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Titre: Modélisation de moteurs électriques à l’aide de réseaux de neurones profonds
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Résumé: Cette thèse traite de l’application
des réseaux de neurones dans la résolution de
problèmes liés aux moteurs électriques. Le
chapitre 2 contribue à identifier une structure
de réseau de neurones capable d’apprendre la
relation multi-variée entre différents signaux
d’un moteur électrique. La structure identifiée
est ensuite utilisée pour l’estimation vitesse-
couple à partir des courants et des tensions.
Le chapitre 3 se concentre sur la détection
et la correction de défauts de mesure. Notre
méthode prend en compte les défauts de
capteurs électriques, les défauts mécaniques et
l’estimation de température.

Le chapitre 4 traite ensuite de la fiabilité de
l’estimateur vitesse-couple en cas de courants
et de tensions bruités. Nous présentons une

méthode de débruitage permettant de rendre
notre estimateur vitesse-couple applicable dans
un contexte réaliste. Ensuite, une rapide
analyse de la robustesse face à une attaque
adverse est menée pour les réseaux neuronaux
utilisés dans des applications des moteurs
électriques. La capacité de généralisation
de l’estimateur vitesse-couple est également
brièvement analysée. Dans le chapitre 5, nous
nous concentrons sur le dernier obstacle à la
mise en oeuvre des réseaux de neurones: le
coût de calcul. Nous présentons la méthode
de sparsification par inclusion sous-différentielle
(SIS) permettant de trouver le meilleur réseau
parcimonieux à partir de poids pré-calculés,
tout en conservant la précision d’origine.

Title: Modeling of Electric Motors using Deep Neural Networks
Keywords: Deep Learning, Induction Motor, Efficient Networks, Pruning

Abstract: This thesis deals with the
application of neural networks in solving
electrical motor problems. Chapter 2
contributes to identifying a neural network
that can learn the multivariate relationship
between different electrical motor signals.
The identified network is then used for
speed-torque estimation from currents and
voltages. Chapter 3 focuses on detecting and
recovering from faulty measurements. Our
method encompasses electrical sensor faults,
mechanical faults, and temperature estimation.

Chapter 4 then discusses the reliability
of the speed-torque estimator in case of
noisy currents and voltages. We present

a denoising method which allows our speed-
torque estimator to be applicable in a realistic
context. This is followed by an analysis
of the adversarial robustness of the neural
networks used in electrical motor tasks. The
generalization capability of the speed-torque
estimator is also briefly considered. In
Chapter 5, we focus on the final roadblock
in achieving real-world application of neural
networks: computational requirements. We
present the Subdifferential Inclusion for Sparsity
(SIS) method to find the best sparse network
from pretrained weights while maintaining
original accuracy.



Abstract
Electrical motors are so much a part of everyday life that we seldom give them a
second thought. For example, when we switch on an electrical vehicle, we expect
it to run rapidly up to the correct speed, provide acceleration, stop when brakes
are applied, and casually predict faults to avoid future mishaps. Electrical motors
have very complex dynamics and it is essential to have a controller that can
provide robust control based on these dynamics. Current industrial controllers
offer various solutions like fault detection, system observation, and predictive
maintenance. Artificial neural networks have shown tremendous promising results
in various vision, natural language processing, and robotic control tasks in the
last decade. A similar revolution has just begun in the heavy industry under the
umbrella of Industry 4.0. This thesis focuses on bringing such advances in deep
neural networks to the electrical motor industry for system modeling, fault
detection, and predictive maintenance.

The first contribution in Chapter 2 is about data-driven modeling of electrical
motor dynamics. This is achieved by learning the input-output relationship
between different quantities of induction motors using various neural networks. A
new network architecture has been introduced that combines the benefits of
convolutions and sequential layers for time-series regression tasks. Using this
identified network, we set on the path for creating a neural speed-torque
estimator. This contribution is towards applying the identified neural network and
establishing electrical domain-aligned evaluation metrics to analyze the
performance of neural networks. In Chapter 3, we leverage the same network to
address practical applications by focusing on problems like sensor fault recovery,
mechanical fault detection, and temperature modeling.

Having shown multiple applications of novel proposed neural networks, we move
the needle toward the reliability of such methods in the real world. Chapter 4
proposes a real-world network pipeline by chaining a neural signal denoiser that
takes real-world noisy currents and voltages, and denoises them as inputs for speed-
torque estimation. This removes the need to collect a large, noisy dataset to train
a good speed-torque estimator network. We study the robustness of this real-world
speed-torque estimator pipeline by generating adversarial attacks, concluding that a
better physics-aware attacker is essential. At last, this chapter contributes another
insight into the reliability of the speed-torque estimator pipeline along the path of
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domain generalization.
The mixed bag of scientific rewards attained in the contributions of Chapter 4

enables us to question more about the real-world usage of the speed-torque
estimator and other such electrical motor networks introduced so far. For this,
Chapter 5 leads to a new convex optimization-based method for sparsifying
pre-trained neural networks. This opens the avenue of utilizing the speed-torque
estimator in a real-time fashion on general-purpose computers.
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Résumé
Les moteurs électriques font tellement partie de la vie quotidienne que nous ne leur
prêtons plus guère attention. Par exemple, lorsque nous démarrons un véhicule
électrique, nous nous attendons à ce qu’il atteigne rapidement la vitesse souhaitée,
fournisse la bonne accélération, s’arrête lorsqu’on actionne les freins, et même
qu’il prédise au passage les pannes pour éviter de futurs incidents. Les moteurs
électriques ont une dynamique très complexe et il est essentiel de disposer d’un
contrôleur capable de fournir un contrôle robuste basé sur cette dynamique. Les
contrôleurs industriels offrent de nos jours diverses solutions telles que la détection
de pannes, l’observation du système et la maintenance prédictive. Au cours de
la dernière décennie, les réseaux de neurones artificiels ont montré des résultats
extrêmement prometteurs dans diverses tâches de vision, de traitement du langage
naturel et de contrôle robotique. Une révolution similaire vient de s’amorcer dans le
domaine industriel sous l’égide de l’Industrie 4.0. Cette thèse s’applique à transférer
de telles avancées en réseaux de neurones profonds vers l’industrie des moteurs
électriques, en vue de la modélisation de systèmes, la détection de défauts et la
maintenance prédictive.

La première contribution du chapitre 2 concerne la modélisation de la
dynamique des moteurs électriques à l’aide de données. Celle-ci est réalisée en
apprenant, grâce à divers réseaux de neurones, la relation entrée-sortie entre
différentes quantités des moteurs à induction. Une nouvelle architecture de
réseau est introduite qui combine les avantages des couches convolutives et
séquentielles pour les tâches de régression de séries temporelles. À l’aide de ce
réseau, nous avons conçu un nouvel estimateur neuronal vitesse-couple. Cette
contribution vise à appliquer le réseau de neurones identifié et à établir des
métriques d’évaluation spécifiques au domaine électrique pour analyser les
performances des réseaux de neurones. Au chapitre 3, nous exploitons le même
réseau pour traiter diverses applications pratiques, en nous concentrant sur des
problèmes tels que la récupération lors de défauts des capteurs, la détection des
défauts mécaniques et la modélisation de la température.

Après avoir montré de multiples applications des nouveaux réseaux de
neurones proposés, nous examinons la fiabilité de ces méthodes dans un cadre
réel. Le chapitre 4 contribue à une architecture de réseau applicable à des
données réelles, employant en amont un débruiteur de signaux neuronal qui traite
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des courants et des tensions bruités et les débruite afin de réaliser une estimation
de couple et de vitesse. Le besoin de collecter un grand nombre de données
bruitées est ainsi éliminé pour l’entrainement d’un bon réseau d’estimation
vitesse-couple. Nous étudions la robustesse de cette architecture pratique
d’estimation de couple-vitesse en générant des attaques adverses, concluant de
l’importance d’une attaque inspirée de la physique du phénomène. Enfin, ce
chapitre apporte un autre aperçu de la fiabilité de l’architecture d’estimateur
vitesse-couple en vue d’une généralisation à d’autres domaines.

L’ensemble des aboutissements scientifiques et des contributions du
chapitre 4 permet de nous interroger davantage sur l’utilisation réelle de
l’estimateur de vitesse-couple et d’autres réseaux pour les moteurs électriques,
tels qu’introduits jusqu’à présent. Dans ce but, le chapitre 5 nous mène à une
nouvelle méthode basée sur l’optimisation convexe pour rendre parcimonieux des
réseaux de neurones pré-entraînés. Ceci ouvre la voie à l’utilisation de
l’estimateur vitesse-couple en temps réel sur des ordinateurs standards.
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Chapter 1Introduction
The deep learning revolution has changed how humans interact with their
surroundings. Computer vision applications, natural language processing, and
robotics have touched every part of our lives. These dramatic change has been
made possible by staggering growth in deep learning research and rapid
commercialization of those research in areas like social media, urban organization,
transportation, and medicine. The abundance of research can be attributed to
two main factors: the vast amount of data and the accessibility to computing
capable of processing large data. Such an adaptation of technologies based on
deep learning is now taking place in heavy industrial sectors like steel
manufacturing, automobile, mining, and space manufacturing to name a few.
Within these sectors, there are numerous applications and open problems. One of
the most crucial equipment used in these heavy industries is the electrical motor.

Electrical motors are so much a part of everyday life that we seldom give them
a second thought. For example, when we switch on an electrical vehicle, we expect
it to run rapidly up to the correct speed, provide acceleration, stop when brakes
are applied, and casually predict faults to avoid future mishaps. Electrical motors
have very complex dynamics and it is essential to have a controller that can provide
robust control based on these dynamics. Electrical motor controllers also provide
protection and supervision of the electro-mechanical system [3, 4]. These services
are dependent on the dynamical physical models of electrical motors. Accurate
dynamics are derived from the first principles of physics. These dynamical models
depend on electrical motor physical quantities like currents, voltages, speed, fluxes,
inductances, and resistances, which are measured directly or indirectly using sensors
or estimated. Accurately measuring some of these quantities is hard due to noise.
Operating conditions also affect some of these quantities, for example, the thermal
evolution of resistances with time. Therefore, mathematical models backed by
many simulations and human expert knowledge are required to develop robust
controllers.

Modeling dynamics. The electrical drive industry has mastered the control
aspect of electrical motors and has explored and utilized several mathematical
models to deal with noise and faults. Much of the current research is focused
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on finding machine learning solutions that can detect a wide array of faults in all
types of motors used in all sorts of applications. The numerosity of the faults
based on the motor type and its application makes deep learning an exciting and
valuable path. If we can find a group of neural networks that are well suited to
ingest and understand electrical motor signals then we can train those networks
for different types of electrical motor tasks. Any kind of data-driven modeling
using neural networks requires a large amount of data. One major challenge is
the unavailability of such datasets and the time taken to create any meaningful
dataset. A combination of a large amount of simulation data and small real-world
data is a path forward. In this thesis, we propose advances to answer the following
question:

How can neural networks learn electrical motor dynamics from
simulated and real-world data?

Reliability in the real world. When dealing with real-world data like electrical
motor signals, we have to deal with measurement noise present in the signals. Due
to the nature of the operation of the electrical motor, noisy data is generated all the
time and neural networks are pretty susceptible to these noises. Another important
factor at play is the generalization and robustness of neural networks when applied
to such mission-critical systems. Collecting a large amount of data for all possible
types of motors is economically prohibitive for even large industrial labs. Neural
networks have to be robust to noise and concept drift (aging and thermal decay)
to be a practically accounted for. The second challenge that we address in this
thesis is the following one:

Can neural networks used in electrical motor tasks generalize and be
robust towards noise?

Applicability in the real world. Deep neural networks used in computer
vision, automatic speech recognition, and natural language processing have
different expectations when it comes to real-time usage than electrical motor
applications. While their performance in various applications has matched and
often exceeded human capabilities, neural networks may remain difficult to apply
in real-world scenarios. Deep neural networks leverage the power of Graphical
Processing Units (GPUs), which are power-hungry. Using GPUs to make billions
of predictions per day, thus comes with a substantial energy cost. In addition,
despite their quite fast response time, deep neural networks are not yet suitable
for most real-time applications where memory-limited low-cost architectures need
to be used. Given that neural networks for electrical motor tasks have to run on a
low compute edge device with minimum delay, it is important that neural
networks for electrical motor tasks are efficient and fast. The third problem that
we explore is

How can we use neural networks for electrical motor tasks in real-time
on inexpensive and low-resourced computing?
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1.1 . Previous Work

A short review of the electrical motor principles is followed by a recall of
different approaches to the modeling of induction motor physical systems.
Followed by literature on denoising time-series, generalization, and robustness of
neural networks within the umbrella of reliability in the real world. Finally, making
neural networks efficient and their real-time implementations are discussed.

1.1.1 . Electrical Motor

In a typical electrical motor, the following components can be found; rotor,
stator, bearings, windings, rotor bars, and frame. The rotor is the moving part of
an electrical motor that rotates the shaft to deliver mechanical power. The rotor
usually has conductors on it to carry currents, which interact with the magnetic
field of the stator. This interaction generates the forces required to rotate the shaft.
Rotors are supported by bearings for smooth operation. The stator is the stationary
part of a motor and contains either winding or permanent magnets. Winding is
the wires that form coils to carry electrical currents and induce electromagnetic
forces.

Electrical motors can be classified into different types based on power source
type, internal construction, application, and type of motion output. Based on
power source type, electrical motors are classified into Alternating Current (AC)
and Direct Current (DC) motors. AC motors can be further classified into three
types; induction, synchronous, and series-wound motors [5]. This thesis is mainly
focused on induction motors.

Fan CoverEnd Bell
Bearings

3-Phase Windings

Stator
Cooling Fan

Rotor
Rotor 
Bars

Shaft

3-Phase Terminal

Nameplate

Figure 1.1: Induction Motor [1]

An induction motor is an induction machine in which the primary winding of
the stator is connected to the power source, and the secondary winding of the rotor
carries induced current. Figure 1.1 shows parts of an induction motor. Based on the
secondary winding, induction motors can be classified into squirrel-cage induction
motors and wound-rotor induction motors. In a squirrel-cage induction motor,
the secondary winding contains several conducting bars having their extremities
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connected by metal rings or plates at each end. In a wound-rotor induction motor,
the secondary circuit contains a poly-phase winding or coils whose terminals are
either short-circuited or closed through suitable circuits. Synchronous motors have
a rotor spinning with coils passing magnets at the same rate as the AC which results
in a magnetic field that drives it. Figure 1.2 shows mechanical and electromagnetic
forces acting during an induction motor operation.
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Field
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Main 
Field

Electromagnetic 
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Figure 1.2: Operation of induction motor [2]

To control electrical motors, Variable Speed Drives (VSDs) can be used [3,
4]. VSDs are power converters, integrated with a power conversion system used
to drive electrical motors. They are placed between the electrical grid and an
electrical motor. VSDs provide controls for different use cases of the motor: a
typical electrical motor can be used in centrifugal pumps, fans, conveyors, elevators,
tower cranes, and electrical vehicles. The controller consists of three nested levels:
control of the electrical part of the motor, control of the mechanical part of the
motor, and control of the system application. The services provided by VSDs are
control, protection, and supervision of the electromechanical system of an electrical
motor. For these services, it is imperative to know the dynamical physical model of
electrical motors. A brief introduction to reference frames and transformations of
electrical motor quantities has been provided in the following subsections followed
by a dynamical physical model of the induction motor.

1.1.1.1 . Reference Frames

The ubiquitous usage of induction motors across different types of industries
and for different applications requires different mathematical models for analysis
and development. There are three different reference frames used to represent
electrical motor quantities. The three reference frames and their examples are
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Figure 1.3: Three-phase reference frame

• Three-phase stationary reference frame, in which a, b, and c are co-
planar axes at an angle of 120 degrees to each other.

𝛼

𝛽

Figure 1.4: Orthogonal stationary reference frame

• Orthogonal stationary reference frame, in which α and β are
perpendicular to each other in the same plane as the three-phase stationary
reference frame.

θ

q

d

𝛼 axis

Figure 1.5: Orthogonal rotating reference frame

• Orthogonal rotating reference frame, in which d axis is at an angle θ

(rotation angle) to the α axis and the q axis is perpendicular to the d axis.
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The usage of a particular reference frame depends on the problem under
consideration. One of the advantages of the dq frame is to be able to deal with
constant quantities instead of sinusoidal quantities when the angle θ is well
chosen. Conversion from a three-phase stationary reference frame to an
orthogonal rotating reference frame via an orthogonal stationary reference frame
is done using different transformations presented in the next section.

1.1.1.2 . Transformations

Concordia transformation converts the quantities from the three-phase
stationary reference frame into quantities represented in the two-phase
orthogonal stationary reference frame. The Concordia transformation is expressed
by the following equations:

(
Xα

Xβ

)
=

√
2
3

(
1 −1/2 −1/2
0
√

3/2 −
√

3/2

)Xa
Xb
Xc

 (1.1)

where Xa, Xb, and Xc are the quantities represented in the three-phase stationary
reference frame and Xα and Xβ are the transformed quantities represented in the
two-phase orthogonal stationary reference frame. Th fact that we generate only
two components from three is related to the fact that the sum of components
(Xa, Xb, Xc) is zero.
Inverse Concordia transformation converts quantities represented in the two-
phase orthogonal stationary reference frame into the quantities represented in the
three-phase stationary reference frame. The inverse Concordia transformation is
expressed by the following equations:Xa

Xb
Xc

 =

√
2
3

 1 0
−1/2

√
3/2

−1/2 −
√

3/2

(Xα

Xβ

)
. (1.2)

Rotation converts quantities represented in the two-phase orthogonal stationary
reference frame into quantities represented in the two-phase orthogonal rotating
reference frame. Rotation is achieved by using the following equations:(

Xd
Xq

)
=

(
cos θ sin θ
− sin θ cos θ

)(
Xα

Xβ

)
(1.3)

where Xd and Xq are the quantities represented in the two-phase orthogonal
stationary reference frame, Xα and Xβ are the transformed quantities represented
in the two-phase orthogonal rotating reference frame quantities and θ is the
rotation angle.
Inverse Rotation converts quantities represented in the two-phase orthogonal
rotating reference frame into quantities represented in the two-phase orthogonal
stationary reference frame. Inverse rotation is expressed by the following equations:
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(
Xα

Xβ

)
=

(
cos θ − sin θ
sin θ cos θ

)(
Xd
Xq

)
(1.4)

The combination of the Concordia transformation with a rotation is called the Park
transformation.

1.1.1.3 . Dynamical Physical Model
The state-space model of an induction motor is presented in [6, 7, 8, 9, 10].

Modeling of electrical motors based on analytical mechanics and energy
consumption is presented in [11]. This thesis uses a mathematical model of an
induction motor presented in [10]. In this model, the quantities are represented in
the rotating reference frame at pulsation ωs (d − q model). The fifth-order
nonlinear state space model of the induction motor reads as follows:

J
np

d
dt

ωr =
3
2

npℑ(ψ∗s is)− τL (1.5)
d
dt

ψs = −jωsψs − Rsis + us (1.6)
d
dt

ψr = −jωsψr − Rrir + jωrψr (1.7)
where ℑ(z) and z∗ are respectively the imaginary part and conjugate of z. np

denotes the number of pole pairs, J the motor shaft inertia, τL the load torque,
and us = usd + jusq the motor input voltage in the (d− q) frame. ωr (np times the
mechanical speed), ψs = ψsd + jψsq (stator flux), and ψr = ψrd + jψrq (rotor flux)
are the five state variables. The flux variables are linked to the current variables is

(stator) and ir (rotor) by nonlinear relationships [12] given by :

ψs = L f sis +
Lm(is + ir)

1 + γ|is + ir|

ψr = L f rir +
Lm(is + ir)

1 + γ|is + ir|

(1.8)

The parameters are the stator and rotor resistances Rs and Rr, the stator
and rotor leakage inductances L f s and L f r, and the magnetic saturation coupling
parameters Lm and γ.

1.1.2 . Data-Driven Modeling of Physical Systems
Understanding physical processes from data without having the underlying

physical model is very hard. The abundance of data in both natural and physical
sciences has enabled the use of machine learning models to understand the
governing dynamics of many complex processes. There are different ways of
modeling physical systems. Existing research can be grouped into the following
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areas; a) the problem of understanding the physical process from data, b)
classifying or predicting complex physical processes, c) using physics to generate
simulation data for machine learning models, d) using machine learning to control
non-linear dynamical systems, and e) using machine learning to detect anomalies
in dynamical systems. This thesis focuses on the data-driven modeling of
electrical motor dynamics. The following subsections summarize existing research
on different ways of modeling a time-series physical system.

1.1.2.1 . Machine Learning

Hidden Markov Model (HMM), or Kalman filter can learn linear dynamic
models. For non-linear dynamics, accommodating non-linearity into HMM is
non-trivial. In [6] a new method called sufficient posterior representation is
presented which can be used to model non-linear dynamic behaviors using many
non-linear supervised learning algorithms such as neural networks, boosting, and
support vector machine (SVM) in a simple and unified fashion. Most of the
methods of data-driven learning of dynamic systems deal with sequential data. A
method has been presented in [8] to learn dynamics from non-sequential data.
Another approach to modeling a physical system is to represent it in the form of
Partial Differential Equations (PDEs). PDEs can describe complex phenomena.
We do not always have a PDE model for a given problem, but we may have a
large amount of data available. In [13] a data-driven method is proposed to learn
the governing PDEs of a given system from time series data. Sparse regression is
used to learn the coefficients and an iterative method is employed to get the
most suitable coefficients.

1.1.2.2 . Black Box Modeling using Neural Networks

Neural networks to model physical phenomena in a black box approach was
presented in [7]. The paper presents a way of modeling time-invariant non-linear
systems. A multi-layered network architecture with a control input signal called
Hidden Control Neural Network (HCNN) is presented which can model signals
generated by non-linear dynamical systems with restricted time variability. Recently,
deep neural networks have been used in learning physical dynamics from data in
a range of applications e.g., calorimetry [14], drone landing [15], and nonlinear
dynamics identification [16]. Karpatne et al. presents a physics-guided neural
network (PGNN) that leverages the output of physics-based model simulations
along with observational features to generate predictions using a neural network
[17]. Furthermore, they present a novel framework for using physics-based loss
functions in the learning objective of neural networks, in order to ensure that
the model predictions not only show lower errors on the training set but are also
scientifically consistent with the known physics on the unlabeled set. There are
systems where dynamics change with time and some dynamics may not have been
seen before. Identifying new dynamics is useful. [18] uses neural networks to
identify new physics laws.
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1.1.2.3 . Interpretable Modeling using Neural Networks
For some physical systems, we want weak governing dynamics in the form of

equations. A neural network trained on physical system data does not provide a
good representation in the form of equations. [19, 16] have presented methods
that can be used to find weak governing dynamics in the form of equations or
sparse matrices. Computing hidden system parameters from measurable quantities
of complex physical systems using an Invertible Neural Network (INN) is presented
in [19]. In [16] a data-driven approach for approximating nonlinear dynamics to
a linear one using deep neural networks has been proposed. Koopman operators
[20] are learned from data for the coordinate transformation of a nonlinear system
to a linear one. Koopman operator is a linear operator Cϕ defined by the rule
Cϕ( f ) = f ◦ ϕ, where ◦ denotes function composition. Other nonlinear to linear
transformation methods are presented in [18, 7].

It is crucial to have a machine learning model consistent with the physics of
the dynamic system. [21] has shown how physics can be used to make better
data-driven discoveries. Theory-guided design, learning, and refinement of the
machine learning model have been presented. In [22], a physics-guided neural
network (PGNN) is presented, which leverages the output of physics-based model
simulations and observational features to generate predictions using a neural
network. The model predictions show lower errors in the training data and are
consistent with the system dynamics. [23] uses machine learning to optimize
physical dynamic systems.

1.1.3 . Reliability of Neural Networks
Neural networks are susceptible to noisy inputs. Denoising is a trivial task if

the noise parameters of the system are known. In the case of electrical motors,
such information can be collected by identifying the noise source or collecting
some data and doing noise modeling. Then denoisers can be designed using these
parameters. Another common problem in the case of neural networks is the
robustness against input perturbations. This is an active research area with a lot
of work on adversarial training and certifications of networks. From a reliability
point of view, generalization capability of a network is a requirement. The
following subsections summarize the literature on time-series denoising,
robustness, and generalization of neural networks.

1.1.3.1 . Denoising Time-Series
Noise reduction in time signals is a very evolved field with a multitude of

research involving various methodologies. Some of the techniques that can be
easily applied are linear smoothing filters and non-linear filters [24, 25]. Kalman
filter [26, 27, 28] is widely used in noisy observation where a state-space based
estimation is done which takes the system model as input. Also, there are
transform-based methods like those based on wavelet transforms [29, 30] which
remove noisy components from transformed sensor data. Variational methods
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often based on the total variation [31, 32, 33] have also been used in signal
denoising and change detection, providing a robust and often more flexible
solution over linear filter-based denoisers. Kalman filter, transform-based and
variational methods require prior knowledge about the noise/signal statistics for
efficient denoising. Deep learning methods, e.g. stacked autoencoders [34], are
also used.

1.1.3.2 . Robustness of Neural Networks

Testing instability of neural networks is a well known and active area of
research leading to a more explainable and trustable A.I. In [35], the concept of
adversarial attacks was first proposed to fool neural networks. Adding a
well-crafted subtle perturbation to the input of the neural network produces a
misclassification. This scenario is possible even when the model has good clean
accuracy. These attacks pose a huge threat to the performance of neural
networks. There have been multitude of works introducing stronger adversarial
attacks and their defenses. Goodfellow et al. [36] proposed Fast Gradient Sign
Method (FGSM) to generate ℓ∞ bounded adversarial attacks. This is a white box
attack i.e it has access to network structure, parameter weights as well as all the
related training details. The generated inputs are misclassified by adding
perturbations and linearizing the cost function in the gradient direction. FGSM is
a single step attack, Madry et al. [37] proposed a multi-step variant of FGSM
called Projected Gradient Descent (PGD) attack.

1.1.3.3 . Generalization of Neural Networks

Deep neural networks often have far more trainable model parameters than
the number of samples they are trained on. Some of these models exhibit small
generalization errors, i.e., the difference between “training error" and “test error".
But when such networks are used in the real world, there are several cases where
they do not perform well. These cases can occur due to unseen distributions,
concept drifts, etc. This leads to several interesting questions, a) how generalized
a neural network is for the problem it is trained for, b) how can concept drift be
detected, and c) how to generalize neural networks without training it
exhaustively for all scenarios. To answer such questions, statistical learning theory
has proposed several different complexity measures that are capable of controlling
generalization errors. These include Vapnik–Chervonenkis (VC) dimension [38],
Rademacher complexity [39], and uniform stability [40, 41, 42].

1.1.4 . Efficient Real Time Inference

Neural networks trained for real-time tasks like electrical motor fault detection
have constraints around inference speed and available computing resouurces. Such
constraints have been met in applications of neural networks in computer vision and
natural language processing (NLP) problems. There are several works in pruning
neural networks to bring down their excessive number of parameters. Some works
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are more application-oriented, where all constraints like computing time, network
type, accuracy, and speed are considered all at once to automatically search for
the best network. These two areas of research are summarised in the following
subsections.

1.1.4.1 . Pruning Neural Networks
Methods inducing sparsity in a pre-trained network involve multiple pruning

and fine-tuning cycles till desired sparsity and accuracy are reached [43, 44, 45,
46, 47, 48, 49]. [50] proposed weight rewinding technique instead of vanilla fine-
tuning post-pruning. Another popular approach has been to induce sparsity during
training. This is achieved by modifying the loss function to consider sparsity as
part of the optimization [51, 52, 53, 54]. [55] showed that it is possible to find
sparse sub-networks that, when trained from scratch, were able to match or even
outperform their dense counterparts. [56] presented single-shot network pruning
(SNIP), a method to estimate, at initialization, the importance that each weight
could have later during training. In [57] the authors perform a theoretical study
of pruning at initialization from a signal propagation perspective, focusing on the
initialization scheme.

1.1.4.2 . Searching for Efficient Networks
Hardware-aware network architecture search (NAS) methods [58, 59, 60, 61, 62,

63, 64] directly incorporate the hardware feedback into efficient neural architecture
search. [65] proposes to learn a single network composed of a large number of
subnetworks from which a hardware-aware subnetwork can be extracted in linear
time. [66] proposes a similar approach wherein they identify subnetworks that can
be run efficiently on microcontrollers (MCUs).

1.2 . Contributions of the Thesis

A list of contributions of this thesis follows. The first three entries below are
contributions towards answering the first question on learning electrical motor
dynamics using neural networks from data, followed by contributions on the
reliability and applicability of these networks in the real world.

Input-Output relationship modeling. A principle contribution of this thesis is
the data-driven modeling of electrical motor dynamics. This is established by
learning the input-output relationship between various quantities of induction
motors using different neural networks. A new network architecture is introduced
that combines the benefits of convolutions and sequential layers for time-series
regression tasks.

Speed-Torque estimator. One important application of identified neural
network that can learn the relationship between different electrical motor
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quantities is estimating speed and torque from currents and voltages. This
contribution is towards the application of the identified neural network in the
electrical motor and establishing a suitable pipeline to analyze the performance
using proper electrical engineering metrics.

Utilizing Identified Model for Other Electrical Motor Applications.
Input-output relationship model is utilized in several other practical tasks like
sensor fault recovery, mechanical fault detection, and temperature modeling.

Denoising currents and voltages. This contribution enables us to use a
speed-torque estimator trained on a large amount of simulated data directly in
real-world settings. The outcome of this work is a neural network-based
time-series signal denoiser that takes real-world noisy currents and voltages and
denoises them for speed-torque estimator. This removes the need of collecting a
large amount of real noisy data to train a good speed-torque estimator.

Robustness of speed-torque estimator. The behavior of neural networks to
perturbations of its input can be done by generating adversarial attacks using
FGSM [36] and PGD [37] attackers. These methods are not suitable for electrical
motor quantities. This contribution shows why some of the existing methods are
not good attackers for speed-torque estimators and pitches the requirement of a
physical dynamics-based attacker.

Generalization of the speed-torque estimator. Much of the research on the
generalization of neural networks is based on measuring the generalization bounds
of trained networks. This contribution analyzes the generalization capability of
the speed-torque estimator to different power motors.

Pruning of pre-trained neural networks. This contribution leads to a new
convex optimization-based method for sparsifying pre-trained neural networks.
This provides a sound approach offering convergence guarantees and opens the
avenue of utilizing the speed-torque estimator in a real-time fashion on low
compute devices.
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1.3 . Organisation of the Thesis

This thesis is organised as follows.

i) In Chapter 2, we introduce the problem of modeling the input-output
relationship between different quantities using neural networks as a way of
modeling the system dynamics of electrical motors. We introduce a new
encoder-decoder architecture that is well suited for electrical motor
time-series signals. This encoder-decoder architecture is designed to create
a speed-torque estimator with careful consideration of its performance
from an electrical engineering perspective.

ii) In Chapter 3 we discuss three different applications of the proposed
encoder-decoder architecture. A major focus in on the problem of sensor
fault recovery. We show how GANs can be trained by using the pre-trained
encoder-decoder networks as the backbone of generators and decoders to
identify incipient faults present in sensor recording of electrical motor
quantities. We demonstrate how the proposed architecture can be used for
mechanical fault detection and temperature modeling in electrical motors.

iii) In Chapter 4, we focus on the reliability of the neural networks under different
conditions for the applications above. We show that we can remove several
data and real-time usage challenges by handling noise before speed-torque
estimation. We also show the robust behavior of our proposed networks
under different adversarial attacks. At last, we show the generalization
capability of our speed-torque network and how the performance changes
when we introduce different powered motor test data.

iv) In Chapter 5, we deal with the problem of utilizing our speed-torque network
in the real world in a resource-limited setting. We propose a novel rigorous
optimization approach for puning a pre-trained network. Our method takes
advantage of recent advances in the mathematical understanding of neural
networks which have shown that most of the activation functions used in
neural networks are proximity operators of convex functions.

v) Finally, we conclude in Chapter 6 and present future work based on the
contributions of this thesis.

1.4 . List of Publications

i) S. Verma and K. Gupta. Robustness of Neural Networks used in Electrical
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ii) S. Verma, N. Henwood, M. Castella, JC Pesquet, and AK Jebai, Can GANs
Recover Faults in Electrical Motor Sensors? , ICLR Workshop 2022. [68]

31

https://hal.archives-ouvertes.fr/hal-03861148/document
https://hal.archives-ouvertes.fr/hal-03861148/document
https://openreview.net/pdf?id=BEnN1TVdvW9
https://openreview.net/pdf?id=BEnN1TVdvW9


iii) S. Verma, N. Henwood, M. Castella, AK Jebai, and JC Pesquet, Neural
Speed-Torque Estimator for Induction Motors in the Presence of
Measurement Noise, IEEE Journal of Transactions on Industrial Electronics
2022. [69]

iv) S. Verma and JC Pesquet, Sparsifying Networks via Subdifferential
Inclusion, ICML 2021. [70]

v) S. Verma, N. Henwood, M. Castella, AK Jebai, and JC Pesquet, Neural
Networks based Speed-Torque Estimators for Induction Motors and
Performance Metrics, IECON 2020. [71]

vi) S. Verma, N. Henwood, M. Castella, F. Malrait, and JC Pesquet,
Modeling Electrical Motor Dynamics using Encoder-Decoder with
Recurrent Skip Connection, AAAI 2020. [72]

vii) Lassau et al., Integrating deep learning CT-scan model, biological and
clinical variables to predict severity of COVID-19 patients, Nature
Communications, 2021. [73]

Available codes:

i) Motor Dynamics Simulation: https://github.com/sagarverma/MotorSim

ii) Metrics Library for Motor: https://github.com/sagarverma/MotorMetrics

iii) Trajectory Generator: https://github.com/sagarverma/MotorRefGen

iv) Motor Dynamics: https://github.com/sagarverma/MotorDynamics

v) Robust Motor NN: https://github.com/sagarverma/robust-motor

32

https://ieeexplore.ieee.org/abstract/document/9724134
https://ieeexplore.ieee.org/abstract/document/9724134
https://ieeexplore.ieee.org/abstract/document/9724134
http://proceedings.mlr.press/v139/verma21b/verma21b.pdf
http://proceedings.mlr.press/v139/verma21b/verma21b.pdf
https://hal.archives-ouvertes.fr/hal-02907937/file/IECON2020_MotorDynamics_EEMetrics.pdf
https://hal.archives-ouvertes.fr/hal-02907937/file/IECON2020_MotorDynamics_EEMetrics.pdf
https://hal.archives-ouvertes.fr/hal-02907937/file/IECON2020_MotorDynamics_EEMetrics.pdf
https://hal.archives-ouvertes.fr/hal-02484188/document
https://hal.archives-ouvertes.fr/hal-02484188/document
https://www.nature.com/articles/s41467-020-20657-4
https://www.nature.com/articles/s41467-020-20657-4
https://github.com/sagarverma/MotorSim
https://github.com/sagarverma/MotorMetrics
https://github.com/sagarverma/MotorRefGen
https://github.com/sagarverma/MotorDynamics
https://github.com/sagarverma/robust-motor


Chapter 2Data Driven Modeling ofInput-Output Relationships
2.1 . Introduction

An electrical motor dynamics depends on physical quantities like currents,
voltages, speed, fluxes, inductances, and resistances, measured directly or
indirectly using sensors or estimators. Accurately measuring some of these
quantities is challenging due to noise. Operating conditions also affect some of
these quantities, for example, the thermal evolution of resistances with time. To
better understand the behavior of electrical motor dynamics under different
operating conditions, one can model the relationships between different electrical
and mechanical quantities: currents (id, iq), voltages (ud, uq), speed (ωr), and
estimated torque (τem). Figure 2.1 shows the first 40 seconds of a simulated
sample collected using a Simulink model based on [10]. Figure 2.2 shows the first
40 seconds of a 4kW induction motor operation.
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Figure 2.1: First 40 seconds of a simulated electrical motor operation.
Modeling time-varying systems can be treated as a sequence-to-sequence
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Figure 2.2: First 40 seconds of a real-world electrical motor operation.

prediction problem. For such problems, end-to-end learning of temporal dynamics
from time-series data has been made easier thanks to methods like Convolutional
Neural Network (CNN), Recurrent Neural Network (RNN), and Long-Short Term
Memory (LSTM) structures. It has been shown that RNNs and LSTMs can
model complex nonlinear interactions by providing a large amount of
multidimensional data. RNNs have been shown to perform hierarchical processing
of time series with different layers tackling different time scales [74, 75]. Such
sequential architectures can be utilized to learn electrical motor dynamics.
Sequential networks like RNN and Gated Recurrent Unit (GRU) have fewer
parameters than LSTM. There are several ways of obtaining fewer parameters in
sequential networks. One such method is the diagonalization of weights in RNN
[76]. Miller et al. [77] were the first to show that feed-forward and convolutional
networks can also achieve stable sequential models.

In this chapter, we first explore the applicability of one-dimensional CNNs to
our problem of modeling input-output relationships. This resulted in a new network
architecture called "DiagBiRNN" published at AAAI 2020. This network is then
utilized as a speed-torque estimator from currents and voltages in a subsequent
work published at IECON 2021.

2.2 . Related Work

Neural Networks for Physics: The first use of neural networks to model physical
phenomena was presented in [7]. This paper presents a multi-layered neural network
for nonlinear prediction and system modeling from time-series data. Recently, deep
neural networks have been used in learning physical dynamics from data in a range
of applications, e.g., calorimetry [14], drone landing [15], and nonlinear dynamics
identification [16]. Karpatne et al. [17] presents a physics-guided neural network
that leverages the output of physics-based model simulations and observational
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features to generate predictions using a neural network architecture. Furthermore,
they present physics-based loss functions to ensure that the model predictions show
lower errors on the training set and are scientifically consistent with the known
physics.
Neural Networks for Time Series: RNN and LSTMs are very good at learning
hidden temporal dynamics from data in various applications such as wind speed
forecasting [78], estimating missing measurements in time series [79], and consumer
event forecasting [80]. Convolutional architectures have recently been shown to be
competitive on many sequence modeling tasks compared to the de-facto standard
of recurrent neural networks (RNNs) while providing computational and modeling
advantages related to inherent parallelism. In [81], the authors provide an empirical
comparison between convolutional and recurrent networks in modeling time series.
Aksan et al. [82] present a stochastic variant of the temporal convolutional network,
which performs better than stochastic RNNs. Miller et al. have shown that in
some cases, feed-forward networks are better at modeling temporal patterns than
sequential networks [77]. In time-series prediction, different events often have
different importance. This can be addressed by using an asymmetric loss function,
which weights distinct parts of the signal differently, as shown in [83, 84, 85].
Pitfalls in using Neural Networks: The reasons why neural networks may fail
are analyzed in [86]. Neural networks make fewer assumptions, have a large
number of parameters, and have different modeling processes, creating more risks
for inappropriate uses and unstable applications. Another major pitfall consists in
treating neural networks as black boxes. In [87], a robustification technique is
proposed to interpret neural network results regarding the input effects and
interactions among input variables. Underfitting and overfitting are also
well-known problems in machine learning methods. Neural networks are prone to
these problems due to their data-hungry nature and their large number of
parameters, as discussed in [88].

2.3 . Neural Network Architectures for Input-Output Modeling

Feed-Forward RNN LSTM CNN

Depth 3 Linear 1 RNN→ 2 Linear 1 LSTM→ 2 Linear 3 Conv→ 2 Linear4 Linear 1 RNN→ 3 Linear 1 LSTM→ 3 Linear 4 Conv→ 2 Linear
Input Flattened vector Channelized Channelized Channelized
Output Middle value Input length Input length Middle value

Table 2.1: Architectural details of the benchmark models.
In this section, we discuss several benchmark methods that are derivatives of

widely used standard neural networks. Broadly, feed-forward network, CNN, RNN,
and LSTM structures are evaluated. Table 2.1 shows all the benchmark networks.
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For each type of network, two variations exist namely, shallow and deep, to evaluate
the effect of the network depth on their learning capability. The names "shallow"
and "deep" are just for the namesake and do not depict a significant big change
in the depth of the network.

2.3.1 . Fully Connected Networks
We use feed-forward neural networks (FNNs) to show that the proposed

problem and dataset are quite difficult and that FNNs have limited learning
capabilities. Column 1 in Table 2.1 provides the configuration details of the two
experimented networks also shown in Figure 2.3.
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Figure 2.3: Three and four layered feed-forward networks.
2.3.2 . Sequential Networks

Sequential neural networks have been used widely to learn from sequential data.
RNNs and LSTMs are two of the most commonly used sequential neural networks.
Configuration details of RNN and LSTM networks are shown in columns 2 and 3
in Table 2.1, respectively. Figure 2.4 shows LSTM followed by two linear layers
and Figure 2.5 shows LSTM followed by three linear layers.

RNNInput
w X #channels

ht 

FCN
256

Neurons
g

FCN
#output
neuron

Ht X 256

256 X #output

Output

RNNInput
w X #channels

ht 

FCN
256

Neurons
g

FCN
#output
neuron

Ht X 256

128 X #output

Output
FCN

128
Neurons

g

256 X 128

Figure 2.4: Recurrent layer followed by two and three linear layers.

36



LSTMInput
w X #channels

ht ,ct

FCN
256

Neurons
g

FCN
#output
neuron

Ht X 256

256 X #output

Output

LSTMInput
w X #channels

ht ,ct

FCN
256

Neurons
g

FCN
#output
neuron

Ht X 256

128 X #output

Output
FCN

128
Neurons

g

256 X 128

Figure 2.5: LSTM layer followed by two and three linear layers.

2.3.3 . 1D Convolutional Networks

FNNs have very limited learning capabilities when the input data is complex
like sequential or multidimensional. Recently, CNNs have been shown to provide
competitive performances on sequential data. The configuration of the benchmark
for CNNs is shown in Column 4 of Table 2.1. Figure 2.6 shows two CNN variants.
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Figure 2.6: Three and four convolution layers followed by two linear layers.

2.3.4 . Encoder-Decoder Networks

Traditionally, sequential networks have been used to model temporal
dynamics. In our experiments, we found that RNNs and LSTMs do not provide
as good learning capability as one-dimensional CNNs. Since our task is to
perform multivariate prediction over the same length as the input, we use an
architecture where all layers are made of convolutions. We then carefully
introduce several intuitive modifications to the encoder-decoder architecture
which leads to a performing and efficient model.
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Encoder-Decoder Network: To capture temporal dynamics from the complete
input and output window, we introduce the encoder-decoder network shown in
Figure 2.7. It consists of encoding and decoding blocks with convolutional and
deconvolutional layers, respectively. The convolutional and deconvolutional
blocks are followed by ReLU activations. We do not use pooling as in our
experiments we found that they deteriorate the results.
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Figure 2.7: Three convolution layered encoder followed by three deconvolutionlayered decoder.

Encoder-Decoder Network with Skip Connection: It has been shown that
adding a skip connection to the encoder-decoder helps in transferring high-level
features directly from one encoding layer to its corresponding decoding layer [89].
We also introduce skip connections between encoding and decoding layers as
shown in Figure 2.8.
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Figure 2.8: Encoder-decoder network with skip connections.

Encoder-Decoder Network with Recurrent Skip Connection: Convolution
operations are windowed over the kernel size, this means that convolution cannot
learn temporal relationships which are out of the kernel sized windows. Adding
recurrent layer over convolutional features can overcome this issue. This also
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helps in learning temporal patterns in the latent space. We add recurrent layers
after every encoding layers as shown in Figure 2.9. The output of the recurrent
layer is then sent to the corresponding decoding layers.
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Figure 2.9: Encoder-decoder network with RNN as skip connections.

Encoder-Decoder Network with Bidirectional Recurrent Skip Connection:
Bidirectional RNNs help to learn temporal patterns in both directions. For our
use case, we want to predict each time step of the input window. Therefore, we
also use bidirectional RNNs.
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Figure 2.10: Proposed DiagBiRNN architecture.

Encoder-Decoder Network with Bidirectional Diagonalized Recurrent Skip
Connection: Vanilla RNNs have a high number of parameters due to matrix
multiplications between weights and features. Diagonalizing weights in the
recurrent unit decreases the number of parameters. Figure 2.10 shows this
architecture.

The hidden state update equation of an RNN is given by
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ht = tanh(Wxt + Uht−1 + b) (2.1)
where xt ∈ RM and ht ∈ RN are the input and hidden state at time t, respectively.
W ∈ RN×M, U ∈ RN×N, and b ∈ RN are the weights for the input and the hidden
vector, and the bias of the neurons. We propose to impose diagonal structures in
the weight matrices W and U by setting N = M and impose a diagonal structure
parameterized by diagonal weight vectors w and u, respectively. Practically, this
amounts to replacing the matrix multiplication operations between W and U with
Hadamard products ⊙ between the vectors w and u. The diagonalized recurrent
network is described as

ht = tanh(w⊙ xt + u⊙ ht−1 + b) (2.2)
where w ∈ RM and u ∈ RM, are input weights, and b ∈ RM is a bias vector.

2.3.5 . Total Variation Weighted Mean Square Loss
In real world usage of electrical motors, large variations in the signals occurs

less often than small variations. We observe this effect in our dataset, which causes
model bias toward small variations when trained with mean square loss. This is
not a desirable behavior if the learned model is used in controllers. To avoid this
problem, we propose a novel asymmetric loss function that takes into account the
signal variations. The proposed loss function takes a signal yi = (yi

t)1⩽t⩽T of
duration T and computes the mean squared error with the predicted signal ŷi, the
MSE value is then multiplied with the total variation of signal yi. The index of a
single sample taken from the dataset of length N samples is denoted by i in the
expression below:

LTV-MSE =
1
N

N

∑
i=1


(

T−1

∑
t=1
|yi

t − yi
t+1|

)
︸ ︷︷ ︸

Total Variation

MSE︷ ︸︸ ︷(
1
T

T

∑
t=1

(yi
t − ŷi

t)
2

) (2.3)

2.4 . Evaluation Procedure

There are standard metrics to judge machine learning methods for regression
tasks. These metrics provide compelling global insights. Electrical engineering,
especially in the induction motor field, has a different way of evaluating
performance. In this section, we present both machine learning and electrical
engineering metrics.

2.4.1 . Machine Learning Metrics
To evaluate the capability of the proposed method, we use different metrics

allowing us to compare the performance at global and local scope of the input signal.
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To analyse the learning capability at global scope, we report mean absolute error
(MAE), symmetric mean absolute percentage error (SMAPE), and coefficient of
determination R2 [90]. Best MAE and SMAPE values are ideally 0 and R2 should
be 1. For a signal y of duration T, the model prediction is given by ŷ. yt is
the ground truth at time t and ŷt is the predicted output of the model at time
t. ȳ denotes the mean of ground truth y. More precisely, consider the following
definitions:

MAE(y, ŷ) =
1
T

T

∑
t=1
|yt − ŷt| (2.4)

SMAPE(y, ŷ) =
100
T

T

∑
t=1

|ŷt − yt|
|ŷt|+ |yt|

(2.5)

R2(y, ŷ) = 1− ∑T
t=1(ŷt − ȳ)2

∑T
t=1(yt − ȳ)2

(2.6)

SCy =
W−1

∑
t=1
|yt − yt−1| (2.7)

MAE, SMAPE, and R2 values do not provide enough information about the
signal parts where the model is performing poorly or very well. Thus, we compute
the signal complexity (SC) on sliding windows of length 100 over the ground truth
signal and plot it against the corresponding window’s SMAPE value computed
between the ground truth and the predicted signal. All metrics are reported on the
original range of the respective quantities after re-scaling.

2.4.2 . Electrical Engineering Performance Metrics

A more insightful way of evaluating the performance from an industrial
standpoint is to compute widely used electrical engineering metrics.
Figures 2.11 and 2.12 show where on the timeline of a signal performance metrics
are calculated. The following metrics have been used for the response signal to a
speed or torque reference ramp (whose amplitude is the absolute difference
between the starting and target values):

• 2% response time (t2%) is the time value at which the response signal has
covered 2% of the ramp amplitude.

• 95% response time (t95%) is the time value after which the response signal
remains at less than 5% of the ramp amplitude from the target value.

• Overshoot (D%) is the difference between the maximum peak value of
the response signal and the final steady-state value. It is expressed in the
percentage of the ramp amplitude.
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Figure 2.12: Performance metrics for torque step.
• Steady-state error (Ess) is the difference between the response signal and

target values once the steady-state has been reached.

• Following error (E f ol) is the difference between the reference and
response signal values when the reference value has covered 50% of the
ramp amplitude.
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• Maximum acceleration torque (speed ramp) (∆τmax) is the max
response torque deviation during the speed ramp.

• Speed drop (torque ramp) (SD) is the max response speed deviation
during the torque ramp.

• Maximum Absolute Error (Emax) is the maximum absolute difference
between the real speed and the model predicted speed.

2.5 . Dataset

To train deep neural networks, we need a large amount of data. It is laborious
to capture real motor data. To overcome this issue, we use a large amount of
simulated data and a small amount of real motor data. The following subsections
describe how simulated and real data have been collected.

2.5.1 . Reference Trajectory Generator
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Figure 2.13: Reference speed and load torque trajectories from one of the trainingsamples.

To generate simulated training and validation sets, we created a trajectory
generator that generates realistic reference speed and load torque trajectories. For
every simulation, the number of static states is drawn randomly from a uniform
distribution between 5 and 15. The duration of a static state in a simulation
is drawn from a uniform distribution between 1 and 5 seconds. Ramp duration
between two consecutive static states is generated according to a shifted truncated
exponential distribution between 4 and 2000 milliseconds to provide more frequent
short-duration ramps. For each static state, speed and load torque values are
generated according to a uniform distribution on [-70, 70] Hz and [-120, 120] %
of nominal torque (%τnom), respectively. Figure 2.13 shows a sample reference
trajectory from the training set.
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2.5.2 . Training and Validation Set
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(b) Validation zone
Figure 2.14: Torque vs speed plans for all the simulations in training set andvalidation set. Density here shows the number of samples that belong to a zone.

We use our reference trajectory generator to generate 100 simulated paths
totaling about 1000 speed and torque ramps in 150 minutes for the training set
and 50 simulations totaling about 200 ramps in 30 minutes for the validation
set. Torque-speed plan density plots for training and validation zones are shown
in Figure 2.14. We then simulate these trajectories using our Simulink model of
a 4kW induction motor and collect simulation data every 4ms. The simulation
dataset consists of the following electrical quantities: currents isd and isq, voltages
usd and usq acting as inputs, and rotor speed ωr and electromagnetic torque τem

acting as outputs.

2.5.3 . Test Set

The training and validation set are sufficient to train and evaluate neural
network models on machine learning metrics (Eqs (2.4), (2.5), and (2.6). To
properly evaluate neural network models on electrical engineering performance
metrics, we generate five classical benchmark trajectories. These are divided into
two categories:

Quasi-Static Benchmarks At constant torque, reference speed goes from
70 to -70Hz in 50 seconds. Two constant torques are tested: no-load and 50% of
the nominal load. We name these benchmarks, Quasi-Static1 and Quasi-Static2,
respectively. In the case of the 50% nominal load torque, the torque has already
reached the steady-state before the start of the benchmark.

Dynamic Benchmarks We generate three dynamic benchmarks to evaluate
our neural network models:
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(a) Dynamic-Speed1: Reference speed goes from 0 to 50Hz in 1 second
at no load.

(b) Dynamic-Speed2: Reference speed goes from 0 to 50Hz in 1 second
at 50% of nominal load.

(c) Dynamic-Speed3: Reference speed goes from 50 to -50Hz in 1 second
at 50% of nominal load.

(d) Dynamic-Torque: Load torque goes from 0 to 100% of nominal
torque in 4ms with a constant 25Hz reference speed.

2.5.4 . Real Motor Dataset

Motor Under Test Load Machine 

Figure 2.15: Experimental setup
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Figure 2.16: Test bench setup containing the data acquisition

Figure 2.15 shows a 4kW induction motor under test, and a direct current
motor as load machine part of our experimental setup. Figure 2.16 shows our test
bench setup which consists of the power supply units (PSU) for the test bench, the
motor under test, the load machine, and an ATV930 VSD to control the induction
motor. In addition, button boxes allow us to give run orders and manually set
speed / torque references, both for the motor under test and the load machine.
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In addition to the simulated data, 10 experiments were performed on 1.5kW and
4kW motors (50Hz nominal speed) shown in Figure 2.15 to collect real data. These
experiments have different types of trajectories: the constant speed with torque
variations in [-120, 120]% of the nominal torque, speed variations in [-70, 70] Hz
at no load, torque steps under constant speed, and, in some cases, both speed
and torque vary. All these types of trajectories have been considered to cover the
majority of the use cases that may arise in the real world. This provides different
kinds of dynamic behavior which makes denoising and speed-torque estimation
quite challenging. Due to the non-availability of non-noisy trajectory in real data
and the non-triviality of obtaining them, we only use three dynamic and one quasi-
static benchmark to evaluate DiagBiRNN on real motor data:

(a) RDynamic-Speed1: Reference speed goes from 0 to 50Hz in 1 second at
no load.

(b) RDynamic-Speed2: Reference speed goes through multiple inversions in
both directions.

(c) RDynamic-Torque: Load torque goes from 0 to 100% of nominal torque
in one time step at a constant 50Hz reference speed.

(d) RQuasi-Static: At no load, reference speed goes from 80 to -80Hz in 50
seconds.

2.5.5 . Overcoming Bias in Dataset

During our experiments, we found that all our models were biased toward
long-duration ramps present in the training data. This is because when reference
trajectories were generated, ramp durations were originally sampled from a
uniform distribution. Expected motor speed and torque trajectories depend a lot
on what ramp has been demanded. For short duration ramps, the speed and
torque trajectories have high variance with slight change in the ramp duration.
This is not the case for long duration ramps. Therefore we need to sample ramps
with a non-uniform distribution focusing more on short duration ramps. To
overcome this bias, generating data with ramps drawn from an exponential
distribution plays a prominent role. This guarantees that our model can see more
frequently short-duration ramps during training.

Figure 2.17 compares models trained on the two versions of data: Data V1,
where we have ramps generated from a uniform distribution and Data V2, where
we use exponential distribution (the number of samples decreases as ramp duration
decrease). It can be seen that the model trained on Data V2 can accurately predict
ramp overshoots for all values of ramp duration. In contrast, the model trained on
Data V1 fails for short-duration ramps (0.0s to 1.5s). A maximum error of 23%
can be observed for the ramp of duration 0.1s.

46



0.0 0.5 1.0 1.5 2.0 2.5
Ramp Duration (s)

0

5

10

15

20

25

30

35

Ov
er

sh
oo

t (
%

Hz
)

DiagBiRNN on Data V1
DiagBiRNN on Data V2
Real

Figure 2.17: Overshoot vs. ramp for DiagBiRNN network trained on two versions ofdata.

2.6 . Input-Output Relationship Modeling Experiments

In this section, we try to model the relationship between motor quantities like
currents, voltages, torque, and speed. To achieve this, we utilize several existing
neural network architectures and arrive at a network that serves well for our use
case.

2.6.1 . Derive Currents and Torque from Voltages and Speed

We vary our architecture by trying different input lengths, the number of layers,
and RNN/LSTM hidden vector lengths. We try the following input lengths (5, 10,
15, 20, 25, 50, 100, 200) and find out that an input length greater than 100 is
better at capturing the motor operation dynamics. Depending on the architecture,
different input and output structures are required. Feed-forward networks take a
flattened vector and predict a single output which is the middle value of the output
signal. RNNs and LSTMs take channelized input and predict the output of the
same length. CNNs take channelized input and predict the middle value of the
output signal.

In encoder-decoder variations where an RNN is used, the hidden vector size is
the same as the number of features in the input vector. In the encoder-decoder
network, the input and output lengths are the same. We train all our models using
the proposed TV-weighted mean square loss function in Eq. (2.3). To find the best
architecture, we use the validation set of the simulated data. Then we re-train the
best model on the training set of the raw data (fine-tuning) and test it on the raw
data test set. We also train the best-performing model using mean square loss to
compare it with the proposed loss function.

We provide results for the benchmark models in Table 2.2. The window size
column shows the input length on which the best result was obtained. The hidden
vector size for both RNN and LSTM is 32. The number of parameters is also
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Model Window Size Parameters MAE SMAPE R2

(id + iq + τem)/3

Shallow Feed-Forward 25 751K 77.76 9.79% -0.59
Deep Feed-Forward 20 1118K 78.91 8.53% -0.39

Shallow RNN 100 9K 77.97 8.5% -0.3
Deep RNN 150 12K 78.26 7.76% -0.35

Shallow LSTM 50 13K 79.39 6.41% -0.26
Deep LSTM 100 21K 79.58 6.29% -0.11
Shallow CNN 100 518K 79.51 6.22% -0.13
Deep CNN 100 650K 79.69 6.13% -0.14

Table 2.2: Results for the benchmark networks on the simulated validation set.

reported for all the models. For each of them, we report MAE, SMAPE, and
R2 values. For every metric, we report the average of current id, current iq, and
electromagnetic torque τem. All results were obtained on the validation set of the
simulated data. Among benchmark models, we observe that MAE values are very
close for all the models. But when we compare SMAPE and R2 values, deep CNN
and deep LSTM come out to be the best. In our experiments, we observe that the
models perform better when the input length is 100 or more. For all the models,
the performance gap between shallow and deep variants is small. This means that
a deeper network provides little advantage in learning the nonlinear dynamics of
electrical motors.

Model Window Size Parameters MAE SMAPE R2

(id + iq + τem)/3

Shallow 100 309K 80.63 5.02% 0.08
Deep 100 1096K 81.21 4.57% 0.29
Skip 100 364K 28.96 3.71% 0.42

RNN-Skip 100 638K 28.18 3.42% 0.43
BiRNN-Skip 100 967K 27.96 3.31% 0.41
DiagBiRNN 100 618K 26.88 1.09% 0.95

Table 2.3: Results for the proposed networks on the simulated validation set.
Based on the results obtained from the benchmark methods, we set the input

size to 100 for all our proposed model variants. Table 2.3 shows the results of the
proposed model variants trained and validated on the simulated data. The first
and second rows show the results of the shallow and deep variants of the
encoder-decoder architecture. We see that MAE is still comparable to the
benchmark models, but SMAPE and R2 values improve. The third row shows the
result of the model where skip connections have been added between
encoder-decoder. MAE gets better in this case. The fourth and fifth rows
correspond to recurrent skip connections with unidirectional and bidirectional
recurrence, respectively. Having recurrence in skip connections improves MAE
and SMAPE values but comes at the cost of an increased number of parameters.
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It can be seen that bidirectionality has a positive effect on MAE and SMAPE.
The last row shows the best version of our encoder-decoder model, where we
replace RNNs in skip connections with diagonalized RNNs. This model
outperforms all the methods and has fewer parameters when compared to other
RNN variants.

2.6.2 . Ablation Study

An ablation study is required here to analyze different contributions made in this
chapter. The first ablation is on why using TV-weighted MSE is better than MSE.
The second ablation is on why fine-tuning is required to get good performance on
the real dataset. It also explains how the domain shift from simulated to real data
affects the model performance.

2.6.2.1 . Ablation on TV-Weighted MSE
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Figure 2.18: Comparison between the proposed TV-weighted MSE loss and MSE lossused to train the proposed network in case of current id.

Figure 2.18 shows the SMAPE vs signal complexity (SC) computed on the
current id in the test set. SMAPE has been defined in Equation 2.5 and SC has
been defined in Eq. (2.7). The SMAPE vs SC plots are 2D histograms where
the color intensity of each box represents the number of samples that are in that
bin. The comparison is drawn between the model trained with MSE loss and TV-
weighted MSE loss. It can be observed that as the signal complexity value increases,
the SMAPE of both models also increases. But the SMAPE of the TV-weighted
MSE model predicted current id is consistently less than MSE trained model. As
the signal complexity increases the difference in SMAPE between the two models
also increases suggesting that TV-weighted MSE is not affected by high variations
in the output signal.
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Figure 2.19: Comparison between the proposed TV-weighted MSE loss and MSE lossused to train the proposed network in case of current iq.

A similar trend in SMAPE vs signal complexity is observed in the predicted
current iq from models trained with MSE and TV-weighted MSE. This can be seen
in Figure 2.19. In case of the estimated torque τem, the same trend is observed
as shown in the Figure 2.20. Average signal complexity of the current iq is higher
than the torque τem and the current id. We see that the signal parts with higher
signal complexity are not frequent. Our model trained with MSE loss can predict
more accurately parts of the signal with small signal complexity.
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Figure 2.20: Comparison between the proposed TV-weighted MSE loss and MSE lossused to train the proposed network in case of torque τem.

Table 2.4 shows the results obtained by the proposed model when MSE loss
and TV-weighted MSE loss were used in training. All three metrics for all three
quantities improve when the proposed TV-weighted MSE loss is used in training
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Quantity MSE Loss TV-weighted MSE Loss
MAE SMAPE R2 MAE SMAPE R2

id (A) 28.13 0.97% 0.65 27.91 0.46% 0.92
iq (A) 26.89 2.39% 0.95 26.52 1.90% 0.96

τem (Nm) 26.23 1.58% 0.92 26.19 0.92% 0.96

Table 2.4: Performance of DiagBiRNN on the simulated validation set when trainedusing MSE loss and the proposed TV-weighted MSE loss.

the DiagBiRNN Encoder-Decoder network. We observe that the model trained
using TV-weighted MSE loss overcomes this issue.

2.6.2.2 . Ablation on Fine-Tuning

Quantity Simulated Model Fine-tuned Model
MAE SMAPE R2 MAE SMAPE R2

id (A) 39.83 4.10% 0.38 35.31 2.64% 0.56
iq (A) 47.38 6.37% 0.41 42.94 5.28% 0.49

τem (Nm) 38.56 3.81% 0.49 32.38 2.38% 0.60

Table 2.5: Results of DiagBiRNN on the real test set. One trained on the simulateddata and the other fine-tuned on the real train set.
Table 2.5 shows the results of the simulated model and model fine-tuned on

the raw data training set when tested on the raw data test set. It can be seen that
the proposed model can learn the temporal dynamics of each of the quantities very
well just from the simulated data. When the model is fine-tuned on the sensor
data, it seems to be able to learn about the noise associated with the sensors and
yields better results.

0 20 40 60 80 100
Signal Complexity

0

5

10

15

20

25

SM
AP

E

Simulated
Fine-Tuned

0

200

400

600

800

1000

0

200

400

600

800

1000

Samples per bin
Figure 2.21: Comparison of simulated and fine-tuned model using SMAPE vs SignalComplexity graph for current id.
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Figure 2.21 shows the signal complexity vs SMAPE computed on the current
id in the test set. The comparison is drawn between models trained on simulated
data and fine-tuned on real data. It can be observed that as the signal complexity
value increases, the SMAPE of both models also increases. But the SMAPE of
current id predicted from the model trained on simulated data is consistently larger
than the one for the fine-tuned model. This is because the fine-tuned model learns
about the variations present in the signal due to noise.
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Figure 2.22: Comparison of simulated and fine-tuned model using SMAPE vs SignalComplexity graph for current iq.
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Figure 2.23: Comparison of simulated and fine-tuned model using SMAPE vs SignalComplexity graph for torque τem.

Figures 2.22 and 2.23 shows the SMAPE vs signal complexity graph for current
iq and torque τem predicted using models trained on simulated data and fine-tuned
on real data. Both the predictions have very high SMAPE for slightly bigger signal
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complexity which means that both predictions suffer a lot from the presence of
noise, although this is somewhat taken care of by fine-tuning.
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Figure 2.24: Input voltages ud, uq of one of the experiments from test set.
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Figure 2.25: Input speed ωr of one of the experiments from test set.
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Figure 2.26: Predicted result for current id of one of the experiments from test set.
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We plot the prediction results for a single real motor operation from the test
set. Figure 2.24 shows the voltages ud and uq and Figure 2.25 shows the root
speed ωr for the real motor operation. Figure 2.26 shows the predicted trajectory
of current id for the input voltages and rotor speed. It can be seen that the model
trained on the simulated data has some offset in its prediction whereas the model
fine-tuned on the sensor data is much closer to the ground truth, even if it is still
not perfect.

0 50 100 150 200
Time (s)

15

10

5

0

5

10

15

i q
 (A

)

True
Pred (Raw)
Pred (Simulated)

Figure 2.27: Predicted result for current iq of one of the experiments from test set.
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Figure 2.28: Predicted result for torque τem of one of the experiments from test set.

Figure 2.27 and 2.28 shows the predicted trajectory of current iq and torque
τem, respectively. These predictions are for the input voltages and rotor speed
shown in Figures 2.24 and 2.25. The offset between the prediction from the model
trained on simulated data and the ground truth is significantly larger than the
difference between prediction results from the model fine-tuned on real data and
ground truth.
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2.7 . Speed-Torque Estimator Experiments

We utilize our proposed network for a more industry specific practical
application of speed-torque estimation from currents and voltages. We report
machine learning metrics like MAE, SMAPE, and R2 to analyze how the models
are performing from a global point of view. At the same time for deeper analysis,
we use electrical engineering performance metrics and trajectory plots to
understand the behavior of different networks at every time step of a motor
operation.

2.7.1 . Machine Learning Benchmarks

Model Speed (ωr) Torque (τem)
MAE SMAPE MAE SMAPE

FCN 0.79 21.77% 0.57 48.66%
LSTM 0.11 18.76% 0.21 43.01%
CNN 0.06 19.14% 0.09 38.91%
Vanilla 0.05 18.94% 0.10 39.91%
Skip 0.08 19.08% 0.12 43.23%
RNN 0.06 19.31% 0.08 41.81%
BiRNN 0.05 18.67% 0.09 42.82%

DiagBiRNN 0.03 18.76% 0.04 38.46%

R2 is 0.99 for all the networks for both quantities.

Table 2.6: MLmetrics for all speed-torque estimator networks on the benchmark set.
ML metrics for the results obtained on the quasi-static and dynamic

benchmarks are reported in Table 2.6. Smaller MAE and SMAPE values are
desired for a good prediction model and R2 closer to 1 is considered as perfect in
terms of prediction. We observe that ML metrics do not allow a clear comparison
between different networks. We can see that any evaluation based on SMAPE
and R2 is difficult.

2.7.2 . Electrical Engineering Benchmarks

ML metrics provide a global performance index on the benchmark set.
Evaluating individual benchmarks using ML metrics does not yield a meaningful
analysis. ML metrics provide good results because there are many static windows
where signals remain almost constant. These static durations are easy to predict
compared to fewer occurring dynamic windows. EE metrics focus on these
dynamic parts of the signal. For readability, we only plot predictions of the worst
performing network (FCN), the best performing standard neural network (CNN),
and the overall best performing network (DiagBiRNN) along with reference
trajectory and real output (given by Simulink) for each of the dynamic
benchmark.
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Model
t2%(ms) t95%(ms)

E f ol(Hz) D%(%) Ess(Hz) ∆τmax(%τnom)

Real 48 960 -0.02 2.16 0.00 32.69

FCN 8 988 0.56 0.94 1.20 34.18
LSTM 44 933 -0.04 3.30 -0.13 33.49
CNN 40 964 -0.04 2.96 -0.04 32.57
Vanilla 44 968 -0.08 2.62 0.02 32.37
Skip 48 952 0.12 3.04 0.01 32.46
RNN 48 952 -0.04 2.28 0.02 32.82
BiRNN 44 944 -0.11 2.29 0.01 32.67

DiagBiRNN 44 952 -0.01 2.21 0.03 32.67

Table 2.7: EE performance metrics obtained on Dynamic-Speed1 benchmark.

Table 2.7 shows electrical engineering performance metrics of different
network predictions on the Dynamic-Speed1 benchmark. Acceptable values
(shown in green) are less than 0.1Hz / 10ms / 0.2 percent point from real values
and unsatisfactory values (shown in red) are more than 0.25Hz / 25ms / 0.5
percent point from real values. 2% response time (t2%) is very accurate for Skip
and RNN variants of encoder-decoder network. 95% response time (t95%) is the
best for CNN. DiagBiRNN achieves the best following error (E f ol), overshoot
(D%), and maximum acceleration torque (%τnom). Skip and BiRNN variants of
encoder-decoder achieve the best steady-state error (Ess).
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Figure 2.29: Results on Dynamic-Speed1 benchmark: speed trajectory.
Figure 2.29 shows plots for rotor speed predicted from different networks on

Dynamic-Speed1 benchmark. The plot shows the complete benchmark trajectory
of 5 seconds which contains the start-of-ramp, ramp, end-of-ramp, overshoot, and
steady-state parts. FCN predicted trajectory after the start of ramp deviates from

56



the ground truth trajectory. The next two figures show what happens during the
start and end of the ramp, respectively.
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Figure 2.30: Results on Dynamic-Speed1 benchmark: start of the speed ramp.
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Figure 2.31: Results on Dynamic-Speed1 benchmark: end of the speed ramp.
Figures 2.30 and 2.31 show plots for start and end of ramp for different network

speed predictions on Dynamic-Speed1 benchmark. DiagBiRNN predictions are
very close to the ground truth trajectory. Among standard neural networks, FCN
performs worst and CNN performs slightly better.

Figure 2.32 shows the plot for torque predicted from FNN, CNN, and
DiagBiRNN on Dynamic-Speed1 benchmark. In this case, FCN has a large offset

57



during the acceleration period whereas CNN and DiagBiRNN are close to the
ground truth torque trajectory.
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Figure 2.32: Results on Dynamic-Speed1 benchmark: torque trajectory.
Table 2.8 shows electrical engineering performance metrics of different network

predictions on the Dynamic-Speed2 benchmark. 2% response time (t2%) is correct
for Skip and DiagBiRNN variants of encoder-decoder network. 95% response time
(t95%) is the best for CNN. DiagBiRNN achieves best following error (E f ol) and
overshoot (D%). BiRNN variant of encoder-decoder achieve the best steady-state
error (Ess) and maximum torque acceleration (%τnom).

Model
t2%(ms) t95%(ms)

E f ol(Hz) D%(%) Ess(Hz) ∆τmax(%τnom)

Real 48 968 -0.02 1.97 -0.06 29.40

FCN 8 952 0.60 3.45 1.49 30.18
RNN 44 1024 -0.07 6.60 -0.10 29.84
CNN 40 968 -0.06 3.90 -0.10 29.25
Vanilla 44 980 -0.07 3.01 -0.13 29.19
Skip 48 940 0.02 4.02 -0.10 29.15
RNN 44 948 -0.06 2.69 -0.15 29.48
BiRNN 44 944 -0.09 2.42 -0.06 29.37

DiagBiRNN 48 948 -0.03 2.04 -0.08 29.31
Table 2.8: EE performance metrics obtained on Dynamic-Speed2 benchmark.
Figure 2.33 shows plots for rotor speed predicted from different networks on

the Dynamic-Speed2 benchmark. The plot shows the part of the trajectory from
the 5th second to the 8th second. First five seconds were used to bring the rotor
speed to 5Hz. The plot shows from the start-of-ramp till steady-state, including
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ramp, end-of-ramp, and overshoot. FCN predicted trajectory after the end of the
ramp deviates from the ground truth trajectory and has a large steady-state error
around the 7.5 second. The next two figures show what happens during the start
and end of the ramps, respectively.

5.0 5.5 6.0 6.5 7.0 7.5 8.0
Time (s)

10

20

30

40

50

Sp
ee

d 
(H

z)

Reference
Real
FCN
CNN
DiagBiRNN

Figure 2.33: Results on Dynamic-Speed2 benchmark: speed trajectory.
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Figure 2.34: Results on Dynamic-Speed2 benchmark: start of the speed ramp.

Figures 2.34 and 2.35 show plots for start and end of ramps for different network
speed predictions on Dynamic-Speed2 benchmark. It can be seen that DiagBiRNN
predictions are very close to the ground truth trajectory. At the start of ramp both
CNN and FCN give wrong results, the ramp cannot start before it was demanded,
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as it is something physically impossible. After the ramp ends, both CNN and FCN
have overshoots significantly larger than ground truth and DiagBiRNN.
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Figure 2.35: Results on Dynamic-Speed2 benchmark: end of the speed ramp.
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Figure 2.36: Results on Dynamic-Speed2 benchmark: torque trajectory.

Figure 2.36 shows the plot for torque predicted from FNN, CNN, and
DiagBiRNN on Dynamic-Speed2 benchmark. In this case, FCN has a large offset
around 6 seconds, 6.1 to 7 seconds and after 7.2 seconds. CNN and DiagBiRNN
are close to the ground truth torque trajectory.

Table 2.9 shows electrical engineering performance metrics of different
network predictions on the Dynamic-Speed3 benchmark. DiagBiRNN has precise
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Model
t2%(ms) t95%(ms)

E f ol(Hz) D%(%) Ess(Hz) ∆τmax(%τnom)

Real 52 956 0.10 2.00 0.00 72.33

FCN -144 944 1.06 4.03 0.37 69.35
LSTM 32 1052 0.10 7.46 -0.33 73.30
CNN 44 960 0.42 3.21 -0.08 72.30

Vanilla 44 956 0.34 3.55 -0.11 72.29
Skip 48 1036 0.45 5.07 -0.16 71.28
RNN 48 936 0.26 3.89 -0.06 72.25
BiRNN 48 940 0.02 3.28 -0.13 72.45

DiagBiRNN 52 948 0.15 2.39 -0.12 72.15
Table 2.9: EE performancemetrics obtained by differentmodels on Dynamic-Speed3benchmark.

2% response time (t2%). Vanilla encoder-decoder has precise 95% response time
(t95%). LSTM has precise following error (E f ol). DiagBiRNN is closer to the real
trajectory overshoot (D%). RNN encoder-decoder achieves the closest
steady-state error (Ess) to the real trajectory. CNN has 0.03 error in maximum
torque acceleration (%τnom) when compared to the real trajectory.

Figure 2.37 shows plots for rotor speed predicted from different networks on
the Dynamic-Speed3 benchmark. The plot shows the benchmark trajectory of 3
seconds, starting just before the ramp and ending when the steady state has been
achieved. In this benchmark, a speed inversion starts at 6th second and ends at
7th second. FCN predicted trajectory deviates from the ground truth trajectory
way before the start of the ramp, and this is physically impossible. The next two
figures show what happens during the start and end of the ramps, respectively.
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Figure 2.37: Results on Dynamic-Speed3 benchmark: speed trajectory.

61



Figures 2.38 and 2.39 show plots for start and end of ramps for different network
speed predictions on Dynamic-Speed3 benchmark. DiagBiRNN predictions are very
close to the ground truth trajectory but if looked closely it can be seen that it
starts before the actual start of ramp. FCN can be outright rejected as a valid
prediction. CNN also starts before actual start of ramp. When the ramp ends all
predicted trajectories have close enough undershoot to the ground truth trajectory.
This benchmark shows it is a bit hard to predict speed inversion for the learned
networks.
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Figure 2.38: Results on Dynamic-Speed3 benchmark: start of the speed ramp.
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Figure 2.39: Results on Dynamic-Speed3 benchmark: end of the speed ramp.
Figure 2.40 shows the plot for torque predicted from FNN, CNN, and
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DiagBiRNN on Dynamic-Speed3 benchmark. In this case, FCN has a large offset
during the acceleration period whereas CNN and DiagBiRNN are close to the
ground truth torque trajectory.
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Figure 2.40: Results on Dynamic-Speed3 benchmark: torque trajectory.

Model
t95%(ms) D%(%) Ess(%τnom)

SD(Hz)
Real 244 15.96 0.00 4.39

FCN 252 11.19 -0.32 3.30
LSTM 244 15.95 -0.02 4.28
CNN 244 16.01 0.01 4.45
Vanilla 244 15.46 0.04 3.88
Skip 244 15.90 -0.02 4.43
RNN 244 15.87 0.00 4.03
BiRNN 244 16.01 0.01 4.23

DiagBiRNN 244 15.91 -0.02 4.31
Table 2.10: EE performance metrics obtained by different models on Dynamic-Torque benchmark.

Table 2.10 shows electrical engineering performance metrics of different
network predictions on the Dynamic-Torque benchmark. 95% response time
(t95%) is wrong only for FCN predicted trajectory. LSTM achieves the closest
overshoot (D%). RNN variant of encoder-decoder achieve the best steady-state
error (Ess). Skip variant of encoder-decoder is closest to ground truth trajectory
in case of speed drop (SD).

Figure 2.41 shows plot for predictions and ground truth of torque of Dynamic-
Torque benchmark. The benchmark starts at 2.5 seconds and ends at 4 seconds.
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There is torque step at 3 seconds. It can be observed that FCN starts ramping
up around 2.9 second which is physically impossible to do in a real motor. CNN
has some undershoot effect just before 3 second. DiagBiRNN starts just after 3
second and follows the ground truth trajectory. Next two figures show the start of
step and end of step parts.
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Figure 2.41: Results on Dynamic-Torque benchmark: torque trajectory.
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Figure 2.42: Results on Dynamic-Torque benchmark: start of torque step.

Figures 2.42 and 2.43 show start and end of torque step for Dynamic-Torque
benchmark. It can be clearly seen that both FCN and CNN are predicting the
start of step way before it should be. When it comes to the end of step, all
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three networks are predicting correctly, CNN and DiagBiRNN are very close to the
ground truth.
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Figure 2.43: Results on Dynamic-Speed3 benchmark: end of torque step.
Figure 2.44 shows predicted speed trajectories for FCN, CNN, and DiagBiRNN.

Compared with ground truth speed trajectory, DiagBiRNN performs very well, as
does CNN. On the other hand, FCN predictions are absurdly wrong due to its
limited capability in modeling temporal dynamics.
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Figure 2.44: Results on Dynamic-Torque benchmark: speed trajectory.
The max absolute error for the predictions on quasi-static benchmarks is

reported in Table 2.11. It can be seen that DiagBiRNN has the smallest error and
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Model FCN LSTM CNN

Quasi-Static1 3.66 0.992 0.261
Quasi-Static2 5.751 0.629 0.259

Model Vanilla Skip RNN BiRNN DiagBiRNN

Quasi-Static1 0.178 0.549 0.341 0.236 0.198
Quasi-Static2 0.336 0.444 0.258 0.346 0.171

Table 2.11: Max absolute error (Hz) for static benchmarks.
therefore is again closest to the real output speed, whereas FCN leads to the
largest error.
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Figure 2.45: Results on Quasi-Static1 benchmark: speed trajectory.
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Figure 2.46: Results on Quasi-Static1 benchmark: error.
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For quasi-static benchmarks, we plot the speed during the long ramp and
the difference between neural network speed prediction and real output speed.
Figures 2.45 and 2.46 show plots for predicted speed trajectories and their error
with ground truth on Quasi-Static1 benchmark, respectively.
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Figure 2.47: Results on Quasi-Static2 benchmark: speed trajectory.
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Figure 2.48: Results on Quasi-Static2 benchmark: error.
Figures 2.47 and 2.48 show plots for predicted speed trajectories and their error

with ground truth on Quasi-Static2 benchmark, respectively. In both benchmarks
it can be seen that FCN performs way worse than CNN and DiagBiRNN.

These benchmarks are a standard way of understanding various mathematical
models used in the electrical motor drive control domain. All the plots and tables
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we have presented so far establish a careful baseline for all the networks used as
speed-torque estimators.

2.8 . Summary

In this chapter, we have investigated the problem of data-driven learning of
electrical motor dynamics. We have also presented a novel encoder-decoder
architecture called DiagBiRNN that uses diagonalized recurrent skip connections
to learn the complex temporal dynamics. A novel loss function has been
introduced to learn the model that avoids prediction bias. We have used transfer
learning to fine-tune a model trained on large simulated data on a small raw
sensor dataset. We have presented the first dataset that combines synthetic and
real-world data for training deep neural networks for electrical motor tasks. We
provided a realistic trajectory generator that allows us to generate realistic
simulated data. Our experiments have shown the promising performance of the
proposed method on a noisy sensor dataset collected in an industrial context. We
have also conducted a detailed analysis of the global and local scope of the
prediction performed on the test data.

We have used the proposed network and loss function to learn a model that
can estimate an induction motor speed and torque from the currents and voltages.
We show that, without care, these networks can be biased toward the patterns
present in the data. We also emphasize the limitations of machine learning metrics
in understanding neural network real performance. By using dynamic and quasi-
static benchmarks, we show that electrical engineering metrics are better suited to
evaluate the merits of different neural networks. Both types of metrics show that
our proposed DiagBiRNN network performs better on benchmarks. Our results
demonstrate the feasibility of AI solutions in modeling electrical motor dynamics,
thus opening a new avenue of research in this area. In the next chapter, we extend
the use of these networks in more applications beyond speed-torque estimation.
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Chapter 3Sensor Fault Recovery andMechanical Fault Detection
3.1 . Introduction

Electrical motors undergo various stresses in harsh operating conditions,
which may lead to failures. Many adjustable speed drives in industry and
emerging applications such as automotive require high dynamic performance,
robustness against motor parameter variations, and reliability. As the functions of
electrical motors have become increasingly complex, continuous monitoring
becomes progressively necessary. Various monitoring, observation, and fault
detection techniques exist based on system dynamics or are data-driven using
statistical machine learning and deep learning. Methods like mechanical fault
detection and thermal anomaly detection rely on different types of sensor data to
monitor and detect the operation of electrical motors. Various sensors are used to
collect data for analytic purposes, such as current shunts, voltmeters, speed
sensors, torque meters, inertial measurement units (IMUs), vibration sensors,
temperature sensors, and acoustic sensors (microphones). Such sensors are rated
for extreme operating conditions. Still, due to the nature of the operation, they
may deliver erroneous data or, in some cases, might not be available in legacy
systems.

A sensor breakdown happens if a failure occurs in any components, including
the sensing device, transducer, signal processor, or data acquisition equipment. A
power failure or corroded contacts can cause an abrupt failure in the sensor. In
contrast, an incipient failure such as drift and precision degradation can be caused
by deterioration in the transducer. Both an abrupt and an incipient failure can cause
a non-permitted deviation from the characteristic property of a sensor. All these
above-mentioned issues raise the challenge of detecting and isolating a faulty sensor.
Three main types of faults can happen in a sensor: a) missing data at random,
b) completely unavailable sensor, and c) erroneous sensor data. Many methods
can deal with missing or unavailable data using a series of redundant sensors or
estimators. Still, it is hard to deal with erroneous data as a recovery method must
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first differentiate between erroneous and normal data. This chapter focuses on
three different applications of neural networks in the realm of fault diagnosis in
electrical motors. We focus on sensor breakdown, mechanical wear and tear, and
excessive thermal operation. This work has resulted into a publication in ICLR
Workshop on Deep Generative Models for Highly Structured Data 2022 and is also
submitted as a patent.

3.2 . Related Work

The incipient fault detection in modern electrical motor drive systems has been
approached in [91, 92, 93, 94]. For motor operation, current and voltage sensors
are necessary for vector control algorithms [95, 96]. These sensors are very sensitive
and can be broken [92, 93, 94]. Another important signal used in a motor drive
system is the rotor speed. Mechanical sensors can be used to measure this variable
[92]. Those elements are sensitive to the current drive and weather conditions [97]
and can be dammaged.

Traditional monitoring and fault detection methods like [98, 97, 99] rely on
system mechanics, redundant sensors, and estimators to overcome such sensor
faults. One useful piece of information these methods use is the correlation
between multiple quantities. These methods can easily rely on other quantities if
one correlated quantity fails. This is not directly possible in the case of neural
network-based monitoring and fault detection methods. We can use such
information to train multiple neural networks that can take different input sets
and become sensor fault tolerant. But such an endeavor requires system
knowledge and a large amount of data.

Three standard and widely-used methods for dealing with missing data are
interpolation, imputation, and matrix completion. Interpolation methods [100,
101] attempt to reconstruct missing data by capturing the temporal relationship
within each data stream, but not the relationships across streams. Imputation
methods [102, 103, 104] attempt to reconstruct missing data by capturing the
synchronous relationships across data streams, but not the temporal relationships
within streams. Matrix completion methods [105, 106, 107] treat the data as static
ignoring the temporal aspect. They assume a specific model of the data generation
process and the pattern of missing data.

Recently, some researchers attempted to impute the missing values with
recurrent neural networks [108, 109, 110, 111]. The recurrent components are
trained together with the classification/regression component, which significantly
boosts the accuracy. [109] proposed using Gated Recurrent Units (GRU), which
imputes missing values in healthcare data in a smooth fashion. It assumes that a
missing variable can be represented as the combination of its corresponding last
observed value and the global mean. The method achieves remarkable
performance on healthcare data.
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Generative Adversarial Networks (GANs) have been trained on time-series data
which learn relationships between variables across time [112]. The property of
learning relationships between different variables in an input time series is then
used to recover missing data [113, 114, 115]. GANs can also denoise corrupted
time series data, as shown in [116], meaning they can understand and recover from
noise.

3.3 . Sensor Faults

Missing and erroneous data in all types of sensors can occur due to
electromagnetic interference, thermal aging, and lag in the sensor data processor.
This is present at random for a short duration or can be present with some known
characteristics for an extended period. Sensor faults can be classified into nine
categories, as discussed below.

3.3.1 . Fault Types
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Figure 3.1: Bias

• Bias (Figure 3.1) : A constant offset from the nominal sensor signal
statistics given by Yf = X + β + noise, where β is the constant offset
value, X is the true value, Yf is the faulty value, and noise is a disturbance
within a tolerance range.1

1For simplicity, we drop the dependence on time t in the signal models.
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Figure 3.2: Drift

• Drift (Figure 3.2) : A time-varying offset from the nominal sensor statistics
given by Yf = X + δ + noise, where δ is the time-varying offset factor.
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Figure 3.3: Scaling

• Scaling (Figure 3.3): Magnitudes are scaled by a factor, where the form
of the waveform itself does not change. This is given by Yf = α X + noise,
where α > 0 is a scaling constant that may be time-varying.
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Figure 3.4: Spike

• Spikes (Figure 3.4): The sensor value is significantly above the true value
for a single point. The density of spike faults within the signal can increase
over time and is given by Yf = X + γ + noise where γ is an impulsive
random signal.
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Figure 3.5: Hardover

• Hardover (Figure 3.5): The sensor value increases to the saturation point
for a short period. This is given by Yf = X + η + noise where η is a
rectangular pulse random signal.

73



0.0 0.5 1.0 1.5 2.0
Time (s)

20

15

10

5

0

5

10

15

20

r (
Hz

)

Erratic, 
Normal

Figure 3.6: Erratic

• Erratic (Figure 3.6): The sensor value varies around the true value. The
magnitude of this variance can increase over time and is given by Yf =

X + ζ + noise. ζ is a random perturbation whose variance tends to increase
over time.
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Figure 3.7: Noise

• Heavy load noise (Figure 3.7): A random time series is observed, Yf =

X + λ, where λ is time varying noise with short duration and often large
standard deviation.
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Figure 3.8: Hard Fault

• Hard Fault (Figure 3.8): The sensor output is stuck at a particular level
expressed by Yf = C + noise, where C is some non-zero constant. Hard
fault can be due to loss of signal (C = 0) or stuck sensor. Hard faults are
usually treated as missing values.
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Figure 3.9: Intermittents

• Intermittents (Figure 3.9): Deviations from normal readings appear and
disappear several times from the sensor signal. This results in some missing
values (represented by black crosses in the figure). The occurence of such
signatures is generally random.
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3.3.2 . Fault Modeling
Here we define how to represent errors and missing values in multivariate signals.

Consider a d-dimensional multivariate time series x, observed at t = (t0, ..., tn−1),
denoted by x = (x0, ..., xn−1) ∈ Rd×n, where t is the observing timestamp, and
xt = (xj

t)1⩽j⩽d ∈ Rd is the t-th observation. We can assume that the time-series
has been recorded from d different sensors. Let m ∈ Rd×n be a mask matrix that
takes values in {0, 1}. The values signal whether the components of x exist or
not, for example, if xj

t exists then mj
t = 1, otherwise it is equal to 0. e ∈ Rd×n is

an error matrix that contains value ej
t at time t. The range of ej

t is [ej
l , ej

h], where
ej

l and ej
h are the lowest and highest possible errors for sensor j. The purpose of

multivariate time series imputation is to impute the missing values and correct the
erroneous values in x as accurately as possible.

The following example provides an intuitive explanation of the formulation for
an observed multivariate time series x, and its corresponding m and e variables,
where “Na" designates a missing value:

x =

 1 2 3 Na
Na 2 3.2 4 . . .
1 Na 3 3.9

 , m =

1 1 1 0
0 1 1 1 . . .
1 0 1 1

 , (3.1)

e =

0 0 0 0
0 0 0.2 0 . . .
0 0 0 −0.1

 , t = (0, 1, 2, 3, . . . ). (3.2)

Thus, in this example, the clean and complete time series could be

x̂ =

 1 2 3 3.1
1.5 2 3 4 . . .
1 2 3 4

 . (3.3)

Some methods use time differences as they have been designed for irregular
time series. We define a matrix δ ∈ Rd×n that records the time lag between the
current value and the last valid observed one. The components of δ are defined as
follows:

δ
j
ti
=


0, if i = 0
ti − ti−1, if i ̸= 0 and mj

ti−1
(1− ej

ti−1
) = 1

δ
j
ti−1

+ ti − ti−1, otherwise,

(3.4)

where mj
ti−1

(1− ej
ti−1

) = 1 means that the jth component at time ti−1 has no error.
In the previous example δ is given by

δ =

0 1 1 1
0 1 1 2 . . .
0 1 2 1

 . (3.5)
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Our goal is to develop a method to estimate x̂ from x. We will assume that
m is known, but e has to be estimated.

3.4 . Dataset

Erroneous and missing values can be generated using nominal and abnormal
statistics provided in the literature and sensor datasheets. Existing neural network
methods for missing data imputation use datasets that have either missing data
or can be synthetically generated during training. We first model the faults for
different types of sensors using the process described in [117] to generate sensor
faults in the training datasets. In our case, we consider the following types of
electrical motor sensors: a) three current shunts measuring currents in three-phase
(ia, ib, ic), b) voltmeters measuring three phase voltages (ua, ub, uc), c) encoder
measuring speed ωr, d) torque meter measuring torques τ, e) temperature sensors
ϑ, and f) accelerometers measuring vibrations σ.

3.4.1 . Brushless Direct Current Sensor Faults Dataset
We collected a new dataset with faults in sensors that monitor Brushless Direct

Current (BLDC) motors in Unmanned Aerial Vehicles (UAVs). The test bench
setup is shown in Figure 3.10. Two different motors rated 880Kv and 1000Kv have
been considered. Kv is number of revolutions per minute (rpm) that a motor turns
when 1V (one volt) is applied with no load attached to that motor. Not to be
confused with kV, the abbreviation for kilovolt. Six different sensors have been used
to monitor thrust (T), torque (τ), voltage (uDC), current (iDC), angular speed
(ωr), and rotor shaft temperature (ϑr). Three flight modes, namely aerobatics,
cruise, and racing, have been considered when running the motor. For each type
of sensor listed above, we have used one faulty and one normal sensor to collect
the dataset. Each motor is run for 15 minutes for each flight mode, with both
normal and faulty sensors collecting data simultaneously. In total, we have 200
minutes of data collected at 80Hz.

BLDC Motor

BLDC Motor

Speed 
Controller

LiPO Cells

Torque Probe

Temperature 
Probe

Speed Probe

Front Side Top

Figure 3.10: BLDC test bench to collect sensor data.
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3.4.2 . Induction Motor Dataset
The Induction Motor dataset has been proposed earlier in Section 2.5.4 for

designing neural speed-torque estimators which predicts speed (ωr) and estimated
torque (τem) from input currents (id, iq) and voltages (ud, uq). This dataset has
been collected at 250Hz.

3.4.3 . Permanent Magnet Synchronous Motor Temperature
Dataset

Permanent Magnet Synchronous Motor (PMSM) Temperature dataset [118]
is a publicly available dataset used to do thermal modeling to reduce the cost of
placing thermal sensors deep inside moving parts of motors. The dataset consists
of different experiments under real operating conditions. The following motor
quantities are present in the dataset: currents (id, iq), voltage (ud, uq), speed
(ωr), torque (τem). For the inference task, the following temperatures have been
collected: permanent magnet (ϑPM), stator yoke (ϑSY), stator tooth (ϑST),
stator winding (ϑSW), ambient temperature outside of stator (ϑa), and coolant
temperature (ϑc). The dataset has been collected at 2Hz.

3.4.4 . Broken Bar Detection Dataset
Broken bar detection dataset proposed in [119, 120] is a publicly available

dataset that consists of electrical and mechanical signals recorded from 0.7457kW
three-phase induction motor. The dataset consists of currents and voltages
represented in abc frame, and we convert it to dq frame using Clarke-Park
transformation as explained in 1.1.1.2. Drilling was done in the rotor to simulate
the failure of the three-phase induction motor. The rupture rotor bars are
generally adjacent to the first rotor bar; four rotors have been tested, the first
with a break bar, the second with two adjacent broken bars, and so on rotor
containing four adjacent broken bars. For all these conditions, the induction
motor is operated at a constant nominal speed of 1715 rpm for 18 seconds, and
(12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)% of nominal loads were applied. The
nominal load of the load machine is 40Nm. The dataset has 40 experiments
collected at 60Hz. Mechanical signals were collected using five axial
accelerometers. These sensors capture vibration measurements in both the drive
end (DE) and non-drive end (NDE) sides of the motor, axially or radially, in the
horizontal or vertical directions. For the electrical signals, the currents were
measured by alternating current probes, which correspond to precision meters.
The voltages were measured directly at the induction terminals using the voltage
points of the oscilloscope.

3.5 . Fault Detection and Recovery

In this section, we first show different existing time-series missing data
imputation methods grouped into categories: statistical methods, recurrent
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neural networks, and generative adversarial networks. Then we propose a method
that can detect and recover errors along with missing data.

3.5.1 . Statistical Methods
Statistical methods use some kind of aggregation of nearby available values to

find the missing values. Some of them are:

• Mean We replace the missing values with the mean value of the sensor
calculated from the dataset.

• KNN [121] The missing values are replaced by using the k nearest neighbor
samples. We try k = 3, 5, 7 when experimenting on the speed-torque dataset
and choose k = 5 considering time and computation cost.

• MF [122] Matrix Factorization (MF) method is used to factorize the incomplete
matrix into low-rank matrices and fill in the missing values. We use 100 epochs
and a learning rate of 0.001 for MF.

• MICE [104] Multivariate Imputation by Chained Equations (MICE) fills the
missing values by using an iterative regression model.

3.5.2 . Recurrent Neural Networks
Recurrent property of RNNs are utilized to interpolate missing values in time

series data. Some of the proposed methods are:

• GRUD [109] is a recurrent neural network that uses a weighted combination
of Gated Recurrent Units (GRU) output, last observation, and global mean to
impute missing data.

• M-RNN [79] is a bi-directional RNN that uses hidden states in both directions
of RNN to impute values.

• BRITS [123] This method uses bi-directional recurrent network to impute time
series. It implicitly updates missing information and can be used directly for
downstream tasks.

3.5.3 . Generative Adversarial Networks
The generative capability of GANs has been utilized to generate values for

missing data using the following approaches:

• GAIN [113] is a GAN based imputation method that uses a hint vector that
closely matches missing vector distribution to impute missing values.

• 2Stage GAN [114] trains a GAN in two stages to impute missing data.

• E2-GAN [115] is an end-to-end version that overcomes the inefficiency of 2stage
training by using a single stage.
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GRUD, M-RNN, BRITS, GAIN, 2Stage GAN, and E2-GAN use δ defined in
Eq. (3.4). Since there is no way of incorporating erroneous data, we treat them as
missing for all these methods.

3.6 . Sceptic-GAN: To Recover From Error and Missing Data

This section describes the proposed method for generating imputed and
corrected data motivated by Wasserstein GAN (WGAN) [124]. As we will see,
both the generator and the discriminator in the designed method are grounded on
the use of the DiagBiRNN structure (see Figure 3.11) introduced in Chapter 2.
DiagBiRNN learns the multivariate and temporal relationships better than
recurrent or feedforward networks used in [115].
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Figure 3.11: DiagBiRNN as backbone of generator and discriminator of proposedSceptic-GAN.

3.6.1 . Generator

The generator uses DiagBiRNN layers as its backbone. We use all but the
last deconvolutional layers to process the input time series, and the last layer is
then replicated to have two heads, "Imp Deconv1" and "Err Deconv1". The
"Imp Deconv1" layer outputs an imputed and corrected time series, whereas "Err
Deconv1" outputs the error in the input time series. The structure of generator G
is shown in Figure 3.12.
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Figure 3.12: Generator network of Sceptic-GAN.
The generator uses input variables x, m, a noise variable z, and a sparse error

variable e. During training, m and e are generated according to the fault models. z
is sampled from a standard distribution N (µ, σ2) with mean (µ = 0) and standard
deviation (σ = 0.01). During testing, m is known and e is kept zero as test data
already have erroneous values because of faults. The output of the generator G
are the estimated variables given by

(x̂, ê) = G(x, m, z, e) (3.6)
In generator G, DiagBiRNN takes the following input signal

xinp = m⊙ x + (1−m)⊙ z + e (3.7)
where ⊙ designates the Hadamard product.

The proposed pipeline goal is to make the generator output probability
distribution P(x̂) close to the target distribution P(x). We feed (1− m)⊙ z as
the noise into the generator autoencoder. The noise variable z plays a role
analogous to the noise variable introduced in standard GANs.

The generator is trained to produce a new sample x̂ that is most similar to x and
sensor fault error ê that is closest to e. The predicted error is then given as input
to the fault classification head as shown in Figure 3.13. The fault classification
head is a two layer network with a 1D convolution layer followed by a linear fully
connected layer to predict fault logits.

The loss function for the generator is

LG = λ(∥x− x̂∥2
2) + γ(∥e− ê∥2

2) + LCE − D(x̂) (3.8)
where λ > 0 and γ > 0 are hyper-parameters that control the weight of the time
series reconstruction error, noise prediction error, and the output of the
discriminator (D) loss. LCE is the cross-entropy loss between fault classification
logits and true fault types. In our case, we have 10 classes: 9 different types of

81



faults and no-fault. Note that the terms ∥x − x̂∥ and −D(x̂) have a similar
purpose. Since the GAN here is doing a pure regression task we can use this as
an extra loss term just to help in learning. In turn, −D(x̂) gives very global level
information on the estimated signal compared to the former term.
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Figure 3.13: Fault classifier network of Sceptic-GAN.
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Figure 3.14: Discriminator network of Scpetic-GAN

The network structure of the discriminator D shown in Figure 3.14 also uses
DiagBiRNN with one extra layer that takes the flattened output and feeds to a fully
connected layer with a single output. The task of the discriminator is to distinguish
between fake sample x̂ and true sample x. The output of the discriminator is
a probability that indicates the degree of authenticity. We try to find a set of
parameters that can produce a high probability when we feed a true sample x and
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a low probability when we feed a fake sample x̂. Therefore, the loss function of
the discriminator can be designed as follows:

LD = D(x̂)− D(x). (3.9)

We feed incomplete time series x or complete time series x̂ into the
discriminator. With the help of the autoencoder, the time series can be
successfully handled. The autoencoder output is then passed to the fully
connected layer that outputs the probability of being true. Minimizing LD aims
at increasing the discrimination between true signals (x), for which D(x) should
be maximal, and synthetically generated ones (x̂) for which D(x̂) should be
minimal.

3.6.3 . Training

Sceptic-GAN is trained by alternating between steps where LG is minimized
and steps where LD is minimized. For each step, we use Adam optimizer with
learning rate 10−3, inertial parameters (0.9, 0.999), and weight decay of 10−5.
This alternating optimization technique can be viewed as a pratical way of solving
the underlying minimax problem which is classically encountered when training
GANs. To get the best performance, we update the generator k times and the
discriminator once at every iteration (k = 3 in our experiments).

The complete pipeline is summarized in Figure 3.15.
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Figure 3.15: Proposed model architecture : Sceptic-GAN
3.6.4 . Sceptic Score

Using our proposed generator network, we can overcome many difficulties
associated with missing data. One major challenge in using a neural network to
impute and correct faulty sensor data is not knowing when the sensors cannot be
trusted, so as to take corrective measures like shutting the drive system. It is
easy to know when input data are missing; however, knowing erroneous values is
hard. By aggregating the generator error prediction e, we can easily score each
sensor reliability and decide when to trust the imputed and corrected values.
Sceptic score of a sensor j recording for duration T is given by

SS j =
100
T

T

∑
t=1

êj
t

x̂j
t + ϵ

(3.10)
where ϵ is a small positive constant.

3.7 . Experiments

In this section, we first show the experiments conducted for fault detection
in the aforementioned datasets. We compare our proposed fault detection and
recovery method with other state of the art methods discussed in Section 3.5.
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Fault Range Median Sensors and References

Bias 1.2% to 60% 20% ϑ and ω [125]0.1% to 0.15% 0.12% τ [126]
Scaling 2.5 to 4.8 3.28 σ [127]0.3 to 0.7 0.45 T [128]
Drift 6% to 75% 29% T [129]

ϑ [125]0.1% to 0.2% 0.17% τ [126]

Noise / Spike / Erratic
2.5% to 250% 20% T, τ and ω [130]

σ [131]0.1% to 2% 0.17% τ [126]1% to 6% 2.4% i and u [132]
Hard Fault 0% to 100% NA All Sensors
Intermittent 2 to 10 drops 8 drops All sensors [129]

Table 3.1: Faults leading to missing and erroneous values in different types ofsensors. The indicated percentage values in the second column correspond to theminimum and maximum allowed change of nominal range when a specific type offault is present.

Once we have recovered signals, we use them as input in downstream tasks like
speed-torque estimation, broken-bar detection, and thermal modeling. This shows
how useful recovered signals are as input to other machine learning objectives.

Table 3.1 shows the statistics of different types of faults that can happen in
different types of sensors. The sources from which these values have been obtained
has been cited in the last column along with the sensor names. These values have
been used to simulate faults in the four datasets for training and testing of different
types of fault detection and recovery methods.

3.7.1 . Fault Detection

Table 3.2 shows MSE between true and imputed values for BLDC, Induction,
PMSM, and Broken Bar datasets. We can see that our proposed method provides
the best imputation and corrected values. Sceptic-GAN can utilize erroneous
values to recover both missing and erroneous ones, whereas other methods treat
them as missing ones. This is one reason why our method performs better.
Another significant advantage of Sceptic-GAN is a good pretrained backbone
that has been shown to be efficient for learning electrical motor dynamics from
sensor data. Such a network can utilize multivariate intra-component and
temporal relationships better than simple, fully connected, or recurrent networks.

To demonstrate the usability of the sceptic score, we purposefully destroy a
temperature sensor by heating it at 200◦C. This is above the max operating
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Method (↓) BLDC Induction PMSM Broken Bar

Non NN

Mean 0.518 0.632 0.672 0.757
KNN 0.282 0.392 0.432 0.517
MF 0.334 0.483 0.523 0.608
MICE 0.314 0.400 0.440 0.525

RNN

GRUD 0.325 0.486 0.526 0.611
M-RNN 0.411 0.491 0.528 0.603
BRITS 0.264 0.396 0.436 0.521

GAN

GAIN 0.287 0.399 0.416 0.523
2-Stage 0.231 0.373 0.413 0.498

E2 0.219 0.352 0.372 0.477
Sceptic-GAN 0.192 0.329 0379 0.458

Table 3.2: MSE results for Sceptic-GAN and other imputation methods.

temperature of 125◦C, causing a very high drift. This sensor and other sensors
are then used to record the BLDC motor for 5 minutes. Sceptic GAN is then used
to recover these values. We then compute the sceptic score of the temperature
sensor, which comes out to be 33.9%, above the 29% median value of drift from
Table 3.1.

3.7.2 . Fault Classification
The fault classifier head has a 10-class output where we want to predict the type

of faults (1 out of 9) or no-fault. The macro f1-score obtained on the four datasets
are BLDC (91.8%), Induction Motor (96.1%), PMSM (89.2%), and Broken Bar
(90.5%). It should be noted that we only consider that there is one fault present
in the input signal at any given time, making it a multi-class problem. In reality,
there is a small likelihood that multiple faults can be present simultaneously, but
this is a more complicated problem to solve beyond the scope of this study.

3.7.3 . Performance of Downstream Tasks
Once we have corrected and recovered faulty signals using different methods,

we use those signals as input to models trained for speed-torque estimation, broken
bar detection, and thermal modeling tasks.

3.7.3.1 . Speed-Torque Estimation
We also compare our proposed method with baseline methods by using them

to impute value in test data in downstream tasks. For speed-torque estimation,
we use real motor test set from Section 2.5.4 and introduce missing and erroneous
values using Table 3.1. Then we use all imputation methods to resolve the test set
and feed it to the speed-torque estimator trained in Chapter 2. Table 3.3 reports
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Method Speed ωr Torque τem

MAE SMAPE MAE SMAPE

DiagBiRNN 0.03 18.76% 0.04 38.46%

Mean 0.29 19.01% 0.28 38.64%
KNN 0.22 18.93% 0.21 38.58%
MF 0.18 18.81% 0.37 38.62%
MICE 0.18 18.74% 0.35 38.59%
GRUD 0.19 18.75% 0.36 38.60%
M-RNN 0.21 18.75% 0.30 38.58%
BRITS 0.17 18.77% 0.24 38.56%
GAIN 0.16 18.79% 0.25 38.60%

2-Stage GAN 0.12 18.72% 0.22 38.55%
E2-GAN 0.11 18.76% 0.14 38.49%

Sceptic-GAN (Ours) 0.03 18.76% 0.12 38.50%
Table 3.3: Metrics for speed-torque estimation with imputed data.

MAE and SMAPE of estimated speed (ωr) and torque (τem). The first row shows
the results obtained when the input data is without any fault. We can see that
Sceptic-GAN imputed values provide better MAE for speed (ωr) and torque (τem).
One interesting observation is that SMAPE for speed (ωr) is even better for 2-
Stage GAN compared to the baseline. This could be due to the fact that some of
the recovered faulty values are closer to the training set leading to an overfitted
prediction. Overall, Sceptic-GAN is better at imputation of missing values and the
only method to identify and correct errors in the recorded signals.

3.7.3.2 . Broken-Bar Detection

Model Baseline Mean KNN MF MICE

Accuracy 92.57 72.16 79.13 78.86 83.17
Model GRUD M-RNN BRITS GAIN 2-Stage GAN E2-GAN Sceptic-GAN (Ours)

Accuracy 85.92 86.49 86.12 91.07 90.67 90.14 91.39

Table 3.4: Accuracy of the bearing fault prediction task using imputed and correctedvalues fed as input to the time-series ResNet.

The bearing fault detection dataset is a classification dataset where different
sensor quantities are used to classify motor-broken bearing faults into one of five
classes. This is a challenging dataset since, when we introduce sensor faults, the
input quantities end up having two sources of faults present in them. Since we
control sensor error generation, we can train our GAN to detect and use the
imputed values to classify broken faults. Table 3.4 shows the accuracy of ResNet
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when applied to imputed values from all imputation networks. From the results of
downstream task of broken bar detection, we can say that the first stage of fault
recovery by Sceptic-GAN has performed quite well when compared to other
methods.

3.7.3.3 . Thermal Modeling
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Figure 3.16: MSE of RNN and CNN outputs predicted from imputed inputs in thermalmodeling task.
Thermal modeling dataset provides a unique analysis point as the imputation

problem is harder. This is because temporal relationships between ϑa, ϑc and other
non-thermal quantities persist over a long time horizon. Given that our GAN
operates on a window of size 100, such relationships will be tough to capture,
and imputation will be done based on local information only. Figure 3.16 shows
results for ϑPM, ϑSY, ϑST, ϑSW using RNN and CNN networks proposed in [118].
The x-axis shows all imputation methods with MSE in the y-axis. We can see that
our method is the closest to the baseline. E2-GAN also shows good results by
sometimes performing better than Sceptic-GAN as well as the baseline.

3.8 . Summary

This chapter investigates three applications where our proposed fault detection
and recovery methods provides effective solutions. We focused majorly on the
problem of sensor faults. We presented nine types of sensor faults and built a
model based on literature and sensor datasheets. This fault model is for sensors
that are explicitly used in the electrical industry. We show how the fault model
can generate faults in the existing datasets. We also presented a new Brushless
DC motor dataset where faults were generated by deteriorating the sensors in the
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system. We discussed several existing state-of-the-art missing data imputation
methods to solve the proposed sensor fault detection and recovery problem. To
overcome the limitations of these methods, we introduced Sceptic-GAN, which can
recover missing and correct erroneous values. We show the good performance of
Sceptic-GAN on four datasets and demonstrate the usability of recovered signals in
downstream tasks of speed-torque estimation, broken-bar detection, and thermal
modeling.

89





Chapter 4Noise Processing, Robustness,and Generalization
4.1 . Introduction

In this chapter, we introduce one adaptation and two litmus tests for the
neural networks trained for applicative purposes such as input-output relationship
modeling, speed-torque estimator, thermal modeling, and fault detection. The
objective is to identify if the neural networks are suitable for real-world electrical
motor operations.

4.1.1 . Noise in Real World Data

DiagBiRNN experiments conducted in Chapter 2 for speed-torque estimation
were limited to simulated data. In the real world, accurately measuring currents
and voltages is challenging due to temperature variations and noise. The primary
source of measurement noise is the inherent inaccuracies in sensors that measure
quantities like currents and speed. We show that it is possible to learn electrical
motor dynamics in the presence of noisy observations. To better characterize the
model identification process from noisy observations and to ensure its reliability, we
collect, analyze, and characterize real-world motor data. Noise properties derived
from the raw data allow us to design different denoisers, which are then used to
remove noise. This work has been published in IEEE Transactions on Industrial
Electronics in 2022.

4.1.2 . Robustness in Real World Operations

Depending on where electrical motors are used, heavy industry or household
appliances, a different degree of operating reliability is required from the motors. A
brushless DC motor inside a rotational drive has a consistent operational paradigm.
In contrast, an induction motor inside a tunnel boring machine has to face extreme
heat, humidity, and dust while having a very inconsistent operation cycle. This
operating environment often leads to unforeseen situations that can be treated
as perturbations to the inputs of the neural networks used in various applications.

91



Therefore, neural networks used in speed-torque estimation, sensor fault recovery,
broken bar detection, and thermal modeling require a thorough robustness analysis.
This work has been published in NeurIPS RobustSeq Workshop 2022.

4.1.3 . Generalized Neural Networks for Real World Applications
Electrical motors come in different shapes and sizes for different types of

applications. We discuss shortly the generalization of neural networks trained for
speed-torque estimation for different motor powers. In Chapter 1, we started with
the notion that training speed-torque estimator requires large simulated and small
real datasets. In this context, we experimented with a 4kW powered electrical
motor in Chapter 2. We conduct a generalization study to understand how this
speed-torque estimator behaves when a new powered motor is used during
inference.

4.2 . Related Work

4.2.1 . Noise Handling
Noise reduction in time-series is a very evolved field with a multitude of research

involving various methodologies. Some of the techniques that can be easily applied
are linear smoothing filters and non-linear filters [24, 25]. Kalman filter [26, 27, 28,
133, 134] is widely used in noisy observation where a state-space based estimation
is done which takes the system model as input. Also, there are transform based
methods like those based on wavelet transforms [29, 30, 135] which remove noisy
components from transformed sensor data. Variational methods often based on
the total variation [31, 32, 33] have also been used in signal denoising and change
detection, providing a robust and often more flexible solution over linear filter based
denoisers. Kalman filter, transform-based and variational methods require prior
knowledge about the noise/signal statistics for efficient denoising. Deep learning
based method like stacked autoencoders [34] have been shown to be promising
in learning to remove noise. However, neural network denoisers require a large
amount of data with non-noisy ground truth, which is not possible in the case of
electrical motors.

4.2.2 . Neural Network Robustness
Goodfellow et al. [36] proposed the Fast Gradient Sign Method (FGSM) to

generate ℓ∞ bounded adversarial attacks. This is a white box attack, i.e., it has
access to network structure, parameter weights, and all the related training details.
FGSM is a single-step attack, Madry et al. [37] proposed a multi-step variant
of FGSM called Projected Gradient Descent (PGD) attack. Kurakin et al. [136]
proposed an optimized FGSM, Iterative Gradient Sign Method (IGSM), which adds
perturbations in multiple smaller steps and clips the results after each iteration
ensuring that the perturbations are restricted in the neighborhood. Dong et al.
[137] added momentum to IGSM attacks. Moosavi et al. [138] proposed Deepfool
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as a non-targeted attack that tries to find the decision boundary closest to the
sample in the input space and then uses the classification boundary to fool the
classifier. Moosavi et al. [139] proposed a universal image-agnostic perturbation
attack method that fools the classifier by adding a single perturbation to all images
in the dataset. In [140], the authors propose a general framework for the generation
of adversarial examples in both classification and regression tasks for applications in
the image domain. Robustness of networks applied on tabular data and regression
task has been investigated in [141]. A better attacker for regression problems has
been proposed in [142]. This work has been extended in [143] to understand effect
of different input variables in the stability of neural networks and has been applied
in designing robust fault detection neural networks for UAVs [144].

4.2.3 . Generalization of Deep Neural Networks
In [145], authors derived generalization bounds for various learning algorithms

based on their robustness. A number of theoretically oriented works have focused
on characterizing the generalization properties of neural networks by offering
bounds on their generalization error [146, 147, 148]. Detecting distribution shifts
is another sub-area of domain generalization research. In [149], authors try to
solve the problem of attributing performance differences to the type of
distribution shift (covariate or concept) based on the underlying data generating
mechanism. Most of the existing work focus on deep learning classifiers and
image domain. Less attention has been paid to the performance of deep neural
networks for regression problems. In [150], authors build upon the robustness and
generalization framework proposed in [145]. They present a new method of
computing generalization errors and introduce a new regularizer for regression
networks.

4.3 . Denoising Currents and Voltages

In this section, we first present the measurement noise modeling process.
Then various strategies for denoising currents and voltages are discussed with the
proposed denoising method.

4.3.1 . Noise Modeling
The noise of currents (id,iq) and voltages (ud, uq) have been modeled in a way

similar to [151]. To that extent, static parts of the experimental data have been
collected, i.e. the periods during which both speed and torque are constant. For
each static part, assuming that the non-noisy "true" currents and voltages signals
coincide with their mean values on the static part, the temporal noise signals for the
two currents and the two voltages have been determined. Gathering all the static
parts of our experimental data, the temporal distributions of the noise corrupting
each signal have been obtained. Figure 4.1 shows the distributions of noise in
currents (id,iq) and voltages (ud,uq).
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Figure 4.1: Noise distributions of currents (id,iq) and voltages (ud,uq) from real data.
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Relying on ergodicity and making the assumption that the real distributions can
be approximated by Gaussian ones, the statistical characteristics of the noises have
been deduced. The Gaussian approximations are shown by the red lines in figures.
These show that the noises approximately follow normal distributions with zero
mean and standard deviations equal to σid = 0.17A, σiq = 0.29A, σud = 1.85V,
and σuq = 1.78V, respectively.

4.3.2 . Standard Denoisers

Extended Kalman filter (EKF) [27] is a state-space based non-linear filtering
approach. A diagonal measurement noise covariance matrix is chosen using the
noise variances estimated in Section 4.3.1 and the state transition matrix is an
identity matrix I2. Wavelet transform (WT) denoising is a non-linear estimation
method operating on each wavelet coefficient separately. The adaptive Bayes
Shrink algorithm [152] has been used to soft threshold wavelet coefficients using
the noise standard deviations identified in Section 4.3.1. Minmax-concave total
variation (MCTV) [33] is a non-linear variational method. It has been used with
K = 100 maximum iterations, a root mean square error of 10−3 as convergence
criteria, a regularization constant λ =

√
σT/5 with σ the standard deviation

defined in Section 4.3.1 and T the duration of the signal, and the non-convexity
parameter αnc = 0.3/λ, after having also tried other values for the numerator.
Unlike EKF, WT and MCTV, denoising auto-encoder (DAE) is a neural network
based technique. It consists of 3 layers of 1-D convolutions and 3 layers of 1-D
deconvolutions with a number of channels equal to 1-32-64-128-64-32-1.

These denoisers do not work properly on real motor data. EKF often fails
when there is a sudden transition in noise amplitude which could be resolved
using Adaptive EKF [153]. The denoised outputs of WT and MCTV exhibit
staircase effects in ramp parts of the signal (with less error for MCTV). DAE
solves these problems and gives the smoothest denoised output, but leads to
incorrect predictions at the start and the end of a ramp.

4.3.3 . Meta-Denoiser

To overcome the problems of measurement noise, we introduce the Meta-
Denoiser (MD) shown in Figure 4.2. MD is an extension of DAE where the last
deconvolution layer gives the same number of feature channels as its input. It is
then fed to the segmentation head and the denoiser head to predict segmentation
and denoised outputs. By training it to identify dynamic and static parts, the
model is able to identify the correct start and end of a ramp, thereby overcoming
the problem of DAE.
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Figure 4.2: Meta-Denoiser architecture.

MD is trained using the MD-Joint loss function:

LMD-Joint = αLBCE + (1− α)LMSE

{
α = 0.5 if yi ∈ Simulated Data
α = 1 if yi ∈ Real Data

(4.1)

LMSE =
1
N

N

∑
i=1

(
1
T

T

∑
t=1

(yi
t − ŷi

t)
2

)
(4.2)

LBCE =
1
N

N

∑
i=1

(
1
T

T

∑
t=1

(−zi
t log(ẑi

t)− (1− zi
t) log(1− ẑi

t))

)
(4.3)

where yi
t and ŷi

t are the respective values of output and predicted sample i at
time-step t for the denoising task, zi

t and ẑi
t are the respective classification

probabilities of output and predicted sample i at time-step t for the segmentation
task, and N is the number of training samples where each sample is of duration
T. Eq. (4.1) is made of a MSE part expressed in Eq. (4.2), accounting for the
denoising (regression) task, and a widely used binary cross entropy (BCE) loss
[154] in Eq. (4.3). In case of simulated data, as the ground truth is available for
both denoising and segmentation tasks, we use α = 0.5 to give equal weights to
the two loss function parts. For real motor data, since the denoised trajectory is
not available, the denoising loss cannot be computed and we set α = 1. Dynamic
and static parts is obtained using a simple change detection algorithm [155].

4.4 . Denoising Experiments

To train MD and DiagBiRNN, the dataset has been partitioned into four parts:
70% (resp. 30%) of the simulation data are used for training (resp. validation),
whereas 20% (resp. 80%) of the real motor data for fine-tuning (resp. testing)
purpose. The fact that the majority of the real data has been used for testing
is in line with real industrial needs. DAE and MD have been trained with mean
square error (MSE) loss function and a stochastic gradient descent optimizer with
the following hyperparameters: 100 epochs, learning rate of 0.01, and batch size
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of 128. DiagBiRNN uses the training strategy and hyperparameters described in
Section 2.6. EKF, WT, MCTV, DAE and MD have been used to denoise the
currents (id, iq) and voltages (ud, uq). The denoised currents and voltages are
then used to predict the speed ωr and the torque τem using DiagBiRNN trained
on non-noisy simulated data from Chapter 2.

4.4.1 . Simulated Benchmarks
To analyze the effect of noise on DiagBiRNN, a set of experiments are

performed on simulated data from Section 2.5.3. The absence and presence of
noise have been considered. Real motor data from Section 2.5.4 have been used
for experiments with real noise. Based on different combinations of test data and
training conditions of DiagBiRNN, the following cases are studied:

i) Case A: NN estimator trained on non-noisy simulated data, applied on non
noisy simulated data.

ii) Case B: Estimator from Case A applied to noisy simulated data.

iii) Case C: Estimator trained on simulated data with noisy currents and
voltages and non-noisy speed and torque, applied to noisy simulated data.

iv) Case D: Transfer learning presented in Chapter 2 is used to train and predict
on real motor data.

Method Speed ωr Torque τem

MAE SMAPE MAE SMAPE

CASE A 0.03 18.7% 0.04 38.5%
CASE B 0.05 20.1% 0.13 41.3%
CASE C 0.05 19.7% 0.13 41.0%
EKF[27] 0.05 19.4% 0.13 41.0%
WT[30] 0.05 19.4% 0.12 41.0%
MCTV[33] 0.05 19.4% 0.12 40.1%
DAE[34] 0.04 19.0% 0.09 39.7%
MD (Ours) 0.04 18.8% 0.05 38.9%

Table 4.1: Aggregated ML metrics for the predictions done on all simulatedbenchmarks.

Table 4.1 shows the aggregated ML metrics obtained by DiagBiRNN on the
simulated benchmarks with and without denoising using various methods. Small
MAE and SMAPE values are desirable for a good prediction model. It can be
observed that Case B performs worse than Case A since DiagBiRNN alone has no
way of cancelling the noise. Case C performs relatively better than Case B since
training is performed on noisy simulated data. Amongst standard denoiser, minor
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improvements with MCTV and DAE are observed. However, the proposed MD
offers the best performance among all the evaluated methods, with quantitative
results approaching the ones obtained in the non-noisy Case A.

Method t2% (ms) t95% (ms) E f ol (Hz) D% (%) Ess (Hz) ∆τmax (%τnom)

"Real" 44.0 960 -0.02 2.16 0.00 32.7

CASE A 44.1 956 0.01 2.32 0.03 32.8
CASE B 44.2 950 -0.01 2.26 -0.01 32.8
CASE C 44.2 955 0.03 2.39 0.04 32.8
EKF[27] 44.1 952 0.02 2.48 0.04 32.6
WT[30] 44.2 955 0.03 2.37 0.04 32.7

MCTV[33] 44.1 956 0.02 2.34 0.04 32.7

DAE[34] 43.8 950 0.00 2.33 0.02 32.7
MD (Ours) 44.2 958 -0.01 2.23 0.01 32.7

Table 4.2: Performancemetrics for the predictions performedon simulatedDynamic-Speed1 benchmark
Table 4.2 shows performance metrics for Dynamic-Speed1 benchmark. Our

objective is to be as close as possible to “Real" values given in the first row, "Real"
standing here for “non-noisy (simulated)". It can be seen that MD-DiagBiRNN is
the closest one to the “Real" for almost all metrics, again led to estimate speed
and torque.
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Figure 4.3: Meta-Denoiser on current id from Dynamic-Speed1 benchmark.
Figures 4.3 show MD output when noisy current id is given as input. It can

be observed that the denoised output is very closely to the non-noisy simulated
current id. There are two small problems: the first one is that at around 1.9
seconds the MD output starts the ramp before the simulated one does, and the
second problem is that the end of ramp is not perfect at 2 second. Figure 4.4
shows denoised output when noisy current iq is given as input. At 1.1 second it
can be observed that the meta-denoiser underestimates the signal and a similar
error can be observed at 1.8 second.
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Figure 4.4: Meta-Denoiser on current iq from Dynamic-Speed1 benchmark.
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Figure 4.5: Meta-Denoiser on voltage ud from Dynamic-Speed1 benchmark.
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Figure 4.6: Meta-Denoiser on voltage uq from Dynamic-Speed1 benchmark.
Figure 4.5 shows MD output when noisy voltage ud is given as input. In this

case, no artifacts are present in the prediction when there is a change in the
signal, for example, at 1 and 2 seconds. Figure 4.6 shows results when denoising

99



voltage uq with meta-denoiser. Around 1.8 second (in the zoomed sub-plot) we
can see that the denoised output under-predicts the ramp end. From the above
plots of non-noisy / noisy simulated currents and voltages, and MD denoised
signals, we get good insights into the MD performance. We observed that MD
denoised trajectories are close to non-noisy simulated trajectories, demonstrating
the acceptable denoising performance of MD.
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Figure 4.7: Speed and torque estimation from noisy and denoised currents andvoltages in Dynamic-Speed1 benchmark.
Figure 4.7 shows predicted speed (top) and torque (bottom), respectively.

Results from Case A (applied to non-noisy simulated), Case C (applied to noisy
simulated), and MD-DiagBiRNN (applied to MD output currents and voltages)
have been shown. For better evaluation, Figure 4.8 shows the difference between
the generated outputs and non-noisy simulated. The top sub-figure shows speed
errors and the bottom one shows torque errors. While Case C presents
substantial errors, it can be seen that MD-DiagBiRNN has errors of the same
order of magnitude as in non-noisy Case A. Thus, combining MD and
DiagBiRNN allows us to perform a high-quality speed-torque estimation.
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Figure 4.8: Error between estimated and real speed-torque in Dynamic-Speed1benchmark.

Method t2% (ms) t95% (ms) E f ol (Hz) D% (%) Ess (Hz) ∆τmax (%τnom)

"Real" 32.0 492 0.32 3.86 0.00 65.7

CASE A 32.1 588 0.24 5.77 0.05 65.6

CASE B 32.2 596 0.30 6.28 0.18 65.9
CASE C 32.2 604 0.20 7.33 0.11 69.8

EKF[27] 32.2 616 0.19 7.23 0.12 65.8
WT[30] 32.2 604 0.20 7.27 0.12 65.8

MCTV[33] 32.1 600 0.22 6.24 0.07 65.5
DAE[34] 32.9 608 0.19 6.21 0.10 66.3

MD (Ours) 32.1 484 0.26 4.45 0.05 65.9
Table 4.3: Performancemetrics for the predictions performedon simulatedDynamic-Speed2 benchmark

Table 4.3 shows performance metrics for Dynamic-Speed2 benchmark. It can
be seen that MD-DiagBiRNN is the closest one to the “Real" for almost all metrics,
when estimating speed and torque. Figure 4.9 shows denoised currents (id, iq) from
meta-denoiser for Dynamic-Speed2 benchmark.
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Figure 4.9: Meta-Denoiser on currents (id, iq) from Dynamic-Speed2 benchmark.

In case of current id, it can be seen that around 5.4 seconds, at the start of the
ramp, the meta-denoised output starts the ramp before the simulated trajectory.
Meta-denoiser also cannot reach the same current as the non-noisy simulated one
at 5.5 seconds. In case of current iq, there are three places where meta-denoiser
input is degraded, at 5 second just before the start of ramp, around 5.1 second at
the first overshoot, around 5.4 second at first undershoot, and at 5.5 second at
the second overshoot.

Figure 4.10 shows denoised voltages (ud, uq) from meta-denoiser fro Dynamics-
Speed2 benchmark. In the case of voltage ud, we can see no problem at the start
of the ramp (5 second) and the overshoot (around 5.8 second). But there is a
problem in predicting voltage at 5.5 second. There is a slight averaging effect
when there is a sudden change in the voltage. The predictions are very good for
all other time stamps and close to the non-noisy simulated voltage ud. In the
case of voltage uq, we observe that the meta-denoised voltage is very close to the
non-noisy simulated voltage. It should be noted that the noise variance is also very
low, so it can be considered that the task of denoising is trivial for this particular
sample.
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Figure 4.10: Meta-Denoiser on voltages (ud, uq) from Dynamic-Speed1 benchmark.

In Figure 4.11, the left sub-figure shows the estimated speed and the right
sub-figure shows the estimated torque from noisy and different non-noisy currents
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and voltages including meta-denoiser predicted currents and voltages. It can be
seen that the prediction of MD DiagBiRNN is very close to non-noisy simulated
speed and torque. DiagBiRNN Cases A and C are both performing poorly in the
case of speed. DiagBiRNN Case C performs worse in the case of torque, whereas
Case A is close to the non-noisy simulated torque.
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Figure 4.11: Speed-torque estimation fromnoisy anddenoised currents and voltagesin Dynamic-Speed2 benchmark.

In Figure 4.12, the left sub-figure shows the error between estimated speeds and
the real one, and the right sub-figure shows the error between estimated torque and
the real one. The speed error plot shows that at 5.5 second the MD-DiagBiRNN
is realitvely better than Cases A and C. In the torque error plot, there is a large
error in Case C prediction at the overshoot (5.1 second).
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Figure 4.12: Error between estimated and real speed-torque in Dynamic-Speed2benchmark.

Table 4.4 reports the maximum absolute error between the model predicted
speed and the non-noisy simulated speed obtained with the different methods on
two quasi-static benchmarks. The lowest error values are reached for non-noisy
Case A and for DiagBiRNN associated with NN denoisers, namely DAE, and once
again MD.
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Method CASE A CASE B CASE C

Quasi-Static1 0.198 0.213 0.227
Quasi-Static2 0.171 0.199 0.204

Method EKF WT MCTV DAE MD (Ours)

Quasi-Static1 0.196 0.201 0.198 0.198 0.197
Quasi-Static2 0.184 0.189 0.181 0.174 0.173

Table 4.4: Maximumabsolute error (Hz) for the predictions done on simulatedQuasi-Static benchmarks.

Globally, all the results obtained on the simulated benchmarks show that MD-
DiagBiRNN outperforms other methods in estimating non-noisy speed and torque
from noisy currents and voltages.

4.4.2 . Real Data Benchmarks

The main requirement for the speed-torque estimator is that it operates in
real-time with minimum possible delay. The processing time for DiagBiRNN on
Nvidia Quadro P620 GPU is 40ms. To avoid adding too much extra delay, it is
recommended that denoisers operate in less than 40ms. This is possible in the
case of EKF, DAE, and MD. WT and MCTV require larger delay to get acceptable
performance, making them hardly usable for real-time usage. Since EKF and
DAE do not perform as well as MD on simulated benchmarks, real benchmark
experiments are limited to Case D and MD.

Method Speed ωr Torque τem

MAE SMAPE MAE SMAPE

CASE D 0.92 23.7% 1.12 39.2%
MD (Ours) 0.61 13.7% 1.09 35.2%

Table 4.5: Aggregated ML metrics for the predictions done on all real databenchmarks.

Table 4.5 shows the aggregated ML metrics on the dynamic and quasi-static
real benchmarks obtained by DiagBiRNN with MD and in Case D. It confirms that
DiagBiRNN-MD performs very well compared to Case D owing to its denoising
capability.

Method t2% (ms) t95% (ms) E f ol (Hz) D% (%) Ess (Hz) ∆τmax (%τnom)

"Motor Real" 31 1118 0.49 1.44 0.00 359.0

CASE D 36 1134 0.83 0.78 0.48 362.7
MD (Ours) 30 1133 0.69 0.52 0.45 355.4

Table 4.6: Performance metrics for the online inference on RDynamic-Speed1benchmark for 1.5kW motor.
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Table 4.6 shows the electrical engineering metrics for the real-time inference
on RDynamic-Speed1 benchmark. It should be pointed out that, for consistency,
electrical engineering metrics for Case D are computed on smooth reconstruction
of Case D predictions. Moreover, "Motor Real" stands for “non-noisy
(reconstructed)", which has been obtained manually by doing an a posteriori
approximation of the non-noisy trajectory. It can be seen that electrical
engineering metrics on both Case D and DiagBiRNN-MD predictions are close to
real data metrics, DiagBiRNN-MD being even a little closer.
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Figure 4.13: Meta-Denoiser on currents (id, iq) for RDynamic-Speed1 benchmark.
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Figure 4.14: Meta-Denoiser (MD) denoised uq for RDynamic-Speed1 benchmark.

Figure 4.13 shows denoised currents (id, iq) for RDynamic-Speed1 benchmark.
Figure 4.14 shows denoised voltages (ud, uq). Real noisy currents and voltages as
well as MD denoised signals have been plotted. It can be observed that MD
denoised trajectories are close to noisy trajectories, demonstrating the good
denoising performance of MD.

Figure 4.15 shows speed-torque estimation from Case D and MD-DiagBiRNN,
while Figure 4.16 shows speed and torque prediction errors with respect to non-
noisy (reconstructed) real speed and torque. Unlike DiagBiRNN-MD predictions,
both speed and torque predictions for Case D are corrupted with a level of noise
comparable to the noisy (measured) real data. This is confirmed by Figure 4.15,
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which shows that case D predictions are pretty good in average but highly varying,
while DiagBiRNN-MD predictions are not only clean but also close to the non-noisy
(reconstructed) real signals.
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Figure 4.15: Online estimated speed and torque from noisy and denoised currentsand voltages from RDynamic-Speed1 real data benchmark (on 1.5kW motor).
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Figure 4.16: Error between estimated and real speed-torque fromRDynamic-Speed1real data benchmark (on 1.5kW motor).
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Figure 4.17: Online estimated speed-torque from noisy and denoised currents andvoltages RDynamic-Speed2 real data benchmark.
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Figure 4.18: Error between estimated and real speed-torque fromRDynamic-Speed2benchmark.

Figure 4.17 shows speed-torque estimation from Case D and MD-DiagBiRNN,
while Figure 4.18 shows speed and torque prediction errors with respect to
non-noisy (reconstructed) real speed and torque. It can be observed that the
MD-DiagBiRNN performs significantly better than case D predictions on such a
challenging benchmark.

Method t95% (ms) D% (%) Ess (%τnom) SD (Hz)
"Motor Real" 370 12.8 -0.4 3.41

CASE D 373 13.2 -0.2 3.56
MD (Ours) 372 12.9 -0.3 3.45

Table 4.7: Performance metrics for the predictions done on real data RDynamic-Torque benchmark

In Table 4.7, we report electrical engineering metrics for RDynamic-Torque
benchmark. It can be observed that, as for the previous benchmark, electrical
engineering metrics of both DiagBiRNN-MD and smoothed Case D predictions are
very close to real data metrics. Figure 4.19 shows currents and Figure 4.20 shows
voltages for RDynamic-Torque benchmark.
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Figure 4.19: Meta-Denoiser on currents (id, iq) for RDynamic-Torque benchmark.
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Figure 4.20: Meta-Denoiser on voltages (ud, uq) for RDynamic-Torque benchmark.
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Figure 4.21: Online estimated speed-torque from noisy and denoised currents andvoltages from RDynamic-Torque benchmark.
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Figure 4.22: Error between estimated and real speed-torque from RDynamic-Torquebenchmark.

Figure 4.21 shows speed-torque estimation from Case D and MD-DiagBiRNN,
while Figure 4.22 shows speed and torque prediction errors with respect to non-
noisy (reconstructed) real speed and torque. Case D predictions are still corrupted
with a significant amount of noise, whereas DiagBiRNN-MD prediction error is
close to 0.
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Figure 4.23: Real noisy signal, non-noisy reconstructed, and desnoised rotor speedsfrom RQuasi-Static benchmark.

Figures 4.23 and 4.24 display results on RQuasi-Static benchmark for Case D
and DiagBiRNN-MD. As for the dynamic benchmarks, both methods perform well
in average but with some noticeable noise for Case D prediction. The difference
between prediction with DiagBiRNN-MD and non-noisy (reconstructed) real speed
is never greater than 0.1Hz, which is very good.
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Figure 4.24: Error between denoised and real speeds fromRQuasi-Static benchmark.
All the results obtained on the simulated and real benchmarks show that MD-

DiagBiRNN outperforms other methods in estimating non-noisy speed and torque
from noisy currents and voltages. Results on the four real data benchmarks show
that both Case D and DiagBiRNN-MD provide significantly better speed and torque
prediction. Case D predicts noisy speed and torque thanks to the fact that it is fine-
tuned on train set of real data. DiagBiRNN-MD predicts speed and torque very
close to the ideal (reconstructed) signals owing to the good denoising performance
of the proposed MD technique. MD outperforms all other methods since it is
not biased to static behaviours in the input noisy signals. Other methods perform
relatively poorly in dynamic parts. This justifies the need for MD to be trained to
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perform segmentation and denoising simultaneously.

4.5 . Robustness of Neural Networks for Electrical Motor Tasks
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Figure 4.25: Different sources of perturbations in signals that are input to neuralnetworks used in electrical motor tasks.
Figure 4.25 shows how naturally occurring perturbation in inputs can cause

a neural network to deliver the wrong output. When such neural networks are
cascaded to drive a control system, it can lead to catastrophic failures. In this case,
the meta-denoiser and speed-torque estimator together take denoised currents and
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voltages and estimate speed and torque, which can then be used to drive the
control system. Currents and voltages are measured using sensors that can be
affected by extreme heat, water, dust, or material faults. Sensors can also perform
poorly due to aging. Motors can age and get affected due to their environment
and will behave differently. Given that meta-denoiser and DiagBiRNN have not
been trained on a dataset that considers such varied inputs and motor states, the
networks are bound to give wrong predictions, which can affect the downstream
control task.

4.5.1 . Datasets

Datasets proposed in Chapter 3 for motor dynamics input-output modeling,
denoise, speed-torque estimation, temperature modeling, and broken bar tasks
have been used. In case of motor dynamics, inputs are voltages (ud, uq) and
rotor speed (ωr). The quantities that have to be predicted are currents (id, iq) and
mechanical torque (τem). The denoise problem deals with denoising noisy currents
(îd, îq), noisy voltages (ûd, ûq). For the speed-torque estimation, the goal is to
predict rotor speed (ωr), and mechanical torque (τem) from currents (id, iq) and
voltages (ud, uq).

In temperature dataset, currents (id, iq), voltages (ud, uq), speed (ωr), and
torque (τem) are the electrical motor quantities. Permanent magnet (ϑPM), stator
yoke (ϑSY), stator tooth (ϑST), stator winding (ϑSW), ambient temperature
outside of stator (ϑa), and coolant temperature (ϑc) are the recorded
temperatures. The objective is to predict permanent magnet (ϑPM) temperature
from all other quantities, which makes this a regression task.

Broken bars dataset consists of currents, voltages, and torque as electrical
signals. Accelerometers placed in 5 different parts of motor is used to collect
vibrations/mechanical signals. In total 400 experiments of each lasting 20 seconds
is performed. The objective is to predict how many broken bars are in the motor
from its electrical and mechanical signals.

4.5.2 . Model Architectures

The architectures proposed in this thesis have been used for motor
dynamics learning, denoise, and speed-torque estimation tasks. Networks
named FNN, RNN, LSTM, and CNN are used for baselines. Encoder-decoder
variants named Deep, Skip, RNN-Skip, BiRNN-Skip, and DiagBiRNN are used to
understand robustness behavior with respect to network complexity. For the
temperature task DiagBiRNN and FedFormer [156] are used. For the broken
bars task, 1D variant of three classification networks namely CRNN [157],
ResNet-18 [158], and RegNet-20 [159] are used.

For generating adversarial attacks, we use FGSM and DeepFool. The value
of ℓ2 perturbations within an ϵ-neighborhood of 0.01 and 0.1 is taken. In the
case of DeepFool, the number of iterations used is 100. For the broken bars
task, we report clean accuracy, and FGSM and DeepFool attack accuracy. For all
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the regression tasks, we report clean and FGSM attack values of Mean Absolute
Error (MAE), Symmetric Mean Absolute Percentage Error (SMAPE), coefficient
of determination (R2) [90], and Root Mean Squared Error (RMSE).

4.5.3 . Motor Dynamics Learning Networks

Network Attack MAE SMAPE(%) R2 RMSE

FNN Clean 0.03 5.97 0.72 0.06
FGSM ϵ = 0.01 0.12 24.06 -1.57 0.17
FGSM ϵ = 0.1 0.82 66.11 -130.99 1.23

CNN Clean 0.02 4.86 0.76 0.05
FGSM ϵ = 0.01 0.11 22.02 -1.05 0.15
FGSMϵ = 0.1 0.56 94.63 -45.14 0.73

RNN Clean 0.03 6.33 0.73 0.06
FGSM ϵ = 0.01 0.11 21.91 -0.77 0.14
FGSM ϵ = 0.1 0.22 45.53 -6.99 0.30

LSTM Clean 0.03 5.05 0.75 0.05
FGSM ϵ = 0.01 0.12 24.73 -1.90 0.18
FGSM ϵ = 0.1 0.39 65.19 -32.92 0.63

Deep Clean 0.026 5.15 0.73 0.06
FGSM ϵ = 0.01 0.11 22.89 -1.02 0.15
FGSM ϵ = 0.1 0.15 32.11 -2.90 0.21

Skip Clean 0.02 4.62 0.77 0.05
FGSM ϵ = 0.01 0.11 24.94 -1.14 0.16
FGSM ϵ = 0.1 0.39 94.92 -21.99 0.52

RNN-Skip Clean 0.03 6.73 0.72 0.06
FGSM ϵ = 0.01 0.09 20.36 -0.54 0.13
FGSM ϵ = 0.1 0.29 73.5 -10.87 0.37

BiRNN-Skip Clean 0.03 6.82 0.72 0.06
FGSM ϵ = 0.01 0.13 26.09 -1.85 0.18
FGSM ϵ = 0.1 0.69 76.03 -84.77 0.99

DiagBiRNN Clean 0.02 4.70 0.76 0.05
FGSM ϵ = 0.01 0.10 21.31 -0.83 0.15
FGSM ϵ = 0.1 0.32 58.40 -16.23 0.44

Table 4.8: Metrics of clean and adversarial predictions from all the networks trainedformotor dynamics task.
Table 4.8 shows results obtained by networks for motor dynamics learning

task. It shows MAE, SMAPE, R2, and RMSE for clean predictions and FGSM
predictions at ϵ = 0.01 and ϵ = 0.1. Key observation is that all networks
predictions degrades when attacked. CNN variant achieves the best clean
predictions MAE (0.02), SMAPE (4.86%), and R2 (0.76). When attacked, RNN
is most robust at both epsilon values. Skip encoder-decoder variant achieves the
best clean predictions SMAPE (4.62%) and R2 (0.77). When attacked,
RNN-Skip is most robust at ϵ = 0.01 with SMAPE (20.36%), followed by
DiagBiRNN with SMAPE (21.31%). Skip achieves the second worst performance
when attacked.

Figure 4.26 shows an example trajectory from the validation set of the motor
dynamics dataset. In the top sub-figure normalized values of ud, uq, and ωr are
showed as normal lines. FGSM is used with ϵ = 0.01 to attack the DiagBiRNN
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Figure 4.26: A sample from validation set of motor dynamics task showingclean input, clean output, DiagBiRNN clean prediction, FGSM generated adversarialexample, and adversarial prediction.

network by generating an adversarial example shown using the dotted lines in the
same sub-figure. It can be seen that the adversarial example has an offset when
compared to the clean input, but this offset can be positive or negative. There
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is also intermittent noise like big offsets, for example, one at 90 second. The
middle sub-figure shows the ground truth of output signals id, iq, and τem using
normal lines and DiagBiRNN predictions using dotted lines. It can be seen that the
network has poor predictions during the first ramp between 5s and 20s. The bottom
figure shows ground truth as normal lines and dotted lines are the predictions of
DiagBiRNN when the generated adversarial example is given as the input. It can be
seen that the adversarial predictions are very noisy compared to clean predictions
when the perturbations in the input are minimal. This shows that the attacks on
the networks are strong and establishes that a robustness study of such networks
is important.

4.5.4 . Motor Denoising Networks

Network Attack MAE SMAPE(%) R2 RMSE

FNN Clean 0.01 1.16 0.99 0.01
FGSM ϵ = 0.01 0.01 2.52 0.99 0.02
FGSM ϵ = 0.1 0.07 13.98 0.55 0.09

CNN Clean 0.00 0.11 0.99 0.00
FGSM ϵ = 0.01 0.01 1.86 0.99 0.01
FGSM ϵ = 0.1 0.07 13.88 0.62 0.09

RNN Clean 0.00 0.26 0.99 0.00
FGSM ϵ = 0.01 0.01 1.61 1.00 0.01
FGSM ϵ = 0.1 0.07 15.11 0.71 0.08

LSTM Clean 0.00 0.26 0.99 0.00
FGSM ϵ = 0.01 0.01 1.71 1.00 0.01
FGSM ϵ = 0.1 0.07 15.10 0.71 0.08

Deep Clean 0.00 0.22 0.99 0.00
FGSM ϵ = 0.01 0.01 1.63 0.99 0.01
FGSM ϵ = 0.1 0.06 13.95 0.58 0.09

Skip Clean 0.00 0.18 0.99 0.00
FGSM ϵ = 0.01 0.01 1.59 1.00 0.01
FGSM ϵ = 0.1 0.07 15.25 0.67 0.08

RNN-Skip Clean 0.00 0.14 0.99 0.00
FGSM ϵ = 0.01 0.01 1.76 1.00 0.01
FGSM ϵ = 0.1 0.08 16.16 0.66 0.08

BiRNN-Skip Clean 0.00 0.15 0.99 0.00
FGSM ϵ = 0.01 0.01 1.59 1.00 0.01
FGSM ϵ = 0.1 0.06 14.04 0.71 0.08

DiagBiRNN Clean 0.00 0.18 0.99 0.00
FGSM ϵ = 0.01 0.01 1.53 1.00 0.01
FGSM ϵ = 0.1 0.07 13.6 0.72 0.08

Table 4.9: Metrics of clean and adversarial predictions from all the networks trainedfor motor denoise task.
Table 4.9 shows results of the networks trained for denoise task. RNN-Skip

shows best SMAPE (0.14%) among all the variants. R2 is 0.99 for all the networks.
But when attacked with FGSM at ϵ = 0.01 DiagBiRNN outperforms every other
network with lowest SMAPE (1.53%). With a more aggressive attack of ϵ = 0.1
DiagBiRNN still outperforms every other network with SMAPE (13.6%) and R2

(0.72).
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4.5.5 . Speed-Torque Estimation Networks

Network Attack MAE SMAPE(%) R2 RMSE

FNN Clean 0.00 0.76 0.99 0.01
FGSM ϵ = 0.01 0.02 3.46 0.95 0.02
FGSM ϵ = 0.1 0.11 22.65 -1.55 0.15

CNN Clean 0.00 0.17 0.99 0.00
FGSM ϵ = 0.01 0.02 3.67 0.94 0.02
FGSM ϵ = 0.1 0.12 27.10 -2.09 0.17

RNN Clean 0.00 0.25 0.99 0.00
FGSM ϵ = 0.01 0.01 2.67 0.97 0.02
FGSM ϵ = 0.1 0.10 24.26 -0.76 0.13

LSTM Clean 0.00 0.22 0.99 0.00
FGSM ϵ = 0.01 0.01 2.55 0.97 0.02
FGSM ϵ = 0.1 0.09 21.74 -0.97 0.14

Deep Clean 0.00 0.3 0.99 0.00
FGSM ϵ = 0.01 0.01 2.94 0.96 0.02
FGSM ϵ = 0.1 0.096 24.42 -0.87 0.13

Skip Clean 0.00 0.18 0.99 0.00
FGSM ϵ = 0.01 0.01 2.83 0.97 0.02
FGSM ϵ = 0.1 0.10 23.99 -0.80 0.13

RNN-Skip Clean 0.00 0.82 0.99 0.00
FGSM ϵ = 0.01 0.01 3.13 0.96 0.02
FGSM ϵ = 0.1 0.10 17.96 -0.56 0.12

BiRNN-Skip Clean 0.00 0.68 0.99 0.00
FGSM ϵ = 0.01 0.01 2.91 0.97 0.02
FGSM ϵ = 0.1 0.10 24.84 -0.67 0.12

DiagBiRNN Clean 0.00 0.26 0.99 0.00
FGSM ϵ = 0.01 0.01 2.70 0.97 0.02
FGSM ϵ = 0.1 0.10 20.11 -0.49 0.12

Table 4.10: Metrics of clean and adversarial predictions from all the networks trainedfor speed-torque estimation task.
Table 4.10 shows results of the networks trained for speed-torque estimation

task. Encoder-decoder variant Skip shows best SMAPE (0.18%) among all the
variants. R2 is 0.99 for all the networks. But when attacked with FGSM at ϵ = 0.01
DiagBiRNN outperforms every other network with lowest SMAPE (2.70%). With
a more aggressive attack of ϵ = 0.1 RNN-Skip outperforms every other network
with SMAPE (17.96%) and R2 (-0.56). DiagBiRNN achieves best R2 of -0.49.

4.5.6 . Temperature Estimation Networks

Table 4.11 shows results for FedFormer and DiagBiRNN trained to do
permanent magnet temperature prediction task. In this case, it can be seen that
FedFormer has performed very poorly when compared to DiagBiRNN in terms of
clean predictions. However, when attacked with FGSM at ϵ = 0.01, DiagBiRNN
gets degraded substantially while FedFormer shows slight degradation with
respect to its poor performance.
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Network Attack MAE SMAPE(%) R2 RMSE

FedFormer Clean 0.03 6.47 0.96 0.04
FGSM 0.03 7.53 0.95 0.05

DiagBiRNN Clean 0.00 0.82 1.00 0.01
FGSM 0.03 7.73 0.97 0.04

Table 4.11:Metrics for clean and adversarial predictions for the two networks trainedfor permanent magnet temperature prediction task.

4.5.7 . Fault Detection Networks

ϵ Method Clean(%) FGSM(%) DeepFool(%)

0.01
CRNN 80.0 79.0 79.0
ResNet 90.0 89.0 89.0
RegNet 93.0 92.0 92.0

0.1
CRNN 79.4 61.4 60.1
ResNet 88.9 80.0 79.6
RegNet 92.3 86.8 86.6

Table 4.12: Classification results for broken bars task.

Table 4.12 shows results obtained by CRNN, ResNet, and RegNet on broken
bars task. In this case RegNet gives best clean accuracy. When attacked with
FGSM and DeepFool at ϵ = 0.01 and ϵ = 0.1 the accuracy of all three networks
decrease but the order remains same. At ϵ = 0.1, RegNet is still more robust
compared to other two networks.

4.6 . Generalization of Speed-Torque Estimator

One of the experiments in Section 4.4.1 uses the speed-torque estimator trained
on non-noisy simulated data. This network has been trained on 4kW simulated data
generated in Section 2.5.2. We use Simulink model of 90kW motor to generate
exactly the same set of five benchmarks: Dynamic-Speed1, Dynamic-Speed2,
Dynamic-Torque, Quasi-Static1, and Quasi-Static2. It should be noted that
the nominal torque of 4kW and 90kW motors are quite different (25Nm and 580Nm,
respectively). We use the network trained on 4kW motor simulated data to estimate
speed-torque for the 90kW benchmarks.

In Table 4.6, we saw that the estimator results are very good when the
speed-torque estimator trained on 4kW motor data is applied on a 1.5kW
powered motor data. Table 4.13 shows the machine learning metrics obtained for
4kW (from Table 2.6) and 90kW motor benchmarks. The table shows that the
speed-torque estimator predicts torque for the 90kW motor with a similar MAE
and SMAPE as the 4kW motor for any given benchmark. This is not the case for
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Power 4kW 90kW

Model Speed (ωr) Torque (τem) Speed (ωr) Torque (τem)
MAE SMAPE MAE SMAPE MAE SMAPE MAE SMAPE

Dynamic-Speed1 0.05 40.12% 0.74 151.13% 1.49 83.63% 0.57 95.08%
Dynamic-Speed2 0.09 2.05% 2.03 4.61% 7.95 36.33% 1.64 2.74%
Dynamic-Torque 0.03 0.11% 3.18 70.32% 1.88 7.87% 0.62 67.82%
Quasi-Static1 0.08 0.16% 0.70 67.20% 1.82 6.29% 0.81 32.28%
Quasi-Static2 0.04 0.31% 1.78 3.66% 1.81 7.61% 1.05 4.21%

Table 4.13: MLmetrics for DiagBiRNN speed-torque estimator networks on 4kW and90kW benchmarks.

speed estimations. The 90kW motor results clearly show a big degradation in the
estimation performance. This evidences that care must be taken in order to
generalize the network so as to handle such a high-powered motor.

4.7 . Summary

We have developed a data-driven approach for estimating an induction motor
speed and torque from measured currents and voltages. This method allows us
to bridge between data simulated from a physical model and real-world ones. We
showed, however, that standard techniques for learning the underlying dynamical
model are prone to errors in the presence of measurement noise. To overcome this,
we proposed a novel meta-denoiser (MD) method that removes noise from currents
and voltages before feeding them to our speed-torque estimator (DiagBiRNN). We
showed that the proposed approach performs very well on real data benchmarks.

A robustness analysis of neural networks used in five different electrical motor
tasks has been performed. A wide array of networks are trained and perturbed
by adversarial attackers to evaluate their stability. The experiments show that
networks are somewhat unstable to the input perturbations. It would be interesting
to generate more sophisticated perturbations that consider domain knowledge of
electrical motors. It is also important to understand the sensitivity of the individual
inputs with respect to the neural network stability.

Ultimately, we briefly conduct a generalization study of the speed-torque
estimator trained on the 4kW motor data by performing prediction tasks on 90kW
motor data. We observe a significant error in the speed estimation, leading to the
conclusion that further investigation of a proper generalization mechanism is
required.
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Chapter 5Neural Network Compression
5.1 . Introduction

Deep neural networks have evolved to the state-of-the-art techniques in a
wide array of applications: computer vision [160, 161, 162], automatic speech
recognition [163, 164, 165, 166, 167, 168], natural language processing
[169, 170, 171, 172], and time series forecasting [173]. While their performance
in various applications has matched and often exceeded human capabilities,
neural networks may remain difficult to apply in real-world scenarios. Deep neural
networks leverage the power of Graphical Processing Units (GPUs), which are
power-hungry. Using GPUs to make billions of predictions daily thus comes with
a substantial energy cost. In addition, despite their fast response time, deep
neural networks are not yet suitable for most real-time applications where
memory-limited low-cost architectures need to be used. Compression and
efficiency have become a topic of high interest in the deep learning community
for all those reasons.

Sparsity in DNNs has been an active research topic generating numerous
approaches. DNNs achieving state-of-the-art in a given problem usually have
many layers with non-uniform parameter distribution across layers. Most
sparsification methods are based on a global approach, which may result in
sub-optimal compression for reduced accuracy. This may occur because layers
with smaller parameters may remain dense, although they may contribute more to
computational complexity (e.g., for convolutional layers). Some methods, known
as magnitude pruning, use hard or soft thresholding to remove less significant
parameters. Soft thresholding techniques achieve a good sparsity-accuracy
trade-off at the cost of additional parameters and increased computation time
during training [174]. Searching for a hardware-efficient network is another area
that has been proven quite useful, but it requires massive computational
resources. Convex optimization techniques such as those used in [175] often rely
upon fixed point iterations that use the proximity operator [176]. The related
concepts are fundamental for tackling nonlinear problems and have recently come
into play in analyzing neural networks [177] and nonlinear systems [178].
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5.2 . Related Work

5.2.1 . Inducing sparsity post training

Methods operating on a pre-trained network take multiple pruning and fine-
tuning cycles to achieve desired sparsity and accuracy are reached [43, 44, 45,
46, 47, 48, 49]. [50] proposed weight rewinding technique instead of vanilla fine-
tuning post-pruning. Net-Trim algorithm [175] removes connections at each layer
of a trained network by convex programming. The proposed method works for
networks using rectified linear units (ReLUs). Lowering rank of parameter tensors
[179, 180, 181], removing channels, filters and inducing group sparsity [182, 183,
184, 185, 186] are some methods that take network structure into account. All
these methods rely on pruning and fine-tuning cycle(s), often from full training
data.

5.2.2 . Inducing sparsity during training

Another popular approach has been to induce sparsity during training. This is
achieved by modifying the loss function to consider sparsity as part of the
optimization [51, 52, 53, 54]. Bayesian priors [187], L0, L1 regularization [188],
and variational dropout [47] get accuracy comparable to [189] but at a cost of
2× memory and 4× computations during training.
[190, 191, 174, 192, 193, 194] have proposed learnable sparsity methods through
training of the sparse masks and weights simultaneously with minimal heuristics.
Although these methods are cheaper than pruning after training, they need at
least the same computational effort as training a dense network to find a sparse
sub-network. This makes them expensive when compressing big networks where
the number of parameters ranges from hundreds of millions to billions
[171, 165, 172]. Methods like [189, 195, 196, 197, 198] can be sub-classified as
methods where dynamic pruning is performed during training by observing the
network flow. [199, 200, 201] computes weight magnitude and reallocates
weights at every step of model training.

5.2.3 . Training sparsely initialized networks

[55] showed that it is possible to find sparse sub-networks that, when trained
from scratch, were able to match or even outperform their dense counterparts.
[56] presented SNIP, a method to estimate, at initialization, the importance that
each weight could have later during training. In [57] the authors perform a
theoretical study of pruning at initialization from a signal propagation perspective,
focusing on the initialization scheme. Recently, [202] proposed GraSP, a different
method based on the gradient norm after pruning, and showed a significant
improvement for moderate levels of sparsity. [203] starts with a small subnetwork
and progressively grow it to a subnetwork that is as accurate as its dense
counterpart. [204] proposes SynFlow, which avoids a pruned network’s flow
collapse during training. [205] proposed FORCE, an iterative pruning method
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that progressively removes a small number of weights. This method can achieve
extreme sparsity at little accuracy expense. These methods are not usable for big
pre-trained networks and are expensive as multiple training rounds are required for
different sparse models depending on deployment scenarios (computing devices).

5.2.4 . Neural Architecture Search and Auto ML
Many works on searching models with reinforcement learning and genetic

algorithms [206, 207, 208, 209] greatly improve the performance of neural
networks. Neural Architecture Search (NAS) [210] aims to search the
transferable network blocks, and its performance surpasses many manually
designed architectures. Cai et al. [211] proposed to speed up the exploration via
network transformation [212]. Inspired by them, N2N [213] integrated
reinforcement learning into channel selection. [214] presents an Auto ML pipeline
for model compression.

5.2.5 . Efficient Networks for IoT
Hardware-aware NAS methods [58, 59, 60, 61, 62, 63, 64] directly incorporate

the hardware feedback into efficient neural architecture search. [215] proposes
learning a single network composed of many subnetworks from which a hardware-
aware subnetwork can be extracted in linear time. [66] proposes a similar approach
wherein they identify subnetworks that can be run efficiently on microcontrollers.
Quantization methods can be classified into two categories: quantization-aware
training [216, 217, 218] and post-training quantization [219, 220, 221, 222].

5.3 . Neural Network Pruning

In this section, we present our convex optimization based sparsification method
called subdifferential inclusion for sparsity (SIS) that utilizes activation function
properties. We then demonstrate the proposed method usefulness by sparsifying
some widely used pre-trained networks from vision, NLP, and speech tasks.

5.3.1 . Variational Principles
A basic neural network layer can be described by the relation:

y = R(Wx + b) (5.1)
where x ∈ RM is the input, y ∈ RN the output, W ∈ RN×M is the weight

matrix, b ∈ RN the bias vector, and R is a nonlinear activation operator from
RN to RN. A key observation is that most of the activation operators currently
used in neural networks are proximity operators of convex functions [177, 223].
We will therefore assume that there exists a proper lower-semicontinuous convex
function f from RN to R ∪ {+∞} such that R = prox f . We recall that f
is a proper lower-semicontinuous convex function if the area overs its graph, its
epigraph

{
(y, ξ) ∈ RN ×R

∣∣ f (y) ⩽ ξ
}
, is a nonempty closed convex set. For
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such a function the proximity operator of f at z ∈ RN [176] is the unique point
defined as

prox f (z) = argmin
p∈RN

1
2
∥z− p∥2 + f (p). (5.2)

It follows from standard subdifferential calculus that Eq. (5.1) can be
re-expressed as the following inclusion relation:

Wx + b− y ∈ ∂ f (y), (5.3)
where ∂ f (y) is the Moreau subdifferential of f at y defined as

∂ f (y) =
{

t ∈ RN ∣∣ (∀z ∈ RN) f (z) ⩾ f (y) + ⟨t | z− y⟩
}

. (5.4)
The subdifferential constitutes a useful extension of the notion of differential,

which is applicable to nonsmooth functions. The set ∂ f (y) is closed and convex
and, if y satisfies Eq. (5.1), it is nonempty. The distance to this set of a point
z ∈ RN is given by

d∂ f (y)(z) = inf
t∈∂ f (y)

∥z− t∥. (5.5)
We thus see that the subdifferential inclusion in Eq. (5.3) is also equivalent to

d∂ f (y)(Wx + b− y) = 0. (5.6)
Therefore, a suitable accuracy measure for approximated values of the layer

parameters (W, b) is d∂ f (y)(Wx + b− y).

5.3.2 . Optimization problem
Compressing a network consists of a sparsification of its parameters while

keeping a satisfactory accuracy. Let us assume that, for a given layer, a training
sequence of input/output pairs is available which results from a forward pass
performed on the original network for some input dataset of length K. The
training sequence is split in J minibatches of size T so that K = JT. The j-th
minibatch with j ∈ {1, . . . , J} is denoted by (xj,t, yj,t)1⩽t⩽T. In order to compress
the network, we propose to solve the following constrained optimization problem.

Problem 1 We want to
minimize
(W,b)∈C

g(W, b) (5.7)
with

C =
{
(W, b) ∈ RN×M ×RN | (∀j ∈ {1, . . . , J})

T

∑
t=1

d2
∂ f (yj,t)

(Wxj,t + b− yj,t) ⩽ Tη
}

, (5.8)
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where g is a sparsity measure defined on RN×M×RN and η ∈ [0,+∞[ is some
accuracy tolerance.

Since, for every j ∈ {1, . . . , J}, the function (W, b) 7→ ∑T
t=1 d2

∂ f (yj,t)
(Wxj,t +

b− yj,t) is continuous and convex, C is a closed and convex subset of RN×M×RN.
In addition, this set is nonempty when there exist W ∈ RN×M and b ∈ RN such
that, for every j ∈ {1, . . . , J} and t ∈ {1, . . . , T},

d2
∂ f (yj,t)

(Wxj,t + b− yj,t) = 0. (5.9)
This condition is satisfied when (W, b) are the parameters of the uncompressed

layer. Often, the sparsity of the weight matrix is the determining factor whereas
the bias vector represents a small number of parameters, so that we can make the
following assumption (∥ · ∥F denotes here the Frobenius norm).

Assumption 2 For every W ∈ RN×M and b ∈ RN , g(W, b) = h(W) where h is
a function from RN×M to R∪ {+∞}, which is lower-semicontinuous, convex,
and coercive (i.e. lim∥W∥F→+∞ h(W) = +∞). In addition, there exists (W, b) ∈
C such that h(W) < +∞ and there exists (j∗, t∗) ∈ {1, . . . , J}× {1, . . . , T} such
that yj∗,t∗ lies in the interior of the range of R.

Under this assumption, the existence of a solution to Problem 1 is guaranteed.
A standard choice for such a function is the ℓ1-norm of the matrix elements, h =

∥ · ∥1, but other convex sparsity measures could also be easily incorporated within
this framework, e.g. group sparsity measures. Another point worth being noticed
is that constraints other than (5.8) could be imposed. For example, one could
make the following alternative choice for the constraint set

C =
{
(W, b) ∈ RN×M×RN | sup

j∈{1,...,J},t∈{1,...,T}
d∂ f (yj,t)(Wxj,t + b− yj,t) ⩽

√
η
}

.

(5.10)
Although the resulting optimization problem could be tackled by the same

kind of algorithm as the one we will propose, Constraint (5.8) leads to a simpler
implementation.

5.3.3 . Optimization algorithm
A standard proximal method for solving Problem 1 is the Douglas-Rachford

algorithm [224, 225]. This algorithm alternates between a proximal step aiming at
sparsifying the weight matrix and a projection step allowing a given accuracy to
be reached. This algorithm reads as shown below.

The Douglas-Rachford algorithm uses positive parameters γ and (λn)n∈N.
Throughout this chapter, projS denotes the projection onto a nonempty closed
convex set S. The convergence of Algorithm 1 is guaranteed by the following
result (see illustrations in Section 5.4.3).
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Algorithm 1: Douglas-Rachford algorithm for networkcompression
Initialize :Ŵ0 ∈ RN×M and b0 ∈ RN

for n = 0, 1, . . . do
Wn = proxγh(Ŵn)

(W̃n, b̃n) = projC(2Wn − Ŵn, bn)

Ŵn+1 = Ŵn + λn(W̃n −Wn)

bn+1 = bn + λn(b̃n − bn).

Proposition 3 [225] Assume that Problem 1 has a solution and that there exists
(W, b) ∈ C such W is a point in the interior of the domain of h. Assume that
γ ∈ ]0,+∞[ and (λn)n∈N in ]0, 2[ is such that ∑n∈N λn(2− λn) = +∞. Then
the sequence (Wn, bn)n∈N generated by Algorithm 1 converges to a solution to
Problem 1.

The proximity operator of function γh has a closed-form for standard choices of
sparsity measures1. For example, when h = ∥ · ∥1, this operator reduces to a soft-
thresholding (with threshold value γ) of the input matrix elements. In turn, since
the convex set C has an intricate form, an explicit expression of projC does not
exist. Finding an efficient method for computing this projection for large datasets
thus constitutes the main challenge in the use of the above Douglas-Rachford
strategy, which we will discuss next.

5.3.4 . Computation of the projection onto the constraint set
For every mini-batch index j ∈ {1, . . . , J}, let us define the following convex

function:

(∀(W, b) ∈ RN×M ×RN) cj(W, b) =
T

∑
t=1

d2
∂ f (yj,t)

(Wxj,t + b− yj,t)− Tη

(5.11)
Note that, for every j ∈ {1, . . . , J}, function cj is differentiable and its gradient

at (W, b) ∈ RN×M ×RN is given by

∇cj(W, b) = (∇Wcj(W, b),∇bcj(W, b)), (5.12)
where

∇Wcj(W, b) = 2
T

∑
t=1

ej,tx⊤j,t, ∇bcj(W, b) = 2
T

∑
t=1

ej,t (5.13)

1http://proximity-operator.net
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with, for every t ∈ {1, . . . , T},

ej,t = Wxj,t + b− yj,t − proj∂ f (yj,t)
(Wxj,t + b− yj,t). (5.14)

A pair of weight/bias parameters belongs to C if and only if it lies in the
intersection of the 0-lower level sets of the functions (cj)1⩽j⩽J. To compute the
projection of some (W, b) ∈ RN×M × RN onto this intersection, we use
Algorithm 2.

Algorithm 2:Minibatch algorithm for computing projC(W, b)
Initialize :W0 = W and b0 = b
for n = 0, 1, . . . doSelect a batch of index jn ∈ {1, . . . , J}

if cjn(Wn, bn) > 0 thenCompute∇Wcjn(Wn, bn) and∇bcjn(Wn, bn) by usingEqs. (5.13) and (5.14)
δWn =

cjn (Wn,bn)∇Wcjn (Wn,bn)

∥∇Wcjn ,n(Wn,bn)∥2
F+∥∇bcjn (Wn,bn)∥2

δbn =
cjn (Wn,bn)∇bcjn (Wn,bn)

∥∇Wcjn ,n(Wn,bn)∥2
F+∥∇bcjn (Wn,bn)∥2

πn = tr((W0 −Wn)⊤δWn) + (b0 − bn)⊤δbn
µn = ∥W0 −Wn∥2

F + ∥b0 − bn∥2

νn = ∥δWn∥2
F + ∥δbn∥2

ζn = µnνn − π2
n

if ζn = 0 and πn ⩾ 0 then
Wn+1 = Wn − δWn
bn+1 = bn − δbn

else if ζn > 0 and πnνn ⩾ ζn then
Wn+1 = W0 − (1 + πn

νn
)δWn

bn+1 = b0 − (1 + πn
νn
)δbn

else
Wn+1 = Wn +

νn
ζn
(πn(W0 −Wn)− µnδWn)

bn+1 = bn +
νn
ζn
(πn(b0 − bn)− µnδbn)

else
Wn+1 = Wn
bn+1 = bn

This iterative algorithm has the advantage of proceeding in a minibatch manner.
It allows us to choose the mini-batch index jn at iteration n in a quasi-cyclic manner.
The simplest rule is to activate each minibatch once within J successive iterations
of the algorithm so that they correspond to an epoch. The proposed algorithm
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belongs to the family of block-iterative outer approximation schemes for solving
constrained quadratic problems, which was introduced in [226]. The convergence
of the sequence (Wn, bn)n∈N generated by Algorithm 2 to projC(W, b) is thus
guaranteed. One of the main features of the algorithm is that it does not require to
perform any projection onto the 0-lower level sets of the functions cj, which would
be intractable due to their expressions. Instead, these projections are implicitly
replaced by subgradient projections, which are much easier to compute in our
context.

5.3.5 . Dealing with various nonlinearities

Name ρ(ζ)ρ(ζ)ρ(ζ) proj∂φ(υ)(ζ)proj∂φ(υ)(ζ)proj∂φ(υ)(ζ)
Sigmoid (1 + e−ζ)−1 − 1

2 ln(υ + 1/2)− ln(υ− 1/2)− υ

Arctangent (2/π) arctan(ζ) tan(πυ/2)− υ

ReLU max{ζ, 0}
{

0 if υ > 0 or ζ ⩾ 0
ζ otherwise

Leaky ReLU

{
ζ if ζ > 0
αζ otherwise

{
0 if υ > 0
(1/α− 1)υ otherwise

Capped ReLU ReLUα(ζ) = min{max{ζ, 0}, α}


ζ if (υ = 0 and ζ < 0)

or (υ = α and ζ > 0)
0 otherwise

ELU

{
ζ if ζ ⩾ 0
α
(

exp(ζ)− 1
) otherwise

{
0 if υ > 0

ln
(

υ+α
α

)
− υ otherwise

QuadReLU (ζ + α)ReLU2α(ζ + α)

4α


υ if υ = 0 and ζ ⩽ −α

−υ + 2
√

αυ− α if υ ∈]0, α]

or (υ = 0 and ζ > −α)

υ− α otherwise
Softmax

(
exp(ζ(k))

∑N
k′=1 exp(ζ(k′))

)
1⩽k⩽N

Q(y) +
1⊤(z−Q(y))

N
1

Table 5.1: Expression of proj∂φ(υ)(ζ) for ζ ∈ R and υ in the range of ρ, for standard
activation functions ρ. α is a positive constant.

For any choice of activation operator R, we have to calculate the projection
onto ∂ f (y) for every vector y satisfying Eq. (5.1). This projection is indeed required
in the computation of the gradients of functions (cj)1⩽j⩽J, as shown by Eq. (5.14).
Two properties may facilitate this calculation. First, if f is differentiable at y, then
∂ f (y) reduces to a singleton containing the gradient ∇ f (y) of f at y, so that, for
every z ∈ RN, proj∂ f (y)(z) = ∇ f (y). Second, R is often separable, i.e. consists
of the application of a scalar activation function ρ : R→ R to each component of
its input argument. According to our assumptions, there thus exists a proper lower-
semicontinuous convex function φ from R to R ∪ {+∞} such that ρ = proxφ

and, for every z = (ζ(k))1⩽k⩽N ∈ RN, f (z) = ∑N
k=1 φ(ζ(k)). This implies that,

for every z = (ζ(k))1⩽k⩽N ∈ RN, proj∂ f (y)(z) = (proj∂φ(υ(k))(ζ
(k)))1⩽k⩽N, where
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the components of y are denoted by (υ(k))1⩽k⩽N. Based on these properties, a
list of standard activation functions ρ is given in Table 5.1, for which we provide
the associated expressions of the projection onto ∂φ. As shown next, these results
are derived from the expression of the convex function φ associated with each
activation function ρ [177, Section 2.1] [223, Section 3.2].

• Sigmoid

(∀ζ ∈ R) φ(ζ) =


(ζ + 1/2) ln(ζ + 1/2) + (1/2− ζ)

ln(1/2− ζ)− 1
2
(ζ2 + 1/4) if |ζ| < 1/2

−1/4 if |ζ| = 1/2
+∞ if |ζ| > 1/2.(5.15)

The range of the Sigmoid function is ]− 1/2, 1/2[ and the above function
is differentiable on this interval and its derivative at every υ ∈]− 1/2, 1/2[
is

φ′(υ) = ln(υ + 1/2)− ln(υ− 1/2)− υ. (5.16)
We deduce that, for every ζ ∈ R, proj∂φ(υ)(ζ) = φ′(υ).

• Arctangent

(∀ζ ∈ R) φ(ζ) =

− 2
π ln

(
cos

(
πζ
2

))
− 1

2 ζ2, if |ζ| < 1

+∞, if |ζ| ⩾ 1.
(5.17)

By proceeding for this function similarly to the Sigmoid function, we have,
for every υ ∈ ρ(R) =]− 1, 1[,

(∀ζ ∈ R) proj∂φ(υ)(ζ) = φ′(υ) = tan(πυ/2)− υ. (5.18)
• ReLU

(∀ζ ∈ R) φ(ζ) =

{
0 if ζ ⩾ 0
+∞ otherwise.

(5.19)
For every υ ∈ ρ(R) = [0,+∞[, we have

∂φ(υ) =

{
{0} if υ > 0
]−∞, 0] if υ = 0.

(5.20)
We deduce that

(∀ζ ∈ R) proj∂φ(υ)(ζ) =

{
0 if υ > 0 or ζ ⩾ 0
ζ otherwise.

(5.21)
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• Leaky ReLU

(∀ζ ∈ R) φ(ζ) =

{
0, if ζ > 0
(1/α− 1)ζ2/2 if ζ ⩽ 0.

(5.22)

Since this function is differentiable on R, for every υ ∈ R,

(∀ζ ∈ R) proj∂φ(υ)(ζ) = φ′(υ)

=

{
0 if υ > 0
(1/α− 1)υ otherwise.

(5.23)

• Capped ReLU

(∀ζ ∈ R) φ(ζ) =

{
0 if ζ ∈ [0, α]

+∞ otherwise.
(5.24)

We have thus, for every υ ∈ [0, α],

∂φ(υ) =


{0} if υ ∈]0, α[

]−∞, 0] if υ = 0
[0,+∞[ if υ = α.

(5.25)

This leads to

(∀ζ ∈ R) proj∂φ(υ)(ζ) =


ζ if (υ = 0 and ζ < 0)

or (υ = α and ζ > 0)
0 otherwise.

(5.26)

• ELU

(∀ζ ∈ R) φ(ζ) =


0 if ζ ⩾ 0;

(ζ + α) ln
(

ζ+α
α

)
− ζ − ζ2

2 , if − α < ζ < 0

α− α2

2 , if ζ = −α

+∞, if ζ < −α. (5.27)
This function being differentiable on ρ(R) =]− α,+∞[, we have for every
υ ∈]− α,+∞[,

(∀ζ ∈ R) proj∂φ(υ)(ζ) = φ′(υ)

=

0 if υ > 0

ln
(

υ+α
α

)
− υ otherwise.

(5.28)
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• QuadReLU Unlike the previous ones, this function does not seem to have
been investigated before. It can be seen as a surrogate to the hard swish
activation function, which is not a proximal activation function. Let us
define

(∀ζ ∈ R) φ(ζ) =


+∞ if ζ < 0

− ζ2

2 + 4
3
√

αζ3/2 − αζ if ζ ∈ [0, α]
ζ2

2 − αζ + α2

3 if ζ > α.

(5.29)

φ is a lower-semicontinuous convex function whose subdifferential is

(∀υ ∈ [0,+∞[) ∂φ(υ) =


]−∞,−α] if υ = 0
{−υ + 2

√
αυ− α} if υ ∈]0, α]

{υ− α} if υ > α.

(5.30)

From the definition of the proximity operator, for every (υ, ζ) ∈ R2, we
have υ = proxφ(ζ) if and only if

ζ ∈ υ + ∂φ(υ) ⇔


ζ ∈]−∞,−α] if υ = 0
ζ = 2

√
αυ− α if υ ∈]0, α]

ζ = 2υ− α if υ > α.

⇔ υ =


0 if ζ ∈]−∞,−α]
(ζ+α)2

4α if ζ ∈]− α, α]
ζ+α

2 if ζ > α.

(5.31)

This shows that

proxφ(ζ) = (4α)−1(ζ + α)ReLU2α(ζ + α). (5.32)
In addition, for every υ ∈ [0,+∞[, it follows from Eq. (5.30) that the
projection onto ∂ f (υ) is

(∀ζ ∈ R) proj∂ f (υ)(ζ) =


υ if υ = 0 and ζ ⩽ −α

−υ + 2
√

αυ− α if υ ∈]0, α]

or (υ = 0 and ζ > −α)

υ− α if υ > α. (5.33)
• Softmax Activation Softmax is a non-separable activation operator

frequently employed in neural network architectures, it is defined as

(∀z = (ζ(k))1⩽k⩽N ∈ RN)

R(z) =

(
exp(ζ(k))

∑N
k′=1 exp(ζ(k′))

)
1⩽k⩽N

. (5.34)
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Let C denote the closed hypercube [0, 1]N, let V be the vector hyperplane
defined as

V =
{

z = (ζ(k))1⩽k⩽N ∈ RN ∣∣ N

∑
k=1

ζ(k) = 0
}

, (5.35)
and let A be the affine hyperplane defined as

A =
{

z = (ζ(k))1⩽k⩽N ∈ RN ∣∣ N

∑
k=1

ζ(k) = 1
}
= V + u, (5.36)

where u = [1, . . . , 1]⊤/N = 1/N ∈ RN. If R is the Softmax activation
operator, the convex function f such that prox f = R is [177, Example 2.23]:

(∀z = (ζ(k))1⩽k⩽N) f (z) =

{
∑N

k=1 φ(ζ(k)) if z ∈ C ∩ A
+∞ otherwise,

(5.37)
where

(∀ζ ∈ [0,+∞[) φ(ζ) = ζ ln ζ − ζ2

2
(5.38)

(with the convention 0 ln 0 = 0). The latter function is differentiable on
]0,+∞[. It then follows from standard subdifferential calculus rules that,
for every y = (υ(k))1⩽k⩽N ∈ ]0,+∞[N,

∂ f (y) = (φ′(υ(k)))1⩽k⩽N + ∂ιC∩A(y), (5.39)
where φ′ is the derivative of φ on ]0,+∞[ and ιC∩A denotes the indicator
function of the intersection of C and A (equal to 0 on this set and +∞
elsewhere). It can be deduced from Eq. (5.39) that, for every
y = (υ(k))1⩽k⩽N ∈ ]0,+∞[N,

∂ f (y) = (φ′(υ(k)))1⩽k⩽N + NC(y) + NA(y), (5.40)
where ND denotes the normal cone to a nonempty closed convex set D,
which is defined as

(∀y ∈ D) ND(y) =
{

t ∈ RN ∣∣ (∀z ∈ D) ⟨t | z− y⟩ ⩽ 0
}

. (5.41)
Thus, for every y ∈ A, NA(y) = NV(y− u) is the orthogonal space V⊥ of
V.
Let us now assume that y ∈ R(RN) =]0, 1[N∩A. Then, since y is an
interior point of C, NC(y) = {0}. We then deduce from Eq. (5.40) that

∂ f (y) = Q(y) + V⊥, (5.42)
where

Q(y) = (φ′(υ(k)))1⩽k⩽N = (ln υ(k) + 1− υ(k))1⩽k⩽N . (5.43)
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It follows that, for every z ∈ RN,

proj∂ f (y)(z) = Q(y) + projV⊥(z−Q(y)). (5.44)
By using the expression of the projection projV = Id − projV⊥ onto
hyperplane V, we finally obtain

proj∂ f (y)(z) = Q(y) +
1⊤(z−Q(y))

N
1. (5.45)

5.3.6 . SIS on multi-layered networks

Algorithm 3: Parallel SIS for multi-layered network
Input: input sequence X ∈ RM×K, compression parameter η > 0, weight

matrices W(1), . . . , W(L), and bias vectors b(1), . . . , b(L)

Y(0) ← X
for l = 1, . . . , L do

Y(l) = Rl(W(l)⊤Y(l−1) + b(l))
Ŵ(l), b̂(l) ← SIS(η, W(l), b(l), Y(l), Y(l−1))

Output: Ŵ(1), . . . , Ŵ(L) and b̂(1), . . . , b̂(L)

Algorithm 3 describes how we make use of SIS for a multi-layered neural
network. We use a pre-trained network and part of the training sequence to
extract layer-wise input-output features. Then we apply SIS on each individual
layer l by passing η, layer parameters (W(l), b(l)) and extracted input-output
features (Y(l−1), Y(l)) to Algorithm 1. The benefit of applying SIS to each layer
independently is that we can run SIS on all the layers of a network in parallel.
This reduces the time required to process the whole network and compute
resources are optimally utilized.

5.4 . Experiments

In this section, we conduct various experiments to validate the effectiveness of
SIS in terms of test accuracy vs. sparsity and inference time FLOPs vs. sparsity by
comparing against RigL [201]. We also include SNIP [56], GraSP [202], SynFlow
[204], STR [174], and FORCE [205]. These methods start training from a sparse
network and have some limitations when compared to methods that prune a pre-
trained network [227]. For a fair comparison we also include LRR [50] which uses
a pre-trained network and multiple rounds of pruning and retraining by leveraging
learning rate rewinding.

PyTorch is employed to implement our method. We use and extend SNIP and
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RigL code available here2, LRR3, GraSP4, SynFlow5, STR6, and FORCE7. In order
to manage our experiments we use Polyaxon8 on a Kubernetes9 cluster and use
five computing nodes with eight V100 GPUs each. Floating point operations per
second (FLOPs) is calculated as equal to one multiply-add accumulator using the
code10.

SIS has the following parameters: number of iterations of Algorithm 1, number
of iterations of Algorithm 2, step size parameter γ in Algorithm 1, constraint
bound parameter η used to control the sparsity, and relaxation parameter λn ≡
λ of Algorithm 1. In our experiments, the maximum numbers of iterations of
Algorithms 1 and 2 are set to 2000 and 1000, respectively. λ is set to 1.5 and
γ is set to 0.1 for all the SIS experiments. η value depends on the network and
dataset. With few experiments, we search for a good η value that gives suitable
sparsity and accuracy.

5.4.1 . Pruning of Convolutional Networks
5.4.1.1 . VGG19 and ResNet50 on CIFAR-10/100.

We train VGG19 on CIFAR-10 for 160 epochs with a batch size of 128,
learning rate of 0.1 and weight decay of 5× 10−4 applied at epochs 81 and 122.
A momentum of 0.9 is used with stochastic gradient descent (SGD). We make
use of 1000 images per training class when using SIS. We fine-tune the identified
sparse subnetwork for 10 epochs at a learning rate of 10−3. For CIFAR-100 we
keep the same training hyperparameters as for CIFAR-10. When applying SIS to
the dense network, we use 300 images per class from the training samples. We
fine-tune the identified sparse subnetwork for 40 epochs on the training set with a
learning rate of 10−3. ResNet50 employs the same hyperparameters as VGG19,
except the weight decay that we set to 10−4. When applying SIS to train dense
ResNet50, we use the same partial training set and the same hyperparameters
during fine-tuning. In case of VGG19 for CIFAR-10 and CIFAR-100, we found
that η values in range (1.5, 2) works best for sparsity range (90%, 98%). In case
of ResNet50, η values in range (1, 2) is used.

Table 5.2 shows SIS and competitive baselines on CIFAR-10/100 for three
different sparsity regimes 90%, 95%, 98%. It can be observed that LRR, RigL
and SIS are able to maintain high accuracy with increasing sparsity. LRR performs

2https://github.com/google-research/rigl3https://github.com/lottery-ticket/rewinding-iclr20-public/tree/master/
vision/gpu-src/official4https://github.com/alecwangcq/GraSP5https://github.com/ganguli-lab/Synaptic-Flow6https://github.com/RAIVNLab/STR7https://github.com/naver/force8https://github.com/polyaxon/polyaxon9https://kubernetes.io/10https://github.com/Lyken17/pytorch-OpCounter
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Dataset CIFAR-10 CIFAR-100
Pruning ratio 90% 95% 98% 90% 95% 98%
VGG19 (Baseline) 94.23 - - 74.16 - -SNIP [56] 93.63 93.43 92.05 72.84 71.83 58.46GraSP [202] 93.30 93.04 92.19 71.95 71.23 68.90SynFlow [204] 93.35 93.45 92.24 71.77 71.72 70.94STR [174] 93.73 93.27 92.21 71.93 71.14 69.89FORCE [205] 93.87 93.30 92.25 71.9 71.73 70.96
LRR [50] 94.03 93.53 91.73 72.12 71.36 70.39RigL [201] 93.47 93.35 93.14 71.82 71.53 70.71SIS (Ours) 93.99 93.31 93.16 72.06 71.85 71.17

ResNet50 (Baseline) 94.62 - - 77.39 - -SNIP [56] 92.65 90.86 87.21 73.14 69.25 58.43GraSP [202] 92.47 91.32 88.77 73.28 70.29 62.12SynFlow [204] 92.49 91.22 88.82 73.37 70.37 62.17STR [174] 92.59 91.35 88.75 73.45 70.45 62.34FORCE [205] 92.56 91.46 88.88 73.54 70.37 62.39
LRR [50] 92.62 91.27 89.11 74.13 70.38 62.47RigL [201] 92.55 91.42 89.03 73.77 70.49 62.33SIS (Ours) 92.81 91.69 90.11 73.81 70.62 62.75

Table 5.2: Test accuracy of sparse VGG19 and ResNet50 on CIFAR-10 and CIFAR-100datasets.

better than both RigL and SIS for VGG19 on CIFAR-10 at 90% and 95% sparsity.
When compared to SNIP, our method achieves impressive performance for VGG19
on CIFAR-100 (58.46 → 71.17). In the case of ResNet50, SIS outperforms all the
other methods for CIFAR-10/100 except for CIFAR-100 at 90%.

5.4.1.2 . ResNet50 on ImageNet
Due to its small size and controlled nature, CIFAR-10/100 may not appear

sufficient to draw solid conclusions. We thus conduct further experiments on
ImageNet using ResNet50 and MobileNets. For ResNet50 on ImageNet experiment,
we adapt SNIP [192], GraSP [202], SynFlow [204], STR [174], FORCE [205],
SpraseVD [47], Bayesian Compression [187], and L0 regularization [188] methods
to use pre-trained weights. We also include results from NetTrim [175] which is
another convex optimization based pruning method.

We use the weights of ResNet50 pre-trained on ImageNet available at PyTorch
hub11. When applying SIS to the dense pre-trained network we use 20% samples
per class from the training set. We fine-tune the identified sparse subnetwork for
40 epochs on the training set with a learning rate of 10−4. We use different η

values in range (0.7, 1.5) for sparsity range (60%, 90%). We found that η = 2.3
achieves 96.5% sparsity.

Table 5.3 shows that, in the case of ResNet50, STR performs marginally

11https://pytorch.org/hub/pytorch_vision_resnet/
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Sparsity 60% 80%
Train/Prune Top-1 Infer Train/Prune Top-1 InferFLOPs Acc(%) FLOPs FLOPs Acc(%) FLOPs(×e16) (×e16)

SNIP 0.978 74.06 1.88G 0.696 72.34 941MGraSP 0.903 75.95 1.63G 0.650 74.21 786MSynFlow 0.898 76.54 1.61G 0.665 74.14 776MFORCE 0.833 75.47 1.39G 0.619 73.42 685M
SparseVD 1.827 76.75 1.71G 1.737 74.68 811MBC-GHS. 1.825 76.45 1.69G 1.737 74.15 813M
L0hc , λ = e− 5 1.825 76.98 1.69G 1.736 76.67 802MSTR 0.891 77.75 1.59G 0.625 76.11 704M
NetTrim 1.148 74.52 1.71G 0.866 72.88 842MSIS (Ours) 0.923 77.05 1.34G 0.435 76.96 647M

Sparsity 90% 96.5%
SNIP 0.537 66.97 409M 0.502 59.16 292MGraSP 0.555 70.71 470M 0.501 69.55 290MSynFlow 0.553 71.01 465M 0.500 70.10 288MFORCE 0.550 72.59 455M 0.497 72.04 276M
SparseVD 1.702 69.73 461M 1.685 67.13 286MBC-GHS. 1.701 71.33 454M 1.684 68.54 282M
L0hc , λ = e− 5 1.702 71.61 459M 1.684 68.61 276MSTR 0.516 75.72 341M 0.449 71.87 117M
NetTrim 0.465 67.62 461M 0.283 62.01 281MSIS (Ours) 0.351 76.31 298M 0.102 73.11 101M

Table 5.3: Pruning phase compute cost, test Top-1 accuracy and single imageinference FLOPs of sparse ResNet50 on ImageNet where baseline accuracy andinference FLOPs are 77.37% and 4.14G, respectively. All methods were appliedon same pre-trained "dense" ResNet50. 20% samples per class were used duringpruning phase of all the methods and were run for 40 epochs.

better than SIS at 60% sparsity. At 80%, 90%, and 96.5% sparsity SIS
outperforms all other methods. For all sparsity regimes, SIS achieves least
inference FLOPs. Training FLOPs is best for SIS in 80%, 90%, and 96.5%
regimes, FORCE achieves best training FLOPs in 60% regime. MobileNets are
compact architectures designed specifically for resource-constrained devices.

5.4.1.3 . MobileNets on ImageNet
We use MobileNetV1 dense pre-trained model from here12 and MobileNetV2

from PyTorch hub13. In case of MobileNetV3, we replace the hard swish activation

12https://github.com/RAIVNLab/STR13https://pytorch.org/hub/pytorch_vision_mobilenet_v2/
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Sparsity 75% 90%
LRR RigL SIS (Ours) LRR RigL SIS (Ours)

V1 (70.90) 68.79 69.97 70.11 66.59 67.10 67.15FLOPs (569M) 498M 461M 367M 401M 331M 284M

V2 (71.88) 68.83 69.60 69.83 64.17 65.23 65.11FLOPs (300M) 267M 211M 182M 192M 174M 162M

V3 (72.80) 68.97 70.21 70.47 64.32 65.13 66.07FLOPs (226M) 187M 198M 172M 185M 167M 151M

Table 5.4: Test accuracy and inference FLOPs of sparse MobileNet versions usingRigL and SIS on ImageNet, baseline accuracy and inference FLOPs shown in brackets.

function used in [64] with our QuadReLU function (see the last row of Table 5.1).
We use hyperparameters provided in the original paper to train MobileNetV3. When
applying SIS to the dense pre-trained MobileNets, we use 20% samples per class
from the training set. We fine-tune the identified sparse subnetwork for 30 epochs
on the training set with a learning rate of 10−4. For MobileNets, we search η

values in range (0.6, 1.75) for sparsity range (75, 90).
Table 5.4 shows results for RigL and SIS on MobileNets. We observe that SIS

outperforms all MobileNet versions at 75% sparsity level. For a 90% sparsity level,
SIS outperforms RigL for MobileNet V1 and V3 whereas, for MobileNetV2, RigL
performs slightly better than SIS at 90% sparsity level. In all the cases, we can
see that the resulting SIS sparse network uses fewer FLOPs than RigL. A possible
explanation for this fact is that SIS leverages activation function properties during
the sparsification process.

5.4.2 . Sequential Tasks

Network JASPER Transformer-XL N-BEATS
WER FLOPs PPL FLOPs SMAPE FLOPs

Dense 12.2 4.53G 18.6 927.73G 8.3 41.26M
SNIP [56] 14.3 2.74G 24.6 398.92G 10.1 21.45MLRR [50] 13.7 2.61G 23.1 339.21G 9.3 14.47MRigL [201] 13.9 2.69G 22.4 326.56G 10.2 15.13MSIS (Ours) 13.1 2.34G 21.1 290.38G 9.7 14.21M

Table 5.5: Test accuracy and inference FLOPs of JASPER, Transformer-XL, and N-BEATS at 70% sparsity.

5.4.2.1 . Jasper on LibriSpeech.
Jasper is a speech recognition model that uses 1D convolutions. A BxR

Jasper network has B blocks, each consisting of R repeating sub-blocks. Each
sub-block consists of 1D-Convolution, Batch Normalization, ReLU activation, and
Dropout. The kernel size of convolutions increases with depth. The network has

135



one convolution block at the beginning and three at the end. We train a network
of 13 encoding blocks and one decoding block, having 54 1D-Convolution layers
on the LibriSpeech dataset. Jasper network is trained on train-clean-100,
train-clean-360, and train-other-500 splits of the LibriSpeech dataset [228]. The
training configuration can be found here14. The trained network is a 333 million
parameter model and has a word error rate (WER) of 12.2 on the test set.

We use train-clean-100 when using SIS and compare it with RigL and SNIP in
terms of sparsity. We fine-tune the identified sparse sub-network on the completed
training set for ten epochs with a learning rate of 10−4. We use η values in
range (0.6, 1.75) for sparsity range (70, 90). Table 5.5 reports WER and inference
FLOPs for all three methods. SIS marginally performs better than LRR on this
task in terms of WER and FLOPs for 70% sparsity. The main advantage of our
approach lies in the fact that we can use a single pre-trained Jasper network and
achieve different sparsity level for different types of deployment scenarios with less
computational resources than RigL.

5.4.2.2 . Transformer-XL on WikiText-103.
Transformer-XL is a language model with 246 million parameters. We train the

Transformer-XL network [171] on the base version of WikiText-103 [229]. We use
the training configuration available here15. The trained network on WikiText-103
has a perplexity score (PPL) of 18.6.

We use 10% of the training set articles when using SIS. We use η values in
range (0.5, 0.75) for sparsity range (40, 70). In Table 5.5, we see that SIS performs
better than SNIP and RigL in terms of PPL and has 68% fewer inference FLOPs.
This is due to the fact that large language models can be efficiently trained and
then compressed easily, but training a sparse sub-network from scratch is hard
[230], as is the case with SNIP and RigL. SNIP uses one-shot pruning to obtain
a random sparse sub-network, whereas RigL is able to change its structure during
training, which allows it to perform better than SNIP.

5.4.2.3 . N-BEATS on M4.
N-BEATS is a very deep residual fully-connected network to perform forecasting

in univariate time-series problems. We train the interpretable architecture network
of N-BEATS on the M4 dataset. The trained network has six residual blocks. Each
block consists of four fully-connected layers and two linear projection layers. With
24 fully-connected layers, this network has 14 million trainable parameters. To
compare different methods, we only train a single network on a 48-hour window
instead of 180 networks on different timescales. We use the training configuration
available here16. The training set has 50K time-series samples. The SMAPE of the
dense network on the test set is 8.3%. We use 10K training samples to generate

14https://tinyurl.com/yrp33w7215https://tinyurl.com/ym3hzmrd16https://tinyurl.com/2p8nk7d3
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a sparse sub-network using SIS. We use η values in range (0.75, 1.5) for sparsity
range (70, 90). As shown Table 5.5, SIS performs better than both methods and
results in 65% fewer inference FLOPs.

5.4.3 . Empirical Convergence Analysis
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Figure 5.1: Convergence of SLIC: Top row coresponds to the first layer (ReLUactivated) and bottom row corresponds to the last one (softmaxed) in LeNet-FCN.(a) and (d) show the evolution of the maximum value cmax of the constraint functions
(cj)1⩽j⩽J , (b) and (e) show the evolution of ∥W∥1 along Algorithm 1 iterations. (c) and(f) show ∥W∥1 evolution in Algorithm 2.

We illustrate the convergence of our method on LeNet-FCN trained on MNIST.
LeNet-FCN is a fully-connected network having four layers with 784-300-1000-300-
10 nodes (two 300 nodes and one 1000 node hidden layers). Figure 5.1 shows
the convergence of SIS when applied to dense LeNet-FCN. We observe that the
convergence is smooth and SIS finds a global solution for the first (ReLU activated)
and last (softmax) layer cases. This fact is in agreement with our theoretical claims.
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SIS attains a sparsity of 99.21% at an error of 1.86%. The trained dense network
has an error of 1.65%. This result is obtained at η = 2.
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Figure 5.2: Effect of η on LeNet-FCN

The η parameter in our algorithm controls the accuracy tolerance. The higher,
the more tolerant we are on the loss of precision and the sparser the network
is. Thus, this parameter also controls the network sparsity. The choice of this
parameter should be the result of an accuracy-sparsity trade-off. This is illustrated
in Figure 5.2.

5.5 . Summary

In this chapter, we have introduced a novel method for sparsifying neural
networks. The compression problem for each layer has been recast as the
minimization of a sparsity measure under accuracy constraints. This constrained
optimization problem has been solved using advanced convex optimization tools.
Our method SIS is reliable in terms of iteration convergence guarantees,
applicable to a wide range of activation operators, and able to deal with large
datasets. Our experiments demonstrate that the approach is appealing from a
theoretical viewpoint and practically efficient.
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Chapter 6Conclusion and Future Work
This thesis examined the feasibility of applying neural networks to various electrical
motor problems. In this thesis, we describe and introduce several methods that
can be used to better align current neural network research with Industry 4.0.
The contributions of this thesis are summarized below in more detail, along with
recommendations for future work.

6.1 . Conclusion

This thesis started with a general introduction to electrical motor mechanics by
explaining its mathematical modelling. We presented transformations representing
electrical motor quantities in a different reference frame for more straightforward
calculations. We then discussed existing neural network research used for electrical
motor problems. After this, we presented the following eight contributions

• Data-driven modeling of electrical motor physics is a key contribution of
this thesis. The input-output relationship between induction motor
quantities is established using different neural networks. To perform
time-series regression, a new network architecture named DiagBiRNN has
been introduced that combines the benefits of convolutions and sequential
layers.

• An important application of identified neural networks is estimating speed
and torque based on currents and voltages. In this contribution, we
addressed the application of DiagBiRNN to electrical motors and
established a suitable pipeline for analyzing performance using electrical
engineering metrics.

• DiagBiRNN can be utilized in several other electrical motor tasks like
sensor fault recovery, mechanical fault detection, and temperature
modeling. Another significant contribution of this thesis consists of using
DiagBiRNN as a backbone in a GAN called Sceptic-GAN to identify sensor
faults and recover from them.
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• This contribution enables us to use the speed-torque estimator trained on
a large amount of simulated data directly in real-world settings. This led
to the introduction of a neural network-based time-series signal denoiser
called meta-denoiser. Meta-denoiser takes real-world noisy currents and
voltages and denoises them for the speed-torque estimator. This removes
the necessity of collecting a large amount of real noisy data to train the
speed-torque estimator network for real-world adaptation.

• DiagBiRNN based applications like speed-torque estimator, Scpetic-GAN,
thermal modeling network, etc., are vulnerable to unforeseen variations in
their input. This contribution is on the robustness analysis of such
application networks using the modified versions of standard adversarial
attackers. We showed why some existing methods are not realistic
attackers for speed-torque estimation networks and established the
requirement of a physical dynamics-based attacker.

• After establishing the need for a better adversarial attacker to understand
the robustness of DiagBiRN-Skip applications, we briefly discussed its
generalization. This contribution analyzes the generalization of the
speed-torque estimator to a 90kW power motor. We found that more
in-depth analysis is required to understand why speed estimation fails while
torque works for this particular motor.

• We need to implement the speed-torque estimator and fault detection and
recovery methods on computational devices that are low in computing and
memory. To achieve this, we introduced subdifferential inclusion for sparsity
(SIS), a convex optimization-based method to obtain a sparse representation
of pre-trained neural networks. We demonstrate its effectiveness in three
domains: vision, natural language processing, and speech.

• The proposed the SIS method designs sparse networks from a pre-trained
version. Unlike many methods existing for network compression, our
proposed approach is grounded on a sound optimization approach offering
theoretical guarantees of convergence. In addition, we showed that it is
very competitive with existing approaches.

6.2 . Future Work

The contributions of the thesis being summarised, a few possible future research
directions based on the contributions and new concepts related to the work are
mentioned in this section.

6.2.1 . Better Synthetic Data
This thesis presented a two-stage pipeline to leverage large simulated and small

real-world data to train a speed-torque estimator for real-world applications. Such
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dual step pipeline of transfer learning has been used widely in all domains of deep
learning research. Better sophisticated methods have emerged which generate
more realistic data to train deep neural networks [231]. The trained networks
do not require fine-tuning on real-world data. Such methods have risen due to
the complexity of obtaining labeling data in fields like particle physics [232] and
medical science [233, 234]. Such techniques should be leveraged for problems
like fault detection, where we have around a thousand different faults. There is
no easy way of obtaining labeled data for all types of faults. Researchers have
well-understood and established mathematical models of the fault and the system
where they occur. These mathematical models can be leveraged for synthetic data
generation.

6.2.2 . Transformers for System Fault Detection

Time series communities have also been captivated by the success of
transformers in natural language processing, computer vision, and optimal control
tasks. Time series modeling benefits from the ability of transformers to capture
long-range dependencies and interactions, resulting in exciting advances in
various time series applications. This thesis used a transformer variant called
FedFormer [156] for the thermal modeling task. Similarly, we can modify existing
time-series transformer architectures for electrical motor tasks like fault detection
and recovery. For example, we can achieve better positional encoding using [235]
to represent the temporal aspect of data. AutoFormer [236] and FedFormer [156]
use timestamp encoding to achieve the same. It is also possible to modify
attention modules to achieve efficient architectures since they are the bottleneck
in the whole network and are dependent on the input size, which can be
problematic in cases where long time series are involved. We can then train such
transformers on large synthetic data containing all types of faults to obtain a
foundational model [237] for fault detection in electrical motors.

6.2.3 . Reliability of the Neural Networks for Electrical Motor Tasks

In Chapter 4 we performed a robustness analysis of neural networks used in
five different electrical motor tasks. We demonstrated that the existing attackers
are not the most suitable for regression tasks like speed-torque estimation. In
the future, it would be interesting to consider domain knowledge and sequential
dynamics of motor data to generate better attacks and improve the robustness
of neural networks using recent methods like CertViT [238] and Shrink & Cert
[239]. It is also essential to understand the sensitivity of the individual inputs
for neural network stability. In the case of multivariate regression, the partial
Lipschitz constant has been used to analyze the contribution of individual input
perturbations [143]. Such an analysis is essential in the context of electrical motors
where different inputs might have different entropy and/or certain inputs might be
more vulnerable to perturbations than others.
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6.2.4 . Tensorized Pruning of Neural Networks
Transformers have garnered immense interest lately due to their effectiveness

across various domains like language, vision, and reinforcement learning. However,
these model training and inference costs have snowballed and become prohibitively
expensive. The multi-head attention mechanism, as a critical component of the
transformer, limits the effective deployment of the model to a resource-limited
setting. It has been shown that tensor decomposition and parameter sharing can
be used to obtain an efficient version of the self-attention model (multi-linear
attention) [240]. We can extend sub-differential inclusion for sparsity (SIS) to get
a low-rank tensor approximation of neural networks. Such a method will be very
appropriate for finding efficient representations of transformers like AutoFormer
[236] and FedFormer [156].

6.2.5 . Optimal Neural Networks for Industrial Devices
Although SIS obtains a sparse network from a pre-trained one, we may need

more steps to realize our goal of running networks on very low compute devices.
Network architecture search methods take a massive amount of experiments, long-
tailed heuristics, and sophisticated engineering to obtain a network that meets the
constraints of an industrial device. A possible direction for future improvements
consist of extending the Once-for-All network proposed in [215] for neural networks
and IoT devices used for electrical motor applications. Preliminary results obtained
with this approach are presented in Appendix A
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Appendix AOptimal Neural Networks for IoTDevices
This appendix is about extending the once-for-all method allowing us to find
efficient sub-networks. These sub-networks are obtained relatively cheaply and
meet the criteria of a real-time processor and other application requirements like
latency, energy, storage, precision, etc. More precisely, we introduce a practical
way of obtaining an efficient version of DiagBiRNN for speed-torque estimation.
The goal is to identify a sub-structure of DiagBiRNN that can maintain its
original performance while running on a limited resource IoT device. We
demonstrate results on six IoT devices with microcontrollers and microprocessors.

A.0.1 . Once-for-All Networks
A once-for-all (OFA) network supports diverse architectural settings by

decoupling network training and efficient sub-network search, to reduce the
overall cost of obtaining an efficient sub-network suitable for a targeted
computational device. Assuming the weights of the once-for-all network as W0

and the architectural configurations as archi, [215] formalize the problem as

min
W0

∑
archi

Lval(C(W0, archi)), (A.1)
where C(W0, archi) denotes a selection scheme that selects part of the model

from the once-for-all networks W0 to form a sub-network with architectural
configuration archi. The overall training objective is to optimize W0 to make
each supported sub-networks maintain the same level of validation accuracy (or
loss Lval) as independently training a network with the same architectural
configuration.

There are several ways of solving the above optimization problem. The best
one is progressive shrinking. This method uses a training order where large sub-
networks are trained first and then small sub-networks are trained progressively.
For example, in DiagBiRNN, we start with training the largest network with the
maximum kernel sizes for the convolutions in the encoder layer (e.g., conv1: 11,
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conv2: 7, conv3: 5, and conv4: 3) (Figure 2.10). Then we progressively fine-tune
the network to support smaller sub-networks by gradually adding them into the
sampling space. Specifically, after training the largest network, we first support
smaller kernel sizes {3, 5, 7, 9} depending on the convolutional layer. The details of
the progressive shrinking for DiagBiRNN network used for speed-torque estimation
are as follows:

Kernel: 11

Kernel: 9

Kernel: 7
Kernel: 5

Kernel: 3

Transform 
Matrix

9x9

Transform 
Matrix

9x9

Transform 
Matrix

9x9

Transform 
Matrix

9x9

Figure A.1: Kernel transformation matrix for elastic kernel size in the firstconvolutional layer of DiagBiRNN.

• Elastic Kernel Size (Figure A.1): The center of the 1D convolution kernel
of size 11 can also serve as a 9-sized kernel, the center of which can also
be a 7-sized kernel, and so on. Therefore, the kernel size becomes elastic.
The challenge is that the centering sub-kernels are shared and must play
multiple roles (independent kernel and part of a large kernel). The weights
of centered sub-kernels may need different distributions or magnitudes as
different roles. Forcing them to be the same degrades the performance
of some sub-networks. A kernel transformation matrix can convert one
kernel to another sub-kernel. Within each 1D convolutional layer, the kernel
transformation matrices are shared among different channels. We only need
9× 9 + 7× 7 + 5× 5 + 3× 3 = 164 extra parameters to store the kernel
transformation matrices in the first convolutional and decovlutional layers of
DiagBiRNN.

• Elastic Feature Width: Feature width means the number of channels
coming out of a convolutional and deconvlutional layer in the DiagBiRNN.
We give each layer the flexibility to choose different channel expansion
ratios. Following the progressive shrinking scheme, we first train a
full-width network. Then we introduce a channel sorting operation to
support partial widths. It reorganizes the channels according to their
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importance, calculated based on the L1 norm of a channel’s weight. For
example, when shrinking from a 4-channel-layer to a 3-channel-layer, we
select the most significant 3 channels, whose weights are shared with the
4-channel-layer. Smaller sub-networks are initialized with the most
important channels on the once-for-all network, which is already
well-trained. This channel sorting operation preserves the accuracy of
larger sub-networks.

For training the full network, we use Adam optimizer [241]. The initial learning
rate is 1e-3, and we use the cosine schedule for learning rate decay. The full network
is trained for 150 epochs with batch size 2048. Training the once-for-all version of
DiagBiRNN took around 200 GPU hours on 8 80GB A100 GPUs. Next, we show
how one-time training costs can be amortized for many deployment scenarios.

A.0.2 . Finding Best Fit Networks
Once a once-for-all DiagBiRNN has been trained using the progressive

shrinking method, we can derive a sub-network for a given computational device
and deployment constraints. This can be achieved by searching a neural network
that satisfies the efficiency (e.g., latency, energy, RAM, CPU cycles) constraints
on the target hardware while maintaining the original accuracy. We experiment
with different types of IoT devices widely used as development kits in industrial
and academic labs and hobby electronics. Table A.1 shows the processor type,
CPU cycles, RAM, storage, and max power available in these IoT devices.

Board Processor CPU RAM Storage Power

Arduino Uno ATmega328P 16MHz 2KB 32KB 240 mW
Arduino Mega ATmega2560 16MHz 8KB 256KB 240 mW
Pixhawk 4 Cortex-M7 216MHz 512KB 2MB 2.25W
BeagleBoard Cortex-A8 1GHz 512MB 4GB 2W
Raspberry Pi 2B Cortex-A7 900MHz 1GB 8GB 6.25W
Raspberry Pi 4 Cortex-A72 1.5GHz 8GB 32GB 6.4W

Table A.1: IoT devices computational and power specifications.
Figure A.2 shows all six IoT devices. All of them are powered using a standard

5V-2A power adapter. We convert DiagBiRNN weights from PyTorch to ONNX
weights. We then use Tensorflow Lite to export it to run on microcontrollers. This
is only required for Adruino Uno, Arduino Mega, BeagleBoard, and Pixhawk 4,
as they have microcontrollers. In the case of Raspberry Pi 2B and Pi 4, we
use executable object code running on the Linux kernel. We start sampling sub-
networks by iteratively decreasing the elastic kernel and width to obtain a network
that fits a given hardware device. For each sampled sub-network, we measure the
accuracy on the test set from Section 2.5.3 and inference latency for a sample of
duration 100 milliseconds. We stop the search when we have achieved a minimum
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(a) Arduino Uno (b) Arduino Mega (c) BeagleBoard

(d) Raspberry Pi 2B (e) Raspberry Pi 4 (f) Pixhawk 4
Figure A.2: IoT devices used in the edge inference experiments.

latency of 20 milliseconds or crossed the mean absolute error (speed + torque) of
0.5 on the test set.

Board Search Time Latency Params Speed (ωr) Torque (τem)
(GPU Hours) (ms) (x1000) MAE Smape MAE SMAPE

Arduino Uno 2.5 67 8 0.23 25.72% 0.21 43.72%
Arduino Mega 2.0 53 8 0.21 22.93% 0.19 41.83%
Pixhawk 4 1.7 23 8.7 0.19 21.28% 0.17 40.56%
BeagleBoard 1.5 21 9.2 0.11 19.45% 0.12 39.35%
Raspberry Pi 2B 0.5 12 19.2 0.09 25.72% 0.10 39.72%
Raspberry Pi 4 0.5 8 19.2 0.09 25.72% 0.10 39.72%

Table A.2: Efficient DiagBiRNN sub-networks sampled from once-for-all version.

Table A.2 shows test set results and latency of one inference sample for best
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sub-networks obtained for different IoT devices. It should be noted that a single
network was obtained for both types of Raspberry Pi. Microcontrollers like Arduino
Uno and Mega get latency upwards of 53 ms with degradation in MAE and SMAPE.
Pixhawk 4 and BeagleBoard can achieve a target latency of 20ms. Raspberry Pi
variants being more compute-rich than other devices, go for minimal latency while
achieving excellent speed-torque estimation performance. This shows that the
once-for-all trained network can obtain hardware-targeted efficient versions with
good original performance. This small experiment can help us deliver real-world
deployable and usable applications of neural networks for electrical motor use cases.

147





Bibliography
[1] F. Mansour, “Induction motors: Construction, principle of operation, power

and torque calculations, characteristics and speed control,” 2020. (Cited on
13, 21)

[2] D. Kumar, “Operation of Induction Motor,” https://engineeringlearn.
com/operation-of-induction-motor/, 2021. (Cited on 13, 22)

[3] S. J. Campbell, Solid-State AC Motor Controls, 1987. (Cited on 19, 22)

[4] C. S. Sisking, Electrial Control Systems in Industry, 1978. (Cited on 19, 22)

[5] A. Hughes and B. Drury, Electric Motors and Drives, Newnes, 2013. (Cited
on 21)

[6] J. Langford, R. Salakhutdinov, and T. Zhang, “Learning nonlinear dynamic
models,” in International Conference on Machine Learning, 2009. (Cited on
25, 26)

[7] E. Levin, “Modeling time varying systems using hidden control neural
architecture,” in Neural Information Processing Systems. 1991. (Cited on
25, 26, 27, 34)

[8] T. Huang, L. Song, and J. Schneider, “Learning nonlinear dynamic
models from non-sequenced data,” in International Conference on Artificial
Intelligence and Statistics, 2010. (Cited on 25, 26)

[9] O. P. Ogunmolu, X. Gu, S. B. Jiang, and N. R. Gans, “Nonlinear systems
identification using deep dynamic neural networks,” arXiv:1610.01439, 2016.
(Cited on 25)

[10] F. Jadot, F. Malrait, J. Moreno-Valenzuela, and R. Sepulchre, “Adaptive
regulation of vector-controlled induction motors,” IEEE Transactions on
Control Systems Technology, vol. 17, pp. 646–657, 2009. (Cited on 25, 33)

[11] A. K. Jebai, P. Combes, F. Malrait, et al., “Energy-based modeling of electric
motors,” in Conference on Decision and Control, 2014. (Cited on 25)

149

https://engineeringlearn.com/operation-of-induction-motor/
https://engineeringlearn.com/operation-of-induction-motor/


[12] F. Malrait, A. K. Jebai, and K. Ejjabraoui, “Power conversion optimization
for hydraulic systems controlled by variable speed drives,” Journal of Process
Control, vol. 74, pp. 133–146, 2019. (Cited on 25)

[13] S. H. Rudy, S. L. Brunton, J. L. Proctor, and J. N. Kutz, “Data-driven
discovery of partial differential equations,” Science Advances, vol. 3, 2017.
(Cited on 26)

[14] F. Carminati, G. K. M. Pierini, A. Farbin, et al., “Calorimetry with deep
learning: Particle classification, energy regression, and simulation for high-
energy physics,” in Deep Learning for Physical Sciences Workshop (NeurIPS),
2017. (Cited on 26, 34)

[15] G. Shi, X. Shi, M. O’Connell, et al., “Neural lander: Stable drone landing
control using learned dynamics,” in International Conference on Robotics
and Automation, 2019. (Cited on 26, 34)

[16] B. Lusch, J. N. Kutz, and S. L. Brunton, “Deep learning for universal linear
embeddings of nonlinear dynamics,” Nature Communications, vol. 9, 2018.
(Cited on 26, 27, 34)

[17] A. Karpatne, W. Watkins, J. Read, and V. Kumar, “How can physics inform
deep learning methods in scientific problems?: Recent progress and future
prospects,” in Deep Learning for Physical Sciences Workshop (NeurIPS),
2017. (Cited on 26, 34)

[18] R. T. D’Agnolo and A. Wulzer, “Learning new physics from a machine,”
Physical Review, 2019. (Cited on 26, 27)

[19] L. Ardizzone, J. Kruse, S. J. Wirkert, et al., “Analyzing inverse problems
with invertible neural networks,” arXiv:1808.04730, 2019. (Cited on 27)

[20] B. O. Koopman, “Hamiltonian systems and transformation in hilbert space,”
National Academy of Sciences, vol. 17, pp. 315–318, 1931. (Cited on 27)

[21] A. Karpatne, G. Atluri, J. H. Faghmous, et al., “Theory-guided data science:
A new paradigm for scientific discovery from data,” IEEE Transactions on
Knowledge and Data Engineering, vol. 29, pp. 2318–2331, 2017. (Cited on
27)

[22] A. Karpatne, W. Watkins, J. S. Read, and V. Kumar, “Physics-guided
neural networks (pgnn): An application in lake temperature modeling,”
arXiv:1710.11431, 2017. (Cited on 27)

[23] M. Hermans, B. Schrauwen, P. Bienstman, and J. Dambre, “Automated
design of complex dynamic systems,” PLoS ONE, vol. 9, pp. e86696, 2014.
(Cited on 27)

150



[24] J. Astola, P. Haavisto, and Y. Neuvo, “Vector median filters,” IEEE
Proceedings, vol. 78, pp. 678–689, 1990. (Cited on 27, 92)

[25] Y. Liu, “Noise reduction by vector median filtering,” GEOPHYSICS, vol. 78,
pp. 79–87, 2013. (Cited on 27, 92)

[26] B. Anderson and J. Moore, Optimal Filtering, Prentice-Hall, 1979. (Cited
on 27, 92)

[27] K. R. Muske and T. F. Edgar, Nonlinear State Estimation, pp. 311–370,
Prentice-Hall, 1997. (Cited on 27, 92, 95, 97, 98, 101)

[28] L. Ralaivola and F. d’Alche Buc, “Time series filtering, smoothing and
learning using the kernel Kalman filter,” in International Joint Conference
on Neural Networks, 2005. (Cited on 27, 92)

[29] S. Banerjee and M. Mitra, “Application of cross wavelet transform for ecg
pattern analysis and classification,” IEEE Transactions on Instrumentation
and Measurement, vol. 63, pp. 326–333, 2014. (Cited on 27, 92)

[30] Ç. P. Dautov and M. S. Özerdem, “Wavelet transform and signal
denoising using wavelet method,” in Signal Processing and Communications
Applications Conference, 2018, pp. 1–4. (Cited on 27, 92, 97, 98, 101)

[31] L. I. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based noise
removal algorithms,” Physica D: Nonlinear Phenomena, vol. 60, pp. 259–268,
1992. (Cited on 28, 92)

[32] I. Selesnick, “Total variation denoising via the Moreau envelope,” IEEE
Signal Processing Letters, vol. 24, pp. 216–220, 2017. (Cited on 28, 92)

[33] H. Du and Y. Liu, “Minmax-concave total variation denoising,” Signal,
Image and Video Processing, vol. 12, 2018. (Cited on 28, 92, 95, 97, 98,
101)

[34] P. Vincent, H. Larochelle, I. Lajoie, et al., “Stacked denoising autoencoders:
Learning useful representations in a deep network with a local denoising
criterion,” Journal of Machine Learning Research, vol. 11, pp. 3371–3408,
2010. (Cited on 28, 92, 97, 98, 101)

[35] C. Szegedy, W. Zaremba, I. Sutskever, et al., “Intriguing properties of neural
networks,” arXiv:1312.6199, 2013. (Cited on 28)

[36] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing
adversarial examples,” arXiv:1412.6572, 2014. (Cited on 28, 30, 92)

151



[37] A. Madry, A. Makelov, L. Schmidt, et al., “Towards deep learning models
resistant to adversarial attacks,” arXiv:1706.06083, 2017. (Cited on 28, 30,
92)

[38] V. Vapnik, The Support Vector Method of Function Estimation, pp. 55–85,
1998. (Cited on 28)

[39] P. L. Bartlett and S. Mendelson, “Rademacher and gaussian complexities:
Risk bounds and structural results,” in Journal of Machine Learning Research,
2001. (Cited on 28)

[40] S. Mukherjee, P. Niyogi, T. Poggio, and R. Rifkin, “Statistical learning:
Stability is sufficient for generalization and necessary and sufficient for
consistency of empirical risk minimization,” 2004. (Cited on 28)

[41] O. Bousquet and A. Elisseeff, “Stability and generalization,” Journal of
Machine Learning Research, vol. 2, pp. 499–526, 2002. (Cited on 28)

[42] H. Mhaskar and T. Poggio, “Deep vs. shallow networks : An approximation
theory perspective,” Analysis and Applications, vol. 14, 2016. (Cited on 28)

[43] M. C. Mozer and P. Smolensky, “Skeletonization: A technique for trimming
the fat from a network via relevance assessment,” in Neural Information
Processing Systems, 1989. (Cited on 29, 120)

[44] Y. LeCun, J. S. Denker, and S. A. Solla, “Optimal brain damage,” in Neural
Information Processing Systems, 1990. (Cited on 29, 120)

[45] B. Hassibi, D. G. Stork, and G. J. Wolff, “Optimal brain surgeon and general
network pruning,” in International Conference on Neural Networks, 1993.
(Cited on 29, 120)

[46] S. Han, J. Pool, J. Tran, and W. J. Dally, “Learning both weights and
connections for efficient neural networks,” in Neural Information Processing
Systems, 2015. (Cited on 29, 120)

[47] D. Molchanov, A. Ashukha, and D. Vetrov, “Variational dropout sparsifies
deep neural networks,” in International Conference on Machine Learning,
2017. (Cited on 29, 120, 133)

[48] Y. Guo, A. Yao, and Y. Chen, “Dynamic network surgery for efficient dnns,”
in Neural Information Processing Systems, 2016. (Cited on 29, 120)

[49] S. Park, J. Lee, S. Mo, and J. Shin, “Lookahead: A far-sighted alternative
of magnitude-based pruning,” in International Conference on Learning
Representations, 2020. (Cited on 29, 120)

152



[50] A. Renda, J. Frankle, and M. Carbin, “Comparing rewinding and fine-
tuning in neural network pruning,” in International Conference on Learning
Representations, 2020. (Cited on 29, 120, 131, 133, 135)

[51] Y. Chauvin, “A back-propagation algorithm with optimal use of hidden
units,” in Neural Information Processing Systems, 1989. (Cited on 29, 120)

[52] M. A. Carreira-Perpiñán and Y. Idelbayev, “ “learning-compression”
algorithms for neural net pruning,” in Computer Vision and Pattern
Recognition, 2018. (Cited on 29, 120)

[53] K. Ullrich, E. Meeds, and M. Welling, “Soft weight-sharing for neural network
compression,” in International Conference on Learning Representations,
2017. (Cited on 29, 120)

[54] K. Neklyudov, D. Molchanov, A. Ashukha, and D. Vetrov, “Structured
bayesian pruning via log-normal multiplicative noise,” in Neural Information
Processing Systems, 2017. (Cited on 29, 120)

[55] J. Frankle and M. Carbin, “The lottery ticket hypothesis: Finding
sparse, trainable neural networks,” in International Conference on Learning
Representations, 2019. (Cited on 29, 120)

[56] N. Lee, T. Ajanthan, and P. Torr, “SNIP: Single-shot network pruning
based on connection sensitivity,” in International Conference on Learning
Representations, 2019. (Cited on 29, 120, 131, 133, 135)

[57] N. Lee, T. Ajanthan, S. Gould, and P. H. S. Torr, “A signal propagation
perspective for pruning neural networks at initialization,” in International
Conference on Learning Representations, 2020. (Cited on 29, 120)

[58] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, “Learning transferable
architectures for scalable image recognition,” in Computer Vision and
Pattern Recognition, 2018. (Cited on 29, 121)

[59] E. Real, A. Aggarwal, Y. Huang, and Q. V. Le, “Regularized evolution for
image classifier architecture search,” in Association for the Advancement of
Artificial Intelligence, 2019. (Cited on 29, 121)

[60] H. Cai, J. Yang, W. Zhang, et al., “Path-level network transformation for
efficient architecture search,” arXiv:1806.02639, 2018. (Cited on 29, 121)

[61] B. Wu, X. Dai, P. Zhang, et al., “FBNet: Hardware-aware efficient convnet
design via differentiable neural architecture search,” in Computer Vision and
Pattern Recognition, 2019. (Cited on 29, 121)

153



[62] M. Tan, B. Chen, R. Pang, et al., “Mnasnet: Platform-aware neural
architecture search for mobile,” in Computer Vision and Pattern Recognition,
2019. (Cited on 29, 121)

[63] H. Cai, L. Zhu, and S. Han, “ProxylessNAS: Direct neural architecture
search on target task and hardware,” in International Conference on Learning
Representations, 2019. (Cited on 29, 121)

[64] A. Howard, M. Sandler, G. Chu, et al., “Searching for mobilenetv3,” in
International Conference on Computer Vision, 2019. (Cited on 29, 121,
135)

[65] H. Cai, C. Gan, T. Wang, et al., “Once-for-all: Train one network and
specialize it for efficient deployment,” in International Conference on
Learning Representations, 2020. (Cited on 29)

[66] J. Lin, W.-M. Chen, Y. Lin, et al., “Mcunet: Tiny deep learning on iot
devices,” in Neural Information Processing Systems, 2020. (Cited on 29,
121)

[67] S. Verma and K. Gupta, “Robustness of neural networks used in electrical
motor time-series,” in NeurIPS Workshop on Robustness in Sequence
Modeling, 2022. (Cited on 31)

[68] S. Verma, N. Henwood, M. Castella, et al., “Can GANs recover faults in
electrical motor sensors?,” in ICLR Workshop on Deep Generative Models
for Highly Structured Data, 2022. (Cited on 31)

[69] S. Verma, N. Henwood, M. Castella, et al., “Neural speed-torque estimator
for induction motors in the presence of measurement noise,” IEEE
Transactions on Industrial Electronics, 2022. (Cited on 32)

[70] S. Verma and J.-C. Pesquet, “Sparsifying networks via subdifferential
inclusion,” in International Conference on Machine Learning, 2021. (Cited
on 32)

[71] S. Verma, N. Henwood, M. Castella, et al., “Neural networks based speed-
torque estimators for induction motors and performance metrics,” in IEEE
Industrial Electronics Society, 2020. (Cited on 32)

[72] S. Verma, N. Henwood, M. Castella, et al., “Modeling electrical motor
dynamics using encoder-decoder with recurrent skip connection,” in
Association for the Advancement of Artificial Intelligence, 2020. (Cited on
32)

[73] N. Lassau, S. Ammari, E. Chouzenoux, et al., “Integrating deep learning CT-
scan model, biological and clinical variables to predict severity of COVID-19
patients,” Nature Communications, vol. 12, 2021. (Cited on 32)

154



[74] M. Hermans and B. Schrauwen, “Training and analysing deep recurrent
neural networks,” in Neural Information Processing Systems, 2013. (Cited
on 34)

[75] P. Malhotra, L. Vig, G. Shroff, and P. Agarwal, “Long short term memory
networks for anomaly detection in time series,” in European Symposium on
Artificial Neural Networks, 2015. (Cited on 34)

[76] S. Li, W. Li, C. Cook, et al., “Independently recurrent neural network
(IndRNN): Building a longer and deeper RNN,” in Computer Vision and
Pattern Recognition, 2018. (Cited on 34)

[77] J. Miller and M. Hardt, “Stable recurrent models,” in International
Conference on Learning Representations, 2019. (Cited on 34, 35)

[78] A. Ghaderi, B. Sanandaji, and F. Ghaderi, “Deep forecast: Deep learning-
based spatio-temporal forecasting,” in Time Series Workshop in International
Conference on Machine Learning, 2017. (Cited on 35)

[79] J. Yoon, W. Zame, and M. Schaar, “Multi-directional recurrent neural
networks: A novel method for estimating missing data,” in Time Series
Workshop in International Conference on Machine Learning, 2017. (Cited
on 35, 79)

[80] N. Laptev, J. Yosinski, L. Li, and S. Smyl, “Time-series extreme event
forecasting with neural networks at uber,” in Time Series Workshop in
International Conference on Machine Learning, 2017. (Cited on 35)

[81] S. Bai, J. Z. Kolter, and V. Koltun, “An empirical evaluation of
generic convolutional and recurrent networks for sequence modeling,”
arXiv:1803.01271, 2018. (Cited on 35)

[82] E. Aksan and O. Hilliges, “STCN: Stochastic temporal convolutional
networks,” in International Conference on Learning Representations, 2019.
(Cited on 35)

[83] P. F. Christoffersen and F. X. Diebold, “Optimal prediction under asymmetric
loss,” Econometric Theory, vol. 13, pp. 808–817, 1997. (Cited on 35)

[84] J. H. Stock and M. W. Watson, “A comparison of linear and nonlinear
univariate models for forecasting macroeconomic time series,” Tech. Rep.,
National Bureau of Economic Research, 1998. (Cited on 35)

[85] M. Iacopini, F. Ravazzolo, and L. Rossini, “Proper scoring rules for evaluating
density forecasts with asymmetric loss functions,” Journal of Business &
Economic Statistics, pp. 1–15, 2022. (Cited on 35)

155



[86] G. P. Zhang, “Avoiding pitfalls in neural network research,” IEEE
Transactions on Systems, Man, and Cybernetics, vol. 37, pp. 3–16, 2007.
(Cited on 35)

[87] O. Intrator and N. Intrator, “Interpreting neural-network results: a simulation
study,” Computational Statistics & Data Analysis, vol. 37, pp. 373–393,
2001. (Cited on 35)

[88] S. Geman, E. Bienenstock, and R. Doursat, “Neural networks and the
bias/variance dilemma,” Neural Computation, vol. 4, pp. 1–58, 1992. (Cited
on 35)

[89] X. Mao, C. Shen, and Y.-B. Yang, “Image restoration using very deep
convolutional encoder-decoder networks with symmetric skip connections,”
in Neural Information Processing Systems, 2016. (Cited on 38)

[90] A. C. Cameron and F. A. Windmeijer, “An R-squared measure of goodness of
fit for some common nonlinear regression models,” Journal of Econometrics,
vol. 77, pp. 329–342, 1997. (Cited on 41, 112)

[91] K.-S. Lee and J.-S. Ryu, “Instrument fault detection and compensation
scheme for direct torque controlled induction motor drives,” Control Theory
and Applications, vol. 150, pp. 376–382, 2003. (Cited on 70)

[92] S. Fan and J. Zou, “Sensor fault detection and fault tolerant control
of induction motor drivers for electric vehicles,” in International Power
Electronics and Motion Control Conference, 2012. (Cited on 70)

[93] L. Jiang, “Sensor fault detection and isolation using system dynamics
identification techniques.,” 2011. (Cited on 70)

[94] R. Isermann, Fault-Diagnosis Systems From Fault Detection to Fault
Tolerance, vol. 28, 2006. (Cited on 70)

[95] G. Buja and M. Kazmierkowski, “Direct torque control of PWM inverter-fed
AC motors - a survey,” IEEE Transactions on Industrial Electronics, vol. 51,
pp. 744–757, 2004. (Cited on 70)

[96] T. Orlowska-Kowalska and M. Dybkowski, “Stator-current-based MRAS
estimator for a wide range speed-sensorless induction-motor drive,” IEEE
Transactions on Industrial Electronics, vol. 57, pp. 1296–1308, 2010. (Cited
on 70)

[97] K. S. Gaeid, H. W. Ping, M. Khalid, and A. Masaoud, “Sensor and sensorless
fault tolerant control for induction motors using a wavelet index,” Sensors,
vol. 12, pp. 4031–4050, 2012. (Cited on 70)

156



[98] H. Ben Zina, M. Allouche, M. Chaabane, and M. Souissi, “Sensor fault
tolerant control for induction motor,” in Sciences and Techniques of
Automatic Control and Computer Engineering, 2015, pp. 252–256. (Cited
on 70)

[99] D. Diallo, M. Benbouzid, and A. Makouf, “A fault-tolerant control
architecture for induction motor drives in automotive applications,” IEEE
Transactions on Vehicular Technology, vol. 53, pp. 1847–1855, 2004. (Cited
on 70)

[100] D. Kreindler and C. J. Lumsden, “The effects of the irregular sample and
missing data in time series analysis,” Nonlinear dynamics, psychology, and
life sciences, vol. 10, pp. 187–214, 2006. (Cited on 70)

[101] D. Mondal and D. Percival, “Wavelet variance analysis for gappy time series,”
Annals of the Institute of Statistical Mathematics, vol. 62, pp. 943–966, 2008.
(Cited on 70)

[102] D. Rubin, Multiple imputation for nonresponse in surverys, vol. 81, John
Wiley & Sons, 2004. (Cited on 70)

[103] P. J. García-Laencina, J.-L. Sancho-Gómez, and A. R. Figueiras-Vidal,
“Pattern classification with missing data: a review,” Neural Computing and
Applications, vol. 19, pp. 263–282, 2009. (Cited on 70)

[104] I. White, P. Royston, and A. Wood, “Multiple imputation using chained
equations: Issues and guidance for practice.,” Statistics in medicine, vol. 30
4, pp. 377–99, 2011. (Cited on 70, 79)

[105] R. Mazumder, T. Hastie, and R. Tibshirani, “Spectral regularization
algorithms for learning large incomplete matrices,” Journal of Machine
Learning Research, vol. 11, pp. 2287–2322, 2010. (Cited on 70)

[106] H.-F. Yu, N. Rao, and I. S. Dhillon, “Temporal regularized matrix
factorization for high-dimensional time series prediction,” in Neural
Information Processing Systems, 2016. (Cited on 70)

[107] T. Schnabel, A. Swaminathan, A. Singh, et al., “Recommendations as
treatments: Debiasing learning and evaluation,” in International Conference
on Machine Learning, 2016. (Cited on 70)

[108] M. Berglund, T. Raiko, M. Honkala, et al., “Bidirectional recurrent neural
networks as generative models,” in Neural Information Processing Systems,
2015. (Cited on 70)

[109] Z. Che, S. Purushotham, K. Cho, et al., “Recurrent neural networks for
multivariate time series with missing values,” Scientific Reports, vol. 8, 2018.
(Cited on 70, 79)

157



[110] Z. C. Lipton, D. Kale, and R. Wetzel, “Directly modeling missing data in
sequences with RNNs: Improved classification of clinical time series,” in
Machine Learning for Healthcare Conference, 2016. (Cited on 70)

[111] E. Choi, T. Bahadori, and J. Sun, “Doctor AI: Predicting clinical events
via recurrent neural networks,” JMLR workshop and conference proceedings,
vol. 56, 2015. (Cited on 70)

[112] J. Yoon, D. Jarrett, and M. van der Schaar, “Time-series generative
adversarial networks,” in Neural Information Processing Systems, 2019.
(Cited on 71)

[113] J. Yoon, J. Jordon, and M. van der Schaar, “GAIN: Missing data imputation
using generative adversarial nets,” in International Conference on Machine
Learning, 2018. (Cited on 71, 79)

[114] Y. Luo, X. Cai, Y. Zhang, et al., “Multivariate time series imputation with
generative adversarial networks,” in Neural Information Processing Systems,
2018. (Cited on 71, 79)

[115] Y. Luo, Y. Zhang, X. Cai, and X. Yuan, “E2gan: End-to-end generative
adversarial network for multivariate time series imputation,” in International
Joint Conference on Artificial Intelligence, 2019. (Cited on 71, 79, 80)

[116] S. Gandhi, T. Oates, T. Mohsenin, and D. Hairston, “Denoising time series
data using asymmetric generative adversarial networks,” in Advances in
Knowledge Discovery and Data Mining, 2018, pp. 285–296. (Cited on 71)

[117] E. Balaban, A. Saxena, P. Bansal, et al., “Modeling, detection, and
disambiguation of sensor faults for aerospace applications,” IEEE Sensors,
vol. 9, pp. 1907–1917, 2009. (Cited on 77)

[118] W. Kirchgässner, O. Wallscheid, and J. Böcker, “Estimating electric motor
temperatures with deep residual machine learning,” IEEE Transactions on
Power Electronics, vol. 36, pp. 7480–7488, 2021. (Cited on 78, 88)

[119] A. Elly Treml, R. Andrade Flauzino, M. Suetake, and N. A.
Ravazzoli Maciejewski, “Experimental database for detecting and diagnosing
rotor broken bar in a three-phase induction motor.,” 2020. (Cited on 78)

[120] N. A. R. Maciejewski, A. E. Treml, and R. A. Flauzino, “A systematic
review of fault detection and diagnosis methods for induction motors,” in
International Conference on Electrical Engineering, 2020. (Cited on 78)

[121] A. T. Hudak, N. L. Crookston, J. S. Evans, et al., “Nearest neighbor
imputation of species-level, plot-scale forest structure attributes from lidar
data,” Remote Sensing of Environment, vol. 112, pp. 2232–2245, 2008.
(Cited on 79)

158



[122] E. Acar, D. M. Dunlavy, T. G. Kolda, and M. Mørup, “Scalable tensor
factorizations with missing data,” in International Conference on Data
Mining, 2010. (Cited on 79)

[123] W. Cao, D. Wang, J. Li, et al., “BRITS: Bidirectional recurrent imputation
for time series,” in Neural Information Processing Systems, 2018. (Cited on
79)

[124] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein GAN,”
arXiv:1701.07875, 2017. (Cited on 80)

[125] S. Qin and W. Li, “Detection and identification of faulty sensors with
maximized sensitivity,” in American Control Conference, 1999. (Cited on
85)

[126] Magtrol, “TM series in-line torque transducers,” 2021. (Cited on 85)

[127] D. Zimmerman and T. Lyde, “Sensor failure detection and isolation in
flexible structures using the eigensystem realization algorithm,” in Structural
Dynamics and Materials Conference, 1992. (Cited on 85)

[128] D. Wang, Y. Fotinich, and G. P. Carman, “Influence of temperature on the
electromechanical and fatigue behavior of piezoelectric ceramics,” Journal
of Applied Physics, vol. 83, pp. 5342–5350, 1998. (Cited on 85)

[129] K. Goebel and W. Yan, “Correcting sensor drift and intermittency faults
with data fusion and automated learning,” IEEE Systems Journal, vol. 2, pp.
189–197, 2008. (Cited on 85)

[130] P.-J. Lu and T.-C. Hsu, “Application of autoassociative neural network on
gas-path sensor data validation,” Journal of Propulsion and Power, vol. 18,
pp. 879–888, 2002. (Cited on 85)

[131] D. C. Zimmerman and T. L. Lyde, “Sensor failure detection and isolation in
flexible structures using system realization redundancy,” Journal of Guidance,
Control, and Dynamics, vol. 16, pp. 490–497, 1993. (Cited on 85)

[132] X. Zhang, G. Foo, M. Don Vilathgamuwa, et al., “Sensor fault detection,
isolation and system reconfiguration based on extended Kalman filter for
induction motor drives,” IET Electric Power Applications, vol. 7, pp. 607–
617, 2013. (Cited on 85)

[133] Z. Q. Zhu, X. Zhu, P. D. Sun, and D. Howe, “Estimation of winding
resistance and pm flux-linkage in brushless ac machines by reduced-order
extended Kalman filter,” in Conference on Networking, Sensing and Control,
2007. (Cited on 92)

159



[134] G. H. B. Foo, X. Zhang, and D. M. Vilathgamuwa, “A sensor fault detection
and isolation method in interior permanent-magnet synchronous motor drives
based on an extended Kalman filter,” IEEE Transactions on Industrial
Electronics, vol. 60, pp. 3485–3495, 2013. (Cited on 92)

[135] K. Naveed, B. Shaukat, and N. U. Rehman, “Dual tree complex
wavelet transform-based signal denoising method exploiting neighbourhood
dependencies and goodness-of-fit test,” Royal Society Open Science, vol. 5,
2018. (Cited on 92)

[136] A. Kurakin, I. Goodfellow, S. Bengio, et al., “Adversarial examples in the
physical world,” 2016. (Cited on 92)

[137] Y. Dong, F. Liao, T. Pang, et al., “Boosting adversarial attacks with
momentum,” in Computer Vision and Pattern Recognition, 2018. (Cited
on 92)

[138] S.-M. Moosavi-Dezfooli, A. Fawzi, and P. Frossard, “Deepfool: a simple and
accurate method to fool deep neural networks,” in Computer Vision and
Pattern Recognition, 2016. (Cited on 92)

[139] S.-M. Moosavi-Dezfooli, A. Fawzi, O. Fawzi, and P. Frossard, “Universal
adversarial perturbations,” in Computer Vision and Pattern Recognition,
2017. (Cited on 93)

[140] E. R. Balda, A. Behboodi, and R. Mathar, “Perturbation analysis of learning
algorithms: A unifying perspective on generation of adversarial examples,”
arXiv:1812.07385, 2018. (Cited on 93)

[141] K. Gupta, B. Pesquet-Popescu, F. Kaakai, and J.-C. Pesquet, “A quantitative
analysis of the robustness of neural networks for tabular data,” in
International Conference on Acoustics, Speech and Signal Processing, 2021,
pp. 8057–8061. (Cited on 93)

[142] K. Gupta, J.-C. Pesquet, B. Pesquet-Popescu, et al., “An adversarial attacker
for neural networks in regression problems,” in IJCAI Workshop on Artificial
Intelligence Safety (AI Safety), 2021. (Cited on 93)

[143] K. Gupta, F. Kaakai, B. Pesquet-Popescu, et al., “Multivariate lipschitz
analysis of the stability of neural networks,” Frontiers in Signal Processing,
2022. (Cited on 93, 141)

[144] K. Gupta, F. Kaakai, B. Pesquet-Popescu, and J.-C. Pesquet, “Safe design
of stable neural networks for fault detection in small uavs,” in Computer
Safety, Reliability, and Security Workshop, 2022, pp. 263–275. (Cited on
93)

160



[145] H. Xu and S. Mannor, “Robustness and generalization,” Machine Learning,
vol. 86, pp. 391–423, 2011. (Cited on 93)

[146] G. K. Dziugaite and D. M. Roy, “Computing nonvacuous generalization
bounds for deep (stochastic) neural networks with many more parameters
than training data,” arXiv:1703.11008, 2017. (Cited on 93)

[147] B. Neyshabur, Z. Li, S. Bhojanapalli, et al., “Towards understanding
the role of over-parametrization in generalization of neural networks,”
arXiv:1805.12076, 2019. (Cited on 93)

[148] Y. Cao and Q. Gu, “Generalization error bounds of gradient descent for
learning over-parameterized deep relu networks,” in Association for the
Advancement of Artificial Intelligence, 2020. (Cited on 93)

[149] H. Zhang, H. Singh, M. Ghassemi, and S. Joshi, “"why did the model
fail?": Attributing model performance changes to distribution shifts,”
arXiv:2210.10769, 2022. (Cited on 93)

[150] J. Amjad, Z. Lyu, and M. R. Rodrigues, “Regression with deep
neural networks: Generalization error guarantees, learning algorithms, and
regularizers,” in European Signal Processing Conference, 2021. (Cited on
93)

[151] N. Henwood, J. Malaizé, and L. Praly, “PMSM identification for automotive
applications: Cancellation of position sensor errors,” in IEEE Industrial
Electronics Society, 2011, pp. 687–692. (Cited on 93)

[152] H. A. Chipman, E. D. Kolaczyk, and R. E. McCulloch, “Adaptive Bayesian
wavelet shrinkage,” Journal of the American Statistical Association, vol. 92,
pp. 1413–1421, 1997. (Cited on 95)

[153] E. Zerdali, “Adaptive extended kalman filter for speed-sensorless control of
induction motors,” IEEE Transactions on Energy Conversion, vol. 34, pp.
789–800, 2019. (Cited on 95)

[154] K. P. Murphy, Probabilistic Machine Learning: An introduction, MIT Press,
2021. (Cited on 96)

[155] M. Lavielle and E. Moulines, “Least-squares estimation of an unknown
number of shifts in a time series,” Journal of Time Series Analysis, vol.
21, pp. 33–59, 2000. (Cited on 96)

[156] T. Zhou, Z. Ma, Q. Wen, et al., “Fedformer: Frequency enhanced
decomposed transformer for long-term series forecasting,” arXiv:2201.12740,
2022. (Cited on 111, 141, 142)

161



[157] B. Shi, X. Bai, and C. Yao, “An end-to-end trainable neural network
for image-based sequence recognition and its application to scene text
recognition,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 39, pp. 2298–2304, 2017. (Cited on 111)

[158] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” Computer Vision and Pattern Recognition, 2016. (Cited on
111)

[159] I. Radosavovic, R. P. Kosaraju, R. Girshick, et al., “Designing network design
spaces,” in Computer Vision and Pattern Recognition, 2020. (Cited on 111)

[160] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” in International Conference on Learning
Representations, 2015. (Cited on 119)

[161] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Computer Vision and Pattern Recognition, 2016. (Cited on
119)

[162] G. Huang, Z. Liu, and K. Q. Weinberger, “Densely connected convolutional
networks,” in Computer Vision and Pattern Recognition, 2017. (Cited on
119)

[163] A. Hannun, C. Case, J. Casper, et al., “Deepspeech: Scaling up end-to-end
speech recognition,” arXiv:1412.5567, 2014. (Cited on 119)

[164] L. Dong, S. Xu, and B. Xu, “Speech-transformer: A no-recurrence sequence-
to-sequence model for speech recognition,” in International Conference on
Acoustics, Speech, and Signal Processing, 2018. (Cited on 119)

[165] J. Li, V. Lavrukhin, B. Ginsburg, et al., “Jasper: An end-to-end convolutional
neural acoustic model,” in Interspeech, 2019. (Cited on 119, 120)

[166] S. Watanabe, T. Hori, S. Karita, et al., “Espnet: End-to-end speech
processing toolkit,” in Interspeech, 2018. (Cited on 119)

[167] T. Hayashi, R. Yamamoto, K. Inoue, et al., “ESPnet-TTS: Unified,
reproducible, and integratable open source end-to-end text-to-speech
toolkit,” arXiv:1910.10909, 2019. (Cited on 119)

[168] H. Inaguma, S. Kiyono, K. Duh, et al., “ESPnet-ST: All-in-one speech
translation toolkit,” arXiv:2004.10234, 2020. (Cited on 119)

[169] I. Turc, M.-W. Chang, K. Lee, and K. Toutanova, “Well-read students
learn better: On the importance of pre-training compact models,”
arXiv:1908.08962v2, 2019. (Cited on 119)

162



[170] A. Radford, J. Wu, R. Child, et al., “Language models are unsupervised
multitask learners,” 2019. (Cited on 119)

[171] Z. Dai, Z. Yang, Y. Yang, et al., “Transformer-XL: Attentive language models
beyond a fixed-length context,” in ACL, 2019. (Cited on 119, 120, 136)

[172] T. B. Brown, B. P. Mann, N. Ryder, et al., “Language models are few-shot
learners,” arXiv:2005.14165, 2020. (Cited on 119, 120)

[173] B. N. Oreshkin, D. Carpov, N. Chapados, and Y. Bengio, “N-BEATS:
Neural basis expansion analysis for interpretable time series forecasting,” in
International Conference on Learning Representations, 2020. (Cited on 119)

[174] A. Kusupati, V. Ramanujan, R. Somani, et al., “Soft threshold weight
reparameterization for learnable sparsity,” in International Conference on
Machine Learning, 2020. (Cited on 119, 120, 131, 133)

[175] A. Aghasi, A. Abdi, N. Nguyen, and J. Romberg, “Net-trim: Convex pruning
of deep neural networks with performance guarantee,” in NeuIPS, 2017.
(Cited on 119, 120, 133)

[176] J.-J. Moreau, “Fonctions convexes duales et points proximaux dans un espace
hilbertien,” Comptes rendus hebdomadaires des séances de l’Académie des
sciences, 1962. (Cited on 119, 122)

[177] P. L. Combettes and J.-C. Pesquet, “Deep neural network structures solving
variational inequalities,” SVVA, 2020. (Cited on 119, 121, 127, 130)

[178] P. L. Combettes and Z. C. Woodstock, “A fixed point framework for
recovering signals from nonlinear transformations,” in European Conference
on Signal Processing, 2021. (Cited on 119)

[179] M. Jaderberg, A. Vedaldi, and A. Zisserman, “Speeding up convolutional
neural networks with low rank expansions,” in British Machine Vision
Conference, 2014. (Cited on 120)

[180] K. A. vahid, A. Prabhu, A. Farhadi, and M. Rastegari, “Butterfly transform:
An efficient fft based neural architecture design,” in Computer Vision and
Pattern Recognition, 2020. (Cited on 120)

[181] Z. Lu, V. Sindhwani, and T. N. Sainath, “Learning compact recurrent neural
networks,” in International Conference on Acoustics, Speech, and Signal
Processing, 2016. (Cited on 120)

[182] W. Wen, C. Wu, Y. Wang, et al., “Learning structured sparsity in deep
neural networks,” in Neural Information Processing Systems, 2016. (Cited
on 120)

163



[183] H. Li, A. Kadav, I. Durdanovic, et al., “Pruning filters for efficient convnets,”
arXiv:1608.08710, 2017. (Cited on 120)

[184] J. Luo, J. Wu, and W. Lin, “Thinet: A filter level pruning method for
deep neural network compression,” in International Conference on Computer
Vision, 2017. (Cited on 120)

[185] J. Yu, L. Yang, N. Xu, et al., “Slimmable neural networks,” in International
Conference on Learning Representations, 2019. (Cited on 120)

[186] L. Liebenwein, C. Baykal, H. Lang, et al., “Provable filter pruning for efficient
neural networks,” in International Conference on Learning Representations,
2020. (Cited on 120)

[187] C. Louizos, K. Ullrich, and M. Welling, “Bayesian compression for deep
learning,” in Neural Information Processing Systems, 2017, pp. 3290–3300.
(Cited on 120, 133)

[188] C. Louizos, M. Welling, and D. P. Kingma, “Learning sparse neural
networks through l0 regularization,” in International Conference on Learning
Representations, 2018. (Cited on 120, 133)

[189] M. Zhu and S. Gupta, “To prune, or not to prune: Exploring the efficacy of
pruning for model compression,” arXiv:1710.01878, 2018. (Cited on 120)

[190] Z. Liu, M. Sun, T. Zhou, et al., “Rethinking the value of network pruning,”
in International Conference on Learning Representations, 2019. (Cited on
120)

[191] P. Savarese, H. Silva, and M. Maire, “Winning the lottery with continuous
sparsification,” arXiv:arXiv:1912.04427, 2020. (Cited on 120)

[192] Y. Lee, “Differentiable sparsification for deep neural networks,”
arXiv:1910.03201, 2019. (Cited on 120, 133)

[193] X. Xiao, Z. Wang, and S. Rajasekaran, “Autoprune: Automatic network
pruning by regularizing auxiliary parameters,” in Neural Information
Processing Systems, 2019. (Cited on 120)

[194] K. Azarian, Y. Bhalgat, J. Lee, and T. Blankevoort, “Learned threshold
pruning,” arXiv:2003.00075, 2020. (Cited on 120)

[195] G. Bellec, D. Kappel, W. Maass, and R. Legenstein, “Deep rewiring:
Training very sparse deep networks,” in International Conference on Learning
Representations, 2018. (Cited on 120)

164



[196] D. C. Mocanu, E. Mocanu, P. Stone, et al., “Scalable training of artificial
neural networks with adaptive sparse connectivity inspired by network
science,” Nature Communications, 2018. (Cited on 120)

[197] X. Dai, H. Yin, and N. K. Jha, “NeST: A neural network synthesis tool
based on a grow-and-prune paradigm,” IEEE TC, 2019. (Cited on 120)

[198] T. Lin, S. U. Stich, L. Barba, et al., “Dynamic model pruning with feedback,”
in International Conference on Learning Representations, 2020. (Cited on
120)

[199] H. Mostafa and X. Wang, “Parameter efficient training of deep convolutional
neural networks by dynamic sparse reparameterization,” in International
Conference on Machine Learning, 2019. (Cited on 120)

[200] T. Dettmers and L. Zettlemoyer, “Sparse networks from scratch: Faster
training without losing performance,” arXiv:1907.04840, 2020. (Cited on
120)

[201] U. Evci, E. Elsen, P. Castro, and T. Gale, “Rigging the lottery: Making
all tickets winners,” in International Conference on Machine Learning, 2020.
(Cited on 120, 131, 133, 135)

[202] C. Wang, G. Zhang, and R. Grosse, “Picking winning tickets before training
by preserving gradient flow,” in International Conference on Learning
Representations, 2020. (Cited on 120, 131, 133)

[203] M. Ye, C. Gong, L. Nie, et al., “Good subnetworks provably exist: Pruning via
greedy forward selection,” in International Conference on Machine Learning,
2020. (Cited on 120)

[204] H. Tanaka, D. Kunin, D. Yamins, and S. Ganguli, “Pruning neural networks
without any data by iteratively conserving synaptic flow,” arXiv:2006.05467,
2020. (Cited on 120, 131, 133)

[205] P. Jorge, A. Sanyal, H. Behl, et al., “Progressive skeletonization: Trimming
more fat from a network at initialization,” arXiv:2006.09081, 2020. (Cited
on 120, 131, 133)

[206] A. Brock, T. Lim, J. Ritchie, and N. Weston, “SMASH: One-shot model
architecture search through hypernetworks,” in International Conference on
Learning Representations, 2018. (Cited on 121)

[207] R. Miikkulainen, J. Z. Liang, E. Meyerson, et al., “Evolving deep neural
networks,” arXiv:1703.00548, 2017. (Cited on 121)

[208] E. Real, S. Moore, A. Selle, et al., “Large-scale evolution of image classifiers,”
in International Conference on Machine Learning, 2017. (Cited on 121)

165



[209] K. O. Stanley and R. Miikkulainen, “Evolving neural networks through
augmenting topologies,” Evolutionary Computation, vol. 10, pp. 99–127,
2002. (Cited on 121)

[210] C. Szegedy, W. Liu, Y. Jia, et al., “Going deeper with convolutions,” in
Computer Vision and Pattern Recognition, 2015. (Cited on 121)

[211] H. Cai, T. Chen, W. Zhang, et al., “Reinforcement learning for architecture
search by network transformation,” arXiv:1707.04873, 2017. (Cited on 121)

[212] T. Chen, I. J. Goodfellow, and J. Shlens, “Net2net: Accelerating learning
via knowledge transfer,” arXiv:1511.05641, 2016. (Cited on 121)

[213] A. Ashok, N. Rhinehart, F. Beainy, and K. M. Kitani, “N2n learning:
Network to network compression via policy gradient reinforcement learning,”
in International Conference on Learning Representations, 2018. (Cited on
121)

[214] Y. He and S. Han, “ADC: automated deep compression and acceleration
with reinforcement learning,” arXiv:1802.03494, 2018. (Cited on 121)

[215] H. Cai, C. Gan, T. Wang, et al., “Once for all: Train one network
and specialize it for efficient deployment,” in International Conference on
Learning Representations, 2020. (Cited on 121, 142, 143)

[216] S. K. Esser, J. L. McKinstry, D. Bablani, et al., “Learned step size
quantization,” in International Conference on Learning Representations,
2020. (Cited on 121)

[217] C. Xu, J. Yao, Z. Lin, et al., “Alternating multi-bit quantization for recurrent
neural networks,” in International Conference on Learning Representations,
2018. (Cited on 121)

[218] D. Zhang, J. Yang, D. Ye, and G. Hua, “Lq-nets: Learned quantization for
highly accurate and compact deep neural networks,” in European Conference
on Computer Vision, 2018. (Cited on 121)

[219] Y. Li, R. Gong, X. Tan, et al., “{BRECQ}: Pushing the limit of post-
training quantization by block reconstruction,” in International Conference
on Learning Representations, 2021. (Cited on 121)

[220] M. Nagel, R. A. Amjad, M. Van Baalen, et al., “Up or down? Adaptive
rounding for post-training quantization,” in International Conference on
Machine Learning, 2020. (Cited on 121)

[221] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “Xnor-net: Imagenet
classification using binary convolutional neural networks,” in European
Conference on Computer Vision, 2016. (Cited on 121)

166



[222] P. Stock, A. Joulin, R. Gribonval, et al., “And the bit goes down: Revisiting
the quantization of neural networks,” in International Conference on Learning
Representations, 2020. (Cited on 121)

[223] P. L. Combettes and J.-C. Pesquet, “Lipschitz Certificates for Layered
Network Structures Driven by Averaged Activation Operators,” SIAM
Journal on Mathematics of Data Science, 2020. (Cited on 121, 127)

[224] P.-L. Lions and B. Mercier, “Splitting algorithms for the sum of two nonlinear
operators,” SIAM Journal on Numerical Analysis, 1979. (Cited on 123)

[225] P. L. Combettes and J.-C. Pesquet, “A Douglas–Rachford splitting approach
to nonsmooth convex variational signal recovery,” IEEE Journal of Selected
Topics in Signal Processing, 2007. (Cited on 123, 124)

[226] P. L. Combettes, “A block-iterative surrogate constraint splitting method for
quadratic signal recovery,” IEEE Transactions on Signal Processing, 2003.
(Cited on 126)

[227] D. Blalock, J. J. Gonzalez Ortiz, J. Frankle, and J. Guttag, “What is the
state of neural network pruning?,” Proceedings of Machine Learning and
Systems, vol. 2, pp. 129–146, 2020. (Cited on 131)

[228] V. Panayotov, G. Chen, D. Povey, and S. Khudanpur, “Librispeech: An ASR
corpus based on public domain audio books,” in International Conference
on Acoustics, Speech, and Signal Processing, 2015. (Cited on 136)

[229] S. Merity, C. Xiong, J. Bradbury, and R. Socher, “Pointer sentinel mixture
models,” in International Conference on Learning Representations, 2017.
(Cited on 136)

[230] Z. Li, E. Wallace, S. Shen, et al., “Train large, then compress:
Rethinking model size for efficient training and inference of transformers,”
arXiv:2002.11794, 2020. (Cited on 136)

[231] S. I. Nikolenko, “Synthetic data for deep learning,” Synthetic Data for Deep
Learning, 2021. (Cited on 141)

[232] M. D. Schwartz, “Modern machine learning and particle physics,” Harvard
Data Science Review, 2021. (Cited on 141)

[233] R. Chen, M. Lu, T. Chen, et al., “Synthetic data in machine learning for
medicine and healthcare,” Nature Biomedical Engineering, vol. 5, pp. 1–5,
2021. (Cited on 141)

[234] A. Zhang, L. Xing, J. Zou, and J. Wu, “Shifting machine learning for
healthcare from development to deployment and from models to data,”
Nature Biomedical Engineering, pp. 1–16, 2022. (Cited on 141)

167



[235] G. Zerveas, S. Jayaraman, D. Patel, et al., “A transformer-based framework
for multivariate time series representation learning,” Knowledge Discovery
& Data Mining, 2021. (Cited on 141)

[236] H. Wu, J. Xu, J. Wang, and M. Long, “Autoformer: Decomposition
transformers with auto-correlation for long-term series forecasting,” in Neural
Information Processing Systems, 2021. (Cited on 141, 142)

[237] R. Bommasani, D. A. Hudson, E. Adeli, et al., “On the opportunities and
risks of foundation models,” ArXiv, vol. abs/2108.07258, 2021. (Cited on
141)

[238] K. Gupta and S. Verma, “CertViT: Certified Robustness of Pre-Trained
Vision Transformers,” in ICML Workshop on New Frontiers in Adversarial
Machine Learning, 2023. (Cited on 141)

[239] K. Gupta and S. Verma, “Shrink & Cert: Bi-level Optimization for Certified
Robustness,” in ICML Workshop on New Frontiers in Adversarial Machine
Learning, 2023. (Cited on 141)

[240] X. Ma, P. Zhang, S. Zhang, et al., “A tensorized transformer for language
modeling,” arXiv:1906.09777, 2019. (Cited on 142)

[241] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
CoRR, vol. abs/1412.6980, 2015. (Cited on 145)

168


	Introduction
	Previous Work
	Electrical Motor
	Data-Driven Modeling of Physical Systems
	Reliability of Neural Networks
	Efficient Real Time Inference

	Contributions of the Thesis
	Organisation of the Thesis
	List of Publications

	Data Driven Modeling of Input-Output Relationships
	Introduction
	Related Work
	Neural Network Architectures for Input-Output Modeling
	Fully Connected Networks
	Sequential Networks
	1D Convolutional Networks
	Encoder-Decoder Networks
	Total Variation Weighted Mean Square Loss

	Evaluation Procedure
	Machine Learning Metrics
	Electrical Engineering Performance Metrics

	Dataset
	Reference Trajectory Generator
	Training and Validation Set
	Test Set
	Real Motor Dataset
	Overcoming Bias in Dataset

	Input-Output Relationship Modeling Experiments
	Derive Currents and Torque from Voltages and Speed
	Ablation Study

	Speed-Torque Estimator Experiments
	Machine Learning Benchmarks
	Electrical Engineering Benchmarks

	Summary

	Sensor Fault Recovery and Mechanical Fault Detection
	Introduction
	Related Work
	Sensor Faults
	Fault Types
	Fault Modeling

	Dataset
	Brushless Direct Current Sensor Faults Dataset
	Induction Motor Dataset
	Permanent Magnet Synchronous Motor Temperature Dataset
	Broken Bar Detection Dataset

	Fault Detection and Recovery
	Statistical Methods
	Recurrent Neural Networks
	Generative Adversarial Networks

	Sceptic-GAN: To Recover From Error and Missing Data
	Generator
	Discriminator
	Training
	Sceptic Score

	Experiments
	Fault Detection
	Fault Classification
	Performance of Downstream Tasks

	Summary

	Noise Processing, Robustness, and Generalization
	Introduction
	Noise in Real World Data
	Robustness in Real World Operations
	Generalized Neural Networks for Real World Applications

	Related Work
	Noise Handling
	Neural Network Robustness
	Generalization of Deep Neural Networks

	Denoising Currents and Voltages
	Noise Modeling
	Standard Denoisers
	Meta-Denoiser

	Denoising Experiments
	Simulated Benchmarks
	Real Data Benchmarks

	Robustness of Neural Networks for Electrical Motor Tasks
	Datasets
	Model Architectures
	Motor Dynamics Learning Networks
	Motor Denoising Networks
	Speed-Torque Estimation Networks
	Temperature Estimation Networks
	Fault Detection Networks

	Generalization of Speed-Torque Estimator
	Summary

	Neural Network Compression
	Introduction
	Related Work
	Inducing sparsity post training
	Inducing sparsity during training
	Training sparsely initialized networks
	Neural Architecture Search and Auto ML
	Efficient Networks for IoT

	Neural Network Pruning
	Variational Principles
	Optimization problem
	Optimization algorithm
	Computation of the projection onto the constraint set
	Dealing with various nonlinearities
	SIS on multi-layered networks

	Experiments
	Pruning of Convolutional Networks
	Sequential Tasks
	Empirical Convergence Analysis

	Summary

	Conclusion and Future Work
	Conclusion
	Future Work
	Better Synthetic Data
	Transformers for System Fault Detection
	Reliability of the Neural Networks for Electrical Motor Tasks
	Tensorized Pruning of Neural Networks
	Optimal Neural Networks for Industrial Devices


	Optimal Neural Networks for IoT Devices
	Once-for-All Networks
	Finding Best Fit Networks


	Bibliography

