10 I25.1) was labeled as chronic ischemic heart disease
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(ICD-10 I25).

We performed 3 data preparation steps in the model development. For each medical

code, we first summed up the number of times they occurred up to 5 years prior to the

outcome. We then normalized the data (by scaling each variable to the range of 0 and 1),

and finally performed a variable selection to achieve a ratio of 5:100 between variables and

SCD cases, to prevent overfitting. This variable selection was based on importance weights

using a Gradient Boosting classifier. A methodological overview of the study is provided in

Figure 1.

Model Evaluation

The evaluation of the models was based on discrimination and calibration. For each model,

we evaluated the area under the receiver operating characteristic (AUC), positive predictive

value (PPV) and sensitivity. We applied a bootstrap method to build empirical confidence

intervals of 95% for AUC using 1,000 samples (with replacement) and 30 iterations. We

selected the one that showed the highest average AUC score in the cross-validation. The

calibration (i.e., the similarity between predicted risks of SCD and the actual outcomes)

was evaluated with the histogram of predicted risk. We adopted the usual approach for

binary outcomes of plotting decile-binned predictions on the x-axis and number of observed

SCD cases and controls in each bin on the y-axis. We also gauged the calibration visually

by inspecting how the calibration curve aligned with the diagonal line that represented

perfect calibration. To assess the robustness of our approach, we finally conducted several

sensitivity analyses and stratified the performance on different subgroups of the population

(regarding age, sex and social deprivation).

Model Explanation

Once the prediction model was trained and optimized, we used the Shapley additive expla-

nations (SHAP) algorithm [Lundberg and Lee, 2017] to explain how the variables relate to

the predicted risk at the individual level. SHAP is a model-agnostic representation of vari-

able importance where the impact of each variable on a particular prediction is represented

using Shapley values, inspired by cooperative game theory. A Shapley value measures how

much a single variable, in the context of its interaction with other variables, contributes to

each individual prediction. It is well suited to interpret complex models which are difficult

for physicians to interpret, such as ensemble learning models, and has been already used

in a wide range of medical applications [Lundberg et al., 2018, Thorsen-Meyer et al., 2020,

Hyland et al., 2020]. We used the SHAP library (see https://shap.readthedocs.io, ver-
sion 0.39.0), which provides a fast and exact method to estimate SHAP values for ensembles

of trees.

4.3 Results

Baseline characteristics

The derivation cohort included 12,338 SCD cases (60.3% men, mean age 69.4±17years) col-

lected between 2011 and 2015 in the SDEC registry. Among them, 2,453 (19.9%) SCD oc-

curred in a public area. A bystander was present in 8,644 (70.1%) of cases and performed

cardiopulmonary resuscitation (CPR) in 4,505 (50.5%) of cases. 1,854 (16.7%) had an ini-

tial shockable rhythm, 2,779 (22.5%) were transported alive to the hospital and 649 (5.3%)

patients survived at hospital discharge. SDC cases were individually matched with 12,338
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controls sampled in the French general population. This resulted in a total of 24,676 par-

ticipants involved in the model development. The data collected up to 5 years prior to the

outcome revealed that, on average, SCD cases were prescribed 300 outpatient drugs (against

130 for controls) and received 40 hospital diagnoses (against 7 for controls).

The validation cohort (2016-2020 SDEC registry) included 11,620 SCD cases (60.5% men,

mean age 71.8±16years), 11,620 matched controls sampled in the French general population

and 11,620 cases of myocardial infarction. Among SCD cases, 1,883 (16.2%) occurred in a

public area. A bystander was present in 7,023 (62.0%) of cases and performed CPR in 4,871

(71.1%) of cases. 1,883 (21.5%) had an initial shockable rhythm, 2,388 (20.6%) were trans-

ported alive to the hospital and 612 (5.3%) survived at hospital discharge. Notably, we found

that participants of the validation cohort were prescribed more outpatient drugs (+12%) and

received more hospital diagnoses (+17%) as compared to the derivation cohort, both for SCD

and controls from the general population. A flow chart of the study is provided in Supple-

mentary materiel, Figure A.1.

Baseline characteristics of the populations are shown in Table 4.1 and described in detail

in Supplementary material, Table A.2. With the exception of social deprivation, all charac-

teristics differed significantly between SCD cases and controls. Among the SCD population,

11,798 (49%) were hospitalized for a cardiovascular disease, compared to 5,654 (23,6%) for

controls, and 19,819 (83%) were prescribed cardiovascular drugs prior to the outcome, com-

pared to 16,818 (70.2%) for controls. Notably, 2,960 (12.4%) SCD cases had experienced an

acute coronary syndrome up to 5 years before the occurrence of SCD. Additional charac-

teristics are available in Supplementary material, Table A.2.
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Figure 4.1: Methodological overview of the study

99



Chapter 4. Personalized Prediction Model of SCD in the General Population

Table 4.1: Baseline characteristics of the populations

Variables used in the model

The aim of the study was to develop a 3-month prediction model of SCD in the general

population, based on outpatient drugs and hospital diagnoses that occurred up to 5 years

prior to the outcome. For this purpose, we conducted a longitudinal follow-up analysis and

extracted a total of 9,460 medical codes from the SNDS database. After grouping the codes

according to the third level of the ATC and ICD-10 classification systems, 196 groups of
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drugs and 1,546 groups of hospital diagnoses were included in the model development. We

then performed a variable selection to prevent overfitting in the cross-validation, and finally

selected 188 medical codes to develop the model. A detailed flow chart of variable inclusion

is provided in Supplementary material, Figure A.3.

Model performance

We found that the EHR model combined with the CatBoost algorithm offered the best per-

formance based on cross-validation results. In the derivation cohort, the model achieved an

AUC of 0.80 (95% CI 0.78 - 0.82) (see Figure 4.2), with a positive predictive value of 77% and

a sensitivity of 68%. The calibration plot indicated a strong adequacy between the predicted

risks and observed outcomes (see Supplementary material, Figure A.4). Notably, our model

demonstrated excellent discrimination performance in the highest deciles of predicted risk,

as depicted in Figure 4.3, which displays the histogram of SCD cases and controls for each

decile of predicted risk. Our model detected 2,908 (24%) SCD cases with a predicted risk

exceeding 90%, achieving a positive predictive value of 94% in this range. We also observed

that most of controls are accurately identified in the lowest deciles, and their number lin-

early decreases in the high-risk subgroups.

In contrast, the CVD model combined with Logistic Regression displayed a poor pre-

dictive performance, as compared with the EHR + CatBoost model, with an AUC of 0.66

(0.63 - 0.68), a positive predictive value of 71% and a sensitivity of 45%. The use of machine

learning algorithms with the same cardiovascular variables (CVD model) did not improve

the results (Figure 4.2). Further information on model comparison is available in Supple-

mentary Material, Table A.3.
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Figure 4.2: AUC curves
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Figure 4.3: Histogram of predicted risks

We then evaluated the performance of the model in the validation cohort and obtained

an AUC of 0.80 (0.77 - 0.81) (Figure 2), which was consistent with the results of the deriva-

tion cohort. The sensitivity improved slightly to 71%, while the PPV decreased to 73%. The

calibration plot also confirmed the robustness of the results (Supplementarymaterial, Figure

A.4), and the discrimination performance in the highest deciles of predicted risk remained
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unchanged as compared to the derivation cohort (Figure 4.3). Myocardial infarction cases

were mostly predicted in the low and middle deciles. 21% of them were identified in the

two highest deciles, as compared to 40% for SCD. This result demonstrates the capacity of

our model to accurately identify high risk patients with specific risk factors for SCD, as

compared to acute coronary syndrome.

We conducted several sensitivity analyses and stratified the performance regarding age,

sex and social deprivation index. The results are available in detail in Supplementary mate-

rial, Table A.4. Notably, the model demonstrated a slightly better AUC and PPV for younger

subjects (under 73 years old, median age of the population), while more SCD cases were

identified in the oldest subjects (over 73 years old). The predictive performance remained

independently associated with sex. However, we observed a slightly higher PPV for males

and greater sensitivity for females. Finally, our model demonstrated superior performance

for subjects with a lower social deprivation index. These insights can inform strategies to

enhance the accuracy of our model in predicting SCD risk among diverse populations.

Model explanation

After training and validation, we identified the variables that have the most significant im-

pact on the model’s prediction. Among the selected variables, outpatient drugs were found

to be the most influential predictors, explaining 60% of the model. Figure 4.4 illustrates the

10 most contributing groups of ATC and ICD-10 codes, which were ranked based on the

sum of their importance values. The top 3 important groups are drugs related to the ner-

vous system (15.2%), the cardiovascular system (13.1%) and alimentary tract andmetabolism

(11.2%), which collectively account for 39.4% of the model’s overall prediction.
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Figure 4.4: Importance of the variables

In addition, we conducted supplementary analysis to provide a detailed explanation of

the prediction at the individual level. For each subject of the study, we computed the Shap-

ley scores from the CatBoost model to evaluate the contribution of variables to his predicted

risk. To illustrate this personalized approach, we present the Shapley scoring method for 2

SCD cases of the validation cohort in Figure 4.5.

We first report the case of a 54-year-old male (Figure 5.a) who was hospitalized be-

fore SCD for diseases of the nervous system, including Parkinson’s disease, dystonia and
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mononeuropathies of upper limb. He also had a history of inflammatory diseases of the geni-

tourinary system (prostate inflammation and acute pyelonephritis) as well as cardiovascular

disorders (hypertension and paroxysmal tachycardia). Our predictive model identified this

patient with a very high level of risk (97.7%), which was mainly explained by cardiac stim-

ulants, hypnotics and sedatives, lipid modifying agents and blood glucose lowering drugs.

The second case is a 71-year old male (Figure 5.b) who had not been hospitalized for the

past 5 years prior to SCD. He was prescribed drugs mainly related to the alimentary tract

and metabolism (blood glucose-lowering drugs, excluding insulins) and the cardiovascular

system (beta-blocking agents, ACE inhibitors, lipid-modifying agents, and vasodilators).

Our predictive model identified this subject with a moderate level of risk (62.3%), which

was mainly explained by blood glucose-lowering drugs, antithrombotic, ACE inhibitors and

potassium.
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Figure 4.5: Individual explanations of the prediction model

107



Chapter 4. Personalized Prediction Model of SCD in the General Population

4.4 Discussion

For the first time, we provide a personalized prediction model of SCD, which explains the

predicted risk at the individual level, and accurately identifies the top deciles of risk in the

general population. Our machine learning algorithm uses comprehensive assessment of

medical history from 23,000 SCD cases, and achieved high discrimination and excellent cal-

ibration. Notably, the model identified a subgroup of patients with a predicted risk of SCD

over 90% and a PPV of 94%, representing more than 25% of the total SCD population. These

findings offer a new step towards personalized prevention in the general population, espe-

cially for high-risk individuals who may benefit from specific interventions.

To the best of our knowledge, this is the first research project using big data andmachine

learning techniques for SCD prediction in the general population. Recently, the PROFID

study [Glen2021] proposed a new AI approach to predict SCD after myocardial infarction,

by merging all important SCD clinical trials and cohorts, resulting in 225,000 participants

from Europe, United States, and Israel. 85 variables, mostly cardiovascular, were included in

the model, in addition to LVEF. However, this model can be only used to predict SCD among

very-high risk patients, who are already well identified for preventive strategies. Previous

research has attempted to predict SCD in the general population, with some success. Early

cohorts from the 1970s combined baseline characteristics with family history, heart rate dur-

ing rest and exercise, and ECG abnormalities as potential predictors of SCD compared to

ischemic heart disease [Jouven et al., 1999, 2005]. More recent studies have developed gen-

eralizable risk scores for SCD in the general population using data from large from cohorts,

such as the Atherosclerosis Risk in Communities, the Cardiovascular Health Study and the

Framingham Heart Study [Deo et al., 2016, Waks et al., 2016, Aro et al., 2017, Bogle et al.,

2018, Holkeri et al., 2020]. These models showed good discrimination performance, with

C-statistics ranging from 0.74 to 0.89, suggesting their potential utility in predicting SCD

in the general population. However, they also predict the occurrence of non-sudden coro-

nary death, even after considering electrical heterogeneity, and are not specific to SCD. One

possible explanation for this limitation is that most risk factors considered in the models

are mostly related to coronary atherosclerosis development, and are not specific to ventric-

ular arrhythmic susceptibility. In addition, these models cannot provide personalized risk

scores for each patient, as their methodological approach is not designed for individual risk

assessment.

Current prediction models are often based on cardiovascular risk factors only, which

may not provide a comprehensive picture of SCD in the general population. Most of these

variables are also measured at one single occasion and do not integrate trajectories of risk

factors and treatments over time. In contrast, our approach capitalizes on the use of one of

the largest electronic health records databases in the world, which provides a comprehen-

sive source of data. Trough longitudinal follow-up, we were able to collect nearly 10,000

daily data points for each participant up to 5 years prior to SCD, including both cardiovas-

cular and non-cardiovascular variables. This approach achieved to identify individuals at

risk of SCD who may have otherwise gone undetected using traditional cardiovascular risk

factors alone. This result could have significant implications for the general population,

as our model can be easily deployed at scale and implemented in low-cost mass screening

programs.

In addition, our findings demonstrate excellent calibration and high accuracy in pre-

dicting a significant proportion of cases in the last decile of predicted risk, which accounts

for more than 25% of the total SCD population. These individuals could greatly benefit from
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tailored interventions, such that ICD implantation, particularly those with unknown heart

disease who are not identified by current risk stratification guidelines. Hence, our results

suggest that incorporating our prediction model into routine clinical practice could improve

the identification of optimal candidates for primary prevention of SCD.

Another major strength of our model is the use of Shapley values, which identify the

variables that drive the predicted risk at the individual level. Most of machine learningmod-

els provide predictions without explanation and are difficult for physicians to trust and are

given little insight into how they should respond. SHAP model provides a solution to miti-

gate this issue and to explain any prediction method, whereas classical approaches provide

only global effects of the variables. This level of interpretability is critical, as it allows clini-

cians to tailor preventive measures for each patient, and better understand how to respond

to their predicted risk. Our results offer therefore a promising avenue for future research in

the field of personalized SCD prediction. However, it is important to note that we only pro-

vide an association between the identified modifiable risk factors and SCD, and caution is

needed when it comes to identifying causation. Future prospective studies will be required

to gain a more comprehensive understanding of the complex links between modifiable risk

factors and SCD.

Several limitations should be acknowledged in our study. First, the investigation was

conducted in France, and our findingsmay not be directly generalizable to other populations

due to potential differences in environmental factors and healthcare systems. The French

National Health Insurance database is a unique and comprehensive database which may be

difficult to replicate in other countries. Therefore, caution is advised when extrapolating

our results to other regions or ethnic groups, and further validation studies in diverse EHR

collection systems are needed to determine the generalizability of our findings. The use of

EHR as a source of data is another limitation. While EHR have demonstrated their poten-

tial as a valuable tool for research, they may not capture all relevant clinical information

accurately. Incomplete or incorrect documentation, data entry errors, and variations in the

quality of EHR systems may affect the accuracy and completeness of medical codes used

in our analysis. Therefore, some risk factors included in the model may have been missed

or misclassified, leading to potential underestimation or overestimation of their association

with SCD. Finally, our study did not consider important risk factors such as smoking and

physical activity, which were only approximated. Other potential risk factors, such as hy-

perlipidemia, were also only partially captured in the SNDS database, based on surrogate

markers. This approach may have introduced bias or imprecision in the analysis. Future

studies that include a more comprehensive assessment of lifestyle and behavioral factors

are therefore needed to improve our prediction model.

4.5 Conclusion

We developed and validated a prediction model of SCD in the general population, using a

unique population-based registry and large-scale data analysis of electronic health records.

This personalized approach, based on machine learning algorithms and a comprehensive

assessment of both cardiovascular and non-cardiovascular risk factors, make it promising

to enhance preventive strategies and reduce the global burden of SCD in the population.
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This Chapter comes from a joint work with Nicolas Chopin, and was submitted in the
Foundations of Data Science Journal

5.1 Introduction

Motivation

While useful more generally, the approach developed in this paper was initially motivated

by a public health dataset recording the medical history of a large number of individuals

that may or may not have suffered from sudden cardiac death (SCD); this dataset will be

described more fully later. One may use this data to determine whether consumption of

medical drugs or hospitalization may increase the odds of an SCD event. Unfortunately,

the number of potential drugs and diseases is very large, and their incidence in the studied

population vary a lot. This makes it difficult to assess the impact of drugs and diseases that

are rarely prescribed or observed. On the other hand, there are official nomenclatures for

drugs and diseases, which can be classified into groups with similar properties. Hospital

diagnoses are coded according to the International Classification of Diseases and drugs are

coded according to the Anatomical Therapeutic Chemical system, that classifies them ac-

cording to the organ or system on which they act and their therapeutic, pharmacological,

and chemical properties. Therefore, there is clear medical interest in determining automat-

ically whether there is enough information in the data to indicate that a particular drug or

disease affects SCD, or, if not, whether the group it belongs to does.

This led us to develop a bi-level variable selection procedure, based on a binary re-

gression (outcome variable is whether the individual had an SCD event) model, and which

should work reliably for a fairly large number of individuals, variables and groups. In ad-

dition, we wanted this procedure to be Bayesian, in order to be able to obtain posterior
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probabilities of inclusion (rather than simply 0/1 answers).

There are surprising few papers on Bayesian bi-level variable selection, and most of

them focus on linear regression with Gaussian noise [Chen et al., 2016, Mallick and Yi, 2017,

Cai et al., 2020]. For such a model, one may integrate out the regression coefficients (the

prior provided is Gaussian) to obtain the marginal posterior distribution over a finite space

(the inclusion of either individual variables or groups). Even so, designing a MCMC able to

efficiently explore that finite space is challenging. Such discrete distributions tend to exhibit

strongly separated modal regions, and a MCMC chain may fail to escape one of this region.

We refer in particular to the numerical experiments of Schäfer and Chopin [2013] that show

that various MCMC schemes may lead to unstable estimates because of this problem. Of

course, this issue gets worse when the number of variables increases, makingMCMCunable

to scale properly with datasets with a large number of variables (and groups).

Proposed approach

Schäfer and Chopin [2013] designed a tempering SMC sampler for standard (one-level) vari-

able selection for linear regressions, and showed it outperformed significantly MCMC, as

explained above. We adapt this approach to our problem in three ways. First, we replace it

by a waste-free SMC sampler, following Dau and Chopin [2022], as waste-free SMC tends

to outperform standard SMC. Waste-free SMC amounts to resampling only a fraction of the

particles, then moving them through numerous MCMC steps, and keeping all these inter-

mediate. Second, we adapt the proposal mechanism within the MCMC step so as to accom-

modate the constraints specific to bi-level selection (namely, that a variable may be selected

only if its group is selected). Third, we replace the intractable marginal likelihood (obtained

by integrating out the regression coefficients) by either its LA (Laplace approximation), or

by a cheaper approximation introduced by Rossell et al. [2021], called ALA (approximate

LA). The reason why ALA is particularly attractive in our context is that it scales very well

with respect to n (as we explain later). We assess in our numerical experiments the impact

of the error introduced by ALA on the actual results. We note that Schäfer [2012] already

showed in his PhD thesis that replacing the marginal likelihood by its LA within a SMC

sampler (targeting a variable selection posterior) incurs only a negligible bias.

Plan

Section 5.2 describes the considered class of model, the bi-level variable selection prob-

lem, and the related notations. Section 5.3 describes the proposed algorithm, starting with

a generic (waste-free) SMC sampler, and explaining how this generic algorithm may be

adapted to bi-level variable selection. Section 5.4 assesses (statistically and numerically) the

proposed approach through two numerical experiments, one on simulated data and one on

the public health dataset mentioned in the introduction.

5.2 Model

Regression model

For the sake of concreteness, we consider the following binary regression model, although

our approach could easily be generalised to other generalised linear models. We suppose

that we have collected a datasetD = {X,U,Z, y}with sample sizen, where y ∈ {0, 1}n is a
vector of binary responses, X = (xij) ∈ Rn×p

, U = (uij) ∈ Rn×q
, and Z = (zij) ∈ Rn×r

,

are design matrices that contain, respectively, ‘individual variables’, ‘group variables’ (both
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subject to variable selection later on), and extra variables that the user wants to include

systematically (e.g. the intercept, socio-demographic effects such as sex, age, etc.).

Regarding the group structure, we assume that each of the p variables in X belongs to

one (and only one) of the q groups; let g(j) be the group of variable j. A group variable (in

U ) may represent different types of ‘group effects’. For instance, in a medical application,

the variables in a group k may be the indicator that the patient took a certain drug in the

last six months, and the group variable may be the indicator that a patient took any drug in

that group in the same period. Alternatively, these variables could be the number of drug

intakes for each drug; in that case, the group variable would be the number of intakes of

drugs in that group. In either scenarios, the point is to determine whether one may measure

a significant effect for each individual variable, on top of the group effect, or a significant

effect for its group only, or neither.

To sum up, without variable selection, the distribution of each data point would be such

that, for i = 1, . . . , n:

P (Yi = 1|β) = F

 p∑
j=1

βx
j xij +

q∑
k=1

βu
kuik +

r∑
l=1

βz
l zil

 (5.1)

and P (Yi = 0|β) = 1 − P (Yi = 1|β), where β = (βx, βu, βz) is the vector of regres-

sion parameters, F is the link function (e.g. F = Φ, the unit Gaussian CDF for a probit

model). We assign independent Gaussian priors to the regression coefficients: p(βz) ∼
N (0r, σ

2
Ir), p(β

u) ∼ N (0q, σ
2
Iq) and p(βx) ∼ N (0p, σ

2
Ip).

Bi-level variable selection

We extend our model to perform selection of groups and variables simultaneously. Most of

existingmodels lack flexibility as they impose only “all-in” or “all-out” selection for variables

in the same group. That is, if a group is not selected by themodel, variables belonging to this

groupwill also not be selected. In this work, we propose amore general approach in order to

capture sparsity at both the group and variable levels. To this end, we introduce θ = (γ, η),
a set of two types of binary variables: γk indicates whether group k is active (γk = 1) or not
(γk = 0), and ηj indicates whether individual variable j, which is in group g(j), is active
(ηj = 1) or not (ηj = 0). We consider a hierarchical structure such that the variable j
is not selected if γg(j) = 0, that is P (ηj = 1|γk = 0) = 0 for k = g(j). As compared to

existing models, we propose to keep the flexibility of selecting variables within a group. For

example, when a group of drugs is related to SCD, it does not necessarily mean that all drugs

of this group are related to SCD. Therefore, we may want to not only remove unimportant

groups effectively, but also identify important variables within important groups as well.

Thus, we replace (5.1) by

P (Yi = 1|β, θ) = F

 p∑
j=1

ηjβ
x
j xij +

q∑
k=1

γkβ
u
kuik +

r∑
l=1

βz
l zil

 . (5.2)

Let p(γ) be the prior density of γ, which is a product of Bernoulli distributions with

probabilities pγj . For the predictors, we introduce a spike-and-slab prior defined by

P (ηj = 1|γ) =

{
pηj if γg(j) = 1

0 otherwise.

(5.3)
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This bi-level structure implies that variable j may be selected only if the group it belongs

to, g(j), is selected.

To perform Bayesian bi-level variable selection, we aim to approximating the (marginal)

posterior distribution of θ = (γ, η), i.e. π(θ) = p(θ|D) ∝ p(θ)L(θ), where p(θ) is the prior
described above, and L(θ) is the integrated likelihood obtained by integrating out β:

L(θ) =

∫
L(β, θ)p(β)dβ, L(β, θ) =

{
N∏
i=1

P (Yi = yi|β, θ)

}
.

5.3 The proposed algorithm

Tempering waste-free SMC

We propose a tempering waste-free Sequential Monte Carlo (SMC) sampler to approximate

the joint posterior distribution π(θ) = p(θ|D). SMC methods are iterative stochastic algo-

rithms that approximate a sequence of probability distributions through successive impor-

tance sampling, resampling and Markov steps. In Bayesian modeling, this sequence can be

used to interpolate between a distribution p(θ) which is easy to sample from (e.g. the prior

distribution) and a distribution of interest π(θ) which may be difficult to simulate directly

(i.e. the posterior distribution). The tempering approach in particular is based on a sequence

of tempered distributions of the form

∀t ≥ 1, πt(θ) =
p(θ)L(θ)λt

Zt

where p(θ) is the prior density, L(θ) the likelihood, Zt > 0 is the normalising constant

and 0 = λ0 < λ1 < . . . < λT = 1 is a sequence increasing from 0 to 1. This geometric

bridge smoothly interpolates between the initial distribution p(θ) and the target distribu-

tion π(θ) ∝ p(θ)L(θ).

A typical application of such an approach is the simulation of a multimodal distribution

π. Since simulating directly from such a distribution is difficult, we may use tempering

SMC instead, to sample initially from a distribution p which covers the support of π, and
to move progressively towards π through intermediate distributions that are progressively

more and more multimodal. In this work, we combined the tempering approach with the

waste-free SMC sampler proposed by Dau and Chopin [2022]. The main idea of this scheme

is to resample only M ancestors from the N particles in the standard SMC sampler (with

M ≪ N ). Each of the ancestors is then moved P − 1 times through a Markov kernel Kt.

The M chains of length P are finally put together to form a new particle sample of size

N = MP . Algorithm 4 describes the corresponding algorithm for a tempering sequence.

At the final iteration T of the algorithm, onemay approximate any expectation Eπφ(θ)with∑N
n=1W

n
T φ(θ

n
T ), where the W

n
T are the normalised weights at the final iteration T .

In practice, it is recommended to set the successive λt automatically, by choosing the

next λt so that the ESS (effective sample size) of the weights equal a certain threshold. An-

other advantage of a SMC sampler such as Algorithm 4 is that it is easy to parallelise; in

particular the evaluation of the likelihood of the N particles (which is typically the bulk of

the computation) may be performed in parallel. We refer to Dau and Chopin [2022] for a

more thorough discussion of the advantages of SMC samplers over MCMC, and the extra

advantage brought by waste-free SMC (relative to standard SMC), in particular the greater
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Algorithm 4: Tempering Waste-free SMC

Input : Prior distribution p(θ), likelihood function θ → L(θ), integers N ,M , P
such that N = MP , sequence 0 = λ0 < . . . < λT = 1, Markov kernels

Kt that leave invariant πt−1 ∀t ≥ 1
1 for t← 0 to T do
2 if t = 0 then
3 for n← 1 to N do
4 θn0 ∼ p(θ)

5 else
6 A1:M

t ∼ resample (M,W 1:N
t−1 ) (Draw IID variables such that

P (Am
t = n) = Wn

t−1 for n = 1, . . . , N )

7 for m← 1 to M do
8 θ̃m,1

t ← θ
Am

t
t−1

9 for p← 2 to P do
10 θ̃m,p

t ∼ Kt(θ̃
m,p−1
t , dθt)

11 Gather variables θ̃m,P
t so as to form a new sample θ1:Nt

12 for n← 1 to N do
13 wn

t ← L(θnt )
λt−λt−1

14 for n← 1 to N do
15 Wn

t ← wn
t /
∑N

m=1w
m
t

robustness relative to the choice of tuning parameters such as P andM .

For now, there are two points that need to be addressed in order to apply Algorithm 4

to our variable selection problem: first, we need to design Markov kernels Kt that leave

invariant πt−1 at time t, and in particular that sample within the constrained support of

πt−1 in our bi-level selection scenario (i.e. the fact that ηj = 0 as soon as γg(j) = 0). Second,
we must find a way to evaluate, or approximate, the marginal likelihood L(θ). These two
points are discussed in the next two sections.

πt−1−invariant kernels

Consider a target distribution over binary vectors; that is π(γ)with γ ∈ {0, 1}q . Designing
an efficient MCMC kernel that leaves invariant this target is challenging. One option is to

use a Gibbs kernel, or a Metropolis kernel based on a local proposal, where only one com-

ponent may be flipped at a time. But such kernels tend to mix poorly, and to get stuck in

local modes.

The SMC sampler of Schäfer and Chopin [2013] used instead an independent Metropolis

kernel based on a global proposal of the form:

q(γ) = q1(γ1)

q∏
k=1

qk(γk|γ1:k−1), qk(γk = 1|γ1:k−1) = logistic

(
bkk +

k−1∑
i=1

bkiγi

)
.

(5.4)

that is, a sequence of nested logistic regressions. Given the chain rule decomposition

above, it is easy to sample from this proposal distribution. In order to ensure that the re-

sulting independent Metropolis sampler mixes well (and in particular that the acceptance

rate is high), one needs to ensure that the proposal is as close as possible to the target. To
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ensure this, Schäfer and Chopin [2013] set the parameters bji to the maximum likelihood es-

timators of the corresponding logistic regressions, based on the current (weighted) particle

sample. The numerical experiments of Schäfer and Chopin [2013] show that a SMC sampler

based on such global (properly calibrated) Metropolis steps may outperform significantly

local MCMC chains.

Since Schäfer and Chopin [2013] considered standard (one-level) variable selection, they

did not have to deal with constrained distribution (i.e. each vector γ ∈ {0, 1}p has positive
probability). We adapt their approach to bi-level variable selection as follows. First, we

extend the proposal in (5.4) as follows:

q(θ) = q(γ, η) = q1(γ1)

q∏
k=1

qk(γk|γ1:k−1)

p∏
j=1

qj(ηj |γg(j)). (5.5)

where the conditional distributions of the γ′js are set in the same way as in (5.4). Second,

we set the conditional proposals of the ηj as follows:

qj(ηj = 1|γg(j)) =

{
cj if γg(j) = 1

0 otherwise

where cj ∈ [0, 1] is a tuning parameter. We calibrate the cj ’s in the same way as for the

coefficients bji in (5.4): by maximum likelihood estimation on the current particle sample.

This proposal respects the constraint that ηj must be zero as soon as γg(j) = 0. It

is basic, and may be extended by correlating the η′js in the same group through a nested

logistic regression of the same form as for the γk. In practice however, we did not observe

much benefit in doing so, and stuck to this basic structure. Algorithm 5 summaries how one

may implement the considered type of Metropolis kernels.

Algorithm 5: Independent Metropolis kernel used to move the particles within

Algorithm 3 at time t

Input : θ = (γ, η), tuning parameters (bji) and (cj) (estimated from the current

particle sample).

Output: A sample fromKt(θ, dθ
′), whereKt leaves invariant πt−1.

1 θp ∼ q(θ) (as defined in (5.5))

2 u ∼ Uniform[0, 1]
3 if u ≤ πt−1(θ

p)q(θ)/πt−1(θ)q(θ
p) then

4 return θp

5 else
6 return θ

Approximation of the marginal likelihood

The marginal likelihood L(θ) =
∫
L(β, θ)p(β)dβ is typically intractable (unless one con-

siders a linear Gaussian regression model). A popular approximation to this quantity is the

Laplace approximation (LA), which amounts to Taylor expanding the log of the integrand

around its mode. Let βθ denote the vector made of the components βi such that θi = 1,
hθ(βθ) = − log{L(β, θ)p(β)}, and β̂θ = argminβθ

hθ(βθ) (i.e. the MAP estimator given
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θ), then:

logL(θ) = log

∫
exp {−hθ(βθ)} dβθ

≈ −hθ(β̂θ) + log

∫
exp

{
−1

2
(βθ − β̂θ)

T Ĥθ(βθ − β̂θ)

}
dβθ

= −hθ(β̂θ) +
dθ
2

log 2π − 1

2
log |Ĥθ|

where |Ĥθ| is the determinant of the Hessian of function βθ → hθ(βθ) at βθ = β̂θ , and
dθ = dimβθ .

Schäfer [2012] in his thesis gave numerical evidence than replacing the marginal likeli-

hoodwith its Laplace approximation, within a SMC sampler for standard (one-level) variable

selection, works well, in the sense that it leads to a negligible error (for approximating the

posterior of θ). On the other hand, computing the Laplace approximation for many simu-

lated θ−values is expensive; for each θ, one needs to run a Newton-Raphson optimiser to

obtain β̂θ and Ĥθ . Furthermore these operations have complexity O(n) in the sample size,

and O(d3θ) in the dimension.

Rossell et al. [2021] proposed a cheaper approximation, based on a Taylor expansion

similar to Laplace, but around zero. Let 0θ denote a vector of zeros of the same dimension

as βθ , then, the ALA (approximate Laplace approximation) is:

logL(θ) ≈ −hθ(0θ) + log

∫
exp

{
−βT

θ gθ −
1

2
βT
θ Hθβθ

}
dβθ

= −hθ(0θ) +
1

2
gTθ H

−1
θ gθ +

dθ
2

log 2π − 1

2
log |Hθ|

where gθ and Hθ denote respectively the gradient and Hessian of function β → hθ(βθ)
at point βθ = 0θ . Note that in practice, one simply need to compute the gradient g and

Hessian H of minus log-likelihood at zero for the full model (i.e. θ is a vector of ones, all

variables are included), to obtain gθ and Hθ (e.g. gθ contains the components i of g such

that θ(i) = 1, and Hθ is defined similarly).

Once quantities g andH have been computed in a preliminary step, the computation of

ALA isO(1) in the sample size n. Its complexity remains cubic in the dimension, because of

the determinant, however. Rossell et al. [2021] make it clear that ALA is not a consistent (in

n) approximation of the marginal likelihood; they mention that it tends to be biased against

truly active variables. That is, it tends to under-estimate the posterior probability that an

active variable should be included. We refer to Rossell et al. [2021] for more discussion on

this matter.

Still, ALA remains particularly attractive in our context, as our SMC sampler must per-

form many evaluations of the marginal likelihood. We will assess the impact of the approx-

imation error of ALA by comparing two waste-free SMC samplers, one based on LA, and

one based on ALA.

5.4 Numerical experiments

As explained above, our goal in this section is to assess numerically the performance of our

tempering waste-free SMC sampler for bi-variable selection, when the marginal likelihood
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is evaluated through either LA or ALA. We take the number of particles to beN = 25, 000,
and setM = 125, P = 200. Our algorithm was implemented using the particles Python li-

brary (see https://github.com/nchopin/particles). The results were obtained using
a server with 64 Gb RAM and 8 cores.

Simulated data

We simulate data from our model (using the probit link function), using g = 5 groups,

r = 5 systematically included covariates, a varying number p of individual variables, and a
varying sample size n; see below. The rows of the design matricesX , U , and Z are sampled

independently from a Gaussian distribution N(0,Σ), where Σii = 1, and Σij = 0.5. The
corresponding regression parameters are set to βz = (0, 0, 1, 1, 1), βu = (0, 0, 1, 1, 1) and
the components of βx

are all set to zero, except for the last variable of each active group,

where it is set to one.

In a first scenario, we set p = 50 and let n vary from 100 to 2, 500; while in a second

scenario we fix n = 1, 500 and let p vary from 10 to 250. We run our algorithm 10 times

and uses the empirical standard deviation to draw confidence intervals.
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Figure 5.1: Comparison of ALA and LA for posterior inclusion probabilities

of groups and predictors when n varies

Comparison of ALA and LA for posterior inclusion probabilities of groups and predictors

when n varies from 100 to 2, 500, with p = 50. Left: average posterior inclusion probabili-

ties for truly active variables. Right: average posterior inclusion for truly inactive variables.
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Figure 5.2: Comparison of ALA and LA for posterior inclusion probabilities

of groups and predictors when p varies

Comparison of ALA and LA for posterior inclusion probabilities of groups and predictors

when p varies from 10 to 25, with n = 1, 500. Left: average posterior inclusion probabilities
for truly active variables. Right: average posterior inclusion for truly inactive variables.

Figure 5.1 summarizes the results from the first scenario. Both LA and ALA discriminate

properly truly active from inactive groups and variables when n is large enough. However,

LA assigns larger inclusion probabilities for truly variables when n ≤ 500. Figure 5.2 sum-

marizes the results for the n = 1, 500 case, when p varies from 10 to 25. LA and ALA

performed equally and provided accurate estimates both for groups and variables.
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Figure 5.3: Comparison of ALA and LA for run time of waste-free SMC

.Left: average run time when n varies from 100 to 2, 500 (p = 50). Right: average run time

when p varies from 10 to 25 (n = 1, 500).

Figure 5.3 compares the performance of ALA and LA in terms of computation time in

both scenarios. ALA significantly reduces run times compared to LA, especially for larger

n (mean run time = 16 min for ALA vs. 102 min for LA when n = 2, 500 and p = 50) and p
(mean run time = 39 min for ALA vs. 330 min for LA when p = 250 and n = 1, 500). It is
interesting to note that the CPU time still grows with n with ALA, although the computa-

tion of ALA is independent of n. The likely explanation is that when n grows, the prior and
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the posterior differ more markedly, and thus more intermediate tempering distributions are

required to bridge between the two. Still, the dependence on n of the CPU time remains

mild compared to the LA-based sampler.

To sum up, one observes that ALA considerably reduces the CPU time of the sampler,

in particular for large n (sample size) and p (number of variables). In return, as expected

ALA tends to under-estimate the probability of inclusion of active variables, at least for n
not sufficiently large.

Bi-level selection on the French National Healthcare Insurance database

To examine the performance of our SMC sampler on a big dataset, we study which factors

are associated to sudden cardiac death (SCD) in a French epidemiological study. Sudden car-

diac death is an unexpected death due to cardiac causes that occurs in a short time period

(generally within 1 hour of symptom onset) in a person with known or unknown cardiac

disease. Despite progress in epidemiology, clinical profiling and interventions, it remains

a major public health problem worldwide, accounting for 10 to 20% of deaths in industri-

alised countries. The annual incidence of SCD is estimated 180,000 to 450,000 in the United

States (Melissa et al. [2011]) and 275,000 in Europe (Empana et al. [2022]). The prognosis

is terrible, with less than 10% surviving to hospital discharge, and significant functional

and cognitive disabilities often persist among those who survive (Bougouin et al. [2014]).

Therefore, identification of persons with an elevated risk of SCD is highly relevant from a

clinical and public health perspective.

In this study, we implement bi-level variable selection to identify outpatient drugs and

hospital diagnoses that could help to enhance risk prediction performance of SCD over

many potential risk factors collected from electronic health records. We analyse the medical

trajectories of ncases = 23, 958 cases of SCD collected between 2016 and 2020 throughout

the Paris Sudden Death Expertise Center (Bougouin et al. [2014]), and ncontrols = 23, 958
controls sampled from the French general population. Cases and controls were matched

with age, sex and residence area.

For the n = ncases + ncontrols = 47, 916 individuals, we collected data from the French

National Health Insurance (SNDS) database, which manages all reimbursements of health-

care for people affiliated to a health insurance scheme in France. It provides information on

all healthcare expenses, on an individual level, including visits, procedures and reimbursed

drugs relative to outpatient medical care claims, information from hospital discharge sum-

maries and chronic conditions. Data acquisition is permanent, from birth to death, irrespec-

tive of wealth, age, or work status, resulting in one of the largest electronic health records

databases in the world. The SNDS database has been described in detail previously and has

been used to conduct multiple studies in cardiovascular epidemiology (Piot et al. [2022]).

More details are available at https://www.health-data-hub.fr/.

We collected all outpatient drugs and hospital diagnoses that occurred up to 5 years

before SCD; in this way we obtained q = 36 groups and p = 337 binary variables (0/1

whether the individual took a particular drug in the last 5 years, or a drug in the corre-

sponding group). In the 36 groups, the minimum number of variables observed is 2 and the

maximum is 27. No external variables were included in the study (r = 0). Figures 5.4 and
5.5 summarise the results of our ALA-based SMC sampler in terms of variable (and group)

selection. We evaluate groups and variables selected by our model by comparing them with

those described in the medical literature related to SCD. Overall, 16 out of 36 groups and 55
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out of 337 variables are selected (Figure 5.4). Our bi-level variable selection scheme allows

for a more flexible structure than "all-in all-out" methods and identifies 3 different "clusters"

represented in Figure 5.5.
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Figure 5.4: Groups and predictors selected by the ALA-based SMC sampler

Top: selection of groups. Bottom: selection of predictors.
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Figure 5.5: Bi-level variable selection scheme proposed by the ALA-based

SMC sampler

In the first cluster (located in the upper left corner), 4 groups of hospital diagnoses

are selected without any variable included. These groups correspond to diseases of the

eye (π(γk = 1) = 0.82), diagnoses related to pregnancy, childbirth and the puerperium

(π(γk = 1) = 0.82), injury and poisoning (π(γk = 1) = 0.72) and diagnoses for other

special purposes (π(γk = 1) = 0.89). They are selected with high marginal posterior prob-

abilities of inclusion, although none of their 46 corresponding variables are selected. This

result suggests therefore that only global relationships exist between these groups and SCD,

with no any precise effect of diseases or treatments.

In the second cluster (located in the lower left corner), 20 groups are not selected, as

well as their 189 corresponding variables. They include diverse subgroups of diseases and

treatments.

In the third cluster (located in the upper right corner), 12 groups are selected with at

least 1 variable included. Among them, 3 well known groups of risk factors of SCD are

identified. First, diseases and drugs associated to the cardiovascular system are selected

(with π(γk = 1) = 0.74 and π(γk = 1) = 1 respectively), including 9 out of 19 variables.

This result was expected, as cardiovascular conditions are known to be the most common

pathology under SCD. Second, diseases and drugs related to the nervous system are selected

(with π(γk = 1) = 0.72 and π(γk = 1) = 1 respectively), including 9 out of 18 variables.

Several studies have suggested relationships between diseases of the nervous system and

SCD (Japundzic-Zigon et al. [2018]). Indeed, some neurological disorders can cause dam-

age to the heart and blood vessels (such as stroke or brain injury) or arrhythmia (such as

epilepsy), increasing the risk of SCD. There are also neurological conditions that can cause

SCD directly, such as long QT or Brugada syndromes, which affect the electrical activity of

the heart. Third, a group related to treatments of the respiratory system is selected. A num-

ber of studies have also addressed the relationship between respiratory disorders and SCD.

In particular, cumulating evidence associates chronic obstructive pulmonary diseases with

an increased risk of SCD both in cardiovascular patient groups and in community-based
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studies, independent of cardiovascular risk profile (Van den Berg et al. [2016]).

We ran our ALA-based SMC samplers 10 times to assess its numerical stability. Fig-

ure 5.6 describes the interquartile range of the marginal posterior probabilities of inclusion

for variables. The mean run time was 61.8 hours (totalling to 7 days of total CPU time). We

also launched 10 executions of our LA-based SMC sampler, but these executions had not

completed after 30 days. We can see that, for this particular dataset, using ALA becomes

crucial to make the approach usable for practitioners.

10 2 10 1 100

Interquartile range (log scale)

0.5

1.0

1.5

2.0

2.5

Nu
m

be
r o

f v
ar

ia
bl

es
 

Figure 5.6: Kernel density estimate of the interquartile range (log scale) of

the marginal posterior inclusion probabilities (variables) for the ALA-based

SMC sampler.

5.5 Conclusion

Our bi-level variable selection approach based on a waste-free SMC sampler and the ALA

approximation offers reliable performance for large-scale datasets within a reasonable com-

putation time. Furthermore, our approach is more flexible than most of existing schemes,

which impose only “all-in” or “all-out” selection for variables in the same group. This work

could be therefore helpful in a wide range of applications, such as biomedical studies, where

standard approaches provide information which may be difficult for physicians to interpret.
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Appendix A

Prediction Model

 
 
 
 
 
 

Overall 
SCD cases 
N = 31,925 

Derivation cohort 
(2011 - 2015) 
N = 17,445 

Excluded from analysis 
(not identified in the 

SNDS database) 
N = 5,107  

Validation cohort 
(2016 - 2020) 
N = 14,480  

Excluded from analysis 
(not identified in the 

SNDS database) 
N = 2,860 

SCD cases 
N = 12,338 

Derivation cohort 
N = 24,676 

Controls 
N = 12,338 

Controls 
N = 11,620 

Validation cohort 
N = 23,240 

SCD cases 
N = 11,620 

Derivation / Validation split 

Case-control matching Case-control matching 

Figure A.1: Flow chart of the populations
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Covariate ICD-10 / ATC codes 
Litterature review of 

SCD prediction models 

Age Available in the SNDS database but not included in the CVD model 
(used for the case-control matching) 

 
Aro et al. 2017, Bogle et 
al. 2018, Deo et al. 2016, 
Waks et al. 2016, Holkeri 

et al. 2020 

Sex Available in the SNDS database but not included in the CVD model 
(used for the case-control matching) 

Aro et al. 2017, Bogle et 
al. 2018, Deo et al. 2016, 
Waks et al. 2016, Holkeri 

et al. 2020 

Race Not available in the SNDS database 
Deo et al. 2016, Waks et 

al. 2016 
Left ventricular 
ejection fraction Not available in the SNDS database Aro et al. 2017 

Electrocardiogram 
signals Not available in the SNDS database 

Aro et al. 2017, Deo et al. 
2016, Waks et al. 2016, 

Holkeri et al. 2020 

Coronary artery 
disease 

 
ICD-10: angina pectoris (I20) ; acute myocardial infarction (I21) ; 

subsequent myocardial infarction (I22) ; certain current 
complications following acute myocardial infarction (I23) ; other 

acute ischaemic heart diseases (I24) ; chronic ischaemic heart 
disease (I25) 

 

Waks et al. 2016, Holkeri 
et al. 2020 

Stroke 

 
ICD-10: subarachnoid haemorrhage (I60) ; intracerebral 

haemorrhage (I61) ; other nontraumatic intracranial 
haemorrhage (I62) ; cerebral infarction (I63) ; stroke, not specified 

as haemorrhage or infarction (I64) 
 

Waks et al. 2016 

Diabetes 

 
ICD-10: type 1 diabetes mellitus (E10) ; type 2 diabetes mellitus 

(E11) ; malnutrition-related diabetes mellitus (E12) ; other specified 
diabetes mellitus (E13) ; unspecified diabetes mellitus (E14) ; 

diabetic mononeuropathy (G590) ; diabetic polyneuropathy (G632) 
; myasthenic syndromes in endocrine diseases (G730) ; autonomic 
neuropathy in endocrine and metabolic diseases (G990) ; diabetic 

cataract (H280) ; diabetic retinopathy (H360) ; diabetic 
arthropathy (M142) ; glomerular disorders in diabetes 

mellitus (N083) 
 

ATC: drugs used in diabetes (A10) 
 

Aro et al. 2017, Bogle et 
al. 2018, Deo et al. 2016, 
Waks et al. 2016, Holkeri 

et al. 2020 

Hypertension 
 

ICD-10: essential (primary) hypertension (I10) ; hypertensive heart 
disease (I11) ; hypertensive renal disease (I12) ; hypertensive heart 

Aro et al. 2017, Bogle et 
al. 2018, Deo et al. 2016, 

Waks et al. 2016 

Table A.1: Medical codes used for the CVD model



	

and renal disease (I13) ; secondary hypertension (I15) ; 
hypertensive encephalopathy (I674) 

 
ATC: antihypertensives (C02) 

 

Smoking abuse 

 
ICD-10: nicotine dependence (F17) ; toxic effect of tobacco and 

nicotine (T652) ; exposure to tobacco smoke (Z587) ; tobacco 
abuse counselling (Z716) ; tobacco use (Z720) 

 
ATC: drugs used in nicotine dependence (N07BA) 

 

Bogle et al. 2018, Deo et 
al. 2016 

Obesity 

 
ICD-10: overweight and obesity (E66) ; mechanical complication 

of gastrointestinal prosthetic devices, implants and grafts for 
obesity (T8550) 

 
ATC: antiobesity, preparations, excluding diet products (A08) 

 

Bogle et al. 2018, Holkeri 
et al. 2020 

 
Lipid disorders 

 
ICD-10: disorders of lipoprotein metabolism and other lipidemias 

(E78) 
ATC: lipid modifying agents (C10) 

 

Bogle et al. 2018, Deo et 
al. 2016, Holkeri et al. 

2020 

Systolic blood 
pressure Not available in the SNDS database 

Bogle et al. 2018, Deo et 
al. 2016, Holkeri et al. 

2020 
Diastolic blood 

pressure Not available in the SNDS database Bogle et al. 2018 

Serum potassium 
 

Not available in the SNDS database 
 

Deo et al. 2016 

Serum albumin 
 

Not available in the SNDS database 
 

Deo et al. 2016 

Chronic renal 
failure 

 
ICD-10: type 1 diabetes mellitus with renal complications (E102) ; 

type 2 diabetes mellitus with renal complications (E112) ; other 
specified diabetes mellitus with renal complications (E132) ; 

unspecified diabetes mellitus with renal complications (E142) ; 
hypertensive renal disease (I12) ; hypertensive heart and renal 
disease with renal failure (I131) ; hypertensive heart and renal 

disease with both (congestive) heart failure and renal failure (I132) 
; chronic nephritic syndrome : diffuse membranous 

glomerulonephritis (N032) ; chronic nephritic syndrome : diffuse 
mesangial proliferative glomerulonephritis (N033) ; chronic 

nephritic syndrome : diffuse endocapillary proliferative 

Deo et al. 2016 



	

glomerulonephritis (N034) ; chronic nephritic syndrome : diffuse 
mesangiocapillary glomerulonephritis (N035) ; chronic nephritic 

syndrome : dense deposit disease (N036) ; chronic nephritic 
syndrome : diffuse crescentic glomerulonephritis (N037) ; 

unspecified nephritic syndrome : diffuse membranous 
glomerulonephritis (N052) ; unspecified nephritic syndrome : 
diffuse mesangial proliferative glomerulonephritis (N053) ; 

unspecified nephritic syndrome : diffuse endocapillary proliferative 
glomerulonephritis (N054) ; unspecified nephritic syndrome : 

diffuse mesangiocapillary glomerulonephritis (N055) ; unspecified 
nephritic syndrome : dense deposit disease (N056) ; unspecified 

nephritic syndrome : diffuse crescentic glomerulonephritis (N057) ; 
glomerular disorders in diabetes mellitus (N083) ; chronic kidney 

disease (N18) ; unspecified kidney failure (N19) ; renal 
osteodystrophy (N250) ; care involving dialysis (Z49) ; kidney 
transplant status (Z940) ; dependence on renal dialysis (Z992) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



	

Diagnoses / 
treatments ICD-10 / ATC codes Litterature review 

Cardiovascular risk factors 

Smoking abuse 

 
ICD-10: nicotine dependence (F17) ; toxic effect of tobacco and 

nicotine (T652) ; exposure to tobacco smoke (Z587) ; tobacco abuse 
counselling (Z716) ; tobacco use (Z720) 

 
ATC: drugs used in nicotine dependence (N07BA) 

 

Oger et al. 2022, Lecoeur 
et al. 2022, Schapiro 
Dufour et al. 2019 

 

Obesity 

ICD-10: overweight and obesity (E66) ; mechanical complication 
of gastrointestinal prosthetic devices, implants and grafts for obesity 

(T8550) 
 

ATC: antiobesity, preparations, excluding diet products (A08) 

Lecoeur et al. 2022, 
Goulabchand et al. 2021,  
Boucheron et al. 2021, 

Mohammedi et al. 2021, 
Schapiro Dufour et al. 

2019, Rachas et al. 2022 

Dyslipidaemia 

 
ICD-10: disorders of lipoprotein metabolism and other lipidemias 

(E78) 
 

Lecoeur et al. 2022 

Diabetes 

 
ICD-10: type 1 diabetes mellitus (E10) ; type 2 diabetes mellitus 

(E11) ; malnutrition-related diabetes mellitus (E12) ; other specified 
diabetes mellitus (E13) ; unspecified diabetes mellitus (E14) ; 

diabetic mononeuropathy (G590) ; diabetic polyneuropathy (G632) 
; myasthenic syndromes in endocrine diseases (G730) ; autonomic 
neuropathy in endocrine and metabolic diseases (G990) ; diabetic 

cataract (H280) ; diabetic retinopathy (H360) ; diabetic 
arthropathy (M142) ; glomerular disorders in diabetes 

mellitus (N083) 
 

ATC: drugs used in diabetes (A10) 
 

Lecoeur et al. 2022,  Giral 
et al. 2019, Oger et al. 

2022, Goulabchand et al. 
2021, Zerah et al. 2021, 
Mohammedi et al. 2021, 
Schapiro Dufour et al. 

2019, Pugnet et al. 2016 

Hypertension 

 
ICD-10: essential (primary) hypertension (I10) ; hypertensive heart 
disease (I11) ; hypertensive renal disease (I12) ; hypertensive heart 

and renal disease (I13) ; secondary hypertension (I15) ; 
hypertensive encephalopathy (I674) 

 
ATC: antihypertensives (C02) 

 

Goulabchand et al. 2021, 
Mohammedi et al. 2021, 

Gabet et al. 2019, 
Schapiro Dufour et al. 

2019, Pugnet et al. 2016, 
Lecoeur et al. 2022 

Cardiovascular diseases 

Figure A.2: Medical codes used for baseline characteristics of the

populations



	

Acute coronary 
syndrome 

ICD-10: unstable angina (I200) ; acute myocardial infarction (I21) ; 
subsequent myocardial infarction (I22) ; certain current 

complications following acute myocardial infarction (I23) ; other 
acute ischaemic heart diseases (I24) 

 
Lam et al. 2022, 

Boucheron et al. 2021, 
Mohammedi et al. 2021, 
Gabet et al. 2019, Blin et 

al. 2018, Bezin et al. 
2017,  Rachas et al. 2022 

 

Heart failure 

 
ICD-10: hypertensive heart disease with (congestive) heart 

failure (I110) ; hypertensive heart and renal disease with 
(congestive) heart failure (I130) ; hypertensive heart and renal 

disease with both (congestive) heart failure and renal failure (I132) ; 
hypertensive heart and renal disease, unspecified (I139) ; heart 

failure (I50) ; pulmonary oedema (J81) ; chronic passive congestion 
of liver (K761) 

 

Boucheron et al. 2021, 
Zerah et al. 2021, Gabet 

et al. 2019,  Schapiro 
Dufour et al. 2019,  Lam 
et al. 2022,  Rachas et al. 

2022 

Peripheric arterial 
diseases 

 
ICD-10:  atherosclerosis (I70) ;  aortic aneurysm and 

dissection (I71) ;  other aneurysm and dissection (I72) ;  other 
peripheral vascular diseases  (I73) ;  arterial embolism and 

thrombosis  (I74) ;  other disorders of arteries and arterioles (I77) ;  
diseases of capillaries (I78) ;  disorders of arteries, arterioles and 

capillaries in diseases classified elsewhere (I79) 
 

Goulabchand et al. 2021, 
Pugnet et al. 2016 

Cardiac 
arrhytmias and 

conduction 
disorders 

 
ICD-10: atrioventricular and left bundle-branch block (I44) ; other 
conduction disorders (I45) ; paroxysmal tachycardia (I47) ; atrial 

fibrillation and flutter (I48) ; other cardiac arrhythmias (I49) 
 

Lam et al. 2022, Rachas 
et al. 2022 

Valvular disease 

 
ICD-10: rheumatic mitral valve diseases (I05) ; rheumatic aortic 
valve diseases (I06) ; rheumatic tricuspid valve diseases (I07) ; 

multiple valve diseases (I08) ; nonrheumatic mitral valve 
disorders (I34) ; nonrheumatic aortic valve disorders (I35) ; 

nonrheumatic tricuspid valve disorders (I36) ; pulmonary valve 
disorders (I37) ; endocarditis, valve unspecified (I38) ; endocarditis 

and heart valve disorders in diseases classified elsewhere (I39) 
 

Zerah et al. 2021, Rachas 
et al. 2022 

Pulmonary 
embolism 

 
ICD-10: pulmonary embolism (I26) ; primary pulmonary 

hypertension (I270) 
 

Lecoeur et al. 2022, 
Gouverneur et al. 2022 



	

Acute stroke 

 
ICD-10: subarachnoid haemorrhage (I60) ; intracerebral 

haemorrhage (I61) ; other nontraumatic intracranial 
haemorrhage (I62) ; cerebral infarction (I63) ; stroke, not specified 

as haemorrhage or infarction (I64) 
 

Lam et al. 2022, 
Gouverneur et al. 2022, 

Goulabchand et al. 2021, 
Mohammedi et al. 2021, 

Gabet et al. 2019 

Cardiovascular drug used 
 

Angiotensin-
converting 

enzyme inhibitors 
or angiotensin 

receptor blockers 
or aliskiren 

 

ATC: ACE inhibitors, plain (C09A) ; ACE inhibitors, combinations 
(C09B) ; angiotensin II receptor blockers, plain (C09C) ; 

angiotensin II receptor blockers, combinations (C09D) ; aliskiren 
(C09XA02) 

Giral et al. 2019 

Diuretics 

 
ATC: reserpine and diuretics (C02LA01) ; diuretics (C03) ; 
oxprenolol and thiazides (C07BA02) ; beta blocking agents, 

selective, and thiazides (C07BB) ; pindolol and other diuretics 
(C07CA03) ; timolol, thiazides and other diuretics (C07DA06) ; 

amlodipine and diuretics (C08GA02) ; ACE inhibitors and diuretics 
(C09BA) ; angiotensin II receptor blockers and diuretics (C09DA) ; 

aliskiren and hydrochlorothiazide (C09XA52) ; acetazolamide 
(S01EC01) 

 

Giral et al. 2019 

Βeta-blockers 
 

ATC: beta blocking agents (C07) 
 

Giral et al. 2019 

Calcium channel 
blockers 

 
ATC: beta blocking agents and calcium channel blockers (C07FB) ; 

calcium channel blockers (C08) ; ACE inhibitors and calcium 
channel blockers (C09BB) ; angiotensin II receptor blockers and 
calcium channel blockers (C09DB) ; atorvastatin and amlodipine 

(C10BX03) 
 

Giral et al. 2019 

Antiarrhythmic 
agents 

 
ATC: antiarrhythmics, class I and III (C01B) 

 
Giral et al. 2019 

Aspirin 

 
ATC: acetylsalicylic acid (B01AC06) ; carbasalate calcium 

(B01AC08) ; platelet aggregation inhibitors excluding heparin, 
combinations (B01AC30) ; pravastatin and acetylsalicylic acid 

(C10BX02) ; acetylsalicylic acid (N02BA01) 
 

Giral et al. 2019 



	

Other antiplatelet 
agents 

 
ATC:  platelet aggregation inhibitors excluding heparin (B01AC) 

except for aspirin 
 

Giral et al. 2019 

Oral 
anticoagulants 

 
ATC: vitamin K antagonists (B01AA) ; direct thrombin inhibitors 

(B01AE) ; direct factor Xa inhibitors (B01AF) ; other 
antithrombotic agents (B01AX) 

 

Giral et al. 2019 

Heparin 

 
ATC: heparin group (B01AB) ; other antithrombotic agents 

(B01AX) 
 

Giral et al. 2019 

Insulin 

 
ATC: insulins and analogues for injection, fast-acting (A10AB) ; 

insulins and analogues for injection, intermediate-acting (A10AC) ; 
insulins and analogues for injection, intermediate- or long-acting 
combined with fast-acting (A10AD) : insulins and analogues for 

injection, long-acting (A10AE) 
 

Giral et al. 2019 

Oral antidiabetic 
agents 

 
ATC: drugs used in diabetes (A10) except for insulin and 

benfluorex (A10BX06) 
 

Giral et al. 2019 

Statins 

 
ATC: HMG CoA reductase inhibitors (C10AA) ; combinations of 

various lipid modifying agents (C10BA) ; lipid modifying agents in 
combination with other drugs (C10BX) 

 

Giral et al. 2019 

Other lipid-
lowering agents 

 
ATC: fibrates (C10AB) ; bile acid sequestrants (C10AC) ; nicotinic 

acid and derivatives (C10AD) ; other lipid modifying agents 
(C10AX) 

 

Giral et al. 2019 

Comorbidities and lifestyle habits 



	

Alcohol abuse 

 
ICD-10: alcohol-induced pseudo-Cushing's syndrome (E244) ; 

alcohol related disorders (F10) ; alcoholic cardiomyopathy (I426), 
degeneration of nervous system due to alcohol (G312) ; alcoholic 
polyneuropathy (G621) ; alcoholic myopathy (G721) ; alcoholic 
gastritis (K292) ; alcoholic liver disease (K70) ; alcohol-induced 
acute pancreatitis (K852) ; alcohol-induced chronic pancreatitis 

(K860) ; toxic effect of alcohol (T51) ; intentional self-poisoning by 
and exposure to alcohol (X65) ; alcohol deterrents (Y573) ; 

evidence of alcohol involvement determined by blood alcohol level 
(Y90) ; alcohol involvement, not otherwise specified (Y919) ; 
alcohol rehabilitation (Z502) ; alcohol abuse counseling and 

surveillance (Z714) ; alcohol use (Z721) 
 

ATC: baclofen (M03BX01) ; drugs used in alcohol dependence 
(N07BB) 

 

Oger et al. 2022, Zerah et 
al. 2021, Lecoeur et al. 

2022, Schapiro Dufour et 
al. 2019, Krajden et al. 

2010 

Drug use 

 
ICD-10: opioid related disorders (F11) ; cannabis related disorders 

(F12) ; sedative, hypnotic or anxiolytic related disorders (F13) ; 
cocaine related disorders (F14) ; hallucinogen related disorders 
(F16) ; other psychoactive substance related disorders (F19) ; 

findings of drugs and other substances, not normally found in blood 
(R78) ; poisoning by, adverse effect of and underdosing of narcotics 

and psychodysleptics (T40) ; poisoning by, adverse effect of and 
underdosing of psychostimulants (T436) ; drug rehabilitation 

(Z503) ; drug abuse counseling and surveillance (Z715) ; drug use 
(Z722) ; personal history of drug abuse (Z8641) 

 

Lecoeur et al. 2022, 
Krajden et al. 2010 



	

Chronic 
pulmonary disease 

 
ICD-10: other specified pulmonary heart diseases (I278) ; 

pulmonary heart disease, unspecified (I279) ;  bronchitis, not 
specified as acute or chronic (J40) ;  simple and mucopurulent 

chronic bronchitis (J41) ;  unspecified chronic bronchitis (J42) ;  
emphysema (J43) ;  other chronic obstructive pulmonary 
disease (J44) ;  asthma (J45) ;  status asthmaticus (J46) ;  
bronchiectasis (J47) ; coalworker pneumoconiosis (J60) ; 

pneumoconiosis due to asbestos and other mineral fibres (J61) ; 
pneumoconiosis due to dust containing silica (J62) ; 

pneumoconiosis due to other inorganic dusts (J63) ; unspecified 
pneumoconiosis (J64) ; pneumoconiosis associated with 

tuberculosis (J65) ; airway disease due to specific organic dust (J66) 
; hypersensitivity pneumonitis due to organic dust (J67) ; chronic 

respiratory conditions due to chemicals, gases, fumes and 
vapours (J684) ; chronic and other pulmonary manifestations due to 

radiation (J701) ; chronic drug-induced interstitial lung 
disorders (J703) ; chronic respiratory failure (J961) 

 

Giral et al. 2019, 
Goulabchand et al. 2021,  

Rachas et al. 2022 

Chronic kidney 
disease 

 
ICD-10: type 1 diabetes mellitus with renal complications (E102) ; 

type 2 diabetes mellitus with renal complications (E112) ; other 
specified diabetes mellitus with renal complications (E132) ; 

unspecified diabetes mellitus with renal complications (E142) ; 
hypertensive renal disease (I12) ; hypertensive heart and renal 
disease with renal failure (I131) ; hypertensive heart and renal 

disease with both (congestive) heart failure and renal failure (I132) ; 
chronic nephritic syndrome : diffuse membranous 

glomerulonephritis (N032) ; chronic nephritic syndrome : diffuse 
mesangial proliferative glomerulonephritis (N033) ; chronic 

nephritic syndrome : diffuse endocapillary proliferative 
glomerulonephritis (N034) ; chronic nephritic syndrome : diffuse 
mesangiocapillary glomerulonephritis (N035) ; chronic nephritic 

syndrome : dense deposit disease (N036) ; chronic nephritic 
syndrome : diffuse crescentic glomerulonephritis (N037) ; 

unspecified nephritic syndrome : diffuse membranous 
glomerulonephritis (N052) ; unspecified nephritic syndrome : 
diffuse mesangial proliferative glomerulonephritis (N053) ; 

unspecified nephritic syndrome : diffuse endocapillary proliferative 
glomerulonephritis (N054) ; unspecified nephritic syndrome : 

diffuse mesangiocapillary glomerulonephritis (N055) ; unspecified 
nephritic syndrome : dense deposit disease (N056) ; unspecified 

nephritic syndrome : diffuse crescentic glomerulonephritis (N057) ; 
glomerular disorders in diabetes mellitus (N083) ; chronic kidney 

disease (N18) ; unspecified kidney failure (N19) ; renal 
osteodystrophy (N250) ; care involving dialysis (Z49) ; kidney 
transplant status (Z940) ; dependence on renal dialysis (Z992) 

 

 
 
 
 
 

Lecoeur et al. 2022, Giral 
et al. 2019,  Oger et al. 

2022, Goulabchand et al. 
2021, Zerah et al. 2021, 
Mohammedi et al. 2021, 

Gabet et al. 2019,  
Schapiro Dufour et al. 

2019 



	

Active cancer 

 
ICD-10: malignant neoplasms (C00-C97) ; in situ neoplasms (D00-

D09) ; neoplasms of uncertain or unknown behaviour (D37-48) ; 
neoplasm of unspecified behavior of digestive system (D49) 

 

Giral et al. 2019 
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Appendix A. Prediction Model

 
 

 
 
 
 
 

Total 
Medial codes 

N = 9,460 

Outpatient drugs 
ATC codes 
N = 1,281 

Hospital diagnoses 
ICD codes  
N = 8,179 

Codes included in the 
validation cohort 

N = 1,176 

Codes grouped 
according to the ATC 

classification 
N = 196 

ATC codes selected by 
the prediction model 

N = 96 

Codes included in the 
validation cohort 

N = 6,738 

Codes grouped 
according to the ICD 

classification 
N = 1,546 

ICD codes selected by 
the prediction model 

N = 92 

Not selected by the 
prediction model 

N = 100  

Not selected by the 
prediction model 

N = 1,454  

Not included in the 
validation cohort 

N = 105  

Not included in the 
validation cohort 

N = 1,441  

Figure A.3: Flow chart of the variables
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Appendix A. Prediction Model

Figure A.4: Calibration plots
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Appendix A. Prediction Model

Table A.3: Comparison of the predictive performances
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Appendix A. Prediction Model

Table A.4: Sensitivity analyses
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Titre : Prédiction de la Mort Subite de l’Adulte et Identification des Facteurs de Risque Associés grâce au Machine Learning
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Résumé :
La mort subite de l’adulte est définie comme une mort inat-
tendue sans cause extracardiaque évidente, survenant avec
un effondrement rapide en présence d’un témoin, ou en l’ab-
sence de témoin dans l’heure après le début des symptômes.
Son incidence est estimée à 350,000 personnes par an
en Europe et 300,000 personnes aux Etats-Unis, ce qui
représente 10 à 20% des décès dans les pays industria-
lisés. Malgré les progrès réalisés dans la prise en charge,
le pronostic demeure extrêmement sombre. Moins de 10%
des patients sortent vivants de l’hôpital après la survenue
d’une mort subite. Les défibrillateurs automatiques implan-
tables offrent une solution thérapeutique efficace chez les
patients identifiés à haut risque de mort subite. Leur identi-
fication en population générale demeure donc un enjeu de
santé publique majeur, avec des résultats jusqu’à présent
décevants. Cette thèse propose des outils statistiques pour
répondre à ce problème, et améliorer notre compréhension
de la mort subite en population générale. Nous analysons
les données du Centre d’Expertise de la Mort Subite et les
bases médico-administratives de l’Assurance Maladie, pour
développer trois travaux principaux. La première partie de la
thèse vise à identifier de nouveaux sous-groupes de mort

subite pour améliorer les modèles actuels de stratification
du risque, qui reposent essentiellement sur des variables
cardiovasculaires. Nous utilisons des modèles d’analyse du
langage naturel et de clustering pour construire une nou-
velle représentation pertinente de l’historique médical des
patients. La deuxième partie vise à construire un modèle de
prédiction de la mort subite, capable de proposer un score
de risque personnalisé et explicable pour chaque patient,
et d’identifier avec précision les individus à très haut risque
en population générale. Nous entraı̂nons pour cela un al-
gorithme de classification supervisée, combiné avec l’algo-
rithme SHapley Additive exPlanations, pour analyser l’en-
semble des consommations de soin survenues jusqu’à 5
ans avant l’événement. La dernière partie de la thèse vise
à identifier le niveau optimal d’information à sélectionner
dans des bases médico-administratives de grande dimen-
sion. Nous proposons un algorithme de sélection de va-
riables bi-niveaux pour des modèles linéaires généralisés,
permettant de distinguer les effets de groupe des effets in-
dividuels pour chaque variable. Cet algorithme repose sur
une approche bayésienne et utilise une méthode de Monte
Carlo séquentiel pour estimer la loi a posteriori de sélection
des variables.

Title : Exploring Risk Factors and Prediction Models for Sudden Cardiac Death with Machine Learning

Keywords : Sudden Cardiac Death, Machine Learning, Clustering, Personalized prediction, Variable Selection

Abstract :
Sudden cardiac death (SCD) is defined as a sudden natural
death presumed to be of cardiac cause, heralded by abrupt
loss of consciousness in the presence of witness, or in the
absence of witness occurring within an hour after the onset
of symptoms. Despite progress in clinical profiling and inter-
ventions, it remains a major public health problem, accoun-
ting for 10 to 20% of deaths in industrialised countries, with
survival after SCD below 10%. The annual incidence is esti-
mated 350,000 in Europe, and 300,000 in the United States.
Efficient treatments for SCD management are available. One
of the most effective options is the use of implantable car-
dioverter defibrillators (ICD). However, identifying the best
candidates for ICD implantation remains a difficult challenge,
with disappointing results so far. This thesis aims to address
this problem, and to provide a better understanding of SCD
in the general population, using statistical modeling. We ana-
lyze data from the Paris Sudden Death Expertise Center and
the French National Healthcare System Database to develop
three main works. The first part of the thesis aims to identify

new subgroups of SCD to improve current stratification gui-
delines, which are mainly based on cardiovascular variables.
To this end, we use natural language processing methods
and clustering analysis to build a meaningful representation
of medical history of patients. The second part aims to build a
prediction model of SCD in order to propose a personalized
and explainable risk score for each patient, and accurately
identify very-high risk subjects in the general population. To
this end, we train a supervised classification algorithm, com-
bined with the SHapley Additive exPlanation method, to ana-
lyze all medical events that occurred up to 5 years prior to
the event. The last part of the thesis aims to identify the most
relevant information to select in large medical history of pa-
tients. We propose a bi-level variable selection algorithm for
generalized linear models, in order to identify both individual
and group effects from predictors. Our algorithm is based on
a Bayesian approach and uses a Sequential Monte Carlo me-
thod to estimate the posterior distribution of variables inclu-
sion.
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