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Résumé en français

L’insuffisance cardiaque est un état pathologique caractérisé par une capacité diminuée à pomper
le sang et à fournir suffisamment d’oxygène et de nutriments à tous les organes [1, 2]. Initialement,
le diagnostic est clinique et marqué par une congestion hydrique. Elle peut être liée soit à une
insuffisance ventriculaire droite, soit à une insuffisance ventriculaire gauche, ou le plus souvent
lié aux deux cavités ventriculaires. Elle est de plus en plus répandue et touche plus de 26 millions
de personnes dans le monde [3], entraînant plus d’un million d’hospitalisations en Europe et en
Amérique du Nord chaque année [4]. Le coût pour la société est significatif, estimé à 2% des
dépenses totales de santé. Malgré de nombreuses avancées thérapeutiques, à la fois pharma-
cologiques et technologiques, son pronostic demeure préoccupant avec un taux d’événements
majeurs à six mois (mortalité et hospitalisation pour insuffisance cardiaque) qui approche 50%
après la première hospitalisation pour insuffisance cardiaque aiguë en France [5].

L’évaluation de la fonction ventriculaire gauche reste un enjeu majeur en cardiologie, car une
multitude de traitements dépendent de cette évaluation. Malgré la pathophysiologie complexe et
la variété de méthodes d’analyse de la fonction ventriculaire gauche, l’évaluation de la fraction
d’éjection du ventricule gauche (FEVG) reste le paramètre de référence en routine clinique. Les
limites de ce paramètre sont bien connues et comprennent le manque de reproductibilité intra- et
inter-observateur, la sensibilité à la postcharge, au remodelage ventriculaire, et d’autres [6–8].

Pour pallier ces limites, l’analyse des courbes de strain, issues des images échocardiographiques
semble être un outil prometteur pour l’évaluation de la fonction cardiaque [9–15]. Cette méthode
acquiert demanière semi-automatique des courbes de déformation régionales qui représentent la
déformation des parois de différentes régions du myocarde. Bien que de précédentes recherches
aient suggéré que l’analyse du strain pourrait servir d’alternative pour quantifier la fonction
cardiaque, les recommandations internationales actuelles négligent encore la valeur de cette
approche [7]. La plupart des méthodes d’analyse du strain présentées dans la littérature sont
basées sur les temps et les valeurs des pics des courbes de strain, ignorant leurs morphologies
et dynamiques. Cette dernière partie est la plus difficile dû à la multidimensionnalité du problème.
En effet, de nombreux facteurs entrent en jeu dans le processus de contraction du ventricule
gauche : les interactions mécano-hydrauliques, l’activation électrique et sa propagation, etc.

Ces dernières années, la modélisation et l’apprentissage automatique ("machine learning") sont
devenus de plus en plus populaires en recherche biomédicale, en particulier pour la prédiction,
le diagnostic et la stratification des risques, ainsi que dans le développement de thérapies
personnalisées [16–19]. Les deux approches, bien que différentes par essence, se sont avérées
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précieuses pour aider à comprendre les interactions complexes et multifactorielles de cette
pathologie. La modélisation se distingue par l’intégration de connaissances physiologiques dans
la chaîne de traitement des données. Ces types de méthodes sont au cœur des approches de
type "jumeau numérique" qui ont un potentiel considérable pour améliorer les diagnostics, les
traitements et la gestion des maladies, en permettant une approche plus précise et personnalisée
au patient. L’apprentissage automatique, quant à lui, étant axée sur les données, permet des
analyses de larges bases de données multimodales sans présupposés introduits par l’homme.

Figure 1: Illustration de la méthodologie avec : i) les bases de données cliniques : Bloc de Branche
Gauche (BBG) / Cardiac Resynchronization Therapy (CRT), Sténose Aortique (SA) et CardioMy-
opathie Hyperthrophique (CMH), ii) le traitement du signal, l’extraction de caractéristiques et
modèle physiologique et iii) le Machine Learning (ML) non-supervisé et supervisé.

Dans ce contexte, les travaux de thèse concernent l’évaluation de la fonction cardiaque en
utilisant des méthodologies comprenant des modèles computationnels et des algorithmes
d’apprentissage automatique/Machine Learning (ML). La combinaison de ces deux approches a
été déclinée à différents phénotypes d’insuffisance cardiaque (Figure 1) :

1. La première application de cette thèse consiste en la description d’un modèle computa-
tionnel et du processus d’identification pour la création de jumeau numérique de patient
avec un bloc de branche gauche (BBG). Une forte correspondance a été observée entre
les signaux de strain estimés et observés de 20 patients BBG et 10 patients sains de la
base. Les résultats ont montré que les morphologies de strain sont liées à la fois au retard
de conduction électrique et à l’hétérogénéité de contractilité du myocarde. L’approche à
base de modèles permet d’apporter des informations complémentaires par région sur la
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fonction électrique et mécanique du ventricule gauche à partir de l’analyse des données
échocardiographiques.

2. La seconde application propose des approches combinantmodélisation etML pour analyser
les courbes de strain des patients éligibles à la thérapie de resynchronisation cardiaque
(CRT) et propose de nouvelles méthodes pour améliorer la prédiction de la réponse de
chaque patient à la CRT.

i) Dans un premier temps, des approches de regroupement (clustering) ont été proposées
pour caractériser les profils de patient éligible à la CRT. Un premier clustering sur des
données cliniques, électrocardiographiques, échocardiographiques et de nouveaux indices
extraits des courbes de strain de 250 patients éligibles a été enrichi de cinq jumeaux
numériques représentatifs des clusters. La réponse à la thérapie est définie par une diminu-
tion d’au moins 15% du volume systolique du ventricule gauche à six mois de suivi, et a
été évaluée pour chaque patient. Le clustering a permis de proposer cinq phénotypes de
patients insuffisants cardiaques avec des taux de réponse différents à la thérapie. Ces
phénotypes de patients atteints d’insuffisance cardiaque et éligibles à la CRT se basent
sur des indices classiques ainsi que de nouveaux indices tirés du strain, particulièrement
interprétables physiologiquement.

ii) Ensuite, une approche similaire a été appliquée sur les paramètres extraits des jumeaux
numériques créés pour 162 patients de la base. Nos résultats soulignent l’importance à la
fois de la contractilité myocardique et des temps d’activation électrique dans la réponse
à la CRT. Cette approche combinée apparaît comme un outil prometteur pour améliorer
la compréhension des mécanismes du ventricule gauche et l’évaluation de la fonction
cardiaque chez les patients éligible à la CRT.

iii) Enfin, une autre combinaison des techniques de ML et des jumeaux numériques a été
appliquée à cette même base de données prospective. Les paramètres extraits des jumeaux
numériques sont devenus les entrées d’un algorithme de ML supervisé et ont permis la
création d’un classifieur de réponse ou non à la CRT. En plus de proposer des caractéristiques
explicables aux courbes de strain personnalisées à chaque patient, les paramètres proposés
améliorent la prédiction de la réponse à la thérapie de resynchronisation cardiaque.

Les perspectives futures consisteront en la validation de ces méthodes sur des bases de
données prospectives multicentriques plus importantes.

3. La troisième application consiste à proposer une méthode non invasive d’estimation de
la pression du ventricule gauche afin d’obtenir des indices de travail myocardique dans
le cas de la sténose aortique (SA). Un modèle computationnel similaire est utilisé, suivi
d’un processus d’identification de parametres pour 67 patients atteints de SA. L’objectif
est d’améliorer l’approche à base de modèle pour évaluer non invasivement la pression du
ventricule gauche proposée dans notre équipe [20, 21]. Ensuite, de comparer et d’évaluer
l’estimation de la pression du ventricule gauche avec la méthode de Fortuni et al. [22]
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adaptée de Russel et al. [23, 24]. L’estimation de la pression ventriculaire gauche étant
essentielle dans le calcul du travail myocardique, le travail calculé avec chaque méthode
d’estimation de pression est comparé avec celui calculé avec la pression invasive chez
des patients atteints de SA sévère et modérée de la base de données. Les deux méthodes
présentent une bonne concordance avec les indices de travail myocardique calculés à partir
de pressions invasives. L’évaluation du travail myocardique pourrait avoir une importance
significative dans la prédiction du pronostic des patients atteints de sténose aortique
asymptomatique sévère sans dysfonctionnement du ventricule gauche. De plus, il pourrait
aider dans la décision du remplacement de valve ainsi que des critères d’intervention
chirurgicale qui continuent d’être débattus pour ces patients.

4. La dernière application consiste à proposer des caractéristiques extraites des courbes de
strain pour la classification des patients atteints de cardiomyopathie hypertrophique (CMH)
présentant un risque de mort subite. L’algorithme d’apprentissage automatique combine
des données hétérogènes : cliniques, d’imagerie et des paramètres extraits des courbes
de strain du ventricule gauche. La prédiction de mort subite et d’arythmie ventriculaire
se révèle être de meilleure qualité pour ces patients atteints de CMH avec ces nouveaux
paramètres extraits du strain. Cette nouvelle méthode d’extraction de paramètres issus des
courbes de strain est complètement automatisée.

L’approche adoptée dans ce travail de thèse, combinant à la fois de la modélisation et des
méthodes classiques de traitement du signal et d’apprentissage automatique, constitue une
proposition originale visant à rapprocher la modélisation cardiaque de la pratique clinique quo-
tidienne. La méthodologie proposée représente une avancée vers l’utilisation de techniques
intégrant des connaissances explicites pour évaluer la fonction cardiaque, dans le but d’améliorer
l’interprétabilité des indices extraits de l’échocardiographie. Ces applications sont de bons exem-
ples de la manière dont les approches classiques de machine learning basées sur le traitement
du signal et de données peuvent être combinées à des jumeaux numériques.
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Introduction

Heart Failure (HF) is a pathological state characterized by a decreased ability to pump blood and
provide enough oxygen and nutrients to the body’s organs [1, 2]. Initially, the diagnosis is clinical
and characterized by fluid congestion, and it can be either related to right ventricular failure or
left ventricular failure, or most commonly related to both ventricular cavities. It is becoming
increasingly prevalent worldwide and affects over 26 million people globally [3], resulting in over a
million hospitalizations in Europe and North America each year [4]. The resulting cost to society is
significant, estimated at 2% of overall healthcare expenditures. Despite the numerous therapeutic
advances, both pharmacological and technological, its prognosis remains poor with a major
event rate at 6 months (mortality and hospitalization for heart failure) that approaches 50% after
the first hospitalization for acute heart failure in France [5].

The evaluation of left ventricular function remains a major challenge in cardiology, as a multitude
of treatments depend on this evaluation [6]. Despite the complex pathophysiology and the variety
of methods to analyze left ventricular function, the assessment of Left Ventricle Ejection Fraction
(LVEF) is still the reference method used in clinical routine. The limitations of this feature are well
known and include a lack of intra- and inter-observer reproducibility, sensitivity of measurement
to afterload, ventricular remodeling, and others [6–8].

Myocardial strain measurements emerge as an ultrasound clinical tool in the 2000s [9] and since
then remained mainly in the research domain [10]. This method semi-automatically acquires
regional strain traces that represent tissue deformation of different regions of the myocardium.
Recently, routine echocardiography starts to include strain measurements as complementary
function parameters [7] and they appear as a promising tool for the assessment of myocardial
function [11–19]. However, although these prior researches have suggested that analyzing strain
traces could serve as an alternative to quantify cardiac function, current guidelines still neglect the
value of this approach [6]. In fact, the analysis of strain curves is a difficult issue because of the
multidimensionality of the problem and physiological mechanisms involved in the LV contraction
process: mechano-hydraulic interactions, electrical activation and propagation... [19, 20] and lack
of standardization [21].

This analysis of the patient strain curves could benefit from Artificial Intelligence (AI) tools. In fact,
Machine Learning (ML) approaches appear as particularly relevant because of the high-volume
multiparametric features extracted from cardiac ultrasound images and the high heterogeneity of
patient profiles. For instance, supervised [22, 23] and unsupervised [24] ML methods have been
used to predict the response to cardiac resynchronization therapy and identify phenogroups of
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patients. Our team has been particularly active in this field [25–33]. In [25], integral-derived longi-
tudinal strain (automatic quantification of strain curves) was proposed to quantify dyssynchrony.
In [33], a complete Machine Learning pipeline was proposed to improve the estimation of CRT
response and was further validated in [26]. A quantitative analysis of myocardial deformation was
presented in [28], for the selection of the most informative echocardiographic views and features
for the estimation of CRT response, based on the Random Forest. In [27], features, extracted
from regional longitudinal strains, were analyzed using a clustering approach (K-Means) and
five clusters were defined, associated with groups of below-average to excellent responders. In
[29], myocardial work and integral-derived longitudinal strain were compared in the prediction
of CRT-response. In [34], supervised and unsupervised ML methods were used to underscore
the value of RV-derived parameters for the prediction of CRT response/survival. Despite these
encouraging results, we strongly believe that classification performances should be improved by
including knowledge in the data processing.

In this context, model-based analysis or digital twins seems particularly appropriate since it allows
the integration of physiological knowledge and could permit to access underlying mechanisms
hard to experimentally measure. Most of the cardiac models proposed rely on the Finite Element
(FE) method, which uses a 3D mesh geometry to simulate cardiac mechanical activity [35–46].
However, these models are computationally expensive and not easily personalized. They also
often fail to consider dynamic loading conditions and interventricular interactions, which require
increased model complexity to integrate. To address these challenges, alternative approaches
have been proposed that use lower dimension models to represent patient anatomy [17, 47–50],
allowing for better clinical translation and inclusion of heart hemodynamics within the entire
circulation. In that way, our team had a work history in the modeling methodologies from the
formalization of the model integration problem to sensitivity analysis, parameter identification
and specification [51–66]. Although these different models have shown promising results, there
is a need to adapt these studies to non-invasive, patient-specific data and bring these digital
twins to the clinical field and provide patient-specific strain curves interpretation.

The main objective of this thesis is to propose new methods to analyze LV strain curves of HF
patients based on computational model/digital twins and machine learning. These methods
aim at ensuring a more precise and personalized understanding of the left ventricular function of
heart failure patients. Explainable AI methods, integrating ML and physiological in-silico models
(patient digital twin), need to be proposed to combine physiological knowledgewith observed data,
using model-based reasoning, to improve the interpretability of the approach while minimizing
overfitting and limited robustness. The previous contributions of LTSI team (SEPIA) are the basis
of the work presented here. This methodological framework plays a crucial role in developing new
methods for analyzing experimental strain curves. Cardiovascular models, sensitivity analysis
and identification methods, proposed by SEPIA team, will be used to create accurate physiological
markers to the interpretation of cardiac strain based on digital twins and ML.
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This approach was applied in four contexts associated with different HF phenotypes (Figure 2):

— Model-based analysis of myocardial strains in left bundle branch block,

— Prediction of response to CRT and characterization of responder profiles,

— Assessment of myocardial work in aortic stenosis patients,

— Prediction of sudden death risk in patients with hypertrophic cardiomyopathy.

Figure 2: Methodological illustration with: i) the clinical database: Left Bundle of Branch Block
(LBBB) / Cardiac Resynchronization Therapy (CRT), Aortic Stenosis (AS) and Hypertrophic Car-
dioMyopathy (HCM), ii) the signal processing and feature extraction and the physiological model,
and iii) the unsupervised and supervised Machine Learning (ML).

This thesis is organized as follows:

Chapter 1 presents a description of the main physiological functions that are studied in this work.

Chapter 2 describes the methods and tools for modeling, simulation and analysis that are pro-
posed and applied in this thesis, including supervised and unsupervised ML approaches, a
description of the modeling and simulation framework (M2SL), the sensitivity analysis methods
(Morris screening method) and the parameter identification approach (Evolutionary algorithms).

Chapter 3 addresses a model-based analysis of myocardial strains in left bundle branch block.
Model-based approaches may provide a better understanding of myocardial deformations ob-
served in LBBB, since these approaches explicitly represent the fundamental physiological
mechanisms involved. Indeed, computational modeling appears as an efficient tool to integrate
knowledge, concerning cardiac electrical activation, mechanical properties, and hemodynamic
conditions, in the data processing. Chapter 3 aims at proposing a model-based approach for
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creating a digital twin able to replicate the patient’s myocardial strain curves and analyze the
patient-specific parameters of the digital twin model created.

Chapter 4 concerns the characterization of the responder profiles for Cardiac Resynchronization
Therapy (CRT) patient selection. Cardiac Resynchronization Therapy typically results in reverse
remodeling of the left ventricle and has been shown to have a significant positive effect on the
management of HF patients with specific conditions. However, despite the significant success
observed in randomized clinical trials, around 30% of patients who receive CRT do not respond to
treatment [67–70]. Recent studies have shown a relation between strain curves morphologies
and CRT response. Nonetheless, evaluating desynchrony patterns in these patients presents a
significant challenge. In fact, strains morphologies reflect the dynamics associated with both
electrical conduction delays and mechanical cardiac activities. The challenge was to propose a
multiparametric approach to address the multifactorial and complexity of the problem as well as
the among of data and integrate physiological knowledge to allow a translation to the clinical
practice.

Chapter 5 issue focus on the non-invasive Myocardial Work (MW) estimation of aortic stenosis
patients based on a computational model. Aortic Stenosis (AS) is characterized by a narrowing
of the aortic valve opening and a resulting pressure overload on the left ventricle. AS severity is
primarily assessed through echocardiography, but treatment decisions also consider ventricular
function and symptomatology. The need for reliable methods to evaluate myocardial function
impairment in AS patients independently of loading conditions is essential. Myocardial work
indices are an interesting afterload-independent alternative to evaluate accurate cardiac function
using strain signals and LV pressure curve. Due to the transaortic pressure gradient, the LV
pressure estimation of Russel et al. [71, 72] could not be applied. The challenge here was to
improve the model-based approach to assess non-invasively LV pressure proposed in our team
[57, 58] and to compare the LV pressure estimation with the adapted method of Russel et al. by
Fortuni et al. [73]. Chapter 5 will propose an evaluation of the MW calculated with the two LV
pressure estimation methods and invasive values in severe and moderate AS patients.

Chapter 6 concerns the Sudden Cardiac Death (SCD) prediction in Hypertrophic CardioMyopathy
(HCM) patients. Hypertrophic CardioMyopathy (HCM) represents a major cause of Sudden
Cardiac Death (SCD), particularly in the young people, with a risk of about 1% per year [74, 75].
Identification of patients at risk of SCD is then a major clinical challenge. However, current
international guidelines rely on retrospective evaluations of old HCM cohorts and are based on
limited and pre-selected clinical and imaging predictor variables to select patients at risk of SCD
[76, 77]. The objective is to propose a machine learning classifier for at-risk patients based on
their LV strain curves. Chapter 6 will propose a complete data-processing and machine learning
chains for the evaluation of these patients.
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Context: The Cardiac Function

Chapter

1

The evaluation of the cardiac function is essential to evaluate the heart’s ability to maintain
the blood flow circulation and supply the metabolic requirements. In the case of heart failure,
a pathology that affects more than 26 million people around the word, the cardiac function is
deficient.

This chapter will present three phenotypes of this chronic and degenerative pathology:

— Heart failure with left bundle of branch block,

— Aortic stenosis,

— Hypertrophic cardiomyopathy.

A general description of the cardiovascular system with it physiology and the electrical and
mechanical function will be first presented. Then, the two main modalities: electrocardiogram
and the echocardiography used in this work to evaluate the cardiac function will be described.

These three heart failure phenotypes, by different way, significantly affect the cardiac function,
and particularly the left ventricle ability to eject blood. Due to its multifactorial nature, the cardiac
function evaluation is still a main concern in heart failure patient care.

1.1 Cardiovascular system

The CardioVascular System (CVS), or vascular system, includes the blood circulatory system
that contains the heart, blood vessels, and blood. This system, by transporting blood through the
entire body, protects it from disease. It maintains a stable temperature and pH, ensure the supply
of oxygen, nutriments, and hormones thought the different body part.

The CVS is divided in two circulatory loops (Figure 1.1), linked together in a closed-loop circulatory
system:

— The pulmonary circulation aims at transporting deoxygenated blood from the right part of
the heart to the lungs trough pulmonary arteries and providing oxygenated blood back into
the heart through pulmonary vein.

— The systemic circulation transports the oxygenated blood from the left part of the heart
to the entire body via the aorta. It returns it back to the heart thanks systemic veins for
another cycle.
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Arteries, which are vessels with muscular and elastic thick wall, subdivide into smaller structures
named arterioles. The arterioles are then connected to the capillaries, which are the smallest
blood vessels.

Figure 1.1: Circulatory system, with the systemic and pulmonary circulation around the heart. The
blue part represents the deoxygenated blood and the red one the oxygenated blood.

1.1.1 The heart physiology

The heart is a muscular organ. Its function is to pump blood through the blood vessels of the
circulatory system tomaintain the good supply of oxygen and nutriment, as well as the elimination
of CO2 and wastes. It is made up of three-layered structures. From the inside of the heart to the
outside, one can find the endocardium, the myocardium, and the pericardium. The endocardium
is localized inside the heart chambers and forms the valves surfaces. The myocardium is the
bulk of the muscle and delimits the walls of the heart. Finally, the pericardium covers the whole
heart in a double-walled sac structure.

The heart is divided into two parts: the left and the right sides, and composed of four chambers.
The two upper chambers are the atria, and the two lower are the ventricles (Figure 1.2).

The left and right part are separated by the inter-atrial and inter-ventricular septa, respectively, for
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Figure 1.2: Heart anatomy with the four chambers: left and right atria, left and right ventricles
and the four valves: pulmonary, tricuspid, mitral and aortic valves.

the atria and ventricles.

The right atrium and the right ventricle are involved in the systemic circulation by receiving the
deoxygenated blood from the superior and inferior vena cava and in the pulmonary circulation by
pushing the blood to the lungs, via the pulmonary valve. The tricuspid valve separates the right
ventricle from the atrium.

On the other hand, the mitral valve separates the left atrium from the left ventricle. The left
ventricle receives the oxygenated blood from the pulmonary vein and return it to the entire body
through the aorta after passing the aortic valve.

The valves are separated into two types: the atrioventricular valves, located between atria and
ventricles (mitral and tricuspid valves) and the semilunar valves, located between the ventricle
and the arteries (aortic and pulmonary valves). The valves maintain the unidirectional flow in the
heart chambers thanks to the opening and the closing of their flaps (cusps and leaflets). These
opening and closing, are driven by the blood pressure of the two chambers around the valves. The
opening allows the blood to flow in the right direction, and the closing stops potential backward
blood flow.
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1.1.2 Electrical system

To contract, the heart has its independent electrical conduction system. This conduction system
is a network of different cells that keep the heart beating.

Two types of cells control heartbeat: conducting cells (cardiac pacemaker cells) that carry the
electric signals and muscle cells (cardiomyocytes) that control heart contractions. The electrical
conduction network sends electrical signals to start a heartbeat, contract the myocardium and
cause the heart muscle fiber depolarization.

The heartbeat is established by the sinoatrial node that creates an excitation signal. Then, it
travels into the AtrioVentricular (AV) node, the bundle of His, then down to the right and left
bundle of branch that led into the Purkinje fibers [1]. Figure 1.3 illustrates the electrical conduction
pathway. In this path, the atria and the ventricles are contracted by their muscle tissue impulses.

Figure 1.3: Cardiac electrical conduction pathway with the sinoatrial node, the atrioventricular
node, the bundle of His, the right and left bundle of branch and the Purkinje fibers.

In a lower level, the electric changes (voltage) in the cell are named cardiac action potential and
could be divided in five phases. (Figure 1.4):

— Phase 4: The baseline phase is the resting state.

32 Context: The Cardiac Function



— Phase 0: After the resting state, a fast depolarization period opens an influx of sodium
(Na+) ions. In pacemaker cell, this depolarization occurs spontaneously but in the muscle
cells. It is caused by the electrical excitation of nearby cells.

— Phase 1: A rapid inactivation of Na+ channels, followed by an opening of potassium (K+)
channels that cause a brief repolarization. This phase does not occur to pacemaker cells.

— Phase 2: Called plateau, this phase is due to the nearly balanced charge caused by the
influx of calcium (Ca2+) ions and the outgoing flow of K+. This phase caused an almost
constant potential for non-pacemaker cells.

— Phase 3: The repolarization phase occurs when the Ca2+ channels close and K+ ions
predominate. During this phase, Na+ channels will begin to recover and restore the resting
state.

Figure 1.4: Electrical phases of a cardiac pacemaker cell (left) and a muscle cell (right).

The resting potential is measured by the difference in voltage between the inside and outside the
cell. In muscle or cardiac cell at the resting potential is about -90mV.

An Absolute Refractory Period (ARP) is defined as the interval of time during which a second
action potential cannot be initiated, regardless of the power of the stimulus. It is longer in cardiac
muscle. The Relative Refractory Period (RRP) is the time during which a second action potential
can be initiated.

1.1.3 Mechanical behavior

Cardiac muscle

The myocardium (cardiac muscle) is composed of several layers of cardiac muscle cells named
cardiomyocytes. These cardiomyocytes are composed of one nucleus, a cytoplasm (sarcoplasm)
and a plasma membrane (sarcolemma). They are shaped cylindrically with numerous inter-
connected sarcomeres. Sarcomere is the fundamental contractile unit of cardiomyocytes. It is
composed of thick and thin protein filaments of myosin (thick) and actin (thin). Cardiomyocytes
are joined by intercalated discs thanks to two types of junctions: GAP junction and desmosomes.
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The cardiac contraction is control by action potential. The muscle structure, in intercalated discs,
is responsible for the transmission of force. It allows action potentials to spread easily between
cells and the transfer of ions. This ion concentration variation produces depolarization of the
heart muscle and a muscle contraction.

Cycle

The cardiac cycle has two main periods, diastole, and systole, which can be broken down into
four phases (Figure 1.5):

— Phase 1: IsoVolumetric Relaxation (IVR),

— Phase 2: Inflow,

— Phase 3: IsoVolumetric Contraction (IVC),

— Phase 4: Ejection.

Figure 1.5: Cardiac cycle: a) isovolumic relaxation, b) inflow, c) isovolumic contraction, c)ejection.

The cardiac cycle starts with both the atria and ventricles being relaxed. Blood flows from areas of
high pressure to low pressure, causing the atria to fill until the pressure rises and blood flows into
the ventricles. This also increases the pressure in the ventricles, leading to their contraction and
the pumping of blood from the right ventricle into the pulmonary artery and from the left ventricle
into the aorta. The electrical activity at the cellular level controls and initiates this mechanical
cardiac activity.
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Figure 1.6: Wigger diagram with the left ventricle (LV), aortic and atrial pressures, the LV volume,
and the ECG. The opening and closure of the mitral and aortic valve are added (MVC: mitral valve
closure, AVO: aortic valve opening, AVC: aortic valve closure, and MVO: mitral valve opening.

These variations of pressures and volumes in the different chambers could be represented in a
Wigger diagram (Figure 1.6).

1.2 Modalities

1.2.1 Electrocardiogram

Cardiac electrical function could be measured by electrocardiography. It is measured using
electrodes on the thorax skin and represented by a voltage versus time graph, known as elec-
trocardiogram (ECG or EKG). These electrodes detect the small electrical changes caused by
depolarization and repolarization of the cardiac muscle parts.

A standard 12-lead ECG is composed of 10 electrodes, divided into two groups: the peripheral
electrodes and the precordial electrodes. There are four peripheral electrodes placed on the
patient’s extremities (RA, LA, RL and LL). The other six electrodes are located in the precordial
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region (V1, V2, V3, V4, V5 and V6) [2]. They are named and placed as follows:

— RA: On the right arm.

— LA: On the left arm.

— RL: On the right leg.

— LL: On the left leg.

— V1: In the fourth intercostal space (between ribs 4 and 5) just to the right of the sternum.

— V2: In the fourth intercostal space (between ribs 4 and 5) just to the left of the sternum.

— V3: Between V2 and V4.

— V4: In the fifth intercostal space (between ribs 5 and 6) in the mid-clavicular line.

— V5: Horizontally even with V4, in the left anterior axillary line.

— V6: Horizontally even with V4 and V5 in the mid-axillary line.

The patient heart beat could be followed on its ECG with the progression of depolarization in this
order: sinoatrial node, AV node, bundle of His, LBB and RBB and Purkinje fibers to finish in the
ventricles. This normal pathway is characterized on ECG. In fact, the ECG tracing produce four
phase with typical pattern (Figure 1.7) [3] :

— P wave: It represents atrial depolarization.

— QRS complex: It represents ventricular depolarization. The amplitude of the QRS complex
is significantly larger than the P-wave due to the higher number of depolarizing cells in the
ventricles compared with the atria.

— T wave: The T wave represents ventricular repolarization

— U wave: This last phase is often missing because of its very low amplitude and thus ignore
by clinicians.

Figure 1.7: ECG trace of a normal patient with the P, T and U wave, the QRS complex (in blue), the
PR (in red), QT (in pink) and RR (in green) intervals.

Based on these phases, three intervals could be defined:

— RR interval: It defined the instantaneous heart rate (HR) and it separates two consecutive R
waves.
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— PR interval: This interval is measured between the start of the P wave and the beginning of
the QRS complex. It reflects the time the electrical impulse takes to travel from the sinoatrial
node through the AV node.

— QT interval: It represents the time between the start of the QRS complex and the end of the
T wave. It also represents the length of the ventricular depolarization and repolarization
phases.

ECG gather a large among of information about the cardiac structure and its electrical conduction
through the different parts of the heart. It could also warn about potential the conduction system
damage or the muscle cells and help to follow the drug’s effect or the proper functioning of
implanted devices.

1.2.2 Echocardiography

As electrocardiography, echocardiography is another modality routinely used in diagnosis, man-
agement, and follow-up of heart diseases [4, 5]. This modality is widely used because it is
non-invasive, harmless for the patient, fast, time real, relatively cheap, and widely available for
the clinicians.

This type of imaging is based on standard ultrasound or Doppler ultrasound and produce a real
time moving image of the heart. Ultrasound transmits sound waves with specific frequencies.
The ultrasound pulses echo off tissues and are returned to the probe, which records. These
differences of record due to the properties of the different crossed tissues provide a display as
an image and video.

Figure 1.8: Transthoracic echocardiography (apical 4-chamber view).

Echocardiographic modes

Several modes could be used in echocardiography:

— Color Doppler: allows seeing and measure the flow of blood in the heart and arteries.
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— M-mode or 1D mode: Less frequently used, it has specific uses and has the benefit of very
high temporal fidelity.

— B-mode or 2D mode: It is the most commonly used in echocardiography and offers an
image of the anatomy of the heart, allowing to see the different chambers (Figure 1.8) and
valves structures during the heart cycle.

— 3D mode: This new mode aims at providing 3 dimensions images, created from multiple
images in 2D.

Echocardiograms provide information about the shape, size, function, and strength of the different
heart chambers. Themovement of thewalls and the cardiac valve function could also be evaluated
[6, 7]. It also estimates the cardiac function, thanks indices such as a calculation of the cardiac
output, ejection fraction, systolic and diastolic function, valve area ...

Echocardiographic views

Cardiac ultrasound could refer to Trans-Thoracic Echocardiography (TTE) or TransEsophageal
Echocardiography (TEE). TTE is the most common, and it is performed on the chest of the patient.
TEE is more invasive and uses a special probe that is inserted into the esophagus.

During a transthoracic echocardiographic examination, several views could be observed [7].
Parasternal long and short axis; apical 2-, 3- and 4-chamber; subxiphoid, and inferior-vena-cava
views.

The apical views are mostly used for the hemodynamic assessment of the heart. They well
illustrated the global cardiac function with the systolic and diastolic functions as well as the valve
behaviors.

Strain

Strain imaging is an advanced echocardiographic technique that assessesmyocardial function by
evaluating deformation of themyocardium (Figure 1.9). Twomethods exist to track themovement
of specific points on the heart wall and computing strain curves:

— Tissue Doppler Imaging (TDI) is a Doppler-based technique that measures the velocity of
blood flow or tissue movement to calculate the strain of the heart muscle. It can be used to
measure both longitudinal and radial strain of the myocardium.

— Speckle-Tracking Echocardiography (STE) is a feature-tracking technique that uses the
natural speckle patterns present in ultrasound images to track the movement of specific
points on the heart wall. STE does not rely on blood flow to track the motion, and it can
provide a full-volume analysis of the heart. STE can also provide strain measurements in
multiple planes, including longitudinal, radial, and circumferential.
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Figure 1.9: Echocardiography of the 4-chamber view with the 6 segments and the strain curves.

TDI is considered more sensitive to detect abnormalities in systolic function, while STE can
provide a more detailed and accurate assessment of the heart’s mechanical function. TDI is also
more limited by the quality of the image and the presence of tissue interfaces or artifacts that
may affect the accuracy of the results. STE is less dependent on image quality and can provide
more robust results. Currently, STE technique is more used, and we will focus on this technique
in the rest of this thesis.

With STE, strain curves could be acquired for different regions (called segments: s) and represent
tissue deformation in 3 spatial directions: longitudinal, radial, and circumferential. The strain (ε)
is expressed as a percentage. It is defined as the variation in the myocardial segment length (ls)
relative to its original length (ls,ref ), usually taken at end-diastole [8].

εs = (ls − ls,ref )
ls,ref

· 100 (1.1)

Thus, positive longitudinal strain represents fiber elongation or relaxation and negative longitudinal
strain indicates fiber shortening or contraction.

To gather the entire LV deformation, the 2-, 3-, and 4-chamber views could be used. In fact, the
orientation of the probe during the echocardiography allows accessing all the ventricular wall.
The six segments of the 2- and 4 chamber views and the six or four segments of the 3-chamber
views create a 16 or 18 segmental ventricle, as illustrated in Figure 1.10 in order to access to the
longitudinal deformation of the entire ventricle. Global Longitudinal Strain (GLS) value could be
computed as the average of the maximum deformation of the longitudinal strain curve.
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Figure 1.10: Six segmental segments for the three-echo view (2-, 3- and 4-chamber) with the
representation of the LV in a bull eye with the echocardiography device vendor colors: 1: basal
anterior, 2: basal anteroseptal, 3: basal inferoseptal, 4: basal inferior, 5: basal inferolateral, 6: basal
anterolateral, 7: mid anterior, 8: mid anteroseptal, 9: mid inferoseptal, 10: mid inferior, 11: mid
inferolateral, 12: mid anterolateral, 13: apical anterior, 14: apical septal, 15: apical inferior, 16: apical
lateral

Echocardiographic indices/features

On a TTE one can measure structural element such as LV diameter at the end of systole (LVESD)
or diastole (LVESD). The LV volumes are also computed: (LVESV and LVEDV). They are computed
by a method called "Simpson Bi-plane" [7] which simplified the ventricle in disk layers of same
size and sum all these disk volumes. To clinically simplify the computation of each disks’ length,
only two lengths could be used to estimate the entire LVESV and LVEDV by assuming that the LV
is bullet shaped [7]. From these measurements and as it was previously mentioned, one of the
major indicators of HF is Left Ventricle Ejection Fraction and it can be computed (in percentage):

LV EF = LV EDV − LV ESV

LV EDV
· 100 (1.2)

In a normal case, the LVEF is between 55 and 70%.

The LV atria can also be measured by TTE. The same could be done for the right ventricle,
especially thanks to the 4-chamber view with the surface measurement at the end of systole and
diastole.

Other indices can be extracted from TTE to diagnose HF. These indices measured the blood flow
in the LV, and especially the blood flow velocity through the mitral valve. Figure 1.11 is a schematic
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representation of the velocity of the blood composed by two waves.

Figure 1.11: Scheme of the blood flow through the mitral valve. The E and A pic are represented,
and the dotted line represent the decrease of speed after the E pic (used to compute DT).

The E-wave reflect the passive blood flow from the left atrium to the left ventricle and marks
the start of diastole. This flow is pushed by the pressure gradient between the LA and the LV.
The A-wave represents blood flow generated by active atrial contraction. From these two wave
velocities, we could compute the E/A ratio [9]. In a healthy case, the E/A ratio must be higher than
1. If it is not the case, the patient presents a diastolic dysfunction. Moreover, if this ratio is above
2, it is a sign of a LV pressure too high.

Another feature could be extracted from this examination: The Deceleration Time. It is the time
interval between the peak of E-wave to the projected baseline (see Figure 1.11). DT indicates
the duration for equalizing the pressure difference between the left atrium and the left ventricle
(through the mitral valve) and it leads to the diagnosis of HF.

Moreover, from this velocity curve, an integral could be computed: themitral Velocity Time Integral,
also called stroke distance. This integral allows prediction of HF evolution [10]. A similar integral
could be computed at the LV exit, at the level of aorta, it is the aortic VTI.

The motion of the mitral annulus (that circle the valve) can be studied during systole and diastole.
During systole, it travels toward the apex of the heart and go back during diastole. The mitral
annular plane diastolic motion is then particularly interesting and as the blood is velocity could
be recorded. Two main negative waves can be observed, e’-wave and a’-wave, and reflect the
same event as the E-wave and A-wave, respectively. Experimentally, the e’-wave and a’-wave
are measured separately for the septal and lateral walls and the average of these two velocity
measurements are gathered under the name e’, respectively for a’. Classically, a ratio between
the blood flow velocity and the mitral annulus velocity in computed as E/e’ [9, 11]. The motion of
the mitral annulus also presents a main wave during systole. Similar to the e’-wave and a’-wave,
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this systolic wave is the average of the two pics measured on the septal and lateral walls. This
wave is named s’ and is well correlate to the LVEF [12].

TTE allows to visually detect Septal Flash (SF). SF is a typical pattern of contraction and elongation
of the septal wall of the LV [13]. It is a fast movement of the septal wall during systole and is an
indicator of response to CRT [13–18]. Similarly, one could detect Apical Rocking on TTE. It is a
typical movement of the apical part of the myocardium [13]. As Septal Flash, Apical Rocking is an
indicator of CRT response [13, 14].

Other indices could also be extracted of the LV and predict a CRT response. For example, the
Tricuspid Annular Plane Systolic Excursion (TAPSE) which is the measurement of the tricuspid
annulus motion to the apex during systole or the Systolic Pulmonary Artery Pressure (SPAP)
which allows to estimation of pulmonary arterial pressure during systole thanks the pressure
gradient are one of them.

To sum up, various indices could be extracted from echo-measurements and can characterize
myocardial function:

— The structure: LVESD LVESD, LVESV, LVEDV and LVEF, left atrium volume, the RV surface at
end-systole and end-diastole.

— The flow: E-wave, A-wave, E/A, DT, mitral and aortic VTI, e’-wave, a’-wave, E/e’.

— The atypical movements: Septal Flash (SF) and Apical Rocking (AR).

— The deformations: with the strain curves and indices that can be extracted from them,
developed in the next chapter (Section 2.2).

1.3 Heart failure

Heart Failure (HF) is a pathological state characterized by a decreased ability to pump blood and
provide enough oxygen and nutrients to the body’s organs. It is often caused by conditions that
affect the heart’s strength or elasticity. It is a chronic condition that tends to worsen over time
[19–22].

HF can involve the left and/or the right ventricle. Several conditions could cause heart failure by
changing the structure and/or the structure of the heart such as:

— Coronary artery disease,

— Heart attack,

— Hypertension,

— Valve disease,

— Cardiomyopathy,
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— Myocarditis (inflammation of the heart muscle),

— Arrhythmias (abnormal heart rhythms).

This section will, now, focuses on three phenotypes of HF patients: aortic stenosis patients,
patients with hypertrophic cardiomyopathy and HF patients with left bundle of branch.

1.3.1 Left bundle of branch block

Left Bundle of Branch Block (LBBB) is an anomaly of the cardiac conduction circuit. The electrical
signal is partially or completely blocked in the left branch of the His bundle before reaching the
left ventricle and lead it to contraction (Figure 1.12). Because of this blocking in the LBB, the
signal only spread to the Right Bundle of Branch (RBB) and lead the LV contraction slower and
with a delay compared to the RV. This results to a dyssynchrony in the heart contraction and a
less effective blood ejection.

Figure 1.12: Left bundle branch block (LBBB). The electrical impulses are blocked in the left
branch of the His bundle (illustrated by the black point)

There are several causes of LBBB [23–25]:

— Myocardial infarction (or heart attack): occurs when blood flow decreases or stops to the
coronary artery of the heart.
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— Valve disease: is the inability of one or more of the valves to work properly (open and close).

— Hypertension: is defined by high blood pressure.

— Cardiomyopathy: is the thickened, stiffened or weakened heart muscle.

— Myocarditis: is the inflammation of the heart muscle.

25% of heart failure patients present LBBB and in this case or for patients who present acute
chest pain and/or syncope, LBBB could have great consequences. For other patients without
other pathology, LBBB has no major consequence and needs no treatment.

LBBB diagnosis is mainly done by a 12-leads ECG and these following criteria are usually used:

— The QRS duration is superior to 120 ms for at least one derivation.

— V1 has a QS complex (QRS complex is often entirely negative) or a small R wave followed
by a large S wave.

— V6 has a high and wide R wave, no Q wave and present T wave inversions.

For this critical patients, pharmacological treatments or the implantation of a Cardiac Resynchro-
nization Therapy (CRT) device could be used.

Cardiac Resynchronization Therapy is a treatment of choice in patients with systolic heart failure
and LBBB with wide QRS (>120 ms), who remain symptomatic despite optimized medical therapy.

Cardiac resynchronization therapy

Cardiac Resynchronization Therapy (CRT) is a device-based implantation (Figure 1.13). The
device provides small electrical signals through its leads. It aims at synchronizing the ventricle
contraction that implies a more effective heart pumping and stabilize the electromechanical
system [26].

There are two types of CRT devices:

— The Cardiac Resynchronization Therapy Pacemaker (CRT-P) or biventricular pacemaker:
it is a kind of pacemaker.

— The Cardiac Resynchronization Therapy Defibrillator (CRT-D): It is similar to the previous
one but includes also a built-in implantable cardioverter defibrillator.

This therapy is proposed to symptomatic patients who have systolic heart failure, with severely
reduced LV ejection fraction (<35%) and significant intraventricular conduction delay (QRS duration
>120 ms), most of them are LBBB patients [25]. However, around 30% of implanted patients,
according to the European and the United States guideline, does not respond to the CRT (defined
as a decrease ≥15% in LV end-systolic volume). In addition to the LV end-systolic volume (and
LVEF), theNew-York Heart Association (NYHA) functional class is also commonly used to evaluate
the response to CRT based on a reduction in symptoms and an improvement in functional status.
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Figure 1.13: Cardiac resynchronization therapy (CRT), localization of the 3 leads in the right atria
(RA), right ventricle (RV) and in the coronary sinus.

Improving the patient selection for cardiac resynchronization therapy (CRT) is essential to lead to
better outcomes and cost-effectiveness [26–35]. By identifying patients who will benefit from
CRT, we can ensure that the therapy is being used for the most appropriate patients, reducing the
risk of complications and increasing the chances of success.

Alternative pacing location (conduction system pacing) are currently explore to improve the CRT
response. This pacing technique provides a more physiological simultaneous electrical activation
of the ventricles via the His Purkinje system [29]. Studies are ongoing to evaluate the benefits of
this technique, and it was not explored during this thesis [36–39].

1.3.2 Aortic stenosis

Aortic Stenosis (AS) is themost common primary valvular heart disease, leading to an intervention
with growing prevalence due to the aging population. Valvular heart disease is the inability of one
or more of the valves to work properly, causing disruption in blood flow (see Figure 1.5). There
are two different type of valve disease: valvular regurgitation.

— Valvular regurgitation: It happens when the valve does not close completely and allow the
blood to flow back.
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— Valvular stenosis: It happens when the valve opening is smaller than normal and restricts
the blood flood to pass.

In both case, this causes serious implications because it restrains the good supply (oxygen and
nutriment) and elimination (CO2 and wastes) through the blood circulation in the entire body.

Figure 1.14: Aortic valve localization, a) Healthy vs b) Stenosis aortic valve.

AS is characterized by a reduction of the aortic valve orifice size (Figure 1.14). This surface
reduction restricts the blood to flows out the LV and provide oxygenated blood to the entire body
via aorta. It also develops a pressure gradient across the aortic valve and a chronic pressure
overload in the LV. An AS patient needs to provide extra work to pump enough blood and thus
leads to heart failure.

Current recommendations [40, 41] state that Aortic Valve Replacement (AVR) is a class I indication
in cases of symptoms or reduced left ventricular ejection fraction (LVEF <50%) [42]. Whatever,
LVEF is preserved in many patients with AS even when symptoms develop and/or the narrowing
of the valve is severe. Echocardiographic exam [43] is usually the way to diagnose AS. It allows
the quantification of aortic valve and transaortic gradient, as well as the assessment of LV
morphology and function. Unfortunately, valvular parameters such as Aortic Valve Area (AVA)
and transvalvular gradient did not permit an ideal risk stratification [41, 44–48]. Depending on
the severity of the aortic reduction, the signs and symptoms, and the condition of the organs
(heart and lungs), different treatments could be proposed. Early treatment can help to reverse
or slow down the progress of this disease. Other possible treatments may include Aortic Valve
Replacement (AVR), using mechanical or biological prostheses. This is done by a heart-open
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surgery or a Transcatheter Aortic Valve Implantation (TAVI).

1.3.3 Hypertrophic cardiomyopathy

Hypertrophic CardioMyopathy (HCM) is a genetic disorder characterized by thickening of the
heart (Figure 1.15). The hypertrophied heart walls make the pumping function harder.

Figure 1.15: a) Normal heart, b) Hypertrophic heart

Hypertrophied myocardial areas are characterized by myocardial disarray, interstitial and focal
fibrosis. These areas constitute the substrate of ventricular arrhythmias which classically occurs
in addition to an excess of sympathetic tone, like exercise or stress, and/or ischemia [49, 50]. In
these hypertrophied areas, the myocardial disarrays involve a local electrical conduction delay
secondary to fibrotic replacement and emergence of anisotropic areas.

A minority of the HCM patients present symptoms such as shortness of breath or chest pain.
Because of this absence of symptoms, or few symptoms, HCM is often undiagnosed. Unless a
small number of HCM patients present symptoms, HCM represents a major cause of Sudden
Cardiac Death (SCD), particularly in the young population, with a risk of about 1% per year [51, 52].

Primary prevention of SCD is based on Implantable Cardiac Defibrillator (ICD) [53, 54] with good
effectiveness but at the cost of an invasive procedure and device complications including infection
and inappropriate shocks [55]. Identification of patients at risk of SCD is still a major clinical
challenge unless risk of SCD score was proposed by the European Society of Cardiology (ESC)
[56].
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1.4 Conclusion

The evaluation of LV function currently remains a major challenge in cardiology. Even if LVEF
remains a reference diagnostic tool, its dependence on the afterload and the geometry of the left
ventricle makes it an insufficient indicator on its own. Despite an abundant literature, the use of
strain, evaluated in echocardiography, struggles to be integrated into daily care. The evaluation of
myocardial deformations, specifically through the estimation of strain curves in echocardiogra-
phy, appears as particularly promising. However, the complexity and multidimensionality of the
problem, as well as the various processes involved in ventricular contraction, make analyzing
myocardial strains a difficult task. Therefore, new methods are necessary to jointly analyze
echocardiography data and, especially, strain morphology acquired from different regions of the
myocardium. Moreover, recent research demonstrates the growing importance of phenotyping,
partly thanks to imaging techniques. Medical doctors provide therapies and strategies that have
been proven relevant in randomized trials, allowing for the provision of care to patients with
potentially serious heart diseases. However, it is important to note that randomized studies
demonstrate the value of a strategy or treatment at the level of a target population, not at the
individual level. By using echocardiographic data, we can attempt to better characterize patients
and clearly evaluate them, thereby enabling the provision of more appropriate and personalized
treatment strategies.
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Methods and Tools

Chapter

2

The methodological framework proposed in this thesis combines: i) physiological model-based
approach, ii) signal/data processing and feature extraction, iii) supervised and unsupervised
machine-learning.

Modeling and simulation methods and tools are presented in Section 2.1. A description of mod-
eling and simulation tools is proposed, including M2SL, which is a multi-formalism modeling
and simulation library developed by our team. This section also focuses on methods of sen-
sitivity parameter analysis and includes a description of parameter identification strategy that
was proposed in this thesis. Analyze the parameters of a model is a crucial step that enables a
better understanding of the characteristics and behaviors of the model itself, and the system
under study. Data processing and feature extraction, including longitudinal strain integrals and
myocardial work indices, are described in Section 2.2. This second section is essential to process
data both prior and after the model identification process, as well as for identifying possibles new
markers of the LV function. Finally, Section 2.3 presents the machine-learning algorithm applied
in this thesis.

2.1 Model-based approach

The implementation and investigation of integrated mathematical models require a set of appro-
priate simulations tools and parametric analysis methods. This chapter presents the modeling
tools and methods used throughout this thesis: i) multi-formalism modeling and simulation envi-
ronment (M2SL), which is a simulation toolkit developed by our group, ii) sensitivity parameter
analysis used to evaluate and rank the parameters of a model and iii) parameter identification
methods, that will be applied in this work in order to fit the model to experimental data.

2.1.1 Multi-formalism Modeling and Simulation Library (M2SL)

The different models used in this thesis were created and simulated in the M2SL. M2SL is a
library designed and progressively improve in the LTSI laboratory during years by PhD students
and researchers [1–4]. It is an object-oriented methodology. The models in M2SL are represented
with different abstract classes, which define the structural elements of a model and/or sub-model
and its behaviors. This library is entirely developed in C++ language.
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Model representation

To go further in the explanation of the modeling process, the formalism must be explained with
some definitions.

— An input: It is a variable that enters in the model. This variable triggers and influences the
behavior of the model. The user must define a range which the variable can take as value.

— An output: Similarly, it is a variable that exits the model.

— A parameter: It is a special kind of input variable. Parameters are usually used to constrain
the simulation or as conditions. They are very important and influent in the simulation
behaviors and outputs depending on the value given. They are also defined in a range of
value.

— A state variable: It is a value that is intrinsic to the model. These variables are part of the
different internal mechanism of behaviors of the model. They are usually used to compute
the outputs variables with the input ones and the parameters. They also determine the
status of the system that led the current and future behaviors. They could be access or not
because it is not an output variable.

These definitions are gathered in Figure 2.1.

Figure 2.1: Input/ouput model formalisms.

A model M could be defined as a tuple denoted M(F, I, O, E, P ) where I , O and E denote the
input, output and state variable sets, P denotes the parameter set of the model (I , O, E and P

were defined just below), and F is the formalism in which the model is described [1]. M2SL library
make able the combination of different model. Models are divided in two types of model objects:
atomic models (Ma) and coupled models (M c):

— Ma: An atomicmodel is a model with a specific component of a system using one particular
formalism.

— M c: A coupled model is a model composed of a set of components ({Mi}) and is noted
M c(F, I, O, E, P, {Mi}),

Mi are sub-models, they can be either atomic or coupled models.

56 Methods and Tools



To define each model in M2SL a simulator is created for each model and a global simulator is
created and named Root-Coordinator. It is illustrated in Figure 2.2. The Root-Coordinator analyses
the model hierarchy and creates a simulator for each sub model. The library is coded such as the
appropriate simulator type is automatically chosen.

The simulator, created for coupled model, has special properties and are called Coordinator. They
handle the connection of the internal components of a complex model and computes model
outputs at the coupled level.

Figure 2.2: Model formalism with M2SL, translation between model hierarchy (left part) and
simulator hierarchy (right part), adapted from [1].

The structures of tuple representation M(F, I, O, E, P ) could be described as:

— Formalism (F ): It is chosen during the implementation. It could be algebraic equations,
Ordinary Differential Equations, or algebraic equations with discrete time. Each formalism
requires the implementation of specific behaviors.

— Variables (I, O, E, P ): They are organized in four types as described before: inputs, outputs,
states, and parameters.

— Components: They are the sub-models of the model.

— Behaviors: The behaviors are four followed procedures:
1. Initialization: the calculation or simple assignment of initial values to all variables of

the model.

2. Variable synchronization: the update or modification of the internal state of the model
due to a change in the input variables.

3. Output calculation: the computation of the output variables from the current internal
state and the input variables.

4. Termination: the final procedure executed when the simulation ends
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Simulation loop

After the implementation of the different components of themodel and sub-models, the simulation
of the model system could be performed. As before, the root-coordinator leads the simulation by
defining and updating the global time of the simulation and coordinating the local time of the
different sub-models. Then, three classical procedures are executed: initialization, simulation
loop and finalization.

1. Initialization: First, the Initialization step prepares all the model and sub-models for the
simulation. The simulators for each model are created according to its formalism, then the
links between the simulator according to the hierarchical structure are created. Then the
simulator is initialized by setting the initial values to all the variable and initiating the time.

2. Simulation loop: After the initialization, the simulation could start, and the simulation is
done following steps that are repeated in a loop (Figure 2.3):

Figure 2.3: Model simulation loop steps with M2SL, adapted from [1].

— First, the synchronization of themodels consists in updating all the variables calculated
from the initialization step or the last simulation loop. In this last case, the output
values become the new input values and some model internal values must be updated.

— The simulation ofmodels calculates the internal transitions of themodel to advance the
local simulation time of one- or several-time steps. The number of time step done is set
according to temporal synchronization betweenmodel (defining during the initialization
phase) : fixed step simulation, adaptive step with the smallest synchronization step or
adaptive step with fixed synchronization step.
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— Because the simulation advanced, the state variables have been modified, and the
output variables must be calculated according to this new state variable values and
the new time step.

— The global time is then advanced.

— At the end of each iteration, a stopping condition is evaluated to evaluate if the simu-
lation should stop. This stopping condition could be a target simulation time and/or
could be defined by the user.

3. Finalization: At the very end, when the loop meets the stopping condition, all the resources
acquired during the simulation are released.

2.1.2 Model analysis: sensitivity analysis

Sensitivity Analysis (SA) [5–8] is an important tool in understanding the behavior of complex
models. When well conducted, it allows identifying the influence of the input parameters on the
output(s) of the model. Thus, we can focus on a group of parameters that have major influence on
specific output and thus help guide the parameter estimation or motivate further attention in the
observation of certain inputs. On the contrary, groups with little influence can be then simplified
or estimated, depending on the application [9].

There are a variety of SA methods and the choice of the appropriate method depends on various
factors such as the computational cost and available computational resources as well as the
linearity independence or interaction between parameters. A categorization can be done as follow
[6]: the local sensitivity methods, global sensitivity methods and the in-between methods: the
screening methods [10, 11].

Local versus global sensitivity analysis

Local methods represent the simplest way to perform a sensitivity analysis. The "local" term
emphasizes the fact that the sensitivity of the parameters is studied in a small region of the
parameter space.

One-At-Time analysis starts from a working point X(0) =
[
x

(0)
0 , x

(0)
1 , ...x

(0)
j , ...x

(0)
n−1

]
and a small

variation/perturbation (∆) of the parameter j is introduced in X(0), to become[
x

(0)
0 , x

(0)
1 , ...x

(0)
j + ∆, ...x

(0)
n−1

]
. This variation is predefined in a range of values and repeated with

several values that could be ∆, 2 · ∆, ... , n · ∆. When all these points are evaluated in the model,
the results can be analyzed in several ways. First, the partial derivatives ∂Y

∂xj
can be estimated or

averaged, which can be normalized and compared to the partial derivatives of other parameters.

The results can also be plotted with respect to the different values of the varying parameter.
Figure 2.4 illustrates the effect of the parameter variation in three cases: no effect, linear effect
and, non-linear effect.
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Figure 2.4: Three examples of parameter variation effect on an output Y : a) no effect, b) linear
effect, c) non-linear effect, with the linear regression.

The effect of the parameter can be estimated visually or quantified using a linear regression.

Local SA are useful for their simplicity and reduced number of evaluations. However, as their
name imply, the parameter space is not fully explored, since it does not consider simultaneous
variations of parameters. Thus, local SA approaches cannot detect interactions between parame-
ters. Moreover, the linear regression analysis presented before (Figure 2.4) supposes a linearity
and failed in the case of non-linearity.

On the other hand, global sensitivity analysis does not constrain the parameters values to a
specific region around a working point. The more commune approach of global SA is the variance-
based approach. This approach tries to identify which part of the variability of an output (Y ) can
be attributed to the variability of each parameter xj by varying and evaluating the parameters
values and outputs across the whole input space [6, 12, 13]. These kinds of SA methods require
lots of model evaluation to calculate the sensitivity indices and became exponential with many
parameters. This is the major limitation of the application of global SA and reduces its application
to very simplified model with a reduce number of parameters. To compensate this limitation,
another type of approach was created in-between (see Figure 2.5): the screening methods.

Figure 2.5: Illustration of the three different SA on an output Y : a) Global method, b) Screening
method, c) Local method.
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Screening sensitivity analysis

Screening Sensitivity Analysis method permits to identify and examines important parameters
with relative low computational requirements [10, 11]. Thismethod does not quantify the sensitivity
of a parameter, but qualitatively identifies which parameters of a function are relatively influent on
output. Themost famous screeningmethod is theMorris elementary effectsmethod. Thismethod
provide insights into the relation between parameters and outputs and allows a characterization
of the relative significance of each parameter. Using the Morris elementary effects method [7],
the sensitivity of each parameter is estimated by repeated measurements of a simulation output
Y with a set of parameters X = [x0, x1, ...xj , ...xn−1], while changing one parameter value xj at a
time. For each parameter j, the range of possible values is selected in advance (usually based on
literature and previous work values ±30%). The resulting change in Y , compared to the simulation
output using the initial values of X, is calculated by the elementary effect:

EE∗
j =

∣∣∣Y ([x0, . . . , xj , . . . ]) − Y ([x0, . . . , xj + ∆, . . . ])
∆

∣∣∣ (2.1)

where ∆ is the variation of the parameter. The Morris method consists, from a randomly chosen
initial point, of forming a trajectory of n + 1 points (number of parameters + initial point) and in
calculating for each of the points the corresponding elementary effect [7]. An illustration of a
2-dimension case is presented in Figure 2.6.

Figure 2.6: Example of the Morris screening method principle in a 2D space (X = [x0, x1]), with 3
initial points (in grey) and their trajectories (in blue).

Thus, a finite distribution Fj is obtained for each parameter j of r elementary effects, and it is
possible to calculate the basic statistics indices such as µi which is the average of the EEj or µ∗

[14] to face the problem of negative and positive effect as well as the standard deviation (σ).

µi = 1
r

r∑
k=1

EEk (2.2)
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µ∗
i = 1

r

r∑
k=1

|EEk| (2.3)

σi =

√∑r
k=1(EEk − µi)2

r
(2.4)

These indices are computed to derive sensitivity information of each parameter j:

— The standard deviation (σ): It estimates the non-linear effects and the interactions with
other parameters.

— The mean of the absolute values (µ∗
i ): It assesses the overall influence of the parameter on

the output.

Figure 2.7: Morris elementary effects results example presented in a µ∗ − σ plane. A parameter
could be analyzed and defined as having a negligible effect, a significant linear effect, a significant
but non-linear effect or interactions (adapted from [2]).

Moreover, as summarized in Figure 2.7, the µ∗ − σ plane representation provides the following
description of the parameters:

— Low µ∗
i and σ implies negligible effect on the output.

— Large µ∗
i but large σ reveals a significant and linear effects on the output.

— Large µ∗
i and σ implies significant and nonlinear effects on the output, or important interac-

tions with other parameters.

2.1.3 Parameter Identification

Parameter Identification can be considered as an optimization problem where the objective is to
find the best vector of parameter Xopt that minimizes an error function Jerror also called fitness
or objective function, defined as an error between simulated and observed data :
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Xopt = arg min
X∈X

Jerror(Osim(X), Oobs) (2.5)

These observed data (Oobs) could be one or several valuesmeasured or estimated but also signals
or a combination of both, directly measured on a specific patient or averaged value(s) found in
literature.

The field of mathematical optimization provides a wide variety of methods [15] to solve different
kinds of problems, including analytic approaches, iterative methods, gradient-based methods,
deterministic [16, 17] and stochastic approaches, among others. However, not all these methods
are appropriate for the problem of parameter identification due to several reasons, including the
high dimensionality of the problem, the non-linearity, and discontinuity of the underlying equations,
and the complexity of the model equations that complicate the calculation of their derivatives or
partial derivatives.

Classical optimization methods, such as Newton’s method or Lagrange multipliers, linear pro-
gramming approaches such as the simplex algorithm [18], and exhaustive exploration methods
such as branch-and-bound [19] methods are not suitable for the problem of parameter identifi-
cation due to the reasons mentioned above. The remaining methods include approaches that
approximate numerically the derivatives of the objective function, methods that use heuristics to
select interesting points in the parameter space, and methods based on a stochastic process.

Stochastic approaches are useful when the parameter space and objective function are not
well understood or when the parameter exploration requires random perturbations to avoid
local minima. Particle swarm optimization [20] is a popular stochastic approach that uses an
iterative procedure where a list of solutions is maintained, and each candidate solution wanders
the parameter space with a behavior that mixes exploration and attraction to good solutions.
However, the convergence of approaches that constantly evolve a list of candidate solutions is
not guaranteed, and it mostly depends on a good choice of algorithm parameters, such as the
size of the candidate solution list and the number of iterations.

Evolutionary algorithms

Within the stochastic approach, Evolutionary Algorithm (EA) are optimization algorithms inspired
by the biological theory of evolution [21, 22]. It follows the approach of maintaining a set of
candidate solutions (a population), and repeatedly evolving this populationwith processes inspired
by biological evolution: selection, reproduction, crossover, and mutation. The genetic information
is the set of parameters needed for a simulation, and the representation of a good or bad
adaptation to the environment is given by the error or fitness score computed by the error of
fitness function.

Among the wide range of algorithms classified as EA, themost popular group used in optimization
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is the Genetic Algorithms, initially conceived in [23] and formalized in [24]. These algorithms are
defined by fitness and propriety shuch as crossover and mutation [25]. Figure 2.8 illustrates the
classic steps of the algorithm.

Figure 2.8: Evolutionary algorithm with the four main steps.

The population evolves as a result of the following procedure :

1. First a population of N individuals is initialized. Each individual is randomly initialized by a
set of parameters respectively to the different defined value intervals.

2. Then each individual of the population is assigned with a score (error or fitness score), that
quantifies the "good" adaptation of the individual in the environment. The score directly
affects its chances to survive and reproduce. The computation of the score is done thanks
to the function Jerror.

3. According to their fitness and a stochastic process, a selection of individuals is performed.
This step designates pairs of individuals that will reproduce.

4. A step of reproduction is done between a pair of individuals that cross over the parameter
values of the "parents" and occurs with a predefined probability (pc). Mutation could also be
introduced in this new individual with a predefined probability (pm) which slightly modifies
one or more parameter value(s) of the set.

5. At this point, different strategies could be put in place, either the new generation completely
replace the old one or a mix of the old and the new generations could create the new one.
In any case, the new generation have the same N individuals.

6. Finally, if a stopping criterion is met, the algorithm stops or, in the contrary, the algorithm
restarts from step 2. Possible stopping criteria could be a maximum number of generations
(i.e. iterations) or when the individuals of the population have reached a certain error score.

As other stochastic approaches, EAs cannot assure convergence toward the unique optimal
solution, and their performances depend on the parameters and choice of EA. However, EAs seem
appropriate in our case because of its interesting compromise of space exploration, number of
evaluations and quality of the solutions found.

In this thesis, the library used to create EA and customizes it was: PaGMO/PyGMO [26, 27] in C++
or Python language. Many functions are already implemented in this library, but the EA definition
and the link with the model simulation wrote in C++ must be done.
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Parallelized evolutionary algorithms

Based on EA principle, the approach could be complexified [26, 28]. Instead of having a population
of N individuals evolving during T generation, one can initialize several populations evolving
separately. Each population is evolving on its one island, separated from each other. After a
predefined number Te of generation, individuals could migrate from their island to another. Then
the newmix of individuals from the original ones and the newcomers could again evolve separately
until the newwave of migration (after another Te generations). Figure 2.9 illustrates this algorithm
structure.

Figure 2.9: Evolutionary algorithm with islands: algorithm principle with a first step of Te gen-
erations of separated evolutions, followed by a step of migration and then a step of separated
evolution again.

The combination of islands is named archipelago and the link that connect the islands are
gathered in a topology structure. The rules that lead the possible (or not) migrations and the
number and choice of individual are named policies. Figure 2.10 represents examples of topology
such as ring where an island is only connected to two neighbors to form a ring. The topology
structure is completely customizable [26].

Figure 2.10: Example of topology with a) a ring b) Barabasis model [29] and c) Watts-Strogatz
model [30] .

To give example of migration policies, the library used in this thesis: (PaGMO/PyGMO) already
provided some. For example:

— A number Nb of the best individual could be selected to be migrants and move to another
population.
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— A number Nr of individuals randomly choose could be selected to be migrants.

— When the migrants arrive, they could be "accepted" directly and mix with the current individ-
uals of the population.

— When the migrants arrive, they could be "accepted" only if their fitness/error score is better
than all the current individuals of the population.

In this thesis, only few types of topology and policies combinations were explored and are mainly
based on a ring topology of 3 or 4 islands only connected in one way with a selection of the best
individuals as migrants and the acceptance of all the new comers.

This particular type of EA, by making evolve independently the population, permits to reduce
the chance of being stuck in a local minimum. Moreover, this independent evolution could be
parallelized on the computer and the increase of island number do not increase (a lot) the
computation time but only the computer resources by making compute each island on a separate
core for example.

2.1.4 Proposed approach

During this thesis, two previously proposed computational models were used [31, 32]. Sensitivity
analyzeswere crucial for comprehending the underlyingmechanisms of the two differentmodeled
systems. By conducting sensitivity analyses, we were able to identify themost important variables
that needed to be taken into account for achieving successful multi-formalism and multiscale
integration. Based on previous team work [32–38], we opted for Morris’ screening method due to
its advantageous balance between parameter space exploration and computational demands.
Moreover, in order to establish a global rank of importance among parameters’ effects provided
by Morris’ method, we calculated the Euclidean distance Dj in the µ∗ − σ plane, from the origin
to each (µ∗

j , σj) point:
Dj =

√
(µ∗

j )2 + σ2
j (2.6)

This could be then represented with a bar plot as illustrated in Figure 2.11. Due to its relatively low
computational requirements, the Morris elementary method is a powerful approach to examine
and identify important model parameters. It also underlines linear relations, but cannot discern
nonlinear relations to parameter interactions. The implementation of sensitivity analyses was
done in Python language with adapted algorithm of the SALib library [39]. The algorithm was
modified in order to make the Morris screening method works when the model simulation does
not provide output (simulation failed).

After conducting a sensitivity analysis, a reduced group of parameters is selected for patient-
specific model identification. This helps to decrease the time and computational resources
required for the calculations. reducing computational cost and calculation time. Various method
could be chosen to solve this kind of problem: analytic approaches, iterative methods, gradient-
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Figure 2.11: Other representation of the Morris elementary effects results based on the previous
one computed by Euclidean distance.

based methods, deterministic and stochastic approaches. However, the method must be chosen
appropriately to the problem and in the clinical application presented in this thesis, the complexity
and dimensionality of the models make us reduce the choice of identification approaches. More-
over, the different nature of equations either non-linear, discontinuous, or not well understood,
as well as the definition of the error function make us renounce to various methods that need
computation of their derivatives or partial derivatives. Based on previous teamwork [32–35, 40],
evolutionary algorithms were chosen to identify model parameters. Among the available evolu-
tionary algorithms in the literature, the Differential Evolution algorithm (DE) [41] was preferred due
to better performance in initial identifications [42]. The error function Jerror will be adapted for
each application, because its definition depends on the implementedmodel and the fitting data. In
the last step of Chapter 4, the algorithm was parallelized in a ring topology of four islands thanks
to parallel optimization library PaGMO/PyGMO. The EA algorithm tuning and error functions
presented in this thesis are inspired from SEPIA team work [32–35, 40, 43, 44].

This model specification thanks to the parameter’s identification aims at creating a personalized
model for each patient based on its own data. This personalized model could also be named
digital twin.

2.2 Features extraction from strain

In Addition to traditional clinical indices, ECG indices and LVEF, features from strain curves can be
extracted to better understand myocardial function. To extract features from clinical examination
is crucial to characterize LV cardiac function or dysfunction of a patient. Image or signal extracted
features are a way to overcome the need of expertise in understanding the modality. Moreover,
these features are vital indicators and are more reproducible when automation is provided for the
extraction process.

As it was presented before in Section 1.2.2, myocardial deformation curves called strain curves
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could be extracted from different echocardiographic views (especially the 2-, 3-, 4- chamber views).
Several features could be extracted from strain curves for the mechanical characterization of the
left ventricle, based on previous work of our team : i) integrals of the regional cardiac strain, ii)
myocardial work and iii) distances between strain curves from dynamic time warping method.

2.2.1 Integrals

Briefly, the features propose by Bernard et al. [45] are based on estimation of the integral (area
over the curve) of each available segmental strain signal, on different time supports.

To minimize the estimation error of these features, each strain curve is first processed by being
upsampled to 500 Hz. As performed in previous works, strain values between -5% and 5% were
then ignored from all calculations [45].

The first integral feature Is
avc is calculated from the onset of the QRS to the instant of Aortic Valve

Closure (AVC) of each segmental strain curves (s). It represents a quantification of the cumulative
strain developed by a given segment s, which effectively contributes to LV ejection. A second
integral Is

peak is calculated from the onset of the QRS to the strain peak. It represents the global
cumulative strain developed by the contraction of the segment. The third integral is calculated as:

Es = Is
peak − Is

avc (2.7)

and corresponds thus to the integral between the strain peak and aortic valve closure. This
procedure (Figure 2.12) was applied to all segments of the echo view, for a total of 18 features by
view. The onset of the QRS is used as reference for the calculation of all features.

2.2.2 Myocardial work

Recently, estimation of Myocardial Work (MW) was introduced in order to evaluate the heart
chamber function and particularly the LV function [46–51]. Myocardial work is a very promised
new tool to assess more precisely LV function, taking into account LV loading conditions. Thus, it
overpasses the left ventricle ejection fraction (LVEF) index in the estimation of the LV function
[52, 53]. Different preliminary studies claim that the evaluation of myocardial work could give
additional information to assess LV function of patients with different cardiac pathologies [46–
48, 54–63] and could be used as predictor [64, 65]. MW gives an estimation of the power over the
cardiac cycle when the force cannot be measured clinically. However, an experimental or a good
estimation of the LV pressure is required to compute MW. Although the LV pressure estimation
method proposed by Russell et al. [54] could be used in some case, it is nether validated on all
type of patients or usable in some pathological cases such as AS patients.
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Figure 2.12: Strain integrals computation for the segmental strain curve s: Is
avc, Is

peak and its
difference Es delimited by the two timing: tavc and tpeak.

Myocardial work indices

To overpass this limitation and provide a more functional approach where the MW could be
computed at every time step, Russell et al. [66] proposed MW indices. MW indices were also cal-
culated from strains and LV pressure: the instantaneous power was first computed by multiplying
the strain-rate, obtained by differentiating the strain curve, and the instantaneous LV pressure.
Then, segmental MW was calculated by integrating the power over time, during the cardiac cycle
from Mitral Valve Closure (MVC) until Mitral Valve Opening (MVO) (Figure 2.13).

From each segmental MW curve, MW indices could be calculated: Global Positive Work (GPW),
Global Negative Work (GNW), Global Constructive Work (GCW), Global Wasted Work (GWW),
Global Work Index (GWI), and Global Work Efficiency (GWE) (Figure 2.14).

— GPW: It represents the LV contraction and gathers all the shortening phases.

— GNW: It is the opposite and gathers all the stretching phases.

— GCW: It represents the productive work, it gathers the shortening during the systole, (i.e.
effective energy for blood ejection) and lengthening during IVR.

— GWW: It quantifies the energy loss; it corresponds to segmental stretching during the systole
(i.e. energy loss for blood ejection) and shortening during the IVR phase.

— GWI: It is defined as the amount of work performed by the left ventricle during systole:

GWI = GPW + GNW (2.8)
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— GWE: It is defined as follows:

GWE = GCW

GCW + GWW
(2.9)

Figure 2.13: Work computation of Global Positive Work (GPW), Global Negative Work (GNW),
Global Work Index (GWI), Global Constructive Work (GCW), Global Wasted Work (GWW) and
Global Work Efficiency (GWE), with the LV pressure and the global strain curve.

Figure 2.14:Work indices’ computation with the GCW and the GWW defined thanks the shortening
and lengthening before or after AVC

With the same idea of LV MW estimation, LV pressure–strain loop area reflects myocardial or
stroke work [54, 55, 57, 67–69]. Especially [54], that have shown that regional differences in MW
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have a strong correlation with regional myocardial glucose metabolism, evaluated using PET
imaging. The regional work distribution pattern extracted in LV pressure-strain loop showed
similarity with glucose uptake distribution.

These two methods: PSL area and MW indices have the same unit (mmHg.%) and both reflect a
surrogate estimation of the power over the cardiac cycle.

2.2.3 Dynamic time warping

Dynamic Time Warping (DTW) is an algorithm for comparing two temporal sequences such as
strain curves, which may vary in speed. It provides both a distance measure that is insensitive
to local compression and stretches and the warping which optimally deforms one of the two
series onto the other [70]. The main idea of the algorithm is to create a N1 · N2 matrix (M ) (N1

and N2 are the size of series s1 and s2) where mi,j is the distance between the points s1(i) and
s2(j) (Figure 2.15).

Figure 2.15: DTW matrix example where with the location of the best path (grey).

Then the path through the matrix that minimizes the distance must be found. The sum of the mi,j

of this optimal path is a distance measure of the two series. It is also the best way to deform
on series onto the other. Figure 2.16 represents the DTW mapping of a strain curve (si) with the
average of the 6 strain curve of its view (V ), its distance value is noted DTW si,V . In this thesis,
we will use DTW matrix to compute an Euclidean distance between pairs of strain curves and
overcome potential physiological time lag between LV regions.
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Figure 2.16: DTWmapping example with few points of the strain curve (si in blue) with the average
of the 6 strain curves of its view (V in black).

2.2.4 Proposed approach

In each application, at least one these three types of feature was used. They are all computed
thanks to strain curves and offered diverse information. Feature extraction is the first step of any
ML approach presented in this thesis. It is an essential step to manage complex andmultifactorial
data as strain curves but also to propose new original features with interesting meanings.
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2.3 Machine learning

ML techniques are increasingly used in clinical context to resolve more or less complex issues
raised by clinicians. In this section, the basis of machine learning principles will be introduced by
also pointing out that ML is not that far from "old fashion" statistic approaches. This section will
be classically divided in supervised learning and unsupervised learning.

2.3.1 Supervised learning

Supervised learning is a part of machine learning. Supervised learning algorithm are used for
problem where the whole feature of a database is associated with an available label [71]. The
goal of these algorithms is to learn the function that maps each input data to its label (that will
be the algorithm output). This process of learning the relation between the features and their
label is known as training. Once this phase is complete, our algorithm is normally able to predict
the label of new data, which the algorithm has no explicit knowledge of the true label.

Supervised learning can be separated into two types of problems:

— Classification. It assigns to the test data set specific categories (ex: label of "cat" and
"dog").

— Regression. It is used to understand the relationship between dependent and independent
variables and make projection. For example, the weight of an average boy of 10 years.

Figure 2.17 illustrates these 2 phases in an example dataset.Wemight train a supervised algorithm
on a set of cats and dogs’ pictures with their corresponding label (e.g. "cat" and "dog"). The
algorithm will use various of interesting features in the pictures: colors, dimensions, patterns to
link them to their corresponding label. After this training phase (Figure 2.17 A), we can use the
trained algorithm to predict the label of new unseen pictures (Figure 2.17 B). This test phase is
usually followed by a measure of the algorithm performance by the evaluation of the performance
of the trained algorithm on this new dataset of unseen pictures. The database could be different
from pictures, generally vectors (pictures could be represented as vectors)

The most widely used learning algorithms/estimators are:

— Support-Vector Machines (SVM) [72],

— Linear regression,

— Logistic regression,

— Naive Bayes [73],

— Linear discriminant analysis,

— Decision trees [74],

— K-nearest neighbor algorithm [75],
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— Neural networks [76],

— Similarity learning.

Figure 2.17: Supervised learning illustration with cat and dog labels, a) the training phase and b)
the test phase on an unknown new dataset.

All these algorithms have pros and cons and must be chosen depending on the problem and the
database.

Ensemble methods

Ensemble methods in ML aim to improve the generalization and robustness of a single estimator
by combining several using the same learning algorithm. There are twomain families of ensemble
methods:

— Averaging methods involve building several estimators independently and then averaging
their predictions (examples: Bagging methods and Random Forest (RF) [77]).

— Boostingmethods involve building several estimators sequentially and attempting to reduce
the bias of the combined estimator. The goal is to combine weak models to produce a
powerful ensemble (examples: AdaBoost [78] and Gradient Tree Boosting [79, 80]).

Both averaging and boosting methods are effective at improving the performance of ML models,
and their choice depends on the specific problem and the properties of the data.
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Performance of an algorithm

They are several performancemetrics for classification problem. The simplest one is the accuracy.
It is a ratio between the number of correctly classified points to the total number of points. We
can also summarize the classification results in a confusion matrix (see Figure 2.18).

Figure 2.18: Confusion matrix of 2 classes (Positive/negative) with the TP: true positive, FN: false
positive, FN: false negative, TN: true negative.

This matrix allows visualization of the performance measure of a binary classification or a multi-
class classification. From this matrix we can easily access to the sensitivity also called True
Positive Rate (TPR) or recall, the specificity, the False Positive Rate (FPR), the precision, and the
F1 score:

Sensitivity = Recall = TPR = TP

TP + FN
(2.10a)

Specificity = TN

TN + FP
(2.10b)

FPR = 1 − Specificity (2.10c)

Precision = TP

TP + FP
(2.10d)

F1score = 2 · Precision · Recall

Precision + Recall
(2.10e)

A Receiver Operating Characteristic (ROC) curve could be then provided by plotted the FPR on
the x-axis and the TPR on the y-axis. The Area Under Curve of this ROC curve is also a metric of a
classification. By proposing FPR - TPR representation, one can want an optimal point on the ROC
curve. We can obtain this optimal point by maximizing the G-mean metric:

G − mean =
√

Sensitivity · Specificity (2.11)

To perform a cross validation, it is necessary to separate the dataset in two group: the training set
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and the testing set. One can add another completely independent dataset for the validation. Most
of the time the training part represent 70% to 80% of the database and the testing 20% to 30%.

One method for testing the performance of a classification is the Cross-Validation. This method,
as illustrated in Figure 2.19, consists of repeating several training-testing processes on a different
training-testing subsets of the database.

Figure 2.19: Cross validation illustration.

2.3.2 Unsupervised learning

Unsupervised learning algorithms work with data that is not explicitly labelled. These kinds of
algorithm aim at finding some sort of underlying structure in the data [81, 82] (Figure 2.17). The
main task of unsupervised algorithm could be separated in three:

— Clustering,

— Association,

— Dimensionality reduction.

Figure 2.20: Unsupervised learning illustration (clustering).

Clustering

Clustering is a technique which groups unlabeled data based on their common characteristics
and differences. They can be categorized into a few types: exclusive, overlapping, hierarchical,
and probabilistic.

First, the most famous algorithm: K-means clustering [83]. This is an exclusive clustering method
where data points are assigned into K groups, where K represents the number of clusters. The
clusters are created based on the distance from each group’s centroid (e.g. barycenter). The
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"exclusive" term signifies that a data point can exist only in one cluster. On the other hand,
"overlapping" clustering allows data points to belong to multiple. Soft K-mean is an example of
overlapping clustering. The optimal number of clusters could be determined using the Silhouette
score [84] or the Inertia score:

— The silhouette score (S) is ameasure of how similar an object is to its own cluster (cohesion:
a) compared to other clusters (separation/ dissimilarity: b):

S = 1
K

K∑
k=1

1
|Ck|

∑
i∈Ck

bi − ai

max(ai, bi)
(2.12)

where
ai = 1

|Ck| − 1
∑

j∈Ck,j ̸=i

∥xi − xj∥ (2.13)

bi = min
k′ ̸=k

( 1
|C ′

k|
∑

j∈Ck′

∥xi − xj∥ (2.14)

with K the number of cluster, Ck the data of the cluster k and x the data.

— The inertia (I) is a measure of how internally coherent clusters are:

I =
n∑

i=1
min

µ
∥xi − µ∥2 (2.15)

where n is the number of data, µ the group centers and x the data.

Then the hierarchical clustering algorithms, they could be agglomerative or divisive [85]. The
agglomerative one starts from the bottom and merge the data points iteratively based on their
similarity until a unique cluster is formed. The divided one is the opposite and starts from one
cluster and divides the unique original cluster based on the differences between data points, and
do it iteratively.

Finally, the probabilistic clustering: data points are clustered based on the likelihood that they
belong to a particular distribution. The Gaussian Mixture Model is an example of probabilistic
clustering algorithm [86].

Association

Association clustering aims at finding relationships between variables in a given dataset [87]. It
is mostly used for market basket analysis and was not explored during this thesis.

Dimensionality reduction

Dimensionality reduction is a technique that could be used as a preprocessing of ML when the
number of features, or the dimension is too high. It could also be used to better understand a
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complex dataset and the most interesting features. The two main algorithms are:

— Principal Component Analysis (PCA): This algorithm used to reduce redundancies and to
compress datasets through feature extraction [88]. Thanks to linear transformation, it is
created principal components ordered by the maximum variance, each principal component
gathers. We can then represent the dataset in this new space with fewer dimensions.

— Singular Value Decomposition (SVD): This algorithm factorizes the matrix of the dataset
(A) into three low-rank matrices (U , S, V ):

A = U · S · V T (2.16)

where U and V are orthogonal matrices and S is a diagonal matrix where the diagonal
values are the singular values of the matrix A.

2.3.3 Proposed approach

Figure 2.21: Diagram of the ML framework.

TheMLmethods used in this thesiswill follow the framework depicted in Figure 2.21. Various types
of data were collected and gathered, and strain curves features were extracted (see Section 2.2). A
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crucial step of feature selection will then be proceeded, which plays a significant role in delivering
the most effective inputs for classification, and also produces results on its own. In fact, the
feature evaluation and selection establish a prioritization of features compared to others. In the
case of unsupervised learning, it could provide information about similar feature or patients that
allows dimensionality reductions of the database or clustering of patients. Following the feature
selection step, which maximizes the classification results, various classification algorithms can
be employed. In this thesis, several algorithms were tested, but Random Forest (RF) and ridge
algorithms yielded the best result. For each classification, a cross validation was done. The two
last steps were mainly written thanks python library scikit-learn [89].

2.4 Conclusion

This section presented the modeling and simulation methods and tools used in different studies
of the thesis. It particularly introduced the application of the Multi-formalism Modeling and
Simulation Library. Then, a brief state-of-the-art of sensitivity analysis and parameter identification
was proposed, which is a major part of this work. In a second part, features extraction techniques
on strain curves were proposed. Finally, it presented an overview of the classical machine learning
concepts which will be used and developed in the next chapters.

This set of methods and tools constitute the basis of the methodology used during this thesis.
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Model-based Analysis of Myocardial
Strains in Left Bundle Branch Block

Chapter

3

Left Bundle of Branch Block (LBBB), introduced in Section 1.3.1 is a common electrocardiographic
abnormality that causes intra- and interventricular conduction delay and leads to uncoordinated
contraction of the ventricle, alterations in LV mechanical activity and LV dysfunction [1]. Observa-
tional studies of patients with LBBB have shown a relation between strain curve morphologies,
obtained by speckle-tracking echocardiography (STE), and responses to Cardiac Resynchroniza-
tion Therapy (CRT) [2–4]. However, the regional distribution patterns of dyssynchrony in LBBB
is highly heterogeneous, as it involves differently septal and lateral walls [5, 6]. Moreover, strain
morphologies could also be affected by mechanical dysfunctions, such as those observed in
ischemia [7]. Therefore, the assessment of dyssynchrony patterns in LBBB appears as partic-
ularly complex because strain morphologies reflect dynamics associated with both electrical
conduction delays and mechanical cardiac activities. Previous studies have shown that only the
mechanical dysfunction attributable to an electrical conduction delay can be corrected by CRT [8].
The possibility of using strain-derived data to disclose the complex interplay between electrical
conduction delay and the specific mechanical substrate associated with LV dyssynchrony is
particularly interesting and might have a pivotal role in the selection of CRT-candidates.

In this context, model-based approaches may provide a better understanding of myocardial
deformations observed in LBBB, since these approaches explicitly represent the underlying phys-
iological mechanisms. Indeed, computational modeling appears as efficient tool to integrate
knowledge, concerning cardiac electrical activation, mechanical properties, and hemodynamic
conditions, in the data processing. A variety of cardiac electromechanical models has been
proposed in the literature, at many different levels of detail [9] and representing different phys-
iological functions, including the cardiac electrical activity [10–12], the excitation-contraction
coupling [13, 14], the mechanical activity [15] and the mechano-hydraulic coupling [16]. Most
of the proposed cardiac models are based on the Finite Element (FE) method [17–27] for the
simulation of cardiac mechanical activity, including a 3D mesh geometry. Some of them include
multimodality imaging [28] or used atlases [29] to reduce the computational cost. However,
these models require high computational resources, and they are still difficult to personalize.
Moreover, dynamic loading conditions and interventricular interactions are usually not considered
in these models and their integration is possible only at the expenses of an increasing amount of
model complexity. Alternative approaches have been proposed to overcome this computational
cost [30–35], by reducing drastically the patient anatomy representation with lower dimension
models. These types of models allow for a better clinical translation [36] and incorporation of
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components such as heart hemodynamics within the entire circulation. Although, these particular
models’ examples have been successfully used to propose keys to understand the CRT response
with virtual or animal cohorts, efforts still have to be made in order to adapt these studies to
non-invasive, patient-specific data.

In [37], our team has proposed the first model-based approach for the analysis of Tissue Doppler
Imaging (TDI). Model parameters for the LV were estimated by minimizing an error computed
between strain signals synthesized by the computational model and strain signals obtained
through TDI from several myocardial segments in a patient-specific approach. Then this model
was complete by Owashi et al. in [38] with the representation of the right ventricle, the atrium and
the systemic and pulmonary circulations [39, 40].

This chapter will follow the work published in the journal Frontiers in Applied Mathematics and
Statistics [41] and a previous study published as co-first author with Kimi Owashi in the Journal
of Cardiovascular Development and Disease [42].

3.1 Experimental data

3.1.1 Study population

We prospectively included 10 healthy adults and 20 LBBB patients, including ischemic (n=10) and
non-ischemic (n=10) cardiomyopathies. Table 3.1 summarizes patients’ clinical characteristics.
The study was carried out in accordance with the principles outlined in the Declaration of Helsinki
on research in human subjects and received specific ethical approval from the local Medical
Ethical Committee. All patients signed a written informed consent before the participation to the
study protocol.

Age Male sex BSA NYHA class QRS width
years old N (%) (body surface area) I/II/III (ms)

LBBB ischemia (n=10) 72.1 ± 10.3 9 (90%) 1.84 ± 0.12 2/7/1 160 ± 25.4
LBBB non-ischemia (n=10) 68.2 ± 6.2 8 (80%) 1.83 ± 0.15 1/6/3 163 ± 13.0
Healthy (n=10) 48.8 ± 14.4 7 (70%) 1.88 ± 0.12 — 109 ± 9.9

Table 3.1: Population’ clinical characteristics.

3.1.2 Echocardiography

All patients underwent a standard Trans-Thoracic Echocardiography (TTE) using a Vivid S6, E7 or
E9 ultrasound system (General Electric Healthcare, Horten, Norway). Images were recorded on a
remote station for off-line analysis by dedicated software (EchoPAC PC, version BT 202, General
Electric Healthcare, Horten, Norway). The experimental dataset includes the measured regional
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myocardial strain curves obtained by STE at transthoracic echocardiography in apical 4-chamber,
2-chamber, and 3-chamber views. Excel files of these 3 longitudinal strain view analyses were
exported for a dedicated analysis performed in python language. Strain curves references were
fixed at the onset of the QRS.

3.1.3 Cardiac magnetic resonance image (cMRI)

For 10 LBBB patients, the location of the scar was performed by cardiac magnetic resonance
imaging (cMRI) and then confirmed by echocardiography. Prior to CRT implantation, cardiac
magnetic resonance was performed on a 3-T clinical magnetic resonance system (Ingenia,
Philips Medical Systems, Best, the Netherlands) with a 32-channel cardiovascular array coil.
LGE images were acquired 10–15 minutes after intravenous administration of 0.2 mmol/kg
of gadolinium (Gadoterate meglumine, Dotarem, Guerbet, Aulnay-sous-bois, France), using 2D
breath-hold inversion-recovery and phase-sensitive inversion-recovery sequences in short-axis
plane (spoiled gradient-echo, slice thickness 8 mm, repetition time 6.1 ms, echo time 2.9 ms, flip
angle 25◦, inversion time adjusted to null normal myocardium, typical breath-hold 11 seconds).
The localization of myocardial scar was performed by a trained radiologist and the regional LGE
extent was semi quantitatively assessed on a per-segment basis [43].

3.2 Model

The model of the cardiovascular system integrates four main sub-models and is illustrated in
Figure 3.1:

1. The cardiac electrical system,

2. The right and left atria,

3. A multi-segment representation of the right and the left ventricles,

4. The systemic and pulmonary circulations.

The combined model is characterized by 44 state variables and 551 parameters. It was imple-
mented using the Multiformalism Modeling and Simulation Library (M2SL) [44, 45] presented in
Section 2.1.1. Supplementary information on parameters can be found in Appendix A (Table A.1,
Table A.2).

3.2.1 Cardiac electrical system

The proposed model of the cardiac electrical activity, is based on a set of coupled automata,
adapted from [37]. In order to perform comparisons between simulations and clinical data, the
left ventricle wall was divided into 16 segments according to the standardized segmentation
of the AHA [46] (see Figure 3.2). The base (Bas) and medium (Mid) layers are separated in six
components:
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Figure 3.1: Physiological model representation with i) the electrical automata (SAN: sinoatrial
node, AVN: atrioventricular node, UH: upper bundle of His, RBB: right bundle branch, LBB: left
bundle branch), ii) right and left atria (RA, LA), iii) multi-segment right and left ventricle (RV, LV),
and iv) systemic and pulmonary circulation (P: pressure, V: volume, R: resistance, pv: pulmonary
valve, pa: pulmonary artery, pul: pulmonary, pu: pulmonary vein, mt: mitral valve, av: aortic valve,
ao: aorta, sys: systemic, vc: vena cava, tc: tricuspid valve).

— anterior (Ant),

— anteroseptal (AntSep),

— inferoseptal (InfSep),

— inferior (Inf),

— inferolateral (InfLat)

— anterolateral (AntLat).

The apex (Ap) layer is divided in four components:

— anterior,

— septal,

— inferior,
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Figure 3.2: LV bull eye representation with electrical links between LV automata (1: basal ante-
rior, 2: basal anteroseptal, 3: basal inferoseptal, 4: basal inferior, 5: basal inferolateral, 6: basal
anterolateral, 7: mid anterior, 8: mid anteroseptal, 9: mid inferoseptal, 10: mid inferior, 11: mid
inferolateral, 12: mid anterolateral, 13: apical anterior, 14: apical septal, 15: apical inferior, 16: apical
lateral).

— lateral.

Right ventricle wall is divided into three layers (base, medium, and apex). The whole model
consists of 26 automata representing:

— the SinoAtrial Node (SAN),

— the Right Atrium and Left Atrium (RA and LA),

— the AtrioVentricular Node (AVN),

— the Upper bundle of His (UH),

— the bundle branches (RBB and LBB),

— the 3 segments of Right Ventricle (RV),

— the 16 segments of Left Ventricle (LV).

The distribution of the electrical activation between automata is represented in Figure 3.3 . Each
automaton represents the electrical activation state of a given myocardial tissue, covering the
main electrophysiological activation periods (Figure 3.4):

— a Slow Diastolic Depolarization (SDD) or waiting period (Idle),

— an Upstroke Depolarization Period (UDP),

— an Absolute Refractory Period (ARP),

— a Relative Refractory Period (RRP).

The transitions between states happen spontaneously at the end of the phase. After the UDP
period, each automaton transmits a stimulus to its neighboring segments. Each automaton is fully
connected (antegrade and retrograde connections) to its neighbors. The connections between
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Figure 3.3: The whole electrical representation of the model, with the 26 cellular automata
and their sequence of electrical activation. The nodal cells (in green): sinoatrial node (SAN),
atrioventricular node (AVN), upper bundle of His (UH), right bundle branch (RBB), left bundle
branch (LBB), and myocardial cells (in pink): right atria (RA), left atria (LA) and right and left
ventricle (Figure 3.2 numbering) are represented and led by their own signal (Figure 3.4). The blue
path is an illustration of the electrical activation time for the seventh LV segment (s7).

automaton are illustrated in Figure 3.3 where we can see that the excitation arrives from the LBB
automaton and is propagated to the apex, through septal automata and the medium anterolateral
automaton (segments numbered 2, 3, 8, 9, 12, 13, 14 and 16), then to the other segments in function
of each automaton’s parameter values (TUDP , TARP , TRRP , TSDD).

The electrical activation time (EAT ) associated with each ventricular segment could be defined
by the time elapsed between the electrical activation of the UH automaton and the segmental one.
An illustration of the EAT is proposed in Figure 3.3 for the seventh LV segment (s7). These delays
of activation, accessible for each segment, will provide us a representation of the dyssynchrony.
UH automaton activation also corresponds to the initialization of the simulated strain curves.

3.2.2 Right and left atria

To account for the mechanical function of the atria, the right and left atrial pressures (Pra and Pla)
are defined as linear functions of instantaneous volumes (Vra and Vla) [40, 47]. These pressures
are determined by their volumes intercept (Vra,d and Vla,d) and their elastances (Era and Ela),
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Figure 3.4: State diagram of the generalized automaton that represents nodal cells (green, left)
and myocardial cells (pink, right) and diagrams showing the correspondence of the transition
parameters with the myocardial action potential dynamics and their timing parameters: TUDP ,
TARP , TRRP , TSDD.

which represent the elastic properties of the atrial wall and are bounded by Ex,min and Ex,max :

Px(Vx, t) = Ex · (Vx(t) − Vx,d) (3.1a)

Ex(t) = ex(t) · (Ex,max − Ex,min) + Ex,min (3.1b)

where x ∈ {ra,la} and ex(t) is a Gaussian driving function that cycles between atrial diastole and
systole:

ex(t) = Ax · exp
(
−Bx · (ta(t) − Cx)2

)
(3.2)

where ta is the time elapsed since the atrial activation by the automata corresponding to the right
and left atrium. Parameters Ax, Bx and Cx could be used to control the rise and peak of the atrial
systole.

3.2.3 Right and left ventricles

Each LV and RV automaton triggers an Electro-Mechanical Driving Function (EMDF) [48, 49], which
represents in a simplified manner, the complex processes involved in the electromechanical
coupling at the tissue-level:
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fa,s(ts) =


(

ts
α1,s·T

)n1,s

1 +
(

ts
α1,s·T

)n1,s

 ·

 1
1 +

(
ts

α2,s·T

)n2,s

 · Amax (3.3)

The onset of the cardiac cycle, denoted ts, is determined by the activation instant of the corre-
sponding segment in the cardiac electrical model presented in the previous section. The first and
second terms in Equation 3.3 represent ventricle segment contraction and relaxation presented
after an electrical activation, respectively. T is the heart period, α1,s, α2,s are shape parameters,
and n1,s, n2,s control the steepness of the curve. These four parameters (α1,s, α2,s, n1,s, n2,s)
are assumed positive. Amax is the maximum EMDF value, and s ∈ {Slv , Srv} with Slv = {BasAnt,
BasAntSep, BasInfSep, BasInf, BasInfLat, BasAntLat, MidAnt, MidAntSep, MidInfSep, MidInf, MidInfLat,
MidAntLat, ApAnt, ApSep, ApInf, ApLat} (see Figure 3.2) and Srv = {BasRV, MidRV, ApRV}.

Concerning each segment s, cardiac mechanical activity can be separated into active (Ts,act) and
passive (Ts,pass) components:

Ts = Ts,pass + Ts,act (3.4)

Passive myocardial tension depends on myocardial strain Equation 3.5.

εs = (ls − ls,ref )
ls,ref

(3.5)

And it is defined as follows according to [50]:

Ts,pass = Ks,pass · Tref,pass · (36 · max(0, εs − 0.1)2 + 0.1(εs − 0.1) + 0.0025e10εs) (3.6)

where Ks,pass is a parameter related to passive stiffness that is comprised between 0 and 1,
Tref,pass is the reference passive tension at εs = 1, ls and ls,ref are current and reference fiber
lengths. Active myocardial tension is represented by a non-linear law inspired from [51]:

Ts,act = Ks,act · Tref,act · (1 + β(εs − 1)) · fa,s
2

f2
a,s + F 2

a

(3.7)

where Ks,act is a parameter related tomyofiber contractility, Tref,act is the reference active tension
at εs = 1, and β, Fa are constants related with the muscle kinetic. The relation between pressure
Ps and tension Ts in each segment is approximated by the Laplace law (Equation 3.8)

Ps = e · Ts

(
cos(θs)

εs · Rm,s
+ sin(θs)

εs · Rp,s

)
(3.8)

In Equation 3.8, θs is themean angle of themuscular fibers. Rm,s and Rp,s are the radii of curvature
in the meridian and parallel directions, while e is the mean wall thickness. As the ventricle was
assumed to be an ellipsoid of revolution, Rp,s and Rm,s could be calculated analytically. Length
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variation is obtained by a power conservation:

Ps · Qs = Fs · dls
dt

(3.9)

Where the force is:
Fs = Ts · Ss (3.10)

Ss is the area of each segment. The hydraulic behavior of the blood volume in contact with the
wall segment are represented by its inertial (Is) and resistive (Rs) effects:

Py − Ps = Is
dQs

dt
(3.11a)

Qs = Py − Ps

Rs
(3.11b)

with y ∈ {lv, rv} and Rs ∈ {Rmin,Rmax} according to the mitral valve opening. Ventricular flow is
calculated, taking into account the contribution of the flow of each one of the segments Qs,y and
of the intraventricular cavity Qc,y:

Qy(t) = Qc,y(t) +
∑
sy

Qs,y(t) (3.12)

where Py and Qy are respectively cavity center pressure and flow. Segments, associated with the
septum, are treated separately since their pressure depends on the pressure gradient across the
septal wall:

Psept = Plv − Prv (3.13)

3.2.4 Systemic and pulmonary circulations

The arteries, veins and capillaries of systemic and pulmonary circulations were included (Fig-
ure 3.1). The volume change, ∆V , of each compartment is computed from the integral of their
respective net flow:

∆Vz(t) =
∫

(Qin − Qout) dt (3.14)

with z ∈ {lv, rv, la, ra, pa, pu, ao, vc }, and in and out ∈ { la, ra, pa, pu, ao, vc, sys, pul, art, veins },
while the flow, Q, is defined by the pressure gradient, ∆P , across chambers and a resistance, R:

Q = ∆Pz

R
(3.15)
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R ∈ {Rpul, Rsys, Rart, Rveins, Rla, Rra, Rmt, Rav, Rtcv, Rpv }. Pressures on venous and arterial
vessels are defined as an elastance dependent relationship:

Pz = Ez · (Vz − Vd) (3.16)

Vd ∈ {Vd,lv, Vd,rv, Vd,la, Vd,ra, Vd,pa, Vd,pv, Vd,ao, Vd,art, Vd,vc, Vd,veins}, where E is the elastance and
Vd refers to the dead volume. For example, these equations become:

∆Vao(t) =
∫

(Qao − Qsys) dt, (3.17a)

Qsys = Pao − Pvc

Rsys
, (3.17b)

Pao = Eao · (Vao − Vd,ao) (3.17c)

in the systemic part of the model (Figure 3.1 bottom). The same equations are applied all around
the myocardial loop. The heart valves are modeled as perfect diodes.

3.3 Sensitivity analysis

The first step of patient-specific adaptation corresponds to the sensitivity analysis of the model
in order to provide insight into the relation between parameters and outputs and to allow a
characterization of the relative significance of each parameter. Using the Morris elementary
effects method [52] presented in Section 2.1.2.

The analysis was applied to a total of 288 parameters, with 18 parameters for each of the 16 seg-
ments: one from the electrical automaton and the 16 other one from electromechanical coupling
part of segmental sub-model equivalent. The circulatory parameters were previously studied in
[40]. In this study, the analysis is focused on the LV desynchrony and especially on the influence
of electromechanical parameters on strain morphologies. In order to preserve computational
costs, we have decided to include only parameters associated with electromechanical activity of
ventricles. For each parameter Xj , the range of possible values was selected from the nominal
literature and previous work values ±30% [39, 53, 54], except for the electrical depolarization
time parameter (UDP) whose range was defined between 2 and 150 ms.

Analysis were performed with: Y = {mean(εmodel
min,s),mean(t(εmodel

min,s)), std(εmodel
min,s), std(t(εmodel

min,s))},
where εmodel

min,s and t(εmodel
min,s) correspond respectively to the minimum value of strain and the cor-

responding time for each segment s (Figure 3.5). Mean and standard-deviation values were
calculated over the 16 strain signals.
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Figure 3.5: Outputs Y analyzed during the sensitivity analysis.

3.4 Model specification/parameters identification

The second step of the patient-specific adaptation is the identification of a set of parameters
selected from the sensitivity analysis. Figure 3.6 illustrates the parameters’ identification process.

Figure 3.6: Parameters identification pipeline with the evolutionary algorithm and its error function
(Jerror) adapted from [41]. The observables of this parameter identification are the 6 strain curves
of the 4- and 2- chamber views, the 4 strain curves of the 3-chamber view and the cycle duration.

3.4.1 Error function

For each healthy adult and LBBB patient, an error function Jerror between simulation outputs and
experimental strain curves was minimized in order to find patient-specific parameters:

Jerror =
16∑

s=1
Js (3.18a)
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Js = 1
T

T −1∑
te=0

| εexp
s (te) − εmodel

s (te) | + | εexp
s,min − εmodel

s,min | (3.18b)

where εexp
s and εmodel

s are the myocardial strain signals obtained from available clinical data
and simulated outputs, respectively. te corresponds to the time elapsed since the onset of
the identification period and T is the duration of a cardiac cycle. To build this error function,
experimental and simulated strain curves were synchronized on the onset of QRS of synthesized
and clinical ECG.

3.4.2 Evolutionary algorithm

The error function Jerror was minimized using Evolutionary Algorithm (EA) (see Section 2.1.3).
These stochastic search methods are founded on theories of natural evolution, such as selection,
crossover, and mutation [55]. In this study, a Differential Evolution algorithm (DE) algorithm [56]
was applied to find the optimal set of parameters. In order to reduce the search space, values
for parameters were bounded to the physiologically plausible intervals: IKact = [0; 1], IKpass =
[0; 1], In1 = [0.5; 2], In2 = [5; 15], Iα1 = [0.2; 0.6], Iα2 = [0.2; 0.6], IUDP = [1; 200]. These intervals were
defined around parameter values used for the simulation of baseline conditions and are based on
physiological knowledge on the electromechanical activities of the heart [37, 40, 42, 48–51, 53, 54].
DE was implemented with 200 individuals through 100 generations with crossover and mutation
probabilities equals to 0.9 and 0.02 using the C++ library PAGMO [57].

3.4.3 Interpretable patient-specific features

After parameter identification, some output features will be specifically discussed in this study:

— Ks,act : myocardial contractility that describes ability of the heart muscle to contract,

— Ks,pass : myocardial stiffness, which plays a key role in diastolic LV function,

— EATs : electrical activation time (Figure 3.7), which corresponds to the activation of a
segment automaton taking the upper bundle of His automaton as reference,

Ks,act and Ks,pass represent the tissue quality of each myocardial segment and were described in
Equation 3.4. They were directly identified by the EA. Two other features were extracted from
patient-specific simulations of the electromechanical activity.

3.4.4 Solution unicity

In order to evaluate the robustness of the method, we repeated 10 times the identification process
on 5 patients. Two patients of the healthy and LBBB ischemic population and one in the LBBB non-
ischemic population were randomly chosen for this evaluation. In fact, different set of parameters
could give similar simulated strain curves. The 10 obtained sets of parameters were analyzed
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Figure 3.7: Representation of the electrical activation time (EATs) with the UH (green) and the
segment s automaton activation (pink).

to justify the solution unicity of the identification process by comparing the distribution of each
parameter pi in its own value interval Ipi . For each parameter, the ratio of the standard deviation
over its value interval length was calculated. Then, the average was calculated over the 16 LV
segments and expressed as percentage.

Rs
pi

= std(p1
i , p2

i , ..., p9
i , p10

i )
max(Ipi) − min(Ipi)

(3.19a)

Rpi = 100
16

∑
s

Rs
pi

(3.19b)

where pi ∈ { Ks
act, Ks

pass, ns
1, ns

2, αs
1,αs

2 ,UDP s } and s ∈ {BasAnt, BasAntSep, BasInfSep, BasInf,
BasInfLat, BasAntLat, MidAnt, MidAntSep, MidInfSep, MidInf, MidInfLat, MidAntLat, ApAnt, ApSep, ApInf,
ApLat} .

3.4.5 Quantification of error between simulated and clinical data

In order to compare simulated and clinical strain curves, the Root-Mean-Square Error (RMSE)
was calculated for each segment s :

RMSEs =

√√√√ 1
T

T −1∑
te=0

(εexp
s (te) − εmodel

s (te))2 (3.20)

A mean RMSE value, over the 16 segments, was calculated for each subject. Moreover, bull’s eye
plot was used to describe mean RMSE values calculated for each segment over each population:
healthy, ischemic LBBB and non-ischemic LBBB patients.
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3.5 Results

3.5.1 Baseline simulations

Figure 3.8 illustrates a simulation results’ example from the proposed computational model with
a set of parameters determined in previous work and literature (The set of parameter values
are included in supplementary materials). Ventricular, aortic, and atrial pressures as well as
ventricular volume are presented on the left of the figure. Myocardial strain signals corresponding
to the 16 LV segments are presented on the right of the figure. The results are presented for a
healthy case. Systolic LV pressure is equal to 120 mmHg and the aortic pressure varies between
45 and 120 mmHg. The LV volume varies between 85 and 120 mL. The strain signals present
similar morphologies between all the segments due to the mechanical synchronicity between
them. Generally, simulation results agree with the physiological values and behaviors of a healthy
subject.

Figure 3.8: Model simulation example results in healthy conditions adapted from [41]. Wigger
diagram: left ventricle (black), aortic (pink) and atrial pressure (green) and LV volume (blue). On
the right, the Strain curves: 16 LV segments strain signals for the 3 views (2CH, 4CH and APLAX).

3.5.2 Simulations of desynchronization strain patterns by parameter
variations

Figure 3.9 illustrates the simulated strain traces obtained in the septal and lateral walls for a digital
healthy subject, LBBB with only electrical modification, LBBB with electrical modification and
septal contractility reduction, LBBB with electrical modification and lateral contractility reduction.
First, to induce an electricalmodification, the electrical delay of all the LV segmentswere increased
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as well as the electrical delay of the LBBB. Then, the septal and lateral hypocontractility were
respectively induced by a reduction of the active components of the LV septal and lateral segments:
Kact.

Figure 3.9:Simulated septal (in red) and lateral (in black) strain curves of a: healthy case, LBBBwith
only electrical modification, LBBB with electrical modification and septal contractility reduction,
LBBB with electrical modification and global contractility reduction. Grey background indicates
aortic valve opening to closure period. Figure adapted from [41]

In the case of LBBB with only electrical modification, simulations present a typical septo-to-lateral
activation pattern. In this case, the pre-ejection contraction of the septal wall is followed by
an immediate re-lengthening of the wall, which induces a septal rebound stretch. In the septal
hypocontractility case, the rebound stretch effect increases. The lateral hypocontractility case
is characterized by a modification of LV activation pattern and is associated with a significant
reduction in lateral wall strain and a diminution of the septal rebound stretch. The simulations
could be related with [6] experimental results where LBBB was induced in dogs with or without
LV scar.

3.5.3 Sensitivity analysis

Figure 3.10 shows aMorris schemewhere 100 of themost influential parameters are plotted in the
µ∗ − σ plane based on the Dj index. This representation highlights the parameters with negligible
(lower left-hand corner), the linear without interaction (bottom right) and nonlinear or interaction
(top right) impact on Y . Parameters α2 and n1 present a great recurrence impact on the sensitivity
of the evaluated outputs Y . In fact, as α1 and n2, they are involved in the electromechanical
coupling at the tissue-level (Equation 3.3) which causes modifications in mechanical contraction
and, consequently, in the deformation of the LV segments. These parameters appear especially
important for lateral and septal segments.

UDP, related with the electrical depolarization time, is also one of the most influential parameters.
UDP is the time of the upstroke depolarization, it drives the activation of the neighbor’s automata
and affects the ta and ts value of Equation 3.2 and Equation 3.3. ta is the time elapsed since
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Figure 3.10: Most influential parameters on A) the average of the minimum peaks over all seg-
ments, B) the standard deviation of the minimum peaks over all segments, C) the average time
associated to each minimum peak over all segments and D) the standard deviation of the time
associated to eachminimumpeak over all segments (bottom,right); according toMorris sensitivity
results. Only the first 100 parameters according to their distance Dj are plotted in the µ∗ − σ
plane. (Figure extracted from [41])

the beginning of the activation and ts is initialized by the activation of the neighbors, so directly
impact by the UDP times of the previous automata. If we look closer at the sensitivity analysis, we
can notice that the UDP related to the apical segments have the highest influence on the mean
and standard deviation of the minimum strain value as well as the corresponding time. This could
be explained by the electrical path. Indeed, the electrical and mechanical activities are closely
related, therefore the deformation of a segment is highly dependent on the occurrence of electrical
depolarization. Kact and Kpass, respectively related with the active and passive components of
the cardiac muscle, show also high sensitivity.

Results from the sensitivity analysis were used to select the 7 most significant model parameters
to be identified for each segment: parameters related with the EMDF (n1, n2, α1, α2), the active
(Kact) and passive (Kpass) components of the cardiac muscle and the electrical depolarization
time (UDP ). The electrical depolarization time of the left bundle branch (UDP LBB) was also

100 Model-based Analysis of Myocardial Strains in Left Bundle Branch Block



added to the parameter identification list.

Complementary results of the sensitivity analysis as well as a sum up of the parameters and
value intervals used in the study are gathered in Appendix A (Table A.4, Table A.5, Table A.6,
Table A.7 and Table A.8).

3.5.4 Patient-specific simulations of segmental strain curves

Myocardial strain curves of the 16 LV segments acquired by experimental measurements and
patient-specific simulations are presented in one representative healthy subject (Figure 3.11),
an anterior ischemic and a non-ischemic (Figure 3.12) LBBB patient (All results are included in
Appendix A).

Figure 3.11: Patient-specific simulation results for a healthy subject. Experimental (black) and
simulated (colored) strain curves corresponding to the 16 LV segments. Bull’s-eye representations
of segmental electrical activation time and segmental myofiber contractility. Color scale at the
contractility bull’s-eye plot set between 10 and 50% in order to highlight the segments with low
contractility.
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Figure 3.12: Patient-specific simulation results for a LBBB patient with an anterior ischemia (left)
and no ischemia (right). Experimental (black) and simulated (colored) strain curves correspond-
ing to the 16 LV segments. Bull’s-eye representations of segmental electrical activation time
and segmental myofiber contractility obtained by patient-specific simulations.The ischemia is
localized on the cMRI (blue arrow).

For both healthy and LBBB cases, a good agreement was observed between clinical and simulated
strain signals. The RMSE errors are similar through the 16 strain curves for each patient in both
LBBB patient types. Concerning healthy cases, the strain curves present similar morphologies in
all the segments due to the synchronization in all LV regions when the myocardium contracts,
but we can notice some difficulties to well fit the basal anterior and lateral strain in some healthy
patients. Figure 3.13 presents this RMSE average by regions for the three groups (the same RMSE
bull’s eye representation is included in supplementary materials for each patient).

Mean RMSE between estimated and observed strain signals in the healthy adults was equal to
5.04 ± 1.02 (Table 3.2).
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Figure 3.13: Mean RMSE by region for the 3 groups of patients: healthy, LBBB ischemia, LBBB
no-ischemia

Healthy Mean RMSE LBBB (Isch) Mean RMSE LBBB (Non-isch) Mean RMSE
Patient 1 4.91 ± 2.16 Patient 1 2.71 ± 1.13 Patient 1 3.47 ± 1.03
Patient 2 3.89 ± 1.08 Patient 2 2.88 ± 1.0 Patient 2 3.63 ± 0.82
Patient 3 4.77 ± 1.53 Patient 3 2.50 ± 0.56 Patient 3 5.03 ± 1.49
Patient 4 4.19 ± 1.13 Patient 4 1.96 ± 0.69 Patient 4 4.38 ± 2.06
Patient 5 5.41 ± 1.66 Patient 5 3.51 ± 1.1 Patient 5 3.73 ± 1.3
Patient 6 6.23 ± 12.45 Patient 6 4.50± 2.42 Patient 6 2.99 ± 1.0
Patient 7 3.43 ± 0.88 Patient 7 8.23 ± 3.42 Patient 7 5.71 ± 2.29
Patient 8 5.45 ± 1.84 Patient 8 1.99 ± 0.72 Patient 8 3.15 ± 1.48
Patient 9 6.72 ± 2.38 Patient 9 4.60 ± 2.50 Patient 9 4.36 ± 1.76
Patient 10 5.40 ± 2.30 Patient 10 3.72 ± 1.33 Patient 10 4.86 ± 2.06

Table 3.2: Mean RMSE between the 16 experimental and simulated LV strain curves of the
study population with healthy, LBBB with ischemia (Isch) and LBBB without ischemia (Non-isch)
patients.

In LBBB cases, mean RMSE was equal to 3.90 ± 1.40 % (Table 3.2). In these cases, the strain
curves obtained in LBBBpatients present dissimilarmorphologies between the different segments.
Particularly, the septum and the lateral wall segments of the ventricle present opposite curves,
where the shortening of septal segments occurs at the same time as in the lengthening of lateral
segments.

3.5.5 Bull’s eye representations of the identified parameter

Frompatient-specific simulations, segmental electrical activation time (EATs) and the percentage
of myofiber contractility (Ks,act) were represented on bull’s-eye plots in Figure 3.11 and Figure 3.12,
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for 3 representative cases: 1) Healthy adult, 2) LBBB patient with LV anterior ischemia and 3)
Non-ischemic LBBB patient.

In LBBB cases, electrical activation bull’s-eye shows a significant electrical activation delay
between the lateral and the septal wall of the LV; while in the healthy case, all LV segments
are activated almost synchronously. Furthermore, the LBBB patient with LV anterior ischemia
presented reduced contractility in anterior segments of the Bull’s eye representation (Figure 3.12).

3.5.6 Comparison with MRI

Figure 3.14: Identified contractility parameters (%) and transmurality degree (%) in two ischemic
patients (top: lateral scar, bottom: antero septal scar) obtained by cMRI.

The model was able to reproduce regional modifications in LV contractility which are due to the
LBBB, but also to local scarring. In the case of isolated LBBB, we observed increased contractility
of the lateral wall compared to the septum. In the case of lateral scar, we observed a significant
impairment in lateral contractility. In the case of anteroseptal scar, a higher reduction in con-
tractility was observed in the septal and apical segments. As depicted in Figure 3.14, reduced
contractility in ischemic patients corresponded to the areas of transmural distribution of late
gadolinium enhancement observed with cMRI (Figure 3.14). A higher percentage of transmurality
translates into larger fibrotic areas, which are associated with low contractility. Therefore, regional
contractility levels allow distinction between ischemic and non-ischemic cases, where reduced
contractility could be associated with damaged tissues. Half of the patient MRI are provided in
Appendix A (Figure A.28: 10 with ischemia and 10 without).
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3.5.7 Unicity evaluation

The ratio of the mean standard deviation over the interval length of each type of parameter is
presented in Table 3.3.

Patients Kact Kpass n2 n1 α2 α1 UDP UDP LBB

2 LBBB ischemia
16.32 2.17 9.39 2.74 1.84 3.45 2.60 0.47
9.07 2.01 14.02 2.82 2.48 3.20 3.24 0.58

1 LBBB no-ischemia 12.96 2.00 10.44 3.18 1.82 3.21 2.85 0.49

2 Healthy
15.51 1.46 10.42 2.32 1.69 2.83 2.61 0.34
12.66 1.47 9.80 2.18 1.42 3.10 2.34 0.44

Table 3.3: Mean ratio of the standard deviation over interval length for 10 identification repetitions
over 5 patients (2 LBBB with ischemia, 1 LBBB without ischemia and 2 healthy)

The result of the repeated identification shows that the parameter values are gathered in the
same part of the possible values of the interval. In fact, for all the parameter, this mean standard
deviation is between 0.34 and 16.32% of their respective interval. Especially for the electrical
parameter UDP LBB , the ratio is less than 0.6%.

3.6 Discussion

This section presents a novel model-based approach that yields simulations of patient-specific
strain curves in several LV regions for healthy adults and patients diagnosed with LBBB. It used i)
an integrated model of the cardiovascular system coupled to multi-segment representations of
ventricles (Section 3.2), proposed ii) the sensitivity analysis of model parameters on myocardial
strains (Section 3.3), iii) the identification of model parameters to reproduce myocardial strain
curves specifically to each patient (Section 3.4) and iv) the analysis of patient-specific identified
parameters (Section 3.5).

The proposed CVS model is based on a functional integration of interacting physiological sys-
tems that takes into account the electromechanical coupling, the inter-ventricular interaction
and a simplified representation of systemic and pulmonary circulations. The model includes
the main cardiac properties required to tackle the problem under study, like the Frank-Starling
law and the influence of preload and afterload. Results illustrate the model ability to simulate
jointly the hemodynamic variables and myocardial deformations. Strain curves notably reflected
typical characteristics associated with each phase of the cardiac cycle. In order to personalize
models to patient-specific data, numerous simulations should be performed. In opposition to
FEM representations [35], the proposed model requires limited computational resources, as the
simulation of one cardiac cycle (1000 ms of simulation) takes about 0.5 seconds (Processor: 2,2
GHz Intel Core i7). The low computational cost is of primary importance to use cardiac modeling
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in clinical practice and to adapt models to each patient.

The first step of patient-specific adaptation is the sensitivity analysis of model parameters, which
highlights i) the close relationship between cardiac electrical and mechanical systems and ii)
the importance of active and passive properties of the myocardium during cardiac contraction.
The analysis results show that the electric stimulation timing between the different segment
have a great importance in the variability between the strain curves. The sensitivity analysis also
highlights the importance of parameters related to myocardial mechanical properties. In fact,
a close relationship exists between excitation and contraction since a synchronous ventricular
activation is a prerequisite for an adequate LV function, whereas the electrical activation time
between opposite LV walls might lead to dyssynchronous ventricular contraction and LV failure
[58]. Nevertheless, it has been shown that typical myocardial strain morphologies in LBBB could
be modified by the presence of scar and low regional LV contractility. Figure 3.9 illustrates
this point, by presenting different patterns though the modulation of parameters. Moreover, the
parameters of the septal and lateral parts of the LV present highest influence on the strain curves’
dyssynchrony. This is particularly interesting knowing the recent study on the importance of the
septal variability in the contribution of the LV reverse modeling [6]. In this context, the ability of
the model to disclose the relationship between electrical activation time and LV contractility has
pivotal importance because it might ease the identification of myocardial substrates that are
more prone to be associated with CRT-response.

In the second step of patient-specific adaptation, evolutionary algorithms were used to identify
the most influential parameters in each patient. The error function was minimized based on exper-
imental and simulated strain curves previously synchronized on the onset of QRS of synthesized
and experimental ECG. Patient-specific simulations have shown satisfactory results, since we
observed a good agreement between simulated and experimental myocardial strain curves given
the reproducibility of strain signals [59, 60]. For healthy cases, morphologies of the myocardial
strain curves were similar in all segments due to the synchronous contraction of the entire LV
[43]. Associated bull-eyes show normal electrical activation times and elevated contractile levels.

In most patients with non-ischemic LBBB, the early activation of the LV septum, followed by the
delayed activations of the LV wall [61, 62], causes a typical myocardial strain pattern. This pattern
is characterized by an early marked shortening of the septum in the pre-ejection phase, known as
“septal flash” [63] followed by an immediate re-lengthening of the septum, the “septal rebound
stretch”. Both the septal flash and septal rebound are known to be predictors of CRT response
[4, 64].

In ischemic patients, the typical activation pattern induced by LBBB can be disrupted by the
association of electrical delay and inhomogeneous LV contractility. In patients with LBBB and
lateral scar, hypocontractile regions are localized in the lateral wall. In this case, deformation
patterns are highlymodified because the local impairment of contractility in the lateral wall caused
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the loss of the rebound stretch in the septum [6]. On the contrary, the presence of anterior scar
was associated with a reduced contractility of the corresponding myocardial segments and had
less impact of septal deformation [6]. The strength of the model was therefore to reproduce the
“atypical” strain patterns observed in patients with LBBB and ischemic cardiomyopathy thought
the correct localization of the hypocontractile segments, which correspond to areas of myocardial
scar identified by clinician based on cMRI.

There are several important consequences of the findings. First, results of the model-based
approach underscore that septal motion and global strain morphologies are not only explained
by electrical conduction delay, but also by the heterogeneity of contractile levels within the
myocardium and suggest that the evaluation of LV dyssynchrony should consider both electrical
delay and regional mechanical function. Second, the application of a model-based approach
could bring additional information on the regional electrical and mechanical function of the LV
from the simple analysis of echocardiographic data. This is particularly important because it
can help to disclose the intrinsic complexity of LV mechanics in CRT candidates, and represents
a step forwards the development of personalized LV modeling in the field of CRT. Third, one of
the main strengths of the approach was to perform a parameter identification process for the
patient-specific estimations of the segmental strain curves. In order to build the cost function,
experimental and simulated strain curves were synchronized on QRS peaks of synthesized and
experimental ECG. Model parameters were identified from the myocardial strain curves of the 16
LV segments acquired by STE. For both healthy and LBBB cases, a good agreement was observed
between measured and estimated strain signals.

These results bode well for the model capacity to reproduce clinical measurements and could be
promising in the LV function analyze for an individual patient and possibly in the prediction of
optimal treatments.

Although several studies have successfully used computational models of the CVS to understand
myocardial deformation patterns [19, 65, 66], or investigate the best CRTpacing location [19, 20, 67]
this approach provides interesting advantages and original aspects. The multi-segment model of
the LV allows not only the analysis of the deformation curves of the septal and lateral walls, but
also the strain signals of all the ventricular regions. Therefore, the proposed model resolution
was adapted to the standardized segmentation of the AHA, keeping a similar abstraction level
as clinicians for the analysis of strain signals. It also uses data from 2D STE, highly accessible
in clinical routine, with well-known strengths and limitation. Moreover, the proposed approach
applies a parameter identification process, providing customized models specifically for each
patient and allowing the recognition of hypocontractile areas that could be associated with the
presence of fibrosis.
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3.6.1 Limitations

The proposed model-based approach presents some limitations that should be mentioned.
Several hypotheses were made in order to propose tissue-level representations of ventricles: i)
the ventricular torsion was neglected, ii) the mechanical continuity between myocardial segments
was not always assured because ventricles are represented by a set of sub-pumps controlled by
a coordinated electrical activity and coupled in the hydraulic domain, iii) only mean myocardial
fiber orientation was considered, and iv) electromechanical coupling was approximated by an
analytic expression.

Despite these hypotheses, the model definition is in accordance with the problem under study
and appears to be a useful tool to assist the interpretation of strain data. Moreover, in order
to reduce computational costs, only a small sample of variables was selected for parameter
identification. These parameters may have absorbed changes in other fixed parameters. For
instance, septal segment parameters that may have been affected by RV variations. Thus, a
wider range of parameters could be included in the future. Finally, this study is based on a small
population of LBBB patients, an extension of the simulation on a larger clinical database and
simulation repetitions should give us a better estimation of the reproducibility and the robustness
of the method.

Moreover, as the results shown, the surface of the hypocontractile regions seems overestimated.
That suggests a diffusion of the tissue quality in the parameter identification process. In the
same way, a mismatch still exists between the experimental and simulated curves. Some efforts
must still be made to reduce it, but the simplifications chosen in the model definition, as well as,
the reduce number of parameters used in the patient specific identification explain it.

Nevertheless, this is the first work providing patient-specific simulations of strain curves in the
case of LBBB in association with ischemia and the proposed approach is a step forward towards
the integration of computational models in patient selection process before CRT procedures. The
work presented in the next chapter will be dedicated to evaluating the proposed model-based
indices, in a wider multi-parametric approach [68], for the prediction of CRT response.

3.7 Conclusion

In this chapter, we propose a novel model-based approach for the analysis of myocardial strains
in LBBB patients. The global method is based on i) a physiological model of the cardiovascular
system that integrates the electrical, mechanical, and hydraulic processes leading to ventricular
contraction and ii) a parameter identification procedure for patient-specific simulations. The
proposed model-based approach was evaluated with echocardiography data from 10 healthy indi-
viduals and 20 LBBB patients. Results show a close match between experimental and simulated
strain curves in all the cases. Furthermore, the approach is able to reproduce electrical activation
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delay and segmental myofiber contractility properly.

More extensive evaluations including a greater population of patients, as well as the analysis of
a wider multi-parametric approach should be performed in the future. Nevertheless, this paper
presents a first work towards the evaluation of myocardial strain signals and the assessment of
certain echo-based parameters by patient-specific simulations based on computational mod-
els. The proposed personalized approach represents a promising tool for the LV mechanical
dyssynchrony understanding and CRT responder identification.
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Characterization of Responder Profiles
for CRT Patient Selection

Chapter

4

As mentioned before (Section 1.3.1), under some conditions, HF patients may benefit from CRT
[1, 2]. However, the mechanisms of improvement of the left ventricle (LV) function with CRT are
not yet elucidated. Around 20-30% of the eligible patients do not respond to this therapy [3–6].
Improvement of patient selection has been identified as an important factor associated with CRT
response rate [1, 3, 7–9]. It is now recognized that a multiparametric approach, using Machine
Learning (ML) algorithms based on a combination of echocardiographic and ECG features, could
help to improve the identification of CRT responders [10–14]. Although ML provide good results,
new tools are still required to assist feature selections, to optimize classification performances
and to improve the interpretability of the approach while minimizing overfitting and limited
robustness. In fact, LV strain curves reflect complex and multifactorial mechanisms that could
be associated with electrical conduction delay, mechanical cardiac activity, and inter-regional
interactions [15, 16]. Physiological models appear as efficient tools to integrate physiological
knowledge, concerning mechanical properties, cardiac electrical activation, and blood circulation
conditions.

The global methodology, presented in this chapter, is centered around an original explainable
hybrid approach, combining in-silico and machine-learning models. First, a characterization of the
CRT-eligible patient was proposed based on clinical and echocardiographic pre-implantation data.
The obtained phenotypes have been improved by digital twins associated with the centroids. This
study was presented at the Computing in Cardiology conference [17] with an oral presentation
that won the "Rosanna Degani Young Investigator" first prize. Then another characterization of the
CRT-eligible patient was proposed based on the physiological model-based parameters. On the
third part of this chapter, CRT-response prediction was proposed, also based on hybrid approach,
combining in-silico and machine-learning models.

This chapter is a good example of how we could combine a classical ML approaches based on
data and signal processing with digital twin. This methodology adds physiological knowledge in
one can consider as a black box approach.

4.1 Experimental data
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Study population

The prospective database includes 250 patients from different centers in Europe (Belgium,
Norway, France) who were eligible for CRT implantation based on current clinical guidelines.
Clinical, electrocardiographic, and echocardiographic data were collected and systematically
evaluated before CRT implantation and 6months after implantation. Table 4.1 gathers the principal
patient characteristics. Patients undergoing upgrades of pacemakers or implantable cardioverter-
defibrillators were also included.

Total Responder Non-responder p-value
(N=250) (N=185) (N=65)

Age 67.2 ± 10.9 67.2 ± 10.9 67.1 ± 10.8 0.96
Gender (male) 65.6% 60.0% 81.5% 0.002
Ischemic etiology 31.2% 23.2% 53.8% < 0.001
Moderate to severe MR 9.6% 9.7% 9.2% 0.91
Diabetes mellitus 18.4% 15.7% 26.2% 0.07
Hypertension 30.8% 30.3% 32.3% 0.76
NYHA functional class 2.3 ± 0.7 2.3 ± 0.6 2.4 ± 0.8 0.26
Creatinine (µ mol) 92.2 ± 36.1 92.5 ± 33.5 91.5 ± 42.7 0.85
QRS duration (msec) 161 ± 23.0 163.7 ± 20.7 155.7 ± 27.7 0.015
LBBB 87.2% 91.4% 75.4 % <0.001
Left atrial volume (mL/m2) 45.1 ± 16.1 43.8 ± 16.4 48.6 ± 14.9 0.04
LVEDV (mL) 216.2 ± 73.8 211.3± 75.6 230.1 ± 66.6 0.08
LVESV (mL) 156.8 ± 62.8 154.2 ± 63.7 164.2 ± 59.5 0.27
LVEF (%) 28.0 ± 6.6 27.9 ± 6.3 28.5 ± 7.3 0.51
SF 68.4% 82.7% 27.69% <0.001
AR 65.2% 74.59% 38.46% <0.001
E/e’ ratio 13.9± 7.9 12.8 ± 7.7 17.1±7.8 <0.001
TAPSE 19.0 ± 5.1 19.6 ± 4.8 17.2± 5.5 <0.001
Right ventricular strain (%) -15.5 ±10.1 -16.3±10.0 -13.1 ± 10.2 0.027
SPAP (mmHg) 21.6 ±20.6 21.7 ± 19.9 21.3 ± 22.6 0.90
GLS (%) -8.6 ± 3.3 -9.0 ± 3.3 -7.3±2.7 <0.001
Dispersion (msec) 93.6 ± 49.0 96.6 ±46.0 85.1 ± 55.7 0.10

Table 4.1: Patient characteristics of the population (non-responders and responders). P-values
from T-test and χ2-test.

Responders were defined as having a ≥15% decrease in LV end-systolic volume at the 6-month
follow-up, compared with baseline.

The study was carried out in accordance with the principles outlined in the Declaration of Helsinki
and was approved by the local ethical committee of each center. All patients signed a written
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informed consent before the participation to the study protocol.

Echocardiography

All patients underwent a standard Trans-Thoracic Echocardiography (TTE) using a Vivid S6, E7 or
E9 ultrasound system (General Electric Healthcare, Horten, Norway). Images were recorded on a
remote station for off-line analysis by dedicated software (EchoPAC PC, version BT 202, General
Electric Healthcare, Horten, Norway). The experimental dataset includes the measured regional
myocardial strain curves obtained by STE at transthoracic echocardiography in apical 4-chamber,
2-chamber, and 3-chamber views. Excel files of these 3 longitudinal strain view analyses were
exported for a dedicated analysis performed in python language. Strain curve references were
fixed at the onset of the QRS.

4.2 Feature extraction

Feature extraction was previously mentioned in Section 2.2.1 and was adapted from previous
works of the team [18–20].

4.2.1 Clinical and echocardiographic features

Classical feature extraction was performed from clinical, electrocardiographic, and echocardio-
graphic data, leading to a set of 26 features per patient :

— gender, age,

— ischemic etiology, mitral regurgitation (moderate to severe), diabetes mellitus, hypertension, NYHA
functional class, Creatinine,

— QRS duration, Left Bundle of Branch Block (LBBB),

— left atrial volume, LV end-diastolic volume, LV end-systolic volume, Left Ventricle Ejection Fraction
(LVEF),

— septal flash, apical rocking,

— E/e’ ratio, tricuspid annular plan systolic excursion (TAPSE), systolic pulmonary artery pressure (SPAP),

— right ventricular strain, global longitudinal strain (GLS), strain peak dispersion,

— global work, constructive work, wasted work, work efficiency.

4.2.2 Feature extraction from strain curves

44 features were automatically extracted from longitudinal strain curves of the apical 4-chamber
view only, according to the method defined by our team in [19]. Briefly, these features are based
on estimation of the integral, or area under the curve, of each available segmental strain signal,
on different time supports. To minimize the estimation error of these features, each strain curve
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was up-sampled to 500 Hz. As performed in previous works, strain values between -5% and 5%
were ignored from all calculations [10, 18, 21].

The first integral feature Is
avc is calculated from the onset of the QRS to the instant of Aortic Valve

Closure (AVC) of each segmental (s) strain curves. It represents a quantification of the cumulative
strain developed by a given segment s, which effectively contributes to LV ejection. A second
integral Is

peak is calculated from the onset of the QRS to the strain peak. It represents the global
cumulative strain developed by the contraction of the segment. The third integral is calculated as:

Es = Is
peak − Is

avc (4.1)

and corresponds thus to the integral between the strain peak and aortic valve closure. Negative
values of this feature reflect a wasted cumulative strain, acting after AVC. This procedure (Fig-
ure 4.1) was applied to all segments of the 4-chamber view, for a total of 18 features. The onset
of the QRS is used as reference for the calculation of all features.

Figure 4.1: Strain integrals extraction on the 4-chamber view: Is
avc, Is

peak and its difference Es

delimited by the two timing: tavc and tpeak.

Then, the mean of these different integrals (Mean) was calculated for each time support: IMean
avc ,
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IMean
peak and EMean. The last set of features was based on the sums of integrals for the two walls,

septal (S) and lateral (L): IS
avc, IS

peak , ES , IL
avc, IL

peak and EL. These features represent the cumulative
strain from all segments of a given wall. The differences (D) of the cumulative strain of the two
sides were then calculated:

ID
avc = IL

avc − IS
avc (4.2)

ID
peak = IL

peak − IS
peak (4.3)

ED = EL − ES (4.4)

Finally, the amplitude of the strain (Ss
peak), the time of the strain peak (ts

peak) and their average on
the 6 segmental strain curves were automatically extracted.

In a preprocessing phase, all the features were normalized with the standard score before the
application of the clustering algorithm.

4.3 Patient-specific models

4.3.1 Model

The model presented in Chapter 3 was used in this work. As a reminder, it integrates four main
sub-models:

1. The cardiac electrical system,

2. The right and left atria,

3. A multi-segment representation of the right and the left ventricles,

4. The systemic and pulmonary circulations.

This model has been validated on data from 20 LBBB and 10 healthy patients and fully described
in Chapter 3.

4.3.2 Model specification/parameters identification

This identification was implemented with an EA. The same 113 parameters were involved, based
on the previous model sensitivity analysis (Section 3.5.3). The EA chosen in this study was a Self-
Adaptive Differential Evolution (SADE) algorithm [22] implemented with 4 islands, 15 individuals
through 10 generations and 20 evolutions using the python library PyGMO (see Section 2.1.3). The
EA process with the 4 islands is illustrated in Figure 4.2. The choice of parameters of crossover
and mutation is directly integrated in the algorithm by an adaptive process [22].
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Figure 4.2: EA algorithm illustration with the 4 islands of 15 individuals and the 20 evolutions of
10 generations.

4.4 Characterization of responder profiles

In [18], our team proposed a multiparametric clustering method using clinical and echocardio-
graphic data to group 250 CRT candidates based on their therapy response and outcomes. This
approach identified specific CRT response subgroups and revealed how cardiac regional de-
formations, measured through strain integrals, may relate to response. However, interpreting
the physiological implications of observed strain modifications remains challenging. Physiolog-
ical model-based methods offer a promising solution to increase interpretability by providing
parameters with direct physiological meaning.

In this section, we propose a method to improve the interpretability of the unsupervised clustering
method previously proposed [18] through a digital twin approach, based on patient-specific model
identification. Digital twins were proposed for the patients associated with cluster centroids, and
the parameters reflecting physiological mechanisms were analyzed.

4.4.1 Method

i) Clustering analysis, based on clinical and echocardiographic pre-implantation
data

The set of all features was clustered by applying the K-Meansmethod [23]. This algorithm partition
in K groups, named clusters based on common characteristics, and aim at minimizing within-
cluster variances. The optimal number of clusters was determined using a Silhouette score and
Inertia (defined in Section 2.3.2: Equation 2.12 and Equation 2.15). The algorithm was applied on
the 250 patients with their 70 features. It was implemented in Python language using the Sklearn
library [24].
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Graphical representation: To visualize clustering results, a Principal Component Analysis (PCA)
was performed after the clustering step. The PCA transforms the 70 dimensions space of the
database in a 2 dimensions space to illustrate the different groups of patients.

Clusters analysis: A Wilcoxon test was applied to assess how the clusters differ from each other.
The top-ranked features highlight the connection to the CRT response of a given cluster. These
best ranked features were presented to underline the highest, medium, or lowest mean values
compared to the rest of the database.

ii) Digital twin of patients associated with centroids

Personalized physiological models were proposed by identifying parameters for patients asso-
ciated with centroids of each cluster. Parameters reflecting physiological mechanisms were
analyzed and added to the cluster’s profiles. Figure 4.3 illustrates this methodological approach.

Figure 4.3: Methodological illustration of the digital twin patients associated with clusters’
centroid.

Virtual patient representative: For each cluster, the proposed model was personalized to the
patient closest to the cluster’s centroid, which has the three-echo view available. Similarly to
the previous chapter, the model personalizing was done by identifying model parameters. This
identification was implemented with the same method presented in Section 4.3.2 with the same
EA algorithm, error function (Jerror), parameters identified and tuning.

Interpretable patient-specific features: The output features discussed in this study are the
following:
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— Ks,act and Ks,pass : myocardial contractility and stiffness that describes quality of the
myocardial tissue.

— EATs : electrical activation time.

— MAPTs : mechanical activity peak time that is defined as the time of EMDF (Equation 3.3)
curve maximum, considering the same bundle of His activation as reference.

The three first features were presented previously. The two first represented the tissue quality of
each myocardial segment and were described in equations (Equation 3.4). They were directly
identified by the EA. The two other features were extracted from patient-specific simulations of
the electromechanical activity.

4.4.2 Results

i) Clustering analysis based on clinical and echocardiographic pre-implantation
data

The clustering analysis was performed on the dataset of 70 features (26 classical clinical and
echocardiographic features and 44 strain-extracted features) and 250 patients. The optimal
number of clusters K=5 was obtained using the silhouette score and inertia (Figure 4.4). The
optimal number of cluster must be in the elbow of these curves [25].

Figure 4.4: Inertia and silhouette score to choose the number of cluster K.

Table 4.2 gathers the responder rate ranging from 50% to 93% of CRT response and the most
significant features of each cluster. Added to already known features for poor responder profile
such as no septal flash or no apical rocking which are typical movement of the ventricle visible in
echocardiography [1, 2, 26], the proposed integral features are noticeable in the main extracted
features of the different clusters. For example, in most of the good responder phenogroups, the
strain features associated with the lateral wall are discriminative: septal and mean minimum
strain time, lateral integrals and integral difference (t...sept

peak , tMean
peak , IL

avc, IL
peak , ID

avc). This refers
to the quality of the LV walls to provide enough work during systole despite the potential wall
desynchronization.
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Cluster 1 (50%) Cluster 2 (71%) Cluster 3 (72%) Cluster 4 (86%) Cluster 5 (93%)
Imidinfsept

avc GLS Imidinfsept
avc tMean

peak IL
avc

ID
avc SMean

peak IS
avc tmidinfsept

peak ID
avc

ID
peak IMean

peak IMean
avc tapiinfsept

peak Imidantlat
avc

septal flash rate IS
peak Imidinfsept

peak EMean Iapiantlat
avc

IL
avc IMean

avc IS
peak ES IL

peak

apical rocking rate constructive work Ibasinfsep
avc Emidsept Ibasantlat

avc

IL
peak IS

avc SMean
peak Ebasinfsept Imidantlat

peak

Imidantlat
avc Imidinfsept

peak Smidinfsept
peak male rate Smidantlat

peak

Table 4.2: Response rate (in %) for each of the five identified clusters and their most significant
features, colored by relative value based on clusters analysis: High (green), medium (orange) and
low (red).

Representation: Figure 4.5 represents the two first principal components of the PCA analysis of
the database. These two first principal components explain 33.6% of the variance, with 23.4% for
the first and 10.2% for the second. The five clusters of the study [18] are represented, as well as
the CRT response of each patient. (The 5 clusters can already be distinguishing of the 2D PCA
but even more in a 3D PCA with almost no overlapping, the 3D figure is provided in appendix file:
Figure B.1).

Figure 4.5: PCA visualization of the database of 250 patients colored by cluster and symbolized
by their CRT responses (cross: non-responder, circle: responder). Patients closest to the centroids
are circled in black.

Kaplan-Meier Analysis: Figure 4.6 displays Kaplan-Meier curves for event-free survival at 4
years. The overall adverse event rate was 22.8% and gathers events of death and hospitalization
for heart failure. We can easily notice a difference of event rate between cluster 1 and 5 with
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respectively 36.5% and 7.3% (p-value=0.003 between cluster 1 and 5 with a log-rank test) [18].

Figure 4.6: Kaplan-Meier survival curve at 4 years.

ii) Digital twin of patients associated with centroids

Parameters identifications and simulations

From the identification process, patient-specific model parameters were obtained for the 5
patients associated with each cluster centroid (circled in Figure 4.5). Patient-specific strain
curves of these patients were simulated. Figure 4.7 presents the identified parameters and the
comparison of experimental and simulated strain curves of the 16 LV segments. First, at the
top of each patient box, the 16 experimental (black) and simulated (colored) strain curves are
compared with a good fit. The mean mRMSE on the five patients is 3.97% (± 1.74) and written on
Figure 4.7 for the five patients with their mean identified contractility and electrical activation
time. Although, for some patients, the strain morphologies are not completely reproduced for all
the 16 curves, a close match was observed between the curve’s patterns.

At the bottom, the interpretable patient-specific features, described in Section 4.4.1, are repre-
sented through bull-eyes diagrams (see Figure 3.2 numbering). Concerning the contractility, the
2 patients representing clusters with below-average rates (cluster 1 and 2) are associated with
low values compared to other patients. Contractility values range are [13%; 45%], [11%; 47%] and
[18%; 47%] respectively for the centroid patients of cluster 3, 4 and 5 who are responders to CRT.
By comparison, the contractility of clusters 1 and 2 patients (non-responders) is clearly lower
with range of [12%; 25%], [6%; 25%]. Low contractility in LV septal part could inhibit contraction
mechanism and its propagation in the rest of the ventricle.

Larger stiffness was noticed in the cluster 1’s patients with a mean value over the 16 segments
equal to 64.0% compared to the cluster 2’s patients with 60.5%. The increase of stiffness could
generally be linked to degradation of the diastolic dysfunction. Cluster 3 and 4 present reduced
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Figure 4.7: Comparison of the 16 experimental (black) and simulated (colored) strain curves for
each of the 5 patients with the mRMSE on the 16 curves. The identified model parameters are
represented in bull’eye: contractility (yellow-pink), electrical activation time (blue-yellow), stiffness
(pink-cyan), and mechanical activation time (purple-yellow) with the mean value written below.

values (respectively 62.8% and 63.1%). Concerning specifically cluster 5, stiffness presents
globally higher values (66.1%).

Concerning electrical activation times, clusters 4 and 5 show an earlier activation of the septal
wall and an extended lateral activation compared to clusters 1, 2 and 3. LV electrical delays
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associated with clusters 4 and 5 are also slightly higher than the other clusters with a maximum
electrical activation time of 106 ms for these two clusters against 101, 95 and 90 ms for the
cluster 1, 2 and 3 respectively.

The mechanical activity peak is slightly delayed in the three responder patient simulations with
mean MAPTs equal to 395, 402 and 395 ms for the cluster 3, 4 and 5 respectively. In the two
other clusters, the mean mechanical activity peak times are 374 and 360 ms for patient of cluster
1 and 2. For these patients, the septal segments’ activation arrived later than the one located on
the lateral part of the LV (mean septal MAPTs respectively equal to 410 ms and 362 ms), while
an early septal mechanical activity peak was noticed for cluster 5: 332 ms.

4.4.3 Discussion

The main contribution of this work consists in combining unsupervised clustering and patient-
specific physiological modeling for the analysis of response profiles to CRT. This original method-
ology was declined in different applications. First, five clusters, defining groups of below-average
to excellent responders, were defined based on clinical and echocardiographic pre-implantation
data. Then, patients associated with centroids of each cluster were considered to propose five
patient-specific models. The identified parameters of these five digital twins provide a direct
physiological interpretation of strain curve morphologies.

These study aims at providing characterization of CRT eligible patient by proposing different
patient profiles with more or less risks of non-response.

i) Clustering analysis, based on clinical and echocardiographic pre-implantation
data

In [18], our team has shown that unsupervised machine learning could be used to integrate
echocardiographic, ECG and clinical data to phenotype HF patients and their responses to CRT.
Results allows for the identification of groups of different response rates, ranging from below-
average to above-average, in comparison with response rate described in the literature [6]. Cluster
1 and 2, which are the two groups with below-average rate, are associated with low strain integral
values and work as well as a reduced proportion of septal flash and apical rocking. The other
clusters with normal or elevated response rates present higher strain integral values, with strain
with larger amplitudes. To bemore specific, in the best cluster (cluster 5), strainmorphology shows
a typical LBBB activation pattern with early stretching of the lateral wall and early shortening of
the septal wall. This characteristic pattern has been shown to be associated with an improved
prognosis after CRT [27].

The advantage of using unsupervised ML is that, unless using hypothesis driven, as classi-
cally used, this approach is data driven and hypothesis free. In comparison to other clustering
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approaches [14], the proposed method allows for the quantitative analysis of left ventricular
mechanics, through the evaluation of strain integrals [18, 19]. Although these features could be
related to myocardial contraction, direct physiological interpretation remains difficult only based
on clustering results.

ii) Digital twin of patients associated with centroids

Added physiological based explanations with personalized models [28, 29] helps to provide
a fine-tuned understanding of the cardiovascular behaviors associated with each cluster, by
explicitly representing the underlying physiological mechanisms. In fact, identified parameters
provide additional information on the regional electrical and mechanical LV functions. Electrical
conduction delays, mechanical activity peak time, stiffness and contractile levels appears as
particularly relevant to strain curves morphology. Contractility parameter is especially interesting
because it could be associated to potential area of damaged tissues or scars.

Clusters 1 and 2, defined by below-average response rates to CRT, are associated with reduced
myocardial contractility parameters, as illustrated on bull-eyes obtained from the model (Fig-
ure 4.7). In fact, total myocardial scar or located in the posterolateral wall are associated with
non-response to CRT [30]. Aalen et al. in [31] also demonstrate that myocardial viability and
particularly the septal viability is an indicator of CRT response.

Myocardial stiffness is more elevated in cluster 1 in comparison with cluster 2. A stiff heart links
to degradation of the diastolic dysfunction [32] that was recently associated to worst-prognostic
CRT candidate [33]. Concerning mechanical activation delays, late septum activations, compared
to their lateral wall, were observed for these two clusters. In fact, several studies [34–36] have
shown that septal and lateral activations, that differ from typical LBBB patterns, are mainly
associated with bad CRT responses.

Patient-specific models of the other clusters present more elevated contractilities and elevated
electrical activation delays, that better corresponds to pure electrical dyssynchrony. In responder
patients (3, 4 and 5), earlymechanical activation of the septal segments (added to a preserved con-
tractility) was identified and represent typical LBBB pattern and/or presence of septal flash, well
known to be a CRT response indicator [37]. Furthermore, this kind of impaired electromechanical
substrate has been shown to be beneficial to CRT response [36, 38].

Concerning specifically the best responder (cluster 5), stiffness values appear as more elevated
than other clusters. We hypothesize that myocardial stiffness is compensated by a well-preserved
contractility and large electrical activation time resolved by CRT stimulation. In fact, [39] proved
that E/e’ ratio, a parameter used to estimate diastolic dysfunction, has a less predictive value on
CRT response than others parameters such as SF and AR (usually associated with contractility)
[34].
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4.5 Characterization of responder profiles based on the digital
twin database

Contrary to the previous clustering, based on clinical and echocardiographic pre-implantation data,
this clustering was based on the model-based parameters. The physiological model parameters
used to create each digital twin constituted a new database and were used as inputs of the
clustering. Due to the lack of all the strain echo views, this characterization will be done on 162 of
the 250 patients of this database.

4.5.1 Method

Figure 4.8 illustrates the methodological approach. 162 patients were involved in this study and
a digital twin was created for each of them. The identified parameters of the digital twins were
then used as inputs of the clustering

Figure 4.8:Methodological illustration of the clustering analysis on the physiological model-based
parameters.

Parameter space

The database now contains 145 model-extracted features. The interpretable features: Ks,act,
Ks,pass, EATs and MAPTs, previously mentioned for each of the 16 segments (s) were used.
Some more specific identified parameters were also extracted from the digital twins:

— The parameters involve in the EMDF (Equation 3.3) of each segment: n1,s, n2,s, α1,s, α2,s.
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— The electrical depolarization time of each segment and the one of the LBB: UDP s and
UDP LBB .

In order to visualize the distribution of the different interpretable parameters on each cluster, the
average was calculated over all the patient of a same cluster, for each parameter type and for
each segment. This computation provides four mean bull eyes for each cluster, one for each
parameter type.

To visualized and extract variability of this data set of 145 model-extracted features, a Principal
Component Analysis (PCA) was applied.

Clustering

The set of all model-extracted features was clustered by applying the K-Means method [23].

The optimal number of clusters was determined using a Silhouette score and Inertia (defined in
Section 2.3.2: Equation 2.12 and Equation 2.15). As before, the clustering was performed before
PCA to offer more interpretability and provide a comprehensive report on the role of the different
features.

Clusters analysis: A Wilcoxon test was applied to assess how the clusters differ from each
others. The top-ranked features highlight the connection to the CRT response of a given cluster.

4.5.2 Results

Model parameter identification and simulations

For each of the 162 patients, 113 parameters were identified to obtain a digital twin. Patient
specific strain curves of these patients were simulated from these digital twins. Although, for
some patients, the strain morphologies are not completely reproduced for all the 16 curves,
a close match was observed between the curves patterns. The mean mRMSE between the 16
simulated and experimental strain curves on the 162 patients is 4.48% (± 1.08). The 162 digital twin
simulations, separated by cluster, are provided in Appendix B (Figure B.2, Figure B.3, Figure B.4,
Figure B.5 and Figure B.6)

A statistical study of all the identified parameters was proposed in Table 4.3. For 17 of the 145
features, there is a significant difference between the population of responder and non-responder
(p-value < 0.05).

— 7 are model parameters or extracted features involved in the EMDF (1 MAPTs, 1 α2,s, 3 n1,s,
2 n2,s ).

— 9 are tissue quality model parameters (6 Ks,act and 3 Ks,pass).

— 1 are electrical model parameters or extracted features (UDP BasalAntLat).

13 of these 17 features are segments of the 4-chamber view.
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Parameters Non-responder Responder p-value
KApiLat,pass 73.2% 56.8% <0.001
KApiLat,act 20.9% 28.1% <0.001
KMidAntLat,act 21.5% 27.3% <0.001
KMidAntSept,act 18.2% 23.2% 0.004
KBasalAntLat,pass 61.0% 49.2% 0.005
KApiSept,act 21.8% 27.0% 0.005
α2,BasalInfSept 0.44 0.40 0.01
UDP BasalAntSept 13.0 ms 16.2 ms 0.01
n1,ApiSept 1.32 1.15 0.02
n2,MidAntLat 8.91 9.96 0.02
n1,MidInfSept 1.31 1.16 0.02
MAPTBasalInfSept 365 ms 332 ms 0.03
KBasalInfLat,pass 68.2% 61.0% 0.04
KApiInf,act 26.3% 30.0% 0.04
n1,ApiAnt 1.33 1.19 0.04
KMidInf,act 25.4 28.6 0.04
n2,MidAntSept 9.49 10.3 0.04

Table 4.3: T-test on the 145 identified and extracted features of the model over the 162 patients.
Only the ones with a p-value <0.5 are presented here.

Clustering

Figure 4.9: Inertia and silhouette score to choose the number of cluster K on the identified
parameters’ base.

The clustering analysis was performed on the identified parameter dataset of the 162 patients. The
optimal number of clusters was also K=5, based on the silhouette score and inertia (Figure 4.9).

Figure 4.10 represents the three first principal components of the PCA analysis of the database.
The five clusters of the study are represented, as well as the CRT response of each patient. A 3D

130 Characterization of Responder Profiles for CRT Patient Selection



representation was preferred to better visualize the separation of the five clusters, less noticeable
in 2D. The three first principal components represent 21.5% of the variance (12.0% for the first,
5.4% for the second and 4.1% for the third).

Figure 4.10: PCA visualization of the parameters’ base of 162 patients colored by cluster and
symbolized by their CRT response (cross: non-responder, circle: responder).

The responder rate ranges from 52% to 84% of CRT response (52%, 54%, 77%, 78% and 84%).
Figure 4.11 presents the average interpretable patient-specific features in bull eyes representation
for the five clusters.

Concerning the first row (Kact: contractility), the two "best" clusters in terms of CRT response
present higher identified values. Their mean values over the 16 segments are 33.0% and 27.8%,
respectively, for cluster 4 and 5. By comparison, the three cluster with the lower CRT response
rate present smaller contractility values with 22.5%, 22.8% and 23.4% mean value for cluster 1, 2
and 3.

Larger electrical activation times were noticed in cluster 1 and 5 with means over the 16 segments
of the average bull eye of 82.0 ms and 88.4 ms respectively. This confirms the hypothesis that not
only the electrical behavior must be considered. A preserve myocardial tissue must be present
to ensure effective stimulation of the CRT device. The three other cluster’s bull eyes have mean
value of 69.1 ms, 55.8 ms and, 69.2 ms for the second, third, and fourth respectively.

Concerning the stiffness, the mean of the average bull eye is similar over the five clusters: 62.4%,
62.4%, 61.7%, 56.4%, 61.2%.

The peak of the mechanical activity is well delayed for the cluster 1 and 5 with 450ms and 387 ms.
It is consistent with the electrical activation time also delayed for these two clusters. The cluster
3 mean MAPTs are extremely well-preserved and could explain the not so bad CRT response
despite a damage contractility.
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Figure 4.11: Average bull eyes of the interpretable patient-specific features of the five clusters:
contractility (yellow-pink), electrical activation time (blue-yellow), stiffness (pink-cyan), and me-
chanical activation delay (purple-yellow) with their response rate.

4.5.3 Discussion

In this section, the process was brought further. CRT patient phenotyping, only based on the
digital twins, were created thanks patient strains with hypothesis-free on CRT response markers.
The two first clusters present a below average response rate and with the third one, they present
low values of identified contractility. The two other clusters (cluster 4 and 5) with normal or
elevated response rates present higher contractility values. Added to that, we can notice larger
electrical activation time in the best cluster (cluster 5). This confirms that not only the electrical
markers must be considered in the CRT selection. The quality of the tissue, well underlined by the
identified parameters of the digital twins, must be considered as it is essential to an efficient CRT
stimulation. In fact, if the CRT device leads are set on necrotic tissues/scar zones, the electrical
signal could be impaired [40–42].

If we look at the statistics tests, we can notice that the features with the smallest p-value
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are the one that described the tissue quality and the one involved in the electromechanical
coupling. KApiLat,pass, KApiLat,act and KMidAntLat,act present p-value <0.001 and represent active
and passive ability of three lateral segments to contract (Table 4.3). The contractility parameters
of the myocardium are better preserved for responder patients, and passivity parameters are
also lower. In the same idea, the mechanical activity peak time MAPTs are also less delayed in
responder patient. These model parameters and extracted features confirm that the contractile
levels within the myocardium must be considered and are well link with the ischemic proportion
of non-responder patient (p-value = 0.0001). In fact, A stiff heart links to degradation of the
diastolic dysfunction [32] that was recently associated to a worst-prognostic CRT candidate [33].
Myocardial viability was demonstrated to be a CRT-response indicator in [31] and particularly the
septal viability of the myocardium.

This second section aims at going deeper in the characterization of CRT eligible by providing
understandable features to provide direct physiological interpretation of strain curve morpholo-
gies. The digital twin proposed could be a way to specifically understand the electromechanical
coupling of the different LV regions of a patient. Then, referring to the clustering and/or this
database, decide or not of the therapy given the CRT response of the closest neighbor(s) or
cluster. To our knowledge, this is the first time ML approaches were applied on a digital twin
database created thank to experimental strain curves. Recent studies proposed digital/virtual
patient cohort, but without any patient experimental data [43, 44]

4.6 Prediction of response to CRT

A best selection of patients before implantation is essential to improve the individual quality of
care and prevent the risk of non-justified complications. In the last years, significant research
activities have been addressed at disclosing the biological, electrical, and mechanical aspect of
CRT inefficiency, in order to improve patient selection and CRT response [1, 3, 7–9]. However, the
selection of candidates for resynchronization therapy and the follow-up of implanted patients
still remains challenging because it depends on several factors including clinical characteristics,
typical ventricular conduction disturbances, and the evaluation of the specific electromechanical
substrate responsible for LV discoordination. The objective of this section is to propose, a
multiparametric evaluation, based on the combination of data-driven and model based features,
to improve the prediction of response to CRT. First, a CRT response classifier train on pre-operative
data was proposed. Then the same classifier was then trained on digital twin extracted features.

4.6.1 Method

The same part of the prospective database, including the 162 CRT eligible patients from two
centers in Europe, were used. The same clinical, electrocardiographic, and echocardiographic
data were collected as well as the strain extracted features. The creation of the digital twins was
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performed thanks to a model parameter identification process, as described in Section 4.3.2. The
same EA algorithm, error function (Jerror), parameters identified and tuning were used.

Supervised machine learning algorithm

Feature selection: Feature selection is a preliminary step that measures the strength of the
relationship of the variableswith the event. It aims at keeping a reduced set of themostmeaningful
feature to build the final model. In this study, the feature selection was done using a ’Out-Of-Bag’
(OOB) feature importance analysis on the random forest classifier with the "Gini" importance
criteria [45].

Among the selected features, a high correlation was found between some features (correlation
index > 0.7) and only the features presenting the highest relative importance were kept for further
analysis after ensuring that it would not affect the model’s performance by testing with and
without it.

After this step, the features are ordered by importance and "redundant" features are removed. We
can then iterate on the number of features to create the Random Forest (RF) model [46].

Ensemble classification algorithm: The classifier used in this study is a RF. It is an ensemble
method that averages the independent prediction of numerous decision trees created on a subset
of features. The number of trees is a hyperparameter of the algorithm that must be tuned [47].

Proposed approach

In this study, we wanted to propose a CRT response classifier. The same classification algorithm
was applied on two categories of features : 1) The first one is clinical and echocardiographic
pre-implantation data presented in the previous study with strain extracted features, 2) The
second one is composed of model-extracted features (identified model parameters or feature
extracted of the patient specific model simulation) of the 162 digital twins. Figure 4.12 presents
the different step of the classifier creation. The global performance was assessed by a repetitive
cross-validation method, which randomly selects at each round 80% of the population to be
trained (training dataset) and 20% to be tested (test dataset).

4.6.2 Results

Supervised ML on features extracted from data

Feature selection

The 70 features extracted from data were included in the following process. First, they were
order by importance (RF classifier feature importance or Gini importance). Then, the RF classifier
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Figure 4.12: Methodological illustration of the CRT response prediction approach.

was iteratively test with the first i features (ordered by importance). The AUC results of these
iterations are plotted in Figure 4.13. 9 features were selected to be used in the classifier.

Figure 4.13: Choice of the number of features in the list of the feature importance from data. The
AUC is computed on 200 repetitions of test datasets.
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Figure 4.14 shows the 9 most important features selected after this features selection step:

— 7 are strain extracted features: integrals (Is
peak/avc), strain maximum amplitude (Ss

peak) and
strain peak time (ts

peak),

— 2 are classic echocardiographic features.

Concerning the localization of the parameter segments, they are mostly features extracted from
lateral and septal segments.

Figure 4.14: List of the 9 first features from data order by importance, the correlated features were
removed. Color code: strain extracted features (gray) and classic echocardiographic features
(black): Tricuspid Annular Plane Systolic Excursion (TAPSE) and Left ventricle End-Diastolic
Volume (LVEDV).

Ensemble classification results

Figure 4.15 represent the process of RF hyperparameters choice. To choose the number of
estimators (trees) to use in the classifier, the AUC value was computed for 2 to 550 estimators.
Thus, 500 estimators were chosen for this study. The deepness of the tree was also tested, but
the default mode was the best. The default parameterization of the tree deepness is to extend
the nodes until all leaves are pure.

Figure 4.16 shows the Area Under Curve (AUC) for the prediction of response to the CRT. After
200 cross validation rounds, the predictive performance was good with a final AUC of 0.81±0.07.
The optimal threshold was taken to maximize the geometric mean of sensitivity and specificity
(known as G-mean: Equation 2.11) with a sensitivity = 0.75 and a specificity = 0.72.

Supervised ML on model-based extracted features

Feature selection

From the identification process, as mentioned in Section 4.4, 145 model-based extracted features
could be extracted from the 162 digital twins.
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Figure 4.15: Choice of the number of trees/estimators. The AUC is computed on 200 repetitions
of test datasets.

Figure 4.16: ROC curve of the RF classifier on features extracted from data with the 9 first features,
500 estimators and 200 cross-validation repeats. The AUC is computed on the 200 test datasets.

As already described, the number of features used in the classifier was determined by iteratively
test i features, (order by importance). The AUC results of these iterations are plotted in Figure 4.17.

Figure 4.18 shows the 22 most important features selected after this features selection step:

— 10 are model parameters or extracted features involved in the EMDF,

— 9 are tissue quality model parameters,

— 3 are electrical model parameters or extracted features.

Concerning the localization of the parameter segments, they aremostly parameters or features ex-
tracted from lateral and septal segments. Moreover, the basal layer of the LV aremore represented
in these 22 selected features.

Ensemble classification results

Figure 4.19 represent the process of RF hyperparameters choice. The same process was applied,
and 500 estimators were chosen for this study. The deepness of the tree was also tested, but the
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Figure 4.17: Choice of the number of features in the list of the feature importance from model.
The AUC is computed on 200 repetitions of test datasets.

Figure 4.18: List of the 22 first model extracted features ordered by importance, the correlated
features were removed. Color code: tissue quality parameters (pink), electrical parameters or
extracted features (green) and parameters or extracted features involved in the EMDF (blue).

default mode was the best.
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Figure 4.19: Choice of the number of trees/estimators. The AUC is computed on 200 repetitions
of test datasets.

Figure 4.20 shows the Area Under Curve (AUC) for the prediction of response to the CRT. After 200
cross validation rounds, the predictive performance was excellent with a final AUC of 0.86±0.07.
The optimal threshold was taken to maximize the geometric mean of sensitivity and specificity
(known as G-mean: Equation 2.11) with a sensitivity = 0.74 and a specificity = 0.82.

Figure 4.20: ROC curve of the RF classifier on model-extracted features with the 22 first features,
500 estimators and 200 cross-validation repeats. The AUC is computed on the 200 test datasets.

4.6.3 Discussion

The main contribution of this work is the analysis of the added-value of model-based features
to predict CRT response. For this purpose, a complete digital twin database was created based
on a clinical database of CRT candidates. A hybrid explainable pipeline, combining in-silico and
supervised ML models, was proposed.

This classifier turned out to bemore efficient than the one created based on the features extracted
from clinical and echocardiographic pre-implantation data. Moreover, the strain extracted features
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seems to have a positive effect on the prediction compare to the literature that are principally
based on a reduce number of clinical available features [13, 21, 48, 49]. However, these predictor
models are hard to compare due to the different data and features used as inputs and the criteria
of CRT response or endpoint [50].

As an extension of the previous part, the following step was to predict the response of CRT eligible
patients based on their digital twins. A classical machine learning classifier was put in place
and provided very interesting result but in addition to the classification, the feature selection is
an extra value. In fact, by providing the importance of the digital twin extracted features in the
classification, this demonstrates the informative quality of the features. Electrical parameters,
tissue quality parameters and parameters involved in the EMDF are all represented in the feature
importance analyses and the statistical test. In the RF-based feature importance estimation, half
of the twenty-two-first features are model parameters or simulation extracted features involved
in the electromechanical coupling. These twenty-two features are not particularly correlated to
each other (<0.6).

In this study, we can notice that lateral and septal segment are overrepresented in the most
important features. This confirms the fact that these two walls analyzed thanks to the 4-chambers
views in echocardiography must be prioritized during the selection of CRT eligible patients and
specially their asynchrony [10, 51–53]. Cikes et al. [14] stated that individuals who do not respond
to CRT typically exhibit low strain in the apical septal region. This observation aligns with the fact
that the septal segments, tend to experience the highest rebound stretch. In simpler terms, the
lack of effectiveness in myocardial systolic strain is most pronounced in these segments [54].

A combination of the clinical, strain-extracted and model-based features were tested as inputs of
a RF classifier. No significant added value was observed compared to the model-based features
only, presented before (Figure 4.20). Further work is needed to explore methods that could take
advantage of these different type of features.

4.7 Conclusion

This chapter proposes combined approaches based on personalized cardiovascularmodeling and
ML algorithms. These original methods aim at improving the interpretability of the ML algorithms
by explicitly integrates meaningful physiological knowledge through the proposed computational
model. Moreover, they also bring the physiological model closer to the clinical practice by using
a complete patient database and adapting its level of abstraction to the one provided by the
experimental measurements.

Model-based approaches improve the understanding of LV mechanics and the assessment of
heart function in patients undergoing CRT, and ML phenotyping helps in the characterization and
classification of HF patient profiles and could prioritize particular patients to a CRT implantation.
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These novel approaches have great potential clinical implications, suggesting personalization of
patient care. They provide new strain-derived parameters to use in the selection of CRT candidate
and fill the lack of mechanical analyses needed to understand the non-response of 30% of the
implanted patients [55].
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Myocardial Work Estimation in Aortic
Stenosis Case

Chapter

5

Aortic stenosis (AS) is themost common primary valvular heart disease, leading to an intervention
with growing prevalence due to the aging population [1]. Current recommendations state that
Aortic Valve Replacement (AVR) is a class I indication in cases of symptoms or reduced left
ventricular ejection fraction (LVEF, <50%). Whatever, LVEF is preserved in many patients with AS
even when symptoms develop. Stratification of pre-operative and post-operative risk of each
patient is currently challenging. Unfortunately, valvular parameters such as Aortic Valve Area
(AVA) and transvalvular gradient did not permit an ideal risk stratification [2, 3]. Several studies
suggest the additional value of Global Longitudinal Strain (GLS) to better stratify this population.
Magne et al.[4] demonstrated in a meta-analysis that GLS <14, 7% with preserved LVEF increased
with an OR of 2.6 risk of death. Despite these results, GLS is not widely used in clinical routine.
A possible explanation is the after-load dependence of GLS [5]. Indeed, GLS decreases with
the increasing LV after-load, that is why an after-load independent feature to better describe LV
function would be necessary.

Myocardial Work (MW) is a very promised new tool to assess more precisely LV function [6, 7]
taking into account LV after-load. Its efficiency in patient’s stratification has already been sug-
gested in cardiac resynchronization therapy [8, 9], hypertrophic cardiomyopathies [10], and mitral
regurgitation [11]. However, in order to calculate the MW, an accurate estimation of the pressure
curve is needed. Russell et al. [6, 12] have proposed a non-invasive method for the estimation LV
pressure based on a black-box non-linear method that fits a reference waveform to the duration of
the isovolumic and ejection phases of a given patient, as measured by echocardiographic timing
of aortic and mitral valve events. Peak LV pressure was estimated from a non-invasive cuff-based
measurement of the brachial artery pressure [13]. Thanks to this pressure curve estimation, a
MW computation tool was developed for these patients with normal or subnormal afterload [6].
However, this pressure estimation method could not be applied in the case of AS, where high
pressure gradients could be observed between LV and the aorta. Fortuni et al [14]. have adapted
the pressure estimation method by calculating peak LV pressure as the sum of mean aortic
transvalvular gradient and aortic systolic pressure to calculate MW for this type of patient. On the
other side, our team recently proposed a novel model-based approach to assess non-invasively
LV pressure and MW in AS patients [15].

The objective of this chapter is to improve the model-based approach to assess non-invasively LV
pressure proposed in our team [15, 16], and then compare and evaluate the LV pressure estimation
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with the adapted method of Russel et al. [6, 12] by Fortuni et al. [17]. As the essential part of the
MW determination is the estimation of LV pressure, pressure curves calculated with each method
were compared with the invasively computed in severe and moderate AS patients.

This chapter follows the work published in the European Heart Journal [18] and preliminary studies
presented in two conferences, with an oral presentation and a conference paper for the first [19],
and a poster for the second [20].

5.1 Data

5.1.1 Population

Sixty-seven adults (>18 years old) with severe (AVA < 1 cm2, n=62) and moderate (n=5) AS, who
underwent a coronary angiography with Left Heart Catheterization (LHC), were prospectively
included. Ten patients were excluded from the final analysis because of atrial fibrillation, con-
comitant significant aortic regurgitation, or incomplete set of images for getting robust GLS
measurements. The study was carried out in accordance with the principles outlined in the Decla-
ration of Helsinki on research in human subjects and received specific ethical approval from the
local Medical Ethics Committee. All patients were informed, and a consent was obtained.

5.1.2 Echocardiography

All patients underwent a standard Trans-Thoracic Echocardiography (TTE) using a Vivid S70 or
E95 ultrasound system (General Electric Healthcare, Horten, Norway). Images were recorded on a
remote station for off-line analysis by dedicated software (EchoPAC PC, version BT 202, General
Electric Healthcare, Horten, Norway). Aortic and mitral valve events were manually evaluated in
apical long-axis view: mitral valve closure (MVC), aortic valve opening (AVO), aortic valve closure
(AVC), and mitral valve opening (MVO). Standard speckle tracking strain analysis was applied in
order to extract regional myocardial strain curves. The AVA (cm2) and mean pressure gradient
were also quantified according to current recommendations.

5.1.3 Invasive ventricular pressure

The LHC was performed via retrograde access from the radial artery with a 5 French Judkin R4
catheter (ICU Medical, San Clemente, CA, USA) placed at the mid LV cavity using fluoroscopic
screening. It has been performed with cautious to optimize the quality of the recording but using
the catheter people are used to. Before coronary angiography, transducers were calibrated, with
a 0-level set at the mid-axillary line. In a second time, a catheter was placed in the thoracic
ascendant aorta to measure aortic pressure. The experimental invasive data set includes the
measured ventricular pressure P exp

lv , the systolic and diastolic arterial pressures.
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5.1.4 Patient characteristics

The baseline characteristics of the population are depicted in Table 5.1. The continuous variables
are presented as mean ± standard deviation in the case of normal distribution, as median (in-
terquartile range) in the non-normal distribution case, categorical variable as absolute frequencies
and percentage.

Variables Overall (N )
Age (years) 82 (79, 85)
Male (%) 38 (57%)
NYHA > I and II 28 (42%)
AF (%) 14 (31%)
HB (mmol/L) 12.2 ± 1.5
Previous MI (%) 33 (49%)
Creatinine (µmol/L) 101 (74.0, 102)
BMI (kg.m2) 26.8 ± 4.3
BSA (m2) 1.78 ± 0.18
DBP (mmHg) 59.5 ± 22.5
LV mass (g.m−2) 153 ± 61
V max (m.s−1) 3.68 ± 0.84
LV root diameter (m2) 21.9 ± 1.8
LVEDV(ml/m2) 46.6 ± 27.7
LVEF (%) 59 (52, 68)
LV GLS (%) -15.0 ± 4.0
LV SVi (mL/m2) 12.7 ± 3.2
Mean E/e’>14 (%) 35 (52%)
AV mean gradient (mmHg) 49.8 ± 14.8
AVA (cm2) 0.769 ± 0.236
SPAP (mmHg) 43.2 ± 16.0

Table 5.1: Clinical and echocardiographic characteristic for the overall population. NYHA: New-
York Heart Association, AF: atrial fibrilation, HB: hemoglobin, MI: myocardial infraction, BMI:
body mass index, BSA: body surface area, DBP; diastolic blood pressure, LV: left ventricle, V:
velocity, LVEDV: LV end-diastolic volume, LVEF: Left Ventricle Ejection Fraction, GLS: global
longitudinal strain, SVi: systolic volume index, AV: aortic valve, AVA: Aortic Valve Area, SPAP:
Systolic Pulmonary Artery Pressure.

The population had a mean age of 82 years. The majority of patients was males (57%), with 58%
of NYHA class I– II and 42% of NYHA class III–IV. All the patients suffering from severe (93%) or
moderate AS with a mean AVA equal to 0.77 cm2.The LV pressure and work indices extracted
from invasive measurement are summarized in Table 5.2. The overall population presents a mean
GWW higher than normal [21] (459 mmHg.%) and a mean GWE reduce (83%).
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Variables Overall (N )
Invasive LV SBP (mmHg) 184 (164, 205)
Aortic DBP (mmHg) 72.7 (55.0, 81.5)
Aortic SBP (mmHg) 144 (119, 166)
GWI (mmHg.%) 1273 ± 1128
GCW (mmHg.%) 2357± 913
GWW (mmHg.%) 459 (207, 610)
GWE (-) 0.823 (0.744, 0.917)

Table 5.2: LV pressure and work indices computed with invasive LV pressure (SBP: systolic blood
pressure, DBP: diastolic blood pressure).

5.2 Method

Twomethod of LV pressure estimation will be compared to the invasive one. These two estimated
LV pressure curveswill be used and compared in the computation ofmyocardial indices previously
described (Section 2.2.2) to the one computed with the experimental pressure curve.

5.2.1 Model

The firstmethod used amodel to simulate the LV pressure curve of each patient. In this subsection
the model will be described as well as the process of specification for each AS patient.

Model description

Four main sub-models, based on previous works of our team [22, 23], were coupled:

1. Cardiac electrical system,

2. Elastance-based cardiac cavities,

3. Systemic and pulmonary circulations

4. Heart valves.

The proposed model (Figure 5.2) and the equations have been described in detail in the article of
Owashi et al. [15]. To sum up:

Cardiac electrical system: A set of interconnected cellular automata, adapted from [22, 23]
represents the cardiac electrical activity of the model. Each automaton represents different
cardiac regions that cycle between four electrical activation states:

— slow diastolic depolarization (SDD),

— upstroke depolarization period (UDP),

— absolute refractory period (ARP),
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— relative refractory period (RRP).

Figure 5.1 represents the nine automata:

— the sinoatrial node (SAN),

— the right and left atria (RA and LA),

— the atrioventricular node (AVN),

— the upper bundle of His (UH),

— the bundle branches (RBB and LBB),

— the two ventricles (RV and LV).

The electrical activation of the automata is used to synthesize an Electrocardiogram (ECG), from
which the QRS peak was extracted to synchronize the experimental and simulated signals.

Figure 5.1: Cardiac electrical system with the sinoatrial node (SAN), the right and left atria (RA
and LA), the atrioventricular node (AVN), the upper bundle of His (UH), the bundle branches (RBB
and LBB), and the two ventricles (RV and LV).

Elastance-based cardiac cavities: The ventricular (v) pressure is represented by a combination of
end-systolic (es) and end-diastolic (ed) pressure-volume relationships [24, 25]. These relations are
driven by time-varying elastances Ees and Eed that represent contraction and relaxation phases.

Pes(V ) = Ees(V − Vd) (5.1a)

Ped(V ) = P0(eλ(V −V0) − 1) (5.1b)

P (V ) = e(t)Pes(V ) + (1 − e(t))Ped(V ) (5.1c)

For the atrium (a):
Pa(Va, t) = Ea(t) · (Va(t) − Vd,a) (5.2a)
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Ea(t) = Ea,max · (ea(t) + Ea,min

Ea,max
) (5.2b)

For the right and left ventricles (v), a “double Hill” driving function e was selected [26] with
parameters n1, n2, α1, α2 and k, while a Gaussian function was used for right and left atria (a)
with parameter C and B:

ev(ts) = k ·


(

ts
α1·T

)n1

1 +
(

ts
α1·T

)n1

 ·

 1
1 +

(
ts

α2·T

)n2

 (5.3a)

ea(ts) = exp(−Bla · (t − Cla)2) (5.3b)

The onset of the cardiac cycle, denoted ts, is determined by the activation instant of the corre-
sponding segment in the cardiac electrical model presented in the previous section. The first and
second terms in Equation 5.3a represent ventricle segment contraction and relaxation presented
after an electrical activation, respectively. T is the heart period, α1, α2 are shape parameters, and
n1, n2 control the steepness of the curve. These four parameters (α1, α2, n1, n2) are assumed
positive.

Systemic and pulmonary circulations: The model integrates the pulmonary and systemic arteries,
capillaries, and veins [27]. Arteries and veins compartments pressure P is calculated using a
linear relationship between its volume P and its elastance E. The volume of each cardiac or
vessel chamber is computed from the net flow Qint − Qout:

∆V (t) =
∫

(Qint − Qout)dt (5.4)

The pressures are then used to calculate blood flow between two chambers as:

Q = ∆P

R
(5.5)

where ∆P is the pressure gradient between the chambers and R the corresponding resistance.

Cardiac valves: A detailed model of heart valves (mitral, aortic, tricuspid and pulmonary) was
integrated [28]. Briefly, the relation between the pressure gradient ∆P and the fluid flow Q across
an open valve is approximated by the Bernoulli equation:

∆P = Bq|q| + L
dq

dt
, with L = ρ

leffao

Aeff
(5.6)

The cardiac valve model integrates the effective cross-sectional area of the valve Aeff with its
dynamic ξ:

Aeff (t) = (Aeff,max − Aeff,min)ξ(t) + Aeff,min (5.7)
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Figure 5.2: Cardiovascular model for AS patients with the pressures (P ) and volumes (V ), resis-
tances (R) and elastances (E) for the pulmonary arteries (pa), pulmonary veins (pv), aorta (ao),
systemic arteries (sa), systemic veins (sv), vena cava (vc), left atrium (LA), left ventricle (LV );
right atrium (RA) and right ventricle (RV )

where
Aeff,max = Mstao.Aannao (5.8a)

Aeff,min = Mrgao.Aannao (5.8b)

They correspond respectively to the maximum and minimum valve areas and Aannao to the
estimation of the aortic valve area. And the rate of opening ξ describes the dynamic of the valve
position in response to ∆P .

dξ

dt
=

{
(1 − ξ) · Kvo · ∆P if∆P ≥ 0
ξ · Kvc · ∆P else.

(5.9)

Kvo and Kvc are the rate coefficients for valve opening and closure, respectively.

A sum up of the parameters and their baseline values is proposed in Appendix C (Table C.1).
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Sensitivity analysis

Sensitivity analysis through the Morris ’screening method [29] was performed to determine
the most influential parameters of two model outputs: LV pressure gradient (∆P ) and Stroke
Volume (SV). The method was introduced in Section 2.1.2 consists in generating several random
trajectories through the parameter space. Each trajectory is associated with an estimation of the
Elementary Effects EEi, defined for a parameter xj :

EE∗
j =

∣∣∣Y ([x0, . . . , xj , . . . ]) − Y ([x0, . . . , Xj + ∆, . . . ])
∆

∣∣∣ (5.10)

where Y is an output of the model and ∆ is a predefined variation such as ∆ = p
2(p−1) . The

parameter p and the number of trajectories r were equal respectively to 6 and 30. EEj are
calculated r times, and the mean of absolute value µj∗ and standard deviation σj of these r

realizations are then computed for each parameter j. Di index gathered this two-sensitivity
measure. The different index computations were described in Section 2.1.2. In this study the
sensitivity analyses were applied on 80 parameters with ranges selected from previous work and
literature ±30%.

Model specification and LV pressure estimation

Based on the results of the sensitivity analyses, a set of parameters is selected for patient-specific
model identification. This identification was implemented with an Evolutionary Algorithm (EA).
This type of algorithm consists of making evolve a population of set of parameter values X in
order to minimize an error function Jerror by selecting, crossing and mutating the population
through generations. Amore detailed presentation of the EA and its implementation was proposed
in Section 2.1.3. The function Jerror was redefined after several tests, including the addition of
computed LV volume and flow curves (thank the echocardiographic speckle tracking images of
the LV and the measurement by Doppler imaging of the blood velocity through the aortic valve).
The final Jerror function aims at minimizing the error between LV systolic and diastolic pressures
Pao,sys and Pao,dias as well as the mean aortic valve pressure gradient ∆P from experimental
(exp) measurements and simulated by the model (model):

Jerror = |P exp
ao,sys − P model

ao,sys | + |P exp
ao,dias − P model

ao,dias| + |∆P exp − ∆P model| (5.11)

Two model parameters are fixed for each patient:

— T is the duration of a cardiac cycle measured in ECG.

— The Aortic Valve Area (AVA) measured in TTE

Other error functions Jerror were explored during this thesis. Some used the entire invasive LV
pressure curve, other not ∆P and exploratory research tried to used LV volume. The computation
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of the LV volume was done using a technique developed in the team [30] using the 2- and 4-
chamber echo-views and reconstruct the volume using the speckle tracking of these 2D views.

5.2.2 Template-based method of LV pressure estimation

As suggested by Russel et al. [6], valvular timings (MVC, AVO, AVC and MVO) obtained from
TTE may be used to estimate a normalized, patient-specific LV pressure curve. A predefined LV
pressure curve template, calculated from the average of observed data in previous works of the
group, is temporally adjusted and scaled in amplitude so as to fit the observed valvular timings
and non-invasive systolic pressure value of a given patient. Mean aortic valve pressure gradient,
estimated with echocardiography, was added to the instantaneous systolic pressure value to
scale the normalized AS patient-specific LV pressure curve [14]. This method leads to a template-
based estimate of a patient-specific LV pressure curve P template

lv which was directly extracted from
the echocardiography workstation (EchoPAC version 202, General Electric Healthcare, Horten,
Norway). The method is summarized in the top right part of Figure 5.3.

5.2.3 MW computation

As previously introduced in Section 2.2.2MW indiceswere calculated from strains and LV pressure,
as proposed by Russell et al. [12]: The instantaneous power was first obtained by multiplying the
strain-rate, obtained by differentiating the strain curve, and the instantaneous LV pressure. Then,
segmental MW was calculated by integrating the power over time, during the cardiac cycle from
MVC until MVO (Figure 5.3). From each segmental MW curve, Global Positive (GPW), Negative
(GNW), Constructive (GCW), Wasted (GWW) MW, Global Work Index (GWI), and Global Work
Efficiency (GWE) parameters were calculated. Detailed description of MW indices could be found
in [13, 15]. GPW(respectively GNW) is defined as the shortening (respectively lengthening) between
MVC and MVO. GCW represents segmental shortening during the systole, i.e. effective energy for
blood ejection, and lengthening during IVR, whereas GWW corresponds to segmental stretching
during the systole, i.e. energy loss for blood ejection and shortening during the isovolumic
relaxation phase. GWE is defined as the global work efficiency as explain in Section 2.2.2:

GWE = GCW

GCW + GWW
(5.12)

And Global Work Index (GWI) is defined as the amount of work performed by the left ventricle
during systole:

GWI = GPW + GNW (5.13)

The MW indices were calculated from experimental and simulated LV pressure, in order to obtain:

— Model-based indices: GCW model, GWW model, GWEmodel, GPW model, GNW model, and
GWImodel.
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Figure 5.3: Myocardial work evaluation from model-based, template-based approaches and
experimental invasive measure. On the left, the model-based method with the Aortic Valve Area
(AVA), the mean aortic valve pressure gradient (∆P exp), the LV systolic and diastolic pressures
(P exp

ao,sys and P exp
ao,dias) as inputs. On the right, the template-based method with the LV systolic

pressure (P exp
ao,sys), the mean aortic valve pressure gradient (∆P exp) and the valve timings: Mitral

Valve Closure (MVC), Aortic Valve Opening (AVO), Aortic Valve Closure (AVC), and Mitral Valve
Opening (MVO). At the end (bottom), we can compare the six MW indices (GCW, GWW, GWE,
GPW, GNW and GWI) of the model and the template with the experimental ones (exp)
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— Template-based indices:GCW template,GWW template,GWEtemplate,GPW template,GNW template,
and GWItemplate.

— experimental indices: GCW exp, GWW exp, GWEexp, GPW exp, GNW exp, and GWIexp.

5.3 Result

5.3.1 Model

Baseline simulations

Figure 5.4: Simulation examples provided in a Wigger diagram format of a) a healthy subject and
b) an aortic stenosis patient.

Figure 5.4 illustrates the hemodynamic simulation results of the proposed computational model
in a Wigger diagram format. Concerning the healthy subject, systolic LV pressure is equal to 145
mmHg, and the aortic pressure varies between 50 and 145 mmHg. AS was represented as a
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decrease in the Aeff,max parameter (from 2.5 to 0.75 cm2). We can observe an important gradient
pressure between LV and aorta, characteristic of an AS patient, in which the narrowing of the
aortic valve opening evokes an LV pressure overload.

Sensitivity analysis

Concerning sensitivity analysis results (Figure 5.5), the most influential parameters of ∆P were
mainly related to the aortic valve sizes and the LV elastance, which underline the direct impact of
the aortic narrowing of this pathology on the gradient pressure [28]. In fact, leffao and Aannao

correspond to the aortic valve length and area,modulated byMstao and used in the valve dynamics
computations (Equation 5.6, Equation 5.7). In addition, parameter such as α2, n1 and λLV are
used in the computation of LV pressure through the driving function and end-diastolic pressure.
Modification of these parameters not only change the maximum value of the LV elastance but
also its timing and pattern.

Figure 5.5: Sensitivity analysis on ∆P . The ten most influential parameters are presented and
ordered based on their Dj value.

The parameters with the highest sensitivities were selected for parameter identification.

5.3.2 LV pressure estimation

Model-based

Figure 5.6 presents the comparison between model-based (P model
lv ) and invasive (P exp

lv ) pressures
obtained for the 67 AS patients. The mean correlation coefficient (r2) was equal to 0.81 (min:
0.23; max: 0.99). Mean slope and intercept of the regression line between the simulated and the
measured pressure data were 0.94 (min: 0.49, max: 1.27) and -8.30 mmHg (min:-42.4, max: 21.9),
respectively. The mean RMSE was equal to 33.9 mmHg (min: 9.15, max: 90.4).
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Figure 5.6: Model-based LV pressure curves comparison of 67 patients: experimental (black),
and simulated (green) curves.

Template-based

Similarly, a comparison was performed between template-based estimation (P template
lv ) and

experimental pressure (P exp
lv ) and provides in Figure 5.7. Mean RMSE was equal to 40.4 mmHg

(min: 14.0, max: 89.2), mean r2 is 0.72 (min: 0.25, max: 0.99), mean slope and mean intercept
to 0.84 (min: 0.45, max: 1.21) and 23.8 (min: 5.87, max: 64.1), respectively. Despite results are
slightly better for the model-based LV pressure estimation, the difference is not significant to
conclude for a superior method.

5.3.3 MW comparison

Model-based

Model-based MW Scatter and Bland-Altman plots for GCW, GWW, GWE, GPW, GNW and GWI
indices are presented in Figure 5.8. Concerning constructive work, slope and intercept of the
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Figure 5.7: Template-based LV pressure curves comparison of 67 patients: experimental (black),
and estimated (pink) curves.

regression line between estimations and measures were 0.79 and 251 mmHg.%, and r2=0.81. In
Bland-Altman analysis, the mean bias of estimation is –251 mmHg.%. For wasted work, slope and
intercept of the regression line between estimations and measures are 0.84 and –39.3 mmHg.%
and r2=0.91. In Bland-Altman analysis, the mean bias of estimation is -32. 0mmHg.%. For work
efficiency, slope and intercept of the regression line between estimations and measures are 1.00
and –0.003 and r2=0.92. In Bland-Altman analysis, the mean bias of estimation was -0.007. For
GCW, GWW, and GWI the slope and intercept were 0.74 and 327 mmHg.%, 0.83 and 59.6 mmHg.%,
0.77 and 148 mmHg.%, r2 were 0.76 , 0.80 , and 0.77 and the mean bias were –214 mmHg.%,
–70.0 mmHg.%, and –144 mmHg.%, respectively. The negative mean bias observed on all the
Bland-Altman analyses could be explained by an under-estimation of MW indices due to a slight
advance observed in LV estimated pressure curves in most of the patients with this method.
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Figure 5.8: Results of global work indices’ comparison, on all patients for model-based method.
Scatter plots and Bland-Altman analysis of: a) Global Constructive Work (GCW), b) Global Wasted
Work (GWW), c) Global Work Efficiency (GWE), d) Global Positive Work (GPW), e) Global Negative
Work (GNW), f) Global Work Index (GWI).
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Template-based

Template-based MW Figure 5.9 presents the comparison between template-based and invasive
indices. Despite an overestimation of all the indices, the quality of the result is similar, with a
good correlation coefficient. For GCW, GWW, GWE, GPW, GNW and GWI, slope and intercept of
the regression line between estimations and measures were 0.86 and 413 mmHg.%, 0.90 and 103
mmHg.%, 0.89 and 0.08, 0.71 and 576mmHg.%, 0.88 and 251mmHg.%, 0.69 and 216mmHg.%with
r2=0.66, r2=0.93, r2=0.93, r2=0.60, r2=0.82, and r2=0.72, respectively. In Bland-Altman analyses
the mean bias were 76.8 mmHg.%, 57.4 mmHg.%, –0.013, –19.2 mmHg.%, 156mmHg.%, and –175
mmHg.%, respectively, for the six indices. The bias, here, could be explained by larger pattern of
the LV pressure curve in some patients.

In order to propose another error computation and better understand the results, we also calculate
for each patient and each MW indices, the relative error:

Xexp − Xestimated

Xexp
, for X ∈ {GCW, GWW, GWE, GPW, GNW, GWI} (5.14)

These results are gathered with the regression line summary in Table 5.3 for the two methods.
We can notice that GCW, GWW and GWE, where the bias is lower, have reasonable relative error
(in %) with 14.77%, 16.51%, and 3.10% for the model-based method and 18.38%, 26.70%, and 2.97%
for the template-base method, respectively, for these three indices.

5.4 Discussion

A model-based and template-based method were evaluated against invasive hemodynamic as-
sessment of LV-pressure in a prospective cohort and results shown the validity of the estimations
made in patients with an AS, combining the mean pressure gradient to the software currently
commercially available. MW indices can thus be easily applied in routine clinical practice.

5.4.1 Estimation of LV pressure and MW indices

Concerning the evaluation of LV pressure, both methods show a good agreement between
estimated and measured pressure waveforms. To our knowledge, our study is the first to provide
a quantitative comparison between two estimated LV pressures and invasively measured curves
in the context of AS on such a database. Moreover, myocardial indices calculated with the two
estimation methods were compared with indices calculated with invasive pressures. Model-
based method allows for the in-silico assessment of MW indices, while integrating physiological
knowledge. This method has the advantage of requiring only AVA, pressure gradient evaluated
in echocardiography, systolic and diastolic pressure values. The computational model directly
integrates a representation of the pathophysiology of the aortic valves and takes into account
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Figure 5.9: Results of global work indices’ comparison, on all patients for template-based method.
Scatter plots and Bland-Altman analysis of: a) Global Constructive Work (GCW), b) Global Wasted
Work (GWW), c) Global Work Efficiency (GWE), d) Global Positive Work (GPW), e) Global Negative
Work (GNW), f) Global Work Index (GWI).
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Indices Model-based Template-based
GCW Slope 0.79 0.86

Intercept 250.71 413.05
r2 0.81 0.66
Relative error 14.77 18.38

GWW Slope 0.84 0.9
Intercept 39.30 103.26
r2 0.91 0.93
Relative error 16.51 26.70

GWE Slope 1.00 0.89
Intercept 0.00 0.08
r2 0.92 0.93
Relative error 3.10 2.97

GPW Slope 0.74 0.71
Intercept 326.95 575.93
r2 0.76 0.60
Relative error 19.82 21.13

GNW Slope 0.83 0.88
Intercept 59.57 250.92
r2 0.80 0.82
Relative error 29.04 46.24

GWI Slope 0.77 0.69
Intercept 147.56 216.36
r2 0.77 0.72
Relative error 85.21 65.89

Table 5.3: Results of the six myocardial work indices line regressions between computation with
invasive and estimate LV pressure curves for the model-based and template-based methods.

characteristics associated with the subject and pathology. Compared withmodel-based approach,
template-based estimations require additional information related to aortic and MVO and closure,
which should bemanually identified on apical 3-chamber view and pulsedwaveDoppler recordings.
Consequently, evaluations of valve timings could be cumbersome. Despite the manual evaluation
of valvular events, the template-basedmethod appears to bemore appropriate in a clinical context.
In fact, LV pressure and work indices could be directly extracted from the echocardiography
workstation, whereas the model-based method implies an off-line procedure associated with a
computational cost. Although template-based method could be privileged in clinical practice,
model-based approach could be interesting for the evaluation of retrospective databases that do
not integrate valve timings.
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5.4.2 Work estimation

Despite the imprecise evaluation of LV pressure in both cases, the estimation of LV work in-
dices strongly correlates with invasive measurements [13]. Model-based and template-based
approaches appear as accurate methods for the estimation of MW in AS. This good correla-
tion of all the works indices despite the imperfect estimation of LV pressure curves could be
explained by different points. First, the temporal integration during the work computation induces
a smoothing of the error between experimental and estimated work in both methods. Moreover,
the computation of the indices uses only the pressure curve between AVO and AVC. This issue of
using LV pressure estimation in order to analyze the MW could be avoided by using other indices
based only on strain curves [31].

5.4.3 Myocardial function for AS patients

Current guidelines recommend surgical AVR in patients with Severe AS who have symptoms, or
those who have reduced LVEF. The LVEF considered up to now was 50%, but recent papers clearly
showed that already for LVEF reaching 55–60%, patient prognosis is already dismal [32, 33]. The
severity of AS is not assessed merely by gradient and valve area, but also resides in the interplay
between increased LV-after-load of a stenotic valve and its deleterious effects on the myocardium.
In a subpopulation of patients with long-standing AS that does not improve after intervention,
with increased morbidity and mortality, adverse and irreversible LV-remodeling has often been
implicated [34]. Prior meta-analysis revealed that asymptomatic severe AS patients who were
treated with a watchful-waiting strategy had a 3.5-fold higher rate of all-cause mortality at 4 years,
compared with those who underwent early AVR [4]. Also, Taniguchi et al.[35] demonstrated in
a propensity score-matched analysis that patients treated with the initial AVR strategy had a
lower risk of all-cause death and heart failure requiring hospitalization, than patients treated with
a conservative strategy. Several studies underscore the relevance of a precise assessment of
the myocardial consequences of the severe AS. Load is a key factor that impacts parameters
quantifying LV systolic function. MW provides a unique opportunity to assess, with much less
load dependent, LV systolic function in AS patients [36, 37]. The classic ’pressure–volume’ loop,
from invasive hemodynamics, has formed the basis of our understanding of the contributions
of preload, after-load, and contractility to LV systolic function. The ’area’ within this loop is
referred to as LV stroke work and was the first way to conceptualize MW. It was followed by
’pressure–strain’ loop and the MW indices that offer a complementary picture of LV systolic
function. Also, Jain et al. [38] underline that LV function do not fully recover in days and months
following Transcatheter Aortic Valve Replacement. (TAVR). By comparing this index pre- and post-
TAVR, they demonstrated that GLS improved as MW reduced in patients treated with TAVR for
severe AS. Strain indices and MW appear particularly promising, providing a sensitive evaluation
of LV function that could guide for potential earlier-TAVR for pauci-symptomatic patients. One
limitation of this paper is to treat almost only patient with severe AS. Still large randomized trials
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are needed for confirming the value of echo-parameter and to demonstrate that currently, we
might propose valve replacement at a late timing according to the heart consequences of the
chronic increase in afterload related to the AS.

5.5 Conclusion

The two non-invasive methods of LV pressure estimation and the work indices computation
correlate with invasive measurements and computations for as patients. Although the model-
based approach requires less information and is associated with slightly better performances,
the implementation of template-based method is easier and seems more appropriate in a clinical
practice.

In both cases, it permits to provide an effective tool to assess more precisely LV function and
help in the patient stratification of this particular population.
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Sudden Cardiac Death Prediction in
Hypertrophic Cardiomyopathy Patients

Chapter

6

As mentioned in Section 1.3.3, Hypertrophic CardioMyopathy (HCM) represents a major cause of
Sudden Cardiac Death (SCD), particularly in the young people, with a risk of about 1% per year
[1, 2]. Hypertrophied myocardial areas are characterized by myocardial disarray, interstitial and
focal fibrosis constituting the substrate of ventricular arrhythmias which classically occurs in
addition to an excess of sympathetic tone (e.g. exercise, stress) and/or ischemia (e.g. functional
ischemia, specific small vessel disease) [3, 4].

Primary prevention of SCD is based on Implantable Cardiac Defibrillator (ICD) with good effective-
ness but at the cost of an invasive procedure and device complications including infection and
inappropriate shocks [5]. Identification of patients at risk of SCD is still a major clinical challenge.
Current international guidelines rely on retrospective evaluations of old HCM cohorts and are
based on limited and pre-selected clinical and imaging predictor variables to select patients at
risk of SCD [6, 7]. As a consequence, the European Society of Cardiology (ESC) five years risk of
SCD score demonstrates relatively weak performance, with a C-index of 0.69 to identify SCD [6].
In comparison to classical statistical analysis, machine learning allows a hypothesis-free and
data-driven approach, processing a larger amount of various parameters to generate dynamic
self-learning models [8, 9]. In this context, left ventricle global longitudinal strain (LV-GLS) is a
promising tool that has already shown relevance in the detection of ventricular arrhythmias in
HCM patients [10].

Cardiac magnetic resonance imaging reveals the presence of myocardial fibrosis and disarray in
HCMpatients, which is linked to a higher likelihood of ventricular arrhythmias. These findings align
with a mechanical decrease and temporal delay in the segmental LV longitudinal strain of affected
regions [10–14]. This suggests that the excessive mechanical and temporal heterogeneity in the
deformation of the left ventricular myocardial wall could indicate significant histological and
electrophysiological remodeling at high arrhythmogenic potential.

In this chapter, we sought to investigate whether a machine learning model using heterogeneous
data: clinical and imaging variables in addition to left ventricular longitudinal strain information
could be relevant for the prediction of SCD risk in HCM patients. It is also a perfect example of the
use of signal and data processing in a complete machine learning process and could be placed
on the right part of our methodological thesis illustration.
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This chapter follows the work submitted as co-first author with Adrien Al Wazzan and presented
at EACVI congress [15]

6.1 Data

6.1.1 Population

535 consecutive patients with HCM established according to current guidelines [16] were retro-
spectively enrolled between 2008 and 2019 from two tertiary centers: the University Hospital
of Rennes, France and the University Hospital of Oslo, Norway. The exclusion criteria were as
follows: lack of a complete echocardiographic assessment, insufficient image quality enabling the
analysis of echo data, age < 18 years, history of Acute Coronary Syndrome (ACS) and significant
Coronary Artery Disease (CAD). 434 patients were left. The study was conducted according to
the Declaration of Helsinki and approved by internal review boards of each center. All patients
provided informed consent for the conduction of the study.

6.1.2 Clinical and Imaging data

All patients underwent a standard and 2D-speckle-tracking transthoracic echocardiography at
baseline using a Vivid 7, E9, or E95 ultrasound system (GE Healthcare, Horten, Norway). The
2D, color Doppler, pulsed-wave, and continuous-wave Doppler data were stored on a dedicated
workstation (EchoPAC v204; GE Healthcare, Horten, Norway) and offline analysis was made
according to the recommendations [17]. An apical aneurysm was defined as a discrete thin-walled
dyskinetic or akinetic segment [17]. All the echographic measurements were performed blind
to clinical data and events. Clinical data were collected from electronic health records. Other
initial investigations included a 12-lead electrocardiogram (ECG), a 48 hours Holter monitoring, an
exercise stress test, a CMR with Late Gadolinium Enhancement (LGE) sequences, and a genetic
testing for sarcomeric mutations. 12-lead ECGs were analyzed according to recommendations
[18] with automatic measurements for interval, duration and axis and visual assessment for
repolarization abnormalities. Cardiac magnetic resonance imaging was performed within 2 years
after baseline inclusion. The presence or absence of LGE was assessed qualitatively. Exercise
testing was made on a bicycle ergometer with stepped increasing load and continuous ECG
recording. Maximal predicted heart rate was calculated with 220-age formula and predicted peak
work from the Cooper and Storer formula [19].

6.1.3 Outcome and follow-up

Endpoint for ventricular arrhythmias included:

— history of Aborted Cardiac Arrest (ACA),
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— history of Sustained Ventricular Tachycardia (SVT),

— history of appropriate ICD therapy,

— SVT during follow-up,

— appropriate ICD therapy during follow-up,

— aborted cardiac arrest during follow-up,

— suspected SCD.

All patients underwent follow-up in accordance with the recommendations, including repetitive
24-48 hours Holter monitoring and ICD interrogation looking for ventricular arrhythmias and/or
appropriate shocks if applicable [16]. Non-Sustained Ventricular Tachycardia (NSVT) was defined
as runs of ventricular beats with duration between ≥3 beats and 30s with heart rate >100 bpm
[20].

Data for events were collected from electronic patient records and from information provided
by the referring cardiologists if available. The risk of SCD was evaluated according to the 2020
AHA/ACC Guideline for the diagnosis and Treatment of HCM [7] and with the 5 years-risk of SCD
score (HCM risk-SCD) of the 2014 HCM guidelines by the European Society of Cardiology (ESC)
[16].

6.1.4 2D LV strain analysis

Left ventricle longitudinal strain by speckle tracking echocardiography was obtained from 2D
apical 2-, 3-, and 4- chamber views at a frame rate of at least 60 m/s, each view containing 6
segments. Endocardial borders were semi-automatically defined andmanually adjusted if needed.
Visual assessment for good quality of wall tracking was done and patients were excluded in case
of insufficient or aberrant tracking. Region of interest was automatically defined between the
endocardial and epicardial borders and adjusted to fit the myocardial thickness. The temporal
window of strain collection was between two R-waves on ECG, R-waves used as zero-reference.
Aortic Valve Closure (AVC) time was automatically defined from the 3ch view. Figure 6.1 presents
three patients strain curves with their three echo-views.

6.2 Method

6.2.1 Feature extraction

The calculated longitudinal strain curves were exported from the EchoPAC software in raw files
containing strain times series and AVC time for each of the 18 segments of the LV, allowing a
virtual reconstruction of LV strain curves for each patient. A standardization consisting of an
upsampling to 500 Hz of the strain curves and elimination of the strain values between 5% and
-5% was applied. From these files, automatic extraction of the strain features was performed as
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Figure 6.1: Strain curves of 3 HCM patients (P1, P2, P3) separated in 3 echo-views:
2-chamber: basal inferior (yellow), mid inferior (cyan), apical inferior (green), apical anterior (pink),
mid anterior (blue), basal anterior (red).
3-chamber : basal anteroseptal (yellow), mid anteroseptal (cyan), apical anteroseptal (green),
apical inferolateral (pink), mid inferolateral (blue), basal inferolateral (red).
4-chamber: basal inferoseptal (yellow), mid inferoseptal (cyan), apical inferoseptal (green), apical
anterolateral (pink), mid anterolateral (blue), basal anterolateral (red).

shown in Figure 6.2 and already fully described in Section 2.2.1. R-wave was used as a reference
for the calculation of all features.

The first comparative step was to compare these strain parameters using different levels of
comparison in order to highlight all potential levels of temporal and/or mechanical heterogeneity
in LV deformation. Thus, LV has been subdivided as follows: segmental (18 segments : s), regional
(each segment s with the four or three segments surrounding it), LV-walls (e.g. anteroseptal AS),
LV pole (basal and apical) and apical chamber views (2-, 3-, 4- chamber views) (Figure 6.2). Strain
minimum value (Smin) and timing (tmin) as well as strain value and timing at the Aortic Valve
Closure (AVC) were extracted (Savc, Tavc) from the curves. The difference between these values
were then computed (Speak − Savc, tpeak − tavc). Estimation of strain integrals during different
time support (Is

peak , Is
avc and the difference Es) were automatically extracted from these 18 strain

curves as described in previouswork [21, 22]. Comparisonsweremade by calculating the standard
deviation for each parameter at each level.

The second step was to compare the shape of the strain curve considered over the entire cardiac
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Figure 6.2: LV longitudinal strain features extraction and strain shape comparison with DTW
(Dynamic Time Warping) method. For the strain features extraction step, 3 types of parameters
were extracted from each segmental strain curve to be subsequently used in the model:
- temporal parameters (ms): time to peak of strain (tpeak), time to AVC (tavc), difference between
these two (tpeak − tavc).
- mechanical parameters (% of strain): peak value of strain (Speak), strain value at AVC (Savc),
difference between these two (Speak − Savc).
- integration of the first two parameters (area under the curve): integral to peak (Ipeak), integral to
AVC (Iavc), difference between these two (E).
Dynamic time warping (DTW) method compare similarity between two temporal sequences
with different activation time but the same curve shape. At the bottom right, an example with a
segmental LV strain with the average LV strain of the corresponding view.

cycle. In order to highlight only shape differences regardless of time sequence activation, a
Dynamic Time Warping (DTW) method was used to overcome physiological time lag in the onset
of the contraction between LV regions (e.g. base vs apex) (Figure 6.2). Strain curves distance
comparison was performed between each segmental curve (si) and the average curve of the
corresponding apical view (DTW si) after applying DTW method.
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6.2.2 Feature selection

By combining clinical and imaging information with extracted strain features, a dataset of 287
parameters was created. Figure 6.3 illustrates the ML pipeline. Features selection is a preliminary
step that measures the strength of the relationship of variables with the event in order to keep a
reduced set of the most meaningful feature to build the final model. The most effective method
of feature selection was the estimation of coefficients for each variable by a “Ridge Regression”
method. Among the selected features, a high correlation was found between some of the strain
features (correlation index > 0.7) and only the features presenting the highest relative importance
were kept for further analysis after ensuring that it would not affect the model’s performance.

Figure 6.3:Machine learning pipeline. Clinical information and data extracted from LV longitudinal
strain curves were collected for 434 HCM patients. Among the 287 features extracted (220
strain-derived), a sub-selection of the most discriminating features was made according to ridge
coefficient order. Finally, the final performance of the model is obtained after a repeated cross
validation step.

6.2.3 Machine Learning algorithm

The final model was based on a “Ridge Regression” algorithm, which is particularly suitable when
the dataset is highly unbalanced (only 7.8% of the patients with an event in our cohort) and
/or when there are correlations between predictor variables. The ridge regression was trained
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using the reduced sample of the database. The global performance was assessed by a repetitive
cross-validation method, which randomly selects at each round 80% of the population to be
trained (training dataset) and 20% to be tested (test dataset). After N training rounds, based on
N different training and test data sets, the ROC curve and the corresponding AUC of the final
model were estimated (Figure 6.3).

Oversampling and undersampling of the database

Another test was applied on this study, the training set was oversampled and undersampled. The
testing set was unchanged, and this process was also repeated in cross validation 200 times.

The oversampling process is a technique that creates new synthetic points (patients) of the
minority class to better balance the training dataset. The oversampling technique use here was an
Adaptive synthetic sampling (ADASYN) [23]. ADASYN is a technique that generate new synthetic
"patients" depending on an estimate of the local distribution of the class to be oversampled: the
patient with event.

On the other hand, the undersampling process aims at balancing the class distribution for a
classification dataset that has a skewed class distribution. The undersampling used here was a
random undersampling algorithm. For these two resampling, a ratio (α) must be chosen. It is the
number of samples in the minority class over the number of samples in the majority class after
resampling:

α = Nrm/NM (6.1)

where Nrm is the number of samples in the minority class after resampling and NM is the number
of samples in the majority class.

6.2.4 HCM Risk computation

ESC risk score

ESC risk score is a probability of SCD at 5 years [6]. It is calculated using a derived Cox proportional
hazard model:

PSCD = 1 − 0.998eP rognosticIndex (6.2)

with PrognosticIndex = 0.15939858 · Maximal wall thickness (mm) - 0.00294271 · Maximal wall
thickness2 (mm2) + 0.0259082 · Left atrial diameter (mm) + 0.00446131 · Maximal left ventricular
outflow tract gradient (mmHg) + 0.4583082 · Family history SCD + 0.82639195 · NSVT + 0.71650361
· Unexplained syncope - 0.01799934 · Age at clinical evaluation (years).

The value 0.998 is the average survival probability at 5 years).
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AHA risk index

AHA risk index [7] is positive if at least one of the following features is true:

— family history of SCD,

— Massive LV hypertrophy,

— Unexplained syncope,

— Apical aneurysm,

— LVEF ≤ 50%.

6.2.5 Statistical and machine-learning analysis

A custom-mademethods and algorithms, developed in the Python language, were used to analyze
and extract strain features from the strain times series files. Ridge regression algorithm was
implemented using the Sklearn Python library [24]. The regularization parameter was automatically
chosen by the algorithm. DTW analysis wasmade using a fastDTW algorithm [25]. The clinical and
echocardiographic parameters were statistically analyzed. Quantitative variables were expressed
as mean ± standard deviation, and qualitative variables were given in numbers and percentages.
Univariate analysis was used to identify markers of ventricular arrhythmias by unpaired t-test or
Pearson χ2 where appropriate. Intrinsic performances (Sensitivity, Specificity), corresponding
AUC and extrinsic performances (positive and negative predictive value) have been calculated
for each of the three models (ESC risk score, AHA risk model, and machine-leaning model) using
a threshold of ≥ 4%/5 years (ESC risk score) and ≥ 1 risk factors (AHA risk model) as positive
test and occurrence of the composite endpoint as the event. The threshold for ML-based model
was chosen to maximize the geometric mean of the sensitivity and specificity.

6.3 Result

6.3.1 Study population and outcome

From an eligible population of 535 patients, a total of 434 patients with HCM were finally included
from both centers (201 patients from Rennes and 233 patients from Oslo). 71 patients were
excluded for insufficient image quality, 18 for a history of CAD or ACS, and 12 for technical issues.
Clinical and demographic characteristics of the population are displayed in Table 6.2. The mean
follow-up duration was 6 years. 34 patients (7.8%) experienced VA, mainly during follow-up (11
SVT, 9 suspected SCD, 2 appropriate ICD therapy, and 1 ACA during follow-up, and 5 previous
SVT and 5 previous ACA). The annual incidence of VA was 0.9%/years. Results of the baseline
work-up are shown in Table 6.1.

Figure 6.4 presents the predicted by the ESC risk score and the observed outcome of the popula-
tion.

178 Sudden Cardiac Death Prediction in Hypertrophic Cardiomyopathy Patients



Figure 6.4: ESC risk prediction.

6.3.2 Feature selection

Figure 6.5 shows the 18 most important features selected after the feature selection phase:

— 7 derived from LV longitudinal strain analysis,

— 2 clinical (unexplained syncope, female gender),

— 6 echocardiographic (LVEF < 50%),

— apical aneurysm,

— apical hypertrophy,

— E/A ratio,

— mean E/e’ ratio,

— left atrial volume),

— 1 electrocardiographic (NSVT),

— 2 from exercise test (work peak, maximal heart rate).

Among the strain features set, the two most important features were DTW MI and DTW MS ,
representing the difference in curve shape between LV mid-inferior segment and the 2-chamber
view average strain curve and between LV mid-inferoseptal and the 4-chamber view average
strain curve, respectively. Other strain features retained in the feature selection were:

— Speak − Savc for the apical anterolateral (apiantlat), the apical anterior (apiant) and the mid
inferior (midinf ) segments: Sapiantlat

peak − Sapiantlat
avc , Sapiant

peak − Sapiant
avc and Smidinf

peak − Smidinf
avc

(which represent the difference between strain value at peak and strain value at AVC for the
corresponding segments),

— E for the apical anterolateral segment: Eapiant (difference between integral to peak and
integral to AVC for the apical anterolateral segment)

— DTW for the mid anterolateral (midantlat) segment: DTW midantlat .
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Variables Overall Non-event group Event group p value
(N=434) (N=400) (N=34)

Age (years) 56 .29±14.88 56.23±14.94 56.91±14.06 0.799
Male (%) 65.44% 66% 58.82% 0.511
BMI (%) 26.80±4.30 26.79±4.02 26.93±5.29 0.86
HR (bpm) 69.14±58.47 69.57±60.67 64.04±16.96 0.597
SBP (mmHg) 136.63±73.4 137.52±76.24 126.17±19.17 0.388
DBP (mmHg) 78.74±11.51 78.84±11.57 77.47±10.67 0.506
Genetic mutations 44.24% 44.5% 41.18% 0.864
- MYBC3 26.50% 26.5% 26.47% 0.843
- MYH7 11.29% 11.25% 11.76% 0.848
- TNNI3 1.15% 1.25% 0% 0.856
- TNNT2 3.00% 3% 2.94% 0.614
HCM family history 41.24% 41.75% 35.29% 0.580
SCD family history 11.98% 12% 11.76% 0.815
ICD implantation 11.75% 8.75% 41.18% 4.94E-8
Myomectomie/SRT 14.29% 15% 5.88% 0.229
NYHA 0.081
- NYHA 1 25.8% 26.75% 14.71%
- NYHA 2 44.24% 42.25% 67.65%
- NYHA 3-4 16.82% 17.5% 8.82%
Palpitations 24.19% 24.25% 23.53% 0.909
Unexplained syncope 12.44% 11.75% 20.59% 0.219
Arterial hypertension 27.42% 28.75% 11.76% 0.054
Beta-blocker 70.51% 69.75% 79.41% 0.322
Calcium-blocker 13.82% 13.75% 14.71% 0.917

Table 6.1: Baseline work-up characteristics in the overall population and in patients with and
without ventricular arrhythmia.

All the ordered features are provided in Appendix D (Table D.1).

6.3.3 Ventricular arrhythmias prediction

Figure 6.6 shows the area under the Area Under Curve (AUC) for the prediction of ventricular
arrhythmia for each of the three risk models. After N=200 cross-validation rounds, the study’s
risk model has the highest predictive performance with a final AUC of 0.83 ± 0.08 (sensitivity
0.77 ± 0.17, specificity 0.8 ± 0.1). In comparison, ESC risk score (for ≥ 4%/5 years risk of SCD)
and AHA/ACC (for ≥ 1 risk factor of SCD) model exhibit AUC of 0.56 (sensitivity 0.38, specificity
0.83) and 0.61 (sensitivity 0.47, specificity 0.74) respectively (Figure 11). Our model showed a
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Variables Overall Non-event group Event group p value
(N=434) (N=400) (N=34)

Echocardiography
MWT (mm) 19.06±4.26 19.02±4.26 19.59±4.16 0.452
Peak LVOT (mmHg) 24.62±31.02 25.28±31.76 16.85±18.84 0.129
LVH localisation
- Septal 34.56% 35.25% 26.47% 0.353
- Septal + other 46.77% 46.25% 52.94% 0.568
- Apical 12.67% 11.75% 23.53% 0.097
Apical aneurysm 0.92% 0.25% 8.82% 4.36E-5
LVEDD (mm) 45.39±7.66 45.08±7.52 49.03±8.4 0.0038
LVEDD (mm) 30.76±7.44 30.50±7.07 33.79±10.40 0.013
MR
- mild 37.10% 36.5% 44.12% 0.485
- moderate 17.97% 18% 17.65% 0.856
- severe 2.53% 2.75% 0% 0.681
E/A ratio 1.33±1.29 1.27±0.92 2.00±3,36 0.0016
EDT (ms) 226.0±79.84 227.24±78.14 211.88±96.54 0.283
E/e’ mean 12.96±7.15 12.74±6.89 15.58±9.36 0.026
LA diameter (mm) 43.0±7 42.99±7.57 43.44±8.45 0.743
LAV (ml/m2) 43.46±18.43 42.82±17.57 51.06±23.35 0.012
LVEDV (mL) 98.45±37.39 97.54±36.50 109.21±45.24 0.081
LV-EF (%) 65.25±10.32 65.54±9.87 61.82±14.17 0.044
LV-EF (<50%) 5.99% 4.25% 23.53% 3.92E-5
LV-GLS (%) -15.3 (17.6;12.5) -15.3 (17.6;12.7) -14.4 (16.78;10) 0.171
Exercise testing
Peak work (% pred) 87.85±82.71 91.14±62.54 49.15±199.19 0.004
THR (%) 80.80±12.06 81.03±12.08 78.12±11.43 0.178
Holter-monitoring
NSVT history 16.82% 16.00% 26.47% 0.184
ECG
- Q-wave or PRWP 12.21% 12% 14.71% 0.849
- ST changes 11.75% 11.5% 14.71% 0.780
- T-wave inversion 57.14% 56.75% 61.76% 0.700
MRI
LV-LGE 73.50% 72.75% 82.35% 0.402

Table 6.2: Main clinical characteristics in the overall population and in patients with and without
ventricular arrhythmia.
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Figure 6.5: Subset of 18 selected features. Features are classed by decreasing Ridge coefficients
importance. 7 derived from LV longitudinal strain analysis (pink bars), 2 clinical (yellow bars), 6
echocardiographic (green bars), 1 electrocardiographic (gray bar), 2 from exercise test (blue bars).
The lower part of the figure shows the place of other known risk factors that were not included in
the model (MRI indices in black). Mechanical dispersion was defined as the standard deviation
of tmin in the 18 segments.

predictive positive value of 0.27 ± 0.13 and a negative predictive value of 0.98 ± 0.02. ESC risk
score and AHA/ACC model showed a predictive positive value of 0.16 and 0.14, respectively, and
the same negative predictive value of 0.94.

Only clinical features

An AUC of 0.83±0.8 was found for the same algorithm with the same selected features except
the strain extracted features which were deleted to illustrate their contribution.
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Figure 6.6: ROC curves for prediction of VA events in HCM patients. Pink curve shows the 2014
ESC risk score, green curve represents the 2020 AHA/ACC risk model and blue curve represent
the ML-based model.

Oversampling and undersampling

The oversampling and undersampling were applied only on the training set during 200 cross
validation evaluations. The ADASYN ratio was put at 0.5 and the random undersampling ratio was
put at 0.6. This addition provides a better training for the algorithm that results in a 0.89±0.07 AUC
(Figure 6.7). These two resampling reduce the unbalance characteristic of our original dataset by
"creating" new positive patients (oversampling) and better balance the training set by selecting
only a part of the non-training set (undersampling).

Figure 6.7: ROC curve with oversampling and undersampling of the database.

6.4 Discussion

In this study, we developed a performing prediction method of SCD risk in HCM patients using
Machine Learning (ML). The computational approach allowed an automatic extraction and
comparison of physiological parameters from LV longitudinal strain curves and their utilization
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along with clinical and imaging parameters in a ML-based algorithm. In this bi-centric cohort, the
predictive performance of our model was superior to the currently recommended risk score for
SCD prediction, with an AUC of 0.83.

6.4.1 Justification of the methods

The most effective ML approach was based on a Ridge regression for both feature selection
and model building. Other less successful methods were tested, including Random Forest. We
avoided Deep Learning (DL) approach, which needs massive datasets and would expose us to
a high risk of overfitting. Moreover, DL methods lack interpretability and would not allow the
identification of new predictive features. The use of a DTW algorithm is an original approach that,
to our knowledge, has never been used to compare the similarity of LV strain temporal sequences
of HCM patients. This strain curve shape comparison resulted in the extraction of the two most
important strain parameters in our model. Also, the other strain features were never tested in the
field of HCM patients.

6.4.2 Features selection

DTW midinf was, by far, the most useful LV strain parameter for the algorithm. The inferior wall is
not usually involved by hypertrophy, the inferior extension of adverse remodeling could indicate a
high burden of fibrosis and/or disarray with rhythmic over-risk. The other strain parameters were
mainly related to the LV apex, highlighting the mechanical and temporal disarray of the apical
segments. This is consistent with the fact that apical remodeling is an important poor prognostic
factor in HCM patients [26, 27] which was also found in our model since apical aneurysm was
the most powerful predictive factor. Despite having implemented dispersion parameters at
different levels of comparison, the individual segmental strain parameters were, with the strain
shape comparison, the only strain parameters used by the algorithm. This may result from the
interesting properties of the DTW distance that catch the similarities between two curves in their
entirety without penalize acceleration or deceleration in the signal. Diastolic parameters were
also well represented with E/A ratio, E/e’ ratio, and left atrium volume. Diastolic dysfunction and
LA dilatation are associated with a known increased risk of SCD in HCM patients [28, 29]. In
contrast to left atrium volume, the LA diameter, which is included in the ESC algorithm, was not
selected by our model [7, 16]. Both the peak work and the percentage of predicted maximal heart
rate were found as predictive factors in our model in an uncorrelated manner. Exercise capacity
limitation is a well-identified prognostic factor in HCM patients, and chronotropic incompetence
might be associated with an increased risk of SCD [30, 31]. Even though it has a relatively low
coefficient in our model, it has also been shown that the female gender is associated with poorer
survival in HCM patients [32]. Other selected features including apical aneurysm, LVEF < 50%,
NSVT, and unexplained syncope are well-known risk factors of SCD already included in the current
recommended risk models. The presence or absence of LGE was not relevant for the prediction
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model. This may be explained by the lack of fibrosis quantification, not enabling the identification
of high-risk patients with extensive fibrosis as defined by Chan et al. [13]. On the other hand, we
know that LGE sequences fail to detect interstitial fibrosis and that strain imaging might be better
for the detection of both interstitial and replacement fibrosis [33]. Together with strain imaging,
interstitial fibrosis detection by T1-mapping sequences could be a promising tool in the future
[34].

6.4.3 Resampling

The oversampling technique used in this study have to be discussed. Unless it helps to improve
the model performance on unbalance data as this database, there are some limits. By creating
synthetic patients, it could lead to overfitting or create unrealistic synthetic patients that do not
represent the true distribution of the minority class. In this study, the ADASYN ratio was put at
0.5 to not create too many synthetic patients with event and reduce the presented risks.

6.4.4 Implications

There is a growing interest in exploiting multimodal data by machine learning-based algorithms
to predict adverse outcomes in many cardiac diseases, including HCM patients with predictive
performance outperforming current recommendations risk models [35, 36]. However, this is the
first study to apply a machine learning algorithm to both conventional data and automatically
extracted LV longitudinal strain parameters to predict sustained ventricular arrhythmias and SCD
in HCM patients. By providing an automatic extraction method for strain, this study emphasizes
the potential of exploiting mechanical, temporal, and positional information from segmental
ventricular strain curves beyond the simple use of the GLS. However, there are still challenges. It
seems essential to develop automated and centralized collection systems for patient data to
allow their longitudinal implementation straight into dynamic machine learning-based predictive
algorithms [37].For LV strain measurement, even if automation is on the right track [38], we
already know that there are some discrepancies between acquisitions technique used by different
manufacturers, especially for segmental function assessment [39]. However, the use of strain
shape comparison more than the absolute value in our study could have limited manufacturer-
dependent results [39].

6.4.5 Limitations

The number of events was insufficient to build the model on one center cohort with an external
validation on the other. However, the use of a Ridge regression algorithm and the bi-centric
international population probably reduced the risk of overfitting inherent to machine learning
methods and improved the generalization of the model. Future external validation studies on
larger cohorts are needed. The included patients were referred to tertiaries care centers, which
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may introduce a selection bias with more severe patients included in our cohort. Patients were
mainly excluded because of insufficient image quality, which may introduce selection bias. We did
not exclude patients with septal reduction therapy, which could have introduced a confounding
bias by changing the septal strain pattern. However, almost all strain parameters selected by the
model did not include septal segments. Further investigations of this method including extended
comparison are planned for the future.

6.5 Conclusion

A machine-learning-based algorithm combining heterogeneous data: clinical, imaging, and LV
strain parameters was found to have a higher predictive value for sustained VA and SCD prediction
in HCM patients than conventional risk models. The computational method allows automated
extraction and comparison of new promising strain parameters.
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Conclusion

The assessment of the cardiac function of HF patients is essential to diagnose, choose the
appropriate treatment, predict risk, and ensure follow up. Strain curves-derived parameters, added
to the ECG, could provide essential information on the complex and multifactorial mechanisms
involves [1]. Recently, computational modeling and machine learning have become increasingly
popular in biomedical research, particularly in the fields of disease prediction, diagnosis, and risk
stratification, as well as in the development of personalized therapies. Both approaches, despite
different philosophies, have proved valuable in helping to unravel the complex interactions that
underlie multifactorial diseases. Modeling stands out to integrate physiological knowledge into
the data processing chain. Machine learning, on its side, by its data driven conception ensure
hypothesis free studies and permit large and multimodal database analyses. The thesis was
focused on the assessment of the cardiac function based on methodological frameworks that
include computational models and machine learning algorithms. These different frameworks
were adapted to different phenotypes of heart failure.

The first contribution was the development and validation of computational models on two
clinical cases: Left Bundle of Branch Block (LBBB) and Aortic Stenosis (AS) (Chapter 3 and
Chapter 5). In fact, a first model of the cardiovascular system was proposed by coupling a multi-
segment representation of LV and right ventricle, atria, systemic, and pulmonary circulations.
This model was used to interpret different patterns of LV contraction observed in different cases
of LBBB and was evaluated on data obtained from 10 healthy subjects and 20 patients with
LBBB with underlying ischemic (n=10) and non-ischemic (n=10) cardiomyopathies to create
patient digital twin. A close match was observed between estimated and observed strain signal
of the 20 LBBB and 10 healthy patients. The analysis of model parameters show that septal
motion and global strain morphologies are not only explained by electrical conduction delay
but also by the heterogeneity of contractile levels within the myocardium. A second model was
then used for a different objective: to obtain myocardial work indices in the case of AS with a
noninvasive estimation of the LV pressure. A model identification process was applied on 67 AS
patients. The objective was to improve the model-based approach to assess non-invasively LV
pressure proposed in our team [2, 3]. Then, compare and evaluate the LV pressure estimation
with the adapted method of Russel et al. [4, 5] by Fortuni et al. [6]. As the essential part of the MW
determination is the estimation of LV pressure, pressure curves calculated with each method
were compared with the invasively computed in severe and moderate AS patients. Both methods
present good concordance with the MW indices computed with invasive pressure. Assessing
regional myocardial work could hold significant importance in predicting the prognosis of patients
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with severe asymptomatic AS without LV dysfunction. This is especially crucial as the optimal
timing and criteria for surgical intervention of these patients continue to be a topic of debate.

The second contribution concern the proposition of machine learning pipelines applied to
two distinct databases of HF patients: CRT eligible patients and HCM patients (Chapter 4 and
Chapter 6). Supervised algorithms were applied on both of the database to provide a classification
of these patients. In the first case, the classification aimed to predict the response to CRT, while
in the second case, it aimed to identify at-risk patients. In both instances, the prediction results
surpassed those of the current methods and risk scores. Furthermore, the feature selection
process conducted to develop the classifier highlighted the most predictive features. Additionally,
for CRT eligible patients, a characterization was proposed using an unsupervised ML algorithm.
Five profiles were extracted with different response rate to the CRT. The findings emphasized the
importance of regional myocardial contractility and electrical activation times in predicting CRT
response. This characterization and classification of heart failure patient profiles were based on
a combination of traditional and novel interpretable features extracted from strain data.

The final contribution introduced a hybrid approach that combined in-silico models and machine
learning to analyze strain curves in patients eligible for CRT (Chapter 4). The different steps of
the approaches were developed, as well as their different combinations/declinations. First, five
digital representative patients were added to a 250 CRT-eligible patients’ clustering. These digital
twins provided supplementary understandable features to the five distinct phenogroup created
based on their clinical and strain data. This combined approach appears as a promising tool to
improve the understanding of LV mechanics and the assessment of heart function in patients
undergoing CRT. Then, the proposed in-silico model was integrated in a complete ML pipeline
to improve the interpretability of the approach. A database, composed of 164 CRT candidates,
was analyzed with the proposed hybrid pipeline. The unsupervised ML was applied, and clusters
were defined, associated with groups of below-average to excellent responders. Patient digital
twins bring additional information on the regional electrical and mechanical function of the LV
from the analysis of echocardiographic data. Finally, a supervised ML was applied to parameters
extracted from digital twins to create a CRT-response classifier. This classifier was compared to
a more classic classifier based on clinical and echocardiographic pre-implantation data. Results
show that digital twins approach helps to improve the prediction of the response to CRT, while
improving understanding of LV mechanics in patients undergoing CRT.

This thesis employs promising approaches that combine computational modeling and machine
learning. The aim was to improve the interpretation of echocardiography strain curves by inte-
grating physiological knowledge with models. The proposed methods enhanced physiological
indices by providing personalized interpretation and additional information compared to tradi-
tional measures. Overall, this approach represents a step towards integrating explicit knowledge
for evaluating cardiac function and improving the understanding of patient-specific indicators
extracted from echocardiography.

192 Conclusion



The proposed approaches present some limitations that should be mentioned. First, medium-size
populations of patients were used in this study. The analysis of wider populations should be
performed in the future in order to strengthen and improve our results. Addressing this concern
is crucial for ensuring reliable ML algorithms. Moreover, the two proposed models include some
simplifications concerning the electrical and mechanical behaviors such as fiber, torsion or a
complete mechanical continuity. Another limitation is related to the identification process, which
was applied to reduce a global error. Enhancements could be made to overcome this limitation.

In future works, the proposed hybrid modeling approach, which combines in-silico andMLmodels,
should be evaluated clinically for the prediction of each patient response to a CRT intervention
and to support the medical decision process for implanting or not a patient. This hybrid classifier
should be embedded in a novel Decision Support System (DSS) and used in inference mode to
propose a new multivariate score, associated with an estimation of the probability of response.
This approach will require the development of a technical architecture integrating all the available
patient data and the calculation of a patient-specific probability of response in a timely manner.

Concerning the proposed estimation of work indices in the cases of AS, the methodology could
be translated to tricuspid regurgitation patient. The treatment decision for these patients using
clips is still questioning, and the impact on the right heart remodeling and outcomes are not yet
fully understood. The evaluation of the right ventricle is currently a topic of growing interest, but
there is limited research available on the analysis of its strain curves.

Similarly, the proposed characterization of the CRT eligible patients in Chapter 4 could be adapted
to the HCM database to provide different patients profilesmore or less at risk of SCD or ventricular
arrhythmia. This phenotyping added to the predictive features underlined by the classification
process could provide help in the identification of more at-risk patient and provide adapted
management and follow-up.

This study also opens interesting perspectives for the use of digital twins in cardiology. In the
future, the proposed cardiovascular models could be applied to the optimization of the design
stages of medical devices, as proposed in the previous work of our team [7]. The model-based ap-
proach, defined in my thesis, can be used to conduct virtual experiments and test new diagnostic
hypotheses (implantable device, ...), as a preliminary step to clinical or preclinical investigations.
The advantages of such "virtual prototyping" are multiple (cost reduction, minimization of de-
velopment time, etc.). This work therefore opens the way to new methods of processing and
analyzing clinical data in the context of cardiology,
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Sensitivity analysis and parameter
identification of the LBBB model

Appendix

A

Symbols Descriptions Values Units
Cardiac electrical system

T s
UDP Upstroke depolarization of the segments to identify ms

T s
ARP Absolute refractory of the segments 230 ms

T s
RRP Relative refractory of the segments 140 ms

T s
SDD Slow diastolic depolarization of the segments inf ms

T
LBB/RBB
UDP Upstroke depolarization of LBB and RBB 2500 ms

T
LBB/RBB
ARP Absolute refractory of LBB and RBB 10 ms

T
LBB/RBB
RRP Relative refractory of LBB and RBB 120 ms

T
LBB/RBB
SDD Slow diastolic depolarization of LBB and RBB 120 ms

T
UH/NAV
UDP Upstroke depolarization of UH and NAV 2000 ms

T
UH/NAV
ARP Absolute refractory of UH and NAV 20 ms

T
UH/NAV
RRP Relative refractory of UH and NAV 200 ms

T
UH/NAV
SDD Slow diastolic depolarization of UH and NAV 100 ms

T SAN
UDP Upstroke depolarization of SAN to define ∗ ms

T SAN
ARP Absolute refractory of SAN 10 ms

T SAN
RRP Relative refractory of SAN 120 ms

T SAN
SDD Slow diastolic depolarization of SAN 60 ms

T
LA/RA
UDP Upstroke depolarization of LA and RA inf ms

T
LA/RA
ARP Absolute refractory of LA and RA 30 ms

T
LA/RA
RRP Relative refractory of LA and RA 230 ms

T
LA/RA
SDD Slow diastolic depolarization of LA and RA 100 ms

Right and left atria
Era,max Maximum systolic elastance of the right atrium 0.5 mmHg/ml

Era,min Diastolic elastance of the right atrium 0.01 mmHg/ml

Ela,max Maximum systolic elastance of the left atrium 0.5 mmHg/ml

Ela,min Diastolic elastance of the right atrium 0.01 mmHg/ml

Vra,d Unstressed volume of the right atrium 3 ml

Vla,d Unstressed volume of the left atrium 3 ml

Ara Constant controlling the rise and peak of the right atrial
systole

1 −
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Bra Constant controlling the rise and peak of the right atrial
systole

120 1/s2

Cra Constant controlling the rise and peak of the right atrial
systole

0.2 s

Ala Constant controlling the rise and peak of the left atrial
systole

1 −

Bla Constant controlling the rise and peak of the left atrial
systole

120 1/s2

Cla Constant controlling the rise and peak of the left atrial
systole

0.2 s

Right and left ventricles
n1 Constant controlling the steepness of the electro-

mechanical coupling
to identify −

n2 Constant controlling the steepness of the electro-
mechanical coupling

to identify −

α1 Shape parameter of the electro-mechanical coupling to identify −
α2 Shape parameter of the electro-mechanical coupling to identify −
ls,ref Reference fiber lenghs 0.95 cm

Tref,pass Reference passive tension 52.504 mmHg

Tref,act Reference active tension 375.0319 mmHg

Kpass Parameter related to passive stiffness to identify -
Kact Parameter related to myofiber contractility to identify -
β Constant related with muscle kinetic 10 −
Fa Constant related with muscle kinetic 5.33 −
θ Mean angle of the muscular fibers π/12 rad

e Mean wall thickness 0.7 cm

Rm Radii of curvature in the meridian directions 2.1548 cm

Rp Radii of curvature in the parallel directions 4.5985 cm

Ss Segmental area 8.8909 cm2

Is Segmental inertia 0.0003 mmHgs/ml

Rs Segmental resistance 0.5 mmHgs/ml

P0,lv Left ventricule gradient pressure 1.2751 mmHgs

λlv Left ventricule curvature 0.015 1/ml

V0,lv Left ventricule volume intercept 5 ml

P0,rv Right ventricule gradient pressure 1.2001 mmHgs

λrv Right ventricule curvature 0.015 1/ml

V0,v Right ventricule volume intercept 5 ml

Systemic and pulmonary circulationss
Elv Elastance of the left ventricle 3.4053 mmHg/ml
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Erv Elastance of the right ventricle 0.6526 mmHg/ml

Epa Elastance of the pulmonary artery 0.3375 mmHg/ml

Epu Elastance of pulmonary vein 0.0062 mmHg/ml

Eao Elastance of the aorta 3.2906 mmHg/ml

Esa Elastance of the systemic arteries 0.7881 mmHg/ml

Evc Elastance of the vena cava 0.0154 mmHg/ml

Esv Elastance of the systemic veins 0.010 mmHg/ml

Vd,la Unstressed volume of the left atrium 3 ml

Vd,ra Unstressed volume of the right atrium 3 ml

Vd,pa Unstressed volume of the pulmonary artery 160 ml

Vd,pu Unstressed volume of the pulmonary vein 200 ml

Vd,ao Unstressed volume of the aorta 196.5625 ml

Vd,art Unstressed volume of the systemic arteries 520.6199 ml

Vd,vc Unstressed volume of the vena cava 1907.7 ml

Vd,veins Unstressed volume of the systemic veins 1648 ml

Rpul Pulmonary resistance 0.1425 mmHgs/ml

Rsys Systemic resistance 1.0501 mmHgs/ml

Rla Left atrium resistance 0.2 mmHgs/ml

Rra Right atrium resistance 0.8 mmHgs/ml

Rmt Mitral valve resistance 0.01 mmHgs/ml

Rav Aortic valve resistance 0.0105 mmHgs/ml

Rtcv Tricuspid valve resistance 0.01 mmHgs/ml

Rpv Pulmonary valve resistance 0.0105 mmHgs/ml

Rart Arteries resistance 0.2915 mmHgs/ml

Rveins Veins resistance 0.1935 mmHgs/ml

Table A.1: Parameters, descriptions and values of the LBBB model.

∗ to define with patient heart rate.

Parameters value
Kact 1.5
Kpass 1
n1 1.3
n2 10
α1 0.4
α2 0.4
Rlv 0.3
Ilv 0.001
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fa,s 5
e 0.6
Area 8.890875
β 10
Kcont 1.5
θ π/12

Rm 2.9
Rp 4.59
Rmin 0.05
Rmax 0.3
ls,ref 0.9
Tref,pass 52.5044632
Tref,act 375.03188
Ca 5.33

Table A.2: Baseline simulation parameters values for all the segments.

Parameters
Kact

Kpass

n1

n2

α1

α2

Rlv

Ilv

fa,s

Area

β

Kcont

θ

Rm

Rp

Rmin

Rmax

UDP

Table A.3: Lists of the 18 parameters for each of the 16 segments used in the sensitivity analysis.
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order Parameter i Di σi µ∗
i

0 ApiSept : TUDP 2.800832 3.657845 2.588772
1 ApiInf : TUDP 1.822312 2.565196 1.406503
2 ApiAnt : TUDP 1.255750 1.774345 0.850037
3 MidAntSept : α2 1.214396 1.643248 1.071249
4 BasalAntSept : α2 1.208903 1.637048 1.064982
5 ApiSept : α2 1.150119 1.473622 1.081045
6 BasalInfLat : α2 1.112731 1.571514 0.744877
7 ApiLat : TUDP 1.112468 1.551048 0.643783
8 MidInfSept : α2 1.105292 1.468762 1.001812
9 BasalInfSept : α2 1.079997 1.480997 0.927203
10 BasalAntLat : α2 1.051284 1.484177 0.785716
11 BasalInf : α2 1.042726 1.458456 0.838153
12 MidInf : TUDP 1.041634 1.470951 0.695768
13 MidInfLat : α2 1.011751 1.430819 0.718470
14 BasalAnt : α2 0.982837 1.389928 0.691827
15 ApiInf : α2 0.976932 1.371102 0.600590
16 MidInf : α2 0.970307 1.361894 0.596926
17 MidAntLat : α2 0.956434 1.347078 0.612480
18 MidAntSept : n1 0.894065 1.257175 0.696066
19 MidAntLat : TUDP 0.891784 1.260525 0.650467
20 ApiAnt : α2 0.889551 1.253713 0.574878
21 ApiLat : α2 0.872696 1.229430 0.560637
22 BasalInfSept : Rm 0.834149 1.179625 0.594655
23 MidInfLat : Rm 0.779722 1.102495 0.561690
24 MidAnt : α2 0.758697 1.062697 0.457326
25 BasalInfSept : n1 0.756683 1.021062 0.670665
26 ApiInf : Kact 0.754266 1.050463 0.617918
27 ApiSept : n1 0.743200 1.012439 0.647339
28 BasalAntSept : Rm 0.739187 1.044784 0.539868
29 ApiSept : Rm 0.730942 1.031352 0.550554
30 BasalInfLat : Rm 0.711927 1.005275 0.530483

Table A.4: Sensitivity analysis results on Y = mean(εmodel
min,s): 30 first.

order Parameter i Di σi µ∗
i

0 ApiSept : TUDP 94.169699 131.151512 77.142361
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1 MidInfLat : α2 90.151477 127.390870 61.138889
2 MidAntLat : TUDP 84.291760 118.452881 52.534722
3 BasalInfLat : α2 77.160297 108.173815 46.913194
4 ApiInf : α2 75.519879 106.689813 50.906250
5 BasalAnt : Rm 72.718862 100.724433 39.986111
6 ApiAnt : α2 71.563015 100.332492 43.534483
7 BasalAntLat : α2 68.984097 96.135461 39.767361
8 MidAnt : α2 67.154357 94.172821 40.944444
9 ApiLat : α2 66.718162 93.910003 42.385057
10 BasalAnt : α2 65.007358 90.565887 37.381466
11 BasalInf : α2 61.604235 86.961352 40.840278
12 MidInfLat : Kact 57.395764 78.171241 28.156250
13 BasalAnt : β 57.208297 78.941972 30.614583
14 ApiSept : α2 56.995363 78.229849 29.406250
15 ApiInf : TUDP 56.831360 80.291756 38.354167
16 MidInfLat : β 55.082331 75.012959 27.004310
17 ApiAnt : TUDP 54.953418 76.925254 32.934028
18 MidInfLat : Rm 54.743105 74.834528 27.500000
19 MidInf : α2 53.652708 75.514977 34.059028
20 BasalInfLat : Rm 53.110847 71.746412 24.760417
21 BasalInfSept : Kact 52.061443 69.636420 22.864583
22 BasalInfLat : Kact 50.599550 68.582387 24.079861
23 BasalInf : β 50.066813 63.787891 16.527778
24 MidInfSept : α2 48.519706 66.974024 26.023707
25 MidInf : TUDP 47.638787 65.507702 24.885417
26 BasalInfSept : n1 47.613641 64.070217 21.677443
27 MidAntLat : α2 47.270718 66.699396 31.100694
28 MidInfLat : Area 47.077126 62.382640 19.562500
29 BasalAnt : Kpass 46.876239 60.980704 17.489224
30 BasalAntLat : n2 46.800047 62.042148 19.496528

Table A.5: Sensitivity analysis results on Y = std(εmodel
min,s): 30 first.

order Parameter i Di σi µ∗
i

0 ApiSept : TUDP 1.457107 2.060644 1.026232
1 BasalAntLat : Rm 0.978841 1.379305 0.630958
2 MidInfLat : α2 0.943565 1.329271 0.606176
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3 BasalInf : Kact 0.929282 1.312275 0.620560
4 BasalInfLat : Kact 0.920971 1.287218 0.544307
5 MidAntSept : n1 0.917034 1.290298 0.579893
6 BasalInfSept : n1 0.888404 1.255933 0.610981
7 ApiSept : n1 0.882080 1.247060 0.607957
8 ApiSept : α2 0.881197 1.245450 0.601085
9 BasalInfLat : Rm 0.866749 1.219197 0.546220
10 BasalInf : Rm 0.855847 1.201929 0.529699
11 BasalAnt : Kact 0.812760 1.144603 0.519762
12 BasalAntLat : α2 0.804895 1.129501 0.494145
13 MidInfLat : Kact 0.793131 1.115572 0.499451
14 ApiInf : Kact 0.787341 1.109771 0.509553
15 MidAntLat : β 0.787123 1.107416 0.497240
16 MidAntLat : Kact 0.778634 1.098491 0.510967
17 MidInfLat : Rm 0.777799 1.092469 0.482100
18 BasalAntLat : Kact 0.765447 1.077906 0.489109
19 BasalInfLat : α2 0.763800 1.068678 0.455745
20 BasalInfSept : Kact 0.762354 1.076831 0.511948
21 MidAntLat : α2 0.761666 1.068508 0.466137
22 BasalInf : α2 0.755750 1.064415 0.483896
23 ApiInf : TUDP 0.738672 1.033042 0.438904
24 MidAnt : Kact 0.720263 1.014882 0.463930
25 ApiLat : Kact 0.717180 1.010595 0.462309
26 BasalAnt : Rm 0.716019 1.009091 0.462406
27 MidInf : Kact 0.715333 1.007729 0.459461
28 ApiAnt : Kact 0.715088 1.008909 0.469797
29 BasalAnt : β 0.711077 1.003266 0.467285
30 MidInfSept : α2 0.708872 0.993231 0.428628

Table A.6: Sensitivity analysis results on
Y = mean(t(εmodel

min,s)): 30 first.

order Parameter i Di σi µ∗
i

0 ApiSept : TUDP 63.314830 88.410263 37.113573
1 ApiInf : α2 54.207923 76.331412 34.612065
2 MidInfLat : α2 48.543849 67.897829 28.877045
3 MidInfLat : Kact 45.568638 62.324141 22.965989
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4 ApiLat : α2 45.133891 63.180365 27.052077
5 BasalAnt : Rm 44.490573 62.009295 25.673852
6 MidAntLat : TUDP 40.816545 55.829728 20.583047
7 ApiInf : TUDP 40.132132 55.799369 22.713007
8 BasalInfLat : α2 39.877837 55.666332 23.312569
9 MidInfLat : β 38.878583 52.468498 18.016204
10 ApiAnt : α2 38.101594 53.118466 22.034535
11 BasalAnt : Kact 37.738394 52.012763 20.026305
12 BasalInfLat : n1 36.078403 47.787494 14.954258
13 BasalAnt : α2 35.330446 48.796820 19.028327
14 BasalAnt : β 35.074114 48.244956 18.360291
15 BasalInfLat : Rm 34.632636 46.887555 16.365710
16 ApiAnt : β 33.257811 44.296484 14.242777
17 ApiLat : n1 32.825736 44.469228 15.572300
18 MidInfLat : Rm 31.918237 42.566901 13.773346
19 MidInf : α2 31.814783 44.678591 19.684848
20 BasalInfSept : α2 30.936813 42.310554 15.587742
21 ApiAnt : TUDP 30.919302 42.758283 16.803780
22 ApiSept : α2 30.914302 41.949573 14.818054
23 BasalAntSept : Kact 30.814696 40.789841 12.725504
24 MidInfLat : n1 30.741691 40.671138 12.655047
25 ApiInf : n1 30.550654 41.542536 14.836148
26 MidAntLat : Rm 30.430949 41.850560 15.909905
27 BasalAntLat : β 30.408687 40.663054 13.333447
28 BasalInfLat : Kact 29.540547 39.513039 12.974050
29 MidAnt : α2 29.509688 41.452105 18.309115
30 BasalInf : α2 29.208043 41.031786 18.138280

Table A.7: Sensitivity analysis results on Y = std(t(εmodel
min,s)): 30 first.
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Parameter Range

Segments

Kact [0.1; 1.5]
Kpass [0.1; 10]
n1 [0.5; 2]
n2 [5; 15]
α1 [0.2; 0.6]
α2 [0.2; 0.6]
UDP [1; 30]

LBB UDP [1; 200]

Table A.8: Parameters list and range used in the parameters identifications for LBBB patients

Figure A.1: Patient-specific simulation results for an other healthy subject. Experimental (black)
and simulated (colored) strain curves corresponding to the 16 LV segments. Bull’s-eye represen-
tations of segmental electrical activation delay and segmental myofiber contractility. Color scale
at the contractility bull’s-eye plot set between 10 and 50% in order to highlight the segments with
low contractility.
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Figure A.2: Patient-specific simulation results for an other healthy subject. Experimental (black)
and simulated (colored) strain curves corresponding to the 16 LV segments. Bull’s-eye represen-
tations of segmental electrical activation delay and segmental myofiber contractility. Color scale
at the contractility bull’s-eye plot set between 10 and 50% in order to highlight the segments with
low contractility.

Figure A.3: Patient-specific simulation results for an other healthy subject. Experimental (black)
and simulated (colored) strain curves corresponding to the 16 LV segments. Bull’s-eye represen-
tations of segmental electrical activation delay and segmental myofiber contractility. Color scale
at the contractility bull’s-eye plot set between 10 and 50% in order to highlight the segments with
low contractility.
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Figure A.4: Patient-specific simulation results for an other healthy subject. Experimental (black)
and simulated (colored) strain curves corresponding to the 16 LV segments. Bull’s-eye represen-
tations of segmental electrical activation delay and segmental myofiber contractility. Color scale
at the contractility bull’s-eye plot set between 10 and 50% in order to highlight the segments with
low contractility.

Figure A.5: Patient-specific simulation results for an other healthy subject. Experimental (black)
and simulated (colored) strain curves corresponding to the 16 LV segments. Bull’s-eye represen-
tations of segmental electrical activation delay and segmental myofiber contractility. Color scale
at the contractility bull’s-eye plot set between 10 and 50% in order to highlight the segments with
low contractility.
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Figure A.6: Patient-specific simulation results for an other healthy subject. Experimental (black)
and simulated (colored) strain curves corresponding to the 16 LV segments. Bull’s-eye represen-
tations of segmental electrical activation delay and segmental myofiber contractility. Color scale
at the contractility bull’s-eye plot set between 10 and 50% in order to highlight the segments with
low contractility.

Figure A.7: Patient-specific simulation results for an other healthy subject. Experimental (black)
and simulated (colored) strain curves corresponding to the 16 LV segments. Bull’s-eye represen-
tations of segmental electrical activation delay and segmental myofiber contractility. Color scale
at the contractility bull’s-eye plot set between 10 and 50% in order to highlight the segments with
low contractility.
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Figure A.8: Patient-specific simulation results for an other healthy subject. Experimental (black)
and simulated (colored) strain curves corresponding to the 16 LV segments. Bull’s-eye represen-
tations of segmental electrical activation delay and segmental myofiber contractility. Color scale
at the contractility bull’s-eye plot set between 10 and 50% in order to highlight the segments with
low contractility.

Figure A.9: Patient-specific simulation results for an other healthy subject. Experimental (black)
and simulated (colored) strain curves corresponding to the 16 LV segments. Bull’s-eye represen-
tations of segmental electrical activation delay and segmental myofiber contractility. Color scale
at the contractility bull’s-eye plot set between 10 and 50% in order to highlight the segments with
low contractility.
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Figure A.10: Patient-specific simulation results for an ischemic LBBB patient. Experimental
(black) and simulated (colored) strain curves corresponding to the 16 LV segments. Bull’s-eye
representations of segmental electrical activation delay and segmental myofiber contractility.

Figure A.11: Patient-specific simulation results for an ischemic LBBB patient. Experimental
(black) and simulated (colored) strain curves corresponding to the 16 LV segments. Bull’s-eye
representations of segmental electrical activation delay and segmental myofiber contractility.
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Figure A.12: Patient-specific simulation results for an ischemic LBBB patient. Experimental
(black) and simulated (colored) strain curves corresponding to the 16 LV segments. Bull’s-eye
representations of segmental electrical activation delay and segmental myofiber contractility.

Figure A.13: Patient-specific simulation results for an ischemic LBBB patient. Experimental
(black) and simulated (colored) strain curves corresponding to the 16 LV segments. Bull’s-eye
representations of segmental electrical activation delay and segmental myofiber contractility.
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Figure A.14: Patient-specific simulation results for an ischemic LBBB patient. Experimental
(black) and simulated (colored) strain curves corresponding to the 16 LV segments. Bull’s-eye
representations of segmental electrical activation delay and segmental myofiber contractility.

Figure A.15: Patient-specific simulation results for an ischemic LBBB patient. Experimental
(black) and simulated (colored) strain curves corresponding to the 16 LV segments. Bull’s-eye
representations of segmental electrical activation delay and segmental myofiber contractility.
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Figure A.16: Patient-specific simulation results for an ischemic LBBB patient. Experimental
(black) and simulated (colored) strain curves corresponding to the 16 LV segments. Bull’s-eye
representations of segmental electrical activation delay and segmental myofiber contractility.

Figure A.17: Patient-specific simulation results for an ischemic LBBB patient. Experimental
(black) and simulated (colored) strain curves corresponding to the 16 LV segments. Bull’s-eye
representations of segmental electrical activation delay and segmental myofiber contractility.

Appendix 221



Figure A.18: Patient-specific simulation results for an ischemic LBBB patient. Experimental
(black) and simulated (colored) strain curves corresponding to the 16 LV segments. Bull’s-eye
representations of segmental electrical activation delay and segmental myofiber contractility.

Figure A.19: Patient-specific simulation results for a non-ischemic LBBB patient. Experimental
(black) and simulated (colored) strain curves corresponding to the 16 LV segments. Bull’s-eye
representations of segmental electrical activation delay and segmental myofiber contractility.
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Figure A.20: Patient-specific simulation results for a non-ischemic LBBB patient. Experimental
(black) and simulated (colored) strain curves corresponding to the 16 LV segments. Bull’s-eye
representations of segmental electrical activation delay and segmental myofiber contractility.

Figure A.21: Patient-specific simulation results for a non-ischemic LBBB patient. Experimental
(black) and simulated (colored) strain curves corresponding to the 16 LV segments. Bull’s-eye
representations of segmental electrical activation delay and segmental myofiber contractility.
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Figure A.22: Patient-specific simulation results for a non-ischemic LBBB patient. Experimental
(black) and simulated (colored) strain curves corresponding to the 16 LV segments. Bull’s-eye
representations of segmental electrical activation delay and segmental myofiber contractility.

Figure A.23: Patient-specific simulation results for a non-ischemic LBBB patient. Experimental
(black) and simulated (colored) strain curves corresponding to the 16 LV segments. Bull’s-eye
representations of segmental electrical activation delay and segmental myofiber contractility.
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Figure A.24: Patient-specific simulation results for a non-ischemic LBBB patient. Experimental
(black) and simulated (colored) strain curves corresponding to the 16 LV segments. Bull’s-eye
representations of segmental electrical activation delay and segmental myofiber contractility.

Figure A.25: Patient-specific simulation results for a non-ischemic LBBB patient. Experimental
(black) and simulated (colored) strain curves corresponding to the 16 LV segments. Bull’s-eye
representations of segmental electrical activation delay and segmental myofiber contractility.
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Figure A.26: Patient-specific simulation results for a non-ischemic LBBB patient. Experimental
(black) and simulated (colored) strain curves corresponding to the 16 LV segments. Bull’s-eye
representations of segmental electrical activation delay and segmental myofiber contractility.

Figure A.27: Patient-specific simulation results for a non-ischemic LBBB patient. Experimental
(black) and simulated (colored) strain curves corresponding to the 16 LV segments. Bull’s-eye
representations of segmental electrical activation delay and segmental myofiber contractility.
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Figure A.28: MRI of 10 first LBBB patients with scar localization in the case of ischemia
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Identified model parameters, clustering
and digital twin simulations

Appendix

B

Figure B.1: PCA visualization of the database of 250 patients colored by cluster and symbolized
by their CRT responses (cross: non-responder, circle: responder) in 3D.
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Figure B.2: Digital twin simulation of the 31 patients of the cluster 1.
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Figure B.3: Digital twin simulation of the 46 patients of the cluster 2.

Figure B.4: Digital twin simulation of the 22 patients of the cluster 3.
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Figure B.5: Digital twin simulation of the 41 patients of the cluster 4.
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Figure B.6: Digital twin simulation of the 37 patients of the cluster 5.
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Parameters of the AS model

Appendix

C

Symbols Descriptions Values Units
Elastance-based cardiac cavities

Era,max Maximum systolic elastance of the right atrium 1.6 mmHg/ml

Era,min Diastolic elastance of the right atrium 0.1 mmHg/ml

Ela,max Maximum systolic elastance of the left atrium 1.6 mmHg/ml

Ela,min Diastolic elastance of the right atrium 0.1 mmHg/ml

V0,lv Left ventricle volume intercept 10 ml

V0,rv Right ventricle volume intercept 10 ml

λlv Curvature 0.014 1/ml

λrv Curvature 0.013 1/ml

P0,rv Gradient 1.2001 mmHg

Bla Constant, controlling the rise and peak of the left atrial systole 84.375 1/s2

Cla Constant, controlling the rise and peak of the left atrial systole 0.32 s

α1 Constant controlling the steepness of the LV elastance curve 0.4 −
α2 Constant controlling the steepness of the LV elastance curve 0.4 −
n1 Constant controlling the steepness of the LV elastance curve 1.3 −
n2 Constant controlling the steepness of the LV elastance curve 200 −

Circulations
Erv Elastance of the right ventricle 0.6526 mmHg/ml

Epa Elastance of the pulmonary artery 0.3375 mmHg/ml

Epv Elastance of the pulmonary vein 0.0062 mmHg/ml

Eao Elastance of the aorta 3.2906 mmHg/ml

Esa Elastance of the systemic arteries 0.8851 mmHg/ml

Esv Elastance of the systemic veins 0.010 mmHg/ml

Evc Elastance of the vena cava 0.0154 mmHg/ml

Vd,lv Unstressed volume of the left ventricle 10 ml

Vd,rv Unstressed volume of the right ventricle 10 ml

Vd,la Unstressed volume of the left atrium 3 ml

Vd,ra Unstressed volume of the right atrium 3 ml

Vd,pa Unstressed volume of the pulmonary artery 160 ml

Vd,pv Unstressed volume of the pulmonary vein 200 ml

Vd,ao Unstressed volume of the aorta 197 ml
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Vd,sa Unstressed volume of the systemic arteries 521 ml

Vd,sv Unstressed volume of the systemic veins 1908 ml

Vd,vc Unstressed volume of the vena cava 1648 ml

Rpul Pulmonary resistance 0.1425 mmHg/ml

Rsys Systemic resistance 0.62 mmHg/ml

Rvc Vena cava resistance 0.1935 mmHg/ml

Rao Aorta resistance 0.2915 mmHg/ml

Rla Left atrium resistance 0.01 mmHg/ml

Rra Right atrium resistance 0.01 mmHg/ml

Pth Intrathoracic pressure −4 mmHg

Cardiac valves
ρ Blood density 1.6 g/cm3

Kvc,ao Rate coefficient for aortic valve closure 0.15 1/P a·s

Kvo,ao Rate coefficient for aortic valve opening 0.12 1/P a·s

leff,ao Effective length for aortic valve 2.2 cm

Kvc,tc Rate coefficient for tricuspid valve closure 0.4 1/P a·s

Kvo,tc Rate coefficient for tricuspid valve opening 0.3 1/P a·s

leff,tc Effective length for tricuspid valve 2 cm

Kvc,mt Rate coefficient for mitral valve closure 0.4 1/P a·s

Kvo,mt Rate coefficient for mitral valve opening 0.3 1/P a·s

leff,mt Effective length for mitral valve 2 cm

Kvc,pu Rate coefficient for pulmonary valve closure 0.4 1/P a·s

Kvo,pu Rate coefficient for pulmonary valve opening 0.3 1/P a·s

leff,pu Effective length for pulmonary valve 2 cm

Aannao Cross-sectional area of aortic valve to define∗ cm

Aanntc Cross-sectional area of tricuspid valve 6 cm

Aannmt Cross-sectional area of mitral valve 5 cm

Aannpu Cross-sectional area of pulmonary valve 2.8 cm

Table C.1: Parameters, descriptions and values of the AS model.

∗ to define with patient cross-sectional area of aortic valve.
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Complete and ordered ridge features
selection

Appendix

D

name value
Apical aneurysm 0.603682
Unexplained syncope 0.479694
Peak work (predicted LVEF (< 50%) 0.367399
DTW MI 0.295140
E/A ratio 0.276473
Mean E/e’ ratio 0.244052
DTW MS 0.203555
SAL

peak − SAL
avcdiffSavcminAL 0.198312

LAV 0.189649
SAA

peak − SAA
avc 0.175610

HR (predicted %) 0.165722
EAA 0.159778
NSVT 0.156570
SMI

peak − SMI
avc 0.154209

DTW ML 0.150154
Female gender 0.139217
Apical LVH 0.138657
SBS

peak − SBS
avc 0.137950

std(MI) 0.137619
ED2 0.135929
LVH septal localization 0.132580
DTW BL 0.130960
Lateral localization on MRI 0.128673
Bêta-blocker treatment 0.128320
Sapex

peak − Sbase
peak 0.127792

DTW AI 0.127722
SBA

peak 0.121578
DTW MA 0.117785
tAAs
min 0.115933

SAA
peak 0.114654
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VTSVG (ml) 0.110123
DTW MAs 0.106426
HCM mutation gene 0.105879
DTW AP 0.103770
ID2

peak 0.102701
Mitral reduction (mild) 0.099613
SBS

avc 0.098541
DTDVG (mm) 0.097201
Myomectomy/PTSMA 0.096148
tAS
min 0.094672

DTW BA 0.094383
VTDVG (ml) 0.089700
tML
min 0.089415
Mitral reduction (severe) 0.087793
IBA

peak 0.086750
SAI

peak 0.086415
std(std) 0.084990
ED4 0.083752
normal 0.083225
DTW AL 0.082425
S4CH

peak − S4CH
avc 0.077401

MRI localization inferior 0.076842
Ea moyen 0.076837
Localisation HVG septal 0.076509
SBL

peak − SBL
avc 0.076248

SBA
avc 0.075697

EBI 0.074696
LVOT gradient 0.074422
DTW AA 0.073100
A 0.072012
E 0.071209
SMAs

peak − SMAs
avc 0.069638

ID4
peak 0.068872
Mass ind ASE (g/m2) 0.068067
tBAs
min 0.067182

EBP 0.065961
IEC/ ARA2 treatment 0.064976
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std(tmin) =mechanical dispersion 0.063988
std(ML) 0.063471
tAI
min 0.063109

IAL
peak 0.062382

EAL 0.061930
II

peak − IA
peak 0.061474

MRI localization septal 0.061121
SpeakAL 0.060257
EBA 0.059086
tBS
min 0.058990

SAS
peak − SAS

avc 0.058630
std(Speak) 0.057917
SBI

peak − SBI
avc 0.057134

SMI
peak 0.056457

Q wave or PRWP 0.056277
tBL
min 0.055997

EMS 0.055849
ST changes 0.055789
IAA

peak 0.055492
LGE 0.054570
HR (bpm) 0.053876
SMS

avc 0.052771
tBI
min 0.052441

SBI
peak 0.052098

SML
avc 0.051876

S2CH
peak − S2CH

avc 0.051635
IBI

peak 0.051552
Coronary artery disease 0.050942
IBS

peak 0.050798
tMI
min 0.049785
LV GLS 0.049510
SMA

avc 0.048407
SAA

avc 0.048259
IMI

peak 0.048243
tAL
min 0.048114

DTW MP 0.047469
DTW BP 0.047166
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DTSVG (mm) 0.046999
tBP
min 0.046851
Calcium-blocker treatment 0.046707
tMAs
min 0.046430

std(BP ) 0.046372
OAC 0.045833
SBP (mmHg) 0.045505
HCM family history 0.045355
EMA 0.043647
SMAs

peak 0.042232
EAAs 0.041196
max thickness ≥ 30 mm 0.039502
SAS

avc 0.039252
t3CH
min 0.038412

tAA
min 0.038167

EBAs 0.037539
AP OG (mm) 0.037263
EMI 0.036871
IAAs

peak 0.036610
SAL

avc 0.036592
std(MS) 0.036229
SAP

peak − SAP
avc 0.035408

II
peak 0.034907

SMI
avc 0.034649

std(BI) 0.034487
SBL

avc 0.034275
IAS

peak 0.034272
std(AI) 0.034193
std(AAs) 0.033822
std(BAs) 0.033656
SAP

avc 0.033648
BMI 0.033489
Gradient LV at rest 0.032578
EMP 0.031225
SBP

avc 0.031213
IBL

peak 0.030865
EAI 0.030828
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EP 0.030650
EI 0.030647
SAI

peak − SAI
avc 0.030281

std(BL) 0.029430
EBS 0.029291
IMAs

peak 0.028223
E3CH 0.028208
SMP

avc 0.028160
SBAs

peak − SBAs
avc 0.027512

EAP 0.027297
MS family history 0.027162
Localization HVG septal 0.026859
SA

avc 0.026454
t4CH
min 0.026359

IML
peak 0.025952

tAP
min 0.025710

tMA
min 0.025193

S2CH
avc 0.024907

moderate MR 0.024881
age 0.024653
std(MP ) 0.024635
EA 0.024600
IL

peak 0.024517
EAs 0.024462
tBA
min 0.023928

SL
avc 0.023275

SBP
peak − SBP

avc 0.023096
SI

avc 0.022846
BS (m2) 0.022846
SML

peak 0.022509
S4CH

avc 0.022461
ES 0.022459
EMAs 0.021971
std(AMs) 0.021604
Localisation HVG ant 0.021482
SS

avc 0.021126
SBS

peak 0.020905
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std(AA) 0.020345
DTW BAs 0.020118
SAI

avc 0.020066
I2CH

peak 0.020056
SMAs

avc 0.019905
NYHA 0.019640
E 0.019634
IBP

peak 0.018238
std(BA) 0.017931
IBAs

peak 0.017112
QRS enlargement 0.016947
SAAs

avc 0.016759
std(BS) 0.016265
TDE 0.016103
SMS

peak − SMS
avc 0.015803

SMP
peak − SMP

avc 0.015700
IAP

peak 0.015645
SMS

peak 0.015503
SBA

peak − SBA
avc 0.015305

EML 0.015296
SIVd (mm) 0.015078
EL 0.014947
SAS

peak 0.014471
I4CH

peak 0.014191
SBAs

avc 0.013916
SAAs

peak − SAAs
avc 0.012994

EBL 0.012342
LVEF (%) 0.012030
IP

peak 0.011986
SBAs

peak 0.011909
I3CH

peak 0.011909
MRI localization anterior 0.011804
SAAs

peak 0.011706
IAs

peak 0.011538
stdmean 0.011198
PWEDT (mm) 0.010502
SD3

avc 0.009888

242 Complete and ordered ridge features selection



tMP
min 0.009812

DTW BI 0.009745
std(AL) 0.009577
Iapex

peak − Ibase
peak 0.009040

SMP
peak 0.009037

size (cm) 0.008363
DTW AS 0.008185
DTW BS 0.008014
DTW AAs 0.007820
T wave inversion 0.007731
SBP

peak 0.007678
SP

avc 0.007465
HCM mutation 0.007264
ED3 0.007192
S3CH

peak 0.007021
SBI

avc 0.006750
std(AP ) 0.006545
SAP

peak 0.006303
Diastolic blood pressure (mmHg) 0.006236
IS

peak − IL
peak 0.005938

SML
peak − SML

avc 0.005057
S3CH

avc 0.004989
SMA

peak 0.004748
S3CH

peak − S3CH
avc 0.004733

std(MAs) 0.004267
tMS
min 0.004254

tAAs
peak − tAAs

avc 0.004079
IA

peak 0.004078
E4CH 0.003838
tAI
peak − tAI

avc 0.003750
E2CH 0.003671
SBL

peak 0.003475
IS

peak 0.003327
std(MA) 0.003240
tML
peak − tML

avc 0.003122
IMP

peak 0.003026
tBL
peak − tBL

avc 0.002910
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tBAs
peak − tBAs

avc 0.002909
SAs

avc 0.002773
tBS
peak − tBS

avc 0.002683
tAA
peak − tAA

avc 0.002592
ID3

peak 0.002474
SD4

avc 0.002288
avc timing 0.002275
t4CH
peak − t4CH

avc 0.002215
tBP
peak − tBP

avc 0.002214
S2CH

peak 0.002160
tMS
peak − tMS

avc 0.002149
tAL
peak − tAL

avc 0.002142
t3CH
peak − t3CH

avc 0.002039
SD2

avc 0.001974
weight (kg) 0.001937
S4CH

peak 0.001930
std(Ipeak) 0.001775
t2CH
peak − t2CH

avc 0.001757
tMA
peak − tMA

avc 0.001667
EAS 0.001559
tAP
peak − tAP

avc 0.001442
tBA
peak − tBA

avc 0.001403
t2CH
min 0.001212

IAI
peak 0.001212

tMI
peak − tMI

avc 0.001029
IAs

peak − IP
peak 0.000934

tMAs
peak − tMAs

avc 0.000834
tMP
peak − tMP

avc 0.000757
max thickness 0.000633
tAS
peak − tAS

avc 0.000284
IMA

peak 0.000278
tBI
peak − tBI

avc 0.000101
IMS

peak 0.000041

Table D.1: Complete table of features in HCM study. Features are classed by decreasing Ridge
coefficients importance.
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Titre :Approche hybride, combinant desmodèles computationnels et d’apprentissage automatique pour l’analyse
du strain myocardique et l’évaluation de la fonction cardiaque.

Mot clés : Modèle computationnel, apprentissage automatique, jumeau numérique, echocardiographie, sténose
aortique, bloc de branche gauche, cardiomyopathie hypertrophique

Résumé : L’évaluation de la fonction cardiaque est
un enjeu majeur en cardiologie, en particulier dans la
prise en charge des patients atteints d’insuffisance car-
diaque. Malgré les avancées technologiques, telles que
les courbes de strain extraites de l’échocardiographie,
cette évaluation reste difficile et incomplète en raison
de sa nature multifactorielle. L’objectif est de proposer
de nouvellesméthodes permettant une compréhension
plus précise et personnalisée de la fonction ventricu-
laire gauche chez les patients insuffisance cardiaque.
Des approches hybrides combinant la modélisation in
silico, traitement du signal et apprentissage automa-
tique ont été proposées.
Quatre problématiques associées à différents phéno-
types d’insuffisance cardiaque sont abordées dans
cette thèse : i) Les courbes de strain de 10 sujets sains
et 20 patients atteints de bloc de branche gauche ont
été analysées à l’aide d’un modèle computationnel.

ii) Une caractérisation des profils de réponse à la thé-
rapie de resynchronisation cardiaque a été proposée
sur 250 patients éligibles grâce à des approches hy-
brides. iii) Une estimation non invasive de la pression
ventriculaire gauche a été proposée et évaluée sur 67
patients atteints de sténose aortique afin d’obtenir des
indices de travail myocardique. iv) Une classification
du risque de mort subite chez les patients atteints de
cardiomyopathie hypertrophique a été développée à
partir de paramètres cliniques, d’imagerie et extrait du
strain de 434 patients.
Ces approches originales utilisent principalement des
mesures non invasives issues de l’échocardiographie
et introduisent de nouveaux outils d’intelligence artifi-
cielle dans la pratique clinique. Elles visent à être spé-
cifiques à chaque patient afin d’être intégrées dans un
processus de médecine personnalisée.

Title: Hybrid approach, combining computational and machine-learning models, for the analysis of myocardial
strain and cardiac function evaluation.

Keywords: Computational model, machine learning, digital twin, echocardiography, aortic stenosis, left bundle
branch block, hypertrophic cardiomyopathy

Abstract: The cardiac function evaluation is a major
health issue in cardiology, and particularly for the man-
agement of patients with heart failure. Despite tech-
nological progress and the arrival of myocardial defor-
mation curves extracted from echocardiography: strain
curve, the cardiac function evaluation remains difficult
and incomplete due to its multifactorial nature. The
objective of this thesis is to propose new methods al-
lowing a more precise and personalized understanding
of the left ventricular function of heart failure patients.
Hybrid approaches, combining in-silico modeling, clas-
sical signal processing and machine learning, were pro-
posed.
Four issues associated with different heart failure phe-
notypes are addressed in this thesis: i) Strain curves
of 10 healthy subjects and 20 patients with left bundle
branch block were analyzed by a computational model.

ii) A characterization of the responder profiles for car-
diac resynchronization therapy were proposed thanks
to the application of hybrid approaches on 250 eligible
patients. iii) Non-invasive left ventricle pressure estima-
tion was proposed and evaluated on 67 aortic stenosis
patients to obtain myocardial work indices, iv) A classi-
fication of sudden death risk in patients was developed
on clinical, imaging and strain extracted parameters of
434 patients with hypertrophic cardiomyopathy.
Original approaches combining both machine learning
algorithms and digital twin cohorts have been proposed
and applied. The proposed methods mainly use non-
invasive measurements from echocardiography and
bring new artificial intelligence tools to clinical prac-
tice. They aim at being patient-specific in order to be
integrated in a personalized medicine process.
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