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RESUME 

Les courants de gravité, écoulements issus de la présence d’un contraste de 

densité dans un fluide ou de la présence de fluides de densités différentes, sont 

rencontrés dans de nombreuses situations naturelles ou industrielles. Quelques 

exemples de courants de gravité sont les avalanches, les marées noires et les courants 

de turbidité. Certains courants de gravité peuvent représenter un danger pour l’homme 

ou l’environnement, il est donc nécessaire de comprendre et de prédire leur dynamique. 

Cette thèse a pour objectif d’étudier l’évolution de courants de gravité de masse fixée, 

et notamment l’influence d’une forme initiale non-axisymétrique sur la dynamique, effet 

jusque-là peu abordé dans la littérature. Pour cela, une large gamme de paramètres est 

couverte, incluant le rapport de masse volumique entre le fluide ambiant et le fluide 

dans le courant, le rapport de forme initiale, la forme de la section horizontale de la 

colonne de fluide (circulaire, rectangulaire ou en forme de croix), le nombre de 

Reynolds (couvrant jusqu’à 4 ordres de grandeur) et la nature du fluide lourd (salin ou 

chargé en particules). Deux campagnes d’expériences ont été menées et complétées 

par des simulations numériques hautement résolues. Le résultat majeur est que la 

propagation du courant et le dépôt de particules (lorsque particules il y a) sont fortement 

influencés par la forme initiale de la colonne de fluide. Dans le cas de la colonne 

initialement rectangulaire le courant se propage plus vite et dépose plus de particules 

dans la direction initialement de plus courte dimension. Ce comportement non-

axisymétrique est observé dans une large gamme des paramètres étudiés ici. Pourtant 

les modèles analytiques existants et notamment le modèle dit de boîte (box model) qui 

prédit avec succès le comportement des courants de gravité/turbidité dans les cas plan 

et axisymétrique ne sont pas capables de reproduire ce phénomène. C’est pourquoi 



 

une extension du box model a été développée ici, et est en mesure de décrire la 

dynamique de courants de gravité de masse fixée dont la forme initiale est arbitraire. Le 

cas plus général d'un courant de gravité évoluant sur un plan incliné a été abordé et 

une dynamique intéressante a été observée. 

  



 

ABSTRACT 

Gravity currents are buoyancy driven flows that appear in a variety of situations 

in nature as well as industrial applications. Typical examples include avalanches, oil 

spills, and turbidity currents. Most naturally occurring gravity currents are catastrophic in 

nature, and therefore there is a need to understand how these currents advance, the 

speeds they can attain, and the range they might cover. This dissertation will focus on 

the short and long term evolution of gravity currents initiated from a finite release. In 

particular, we will focus attention to hitherto unaddressed effect of the initial shape on 

the dynamics of gravity currents. A range of parameters is considered, which include 

the density ratio between the current and the ambient (heavy, light, and Boussinesq 

currents), the initial height aspect ratio (height/radius), different initial cross-sectional 

geometries (circular, rectangular, plus-shaped), a wide range of Reynolds numbers 

covering 4 orders of magnitude, as well as conservative scalar and non-conservative 

(particle-driven) currents. A large number of experiments have been conducted with the 

abovementioned parameters, some of these experiments were complemented with 

highly-resolved direct numerical simulations. The major outcome is that the shape of the 

spreading current, the speed of propagation, and the final deposition profile (for particle-

driven currents) are significantly influenced by the initial geometry, displaying 

substantial azimuthal variation. Especially for the rectangular cases, the current 

propagates farther and deposits more particles along the initial minor axis of the 

rectangular cross section. This behavior pertaining to non-axisymmetric release is 

robust, in the sense that it is observed for the aforementioned range of parameters, but 

nonetheless cannot be predicted by current theoretical models such as the box model, 

which has been proven to work in the context of planar and axisymmetric releases. To 



 

that end, we put forth a simple analytical model (an extension to the classical box 

model), well suited for accurately capturing the evolution of finite volume gravity current 

releases with arbitrary initial shapes. We further investigate the dynamics of a gravity 

current resulting from a finite volume release on a sloping boundary where we observe 

some surprising features. 
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CHAPTER 1 
INTRODUCTION 

When two fluids of different densities are placed in contact with one another such 

that the contact interface is parallel to the gravitational field, a predominantly horizontal 

flow develops (as a result of the hydrostatic pressure difference at the interface) in 

which the denser of the two fluids (termed heavy fluid) intrudes into its less dense 

neighbor (termed light fluid) in a ground hugging manner (Figure 1-1). This buoyancy 

driven flow is termed a gravity current (or density current) and forms the subject of the 

present thesis. 

There are numerous natural flows that fall under the above description, and 

some of these flows are very common that they have been assigned simplified and 

perhaps more appropriate labels such as sand storms, avalanches, and oil spills (to 

name a few). In an attempt to simplify and gain a better understanding of their 

dynamics, gravity currents have been divided into different categories. These categories 

may depend on a variety of parameters, which include the type of release, the source of 

the density difference (the driving force), the extent of the density difference (or density 

ratio), the geometric confinement or restrictions, etc. Section 1.1 will provide a brief 

summary for some of these categories of relevant interest to this thesis. Section 1.2 will 

then elaborate on some of the classical experimental, numerical, and theoretical 

approaches to this problem. Finally, section 1.3 will discuss the present interests and 

contributions to the field of gravity currents. 
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1.1 Classification of Gravity Currents 

1.1.1 Finite vs Continuous Release 

A finite release gravity current (Simpson 1972, Huppert & Simpson1980, 

Bonnecaze et al. 1995, Hacker et al. 1996, Gladstone et al. 1998, Shin et al. 2004, 

Cantero et al. 2007a) corresponds to a scenario where a fixed volume of fluid is 

suddenly discharged into an ambient environment of different density whereas a 

continuous release (Garcia and Parker 1993, Hogg et al. 2005, Sequeiros et al. 2009, 

Shringarpure et al. 2012) usually originates from a large reservoir with a time-dependent 

flux 𝑞 of the form 𝑞 = 𝑞𝑠𝑡𝑠 where 𝑞𝑠 is a positive constant, 𝑡 stands for time and 𝑠 is an 

exponent either positive (waxing release), negative (waning release), or null (fixed finite-

volume release). A finite release is generally observed when the sides of a container 

suddenly collapse releasing the embodied fluid instantaneously, whereas a continuous 

release can result from a small rupture along one of the edges of a large container or a 

pipeline leading to a continuous discharge of material. 

1.1.2 Source of Current-Ambient Density Difference 

The density difference between the two fluids may arise as a consequence of 

temperature, concentration, or compositional (different fluids altogether) variations, or 

as a result of suspended of particles. The latter type is termed a particle-laden current 

(Bonnecaze et al. 1993, Hallworth & Huppert 1998, Gladstone et al. 1998, Necker et al. 

2002) since the presence of particles gives rise to the excess density and hence the 

buoyancy driving source. In the case of temperature differences, one may think of a 

layer of cold (relatively heavy) air sweeping the bottom of a room occupied by warm 

(relatively light) air. Similarly, when fresh water (relatively light) from a river exits into the 

ocean (relatively heavy salty water), it flows along the surface, partially due to the 
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difference in salinity between fresh and salty water. On the other hand, a turbid mixture 

spreading on the seafloor constitutes an example where the excess density in the 

current also comes about from the suspension of sediments. The former two examples 

are homogeneous, scalar driven gravity currents, where the density of both fluids (in the 

absence of mixing between the current and the ambient fluid) remains unchanged. On 

the other hand, even in the absence of mixing, the density of a particle-laden current 

continues to evolve in space and time as a result of the continuous deposition of 

particles and possible reentrainment back into the flow (if the current is energetic 

enough). 

1.1.3 Current to Ambient Density Ratio 

The initial density jump across the interface need not be large, in fact less than a 

percent difference in density between both fluids is usually sufficient to drive a strong 

flow. The term Boussinesq flows is commonly used to denote those types of flows 

resulting from a small density difference between the fluids (Benjamin 1968, Rottman & 

Simpson 1983, Hartel et al. 2000, Marino et al. 2005, Ungarish & Zemach 2005). There 

are some key differences in the structure and shape of a gravity current depending on 

the initial density ratio between the heavy and light fluids. When the densities of both 

fluids are comparable, the advancing current senses the presence of the ambient, which 

imposes a significant resistive force on the intruding current. However, when the density 

of the current is much larger than that of the ambient (Birman et al. 2005, Etienne et al. 

2005, Lowe et al. 2005, Ungarish 2007, Bonometti et al. 2008), as in the case of a dam 

break flow in which water spreads in air, the current does not sense nor perceives any 

resistance from the surrounding ambient (air in the present example). The presence or 

absence of a resistive force is manifested by the shape of the gravity current (Figure 
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1-2). A Boussinesq gravity current usually attains a slug-like shape with a “head” and a 

“body”, whereas the thickness of a non-Boussinesq current decreases monotonically as 

we approach the ambient fluid, reaching a minimum value at the front of the current. 

1.1.4 Geometric Constraints 

Gravity currents are usually studied in one of two canonical configurations, 

namely the planar and the axisymmetric setups (Figure 1-3). These configurations are 

popular and have been widely explored due to their simplicity. They may be easily 

constructed for experimental and numerical studies, and provide a more manageable 

challenge for modelling purposes (Shallow Water equations and Box Model). In the 

planar release case, a flat rectangular gate initially separates a rectangular reservoir of 

fluid from an ambient of different, usually smaller density. Similarly, at the start of the 

axisymmetric three-dimensional release, the current is confined inside a hollow circular 

cylinder at the centre of a large tank containing the ambient fluid (Huppert 1982, 

Cantero et al. 2007), or in an expanding reservoir of relatively small angle of expansion, 

typically 10-15° (Huppert & Simpson 1980, Cantero et al. 2007a). The setups in Figure 

1-3 correspond to a finite release scenario. For a continuous release, the gate would be 

partially lifted, and the trapped fluid would be continuously fed to maintain the desired 

volumetric discharge rate. 

The planar setup may be thought of as a two-dimensional release since the 

current is confined to move along a specified direction, whereas for the circular release, 

the current would spread radially outwards (in all directions) but remain axisymmetric 

because of the initial circular nature of the release. 

Gravity currents, when propagating horizontally into their ambient, usually 

undergo four main stages (Huppert & Simpson 1980). Initially when the current is 
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released, it accelerates from rest until it reaches a maximum velocity. During this highly 

transitional phase, termed the acceleration phase, the current undergoes rapid change 

in its velocity (zero to maximum), and the structure of the release also changes from 

mostly vertical to horizontal. This phase is often overlooked for three main reasons: (1) 

it is complex and transitional in nature, (2) it is relatively short lived, and (3) it is 

presumed to have little effect on the long term dynamics of the current. Following the 

acceleration phase, the current reaches a steady-state phase referred to as the 

slumping phase. During this phase, a planar (resp. cylindrical) current advances with a 

constant (resp. nearly constant) velocity and height (Gladstone 1998). At the end of the 

slumping phase, the current typically transitions to the inertial self-similar phase where 

the buoyancy driving force is balanced by the current’s inertia. During this phase, the 

current starts to decelerate as a consequence of its diminishing front height. Finally, as 

the current’s thickness continues to decrease, viscous and/or capillary forces become 

dominant, and the current evolves into the self-similar viscous/capillary phases.  

1.2 Classical Approaches 

The study of gravity currents is well developed with research spanning laboratory 

experiments, numerical simulations, and theoretical models. 

1.2.1 Laboratory Experiments 

Experiments constitute a very powerful and reliable approach to the study of 

gravity currents (for example Huppert & Simpson 1980, Bonnecaze et al. 1993, Marino 

et al. 2005). Because of the relative ease and simplicity of conducting self-driven flows, 

there has been hundreds of experiments reported to date on gravity currents. There are 

one or two popular quantities that are frequently monitored in experiments, namely the 

location of the front (from which the front velocity may be derived) and the thickness of 
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the current at various locations (head, body, tail). In the case of non-conserving currents 

(particle-laden flows), the final deposition pattern is typically measured as well. 

Moreover, depending on the interest of the experimentalists, further specific quantities 

may be additionally monitored (thickness of the current, ambient entrainment, front 

instabilities, bottom erosion, etc.).  

1.2.2 Numerical Simulations 

Quantities such as ambient entrainment, bedload transport, and particle 

resuspension are difficult and even costly to monitor experimentally. They might require 

additional resources such as high speed cameras, stress sensors, or relatively 

expensive fluids. However, these aforementioned quantities, among others, may be 

calculated numerically with lesser effort and cost (for example Necker et al. 2002, 

Blanchette et al. 2005, Cantero et al. 2008). It is, in fact, for these hard to observe 

phenomena that numerical simulations become highly desirable. Fully resolved direct 

numerical simulations are very accurate but are limited to Reynolds numbers much 

smaller than what is realized in laboratory experiments and actual environmental or 

industrial gravity currents. Reynolds averaged and LES approaches have been used for 

investigating high Reynolds gravity currents (Ooi et al. 2007 Paik et al. 2009). 

1.2.3 Theoretical Models 

When numerical simulations become costly, or when fewer details about the flow 

are needed, researchers may decide to use simpler theoretical models to study gravity 

currents. These might range in complexity from algebraic equations such as the Box 

Model (Dade & Huppert 1995, Gladstone et al. 1998) to complicated sets of coupled 

partial differential equations with turbulence closure as well as entrainment and erosion 

models (such as the three and four equation models of Zeng & Lowe 1997 and Parker 
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et al. 1986). One of the most popular models, however is the one layer, inviscid shallow 

water equations (Grundy 1986, Bonnecaze et al. 1995, Choi & Garcia 1995, Ungarish & 

Huppert 1998), which are derived from the Euler equations through scaling arguments 

and vertical integration. 

1.3 Present Interest and Contributions 

This thesis may be summarized by the following fundamental question: If we 

release a fixed volume of fluid into an ambient of different density, how would the initial 

shape of the release affect the dynamics of the flow? As we will shortly demonstrate, we 

find that the manner in which the fluid is released plays an important role in determining 

how the flow develops. On a horizontal plane the spreading current reaches a non-

axisymmetric self-similar shape, whose aspect ratio depends on the shape of the initial 

release. On a sloping boundary, finite releases tend to evolve to an optimal self-similar 

shape, whose propagation speed could be substantially higher than for a corresponding 

planar current. 

This dependence on the initial shape of release was first observed in our 

experiments of saline, Boussinesq currents. We noticed (for non-axisymmetric releases) 

that regions close to the center of mass of the release advance farther and faster than 

regions far from the center of release. The difference in velocities along the front was 

significant, especially for rectangular cross-sections, where the layout of the rectangular 

release (beyond the self-similar inertial phase of spreading) would resemble an ellipse 

whose major axis coincided with that of the initial minor axis of the rectangular cross 

section. 

This non-uniform spreading of material fronts is not limited to Boussinesq saline 

currents. It is of interest to know the influence of various parameters on this preferential 
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spreading. To that end, we performed a series of experiments and numerical 

simulations in which we varied multiple parameters, one parameter at a time, to isolate 

their effect and contribution to this non-uniform flow. In these experiments, we examined 

the dependence on (1) the current-to-ambient density ratio by considering Boussinesq 

and non-Boussinesq currents, (2) the wall friction by investigating bottom (no-slip 

boundary condition) and top (no stress boundary condition) currents, (3) the shape 

(specifically the cross-section) of the release by considering circular, rectangular, and 

plus-shaped hollow cylinders, (4) the Reynolds number, which covered 4 orders of 

magnitude, (5) the local curvature of the release by using a right-angled rectangle and a 

rounded rectangle (in which the right angles are smoothened), (6) the height aspect 

ratio (ℎ𝑒𝑖𝑔ℎ𝑡/𝑟𝑎𝑑𝑖𝑢𝑠) of the release, which covered a range of [0.25,7], and (7) the 

presence of relatively heavy particles (particle-laden currents). 

Based on the above experiments and simulations, we conclude that the 

dependence on the initial shape holds for (i) heavy non-Boussinesq bottom currents, (ii) 

light surface currents, and (iii) particulate turbidity currents. The observed behavior is 

not influenced by wall friction and is independent of initial height aspect ratio. Only at 

very low Reynolds number we observe the current to spread to a near axisymmetric 

shape independent of initial release. Moreover, in the case of particle-laden currents, 

the final deposition profile of the particles displays substantial azimuthal variation, 

especially for the rectangular releases where the current deposits noticeably more 

particles along the initial minor axis of the rectangular cross section (compared with the 

initial major axis). We have performed a large number of experiments and 

corresponding very highly resolved direct numerical simulations and have proposed a 
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simple model to predict the counterintuitive spreading resulting from non-canonical 

initial releases. 

Our simple model is based on the integral box model, which is classically used 

for predicting the evolution of gravity currents (Huppert & Simpson 1980). Despite the 

simplicity of the box model, it is able to reproduce the dynamics of axisymmetric and 

planar releases. However, straightforward application of the Box Model fails for non-

axisymmetric releases. According to this model, the height remains uniform along the 

entire spreading patch, so the speed of propagation remains uniform along the current’s 

front during all the phases of spreading. Using the classical Box Model, an initially non-

axisymmetric current inevitably becomes axisymmetric. Similarly, theories based on 

slumping and self-similar phases also fail to predict the sensitive dependence on the 

initial shape and the preferential propagation of non-axisymmetric gravity currents for 

the same reasons. Here, we propose an Extended Box Model based on partitioning of 

the initial release (into smaller sub-volumes) using geometric rays that are 

perpendicular to the front. Once the various sub-volumes are obtained, the local fronts 

are advanced normal to themselves as in the Box Model. This initial partitioning is the 

key aspect of the present model, since it allows for non-uniform height and speed along 

the patch’s advancing front, during all the phases of spreading. This allows the model to 

capture the non-axisymmetric propagation of the front. 

Unlike planar (two-dimensional) currents that are always unidirectional (do not 

admit a mean spanwise component of velocity), or axisymmetric currents that are ever 

diverging, circular releases on sloping boundaries may exhibit nearly unidirectional, 

diverging, or even converging phases of spreading. Of specific interest is the 
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converging phase of spreading, which leads to local peaks in buoyancy that translate 

into a second acceleration phase. Circular releases on sloping boundaries are thus 

significantly different than planar releases. The formation and evolution of gravity 

currents under such conditions are not well understood. 

This thesis contains 7 chapters other than this introduction. The second chapter 

elaborates on the methodology, specifically the details behind the experimental and 

numerical setups as well as the proposed extended box model (EBM). The final chapter 

8 will present conclusions and future work. The other 5 chapters are each self-contained 

and have already appeared as journal articles or will be submitted. They will be briefly 

described below. 

 Chapter 3: In this chapter we present results from laboratory experiments 

and fully-resolved simulations pertaining to finite release gravity currents with a non-

axisymmetric cross-section. First, we demonstrate that, contrary to expectation, the 

effects of the initial shape influence the current’s evolution well into the self-similar 

phases. Then we identify the physical mechanisms responsible for this dependence and 

propose a new model capable of capturing the dynamics of such releases. Finally, we 

show that this dependence on initial configuration is robust for various types of gravity 

currents (homogeneous and inhomogeneous) over a wide range of parameters such as 

Reynolds number, density ratio, wall friction and aspect ratio, and discuss the 

implications for the prediction of the propagation of natural gravity currents as oil spill, 

turbidity current and debris clouds. This chapter appeared in Theoretical & 

Computational Fluid Dynamics (Zgheib et al. 2014). 
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 Chapter 4: We use highly resolved direct numerical simulations (DNS) to 

investigate axisymmetric particle-laden gravity currents. We consider the case of a full 

depth release with monodisperse particles at a dilute concentration where particle-

particle interactions may be neglected. The disperse phase is treated as a continuum 

and a two-fluid formulation is adopted. We present results from two simulations at 

Reynolds numbers of 3450 and 10000. Our results are in good agreement with 

previously reported experiments and theoretical models. At early times in the 

simulations, we observe a set of rolled up vortices that advance at varying speeds. 

These Kelvin-Helmholtz (K-H) vortex tubes are generated at the surface and exhibit a 

counter-clockwise rotation. In addition to the K-H vortices, another set of clockwise 

rotating vortex tubes initiate at the bottom surface and play a major role in the near wall 

dynamics. These vortex structures have a strong influence on wall shear-stress and 

deposition pattern. Their relations are explored as well. This Chapter is currently under 

review for publication in Computers & Fluids. 

 Chapter 5: This chapter reports some new aspects of non-axisymmetric 

gravity currents obtained from laboratory experiments, fully resolved simulations and 

box models. Following the work of Chapter 3, where we demonstrated that gravity 

currents initiating from non-axisymmetric cross-sectional geometries do not become 

axisymmetric, nor do they retain their initial shape during the slumping and inertial 

phases of spreading, here we show that such non-axisymmetric currents eventually 

reach a self-similar regime during which (i) the local front propagation scales as t1/2 as in 

circular releases and (ii) the non-axisymmetric front has a self-similar shape that 

primarily depends on the aspect ratio of the initial release. Complementary experiments 
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of non-Boussinesq, top-, and turbidity currents suggest that this dynamics is 

independent of the density ratio, vertical aspect ratio, wall friction, and Reynolds number 

provided 𝑅𝑒 is large, 𝑅𝑒 ≥ 𝛰(104). The local instantaneous front Froude number 

obtained from the fully-resolved simulations is compared to existing models of Froude 

functions. The recently reported extended box model capable of capturing the dynamics 

of such non-axisymmetric flows is used to propose a scaling law for the self-similar 

horizontal aspect ratio 𝜒∞ of the propagating front of a gravity current as a function of 

the initial horizontal aspect ratio 𝜒0. The experimental and numerical results are in good 

agreement with the proposed scaling law. This Chapter is currently under review for 

publication in Journal of Fluid Mechanics. 

 Chapter 6: The dynamics of non-axisymmetric turbidity currents is 

considered in this chapter. The study comprises a series of experiments and highly 

resolved simulations for which a finite volume of particle-laden solution is released into 

fresh water. A mixture of water and polystyrene particles of diameter 𝑑̃𝑝 = 300 μm and 

density 𝜌̃𝑐 = 1012 kg/m3 is initially confined in a hollow cylinder at the centre of a large 

tank filled with fresh water. Cylinders with two different cross sections are examined: a 

circle and a rounded rectangle in which the sharp corners are smoothened. The time 

evolution of the front is recorded as well as the spatial distribution of the thickness of the 

final deposit via the use of a laser triangulation technique. The dynamics of the front and 

final deposit are significantly influenced by the initial geometry, displaying substantial 

azimuthal variation especially for the rectangular case where the current extends farther 

and deposits more particles along the initial minor axis of the rectangular cross section. 

Several parameters are varied to assess the dependence on the settling velocity, initial 
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height aspect ratio, and volume fraction. Even though resuspension is not taken into 

account in our simulations, good agreement with experiments indicates that it does not 

play an important role in the front dynamics, in terms of velocity and extent of the 

current. However, wall shear stress measurements show that incipient motion of 

particles and particle reentrainment do occur in the body of the current and should be 

accounted for to properly capture the final deposition profile of particles. This Chapter is 

currently under review for publication in Physics of Fluids. 

 Chapter 7: In this chapter we report on the dynamics of circular finite-

release Boussinesq gravity currents on a uniform slope. The study comprises a series 

of highly resolved direct numerical simulations for a range of bottom slopes between 5 

and 20 degrees. Two Reynolds numbers are considered (𝑅𝑒 = 1000 and  𝑅𝑒 = 5000). 

The temporal evolution of the front is in excellent agreement with previous experiments. 

One of the most fascinating aspects of this study is the detection of a converging flow 

towards the centre of the domain. This converging flow is a result of the finite nature of 

the release coupled with the presence of a sloping boundary and leads to a second 

acceleration phase in the front velocity of the current. The second acceleration has 

never been reported in the context of gravity currents. Its significant implications on the 

short and long term behaviour on the current are discussed. These finite-release 

currents are invariably dominated by the head where most of the mixing and ambient 

entrainment occurs. We propose a simple method for defining the head of the current 

from which we extract various properties including the front Froude number and 

entrainment coefficient. The Froude number is seen to increase with steeper slopes, 
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whereas the entrainment coefficient is observed to be weakly dependent on the bottom 

slope. This Chapter will be submitted to Journal of Fluid Mechanics. 
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Figure 1-1.  Conditions leading to the formation of a gravity current. At 𝑡𝑖𝑚𝑒 = 0, a 

hydrostatic pressure difference is present at the vertical interface. It increases 
linearly with depth, reaching a maximum at the bottom surface. 

 

 
 

Figure 1-2.  Schematic of a Boussinesq (top) and a non Boussinesq (bottom) current. 

 

 
 
Figure 1-3.  Canonical setups: Planar release (left), circular release (right). 
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CHAPTER 2 
METHODOLOGY 

This chapter is arranged into three sections and provides details on the 

experiments, numerical simulations, and the proposed extended box model. In section 

§2.1, we elaborate on the experimental setup and discuss how the experiments are 

performed. We specify the quantities of interest as well as the means of extracting and 

post-processing the data. Some of the experiments are complemented with direct 

numerical simulations using a spectral code that has been extensively verified (Cortese 

& Balachandar 1995, Cantero et al. 2007a). Details of the numerical simulations are 

presented in §2.2. Finally, we elaborate in §2.3 on the proposed extended box model. 

We present the governing equations and discuss some of the attributes of the model, 

including the initial partitioning and remapping of Lagrangian points. 

2.1 Experiments 

All experiments were performed at the Institut de Mécanique des Fluides de 

Toulouse (IMFT) at the experimental facilities of Ondes, Turbulence et Environnement 

(OTE) group. The details of the experiments are hereby presented. 

2.1.1 Setup 

A schematic of the setup is shown in Figure 2-1. A hollow cylinder lies at the 

center of a square transparent tank. The cylinder traps within its walls a fluid or mixture 

(particles + water) with a different density (typically larger) than the ambient surrounding 

fluid, which predominantly consisted of tap water. Four cylinders were considered with 

different cross-sectional shapes: (i) circle (CS), (ii) plus shape (PS), (iii) rounded 

rectangle (RR), and a true rectangle (TR). The cylinders have roughly the same cross-

sectional area (except for the TR, which has the same aspect ratio as that of the RR) 
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and are depicted in Figure 2-2. Since we are trying to replicate fixed volume gravity 

currents, it is desired that the contents of the hollow cylinder be instantaneously 

exposed to the ambient fluid. Therefore, the hollow cylinder must be swiftly lifted (above 

the water level in the tank) at the time of release. This is achieved via a pulley system 

(Figure 2-1). Multiple experiments were conducted, the vast majority of those 

experiments fall under two categories: (1) saline and (2) particle-laden currents. 

For saline currents, the tank and the hollow cylinder were simultaneously filled 

with tap water and salty water, respectively. Simultaneous filling help to minimize 

leaking (into the tank) by reducing the hydrostatic pressure difference at the interface. 

The water inside the tank is then given ample time to arrive at a stagnant state. 

Fluorescent dye (in highly concentrated powder form) is then added to the salty water 

and stirred to arrive at a homogeneous solution. Finally, the cylinder is swiftly lifted and 

the current begins to flow. Even though the fluorescent dye may be premixed with the 

salty water, it is preferable to add it to the solution as close to the time of release as 

possible. During the time needed for the water inside the tank to stagnate, the dye 

would diffuse into the tank. If we consider a plan view of the setup, the initial diffusion of 

the dye would distort the otherwise well-defined cross section of the release (CS, PS, 

RR, or TR). The distortion could mean more (unnecessary) work later during image 

processing. 

In the case of particle-laden currents, a known amount of particles (polystyrene 

spheres) is initially poured into the cylinder, and then both the tank and the cylinder are 

filled with tap water to the desired level. Here again, the water inside the tank must be 

given ample time to reach a stagnant state before the fluorescent dye is added to the 
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cylinder. The mixture (water, particles, fluorescent dye) is then vigorously stirred for a 

few seconds (with a brush) to bring the particles into suspension. The brush is then 

retracted and the cylinder is quickly lifted. The brush has dimensions of 4 × 1 cm and is 

connected at its end to a rigid metallic rod. The brush is allowed to sweep the bottom 

surface (with repetitive vertical gestures) to lift off any particles that have settled out. 

The fluorescent dye glows when exposed to black light (or ultraviolet light), a light 

source whose wavelengths are essentially in the ultraviolet (non-visible) spectrum. Four 

black light neon tubes are mounted on each side of the tank, with close proximity to the 

tank bottom surface (the space primarily occupied by the advancing current). For best 

results, the neon tubes should have similar properties in terms of size, intensity, and 

wavelength range. A high intensity and a wide range of wavelengths are desirable to 

strongly illuminate the current and achieve a clear distinction between the current and 

the ambient with as sharp an interface as possible. Similar properties (among the neon 

tubes) are also necessary so that the current is equally illuminated and the variations in 

image intensity are minimal along the interface. 

When black light tubes are in use, the experiments must be carried out in a dark 

room so that only the current becomes visible. Furthermore, if any parts of the structure 

appear in the images (as a result of the reflected light emitted by the current), they must 

be covered by a light absorbing material (black tape was found to be useful for these 

situations). It should be noted that the neon tubes are not shown in the schematic of 

Figure 2-1. 

2.1.2 Measurements 

We extract two quantities from the experiments: the location of the front and the 

thickness of the final deposit (exclusively for particle-laden currents). The front is 
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extracted from a bottom plan view of the current. This is achieved by placing a mirror (at 

a 45° angle with the horizontal) directly beneath the tank. A camera is then placed with 

a line of sight coinciding with the center of the cylinder, such that at time of release, only 

the cross sections of the various geometries in Figure 2-2 (shown on the right side of 

the figure) are visible. The vertical sides of the hollow cylinder will not appear in the 

frame when the camera is perfectly aligned with the center of release. 

For particle-laden currents, the thickness of the deposit that results from the 

settling of particles is of particular interest. At the end of each particle-laden experiment, 

the tank is slowly drained, and the deposition is allowed to dry off before thickness 

measurements are undertaken. The height of the deposited sediments is measured with 

a non-intrusive technique through laser reflection. The basic principle is triangulation. 

The laser probe has two main optical elements. The first is a light emitting diode, 

which projects a visible laser beam on the surface of the targeted element (in this case 

the deposit) whose elevation needs to be measured. A part of the incident beam is 

reflected from the surface of the deposit and impacts an ultra-sensitive optical sensor at 

an angle directly dependent on the distance between the diode and the surface. Before 

the start of the measurement, the elevation of the light emitting diode from the bottom 

surface of the tank is measured. Therefore once the distance between the diode and 

the targeted surface is calculated, the height of the deposit can be straightforwardly 

inferred by subtracting the latter from the former. The laser has a measuring range of 

2 mm with a resolution of 0.5 μm and a spot diameter of 0.1 mm. The measurements are 

continuous with a frequency of 5000 measurements per second. The 2 mm measuring 

range begins at a distance of 23 mm from the laser as shown in Figure 2-3. 
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The laser is mounted on a 2-axis motorized system that guides it over the bottom 

surface of the tank. The system covers a range of 800 × 800 mm, and depending on the 

area of the final deposit, the thickness of the sediments was measured every 

25 or 50 mm. Since the depth of the deposit at the center of the release can exceed the 

aforementioned 2 mm measuring range, a micrometer was attached to the laser (inset 

of Figure 2-1) to allow for controlled vertical displacements. 

To account for slight inclination in the tank supporting structure or possible 

minute height variations caused by the bending of the motorized axis (due to its own 

weight) as the laser sweeps over the bottom surface, dry measurements of the tank 

“topography” were computed by displacing a metallic plate of known thickness at 

various locations in the tank and recording the elevation measured by the laser. These 

values would then be taken into account when measuring the thickness of the final 

deposit. 

2.1.3 Image Processing 

A high resolution camera provides 16-bit grayscale images of size 2160 × 2560 

pixels. Images are extracted in digitized form at a frequency of 50 images per second 

with a pixel intensity range of [0,65535]. A zero intensity value corresponds to a black 

pixel, while a 65535 value corresponds to a white pixel. The remaining 65534 values 

indicate a multitude of gray pixels. A wide pixel intensity range is highly desirable. It 

allows for a straightforward detection of the front. Consider for example Figure 2-4. On 

the top, we show a snapshot of a plan view of the current (illuminated, white portion of 

the image) as it spreads in the ambient fluid (dark background). In the bottom portion of 

the figure, we plot the pixel intensity along a line parallel to the 𝑥-axis passing through 
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the center of the release. For the dark background (ambient fluid), the intensity is 

uniform with an average value of 500, however as we approach the interface the 

intensity level suddenly rises (within a few pixels) by about an order of magnitude to 

reach a value close to 5000. This sharp increase in the pixel intensity level allows the 

front (current-ambient interface) to be readily discerned. 

Detection of the front is performed using MATLAB® Image Processing ToolboxTM. 

The front is determined by setting a threshold value for the pixel intensity. All pixels with 

an intensity value exceeding the threshold value are considered to belong to the 

advancing current. All pixels with a lower intensity value (than the threshold value) are 

not taken into account. The current-ambient interface can be thought of as the 

outermost iso-contour of the image (where the iso-contour value is the chosen pixel 

intensity threshold value). The computed location of the front, however is not sensitive 

to the chosen threshold value because of the order of magnitude sudden jump in pixel 

intensity at the interface. 

The location of the front is first computed in pixels, where each pixel corresponds 

to a physical length (in microns). This pixel size or length is determined by counting the 

number of pixels across the length of an object of know dimensions. In the present 

experiments, each pixel corresponded to 420 microns. 

2.2 Direct Numerical Simulations 

Details on the numerical code utilized in this thesis are abundant in the literature 

(Cortese & Balachandar 1995, Cantero et al. 2007a). Below we will provide some key 

details. The interested reader is referred to the aforementioned studies and the papers 

referenced therein. 
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The numerical setup is identical to that of the experiments (Figure 2-5). Our focus 

is to simulate buoyancy driven flows resulting from scalar (homogeneous fluids) and 

monodisperse particle-laden currents. The particle-laden mixture will be treated as a 

continuum and a two-fluid formulation is adopted (Scalar gravity currents are a special 

case of particle-laden currents with zero settling velocity). The code implements an 

equilibrium Eulerian approach of the two-phase flow equations. The model involves (i) 

mass (ii) and momentum conservation equations for the continuum fluid phase, (iii) an 

algebraic equation for the particle phase momentum where the particle velocity is taken 

to be equal to the local fluid velocity and an imposed settling velocity derived from the 

Stokes drag force on the particles, (iv) and a transport equation for the density (particle 

phase concentration). The non-dimensional system of equations read 

 ∇ ∙ 𝒖 = 0 (2-1) 

  
𝐷𝒖

𝑑𝑡
= 𝜙𝒆𝑔 − ∇p +

1

𝑅𝑒
∇2𝒖 (2-2) 

 𝒖𝑝 = 𝒖 + 𝑉𝑠𝒆
𝑔 (2-3) 

 
𝜕𝜙

𝜕𝑡
+ ∇ ∙ (𝜙𝒖𝑝) =

1

𝑆𝑐 𝑅𝑒
∇2𝜙 . (2-4) 

In the above, we employ the Boussinesq approximation with the assumption of small 

density differences between the particle-laden solution and the ambient playing a role 

only in the buoyancy term of the momentum equation. Unless otherwise stated, all 

parameters are non-dimensional, however those with an overhead tilde correspond to 

dimensional quantities. The height 𝐿̃𝑧 of the domain is taken as the length scale, 𝑈̃ =

√𝑔̃0
′ 𝐿̃𝑧 as the velocity scale, 𝑇̃ = 𝐿̃𝑧/𝑈̃ as the time scale, ambient density (𝜌̃𝑎) as the 

density scale, and 𝜌̃𝑎𝑈̃2 as the pressure scale. The initial reduced gravitational 
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acceleration is defined as 𝑔̃0′ = (𝜌̃𝑝 − 𝜌̃𝑎)𝜙0𝑔̃/𝜌̃𝑎, where 𝜌̃𝑝, 𝜙0, and 𝑔̃ represent the 

dimensional particle density, initial volume fraction of particles in the mixture, and the 

dimensional gravitational acceleration. We denote by 𝒖𝑝 and 𝜙 the velocity and the 

volume fraction of the particle phase (normalized by the initial volume fraction 𝜙0), 

respectively. 𝒖 and 𝑝 correspond to the velocity and total pressure of the continuum 

fluid phase, respectively. The settling velocity 𝑉𝑠 is determined from the Stokes drag 

force on spherical particles with small particle Reynolds numbers, and 𝒆𝑔 is a unit 

vector pointing in the direction of gravity. The Schmidt and Reynolds numbers in (2-4) is 

defined as 

 𝑅𝑒 = 𝑈̃𝐿̃𝑧/𝜈  ;                      𝑆𝑐 = 𝜈/𝜅̃  . (2-5) 

where 𝜈 and 𝜅̃ represent the kinematic viscosity and the molecular diffusivity of the 

continuum fluid phase, respectively. 

The simulations are carried out inside a rectangular computational domain 

(Figure 2-5) of dimensions 𝐿𝑥 × 𝐿𝑦 × 𝐿𝑧. Periodic boundary conditions are imposed 

along the 𝑥 and 𝑦 directions. No-slip and free-slip conditions are imposed for the 

continuous phase along the bottom (𝑧 = 0) and top (𝑧 = 1) walls, respectively. Mixed 

and Neumann boundary conditions are imposed for the particle phase at the top and 

bottom walls, which translate into zero particle net flux and zero particle resuspension, 

respectively. 

 {𝑎𝑡 𝑧 = 1    
1

𝑆𝑐 𝑅𝑒

𝜕𝜙

𝜕𝑧
− 𝑉𝑠𝜙 = 0} ;       {𝑎𝑡 𝑧 = 0    

𝜕𝜙

𝜕𝑧
= 0} . (2-6) 

2.3 Extended Box Model 

Gravity currents resulting from planar and cylindrical fixed volume releases will 

remain planar, and axisymmetric as they spread out. On the other hand, most gravity 
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currents resulting from non-canonical configurations (non-planar and non-cylindrical) will 

spread in a manner that greatly depends on the initial shape of release. A simple, widely 

used, approach such as the box model provides a basic tool to quickly predict the front 

velocities of gravity currents resulting from canonical setups (planar and axisymmetric). 

The box model is a bold approximation (Figure 2-6) that assumes a planar (resp. 

cylindrical) current to advance as a set of height-diminishing rectangles (resp. disks) of 

length 𝑥𝑓(𝑡) (resp. radius 𝑟𝑓(𝑡)) and height ℎ𝑓(𝑡). Each of these variables (length/radius 

and height) is a unique function of time 𝑡. They are related by the Froude front condition 

as well as mass conservation. For a cylindrical current, the box model equations are 

 
d𝑟𝑓

dt
= 𝐹𝑟 ∙ √ℎ𝑓 (2-7) 

 
1

2
𝜋𝑟𝑓

2ℎ𝑓 = 𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑣𝑜𝑙𝑢𝑚𝑒 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (2-8) 

where 𝐹𝑟 is the Froude function of order unity which depends on the height ratio 

between the current and the surrounding ambient. The above equations have been 

rendered non-dimensional using the same length and time scales introduced in the 

previous section on direct numerical simulations. 

The box model is well suited for canonical problems resulting from planar and 

cylindrical releases, nonetheless, for non-canonical problems, it fails to capture the 

dependence on the initial shape. The reason for this failure is simple. The box model 

treats the current as one body as it homogenizes the flow properties (velocity and 

height) and neglects any spatial variations that might be present. For non-canonical 

releases, the velocity and height of the release must be allowed to vary along the 

interface. 
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The present section will provide details on the proposed extended box model 

(EBM). First, EBM constitutes a set of coupled algebraic and partial differential 

equations 

 𝑢𝑓 = 𝐹𝑟 ∙ √ℎ𝑓 (2-9) 

 

{
  
 

  
 
𝜕𝑥𝑓

𝜕𝑡
= 𝑢𝑓

𝜕𝑦𝑓/𝜕𝑠

√(𝜕𝑥𝑓/𝜕𝑠)
2
+ (𝜕𝑦𝑓/𝜕𝑠)

2

𝜕𝑦𝑓

𝜕𝑡
= 𝑢𝑓

−𝜕𝑥𝑓/𝜕𝑠

√(𝜕𝑥𝑓/𝜕𝑠)
2
+ (𝜕𝑦𝑓/𝜕𝑠)

2

 (2-10a) 

 
𝜕𝜎

𝜕𝑡
= 𝑢𝑓 (2-10b) 

 
𝜕𝜎ℎ𝑓

𝜕𝑡
= 0 (2-11) 

The above set of equations describe the evolution of a gravity current front in the 𝑥-𝑦 

plane. The independent variables 𝑠 and 𝑡 represent the distance measured along the 

circumference of the front and time, respectively. The subscript 𝑓 denotes front values, 

and {𝑥𝑓(𝑠, 𝑡), 𝑦𝑓(𝑠, 𝑡)} mark the location of the front in the 𝑥-𝑦 plane (Figure 2-7). The 

height and outward normal velocity of the front correspond to ℎ𝑓(𝑠, 𝑡) and 𝑢𝑓(𝑠, 𝑡), 

respectively. An additional variable, namely the area per arc length 𝜎(𝑠, 𝑡) is also used 

in the model. An integration of 𝜎(𝑠, 𝑡) over the entire arc length of the advancing front 

(perimeter of the current) will yield the total area covered by the platform of the 

advancing current. All variables are rendered dimensionless using the same scales as 

in section 2.2. Equations (2-9), (2-10) and (2-11) refer to the Froude front condition, 

kinematic relations and mass conservation, respectively.  
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Analytical solutions of (2-9)-(2-11) are not feasible in the case of arbitrary initial 

patches, however, the system may be solved numerically. Its solution is far easier and 

faster than the direct numerical simulations discussed in section 2.2. Details about the 

numerical procedure used for solving (2-9)-(2-11) are hereby presented. 

2.3.1 Initial Condition 

The first step is providing the initial condition for the various variables. We start 

by defining the shape of the release. Let us consider for example the rounded 

rectangular shape in Figure 2-2 and discretize the front using a set of equidistant points. 

The coordinates of these points represent the initial conditions for 𝑥𝑓 and 𝑦𝑓. 

We consider full depth releases (where the initial height of the current inside the 

hollow cylinder is the same as that of the surrounding ambient), and therefore the initial 

non-dimensional height is set to unity at the discretized points. 

The front velocity is straightforwardly calculated from the height using the Froude 

condition (2-9). We choose the empirical relation of Huppert-Simpson (1980) for the 

Froude number function 

 𝐹𝑟 = min (ℎ𝑓
−1/3

, 1.19). (2-12) 

Finally, the initial condition for 𝜎 comes from the partitioning of the initial shape. The 

initial shape is partitioned geometrically by extending normal (to the front) lines inwards. 

These normal lines will initiate at the midpoint of each segment connecting 2 

consecutive Lagrangian points (Figure 2-8). Because of the point symmetry of the 

rounded rectangle (RR) (the RR is symmetric w.r.t. the 𝑥 and 𝑦-axes), these (normal) 

lines will intersect the major and minor axes of the RR to form the sub volumes shown 

in Figure 2-8. Each sub volume has a corresponding segment along the front. The 
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centers of each of these segments coincide with the Lagrangian points {𝑥𝑓,𝑦𝑓}. The 

initial value of 𝜎 may be easily calculated by dividing the surface of each sub volume by 

the corresponding front segment length 

 𝜎 =
𝐴𝑟𝑒𝑎

𝐿𝑒𝑛𝑔𝑡ℎ
 . (2-13) 

The extended box model generalizes the classical box model (Huppert & Simpson 

1980; Dade & Huppert 1995), in several ways. Despite these generalizations, the 

extended box model involves significant approximations. (H1) The volume of initial 

release is partitioned geometrically with inward propagating lines (perpendicular to the 

front) and accordingly different sub-volumes are assigned to the different portions of the 

front. (H2) As the current propagates, the height of the current is not taken to be a 

constant over the entire release. It varies along the front depending on the local speed 

of propagation. (H3) The velocity of propagation is taken to be normal to the front. Since 

there is variation in the height of the current along the front, it can be expected that 

there is some tangential flow (tangential velocity) induced by this variation in the current 

height. However, at the front, since the pressure gradient normal to the front is expected 

to far exceed the tangential gradient, the current velocity is expected to be 

predominantly normal to the front. (H4) Finally we assume that even in the present case 

of non-axisymmetric propagation Huppert-Simpson front relation can be used to 

express the front velocity in terms of local front height1. These assumptions are 

examined with the help of direct numerical simulations in Chapter 5 section 5. 

                                            
1 Note that another model of Froude number function could be used without loss of generality 
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2.3.2 Time Integration and Spatial Discretization 

Once the initial conditions are known, we march in time using a third order low-

storage, explicit Runge-Kutta scheme and an eighth order central finite difference 

scheme for the spatial derivatives (with periodic boundary conditions). Each time step 

consists of two stages. The first is an intermediate stage where the governing equations 

(2-9)-(2-11) are integrated. At the end of this stage, because of the azimuthal variations, 

the Lagrangian points are no longer equidistant. Each sub-volume associated with a 

Lagrangian point is then assumed to be homogeneously distributed (along the front) 

between its two adjacent midpoints (think of volume per unit length along the front). 

The second stage involves remapping the non-equidistant Lagrangian points to 

render them equidistant along the front. This step is necessary, especially in the case of 

concave corners, as in the plus-configuration for instance, as Lagrangian points may 

cross each other causing the front to fold on itself. This problem is classically 

encountered in Lagrangian techniques such as Front Tracking approaches (Unverdi & 

Tryggvason 1992). Once the points are remapped, new midpoints are calculated and 

the sub-volumes of the release associated with each new Lagrangian point is 

computed. Then a step of redistributing the sub-volumes per unit arc length (𝜎ℎ𝑓) is 

performed, and this step preserves the total volume of the release. Finally 𝑢𝑓 and ℎ𝑓 are 

interpolated at the new equi-spaced Lagrangian points. 

Let us denote the intermediate stage by *. Then, if we start with a set of points 

{(𝑥𝑓)𝑖
𝑛, (𝑦𝑓)𝑖

𝑛, (𝑢𝑓)𝑖
𝑛, (ℎ𝑓)𝑖

𝑛, (𝜎)𝑖
𝑛}, (where superscript 𝑛 denotes a (known) quantity at the 

present time, and subscript 𝑖 marks the 𝑖𝑡ℎ Lagrangian point), marching in time takes us 

to the intermediate * stage 
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 {(𝑥𝑓)𝑖
𝑛, (𝑦𝑓)𝑖

𝑛, (𝑢𝑓)𝑖
𝑛, (ℎ𝑓)𝑖

𝑛, (𝜎)𝑖
𝑛}  

(2-9)−(2-11)
→        {(𝑥𝑓)𝑖

∗, (𝑦𝑓)𝑖
∗, (𝑢𝑓)𝑖

∗, (ℎ𝑓)𝑖
∗, (𝜎)𝑖

∗}  (2-14) 

As previously mentioned, the Lagrangian points {(𝑥𝑓)∗, (𝑦𝑓)∗} will not necessarily be 

equidistant along the arc length even when {(𝑥𝑓)𝑛, (𝑦𝑓)𝑛} are equidistant along the arc 

length at time 𝑡𝑛. To render {(𝑥𝑓)∗, (𝑦𝑓)∗} equidistant, we first calculate the perimeter of 

the front (at the intermediate * stage) by connecting the Lagrangian points with straight 

segments. From the ratio of the perimeter to the number of points, we compute the 

required separation distance at the new time step to be Δ𝑛+1 

  Δ𝑛+1 =
𝑃𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟∗

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑖𝑛𝑡𝑠
 . (2-15) 

A point is then (randomly) fixed and each neighboring point is adjusted along the arc 

length to arrive at an equidistant set of points (with respect to the front at the 

intermediate * stage) with spacing Δ𝑛+1. 

Once the Lagrangian points are remapped to {(𝑥𝑓)𝑛+1, (𝑦𝑓)𝑛+1}, new midpoints 

are calculated (by again remaining along the arc length of the intermediate stage). Each 

Lagrangian point now resides at the center of a segment bounded by the newly 

calculated midpoints. As previously mentioned, each sub-volume (at the intermediate 

stage), is assumed to be homogeneously distributed (along the front) between its two 

adjacent midpoints. The task now is to associate a sub-volume to each of the remapped 

points {(𝑥𝑓)𝑛+1, (𝑦𝑓)𝑛+1}. This sub-volume is again bounded by the newly calculated 

midpoints. This step can be thought of as having an arc composed of multiple segments 

of different lengths 𝑙𝑖 bounded by the midpoints of the Lagrangian points (Figure 2-9). 

Each segment is associated to a sub-volume and has a certain (volume per unit length) 

value (Κ𝑖). The total volume of the current is recovered from the summation over all 
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segments ∑ 𝑙𝑖Κ𝑖
𝑁
𝑖=1 = 𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑉𝑜𝑙𝑢𝑚𝑒, where 𝑁 is the total number of segments (or 

number of Lagrangian points). 

In a continuous (non-discretized) framework, the volume redistribution step may 

be described as follows. The volume of a differential element along the front (𝑑𝑉) is 

given by 

 𝑑𝑉 = 𝜎ℎ𝑓𝑑𝑠 . (2-16) 

The total volume 𝑉 is recovered from a closed line integral along the front 

 𝑉 = ∮𝑑𝑉 = ∮𝜎ℎ𝑓𝑑𝑠 . (2-17) 

At the intermediate stage, each (discretized) sub-volume is defined as 

 Δ𝑉𝑖
∗ = 𝜎𝑖

∗ℎ𝑓𝑖
∗Δ𝑠𝑖

∗ , (2-18) 

where Δ𝑠𝑖∗ is the length of the segment centered around the Lagrangian point 𝑝𝑖∗ of 

coordinates (𝑥𝑓𝑖
∗, 𝑦𝑓𝑖

∗). For the total of the 𝑁 segments centered around the 𝑁 

Lagrangian points, the total volume is the summation 

 𝑉∗ =∑𝜎𝑖
∗ℎ𝑓𝑖

∗Δ𝑠𝑖
∗

𝑁

𝑖=1

 . (2-19) 

After remapping of the Lagrangian points, the redistributed sub-volumes become 

 Δ𝑉𝑖
𝑛+1 = (𝜎ℎ𝑓)𝑖

𝑛+1Δ𝑠𝑖
𝑛+1 , (2-20)   

where the product (𝜎ℎ𝑓)𝑖𝑛+1 is obtained from the intermediate * stage as follows 

 (𝜎ℎ)𝑖
𝑛+1 =∑𝛼𝑖𝑗𝜎𝑗

∗ℎ𝑓𝑗
∗

𝑁

𝑗=1

  (2-21) 

where the fraction 𝛼𝑖𝑗 is the ratio of the intersection of Δ𝑠𝑗∗ and Δ𝑠𝑗𝑛+1 divided by the 

length of Δ𝑠𝑗∗ 
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 𝛼𝑖𝑗 =
Δ𝑠𝑗
∗ ∩ Δ𝑠𝑗

𝑛+1

Δ𝑠𝑗
∗ .  (2-22) 

Let us consider the simple example shown in Figure 2-9. The boundaries of each 

segment (Figure 2-9A) can be thought of as the midpoints (thick dashes) of the 

Lagrangian points at the intermediate stage denoted by the asterisk (*). When the 

Lagrangian points are remapped in Figure 2-9B (to render them equidistant), the newly 

calculated midpoints will mark the new boundaries of the segments at the 𝑛 + 1 time 

step. Each segment (at the 𝑛 + 1 time step) might constitute of different portions of the 

(non-uniform) segments at the * stage. At the end of this step, the sub-volumes per unit 

arc length (𝜎ℎ𝑓) are obtained at the 𝑛 + 1 time step. 

The height at the remapped points (ℎ𝑓
𝑛+1) is then found by linear interpolation 

from the intermediate * stage, and the velocity is calculated form the Froude condition. 

Finally, the area per arc length 𝜎𝑛+1 is the ratio of (𝜎ℎ𝑓)𝑛+1 to the interpolated height 

ℎ𝑓
𝑛+1. 

The extended box model (EBM) is a simple model that is primarily designed to 

capture the dependence of the flow (front location) on the initial shape of release. It will 

be shown in the subsequent chapters, that despite its simplicity, it can correctly capture 

the preferential spreading directions of non-axisymmetric gravity currents. 
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Figure 2-1.  Isometric view of experimental setup. For the enlarged view at the bottom 

right, the tank and the motorized axes support have been hidden to allow for 
an unobstructed view of the laser. 

 
 
 

 
 

Figure 2-2.  Isometric view of the right-angled hollow cylinders. The dimensions of the 
cross-sections are in mm.  
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Figure 2-3.  Measuring range of laser. 

 
 
 

 
Figure 2-4.  The large pixel intensity jump across the interface (close to an order of 

magnitude) allows the front to be easily identified. 
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Figure 2-5.  Schematic of the numerical domain. 

 
 
 
 

 
 

Figure 2-6.  Classical box model for planar and cylindrical fixed volume releases 
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Figure 2-7.  Schematic of extended box model. (𝑥𝑓(𝑠, 𝑡), 𝑦𝑓(𝑠, 𝑡)) denote the local 
position, ℎ𝑓(𝑠, 𝑡) the height, 𝑢𝑓(𝑠, 𝑡)  the outward normal velocity of the front 
and 𝜎(𝑠, 𝑡) the area per arc length. The independent variables 𝑠 and 𝑡 denote 
the distance measured along the circumference of the front and time, 
respectively. 

 
 
 

 
 

Figure 2-8.  Initial partitioning for the EBM for the rounded rectangle (left) and plus 
shape (right). The equidistant Lagrangian points are shown on the front as 
black circular disks. Each Lagrangian point is associated with a sub-volume. 
The sub-volumes are not necessarily equal. 
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Figure 2-9.  Remapping of Lagrangian points and volume redistribution. 
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CHAPTER 3 
LONG-LASTING EFFECT OF INITIAL CONFIGURATION IN GRAVITATIONAL 

SPREADING OF MATERIAL FRONTS 

3.1 Background 

Consider an accidental collapse or a skilled demolition of a building vertically on 

itself. The emerging debris cloud will quickly invade a wider region that greatly 

surpasses the bounds of the demolished building. During the infamous 9/11 attack, the 

tidal wave of dust and debris enveloped much of the lower Manhattan. The gravitational 

spreading of these destructive debris clouds, as seen in Figure 3-1, sensitively depends 

on the building’s shape. The non-axisymmetric nature of the resulting lobe-like structure 

is persistent over a significant time and cannot be predicted by current models. This 

counter-intuitive behavior of initial condition-dependent spreading of material fronts is 

not unique to debris clouds, and is applicable to a variety of geophysical flows as 

demonstrated in this paper. Debris clouds belong to the family of gravity currents which 

are observed in various natural situations. The manner in which these flows spread has 

important implications for oil spills (Hoult 1972), accidental toxic gas releases (Britter 

1989, Gröbelbauer 1993), fire propagation (Doyle & Carlson 2000), turbidity currents 

(Meiburg & Kneller 2010), pyroclastic flows (Faillettaz et al. 2004), avalanches 

(Hopfinger 1983, Faillettaz et al. 2004) and storms (Hall et al.1976). These flows are 

driven by a difference in density either stemming from temperature, salinity or 

suspended sediments.  

                                            
This chapter has been previously published “Zgheib, N., Bonometti, T., & Balachandar, S. 2014. Long-
lasting effect of initial configuration in gravitational spreading of material fronts. Theoretical and 
Computational Fluid Dynamics, 28(5), 521-529.” 
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Predicting the short-time as well as long-time evolution of these material fronts is 

of crucial interest (Simpson 1982, Huppert 2006). Most real gravity currents are 

generated by a sudden or continuous release from an arbitrary, often non-circular, 

source. However, nearly all the prior theoretical, experimental and numerical 

investigations are based on planar or axisymmetric configurations (von Karman 1940, 

Benjamin 1968, Huq 1996, Hallworth et al. 2001). The underlying (implicit) assumption 

is that, after a relatively short transitional phase, the material front becomes either 

planar or axisymmetric. Here we present results from laboratory and numerical 

experiments that were performed with non-axisymmetric finite initial releases. The most 

striking feature was that the effect of the initial non-circular shape of the release persists 

for the whole duration of the observation. This is a unique, but robust, behavior of 

propagating material fronts, which is quite distinct from propagating informational fronts, 

such as sound waves and shock fronts, which are well known to quickly become 

independent of the source shape.  

In the present chapter, the physical mechanisms responsible for this peculiar 

behavior is identified, and a novel model is presented which accounts for the shape of 

the initial release and predicts the non-axisymmetric propagation of the front of the 

gravity current. This model when applied to the problem of building demolition captures 

the time evolution of the observed debris cloud (Figure 3-1). 

3.2 Non-Circular Spreading of Density Currents 

When a patch of heavy (resp. light) fluid spreads in a lighter (resp. heavier) 

ambient, it generally goes through successive stages (Huppert 1980, Cantero 2007a), 

namely an acceleration phase at the end of which the current’s front velocity reaches its 

maximum value, a slumping phase with constant or nearly constant front velocity, and 
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eventually a phase denoted here as long-time phase where the buoyancy driving force 

is balanced either by inertia, viscosity or surface tension, respectively. Note that the 

long-time phase is often referred to as self-similar phase, because it is possible to find 

an exact long-time similarity solution of the simplified equations of motion (e.g. the 

shallow-water equations) in some specific configurations as in the planar or 

axisymmetric case. When a self-similar solution exists, the time evolution of the front 

height ℎ𝑁 and front velocity 𝑢𝑁 usually follow the scaling law ℎ𝑁~ 𝑡 and 𝑢𝑁~ 𝑡 with  

and  being some constants. For instance, in the case of axisymmetric gravity currents, 

the one-layer shallow-water equations give  = −1 and  = −1/2. The reader is 

referred to the work (Ungarish 2009, Zemach & Ungarish 2013) for more details about 

the existence of a similarity solution in various configurations. 

While the slumping and self-similar phases have been extensively studied in the 

past (Hoult 1972, Benjamin 1968, Huppert & Simpson 1980, Rottman & Simpson 1983, 

Klemp et al. 1994, Cantero et al. 2007a), the initial acceleration phase has received 

very little attention (Cantero et al. 2007a, Cantero et al. 2008b) as initial conditions were 

believed to be unimportant in the prediction of the long-term dynamics. Here we argue, 

by means of experiments and fully-resolved simulations that a non-axisymmetric finite-

volume release does not reach an axisymmetric shape nor preserve its initial shape for 

a significant time. In the following we define the “long-time” regime as the regime for 

which the current has entered a phase for which the local front height and speed obey a 

scaling law of the form ℎ𝑁~𝑡  and 𝑢𝑁~ 𝑡, as found for the self-similar (inertial) phase.   

The laboratory experiments consist of swiftly releasing a column of dense salty 

(or turbid) water (𝜌𝑐 ≈ 1100 kg/m3) of height ℎ0  into a lighter ambient fluid of height 𝐻 
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inside a 1.2 × 1.2 × 0.4m tank, thanks to a hollow cylinder of equivalent radius 𝑅0. The 

ambient fluid is either clear water 𝜌𝑎 ≈ 1000 kg/m3) or air (𝜌𝑎 ≈ 1.2kg/m3). Unless 

stated otherwise, we set ℎ0 = 𝐻 (full depth release). Three different cross-sectional 

shapes are considered: (a) a circular section, (b) a rounded rectangular section, i.e. a 

rectangle where the two shorter edges are replaced by semi-circles, and (c) a plus-

shape section for which concave corners are present (Figure 3-2). Fluorescent dye is 

added to the fluid inside the cylinder. The front location and the current’s height are 

measured thanks to a mirror placed beneath the tank, which allows for a plan (bottom) 

view of the front evolution, while the side view of the current provides information about 

the height’s evolution. 

Several experiments have been performed for a wide range of Reynolds number 

𝑅𝑒 =  𝐻𝑈/𝜈 (𝑈 = √𝑔(𝜌𝑐 − 𝜌𝑎)𝐻/𝜌𝑎  ) being the velocity scale, 𝑔 the gravitational 

acceleration, and ν the kinematic viscosity of water), initial height aspect ratio 𝐻/𝑅0, and 

density ratio 𝜌𝑐/𝜌𝑎. As seen in Table 3-1, the initial aspect ratio based on the local 

distance from the center of mass is in the range 0.5-8.5, covering both configurations of 

𝑂(10−1) and 𝑂(101)  aspect ratio. In all cases, the flow was fully turbulent. The 

commonly accepted distance of propagation for which transition from the slumping 

phase to the inertial self-similar phase occurs is about 2 (resp. 5-9) in the cylindrical 

(resp. planar) configuration (Rottman & Simpson 1983, Cantero et al. 2007b). Here the 

distance of propagation was in the range 7-25, hence the current is likely to enter a 

regime which resembles the self-similar phase in all cases so the “long-time” regime is 

reached, as it will be confirmed later (Figures 3-3 and 3-4).  
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As mentioned above, the behavior of material fronts is in stark contrast to 

propagation of information (or wave) fronts. For example, an outward propagating 

sound wave front quickly becomes spherical irrespective of the shape of the source 

(Lighthill 1978) and the front radius is linearly related to time through sound speed as 

𝑟 = 𝑐0𝑡 (note that sound intensity distribution depends on the source detail). Similarly a 

blast wave from a finite source quickly becomes spherical independent of the source 

shape. Here again the blast radius can be expressed by the power-law (Sachdev 2004) 

𝑟~𝑡2/5. Although the blast front velocity decreases with time, it remains the same along 

the entire blast front. Clearly, the propagation of a material front, e.g. gravity currents, 

cannot be modeled as that of an information front.  

The temporal evolution of some axisymmetric and non-axisymmetric gravity 

currents is presented in Figures 3-2 and 3-4. When the release is non-circular, the 

current’s evolution depends on the initial shape within the time of the observation. For 

instance, in the case of the gravity current of initial rounded-rectangle cross section, the 

local front velocity and height at the tips of the initial major (slow) and minor (fast) axes 

(the marks S and F in Figure 3-7) show large differences in magnitude early after 

material redistribution (Figures 3-3 and 3-4, 𝑡 > 2). Over time the magnitude of the 

difference somewhat decreases, but persists up to the end of the experiment/simulation, 

indicating that the current has not become axisymmetric nor reverted back to its original 

shape within the limited time of observation. For instance, the patch of heavy fluid of 

initial rounded-rectangle shape is observed to flip axes, while that of initial plus shape 

turns into a square. 
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Initially, the height of the patch is uniform across the surface, and hence, the 

pressure force is the same along the current’s front. As a consequence, just after 

release, the current rapidly accelerates outward with increasing speed, but initially the 

current’s speed 𝑢𝑁 and height ℎ𝑁 are independent of the initial shape and are uniform 

around the circumference of the front (Figures 3-3 and 3-4 for 𝑡 < 1). Upon the release 

of the heavy fluid inward propagating perturbations initiate at the front, which reflect 

back at the center of the patch and eventually catch up to the front (Ungarish 2009). 

During the acceleration phase the heavy material is redistributed within the patch 

following the direction perpendicular to the initial front. At the end of the redistribution 

phase, the height ℎ𝑁 is not uniform along the front of the current (Figure 3-3 𝑡 ≈ 2). 

Since the front velocity 𝑢𝑁 scales as √ℎ𝑁 (Huppert & Simpson 1980 and Huppert 2006), 

the speed of propagation is non-uniform along the current’s front. This non-uniform 

circumferential distribution of the heavy fluid within the current, as dictated by the initial 

shape, remains fixed over time leading to a non-axisymmetric spreading of the current 

during the slumping and the subsequent spreading phase of the current.  

For comparison, the time-dependent solution of the axisymmetric one-layer 

shallow-water equations (equations 6.24-6.25 in Ungarish 2009) obtained with a finite-

difference method similar to that described in appendix 2 of (Ungarish 2009) are plotted 

in Figures. 3-3B and 3-4B together with the fully-resolved simulation and experimental 

results. Figure 3-3B shows that the temporal evolution of the local front height of the 

gravity current of initial rounded-rectangle cross-section roughly follows a slope -1 in 

log-log representation at times larger than 𝑡 = 5 approximately. The same trend is 

observed for the time-dependent solution of the one-layer axisymmetric shallow-water 



 

52 
 

equations at a somewhat earlier time 𝑡 ≈ 3. Similarly, the local front speed in Figure 

3-4B is observed to roughly follow a slope -1/2, as clearly seen for the experimental 

local ‘fast’ front speed. Note that some fluctuations are present in the evolution of the 

local ‘slow’ front speed, making the comparison more difficult. Comparing the temporal 

evolution of the local front speed of the non-axisymmetric gravity currents with the time-

dependent solution of the one-layer axisymmetric shallow-water equations indicates that 

the non-axisymmetric gravity currents have entered a long-time phase which resembles 

the self-similar regime of the axisymmetric configuration, in that the local height and 

speed roughly follow a law of the type ℎ𝑁~𝑡 and 𝑢𝑁~ 𝑡, with  and  being some 

constants. Note, however, that determining the precise value of  and , and the time at 

which the long-time regime starts is difficult with the present set of experimental and 

numerical data because of the significant velocity fluctuations observed in Figure 3-4B 

and the somewhat limited range of parameters investigated here. Larger-size 

experiments and/or simulations would help to clarify this point. 

The dependence of material front propagation on initial condition of release is 

robust in the sense that the peculiar behavior observed in Figure 3-2 is not restricted to 

the presently discussed configurations (rounded-rectangle and plus-shaped cross 

sections; Boussinesq currents of density ratio close to unity). We have conducted many 

more laboratory and numerical experiments of different non-axisymmetric geometries, 

density ratios 𝜌𝑐/𝜌𝑎 (including Boussinesq homogeneous and turbidity currents 𝜌𝑐/𝜌𝑎 ≈

1, heavy currents of dam-break flow type 𝜌𝑐/𝜌𝑎 = 𝑂(103), and light current 𝜌𝑐/𝜌𝑎 < 1), 

different aspect-ratio releases (radius to height ratio ranging between 0.5 and 7), varying 

frictional effects (no-slip/free-slip), and Reynolds numbers (Table 3-1). We found that 
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provided the Reynolds number is large enough, say 𝑅𝑒 ≥ 𝑂(103), the initial shape of the 

current always influence the current’s continued propagation as well as its preferred 

asymptotic non-axisymmetric shape for a significant amount of time. Finally, we 

performed simulations of both full-depth and partial-depth releases (Figure 3-5) and 

found a qualitative similar dynamics. This indicates that the presently observed behavior 

is independent of the initial depth ratio. Note that we performed simulations for only two 

values of ℎ0/𝐻. Other experiments or simulations for a wider range of depth ratios 

would help in quantitatively determining the influence of this parameter on the dynamics 

of non-cylindrical gravity currents. 

3.3 A New Model for the Prediction of the Propagation of Non-Circular Density 
Flows 

This finding has several theoretical implications. The classical Box Model, which 

is classically used for predicting the evolution of gravity currents (Huppert & Simpson 

1980), despite its simplicity, is able to reproduce the dynamics of axisymmetric and 

planar releases. However, straightforward application of the Box Model fails for non-

axisymmetric releases (Figure 3-7). According to this model, the height remains uniform 

along the entire spreading patch, so the speed of propagation remains uniform along 

the current’s front during all the phases of spreading (recall that the local speed of 

propagation evolves as the square-root of the local height of the current). Using the 

classical Box Model, an initially non-axisymmetric current inevitably becomes 

axisymmetric. Similarly, theories based on slumping and self-similar phases also fail to 

predict the sensitive dependence on the initial shape and the preferential propagation of 

non-axisymmetric gravity currents for the same reasons.  
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Fully-resolved simulations support the experimental findings (Figures. 3-3 and 3-

6). The simulations are performed using a spectral code (Cantero et al. 2007b) to solve 

the Navier-Stokes equations using the Boussinesq approximation 𝜌𝑐/𝜌𝑎 ≈ 1. The 

numerical domain consists of a Cartesian parallelepiped (𝑙𝑒𝑛𝑔𝑡ℎ × 𝑤𝑖𝑑𝑡ℎ × ℎ𝑒𝑖𝑔ℎ𝑡 =

15 × 15 × 1), with a spatial resolution of 880 × 880 × 179 (140 million degrees of 

freedom). Boundary conditions are no-slip at the bottom wall, free-slip at the top, and 

periodic at the sidewalls. The propagation of the current front is visualized via iso-

contours of the vertically-averaged dimensionless density field 𝜌 =  (𝜌∗ − 𝜌𝑎)/(𝜌𝑐 −

𝜌𝑎)  =  0.001 (𝜌∗ is the dimensional local density). Quantitative agreement is found 

between experiments and fully-resolved simulations. The undulations seen in Figure 3-6 

for both simulations and experiments at later times are due to the lobe and cleft 

instability (Simpson 1972). 

Even though such simulations are able to reproduce the peculiar dynamics of 

non-axisymmetric gravity currents, they are unlikely to be used for rapid prediction, as 

needed in operational models especially those dealing with the high-Reynolds numbers 

gravity currents. 

Here, we propose an Extended Box Model based on partitioning of the initial 

release using geometric rays that are perpendicular to the front (Figure 3-7). Once the 

various sub-volumes are obtained, the local fronts are advanced normal to themselves 

as in the Box Model. This initial partitioning is the key aspect of the present model, since 

it allows for non-uniform height and speed along the patch’s advancing front, during all 

the phases of spreading. This allows the model to capture the non-axisymmetric 

propagation of the front. To be explicit, the formulation of the extended box model 
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makes use of a Benjamin-type boundary condition (3.1) relating the outward normal 

front velocity 𝑢 to the front height ℎ, kinematic relations (3.2-3.3) for the advancement of 

the front position (𝑥, 𝑦) and horizontal area per arc length , respectively, and mass 

conservation (3.4). This results in a system of coupled non-linear PDEs for the 

unknowns 𝑢, 𝑥, 𝑦, and ℎ, viz 

 𝑢 = 𝐹𝑟√ℎ (3-1) 

 
𝜕{𝑥, 𝑦}

𝜕𝑡
= 𝑢

{𝜕𝑦/𝜕𝑠, −𝜕𝑥/𝜕𝑠}

√(𝜕𝑥/𝜕𝑠)2 + (𝜕𝑦/𝜕𝑠)2
 (3-2) 

 
𝜕𝜎

𝜕𝑡
= 𝑢 (3-3) 

 
𝜕(𝜎ℎ)

𝜕𝑡
= 0 (3-4) 

where, here, 𝐹𝑟 is the Huppert-Simpson Froude number2. Note that since the flow is 

incompressible and entrainment is neglected, the area per arc length 𝜎 and the current 

height ℎ are such that the total volume 𝑉 of the current is given by 

 𝑉 = ∫𝜎ℎ𝑑𝑠
 

𝑠

 (3-5) 

The independent variables 𝑠 and 𝑡 denote the curvilinear coordinate along the front and 

time, respectively. 

The solution to (3.1)-(3.4) is far easier and faster than the direct numerical 

simulations displayed in Figure 3-6a. As shown in Figures 3-1 and 3-7, the solution of 

the Extended Box Model is capable of capturing the propagation of currents with 

arbitrary initial forms.  

                                            
2 Note that another model of Froude number function could be used without losing generality. 
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At this point, we have shown that (i) fully-resolved simulations and (ii) the 

proposed extension of the box-model were able to reproduce the observed propagation 

of non-axisymmetric gravity currents contrary to the classical box-model. It is of major 

interest, however, to assess the capability of approaches based on the shallow-water 

equations to reproduce such a dynamics. This would require the development of a 

numerical approach for solving the two-dimensional one-layer (or better yet two-layer) 

shallow water-equations as done for example in (La Rocca et al. 2008). The 

development of such an approach is, however, a non-trivial undertaking, which is 

beyond the scope of the present work. Comparing the present results with a one- and/or 

two-layer shallow-water approach would allow clarifying the capabilities of shallow-water 

approaches within the hierarchy of available models for the description of non-

axisymmetric gravity currents. 

3.4 Summary and Discussion 

We have presented results from laboratory experiments and numerical 

simulations of the propagation of turbulent material fronts stemming from non-

axisymmetric finite initial releases. It is found that the effect of the initial non-circular 

shape of the release persists for the whole duration of the observation. The duration of 

the experiments was such that the gravity currents have crossed a distance of 12 to 25 

times the initial radius, if one considers the equivalent or minimum radius, respectively. 

This allowed to cover the acceleration phase, the (quasi-)slumping phase and a regime 

for which the dynamics resembles the self-similar inertial phase predicted by the one-

layer axisymmetric shallow-water equations. Finally, we presented a novel model, 

extending the classical box-model, which accounts for the shape of the initial release 

and predicts the non-axisymmetric propagation of the front of the gravity current. 
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It is important to note that the local speed of propagation of a material front 

generated by the release of a patch of arbitrary shape can vary significantly, thus 

leading to local “fast fronts” and “slow fronts”. In Figure 3-4, the fastest front is twice as 

fast as the slowest front during all the observed phases of spreading. Such long-lasting 

speed variations between the different sections of the front may result in dramatically 

different front locations that depend on the shape of the initial release. In the context of 

massive oil spills such as that the Deepwater Horizon oil spill stemming from the 

explosion of a sea-floor oil gusher in the Gulf of Mexico in April 20, 2010, the flow is 

likely to remain turbulent for longer times contrary to more moderate oil spills generated 

by tankers running aground, for which the gravity current is likely to be dominated by 

viscous and subsequently capillary effects after an hour approximately (Hoult 1972). In 

the former case, the error made in the estimation of the propagation of the oil spill front, 

which depends on the nature of initial release, unavoidably decreases the predictive 

capability of the precise location of impact along the coast. Clearly many other factors 

such as currents, cross flows, bottom topology, further influence the propagation of non-

axisymmetric gravity currents. In light of the present findings, suitable additions to the 

Extended Box Model described here can help improve the prediction of such gravity 

currents of arbitrary shapes. 

Finally it must be stressed that the present experiments/simulations were done 

for a limited range of parameters and on a limited spatial domain. The initial shape of 

the non-cylindrical gravity currents was found to influence the dynamics during the 

whole but limited duration of observation. For very large domains, however, non-

cylindrical finite-release gravity currents are likely to enter, after some time, a regime 
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where viscous effects are predominant. In that case, viscous diffusion of momentum 

may homogenize the front height and velocity so that the viscous current may become 

axisymmetric. More experiments on larger domains are needed to clarify if the presently 

observed behavior holds for longer distances of propagation and corresponding times 

than those attained here. 
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Figure 3-1.  Field observations of a non-circular gravity current. Aerial views of (top) a building of square cross-section 
and (bottom) a T-shaped building being demolished. The structure of the debris cloud is highly dependent on 
the building’s shape. Observe that material very close to the center of the building moves farther out than 
material located at the building’s extremities. The dynamics of the cloud is reasonably well captured by our 
proposed model, where the front location of the cloud is marked at equal instants of time as blue lines.
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Figure 3-2.  Temporal evolution of the experimental collapse of a column of salty water with different cross-sections at the 
center of a tank containing fresh water (𝐻/𝑅0 = 2, 𝑅𝑒 = 2.8 × 104, 𝜌𝑐/𝜌𝑎 = 1.1). The schemes on the left depict 
the three-dimensional initial shape of the heavy material in the experiment, namely cylinders of A) circular, B) 
rounded-rectangle and C) plus-shaped cross sections. Gravity is oriented opposite to 𝑧-axis. Time is scaled by 
𝑇 = 𝐻/𝑈 (defined in text). 

A 

B 

C 
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Table 3-1. Parameters used in the experiments and/or simulations. ℎ0(𝐻) is the initial 

height of the current (ambient), 𝑅0, 𝑅𝑚𝑖𝑛, 𝑅𝑚𝑎𝑥 are the initial equivalent, 
minimum, maximum radius of the cross-sectional area of the cylinders, 𝐿 is 
the maximum distance of propagation. 

 

Parameters 

Reynolds 

number 

𝑅𝑒 

[7103, 106] 

Initial depth 

ratio 

𝐻/ℎ0 

1 - 2 

Initial 

aspect ratio 

𝐻/𝑅𝑚𝑎𝑥 𝐻/𝑅0 𝐻/𝑅𝑚𝑖𝑛 

0.5 1 - 2 - 4 8.5 

Density 

ratio 

𝜌𝑐/𝜌𝑎 

0.93 – 1.1 - 103 

Distance of 

propagation 

𝐿/𝑅𝑚𝑎𝑥 𝐿/𝑅0 𝐿/𝑅𝑚𝑖𝑛 

7 12 25 
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Figure 3-3.  Temporal evolution of the local front height in the vertical mid-plane of 𝑥-

direction (dashed line) and y-direction (solid line) of the current of initial 
rounded-rectangle cross section. A) Results obtained from the fully-resolved 
simulation with 𝐻/𝑅0 = 2 and 𝑅𝑒 = 8950. B) Same as frame a in log-log 
representation. For comparison, the time-dependent solution of the 
axisymmetric one-layer shallow-water equations using Huppert & Simpson 
(1980)’s front condition in the full-depth configuration is shown in frame b 
(dash-dot line). The dotted lines indicate a slope of -1, as predicted by the 
self-similar solution of the axisymmetric one-layer shallow-water equations 
(Ungarish (2009) p122). 
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Figure 3-4.  Temporal evolution of the local front speed in the vertical mid-plane of 𝑥-

direction (lower curves) and 𝑦-direction (upper curves) of the current of initial 
rounded-rectangle cross section. A) The solid and dashed lines correspond to 
results obtained from the fully-resolved simulation with 𝐻/𝑅0 = 2 and 𝑅𝑒 =
8950, while the symbols are from three experiments for which 𝐻/𝑅0 = 2 and 
𝑅𝑒 = 2.8 × 104. B) Same as frame A in log-log representation. For 
comparison, the time-dependent solution of the axisymmetric one-layer 
shallow-water equations using Huppert & Simpson (1980)’s front condition in 
the full-depth configuration is shown in frame B (dash-dot line). The dotted 
lines indicate a slope of -1/2, as predicted by the self-similar solution of the 
axisymmetric one-layer shallow-water equations (Ungarish (2009) p122). 
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Figure 3-5.  Temporal evolution of the local front’s height A) and speed B) in the vertical 

mid-plane of 𝑥-direction (dashed lines) and 𝑦-direction (solid lines) of the 
current of initial rounded-rectangle cross section for two initial depth ratios, 
namely a partial-depth release ℎ0 = 𝐻/2 (blue lines with symbols) and a full-
depth release ℎ0 = 𝐻 (black lines without symbols). These results are 
obtained from fully-resolved simulations with 𝐻/𝑅0 = 2 and 𝑅𝑒 = 8950. 

 
 

 

Figure 3-6.  Temporal evolution of a non-axisymmetric material front (fully-resolved 
simulation vs. experiment). The initial cross sectional geometry is a rounded 
rectangle. A) Numerical simulations with 𝑅𝑒 = 8950. Time separation 
between contours is 𝛥𝑡 = 0.35 and the final time is 𝑡𝑓 = 12.6; B) laboratory 
experiments. Here, 𝑅𝑒 = 28000, time separation between contours is 𝛥𝑡 =
0.26, and the final time is 𝑡𝑓 = 12.73. 
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Figure 3-7.  Experiments vs. Box Model / Extended Box Model. Front location with a 
time separation between contours of 𝛥𝑡 = 1.3, and a final time of 𝑡𝑓  =  13. In 
the classical Box Model, as the current propagates, the height is intrinsically 
averaged over the entire patch of fluid making the propagation inevitably 
axisymmetric. In the Extended Box Model, the volume of release is initially 
divided into multiple sub-volumes. The size of each sub-volume depends on 
the inwardly propagating geometric rays starting from and perpendicular to 
the current’s front. The Extended Box Model is in quantitative agreement with 
experiments, contrary to the classical Box Model. The marks 𝑆 and 𝐹 refer to 
the tips of the initial major (slow) and minor (fast) axes from which the front 
velocity and height are computed in Figures. 3-3 and 3-4. 
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CHAPTER 4 
DIRECT NUMERICAL SIMULATION OF CYLINDRICAL PARTICLE-LADEN GRAVITY 

CURRENTS 

4.1 Background 

Particle driven currents are a special form of gravity currents in which the density 

difference is caused by the suspension of particles within an interstitial fluid forming the 

current. If the mixture density of such a suspension is larger than that of the ambient 

fluid, it will advance primarily horizontally as a turbidity current (Lowe 1982, Gladstone 

et al.1998). Turbidity currents are inherently more complex than homogeneous 

conservative currents because the density of the current (and consequently the density 

difference between the current and the ambient) may vary temporally and spatially as a 

result of the settling and entrainment of particles. The effective settling speed of 

particles, for example, may depend on particle Reynolds number, particle flocculation, 

and interaction with surrounding turbulence. On the other hand, if the current is traveling 

fast enough over an erodible bed, it may entrain particles causing it to move even faster 

and consequently entrain more particles in a self-reinforcing cycle.  

Particulate gravity currents are observed in many industrial, environmental, and 

geological situations. Owing to their destructive nature, turbidity currents constitute a 

major factor in the design of underwater structures such as pipelines and cables 

(Simpson 1982). In an industrial context, they are essential for transporting sediments 

that may contain pollutants. Furthermore, they are responsible for the formation of 

submarine canyons as well as for sedimentation transport into the deep oceans. 

Particulate, constant volume releases (Bonnecaze et al. 1993, 1995, Hallworth & 

Huppert 1998, Gladstone et al. 1998, Necker et al. 2002, Blanchette et al. 2005, 

Cantero et al. 2008) have been studied. However, these finite releases are invariably 
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dominated by fronts. Often in turbidity currents, it is very important to look at the body of 

the current after the head had long moved away. Experimentally and computationally 

this is somehow harder to study, and is usually investigated through constant flux 

currents (Garcia and Parker 1993, Hogg et al. 2005, Sequeiros et al. 2009, 

Shringarpure et al. 2012). In the present context, we explore a finite-volume cylindrical 

release of particle-laden fluid in clear ambient surrounding. We wish to identify the 

dynamics of the current, specifically the three-dimensional layout and vortical structures 

of the current. Here we are only concerned with deposition and neglect the effects of 

resuspension. In reality, resuspension of particles may play a role, but the mechanisms 

of re-suspension are not fully understood and models of resuspension rate remain 

empirical with large uncertainties (Ziskind et al. 1995). In order to make the problem 

simple and manageable, we look only at the problem of deposition. 

Predicting the deposition pattern or the soil erosion resulting from a turbidity 

current necessitates a good understanding of the mechanism of sediment transport and 

particle deposition, which are highly dependent on the dynamics of the current, the level 

of turbulence, and the fluid-particle interaction. As a result, a great level of simplification 

is generally taken, usually through depth averaging, when studying particulate-driven 

currents. Some of the models include the Box Model (Bonnecaze et al. 1993, Dade & 

Huppert 1995), which is a simple and fast way to model the extent, speed, and 

sedimentation pattern of turbidity currents. The Box Model is not directly derived from 

the Navier-Stokes equations, however it considers the current to evolve with negligible 

entrainment through a series of height diminishing concentric cylinders for an 
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axisymmetric lock release configuration. In addition to depth averaging, no radial 

variation is allowed. 

A more complex model is based on the Shallow Water equations (Bonnecaze et 

al. 1995, Ungarish & Huppert 1998, Choi & Garcia 1995), which are derived by vertically 

averaging the Navier-Stokes equations under the assumption of high length-to-

thickness aspect ratio. However, because of the variable volume fraction of the current, 

an equation of particle conservation is further required. Such models do not usually 

account for sediment entrainment on the basis that the velocities are insufficient to lift 

up particles, however the flow is considered to be sufficiently energetic so that turbulent 

mixing maintains vertically uniform properties. 

Most research on axisymmetric particle-laden gravity currents has mainly 

revolved around the early experiments of Bonnecaze et al. (1995) and theoretical 

models mostly based on the Box Model and Shallow Water equations (Ungarish & 

Huppert 1998, Gladstone & Woods 2000). Our objective in this study is to pick a 

scenario that is similar to what has been investigated experimentally but instead 

examine it through DNS. Highly resolved simulations for cylindrical density-driven finite-

release currents have been investigated in the past with results comparing favourably 

with experiments (Cantero et al. 2007a). Here we consider direct numerical simulations 

of particle-laden currents resulting from the release of an initial cylindrical fluid-particle 

mixture.  

The DNS will allow us to explore the three-dimensional structures of the current 

from iso-surfaces of density that reveal the three-dimensional outline to iso-surfaces of 

the swirling strength that show the intensity and structure of the turbulent eddies. These 
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large scale vortical structures play an important role in the erosion and resuspension of 

particles by locally modifying the shear stress at the bottom wall. They also play an 

important role in the deposition of particles by transporting low particle concentration 

fluid (particle-laden current mixed with ambient) from the current’s top layers towards 

the bottom wall and consequently decreasing the local settling rate. This study will be 

limited to finite-releases of full-depth cylindrical gravity currents with dilute 

concentrations of monodisperse particles. The paper is arranged as follows. The 

mathematical formulation is outlined §4.2. In §4.3, we present our simulation results and 

compare, where possible, to previous experimental and theoretical data. Finally, main 

conclusions are given in §4.4 along with recommendations for future work. 

4.2 Mathematical Formulation 

A side view of the problem setup is depicted in Figure 4-1. Initially, a cylindrical 

gate separates a relatively heavier (compared with the ambient) particle-laden fluid of 

initial density 𝜌𝑐0 = (𝜌𝑝 − 𝜌𝑎)𝜙0 + 𝜌𝑎 in its interior from the surrounding clear ambient 

fluid of density 𝜌𝑎. Both fluids are initially at the same level and occupy the entire height 

of the domain (Figure 4-1). Here, 𝜌𝑝 represents the density of suspended particles, and 

𝜙0 is the initial volume fraction occupied by those particles. 

Our focus is to simulate buoyant driven flows with dilute suspensions, where 

particle-particle interactions may be neglected. We consider monodisperse particles 

whose size is much smaller than characteristic length scale 𝐻 of the problem. The 

particle-laden solution will be treated as a continuum and a two-fluid formulation is 

adopted. We follow Cantero et. al (2008a) by implementing an Eulerian-Eulerian model 

of the two-phase flow equations. The model involves (i) mass (ii) and momentum 
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conservation equations for the continuum fluid phase, (iii) an algebraic equation for the 

particle phase where the particle velocity is taken to be equal to the local fluid velocity 

and an imposed settling velocity derived from the Stokes drag force on the particles, (iv) 

and a transport equation for the volume fraction (particle phase). The non-dimensional 

system of equations read 

 ∇ ∙ 𝒖 = 0 (4-1) 

  
𝐷𝒖

𝑑𝑡
= 𝜙𝒆𝑔 − ∇p +

1

𝑅𝑒
∇2𝒖 (4-2) 

 𝒖𝑝 = 𝒖 + 𝒖𝑠 (4-3) 

 
𝜕𝜙

𝜕𝑡
+ ∇ ∙ (𝜙𝒖𝑝) =

1

𝑆𝑐 𝑅𝑒
∇2𝜙 . (4-4) 

Here 𝒆𝒈 is a unit vector pointing in the direction of gravity. Unless otherwise stated, all 

parameters are non-dimensionalized. The height 𝐻 of the domain is taken as the length 

scale, 𝑈 = √𝑔0′𝐻 as the velocity scale, 𝑇 = 𝐻/𝑈  as the time scale, 𝜌𝑎 as the density 

scale, and 𝜌𝑎𝑈2 as the pressure scale. The reduced gravitational acceleration is defined 

as 𝑔0′ = (𝜌𝑝 − 𝜌𝑎)𝜙0𝑔/𝜌𝑎. We denote by 𝒖𝑝 and 𝜙 the velocity and the volume fraction 

of the particle phase, respectively. 𝒖 and 𝑝 correspond to the velocity and total pressure 

of the continuum fluid phase, respectively. The settling velocity 𝒖𝑠 is determined from 

the Stokes drag force on spherical particles with small particle Reynolds numbers. Here, 

the density of particles is assumed to be appreciably larger than that of the ambient fluid 

such that the dominant force on the particle is the Stokes drag. The Reynolds and 

Schmidt numbers in (4-2) and (4-4) are defined as 

 𝑅𝑒 = 𝑈𝐻/𝜈,        𝑆𝑐 = 𝜈/𝜅  (4-5) 
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In the above, 𝜅 and 𝜈 represent the molecular diffusivity and kinematic viscosity of the 

ambient (interstitial) fluid, respectively. 

The simulation is carried out inside a rectangular box of dimensions 𝐿𝑥 × 𝐿𝑦 ×

𝐻 = 30 × 30 × 1 using a spectral code that has been extensively validated (Cantero et 

al. 2007a,b). Periodic boundary conditions are imposed along the sidewalls for the 

continuum and particle phases. No-slip and free-slip conditions are imposed for the 

continuum phase along the bottom and top walls, respectively. Mixed and Neumann 

boundary conditions are imposed for the particle phase at the top and bottom walls, 

which translate into zero particle net flux and zero particle resuspension, respectively. 

 
1

𝑆𝑐 𝑅𝑒

𝜕𝜙

𝜕𝑧
− 𝒖𝑠𝜙 = 0,           

𝜕𝜙

𝜕𝑧
= 0 (4-6) 

We present results from two simulations that differ solely by the Reynolds number. The 

details of the simulations are outlined in Table 4-1. The domain size was chosen for 

comparison purposes with previous experiments of Bonnecaze et. al (1995). We chose 

a grid resolution of 680 × 680 × 109  (along the 𝑥,𝑦, and 𝑧 directions, respectively) 

corresponding to over 50 million degrees of freedom. This numerical resolution, for the 

larger 𝑅𝑒 number case of 10000, achieves between 4 and 6 decades of decay in the 𝑥-

spectra of density at various instances as shown in Figure 4-2. Similar decay was 

observed for all other quantities and for the 𝑦-spectra and 𝑧-spectra as well. Thus, the 

simulations to be discussed here are well resolved. 

4.3 Results 

4.3.1 Three-Dimensional Structures 

The start of the simulation is initiated by “lifting” the cylindrical gate. The particle-

laden solution is heavy and begins to collapse and spread out radially, intruding into the 
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ambient fluid with a slug-like ground hugging motion. In Figure 4-3, we present iso-

surfaces of concentration from the large 𝑅𝑒 number simulation of 10000 to help 

visualize the three-dimensional temporal and spatial structures of the current. Shortly 

after release (𝑡 = 2), the front is nearly two-dimensional and the “head” of the current 

may be recognized by a rolled up vortex tube at the front. At later times (𝑡 = 4 and 𝑡 =

6), a pattern of rolled up vortices can be identified. Because of their unequal 

propagation speeds, some of the relatively faster vortex tubes will catch up with slower 

tubes ahead and merge to form bigger rolled up vortices (Figure 4-3 at 𝑡 = 4 and 𝑡 = 6) 

Furthermore, as the current starts to decelerate, (and because of the no-slip boundary 

condition at the bottom surface) lobe and cleft structures (Simpson 1972, Hartel et al 

2000) begin to emerge rendering the once smooth front more complex and three-

dimensional. 

The vortical structures identified in Figure 4-3 are the Kelvin-Helmholtz rolled up 

vortices generated at the current-ambient interface. These vortices exhibit a counter-

clockwise rotation and are advected radially outwards by the current. These energetic 

vortices locally accelerate the flow in the near wall region, and because of the no-slip 

boundary condition, help to initiate clockwise-rotating vortices at the bottom surface. 

These bottom vortices are concealed in the iso-surface plots, but may be readily 

visualized through iso-surface plots of the swirling strength 𝜆𝑐𝑖 shown in Figure 4-4. The 

swirling strength is a good indicator of regions of intense vorticity (Zhou et. al. 1999, 

Chakraborty et. al. 2005). It is defined as the absolute value of the imaginary portion of 

the complex eigenvalue of the velocity gradient tensor. 
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4.3.2 One-Dimensional Time Evolution 

In Figure 4-5, we plot the temporal evolution of the mean height ℎ̅ and areal 

deposit 𝐷̅ of the current along the radial direction. These quantities are obtained by 

averaging along the azimuthal and vertical directions for the density field to calculate ℎ̅, 

and integrating in time the tangentially-averaged bottom density section (multiplied by 

the settling velocity) to obtain 𝐷̅ 

 

ℎ̅(𝑟, 𝑡) =
1

2𝜋
∫ ∫ 𝜌(𝑟, 𝜃, 𝑧, 𝑡) 𝑑𝜃𝑑𝑧

2𝜋

0

𝐻

0

  

𝐷̅(𝑟, 𝑡) =
1

2𝜋
∫ ∫ 𝜌(𝑟, 𝜃, 0, 𝑡) 𝑢𝑠 𝑑𝜃𝑑𝑡

2𝜋

0

𝑡

0

  

(4-7) 

Initially, the areal deposition along the lock length (0 ≤ 𝑟 ≤ 𝑅0) increases linearly with 

time up to the point where all the fluid inside the lock has been set in motion (𝑡 ≈ 6). 

The current is shown to attain the typical slug like shape with an elevated head and a 

slender body around  𝑡 = 4. As seen from Figure 4-6, the effect of sedimentation on the 

spreading rate of the current is not perceived until enough particles have settled out. 

This occurs sometime between 𝑡 = 10 and 𝑡 = 16, where the particle-laden current front 

begins to deviate from the saline current. During that time frame, the current has lost 

over 45 percent of its total particles (Figure 4-7).  

4.3.2 Front Location 

The front position of the current is shown in Figure 4-6. Because of the 

axisymmetric nature of spreading, the density field is first averaged in the azimuthal 

direction. The position of the front is then taken as the location where the vertically 

averaged density (the current’s thickness) drops to a value of 0.01. Our numerical 

domain was chosen to match the physical setting of experiments reported by 
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Bonnecaze et al. (1995), and their findings are plotted alongside our simulation data in 

Figure 4-6. Our results for the larger and smaller 𝑅𝑒 number simulations are in good 

agreement with the experiments and the Shallow Water equations-based theoretical 

model. The larger 𝑅𝑒 number case of 10000, which is closer to the 𝑅𝑒 number of the 

experiments of 17000, provides however, slightly better agreement with the experiments 

and model. In addition to the particle-laden currents, we also show the front location for 

a saline current experiment carried out by Bonnecaze et al. (1995). The saline current 

experiment serves as a benchmark to identify the time beyond which sedimentation 

effects influence the front velocity of the particle-laden current. 

The aforementioned experiments were carried out in a radial sector tank with 

monodisperse 37 μm silicon carbide particles resulting in a non-dimensional settling 

velocity of 1.3 × 10−2 The initial reduced gravitational acceleration for the particle-laden 

and saline currents were 11 cm s−2 and 42 cm s−2, respectively. Despite the difference 

in the reduced gravitational acceleration, the non-dimensional front positions of these 

currents will match perfectly until enough particles have settled out and the two curves 

begin to diverge from one another. 

4.3.3 Deposition 

Of fundamental importance in particle-laden gravity currents is the deposition 

pattern of sediments. The settling of particles leads to a continuous decrease in the 

density of the current leading to a decay in the driving force, and eventually causing the 

current to arrive at a standstill when all the particles have settled out. Figure 4-8 

illustrates the temporal evolution of the rate of deposition of suspended particles defined 

below as 
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 𝑚̇(𝑡) = ∫ ∫ 𝜌(𝑥, 𝑦, 0, 𝑡)  𝑢𝑠 𝑑𝑥𝑑𝑦
𝐿𝑥

0

𝐿𝑦

0

  (4-8) 

We observe a rise in the sedimentation rate from the time of release up to 𝑡 = 8 beyond 

which the particles continue to settle but at a continuously diminishing rate. This 

behavior of rise and decay in the sedimentation rate has been also observed for planar 

particle-driven gravity currents (Necker et al. 2002).  

The local instantaneous deposition rate is strongly affected by the large-scale 

vortex tubes depicted in Figure 4-4. These tubes create local minima in the 

instantaneous bottom concentration profile (and hence the instantaneous deposition 

rate) by transporting low concentration fluid (particle-laden current mixed with the 

ambient) towards the bottom wall. Consider for instance the 2-dimensional 

concentration profile on the bottom wall at 𝑡 = 6 as shown in Figure 4-9. We may readily 

identify a local minimum at 𝑟 ≈ 2.5, where the bottom concentration drops by about 

14%. The position of this minimum corresponds to the radial location of the vortex tube 

labeled 𝑇3 + 𝑇4. 

For the sake of comparison with experiments, we plot in Figure 4-10 the areal 

deposition from both simulations and compare them with Bonnecaze et al. (1995) 

experimental and theoretical final deposition layout. The areal density of deposit of the 

simulations is taken at 𝑡 = 30, at which point over 95% (resp. 91%) of particles have 

settled for the 𝑅𝑒 = 10000 (resp. 𝑅𝑒 = 3450) case. The simulation curves are scaled so 

that the area under the curve is equivalent to that of the experimental results. The 

simulations as well as the theoretical model indicate that the current’s density of deposit 

increases as we move away from the center and reaches a maximum value close to the 

position of the gate (𝑟 = 𝑅0). This is in contrast with the experiments where the density 
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of deposit decreases monotonically as we move radially outwards. Differences between 

simulation and experiments are most distinct in the region around the lock. However, for 

the experiments, the region behind the gate is subject to disturbances from initial stirring 

in addition to the early sedimentation that initiates before the removal of the gate. The 

DNS results in Figure 4-10, also reveal a second peak in the amount of deposition at a 

downstream location from the gate. It should be noted however that the amplitude of 

these peaks is observed to decrease with increasing Reynolds number. The presence 

of multiple spikes have also been observed in planar simulations of particle-laden 

currents (Necker et al. 2002). 

4.3.4 Wall Shear-Stress and Near-Wall Dynamics 

Exploring the near-wall dynamics of a particulate gravity current is necessary for 

understanding erosion and resuspension of particles. The wall-shear stress is often 

used in theoretical models to predict the possibility of sediment entrainment over loose 

beds (Yalin & Karahan 1979). These bed-shear stresses are closely related to the large 

scale clockwise rotating vortex tubes discussed in §4.3.1. A two-dimensional contour 

plot in Figure 4-11 of the wall shear-stress at 𝑡 = 6 reveals three local minima with a 

reversal in flow direction (negative wall shear-stress). These local minima correspond to 

the clockwise rotating vortex tubes sweeping the bottom wall (𝐵1, 𝐵2, and 𝐵3). The 

vortex tubes 𝐵1and 𝐵3 are relatively smooth with small variations along the radial 

direction. Their axisymmetric structure is translated into a smooth shell-like outline in the 

wall shear-stress contours of Figure 4-11. On the other hand, the hairpin and other 

small-scale vortical structures forming around 𝐵2 (Figure 4-4) could be the reason 

behind the square, wavelike pattern at 𝑟 ≈ 2.8 in Figure 4-11. The local minima in the 
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bottom shear-stress profile of Figure 4-11 are a result of flow reversal due to the 

aforementioned clockwise vortex tubes rotating at close proximity to the bottom wall. 

The direction of these vortices and their position with respect to the current is presented 

in Figure 4-12.  

4.3.5 Conclusions and Recommendations 

We presented direct numerical simulation results for a cylindrical, finite-release, 

particle-laden gravity current. At early times (𝑡 < 6), the current shows a train of Kelvin-

Helmholtz counter-clockwise rotating rolled up tubes that are generated at the current-

ambient interface. Below these surface vortex tubes, a set clockwise-rotating eddies 

initiate from the bottom wall. These large scale vortical structures are difficult to 

visualize and study experimentally and are unattainable using two-dimensional 

theoretical models. They are nonetheless very important for studying the erosion, 

deposition, and resuspension dynamics of particle-laden currents. These vortex tubes 

may locally modify the bed shear stress and hence could play an important role in 

particle entrainment and erosion off the bottom wall. Furthermore, by transporting low 

particle concentration fluid from the surface of the current towards the bottom wall, they 

locally change the bottom concentration and hence modify the deposition pattern. Our 

simulations compare favorably with previous experiments (Bonnecaze et al. 1995) in 

terms of the temporal evolution of the front as well as the final deposition pattern.  

While this study has focused on particle-laden currents, it would be interesting to 

run similar simulations, however for density-driven currents (with zero settling velocity). 

It might be worthwhile to explore the differences in the vortical structure between 

conservative (density-driven) and non-conservative (particle-laden) currents. Previous 

studies have considered the differences between the two types of currents. A popular 
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approach has been to explore the time beyond which the front position of a saline 

current begins to deviate from that of a turbidity current (Figure 4-6 for example). Other 

studies have considered the effect on the transition times between the various velocity 

phases (Necker et al. 2002). 
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Figure 4-1.  Side view of the initial setup of the cylindrical lock-exchange flow inside a 

rectangular box of size 𝐿𝑥 × 𝐿𝑦 × 𝐻 = 30 × 30 × 1. Initially, a cylindrical gate 
of radius 𝑅0 placed at the center of the domain separates particle-laden fluid 
from the ambient clear fluid. Once the gate is lifted, the simulation starts and 
the particle-laden fluid begins to intrude horizontally into the ambient. 

 
 
 
Table 4-1. Details from the numerical simulations performed for this study. 𝑅e, 𝑆c, and 

𝑢𝑠 are the Reynolds, Schmidt, and settling velocity defined in §4.2. The 
simulations ran for 𝑡𝑓 non-dimensional time units. 

 
Domain size Re Sc us Grid Resolution Time step tf 
30 × 30 × 1 10,000 1 0.013 680 × 680 × 109 2 × 10−3 30 
30 × 30 × 1 3,450 1 0.013 680 × 680 × 109 2 × 10−3 30 
 
 
 
 

 
Figure 4-2.  Density Spectra as a function of wavenumber along the 𝑥-direction for three 

different time instances at 𝑅𝑒 = 10000. 
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Figure 4-3.  Iso-surfaces of density in one quadrant of the computational domain for 
𝑅𝑒 = 10000. The structure of the current exhibits multiple rolled-vortices with 
the lobe and cleft instability pattern identifiable at later times (𝑡 = 6). An 
isovalue of 𝜌 = 0.25 is employed for all cases. A close up view of the front (on 
the right) shows its transition from a nearly two-dimensional surface at early 
times (𝑡 = 2) to a more complex structure at later times(𝑡 = 6) 
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Figure 4-4.  Iso-surfaces of 𝜆𝑐𝑖 for 𝑅𝑒 = 10000 with an isovalues of 6 and 8 for 𝑡 = 4 and 

𝑡 = 6, respectively. The mean and rms values of 𝜆𝑐𝑖 are (0.14, 0.79) for 𝑡 = 4, 
and (0.28, 1.62) for 𝑡 = 6. A close-up view at 𝑡 = 6 shows a set inclined 
hairpin vortical structures that have formed around the bottom clockwise 
rotating vortex 𝐵2 in the body of the current. 
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Figure 4-5.  Height (solid line) and areal deposit (dashed line) as a function of radius for 

different times with 𝑅𝑒 = 10000. The four peaks in the height profile at 𝑡 = 6 
correspond to the Kelvin-Helmholtz vortices shown in Figure 4-3. 
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Figure 4-6.  Time evolution of the front as a function of time. The solid and dash-dotted 

lines are from the present simulation. The circular and triangular symbols are 
from Bonnecaze et al. (1995) experiments for particle-laden currents with 37 
μm-diameter silicon carbide particles with an initial reduced gravity of 𝑔0′ =
11 cm s−2-, and a saline current with 𝑔0′ = 42 cm s−2, respectively. The 
dashed line is from a Shallow Water equations based theoretical model from 
Bonnecaze et al. (1995). 

 
 

 
 
Figure 4-7.  Total mass of settled particles as a function of time for 𝑅𝑒 = 10000. Results 

are normalized with the initial mass of suspended particles. 
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Figure 4-8.  Deposition rate versus time at the bottom wall of the domain for 𝑅𝑒 =

10000. The sedimentation rate increases from the time of release, attains a 
maximum value around 𝑡 = 8 then monotonically diminishes up to the end of 
the simulation. 

 

Figure 4-9.  Contours of concentration at the bottom wall for 𝑅𝑒 = 10000 in one 
quadrant of the computational domain at 𝑡 = 6. The large scale vortex tubes 
transport low concentration fluid (particle-laden fluid mixed with the ambient) 
from the top of the current towards the bottom wall resulting in a local 
minimum around 𝑟 = 2.5. 
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Figure 4-10.  Final areal density of deposit from simulation, experiment, and theoretical 

model. The experiments and theoretical model results are extracted from 
Bonnecaze et al. (1995). 

 
Figure 4-11.  Contours of radial bottom shear stress for 𝑅𝑒 = 10000 in one quadrant of 

the computational domain at 𝑡 = 6. The wall shear stress is strongly affected 
by the clockwise-rotating bottom vortex tubes shown in Figure 4-4.  
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Figure 4-12.  Velocity field in a plane passing through the center of the domain at 𝑡 = 6 for 𝑅𝑒 = 10000 case. The current 
layout is visualized by a density contour of 𝜌 = 0.05. The top (resp. bottom) vortices rotate with a counter-
clockwise (resp. clockwise) direction. 
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CHAPTER 5 
DYNAMICS OF NON-CIRCULAR FINITE RELEASE GRAVITY CURRENTS 

5.1 Background 

Gravity or density currents are horizontal flows generated from a difference in 

density between two fluids. They encompass a wide variety of environmental and 

industrial flows that are often catastrophic in nature. Some of the many examples 

include avalanches (Allen 1982), oil spills (Kubat et al. 1998), turbidity currents (Lowe 

1982), sand storms (Bagnold 1941), and pyroclastic eruptions (Francis 1993). The 

density difference can be a result of variations of temperature (a cold breeze of air 

intruding into a hot ambient), salinity (fresh water from a river draining into the salty 

dense ocean), or inhomogeneous distribution of particles in suspension (a turbid 

mixture of fluid-particles advancing into a clear ambient). Depending on the density ratio 

of the two fluids, gravity currents are categorized as heavy bottom flowing currents, 

when the intruding fluid is denser than its ambient, and light top flowing currents, when 

the intruding fluid is lighter than its surrounding ambient. Furthermore, gravity currents 

can be simplified as Boussinesq (heavy or light) currents when the density difference is 

much smaller than the current and the ambient densities. 

Gravity currents, when propagating horizontally into their ambient, usually 

undergo four main stages (Huppert & Simpson 1980). Initially when the current is 

released, it accelerates from rest until it reaches a maximum velocity. During this highly 

transitional phase, termed the acceleration phase, the current undergoes rapid change 

in its velocity (zero to maximum) and the structure of the release also changes from 

mostly vertical to horizontal. This phase is often overlooked for three main reasons: (1) 

it is complex and transitional in nature, (2) it is relatively short lived in duration, and (3) it 
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is presumed to have little effect on the long term dynamics of the current. Following the 

acceleration phase, the current reaches a steady-state phase referred to as the 

slumping phase. During this phase, a planar (cylindrical) current advances with a 

constant (nearly constant) velocity and height (Gladstone 1998). At the end of the 

slumping phase, the current typically transitions to the inertial self-similar phase where 

the buoyancy driving force is balanced by the current’s inertia. During this phase, the 

current starts to decelerate as a consequence of its diminishing front height. Finally, as 

the current’s thickness continues to decrease, viscous and/or capillary forces become 

dominant, and the current evolves into the self-similar viscous/capillary phase. 

Fixed volume releases have been extensively investigated over the last several 

decades (see e.g. Simpson 1982) generally through one of two canonical 

configurations, namely planar (Britter & Simpson 1978; Rottman & Simpson 1983) or 

axisymmetric (Didden & Maxworthy 1982, Huq 1996) geometry. In the planar release 

case, a flat rectangular gate initially separates a rectangular reservoir of fluid from an 

ambient of different, usually smaller density. Similarly, at the start of the axisymmetric 

three-dimensional release, the release is confined inside a hollow circular cylinder at the 

centre of a large tank containing the ambient fluid (Huppert 1982, Cantero et al. 2007b), 

or in an expanding reservoir of relatively small angle of expansion, typically 10-15° 

(Huppert & Simpson 1980). 

By considering an idealized inviscid current and neglecting mixing at the 

interface, Benjamin (1968) derived his well-known Froude number expression 𝑢𝑁 =

𝐹𝑟√𝑔′ℎ𝑁 relating the front velocity 𝑢𝑁 of a slumping steady-state gravity current to the 

front height ℎ𝑁 (𝑔′ is the reduced gravity). He showed that the Froude number  𝐹𝑟 is 
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solely dependent on the relative depth of the “head” of the current with respect to the 

ambient. His idealized energy balance analysis restricted the maximum attainable front 

height in a confined geometry to half the total depth of the ambient fluid. However, as 

Benjamin recognized, the turbulent nature of gravity currents coupled with mixing along 

the interface of the current, necessitates the use of semi-empirical analysis to more 

accurately quantify the evolution of such complex flows.  

Huppert & Simpson (1980) later conducted a large number of planar and 

axisymmetric fixed volume experiments to examine the slumping phase of gravity 

currents. They varied several parameters including the initial depth ratio (ratio of the 

height of the current to that of the ambient), the vertical aspect ratio (initial ratio of the 

height to the length or radius of the current), the initial volume of release, and the 

density ratio. They proposed that during the slumping phase, a planar (resp. 

axisymmetric) current’s evolution could be modeled as a series of two-dimensional 

rectangles (resp. concentric circular disks) with negligible entrainment (this is the basis 

for the box model analysis discussed later in the paper). The experiments further 

confirmed that the slumping motion of the current is controlled by the head and the 

authors proposed a correlation for the Froude number expression from their 

experimental data. Their semi-empirical Froude number expression, again, solely 

depends on the fractional depth of the current (Eq. 5-15).  

Studies of gravity currents beyond the classical planar or axisymmetric 

framework have been rare to our knowledge, despite the fact that the majority of gravity 

currents in real situations originate from an arbitrary, usually non-axisymmetric 
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configuration. The underlying assumption is that the initial details of the release are 

soon forgotten after the release.  

Recently, Zgheib et al. (2014) explored the slumping phase (short term) and 

inertial self-similar phase (longer term) behaviours of non-axisymmetric fixed-volume 

gravity currents. They demonstrated, through experiments and simulations, that gravity 

currents initiating from non-axisymmetric cross-sectional geometries do not become 

axisymmetric, nor do they retain their initial shape during the slumping and inertial 

phases of the current. In particular, the local speed of propagation of a material front 

generated by the release of a patch of arbitrary shape can vary significantly, thus 

leading to local “fast fronts” and “slow fronts” during all the observed phases of 

spreading. They explained the dynamics of non-circular gravity currents by observing 

that during the acceleration and early part of the slumping phases, the initial release 

appears to partition itself into local volumes along the front. The subsequent forward 

propagation of the front is dictated by these local volumes (in particular the local height 

of the front) along the direction locally normal to the front. Using this key observation, 

they developed a simple locally-dependent box model, referred to as the extended box 

model (EBM) that is based on a partitioning of the initial release and local front velocity, 

and showed that the EBM could predict with a reasonable degree of accuracy the 

dynamics of non-circular gravity currents, both temporally and spatially. 

Following the work of Zgheib et al. (2014), the present paper aims at answering 

some remaining open questions regarding the dynamics of non-circular gravity currents. 

The shape of the propagating front of a planar or an axisymmetric current, by definition, 

remains self-similar. Furthermore, in the different regimes of propagation their speed 
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follows self-similar power-laws in time. In the case of a non-axisymmetric initial release, 

the shape of the propagating front substantially differs from the initial release and 

remains non-axisymmetric. A natural question that arises is, does the propagating front 

evolve towards a self-similar non-axisymmetric shape? If so, what is the relation 

between this self-similar shape of the spreading current and the shape of the initial 

release? The applicability of the extended box model is validated against two sets of 

direct numerical simulations and subsequently the extended box model is used to study 

the self-similar evolution of a wide range of initial releases of different aspect ratio. 

Self-similar shape of the propagating front requires that the front velocity be self-

similar as well. We also explore the local Froude number variation of the current along 

the circumference of the non-axisymmetric current and compare the simulation results 

with those from existing front Froude number relations. In addition, we use the results of 

the fully-resolved direct numerical simulations to (i) describe the local flow structure of 

non-axisymmetric gravity currents, and (ii) evaluate the validity of the assumptions used 

in the EBM. 

In this work we also examine the robustness and the range of validity of the 

observed dependence of non-axisymmetric spreading on the shape of the initial 

release. Zgheib et al. (2014) reported the results for only Boussinesq saline currents 

spreading along the bottom boundary. Here we consider non-Boussinesq currents, 

lighter currents spreading on the top surface, particle-laden turbidity currents and 

demonstrate that the dependence of non-axisymmetric spreading on the shape of the 

initial release persists in all these cases. Only in case of low Reynolds number 
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(𝑅𝑒 ~ 𝑂(100)) non-axisymmetric releases, viscous effects dominate and the current is 

observed to evolve to a circular shape. 

This chapter is arranged as follows. The experimental and numerical setups are 

presented in § 5.2. The question of the self-similarity of the shape of non-axisymmetric 

high-Re currents and the relevancy of the models of front Froude function are 

addressed in § 5.3. In § 5.4, we discuss the assumptions used in the extended box 

model and use the EBM to propose a scaling law for the prediction of the self-similar 

shape of non-cylindrical gravity currents. A qualitative investigation of other types of 

currents is presented in § 5.5. Finally, a summary and discussion of the present findings 

are given in § 5.6. 

5.2 Experimental and Numerical Procedures 

5.2.1 Experimental Setup 

The experimental setup is shown in Figure 5-1. The experiments are carried out 

in a glass square tank (120cm × 120cm × 40cm) at the centre of which we place a 

hollow cylinder of equivalent radius 𝑅0, filled up to a height ℎ0 with a fluid of different 

density than the ambient fluid of height 𝐻. Two different cross-sectional shapes are 

considered, namely a circular section (CS) for verification and comparison with previous 

results and a rounded rectangular section (RR) i.e. a rectangle where the two shorter 

edges are replaced by semi-circles. The initial aspect ratio 𝜒0 of the rounded-rectangle 

cylinder, here defined as the ratio of the longest to the shortest side, is 𝜒0 = 3.8. 

Fluorescent dye is added to the fluid inside the cylinder. Black light tubes mounted on 

two sides of the tank illuminates the fluorescent dye inside a dark room allowing the 

current to be solely visible. 
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Unless stated otherwise, the ambient fluid is tap water of density 𝜌𝑎 =

1000 kg/m3 while the current consists of salty water of density 𝜌𝑐 = 1100 kg/m3. The 

depth ratio ℎ0/𝐻 (initial height of the current to that of the ambient) for all the 

experiments was held at unity. The initial vertical aspect ratio 𝜆 = ℎ0/𝑅0 (height/radius) 

was varied between 0.25 and 7. The radius 𝑅0 for the non-axisymmetric cross-sections 

is calculated from the surface area A via 𝑅0 = √𝐴/𝜋 ≈ 4.6 cm.  The two geometries 

were chosen to have roughly the same cross sectional area, so that for a fixed initial 

height, the volume of release is constant whatever the initial cross-sectional shape. The 

tank and the cylinder are simultaneously filled. When the desired vertical aspect ratio is 

reached, the water in the tank is given sufficient time to reach a stagnant state. The 

hollow cylinder is then raised rapidly via a pulley system connected to a weight.  

The front location and the current’s height are measured using a mirror placed 

beneath the tank, which allows for a plan bottom view of the front evolution (Figure 5-2), 

while the side view of the current provides information about the height’s evolution 

(Figure 5-5). The pixel resolution was about 𝑅0/82 (0.5mm) and ℎ0/44 (2mm) for a 𝜆 =

2-release in the horizontal and vertical direction, respectively. The front location is 

obtained from the plan view images using the MATLAB® Graphics inbuilt function 

Imread®, where each pixel is assigned a value in the intensity range [0,255]. All values 

between 1 and 254 can be considered as different shades of grey (0 corresponding to 

the black color). The front is easily determined since here there is a significant jump 

(within a few pixels) in the intensity levels at the current-ambient interface. Note that the 

location of the front was found to be insensitive to the chosen cut-off value. As can be 

seen from the example in Figure 5-2, the location of the front is well extracted.  
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The local front location is then computed as follows: the local radial location of 

the front 𝑟𝑁̅̅ ̅(𝜃, 𝑡), along the azimuthal 𝜃-direction is first calculated by averaging along a 

sector of angle 2𝛼 = 𝜋/36 around the front location as 

 𝑟𝑁̅̅ ̅(𝜃, 𝑡) =
1

2𝛼
∫ 𝑟𝑁(𝜃, 𝑡)𝑑𝜃,
𝜃+𝛼

𝜃−𝛼

 (5-1) 

where the 𝜃-coordinate’s origin is taken along the 𝑥-direction and 𝑟𝑁(𝜃, 𝑡) is the radial 

distance at time 𝑡 between the centre of mass of the current and a point at the front of 

the current. We further use the symmetry of the flow, when applicable, by taking the 

average value of 𝑟𝑁̅̅ ̅(𝜃, 𝑡) along the symmetry directions. For instance, the “fast” front 

position in Figure 5-3 is computed as 𝑟𝐹̅(𝑡) = [𝑟𝑁̅̅ ̅(𝜃 = 0, 𝑡) + 𝑟𝑁̅̅ ̅(𝜃 = 𝜋, 𝑡)]/2 and similarly 

for the “slow” front position i.e. 𝑟𝑆̅(𝑡) = [𝑟𝑁̅̅ ̅(𝜃 = 𝜋/2, 𝑡) + 𝑟𝑁̅̅ ̅(𝜃 = 3𝜋/2, 𝑡)]/2. 

5.2.2 Preliminary Verifications 

As a preliminary verification we performed two sets of experiments, in order to 

check that the outer vertical walls of the tank did not affect the dynamics of the non-

circular gravity currents. In the first set of experiments, we consider three rounded-

rectangular releases under nominally identical conditions except that the initial 

orientation of the RR-cylinder relative to the tank walls is varied, in particular the angle 

between the initial longest side of the RR-cylinder and the tank wall is 0, 45 and 90° in 

the experiments denoted as Exp 5-2, 5-3 and 5-4 in Table 5-1, respectively. The 

temporal evolution of the slow and fast fronts is displayed in Figure 5-3. The dynamics 

of the fronts is observed to be similar in all cases. The slight difference between the 

three realizations is indicative of experimental measurement uncertainty, which is much 

smaller than the observed difference between the fast and slow fronts. 
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The second set of experiments consists of placing two vertical panels, each at an 

opposite end of the tank and having the same width and height as the tank at a distance 

of 10 cm (that is roughly 2𝑅0) from the tank walls normal to the 𝑥-axis. In that case, the 

size of the tank is shorter in one direction by about 4𝑅0. We repeated the previous 

experiments of rounded-rectangular releases in this smaller tank and compared the 

temporal evolution of the front position and velocity. It was found that the dynamics of 

the current was not affected by the presence of the wall as long as the current’s front 

was at a distance larger than 2𝑅0 from the lateral walls (not shown). The above tests 

allow us to conclude that the dynamics of the non-circular gravity currents shown in the 

present experiments is not influenced by the presence, shape or orientation of the walls 

of the tank. 

As a final verification, we use simple estimates to show that both the slumping 

and the inertial self-similar regimes of propagation are covered in the present 

experiments and simulations. By matching the (nearly) constant velocity during the 

slumping phase with the inertial phase scaling of a circular current, the transition time 

from the slumping to the inertial phase can be estimated as (Cantero et al. 2007a) 

 𝑡𝑆𝐼 = (
𝜋1/4

2
𝜉0)

2
𝑟0ℎ0

1/2

𝐹𝑐.𝑠𝑙
2  . (5-2) 

Hoult (1972) and Huppert & Simpson (1980) have proposed the following values of 𝜉0 =

1.3 and 𝜉0 = 1.16, respectively. The constant 𝐹𝑐,𝑠𝑙 ≈ 0.3 represents the mean front 

velocity during the slumping phase. For our axisymmetric release (Exp 5-1 and Sim 5-

2), the transition time computed from (5-2) is 𝑡𝑆𝐼 ≈ 4.2 (resp. 3.3), for 𝜉0 = 1.3 (resp. 

1.16). 



 

96 
 

These values are well below the characteristic duration of the experiments and 

simulations which is 14, approximately. As confirmed later, the gravity currents 

presented here undergo the acceleration phase, the slumping phase and eventually the 

inertial self-similar phase. 

5.2.3 Numerical Procedure 

In this paper, all the variables are dimensionless, choosing ℎ0 as length scale, 

𝑈 = √𝑔′ℎ0 as velocity scale, ℎ0/𝑈 as time scale and 𝜌𝑎 as density scale (𝑔′is the 

reduced gravity defined as 𝑔′ = 𝑔(𝜌𝑐 − 𝜌𝑎)/𝜌𝑎). We define 𝑥 (y) as the direction of the 

major (minor) axis when applicable, and 𝑧 as the direction parallel to gravity.  

The physical configuration of the simulations is identical to the experimental 

setup. We solve the concentration equation along with the incompressible Navier-

Stokes equations. The system reads in dimensionless form 

 ∇ ∙ 𝒖 = 0 , (5-3) 

 𝐷𝒖

𝑑𝑡
= 𝜌𝒆𝑔 − ∇p +

1

𝑅𝑒
∇2𝒖 , (5-4) 

 𝜕𝜌

𝜕𝑡
+ ∇ ∙ (𝜌𝑢) =

1

𝑆𝑐 𝑅𝑒
∇2𝜌 , (5-5) 

where 𝒖, 𝑝, and  𝜌 are the local velocity, total pressure and density in the flow, 

respectively and 𝒆𝑔 is a unit vector pointing in the direction of gravity. Two 

dimensionless parameters have been introduced in (5-4) and (5-5) namely the Reynolds 

number and the Schmidt number defined as 

 𝑅𝑒 = 𝑈ℎ0/𝜈,        𝑆𝑐 = 𝜈/𝜅 . (5-6) 

Here 𝜅 is the molecular diffusivity and  is the kinematic viscosity of the fluid. Equations 

(5-3)-(5-5) are solved inside a rectangular box of size 15 × 15 × 1 with a spectral code 



 

97 
 

(Cantero et al. 2007a,b). Note that the experimental tank size was approximately 12 ×

12 in the 𝑥-𝑦 plane for 𝜆 = 2. No-slip and free-slip boundary conditions are imposed for 

the velocity at the bottom and top walls, respectively, while periodic boundary conditions 

are imposed at the sidewalls. Zero normal gradient are imposed for the concentration at 

the bottom and top walls. Fourier expansions are used along the two horizontal periodic 

directions, and a Chebyshev expansion with Gauss-Lobatto quadrature points (Canuto 

et al. 1988) is used along the vertical non-periodic direction. The reader is referred to 

Cortese & Balachandar (1995) and Cantero et al. (2007b) for a detailed description of 

the numerical approach and for results obtained with the same code in axisymmetric 

configurations, respectively. 

In the present work, we simulate the collapse of a non-axisymmetric patch of 

heavy fluid at 𝑅𝑒 = 8950 with a grid resolution of 880 × 880 × 179 corresponding to 140 

million degrees of freedom, approximately. The numerical resolution was selected to 

have between 4 and 6 decades of decay in the energy spectrum for all the variables 

and the time step was selected to produce a Courant number smaller than 0.5. In the 

simulations, the Schmidt number is set to unity. Note that this value is smaller than that 

of saline gravity current for which 𝑆𝑐 ≈ 700, but it has been shown that the dynamics of 

gravity currents is independent of the Schmidt number as long as the Reynolds number 

is large, which is the case here (Bonometti & Balachandar 2008). 

5.3 High-Reynolds Number Boussinesq Density Currents 

In this section, we present results from experiments and fully-resolved 

simulations of density currents of non-axisymmetric initial shape, the parameters of 
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which being summarized in Table 5-1. In particular, a detailed description of the local 

flow structure in this type of flow as compared to a cylindrical release is given. 

5.3.1 Self-Similarity of the Front Contour of Non-Circular / Non-Planar Gravity 
Currents 

The temporal evolution of the spreading of gravity currents with two different 

initial cross-sectional shapes is presented in Figures 5-4(a & b). The figure shows a 

plan-view of a composite image of the front evolution for each experiment at various 

instances in time. The cylindrical release is shown for comparison in frame (a). While 

the case of the circular release shows small undulations at the front due to the lobe and 

cleft instability (Simpson 1972, Härtel et al. 2000), the current retains its overall 

symmetry as it propagates outward. Conversely for the RR-current, as shown in Zgheib 

et al. (2014), the long-time circumferential shape is approximately an ellipse, but with 

switched major and minor axes as compared to the initial shape. Lobes and clefts are 

observed at the front even in this non-axisymmetric release. Note that the characteristic 

size of these lobes and clefts are an order of magnitude smaller than the length scale of 

the larger scale flow pattern. 

It is noteworthy that the phrase “switching of the major and minor axes” is one 

that has been consistently used to describe the evolution of elliptic free jets (Quinn 

1989; Gutmark & Grinstein 1999). As an elliptic jet propagates downstream, its shear 

layer along the minor axis plane grows at a faster rate compared to the shear layer 

along the major axis plane. This unequal growth rate results in a crossover point at a 

downstream location from the nozzle, where the jet temporarily attains a circular-like 

cross-section before its major and minor axis switch. Throughout this study, we will 

employ “switching of axes” for the RR case to denote that due to a relatively faster 
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propagation of the front along the minor axis (𝑦-axis) compared to a relatively slower 

spreading along its major axis (𝑥-axis) as shown in Figure 5-4, the major and minor 

axes will eventually switch making the initial minor axis of the RR geometry the major 

axis of the current at later stages of spreading. 

In the case of planar and axisymmetric releases, it has been shown that provided 

the Reynolds number is large enough, the current enters a self-similar inertial regime in 

which the evolution of the front position scales as 𝑡2/3 and 𝑡1/2, respectively (Hoult 

1972; Huppert & Simpson 1980; Ungarish 2009). The corresponding front velocities in 

the inertial regime scale as 𝑡−1/3 and 𝑡−1/2 for the planar and the axisymmetric currents, 

respectively. Regarding non-axisymmetric releases, Zgheib et al. (2014) plotted in their 

Figure 5-4b the time evolution of the velocity of the fast and slow fronts of an initially 

rounded-rectangular release and observed that at the later times, it roughly follows 

𝑡−1/2. Here we verify that the self-similar behaviour is valid for the entire propagating 

front. Self-similar evolution of an axisymmetric current can be expressed as (provided 

the front remains convex in shape) 

 𝑟𝑁(𝜃, 𝑡) = 𝑅𝑁(𝑡) 𝑓(𝜃) , (5-7) 

where 𝑓(𝜃) is the self-similar shape of the front. It follows that the self-similar front 

velocity  

 𝑢𝑁(𝜃, 𝑡) =
𝑑𝑅𝑁
𝑑𝑡

 𝑓(𝜃) =  𝑈𝑁(𝑡) 𝑓(𝜃) , (5-8) 

and provided a constant Froude number applies (as will be the case for a current 

spreading in a deep ambient), the self-similar front height around the circumference of 

the current can be expressed as 
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 ℎ𝑁(𝜃, 𝑡) = 𝐻𝑁(𝑡) 𝑓(𝜃)  . (5-9) 

Furthermore, in the inertial and viscous self-similar regimes, the front velocity has been 

shown to follow a power law behaviour of the form (Fay 1969, Fannelop & Waldman 

1971; Hoult 1972, Huppert & Simpson 1980, Rottman & Simpson 1983, Cantero et al, 

2007) 

 𝑈𝑁(𝑡) ∝ 𝑡
𝛼 (5-10) 

where the power-law exponent takes the value −1/2 in the inertial regime of 

axisymmetric spreading  and −4/5 or −7/8 in the viscous regime. The corresponding 

power-law evolutions of the mean radius and height are given by 

 𝑅𝑁(𝑡) ∝ 𝑡
1+𝛼      and       𝐻𝑁(𝑡) ∝ 𝑡

2𝛼  . (5-11) 

Based on an estimate of inertial-to viscous transition time (Cantero et al. 2007) we 

expect the dominant spreading of the rounded rectangle shown in Figure 4b to be in the 

inertial regime. To test whether the non-axisymmetric spreading of the RR release is 

indeed self-similar and predominantly in the inertial regime, in Figure 4c we replot the 

contours of the front in the scaled coordinates 𝜂 = 𝑥 𝑡−1/2 and 𝜁 = 𝑦 𝑡−1/2. It can be 

observed that the rounded-rectangle reaches a self-similar shape resembling an ellipse, 

with its major and minor axis different from those of the initial release. 

In section 5.2.1, we defined the initial aspect ratio 𝜒0 of the release as the ratio of 

the longest side to the shortest side of the initial cross-section. Similarly, we define the 

self-similar aspect ratio 𝜒∞ as the ratio of the longest to the shortest sides. In the 

present case of the rounded-rectangular release displayed in Figure 5-4c, we have 𝜒0 =

3.8 and 𝜒∞ ≈ 1.39, respectively. Note that in Figure 5-4c we have varied the value 𝛼 in 

the range −2/3 ≤ 𝛼 ≤ −1/2 and verified that the value 𝛼 = −1/2 gives the best 
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collapse in terms of self-similar shape3. Overall, Figure 5-4 confirms that initially non-

circular gravity currents eventually reach a self-similar shape (in the inertial regime) 

which is non-axisymmetric. We shall see later that the present finding is supported by 

both direct numerical simulations and results from the extended box model. 

5.3.2 Local Front Froude Number of Non-Circular / Non-Planar Gravity Currents 

Table 5-1 presents the velocity and height ratios for various releases. The local 

fast and slow front velocities 𝑢𝐹 and 𝑢𝑆 are computed from 𝑟𝐹̅(𝑡) and 𝑟𝑆̅(𝑡) by 

differentiating in time. The maximum velocity ratio between the fastest front and the 

slowest front is in the range 2.2-2.6 in the RR-cases. This indicates that the local 

instantaneous fast front can be up to 2 to 3 times faster than the slowest portion of the 

front. This strong variation of local front velocity is confirmed by the measured mean 

velocity ratio which is about 1.9 to 2 for the RR-current. The mean velocity ratio in Table 

5-1 is computed as follows 

 𝑢𝐹/𝑢𝑆̅̅ ̅̅ ̅̅ ̅̅ =
1

𝑡𝑚𝑎𝑥
∫ (𝑢𝐹/𝑢𝑆)
𝑡𝑚𝑎𝑥

𝑡=0

𝑑𝑡 (5-12) 

where, as indicated in Table 5-1, 𝑡𝑚𝑎𝑥 = 12.6 (resp. 6.5) for 𝜆 = 2 (resp. 𝜆 = 4). 

We present in Figure 5-5a side view of the evolution of the current for the RR- 

and CS-cases. For the circular release, the height is observed to be roughly uniform at 

all stages of propagation. The RR-current shows clear variations in the current’s 

thickness, in particular between the central region (corresponding to a spreading along 

the minor 𝑦-axis) and the edges (corresponding to a spreading along the major  𝑥-axis). 

                                            
3 This was also confirmed by a best fit for the slope in the log-log plots of time versus local fast and slow 
front positions. This analysis was done both for the experimental data and for the simulation results to be 
discussed below. 
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For instance, at 𝑡 ≥ 2.6, the current is already thicker at the midplane than at the edges 

(note that the height is almost uniform for the CS-current at the same dimensionless 

time). At 𝑡 = 5.2, the height at the midplane is 3 to 4 times larger than at the edge. The 

height contrast along the front circumference decreases with time, as the absolute 

height is decreasing. The height ratio, however, is still larger than unity (about 2) at time 

𝑡 = 13 as the current has crossed a distance of 10𝑅0, approximately. Moreover, as can 

be seen from the  𝑥- 𝑦 plan-view images (Figure 5-2), the maximum height of the current 

is located close to the front, in the “head” of the gravity current. Therefore, it is 

reasonable to consider that the observed thickness in Figure 5-5 (especially along the 

minor axis) corresponds to the front height of the current as opposed to that of the 

interior body of the current which is significantly smaller, and hence hidden in the 

snapshots of Figure 5-5. The same RR-configuration was simulated, and in Figure5-6a 

we present the current’s height evolution via iso-surfaces of density. In Figure 5-6b, we 

display the corresponding contours of the current height. Similar to the experimental 

findings, the heavy fluid is observed to aggregate along its periphery with a clear 

distinction in thickness of about a factor of two between the minor and major axes. It is 

in fact this height inhomogeneity which leads to local velocity variations.  

The present simulation results enable us to compare the value of the local 

Froude number along the front and specifically at the slow and fast sections of the 

fronts. One may assess the relevancy of the various Froude functions reported in the 

literature with respect to the propagation of non-circular gravity currents. The 

simulations give access to local instantaneous front height ℎ𝑁 and velocity 𝑢𝑁 

information, and hence allow us to compute the Froude number as 𝐹𝑟 = 𝑢𝑁/√ℎ𝑁. In 
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order to evaluate the height ℎ𝑁 for the slow and fast fronts, first the local height of the 

current h, is defined as, 

This local current height is then averaged over a wedge of 5° aligned along the 𝑥 (slow 

front) and 𝑦 (fast front) axes. The averaging being performed over a distance extending 

between the front of the current and the location of the maximum height in the head. 

The instantaneous local Froude number 𝐹𝑟 = 𝑢𝑁/√ℎ𝑁 of the slow and fast 

sections of the front of an initially rounded-rectangular release is plotted in Figure 5-7. 

The fast front-Fr fluctuates in the range 0.9 to 1.1 for 2 ≤ 𝑡 ≤ 10 and monotonically 

decreases to about 0.7 at later times (in the self-similar inertial regime). On the contrary, 

the slow front-Fr is significantly lower at early times ( in the range 0.6 to 0.8 for 2 ≤ 𝑡 ≤

10) but seems to catch up with the fast front at later time times, i.e. 𝐹𝑟 ≈ 0.7 for 𝑡 > 10. 

The larger value of the fast front-Fr as compared to that of the slow front during the 

early stage of spreading suggests that the increase in front velocity due to the mass 

redistribution inside the current is larger than the increase of height. Conversely, at late 

times (here 𝑡 > 10) the evolution of the front velocity and height is similar for both the 

fast and slow fronts as the value of the local Froude number is roughly similar. This is in 

line with the fact that the current has entered the self-similar inertial phase. 

Numerical simulations can also be used to evaluate the other models of Froude 

functions. These models generally depend on the ratio 𝑎 = ℎ𝑁/𝐻 of the nose height of 

the current to that of the ambient. We consider in the following three models of Froude 

functions, namely the Benjamin (1968)’s front condition 

 ℎ(𝑥, 𝑦) = ∫ 𝜌𝑑𝑧 .
𝐻

0

 (5-13) 
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which is valid for 𝑎 ≤ 1/2, the Huppert & Simpson (1980)’s relation 

and the circulation based model of Borden & Meiburg (2013) which reads 

Benjamin’s and BM’s model give almost identical results and consistently under-predict 

the local Froude number by about 50%. Alternatively, the Huppert & Simpson’s 

correlation is in reasonable agreement with the simulated fast front-Froude number, but 

over-estimates the slow front-Froude number by about 30% for the whole duration of 

spreading. 

5.4 Extended Box Model Simulations 

Zgheib et al. (2014) proposed an extension of the box model, initially developed 

by Huppert & Simpson (1980), capable of capturing the dynamics of non-axisymmetric 

gravity currents. Here we use this extended box model (EBM) to investigate the long-

time inertial self-similar dynamics of non-axisymmetric currents. 

5.4.1 Equations and Assumptions 

The classical box model generally used for predicting the evolution of gravity 

currents (Huppert & Simpson 1980; Dade & Huppert 1995) has been shown to 

admirably reproduce the dynamics of axisymmetric and planar releases (see e.g. 

Ungarish & Zemach 2005). In the case of finite releases, the box model assumes the 

fluids to be immiscible with negligible entrainment with the ambient so that the mass 

 𝐹𝑟𝐵(𝑎) = √
𝑎(1 − 𝑎)(2 − 𝑎)

(1 + 𝑎)
 , (5-14) 

 𝐹𝑟𝐻𝑆(𝑎) = min (0.5𝑎−1/3, 1.19) , (5-15) 

 𝐹𝑟𝐵𝑀(𝑎) = √2𝑎(1 − 𝑎) . (5-16) 
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and volume of the current are conserved throughout the duration of spreading. 

Additionally, the height is taken to be uniform along the body of the current and the 

current is advanced outward normal to the front with a velocity proportional to the 

square root of the height. According to this model, the height intrinsically remains 

uniform along the circumference of the patch, so the speed of propagation is uniform 

along the current’s front during all phases of spreading. Therefore, using the classical 

box model, an initially non-axisymmetric current inevitably becomes axisymmetric. 

The extended box model proposed by Zgheib et al. (2014) is based on the 

partitioning of the initial release using inward directions normal to the front. An example 

of such partitioning is given in Figure 5-8b. Here, each segment of the front is now 

associated with a sub-volume of initial release. Once the various sub-volumes are 

obtained, the same procedure as in the classical box model is applied locally for each 

sub-volume, where the front is advanced outward normal to itself. More particularly in 

the EBM, the current is defined by the front position {𝑥𝑁(𝑠, 𝑡), 𝑦𝑁(𝑠, 𝑡)}, height ℎ𝑁(𝑠, 𝑡), 

the outward normal front velocity 𝑢𝑁(𝑠, 𝑡) where 𝑠 is the distance measured along the 

circumference of the front. An additional variable, namely the area per arc length 𝜎(𝑠, 𝑡) 

is also used in the model (Figure 5-8a). An integration of 𝜎(𝑠, 𝑡) over the entire arc 

length of the advancing front yield the total area covered by the planform of the 

advancing current. The EBM can be summarized by the following set of coupled 

equations (Zgheib et al. 2014), 

 𝑢𝑁 = 𝐹𝑟√ℎ𝑁      ;         𝐹𝑟 = min (0.5ℎ𝑁
−1/3

, 1.19) (5-17) 

 {
𝜕𝑥𝑁
𝜕𝑡
,
𝜕𝑥𝑁
𝜕𝑡
} = 𝑢𝑁

{𝜕𝑦𝑁/𝜕𝑠, −𝜕𝑥𝑁/𝜕𝑠}

√(𝜕𝑥𝑁/𝜕𝑠)2 + (𝜕𝑦𝑁/𝜕𝑠)2
 , (5-18a) 
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where  𝐹𝑟 is the Froude number, which is here calculated from the Huppert & Simpson 

(1980)’s empirical relation4. All variables are dimensionless. Equations (5-17), (5-18) 

and (5-19) refer to the Froude front condition, kinematic relations and mass 

conservation, respectively. In Eq (5-18a), the current is restricted to normal outward 

spreading with velocity 𝑢𝑁. It will be shown below that this is a good approximation 

despite the non-uniform height distribution along the front, which might induce a 

tangential velocity component. The increase in the current’s surface area is captured in 

(5-18b). This step is inexistent in the classical box model as the area increase can be 

directly inferred from the radius of the current. 

Analytical solutions of (5-17)-(5-19) are not feasible in the case of arbitrary initial 

patches however, the system may be solved numerically. Details about the numerical 

procedure used for solving (5-17)-(5-19) and verification of spatial and temporal 

convergence are given in the Appendix. 

5.4.2 Examination of the Extended Box Model 

The EBM involves various approximations which can be summarized as follows. 

(H1) The volume of initial release is partitioned with the help of inward propagating 

(normal to the front) geometric rays, and accordingly different sub-volumes are 

assigned to the different portions of the front. (H2) As the current propagates, the height 

                                            
4 Note that any other model of Froude number function could be used without loss of generality, provided 
this function is applicable for the whole range of height ratio of nose to ambient hN/H considered here. 

 𝜕𝜎

𝜕𝑡
= 𝑢𝑁 , (5-18b) 

 𝜕𝜎ℎ𝑁
𝜕𝑡

= 0 , (5-19) 
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of the current is not taken to be a constant over the entire release. It varies along the 

front depending on the local speed of propagation. (H3) The velocity of propagation is 

taken to be normal to the front. Since there is variation in the height of the current along 

the front, it can be expected that there is some cross-flow (tangential velocity) induced 

by this variation in the current height. However, since the pressure gradient normal to 

the front is expected to far exceed the tangential gradient at the front, the current 

velocity is likely to be predominantly normal to the front. (H4) Finally we assume that 

even in the present case of non-axisymmetric propagation, the Huppert-Simpson front 

relation can be used to express the front velocity in terms of local front height. Here we 

examine these assumptions relative to the results of fully-resolved simulations. 

Let us first examine the direction of fluid velocity at the front of the current. To 

focus on the velocity of the outward propagating current and eliminate the contribution 

from the inward propagating ambient, we define the depth-averaged velocity of the 

current as follows 

𝑢̅ =
∫ 𝜌𝑢𝑑𝑧
H

0

∫ 𝜌𝑑𝑧
H

0

     ;      𝑣̅ =
∫ 𝜌𝑣𝑑𝑧
H

0

∫ 𝜌𝑑𝑧
H

0

 . (5-20) 

Recall that 𝜌 = 1 in the current and  𝜌 = 0 in the ambient. From (5-20), one can extract 

the velocity along the front and compute the normal-to-the-front and tangential 

components of the front velocity 𝑢𝑛 and 𝑢𝜃 as plotted in Figure 5-9. The simulation 

results indicate that the normal velocity is an order of magnitude larger than the 

tangential component of velocity over the entire front of the current. Furthermore, the 

faster propagation of the current along the 𝑦-axis (𝜃 = 𝜋/2) is clear. Integrating over the 

entire front, we find the average normal-to-the-front and tangential front velocities to be 
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about 0.37 (0.19) and 0.03 (0.03) at 𝑡 = 1.5 (7)  respectively. Interestingly, the tangential 

velocity is mostly positive at 𝑡 = 1.5 (when the height is nearly uniform) indicating a 

slight cross-flow towards the fast front, while 𝑢𝜃 is mostly negative at 𝑡 = 7 (when the 

height is much larger at the fast front), in line with the expectation that there may be 

some cross-flow induced by the hydrostatic pressure gradient stemming from the 

variation in the current height. Overall, this corroborates approximation H3. Secondly, 

approximation H2 can be readily verified thanks to Figure 5a and 6b which shows that 

the height of the current is not homogeneous along the front during spreading. 

We also present in Figure 5-9 the normal-to-the-front velocity estimated by 

Huppert & Simpson (1980)’s front Froude number relation using both the head of the 

current’s mean height and the maximum height taken from the simulation. At the early 

time 𝑡 = 1.5, reasonable agreement is observed between the simulation results and the 

prediction however at 𝑡 = 7, the Huppert & Simpson prediction is significantly larger by 

45% than the simulation results. It is noteworthy that even though the simulated front 

velocity in the present case is consistently lower than the Huppert and Simpson 

prediction, the extended box model with Huppert and Simpson front velocity is capable 

of predicting the front motion reasonably well (Zgheib et al. 2014). This is not a 

contradiction: in the box model, the height of the current is under-predicted since the 

current is taken to be of uniform height. This under-prediction of the front height 

somewhat compensates the presently observed overestimation of the front velocity 

given by the Huppert and Simpson Froude number relation. 

Two snapshots of the height distribution of the rounded-rectangular release are 

presented in Figure 5-9b together with streamlines (evaluated from the vertically-
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averaged velocity defined in (5-20)). At early times, the streamlines resemble the inward 

propagating geometric rays shown in Figure 5-8b. At later times, the streamlines are 

preferentially normal to the front. This is consistent with the earlier observation that the 

velocity of the current is dominantly oriented along the normal direction. This also 

provides some support for approximation H1 that the initial partitioning of the release 

volume is dictated by the inward propagating normal to the front (geometric rays). 

5.4.3 A Scaling Law for the Final Shape of Non-Circular Gravity Currents 

In this section we use the extended box model to analyze the characteristic, self-

similar development of a non-axisymmetric gravity current. As shown earlier by 

experiments, an initially non-circular gravity current eventually reaches an inertial self-

similar shape which is non-axisymmetric. Figure 5-10a presents the evolution of the 

front obtained from an EBM simulation for an initially elliptical release. Here, the initial 

major and minor axes of the ellipse are approximately 0.90 and 0.24, respectively. 

These dimensions correspond to an initial horizontal aspect ratio of 𝜒0 ≈ 3.8 and a 

vertical aspect ratio of 𝜆 ≈ 2. We show 11 contours of the front in the (𝜂 = 𝑥𝑡−1/2 , 𝜁 =

𝑦𝑡−1/2)-plane from an initial time of 𝑡 = 100 to a final time of 𝑡 = 200 with a time 

increment of ∆𝑡 = 10. Clearly, the current has reached a self-similar shape. 

We performed some simulation campaigns with the EBM where the initial 

horizontal aspect 𝜒0 of a non-circular gravity currents was varied in the range 1 ≤ 𝜒0 ≤

20. For each 𝜒0-case, the self-similar aspect ratio 𝜒∞ was measured. To be more 

explicit, we take the value of 𝜒∞ at a sufficiently large time, here 𝑡 = 200, so the self-

similar regime was reached. Finally, simulations were performed for two initial non-

circular shapes, namely elliptical and rounded-rectangular shapes. The results are 
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summarized in Figure 5-10b. For comparison, we also plotted the results obtained by 

the experiments and simulations of Table 1. All the data roughly follow a similar trend 

which can be modeled by the following simple scaling law, 

𝜒∞ = 1 + ln 𝜒0
1/3
 . (5-1) 

In the case of a circular release, it can be shown that the temporal evolution of the front 

height ℎ𝑁, radius 𝑟𝑁 and normal-to-the-front velocity 𝑢𝑁 in the inertial self-similar regime 

scale as 𝑡2𝛼, 𝑡−𝛼 and 𝑡𝛼 with 𝛼 = −1/2 (see e.g. Ungarish 2009, p122). Figure 5-11 

displays the azimuthal evolution of the front height, radius and normal-to-the-front 

velocity using the aforementioned scaling from Sim 5-1 (𝜒0 = 3.8) and Sim 5-3 (𝜒0 = 8). 

Here 𝜃 is the angle measured counter-clockwise from the 𝑥-axis. We observe these 

quantities for both horizontal aspect ratios to reach a self-similar profile that resembles a 

sinusoidal curve with a period of 𝜋. For Sim 5-1 (𝜒0 = 3.8), we plot the azimuthal 

dependence of radius, speed, and height from 𝑡 = 3.15 (red curve) to 𝑡 = 17.15 (blue 

curve) with a constant time increment of ∆𝑡 = 1.75. The green curve at 𝑡 = 8.4 

represents the time at which these quantities become roughly self-similar. Similarly for 

Sim 5-3 (𝜒0 = 8), we plot the azimuthal evolution from 𝑡 = 4 (red curve) to 𝑡 = 22 (blue 

curve) with a constant time increment of ∆𝑡 = 2. The green curve at 𝑡 = 16 represents 

the time beyond which these quantities become roughly self-similar. Beyond the self-

similar phase, the height, speed, and radius are observed to attain a minimum value at 

𝜃 = 0, 𝜋, and 2𝜋, and a maximum value at 𝜃 = 𝜋/2 and 3𝜋/2. This self-similar shape is 

indicative of an elliptical like shape whose minor axis coincides with the 𝜃 = 0 line, 

which corresponds to the 𝑥-axis in the 𝑥-𝑦 plane. 
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If we subtract the mean value from each curve at the final time 𝑡𝑓 = 17.15 for Sim 

5-1 (resp. 𝑡𝑓 = 22 for Sim 5-3), then the scaled radius (𝑟𝑁 𝑡𝑓
−1/2), front speed (𝑢𝑁 𝑡𝑓

1/2), 

and front height (ℎ𝑁 𝑡𝑓) may be approximately described by a single sinusoidal function 

of the form 

𝑓(𝜃) = −𝐴 cos(2𝜃 + 𝜃0) . (5-22) 

Where 𝐴 and 𝜃0 represent the amplitude and phase angle, respectively. The phase 

angle 𝜃0 is the angle the 𝑥-axis makes with the major axis of the rounded rectangle. In 

the present case, 𝜃0 = 0 since we choose the 𝑥 -axis to coincide with the major axis of 

the RR. The amplitude 𝐴 is obtained from the average RMS value of the three curves 

(radius, speed, and height), from which the mean value is subtracted. The amplitude is 

𝐴 ≈ 0.22 for Sim 1 and 𝐴 ≈ 0.32 for Sim 3. 

In Figure 5-12, we plot the azimuthal evolution at the end of each simulation for 

the scaled front (𝑟𝑁 𝑡𝑓
−1/2), speed (𝑢𝑁 𝑡𝑓

1/2), and height (ℎ𝑁 𝑡𝑓), for which the mean value 

of each curve has been subtracted. We plot the results from Sim 5-1 and Sim 5-3 and 

observe good agreement between the three curves and the sinusoidal function 𝑓(𝜃) 

defined in Eq. (5-22). It follows that if you know the self-similar shape of the front, then 

you could roughly predict the front height (or front speed) of the current provided you 

have access to the front height (or front speed) at some azimuthal orientation. 

5.5 Discussion 

In this section, we present quantitative and qualitative results from additional 

experiments and simulations in which one parameter at a time was varied so that one 

may assess the robustness of the non-axisymmetric spreading of non-circular releases 

to a larger class of non-axisymmetric releases of material. 
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5.5.1 Varying Current-to-Ambient Density Ratio 

We investigate in Figure 5-13a the case of a dam-break (water in air) flow of a 

heavy current of density ratio 𝜌𝑐/𝜌𝑎 = 103. At 𝑡 = 74 the initial major axis (𝑥-coordinate) 

still remains the major axis of the spreading current, but by 𝑡 = 147 and later, the 

current spreads faster along the 𝑦-direction. This flipping of axes is similar to what has 

been observed by Zgheib et al. (2014) for the Boussinesq currents. Note that the global 

contour of the front is not as smooth as in the Boussinesq case (Figure 5-4b). At 𝑡 =

147 and 220 breakage of the front into smaller chunks can be observed. This is 

attributed to interactions between the front of the current and the bottom glass wall. At 

large density ratios, wall friction can significantly affect the front speed (Bonometti et al. 

2008). The surface of the bottom wall in terms of degree of dryness and hence local 

variations of wall friction may have played a role in the experiment. In addition, capillary 

effects are likely to be significant at late times (𝑡 ≥ 100) since the front height is only a 

fraction of the initial height, of the order of the capillary length 𝑙𝑐 = √𝜎𝑠𝑡/𝜌𝑐 𝑔, 𝜎𝑠𝑡 being 

the surface tension between the current and the ambient. In such a case, the dynamics 

of the contact line defining the current’s front, may be influenced by the wettability 

properties of the wall (Yarin 2006). 

5.5.2 Turbidity Current 

Figure 5-13b presents the case of a turbidity current resulting from the release of 

a non-axisymmetric homogeneous mixture of polyurethane particles in water spreading 

in fresh water ambient. The polyurethane particles have a density of 1050 kg/m3 and a 

diameter ranging between 280 and 320 μm. The measured effective density of the 

mixture is 𝜌𝑐 = 1007 kg/m3 well in the Boussinesq range. The current exhibits the same 
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behaviour as in the case of Boussinesq saline currents developing fast and slow moving 

fronts. The fast front spread on average over 2 times as fast as the slow front so that by 

𝑡 = 8.2, the major and minor axes have switched. Note that similar to the dam-break 

flow in Figure 5-13a, the global contour of the front is less smooth than in the saline 

Boussinesq case. Here, the irregularity may be partly attributed to the initial 

inhomogeneity in the particle suspension in the RR-cylinder and partly to the 

sedimentation effects which start occurring before the release of the turbidity current. 

5.5.3 Effect of Wall Friction 

The evolution of a light top Boussinesq gravity current is presented in Figure 5-

13c. In this case the initial fluid within the rounded-rectangle cylinder is pure water while 

the ambient is saline water. The lighter current here spreads at the top and there is no 

friction along the surface of spreading (friction with air and dissipation due to surface 

waves are negligible). Clearly, the evolution is similar to that of the Boussinesq heavy 

current spreading along the bottom wall. 

5.5.4 Influence of the Reynolds Number 

A viscous current is presented in Figure 5-13d, that is a dam-break honey-in-air 

current. Here, honey has a density of 1400 kg/m3 and a viscosity of 67 kg/m. s. To 

ensure a relatively long-term viscous spreading, the height ratio was increased to 𝜆 = 3, 

which results in a Reynolds number of 𝑅𝑒 = 126. When viscous forces prevail, as in 

such a low Reynolds number configuration, the transfer of momentum inside the current 

occurs at a much faster rate than in the high-𝑅𝑒 cases. The present dam-break low-

Reynolds number non-axisymmetric release is therefore observed to become 

axisymmetric after having crossed a distance of about 1𝐻. Here, the source momentum 
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stemming from the pressure gradient at the front is quickly transferred by diffusion along 

the circumference, hence leading to rapid homogenization of the front height and 

velocity. As a consequence, the current’s evolution quickly becomes axisymmetric and 

the current enters the viscous phase (and eventually the capillary phase). Overall, 

inspecting the present results suggest that the non-axisymmetric evolution is to be 

expected provided the Reynolds number is large, typically 𝑅𝑒 ≥ 𝛰(104). 

5.5.5 Varying the Vertical and Horizontal Aspect Ratios 

The dependence on the vertical aspect ratio is examined by doubling the vertical 

aspect ratio while maintaining the same density ratio. We present in Figure 5-14a the 

same configuration for two initial vertical aspect ratios  𝜆 = 2 and 4. The fast and slow 

fronts are again observed to change the orientation of the initial major and minor axes of 

the release. Other experiments with smaller vertical aspect ratios of 0.25 and 0.5 were 

also conducted, and the same preferential direction of spreading and switching of major 

and minor axes was always observed. We may conclude that the switching of the initial 

major and minor axes is not sensitive to the vertical aspect ratio, at least in the range 

 0.25 ≤ 𝜆 ≤ 4. 

In Figure 5-14b, we investigate the effect of varying the initial horizontal aspect 

ratio 𝜒0 on the front dynamics. We present results from simulations 5-1 and 5-3 for the 

RR geometry for two values of 𝜒0, namely 𝜒0 = 3.8 and 𝜒0 = 8. In both configurations, 

the width of the RR is held constant. We observe some interesting features. The 

travelled distance along the major axis (slow front) for both configurations are identical 

for the entire duration of Sim 5-1 (𝜒0 = 8). On the other hand, along the initial minor 
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axis, we observe a collapse between both curves up to a time of 𝑡 ≈ 5.5, beyond which 

the fast front of Sim 5-1 begins to slow down and deviate from the fast front of Sim 5-3. 

The perfect agreement between Sim 5-1 and Sim 5-3 along the initial major axis 

implies that the slow front is not affected by increasing the initial length of the RR as it 

will not have access to it. Furthermore, this allows us to stipulate that any further 

increase in the length of the RR will not affect the travelled distance along the major 

axis. This is not the case however for the fast front, increasing the length of the RR 

results in farther propagation along the initial minor axis. Initially the front along the 

minor axis does not perceive the finite nature of the release, and advances as a planar 

(two-dimensional) current of lock-length equivalent to half the width of the RR. The time 

for which this planar-like behaviour endures, depends strongly on the initial length of the 

RR. 

5.5.6 Possible Influence of the Initial Curvature and the Local Instantaneous 
Curvature 

It is important to consider if the non-axisymmetric spreading of the current is a 

consequence of the local initial or instantaneous curvature at the front. To investigate 

the effect of local initial curvature, we numerically compared the evolution of the 

rounded-rectangular release with that of a true rectangle of same cross-sectional area 

and aspect ratio (Figure 5-15). Indeed, one may wonder if the larger curvature at the 

rounded edges may be the reason for its local slower propagation, since it is known 

that, for the same initial volume of release, planar currents with no curvature spread 

faster than axisymmetric cylindrical currents as a result of the radially diverging 

geometry. In Figure 5-15, however, the dynamics of the current with flat sides (true 

rectangle) is similar to that of the current with rounded sides. Notwithstanding the 
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differences in the initial local curvature between the currents, the path of the inward 

propagating rays is relatively similar in both cases. Initial local curvature hence appears 

to be not important in the process of non-axisymmetric spreading as long as the 

“redistribution” of material is similar. Furthermore, two other observations from Figure 5-

4b suggest that the phenomenon is not a consequence of local instantaneous 

curvature. First, the curvature at the front of the current in the x-direction is alternatively 

larger, equal and smaller than that in the 𝑦-direction at time 𝑡 = 0, 3.5, and 7, 

respectively. Nevertheless, the front velocity along the 𝑦-direction is consistently larger 

than that along the 𝑥-direction for all time (not shown), independent of the relative 

magnitude of local curvature. Secondly, if the front dynamics was dominantly controlled 

by the local instantaneous curvature, a current that is circular should remain circular. In 

Figure 5-4b it can be observed that at 𝑡 = 3.5, the front is nearly circular, however at 

later times the current continues to spread faster along the 𝑦-direction and increasingly 

departs from the circular shape. This suggests that the local front velocity is, to leading 

order, a strong function of the local height and is not strongly affected by instantaneous 

local curvature of the front. 

5.5.7 Vortical Structures of Non-Circular / Non-Planar Gravity Currents 

Shortly after release, the current intrudes into the ambient fluid forming a smooth 

front in which Kelvin-Helmholtz rolled up vortices separate the body from the head of 

the current. The signature of these vortices is visible in the density iso-surface plots of 

Figure 5-6. The head of the current is complex and includes vortical structures that are 

not fully observable in the density iso-surface plots, but are better identified in 

isosurface plots of the swirling strength 𝜆𝑐𝑖 in Figure 5-16. The swirling strength is 
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defined as the absolute value of the imaginary portion of the complex eigenvalue of the 

velocity gradient tensor. It is commonly used for identifying regions of intense vorticity 

(Zhou et. al. 1999; Chakraborty et. al. 2005; Cantero  et al. 2007b). The maximum, 

mean and rms values of 𝜆𝑐𝑖 at  𝑡 = 3.5, 7, and 14 is {65, 0.020, 0.34}, {25, 0.024, 0.30}, 

and {14, 0.015, 0.15}, respectively. The swirling strength is highest at the head of the fast 

front of the current, where the flow is dominated by hairpin vortices and inclined vortical 

structures. 

Owing to the preferential direction of spreading, the vortex tubes at the slow 

front, i.e. parallel to the y-axis undergo stretching and twisting (Figure 5-16c) before 

they eventually break up into smaller structures (Figure 5-16e). In Figure 5-17, the 

spatial distribution of the vertically averaged swirling strength reveals that the swirling 

strength at the fast front is as large as twice that at the slow front. Iso-surfaces of 𝜆𝑐𝑖 for 

a cylindrical release of equivalent volume are displayed in Figure 5-18. For the sake of 

comparison, the maximum, mean, and rms values of 𝜆𝑐𝑖 at 𝑡 = 3.5, 7, and 14 is 

{47, 0.032, 0.5}, {39, 0.038, 0.41}, and {12, 0.020, 0.17}, respectively. It is noteworthy that 

the mean value of 𝜆𝑐𝑖 is consistently larger in the circular case than in the rounded-

rectangle release. We conjecture that the observed higher intensity of the swirling 

strength is due to the fact that the initial axisymmetry of the circular release artificially 

increase the coherence of the vortex tubes since the local stretching field is likely to be 

more uniform in this case. In any case, the explanation of the present observation 

remains unclear at the present time. 
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5.6 Summary and Discussions 

Following the recent findings of Zgheib et al. (2014), we have presented 

experimental and numerical results for finite-release gravity currents of non-

axisymmetric shape. In the present work, we demonstrate that a non-circular gravity 

current eventually reaches a non-circular self-similar shape in the inertial regime. 

Thanks to extended box model simulations, we propose a simple scaling law which 

relates the self-similar horizontal aspect ratio to the horizontal initial aspect ratio of the 

release. This law is found to be in reasonable agreement with results from the present 

experiments and fully-resolved simulations. Further qualitative experiments suggest that 

the non-axisymmetric spreading of initially a non-circular release is independent of the 

density ratio, vertical aspect ratio, wall friction, and Reynolds number provided 𝑅𝑒 ≥

𝛰(104), which is typical for these types of flows.  

It is noteworthy that the switching of axes reported in Zgheib et al. (2014) is not 

unique to non-axisymmetric gravity currents. Non-circular jets, and elliptic jets in 

particular, have been shown to flip axes (see e.g. Gutmark & Grinstein 1999). In fact, 

similar to gravity currents, the jet’s initial shape dictates the subsequent transient cross-

sectional configurations at different downstream locations. Nonetheless, the 

mechanisms leading to the switching of axes are quite different. In the case of the 

elliptic jet, the faster growth rate of the shear-layer along the flattest side of the jet, say 

normal to the minor 𝑦-axis, leads to a faster entrainment and hence the downstream 

cross-section of the jet will switch axes. After the switch, the flatter side of the jet is now 

normal to the 𝑥-direction, and the situation is reversed. In some cases, elliptic jets may 

undergo several flipping of axes, as shown by Quinn (1989). In the case of gravity 
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currents, the switch of axes is a consequence of the azimuthally-varying current height, 

which leads to local fast and slow fronts along the circumference, and the present 

results suggest that the switch is permanent. Furthermore, the switching of axes in the 

case of non-circular jets has been related to the dynamics of the rolled-up vortices. 

Although strong vortices are present at the front in the case of gravity currents, their 

presence is not essential in the switching of axes. For instance the axes switching is 

predicted in the extended box model, which does not account for any vortex roll-up at 

the front of the current. 
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Figure 5-1.  (Color online) Experimental setup. The experiments are carried out with two 

different cross-sectional geometries, namely a circular section (CS) and a 
rounded rectangle (RR). Both geometries have roughly the same cross 
sectional area, leading to an equivalent radius 𝑅0 of 4.6 and 4.7 cm for the 
CS- and RR-geometry, respectively, 𝑅0 being calculated from the surface 
area 𝐴 as 𝑅0 = √𝐴/𝜋. An inclined mirror is placed underneath the tank, so 
that the current’s evolution is recorded both from the side and below. The 
square tank dimensions are 120cm × 120cm × 40cm, corresponding to 26𝑅0 ×
26𝑅0 × 9𝑅0 approximately. Gravity is pointing towards the – 𝑧 direction. 
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Figure 5-2.  Example of front location detection from experiments. A plan view of the 

current (Exp 5-2 at 𝑡 = 5.9) is shown on the left along with the white star 
symbols corresponding to the extracted front location. A close up view on the 
right shows good agreement between the extracted and the actual front 
location.  

 
Figure 5-3.  (Color online) Time evolution of the front position of the “slow” and “fast” 

fronts of RR-currents for various initial orientations of the rounded-rectangle 
cylinder relative to the tank walls. The angle between the initial longest side of 
the RR-cylinder and the tank wall is 0° (Exp 5-2), 45° (Exp 5-3) and 90° (Exp 
5-4), respectively. The front location is averaged over a small sector of width 
2𝛼 = 𝜋/36. Note that the tank walls are located at a minimum distance of 
13𝑅0 from the centre of mass of the current, which corresponds to 𝑟𝑁 − 𝑅0 =
6, here (recall that the front position is scaled by ℎ0 and that  = ℎ0/𝑅0 = 2, 
here). For comparison, the results obtained with Sim 1, for which the “outer 
walls” are at a minimum distance of 16𝑅0, is also plotted.  
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Table 5-1.  Velocity ratio 𝑢𝐹/ 𝑢𝑆 and height ratio ℎ𝐹/ ℎ𝑆 between the fastest and slowest points of some gravity currents of 
initially arbitrary shape. The mean quantities are computed for 0 ≤ 𝑡 ≤ 22 (𝜆 = 1.4), 0 ≤ 𝑡 ≤ 12.6 (𝜆 = 2), and 
0 ≤ 𝑡 ≤ 6.5 (𝜆 = 4). CS, RR, and TR refer to the circle, rounded rectangle, and true rectangle, respectively 
(Figure 5-1). 𝜆 = ℎ0/𝑅0 is the initial vertical aspect ratio. 

 
Exp/Sim 

num 
Initial 
shape ℎ0 (m) 𝜌𝑐 (Kg/m

3) 𝑅𝑒 𝜆 𝜌𝑐/𝜌𝑎 𝑚𝑎𝑥(𝑢𝐹/𝑢𝑆) 𝑢𝐹/𝑢𝑆̅̅ ̅̅ ̅̅ ̅̅  𝑚𝑎𝑥(ℎ𝐹/ℎ𝑆) ℎ𝐹/ℎ𝑆̅̅ ̅̅ ̅̅ ̅̅  comments 

Exp 5-1 CS 0.092 1100 1100 2 1.1 1.02 0.99 - - saline current 
Exp 5-2 RR 0.094 1100 1100 2 1.1 2.27 1.88 5.85 3.90 saline current 
Exp 5-3 RR 0.094 1100 1100 2 1.1 2.24 1.96 - - saline current 
Exp 5-4 RR 0.094 1100 1100 2 1.1 2.60 2.00 - - saline current 
Exp 5-5 RR 0.188 1100 1100 4 1.1 2.17 1.77 - - saline current 
Exp 5-6 RR 0.047 1000 1000 1 103 - 2.64* - - dam-break flow 
Exp 5-7 RR 0.094 1007 1400 2 1.007 - 2.46* - - turbidity current 
Exp 5-8 RR 0.047 1000 1100 1 0.93 - 2.56* - - top current 
Exp 5-9 RR 0.141 1400 1100 3 1400 - 1.10** - - viscous current 
Sim 5-1 RR - - 8.95103 2 1 2.66 2.06 4.09 2.70 - 
Sim 5-2 CS - - 8.95103 2 1 1.00 1.00 1.00 1.00 - 
Sim 5-3 RR - - 8.95103 1.4 1 3.72 2.71 6.12 4.44 - 
Sim 5-4 TR - - 8.95103 2 1 2.60 1.98 3.95 2.66 - 
 
*mean quantities are computed for 0 ≤ 𝑡 ≤ 𝑡𝑓, 𝑡𝑓 corresponding to the maximum time shown in Figure 5-17. 
**mean velocity ratio computed for the post acceleration stage 2200 ≤ 𝑡 ≤ 33,500. 
 see section 4.2 for the physical parameters of the particles and the mixture 
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Figure 5-4.  (Color online) Evolution of the front contours for A) a circular (Exp 5-1) and 

B) a rounded-rectangle release (Exp 5-2). Frame C) is similar to frame B) 
using the self-similar variables 𝜂 = 𝑥𝑡−1/2 and 𝜁 = 𝑦𝑡−1/2 respectively. Note 
that here the variables are dimensionless so that in dimensional form the self-
similar variables would become 𝜂 = (𝑔′ℎ03)−1/4𝑥̃𝑡̃−1/2 and 𝜁 =
(𝑔′ℎ0

3)−1/4𝑦̃𝑡̃−1/2, respectively (where the tilde denotes a dimensional 
variable). The contours are plotted from 𝑡0 = 2.1 (red curve) to 𝑡𝑓 = 13.8 (blue 
curve) by steps of 𝑡 = 1.3. Plotted in green is the curve corresponding the 
time 𝑡 = 8.6 for which the shape becomes roughly self-similar. It is noteworthy 
that at the time 𝑡𝑓, the currents have crossed a minimum distance of 7 to 8 
initial equivalent radii, while the tank walls are located at 𝑥 = 𝑦 ≈ ±6 (axes 
are scaled by the initial height of the ambient 𝐻). In frames A and B, the 
dashed line represents the initial location of the hollow cylinder. 
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Figure 5-5.  Side view of the A) rounded rectangle and B) circular gravity currents. 

Contrary to the RR-release, the current’s thickness is roughly uniform for the 
circular release during spreading. 

  

  A B 



 

125 
 

 

 

Figure 5-6.  Height of the RR-gravity current (Sim 5-1). A) Iso-surfaces 𝜌 = 10−2, B) 
Distribution of the height along the horizontal plane. Note that the local height 
strongly varies along the circumference of the current, being maximum along 
the 𝑦-direction. 
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Figure 5-7.  Time evolution of the local Froude number at A) the fast front and B) the 

slow front: (), 𝐹𝑟 = 𝑢𝑁/√ℎ𝑁, Sim 5-1;  (-  -  -), 𝐹𝑟𝐻𝑆(𝑎) = min (𝑎−1/3, 1.19); 
(- - - -), 𝐹𝑟𝐵(𝑎) = √𝑎(1 − 𝑎)(2 − 𝑎)/(1 + 𝑎); (  ), 𝐹𝑟𝐵𝑀(𝑎) =
√2𝑎(1 − 𝑎). Here, 𝑎 is defined as 𝑎 = ℎ𝑁/𝐻. 

 
 
 
 

 
 
Figure 5-8.  A), Notations used for the two-dimensional extended box model. 

{𝑥𝑁(𝑠, 𝑡), 𝑦𝑁(𝑠, 𝑡)} denote the local position, ℎ𝑁(𝑠, 𝑡) the height, 𝑢𝑁(𝑠, 𝑡) the 
outward normal velocity of the front and 𝜎(𝑠, 𝑡) the area per arc length. The 
independent variables 𝑠 and 𝑡 denote the curvilinear coordinate along the 
front and time, respectively. B), Example of initial partitioning of the initial 
elliptical body of a non-axisymmetric gravity current. 

A B 

A B 
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Figure 5-9.  (Color online) A) Azimuthal evolution of the normal-to-the-front 𝑢𝑛 and 

tangential component 𝑢𝜃 of the front velocity of a rounded-rectangle gravity 
current at two different time instances (Sim 5-1). Also plotted is the velocity 
obtained via the Huppert & Simpson (1980)’s Froude function (Eq. 5-15) using 
the mean height (dash-dot red line) and the maximum height (solid black line) 
in the head of the current extracted from the fully-resolved simulation. B) 
Height distribution in the RR-current before and after the switch of axes at 𝑡 =
1.5 and 𝑡 = 7, respectively. The streamlines of the vertically-averaged velocity 
field in the current are also plotted in the upper right corner. In frame A, 𝜃 is 
measured counter clockwise from the  𝑥-axis. 
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Figure 5-10.  A) Evolution of the front contour of an initially elliptical release of horizontal 

initial aspect ratio 𝜒0 = 3.8 in the (𝜂 = 𝑥𝑡−1/2 , 𝜁 = 𝑦𝑡−1/2)-plane obtained from 
an EBM simulation. In (a), the contours are plotted from 𝑡0 = 100 to 𝑡𝑓 = 200 
by steps of 𝑡 = 10. B) Self-similar horizontal aspect ratio 𝜒∞ of the front 
contour of non-axisymmetric gravity currents as a function of the horizontal 
initial aspect ratio 𝜒0: (), experiments (5-2, 5-3, 5-4, respectively); (  O  
#  +), fully-resolved simulations (5-1, 5-2, 5-3, 5-4 respectively); ( ), EBM 
simulations with releases of initially elliptical and rounded-rectangle shape, 
respectively; (), correlation 𝜒∞ = 1 + ln 𝜒0

1/3.  
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Figure 5-11.  (Color online) Evolution for 𝜒0 = 3.8 (Sim 5-1) of the front contours (A & D), front speed (B & E), and mean 

front height (C & F). The contours are plotted from 𝑡0 = 3.15 (red curve) to 𝑡𝑓 = 17.15 (blue curve) by steps of 
𝑡 = 1.75. Plotted in green is the curve corresponding the time 𝑡 = 8.4 for which these quantities become 
roughly self-similar. Evolution for 𝜒0 = 8 (Sim 5-3) of the front contours (G & J), front speed (H & K), and mean 
front height (I & L). The contours are plotted from 𝑡0 = 4 (red curve) to 𝑡𝑓 = 22 (blue curve) by steps of 𝑡 = 2. 
Plotted in green is the curve corresponding the time 𝑡 = 16 for which these quantities become roughly self-
similar.  
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Figure 5-12.  (Colour online) Azimuthal evolution at the final time of the scaled front 

location (red solid), speed (green dashed), and height (blue dash dot) from A) 
Sim 5-1 (𝜒0 = 3.8 and B) Sim 5-3 (𝜒0 = 8). The thick solid black line 
corresponds to 𝑓(𝜃) from Eq. (5-22). The mean value is subtracted from each 
curve.  
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Figure 5-13.  Experiments with the RR-initial geometry. A) dam-break flow (Exp 5-6); B) 
turbidity current (Exp 5-7); C) Boussinesq top current (Exp 5-8); D) viscous 
dam-break honey-in-air flow (Exp 5-9). Observe that the RR-viscous current 
does not switch axes, but rather becomes circular. tf denotes the time up to 
which averaging is done in Table 5-1.  
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Figure 5-14.  (Colour online) A) Time evolution of the fast front (solid symbols) and slow 

front (open symbols) of a RR release of initial vertical aspect ratio () 𝜆 =
2, Exp 5-2 and () 𝜆 = 4. Exp 5-5. B) Time evolution of the fast and slow 
fronts of a RR release of initial horizontal aspect ratio (blue lines) 𝜒0 = 3.8, 
Sim 5-1 and (black lines) 𝜒0 = 8, Sim 5-3.  

 

 

 
 

 
Figure 5-15.  Effect of the local initial curvature. Composite picture of the front evolution 

obtained from simulations. Time separation between fronts is Δ𝑡 = 0.35 and 
the final run time is 𝑡 = 16.1 A) rounded rectangle (Sim 5-1); B) true rectangle 
(same physical parameters as Sim 5-1); C) comparison between the two 
geometries at 𝑡 = 0, 3.5, 7, and 14. 
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Figure 5-16.  Isosurfaces of 𝜆𝑐𝑖 = 2 for the RR release (Sim 5-1) for 𝑡 = 3.5, 7, and 14. 
The vortical tubes are stretched and twisted before eventually breaking down into 
smaller structures.  
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Figure 5-17.  Vertically averaged 𝜆𝑐𝑖 over the height of the current: A) axisymmetric 
release (Sim 5-2), B) RR release (Sim 5-1). The initial volume of the current is 
the same for both cases. 
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Figure 5-18.  Isosurfaces of 𝜆𝑐𝑖 = 2 for the axisymmetric release (from Sim 5-2) for 𝑡 =

3.5, 7, and 14. 
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Figure 5-19.  Spatial and temporal convergence for an initial elliptical release (𝜒0 = 3.8) 
from the extended box model for A) Δ𝑡 = 0.1 B) 𝑁 = 160 points. 
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CHAPTER 6 
PROPAGATION & DEPOSITION OF NON-CIRCULAR FINITE RELEASE PARTICLE-

LADEN CURRENTS 

6.1 Background 

When two fluids of different densities are brought into contact with one another 

(where the contact surface is parallel to the gravitational field), a hydrostatic pressure 

discontinuity forms along the interface and acts to set both fluids in motion. This type of 

fluid flow, denoted as a gravity current (Rottman & Simpson 1983; Hallworth et al. 2001) 

generally corresponds to the heavier of the two fluids intruding horizontally (normal to 

the gravitational field) into the lighter fluid. If we consider a laboratory setup in which 

both fluids are bounded by the impermeable walls of a finite domain (a tank for 

example), then the lighter fluid simultaneously moves to occupy the space abandoned 

by the heavier fluid. The initial density jump across the interface need not be large, in 

fact a density difference between both fluids of less than a percent is usually sufficient 

to generate a flow. The density difference can arise from a number of scenarios 

including temperature, concentration, or compositional disparities between the two fluids 

(Simpson 1982). Here, we are interested in flows in which the density difference 

originates from the suspension of relatively dense particles. These types of currents are 

known as particle-laden flows (Parker et al. 1986; Maxworthy 1999) and constitute a 

more complex subset of gravity currents. The added complexity comes from the fact 

that the density of the current strongly depends on the volume fraction of suspended 

particles which is spatially and temporally dependent since particles may (i) settle out 

and deposit on the floor, (ii) roll, slide, or saltate along the bottom wall, or (iii) be 

reentrained back into the current if the latter is energetic enough. 
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For the case of spherical particles, the speed at which particles settle out is often 

taken to be the terminal velocity of a free-falling single particle (Bonnecaze et al. 1993; 

Dade & Huppert 1995). The problems of bedload transport (Dufek & Bergantz 2007; 

Lee, Ha, & Balachandar 2012) and particle resuspension (Boegman & Ivey 2009) are 

essentially non-linear, with difficulties arising from the randomness of turbulent 

fluctuations and the complex topography of the bed. 

Fixed volume, particle-laden flows are primarily investigated in one of two 

canonical configurations, namely a planar setting (Dade & Huppert 1995; Gladstone et 

al. 1998) and a circular axisymmetric setting (Bonnecaze et al. 1995; Ungarish & 

Huppert 1998; Gladstone & Woods 2000). These works were mostly experimental and 

theoretical. Problems such as bedload transport and particle resuspension are often 

difficult to measure experimentally and the use of alternative complementary 

approaches such as direct numerical simulations (DNS) is welcome. Here, we focus on 

three-dimensional flows where the release is neither planar nor axisymmetric. Those 

types of non-circular configurations have been recently studied in the context of saline 

density driven currents by Zgheib et al. 2014. They showed that the dynamics of a 

gravity current is influenced by the initial shape of the release up to times for which the 

current has entered a self-similar like regime. Our aim is to explore the case of particle-

laden flows and in particular the azimuthal dependence of the initial non-circular shape 

on the velocity and extent of the current as well as the depositional pattern. 

Direct numerical simulations of finite-release particle-laden flows have been 

performed for planar currents (Necker et al. 2002; Blanchette et al. 2005), however to 

the knowledge of the authors, no DNS studies for cylindrical releases have yet been 
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reported. DNS allows exploring the local near wall dynamics, specifically the bed shear 

stress and the near-wall velocity, both of which are critical parameters in the problems 

of bedload transport and particle resuspension. In addition, one can investigate the 

correlation relative to the larger scale vortical structures. 

In this chapter, we perform a series of experiments of finite-volume, Boussinesq, 

particle-laden and density-driven (scalar) flows. Cylinders with two different cross 

sections are considered: a circle and a rounded rectangle (RR). For each experiment, 

we monitor the temporal evolution of the front as well as the final deposition profile of 

particles, both of which being highly dependent on the initial shape of release, as shown 

later. We vary several parameters, namely the settling velocity, the initial height aspect 

ratio of the release and the initial particle volume fraction, and analyze their influence on 

the current dynamics (front temporal evolution and deposition profile). 

Companion direct numerical simulations are performed in which the setup is 

identical to that of the experiments. In our simulations, we do not account for particle 

resuspension or bedload transport. These assumptions will be discussed through the 

analysis of the spatial and temporal development of the wall shear stress and the near-

wall fluctuating vertical velocity component inside the particle-laden flow. 

Our chapter is structured as follows. In §6.2, we discuss the setup, procedure 

and results of the experiments. In particular, we investigate the effects of the various 

parameters on the front velocity and deposition profiles. Direct numerical simulations 

are described in §6.3, and compared to experimental results. In particular, the 

simplifications regarding bedload transport and particle resuspension are discussed in 

§6.3.4 and §6.3.5, respectively. Conclusions are drawn in §6.4 
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6.2 Experiments of Finite-Release Non-Circular Particle-Laden Currents 

6.2.1 Experimental Setup 

A particle-laden solution is confined within a hollow cylinder placed at the centre 

of a transparent glass square tank. The tank cross section is 𝐿̃𝑥 × 𝐿̃𝑦 = 120 × 120 cm, 

and its walls are 𝐿̃𝑧 = 40 cm high (Figure 6-1). We consider two cross-sectional shapes 

for the hollow cylinder of height ℎ̃0 and equivalent radius 𝑅̃0 the dimensions of which are 

given in Figure 6-2. The initial mixture, confined within the cylinder, is prepared by 

suspending polystyrene particles of density 𝜌̃𝑝 = 1050 kg/m3, volume fraction 𝜙0 and 

diameter 𝑑̃𝑝 ≈ 300 ± 20 μm in tap water (here tilde denotes a dimensional quantity). 

Initially, a fixed quantity of particles of mass 𝑚̃𝑝 is poured into the hollow cylinder, 

and both the tank and the cylinder are slowly filled with tap water (𝜌̃𝑎 = 998 kg/m3).  

Once the desired level (ℎ̃0) is reached, the water is given time to arrive at a stagnant 

state. As a precaution against the clustering of particles, a few drops of non-

agglomerating solution are added to the mixture in addition to an infrared fluorescent 

dye for visualization purposes. To bring the particles into suspension, two approaches 

were considered. In the first approach, a metallic net attached to a shape-fitted rigid 

structure that conforms to the inner perimeter of the hollow cylinder is used. The rigid 

structure is manually oscillated up and down within the hollow cylinder via two vertical 

rods that are connected to the structure at opposite ends. In the second approach, a 

brush of dimensions 4 × 1 cm connected at its end with a rigid metallic rod sweeps the 

bottom floor inside the cylinder. The latter of the two approaches was found to be more 

effective at suspending the particles and was adopted for all the experiments shown 

herein. 
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6.2.2 Procedure 

When the particles are fully suspended, the brush is retracted, and the hollow 

cylinder is swiftly lifted via a pulley system (Figure 6-1). To allow for a plan view of the 

current, a mirror at a 45° inclination is placed below the bottom transparent surface of 

the tank. A camera points towards the centre of the mirror at a distance of 6 m. The 

experiments are carried out in a dark room with black light illuminating the fluorescent 

dye injected into the mixture. Neon black light tubes are mounted on the four sides of 

the tank with close proximity to the bottom surface where the turbidity current spreads. 

Two sets of data are extracted: the temporal front evolution of the current, as well 

as the final thickness of the deposit, once the current arrives at a standstill . To capture 

the location of the front, high resolution (2160 × 2560 pixels) 16-bit grayscale images 

are recorded every 20 ms. The front can be readily discerned since there is an order of 

magnitude jump between intensity levels in just a few pixels at the current-ambient 

interface. The height of the deposited particles is measured at the end of each 

experiment with a non-intrusive technique through laser reflection, the basic principle of 

which is triangulation. The probe has two main optical elements. The first is a light 

emitting diode, which projects a visible laser beam on the surface of the targeted 

element (in this case the deposit) whose elevation needs to be measured. A part of the 

incident beam is reflected from the surface of the deposit and impacts an ultra-sensitive 

optical sensor at an angle dependent on the distance between the diode and the 

surface. Before any experiments, calibration is performed, i.e. the elevation of the light 

emitting diode from the bottom surface of the tank is measured. Hence, once the 

distance between the diode and the targeted surface is measured, the height of the 
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deposit can be straightforwardly obtained. The laser has a measuring range of 2 mm 

with a resolution of 0.5 μm and a spot diameter of 0.1 mm. The measurements are 

continuous with a frequency of 5 kHz . The 2 mm measuring range begins at a distance 

of 23 mm from the laser. 

A mounted 2-axes motorized system is used to guide the laser over the bottom 

surface of the deposit. The system covers a range of 800 × 800 mm, and depending on 

the area of the final deposit, the height of the particle deposit is measured every 

25 or 50 mm. Since the height of the deposit at the centre of the release can exceed the 

aforementioned 2 mm measuring range, a micrometre was attached to the laser (inset 

of Figure 6-1) to allow for controlled vertical displacements. 

To account for slight possible inclination in the tank supporting structure or 

possible minute height variations caused by the bending of the motorized axis (due to 

its own weight) as the laser sweeps over the bottom surface, dry measurements of the 

tank “topography” were computed by displacing a metallic plate of known thickness at 

various locations in the tank and recording the elevation measured by the laser. These 

values are then taken into account to correct the final thickness of the deposit. 

Since the laser cannot be immersed in water, and because of the close proximity 

required between the laser and the deposit, the tank is slowly emptied at the end of 

each experiment and the deposit is allowed to dry overnight before any measurements 

are undertaken. The thickness is recorded at multiple height levels of the laser 

apparatus to ensure that the surface of the deposit always lies in the 2 mm measuring 

range of the laser. 
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6.2.3 Results 

6.2.3.1 Evolution in the horizontal (𝒙,𝒚)-plane 

Various experiments were carried out in order to assess the dependence of the 

dynamics on the initial volume fraction 𝜙0, initial height aspect ratio 𝜆 and settling 

velocity 𝑉̃𝑠. Here, the initial volume fraction 𝜙0 is the ratio of the volume occupied by the 

particles to the total volume of the mixture at the time of release and 𝜆 is defined as the 

initial height ℎ̃0 of the mixture inside the cylinder divided by the equivalent radius 𝑅̃0 of 

the cylinder (𝜆 = ℎ̃0/𝑅̃0). Unless stated otherwise, all variables are scaled by the 

following characteristic length, velocity, and time, respectively, viz 

 𝐿̃ = ℎ̃0 ,      𝑈̃ = √𝑔̃
𝜌̃𝑐0 − 𝜌̃𝑎
𝜌̃𝑎

ℎ̃0 ,     𝑇̃ =
𝐿̃

𝑈̃
 , (6-1) 

where 𝑔̃ is the gravitational acceleration and 𝜌̃𝑐0 (𝜌̃𝑎) is the initial equivalent density of 

the mixture (ambient fluid). In practice, the initial density of the mixture is computed as 

𝜌̃𝑐0 = 𝜙0𝜌̃𝑝 + (1 − 𝜙0)𝜌̃𝑎 where 𝜌̃𝑝 is the density of the particles. 

A list of the experiments is shown in Table 6-1. Note that the shape refers to the 

cross-sectional outline of the hollow cylinder, with RR denoting the rounded rectangular 

cylinder and C signifying a circular cylinder. Both geometries were chosen to have 

similar cross sectional areas so that for a fixed initial height, the volume of the release 

for the rounded rectangle or the circular cylinder is the same. We follow Cantero et al. 

(2008a) by defining the settling velocity (𝑉𝑠) of the particles as 

 𝑉̃𝑠 = 𝜏̃(1 − 𝛽)𝑔̃ (6-2) 

where  
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 𝜏̃ =
𝑑̃𝑝
2(𝜌̂ + 1/2)

18𝜈(1 + 0.15𝑅𝑒𝑝
0.687)

      and      𝛽 =
3

2𝜌̂ + 1
 (6-3) 

with 𝜌̂ = 𝜌̃𝑝/𝜌̃𝑎 denoting the ratio of the particle density to the fluid density, 𝑅𝑒𝑝 =
𝑉̃𝑠𝑑̃𝑝

𝜈̃
 

representing the particle Reynolds number, and 𝜈 the kinematic viscosity of the 

interstitial fluid (water). Finally, the Reynolds number is defined as 

 𝑅𝑒 =
ℎ̃0𝑈̃

𝜈
 . (6-4) 

We firstly explore the effect of the initial shape of the release on the temporal 

evolution of the front of a particle-laden current. Here, we investigate the finite-release 

of monodisperse, particle-laden currents for a non-planar, non-axisymmetric geometry. 

Let us consider for example the rounded-rectangular release shown in Figure 6-3B. 

Note that for comparison, we present the case of a circular release in Figure 6-3A. 

Initially, the longest side of the rounded rectangle is parallel to the 𝑦-axis, and once 

released, the front advances in all directions. The current is seen to attain a roughly 

circular cross-section at 𝑡 = 10. However, at later stages of spreading (𝑡 > 10), a 

difference between the spreading distances along the 𝑥 and 𝑦-axes is observed. 

Clearly, the spreading is faster along the 𝑥-axis of the release. This preferred spreading 

direction is observed to persist until the current comes to rest at 𝑡 ≈ 70 (not shown). 

Note that from 𝑡 = 40 to 𝑡 ≈ 70, the current advances at such a slower rate that its final 

layout is almost identical to that at 𝑡 = 40. 

As for the rounded-rectangular cross-section, we define two specific axes, 

denoted as minor and major axes, which initially correspond to the direction of shorter 

and longer sides, respectively. In the present work, they are initially parallel to the 𝑥- 

and 𝑦-axes, respectively. In the following, we refer to the switching of axes when the 
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current’s major axis rotates by 90 degrees (with respect to the centre of the release in 

the 𝑥-𝑦 plane) from the time it is released to the time when it arrives at a complete 

standstill. For the rectangular release displayed in Figure 6-3B, the current is observed 

to switch axes (snapshots at 𝑡 = 0 and 𝑡 = 40). Note that this switching of axes for this 

initial shape of release has been previously reported in the case of homogeneous saline 

currents (Zgheib et al. 2015a). 

We plot in Figure 6-4 the mean front location at select instances for saline and 

particulate currents pertaining to experiments 6-3, 6-4, 6-7, and 6-8. Here, the front 

position which is plotted in the (𝑥 ≥ 0, 𝑦 ≥ 0)-domain has been averaged in space using 

symmetry along the x- and y-axes, respectively. To be more explicit, we exploit the 4-

fold symmetry in the 𝑥-𝑦 plane by first mapping all points along the front onto the first 

quadrant (𝑥 ≥ 0, 𝑦 ≥ 0). In practice, a point on the front of coordinates (𝑥, 𝑦) will get the 

new coordinates (|𝑥|, |𝑦|) that belong to the first quadrant. We then convert the 

Cartesian coordinates (|𝑥|, |𝑦|) to polar coordinates (𝑟, 𝜃), with r being the radial 

distance from the origin to the point and 𝜃 the angle made with respect to the 𝑥-axis. 

Subsequently, we average all the r values at each equally spaced 𝜃 by steps of 𝜋/180. 

Bonnecaze et al. (1995) and Necker et al. (2002) have shown that for finite-

volume axisymmetric and planar releases, homogeneous and particulate currents 

advance at similar speeds until enough particles have settled and particle-laden fronts 

begin to progressively slow down and deviate from scalar driven fronts. For the circular 

release (Figure 6-4A), we observe that the time of separation occurs after 𝑡 ≈ 10. 

Interestingly, for the rounded-rectangular release (Figure 6-4B), the time from which 

deviation between saline and particulate fronts is observed, is azimuthally dependent. 
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Until 𝑡 = 5, both currents advance at the same rate. At 𝑡 = 10, the particulate front 

overtakes the saline front along the 𝑥-axis, with the fronts progressively reuniting as we 

get closer to the 𝑦-axis. At later times (𝑡 = 20), the particle-laden front matches the 

saline front along the 𝑥-axis. Finally, at 𝑡 = 40, the difference between the fronts grows, 

with a larger discrepancy along the 𝑦-axis. 

We plot in Figure 6-5 the contour plots of the mean deposition thickness ℎ̅𝑑 of the 

current displayed in Figure 6-3. Here, ℎ̅𝑑 has been obtained by averaging the local 

deposition thickness over the four quadrants as 

 ℎ̅𝑑(𝑥 ≥ 0, 𝑦 ≥ 0) =
1

4
(ℎ𝑑(𝑥, 𝑦) + ℎ𝑑(−𝑥, 𝑦) + ℎ𝑑(𝑥, −𝑦) + ℎ𝑑(−𝑥,−𝑦)) . (6-5) 

The deposit of the circular release remains axisymmetric with regular spacing between 

contour levels indicating a uniform steady decline in the amount of deposit along the 

radial direction. Alternatively, for the rounded rectangular release, the contour lines 

spatially evolve from an initial rectangular-like outline conforming to the initial shape of 

the release to another rectangular-like outline, the longest side being aligned with the 𝑥-

axis. In addition, the spacing between the contours is no longer uniform as in the 

circular case. For example, the distance between the contour ℎ̅𝑑 = 4 × 10−2 and ℎ̅𝑑 =

2.5 × 10−2 is 4 times larger along the 𝑥-axis as compared to the 𝑦-axis. Overall, Figure 

6-5 shows that the final layout of the deposition profile is influenced by the initial shape 

of the release. 

6.2.3.2 Evolution along the x- and y-axes 

The dynamics and deposition of a finite-volume release of particle-laden currents 

is here shown to depend on the initial shape of the release. For the RR-geometry 

considered here, we identify two specific directions along which the variability in front 
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position and amount of sedimentation is the most contrasted, namely the so-called 

minor and major axes oriented along the 𝑥-axis and 𝑦-axis, respectively. 

For the RR-geometry, the initial major (resp. minor) axis corresponds to the 

slowest (resp. fastest) direction of spreading along which the current covers the 

smallest (resp. largest) distance. The time evolution of the front position along the minor 

x- and major y-axis of the RR-turbidity and the RR-saline currents is presented in Figure 

6-6. The vertical dashed line indicates the time 𝑡𝑐 beyond which the fronts continually 

deviate from one another as a result of particle sedimentation. Here, 𝑡𝑐 is computed as 

the time from which 

 𝑟𝑠 > 𝑟𝑝      and      𝑑(𝑟𝑠−𝑟𝑝)/𝑑𝑡 >  0.02 , (6-6) 

where 𝑟𝑠 and 𝑟𝑝 are the distances between the centre and the front of the saline and 

particulate currents, respectively. The time 𝑡𝑐 is observed to be non-uniform along the 

front, but rather azimuthally dependent. The deviation between the saline-driven and 

particle-driven fronts is observed to first occur along the major axis 𝑡𝑐 ≈ 9. Along the 

minor axis, the fronts advance at the same rate for a longer time 𝑡𝑐 ≈ 18. Figure 6-6 

shows that both saline and particulate currents exhibit a preferential spreading direction, 

which leads to the switching of major and minor axes. 

In Figure 6-7, we present the mean deposition thickness ℎ̅𝑑 of the final deposit 

along the x- and y-axes. The deposition thickness along the major axis sharply drops 

beyond 𝑟 = 1. Along the minor axis, however, the variation in thickness is slower and 

the current has deposited particles over a distance of 10 times the corresponding lock 

length. Figures 6-6 and 6-7 indicate that the radial position of the front at time 𝑡𝑐 is close 

to the location where the deposition thickness becomes negligible, say less than a 
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percent. This may suggest that the change in the dynamics between the turbidity 

current and the saline current at 𝑡 ≈ 𝑡𝑐 is due to the fact that most of the particles have 

sedimented and hence for 𝑡 > 𝑡𝑐 the concentration of particles in the turbidity current is 

much smaller than 𝜙0, these particles being transported as a suspension. 

6.2.3.3 Influence of the settling velocity 

While the effect of varying the settling velocity (via particle diameter) has been 

investigated in the past for circular turbidity currents (Bonnecaze et al. 1995), we here 

explore the configuration of non-circular geometries in Figure 6-8. In this section, we will 

mainly consider Exp 6-3 (𝑉𝑠 = 0.029), 6-4 (𝑉𝑠 = 0), and 6-5 (𝑉𝑠 = 0.11). Note that Exp 6-4 

is a saline current but here, it is regarded as a limiting case of a particle-laden current 

with zero settling velocity, while the particles diameter in Exp 6-5 are about twice as 

large as those in Exp 6-3. Note that the initial density of the current in these 

experiments is identical, and hence the currents are likely to advance at the same 

velocity at early times, as confirmed in Figure 6-8 showing the temporal evolution of the 

front position. Here, the effect of settling velocity is first perceived along the initial major 

axis, for which the front dynamics deviate from one experiment to the other at a much 

earlier time (𝑡 ≈ 3). In the case 𝑉𝑠 = 0.11, the current ceases to advance along the major 

axis at 𝑡 ≈ 5, while along the initial minor axis, the deviation occurs at  𝑡 ≈ 6. It is 

important to note that switching of axes is observed for all the cases considered in 

Figure 6-8. As for the deposition pattern, we observe that the larger 𝑉𝑠, the smaller the 

extent and hence the larger the thickness at the centre (not shown). For instance, ℎ̅𝑑 ≈

6 × 10−2 (9 × 10−2) at the centre of the pattern for 𝑉𝑠 = 0.029 (0.11). This is in line with 



 

149 
 

the results of Figure 6-8 showing that the distance of propagation is smaller as 𝑉𝑠 is 

increased, due to the stronger sedimentation process. 

6.2.3.4 Influence of the settling velocity 

In this section, we consider the effect of the initial volume fraction 𝜙0 by 

comparing the results of Exp 6-3 to those of Exp 6-6 for which 𝜙0 = 0.27 and 0.13, 

respectively. Figure 6-9 shows the time evolution of the front position along the x- and y-

axis in both cases. We observe that with a smaller initial particle volume fraction, the 

extent of the front along the specific axes is smaller as well, however the switching of 

axes is still identifiable. The smaller spreading distance in Exp 6-6, which is a result of 

the lower initial volume fraction, is observed to vary azimuthally since the propagation 

distance (𝑟𝑁 − 𝑟𝑁(𝑡 = 0)) is shorter by 50% along the major axis and by 20% along the 

minor axis, as compared to the propagation distance in Exp 6-3. The deposition profile 

of the 𝜙0 = 0.27-current is somewhat similar to that of the 𝜙0 = 0.13-current, as shown 

in Figure 6-10. A close inspection of the deposition patterns in both cases (Figure 6-5B 

and 6-10A) indicates that the extent of the deposit is slightly smaller in the case of the 

current of smaller initial volume fraction, as a result of the initial reduced gravity, and 

hence smaller front speed. 

6.2.3.4 Influence of the initial height aspect ratio 

In order to investigate the influence of the initial height aspect ratio 𝜆, we carried 

out three experiments where the geometry, volume fraction, and particle diameter were 

held constant. Three values of 𝜆 were chosen: = 0.5 , 1 and 2 (corresponding to 

experiments 6-10, 6-3 and 6-1, respectively). In Figure 6-11, we compare the time 

evolution of the front position along the x- and y-axes. Note that for clarity, we choose a 
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fixed length scale of ℎ̃0 = 4.65 cm pertaining to Exp 6-3. This is equivalent to plot 𝑟𝑁𝜆 as 

a function of 𝑡√𝜆. For comparison we plotted in insert 𝑟𝑁 as a function of 𝑡. As the initial 

height aspect ratio is increased, the extent of the current is increased, as expected. For 

all 𝜆, the current’s dynamics is non-axisymmetric and we observe a switching of axes, 

the long-time length-to-width ratio remaining uniform with a value of 1.9, approximately. 

The final mean deposition thickness along the minor and major axes is shown in 

Figure 6-12. Firstly, as 𝜆 is increased, the thickness of the deposit at the centre of the 

release is observed to decrease (recall that we adopt a single length scale for all three 

experiments). Secondly, the slope of the deposition profile is lower (along both specific 

axes) as 𝜆 is increased. This indicates a stronger transport of the particles inside high-𝜆 

currents, which is in line with the fact that here the Reynolds number of the currents is 

larger at high 𝜆 (Table 6-1), and hence the propagation is faster (in the range of 

Reynolds numbers considered here). 

6.2.3.4 Influence of the lateral boundaries 

In order to assess the influence of the tank boundaries on the dynamics of the 

currents, we performed an extra-experiment (Exp 6-2) where we placed 2 vertical 

panels (each at an opposite end of the tank) having the same width and height as the 

tank at a distance of 10 cm from the tank walls normal to the 𝑥-axis. With the panels in 

place, the new dimensions of the tank become 𝐿̃𝑥 × 𝐿̃𝑦 × 𝐿̃𝑧 = (100 × 120 × 40) cm. In 

Figure 6-13, we present the temporal evolution of the front position and velocity and the 

final mean deposition thickness along the minor x-axis. The results indicate that the 

position of the boundaries does not hinder the advancement of the current or its 

deposition profile. Furthermore, from the inset of Figure 6-13A, the front velocity is 
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observed to drop down to 10 times its maximum value as the front advances beyond 

𝑡 = 30. Here, 𝑢𝑁 is calculated through backward differencing from a high order 

polynomial curve fit of the front position. The large reduction in speed as the current 

approaches the boundaries is the primary reason for the marginal effect of the lateral 

boundaries on the current dynamics and particle deposition. 

6.3 Simulations of Finite-Release Non-Circular Particle-Laden Currents 

6.3.1 Equations and Numerical Setup 

The particle-laden mixture is here treated as a continuum and a two-fluid 

formulation is adopted. We follow Cantero et. al (2008b) by implementing an Eulerian-

Eulerian model of the two-phase flow equations. The model involves mass and 

momentum conservation equations for the continuum fluid phase, an algebraic equation 

for the particle phase momentum, where the particle velocity is taken to be equal to the 

local fluid velocity and an imposed settling velocity derived from the Stokes drag force 

on the particles and a transport equation for the dimensionless particle phase 

concentration 𝜌. The dimensionless system of equations reads 

 ∇ ∙ 𝒖 = 0 (6-7) 

  
𝐷𝒖

𝑑𝑡
= 𝜌𝒆𝑔 − ∇p +

1

𝑅𝑒
∇2𝒖 (6-8) 

 𝒖𝑝 = 𝒖 + 𝑉𝑠𝒆
𝑔 (6-9) 

 𝜕𝜌

𝜕𝑡
+ ∇ ∙ (𝜌𝒖𝑝) =

1

𝑆𝑐 𝑅𝑒
∇2𝜌 . (6-10) 

We denote by 𝒖𝑝 and 𝒖 the velocities of the particle and continuum fluid phases, 

respectively. The settling velocity 𝑉𝑠 is determined from the Stokes drag force on 

spherical particles with small particle Reynolds number as defined in (6-2). 𝒆𝑔 is a unit 

vector pointing in the direction of gravity. Here, we employ the Boussinesq 



 

152 
 

approximation assuming that small density differences between the particle-laden 

solution and the ambient play a role only in the buoyancy term (first term in the R.H.S of 

6-8). Unless stated otherwise, all the parameters are dimensionless. The length, 

velocity and time scales are identical to those defined in (6-11). The density and total 

pressure are made dimensionless as follows (recall that tilde denotes a dimensional 

quantity) 

 𝜌 =
𝜌̃ − 𝜌̃𝑎
𝜌̃𝑐0 − 𝜌̃𝑎

 ;       𝑝 =
𝑝

𝜌̃𝑎𝑈̃2
 . (6-11) 

The Schmidt number introduced in (6-10) is defined as 

 𝑆𝑐 = 𝜈/𝜅̃  . (6-12) 

where 𝜅̃ represents the molecular diffusivity of the continuum fluid phase. 

The numerical setup depicted in Figure 6-14 is identical to that of the 

experiments. The simulations are carried out inside a rectangular computational domain 

of dimensions 𝐿𝑥 × 𝐿𝑦 × 𝐿𝑧 using a spectral code which has been extensively validated 

(Cortese & Balachandar 1995; Cantero et al. 2007). Periodic boundary conditions are 

imposed along the horizontal x- and y-directions. No-slip and free-slip conditions are 

imposed for the velocity of the continuous phase along the bottom (𝑧 = 0) and top (𝑧 =

1) walls, respectively. Mixed and Neumann boundary conditions are imposed for the 

concentration of the particle phase at the bottom and top walls, which translate into zero 

particle resuspension and zero particle net flux, respectively, viz 

 (
1

𝑆𝑐 𝑅𝑒

𝜕𝜌

𝜕𝑧
− 𝑉𝑠𝜌)

𝑧=0
= 0;     (

𝜕𝜌

𝜕𝑧
)
𝑧=1

= 0 . (6-13) 

We present results from the simulations listed in Table 6-2. Note that simulation 

6-1 (circular release) corresponds to Exp 6-10 while simulations 6-2 and 6-3 (rounded-
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rectangular release) correspond to Exp 6-1. The Reynolds number of all the simulations 

was set at 𝑅𝑒 = 8430, which is lower than that of the experiments (𝑅𝑒 = 10520). The 

Reynolds number and grid resolution were chosen to achieve a range between 4 and 6 

decades of decay in the energy spectrum for all variables. The reason about having two 

simulations for a single experiment is to assess a possible effect of turbulence initially 

present in the real system due to (i) initial stirring performed inside the hollow cylinder in 

order to create a homogeneous suspension before releasing the current and (ii) the 

shear at the walls of the hollow cylinder which is generated during lift off. On the one 

hand, the release mechanism may generate some large-scale vorticity and velocity 

fluctuations in the current at the time of release. In Sim 6-2, the current is “ideally” 

placed in contact with the ambient fluid at the start of the simulation, i.e. no perturbation 

is artificially added. Since it is difficult to impose some large-scale, organized initial 

perturbation on the velocity field, the perturbation field in the experiments being 

unknown, we add a small random perturbation to the density field in Sim 6-3, in order to 

crudely approximate the possible presence of initial perturbation in the system. 

6.3.1 Front Evolution 

As a first verification, we compare in Figure 6-15 the time evolution of the front 

position for the circular case. As for the simulation, the front is taken as the location 

where the height of the current drops below a critical value 𝜀. The height of the current 

is calculated by vertically integrating the concentration field between the bottom and top 

boundaries of the domain as 

 ℎ = ∫ 𝜌𝑑𝑧
1

0

 . (6-14) 
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Here, we choose 𝜀 = 10−4. Note that the location of the front is not sensitive to the value 

of 𝜀 in the range 10−5 < 𝜀 < 10−3. The simulation captures well the dynamics of the 

cylindrical particle-laden current both qualitatively and quantitatively, as indicated by the 

azimuthally averaged front position presented in Figure 6-15C, which is in good 

agreement with experimental data. 

In Figure 6-16, we present the time evolution of a collapsing initially rounded-

rectangular turbidity current, obtained from experiment and simulation. As for the 

simulation, two cases are shown (Sim 6-2 and 6-3) the difference being that an initial 

random perturbation of the density field was imposed in the latter (refer to §6.3.1 for a 

discussion). Both simulations are in good agreement with experimental data at early 

times, namely 𝑡 ≤ 14 (Figure 6-16D). During this stage, the front contours are roughly 

similar in the simulations. Note that in Figure 6-16D, we track the front along the major 

and minor axes of the RR-current. The front along these axes was calculated by 

averaging the radial distances (along the positive and negative axes) bounded by a 

circular wedge centred along each axis with a half-wedge angle of 2.5 degrees. For 𝑡 >

14 (resp. 𝑡 > 24), the computed front of the Sim 6-2 (resp. Sim 6-3)-current begins to 

gradually deviate from the experimental one, with the front from the Sim 6-3-current 

providing a better match (than the Sim 6-2-current) to that observed in the experiments. 

The difference in the computed front location from the Sim 6-2 and Sim 6-3-current 

indicates that the initial perturbation does influence, even though slightly, the dynamics 

of the simulated currents. As observed in Figure 6-16C, the initial perturbation increases 

the three-dimensionality of the flow and results in a slower moving averaged front. 
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The fact that the computed current for which an initially perturbed density field 

was applied spreads slower than the unperturbed one may be interpreted as follows. 

Let us consider the front velocity of the gravity current to be given by the Huppert-

Simpson (HS) relation  (Huppert & Simpson, 1980) 

 𝜐̃𝑁 = 𝐹𝑟√𝑔̃𝑟𝜂̃𝑁 . (6-15) 

where 𝜐̃𝑁, 𝜂̃𝑁, 𝑔̃𝑟, and 𝐹𝑟 represent the front velocity, front height, reduced gravity, and 

the HS Froude number, respectively. During the late stages of the release, the ratio of 

the current height to ambient height is small, and the Froude number may be 

considered as a constant 𝐹𝑟 = 1.19. Moreover, assuming the reduced gravity 𝑔̃𝑟 to be 

constant and expressing the circumferential variation of current height 𝜂̃𝑁 as the sum of 

a mean 𝜂̅ and fluctuating contribution 𝜂′, we can write 

 𝜐̃𝑁 = 𝐹𝑟√𝑔̃𝑟(𝜂̅ + 𝜂′) . (6-16) 

In (6-16), we have assumed that the HS relation is applicable at every point along the 

front of the current. Using Taylor series expansion and applying the averaging operator 

to (6-16), we can approximate the mean front velocity as 

 𝜐̅𝑁 = 𝐹𝑟√𝑔̃𝑟𝜂̅  (1 −
1

8

𝜂′2̅̅ ̅̅

𝜂̅2
). (6-17) 

Recall that the overbar denotes the azimuthal averaging operator. Note that 𝐹𝑟√𝑔̃𝑟𝜂̅ 

would be the front velocity if the current was of uniform height. (6-17) indicates that the 

larger the ratio of height fluctuations to mean height, the smaller the mean velocity. 

During the early stages of the release, the mean height of the current is large and 

therefore the fluctuations do not significantly affect the front velocity, however as the 
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mean front height diminishes, 𝜂′2̅̅ ̅̅ /𝜂̅2 increases and leads to a slower moving front as 

observed in Figure 6-16D. 

Another possible reason for the discrepancy between simulations and 

experiments is that in the simulations, we consider truly monodisperse particles of 

uniform density by imposing a unique settling velocity. In the experiments however, the 

size distribution of particles is not exactly monodisperse. This polydispersity of particles 

may affect the settling velocity leading to further variations in the volume fraction of 

particles inside the current, and consequently modify the reduced gravity and mean 

front velocity. It is also likely that the particles are not uniformly distributed within the 

hollow cylinder and some stratification may have occurred before the release, despite 

our best efforts to have a uniform distribution. 

6.3.3 Particle Deposition 

Iso-contours of the local deposition thickness ℎ𝑑 of a circular and non-circular 

turbidity current are plotted in Figure 6-17. Clearly, the deposited pattern strongly 

depends on the shape of release. The cylindrical release exhibits a roughly circular 

sedimentation profile (Figure 6-17A and C) while that of the RR-release is of rectangular 

shape, the longer side being along the x-axis (contrary to the initial orientation of the 

rounded rectangle), the extent of the deposit being well captured in the simulations 

(Figure 6-17D). Note that in the experiments, the deposit is thickest at the centre of the 

domain and decreases as one moves radially outwards, whereas in the simulations, a 

second local maximum is observed at 𝑟 ≈ 1.3 for the circular release and at 1.5 ≤ 𝑟 ≤ 2 

for the RR-one, the specific location being azimuthally dependent. The possible reason 

for this discrepancy is discussed later. 
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The mean final deposition thickness ℎ̅𝑑 obtained from the experiment is 

compared with simulation results in Figure 6-17E and f for the circular and RR-release, 

respectively. As for the circular release, the numerical deposition thickness is 

overpredicted (underpredicted) close to the centre (at intermediate radial distances 

1.8 < 𝑟 < 2.8) and is in good agreement with experiment at larger 𝑟 > 3. Recall that a 

local peak at 𝑟 ≈ 1.3  is visible in the numerical deposition thickness as opposed to the 

experimental one. For the RR release, a roughly similar trend is observed, however 

comparison is more difficult since the final thickness is not azimuthally averaged as in 

the circular case. 

In order to understand the presence of the second local maximum of deposition 

thickness in the simulation, we present in Figure 6-18 the space-time diagram of the 

azimuthally averaged height ℎ̅ and mass deposition rate of particles per unit area 𝑚̅𝑑 of 

the cylindrical release. Here, ℎ̅ and 𝑚̅𝑑 are computed as 

 
ℎ̅(𝑟, 𝑡) =

1

2𝜋
∫ ℎ(𝑟, 𝜃, 𝑡)𝑑𝜃
2𝜋

0

    

  𝑚̅𝑑(𝑟, 𝑡) =
𝑉𝑠
2𝜋
∫ 𝜌(𝑟, 𝜃, 𝑧 = 0, 𝑡)𝑑𝜃
2𝜋

0

 . 
(6-18) 

We observe in Figure 6-18A that at 𝑡 ≈ 3.5, a bare region for which the height of the 

current is negligible, appears at 𝑟 ≈ 0.6. This region widens as the current spreads 

radially outwards. At 𝑡 ≈ 4.5, the extent of the bare region is at a maximum. The 

existence of such a bare region leads to an adverse hydrostatic pressure gradient, 

which slows the trailing edge behind the moving front and eventually reverses flow 

direction radially inward. This flow reversal seems to be correlated to the location of the 

second maximum of deposition as observed from the comparison of ℎ̅ and the mass 
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deposition rate of particles in Figure 6-18A and B, respectively. A similar flow reversal is 

observed for the RR release (not shown) and is likely to be responsible for the second 

maximum in the deposition profiles. 

6.3.4 Possible Contribution of Bedload Transport 

The discrepancy between the experimental and numerical deposition profiles 

may be due to either the redistribution of particles as a result of local bedload transport 

or possible near-wall particle resuspension. Recall that bedload transport is not 

accounted for in the present simulations. However, if the flow is energetic and the near-

wall shear stress exceeds a critical value, particles may roll or slide over the bed or 

even be reentrained back into the current. Since the pioneering work of Shields (1936), 

it is widely accepted that for a near-bed Reynolds number 𝑅𝑒∗ there exists a critical 

shear stress 𝜏̃𝑐𝑟 above which particles are set in motion (these quantities are defined in 

6-19). The value of the critical shear stress depends on several parameters including 

the particle and fluid densities, the particle diameter as well as the kinematic viscosity of 

the fluid. For the present experimental conditions, we estimate the critical shear stress 

to be 𝜏̃𝑐𝑟 ≈ 0.016 𝑁/𝑚2 and the corresponding near-bed critical Reynolds number 𝑅𝑒∗ ≈

1.2, using 

 𝜏̃𝑐𝑟 = (𝜌̃𝑝 − 𝜌̃𝑎)𝑔̃𝑑̃𝑝𝜃𝑐𝑟 ;       𝑅𝑒∗ = 
√𝜏̃𝑐𝑟/𝜌̃𝑎 𝑑̃𝑝

𝜈
 (6-19) 

where 𝜃𝑐𝑟 is the so-called critical Shields parameter which depends on 𝑅𝑒∗ and is here 

estimated as 𝜃𝑐𝑟 ≈ 0.1 using the Shields (1936)’s diagram. 

In order to assess the possible contribution of bedload transport, we plot in 

Figure 6-19A-B the space-time diagram of the azimuthally averaged vertical gradient 

𝑑𝑢𝑟/𝑑𝑧̅̅ ̅̅ ̅̅ ̅̅ ̅̅   of the radial velocity at the bottom wall for the circular release. Note that a value 
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of the critical shear stress 𝜏̃𝑐𝑟 ≈ 0.016 𝑁/𝑚2 corresponds to |𝑑𝑢𝑟/𝑑𝑧̅̅ ̅̅ ̅̅ ̅̅ ̅̅ | ≈ 13. A positive 

(resp. negative) velocity gradient above this value is likely to indicate outward (resp. 

inward) bedload transport. In Figure 6-19, only the regions of |𝑑𝑢𝑟/𝑑𝑧̅̅ ̅̅ ̅̅ ̅̅ ̅̅ | > 13 are 

mapped. The wall shear stress is observed to be predominantly positive and above the 

threshold in a significant region of the space-time diagram (Figure 6-19A). According to 

this criterion, possible outward bedload transport is likely to be present. Note that some 

small regions of significantly negative wall shear stress are also visible, for instance at 

(𝑟 ≈ 1, 𝑡 ≈ 2.5) as seen in Figure 6-19B. Interestingly, such a region is observed to be at 

the vicinity of a region of significantly positive wall shear stress located at (𝑟 ≈ 0.5, 𝑡 ≈

2.5) approximately. This may lead to bedload transport in such a way that particles 

accumulate at some specific radial location. This is in line with the observation of a 

second local maximum of the mean deposition thickness of the circular release, the 

location of which being at  𝑟 ≈ 1.3 (Figure 6-17E). 

As for the RR-release, the mean quantities 𝑑u/𝑑𝑧̅̅ ̅̅ ̅̅ ̅̅  and 𝑑v/𝑑𝑧̅̅ ̅̅ ̅̅ ̅̅  corresponding to 

the vertical velocity gradient at the bottom wall along the minor 𝑥- and major 𝑦-axis are 

plotted in Figure 6-19C-F. The overbar here denotes the following averaging 

 
𝑑u/𝑑𝑧̅̅ ̅̅ ̅̅ ̅̅ (𝑥, 0,0, 𝑡) =

1

2
[𝑑u/𝑑𝑧(𝑥, 0,0, 𝑡) − 𝑑u/𝑑𝑧(−𝑥, 0,0, 𝑡)] 

𝑑v/𝑑𝑧̅̅ ̅̅ ̅̅ ̅̅ (0, 𝑦, 0, 𝑡) =
1

2
[𝑑v/𝑑𝑧(0, 𝑦, 0, 𝑡) − 𝑑v/𝑑𝑧(0,−𝑦, 0, 𝑡)] 

(6-21) 

where u and v are the velocity components in the 𝑥- and 𝑦-directions, respectively. 

Again a significant (resp. small) region of highly positive (resp. negative) wall shear 

stress is observed, suggesting the possible contribution of bedload transport to be 

significant. Note that in this non-circular release, the wall shear stress is different 

between the 𝑥- and 𝑦-directions, both in terms of distribution and intensity. This is in line 
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with the highly non-axisymmetric spatial distribution of the mean deposition thickness 

observed in Figure 6-17B and D. 

Figure 6-20 presents the radial distribution of 𝑑𝑢𝑟/𝑑𝑧̅̅ ̅̅ ̅̅ ̅̅ ̅̅  at two time instances 𝑡 = 2 

and 𝑡 = 2.5, respectively, in the case of the circular release. Three regimes are defined 

depending on the specific value of 𝑑𝑢𝑟/𝑑𝑧̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , namely a region of no-bedload transport 

(−13 ≤ 𝑑𝑢𝑟/𝑑𝑧̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ≤ 13), possible outward transport 𝑑𝑢𝑟/𝑑𝑧̅̅ ̅̅ ̅̅ ̅̅ ̅̅ > 13 and possible inward 

transport 𝑑𝑢𝑟/𝑑𝑧̅̅ ̅̅ ̅̅ ̅̅ ̅̅ < −13. Strong fluctuations of the bottom shear stress are observed. 

For instance at the time 𝑡 = 2.5, 𝑑𝑢𝑟/𝑑𝑧̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ≈ 220 at 𝑟 ≈ 0.6 while 𝑑𝑢𝑟/𝑑𝑧̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ≈ −150 at 𝑟 ≈

0.75. In addition, the local wall shear stress appears to be highly time-dependent, since 

the aforementioned fluctuation is not visible at time 𝑡 = 2 for instance. 

Iso-contours of the current’s concentration and zones of high vorticity are plotted 

in Figure 6-21 for the same time instances as in Figure 6-20. Here, regions of high 

vorticity are obtained from contours of the swirling strength 𝜆𝑐𝑖 which is defined as the 

absolute value of the imaginary part of the complex eigenvalue of the velocity gradient 

tensor (Zhou et. al. 1999; Chakraborty et. al. 2005). Considering Figure 6-20 together 

with Figure 6-21, one may observe that the positive and negative peaks of 𝑑𝑢𝑟/𝑑𝑧̅̅ ̅̅ ̅̅ ̅̅ ̅̅  are 

strongly correlated with the regions of high vorticity. In particular, the peak of positive 

(resp. negative) shear stress is found to correspond to the presence of a counter-

clockwise (resp. clockwise) rotating vortex tube that is generated close to the bottom 

wall. For example, at 𝑡 = 2, the negative peak observed at 𝑟 ≈ 1.1 in Figure 6-20 

corresponds to the clockwise rotating vortex tube denoted as V1a in Figure 6-21A and 

located at (𝑟 ≈ 1.1, 𝑧 ≈ 0.05).  
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6.3.5 Possible Contribution of Particle Resuspension 

In this section, we aim at assessing the possible effect of particle resuspension 

on the dynamics and deposition of a particle-laden current. In general, resuspension 

occurs when the bottom shear stress is large enough to dislodge the particle from the 

bed and the near wall vertical velocity exceeds the particle settling velocity. In Figure 6-

21, we plot the radial distribution of the vertical velocity component 𝑤 at two distances 

from the bottom wall, namely 𝑧 = 4𝑑𝑝 and 2𝑑𝑝, respectively. For comparison, the 

criterion 𝑤 = 𝑉𝑠 is also plotted. Recall that all the variables in Figure 6-21 are 

azimuthally averaged. At 𝑡 = 2, one can see at a distance of 𝑧 = 2𝑑𝑝 from the wall that 

the vertical velocity never reaches the threshold value 𝑤 = 𝑉𝑠, while for 𝑧 = 4𝑑𝑝 the 

region for which 𝑤 > 𝑉𝑠 is marginal. Similarly, at 𝑡 = 2.5 only few 𝑤 > 𝑉𝑠 regions are 

observed. Overall, the results of Figure 6-21 support the assumption done in the 

simulations that the possible contribution of resuspension is small and hence can be 

neglected. 

6.3.5 Vortex Dynamics 

As mentioned earlier, the high values of the bottom shear stress and local 

vertical velocity 𝑤 are observed in regions of near-wall vortex tubes. For instance, the 

vortex tubes 𝑉1𝑎 and 𝑉1𝑏 depicted in Figure 6-21 exhibit a clockwise rotation and hence 

act to push fluid vertically upward (resp. downward) in the region just behind (resp. in 

front of) the centre of the vortex core. This is in line with the positive and negative 

values of 𝑤 in the vicinity of 𝑉1𝑎 and 𝑉1𝑏. One can also observe the presence of two 

counter rotating vortices, namely 𝑉3𝑏 (counter-clockwise rotating) and 𝑉4 (clockwise 
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rotating) inside the body of the current (see e.g. Figure 6-21B) leading to local 

oscillations in the amplitude of 𝑤. 

Unlike the bottom shear stress, which remains above the critical value 

|𝑑𝑢𝑟/𝑑𝑧̅̅ ̅̅ ̅̅ ̅̅ ̅̅ | > 13 over a wide portion of the current’s length, the amplitude of the vertical 

velocity component 𝑤 is above the critical condition 𝑤 > 0.02 only in some narrow 

regions of the current. Again, these regions correspond to the presence of intense near-

wall vortex structures which move radially outwards at a velocity which is close to that of 

the current’s front. These vortex tubes may grow in size and intensity (𝑉1𝑎 vs. 𝑉1𝑏), move 

closer to the bottom wall (𝑉3𝑎 vs. 𝑉3𝑏) or away from the bottom wall (𝑉1𝑎 vs. 𝑉1𝑏). 

Interestingly, as the counter-clockwise rotating vortex 𝑉3𝑏 approaches the bottom wall, it 

locally accelerates the flow near the surface. This local acceleration coupled with the 

no-slip boundary condition at the bottom wall results in the formation of a clockwise 

rotating tube 𝑉4. 

6.4 Conclusion 

We have presented results from experiments and simulations of circular and non-

circular finite-volume Boussinesq density currents, including particle-laden and density-

driven (scalar) flows. The initial shape of the release was shown to significantly 

influence the propagation and deposition of the particle, with a substantial azimuthal 

dependence for non-circular releases. In particular, the measurements of the time 

evolution of the front and spatial distribution of the final deposition thickness indicate 

that for a rounded-rectangular release, the current advances the fastest (resp. slowest), 

extends the farthest (resp. shortest) and deposits the most (resp. least) amount of 

particles along its initial shortest (resp. longest) side. 
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Various parameters such as the settling velocity, height aspect ratio and initial 

volume fraction of particles in the mixture were varied in order to assess their influence 

on the dynamics and deposition of non-circular releases and confirm the robustness of 

the abovementioned dynamics with respect to these parameters. 

Fully-resolved simulations were performed in order to complement the 

experiments and provide insight about local processes involved in the deposition of the 

particles in circular and non-circular releases, in particular bedload transport and 

particle resuspension. Firstly, the front speed and deposition pattern compares 

favourably with experiments, however slight differences are observed. The thickness at 

the centre of the deposit is smaller in the experiments than in the simulations, and some 

local extrema in the deposition profile are observed in the simulations contrary to 

experiments where the measured thickness monotonically decreases as one moves 

radially outwards. 

The spatial and temporal evolution of the near-wall vertical velocity inside the 

current was considered and suggests that particle resuspension only marginally occurs 

in the present problem. In particular, the vertical component of the near-wall velocity 

rarely exceeds the settling velocity, and when this occurs it is limited to a small portion 

of the domain only, supporting the assumption done in the simulations that the 

contribution of resuspension can be neglected. 

A detailed inspection of the spatial and temporal evolution of the wall shear 

stress inside the current reveals that bedload transport is likely to influence the 

deposition of particles. More specifically, the wall shear stress is found to be significant 

(as compared to a critical threshold) over a wide portion of the current’s body and for 
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significant times. This effect however is not taken into account in the simulations and 

may need to be included to confirm if it is responsible for the observed discrepancy 

between experiments and simulations. Overall, the regions of largest near-wall vertical 

velocity and wall shear stress were observed to correspond to the location of vorticies. 

This confirms that the local structure of the flow inside non-circular particle-laden flows 

may have a significant influence on the transport and deposition of particles. 
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Figure 6-1.  Isometric view of the experimental setup. Inset: close-up view of the apparatus used to measure the deposit 

height. Note that for clarity, the tank and the motorized axes support have been removed from the picture in the 
inset.
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 Circle (C) Rounded Rectangle (RR) 

 

  
Figure 6-2.  Shape of the hollow cylinders used in the experiments. The height and 

equivalent radius of each cylinder are 400 mm and 46 mm, respectively. The 
size of the longest (shortest) side of the RR cylinder is 167 (44) mm. Note that 
the horizontal cross-section area is similar for both cylinders. 

 
 
 
Table 6-1: List of experiments. RR, rounded-rectangle; C, circle; Re, Reynolds number 

defined in (6-4); 𝜆 = ℎ̃0/𝑅̃0, initial height aspect ratio with ℎ̃0 being the initial 
height of the mixture inside the cylinder and 𝑅̃0 the equivalent radius of the 
cylinder; 𝜌̃𝑐0 (kg/m3), initial density of the mixture; 𝑚̃𝑝 (g), initial mass of 
particles; 𝜙0, initial volume fraction; 𝑑̃𝑝 (m), mean particle diameter; Vs, 
dimensionless settling velocity. The symbol  indicates that the experiment 
was done in a tank with narrower lateral boundaries. The symbol * indicates 
that the experiment is for a saline current. 

Experiment Shape 𝑅𝑒 𝜆 𝜌̃𝑐0 𝑚̃𝑝 𝜙0 𝑑̃𝑝 𝑉𝑠 
6-1       RR 10520 2 1012 180 0.27 300  20 0.020 
6-2       RR 10520 2 1012 180 0.27 300  20 0.020 
6-3       RR 3720 1 1012 90 0.27 300  20 0.029 
6-4       RR* 3720 1 1012 0 - - - 
6-5       RR 3720 1 1012 90 0.27 670  40 0.11 
6-6       RR 2630 1 1005 45 0.13 300  20 0.04 
6-7       C 3720 1 1012 90 0.27 300  20 0.029 
6-8       C* 3720 1 1012 0 - - - 
6-9       RR 1315 0.5 1012 45 0.27 300  20 0.04 

6-10       C 10520 2 1012 180 0.27 300  20 0.020 
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Figure 6-3.  Top view of the collapse of a turbidity current of initial A) circular cross-

section (Exp 6-7) and B) non-circular cross-section (Exp 6-3). The detected 
front is plotted in green contour.. 
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Figure 6-4.  Time evolution of the mean front location of a particulate (solid line) and 

saline (dashed line) current of initial A) circular cross-section (Exp 6-7 and 6-
8) and B) rounded-rectangle cross-section (Exp 6-3 and 6-4). The fronts are 
shown at 𝑡 = 0, 5, 10, 20, and 40. 

 

 
Figure 6-5.  Iso-contours of the dimensionless mean deposition thickness ℎ̅𝑑 of a 

turbidity current of initial A) circular cross-section (Exp 6-7) and B) non-
circular cross-section (Exp 6-3). The dashed lines represent the boundaries of 
the hollow cylinders. Values of ℎ̅𝑑 are given in percent. 
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Figure 6-6.  Front position 𝑟𝑁 versus time for the RR-turbidity current (Exp 6-3, squares) 

and the RR-saline current (Exp 6-4, circles) along A) the minor x-axis and B) 
the major y-axis. The vertical (horizontal) dashed line corresponds to the 
critical time 𝑡𝑐 (location 𝑟𝑐) beyond which the saline front progressively 
deviates from the particle-laden front. 

 
 

 
Figure 6-7.  Mean final deposition thickness ℎ̅𝑑 versus radial distance along the minor x-

axis (squares) and major y-axis (circles) for the RR-turbidity current (Exp 6-3). 
The bars correspond to the measurement error. The upward (downward) 
triangles indicate the location of the critical radius of the front 𝑟𝑐 along the 
minor (major) axis (Figure 6-5 for details). 
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Figure 6-8.  Front position versus time for currents of various settling velocity Vs along 

A) the minor x-axis and B) the major y-axis: , Vs=0 (Exp 6-4);  , Vs=0.029 
(Exp 6-3);  , Vs=0.11 (Exp 6-5).  

 
 

 
Figure 6-9.  Front position versus time for various initial volume fraction 𝜙0 along A) the 

minor x-axis and B) the major y-axis: , 𝜙0 = 0.13 (Exp 6-6);  , 𝜙0 = 0.27 
(Exp 6-4). 
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Figure 6-10.  A) Iso-contours of the mean deposition thickness ℎ̅𝑑 of the 𝜙0 = 0.13 - 

turbidity current (Exp 6-6). The dashed line represents the boundaries of the 
hollow cylinder. Values of ℎ̅𝑑 are given in percent. B) Corresponding mean 
final deposition thickness versus radial distance along the major y-axis 
(circles) and minor x-axis (squares). The bars correspond to the 
measurement error. 

 
 

 
Figure 6-11.  Front position versus time for currents of various initial height aspect ratio 

 along A) the minor x-axis and B) the major y-axis: , =0.5 (Exp 6-10);  , 
=1 (Exp 6-3); , =2 (Exp 6-1). 
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Figure 6-12.  Mean final deposition thickness ℎ̅𝑑 versus radial distance for various initial 

height aspect ratio  along A) the minor x-axis and B) the major y-axis: , 
=0.5 (Exp 6-10);  , =1 (Exp 6-3); , =2 (Exp 6-1). The bars correspond 
to the measurement error.  

 
 

 
 
Figure 6-13.  A) Front position versus time for Exp 6-1 (squares) and Exp 6-2 (circles) 

along the minor x-axis. The solid and dashed lines represent the location of 
the tank lateral wall in Exp 6-1 and 6-2, respectively. Inset: time evolution of 
the front velocity. B) Corresponding mean final deposition thickness ℎ̅𝑑. 

  

A B 

A B 



 

173 
 

 

Figure 6-14.  Numerical setup. 

 
 
Table 6-2. List of simulations. RR, rounded-rectangle; C, circle; Re, Reynolds number 

defined in (6-4); 𝜆 = ℎ̃0/𝑅̃0, initial height aspect ratio with ℎ̃0 being the initial 
height of the mixture inside the cylinder and 𝑅̃0 the equivalent radius of the 
cylinder;  Vs, dimensionless settling velocity; 𝐿𝑥, 𝐿𝑦, 𝐿𝑧, dimensions of the 
computational domain (gravity is along the z-direction); 𝑁𝑥, 𝑁𝑦, 𝑁𝑧, Grid 
resolution. The symbol * indicates cases where the initial concentration field is 
randomly perturbed. 

 

Sim no. Shape 𝑅𝑒 𝜆 𝑉𝑠 
Domain size 
𝐿𝑥 × 𝐿𝑦 × 𝐿𝑧 

Grid Resolution 
𝑁𝑥 × 𝑁𝑦 ×𝑁𝑧 

6-1       C 8430 2 0.020 12 × 12 × 1 640 × 640 × 159 
6-2       RR 8430 2 0.020 10 × 15 × 1 534 × 800 × 159 
6-3       RR* 8430 2 0.020 10 × 15 × 1 534 × 800 × 159 
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Figure 6-15.  Temporal evolution of the front of a circular turbidity current: A) Exp 6-10; 
B) Sim 6-1. The contours are plotted from 𝑡 = 𝑡0 to 𝑡 = 𝑡𝑓 by steps of 𝑡. C) 
Azimuthally averaged radial location of the front versus time for Exp 6-10 
(symbols) and Sim 6-1 (solid line). 
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Figure 6-16.  Temporal evolution of the front of an initially rounded-rectangular turbidity 

current: A) Exp 6-1; B) Sim 6-2; C) Sim 6-3. The contours are plotted from 𝑡 =
𝑡0 to 𝑡 = 𝑡𝑓 by steps of 𝑡. D) Azimuthally averaged radial location of the front 
versus time for Exp 6-1 (symbols), Sim 6-2 (solid line) and Sim 6-3 (dashed 
line). For 𝑡 > 24, the current’s thickness along the major axis for Sim 6-2 and 
Sim 6-3 drops below the critical value 𝜀 = 10−4. Inset: Front velocity along the 
minor axis for Sim 6-2 (solid line) and Sim 6-3 (dashed line). 
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Figure 6-17.  Contours of the dimensionless thickness of the deposit multiplied by 100 
for A) Exp 6-10, B) Exp 6-1, C) Sim 6-1, and D) Sim 6-2. The circular marks in 
the background of A and B indicate the locations at which measurements was 
recorded. E) Azimuthally averaged deposition profile versus radial location 
(multiplied by 100) from Exp 6-10 (symbols) and Sim 6-1 (line). F) 
Dimensionless thickness of the deposit (multiplied by 100) along the major 
and minor axes from Exp 6-1 (symbols) and Sim 6-2 (lines).
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Figure 6-18.  A) Contours in space and time of the azimuthally averaged height of the current for Sim 6-1. Flow reversal is 

observed around 𝑟 = 1.2 and 𝑡 = 4.5. B) Contours in space and time of the azimuthally averaged, instantaneous 
mass deposition rate of particles per unit area for Sim 6-1. 

A B 



 

178 
 

 

  
  

Figure 6-19.  Contours in time and space of the azimuthally averaged, vertical gradient 
of the radial component of velocity for Sim 6-1: A) positive contours and B) 
negative contours. Contours in time and space of the vertical velocity gradient 
along the minor (𝑥) axis of the RR for Sim 2: C) positive contours and D) 
negative contours. Contours in time and space of the vertical velocity gradient 
along the major (𝑦) axis of the RR for Sim 6-2: E) positive contours and F) 
negative contours. The slope of peak values is calculated as change in 
distance divided by change in time. The solid black line in each figure 
corresponds to the front location (Figures 6-15C and 6-16D). 
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Figure 6-20.  Snapshots of 𝑑𝑢𝑟/𝑑𝑧̅̅ ̅̅ ̅̅ ̅̅ ̅̅  from Sim 6-1 at 𝑡 = 2 (dashed line) and 𝑡 = 2.5 (solid 

line). The thin dashed horizontal lines corresponding to 𝑑𝑢𝑟/𝑑𝑧̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = ±13 
separate three regions: (i) No bedload transport (|𝑑𝑢𝑟/𝑑𝑧̅̅ ̅̅ ̅̅ ̅̅ ̅̅ | ≤ 13), (ii) potential 
for radially outward bedload transport (𝑑𝑢𝑟/𝑑𝑧̅̅ ̅̅ ̅̅ ̅̅ ̅̅ > 13), (iii) potential for radially 
inward bedload transport (𝑑𝑢𝑟/𝑑𝑧̅̅ ̅̅ ̅̅ ̅̅ ̅̅ < −13). 

 

 
Figure 6-21.  A) Snapshot of the current from Sim 6-1 at 𝑡 = 2. The thin solid lines 

represent contours of density and mark the location of the current in the 𝑟-𝑧 
plane (all quantities in the figure are azimuthally averaged). Regions of high 
vorticity are denoted by the vortex tubes: 𝑉1𝑎, 𝑉2𝑎, and 𝑉3𝑎. The thick solid 
(resp. dashed) line describes the radial variations in the vertical velocity 
component 𝑤 at a distance of 𝑧 = 4𝑑𝑝 (resp. 𝑧 = 2𝑑𝑝) from the bottom wall (in 
dimensionless terms, 𝑑𝑝 = 3.2 × 10−3). Finally, the thin horizontal dashed line 
corresponds to a critical value of 𝑤 = 𝑉𝑠 above which, particles could lift off 
and be reentrained by the current. B) Same as A at 𝑡 = 2.5. 
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CHAPTER 7 
INVESTIGATION OF FINITE RELEASE GRAVITY CURRENT ON A UNIFORM SLOPE 

7.1 Background 

Gravity currents occur when fluids of different density are brought together. They 

are relevant in many engineering applications such as the dispersion of hazardous gas 

cloud or the spillage heavy chemicals from marine vehicles. Gravity currents are also 

the chief mechanism responsible for backdraft, when oxygen is suddenly introduced to 

a fire trapped in an enclosure and is a real threat to firefighters (Fleischmann & 

McGrattan 1999). Most of the studies on gravity current tend to assume that they travel 

on a flat horizontal surface. 

Laboratory experiments (Huppert & Simpson 1980, Marino et al.2005) and 

numerical simulations (Cantero et al. 2007a, Blanchette et al., 2005, Dai 2013) of finite 

release gravity currents in canonical setups (axisymmetric and planar releases on 

horizontal boundaries) reveal that a gravity current transitions through four main stages. 

A single, short lived, initial acceleration phase at the end of which the current attains its 

maximum velocity. A slumping phase succeeds the acceleration phase, it is 

characterized with a roughly uniform front height and a front speed that is constant or 

nearly constant. Following the slumping phase, the current transitions into the self-

similar inertial phase where the front velocity decreases as a power law (Cantero et al. 

2007b). Finally, viscous forces become important and a second self-similar regime is 

observed, termed the viscous phase. Here again the current’s front velocity decays as a 

power law, however at a faster rate than in the inertial phase (Cantero et al. 2007b). For 

certain conditions, the current may not transition through an inertial self-similar phase. 

Cantero et al. (2006) reported that the existence of the inertial phase only occurs at 
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higher initial Reynolds number. For lower Reynolds number, the gravity current goes 

directly from the slumping to the viscous phase. 

There are various types of gravity currents. The planar setup may be thought of 

as a two-dimensional release since the current is confined to move along a specified 

direction, whereas for the circular release, the current would spread radially outwards 

(in all directions) but remain axisymmetric because of the initial circular nature of the 

release. 

Gravity current travelling on a horizontal surface is not the norm either in nature 

or in engineering practice. It is more common to find gravity currents travelling down a 

slope. In such situations, the dynamics of the current is altered as buoyancy and the 

sloping bottom break the axisymmetry. This changes the physical dynamics of the 

gravity currents. The formation and evolution of gravity current under such a condition is 

not well understood. Thus far, most studies have assumed that the gravity current on a 

sloping bottom to be planar (Dai 2013), i.e. the properties and structure of the gravity 

current is homogeneous in the spanwise direction. The current is said to be "two-

dimensional". Britter & Linden (1980) performed experimental study of such a current 

and showed that entrainment effects are significant and the head of the gravity current 

increases in size as it travels down the slope. It was also reported that the front velocity 

normalized by cube root of the gravity flux is constant and appears to be independent of 

slope angle. Beghin et al. (1981) performed similar experiments and used flow 

visualization images to conclude that the shape of the current head is well approximated 

by a half-ellipse. More recently, researchers have conducted numerical simulations of 

gravity current. Using data from direct numerical simulations, Dai (2012) assessed the 
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validity of thermal theory to predict the properties of the gravity current head. More 

details of the dynamics of the gravity current has also been reported in Dai (2013). 

For gravity currents released in a sloping rectangular channel, the large-scale 

motion of the flow remain two dimensional and the conclusions from the above 

mentioned studies would hold. However, for an axisymmetric initial release, the 

presence of the slope changes both the spanwise and streamwise dynamics of the 

gravity current and makes the large-scale flow fully three-dimensional.  Studies of three-

dimensional currents propagating down a uniform slope are relatively scarce, although 

this configuration is of more practical relevance as in powder snow avalanches and 

turbidity currents driven by submarine mud slides. Theoretical investigations have been 

conducted by Webber et al. (1993) who predicted that the gravity current will assume a 

self-similar circular wedge shape. Tickle (1996) expanded on the study by Webber et al. 

(1993) to include the effects of entrainment. Ross et al. (2002) carried out experiments 

and showed that contrary to the prediction of Webber et al. (1993), the gravity current 

takes on a shape that is more akin to a triangular wedge. 

In the present investigation, we report data from fully-resolved three-dimensional 

direct numerical simulation of circular, finite release, Boussinesq gravity currents 

propagating down a uniform incline. Our data shows that in most cases, the gravity 

current evolve to a shape that is more similar to a triangular wedge. The physical 

mechanisms leading to the formation of this triangular shape and the entrainment 

properties of such a structure will be presented. 

Unlike planar (two-dimensional) currents that are always unidirectional (do not 

admit a mean spanwise component of velocity), or axisymmetric currents that are ever 
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diverging, circular releases on sloping boundaries may exhibit nearly unidirectional, 

diverging, or even converging phases of spreading. Of specific interest is the 

converging phase of spreading, which leads to local peaks in buoyancy that translate 

into a second acceleration phase. The details of the second acceleration phase and the 

redistribution of material leading to its development will be discussed. 

These finite release gravity currents are invariably dominated by the head, where 

most of the mixing and hence the entrainment of ambient fluid occurs. We present a 

simple method for defining the head and calculate the various properties of the head 

(volume, mass, shape, entrainment, …). We find the entrainment coefficient to be nearly 

independent of the slope, which is inline with previous experimental results.  

7.2 Theory and Laboratory Experiments 

The problem of a bottom flowing gravity current on a uniform slope has been 

investigated in the past. Webber et al. (1993) considered the motion of a heavy cloud 

released on an inclined smooth wall. He found that the two-dimensional shallow water 

equations admit an analytic solution consisting of a shallow wedge descending at a 

uniform velocity (Figure 7-1). In his model, the current advances as a coherent structure 

with a constant width to length ratio of 𝜋 and a height that increases linearly from zero at 

the current’s back end to its maximum value at the front of the current. At the 

current/ambient interface, the Froude condition was applied, and the shape was chosen 

such that the current does not spread in the lateral direction. The wedge does not 

entrain any ambient fluid, and therefore retains its shape as it descends. Webber’s 

analytic solution neglects internal circulation within the current and assumes the top 

surface to remain flat. 
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Ross et al. (2002) conducted multiple experiments for Boussinesq (small current-

to-ambient density ratio) bottom spreading gravity currents at slopes ranging from 5 to 

20 degrees. Their experiments consisted of releasing a finite volume of heavy salty 

water inside a rectangular tank filled with relatively less dense tap water. The initial 

density of the current remained below 1.03 g cm−3 (only a few percent larger than that of 

the ambient tap water), and therefore their experiments may be classified as 

Boussinesq. In their experiments, they observe the gravity current to take on a shape 

that is more akin to a triangular wedge, where the majority of the heavy fluid 

accumulated at the front of the current. Towards the interior and back portions of the 

current, they observe a very thin layer of heavy fluid to form. Their experiments did not 

agree with the self-similar circular shallow wedge predicted by Webber et al. (1993). 

7.3 Direct Numerical Simulations of Circular Gravity Currents on an Incline 

7.3.1 Numerical Model 

We performed a number of simulations for which a slanted circular cylinder is 

released on a sloping boundary. We solve the conservation of mass and momentum 

equations as well as the transport equation for the density field inside a rectangular 

computational domain shown in Figure 7-2. The non-dimensional system of equations 

reads 

 ∇ ∙ 𝒖 = 0 , (7-1) 

  
𝐷𝒖

𝑑𝑡
= 𝜌𝒆𝑔 − ∇p +

1

𝑅𝑒
∇2𝒖 , (7-2) 

 
𝜕𝜌

𝜕𝑡
+ ∇ ∙ (𝜌𝒖) =

1

𝑆𝑐 𝑅𝑒
∇2𝜌 . (7-3) 

Here, 𝒖, 𝜌, p, and  represent the divergence free velocity field, density, and pressure, 

respectively. The density 𝜌 is rendered non-dimensional as follows 
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 𝜌 =
𝜌∗ − 𝜌𝑎

∗

𝜌𝑐0
∗ − 𝜌𝑎∗

 . (7-4) 

The asterisk denotes a dimensional quantity, all other quantities are to be taken as non-

dimensional. The variables 𝜌∗, 𝜌𝑎∗ , and 𝜌𝑐0∗  represent the local, ambient, and initial heavy 

fluid densities, respectively. Therefore, the value of 𝜌 remains bounded between 0 and 

1. The dimensionless pressure is given by 

 𝑝 =
𝑝∗

𝜌𝑎∗(𝑈∗)2
 , (7-5) 

where 𝑝∗ and 𝑈∗ denote the local dimensional pressure and velocity scale, 

respectively. 𝒆𝑔 is a unit vector pointing in the direction of gravity and the Schmidt, 𝑆𝑐, 

and Reynods number, 𝑅𝑒, are defined as 

 𝑆𝑐 =
𝜈∗

𝜅∗
     , 𝑅𝑒 =

Λ∗𝑈∗

𝜈∗
 , (7-6) 

where 𝜈∗ and 𝜅∗ represent the kinematic viscosity and molecular diffusivity of the 

current. We follow Ross et al. by defining the length scale Λ∗, the velocity scale U∗, and 

the time scale T∗ as 

 Λ∗ = (𝑉0
∗)1/3,     U∗ = √𝑔∗

𝜌𝑐0
∗ − 𝜌𝑎∗

𝜌𝑎∗
Λ∗,     T∗ =

Λ∗

U∗
 , (7-7) 

where 𝑉0∗ is the initial volume of heavy fluid in the slanted cylinder, and 𝑔∗ denotes the 

gravitational acceleration. 

We implement the Boussinesq approximation of small density difference between 

the current and the ambient in that the density only appears in the buoyancy term of the 

momentum equation (first terms in the right hand side of Eq. 7-2). Equations 7-1 – 7-3 

are solved using a spectral code (Cortese and Balachandar 1995, Cantero et al.2007). 

In the wall normal, 𝑧-direction, no slip boundary condition is used for the velocity field at 
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the bottom wall and a free slip boundary condition is used at the top wall. Periodic 

boundary conditions are used for all variables in the streamwise, 𝑥, and spanwise, 𝑦, 

directions. This implies that a periodic array of gravity currents is being simulated. Care 

must be taken to ensure that these currents do not interact as we are interested in the 

development of an isolated gravity current. The length of the domain in the spanwise 

direction is chosen to ascertain that there is uninterrupted development of the gravity 

current. As for the density field, zero gradient conditions are enforced at the top and 

bottom boundaries. 

Details of the numerical simulation are described in Table 7-1. The grid resolution 

was chosen to achieve between 4 to 6 decades of decay in the energy spectra for all 

variables. It is consistent with the requirement that the grid spacing must be of the order 

of 𝑂(𝑅𝑒𝑆𝑐)−1/2 (Birman et al. 2005, Hartel et al. 2000). The value of the Schmidt 

number is taken as unity for all simulations because of its weak influence on the flow 

(Bonometti and Balachandar 2008). The time step is chosen such that the Courant 

number remains below 0.5. We impose a small random disturbance to the initial density 

field to stimulate a faster transition to turbulence. 

7.3.2 Initial Condition 

The heavy fluid is initially confined inside a truncated circular cylindrical segment 

of radius 𝑟0 𝑐𝑜𝑠 𝜃 and mean height ℎ0 as shown in Figure 7-3. Here, the angle 𝜃 

represents the inclination of the bottom plane with respect to the horizontal along the 𝑥-

axis (there is no inclination along the 𝑦-axis). The radius and height are measured along 

the horizontal (normal to the direction of gravity) and vertical (parallel to the direction of 

gravity) directions, respectively. The shape of the cylinder conforms to that utilized in 
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the experiments of Ross et al. (2002). From the digitized images of Figure 5 in their 

manuscript, we observe that the lock radius along the inclined plane is held fixed at a 

non-dimensional value of 𝑟0 = 0.6. In their experiments, the initial volume of the heavy 

fluid is taken as length scale. Consequently, we adopt the same length scale in our 

simulations and vary the mean height ℎ0 such that the initial volume of the circular 

cylindrical segment 𝑉0 = 𝜋(𝑟0 𝑐𝑜𝑠 𝜃)2ℎ0 is equal to 1, i.e. 

 ℎ0 =
1

𝜋(𝑟0 𝑐𝑜𝑠 𝜃)2
 . (7-8) 

7.4 Structure 

In Figure 7-4, we show multiple semi-transparent iso-surfaces of density ranging 

from 0.01 ≤ 𝜌 ≤ 0.5. Recall that a non-dimensional density value of 𝜌 = 1 (resp. 𝜌 = 0) 

corresponds to the current (resp. ambient) density at time of release. The effect of the 

slope on the gravity current is not immediately perceived. The influence of the slope 

becomes apparent after some finite time, specifically when the depth of the current 

becomes comparable to that of the slope (Ross et al. 2002). Because of the circular 

nature of the release, we observe the current to initially spread in an axisymmetric 

manner. 

Shortly after release (𝑡 = 3), the majority of the heavy fluid accumulates in an 

outer ring, with a thin layer of fluid residing in the interior of the ring. During those early 

stages, the current’s front is smooth and nearly two-dimensional. 

At 𝑡 = 6, the effect of the inclined boundary is apparent. For the shallower slopes 

(𝜃 = 5° and 𝜃 = 10°), the current maintains its circular-like outline, whereas for the 

steeper slopes (𝜃 = 15° and 𝜃 = 20°), the current has developed into a boomerang-like 

structure that progressively thickens (the height of the current increases) as we move 
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closer to the front of the current near the symmetry plane (𝑦 = 0). The thicker current at 

the downstream end is also due in part to the shape of the release. Recall that we are 

releasing a slanted circular cylinder, and therefore as the inclination of the bottom wall 

increases, the amount of heavy fluid downstream of the center of the cylinder increases 

as well (with respect to the amount of heavy fluid upstream of the center). The dark red 

color at the front (downstream end) of the current for 𝜃 = 10°, 15° and 20° indicates a 

relatively denser region compared to its surroundings. We observe multiple undulations 

at the front of the current, these are the lobe and cleft instability pattern (Simpson 1982). 

These undulations are generally observed whenever heavy fluid decelerates into a 

lighter ambient, coupled with the presence of the no-slip boundary condition at the 

bottom wall (Cantero et al. 2007; Hartel et al. 2000; Simpson 1972). A pattern of rolled 

up Kelvin-Helmholtz vortices is also observed to develop around 𝑡 = 6. These Kelvin-

Helmholtz vortices along with lobe and cleft instability help to increase the three-

dimensionality of the current. 

At 𝑡 = 10, we identify some key differences in the structure of the current for the 

different slopes. For 𝜃 = 5°, the current retains its circular shape, however as the 

inclination of the bottom wall steepens, the current is seen to gradually transition to a 

sharper V-like structure. The angle 𝛾 at the vertex of the V-shape is observed to 

decrease at steeper slopes from 𝛾 ≈ 150° at 𝜃 = 5° to 𝛾 ≈ 80° at 𝜃 = 20°. Here 𝛾 is 

crudely estimated as the vertex angle between the dashed black lines (Figure 7-4 at 𝑡 =

10). The current remains thickest along the centerline (𝑦 = 0 plane) towards its 

downstream end, with the height and consequently the buoyancy progressively 
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decreasing as we move upstream until it vanishes at the rear end of the current. In the 

central region, we continue to observe only a thin film of heavy fluid. 

For 𝑡 ≥ 20 bare regions begin to appear behind the front of the gravity current 

surrounding a thin patch of heavy fluid. These bare regions create an adverse pressure 

gradient that act to slow down the advancing current. In fact, on a flat bottom these bare 

regions will result in a reverse flow (Zgheib et al. 2015). For the shallow slopes of 𝜃 =

5°, the current is still observed to have a circular-like front. The V-like structure for 𝜃 =

10° is still discernable (especially for 𝑡 = 20), however more heavy fluid seems to 

aggregate closer to the downstream end of the current. For the steeper slopes the 

shape of the current becomes more complex, especially for the 𝜃 = 20° case departure 

from the V-shape can be observed. 

The structure of the current that we observe in the simulations resembles that in 

the experiments of Ross et al. (2002). They observe the majority of the heavy fluid to 

aggregate near the front. For the 𝜃 = 15° case, they report the same V-shape structure 

that we detect (𝑡 = 10 in the simulations). Both simulations and experiments do not 

agree with the shallow water model of Webber et al. (1993). 

In the shallow water model, any internal variations in the current’s velocity are 

neglected. By assuming a constant velocity (independent of space and time), the height 

of the current becomes solely a function of the streamwise coordinate (ℎ = ℎ(𝑥)), 

increasing linearly with 𝑥 at a rate of the slope (tan𝜃). This linear increase results in a 

circular wedge-like structure for the current with a flat top surface. From what we 

observe in the experiments of Ross et al. (2002) and the present simulations, the 

current does not form a wedge like structure. The center of the current is always 
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occupied by a thin layer of fluid, and the top surface is observed to be more complex 

than the predicted flat shape in the shallow water model. The assumption of a constant 

velocity for the current is not warranted. In fact, the internal circulation within the current 

appears to be important (Figure 7-5). Furthermore, if internal circulation is taken into 

account, then the velocity in the current is no longer a constant, and the circular wedge-

like structure would no longer be valid. 

Figure 7-5 depicts the vortical structure in the current’s interior for the various 

slopes 𝜃 = (5°, 10°, 15°, 20°) at a single instance 𝑡 = 10. The current’s surface is 

visualized through a semi-transparent iso-surface of density 𝜌 = 0.05. The vortical 

structures correspond to iso-surfaces of the swirling strength 𝜆𝑐𝑖 = (3.5, 3.5, 4.5, 5) for 

𝜃 = (5°, 10°, 15°, 20°), respectively. The swirling strength 𝜆𝑐𝑖 represents regions of high 

vorticity. It is defined as the absolute value of the imaginary part of the complex 

eigenvalue of the velocity gradient tensor (Zhou et. al. 1999; Chakraborty et al. 2005). A 

multitude of hairpin vortices are seen to be aligned along the front of the current. This 

network of hairpin vortices is responsible for the complex three-dimensional shape 

observed in Figure 7-4. Furthermore, these vortical structures reveal the importance of 

internal circulation within the current. 

7.5 Front Velocity 

We first define the current-ambient interface as the position where the vertically 

integrated height of the current ℎ̅(𝑥, 𝑦, 𝑡) exceeds a small threshold value 𝜖. The front 

position 𝑥̃𝑁(𝑦, 𝑡) is then taken as the maximum streamwise location of the detected 

interface. The height of the current ℎ̅ is defined as 
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 ℎ̅(𝑥, 𝑦, 𝑡) = ∫ 𝜌(𝑥, 𝑦, 𝑧, 𝑡)𝑑𝑧
𝐿𝑧

0

 . (7-9) 

The small threshold value  𝜖 is taken to be 𝜖 = 10−3. The front location is not however 

sensitive to the chosen value of 𝜖 in the range [10−4, 10−2]. To obtain the temporal 

evolution of the mean front position 𝑥𝑁(𝑡), we average the front location 𝑥̃𝑁(𝑦, 𝑡) over a 

segment of width 𝜎 = 0.15 centered at the symmetry plane (𝑦 = 0). 

 𝑥𝑁(𝑡) = ∫ 𝑥̃𝑁(𝑦, 𝑡)𝑑𝑦
𝜎

−𝜎

 . (7-10) 

The front position, 𝑥𝑁(𝑡) is not sensitive to the chosen value of 𝜎 in the range 

[0.05 0.25]. The dependence on 𝜖 and 𝜎 is shown in Figures 7-6 and 7-7. 

The temporal evolution of the front from the present simulations is compared to 

previous experiments by Ross et al. (2002). In their experiments, they release a volume 

of relatively dense saline water into less dense tap water. Their experiments were 

carried out in a tank of rectangular cross section with dimensions 2m × 2.5m 

(width×height) and an elevation of 0.85m. The bottom surface of the tank could be 

adjusted to give a range of slopes between 5° and 20°. A circular slanted cylinder 

initially contains the salty water mixture, whose density 𝜌𝑐0∗  never exceeded the tap 

water density (𝜌𝑎∗) by more than 3%. The small density difference in the experiments 

justifies the use of the Boussinesq model. The initial reduced gravity of the experiments 

was 𝑔0∗′ ≈ 25cm/s2, and the initial volume of the salty mixture was 𝑉0∗ ≈ 1800cm3. The 

above parameters indicate that the Reynolds number of their experiments was 𝑅𝑒 ≈ 2 ×

104. 

The temporal evolution of the front from the present simulations are compared to 

the experimental results of Ross et al. (2002) in Figure 7-8. The solid line in each of the 
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4 figures represents the simulation data, and symbols represent the experimental data 

obtained from the digitized images of the front position versus time from Ross et al. 

(2002). Multiple experiments were carried out for each slope, however these only 

differed slightly (in terms of initial volume and concentration of the saline solution) from 

one another. The variable 𝑥0 corresponds to the initial location of the front [𝑥0 = 𝑥𝑁(𝑡 =

0)], and the difference (𝑥𝑁 − 𝑥0) represents the streamwise distance travelled by the 

current. We observe very good agreement between our simulations and the published 

experimental data. 

The front velocity is obtained by differentiating the front location with respect to 

time using a central (3 point stencil) finite difference scheme. Figure 7-9 shows the 

temporal evolution of the front velocity 𝑢𝑁(𝑡) for the four slopes (5°, 10°, 15°, and 20°). 

The small circles represents the front velocity of the simulations as obtained from a 

central finite difference scheme. The solid line is a cubic 3rd order smoothing spline 

shown here to help guide the eyes. The dashed line is obtained from differentiating a 

12th order polynomial curve fit (using least squares) to the temporal evolution of the front 

position 𝑥𝑁(𝑡). The other symbols correspond to experimental data of Ross et al. (2002). 

These sets of data are not directly obtained from Ross et al. (since they do not explicitly 

report the front velocity in their manuscript), but from differentiating the front location 

obtained from the digitized images of the temporal evolution of the front. It should be 

noted however, that Ross et al. (2002) do calculate the front velocity as it is needed to 

derive other quantities such as the Froude number. They state that the front speed is 

calculated by curve fitting a polynomial (using least squares method) to the front 

location as a function of time, 𝑥𝑁(𝑡), and then take the first derivative of the curve fit to 
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obtain the front speed, 𝑢𝑁(𝑡). We can see however, from Figure 7-9, that the front 

speed 𝑢𝑁(𝑡) is not very sensitive to the method by which it is calculated. Using a 3-point 

central finite difference scheme on the front position 𝑥𝑁(𝑡) or taking the first derivative of 

a curve fitted polynomial to the front position does not qualitatively alter 𝑢𝑁(𝑡), provided 

a high order polynomial curve fit is used. The location and amplitude of the second 

acceleration, might however be affected by the method used for steeper slopes (𝜃 =

20°). For the remainder of the chapter, we will adopt the front velocity obtained from the 

central finite difference scheme. 

Figure 7-9 reveals some very interesting dynamics that have not been reported 

for finite release gravity currents on a sloping boundary. Unlike axisymmetric gravity 

currents that spread on horizontal flat surfaces, these downhill spreading, initially 

circular finite-release Boussinesq currents are seen to undergo a second acceleration 

phase immediately following the first acceleration phase. At the end of the first 

acceleration phase (denoted in Figure 7-9 by the first upward facing triangle on the 

time-axis), the current attains, for the majority of the slopes (excluding 𝜃 = 20°), its 

maximum velocity. The current then decelerates to a local minimum (denoted by the 

downward facing triangle on the time-axis). Interestingly enough, at the end of the first 

acceleration phase, the current redistributes itself and undergoes a second acceleration 

phase to propel the front velocity to a local maximum value (denoted by the second 

upward facing triangle on the time-axis). The rate at which the front velocity transitions 

from its local minimum to the second acceleration is observed to increase with 

increasing slopes. Furthermore, the time it takes the current to undergo such a 
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transition (distance between the downward and second upward facing triangle) is seen 

to decrease on steeper slopes. 

Beyond the second acceleration phase, the front velocity from the simulations 

and that obtained from differentiating the digitized images of Ross et al. (2002) 

experiments are in good agreement for the majority of the experiments. However, we do 

not clearly observe a second acceleration in their experiments. This could be due to the 

lower temporal resolution of the digitized data, having less than one data point per non-

dimensional time unit. 

The second acceleration phase is in itself interesting from a fluid mechanics point 

of view, but it also has a long term effect on the current. The second acceleration phase 

significantly raises the front velocity in a relatively short period of time (especially at 

steeper slopes), which allows the current’s speed to asymptote to a larger value at later 

times. This could have implications in problems such as snow avalanches, where 

neglecting the second acceleration phase could underpredict the velocity, extent, 

erosive power, as well as the destructive capabilities of the avalanche. 

The presence of the second acceleration phase indicates a rearrangement or 

redistribution of the heavy material within the current to increase the buoyancy at the 

downstream end of the current near the centerline (𝑦 = 0 plane). Unlike planar, two-

dimensional gravity currents (which are unidirectional whether advancing on a sloping 

or horizontal boundary), or cylindrical, axisymmetric currents on horizontal boundaries 

which are ever-diverging (as they continually expand radially outwards), circular 

currents on sloping boundaries will initially advance in a diverging manner (similar to the 

spreading on horizontal boundaries) and later seem to reorient themselves in such a 
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way to converge towards the centerline (during a finite time span). This convergence of 

material towards the centerline is the primary cause for the second acceleration phase. 

This mechanism will be explored in more detail in the next sections. 

7.6 Mass Redistribution 

7.6.1 Spanwise and Streamwise Average 

In order to better understand how the material within the current redistributes 

itself at the various stages of spreading, we investigate the spanwise and streamwise 

averages of the vertically integrated density field of the current ℎ̅(𝑥, 𝑦, 𝑡) defined 

previously in Eq. 7-9. We denote by ℎ̅𝑥(𝑦, 𝑡) and ℎ̅𝑦(𝑥, 𝑡) the streamwise and spanwise 

averages of ℎ̅(𝑥, 𝑦, 𝑡), respectively. 

 

ℎ̅𝑥(𝑦, 𝑡)  =
1

𝐿𝑥
∫ ℎ̅(𝑥, 𝑦, 𝑡)𝑑𝑥
𝐿𝑥

0

 

ℎ̅𝑥(𝑦, 𝑡)  =
1

𝐿𝑦
∫ ℎ̅(𝑥, 𝑦, 𝑡)𝑑𝑦
𝐿𝑦/2

−𝐿𝑦/2

 

(7-11) 

These quantities are shown in Figure 7-10 for the different slopes at various time 

instances. Firstly, from ℎ̅𝑥(𝑦, 𝑡), we observe the current to retain its symmetry about the 

centerline plane (𝑦 = 0). 

At 𝑡 = 3, the spanwise mass distribution, (ℎ̅𝑥) is very similar for all slopes. We 

notice the mass to be uniformly distributed in the central region (−1 ≤ 𝑦 ≤ 1) with a 

symmetric peak at 𝑦 = ±1.5 before a sharp decline to a zero value. Furthermore, from 

the streamwise mass distribution, we observe two non-symmetric peaks at the 

downstream and upstream ends of the current. The asymmetry in the peaks is primarily 

a consequence of the sloping boundary. For the larger slopes (𝜃 = 15° and 𝜃 = 20°), the 

asymmetry between the downstream and upstream edges of the current is amplified 
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with a larger portion of heavy material aggregating closer to the downstream side of the 

current. 

At 𝑡 = 6, we detect a mass buildup near the centerline (𝑦 = 0) for ℎ̅𝑥. The mass 

buildup is intensified for larger slopes becoming easily identifiable at 𝜃 = 15° and 𝜃 =

20°. Furthermore, with respect to the spanwise average, we observe the heavy material 

to continue to aggregate near the downstream end of the current (ℎ̅𝑦 plots) for all 

slopes. The mass buildup and the preferential accumulation of heavy material at the 

downstream end of the current increase the buoyancy in the foremost centerline region 

of the current and subsequently result in the aforementioned second acceleration phase 

in the front velocity. The time for which the mass buildup is perceived (3 ≲ 𝑡 ≲ 6) is 

inline with the initiation of the second acceleration phase (Figure 7-9). 

At later times (t > 10), the majority of heavy fluid continues to reside close to the 

centerline (𝑦 = 0), decreasing slowly as we move outwards in the spanwise direction. 

The extent of the current in the spanwise direction is also seen to decrease with 

increasing slope, while the relative amount of heavy fluid near the centerline (with 

respect to the total amount of heavy fluid within the current) is observed to increase with 

steeper slopes. 

7.6.2 Instantaneous Velocity Field 

The density weighted, vertically averaged streamwise and spanwise components 

of velocity provide a good indication of the instantaneous redistribution of the heavy 

fluid. The components of the instantaneous vector field shown in Figure 7-11 are 

defined as 

 streamwise component:      𝑢̅𝜌(𝑥, 𝑦, 𝑡) =
1

𝐿𝑧
∫ 𝜌𝑢 𝑑𝑧
𝐿𝑧

0
 (7-12) 
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spanwise component:     𝑣̅𝜌(𝑥, 𝑦, 𝑡) =
1

𝐿𝑧
∫ 𝜌𝑣 𝑑𝑧
𝐿𝑧

0
 

where 𝑢(𝑥, 𝑦, 𝑧, 𝑡) and 𝑣(𝑥, 𝑦, 𝑧, 𝑡) are the streamwise and spanwise components of the 

three-dimensional velocity field 𝒖(𝑥, 𝑦, 𝑧, 𝑡), respectively. The vector field overlays iso-

contours of the vertically averaged height ℎ̅(𝑥, 𝑦, 𝑡). For each of the 4 slopes, a 

reference vector of 0.5 magnitude is shown in the upper left corner for 𝑡 = 3 (𝜃 = 5° and 

10°) or 𝑡 = 2 (𝜃 = 15° and 20°). The vector length scale is the same for all instances 

belonging to the same slope, however it changes from one slope to another for the 

purpose of clarity (note how the reference vector length for 𝜃 = 5° is greater than that of 

the other slopes). 

For the shallowest slope (𝜃 = 5°), it is more difficult to observe the converging of 

heavy fluid towards the centerline (𝑦 = 0) as it is quite weak. It is only at 𝑡 = 6 that we 

notice some of the vectors in the front most region of the current to point in the direction 

of the centerline. This small rushing of heavy fluid towards the center conforms with the 

slow rate of increase of the front velocity during the second acceleration phase (Figure 

7-9) 

For 𝜃 = 10°, the current is initially in a diverging state (𝑡 = 3), moving away from 

or parallel to the centerline, but not towards it. At 𝑡 = 4, the heavy fluid begins to 

redistribute itself within the current as some of the heavy material is seen to progress 

towards the centerline. This mass buildup around the center is observed at later 

instances (up to 𝑡 = 8) with various degrees of intensity. Recall from Figure 7-9, that the 

second acceleration for 𝜃 = 10° initiated at around 𝑡 = 5, shortly after the heavy fluid is 

observed to converge towards the centerline. 
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For the steeper slopes (𝜃 = 15° and 20°), the rushing of heavy fluid towards the 

𝑦 = 0 plane is more intense and occurs over a shorter period of time compared to the 

shallower slopes (𝜃 = 5° and 10°). At 𝑡 = 4 and 𝑡 = 5, just around the time that the 

second acceleration begins to take effect (downward facing arrow in Figure 7-9), we 

observe a strong surge of heavy fluid streaming towards the symmetry plane (𝑦 = 0). 

Shortly thereafter, at 𝑡 ≥ 6, the current reorients itself to flow in the streamwise 𝑥-

direction. 

The short period of time during which the current converges towards the 

centerline, and the elevated intensity of the mass buildup during this period  conforms to 

the faster rate (with respect to the shallower slopes) at which the front velocity, during 

the second acceleration phase, transitions from its minimum to its maximum value 

(Figure 7-9). 

7.7 Internal Circulation and Froude Number 

The streamwise and spanwise average plots (Figure 7-10), and the 

instantaneous density weighted, vertically averaged velocity field (Figure 7-11) 

reconfirm the importance of internal circulation within the gravity current. Recall that 

internal circulation was neglected in the shallow water model of Webber et al. (1993). 

Figure 7-12 shows the temporal evolution of |𝑤̅|Max, the maximum magnitude of 

the Favre average of the vertical component of the velocity, 𝑤. It is defined as 

 𝑤̅ =
∫ 𝜌𝑤 𝑑𝑧
𝐿𝑧
0

∫ 𝜌 𝑑𝑧
𝐿𝑧

0

    ;     |𝑤̅|Max = max[abs(𝑤̅)] (7-13) 

𝑤̅ provides a measure of internal circulation. |𝑤̅|Max is related to the big vortex roll-up at 

the front and to the hairpin structures seen in Figure 7-5. 
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The value of |𝑤̅|Max, throughout the entire simulation, is comparable to the value 

of the front velocity 𝑢𝑁 (Figure 7-9) for the respective bottom wall inclination 𝜃. |𝑤̅|Max is 

largest during early times where the current transitions through the first and second 

acceleration phases. During those acceleration phases, the current’s structure changes 

significantly. Beyond the second acceleration phase, the magnitude of |𝑤̅|Max is seen to 

steadily decline, remaining however of the same order as the front velocity 𝑢𝑁. 

The Froude number of a gravity current relates the front speed 𝑢𝑁 to the nose 

height ℎ𝑁. Here, we calculate the Froude number by using the maximum height ℎ̅Max, 

defined as the maximum value of ℎ̅(𝑥, 𝑦, 𝑡) in the domain. The Froude number is defined 

as 

 𝐹𝑟 =
𝑢𝑁

(ℎ̅Max)1/2
  (7-14) 

Figure 7-13 shows the temporal evolution of the Froude number for the 4 different 

slopes. For each slope, we plot 𝜉(𝑡) and 𝜂(𝑡), the streamwise and spanwise coordinates 

of the position of the maximum height ℎ̅Max, respectively. The red circular hollow 

symbols represent the Froude number as calculated from Eq. 7-14, and the solid black 

line is a 3rd order cubic spline smoothing of the red hollow symbols to help guide the 

eyes. The blue triangular symbols are from the experimental data of Ross et al. (2002). 

For all the slopes, we observe ℎ̅Max to be located slightly behind the front of the current 

at close proximity to the centerline (𝑦 = 0). The vertical dashed line in the Froude 

number plots marks the time for which the current attains its maximum velocity at the 

end of the second acceleration phase (upward facing triangle in Figure 7-9). Our 

simulations are in good agreement with the experimental data of Ross et al. (2002) for 

all 4 slopes. Beyond the second acceleration phase, we observe the Froude number to 



 

200 
 

attain a nearly constant value, which appears to increase with steeper slopes. Figure 7-

14 shows the dependence of the mean Froude number 𝐹𝑟̅̅ ̅ on bottom inclination 𝜃, 

beyond the second acceleration phase. The mean Froude number is defined as 

 𝐹𝑟̅̅ ̅ =
1

𝑡𝑓 − 𝑡𝑠
∫ 𝐹𝑟(𝑡)𝑑𝑡
𝑡𝑓

𝑡𝑠

  (7-15) 

where 𝑡𝑠 and 𝑡𝑓 represent the non-dimensional times that mark the end of the second 

acceleration phase and the end of the simulations (𝑡 = 30), respectively. The mean 

Froude number is seen to increase with increasing slopes from a value of 0.8 to 1.2 at 

𝜃 = 5° to 20°, respectively. 

7.8 Head and Entrainment 

Gravity currents from finite releases are known to take the shape of a slug with 

an elevated head and a relatively thin trailing body (Cantero et al. 2007, Dai 2012). 

These finite release currents are invariably dominated by the head, which are generally 

more turbulent and energetic compared to the trailing body. Most studies consider 

entrainment of ambient fluid into the current to occur mostly in the head (Ross et al 

2002, Beghin et al. 1981, Maxworthy 2010). The definition of what constitutes the head 

of a gravity current is somewhat ambiguous as there is no clear mathematical 

expression for defining the shape of the head. In the case of planar (resp. axisymmetric) 

currents, the shape of the head is inferred from the width (resp. azimuthally) and depth-

averaged density field of the current. For these canonical geometries, it is relatively 

easy to identify the head of the current (Dai 2013). 
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7.8.1 Defining the Head of the Gravity Current 

The present configuration is neither planar nor-axisymmetric, and defining the 

head of the current is more challenging than for canonical setups. In essence, a robust 

method should provide a three-dimensional indicator function 𝛪(𝑥, 𝑦, 𝑧, 𝑡) defined as  

 
𝛪(𝑥, 𝑦, 𝑧, 𝑡) = 1              in the head of the current 

𝛪(𝑥, 𝑦, 𝑧, 𝑡) = 0             elsewhwere                    d 
(7-16) 

In the present study, we propose a simple method by which we define the indicator 

function 𝛪. The method consists of 2 steps. First we determine the shape of the current 

by choosing a threshold iso-surface of density (𝜌 = 𝜌𝑡ℎ). The height of the current 

ℎ(𝑥, 𝑦, 𝑧, 𝑡) at every point simply becomes the vertical distance from the bottom wall to 

this iso-surface. Second we define the head of the current as the location where the 

height ℎ exceeds a threshold value ℎ𝑡ℎ. Table 7-2 shows the different combinations of 

𝜌𝑡ℎ and ℎ𝑡ℎ considered in this study. Three values of 𝜌𝑡ℎ were examined, 𝜌𝑡ℎ = 10−2, 

5 × 10−3, and 3 × 10−3. For each of the iso-surface values, we considered three height 

thresholds  ℎ𝑡ℎ = 0.3, 0.25, and 0.2. Out of the 9 possible combinations, we chose case 

1𝑎 (Table 7-2) which corresponds to 𝜌𝑡ℎ = 10−2 and ℎ𝑡ℎ = 0.3. 

A wall normal view of the head, obtained using the threshold 1𝑎 is depicted in 

Figure 7-15. For each bottom inclination 𝜃, we show the evolution of the head at 6 select 

instances, namely 𝑡 = 3, 5, 7, 10, 15, and 20. The red, green, and cyan colors represent 

thresholds 1𝑎, 1𝑏, and 1𝑐, respectively. Employing the parameters from threshold 1𝑎 

(red color), we observe the shape of the head to conform to the three-dimensional 

structure of the current in Figure 7-4. The different shapes the head attains (circular, 

boomerang, V-shape, …) as it evolves in time are well captured. Moreover, the thin 
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layer of fluid in Figure 7-4 does not fall under the chosen threshold criterion and is 

therefore excluded from the head. The total buoyancy in the domain is conserved, but 

the shape of the head continues to grow with time due to entrainment of ambient fluid. 

7.8.2 Properties of the Head 

Once the head is defined, its properties (volume, mass, position of the center of 

mass, etc.) and other derived quantities (time rate of change of volume, time rate of 

change of mass, speed of the center of mass) may be easily extracted. Table 7-3 lists 

the various properties and derived quantities pertaining to the head. 

7.8.2.1 Geometric Properties and Total Buoyancy 

Figure 7-16 depicts the temporal evolution of volume 𝑉, mass 𝑀, wall-normal 

projected area 𝐴, mean height of the head ℎ̃, and the time rates of change (𝑉′ and 𝑀′) 

of the volume of mass, respectively. The extracted quantities are shown as lines, and 

the first order derived quantities (involving time rates of change) are shown as symbols 

for clarity. The evolution of the aforementioned quantities is shown for a time range 

spanning the beginning (𝑡 = 0) to the end of each simulation (𝑡 = 30). However, we 

should keep in mind that these quantities are representative of the head, and therefore 

they are only meaningful after the head has formed. Because the head needs a finite 

time to develop (around 2 time units in the present case), we only need to monitor and 

investigate these quantities in a time range from 𝑡 = 2 onwards. 

The volume of the head continues to increase with time due to entrainment of 

ambient fluid. The mean time rate of change (𝑉′̅) is observed to increase with the slope 

from a value of 𝑉′̅ ≈ 0.1 at (𝜃 = 5°) to 𝑉′̅ ≈ 0.55 at (𝜃 = 20°). Here 𝑉′̅ represents the 

average time rate of change from 𝑡 = 10 to 𝑡 = 30. The area 𝐴 is seen to increase at 
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roughly the same rate as the volume, whereas the mean height of the head, ℎ̃, is 

observed to first increase linearly between 𝑡 = 2 and 𝑡 = 4, and then quickly asymptote 

to a constant value. The rate at which the mean height increases and the value to which 

it asymptotes are observed to depend on the slope (the rate being faster and the value 

of the asymptote being larger for steeper slopes). The volume is therefore growing more 

as a result of spanwise expansion and increase in plan area of the head, and less 

because of the head increasing in mean height. This is inline with previously published 

results on downhill spreading planar gravity currents (Dai 2013). Dai (2013) observed 

the length and height of the head to initially increase at a rate which depended on the 

slope angle. He then observed the length to continue to increase at a much larger rate 

than the height. As for the mass in the head, it asymptotes to a constant value 

beyond 𝑡 ≈ 10. The mass in the head (beyond 𝑡 ≈ 10) makes up about one fourth of the 

initial released mass for 𝜃 = 5°, and around 50 to 60% of the initial mass for the steeper 

slopes, 𝜃 = 10°, 15°, and 20°. 

Figure 7-17 shows the length (𝐿), width (𝑊), their ratio (𝐿/𝑊), and its time rate of 

change (𝐿/𝑊)’ in the head of the current. We observe both the length and the width to 

continue to increase with time, however their ratio (𝐿/𝑊) asymptotes to a constant 

value, which depends on the slope angle, 𝜃 (being larger for larger slopes). Beyond 𝑡 ≈

15, the time rate of change of (𝐿/𝑊) is small (𝐿/𝑊 < 0.05), and the current attains a 

self-similar form. This is inline with the three-dimensional structure of the current shown 

in Figure 7-4, where similar profiles are detected for 𝑡 = 20 and 𝑡 = 30 . 
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7.8.2.2 Comparisons with Thermal Theory and Experiments 

In the present section we test some of the properties of the head of the gravity 

current against those adopted for thermal theory developed for free axisymmetric 

vertical thermals. Turner (1973) shows that the extreme horizontal radius of a thermal 

and the speed of the cap of the thermal to vary as 

 
𝑟̂  ∝ 𝑡1/2 

𝑤̂  ∝ 𝑡−1/2 
(7-17) 

In our notation (Table 7-3), the extreme horizontal radius 𝑟̂ would represent the 

maximum height (𝐻) or the maximum width (𝑊) of the head, and the speed of the cap of 

the thermal (𝑤̂) is synonymous to the speed of the center of mass (𝑢𝐶𝑀). 

Figure 7-18 shows the log-log plots of the temporal evolution of 𝑢𝐶𝑀, 𝐻, and 𝑊 

for slopes 𝜃 = 5°, 10°, 15°, and 20°. A blown up view for 𝑡 > 10 is shown on the right 

side of each figure. The solid black lines correspond to 𝑡−1/2 (𝑢𝐶𝑀), 0.22 𝑡1/2 (𝐻), and 

2 𝑡1/2 (𝑊). The relationships in Eq. 7-17 are observed to be satisfied. Even though 𝐻 

and 𝑊 both increase as the square root of time, the width is observed to increase at an 

order of magnitude faster rate.  

The quantity 𝐶 (Table 7-3), which has the form of a Froude number is shown in 

Figure 7-19. The value of 𝐶 in our simulations remains constant beyond 𝑡 ≈ 10, and its 

mean value, 𝐶̅ (beyond 𝑡 = 10), is shown to depend on the inclination angle 𝜃. It 

increases from 𝐶̅ ≈ 0.6 at 𝜃 = 5° to 𝐶̅ ≈ 0.9 at 𝜃 = 20°. A constant value of 𝐶 is usually 

observed in experiments (Turner 1973), however reported values may differ significantly 

from one experiment to the other. For vertical spreading thermals, a mean value of 𝐶 =

1.2 is reported (Turner 1973). It is tempting to conjecture that the increase in 𝐶̅ observed 
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in the simulation could continue to larger values as 𝜃 → 90°. However, it should be 

noted that rising thermals are axisymmetric, when the sloping plane offers only a plane 

of symmetry. 

The entrainment of ambient fluid occurs primarily in the head of the gravity 

current (Beghin et al. 1981, Ross et al. 2002). It is the region where most of the heavy 

fluid accumulates and the majority of mixing occurs since the elevated head is much 

more energetic than the thin trailing body. The entrainment coefficient 𝛼 (defined in 

Table 7-3) is shown in Figure 7-20 at the various slopes (𝜃 = 5°, 10°, 15°, and 20°). 

Beyond the second accelerations phase, the value of 𝛼 does not appear to be 

significantly influenced by the slope (similar observations were reported by Ross et al. 

2002). Average values (𝛼̅) beyond 𝑡 = 10 compare well with previous experiments and 

theoretical models, where the entrainment coefficient is found to be of order 0.1 (Ross 

et al. 2002, Beghin et al.1981, Turner 1973). The square symbols in Figure 7-20 are 

from the experiments of Beghin et al. (1981) in which he investigates the release of a 

planar current on a sloping boundary. The plus symbols are from the integral model of 

Ross et al. (2002). 

7.9 Reynolds Number Dependence 

Another set of simulations with a lower 𝑅𝑒 (Table 7-1) was carried out to 

investigate the effect of the Reynolds number on the front position, velocity, and 

entrainment.  

From Figure 7-21, we observe the effect of the Reynolds number on the front 

position to be most significant at small slopes. Its influence on the front positon is seen 
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to decrease at steeper slopes as the gap between the computed fronts at the 𝑅𝑒 = 5000 

and 𝑅𝑒 = 1000-cases becomes tighter. 

7.10 Conclusion 

We performed highly resolved numerical simulations to investigate the dynamics 

of a circular finite release on a sloping boundary. Two values of the Reynolds number 

(𝑅𝑒 = 5000 and 𝑅𝑒 = 1000) were considered with four different slopes (𝜃 = 5°, 10°, 15°, 

and 20°). The shape of the release was chosen to conform to previous experiments of 

Ross et al. (2002). In their experiment, they observe the current to take on a shape that 

is more akin to a triangular wedge contrary to the self-similar circular shallow wedge 

predicted using shallow water equations (Webber et al. 1993). In our simulations, we 

observe the current to develop into a shape that resembles that of the experiments of 

Ross et al. (2002).  

We presented the three-dimensional structure of the current for the various 

slopes at different instances in time. The heavy fluid was seen to aggregate near the 

front of the current with a thin layer of heavy material occupying the interior portion of 

the wedge. For the shallow slope of 𝜃 = 5°, the current’s front resembled a circular arc. 

As the slope steepened, the current redistributed itself to form a triangular, V-like 

structure. 

The current’s front position from our simulations compared very well with the 

experimental data of Ross et al. (2002). They did not however explicitly plot the 

temporal evolution of the front speed. To compare the front speed obtained from our 

simulations to their experiments, we differentiated the digitized data pertaining to the 

front position in their manuscript. 
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The front velocity revealed some surprising results. Planar gravity currents (on 

horizontal and sloping boundaries), and axisymmetric currents (on horizontal 

boundaries) undergo a single acceleration phase immediately after release. The front 

speed in our simulations, however was seen to transition through two acceleration 

phases. This peculiar behavior warranted more investigation. 

The presence of the second acceleration phase indicates a rearrangement or 

redistribution of the heavy material within the current to increase the buoyancy at the 

downstream end of the current near the centerline (𝑦 = 0 plane). Unlike planar, two-

dimensional gravity currents (which are unidirectional whether advancing on a sloping 

or horizontal boundary), or cylindrical, axisymmetric currents on horizontal boundaries 

which are ever-diverging (as they continually expand radially outwards), circular 

currents on sloping boundaries will initially advance in a diverging manner (similar to the 

spreading on horizontal boundaries) and later seem to reorient themselves in such a 

way to converge towards the centerline (during a finite time span). This convergence of 

material towards the centerline is the primary cause for the second acceleration phase. 

We first explored the distribution of heavy material within the domain by 

averaging the vertically integrated density in the spanwise and streamwise directions. 

These averages revealed a buildup of heavy fluid along the centerline, close to the 

downstream end of the current. The time at which the mass buildup was detected was 

in line with the initiation of the second acceleration phase. 

We then computed the density weighted, vertically averaged streamwise and 

spanwise components of velocity. The vector plots revealed a rushing of heavy material 

(near the downstream end of the current) towards the centerline. The time at which this 



 

208 
 

converging flow (towards the centerline) occurred was consistent with the mass buildup 

observed in the spanwise and streamwise averages of the integrated vertical density as 

well as the initiation of the second acceleration phase in the front velocity plots. 

Beyond the second acceleration phase, the front velocity from the simulations 

and that obtained from differentiating the digitized images of Ross et al. (2002) 

experiments are in good agreement for the majority of the experiments. However, we do 

not clearly observe the second acceleration to occur in their experiments. This could be 

due to the lower temporal resolution of the digitized data, having less than one data 

point per non-dimensional time unit. 

The Froude number was calculated using the maximum height in the current 

(which is located along the centerline, close to the downstream end of the current). The 

Froude number compared well with the experiments of Ross et al. (2002) and was seen 

to quickly reach a constant value beyond the second acceleration phase. That value 

was seen to increase with steeper slopes. 

We presented a simple method for detecting the head of the gravity current and 

used it to extract the various properties pertaining to the head (volume, mass, shape, 

growth rates, etc.). The volume of the head was observed to continue to increase as a 

result of entrainment of ambient fluid. The mass in the head however, beyond the 

second acceleration phase, remained constant making up around half of the initial 

released mass (for the steeper slopes). The shape of the current was observed to reach 

a self-similar shape, with the width to length ratio approaching a constant value at 

about 𝑡 = 15. 
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Thermal theory pertaining to free axisymmetric vertical thermals suggests the 

speed of the center of mass and the horizontal extreme coordinate of the thermal cap to 

evolve (beyond the self-similar phase) as the inverse of the square root, and the square 

root of time, respectively. These relations were found to be satisfied in the present 

simulations. The constant 𝐶, which takes the form of a Froude number, was seen to 

reach a constant value, as suggested by the thermal theory. The value was observed to 

increase with larger slopes, but remained below the mean value of 𝐶 = 1.2, reported in 

Turner (1973). Turner (1973), however states that there could be large variations in 

angle of spread between experiments.  

The entrainment coefficient was calculated and compared well to previous 

experiments and theoretical models. It was found to be of the order of 0.1 and to 

depend very little on the slope. 
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Figure 7-1.  Schematic of the shallow water model of Webber et al. (1993).  

 

 

 

 

 

Figure 7-2.  Schematic of the rectangular numerical domain. 
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Table 7-1. List of simulations. The bottom inclination is denoted by 𝜃, and 𝑅𝑒 represents 
the Reynolds number. The domain size is the same for all simulations with 
the grid resolution being larger for the larger Reynolds number. 

 
 

Simulation 
number 

 

𝜃 𝑅𝑒 

 
Domain size 
(𝐿𝑥 × 𝐿𝑦 × 𝐿𝑧) 

 

 
Grid resolution 
(𝑁𝑥 × 𝑁𝑦 × 𝑁𝑧) 

 
7-1 5° 5000 (18 × 15 × 2.5) (700 × 600 × 201) 

7-2 10° 5000 (18 × 15 × 2.5) (700 × 600 × 201) 

7-3 15° 5000 (18 × 15 × 2.5) (700 × 600 × 201) 

7-4 20° 5000 (18 × 15 × 2.5) (700 × 600 × 201) 

7-5 5° 1000 (18 × 15 × 2.5) (488 × 366 × 101) 

7-6 10° 1000 (18 × 15 × 2.5) (488 × 366 × 101) 

7-7 15° 1000 (18 × 15 × 2.5) (488 × 366 × 101) 

7-8 20° 1000 (18 × 15 × 2.5) (488 × 366 × 101) 
 

 
 

Figure 7-3.  Side view and top view of the initial shape of the slanted cylinder containing 
the heavy fluid.  
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Figure 7-4.  Snapshots of the current at various times (𝑡 = 0, 3, 6, 10, 20, 30) for various slopes 𝜃 = (5°, 10°, 15°, 20°). The 

current is visualized with multiple semi-transparent iso-surfaces of density with a value of 𝜌 =
(0.01, 0.05, 0.1, 0.2, 0.5). 
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 Figure 7-5.  Snapshots of the current at 𝑡 = 10 for various slopes 𝜃 = (5°, 10°, 15°, 20°). 
The current is visualized with a semi-transparent iso-sufaces of density with a 
value of 𝜌 = 0.05. The vortical structures in the interior of the current 
correspond to iso-surfaces of the swirling strength 𝜆𝑐𝑖 = (3.5, 3.5, 4.5, 5) for 
𝜃 = (5°, 10°, 15°, 20°), respectively. 
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Figure 7-6.  Sensitivity of the calculated front position to the small threshold value 𝜖 for a 
fixed 𝜎 = 0.15. 
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Figure 7-7.  Sensitivity of the calculated front position to the segment length 𝜎 for a fixed 
𝜖 = 10−3. 
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Figure 7-8.  Front position as a function of time. The solid line is from the present 
simulations, and the symbols are from the experiments of Ross et al. (2002). 
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Figure 7-9.  Front speed as a function of time. The small circles are the simulation data 
obtained using the finite difference. The solid line is a cubic 3rd order 
smoothing spline shown to help guide the eyes. The dashed line is the 
derivative of a 12th order polynomial curve fit to the front position 𝑥𝑁(𝑡). The 
large symbols are from the experiments of Ross et al. (2002) obtained by 
differentiating the data extracted from the digitized front position plots (Figure 
5 in their manuscript). 

 
 

 
 



 

221 
 

  



 

222 
 

 
 
Figure 7-10.  Streamwise (ℎ̅𝑥) and spanwise (ℎ̅𝑦) averages of the mean height (ℎ̅) at 𝑡 = 0, 3, 6, 10, 20, 30 for 𝜃 =

5°, 10°, 15°, 20°. ℎ̅𝑥 reveals a mass buildup near the centerline. 
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Figure 7-11.  Instantaneous vector field derived from the density weighted, vertically 

averaged streamwise and spanwise components of velocity. The vector field 
overlays iso-contours of the vertically integrated current height ℎ̅. 
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Figure 7-12.  Temporal evolution of the maximum magnitude of the Favre average of 
the vertical component of the velocity. 
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Figure 7-13.  Temporal evolution of the Froude number: The circles correspond to the 
present simulation data. The solid black line is a 3rd order smoothing spline to 
help guide the eyes. The triangles correspond to experimental data from Ross 
et al. (2002). The vertical dashed line marks the end of the second 
acceleration phase. The front position is denoted by 𝑥𝑁. 𝜉(𝑡) and 𝜂(𝑡) 
represent the streamwise and spanwise coordinates of the position of the 
maximum height ℎ̅Max (used for calculating the Froude number), respectively 
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Figure 7-14.  Mean Froude number as a function of bottom inclination. The Froude 
number is observed to increase linearly with bottom slope. 

 

 
Table 7-2. Parameters used for defining the head. 

 
 

Case number 
 

𝜌𝑡ℎ ℎ𝑡ℎ 

1a 1 × 10−2 0.30 
1b 1 × 10−2 0.25 
1c 1 × 10−2 0.20 

   
2a 5 × 10−3 0.30 
2b 5 × 10−3 0.25 
2c 5 × 10−3 0.20 

   
3a 3 × 10−3 0.30 
3b 3 × 10−3 0.25 
3c 3 × 10−3 0.20 
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Figure 7-15.  Wall-normal view of the shape of the head as defined by Eq. 7-16 for the parameters of case 1 (Table 7-2). 

The red color corresponds to the adopted parameters of case 1a. 
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Table 7-3. Parameters and derived quantities pertaining to the head of the gravity 
current. 

 

Symbol Quantity it represents Definition 

𝑉 Volume 𝑉 = ∫ ∫ ℎ
𝐿𝑥

0

𝐿𝑦/2

−𝐿𝑦/2

𝐼 𝑑𝑥𝑑𝑦 

M Mass 𝑀 = ∫ ∫ ∫ 𝜌
𝐿𝑥

0

𝐿𝑦/2

−𝐿𝑦/2

𝐼 𝑑𝑥𝑑𝑦𝑑𝑧
𝐿𝑧

0

 

𝑥𝐶𝑀 Streamwise position of 
the center of mass 𝑥𝐶𝑀 =

1

𝑀
∫ ∫ ∫ 𝜌 𝑥

𝐿𝑥

0

𝐿𝑦/2

−𝐿𝑦/2

𝐼 𝑑𝑥𝑑𝑦𝑑𝑧
𝐿𝑧

0

 

𝐴 Wall normal projected 
area 𝐴 = ∫ ∫ 𝐼 𝑑𝑥𝑑𝑦

𝐿𝑥

0

𝐿𝑦/2

−𝐿𝑦/2

 

𝐻 Maximum height 𝐻 = max (𝐼ℎ) 

𝐿 Streamwise length 𝐿 = max(𝐼𝑥) − min (𝐼𝑥) 

𝑊 Spanwise width 𝑊 = max(𝐼𝑦) − min (𝐼𝑦) 

ℎ̃ Mean height ℎ̃ = 𝑉/𝐴 

𝑉′ Time rate of change of 
volume 𝑉′ = 𝑑𝑉/𝑑𝑡 

𝑀′ Time rate of change of 
mass 𝑀′ = 𝑑𝑀/𝑑𝑡 

𝑢𝐶𝑀 Speed of the center of 
mass 𝑢𝐶𝑀 = 𝑑(𝑥𝐶𝑀)/𝑑𝑡 

𝛼 Entrainment coefficient 𝛼 =
𝑉′

𝐴 𝑢𝐶𝑀
 

(𝐿/𝑊)′ Time rate of change of 
length to width ratio (𝐿/𝑊)′ =

𝑑(𝐿/𝑊)

𝑑𝑡
 

𝐶 Constant with the form 
of a Froude number 

𝐶 =
𝑢𝐶𝑀

√ℎ̅Max
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Figure 7-16.  Temporal evolution of the volume 𝑉, mass 𝑀, wall-normal projected area 

𝐴, mean height of the head ℎ̃, and the time rates of change 𝑉′ and 𝑀′ of the 
volume and mass, respectively. 

 
 

 
 
Figure 7-17.  Length (𝐿), width (𝑊), length to width ratio (𝐿/𝑊), and the time rate of 

change of the length to width ratio (𝐿/𝑊)’ as function of time for 𝜃 =
5°, 10°, 15°, 20°. 
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Figure 7-18.  Log log plots of the speed of the center of mass (𝑢𝐶𝑀), maximum height 
(𝐻), and maximum width (𝑊) in the head as function of time for 𝜃 =
5°, 10°, 15°, 20°. A blown up view, corresponding to the dashed rectangle is 
shown on the right hand side. 

 
 
 
 

 
 
Figure 7-19.  (Left) 𝐶 as a function of time. (Right) mean value of 𝐶 as a function of 

bottom slope 𝜃. 
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Figure 7-20.  (Left) Temporal evolution of the entrainment coefficient 𝛼. (Right) Mean 

value of 𝛼 beyond 𝑡 = 10 as a function of bottom slope 𝜃. 

 
 
 
 
 

  

 
Figure 7-21.  Front position as a function of time for different slopes. The influence of 

the Reynolds number on the front position is significant for shallow slopes and 
becomes less important at higher slopes.  
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CHAPTER 8 
CONCLUSIONS AND FUTURE WORK 

We have addressed a simple, yet fundamental question in fluid dynamics: when 

a fluid is suddenly discharged into an ambient environment of different density, does the 

shape of the release affect the dynamics of the flow? The answer is yes, and the 

dependence on the initial shape may be very significant. To that end, we have 

conducted numerous experiments (covering a wide range of parameters), performed 

direct numerical simulations (DNS), and proposed a simple model to capture the 

essential dynamics of the flow. 

In turns out that in those types of finite releases, the shape of the release greatly 

influences the subsequent spreading of the current. We observe that, provided the 

Reynolds number is large (𝑅𝑒 > 𝛰(103)), a non-circular release can have substantial 

azimuthal variations in terms of propagation speed, thickness (or height), maximum 

extent, and amount of deposition (in case of particle-laden flows). For certain 

geometries, we may identify principal directions along which the discrepancy in the 

abovementioned quantities (speed, thickness, …) is highest. In the case of the 

rectangular releases, these principal directions represent the major and minor axes of 

the rectangular cross-section. 

The difference in velocities along these principal directions is large to the extent 

that, for a plan view, the current front (beyond the self-similar inertial phase of 

spreading) resembles an ellipse whose major and minor axes are aligned with the minor 

and major axes of the initial rectangular cross-section, respectively. In some cases, the 

velocity along the initial minor axis was twice that along the initial major axis for 

extended periods of time. Moreover, for the case of particle-laden currents from 
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rectangular releases, the extent and amount of deposition (in addition to the front 

velocity) differed greatly along the principal axes. 

The dependence of these fixed volume releases on the initial shape means that 

one could, by solely changing the shape (while maintaining the same volume) of 

release, “guide” the current to flow in certain directions and control, to some extent, the 

amount of deposition in each direction.  

Details on the experiments, simulations, and the proposed theoretical model are 

discussed in Chapter 2. The experiments covered a wide range of parameters including 

Boussinesq and highly non-Boussinesq bottom currents, light surface flows, viscous 

(low Reynolds number) currents, and particle-laden flows. Various initial shapes were 

considered including axisymmetric and non-axisymmetric cross sections. The DNS on 

the other hand tailored exclusively to Boussinesq bottom currents (both scalar and 

particle-laden). We also provided further details on the proposed extended box model. 

The governing equations are derived and then discretized to be solved numerically. 

In Chapter 3, we investigated Boussinesq scalar (conservative) currents both 

experimentally and numerically (direct numerical simulations). The shape of the release 

was found to greatly affect the spreading distance and front velocities as well as the 

thickness of the current. Azimuthal variations differed by as much as a factor of 2 along 

the principal directions of the release. A simple theoretical model was proposed, which 

was able to correctly capture the preferential spreading direction resulting from non-

circular releases. 

Direct numerical simulations (DNS) for axisymmetric particle-laden currents were 

explored in Chapter 4. The study aimed at understanding the early stages of fixed 
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volume releases. A set of coherent, large-scale vortex tubes were observed to advance 

at close proximity to the bottom surface. Unlike vertically averaged numerical models, 

the DNS allows us to explore these three-dimensional vortical structures which play an 

important role in the near-wall dynamics, especially in terms of erosion and 

resuspension of particles. 

A wide range of experiments are reported in Chapter 5. The experiments 

considered different types of gravity currents (Boussinesq and highly non-Boussinesq, 

surface, viscous, and particle-laden flows). Here, the main objective was to test the 

dependency of the initial shape for a wide variety of conditions. We found the flow to be 

strongly dependent on the initial shape, provided the Reynolds number remains large 

(𝑅𝑒 > Ο(103)). Some of the main assumptions behind the extended box model are 

examined and validated using DNS. 

In Chapter 6, we remain in the context of Boussinesq bottom flows, however for 

monodisperse particle-laden currents. We monitor two quantities in the experiments, 

these are the location of the front and the final thickness of the deposit. Various 

parameters were varied to assess the dependence on the settling velocity, particle 

volume fraction, and initial height aspect ratio. Corresponding direct numerical 

simulations (DNS) were performed. The front location from the DNS compared 

favorably with experiments, however there were some noticeable differences in the 

thickness of the deposit. Those differences were attributed to a lack of bedload 

transport mechanism in the simulations. 

We performed highly resolved numerical simulations in Chapter 7 to investigate 

the dynamics of a circular slanted cylinder released on a sloping boundary. The front 
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position from our simulations compared favorably with the experiments of Ross et al. 

(2002). The front velocity revealed some surprising features. Planar gravity currents (on 

horizontal and sloping boundaries), and axisymmetric currents (on horizontal 

boundaries) undergo a single acceleration phase immediately after release. The front 

speed in our simulations, however was seen to transition through two acceleration 

phases. This peculiar behavior was attributed to a mass buildup of heavy material near 

the front of the current around the centerline. We presented a simple method for 

detecting the head of the gravity current and used it to extract the various properties 

pertaining to the head (volume, mass, shape, growth rates, etc.). Thermal theory 

pertaining to free axisymmetric vertical thermals suggests the speed of the center of 

mass and the horizontal extreme coordinate of the thermal cap evolve (beyond the self-

similar phase) as 𝑡−1/2, and 𝑡1/2, respectively. These relations were found to be satisfied 

in the present simulations. The entrainment coefficient was calculated and compared 

well to previous experiments and theoretical models. It was found to be of the order of 

0.1 and to depend very little on the slope. 

There are other situations where the manner in which particle-laden material is 

discharged into an ambient environment could affect how the current develops and 

where the particles eventually rain out. One such example is dredging. Dredging 

consists of releasing a volume of particles or turbid mixture at the surface of a body of 

water. The density of particles or that of the turbid mixture is larger than water, and 

therefore after release, the mixture descends as a coherent body vertically downwards. 

Under certain conditions, a gravity current might form after the dynamic collapse of the 

current with the bottom surface. The dynamics of the current could be influenced by the 
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initial shape of the release, and hence the particles may not deposit as intended. In 

some applications, there is a desire for accurate placement of particles at the bottom 

surface, either for environmental safety considerations (toxic material), or for financial 

considerations where the released material is relatively expensive or hard to come by. 

Gaining a better understanding of how the shape of the release affects the final 

deposition profile of the sediments would be helpful for these types of situations where 

accurate placement of sediment is essential. 

Following the studies conducted for this thesis, there are a number of 

complementary projects that we would like to explore in the future. (1) The first project is 

to develop a shallow water code for Boussinesq currents that can handle non-canonical 

initial conditions. The shallow water equations are a very popular tool in the field of 

gravity currents, it is worthwhile to investigate how well they could capture the dynamics 

of non-circular releases. (2) The second project is to extend the EBM model to 

incorporate particle-laden flows. The EBM, is a quick predictive tool that has been quite 

effective in exploring the non-uniform behavior of non-circular density currents. (3) Our 

current Navier-Stokes solver (Spectral code used in Chapters 3-7) does not account for 

redistribution of sediments on the bottom wall (due to bedload transport). We are 

currently working on incorporating the effects of bedload transport. This is a one-way 

coupling problem between the flow and the deposited sediments through the shear 

stress at the bottom surface. Including the effects of bedload transport could offer 

significant improvement in capturing the final deposition profile for particle-laden 

currents. (4) Finally, we are interested in performing experiments on finite release 

gravity currents on uniform slopes. DNS results in Chapter 7 have revealed some very 
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interesting dynamics in which front velocity of the current is seen to undergo 2 

acceleration phases. It is worthwhile to verify these results with a new set of 

experiments. 
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APPENDIX  
NUMERICAL DETAILS OF THE EXTENDED BOX MODEL 

We discretize equations (5-17)-(5-19) into a set of equidistant Lagrangian points 

and use an eighth-order central finite difference scheme for the spatial derivatives. A 

third order Runge-Kutta low storage scheme is used for time integration. Each time step 

consists of two stages. The first is an intermediate stage where the governing equations 

(5-17)-(5-19) are integrated. At the end of this stage, because of the azimuthal 

variations, the Lagrangian points are no longer equidistant. Each sub-volume 

associated with a Lagrangian point is then assumed to be homogeneously distributed 

(along the front) between its two adjacent midpoints.  

The second stage involves remapping the non-equidistant Lagrangian points to 

render them equidistant along the front. This step is necessary, especially in the case of 

concave corners, as in the plus-shape configuration presented in figure 7 of Zgheib et 

al. (2014) for instance, as Lagrangian points may cross each other causing the front to 

fold on itself. This problem is classically encountered in Lagrangian techniques such as 

Front Tracking approaches (Unverdi & Tryggvason 1992). Once the points are 

remapped, new midpoints are calculated and the sub-volumes of the release associated 

with each new Lagrangian point is computed. Then a step of redistributing the sub-

volumes per unit arc length (𝜎ℎ𝑁) is performed, and this step preserves the total volume 

of the release. 𝑢𝑁 and ℎ𝑁 are interpolated at the new equi-spaced Lagrangian points.  

An example of spatial and temporal convergence of the present method is shown 

in Figure 5-19 for the RR configuration. In Figure 5-19a, the time step for integration of 

equations (5-17)-(5-19) was fixed at Δ𝑡 = 0.1. Initially the front was discretized with 80 

Lagrangian points. The number of points was then doubled and the criterion for 
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convergence was met when the mean of the absolute value of the difference in the front 

location (for the fast and slow fronts) between two successive cases, denoted 𝜖, fell 

below 1%, 𝜖 being defined as, 

𝜖 =
1

100
∫

|𝑟𝑁
𝐼 (𝑡) − 𝑟𝑁

𝐼𝐼(𝑡)|

𝑟𝑁
𝐼(𝑡)

100

0

 𝑑𝑡 (A-12) 

Here 𝑟𝑁𝐼 (𝑡) is the front location for a specific spatial resolution, and 𝑟𝑁𝐼𝐼(𝑡) is the front 

location for twice the spatial resolution. The criterion for convergence was tested and 

met along the fast and slow fronts separately. In Figure 5-19b, the spatial resolution was 

set at 160 Lagrangian points, for which three different time steps differing by a factor of 

two were used. It can be seen that the present method is robust even for a moderately 

low number of Lagrangian points and moderately large time steps, leading to 

insignificant computational time as compared to Navier-Stokes simulations. 
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