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Résumé

Cette thèse présente une étude portant sur le développement et l’efficacité du schéma
des Volumes Finis Caractéristiques (FVC) sur des maillages non structurés en 2D et 3D,
pour la simulation de deux types d’écoulements : les écoulements d’eau peu profonde,
décrits par les équations de Saint-Venant (également connues sous le nom d’équations de
l’eau peu profonde), avec des configurations monocouche et multicouches, ainsi que les
écoulements de gaz, modélisés par les équations d’Euler. Le schéma FVC se révèle promet-
teur en offrant une précision accrue au premier ordre et une meilleure représentation des
phénomènes physiques. Un code de calcul basé sur ce schéma a été développé pour ré-
soudre les équations correspondantes, et une discrétisation bien équilibrée du schéma FVC
a été proposée pour le modèle d’eau peu profonde, permettant de prédire l’application du
code à des problèmes avec des termes sources importants et une irrégularité du fond.

Différents cas test ont été exécutés pour évaluer la simulation numérique des écoule-
ments à surface libre ainsi que les écoulements de gaz. Ces évaluations ont consisté en des
comparaisons entre les résultats numériques et des solutions analytiques ou des données
expérimentales. Les comparaisons effectuées confirment la fiabilité, la précision, la sta-
bilité et la robustesse du code et du schéma proposés, ainsi que l’efficacité des techniques
utilisées pour traiter les conditions aux limites. Les résultats obtenus lors des différents
cas test sont satisfaisants, ce qui permet d’envisager avec confiance l’application à grande
échelle, notamment dans des domaines tels que le transport de polluants dans le détroit
de Gibraltar.

En résumé, cette étude démontre la fiabilité du schéma FVC sur des maillages non
structurés pour la résolution des équations de conservation, telles que les équations d’Euler
et les équations d’eau peu profonde. Ce schéma offre une solution robuste et précise pour
une large gamme d’écoulements et de configurations de fond.

Mots clés Équations de Saint-Venant; Méthode des caractéristiques; Schéma FVC bidi-
mensionnelle; Méthode des volumes finis; Équations multicouches d’eau peu profonde;
Schéma bien équilibré; Équations d’Euler; Schéma FVC en 3D; Schéma diamond; Mail-
lages non structurés; Lois de conservation; Problème de Riemann.
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Abstract

This thesis presents a study on the development and effectiveness of the Characteristic
Finite Volume (FVC) scheme on unstructured 2D and 3D meshes for simulating two types
of flows: shallow water flows described by the Saint-Venant equations (also known as
shallow water equations) with single-layer and multilayer configurations, and gas flows
modeled by the Euler equations. The FVC scheme shows promise by offering first-order
accuracy and improved representation of physical phenomena. A computational code
based on this scheme was developed to solve the corresponding equations, and a well-
balanced discretization of the FVC scheme was proposed for the shallow water model,
allowing for the prediction of the code’s application to problems with significant source
terms and irregular bottom topography.

Various test cases were conducted to evaluate the numerical simulation of free-surface
flows and gas flows. These evaluations involved comparisons between numerical results
and analytical solutions or experimental data. The performed comparisons confirm the
reliability, accuracy, stability, and robustness of the proposed code and scheme, as well
as the effectiveness of the techniques used to handle boundary conditions. The results
obtained from the various test cases are satisfactory, providing confidence in the large-
scale application of the scheme, particularly in domains such as pollutant transport in the
Strait of Gibraltar.

In summary, this study demonstrates the reliability of the FVC scheme on unstruc-
tured meshes for solving conservation equations, such as the Euler equations and shallow
water equations. This scheme offers a robust and accurate solution for a wide range of
flows and bottom topography configurations.

Keywords Shallow water model; Method of characteristics; 2D FVC scheme; Finite vol-
ume method; Multilayer shallow water equations; Well-balanced scheme; Euler equations,
3D FVC scheme; Diamond scheme; unstructured meshes; Conversations laws; Riemann
problem.
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Chapter 1

General Introduction

Short summary
1.1 General context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.2 Motivation and purpose of this thesis . . . . . . . . . . . . . . . . . . . . . . . 17
1.3 Contents of this work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.1 General context
Computational Fluid Dynamics (CFD) has become an essential tool in numerous technical

and scientific fields. It provides a cost-effective method for modeling and simulating complex
flow phenomena. This approach is particularly useful for studying intricate flows, such as those
around an aircraft wing, within a pipe, or surrounding a submerged object. It is also employed
to analyze gravitational and hazardous flows, including floods, landslides, and rogue waves.

CFD also plays a crucial role in the advancement of sustainable energy, notably through
hydrodynamic-biological coupling, biofuel production, and applications in marine energy. It
further contributes to risk management and land development by analyzing morphodynamic
changes and implementing early warning systems. Thus, it has become indispensable in all
branches of fluid dynamics, from aerospace propulsion to weather forecasting. For instance,
water resource management is a critical issue for poverty reduction, sustainable development,
and the achievement of sustainable development goals. However, approximately 2.1 billion
people, or 30 % of the global population, still lack access to safe drinking water (source:
https://www.who.int/news/item/18-06-2019-1-in-3-people-globally). Climate change and un-
controllable human activities have led to an increase in the frequency of floods in recent decades,
making flood-related incidents more frequent. Therefore, integrated water resource management
is necessary, even essential, to prevent floods and droughts, preserve the environment, and mit-
igate and control the impact of natural hazards, which lie at the heart of major socio-economic
challenges.

Within the scientific community, computational fluid dynamics (CFD) is highly valued for
its ability to provide instantaneous information about key factors such as velocity, pressure,
and concentration at every point in the computational domain, often at a lower cost compared
to traditional experiments. Therefore, understanding and predicting the behavior of fluids in
different environments and systems have become essential for scientists and engineers. A fun-
damental aspect of CFD lies in the numerical scheme used to solve the governing equations of
the phenomena. Thus, numerical modeling remains an indispensable tool, with numerous ap-
plications in fluid flow modeling, as mentioned before, including aerodynamics, turbomachinery
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design, and combustion. For more information, we invite you to consult the following refer-
ences: [1, 2, 3] . Additionally, numerical modeling of fluid flows also finds applications in water
resource management, environmental protection, and ecosystems. For example, it enables the
simulation of flows resulting from dam breaks, diversion of river floods to water retention areas,
simulation of riverbed changes, as well as the transport of sediments or pollutants in estuarine
and coastal environments. To delve deeper into these topics, you can refer to the following
references: [4, 5, 6, 7, 8, 9]. Currents in water bodies such as rivers, estuaries, and coastal
regions exhibit significant topographic and morphological diversity. These areas can experience
significant influences, including purely advective currents, especially when a dam breaks on a
smooth and frictionless surface. The phenomena observed at these spatial scales can vary from
tens to thousands of meters, while the temporal scales can range from minutes to several days.
Therefore, when developing a computational method aimed at handling free-surface flows or the
associated models, significant challenges arise due to the intricate nature of the mathematical
model and the complexity of the computational domains.

Developing accurate numerical methods for hyperbolic systems poses a significant challenge
due to their inherent non-linear nature, the underlying mathematical framework, and the result-
ing physical phenomena they present. In particular, the existence of a shock front leads to issues
such as numerical fluctuations and artificial dispersion, which arise from the standard approxi-
mation techniques used to handle the advection terms in the equations governing the transport of
water masses. Moreover, it is crucial to develop methods that maintain stable states, such as the
equilibrium of calm water in the shallow water system. Various strategies have been suggested to
ensure that the equilibrium property is satisfied (see, for example, [10, 11, 12, 13, 14, 15, 16, 17]),
and recent extensions to other types of homogeneous solvers can be found in [18, 19, 20, 21].

The existence of non-trivial steady states, where the unknowns are not constant over the
domain, is one of the specificities of the shallow water system, linked to the presence of source
terms. This issue has been a significant research topic since the mid-1990s, and numerous
publications have been dedicated to it up to the present day, see for example, the references
cited in [22, 23, 24]. In addition to the C property, there are two other categories of steady states.
The first, studied by hydraulic engineers [25] because it is crucial for river flows, but less explored
by numerical engineers as it involves the balance between two constant source terms, which is
relatively easy to satisfy at the discrete level, corresponds to an equilibrium. The second category
of steady states results from an equilibrium, in a linearized version of the system, between the
pressure term and the Coriolis term. This equilibrium is known as the geostrophic balance.
At large scales, atmospheric and oceanic flows are primarily perturbations of this equilibrium
[26]. The extension of the ENO and WENO schemes to the shallow water equations has been
studied in [27]. Unfortunately, most ENO and WENO schemes that correctly solve real flows
are still computationally expensive. On the other hand, numerical methods based on kinetic
reconstructions have been studied in [28], but these methods are highly complex. However,
most of the aforementioned works, even though they are two-dimensional unstructured methods,
lead to rather complex and computationally intensive algorithms. Other approaches are more
efficient, but to our knowledge, they are limited to one-dimensional problems or two-dimensional
Cartesian grids.

Our main objective in this study is to develop a class of Eulerian-Lagrangian methods that
accurately solve the shallow water equations on unstructured two- and three-dimensional spatial
meshes, without relying on exact or approximate Riemann solvers. The proposed scheme, Finite
Volume Characteristic (FVC), belongs to the class of methods that use only the physical fluxes
and averaged states in their formulations. It can be interpreted as a predictor-corrector scheme.
In the corrector step, the considered equations are integrated over a spatio-temporal Eulerian
control volume, while in the predictor step, the variables of the equation system are rewritten in
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an advective form and integrated along the characteristics defined by the advection velocity field.
This approach has demonstrated its effectiveness through several test cases and benchmarks
presented in the works [29, 30, 31, 32]. However, the authors of these three articles limited
themselves to the formalism of Cartesian meshes, whereas, as mentioned earlier, real-world
problems are characterized by significant topographic and geometric complexity, thereby limiting
the applicability of this formalism. A more in-depth study of the accuracy of this finite volume
discretization method on unstructured meshes has always been the objective of these works (see
the conclusions of [29] and [30]). Consequently, the unstructured finite volume method not only
guarantees mass conservation, which is an important property in fluid flow calculations, but
also enables the accurate representation of the complex geometry of the computational domain.
For these reasons, we propose an extension of this scheme to an unstructured mesh. It is worth
noting that a convergence analysis of the method for a scalar equation was conducted in this
work [31], and the results of this analysis will be presented in the following sections of this
manuscript.

Another strength of the scheme is that the Jacobian matrix of the system, which is the cause
of the sluggishness in many approximation schemes, does not play a role in the computation.
Additionally, numerous approximation schemes in the context of conservation laws require a
solver for the Riemann problem at each time step in order to reconstruct the numerical flux,
which is completely avoided in our FVC scheme, as mentioned earlier. In simple terms, this
approach combines the method of characteristics with the finite volume method. Unlike tra-
ditional finite volume methods, this technique integrates our equations along the characteristic
curves, which facilitates the computation of numerical fluxes.

We have observed several advantages of this approach compared to other solutions for con-
servation laws. Firstly, a key characteristic of such an Eulerian-Lagrangian finite volume scheme
is its ability to satisfy the conservation property, resulting in numerical solutions free from spuri-
ous oscillations. Secondly, it achieves robust stability and high accuracy for numerical solutions
containing shocks or discontinuities, along with efficient CPU performance.

1.2 Motivation and purpose of this thesis
In the context of the growing demand for accurate and efficient numerical simulation tech-

niques for studying fluid dynamics, fluid flows play a central role in various industrial applications
and natural systems. For example, this includes the transport of sediment in rivers and dams,
as well as the transportation of industrial materials (such as phosphates, phosphogypsum, etc.)
through pipelines, the operation of turbines and pumps, large-scale atmospheric movements,
etc.

The main objective of this thesis is therefore to study and implement the FVC scheme on
unstructured grids, in order to improve the applicability of the scheme to real simulations and
problems. The FVC scheme is recognized for its ability to accurately and efficiently handle flows
with discontinuities, shocks, and complex boundary phenomena.

By focusing on fluid flow models, this thesis aims to develop the FVC scheme in its general
version and demonstrate its robustness and efficiency in simulating complex phenomena and
solving complicated equations, such as the multilayer system. The goal is to contribute to a
better understanding of the underlying physical phenomena while providing accurate results for
performance prediction and optimization of industrial systems.

Within the framework of this study, several key objectives have been defined to deepen the
research. The main objective of this work is to study and develop the FVC scheme by combining
the advantages of Eulerian-Lagrangian approaches to achieve accurate and robust results, even
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in complex situations.
Another major objective of this thesis is to implement this method on unstructured grids.

This approach will allow for the treatment of complex geometries with great flexibility, which is
a significant advantage. However, adapting the FVC scheme to unstructured grids will require
a thorough study of appropriate algorithms and discretization techniques. This represents a key
objective of this research as it will enhance the accuracy and efficiency of real-world simulations.

To move towards three-dimensional modeling, it is necessary to overcome the limitations
of the Saint-Venant equations, which are specifically designed for two-dimensional flows. In
this context, we have opted for the use of three-dimensional Euler equations to account for
phenomena occurring in three-dimensional flow.

Finally, this study aims to evaluate the performance and efficiency of the developed scheme
in the numerical simulation of fluid flow models. To achieve this, case studies will be utilized,
and comparisons will be made with other existing methods. The obtained results will provide
valuable insights into the applicability and potential advantages of the FVC scheme in solving
complex problems related to fluid flows.

To accomplish these objectives, several steps will be undertaken. Firstly, a comprehensive
review of the scientific literature will be conducted to understand the theoretical foundations of
the FVC scheme and Eulerian-Lagrangian approaches. This literature review will also identify
different existing methods for simulating fluid flows and compare them to the FVC scheme.

Next, special attention will be given to adapting the FVC scheme to unstructured grids. This
will require an in-depth study of discretization techniques suitable for these grids. Advanced
numerical methods will be explored to ensure accurate and efficient resolution of flow equations
on these grids.

Once the FVC scheme has been successfully implemented on unstructured grids, represen-
tative test cases will be selected to evaluate the model’s performance. Numerical simulations
will be conducted, and the results will be analyzed in terms of accuracy, efficiency, and robust-
ness. Comparisons with other existing methods will also be made to demonstrate the potential
advantages of the FVC scheme as well as its limitations.

1.3 Contents of this work
This manuscript consists of six chapters organized into five parts. Below, we present a

chapter-wise summary of the conducted research.

1st Part: General Introduction

Chapter 1: General Introduction

In this chapter, we have addressed the general context of the limitations in the use of numer-
ical schemes in the fields of modeling and scientific computing, as well as in the field of CFD. We
have highlighted the current difficulties and limitations encountered in the development of these
schemes, particularly regarding the accuracy, stability, and efficiency of the obtained results.
Furthermore, we have discussed the motivations that have driven us to undertake this thesis,
which mainly involve overcoming these issues and proposing new approaches to enhance the
performance of numerical schemes. We have also outlined the specific objectives we have set for
ourselves, such as developing more accurate, robust, and faster methods and applying them to
practical problems in modeling and scientific computing, with the ultimate goal of enhancing
the understanding and prediction of physical phenomena.
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2nd Part: Mathematical and Numerical Formulation of the Treated Models

Chapter 2: General presentation of the treated models

In this chapter, we have discussed hyperbolic systems from a theoretical perspective in a
general manner. We have explored the fundamental concepts of these systems and their im-
plications. Next, we have presented several examples of PDEs that have been treated and
numerically solved. Among the studied models, we have examined the shallow water equations,
which allow for the analysis of solute dispersion carried by a fluid flow. We have also studied
two-dimensional multi-layer equations used to model flows with vertical density variations. Fi-
nally, we have addressed the three-dimensional Euler equations, which describe the motion of
an incompressible and non-viscous fluid. These examples illustrate the diversity and relevance
of the hyperbolic systems studied in this chapter.

Chapter 3: Generalities on Numerical Methods

In this chapter, we began by addressing general aspects of finite volume numerical methods.
We then provided an overview of the context of the proposed method in its 1D version, present-
ing the associated stability and convergence results. This preliminary analysis lays the necessary
foundations for a thorough understanding of the two-dimensional and three-dimensional numer-
ical schemes presented in subsequent chapters. By exploring the results obtained in this initial
context, we will be able to better grasp the more complex aspects of the method in higher
dimensions, enabling us to deepen our understanding and delve further into our study.

3rd Part: FVC Scheme on Unstructured Meshes in Multiple Spatial Dimensions

Chapter 4: 2D FVC scheme on unstructured meshes: application to free surface flows in
shallow water

This chapter provides a detailed exposition of the techniques used to construct the 2D ver-
sion of the FVC scheme adapted to unstructured meshes, along with three specific applications.
Firstly, we explore the application of the scheme to shallow water equations. Secondly, we ad-
dress the solute transport model through fluid flow, focusing on the propagation and dispersion
of dissolved substances in fluids. Finally, we examine the two-dimensional multilayer shallow
water equations, which investigate the complex interactions between different fluid levels in
shallow depth systems. Concurrently, we present key numerical results obtained for solving the
problems, phenomena, and challenges associated with these equations.

Chapter 5: 3D FVC scheme on unstructured meshes: application to compressible Euler equa-
tions

This chapter explores a three-dimensional extension of the FVC approach, which maintains
a formulation suitable for unstructured meshes. It also presents a specific application to the
Euler equations, along with crucial numerical results for solving the problems, phenomena, and
challenges associated with these equations.

4th Part: Conclusions and Perspectives
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Chapter 6: Conclusions and Perspectives

In conclusion, this section will consolidate the knowledge gained during the study and pro-
vide prospects for future research. It will thus serve as a clear recapitulation of the obtained
results and act as a guide to steer forthcoming investigations.

Appendix

In this section, I have compiled all the supplementary formulas and calculations that lead to
the formulas used in chapters 3, 4, and 5. This provides a centralized reference for readers and
facilitates the understanding and application of the concepts discussed in these crucial chapters.

5th Part: Bibliographical References

The final section of this study encompasses all the bibliographic references utilized in this
research. Additionally, an exhaustive list of publications produced during my doctoral period is
also included, attesting to the dedication and expertise gained throughout this investigation.
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Chapter 2

General presentation of the
considered models

Short summary
2.1 Generalities of hyperbolic systems . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.1.1 Hyperbolic conservation laws . . . . . . . . . . . . . . . . . . . . . . . 24
2.2 The physical models considered . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.2.1 Shallow water equations . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.2.2 Model of solute transport by fluid flow . . . . . . . . . . . . . . . . . . 31
2.2.3 Two-dimensional multilayer shallow water equations . . . . . . . . . . 33
2.2.4 Three–Dimensional Euler equations . . . . . . . . . . . . . . . . . . . . 37

2.1 Generalities of hyperbolic systems
The theory of numerical methods for nonlinear hyperbolic partial differential equations

(PDEs), or conservation laws, remains one of the great successes of numerical analysis. Con-
structing schemes for nonlinear hyperbolic equations requires a good understanding of numerical
analysis and the theory of nonlinear hyperbolic equations. Accurate solution methods have been
developed using the solutions of these equations.

The development of hyperbolic PDE theory in recent years has been driven by its growth in
applications such as supersonic aerodynamics, wave propagation in elastic solids, thermonuclear
explosions, gravitational flows, morphodynamic evolution, and pollutant transport. For exam-
ple, in pollutant transport in water, the shallow water equations (2.20) are coupled with the
convection-diffusion equation (2.35), which can also represent a challenging model to handle,
especially as these terms can affect the numerical methods for hyperbolic equations.

The fundamental difficulty of nonlinear hyperbolic PDEs lies in the fact that their solutions
develop singularities, commonly called shocks or shock waves. With the development of these
discontinuities, the uniqueness of the solution is no longer guaranteed. The mathematical prob-
lem is therefore to introduce some restrictions on the class of solutions to ensure the existence of
a unique solution that corresponds well to the physical problem being studied. In this section,
we introduce some definitions and theorems related to hyperbolic equations. For more detailed
presentation, we recommend the reader to consult the following bibliographies [33, 34, 35, 36].
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2.1.1 Hyperbolic conservation laws

Conservation law systems are partial differential equations that depend on time and are
typically nonlinear. In d-dimensional space, these equations have the following general form:

∂u(x, t)
∂t

+
d∑
j=1

∂fj(u(x, t))
∂xj

= 0, x = (x1, x2, · · · , xd) ∈ D ⊂ Rd, t > 0, (2.1)

where, u : D × R+ −→ Ω is a p-dimensional vector of conserved quantities or state variables,
such as mass, momentum, and energy in the case of fluid dynamics problems. Ω is a bounded
open subset of Rp. The functions fj (1 ≤ j ≤ d), called flux functions, are "sufficiently smooth"
and are defined from Ω to Rp. The system (2.1) must be supplemented with initial conditions

u(x, 0) = u0(x), (2.2)

and possibly with boundary conditions on a bounded spatial domain.

2.1.1.1 Hyperbolicity

Let Aj(u) the Jacobian matrix of the function fj(u):

Aj(u) =
(
∂fij
∂uk

(u)
)

16i,k6p
, j = 1, · · · , d. (2.3)

The system (2.1) is said to be hyperbolic if for all n = (n1, · · · , nd) ∈ Rd, the matrix A(u,n) =∑d
j=1 njAj(u) is diagonalizable and all its eigenvalues are real. Furthermore, if these eigenvalues

are distinct, the system is said to be strictly hyperbolic. We will order these eigenvalues in
increasing order

λ1(u,n) < λ2(u,n) < · · · < λp(u,n), (2.4)

where λj(u,n) is the jth eigenvalue of A(u,n).

2.1.1.2 Weak solutions and entropy condition

Let us consider the Cauchy problem, defined by the following conservation law
∂u
∂t

+ ∂f(u)
∂x

= 0 x ∈ D ⊂ R, t > 0,

u(x, 0) = u0(x) x ∈ D,
(2.5)

where f : Ω −→ R and u : D × R+ −→ Ω.

Definition 2.1.1. Let u0 ∈ L∞loc(D)1, a function u ∈ L∞loc(D× R+) is a weak solution of the
Cauchy problem (2.5) if, for all φ ∈ C1

0
(
D × R+), we have∫

D

∫
R+

(
u∂φ
∂t

+ f(u)∂φ
∂x

)
dtdx+

∫
D

u0(x)φ(x, 0)dx = 0. (2.6)

By construction, any classical solution of problem (2.5) is a weak solution. Moreover, it is
shown by integration by parts of (2.6) that weak solutions satisfy (2.5) in the classical sense
except along a finite number of parametric curves (t, ξ(t)) in the (x, t) plane. It can be shown
that on each of these parametric curves (discontinuity curves), the following Rankine-Hugoniot

1L∞loc(D) is the space of locally bounded functions.
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condition must be satisfied:
Let

ul = lim
δ→0+

u(ξ − δt),

ur = lim
δ→0+

u(ξ + δt),
(2.7)

the values immediately to the left and right of the discontinuity. Define the shock speed by
s = dξ(t)

dt , then s must satisfy the condition

s (ur − ul) = f (ur)− f (ul) . (2.8)

Instead of using the formulation (2.6) to decide whether a function u is a weak solution or not,
we can use the Rankine-Hugoniot condition (2.8). We can then state the following theorem:

Theorem 2.1.1. Let u : D × R+ −→ R, C1 be a piecewise function. u is a weak solution of
(2.5) if and only if it satisfies the following conditions:
i) u is a classical solution of (2.5) where it is C1.
ii) At a discontinuity, u satisfies the Rankine-Hugoniot condition (2.8).

2.1.1.3 Existence of a physical solution

As previously mentioned, there are situations where the weak solution is not unique. In this
case, it becomes necessary to establish additional criteria to determine the "correct" weak solu-
tion (in the physical sense) to the problem. For specific nonlinear systems appearing in physics,
there exist criteria, such as the second law of thermodynamics, that allow for the selection of a
unique solution among the weak solutions.

I Viscous limit solutions

The entropic solution of (2.1) is the solution that is obtained from the limit as ε approaches
zero of the solution uε of the corresponding viscous parabolic problem

∂uε

∂t
+

d∑
j=1

∂fj (uε)
∂xj

= ε∆uε x ∈ D, t > 0,

uε(x, 0) = u0(x) x ∈ D.
(2.9)

Except for the scalar case and some particular systems, it is not always possible to show the
existence of this limit, see [37]. Nevertheless, this provides a good criterion for choosing a
solution by introducing the notion of entropy due to Lax. The entropy condition is defined as
the condition requiring that the solution of (2.1) is the limit solution of the problem (2.9). A
weak solution satisfying the entropy condition will be called an entropy weak solution. In the
scalar case, a theorem of uniqueness of the entropy weak solution was proved by Kružkov [38].
The entropy condition can be written in different ways. One way to approach this is to define an
entropy function η(u), which requires a new conservation law to be fulfilled for smooth solutions,
while for discontinuous solutions, the law becomes an inequality.

Definition 2.1.2. A regular convex function η : Ω −→ R is said to be the entropy of the system
(2.1) if there exist a d real and regular functions Gj : Ω −→ R such that,

∀u ∈ Ω, η′(u)f′j(u) = G′j(u), j = 1, · · · , d. (2.10)

The functions Gj(u) for 1 ≤ j ≤ d are called entropy fluxes.
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Corollary 2.1.1. The regular solutions of (2.1) satisfy

∂η(u)
∂t

+
d∑
j=1

∂Gj(u)
∂xj

= 0. (2.11)

Definition 2.1.3. We say that u, a weak solution of system (2.1), is an entropic solution of
this system if for every convex entropy η of this system, we have

∂η(u)
∂t

+
d∑
j=1

∂Gj(u)
∂xj

≤ 0, (2.12)

in the sense of distributions.

Theorem 2.1.2. Suppose that system (2.1) has a convex entropy η with entropy fluxes Gj. Let
(uε) be a sequence of regular solutions of (2.9) such that
i) ∃C > 0 independent of ε such that ||uε||L∞(D×R+) ≤ C.
ii) uε −→ u almost everywhere in D × R+ as ε −→ 0.
Then u is a solution of (2.1) satisfying the entropy inequality (2.12) in the sense of distributions
on D × R+.

Let’s examine the scalar case (p = 1, d ≥ 1) of the multidimensional conservation law (2.1).
We have seen that a function u is the unique solution of (2.1) if it satisfies
i) the definition of a weak solution,
ii) the entropy condition.
In some situations, it is preferable to have only one condition instead of the two mentioned
above. Here we give the definition of Kružkov [38], which combines i) and ii) and represents a
mechanism for identifying the unique physical solution of (2.1).

Definition 2.1.4. u is a weak entropy solution of (2.1) if for any constant a and for any
φ ∈ C1

0
(
D × R+) , φ ≥ 0, the following inequality holds

∫
D

∫
R+

|u− a|∂φ
∂t

+ sign(u− a)
d∑
j=1

(
fj(u)− fj(a)

) ∂φ

∂xj

 dtdx1 · · · dxd

+
∫
D
|u0 − a|φ (x1, · · · , xd, 0) dx1 · · · dxd ≥ 0.

(2.13)

2.1.1.4 1D Riemann problem

The Riemann problem involves studying the following equation
∂u
∂t

+ ∂f(u)
∂x

= 0 for x ∈ D ⊂ R, t > 0,

u(x, 0) = u0(x) =
{

ul if x ≤ 0,
ur if x > 0.

(2.14)

This problem was first studied by Riemann in gas dynamics (the "shock tube problem"): a tube
filled with gas is separated into two sections by a membrane. The gas has a higher density and
pressure in the first half of the tube than in the second, and zero velocity everywhere. The
question is: happens if the membrane is removed or broken at t = 0. This situation is modeled
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by the one-dimensional Euler equations, and the solution is obtained by solving the Riemann
problem for this system of conservation laws.

For scalar conservation laws, the Riemann problem is relatively simple to construct. The
solution is self-similar u = u(ξ) where

(
ξ = x

t

)
satisfies u(−∞) = ul and u(+∞) = ur. Between

the states ul and ur, u decomposes into two types of waves: shock waves and rarefaction waves.
I Shock waves: A shock wave is an elementary wave consisting of a simple discontinuity that
satisfies the Rankine-Hugoniot condition and the entropy condition, i.e., a wave of the form.

u(x, t) =
{
ul if x ≤ st,
ur if x > st,

(2.15)

where s is given by
s = f (ur)− f (ul)

ur − ul
.

To determine if the shock wave (2.15) is an entropic solution to the Riemann problem, two cases
must be considered



Case 1: ul < ur,
in this case, u(x, t) is a solution if f(u) ≥ f (ul) + s (u− ul)
for all u ∈ (ul,ur) ,

Case 2: ul > ur,
in this case, u(x, t) is a solution if f(u) ≤ f (ul) + s (u− ul)
for all u ∈ (ur,ul) ,

(2.16)

I Rarefaction wave: it is a continuous solution of (2.14). It takes the form

u(x, t) =


ul if ξ ≤ f′ (ul) ,
v(ξ) if f′ (ul) < ξ ≤ f′ (ur) ,
ur if ξ > f ′ (ur) ,

(2.17)

where v(ξ) is given by the equation
f′(v(ξ)) = ξ. (2.18)

The speed of the rarefaction wave is given by f′(v(ξ)), which must be an increasing function. If
we derive (2.18), we find that

f′′(v(ξ))v′(ξ) = 1.
In a rarefaction wave, f′ and v′ must have the same sign. As for the shock wave solution, two
cases must be considered

Case 1: ul < ur,
the rarefaction wave (2.17) is a solution of (2.14) if f′′(v) > 0
for all v ∈ (ul,ur) ,

Case 2: ul > ur,
the rarefaction wave (2.17) is a solution of (2.14) if f′′(v) < 0
for all v ∈ (ur,ul) ,

(2.19)
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2.2 The physical models considered
In this section, we will describe some models (PDEs) that will be used to validate our two-

dimensional and three-dimensional FVC scheme. The first model consists on the Saint-Venant
equations [39], also known as shallow water equations, will be used to describe free surface
flows in shallow water. Despite their age, the Saint-Venant equations remain relevant in the
field of maritime or river hydraulics. They are derived by vertically integrating the Navier-
Stokes equations under several assumptions [40, section 2.2]. By coupling these equations with
convection-diffusion equations for one or more tracers released in the water, we obtain equations
that can be used to model the transport and dispersion of a passive tracer (e.g., nutrients,
pollutants, temperature, etc.) using a fluid flow. For the three-dimensional case, we will focus
on the three-dimensional Euler equations, which can simulate the dynamics of non-viscous gases.
Using these equations, we aim to demonstrate the effectiveness of the FVC scheme in capturing
fluid dynamics in 3D.

2.2.1 Shallow water equations

The 2D shallow water system for the free-surface flow with the Coriolis effect and bottom
friction stress is formulated as

∂th+∇ · (hu) = 0,

∂thu +∇ · (hu⊗ u) + 1
2∇(gh2) = −gh∇Z − fc × hu⊥ − r(h,u),

(2.20)

where the unknowns are always the water height h(t, x, y) > 0 and the horizontal velocity mean
u(t, x, y) := (u, v)T (t, x, y) ∈ R2. The parameter fc is linked to the angular speed of the earth’s
rotation, g is the gravitational acceleration, r(h,u) has various expressions, for example, the
asymptotic derivation mentioned in [41] leads the authors to consider, at first order, a linear
friction term. The quadratic form in the Manning-Strickler velocity is nevertheless the most
widely used in river flow applications [42, 43], so in this study we use the latter approximation
such that the bottom’s friction term r(h,u) is given by, r(h,u) = (rfx , rfy) := η2gh−1/3|u|u, η
being the Manning roughness. The function Z(x, y) represents the bottom profile, see Fig 2.1
below.

Fig 2.1. Illustration of shallow water model variables.

In order to give the reader a global view of the shallow water system we propose to add other
aspects the the right-hand side of the second equation of system (2.20). For example, we can
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add the wind’s effect on the free surface, i.e., in the case where the wind is moving with high
velocity there is the friction term τ(h, ŭ) which is not negligible. The viscosity or diffusion term
can also be added if we want to solve turbulence problems in free surface flow. In this case, the
second equation of the system (2.20) becomes

∂thu +∇ · (hu⊗ u) + 1
2∇(gh2) = −gh∇Z − fc × hu⊥ − r(h,u) + τ(h, ŭ) + ν

−→
4hu, (2.21)

where τ(h, ŭ) = (τsx , τsy) := 1
2 C̆f |ŭ|ŭ, in which ŭ = (ŭ, v̆)T represents the wind speed and C̆f

is the coefficient of wind friction with water. ν is the diffusion coefficient associated with the
term, −→4hu := (4(hu), 4(hv))T .
In this study we will not deal with these two terms (τ(h, ŭ) and ν−→4hu ), otherwise the imple-
mentation of these terms is simple.
For simplicity, we rewrite system (2.20) in a vector form

∂tW +∇ · F(W ) = S(W ) +R(W ), (2.22)

where F(W ) = (F (W ), G(W ))T . Such that, we note AT is the transpose of a matrix A,

W =


h

hu

hv

, F (W ) =


hu

hu2 + 1
2gh

2

huv

, G(W ) =


hv

huv

hv2 + 1
2gh

2

,

S(W ) =


0

−gh∂xZ

−gh∂yZ

 and R(W ) =


0

fchv − rfx
−fchu− rfy

 .
Note that system (2.22) has to be solved in a bounded spatial domain Ω, with given boundary

and initial conditions. In practice, these conditions depend on the phenomenon studied (see
Chapter 4 where numerical examples are discussed).

2.2.1.1 Properties of the system

Here we present some important properties of the shallow water equation (2.20). The present
numerical approach will ensure that the approximate solutions satisfy, when possible, all these
properties.

2.2.1.1.1 Eigenstructure The shallow water system (2.20) can be written in a quasi-linear
form

∂tW + JF∂xW + JG∂yW = S(W ) +R(W ), (2.23)

where JF and JG are the Jacobian matrices of the fluxes

JF =


0 1 0

gh− u2 2u 0
−uv v u

 and JG =


0 0 1
−uv v u

gh− v2 0 2v

 . (2.24)

Using conventional techniques [33], we establish the definition JF((α1, α2)) := α1JF +α2JG. For
any (α1, α2) ∈ R2, the matrix JF((α1, α2)) exhibits three eigenvalues given by: λ1 = α1u+ α2v,
λ2 = α1u+ α2v + ‖(α1, α2)‖

√
gh, and λ3 = α1u+ α2v − ‖(α1, α2)‖

√
gh.
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The shallow water system is a first-order hyperbolic system of balance laws, and it is also
strictly hyperbolic for h > 0. The Jacobian matrix associated with the normal flow is defined as

JFn = JFnx + JGny =


0 nx ny

ghnx − uuη uη + unx uny

ghny − vuη vnx uη + vny

 , (2.25)

where n = (nx, ny)t is the normal vector and uη = unx + vny, The matrix JFn is diagonalizable
such that

JFn = PnΛnP−1
n (2.26)

where

Λn =


uη −

√
gh 0 0

0 uη 0
0 0 uη +

√
gh

 and Pn =


1 0 1

u−
√
ghnx −ny u+

√
ghnx

v −
√
ghny nx v +

√
ghny

 , (2.27)

2.2.1.1.2 Rotational invariance The two dimensional homogeneous shallow water equa-
tions (2.22) satisfy

H ≡ n · [F (W ), G(W )] = T−1F (T(W )), (2.28)

for all vectors W and for all real angles θ, or equivalently, normal directions of the surface Ω.
Here T = T(θ) is a rotation matrix and T−1(θ) is its inverse, given respectively as

T =


1 0 0
0 cos θ sin θ
0 − sin θ cos θ

 and T−1 =


1 0 0
0 cos θ − sin θ
0 sin θ cos θ

 . (2.29)

Proof. We invite the reader to consult [44, proposition 3.10.1 p 66 ].

2.2.1.1.3 Equilibrium An important property is related to the source terms, and the most
studied balance family is related to the presence of topography’s source term: the shallow water
system admits non-trivial steady-states. They are characterized by

∇ · hu = 0, ∇
(
|u|2

2 + g(h+ Z)
)
−
(

v
−u

)
∇× u = 0, (2.30)

where the operator ∇× is defined from R2 into R, it is the scalar rotational defined by ∇×u =
∂xv−∂yu. For flows in complex geometry, it seems very difficult to numerically preserve all two-
dimensional balances, except those that correspond to an area at rest and whose characterization
is independent of the dimension considered.

h+ Z = constant, u = 0. (2.31)

This particular stationary state, known as the resting lake state, is important because many flows
in lakes or coastal bays are perturbations around this balance. Therefore it is essential to prevent
numerical anomalies from disrupting the approached solution. However, the preservation of the
stationary states at the numerical level is not obvious to be achieved, and even the simplest
one is not an exception. In fact, (2.31) corresponds to a balance between flow terms and source
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terms, whose discretizations are not correlated. There are other categories of stationary states
resulting from an equilibrium between the pressure term and the Coriolis term, i.e.,

g∇h+ fc × u = 0. (2.32)

For example, at large scales, the atmospheric and oceanic flows bear most of the time the
perturbations of this stationary state [26], therefore it is also very important to be represented
in the approached solution. This balance adds a complexity to the balance of the lake at rest
because it involves non-zero speeds.

2.2.1.1.4 Entropy inequality The physical system we are dealing with here is a system of
conservation laws, so the energy aspect is very important in this type of system. Thus we propose
to say a few words on this point in order to provide insight into the treatment of this notion
when constructing approximate solutions under the constraint of preserving certain properties,
for example, the decay of energy in the presence of friction source terms. We call the entropy
solution to the shallow water system (see e.g. [45]), a weak solution that satisfies the following
entropy inequality

∂tE +∇ ·
[
(E + gh2

2 )u
]
6 0, (2.33)

where E is a mathematical entropy (which is the mechanical energy see [46]), defined as

E(h,u, Z) = h
|u|2

2 + gh2

2 + ghZ. This inequality becomes equality for regular solutions, in
the absence of energy loss terms, notably friction, and remains inequality, for admissible dis-
continuous solutions, resulting from classical calculations; we invite the reader to refer to [47,
subsection 1.1]. The mechanical energy, which is easily verified as convex with respect to the
conservative variables, acts here as a mathematical entropy. In the case of the system without
source terms and in the 1D problem, the mechanical energy is only one of the entropies that
must be associated with the system for the problem to be properly posed. In 2D, or when the
system contains the source terms, there is no longer a complete family of mathematical entropies.
Therefore, even if the inequality (2.33) alone is not sufficient for a rigorous mathematical study,
it nevertheless ensures the presence of an additional bound on a certain positive function of the
system unknowns and can provide information on the choice of a physical solution. The finite
volume scheme will be presented in the Chapter 3 verifies innately the conservation properties.
The energy decay property remains more difficult to satisfy.

2.2.2 Model of solute transport by fluid flow

Simulations that calculate the movement and dispersion of passive substances in natural
water bodies (e.g. a pollutants concentration) are essential for evaluating water pollution, de-
veloping strategies to enhance water quality, and assessing potential impacts on ecosystems
[48, 49, 50]. The shallow water equations are typically used to model flows in settings where
horizontal dimensions greatly exceed vertical ones. If a passive substance is thoroughly mixed
vertically, its behavior can be depicted by a depth-averaged movement-dispersion equation.
Combining the shallow water equations with the movement-dispersion equation results in a
parabolic partial differential equation. These equations govern distinct physical phenomena at
different scales: in the movement process, small waves travel at a finite speed, while in the
dispersion process, minor disturbances in flow fields or passive substance concentration spread
at an infinite speed. This aspect, along with the intricate morphologies of natural water bodies
that may include wet and dry zones, makes the problem especially challenging from a numerical
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standpoint. In the past ten years, numerical methods for scalar transport issues have gained
significant interest, particularly for scalar movement, a more intricate problem involving both
movement and dispersion. Notable examples include the works [7, 51], as well as the movement-
dispersion of a reactive tracer, such as in [52, 53]. Numerous other relevant studies can be found
in the existing literature. The mathematical model used to describe the transport of a tracer
with free-surface flow is based on the two-dimensional equations of shallow water. These equa-
tions, now fairly established in the literature, do not account for turbulence and viscosity-related
terms in this research. The system can be expressed in the following form

∂th+∇ · (hu) = 0,

∂thu +∇ · (hu⊗ u) + 1
2∇(gh2) = −gh∇Z − fc × hu⊥ − r(h,u) + τ(h, ŭ),

(2.34)

when a pollutant is released into a flow, the following pollutant transport and diffusion equation
must be linked to the system of equations (2.34)

∂thC +∇ · (huC)−∇ · (hD∇C) = hQ, (2.35)

where C denotes the pollutant’s average concentration, while D = (Dx, Dy)T signifies the dif-
fusion coefficients in both spatial directions. The term Q stands for the pollutant’s source, and
r(h,u) and τ(h, ŭ) represent the friction terms related to the bottom and the wind at the free
surface, respectively. These terms’ expressions can be found in Section 2.2.1. Additionally, the
Coriolis term is indicated by fc × hu⊥.

It is important to note that the water body’s geometry within our computational domain
shows that the horizontal length scale is significantly larger than the vertical length scale by
several orders of magnitude. Moreover, the pollutant is assumed to be released at the free surface
and stays on the water surface throughout the entire simulation period. The employment of the
two-dimensional hydrodynamic model combined with the advection-diffusion equation (2.35) is
well-founded. The systems (2.34) and (2.35) can be expressed in the following vector form in
terms of the flow variables W (h, hu, hv, hC)T

∂W

∂t
+∇ · (F(W )− F̃(W )) = S(W ) +R(W ), (2.36)

where

F(W ) =




hu

hu2 + 1
2gh

2

huv

huC

 ,


hv

huv

hv2 + 1
2gh

2

hvC





T

, F̃(W ) =




0
0
0

hDx∂xC

 ,


0
0
0

hDy∂yC





T

,

S(W ) =


0

−gh∂xZ

−gh∂yZ

0

 and R(W ) =


0

fchv − rfx + τsx

−fchu− rfy + τsy

hQ

 .

2.2.2.1 Properties of the system

The properties of system (2.36) are comparable to those of system (2.22), except for a
slight difference in the eigenstructure. In the pollutant transport-diffusion equation model, the
velocity field is generated by the dynamics of shallow water flow, resulting in primarily horizontal
dispersion of the pollutant along the surface, while vertical variations can be neglected.
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2.2.2.1.1 Eigenstructure We establish the definition of the normal flux associated with
the convective part of (2.36) in the following manner

Fn = (F, G) · n, (2.37)

where n = (nx, ny)T is the normal vector,

F =


hu

hu2 + 1
2gh

2

huv

huC

 and G =


hv

huv

hv2 + 1
2gh

2

hvC

 . (2.38)

The Jacobian matrices associated with the fluxes F and G are provided as follows

JF =


0 1 0 0

gh− u2 2u 0 0
−uv v u 0
−uC C 0 u

 and JG =


0 0 1 0
−uv v u 0

gh− v2 0 2v 0
−vC 0 C v

 . (2.39)

The Jacobian matrix JFn, which corresponds to the normal flux presented in equation (2.37),
can be expressed as follows

JFn =


0 nx ny 0(

gh− u2)nx − uvny 2unx + vny uny 0
−uvnx +

(
gh− v2)ny nxv unx + 2vny 0

−C (unx + vny) Cnx Cny unx + vny

 . (2.40)

The matrix (2.40) has eigenvalues that can be expressed as follows

λ1 = uη − c, λ2 = λ3 = uη and λ4 = uη + c, (2.41)

where c =
√
gh and uη = unx + vny.

2.2.3 Two-dimensional multilayer shallow water equations

The classical shallow water systems have some limitations. In fact, the formulation of the
system in terms of height and depth-averaged velocity leads to a loss of information on the
vertical profile of fluid velocity. In order to overcome this lack of information on the velocity
inside the fluid while preserving the shallow water formulation known for its numerical efficiency,
semi-discrete versions in z of the hydrostatic Navier-Stokes equations have been introduced,
known as shallow water-type multilayer models.
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Fig 2.2. Illustration of a two-dimensional multilayer shallow water system.

The general principle of multilayer models is to partition the total height of the fluid, denoted
by H, as illustrated in Fig 2.2. In other words, the total height of the fluid H is divided into M
layers

H(t, x, y) =
M∑
θ=1

hθ.

This division is used in the integration of the Navier-Stokes conservation equation for momentum,
which is carried out after a vertical discretization of the fluid volume in each of the defined
domains.

A multilayer model can be seen as a partial discretization (with respect to the variable) of the
Navier-Stokes equations. The nature of this discretization leads to different multilayer models.
Three examples of multilayer models introduced in recent years are the Rambaud model [54],
the Audusse et al. model [55], and the Audusse model [56]. In this work, we will focus on the
multilayer model introduced by Audusse et al. [55]. Finally, we note that the multilayer models
mentioned here are very different in nature from the multifluid models studied in [57, 58], where
the layers correspond to physical distinctions between miscible fluids. Here, the notion of layer
is purely numerical.

In this study, we consider the two-dimensional version of a model expressed in a conservative
form which was presented in [59] as

∂tH +
M∑
θ=1

∂x (lθHuθ) +
M∑
θ=1

∂y (lθHvθ) = 0,

∂t (lθHuθ) + ∂x

(
lθHu

2
θ + 1

2glθH
2
)

+ ∂y (Huθvθ) = −glθH∂xZ + fclθHvθ + Fθ,

∂t (lθHvθ) + ∂x (Huθvθ) + ∂y

(
lθHv

2
θ + 1

2glθH
2
)

= −glθH∂yZ − fclθHuθ +Gθ.

(2.42)

The model is described by a set of partial differential equations that relate the water height
and velocity for each layer. The equations include terms that represent advection, gravity, the
Coriolis force, and external forces. The water velocity vector for the θth layer is represented by
uθ = (uθ, vθ)T , while Z(x, y) represents the topography of the basin. The Coriolis parameter fc
is a function of the rotation of the Earth, and H(t, x, y) represents the water height for the entire

system. Moreover, lθ denotes the relative size of the θth layer with, lθ > 0, and
M∑
θ=1

lθ = 1, and
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hθ(t, x, y) is defined as hθ = lθH, θ = 1, 2, . . . ,M , where M is the total number of layers in
the flow domain, see Fig 2.2. The source term Fθ represents the external force in the x-direction
acting on the θth layer, the force Fθ takes into account the effects of friction and momentum
exchange. Therefore, we can write

Fθ = F (u)
θ + F (ν)

θ + F (b)
θ + F (w)

θ + F (µ)
θ , θ = 1, 2, . . . ,M. (2.43)

The first term F (u)
θ is associated with the exchange of x-momentum between layers defined by

the vertical discretization P0 of the flow domain. The forcing term F (ν)
θ arises from horizontal

diffusion, while the last three terms F (b)
θ ,F (w)

θ and F (µ)
θ are related to frictional effects. To

compute the advection term F (u)
θ , we use the techniques presented in [55]

F (u)
θ = uθ+1/2Exθ+1/2 − uθ−1/2Exθ−1/2, (2.44)

where the computing of the mass exchange terms Exθ+1/2 is performed as follows

Exζ+1/2 =



0, if ζ = 0,
ζ∑

β=1

∂x (hβuβ)− lβ
M∑
γ=1

∂x (hγuγ)

 , if ζ = 1, 2, . . . ,M − 1,

0, if ζ = M,

(2.45)

and the computation of the interface velocity uθ+1/2 in equation (2.44) employs a straightforward
upwind technique that incorporates the polarity of the mass exchange term.

uθ+1/2 =
{
uθ, if Exθ+1/2 ≥ 0,
uθ+1, if Exθ+1/2 < 0. (2.46)

The vertical kinematic eddy viscosity term denoted by F (µ)
θ incorporates the effects of inter-layer

friction and is formulated as follows

F (µ)
θ =


2ν u2−u1

(l2+l1)H , if θ = 1,

2ν uθ+1−uθ
(lθ+1+lθ)H − 2ν uα−uθ−1

(lθ+lθ−1)H , if θ = 2, 3, . . . ,M − 1,

−2ν uM−uM−1
(lM+lM−1)H , if θ = M.

(2.47)

It should be noted that the eddy viscosity ν is utilized in this context. Additionally, a com-
prehensive formulation of the viscous tensor in multilayer shallow water equations has been
presented in [60]. Moreover, the interface velocity in equation (2.46) has been estimated using
the mean of the two velocities uθ+1 and uθ, as described in [60]. The expressions for the external
friction terms in equation (2.43) are also provided.

F (b)
θ =

{
− τxb

ρ , if θ = 1,
0, if θ = 2, . . . ,M,

and F (w)
θ =

{
0, if θ = 1, . . . ,M − 1,
τxw
ρ , if θ = M,

(2.48)

where, ρ represents the water density, while τxb and τxw denote the bed shear stress and the shear
of the blowing wind, respectively. These variables are defined based on the water velocity, given
by (u1, v1), and the wind velocity, denoted as w = (wx, wy)T .

τxb = ρCbu1

√
u2

1 + v2
1 and τxw = ρCwwx

√
w2
x + w2

y, (2.49)
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where Cb is the bed friction coefficient, which may be either constant or estimated using the
Manning equation as Cb = gn2

b

H1/3 , where the Manning roughness coefficient of the bed is denoted
by nb, while the wind friction coefficient Cw is expressed as [61].

Cw = σ2ρa
H

, (2.50)

where σ represents the wind stress coefficient, and ρa represents the density of air. In equation
(2.43), the horizontal diffusion terms F (ν)

θ are defined as follows for θ = 1, 2, . . . ,M

F (ν)
θ = νH∂x (lθH∂xuθ) + νH∂y (lθH∂yuθ) , θ = 1, 2, . . . ,M, (2.51)

where νH is the horizontal viscosity coefficient.

Similarly, the same expressions for all forces (Gθ), mass exchange terms, and horizontal
diffusion term are used in the y-direction acting on the θ layer, with only the substitution of uθ
by vθ in the aforementioned formulas (i.e., from (2.44) to (2.51)).

It should be noted that the bed friction forcing terms F (b)
θ and G(b)

θ act exclusively on the
lower layer, while the wind-driven forcing terms F (w)

θ and G(w)
θ act solely on the upper layer.

Additionally, it is important to emphasize that the internal friction terms F (µ)
θ and G(µ)

θ represent
the friction between adjacent layers, as explained in [56]. Equation (2.42) can also be expressed
concisely in vector form

∂tW + ∂xF(W ) + ∂yG(W ) = S(W ) + R(W ), (2.52)

where is the vector W , which contains the conserved variables. The vectors of flux functions,
denoted as F and G, are also involved in this equation. Additionally, the vector of source terms
is defined by S and R.

W =



H

l1Hu1

l2Hu2

...
lMHuM

l1Hv1

l2Hv2

...
lMHvM



, F(W ) =



M∑
θ=1

lθHuθ

l1Hu
2
1 + 1

2gl1H
2

l2Hu
2
2 + 1

2gl2H
2

...
lMHu

2
M + 1

2glMH
2

l1Hu1v1

l2Hu2v2

...
lMHuMvM



, G(W ) =



M∑
θ=1

lθHvθ

l1Hu1v1

l2Hu2v2

...
lMHuMvM

l1Hv
2
1 + 1

2gl1H
2

l2Hv
2
2 + 1

2gl2H
2

...
lMHv

2
M + 1

2glMH
2



,
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S(W ) =



0
−gl1H∂xZ + fcl1Hv1

−gl2H∂xZ + fcl2Hv2

...
−glMH∂xZ + fclMHvM

−gl1H∂yZ − fcl1Hu1

−gl2H∂yZ − fcl2Hu2

...
−glMH∂yZ − fclMHuM



, R(W ) =



F (u)
1 + F (b)

1 + F (w)
1 + F (µ)

1 + F (ν)
1

F (u)
2 + F (b)

2 + F (w)
2 + F (µ)

2 + F (ν)
2

...
F (u)
M + F (b)

M + F (w)
M + F (µ)

M + F (ν)
M

G(u)
1 + G(b)

1 + G(w)
1 + G(µ)

1 + G(ν)
1

G(u)
2 + G(b)

2 + G(w)
2 + G(µ)

2 + G(ν)
2

...
G(u)
M + G(b)

M + G(w)
M + G(µ)

M + G(ν)
M



.

It is important to note that for a problem to be well-posed, the system (2.52) must be solved
over a time interval of [0, T ] in a two-dimensional spatial domain Ω, bounded by Γ, and subject
to specified initial and boundary conditions.

2.2.4 Three–Dimensional Euler equations

We consider the two-dimensional Euler equations for modeling the dynamics of non-viscous
gases. In the following presentation, the chosen variables to describe the laws of conservation
include density, ρ, the velocity vector u := (u, v, w), total energy, E, and pressure, p. Generally,
the flow is three-dimensional, time-dependent, and compressible, with the fluid being viscous and
consisting of a single phase (gas). This study excludes volumetric forces (such as gravity, etc.)
and volumetric heat fluxes (radiation, etc.). The equations presented here will be formulated in
differential form, using Einstein’s notation to simplify their expression.

∂tρ+∇ · (ρu) = 0,

∂tρu +∇ · (ρu⊗ u) = −∇p,

∂tρE +∇ · (uρE) = −∇ · (up).

(2.53)

The law established by the state connects E, ρ, p, and u and can be represented in the following
manner

E = ρ(1
2 |u|

2 + e(ρ, p)), (2.54)

where e is the specific internal energy; for ideal gases, it can be described using the subsequent
formula

e(ρ, p) = p

(γ − 1)ρ, (2.55)

with γ is the ratio of specific heats, it is a constant that depends on the particular gas, e.g
γ = 1.4 for air. Another quantity that expresses the ratio of the local velocity of the fluid to the
sound speed in this same fluid is called Mach number, which is a dimensionless number defined
as

M = |u|
c
, (2.56)

where c is the sound speed in a gas. For ideal gas, we can express c by:

c =
√
γp

ρ
. (2.57)

c varies with the nature and temperature of the fluid. So, the Mach number does not correspond
to a fixed speed, it depends on local conditions. Generally, velocity is categorized according to
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its corresponding regimes [62], for example, the subsonic (M < 0.8), transsonic (0.8 6M < 1.2),
supersonic (1.2 6M < 5) and hypersonic (M > 5) regimes.

To enhance the clarity of the expression, we have rephrased the system (2.53) by employ-
ing the subsequent conservative vector representation, which will be utilized for the numerical
reformulation

∂W
∂t

+∇ · F(W) = 0, (2.58)

with

W =



ρ

ρu

ρv

ρw

ρE


, F(W) =





ρu

ρu2 + p

ρuv

ρuw

u(ρE + p)


,



ρv

ρuv

ρv2 + p

ρvw

v(ρE + p)


,



ρw

ρuw

ρvw

ρw2 + p

w(ρE + p)





T

, (2.59)

where F is the flux tensor and W is the vector of unknowns. We also define the normal flux as
follows

Fn = (F, G, H) · n, (2.60)

where n = (nx, ny, nz)t is the normal vector, and

F =


ρu

ρu2 + p

ρuv

ρuw

u(ρE + p)

 , G =


ρv

ρuv

ρv2 + p

ρvw

v(ρE + p)

 , H =


ρw

ρuw

ρvw

ρw2 + p

w(ρE + p)

 . (2.61)

2.2.4.1 Properties of the system

Here we use the results stated and proved in Toro’s book [63] for three-dimensional time-
dependent Euler equations. The proofs are omitted, as they involve elementary but tedious
algebra.

2.2.4.1.1 Eigenstructure The Jacobians matrices corresponding to the fluxes F, G and H
in (2.61) are given by

JF =


0 1 0 0 0

γ−1
2 |u|

2 − u2 (3− γ)u (1− γ)v (1− γ)w γ − 1
−uv v u 0 0
−uw w 0 u 0(

γ−1
2 |u|

2 −H
)
u H + (1− γ)u2 (1− γ)uv (1− γ)uw γu

 , (2.62)

JG =


0 0 1 0 0
−vu v u 0 0

γ−1
2 |u|

2 − v2 (1− γ)v (3− γ)u (1− γ)w γ − 1
−vw 0 w v 0(

γ−1
2 |u|

2 −H
)
v (1− γ)uv H + (1− γ)v2 (1− γ)vw γv

 , (2.63)
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JH =


0 0 0 1 0
−uw w 0 u 0
−vw 0 w v 0

γ−1
2 |u|

2 − w2 (1− γ)u (1− γ)v (3− γ)w γ − 1(
γ−1

2 |u|
2 −H

)
w (1− γ)uw (1− γ)vw H + (1− γ)w2 γw

 , (2.64)

in these matrices, H represents the total specific enthalpy defined by

H = E + p

ρ
. (2.65)

The Jacobian matrix JFn corresponding to the normal flux (2.60) is given by

JFn = JFnx + JGny + JHnz

=



0 nx ny nz 0
γ̆
2 |u|

2nx − uuη unx − γ̆unx + uη uny − γ̆vnx unz − γ̆wnx γ̆nx
γ̆
2 |u|

2ny − vuη vnx − γ̆uny vny − γ̆vny + uη vnz − γ̆wny γ̆ny
γ̆
2 |u|

2nz − wuη wnx − γ̆unz wny − γ̆vnz wnz − γ̆wnz + uη γ̆nz(
γ̆
2 |u|

2 −H
)
uη Hnx − γ̆uuη Hny − γ̆vuη Hnz − γ̆wuη γuη


,

where γ̆ = γ − 1 and uη := u · n = unx + vny + wnz. The three-dimensional system (2.58) is
hyperbolic with eigenvalues given by

λ1 = uη − c, λ2 = uη, λ3 = uη + c and λ4 = λ5 = uη, (2.66)

the matrix JFn is diagonalizable and we write

JFn = PnΛnP−1
n , (2.67)

where

Λn =


uη − c 0 0 0 0

0 uη 0 0 0
0 0 uη + c 0 0
0 0 0 uη 0
0 0 0 0 uη

 , (2.68)

and

Pn =


1 1 1 0 0

u− cnx u u+ cnx bx τx
v − cny v v + cny by τy
w − cnz w w + cnz bz τz
H − uηc |u|2/2 H + uηc ub uτ

 , (2.69)

where n := (nx, ny, nz)T , τ := (τx, τy, τz)T and b = (bx, by, bz)T are the three orthogonal unit
vectors such as, b := τ ∧n, τ := n∧b and n := b∧ τ . The corresponding velocities are defined
as uτ := u · τ and ub := u · b.
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2.2.4.1.2 Rotational invariance As for the shallow water equation, the important prop-
erty of rotational invariance is also verified by the Euler equations. This property allows in fact
prove the hyperbolicity in time of the Euler equations and it can also be used for computational
purposes to deal with domains that are not aligned with the Cartesian directions.

Definition 2.2.1. Define two component rotation matrices as:

RY (φ) =


1 0 0 0 0
0 cosφ 0 sinφ 0
0 0 1 0 0
0 − sinφ 0 cosφ 0
0 0 0 0 1

 ,

which rotates the momentum components of W through an angle ψ about the y axis, and

RZ(θ) =


1 0 0 0 0
0 cos θ sin θ 0 0
0 − sin θ cos θ 0 0
0 0 0 1 0
0 0 0 0 1

 ,

which rotates the momentum components of W through an angle θ about the z axis.

Definition 2.2.2. Define the compound rotation matrix as

R(θ, φ) = RY (φ)RZ(θ) =


1 0 0 0 0
0 cosφ cos θ cosφ sin θ sinφ 0
0 − sin θ cos θ 0 0
0 − sinφ cos θ − sinφ sin θ cosφ 0
0 0 0 0 1

 ,

which rotates first about the z axis, then about the y axis.

Proposition 2.2.1. The time-dependent three dimensional Euler equations are rotationally in-
variant, that is they satisfy

cosφ cos θ F + cos θ sinφ G + sinφ H = R−1F(RW)

for all angles φ, θ and vectors W.

For more details on rotational invariance and related properties of Euler equations. See [63,
section 3.2].

2.2.4.1.3 Primitive Variable Formulation Another form of Euler equations using the
primitive variables W̆ = (ρ, u, v, w, p)T can be formulated as

∂tW̆ + A
W̆
∂xW̆ + B

W̆
∂xW̆ + C

W̆
∂xW̆ = 0, (2.70)

where the coefficient matrices A
W̆
, B

W̆
and C

W̆
are given by

A
W̆

=


u ρ 0 0 0
0 u 0 0 1/ρ
0 0 u 0 0
0 0 0 u 0
0 ρc2 0 0 u

 , B
W̆

=


v ρ 0 0 0
0 v 0 0 0
0 0 v 0 1/ρ
0 0 0 v 0
0 0 ρc2 0 v

 , (2.71)
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and

C
W̆

=


w ρ 0 0 0
0 w 0 0 0
0 0 w 0 0
0 0 0 w 1/ρ
0 0 0 ρc2 w

 . (2.72)

We also define the matrix Jn as follows

Jn = A
W̆
nx + B

W̆
ny + C

W̆
nz. (2.73)

This matrix is diagonalizable and has the same eigenvectors as the matrix JFn (2.67).

Remark 2.2.1. According to Toro [63], for regular solutions, this formulation yields the same
results as the conservative formulation. However, the same behavior is not observed for other
solutions, as this form generates incorrect shocks.

This remark is addressed through the shallow water equations and the isothermal equa-
tions in [63, section 3.3]. However, non-conservative formulations offer certain advantages over
their conservative counterparts when analyzing the equations, for instance. Moreover, from a
numerical standpoint, there has been a recent resurgence of interest in using schemes for non-
conservative formulations of the equations. The FVC scheme, which we will describe in detail
in the following chapter, has the advantage of being reformulated for both conservative and
non-conservative variables without any notable concerns.
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Chapter 3

Generalities on Numerical Methods

Short summary
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3.1.3 Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.1.4 Godunov’s theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.1.5 Second-order extension . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.1.6 Godunov’s scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.2 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.2.1 Shallow water flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.2.2 Euler equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.3 Background on FVC Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.3.1 One-dimensional FVC scheme . . . . . . . . . . . . . . . . . . . . . . . 56
3.3.2 Analysis of FVC scheme . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.3.3 Two-dimensional FVC scheme in Cartesian mesh . . . . . . . . . . . . 62

3.1 Discretization techniques in the framework of the finite vol-
ume method

The finite volume method is a widely used numerical technique for discretizing equations
or systems of conservation laws. As the name suggests, a conservation law preserves a specific
physical quantity Q(t,X), for instance, conserved entities may include mass, momentum, or
energy. Assuming that the local conservation equation takes the following form

∂tQ(t,X) +∇ · F(Q(t,X)) = S(t,X), (3.1)

where F represents the flux responsible for transporting Q, while S denotes the source term,
which may account for factors such as gravity, the emergence or disappearance of chemical
species, bottom friction, and so on. If necessary, state laws are introduced to close the problem.
The spatial domain is partitioned into a finite number of elements, which can form either struc-
tured or unstructured meshes. Next, control volumes must be defined, potentially consisting of
one or more mesh elements. Control volumes and elements may not always correspond. Con-
trol volumes are employed during spatial discretization, with the solution computed at a point
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within the control volume known as the collocation point. Various options exist for defining
control volumes: cell-centered, cell-vertex, and node-vertex. Fig 3.1 illustrates the finite volume
method using the "cell-vertex" formulation as seen in [33]. In this example, the control volume
is determined by considering all triangles sharing a common vertex pi and connecting their mid-
points from pi to the triangle’s barycenter. It is important to note that in the manapy
code2, elements and control volumes are conflated and the solution is computed at
the center of gravity, following the "cell-centered" formulation, see Fig 3.3.

Fig 3.1. Finite volume "cell-vertex" formulation.

Before presenting the finite volume method, we will establish the concept of a "good" mesh.
This definition is introduced because it is often overlooked in the context of the problem, as seen
in [64]. However, it is crucial to remember that it plays a role in achieving convergence results
in numerical methods, whether in finite element or finite volume formulations, as discussed in
Section 3.1.3. Since the majority of examples we will examine feature simple geometry, we
assume the finite volume mesh is admissible. The definition we will provide is derived from
reference [65].
Definition 3.1.1. Let Ω be a polygonal bounded open of Rd with d = 1, 2, 3 and let ∂Ω = Ω̄\Ω
be its boundary. An admissible discretization by finite volumes of Ω is given by a triplet T =
(O, E ,P) with O is a non-empty finite family of disjoint convex polygonal open sets of Ω, this
is what we call "control volumes" such that Ω̄ =

⋃
T∈O

T̄ . E is a finite family of disjoint sets of

Ω̄ that is the "edges" such that for any γ ∈ E, there exists a hyperplane H of Rd and T ∈ O
with γ̄ = ∂T

⋂
H and γ a non-empty open subset of H. We also assume that for any T ∈ O,

there exists a subset ET of E such that ∂T =
⋃
γ∈ET

γ̄. P is a family of points of Ω indexed by

O, P = (xT )T∈O, such that for all T ∈ O, xT ∈ T .

Fig 3.2. Types of 2D and 3D finite volume elements used and implemented.
2https://github.com/imadki/manapy
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As an illustration, Fig 3.2 shows the elements used to construct the scheme and which are
also implemented in manapy.

The finite volume method possesses several notable characteristics. Firstly, it is conservative,
enabling the effective treatment of discontinuities such as shocks. In fluid-structure interaction
problems, the fluid acts as a load on the structure (e.g., shock wave, rarefaction, explosion,
etc.), which must be accurately modeled. Other benefits of the finite volume method include its
simplicity and adaptability.

Unlike the finite element method, there is no need to define a reference element for coordinate
systems. Moreover, it is especially well-suited for problems involving complex geometry. This
is the reason finite volumes are the most prevalent numerical method employed in commercial
CFD codes today. Nonetheless, the finite volume method has its limitations, while it produces
satisfactory results, it could be more precise and less diffusive. To address these shortcomings,
two options are available: dynamic mesh refinement or improving the accuracy of the scheme.
In the following sections, we will discuss the development of accurate schemes.

3.1.1 Spatial discretization

We have previously stated that the equations of interest can be expressed in the following
form.

∂tQ +∇ · F(Q) = S. (3.2)

Suppose that the domain Ω is partitioned into a finite collection of control volumes Ω = (Ti)i∈I ,
where I represents a finite set of indices. Additionally, we will assume that the mesh is admissible
according to the definition previously provided. To obtain a weak solution to the problem, we
need to establish a variational approximation. For a first-order solution, we will consider the
following function space

Vh =
{
v ∈ L2(Ω) : v|Ti = constant; i ∈ I

}
. (3.3)

The functions ψi(X) = 1Ti(X) form a basis of Vh. We are looking for Q solution of the equation∫
Ω

(
∂tQ +∇ · F(Q)

)
ψjdµ =

∫
Ω
Sψjdµ, (3.4)

that gives ∑
i∈I

∫
Ti

(
∂tQ +∇ · F(Q)

)
ψjdµ =

∑
i∈I

∫
Ti

Sψjdµ. (3.5)

Let us choose ψj(X) = 1Tj (X); consequently, formula (3.5) thus becomes∫
Tj

(
∂tQ +∇ · F(Q)

)
dµ =

∫
Tj

Sdµ. (3.6)

Then, applying the divergence theorem, we have∫
Tj

∇ · F(Q)dµ =
∫
∂Tj

F(Q) · ndσj . (3.7)

In this context, ∂Tj represents the boundary of the control volume Tj , F refers to the convective
flux tensor, and n is the outward normal of Tj . F · n signifies the normal flux. We will adopt
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the Eulerian frame to streamline the explanation and assume that the control volume remains
constant over time. Consequently,

∂t

∫
Tj

Qdµ = |Tj |∂tQ̄j , (3.8)

where, Q̄j represents the average value of the solution over the control volume Tj , and |Tj | is
the measure of the control volume Tj . By following a similar approach for S, we only need to
approximate the surface integral.

In summary, we can state that defining a finite volume scheme involves deciding how to
compute the surface integral through the flux. For instance, we assume that the flux remains
constant on each face and is estimated at its center. The semi-discrete equation associated with
(3.2) is defined as follows

∂Q̄j

∂t
= − 1
|Tj |

Nedges∑
k=1

|γjk|Φjk + S̄j , (3.9)

where Φjk is the computed numerical flux at the surface of the kth face of the control volume
Tj . For more clarity in the notations used, we will use as an example in 2D, a mesh represented
in Fig 3.3, Ti, Tj refer to the control volumes, γij is the edge between Ti and its neighbour Tj
and nij is the normal vector to γij .

Fig 3.3. "Cell-centered" formulation.

A flux function, Φij , can then be employed to determine the flux value from two states (Left
state Q̄L and right state Q̄R). For instance, in structured or unstructured meshes, the flux can
be defined as the average of the convective fluxes located to the left and right of the shared face.
This can also be achieved by solving the Riemann problem associated with these two evaluated
states through interpolation using multiple collocation points. Alternatively, the intermediate
state at the face can be approximated by solving local linearized Riemann problems and then
applying the physical flux to this state to find the numerical flux. Among these numerical fluxes,
we can mention [66, 67, 68, 69, 70, 71, 72, 73, 31, 74]. This list is not exhaustive, there are other
numerical schemes that we have omitted here to avoid making the document overly lengthy.

The FVC scheme approximates the intermediate state at each interface (referred to as
Q̄i+1/2) using the method of characteristics and then evaluates the physical flux at these in-
termediate states F(Q̄i+1/2), without employing the Jacobian matrix or solving the Riemann
problem.
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From a physical standpoint, the existence of non-trivial stationary states, which are those
where the unknowns are not constant within the domain, is a characteristic of some equation
systems of type (3.2) related to the presence of source terms. This issue has been a significant
research topic since the mid-1990s, with numerous publications addressing it up to the present
day; see the references cited in the books [11, 22, 23, 18]. The most extensively studied family
of equilibrium is associated with the presence of the topography source term (Shallow water
equation) and the gravity term (Euler equations). A numerical scheme that does not preserve
equilibrium is not useful.

3.1.2 Temporal discretization

An explicit first-order scheme is typically used for time discretization of the semi-discrete
equation (3.9). The time step is denoted as ∆t ∈ R∗+, and the initial time is set as t0 = 0, with
tn = n∆t representing subsequent times. Let’s note Q̄n

j the approximate solution in the cell Tj
at time tn, then

∂Q̄n
j

∂t
'

Q̄n+1
j − Q̄n

j

∆t , (3.10)

finally we get

Q̄n+1
j = Q̄n

j −
∆t
|Tj |

Nedges∑
k=1

|γjk|Φn
jk + ∆tS̄nj . (3.11)

The discretization’s explicit aspect enforces a stability condition on the time step known as
the CFL (Courant-Friedrichs-Lewy). To circumvent stability issues, an implicit time scheme is
also a viable option. Nonetheless, the flux term’s non-linear nature presents another challenge
that requires a system of equations and a root-finding algorithm to complete the computational
process. Please note that in the subsequent text, we will eliminate the bar above the variables
to simplify notation. However, it is essential to keep in mind that we are solely computing the
solution’s average value over the control volume.

3.1.3 Convergence

There are convergence results for the case of hyperbolic equations in one or more space
dimensions. In general, if the flux verifies specific properties such as consistency, there is conver-
gence to a weak solution, but this solution is usually not unique. Some of these solutions need
to be corrected from a physical point of view. In order to find a physically acceptable solution,
additional conditions have to be verified, such as the Lax entropy condition [75]. In this case,
the solution is unique and verifies the Rankine-Hugoniot conditions. For systems of hyperbolic
equations, there are few theoretical results on convergence. However, for further information,
refer to [33].

3.1.4 Godunov’s theorem

In order to explain the necessity of the transition to 2nd order in space and time, we will talk
in this paragraph about Godunov’s theorem. Before starting it, we need to give some definitions.
These notions describe the various properties that numerical schemes can verify.

Consider a discrete function u = (ui)i∈Z defined on R i.e., u is given by its values on a
discrete set of points, we define its total variation by

TV (u) =
+∞∑
−∞
|uj+1 − uj |, (3.12)
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A numerical scheme is said to be Total Variation Diminishing (TVD) if it satisfies the following
condition

TV (Wn+1) 6 TV (Wn). (3.13)

In this context, Wn represents the numerical solution at time tn, and W 0 signifies the initial
condition. As a result, the solution’s maximum (or minimum) cannot increase (or decrease)
correspondingly. A scheme preserves monotonicity if, for any monotonic sequence (Wn

i )i∈Z,
the sequence (Wn+1

i )i∈Z continues to be monotonic. This characteristic is crucial as it ensures
the absence of oscillations in the solution. There are relations between the monotonicity and
the TVD properties. In the scalar case, it is possible to demonstrate that these two concepts
are equivalent and represent a convergence criterion for a conservative scheme. Nevertheless,
Godunov’s theorem asserts that these two properties cannot be extended beyond the first order:
"Numerical linear schemes that preserve monotonicity can only have a maximum order of one"
[67].

3.1.5 Second-order extension

For the second order in space, it is not assumed that the solution remains constant within
each control volume; rather, it is considered linear. However, according to Godunov’s theo-
rem, elevating a scheme’s order will result in oscillations within the solution. To address this
inconsistency, the notion of limiters will be introduced in this section.

3.1.5.1 TVD Scheme

The concept of a TVD scheme has been discussed earlier. When fluid variables are portrayed
as piecewise linear within each control volume, oscillations can occur. This happens if the slope
linked to a variable in a single volume exceeds the disparity between the average values of
the neighboring volumes. As a result, implementing a TVD scheme is crucial to prevent the
solution’s non-monotonic behavior. In [76], Van Leer established the subsequent criterion: "The
interpolation in a given element must not be outside the values defined by the neighboring values
of the interpolated variable".
This condition is mathematically described by the relation

min
|l−i|61

Wl 6 πi(x) 6 max
|l−i|61

Wl, (3.14)

where πi(x) is the interpolation polynomial in the cell i, see Fig 3.4. In order to develop highly
accurate methods, the TVD scheme is commonly employed. Although this primarily holds
significance in scalar cases, the TVD scheme concept is also utilized for systems of conservation
laws. The justification for this lies in its simplicity and the satisfactory numerical results it
yields. There are other methods to increase the order in space, such as the Piecewise Parabolic
Method (PPM) [77] or Essentially Non-Oscillatory (ENO) schemes [78].
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Fig 3.4. Monotonicity - Van Leer criterion. Right: monotone. Left: not monotone.

3.1.5.2 Second order in space

We will now explain how to increase the accuracy of a finite volume scheme via a monotone
Upwind-centered Schemes for Conservation Laws (MUSCL) approach.

To move to a second-order approximation, we will apply a first-order Taylor approximation
to the solutions at the center of gravity of each control volume. This will give us an evaluation
of the solution to the left and right of the common face

WL
ij = Wi + (~rij − ~ri)∇Wi,

WR
ij = Wj + (~rij − ~rj)∇Wj ,

(3.15)

where ∇Wi and ∇Wj are the gradients calculated at the centers of the control volumes Ti and
Tj respectively. Finding the gradient in a Cartesian mesh is straightforward, but for triangular
or unstructured meshes, special techniques are often necessary to estimate the gradient at the
center. There are two main methods of calculation. One is based on the Green-Ostrogradski
theorem, and the other is based on the least squares method, see [79, section 3.2.4].
~rij − ~ri and ~rij − ~rj are the vectors originating at the center of the two control volumes and
pointing to the center of the face.

Fig 3.5. Reconstruction for Cell-centered formulation.

The reconstruction was done component by component using the conservative variables of
the system of equations to be solved. The method based on the least squares method explained
in detail in [79] has been implemented in the manapy code and validated on numerous examples.

3.1.5.3 Concept of limiters

As we have seen, to improve the accuracy of the scheme, we have chosen to approximate the
solution linearly for each control volume. However, the calculation of the gradient can lead to the

49



CHAPTER 3. GENERALITIES ON NUMERICAL METHODS

appearance of oscillations and thus degrade the approximation of the solution. For this, we want
to build a TVD scheme, as explained above. To solve this problem, Sweby [80] introduced the
notion of a limiter. In [80], Sweby proves that the flux limiter ψ must check certain conditions.
A TVD region can then be associated with the limiter for a second-order scheme Fig 3.6.

Fig 3.6. Limiter region associated with a second-order TVD scheme.

Note that flux limiters are also called slope limiters because they both have the same math-
ematical form and both have the effect of limiting the solution gradient near shocks or disconti-
nuities. Some of the limiters that are frequently used in general meshes include [81, 82, 83, 84],
but this is not an exhaustive list of all the limiters available.

3.1.5.4 Second order in time

To extend the scheme to second order in time, there are methods such as the Runge-Kutta
scheme, the MUSCL-Hancock type scheme, and other methods that are described in [85, 86].
Originally, the MUSCL-type scheme was introduced by Van Leer to allow for an extension to
order two in space, as discussed above. Hancock proposes a MUSCL-type scheme that also allows
for a second-order extension in time. This shift to the second order in time will increase the
robustness of the calculations and limit the oscillations when approaching the CFL condition.

3.1.6 Godunov’s scheme

The Godunov scheme [87] is the most natural finite volume scheme. It is based on the
exact resolution of the Riemann problem, which is a Cauchy problem where the initial data is
composed of only two constant states separated by a discontinuity

∂tW + ∂xF(W ) = 0,

W (0, x) =
{
WL, if x < 0,
WR, if x > 0.

(3.16)

We assume that the weak entropic self-similar solution of this problem, denoted byWR
(
x
t ,WL,WR

)
,

is known. It is well known that in a hyperbolic system, information propagates at a finite speed.
Thus, λ− (WL,WR) and λ+ (WL,WR) denote respectively the smallest and largest wave speeds
developed by the Riemann problem WR

(
x
t ,WL,WR

)
. Before introducing the Godunov scheme,

we present the following result, which will be useful later.

Lemma 3.1.1. Let ∆t and ∆x satisfy the following condition

∆t
∆x max

∣∣λ± (WL,WR)
∣∣ ≤ 1

2 , (3.17)
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then, the mean of the exact solution of the Riemann problem (3.16) is given by

1
∆x

∫ ∆x/2

−∆x/2
WR

(
x

∆t ,WL,WR

)
dx = WL +WR

2 − ∆t
∆x (F (WR)− F (WL)) . (3.18)

Proof. We integrate equation (3.16) over the rectangle [−∆x/2,∆x/2]× [0,∆t] to obtain∫ ∆x/2

−∆x/2
WR

(
x

∆t ,WL,WR

)
dx−

∫ ∆x/2

−∆x/2
W (0, x)dx+

∫ ∆t

0
F
(
WR

(∆x
2t ,WL,WR

))
dt

−
∫ ∆t

0
F
(
WR

(
−∆x

2t ,WL,WR

))
dt = 0.

(3.19)

The condition (3.17) implies that

WR

(
−∆x

2t ,WL,WR

)
= WL and WR

(∆x
2t ,WL,WR

)
= WR, ∀t ∈ [0,∆t], (3.20)

we immediately obtain equation (3.18). We now consider an approximation of the solution at
time tn, which is piecewise constant

Wn
∆x(x) = Wn

i , if x ∈ Ti. (3.21)

Note that at each interface xi+1/2, we have a local Riemann problem. Therefore, we can exactly
solve the Cauchy problem  ∂tW + ∂xF(W ) = 0,

W (x, tn) = Wn
∆x(x),

(3.22)

at least for small time intervals tn + t, the exact solution of this Cauchy problem is composed of
the juxtaposition of local Riemann problems WR

(
x−xi+1/2

t ,Wn
i ,W

n
i+1

)
as long as they do not

interact. A sufficient condition for the non-interaction of the local Riemann problems is the
CFL condition introduced in [88]

∆t
∆x max

i∈Z

∣∣λ± (Wn
i ,W

n
i+1
)∣∣ ≤ 1

2 , (3.23)

where, W∆x (x, tn + t) denotes the solution of the Cauchy problem (3.22) if x ∈ [xi, xi+1[ , where
WR

(
x−xi+1/2

t ,Wn
i ,W

n
i+1

)
is the local Riemann problem. At time tn+1, the solution W∆x is not

constant on each cell Ti. Therefore, we perform an L2 projection onto the space of constant
functions on each cell Ti to define

Wn+1
i = 1

∆x

∫
Ti

W∆x (x, tn + ∆t) dx. (3.24)

This provides an approximation of the solution at time tn+1, constant on each cell Ti, defined
by

Wn+1
∆x (x) = Wn+1

i , if x ∈ Ti. (3.25)

In summary, the Godunov scheme consists of two stages: an exact time evolution step
followed by a spatial projection step. It is now demonstrated that the Godunov scheme can be
expressed in a conservative form.
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Lemma 3.1.2. Let us assume that the CFL condition (3.23) is satisfied. Then, the Godunov
scheme (3.24) is reformulated as a following conservative scheme

Wn+1
i = Wn

i −
∆t
∆x

[
Φ
(
Wn
i ,W

n
i+1
)
− Φ

(
Wn
i−1,W

n
i

)]
, (3.26)

where a numerical flux given by

Φ (WL,WR) = F (WR (0,WL,WR)) . (3.27)

Furthermore, the numerical flux Φ is consistent with F.

Proof. By definition, we have

Wn+1
i = 1

∆x

∫
Ti

W∆x (x, tn + ∆t) dx

= 1
∆x

∫ ∆x/2

0
WR

(
x

∆t ,W
n
i−1,W

n
i

)
dx+ 1

∆x

∫ 0

−∆x/2
WR

(
x

∆t ,W
n
i ,W

n
i+1

)
dx,

(3.28)

Integrating equation (3.16) over the rectangle [0,∆x/2]× [0,∆t], we obtain:

1
∆x

∫ ∆x/2

0
WR

(
x

∆t ,WL,WR

)
dx = 1

2WR −
∆t
∆x (F (WR)− F (WR (0,WL,WR))) , (3.29)

and integrating equation (3.16) over the rectangle [∆x/2, 0]× [0,∆t], we obtain

1
∆x

∫ 0

−∆x/2
WR

(
x

∆t ,WL,WR

)
dx = 1

2WL −
∆t
∆x (F (WR (0,WL,WR))− F (WL)) . (3.30)

Therefore, we can write

Wn+1
i = Wn

i −
∆t
∆x

(
F
(
WR

(
0,Wn

i ,W
n
i+1
))
− F

(
WR

(
0,Wn

i−1,W
n
i

)))
. (3.31)

This represents the conservative form of the Godunov scheme, where the numerical flux F is
defined by equation (3.27). The consistency of the numerical flux Φ with F is demonstrated by

Φ(W,W ) = F (WR(0,W,W ))
= F(W ).

(3.32)

Moreover, we demonstrate that the Godunov scheme is entropic.

Lemma 3.1.3. States that assuming the CFL condition (3.23) is satisfied, the Godunov scheme
(3.24) is entropic. This means that for any pair of entropy (η,G), the scheme satisfies the
discrete entropy inequality (2.12), where the entropy flux G is defined by the expression

G (WL,WR) = G (WR (0,WL,WR)) .
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Proof. Since η is a convex function, Jensen’s inequality gives us

η
(
Wn+1
i

)
≤ 1

∆x

∫
Ti

η (W∆x (x, tn + ∆t)) dx

≤ 1
∆x

∫ ∆x/2

0
η

(
WR

(
x

∆t ,W
n
i−1,W

n
i

))
dx

+ 1
∆x

∫ 0

−∆x/2
η

(
WR

(
x

∆t ,W
n
i ,W

n
i+1

))
dx.

(3.33)

By integrating the entropy inequality (2.12) on the rectangle [0,∆x/2]× [0,∆t], we obtain

1
∆x

∫ ∆x/2

0
η

(
WR

(
x

∆t ,WL,WR

))
dx ≤ 1

2η (WR)− ∆t
∆x (G (WR)− G (WR (0,WL,WR))) ,

and integrating (2.12) over the rectangle [−∆x/2, 0]× [0,∆t], we obtain

1
∆x

∫ 0

−∆x/2
η

(
WR

(
x

∆t ,WL,WR

))
dx ≤ 1

2η (WL)− ∆t
∆x (G (WR (0,WL,WR))− G (WL)) .

The discrete entropy inequality is deduced

η
(
Wn+1
i

)
≤ η (Wn

i )− ∆t
∆x

(
G
(
WR

(
0,Wn

i ,W
n
i+1
))
− G

(
WR

(
0,Wn

i−1,W
n
i

)))
.

It remains to be shown that the numerical flux of entropy

G (WL,WR) = G (WR (0,WL,WR)) ,

is consistent with G, which is the case because WR(0,W,W ) = W. Although accurate due
to its reliance on the exact resolution of Riemann problems, the Godunov scheme has several
drawbacks and is often superseded by other schemes. In fact, the exact resolution of Riemann
problems can be very difficult or even impossible for some systems and it is often computationally
expensive. Additionally, the accuracy achieved by the exact evolution step is erased by the
projection step. An alternative emerged in the 1980s with the work of Roe [69] and Harten,
Lax, and Van Leer [89], which involves using an approximate solution of the Riemann problem
instead of the exact solution. This approach leads to Godunov-type schemes, whose formalism
was introduced by Harten et al. [89]. The basic idea is to use an approximation W̃

(
x
t ,WL,WR

)
of the solution of the Riemann problem (3.16). To ensure that all the necessary information is
retained, it is necessary to include the domain of dependence of the exact solution within the
domain of dependence of the approximate solution. Furthermore, it is required that the average
of the exact solution over a cell be preserved by the approximate solver, see [89] for more details.

3.2 Boundary conditions
The process of modeling and providing a theoretical framework for boundary conditions in

hyperbolic problems presents intricate challenges that have been extensively explored in nu-
merous studies, such as those by [33, 64, 90]. Nevertheless, it is possible to effectively address
relatively simple scenarios, including those involving stationary or mobile walls.
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3.2.1 Shallow water flow

In a free surface flow problem, boundaries are classified into two types: solid and open
boundaries.
I Wall boundary condition

On this boundary, no flow must cross. The normal component of the velocity vector as well
as the gradient of the free surface, must be zero ("mirror" effect of the wall)

∂ηh = 0 and uη = 0. (3.34)

The tangential component of the velocity vector can be zero, i.e., the wall can slip or not. In
the case of non-slip walls, we impose that the tangential component of the velocity vector uτ at
the boundary is zero, i.e.,

uτ = 0. (3.35)

For slip walls, the condition implies that the normal velocity and the gradient normal to the
wall of the tangential velocity are zero.

uη = 0 and ∂ηuτ = 0. (3.36)

I Open boundary condition

The open boundary conditions are the most difficult to deal with because they involve the
existence of a fluid domain that does not belong to the computational domain but that can
influence it and may influence it [91]. In practice, the different types of boundary conditions
adapted to the four types of boundaries are composed in a modular way:

• Flow rate and free surface are prescribed variables, specifically in the context of supercrit-
ical flow at the inlet

• Uniform flow or a free surface condition imposed, in the case of subcritical flow at the inlet

• Free boundary, no conditions imposed (supercritical flow at the outlet)

• Imposed free surface (subcritical flow at the inlet)

A unit flow rate or normal velocity is typically prescribed at the boundary as an inlet condition
for the computational domain. Consequently, an additional requirement for the height of the
free surface is necessary to ensure the well-posedness of the 2D flow problem.
In a free surface flow problem, a condition on the free surface elevations is often imposed at the
end of the computational domain. This information is sufficient for the outgoing flow. However,
an additional condition on the flow rate or velocity at the outlet may be necessary when the
flow is incoming [90].

In this context of shallow water flow, other types of boundary conditions have been proposed.
Among them are conditions based on the method of characteristics, where the prescribed begin-
ning or elevation is calculated from Riemann invariants that are constant along characteristic
lines [40, section 4.2]. The radiation method, proposed by [92], is also widely utilized in ocean
modeling. [93, 94, 95, 96, 97].
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3.2.2 Euler equations

Similar to free surface flow, handling boundary conditions continues to be a unique challenge
in solving the system of Euler equations. When calculating the gradient, it is essential to
differentiate the scenario where the control volume surface corresponds to a domain edge. In
such instances, it is necessary to distinguish between two situations, depending on whether the
surface represents a wall (either fixed or moving) or a fluid interface.

In the case of a fluid interface, such as an absorbing boundary condition or a prescribed
flow rate, a straightforward approach is to extrapolate the values of conservative or primitive
variables from the control volume to the fluid boundary.

Wedge = Wi. (3.37)

In the case of a wall, the field W of the conservative variables at the center of gravity of the face
is estimated simply as the arithmetic mean between the fieldWi at the center of the element and
its mirror state WM

i expressed in the global frame. For the mirror state, the associated normal
velocity is the opposite sign of the normal velocity, while the tangent velocities are equal. The
fluid velocity can be decomposed into a normal component un at the surface and a tangential
component uτ as

u = un + uτ , (3.38)

where un = (u · n) · n and uτ = u− un = u− (u · n) · n.
For the mirror state, the normal velocities are of opposite sign and the tangential velocities are
equal to that of the fluid of the element adjacent to the face, that is

uM = uMn + uMτ ,

= −un + uτ ‘,

= −(u · n) · n+ u− (u · n) · n,

= u− 2(u · n) · n.

(3.39)

The mirror state WM
i is defined in the case of a fixed wall by

ρMi = ρi,

pMi = pi,

ρuMi = ρi(ui − 2(ui · nij) · nxij ),

ρvMi = ρi(vi − 2(ui · nij) · nyij ),

ρwMi = ρi(wi − 2(ui · nij) · nzij ),

ρEMi = ρEi.

(3.40)

In the case of a moving wall, the W field of conservative variables at the center of gravity of
the face is estimated simply as the arithmetic mean between the Wi field at the center of the
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element and its mirror state expressed in the local reference frame.

ρMi = ρi,

pMi = pi,

(uMτ1)i = (uτ1)i,

(uMτ2)i = (uτ2)i,

(uMn )i = −(un)i + 2V · n,

ρEMi = ρEMi + 1
2
(
ρMi (un)2

i − ρi(un)2
i

)
,

(3.41)

where
• (un)i, (uτ1)i, (uτ2)i are respectively the fluid velocities of the control volume i expressed

in the local reference frame of the face.

• (uMn )i, (uMτ1)i, (uMτ2)i are the velocities associated with the mirror state in the local refer-
ence frame of the face.

• V is the grid speed (in the case of a mobile mesh) such that V = X(tn+1)−X(tn)
∆t .

3.3 Background on FVC Scheme
In this thesis, we develop a Characteristic Finite Volume (FVC) scheme based on the one

proposed by Benkhaldoun and Seaïd [31], expanding it to be applicable to unstructured 2D and
3D meshes. The FVC scheme was initially introduced in a one-dimensional version for simulating
the 1D shallow water equations. An aspect of the FVC scheme is its independence from the
Jacobian matrix of the equation system for constructing the numerical flux. Additionally, it
circumvents the need to solve the Riemann problem at each interface, making it an efficient
method in terms of CPU time.

The FVC scheme exhibits well-balanced, conservative, and non-oscillatory characteristics,
making it suitable for hyperbolic equations where Riemann problems are difficult to solve. Ac-
cording to [31, Lemma 3.1], this scheme is stable and Total Variation Diminishing (TVD).
Moreover, the second-order transition occurs automatically, bypassing the MUSCL reconstruc-
tion procedure, as shown in Lemma 3.2 in [31]. Benkhaldoun and Sari [30] also presented a
two-dimensional extension of this scheme, albeit in a formulation exclusive to Cartesian grids.

In this subsection, we begin by briefly reviewing the one-dimensional FVC scheme, and then
we present in the following chapters the FVC approach in unstructured grids for two and three
spatial dimensions.

3.3.1 One-dimensional FVC scheme

The scalar conservation law (3.42) is considered to formulate the 1D FVC scheme, which
combines the method of characteristics and the finite volumes method

∂tW (t, x) + ∂xF(W (t, x)) = S(W (t, x)), (3.42)
where W is a scalar function from Ω ⊂ R × [0, T ) to R. Its finite volume formulation in a
one-dimensional grid is given by

Wn+1
i = Wn

i −
∆t
∆x

[
Φ
(
Wn
i+1/2

)
− Φ

(
Wn
i−1/2

)]
+ ∆tSni . (3.43)
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The process of spatially discretizing the equation (3.43) is accomplished when a numerical rep-
resentation of the fluxes, Φ

(
Wn
i±1/2

)
, is determined. Generally, this involves solving Riemann

problems at the xi±1/2 boundaries. However, this can be computationally challenging and
may restrict the technique’s applicability when solutions to Riemann problems are intricate or
unattainable. That is why we have chosen to construct intermediate states, Wn

i±1/2, using the
method of characteristics. The numerical flux is subsequently computed with the physical flux
as Φ

(
Wi±1/2

)
:= F

(
Wi±1/2

)
. This approach’s fundamental concept involves implementing a

uniform grid at the updated time step and tracing the flow’s trajectories back to the previous
time step.

Fig 3.7. Space-time control volumes used by the FVC scheme.

Quantities required for the calculation are assessed at the previous time step by interpolating
the known values on a consistent time-based grid. Consequently, the characteristic curves related
to equation (3.42), excluding the source term, effectively serve as solutions to the given problem

dXi+1/2(s)
ds = Vi+1/2

(
s,Xi+1/2(s)

)
, s ∈ [tn, tn + αn∆t] ,

Xi+1/2 (tn + αn∆t) = xi+1/2,

(3.44)

where Vi+1/2 = F′
(
Wi+1/2

)
et αn ∈] 0, 1] is a parameter to be chosen later. Note that Xi+1/2(s)

is the departure point at time s of the particle that will reach the interface xi+1/2 of the grid at
time tn + αn∆t. The solutions of (3.44) can be expressed as

Xi+1/2 (tn) = xi+1/2 −
∫ tn+αn∆t

tn
Vi+1/2

(
s,Xi+1/2(s)

)
ds,

= xi+1/2 − Ii+1/2.

(3.45)

In the case where the velocity field is explicitly provided and does not depend on the solution
W , the integral in (3.45) can be computed analytically. Alternatively, for other situations, this
integral can be evaluated using a second-order extrapolation, which is based on the mid-point
rule. This approach typically results in a non-linear equation involving Xi+1/2(tn). To resolve
this equation, it becomes necessary to employ a root-finding algorithm. For comprehensive un-
derstanding, the algorithm’s reformulation for determining the initial points is elaborated upon
in the appendix of [31]. After determining the characteristic curves Xi+1/2 (tn), the numerical
fluxes in (3.43) can be reconstructed by employing the subsequent equation, as referenced in
[98, section 2.1.2]

Wn
i+1/2 = W

(
tn + α∆t, xi+1/2

)
= W̃

(
tn,Xi+1/2 (tn)

)
+
∫ tn+αn∆t

tn
S (W (s, x(s))) ds, (3.46)
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where W̃
(
tn,Xi+1/2 (tn)

)
is the solution at the foot of the characteristic calculated by interpo-

lation from the solutions on the neighboring control volumes of the interface

W̃
(
tn,Xi+1/2 (tn)

)
= P

(
W
(
tn,Xi+1/2 (tn)

))
, (3.47)

where P represents a Lagrange interpolation polynomial calculated from the evolved solution at
the center of each control volume.

Therefore, the proposed FVC scheme can be interpreted as a predictor step (3.46) where
the intermediate state Wi±1/2 is computed and the corrector step

(
Φ
(
Wi±1/2

)
:= F

(
Wi±1/2

) )
where the conservation property is preserved. Note that interpolation procedures other than
(3.47) can also be applied.

3.3.2 Analysis of FVC scheme

To analyze the FVC scheme, we consider a nonlinear conservation law’s scalar homogeneous
equation, which can be expressed as follows

∂tu+ ∂x(F(u)) = 0, (3.48)

In this part, we make the assumption that a linear interpolating polynomial P is used in the
predictor stage (3.47). Thus, we have the following results [31]

Lemma 3.3.1. Suppose u0 ∈ L∞(R) with umin = min (u0) and umax = max (u0). Define
λ = sup

u∈[umin,umax]

∣∣F′(u)
∣∣, and let ∆t satisfy the condition

1
2αn ≤ λ

∆t
∆x ≤

1√
2αn

. (3.49)

Then the FVC scheme (3.46) and (3.43) is stable and TVD.

Proof. Applied to the problem (3.48), the corrector stage (3.43) (here Si = 0) gives

Un+1
i = Uni − v

(
F
(
Uni+1/2

)
− F

(
Uni−1/2

))
, (3.50)

with v = ∆t
∆x and the averaged states are given by

Uni+1/2 = u
(
tn + αn∆t, xi+1/2

)
= u

(
tn,Xi+1/2

)
, (3.51)

where the characteristic curves are given by

Xi+1/2 = xi+1/2 − αn∆tF′
(
Uni+1/2

)
. (3.52)

Using the linear interpolating polynomial, the solution at the departure points in (3.51) is
calculated as

Uni+1/2 = Uni +
(
Xi+1/2 − xi

) Uni+1 − Uni
xi+1 − xi

,

= Uni +
∆x
2 − α

n∆tF′
(
Uni+1/2

)
∆x

(
Uni+1 − Uni

)
.

(3.53)

Hence, the predictor stage (3.46) becomes

Uni+1/2 =
Uni + Uni+1

2 − αnvF′
(
Uni+1/2

) (
Uni+1 − Uni

)
. (3.54)
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Note that we have assumed by construction that the problem (3.54) has a unique solution. There
exists γni ∈

[
Uni−1/2, U

n
i+1/2

]
such that

F
(
Uni+1/2

)
− F

(
Uni−1/2

)
= F′ (γni )

(
Uni+1/2 − U

n
i−1/2

)
. (3.55)

Thus, substituting (3.54) in the corrector stage (3.50) we obtain

Un+1
i = Uni −vF′ (γni )

[(1
2 − α

nvF′
(
Uni+1/2

)) (
Uni+1 − Uni

)]
− vF′ (γni )

[(1
2 + αnvF′

(
Uni−1/2

)) (
Uni − Uni−1

)]
,

(3.56)

which can be reformulated in a compact form as

Un+1
i = Uni + Cni+1/2∆Uni+1/2 −D

n
i−1/2∆Uni−1/2, (3.57)

where ∆Uni+1/2 = Uni+1 − Uni ,
Cni+1/2 = vF′ (γni )

(
αnvF′

(
Uni+1/2

)
− 1

2

)
and Dn

i−1/2 = F′ (γni ) v
(
αnvF′

(
Uni−1/2

)
+ 1

2

)
. Under

the condition (3.49), it is clear that

Cni+1/2 ≥ 0, Dn
i−1/2 ≥ 0, Cni+1/2 +Dn

i−1/2 ≤ 1. (3.58)

Therefore, the characteristic finite volume scheme is L∞-stable, see [99, section 3.2 p 133]

Lemma 3.3.2. Assume a linear interpolating polynomial P is used in the predictor stage (3.47).
The FVC method is second-order accurate scheme if αn = 1/2.

Proof. By using a linear interpolating polynomial P, the FVC method yields

Uni+1/2 =
Uni + Uni+1

2 − αn ∆t
∆xF

′
(
Uni+1/2

) (
Uni+1 − Uni

)
,

Un+1
i = Uni −

∆t
∆x

(
F
(
Uni+1/2

)
− F

(
Uni−1/2

))
.

(3.59)

The FVC method (3.59) can be easily formulated in a compact form as

Un+1
i = H

(
Uni−1, U

n
i , U

n
i+1
)
. (3.60)

Hence, the truncation error associated with (3.60) is defined by

u(x, t+ ∆t)−H(u(x−∆x, t), u(x, t), u(x+ ∆x, t)) = −∆t2 ∂
∂x

(
β

(
u,

∆t
∆x

)
∂u

∂x

)
+O

(
∆t3

)
, (3.61)

where

β(u, v) = 1
2v2

+1∑
j=−1

j2∂H

∂vj
(u, u, u)− 1

2
(
F′(u)

)2
. (3.62)

The proof of the Lemma 3.3.2 follows from the [99, proposition 1.2 p 103] which states that if β
vanishes in (3.61), then the scheme (3.60) is second-order accurate. Indeed,

∂H

∂Ui+1
= −vF′

(
Uni+1/2

) ∂Uni+1/2
∂Ui+1

,

∂H

∂Ui−1
= vF′

(
Uni−1/2

) ∂Uni−1/2
∂Ui−1

.

(3.63)
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Hence,
∂H

∂Ui+1
(u, u, u) = −vF′(u)

(1
2 − α

nvf ′(u)
)
,

∂H

∂Ui−1
(u, u, u) = vF′(u)

(1
2 + αnvf ′(u)

)
.

(3.64)

Thus,
β =

(
αn − 1

2

) (
F′(u)

)2
. (3.65)

It is clear that for αn = 1/2, the parameter β = 0 and this resumes the proof.

3.3.2.1 Application of FVC scheme to transport equation

In order to simplify the formulation of the FVC scheme, we propose to use the transport
equation with a constant velocity, and a linear interpolation polynomial in the predictor step
(3.46). Let the following transport equation

∂tu+ ∂x(f(u)) = 0, (3.66)

where f is the physical flux given by f(u) = cu, and c is a real constant representing the transport
velocity of the quantity u.
The backward characteristic curves (formula (3.45)) are given by

Xi+1/2(tn) = xi+1/2 − αn∆tc. (3.67)

Using linear interpolation, the solution at the departure points in (3.47) is calculated by

uni+1/2 = uni +
(
Xi+1/2 − xi

)uni+1 − uni
∆x ,

= uni +
(∆x

2 − α
n∆tc

)uni+1 − uni
∆x .

(3.68)

Thus the predictor stage (3.46) becomes

uni+1/2 =
uni − uni+1

2 − αn ∆t
∆xc

(
uni+1 − uni

)
. (3.69)

Therefore, the FVC scheme is written using linear interpolation as

uni+1/2 =
uni − uni+1

2 − αn ∆t
∆xc

(
uni+1 − uni

)
, (3.70a)

un+1
i = uni −

∆t
∆x

(
f(uni+1/2)− f(uni−1/2)

)
. (3.70b)

We propose performing a numerical calculation to solve the transport equation using the FVC
scheme. Our objective is to compare the solution obtained with this scheme to the exact solution,
as well as two other schemes known in the literature. To begin, we define the initial condition as a
step function, where the function u(x, 0) is equal to 1 in the interval [0.5, 1.5] and zero elsewhere.
The scalar transport velocity used is c = 2m/s. Regarding the numerical parameters, we choose
a CFL condition equal to 0.8, αn = 0.7 and a grid with 100 cells. In summary, this approach
involves numerically solving the transport equation using the FVC scheme.

The results obtained are illustrated in Fig 3.8, which clearly highlights that this simplified
version of the FVC scheme exhibits lower diffusion compared to the other schemes.
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Fig 3.8. Comparison of results for the transport equation: the scalar quantity u(x, t) (left) and
a closer look at u(x, t) (right) at a time t = 1.5s using a grid with 100 regular cells.

The adaptation of the FVC scheme for hyperbolic systems in the context of conservation laws
can be carried out by examining each component individually, provided that the conservative
equations can be restructured into an advective form. Generally, the investigated system’s
advective representation is expressed in such a way that both non-conservative and conservative
variables are transported using an identical velocity field. This concept for one-dimensional
hyperbolic systems of conservation laws is discussed in [31, section 4].
In this context of the equation systems, we present a comparison between the solutions obtained
using the FVC scheme for the one-dimensional shallow water system and those obtained using
the SRNH scheme (Non-Homogeneous Riemann Solver) proposed and studied in [100], Roe and
Rusanov. The computed water heights are shown in Fig 3.9 at time t = 50s using a spatial
discretization of ∆x = 10m.
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Fig 3.9. Comparative results for dam break problem [31] in 1D shallow water equations: water
height (left) and a zoom on water height around the rarefaction and shock regions (right) at
time t = 50s with 200 regular cells.
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For the considered dam break conditions, the FVC scheme produces numerical results that
are as accurate as those obtained using the SRNH and Roe schemes, with low computational
costs. A detailed study has been conducted in [31]. A similar study was conducted in [101] on the
Euler equations, and a portion of the results are displayed in Fig 3.10. The same observation was
made regarding the accuracy of the FVC scheme, especially in capturing contact discontinuities.
Additionally, the computational speed of the FVC scheme, as measured by CPU performance,
remains considerable see [101, table 2].
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Fig 3.10. Comparative results for shock tube problem [102] in 1D Euler equations: density
(left) and a zoom on density around the sonic point (right) at time t = 0.2s with 200 regular
cells.

3.3.3 Two-dimensional FVC scheme in Cartesian mesh

This section aims to construct the FVC scheme for two-dimensional conservation law systems
in a Cartesian mesh

∂tW + ∂xF(W ) + ∂yG(W ) = 0, (3.71)

where W is the unknown solution, F(W ) and G(W ) are non-linear flux functions and can de-
pend on space as well as on time.

To explain the FVC scheme on a structured mesh, we start by discretizing the spatial domain
into rectangular cells Ci,j =

[
xi− 1

2
, xi+ 1

2

]
×
[
yj− 1

2
, yj+ 1

2

]
. Then, we integrate equation (3.71) in

time on each control volume Ci,j . The idea of finite volumes is to construct a numerical sequence
of the form

Wn+1
i,j = Wn

i,j −
∆t
∆x

(
Fni+1/2,j −F

n
i−1/2,j

)
− ∆t

∆y
(
Gni,j+1/2 − G

n
i,j−1/2

)
, (3.72)

where
Wn
i,j ≈

1
∆x

1
∆y

∫ x
i+ 1

2

x
i− 1

2

∫ y
i+ 1

2

y
j− 1

2

W (tn, x, y) dxdy, (3.73)

Fni±1/2,j ≈
1

∆t

∫ tn+1

tn
F
(
W
(
t, xi±1/2, yj

))
dt,
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and
Gni,j±1/2 ≈

1
∆t

∫ tn+1

tn
G
(
W
(
tn, xi, yj±1/2

))
dt.

As already mentioned, the main idea of this method is to impose a regular grid at time tn and
to look for an approximation of the quantities Wn

i±1/2,j and Wn
i,j±1/2 by going backwards along

the flow trajectories between time tn + αn∆t and tn. The necessary quantities are evaluated
at the former time level by interpolating their known values on the regular grid. Thereafter,
the numerical flux Fni±1/2,j (respectively Gni±1/2,j) will be evaluated using the physical flux as
Fni±1/2,j := F(Wn

i±1/2,j) (respectively Gni±1/2,j := G(Wn
i±1/2,j)).

Since, the conservation law (3.71) can be rewritten in an advective form as

∂tW + F′(W )∂x(W ) + G′(W )∂y(W ) = 0, (3.74)

then the characteristic curves associated with equation (3.74) are solutions of the flowing ordi-
nary differential equation

dXi+1/2,j(s)
ds = U

(
s,Xi+1/2,j(s), yj(s)

)
, s ∈ [tn, tn + αn∆t] ,

Xi+1/2,j (tn + αn∆t) = xi+1/2,

(3.75)

with a similar system of the characteristic curves Yi,j+1/2(s) in the y-direction, and instead of
U we have, V

(
xi,Yj+1/2(s), s

)
.

U and V being the advection velocities defined by

U(t, x, y) = F′(W (t, x, y)), and V = G′(W (t, x, y)). (3.76)

The solution of (3.75) can be expressed as

Xi+1/2,j (tn) = xi+1/2,j −
∫ tn+αn∆t

tn
U
(
s,Xi+1/2,j(s), yj(s)

)
ds (3.77)

The same formula applies to Yi+1/2,j . Moreover, the numerical fluxes in (3.72) are calculated
using

Wn
i+1/2,j = W̃

(
tn,Xi+1/2 (tn) , yj

)
= P

(
W
(
tn,Xi+1/2 (tn) , yj

))
,

Wn
i,j+1/2 = W̃

(
tn, xi,Yj+1/2 (tn)

)
= P

(
W
(
tn, xi,Yj+1/2 (tn)

))
,

(3.78)

where W̃
(
tn,Xi+1/2 (tn) , yj

)
and W̃

(
tn, xi,Yj+1/2 (tn)

)
are the solutions to the characteristics

foot calculated by interpolation and P is a polynomial interpolation to be defined.
So far, the FVC scheme has been presented in the formalism of Cartesian mesh, however, real-
world problems are characterized by high topographical and geometrical complexity, which limits
the applicability of this formalism. A more in-depth study of the accuracy of this finite volume
discretization method on unstructured meshes has always been the goal of this work (see the
conclusions of [29] and [30]). Therefore, the unstructured finite volume method not only ensures
mass conservation, which is an important property in fluid flow calculations, but also allows
for the accurate representation of the complex geometry of the computational domain. For
these reasons, in the following chapters, we propose an extension of this scheme to unstructured
meshes in two and three dimensions of space.
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Chapter 4

2D FVC scheme on unstructured
meshes: application to free surface
flows in shallow water
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In this particular chapter, we introduce an expanded and generalized version of the FVC
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gular meshes, utilizing a cell-centered formulation.
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CHAPTER 4. 2D FVC SCHEME ON UNSTRUCTURED MESHES:
APPLICATION TO FREE SURFACE FLOWS IN SHALLOW WATER

4.1 Shallow water equations
In the present study, we propose the shallow water system (2.22) as a means of presenting

2D formulations of the FVC scheme. However, the approach we adopt in this case is applicable
to any equation system that shares a similar structure. As previously emphasized, this strategy
comprises two fundamental stages. The first stage involves the utilization of the method of char-
acteristics to determine the intermediate state, while the second stage relies on the conventional
finite volume discretization.

4.1.1 Discretization

The integral form of system (2.22) can be written as

∂

∂t

∫
Ω
Wdµ+

∫
∂Ω

F(W ) · ndσ =
∫

Ω
(S(W ) +R(W ))dµ, (4.1)

Where Ω is the domain of interest, ∂Ω is the surrounding boundary, n is the outward nor-
mal vector to ∂Ω, and dµ and dσ are the surface element and the length element, respectively.
The problem domain is initially discretized into a collection of triangular cells that form an
unstructured computational mesh, as depicted in Figure 4.1. The average of conserved variables
is stored at the center of each cell, and the edges of each cell define the faces of a cell control,
which is called "control volume".

Fig 4.1. Generic definition of the Ω domain and the control cells of the mesh.

Notations:

• xi, centroid of the cell Ti,

• pi, vertex of Ti,

• γij , boundary edge between Ti and
Tj ,

• ∂Ti, boundary of the cell Ti,

• |γij |, length of γij ,

• |Ti|, area of the cell Ti,

• nij , unit normal to γij , outward to Ti such as,
nji = −nij ,

• Pi, the perimeter of the cell Ti.

For each triangular control volume, the finite volume formulation of system (2.22) is written as

|Ti|
dWi

dt
+
∫
∂Ti

F(W ) · ndσ =
∫
Ti

(S(W ) +R(W ))dµ, (4.2)
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where Wi is the average quantity on cell Ti stored at the cell center. The flux vector over each
edge of the triangular cell and the discrete form of the integral is∫

∂Ti

F(W ) · ndσ '
∑

j∈N(i)
|γij |Φ(Wij ,nij),

where Φ(Wij ,nij) '
1
|γij |

∫
γij

F(W ) · nijdσ, is the numerical flux computed at the interface γij
between the cells Ti and Tj and N(i) is the set of neighboring triangles of the cell Ti. The
intermediate solution Wij is reconstructed using the FVC scheme (see subsection 4.1.3). The
time discretization of (4.2) is performed by a first-order time stepping scheme, in which the
fully-discrete formulation of system (2.22). The time domain is divided into N sub-intervals
[tn, tn+1] with time step ∆t = tn+1 − tn for n = 0, 1, ...., N − 1. Wn is the value of a generic
function W at time tn. The fully-discrete formulation of system (2.22) is given by

Wn+1
i = Wn

i −
∆t
|Ti|

∑
j∈N(i)

|γij |Φ(Wn
ij ,nij) + ∆tSni + ∆tRni . (4.3)

The finite volume characteristic method has been introduced in [31] for the 1D shallow water
equation. In [103], the method has been used for the simulation of 2D shallow water flows on
flat topography. In this work, we present a generalization of this scheme, taking into account
the bottom source term, leading to a well-balanced scheme preserving the steady state. For the
corrector stage, we will use the 2D finite volume formalism described in Section 4.1.1. Finally,
the predictor stage and the final reformulation of the FVC scheme will be presented in this
subsection.

4.1.2 Construction of the projected speed model

This projection aims to write the system of type (3.1) in an advective form in which the
unknown vector will be transported with the same speed, which will be taken into account in
the calculation of the characteristic curves.

Let discretize the spatial domain Ω with cells Ti as Ω =
Nele⋃
i=1

Ti and ∂Ti =
⋃

j∈N(i)
γij ,

with ∂Ti is the border of the cell Ti and Nele is the total number of element.
Integrating the system (2.20) over the cell Ti, the basic equations of the finite volume method
obtained using the divergence theorem are given by

∂

∂t

∫
Ti

h dV +
∫
∂Ti

huη dσ = 0, (4.4a)

∂

∂t

∫
Ti

hu dµ+
∫
∂Ti

(
huuη + 1

2gh
2nx

)
dσ =

∫
Ti

(
− gh∂xZ + fchv − η2ghu

|u|
h4/3

)
dµ, (4.4b)

∂

∂t

∫
Ti

hv dµ+
∫
∂Ti

(
hvuη + 1

2gh
2ny

)
dσ =

∫
Ti

(
− gh∂yZ − fchu− η2ghv

|u|
h4/3

)
dµ, (4.4c)

where η = (nx, ny)T represents the unit outward normal to cell Ti, and τ = (−ny, nx)T represents
the tangential direction. The normal velocity, uη, is defined as unx + vny, and the tangential
velocity, uτ , is given by vnx−uny. It should be noted that η·τ = 0, as illustrated in Figure 4.2. In
order to simplify the system (4.4), we do the following operations: (4.5b)← nx(4.4b) +ny(4.4c),
(4.5c)← nx(4.4c)− ny(4.4b).
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It is a procedure which is done on all the edges of the triangle Ti. The outcome of these
operations is

Fig 4.2. The projected velocity on the control volume.

∂

∂t

∫
Ti

h dµ+
∫
∂Ti

huη dσ = 0, (4.5a)

∂

∂t

∫
Ti

huη dµ+
∫
∂Ti

(
huη

2 + 1
2gh

2
)

dσ =
∫
Ti

(
− gh∇Z · n + fchuτ − η2ghuη

|u|
h4/3

)
dµ, (4.5b)

∂

∂t

∫
Ti

huτ dµ+
∫
∂Ti

huτuη dσ =
∫
Ti

(
− gh∇Z · τ − fchuη − η2ghuτ

|u|
h4/3

)
dµ, (4.5c)

which can be rewritten the system (4.5) in a differential form as

∂h

∂t
+ ∂huη

∂η
= 0,

∂huη
∂t

+ ∂

∂η

(
huη

2 + 1
2gh

2
)

= −gh∂ηZ + fchuτ − η2ghuη
|u|
h4/3 ,

∂huτ
∂t

+ ∂

∂η
(huηuτ ) = −fchuη − η2ghuτ

|u|
h4/3 .

(4.6)

The system (4.6) can also be reformulated in the transport equation form as

∂U
∂t

(t,X) + uη(t,X)∂U
∂η

(t,X) = F(U), ∀ X = (x, y) ∈ Ω ⊂ R2, t > t0, (4.7)

where

U =


h

huη

huτ

 , F(U) =


−h∂η(uη)

−gh∂η(h+ Z) + fchuτ − huη∂η(uη)− η2ghuη
|u|
h4/3

−fchuη − huτ∂η(uη)− η2ghuτ
|u|
h4/3

 .

The purpose of using this technique on the local coordinates of the two-dimensional shallow
water system (2.20) in the control volume Ti, is to reduce the dynamics of our starting system
as an advection equation (4.7) which transports the projected conservative variables through
the normal velocity on the edge of each control volume Ti.
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4.1.3 Flux construction

We reconstruct the numerical flux Φ(Wn
ij ,nij) using the method of characteristics. The fun-

damental idea of this method is to impose a regular grid at the new time level and to backtrack
the flow trajectories to the previous time level, for more details see [103]. At the previous time
level, the quantities that are needed are evaluated by interpolation from their known values on
a irregular grid.
I Method of characteristics

The characteristic curves associated with the equation (4.6) are solutions of the following
Cauchy problem 

dXc(t)
dt

= uη(t,Xc(t))n, t ∈ [tn, tn + αn∆t],

Xc(tn + αn∆t) = X?.

(4.8)

Note that Xc(t) is the departure point at time t of a particle that will arrive at the interface γij
in time tn + αn∆t, see Fig 4.3. The method of characteristics does not follow the flow particles
forward in time, as the Lagrangian schemes do, instead, it traces backwards the position at
time tn of particles that will reach the points of a fixed mesh at time tn + αn∆t. By doing so,
the method avoids the grid distortion difficulties that conventional Lagrangian schemes have.
Hence, the solution of (4.8) can be expressed in an integral form as

Xc(tn) = X? −
∫ tn+αn∆t

tn
uη(s,Xc(s))n ds. (4.9)

This integral can be calculated using an integral approximation method, which generally leads
to a non-linear equation in Xc(tn). A root-finding algorithm is subsequently required to solve
this equation. In our simulations, we used a rectangular rule to approximate the integral in
(4.9). In order to complete the reformulation of the algorithm used, the departure points must
be calculated once the characteristic curves are known. Therefore, the solution of the transport
equation (4.7) is given by

U(tn + αn∆t,X?) = U(tn, Xc(tn)) +
∫ tn+αn∆t

tn
F(U(s,Xc(s))) ds, (4.10)

whereU(tn, Xc(tn)) is the solutions at the characteristic feet computed by the local least squares
interpolation method.
In other cases, the integral of the equation (4.10) is calculated using a first-order approximation
based on the rectangle method, which enough to maintain a particle on its curved trajectory.
The solution Ûn

ij is reconstructed at the interfaces using the same methodology presented by
the authors in [104] except that here we used a local least square plane in each cell. We have:

Ûn

ij = U(tn, Xc(tn)) =
∑

k∈V (c)
βk(c)U(Xk), (4.11)

with V (c) is the set of neighbours by face and vertices to the cell of Xc, see Fig 4.4 and βk(c)
is weights coming from the least squares method (LSM). It can be written

βk(c) = 1 + λ · (Xk −Xc)
#V (c) + λ ·R

, (4.12)
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The choice of the two-dimensional least squares plane-based interpolation method, aimed at
minimizing quadratic errors between data points, is motivated by two reasons. Firstly, the data
being used is inconsistent due to the unstructured mesh. Additionally, this method enables
straightforward linear interpolation.

Fig 4.3. Illustration of the method of characteristics: an Eulerian mesh point Xc(tn) is traced
back in time to X? where the intermediate solution Ûn

ij is interpolated.

Fig 4.4. Point clouds used for interpolation using the least squares method-based plane.

such as, λ = (λx, λy) and R = (Rx, Ry). The weights parameters are given by the following
formulas

Rx =
∑

k∈V (c)
(xk − xc), Ry =

∑
k∈V (c)

(yk − yc),

λx = IxyRy − IyyRx
IxxIyy − I2

xy

, and λy = IxyRx − IxxRy
IxxIyy − I2

xy

,

where

Ixx =
∑

k∈V (c)
(xk − xc)2, Iyy =

∑
k∈V (c)

(yk − yc)2, Ixy =
∑

k∈V (c)
(xk − xc)(yk − yc).
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To approximate the terms of F(U), (i.e., ∂η(uη), ∂η(h + Z), etc.) we will need to calculate
these derivatives in the interfaces, for that, we use the diamond cell Fig 4.5. This cell is con-
structed by the connection of gravity centers (L,R) of cells Ti, Tj which share the interface γij
and its endpoints S, N . We obtain the co-volume VSRNL by this construction. One can assume
that the gradient is constant on the co-volume VSRNL. According to Green-Gauss theorem the
approximation leads to

∇uij = 1
2µ (VSRNL)

{
(uS − uN )nLR |γLR |+ (uR − uL)nij |γij |

}
, (4.13)

Fig 4.5. Diamond cell in 2D.

where uN , uS , uR , and uL represent respectively the values of the quantity u in the point
N , S, R and L. nLR is a unit normal vector of the co-volume face γLR and |γLR | is its length.
The other co-volume interfaces and their normal vectors are labeled analogically. µSRNL is the
area of the co-volume SRNL. The calculation that gives us the formula (4.13) is detailed in
the appendix. After the discretization of the source terms (see subsection 4.1.4), the discrete
equation system (4.10) leads to the following predictor step.
I Predictor stage ∣∣∣ Un

ij = Ûn

ij + IF(Ûn

ij), (4.14)

where IF is the approximation of the integral in (4.10). Once these projected states are calcu-
lated, the quantity Wij will be calculated using the following transformations

hunij = (huη)nijnx − (huτ )nijny, and hvnij = (huτ )nijnx + (huη)nijny. (4.15)

I Corrector stage ∣∣∣ Φ(Wn
ij ,nij) = F(Wn

ij) · nij . (4.16)

Note that in the FVC scheme, the corrector stage is used to evaluate the numerical flux at the
edges by using the corrector step to construct the intermediate states Wij . The final iteration
process is based on the discrete equation (4.3). In order to develop a second-order FVC scheme,
an appropriate choice of the αn parameter which increases the accuracy of the spatial approx-
imation. To preserve the TVD property of the FVC scheme, we use techniques based on the
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limiter function in order to select a good time parameter αn. This approach leads us to:

αn = αn + Ψn
ij(αn? − αn) (4.17)

where αn? , and αn∗ defined as

αn? := 2|γij |∆t
|Ti|+ |Tj |

max
q

(
max

(∣∣∣λnq,i∣∣∣, ∣∣∣λnq,j∣∣∣)), αn =
maxq

(
max

(∣∣∣λnq,i∣∣∣, ∣∣∣λnq,j∣∣∣))
minq

(
max

(∣∣∣λnq,i∣∣∣, ∣∣∣λnq,j∣∣∣)) , (4.18)

where λnq,i is the qth eigenvalue of (2.23) evaluated in cell Ti. The choices of αn? and αn, were
inspired by the work of M. Kamel et al [105, 106]. Proposition 4.3.1 in [105] proves that with
this choice the scheme is L∞ stable. Ψn

ij is an appropriate limiter that is defined using a flux
limiter function acting on a quantity that measures the fluctuation rate. In the computational
results presented in Section 4.4 and in Chapter 5, the value of αn was assumed to be a fixed
constant.

4.1.4 The discretization of the bottom source term (Well-balanced FVC
scheme)

In order to be able to calculate realistic flows we now consider the case ∇Z 6= 0R2 and
introduce a numerical discretization of the source terms. As discussed in paragraph 2.2.1.1,
the treatment of source terms related to bottom in the shallow water system poses a challenge
in many numerical methods. In the FVC scheme, the approximation of the source term Sni is
reconstructed in such a way that the C-property [11] is satisfied, i.e. to maintain a discrete local
balance of the continuous stationary state in still water.

hni + Zi =hnj + Zj = H := constant

uni + unj =0R2 , ∀ Ti, Tj ∈ Ω

}
⇒ hn+1

i + Zi = H, and un+1
i = 0R2 . (4.19)

I The hydrostatic balance

We prove from the hydrostatic balance
(
∇
(1

2gh
2
)

= −gh∇Z
)
that the model of the pro-

jected speed preserves the stationary state of the lake at rest
I The projected speed model

∂t


h

0
0

+ 0× ∂η


h

0
0

 =


0

−g∂η(h+ Z)
0

 , (4.20)

∂th = 0, and ∂η(h+Z) = 0 =⇒ h(x, y, t)+Z(x, y) = constant ∀ x, y, t. This result ensures
the equilibrium property corresponding to the lake at rest, and therefore it is consistent with
the continuous form of the system’s equilibrium with bottom source term.

∆t
|Ti|

∑
j∈N(i)

|γij |Φ(Wn
ij ,nij) = ∆t

|Ti|

∫
Ti

Sdµ, (4.21)
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which is equivalent to

0∑
j∈N(i)

1
2g(hij)2(nij)x|γij |

∑
j∈N(i)

1
2g(hij)2(nij)y|γij |


=


0

−g
∫
Ti

h∂xZdµ

−g
∫
Ti

h∂yZdµ

 . (4.22)

To approximate the source terms, we proceed as follows. First, we decompose the triangle Ti
into three sub-triangles, as depicted in Fig 4.6. where Nxij = (nij)x|γij | and Nyij = (nij)y|γij |.
Then, the source term is approximated as∫

Ti

h∂xZdµ = h1

∫
T1
∂xZdµ+ h2

∫
T2
∂xZdµ+ h3

∫
T3
∂xZdµ, (4.23)

with h1, h2 and h3 are the average values of h over T1, T2 and T3 respectively, the following
calculation is intended to determine them.

h1

∫
T1
∂xZdµ = h1

∑
j∈N(1)

∫
γ1j

Znxdµ = h1
∑

j∈N(1)

Z1 + Zj
2 Nx1j

= h1
2 {(Z1 + Zl)Nx1l + (Z1 + Z2)Nx12 + (Z1 + Z3)Nx13} .

(4.24)

The same is applies to the y-direction. Again the stationary flow condition h1 +Z1 = hj +Zj =
H = constant, ∀j ∈ N(1) ⇒ h1 +hj +Z1 +Zj = 2H and H − h1 + hj

2 = Z1 + Zj
2 . Thus, (4.24)

gives∫
T1
h∂xZdµ = h1

∑
j∈N(1)

(
H − h1 + hj

2

)
Nx1j =︷ ︸︸ ︷∑

j∈N(1)
Nx1j = 0

−h1
2

∑
j∈N(1)

hjNx1j . (4.25)

A similar procedure leads to the following approximations of the other terms in (4.23):∫
T2
∂xZdµ = −h2

2
∑

j∈N(2)
hjNx2j , and

∫
T3
∂xZdµ = −h3

2
∑

j∈N(3)
hjNx3j . (4.26)

Notice that hl, hk and hj are the average values of h, respectively, on the triangle Tl, Tk and Tj .
Summing up, using the fact that (Nxij = −Nxji) so, the discretization (4.23) gives∫

Ti

h∂xZdµ = −1
2 (h1hlNx1l + h2hkNx2k + h3hjNx3j) . (4.27)

For this reconstruction, the source terms in (4.22) result in∑
j∈N(i)

(hnij)2Nxij =h1hlNx1l + h2hkNx2k + h3hjNx3j ,

∑
j∈N(i)

(hnij)2Nyij =h1hlNy1l + h2hkNy2k + h3hjNy3j .
(4.28)

If you have noticed, we will need h1, h2 and h3 to be able to calculate the values of the integrals
in equation (4.27) but the system. (4.28) has two equations for the three unknowns. To complete
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the system, we add the natural conservation equation, h1 +h2 +h3 = 3hi. The following system
gives us the values we need

h1

h2

h3

 =


1 1 1

hlNx1l hkNx2k hjNx3j

hlNy1l hkNy2k hjNy3j


−1

·


3hi∑

j∈N(i)(hnij)2Nxij∑
j∈N(i)(hnij)2Nyij

 . (4.29)

Analogously, the bottom values Zj , j = 1, .., 3 are reconstructed in each sub-triangle of Ti as
Zj = Zi + hni − hnj ∀j = 1, .., 3. Then the source terms in (4.27) are approximated as∫

Ti

h∂xZdµ = h1
∑

m∈N(1)

Z1 − Zm
2 Nx1m + h2

∑
m∈N(2)

Z2 − Zm
2 Nx2m

+h3
∑

m∈N(3)

Z3 − Zm
2 Nx3m,

(4.30)

with a similar equation for the other source terms in the y-direction.

Fig 4.6. Sub-triangles used in the discretization of source terms.

I Computation of the solution

Finally, we write the formally well-balanced FVC scheme after calculation of the interface values
(4.14) and the bottom source term approximation (4.30) as

Wn+1
i = Wn

i −
∆t
|Ti|

∑
j∈N(i)

|γij |Φ(Wn
ij ,nij) + ∆tSni . (4.31)

For this writing, the forward Euler method is used for temporal discretization. In other cases.
We can use the various temporal numerical approximations.

4.1.5 Semi implicit treatment of friction term source

To avoid stability problems related to the bottom friction source term, a fractional semi
implicit treatment for this term is proposed. The idea is to evaluate the momentum in the
system (2.22) by decomposing it into two equations

∂hu
∂t

= −η2gh−1/3|u|u

∂hu
∂t

+ Φhu(W ) = −gh∇Z,
(4.32)
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where Φhu(W ) represents the convection terms corresponding to the equations of the momentum.
In a first step, a linearized semi implied method is used to integrate the first equation of the
system (4.32)

(h̃u)i − (hu)ni
∆t = −η2g(h̃u)i|uni |(hni )−4/3. (4.33)

In the second step, the value (h̃u)i is taken as the initial condition for solving the second equation
of (4.32). Such a methodology was introduced in particular in this publication [107].

4.2 Model of solute transport by fluid flow
We propose to rewrite and apply the FVC finite volume solver described previously in 4 to

consider the pollutant transport-diffusion equation in the shallow water model. The modification
on the discretization of the source terms describing the bottom variation will make it possible
to obtain an equilibrium scheme while keeping the accuracy in space, see 4.1.4. It is recalled
that the scheme’s construction is done in two steps: calculating the intermediate states and
calculating the numerical flux using the physical flux.

The FVC scheme is formulated by considering only the convective part of the system (2.36)
and the source terms describing the bottom profile, the friction, and the Coriolis terms of the
domain. The diffusion part will be treated using the diamond scheme, see Appendix.
Consider the following system, which is the model (2.36) without a diffusion term.

∂W

∂t
+∇ · F(W ) = S(W ) +R(W ), (4.34)

where

F(W )) =


hu

hu2 + 1
2gh

2

huv

huC

hv

huv

hv2 + 1
2gh

2

hvC

 , S(W ) =


0

−gh∂xZ

−gh∂yZ

0

 , R(W ) =


0

fchv − rfx + τsx

−fchu− rfx + τsy

hQ

 .

Following the same calculation used in section 4.1.2, we return to the projected speed model
associated with (4.34), which is written as

∂h

∂t
+ ∂huη

∂η
= 0,

∂huη
∂t

+ ∂

∂η

(
huη

2 + 1
2gh

2
)

= −gh∂ηZ + fchuτ − η2ghuη
|u|
h4/3 ,

∂huτ
∂t

+ ∂

∂η
(huηuτ ) = −fchuη − η2ghuτ

|u|
h4/3 ,

∂hC

∂t
+ ∂(huηC)

∂η
= hQ.

(4.35)

Can also be reformulated in the transport equation as

∂U
∂t

(t,X) + uη(t,X)∂U
∂η

(t,X) = F(U), ∀ X = (x, y) ∈ Ω ⊂ R2, t > t0, (4.36)
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where

U =


h

huη

huτ

hC

 , F(U) =


−h∂η(uη)

−gh∂η(h+ Z) + fchuτ − huη∂η(uη)− η2ghuη
|u|
h4/3

−fchuη − huτ∂η(uη)− η2ghuτ
|u|
h4/3

hQ− hC∂η(uη)

 .

The computation of the characteristic curves, the treatment of the background source term, and
the friction terms are treated in the same way as the techniques explained in the section 4.
In order to complete the construction of the numerical scheme for the considered pollutant
transport model, the part concerning the diffusion term has to be integrated. It is assumed here
that the diffusion coefficients in the concentration equation are constant, so we have to evaluate
the terms of the form ∫

γij

(
hDx

∂C

∂x
nx + hDy

∂C

∂y
ny

)
dσ. (4.37)

The discretization of these diffusion flows on unstructured meshes is still a complex problem.
Many theoretical investigations and mathematical analyses have been directed in this direction
see e.g. [108, 109, 110]. In this work, we present a finite volume scheme for this type of problem
when unstructured meshes are used. The algorithm is based on a Green-Gauss-type interpolation
to construct the gradients at the mesh interfaces. The weak consistency of this scheme has been
proven under certain conditions regarding the interpolation points. We write∫

γij

hDx
∂C

∂x
nxdσ = Dxhγij

∂C

∂x

∣∣∣∣
γij

∫
γij

nxdσ. (4.38)

The problem now depends on the way to evaluate ∂C
∂x on the interface γij . Our choice falls on

the diamond scheme described in detail in the appendix. Thanks to its robustness and accuracy,
especially when the meshes do not have a great regularity on the triangles, contrary to the FV4
scheme adopted, studied, and analyzed by T. Gallouët and his colleagues in [110].

4.3 Two-dimensional multilayer shallow water equations
Due to the large size of the system and the difficulty, even impossibility, of computing eigen-

values, the use of classical Riemann solvers is challenging. In [56, 55], numerical methods based
on kinetic interpretations were developed to solve the equations for shallow water in multiple
layers. These methods possess interesting stability properties but are also known to introduce
significant numerical diffusion, requiring higher-order methods for practical applications.

In this work, we propose the FVC numerical solution as an alternative. The method was
first presented and analyzed in [31] for standard shallow water equations in a single layer. It
should be noted that the proposed FVC scheme avoids the solution of Riemann problems and
is a predictor-corrector type method. The prediction step uses the method of characteristics
to reconstruct the numerical fluxes, while the correction step treats the initial equations in
conservative form. The proposed method is simple, conservative, non-oscillatory, and adapted
to shallow water equations in multiple layers, for which Riemann problems are difficult to solve.
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For the numerical resolution of the model, we begin by rewriting the equations (2.42) as

∂H

∂t
+

M∑
θ=1

∂

∂x
(lθHuθ) +

M∑
θ=1

∂

∂y
(lθHvθ) = 0,

∂

∂t
(lθHuθ) + ∂

∂x

(
lθHu

2
θ + 1

2glθH
2
)

+ ∂

∂y
(Huθvθ) = −glθH

∂Z

∂x
+ fclθHvθ + Fθ,

∂

∂t
(lθHvθ) + ∂

∂x
(Huθvθ) + ∂

∂y

(
lθHv

2
θ + 1

2glθH
2
)

= −glθH
∂Z

∂y
− fclθHuθ +Gθ.

(4.39)

The same projection techniques as those used in subsection 4.1.2 are employed, resulting in
the following systems

∂H

∂t
+

M∑
θ=1

∂

∂η
(lθHuθ,η) = 0,

∂

∂t
(lθHuθ,η) + ∂

∂η

(
lθHu

2
θ,η + 1

2glθH
2
)

= −glθH
∂Z

∂η
− fclθHuθ,τ ,

∂

∂t
(lθHuθ,τ ) + ∂

∂η
(lθHuθ,ηuθ,τ ) = fclθHuθ,η.

(4.40)

where the normal projected velocity uθ,η = uθnx + vθny and the tangential projected velocity
uθ,τ = vθnx − uθny.

The system (4.40) can be rearranged in a compact form as

∂Uθ

∂t
(t,X) + Vξ,η(t,X)∂Uθ

∂η
(t,X) = Q(Uθ), ∀ X = (x, y) ∈ Ω ⊂ R2, t > t0, (4.41)

where

Uθ =



H

l1Hu1,η

l2Hu2,η

...

lMHuM,τ

l1Hu1,τ

l2Hu2,τ

...

lMHuM,τ



, Q(Uθ) =



−
M∑
θ=1

lθH
∂uθ,η
∂η

−l1Hu1,η
∂u1,η
∂η − gH

∂
∂η (H + Z) + fcl1Hu1,η

−l2u2,η
∂u2,η
∂η − gH

∂
∂η (H + Z) + fcl2Hu2,η

...

−lMuM,η
∂uM,η
∂x − gH ∂

∂η (H + Z) + fclMHuM,η

−l1Hu1,τ
∂u1,τ
∂η − fcl1Hu1,η

−l2Hu2,τ
∂u2,τ
∂η − fcl2Hu2,η

...

−lMHuM,τ
∂uM,τ
∂η − fclMHuM,η



,
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and

Vξ,η =


M∑
θ=1

lθuθ,η, if ξ = 0,

uξ,η, if ξ = 1, 2, . . . ,M.

(4.42)

Following the procedure outlined in Section 4.1, we can write the characteristic curves for equa-
tion (4.41) and then use them to construct intermediate states. Concerning the time integration
of system (2.52) can be achieved using splitting methods, as compared to [59, 111] for a first-
order splitting method. In this study, we consider a second-order splitting method studied in
[112]. We also use the notation Wn to denote the value of a generic function W at time tn. The
considered splitting operator method consists of three steps given by
Stage 1:

∂tW
∗ = R (W ∗) , on

(
tn, tn+1/2

]
, W ∗ (tn) = W (tn) . (4.43)

Stage 2:

∂tW
∗∗+∂xF (W ∗∗) +∂yG (W ∗∗) = S (W ∗∗) , on (tn, tn+1] , W ∗∗ (tn) = W ∗

(
tn+1/2

)
. (4.44)

Stage 3:

∂tW
∗∗∗ = R (W ∗∗∗) , on

(
tn+1/2, tn+1

]
, W ∗∗∗

(
tn+1/2

)
= W ∗∗ (tn+1) . (4.45)

The time integration process for the system is accomplished by applying a time-stepping tech-
nique to the three stages mentioned above. The first and third stages handle nonlinear terms and
vertical diffusion, whereas only linear terms are addressed in the second stage of the splitting.
To avoid solving linear systems of algebraic equations associated with implicit time stepping,
we use explicit time integration methods for stages (4.43-4.45). This study used the explicit
third-order Runge-Kutta method investigated in [113]. Therefore, advancing the solution of an
ordinary differential equation with the structure (4.43) from time tn to the subsequent time tn+1
can be accomplished through this procedure.

W(1) = Wn + ∆tR (Wn)

W(2) = 3
4W

n + 1
4W

(1) + 1
4∆tR

(
W(1)

)
Wn+1 = 1

3W
n + 2

3W
(2) + 2

3∆tR
(
W(2)

) (4.46)

where the asterisks of the variables have been removed for ease of notation. It should be noted
that the Runge-Kutta (4.46) method has been widely used for the time integration of hyperbolic
systems of conservation laws, mainly because it can be interpreted as a convex combination of
first-order Euler steps that exhibit strong stability properties. Therefore, the Runge-Kutta (4.46)
method is TVD, accurate to the third order in time, and stable under the usual CFL condition
involving the eigenvalues of the system under study. However, calculating the eigenvalues of
the system (2.52) is not trivial, and in many flow cases, these eigenvalues become complex. In
the present work, the proposed FVC scheme does not require the calculation of the eigenvalues
for the multilayer system, and the time step selection can be performed using the eigenvalues
associated with the single-layer counterparts in shallow water, defined as follows

λ±θ = uθ · n±
√
gH, θ = 1, 2 . . . ,M. (4.47)
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It should be noted that the time increment can be modified by utilizing the maximum wave
velocity for the multi-layered shallow water model. This approach ensures the stability of the
technique, however, for a given simulation duration, it may necessitate a greater number of
iterations compared to the alternative approach that relies on the eigenvalue-based selection
(4.47).

4.4 Numerical results
It is clear from (4.16) that the scheme is conservative and can compute the numerical flux

corresponding to the physical solutions of water flow without relying on Riemann problem
solvers. With the same proof of theorem 2.3 in [114], the CFL condition for the explicit scheme
(4.31) can be written

∆t 6 min
{

|Ti|
Pi(|u · n|+

√
gh)i

,
|Ti|

Pi(|u · n|+
√
gh)i
√

2αn
,

|Ti|
2 max (Dxx, Dyy, ε)

}
. (4.48)

A fixed CFL = 0.9 is used, and in all of our simulations, we use αn = 1 in a first-order
approximation, except in cases where we specify the value of αn used. The used computer is an
Intel Core i7-8565U CPU @ 1.80GHz × 8, with 15 GB RAM.

In order to validate the FVC scheme on unstructured meshes to simulate shallow water flows,
we present some test cases that are proposed by several authors to validate their model and their
numerical approach. The accuracy is demonstrated by comparing numerical solutions produced
by the FVC scheme with analytical solutions, especially in the tests 4.4.1, 4.4.2 and 4.4.3. To
reproduce the calculation results reported in the literature, the source term of the bed is always
taken into account. The C-property produced by this term has also been treated in tests 4.4.4
and 4.4.5. The Coriolis effect was taken into account in test 4.4.6 and this test’s results are in
good agreement with those presented in the literature. The test 4.4.8 compares the experimental
data of a dam break flow in a channel with a 90◦ bend. This experiment was carried out in
the laboratory of the Civil Engineering Department of the UCLouvain University, Belgium. We
took into account the friction source term for this last simulation.

4.4.1 Accuracy test example

We test the present approach on a problem where the exact solution is known [115]. It can
be easily checked that.
h(t, x, y) = 1− a2

4bg exp
(
−2b(x̄2 + ȳ2)

)
,

u(t, x, y) = Mcos(θ) + aȳ exp
(
−b(x̄2 + ȳ2)

)
, v(t, x, y) = Msin(θ)− ax̄ exp

(
−b(x̄2 + ȳ2)

)
,

where x̄ = x− x0 −Mt cos(θ) and ȳ = y − y0 −Mt sin(θ),
give a smooth solution of the shallow water system (2.20) without the source terms (i.e. ∇Z =
0, and fc = 0) for any choice of constants, M,a, b, x0, y0 and θ. Initial and boundary con-
dition are set according to the exact solution. We let M = 1

2 , g = 1, a = 0.04, b = 0.02,
and (x0, y0) = (−20,−10). To test the ability of the scheme to resolve flows that are not
aligned with the computational mesh, we let θ = π

6 . The computational domain is a square
Ω = [−50, 50]× [−50, 50], and the simulations performed up to time t = 100 s.
The results obtained by FVC scheme are then compared with those of the well known Roe solver
and the SRNH originally introduced in [73, 107] for hyperbolic systems with source terms. Note
that, for homogeneous systems. We also propose to see the effect of different choices of the
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parameter αn. In [31] the authors showed that the parameter αn controls the accuracy of the
FVC scheme for its one-dimensional formulation. The reader can refer to the lemma 3.3.2 and
its proof. Our study reaches almost the same conclusion on αn, for this purpose, the Fig 4.11
shows the convergence order for three different choices of αn.

Table 4.1: Relative L1 errors obtained for the accuracy test example at time t = 100 s using the
SRNH, Roe and FVC schemes.

Schemes SRNH Roe FVCαn=1

L1 error in L1 error in L1 error in

# Cells h hu hv h hu hv h hu hv

2648 2.042E-04 5.344E-03 9.546E-04 2.107E-04 5.501E-03 9.867E-04 1.785E-04 4.379E-03 8.763E-04
10362 1.627E-04 7.626E-03 7.626E-03 1.673E-04 7.812E-03 7.931E-03 1.078E-04 1.534E-03 3.475E-03
40690 1.317E-04 2.716E-03 5.450E-03 1.359E-04 3.001E-03 5.656E-03 4.518E-05 5.430E-04 1.249E-03
161316 9.363E-05 1.628E-03 3.441E-03 9.930E-05 1.812E-03 3.666E-03 1.986E-05 2.083E-04 4.868E-04
640138 6.108E-05 4.911E-04 2.099E-03 6.619E-05 5.431E-04 2.565E-03 7.910E-06 6.798E-05 1.893E-04

Table 4.2: CPU time (s) obtained for the accuracy test example at time t = 100 s using the
SRNH, Roe and FVC schemes.

Schemes SRNH scheme Roe scheme FVC
αn=1 scheme

# Cells
2648 16.71 14.31 11.91
10362 31.30 27.14 21.49
40690 184.81 163.55 101.46
161316 1887.89 1776.13 1003.26
640138 21031.82 17987.04 10524.03
' 106 2.602E+05 2.082E+05 5.713E+04

A simple inspection of Table 4.2 reveals that for meshes with a low number of the cells,
the measured computation time is comparable for the SRNH, Roe and FVC schemes, this
performance was also observed in the 1D version of the FVC scheme (see Table 5.2 in [31]).
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Fig 4.10. Water depth h and discharge hu and hv for the accuracy test example. First row:
Exact solution. Second row: FVC scheme with αn = 1. Third row: Roe scheme. Fourth row
SRNH scheme using a mesh with 10362 cells at t = 100 s.

The results in Table 4.1 show that increasing the number of cells in the computational
domain leads to a decrease in the L1 error for the water height h, and the discharges hu and hv
in all schemes. A faster decay of the error is observed in the FVC scheme than in the SRNH
and Roe schemes, which is expected. Moreover, for meshes with a somewhat large number of
cells, the FVC method is the most efficient. For example, for a mesh of ' 106 cells, the Table
4.2 also shows the FVC scheme is about four times faster than the SRNH and Roe schemes.
This is due to the fact that the FVC approach does note require the calculation of the Jacobian
matrix of the system, this matrix occurs in many Q-scheme type approximation schemes, and
is responsible for the slowness of this kind of scheme. Note that the Roe and SRNH schemes
require a solver for the Riemann problem at each time step to reconstruct the numerical flux,

83



CHAPTER 4. 2D FVC SCHEME ON UNSTRUCTURED MESHES:
APPLICATION TO FREE SURFACE FLOWS IN SHALLOW WATER

which is completely avoided in the FVC scheme. We can see that the three schemes could reach
the designed order of accuracy. In Fig 4.11 we have plotted the log of L1 error calculated in
Table 4.1 and the other fixed values calculated for αn = 0.5 and then αn = 2 against the log
of the maximum value of the mesh edges. We find that the L1 errors of the FVC scheme lie on
a slope line of 1.4, indicating that the accuracy order of the scheme is about 1.4 for αn = 0.5.
These results are consistent with what the authors said in [31].
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Fig 4.11. Convergence order in L1 error of a water height.

4.4.2 Dam-break problem

Flood flows produced by the dam break, segments of dykes, or other structures are torrential
in nature, with the presence of a discontinuous front propagating downstream and a rarefaction
wave propagating upstream. The characteristics of these flows, such as velocity, water level, and
time of arrival of floods must be determined in advance in order to manage floods and reduce
their impact on the environment and economic infrastructure. In order to test the present
approach for problems related to dam break, we carried out a series of test cases proposed in
the literature (see, e.g. [31]).
The proposed approach is not based on a Riemann solver technique, which is very appropriate
for a hyperbolic problem whose solution is often represented by a discontinuous front. Thus
it will be interesting to examine the accuracy of the present approach by simulating torrential
flows in the presence of a discontinuity in the velocity profile and the free surface.

4.4.2.1 Description of the problem

We consider a rectangular channel with a flat bottom, Z(x, y) = 0 and no friction, i.e., there
is no source terms, the problem is purely hyperbolic. The channel is 1.6 m long and 0.1 m wide
(we assume a nondimensionalization problem), and the initial conditions are given by

h(0, x, y) =
{
hl if x 6 xm,

hr if x > xm,
0 6 y 6 0.1 (4.49)

u(0, x, y) = v(0, x, y) = 0 m/s. A dam is placed in the middle of the channel i.e., xm = 0.8 m
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Fig 4.12. Initial condition of the problem.

This corresponds to a homogeneous Riemann problem. Initially, the water is at rest, and the
height hl remains 1.0 m for all simulations. The downstream height hr takes on different values
0.5 m, 0.1 m, and 0.025 m. The nature of the torrential flow due to the dam break depends
essentially on the ratio hr/hl.
A numerical instability is likely to occur for small values of the ratio hr/hl. At t = 0 s, it
is assumed that the dam is abruptly removed causing a shock wave with the presence of a
discontinuous front of the water surface propagating downstream.
The channel is assumed to be closed on all four sides and the "slip" conditions are imposed on
all walls. The computational domain is discretized by a mesh of 41776 triangles with an average
size of 0.003 m2. We will compare the water height and velocity obtained by the FVC scheme
with the analytical solution, which is calculated using the Stoker method [116], its expression is
written in the appendix section.

The evolution of the water surface profile is used to examine the behaviour of the FVC
scheme in capturing the discontinuous shock front. Henderson [117] notes that when the ratio
hr/hl is greater than 0.138, the flow is sub-critical in the whole of the channel. When the ratio
hr/hl is smaller than 0.138, the flow is supercritical downstream and sub-critical upstream of
the dam.
For very small values of hr/hl, the upstream flow regime becomes strongly supercritical, and it
may be difficult to capture such a shock wave numerically.

4.4.2.2 Results and discussion

The first simulation concerns a river flow with hr/hl = 0.5. The Fig 4.13 shows the cross-
section at y = 0.05 m of the evolution of the water depth and the longitudinal velocity. Excellent
agreement is obtained between the numerical and analytical results, this is clear from Table
4.3 where the L1 error and the accuracy order of h and hu are presented, respectively. The
comparison shows that, under this condition, the FVC scheme can accurately predict the shock
wave without creating oscillations.

In [118] the authors have proven that for a ratio hr/hl smaller than 0.05, most of the existing
numerical models cannot give accurate results especially on the front. The last simulations, with
hr/hl = 0.025 and ∞ (see Fig 4.14 and Fig 4.15), create supercritical flows downstream and
sub-critical flows upstream. When hr/hl 6 0.025, a slight, non-physical oscillation occurs at the
shock front.
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Table 4.3: Relative L1 error and CPU times for dam break test at t = 0.1 s using FVC scheme
on a different meshes.

# Cells Maximum of edges size Error in h Error in hu Order CPU time (s)
5252 0.0127 2.612E-03 2.189E-02 - 7.91
10632 0.00913 1.650E-03 1.378E-02 1.402 10.66
21224 0.00666 1.045E-03 8.711E-03 1.453 19.96
41776 0.00479 6.255E-04 5.169E-03 1.583 30.21
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Fig 4.13. Comparison of results for hr/hl = 0.5 at t = 0.1 s. Left: water height h. Right:
longitudinal velocity u.

The ratio hr/hl is largely responsible for the problem of numerical instabilities that occur
in the simulation of torrential flow due to dam break. The difficulty of the problem increases
as the ratio hr/hl decrease. We conclude that the proposed approach is well able to simulate
torrential flows with a good capture of the shock front for the small ratio hr/hl.

h(
t, 

x,
 y

 =
 0

.0
5)

0

0.10.1

0.2

0.3

0.4

0.5

0.60.6

0.7

0.8

0.9

1

1.11.1

x
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

FVC scheme

Exact

t = 0.1 s

u(
t, 

x,
 y

 =
 0

.0
5)

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

x
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

FVC scheme

Exact

t = 0.1 s

Fig 4.14. Comparison of results for hr/hl = 0.025 at t = 0.1 s. Left: water height h. Right:
longitudinal velocity u.
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Fig 4.15. Comparison of results for hl = 0 at t = 0.1 s. Left: water height h. Right: longitudinal
velocity u.

Now let’s consider a test with a non-flat bottom. We consider a two-dimensional dam break
problem on a discontinuous bottom where the discontinuity is present at the dam location. The
bottom of the bed is assumed to be without friction. This test is very interesting because it
includes most flow structures such as shocks, rarefaction waves and contact discontinuities. The
purpose of this test is to compare the scheme’s performance with the results of the SRNH scheme
presented in [7]. We used Zl = 0m, Zr = 1m, hl = 5m, hr = 1m. An unstructured grid with
13145 elements is used for this simulation. In Fig 4.16, we show cross-sections of the water free
surface and the velocity at y = 0.05m and at time t = 0.5s. We found that the obtained results
are in good agreement with previous research, (for more details, we invite readers to consult

4.1 of [7]). We define the relative error in the L1 norm defined as
∑Nele
i=1 |Ti||uni − u(tn, xi, yi)|∑Nele

i=1 |Ti||u(tn, xi, yi)|
,

where uni and u(tn, xi, yi) are respectively, the computed and exact solutions at the cell Ti, and
Nele denotes the total number of cells.
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Fig 4.16. Shallow water flow over a forward facing step at t = 0.5 s. Left: surface level h+Z.
Right: longitudinal velocity u.

The previous test case was one-dimensional in nature. In the real-world applications, torren-
tial flows due to dam and dike segment failures are often two-dimensional. Therefore, the objec-
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tive of the Fig 4.17 is to show the ability of the proposed scheme to reproduce two-dimensional
flood propagation in the presence of a discontinuous front of water height and velocity over a wet
bottom. This problem has been treated by many authors to validate their dam break models
approximation schemes (see, e.g. [119, 120]). We suppose that at t = 0 s, abruptly reservoir
dam is partially broken and unsymmetrical over a length of 75 m. Initially hr/hl = 0.5 is fixed
with hl = 10 m as the water depth in the reservoir and hr = 5 m as the water level downstream
of the dam. The water in the basin is at rest at t = 0 s, that is u(0, x, y) = v(0, x, y) = 0m/s.
The gravitational acceleration is fixed to g = 9.81m/s2 and the simulation is performed on a
triangular unstructured mesh with 4066 elements up to physical time t=7.2s. Fig 4.17 and Fig
4.18 show respectively 3D view of the water height h, contours of h and the velocity field at
physical time 7.2s.

Fig 4.17. Water height at = 7.2 s.
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Fig 4.18. Left: contours of water depth h. Right: velocity vector field.

We can observe that the right-hand flow propagates downstream from top to bottom, the
rarefaction wave propagates upstream and two asymmetric weak eddies develop on both sides of
the rift. Good resolution is achieved in areas characterized by significant water level gradients,
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such as moving fronts. Furthermore, the global flow is preserved without excess numerical dif-
fusion. Our results seem to be very similar to those presented by the existing studies mentioned
above.

In order to show the convergence accuracy of the FVC scheme the same simulations were
performed on three types of meshes: mesh 1 is a coarse mesh with 2012 triangles, mesh 2 has
twice the number of the mesh 1 triangles, 4066 triangles and a fine mesh with 10083 triangles. A
reference solution is calculated by the FVC scheme on a mesh of 101005 triangles; this solution
is used to quantify the numerical results obtained on the three meshes. In Fig 4.19, we present
the cross-sections of the water height and the hu discharge in different meshes along the axes
y = 125 m at time t = 7.2 s.
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Fig 4.19. Horizontal cross-sections at y = 125 m of the water depth (left Fig) and the water
velocity (right Fig) for the partial dam-break problem obtained by using different meshes at
time 7.2 s.

This test case confirms the ability of the FVC scheme to reproduce two-dimensional flows
in the presence of a discontinuous front. The uncovering and overlapping domains are well
treated by the scheme. Furthermore, this test case allows us to perform the calculations using
the present approach to determine both the water head and the velocity at the open boundary.
It excludes numerical oscillations, therefore it is stable.

4.4.3 Tidal wave flow over an irregular bed

Here we propose to study a tidal flow on an irregular bed. This test case has been proposed
in several works to validate and to test the C-property of their approximation method [10]. It is
well known that in the shallow water equations describing a flow over an irregular background,
the source terms become dominant and may cause undesirable numerical instabilities. Therefore
this test case allows us to test the reliability and robustness of the proposed model when the
bottom variation is irregular. The bottom profile is defined in the appendix (table of bed
elevation Z(x) and its illustration). The initial and boundary conditions are constructed from
the asymptotic analytical solution given by
h(t, x) = h0 + 4− Z(x)− 4 sin

(
π( 4t

86400 + 1
2)
)
, u(t, x) = π(x− 1500)

5400 · h(t, x) cos
(
π( 4t

86400 + 1
2)
)

with, h0 = 16 m, h(0, x) = h0 − Z(x).
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In Fig 4.20 we present a comparison between surface level and the analytical solution at t =
10800 s as well as the water height at the same time using a mesh of 200 grid points in the
x-direction. We also include in Fig 4.21 a comparison between the water velocity generated by
the FVC scheme and the analytical velocity at t = 10800 s then at t = 32400 s. In Table 4.4
we present a comparison between the exact solution and the solution generated by the FVC
scheme using the relative L1 error. An excellent agreement is obtained between the numerical
and analytical solutions. This confirms that the proposed scheme is also accurate for tidal flow
over an irregular bed.
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Fig 4.20. Tidal wave flow over an irregular bed. Left: comparison of surfaces level h + Z at
t = 10800 s and bed Z. Right: Comparison of water height h.
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Table 4.4: Relative L1 error and CPU times for the tidal wave flow over an irregular bed using
FVC scheme over a mesh of 1510 cells.

tend Error in h Error in hu Error in h + Z CPU time (s)

10800 1.254E-05 4.230E-03 1.012E-05 545.95
32400 7.719E-06 5.731E-03 1.241E-05 1583.41

The accuracy of the proposed scheme in the treatment of the source terms has been identified.
The numerical errors produced by the model remain very low even though the mesh is coarse
and the bed is very irregular, for comparison we can see Table 1 of Section 4 in [10]. The results
of this test case confirm the good performance of FVC scheme in the treatment of the source
terms while avoiding undesirable numerical errors due to the rapid variation of the bed.

4.4.4 Flow over a non-flat irregular bed

•) Case 1

We consider the example of water flow in a two-dimensional channel including an irregular bed,
a similar test has been proposed in [10]. The mathematical formulation consists of solving
the shallow water system (2.20) without Coriolis force and subjected to Neumann boundary
conditions. The initial conditions as follow
h(0, x, y) = 1− Z(x, y) m, u(0, x, y) = v(0, x, y) = 0 m/s,

where the bed profile is defined by: Z(x, y) =
5∑

k=1
ak exp

(
−(x− xk)2 + (y − yk)2

σ2
k

)
,

with (a1, σ
2
1, x1, y1) = (0.75, 2,−4, 5), (a2, σ

2
2, x2, y2) = (0.7, 2,−2.5, 2.5), (a3, σ

2
3, x3, y3) =

(0.65, 3.3, 0, 0), (a4, σ
2
4, x4, y4) = (0.6, 2.5, 3,−2), and (a5, σ

2
5, x5, y5) = (0.55, 1.48, 5,−4).

The purpose of this test example is to verify the achievement of the C-property for the FVC
scheme applied to shallow water flows over non-flat bed.

Fig 4.22. Water free-surface for the flow over a non-flat irregular bed at t = 1 hour.
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Fig 4.23. Cross-sections at y = −x. Left: the absolute error of the free-surface for the lake at
rest. Right: velocities values after 1 hour.

The C-property of well-balanced FVC scheme on unstructured meshes is checked in this
example. In Fig 4.22, we present 3D view of the water free-surface obtained at time t = 3600 s
using an unstructured mesh of 1030 cells. As expected the water free-surface remains constant
during the simulation time. The velocities and the error presented in Fig 4.23 also show that the
equilibrium of the lake at rest is verified. These results shows that the proposed FVC scheme
perfectly preserves the C-property.
•) Case 2
We will treat the same problem as in case 1 but this time with a very large computational
domain Ω = [0, 1500] × [0, 500] and a non-smooth bed profile. As you have seen in case 1, the
C-property is verified with a qualitatively admissible accuracy but the idea behind using this
case is to compare the accuracy of the FVC scheme with the results of work that has been done
using a Cartesian mesh [30, subsection 4.1]. The bed profile and the initial condition are defined
as
h(0, x, y) = 20− Z(x, y) m, u(0, x, y) = v(0, x, y) = 0 m/s,
the bed profile Z(x) is defined in the appendix. The results presented in Table 4.5 and in the
figures, Fig 4.24 and Fig 4.25 are in good agreement and even better than those in [30]. They
also demonstrate that the present approach accurately preserves the C-property, regardless of
the complexity of the bed.

Table 4.5: Relative L1 and L∞ errors of the water free surface for flow over a non-flat irregular
bed case 2 at 1h, 2h then 3hours.

L1 error L∞ error

# Cells Maximum of edges size t = 3600s t = 7200s t = 10800s t = 3600s t = 7200s t = 10800s

776 68.94 1.700E-15 3.109E-15 3.231E-14 2.664E-15 4.085E-15 3.428E-14
1664 50.96 1.401E-15 3.023E-15 6.332E-15 1.580E-15 8.881E-16 8.015E-16
3218 35.58 4.845E-16 4.813E-16 7.011E-16 1.010E-15 8.881E-16 8.015E-16
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Fig 4.24. Cross-sections at y = 250. Left: the absolute error of the free-surface for the lake at
rest. Right: velocities values at 10800 s.

Fig 4.25. Water free-surface for the flow over a non-flat irregular bed case 2 using a mesh with
1664 cells at t = 10800 s.

4.4.5 A small perturbation of a steady-state over a smooth bed

This test was introduced by R.J. LeVeque in [121] and recently used in [122]. This is a
classical example demonstrating the effectiveness of the proposed well-balanced FVC scheme
in handling perturbations in the stationary state. We solve the two-dimensional shallow water
equations in the rectangular domain Ω = [0, 2]×[0, 1] subjected to Neumann boundary conditions
and the following initial conditions

h(0, x, y) =
{

1− Z(x, y) + 0.01 if 0.05 6 x 6 0.15,
1− Z(x, y) otherwise,

0 6 y 6 1, (4.50)

u(0, x, y) = v(0, x, y) = 0 m/s. It is assumed that the bottom has the following form:

Z(x, y) = 0.8 exp
(
−5(x− 0.9)2 − 50(y − 0.5)2

)
.
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Fig 4.26. Illustration of the surface level h+ Z at times t = 0.10 s and 0.20 s respectively.

Fig 4.27. Illustration of the surface level h+ Z at times t = 0.40 s, and 0.60 s, respectively.

Fig 4.26 and Fig 4.27 display the right going of the disturbance as it propagates over the
hump on an unstructured triangular mesh of 165008 cells, the surface level h + Z is shown at
different times. From top to bottom: t = 0.10 s from 0.999906 m to 1.003861 m; t = 0.20 s
from 0.999733 m to 1.004363 m; t = 0.40 s from 0.998553 m to 1.001256 m; and t = 0.60 s from
0.999339 m to 1.000898 m. No spurious oscillations are present in the solution. The results
indicate that the FVC scheme can resolve the complex small details of the flow over a smooth
bed very well.

4.4.6 Circular dam-break problem

We consider the benchmark problem proposed in [123] to study cyclone/anticyclone asym-
metry in nonlinear geostrophic adjustment. We solve the shallow water system (2.20) with a
Coriolis effect on a non-flat bottom in the spatial domain Ω = [−10, 10]× [−10, 10] subjected to
Neumann boundary conditions and the following initial conditions

h(0, x, y) = 1 + 1
4

(
1− tanh

(√
ax2 + by2 − 1

c

))
, u(0, x, y) = v(0, x, y) = 0m/s,

where a = 5
2 , b = 2

5 , c = 0.1, fc = 1 Kg.m/s2 and g = 1 m/s2.

The bottom profile has the following expression: Z(x, y) = 0.3
(

1 + tanh
(3x

2

))
.

Let’s start by looking at the behaviour of this phenomenon in a domain with a flat bottom. The
Fig 4.28 shows the representation of the water level calculated at different times for this test
case with Z(x, y) = 0. As can be seen, a hole has formed, and water is flowing out of the deepest
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region as a rarefaction wave progresses outward. It is clear from the results presented that the
initial elliptical mass imbalance evolves in a non-axisymmetric manner. The two expected shock
waves are very well captured by the proposed FVC method. These results are qualitatively in
good agreement with those published in [30, 123]. In Fig 4.29 we exhibit the results for the
velocity field corresponding to the plots Fig 4.28. As can be seen the two shock waves that orig-
inated behind the water elevation are slowly spinning clockwise in the computational domain.
The velocity field is well represented by the FVC scheme, and re-circulation regions within the
flow domain are well captured.

Fig 4.28. Water depth for the circular dam-break problem on flat bottom obtained at different
times using a mesh with 10040 cells. From top to bottom t = 4 s, 8 s and 16 s.

Fig 4.29. Velocity fields for the circular dam-break problem corresponding to the plots repre-
sented in Fig 4.28.

Let’s move on to the case of the non-flat bottom to assess the performance of the FVC scheme
on unstructured meshes to solve the circular dam-break problem on a non-flat bottom. The Fig
4.30 shows the calculated results for the water depth at t = 2 s, 8 s and 16 s using two meshes
of 10040 and 40146 cells. The corresponding results for velocity field are presented in Fig 4.31.
From a numerical point of view this test example is more difficult than the previous one as the
flow is expected to exhibit complex features due to the interaction between the water surface
and the bed. As in the previous test a hole has formed and the water drains from the deepest
region as a rarefaction wave progresses outwards. However, a slower propagation is detected for
the water free-surface in this test compared to the simulations on flat-bottom.
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Fig 4.30. Water depth for the circular dam-break problem on non-flat bottom using a mesh
with 10040 cells (first row) and 40146 cells (second row). From left to right t = 2s, 8s and 16s.

Fig 4.31. Velocity fields corresponding to the plots represented in Fig 4.30.
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4.4.7 Oblique hydraulic jump

In this test, we examine an oblique hydraulic jump formed through the interaction of a
supercritical flow on a flat surface and a converging wall tilted at an angle of θ = 8.95◦. The
channel geometry’s contraction, as depicted in Fig 4.32 generates the slanted hydraulic with
an angle of β = 30◦, resulting in a sudden rise in water depth. The parameters used in the
simulation are the same as those referenced in [10, 124]. Consequently, the initial conditions are
h = 1m, u = 8.57m/s, and v = 0m/s, yielding a Froude number of Fr = 2.74. The supercritical
flow boundary conditions (h = 1m, u = 8.57m/s, and v = 0m/s) are specified at the upstream
boundary, while transmissive boundary conditions are applied at the downstream boundary.
The steady state solution stops the time integration process when the following inequality is
satisfied ∥∥hn+1 − hn

∥∥
2

‖hn‖2
6 ε.

In this case, the given tolerance ε is set to 10−6 for our computation. To demonstrate the effec-
tiveness of the FVC scheme, we present the results obtained using a fixed grid of 29497 cells in
Fig 4.33. It is noteworthy that the computed results exhibit good qualitative agreement with
those reported in [10].

Fig 4.32. Oblique hydraulic jump.

Fig 4.33. Water height using the FVC scheme (left figure) and exact solution (right figure).
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In order to demonstrate the comparison between the FVC solution and the exact solution,
we present a cross-sectional view at the downstream channel position x = 40m in Fig 4.34 of
the outcomes derived from the FVC scheme and the exact solution. It is important to mention
that the FVC scheme generates accurate results in actual flow conditions compared to the exact
solution.

W
a
te

r 
h

ei
g
h

t 

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

x
4 6 8 10 12 14 16 18 20 22 24 26 28 30

FVC

Exact solution

Fig 4.34. Water height for the oblique hydraulic jump: exact and FVC solutions.

4.4.8 Tidal wave of a dam burst: Experimental validation

The previous test cases pertain to simulating various types of flows in non-complex geometries
without friction. Under these conditions, we do not generally encounter numerical problems due
to the complexity of the computational domain. The present test case is used to evaluate the
ability of the proposed model to calculate the flows due to a dam break through a 90◦ bend on
a non-flat bottom with a large discontinuity in the bottom profile, as well as the assumption of
friction terms. This is a physical experiment carried out in the framework of the European
CADAM project in the laboratory of the Civil Engineering Department of the UCLouvain
University, Belgium [125], for which a number of velocity and water level measurements are
available in a laboratory channel.

4.4.8.1 Description of the problem

The geometry used in the experimental facilities consists of a rectangular reservoir of 2.44m
× 2.39m and a 7.83m long channel with a 90◦ bend, as shown in Fig 4.35. The channel bed
level is 0.33m above ground level. The bed is relatively smooth, with a Manning friction coeffi-
cient of 0.0095 s.m− 1

3 . The initial water level in the reservoir is 0.25m and 0.01m in the whole
channel. The authors of [126] used this test case to validate their numerical model, which is
based on the solution of the shallow water equations over complex topography with wetting and
drying. In order to compare the FVC scheme with the experimental results we propose six mea-
surement points, which are located at G1(1.19m, 1.21m), G2(2.74m, 0.69m), G3(4.24m, 0.69m),
G4(5.74m, 0.69m), G5(6.56m, 1.51m) and G6(6.56m, 3.01m), exactly like the study cited above.
These measurements allow us to illustrate and compare the output of the code with the results
of the experiment. The computational domain is discretized by an unstructured triangular mesh
of 6165 cells see Fig 4.36.
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Fig 4.35. Plane view of the reservoir and the
channel.

Fig 4.36. Unstructured mesh of the computa-
tional domain.

4.4.8.2 Results and discussion

Fig 4.37 presents the free surface and bottom profile obtained by the simulation at t = 3 s,
5 s, 7 s and 14 s, respectively. These figures show that the supercritical flow induced by the
dam break is reflected in the bend, its speed becomes zero, and the water level rises. Then this
column of water collapses, and a new waterfront propagates both downstream and upstream.
Upstream, this results in a bore receding towards the reservoir. However, the flow rate at the
bore head is now subcritical, therefore much slower than the initial supercritical flow. After
this very transient phase, the flow approaches stable conditions where the inclination of the
free surface is close to the description presented by [125]. Fig 4.39 allows us to compare the
water height h obtained by FVC scheme with the experimental measurements and the results
of the SRNH scheme. The FVC scheme gives values of h almost identical to the measured
values, especially in the critical areas where there is an additional local pressure drop caused by
a sudden change in the channel geometry [127, subsection 3.3]. In the flow process, it can be
seen that the water arrives at the 90◦ bend at about 3 s after the dam break. Then the water is
reflected by the wall to form a front that propagates back towards the reservoir, while the water
flow after the 90◦ bend continues to flow downwards, and multiple reflections are observed. The
water flow after the 90◦ bend continues to flow downwards and multiple reflections are observed
on the channel walls with the appearance of complicated shapes on the part of the channel.
Comparisons between the numerical results and the data collected for a wetted bottom of the
measurement gauge points show that the flow arrival time is in good agreement on all gauge
points. However, we notice that the FVC scheme captures the water level at gauge point 2 with
good accuracy, while the SRNH scheme gives different results to the experimental data after
40 s. These results allow us to say that ou approach would predict dam break currents on a
vertical step. It also confirms the ability of the FVC scheme to reproduce two-dimensional flows
in the presence of a discontinuous front with friction.

99



CHAPTER 4. 2D FVC SCHEME ON UNSTRUCTURED MESHES:
APPLICATION TO FREE SURFACE FLOWS IN SHALLOW WATER

Fig 4.37. 3D view of water surface level h + Z and bed profile Z at various times: t = 3 s,
t = 5 s, t = 7 s and t = 14 s.
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Fig 4.39. Comparisons between numerical and experimental data of water depth h at Gauge
1 to 6.

The variation of water depth with time is compared to the experimental data at different
gauge positions, as shown in the figures above for the nearly dry bed case. At most gauge
positions, there is good agreement with the experimental data. However, there is a difference at
gauge 2 compared to the results presented in the same context by [127]. It can be seen that the
numerical solution is of good quality in this area; this accuracy may be due to the consideration
of the local head loss caused by the sudden dam failure. This behavior is already noticed in test
case 4.4.2.

4.4.9 Pollutant transport in a squared cavity

The objective of this simulation is to reproduce the results presented by Benkhaldoun et
al. [7] concerning the transfer of a pollutant in a square cavity with smooth topography. It
is a pure advection (i.e., Dx = Dy = 0) of pollutant transport within the square cavity as
described in references [128] and [129]. The flow domain is a square channel with dimensions
of 9000 m × 9000 m and bottom slopes of ∂xZ = ∂yZ = −0.001 and the Manning resistance
coefficient is fixed at η = 0.025 s.m− 1

3 . As in the previous work, we impose uniform flow
velocities of u = v = 0.5 m/s and a uniform flow water depth as the initial condition. To
establish the initial distribution of the pollutant concentration, we superimpose two Gaussian
pulses centered at (x1 = 1400 m, y1 = 1400 m) and (x2 = 2400 m, y2 = 2400 m), respectively.
The initial concentration is expressed as

C(0, x, y) = 10 exp
(
−(x− x1)2 + (y − y1)2

2642

)
+ 6.5 exp

(
−(x− x2)2 + (y − y2)2

2642

)
. (4.51)

The initial spatial distribution of concentration is also illustrated in Fig 4.40.
Using the FVC scheme on unstructured meshes proposed in this study, we calculate the con-

centration after 9600 seconds and compare it with the exact solution. The results are presented
graphically in Fig 4.41 which displays a 2D view, and in Fig 4.42, which shows the results along
the line y = x. To discretize the computational domain, we use 160815 non-uniform triangles
(mesh A), with a Courant number of CFL = 0.85. Fig 4.43 displays the outcomes obtained for
a refined mesh (mesh B with 372558 cells).
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Fig 4.40. Initial data of concentration in a squared cavity.

Fig 4.41. Comparative FVC solution (left) and exact solution of pollutant concentration (right)
at two simulation times: top to bottom at t = 5235s and t = 9600s.

This figure demonstrates that the FVC scheme results that are similar to the exact solution.
However, when the Courant number is set to a high value and the mesh is coarse, the FVC
scheme used in this study produces oscillations in the calculated concentration at the Gaussian
foot level, as demonstrated in the second row on the right side of Fig 4.42 at t = 9600 seconds.
These oscillations disappear completely when the mesh is refined, as seen in Fig 4.43. Table 4.6
presents the residual, maximum, and minimum values of the pollutant concentration.
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Fig 4.42. Diagonal cross-sections of the pollutant concentration: from top left to bottom right,
t = 0s, t = 1628, t = 5235 and t = 9600.
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Fig 4.43. The pollutant concentration’s diagonal cross-sections were evaluated using exact
and FVC schemes on two different meshes, namely mesh A and mesh B, with 160815 and
372558 cells, respectively. The results obtained at time 5235s and 9600s were compared, and
the outcomes are presented on the left and right sides of the figure, respectively.
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Table 4.6: The performance evaluation of FVC scheme with two fixed meshes for simulating
pollutant transport in a square cavity at time t = 9600s.

Exact Mesh A Mesh B
# of cells - 160815 372558
# of nodes - 80811 197224

minC 0.0 −0.33 −0.049
maxC 10.0 8.1 9.1

Residual in C - 0.21 0.075

4.4.10 Pollutant transport in the Strait of Gibraltar

The goal of this section is to simulate free-surface flows for the transport of contaminants
in real configurations, specifically the hydrodynamics in the Strait of Gibraltar. This aims to
examine the effectiveness of the FVC approach in generating solutions in real configurations
that have complex geometry and irregular topography.

The Strait of Gibraltar is located between the Iberian Peninsula to the north and the conti-
nent of Africa to the south, with the Atlantic Ocean to the west and the Mediterranean Sea to
the east. The primary flow in the strait is composed of a chilly top layer of freshwater flowing
from the Atlantic and a warm and salty deep current originating from the Mediterranean, as
indicated in references [130, 131]. The system spans roughly 60km in length from Spartel and
Trafalgar in the west to Ceuta and Gibraltar in the east, as illustrated in Fig 4.44. Its width
varies, ranging from around 14km from Tarifa to Punta Cires to a maximum of 44km from Bar-
bate to Tangier. The simulation mesh, depicted in Fig 4.45, consists of 23598 cells and 11648
nodes.

Fig 4.44. Strait of Gibraltar. 35◦ 58’ 18" N, 5◦ 29’ 09" W.

In the simulations, we used the bathymetry shown in Figure 4.46. A similar bathymetry has
been used in various numerical studies on predicting the mean flow in the Strait of Gibraltar, as
outlined in references [7, 131], particularly in the eastern part between Ceuta and Gibraltar. It
should be noted that the strait’s bottom is irregular and presents different spatial scales, which

104



CHAPTER 4. 2D FVC SCHEME ON UNSTRUCTURED MESHES:
APPLICATION TO FREE SURFACE FLOWS IN SHALLOW WATER

can pose numerical challenges.

This study aims to resolve equation (2.36) while accounting for pollution discharge at the
strait’s entrance, specifically at the midpoint of the axis between Barbate and Tangier. We
assume a wind friction coefficient of C̆f= 10−5 and a Coriolis parameter of fc=8.55× 10−5 s−1.

Identical and fixed diffusion coefficients in both directions, Dxx = Dyy = 0.001 m2/s. are
considered for pollutant transport due to the lack of turbulence effects in the model.

Additionally, we presume that solid boundaries have no pollution concentration, whereas
zero pollutant flux applies to other boundaries. Careful attention must be given to this matter
due to the highly irregular bathymetry of the strait to avoid severe numerical difficulties. The
Manning bottom friction coefficient is established as 0.001 s/m1/3, based on González et al [130].

Fig 4.45. Mesh of the computational domain around the Strait of Gibraltar.

Fig 4.46. 3D view of the Strait of Gibraltar bathymetry.

To drive the problem in the simulations, we utilize the main semi-diurnal tide originating
from the Atlantic side, which has an amplitude of 25 cm. The tide data is obtained from the
website https://tpxows.azurewebsites.net/. This generates a maximum current of about 1 m/s
at the entrance of the strait and represents the average yearly inflow into the Mediterranean
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Sea. Therefore, we employ open boundary conditions to simulate the primary component of the
tide in the model.

Fig 4.47. Concentration (left) and water depth (right) at the initial state.

Fig 4.48. The first row illustrates the concentration and velocity fields of the flow, whereas those
in the second row illustrate the corresponding water depth variation in the Strait of Gibraltar,
with a temporal progression from t = 1 hour on the left to t = 2 hours on the right.
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Fig 4.49. The first row presents the concentration and velocity fields of the flow, while the
second row displays the concurrent variations in water depth in the Strait of Gibraltar, arranged
in temporal sequence from t = 3 hours on the left to t = 4 hours on the right.

The results of the FVC scheme at six different times (1, 2, 3, 4, 5, and 6 hours) are presented
in Fig 4.48, Fig 4.49 and Fig 4.50. The time intervals used in the simulation represent the time
it would take for the pollutant to leave the Strait and travel further into the Mediterranean Sea
without any wind-induced effects. The concentration profile, velocity fields, and water depth
are shown in the figures, with C/Cmax indicating the ratio of the pollutant concentration to its
maximum value at the initial release (as displayed in Fig 4.47). It should be emphasized that
no modifications were made to the bathymetry for this particular test case.

The FVC scheme demonstrated a high level of accuracy in capturing the complex features of
the flow. The results also revealed its ability to predict complex wave interactions and capture
pollutant concentration with sharp resolution. The use of a fine mesh enabled high resolution
in regions with steep pollutant concentration gradients, such as the moving fronts. The FVC
scheme was found to be a shock-capturing method with very little numerical dissipation, even
after long-time simulations. Incorporating physical diffusion into the pollutant transport equa-
tion caused the maximum concentration to decrease to around 23% and 15% after 3 and 6
hours, respectively. The FVC scheme, like in the pure advection tests, produced negative con-
centrations near sharp gradients. These concentrations increased considerably as the pollutant
was transported over time. The accumulation of such negative concentrations in the case of
non-conservative pollutants could adversely affect the precision of numerical models and lead
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to the generation of implausible outcomes. Nonetheless, the FVC scheme provides an accurate
resolution to such pollution transport.

Fig 4.50. The first row illustrates the concentration and velocity fields of the flow, whereas those
in the second row illustrate the corresponding water depth variation in the Strait of Gibraltar,
with a temporal progression from t = 5 hours on the left to t = 6 hours on the right.

4.4.11 Two-dimensional multilayer shallow water equations

In this section, we reproduce the same benchmarks studied in [59] using the formulation
of the FVC scheme on non-uniform triangular meshes to simulate two-dimensional multilayer
shallow water flow. The objective is to demonstrate the accuracy and adaptability of the scheme
described above. In the first test case, a simple dam-break problem is posed, and the results
are compared to those of three-dimensional Navier-Stokes equations. In the second case, we
examine the conservation property of the scheme, using a free surface flow at rest over non-flat
topography. We also examine circular dam-break on both flat and non-flat topography. Finally,
we simulate a two-dimensional wind-driven flow. For all computations, the initial conditions
determine the total water height H, and the water heights of each layer hθ are defined using
equal fractions as follows

hθ = lθH with lθ = 1
M
, θ = 1, . . . ,M.

Additionally, in all of our simulations in multilayer swallow water equations, we use αn = 1 and
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a constant Courant number CFL = 0.92 is utilized, while the time step ∆t varies in accordance
with the stability criteria

∆t 6 min
{

|Ti|
Pi(|uθ · n|+

√
gH)i

,
|Ti|

Pi(|uθ · n|+
√
gH)i

√
2αn

}
. (4.52)

In order to enforce boundary conditions, similar techniques as those outlined in [59] are
employed. For the computational instances analyzed within this section, flux computations at
cell boundaries are utilized to impose boundary conditions on the corrector solution. In addition,
for the predictor solution, the necessary variables in the boundary cells are set to match the
corresponding values of adjacent inner cells.

4.4.11.1 Multilayer dam-break problem

The dam-break problem has traditionally been simulated using single-layer shallow water
equations. However, recent research (referenced in [59, 56, 32]) has employed one-dimensional
multi-layer shallow water equations to model this problem on a flat bottom. To expand on
this, we examine the two-dimensional version of the problem and aim to compare our findings
with those of the aforementioned one-dimensional model. The FVC scheme involves solving
the multilayer shallow water equations (2.42) in a rectangular channel with a flat bottom of
dimensions 100m in length and 10 in width. The simulation begins with the following initial
conditions.

H(0, x, y) =
{

2, if x ≤ 0,
1, if x > 0, uθ(0, x, y) = vθ(0, x, y) = 0.

In this test example, we neglect the wind effects and Coriolis forces, and use the same parameters
as in [55, 59, 32] for the one-dimensional case, including the viscosity coefficient ν = 0.01, the
gravity g = 2, and the friction coefficient κ = 0.1. The results are presented at time t = 14s.

Fig 4.51. The free-surface and interfaces of water in the multilayer dam-break problem over a
flat bed at time t = 14s are illustrated using a 5-layer model on the left and a 10 layers model
on the right.
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Fig 4.52. Horizontal cross-sectional views of water velocity (bottom) and the water free-surface
(top) were examined for the multilayer dam-break problem on a flat bottom at a specific time
of t = 14s.

Fig 4.51 depicts the water free-surface and interfaces for the 5 layers and 10 layers models
at time t = 14s, using a mesh with 14546 cells. As is typical in dam-break problems, at
t = 0, the dam breaks and the flow problem consists of a shock wave propagating downstream
and a rarefaction wave propagating upstream. The proposed FVC scheme captures these flow
patterns without generating spurious oscillations in the shock area. Under the considered dam-
break conditions, it appears that the number of layers in the model has little effect on the
flow features, as demonstrated by comparing the water free-surface profiles obtained for the
5-layer and 10-layer models in Fig 4.51. To further highlight these effects, we display horizontal
cross-sections of the flow in Fig 4.52.

4.4.11.2 Lake at rest in multilayer flow

The concept of a lake at rest flow was previously proposed [11] to assess the well-balance
property of a finite volume method applied to one-dimensional shallow water equations. In this
study, we present a similar test case but for two-dimensional shallow water flows. The FVC
scheme involves utilizing the Kronecker tensor product of the one-dimensional bed proposed in
[11] in both the x- and y-directions. Consequently, we solve the shallow water equations (2.42)
by setting the source term associated with the bed, i.e., fc = 0 and Fθ = Gθ = 0, and defining
the bed as

Z(x, y) = 1
10Z(x)⊗Z(y),

where Z is the bottom profile defined in the appendix section (table of bed elevation Z(x) and
its illustration). The issue is resolved in a squared area measuring 1500 m in length, and the
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outcomes are reported at a particular time t = 10800 s, as specified in [11, 59].

Fig 4.53. Water free-surface and interfaces for the multilayer flow problem at rest at time
t = 10800s using single-layer and 10 layers models.
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Fig 4.54. Water free-surface and interfaces cross-sectional profile for the 10 layers flow problem
under resting conditions at time t = 10800s are presented on the left, while the corresponding
water free-surface error is shown on the right.

In real-world scenarios, it is crucial to maintain a constant total water free-surface, and
the water velocity must be zero at all times. Nonetheless, several numerical techniques are
unsuccessful in sustaining these conditions at the discrete level. Fig 4.53 demonstrates the results
obtained for the water free-surface and interfaces using a mesh with 19280 cells and a 10 layers
model. As anticipated, the water free-surface remained unchanged during the simulation time,
and any disturbances have been detected over the irregular two-dimensional bed. Increasing the
number of layers in the model did not negatively affect the water free-surface response of the
lake. Fig 4.54 displays the cross-section along the main diagonal (y = x) of the 10 layers model’s
results, and the water-free surface error represented as the difference between the analytical and
numerical free-surface solutions. The results in Fig 4.54 demonstrate that the FVC scheme
maintains a constant water free-surface with practically zero errors up to machine precision.
Similar results were obtained for the 5 layers and 20 layers models, although not reported here.
This confirms that the proposed method is well-balanced and accurately resolves two-dimensional
multilayer shallow water flows over non-flat bottoms without relying on complex techniques to
balance the discretizations of source terms and flux gradients.
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4.4.11.3 Wind-driven circulation flow

In this study, we examine a water flow problem driven by wind-induced circulations, which
was originally proposed in [61] and commonly used to verify multilayer shallow water models,
as described in [132, 55, 32]. We solve the multilayer shallow water equations (2.42) in a square
two-dimensional domain that is 2000 m long and contains water with a depth of 6.75 m. The
water is subject to a two-dimensional wind force with a speed of w = 20 m/s and an angle of 45◦.
The parameters used in this simulation include fc = 0 for the Coriolis coefficient, ν = 0.05 m2/s
for the viscosity coefficient, κ = 0.00001 m/s for the friction coefficient, σ = 0.0015 N/m2 for
the wind stress coefficient, ρ = 1025 kg/m3 for the water density, ρa = 1.2 kg/m3 for the air
density, and g = 9.81 m/s2 for gravity. We assume a flat bed with no-slip boundary conditions,
and we present the results for water heights, streamlines, and velocity fields at time t = 1800s
using a mesh with 1106 cells.

Fig 4.55. Water elevations resulting from the wind-driven circulation at time t = 1800s were
determined using both a 5 layers model (on the right) and a 10 layers model (on the left).

Fig 4.56. Velocity field in the xz-plane for the wind circulation flow using 10 layers: velocity
in layer 10, 5 and 1 from left to right respectively.

112



CHAPTER 4. 2D FVC SCHEME ON UNSTRUCTURED MESHES:
APPLICATION TO FREE SURFACE FLOWS IN SHALLOW WATER

Fig 4.57. Velocity field in the xz-plane for the wind circulation flow using 5 layers: velocity in
layer 5, 2 and 1 from left to right respectively.

Fig 4.55 shows the results obtained using 5 layers and 10 layers models. The velocity plots
in Fig 4.57 and Fig 4.56 illustrate that the steady cavity flow within closed streamlines consists
of a central inviscid core with nearly constant velocity and viscous effects confined to thin shear
layers near the walls. These plots also provide an overview of the overall flow pattern and
the effect of the number of layers on the structure of the recirculating eddy in the cavity. As
anticipated, a re-circulation flow is generated in the computational domain, and the proposed
FVC scheme accurately resolves the flow characteristics for this test example without relying on
computationally demanding three-dimensional flow models.

4.4.11.4 Multilayer circular dam-break problem

We investigate a circular dam-break problem with multiple layers in a square domain of
[−10, 10] × [−10, 10]. The domain is assumed to be flat, with water viscosity ν = 0.05 m2/s,
water density ρ = 1025 kg/m3, gravity g = 9.81 m/s2, Coriolis coefficient fc = 1, and bed
friction coefficient κ = 0.001 m/s. The initial conditions are given by

H(0, x, y) = 1 + 1
2

(
1− tanh

(√
ax2 + by2 − 1

c

))
, uθ(0, x, y) = vθ(0, x, y) = 0,

where a = 5
2 , b = 5

2 , and c = 0.1. A similar problem has been previously investigated in [123]
and in subsection 4.4.6 for the standard single-layer circular dam-break problem.

In this test, we discretized the computational domain into 21328 cells and obtained water
heights and velocity fields for various time steps. Fig 4.58 displays the 3D view of results for
water heights using 10 layers at three different time instances, t = 0.2s, 0.6s and 1s and Fig 4.59
presents the horizontal sections at y = 0 of these water heights. The results show that as the
rarefaction wave progresses outward, the water flows away from the deep central region. The
Coriolis effect causes an additional rotational effect on the results, but they remain symmetric
and retain a strongly distinguishable wavefront. Fig 4.59 further demonstrates the effects of the
Coriolis term on the multilayer circular dam-break problem, showing vertical cross-sections of
water heights at t = 0.2s and t = 1s. The proposed method accurately captures the Coriolis
effects and the vertical velocities, which are critical in understanding the complex flows of these
types of dam-break problems. The obtained results indicate that the symmetry is well preserved
in the water heights. Note that the velocity profiles are not symmetric due to the inclusion of the
Coriolis terms in the multilayer model. The results demonstrate that the considered multilayer
models can accurately capture the vertical flow features without relying on the three-dimensional
free-surface flow equations.
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In the next stage of our study, we investigate multilayer circular dam-break problems on
non-flat beds by solving the previous problem over a non-flat bottom

Z(x, y) = 1
2Zx(x)⊗Zy(y),

where

Zx(x) =
{

sin
(
π
4x
)
, if − 4 ≤ x < 4,

0, elsewhere, and Zy(y) =
{
− cos

(
π
4 y
)
, if − 2 ≤ y < 2,

0, elsewhere.

In this test scenario, we maintain identical initial conditions and flow parameters as those in
previous simulations. Our focus is on evaluating the ability of the proposed FVC scheme to
solve multi-layered circular dam-break problems occurring on non-planar surfaces.

Fig 4.58. 3D view of the water heights obtained for the multilayer circular dam-break on a flat
bottom using 10 layers. From left to right t = 0.2s, t = 0.6s and t = 1s.
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Fig 4.59. Vertical cross-sections at y = 0 of water heights from t = 0.2s to t = 1s for the
multilayer circular dam-break on a flat bottom using 10 layers.
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Fig 4.60. 3D view of the water heights obtained for the multilayer circular dam-break on a
non-flat bottom using 10 layers. From left to right t = 0.2s, and t = 1s.
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Fig 4.61. Vertical cross-sections at y = 0 of water heights at t = 0.2s (left) and at t = 1s
(right) for the multilayer circular dam-break on a non-flat bottom using 10 layers.

Fig 4.62. Lateral section of the velocity field in the plane xy at layer 10 at t = 0.2s (left) and
at t = 1s (right).
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Fig 4.60 presents a 3D view of the water heights obtained using 10 layers at time t = 0.2s and
1s. In Fig 4.62, we depict the velocity fields’ lateral and vertical in layer number 10 at t = 0.2
and at the final simulation time t = 1s. The vertical cross-sections of water heights at y = 0 and
t = 0.2s then t = 1s are presented in Fig 4.61. The non-flat bathymetry has a direct effect on
the flow structure under the actual flow conditions, as evidenced by the results presented. When
comparing the results obtained for a flat bottom in Fig 4.59 to those in Fig 4.61, it is clear that
the bathymetry has a significant impact on the vertical velocity and the variation in high water
level. Additionally. Notably, the rarefaction wave still progresses at the same speed over the
non-flat bottom. The multilayer shallow water equations effectively handle this complex flow
problem for both flat and non-flat beds and provide new insights into the vertical velocity for
shallow water flows. The proposed FVC scheme performs satisfactorily for this flow problem,
as it does not diffuse the moving fronts and does not produce spurious oscillations near steep
gradients of water heights in the computational domain.
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5.1 Three-dimensional Euler equations
In this section, we present the FVC scheme applied to the 3D Euler equations system

(2.53). As we have seen previously, the method comprises two steps and can be interpreted
as a predictor-corrector process. In this section, we will make a three-dimensional extension
following the same approach as the Chapter 4.

5.1.1 Discretization

We assume a conforming 3D tessellation T of the computational domain Ω by elements Ti
that are called a control volume, they are time independent, see Fig 5.1, such that T = ⋃

i
Ti.

Integrating equations (2.58) over a control volume Ti and applying Green’s divergence theorem,
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the following integral system is obtained.

∂

∂t

∫
Ti

WdV +
∫
∂Ti

F(W) · n dσ = 0, (5.1)

where ∂Ti is the boundary of the control volume Ti, n is the normal vector to ∂Ti in the outward
direction, dV and dσ are respectively the volume element and the surface element. Therefore,
the equation (5.1) can be reformulated as

dWi

dt
= − 1
|Ti|

∑
j∈N(i)

|γij |Φ(Wij ,nij), (5.2)

where
Wi = 1

|Ti|

∫
Ti

W dV, (5.3)

is the average quantity on cell Ti stored at the cell center.
Φ(Wij ,nij) '

1
|γij |

∫
γij

F(W)·nijdσ, is the numerical flux computed at the interface γij between

the cells Ti and Tj and N(i) is the set of neighboring cells of the control volume Ti.

Fig 5.1. Generic control volumes of the computational domain.

Notations:

• pi, vertex of Ti,

• xi, centroid of the cell Ti,

• γij , boundary face between the cells Ti and Tj ,

• |γij |, area of γij ,

• |Ti|, volume of the cell Ti,

• ∂Ti, boundary of the cell Ti,

• Pi, the surface area of the cell Ti.

• nij , unit normal to γij , outward to Ti
such as, nji = −nij .

We recall that the concept of digital flux approximation is based on the reconstruction of inter-
mediate states Wij using the method of characteristics. We will employ the same techniques
as in the previous chapter, but with a 3D formulation for all functions and computations used
in 2D. The intermediate state Wij will be calculated from a projected velocity model whose
velocity components are projected onto the frame R = (Ti;~b, ~τ , ~η), where ~η := (nx, ny, nz)T is
the unit outward normal to the surface of the cell Ti, ~τ := (τx, τy, τz)T is the tangential vector
at a face of the cell Ti that can be recovered from two points of this surface, and ~b = (bx, by, bz)T
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is a bi-normal vector such as, ~b := ~τ ∧ ~η, see Fig 5.2. The projected velocities are defined as
uη := u · ~η, uτ := u · ~τ and ub := u ·~b, i.e. uη

uτ
ub

 =

 nx ny nz
τx τy τz
bx by bz

 ·
 u

v

w

 . (5.4)

As the rows of the matrix in (5.4) are linearly independent, we write u

v

w

 =

 nx τx bx
ny τy by
nz τz bz

 ·
 uη
uτ
ub

 . (5.5)

Fig 5.2. The local projection basis.

5.1.2 Construction of the projected speed model

We are proceeding here to the calculation of the projected model associated with the three-
dimensional Euler equations. Integrating the equations (2.53) over the cell Ti, the basic equations
of the finite volume method obtained using the divergence theorem are given by

∂

∂t

∫
Ti

ρ dV +
∫
∂Ti

ρuη dσ = 0, (5.6a)

∂

∂t

∫
Ti

ρu dV +
∫
∂Ti

(ρuuη + pnx) dσ = 0, (5.6b)

∂

∂t

∫
Ti

ρv dV +
∫
∂Ti

(ρvuη + pny) dσ = 0, (5.6c)

∂

∂t

∫
Ti

ρw dV +
∫
∂Ti

(ρwuη + pnz) dσ = 0, (5.6d)

∂

∂t

∫
Ti

ρE dV +
∫
∂Ti

(ρEuη + puη) dσ = 0, (5.6e)

where η = (nx, ny, nz)T the unit outward normal to the surface |Ti| of the cell Ti, τ and b are
respectively the tangential and the bi-normal vectors, such that these vectors form an orthonor-
mal basis see Fig 5.3. In order to simplify the system (5.6), we do the following operations
(5.7b)← nx(5.6b) + ny(5.6c) + nz(5.6d), (5.7c)← tx(5.6b) + ty(5.6c) + tz(5.6d) and
(5.7d)← bx(5.6b) + by(5.6c) + bz(5.6d). The outcome of these operations is
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Fig 5.3. The projected velocity on the control volume.

∂

∂t

∫
Ti

ρ dV +
∫
∂Ti

ρuη dσ = 0, (5.7a)

∂

∂t

∫
Ti

ρuη dV +
∫
∂Ti

(
hu2

η + p
)

dσ = 0, (5.7b)

∂

∂t

∫
Ti

ρuτ dV +
∫
∂Ti

ρuτuη dσ = 0, (5.7c)

∂

∂t

∫
Ti

ρub dV +
∫
∂Ti

ρubuη dσ = 0, (5.7d)

∂

∂t

∫
Ti

ρE dV +
∫
∂Ti

(ρEuη + puη) dσ = 0, (5.7e)

which allows rewriting system (5.7) in a differential form as follows

∂ρ

∂t
+ ∂ρuη

∂η
= 0,

∂ρuη
∂t

+ ∂

∂η

(
ρu2

η + p
)

= 0,

∂ρuτ
∂t

+ ∂

∂η
(ρuηuτ ) = 0,

∂ρub
∂t

+ ∂

∂η
(ρuηub) = 0,

∂ρE

∂t
+ ∂

∂η
(ρEuη + puη) = 0.

(5.8)

The projected speed model associated with the Euler equations is then reformulated as

∂U
∂t

(t,X) + uη(t,X)∂U
∂η

(t,X) = S(U), (5.9)

U is the projected conservative unknown, uη is the normal speed, and S(U) is the second member
that contains other terms of the system.
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where

U =



ρ

ρuη

ρuτ

ρub

ρE


, S(U) =



−ρ∂η(uη)
−ρuη∂η(uη)− ∂ηp
−ρuτ∂η(uη)
−ρub∂η(uη)

−ρE∂η(uη)− ∂η(puη)


. (5.10)

5.1.3 Method of characteristics

This method for hyperbolic systems of conservation laws can be carried out componentwise,
provided that the conservative equations can be rewritten in an advective formulation. In
general, the advective form of the system under study is built such that conservative variables
are transported with the same velocity field. The method avoids the grid distortion difficulties
that the conventional Lagrangian schemes have. The characteristic curves associated with (5.9)
are the solutions of the following equation.

Xc(tn) = X? −
∫ tn+αn∆t

tn
uη(s,Xc(s))n ds. (5.11)

The method of characteristics used traces backwards position at time tn of particles that will
reach the points X? of a fixed mesh at time tn + αn∆t, see Fig 5.4.

Fig 5.4. Illustration of the time grid for the choice of the starting condition in order to calculate
the characteristics of the equation (5.9).

In order to complete the reformulation of the algorithm, the departure points must be calcu-
lated once the characteristic curves are known. Therefore, the solution of the advection equation
(5.9) is

U(tn + αn∆t,X?) = U(tn, Xc(tn)) +
∫ tn+αn∆t

tn
S(U(s,Xc(tn))) ds. (5.12)

In our implementation, a global fixed value for αn was utilized. However, as mentioned above,
a local selection of αn is also possible. The solution in the characteristic field is calculated by
interpolation from the central values of the cells.

Un
ij = Ûn

ij + IF(Ûn

ij), (5.13)

where IF is the approximation of the integral in (5.12). The solution Ûn

ij is reconstructed at the
interfaces using

Ûn

ij = U(tn, Xc(tn)) =
∑

k∈V (c)
βk(Xc)Un

k , (5.14)
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with V (Xc) is the set of neighbours by face and vertices to the cell of Xc, see Fig 5.5 and βk(c)
is weights coming from the least squares method. It can be written

βk(c) = 1 + λ · (Xk −Xc)
#V (c) + λ ·R

, (5.15)

such as, λ = (λx, λy, λz) and R = (Rx, Ry, Rz). The weights parameters are given by formulas

Rx =
∑

k∈V (c)
(xk − xc), Ixx =

∑
k∈V (c)

(xk − xc)2, Ixy =
∑

k∈V (c)
(xk − xc)(yk − yc),

and
λx =

(I2
yz − IyyIzz)Rx + (IxyIzz − IxzIyz)Ry + (IxzIyy − IxyIyz)Rz

∆ ,

Fig 5.5. Interpolation points illustration.

where
∆ = IxxIyyIzz + 2IxyIxzIyz − IxxI2

yz − IyyI2
xz − IzzI2

xy.

The same applies to Ixz, Izz, Iyy, Ry, Rz, λy and, λz. The aforementioned expressions can be
found in the appendix section.

The normal derivative terms in S(U) are evaluated using the diamond scheme explained in
[133, subsection 3.1.1.2] and in the appendix bellow. OnceUn

ij is calculated in the predictor step,
the state Wn

ij is recovered from Un
ij using the projection transformations (5.5). The numerical

flux is then given by
Φ(Wn

ij ,nij) = F(Wn
ij) · nij . (5.16)

Regarding the temporal discretization, equation (5.2) can be solved with various explicit tem-
poral numerical schemes; we have chosen in this approach the explicit Euler scheme, which is
simple and fast. The time domain is divided into N sub-intervals [tn, tn+1] with time step
∆t = tn+1− tn for n = 0, 1, ...., N − 1. Wn is the value of a generic function W at time tn. The
fully-discrete formulation of the equation (5.1) is

Wn+1
i = Wn

i −
∆t
|Ti|

∑
j∈N(i)

|γij |Φ(Wn
ij ,nij). (5.17)

For the systems of conservation laws, such as the compressible Euler equations, all of the re-
construction procedures are implemented in the characteristic local directions to avoid spurious
oscillations.
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5.2 Numerical results
In this study, the Courant-Friedrichs-Lewy number for the explicit scheme (5.17) can be

written under the following condition

∆t 6 min
{

|Ti|
Pi(|u · n|+

√
γP/ρ)i

,
|Ti|

Pi(|u · n|+
√
γP/ρ)i

√
2αn

}
. (5.18)

A fixed CFL = 0.9 and αn = 1 in the two-dimensional benchmark and αn = 2 in the three-
dimensional case, except in cases where we specify the value of αn used. is used. All the
simulations were performed on an Intel Core i7-8565U CPU @ 1.80GHz × 8, with 15 GB RAM.
The CPU times presented in this section include all aspects of computational work including,
mesh generation, calculation of characteristic curves, search-locate of departure points, and
corrector step.

5.2.1 Shock tube problems

In this section, we present the shock tube problems. Indeed, we consider a tube of length
1m, separated in the middle by a membrane with on one side a gas at high pressure (pl, ρl)
and on the other a gas at low pressure (pr, ρr) see Fig 5.6. Due to the pressure difference, a
shock wave propagates in the low-pressure chamber, followed by a contact discontinuity, and
an expansion wave propagates in the high-pressure chamber. It is important to mention that
the contact discontinuity is solely observable in the density variable. The initial conditions are
given by

(ρ, p, u, v, w)(0, x, y, z) =
{

(ρl, pl, ul, 0, 0) if x 6 0.5,
(ρr, pr, ur, 0, 0) if x > 0.5,

0 6 y, z 6 0.04,

Fig 5.6. Shock tube after the diaphragm broken.
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Table 5.1: Initial states left and right and simulation end times for shock tube problem.

Test case ρl ul pl ρr ur pr tend

1 1.0 0.75 1.0 0.125 0.0 0.1 0.2
2 1.0 0.0 10.0 0.125 0.0 1.0 0.06
3 0.445 0.698 3.258 0.5 0.0 0.571 0.14
4 1.0 -2.0 0.4 1.0 2.0 0.4 0.15

For a better comparison, we have also included the exact solution using the open-source code
[134] for the shock tube problems. Note that the contact discontinuity and the shock wave are
very well captured, and the FVC scheme is highly accurate.

Fig 5.7. Unstructured tetrahedral mesh for the 3D shock tube problems.

The mesh used is a non-uniform tetrahedral grid of 1266261 cells and 258460 nodes with
periodic boundary conditions in y and z. The obtained results are shown in Table 5.1 at the
time tend.

We present in Fig 5.9 the cross-section at (y = 0.02m, z = 0.02m) of the density and the
pressure for each test case of the Table 5.1. All figures show that the numerical solution agrees
with the exact solution. We have observed a slight numerical diffusion, which can be corrected
by enhancing the order in time and space. In order to quantify the results, we present in Table
5.2 the relative L1 errors and the accuracy order of ρ and p for simulations on different meshes
of a two-dimensional computational domain. As shown in the table below, the numerical and
analytical results are in perfect agreement. By comparing these results, we can see that under
these conditions, the algorithm can properly predict shock waves without generating oscillations.

Table 5.2: Relative L1 error and CPU times in s for the tube shock problems using FVC scheme.

# Cells Maximum of cells height size Error in ρ Error in p Order CPU time (s)
4141 0.0143 1.878E-04 1.739E-04 - 4.82
11546 0.00812 1.034E-04 1.001E-04 1.311 8.32
23567 0.00645 4.518E-05 3.711E-05 1.356 18.36
43985 0.003679 1.986E-05 1.138E-05 1.409 23.34
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In the Fig 5.8, we represent the logarithm of the relative error L1 calculated in Table 5.2
with respect to the logarithm of the maximum value of the mesh interfaces. These results
demonstrate a considerable order of accuracy of the scheme. The errors produced by the FVC
scheme with two different values of αn seem to exhibit varying convergence rates, but we obtain
an overall convergence rate of approximately 1.3. However, in order to achieve a similar order
of accuracy in the 3D version, it will be necessary to use a three-dimensional mesh with a large
number of cells, which will make the simulation computationally expensive.

We observe that the order of accuracy of the method is influenced by the parameter αn, as
illustrated in Fig 5.8. This characteristic has been examined in detail in [31]. In our recent
study, we have explored a solution to this problem by introducing a new approach for the choice
of αn, described in [101, 135]. This approach involves modifying the FVC scheme by replacing
the constant αn with a more versatile parameter αnij (4.17), thereby providing better control
of numerical diffusion. By adopting this new formulation, we have observed a significant im-
provement in the performance of the FVC scheme, which now exhibits better adaptability and
greater robustness.
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Fig 5.8. Convergence order in L1 error of the density.

125



CHAPTER 5. 3D FVC SCHEME ON UNSTRUCTURED MESHES:
APPLICATION TO COMPRESSIBLE EULER EQUATIONS

0.0 0.2 0.4 0.6 0.8 1.0
x

0.2

0.4

0.6

0.8

1.0

D
e
n
si

ty

t = 0.2 s
Exact
3D FVC Scheme

0.0 0.2 0.4 0.6 0.8 1.0
x

0.2

0.4

0.6

0.8

1.0

P
re

ss
u
re

t = 0.2 s
Exact
3D FVC Scheme

0.0 0.2 0.4 0.6 0.8 1.0
x

0.2

0.4

0.6

0.8

1.0

D
e
n
si

ty

t = 0.06 s
Exact
3D FVC Scheme

0.0 0.2 0.4 0.6 0.8 1.0
x

2

4

6

8

10

P
re

ss
u
re

t = 0.06 s
Exact
3D FVC Scheme

0.0 0.2 0.4 0.6 0.8 1.0
x

0.4

0.6

0.8

1.0

1.2

D
e
n
si

ty

t = 0.14 s
Exact
3D FVC Scheme

0.0 0.2 0.4 0.6 0.8 1.0
x

0.5

1.0

1.5

2.0

2.5

3.0

P
re

ss
u
re

t = 0.14 s
Exact
3D FVC Scheme

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

D
e
n
si

ty

t = 0.15 s
Exact
3D FVC Scheme

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.1

0.2

0.3

0.4

P
re

ss
u
re

t = 0.15 s
Exact
3D FVC Scheme

Fig 5.9. A cross-section at (y = 0.02m, z = 0.02m) of the numerical solution of a shock tube
problem in comparison with the exact solution.
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5.2.2 Radially symmetric Riemann problem

The benchmark proposed in [136] is a two-dimensional problem that exhibits radial symmetry
and is analogous to the shock tube problem [136]. Before a sudden disturbance, a hypothetical
membrane divides the square domain Ω = [−0.5, 0.5]d which corresponds to a square (when d
= 2) and a cube (when d = 3), into two subdomains:

DL = {X ∈ Ω | ||X|| < 0.13} and DR = Ω \DL.

The boundaries of both subdomains are defined as reflective. Initially, the gas is stationary,
and the pressure and density inside DL are higher than those outside. The interior and exterior
states of the gas are defined by certain parameters

(ρ, p, u, v, w)(0, X) =

 (2.0, 15.0, 0.0, 0.0, 0.0) if ||X|| < 0.13,

(1.0, 1.0, 0.0, 0.0, 0.0) if ||X|| > 0.13.

At the initial time, when the membrane is abruptly removed, a shock wave initiates radial expan-
sion due to the existing pressure differential. The objective of this benchmark is to accurately
capture the moving discontinuities while maintaining the radial symmetry of the solution. Fig
5.10 shows the density and pressure isolines of the solution distribution that have been calcu-
lated using the FVC scheme with a triangular mesh composed of 19545 cells in the 2D case.
Conversely, in the 3D case, a very coarse mesh consisting of only 985185 tetrahedra was used.
In Fig 5.13 we present the density and pressure obtained from the 3D simulation, from which
the same conclusions as in the 2D case can be drawn. Fig 5.12 shows the cutlines that indicate
the density profiles are symmetric and without oscillation. This demonstrates the effectiveness
of the FVC scheme to accurately preserve the radial symmetry of the solution and capture the
moving shock wave.

Fig 5.10. The Radially symmetric Riemann problem on a grid of 19545 cells. The initial data
for this problem consisted of a symmetric discontinuity in both pressure and density. At time
t = 0.13s, the pressure and density were recorded and are shown on the left and right sides,
respectively.
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Fig 5.11. 3D view of the mach number (left) and the flow speed (right) of the Radial Riemann
Problem on a mesh of 19545 cells at t = 0.13s.
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Fig 5.12. The density cutlines for a radially symmetric Riemann problem are illustrated by
two cross-sections located at a different points. Left at y = 0 and x = 0. In the right panel,
there are two cross-sections placed at y = x and y = −x.

Fig 5.13. A clip plane at P(0R3 ;~n = (1, 0, 0)) of radially symmetric Riemann problem at time
t = 0.13s obtained with an FVC scheme on an unstructured tetrahedral mesh with 985185
tetrahedra. Left: visualization of the density. Right represents the pressure.
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Fig 5.14. A clip plane at P(0R3 ;~n = (0, 0, 1)) of radially symmetric Riemann problem at time
t = 0.13s. Left: visualization of the density. Right represents the pressure.

Fig 5.15. A clip plane at P(0R3 ;~n = (0, 1, 1)) of radially symmetric Riemann problem at time
t = 0.13s. Left: visualization of the density. Right represents the pressure.

5.2.3 Double Mach reflection problem

In this test, we have reproduced the numerical solution of a challenging physical phenomenon
called the double Mach reflection problem. This problem was originally introduced byWoodward
and Colella to assess the accuracy of unsteady Euler equations in simulating complex fluid
dynamics scenarios. The problem involves a Mach 10 shock wave that collides with an inclined
wall of an angle of 60◦, see Fig 5.16. The simulation is conducted on a rectangular computational
domain, defined as Ω = [0.3] × [0.1] consisting of an unstructured mesh of 128116 triangular
cells. The pre- and post-shock flow variables are assigned in a specific way for each point (x, y)
in the pre-shock region DL. The primary objective of this study is to examine the behavior
of the shock wave generated by the FVC scheme during its interaction with the inclined wall,
which can provide valuable insights into the effectiveness of the FVC scheme for simulating such
complex fluid dynamics problems.

(ρ, p, u, v)(0, x, y) =


(

8.0, 116.5, 8.25 cos (30◦) , 8.25 sin (30◦)
)

if(x, y) ∈ DL,(
1.4, 1.0, 0.0, 0.0

)
if(x, y) ∈ DR.
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The shock wave is initially located in DL =
{

(x, y) | x < 1
6 + y√

3

}
, while the wall that it reflects

off is defined by 1/6 ≤ x ≤ 3 and y = 0. The top boundary conditions are set to the post-shock
conditions for x < 1

6 + 1 + 20t√
3

and pre-shock conditions in DR = Ω\DL, accurately capturing
the motion of the shock wave. Notably, no boundary conditions are necessary along the line
x = 3, see Fig 5.16. This problem poses a significant challenge for the unsteady Euler equations.

Fig 5.16. The computational domain for the double Mach reflection configuration, along with
its corresponding boundary conditions.

We compute solutions up to the final time t = 0.2s on the unstructured triangular mesh of
128116 cells. The density and pressure calculated by the FVC scheme are illustrated in Fig 5.17.
As we can see, the profile is captured and in good agreement with the results in [137], albeit
with significant numerical diffusion.

Firstly, the wall jet rolls up into a vortex that occurs when the jet reaches the Mach stem. In
addition, the shock that connects the contact surface and the transverse wave (making it a Mach
double reflection) intensifies, and its triple point, the elbow along the transverse wave, becomes
much more distinct. Despite the Kelvin-Helmholtz instabilities along the contact surface, they
are not developed due to the order of accuracy, as a higher-order WENO-type scheme would
be required to capture them (see [138]). However, it is clear that the FVC scheme captures the
solution profile accurately. Furthermore, Fig 5.18 also shows the Mach number with the left
contour lines and the flow velocity magnitude with the right contour lines. It is evident that the
structure captured by the FVC diagram is also coherent with [137].
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Fig 5.17. On the right side, the FVC scheme’s numerical solution is illustrated as density
contour lines, while pressure level curves are depicted on the left side. This presentation provides
a comprehensive view of the obtained outcomes.

Fig 5.18. At the instant t = 2s, the FVC provided a resolution for both the fluid Mach number
(on the left) and the flow velocity (on the right) related to the issue of double Mach rarefaction
problem.

5.2.4 GAMM channel

This test example was proposed in [139] to study the subsonic and transonic flows described
by the Euler equations in a channel with a bump. It was then used by several researchers to
validate the ability of their schemes [140, 141, 142]. The flow in the channel is initially uniform,
and then the flow tangency condition for the walls and the non-reflective condition for both
upstream and downstream the Dirichlet boundaries are applied. The computational domain,
which is a rectangle [−1, 2] × [0, 1] with a circular bump of height 10% on the lower side, is
discretized with an unstructured mesh formed by triangular cells. The mesh for the GAMM
channel with parameter selection is shown in Fig 5.19. The initial conditions are: ρ = 1 in the
whole domain and p = 1

γ . As output boundary, we set p = 0.736952. The rest of the boundary is
an impermeable wall, so a normal velocity component equal to zero is prescribed. The following
figures show the numerical results generated by the FVC scheme. The convergence to the steady

state is followed by the log L2 residual, defined as: Error(Wn
i ) = 1

Nele

√√√√∑
i

(
Wn+1

i −Wn
i

∆t

)2

,

where Nele is a number of all elements in the computational domain.
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Fig 5.19. Computation mesh with 8755 cells and 4514 nodes for the channel flow with a 10%
thick circular arc bump.

Fig 5.20. Results for the two-dimensional GAMM channel: Mach number (upper-left), Density
(upper-right), Energy (lower-left) and Pressure (lower-right) at time t which is assumed to be
an equilibrium time.

Fig 5.22 shows the convergence histories of the 2D GAMM channel. This computation is
obtained by running the FVC scheme on an unstructured mesh. It is shown that the calculation
requires more than 4E + 5 iterations for the solution to reach the steady state.

Fig 5.20 shows the Mach number distribution, density, energy and pressure of the steady-
state solution. As shown in Fig 5.20, the numerical solution is fairly symmetrical concerning
the median chord, which is a good indication of the accuracy of the solution for this subsonic
application.
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According to the calculation, a supersonic region appears in the solution, which ends with a
shock as shown in Fig 5.21 (Inviscid compressible flow in the GAMM channel: Mach number on
the bottom and upper walls). The numerical solution calculated by the FVC scheme converges
to the stationary state. The obtained results are in excellent agreement with those reported in
[143, 144]. The positions of the shock wave are the same, this indicates that the present scheme
is accurate, reliable, and fast.
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Fig 5.22. Convergence history for 2D GAMM channel.

5.2.5 Forward facing step

This test case, introduced in [145], involves solving the problem of interaction between a
Mach 3 supersonic flow and a rising step. The geometry of the mesh used and the boundary
conditions for this problem are depicted in Fig 5.23. The area under investigation has a unit
height and a length of 3. The step, with a height of 0.2, is located at an abscissa of 0.6. The mesh
consists of 38969 cells triangular elements. Region A1 and boundary B1 consist of an initially
perfect gas with the following characteristics: ρ = 1.4, p = 1, u = 3, and v = 0. Reflective wall-
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type boundary conditions are imposed on B1 and B2. As for B4, absorbing boundary conditions
are employed.

Firstly, walking generates a shock wave that travels to the left. This shock wave then reflects
off wall B3, giving rise to a "Mach" reflection. The reflected Mach wave is subsequently weakened
by the rarefaction wave centered on the upper corner of the step. Finally, another reflection
appears on wall B3. Solving this problem is considerably challenging and typically requires the
imposition of additional boundary conditions and the introduction of supplementary conditions
at the upper corner of the step [145]. Indeed, this singular point produces a separation zone
that is purely numerical and slows down the fluid. Typically, the solution involves refining the
mesh near the singular point or imposing constant enthalpy and entropy in the neighborhood of
this point.

Fig 5.23. Geometry and boundary conditions.

No special treatment was performed in the computation to overcome this issue. All calcula-
tions were done using the FVC scheme with a CFL number of 0.85 and are presented for the final
time tend = 4s. The results obtained with the proposed scheme are shown for pressure, density,
and Mach number on the figures Fig 5.25 and Fig 5.24. It can be observed that the figures
correctly show the shock waves and the Kelvin-Helmholtz instability vortices [146] are not well-
developed along the upper shear wave due to the insufficient order of accuracy to capture this
phenomenon, as well as requiring a very fine mesh, see e.g. [138]. Small-scale flow structures are
better captured with results obtained from a finer mesh, as expected. Discontinuities (shocks,
contacts) seem to be well-captured by the FVC scheme.

Fig 5.24. Mach number and its contour lines at tend = 4s.
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Fig 5.25. Numerical results for forward facing step problem simulated by FVC scheme.

5.2.6 2D Riemann problems

In order to evaluate the accuracy, oscillatory-free, and robustness of the FVC scheme, a series
of two-dimensional Riemann problems were simulated. These problems, commonly referred to
as configurations 1 to 19, have been extensively investigated in previous scientific studies, such
as [147, 148, 149, 150, 151]. The square domain Ω = [0, 1]2 is divided into four quadrants by the
lines x = 1/2 and y = 1/2, as shown in Fig 5.26. In all simulations, the domain Ω is discretized
into 83393 uniform triangles. The initial conditions consist of constant states with dimensions
2× 2, which are given by

(ρ, p, u, v)(0, x, y) =


(ρTR , pTR , uTR , vTR) , if x > 0.5, y > 0.5,
(ρTL , pTL , uTL , vTL) , if x < 0.5, y > 0.5,
(ρBL , pBL , uBL , vBL) , if x < 0.5, y < 0.5,
(ρBR , pBR , uBR , vBR) , if x > 0.5, y < 0.5.

The values of pressure p, density ρ, components of velocity u, and v for the initial states in the
left/right top/bottom quadrants are presented in Fig 5.27. The time at which the results are
presented is tend. γ = 1.4. is used for all simulations, and the density contours in the figures are
consistent with the results presented in [147]. All Riemann problems considered in [147] have
been designed to ensure that the solutions of the four 1D Riemann problems between quadrants
contain exactly one wave, which may be a shock (S), rarefaction (R), or contact discontinuity
(J). To maintain consistency with [148], the notations R, S, and J are used in this study.

Fig 5.26. The computational domain for 2D Riemann problems.
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Fig 5.27. Initial states in four top/left (TL), top/right (TR), bottom/left (BL) and bot-
tom/right (BR) quadrants for each configuration. Pressure p, density ρ, x-component of velocity
u, y-component of velocity v and the final time tend of the simulations.
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Fig 5.28. The results generated by the FVC scheme for the 2D Riemann problem are presented
for configurations 2 through 7. Pressure is represented by color, while 25 contours are used to
represent density. The first row corresponds to configurations 2 and 3 from left to right, the
middle row corresponds to configurations 4 and 5, and the last row corresponds to configurations
6 and 7. The contour values are (from 0.25 to 1.00), (from 0.2 to 1.71), (from 0.6 to 2.00), (from
0.98 to 3.73), (from 0.33 to 3.11) and (from 0.26 to 0.99), respectively, for configurations 2 to 7.
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Fig 5.29. The results generated by the FVC scheme for the 2D Riemann problem are presented
for configurations 8 through 13. Pressure is represented by color, while 27 contours are used to
represent density. The first row corresponds to configurations 8 and 9 from left to right, the mid-
dle row corresponds to configurations 10 and 11, and the last row corresponds to configurations
12 and 13. The contour values are (from 0.52 to 0.99), (from 0.42 to 2.00), (from 0.17 to 1.00),
(from 0.52 to 1.23), (from 0.53 to 1.61) and (from 0.52 to 2.54), respectively, for configurations
8 to 13.
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Fig 5.30. The results generated by the FVC scheme for the 2D Riemann problem are pre-
sented for configurations 14 through 19. Pressure is represented by color, while 29 contours are
used to represent density. The first row corresponds to configurations 14 and 15 from left to
right, the middle row corresponds to configurations 16 and 17, and the last row corresponds to
configurations 18 and 19. The contour values are (from 0.47 to 2.24), (from 0.43 to 0.99), (from
0.51 to 1.02), (from 0.32 to 2.03), (from 0.49 to 2.04) and (from 0.44 to 2.00), respectively, for
configurations 14 to 19.
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The numerical solution is compared to the reference solutions of [148] and [149]. The density
and pressure results for each configuration are presented in Fig 5.28, Fig 5.29 and Fig 5.30,
where the FVC scheme’s numerical solution is displayed at the final time with pressure shown in
color and density shown in contours. For instance, a reference solution can be found in [148]. In
Fig 5.30, Fig 5.28 and Fig 5.30, it can be observed that the computation results with the FVC
scheme capture the main flow structures of all proposed configurations comparably. Therefore,
the FVC scheme appears to yield good results in capturing shocks without spurious oscillations
and in smooth parts of the flow without excessive numerical dissipation. Additionally, the
present scheme captures sharper discontinuities.

5.2.7 2D and 3D explosion problems

In this study, we examine a cylindrical and spherical explosion problem in 2D and 3D, re-
spectively. The computational domain is defined as Ω = [−1, 1]d, which corresponds to a square
(when d = 2) and a cube (when d = 3). In the 3D case, only the half-cube with x < 0 is consid-
ered, and a symmetry boundary condition is imposed at x = 0. Meanwhile, the 2D simulation
encompasses the entire square. The computational setup represents a cylindrical/spherical ex-
tension of the classic Sod problem [152], which has subsequently been utilized in [153, 154], with
initial conditions provided by

(ρ, p, u, v, w)(0, X) =


(
1.0, 1.0, 0.0, 0.0, 0.0

)
if ||X|| < R,(

0.125, 0.1, 0.0, 0.0, 0.0
)

if ||X|| > R,

where the initial discontinuity is characterized by a radius, denoted as R = 0.5. An adiabatic
ideal-gas equation of state is utilized, incorporating an adiabatic index of γ = 1.4. A reference
solution is derived by implementing a two-dimensional Roe scheme on a mesh with 1.235× 106

cells. Both two-dimensional and three-dimensional FVC schemes are employed. In the 2D
scenario, the computational mesh comprises 72532 triangular cells, while the 3D configuration
features a coarser mesh with 1732345 tetrahedral cells. In Fig 5.31, the profiles of density
and pressure along the x-axis are shown at time t = 0.2s for the two-dimensional situation, in
conjunction with the reference solution. Fig 5.31 also includes a graph of the troubled cells,
mainly concentrated around the circular shock front. Meanwhile, the intermediate circular
contact wave outcomes are boundless at t = 0.2s. The cause of this phenomenon is due to the
contact wave undergoing constriction during the initial phase of the explosion problem, leading
to smearing that enables it to be treated as a smooth characteristic utilizing the FVC method
without generating spurious oscillations. Based on the cross-section in the bottom right of Fig
5.31, the shock and contact discontinuity waves are accurately resolved within one element on the
primary mesh. Furthermore, the circular structure of the shock wave is well-preserved without
any visible imprint of the mesh. We observed a slight oscillation at the foot of the rarefaction
wave in Fig 5.31, but not at the contact discontinuity or the shock wave, which questions the
hypothesis of oscillations due to the dispersion phenomenon. Additionally, we noticed that this
oscillation decreases as the mesh size increases. However, we believe that this oscillation is
caused by interpolation, although it has no significant influence on the results. Therefore, this
finding demonstrates that the present approach is capable of maintaining cylindrical symmetry
and producing robust and non-oscillatory results for shock waves.
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Fig 5.31. Two-dimensional cylindrical explosion problem, the FVC scheme was employed,
utilizing a mesh of 72532 cells at a time t = 0.2s. The upper row, left side, displays a 3D
visualization of the density, while the upper row, right side, depicts the pressure in a similar 3D
representation. The shockwave resolution is evidently precise within a singular mesh cell. The
lower row demonstrates a unidimensional cross-sectional analysis of the numerical solution for
density and pressure, taken along the x-axis with coordinates (x, y = 0).

The numerical results for the three-dimensional scenario obtained using a 3D FVC scheme
are shown in Fig 5.32, and the same conclusions as in the two-dimensional case can be reached.
The parallel version of the manapy2 code was used to make 3D simulations on the Super Com-
puting Center3 HPC of the University Mohammed VI Polytechnic, with the aid of 56 CPU cores
and a memory capacity of 182, 198 MB.

2https://github.com/imadki/manapy
3https://crc4.gitlab.io/um6p/operations/um6p-sysops/index.html
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Fig 5.32. Three-dimensional spherical explosion problem at time t = 0.2s using a FVC scheme
on an unstructured tetrahedral mesh that consists of 1732345 cells. Top row: includes a visual-
ization of the density and pressure after a plane cut. Bottom row: we illustrate 1D cuts along
the x-axis for the density and pressure and compares them with the reference solution.
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Chapter 6

Conclusions and perspectives

This research highlights the effectiveness of the Finite Volume Characteristics (FVC) scheme
on unstructured two-dimensional and three-dimensional meshes, particularly in simulating two
types of flows: shallow water flow and gas flow. The shallow water flow is modeled using
the two-dimensional shallow water equations coupled with the convection-diffusion equation,
while the gas flow is modeled using the three-dimensional Euler equations. The FVC scheme
demonstrates promising results in solving these complex problems, offering improved accuracy
and better representation of the underlying physical phenomena.

To facilitate the solution of these equations, we have developed a computational code2 based
on the FVC scheme applied to unstructured general meshes. In the context of the shallow
water model, we have proposed a well-balanced discretization technique for the FVC scheme.
This ensures accurate predictions when dealing with problems involving significant source terms,
particularly due to rapid variations and strong irregularities in the bottom. This scheme offers
several advantages. Firstly, it can solve steady flows over irregular beds without significant
numerical errors, thereby demonstrating that the proposed scheme achieves perfect numerical
balance of gradient fluxes and source terms. Secondly, it can compute the numerical flux corre-
sponding to the actual state of water flow without relying on Riemann problem solvers. Thirdly,
reasonable accuracy can be easily achieved, and no special treatment is required to maintain
numerical balance as it is automatically performed in the integrated numerical flux function.
Lastly, the proposed approach does not require nonlinear solutions or special front-tracking tech-
niques. Furthermore, it exhibits strong applicability to various conservative numerical schemes,
as demonstrated by the numerical results. However, the use of interpolation techniques suit-
able for unstructured grids is necessary. While the Lagrange polynomial can be used in one-
dimensional schemes or Cartesian grid-based schemes, it is not suitable for unstructured grids.

When faced with these challenges, conventional methods that employ Riemann approxima-
tion solvers, which are well-suited for purely hyperbolic equations, often encounter numerical
instability issues.

Several test cases that were previously proposed in related studies were conducted to evaluate
the scheme for both free surface flows and gas flows. These test cases were designed to accurately
assess the specific properties of the employed scheme. The numerical results obtained from these
various test cases were compared to analytical solutions or experimental data. Through these
comparisons, the code demonstrated its proper functionality, accuracy, stability, and robustness.
Furthermore, the effectiveness of the implemented boundary condition treatment techniques in
the code was confirmed.

For the purpose of comparison, three schemes were introduced into the code: the SRNH
2https://github.com/imadki/manapy
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scheme (Non-Homogeneous Riemann Solver), the Roe scheme, and the Rusanov scheme. These
schemes have demonstrated their accuracy, stability, and robustness in the majority of test cases
conducted in this study. The diffusion term is effectively handled using the diamond scheme.
The results obtained from the various test cases are satisfactory, instilling confidence in the
feasibility of applying the code to large-scale scenarios, such as pollutant transport in the Strait
of Gibraltar. Consequently, the findings of this study affirm the reliability of the implemented
algorithms and the overall methodology.

The results of this study confirm the reliability of the FVC scheme in an unstructured mesh
for solving the shallow water equations, which describe flows of various types: slow, fast, and
torrential, over different types of beds: flat or steep, regular or highly irregular. Furthermore,
it is capable of generating three-dimensional solutions with acceptable accuracy in handling
shocks and contact discontinuities, in the case of Euler equations. This study represents a com-
prehensive development of the FVC scheme for simulating conservation law models, addressing
implementation challenges encountered during the research. The results of this study confirm
the significant potential of the developed code in accurately simulating free-surface flows and
gas flows described by the Euler equations. The code demonstrates physical consistency and
enables the simulation of a wide range of problems and benchmarks. Furthermore, this method
is adaptable to various types of meshes on different geometries. Moving forward, future im-
provements should focus on several key points. First and foremost, it is essential to enhance the
interpolation method on arbitrary grids. Additionally, it is crucial to prove positivity for the
FVC scheme in its one-dimensional version, which would ensure its validity and promote more
widespread usage. Moreover, employing an implicit temporal discretization scheme would be
beneficial in achieving improved numerical stability.

Another necessary enhancement pertains to locally managing the parameter αn using limiter
techniques and/or a Ducros Sensor criterion. Furthermore, it would be prudent to implement
dynamic mesh refinement sequentially and then in parallel, enabling better adaptation of the
mesh to various conditions and constraints.

Furthermore, it is important to incorporate the algorithm for calculating the thickness of the
boundary layer into existing models. This would enhance the accuracy of simulations. Finally, it
would be interesting to simulate compressible Navier-Stokes equations and subsequently model
non-Newtonian fluid behavior.
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.1 The FVC scheme Algorithm
Considering the system (2.2.1) with the initial condition W 0

i on the control volume Ti at
time t0. We project (2.2.1) according to the normal η and tangential τ of each edge. This
yields the system (4.7) which we will use to construct intermediate states using the method of
characteristics.

Algorithm 1 FVC scheme for Shallow Water Equations
W = (h, hu, hv);
Initialize conditions;
for each time iteration do

Compute the time step ∆t;
Compute Xc(tn); /*Using formula (4.9)*/
Compute Un

ij for all interfaces; /*Using formula (4.10)*/
Compute Wn

ij for all interfaces; /*Using formula (4.15)*/
Compute the discretization of source term; /*Using formula (4.30)*/
Compute the solution Wn+1 ; /*Using formula (4.31)*/
Update the solution: Wn+1 ←−Wn;
Apply boundary conditions;

end for

.2 Gradient at edge with 2D diamond scheme
The gradient on each edge is approximated by introducing Green’s theorem augmented by

a first-order Gaussian quadrature formula, for which the values on a node of the mesh are
interpolated from those on the cells containing that node. The weak consistency of this scheme
has been proved by Coudière et al. [104] for an elliptic equation under certain conditions on the
weights of the interpolation.

The partial derivatives on the edge γij can be defined as an average of those on the VSRNL
co-volume, centred on the γij interface and the two points N and S of γij , see Fig 4.5 that is

∂uij
∂x

:= ∂u

∂x

∣∣∣∣
γij

' 1
µ (VSRNL)

∫
VSRNL

∂u

∂x
du. (1)

Applying Green’s divergence theorem to the co-volume VSRNL, we obtain the approximation

∂u

∂x

∣∣∣∣
γij

' 1
µ (VSRNL)

∑
ε∈∂VSRNL

u

∣∣∣∣∣∣
ε

∫
ε
nxεdσ, (2)
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where ε represents an edge of the co-volume VSRNL and nxε is the axial component of the unit
normal outside ε. If we note ε = [N1, N2], we can also write

∂u

∂x

∣∣∣∣
γij

' 1
µ (VSRNL)

∑
ε∈∂VSRNL

1
2 (uN1 + uN2)

∫
ε
nxεdσ. (3)

For a given co-volume see Fig 4.5, the gradient of quantity u is given by

∇uij = 1
2µ (VSRNL)

{
(uS + uR)nSR |γSR |+ (uR + uN )nRN |γRN |+ (uN + uL)nNL|γNL|

+ (uL + uS )nLS |γLS |
}
,

where uN , uS , uR , and uL represent respectively the values of the quantity u in the point N , S,
R and L for more detail, see Fig 4.5. When we modify the expression inside the square braces,
we obtain

∇uij = 1
2µ (VSRNL)

{
(nSR |γSR |+ nLS |γLS |)uS + (nRN |γRN |+ nNL |γNL |)uN

+ (nSR |γSR |+ nRN |γRN |)uR + (nNL |γNL |+ nLS |γLS |)uL
}
,

The following equalities are obvious

nSR |γSR |+ nLS |γLS | = nSR |γSR |,
nRN |γRN |+ nNL |γNL | = −nLR |γLR |,
nSR |γSR |+ nRN |γRN | = nij |γij |,
nNL |γNL |+ nLS |γLS | = −nij |γij |.

The values of u at the centers R and L are known exactly, while those at the nodes N and S
must be determined by an interpolation procedure. For a node p of the mesh, we use a linear
approximation of u on the set of cells containing the node p, i.e.,

up =
∑

K∈V (p)
ωK(p)uK , (4)

where V (p) is the set of triangles surrounding p, uK is the state at the center of the triangle K
and the ωK are the weights of the interpolation. In order to ensure the weak consistency of the
scheme described above, the weights ωK of the interpolation are computed by a least squares
approximation method [104]. The idea is to minimize the quadratic function

Lp(ξ) =
∑

K∈V (p)
(uK − ξ (GK))2 , (5)

where w is a linear approximation of u over the set of cells containing the node p

ξ(x, y) = β1 + β2x+ β3y.

Some simple calculations (see, [104, subsection 3.3]) and noticing that ξ (xp, yp) = up = β1, leads
us to:

ωK(p) = 1 + λx (xK − xp) + λy (yK − yp)
np + λxRx + λyRy

, (6)
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where np = #(V (p))

Rx =
∑

K∈V (p)
(xK − xp) , Ry =

∑
K∈V (p)

(yK − yp) , (7)

Ixx =
∑

K∈V (p)
(xK − xp)2 , Ixy =

∑
K∈V (p)

(xK − xp) (yK − yp) , (8)

Iyy =
∑

K∈V (P )
(yK − yP )2 , D = IxxIyy − I2

xy, λx = IxyRy − IyyRx
D

, λy = IxyRx − IxxRy
D

.

Hence, using these results, we can prove (4.13). �

.3 Gradient in cell for 2D formulation
For compute∇Wi, different methods can be used to evaluate this gradient depending on the

type of control volumes considered. Here, we have adopted a least squares method, which is a
very efficient technique in the case of triangular or quadrangular meshes. The idea is to find the
plane passing through Wi and closest to its neighbouring values Wj defined linearly from Wi.
For a triangle Ti, consider the expression

∆ (Wi,Wj) = Wi + (xj − xi)
∂Wi

∂x
+ (yj − yi)

∂Wi

∂y
− Wj , (9)

where (xi, yi) and (xj , yj) are respectively the coordinates of the centres of gravity Gi and Gj
of Ti and Tj . The term ∆ (Wi,Wj) represents the difference between the effective value of W
at the center of the cell Tj and the value obtained at the center of Tj by the first order Taylor
polynomial of the functionW defined at the center of Ti. The gradient on the cell Ti is evaluated
by minimizing the quadratic function

Ψi

(
∂Wi

∂x
,
∂Wi

∂y

)
=

∑
j∈T(i)

|∆ (Wi,Wj)|2 , (10)

where T(i) is the set of neighbouring triangles of Ti by vertex or by edge see Fig 1. Moreover,
∂Wi
∂x and ∂Wi

∂y are then solutions of the following linear system(
Ixx Ixy

Ixy Iyy

)∂Wi
∂x

∂Wi
∂y

 =
(
Jx

Jy

)
. (11)

A simple compute shows that
∂Wi

∂x
= JxIyy − JyIxy

D
,

∂Wi

∂y
= JyIxx − JxIyx

D
,

(12)

where
Ixx =

∑
j∈T(i)

(xj − xi)2 , Iyy =
∑
j∈T(i)

(yj − yi)2 ,

Ixy = Iyx =
∑
j∈T(i)

(xj − xi) (yj − yi) , D = IxxIyy − I2
xy,

Jx =
∑
j∈T(i)

(xj − xi) (Wj −Wi) , Jy =
∑
j∈T(i)

(yj − yi) (Wj −Wi) .

(13)
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Fig 1. Neighbouring triangles of Ti by vertex or by edge.

.4 Gradient at face with 3D diamond scheme
The construction of the diamond cell Dγij in 3D is constructed by the centers of gravity L,R

for cells Ti and Tj that enclose the shared face γij . The remaining vertices of the diamond cell
correspond to the vertices of the face γij , as depicted in Fig 2. An approximation of the gradient
∇uij is given by the following formula.

∇uij = 1
3µ
(
Dγij

) { (uA + uB + uR) nABR |γABR|+ (uB + uC + uR) nBCR |γBCR|

+ (uC + uD + uR) nCDR |γCDR|+ (uD + uA + uR) nDAR |γDAR|

+ (uA + uB + uL) nBAL |γBAL|+ (uB + uC + uL) nCBL |γCBL|

+ (uC + uD + uL) nDCL |γDCL| + (uD + uA + uL) nADL |γADL|
}
,

(14)

where uA , uB , uC , uD , uR and uL represent respectively the values of the quantity u in the point
A, B, C, D, R and L, nABR (and similarly nBCR, etc.) represents a unit vector pointing outward
from the face denoted by γABR (or γBCR, etc.), and |γABR| (or |γBCR|, etc.) denotes the area
of this face. If we factor out one-third from the bracketed expression and make appropriate
modifications to the terms inside the bracket, the resulting expression can be obtained.

∇uij = 1
3µ
(
Dγij

) { (nABR |γABR|+ nDAR |γDAR|+ nBAL |γBAL|+ nADL |γADL|)uA

+ (nABR |γABR|+ nBCR |γBCR|+ nBAL |γBAL|+ nCBL |γCBL|)uB
+ (nBCR |γBCR|+ nCDR |γCDR|+ nCBL |γCBL|+ nDCL |γDCL|)uC
+ (nCDR |γCDR|+ nDAR |γDAR|+ nDCL |γDCL|+ nADL |γADL|)uD
+ (nABR |γABR|+ nBCR |γBCR|+ nCDR |γCDR|+ nDAR |γDAR|)uR

+ (nBAL |γBAL|+ nCBL |γCBL|+ nDCL |γDCL|+ nADL |γADL|)uL
}
.

(15)
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The vector equilibrium implies

nABR |γABR|+ nDAR |γDAR|+ nBAL |γBAL|+ nADL |σADL| = nBRDL |γBRDL| ,

nABR |γABR|+ nBCR |γBCR|+ nBAL |γBAL|+ nCBL |σCBL| = nALCR |γALCR| ,

nBCR |γBCR|+ nCDR |γCDR|+ nCBL |γCBL|+ nDCL |γDCL| = −nRBDL |γRBDL| ,

nCDR |γCDR|+ nDAR |γDAR|+ nDCL |γDCL|+ nADL |γADL| = −nALCR |γALCR| ,

nABR |γABR|+ nBCR |γBCR|+ nCDR |γCDR|+ nDAR |γDAR| = nij |γij | ,

nBAL |γBAL|+ nCBL |γCBL|+ nDCL |γDCL|+ nADL |γADL| = −nij |γij | .

(16)

When we use the vector equilibrium, we can write for the gradient ∇uij

∇uij = 1
3µ
(
Dγij

) { (uA − uC ) nBRDL |γBRDL|+

+ (uB − uD) nALCR |γALCR|+ (uR − uL) nij |γij |
}
.

(17)

The values uA , uB , uC and uD are computed by the least square method

uA =
N(A)∑
p=1

wk(p)up , uB =
N(B)∑
p=1

wk(p)up ,

uC =
N(C)∑
p=1

wk(p)up , uD =
N(D)∑
p=1

wk(p)up .

(18)

The weights wk(p) is given by

wk(p) = 1 + λx (xp − xA) + λy (yp − yA) + λz (zp − zA)
∆ , (19)

where

Ixx =
N(A)∑
p=1

(xp − xA)2 , Ixy =
N(A)∑
p=1

(xp − xA) (yp − yA) , Rx =
N(A)∑
p=1

(xp − xA) ,

Iyy =
N(A)∑
p=1

(yp − yA)2 , Ixz =
N(A)∑
p=1

(xp − xA) (zp − zA) , Ry =
N(A)∑
p=1

(yp − yA) ,

Izz =
N(A)∑
p=1

(zp − zA)2 , Iyz =
N(A)∑
p=1

(yp − yA) (zj − zv) , Rz =
N(A)∑
p=1

(zp − zA) ,

(20)

and
∆ = IxxIyyIzz + 2IxyIxzIyz − IxxI2

yz − IyyI2
xz − IzzI2

xy,
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Fig 2. Diamond cell for 3D formulation.

and

λx =

(
I2
yz − IyyIzz

)
Rx + (IxyIzz − IxzIyz)Ry + (IxzIyy − IxyIyz)Rz

∆ ,

λy = (IxyIzz − IxzIyz)Rx +
(
I2
xz − IxxIzz

)
Ry + (IyzIxx − IxzIxy)Rz

∆ ,

λz =
(IxzIyy − IxyIyz)Rx + (IyzIxx − IxzIxy)Ry +

(
I2
xy − IxxIyy

)
Rz

∆ .

(21)

.5 Roe scheme for 3D Euler equations
This scheme was first proposed by Roe [69]. It is a scheme based on solving local Rie-

mann problems at each cell interface, except that the Riemann problem is linearized around an
averaged state, which is called the Roe averages. The Roe numerical flux is given by

ΦRoe (Wi,Wj) = 1
2
(
F (Wi) + F (Wj)−

∣∣∣Ã (Wi,Wj)
∣∣∣ · (Wj −Wi)

)
, (22)

where Ã (Wi,Wj) is the Roe matrix associated with the problem. In the case of the Euler
equations (2.58), this matrix is given by

Ã = PΛP−1, (23)

where

Λ =


ũη − c̃ 0 0 0 0

0 ũη 0 0 0
0 0 ũη + c̃ 0 0
0 0 0 ũη 0
0 0 0 0 ũη

 , Pn =


1 1 1 0 0

ũ− c̃nx u ũ+ c̃nx bx τx
ṽ − c̃ny ṽ ṽ + c̃ny by τy
w̃ − c̃nz w w̃ + c̃nz bz τz
H̃ − ũη c̃ |ũ|2/2 H̃ + ũη c̃ ũb ũτ

 ,
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and the Roe averages are expressed as

ρ̃ = √ρiρj ,

ũ =
√
ρiui +√ρjuj√
ρi +√ρj

,

ṽ =
√
ρLvi +√ρjvj√
ρi +√ρj

,

w̃ =
√
ρLwi +√ρjwj√
ρi +√ρj

,

H̃ =
√
ρLHi +√ρiHj√
ρi +√ρj

,

c̃ =
(

(γ − 1)
(
H̃ − 1

2
˜|u|2
)) 1

2
.

We recall that

E = 1
γ
H + γ − 1

2γ |u|
2,

uη = unx + vny + wnz,

ub = ubx + vby + wbz,

and
uτ = uτx + vτy + wτz.

cf. Fig 5.2.

.6 SRNH scheme for shallow water equations
For a simplified presentation of the SRNH scheme [73, 7], we write the projected system of

(2.22) in vector form
∂U

∂t
+ ∂Fη(U)

∂η
= Sη(U) (24)

The predictor stage of the SRNH scheme involves using the projected system to compute the
mean states Unij on each edge. It is formulated using a staggered approach as follows

Unij = 1
2
(
Uni + Unj

)
− 1

2 sgn
[
∇Fη(Ū)

] (
Unj − Uni

)
+ 1

2
∣∣∣∇Fη(Ū)−1

∣∣∣Snηij , (25)

where

U =

 h
huη
huτ

 , Fη(U) =

 huη
hu2

η + 1
2gh

2

huηuτ

 , Snηij = −ghi + hj
2 (Zj − Zi)

 0
1
0

 . (26)

In (25), Ū represents the Roe average, is given by

Ū = 1
2 (hi + hj)


1

ui
√
hi+uj

√
hj√

hi+
√
hj

nx + vi
√
hi+vj

√
hj√

hi+
√
hj

ny

−ui
√
hi+uj

√
hj√

hi+
√
hj

ny + vi
√
hi+vj

√
hj√

hi+
√
hj

nx

 . (27)
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The sign and inverse matrices of the Jacobian of system (24) are defined by

sgn
[
∇Fη(Ū)

]
= R(Ū) sgn[Λ(Ū)]R−1(Ū) and

∣∣∣∇Fη(Ū)−1
∣∣∣ = R(Ū)

∣∣∣Λ(Ū)−1
∣∣∣R−1(Ū) (28)

where Λ(Ū) andR(Ū) are, respectively, the matrix of eigenvalues and the matrix of eigenvectors.
An explicit calculation of these matrices yields

Λ =

 ūη − c̄ 0 0
0 ūη 0
0 0 ūη + c̄

 , R =

 1 0 1
ūη − c̄ 0 ūη + c̄
ūτ 1 ūτ

 and R−1 =


ūη+c̄

2c̄ − 1
2c̄ 0

−ūτ 0 1
− ūη−c̄

2c̄
1
2c̄ 0

 .
Here, c̄ =

√
gh̄ is the velocity calculated at the interface γij of the control volume. It is also

easy to verify that the sign matrix in (25) is given as follows

sgn
[
∇Fη(Ū)

]
=



sgn(λ̄1)λ̄3−sgn(λ̄3)λ̄1
2c̄

sgn(λ̄3)−sgn(λ̄1)
2c̄ 0

|λ̄1|λ̄3−|λ̄3|λ̄1
2c̄

|λ̄3|−|λ̄1|
2c̄ 0

ūτ
(

sgn(λ̄1)λ̄3−sgn(λ̄3)λ̄1
2c̄ − sgn(ūη)

)
ūτ

sgn(λ̄3)−sgn(λ̄1)
2c̄ sgn(λ̄2)

 , (29)

where λ̄1 = ūη − c̄, λ̄2 = ūη and λ̄3 = ūη + c̄ . Using the matrices above, the projected state
Unij on each edge γij can be easily obtained from the predictor step (25). The conservative state
Wn
ij is then evaluated using the transformations u = uηnx − uτny and v = uηny + uτnx.
Finally, applied to the system (2.22), the SRNH scheme consists of a predictor step and a

corrector step, and can be formulated as follows.
Unij = 1

2

(
Uni + Unj

)
− 1

2 sgn
[
∇Fη(Ū)

] (
Unj − Uni

)
+ 1

2

∣∣∣∇Fη(Ū)−1
∣∣∣Snηij ,

Wn+1
i = Wn

i − ∆t
|Ti|

∑
j∈N(i) F

(
Wn
ij ;nij

)
|γij |+ ∆tSni .

(30)

.7 Exact solution of ideal dam break problem
For each time t > 0, the analytical solution of ideal dam break without friction is given by

h(t, x) =



hl
1
9g
(
2
√
ghl − x−xm

t

)
hm

hr

, u(t, x) =



0 if x 6 xm − t
√
ghl,

2
3
(√
ghl + x−xm

t

)
if xm − t

√
ghl 6 x < t(um − cm),

um if t(um − cm) 6 x < xm + tvc,

0 if x > xm + tvc.

where vc = 2c2
m(
√
ghl − cm)

c2
m − ghr

is the speed of the shock and cm =
√
ghm the solution of

8c2
mc

2
l (cl − cm)2 − (c2

m − c2
r)(c2

m + c2
r) = 0.
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.8 Elevation of the bed is employed in specific cases as described
in Chapter 4.
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Study and implementation of an Eulerian-Lagrangian method on 2D/3D unstructured
meshes for the numerical simulation of fluid flow models

Abstract

This thesis presents a study on the development and effectiveness of the Characteristic Finite Volume
(FVC) scheme on unstructured 2D and 3D meshes for simulating two types of flows: shallow water flows
described by the Saint-Venant equations (also known as shallow water equations) with single-layer and
multilayer configurations, and gas flows modeled by the Euler equations. The FVC scheme shows promise
by offering first-order accuracy and improved representation of physical phenomena. A computational
code based on this scheme was developed to solve the corresponding equations, and a well-balanced
discretization of the FVC scheme was proposed for the shallow water model, allowing for the prediction
of the code’s application to problems with significant source terms and irregular bottom topography.

Various test cases were conducted to evaluate the numerical simulation of free-surface flows and
gas flows. These evaluations involved comparisons between numerical results and analytical solutions or
experimental data. The performed comparisons confirm the reliability, accuracy, stability, and robustness
of the proposed code and scheme, as well as the effectiveness of the techniques used to handle boundary
conditions. The results obtained from the various test cases are satisfactory, providing confidence in the
large-scale application of the scheme, particularly in domains such as pollutant transport in the Strait of
Gibraltar.

In summary, this study demonstrates the reliability of the FVC scheme on unstructured meshes for
solving conservation equations, such as the Euler equations and shallow water equations. This scheme
offers a robust and accurate solution for a wide range of flows and bottom topography configurations.
Keywords Shallow water model; Method of characteristics; 2D FVC scheme; Finite volume method;
Multilayer shallow water equations; Well-balanced scheme; Euler equations, 3D FVC scheme; Diamond
scheme; unstructured meshes; Conversations laws; Riemann problem.

Étude et mise en œuvre d’une méthode Eulérienne-Lagrangienne sur des maillages non
structurés 2D/3D pour la simulation numérique de modèles d’écoulements fluides

Résumé

Cette thèse présente une étude portant sur le développement et l’efficacité du schéma des Volumes
Finis Caractéristiques (FVC) sur des maillages non structurés en 2D et 3D, pour la simulation de deux
types d’écoulements : les écoulements d’eau peu profonde, décrits par les équations de Saint-Venant
(également connues sous le nom d’équations de l’eau peu profonde), avec des configurations monocouche
et multicouches, ainsi que les écoulements de gaz, modélisés par les équations d’Euler. Le schéma FVC
se révèle prometteur en offrant une précision accrue au premier ordre et une meilleure représentation des
phénomènes physiques. Un code de calcul basé sur ce schéma a été développé pour résoudre les équations
correspondantes, et une discrétisation bien équilibrée du schéma FVC a été proposée pour le modèle
d’eau peu profonde, permettant de prédire l’application du code à des problèmes avec des termes sources
importants et une irrégularité du fond.

Différents cas test ont été exécutés pour évaluer la simulation numérique des écoulements à surface
libre ainsi que les écoulements de gaz. Ces évaluations ont consisté en des comparaisons entre les résultats
numériques et des solutions analytiques ou des données expérimentales. Les comparaisons effectuées
confirment la fiabilité, la précision, la stabilité et la robustesse du code et du schéma proposés, ainsi
que l’efficacité des techniques utilisées pour traiter les conditions aux limites. Les résultats obtenus lors
des différents cas test sont satisfaisants, ce qui permet d’envisager avec confiance l’application à grande
échelle, notamment dans des domaines tels que le transport de polluants dans le détroit de Gibraltar.

En résumé, cette étude démontre la fiabilité du schéma FVC sur des maillages non structurés pour
la résolution des équations de conservation, telles que les équations d’Euler et les équations d’eau peu
profonde. Ce schéma offre une solution robuste et précise pour une large gamme d’écoulements et de
configurations de fond.
Mots clés Équations de Saint-Venant; Méthode des caractéristiques; Schéma FVC bidimensionnelle;
Méthode des volumes finis; Équations multicouches d’eau peu profonde; Schéma bien équilibré; Équations
d’Euler; Schéma FVC en 3D; Schéma diamond; Maillages non structurés; Lois de conservation; Problème
de Riemann.
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