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ABSTRACT

Abstract

Today, software is used in a wider variety of areas than ever before. Testing software is one of the

techniques utilized during the verification and validation process. Researchers and the business

sector have attempted to automate software testing in the past few decades, as the majority of

testing activities are difficult and costly.

In recent decades, software logs have become indispensable to the reliability assurance mecha-

nism of many software systems, as they are typically the only data that records software runtime

events. They are a valuable information source that can be leveraged for various diagnostic pur-

poses. Throughout the testing procedure, testers can extract vital information from logs.

Regression tests are required to be executed after each iteration of software development, which

can be costly in terms of time and resources. Additionally, the volume of logs has rapidly increased

as the applications of modern software have grown. The regression testing process needs to be

automated in order to mitigate the cost associated with log analysis and reduce the workload of

software testers.

Log mining employs statistics, data mining, and machine learning techniques to automatically

investigate and analyze a large volume of log data in order to discover meaningful patterns and

reveal trends. Advanced implementation strategies for automated log mining are in high demand.

Log mining tasks related to automated software testing are one of the contributions of this disser-

tation. We introduce some major log mining tasks for reliability engineering, including anomaly

detection, failure prediction, and root-cause detection, etc. The research is completed through

a number of case studies and experiments, which ultimately leads to the development of a set of

tools that work together to help automate log mining. The results given in this dissertation demon-

strate how software testing can be enhanced by employing log mining using machine learning.

This dissertation introduces four important log mining problems, including root-cause detection,

online failure prediction, log minimization, and user behavior clustering. Based on software sys-

tem log analysis, we propose a new learning-based technique to automate log mining tasks. A

part of the effort in this work focuses on developing unsupervised log mining methods in order to

reduce human interaction and extract hidden features that are hidden from direct human obser-

vation. To this end, we tried to adopt learning techniques (e.g., NLP) that are capable of extracting

the semantics of the logs and, therefore, learning the relations among the events. This evolved

into a general unsupervised log mining methodology capable of clustering output events based

on their conceptual relations with other events, detecting anomalous behavior, predicting them

in online software, and finally finding their root cause among the input events. The achievements

of the thesis help system administrators predict the possibility of imminent failures and also help

software developers detect bugs and their root causes among input and output log records.

Throughout this dissertation, "real-world" applications are discussed, and we believe that our

work could serve as the foundation for future research and deployment of automated log mining,

as well as provide important recommendations in this area.

Keywords Automated software testing, Log analysis, Machine learning, Log mining tasks
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ABSTRACT

French Résumé

Aujourd’hui, les logiciels sont utilisés dans une plus grande variété de domaines que jamais au-

paravant. Le test logiciel est l’une des techniques utilisées au cours du processus de vérification

et de validation. Les chercheurs et le secteur des entreprises ont tenté d’automatiser les tests de

logiciels au cours des dernières décennies, puisque la majorité des activités de test sont difficiles

et coûteuses. Au cours des dernières décennies, les journaux de logiciels sont devenus indispen-

sables au mécanisme d’assurance de la fiabilité de nombreux systèmes logiciels, car ce sont gé-

néralement les seules données qui enregistrent les événements d’exécution des logiciels. Tout au

long de la procédure de test, les testeurs peuvent extraire des information vitales des journaux.

Les tests de régression doivent être exécutés après chaque itération de développement logiciel,

ce qui peut être coûteux en temps et en ressources. De plus, le volume de journaux a rapide-

ment augmenté à mesure que les applications des logiciels modernes se sont développées. Le

processus de test de régression doit être automatisé afin d’atténuer les coûts associés à l’analyse

des journaux et de réduire la charge de travail des testeurs de logiciels. L’exploration de journaux

utilise des statistiques, l’exploration de données et des techniques d’apprentissage automatique

pour analyser automatiquement un grand volume de données de journaux afin de découvrir des

modèles significatifs et des tendances révélatrices. Les stratégies de mise en œuvre avancées pour

l’extraction automatisée de journaux sont très demandées. Les tâches d’extraction de journaux

liées aux tests automatisés de logiciels sont l’une des contributions de cette thèse. Nous intro-

duisons certaines tâches majeures d’extraction de journaux pour l’ingénierie de la fiabilité. La

recherche est complétée par un certain nombre d’études de cas et d’expériences, ce qui conduit

finalement au développement d’un ensemble d’outils qui travailler ensemble pour aider à auto-

matiser l’extraction de qui travaillent ensemble journaux. Les résultats donnés dans cette thèse

démontrent comment les tests de logiciels peuvent être améliorés en utilisant l’extraction de jour-

naux à l’aide de l’apprentissage automatique. Cette thèse présente quatre problèmes importants

d’extraction de journaux, notamment la détection des causes, la prédiction des défaillances en

ligne, la minimisation des journaux de test et le regroupement du comportement des utilisateurs.

Basée sur l’analyse des journaux du système logiciel, nous proposons une nouvelle technique ba-

sée sur l’apprentissage pour automatiser les tâches d’extraction de journaux. Une partie de l’effort

dans ce travail se concentre sur le développement de méthodes non supervisées d’extraction de

zones afin de réduire l’interaction humaine et également d’extraire des caractéristiques qui sont

cachées à l’observation humaine directe. À cette fin, nous avons essayé d’adopter des techniques

d’apprentissage (par exemple, NLP) capables d’extraire la sémantique des journaux et, par consé-

quent, d’apprendre les relations entre les événements. Cela a évolué vers une méthodologie gé-

nérale d’exploration de journaux non supervisée capable de regrouper les événements de sortie

en fonction de leurs relations conceptuelles avec d’autres événements, de détecter un compor-

tement anormal, de les prédire dans un logiciel en ligne et enfin de trouver leur cause première

parmi les événements d’entrée. Cela aide les administrateurs système à prévoir la possibilité de

pannes imminentes et aide aussi les développeurs de logiciels à détecter les bogues et leurs causes

profondes dans les enregistrements des journaux d’entrée et de sortie. Tout au long de cette thèse,

des applications logicielles issues d’un projet partenarial sont discutées et nous pensons que notre

travail pourrait servir de base à la recherche et au déploiement futurs de l’extraction automatisée

de journaux, ainsi qu’à fournir des recommandations importantes dans ce domaine.
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CHAPTER 1. INTRODUCTION

This chapter will introduce the topic of this dissertation, as well as the motives for its devel-

opment, aims, and contribution to the area. The following chapters’ structure is presented at the

end.

1.1 Motivation

Software testing is one of the most important phases of the software development lifecycle. It is

used to detect software flaws and ensure that software is delivered in a high-quality condition.

Any changes to a software component may affect one or more other components, requiring the

re-execution of previously generated test cases in addition to the newly generated ones [1]. Regres-

sion testing is a software testing technique that verifies that an application continues to perform

as expected after any code modifications, updates, or improvements. It should be performed after

each iteration of software development, which can be expensive in terms of time and resources.

Testing information systems has become a serious bottleneck for many large corporations and

small and medium-sized enterprises. Aside from the ever-increasing complexity of such systems,

their unavoidable quality assurance requirements have resulted in drastically increased verifica-

tion and validation expenses. However, a fine-grained review of existing testing techniques sug-

gests that not all artifacts are being used to mitigate this cost increase. Validation engineers fre-

quently disregard test and operational execution traces. This is hardly surprising given that these

traces are nearly impossible to classify and examine by hand. Furthermore, with model-based

testing methodologies, test models used to produce test cases are difficult to maintain and evolve.

As a result, they are frequently abandoned and replaced by test scripts written from scratch, in-

creasing validation costs.

It is thus critical to provide more intelligent and cognitive automated test processes in order to

regulate the complexity growth of software verification activities and help to break the testing bot-

tleneck. This will allow test engineers to concentrate on developing higher-value tests for specific

scenarios.

Software logs are a precious source of information that can be exploited for different diagnos-

tic purposes. Logging appeared as an important early component of computing systems, because

it helps application developers and users figure out what occurred during program execution. Tra-

ditionally, log mining has been as simple as a search for "error", "fault" or "exception" keywords.

Over the last two decades, log mining has turned toward rules-based comparison against a man-

ually created rule set to discern between normal and abnormal behavior. This trend, however, is

error-prone, labor-intensive, and lacks scalability due to the ever increasing volume and complex-

ity of software logs. By the advances of machine learning in several fields over the previous decade,

log mining has been extensively explored to provide new dimensions to log analysis.

The PHILAE project1 inspired and defined this thesis. The PHILAE project has set broad and

diversified goals for software testing, which will be discussed in depth in the next sections. The

PHILAE project includes various case studies, which are typically software traces supplied by the

project’s industrial partners. As a PHILAE project partner, the computer science laboratory in

Grenoble (LIG)2 has concentrated on specific case studies and so addressed a subset of the PHI-

LAE objectives. As a result, this thesis at LIG was to address these aims. The goals are broadly

stated as test selection and creation from usage records, as well as defect reporting and anomaly

identification from logs.

1PHILAE was supported by the French National Research Agency: PHILAE project (N° ANR-18-CE25-0013).
2https://www.liglab.fr/en
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1.2 Problem Statement and Research Objectives

As discussed in the previous section, we made a choice of two PHILAE case studies during the

preliminary steps of this thesis. Aligned with PHILAE’s objectives and the requirements of the

case studies, we created a set of objectives to fulfill. We address these objectives as log mining

tasks, considering that the case studies were basically a set of logs and also knowing that all the

objectives fall into the log mining (or log analysis) field of research in the related literature. Here

we introduce them briefly and a complete discussion will be postponed to the coming sections:

In this thesis, with a focus on the PHILAE’s objectives and the requirements of the chosen case

studies, we pursue the following log mining tasks using machine learning approaches:

• Log File and Test Suite Minimization:

The most significant source of information for bug analysis and failure diagnosis is software

logs. Following a bug or system crash report, software developers must examine log files

to determine the possible cause of the incident. For large software systems, log files may

include a massive number of events resulting from intertwined traces of activity made by

various users. Such a system could be a cloud computing platform. Reduce uninterest-

ing and unrelated log events is a typical approach for accelerating log analysis. As a result,

determining whether one or a specific collection of events in the log file is linked to the bug

occurrence is an important aspect of log minimization. Rerunning the entire chain of events

is obviously the worst-case situation and is not an option.

We can see parallels between log reduction and test suite minimization, when we need to

minimize a group of tests. A test suite is a container that contains a collection of tests that

assist testers in executing and reporting test execution status. A test suite is a set of test sce-

narios that address numerous capabilities that are crucial to the product in software testing,

particularly regression testing. Test suites are often built from previously completed func-

tional tests, unit tests, integration tests, and other test cases. A test suite is prepared after

each modification to the software to ensure its functionality.

Generally, the duration of regression testing is determined by the size of the test suites. As

the size of regression testing increases, its execution becomes increasingly computation-

ally intensive. Regression testing necessitates the execution of a large program on a large

number of test cases, which can be costly in terms of both human and machine time. Test

Suite Minimization or Test Suite Reduction (TSR) provides more efficient and simpler test

suite maintenance, which in turn reduces the cost of the software testing phase, although in

terms of the ability to detect faults. These methods work by identifying and removing obso-

lete or redundant test cases. Therefore, a number of different methods have been studied to

deal with test suits, such as minimization and selection.

Regression testing consumes a significant amount of time in many software projects, slow-

ing development. By reducing redundant test cases, test suite minimization can be used

to reduce the time it takes for each test run. However, in practice, test suite minimization

is rarely used. We discovered two primary reasons for this. The first is that it is a difficult

task to complete, especially with sophisticated builds. The second point is that deleting test

cases always has the potential of lowering the test suite’s efficacy. Because of the nature of

test suite minimization, tests are typically removed permanently, which is a risk that must

be accepted in comparison to test case selection or prioritizing. In this regard, log files are

records of software events that occurred in the past, and their minimization is beneficial for

diagnosis and root cause discovery, whereas test suites are records of software events that
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will occur in the future, and their minimization is beneficial for saving execution time. Run-

ning the entire record of occurrences is the worst case situation in both scenarios and is

not wanted. As a result, the minimization and reduction are performed on runs of software

events, and the issue statements are similar in both circumstances.

• Log Anomaly Detection: Logs are generated by software systems to record events and the

present state of the system. Because of its simplicity and effectiveness, logging has become

widely used in practice. Logs are an important and valuable source of information for de-

velopers and operators, who can review recorded logs to understand the system state when

troubleshooting by recognizing system abnormalities and locating the root causes. In the

age of cloud computing, even mundane operations such as billing can be based on logs that

record the customer’s use of the service.

Modern systems are scaling up and migrating to cloud-based distributed processing. These

large-scale systems provide online services such as search engines, social networks, and

e-commerce, as well as computation-intensive applications such as weather forecasting.

Many of these systems are designed to run continuously and serve millions of users world-

wide. Any decline in quality or even outage of such services is extremely costly, hence rapid

detection of any changes and the capacity to quickly determine the root cause of the prob-

lem are critical. However, these systems generate massive amounts of log data at rates of

tens of terabytes each hour. Even with search and filtering technologies, such volume is

difficult, if not impossible, to manually examine.

In response to the expanding volume of logs, automated log analysis and anomaly detection

have emerged as key research topics in recent years. Automation promises online mon-

itoring and rapid anomaly warning, allowing developers and operators to focus solely on

problem solving. However, that is still in the future. With the volume of records generated

by these systems, even a low ratio of false positive alerts might overload operators. And log-

based anomaly identification has proven to be difficult. The majority of the critical informa-

tion is concealed in log messages, which are typically unstructured or semi-structured text

strings that are difficult for algorithms to comprehend. Also, log-based anomaly detection

must frequently deal with a continually changing environment as a result of regular system

updates.

The task of detecting system anomalous patterns that do not match predicted behaviors us-

ing log data is known as anomaly detection. Anomalies in software systems are frequently

indicative of an error, defect, or failure. Currently, logs, which preserve comprehensive in-

formation about computational events generated by computer systems, play a crucial role

in anomaly detection. Traditionally, developers (or administrators) manually inspect logs

using keyword search and matching rules. The increasing scale and complexity of modern

systems, however, cause the volume of logs to increase, making manual inspection impossi-

ble. Therefore, numerous anomaly detection methods based on automated log analysis are

proposed to reduce manual effort.

• Failure Prediction: Because of the rapid development of software technology, the quality of

industrial applications has substantially improved. With the support of error-free software,

this ever-expanding technology promotes the organization’s growth. Software failure predic-

tion [2] is required for developers to increase software quality. A single flaw in software can

cause a big problem, resulting in the loss of a company’s life. Although manual software test-

ing is used in the industry, it is quite sophisticated and requires people to execute software

testing. However, numerous automated prediction techniques have recently accomplished
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algorithms such as Software failure prediction [3]. They are important in automatically pick-

ing relevant prediction models and other required ways to predict the number of flaws in the

software module. However, because the number of parameters in each data set varies, there

should be an appropriate model for each data collection [4].

Anomaly detection seeks to identify abnormal status or unexpected behavior patterns that

may or may not result in failures. Failure prediction, on the other hand, seeks to create early

warnings to avert server failures, which frequently result in unrecoverable states. By ana-

lyzing past system logs and identifying the relationship between the data and the failures,

numerous machine-learning methods for predicting task or job failure have been proposed.

Failure prediction can be seen from another point of view. In many safety-critical software

applications, predicting failures before their arrival provides more slack time for safer sys-

tem shutdown. Until recently, safety-critical systems in air traffic control, commercial air-

craft, and nuclear power were composed of a monolithic (potentially proprietary) system

offered by a single vendor. As a result, such systems incurred substantial development and

maintenance costs. To cut costs, systems have been disassembled into a collection of appli-

cations/services (often produced by separate vendors) that interact via a set of well-defined

interfaces.

Applications must meet severe Quality of Service (QoS) availability standards in order to en-

sure the overall high availability of the safety-critical system. To accomplish this goal, appli-

cations must distribute and replicate data (for example, flight paths in an Air Traffic Control

system) across multiple nodes connected by a WAN or a LAN. Because of the nature of such

systems, replicas of an application must be strictly consistent in order to maintain the same

state throughout time, giving a client the appearance that its request is being processed in-

stantly [5].

Failures are a fact of life in such large distributed systems, thus they must be managed care-

fully to ensure system survival. Extensive testing during the design phase of an application

cannot prevent the development of faults that can have disastrous effects on the whole sys-

tem’s operation during the operational phase. In the presence of replica failures, keeping a

set of replicas completely consistent boils down to solving the consensus problem. Thus,

if the distributed system has good coverage of synchrony assumptions (i.e., network and

computing nodes are functioning properly), there are a number of fault tolerance mecha-

nisms that can be used to overcome failure and keep replicas consistent (e.g., failure detec-

tion via heart-beating). If a fault occurs during a period when the synchrony assumption

is not covered, replicas may exhibit anomalous behavior due to the well-known Fischer-

Lynch-Paterson (FLP) impossibility result, which states that distributed consensus cannot

be reached in an asynchronous system even in the presence of a single faulty process. These

actions could have a knock-on effect on other applications, resulting in a system failure,

such as an irregular system shutdown. In this instance, it may take a long time for the sys-

tem to restore normal operation, drastically lowering system availability. The only approach

to avoid such aberrant system breakdowns is to foresee them by detecting anomalous ac-

tivities. Predictions that are accurate and timely can help to lessen the impact of failures by

initiating suitable recovery activities before the failure happens. Such procedures can help

to alleviate the loss of availability by shortening the time required to restore normal system

behavior.

• Root-Cause Event Detection (Failure Diagnosis): The term "Root Cause Analysis" (RCA)

refers to a collection of methods and procedures used to identify the problems that lead to
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an observed failure. Analyzing log files to find anomalies from normal or expected behavior

is a frequent RCA strategy. Failure diagnosis, as opposed to anomaly detection and failure

prediction, which are typically characterized as classification tasks, seeks to uncover the un-

derlying reasons for a failure that has affected end users. It is frequently associated with root

cause analysis. Specifically, while anomaly detection and failure prediction can determine

whether an issue exists or will occur, there is a significant time lag between detecting and re-

moving a problem or failure. RCA performance is limited by the size of the logs considered.

When large software systems become involved, the issue is more obvious.

Here, it is important to distinguish between root-cause detection in incoming events and

root-cause detection in software source code. In this study, the objective of RCA is to identify

the relationship between incoming events (such as inputs, network requests, new connec-

tions, new user logins, etc.) and any anomalous software behavior. After conducting this

research, for instance, we might discover that the failure happens following a certain remote

user login attempt. This is the first stage of software testing, which aims to identify an action

(or series of actions) that results in abnormal behavior or failure of the software. A second

stage of source code analysis, carried out by software developers, may then follow; however,

the focus of this thesis is on the first stage. We chose Root-Cause Event Detection as the

name of this subchapter for that reason.

• User Behavior clustering: Recently, most software systems collect activity logs that can be

organized in user traces, which represent the behavior of users on those software systems.

User behavior insights could be very helpful for tasks like task automation [6] which tries to

identify and automate repetitive user actions, and usability engineering [7], which analyzes

how software is used and may be improved. These details can be discovered by reviewing

data on user interactions with software application user interfaces (UI). UI logs can be an-

alyzed using methods from the field of process mining, such as applying process discovery

to create a process model as a visual representation of the observed user behavior [8]. Yet,

it is difficult to directly acquire specific insights due to the complexity of UI logs, which is

reflected in their size and behavioral variance. Clustering categorizes user traces from the

System Under Test (SUT) into groups based on similar behavior. We chose UBM as one of

the log mining goals of this research because we found informative clusters of users during

the analysis of log files in our case studies. Since ML-based UBM has received a great deal of

attention [9] recently, we decided to investigate this task in our log analysis.

1.3 PHILAE Project

The PHILAE project3 began in 2018 with six partners from various countries’ research laboratories

and software companies, namely:

• FEM – Université Bourgogne Franche-Comté / Institute FEMTO-ST – UMR 6174

• LIG – Université Grenoble Alpes / Laboratoire d’Informatique de Grenoble – UMR 5217

• OLS – Orange Labs Services

• SMA – Smartesting Solutions & Services

• SRL – Simula Research Laboratory – CERTUS center - Norway

3https://github.com/PHILAE-PROJECT
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Figure 1.1: PHILAE project vision

• Flexio Logo FLE – Flexio, experimentation partner, Besançon France.

• The University Of Queensland, Australia

PHILAE’s goal was to alleviate the testing bottleneck by performing trace analysis and triage

with machine learning techniques, combining this analysis with model inference and automated

test generation. Thus, PHILAE aims at leveraging data available from development (and valida-

tion) and usage of software systems to automatically adapt and improve regression tests. We

intend to change the state of practice in automated testing of information systems by carefully

transitioning from Model-Based Testing to Cognitive Test Automation by demonstrating this key-

enabling approach on five industrial case studies, using an industry-strength tool-chain developed

in the project Figure 1.1.

Figure 1.2 depicts the key project process in four iterative and incremental steps:

1. Execution traces from the running system, as well as manual and automated test execution,

are used to choose trace candidates as new regression tests. To identify and pick traces, search-

based algorithms and coverage measures will be employed.

2. Active model inference is used to infer new workflow models that align with the current state

of the implementation from selected traces and existing workflows.

3. The modified procedures generate reduced regression test suites, which are subsequently

run on the current system implementation.

4. A smart analytics and fault reporting system offers information on the system’s quality based

on test execution results, defects found, and development meta-data (such as changes in the code

repository).

Inputs: The PHILAE approach leverages three types of system traces, each of which is a se-

quence of calls and responses to the web service or API under test. The three types of traces pro-

vide distinct types of information:

• User execution traces: result from logging the system’s current (N-1) release. Many of these

traces are typically available. They bring data on which operations and values are most com-

monly used in the real-world deployment of that release.

• Manual testing traces: show new API features in the next version (N), exposing new features

that must be tested. However, due to cost considerations, only a few numbers of these traces

are often available, insufficient for fully generated tests.
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Figure 1.2: PHILAE process

• Automated testing traces: are created by PHILAE (from abstract workflows) to expand man-

ual testing traces into a full regression test suite. They could also be generated by other

testing tools. During the trace selection phase, some metadata from the software develop-

ment process, such as code update metadata (commits), will be used. Finally, data from the

defect management system will provide important information about system failures, while

meta-data from the software service will provide schema and type information on the traces’

data model.

The PHILAE project comprises four research objectives, as well as associated scientific obsta-

cles and technical barriers that must be overcome:

PHILAE objective 1: Select trace candidates as new regression tests

This goal is to take the large set of User Execution Traces (from release N-1) and the smaller set

of Manual Testing Execution Traces (from release N) and compare cluster, and prioritize them in

order to select a representative sample of the traces that can be used as the basis for learning new

Workflow models for Release N and generating tests for Release N.

Scientific challenges and technical barriers to overcome: one challenge in achieving this goal

is learning and selecting for rare events, because while our training data will contain many traces

from Release N-1 and only a few from Release N, we still want to prioritize ’rare’ or ’unique’ events

that are new in Release N. Deep neural nets have been used in some studies in this area [Kaiser17],

but we will need to discover pragmatic approaches to ensure that Release N behaviors are priori-

tized and learned.

PHILAE objective 2: Abstract workflows from traces

This goal will increase the abstraction level of system traces by automatically identifying and ex-

tracting high-level business workflows. This is similar to existing work on learning abstractions

and automatic model inference. Still, it can be simplified in our context because inferring a set

of partial models (Workflows) for diverse scenarios is adequate, rather than one entire behavioral

model. These partial models can be used as a foundation for automated test generation to gen-

erate smaller automated test suites and to give limited views of system behavior. Furthermore,

places where an inferred workflow differs between Release N-1 and Release N will be used as trig-
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gers to produce additional tests that provide more systematic testing than exploratory testing or

user interactions. It should be noted that while certain inferred processes may be able to build test

sequences with oracle information (anticipated output values), others may only be able to gener-

ate generic oracles such as ’no-exceptions thrown’ or ’web-service returns a status message’. Both

types of test sequences will be handled by our test execution infrastructure.

Scientific challenges and technical barriers to overcome: combining the various abstraction al-

gorithms that are already available (e.g. clustering, abstraction-learning, and model-inference),

and ensuring that the resulting workflows are not too abstract. so that they can still be used to

generate feasible test sequences; and that they are easily understandable to be put in the context

of the process.

PHILAE objective 3: Automated regression test generation and execution

This goal will use model-based test generation approaches to produce executable robustness and

regression tests from inferred workflows. It will construct robustness tests based on the gained

knowledge about data frequencies and correlations and any meta-information about data kinds

and ranges provided. It will also employ active learning and reinforcement learning techniques

to increase the created test suite in order to thoroughly test the system. The created tests will be

run on the system’s updated Release N, resulting in a bigger collection of input traces that can be

passed back into Step 1 to further refine the system’s learned models. This iterative procedure will

result in a robust collection of regression tests that can be used to test subsequent releases of the

SUT (System Under Test) with minimal human intervention.

Scientific challenges and technical barriers to overcome: It is simple to produce too many tests,

thus the key challenge here is prioritizing tests and limiting the entire generated regression suite

so that it can be executed in an acceptable amount of time.

PHILAE objective 4: User-Friendly Fault Reporting

In this environment, anomaly identification is critical, therefore providing smart analytics of test

execution outcomes is critical to assisting test engineers in focusing on the more error-prone sec-

tions of the SUT. This goal will use unsupervised machine learning methods based on clustering

(hierarchical or flat clustering, depending on the nature of the distance function chosen) to group

and sort test failures based on their priority level. It will also create intelligent test result visual-

ization so that test failures can be seen overlaid on short and high-level business procedures. This

will entail prioritizing anomalies, abstracting elements derived from test failures, and employing

trace minimization and abstraction tools. This will be augmented by learning approaches based

on associative networks, which propagate dependencies to assess the importance of bits of infor-

mation. This will allow test engineers and business analysts to identify where the SUT is failing

visually and textually, allowing them to determine which mistakes have priority or affect other

problems.

Scientific challenges and technical barriers to overcome: We will have a diverse variety of users

that wish to utilize this fault reporting system, thus no single point of view will suit them all. To

address this, we want to provide different perspectives as well as certain configurable options.

However, an iterative design approach with regular feedback from all types of users is required to

ensure that the visualization system is usable and valuable.

To consolidate the contribution of the involved researchers into some real-world applications,

the PHILAE partners gathered five case studies, each of which, was distinguished by its different

software architecture, activity logging, bug concepts, and final objectives. Here are the titles of the

case studies:

• Scanette : A supermarket item scanner

• Orange Livebox (Telecom) : TV and Internet box service
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• eShop : GUI/REST API-based online shopping app

• Keep calms : DevOps e-Learning web application (Internal Orange)

• Flexio : Industrial processes

For the research reported in this thesis, we chose the first two case studies, namely, Scannette

(Scanner) and Orange Livebox (Telecom), based on the supervisors’ propositions, and due to the

nature of these two, this thesis was directed towards specific problems to be solved and objectives

to be fulfilled. We will cover the case studies, problem statements, and objectives in the following

chapters and sections.

1.4 Contributions

The contribution of this thesis is as follows:

• It provides a survey of the state-of-the-art in log analysis and log mining. This includes the

most recent works on machine learning in conjunction with log analysis.

• It proposes and formalizes a non-supervised ML-based generic methodology for obtaining

final log mining artifacts such as log reduction, log anomaly detection, failure prediction,

and root cause detection from raw log files. Figure 1.3 illustrates a top view diagram of the

proposed method. The proposed method is a chain that consists of three phases: log pre-

processing, model creation, and log mining task execution. Each phase has its own steps,

which will be formalized in detail in chapter 3. As the structure of each software system

and its logging scenario differ from one to another, each step of the proposed method must

be customized to a certain degree to be able to accommodate the log files of each software

and obtain the desired log mining outputs. Therefore, the rest of the contribution of this

work is directly linked to two different case studies. The main distinction of the proposed

methodology is its non-supervised model, which can lead to automated tools with lower

human interaction. Moreover, based on the semantics of the system events and their mutual

relations, it clusters them into some high-dimensional clusters in a conceptual space, which

are called UC (Universal Cluster). UCs form a conceptual model for further log analysis and

expose more hidden information from the log files, including their causal relationships.

• It realizes the proposed methodology in the Orange Livebox Telecom case study, where the

software logging style deviates from conventional input-output recording. The available in-

formation is a record of the fast input events arriving at the system and a relatively low-paced

record of the system status (CPU, memory, process count, etc.). This logging condition is

what we will address as the status monitoring and is widely used when conventional logging

is not possible. Status monitoring has not received enough attention, despite its broad appli-

cation in log analysis. In such applications, faults will manifest themselves in some periods

of anomalous behavior. We will accommodate the proposed method to process the status

monitoring logs of the Orange Livebox Telecom case study and show how the ML model can

be used to detect anomalous periods of time under the term of Bug-Zones, predict them

online, and find their root causes. We expanded this study by applying the same method to

Train Ticket, a well-known open-source benchmark, with the aim of providing a comparison

basis with prospective research on the same domain.

• In the scanner case study, the proposed method is adopted to reduce enormous user trace

logs to smaller ones with the same bug-triggering effect. The test suites are, in fact, the user
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Figure 1.3: Top View of the Proposed Method

trace logs. The large test suite is able to trigger a certain number of bugs in the software

system. But they are too heavy to run on the software. In this thesis, we use the proposed

method to choose a tiny number of test events that represent the entire test suite and have

the same or very close bug-triggering capabilities. This method saves the time and effort of

running the entire usage logs and, hence, can hugely impact the costs of software testing.

• The developed chain of log processing for this research has been published as two distinct

open-source tools, which are available online4 in the PHILAE toolbox. In addition, the ex-

periments presented in this thesis were conducted on one dataset made available as public

data (Scanner case study) and another dataset from an industrial partner (Orange/ Telecom

case study) that was preserved private.

1.5 Dissemination

Our research work has led to the following publications (listed in chronological order based on

their publication date):

• [10]: Reducing Regression Test Suites using the Word2Vec Natural Language Processing Tool.

• [11]: Correlating Test Events With Monitoring Logs For Test Log Reduction And Anomaly

Prediction.

• [12]: Telemetry-based Software Failure Prediction by Concept-space Model Creation.

1.6 Case studies

We demonstrate the practical effectiveness of the proposed method by studying three different

case studies: 1) Scanner case study, 2) Orange Livebox, Telecom case study, and 3) Train Ticket

benchmark case study. To achieve the second PHILAE objective, we studied the scanner case

study, to test event selection from user traces, and generate a new log file. Furthermore, we worked

on Telecom and Train Ticket to detect anomalies and report basic faults, as stated in Philae’s ob-

jective number 4. In the following sections, there is a brief explanation of the case studies:

4https://github.com/PHILAE-PROJECT
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1.6.1 Scanner case study

A barcode scanner (nicknamed "Scanette" in French) is a device used for self-service checkout

in supermarkets. The customers (shoppers) scan the barcodes of the items which they aim to

buy while putting them in their shopping baskets. The shopping process starts when a customer

(client) unlocks the Scanette device. Then the customer starts to scan the items and adds them

to his/her basket. Later, customers may decide to delete the items and put them back in their

shelves. Among the scanned items, there may be barcodes with unknown prices. In this case, the

scanner adds them to the basket, and they will be processed later by the cashier, before the pay-

ment at checkout. The customer finally refers to the checkout machine for payment. From time

to time, the cashier may perform a “control check” by re-scanning the items in the basket. The

checkout system then transmits the items list for payment. In case unknown barcodes exist in the

list, the cashier controls and resolves them. The cashier has the ability to add or delete the items

in the list. At the final step, the customer abandons the scanner by placing it on the scanner board

and finalizes his purchase by paying the bill.

The Scanette system has a Java implementation for development and testing and a Web-based

graphical simulator for illustration purposes. The web-based version emulates customers’ shop-

ping and self-service check-out in a supermarket by a randomized trace generator derived from

a Finite-State Machine. The trace logs of the Scanette system contain interleaved actions from

different customers who are shopping concurrently. Each customer has a unique session ID that

distinguishes his/her traces from another customer.

To artificially inject faults, the source code of the Scanette software is mutated with 49 mutants,

all made by a modification on the source code by hand. We needed a few logs to be used as the

test bench for the proposed method. Hence, we are given three log files with different numbers of

traces: 1026, 100043, and 200035. We will call them 1026-event, 100043-event, and 200035-event

names, respectively. They include shopping steps for different numbers of clients (sessions). They

were created as random usage logs by a generator of events that simulates the behavior of cus-

tomers and cashiers. We proposed a test suite minimization approach which needs to be evalu-

ated. We used mutation testing for evaluation purposes. The goal of the proposed TSR methods is

to reduce the number of traces needed to kill the same mutants as the original test suite can kill.

In the rest of this thesis, session and client are equivalent.

Overlaps with Philae

The first PHILAE’s objective concerns "selecting trace candidates as new regression tests" and the

third one concerns the "automated regression test generation and execution". During the regres-

sion testing, some large test suites are generated at each iteration, which in turn need to be refined

to lower the testing overhead and time. This implies removing repetitive or ineffective test candi-

dates from the new test suites in order to decrease the testing overhead. The Scanner case study,

similarly, consisted of three sets of user traces of different sizes. The goal is to apply ML to refine

the traces, find similar sessions, and remove the traces that drive the software through the same

flow of events. In the end, the result is a reduced trace set that ideally has the same effect as the

whole original set. In this case study, we are not allowed to re-run the whole trace set in order to

find their effect on the software. Instead, only by observing and learning their semantics can we

decide if a trace must stay or be removed. In the end, we are allowed to generate a minimal test

suite and only execute the minimal test cases in order to know if it has the same effect as the large

original user trace set. This condition is similar to PHILAE’s objectives, in which new tests are se-

lected to undergo regression iterations before being executed. Therefore, the achievements in this

case study target the first and the third PHILAE’s objectives.
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1.6.2 Orange Livebox, Telecom case study

The first motivation of this research was a telecom internet appliance that provides home internet

access. The log suite was a large record of incoming events over six months, and the device’s status

or monitoring information was recorded in the meanwhile. A short description of the two log sets

is as follows:

• Monitoring Logs: includes a sequence of multivariate samples of the appliance’s resource

usages like processor, memory, processes, and network. Here is a sample of the monitoring

event: "value": 17384.0, "node": "monitoring", "timestamp": "2019-01-14T23:00:18+00:00","domain":

"Multi-services", "target": "X1","metric": "stats->mem_cached","bench": "X3".

• Test (event) logs: Several clients (PCs) use the internet access appliance to access different

services on the Internet including network activities such as Web surfing, Digital TV, VoIP,

Wi-Fi, P2P, Etc. All the clients’ requests are recorded on their storage and accumulated later

into a large log file on a daily basis (24H). Each log file is a long sequence of input events with

their timestamps. Here is an example of a Test log file entry:

"timestamp": "2018-10-08T08:01:27+00:00", "metric": "loading time", "bench": "XX1",

"target": "http://fr.wikipedia.org", "status": "PASS", "value": 1121.0, "node": "client03".

The challenge of analyzing the Telecom case study is more linked to the large difference be-

tween the sampling intervals of the monitoring information and the arrival time of the client’s

requests. While the client requests come in order of a few seconds, the monitoring information is

sampled in order of minutes (e.g: 10 min). In other words, in the period between two consecutive

monitoring samples, hundreds of test events are recorded in the test logs. Therefore, it is not fea-

sible to directly correlate single input events to changes in the status information, which in turn

makes the anomaly’s cause detection more complicated.

During the six months of log collection, there are some reboots of the appliance due to either

internal faults or intentional resets from the administrators. The manufacturer of the appliance

was interested in identifying the cause of system failure among the numerous test events. More-

over, telecom operators would like to know if they can detect and anticipate anomalies in the on-

line system.

Overlaps with PHILAE

In the Livebox Telecom case study, a long trace of system status is recorded during a long period of

monitoring. During this, some system failures have occurred, caused by some tests that came into

the system during the testing. We are trying to learn which sequences of events are likely to induce

an anomaly. Furthermore, we wish to reduce the size of test records to assist testers in focusing

on crucial time periods. This condition corresponds to PHILAE’s objectives (objectives 1 and 4),

which seek to identify anomalies and provide smart analytics of test execution outcomes to assist

test engineers in concentrating on the more error-prone sections of the system under test (SUT).

1.6.3 Train Ticket benchmark

We deployed the proposed approach to another software architecture. This time, we chose an

open source microservice software. We studied a widely-used benchmark system for railway tick-

eting called Train Ticket, which contains around 40 microservices. Train Ticket provides typical

train ticket booking functionalities such as ticket reservation, payment, change, and user notifica-

tion [13]. All the microservices are related to business logic. A detailed description of the system

can be found in [14]. Following [13], it is possible to manually inject various kinds of failures, so

13



CHAPTER 1. INTRODUCTION

as to assess whether we can find Bug-Zone and predict it based on the test and monitoring logs

collected from the benchmark system. In our study, we implemented the injection of one type of

failure. Just as in [13], we created a simulated usage of the system (and monitored it) by running

Stress-ng in a Docker server. Stress-ng 5 has been designed as a tool to test the ability of a com-

puter system to cope with many types of stress. However, we did not use it for stress testing, but

simply as a convenient way of creating simulated traffic for the application. We injected it into the

food microservice and recorded CPU and memory usage. In our experiment, we collected a test

log in a period of three hours in parallel we recorded the CPU and memory usage in a monitoring

log every five seconds. So, the intervals of the test events are one seconds and the intervals of the

monitoring log are five seconds. We replicated five status system abnormal cases in the monitor-

ing log.

Overlaps with PHILAE

We examined the Train Ticket open source benchmark to evaluate our method on a different

dataset, similar to the Livebox Telecom case study. Therefore, the condition corresponds to Phi-

lae’s objectives 1 and 4, which we search for to identify anomalies.

1.7 Thesis organization

The remaining chapters of this dissertation are organized as follows:

• Chapter 2- Background and Related Works: In chapter 2, we present the background of the

concept and techniques analyzed throughout the thesis, including the review of the state-

of-the-art in the field of log mining tasks.

• Chapter 3- The Log Analysis Methodology: chapter 3 presents a generic approach to process

logs, create ML models, and extract log mining artifacts.

• Chapter 4- Bug Prediction & Root Cause Detection: Orange Livebox - A Telecom case study:

This chapter describes the results obtained in this study by applying the proposed method

to the telecom case study for software fault prediction and root-cause detection tasks.

• Chapter 5- Log Minimization: Scanner case study: This chapter describes the results ob-

tained in this study by applying the proposed method to the scanner case study for test suite

reduction (minimization) tasks.

• Chapter 6- General Conclusion and Future Work: In this chapter, a summary of the results

will be given, as well as the possible future work to be made, related to this work, and the

topic it presents. We also describe the problems found during this research.

5https://wiki.ubuntu.com/Kernel/Reference/stress-ng
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2.1 Introduction

A log is a record of events that occurred during the running of a software system. Logging is done

by adding lines of code to a program that, when a relevant event occurs, writes out the essential

data. It is impossible to overstate the significance of event logs as a source of information in sys-

tems and network administration. Due to the ever-increasing amount and complexity of modern

event logs, the task of analyzing event logs manually has become tedious [15]. For this reason,

recent research has focused on the automatic analysis of these log files. There are many published

works that employ logs to analyze causality and find root-cause [16, 17], cluster host [15], predict

failures [18, 19], and incident diagnosis [20]. In addition, recently, machine learning and deep

learning algorithms have been widely adopted by the state-of-the-art papers such as Deeplog [21]

in system log anomaly detection.

In this chapter, we will explore a detailed background of the concepts studied during this thesis

study, alongside relevant literature already available on the topic and that has served as the basis

for this work. More specifically, in Section 2.2 we will provide a definition of Automated Log anal-

ysis to help the software testing process. We will also introduce the background of the research

in the field of log mining tasks in order to provide insights into what has already been studied

in this domain. In Section 2.3, on the other hand, we will describe in detail the techniques used

throughout this thesis.

2.2 Automated Log Analysis For Software Testing

The system logs include a wealth of information and detail activities executed on the system. De-

velopers and system administrators have used the system log to discover and troubleshoot sys-

tem issues. Due to the increasing size of log data, log analysis automation is desirable. Machine

learning methods are used extensively due to their classification and prediction abilities. Random

forest, Naive Bayes, and Support Vector Machine (SVM) are highly common machine learning

techniques. In recent years, due to the increase in log data size, detection, and prediction models

have been trained using deep learning approaches such as RNN (Recurrent Neural Network), CNN

(Convolutional Neural Networks), LSTM, and Bi-LSTM. In this section, we studied some existing

works in this domain.

2.2.1 Logging

Logging is the task of constructing a logging statement with a proper description and necessary

program variables and inserting the logging statements into the correct positions in the source

code. The developers implement logging statements, then execute the program and collect the

logs. Therefore, logging relies heavily on human expertise. They need to make informed decisions

on where to log, and what to log in their logging practices during development. Logs are valuable

for investigating, diagnosing, and predicting failures. According to a survey [22] involving 54 expe-

rienced developers in Microsoft, almost all the participants agreed that “logs are a primary source

for problem diagnosis” and “logging is important in system development and maintenance“.

After collecting logs from executing logging statements, logs are stored mostly in CSV or JSON

format. Units of information in a log are often called events, corresponding to the fact that this

information is usually issued when an event is triggered. In general, events can be triggered by a

user or some other external input or internally by conditions within the program. Several test cases

make a test suite, which can be used to manage and execute the test cases together. An example

of a log is shown in Figure 2.1.
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Figure 2.1: A snippet of log.

2.2.2 Log Pre-Processing

The generated log is a massive amount of duplicate, unstructured, incomplete, and unclear data.

We must first process this data in order to use it more effectively. There are two processes in this

preprocessing. The parsing process, which transforms a raw, unstructured log into a structured log

by eliminating noise and duplicate data, is the first phase. Following data abstraction, log analysis

is used to group together messages of a similar type. A variety of Automatic Log Abstraction Tech-

niques (ALATs) are available to software engineers for reducing the amount of data to be analyzed.

These techniques employ numerous log abstraction algorithms developed for a variety of applica-

tions, including performance improvement and anomaly detection. These techniques are useful

for identifying anomalies or failures as well as for performing root cause analyses. The classifying

procedure is often referred to as log mining. By examining research publications critically, it has

been determined that the top categories of log preprocessing methods are clustering, filtration,

and language modeling.

The current log analysis methods call for improvements in data regarding resources consumed,

timestamp-related defects, valuable information, and necessary to spot issues in created logs [23].

According to some researchers, the generated log contains flaws such as unsuitable log messages,

missing logging statements, an insufficient log level, configuration problems with the log library,

runtime problems, excessive logs, and log library updates [24]. Consequently, it is essential to

assess the quality of the log data before choosing it for preprocessing. According to the authors

in [25], decoding can be used to extract the relevant information from a massive supercomputer

log and make it understandable. Even so, it might lead to the loss of important data. The authors

in [26, 27] used conjunctive, disjunctive, and Markovic data filtering algorithms to reduce hard

disk log data by 30% to 50% while taking the utility of log messages into account. Log abstraction

converts raw log data into information of a higher level. Hence, log abstraction allows software

engineers to apply further analyses. According to [28], the log abstraction will aid in identifying

the failure’s primary cause, creating a correlation between logs, and categorizing different failures.

The performance of 17 ALATs (Automatic Log Abstraction Techniques) is examined in [29] based

on seven quality aspects, including mode, coverage, delimiter independence, efficiency, scalabil-

ity, system knowledge independence, and parameter tuning effort. The authors in [30, 31] came

to the conclusion that simple NLP techniques, which are more effective than the rule-based ap-

proach, can also be used for log parsing. In order to handle complex logs and produce meaningful

results, one can also concentrate on advanced NLP approaches. One of the crucial methods for

log preprocessing, according to authors [32, 33], is turning the log data into time series data. In

order to find event blocks that can aid in behavior analysis based on events, the researchers [34,

35] used a framework called System Log Event Block Detection (SLEBD). The Latent Dirichlet allo-
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cation algorithm was used in the study by [36] to find latent topics in messages of ALMA telescope

system log events. To minimize the dimension of resource usage data and visualize it at the node-

specific level, [37] suggested a dynamic matrix factorization approach (dynamic MF). Anomaly

identification will be aided by size reduction and straightforward visualization. The authors of the

study [38] tag virtual machine log data using the C programming language. This Syslog tag is used

for log classification or correlation, which aids in the failure’s identification.

2.2.3 Log Mining Tasks

Log mining employs statistics, data mining, and machine learning techniques for automatically

exploring and analyzing a large volume of log data to glean meaningful patterns and informative

trends. The extracted patterns and knowledge could guide and facilitate monitoring, administer-

ing, and troubleshooting of software systems [39]. Furthermore, the extracted information could

be used to predict future failure. Due to the high complexity of software systems, failures could

come from various sources of software and hardware issues. Examples include software bugs,

hardware damage, OS crash, other software, etc. In addition, on time, pinpointing the root cause

by inspecting logs relies on engineers’ expertise and experience. However, such information is of-

ten not well organized and documented. Therefore, complicated ways to conduct automatic log

mining are in high demand. This section introduces four important log mining problems, includ-

ing User Behavior Clustering, Log Minimization, Software Faults Prediction, Root Cause Analy-

sis(RCA), and Log Anomaly Detection and we review some related work for them.

2.2.3.1 User Behavior clustering

Recently, most software systems collect activity logs that can be organized in user traces, which

represent the behavior of users on those software systems. Business information systems, such

as customer relationship management (CRM) and enterprise resource planning (ERP) systems,

support a variety of corporate processes and enable users to carry out a wide range of tasks in an

integrated and flexible way [40]. Although such flexibility is very advantageous to users, it makes

businesses and software suppliers lose track of how users actually utilize these programs to carry

out their work. Another example is the necessity of analyzing user behavior characteristics in a

complex power grid environment in order to plan user behavior, optimize resource coordination

and ultimately improve the efficiency of electricity consumption. In a different situation With the

increasingly fierce market competition, capturing market demand changes and improving cus-

tomer satisfaction is the cornerstone of the company to survive in the competition [41]. By divid-

ing customers with similar requirements into separate groups, customer segmentation provides

a crucial reference for companies to understand customers’ requirements and develop accurate

marketing programs.

These user behavior insights could be very helpful for tasks like task automation [6] which

tries to identify and automate repetitive user actions, and usability engineering [7], which ana-

lyzes how software is used and may be improved. These details can be discovered by reviewing

data on user interactions with software application user interfaces (UI). We shall refer to this type

of data-driven analysis as "User Behavior Mining" in this study (UBM). So-called UI logs, which

document event sequences as they are carried out by a user, serve as the foundation for UBM.

These series of events, known as traces, each represent a simple user action in a software program,

like clicking a button or typing a string into a text box. UI logs can be analyzed using methods

from the field of process mining, such as applying process discovery to create a process model

as a visual representation of the observed user behavior [8]. Yet, it is difficult to directly acquire

specific insights due to the complexity of UI logs, which is reflected in their size and behavioral
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variance. Process models found in UI logs are frequently "spaghetti" models, or extremely com-

plicated models that are difficult for people to comprehend and analyze because of their large

number of nodes and crossing edges [42, 43]. As a result, they frequently do not offer insightful

information about a process.

Clustering categorizes user traces from the System Under Test (SUT) into groups based on

similar behavior. Using autoencoder to reduce dimensions and then doing clustering analysis

provides an acceptable solution to this issue [41]. We chose UBM as one of the log mining goals of

this research because we found informative clusters of users during the analysis of log files in our

case studies. Since ML-based UBM has received a great deal of attention [9] recently, we decided

to investigate this task in our log analysis.

2.2.3.2 Software Failure Prediction

The user or administrator can take corrective action and alert failure situations if he or she re-

ceives information and specifics about the failure before it occurs. Finding deviations from the

typical system behavior is useful for failure identification. Finding the origin of the problem and

getting information on the location and timing is essential for handling failure. Once the problem

has been identified, it is possible to fix it by completing the appropriate steps. Therefore, failure

prediction aims to generate proactive early warnings to avoid failures, which frequently lead to

unrecoverable states. Especially for large-scale software systems, the failure could have unfore-

seen consequences. The traditional approaches to failure management are mostly passive, which

deal with it after the occurrence, while failure prediction aims to predict the failure before it hap-

pens [39].

Statistical and Machine Learning (ML) techniques have been employed in most studies to pre-

dict the error-prone modules of the software. Therefore, effective prediction of error-prone soft-

ware modules can enable direct test efforts and reduce costs, help to manage resources more effi-

ciently, and be useful for software developers.

The overview of the research articles analyzed for this literature analysis on failure prevention

is shown in Figure 2.2. To increase the dependability and availability of software components,

researchers have taken into account a variety of systems from the literature. The research elements

that researchers use, such as systems, the kind of log data, the methodology for delivering results,

and pertinent insights, are further described in Figure 2.2. These components explain the key

points from a number of research articles that can significantly advance future research.

In [44] used a genetic algorithm on the RAS log to pinpoint the failure’s location in the IBM

Blue Gene/P system with a lead time of 0 to 600 seconds. In the product grid, the study of [50]

revealed the failure pattern that supports work failure prediction. In [65], the authors employed

activity log mining to discover a link between job failure and workload parameters. They con-

centrated their efforts on a deep learning methodology to produce early failure warning signals in

the cluster of web servers and mailers. The authors of the paper [48] demonstrated a correlation

between described behavior by using data mining techniques to extract the pattern in log data.

A hybrid strategy produces superior outcomes compared to a single program. To automatically

mine logs and give data and correlations in network failures, Zargarian et al. employed an unsu-

pervised machine learning approach. They dealt with an actual use case processing more than 2

million alarms produced by the TIM Network Operations Center in Northern Italy over the course

of two months. The majority of the attributes are categorical, necessitating the use of certain pro-

cessing approaches. They decided to use frequent item rule mining. To extract temporal-spatial

correlations and co-occurrences, or scenarios, they concentrate on event logs and use rule mining

techniques. The authors provide visualization tools in both the spatial and temporal dimensions
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Figure 2.2: An overview of software failure prediction works based on log mining

and highlight the most crucial rules to make the analyst’s job easier. Findings have been confirmed

to be useful for recognizing typical circumstances and identifying potential future aberrations.

The authors of [64] come to the conclusion that the supervised closest neighbor approach

outperforms unsupervised algorithms in disk failure prediction by 7%. Using supervised machine

learning methods, the authors of [63] examine their work on patterns of log messages and trouble

ticket data to anticipate network failures. According to the authors’ 2019 research [18], ensemble

learning surpasses the individual classification algorithm. The hidden Markov model approach

was tested by the authors of [73] as one of the tools to assess and predict failures in a Hadoop

cluster with 91% accuracy for two days in advance. A failure propagation path will help more pre-

vent failure circumstances in fast-changing systems and failure prediction, claim [62]. Time series

techniques to forecast potential failure spots in a virtual machine have been proposed in [53].

Furthermore, by identifying the type of node failure and its underlying cause, this approach

can be helpful for dynamic fault tolerance [59]. According to research published in [74], the quality

of software can be increased by using the right hardware and software. Several pieces of hardware

in the system support online failure prediction rather than just one.

In [57] Zhou et al. proposed MEPFL to narrow down the scope of failure prediction into mi-

croservice level. MEPFL learns from system trace logs. It trains prediction models at both the trace

level and microservice level to predict three common types of microservice application faults:

multi-instance faults, configuration faults, and asynchronous interaction faults, based on a set

of manually selected features defined on the system trace logs. MEPFL uses system trace logs col-

lected from automatic executions of the target application and its faulty versions generated by

fault injection. Semi-automatically, they inject a certain type of fault into a specific microservice

for each faulty version. MEPFL can be used not just to locate faults, but also to detect failures by

predicting latent errors triggered by faults. MEPFL supports four prediction models consisting of

one binary classification model to classify the trace instance into two classes(with error or not),

two multi-label classification model that predicts one or multiple microservices and fault types,

and a single-label classification model.
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According to the reviewed literature, predicting events in an HPC system can be done by ob-

serving behavior. A machine-learning technique was suggested by Pitakrat et al. in 2015 [62] to

detect the pattern of events that frequently occur together based on the previous work of [49],

which took into account log at various time periods. Recurrent Neural Network (RNN) techniques

were another direction of research for fault prediction. For instance, Seq2seq was targeted by [70]

to forecast an event that results in IoT node failure in a chosen time range. Lin et al. introduce

a novel semi-supervised technique [71] that captures dependencies between network time series

and across time points to produce meaningful representations of network activity for predicting

abnormal events. The method may use the limited labeled data to explicitly learn separable em-

bedding space for normal and abnormal samples, while efficiently using unlabeled data to deal

with the lack of training data. Desh (Deep Learning for System Health) [67] is another RNN-based

approach to forecast node failures in supercomputing systems using long short-term memory

(LSTM) networks that employ RNNs. Desh discovers failure signs with training and categoriza-

tion for generic applicability to log different software components without requiring modification.

Desh employs a three-phase deep learning approach to (1) train to recognize chains of log events

leading to a failure, (2) re-train chain recognition of events supplemented with expected lead times

to failure, and (3) predict lead times during testing/inference deployment to predict which specific

node will fail in how many minutes. Desh achieves an average lead time of 3 minutes with a min-

imum of 85% recall and 83% accuracy to take preventative steps on failing nodes, which might be

used to shift compute to healthy nodes. PC 2 A [68] aims to predict abnormal behaviors of a large-

scale complex IT system. Their main challenges against developing efficient algorithms to predict

and analyze their dataset are high-dimensional time series data, including ambiguity, complex-

ity, and limited anomalous training samples. PC 2 A proposes a combination of semi-supervised

deep learning (LSTM), time series modeling, and graph analysis to have an unsupervised anomaly

predictor.

According to the literature review, one strategy to stop hardware device failure is by anticipat-

ing the right time for maintenance. Also, the categorization of the event log and failure log, re-

spectively, proved the ability to predict the precise maintenance times for ATMs [56] and vending

machines [55].

Anomaly detection mechanisms can be employed to create a model for failure prediction, too.

For instance, authors of [60], to discover and identify significant anomalies, use outlier detec-

tion methods: a feature-categorization-based hybrid anomaly detector and a correlation-based

anomaly analyzer. Finally, they have created an SVM-based failure predictor to predict the cate-

gory and lead time of various failures based on anomaly event sets. In the work of [61], a Network-

Attached Storage (NAS) system with numerous hard disk drives (HDDs) and three sensors, includ-

ing a thermal camera, a microphone, and system performance logs are examined. According to the

unimodal results, the auditory and system performance models can detect temporal anomalies,

whereas the thermal model can detect spatial anomalies. The multimodal results indicate that

the multimodal strategy was able to detect failure indicators earlier than the auditory unimodal

approach and before the actual failure occurred.

Clustering-based methods employed for bug prediction. The authors of LogFaultFlagger [19]

describe strategies with the objective of catching the greatest amount of product faults while flag-

ging the fewest log lines for inspection. They have observed that the lines of a failed test log should

contain the location of a log error. In contrast, a passing test log should not include failure-related

lines. While attempting to locate the error in a failed log, lines that appear in both a passing and

failing log create noise. They introduce a method in which lines that appear in the passing log

are removed from the failing log. After deleting these lines, they apply information retrieval al-

gorithms to identify the most likely lines for further examination. The authors tweak TF-IDF to
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identify the most pertinent log lines associated with previous product failures, vectorize the logs,

and construct an exclusive version of KNN to determine which logs are likely to lead to product de-

fects and which lines are the most likely indicator of the failure. LogFaultFlagger identifies 89% of

all defects and less than 1% of all failed log lines for inspection. Some research investigations [58]

make use of self-monitoring, analysis and reporting technology (SMART) attribute classification

with Bayesian network and random forest algorithms to determine the hard disk’s remaining us-

able time. In addition, their research reveals that SMART metrics can be used to assess the hard

disk’s health [75]. To decrease grid system downtime, it is possible to estimate future jobs using

data mining [50] and machine learning [54].

Some other work also focused on anomaly detection and prevention for security reasons. A

graph-based security analytics framework for anomaly identification and prediction is called Pre-

dictDeep [72]. The suggested approach combines graph analytics and deep learning with log data

gathered from monitoring systems to add intelligence for identifying and forecasting both known

and unidentified patterns of security problems. It creates a graph model out of the gathered data

and depicts it. The analytical processes and their relationships are captured by the graph model.

In this way, a model like this offers a knowledgeable perception of the monitored application,

comprehending its activity, and spotting odd trends.

2.2.3.3 Root Cause Analysis(RCA)

Before starting this subsection, we must recall and distinguish between root-cause detection in

incoming events and root-cause detection in software source code. In this study, the objective of

RCA is to identify the relationship between incoming events (such as inputs, network requests,

new connections, new user logins, etc.) and any anomalous software behavior. After conducting

this research, for instance, we might discover that the failure happens following a certain remote

user login attempt. This is the first stage of software testing, which aims to identify the action

(or series of actions) that results in abnormal behavior or failure. A second stage of source code

analysis, carried out by software developers, may then follow; however, the focus of this thesis is

on the first stage. We chose Root-Cause Event Detection as the name of this subchapter for that

reason.

Continuous integration and deployment in today’s agile software development environments

call for a large number of tests to be run in brief sprints [76]. The testing engineers must evalu-

ate the enormous quantity of unprocessed diagnostics (log data) produced by these in order to

find the failed tests and determine the causes of them. The method for doing this is called root

cause analysis (RCA) [77], and it is typically done manually. Testing engineers typically rely on

their knowledge to examine log files that they believe to be suspect. As for large-scale distributed

systems, it is crucial to efficiently diagnose the root causes of incidents to maintain high system

availability [78] and developers impose a significant effort to identify the cause of system failures.

A large number of studies describe an approach for automatically analyzing log files and retrieving

important information to determine failure causes [79, 80, 16, 81].

Software-analysis-based RCA surpasses manual RCA in terms of speed and cost because man-

ual RCA is just too slow or expensive for the large amounts of log data being created at high speed,

as well as because of its unstructured formatting, which is difficult for humans to read and un-

derstand [82]. Current methods of performing RCA based on software analysis can be categorized

into Rule-based, decision-tree, relation-mining, and ML-based approaches.

A rule-based strategy uses heuristic rules depending on the expertise of the operators. a rule-

based system whose behavior on the log files is entirely contained by its programmed require-

ments [83]. Timestamps and some significant variables in log messages are used in the construc-
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tion of heuristic rules. This method works well in a relatively small system, but it is challenging

to apply to other systems, such as heterogeneous network setups. Moreover, distributed systems

cannot ensure the correctness of timestamps, therefore identified causality may include pseudo

causality (i.e., correlation).

A decision-tree-based strategy mines the relationships between several logs to identify the pre-

cise root cause of events. To create dependency graphs and determine causality in log messages,

a number of decision-tree-based techniques are used [84, 85, 86]. This method’s primary flaw is

that it needs a lot of log data to mine dependencies.

The relation-mining approach uses statistical measures, such as transfer entropy [87], confi-

dence score [88], and Pearson correlation [79], to describe the link between two log time series.

Depending on the metrics’ value, this technique prunes unrelated edges from the initial complete

graph. Because the metrics do not take causality in a theoretical sense, these methods, however,

may discover erroneous causality. In this category, a few published works pursue the causality

graphs for RCA [89, 33]. The causal approach has the advantage of using a theoretical causality

measure rather than erroneous ones, which would naturally eliminate the impact of correlation or

co-occurrence.

Based on anomaly detection and pattern matching, the authors of [16] propose PatternMatcher

for detecting root-cause metrics. Anomaly pattern classification, which aims to filter out insignif-

icant anomaly patterns, coarse-grained anomaly detection, and root-cause metric ranking are the

three processes that make up PatternMatcher.

Machine-learning-based approaches allows the concerned computer to learn from the data

without being constrained by rigid rules, can lead to a more reasonable, efficient, and cost-effective

solution to this problem [90, 91, 92, 93, 94] since large software projects with numerous conditions

and statements that must be explicitly programmed do not scale well with other methods. An ad-

ditional advantage of ML-based systems is that they may potentially uncover underlying patterns

that weren’t initially considered by rule-based systems or manual analysis.

Related studies, mostly, require a supervised machine learning (ML) solution that can train

efficiently on a limited data set in order to generate reliable root cause reports and incident pre-

dictions across varied environments. For instance, the authors of [80] employ machine learning

to automate root cause analysis in agile software testing settings. For instance, after speaking with

testing engineers, they extract pertinent information from raw log data (human experts). The un-

labeled data are initially clustered, and although discovering modest correlations between a few

clusters and failure root causes, the ambiguity in the other clusters prompts the idea of labeling.

Five ground-truth categories are developed as a result of new interviews with testing engineers.

They trained artificial neural networks that either classify the data or pre-process it for clustering

using manually labeled data.

As authors in [17] describe, automatic techniques can be grouped into three main categories:

specification-based techniques, expert systems, and heuristic based techniques which are de-

scribed below:

• Specification-based techniques:

Specification based techniques compare events logs with formal specifications that describe

acceptable event sequences. The recognized anomalies are presented to testers. Unfor-

tunately, creating and managing complete and accurate specifications is expensive and in

some studies impossible. Therefore, these techniques are rarely applicable.

• Expert systems techniques:

Expert systems have become known as one of the most interesting applications in the field of

artificial intelligence. Expert systems require user-defined catalogs that describe the events
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that are often associated with failures. Unfortunately, since expert systems require user-

defined regular expressions to analyze and identify interesting event types, it is an expensive

technique to work with catalogs [95].

• Heuristic based techniques:

Methods focus on heuristics provide the most generic solution with the least implementa-

tion work. By using supervised and unsupervised machine learning methods, these tech-

niques identify abnormal and normal event sequences. The supervised algorithm first ana-

lyzes the normal and abnormal event sequences and during the learning phase, the expert

must distinguish between normal and abnormal executions. In contrast, unsupervised al-

gorithms can automatically detect abnormal and normal event sequences. For example, au-

thors in [17] combine automata learning and data clustering approaches to analyze various

log file formats and find the problems. High automation is the key advantage of heuristic-

based approaches, although the expressiveness of learned models limits their effectiveness.

The technique presented in [17] performs three major tasks: event detection, data transfor-

mation, and model inference. In the event detection step, a parser is used to read the initial

log file and produce a new version of the log file where an event and its attributes are stored

in a single line in string format. Then the splitter refines the log file according to the gran-

ularity selected for the analysis. They used the Simple Log file Clustering Tool(SLCT) [96].

This tool identifies prefixes that frequently appear in logged events and generate a set of reg-

ular expressions that specify how to separate the constant part from the variable part. When

a failure is detected, the associated log is retrieved and compared to the inferred model.

Consequently, suspicious subsequences are shown to testers along with a representation of

acceptable behaviors. These inputs are used by testers to determine the location and cause

of failures.

While there have been various published papers on this domain using previous techniques, in

recent years the techniques often fall into the deep learning category. There have been various

efforts to use long short-term memory (LSTM) for anomaly identification and root-cause detec-

tion [81]. In [81] the authors used existing log anomaly detection techniques, mainly DeepLog [21]

to obtain the anomaly score of the system. They aligned anomaly score and monitoring metrics

and then conducted the correlation analysis based on Mutual Information (MI) to identify the

root-cause metric.

Several studies have shown that they outperform traditional methods. However, unlike the

statistical methods described earlier, training Deep Learning requires a significant amount of pro-

cessing power. Numerous data scientists utilize expensive GPU instances to train models more

quickly but at a considerable cost. If we had to train the model on each unique environment indi-

vidually and continually over time, this would be an extremely expensive method for autonomously

detecting incidents. Therefore, this method for monitoring logs is not suggested.

2.2.3.4 Log Anomaly Detection (LAD)

As noted by Westland [97], untreated problems become more expensive as software projects ad-

vance. There is evidence that fault identification and correction is one of the elements that most

affect budget overruns. Therefore, log anomaly detection (LAD), as a step in automated log analy-

sis, has attracted a lot of interest due to its importance in software testing and reliability engineer-

ing [39].

Finding system anomalous patterns that do not match predicted behaviors on log data is the

task of anomaly detection. Common abnormalities frequently point to potential flaws, errors, or
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Figure 2.3: Log anomaly detection methods

failures in software systems. We can expand on the research that has already been done in this

area. They divide the methods into two major categories, classic machine learning algorithms,

and deep learning models, as seen in Figure 2.3.

Table 2.1 includes a list of the surveyed methodologies along with a number of key attributes.

We specifically list each approach’s algorithm/model, feature, and whether or not it is unsuper-

vised and online. Unsupervised techniques, in particular, don’t need labels to train models, and

an online approach can handle information in real time as it comes in.

Table 2.1: Related work.

Reference Year Method/Model Unsupervised online
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Kim et al. [98] 2020 PCA Yes No

Xu et al. [99] 2009 PCA Yes No

Lin et al. [100] 2016 Clustering Yes No

He et al. [101] 2018 Clustering Yes No

Liang et al. [102] 2007 SVM No No

Kimura et al. [63] 2019 SVM No No

Xu et al. [103] 2009 Frequent pattern mining Yes Yes

Lou et al. [104] 2010 Frequent pattern mining Yes No

Farshchi et al. [52] 2015 Frequent pattern mining Yes No

Nandi et al. [105] 2016 Graph mining Yes No

Lou et al. [106] 2010 Graph mining Yes No

LogFlash: Jia et al. [107] 2021 Graph mining No Yes

Yamanishi et al. [108] 2005 Statistical model Yes No

He et al. [109] 2016 Logistic regression No No

Micro2Vec: Cinque et al. [110] 2022 Yes No

D
ee
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le
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n
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g

DeepLog: Du et al. [21] 2017 LSTM model Yes Yes

Zhang et al. [111] 2019 LSTM classification model No No

Meng et al. [66] 2019 LSTM model Yes Yes

Loggan: Xia et al. [112] 2021 LSTM-based GAN model Yes Yes

Lu et al. [113] 2018 CNN model No No

Continued on next page
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Table 2.1 – continued from previous page

Reference Year Method/Model Unsupervised online

Log2Vec: Liu et al. [114] 2019 Graph embedding model Yes No

SwissLog: Li et al. [115] 2020 Lang. Mod./Attent. BiLSTM Yes Yes

LogEvent2vec: Wang et al. [116] 2020 Language Modeling (NLP) No No

LogBert: Guo et al. [117] 2021 Language Modeling Yes Yes

PLELpg: Yang et al. [118] 2021 Attention GRU semi No

MDFULog: Li et al. [119] 2021 Lang. Mod./Attent. BiLSTM Yes No

Ryciak et al. [120] 2022 Lang. Mod. (NLP) No No

LayerLog: Zhang et al. [121] 2023 Lang. Mod. Yes No

PULL: Wittkopp et al. [122] 2023 Lang. Mod./Attention Yes No

Classic machine learning LAD algorithms: Typically, classic machine learning algorithms

work on top of features that practitioners expressly provide, such the log event count vector. The

anomaly detection problem, in particular, can be defined into many types and solved using vari-

ous methods, including clustering, classification, regression, etc.

Dimensionality Reduction: It converts high-dimensional data into a low-dimensional repre-

sentation, while preserving some important characteristics of the original data in the low-dimension

space. Of these algorithms, Principal Components Analysis (PCA) is one of the most widely used.

If the projected distance is greater than a threshold, anomalies can be found by projecting data

points to the first k main components. PCA was initially used by Xu et al. [99, 103] to mine console

logs for system issues. In particular, a PCA model is built and fed with a log event count vector

and parameter value vector for anomaly identification. To focus on root-cause analysis, Kim et

al. [98] present an unsupervised anomaly detection method. Their proposed method consists of

three steps: dimensionality reduction via feature selection to determine the smallest set of fea-

tures that provide the most information about the network state; the use of PCA as a multivariate

unsupervised learning technique to detect anomalies with low detection latency; and root cause

analyses via finite state machines. They use PCA on the normal data to locate the subspace with

the smallest variance of the normal data for anomaly detection. They construct a boundary of

the normal data and develop an anomaly detection model based on it by defining the variation

of the normal data in the subspace. Once the anomalies are identified, the message patterns of

the anomaly data are compared to those of the normal data to establish where the problems are

occurring. Furthermore, they investigate the error codes in the anomaly data to better understand

the underlying issues.

Supervised LAD: The log partition is classified into normal or anomalous types using anomaly

detection with classification, where anomalous cases differ from normal ones in terms of certain

statistical features. Log anomaly detection frequently use the supervised classification technique

Support Vector Machine (SVM). In [102], Liang et al. vectorized log partitions by identifying six

different sorts of features, such as the total number of events, the number of events that occurred

over time, etc. Based on these features, they applied four classification models for anomaly detec-

tion, i.e. including SVM and closest neighbor predictor. In addition, Kimura et al. [63] developed

a log analysis approach based on the properties of logs, such as frequency, periodicity, burstiness,

and association with maintenance and failures, for proactive failure identification. To find fail-

ures, an SVM model with a Gaussian kernel is used. A logistic regression model was used by He et

al. [109] to identify anomalies. They chose event count vectors as the feature and used a collection

of labeled data to train the model. When the logistic function’s probability estimate is more than
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0.5, a testing occurrence is deemed anomalous.

Unsupervised LAD: Clustering-based anomaly detection classifies log-based feature vectors

into several clusters as an unsupervised technique so that vectors in the same cluster are more

comparable to one another (and as dissimilar as possible to vectors from other clusters). Clus-

ters with a small number of data instances are frequently abnormal. To help developers quickly

spot potential issues, Lin et al. [100] created LogCluster, which groups log sequences and suggest

a typical sequence. Calculating the cluster centroid enables the selection of the representative se-

quence. He et al [101]’s Log3C framework was also suggested as a way to include system KPIs in

the detection of significant issues in service systems. They specifically suggested a cascading clus-

tering approach to quickly group many log sequences. Finally, they employ a multivariate linear

regression model to locate significant issues that result in KPI degradation.

Frequent Pattern Mining: It seeks to identify the most prevalent item sets and sub-sequences

in a log record that represent the typical behaviors of the system. Anomalies are occurrences of

data that do not fit the common patterns. Both the existence of particular log events and the

chronological arrangement of log events can be patterned. For instance, Xu et al. [103] used log

message sets that frequently co-occur to identify unusual execution traces in an online environ-

ment. Online pattern matching can more quickly detect benign system operations than offline

methods can, balancing accuracy and efficiency. To find abnormalities or defects, other methods

mine the sequential patterns in log events [104]. The idea of mining invariants among log mes-

sages for system anomaly identification was first put forth by Lou et al. [106] as well. Invariants in

textual logs, which represent the equivalency relation, and invariants as a linear equation, which is

the linear independence relation, are two types of invariants that are used to characterize the rela-

tionships between the various log messages. A similar strategy was put forth by Farshchi et al. [52],

which mines the correlation and causation relationships between log events and changes in cloud

system metrics. They used a regression-based methodology in particular to learn a collection of

claims that model linear relations. Then, anomaly detection is carried out by keeping an eye on

log event streams and comparing metrics compliance to the assertions.

Graph mining: The collection of methods primarily uses graphical features, or different graph

models, to spot behavioral changes in complex systems. This allows for the early diagnosis of

anomalies and the proactive taking of corrective measures. To discover anomalous runtime be-

haviors of distributed systems from execution logs, encompassing both sequence anomaly and

distribution anomaly, Nandi et al. [105] presented a control-flow graph (CFG) mining technique.

When an expected child for a parent node is absent within the specified time frame, a sequence

anomaly is detected; meanwhile, a distribution anomaly is produced whenever an edge proba-

bility is broken. In [57], Fu et al. learned an FSA using log sequences to represent the execution

behaviors of each system module as a state transition graph. The learnt FSAs have transitions that

each match a log key. The time spent and the circulation number is collected for each state change

and used to identify two performance issues: a low transition time and a low transition loop. A

suitable threshold can be established to automatically identify low-performance transitions when

using the Gaussian distribution to simulate the state transition in a distributed system.

Miscellaneous statistical models: There are some algorithms that don’t fit into the categories

listed above. For instance, a combination of Hidden Markov Models were used by Yamanishi et

al. [108] to monitor syslog behaviour. With an online discounting learning approach, the model is

specifically trained by dynamically choosing the ideal number of mixture components. Using uni-

versal test statistics with dynamically adjustable thresholds, anomaly scores are assigned. Via the

identification of a group of interconnected log event occurrences and variable values that show

the greatest divergence between log sets, Nagaraj et al. [84] were able to diagnose performance

concerns for large-scale distributed systems. To be more precise, they initially divided the logs
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into two sets in accordance with some performance metrics (e.g., runtime). Then, using t-tests,

they suggested logging the events or state variables most responsible for the performance differ-

ence. In 2022, the authors of [110] proposed Micro2vec, a heuristic method to mine numerical

representations of computer logs, which allows inferring "actionable" correlations for anomaly

identification. This method is similar to language modeling techniques. The method requires no

catalogs of abnormalities symptoms, embeds no application knowledge, and makes no assump-

tions about the structure or semantics of the underlying logs. According to the results, evaluating

metrics derived from various logs makes it easier to see anomalies, which are identified by a sig-

nature incorporating many logs. It also makes it possible to infer explicable detection criteria that

are difficult to spot by human specialists. Moreover, log variants derived from regular logs can aid

in the detection of genuine abnormalities and outperform one-class classifiers.

Deep Learning Models: Deep learning gradually extracts features from inputs using a multiple-

layer architecture (i.e., neural networks), with different layers addressing different degrees of fea-

ture abstraction. Neural networks are frequently used in log-based anomaly detection because of

their extraordinary capacity for modeling complex interactions. We divide the deep learning mod-

els into RNN, CNN, GNN, MLP, LSTM, autoencoders, transformers, and attention mechanisms as

depicted in Figure 2.3.

Neural Network models: LSTM and GRU models from the RNN family are frequently employed

to automatically recognize the sequential patterns in log data. When log patterns diverge from the

model’s expectations, anomalies are raised. For instance, Du et al. [21] presented DeepLog, which

uses an LSTM model to predict the following log event given a sequence of previous log events in

order to learn the system’s typical execution patterns. Instead of deviating from a typical execu-

tion route, some anomalies, however, may appear as an abnormal parameter value. As a result,

DeepLog also uses an LSTM model to validate the parameter value vectors. Numerous previous

studies make the supposition that the collection of unique log events is fixed and well-known, and

that the log data are stable over time. However, Zhang et al. [111] observed that log data typically

contain previously unreported log events or log sequences, suggesting log instability. In order to

solve this issue, they proposed LogRobust, which uses pre-existing word vectors to extract the se-

mantic information of log events. A bidirectional LSTM model is then used to detect anomalies.

Meng et al. [66] discovered that existing word2vec models did not effectively distinguish between

synonyms and antonyms in terms of capturing the semantics of log. Therefore they specifically

trained a word embedding model to take into account synonym and antonym information. Meng

et al[135] .’s proposal for a semantic-aware representation paradigm for online log analysis fur-

thered their work. Out-of-vocabulary (OOV) and log-specific word embedding problems are both

addressed. Zuo et al’s recent.work [123] coupled transaction-level topic modeling with learning

the embedding of logs, where a transaction is a collection of logs that occur in a particular or-

der throughout time. In order to exchange anomalous knowledge between two software systems,

Chen et al. [124] used transfer learning to overcome the issue of insufficient labels. To extract se-

quential log features, they first trained an LSTM model on the data with enough anomaly labels,

and then input those features into fully connected layers for anomaly classification. After that,

the fully linked layers were repaired and the LSTM model was adjusted using logs from a different

system with less labels.

Language modeling: Semantic extraction, word-embedding or language modeling is a strong

trend for log anomaly detection proposed in very recent papers published in the last few years [114,

120]. They are mainly based on embedding words in log data into vectors of numbers by taking

into account their occurrence distances (text adjacency, temporal, etc.). For instance, the authors

of [117] proposed LogBERT, a self-supervised architecture based on their previous work on Bidi-

rectional Encoder Representations from Transformers for log anomaly detection (BERT). They em-
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ploy BERT to identify patterns in normal log sequences in response to the tool’s outstanding per-

formance in modeling sequential text data. They anticipate that by utilizing the BERT structure,

the contextual embedding of each log entry will be able to collect the data of whole log sequences.

They suggest two self-supervised training exercises to do this: 1) Masked log key prediction seeks

to accurately predict log keys in normally occurring log sequences that are randomly masked; 2)

Volume of Hypersphere Minimization seeks to minimize the distance between ordinarily occur-

ring log sequences in the embedding space. After training, they anticipate that LogBERT will en-

code the knowledge of typical log sequences. Then, based on LogBERT, they design a criterion to

identify abnormal log sequences.

SwissLog [115] proposed a novel time embedding approach to encode temporal information,

continuing the BERT-based language processing LAD track by adding time information in logs.

The next step is for Attentionn-based Bi-LSTM to learn the fixed pattern of log data using the con-

catenation of semantic embedding and time embedding. Lastly, if an abnormality is discovered,

an alarm is generated. BERT-based track was continued by MDFULog [119] with an effort to re-

move noisy unstable data by employing a feature augmentation approach that completely exploits

the association between the semantic, time, and sequence aspects to find different kinds of log ex-

ceptions.

In an effort to better utilize the semantics of log data, in 2023, the authors of [121] offer Layer-

Log, a novel framework for log sequence anomaly detection based on the hierarchical semantics

of log data, which takes into account the three-layered structure of log data, known as the "Word-

Log-Log Sequence" hierarchy. Execution order anomalies, operational anomalies, and incomplete

log sequence anomalies can all be simultaneously detected end-to-end using LayerLog. Likewise

in [122] in 2023, instead than using labeled data, the developers of PULL developed an iterative

log analysis method for reactive anomaly identification based on predicted failure time windows

supplied by monitoring systems. Their attention-based model implements an iterative learning

technique for positive and unknown samples (PU learning) to identify anomalous logs and incor-

porates a novel objective function for weak supervision deep learning that takes into consideration

imbalanced data. Their analysis demonstrates that PULL outperforms 10 benchmark baselines

across three distinct datasets in a consistent manner and detects anomalous log messages with an

F1-score of greater than 0.99 even within ambiguous failure time windows.

Several model architectures, including those based on RNNs, are important in the detection of

anomalies in logs. For instance, LogGAN, an LSTM-based Generative Adversarial Network(GAN),

was proposed by Xia et al. [112]. The concept of the Generative Adversarial Network (GAN) was

proposed by Goodfellow et al. [125] where GAN considers a machine learning problem as a game

between two models (i.e., generator and discriminator). The generator and the discriminator are

both present in LogGAN, as in all GAN-style models. The discriminator seeks to separate fake

instances from genuine and synthetic data, while the generator tries to capture the distribution of

real training data and creates realistic examples.

The viability of using Convolutional Neural Networks (CNN) for anomaly detection is also be-

ing investigated. To be more precise, Lu et al. [113] used a word embedding technique to convert

logs into two-dimension feature matrices, which were subsequently processed using CNN models

with various filters to detect anomalies. An approach based on graph embedding called log2vec

was proposed by Liu et al. [114] for the detection of cyberthreats. They specifically learned the

embedding of each log entry by employing a graph representation learning approach after first

converting logs into a heterogeneous graph using heuristic principles. Logs were classified into

clusters based on the embedding vectors, and groups with sizes below a predetermined threshold

were flagged as malicious.

Probabilistic Label Estimation or PLELog [118] is another probabilistic method proposed by
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Yang et al.. They suggest PLELog, a novel practical log-based anomaly detection method that is

semi-supervised to do away with laborious manual labeling and combines knowledge of prior

anomalies via probabilistic label estimation to capitalize on the advantages of supervised ap-

proaches. Semantic embedding and attention-based GRU neural networks are used by PLELog

to efficiently and effectively detect abnormalities, as well as to maintain immunity to unstable log

data. The results show the effectiveness of PLELog, greatly exceeding the comparative approaches,

with an average of 181.6.

2.2.3.5 Test Suit Minimization

Generally, the duration of regression testing is determined by the size of the test suites. As the

size of regression testing increases, its execution becomes increasingly compute-intensive. A large

test suite might take weeks to run [126]. The number of test suites grows over time, resulting in a

growing amount of time spent on each test run [127]. Test Suite Minimization or Test Suite Reduc-

tion(TSR) provides more efficient and simpler test suite maintenance, which in turn reduces the

cost of the software testing phase, although in terms of the ability to detect faults. These methods

work by identifying and removing obsolete or redundant test cases. According to the literature,

we can classify TSR techniques into some categories, the most important of which are: Cover-

age based, Greedy algorithm, clustering methods, and Genetic algorithm [128]. Greedy-based

approaches employ one of the greedy algorithms to determine the reduced test suite based on

the best strategy at the moment. Over each iteration, the greedy algorithm includes the test case

with the highest greedy property, such as the highest statement coverage, to the reduced test suite,

which is a locally optimal solution. When the desired percentage of coverage is attained, the pro-

cess ends. Coverage-based techniques ensure that the given tests, even when reduced, cause the

program to be tested to run according to most of the run paths defined for that program. The

techniques of clustering categories, as the name implies, take advantage of well-known cluster-

ing techniques. The purpose of cluster analysis is to partition the population such that objects

with similar attributes are grouped together. After clustering, test cases are sampled from each

cluster. Since the sample is selected from each cluster containing similar test cases, the charac-

teristics of this form of sampling minimize redundancy in the subset. In the category of Genetic

algorithm, existing test cases provide the initial population for the technique which then uses mu-

tation, crossover, and fitness functions that use the information collected after the tests have been

executed (for instance, information on test coverage) to generate next populations until they find

the minimum test suite.

Almost all the previous test suite reduction techniques were able to substantially reduce the

size of test suites. Nonetheless, it is crucial to determine how well these reduced suites can be

compared to their corresponding unreduced suites using criteria other than suite size. Since the

purpose of executing test cases is to identify software faults, one metric for evaluating the quality

of a test suite is its ability to detect faults.

2.3 Data Analysis and Machine Learning Techniques

Software testing automation has been adopted as a feasible strategy to avoid the complexity and

expense of most testing activities. Exploiting machine learning models in software testing has

received increasing attention during the last few years. This section covers some techniques on

ML (Machine Learning) techniques and lays out the ML techniques that are used in this thesis.
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2.3.1 Machine Learning Techniques

Over the past years, the research on artificial intelligence, more specifically machine and deep

learning, has flourished. Machine learning has been successfully applied in many areas of soft-

ware engineering including : behavior extraction, time series analysis, software testing, anomaly

and root cause detection. In addition, there are lots of research in the software testing facets

that supported by ML. For instance, test case prioritization, test case constructions and Muta-

tion testing automation. Considering machine learning, a clustering method has been developed

for selecting regression tests, while a combination of genetic algorithms and clustering has been

used to select test cases in a multi-objective test-optimization setting. These works are interesting

and suggest that, despite understandability and complexity issues, the usage of machine learning

(clustering, reinforcement learning, etc.) in software testing is a key-enabling technology. Here,

we present some ML techniques that we used in our study.

2.3.1.1 Clustering methods

K-Means: The standard version of the k-means algorithm was proposed in 1957 by Lloyd [129]

in the field of signal processing for the pulse-code modulation technique (PCM), and it was later

published in 1982. The name ‘k-means’ was first introduced in 1967 by James MacQueen in his k-

means version [130]. Apart from the Lloyd’s and McQueen’s versions, some researchers use Forgy’s

algorithm [131] as the standard algorithm for the k-means implementation.

The k-means concept is used in different domains for the cluster analysis purposes as it is sim-

ple to implement and produces effective clustering results in less amount of time. In addition, the

k-means algorithm is able to detect the dissimilar data values in the dataset, also called Outliers.

The PCM technique is used to map a large input set of the analog signal values into their cor-

responding digital values, i.e., the method is used to digitally represent the analog signals. This

process is called vector quantization, where a large set of sampled analog values are divided into

a small (countable) number of groups. Each of the resulted groups contains similar values, which

are closer to each other. Also, each group is represented by an average of all the values of the group,

termed as centroid of that group.

Apart from the areas of the signal processing and vector quantization, the k-means finds its ap-

plications in the diverse fields such as data compression, image processing, market segmentation,

computer graphics, etc. The K-means algorithm is widely used nowadays for the cluster analysis

purposes in the field of data mining. In the context of this thesis, K-means has been our primary

choice wherever a clustering algorithm was needed.

There exists different versions of the k-means algorithm in today’s time, which are known as

the modern k-means. In the modern k-means versions, researchers apply different heuristics to

refine the initial condition of partitioning the data, producing efficient results.

In K-means, each cluster is represented by its center (called a “centroid”), which corresponds

to the arithmetic mean of data points assigned to the cluster. A centroid is a data point that repre-

sents the center of the cluster (the mean), and it might not necessarily be a member of the dataset.

This way, the algorithm works through an iterative process until each data point is closer to its own

cluster’s centroid than to other clusters’ centroids, minimizing intra-cluster distance at each step.

K-means searches for a predetermined number of clusters within an unlabelled dataset by

using an iterative method to produce a final clustering based on the number of clusters defined by

the user (represented by the variable K ). For example, by setting “k” equal to 2, the dataset will be

grouped in two clusters, while if we set K equal to 4 we will group the data in four clusters.

K-means triggers its process with arbitrarily chosen data points as proposed centroids of the

groups and iteratively recalculates new centroids in order to converge to a final clustering of the
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Figure 2.4: An example of K-means centroids after 5 iterations. Source: pinecone.io

data points. Specifically, the process works as follows:

The algorithm randomly chooses a centroid for each cluster. For example, if we choose a “k” of

3, the algorithm randomly picks 3 centroids. K-means assigns every data point in the dataset to the

nearest centroid, meaning that a data point is considered to be in a particular cluster if it is closer

to that cluster’s centroid than any other centroid. For every cluster, the algorithm recomputes the

centroid by taking the average of all points in the cluster, reducing the total intra-cluster variance

in relation to the previous step. Since the centroids change, the algorithm re-assigns the points to

the closest centroid. The algorithm repeats the calculation of centroids and assignment of points

until the sum of distances between the data points and their corresponding centroid is minimized,

a maximum number of iterations is reached, or no changes in centroids value are produced. Fig-

ure 2.4 illustrates a K-means clustering including its seven centroids after five iterations.

Finding the value of K :

How do we choose the right value of “k”? One popular approach is testing different numbers

of clusters and measuring the resulting Sum of Squared Errors (SSE), choosing the “k” value at

which an increase will cause a very small decrease in the error sum, while a decrease will sharply

increase the error sum. This point that defines the optimal number of clusters is known as the

“elbow point”. During our study, we used Elbow method to obtain the number of clusters.

Spectral Clustering: Spectral clustering is a graph theory-based technique for identifying groups

of nodes in a graph based on the edges linking them. The method is adaptable and can be used to

cluster non-graph data as well. Several spectral clustering algorithms have been developed during

the last two decades [132]. Data points are considered as nodes of a graph in spectral cluster-

ing. For employing spectral clustering, we require a robust graph that indicates the data’s similar-

ity. There are various methods for constructing the affinity matrix. By computing a graph of the

nearby neighbors, it is simplest to generate the affinity matrix. Every data point is represented as a

node in a k-nearest neighbors graph. Then, an edge is drawn between each node and its k nearest

neighbors in the initial space. Since it relies on the idea that "close" nodes should belong to the

same cluster, it may not be applicable to all datasets. A more comprehensive strategy is to inter-

pret data as a precomputed affinity matrix. Here, an affinity matrix corresponds to an adjacency
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Figure 2.5: A widely-used example on the difference between K-Means and Spectral Clustering, Source:

kaggle.com

Figure 2.6: A simple decision tree on sowing seeds based on different conditions

matrix, with the difference that the value for a pair of points conveys how similar those points are.

If pairings of points are very dissimilar, the affinity should be 0. If the points are the same, the

affinity could be 1. In this way, the affinity corresponds to the weights of the graph’s edges.

K-Means vs. Spectral Clustering:

Compactness – Nearby points fall into the same cluster and are grouped together in close proxim-

ity to the cluster’s center. The separation between the observations can be used to gauge proximity.

E.g.: Clustering with K-Means

Connectivity – A cluster is made up of points that are connected or located close to one another.

Even though two points are closer to one another, they are not grouped together if they are not

connected. This strategy is used in the process of spectral clustering.

Even when the true number of clusters K is known to the algorithm, K-means will fail to ef-

ficiently cluster them. K-means is an excellent data-clustering algorithm for identifying globular

clusters in which all members of each cluster are in close proximity to one another (in Euclidean

sense). Spectral clustering is more generic (and powerful) since it behaves like k-means if we only

utilize Euclidean Distance in its similarity matrix. Yet, the opposite is not true. Figure 2.5 illus-

trates the difference of these two clustering algorithms in a visual example. We can observe how

the spectral clustering can be useful to extract connectivity from the dataset. We have compared

K-mean and spectral clustering algorithms in our approach in chapter 5.

2.3.1.2 Classification methods

The Classification algorithm is a technique for Supervised Learning that identifies the category

of incoming observations based on training data. In this section, we will discuss some classifica-

tion algorithms like Random forest and SVM (Support Vector Machine) which we used during our

research.

Because the random forest model is made up of several decision trees, it would be useful to

begin by briefly describing the decision tree algorithm.

Decision Tree: A decision tree is a non-parametric supervised learning approach that can be
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used for classification as well as regression applications. It has a tree structure that is hierarchical

and consists of a root node, branches, internal nodes, and leaf nodes. A decision tree, as shown

in the Figure 2.6, begins with a root node that has no incoming branches. The root node’s outgo-

ing branches then feed into the internal nodes, also known as decision nodes. Both node types

evaluate the given features to generate homogeneous subsets, which are denoted by leaf nodes or

terminal nodes. The leaf nodes represent all of the dataset’s conceivable outcomes. As an example,

suppose we were trying to decide whether to sow seeds at the start of the season. We could use the

decision criteria shown in Figure 2.6 to make a decision.

This type of flowchart layout also produces an easy-to-digest picture of decision-making, al-

lowing various groups within an organization to better comprehend why a choice was taken. By

undertaking a greedy search to determine the optimal split points inside a tree, decision tree learn-

ing applies a divide and conquer technique. This dividing process is then repeated top-down and

recursively until all or the majority of entries have been categorised under particular class labels.

The decision tree’s complexity determines whether or not all data points are classed as homoge-

neous sets. Smaller trees can achieve pure leaf nodes more easily. data points in a single class.

However, when a tree increases in size, maintaining this purity becomes increasingly challeng-

ing, and this usually results in too little data falling under a given subtree. This is known as data

fragmentation, and it frequently leads to over-fitting. As a result, decision trees prefer small trees,

which is consistent with Occam’s Razor’s principle of parsimony, which states that "entities should

not be multiplied beyond necessity." In other words, decision trees should add complexity only if

necessary, because the simplest explanation is often the best. Pruning is commonly used to min-

imize complexity and prevent over-fitting; this is a technique that removes branches that split on

features of low value. The model’s fit can then be tested using the cross-validation procedure.

Another method for decision trees to preserve their accuracy is to construct an ensemble using

a random forest algorithm; this classifier predicts more accurate outcomes, especially when the

individual trees are uncorrelated with one another.

Random Forest: Random forest is a popular machine learning technique developed by Leo

Breiman and Adele Cutler that combines the output of numerous decision trees to produce a sin-

gle conclusion. Its ease of use and flexibility, as well as its ability to tackle classification and regres-

sion challenges, have boosted its popularity. The random forest algorithm is a bagging method

extension that employs both bagging and feature randomness to produce an uncorrelated forest

of decision trees. Randomness of features, commonly known as feature bagging or "the random

subspace approach" [133], creates a random collection of characteristics, ensuring that decision

trees have low correlation. This is a significant distinction between decision trees and random

forests. Random forests select only a subset of the available feature splits, whereas decision trees

consider all of them.

Random forest techniques have three major hyper-parameters that must be set prior to train-

ing. These variables include node size, number of trees, and number of characteristics sampled.

The random forest classifier can then be used to address regression or classification problems.

The random forest algorithm is made up of a collection of decision trees, and each tree in the

ensemble is made up of a bootstrap sample, which is a data sample obtained from a training set

with replacement. One-third of the training sample is set aside as test data, known as the out-of-

bag (oob) sample, which we’ll discuss later. Another instance of randomization is then injected

into the dataset using feature bagging, increasing diversity and decreasing correlation among de-

cision trees. The forecast determination will differ depending on the type of difficulty. Individual

decision trees for a regression job will be averaged; e,g: a majority vote for a classification problem.

The anticipated class will be determined by the most frequent category variable. Lastly, the oob

sample is used for cross-validation, which completes the prediction.
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Figure 2.7: Random forest: a forest of decision trees

Figure 2.8: Possible and optimum hyperplanes in Support Vector Machine (SVM)

As each decision tree classifies a given data value, the random forest method is used to de-

termine the most frequent predicted value among all decision trees and outputs this as the final

predicted class of the selected data value. as shown in Figure 2.7. In our work, we used Random

Forest in chapter 4. We employed it as a classifier to determine if the sequence is Pre-Bug-Zone

or Random-Zone. In addition, Random Forest is used as a predictor during the on-line prediction

phase. More detail will be discussed in chapter 4.

Support Vector Machine (SVM): Support Vector Machines (SVM) are one of the most well-

known and discussed machine learning techniques. They were immensely popular during their

development in the 1990s and remain the go-to solution for a high-performing algorithm with a

little tweaking. The goal of SVM is to find a hyperplane in an N-dimensional space (N-Number of

features) that classifies the data points clearly. The Support Vector Machine classifier is a general-

ization of the maximal margin classifier. This classifier is straightforward, but it cannot be used to

the vast majority of datasets since the classes must be divided by a linear boundary.

In the context of support-vector machines, the ideally separating hyperplane or maximum-

margin hyperplane is a hyperplane that is equidistant from two convex hulls of points (Figure 2.8).

Support Vectors and Hyperplanes:

A hyperplane is a flat affine subspace of dimension N-1 in an N-dimensional space. A hyper-

plane is represented visually as a line in 2D space and as a flat plane in 3D space Figure 2.9.

Figure 2.9: 2D and 3D hyperplanes in Support Vector Machine (SVM)
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Figure 2.10: Support vectors in SVM

Figure 2.11: Non-linear feature space

In layman’s terms, a hyperplane is a decision boundary that aids in the classification of data

points. A hyperplane is a flat affine subspace of dimension N-1 in an N-dimensional space. A

hyperplane is represented visually as a line in 2D space and as a flat plane in 3D space.

In layman’s terms, a hyperplane is a decision boundary that aids in the classification of data

points. There are numerous hyperplanes that could be used to split two classes of data points.

Our goal is to locate a plane with the greatest margin, or the greatest distance between data points

from both classes, as seen in Figure 2.8.

Support Vectors are data points that are on or near the hyperplane and influence the hyper-

plane’s position and direction (Figure 2.10). Using these support vectors, we maximize the classi-

fier’s margin, and eliminating them changes the position of the hyperplane.

The hyperplane is equidistant from the Support Vectors. These are termed support vectors

because as their location changes, so does the hyperplane. This means that the hyperplane is

exclusively dependent on the support vectors and no additional observations. SVM, as stated thus

far, can only categorize data that is linearly separable.

Non-linear SVM :

What if the data is non-linearly separated? For instance, in Figure 2.11, the data is non-linearly

separated and we cannot draw a straight line to classify the data points. The notion of Kernel in

SVM is used to categorize non-linearly separated data. A kernel is a function that converts lower-

dimensional data to higher-dimensional data. A kernel function is a way for taking input data
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Figure 2.12: Different SVM kernels and their distinctive feature. Source:[http://people.ciirc.cvut.cz/ hlavac]

and transforming it into the needed form of processing data. The term "kernel" refers to a set

of mathematical functions used in Support Vector Machine to provide a window to manipulate

data. Hence, in general, the Kernel Function modifies the training set of data so that a non-linear

decision surface can transform to a linear equation in a larger number of dimension spaces. It

essentially returns the inner product of two points in a typical feature dimension.
K (x̄) = 1, i f ∥x̄∥ <= 1

K (x̄) = 0, Otherwise
Gaussian Kernel: When there is no prior knowledge about the data, the Gaussian Kernel is

employed to conduct transformation.

K (x, y) = e
−

( ∥x−y∥2

2σ2

)
Gaussian Kernel Radial Basis Function (RBF): The same as the previous kernel function, but

with the addition of the radial basis approach to improve the transformation.
K (x, y) = e−

(
γ∥x − y∥2)

K (x, x1)+K (x, x2)( Simplified -Formula )

K (x, x1)+K (x, x2) > 0

K (x, x1)+K (x, x2) = 0
Sigmoid Kernel: This function is comparable to a two-layer neural network perceptron model,

and it is utilized as an activation function for artificial neurons.

K (x, y) = tanh
(
γ · xT y + r

)
Polynomial Kernel: It shows the similarity of vectors in a feature space in the training set of

data over polynomials of the original variables utilized in the kernel.

K (x, y) = tanh
(
γ · xT y + r

)d
,γ> 0

Figure 2.12 illustrates four different SVM kernels and their distinctive feature on different data

sets.

Ensemble Methods: Ensemble learning approaches are made up of a collection of classifiers.

The predictions of decision trees are pooled to determine the most popular result. Some of the ad-

vanced ensemble classifiers are: Stacking, Blending, Bagging and Boosting. Bagging, also known

as bootstrap aggregation, and boosting are the most well-known ensemble approaches. Leo Breiman [134]

invented the bagging method in 1996; in this method, a random sample of data from a training

set is picked with replacement—that is, individual data points can be chosen more than once.

Following the generation of multiple data samples, these models are trained independently and

depending on the type of task—i.e. The average or majority of such predictions yields a more ac-

curate estimate in regression or classification. This method is frequently used to reduce variance
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Figure 2.13: The analogy pairs in the word embedding space demonstrate surprising algebraic relation-

ships [135].

in a noisy dataset.

2.3.1.3 Word Embedding

A word embedding is a representation of a word in natural language processing (NLP). Text anal-

ysis employs word embedding. The representation is often a real-valued vector that encodes the

meaning of the word in such a way that words that are close in the vector space are assumed to

have comparable meanings. Word embeddings can be obtained by language modeling and fea-

ture learning approaches, in which words or phrases from the lexicon are mapped to real-number

vectors. Word embeddings are a class of techniques that represent individual words as vectors in

a defined vector space. Each word is mapped to a vector, and the vector values are learned; there-

fore, the technique is frequently grouped with deep learning. Thus, Neural networks, dimension-

ality reduction on the word co-occurrence matrix, probabilistic models, explainable knowledge

base technique, and explicit representation in terms of the context in which words appear are all

methods for generating this mapping. In the learned vector space, words support basic algebraic

operations, which is one of the surprising results of word embedding. A typical example is the

study of analogy pairs - king: queen, man: woman - in which king-man plus woman equals queen

(see Figure 2.13).

When employed as the underlying input representation, word embeddings have been demon-

strated to improve performance in NLP tasks such as syntactic parsing and sentiment analysis.

Typically, each word is represented by a vector with up to hundreds of dimensions. In compari-

son, limited word representations, such as a one-hot encoding, require thousands or millions of

dimensions.

There are numerous neural word embedding strategies, such as word2vec [136] and Glove [137].

The following is one example of a widely used distributed text representation: Word2Vec. In this

thesis, we applied Word2Vec for word embedding purposes. Therefore, we provide an explanation

of it here.

Word2Vec

Word2vec is a method for computing vector representations of words developed by a team of

Google researchers led by Tomas Mikolov [138, 136]. Google maintains an open-source version of

Word2vec that is distributed under the Apache 2.0 license.

Word2vec is a two-layer neural network that vectorizes words to process text. It takes a text

corpus as input and produces a set of vectors as output: feature vectors that represent words in

that corpus. Word2vec is not a deep neural network, but it converts text to a numerical format that

deep neural networks can understand.

The uses of Word2vec go beyond language processing. It can be applied to genes, codes, likes,

playlists, social media graphs, and other verbal or symbolic sequences that include patterns. Since

words, like the other data described above, are essentially discrete states, we are merely seeking for

the transitional probabilities between those states: the likelihood that they will co-occur.
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Figure 2.14: Illustration of the Skip-gram and Continuous Bag-of-Word (CBOW) models

Word2vec’s objective and utility is to combine vectors of related words together in vector space.

That is, it uses mathematics to find similarities. Word2vec generates vectors, which are distributed

numerical representations of word characteristics, such as individual word context. It accom-

plishes it without the need for human involvement.

Word2vec can produce accurate assumptions about a word’s meaning based on previous ap-

pearances if given enough data, usage, and circumstances. These educated estimates can be used

to determine a word’s relationship with other words (for example, "man" is to "boy" what "woman"

is to "girl"), or to cluster and categorize texts. These clusters can serve as the foundation for search,

sentiment analysis, and recommendations in disciplines ranging from scientific research to legal

discovery, e-commerce, and customer relationship management.

Word2vec works similarly to an autoencoder in that it encodes each word in a vector, but in-

stead of training against the input words via reconstruction, like a constrained Boltzmann ma-

chine does, word2vec trains words against other words in the input corpus.

Word2vec does so in one of two ways which are illustrated in Figure 2.14: it predicts a target

word using context (a method known as the continuous bag of words, or CBOW), or it predicts a

target context using a word (a method known as skip-gram). Therefore, skip-gram tries to guess

neighboring words using the current word. The latter method is used because it yields more accu-

rate results on huge datasets.

When the feature vector assigned to a word cannot effectively anticipate its context, the vec-

tor’s components are changed. The context of each word in the corpus is a mentor, providing back

error signals to alter the feature vector. By altering the numbers in the vector, the vectors of words

judged similar by their context are nudged closer together.

Because the representation of each word is a vector with a size equal to the size of the vocab-

ulary, it is typical to have (e.g.) 500 numbers arranged in a vector representing a word or group of

words. Each word is represented as a point in a 500-dimensional vector pace by these numbers.

More than three-dimensional spaces are difficult to visualize.

Things and thoughts that are similar are demonstrated to be "close." Their respective mean-

ings were converted into measurable distances. Qualities are transformed into quantities, allowing

algorithms to function. But, similarity is only one of the numerous correlations that Word2vec can

learn. It can, for example, assess the relationships between words in one language and map them

to words in another.

For instance, If we have word2vec vector of the word Paris, we can not tell much by looking

at the values. However, if we visualize it a bit therefore we can compare the word Paris with other

city word2vec vectors. Figure 2.15 presents countries and their capital vectors. These vectors form

the foundation of a more thorough word geometry. Not only will Rome, Paris, Berlin, and Beijing
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Figure 2.15: Projection of countries vectors and their capitals in 2D, learnt by Word2Vec from a text corpus

cluster together, but they will also have identical vector space distances to the countries whose

capitals they are; for example, Rome - Italy = Beijing - China. And if you simply knew Rome was

the capital of Italy and were curious about China’s capital, the equation Rome - Italy + China would

return Beijing.

Two key hyperparameters in word2vec training process are the window size and the number of

negative samples. The Gensim default window size is 5 (two words before and two words after the

input word, in addition to the input word itself). The number of negative samples is an another

training process factor. The original paper suggests that five to twenty negative samples is an ideal

ratio. It also states that a sample size of 2 to 5 is sufficient when the dataset is sufficiently large.

The default for Gensim is five negative samples.

Word2vec will be employed in chapter 4 and chapter 5 in different case studies. For more

details on how the input and output of Word2vec may lookalike, you can refer to these chapters.

Visualization of word embeddings

Constructing distributed representations for words using neural language models and analyzing

the resulting vector spaces has become an important component of natural language process-

ing (NLP). The NLP community has begun to adopt high-dimensional visualization techniques in

order to gain insight into the relationship between words. For instance, the authors of [135] in-

troduced new embedding techniques for visualizing semantic and syntactic analogies, along with

tests to determine if the resulting views capture salient structures. Furthermore, researchers fre-

quently utilize t-distributed stochastic neighbor embeddings (t-SNE) [139] and principal compo-

nent analysis (PCA) to produce two-dimensional embeddings for assessing the general structure

and studying linear relationships (e.g., word analogies), respectively.

Hence, the embedding layer has very high dimension, and it is necessary to use a technique to

decrease the dimension for visualization. In particular, nonlinear dimension reduction strategies,

most notably t-distributed stochastic neighbor embedding (t-SN) are used to provide a high-level

overview of the embedding space. It is the most frequently utilized method for visualizing word

embeddings. t-SN is optimized for two-dimensional visualization and is more likely to reveal data’s

inherent clusters. While, PCA, highlights word categories rather than the desired analogy direc-

tion. Mainly, It captures the largest variance in the data, which corresponds to the difference in

the meaning of the words [135].
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2.3.1.4 Sentence Embedding

In recent years, the concept of word embeddings has become popular in the NLP field. Due to the

hierarchical nature of human languages, it is insufficient to interpret a text simply based on a com-

prehension of each individual word. This has led to a recent study that are semantically robust for

longer segments of text, such as sentences and paragraphs. Many machine learning approaches

require data in the form of a fixed-length feature vectors. When it comes to texts, one of the most

common fixed-length features is bag-of-words [140, 141]. Each word is treated as an equivalent

entity in the bag-of-words models [142]. A bag-of-words is a text representation that specifies the

word occurrences in a document. We solely check word counts, disregarding grammatical intrica-

cies and word order. They ignore a word’s semantic meaning. A bag-of-word model, for instance,

does not recognize that a horse and a pony are more similar than a horse and a dog. The TF-IDF

(term frequency-inverse document frequency) method is one of the methods based on the Bag-

of-words. The TF-IDF of a word within a document is computed by multiplying two metrics: The

term frequency (TF) of a word in a document and The inverse document frequency(IDF) of the

word across a set of documents. By multiplying the values of these two terms, the TF-IDF score

of a word in a document is determined. The higher the score, the more important that word is in

that document. Despite its popularity, bag-of-words techniques have two main weak points: they

lose the word ordering and ignore the semantics of the words. Recent implementations, such as

the doc2vec technique [141], integrate word and document embeddings to represent sequences.

Mikolov introduced Doc2vec [141] as a simple extension of Word2Vec (his previous study) to learn

document-level embeddings. It was proposed in two forms: dbow (distributed bag of words) and

dmpv. Dbow is a simpler model that completely ignores word order, whereas dmpv has more pa-

rameters and is more complex. Dbow works in the same way as skip-gram and dmpv acts similarly

to cbow.

[143] proposed two categories to compare sentence embedding approaches: non-parametrized

and parametrized approaches. Parametrized sentence embedding models are parametrized and

require training to optimize their parameters, whereas non-parametrized sentence embedding are

parameter-free and require no further training upon pre-trained word vectors.

2.3.2 Outlier Detection Techniques

A number of different application domains employ anomaly detection techniques. Examples

include Data Leakage Prevention (DLP), fraud detection, and medical applications. In each of

these very different fields, synonyms are widely applied for the anomaly detection process, which

includes outlier detection, novelty detection, fraud detection, intrusion detection, and behav-

ioral analysis. Based on study in [144] Unsupervised outlier detection techniques can be cate-

gorized into four different main groups: (1) Nearest-neighbor based techniques (2) Clustering and

classifier-based methods (3) Statistical algorithms and (4)Subspace techniques. Here we shortly

introduce of two different methods of outlier detection techniques. Local Outlier Factor(LOF) and

Isolation Forest(IF) techniques.

2.3.2.1 Local Outlier Factor

The local outlier factor (LOF) [145] is the most well-known local anomaly detection algorithm.

It is categorized in the Nearest-neighbor based algorithm. LOF seeks to identify points with a

lower density than their neighbors. Hence, it could detect some outliers in the low-density region

overall which have even lower density compared to their neighbors, as well as some outliers in

high-density regions which have a lower density compared to their neighbors. To calculate the
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LOF score, three steps have to be computed: First, the K-nearest-neghbors have to be found for

each record x. In case of distance tie of the Kth neighbor, more than K neighbors are used. The

density of a record is then estimated using the k-nearest neighbors NK by computing the local

reachability density (LRD):

LRDk (x) = 1∑
o∈NK (x) d(x,o)
|NK (x)|

(2.1)

Lastly, the LOF score is determined by comparing the LRD of a record to the LRDs of its k nearest

neighbors:

LOF (x) =
∑

o∈NK (x)
LRDK (o)
LRDK (x)

|NK (x)| (2.2)

In general, the LOF score is a ratio of local densities. Since it only considers its local neighborhood

and the score is mainly focused on the k nearest neighbors, it is simply a ratio of local density.

Obviously, global anomalies can also be discovered due to their low LRD in comparison to their

neighbors. The algorithm calculates the score for each point in the dataset and utilizes LOF close

to 1 as the standard to identify whether it is an outlier factor. If the ratio is closer to 1, it means

that the density of x and neighbor points is not much different, and x and neighbors belong to the

same cluster. If the ratio is less than 1, it means that the density of x is higher than the density of

neighbors and x is dense points. if the ratio is greater than 1, it means that the density of x is less

than the density of neighbors and x is an abnormal point.

2.3.2.2 Isolation forest

Isolation Forest is an unsupervised decision-tree-based technique that was first designed for out-

lier detection in tabular data. It works by randomly dividing sub-samples of the data based on

some attribute/feature/column. The notion is that the rarer the observation, the more probable

it is that a random split on some feature will isolate outliers in one branch, and the fewer splits it

will take to isolate (form a partition with just one point present) an outlier observation like this.

If there is an outlier in the data, and we pick a column at random in which the value for the

outlier point is different from the rest of the observations, and then we pick an arbitrary threshold

uniformly at random within the range of that column and divide all the points into two groups

based on whether they are higher or lower than the randomly-chosen threshold for that column,

then there is a higher chance that the outlier will be found.

Outliers are not often defined by having a single extreme value in a single column, therefore

a successful outlier identification algorithm must consider the relationships between numerous

variables and their combinations. One such method is to construct an "isolation tree" which con-

sists of recursively repeating the randomized splitting procedure outlined above (that is, we divide

the points into two groups, then repeat the process in each of the two groups that are obtained,

and continue repeating it on the new groups until no further split is possible or until meeting some

other criteria).

According to this scheme, the more common a point is, the more splits it will take to leave the

point alone or in a smaller group compared to uncommon points - as such, the "isolation depth"

(number of partitions that it takes to isolate a point, hence the algorithm’s name) in the isolation

trees can be thought of as a metric by which to measure the inlierness or outlierness of a point.

A single isolation tree has a lot of expected variability in the isolation depths that it will give to

each observation; thus, for better results, an ensemble of many such trees - an "isolation forest" -

may be used instead, with the final score obtained by averaging the results (the isolation depths)

from many such trees.
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There are other potential methods to improve the procedure’s logic (for example, projecting an

isolation depth after reaching a particular limit), and the resulting score can be standardized for

ease of use, among other things.

When compared to other outlier/anomaly identification approaches like "local outlier factor"

or "one-class support vector machines," isolation forests have the following advantages:

• It is resistant to the occurrence of outliers in training data.

• Multi-modal distributions are robust.

• Variable scales are unimportant.

• Much easier to install.

It is insensitive to the distance measure used (since it does not use one in the first place). Fur-

thermore, because they output a standardized outlier metric for each point, such models can be

used to generate additional features for regression or classification models, or as a surrogate for

distribution density, which is not equally acceptable for all outlier detection approaches.

As stated previously, Isolation forest outlier detection is simply a collection of binary decision

trees. Also, each tree in an Isolation Forest is known as an Isolation Tree (iTree). The approach

commences with data training by constructing Isolation Trees.

Let’s examine the entire algorithm step-by-step:

• A random subsample of the data is selected and assigned to a binary tree when a dataset is

provided.

• The tree’s branching begins with the selection of a random feature (from the set of all N

features). Thereafter, branching is performed based on a random threshold ( any value in

the range of minimum and maximum values of the selected feature).

• If a data point’s value is less than the specified threshold, it is routed to the left branch;

otherwise, it is sent to the right. Hence, a node divides into left and right branches.

• This technique is repeated recursively until each data point is completely separated or until

the maximum depth is attained.

• The preceding procedures are performed to generate random binary trees.

Model training is complete after an ensemble of iTrees (Isolation Forest) is generated. A data point

travels through all previously trained trees during scoring. Now, an ’anomaly score’ is applied to

each data point based on the tree depth required to reach that point. This score is an aggregation

of each iTree’s obtained depth. A -1 anomaly score is assigned to anomalies and a 1 anomaly score

is allocated to normal points based on the contamination (percentage of data with anomalies)

parameter provided. Figure 2.16 illustrates the realization of Isolation Forest around two different

datasets.

2.3.3 Conclusion

This chapter took a glimpse at a large quantity of related work on software log mining tasks. It also

provided a review of the data analysis and machine learning techniques used in this research. To

conclude this chapter, it can be mentioned that there is already a large amount of literature in the

field of log mining tasks that deals with similar topics such as fault prediction, anomaly detection,
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Figure 2.16: Process of branching in the Isolation Forest [146]. The branching process for an anomalous

data point is depicted in Figure (a). The branching occurs till the isolated point is reached. In this instance,

three random cuts were sufficient to isolate the location. Figure (b) depicts the same process of branching

for a nominal point. Since the point is close to the center of the data, multiple cuts are required to isolate it.

In this instance, the depth limit of the tree was reached prior to the identification of the point.

and test log minimization. However, these approaches do not fulfill all the requirements that are

specifically addressed in the Philae objectives.

Addressing the gap between the existing methods and publications and the requirements of

Philae’s case studies was the focus of this research. We must mention four main deficiencies in the

published methods:

• Application-specific solutions: software artifacts differ in many aspects, from their architec-

ture, the nature of the data that they process, their response time, and network activities to

their log output information, as well as in the nature of their faults, the complexities of their

causality, and how their effects are projected on the log files. And this is only if we want to

name a few. Therefore, available approaches are either limited to a specific software envi-

ronment or they make some basic and general assumptions about how software behaves.

This fact limits the generalization of the existing methods in some particular cases. For in-

stance, in the coming chapter, we will show why existing solutions cannot address status

monitoring log files.

On the Philae project, we dealt with two different case studies, which were augmented to

three with another open-source software. We had different log mining tasks to accomplish

on each case study. Therefore, we were seeking a methodology to consolidate all the log min-

ing tasks from all case studies into a generalized approach where we could create a machine-

learning model to address them all.

• Discovering mutual and multi-causation effects: To the best of our knowledge, none of the

existing approaches are meant to find mutual effects of different events to trigger a bug.

For instance, in Philae case studies, some anomalies were caused by a group of events in

some specific order of appearance. Hence, one gap to fill was to learn about these complex

causalities between events and failure or anomaly.

• Having fewer empirical variables: dealing with different scales and complexities of differ-

ent software, we must tune proposed methods to be scaled appropriately with the software.

For instance, in noisy log files, the anomaly detection threshold must be precisely tuned to

avoid false alarms. One gap to fill from the related work was to have an approach with fewer

empirical variables. This makes the proposed approach more generic, less error-prone, and

easier to deploy.
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• Unsupervised learning: On top of all the above-mentioned shortages to address, unsuper-

vised learning gains great importance. Software logs could be huge and creating a learning

data set out of them for supervised learning may require considerable time, and in some

cases, it might be infeasible. Unsupervised learning creates a fast and easy model creation

without minimal manual intervention or pre-processing for labeling the data on the log files.

In this regard, this dissertation advances the state of the art by providing log analysis and ma-

chine learning techniques to log mining tasks to reach Philae objectives.
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3.1 Introduction

Logs are generated by log statements in software source code. Developers insert log statements

to expose and register information about the internal behavior of a software artifact in a human

comprehensible fashion [147]. Log inspection is a general way that helps developers in some soft-

ware maintenance activities such as testing, debugging, predicting, and diagnosis. The content

and format of logs can vary from one software system to another.

The classical viewpoint on software testing assumes that for each given input entry, the soft-

ware returns an output (or a log event) record which are distinct from the other input-output (or

input-log-event) pairs. Accordingly, assigning “Pass” or “Fail” labels to the output logs is mostly

feasible based on the input and the expected software functionality. These separated “input-

output” or “input-log” pairs form a basis to test a software artifact or perform some post-processing

steps on test-suites, like “regression testing” or “test-suite reduction” [10]. From this perspective,

the effect of a single or a set of inputs is mapped to a limited set of outputs or log events. Therefore,

much software testing improvements, especially, newly emerged machine-learning approaches

hold this underlying assumption. A shopping software is an example of these types of software,

in which, every action (adding items to the basket, check-out, payment) is associated with its own

outputs or log events. The meaning of the error, as an undesired output or log observation, is

clearly determined by the input under this assumption [10]. When an erroneous output is de-

tected, software developers investigate the corresponding input to find out where, in the code, it

triggers the error. Also, distinguishing the erroneous and the correct outputs/logs allows propos-

ing supervised machine learning approaches to test/log analysis, prediction, modeling or even

reduction [63]. We called this situation Software-Level Activity (SLA) logging due to the fact that

the output log is a trace of software activities and outputs. The format of log data in SAL logging

can vary significantly among software systems. They typically capture events by recording the time

when the event occurred, information about which user caused the event, and details about the

software system’s reactions.

In contrast to the SLA logging, for certain types of software, associating a fault situation to a

specific input-output is not explicit. Instead, the internal faults drive the computer system into a

period of anomalous behavior, which may end up in a system failure. Many of complex software

systems experience similar situation. For instance, a network appliance, a cellphone, cloud infras-

tructures or a multi-user operating system may experience a period of anomaly that ends up in a

system reboot. In such systems, there is a time epoch between a failure and the input that caused

the failure. Knowing the period of anomaly and localizing its root cause input are in favor for two

reasons: first, it allows system administrators to predict system failure and take measures before

it happens. Second, it gives system developers a clue of the root cause input to resolve the issue

in the source code of the software. In the above-mentioned condition, when gathering SLA logs

and outputs is not feasible, a practical way to find anomalous behavior and their root cause input

is system-Level Monitoring logging. In Monitoring logging, software testers sample the device’s

status or monitoring information (e.g: memory/CPU usage, number of processes, etc.) and then

study this status information to find anomalous behavior. In Monitoring logging, we can record

some different metrics. Some metrics include the host or container CPU usage, memory utiliza-

tion, and storage capacity. These metrics give a broad understanding of the infrastructure’s status

and how well it suits the application’s requirements. However, other types of metrics, such as the

slowest and most time-consuming requests, provide a deeper understanding. The Monitoring log-

ging has an intuitive property: The rates of input arrivals and status sampling can be different, and

generally, the status information is sampled in relatively slower pace than the input arrivals. A gi-

gabyte network appliance is such an example, in which, the rate of data arrival is thousands of
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times faster than the possible status logging. In other words, the variations of the sampled val-

ues in status logging are significantly slower than the arrival rate of the inputs. Therefore, this

approach has two serious challenges: the meaning of error is not directly linked to a specific in-

put. Thus, we search for anomalous behavior instead of errors. But the second challenge is to

relate inputs to the anomalies. In other words, a detected period of anomaly in the system spans

over numerous inputs. Hence, finding an input or inputs that caused the anomalous behavior is

challenging due to the slow pace of status sampling.

3.2 Top View of the Proposed Method

The general workflow of the proposed method is illustrated in Figure 3.1. It consists of three ma-

jor steps: i.e., log analysis, model creation, and log mining tasks. In this section, we describe the

general workflow of our proposed method. First, we elaborate on log analysis. Then, we describe

model creation, and, finally; we introduce some major log mining tasks which we studied dur-

ing this thesis, including failure prediction, root cause detection, test suit minimization and user

behavior clustering.

3.2.1 Phase 1: Pre-processing on Software-Level Activity and Monitoring logging (System-
Level Monitoring Logs)

The primary difficulties in working with logs, such as coping with inconsistent formats and ex-

tracting events from logs, is at the focus of several published methods for log analysis to under-

stand user or system behavior, identify failure and its causes, locate abnormalities, ensure appli-

cation security [15], and predict fault, log analysis attempts to extract data and information from

logs to cluster hosts [148]. In this section, we go into greater depth about how our study’s log anal-

ysis worked. We propose some preliminary steps to prepare log files to be processed by machine

learning approaches. In this part, we distinguish between the log files with software activities and

outputs (formerly called SLA logs) and those that only store the computer status information on

time intervals (formerly called Monitoring logs).

Figure 3.1: Top View Of the Proposed Method
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3.2.1.1 Log Parsing

Log parsing is typically required for machine learning approaches. They require numerical vec-

tors as input data. It is essential to parse logs and transform their events to vectors because logs

are semi-structured text. The first crucial step is to extract log messages into structured data for

further analysis because logs are inherently unstructured or semi-structured. The first and most

important stage in enabling accurate analysis is log parsing, which converts a stream of struc-

tured events from free-text raw log messages [123]. The log message typically includes constants

and variables. Constants are the fixed language that developers write to explain system events,

such as "Fail" or "Pass". For each repetition of the event, they remain constant. Variables, on the

other hand, are the values of program variables that include dynamic runtime information (i.e.,

parameters), which can change depending on the circumstances of an event [39]. A structured log

message is produced by a log parser.

Since there are many different event templates due to the complexity of the software, log pars-

ing is still a difficult operation. Additionally, the frequent updating of the logging statement is

caused by the frequency of program changes. Several automatic log parsing techniques exist, in-

cluding [149, 150, 151]. Both offline and online modes are supported by some of them [149, 151].

Offline log parsers need all the log messages in advance and parse the log messages according to

rules. Online parsers, in contrast, parse the log messages as they come in. Some parsers prepro-

cess the logs by deleting some variables or swapping them out with constants based on domain

knowledge.

In the past, primary log messages were parsed using regular expressions to retrieve events.

However, manually developing the rules to parse a log message takes a lot of time. Numerous

research studies have suggested automated log parsing techniques, such as frequent pattern min-

ing [96], iterative partitioning [15], and parsing trees [152], to reduce the manual labor involved in

log parsing.

To show an example of how log parsing may be carried out, we refer to log parsing in a case

study in our research. In the scanner case study, we employed test suits, a set of test cases designed

to be used to test software programs. Since any action-input-output combination may result in a

distinct behavior of the system, we decided to distinguish between comparable events that have

different inputs and outcomes. This is generally the case for the majority of software artifacts, and

one can parse logs by distinguishing all or a subset of "input", "action" and "output" (or occasion-

ally "timestamp"). Each action-input-output was represented for this reason as a triplet vector

with the notation [a, p,o], where ‘a’ stands for the action. The input parameter is ‘p’, while the

output parameter is ‘o’. As a result, triplets can be used to encode all operations, inputs, and out-

puts. However, the idea can be used generically for any kind of software with any number of input

and output parameters. In chapter 5, we go into great detail about it. In the Telecom case study in

chapter 4, the log files contained a substantial record of inbound events spanning six months, as

well as information on the device’s status or monitoring. A lengthy list of input events with times-

tamps make up each test log. With samples obtained every 5 minutes, each monitoring record

represents a full day of monitoring. 26 metrics are contained in each sample. chapter 4 expands

on this in further detail. We explain how to connect these two sorts of logs in chapter 4. Addition-

ally, we looked at the Train Ticket benchmark dataset. We describe it in chapter 4.

3.2.1.2 Log Partitioning

In complex software systems, the effects of different input events, coming from different sources,

are interleaved and projected altogether on the output log. The purpose of log partitioning, is to

divide our logs to extract independent sequences of events. This makes the inputs to the learn-
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ing process less noisy and facilitates the machine learning’s ability to distinguish among different

behaviors of the event sources.

Log partitioning is an important step in creating learning materials based on the target of the

machine learning problem. Here, we partition the input events into input sequences based on a

specific attribute, around which, all the ML data mining will work and yield results. For instance,

in a shopping application, if one partition logs based on their "customer ID", the ML would dis-

tinguish among users and we can assume final artifacts based on customer distinction, such as

customer behavior clustering, customer behavior prediction, etc. Later, we can filter out similar

customers and only focus on the customers with abnormal behavior based on the model created

from the users’ behaviors. Likewise, if we partition logs based on either "product ID", "days of a

week" or "time" attributes, we would have different distinctions based on the chosen attribute.

In software-level activity logging, the timestamp and log identifier are often used to divide the

log into sections. The timestamps in different formats can be easily extracted from raw logs in

the log parsing phase (Section 3.2.1.1). It records the occurrence time of each log, which is a basic

feature supported by many logging libraries. On the other hand, a log identifier is an identifier that

indicates a series of related system actions or message transfers. For example, shopping software

uses client ID to identify customers who perform various actions (such as scanning, deleting, and

paying) during a particular session. Common log identifiers such as user ID, task/session/job

ID, and so on can be extracted using log parsing. Log identifiers are a more explicit and clear

indication for partitioning logs than timestamps. In our study, we divided logs using timestamp

and customer ID in the Telecom and scanner case studies, respectively.

In monitoring logging, input events do not have a direct and exclusive link to the monitoring

logs. Instead, the accumulated effect of a large number of input events is superposed and pro-

jected onto the status information. Therefore, correlating an individual input event to a status

change in the monitoring log is not a straight-forward task. In other words, a system status record

does not belong exclusively to a specific user, session, or source, and as a consequence, one cannot

partition monitoring logs by relating them to different sources. To address this issue, we proposed

to first pre-process the monitoring log to find anomalous time periods and their start and stop

timestamps.

As a contribution of this research, to partition monitoring log files, we developed the idea of

Bug-Zones and employed it in the Telecom and Train Ticket case studies. A Bug-Zone is a period

of time during which a software system shows anomalous behavior. As described at the begin-

ning of this section, monitoring logs or status information don’t explicitly convey fail and pass

conditions (unlike software-level activity logging). As a result, the Bug-Zone concept was a trial

run for developing a meaning for a fault in monitoring logs where the normal continuation of

the software system is perturbed for a period of time due to an abnormal internal condition and

its effect appears on the status information. We developed a log-partitioning tool based on Bug-

Zones (Bug-Zone finder). The Bug-Zones Finder includes the following steps: anomaly detection,

outlier counter sliding window, standardization, outlier density curve generation, and Bug-Zone

extraction. The first step in finding Bug-Zones is to use outlier detection functions to preprocess

the monitoring data. It is possible to apply various techniques of outlier detection and then vote

among them. The outlier counter sliding window simply counts the number of detected outliers

inside a specific sliding window. The sliding window creates higher values as the number of out-

liers in a specific period of time increases. Then, a standardization pass removes the mean value

of the sliding window output and modifies its standard deviation to one. The output is what we

call the Outlier Density Curve (ODC) in chapter 4. Bug-Zones occur when the outlier density curve

exceeds a threshold line. The general workflow of log partitioning is illustrated in Figure 3.2, which

mainly consists of three main calculations: outlier detection, outlier counter sliding window, and
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Figure 3.2: Example of log partitioning in Telecom case study

outlier density curve with standardization. We go into great detail about it in chapter 4.

The Bug-Zones, extracted from the monitoring log in the previous step, enable us to extract

their potential causes among the input events. In this case, we always assume that the Bug-Zone’s

cause or causes occur prior to the Bug-Zone’s start, within a limited delay before its effect appear-

ance on the status information. Hence, the next step in monitoring log partitioning is to extract

input events that occurred before the Bug-Zone (Pre-Bug-Zone). The input extraction time range

is determined by the system developers’ observations made on the outlier density curve, taking

into account how long the root cause may have occurred prior to the Bug-Zone. The details will

be covered later in chapter 4.

3.2.2 Phase 2: Machine-Learning Model Creation

The model creation step works on the pre-processed logs to create model artifacts ready for data

mining usage, as presented in Figure 3.3. The model creation has four steps:

• Input event representation

• Input sequence representation

• Feature selection

• Creating Universal Clusters (UC)

Each step will be covered in the following subsections.

3.2.2.1 Input Event Representation

The first proposed step to create an ML model from the input events is to use a word embedding

approach to create a vectorized representation of the input events. Consider a set of log files re-

lated to a software artifact, each of which, contains a different number of input events. As we treat

input event sequences as sentences of words in a natural language, we analyze these log files using

sequential tools developed for Natural Language Processing(NLP). Therefore, the terms word and

input event have the same meaning and are used interchangeably.

Word2Vec [136], as the main NLP tool in this research, is one of the widely used word em-

bedding approaches. Word embedding is a group of word representation methods that extracts

the similarity or closeness of the words in a series of sentences and represents them in a numer-

ical form. Word2Vec creates a mapping from a text corpus’s word set (so-called vocabulary) to an

Euclidean space. In this thesis, every distinctive word (or input event in our application) in the

vocabulary is assigned to a corresponding vector in the Word2Vec space. The distance between

the words indicates their semantic relationship. Hence, two words with a close Euclidean distance

in the Word2Vec space must have a close meaning. Therefore, the first step in the model creation

phase is to extract the semantics of the input events.

52



CHAPTER 3. THE LOG MINING METHODOLOGY

Figure 3.3: Model creation overview

For instance, in the scanner case study, we partition the sequences of events (a session) that

pertain to a particular client. Then, to acquire all information of the client’s activities, each ses-

sion is shown as a sequence of triplet vectors ([action, input parameter, and output]). As a re-

sult, we have some triplets for each session, and we treat them like words in NLP. By considering

input events as sequences, we were able to discover sessions that were semantically related via

Word2Vec. It should be noted that we store each triplet as a string (e.g: ‘[delete, barcode, 1]’) and

we treat them like words in natural language processing. For instance, in the following paragraph,

it is a 15-element vector generated by the Word2Vec method that represents the triplet [scan, bar-

code, 0].

[scan, barcode, 0] :

[ 1.2445878, 1.613417, -0.1642392, 3.0873055, -0.355896 , 1.0599929, -0.49392796, 1.0838877, -1.1861929,

-0.2639794, -0.09810112, -0.9824149, 0.881457, -3.6238787, -1.1903458 ]

It must be noted that we are dealing with high-dimensional vectors and to reach a visual de-

piction of the created models, we used the t-distributed stochastic neighbor embedding (t-SNE)

method [153] to show the syntactic and semantic relations of the words in two-dimensional space.

Figure 3.4 shows the triplets’ Word2Vec vectors from the shortest log file of the scanner case study.

In this log, we have 61 sessions and 15 distinct triplets, hence the Word2Vec dimension for each

vector is 15. These 2D visual depictions are useful to understand how ML is seeing the data on

each step.

The input event representation step is identical for SLA and monitoring logging. The only

main difference is how the input event sequences are generated for each category: The sequences

of events in SLA logging have been created by log partitioning based on timestamps and log iden-

tifiers (e.g:userID, sessionID etc.), while the event sequences in monitoring logs have been created

by Pre-Bug-Zone test extraction, as was described in the previous subsection. These distinctions

will be discussed in the chapter 4 and chapter 5 Scanette (SLA logging case) and Telecom case

studies (monitoring logging).

Furthermore, in the Telecom case study, a model is built using input events extracted from

test logs. We extracted input events that occurred before the anomalous period of time from

the monitoring logs in the previous phase. Pre-Bug-Zone sequences are what we call them. We

then extracted random time intervals from time ranges that were not in the Pre-Bug-Zone. Each

Random-Zone or Pre-Bug-Zone input array is considered a sequence. Each input event in that

array is similarly treated as a one-hot-coding vector.

In order to implement our Word2Vec model, we utilize Gensim [154], to produce a set of word

embedding by the dimensionality D and the context window size W. We go over these examples in

detail in chapter 4 and chapter 5.
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Figure 3.4: 2D results of the Word2Vec vectors for the scanner case study.

3.2.2.2 Sequence Representation

After the first step, each word has a numerical vector representation and the distance between

two vectors determines how their two corresponding words are semantically close. So far, each

sentence (sequence of events) is a sequence of vectors. The next step is to make a single vector

representation for each sentence.

A sequence representation vector is a superposition of all words in that sentence. This step

enables us to measure the similarity of the sentences. There are different methods to create a single

vector from a sequence of vectors [138, 141, 155, 156]. As we illustrate in Figure 3.3, we employ two

different methods in our model for sentence embedding; sentence averaging and concept-space

creation.

Sentence Averaging: In fact, a common method to achieve sentence representations is to aver-

age the word representation vectors. This is a basic and common method for creating distributed

sentence embeddings that do not take word order into account.

Concept-Space Creation: In addition to comparing the averaging method’s results, we propose

the concept-space method, which is based on a similar idea expressed in [157] and uses vectors to

represent each sequence. The steps required for creating concept space from test events are de-

picted in Figure 3.5. To achieve concept space vectors, first, we clustered input events (or words)

based on their semantics into groups of similar events. As a result of using a clustering method

(typically K-means), we get Concept = [con1, . . . ,conn]. Then we referred to each group as a con-

cept. In fact, each vector characteristic corresponds to the proportion of events from clusters that

appear in the sequence. For example, in Figure 3.6, the input events of the Telecom case study are

plotted in part (a). After using the K-means approach, the identified concepts are displayed in part

(b).

After developing the concepts, it is feasible to determine the conceptual presentation of an

event sequence by observing its events and the concepts to which they belong. For example, we

have a sequence of tests like S1 = [t1, t2, t3, t4, t5, t6, t7]. After finding how many input events in

this sequence belong to each concept, we can have one vector that represents this sequence. For

instance, [0,2,0,3,2,0] means that we have two tests from concepts 2 and 5, three tests from concept

4, and no tests from concepts 1, 3, and 6.

The efficiency of simple averaging and concept space representations will be compared in an

example in the Train Ticket Benchmark subsection in chapter 4.
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Figure 3.5: Sentence representation by concept space creation

3.2.2.3 Feature Selection: extracting important dimensions

Some datasets with a large number of features (or dimensionality) and few samples tend to be

particularly prone to overfitting. The use of an overfitted model may lead to errors during the

research, which may then lead to more errors. Noisy features can also amplify the difficulty. Noisy

data has a tendency to affect machine learning algorithms. As the dimensionality increases, the

computational cost also increases, usually exponentially [158]. To overcome this problem, it is

necessary to reduce the number of features that are being considered. Two approaches are usually

used to reduce the number of features: 1- feature subset selection and 2- feature extraction.

Feature subset selection: It is one way to remove redundant and irrelevant features. It does not

modify the original data representation. One objective for feature subset selection methods is to

avoid overfitting the data in order to make further analysis possible [158]. There are three distinct

feature selection algorithms: the filters that extract features from data without any learning in-

volved. The wrappers that utilize learning methods to find significant features. And the embedded

techniques which combine the feature selection step and the classifier construction.

Feature extraction: In contrast, in order to reduce the dimensionality of the selected features,

feature extraction creates new variables through the combination of others. Feature extraction

serves two purposes: separating useful information from irrelevant data and decreasing the num-

ber of classification procedures by reducing the dimension. Its advantage is that new features can

be compressed more efficiently; a disadvantage of this is that the initial feature set has a specific

meaning, and the new features may lose their meaning [159].

A well-known feature selection technique is random forests. It is a collection of classifiers.

Feature selection using Random forest falls under the category of embedded techniques. Em-

bedded methods are a combination of filter and wrapper methods. The forest with the smallest

amount of features and the lowest error is selected to be the feature subset. In some studies, it

was demonstrated that the RF approach has high precision among all categories and is the best

classifier [160], [161]. In [162], shows that among of the machine learning techniques, Random

Forests(RF) have been an excellent tool to learn feature representations.

Another example of feature extraction is PCA (Principal Component Analysis) method. PCA is

a statistical analysis technique that, from the perspective of feature validity, transforms numerous

feature indicators into a small number of extensive indications. Even though PCA is excellent for

the vast majority of feature extraction, it is a linear model, which may be unsuitable for some

datasets. Another technique for dimensionality reduction is t-Distributed Stochastic Neighbor

Embedding (t-SNE) [139]. For each point, it determines which other points are its "neighbors"

and attempts to ensure that each point has the same number of neighbors. Then, it attempts to

embed the points so that each has the same number of neighbors.
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Figure 3.6: The concepts (input events) for the Telecom case study.

The choice of feature selection or extraction depends on the data set’s characteristics, includ-

ing noise, amount of available data, and variety of events. In some cases, feature selection removes

noisy dimensions, which in turn leads to better accuracy and speeds up processing by having

lower-dimensional data. On the other hand, in some other cases, it might be not effective or even

remove some features that convey important information.

3.2.2.4 Universal Clusters Construction

The final step of the model creation is to construct the Universal Clusters (UC) by clustering the

sentence vectors. These clusters are essential to the verdict on sentences’ semantics and their be-

havior for log mining tasks such as failure prediction. In fact, if the model creation step effectively

succeeds in extracting meaningful information from the input event sequences, then we would

expect to see that a particular cluster covers a group of input event sequences that all show some

similarities in their semantics, for instance, in terms of input events and their order of appearance.

We can also state that the UCs project all possible topics (concepts) in the input event sentences.

Each input sequence should belong to one of these UCs. The distance between an input sentence

and UCs is used for prediction or root cause detection tasks. These will be covered in the following

section.

The way to use the UCs depends on the log mining task and will be covered shortly after this

subsection. For example, depending on whether the majority of the test sequences in that UC

result in a fail condition, the UC may be labeled as Pass or Fail. Likewise, the center of a UC

may gain importance if we want to know to which cluster a new test sequence belongs and hence

shows similar semantics or effects as the sequences belonging to that UC. The UC center is simply

an element-wise averaging of the cluster members, and the label is the same as the label of the

majority of the cluster members.

As Figure 3.7 shows, a clustering algorithm must be employed to create UCs from all sequences.

It must return a set of clusters UC = {uc1, . . . ,ucU }, each with a corresponding center calculated by

averaging the members of the cluster, and possibly a label that indicates if the majority of the clus-

ter members trigger the failure. The label is generally used for prediction tasks. Therefore, we

would have a set of UCs and each of which is designated by its center and its label:

UC = {uc1, . . . ,ucU } (3.1)

uci = (centeri , l abeli ) (3.2)
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Figure 3.7: Universal Clusters Construction.

3.2.3 Phase 3: Log Mining Tasks

Log mining employs statistics, data mining, and machine learning techniques for automatically

exploring and analyzing a large volume of log data to glean meaningful patterns and informative

trends [39]. The generated structures and data could help in the management, monitoring, and

troubleshooting of software systems. Finding meaningful failure logs manually is similar to look-

ing for a needle in the desert. In addition, software and hardware faults may cause failures due

to the complexity of advanced software systems. Therefore, advanced strategies for implementing

automatic log mining are in high demand. This part introduces four important log mining prob-

lems, including root-cause detection (section 3.2.3.1), online failure prediction (section 3.2.3.2),

test log minimization (section 3.2.3.3), and user behavior clustering (3.2.3.4). For each of them, we

explain how our proposed method can help to achieve these objectives.

3.2.3.1 Root-cause Detection

In general, the goal of root cause analysis methods is to identify the precise source of an issue so

that corrective measures can be taken to prevent its repeat. After detecting an anomaly or identify-

ing a performance issue, the analyst determines the underlying cause by examining and interpret-

ing a vast volume of log information. System administrators can obtain significant information for

root cause analysis by correctly classifying and correlating log events. In this study, the objective

of RCA is to identify the relationship between incoming events (such as inputs, network requests,

new connections, new user logins, etc.) and any anomalous software behavior. Further research

into detecting root-cause in software source code goes beyond the goal of Philae case studies and,

as a result, this research.

Universal Clusters are meant to cluster the bug-triggering test sequences in the same clusters.

As a result, they can point software developers to tests that cause a test sequence to fall into a bug-

triggering UC. The software developer can later focus only on a limited number of bug-triggering

tests and ignore the others. To extract this root-cause information from UCs, we proposed two

different methods, 1) Subtracting UC centers and 2) Mining the model created by the UC clustering

algorithm. Here, we give a general view of the two methods:

1) Subtracting UC centers: The UC centers, as averages of all sequences in that cluster, can

reveal the features that are distinguishable between a bug-triggering cluster and a safe cluster.

For example, in an abstract illustration in Figure 3.8 which is drawn in two dimensions, there

are four UCs, each contains several test sentences extracted from pass (non-Bugzone/Randome-

Zones) and fail (Pre-Bug-Zone) periods (Pre-Bug-Zone and Random-Zone are two different ex-

tracted tests sequences in Telecom case study). In each cluster, one of these two categories is in

the majority. The cluster label is the same as the label of the majority of members. A and B repre-

sent the centers of two UCs. By subtracting the two centers A and B , one labeled as pass and one

labeled as fail, one obtains a vector such as [di f f1, . . . ,di f fC ]. The index of the largest value (e.g:

fi max = MAX [di f f1, . . . ,di f fC ].) indicates the concept with the highest contribution to the bug

triggering. Therefore, the members of Concepti max are the potential root cause of the anoma-

lies, since their presence differentiates members of A from members of B . It should be recalled

that the members of Concepti max are words that are equivalent to input event types that directly
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Figure 3.8: Universal Clusters and finding event root-causes

contribute to creating anomalies. Therefore, the observed error or anomaly is susceptible to being

triggered by the events of the Concepti max .

2) Mining the model created by the UC clustering algorithm: The second method for deter-

mining the root cause is to examine the model created during the UC creation step. During the

UCs creation, a clustering algorithm distinguishes between fail and pass sentences and clusters

them based on their concept-space vectors. Usually, the clustering algorithm creates an internal

(probabilistic) model from the inputs. From that model, we can extract the features (concepts)

importance or their discriminative power to tell clusters apart [163, 164]. The most important

concepts and their input events are suspects in the abnormal behavior.

logistic regression is another method for determining the significance of the features. Logistic

regression is used to analyze data and the relationship between a dependent variable and one or

more independent variables. Independent variables may be nominal, ordinal, or interval in type.

We can train it using Universal Clusters data. It fits a logistic function curve based on Universal

Clusters’ features. The goal of logistic regression is to identify coefficients that appropriately fit

the data and minimize error. Since the logistic function returns a probability, we may use it to

order possibilities from least probable to most likely. We use logistic regression in the Telecom

case study for the same purpose. This will be covered in chapter 4.

3.2.3.2 Online Failure Prediction

Online failure prediction provides system administrators with advance warning of imminent ab-

normal situations and possible system failures. To create an online predictor, we need only train

a classifier using a set of sentences labeled with different categories. The classifier learns the se-

quence classes that are more likely to belong to the first set and distinguishes them from the other

sequence types. However, we suggest a second method that employs the created UCs centers

as indicators to identify if a series of events may lead to a failure. Assume that the most recent

events set that just arrived to the system is denoted by Last Input s = {I1, . . . , I3τ}. In the predic-

tion phase, the conceptual vectorized version of the most recent input events can be calculated

from the created model: Last InputConcept =[coni 1, . . . ,coniC ]. It must be noted that the output

vector has a dimension of C, regardless of the number of input events. The closest UC to this vec-

tor determines the prediction verdict. For instance, we imagine that the smallest cosine distance

is between Last InputConcept and UC with a fail label. Therefore, the predictor predicts a failure

to happen soon. By a new input arrival, updating Last InputConcept = [coni 1, . . . ,coniC ] is not a

complex task. Assume that an input event I(3τ+1) arrives and I1(the oldest event) must be excluded

from the calculations. Then, based on the concepts, to which I1 and I(3τ+1) belong, one concept

value in Last InputConcept must be decremented, and another one must be increased. The cosine
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Figure 3.9: Sessions selection from Universal Clusters

distance must be calculated again to find the closest UC.

Like any other online predictor, the proposed method is a subject of false positive, false nega-

tive, and computational complexity estimations that will be covered in the case studies.

3.2.3.3 Test Suite Minimization (Log Reduction)

A common issue in software testing research is this: Given a piece of software S and a correspond-

ing test suite T, how can we quickly determine whether S passes on T, or if not, which test cases

failed? The first obvious solution is to run the entire T and observe the S’s output, but this is not

considered an efficient solution since software input events are generally a large number of test

sequences. The purpose of this log mining task is to use the created model from the previous sec-

tion to reduce or minimize a test suite to a considerably lower number of input events while the

reduced set still has the same effect as the whole test suite T, or, in other words, they trigger the

same fault as the whole T.

Here, we assume that the test suite T is composed of several sequences of input events. Re-

ferring to the previous section, the UCs created from the test sequences can be used to minimize

T. As Figure 3.9 shows, a way is to simply take one representative test sequence from each cluster

and run only those test sequences. In this case, we expect to see that the representative of each

UC has the same effect as all UC members combined.

Here, we observe a compromise between the level of test minimization and the coverage of the

whole T ’s effect. In other words, the more one reduces the number of input events, the more likely

it will be that the minimized set has a less fault-triggering effect of the test suiteT. One way to trade

between the minimization level or fault-triggering effect is to create less or more UCs as described

in subsubsection 3.2.2.4. The higher number of UCs means more fine-grained distinction between

the semantics of the test sequences and also more representative test sequences, which, in turn,

means a higher probability to trigger more faults.

The Scanette case study in chapter 5 is an example of test suite minimization. The effective-

ness of the proposed method for this log mining task will be covered in that section.

3.2.3.4 User Behavior Clustering

User Behavior Mining (UBM), as was introduced in Section 2.2.3.1 is used in process mining (busi-

ness model extraction, user behavior analysis, etc.) in complex software systems. Identifying

higher-level actions from lower-level interaction logs can be challenging. This is due to the fact

that it can be difficult to put together and then describe activity at a lower level. Preprocessing a

log using trace clustering, which divides it into smaller groups of related traces, is one technique

to deal with this issue. The ideal outcome of applying process discovery to those more coherent
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sub-logs is a series of simpler, easier to understand process models that together give a better per-

spective of the entire log [165].

Here, we can consider two tasks for the extracted UCs in phase with UBM: 1) Users’ behavior

clustering, 2) User behavior prediction. Before briefing each task, we must note that we assume

that each test sequence is a track of a particular user’s actions, which we will refer to as a session.

A session in an online shopping software, for example, could be a series of actions beginning with

log-in, product search, adding to the basket, and payment. With this assumption, the UCs are

created based on the semantics of user actions, and each member of a UC is a user session.

1)User behavior clustering: Universal Clusters intuitively divide users’ sessions into several

categories. The population of the UCs might give an insight into answering further statistical

questions, such as UCs might give an insight into answering further statistical questions, such

as "similarity of user behaviors", "diversity of their actions", etc. The distribution of a particular

user’s session among UCs might reveal information on his or her preferences. Finally, we may

find overused and unused services and resources to remove system bottlenecks and optimize the

system’s performance.

2)User behavior prediction: Because we discovered user clusters that were instructive during

the analysis of log files in our case studies, we decided to include UBM as one of the log mining

objectives in this study. Due to the current surge in interest in ML-based UBM, we choose to look

into this task in our log analysis.

3.3 Experimentation on Case Studies

Given this description of our proposed method, we aim to shed light on a number of empirical

questions: (1): How effective is the proposed approach? (2): What is the complexity of the pro-

posed method? To this end, we present an evaluation of our model over three different case stud-

ies. We present them in detail in chapter 4 and chapter 5.

3.4 Conclusion

In this chapter, we presented a method that aims to create an ML model from software logs by

treating the input events as words in a word-encoding NLP scheme. The created model is evolved

by extracting semantics and concepts from the vocabulary (input events) to establish a concep-

tual vector representation of each test sequence. Then, by clustering the test sequence vectors,

universal clusters are formed to be the basis for some important log mining tasks, including root-

case detection, fault prediction, test suite minimization, and user behavior clustering. The pro-

posed method can also be adopted for status monitoring testing cases where the system status is

monitored and processed to reveal abnormal behavior. In the next chapters, we will cover the log

mining tasks in three case studies.
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The contribution of this chapter is a compilation of works published in the 22nd International

Conference on Software Quality, Reliability, and Security- QRS (2022, China) and the 6th Inter-

national Workshop on Software Faults- IWSF and SHIFT (2022, USA) [11, 12], in which we defined

Bug-Zone Finder as an anomaly indicator tool. In the second work, we expand the first one to have

a Bug-Predictor which will be studied over different representations, model construction scenar-

ios, and two case studies. The output is a robust tool to anticipate the imminent possibility of a

system failure.

The chapter is included because it turns the theory of the proposed method (in chapter 3)

into a practical solution for real-world industrial case studies. There, we demonstrate how the

proposed method may be shaped to respond to the special nature of various software that deviates

from conventional assumptions. This chapter will examine difficulties such as status monitoring

(introduced in chapter 3), huge log files, non-specified bug effect, delayed failure (from the root

cause event), and unsupervised fault detection and prediction.

4.1 Introduction

Many software systems in operation are monitored by system administrators or supervisors to

check whether the system is running correctly and provides the expected service it has been set

up for. Thus, apart from the flow of normal inputs and outputs that correspond to the delivery of

the functions expected from the system, additional measurements on the software are collected

regularly and typically sent to a distinct (and possibly remote) supervision system, hence the name

”telemetry” [20] for such measurements. In many systems, all such events are stored in software

logs, thus enabling post-production analysis. In this chapter, we are studying systems where both

types of logs are collected and available:

• Event logs or input logs: that record all inputs (and possibly outputs) that correspond to the

functional behavior of the system

• Monitoring logs: that record the series of telemetry measurements

Actually, such logs can also be collected during development, at least when the system is com-

plete, typically for testing activities, such as system or regression testing. And in a DevOps ap-

proach, there would often be processes to investigate the logs. In testing or in post-failure analysis,

logs are the basic source of information to identify failures or faults and try to relate them to the

events that may have caused them.

There might be a large propagation delay between an internal fault occurrence moment and

the moment that its effect appears on the output. Due to this propagation delay, the computer sys-

tem experiences a period of aberrant behavior and finally terminates in a system failure. Complex

computer systems, such as cell phones, network appliances, and distributed operating systems,

are prone to such behavior, if we want to name only a few. The delay between the fault and the

system failure makes it difficult to detect its root cause. Yet, identifying the period of anomaly

and finding its root cause is a crucial task for several stakeholders in software systems engineer-

ing. First, system administrators who need a predictor to foresee a system failure by observing an

aberrant behavior, and second, software testers who are looking into large log files for a failure’s

root cause to solve a bug in the source code.

In an mature and operational software system, failures may scarcely occur during normal op-

eration or even during endurance testing. In this case, analyzing a large sequence of input and

output events might be impossible or impractical. An alternative is to leverage the monitoring

logging, in which the system’s telemetry or status information (such as CPU and memory usage
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time sequences) is recorded and later will be analyzed to find abnormal behavior. The analysis of

monitoring logs must be an automated job due to the long sequences of data and rare anomalous

periods [98]. In this sense, unsupervised machine learning can be deployed to achieve automated

anomaly detection and online system failure prediction.

In this chapter, we apply the proposed method to create a model from the monitoring logs and

present some steps to correlate input events with the detected anomalies in order to foresee the

coming system failure.

The proposed method is a scalable ML approach that can adapt with unlimited status features

and information sampling rates into various monitoring logging applications. It has two phases:

Anomaly detection: where a bundle of anomaly detection and outlier detection methods are tied

to detect time periods in which the software systems expose anomalous behavior. We call them

“Bug-Zones” and use them in the second phase to extract important events and train, classify and

correlate the events with the occurrence of Bug-Zones.

We can employ the results in two directions: First, the important events and periods of time

are clues for the software developers to investigate the root causes of the system failure. Second,

the constructed model from the ML training can be used to construct an online predictor which

observes the incoming events and triggers an alarm in case of an imminent system failure.

The proposed method was deployed to process logs of network appliances acquired by Orange

(telecommunication operator), a partner of our Philae project, and also an open-source microser-

vice online software, called Train Ticket benchmark [13]. In both cases, the logs were obtained in

testing phases with simulated usage (in the case of the telecom application, over several months

of intensive usage). Therefore, this chapter will often refer to the implications of the approach on

test logs. The results are presented in this chapter. Based on the work carried out for this study, a

tool is published on GitHub 1 repository issued by the ANR PHILAE project.

The rest of this chapter is organized as follows. Section 4.2 describes the abstraction of the

problem we are addressing in this chapter. In Section 4.3, we explain how we use our proposed

method in detail. Section 4.4 explains our implementation and empirical results of our case stud-

ies. We discuss threats to validity in Section 4.5. Finally, we conclude this chapter in Section 4.6.

4.2 Problem Description

We formalize the problem by considering a software system as a function that takes as input a

series of events. Examples of such events could be HTTP requests, API calls, network packets,

or database queries. In turn, it produces two types of series: output events (in response to the

input events) and status information (the system is monitored for that). In our problem, we are

not interested in the detail of the function of the system, so we just abstract the output events by

assuming we can observe system failures at some points system failures. The failures could also

be observed on the monitoring log. Figure 4.1 illustrates such a system.

Input events, which we call input events in our application context, are denoted by I=[I1,

. . . ,IN ], a sequence of N events. In order to be able to predict the imminent arrival of anomalies,

we need time information. This is easily ensured by most logging systems in software that records

events along with a timestamp. Therefore, an input event Ii is a couple made up of an event type

which is a member of all possible input events, and a timestamp that records when the input event

arrives or is executed on the system. On the observation side, the system status is recorded through

monitoring logging. Observation events O j are recorded at a lower rate (frequency) than the ar-

rival of input events. So several input events would occur before some O j happens. O j records the

1https://github.com/PHILAE-PROJECT/Bug_Zone_Finder
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Figure 4.1: A software system with input and monitoring events

system’s status information (e.g.: memory, cpu usage, etc) in an array of values or metrics, along

with a timestamp. Therefore, a monitoring event O j is a couple consisting of an array of metric

values and a timestamp. With our abstraction, the system failures will also be reported (and times-

tamped) into the monitoring log. In general, we can assume that status sampling is periodic with

a period τ (Figure4.1).

In testing complex software systems, there are thousands of tests that run during the testing

process each day. The test process produces huge test log files. Then, log file analysis methods

are deployed to find software failures. Automated log analysis has received a great deal of interest

since it is faster, less costly, and more effective than manual log analysis. However, our effort failed

to find related works with close assumptions to that of this thesis with the aim to be compared

against the proposed method. Hence, one cannot adopt them to solve the challenges introduced

in the case studies. For example, model extraction methods from log files are not applicable in

the monitoring logging domain due to the different nature of the log outputs. The authors of [17]

present an approach to automate log file analysis and root cause detection by creating a finite state

automaton (FSA) model from successful test sessions and comparing the developed model against

failed test sessions. This method and other similar methods would not be effective on status mon-

itoring logs. Due to the huge number of events and their possible combinations before each status

record, the created model will be significant and complex. However, FSA and similar workflow ab-

straction methods are shown to offer limited advantages for complex models [166]. Furthermore,

in the majority of approaches, the definition of fault is apparent [98] [19], while in our case, abnor-

mal behavior of the software artifact is the only lead to diagnosing the system’s internal unhealthy

condition. Accordingly, supervised approaches employed to analyze these software logs based on

their fail and pass labels, are not useful in our case.

There is some work on the automation of the log file analysis to identify failures or detect root

causes, such as [17].In addition, there are also some efforts to work on predicting and localizing

specific types of failures [16] [167]. For example, PatternMatcher proposed in [16] filters out nor-

mal metrics and unimportant anomaly patterns by using anomaly pattern classification and then

ranks root-cause metrics. In [168] authors propose a method to predict disk failures before they

cause more severe damage to the cloud system. they study both smart and system-level signals.

Reference [81] presents a root-cause metric localization approach by incorporating log anomaly

detection and correlation analysis with data augmentation.

Among limited published research on status monitoring logs, authors of [20] find a relation be-

tween system events and the changes in monitoring metrics by using statistical correlation meth-

ods. However, the approach is limited to incident diagnosis and how a single event affects moni-

toring metrics. Applying machine learning helps to promote simple and single-event diagnosis to

mining events-metrics correlation and have fault detection and prediction.

In this chapter, we present one of the few works that exploit system status monitoring obser-
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vation for bug detection and prediction in software testing. The research is applicable to logs that

can come from long test runs on mature software systems, or production logs. The goal of this

study was motivated by a telecommunication case study, in which glass-box testing of the em-

bedded third-party software of a network appliance was neither possible nor indeed desirable as

it was supposed to have been carried out by the software developers; and the software was ma-

ture enough to exhibit faults only in the long run. In this chapter, we also present the Train Ticket

benchmark results for our proposed method. The implementation of the proposed method can

be applied to many similar cases, either in testing or production.

4.3 Applying The Proposed Method On Case Studies

To elaborate more on the above-mentioned problems, we assume that a software system receives

a chain of input test events. Examples of test events could be network packets, database queries,

or API calls. The goal of our study in this chapter is twofold: Bug-Zone Finder as an indicator of

the system’s anomalous behavior and Bug-Zone Predictor as a tool to predict the imminent risk of

system failure.

We apply the proposed method to two different case studies, Telecom and Train Ticket case

studies. As Figure 3.1 illustrates, the proposed method consists of three major steps, mainly Log

Pre-Processing, Model Creation and Log mining tasks. In this section, we provide an extensive

description of each step.

4.3.1 Log Pre-Processing

A summary of how we implement the proposed method on case studies is shown in Figure 4.2. In

the first and second part of the Figure (top of the Figure)

4.3.1.1 Bug-Zone Finder

The first part of the proposed method is the Bug-Zone Finder. As presented before, a Bug-Zone is a

period of time when the software system exposes an anomalous behavior. Bug-Zones Finder con-

tains these steps: Anomaly Detection, Sliding Window, Standardization and Generating Outlier

Density Curve, and finally, Bug-Zone Extraction. They are discussed in detail below:

• Anomaly Detection

To find these periods, the first step is to deploy outlier detection functions to preprocess

the telemetry data. We use a small set of different outlier functions. Each outlier detection

function ODq must accept a multivariate array of monitoring data; it outputs anomalous

entries by a Boolean array of outlier records:

Aq =ODq ( M) (4.1)

In (4.1), M= (O1,. . . ,O J ) is the sampled multivariate monitoring data, in which, each sample

O j contains an array of metric values. Aq , the output of the outlier detection method is an

array of size J denoted by Aq = [a1,. . . ,a J ]. Each an is a Boolean value coded by an integer

0 (for false) or 1 (for true) that indicates whether O j is an anomalous record according to

outlier detection ODq .

• Sliding Window
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Figure 4.2: An overview of applying the proposed method to status monitoring and its associated log mining

tasks

As shown in Figure 4.2, each ODq gives us one Boolean array Aq . Hence, after deploying

outlier detection functions, we have several Boolean arrays with the same size (J ). A sliding

window can accumulate all Boolean arrays into one array Aac . The sliding window simply

counts all “1” or “True” values in all Boolean arrays lying inside a specific window (Figure

4.3) :

Aac [ j ] = ∑
∀Aq

j+(W /2)∑
k= j−(W /2)+1

Aq [k] (4.2)

j = {1, . . . , J }, Aq [x] = 0 f or x < 1 & x > J

The sliding window has a size that is denoted by W . Aac [t] is the number of all “1”s in a win-

dow by the size of W centered at t. Counting ’1’ s in the sliding windows must be repeated

and accumulated for all the outlier detection output arrays Aq . In Figure 4.2, we assumed

that we had used three outlier detection methods and we have A1, A2 and A3 Boolean out-

lier arrays. The sliding window outputs higher values when the number of outliers in that

period of time increases.

• Standardization and Generating Outlier Density Curve

The properties of the output of the sliding window, Aac , depend on several factors: the num-

ber of recorded monitoring features, the number of deployed outlier detection functions,

and the window size. To find Bug-Zones, one needs to set a threshold on Aac . To have a con-

stant threshold and simpler design with fewer empirical values, we propose to standardize

Aac (the output of the sliding windows). Standardization removes the mean value of Aac and

alters its standard deviation to 1. The output is what we call Outlier Density Curve (ODC),

from now on. ODC=standardization(Aac )

• Bug-Zone Threshold and Extraction

67



CHAPTER 4. FAILURE PREDICTION & ROOT CAUSE EVENT DETECTION:
ORANGE LIVEBOX - A TELECOM CASE STUDY

After standardization, Bug-Zones are detectable from ODC. Bug-Zones are the moments

when the outlier density curve rises above the horizontal threshold line (the bottom-right of

Figure 4.2). Each Bug-Zone is a pair of timestamps of the beginning and the ending events

of the Bug-Zone denoted by B Z → TB and B Z → TE .

4.3.2 Model Creation

The Model Creation phase has four steps:

• Input Event Extraction

• Model Construction

• Sequence Representation By Concept Space Creation

• Creating Universal Prediction Clusters

Each step will be discussed in the following subsections.

4.3.2.1 Input Event Extraction

At this step, one needs to extract input events in a time range before the Bug-Zone (Pre-Bug-Zone).

Figure 4.4 depicts a single Bug-Zone period and the T second test input events that occurred before

it. But we will also need to have some non Pre-Bug-Zone inputs to compare with the Pre-Bug-Zone

inputs. This can be done by extracting random time intervals from time ranges outside the Pre-

Bug-Zone periods.

The input extraction time range depends on the observations that system developers make

on the outlier density curve, considering the root cause may happen how long before the Bug-

Zone. In our case, we extract input events in a range of 3τ before the center of the Bug-Zone

( B Zi→TB+B Zi→TE
2 ), where τ is the sampling period of the monitoring log (Figure 4.1). This range

proved to exhibit the best results in our case, where sampling is done at a relatively low rate; it can

be adapted to other rates of monitoring sampling w.r.t the flow of input events.

Likewise, by creating random timestamps and verifying that they don’t fall in the Pre-Bug-Zone

periods, we would have a set of random test sequences (Random-Zones):

Pr eB Z = {Pr eB Z1, . . . ,Pr eB ZZ } (4.3)

Pr eB Zz = [Iz1, . . . , IzP ] (4.4)

Rand = {RN D1, . . . ,RN DZ } (4.5)

RN Dz = [Iz1, . . . , IzR ] (4.6)

Figure 4.3: A sliding windows over anomaly detection arrays
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Figure 4.4: Pre-Bug-Zone extraction

In (4.4) and (4.6), IzP and IzR are test inputs in the designated Pre-Bug-Zone or Random-Zone sets.

The number of the Random-Zone sequences is equal to the number of the Bug-Zones in order to

have a balanced training set. The size of Random-Zone periods was equally chosen to be 3τ.

4.3.2.2 Model Construction

At this stage, the extracted Pre-Bug-Zone input events are used to construct a model. Each Random-

Zone or Pre-Bug-Zone input array is treated as a sentence of input events (words). Likewise, each

input event in that array is treated as a one-hot-coding vector. We employed a contextual sequence

model proposed by [136] to learn the representation of each input event. The model maps then

each type of input events into a vector. The array size is |φ|, in which, φ is a set of all possible input

event types, called vocabulary. Likewise, the dimension of each vector in the array is |φ|.
N LP Model = N LPEng i ne(PB Z ,Rand) (4.7)

N LP Model = {V1, . . . ,V|φ|} (4.8)

Vi = [ f1, . . . , f|φ|], f j ∈R (4.9)

The generated N LP Model model is comprised of |φ| vectors (e.g: Vi ), each of which represents

a word in the vocabulary, and in our case, a word is an input event type. Each vector Vi , itself, is

comprised of |φ| real numbers (e.g: f j ). The distance between two vectors determines how two

words (input events) are semantically close. From now on, we interchangeably use “word” term

for an NLP vector representing an input event type and the “sentence” term for an array of vectors

representing an array of input events (e.g. a Pre-Bug-Zone input events).

4.3.2.3 Sequence Representation By Concept Space Creation

The created model gives vectors that represent the input events in the vocabulary. Therefore, a

Pre-Bug-Zone test array Pr eB Zz or Random-Zone test array Randz could be represented by an

array of vectors (a sequence) denoted by RandV
z = [I V

z1, . . . , I V
zP ] and Pr eB Z V

z = [I V
z1, . . . , I V

zR ].

The representation above is an array of vectors. To create a single-vector representation for

each sequence, we need to combine all the vectors of a sequence in a way that effectively reflects
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the semantics of the sequence. Conventionally, to create a vector from an array of vectors, simple

averaging the array has been the most straightforward way to go [10]. In contrast, our model cre-

ates a concept space from the input events by clustering them into groups of similar events and

referring to each group as a concept based on a similar idea expressed in [157]. Then, sequences

of events are mapped in the space induced by these clusters. The efficiency of simple averaging

and concept space representations will be compared in an example in the Train Ticket benchmark

subsection.

After creating the concepts, it is possible to determine the conceptual presentation of a se-

quence by observing its events and the concepts to which they belong. Hence, a Pre-Bug-Zone

sequence Pr eB Z V
z is represented by a vector of C dimensions:

Pr eB Z Concept
z = [conz1, . . . ,conzc ] (4.10)

In which, conzc indicates how many events from a concept Conceptc exist in the Pre-Bug-

Zone sequence Pr eB Zz . Random sequences of events that are not in the Bug-zones are repre-

sented in the same manner RandConcept
z .

4.3.2.4 Creating Universal Clusters

The final step of the learning phase is constructing the Universal Clusters(UCs) from the sen-

tences. These clusters are essential to differentiate between Random-Zone and Pre-Bug-Zone sen-

tences for the prediction goal. They project all possible topics in the input event sentences. Each

input sequence should belong to one of these universal clusters. The distance between an input

sentence and UCs is used to predict a Bug-Zone. This will be covered in the following subsections.

A clustering algorithm must be employed to create the universal clusters from all Pr eB Z Concept

and RandConcept sentences. It must return a set of clusters UC = {uc1, . . . ,ucU }, each of which is

designated by its center and its label. The center is simply an element-wise average of the cluster

members, and the label is the same as the cluster members in the majority (either Random-Zone

or Pre-Bug-Zone):

UC = {uc1, . . . ,ucU }

=C l uster (Pr eB Z Concept ,RandConcept )
(4.11)

uci = (centeri , l abeli ),

l abeli ϵ{"nonB Z ","pr eB Z "}
(4.12)

Figure 4.5 illustrates an abstracted example drawn in two dimensions. There are four UCs, each

of which has either of Pre-Bug-Zone (red) or Random-Zone (blue) members in the majority. The

cluster label is the same as the label of the majority of members. Based on this abstraction image,

we describe the Bug-Zone prediction functionalities.

4.3.3 Log Mining Tasks

4.3.3.1 Online ML-based Bug-Zone Prediction

Online Bug-Zone prediction gives an advance warning to system administrators about imminent

anomalies and probable system failure. As we discussed in chapter 3 to have an online predictor,

we can simply train a classifier, here with the Pr eB Z Concept
z and RandConcept

z sets. The classifier

learns the classes of sequences that are likely to be Pre-Bug-Zone and distinguishes them from the

normal (Random-Zone) sequence.

In addition, in chapter 3 we proposed a second approach to use the created UCs centers as

indicators to determine if a sequence of events may cause Bug-Zone. Creating UCs and calculating

cosine similarity allows us to determine whether a new sequence of input test events can lead to

Bug-Zone. For instance, we imagine that the smallest cosine distance is between the new sequence
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Figure 4.5: Universal Clusters (UC) - Each dot is a sentence processed in the learning phase (Red: Pre-Bug-

Zone, Blue: Random-Zone)

of input test and a Pre-Bug-Zone UC. Therefore, we predict a Bug-Zone to happen soon. Then, by

a new input arrival, the cosine distance must be calculated again to find the closest UC.

4.3.3.2 Root-Cause Detection

Root-cause detection aims to find the events that are associated with bug occurrences and to this

aim, the UCs do convey important information to be extracted. The theme of this analysis is to

learn which concept differentiates a bug UC from a normal UC. We can take two approaches to do

so: 1) UCs subtraction 2) Logistic regression.

UCs subtraction: On Figure 4.5, two UCs A and B are Pre-Bug-Zone and Random-Zone, respec-

tively. By calculating the A-B subtraction, one obtains a vector like [di f f1, . . . ,di f fC ]. The index

of the largest value (e.g: fi max = max [di f f1, . . . ,di f fC ].) indicates the concept with the highest

contribution in the Bug-Zones. Therefore, the members of Concepti max from the equation are

the potential root cause of the anomalies, since their presence differentiates members of A from

B. It should be recalled that the members of Concepti max are words that are equivalent to input

types that directly contribute to creating anomalies.

Logistic regression: Logistic regression is a common Machine Learning method that belongs to

the Supervised Learning technique. It is used to forecast the categorical dependent variable from

a group of independent variables. We can exploit a model created by logistic regression to extract

feature importance. It determines which features are truly important in predicting your target

variable. Using the model’s coefficients is the simplest technique to calculate feature importance

in binary logistic regression. The coefficients represent the log odds change for a one-unit change

in the predictor variable. Greater absolute values suggest a more significant association between

the predictor and the target variable. Therefore, the feature with the highest coefficients represents

the root cause concept and since the concepts are a group of event types, the bug root cause must

be among the event in the concept with the highest coefficient.
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Figure 4.6: Outlier density curve and detected Bug-Zones in the Telecom case study

4.4 Implementation and Evaluation Results on Prediction and Root-

cause Detection

In this section, we evaluate the effectiveness of our method. We target the following research ques-

tions:

Q1: Can our model distinguish Pre-Bug-Zone from Random-Zone sequences accurately enough?

Q2: How effective is the proposed approach in predicting Bug-Zones?

Q3: What is the complexity of the proposed approach?

Q4: What are the accuracy and efficiency of our proposed method in root-cause detection?

4.4.1 Experimental Setup

We used standard library implementation of classical ML methods and orchestrated the steps of

the approach by developing a Python 3.x script. The first step is based on outlier detection. We

experimented with two outlier detection methods, Local Outlier Factor and Isolation Forest [145,

169]. These two algorithms belong to the unsupervised outlier detection method and play an im-

portant role as anomaly detection methods. Isolation Forest is more efficient and more stable than

the LOF. However, the Isolation Forest shows some shortcomings in some experiments. Many nor-

mal samples will affect the ability to isolate abnormal points when there are a large number of

samples [170].

4.4.1.1 Telecom case study

In that case study, each monitoring event is a collection of metrics. So we processed the multivari-

ate information to identify outlier entries. Each log file corresponds to a full day of monitoring,
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(A) (B)

Figure 4.7: (A) A projection of Pre-Bug-Zones and Random-Zones vectors in 2D from the telecom case

study,(B) UCs created from telecom case study

with samples taken on 5-min periods. Therefore, we associate an array of 288 multivariate sam-

ples to each log (288×5 min = 24 hours). In the illustration, we only show 5 metrics, but in reality,

each sample contains 26 metrics.

Noticeably, we found how the two outlier detection methods complement each other. Actu-

ally, we could add more outlier detection methods in the first step, so as to accumulate all their

detection strengths.

Figure 4.6 illustrates the outlier density curve after applying the sliding windows and stan-

dardization steps. Outliers detected by LOF and IF methods are represented as scattered dots in

the upper part of the figure. Each row of dots belongs to one of the multivariate series of sta-

tus monitoring. In the middle of the figure, we record the uptime curve of the system (which is

one of the recorded metrics): a drop in the line corresponds to a reboot. The upper curve with

variations (drawn in yellow) shows the outlier density before standardization, and the lower curve

(drawn in green) shows the same after standardization. The threshold for deciding on a Bug-Zone

is represented by the horizontal line, which was set at a level of 2. We can see that the green curve

overshoots the threshold around the reboot events.

Although the correlation between reboots and Bug-zones is high, it is not 100%. Actually, 70%

of the reboots are to be found inside Bug-Zones. In fact, not all reboots are fault-related. They

might be triggered by power or network failure, which would not be liable to our analysis based on

5-minute sampling. And we also know that reboots are actually triggered by the test team, from

time to time, to restart test sessions (and the proportion is in line with our observations). The

high correlation observed, which lies between 70% and 100% (although the absence of further

data prevented us from computing a more accurate value) indicates that the Bug-Zone finder is

effective in finding anomalous behavior and predicting system failures through status monitoring.

Some other detected Bug-Zones were not near a reboot. Therefore, they may come from transient

periods of anomalous behavior that ended without a total system failure.

Once we had identified Bug-Zones, we were able to extract the Pre-Bug-Zones from the input

log, and to choose Random-Zone sequences lying outside the Bug-Zones and Pre-Bug-Zones. The

input log sequences combine 175 different elementary input events. Those events become vocabs

for our NLP based approach. We were able to identify 589 Pre-Bug-Zone sequences, and picked

568 Random-Zone sequences. In order to create the NLP Model, we implemented word embed-

ding techniques. The 175 vocabs do not correspond to a real complexity in dimensionality, so we

first use K-means in combination with Elbow method [171], to create 20 concepts from the 175

event types. Finally, the sequences for Pre-Bug-Zones and Random-Zones are converted to their

corresponding concept-space vectors. The prediction is computed in the space of these vectors.

Figure 4.7(A) presents these sequence vectors in 2D space. Each red cross represents a Pre-Bug-

Zone test sequence. Random-Zone test sequences are represented by dark dots. We can see that
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some of the clusters are more clearly associated to a single type of zone: the majority of items (dots

and crosses) are either red or dark. There are some mixed clusters with no clear majority. The fig-

ures are drawn in 2D, but actually those clusters may not be mixed in higher dimensions. This can

be evaluated by a classifier.

In the next step, we clustered, concept space vectors by using K-means clustering method. We

used the Elbow method [171] to find the number of clusters. The plotted image of the UCs in the

telecom case study is depicted in Figure 4.7(B). In this figure, we can distinguish some UC clusters

in which either red crosses or dark dots are in the majority. The more imbalanced colors in each

UC are, the more meaningful the cluster is. For instance, UC1 has a very high number of Pre-Bug-

Zone (red) crosses densely located around a circle. This cluster is a vivid Pre-Bug-Zone cluster

since the probability of a cross being Pre-Bug-Zone inside this cluster is relatively high. There are

a few balanced UCs, UC2 and UC8 in which both Random-Zone and Pre-Bug-Zone sentences ap-

pear almost equally in these clusters. For the sentences that fall inside these UCs, the prediction

won’t be accurate. It must be noted that the red crosses are plotted after the dark dots. Hence,

there are some dark dots covered by the red crosses that are not observable by the eyes.

4.4.1.2 Train Ticket benchmark

We studied the datasets in the docker container version 20.10.8 deployed on a GPU server with

125 GB memory. As mentioned in the previous section, the tester triggered the injected bug five

times during the test period of three hours. Consequently, the anomaly detection engines detected

several anomalous values around the bug events, as depicted in Figure 4.8 by red vertical bars.

The outlier density curve is depicted in Figure 4.9. By Bug-Zone threshold of 1, the threshold

line (in green) intersects the outlier density curve in seven Bug-Zones during the testing period. In

Figure 4.9, the red dots are the detected outliers and the blue and orange curves are the raw and

standardized outlier density curves, respectively. While five detected Bug-Zones correspond to the

bug events, there are two false positive Bug-Zones, which form a total of seven Bug-Zones.

Afterward, referring to the test log, seven Pre-Bug-Zone test sequences (sentences) were ex-

tracted from the test log file, as well as fifty Random-Zone test sequences outside the Bug-Zone

periods. We created a word embedding model from the extracted test sequences and used the av-

eraging and the concept space methods to create a vector representation from the extracted test

sequences. Figure 4.10-A shows a projection of the averaged sequence vectors in 2D space, while

Figure 4.10-B shows the same for the concept space representation. In each Figure, red and gray

dots represent the Pre-Bug-Zones and Random-Zones test sequences. The two sentence vector-

Figure 4.8: CPU and memory usage during the test period and five bug events in the Train Ticket case study.

Detected anomalies are depicted by red bars.
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Figure 4.9: Outlier density curve for the Train Ticket benchmark. The detected outlier is shown in red dots

and the threshold line is in green.

Figure 4.10: Averaging method vs concept space method to sentence embedding in the Train Ticket case

study

ization methods created two main clusters (surrounded by circles) with distinguishable distances

on 2D. In both figures, one cluster has five Pre-Bug-Zones test sequences, and the remaining two

fall into the other cluster. After the investigation, we observed that the two red dots located among

the gray dots in the gray circle are the Bug-Zones which were NOT caused by the bug (caused by

anomalies of the other tests). Therefore, their semantics are close to the random test sequences.

Consequently, we can state that the sentence representation step can correct the false positives

on the Bug-Zone finder step. Also, this observation shows how effectively the proposed method

can distinguish between the Bug-Zones based on their causes. Hence, the clusters meaningfully

differentiate among different root causes of Bug-Zones.

All red dots must be separated from the gray ones in a circle. Therefore, the gray dots in the

wrong circles can be based on an estimation of the false positive rate of Bug-Zone prediction.

For instance, in Figure 4.10-B, 8 gray dots are in the red circle (false positive), forming 16% of the

population. We expect a similar false positive rate from the Bug-Zone Predictor. One noticeable

difference in the concept space figure (Figure 4.10-B) is the uniformity of the dots in the more

significant cluster and its clear distance from the smaller cluster. Apparently, the concept space

method better illustrates the two different semantics of the test sequences (Pre-Bug-Zones and

Random-Zones). Finally, a Bug-Zone Predictor based on a Random Forest predictor gave us 90.7%
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Table 4.1: Classification methods applied on Pre-Bug-Zone and Random-Zone sequences on the Telecom

Dataset

Method Accuracy

MLP 64%

SVM(RBF) 62%

RF 75%

Figure 4.11: The Roc curve for Random Forest, SVM, and MLP classifiers for Telecom case study

accuracy in predicting Bug-Zones. A higher precision was expected in this case study due to the

lower noise and complexity of the system.

4.4.2 Q1: Can our model distinguish Pre-Bug-Zone from Random-Zone sequences ac-
curately enough ?

Here, we seek to find how accurately our model can distinguish between Pre-Bug-Zone and Random-

Zone sequences. A supervised classifier can determine how the Pre-Bug-Zone and Random-Zone

sequences are different from one another. Since the clusters are not linearly separated, we chose

three different types of non-linear classifiers to separate them. More precisely, in this step, we

used concept space vectors (dim=20) of Pre-Bug-Zone and Random-Zone sequences. We em-

ployed three common classifiers in our study: Support Vector Machines (SVM), Random Forest

(RF), and Multi-Layer Perceptron (MLP) from the Scikit-learn library implementations. Since the

boundaries on our dataset are hypothesized to be non-linear, we chose RBF (radial basis function)

as the SVM kernel function. Their accuracy in classifying the Pre-Bug-Zone and Random-Zone

sequences is presented in Table 4.1. Random Forest, with 75% accuracy, has the highest rank.

AUC metric or Area Under Curve value [172] is one of the most important metrics for evalu-

ating any classification model’s performance. It tells how much the model is capable of distin-

guishing between classes. The AUC metric is a value between 0 and 1. The worst AUC value of a

classifier is 0.5 which means the model is not capable of separating the classes. Hence, values near

1 or 0 are desirable. The results in Figure 4.11 show that the Random Forest classifier outperforms

the other ones, since the AUC value for Random Forest is 0.71, while the AUC value for SVM and

MLP classifier is 0.62 and 0.64, respectively.
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Table 4.2: AUC values in different dataset

Dataset RF Prediction UC Prediction

Telecom 71% 65%

Train Ticket 90.7% 95%

4.4.3 Q2: How effective is the proposed approach in predicting Bug-Zones?

The effectiveness of a predictor is generally evaluated by its accuracy, and some metrics based on

the ratio of its false negatives and false positives. Namely, Precision, recall and F1-score.

4.4.3.1 Accuracy

To train the Bug-Zone predictor, we randomly divided our concept-space dataset (both Pre-Bug-

Zone and Random-Zone sequences) into 80% and 20% to train and test the predictor, ensuring

each set contains both label 0 (Pre-Bug-Zone) and 1 (Random-Zone). We repeated the random

splitting process 30 times for cross-validation and took the average as the result. We chose Random

Forest for prediction as a baseline in the previous study, since it was the most accurate among the

other classifier. Random Forest, after training, succeeded in correctly classifying 71% of the test

dataset in the telecom case study and 90.7% accuracy in predicting Bug-Zones in the Train Ticket

dataset. These results imply that it can be used to predict Bug-Zones based on real-time incoming

test data. A higher value was expected in the Train Ticket benchmark due to the lower noise and

complexity of the system.

Table 4.2 shows these results. By using UC prediction method, we achieved 65% and 95% accuracy

in Telecom and Train Ticket case studies respectively.

4.4.3.2 Precision, recall and F1-score

We computed common classification metrics, namely, precision, recall, and F1-score which are

routinely used in similar work [63] [167] [173] [71] for analyzing accuracy. Precision and Recall can

be formally defined as follows where TP, FP, FN are the number of true positives, false positives,

false negatives, respectively : Precision=( T P
T P+F P ), Recall=( T P

T P+F N ). Precision is the percentage of

correctly predicted Bug-Zones (True-Positive) over all Bug-Zone prediction (True-Positive+False-

Positive). It can be considered as the measure of the exactness or correctness of a classifier. A

low precision value indicates a large number of false positives [18]. Recall is the percentage of

Bug-Zones that are correctly predicted in advance among all the Bug-Zones (True-Positive+False-

Negative). We can call Recall as the measure of the completeness of a classifier. A low Recall value

indicates many false negatives [18]. As presented in [173], F1-score ( 2∗T P
2∗T P+F N+F P ) is the most used

singleton metric, and it is the harmonic mean of precision and recall. From a tester’s point of

view, Recall metric might be more important, since a lower False-Negative rate (or higher True-

Table 4.3: Performance of Bug-Zone prediction on Telecom and Train Ticket case studies by using Random

Forest prediction method

Dataset Method Precision Recall F1-score

Telecom RF classifier 0.68 0.70 0.69

Telecom UC Prediction 0.63 0.62 0.61

Train Ticket RF classifier 0.93 0.93 0.93

Train Ticket UC Prediction 0.97 0.75 0.81
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Positive) indicates that we are not missing Bug-Zones information. For a Bug-Zone predictor, both

Recall and Precision are of interest. A lower Recall value indicates that we are missing more Bug-

Zones and is linked to the cost and consequence of it. But a lower Precision value means that we

are having more False-Positives, which in turn causes losing confidence in the system, especially

when the system takes an automatic measure on a prediction that should not be taken.

4.4.3.3 Comparative Analysis: What to choose: Random Forest or UC Prediction?

Table 4.3 shows the precision, recall, and F1-score on the telecom and Train Ticket case studies by

using the Random Forest classifier as a baseline and UC prediction as a proposed method in this

thesis. It shows that UC prediction can achieve higher precision values (e.g. 97% for Ticket Train).

On the other hand, it has lower recall values and, therefore, a higher false negative ratio.

To answer the "what to choose" question, we must state that, in general, Random Forest shows

better efficiency (F1-score) specifically in noisy log files (e.g., Telecom case study). Then, if effi-

ciency is the only parameter, RF is the way to go. However, the UC cluster has two main advan-

tages that may tip the balance in its favor in many case studies:

- Sustaining unsupervised approach: Every stage in the suggested process upholds the commit-

ment to offer an unsupervised approach. RF is a supervised classifier that requires a training

phase. However, it won’t have the exact difficulties of a supervised classifier in our case. the learn-

ing phase does not need a manual intervention to label the learning dataset, because the learning

set is already labeled (Pre-Bug-Zone and Random-Zone) during the model creation phase.

- Complexity on model creation and prediction: In general, UC prediction has considerably

lower computational complexity. RF has several parameters that contribute to its construction

complexity. A full unpruned decision tree takes O(v * n log(n)) time to construct, where v is the

number of variables/attributes and n is the number of records. One must specify the number of

trees to be built (assuming it to be, ntree) and the number of variables they wish to sample at each

node (assume it to be, nvar) before beginning to build random forests. The complexity to con-

struct a single tree would be O(nvar * n log(n)) since we would only employ nvar variables at each

node. Now, the complexity for creating a random forest with ntree trees would be O(ntree * nvar *

nlog(n)), assuming the tree’s depth will be O(log n), and this is the worst-case scenario. However,

a tree’s build typically ends considerably earlier, making an estimation difficult. Nevertheless, we

could also limit how deep the trees could grow. The complexity calculations can be simplified

to: If we limit the maximum depth of our tree to be "d": O(ntree. nvar. d. n). In contrast, UC

prediction is only a cosine distance calculation at each prediction. Therefore, for large datasets

and real-time applications, UC prediction has the advantage of faster execution time and lower

memory footprint.

4.4.4 Q3: What is the complexity of the proposed approach?

We can distinguish the complexities of the learning phase from the online prediction phase. The

learning phase is less critical since it is off-line and needs to be created only once before online

prediction. On the other hand, the online prediction is the part that repeats by arriving each time

that a new input arrives. On the off-line phase, the complexity of the Bug-Zone finder part is

bounded by the outlier detection algorithms, in which the local outlier factor algorithm has the

highest complexity in the order of O (J 2), and J is the number of monitoring samples. Likewise,

the complexity of the model creation step is O (N .logV ) where N is the number of input events in

the Pre-Bug-Zone and Random sequences, and V is the vocabulary size. For the online Prediction

phase, the complexity is O (U ), where U is the number of universal prediction centers. Alterna-

tively, if we use random forest instead of UCs, the complexity is O (T ×D), where T is the size of
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RF and D is the maximum depth. Both parameters depend on the number of test sequences in

the learning phase and are expected to be considerably larger than the number of UCs. Therefore,

using UCs is preferable due to lower complexity in real-time systems.

4.4.5 Q4: What are the accuracy and efficiency of our proposed method in root-cause
detection?

As described in subsection 4.3.3.2, the distance between a Bug-Zone universal cluster (UC) and a

random (normal) UC can be exploited to learn which concept (a set of related tests) contributed

more to creating that Bug-Zone UC. As was discussed, one has two ways to find bug root causes. 1)

It is possible to calculate the distance between a Pre-Bug-Zone UC and a normal UC by subtraction

and find the most important concepts as the maximum absolute value after the subtraction. or 2)

use logistic regression and extract feature importance coefficients. We chose the second method

since it was easy to deploy using sklearn Python library.

We trained a supervised logistic regression model with the Pre-Bug-Zone and random-Zone

vectors. After model creation, we extracted the model coefficients. Among the 20 concepts created

in subsection 4.4.1.1, five had a coefficient higher than 0.5. In particular, Concept4, Concept1,

Concept5, Concept18 and Concept17 have coefficients of 0.70, 0.69, 0.63, 0.55, and 0.51, respec-

tively. Concept4 is comprised of 7 input events (4% of the total of 175 input events), and all five

concepts, together, are comprised of 37 test input events which form 21% of the total test events.

Therefore, now the telecom’s developers have a smaller number of input events to study and real-

ize which subset of them triggers the Bug-Zones.

To verify the validity of the detected root-cause input test events from the Telecom case study,

we must run the suspected test events again on the Telecom device and observe its health status

to see if the probability of triggering anomalous behavior increases. We may succeed in driving

the device into failure if the root-cause events are valid. However, we didn’t have access to the

test bench to re-examine the proposed root-causes. We submitted a report of the suspected fault

causes to the Telecom company and asked them to do so. We are still waiting for the response from

their test team.

4.5 Threats To Validity

The main threat to the validity of this study is that the approach has only been validated in two case

studies, with different contexts and scales. Obviously, it should be assessed in more case studies.

It would have been nice to have a benchmark of representative case studies for fault detection and

prediction from monitoring logs, but we did not find one that could correspond to our assump-

tions and context. The Train Ticket benchmark was inspired by a previous study [81] that already

used it to that end, but it is smaller and less complex than most of the surveyed real systems. Also,

in that case, we dealt with a simple type of failure. We would need to inject other types of failures

in the future.

Another threat to the validity of our study, in the case of the Telecom case study, due to human

resources issues, we were not able to get complete feedback from the test team to assess the rele-

vance of the detection and of the prediction. Assessing the quality of the prediction would require

using the system in a real operational context.

The Last one, there is missing relevant papers. We searched the digital libraries that are most

likely to cover monitoring log analysis. However, we can not rule out the possibility that we may

have missed some relevant studies.
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4.6 Conclusion and Future Work

System status information can be exploited for software testing to find the root cause of system

failures and predict them in an online system. This chapter presented the Bug-Zone finder and

Bug-Zone predictor, two approaches for detecting and predicting anomalous periods in a soft-

ware system. First, by using different anomaly detection methods, the Bug-Zone finder detects

anomalous periods, enabling testers to only focus on the input events near the Bug-Zones. Thus,

this reduces the testers’ efforts and provides valuable information on the events and their causes.

Second, by using an ML technique to create a conceptual model from the semantics of the test se-

quences, the online predictive model enables us to identify sequences of tests that lead to a system

failure. Thus, it helps system administrators to foresee system failures in the future. The effective-

ness of the two proposed methods was evaluated in two case studies, one from the Orange com-

pany and the second one is Train Ticket, an open-source benchmark microservice system. The

detected Bug-Zones cover at least 70% of the systems reboots (failures) in the telecom case study;

Random Forest predictor, after training, succeeded in correctly classifying 71% of the test dataset

in the telecom case study and 90.7% accuracy in predicting Bug-Zones in Train Ticket dataset. By

using the UC prediction method, we achieved 65% and 95% accuracy in Telecom and Ticket Train,

respectively. A higher value was expected in the Train Ticket benchmark due to the lower noise

and complexity of the system. These results imply that our created model can be used to predict

Bug-Zones based on real-time incoming test data by using RF or UC predictor.

For the continuation of this work, we aim to employ the created concept space and UCs in

finding the root causes of anomalies among the input input events. The achievements of this

future work can help software developers to localize and find the cause of system bugs.
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This chapter has been published as a paper in the 1st Workshop on Natural Language Process-

ing Advancements for Software Engineering (2020, Singapore) [10]. It covers the scanner (scanette

in French) case study, which employs the proposed method for a different purpose than the previ-

ous case studies. The goal of log mining in this case study is to minimize huge (simulated) usage

logs into tiny ones while keeping the fault-triggering capabilities of the whole logs. Obviously, ex-

ecuting the whole test suite and selecting the most efficient tests is the worst-case scenario and

requires a very long and tedious effort. Therefore, any effort to select a small number of tests with-

out executing the whole test suite saves time, reduces costs, and is appreciated by software testers.

5.1 Introduction

Software testing is one of the most time-consuming and highly priced steps in software develop-

ment, specifically for large systems. It accounts for more than 52 percent of the total software

development budget, and its fault detection coverage is directly connected with the quality assur-

ance of the product [174]. Therefore, any effort in optimizing the test process can save time and

budget and increase product quality. These, in turn, will ease software testing of large systems,

shorten the time-to-market gap and increase the profit.

During the software testing process, the product may go through regression tests, which in-

clude several recurring test-and-debug steps to ensure that the software still performs after mod-

ification with the same functionality as originally. Regression testing is crucial to ensuring the

quality and reliability of a software product. Regression testing requires considerable time and de-

velopment resources. Due to the addition of new features, test engineers must generate a new set

of test cases in order to validate the modified portion of a software system. As a consequence, some

test cases become obsolete and redundant, which requires additional testing time and resources.

A large number of test traces can be gathered either from automated testing or from user traces.

Test Suite Minimization or Test Suite Reduction (TSR) helps to reduce and purify the test cases

by removing redundant and ineffective tests [175]. Therefore, test suite reduction is a method for

accelerating regression testing. The objective is to determine which tests can be eliminated from

a test suite without significantly diminishing its fault-detection capability. Numerous algorithms

have been proposed by researchers to identify redundant tests [175, 176, 177]. An automated TSR

helps to reduce human interaction in error case debugging since the process leaves fewer test

cases to be investigated by humans. During the last decade, several automated TSR methods have

been proposed and recently Machine Learning (ML) has extended its realm to software testing and

test suite reduction.

In the literature, there are mostly three main approaches employed for TSR; Greedy, Clus-

tering, and Search approaches [177, 178]. These approaches mainly differ from each other in

terms of the type of algorithms used. Greedy-based approaches mostly use greedy algorithms,

clustering-based approaches use a variety of clustering and sampling algorithms, and search-

based approaches employ a variety of search algorithms. The existing clustering-based TSR ap-

proaches employ supervised clustering algorithms to group test cases. Applying clustering-based

approaches for TSR has received a deal of attention [178, 179, 180]. Some similarity-based ap-

proaches have been proposed for clustering, which generally tries to find similar test cases and

remove redundancy [181]. Reichstaller et al. [182] used two clustering techniques, Affinity Propa-

gation and Dissimilarity-based Sparse Subset Selection to reduce the test suite in a mutation-based

scenario. Felbinger et al. [183] employed decision trees to build a model from the test elements

and remove those that do not change the model. In addition, classic machine learning approaches

(e.g: Random Forest and SVM) are employed for this purpose [184].

Furthermore, clustering can be utilized to extract knowledge from user traces. By clustering
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user traces, the most important behaviors of the users can be extracted. The authors in [185] pre-

sented a user session-based testing technique that clusters user sessions based on the service pro-

file and selects a set of representative user sessions from each cluster. Following that, each selected

user session is tailored by increasing it with additional requests to account for inter-webpage de-

pendencies.

The mentioned methods generally focus on the combination of the test elements and do not con-

sider the order and vicinity of the elements in a test trace. Since our proposed method applies NLP

to create an ML model, it effectively takes into account the combination and order of the events in

test traces. For this purpose, the proposed method processes test traces as sentences in a natural

language and builds a model based on the sequence of the words in each sentence.

In contrast to many TSR methods that need to run the test traces to decide on keeping or

removing them, the proposed method regards the traces like natural language sentences, by sep-

arating and removing similar and redundant events. Therefore, it does not need to run the traces,

which eliminates the need to access the software-under-test and makes the entire test reduction

process faster. In addition, our methods employ unsupervised clustering algorithms for grouping

sessions.

In this chapter, we adopt the proposed method in chapter 3 for TSR purposes with an approach

to identify semantic similarities between individual test sentences and choose one test sentence as

a representative of a subset of similar sentences. More specifically, in section 5.3 we will explain the

steps for applying the proposed method to test suite minimization. We will introduce the scanner

case study in section 5.4. Then, we will discuss the results of the proposed method in section 5.5

as well as the conclusion and future works in section 5.6.

5.2 Assessment of approach: Mutation testing

Mutation testing is a technique that has been widely used in academic research. It often used as a

"gold standard" to compare testing approaches [186]. This technique is centered on the concept

of changing the System Under Test (SUT) in such a way that the modifications simulate faults that

a component programmer would produce. The generated mutations of SUT are referred to as

mutants. After that, testers would design test cases for discovering the seeded faults. When a test

case enables a mutant to act differently than the original SUT, it is said that the test case "kills" the

mutant. The hypothesis underlying mutation testing is that a well-designed test suit can identify

all mutants. Thus, testers must improve the test suit until it can kill mutants that are not identical

to the original SUT. A defective test suite is one that does not detect certain mutants. The goal

when applying mutation testing is to obtain a mutation score of 100%. It indicates that the test

suit is able to detect all the faults represented by the mutants [186].

Mutation testing is a highly effective way to evaluate the effectiveness of a test suite, but it

comes with a large cost. Basically, manually carrying out mutation testing requires a lot of human

effort. Since it is costly and time-consuming, researchers have been trying to use ML algorithms to

accelerate some steps of this process. There are two main approaches to reduction, which can be

categorized into two groups: the first consists of methods aimed at decreasing the number of mu-

tations, and the second, second, those aimed at reducing the execution costs. For instance, in [187]

the similarity of mutants, is used to reduce the number of mutants to be executed. Graph repre-

sentations of each mutation are used to determine their similarity. The use of graphs to represent

objects has been the focus of much research. [187] proposes a method for classifying mutants as a

way to reduce the number of mutants to be executed and evaluate the quality of test suits without

exposing them to execution against all available mutants.

We evaluate our proposed method on a Supermarket Scanner (Scanette) case study. In order
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to assess the fault coverage of a reduced test suite, we use mutation-based testing, which has be-

come mature and is being applied more and more both in research and industry [188]. Based on

this approach, the source code of the Scanette software is artificially mutated. For that software,

we had a source of handmade mutations that were known to provide a good assessment of fault

coverage. Each mutation injects a bug into the Scanette software. For that case study, we also

had three reference test suits of varying lengths, one of them from a (handwritten) functional test

suite, and the others collected from random testing. We apply our method to assess its results in

that case study.

5.3 Applying the Proposed Method

Here, we explain the steps for applying the proposed method to log minimization. The input of

the proposed method can be a test suite or usage logs comprised of several clients’ sessions, each

of which contains a trace of the client’s actions. The goal is to remove redundant and ineffective

sessions to have a considerably lower number of sessions that have the same effect as the original

test suite or usage log. Since the input file can be either a test suit or a usage log, we consider test

or event selection as a log minimization task.

we adopted the general proposed method from chapter 3 and modified it to achieve the TSR task.

We pursue the steps depicted in Figure 5.1, which will be discussed in turn: log pre-processing,

model creation by the NLP in which we have vectorized session representation, and Universal

cluster creation, then in order to reduce the number of test cases for log mining task, we select

representative sessions, and finally, there is execution and verification step. The

5.3.1 Pre-Processing

The pre-processing step has a few steps to create a dataset for ML model creation. These steps are

log parsing, log partitioning, and event abstraction. In an initial log parsing and partitioning step,

we cut a trace that records interleaved sessions of different independent customers into a set of

sessions, each one for a unique customer. Then, as an event abstraction step, each event of a trace

is converted into a triplet that captures the relevant features of the event.

A session refers to a sequence of actions performed by a single user while interacting with the

system. As the session is a sequence of events, after conversion it becomes a sequence of triplets.

In the event abstraction step, we describe the association of triplets to events. We decided to differ-

entiate among similar events which have different inputs and outputs because every combination

of action-input-output may show different behavior of the system. For example, a ‘scan’ action

with an error output code should be treated differently from the same action with a success out-

put code. For this purpose, each action-input-output was coded as a triplet vector like [a, p,o], in

which ‘a’ is the index of the action from set A which itself includes n possible actions denoted by

A1 to An . Likewise, ‘p’ is the index of the input parameter from set P , containing all possible input

parameters from P1 to Pm and finally ‘o’ is the index of the output parameter in set O including a

list of all possible outputs, from O1 to Ok .
A = {A1, A2, A3, . . . , An},

A1 : unlock, A2 : scan, A3 : add , ...

P = {P1,P2, . . . ,Pm},

P1 : bar code,P2 : null [],P3 : f loatnumber, ...

O = {O1,O2, . . . ,Ok }

O1 : 0,O2 : −2, ...
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Figure 5.1: Flow chart of the proposed session reduction approach on the scanner case study

Therefore, we can encode all actions/inputs/outputs in triplets. Note that we still abstract from

the timestamp and from the parameters of the action (typically, the actual barcode of a shop item):

the actual delay between actions is not relevant, only the ordering of events should be kept. Sim-

ilarly, the exact choices of items picked by a customer are irrelevant to the logic of the applica-

tion. We can now display each session as a sequence of triplet vectors. You can see three different

clients’ sessions below. Each session has been printed in the form of triplets: client 60: [[’debloquer’,

’Nothing’, ’0’], [’scanner’, ’Barcode’, ’0’], [’scanner’, ’Barcode’, ’-2’], [’scanner’, ’Barcode’, ’0’], [’transmission’,

’CaisseNumber’, ’0’], [’abandon’, ’Nothing’, ’Error’], [’ouvrirSession’, ’Nothing’, ’0’], [’ajouter’, ’Barcode’, ’0’],

[’fermerSession’, ’Nothing’, ’0’], [’payer’, ’Price-float’, ’0’]]

client 40: [[’debloquer’, ’Nothing’, ’0’], [’scanner’, ’Barcode’, ’0’], [’scanner’, ’Barcode’, ’0’], [’scanner’, ’Bar-

code’, ’0’], [’scanner’, ’Barcode’, ’0’], [’scanner’, ’Barcode’, ’0’], [’scanner’, ’Barcode’, ’0’], [’scanner’, ’Barcode’,

’0’], [’scanner’, ’Barcode’, ’0’], [’scanner’, ’Barcode’, ’0’], [’transmission’, ’CaisseNumber’, ’0’], [’abandon’, ’Noth-

ing’, ’Error’], [’payer’, ’Price-float’, ’0’]]

client 17: [[’debloquer’, ’Nothing’, ’0’], [’scanner’, ’Barcode’, ’0’], [’scanner’, ’Barcode’, ’0’], [’scanner’, ’Bar-

code’, ’0’], [’scanner’, ’Barcode’, ’0’], [’scanner’, ’Barcode’, ’0’], [’scanner’, ’Barcode’, ’0’], [’scanner’, ’Barcode’,

’0’], [’scanner’, ’Barcode’, ’-2’], [’scanner’, ’Barcode’, ’0’], [’transmission’, ’CaisseNumber’, ’0’], [’abandon’,

’Nothing’, ’Error’], [’ouvrirSession’, ’Nothing’, ’0’], [’ajouter’, ’Barcode’, ’0’], [’fermerSession’, ’Nothing’, ’0’],

[’payer’, ’Price-integer’, ’Float Number’]]

5.3.2 Model Construction

In this section, we describe model construction that consists of: word representation, vectorized

session representation, universal cluster creation, that will be covered in order. First, we associate

a vector to each triplet using the Word2Vec vectorization process, as described in section 5.3.2.

The dimension of those vectors is the number n of different triplets that appear in the trace. Each

session of length L is therefore associated to a sequence of L vectors of size n. Finally, we associate

a single vector of size n to a session by using session averaging, as described in section 5.3.2.2. But

as n would be too high a dimension in most cases, we first reduce the dimensionality using the

t-SNE method before proceeding to the clustering. We go into the details of model creation in the
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following subsections:

5.3.2.1 Word Representation

In the continuation of the proposed method from chapter 3, an NLP method must create a vector

representation of the test sequences. The output of this approach is a vector representation of

each word. In different studies, it has been shown that the distance between each pair of words

translates their semantic relation. From word representation, a representation of each sentence in

a given document of the collection can be induced by for example averaging the vector represen-

tations of all words that are present in the sentence. In our work, since we need to cluster/merge

similar sessions into a fewer number of sessions that can trigger the same errors (or "kill the same

number of mutants"), we chose Word2Vec to find semantically similar sessions by treating test

traces as sentences. The Word2Vec clustering method may tell us that some sessions are equiva-

lent or very close to each other, although their actions and inputs/outputs are different. For this

purpose, first, we calculate a measure for each triplet and use the Word2Vec method to learn its

vector representation. It should be noted that we store each triplet as a string (e.g: ‘[’scanner’, ’Bar-

code’, ’0’]’) and we treat them like words in natural language processing.

These are two 15-element vectors created by Word2Vec method and represent [’scanner’, ’Barcode’,

’0’] and [’delete’, ’Barcode’, ’1’], triplets.

[[’scanner’, ’Barcode’, ’0’] :
[ 1.2445878, 1.613417, -0.1642392, 3.0873055, -0.355896 , 1.0599929, -0.49392796,
1.0838877, -1.1861929, -0.2639794, -0.09810112, -0.9824149, 0.881457, -3.6238787,
-1.1903458 ]

[’delete’, ’Barcode’, ’1’] :
[ 0.17494278, 0.15232983, -0.14811908, -1.5120562, -0.0818198, -0.35962805,
-0.65130717, -0.18931173, 0.85284257, -0.23423576, 0.8646087, 0.41952062, 0.5157884,
1.593384, 0.50375664]

5.3.2.2 Vectorized Session Representation

Similar to the Telecom case study, we create a single vector to represent a sequence of input vec-

tors. There are different methods to get the session vectors [138, 141, 155, 156]. In fact, a common

method to achieve sentence representations is to average word representations. Vector averag-

ing has been effective in some applications [189]. Averaging over word vectors in a sentence was

shown to be an effective method for sentence representation. The authors in [190] studied three

supervised NLP tasks and observed that, in two cases including sentence similarity, averaging

could achieve better performance in comparison to LSTM. To this end, we compute an average

of the Word2vec vectors in each session. It could be simply an element-wise average of n-element

vectors that finally leaves us an n-element average of the words in a sentence. In the end, we have

a single vector measure for each session. In our experiments, we used the element-wise arithmetic

mean to compute the averaged measure for a session. Hence, each session is associated to a single

vector of size n.

Concept space creation, as covered in previous chapters, is another method to achieve this

goal. Since we achieved satisfactory results by using the averaging method in this case study, we

did not feel motivated to apply the concept space approach. We left the concept space creation as

a part of the future work.
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5.3.2.3 Universal Clusters Creation

As described in the chapter 3, we create universal clusters from the sentence representations. This

is an essential step before log mining tasks. In this case study, universal clusters have no label since

there is no binary distinction among the clients, unlike the case studies in subsubsection 4.4.1.1

with "Pre-Bug-Zone" and "Random-Zone" labels.

Traditional approaches to data analysis and visualization often fail in the high dimensional

setting, and it is common to perform dimensionality reduction in order to make data analysis

tractable and meaningful [191]. To this end, we applied the t-SNE algorithm [153] in order to re-

duce the initial dimension of the vector space to 2, as it has been proved that this method success-

fully maps well-separated disjoint clusters from high dimensions to the real line to approximately

preserve the clustering. Also, dimension reduction is shown to be effective in some clustering case

studies [153]. We will show the effect of the dimension reduction on the results later in the next

Section.

After dimension reduction, we apply the K-means algorithm for clustering the sessions in the

reduced space of dimension 2 and employ the Elbow technique [171] to estimate the optimal num-

ber of the universal clusters. Since t-SNE and K-means choose random initial points, we repeated

each experiment two times and chose the best result.

5.3.3 Log Mining Tasks: Log Minimization (Reduction)

The number of user sessions for an application that has been in production for a long period of

time can be very high. Using all the obtained user session data requires significant effort to deter-

mine which portion of the data most accurately describes the system’s behavior. Nonetheless, a

significant amount of user sessions does not naturally guarantee sufficient coverage of the system’s

expected behavior. Test selection from usage logs is the main goal of this case study. The approach

is to select a representative session from a cluster of sessions in which all the sessions have similar

semantics and similar bug-triggering capabilities. Some steps are required to be taken that will be

covered here:

5.3.3.1 Representative Selection

For test selection, we decided to keep one representative from each universal cluster and see how

many mutants they can kill. For this purpose, we select from each UC, the client with the highest

number of events (the longest session). Experimentally, this client kills more mutants than shorter

ones, as can be expected.

Alternately, representative clients (sessions) can be selected based on various criteria (besides

the longest session). For instance, we can select the closest client to the center, the shortest ses-

sion, or a session with the most diverse events.

5.3.3.2 Execution and Verification

This is the final step to know if the selected representation has the same bug-triggering capability.

We can evaluate our proposed method for test suit reduction on killed mutants. The reduced test

suite has to kill the same mutants killed by the original test suite. Here we are allowed to execute

them since their number is quite small in comparison to the complete test suite. By observing the

outputs during their execution we can understand how many of the bugs are covered by this small

subset of test sessions.
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5.4 The Software Under Test

A: Definition

We define a user trace as a sequence of API calls by which the user has triggered the system.

We may refer to it as an Event. A user trace includes time stamps, several parameters, user iden-

tifiers, API methods or actions that the user does, and the output of the system. The experiments

presented in this chapter were performed on Scanner case study.

B: Scanette case study (scanner)

A barcode scanner (nicknamed "Scanette" in French) is a device used for self-service check-

out in supermarkets. The customers (shoppers) scan the barcodes of the items which they aim to

buy while putting them in their shopping basket. The shopping process starts when a customer

(client) unlocks the Scanette device. Then the customer starts to scan the items and adds them to

his/her basket. Later customers may decide to delete the items and put them back in their shelves.

Among the scanned items, there may be barcodes with unknown prices. In this case, the scanner

adds them to the basket and they will be processed later by the cashier, before the payment at

checkout. The customer finally refers to the checkout machine for payment. From time to time,

the cashier may perform a “control check” by re-scanning the items in the basket. The checkout

system then transmits the items list for payment. In case unknown barcodes exist in the list, the

cashier controls and resolves them. The cashier has the ability to add or delete the items in the

list. At the final step, the customer abandons the scanner by placing it on the scanner board and

finalizes his purchase by paying the bill.

The Scanette system has a Java implementation for development and testing and a Web-based

graphical simulator for illustration purposes. The web-based version emulates customers’ shop-

ping and self-service check-out in a supermarket by a randomized trace generator derived from a

Finite-State Machine. The trace logs of the Scanette system contain interleaved actions from dif-

ferent customers who are shopping concurrently. Each customer has a unique session ID which

distinguishes his/her traces from another customer. Figure 5.2 shows a snippet of a trace log with

different actions from different sessions. Each event in the test (trace) has an index and time stamp

which are stored chronologically. The Session ID determines to which user (or session) the event

belongs. In this figure, we can find activities of Client6, interleaved with other clients’ actions,

which start with an ’unlock’ and end by a ’pay’ action. The triplet of action-input-output obvi-

ously shows which action is called, what is given as its input, and what is obtained as the output

of the action. Some actions may also include a parameter, such as the actual value of the barcode

of an item that is scanned.

To artificially inject faults, the source code of the Scanette software is mutated with 49 mutants,

all made by a modification on the source code by hand.

We needed a few logs to be used as the test bench for the proposed method. The test bench of

1026, 100043, and 200035 events was provided by Philae. We will call them as 1026-event, 100043-

event, and 200035-event names, respectively. They include shopping steps for different numbers

of clients (sessions). They were created as random usage logs by a generator of user traces that

simulate the behavior of customers and cashiers. The goal of the proposed TSR methods is to

reduce the number of traces needed to kill the same mutants as the original test suite can kill. In

the rest of this chapter, session and client are equivalent.
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Figure 5.2: Test traces of the Scanner case study
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Figure 5.3: Elbow method curve and clustering visualization in finding optimal number of universal clusters
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Table 5.1: Optimal number of clusters for the 1026-event Scanette case study

Table 5.2: Optimal number of clusters for the 100043-event and 20035-event Scanner case study

5.5 Results

Here we explain the test reduction results on the Scanette case study. We applied our approach

to three different test suites introduced in Section 5.4. The Word2vec model creates a vocabulary

for each of them. The number of word2vec vocab for 1026-event is 15: this corresponds to the

number of different triplets. It has 1026 events from 61 shopping sessions. The entire test suite

can kill 19 mutants and the goal was to reduce the number of events while maintaining the same

fault detection capability viz. killing the same number of mutants. The second file, 100043-event,

has 100043 events from 7079 shopping sessions. The number of word2vec vocab for this file is

18 vocab. It can kill 22 mutants. And the third one, 200035-event has 200035 events from 14443

shopping sessions that can kill 23 mutants. The number of word2vec vocab for this file is 20 vocab.

These numbers are summarized in Figure 5.3 on the first row.

The sessions were vectorized and their word2vec models were constructed. After applying t-SNE

and averaging sessions, we employed Elbow method to find the optimal number of clusters. The

Elbow method curve of each usage log is shown in Figure 5.3 in the second row. These figures also

provide two samples of clustering for two different numbers of clusters (K ) around the proposed

range by the Elbow method. We can observe that for the 1026-event, the sessions are distributed

in some distinct clusters. As the number of events and sessions increases, the projected model

tends to make a circle with some singular points in the middle. Specifically for the 200035-event

for K = 60, in the middle of the circle, there were some sessions (points) that conveyed different

clients’ behavior which is to say that their series of actions were rare in comparison to the other

sessions around the circle.

To observe the effect of the optimal number of clustering, we examined the K-means clustering

from 2 to 10 clusters for the 1026-event, and from each cluster, the longest session was chosen.

The selected sessions were executed again to see how many mutants they kill all together. Table

5.1 conveys these results. It can be seen that when K = 10, 10 sessions chosen from 10 clusters can
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Table 5.3: The effectiveness of using t-SNE method for the 200035-event test suite

kill all 19 mutants (highlighted by green color) that the original 1026-event test suite can kill. In

this case, 194 client actions are enough and the remaining 832 actions (1026-194) can be removed.

By a simple ratio, the amount of reduction is %81. For K < 5, the number of killed mutants is

unstable and less than 19. We have shown them in yellow and pink colors. This table also provides

more details on the number of selected sessions and the number of killed mutants.

The same results for two other test suites, namely 100043-event and 200035-event are presented

in Table 5.2. For the 100043-event, only 467 events from 18 client sessions are enough to kill all

22 mutants. Therefore, the proposed TSR method succeeded in removing more than 99% of the

redundant traces. For the 200035-event, 1111 events from 73 sessions are enough to have the same

fault detection effect. Again, the same success rate is achieved.

Finally, the effectiveness of using the t-SNE method to reduce dimensions can be observed in table

5.3 which shows the number of killed mutants with and without using t-SNE for the 200035-event.

With the same number of clusters (K ), in all cases, using t-SNE effectively improves the number of

killed mutants. This comes from the fact that t-SNE preserves and normalizes the features of each

dimension when it merges them together.

From the experiments, we can conclude that treating user actions like words in sentences and

building a Word2Vec+t-SNE model from them can effectively preserve users’ behavior and extract

their features. Applying the clustering method can group similar user sessions and in turn enables

us to remove redundant sessions, which was the goal of our case study.

To have a comparison with K-means, we used Spectral clustering to construct Universal Clus-

ters and compare the results to the K-means clustering method. The outcomes of spectral cluster-

ing frequently outperformed the K-means methods. We utilized the Python Scikit-learn library. We

must basically modify the parameters of the similarity matrix and the number of cluster categories

for spectral clustering. As input parameters for the Spectral Clustering function in this library, we

used ’nearest neighbors’ and ’precomputed’ alternatively. When constructing the affinity matrix

using the nearest neighbors method, we selected ten neighbors and provided the list of our data as

input parameters to the function. Since we chose a custom similarity matrix for the precomputed
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Table 5.4: Spectral clustering compared with K-means

method, we must configure the matrix ourselves and pass it as an input parameter to the function.

In this step, we use the word2vec model for generating the affinity matrix. Table 5.4 summarizes

the results of this comparison. It depicts that when both clustering methods kill an equal num-

ber of mutants, it is evident that the number of events selected with the spectral method is less

than with the k-means method. However, it is essential to note that spectral clustering has the

disadvantage of requiring a large amount of memory to analyze the affinity matrix.

5.6 Conclusion and Future Work

Regression testing is an essential quality-control technique during the software’s maintenance

phase. It is an essential activity, but large test suites can make it costly. Regression testing is ac-

celerated by identifying and eliminating redundant tests. In this chapter, a new method to reduce

regression test suites was presented.

The preliminary experiment on a simple case study shows that using a technique from NLP,

namely Word2Vec, seems to provide a valuable tool for analyzing the similarity between tests in

software testing contexts. As we work on traces, it also shows a potential for reducing the informa-

tion to analyze lengthy software logs.

5.6.1 Summary of findings on our case study

• Word2Vec can yield meaningful feature sets for software log events.

• Using an average of the vectors of the words in a sequence associates a relevant measure for

clustering software sessions made of sequences of events.

• t-SNE improves clustering and the quality of clusters of tests.

• Quite a significant test selection from random usage logs can be achieved by clustering with
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Word2Vec associated with t-SNE and the Elbow method, with no loss of fault detection ca-

pabilities.

5.6.2 Threats to validity

There are obvious limits to generalizing those preliminary results.

• We just address a single case study, that is not too complex.

• We consider only test traces from random testing. Random testing is indeed an important

approach and is often considered a touchstone in software testing, but we plan to consider

other sources of tests, such as carefully handcrafted tests, conformance tests, and tests from

DevOps approaches, etc.

• More parameters of the method should be investigated, such as the selection of representa-

tives from each cluster, the influence of the initial abstraction of events, etc.

5.6.3 Future Work

Session averaging can be replaced by a more insightful method that can preserve the order of

the events in a session. We plan to replace session averaging with another sentence embedding

method like Paragraph Vectors [141] to achieve a representative vector from each session. There-

fore, regarding the TSR goal of this chapter, we expect to see better results by considering the order

of events.

Another attempt to replace session averaging with concept space creation to obtain vectorized

session representation is also missing, which may yield a higher degree of test reduction.

We have also started investigating another direction for further reducing a test suite. Notice

that we selected the longest test (session) from each UC. However, it is often the case that not all

events of such a test are necessary to achieve fault detection. Therefore, we may take other criteria

to select the representative client from each UC. For instance, we can select the closest client to

the center of the UC, the shortest session, or a session with the most diverse events.

In the same direction, it might be possible even to reduce the selected representative sessions.

There can be many redundant events that could be removed to keep the core fault-triggering ca-

pabilities of the test. We are developing an analysis of the relation between events that can trigger

a fault and the necessary enablers that precede them.
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Chapter 6

General Conclusions and Future
Directions

This chapter provides an overview of the whole work done, including the achieved results and the

challenges encountered throughout this study. In addition, based on this thesis study, we suggest

numerous intriguing future directions. Through the various experiments presented in the last

two chapters, we found the answer to the problem definition in the beginning of this thesis. The

findings show that the suggested approach is capable of mining logs. To the best of our knowledge,

the development of the proposed method, with all of its functionalities and conditions, is novel in

software testing.

6.1 Conclusion and Results

Aligned with the objectives of the Philae project, we developed a methodology to create an AI

model from software log files by using ML tightened with a chain of pre-processing, and concep-

tual space construction to create vectors to represent each sequence and universal cluster (UC)

creation. The universal clusters (UCs) are essential to the verdict on sentences’ semantics and

their behavior for log mining tasks. The created conceptual model, and specifically the UCs reveal

the causality relationship among the recorded events that was hidden from the conventional log

analysis methods. The outputs and the created models can be used to perform log minimization,

Software failure Prediction, Root Cause Analysis(RCA), Log Anomaly Detection, and User Behavior

clustering. For specifics on some of these tasks, Software failure Prediction aims to generate proac-

tive early warnings to avoid failures, which frequently lead to unrecoverable states. The traditional

approaches to failure management are mostly passive, which deal with it after the occurrence,
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while failure prediction aims to predict the failure before it happens. Moreover, as in large-scale

distributed systems, it is critical to effectively analyze the root causes of incidents in order to main-

tain high system availability, and developers put significant effort into determining the root cause

of system failures. Similarly, User Behavior clustering could be extremely useful for tasks such as

task automation, which attempts to identify and automate repetitive user actions, and usability

engineering, which studies how software is used and how it can be improved.

To evaluate the proposed method, we implemented the entire chain in three case studies. The

first two case studies, namely, Train Ticket and Telecom, were long log files of fast-paced incoming

events as well as system status monitoring, recorded in the meantime but at a slow-paced inter-

val. In such applications, faults will manifest themselves during periods of abnormal behavior.

The proposed methods detected these periods (Bug-Zones), among which, some were linked to

system failures. The detected Bug-Zones cover at least 70% of the systems reboots (failures) in the

Telecom case study; the Random Forest predictor, after training, succeeded in correctly classifying

71% of the test dataset in the Telecom case study and 90.7% accuracy in predicting Bug-Zones in

Train Ticket dataset. By using the UC prediction method, we achieved 65% and 95% accuracy in

Telecom and Ticket Train, respectively. A higher value was expected in the Train Ticket benchmark

due to the lower noise and complexity of the system. These results imply that our created model

can be used to predict Bug-Zones based on real-time incoming test data by using an RF or UC pre-

dictor. In addition, by extracting only the pre-Bug-Zones input events, we reduced the test event

set to a minimal subset of events. This subset can help software developers focus only on the bug-

prone moments of software operation, reduce the cost of log analysis and root-cause detection,

and finally, apply bug fixes.

The third case study, Scanette (Scanner) was a self-service shopping device with some artifi-

cially injected faults. A large usage log was available to trigger the injected faults. The goal of this

case study was to reduce the large log to a small set while still triggering similar faults. The aim was

to reduce debugging time and effort by intelligently selecting a tiny subset of user traces that rep-

resent the entire log. The methodology was customized to pre-process the Scanette log files and

create the required models. With the aim of log reduction, the proposed method selected a tiny

set (0.55% of the log file) of user traces with the same fault-triggering capability as the entire log.

The role of dimensionality reduction and spectral clustering in the internal steps was evaluated

and reported.

This thesis creates an ML-based log analysis methodology to abstract log information for ML

techniques, create intelligent models, and prepare software artifacts to perform log mining tasks

such as log minimization, test suite reduction, log anomaly detection and prediction, and finally,

root cause detection. The achievements of this thesis could be used by software developers to

significantly save the time and effort spent debugging faults and finding their root causes, and by

system, administrators to predict system failures; although there are some aspects that are still to

be explored.

6.1.1 Problems

One of the biggest problems faced in this work was in the Telecom case study. Livebox has a multi-

tasking operating system to process parallel network operations (e.g., TV streaming, Web naviga-

tion, etc.). Hence, many times, the recorded status was not projecting the recorded incoming test

events. In other words, the noisy status data was overshadowing the effect of the test execution.

Some manual interventions (e.g., reboots by operators) added more ambiguity to our interpre-

tations of the root causes. While a cluster of data confirmed a consistent causality effect of the

root-cause set, another part of the data was neutral and showed no causality relation. That was
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the reason why we chose another case study (Ticket Train), over which we had full control, to know

the true cause of the bugs.

The main threat to the validity of this case study was that, due to human resources issues, we

were not able to get complete feedback from the test team in order to evaluate the significance of

the detected root-cause test events.

To evaluate the accuracy of the Bug-Zone predictor tool, it must be utilized in a real-world

operational setting. Due to the lack of access to the Livebox system, we could not evaluate the

predictor in action, and our evaluation was only based on the statistics of the available test data.

In the Scanner case study, we consider only test traces from random testing. Random testing is

indeed an important approach and often considered a touchstone in software testing, but we plan

to consider also other sources of tests, such as carefully handcrafted tests, conformance tests, tests

from DevOps approaches, etc.

Another problem in this thesis is that the proposed approach has only been validated in three

case studies, with different contexts and scales. Obviously, it should be assessed in more case

studies. It would have been nice to have a benchmark of representative case studies for fault de-

tection and prediction from monitoring logs, but we did not find one that could correspond to our

assumptions and context.

6.1.2 Recommendations For Future Work

The following are possible future directions for research that can be extended from this study.

• For the anomaly detection and prediction tasks, we simply distinguish Pre-Bug-Zones from

the normal operation. It would be valuable to distinguish different Bug-zone types based

on their semantics. This will give an in-depth analysis of different causality effects or predict

more precisely the consequence of each Bug-Zone type (e.g., system slowdown, reboot, etc.).

• There are many studies that apply various techniques and algorithms for new test genera-

tion such as [192]. We plan to extend our study to have a wider log mining functionality,

for instance, apply the proposed method to generate new test cases to automate regression

testing. The purpose is to discover new bugs in the system by exploring unprecedented User

behavior analysis (UBA) was not within Philae’s objectives and consequently, did not receive

attention in this thesis. But UBA is still one of the aspects of the proposed methodology that

can be applied. The UCs are directly clustering the users’ behavior semantics in the Scanner

case study.

• In addition, in log minimization, we need to work and get more results in the test selection

part, for instance, we have to study the criteria for the selection of representatives from each

cluster, instead of selecting the longest session, we can select the center member or smallest

one.

• It would also be interesting to extend our approach using learning to rank techniques with

partially labeled multi-modal data [193], particularly in the context of test case prioritiza-

tion and automated test suite optimization; as it is often challenging to determine the order

in which test cases should be executed to maximize the likelihood of detecting bugs early.

Learning to rank algorithms can learn from historical data, including information about test

case outcomes and code changes, to rank the test cases based on their potential to reveal

defects. This prioritization can lead to more efficient testing by identifying critical test cases

that are likely to uncover issues early in the testing process. Also, as software systems evolve

in time, the test suite can become large and redundant, leading to increased testing time and
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maintenance efforts. Learning to rank methods can be employed to automatically identify

and eliminate redundant or ineffective test cases from the test suite.
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